Space and frequency analyze of an LSI optical system with different input signals

Toadere Florin ${ }^{\text {' }}$

Abstract

Our goal in this paper is to develop a calculus algorithm beginning from Optical Fourier Transform and then to generalize to optical linear shift invariant systems. We begin from the premise that an optical system can be seen like a black box with an input and an output. Our system property analyze can be made in space with the help of convolution and in frequency by multiplying specters, these operation are complementarily. Optical system also can be seen from the perspective of components which is made. So in our example we choose components which can made Optical Fourier Transform: a square aperture and a convergent lens.

INTRODUCTION

We consider an optical system which is characterized by input signal $x\left(u_{1}, u_{2}\right)$ and output signal $y\left(u_{1}, u_{2}\right)$. We will find a relation between input signal and output signal by the means of system impulse response and transfer function. In optics we utilize linear shift invariant systems. By linear optical systems we understand that the system has a linear relation between input signal and output signals by the relation:
$\mathrm{F}\left[\mathrm{a} x_{1}\left(u_{1}, u_{2}\right)+\mathrm{b} x_{2}\left(u_{1}, u_{2}\right)\right]=$
$\mathrm{aF}\left[\mathrm{a} x_{1}\left(u_{1}, u_{2}\right)\right]+\mathrm{bF}\left[x_{2}\left(u_{1}, u_{2}\right)\right]$
If at the input we apply a 2 D optic impulse $\delta\left(u_{1}-\mu_{1}, u_{2}-\mu_{2}\right)$ then output image will be called system response to optical impulse with the notation $h\left(u_{1}, u_{2} ; \mu_{1} \mu_{2}\right)$ so we will have the relation:
$\mathrm{F}\left[\delta\left(u_{1}-\mu_{1} u_{2}-\mu_{2}\right)\right]=\mathrm{h}\left(u_{1}, u_{2} ; \mu_{1} \mu_{2}\right)$
The system is linear shift invariant if system response to optical impulse is independent of impulse input position or more clearly an input impulse variation produce the same variation at the output.
$\mathrm{F}\left[\delta\left(u_{1}-\mu_{1} u_{2}-\mu_{2}\right)\right]=h\left(u_{1}-\mu_{1} u_{2}-\mu_{2}\right)$

Knowing the impulse system response we can calculate in space with convolution relation between input and output signals:
$y\left(u_{1}, u_{2}\right)=\iint x\left(v_{1}, v_{2}\right) h\left(u_{1}-v_{1} ; u_{2}-v_{2}\right) d v_{1} d v_{2}$
If in (4) we apply Fourier Transform then we will
have $\quad \mathrm{Y}\left(\omega_{1}, \omega_{2}\right)=\mathrm{X}\left(\omega_{1}, \omega_{2}\right) \mathrm{H}\left(\omega_{1}, \omega_{2}\right)$ were:
$X\left(\omega_{1}, \omega_{2}\right)=$
$\iint x\left(u_{1}, u_{2}\right) \exp \left[-j\left(\omega_{1} u_{1}+\omega_{2} u_{2}\right)\right] d u_{1} d u_{2}$
input spectrum
$\mathrm{H}\left(\omega_{1}, \omega_{2}\right)=$
$\iint x\left(u_{1}, u_{2}\right) \exp \left[-j\left(\omega_{1} u_{1}+\omega_{2} u_{2}\right)\right] d u_{1} d u_{2}$
frequency response
In conclusion convolution in space is:
$y\left(u_{1}, u_{2}\right)=f\left(u_{1}, u_{2}\right) * g\left(u_{1}, u_{2}\right)$
And equivalently in spatial frequency by the means of Fourier transform we have:
$\mathrm{Y}\left(\omega_{1}, \omega_{2}\right)=\mathrm{X}\left(\omega_{1}, \omega_{2}\right) \mathrm{H}\left(\omega_{1}, \omega_{2}\right)$
In optical linear systems (7) and (8) can be generalized:
$y\left(u_{1}, u_{2}\right)=\mathrm{f}\left(u_{1}, u_{2}\right) * \mathrm{~g}\left(u_{1}, u_{2}\right)^{*} \ldots * \mathrm{j}\left(u_{1}, u_{2}\right)$
$\mathrm{Y}\left(\omega_{1}, \omega_{2}\right)=\mathrm{X}\left(\omega_{1}, \omega_{2}\right) \mathrm{H}\left(\omega_{1}, \omega_{2}\right) \ldots \mathrm{J}\left(\omega_{1}, \omega_{2}\right)$
In conformity with result in eq. 9 and eq. 10 we will make a simulation of an optical system made by a square aperture and a convergent lens.

