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Gradient Algorithms with Improved Convergence
Cezar Partheniu

Abstract-A generalized normalized gradient descend
(GNGD) algorithm for linear finite-impulse response is
presented and analized. The GNGD is an extension of the
normalized {east mean square (NLMS) algorithm by
means of an additional gradient adaptive term in the
denominator of the learning rate of NLMS. GNGD has
better convergence in linear prediction configuration than
other algorithms, good performances in system
identification configuration in some conditions, worse
response in interferences cancelling configuration and
similar results with NLMS in reverse modelling
configuration.
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I. INTRODUCTION

The generalized normalized gradient descent
(GNGD) algorithm is an extension of the normalized
least mean square (NLMS) algorithm by means of an
additional gradient adaptive term in the denominator of
the learning rate of NLMS. GNGD adapts its learning
rate according to the dynamics of the input signal with
the additional adaptive term compensating for the
simplifications in the derivation of NLMS. GNGD is
robust to the initialisation of its parameters.

The NLMS is described by the following equations:

y[n] = x" [n}w[n] (1)

e[n]=d"[n] - y[n] @)

pn]=—= )
)l +e

win +1]=w[n]+ y[n]x[nle[n] (4)

where e[n] is the error of the output sn%nal d[n] is the
desired signal, x[n]=[x[n-1]},....x[n-n}]" is the input
signal vector, N is the filter length, H is the vector

transpose operator, w{n| is the filter coefticients vector
and u is the leamning rate which detines de convergence
speed of the algorithm on the error surface defined with

cost function
N

E[n] =2 ?F”] ,

a very important parameter for the LMS algorithm.

The usual independence assumptions leed to a
unitar p for the fastest convergence. Practically the
NLMS rate is smaller.

The input signals with unknown and variate
dynamics, the “ill-conditioned”™ self-correlation matrix
and the correlation between signals may determinate the
divergence or low performances for the NLMS
algorithm. As a solution, new algorithms have recently
been developed [!], [2], {3]). The Mathews’ and
Benveniste algorithms are presented in the Appendix.
These algorithms are based on the dE[n]/8y estimators.

A major disadvantage of these algorithms is their
sensitivity to the time correlation between the input
signal samples and to the value of the additional
adaptive rate. To this cause, a generalized normalized
gradient descent (GNGD) algorithm has been
developed. The stability and the improved convergence
are introduced by the gradient adaptive compensation
term e from the denominator of the leaming rate of
NLMS.

Due to noise, “ill-conditioned” correlation matrix,
close-to-zero value of the input vector or a large
learning rate, the NLMS algorithm (6) is not optimal for
many practical settings.

(3)

———’UT——e[n]x[n] =

"x[n]”' +&
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wln+1]=wln]+

(6)
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To that cause, the ¢ parameter from (6) is made
gradient adaptive as

eln+1]=eln] - PV, yelnl o

Using the chain rule, the gradient VE[n_,]e[n] can

be evaluated as
0E[n] _ OE[n] 0e[n] oy[n] ,

de[n—1]  oe[n] &y[n] owln]
ow[n] ou[n -1} _

" aln 1] ol - 1] ®
_ e[n)e[n —1)x [nix]n - 1]
(xfn =13 + eln-1))?

The GNGD algorithm is therefore described by
yn)=x" [n]win] ©)
e[n]=d[n]- y[n] (10)

win + 1]=wn]+ gnle[nlx[n] an
win] = = (12)

llx[n]"z + g[n]

e..Jeon—1x[nix[n -1

e[n]=e[n-1]-p
(x[n -1 + eln - 11)?

(13)

The adaptive rate of GNGD is essentialy bounded by
the stability limits of the NLMS algorithm. The
compensation term ¢ is lower bounded according to

(14)[4] for p=1.
2
gln]>- ni[gl”— (14)

The complexity of GNGD lies in between the
complexity of Mathews’ and Benveniste’s algorithms
and is roughly twice that of NLMS. To reduce the
complexity and prevent disturbance in the steady state,
it is possible tc impose bounds on g[n] or to stop its
adaptation aftrer convergence.

A.Adaptive system configurations

There are four adaptive system configurations
defined by the function realized.
System identification (Fig. 1). We want to create a
model for an unknown system. This system and the
adaptive filter have the same test signal x. The output
signal of the unknown system is the “desired signal” for
the adaptive filter. When y and d are close, the transfer
function of the unknown system is approached with the
transfer function of the adaptive filter. The dynamics of
the system determine a time variability for the model.
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Fig 1 System identfication

Reverse modelling (fig. 2). The model also identifies an
unknown system. When the error is zero,the global
transfer function of both unknown system and adaptive
filter is reduced to a delay. The transfer function of the
adaptive filter is the reverse transfer function of the
unknown system with a small difference caused by the
unavoidable noise. The model can also eliminate the
result of an unknown function (eg. Automate
equalisation of communications channels).
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Fig 2 Reverse modelling

Linear prediction (fig. 3). The response of the filter for
a delayed input sequence is compared with the actual
sample. The error minimisation realise an optimal
prediction of the input signal. The 1 output realise the
“prediction error filter” and the 2 output realise the
prediction.
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Fig. 3 Linear prediction
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Interferences cancelling (fig. 4). The primary signal is
the useful signal. It has an unuseful perturbing signal
overlapped. There must be created a similar signal
which will be substracted from the primary signal using
a reference. This signal results from the adaptive filter.
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Fig 4 Interference cancelling

II. EXPERIMENTS

The analysis of the adaptive algorithms is made
using all the four adaptive systems configurations: linear
prediction, system identification, interferences
cancelling and reverse modelling.

