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Abstract, 

This thesis presents several original authors' contributions related 
to two topics of human face analysis, namely face detection task 
and facial expression classification task, respectively. The original 
work is presented as two distinct parts. In the first part of the 
thesis, a method for improving the accuracy of Support Vector 
Machines for face detection is introduced, foilowed by a rigorous 
statistical analysis of its stability in the attempt of using the 
bagging approach for gaining superior classification performance. 
The second and the biggest part of the thesis are dedicated to 
the feature extraction topic appiied for facial expression 
recognition. Independent component analysis is a tool used in 
this regard. Several linear and non-linear independent component 
analysis methods are investigated and compared, and interesting 
conclusions are drawn. Next, two novei non-negative matrix 
factorization algorithms are described and their ability for 
providing useful features for classifying facial expression is 
proven through extensive experiments. By analogy to 
neurophysiology, the basis images discovered by non-negative 
matrix decomposition couid be associated with the receptive 
fieids of neuronal cells involved in encoding human faces. Taken 
from this point of view, an analysis of these three representations 
in connection to the receptive fieid parameters such as spaţial 
frequency, frequency orientation, position, length, width, aspect 
ratio, etc, is undertaken. By analyzing the tiling properties of 
these bases some conclusions of how suitable these algorithms 
are to resemble biological visual perception systems can be 
drawn. The thesis ends up with a new feature extraction method 
using the phase congruency concept for measuring the similarity 
between image points, also appiied for facial expression 
recognition. 
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CHAPTER 1 

Introduction 

1.1 Human Face Analysis as visual Pattern Recognition appiication 

Human face analysis is a general term covering many aspects related to the analysis 
of faces. This analysis has emerged as topic having an interdisciplinary character. 
Nowadays, it involves research work coming from various fieids, such as 
psychology, neurophysiology, image and video processing, computer vision or 
pattern recognition. From the computer vision point of view, the face analysis topics 
can be classified as foilows: 

Face detection segments the face areas from the background. Given an 
arbitrary image or image sequence as input, a face detector is a system 
which is able to determine whether or not there is any human face in the 
image, and, if any, outputs an encoding of its location. Typically, the 
encoding in this system is to fit each face in a bounding box defined by the 
image coordinates of the corners. 

Face recognition. A face recognition system assists a human expert in 
determining the identity of a test face [1]. 

Face verification. Although connected with the face recognition task and 
sometimes confused, the problem is conceptually different. A person 
verification system shouid decide whether an identity claim is valid or 
invalid. 

Face encoding refers to extracting valuable facial information from the whole 
face space. The information shouid obey some organic computing principles, 
such as efficient storing, organization and coding, by analogy with the 
Human Visual System. This topic is closely related to dimensionality 
reduction issue. 

Facial expression recognition deals with the interpretation and recognition of 
emotions expressed through facial expression, usually for the purpose of 
creating a friendiy human-computer interface. 

Facial expression modeiing (synthesis) aims at creating a synthetic ''talking-
head" able to simulate realistic human facial expressions. The artificial head 
shouid be able to recognize a human facial expression with a satisfactory 
classification rate and wouid reply to us according to our emoţional state. 
Multimedia and film market are two commercial domains where this task 
has found important appiications. 
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10 Introduction 

• Face (facial features) tracking appears in video sequences, especially for sur-
veillance purposes (security) or face modeling. Here, the purpose is to accurately 
and robustly track fiducial points over time. 

Although there is a clear distinction between the aforementioned topics, they are 
sometimes interconnected. For instance, the first step of any face recognition or fa-
cial expression recognition system is to detect the face in a digital image. Thus, face 
detection task shouid be a necessary prior step. However, most existing face recogni-
tion or facial facial expression recognition systems or methods perform with databases 
where the faces are assumed aiready detected, so the detection step is skipped. In 
this case the database contains faces that occupy the whole image space (i.e. the face 
is cropped from the uniform or complex background), or, at least, the face location is 
a priori known. A face tracking machine also shouid start with detecting the face, or at 
least to identify fiducial points to be tracked. Also, to synthesize an artificial face (able 
to simulate expressions), the face encoding is a must to extract appearance-based or 
geometrical facial information. 

This thesis concerns oniy the first (face detection) and the fourth (facial expression 
recognition) human face analysis task, respectively. Both issues are a visual pattern 
recognition problem and can be analyzed using its tools. 

Given a set of data samples, the ultimate goal of any recognition system is to au-
tomatically classify and group data samples into several classes, where the samples 
within the same group share common attributes. Typically, any automatic recognition 
system comprises two modules: preprocessing and feature extraction module and 
classiTication module, as illustrated in Figure 1.1. Consequently, its recognition per-
formance is highiy influenced by the efficiency of both modules. The object (human 

Objecf 
ii inaşe) 

•H SeiiNor 

Figure 1.1: The Pattern Recognition issue 

face or an environment containing human faces, in our case) is captured and recorded 
using a sensor. The sensor is basically a photo or video camera. The recorded data 
(digital image of the object or video frame sequences) are preprocessed (histogram 
equalization, noise removal, edge detection, etc) and transformed by extracting re-
levant features. Based on some training data (many recorded samples) a classifier 
analyzes the information and learns information characteristics. Also, the classifier 
adapts its parameters, so that, when the learning process is finished, the classifier to 
be able to accurately estimate (predict) the correct class for an unseen sample (not 
included in the training data). 
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1.2 Thesis content 11 

The purpose of feature extraction is to transform the data in order to reduce the 
data dimensionality. A proper feature extraction technique will keep statistical rele-
vant (discriminant) features and discard redundant information (or noise). Working 
with lower data dimensionality is twofold: decrease the computaţional load and in-
crease the classifier performances in terms of its accuracy. If proper good set of 
features are extracted even the simplest classifiers based on basic metrics (such as, 
for example, Euclidean distance) may achieve satisfactory performance. There is a di-
rect relationship between the number of features and the classifier's performance, i.e. 
the number of features greatly (positively or negatively) influences the classification 
accuracy. That is, the classification error decreases going from a small feature size to 
a moderate feature size foilowed by an increase for a large number of features (the so-
called peaking phenomenon). This is a direct consequence of the so-called ' ' curse of 
dimensionality" [2], that is, the time required for an algorithm grows dramatically, so-
metimes exponentially with the number of features involved, rendering the algorithm 
intractable in extremely high-dimensional problems. Thus, feature extraction step is a 
crucial step in any recognition system. The most part of this thesis is dedicated to the 
feature extraction step, employing methods such as Independent Component Analy-
sis (ICA), or Non-negative Matrix Factorization algorithms [3] with direct appiication 
to facial expression recognition. From the classification point of view, the thesis also 
presents an improved version of Support Vector Machine for discriminate faces among 
non-face patterns. 

1.2 Thesis content 

The thesis consists of 6 chapters of which the latter 4 presents the original work deve-
loped by the author. Chapter 2 to Chapter 4 contains the research work accomplished 
while the author was with its second affiliation, i.e.. Artificial Intelligence and Infor-
mation Analysis (AHA) Lab, Dept. of Informatics, Aristotie University of Thessaloniki, 
whiist the Chapter 5 deals with work performed at the Electronics Dept., Faculty of 
Electrical Engineering and Information Technology, University of Oradea. 

Chapter 2 reviews face detection and facial expression recognition paradigms and 
their associated issues, foilowed by a short description of the existing face detection 
approaches. 

Chapter 3 deals with the face detection task using an advanced classification scheme 
based on Support Vector Machines (SVMs). An approach to enhance the classification 
accuracy which uses a combination of SVMs is developed. Furthermore, a statistical 
analysis is undertaken to discover whether bagging (a technique utilized to enhance 
the classifier's accuracy) is suitable for SVMs. 

Chapter 4 presents several linear and noniinear Independent Component Analysis 
(ICA) techniques appiied for extracting facial features further used to classify facial 
expressions. A statistical analysis is carried out and the methods are systematically 
analyzed with respect to their accuracy performance, their sparseness degree, etc., in 
comparison with the Principal Component Analysis method. 

Chapter 5 covers a new algorithm named Non-negative Matrix Factorization along 
with three variants termed Local Non-negative Matrix Factorization, Discriminant Non-
negative Matrix Factorization and Polynomial Non-negative Matrix Factorization. The 
latter two are developed by the author in order to extract relevant biological-inspired 
non-negative features for facial expression classification. It also presents the analogy 
of those algorithms to the Human Visual System principles, bringing some interesting 
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12 Xntroduction 

common features. 
Chapter 6 provides a novei technique found to be effective in extracting facial fea-

tures with appiication to facial expression classification. This approach is based on the 
phase congruency concept where discrinninant features are extracted by measuring 
the similarity between image points. 
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CHAPTER 2 

Face Detection and Facial Expression Recognition 

2.1 Face Detection 

2.1.1. Problem definition 

Face detection plays an important role in multiple appiications, such as 
teleconferendng, facial gesture recognition, and biometric access control to 
services, model-based coding, video content-based indexing, and video retrieval 
systems. Face detection is a preprocessing step in face recognition/verification tasks 
[4] - [7]. The goal of face detection is to determine if there are any human faces in 
a test image or not. Detecting a face in a complex scene is nontrivial problem. If a 
face exists, the face detector shouid be capable to locate a face regardiess of its 
uniform or complex background, imaging formulation conditions, poses, scales, 
orientations or occiusions. Imaging formulation conditions refer to the lighting 
variation that can worsen the face detector's performance, especially for the 
appearance-based face detection approaches which are very sensitive to 
illumination's changes. Reducing the image resolution is another cause where the 
process of finding a face's location can fail. Usually, to detect potential faces at 
different scales, the face detector scans the whole image space with variable sized 
windows for matching. Most current face detection systems can oniy detect upright, 
frontal or slight pose variations under certain lighting conditions. Occiuded faces can 
substantially differ in appearance from the non-occiuded ones, resulting in a 
system's failure in detecting the face. Robust face detection methods that shouid 
handie various scenarios under different acquisition conditions have to be build to be 
reliable and useful as integrated part of a facial expression recognition system. 

The human brain is highiy trained for this task, therefore we find and 
analyze faces effortlessiy under almost any conditions with a minimum of 
information, sometimes even when there is no face at all, like in cloud or rock 
pattern. The presence of hair, glasses or jeweiry seems to be no problem for the 
Human Visual System , whereas automatic approaches are easily mislead. 
Moreover, for face acquisition, it is assumed that the face poses a frontal-view or 
near frontal-view, which is not always true. 

Several works addressed these issues, though. Despite the importance of 
face detection, most researchers involved in human face analysis ignore this step 
and they exclusively focus on the other topics. 
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14 Face Detection and Facial Expression Recognition 

2.1.2 State-of-the-Art 

Many approaches have been proposed for face detection. A first attempt to cope with 
both frontal and profile view faces was proposed by KIeck and Mendolia [8]. Three 
view perspectives were used (full-face, a 90° right profile, and a 90° left profile) for 
a number of 14 males and 14 females. These samples were shown to 24 male and 
24 female decoders. It was found that positive expressions were more accurately 
identified in full-face and in right henniface views as compared to left hemiface views, 
while the left hemiface was associated with better accuracy than the right hemiface 
for negative expressions. Essa and Pentland [9] performed face detection by using 
View-based and Modular Elgenspace methods proposed by Pentland and Moghaddam 
[10]. A face space is defined by carrying out the Principal Component Analysis (PCA) 
on a face database. To determine the face in a single image, the test image is pro-
jected in the resulting face space and the distance of the image from the face space 
is calculating from the projection coefficients. Further, to appiy the technique to a 
video sequence, a spatio-temporal filtering is performed and the potential faces are 
described by the so-called '̂ motion blobs" that are analyzed. A 3-D facial model with 
the help of a geometric mesh is developed to fit a face in an image. Given an input 
image, the system ailows automatically detection of the position of eyes, nose and 
lips, proceeded by warping the face image to match the canonical face mesh. Further, 
additional ' ' canonical feature points" on the image that correspond to the fixed (non-
rigid) nodes on the proposed mesh are extracted. Yang and Huang have developed 
a system that attempts to detect a facial region at a coarse resolution and subse-
quently to validate the outcome by detecting facial features at the next resolution by 
employing a hierarchical knowledge-based pattern recognition system [11]. A pro-
babilistic method to detect human faces using a mixture of factor analyzers has been 
proposed in [12]. Other techniques include neural networks [13], or algorithms where 
feature points are detected using spaţial filters and then grouped into face candidates 
using geometric and gray level constrains [14]. Sung and Poggio report an example 
based-learning approach [15]. They model the distribution of human face patterns 
by means of few view-based face and non-face prototype clusters. A small window 
is moved over all portions on an image and determines whether a face exists in each 
window based on distance metrics. Huang and Huang [16] uses a point distribution 
model (PDM), where the initialization of the model is performed with the help of a 
Canny edge detector. This provides a rough estimation of the face's localization in the 
image. The position variations of certain designated points on the facial feature are 
described by 10 action parameters (APs). The face'location correspond to the valley 
in the pixei Intensity map between the lips and the two symmetrical vertical edges 
associated to the outer vertical boundaries of the face. Hong et. al [17] developed a 
facial expression recognition system where the face detection step is accomplished by 
using the PersonSpotter module [18]. The system uses a spatio-temporal filtering of 
the input images. Within frames, the stereo disparities of the pixels whose changed 
their values due to the movement are analyzed by inspecting the local maximums of 
the disparity histogram and regions corresponding to a certain confidence interval are 
selected. A skin color detector along with a convex region detector is then appiied for 
finer localization. A bounding box is fînally drawn around the cluster's region found by 
the both detectors, with a maximum probability that the regions correspond to heads 
and hands. The system is limited so that no abrupt illumination variations, hair or 
glasses are ailowed. It also can oniy detect frontal-view faces. Kumar and Poggio 
[19] uses skin segmentation and motion tracking to keep track of candidate regions in 
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the image corresponding to potential face candidates, foilowed by classification (face 
detection step) of the candidate regions into face and non-face, thus localizing the 
position and scale of the frontal face. Incorporating the skin segmentation procedare 
prior to face detection ailows the systenn to perform face detection in real time. The 
skin model is obtained by training a support vector machine (SVM) using the red, green 
and yellow connponents of the pixel. Over 2000 skin samples of different people with 
widely varying skin tone and under differing lighting conditions are collected. The skin 
detector performs by scanning the input image in raster scan and classifying each pixel 
into skin or non-skin. The positions and velocities of the skin components are encoded 
an tracked to predict where the component will be seen in the next frame and thus 
helping to constrain the skin's search. Components that are smaller than a predefined 
threshold or those that have no motion at all are discarded from consideration. For 
face detection a number of 5,000 frontal face and 45,000 non-face patterns is used to 
train the SVM, each pattern being normalized to a size of 19 x 19 pixels. In the test 
phase, the SVM is appiied at several scale of the active components for face face-like 
patterns searching. Their real-time face detection system works close to 25 frames 
per second. Pantic and Rothkrantz proposed an [20] expert system namely Integra-
ted System for Facial Expression Recognition (ISFER), which performs recognition and 
emoţional classification of human facial expression from a still full-face image. The 
system is composed by two major parts. The first one is the ISFER Workbench, which 
forms a framework for hybrid facial feature detection where, for robustness, multiple 
feature detection techniques are combined and appiied in parallel. The second part 
comprises an inference engine called HERCULES, which converts low level face geome-
try into high level facial actions, foilowed by highest level weighted emotion encoding. 
The system can handie both frontal and profile view of the face for detection. The 
face acquisition was accomplished by two cameras mounted on the user's head. In 
their work, Oliver et al. [21] used coarse color and size/shape information to find and 
trace the face. More precisely, to detect and track faces in real time, the so-called 2D 
blob features (which are spatially-compact clusters of pixels that are similar in terms 
of low-level image properties) are extracted. Both the face and background classes 
are learned incrementally from the data by using the Expectation Maximization (EM) 
algorithm to obtain Gaussian mixture models for the spatio-chrominance feature vec-
tor comprising shapes and color patterns corresponding to faces. From the Gaussian 
mixture two to three components are usually sufficient to describe the face, while up 
to five components are required for the mouth. Given several statistical blob models 
that couid potentially describe some particular image data, the membership decision 
is made by searching for the model with the Maximum A Posteriori (MAP) probability. 
Local pixel information retrieved after iniţial appiication of the MAP decision criterion 
is merged into connected and compact regions that correspond to each of the blobs. 
To grow the blob a connected component algorithm is employed that considers for 
each pixel the values within a neighborhood of a certain radius in order to determine 
whether this pixel belongs to the same connected region. The blobs are finally filtered 
to obtain the best candidate for being a face or a mouth. Due to the fact that the 
background may contain skin-like color that can affect the face detector's accuracy, 
to increase the robustness, geometric information, such as the size and shape of the 
face to be detected is combined with the color information to finally locate the face. 
Therefore, oniy those skin blobs whose size and shape (ratio of aspect of its bounding 
box are closest to the canonical face size and shape are taken into account. Bartlett et 
al. [22] proposed a system that automatically detects frontal faces in a video stream 
and codes them (in real time) according to the six basic emotions, i.e., anger, dis-
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gust, fear, joy, sadness, surprlse plus the neutral. The face finder module employs a 
cascade of feature detectors trained with boosting techniques similar to that proposed 
by Viola and Jones [23]. Each feature detector (classifier) contains a subset of filters 
reminiscent of Haar basis functions, which can be computed very fast at any location 
and scale in constant time. The system scans across all possible 24 x 24 pixei patches 
in the image and classifîes each as face vs. non-face. For each feature detector in the 
cascade a subset of 2 to 200 of these filters are chosen by using a feature selection 
procedure based on Adaboost strategy for selecting the filter which achieves the best 
result in the training phase. The approach continues with refining the selection by 
finding the best performing single-feature classifier from a new set of filters generated 
by shifting and scaling the chosen filter by two pixels in each direction, as well as 
composite filters made by reflecting each shifted and scaled feature horizontally about 
the center and superimposing it on the original. While this approach requires binary 
classifiers, a second face detection technique based on Gentleboost [24] which uses 
real valued features is also proposed as alternative. The same face detection approach 
of Viola and Jones has been used by Tian in [25] for different image resolution who 
investigated the effect of image resolution in facial expression classification. A second 
face detection method based on neural networks (NN) and developed by Rowley at 
ai. [26] is also taken into account. A preprocessing step that includes illumination 
correction and histogram equalization is carried out prior to feed the neural network 
with 20 X 20 pixeI window of the image. To detect faces anywhere in the input, the 
filter is appiied at every location in the image. To detect faces larger than the window 
size, the input image is repeatediy reduced in size (by subsampling), and the filter 
is appiied at each size. The neural network has retinal connections to its input layer. 
There are three types of hidden units: 4 which look at 10 x 10 pixeI subregions, 16 
which look at 5 x 5 pixeI subregions, and 6 which look at overlapping 20 x 5 pixeI ho-
rizontal stripes of pixels. Each of these types was chosen to allow the hidden units to 
detect local features that might be important for face detection. The work of Viola and 
Jones was further extended by Isukapalli et al. [27]. They proposed the usage of a 
decision tree of classifiers (DCT). While standard cascade classification methods appiy 
the same sequence of classifiers to each image, their DTC approach is able to select 
the most effective classifier at every stage, based on the outcomes of the classifiers 
aiready appiied. They used DTC not oniy to detect faces in a test image, but to identify 
the expression on each face. 

A comprehensive survey of face detection methods can be found in [28] and [29]. 

2.2 Facial Expression Recognition 

2.2.1 Problem definition 

Human facial expression analysis has captured an increasing attention from psycho-
logists, anthropologists, and computer scientists [30]. The computer scientists try 
to develop complex human-computer interfaces that are capable of automatically re-
cognizing and classifying human expressions or emotions and/or even to synthesize 
these expressions onto artificial talking-heads (avatars). Fasel and Luettin define fa-
cial expressions as temporally deformed facial features such as eye lids, eye brows, 
nose, lips and skin texture generated by contractions of facial muscles. They obser-
ved typical changes of muscular activities to be brief, ^ ^ lasting for a few seconds, 
but rarely more than five seconds or less than 250 ms" [31]. They also point out 
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the important fact that felt emotions are oniy one source of facial expressions besides 
others like verbal and non-verbal communication or physiological activities. Though 
facial expressions obviousiy are not to equate with emotions (and the terms are many 
times wrongly interchanged), in the computer vision community, the term ' 'facial 
expression recognition" often refers to the classification of facial features in one of the 
six so called basic emotions: happiness, sadness, fear, disgust, surprise and anger, 
as introduced by Ekman in 1971 [32]. This attempt of an interpretation is based on 
the assumption that the appearance of emotions are universal across individuals as 
well as human ethnics and cultures. 

The task of automatic facial expression analysis can be divided into three main 
steps: face detection, facial feature extraction and classification into expressions. The 
detection issue has been discussed earlier. After localizing the face, as much Infor-
mation as possible about the displayed facial expression has to be extracted. Several 
types of perceptual cues to the emoţional state are displayed in the face: relative 
displacements of featured (e.g. raised eyebrows), quasi textural changes in the skin 
surface (furrowing the brow), changes in skin hue (blushing) and the time course of 
these signals. Depending on how the face and its expression are modeled, features 
have to be designed that condense this information or a part of it to a set of num-
bers building the base for the classification, and therefore primarily deciding about the 
quality of the final analysis result. Most automatic facial expression analysis systems 
found in the literature directiy classify in terms of basic emotions. This is an attempt 
of interpretation rather than the classification of really observed facial appearance. 
Some research groups therefore follow the idea of Ekman and Friesen [34] who, in 
the late 70-ies, postulated a system that categorizes all possible, visually detectable 
facial changes in 44 so-called Action Units (AUs). This system, known as Facial Action 
Coding System (FACS) has been developed to facilitate objective measurements of 
facial activity for behavioral studies. The interpretation of the AUs in terms of basic 
emotions then is based on a special FACS dictionary. FACS are an important tool in 
behavioral science, and the underlying study can be seen as the theoretical basis for 
any facial expression analysis. Nevertheless, the AU coding is skipped in most Hu-
man Computer Interaction (HCI) appiications, because its insignificant contribution to 
the goal of interpreting nonverbal feedback from a user. Classification is complicated 
by the fact that despite cross cultural similarities, facial expressions and the intensity 
with which they are exhibited strongly vary between individuals. Also, it is doubtful 
that naturally expression can be unambiguousiy classified into one of the six basic 
categories. Quite often, facial expressions are blended and their interpretation mainly 
depends on the situational context. Automatic classification furthermore is confronted 
with a physiognomic variability due to gender, age and ethnicity. 

2.2.2 State-of-the-Art 

Facial Expression Analysis (FEA) dates back to the 19th century when Darwin [35] stu-
died the anatomical and physiological basis of facial expressions of man and animal. 
Since the mid 1970s, automatic facial expression analysis has attracted the interest 
of many computer vision research groups. Surveys on automatic facial expression 
analysis can be found in [36, 37, 31]. Generally speaking, facial expression recogni-
tion methods can be classified into appearance-based methods and geometry-based 
ones. In the first category, fiducial points of the face are selected either manually 
[38] or automatically [39]. The face images are convolved with Gabor^filteiis-aAd-the --
responses extracted at the fiducial points form vectors that are fufth^r^js'^it for fatial 
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expression classification. Alternatively, Gabor filters can be appiied to the entire face 
Image instead of specific face regions. Regarding the geometry-based methods, the 
coordinates of the fiducial points form a feature vector that represents facial geometry. 
Although the appearance-based methods seem to yieid a reasonable facial expression 
recognition accuracy, the highest recognition rate has been obtained when both the 
responses of Gabor wavelets and geonnetry-based features, like the coordinates of 
fiducial points, are combined [38, 40, 41]. The analysis can be perfornned wither 
on stil! images [38] or image sequences, where temporal Information is considered 
[42]. Gabor and Independent Component Analysis (ICA) representations were des-
cribed for the recognition of 6 single upper facial action units (AUs) and 6 lower face 
AUs In [43]. The action units correspond roughiy to the movement of the individual 
44 facial muscles. The best recognition rates were achieved by both Gabor wavelets 
and ICA representations [43]. The local properties of ICA representation were found 
to be Important for identity recognition [44]. Identity and facial expression recogni-
tion performance were also investigated by directiy comparing ICA versus Principal 
Component Analysis (PCA) in [45], where it was found that ICA outperformed PCA. 
On the contrary, insignificant performance differences between rCA and the PCA were 
reported on the same database in [46]. Guo and Dyer addressed facial expression 
classification, when a small number of training samples was oniy available [47]. A 
new linear programming-based technique was developed for both feature extraction 
and classification and a pairwise framework for feature selection was designed instead ' 
of using all classes simultaneousiy. Gabor filters were used to extract facial features 
and large margin classiflers such as support vector machines (SVMs) and AdaBoost 
were employed to recognize facial expressions. Their approach named ' 'feature se-
lection via linear programming" (FSLP) is able to automatically determine the number 
of selected features for each pair of classes in contrast to AdaBoost, which heuristically 
determines the number of features. Susskind et al. studied the nature of emoţional 
space [30]. Evidence is presented justifying that emotion categories are not enti-
rely discrete and independent, but they vary along underlying continuous dimensions. 
PCA has been successfully appiied to recognize facial expressions [48, 49, 50]. A 
more recent paper [51] dealt with facial expression, where Gabor features were ex-
tracted from samples that belong to the Cohn-Kanade database. The Gabor features 
were then selected by AdaBoost and the combination of AdaBoost and SVMs (called 
AdaSVMs system) yielded the best classification performance of 93.3%. 

