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Abstract - The private character of the information 
transmitted on a communication channel or network 
couid be ensured using somc cryptography codes. 
Different encryption techniques performances depcnd 
on the processing time and the complexity of the 
encoding algorithm. We propose a new and 
advantageous method for symbol permutation, using 
inversable algebraic function defined on Galois Fields 
(GF), which minimizes the necessary memory capacity 
of the encoding algorithm, ensures a great diversity of 
data and is harder to attack. 
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I. INTRODUCIION 

Secure communications imply encryption methods 
use. Different encryption algorithms (DES - Data 
Encryption Standard, 3DES, MD - Message Digest 
etc) are known but new cryptography principles are 
searched for higher diversity and efficiency of the 
communication system [1 ]. 
The coded sequence is deduced as: 

(1) 
We denote: 
CI - the data sequence; 
c - the coded sequence; 
Eĵ  - the encryption function. 
Symmetric encryption systems (Fig.l) use secret keys 
and could be implemented software or hardware as 
media-access cards (MAC). Data are extracted from 
the received sequence with the same encryption 

function: 
(2) 

Public keys, defined as 'one-way' functions, are 
applied for asymmetric encryption (Fig.2) and the 
decoder applies the inversed encryption function: 

= (3) 
The enciyption keys are specified in large tables, 
which request high-capacity of memory. 
The symmetric encryption code could use different 
methods based on substitution and/or permutation of 
the symbols. The combined methods have better 
performances. The coding-rate is about 1:1, so the 
transmission rate is not affected. 
The permutation order is hardiy to inverse and to store 
for long sequences. For example, DES, used on 
Inetrnet by the SSH (Secure Shell) protocol, is a 
powerful encryption algorithm (ANSI X3.92), with a 
64 bits secret key. which permutes an input word of 
64 symbols. 
Symbol or character permutation is a frequently used 
cryptography method, hardiy to detect if the sequence 
length is high [2]. For example, a 20-symbols 
sequence could be permuted in 2.4 different 
ways. 
Large tables are used for permutation of long 
sequences and high memory capacity is required. The 
access time to the memory and the processing time of 
the encryption algorithm are increased when a longer 
permutation length is used. 
Therefore an algebraic method for permutation could 
reduce the encryption time and the coding complexity. 

Fig 1 Secret-Key Crypiosystem 
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The performances of the encryption aJgorithm will be 
improved using algebraic functions to generate the 
permutation order. 

Some coefTicients combinations do not generate all 
the symbols of the GF and therefore the decoding 
proccss becomes catastrophic. These sequences couid 
not bc used as encryption keys because there is no 
inverse function in these cases. It is necessary to find 
out which combination of coefTicients ensures the 
permutation of the GF symbols. The original sequence 
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Fig 2 Pubiic-Ko' Cryplos>siem 

II. GALOIS FIELDS 

The cr>'ptographic methods could be easier 
implemented using the Galois Field (GF) theory [3]. 
A GF(2'") has elements where m is the length of 
the binary sequence associated with a svmbol of the 
field. 
Internai addition and multiplication operations are 
defmed on the GF. 

Let us denote by a an element of the GF. It could be 
vvritten in an equivalent mode as a binary sequcnce: 

(4) 
or as a polynomial: 

mr-J (5) 

Addition of two symbols is made modulo-2 bit-by-bit. 
The nuli element (0) does not change the resuU of an 
addition. 
The opposite element is the element itself 
Multiplication of two elements is defined based on the 
polynomials product of the two elements and an 
irreducible m-degree polynomial p(x): 

c^a bco c(x) = a(x)b{x) mod[/?(.x)] (6) 
The unit element (1) does not change the result of a 
multiplication. 
If the product of two elements is equal to one, than 
they are named inversed elements: 

^ b , = a. (7) 
The substraction and the division are defined based on 
the opposite and the inversed elements. 

a-b^a-\-b (8) 

a l b ^ a b - ' (9) 
Polynomial functions defmed on GF(2'") could be 
used as permutation transform for different encryption 
algorithms: 

- - l 
r M ^ ^ - l 

(10) 

The sequence of coefTicients from the 

represents the encryption key. 

is considered the reference, so the identity function 
could not be considered an encryption transform. 
Other sequences of coefTicients make the same 
permutation and the chances of the ciyptanalyzer to 
find the key are increased. These combinations are 
called 'vveak keys'. Only those keys which uniquely 
generate a permutation of symbols could be used as 
'strong keys'. These keys are classified as symmetric 
or asymmetric keys. 
On GFs, a large number of simple and inversable 
polynomial functions could be used for encryption: 

(11) 

Tliese functions have only three coefficients which 
compose the transmission key of an encryption 
system. 
The inversed functions, defined on the same GF, are: 

(12) 

The integer exponent q is the inverse key component 
which verifies that: 

and 

w ) m o d ( 2 ' " - l ) = l 

(13) 

(14) 

The existence of q for any value of is quaranteed 
only if m is a prime number and all the GF's elements 
have the maximum order equal to 2'"-!. In fact, m and 
2'"-! should be simultaneousiy prime numbers to 
ensure the maximum number of simple encryption 
functions defined on a GF(2"'). We deduce some 
optimum values of /w: 3, 5, 7, 13, 17, 19, and 31. 
For example, on GF(8) these couples {k2, q) are: 

(2 - 4), (3 - 5), (4 -2), (5 - 3) and (6 - 6). 

