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The statistical behaviour of the chaotic signals: application 
to cryptography 

A d r i a n a V l a d ^ ' ^ A d r i a n L u c a 

Abstract - The paper is devoted to the analysis of the 
statistical behaviour of chaotic signals having in view 
their suitability for the criptografic appiications. The 
investigation is illustrated using the chaotic signals 
provided by the logistic function. The procedure of 
investigation comhines information theoi^ notions with 
statistical inferences based on one or two data sets. The 
foilowing statistical tools are considered: probability 
estimations with multiple confidence intervals, test on 
probability and test on equality between probabilities. 
The type II statistical error plays a special role in the 
design of the experimental data size. 
Key words: chaotic signals, ergodicit>\ statistical 
inferences on probabilit>\ typc II statistical error, noisy 
mformation channel. 

I. I N T R O D U C T I O N 

The chaotic behaviour [1], [2] has been noticed for 
many dynamic systems in discrete time. For such a 
system, tlie jc^ state at t ime k depends on the 

previous state, ^ f i ^ k ) - Several types of 

/ functions can be considered in practice. Gur paper 

considers the logistic function: 

(1) 

where the R parameter belongs to the (0;4) interval 
and the j:/. value belongs to the (0 ; I ) interval. The 
chaotic behaviour is met when > 3 .5699456. 
Notice that al! the numerica! results presented in our 
paper correspond to the logistic function; however, 
the investigation can be applied to any chaotic 
systems. 
Let us consider the equation ( I ) . Fig. 1. shows xţ̂  as a 

corresponding to ftinction of ^ E {0,1,...,200^ 

JCQ = 0 . 1 1 3 and to /? = 3 . 9 . When considering the 

same R - 3.9 value but different x^ initials values, a 

set of different curves are obtained. W e consider each 
of these curves as a sample of a random process. 
Hence, the sample space is the (0;1) interval in which 

ACQ is randomly selected [3], [8J. 

Section II presents the investigations for the first order 
statistical description (the probability distribution 
function), [3]-[8]. Some results are displayed in 
Table 1 and Fig. 2. With this purpose we considered 
the (0; 1) interval (the chaotic signal values) 
consisting of Q = 21 non-overlapping equal length 
in tena l s . 

1 

O 50 100 150 200 
Fig I A sample ot the random process which models the 

chaotic system, R = 3.9 and Xq =0.113 

Section 111 investigates the condiţional probabilities 
p ( I j / I l ) . i.e. the probability that a trajectory 

(chosen randomly from the ensemble) passes through 
Ij inter\'al at k j iteration on the condition that at k\ 
iteration the same trajectory passes through Ii interval. 
A problem was whether we can speak or not about the 
statistical independence of the two discrete random 
variables sampled at k\ and ki iterations. 

Section IV is devoted to the appiications of chaotic 
systems to the cryptographic field. 

II. FIRST O R D E R STATISTICAL 
DESCRIPTION 

Be the random sequence obtained from the chaotic 
signal when, instead of the continuous random 
variable sampled at each k iteration, we consider a 
discrete random variable with Q values. The Q 
discrete values are assigned to the Q non-overlapping 
equal length intervals covering the (0; 1) interval of 
values taken by the chaotic signal. W e illustrate the 
procedure of investigation for 0 = 27 intervals. We 
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started the study wiili Q-11 intervals having in vicw texts. 

some immediatc applications in enciphering natural 

A: = 200 /t = 300 /t = 500 k = 2000 

P P e,. P P 

0.0000; 0.0370 0 0 0 0 0 0 0 0 

h 0.0370; 0.0741 0 0 0 0 0 0 0 0 

h 0.0741; 0.1111 0.05000 0.08543 0.05380 0.08219 0.05493 0.08130 0.05160 0.0840 

h 0.1111;0 .1481 0.03980 0.09626 0.04330 0.09212 0.04450 0.09082 0.04590 0.08935 

h 0 . I 4 8 1 ; 0 . I 8 5 2 0.03500 0.10291 0.03540 0.10231 0.03590 0.10156 0.03510 0.10276 

h 0.1852; 0.2222 0.02810 0.11526 0.02770 0.11612 0.03030 0.11087 0.02450 0.12367 

1- 0.2222; 0.2593 0.02500 0.12116 0.02320 0.12717 0.02600 0.11996 0.02290 0.12802 

