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Abstract - Evolutionar> design might be a promising 
option to the conventioDal design of electronic circuits. 
Each project is assembled from a number of component 
parts and tfaen is tcsted in the frame of an evolutionary 
algoritfani. We have presented in this paper some 
evolutionar}' experiments of digital and analog electronic 
circuits design, both by simulating evoiotion in software 
and by true evoludon in hardware. These experiments 
are conducted witfa our stndents in the laboratory of 
Evolutionary Systems. 
Ke>'words: genetic algorithms, evolvable hardware, 
electronic circuits, evolutionary computation 

I. INTRODUCTION 

Evolutionao' systems are designed by the means of 
evolutionary computation. These "designs" are 
evolved by a process of natural selection, like in the 
living maiter. The mechanism of evolution is entirely 
blind and has no particular object other than 
sun ivability. The survivability of the organism can be 
seen as a process of assembling a larger system from a 
number of component parts and then testing the 
organism in die environment in which it fmds itself 
The concept of assemble-and-test together with an 
evolutionary algorithm can explore the entire design 
space because of the absence of imposed rules of 
design. In this way, in electronics, evolutionary design 
generates new unexpected and usually usefiil 
electronic circuits. 

The building of new electronic circuits by 
evolutionary computation has been created the 
concept of Evolvable Hardware (EHW). The usual 
design process is in a top-down way and begins with a 
precise specification. EHW is applicable even when 
no hardware specification is known before. Its 
implementation is determined through a genetic 
leaming in a bottom-up way. A Genetic Algorithm 
(GA) is intended to mimic Darwinian evolution. A 
population of solutions. called chromosomes, is 
maintained, and goes through a series of generations. 
For each new generation, some of the existing 
chromosomes survive, while others are created by a 
ty pe of reproduction and mutation from a set of 
parents. EHW combine knowledge of both GA and 
electronic circuits design to evolve new circuits. 

Research in EHW can be divided inio mtnnsic 
evolution. which refers to an evolutionary process in 
which each circuit is buiit in electronic hardware and 
tested, and extrinsic evolution, that uscs a model of 
the hardware and evaluates it by simulation in 
software. 

We are convinced that \er\' soon, as reprogrammable 
integrated circuits will become larger and larger and 
the design lechniques will be improved, EHW will be 
dominant in electronics. and the electronic engineer 
must be ready for this future evolution. It is true that 
for the time being, the complexity of evolved circuits 
is so far small. The main problem is the representation 
of the circuit in chromosomcs, because complex 
circuits need a great number of architecture bits, 
which directly influences the GA search space. 

We have prepared some experiments of extrinsic 
evolution in digital and analog circuits. and for 
solving of some w e l l k n o u T i optimtzation problems, 
like the generation of test vectors in digital circuits, 
the fmding of the global minima in a multimodal 
function. or the solving of the Traveling Salesman 
Problem (TSP). We have also prepared two 
experiments of intrinsec EHW in digital circuits by 
using common digital CMOS circuits. The first one is 
a test platform with controlled switches for 
experiments with simple building blocks made-up 
from few transistors. The second platform consists of 
CMOS switches, some simple logic gates, and three 
JK flip-flops for experiments with registers and 
counters. Finally, a real Xilinx XCR3064 CoolRunner 
CPLD mounted on a XCRP board may be used to 
implement some extrinsic EHW circuits. 

The remaining sections of the paper are organised as 
follows: Section II describes in more detail the genetic 
leaming component of the EHW. Section III shows 
some examples of digital circuits designed by 
software with a GA and then implemented in a 64 
macrocell Xilinx CPLD. Section IV shows some 
examples of simple analog and digital circuits 
implemented by evolution on real hardware 
configurable boards. Finally, Section V provides the 
conclusions and fiiture work. 
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Fig. 1 A GUI for the search of a lest vector which 
poinis a stuck-at O fault in ihe marked node 

Fig. 2. A GUI for ihe generation of an optimum 
set of test vectors by hibridation of a GA 

