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Abstract — The paper is devoted to the analysis of the
statistical behaviour of chaotic signals having in view
their suitability for the cryptografic applications. The
investigation is illustrated using the chaotic signals
provided by the logistic function. The procedure of
investigation combines information theory notions with
statistical inferences based on one or two data sets. The
following statistical tools are considered: probability
estimations with multiple confidence intervals, test on
probability and test on equality between probabilities.
The type Il statistical error plays a special role in the
design of the experimental data size.
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inferences on probability, type  statistical error, noisy
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[. INTRODUCTION

The chaotic behaviour [1], [2] has been noticed for
many dynamic systems in discrete time. For such a
system, the x; state at time & depends on the

Xpel = f (x5 ). Several types of
f functions can be considered in practice. OQur paper

previous state,

considers the logistic function:
Xgs] = Roeg (1= ) (1

where the R parameter belongs to the (0;4) interval
and the x, value belongs to the (0;1) interval. The

chaotic behaviour is met when R 2>3.5699456.
Notice that all the numerical results presented in our
paper correspond to the logistic function; however,
the investigation can be applied to any chaotic
systems.

Let us consider the equation (1). Fig. 1. shows x; as a

function of ke {0,l,.,200},
x9 =0.113 and to R=3.9. When considering the

corresponding  to

same R =3.9 value but different xq initials values, a

set of different curves are obtained. We consider each
of these curves as a sample of a random process.
Hence, the sample space is the (0;1) interval in which

xq is randomly selected [3]. [8].

Section II presents the investigations for the first order
statistical description (the probability distribution
function), [3]-[8]. Some results are displayed in
Table 1 and Fig. 2. With this purpose we considered
the (0;l)interval (the chaotic signal values)

consisting of Q=27 non-overlapping equal length

i

intervals.

W

s
l“”p' HHI‘ “WHI,HIH]’I" ”I

0 2 L 1
0 50 ioo 150
Fig 1. A sample of the random process which models the
chaotic system; R =3.9 and xg =0.113.
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Section II investigates the conditional probabilities
pil). ie the probability that a trajectory

(chosen randomly from the ensemble) passes through
{j interval at kj iteration on the condition that at kj
iteration the same trajectory passes through /i interval.
A problem was whether we can speak or not about the
statistical independence of the two discrete random
variables sampled at k) and k; iterations.

Section IV is devoted to the applications of chaotic
systems to the cryptographic field.

II.FIRST ORDER STATISTICAL
DESCRIPTION

Be the random sequence obtained from the chaotic
signal when. instead of the continuous random
variable sampled at each k iteration, we consider a
discrete random variable with Q values. The Q
discrete values are assigned to the Q non-overlapping
equal length intervals covering the (0:1)interval of
values taken by the chaotic signal. We illustrate the
procedure of investigation for Q=27 intervals. We
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started the study with @ = 27 intervals having in view

some immediate applications in enciphering natural
Table 1. First order statistical description of the random process modelling the chaotic systems.

texts.