Linear prediction

The first comparison is made with GNGD and
NLMS lgo.ithms. The order o. the ..lter is ord=. and
the input sequence has N=3500 samples. The other
para.uutors of the algorithms have nenal valn e which
made possible the comparison.

The experiment is made using a liniar stationary
filtered signal given by

y[n]=1.79y[n-1]-1.85y[n- 2]+

1.27y[n-3]-0.41y[n - 4] + x[n]. (15)

where x[n], a white noise with a zero average and
unitary variance, is passed through a AR filter.

We observe in Fig.5 that GNGD converges faster
than NLMS with 500 iterations. This improved
convergence results from the gradient adaptive € in the
denominator of the learning rate of the algorithm.

In {4] we find a comparison between GNGD and
Mathews’ and Benveniste’s algorithms. Using usual
values of the parameters, it is evaluated that GNGD has
faster convergence than Mathews’ and Benveniste's
algorithms. This result is shown in Fig.6.

System identification

The parameters of LMS, NLMS and GNGD used in
system identification are the number of iterations N, the
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order of the filter ord and the specific parameters 8, A
for RLS, u and p.
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Fig 5 Convergence of GNGD and NLMS algorithms
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Fig 6. Convergence of GNGD, Mathews’ and Benventste's algonthms

We set N=1000, ord=7, =0.001 and »=0.9. The mean
square error for the algorithms is shown in Fig. 7.
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Fig 7 Mean square error in system identification(dB)

BUPT



The optimization of the parameters results in a
faster convergence for GNGD comparing to NLMS.
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Fig. 8 Mean square ertor in system identification for opttmized
parameters (dB)

A viu _fpoecls t 01 i _ds to the same
performances for all the algorithms studied (Fig. 9).
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Fig. 9 System identification for 4#=0.1

A value of p less than 0.1 determines a worse
response of the adaptive filter for GNGD and NLMS
S S S pt g g ff__1(Ceg. )
GNGD prooves to be sensitive to the values of its
parameters. The algorithm has a good output signal for p
closc t0 0.1 and p less than 5.5.

For an optimal set of parameters values GNGD has a
response better than NLMS.

Interferences cancelling

The algorithms studied here may be used in
interferences cancelling contiguration.
We consider a pr mary s'gnal g ven by

d[n]=sin(nwg),wy =0.05*7  (16)
and a perturbation with the following recursive relation

w[n]=0.8v[n 1]+ g[n] (17

where g{n] is a white noise with zero average and
unitary variance. The following signal results

x[n] = d[n] +w[n] (18)
We also consider a second signal V5 [I’Z] defined as

vy [n]=-0.6v,[n 1]+ g[n] (19)
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Fig. 10 System identification for p<0.1

The error for N=1000 is made with 100 runs of
independent trials performed and averaged. If we have
no noise, we obtain the graphics in Fig. 11.
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Fig 11 Interferences cancelling (n=0)
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A noise factor n=0.5 leeds to an inpossible
interferences cancelling for all the algorithms (Fig. 12).
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Fig. 12 Interferences cancelling (n=0.5)

A value of u=0.1 prooves that GNGD and NLMS
have a similar performance better than LMS.
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Fig. 13 Interfence cancelling

All the algorithms have good results for filter length
less than 25.

Reverse modelling

The reverse modelling configuration cancels the
results of an unknown transfer function (eg. Automate
equalization of communication channels). For this
configuration we use an adaptive channel equalizor with
a general design as Fig.14 describes.

The input signal has the +1 values randomly

distributed. The channel transfer function H C[Z]

given by (15). The output signal has a white noise
overlapped and the adaptive filter realizes the
equalization. The switch is used in position “1” with
training sequence.
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Fig. 14 Channel adaptive equalizor

The length of the input randomly sequence is
N=1000 dth- -~d— fth-filt-—i- ~d=5. Th- fi-
represent the input data sequence d[n], the channel

output sequence x[n] and yf[n] $i yd[n]

sequences obtained after equalization and decision in
histograms for LMS, NLMS and GNGD algorithms. A
noise makes the e ualization im_ossible.
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Fig.16 NLMS channel equalization
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Fig. 17 GNGD channel equalizauon

As Fig.15-17 shows, NLMS and GNGD have better
performances than LMS in reverse modelling.

[11. CONCLUSION

The GNGD algorithm has better convergence than
the other LMS algorithms studied. GNGD has better
performances than NLMS in  linear prediction
configuration and similar in interferences cancelling
design. In system identification and reverse modelling
GNGD is sensitive to its parameters, conclusion which
makes GNGD unusetul in these situations.

APPENDIX
Mathews" algorithm:
y[nl=x" [nJwln] (20)
e[n]=d’ [n]- y[n] @)

pln]= pln-1]+ pe[nle[n -1]
*x7[n)x{n -1
win + 1] = w{n] + ynlx[nle[n] (3)

Benveniste’s algorithm:

y[n]=x" [nlw[n] (24)
e[n)=d’ [n]- y[n] 25)
pn}= pin 1]+ pRe{e[nlx” [n]¥[n]}

(26)
Yin]=[1 - yn-1jx[n-1]

A n-10¥n-1+e [n-1x[n-1]
2
win + 1]= wfrl + ulnlalnleln) o
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