II. GENETIC LEARNING IN EHW 

AII the developed algorithms are based on GAs, an 
adaptive searching technique for solving optimisation 
problems based on the raechanics of natural genetics 
and natural selection. The success of the application 
of GAs to an optimisation problem depends on the 
representation of chromosomes, fitness function, 
method of crossover, mutation operation, and on the 
diverse information from the chromosomes. When the 
diversity is lost before the global optimum solution is 
found, the performance of GAs deteriorates and their 
solution processes converge prematurely. Moreover, 
the mutation operation is important. While the 
mutation operation adds new information to a 
chromosome, it can also destroy useful information 
held in the chromosome. 

In GAs the search is conducted using information of a 
population of candidate solutions, called 
chromosomes, so that the chance of the search being 
settled in a local optimum can be significantly 
reduced. Four essential components need to be 
designed in applying a GA for an optimisation 
problem: chromosomes representation, crossover 
operator, mutation operator and fitness function. 

In a reconfigurable circuit, each bit of a chromosome 
represents usually the state of a programmable switch. 
The entire chromosome represents the state of all 
switches, that is a complete circuit, which may be 
good or bad, according with his fitness. The iniţial 
population of chromosomes (bit strings) is generated 
randomly. All these potential solutions are evaluated 
using a fitness function. In our case, for a single 
boolean function, fitness is the ratio between the 
number of the correct values of the function and the 

number of all possible values (which is jf the 
boolean function has n input variables). A well-
designed circuit will be obtained only when the value 
of fitness is 100%. An approximately value of the 
fitness is unacceptable here. 

The next step is selection and reproduction. For each 
individual, a number of copies are made, proporţional 

to its fitness, while keeping the population size 
constant. The least fit individuals are deleted. This is 
the survival of the fittest part of the GA. 

The next step is crossover, where individuals are 
chosen two at a time, as parents. They are converted 
into two new individuals, called offsprings, by 
exchanging parts of their structure. Thus, each 
offspring inherits a combination of features from both 
parents. We have obtained the best results with one 
point crossover, with a probability of 80%. This 
operator may be used more times on different selected 
pairs of chromosomes in a generation. 

The next step is mutation. A small change is made to 
each resultant offspring, with a small probability. 
After mutation is performed on an individual, it no 
longer has just the combination of features inherited 
from its two parents, but also incorporates the 
additional change caused by mutation. This ensures 
that the algorithm can explore new features that may 
not yet be in the population. It makes the entire search 
space reachable despite the finite population size. The 
whole process is repeated for several generations, and, 
if the best chromosome in population will have the 
fitness of 100%, then this bit string represents a good 
solution for our function. 

III. EXPERIMENTS WITH EXTRINSIC EHW 

The first set of experiments show the generation of 
complexity with very simple rules in unidimensional 
and bidimensional Cellular Automata (CA), and the 
solving of some complex NP-problems (the finding of 
the global minima in a multimodal function, or the 
solving of the TSP) with GAs. These experiments 
have been ample described in [7]. 

Another set of experiments have been prepared for the 
purpose of automated generation of test vectors in 
digital circuits. If we want to generate a test to detect 
a stuck-at O fault in the marked node of the circuit 
represented in the Fig.l., the required vector is 
II11111111000000000, a combination of bits nearly 
impossible to find using a random approach ([6]). As 
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Fig. 3 The circuit achieved by evoiudon for the 
boolean flinciion from the equation (1) 
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Fig 4 The cvolulion of the fltncss across 50 
generations 

we can.see in the Graphic User Interface (GUI) from 
the Fig.l, the GA used to solve this problem has 
found the correct solution in 40 generations. The 
algorithm uses a population of 32 chromosomes and a 
mutation rate of 3%. Fitness was calculated as the 
sum of (1 if fault is excited or O otherwise) + (fraction 
of inputs in AND gate set to 1) + (fraction of inputs in 
OR gate set to 0). The maximum value of the fitness 
defmed in this way is 3. 

