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Abstract —~ We want to create a video codec, that can
compress a video stream at a single bitrate and
decompress it at different bitrates. Our implementation
of the codec uses wavelets as its base. The encoder reads
the uncompressed video stream and does a 2D Wavelet
Transform on every frame. Then the SPIHT (Set
Partitioning in Hierarchical Tree) algorithm is used to
store the wavelet coefficients in an embedded way. The
decoder can decode the compressed video stream at
different bitrates, achieving variable quality. A
comparison with JPEG and MPEG shows that our
wavelet codec has comparable results,
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I. INTRODUCTION

The objective of a video compression algorithm is to
exploit both the spatial and temporal redundancy of a
video sequence such that fewer bits can be used to
represent the video sequence at an acceptable visual
distortion. For example, it is frequently desired to
transmit video over standard telephone lines, where
data rates are typically restricted to 56,000 bps. A
video sequence with frame size of 176 _144 pixels (a
size commonly used for this application) at 30 frames
per second (fps) and 3 bytes per pixel, would require
18.25 Mbps, making impractical the transmission of
video without compression. For different applications.
different resolutions, visual quality, and therefore,
different data rates, are required.

The available bandwidth of most computer networks
almost always poses a problem when video is to be
delivered. A user may request a video sequence at a
specific data rate. However, the variety of requests
and the diversity of the network may make it difficult
for an image or a video server to predict, at the time
the video is encoded and stored on the server, the
video quality and data rate it will provide to a
particular user at a given time.

Meeting bandwidth requirements and maintaining
acceptable image quality simultancously is a
challenge. Rate scalable compression that allows the

decoded data rate to bc dynamically changed. is
appcaling for many applications, such as video
streaming and multicasting on the Internet. video
confcrencing, video libraries and databases, and
wireless communication. In these applications. the
bandwidth available cannot be guaranteed due to
variations in network load. When a video sequence
is transmitted over a heterogeneous network, network
congestion may occur, decreasing the quality
observed by the user.
Consider the following example: A media provider
digitizes, compresses. and stores news clips in a
digital video library using MPEG-2 at 6 Mbits/sec
(Mbps), and makes them available to the public. Most
current video compression techniques and standards
require that parameters, such as data rate, be set at the
time of encoding. A problem exists if the server
receives a request for the video sequence not at 6
Mbps, but at 4 Mbps. A solution to this problem
would be to have the video server transcode the
compressed bit stream. However, this 15 a
computationally intensive task.
In general, a media producer faces the difficult task of
providing content at different resolution (temporal.
spatial, and/or rate) levels depending on the receivers’
capability as well as possibly users’ choice. One
solution to this problem is to compress and store a
video sequence at different data rates. The server will
then be able to deliver the requested video at the
proper data rate, given the network load and the
specific user request. There are two problems with
this approach:
= The need to store a sequence at various data rates
introduces the added overhead of storage,
duplicity and management of different sequences.
s For real-time applications, it is impractical to have
several encoders compressing the sequence at the
same time.
An alternative solution to this problem is to use a
video coder that is capable of dynamically selecting
the decoded data rate. This is a very attractive solution
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for the flexibility it introduces to the system. This is
known as “video scalability™.

Video scalability is different from the concept of
scalability used in networking. In this article, when
we refer to scalability, we mean “video scalability”.
Most current compression techniques require that
parameters. such as data rate, frame rate, and frame
size. be set at the time of encoding, and are not easily
changed. Video compression techniques that allow
one to encode the sequence once and then decode it at
multiple data rates, frame rates, spatial resolutions,
and video quality are known as “scalable”. The goal
of scalable video compression is to encode a video
sequence once, and decode it on any platform fed by
any data pipe.

11. CODING SCHEME

Depicted in Fig. 1 is a principal sketch of our video
codec. Not all steps are required for a video codec and
some steps were omitted (for example, the entropy
coding block was omitted). Only one frame at a time
is compressed. First a color space transform is applied
from the RGB color space (red, green, blue) to the
YCoC, color space, we do a Discrete wavelet
Transform and then the SPIHT (Set Partitioning In
Hierarchical Tree) algorithm is used to save the
wavelet coefficients in an embedded way. The video
stream coded using our coder has an absolutely
scalable bitrate and can be decoded at any user
specific bitrate.