k=200 k =300 k =500 k = 2000

p Er p ér p Er p &y
1, {0.0000;0.0370 0 0 0 0 0 0 0 0
I, | 0.0370; 0.0741 0 0 0 0 0 0 0 0
I3 {0.0741;0.1111 | 0.05000 | 0.08543 | 0.05380 | 0.08219 | 0.05493 | 0.08130 | 0.05160 | 0.0840
I, [ 0.1111;0.1481 | 0.03980 | 0.09626 | 0.04330 | 0.09212 | 0.04450 | 0.09082 | 0.04590 | 0.08935
I; | 0.1481;0.1852 | 0.03500 | 0.10291 | 0.03540 { 0.10231 | 0.03590 | 0.10156 | 0.03510 | 0.10276
Is | 0.1852;0.2222 | 0.02810 | 0.11526 | 0.02770 | 0.11612 | 0.03030 | 0.11087 | 0.02450 | 0.12367
I- 10.2222;0.2593 | 0.02500 | 0.12116 | 0.02320 | 0.12717 | 0.02600 | 0.11996 | 0.02290 | 0.12802
Iy 1 0.2593;0.2963 | 0.02020 | 0.13650 | 0.02240 | 0.12948 | 0.02200 | 0.13067 | 0.02250 | 0.12918
Iy 10.2963;0.3333 | 0.02170 | 0.13160 | 0.02190 | 0.13098 | 0.02140 | 0.13253 | 0.02090 | 0.13414
Iy | 0.3333; 0.3704 { 0.07290 | 0.06989 | 0.06990 | 0.07149 | 0.07000 | 0.0750 | 0.07110 | 0.07084
1;; 1 0.3704;0.4074 | 0.04290 | 0.09257 | 0.04380 | 0.09155 | 0.03910 | 0.09716 | 0.04250 | 0.09303
1,7 | 0.4074; 0.4444 | 0.04990 | 0.08552 | 0.04750 | 0.08776 | 0.04840 | 0.08690 | 0.04800 | 0.08728
I;; | 0.4444; 0.4814 | 0.02500 { 0.12240 | 0.02800 | 0.11164 | 0.02740 | 0.11677 | 0.02410 | 0.12472
1;; 1 0.4815;0.5185 [ 0.02670 | 0.11833 |{ 0.02990 | 0.11164 | 0.03000 | 0.11145 | 0.02900 | 0.11341
I;5 1 0.5185;0.5556 | 0.02420 | 0.12445 | 0.02650 | 0.11870 | 0.02500 | 0.12240 | 0.02720 | 0.11721
16 | 0.5556;0.5926 | 0.02380 | 0.12552 | 0.02310 | 0.12745 | 0.02200 | 0.13067 | 0.02330 | 0.12689
1;7 | 0.5926;0.6296 | 0.02350 | 0.12634 | 0.02400 | 0.12498 | 0.02360 | 0.12606 | 0.02830 | 0.11484
115 1 0.6296; 0.6667 | 0.02580 | 0.12043 | 0.02310 | 0.12745 | 0.02350 | 0.12634 | 0.02650 | 0.11879
Iy | 0.6667;0.7037 | 0.02620 | 0.11949 | 0.02460 | 0.12341 | 0.02310 | 0.12745 | 0.02290 | 0.12802
1y | 0.7037;0.7407 | 0.02680 | 0.11810 | 0.02430 | 0.12419 | 0.02360 | 0.12606 | 0.02300 | 0.12774
I,y | 0.7407;0.7778 | 0.02665 | 0.11879 | 0.02370 | 0.12579 | 0.02470 | 0.12326 | 0.02680 { 0.11810
I>; | 0.7778; 0.8148 | 0.02940 | 0.11261 | 0.02630 | 0.11925 | 0.02885 | 0.11443 | 0.02870 | 0.11402
I; | 0.8148;0.8519 | 0.03260 | 0.10676 | 0.03080 | 0.10994 | 0.02850 | 0.11443 | 0.03000 | 0.11144
I, | 0.8519;0.8889 | 0.06710 | 0.07308 | 0.07170 | 0.07052 | 0.06680 | 0.07325 | 0.06360 | 0.07520
I5 | 0.8889;0.9259 | 0.07270 | 0.06999 | 0.07040 { 0.07122 | 0.06780 | 0.07267 | 0.07210 | 0.07031
156 | 0.9259;0.9630 | 0.10590 | 0.05690 | 0.11020 | 0.05569 | 0.11000 | 0.05575 | 0.11090 | 0.05549
I;7 1 0.9630; 1.0000 | 0.07780 | 0.06747 | 0.07450 | 0.06908 | 0.08300 | 0.06514 | 0.07860 | 0.06710
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Fig 2 Histograms for the frequencies distribution of Table 1 Q = 27 intervals, at k =200 (left) and at

k =500 (right), on the vertical axis- the occurrences of the intervals
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We started the investigation with verifying the first
order stationarity of the chaotic signal by considering
the O discret intervals. This implies a comparative
study of the discrete random variables sampled at
different iterations.

We determine the probablity that at the & iteration
the chaotic signal passes through a certain /i interval
(chosen from the O possible intervals). Then, we try
to verify if this probability depends or not on the
k iteration (the sampling time) while preserving the
same /i interval. For the statistical inferences used the
experimental data should comply with the i.i d model
(i.e. observations coming up from independent and
identically distributed random variables). Moreover,
for the statistical tests we compared independent data
sets.

