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Noise impulse generation with convenient characteristics 
in time and frequency domain 

l oan L D u m a 

Abstract - Io thc papcr '^Impulse generation with 
appropriate amplitude, lengtb, inter-arrival, and 
spectral characteristics," by LMann etaL, [1] the 
authors present what the guest editors believe is the 
most recent statistical model of nonstationar>' impulse 
noise. 
The Henkel /Kessler (HK) model discussed in that paper 
proved to be a good fit for all measured impulse noise 
voltage amplitude distributions collected in both the 
networks of Deutsche Telekom (DT) and Britisb 
Telecom (BT). Nevertheless , in order to facilitate the use 
of the results of Tough and W a r d |3] on random noise 
generation with prescribed ampli tude and spectral 
characteristics, a Weibul l type density was investigated 
as a possible alternative since it s implf ies an 
approximate realization of the stochastically varying 
spectral properties- The authors recognized that H K 
model is a better fit than the Weibull density and can be 
considerd as more realistic while suggesting that in 
further studies the Tough- W a r d method for thc D T 
data sets will be finalized. 
This paper proposes a suitable method for s imulating 
impulse noise with Henkel /Kess ler amplitude probabil ity 
density function and impulse length according a stable 
probability density function. 

Keywords- impulse noise, nonstationary noise, xDSL, a -
stable distribution. 

I. INTRODUCTION 

Telekom networks were performed. The authors 
abandoned the Henkel-Kesler (HK) model which was 
proven to be more realistic for the modeling practice 
in favour of Weibull distribution in order to facilitate 
the use of the results of Tough and Ward [3] on 
random noise generation with prescribed amplitude 
and spectral characteristics. In the following, we shall 
apply the Tough and Ward method to the HK model. 

II. STATISTIC MODELING FOR THE 
PROBABILITY DENSITY OF IMPULSES 

AMPLITUDE 

The original model known as HK (Henkel- Kessler) 
model was proposed in [2] 
Probability density ^nction of the impulses' 
amplitudes is given by: 

Mu) = 
240wn 

, Uo>0 (1) 

It tells that this is a probability density symmetric to 
the origin. 
It can be demonstrated that the transformation of 

variable y = 
( u 

leads to a gamma symmetric 

distribution / = 
2r(5) Telecommunication companies and equipment 

manufacturers are interested in modeling the impulse 
noise that is disturbing the xDSL systems. I. Mann et 
al. [1] present a statistical model considered to be the 
most recent nonstationary noise impulse model. A 
method for the simulation of noise impulses with 
given amplitude, length and spectral density 
characteristics is proposed. 
Impulse noise is considered to be one of the main P{y) = 
causes of signals' degradation in xDSL systems. That 
is why companies are interested in modeling this 
noise. A noise impulse model must describe, in a 
statistical sense, both time domain and frequency 
domain impulses' properties. 
In Mann & Henkel model, the parameters are chosen 
according to the empirically obtained statistics when 
measurements in the British Telecom and Deutsche 

1 4 -Ivi 
y e '. 

The model was proven to be appropriate for the 
information gathered from both networks (BT and 
DT). Nevertheless, in order to facilitate the use of the 
results of Tough and Ward on noise generation, a 
symmetric Weibull probability density was used 

(2) 

The parameters for the Weibull and HK models in BT 
and DT network measurements are given in table 1: 
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Table 1 
Weibull HK 

a b Uo 
BT(CP) 0,263 4,77 9,12 nV 
DT(CP) 0,486 44,4 23,23 nV 
DT(CO) 0,216 12,47 30,67 nV 

CP - Customer Premises 
CO- Central Office 

2 Uq 2 

The right side integral is known 

(7) 

(8) 

In order to test the xDSL systems, synthetic impulses 
are generated using the Tough-Ward method that 
combines the amplitude probability densit>' function 
with the correlation flmcrion model to produce 
impulses with appropriate time domain and frequency 
domain properties. 
First of all, this method assumes to fmd a memoryless 
nonlinear transform (MNLT) that maps between a 
zero-mean, unit variance Gaussian probability density 
and the required probability density function. This is 
then used to calculate the relationship bcUveen 
correlation coefficients of the two processes. Once 
this relationship is found, then it is possible to impose 
a correlation onto the input Gaussian sequence of 
given length by filtering with a FIR having a spectrum 
that corresponds to the input correlation function. 
The Gaussian filtered sequence is fed to the 
memoryless nonlinear transform in order to generate 
impulse with given amplitude and spectral density 
characteristics. 
To fmd the memor>less nonlinear 
transform = g ( x ) , the cumulative distribution 
functions for the normal pdf and for the required pdf 
are equated 

