
Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara 

Seria ELECTRONICĂ şi TELECOMUNICAŢII 
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS 

Tom 49(63), Fascicola 2, 2004 

Gradient Algorithms with Improved Convergence 
Cezar Partheniu 

Abstract-A generalized normalized gradient descend 
(GNGD) algorithm for linear finite-impulse response is 
presented and anaiized. The GNGD is an extension of the 
normalized ieast mean square (NLMS) algorithm by 
means of an additional gradient adaptive term in the 
denominator of the learning rate of NLMS. GNGD has 
better convergence in linear prediction configuration than 
other algorithms, good performances in system 
identification configuration in some conditions, worse 
response in interferences cancelling configuration and 
similar results with NLMS in reverse modelling 
configuration. 
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I. INTRODUCTION 

The generalized normalized gradient descent 
(GNGD) algorithm is an extension of the normalized 
least mean square (NLMS) algorithm by means of an 
additional gradient adaptive term in the denominator of 
the learning rate of NLMS. GNGD adapts its learning 
rate according to the dynamics of the input signal with 
the additional adaptive term compensating for the 
simplifications in the derivation of NLMS. GNGD is 
robust to the initialisation of its parameters. 

The NLMS is described by the foilowing equations: 

y[n] = x^[n]M\n 

e{n\ = d*[n\ - y[ri 

x[ri\ - h e 

w[n -f 1] = M\ri\ + /Â[n\x[n]e[n\ 

(1) 

(2) 

(3) 

(4) 

where e[n] is the error of the output sişnai, d[n] is the 
desired signal, x[n]=[x[n-l],...,x[n-n]] is the input 
signal vector, N is the filter length, H is the vector 

transpose operator, w[n| is the filter coelTicienls vector 
and iJ is the learning rate which defmes de convergence 
speed of the algorithm on the eiTor surface defined with 
cost function 

e\n\ 
E r n (5) 

a very important parameter for the LMS algorithm. 
The usual independence assumptions leed to a 

unitar ji for the fastest convergence. Practically the 
NLMS rate is smaller. 

The input signals with unknown and variate 
dynamics, the "ill-conditioned'' self-correlation matrix 
and the correlation between signals may determinate the 
divergence or low performances for the NLMS 
algorithm. As a solution, new algorithms have recently 
been developed [1], [2], [3]. The Mathews' and 
Benveniste algorithms are presented in the Appendix. 
These algorithms are based on the 6E[nj/5|i estimators. 

A major disadvantage of these algorithms is their 
sensitivity to the time correlation between the input 
signal samples and to the value of the additional 
adaptive rate. To this cause, a generalized normalized 
gradient descent (GNGD) algorithm has been 
developed. The stability and the improved convergence 
are introduced by the gradient adaptive compensation 
term e from the denominator of the learning rate of 
NLMS. 

Due to noise, '111-conditioned" correlation matrix, 
close-to-zero value of the input vector or a large 
learning rate, the NLMS algorithm (6) is not optimal for 
many practicai settings. 

w[n + 1] = M\n\ -f 
"i 

-e[n]x[n] = 

= w n + r][n]e[rî\x[n 
(6 ) 
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To thai cause, the v. paramcler from (6) is made 
gradient adaptive as 

e[n + l] = e[n]- (7) 

Using the chain rule, the gradient can 

be evaluated as 

dE[n\ ^8E[n]de[n]dy[fj] ^ 
d^n -1] de[n\ dy[n\ dw{ri 

Â. Adaptive sysiem configurations 

There are four adaptive system configurations 
defined by the funclion realized. 
System identification (Fig. 1). We want to create a 
model for an unknown system. This system and the 
adaptive filter have the same test signal x The output 
signal of the unknown system is the "desired signal" for 
the adaptive filter. When y and t/ are close, the transfer 
function of the unknown system is approached with the 
transfer funclion of the adaptive filter. The dynamics of 
the system determine a time variability for the model. 

d/j[n -1] 
df2{n -1] d£[n -1] 

e[n]e[n-\\x"{n]x{n-\] 

(8) 

The GNGD algorithm is therefore described by 

y[n\-x'^ [n\w[n] (9) 
e[n\ = d[n\-y[n] (lO) 

\i{n +1] = w[/î] + (11) 

M w n 

e[n\ = e[n -1] - p 

, — (12) 
\\x[nf + s[n] 

e[n]e[n-\]x"[n]x[n-\] 

(13) 

Fig 1 Sysiem identification 

Reverse modelling (fig. 2). The model also identifies an 
unknown system. When the error is zero,the global 
transfer function of both unknown system and adaptive 
filter is reduced to a delay. The transfer function of the 
adaptive filter is the reverse transfer function of the 
unknown system with a small difference caused by the 
unavoidable noise. The model can also eliminate the 
result of an unknown function (eg. Automate 
equalisation of communications channels). 