Is 0.2593; 0.2963 0.02020 0.13650 0.02240 0.12948 0.02200 0.13067 0.02250 0.12918 

h 0.2963; 0.3333 0.02170 0.13160 0.02190 0.13098 0.02140 0.13253 0.02090 0.13414 

Iw 0.3333; 0.3704 0.07290 0.06989 0.06990 0.07149 0.07000 0.0750 0.07110 0.07084 

In 0.3704; 0.4074 0.04290 0.09257 0.04380 0.09155 0.03910 0.09716 0.04250 0.09303 

1,2 0.4074; 0.4444 0.04990 0.08552 0.04750 0.08776 0.04840 0.08690 0.04800 0.08728 

0.4444; 0.4814 0.02500 0.12240 0.02800 0.11164 0.02740 0.11677 0.02410 0.12472 

IN 0.4815; 0.5185 0.02670 0.11833 0.02990 0.11164 0.03000 0.11145 0.02900 0.11341 

hs 0.5185; 0.5556 0.02420 0.12445 0.02650 0.11870 0.02500 0.12240 0.02720 0.11721 

1,6 0.5556; 0.5926 0.02380 0.12552 0.02310 0.12745 0.02200 0.13067 0.02330 0.12689 

1,7 0.5926; 0.6296 0.02350 0.12634 0.02400 0.12498 0.02360 0.12606 0.02830 0.11484 

0.6296; 0.6667 0.02580 0.12043 0.02310 0.12745 0.02350 0.12634 0.02650 0.11879 

1,9 0.6667; 0.7037 0.02620 0.11949 0.02460 0.12341 0.02310 0.12745 0.02290 0.12802 

ho 0.7037; 0.7407 0.02680 0.11810 0.02430 0.12419 0.02360 0.12606 0.02300 0.12774 

h, 0.7407; 0.7778 0.02665 0.11879 0.02370 0.12579 0.02470 0 12326 0.02680 0.11810 

1:2 0.7778; 0.8148 0.02940 0.11261 0.02630 0.11925 0.02885 0.11443 0.02870 0.11402 

hs 0.8148; 0.8519 0.03260 0.10676 0.03080 0.10994 0.02850 0.11443 0.03000 0.11144 

124 0.8519; 0.8889 0.06710 0.07308 0.07170 0.07052 0.06680 0.07325 0.06360 0.07520 

l25 0.8889; 0.9259 0.07270 0.06999 0.07040 0.07122 0.06780 0.07267 0.07210 0.07031 

h. 0.9259; 0.9630 0.10590 0.05690 0.11020 0.05569 0.11000 0.05575 0.11090 0.05549 

h? 0.9630; 1.0000 0.07780 0.06747 0.07450 0.06908 0.08300 0.06514 0.07860 0.06710 

Fig 2 Histograms for the frequencies distribuiion of Table \ Q - 2 1 mtcrvals, at Jfe = 200 (left) and at 

k = 500 (right), on the vertical axis- the occurrences of the intervals 
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We started the investigation with verifying the first 
order stationarity of the chaotic signal by considering 
the Q discret intervals. This implies a comparative 

study of the discrete random variables sampled at 
different iterations. 
We determine the probablity that at the k iteration 
the chaotic signal passes through a certain Ii interval 
(chosen from the Q possible intervals). Then, we try 

to verify if this probability depends or not on the 
k iteration (the sampling time) while preserving the 
same 7/ interval. For the statistical inferences used the 
experimental data should comply with the ii d model 
[ie observations coming up from independent and 
identically distributed random variables). Moreover, 
for the statistical tests we compared independent data 
sets. 
The first experimental results are presented in Table I 
where we considered four different iterations: 
/t = 2 0 0 , Â: = 3 0 0 , ^ = 5 0 0 , A = 2000 and 
V = 10000 trajectories for each sampling time. Note 

that for each k sampling time we used .V = 10000 
different trajectories, generated by different iniţial 
conditions (randomly chosen from (0; 1) interval)). 
Hence, for the four iterations k = 200 , k = 300 , 
k = 500 , k = 2000 we had at our disposal four 
independed i.i.d. data sets (that means we generated 
40000 different trajectories of the chaotic signal). 
For example for the / jq = (0.3333; 0.3704) interval, 

k = 200 , the estimated value of the p probability 
that the chaotic signal passes through /jq is 
p- mi N = 0.07290 (m is the occurrence number of 

the investigated interval in the considered i.i.d. data 
set). 
Each time we experimentally checked-up the de 
Moivre-Laplace conditions in the form 