1 , ''o 
240wn 

clu = 
1 

(4) 

Left side integral can be calculated: 

I . = — (v ' + 4 v ' + 1 2 v ' + 24v + (5) 

where v = 

For the purpose of this paper it is recommended to use 
the incomplete gamma function given by: 

Fia) J 
(6) 

Starting from (6) it is easy to obtain the left side 
integral: 

where e^f (w) = e ' dt is the crror function. 

The memoryless nonlinear transform (MNLT) 
y = can be numerically obtaincd in Matlab from 
the incomplete gamma flinction gammainc(y,a) and 
the reverse of the crror function erfinv(w). The result 
is a symmetric with respect to the origin 
function = g(,x)(Fig l left) 
In the following the correlation function of the 
process y is evaluated. This can be expressed in the 
form: 

lV2j 
g{x)dx 

(9) 

where H„ are the Hermite polynomials of nXh degree. 
Once we have evaluated the integrals 

f 
g(x)dx (10) 

we have a power series representation of the mapping 
between the correlation functions of the input 
Gaussian and the output non-Gaussian processes. This 
series are rapidly convergent. 
The integral (10) is numerically evaluated and the 
resulting polynomial is used to generate a lookup 
table relating the input and output correlation 
coefficients. 
So far, we have established a readily evaluable and 
invertible mapping between the correlation functions 
of the input Gaussian and the output non-Gaussian 
processes related b> the nonlinear 
transformation V = g{x). 
Using this we can tailor the correlation properties of 
the input Gaussian process through the methods 
described in [l]. 
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Fig. 1. The mapping betsveen the input and the output correlation ftinctions under the MNTL for HK density 

M i ) = B 
1 

1 , J r — In- -

1 
1 , / ^ -—rin- — , 

KhJ 

(11) 

The typical parameters of the model are given in 
table 2 

Table 2 
B s, T, S2 T2 

(KS) 
BT(CP) 0,45 1,25 1,3 21,5 129 
DT(CP) 1 1,15 18 -

DT(CO) 0,25 0,75 8 1.0 125 

In this paper we propose an alternative model for 
length probability density fimction, a stable 
distribution 

O x < 0 

x > 0 

V 2 7 ' 

Frequency 
xlO-^ 3 —__ 

I , 

III. A NEW MODEL FOR LENGTH 
DISTRIBUTION 

The approach for modelling the probability density of 
impulse duration in [2] is left unchanged to be a sum 
of two log-normal forms. 

25 
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The stable law is a direct generalization of Gaussian 
distribution and in fact includes the Gaussian as a 
limiting case. 
The main difîerence between the non-Gaussian stable 
distribution and the Gaussian distribution is that the 
tails of the stable density fimction decay less rapidly 
than the Gaussian densit>' fimction. This characteristic 
of the stable distribution is one of the main reasons 
why the stable distribution is suitable for modeling 
signals and noise of impulsive nature. 
The stable distribution is very flexible as a modeling 
tool in that it is determined by four parameters: 1) the 
location parameter a 2) the scale parameter b, also 
called dispersion, 3) the index of skewness P and 4) 
the characteristic exponenta. For more information 
about the stable distribution, we refer the reader to 
appendix. 

IV. CONCLUSIONS 

We presented the Tough-Ward procedure in the case 
of Henkel Kessier model for the amplitude probabilit>' 
density fimction, an unsolved problem in June 2002 
when the paper [1] was published. A new model for 
length distribution is proposed. This is an a-stable 
distribution with a = 0.5 . 
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APPENDIX 

STABLE DISTRIBUTIONS 

A distribution function (d. f.) is said Io be stable if for 

ever> n ^ l there exist constants a„and > 0 such 

that 

(A.l) 

F ' " is the f7-fold convolution of F with itself. 
The corresponding characteristic function (c.f.) 
/ := is also called stable. A d.f. F is stable 
if and only if (iff) for eveo' coHection A'q, A',,..., 
of n+\ mutually independent random variables with a 
common disUibution (i.i.d r.v.), 

n ^ l , there exist constants and >0 such that 

o,. 
(A.2) 

In / ( / ) = iat - + iPsgnt.co^{t)] 

where 

(A.3) 

na 
tan — i f a ^ ^ l 

if a = l 

and Fhas the Pearson density 

O x < 0 

b T -

w 

and 

x>0 

where 

( A . 5 ) 

(A.6) 

(A.7) 

Every stable d. f. belongs to its own domain of 

attraction [4]. 