BUPT



CHAPTER 3 

Support Vectors - based Face Detection 

3.1 Improving the accuracy of SVMs appiied for face detection 

One method which has been appiied successfully to face detection is based on 
Support Vector Machines [52]. Support Vector Machines (SVMs) is a state-of-the-art 
pattern recognition technique whose foundations stern from statistical learning 
theory [53]. However, the scope of SVMs is beyond pattern recognition, because 
they can handie also another two learning problenns, i .e., regression estimation and 
density estimation. In the context of pattern recognition, the main objective is to 
find the optinnal separating hyperplane, that is, the hyperplane that separates the 
positive and negative exannples with maximal margin. SVM is a general algorithm 
based on guaranteed risk bounds of statistical learning theory, i.e., the so-called 
structural risk minimization principie. This principie is based on the fact that the 
error rate of learning machine on test data (i .e. , the generalization error rate) is 
bounded by the sum of the training error rate and a term that depends on the 
Vapnik-Chervonenkis (VC) dimension [53]. We briefly describe linearly separable 
case foilowed by linearly non-separable case and the noniinear one. 

Consider the training data set 

of labeled training patterns, where € R^with m denoting the dimensionality of 
the training patterns, and 

We claim that S is linearly separable if for some w ^ and b real 
-h fe) > 1, for ^ = 1 . 2 , . . . . ; (3.1) 

where w is the normal vector to the separating hyperplane w^x -f {> = O and b is 
the bias (or offset) term [54]. The optimal separating hyperplane is the solution of 
the foilowing quadratic problem: 

1 
2" 

subject to y.iv/^x, + <!)) > L / = 1,2 n (3.2) 

minimize —w^w 

In Figure 3.1 the optimal separating hyperplane is drawn in the case of linearly 
separable data. The optimal w is given by 

n 
(3.3) 

i=l 
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Figure 3.1: Optimal separating hyperplane in the case of linearly separable data. Support vectors 
are circled. 

where Â  is the vector of Lagrance multipliers obtained as the sohjtion of the so-called 
Wolfe-dual problem 

maximlze ^ ^ t - A^DA 
i=l 

n 

subject to 
t=l 
Xi>0 ( 3 . 4 ) 

where D is an n x n matrix having elements D i j = y i y i x j x j . 
Thus w* Is a linear combination of the training patterns x» for which A* > 0. 

These training patterns are called support vectors. Given a pair of support vectors 
( x * ( r ) , x * ( " l ) ) that belong to the positive and negative patterns, the bias term is 
found by [53] 

b* = ^ [w^'^x^Cl) + w^'^x^C-l)] . (3.5) 

The decision rule implemented by the SVM is simply 

/(x) = s i g n ( w ^ ' x - 6 ^ ) . (3.6) 

If the training set S is not linearly separable, the optinnization problem (3.4) is 
generalized to 

1 " 
minimize + 

i=l 
subject to + 6) > 1 - z = 1 , 2 , . . . , n 

> O (3.7) 

where are positive slack variables [54], and C is a parameter which penalizes the 
errors. The situation is summarized schematically in Fig 3.2. The Lagrange multipliers 
now satisfy the inequalities 

O < A, < C. (3.8) 
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Ongiii Mai-gin 
O 

Figure 3.2: Separating hyperplane for non-separable data. Support vectors are circled. 

The main difference is that support vectors do not necessarily lie on the margin. 
Finally, SVMs can also provide noniinear separating surfaces by projecting the data 

to a high dimensional feature space H in which a linear hyperplane is searched for 
separating all the projected data, cp : —> H. If the inner product in space H had 
an equivalent kernel in the input space i.e.: 

= (3.9) 

the inner product wouid not need to be evaluated in the feature space, thus avoiding 
the curse of dimensionality problem. In such a case, Di j = yiyiK{x^,Xj) and the 
decision rule implemented by the noniinear SVM is given by 

/(x) - sign (3.10) 

/ 

3.1.1 Application of majority voting in the output of severai SVMs 

To increase the SVMs accuracy a combination scheme was proposed by Buciu et al. 
[55]. Let us consider five different SVMs defined by the kernels indicated in Table 3.1. 
The foilowing kernels have been used: (1) Polynomial with q equal to 2; (2) Gaussian 
Radial Basis Function (GRBF) with a = 10; (3) Sigmoid with k equal to 0.5 and 9 equal 
to 0.2; (4) Exponenţial Radial Basis Function having a equal to 10. The penalty, C, in 
(3.7)was set up to 500. In Table 3.1, || • ||p denotes the vector p-norm, p = 1,2. For 
brevity, we index each SVMs by A:, /c = 1 , 2 , . . . , 5. To distinguish between training and 
test patterns, the latter ones are denoted by Zj . Let Z^ be the set of test patterns 
classified as face patterns by the kth SVM during the test phase, i.e.. 

Zk = {Zj : M Z j ) = l } , A:= 1 ,2 , . . . , 5 . 

Let Z = ^l^iZk- We define the histogram of labels assigned to all Zj e Z as 

(3.11) 

(3.12) 
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Table 3.1: Kernel functions used in SVMs. 
k SVMtype Kernel function 

1 Linear x^y 
2 Polynomial (x^ y + 1 ) " 

3 GRBF e x p ( - i l ^ ) 
4 Sigmoid tanh(K • x^ y - 6) 
5 ERBF 

where # denotes the set cardinality. We combine the decisions taken separately by 
the SVMs indexed by fc = 1 , 2 . . . . , 5 as foilows: 

- \ O otherwise. 
(3.13) 

Let us define the quantities: 

Ffc = #{/fc(z,) = l, z. eZfc} 
Gfc = *{g{zj) = h ZyeZk} 

To determine the best SVM, we simply choose 

m = argmax{— 
fc tk 

(3.14) 

(3.15) 

3.1.2 Bagging approach 

Bagging is a method for improving the prediction error of classifier learning system 
by generating replicated bootstrap samples of the original training set [56]. Given a 
training set a S* bootstrap replicate of it is buiit by taking l samples with replacement 
from the original training set S. The learning algorithm is then appiied to this new 
training set. This procedure is appiied B times yielding . . , S*^, Finally, those 
H new nnodels are aggregating by uniform voting and the resulting class is that one 
having the most votes over the replicas. Notice that in the bootstrap replica an original 
pattern may not appear on it while others may appear more than once, on average 63% 
of he original patterns appearing in the bootstrap replica. A more detailed description 
of the bagging approach is provided in the next Section. 

3.1.3 Performance assessment 

For aii experiments the Matlab SVM toolbox developed by Steve Gunn was used [57]. 
For a complete test, several auxiliary routines have been added to the original toolbox. 

A training data set of 96 images, 48 images containing a face and another 48 
images with non-face patterns, is built. The images containing face patterns have been 
derived from the face database of IBERMATICA where several sources of degradation 
are modeled, such as varying face size and position and changes in illumination. AII 
images in this database are recorded in 256 grey levels and they are of dimensions 
320 X 240. These face images correspond to 12 different persons. For each person 
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four different frontal images have been collected. The procedure for collecting face 
patterns is as foilows. From each image a bounding rectangle of dimensions 160 x 
128 pixels has been manually determined that includes the actual face. The face 
region included in the bounding rectangle has been subsampled four tinnes. At each 
subsampling, non-overlapping regions of 2 x 2 pixels are replaced by their average. 
Accordingly, training patterns x̂  of dimensions 10 x 8 are built. The ground truth, that 
is, the class labei ŷ  = +1 has been appended to each pattern. Similarly, 48 non-face 
patterns have been collected from images depicting trees, wheels, bubbles, and so on, 
by subsampling four times randomly selected regions of dimensions 160 x 128. The 
latter patterns have been labeled by y^ = - l . 

We have trained the five different SVMs indicated in Table 3.1. The trained SVMs 
have been appiied to six face images from the IBERMATICA database that have not 
been included in the training set. Each test image corresponds to a different person. 
The resolution of each test image has been reduced four times yielding a final image 
of dimensions 15 x 20. Scanning row by row the reduced resolution image, by a 
rectangular window 10 x 8, test patterns are classified as non-face ones (i.e., / ( z ) = 
- 1 ) or face patterns (i.e., / ( z ) = 1). When a face pattern is found by the machine, a 
rectangle is drawn, locating the face in image. 

We have tabulated the ratio G^/F^ in Table 3.2. From Table 3.2, it can be seen that 

Table 3.2: Ratio Gk/Fk achieved by the various SVMs. 
SVM type 

k 
Test Image numbers SVM type 

k 1 2 3 4 5 6 
1 0.83 0.20 0.57 0.66 1 0.74 
2 0.52 0.28 0.57 0.44 1 0.71 
3 0.67 0.25 0.44 0.44 0.80 0.83 
4 0.64 0.14 0.15 0.11 0.22 0.13 
5 1 0 . 5 0 0 . 8 0 0 . 8 0 0.80 1 

ERBF is found to maximize the ratio in (3.15) for the five test images. On the contrary 
the machine built using the sigmoid kernel attains the worst performance with respect 
to (3.15). Interestingly, the ERBF machine experimentally yieids the greatest number 
of support vectors, as can be seen in Table 3.3. 

Table 3.3: Number of support vectors found in the training of the severa! SVMs studied. 
SVM type 

k 
Test Image numbers SVM type 

k 1 2 3 4 5 6 
1 11 11 11 11 10 11 
2 14 13 14 14 14 13 
3 12 10 12 16 12 12 
4 13 11 11 11 11 11 
5 39 41 41 40 39 40 

To assess the performance of the majority voting procedure, we have manually 
annotated each test pattern ẑ  with the ground truth that is denoted as Zî si- Two 
quantitative measurements have been used for the assessment of the performance of 
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each SVM, namely, the false acceptance rate (FAR) (i.e., the rate of false positives) 
and the false rejection rate (FRR) (i.e., the rate of false negatives) during the test 
phase. We have measured FAR and FRR for each SVM individually as well as after 
majorlty voting. We have found that FRR is always zero while FAR varies. For each 
of the five different SVM we used bagging. The number of bootstrap replicas was 21. 
Unfortunately, for this set of data, the method did not work well. Moreover, perturbing 
the distribution of the original data bagging slightiy degrades the performance of the 
iniţial classifier. The values of FAR attained by each SVM individually and after appiying 
majority voting along with the values obtained with bagging are shown in Table 3.4. 
The FAR after bagging are in parentheses. It is seen that appiication of majority voting 

Table 3.4: False acceptance rate (in % ) achieved by the various SVMs individually, with bagging 
and after appiying majority voting. In parentheses are the values corresponding to bagging 

SVM type Test Image numbers 
k 1 2 3 4 5 6 

\ 1 3.9 10.5 6.5 5.2 2.6 6.5 1 
1 (4.7) (12.1) (7.6) (6.5) (3.5) (7.8) 

2 6.5 6.5 6.5 9.2 2.6 6.5 
i (10.1) (9.3) (7.6) (9.2) (3.5) (10.8) 
i 3 5.2 7.8 9.2 9.2 3.9 5.2 
i (7.7) (10.1) (10.6) (13.5) (4.5) (8.8) 
! 4 7.8 17.1 31.5 44.7 21.0 47.3 

(23.7) (29.2) (44.6) (78.5) (46.5) (88.8) 
5 2.6 2.6 3.9 3.9 3.9 3.9 

(2.6) (3.1) (6.5) (6.5) (4.5) (4.8) 
combining 2.6 1.3 2.6 2.6 2.6 3.9 

reduces the number of false positives in all cases and particularly when ^ Gjt-

Figure 3.3 depicts 2 extreme cases observed during a test. It is seen that majority 
voting heips to discard many of the candidate face regions returned by a single SVM 
(FIg. 3.3(b)) yielding the best face localization (Fig. 3.3(a)) . 

Figure 3.3: (a) Best and (b) worst face location determined during a test. 
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3.2 Can bagging strategy enhance the SVMs accuracy for detection ? 

A performance measure of a classifier is the so called accuracy, which is usually repre-
sented by the ratio of correct classifications. The accuracy measured on the training 
set generally differs from the accuracy measured on the test set, especially if the sta-
tistics of training and test sets are different. From a practicai point of view, the latter 
is more important. The general method to estimate the accuracy is as foilows. First, 
we use a part of the given data (namely the training set) to train the classifier by 
possibly exploiting the class membership information. The trained classifier is then 
tested on the remaining data (the test set) and the results are compared to the actual 
classification that is assumed to be available. The percentage of correct decisions in 
the test set is an estimate of the accuracy of the trained classifier, provided that the 
training set is randomly sampled from the given data. There are many methods which 
can be used to enhance the accuracy of a classifier for artificially generated data sets 
or real ones, such as bagging, boosting, stacking, and their variants. The accuracy 
of a classifier as a result of any of the previousiy mentioned methods is of primary 
concern and the classifier performance is often examined from this perspective. Im-
proving the accuracy is equivalent to reducing the prediction error, which is defined 
as 1 — accuracy. 

A well known method for estimating the prediction error is the so-called bootstrap, 
where sub-samples of the original data set are analyzed repeatediy [58]. Bagging 
Is a variant of the bootstrap technique, where each sub-sample is a random sample 
created with replacement from the full data set [56]. Other procedures of this type 
include boosting [60] and stacking [61]. Ensembling multiple classifiers can yieid a 
more accurate classifier [55]. Bagging has produced a superior performance for many 
classifiers, such as decision trees [63] and perceptrons [64]. However, there are se-
veral classifiers for which this method has either a littie effect or may slightiy degrade 
the classifier performance (e.g. fc-nearest neighbor, linear discriminant analysis) [65]. 
From this point of view, classifiers can be split into stable and unstable ones. A classi-
fier is considered as being stable if bagging does not improve its performance. If small 
changes of the training set lead to a varying classifier performance after bagging, the 
classifier is considered to be an unstable one. The unstable classifiers are characte-
rized by a high variance although they can have a low bias. On the contrary, stable 
classifiers have a low variance, but they can have a high bias. Bias and variance are 
defined in the next Section. 

It turns out that bagging, along with the decomposition of the prediction error into 
its variance and bias components, is a suitable tool for the investigation of the stability 
of a classifier. We also explore the aggregation effect, which indicates whether bagging 
is useful to a given problem or not. The stability of regularization networks has been 
proved in [66]. Since these networks and Support Vector Machines (SVMs) are closely 
related [67], it is expected that SVMs will be stable as well. This Chapter provides 
numerical evidence that a two-class SVM classifier can be included in the class of 
stable classifiers, the analysis fully described by Buciu et al. in [68]. To support this 
claim, the concepts of bias, variance, and aggregation effect are considered. 

3.2.1 Bias and variance decomposition of the average prediction error 

A labeled instance or training pattern is a pair z = (x, y), where x is an element from 
feature domain M and y is an element from class domain y. The probability distribution 
over the space of labeled instances is denoted with T . 
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The instances of the training set £ = {z^ | z = 1 , . . . , n } are assumed to be inde-
pendent and identically dlstributed, that is, Z i , . . . , Zn ~ ^ ( x , y), where capital letters 
denote randonri variables. Without loss of generality, we consider a two-class problem. 
Therefore, y, e { - 1 , - f l } . In such a classification problem, we construct a classifica-
tion rule C{x,, C) by training on the basis of The output of the classifier will be then 
r e { - l , 4-1}. Let Q[y.c] indicate the loss function between the predicted class labei c 
and the actual class labei y. A plausible choice is Q[y,c] = y^c and O otherwise. 

Let Zo = (Xo, Yo) be another independent draw from T called the test pattern with 
value Zo == (Xo. yo)- The average prediction error for the rule C(Xo, C) is defined as: 

erviO = E^{EoAQ[yo.C{XoX)]}} (3.16) 

where indicates expectation over the training set £ and Eot refers to expectation 
over the test pattern Zo ~ Ĵ ^ Note that the expression (3.16) is consistent with the 
risk funcţional defined in statistical learning theory [53]. Indeed Q\Yo,C{Xo,C)] is 
the loss function and E j r {EoT{Q[yo^C{Xo,C)\ } ] is a bootstrap estimate of the risk 
funcţional. 

The average prediction error can be decomposed into components to allow for a 
further investigation. Several decompositions of the prediction error into its bias and 
variance have been suggested. In [65], an exact additive decomposition of the predic-
tion error into the Bayes error, bias, and variance is performed. Another decomposition ' 
method ailows for negative variance values [69]. Decomposing the prediction error 
in three terms, namely the squared bias, the variance, and a noise term is suggested 
in [70]. In [71], the decomposition is related to the estimated probabilities, whe-
reas in [72] the decomposition into the bias and variance is done for the classification 
rule. A bias/variance decomposition for any kind of error measure, when using an 
appropriate probabilistic model is derived in [73]. A low-biased SVMs is buiit based on 
bias-variance analysis in [74], [75]. Due to the fact that we wouid like to decompose 
the average prediction error in terms that employ the ^ ^ 1/0" loss function, we are 
motivated to adopt the approach proposed in [72]. 

In the foilowing, we confine our analysis to a two-class pattern recognition problem. 
Let us define: 

P[yj\x) = P[Y = for j = 1,2. (3.17) 

It is well known that the Bayes classifier Copt given by: 

Coptix) = arg max P{yj | x) (3.18) 

yieids the minimum prediction error: 

trriCopt) - 1 - / max {P{yj \ x)}p{x)dx. (3.19) 

If the probability density function p{x) and the a priori probabilities P(y^) were known, 
Coytix) couid be computed by the Bayes rule: 

= , = 1,2, (3.20) 

where jnx) =- P{y,)p(^ 1 Vj)- Unfortunately, in real life, it is very difficult to 
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have an exact knowledge of either of them. However, some methods in the literature 
estimate the minimum decision error (3.19). For instance, given enough training data, 
the prediction error of the nearest neighbor rule, errp^M, is sufficiently close to the 
Bayes (minimum) prediction error. It has been shown that, as the size of the training 
set increases to infinity, the nearest neighbor prediction error is bounded from below 
by the Bayes minimum prediction error and from above as foilows [76]: 

err{Copt) < errr^N < err(Cop,) (̂ 2 - < 2 • err(Cop,), (3.21) 

where p is the number of classes (e.g. p = 2 in our case). In other words, the nearest 
neighbor rule is asymptotically at most twice as bad as the Bayes rule, especially for 
small err{Copt)- Having this in mind and having computed err̂ ŷv we can obtain an 
upper bound estimate of err{Copt)-

Let us form B quasi-replicas of the training set Ci,..., jCb, each consisting of n 
instances, drawn randomly, but with replacement. An instance {x,y) may not appear 
in a replica set, while others couid appear more than once. Due to the fact that the n-
th outcome being selected 0 , 1 , 2 , . . . times is approximately Poisson - distributed with 
parameter 1 when n is large, on average 63% of the original training set will appear 
in the bootstrap sample [58]. The learning system then generates the classifiers C^, 
b = from the bootstrap samples and the final classifier Ca is formed by 
aggregating the B classifiers. Ca is called the aggregated classifier. In order to 
classify a test sample x^, a voting between the class labels yob derived from each 
classifier, Ct{Xo,Cb) = yobi is performed and C^(Xo) is the class received the most 
votes. In other words, the aggregated classifier is given by: 

^ sign{£;^{C(x,, £ * ) } } , (3.22) 

where = { £ i , . . . , For example, suppose that for (Xo,^o)/ C{yio,C*) outputs 
the class { - 1 } with a relative frequency 3/10 and class the {-hl} with a relative fre-
quency 7/10, respectively. Then C^(Xo) predicts the {+1} class labei. The aggregated 
classifier is also named as bagging predictor [65]. In the foilowing, we deal with the 
bias and the variance of a classifier. Let us define the bias of classifier C as: 

bias{C) = ErEoF{Q[CoA^o.C),CAO^o)]} = err(C^) - (3.23) 

where the dependence of the Bayes classifier on £ is explicitly stated. Therefore, 
the bias of classifier C is the average number of mismatches in the classifications 
produced by the Bayes classifier and the aggregated classifier. C is called unbiased 
if its aggregated classifier Ca predicts the same class as the Bayes classifier with 
probability 1 over the inputs. The variance of classifier C is expressed by [72]: 

var{C) = ErEoF{Q[C{Xo,C),CA{Xo)]}. (3.24) 

The variance measures the dispersion of Ca around C due to the variations from one 
bootstrap replica to another. Another quantity of interest is the aggregation effect 
defined by: 

ae{C) = err(C) - err(CA) = {6-1)- err{CA) (3.25) 

where: 
^ err(C) 
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Having defined the bias, the variance, and the aggregation effect of a dassifier, it 
can be easily shown that the foilowing decomposition is valid [72]: 

err(C) = err{Copt) + bias{C) + ae{C), (3.27) 

3.2.2 Bootstrap error estimate for the bagged classifier 

Using the leave-one-out strategy, a sample-based estimate of the prediction error de-
composition can be derived according to [72]. By doing so, we can draw the numerical 
evidence in order to demonstrate if a classifier is stable or not. 

We can estimate the aggregated predictor expressed in (3.22) by: 

C A { x ) ^ s \ g n { E ^ { C { x X n } } (3.28) 

where T is the empirica! probability distribution over Z. The computation of (3.28) is 
performed as foilows: 

1. Create ordinary bootstrap samples C\ = { z l . z^ , . . • ^z*} with replacement from 

2. Create B bootstrap samples. Let the bootstrap samples be 6 = 2 , 3 , . . . , B ; 
3. Let iVf be the number of times ẑ  appears in the 6-th bootstrap sample and: 

r 1 if N^ = o 
^̂  - \ o if N t > 0 , 

If is the distribution assigning probabilities l / ( n - 1) to all training observations, 
except X,, where it assigns zero probability, then the aggregated classifier can be 
estimated by: 

- s i g n j ^ i ^ p i ^ j . (3.30) 

An estimate of the classifier variance is: 

Subsequently, we determine the estimate for the prediction error of classifier C . 
Using the leave-one-out cross validation technique, the average prediction error (3.16) 
can be estimated in the foilowing manner: 

e^r(C) = (3.32) 

where the set = £ - contains the samples drawn from The leave-
one-out bootstrap estimate of the prediction error for C and Ca is: 

<3.33, 
1=1 2̂ 6=1 t̂ J 

and 

<3.34, 
1=1 ^ Z^b=lU J 
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respectively. Now, we can estimate the aggregation effect as: 

ăe{C) = e?r{C) - err{CA) = (S - \) • eTr(C^), (3.35) 

where 

(3.36) 
eTriCA) 

Notice that the leave-one-out bootstrap estimate is equivalent with the .632 boots-
trap estimator [58]. The minimum (optimal) prediction error can be estimated, as 
suggested in [76], by the lower bound of the inequality: 

err{Copt) > a - [aia - err ,̂̂ )]̂ ^^ (3.37) 

where err^N is the prediction error of the NN classifier In the case of a two-class 
problem, a = 1/2. Then, the bias estimate is upper bounded by: 

bias{C) < e^r{CA) - [a - [a(a - erryvw)]'/^] (3.38) 
a = l / 2 

Another upper bound of the bias can be obtained if a A: - nearest neighbor (A: - NN) 
classifier is employed. It is known that [77]: 

bias{C) < err{CA) — err^NN 

where we used that 
k=5 

err{Copt) > err^NN 
k=5 

Finally, the bootstrap estimate of prediction error is obtained by 

(3.39) 

(3.40) 

eTr(C) = ^r{Copt) + bias{C) 4- ae{C) (3.41) 

where ^r{Copt) is estimated by the lower bound of (3.40). A classifier is said to be 
stable, if the aggregation effect is negative or zero, or, equivalently if: 

d<l. (3.42) 

The stability indicator 6 can be viewed as a bagging gain in the sense that, if it 
is less than or equals 1 bagging does not yieid any improvement in the classification 
performance. 

3.2.3 Experimental results 

We draw numerical evidence to support our claim on the stability of SVMs for the face 
detection task. 

3.2.3.1 Data description 

Three image databases are employed in our experiments. They contain facial and non-
facial patterns. The first database, the so called IBERMATICA database, consists of 464 
images in total. It was collected within the framework of M2VTS project. The facial 
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patterns extracted from this database contain several degradations, such as changes 
in illumination, varying expressions, scale variations, etc [78]. The spaţial resolution 
of images is 320 x 240 pixels. The images were recorded in 256 grey levels. Each face 
image has been cropped with a rectangle of 160 x 128 pixels, which includes the major 
fiduclal points such as the eyebrows, eyes, nose, nnouth, and chin, as shown in Figure 
3.4. Each image has been downsampled four times, finally yielding an image of 10 x 

Down-
sampling 

Rgure 3.4: Example of a cropped face from the IBERMATICA database. Left: an original image 
of size 320 X 240 pixels. Right: a downsampled facial image to 10 x 8 pixels, properly magnified 
for visualization purposes. 