The first experimental results are presented in Table |
where we considered four different iterations:
k=200, k =300, k=500, k = 2000 and
N =10000 trajectories for each sampling time. Note
that for each k& sampling time we used N =10000
ditferent trajectories, generated by different initial
conditions (randomly chosen from (0;1)interval)).

Hence, for the four iterations & =200, k=300,
k=500, k=2000 we had at our disposal four
independed i.id data sets (that means we generated
40000 different trajectories of the chaotic signal).

For example for the /jg =(0.3333; 0.3704) interval,

at k =200 . the estimated value of the p probability

that the chaotic signal passes through 7jp s

p=m/N =0.07290 (m is the occurrence number of
the investigated interval in the considered i.ijd data
set).

Each time we experimentally checked-up the de
Moivre-Laplace conditions in the form

JNp(1- p) 214, [4]-[7]. As a consequence we can
say that the p true (unknown) probability lies inside
the (p*(1-£&,), p*(1+£,))=(0.06780; 0.07799)
interval computed with 1—a = 0.95 statistical
confidence level;

Er = g2 ¥y P(—DP)/ N =0.06989 is the relative

experimental error, where /7 =1.96is the

a /2 point value corresponding to the standard
Gaussian law (of 0 mean and 1 variance).

For the same /jy =(0.3333;0.3704) interval, but at
k =500 iteration, the estimated value is p = 0.07000,
the 95% confidence interval is (0.06499; 0.07500)
and the relative experimental error £, =0.0750. It

can be noticed that the two confidence intervals for
the probability overlap; this brings some evidence in
the favor of the stationarity assumption.

The fact that the contidence intervals overlap
encouraged us to a more detailed investigation.
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Thus, we continued the study with applying the test
on the equality between two probabilities (see
Appendix ).

We succesively compared the two data sets (one for
k =200 and another one for & =500) for each Ji
interval (i=1+27and j=1+27)in Table 1.

Table 2 presents the results only for /. 15 g and I,
intervals. All the four tests were passed; the test
values and the decisions are shown in Table 2. As a
conclusion, the stationarity assumption is again
sustained.

Table 2. Experimental values for the test on the
equality between two probabilities

I10 II2 IIS IZZ
Test: T,
' Z| 0.0819 | 1.2248 | 1.2910 | 1.4523
f{O / H] HO Ho Ho Ho
B 2¢107 [ 9.8*10° | 0.1532 | 0.0328

Because all tests are passed, the £ probability of type
I statistical error (that means Hqaccepted, although
the two compared probabilities are not equal) is

important. [t was computed according to (4) (see
Appendix).

Fig. 3 shows the £ values as a function of py.

There are three plots for & values: §=0.1,

0=0.15,=02, Ny =N2=N=10000,a=0.05.
Table 2 presents the £ values for the corresponding
intervals, when 6 =0.20. For &4 =0.10, fvalues
are much larger. For a better accuracy (low values for
B while 5 <0.15) we need to resume the experiment
generating much more trajectories of the chaotic
signal.
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Fig. 3 The type [I error size for the test on equality between
probabilities. On the horizontal - pj probablity ; on verucal -

[ values The curves corresponding 10:
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Fig 4 Frequency distribution representation: the histograms if we “discretize”™ in
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Q =6 intervals at & =200

0 02

(lett) and at & = 500 (right), on the vertical axis - the occurrences of the intervals

Fig. 2 shows histograms coresponding to the
frequency distribution from Table 1. Instead of the
relative frequencies of the intervals, the histograms
are constructed on the basis of intervals occurences.
The study was resumed for Q=6 intervals. This
number of Q=6 intervals could be of some interest in
the cryptographic field when two iterations are
simultaneously considered and assigned to an
alphabet character of the natural language (for
exemple letters, punctuation marks). Fig. 4 presents
histograms for the random process modelling the
chaotic signal.

For a temporal description we generated several
individual trajectories of the chaotic signal for
L =10000 iterations. We measured how many times
the investigated trajectory (randomly chosen from the
ensamble) passes through a certain interval of values;
be m the occurrence number. The relative occurrence
number p = m/ L was computed for each /, interval of

values (/, is the same from Table 1 where we
“discretized” the (0;1) interval in Q=27 non-
overlapping intervals of equal length).

