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Abstract — The Guruswami-Sudan (GS) decoding
algorithm is a list-type decoding algorithm that corrects
more errors than the “declared” capability, for certain
coding rates of the Reed-Solomon (RS) codes. Using
computer simulations, the paper presents a comparison
between the correction capability and the processing
time of the GS and Berlekamp-Massey (BM) algorithms.
The simulations are employed to establish the optimum
values of the GS parameters that ensure the maximum
performance/processing time ratio. Some methods of
changing the GS parameters, in terms of the packet-
error length, which provide shorter decoding times, are
also presented.
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[. INTRODUCTION

Considering an RS-type code C, defined over the
Galois field F;, with the parameters n — codeword
length. k — information word length, d -~ Hamming
distance, there are three possible definitions for such a
code [1] [2], namely:

Cyclic codes: if a code word ceC and 1 is the
cyclic shift operator, then 1(c)eC. The code word can
be expressed as:

RSC(k)={(c0,c,,. cCam): “}ilcjxJ =0for cod?,.. ,a"‘k}(l)
0

Evaluation codes: the code word is obtained by
evaluating a polynomial f{x), defined by (2),

associated to the information word v (vo, vy, . vi.p),
over the elements of F,, as shown in (3):
k-1
fx)= Tv;-% (2)
=0

RSg (k)= fla®) a')....tla')) ceg £ <k} 1k [x] (3)

Codes dual to the evaluation codes.

Defining the RS codes as evaluation codes, leads
to the possibility of employing list-type algorithms for
their decoding, algorithms that provide higher per-
formances than the classical ones, represented in this
paper by the BM algorithm.

The list-type decoding algorithms [3] [S] operate
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with a decoding radius higher than (dm.-1)2.
delivering a list of possible code words. If the
distances between code words are distributed in such a
manner that the decoding list contains, in most cases.
a single word, then this algorithm-type ensures a
higher correction capability than the ciassical
algorithms. such as BM.

[1. THE GS ALGORITHM. MAIN ASPECTS

The operation steps of list-type GS decoding
algorithm for the RS codes are {3] [4] [5}:

¢ let (a, a',..., a""') be the elements of F. f(x) the
polynomial corresponding to the information word (2)
and (Bu. B1.---.Br.y) the received code word. If a code
word is correctly received. then relations (4) hold truc:

(3,=f(a');ie[0,n—l] 4)

e a two-variable interpolation polynomial Q(x,y),
which has an m-order multiplicity zero in every point
(a',B.). is built.
the polvnomial Q(x,y)} is decomposed in (v-f(x))-
type (factorization), whit deg flx) < k: the
polynomials f(x) obtained represent the code words
from the decoding list.

A two variable polynomial. Q(x,y). is an ordered
structure of two-variable monomials, expressed as:

Qlx.y)= ¥

1,32
I=¢o(x,y)<d1(x,y)<da(x,¥)<...<dylx.y}

J denotes the rank of the Q(x,y) polynomial and
d,(x,y) is the leading monomial.

The monomials ¢(x,y) are ordered according to
their weighted degree, defined by:

a; 'xi'yj:éa 0;(x,y)
o M j=oJ ! 5

deg, X'y =u-i+v-jiw={(uv) (6)

There are two possible ordering rules, namely direct
ordering (lex order) and reversed ordering (revlex
order), defined by:

x12y 12
uip + v = uip +vj and i; < i

lex order:x'ly/l < if uij +vjy < uiy + vjp or
M

revlex order: the same order but for i; > iy
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A significant theorem that, together with other

theorems, secures the existence of an interpolation
polynomial is [3]:
Theorem 1: Let {m(a,f)(a,p)eF?} be the
multiplicity function of the zeros of Q(x,y) and
$o<d1<.... an arbitrary monomial order. There always
exists a polynomial Q(x,y):

C
Qlx,y)= Za; 4, (x:¥) ®)
In (8). C is expressed by:
C= Za[m(a, a 9
a, 2 J

The complete proof of the existence of the
interpolation polynomial is to be found in [4] and [5].
The existence of a2 polynomial that could be
decomposed in (y-fix)) factors is secured by theorem
2 3]
Definition 1: For Q(x,y)e F[x.y] and f(x)eF[x] the Q-
score of f{x) is defined as:

SQ(f)z Y ord zero(Q:u, f(a)) (10)
a
Theorem 2:
If f(x)eFy[x], Q(x.y)eF[x.y] and S¢(f) > deg; ,Q
(11)

then y-f(x) is a factor of Q(x,y) ; v=k-1.