Proposition 1 [4], [5] Only the norming constants 
= n^^^ are possible. 

Proposition 2 [5] A non-degenerate d.f. F with c . f . f 
is stable iff there exit real constants a , fi^a md b 

withO < a < 2 , \ f i \ < l and i >0, such that 

(iii) \ f a - 2 then / i s normal. 
Using (A.3)) one obtains 
Proposition 3 Le t F^ ^Sia^.P,, 

stable such that a^ = 02 =cx. Then F = F, • F j is 
also stable and we have 
F = ĂXa, +6) 

Proposition 4 Let F = a, ^)be stable. Then 
the following assertions are true 
(i) F, {x) := F(/xc +1/), / i >0 is also stable. We 

have F = 5 ' (a , )9 ;^2p6,)where 

61 =6/ / /® and 

a - y 

a, = 

i f a ^ l 

i f a - 1 
(A.8) 

The parameter a is the characteristic exponent and P 
is the skewness parameter. The parameters a and 
in (A.3) are respectively location and scale 
parameters. We will denote a stable d.f. F by 
F = a, b). 

Example (i) For F = 5(1,0; 0,1) we obtain 

= sothat F is the Cauchy / 

(ii) For F=-S{\/ 2,-1; 0,6) we have 

\ n f , { t ) = -b^\[\-isgnt] (A .4 ) 

(ii) F is symetric with respect to XQ iff 

a - XQ and either or = 2 or /? = O 

(iii) F is one-sided df iff a < \ and = I. In 

this case a=sup {x : F(x) = O} if ^ = - l and 

a - in f {jc: F(x) = 1} i f / ? = 1 

(iv) If then the probability density 

function decreases as 
const.x " ' ' ' ' fo r If yg = l a n d a < l 

for x - ^ a - O , and if = for 
X -> oc, p{x, a , P^a^b) decreases 

exponentially. 
(V) E\X\' < 00 if O < r < a If a = 2 the 

stable distribution is Gaussian and 
E\X\ < 0 0 for all r ^ O . 

Thus, if>^<l stable laws have inverse power (i.e. 
algebric) tails. This proves that the tails of stable laws 
are much thiker than those of the Gaussian 
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distribution. An important consequence of (/v) is the 
nonexistence of the second order moment (except for 
the case a = 2). 

Proposition 5 Let X be an a -stable random variable. 
If O < a < 2 , then 

E\X\^ p>a 

and 

^lA^I^ <00, i f O < p < a . 

If a = 2, then 

<cxD forall p > 0 . 

AII non-Gaussian stable distributions have infinite 
variance. 

Let X ^ , X , ^ be a collection of i.i.d. r.v. and X̂ ,̂ ^ 

the largest among them. If the X j have the stable 

density (A.4) then 

^-byjîhi (A.9) 

Proof: If a limit distribution G exists we have 
F"(n^x) G(x) at all points of continuity. Passing 

to logarithms we get 

(A. 10) 
We have for « oo 

- -

2 N 
b 

- 1 2 N 
1 2 - 1 

L 
(A. l l ) 

Propositon 6 For fixed O < a < 1 the fimction 

y^ {s) = is the Laplace transform of a 

distribution G^ with the following properties: 

G^ is stable 

(at points of continuity) where G is a proper 
distribution not concentrated at a single point.Then: 

(i) 

(ii) 

There exists a fimction L that varies slowly 
at infmity and a constant a with O < or < 1 
such that 

m - a ) 
(A. 15) 

(iii) Conversely if F is of the form ( A.15) it is 
possible to choose a„ such that 
nL{a„) 

>1 (A. 16) 

and in this case (A. 14) holds with G = 
(from the theory of regular variation a positive 
function L defined on (O, oo) varies slowly (at cx)) if 

L{sx) 
for all a: > O, 

L{s) 
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x'^n-G^ix)] 
1 

r ( l - a ) 
(A.12) 

e^'^G^ix)- > 0 . (A. 13) 

Proposition 7 Suppose that F is a d.f concentrated 
on (0,oc) such that 

(A.14) 
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