Another issue was if p=m/L (the temporal relative

frequency of the investigated interval) lies inside of

the confidence interval for the probability
corresponding to the same /, investigated interval (at
k iteration).

As an illustration we used three curves with initial
condition: x =0.31, x7=0.456 si xp =0.758 and
four investigated intervals: /,,, I;, I;5 and I, (see
Table 3). We computed the temporal relative
frequency p=m/L of the investigated interval for

each trajectory. For example for the trajectory with
xg =031 the temporal relative frequency

corresponding to /,, interval is p =0.0725.

Looking at Table 1, the 95% confidence interval for
the probability assigned to /), interval at k = 500 was
(0.06499; 0.07500) . We can see that p lies inside

this confidence interval for the probability.

We resumed this type of investigation for each J,
interval and several trajectories; all the numerical
results sustained the ergodicity assumption of the first
order distribution function,

We continued the verify this type of ergodicity by
using a test of probability [4], [6], [7]. In this test the
iid data sets is the same we used in Table 1 for a
fixed & (the considered iteration) and the theoretical

probability of the test was the temporal value for the
carresponding /, interval in Table 3.

Table 3. Temporal description

x9g=031 | x5=0456 | xg=0.758
Im | 0.0725 0.0711 0.0708
l,; | 0.0481 0.0487 0.0483
Iig | 0.0214 0.0219 0.0213
I; | 0.0253 0.0273 0.0234
Thus, the null hypothesis /g has the form
Ho:p=pg where pg denotes the temporal

probability obtained for a certain trajectory.

We successively applied this test (Table 4) for /,, 7,5,
I3 and [,; interval considering the iid data sets
obtained at £ = 500 . The theoretical pg probabilities
are those from Table 3 and the trajectory with initial
condition xg =0.31. All the tests were passed, thus

sustaining again the ergodicity assumption.

Table 4. Test of probability

Test Lo 12 s I,
PO 0.0725 | 0.0481 | 0.0214 0.0253
lzl 0.9641 | 0.1402 | 0.8983 | 0.7642

HyH, Ho Ho Ho Ho

[II. SECOND ORDER STATISTICAL
DESCRIPTION

Here, we again consider the (0; 1) interval of values of
the chaotic signal discretized in ( non-overlapping

intervals of equal length. For the second order
statistical  description  we  shall consider
simultaneously two iterations ( kjand k7).

This leads to the noisy information channel shown in
Fig. 5. Fig. 5 illustrates our procedure of
investigation  considering (= 6intervals. As a

consequence, the input space X={x1,...,xi,...,x6}
corresponds to the /; interval at kjiteration and the
output space } = {yl ,...,yj,4..,y6} corresponds to the

1, interval at the ky = k; + k iteration.
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Table 6. Noise matrix estimation (proportions)

v p(Y,/x,)
‘ Y2 Y3 Ys ¥s Yo
\6‘_’[6 yl
Il“"-" . 0.1020 | 0.0977 | 0.2239 | 0.1011 | 0.1236 | 03518
il
‘Hli ! :
e : o | 01229 | 0.1066 | 0.205T | 0.1192 | 0.1048 | 03415
1 T
}ies s | 01184 | L1551 02129 [ 0.
. | 0.1020 | 0.1067 | 02229 | 0.1199 | 0.1265 | 0.3220
|
) x| 0.Ti08  0.1092 | 0.2024 [ 01117 | 0.1209 | 03451
!
I"H 4 N 0.]142;0.1128?0.1939 0.1053 | 0.1205 | 0.3533
0 !
f ky=hi+k bly) | 01157 | 0.1107 [ 02010 | 0.1059 | 0.1191 [ 0.3476 .
]
|

Fig. 5. The channel diagram (transition graph)

The problem is whether the random discrete variables
sampled at two iteration are statistically independent
or not; in the affirmative case, for what £ =4; - K
distance we can think of independence.

With this purpose we verify if the following relation
pyjlx)=..=ply;lxe)=p(y;) is valid or not.
p(yj) is the probability that the chaotic signal passes
through J; interval at kj iteration and p(y;/x;) is

the probability that a trajectory (chosen randomly
from the ensemble) passes through /j interval at &9
iteration on the condition that at &y iteration the same
trajectory passes through /i interval.