A thorough analysis of the factorization step is
presented in [4] and [5].

One of the most efficient interpolation algorithms
is the Koetter algorithm [3], which is defined by the
pseudo-code below:

Koetter interpolation algorithm

~ input data: L — number of code words in the list, (a.

B "= ~ interpolation points, (m )" —~ zero's multi-
plicity order, (1,k-1) — monomials weighted degree.
1. FORj=0toL
8=y
2. FORi=1t0onDO
2. FOR (r,5)=(0,0) to (m;-1,0) DO /*lex order
4, FOR j=010 L DO
5. A=D: g, By)
6. J={j: A =0}
7. IF Jz®
8. j=min_rank {g;;je}}
9. f=gjo . A=Aj-
10. FOR jel DO
1. IF (=)
12. g)-=A~gJ+AJ-f
13. ELSE IF (j=j)
14. g=A(x+a;) f

15.Qu(x,y)=min_rank{g,(x,y)} /* the interpolation
polynomial

One of the best factorization algorithms, the Roth-
Ruckenstein [3), was used in the present analysis.

The bounded values of two significant parameters
of the GS algorithm, the number of code words in the
decoding list. L, and the decoding radius, ry, are given

by {3):

14

l n kY k| Jn
. AL SR 09 /— (12
Lmax"i‘(k_lm(m*'l) \x2) % <(m+ 5) k—l( )
1
m~1 ' m+] k-1
n—|.fk-1) SrdSn—l—w(k—l) — - —
(13)

III. ANALYSIS OF THE SIMULATION RESULTS

The main goal of this paper is to compare, by
computer simulations. the correction capability and
processing time of the GS and BM (representative for
the classical algorithms) RS decoding algorithms. The
analysis is intended to establish the optimum values of
the parameters of the GS algorithm, for which a
maximum ratio correction capability/decoding time is
accomplished and to elaborate some “‘thumb rules” for
adapting these parameters, so that shorter decoding
times could be attained.

The software simulator, that can operate in the

Galois fields GF(2%), GF(2"), GF(2"), GF(2“) and
GF(2"), performs the following tunctions:
generation of a symbol-sequence represented on
the number of bits corresponding to the employed
Galois field.
¢ RS encoding (cyclic code for the BM or evaluation
code for the GS), depending on the decoding
algorithm employed.
serialization of the coded bits, generation of the
packet-errors and their insertion in the coded bits.
GS or BM decoding and computation of the
parameters of the simulated transmission, namely: bit
and symbol crror rates, the ratio of the correction
capability of the GS algorithm versus the correction
capability of the BM algorithm, the numbers of words
in the decoding list and erasures, both for the GS
algorithm.

The generation of the packet-errors, which
simulates the transmission channel, is performed
according to the impulse noise models employed for
the xDSL transmissions {6]. This model was adopted,
with several simplifications, since it is a representative
one for transmission systems employing RS codes as
outer codes. The main features of algorithm that
generates the packet-errors are:
¢ the distance in symbols between two packet-errors
has a Poisson distribution, with a modifiable average
value A. In the simulations performed, the value of A
equaled the number of symbols of two code words, for
each GF.

e the packet-error length, in bits, has a gaussian
distribution, defined by the average value t and
variance 6. The value of t equaled t,-q, t, denoting the
number of error-symbols that could be corrected by
the classical decoding algorithms (e.g. BM) and q
denoting the number of bits/character of the GF
emplayed. The value of o was set according to the
estimated correction capability of the GS algorithm.

e the positions of the errors inside the packet are
random, being distributed according to a uniform law.
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A. Decoding Capability of the GS Algorithin

The performances of the GS algorithm were evaluated
for RS codes with the coding rate R.€[0.3, 0.65). The
parameters that indicate the correction capability are
the minimum and the maximum decoding radius,
computed using (12), and the correction rate Ry
(obtained by simulations). The Ry parameter is defined
as the ratio of the number of error words after the GS
decoding and the number of error words that have a
number of error symbols higher than t, (the decoding
radius of the classical algorithms), before the
decoding. The codes with R, < 0.3 were not
considered, since they are of low practical importance.
Asfort eco’eswt R.>0.5-0.6 ( epen ing o the
employed GF), the correction capability of the GS
algorithm is the same with the one of the BM
alg-rith—.