> 14, [4]-[7]. As a consequence we can 

say that the p true (unknown) probability lies inside 

the * (1 - ^^ ) ; p • (I + ^ r ) ) = (0.06780; 0.07799) 

intei-val computed with 1 - a = 0.95 statistical 

confidence level; 

^r ^-all* yjpi^ - p ) ! N ^ 0.06989 is the relative 

experimental error, where r ^ / 2 = l . 9 6 i s the 

a / 2 p o i n t value corresponding to the standard 

Gaussian law (of O mean and 1 variance). 

For the same / iq = (0.3333; 0.3704) interval, but at 

k = 500 iteration, the estimated value is p = 0 .07000, 

the 95% confidence interval is (0.06499; 0.07500) 

and the relative experimental error = 0 . 0 7 5 0 . It 
can be noticed that the two confidence intervals for 
the probability overlap; this brings some evidence in 
the favor of the stationarity assumption. 
The fact that the confidence intervals overlap 
encouraged us to a more detailed investigation. 

Thus, we continued the study with applying the test 
on the equality between two probabilities (see 
Appendix ). 
We succesively compared the two data sets (one for 
k = 200 and another one for A: = 5 0 0 ) for each îi 
interval ( / = l - 2 7 a n d y = U 2 7 ) in Table 1. 
Table 2 presents the results oniy for ///>, 1,2, h s and I22 
intervals. All the four tests were passed; the test 
values and the decisions are shown in Table 2. As a 
conclusion, the stationarity assumption is again 
sustained. 

Table 2. Experimental values for the test on the 
eq ' ' 

Test: T, 
liO 1.2 1.8 I2: 

0.0819 1.2248 1.2910 1.4523 

HqIHX Ho Ho Ho Ho 

2 * 1 0 " 9.8* IO" 0 .1532 0.0328 

Because all tests are passed, the P probability o f t y p e 
II statistical error (that means Hq accepted, although 
the two compared probabilities are not equal) is 
important. It was computed according to (4) (see 
Appendix). 

Fig. 3 shows the values as a ftinction of p\ . 

There are three plots for S values: S = 0.1, 

J = 0 . 1 5 , ^ = 0 . 2 , N] = .V2 = A/ = 1 0 0 0 0 , a = 0 .05 . 

Table 2 presents the /3 values for the corresponding 

intervals, when S = 0.20 . For ^ = 0.10 , >0 values 
ai e much larger. For a better accuracy (low values for 
J3 while < 0.15 ) we need to resume the experiment 

generating much more trajectories of tlie chaotic 
signal. 
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Fig. 3 The type II error size for the tesl on equality between 

probabilities. On the horizontal - p\ probablity ; on vertical -

P values The curves corresponding lo: 

s = 0.]- "V, (5 = 0 .15- "o- and S = 02 -
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Fig 4 Frequcncy distnbution rcpresentalion; thc histograms if wc "discretizc" in Q = 6 mtcrval.s al A = 200 

(let\) and at k - 500 (right), on thc vertical axis - thc occurrences of the intcrvals 

Fig. 2 shows histograms coresponding to the 
frequency disUibution from Table 1. Instead of thc 
relative frequencies of the intervals, the histograms 
are constructed on the basis of intervals occurences. 
The study w^as resumed for Q=6 intervals. This 
number of Q=6 intervals could be of some interest in 
the cryptographic field when two iterations are 
simultaneously considered and assigned to an 
alphabet character of the natural language (for 
exemple letters, punctuation marks). Fig. 4 presents 
histograms for the random process modelling the 
chaotic signal. 
For a temporal description we generated several 
individual trajectories of the chaotic signal for 
L = 10000 iterations. We measured how many times 

the investigated trajectory (randomly chosen from the 
ensamble) passes through a ceitain interval of values; 
be tfi the occurrence number. The relative occurrence 
number 'p-rfi/L was computed for each I, interval of 
values (/; is the same from Table 1 where we 
"discretized" die (0; 1) interval in Q = 27non-
overlapping intervals of equal length). 
Another issue was if p = m/ L (the temporal relative 
frequency of the investigated interval) lies inside of 
the confldence interval for the probability 
corresponding to the same I, investigated interval (at 
k iteration). 
As an illustration we used three curves with iniţial 
condition: j c o = 0 . 3 1 , x o = 0.456 si ĉq = O '^SS and 