Other Galois fields, such as GF(16), GF(64), 
GF(256), do not allow any combination of 
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coefficients for simple polynoniial inversable 
tunclions because the order of some elements is Icss 
then But there are some values of the 
coetTicients which produce inversable functions and 
these GFs couid be used vvith fevv constraints. 

111. ENCRYPTION ALGORITHMS 

The polynoinial inversable functions defined on GFs 
could be used for symbol permutation. 
For optimum m, the number of simple polynoniial 
functions detlned on GF(2'") is equal to the number of 
the generated permutations (except the identity one) 
and it is given by: 

(15) 

The coetTicients of the S-coefficients functions could 
be randomly generated to change the permutation 
order in a fast vvay. 
The function could be applied directly on the data 
symbols to permute the bits of a symbol or indirectly, 
on the position index of each data symbol from a 
block of 2"̂  elements, resulting a permutation of 
symbols. 
We call the direct method the Value Encryption 
Algorithm (VEA). 
The indirect method is called the Position 
Encryption Algorithm (PEA). 
Both algoritlims could be applied simultaneously on 
the data with different encryption functions, defined 
on difterent GFs. The last case represents the 
Combined Value-Position Encryption Algorithm 
(CVPEA) which is robust against the differential 
attacks. 
The direct method could be applied in a fast vvay with 
different encryption functions for short sequences of 
symbols. 
VEA has no constraints but PEA is constrained to be 
applied on a sequence of exactly 2'" elements. 
The coefficients of the encryption key could be fast 
and randomly generated to ensure great value 
diversity. 
For high GFs dimensions the efficiency of the 
algorithms is increased but the processing time of the 
algorithm does not become very high because only 
arithmetical operations defined on GFs are used. 
Example: 
Let us consider the binary data sequence: 

A = [1 0 1 0 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0] 

If the GF(8) is chosen for VEA, the binary data 
stream is transformed into a sequence of symbols 
expressed on three bits: 

B = [5 2 7 4 1 0 6 2] 

A simple inversable Ixinction is applied. for the "value 
encryption" of data: 

After value cncryption, it resuhs: 

CI = [7 3 5 2 4 I 0 3 ] 

For position encryption let us use other functions 
defined on GF(4): 

First function 
permutes the referencc scquence of 4 

symbols (O 1 2 3) into (0 3 2 1). 
The second function permutes the refercnce sequence 
into (2 0 3 1). 
Each block of four symbols will be permuted 
according to a different function. The final symbol 
sequence is: 

C2 = [7 2 5 3 0 4 3 1]. 
The transmitted bits stream is: 
C = [l 1 1 0 1 0 1 0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 0 1]. 

In this case, if the encryption functions coefficients 
are not changed, the CVPEA permutes 24 bits. 
In a similar way, longer permutation length could be 
obtained. 
If VEA uses a GF with 2̂  elements and the PEA uses 
another GF with symbols, then the permutation 
length of the CVPEA is: 

L^v-lP {bits) (16) 

For longer permutation length, the GF dimension of 
the PEA has to be increased first because the 
dimension of the GF used for VEA affects harder the 
encryption algorithm complexity then those used for 
PEA. 
For a higher diversity of the coded sequence, both 
VEA and PEA must use larger GFs. 
The transmission key contains the GFs dimensions 
and the coefficients of the encryption functions or the 
parameters of the coefficients generator. 
Fast and random generation of the key components 
ensures a large diversity of the encrypted sequence. 
A pseudorandom sequence generator could be used by 
the VEA for faster permutation of the composing bits 
of each symbol. In this case, a high dimension GF 
should be used. 

IV. NUMERICAL RESULTS 

Different GFs are analyzed to establish tlie number of 
permutations obtained with the simple polynomial 
functions. 
Small dimensions of GFs are sufîlcient if 
combinations of GFs are used to generate high-length 
permutations with CVPE which is very efficient, very 
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fast and hard lo attack with an acceptable 
computaţional complexity. 
For example, if both VEA and PEA use functions 
defined on GF(16) then Ihe minimum pcrmutation 
length of CVPEA is aboul 64 bits, bui if we change 
randomly ihe coefficients of the encryption functions, 
then longer binary sequences are permuted. 
For higher GFs dimensions, longer sequences 
permutation is made but the computaţional 
complexity and the processing time are both 
increased. 
A. GF(4) 
This is a small aigebraic fieid with 2-biis elements so 
it is not etTicient for value encryption but it couid be 
used by the PEA. Position permutation is made on 4-
symbols vectors. 
There are 4!-l = 23 possible permutations without the 
identity one (0 12 3) (Table 1). 
AH these permutations could be generated using 
simple polynomial functions with the maximum 
degree equal to 2: 

AII these functions could be inversed: 

The inverse functions are simple polynomial functions 
with another set of coefficients. 
On GF(4) we use t\\o couples (A-,. (1, 1) and (2, 2). 

