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Abstract - Neurobiological research bas lead to the birth 
of third generatioD (neuroroorphic) artificial neural 
netHorks. One of these models is based on the natural 
'^spiking" neural behavior, which creates the basis of our 
rcsearch. Foilowing the developed matheniatîcal "puise 
reactive*' model, we present our software simulator and 
onc appiication of i t The FPGA buiit hardware spiking 
neuron is then introduced along with a network of these 
new model neurons. The modular neuron structure, 
acquired signals and performance analysis are given. 
Keywords: Neuromorphic neural networks, Spiking 
neurons, Simulation, Hardware implementation, FPGA. 

L INTRODUCTION 

It has been shown [3] that networks of spiking 
neurons are computationally more powerftil then other 
neural models (perceptron based, with sigmoidal 
activation), using fewer neurons to implement the 
same appiication. We chose to develop such advanced 
artificial models in order to get closer to the 
ftinctional behavior of natural neurons, achieving by 
this greater computaţional power using less resources 
and also to have a deeper understanding of their inner 
processes. The software simulation presented in 
section four has served only as an aiding tool in 
developing the hardware implemented neural models 
and networks, the main goal of our research. 

IL BIOLOGICAL BACKGROUND OF THE 
STUDIED ARTIFICIAL NEURAL NETWORKS 

A typical natural neuron has three funcţional 
components: dendrite, soma and axon (Fig.l). The 
dendrite is the input unit, which collects the output 
signals of the other neurons and transmits them to the 
neural cell. The cell body (soma) is the processing 
unit, which flilfils a complex non-linear task: if the 
input sum exceeds a threshold value, an output signal 
w ill be generated - an action potential [1]. This output 
signal is transmitted by the axon towards the receptors 
of other neurons. In the mammal brain a single neuron 
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Fig. 1. The structure of a natural neuron 

could have 10^ postsynaptic connections, with lengths 
varying from ^m to a few centimeters. 
An action potential - measured with a intracellular 
electrode in the brain - consists in a short electrical 
puise, of around 100 mV amplitude and 1-2 ms 
duration. The pulse's shape is the same during its 
propagation along the axon. A series of action 
potentials, containing regularly repeated pulses. 
constitute a spiking puise row. As all spiking pulses 
are of similar shape, the puise form does not contain a 
specific information; only the number of pulses and 
their time density is of major importance. The point 
where the axon of a presynaptic neuron is connected 
to the receiving dendrites of the foilowing 
postsynaptic neuron, has the denomination of the 
synapses. In the brain most synapses are of chemical 
nature: the axon terminal is ver>' close to the 
postsynaptic neurons and over a threshold level of the 
action potential the axon delivers a neurotransmitter 
compound, which penetrates into the postsynaptic 
side, causing potential level change in the 
postsynaptic neural cell. 
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Under the influence of a spikîng puise the potential 
difference between the inner part of the neural cell 
and the environment (called membrane potential) is 
increasing, but if no other spikes will arrive, the 
membrane potential will retum to the environmental 
level (called resting potential) (Fig. 2a) 
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Fig 2. a . - Membrane potential dynamics of natural neuron 

b. Shape of spikîng pulses (SSP - stimulating, ISP - inhibitory) 

The spikîng puise could be of positive potential 
(Stimulating Spiking Puise - SSP) or of negative one 
(Inhibitory Spiking Puise - ISP). Assume that two 
presynaptic neurons (/=1,2) send SSP towards a 
postsynaptic neuron: /=1 neuron is firing in the 
moments t/"^ andJ=2 in the moments t/^^ 

t/"^ (generally t f ) , Each puise causes a 
postsynaptic membrane potential increase E,j,e,2,...€ij. 
If only some SSP are received by the postsynaptic 
neuron (O, than a near linear composition is 
applicable: 

( i ) 

where Ures is the residual, resting membrane potential. 
If there a greater number of SSP are received, the 
summing law of pulses is no longer linear. If the 
potential u, reaches a criticai threshold level i9, the 
postsynaptic neuron will deliver an own spiking puise, 
which will be transmitted through the axon of the 
neuron / towards the synapses of flirther neurons. 
After delivering the firing puise the membrane 
potential of the neuron / will drop back to the stand-by 
level. Practically, in biological neurons, around 20-50 
presynaptic spiking pulses must be received in a short 
time, to exceed the threshold level. 