By using the GUI from the Fig.2., we can solve the 
Fault Coverage Code Generation Problem for a more 
complex combinational logic. The problem consists in 
fmding of a given number of test vectors that 
maximizes the fault coverage of the circuit. We have 
chosen t\vo ways of hibridation of the standard GA: 
by using the inductive search, like in the Fig.2., or by 
using the simulated annealing aigorithm. The example 
from the Fig.2. shows that only 6 test vectors could 
cover more than 75% from the total number of stuck-
at O faults in the circuit. AII these GUIs (and also 
those from the first set of experiments) have been 
developed in Matlab 5.3. 

A. The Implementation of a Boolean Function 

We have considered a boolean ftinction represented in 
a minimal disjunctive form by using a Kamaugh map: 

/ = X, • • X3 + T̂j ' -l- X 2 (1) 

This representation has a cost of 7 gates and 13 
inputs, mcluding inverters. By applying some 
sv^itching-algebra theorems our function may be 
written in the next form: 

/ = X3 e X, • (2) 

Now, the cost of implementation is of only 3 gates 
and 5 inputs. Unfortunately, there is no algorithm to 
fmd this convenient form of the flinction, only the 
heuristics and experience of the human designer. 

We have tried to fmd another representation of this 
function by evolutionary design. We have used the 

idea given in [2]. Each combinational circuit is 
represented as a rectangular array of logic gates. Each 
of these gates has hvo inputs and onc output, and the 
logic operator may be selected from a list. At the 
beginning of the search, all the gates from the matrix 
are disposable to implement a funcţional circuit. Once 
a funcţional solution appears, then the fitness function 
is modified such that any valid designs produced are 
rewarded for each gate which is replaced by a simple 
wire. The algorithm tries to find the circuit with the 
maximum number of gates replaced by wires that 
performs the fiinction required. 

The chromosome defines the connection in the 
network between the primary inputs and primar) 
outputs. We have used a network of 4 gates, a 
population of 32 chromosomes, 10 of them beeing 
changed each generation, a single point 100% 
crossover and 5% rate mutation. A feasible solution 
has been obtained in less than 50 generations, as we 
can see in the Fig.3. and in the Fig.4. The cost is given 
now by 3 inverting gates and 6 inpuis (one of the 
gates in the network is useless), and this solution has 
the minimum delay time between any input and the 
output of the circuit, in a gate Ie vel implementation. 

B. The Implementation of a Finite State Machine 

The Finite State Machine (FSM) represented in the 
Fig.5. is a sequcnce detector with one-input, one-
output and 6-intemal states. When the input sequence 
011 occurs, the output becomes 1 and remains on this 
logic value until sequence 011 occur again. In this 
case, the output returns to O, and maintain this value, 
until a new sequence 011 appears. 

Initially a GA has been used to fmd optimal state 
assignment. The chromosome represents the FSM as a 
list of states. The iniţial population is generated 
randomly. The goal of the GA is to extract the 
optimum state assignment, which requires the least 
number of logic gates. For that reason the number of 
2-inputs AND/OR logic gates are used to defme the 
fitness function. The optimum state assignment is 
given in the Fig.5. A more detailed description of this 
problem is presented in [1]. 

337 
BUPT



SO: 000 
SI: 010 
S2: 001 
S3: 100 
S4: 110 
S5: 101 

Fjg 5. A sequence detector described as siate 
transitioi) graph and GA state assignment Fig. 6. Evolved optimal circuit solution of the 

sequence detector 

Then, the extrinsic EHW has been used to find the 
funcţional design of combinational parts of the 
sequence detector. We have used the same method 
presented in the subsection A and in [2]. 

The equations of the evolved optimal combinational 
circuit are the following: 

Do=X'Q, 

y = Q2 

(3) 

(4) 

(5) 

(6) 

The schematic diagram of the circuit is given in the 
Fig.6. A bad state assignment may conduct to much 
more complex equations for the combinational circuit 
of the FSM. 