To uncompress an image or a video, the steps in Fig.
1 are traversed in reverse order with inverse
transforms of all steps. The decoder side of the
application can decode the encoded video stream at
multiple bitrates, given by the available bandwidth
and the users’ preferences.

Uncompressed Colorspace Wavelet
data Transform Transf

Cuantiser

Compressed
(SPIHT) data

Fig. 1. Bloc diagram of the encoder

Colorspace transform

We will be using the YC,C, (ITU-R BT.601) format,
which is a scaled and offset version of the YUV
colorspace. To convert from RGB to YC,C, format the
following equations can be used:

Y =0257R +0.504G +0.098B8 + 16
C, = -0.148R ~0.291G +0.439B + 128 ()
C, =0.439R +0.368G - 0.0718 + 128

and to convert back:

R=1.164(Y -16)+1 596(C, ~128)
G=1164(Y -16)-0.813(C, ~128) -

-0.391(C, —128) @)
B=1164(Y -16)+2.018(C, —128)
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In the RGB format each of the three values represents
the amount of red, green and blue. In YC,C, format,
the Y represents the amount of luminance
(brightness), C, and C, represent the chrominance
(cotor). In YC,C, format the chroma components of
an image are often subsampled to a quarter of their
original size. We chose not to subsample the chroma
channels, instead we later compress those channels
much harder.

Bi-dimensional Wavelet Transform

The casiest method to apply a bi-dimensional
transform is to consider the image as rows of one-
dimensional signals and to transform these rows. Then
we transform them in the other direction as well. So
the solution is to apply the Discrete Wavelet
Transform first on the rows and then on the columns
of the image, as shown in Fig. 2.

Original
image

Row filtered
image

Row and column
filtered image

Fig. 2. Applying the Wavelet Transform on the rows and
columns of an image

The four subimages are:

1) I - low-pass filtered on rows and columns, also
known as LL (low subbands for row and column
filtering)

2) 11 - high-pass filtered on rows and low-pass
filtered on columns, also known as HL (high
subband for row filtering and low subband for
column filtering)

3) I - low-pass filtered on rows and high-pass
filtered on columns, also known as LH (low
subbands for row filtering and high subbands
column filtering)

4) TV - high-pass filtered on rows and columns, also
known as HH (high subbands for row and
column filtering)

LL+
LL, HL, HL,

LH, HH, LH, HH,

First decomposing step Second decomposing

st
L Ls gy, €p

LH, HL,

LH, HH.

Third decomposing step

Fig. 3. Applying the 2D Wavelet Transform on tree resolution
levels

BUPT



Atter a one-dimensional transform we will have only
half of the scaling coetlicients s. The bi-dimensional
transtorm is applied on columns. that contain both
scaling coefficients s and Wavelet coetficients d. but
on the columas there are only new scaling coefficients
(obtained after the row transform), which are then
used in the column transtorm. So. after the bi-
dimensional transform we will have only 1/4 of the
initial data and the following steps of transformation
will need less computation time.

Applying the Inverse Wavelet Transform on the
coetlicients from subband LL we will obtain the the
correspondent of the original image. but at one unit
smaller resolution level.

At the second step we apply the Wavelet Tran-form
on the subband LL. These steps can be successively
repeated until we reach the wanted or the smallest
permitted resolution level. Fig. 3 shows three steps in
applying the Wavelet Transform and  the
corresponding subbands.