8 pixels. This preprocessing step was used to reduce the dimension of input patterns. * 
The ground truth (i.e., the class labei yi = -f 1) was appended to each facial pattern. 
Non-facial patterns have been collected from images depicting wheels, bubbles, trees, 
etc., in a similar manner to that described in [79]. That is: 

1. Start with a small set of manually selected non-facial patterns in the training 
set. 

2. Train an SVM classifier with the current training set. 
3. Choose randomly an Image that does not contain any face. Divide this image 

into blocks of size 1 0 x 8 and appiy the SVM on each block. Collect all the blocks that 
the current system wrongly classifies as faces, if any. Add these non-facial patterns to 
the training set as new negative examples. This process is repeated for several times. 
Such misclassified non-facial patterns as facial ones are indicated by black rectangles 
in Figure 3.5. The non-facial patterns have been labeled by jji = - 1 . 

The AT&T (former Olivetti) [80] database was used to build the second data set of 
facial and non-facial patterns. This database contains 10 different images per person 
for 40 different persons. The images have dimensions 92 x 112 pixels. They have 
been recorded at different times, with variations in the lighting, facial expression, and 
facial details (glasses/nonglasses). They undergo the same preprocessing steps as 
the images of the IBERMATICA database. The final pattern size was 17 x 14. Note 
that the just mentioned pattern size for this data set is different than that of the first 
image data set due to the scaling variations between the face images in the AT&T 
face database and those in the IBERMATICA face database. The image set contains 
306 facial patterns chosen randomly from the available face images and 294 non-facial 
patterns. Figure 3.6 shows several cropped facial images along with the corresponding 
downsampled versions. 

While the first two image data sets can be considered as small ones, the third 
image data set is a combination of images from the AT&T face database and the face 
detection database collected by Rowley, Baluja, and Kanade [26]. The images has 
been downsampled so that facial and non-facial patterns of dimensions 17 x 14 are 
obtained. A set of 435 facial and 5,722 non-facial patterns has been created and 
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Figure 3.5: Patterns wrongly classified as faces by an SVM are appended as negative examples 
in the training set. Such patterns are marked with black rectangles. 

used oniy in the test phase of our experiments. We refer to this innage data set as 
the extended innage data set. No further preprocessing was appiied (e.g. masking, 
illumination gradient correction, or histogrann equalization). 

3.2.3.2 Training phase 

We trained an aggregated SVM classifier on a set of 50 training samples extracted 
from the IBERMATICA face database augnnented by non-facial patterns determined 
by the bootstrapping procedure. Another aggregated SVM classifier was trained on a 
second set of 50 training samples from the AT&T face database. A polynomial kernel 
of degree 2 was chosen. Since bagging can potentially be very useful, especially when 
the available amount of training data is small, we intentionally kept onIy 50 patterns 
from each set for training. We calculated the empirical distribution T and we computed 

Table 3.5: Estimated prediction error (%) and its decomposition into bias and variance terms for 
an SVM with a quadratic kernel (K(Xi,Xj) = {xŢxj +1)^) and a 5-NN trained on the IBERMATICA 
database (21 bootstrap samples). The number in parenthesis refers to the equation used to 
compute the quantity in question. 

Figure of merit SVM 5-NN 
erriC) (3.33) 0.5400 [0.0000] 0.0000 [0.0000] 
văriC) (3.31) 0.0000 [0.0000] 0.0084 [0.0083] 
lnas{C) (3.39) 0.5400 [0.0000] 0.0084 [0.0083] 
err(C^) (3.34) 0.5400 [0.0000] 0.0084 [0.0083] 
ae(C) (3.35) 0.0000 [0.0000] -0.0084 [0.0083] 

d (3.36) 1 0 

the leave-one-out bootstrap estimate of the prediction error of SVM, the leave-one-out 
bootstrap estimate of the prediction error for the aggregated SVM classifier, the bias, 
and the variance. The number of bootstrap replicas was initially 21. We repeated the 
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m m 

(a) 

(b) 

Figure 3.6: (a) Five different cropped face images of a person from the AT8lT face database. (b) 
Downsampled face images corresponding to the original images in (a), properly magnified for 
visualization purposes. 

experiment 10 tinnes by forming other replicas of the training set. For comparison, 
we experimented also with a 5 - NN classifier. The aforennentioned figures of merit 
are collected in Table 3.5 for the IBERMATICA database and Table 3.6 for the AT&T 
database, respectively, when the number of bootstrap replicas equals 21. The values 
depicted in Tables 3.5 and 3.6 are averaged over 10 runs. The prediction errors are 
expressed in percentage. The standard deviation for each figure of merit is given in 
brackets. Since ^ s n . v = O, a lower bound for €rr{Copt) is zero, according to (3.40). 
Note that we used the upper bound (3.39) to estimate the bias. Eq. (3.33) was used 
to compute the bootstrap estimate of the prediction error err{C), 

Table 3.6: Estimated prediction error (%) and its decomposition into bias and variance terms for 
an SVM with a quadratic kemel (/C(x,,xj) = (x^xj + 1)̂ ) and a 5-NN trained on the AT&T data 
set (21 bootstrap samples). The number in parenthesis refers to the equation used to compute 
the quantity in question. 

! Figure of merit SVM 5-NN 
1 eTr{C) (3.33) 0.5200 [0.0000] 0.0000 [0.0000] 
i rSr(C') (3.31) 0.0000 [0.0000] 0.0257 [0.0053] 

biâs{C) (3.39) 0.5200 [0.0000] 0.0044 [0.005] 
eTr(C4) (3.34) 0.5200 [0.0000] 0.0043 [0.005] 
âe.{C) (3.35) 0.0000 [0.0000] -0.0043 [0.005] 

6 (3.36) 1 0 

From Tables 3.5 and 3.6 we notice that the prediction error of SVM after bagging 
does not change from the value it had before bagging. Due to the fact that err^sN is 
zero, the bias equals ^r (C^) . A zero or negative aggregation effect is characteristic of 
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a stable classifier. In the case of a 5 - NN classifier, bagging degrades the performance 
of 5 - NN. 

2 

O 
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Index of misclassified images 

Index of misclassified images over 21 samples 

(b) 

Figure 3.7: Face detection using a quadratic SVM on the IBERMATICA face database. (a) Histo-
gram of the misclassified patterns before bagging. (b) Histogram of misclassified patterns when 
21 SVMs are trained on 21 bootstrap samples and aggregation is performed. 

Figure 3.7a depicts the histogrann of the nnisclassified pattern indices without bag-
ging for the experiment conducted on the IBERMATICA database. Figure 3.7b shows 
the histogram of misclassified pattern indices after bagging with 21 bootstrap repli-
cas. One can observe^hat the classification accuracy does not improve with bagging. 
Therefore, C(x) and C^(x) tend to make the same errors, as can be seen from the 
histogram bins that exceed the dashed line in Figure 3.7b. The same patterns are 
misclassified even when the training sets are changed. For example, the misclassified 
pattern with index 27 that is misclassified before bagging, is misclassified after bag-
ging 20 out of the 21 times. In addition, a new misclassified pattern appears at index 
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Table 3.7: Average prediction error (%) in the test phase for SVMs appiied to the IBERMATICA 
and AT&T face databases. 

r Database Kernel B = 21, m = 60 B = = 61,m = 20 
i 1 err (C) err{CA) <5 err (C) err{CA) 6 
î— 
1 linear 3.93 4.24 0.92 3.23 3.72 0.89 

IBERMATICA quadratic 3.25 3.27 0.99 2.88 3.05 0.94 
1 ! 1 ERBF 1 2.75 3.01 0.91 1.40 2.30 0.61 

linear 4.87 4.48 1.09 4.72 4.52 1.05 
AT&T quadratic 4.86 5.78 0.84 5.03 5.67 0.89 

j ! ERBF 2.93 3.04 0.96 2.86 2.93 0.98 

157 for the aggregated classifier. We observe that the aggregated classifier does not 
commit less errors, as one might expect. This couid be attributed to the stability of 
SVMs. 

3.2.3.3 Test phase 

While the values of the SVMs parameters D and 7 were arbitrarily chosen in the ex-
periments (IBERMATICA, AT&T, and PID databases), for the extended image data set 
these values were determined by a cross-validation approach in a such a way that 
they yield the best accuracy in the training phase. The values of D and 7 that yieid 
the worst accuracy were also indicated. We run the SVM classifier with an ERBF kernel 
for 7 = {0.001, 0.01, 0.05, 0.1, 1, 10, 100, 200, 300, 400, 500, 600, 700, 800, 900, 
1000} and D = {0.1. K 10,100,500,1000,10000,100000}. The same values of D were 
tested for the linear and quadratic kernel, respectively. The worst accuracy was obtai-
ned for D = 0A in the case of the linear kernel and for (D = 500,7 = 0.01) in the case 
of the ERBF kernel. The best accuracy was obtained for D = 500 in the case of the 
linear kernel, and for (D - 500,7 = 1) in the case of the ERBF kernel. For a polynonnial 
kernel the same accuracy was obtained for all values of D, Accordingly, we chose to 
use D = 500. In the test phase, we are concerned oniy with the prediction error on 
the test set of a trained SVM classifier with/without bagging. We included also the 
extended image data set in our experiments besides the IBERMATICA and the AT&T 
databases. The foilowing steps were foilowed: 

1. Divide the iniţial database (e.g. IBERMATICA, AT&T) randomly into a training 
set of 50 images and a large test set comprised of the remaining images. That is, 414 
and 550 samples for the IBERMATICA and the AT&T databases, respectively. Train the 
SVM with the training set and then appiy the trained SVM on the test set. 

2. Build R - 21 bootstrap replicas from the iniţial training set. Train the SVM on 
each replica, thus obtaining B classifiers. 

3. AppIy each of the B classifiers on the test set and aggregate these B classifiers 
for a final decision. 

4. Repeat steps 1 - 3 for m= 60 times. 
By averaging over m iterations, we obtain Wf{C) and eff(CA)' We repeated also 

steps 1 - 4 for B = 61 and m = 20. The results for {B = 21, m = 60) and ( B = 61, m = 
20) are giverţ in Table 3.7 for the two databases when SVMs with different kernels are 
used. All prediction errors are expressed in percentage. One can see from Table 3.7, 
that, afler many trials, on average, 6 is less than unity for the IBERMATICA database. 
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regardless of the kernel function used. Bagging dramatically degrades the prediction 
error for ERBF kernel function for B = 61 bootstrap samples and m = 20 iterations. 
This is the worst performance achieved in the test phase. An analogous degradation 
of SVM performance is also observed in the AT&T database for the polynomial and the 
ERBF kernels functions. The linear kernel is an exception, since îexceeds unity by a 
small amount. Notice that the bootstrap estimate of the average prediction error is 
now measured during the test phase. This prediction error is different than the one 
obtained in the training phase (Tables 3.5 and 3.6), because the test set is disjoint 
to the bootstrap replicas of the training set. 

For the extended image database we repeated the same steps, but the number of 
training samples was set to 200 and the remaining 5,957 samples were used for testing. 
In addition the number of bootstrap replicas varies from 21 up to 141. Moreover, we 
compared the stability with the so-called Q statistics diversity measure [81]. Q varies 
between - l and +1. Classifiers that tend to recognize the same patterns correctiy 
will admit positive values of Q and those which commit errors on different patterns 
will lead to a negative Q. The closer to 1 is Q the more and the same patterns will 
be correctiy or falsely classified by the ensemble of classifiers. Hence, the higher the 
value of Q is the worse is the ensemble (bagged classifier). For a high value of Q 
close to 1 the ensemble does not provide any advantage in accuracy over the single 
classifier, which in our case is similar to dealing with a stable classifier. The results 
are shown in Table 3.8 along with S and average Q. We have reported both results 
corresponding to the parameters that provided the worst and the best performance 
to verify the statement of Evgeniou et al. [82] about tuning the SVMs parameters. 
They found that, when the parameters of a single SVM are tuned such as to yieid the 
best performance, a bagged SVM does not improve the accuracy over the single SVM. 
Indeed, as it seen from Table 3.8, ?admits its largest value for an SVM with a linear 
kernel in the worst case. For a polynomial kernel and an ERBF kernel the marginal 
improvements in 6 are correlated with the high values of Q, a fact that amplifies our 
claim on the stability of SVMs. The linear SVM although underperforming the quadratic 
SVM with respect to the average prediction error yieids 6 above 1. By increasing the 
number of bootstrap samples the classifier performance deteriorates for all kernels. 
The more bootstrap samples are used the worse classifier performance is obtained. 

3.2.3.4 Discussions 

In this Chapter, the behavior of SVM by appiying bagging in the light of the bias and 
variance decomposition of the prediction error was investigated. Although bagging, 
which perturbs the iniţial training set and then combines the classifications produced 
on several replicas of the training set, has successfully improved the performance of 
many classifiers, there are several cases where this algorithm either does not help too 
much or may slightiy degrade the pattern recognition performance. This happens to 
the class of stable classifiers. Here, we reported experimental evidence that the SVM 
classifiers can be included in the class of stable classifiers. We estimated the prediction 
error by means of a leave-one-out strategy and drew conclusions about the stability of 
the aforementioned classifiers by examining the values of the prediction error compo-
nents in the training phase. For the face detection task, bagging SVMs is found to be 
useless. Even when, after many iterations on average, we may slightiy obtain better 
results (see, for example, Table 3.7, AT&T database, linear kernel), bagging is not a 
good idea, because the price paid for a slight performance improvement is the huge 
processing time. To conclude, we can state that the empirical results collected from 
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Table 3.8: Average prediction error (%) before and after bagging in the test phase for the ex-
tended image database. 

Kernel without bagging with bagging Kernel without bagging with bagging 
21 61 101 141 

Linear 

i 

worst case 
err(C) = 4.35 

err{CA) 3.63 3.90 3.90 4 .31 Linear 

i 

worst case 
err(C) = 4.35 S 1.19 1.11 1.11 1.01 

Linear 

i 

worst case 
err(C) = 4.35 

Q 0.98 0.97 0.89 0.99 

Linear 

i best case 
err(C) = 2.73 

erriCA) 2.41 2.46 2.67 2.67 

Linear 

i best case 
err(C) = 2.73 6 1.13 1.10 1.02 1.02 

Linear 

i best case 
err(C) = 2.73 

Q 0.98 0.88 0 .85 0.80 
Quadratic 

err(C) = 2.60 
err{CA) 2.40 2.41 2.47 2.56 Quadratic 

err(C) = 2.60 S 1.08 1.07 1.05 1.01 
Quadratic 

err(C) = 2.60 
Q 0.95 0.97 0.99 0.99 

ERBF worst case 
err(C) = 5.9 

err{CA) 5.9 6.5 6.5 6.8 ERBF worst case 
err(C) = 5.9 S 1.00 0.90 0.90 0.86 1 

worst case 
err(C) = 5.9 

Q 0.95 0.94 0.96 0.98 
best case 

err(C) = 1.36 
err{CA) 1.34 1.39 1.64 1.74 best case 

err(C) = 1.36 6 1.01 0.97 0.82 0.78 
best case 

err(C) = 1.36 
Q 0.91 0.98 0.99 0.99 

our experiments indicate that SVMs tend to behave like weakiy stable classifiers when 
appiied to face detection task. 
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CHAPTER 4 

ICA appiied for Facial Expression Recognition 

4.1 Independent Component Analysis as a feature extraction 
method 

One of the most popular techniques for dimensionality reduction is Principal 
Component Analysis (PCA). This technique is based on second-order statistics of the 
data and performs dimensionality reduction by retaining the components that 
correspond to the largest eigenvalues of the covariance matrix, while discarding 
those components that have insignificant contribution to data representation. In 
principie, PCA yieids uncorrelated components. When the data have a Gaussian 
distribution, the uncorrelated components are independent as well. However, if the 
data are mixtures of non-Gaussian components, PCA fails to extract the components 
having a non-Gaussian distribution. On the contrary. Independent Component 
Analysis (ICA) takes into account higher-order statistics of the data in an attempt to 
recover the non-Gaussian components. 

From a statistical point of view, the least interesting structure is the 
Gaussian one. In one dimension, two moments, the mean and the variance, 
completely define the probability density function (pdf). Moreover, the Gaussian 
distribution has the highest entropy among all distributions with a given covariance 
matrix [83]. Taking the Gaussian distribution as a reference, any quantity that 
measures the level of''interestingness" of the data, is a quantity that measures the 
non-Gaussian structure of the data. A principled measure of nongaussianity is the 
negentropy. The negentropy of a standardized random variable (i.e. one that has 
zero-mean and unit variance) can be approximated by the third-order moment and 
the fourth-order cumulant (i.e. the kurtosis) in a computationally simple manner. 
Therefore, we need moments and cumulants of order higher than 2 to capture the 
non-Gaussian structure of data [83]. All these quantities are closely related to the 
methods employed in order to find statistically independent components. Seeking 
non-Gaussian components is related to looking for statistical independence [83]. A 
measure of non-Gaussianity of a random variable (RV) s is its normalized kurtosis 
estimated as: 

kurtis) = - 3 (4.1) 

where s, are the observations of s and s denotes its sample mean. The normalized 
kurtosis for Gaussian RVs is zero. Super-Gaussian RVs have a positive kurtosis. A 
typical super-Gaussian pdf is the Laplacian pdf. Sub-Gaussian RVs have negative 
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kurtosis with a typical example being the uniform RV in the interval [ - a , a] G R . 
ICA can be fomnulated by considering the foilowing statistical model: 

X = As (4.2) 

where s ^ -. -, is a latent random vector with independent components 
that are combined via a mixing m x n matrix A to form a zero-mean observation 
vector X - ( x i , x 2 , . . . The task of ICA is to estimate a demixing matrix W of 
dimenslons n x p that will recover the original components of s as: 

u = Wx = WAs (4.3) 

where u = [zii. • • • • •, «s an estimate of s. Given a batch of m observation 
data X j , j = 1 , . . . , m we can form X whose columns are x .̂ Then (4.3) becomes: 

U - WX = WAS (4.4) 

where X and U are p x m and n x m matrices, respectively. Usually, we caii the co-
lumns of U (and implicitly the columns of S) independent sources, The columns of X 
are measurements from a number of sensors that capture the sources. Usually, the 
number of observed components is equal to the number of independent components 
( j j = n). There are ICA methods that cope with cases p < n or p > n, called over-
complete or undercomplete ICA, respectively. Basically, the ICA algorithms attempt 
to obtain an estimate of W by using an objective (contrast) function that must be 
maximized or minimized, depending on the formulation. 

4.2 ICA approaches 

Let p = n. The InfoMax algorithm performs ICA based on the information maximi-
zation approach proposed by Bell and Sejnowski [84]. This approach relies on the 
maximization of the entropy of the joint distribution /(u). The demixing matrix W is 
updated through an iterative process. At iteration Jb -f 1, W is updated according to: 

= W, + 7/[I + (1 - (4.5) 

where 7/ is the learning rate controlling the convergence speed of the algorithm, 1 is 
a n X 1 vector of ones, I is the n x n identity matrix, and z is a n x 1 vector having 
elements: 

= g M z = (4.6) 

with g{.) being a component-wise noniinearity appiied to all elements of the demixer 
output u, at each iteration k, The form of the noniinearity must be chosen to match 
the cumulative distribution function of the input. In the Infomax algorithm [84], this 
non-linearity is approximated by the logistic transfer function: 

= 1/(1 ( 4 J ) 

The just described approximation works well when it comes to recover super-
Gaussian components, but fails to extract the components having a sub-Gaussian 
distribution if such components exist in the mixture of non-Gaussians. Therefore, Lee 
et al. have extended the InfoMax algorithm to the extended-InfoMax approach by 
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employing a new learning rule that is able to separate both sub- and super-Gaussian 
distributions [85]. The learning rule that is able to switch between these distributions 
iteratively updates the demixing matrix as foilows: 

= Wa- + 7/[I - r tanh(u,)u,^ - (4.8) 

where T is an n x n diagonal matrix whose r/-th element, takes the value 1 for a 
super-Gaussian source and the value - l for a sub-Gaussian one, and tanh() denotes 
the hyperbolic tangent function that is appiied to the elements of Ua in a component-
wise fashion. The adaptation of is given by: 

= s\gn{E{sech'{uf^-,)}E{ul,} - E{[tanh{in,)]uKr})^ (4.9) 

where / = 1 u, u ,̂ is the /-th element of ua , and sign() and sech() denote the sign 
and hyperbolic secant functions, respectively. 

Another approach for separating sources, the so called Joint Approximate Diago-
nalization of Eigen-matrices (JADE) was proposed by Cardoso and Souloumiac [86]. 
The main advantage of JADE is the fact that it does not need a learning step for its 
tuning. Its drawback is the relatively small number of components that can be extrac-
ted, making it inadequate for a large number of mixture components. JADE has the 
foilowing steps [86]: 

1. Form the sample covariance matrix D.;̂  = ĵyXX^ and compute a whitening matrix 
V. 

2. Form the sample 4th-order cumulant tensor 
{cum{z, ,z j .zk .z i ) 11 < i j . k . l < /?}, where are the elements of z = VAs and 
n is the number of sources/measurements. 

3. Compute the eigenmatrices of the cumulant tensor. 

4. Minimize the sum of the squared cross-cumulants of 

The fourth approach employed in the paper is fastICA developed by Hyvarinen 
[87], which is an algorithm that maximizes negentropy. The fastICA algorithm steps 
for estimating several independent components with deflationary orthogonalization 
are the foilowing [83]: 

1. Center the data to zero their mean. 

2. Choose the number n of independent components to be estimated. Set p = l. 
Whiten the data to obtain z - Vx VAs. 

3. Choose randomly an iniţial vector of unit norm for w^. 

4. L e t w , , . A . + i - where.r7(0 = ( lAi ) log (cosh(aO) 
is the contrast function and its derivative is given by g = tanh(a,^). 

5. Do the foilowing orthogonalization + i = + i - = i + • 

L e t w , , , ^ i = liw 1 I 

7. If Wp has not converged, go back to step 4. 
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8. Set — ;> -r 1. If p < 11, go back to step 3. 

A major advantage of fastICA is its speed, making it even 100 times faster than the 
previously described approaches. 

For all ICA approaches described so far, it has been assumed that the number of 
components equals the number of sensors. If the number of sources is very large, the 
application of ICA is limited by memory constraints. Therefore, the preprocessing PCA 
step is not oniy intended to decorrelate the data, but also to lower their dimension. By 
keeping onIy / < p appropriately chosen dimensions the demixing matrix W becomes 
of size / X /. When discarding the (p - /) dimensional subspace with the smallest va-
riance, there is a hsk to throw away the independent components (ICs) that might 
be contained in this subspace, since there is no guarantee that ICs exist onIy in the / 
dimensional subspace defmed by the principal components (PCs) with the largest ei-
genvalues. For mstance, an IC a with very small variance was found to be associated 
with the form of the ' 'on-off" experimental protocol when analyzing fMRI data [88]. 
To address the weakness of the previously described ICA methods, Stone and Porrill 
have developed the undercomplete Independent Component Analysis (uICA) for pre-
serving the information that might be lost during PCA and established the foilowing 
contrast function for maximizing the entropy [89]: 

MW) i |og|WD.W^| - E ( I 7 ) }• 

ailowing to have a non-square x p demixing matrix without appiying PCA for data 
dimensionality reduction. D, is the sample covariance matrix of the input data x. If 

^ ) ^ tanh(u,), (4.10) can be maximized using, for example, the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton method. The derivative of (4.10) is 
given by: 

Oh if r ^ 
— (4.11) 

where W^ is the pseudoinverse of W with respect to the po-
sitive definite sample covariance matrix D^. However, when considering the whitened 
data, the covariance matrix equals the identity matrix, simplifying the first term of 
(4.10) to ^ l̂ogiWW^ i and W^ to W^ (WW^)- ' . 

All the aforementioned approaches treat the mixture X of independent components 
S as a linear one. It may happen to have components that are mixed using noniinear 
functions. A kernel Hilbert space is used by Bach and Jordan to come up with the 
so called kernel-ICA algorithm to extract such sources that are mixed by using non-
iinear functions [90]. Two contrast functions that rely on canonical correlations in 
this reproducing space have been defined namely the kernel ICA-KCCA (where KCCA 
stands for Kernel Canonical Correlation Analysis) and the ICA-KGV (where KGV stands 
for Kernel Generalized Variance). Kernel ICA-KCCA minimizes the first kernel canoni-
cal correlation that depends on the data x^, ./ ^ 1 rn onIy through the centered 
Gram matrices for / ICs. Kernel ICA-KGV minimizes the kernel generalized variance. 
Both contrast functions are related to a generalized eigenvector problem K^a = XD^a, 
where k is a regularization parameter and /C, and D^ are block matrices constructed 
from the Gram matrices. Kernel ICA-KCCA deals with the minimal eigenvalue of the 
aforementioned problem whereas kernel ICA-KGV deals with the entire spectrum. The 
interested reader may consult [90] for more detaiis. 
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4.3 Two architectures for performing ICA on images 

Donato suggests that ICA features contain suitable and powerful discriminative infor-
mation for classifying facial action units [43]. Facial expressions are connbinations of 
such facial action units. Hence, ICA features may also be suitable for facial expres-
sion classification. In this paper, ICA is appiied to facial innages for feature extraction 
towards facial expression classification. We have m innages containing human facial 
expressions, each image being of size r x c pixels, vectorized into a p = rc-dimensional 
vector by lexicographic ordering. There are at least two ways in which ICA can be ap-
piied to this problenn namely the Architectures I and II [91]. 