C. Some experiments with Xilinx XCR3064XL CPLD 

The circuit XCR3064XL, is a Xilinx CPLD with 64 
macrocells and 1500 usable gates, providing low-
power and ver\ high speed, and beeing in-system 
programmable through JTAG IEEE 1149.1 Interface. 
Unfortunately, this circuit has only 1000 erase/ 
programming cycles guaranteed, so it can not be used 
with intrinsic EHW. 

This programmable circuit is mounted on a board, 
called Digilab XCRP, delivered by Digilent, Inc. This 
low cost plattbrm can be used to implement a wide 
variet}- of digital circuits. The programming pins of 
the circuit are directiv connected to the parallel port 
pins of the computer. 

The software we have used is Xilinx Integrated 
Software Environment (ISE) 6.1 i, a complete CAD 
environment for implementation of complex digital 
circuits. We have generated the source file of the new 
project (schematic diagram or VHDL) and have 
obtained the fitter report and the timing report. 

We have implemented the boolean function from the 
subsection A on the basis of equations (1) and (2) and 
the circuit from the Fig.3. We have obtained the same 
results, so we can assume that our software finds an 
optimal way in connecting the hardware resources of 
the circuit, even if the function is not done in a 
minimal form. The circuit has used a single macrocell 
from the maximum number of 64 (that is 1/64), only 
two product terms from the maximum number of 224 
(that is 2/224), and only 3 function block inputs from 
the total number of 160 (that is 3/160). The pad to pad 
delay is 6 ns, and the total deiay of the circuit is not 
more than this value. For more complicated functions, 
evolutionary design may offer a better fitting of 
circuit resources (a less number of product terms). 

In sequential circuits, the optimal state assignment is 
crucial. The sequence detector from the subsection B, 
implemented with the equations 3,4,5 and 6, has used 
only 3/64 macrocells, 3/224 product terms, and 3/160 
function block inputs. The same circuit, implemented 
with a non optimal state assignment has used 4/64 
macrocells, 9/224 product terms, and 4/160 ftinction 
block inputs. Even the combinational time delay is 
diflerent for these circuits (4.7ns in the first case and 
7,2ns in the second case). It's true that the main 
differences in the complexity of these circuits are 
given by the state assignment, but it seems that 
evolutionary design is more efficient even for the 
combinational part of a FSM. 
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D. The Implementation of Analog Circuits 

Analog circuit synthesis entails the creation of both 
the topology and the sizing (numerical values) of all 
of the circuit's components. The difficulty of ihis 
problem is well known and the first auspicious 
approach, based on genetic programming, was 
presented in [3]. Another method of automatically 
generating analog circuit designs based on a parallel 
GA and a set of circuit constructing primitives is 
presented in [5]. 

Both methods need a huge computation power (fevv 
days on a parallel computer with 64 processors in the 
first case, or a network of workstations in the second 
case). We have only verified through PSpice 
simulation some of the circuits presented in [3] and 
[5]. Interesting is the fact that not all given circuits 
have been successful in our simulations. 

IV. EXPERIMENTS WITH INTRINSIC EHW 

We have prepared two set of experiments on intrinsic 
evolvable hardware of digital circuits by using 
common digital CMOS circuits. 

A. A Test Platform for Intrinsic Analogic EHW 

The first one is a test platform designed specifically 
for simple experiments into intrinsic hardware 
evolution. Based on an idea from [4], this testbed is in 
fact a matrix of analogue switches, connected to some 
plug-in boards, which contain the desired building-
blocks for experimentation. In [4] is described a great 
motherboard with 12 integrated circuits (IC) 
CD22M3494, each of them beeing a matrix of 16x8 
analogue switches. These ICs are very expensive, so 
we have built a much smaller board with only 20 ICs 
4066, each of them having only 4 analogue switches, 
that is a total number of 80 programmable switches. 