For example, Fig. 4 shows the position of the
coefficiénts in the subbands after a tree resolution
level decomposition of an 8x8 pixel image:
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Fig. 4. Distribution of the scaling and Wavelet coefficients for an
8x8 pixel image decomposed on 3 resolution levels

where d* is the Wavelet coefficient at resolution

level j and position (x,y) from subband LH, d,/"",, is

the Wavelet coefficient at resolution level j and

position (x.y) from subband HL and dx’_":, is the

Wavelet coefficient at resolution level j and position
(x.y) from subband HH. Note that we have only one

scaling coefficient 313.1 on pozitia (1.1) in subband

LL;. This coefficient is an approximation of the
original image at resolution level 3 (1x1 pixels). The
Wavelet coefficients d hold the details of the image at
for corresponding resolution level. For lower
resolution levels (higher resolution) the details
contained in the Wavelet coefficients are finer.

For the reconstruction (synthesis) of the original
image. we apply the inverse algorithm. From the

scaling coefficient §;, we get the approximation of
the original image at resolution level 3 (Ix1 pixel

. . . . 3
resolution). Using the scaling coefficients), and the

level 3 Wavelet coefficients d:) we gel the image at

U

resolution level 2 (2x2 pixel resolution). Using also

the level 2 coefficients a’f we obtain the image at

o

resolution level 1 (4x4 ixel resolution), and. finally,
. - |
using the coeflicients (1". . We can reconstruct the the

original image at resolution 8x8 pixels. Fig. 5 shows a
two level decomposition of the image “Lena” of
resolution 256x256 pixels. The image in the upper left
comer is a approximation of the original image at
resolution level 2 (64x64 pixel resolution). The other
images were obtained only trom the Wavelet (detail)
coetTicients from the corresponding subband and they
are the detail images of the corresponding subbands.

Fig. 5 Decomposiuon of the “Lena™ image on two resolution

levels
Cuantisation
So far. as our video codec is concemed, no

information has been lost, and no actual compression
has taken place.

Usually the most important coefficients will be
grouped in the top left comer (see Fig. 3). with
importance decreasing for each sub band, and a lot of
the coefTicients in the lower sub bands will have a
value close 1o zero. Since small values represent small
changes in the original image, they can often be
discarded without visible loss of quality. Discarding
low valued coefficients will increase compression for
a modest degradation in quality. However, doing so
will lead to a problem: the coordinates of the
coefficients. A lot of coetticients will be zero, and
storing them gives no compression. On the other
hand, not storing them leads to the problem with
coordinates: what coefficient should be at what
coordinaie? One solution is to define a scan order to
follow. Two such scan orders are depicted in Fig . 6
for a eight by eight matrix.

The coefficients are simply stored in the order they
are found according to scan order. When the desired
compression ratio is achieved, storing is stopped.
With this technique some coefficients that are stored
are close 10 zero or zero, thus lowering the
compression ratio. There exist a number of algorithms
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that address this problem. The EZW (Embedded Zero
Tree) algorithm by Shapiro [6] is a way to both
quantize and store the coordinates of the coefficients.
The SPIHT (Set Partitioning in Hierarchical Trees)
algorithm by Said and Pearlman {5] can be described
as a more advanced version of the EZW algorithm.
Both make use of “spatial orientation trees”" (SOT).
Spatial orientation trees are structures that use quad-
tree representations of sets of wavelet coefficients that
belong to different subbands, but have the same
spatial location. These structures, which can be
efficiently represented by one symbol, have been used
extensively in rate scalable image and video
compression.

= Ziz

Fig 6. CoefTicient scanning order: a)Raster scan order b)Morton
scan order

The SPIHT algorithm

Said and Pearlman [5] investigated different tree
structures that improved the quality of the
decomposition. The SPIHT (Set Partitioning in
Hierarchical Tree) algorithm is also an algorithm that
stores the most important coefficients in an embedded
way, along with information for the coordinates.
Quantization is done implicitly by starting with a high
threshold that is successively lowered as the algorithm
progresses.

Examine Fig. 5 and note the similarity between the
different subbands. A tree like structure can be built
from this observation, where each node have four
branches except the top node which is a special case
(refer to Fig. 7). A closer inspection of Fig. 5 shows
that usually a bright patch in the lower subbands
seems to propagate into the higher sub bands. In this
figure, white stands for a low value and black stand
for a high value. Low values stand for small changes
in the original image. and are thus of lesser
importance.