4.3.1 Architecture I 

The observation matrix X is formed by treating the face images as row vectors. Thus 
X is an m X p matrix. By doing so, ICA recovers m independent images. There are 
two preprocessing steps appiied before ICA. The first step is PCA. 

Let Dj : be the covariance matrix of the original images, D̂ : = ^^^^ = PDP^, 
where X = [xi-ip\ ... \Xm-ip]^ with ip = ^ YlT=i ^̂ ^ ^̂  choose l < p eigenvectors 
of D̂ : (those with the largest eigenvalues) and form P̂  6 whose columns are 
the eigenvectors. Each training face image x^ can be projected to the eigenvectors 
(called here eigenfaces) and be represented by ŷ , = PŢi^k - Let us construct 
Y = [yi| .--|ym]^ = [(*1 - - = XP; . The original images can be 
reconstructed as linear combinations of the basis images P/ as XrecPCA = ypŢ• In the 
foilowing, we assume that tp = O and accordingly X = X. Whitening the data is the 
second preprocessing step. The whitening process transforms the original observation 
data by filtering them with W^ - such that the data are now given 
by P^^ = W^Pf . The transformed data constitute the ihput of the ICA process. By 
appiying ICA to P^i instead to the original observation matrix X, a number of l ICs can 
be recovered into the columns of basis U: 

U = }NPli = W(W,Pn = }NjPŢ (4.12) 

where W/ = WW .̂ Hence, we have PŢ = W7^U and the ICA reconstruction of the 
original data is given by the approximation: 

XrecICA = YPf = Y(W7^U) = (XP,W7^)U. (4.13) 

The rows of B = XP/W/^ contain the ICA coefficients of the linear combination of 
independent basis U, where the training images are represented by the matrix X. The 
rows of B are used further for classification. The ICA coefficients of a zero-mean test 
image Xtest are obtained as: 

b L t = x L t P / W 7 ^ (4.14) 

4.3.2 Architecture I I 

Now consider X^. In this case, the pixels are assumed to be independent [91]. The 
columns of X are linear combinations of basis vectors obtained from the columns of 
matrix W/. In Architecture I I , ICA is performed on the projected data Y^ = PŢ^^-
Therefore, the basis images obtained by performing PCA and ICA can be represented 
as P/W7^ and the coefficients needed for ICA reconstruction are expressed in the 
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columns of U = W/Y^. The reconstructed images are: 

X L / c . 4 = (P/W7')(W/Y^). (4.15) 

A zero-mean test image is represented as: 

Utest = ViljPŢxtest^ (4.16) 

4.4 Data description 

The experiments have been performed using two databases. The first database has 
been derived from the Cohn-Kanade (C-K) AU-coded facial expression database [92] 
that contains single or combined action units. Facial action units have been converted 
to emotions according to [20]. Thirteen persons (expressers) who are able to express 
the six basic emotions create the database. Each subject from C-K database delivers 
an expression over time starting from a neutral pose and ending with a very intense 
expression, thus having several frames with different expression intensities. We picked 
up three poses with low (close to neutral), medium, and high (close to the maximum) 
intensity of facial expression, respectively. By doing so, the statistical variability of 
facial emotions is roughiy captured. Therefore, the total number of images is 234 
In the first database. The second database contains 213 images of Japanese female 
facial expressions (3AFFE) [33]. Ten expressers produced 3 or 4 examples for each of 
the 6 basic facial expressions (anger, disgust, fear, happiness, sadness, surprise) plus 
a neutral pose, thus producing a total of 213 images of facial expressions. 

Each raw image x has been manually aligned with respect to the upper left face 
corner The registration was performed by clicking the eyes - thus retrieving the eyes 
coordinates, foilowed by rotating the image to horizontally align the face according to 
eyes, cropping the face to remove the image borders and, finally, downsampling the 
image to a final size of 60 x 45 pixels for computaţional purposes. Figure 4.1 presents 
samples of facial expressions of one person from the JAFFE database posing 7 facial 
expressions and another person from the C-K database posing 6 facial expressions. 

(tegusi fear happiness sadness surpnse neutral 

Figure 4.1: An example of one expresser from the JAFFE database posing 7 facial expressions 
(first row) and another one fronn the Cohn-Kanade database posing 6 facial expressions (second 
row). 
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4.5 Classifiers 

Let us enumerate the 7 facial expressions (i.e. anger, disgust, fear happiness, sad-
ness, surprise, neutral) by j = 1 , . . . , 7 . The 7 expressions form 7 classes Oj, j = 
1 , . . . , 7, where Oj is the class that corresponds to facial images depicting this parti-
cular expression. This setup is suitable for the JAFFE database that contains all the 
7 facial expressions. In the case of the C-K database, we have oniy 6 expressions, 
therefore the enumeration ends at 6. In the experiments, two different classifiers are 
ennployed. 

We used the Cosine Similarity Measure (CSM) classifier, since such a classifier was 
reported to yieid a good classification performance [43]. The classification method is 
based on the nearest neighbor rule and uses the angle between a test vector bteat snd 
the facial expression class center bj as a sinnilarity measure: 

where Ne = 7 for JAFFE {Ne = 6 for C-K database) and chooses the class that corres-
ponds to the maximal cosine similarity 

argmax^^i^ (4.18) 

In the case of Architecture I I , b is replaced by u. From (4.17) it is seen that CSM is 
an 1-nearest neighbor classifier for normalized feature vectors. 

SVMs [53] were employed for facial expression recognition, too. The sequential 
minimal optimization technique developed by Platt [93] was used to train SVMs having 
b and u as input, respectively. Since classical SVM theory was intended to solve a two 
class classification problem, we chose the Decision Directed Acyclic Graph (DDAG) 
learning architecture proposed by Platt et al. to cope with the multi-class classification 
[94]. It is worth noting that CSM and SVMs are the most popular classifiers for facial 
expression recognition, as they have been extensively used in [42], [43], [45]. 

The classifier accuracy, defined as the percentage of the correctiy classified test 
images, is used to assess the performance of the facial expression recognition systems 
that employ the six ICA approaches in order to extract features, which subsequently 
feed the aforementioned classifiers. 

4.6 ICA assessment 

The six ICA approaches were appiied to create feature vectors bj^biest of" •> ^teat' 
We split the data into disjoint training and test sets. We used 164 and 150 images for 
training and we left out 70 and 63 images for testing in the C-K and JAFFE database, 
respectively. Both training and test set images were chosen randomly from the da-
tabase. However, we ensured that both training and test data sets contain samples 
from all expressers and expressions. In the case of SVMs, five kernels were used 
namely the linear kernel, the polynomial kernel of degree 2,3, and 4, and the radial 
basis function (RBF). For all SVMs the penalizing parameter was set to 10 and the 
width of RBF kernel is cr = 0.005 [53]. OnIy the two among the five kernels that yieId 
the highest accuracy are retained, except for the JAFFE database and Architecture I I , 
where the linear kernel performed equally well to the polynomial kernel of degree 3. 
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The first objective is to find which ICA image representation performs best with 
respect to the classifier accuracy. The experiments were conducted by varying the 
number of principal components (PCs) from 5 to 160 (for the C-K database) and from 
5 to 145 (for the JAFFE database) accounting from 24% to 99.8% of the trace of the 
covariance matrix. Due to the limited memory capacity and the algorithmic complexity, 
we were able to extract up to a maximum of 80 components in the JADE and the 
kernel-ICA approaches. 

In order to see if the accuracy differences for the various classifiers and feature 
extraction approaches involved in experiments are statistically significant, we appiy 
the approximate analysis described in [95]. We have examined if accuracy differences 
are statistically significant for pairs of the same classifier fed by features extracted 
by two different ICA approaches as well as for pairs of different classifiers fed by the 
best performing ICA approaches. The analysis is repeated for each database and 
architecture. Let us assume that the accuracies p\ and p2 are binomially distributed 
random variables. Let pi,p2 denote the empirical accuracies, and p = p^'^p^ , The 
hypothesis Hq : p̂  = p2 = p is tested at 95% level of significance. The difference of 
accuracies has variance P = var{pi - P2) = where N is the number of test 
facial expression images. If 

Pi-P2> 1.65 y/0 (4.19) 

we reject Hq with risk 5% of being wrong. Then, we may claim that the accuracy 
difference is statistically significant at 95% level of significance. 

The second issue investigated in the paper is related to the variation of recog-
nition accuracy with respect to the mutual Information of the basis images or their 
coefficients. The statistical dependencies of face representations were measured by 
computing the average mutual Information between pairs of basis images that corres-
pond to the maximum recognition accuracy achieved. The mutual Information of two 
RVs ui, U2 is given by: 

/(ui, U2) - H(ui) + H{u2) - /V(ui, U2) (4.20) 

where H(u) is the differential entropy of the RV u [91]. The average mutual Infor-
mation calculated over all possible pairs of basis images is a good measure of the 
independence of basis images. 

The nature of the independent components (ICs) and the influence of the discarded 
PCs in the recognition accuracy are investigated as well. The super- and sub-Gaussian 
nature of the basis images was tested by measuring their normalized kurtosis (4.1). 
Furthermore, non-linear mixtures of independent components were also investigated. 

To obtain a better quantitative insight on how well the accuracy is correlated to 
the mutual information and the kurtosis over the number of PCs, we have compu-
ted the correlation coefficient and the corresponding p-value. Mutual information, 
kurtosis and accuracy were computed for various numbers of components from the 
set {5,10/20,30.40,50,60.70, 80,90,100,110,120,130,140, 150,160} for the C-K data-
base and {5,10,20,30, 40,50, 60,70,80,90,100,110,120,130,140} for the JAFFE data-
base. Accordingly, we have 17/15 values of the aforementioned quantities (mutual 
information, kurtosis, accuracy) for varying numbers of components that are stored 
in three 17/15-dimensional vectors. The correlation was then calculated between the 
elements of the vector comprising the mutual information values and the vector com-
prising the accuracy values as well as between the vector having as elements the 
kurtosis values and the vector of accuracies. 
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4.6.1 Cohn-Kanade database 

4.6.1.1 Architecture I 

The experimental results are presented in Table 4.1. The number of PCs varies bet-
ween 5 and 160 and admits the values in the set {5,10,20,30, 40,50,60, 70, 80,90,100, 
110,120, 130,140, 150,160}. For each number of PCs, features are extracted by the 
several ICA approaches and the classifier accuracy is measured over the test facial 
expression images. The maximum accuracy obtained along with the corresponding 
number of PCs are listed in columns numbered by ' ' 1" and ' ' 2". For both the CSM 
classifier and the SVM with a polynomial kernel of degree 3, a small number of PCs 
yields a good classification accuracy. The classification accuracy obtained by the CSM 
classifier, when it employs features extracted by the InfoMax, the JADE, the fastICA, 
and the kernel-ICA was found to be identical. A decrease of approximately 3 % in 
accuracy was found, when features extracted by the extended-Infomax and the uICA. 
Overall, the best recognition accuracy was 82.9 % and was obtained by the linear SVM 
with fastICA, when 110 PCs were used. While such a large number of PCs is needed 
for the linear SVM in order to achieve the highest accuracy, 30 PCs are adequate for 
the SVM with a polynomial kernel of degree 3 in order to attain an accuracy of 81.43 
%, which is reasonable compromise between accuracy and dimensionality reduction. 
It is worth noting that 140 PCs are necessary for the uICA and the linear SVM in order 
to reach an accuracy of 82.7 %, very close to the best accuracy. In Table 4.1, the 
highest accuracy appears in bold. 

Table 4.1: Experimental results for the C-K database and Architecture I. The letters in column 
Met." (Method) refer to the ICA approach used: A) InfoMax, B) Extended Infomax, C) JADE, 

D) fastICA, E) uICA, and F) kernel-ICA. The columns numbered from 1 to 10 represent: 1) clas-
sification accuracy (%), 2) Number of PCs, 3) average basis image mutual Information, 4) and 5) 
normalized average positive and negative kurtosis of the basis images, 6) coefficient kurtosis, 7) 
and 8) correlation coefficient between the classification accuracy and the mutual information with 
its corresponding p-value, 9) and 10) correlation coefficient between the classification accuracy 
and the positive kurtosis with its corresponding p-value. 

Clas. Met. 2 3 4 5 6 7 8 9 10 

CSM 

A 74.3 10 0.07 4.1 NA 1.0 -0.03 0.91 0.01 0.95 

CSM 

B 71.4 10 0.07 3.4 -0.8 1.4 -0.44 0.14 0.42 0.16 

CSM 
C 74.3 30 0.U3 14.1 NA 1.1 -0.44 0.22 0.27 0.4/ 

CSM D 74.3 30 0.03 13.8 -0.5 0.9 -0.44 0.14 0.36 0.24 CSM 
t /1.4 5U 0.00 j^.y -0./ 0./ -0.31 0.38 0.27 U.Jl 

CSM 

P 74.3 30 0.06 1.38 NA 0.5 -0.55 0.12 0.82 0.00b 

SVM 
linear 

A 80 110 0.00 34.8 NA 1.4 -0.97 0 0.84 0.0006 

SVM 
linear 

B 81.4 130 0.00 46.3 -1.5 1.3 -0.98 0 0.«U O.UOOl 

SVM 
linear 

C 78.6 70 0.00 27.6 NA 0.9 -U.99 0 U.92 O.UUOJ 
SVM 
linear 

D 82.9 110 0.00 49.9 0 1 -0.97 0 0.78 0.0002 SVM 
linear E 82.7 140 0.03 1.2 NA 0.5 -0.78 0.0002 0.68 0.002 
SVM 
linear 

h /«.b /O 0.04 1.4 NA U.5 -u.»u O.UU/ U.b/ U.UlZ 

SVM 
poly 

A 80 20 0.04 8.4 NA 1.4 -0.56 0.053 0.34 0.27 

SVM 
poly 

b 81.4 30 0.03 13.6 -0.9 1.1 -0.63 0.026 0.40 U.19 
SVM 
poly 

L »0 ZU 0.05 y.z NA 1.7 -O.bO O.U^U 0.5b U.ZiS SVM 
poly D 80 20 0.04 b.b -0.7 1.7 -0.47 0.12 0.26 0.J9 
SVM 
poly 

E 78.3 100 0.04 1.0 NA 0.6 -0.49 0.10 0.38 0.21 

SVM 
poly 

F 80 20 0.07 1.1 NA O.b -0.50 0.28 0.52 O.JU 

For each classifier, the accuracy differences due to different ICA approaches are not 
statistically significant at 95 % level of significance. The accuracy differences between 
the several pairs of classifiers that employ the best performing ICA approaches, such 

BUPT



46 ICA appiied for Facial Expression Recognition 

as (CSM & fastICA, SVM linear & fastICA), (SVM linear & fastICA, SVM cubic & extended 
ICA) etc., are not statistically significant at 95 % level of significance as well. 

One merit of ICA is that it produces independent and sparse basis images or coef-
ficients depending on the architecture employed. For Architecture I , the basis innages 
are expected to be independent and sparse. Their independence is measured by the 
average nnutual infornnation listed in the third column of Table 4.1. 

The presence of a super- or a sub-Gaussian distribution in the basis images is 
tested in columns ' '4" and ' of Table 4.1. These columns show the average 
positive and negative kurtosis of the basis images indicating a super-Gaussian and 
a sub-Gaussian distribution, respectively, and constitute a measure of sparseness of 
the basis images. ' ' NA" in the column ' ' 5" stands for ' ' Not Available", i.e. when 
a sub-Gaussian distribution of basis images is not detected. The average negative 
kurtosis listed in column ' ' 5" shows that the presence of sub-Gaussian components 
does not necessarily enhance the classifier performance. 

Ten basis images extracted from the C-K database during training with each method 
in the case of Architecture I are depicted in Figure 4.2. As one can notice from Figure 

Figure 4.2: First ten basis images for Architecture I obtained by InfoMax (Ist row), extended 
InfoMax (2nd row), JADE (3rd row), fastICA (4th row), undercomplete ICA (5th row), and kemel-
ICA (6th row). The Images are depicted in decreasing order of normalized kurtosis. 

4.2, the basis images for JADE, fastICA, and uICA are more sparse than the basis 
images derived by the remaining methods. 

The normalized kurtosis of the image representation coefficients was used to mea-
sure their sparseness. Column ^ ' 6" in the Table 4.1 shows the coefficient sparseness 
measured by kurtosis is not as high as that of the basis images (column ^ '4" ) . 

Columns ' ' 7" and ^ ^ 8" in Table 4.1 record the correlation coefficient between the 
accuracy and the average mutual information over all possible pairs of basis images 
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extracted for each number of PCs (mutual information for short, hereafter) and the 
corresponding p-value. The last two columns list the correlation coefficient between 
the classification accuracy and the average positive kurtosis of the basis images (po-
sitive kurtosis for short, hereafter). The strongest correlation between accuracy and 
mutual information was found for the linear SVM. The minus sign achieved for all clas-
sifiers indicates a negative correlation, meaning that a decrease in mutual information 
(hence greater independence) correlates with an increase of the classifier accuracy. 
The correlation is weak in the case of the CSM classifier and the SVM with a polyno-
mial kernel of degree 3. Indeed, for the CSM classifier, the ;>-value exceeds 0.05, a 
fact that indicates that the correlation coefficient is not statistically significant. For the 
SVM with a polynomial kernel of degree 3, the extended InfoMax and the JADE exhibit 
a correlation coefficient between accuracy and mutual information that is statistically 
significant. A similar behavior was observed for the correlation between the basis 
image sparseness and accuracy. For an SVM with a linear kernel, a strong statistically 
significant correlation between accuracy and the positive kurtosis values is found. 

The uICA was used in order to avoid discarding PCs having a small variance, but 
might contain ICs. The experiments have shown that, for the CSM classifier and the 
SVM with a polynomial kernel of degree 3, appiying PCA for input dimensionality re-
duction is a good practice, since it yieids the best performance for a small number of 
PCs. The uICA was not able to improve the accuracy by processing the original image 
data. 

The linear SVM is the oniy classifier for which the details count, since a large number 
of PCs is needed in order to achieve the highest accuracy. However, this is due to the 
linear separating hyperplane which performs best in high-dimensional spaces. 

The last investigated aspect was the assessment of the descriptive power of non-
linear IC mixtures. By appiying kernel-ICA to this end, it was observed that the non-
linear ICA does not enhance the recognition performance. 

4.6.1.2 Architecture I I 

The experimental findings are summarized in Table 4.2. All ICA approaches with the 
CSM classifier yieid the same accuracy (72.9%), as one can see from column ' ' 1". The 
best accuracy (80%) was obtained by the SVM with an RBF kernel that employs fea-
tures extracted by the extended Infomax. However, the accuracy difference between 
80% and 72.9% is not statistically significant for 95% level of significance. Moreo-
ver, the pairwise performance differences within each classifier due to different ICA 
approaches are not statistically significant at the same level of significance. This is 
also valid for all pairs of classifiers that employ the ICA approach yielding the highest 
accuracy. 

The second architecture derives coefficients that are as independent and sparse 
as possible. The mutual information and the average positive and negative kurtosis 
was measured for coefficients, as shown in columns ' '3"—' '5" of Table 4.2, while 
column ^ '6" quantifies the sparseness (kurtosis) of the basis images. By comparing 
the column ' '6" in Table 4.2 and column ' '4" in Table 4.1, one can notice that 
the basis images in Architecture II are not as sparse as in Architecture I. Ten basis 
images corresponding to C-K database which are obtained after training each method 
in Architecture II are depicted in Figure 4.3. They have a rather holistic appearance 
compared with the sparse basis images of Figure 4.2. 

As for Architecture I , a weak correlation between the CSM classifier accuracy and 
mutual information was found. OnIy Infomax and Extended Infomax yieId a statis-
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Table 4.2: Experimental results for the C-K database and Architecture II. The letters in column 
'̂ Met." (Method) refer to the ICA approach used: A) InfoMax, B) Extended Infomax, C) JADE, 

D) fastICA, E) uICA, and F) kernel-ICA. The columns numbered from 1 to 10 represent: 1) 
classification accuracy (%), 2) Number of PCs, 3) average coeffident mutual Information, 4) and 
5) normalized average kurtosis of super- and sub-Gaussian coefTidents, 6) basis kurtosis, 7) and 
8) correlation coeffident between the dassification accuracy and the mutual Information with its 
corresponding p-value, 9) and 10) correlation coeffident between the classification accuracy and 
the positive kurtosis with its corresponding p-value. 

Clas. Met. 1 (%) 2 3 4 5 6 7 8 9 10 

CSM 

A 72.9 40 " 0.02 14.7 NA 1.7 -0.70 0.01 0.26 0.41 

CSM 

B 72.9 10 0.13 2.3 -1.3 1.1 -O.b/ 0.049 0.64 0.02 

CSM 
C 72.9 10 0.13 1.1 NA 0.7 -0.49 0.176 0.09 0.08 

CSM D 72.9 10 0.08 3.5 -1.7 1.1 -0.21 0.50 0.08 0.78 CSM 
E 72.9 60 0.00 0.1 -1.8 0.9 -0.21 0.49 0.32 0.308 

CSM 

F 72.9 10 0.13 1.1 -0.5 0.7 -0.36 0.337 0.03 0.92 

SVM 
linear 

A 75.7 90 0.00 38.6 NA 4.5 -0.91 0 0.60 0.003 

SVM 
linear 

B 72.8 110 0.00 b.2 - l .b 3.3 -0.98 0 0.80 0.001 

SVM 
linear 

L 72.8 60 0.01 42.1 NA 1 -0.94 0.0004 -0.06 0.88 
SVM 
linear 

D 7b.Z 110 0.00 30.2 0 71.7 -0.98 0 -0.9 0.00b SVM 
linear E 73.3 100 0.00 10.5 -0.5 2.2 -0.70 0.1 0.65 0.02 
SVM 
linear 

P 75.7 40 0.02 0.4 -0.8 1.7 -0.75 0.1 0.48 0.4 

SVM 
poly 

A 71.4 20 0.00 8.9 NA 1.4 -0.11 0.73 0.71 0.008 

SVM 
poly 

B 74.J 10 O.IJ 2.J -1.3 1.1 -0.08 0.79 0.03 o.yi 
SVM 
poly 

C /b./ 20 0.04 O.b NA 0.8 -0.10 0.80 0.40 0.09 SVM 
poly D /b.7 20 0.00 8.5 -0.3 1.4 U.27 0.38 0.76 0.004 
SVM 
poly 

E 7b.7 90 0.00 9.1 -0.3 0.6 -0.23 0.46 0.76 0.47 

SVM 
poly 

P 75.7 20 0.04 0.8 -0.5 0.8 -0.20 0.3 0.45 0.10 

SVM 
RBF 

1 

A 74.3 30 0.01 12.1 NA 1.4 -0.54 0.069 0.10 0.75 

SVM 
RBF 

1 

B 80 120 0.00 6.8 -1.4 1.5 -0.96 0 o.dâ 0 

SVM 
RBF 

1 

C /b./ /O 0.0b 51.8 NA 1.7 -0./8 0.008 0./4 0.009 
SVM 
RBF 

1 

U /a.b 1 lOU 0.0b /b.3 0 1.7 -0.99 0 0.74 0.005 SVM 
RBF 

1 
t /1.8 bO U.OO 0.1 -1.8 U.b -0.17 0.59 0.65 0.019 

SVM 
RBF 

1 P 7b.7 /O 0.00 1.7 -0.3 0.6 -0.41 0.3 0.5/ 0.09 
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Figure 4.3: First ten basis images for Architecture II obtained by InfoMax (Ist row), extended 
InfoMax (2nd row), JADE (3rd row), fastICA (4th row), undercomplete ICA (5th row), and kernel-
ICA (6th row). The images are depicted in decreasing order of normalized kurtosis. 

tically significant correlation. In contrast, strong statistically significant correlations 
between the accuracy of the SVM classifier with an RBF kernel and mutual Informa-
tion were measured. In this case, 3 out of the 6 ICA approaches yieid statistically 
significant correlations and the best performing classifier (i.e., SVM-RBF with Exten-
ded Infomax) shows the second highest correlation. The linear SVM shows a strong 
correlation between mutual Information and accuracy at least for 4 out of the 6 ICA ap-
proaches (i.e., Informax, Extended Infomax, JADE, fastICA) consistently In Tables 4.1 
- 4.4. This suggests that independence is associated with a more linearly separated 
feature space. 

Overall, the Architecture I I yieids a smaller classification accuracy than the Archi-
tecture I. 