As a starting point for experimentation, bipolar 
transistors were used as the evolutionary building-
block, and the task was to evolve a NOT gate. The 
digital input to the testbed is provided by a computer 
via a digital input/output board, and the output is 
connected to an A/D converter on the board. 

sw 

GND 

Fig. 8. The equivalenl circuit diagrajn for the NOT 
evolvcd gate 

We have used a standard GA. with a population of 50 
chromosomes, 18 bit each of them. with a single point 
crossover, proporţional selection and elitism. The 
mutation rate was 5°o. The evolved circuit with a 
single transistor is shown in the Fig.8. The 
corresponding chromosome that build up the state of 
the analogue switches represented in the Fig.7. is 
lOOlOOOlOOOlOOlOIO. 

The on-switches resistances might be about 50^2 for 
CD22M3494 circuit, or about 300n for 4066 IC. The 
circuh from the Fig.8. conforms to the NOT function 
in that its output corresponding to O input is of slightly 
higher voltage than that corresponding to a 1 input, 
however this difference (only IV) is too small to be of 
any practicai use. If we repeat evolution, with much 
more switches, we can see that these additional 
switches are placed in parallel, reducing the combined 
resisiance from the emiter. This conflguration will 
give a good voltage swing and the circuit will become 
an inverter with a NPN transistor, like we knovv. 

B. A Test Platform for Intrinsic Digital EHW 

The second platform consists of CMOS switches, 
some AND gates and three JK flip-flops for 
experiments with registers and counters. The most 
suitable way to connect each data input of a flip-flop 
to a lot of different signals from the circuit, is by 
using CMOS analog multiplexers/demultiplexers. 

The schematic diagram from the Fig.9. shows the 
building block used to design this board. Each data 
input of a JK flip-flop has an 8-channel analog 
multiplexer 4051. The first two inputs in the 
multiplexer are constants l and 0. The next 3 inputs 
are the direct or inverse outputs of the flip-flops, 
selected by 2-channel 4053 multiplexers. Finally, the 
last three inputs in the multiplexer produce AND 
functions between any two different flip-flop outputs. 

A building-block uses 12 bits, so the length of a 
chromosome is 36 bits. We have used a standard GA 
with a population of 100 chromosomes, with a single 
point crossover, the mutation rate of 1%, proporţional 
selection and elitism. 
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Fig. 9. Tlie building-block for intrinsic digital EHW 

An example of an evolved counter with 5 states is 
presented in the Fig. 10. We have used all the three 
building-blocks from the board, including an AND 
gate. 

V. CONCLUSIONS 

Evolutionary design is in fact a creative machine for 
new designs and may be useful for electronic 
engineers. The experiments presented here display the 
generation of complexity with very simple rules, and 
the solving of complex NP-problems with simple 
GAs, GAs may be useful for automated generation of 
test vectors and for synthesis of digital and analog 
circuits. Analog circuit synthesis usually needs more 
powerful computers, but in the near fiiture this 
impediment will be certainly avoided. 

Continued research on simple, even though 
unimpressive circuits, is a major factor on the 
development of EHW. Analysis of such circuits is 
„far from impractical, and is likely to contribute to the 
understanding of the properties that evolution can and 
cannot exploit, and why'' ([4]). 

In intrinsic EHW experiments, students have the 
entire control over the architecture or type of basic 
configurable element, and this may be an advantage 
over a board equiped with a FPGA device. Evolution 
may be able to exploit a different system of 
interconnections or architecture. But is understandable 
that more complex circuits might be evolved in a 
FPGA board and these new experiments are a goal for 
the future. 

Future research must be done in this area. Firstly it is 
important to fmd a better representation of the circuit 
in chromosomes, because complex functions need a 
great number of architecture bits, which directly 

CLK 

J Q J Q 
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Fig. 10. An example of an evolved counter with 5 slaies 

influences the GA search space. EHW successfully 
succeeds only when fitness reaches 100% and in huge 
search spaces this condition may be not always 
possible. This is the main reason that for the time 
being the complexity of evolved circuits is so far 
small. 
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