) Q o ;‘,
o i\ N
/i /, '.\\ HAN / -_\\

AL LA -

Fig. 7. An illustration how the parents expand to four clustered
children in a filter bank set of coefficients.

What we want to do is to store the values of all the
coefficients above a certain threshold along with
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information about the coordinates. Since we have this
tree like structure, we can represent all the coordinates
of a branch with no coefficients over a certain
threshold with just one bit.
The Spiht algorithm uses tree lists to keep track of the
nodes. The lists are:
o list of insignificant pixels (LIP): contains nodes,
that will be checked for significance
o list of insignificant sets (LIS): contains nodes
whose descendants will be checked for
significance
o list of significant pixels (LSP): consists of nodes
that have been found signi_cant earlier. The
nodes in this list can be of two kinds:
- normal nodes (type A): are nodes, that have
insignificant children
- multi-noduri (de tip B): are nodes, that have
significant children

The SPIHT algorithm can be summarized as follows:
1. Initialisation:

s Compute n =

log, (r(rluﬁ({c, /l}){ , where

c;, are the coefficients and initialize the

treshold 77 =2".

e Move the four highest nodes of the tree-
like structure in the LIP and the tree direct
descendents of the first node in the Lis,
marked as normal nodes. The LSP is
empty.

2. Sorting pass

o Traverse the LIP testing the magnitude of
its elements against the current threshold
and representing its significance by 0 or 1.
If a coefficient is found to be significant, it
is moved from LIP to LSP and a “1” bit is
written at the output, showing that the
coefficient was significant; then another
bit is written at the output, showing the
sign of the coefficient (0 for positive, 1 for
negative). If the coefficient is insignificant,
a bit “0” is written at the output.

o For every node in the LIS, determine if it
is a normal node or a multinode.

- If it is a multimode, its children are
checked for significant descendents
and a bir is written at the output. If
significant descendents are
discovered, all four children are added
to the LIS marked as normal nodes
and the current node is removed from
the LIS.

- If it is a normal mode, it is checked
for significant descendents in respect
to the current threshold and a bit is

written at the output. If it has
significant descendents with
significant descendents

(grandchildren), it is moved to the end
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of the LIS marked as mulumode; else
it is removed and the sorting pass with
a temporal LIP list (that contain the
children of the nodes) is executed. The
children, that haven't been moved to
the LSP during the sorting pass are
moved to the acwual LIP list.
Refinement pass
e Compare all nodes in the LSP with the
current threshold T. except those added
during the sorting pass and write the
corresponding bits at the output.
4 Set T=T:2 and go to step 2.

s

The process is repeated until the warget data rate is
achieved. It is important to note that the location of
the coefficients being refined or classified is never
explicitly transmitted. This is because all branching

decisions made by the encoder as it searches
hroughou he coe™icien's are appended o he bi
stream.

Decoding is done in a similar manner: all output pans
are exchanged for input and all comparisens with
threshold are exchanged for wupdates to the
coefficients. When updating the coefficients. their
mitial value is set to 1.5 times the current threshold.
becarse dhe hreshola ells »s that e val e is adleas.
threshold but less than two times threshold. So a good
guess might be that the value will be somewiere in
benween.

The performance of SPIHT is better than EZW. at a
modest increase in the computauonal complexity [5].
Tht-hyy v -h-—t- - SPIHT{ - --d-

1. RESULTS

For evaluating the performance of our codec we are
using the Peak Signal to Noise Rauno (PSNR). a
measurement  commonly used when comparing
images between each other. The PSNR is calculated
as:

258°NM
Yl -% ) )

-

PSNR = 10log

Here the 235 comes from the maximum value we can
have anywhere on one bitplane of the picture,
multiplying it with N, which is the size of a bitplane,
in our case 128 x 128. The transtormed and
retransformed image elements are named X (7, /) and
they are of course compared to the original image
elements x(7, j). Based on our own observations we

have noticed that a picture lying above 30 is of
tolerable quality, and above 40 is close to tlawless.