Note: In figs. 1-5 m denotes the multiplicity order of
the zeros in the GS algorithm; m = 0 is actually
equivalent to the BM algorithm; for this algorithm:

(14)

The variance ¢ of the packet-errors, depicted in figs.
1.b, 2.b, 3.b, 4.b, for each R, and GF, was set in all
simulations to a value that provides packet lengths
close to the 1y, of the GS algorithm.

Toun = Tmax =t = A(1-Re)12; Rg= 1
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Fig. 1.b

0=2.5; R.=0.33
0=2; R:=0.46

i

S RN

0=2 ; R.=0.43"

Fig.1 Minimum, rnn (1.a), maximum decoding radius rp.
(1.b), correction rate Ry (1.c) in terms of m ; RS codes in
Galois GF(2%) and GF(2") ; * denotes codes defined in GF(2%);
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Fig.1.c shows that for RS codes defined in GF(2*)
and GF(2%). m has to be set to 3 or 4, for R, close to
0.5, and to | or 2 for R; close (or smaller) than 0.3.
The increase of m above a certain limit does not bring
a performance improvement, but it might lead to a
decrease of performances (see R, = 0.33). A more
complete evaluation of the GS decoder requires the
consideration of the ry, and rp., as well, good
decoding performances should be accomplished when
the two parameters take equal or close values. The
optimum values of m can not be established by
considering only the ry, and rn, parameters of the
code, as shown by R, = 0.46.

..8=35.R=035 ...

0=35;R;=0.42 -~

0=2;R.=0.48
0=2 ; R:=0.55

Fig.2 Minimum, r,, (2.a), maximum decoding radius e
(2.b), correction rate Ry (2.¢) in terms of m ; RS codes in Galois
GFQ2%;

The values of Ry, see fig.2.c, indicate that for RS
codes defined over GF(2%) the optimum values of m
are m=3 -4 for R_ close to 0.5. m =2 - 3 for R,
around 0.3 and m = 4 - 5 for R, around 0.4. There
should be noticed that for m=6, the performances of
the GS decoder exhibit a significant decrease,
especially for high values of the coding rate R..

For RS codes defined in GF(2®) having the
mentioned R, and for the optimum values of m, the
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decoding radius of the GS lies between rg;, 2 t,, and
To = Tunt 1 OF Tt2. The values of o parameter of
the crror-packet for the considered rates are given in
fig.2.b.

3
iFig.3.a
{

W e - w

IFig.3.b
%:0=7 . R=0.33

o » 026 R.=04
é’” P 6=4 ; R.=0 46
T e 6=4,R=0.52 °
T ————
pomrmrenee 6=2 R:=0.59 .

Fig.3 Minimum, r,,,, (3.a), maximum decoding radius r,,,
(3.b), correction rate Ry (3.¢) in terms of m ; RS codes in Galois
GF(2%.

Considering the RS codes defined in GF(2°), see
figs. 3, they exhibit a clear separation of the optimum
values of m, in terms of the coding rate R.. For
R¢ 2 0.5, optimum m equals 3 or 4, but for R, < 0.45,
optimum m equals 2 or 3. Sometimes, see R, = 0.4,
m = 4 provides better performances at the expense of a
longer decoding time.

The codes defined in GF(2°) exhibit the same
decrease of performance for higher values of m (e.g.
m = 6), as the ones defined in GF(2%): for the
considered values of R, the performances secured by
the GS become equal to the ones of the BM. The
values of o parameter of the ecrror-packet for the
considered rates are given in fig.3.b.
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The performance loss exhibited by the GS
algorithm for high values of m, regardiess the coding
rate, could be explained by the incomplete
factorization. see (11), the requirements for the
interpolation being ensured by a proper choice of the
number of words within the decoding st.