4.6.2 JAFFE database 

4.6.2.1 Architecture I 

The experimental results are summarized in Table 4.3. The facial expressions in 
JAFFE database are a littie bit harder to be recognized than those recorded in the C-K 
database due to the fact that the human expressers in the former database were less 
expressive than those in the latter database. As a consequence, a larger number of 
PCs had to be retained in order to obtain the maximum recognitlon rate of 66.67% 
for the CSM classifier. This rate was obtained by all ICA approaches with Architecture 
I. However, the accuracy differences between all possible pairs of classifier employing 
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Table 4.3: Experimental results for the JAFFE database and Architecture I. The letters In column 
' ' Met." (Method) refer to the ICA approach used: A) InfoMax, B) Extended Infomax, C) JADE, 
D) fastICA, E) uICA, and F) kernel-ICA. The columns numbered from 1 to 10 represent: 1) clas-
smcation accuracy (%), 2) Number of PCs, 3) average basis image mutual Information, 4) and 5) 
normalized average positive and negative kurtosls of the basIs Images, 6) coeffldent kurtosis, 7) 
and 8) correlation coeffldent between the dassiflcatlon accuracy and the mutual Information wlth 
its corresponding p-value, 9) and 10) correlation coeffldent between the dassiflcatlon accuracy 
and the positive kurtosls wlth its corresponding p-value. 

1 Clas. Met. 2 3 4 5 6 7 8 9 10 
A 66.7 40 0.00 15.5 NA 1.0 -0.75 0.004 0.62 0.030 
B 66.7 50 O.OU 16.4 NA 1.0 -0.8b U.UUU4 O.bb 0.017 

! C 66.6 50 0.00 19.8 NA 0.7 -0.81 0.007 0.68 0.040 
CSM D 66.7 50 0.00 17.0 -0.5 1.3 -0.88 0 0.70 0.010 CSM 

t bb./ 60 0.00 b.b -U.2 U.b -U.41 U.lbJ U.b9 U.Ull 
CSM 

P 66.7 50 0.01 Z.Z NA 0.5 -0.84 0.003 0.72 0.027 
A 76.2 60 0.00 19.6 NA 1.3 -0.98 0 0.92 0 
B 79.4 110 0.00 29.5 NA 1.5 -0.99 0 0.92 0 
C 73,2 80 0.00 31.8 NA 1.0 '0.77 0.008 0.74 0.09 

SVM 
j linear 

D 79.4 110 0.00 27.4 NA 1.1 -0.97 0.001 0.91 0 SVM 
j linear E 77.2 110 0.01 1.4 NA 0.5 -0.83 0.001 0.62 0.009 

P 7b.2 80 0.00 NA 0.6 -0.60 0.3 0.26 U.Z 
A 71.4 70 0.00 22.6 NA 1.2 -0.92 0 0.83 0.007 
B 60.3 20 0.02 7.4 NA 1.2. -U.bl U.U8 U./4 O.OOb 

i SVM 
j RBF 
1 

C bJ.4 U.02 8./ NA 0.8 -0.62 0.36 0.71 0.09 
i SVM 
j RBF 
1 

D bJ.4 U.Oii 8.1 NA 1.7 -0.42 0.17 0.14 0.65 i SVM 
j RBF 
1 

t bid.b 4U O.Ul 22.9 -0.2 O.S -0.39 0.20 0.21 O.bO 
i SVM 
j RBF 
1 P bJ.b 20 1 0.U3 1.9 NA 0.7 -0.45 0.09 0.40 0.19 

aii ICA approaches are not statistically significant at 95 % level of slgnlflcance. 
In JAFFE database, a statistically significant correlation coefficlent between nnutuai 

infornnation and the accuracy of the CSM classifler for aii ICA approaches except uICA 
was found. Moreover, the correlation coeffldent between the accuracy of the CSM 
classifier and kurtosls was found to be statistically significant for aii ICA approaches. 
This was not the case for the correlation coeffident between the accuracy of the CSM 
classifier and either mutual information or kurtosis for the C-K database. The linear 
SVM dasslfier yieids the highest accuracy 79.4 % , when the extended-InfoMax and 
the fastICA approaches are employed. From the inspection of Table 4.3, it Is seen 
that very strong statistically significant correlations between the dassification accuracy 
and the mutual information of basis images as well as the dassification accuracy and 
the positive kurtosis of the basis images are measured for the best performing ICA 
approaches wlth the linear SVM. 

4.6.2.2 Architecture I I 

The experimental findings are collected in Table 4.4. The highest accuracy of 79.4 % 
was obtained wlth the linear SVM and fastICA. It is worth mentloning for the SVM-RBF 
classifier that the accuracy difference when Extended Infomax Is employed instead 
of uICA is indeed statistically significant at the 95% level of significance. AII other 
pairwise accuracy differences either within the same classifier due to different ICA 
approaches employed or across different dassifiers are statistically insignificant at ¥ne 
same level of significance. 

In the case of the SVM with a linear kernel, a statistically significant strong corre-
lation between the dassification accuracy and the mutual information was found for 
features extracted by InfoMax, Extended InfoMax, JADE, and fastICA, as can be seen 
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Table 4.4: Experimental results for the JAFFE database and Architecture II. The letters in column 
Met." (Method) refer to the ICA approach used: A) InfoMax, B) Extended Infomax, C) JADE, 

D) fastICA, E) uICA, and F) kernel-ICA. The columns numbered from 1 to 10 represent: 1) 
classification accuracy (%), 2) Numberof PCs, 3) average coefficient mutual information, 4) and 
5) normallzed average kurtosis of super- and sub-Gaussian coefficients, 6) basis kurtosis, 7) and 
8) correlation coefficient between the classification accuracy and the mutual information with its 
corresponding p-value, 9) and 10) correlation coefficient between the classification accuracy and 
the positive kurtosis with its corresponding p-value. 

Clas. Met. 2 3 4 5 6 7 8 9 10 

CSM 

A 69.8 20 0.00 7.4 NA 7.4 -0.47 0.12 0.17 0.59 ~ 

CSM 

b 68.3 40 0.01 i .y -u.y 1.6 -0.77 0.14 0.b4 0.06 

CSM 
C 68.3 40 0.03 21.2 NA TITZ -0.73 0.02 0.45 0.22 

CSM D 68.3 40 0.03 16.6 -l .b 1.3 -0.53 0.07 0.21 O.b CSM 
b 68.3 40 0.02 0.1 -0.8 O.b -0.4/ 0.11 0.30 0.18 

CSM 

h 68.3 40 0.00 0./ -0.3 0.5 -0.76 0.01 0.91 0.000 

SVM 
linear 

A 74.6 100 0.06 41.4 NA 41.4 -0.97 0 0.77 0.003 

SVM 
linear 

B 77.8 100 0.00 J . l -1.2 1./ -0.97 0 0.79 0.001 

SVM 
linear 

C /b.2 60 0.05 42.1 NA 42.1 -0.88 0.009 0.63 0.07 
SVM 
linear 

D 79.4 110 0.07 82.8 0 82.8 -0.95 0 -0.8 0.001 SVM 
linear E 77.2 70 0.00 100.1 -1.8 1.0 -0.58 0.17 0.49 0.10 
SVM 
linear 

h 60 0.00 O.b -0.2 1.2 -0.49 0.09 0.62 0.14 

SVM 
RBF 

A 69.8 40 0.03 14.6 NA 14.6 -0.21 0.49 0.32 0.30 

SVM 
RBF 

B /4.6 80 0.00 2.8 -1.6 l.« -0.9b 0 0.76 0.003 

SVM 
RBF 

C 68.3 70 0.05 44.9 NA 44.9 -0.70 0.08 0.49 0.008 
SVM 
RBF 

D 69.8 «0 O.Ub 41.« NA 41.« -o.«y 0.0001 0.52 0.0/ SVM 
RBF b 60.3 /O u.uu lOU.l -l .b l.U -U.bl 0.03 0.49 0.4b 
SVM 
RBF 

h 69.8 80 0.00 O.b -0.2 1.2 -0.71 0.0b 0.33 0.2b 

in Table 4.4. In the case of fastICA with the linear SVM, an interesting phenonnenon is 
the negative correlation between the accuracy and the positive kurtosis (i.e. -0.8 with 
p-value 0.001) indicating that the accuracy decreases with an increase in sparseness. 
However, the correlation between the accuracy of the linear SVM and mutual Infor-
mation is in the expected direction for mutual information, namely that performance 
increases as mutual information decreases. This is in par, with the measurement 
obtained for linear SVM with fast ICA in the C-K database. 

4.6.3 Performance enhancement using leave-one-set of expressions-out 

One possible way of improving accuracy is by exploiting maximally the available data 
set. To do so, we repeated the experiments by employing the leave-one-set of expressions-
out (leave-one-out for short, [LVO]) strategy. That is, one set of expressions was left 
out for test in a cyclic fashion. During one rotation, the number of training images is 
228 and the number of test images is 6 and by performing 39 rotations overall 234 
test images are produced for the C-K database. In a similar way, the rotations yieid 
214 test images for the JAFFE database. 

For both databases, the accuracy of al! classifiers employing different ICA ap-
proaches was increased substantially, as can be seen in Table 4.5. For example, an 
impressive performance enhancement was noticed for the kernel-ICA with the linear 
SVM in Architecture I appiied to the C-K database. Its accuracy was raised from 78.6 
% to 86.6% with LVO. 

The statistical significance of accuracy differences at 95% level of significance was 
studied for each Architecture and each database: (i) within the same classifier for 
all possible pairs due to different ICA approaches; (ii) across different classifiers em-
ploying the best performing ICA approaches. 
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For the C-K database and Architecture I , the oniy statistically significant accuracy 
difference is that between the accuracy of the CSM classifier that employs Infomax 
(81.4 %)and the SVM with a cubic kernel that employs fastICA (87.6 %) . For the 
C-K database and Architecture I I , the use of fastICA instead of uICA within the SVM 
classifier with an RBF kernel yieids statistically significant performance improvement. 
The reader can verify that the accuracy differences between 84% and 77.3% as well 
as between 84% and 77% are also statistically significant. 

For the JAFFE database and Architecture I , it can easily be checked that the ac-
curacy differences between the CSM classifier and the SVM linear classifier are sta-
tistically significant irrespective of the ICA approach employed for feature extraction. 
Similarly the Infomax within the SVM classifier with an RBF kernel yieids a statistically 
significant performance than the other ICA approaches. The accuracy differences bet-
ween the CSM classifier and the SVM classifier with an RBF kernel, when Infomax 
is used, are also statistically significant. However, between the SVM classifier with 
a linear kernel that employs fastICA and the SVM classifier with an RBF kernel that 
employs Infomax there is no statistically significant performance difference. For the 
JAFFE database and Architecture I I , the use of fastICA instead of uICA within the SVM 
classifier with a linear kernel yieids a statistically significant accuracy difference. Si-
milarly statistically significant performance differences are obtained between the SVM 
classifier with a liner kernel and fastICA (or the SVM classifier with an RBF kernel and 
Extended Infomax) and the CSM classifier irrespective of the ICA approach that feeds 
the latter classifier. 

4.6.4 Subspace selection 

Uniike PCA, there is no inherent ordering into the independent components [43]. An 
ordering parameter couid be the class discriminability of each component [91] defined 
as the ratio 

^ ^ O ^ e a v e ^ (4.21) 

where 

(Tbetrveenik) = - h)^ (4.22) 
3 

<yu.UHin{k) = Y l T . ^ ^ k - ' ^ k ? (4.23) 
J i 

with bk denoting the gross me an of coefficient bk, bi being the j th facial expression 
class mean of coefficient bk, and b',^ standing for the kth coefficient of the ith training 
image in the jth facial expression class. 

It has been found that, by ordering the independent components with respect 
(4.21), ICA can outperform the PCA approach [43]. We have repeated the experi-
ments with the CSM classifier in Architecture I , when feature selection is done accor-
ding to (4.21) and compared the accuracy obtained with that reported previousiy (i.e. 
without subspace selection). We conducted the experiments for the maximum number 
of components and then we selected as many independent components according to 
(4.21), so that the maximum accuracy was obtained. The results are summarized in 
Table 4.6. Notice that Table 4.6 depicts results for the test set. By comparing the 
results in Table 4.6 and those in Table 4.3, one can see that, in JAFFE database, the 
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Table 4.5: Averaged accuracy obtained with leave-one-out. The letters in column ' 'Met." (Me-
thod) refer to the ICA approach used: A) InfoMax, B) Extended Infomax, C) JADE, D) fastICA, 
E) uICA, and F) kernel-ICA. (NA stands for accuracy results that are not available). 

Clas. Met. 
C-K database JAFFE database 

Clas . Met. Arch. I Arch. I I Arch. I Arch. I I 

CSM 

A 81 . 4 7 7 . 3 69 .6 72 .6 

CSM 

B 82 80 69 .6 70 

CSM 
C 79 8 1 . 5 69 .6 71 

CSM D 81 .3 8 1 . 5 69 .6 71 CSM 
E 80 .1 8 1 . 5 69 .6 68 .3 

CSM 

F 81 .1 80 69 .6 67 .8 

SVM 
linear 

A 8 1 . 3 NA 80 .3 77 .5 

SVM 
linear 

B 8 1 . 3 NA 83 .5 80 
SVM 

linear 
C 8 2 . 3 NA 8 2 . 5 78 SVM 

linear D 84 .6 NA 8 4 8 1 
SVM 

linear 
E 8 3 . 3 NA 82 .6 66 

SVM 
linear 

F 8 6 . 6 NA 82 .1 78 

SVM 
poly 

A 8 3 . 7 80 NA NA 

SVM 
poly 

B 84 .6 77 NA NA 
SVM 
poly 

C 82 .4 80 NA NA SVM 
poly D 8 7 . 6 80 NA NA 
SVM 
poly 

E 8 3 . 3 77 .3 NA NA 

SVM 
poly 

F 85 .7 78 .2 NA NA 

SVM 
RBF 

A NA 81 .5 79 79 

SVM 
RBF 

B NA 83 .8 64 .7 8 1 
SVM 
RBF 

C NA 80 68 .3 77 .5 SVM 
RBF D NA 8 4 69 .3 74 
SVM 
RBF 

E NA 70 65 .2 72 .5 

SVM 
RBF 

F NA 79 68 .3 77 

BUPT



54 ICA appiied for Facial Expression Recognition 

accuracy obtained by each ICA approach after subspace selection is higher than that 
reported without subspace selection with the extended ICA being an exception. By 
cross-examining Tables 4.6 and 4.1, this observation is roughly valid for the accuracy 
obtained by each ICA approach with the exception of kernel-ICA in C-K database. Ho-
wever, accuracy differences are not statistically significant neither for the C-K database 
nor for the JAFFE one. 

Table 4.6: Accuracy (%) for the GSM classifier in Architecture I on both databases along with 
the number of components corresponding to the maximum accuracy (in parenthesis and italics), 
retrieved by employing subspace selection. The letters in column ' 'Method" refer to the ICA 
approach used: A) InfoMax, B) Extended Infomax, C) JADE, D) fastICA, E) uICA, and F) kemel-
ICA 

Database Method Database 
A B C D E F 

C-K 77.1 (80) 77.1 (90) 74.2 (40) 78.5 (110) 72.5 (80) 70 (30) 
JAFFE 69.8 (70) 66.6 (80) 68.2 (50) 69.8 (130) 67.7 (40) 68.2 (50) 

We shouid also mention that a supervised ICA technique, the so called ICA-FX 
[96], was developed in order to obtain features that are not oniy independent from 
each other, but also convey class infornnation, contrary to the other ICA approaches 
studied in this paper, which are unsupervised ones and do not utilize the class Informa-
tion. UnIike the method described in [91], ICA-FX ailows an intrinsic class Information 
embedding. To examine to what extent the classification performance is affected by 
incorporating the class Information inside the training procedure, we ran the ICA-FX 
approach on the C-K database and compared it with the classical ICA approach pre-
vlously exploited. Due to the fact that the Architecture I does not allow us to make 
a comparison against ICA-FX, since ICA is performed on the PCA projection matrix 
implying loss of the class labei, we chose ICA Architecture I I [91], where class labei 
is presen/ed. Table 4.7 shows that the CSM classifier yieids a higher accuracy when 
it is fed by features extracted by ICA-FX than those extracted by the other six ICA 
approaches. The difference in accuracies is found to be statistically significant at 95 
% confidence level. 

Table 4.7: Accuracy results by employing subspace selection with the help of the ICA-FX ap-
proach. The results are shown for the Architecture II on Cohn-Kanade database using the CSM 
and the SVM classifiers. 

C-K database, Architecture II | 
Classifier CSM j SVM RBF 
Accuracy 84.28 78.8 

4.6.5 Discussion and conclusions 

A systematic comparative study of six ICA approaches was performed for facial ex-
pression classification in order to select the one that provides the best recognition 
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rate using two databases, two facial feature extraction architectures, and two clas-
sifiers. Regarding the classification performance, overall, the fastICA combined wlth 
SVMs yieids a reasonable compromise between accuracy and fast run time for feature 
extraction. In our study we addressed the foilowing issues: 

1. Performance variation wlth the number of PCs: We found that a small number 
of PCs can produce a reasonable recognition performance for a CSM classifier. 
Although the present paper exhibits many commons issues with the work des-
cribed in [43], we must notice that the present study differs in too many aspects 
with that in [43] that does not allow for a fair comparison between the results 
reported here and in [43]. 

2. Implications of appiying PCA prior to ICA to reduce data dimensionality: We 
found that the use of uICA does not yieid a higher classification accuracy than 
preprocessing observations by PCA. 

3. Features having super- and sub-Gaussian distribution did not im prove fada! ex-
pression classification accuracy. 

4. Independent features obtained by non-linear unmixing of observations using 
kernel-ICA, do not improve the classification performance. This fact indicates 
that either there is no such a non-linear mixture in the our data, or, if any non-
linear mixture exists, its contribution to the classification performance is minimal. 

5. The main conclusion drawn from the experiments is that, overall, as can be 
seen from Tables 4.1- 4.4, there is a strong correlation between the average 
mutual Information of independent components and accuracy. A similar finding 
was obtained for sparseness. For the linear SVM classifier, this relationship is 
consistently statistically significant, when Infomax, extended Infomax, or fastICA 
is used for feature extraction. However, the degree of the correlation varies with 
the classifier and database involved. 

6. Statistically significant accuracy differences are measured oniy when the leave-
one-set of expressions-out is used. The LVO set-up enabled us to detect statis-
tically significant accuracy differences as is detailed in Section 4.6.3. 

ICA yieids an efficient coding by performing a sparse image representation and 
removing the higher order correlations. Whether this is necessary for efficient image 
representation and pattern recognition purposes, it is still an open problem. It seems 
(and this is known to the scientific community) that SVMs are more affected by the out-
liers and noise which is the case of holistic representation. The outiiers and ' ' noise" 
are characterized by those parts of the face that are not essential for facial expres-
sion recognition and are present in a holistic representation that has a low degree 
of sparseness. As more localized features are obtained by ICA by employing more 
PCs and reducing the mutual information, thus increasing the degree of sparseness, 
the ' ' noise" is eliminated and the performance of SVM improves. In many cases, 
we found that obtaining more sparse basis images (or coefficient) does not necessary 
lead to a more accurate facial expression classification. These results can be rela-
ted to the work conducted by Petrov and Li [97]. They investigated local correlation 
and information redundancy in natural images and they found that the removal of 
higher-order correlations between the image pixels increased the efficiency of image 
representation insignificantly. Accordingly, their results suggest that the reduction 
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of higher-order redundancies than the second-order ones is not the main cause of 
receptive fieid properties of neurons in V I . 

Although we do not deny the role of sparse image representations in visual cortex, 
we argue that a more innportant characteristic of an efficient image representation is 
feature orientation. Thus, a sparse representation alone does not seem to be suf-
ficient in achieving the maximunn recognition performance. This observation comes 
from [112], where ICA and Gabor filter representation appiied to facial expression 
recognition were compared. Both ICA and Gabor filters approaches gave sparse re-
presentations and a highiy kurtotic (non-Gaussian) feature distribution. However, the 
Gabor images that contain important spatially oriented features led to a higher accu-
racy than the ICA features. 
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CHAPTER 5 

Face Feature Extraction based on NMF 
approaches 

5.1 Face encoding and representation: holistic and sparse 
features 

Two main opposite theories exist with respect to the face encoding and 
representation in the Human Visual System (HVS). The first one refers to the dense 
(holistic) representation of the face, where the faces have ''holon"-like appearance. 
The second one claims that a more appropriate human face representation wouid be 
given by a sparse code, where oniy a small fraction of the neural cells corresponding 
to face encoding is activated. Despite plenty of research work done in order to 
assess which is the correct paradigm, no consensus was found yet among 
neuroscientists. Nowadays, the theoretical and experimental evidence suggests that 
the HVS performs face analysis (encoding, storing, face recognition, facial 
expression recognition) in a structured and hierarchical way, where both 
representations have their own contribution and goal. Basically, according to 
neuropsychological experiments, it is believed that, for face recognition, the 
encoding relies on the holistic image representation, while, a sparse image 
representation is preferred when it comes to facial expression analysis and 
classification. Face and facial expression analysis is not onIy a concern of the 
neuropsychology experts. Applications where the human face plays a central role 
are facial biometrics and facial expression analysis. From the computer vision 
perspective, the various techniques developed by the computer scientists in order to 
cope with face and facial expression recognition fall in the same two image 
representation approaches. In this regard, the findings from neuroscience are well 
correlated with the nature of image representation provided by the mathematical 
models of these techniques, i.e. the techniques which were found to perform better 
for face recognition yieid a holistic image representation, contrary to those 
techniques which are more suitable for facial expression recognition and lead to a 
sparse or local image representation. The proposed mathematical models of image 
formation and encoding try to simulate the efficient storing, organization and coding 
of data in the human cortex. This is equivalent with embedding constraints in the 
model design regarding the dimensionality reduction, redundant information 
minimization, mutual information minimization, non-negativity constraints, class 
information, etc. While holistic representation treats an image as a whole (global 
feature), where each pixei has a major contribution to representation, sparse 
representation is characterized by a highiy kurtotic distribution, where a large 
number of pixels have zero value, and, small number of pixels have positive or 
negative values (local features). 
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In its extreme, sparse representation provides a local image representation having 
oniy just a few contributing pixels. Image representation is closely related to feature 
selection. For example, Principal Component Analysis (PCA) models the second order 
statistics of the data by keeping those eigenvectors that correspond to the largest ei-
genvalues, while discarding those components that have insignificant contribution for 
data representation. Human facial image representation based on principal compo-
nents give us a dense representation and whose basis images have holistic C 'ghost" 
- like) appearance. 

Another image representation approach is based on Independent Component Ana-
lysis (ICA) that looks for components that are as independent as possible and produces 
image features whose properties are related to the ones of V I receptive fieids and 
have orientation selectivity, bandpass nature and scaling ability. ICA produces either 
a sparse or a holistic image representation , depending on the architecture used (i.e. 
the independence is either assumed over images or pixels). This approach has been 
successfully appiied to recognize facial actions by Donato et al. [43]. The work of 
Donato et al. shows that the extraction of local features from the entire face space 
by convolving each image with a set of Gabor filters having different frequencies and 
orientations can outperform other methods that invoke the holistic representation of 
the face, when it comes to classify facial actions. They achieved the best recognition 
results by using ICA and Gabor filters. However, they also found that other local spa-
ţial approaches, like local PCA and PCA jets provide worse accuracy than, for example, 
Fisher Linear Discriminant (FLD), which is a holistic approach. 

A relatively new approach for feature extraction is provided by the Non-negative 
matrix factorization (NMF) which decomposes a given data set into two nonnegative 
more or less sparse factors. The raţionale of retrieving nonnegative factors is moti-
vated by at least two reasons. One is the biological fact that the firing rates in visual 
perception neurons are non-negative. The other reason comes from the image pro-
cessing fieid, where the pixels in a grayscale image have nonnegative values. NMF 
has been aiready appiied on a variety of appiications, such as image classification 
[98], chemometry [99], sound recognition [100], musical audio separation [101] or 
extraction of summary excerpts from audio and video [102], air emission quality stu-
dies [103], Identification of object materials from spectral reflectance data at different 
optical wavelengths [104], or text mining [105]. A particular image processing task 
where NMF has been used is face recognition [106]. An comprehensive survey of NMF 
methods and their most important appiications can be found in Buciu et al. [3]. 

The next Sections describe four non-negative matrix factorization algorithms for 
extracting features further used for facial expression classification. 

5.2 Non-negative matrix factorization (NMF) 

Non-negative matrix factorization (NMF) has been proposed by Lee and Seung [107] 
as a method that decomposes a given rn x n non-negative matrix X into non-negative 
factors W and A such as X ^ WA, where W and A are matrices of size m xpandpx n, 
respectively [107]. Suppose that / - l m, j - 1 n and k - Then, 
each element of the matrix X can be written as ^ quality of 
approximation depends on the cost function used. Two cost functions were proposed 
by Lee and Seung in [108]: the Euclidean distance between X and WA and Kullback-
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Leibler ( K L ) divergence . In this case, K L has the foilowing expression: 

DA^mfCX II WA) ^ V ("x.^ln— -f V z^kakj - x,X (5.1) 

This expression can be nninimized by appiying multiplicative update rules subject to 
W, A > 0. The positivity constraints arise in many real image processing appiications. 
For example, the pixels in a grayscale image have non-negative intensities. In the NMF 
approach, its proposers find appropriate to impose non-negative constraints, partly 
motivated by the biological aspect that the firing rates of neurons are non-negative. 
Since both matrices W and A are unknown, we need an algorithm which is able to 
find these matrices by minimizing the divergence (5.1). By using an auxiliary function 
and the Expectation Maximization (EM) algorithm [109] , the foilowing update rule for 
computing hkj is found to minimize the KL divergence at each iteration t [108]: 

E z ^kz-. 