The adaptive rate of GNGD is essentialy bounded by 
the stability limits of the NLMS algorithm. The 
compensation term c is lower bounded according to 
(14)(4]for 

\x[n] ^ 
(14) 

The complexity of GNGD lies in between the 
complexity of Mathews' and Benveniste's algorithms 
and is roughiy twice that of NLMS. To reducc the 
complexity and prevent disturbance in the steady siate, 
it is possible to impose bounds on £[n] or to stop its 
adaptaiion afirer convergence. 

Fig 2 Reverse modelling 

Linear prediction (fig. 3). The response of the filter for 
a delayed input sequence is compared with the actual 
sample. The error minimisation realise an optimal 
prediction of the input signal. The 1 output realise the 
''prediction error filter" and the 2 output realise the 
prediction. 
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Fig. 3 Linear prediction 
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Interferences cancelling (fig. 4). The primary signal is 
thc useftil signal. It has an unuseful perturbing signal 
overlapped. There must be created a similar signal 
which will be subsiracted from the primai^ signal using 
a reference. This signal results from the adaptive filter. 
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Fig 4 Interference cancelling 

II. EXPERIMENTS 

The analysis of the adaptive algorithms is made 
using all the four adaptive systems configurations: linear 
prediction, system identification, interferences 
cancelling and reverse modelling. 

Linear prediction 

The flrst comparison is made with GNGD and 
NLMS algorithms. The order of the filter is ord=5 and 
the input sequence has N=3500 samples. The other 
parameters of the algorithms have usual values which 
made possible the comparison. 

The experiment is made using a liniar stationaiy 
filtered signal given by 

y [ n ] = 1 . 7 9 y [ n - 1 ] - 1 . 8 5 y [ n - 2 ] + 

1 . 2 7 y [ n - 3 ] - 0 . 4 1 y [ n - 4 ] + x [ n 
(15) 

where x[n], a white noise with a zero average and 
unitar)' variance, is passed through a AR filter. 

We observe in Fig.5 thai GNGD converges faster 
than NLMS with 500 iterations. This improved 
convergence results from the gradient adaptive £ in the 
denominator of the leaming rate of the algorithm. 

In [4] we fmd a comparison between GNGD and 
Mathews' and Benveniste's algorithms. Using usual 
values of the parameters, it is evaluated that GNGD has 
faster convergence than Mathews' and Benveniste's 
algorithms. This result is shown in Fig.6. 

System identification 

The parameters of LMS, NLMS and GNGD used in 
system identification are the number of iterations N, the 

order of the filter ord and thc specific parameters 8, 
for RLS, }i and p. 
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Fig 5 Convergence of GNGD and N'LMS aJgorithms 
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Fig 6. Convergence of GNGD, Mathews' and Benveniste's algorithms 

We set N=1000, ord=7, 8=0.001 and X=0.9. The mean 
square error for the algorithms is shown in Fig. 7. 
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Fig 7 Mean square error in system identification(dB) 
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The optimization of the parameiers resulis in a 
faster convergence for GNGD comparing to NLMS. 
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Fig. 8 Mean square error in syslem identificatjon for optimized 
parameiers (dB) 

A value of ^ close to 0.1 leeds to the same 
performances for all the algorithms studied (Fig. 9). 
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Fig. 9 System identification for 1 

A value of \x less than 0.1 detemines a vvorse 
response of the adaptive filter for GNGD and NLMS 
algorithms, the output signals being different (Fig. 10). 
GNGD prooves to be sensitive to the values of its 
parameters.The algorithm has a good output signal for ^ 
close to 0.1 and p less than 5.5. 

For an optimal set of parameters values GNGD has a 
response better than NLMS. 

Inlerferences cancelling 

The algorithms studied here ma> be used in 
interferences cancelling configuration. 