III. MODELING OF SPIKING NEURAL 
NETWORKS 

In a spiking neural network (SNN) we defîne a finite 
set of firing neurons (FN) and a set E ^VxV of 
synapses. To each i eV neuron belongs a threshold 
function : R^ R''and to each (/,y> G E 

synapses belongs an answer function s^j \ R^ /? 

[3],[4] (Fig. 2b). 
This answer function could be a positive one, when 

it is a stimulating spiking puise - SSP (Fig. 2bssp) or a 
negative one, when it is an inhibitorv spiking puise -
ISP (Fig. 2b,sp). 

When a neuron j is firing, the time characteristic 

could be expressed by: - t ^ p ) , where 

= 0 if t - t p < A , A ^ j being the 

transmission time of the puise firom the FN to the 
postsynaptic receiving neuron; w,j is a vveighting 
factor, which is positive for SSP and negative for ISP. 

If / - ^ > Â ^ , the answer function has the shape 

presented in Fig. 4. 
The puise reactive model (PRM) is, may be, the most 
appropriate method to model SNN, the task being to 
evaluate the firing moments of FN / 
as a function of the firing moments of j presynaptic 
FNs ( r / ^ , O . 
The membrane potential of a cell (soma) of the /-th 
neuron is 

(2) 

which expresses the contribution of j presynaptic FNs, 
generated before the moment î. The PRM handies also 

with a damping factor //(Z - O , which is a function 
A 

of t j -the moment of the generation of the last spiking 

puise of FN /. before the time /. If t -1, < O or 

/ - f̂  > 0 and high enough, the damping factor is 

zero. If / - > O, but of small value (that means the 
/ FN just has generated a spiking puise), the damping 
factor has strong negative value and inhibits the FN / 
to generale a new spiking puise. 
Comparing to the Hodkin-Huxley model [2], [5], the 
puise reactive model (PRM) is more suitable to 
computer analysis, as there are no differential 
equations are handled in the model. If we choose 
appropriate values for flinctions, the PRM 
could model quite good the dynamics of the natural, 
biological neurons. 
In our model we used a coding algorithm, where each 
spiking puise has a separate importance, similar to the 
bits in the computers. As the time is continuous, a 
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single spiking puise could include more information 
than a single bit, as the arriving time ( could encode 
the analog value (r-7), when T is a reference time 
value. In this respect a FN acts as a coincidence 
detector, i.e. will generate a spiking puise only if a 
great enough number of SSPs will arrive to the neuron 
cell (soma), almost simultaneously. 
If all the transmission delays A,j between the FN i and 
the presynaptic j FNs are identical, then the FN /, 
which has a high threshold value , will fire only if 
all presynaptic j FNs will have the firing moments tf^ 
very close to each other (practically are 
simultaneous). If the Ajj are different for several j 
presynaptic neurons, the FN / will fire only if the 
presynaptic neurons will comply to a certain 
scheduling in firing times: / will fire if for any j , tf^T-

IV. THE DEVELOPED SIMULATION 
ENVIRONMENT AND THE TEST RESULTS 

A. The simulaîion algoriîhm 

The main aim of the simulation procedures is the 
computation of the networks parameters, which are 
necessaiy to generate spiking pulses in a given 
moment of the network simulation. The spiking pulses 
are generated from the membrane potential of neurons 
and with the threshold function . Consequently it 
must process the pre- and postsynaptic pulses to 
evaluate them as membrane potential effect for a 
coming neuron, which will fire in the next time-step. 
In the same time the synaptic weightings and delays 
must compute. 
In the FNN model there the classical perceptron 
model matrix vector algorithms, used in the previous 
generation artificial networks, are not applicable. Here 
the neurons and synapses need separate computations, 
which are possible in sequential data processing. In 
this respect every time step of the simulation must be 
divided in two phases: in the first phase we compute 
the spiking pulses of all the neurons and after that we 
use them in the second phase, when we proceed the 
necessar> operations to transmit the spiking pulses. 
Based on this two-phase evaluation, the next 
algorithm is set up (Fig. 3): 
• In the first phase we compute the values of the 

membrane potentials and threshold values, based 
on the data read from the Neuron Memory. If a 
membrane potential reaches a value that exceeds 
the threshold, then spiking puise (SP) will be 
generated, which is saved in a spiking puise SP 
List, together with the identificator of the FN. 

• In the second phase the values read from the SP 
List are weighted (with coefficients w^) and using 
the Neural Network Topology the SP is 
transmitted towards the postsynaptic neurons. At 
this phase we could use the leaming algorithm, 
modifying the effectiveness and timing of the 
synapses. 