FIRST EXAMPLE

In table I we will se mathematical relation in parallel for the two situations. We have as input signal a harmonically plane wave. Results are presented in Fig. 1

[^0]| 1apux stenal | Spatial domam andisis $A(x .9) \text { simulsime }$ | |
| :---: | :---: | :---: |
| Aperture transter tamens! | | Bu($0_{1},\left(0_{0}\right)=\operatorname{sinct}\left(w_{1}\right)$ sinct $\left(\omega_{2}\right)$ |
| comolution | $\overline{C l . y)}=A(x .1)^{*} B(0 . y)$ | $C\left(o_{1}, \omega_{2}\right)=A\left(\omega_{1}, o_{2}\right) B\left(\omega_{1}, \omega_{2}\right)$ |
| $\begin{aligned} & \text { lam anster } \\ & \text { ancond } \end{aligned}$ | | |
| 二urnolumat | | |

spatal lequency dimenston.
SEOONDEXAMPLE

We will make a more complex analysis with the help of an oprical binary signal made by the nexi optical Fourier string:
$A(x, y)=[\sin (x)+\sin (3 x) 3+\sin (5 \sqrt{2} / 5-\sin (7 x): 7]$
$[\sin (y)+\sin (y) / 3+\sin (5 y) / 5+\sin (7 y) 7]$

This means that we have at the input 16 harmonics plan waves and equivalent spectrum consisting in 64 poims. The rest of the calculus is in conformity with situation in Table 1

Fig. 2 The first column present analyses in space domain, on the x and y axes we have spatial dimensions. The second column present frequency domain analyses on x and a ates we have spatial frequency dimension

:HF THERD EXAMPLE

harmonically plane waves of diverse spatial frequency and the spectrum will be a sum of points with random distributions in spatial frequency domain as in Fig 3

Fig. 3 The first column present analyses in space domam, on the x and a wes we have spanal dimenstons. The second column present frequency domain analyses on x and y axes we have spatial frequency dimension

CONCLLSSION

In this paper we try to develop a calculus algorithon for an optical linear shift invariant system. made by oplual component which can make optical fourier transtorm We try to have a global view of the process buth in space and frequency In spatial doman analyze we observe that after we convolve an mage with an aperture the image change space position, without distortion. Convergent lens reduces signals
but produce noise In frequenct amaly we whsenc that mput signal spectrom is made by 4 points then ot points and linally from a very large nomber This spectrum is multiplied wht tanster functoon and as result we hate the same number of sample but oher amplitude and function of their spatial position kens let to pass only that componemt that intersed lens (low requency components)

REFERENCES

. A Papoulis: System and transform with application in optics McGraw Hill, New York 1968
2. J.W.Goodman: Introduction to Fourier optics McGraw Hill, New York 1968.
3 E. Hecht: A. Jajac: Oprics Addison Wesley. Reading, MA 1974.
4. M. Born, E. Wolf: Principle of Optics Pergamon New York 1964
5. Keigo lauka Engineering Optics Spnager Verlag Berlin. Heidelberg 1985.
6. J.D.Gaskill Linear systems, Fourier transform and Optics John Wiley and Sons New York 1978.
7. M.L. Boas Mathematichal Methods In the Physical Science Wiley New York 1966
8. R.C.Gonzales, R.E. Wods Digital Image Processing Adison Wesley 1992
9 B.E.A Saleh, M C.Teich Fundamentals of Photonics John Wiley New York, NY, 1991

[^0]: ${ }^{1}$ Facultatea de Elcetronica si Telecomunicati, Departamentul Bazele
 Electronicii, str. Baritu nr.26. Cluj Napoca . tflorin@bel.utcluj.ro