By reversing the roles of W and A in (5.2), a similar update rule for each element wn, 
of W is obtained: 

(S.3, 

Both updating rules are appiied alternatively in an EM manner and they guarantee a 
nonincreasing behavior of the KL divergence. 

It has been shown that, if the matrix X contains images from an image database 
one in each matrix column, then the method decomposes them into basis images 
(columns of W) and the corresponding coefficients (or hidden components) (rows of 
A) [107]. The resulting basis images contain parts of the original images, parts that 
are learned thorough the iterative process in the attempt of approximating X by the 
product WA. In this context, m represents the number of pixels in the image, n is the 
total number of images and p is the number of the subspaces in which basis images 
lay. 

5.3 Local non-negative matrix factorization (LNMF) 

Local non-negative matrix factorization has been developed by Li et al [106]. This 
technique is a version of NMF which imposes more constraints on the cost function 
that are related to spaţial localization. Therefore, the localization of the learned image 
features is improved. If we use the notations [û ]̂ = 13 = W^W and [v̂ ]̂ = V = AA^, 
the foilowing three additional constraints can be imposed on the NMF basis Images 
and decomposition coefficients: 

1- ^i'^ii —^ rnin. This guarantees the generation of more localized features on 
the basis images W, than those resulting from NMF, since we impose the constraint 
that basis image elements are as small as possible. 

2. ^ i^ jU i j —> min. This enforces basis orthogonality, in order to minimize the 
redundancy between image bases. It must be noted that, while LNMF enforces basis 
orthogonality, NMF does not necessarily do so. 

3. Zli^n —^ rr\3x. By means of this constraint, the total ' 'activity" on each 
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retained component (total squared projection coefficients summed over all training 
images) is maxinnized. 

Therefore, the new cost function takes the form of the foilowing divergence: 

Di.vA/F(X!|WA) â + a ^ ^ n i j - ^ ^ Vii, (5.4) 
ij i 

where a , > O are constants. A solution for the minimization of relation (5.4) can be 
found in [106]. Accordingly, if we use the foilowing update rules for image basis and 
coefficients: 

At) _ (5.5) 

y i 2̂ fc ^ik ^kj 

«-.î = J - : ; ; " • 
kj 

the KL divergence is nonincreasing. 

5.4 Discriminant non-negative matrix factorization (DNMF) 

Let us suppose now that we have Q distinctive innage classes and let Uc be the num-
ber of training samples in class Q, c = 1 , . . . , Q. Each image from the image database 
corresponding to one column of matrix X , belongs to one of these classes. There-
fore, each column of the p x n matrix A can be expressed as image representation 
coefficients vector Bd, where c = 1 , . . . , Q and l = 1 , . . . , ric. The total number of co-
efficient vectors is n Ylf^i ric. We denote the mean coefficient vector of class c by 
fic ^ ~ and the global mean coefficient vector by fjL= ^ Ylf=i E r = i ^ci-
NMF and LNMF consider the database as a whole and treat each image in the same 
way. There is no class information integrated into the cost function. A novei approach 
termed Discriminant Non-negative Matrix Factorization (DNMF) was developed by Bu-
ciu and Pitas [110]. The decomposition coefficients encode the image representation 
in the same way for each Image. Therefore, by modifying the expression for the co-
efficients in a such a way that the basis images incorporate class characteristics, we 
obtain a class-dependent image representation. We preserve the same constraints on 
basis as for LNMF and we oniy introduce two more constraints on the coefficients: 

1. S ,̂ Ylf^A - - i^cV —^ nnin. Ŝ .̂ represents the within-class 
scatter matrix and defines the scatter of the coefficient vector samples corresponding 
to the class around their mean. The dispersion of samples that belong to the same 
class around their corresponding mean shouid be as small as possible. 

2. Sb = (â c - - m)^ —^ nnax. St denotes the between-class scatter 
matrix and defines the scatter of the class mean around the global mean ji. Each 
cluster formed by the samples that belong to the same class must be as far as possible 
from the other clusters. Therefore, Sb shouid be as large as possible. 

We modify the divergence by adding these two more constraints. The new cost 
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function is expressed as: 

Q n, Q 

(5.8) 
where 7 and 6 are constants. Since DNMF is based on LNMF formulation according 
to (5.8), the orthogonality of the basis images is enforced. Foilowing the same EM 
approach used by NMF and LNMF techniques, we come up with the foilowing update 
expression for each element aki of coefficients from class c\ 

- 1 + (̂1 - + Ŝ â -y E, u 
< / ( c ) = ^ (5.9) 
,(f) ^ 

The elements hki are then concatenated for all Q classes as: 

4 ; ' = [4? ( I ) I4? (2 ) I - - - I«SS)1 (5.10) 

where ' ' denotes concatenation. The expression (5.11) and (5.12) for updating the 
image basis remains unchanged from LNMF: 

w] ( t - l ) ^ Xi, (O 

^ = " ( S . n , 

(O 
(5.12) 

The derivation of (5.9) is given in the Appendix. The DNMF approach is a supervised 
method that preserves the sparseness of basis images through (5.11), while enhancing 
the class separability by the minimization of S^ and the maximization of S5. Note 
that this idea is similar with the FLD method. However, the difference is fundamental: 
whiist FLD preserves the class discriminatory Information on the original images, DNMF 
performs on the decomposition coefficients. 

5.5 Facial expression recognition experiment 

The DNMF approach has been tested along with PCA, FLD [111], NMF, LNMF, FNMF, 
ICA, Gabor and SVMs [53] approaches for recognizing the six basic facial expressions 
namely, anger, disgust, fear, happiness, sadness and surprise from face images from 
Cohn-Kanade AU-coded facial expression database [92]. The registration of each ori-
ginal image x was performed by mouse clicking on the eyes, thus retrieving the eyes 
coordinates, foilowed by an image shift step for centering the eyes. Furthermore, the 
images are rotated to horizontally align the face according to eyes. In the next step, 
the face region is cropped in order to remove the image borders, while keeping the 
main facial fiducial points (as eyebrows, eyes, nose and chin). Finally, each image 
of a resulting size 80 x 60 pixels was downsampled to a final size of 40 x 30 pixels 
for computaţional purposes (except for the Gabor case). The face image pixels were 
stored into a m = 1200 - dimensional vector for each image. These vectors form the 
columns of matrix X for PCA, FLD, DNMF, LNMF, NMF, FNMF and ICA approaches. In 
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the case of the Gabor feature method, each 80 x 60 image was convolved with 12 
Gabor filters, corresponding to the low frequency range for three frequendes u = 2,3,4 
and four orientations = O, f , Each resulting image was further downsampled 
by a factor of 3 to an image of 20 x 15 pixels, which was scanned row-wise to form a 
final feature vector of dimension 300 for each Gabor filter output. The 12 outputs have 
been concatenated to form a new longer feature vector of dimension 3600. Hence, in 
the case of Gabor filter approach, the final matrix X is of size 3600 x n, where n is the 
number of facial images [112]. The resulting feature vectors have been stored in the 
columns of X and were directiy used for classification. We used oniy the magnitude 
of Gabor filter output, because it varies slowly with the pixei position, while the phase 
is very sensitive with respect to position. In the case of the SVM method, there are 
two approaches that can be taken into account. In the first one, the SVM is appiied 
on the gray level values, i.e. directiy on the face images, without extracting any fea-
ture. In the second approach, the SVM is appiied on the features extracted by the 
aforementioned image representation methods. We employed here both approaches 
for SVMs. The sequential minimal optimization technique developed by Platt [93] was 
used to train SVMs having the original images as input. Since classical SVM theory was 
intended to solve a two class classification problem, we chose the Decision Directed 
Acyclic Graph (DDAG) learning architecture proposed by Platt et al. to cope with the 
multi-class classification [94]. 

5.5.1 Training procedure 

In the classical facial expression classification context, the n face images are split into 
a training set containing riî tr) images and a disjoint test set containing n(̂ t€) ones, 
with the corresponding matrices denoted by X^tr) and X(te), respectively. The training 
images X̂ ,̂ ) are used in the expression for updating Z and H. To form the training 
set, U(̂ tr) = 164 face images were randomly chosen from the Cohn-Kanade derived 
database, while the remaining n̂ ê) = 70 images were used for testing, thus forming 
the test face image set. Both the training and the test set contains all expressions. 
This has been checked before we proceeded further to processing. Out of the training 
images we formed the basis images corresponding to NMF, LNMF, FNMF, DNMF (by 
executing the algorithms described in this paper) and to ICA (by using the so-called 
architecture I approach described in [91]). The training procedure was appiied eleven 
times for various numbers of basis images. 

5.5.2 NMF feature extraction and image representation 

By imposing onIy non-negativity constraints, the features extracted by NMF have a 
rather holistic appearance. LNMF greatly improves the sparseness and minimizes re-
dundant information by imposing other constraints. DNMF also minimizes redundant 
information, but the degree of sparseness is limited by those retrieved features that 
are crucial for maximizing class separability. Figure 5.1 shows the creation of a sample 
basis image after a number of iterations. The features are automatically selected ac-
cording to their discriminative power. For comparison, a number of 25 basis images 
out of 144 for NMF, LNMF, FNMF and DNMF, respectively, are depicted in Figure 5^7. 
It can be noticed by visual inspection that the basis images retrieved by DNMF are not 
as sparse as those extracted by LNMF but are sparser than the basis images found 
by NMF. The basis images extracted by FNMF are almost as sparse as those corres-
ponding to LNMR To quantify the degree of sparseness, we measured the normalized 
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Figure 5.1: Creation of a sample basis image by DNMF algorithm after O (random initialization of 
basis images matrix Z), 300, 600, 900, 1200, 1500 and 1800 iterations, respectively. 

kurtosis of a base image w (one column of W) defined as /t(w) = ~ 
where are the elements of w (pixels of the basis image) and w denotes the sample 
mean of w. It was found experimentally that the average kurtosis over the maximum 
number of 144 basis images isi kisiMF — 7.51, A'/ zva/f — 152.89, /c/ryvA/F ~ 151.46, 
koNMF = 22.57. Therefore, in terms of basis image sparseness, DNMF is a compro-
mise between NMF and LNMF. We have noticed in our experiments that the degree 
of sparseness corresponding to basis images extracted by DNMF did not increase af-
ter a number of iterations. We believe this is caused by those patterns in the basis 
images that encode meaningful class information and they cannot be disregarded as 
the iterations proceed further. Probably, the most important issue concerning DNMF 
algorithm is the fact that almost all features found by its basis images are represented 
by the salient face features such as eyes, eyebrows or mouth, features that are of 
great relevance for facial expressions. While discarding less important information, 
conveyed by nose and cheek (which is not the case for NMF), or putting less stress 
on it, DNMF preserves spaţial topology of salient features (which are mostly absent in 
the case of LNMF or FNMF) by emphasizing them. The features retrieved by LNMF and 
FNMF have rather random positions. 

For PCA, FLD, NMF, LNMF, FNMF and DNMF, the image aata are then projected onto 
the image basis in an approach similar to the one used in classical PCA, yielding a 
feature vector F(̂ tr) = - where is a matrix whose columns store the 
average face = ^ ^ Zlji'i^ ^j{tr)- Since X(^tr) = ZA, a more natural way to compute 

F(̂ tr) wouid be F t̂r) = ^"^{^(tr) - However, in our previous experiments we found 
that, by projecting the face images into the basis images instead of working directiy 
with the coefficients Fţ̂ tr) given by the above expression, we can have slightiy better 
resuits. Moreover, due to the fact that Z is not a square matrix, we wouId be forced 
to use its pseudoinverse, which may suffer from numerical instability. In any case, we 
can not use the coefficient matrix H computed directiy by (5.9) in the training phase, 
since we do not have any expression for calculating a representation of test images. 
Let us enumerate the six facial expressions so that ' ' 1" is anger, ' '2" is disgust, 
' ' 3" is fear, ' ' 4" is happiness, ' ' 5" is sadness and ' ' 6" is surprise. To have a first 
visualization on how efficient is to project the facial images onto the basis images, 
Figure 5.3 displays the projection of images coming from three expression classes 
(anger, disgust, surprise) on the first two basis images shown in Figure 5.7. Let us 
denote by M l , M2 and M6 the mean of the three clusters formed by these projections 
and the distance between the means by di2, dw and d26, respectively. Then, for this 
metric space we have di2 = 5.9, die = 6.1, and d26 = 3.4 in the case of NMF, di2 = 
di6 = 21.8 and 2̂6 = 20.4 for LNMF, di2 = 11.1, d^^ = 26.2 and 2̂6 = 21.7 for FNMF and 
di2 = 12.5, die = 27.9 and 2̂6 = 28 for DNMF approaches, respectively. For simplicity, 
Figure 5.3 shows oniy M2 and M6. The distance between them is depicted by a line 
segment. It can be noted that the classes do not overlap in the case of DNMF as 

BUPT



64 Face Feature Extraction based on NMF approaches 

Figure 5.2: A set of 25 basis images out of 144 for a) NMF, b) LNMF, c) FNMF and d) DNMF. They 
were ordered according to their decreasing degree of sparseness. 

much as they do in the case of NMF, LNMF or FNMF methods. The distance between 
the means corresponding to the four NMF derived algorithms for all expressions are 
tabulated in Table 5.1. For all expressions, the best between-class separability is 
obtained by DNMF, foilowed by FNMF, LNMF and NMF. 

For the ICA approach, we used the first architecture described in [91] that gives 
us the coeffîcients to be appiied for classification. The coeffîcients of each image form 
essentially a row of the matrix F̂ ^̂ ) = (X,̂ ,̂ - Here Pp is the projection 
matrix resulting from PCA procedare appiied a priori to ICA and A^n is the unmixing 
matrix found by ICA algorithm. The number of independent components is controlled 
by the first p eigenvectors [91]. Note that the training phase is related to the process 
of finding W, A and in order to form the new feature vector, which is further used 
in the classification procedure. In the case of the Gabor approach, there is no training 
step and the feature vectors f,^, used for classification comprise in the columns of X, 

5.5.3 Test procedure 

In the test phase, for PCA, FLD, DNMF, LNMF, FNMF and NMF, for each test face image 
a test feature vector is then formed by f, ^'[te ) - c) . For the ICA 
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Figure 5.3: Scatter plot of the clusters formed by the projection of three expression classes 
(anger, disgust, surprise) on the fîrst two basis images shown in Figure 5.7 for a) NMF, b) LNMF, 
c) FNMF, and d) DNMF. M2 and M6 represent the mean of the clusters corresponding to ^ ' disgust" 
and ' ' surprise" classes and the distance between they is depicted by a line segment. The ellipse 
encompasses the distribution with a confidence factor of 90 %. 

approach, the test feature vector is formed by f(te) = (X(te) - In the case 
of Gabor approach, the classification procedure is appiied directiy to the colunnns of 
nnatrix X(̂ e) that contain Gabor features, obtained as described previousiy. 

5.5.4 Classification procedure 

The six basic facial expressions i. e. anger (an), disgust (d/), fear (fe), happiness 
(ha), sadness (sa) and surprise (su), available for the facial image database form the 
six expression classes. If we construct a classifier whose class labei output for a test 
sample f(te) is l , the classifier accuracy is defined as the percentage of the correctiy 
classifled test images when {7(f(te)) = l(f(te,))}f where /(f(^e)) is the correct class labei. 
Once we have formed c = 6 classes of new feature vectors (or prototype samples), a 
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Table 5.1: Distance between the means of the database projection onto the first two basis images 
corresponding to the four NMF derived algorithms for aii six facial expressions. 

NMF LNMF FNMF DNMF 
di2 5.9 9 11.1 12.5 
di3 8.9 9.2 16.0 17.4 
du 9.5 14.0 30.3 40.8 
dio 5.9 10.3 16.9 18.6 
die 6.1 21.8 26.2 27.9 
d23 6 7.6 9.5 25.6 
d24 6.8 12.3 23.3 46.5 
dz'o 3.6 8.8 10.9 26.1 
d26 3.4 20.4 21.7 28 
dzA 9.5 12.9 29.4 53.6 
d35 5.9 8.9 15.7 34 
dse 6.3 20.2 24.4 35.2 
d45 6.8 13.6 29.9 57 
di6 6.9 24.6 37.2 62 
dm 3.4 21.7 26 38.6 

nearest neighbor classifier is employed to classify the new test sample by using the 
foilowing similarity measures: 

1. Cosine similarity measure (CSM). The description of this distance metric was 
given in Chapter 4. 

2. Maximum correlation classifier (MCC). The second classifier is a minimum Eu-
clidean distance classifier. The Euclidean distance from f(te) to fi(̂ tr) is expressed as 
Wfite) -flitr)\\' = + Where /iKf(te)) = {flitr)Vf(te) " i l | f / ( t r ) f ÎS a 
linear discriminant function of f̂ ^̂ )- A test image is classified by this classifier by com-
puting c linear discriminant functions and choosing MCC = argmax^^^ 

Besides, as aiready mentioned, SVMs were used as classifiers where, either the 
original gray level values or the features extracted by the presented algorithms are 
considered as input. 

5.5.5 Performance evaluation and discussions 

We have tested the algorithms for several numbers of basis images (subspaces) and 
for all three classifiers. The results are shown in Figure 5.4 and Figure 5.5. 

Unfortunately, the accuracy does not increase monotonically with the number of 
basis images (for any of the methods and classifiers). Table 5.2 depicts the maxi-
mum, mean classification accuracy and its standard deviation over the number of basis 
images for all methods involved in experiment and for the three classifiers (CSM, MCC 
and SVM). In this Table 5.2, SVMl SVM2 denote the Support Vector Machine appiied 
to the features extracted by the image representation methods involved in the ex-
periment or to the downsampled original gray level images, respectively. For SVMs, 
the best accuracy was obtained with a polynomial kernel having degree 3 and setting 
up the penalizing term to 100 in the case of PCA, PDA, Gabor and LNMF image re-
presentations. When NMF and DNMF are combined with SVMs, the best accuracy is 
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9 16 25 36 49 64 81 100 121 
Number of subspaces 

Figure 5.4: Accuracy achieved in the case of CSM dassifier for DNMF, NMF, LNMF, FNMF, ICA and 
Gabor methods versus number of basis images (subspaces). 

16 25 36 49 64 81 100 121 
Number of subspaces 

144 164 

Figure 5.5: Accuracy achieved in the case of MCC dassifier for DNMF, NMF, LNMF, FNMF, ICA and 
Gabor methods versus number of basis images (subspaces). 
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Table 5.2: Maximum, mean and standard deviation of the classification accuracy (%) calculated 
over the number of basis images. 

PCA FLD DNMF NMF LNMF FNMF ICA Gabor 
CSM max 72.85 75.71 82.85 77.14 81.42 81.42 71.42 80 CSM 

mean 71.68 68.96 79.04 71.58 76.34 75.06 70.15 X 
CSM 

std 1.40 4.04 3.19 4.42 5.53 4.39 1.66 X 

MCC max 74.28 72.85 88.57 82.85 84.28 81.42 74.28 81.40 MCC 
mean 72.33 65.71 83.65 77.93 78.88 75.06 71.74 X 

MCC 

std 1.32 3.77 1.61 5.85 3.69 4.62 1.71 X 

SVMl max 81.42 84.28 87.14 78.57 81.42 84.28 80.00 82.85 SVMl 
mean 78.57^ 78.5 83.71 71.96 65 68.28 78.09 X 

SVMl 

std 3.84 6.55 5.18 5.06 24.55 22.11 1.74 X 
SVM2 max X X X X X X X X 

FLD max X X X 87.14 84.85 X 75.71 85.71 

provided by an RBF kernel having parameter value a = 0.00005 (width of RBF) and 
penalizing ternn value 500. Except for DNMF, the classifîer accuracy is better for SVMl 
than for CSM, MCC and SVM2. However, none of the image representations combined 
wlth the three classifiers reaches the maximum accuracy 88.57 % achieved by DNMF 
combined wlth the MCC classifier. The maximum classification accuracy obtained by 
DNMF is foilowed by DNMF plus SVMl and LNMF plus SVMl, respectively. NMF extracts 

noisy" features that can decrease its classification accuracy. Features that might 
be crucial for facial expression recognition are lost by LNMF in its attempt to obtain a 
local image representation. DNMF balances between NMF and LNMR Despite the fact 
that FNMF is based on the same discriminant criteria as DNMF, the accuracy corres-
ponding to this algorithm is comparable with the one yielded by LNMF but lower than 
the one obtained by DNMF. When combined with SVM, FNMF outperforms LNMF, but 
its performance does not reach the maximum accuracy corresponding to DNMR For 
this data set the poorest performance is achieved by FLD. This can be caused either 
due to an insufficient data size or to the highiy non linear class separablllty. 

Moreover, DNMF algorithm has larger mean accuracy and smaller standard devia-
tion than NMF and LNMF for CSM, as can be seen in Table 5.2. The DNMF mean 
accuracy is greatly Improved when MCC Is appiied, achieving the biggest average 
classification accuracy (83.65 %) and the smallest standard deviation (1.61 %) . 

To establish to what degree the performance beneflt Is due to adding class-specific 
Information to NMF or LNMF and to what degree It is due to putting this informatlon 
directiy In the feature LNMF learning stage (as DNMF does), we performed FLD on top 
of either NMF (FLD+NMF) or LNMF (FLD+LNMF), respectively. Also, this approach has 
been used for ICA (FLD+ICA) and Gabor representations (FLD+Gabor). The last row 
of the Table 5.2 shows the comparison resuits. For all these Image representations, 
the use of FLD on top of them seems to be a good Idea, since the resuits show an 
increase In the accuracy compared with the case when MCC and CSM were appiled 
directiy to those image representations. The biggest gain was obtained for FLD+NMF, 
where the accuracy increased from 82.85% to 87.14%, a value that is still smaller 
by 1.43% then the best case (DNMF wlth 88.57%). As DNMF Is bullt on LNMF by 
Incorporating the discriminant informatlon in the learning process, the comparison of 
the result of FLD+LNMF with that of LNMF and DNMF is of particular interest. In this 
case, FLD+LNMF Improves the accuracy inslgnlflcantly, compared wlth LNMF (from 
84.28% to 84.85%) and did not reach the maximum of 88.57% obtained by DNMF wlth 
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MCC. 
As far as the ICA approach is concerned, we shouid mention that a supervised ICA 

technique, called ICA - FX, has been developed [96] to obtain features that are not 
oniy independent from each other, but also convey class information, contrary to the 
classical ICA, which is an unsupervised approach and does not utilize class informa-
tion. In order to establish to what extent the classification performance is affected by 
incorporating class information, we ran the ICA - FX approach and compared it with 
classical ICA in our experiments. Due to the fact that the first ICA architecture does 
not allow us to make a comparison against ICA - FX, since this architecture performs 
ICA on the PCA projection matrix (thus performing ICA on the reduced data size and 
loosing the class labels), we have chosen to run the experiments for comparison with 
the second ICA architecture [91]. In this case, ICA operates on the PCA coefficients 
where the data dimensionality is reduced and the class labei is preserved. For 49 basis 
images we obtained an accuracy of 70% and 71.1% with CSM classifier corresponding 
to ICA and ICA - FX approach, respectively. When the MCC classifier is involved, we 
have yielded an accuracy of 61.5% and 72.9% corresponding to ICA and ICA - FX. 

The parameter ^ governs the convergence speed for minimizing Ŝ ,; while maximi-
zing Sfe. However, it also interferes with the expression that minimizes the approxi-
mation X WA, i.e., the term D^mfO^ li WA). An overly small value of ^ will speed 
up the decrease of S .̂., the increase of S^ and the minimization of />)/vM/r(X || WA)). 
However, the algorithm may stop too early and the number of iterations might not be 
sufficient to reach a local minimum for Pz )nmf(X II WA). A premature stop can affect 
the process of correctiy learning the basis images that might not be sparse anymore. 
On the other hand, the algorithm may converge very slowly if an overly large value of 
^ is chosen. By keeping 7 and 6 fixed at value one, experimentally, we have chosen a 
value of ^ = 0.5 in our experiments that gave us a good trade-off between sparseness 
and convergence speed. Besides, it keeps the value of D^mfO^ II WA) low. 

It is worth noting that DNMF shares some common characteristics with the bio-
logical visual models proposed by neuroscience. In the light of the sparse image 
coding theory, the neural interpretation of this model is that the neural cell performs 
sparse coding on the visual input, having its receptive fieids closely related to the 
sparse coding basis images while its firing rates are proporţional to the representa-
tion coefficients. Compared to NMF (holistic) and LNMF or FNMF (local), the sparse 
representation given by DNMF is preferred, having some advantages over holistic and 
local representations [113] . A detailed analysis regarding the interpretation of DNMF 
algorithm in neurophysiology terms will be given in Section 5.7 Another important 
aspect is related to the nature of features extracted by these methods. Obviousiy, 
the human face has some salient features such as eyebrows, eyes, and mouth. DNMF 
emphasizes salient face features and diminishes other features, as opposite to NMF ap-
proach, which puts approximately the same weight on each image pixel. In contrary, 
the features discovered by LNMF or FNMF have rather random position and they do 
not always correspond to salient facial image features. 