Fig. 3. Schematic diagram of the simulation algorithm 

After these phases the state of the network is 
deterministic and the next time step of the 
computation may start. 
As leaming algorithm we used the Hebb leaming 
algorithm. This consists in a set of leaming mles, 
which allow the tuning of the synapses based on the 
pre- and postsynaptic neurons activity. 
General ly speaking, the Hebb leaming has the 
following four components: 

1. A neural connection is fortified (the synaptic 
efficacy is increased) if the pre- and postsynaptic 
neurons are active simultaneously (are firing). 
2. A neural connection is weakened (the synaptic 
efficacy is decreased) if only the presynaptic neuron 
is active. 
3. A neural connection is weakened (the synaptic 
efficacy is decreased) if only the postsynaptic 
neuron is active. 
4. The neural connection is unchanged if none of 
the neurons is active. 

B. The implemented software simulaîion 

The complexity of the simulation task determined a 
very carefiil selection of the development tool and 
environment. As it was presented in the previous 
sections the studied natural neural networks as well as 
the developed artificial ones relay on signal timings, 
therefore timing has a very important role. Hence, we 
had to find a solution which gives tools for exact and 
schedulable timings beside the proper programming 
environment. After running a few tests and 
considering their results we decided to drop the path 
of an interpreter (Matlab) or a compiler (Visual C -^ ) 
under the Windows operating system. Instead we 
tumed towards a compiler running on a RedHat 
Linux operating system. This way we have gained not 
only much better timing tools but relatively faster 2D 
and 3D plotting interfaces (Gnuplot, Povray) and a 
modem and usefijl way of saving network structures 
with the XML file format 
A considerable amount of our software developing 
work was based on the previously developed spike-
response model and threshold-based leaming. Here 
we can briefly mention the programming of the 
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behavior of the individual spiking neurons and their 
synapses, and of the layer building and connection 
establishing procedurcs. Any 3D network can be built 
either giving the architecture neuron by neuron or 
layer by layer. 
The networks can possess feedbacks, for instance one 
can create a recurrent network formed of several 
layers where the outputs of the last layer arc 
connected to the inputs of the second layer (the first 
layer neurons are special neurons without synapses. 
accepting only one input), thus creating a pulsing 
output. This can be used as some form of 
synchronization signal for other groups of neurons. 
The simulation environment, therefore uses three 
t>'pes of neurons as follows: input layer neurons, 
hidden layer neurons and output layer neurons. 

Fig. 4 The tested spiking neural network built m the simulation 
environment 

The test appiication we have prepared is a letter 
recognition from a 7x5 matrix of inputs. The 
developed spiking neural network architecture is 
presented in a spaţial form in Fig. 4, where the matrix-
shape arranged blue balls represent the input neurons, 
the smaller inner balls the hidden layer neurons and 
the ones in the background the neurons of the output 
layer. The meeting points of the connecting iines 
between neurons are the synapses. The hidden layer 
has the same number of neurons as the input layer, 
while the output layer has seven neurons. As the 
output neurons have binary outputs these may stand 
for the elements of a seven segment display. Though, 
an additional binary logic is necessary to display the 
characters correctly on the seven segment display. 
This occurs because the network - with the currently 
implemented unsupervised leaming algorithm -
performs only a categorization of the noised matrixes 
given at the input. 
The input matrixes are the representations of different 
characters presented randomly to the network with 
adjustable noise percentage. The simulation is 
composed of a prescribed number of time-steps. At 
each time-step a different input is presented to the 
network and all the necessary computations - for all 
neurons and synapses - are executed. 
If enough time-steps have elapsed the output of the 
spiking neural network will start to present similar 
values for a certain input matrix, hence it will learn 
the given task. In order to be able to follow the 
evolution of the system at each time-step all active 
(spiking) neurons are marked and saved. 