four investigated intervals: Ijo, I12, I js and I22 (see 
Table 3). We computed the temporal relative 
frequency 'p-mIL of the investigated interval for 
each trajectory. For example for the trajectoiy with 
x o = 0 . 3 1 the temporal relative frequency 
corresponding to lio interval is p = 0 .0725. 
Looking at Table I, the 95% confldence interval for 
the probability assigned to interval at A = 500 was 
(0.06499; 0 .07500) . W e can see that p lies inside 
this confldence interval for the probability. 
We resumed this type of investigation for each J, 
interval and several trajectories; all the numerical 
results sustained the ergodicity assumption of the first 
order distribution fiinction. 
We continued the verify this type of ergodicity by 
using a test of probability [4], [6], [7]. In this test the 
Ud. data sets is the same we used in Table 1 for a 
fixed k (the considered iteration) and the theoretical 

probability of the test was the temporal value for the 
corresponding /, interval in Table 3. 

Table 3. Temporal description 
;(0 = 0.456 = 0 . 7 5 8 

1,0 0.0725 0.0711 0.0708 

1,2 0.0481 0.0487 0.0483 

I,s 0.0214 0.0219 0.0213 

I22 0.0253 0.0273 0.0234 

Thus, the nuli hypothesis / / q has the form 
= where p ^ denotes the temporal 

probability obtained for a certain trajectory. 
We successively applied this test (Table 4) for Z/̂ , //:. 
Im and Î2: interval considering the i.i.d. data sets 
obtained dX k = 500 . The theoretical pg probabilities 
are those from Table 3 and the trajectory with iniţial 
condition jcq = 0 - 3 1 . All the tests were passed, thus 
sustaining again the ergodicity assumption. 

Table 4. Test of probability 
Test 1,0 i,2 I|8 I2: 

PO 0.0725 0.0481 0.0214 0.0253 

z 0.9641 0.1402 0.8983 0.7642 

H(/H, Ho Ho Ho Ho 

III. SECOND ORDER STATISTICAL 
DESCRIPTION 

Here, we again consider the (0; 1) interval of values of 

the chaotic signal discretized in g non-overlapping 

intervals of equal length. For thc second order 
statistical description we shall consider 
simultaneously two iterations (k \ and k j )• 

This leads to the noisy information channel shown in 
Fig. 5. Fig. 5 illustrates our procedure of 
investigation considering (2 = 6 intervals. As a 

consequence, the input space X 

corresponds to the /, interval at ki iteration and the 

output space = (vi , ••,>'6} corresponds to the 

J, interval at the k j = k\ + k iteration. 
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^ J ^ Xi 

Fig 5 The channel diagram (transition graph) 

P(y/x.) 
yi y2 y3 y4 ys yo 

Xi 0.1020 j 0.0977 0.2239 0.1011 0.1236 0.3518 

X2 
1 

0.1229 0.1066 0.2051 0.1192 0.1048 0.3415 

X3 0.1184 0.1055 0.2129 0.1144 0.1100 0.3388 

X4 0.1020 0.1067 0.2229 0.1199 0.1265 0.3220 

X5 0.1108 
j 

0.1092 
1 

0.2024 
1 

0.1117 0.1209 0.3451 

X6 0.1142 1 0.1128 ! 0.1939 0.1053 0.1205 0.3533 

p(yj) 
0.1157 0.1107 0.2010 0.1059 0.1191 0.3476 1 

The problem is whether the random discrete variables 
sampled at two iteration are statistically independent 
or not; in the aff lrmative case, for what k = k2-k\ 

distance we can think of independence. 
With this purpose we verify if the following relation 

P^yj / X]) = ... = p{yj / ar6) = Piy j ) valid or not. 

p(yj) is the probability that the chaotic signal passes 

through Ij interval at /:2 ^ ^ P (vy Z^/ ) is 

the probability that a trajectory (chosen randomly 
from the ensemble) passes through Ij interval at A'2 

iteration on the condition that at k\ iteration the same 

trajectory passes through Ii interval. 
For a quick decision concerning their independence, 
we computed the mutual information, (2). 