5-6 Polynomiai non-negative matrix factorization (PNMF) 

5-6-1 The necessity of retrieving noniinear features 

NMF, LNMF and DNMF all are linear models in the sense that an image is decomposed 
as a linear mixture of basis images. However, as suggested and evidenced by nu-
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merous works, the receptive fieids exhibit nonlinear behavior [114], [115]. In other 
words, the response of the visual cells is a nonlinear function of their stimuli, where the 
response is characterized and analyzed on a low dimensional subspace [116], [117]. 
On the other hand, it was recently argued and proved that, in order to achieve an 
efficient perceptual coding systenn, a nonlinear image representation shouid be de-
veloped [118]. As described in that paper, employing an adaptive nonlinear image 
representation algorithm results in a reduction of the statistical and the perceptual 
redundancy amongst representation elements. As far as the pattern recognition (and, 
in particular, the face and facial expression recognition) task is concerned, the un-
derlying features most useful for class discrimination may lie within the higher order 
statistical dependencies among input features. For example, Bartlett et al. [91] have 
demonstrated that the ICA is superior to PCA in human face recognition in that ICA 
learns the higher-order dependencies in the input besides the correlations. However, 
whether the facial expression is composed of a set of independent components is not 
clear yet. The aspects described above bring arguments in favor of developing a nonli-
near counterpart of the NMF. Therefore, the aim of a nonlinear NMF variant is twofold: 
(a) to yieid a model compatible with the neurophysiology paradigms (non-negativity 
constraints and nonlinear image decomposition) and (b) to discover higher-order cor-
relatlon between image pixels that lead to more powerful (in discriminative terms) 
latent features. 

One way to handie nonlinear correlation can be provided by using kernel theory. 
Kernel-based subspace methods have been extensively investigated in the literature. 
Nonlinear methods based on the kernel theory, such as Kernel PCA and Kernel Fisher ̂  
Linear Discriminant were used for face recognition or denoising purposes and they 
were found to outperform their linear variants [119]. In [120] kernels are decom-
posed in order to obtain posterior probabilities for the class membership in a data 
clustering appiication. The kernel theory was pushed further and was appiied for re-
trieving independent features from a non-linear mixture of sources. This has led to 
a kernel-based Independent Component Analysis proposed by Bach and Jordan [90]. 
Hyperkernels have been introduced in [121], where the kernel is defined on the space 
of kernels itself, an approach which ailows the adaptation of the kernel function ins-
tead of its parameters. An efficient way to adapt such hyperkernels using second-order 
cone programming is described in [122]. Recently, a combination of kernel theory and 
Fisher Linear Discriminant criterion has been proposed in [123] to extract the most 
discriminant nonlinear features and select a suitable kernel simultaneousiy. 

A kernel-based NMF approach was developed by Buciu et al. [124] where the dis-
covered features (encompassed by the basis images) posses non-linear dependencies, 
while the decomposition factors remain non-negative. In the light of the kernel theory, 
a new formulation of NMF is proposed, where, although the decomposition is still li-
near, the discovered features have non-linear dependencies. Here, the noniinearity 
aspect refers oniy to the relation between the pixels of basis images. In principal, 
the original data residing in a given space are firstly transformed by a nonlinear po-
lynomial kernel mapping into a higher dimensional space, the so called reproducing 
kernel Hilbert space (RKHS) and then a nonnegative decomposition is accomplished 
in the feature space. The nonlinear mapping enables implicit characterization of the 
data high-order statistics. By using a polynomial kernel function, the basis image 
features are higher-order correlated, as we shall demonstrate in subsequent sections. 
The proposed approach is named Polynomial kernel Non-negative Matrix Factorization 
(PNMF). 

Another important issue appears when the samples from the database are recor-
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ded under varying lighting conditions which can cause the linear approach to perform 
poorly [125]. It is known that when the Lambertian assumption regarding the illu-
mination is violated (i.e., the change in illumination is drastic) the linear subspace 
nnethods may fail. Although no systematic experinnents were run that involve an in-
depth analysis of the PNMF performance in the case of illumination changes, some 
preliminary results on a database containing sannples recorded under varying lighting 
conditions, where PNMF outperformed other methods can be reported. 

5.6.2 Non-negative matrix factorization in polynomial feature space 

Before defining a non-negative matrix factorization in a polynomial feature space, we 
give the foilowing two definitions: 

Definition 1: A kernel is a function k that satisfies k (x ,z) = (0(x),0(z)), for 
all x ,z G A', where 0 is a mapping from M to an (inner product) feature space T, 
0 : x — > 0 ( x ) g ^ [ 1 2 6 ] . 

Here ( . , . ) denotes the inner product. 
Definition 2: Given two matrices X and Y of dimensions m x n and m x p, res-

pectively, the kernel matrix K g has elements Kij = for the data 
X i , X 2 , . . . , X n G A', y i , y 2 , . . . , y p e and some kernel function k. 

To have a first idea about the role of the kernel function let us consider an example 
of a two-dimensional input space x = (xi,x2) G c together with the feature 
map 0(x) = X2, V2X1X2) G ^ c M̂  [126]. The space of linear functions in T wouid 
be of the form: 

^(x) = a i i X i -f 022^2 + ai2>/2xiX2. (5.13) 

As one can see, the feature map maps the data from a two dimensional to a three 
dimensional space in such way that the linear relations in the feature space correspond 
to quadratic relations in the input space. The use of kernel functions eliminates the 
need for an explicit definition of the noniinear mapping because the data appear in 
the feature space oniy as dot products of their mappings: 

(0(x), 0(z)) = {{xlx'i V2X1X2). {zi zi V2z^Z2)) 
= Xi^i + x^zj + 2X1X2Z1Z2 

- (x'iZi -h X2Z2f 
= {x.z)\ (5.14) 

Frequently used kernel functions are the polynomial ones, K{Xi ,X j ) = (x̂  • X j ^ , and 
the Gaussian ones , K(Xi ,X j ) = exp(-||x, - XjW^/{2a^)). This paper deals with the 
polynomial kernels. 

Let us assume now that our input data X G A' C are transformed to the 
higher dimensional space T c l > m. We denote the set of the transfor-
med input data with F = [0(xi), (/>(X2),. •., 0(Xn)l, where the / - dimensional vec-
tor (PiXj) = G We can find a matrix Y -
[0(zi),0(z2),...,0(Zp)], e T, that approximates the transformed data set, such 
that p < n. Therefore, each vector 0(x) can be written as a linear combination as 
0(x) Yb. We introduce the foilowing squared Euclidean distance in the space T 
between the mapping of the vector X j and its decomposition factors as being our cost 
function: 

= (5.15) 
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The aim is now to minimize qj subject to 6r, Zir > O, and Z r̂ = 1. 
For the polynomial kernels of degree d, K{Xi,Xj) = (x^ • Xj^ the cost function Q = 

li(2)(X) - Y B p is non-increasing under the foilowing updating rules, for each iteration 

B '̂) ^ ® 0 (Ki^-^)B(^-^)) (5.16) 

Z '̂) ^ [(XK^^r^)) 0 (5.17) 

Z ' 4 = Z ^ 0 S (5.18) 

where K̂ ^ {(i){z,),0{Xi)) and K̂ :̂  := (0(Xi), 0(Zi)) are kernel matrices of dinnensions 
p X n and n x p, respectively, containing values of kernel functions of ẑ  E Z and 
X, G X, and K.^ = c (̂Zo)) is a p x p kernel matrix of any vectors ẑ ẑo G Z. fi 
is a diagonal matrix whose diagonal elennents are Urr = Y l ^ i r = 1 , . . . The 
columns of S are given by s^ = YlT=i ^tn ^ = 1 — P̂-

The proof of (5.16) and (5.17) is given in Appendix. The sign ' ' ' " denotes 
the derivative of matrix elements (functions). For the polynomial kernel k'(Xi.Xj) = 
d ' k{x, • x^)^"^ Note that, if the non-negativity constraint is not imposed in the 
decomposition coefficients, then, the coefficients can be computed as (see equation 
(A-11) in Appendix): 

B = (5.19) 

The choice of the Euclidean distance as a cost function for the non-linear feature space 
was motivated by the fact that we want to avoid to explicitly express the noniinear 
mapping (p{x) and 0(z). Indeed, if we expand equation (5.15), taking into account 
equation (5.14), we have: 

Q = k (x , X) - 2k(x, Zi)b + Zo)b, (5.20) 

In other words, the problem can be easily solved by invoking oniy the kernel function. 
The polynomial kernel corresponds to an inner product in the space of d - th order 
monomials of the input space. If x represents an image, then, we work in the feature 
space which is spanned by the products of any d pixels. If we wouid need to work with 
the mapped value 0(x) , the dimensionality wouId be, for example, / = for a 16 x 16 
pixels image and d = 5. Thus, by using polynomial kernel we can take into account 
higher-order image statistics without being concerned about the "curse of dimensio-
nality". The PNMF's complexity is 0{mnpd) compared to 0{mnp) corresponding to 
NMF. Unfortunately, the updating scheme does not guarantee a global minimum due 
to its non-convex optimization structure (appiied simultaneousiy to B and Z), but onIy 
a local minimum. The local minimum that is reached depends on the initialization, i.e. 
the iniţial values of B and Z, usually chosen randomly. PNMF algorithm suffers from 
the same optimization drawback as NMF. One way to partially overcome this problem, 
i.e. prevent the algorithm from getting ' 'stuck" in a ' 'shallow" local minimum is to 
run it several times with different initializations. 

It shouid be noted that the way the development of the iterative approach for 
updating the decomposition factors was carried out does not permit a non-negative 
decomposition for a RBF kernel. This is due to the negative solution resulting from 
the derivative associated to the RBF kernel . Other approaches have to be foundior 
ailowing a more flexible kernel. 

The developed algorithm is closely related to the reduced set methods appiied to 
Support Vector Machines (SVMs) [127], [128] . These approaches were developed in 
order to increase the speed of the SVMs and to reduce the computaţional complexity 
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of kernel expansion by approximating them by using fewer terms without a significant 
loss in accuracy. The same Euclidean cost function was used, but no non-negativity 
constraint was imposed on the connputation of the reduced set and their coefficients. 
Also, the input data of the reduced set method comes from the SVM output, which is 
a decision function depending on the Lagrangian computed by the SVMs optimization 
procedure and the kernel formed from the training and test data, while, in our case 
the input is formed oniy from the non-linear mapping of the original data. 

5.6.3 Experimental performance and evaluation setup 

To asses the performance of the PNMF method, experiments on face and facial expres-
sion recognition were conducted. For comparison purpose NMF and LNMF have been 
involved in the experiments. Also, ICA [83] and PCA [129], along with their noniinear 
variants namely kernel ICA (KICA) [90] and kernel PCA (KPCA), respectively, were 
used. The same Cohn-Kanade and JAFFE database, respectively, were employed. We 
ran the PNMF algorithm for various number of basis images p and different values of 
the polynomial degree d = {2,3,4,5,6,7,8,9,10} . Also, the same polynomial degree 
range was used for KPCA and the results presented are the ones that correspond to 
the degree that gave the best results. Several basis images discovered by PNMF are 
depicted in Figure 5.6 for the Cohn-Kanade database and for different values of d. The 
basis images corresponding to d = 2 and d = 3 are noisy. As the degree increases 
more pixels are taken into account. This leads to a ' 'finer" image representation and 
an emphasis on the expression. The phenomenon can be easily observed especially in 
the third basis image of Figure 5.6, where the happiness expression passes through 
different intensities (from a vague ' 'smile" to an intense ' 'smîle"). 

Three classifiers were employed for classifying the features extracted by the algo-
rithms. The first classifier is a nearest neighbor classifier based on the cosine similarity 
measure (CSM). The second classifier is a two layer neural network (RBFNN) based 
on radial basis functions (RBFs) g{x) = exp(-||f^ - where f is the feature 
vector associated to either training or test image. Finally, the third classifier is based 
on SVMs [53] with different kernels (linear, polynomial, and RBF). The classification 
results for the facial expression recognition task for different image representations 
and classifiers (CSM, RBFNN, SVM) involved in the experiment are shown in Table 5.3. 
The minimum number of basis images p corresponding to the maximum classification 
accuracy is also tabulated. The results of the six other subspace image representations 
(NMF, LNMF, PCA, KPCA, ICA and KICA) are also presented. For all three databases 
and all classifiers, PNMF outperformed all other methods. Generally, for both Cohn-
Kanade (C-K) and JAFFE databases, the best results are provided when the features 
are classified by SVM foilowed by CSM and RBFNN. As far as the feature extraction 
algorithm is concerned, in the case of C-K, the best classification performance was 
achieved by PNMF, while the second best performance was attributed to the LNMF ap-
proach. A greater difference in performance between the best (PNMF) and the second 
best algorithm (NMF and LNMF) was obtained for the JAFFE database, where PNMF 
outperforms NMF by almost 3 %, in the case of SVM classifier. Both KPCA and KICA 
have shown superior performance compared to PCA and ICA, respectively. Howe-
ver, they performed worse than PNMF Interestingly, KPCA and KICA achieved lower 
accuracy than PCA and ICA when they classified facial expressions from the C-K data-
base. Compared with the Cohn-Kanade database, the JAFFE database leads to lower 
classification performance, due to the fact that the subjects posing for this database 
are not as expressive as those in the Cohn-Kanade, making facial expression harder 
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Figure 5.6: Five different basis images retrieved by the PNMF with d = {2,3,4,5,6,7,8} (left to 
right) for the Cohn-Kanade database. 

to be recognized. As experiments showed, the difference between the classification 
performance of the PNMF (best one) and the second best one is larger in the case of 
the JAFFE database than in the Cohn-Kanade database. This fact is an indication that 
the benefit from using PNMF is nnore prominent in cases where classes are difficult to 
separate. 

It has been argued [43], [130] that, by performing the processing on difference 
images obtained by subtracting each expression image from its corresponding neutral 
pose, when available, the classification accuracy is much improved. Thus an expe-
riment involving difference images was conducted. The difference images were formed 
for the JAFFE database and the new database was denoted by JAFFEdi//. The same 
procedure as above was then appiied on the new database. Indeed, the accuracy in-
creased for all image representation approaches and all classifiers. An impressive gain 
was achieved in the case of the PNMF with CSM, where the accuracy increased from 
69.8% in JAFFE up to 93.8% in JAFFE^i//. In terms of classifiers the highest accuracy 
is obtained by CSM foilowed by NN and SVM. However, regardiess of classifier used, 
again, PNMF performed better than all other approaches, including KPCA and KICA. A 
slight accuracy improvement was observed for the KPCA over PCA. 

The approach we have developed for updating the basis images and the coefficieftts 
relies on iterative minimization. Obviousiy, other optimization techniques such as, for 
example, Sequential Quadratic Programming or the interior-reflective Newton method 
can be used. However, due to the fact that we deal here with a large-scale optimiza-
tion (taking into account the vector dimension) these approaches can be prohibitive in 
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Table 5.3: Maximum accuracy (%) obtained for the various methods used in the facial expression 
classification experiments. The degree of the polynomial PNMF is given in parenthesis. The best 
result is shown in bold. 

Database Classifier Maximum accuracy (%)/number of basis images Database Classifier 
NMF LNMF PNMF ICA PCA KICA KPCA 

C-K 

CSM 77.4 81.4 81.8 
{d = 6) 

71.4 72.9 74.3 72.9 

C-K RBFNN 67.1 77.1 78.6 
(d = 2) 

72.9 74.3 72.9 74.3 C-K 

SVM 78.6 81.4 83.9/100 
(d = 2) 

80 81.4 82.9 82.9 

JAFFE 

CSM 66.3 62.4 69.8 
(rf = 5) 

63.4 61.3 66.7 58 

JAFFE RBFNN 61.9 60.3 65 
(d = 4) 

61.9 60.3 61.9 55 JAFFE 

SVM 74.6 74.6 77.8 
(rf = 6) 

74.6 74.6 76.2 71.4 

JAFFEd,// 

CSM 70 89.3 93.8 
id = 7) 

91 90.1 89.3 91 

JAFFEd,// RBFNN 76.8 82.1 8 7 5 
{d = 7) 

82.1 85.7 82.1 86 JAFFEd,// 

SVM 78.6 82.1 83.9 
{d = 5) 

82.1 82.1 82.1 82.5 

terms of connputational cost or memory requirements as was shown in the foilowing 
experiment. Having evaluated the analytical expression for the derivative and the 
constraints for the cost function, we run the MATLAB [131] routine ' 'fmincon" with 
the large-scale optimization option to tackle our problem and compared it with our 
iterative solution starting with the same iniţial random matrices B and Z. The routine 
^^fmincon" for large-scale optimization uses the interior-reflective Newton method 
with the help of preconditioned conjugate gradients. The iniţial value of the cost func-
tion was found to be Qinitiai = 3.4610 • 10^ Table 5.4 shows the final value Qf^nal 
of the cost function and the time necessary to reach the minimum for 9 basis images 
of 20 X 15 pixels. The methods provided slightiy different values for the final cost 
function. This is due to the fact that both methods are oniy able to find local minima 
and they rely on different minimization procedure. The proposed algorithm which was 
also implemented in MATLAB, was executed almost 431 times faster than ^ ^ fmincon". 
We must also notice that we were not able to run ' 'fmincon" with Images having the 
dimension of 40 x 30 pixels and for more than 5 basis images due to the memory 
limitations. 

5.6.4 Conclusions 

The underlying idea of the new factorization algorithm, named PNMF, is the usage 
of the polynomial kernel function, which causes the decomposition to take place in 
a feature space instead of the input space. The algorithm has been appiied on two 
databases for the facial expression classification task. For comparison purposes six 
reference feature extraction algorithms (NMF, LNMF, PCA, KPCA, ICA and KICA) have 
been also used. The features retrieved by the aforementioned approaches have been 
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Table 5.4: Convergence time (in seconds), iniţial and final value for the cost function Q for the 
iterative (PNMF) and ^ fmincon" methods, respectively. The number of basis innages is 9 and 
the dimension of the basis image is 20 x 15 pixels. 

Method Time {seconds) Qinitial Q final 

PNMF 50 3.4610 • 10» 2.3077 • 10̂  
fmincon 21548 3.4610 • 10« 2.2270 • IO'' 

dassified by three classifiers CSM, NN, and SVM, respectively. PNMF outperforms the 
other approaches for aii classifiers. The benefit of the proposed approach is evident 
in problems where the classes are difficult to separate, as in the case of the JAFFE 
database. One can state with confidence that PNMF is always better than its linear 
counterpart, i.e. the NMF algorithnn, in ternns of retrieving more powerful latent va-
riables for pattern classification, as evidenced by the experinnental resuits. 

The way the development of the iterative approach for updating the decomposition 
factors was carried out in this paper, does not permit a non-negative deconnposition 
for another kernel type, such as, for instance, the RBF kernel. This is due to the 
negative solution resulting fronn the derivative associated to the RBF kernel. Other 
approaches that allow a more flexible kernel have to be found. Using other kernel 
types couid be a potential way to improve the performance of the kernel non-negative 
matrix factorization approach. 

5.7 NMF, LNMF, and DNMF modeling of neural receptive fieids 

Understanding how the image is processed at each level of the Human Visual System in 
order to be transformed into this signal and the type of signal encoding at the receptive 
fleids (RFs) of the neural cells is one of the primary concerns of the neuropsycholo-
gists and neurophysiologists. Nowadays, the theoretical and experimental evidence 
suggests that the Human Visual System performs object (including face) recognition 
processing in a structured and hierarchical approach in which neurons become selec-
tive to process progressively more complex features of the image structure [132]. 
Whereas neurons from visual area 1 (V I ) are responsible for processing simple visual 
forms, such as edges and corners (leading to a very sparse image representation), 
neurons from the visual area 2 (V2) process a larger visual area representing feature 
groups. As we further proceed to the visual area 4 (V4) and the inferotemporal cortex 
( IT) , we meet neurons having large receptive fieids that respond to high- level object 
descriptions such as ones describing faces or objects. This Is equivalent with a de-
crease in image representation sparseness. Finally, the IT area of the temporal lobe 
contains neurons whose receptive fieids cover the entire visual space. It also contains 
specialized neurons (face cells) that are selectively tuned for faces. There is now good 
evidence that there are dedicated areas in temporal cortical lobe that are responsible 
to process information about faces [133], [134], [135]. Moreover, it was found that 
there are neurons (located in TE areas) with responses related to facial identity recog-
nition, while other neurons (located in the superior temporal sulcus) are specialized 
oniy to respond to facial expressions [136]. 

Models of receptive fieids of neuronal cells have been proposed by numerous re-
searchers. There are two types of neural cells: simple and complex ones. It has been 
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shown by Olsahusen and Fieid [137] that in V I area the sinnple cells produces a sparse 
coding of natural images. Their receptive fieids respond differently to visual stimuli 
having different spaţial frequencies, orientations, and directions. Marceija [138] and 
Daugman [139] have noticed that the the receptive fieids of simple cells can be well 
described by 2D Gabor functions. The main drawback of Gabor function models is 
that they have many free parameters to be tuned ' ' by hand" in order to tile the Joint 
space or spaţial frequency domain to form a complete basis for image representation. 
Other attempts to model the structure of V I receptive fieids were based on Principal 
Component Analysis (PCA), which leads to holistic image representation [140], [141] 
and Independent Component Analysis (ICA) [142]. 

Although the receptive fieids of V I seem to be well described by the models propo-
sed above, there is no conclusive model for cells of the higher cortical levels, especially 
for face cells. In this Chapter an analysis of NMF, LNMF and DNMF approaches is un-
dertaken, the original work being included in the work of Buciu and Pitas [143]. The 
NMF model associates the basis images with the receptive fieids of neural cells and 
the coefficients with their firing rates. By analyzing the tiling properties of these bases 
we can have an insight of how suitable these algorithms are to resemble biological vi-
sual perception systems. In particular we are interested in the representation of facial 
expression images. A biological plausible model for the facial neurons responsible for 
biological facial expression recognition is proposed. From the computer vision point 
of view, an analysis of the parameters of the resulting basis images, such as spaţial 
frequency, frequency orientation, position, length, width, aspect ratio, etc., in analogy 
to the parameters of the spaţial neural receptive fieids is carried out. The analysis of 
the basis images characteristics is motivated by the performance of DNMF algorithm 
in classifying facial expressions [130]. However, since some constraints are common 
for these three algorithms, NMF and LNMF are analyzed as well, The results whether 
these algorithms can model biological facial perception systems. 

5.7.1 Receptive fieids modeled by Ni^F, LNI^F and DNMF 

NMF, LNMF and DNMF are trained on a database consisting of facial expressions derived 
from Cohn-Kanade AU-coded facial expression database. A subspace of 144 basis 
images (matrix W)(p = 144) is considered. Once the basis images are calculated we 
computed the 144 inverse filters Z = (to be called receptive fieId (RF) masks) 
corresponding to the basis images for all three algorithms. Twenty five receptive 
fieId masks for NMF, LNMF and DNMF are shown in Figure 5.7. As can be seen from 
the Figure 5.7 a), NMF produces neither oriented nor localized masks. The features 
discovered by NMF have a larger space coverage than those obtained by LNMF or 
DNMF, thus capturing redundant Information. On the contrary, the LNMF receptive 
fieId masks are oriented and localized. Mask domain denotes the mask region where 
mask coefficients are large (above a certain threshold). Some of them have domain of 
almost a single pixel. Neurophysiologically, one single pixei representation is similar of 
having a grandmother cell where a specific image is represented by one neuron (with 
a very small receptive fieId size). Furthermore, the features discovered by LNMF have 
rather random position in the image domain. Receptive fieId masks produced by DNMF 
are sparse but contain less localized and oriented domain than LNMF In addition it 
contains non-oriented features. Probably the most important issue related to the DNMF 
RFs masks is the fact that almost all their domain correspond to salient face features 
such as eyes, eyebrows or mouth that are of great relevance to facial expressions. 
While discarding less important Information (e.g. nose and cheeks, which is not the 
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case for NMF), DNMF preserves local spaţial information of salient facial features (that 
are almost absent In the case of LNMF). The preservation of the spaţial facial topology 
correlates well with the findings of Tanaka et al. [144] who argued that some face 
cells require the correct spaţial facial feature configuration in order to be activated for 
facial expression recognition. We have noticed in our experiments that the degree of 
sparseness corresponding to basis images extracted by DNMF did not increase after a 
nunnber of iterations. We believe this is caused by those patterns in the basis innages 
that encode nneaningful class information (such as those corresponding to salient facial 
features) and they cannot be disregarded as the iterations proceed further. The degree 
of RF masks sparseness can be quantified by measuring the normalized kurtosis of a 
base image. The average kurtosis forţhe three representations over 144 basis images 
are: ^ata/f = 7.51, kLNMF = 152.89, Icdnmf = 22.57. 