V. FPGA IMPLEMEN I A riON OF THE SPIKING 
NEURONAL MODEL 

An artificial neural network (ANN) is a parallel and 
distributed network of simple nonlincar processing 
units interconnected in a layered arrangement. 
Parallelism. modularity and dynamic adaptation are 
three computaţional characteristics typically 
associatcd with ANNs. FPGA-based reconfigurable 
computing architectures are well suited to implernent 
ANMs as one can exploit concurrency and rapidly 
reconfigure to adapt the weights and topologies of an 
ANN. 
FPGA realisation of ANNs with a large number of 
neurons is still a challenging task because ANN 
algorithms are usualy *'multiplication-rich'* and it is 
relatively expensive to implement muhipliers on fine-
grained FPGAs. By utilizing FPGA reconfigurabilit>', 
there are strategies to implement ANNs on FPGAs 
cheaply and etTiciently. 
One of these strategies, which we have applied, 
consists in implementing third generation neural 
models on FPGAs, because it is possible, as you can 
read further in this paper, to build them without using 
any multiplicator circuits. Most multiplier-like task 
are fulfilled by sequential counter logic circuits. This 
makes our approach more cost-eftlcient than the 
hardware built, perceptron based ANNs. Due to the 
high level of paralellism achieved in this manner 
speed enhancement is also obvious, as Section VI and 
Section VII present. 
Based on the mathematical model and the results of 
the simulated network we developed a hardware 
implementation of spiking neural networks. The two 
main parts of the neuron model, the synapse and the 
soma, were designed and developed separately. As the 
previously section of this papcr presented, one of the 
developed neural model's specific properties is that 
the inputs and outputs can be easily given as binary 
values (pulses). This was one of the reason which led 
to the digital hardware implementation. The device 
used was a XESS XSAIOO prototyping board having 
as main module a XILINX XC2S100 Spartan II 
FPGA (lOOk logic gates). Beside the FPGA chip there 
is a CPLD IC for the PC parallel port connection 
interface, a 16Mb SDRAM, a 256Kb FlashRAM 
memory module present on the prototyping board, the 
FPGA being driven by a programmable oscillator 
with the maximum frequency of 100 Mhz. 

A. The FPGA implemented synapse 

Considering the behavior of a cerebral synapse the 
main function of the circuit developed by us as the 
artificial synapse is a puise multiplier, although it 
doesn't contain any real multiplicators. 
As the ^chitectural schematic in Fig. 5 presents, the 
synapse is also made up by two - structurally and 
functionally ~ separate units. 
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Control Unit (CL) Superviaing Unit (SU) 
Fig.5. The synapse 

The Control Unit (CU) consists of a register and a 
counter and performs the following tasks on the rising 
edge of the clock signal: 
• If the Write (WR) signal is active, it updates and 

stores the weight value of the synapse from the 
externai weight bus; 

• If the Read (RD) signal is active, the CU writes 
out the weight value to the externai weight bus; 

• Signals PRS (pre-synaptic spike) and POS (post-
synaptic spike, axonal spike) are used to 
implement the leaming algorithm which 
described in VHDL code looks like this: 
if PRS='0' and POS=V' then 
new weight: =old_weight; end if: 
if PRS=1' and POS='0' then 
new weight: =^old_weight-l; end if: 
if PRS='0' and POS-^T then 
new_weight: =old_weight' 1; endif 
if PRS- 7 ' and POS= 7 ' then 
new_weight:=old_weight^I; endif: 

• Counter I (limited to four bits. due to lack of 
space on the FPGA) is increasing or decreasing as 
the actual weight is modified, value which is then 
transmitted to the Supervising Unit (SU). 

The SU watches for an incoming spike puise. When 
such a puise arrives the SU emits a number of output 
pulses, exactly as much as the weight value shows. 
When Counter II reaches this value, the Validation 
Logic inhibits flirther output spikes. 
These output spikes are then transmitted towards the 
neuron body, the soma for flirther processing. 

B. The FPGA implemented soma 

The soma module can be considered as the Central 
Processing Unit of neuron model. It is the most 
complex part of the whole neuron, hence it uses the 
most circuit logic blocks (CLB's) of the FPGA. 
Consequently, it has required the development of 
various version until a fairly optimized configuration 
has been reached. Though, it is still too large, uses too 
much of the FPGA logic, to allow large networks to 
be built. 
The architecture of the soma is built on four modules 
(Fig. 6). The main task of the soma is to calculate the 
membrane potential using the input spikes from the 
synapses, compare it to the threshold potential and if 