For a quick decision concerning their independence,
we computed the mutual information, (2).

HX;Y)=H(X)-H(XI!V)=HY)-HY/X) (2)

The Table 6 shows the conditional probabilities
p(yj /x,~)for k] =200 and k2 =k] +50=250.

The mutual information corresponding to Table 6 is
very low: [(X;Y)=0.001642. This suggest the
independence between the input and the output (also
revealed in Table 6 by the equality between
probabilities estimates p(y; /x;)= p(x;), i=1+6
and j=1+6).

We resumed this procedure of verifying the statistical

independence. Table 7 shows some results that
indicate a k =kj -k, distance for which we can

speak about independence; this happens for & >30.
The investigation was carried out on N =10000
trajectories.

This procedure based on the noisy information
channel assigned to “discretized” chaotic signal was
further resumed for Q =27 intervals. Some results

are presented in Table 8.

Table 7. The mutual information of the information
channel

k k3 1(X;Y)

k=10 | 200 | 210 | 0.016035
300 | 310 | 0.013822

k=30 | 200 | 230 | 0.001164
300 | 330 | 0.002171

k=50 | 200 | 250 | 0.001642
300 | 350 | 0.001812

This time the mutual information was computed
considering a large number of trajectories:
N =50000. We can notice that when we can speak

about independence the 4 distance is larger than for
Q=6 (Table 7).

Table 8. The mutual information of the channel

K ky 1(X;Y)
k=10 . 300 310 | 0.136066
k=20 300 320 | 0.011214
k =50 300 350 | 0.008182
k=500 | 300 800 | 0.008017
k =1000 300 1300 | 0.007521

We also computed the conditional probability and the
mutual information 7/(X;Y)for different kjand

k=ky—-ki. All results sustain the second order

stationarity for the discrete random process assigned
to the chaotic signal.

IV. CONCLUSION AND OPEN PROBLEMS
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This paper suggests how to obtain from the chaotic
signal a stationary discrete information source (and
according to case practically zero-memory) having the
same symbols as a printed natural language. For
example we can generate an information source with
Q=27 symbols that may correspond to printed

Romanian (the alphabet whitout blank and
punctuation marks), where we omit some very low
frequency characters. The message generated by this
information source (provided by the chaotic signal)
may be a key in a various enciphering methods.

An immediate example that can be further used in
different variants is to make a summation modulo
Q (successively for each character) between the

plaintext and the key. On the basis of the entropy
{redundancy) of the information source corresponding
to the key and also using some knowledge about the
entropy of natural language (the plaintext) we can
evaluate the performance of the cipher.
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APPENDIX

In the appendix we briefly present the test on the
equality between two probabilities:

Be there two samples each complying with i.i.d.
statistical model  with the sample size
N1 =N =N=10000. Denoting by mthe number
of successes of the event in the first data sample, the
probability estimate is p; = m) / Ny. Similarly, in the
second data sample, the probability estimate is
Py =my /Ny. The two statistical hypotheses (null

hypotheses F/{(/alternative hypotheses H; ) are:
Hy:py=prand Hy:p) # py. We have to verify
whether the two estimates pjand p derive from the

same theoretical probability. We apply the test based
on the - test value defined in (3):

==(p1~p2)/P1(1=p1)/ Ny + pa(1-p3)/ Ny
where p) = py = p=(m +my)/(N1+N3) (3)
If |:|S:a,/2 (where the z,/> is a/2point value

corresponding to the standard Gaussian law of 0 mean
and | variance) then we shall consider that the two
probabilities are equal. Otherwise, i.e. when

l:|>:a,/2, we reject the equality hypothesis at an
a significance level.
Type Il error means not to reject Hgalthough it is

false. This happens when the test value passes the test,
however p; # py. The probability of this situation

depends on the pjand py = py(1-J) value for fixed
@, Njand Nj. It is denoted by B(py.pp)and is
computed according to equation (4):

-0*24/)

Bpi,p2)= expt-
_(345[1 /2 \/braz

(x=(m —Pz))z \dx
252
4)

where:
G=\pl-p) /N +1/Ny) 5

o=ypi(1-p))/ N+ py(1-p2)/ Ny .
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