We have described the spaţial distribution of the receptive fieid masks in terms of 
4 spaţial parameters: average domain location ( x . y ) , domain orientation (O, 90, 45 
and 135 degrees, respectively) directions, and aspect ratio. The aspect ratio is defined 
as l/Wf where l and w are the length and width of the receptive fieids calculated as 
foilows [145]: 

V X.î/ 

t/̂ fc ̂  /X ; (^cos(0 )-ys inW)222 , (5.21) 
V 

over {x. y) image space. These RF masks domain parameters calculated over the 
facial image database are represented in Figure 5.8. We can notice in Figure 5.8a that 
the RF masks do not cover the entire space. For NMF and DNMF they are centrally 
distributed and cover the image center which is in par with a similar characteristic of 
\/4 receptive fieids. LNMF features are rather distributed marginally as shown in Figure 
5.8a. Uniike NMF, where domain orientation is at oblique angles (45 and 135 degree), 
LNMF emphasizes more horizontal and vertical features. DNMF puts approximately the 
same emphasis on horizontal and oblique features and slightiy less stress on vertical 
ones. The oblique features are represented due to the chin contour (as it can be seen 
from Figure 5.7c) where DNMF acts like a local edge detector. 

The aspect ratio of NMF ranges from 0.6 to 1.6 with a mean at 1.09 and a standard 
deviation of 0.19. LNMF aspect ratios range from 2 to 11 with a mean at 1.65 and 
standard deviation 2.04. DNMF aspect ratios range from 0.5 to 2.2 with mean 1.03 
and standard deviation 0.26. The higher average aspect ratio of LNMF indicates that 
its receptive fieids are more elongated horizontally then those of NMF or DNMF. 

To characterize the frequency distribution of RF masks we have computed their 
spaţial frequency and orientations from their Discrete Fourier Transform: Fk{u,v) = 
m i ExLV y)exp[-j27T{ux/N + vy/M)] where u = 1 , . . . , 7V - 1 and i; = 
1 , A/ - 1 are spaţial frequency coordinates in the horizontal and vertical directions, 
respectively, expressed in cycles/image and N and M are the number of rows and 
columns in the basis image, respectively. The two dimensional spaţial frequency are 
represented in polar coordinates (r, ( f ) where r denotes the absolute spaţial frequency, 
^ orientation, u = rcos{ip) and v = rsin((^). Thus, the optimal spaţial frequency (orien-
tation) is defined as the spaţial frequency (orientation) of the peak in the amplitude 
(phase) spectrum. 

Figure 5.9 presents the optimal spaţial frequency and optimal orientation for NMF, 
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LNMF and DNMF receptive fieid masks found by taking the peak of the spectrum. Fi-
gures 5.9 a), b), c) indicate that the features are evenly spread in all orientatlon in the 
frequency domain for aii three representation studied. Regarding radial spectrum dis-
tribution, NMF shows peak at a high spaţial frequency bands (approximately between 
0.7 and 0.9 cycles/image) as shown in Figure 5.9 d). LNMF features are distributed 
within a lower frequency band (of 0.25 - 0.45 cycles/image) as shown in Figure 5.9 e). 
A bandpass spectrum shape is shown by DNMF in Figure 5.9 f) The RFs power spec-
trum covers a larger spaţial frequency band at [0.45,0.8] cycles/image, capturing a 
larger radial spectrum. 

NMF, LNMF and DNMF receptive fieids show a low, high and bandpass frequency 
spectrum, respectively. Redundancy reduction is also obtained by suppressing the low 
spaţial frequency in order to whiten the power spectrum of images, therefore this is 
done by highpass filtering [146]. This is consistent with what LNMF performs through 

^ij —^ having receptive fieids similar to highpass filters (see 
Figure 5.9a and Figure 5.9d). On the other hand, the high frequency components 
contain oniy littie power from the image source and, therefore, it is not robust to 
noise. To avoid this, highpass frequency must be eliminated. The combination of noise 
and redundancy reduction optimizes the Information transfer, resulting a bandpass 
filtering. However, as noticed in [146], the balance between highpass and lowpass 
filtering depends on the signal to noise ratio of the input signal, which depends on the 
ambient light level. 

5.7.2 Discussion and conclusion 

There are many models proposed for biological facial analysis in the Human Visual 
System . On one side, the computer scientists try to find reliable methods that give 
satisfactory results for face or facial expression recognition. On the other side, psy-
chologists and neurophysiologists try to understand how the human face is perceived 
by the Human Visual System , and develop models based on various experiments. Not 
surprisingly, some models proposed by the computer scientists, such as PCA, ICA or 
Gabor image decomposition, have been accepted as biologically plausible, since they 
share common properties with biological vision models. In this paper, three other 
models (NMF, LNMF and DNMF) were investigated. Although the main goal of this 
paper was to analyze their receptive fieid masks, it is worthwhile to mentlon common 
properties and differences between these three methods in order to draw a general 
conclusion. Table 5.5 summarizes several common and specific characteristics of 
these models. 

Table 5.5: Characteristics of NMF, LNMF and DNMF methods 
Decomposition method 

NMF LNMF DNMF 
Non-negative constraints yes yes yes 
Redundancy reduction no yes yes 
Sparseness degree holistic local sparse 
Class-dependent learning no no yes 
Learning type unsupervised unsupervised supervised 
Salient feature extraction yes no yes 
Spat. freq. bandwidth lowpass highpass bandpass 
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The basic principie of efficient information transfer (and hence efficient coding) is 
to reduce the redundancy of the input signal. It is well known that the natural stimuli 
(images) contain a large amount of redundant information that loads the dynamic 
range of the transmission channel without transferring information [147], [137]. Ge-
nerally, the term efficient coding and information redundancy reduction was associated 
with finding principal or independent components in representing a set of images. One 
fundamental difference between the methods mentioned in the Introduction and these 
three algorithms analyzed in this paper is that neither NMF, LNMF nor DNMF assume 
features independence. ICA and other methods that rely on this assumption work well 
when they are appiied on natural scenes. Definitely, natural images can contain more 
independent features than facial images. Here, each image has the same features 
(eyes, mouth, etc) spatially located in approximately the same position. This might 
be a reason why ICA performed worse than NMF, LNMF and DNMF when it comes to 
classify facial expressions [130]. 

Sparsity is another important issue that comes from neurophysiological fieid and 
has several advantages over holistic or local representations [113]. It is argued that 
the tuning of the neurons in the temporal cortex that respond preferentially to faces 
represents a trade-off between fully distributed encoding (holistic or global represen-
tation, as NMF result) and a grandmother cell type of encoding (local representation, 
achieved by LNMF) [148]. This trade-off seems to be provided by DNMF representa-
tion. 

The next three characteristics, namely class-dependent learning, training type and 
salient feature extraction are closely related to each other. NMF and LNMF are unsu-
pervised approaches while DNMF is supervised one. In a feature extraction framework 
supervised learning is often necessary to guide feature development. Forcing a class-
dependent learning by means of new constraints on coefficients expression, combined 
with the sparsity constraint on basis images, leads to a DNMF sparse image represen-
tation where the salient facial features (emotion-specific patterns that contribute most 
to expression recognition) are selected from the entire face image while the contri-
bution of irrelevant features is diminished. However, it shouid be noticed that this 
class-dependent approach is rather a condition which comes from pattern recognition 
domain. 

As a general conclusion, when comparing these three matrix factorization algo-
rithms with each other, we favor DNMF since it fulfills several requirements: its en-
hances the class separability (which a pattern recognition issue) compared to the first 
two approaches, minimizes the redundancy over basis images (similar to efficient co-
ding principie) and leads to a moderate sparse image representation (a neurophy-
siological issue). We found that, when DNMF is appiied to faces, the receptive fieids 
obtained by its basis images are bandpass filters covering the entire frequency orien-
tation domain. Neurophysiology studies must be performed in order to validate the 
values of the parameters of the DNMF receptive fieids. 

BUPT



5-7 NMF, LNMF, and PNMF modeling of neural receptive fieids 81 

a) b) 

c) 

Figure 5.7: Sample receptive fleid masks corresponding to basis images learned by a) NMF, b) 
LNMF and c) DNMR They were ordered according to a decreasing degree of sparseness. 
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Figure 5.8: Spaţial characteristics or FS masks domain for NMF (top), LNMF (middie) and DNMF 
(bottom) receptive fields (RFs): a) average location of RF domain; b) histogram of RF domain 
orientations in degrees (O®, 45°, 90°, 135°) and c) length-to-width aspect ratio of RF spaţial 
domain. 
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Figure 5.9: The optimal orientation and optimal spaţial frequency for RF masks corresponding to 
(a) NMF, (b) LNMF and (c) DNMF receptive fieids. The histogram of the distribution of 144 RFs in 
the spatial-frequency corresponding to (d) NMF, (e) LNMF and (f) DNMF approaches. 
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when there is no phase coherence the ratio drops down to zero. Computing the phase 
congruency quantity is equivalent to search for peaks in the local energy function 
[156]. For a one-dimensional signal I{x), the local energy Is given by: 

E{x) = (6.2) 

where F{x) is the Fourier transform of the signal I{x) with its DC component removed, 
and H{x) represents its Hilbert transform. Further, the local energy can be expressed 
in terms of the cosine of the deviation of each phase component from the mean, 
yielding: 

En Ar,{C0s{<t>{x) - 4>{X)) (6.3) 

where 0(x) is the phase component at location x and (p{x) is the amplitude weighted 
mean local phase angle of all the Fourier terms at location x. Geometrically, the 
relations between the phase congruency, local energy and the sum of the Fourier 
amplitude components is illustrated in Figure 6.1. The relation (6.3) does not offer 

axis 

H.:x) -

Figure 6.1: The relation between the phase congruency, local energy and the sum of the Fourier 
amplitude components. 

satisfactory localized features. Moreover, it is sensitive to noise. Therefore, Kovesi 
[152] proposed a modifled version for the phase congruency quantity: 

rc^ E Wix)\An{rM^>M - (Hx)) -- l^iniHx) - JIJ (6.4) 

The term W(x) Is a welght term to moderate the frequency spread. The constant term 
e is oniy Introduced to avold divislon by zero. 7' Is a noise threshold and represents the 
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estimated noise influence. The symbol [J denotes that the enclosed quantity is equal 
to itself when its value is positive, and zero otherwise. In practice the local phase 
Information is obtained using banks of Gabor wavelets at different scales. Logahthmic 
Gabor functions can also be used [152] described by: 

= ^^^ - 2ilogia/.o)\ 
(6.5) 

where ujo «s the filter's center frequency and a is a constant. Performing a convolution 
between the signal I{x) and a pair of quadrature logarithmic Gabor filters, the foilowing 
responses are obtained at location x: 

en{x) = I { x ) ^ M ^ (6.6) 

and 
= (6.7) 

where n denotes the filter scale, M^ and M^ represents the even symmetric (cosine) 
and odd-symnnetric (sine) wavelets at a scale n, respectively. Then, the amplitude 
An{x) can be written in terms of filters response as: 

An{x) = x/en(x)2 + On(x)2 (6.8) 

while the phase is given by: 

M x ) = atan2ien{x), On(x)) (6.9) 

We further have F{x) ^ E n ^n(x), H{x) ^ E n On{x), and E n M^) ^ E n V^n{xyo^ix'' 
The weighted mean phase angle corresponding to each filter is expressed as: 

By replacing the proper quantities and after some computation, the expression An{cos{(p{x) 
(j){x)) - \sin{<f){x) - (l){x))\) of relation (6.4) can be rewritten in terms of filter responses 
as foilowing: 

( e , ( x ) . + . - | e , ( x ) . " On(x) (6.12) 

6.2 Facial feature extraction 

Before appiying the phase congruency to an image set let us consider, without loss of 
generality, the simplest case of two phase-shifted sinusoidal signals I i and /2 depicted 
in Figure 6.2 a). The phase displacement, also drawn in Figure 6.2 b), represents fne 
disparity used for measuring the features similarity which will be performed through 
the phase congruency. Each image of dimension r x s from a set is lexicographically 
scanned so that it is transformed into a r x s = m - dimensional column vector repre-
senting ID signal. Each such column vector is stored in the columns of a m x n matrix 
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Figure 6.2: a) Two phase-shifted sinusoidal signals; b) Polar coordinates of the phase angle for 
the two points in the signals. 

X with n the nunnber of images. Phase congruency is appiied across the columns using 
the relation (6.4) so that, the dissinnilarity between any xi , , and x i j , x2a and X2 j , 
and X3J, .. . , Xkd and x^j is measured, for i j = \.. .n, i ^ j, and k = 1. . .m. The 
procedure is depicted in Figure 6.3. The degree of similarity between set image is thus 
computed leading to dischnninant features incorporating phase information. Appiying 
the phase congruency approach the matrix X is transformed into the matrix Xp(7.̂ . 
The resulting phase congruency feature maps are illustrated in Figure 6.4 for samples 
from the two sets involved in the experinnents, namely Cohn-Kanade and JAFFE facial 
expression database, respectively. Here, each image represents a reshaped column 
of the matrix Xpc^-
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Figure 6.3: Facial features extracted by appiying phase congruency approach to the training set 
from Cohn-Kanade (top row) and JAFFE (bottom row) facial expression database, respectively. 

Figure 6.4: Facial features extracted by appiying phase congruency approach to the training set 
from Cohn-Kanade (top row) and JAFFE (bottom row) facial expression database, respectively. 
Notice how the fiducial facial features that incorporate prominent discriminant phase information 
are emphasized. 
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6.3 Performance evaluation and discussions 

Both Cohn-Kanade and JAFFE databases were used in the experiments. For the phase 
congruency approach the original matrix X is transformed into the feature matrix 
Xpc2(tr)/ procedure described in Section 6.2. To reduce the data dimensionality, 
PCA is further appiied to Xpc f̂̂ tr) - where ^ is a matrix whose columns store the 
average face = ^ ^ E j l T ^jitr)- New reduced feature vectors are then formed 
connprising the columns of a matrix F̂ ^̂ ). 

The experiments were carried out for four different Gabor wavelets scales {scale = 
{1 ,2 ,3 ,4 } ) and three standard deviations of the Gaussian, k = {0.41.0.55,0.75}, where 
k = a/ujQ. These values have physical meanings. A A: = 0.75 corresponds to a filter 
bandwidth of approximately one octave, k = 0.55 results in a two-octave bandwidth, 
while k = 0.41 resembles a three-octave bandwidth. We have chosen these values as 
the filter bandwidth corresponding to 1 to 3 octaves matches well with measurements 
obtained on mammalian visual cells [157, 158]. 

The results corresponding to the Cohn-Kanade database for varying PCs {PCs = 
{5 ,10 ,20 , . . . , 150}) are shown in Figure 6.5. The best results for scale = 1 are obtained 
when k = 0.41. Similar performances are noticed for the same k and scale 2, but oniy 
for large number of Pcs (> 80). However, the features extracted using a two-octave 
bandwidth lead to close classification performances. As the filter's scale increases so 
the accuracy corresponding to k = 0.75. The overall maximum performance (80.00 
%) is obtained for scale = 4, k = 0.75, and 90 PCs. 

Figure 6.6 depicts the results for the JAFFE database. In this case the classifier 
foilows approximately the same behavior to that corresponding to the other database, 
for low k, as noted from Figure 6.6 a) and b). The same tendency remains at large 
scale, where better accuracy is achieved for small k, as shown in Figure 6.6 c) and d). 
The overall maximum accuracy (69.84 %) is yielded for .oca/e = 4 and k = 0.55. 

Finally, the results for PC2 in comparison with the other approaches are drawn 
in Figure 6.7. For the Cohn-Kanade database, PC2 clearly outperforms the other ap-
proaches. The second best feature extraction method is provided by the PCA, foilowed 
by ICA and LDA. For the JAFFE database a peak of 69.84 in accuracy is obtained for 
PC2 with 50 PCs. For more principal components the PC2 accuracy drops down under 
63%. Here, the second best feature extraction method is provided by the LDA method 
with a maximum accuracy of 63.49. 

Table 6.1 summarizes the results for all methods along with the corresponding 
number of principal components. As one can see, PC2 conducts to the best facial 
expression recognition results for both facial expression databases, outperforming the 
other methods. 
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Figure 6.5: Experimental results for PC2 corresponding to the Cohn-Kanade database for varying 
number of PCs, k, and scale. 

Table 6.1: Maximum accuracy (%) for PC2.LDAJCA and PCA. 

Database Cohn-Kanade JAFFE i 

Method PC2 PCA ICA LDA PC2 PCA ICA LDA 

Max. accuracy (%) 80 74.29 71.43 72.86 69.84 60.32 60.32 
Number of PCs 80 90 50 60 50 10 130 20 n 
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Figure 6.6: Experimental results for PC2 corresponding to the JAFFE database for varying number 
o f PCs, k, a n d scale. 
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Figure 6.7: Experimental results for all methods involved in the experiment corresponding to a) 
C-K database, b) JAFFE database. 
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6.4 Conclusions 

The underlying approach proposed in this paper is based on the phase congruency 
(PC2) Information extracted from a set of aligned images. These features seenn to 
contain more discriminant power, as evidenced by experiments, than those retrieved 
by PCA, ICA or LDA technique, when appiied to classify facial expressions. As far 
as the image registration is concerned, this preprocessing step is crucial as improper 
alignment wouid drastically reduce the method's performance. Since the local phase 
Information is technically computed using banks of Gabor fllters wlth different scales 
and standard deviation, the classification performances are highiy influenced by these 
parameters. Based on the experimental findings, some remarks can be drawn wlth 
respect to the values of Gabor filter's parameters In relation to the facial expression 
database Involved. For the Cohn - Kanade database, a narrow filter's bandwidth is ne-
cessary for high scale, while, for the JAFFE database and high scale, a larger bandwidth 
Is required for leading to superior classification performances. It is worth mentioning 
that, the expressers from the JAFFE database are less expressive than the ones coming 
from the Cohn-Kanade database. It turns out that this issue leads to the necessity of 
using a larger filter's bandwidth for the expressions associated to the JAFFE database 
In order to capture more relevant Information about the facial features corresponding 
to a particular expression. 
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Appendix A 

Derivation of the DNMF updating rules 

The expressions (5.9) and (5.11) can be proved by using an auxiliary function similar 
to those used in EM algorithni [109]. G is said to be an auxiliary function for V^(F) 
if > r ( F ) and G(F,F) = r (F) . If G is an auxiliar/ function for Y, then 
Y is nonincreasing under the update F̂ ^̂  = argminp (^(F, F̂ "̂̂ )̂. With the help of G 
taking W and A as argument, a learning algorithm that alternates between updating 
basis images and updating coefficients can be derived. Since we did not impose any 
other constraints on the basis than those required by LNMF the derivation of (5.11) 
can be found in [106]. We have modified the coefficient expression, therefore we 
oniy give the derivation of its formuiae. By fixing W, A is updated by minimizing 
y ( A ) = Let us define: 

Q ne Q 
+ Y 1 '^ik^kj + a E îXî  - /? E + 7 ~ Mc)(aci - Mc)̂  - 6 ̂ (/Xc - - -

k i,j i c = l Z=1 c = l 

This function Is an auxiliary function for y (A ) . It is straightforward to show that 
G(A ,A) = y ( A ) . In order to prove that > y ( A ) , since 
is convex, the foilowing inequality hoids: 

- < (A.2) 
k k 

( f - i ) 

for all non-negative hijk that satisfy Y.k -̂̂ 'jk = denoting h,jk = we 

obtain: 

- < - E (in^./^.. - ' n - ? ^ ) . (A.3) 
^ fc ^ k Ek^ik^kj V Ek^ik^lj / 

From this inequality it foilows that G'(A, A'"^) > y (A ) . 

By setting to zero for all kl, l = l , . . . , n c the parţial derivative of G 
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with respect to â z gives us: 

- E — + E - + 27(afc, - Mc) = 0. (A.4) 

The equation can be rearranged as: 

^ i ^ i Hk^ik^li 

where ^ = 7 -
This is a quadratic equation in a and it lias the solution: 

2/Xc - E i + "^ife - + E . 

afc/ = ^̂  ' " " • (A.6) 

Taking into account that Ei^tfc = 1» we obtain (5.9) . 
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Appendix B 

Derivation of the PNMF updating rules 

B . l Derivation of the poiynomiai KNMF coefTicients update 

For updating the expression of the poiynomiai KNMF coefTicients we present two ap-
proaches which lead to the sanne updating rule. The first approach derives the multipli-
cative rule (5.16) based on finding an upper bound minimizer which iteratively moves 
towards tighter upper bounds of the cost function involved. The second approach 
utilizes a gradient descent optimization procedure. 

Definition 2 The function G(6, b^^^) is an upper bound for Q{b) \f, for any b and b^^^ 
we have G(6,6) = Q{b) and > Q{b), V6 ^ b^'^ [108]. 

Lemma 1 If G is an upper bound for Q, then Q is decreasing under the update 

Proof. = < b^'^) < b^'^) = • 

Lemma 2 Let d̂ j denote the Kronecker delta function and let L be a diagonal matrix 
with elements L i j = 6ij{Kzzb)i/b^\ Then the foilowing theorem hoids: 

Theorem A,l: The upper bound of the function 

Qib) = - E f^r^i^r))' (A-1) 
j=l ^ r = l ^ 

is given by: 

G ( 6 . = G(6('>) + (6 - + (A-2) 

where VQ(6'" ) = is the first parţial derivative with respect to 

Proof. The cost function Q{b) can be written as Taylor expansion in the neighborhood 
of the fixed point as foilows: 

Q(6) = + (6 - b^'YVQib - ^ (A-3) 
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B . l Derivation of the polynomial KNMF coefficîents update 97 

where = ^ ^ f j ^ is the second parţial derivative with respect to b̂ l̂ Ob-
viously when b = M̂ ) we have G{b, b) = Q{b). For b ̂  G{b, > Q{b) is explicitly 
given by: 

{b - b^'Ymb^'^) - - b^'^) > o, (A-4) 

taking into account that = ^zz- The relation (A-4) is equivalent with the 
statement that the matrix L - K^z is positive semidefinite. In order to prove that, 
consider first the matrix P whose elements are of the form: 

(A-5) 

The matrix P is generated by rescaling elementwise the elements of L - K^z• Therefore, 
L - Kzz is positive semidefinite if P is positive semidefinite. For P and for any b we 
have: 

b^Pb = (A-6) 

i j î J 

= ^ E +̂  E - E m îh 
i,j iJ iJ 

n 

Here, Kff is the { i j } element of the matrix Kzz-

Derivation ofeq. (5.16), first solution. 

Proof. Since is un upper bound for Q{b) and - argmin5(7(6, we find 
its minimum by taking the derivative and setting it to zero: 

Ş W ^ . . + - //̂ O - 0. (A-7) 
db 

This gives us: , ^ 

= - (A-8) 

Multiplying on the left by L{b')-\ we get: 

6 = (A-9) 
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98 Derivation of the PNMF updating rules 

The parţial derivative of with respect to is given by: 

dQ{b) 
db^ 

= ^ ( ^ ( x , ) - ^ b M Z r ) ] = (A-10) 
j=l ^ r = l ^ 

j=lr=l ^ 

= - ( k , , -

Since is a diagonal matrix, 

By substituting ( A - l l ) and (A-11) in (A-9), we obtain 

(K^^bji 

- -L Ĉ x̂)! _ , (t) (Kzzb ) i 

^ At) {^zx)i 

Putting it in a nnatrix form, we obtain the expression (5.16). • 

Derivation of eq. (5.16), second solution. 

Proof. An alternative solution can be found if we use a gradient descent optimization 
such as: 

(A-13) 

with O < 7; < ^,where t] is the learning step and 0 > 0. Taking the Taylor expansion 
(A-3) and substituting b from (A-13), we fînally have: 

Q{b) - = vi^'Qib^'^)) (1 - . (A-14) 

Choosinganappropriatevalueforr/andasuchasTy = L i j and/? = K^zi we have 77 < 

therefore - > O for any element 2 G [0,1], hence Q{b) > However, 

this approach leads to the same solution since the relation (A-13) is equivalent with 
(A-9) after substituting 7] and • 

B.2 Derivation of the polynomial KNMF basis images update, i.e. of eq. ^ 

(5.17) 

Proof. The same raţionale is foilowed for obtaining an update rule for the basis images 
by employing eq. (5.20). Taking all images, the parţial derivative of VQ(2) with 
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B.2 Derivation of the polynomial KNMF basis images update, i.e. of eq. 
(5.17) 99 

respect to 2 is given Dy: 

= - • + ^brb^K'(Zr • (B-1) 
j = l r = l 

In this case, the relation G(z, > Q(z) translates into the foilowing: 

^ ^IdzbK^r' - d{d - + (B-2) 
i j 

which is equivalent with: 

x^Ki- ' ' > z H K i : \ (B-3) 

Finally, the foilowing inequality hoids: 

x^Ki-^ > x^Ki ;^ > (B-4) 

since (x^z)^-^ > {z^z^-^, Vx E [0,255],z G [0,1] and d>2, with equality for d = 2. 
Further, by choosing L i j = ^ we conne up with the updating expression 
for basis innages in (5.17). • 
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