A primary analysis of the interpolation algorithm
presented in Section II and of the properties of the
two-variable polynomials [3] leads to the following:

e the number of iterations, n,, performed by the
interpolation algorithm for n-symbol code words and
muitiplicity order of zeros equaling m, is :

m-{m+]

n" = n .—(._-———)
2

o the initial polynomials of Koetter interpolation

algorithm, for maximum L words in the final decoding
list, are:

poly) = Lk y)= y.pa(xy) = ¥ pox ) = ¥ (16)

e supposing that the values of A. computed within
the Koetter algorithm, never equal zero (supposition
that does not always hold true), then after
L-(L+1)/2:(k-1) iterations all polynomials will have
the same degree L-(k-1). The leading monomials of
these polynomials are:

lolx,y) = xL-(k—l)‘lpl(x_ y)= <L) y,
Ipp{x.y)= x(L=2) ). y2 vl (xy) = yL

e taking into account that each iteration increases the
degree of the polynomial with the minimum rank and
that a polynomial with a higher degree also has a
higher rank, then we may assert that the increase of
the degree of each polynomial will require L+1
iterations. By the end of the algorithm the degree,
degmin, of the minimum-degree polynomial would be:

LU +1)2-(k -1
MRS

(15)

an

+L-(k—q (18)

¢ the minimum value of the Sq parameter (10) of an
inter olation ol nomial associated to a n-s mbol
code word and to a multiplicity order of zeros
equaling m and to a decoding radius r, is:

SQmin = (n - r)' m
s from the factorization requirements we have:
(1 AN\LY)

n;, 2 5
L-L+1)R
m

)

SQmin -

= 1 (20)
deg min

(m+1)+"

The values of the ratio defined in (20), for the
codes of figs. 2 and 3 and for various values of m, are
smaller than 1 (approximately equal, but smaller).
There should be noted that the considerations above
are not complete, since it did not considered that the
evolution of polynomials degrees within the
interpolation algorithm would be different, mostly
because of the fact that A might equal zero quite often,
changing the evolution of the polynomials degrees
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(see the interpolation algorithm in Section 1I), and
decreasing significantly the values of degm,,. Also, the
value of Sq might be higher than the value computed
by (19). Nevertheless, the considerations above show
that, sor different coding rates and variou~ valu~~ of
m, there is a possibility that the GS algorithm would
not be effective, even for a high decoding radius. The
suppression of this limitation of the value of m may be
accomplished by using different values of m for every
interpolation point, values chosen depending of the
channel characteristics {5]. Obviously, this approach
would complicate the implementation of the decoding
GS algorithm.

Unlike the previous cases, for optimal values of m,
the codes defined in GF(2°) have ry, < t,. but the
difference rpg, - Trun takes values between 3 and 6. The
‘i Terence oy, - ' akes values between 0 and ~. So,
for the codes defined in GF(2%) the optimum values of
m cannot be evaluated only be considering the limit
values of the decoding radius, ry,, and rpa..
Note: the relation rp,, < t, does not imply that the GS
algorithm could not correct t, symbol-errors (the
“declared” correction capability of the code), so
practically one should consider that rg,,2t,. The values
of rpe and rpa. provided by (13) evaluate the
possibility of the GS algorithm to correct more errors
than the classical algorithms. As for the RS codes
defined in GF(2R), see figs. 4, the considerations
regarding ry,, and r,h,,, presented above, are still valid.
There should be mentioned that, for the optimal values
of m, < ty, and the difference rpy - roya takes values
higher or equal than 20, and the difference r,. -ty lies
between 2 and 13.

0o —

IFig4.a

My

|Fig.ab o=50;R.=0.32
100 '
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R.=0 32
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ob— -
0

Fig.4 Minunuin, ra. (4.3), manrrnnum decoding radius frme

(4.b), correction rate R, (4.c) in terms of m ; RS codes in Galois

GF(2").

Fig. 4.c shows three optimum values of m,
depending of the coding rate R, for the codes defined
in GF(2%). For coding rates higher or equal to 0.6 the
optimum value of m is 4. for R, € (0.6, 0.45) the
optimum value of m 1s 3, and for coding rates ranging
between 0.3 and 0.45. the optimal m equals 2. The
figure also shows that. similar to the codes defined in
GF(2%), the maximum limit of m falls to 5, for the
coding rates considered.

The comparison of the results presented in figs. l.c
- 4.¢ show that the coding rate for which the GS
decoding algorithm provides better performances than
the classical decoding algorithms increases with the
increase of dimension of the Galois field in which the
RS codes are defined.

Regarding the number of words in the decoding
list, the simulations performed by the authors show
that for the RS codes defined in GF(2%) and in the
higher fields, the number of the words in the list
equals 1. with very few exceptions, when then list
contains more than one code word. As for the codes
defined in GF(2%) and GF(2%), there are more cases
when the decoding list contains more than one code
word, but their percentage is still small, about 1%. As
a general conclusion, if the GS decoding algorithm
can not correct a code word. this fact is owned to an
unsuccessful interpolation or factorization and, quite
wluem, to the presence of more than cne cnde words
in the decoding list.