Table 1. 
Encr>ption Key Pennutation Inverse Key 

ko k, k: Pennuiatîon Type 

0 I 1 (0,1,2,3) (0,1,2,3) Identity 
1 1 1 (1,0,3,2) (1.0,3,2) S 
2 1 1 (2,3,0,1) (2,3,0.1) S 
3 1 1 (3,2,1,0) (3,2,1,0) s 
0 2 1 (0,2,3,1) (0,3,1,2) A 
1 2 1 (1,3,2,0) (3,0,2,1) A 
2 2 1 (2,0,1,3) (1.2.0,3) A 
3 2 1 (3,1,0,2) (2,1,3,0) A 
0 3 1 (0,3,1,2) (0,2,3,1) A 
1 3 1 (1,2,0,3) (2,0,1,3) A 
2 3 1 (2,1,3,0) (3,1,0,2) A 
3 j 1 (3,0,2,1) (1,3,2,0) A 
0 1 2 (0,1,3,2) (0,1,3,2) S 
1 1 2 (1,0,2,3) (1,0.2,3) S 
2 l 2 (2,3,1,0) (3,2,0,1) A 
3 1 2 (3,2,0,1) (2,3,1,0) A 
0 2 2 (0,2,1,3) (0,2.1.3) S 
1 2 2 (1,3,0,2) (2.0,3,1) A 
2 2 2 (2,0,3,1) (1,3,0,2) A 
3 2 2 (3,1,2,0) (3,1,2,0) S 
0 3 2 (0,3,2,1) (0.3,2,1) S 
1 3 2 (1,2.3,0) (3,0,1,2) A 
2 3 2 (2,1,0,3) (2,1,0,3) S 
3 3 2 (3,0,1,2) (1,2,3,0) A 

The encryption key type is specified: 
S - symmetric; 

A - asymmetric. 
There are 9 symmetric keys diHerent from the identity 
and 14 asymmetric keys. 
For the asymmetric encryption system, it is easy to 
deduce the inverse polynomial functions coefficients 
from Table I. There are 7 couples of direct and 
inverse keys: 

(0,2,3,1)-(0,3.1,2); 
(1 ,2A3)-(2,0 ,K3); 
(1,2,3,0). (3,0.1,2); 
(1,3,0,2). (2,0,3,1); 
(1,3.2,0). (3,0,2,1); 
(2,1,3,0). (3,1,0,2); 
(2,3,1,0)-(3,2,0,1). 

We are not interested to store the inverse function 
coefficients because the inverse algorithm depends 
only on ko, k/ and q equal to k2. 
A decimal identifier of each permutation could be 
used as the encryption key. 
B. GF(8) 
This field has eight 3.bits symbols of order 7 and it 
could be used by VEA and PEA. 
There are 8!-l = 40 319 possible permutations without 
the identity one (O 1 2 3 4 5 6 7) but not all these 
permutations are generated using simple polynomial 
functions defined on GF(8). 
There are 335 simple 3-coefficients functions: 

On GF(8) the couples (it̂ . q) are: (1, 1), (2, 4), (3, 5), 
(4, 2), (5, 3) and (6, 6). 
Other polynomial inversable functions defmed on 
GF(8) have the following expression: 

These functions generate different permutations then 
those obtained with the simple functions but the 
inverse function is difficult to deduce. 
C. GF(16) 
This fleld has sixteen 4.bits symbols and it could be 
used by VEA, PEA or CVPEA . 
Only some elements of this field have the maximum 
order 15. 
There are 8 couples {k% q) which can be used: 
(1, 1), (2, 8), (4, 4), (7, 13), (8, 2), (11, 11), (13, 7) 
and (14, 14). 
There are 16!-1 = 21 lO'" possible permutations of 
16 symbols. 
There are 1920 simple polynomial inversable 
functions defmed on GF(16). 
The experimental analysis of these functions showed 
that only the linear and the square functions generate 
unique permutations. For higher exponents, the 
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pemiutations are repeated. So we can use 479 
functions for pcrniutation on GF(16): 

D. GF(32) 
This field has all 5-bits synibols of order 31 and it is 
optimum to define permutation functions for CVPEA. 
There are 32!--l = 2.6 10^^ possible permutations of 
32 symbols except the identiw one. 
29759 permutations are generated using simple 
polynomial functions defined on GF(32): 

V. CONCLUSIONS 

Encryption is the base of any secure communication 
system. Simple polynomial inversable functions 
defmed on Galois Fields are proposed for symbol 
permutation. Efficient and fast cryptography 
algorithms are introduced: Value Encryption 
Algorithm (VEA), Position Encryption Algorithm 
(PEA) and Combined Value-Position Encryption 
Algorithm (CVPEA). Different Galois Fields and the 
3-coefricients polynomial functions are analyzed. 
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