Fig. 6 The hardware implemented soma 

the latter is the smaller one it has to emit an axonal 
spike. On the falling edge of the clock signal, the 
SYNIN unit of the soma reads the output values of the 
synapses and performs a multiplication with a 
programmed factor, then sums these into an input 
value. Through an internai bus, this value reaches the 
MPCU unit where it is added to the previous value of 
the membrane potential, stored here on seven or eight 
bits. If there were no input spikes, then the membrane 
potential is gradually decreased, down to the resting 
potential (4-5% of the maximal membrane potential 
value) to reflect the natural neuronal behavior 
presented in section 2. The MPCU module also 
contains a time-frame creation counter used to limit 
the time vvhile a cenain number of input spikes have 
to arrive in order to cause an axonal spike. Here, it has 
to be noted, that we implemented the soma oniy for 
excitatory synapses. 
The updated membrane potential is then compared to 
the adjustable threshold-potential. If the required 
criteria is met (membrane potential greater then 
threshold-potential), an axonal spike is emitted and 
the neuron is placed into hyperpolarisational phase, 
when the membrane potential is set below the resting 
potential (zero). 

VI. THE FPGA BUILT NEURON 

After months of extensive experimental testing on 
single neuron models we have selected one with nine 
synapses to be used in a multiple neuron test 
schematic (a test neural network). The mentioned 
model represents the membrane and the threshold 
potential on seven bits, with four bit weight values 
while the spike emitting time window is set to 16 
clock cycles. As first test appiication the classic 
problem of classifying two different shapes was 
selected. One of the great assets of these neural 
models is the fact, which we have show in the next 
section, that the mentioned problem can be solved 
with a network consisting of only two spiking 
neurons. The network (Fig. 8) is able to leam to 
distinguish betvveen any two shapes represented is 
3x3 matrix of points, eliminating the effect of noise. 
Communication between a PC and the XSA 
protot>'ping board is possible through the parallel port 
Interface (8+4 bits). 

218 BUPT



axon 
Matrix of 

input 

- " Spiking 
nRiimn 

Fig. 7. The architecture of the FPGA implemented test neuraJ 
network 

In order to be able to deliver the input stimulus for the 
network from a PC (using a C++ program) we used 
serial data input by implementing a special (serial to 
parallel) interface on the FPGA. This Serial Input 
Device (SID) assures the addressing and loading of 
iniţial weight values into the synapses, followed by 
the input spikes corresponding to the different shapes 
(T and H or + and X). The SID uses separate clock 
signal and several control signals sent through the 
parallel port data register. The weight values and the 
axon signals can be read back altematively to the PC 
using the parallel port status register. 

A. Measurement results on the test neural network 

In the iniţial experimental measurements the values of 
the synapses during leaming were read back from 
each neuron after those were presented with both 
input shapes. This slow communication through the 
SID allowed accurate measurements but was not 
working real-time. To achieve this, we switched the 
input feeding from the parallel port to a PIC16F876 
microcontroller working at 20 MHz, connected to the 
XSA board (all 9 input bits connected parallely). 
Hence, we could present to the SNN a new input 
shape at eveiy two clock cycles of the PIC 
(2x50=100ns). 

Fig 8. Leaming: weight values of one of the neurons 

Fig. 8 shows how one neuron leams to identify one of 
the input shapes. One can observe, that the weight 
values (Y axis) stabilize around the extremes (O & 15) 
depending on which input received incoming spikes. 
This process takes around 20 time slices (X axis) each 
time slice taking 16 clock cycles. At the PIC's 
frequency this yields: 16x20x 100ns=J2/xs leaming 

time. In other words, the network learns to identify 
two shapes in ~32}is. If we switch off the leaming and 
connect the clock to lOOMHz (XSA board maximum), 
then the SNN vvill rccognize the leamed shapes in 
-3,2|is. This means a big improvcmcnt in speed 
compared to the prcviously presented software 
environment, where a similar network leamed the 
same task in about -200ms or to a perceptron network 
in Mailab with it's -300ms. Fig. 9 and 10 presents 
data acquired with a 34 channel Tektronix Logic 
Analyzer from the working neural network 
implemented on the FPGA. 
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Fig. 10. Al temated input shapes with weight 

VII. CONCLUSIONS 

So far we have a working, hardware implemented 
spiking neural model capable of classification through 
unsupervised leaming. The main drawback at the 
moment is the size of one neuron (^15000 logic gates) 
which undoubtedly needs optimization. We also plan 
to develop more complex leaming algorithms by 
tuning several neural parameters. The ultimate goal is 
to build a system with structural self-organizing 
capabilities followed by application in industrial 
adaptive control processes. 
The current research is part of the prime author's PhD 
thesis theme which is under development since 2003 
and has been partly funded by the Research Institute 
of the Sapientia Foundation. 
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