B. Evaluation of the GS algorithm decoding time

The references [3}] [4] [5] present some considerations
regarding the number of operations performed by the
GS algorithm, which affect significantly the decoding
time, but these considerations do not include a
comparison to the decoding time required by the
classical RS decoding algorithms. The software
simulator implemented by the authors includes a RS
decoder based on an optimized version of the
Berlekamp-Massey (BM), described in [1]. For
comparison, the simulations using the BM decoding
algorithm were performed in the same conditions as
the ones using the GS algorithm.

BUPT



The evaluation of the decoding time implied the
measurement, for a certain number of code words, of
the simulation time t,,,. and of the time required for
encoding and error-pattern insertion t, ; for the
measurement of t,, the decoding procedures were
removed from the simulation program. There should
be noted that the time required to decode a correct
code word differs from the time required to decode an
error code word for both algorithms, especially for the
GS algorithm. The ratio between the average decoding
times, tgy,, of the two algorithms is expressed by:

LsimGS

tsimBM

tsimGS — lauxGS
tsimBM ~ lauxBM

_ YdecGS _
tdecBM

Fig. S presents the variation of the ratio ty
(expressed on a logarithmic scale) between the
average decoding times of the GS and BM algorithms
in terms of m, for various coding rates and for codes
defined in several Galois fields.

ld (2])

45,

35,

5. GF(2%) R=064

T

2 3
m

Fig.5 lg(t,) ratio between the average decoding time of the GS
and BM algonithms, tn terms of in, for various coding rates and
for RS codes defined in several Galoss fields

The results presented in fig. 5 show that the
decoding time required by the GS algorithm is much
larger than the one required by the BM algorithm. The
tg ratio increases significantly with the increase of m
and with the increase of dimension of the Galois field
employed. The increase of the coding rate for codes
defined over GF higher than GF(2% also increases the
value of ty. By changing the coding rate from 0.3 to
0.6 for these codes, invoives an increase of the ratio tq
by a factor ranging from 2 to 3. There should be
mentioned that the implementations of the two
algorithms were optimized to the best knowledge of
the authors.

The results displayed in fig. 5 underline the
importance of establishing optimal values for the
parameter m and the necessity of finding some
variants of the GS algorithms (decoding strategies),
which should require a decoding time as small as
possible. The authors have considered three possible
variants to accomplish the GS decoding, namely:
employing the same value of m for the decoding of
every code word; this variant would require a very
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large average decoding time, even larger than the ones
presented in fig. 5, because even the correctly received
code words would be decoded in a very long time.

e the successive increase of the value of m, from I to
a maximum optimal value. The decoding is stopped
when the decoding list contains at least one code
word: this approach would require a smaller average
decoding time for packet-errors with relatively small
lengths, compared to the maximum packet length for
which a successful GS decoding is accomplished.

e the employment of two values for parameter m.
namely 1 and an optimum value mqy. The correct code
words and the ones affected by a small number of
errors (equal or higher than t,) would be decoded
using m=1, and the code words with more errors
would be decoded with m = mgy; this last option
should be employed if the decoding with m=l
generates no code word in the decoding list. This
variant of employing the GS algorithm provides a
smaller average decoding time for long error-packets,
compared the maximum packet length for which a
successful GS decoding is accomplished. The results
displayed in fig. 5 were obtained using this decoding
varian .

IV.CONCLUSIONS

The computer simulations performed by the
authors showed that the GS decoding of RS codes,
defined in the GF(2") GF(2*) GF(2%) and GF(2%),
provides a significantly greater correction capability
than the BM decoding, for coding rates ranging
between 0.3 and 0.6. The improvement becomes more
obvious as the coding rate decreases and the
dimension of the Galois field increases. The optimum
values of the factor m (zeroes multiplicity order) for
which a maximum correction capability/decoding time
ratio is accomplished, are also presented in the paper.
As for the decoding time, the simulations performed
showed that the time required by the GS is
significantly longer than the one required by the BM
algorithm. The paper presents some decoding
strategies for the GS that lead to a significant decrease
of its decoding time for various lengths of the packet-
errors.
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