/(.V; Y) = H(X) - H{X IY) = H{Y)- H(Y / .V) (2) 

The Table 6 shows the condiţional probabilities 
p [ y j IXI) for kx = 200 and Â:2 = + 50 = 250 . 

The mutual information corresponding to Table 6 is 
very low: / ( X ; K) = 0.001642 . This suggest the 

independence between the input and the output (also 
revealed in Table 6 by the equality between 
probabilities estimates p{yj f Xi) = p{xi), / = 1-^-6 

and 7 = Ih -6) . 

We resumed this procedure of verifying the statistical 
independence. Table 7 shows some results that 
indicate a k = k 2 - k \ distance for which we can 

speak about independence; this happens for > 30 . 
The investigation was carried out on Â  = 10000 
irajectories. 
This procedure based on the noisy information 
channel assigned to "discreiized" chaotic signal was 
further resumed for Q = 27 intervals. Some results 

are presented in Table 8. 

Table 7. The mutual infoimation of the information 
channel 

I { X J ) 

j t ^ l O 2 0 0 2 1 0 0.016035 j t ^ l O 

3 0 0 3 1 0 0 .013822 

A = 30 2 0 0 2 3 0 0 .001164 A = 30 

3 0 0 3 3 0 0.002171 

A: = 50 2 0 0 2 5 0 0 .001642 A: = 50 

3 0 0 3 5 0 0 .001812 

This time the mutual information was computed 
considering a large number of trajectories: 
;V = 50000 . W e can notice that when we can speak 

about independence the k distance is larger than for 
2 = 6 (Table 7). 

Table 8. The mutual information of the channel 

1 t i j kl I{X-Y) 

it = 10 i 3 0 0 3 1 0 0 .136066 

A = 20 3 0 0 3 2 0 0 .011214 

^ = 50 3 0 0 3 5 0 0.008182 

Â: = 500 3 0 0 8 0 0 0 .008017 

yt = !000 3 0 0 1300 0.007521 

W e also computed the condiţional probability and the 
mutual information I{X\Y) for dif îerent ^ j a n d 

k - k 2 - k \ . AII results sustain the second order 

stationarity for the discrete random process assigned 
to the chaotic signal. 

IV. C O N C L U S I O N A N D O P E N P R O B L E M S 
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This paper suggests how to obtain from the chaotic 
signal a stationar>' discrete information source (and 
according to case practicaily zero-memory) having the 
same symbols as a printed natural language. For 
example we can generate an information source with 
Q-ll symbols that may correspond to printed 

Romanian (the alphabet whitout blank and 
punctuation marks), where we omit some very low 
frequency characters. The message generated by this 
information source (provided by the chaotic signal) 
may be a key in a various enciphering methods. 
An immediate example that can be fiiither used in 
different variants is to make a summation modulo 
2 (successively for each character) between the 

plaintext and the key. On the basis of the entropy 
(redundancy) of the information source corresponding 
to the key and also using some knowledge about the 
entropy of natural language (the plaintext) we can 
evaluate the performance of the cipher. 
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APPENDIX 

In the appendix we briefly present the test on the 
equality between two probabilities: 
Be there two samples each complying with i.i.d. 
statistical model with the sample size 
A'i = ;V2 - ^ - 10000 . Denoting by m\ the number 

of successes of the event in the first data sample, the 
probability estimate is p\-m\l N\. Similarly, in the 
second data sample, the probability estimate is 
P l - ^ l ^ yV2, The two statistical hypotheses (nuli 

hypotheses //q/alternative hypotheses H\ ) are: 
• ŷ l - Pl ^^ P\ PI' have to verify 

whether the two estimates p\ and p i derive from the 

same theoretical probability. We appiy the test based 
on the r test value defined in (3): 

depends on t h e p \ and pi = p\(\-5) value for fixed 

a , A^iand /V'2 • ^̂  denoted by p2)dind is 

computed according to equation (4): 

P(PhP2)= J I 

(4) 

where: 
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where = P2 = P = ( '"l + ) + ^ 2 ) (3) 

If - ^ ' a l 2 (where the r ^ / 2 is a / 2 p o i n t value 

corresponding to the standard Gaussian law of O mean 
and 1 variance) then we shall consider that the two 
probabilities are equal. Otherwise, i.e. when 

reject the equality hypothesis at an 
a significance level. 
Type II error means not to reject //Qalthough it is 
false. This happens when the test value passes the test, 
however ^ • ^^^ probability of this situation 
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