We consider a primar>' signal given by 

d [ n ] = s i n ( n a > o ) , ^ y o = * ^ (16) 

and a perturbation with the following recui-sive relation 

v , M = 0 . 8 v , [ / î - l ] + g [ r t ] (17) 

where g[n] is a white noise with zero average and 
unitar> variance. The following signal resuits 

x[n\ = d[n\ + v^[n\ (18) 

We also consider a second signal V2 [w] defined as 

V 2 M = - 0 . 6 v 2 [ / î - l ] + g [ « ] (19) 
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Fig. 10 Syslem identification for ^<0.1 

The error for N=1000 is made with 100 runs of 
independent trials performed and averaged. If we have 
no noise, we obtain the graphics in Fig, 11. 
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Fig II. Interferences cancelling (n=0) 
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A noise factor n=0.5 leeds to an inpossible 
interferences cancelling for all the algorithms (Fig. 12). 
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Fig 12 Interferences cancelling (n=0.5) 

A value of )i=0.1 prooves that GNGD and NLMS 
have a similar performance better than LMS. 
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Fig 13 Interfence cancelling 

All the algorithms have good results for filter length 
less than 25. 

Reverse modelling 

The reverse modelling configuration cancels the 
results of an unknown transfer function (eg. Automate 
equalization of communication channels). For this 
configuration we use an adaptive channel equalizor with 
a general design as Fig. 14 describes. 

The input signal has the ±1 values randomly 

distributed. The channel transfer fiinction / / ^ [ z ] is 
given by (15). The output signal has a white noise 
overlapped and the adaptive filter realizes the 
equalization. The switch is used in position "1" with 
training sequence. 

Fig 14 Channel adaptive equalizor 

The length of the input randomly sequence is 
N=1000 and the order of the filter is ord=5. The figures 
represent the input data sequence c[[n], the channel 

output sequence x[n] and y f l / l ] şi 

sequences obtained after equalization and decision in 
histograms for LMS, NLMS and GNGD algorithms. A 
noise makes the equalization impossible. 
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Fig 15 LMS channel equalization 
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Fig. 16 NLMS channel equalization 

79 
BUPT



itm .. d _ -itm 
• : ' • -

41 1 

o 7 •- •i - • y-ş 
«I 
tflo 
a - ^ 

.iDQlf- r-
«CD 

i i i -

REFERENCES 

[ 1 ] A M. Kuzminskiy, ^'Self-adjustement of an adaptive coefficient of 
a noise compensator in a nonstationary process'\ Iszvestiya VUZ 
Radioelektron., voi 29, no.3.pp. 103-105,1986 
[2] V J Mathews and Z.Xie, "A stochastic gradient adaptive filter wilh 
gradient adapiive step size", IEEE Tmns.Signal Processing, vol.41. 
pp.2075.2087. June 1993 
|3J A.Benveniste, M Metivier andP.Priouret," Adaptive algonthms 
and sfochastiL approximaiion \ New York: Springer-Verlag, 1990 
[4] D P Mandic. ''A generalized nomializede gradient descent 
algonthm", IEEE Signal Froccssing Letters, voi. 11, no 2, February 
2004 
[5] C Partheniu, -'Gradient adaptive algorithms with improved 
conVi^rgence\ diploma project. June 2004 

Fig 17 GNGD channel equalization 

As Fig. 15-17 shovvs, NLMS and GNGD have betler 
performances than LMS in reverse modelling. 

III. CONCLUSION 

The GNGD algorithm has belter convergence ihan 
the other LMS algorithms studied. GNGD has better 
perfomiances than NLMS in linear prediction 
configuration and similar in interferences cancelling 
design. in system identificarion and reverse modelling 
GNGD is sensitive to its parameters, conclusion which 
makes GNGD unuseftil in these situations. 

APPENDIX 

Mathews' algorithm: 
fi 

y{n\ = X 

e[n\ = d* [n\- y[rî\ 

^[n] - /J[n - 1] + pe{n\e[n -1] 

(20) 

(21) 

H (22) 

w[n + l] = w[n] + fA^]x[n]e[n\ (23) 

Benveniste's algorithm: 

y[n] = x" [n]w[n] (24) 

e[n] = d*[ri\-y[n] (25) 

m = Âri - 1 ] + 
(26) 

x"[n-\]Yi'{n-\] + e\n- l]x[« -1] 
(27) 

M{n + 1] = H ^ l ] + (28) 
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