Results for scalable coding of images

First we show a comparison in PSNR beiween JPEG
an’ our ¢o ‘ec in Tig. 8. The pic'ure we use ™ in '
comparison is the classical color picture “Lena”, often
used in image processing. The resolution of the image

is 256x256 pixels. For processing the JPEG pictures
we uscd the ImageMagick program. For de wavelet
decomposition and reconstruction we used two types
of filters: the Haar filter with modest pertormence and
the biorthogonal tilier “bior4.4™ of order 4 with much
higher performance. he graphs show that JPEG is
slightly superior to our wavelet coder. except for very
low bit rates. JPEG’s decline probably comes trom
the fact that the image is divided ino 8x38 pixels large
blocks before the Discrete Cosinus Transform (DCT)
15 apphied. and the overhead becomes significant at
low bit rates. When comparing the biorthogonal filter
with the Haar filter. the ditference in PSNR is about 2
dB. Comparing JPLG with the “biord 47 filter, we end
up just 1 dB lower in PSNR. Note that our codec does
no entropy encoding after the SPIHT algorithm. while
JPEG uses a Huffman coding. which gives an extra
gain in PSNR.

PSNR pentiy diterite rate de b

PSHR (dB)

[ PN a4 X <S5 ci 14 10 € N

Rata de it
Fig 8 Companson between JPEG and our wavelet coder for the
“Lena” proture (236236 pixels)

c) 1 bpp
Fig 9. Visual results obtained for the color image “Lena™ with
IPEG (lefl) and with our codec {right) for different bitrates.
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Fig. 9 shows the JPEG images and the images
obtained with our coder (“bior4.4” filter) for different
bitrates. We can see a better visual quality in case of
our coder.

Results for scalable video coding

Fig. 10 and 11 show a comparison between MPEG-1
and our codec. The graph shows PSNR for the 128
first frames of the “foreman” video (which was
cropped from its original size of 176x144 to
128x128). The MPEG-1 encoding was made with a
program called “TMPGEnc” with default parameters
for all options. Our coding application compresses the
input video stream at a high data rate (5 bpp) so that
clients with high as well as with low bandwidth to be
able to achieve the best quality at their given
bandwidth after decoding. The decoder side of the
application can decompress the coded bitstream at
different data rates.

In Fig. 10 the wavelet decoder works at a data rate of
1 bpp. We can see that the PSNR for MPEG-1 is
about 4 dB better than our encoder. This advantage is
obtained because MPEG uses an inter-frame coding
scheme, which gives the extra gain in PSNR and is
not used in our codec.

R

v m %w’\fw ‘

VH%’VUW bh“t?%v

= - -

PENR (aB)

0 20 40 60 80 100 120 140 °
Numml cadrubn

- Flg 10. Companson between MPEG-1 and our wavelet coder
for the “forman” video (resolution 128x128 pixels, 128 frames)
at ! bpp

In Fig. 11 our decoder works at a bitrate of 0.1 bpp.
You can notice that our application has equal results
with MPEG at very low bitrates.

PSNRat04 bpp

PSNR (dB)

I
}

100 120 140

Flg 11. Comparison between MPEG 1 and our wa\elet coder
for the “forman” video at 0.1 bpp
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IV. CONCLUSIONS

The Wavelet Transform combined with the SPIHT
algorithm is a very effective way of building a
scalable video codec. The motion compensation
techniques used in MPEG formats may be of some
help in compressing the video stream and increasing
the quality, but then the scalability is harder to
achieve. For a gain in performance and preservation
of scalability we should switch from 2D Wavelet
Transform and SPIHT to their 3D versions. This
should work by compressing several frames at once.
The advantage is that the redundancy between
consecutive frames is exploited and we can achieve
higher compression ratios. Another way to improve
our codec is to optimize the code. An entropy coder
would improve things further, but not by very much.
With these improvements we could equal and even
beat the performance of MPEG.
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