
Buletinul Ştiinţific al Universităţii "Politehnica" din Tinnişoara

Seria ELECTRONICĂ si TELECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 49(63), Fascicola 2004

Development of advanced neural models. Software and
hardware implementations

Lâsz io B A K O ^ l lul iu S z e k e l y ^ T i h a m e r Sândor B R A S S A I
45

Abstract - Neurobiological research bas lead to the birth
of third generatioD (neuroroorphic) artificial neural
netHorks. One of these models is based on the natural
'^spiking" neural behavior, which creates the basis of our
rcsearch. Foilowing the developed matheniatîcal "puise
reactive*' model, we present our software simulator and
onc appiication of i t The FPGA buiit hardware spiking
neuron is then introduced along with a network of these
new model neurons. The modular neuron structure,
acquired signals and performance analysis are given.
Keywords: Neuromorphic neural networks, Spiking
neurons, Simulation, Hardware implementation, FPGA.

L INTRODUCTION

It has been shown [3] that networks of spiking
neurons are computationally more powerftil then other
neural models (perceptron based, with sigmoidal
activation), using fewer neurons to implement the
same appiication. We chose to develop such advanced
artificial models in order to get closer to the
ftinctional behavior of natural neurons, achieving by
this greater computaţional power using less resources
and also to have a deeper understanding of their inner
processes. The software simulation presented in
section four has served only as an aiding tool in
developing the hardware implemented neural models
and networks, the main goal of our research.

IL BIOLOGICAL BACKGROUND OF THE
STUDIED ARTIFICIAL NEURAL NETWORKS

A typical natural neuron has three funcţional
components: dendrite, soma and axon (Fig.l). The
dendrite is the input unit, which collects the output
signals of the other neurons and transmits them to the
neural cell. The cell body (soma) is the processing
unit, which flilfils a complex non-linear task: if the
input sum exceeds a threshold value, an output signal
w ill be generated - an action potential [1]. This output
signal is transmitted by the axon towards the receptors
of other neurons. In the mammal brain a single neuron

Dendrites

Neural Cell
(soma)

Synapses
Postsynaptic

neurons

Fig. 1. The structure of a natural neuron

could have 10^ postsynaptic connections, with lengths
varying from ^m to a few centimeters.
An action potential - measured with a intracellular
electrode in the brain - consists in a short electrical
puise, of around 100 mV amplitude and 1-2 ms
duration. The pulse's shape is the same during its
propagation along the axon. A series of action
potentials, containing regularly repeated pulses.
constitute a spiking puise row. As all spiking pulses
are of similar shape, the puise form does not contain a
specific information; only the number of pulses and
their time density is of major importance. The point
where the axon of a presynaptic neuron is connected
to the receiving dendrites of the foilowing
postsynaptic neuron, has the denomination of the
synapses. In the brain most synapses are of chemical
nature: the axon terminal is ver>' close to the
postsynaptic neurons and over a threshold level of the
action potential the axon delivers a neurotransmitter
compound, which penetrates into the postsynaptic
side, causing potential level change in the
postsynaptic neural cell.

1
Teachmg assisiant at "SAPIENŢIA" Hungarian University of Transylvania, P-ţa Trandaflnlor nr 61 Tg.-Mureş, Remania,

Ibako(a;ms. sapientia ro
^ PhD student at TRANSILVANIA' University of Braşov, Remania

Professor at "TRANSILVANIA" Universit> of Braşov, Remania (IEEE member)
Teachmg assislani at "SAPIENŢIA" Hunganan University of Transylvania, Tg -Mureş, Remania

^ PhD student at "TR.ANSILVANIA' Universitv of Braşov. Romania

214 BUPT

Under the influence of a spikîng puise the potential
difference between the inner part of the neural cell
and the environment (called membrane potential) is
increasing, but if no other spikes will arrive, the
membrane potential will retum to the environmental
level (called resting potential) (Fig. 2a)

mointormnc
v o l t a j

time

SSP

- t ; ")

^ — f t m e

ISP
Fig 2. a . - Membrane potential dynamics of natural neuron

b. Shape of spikîng pulses (SSP - stimulating, ISP - inhibitory)

The spikîng puise could be of positive potential
(Stimulating Spiking Puise - SSP) or of negative one
(Inhibitory Spiking Puise - ISP). Assume that two
presynaptic neurons (/=1,2) send SSP towards a
postsynaptic neuron: /=1 neuron is firing in the
moments t/"^ andJ=2 in the moments t/^^

t/"^ (generally t f) , Each puise causes a
postsynaptic membrane potential increase E,j,e,2,...€ij.
If only some SSP are received by the postsynaptic
neuron (O, than a near linear composition is
applicable:

(i)

where Ures is the residual, resting membrane potential.
If there a greater number of SSP are received, the
summing law of pulses is no longer linear. If the
potential u, reaches a criticai threshold level i9, the
postsynaptic neuron will deliver an own spiking puise,
which will be transmitted through the axon of the
neuron / towards the synapses of flirther neurons.
After delivering the firing puise the membrane
potential of the neuron / will drop back to the stand-by
level. Practically, in biological neurons, around 20-50
presynaptic spiking pulses must be received in a short
time, to exceed the threshold level.

III. MODELING OF SPIKING NEURAL
NETWORKS

In a spiking neural network (SNN) we defîne a finite
set of firing neurons (FN) and a set E ^VxV of
synapses. To each i eV neuron belongs a threshold
function : R^ R''and to each (/,y> G E

synapses belongs an answer function s^j \ R^ /?

[3],[4] (Fig. 2b).
This answer function could be a positive one, when

it is a stimulating spiking puise - SSP (Fig. 2bssp) or a
negative one, when it is an inhibitorv spiking puise -
ISP (Fig. 2b,sp).

When a neuron j is firing, the time characteristic

could be expressed by: - t ^ p) , where

= 0 if t - t p < A , A ^ j being the

transmission time of the puise firom the FN to the
postsynaptic receiving neuron; w,j is a vveighting
factor, which is positive for SSP and negative for ISP.

If / - ^ > Â ^ , the answer function has the shape

presented in Fig. 4.
The puise reactive model (PRM) is, may be, the most
appropriate method to model SNN, the task being to
evaluate the firing moments of FN /
as a function of the firing moments of j presynaptic
FNs (r / ^ , O .
The membrane potential of a cell (soma) of the /-th
neuron is

(2)

which expresses the contribution of j presynaptic FNs,
generated before the moment î. The PRM handies also

with a damping factor //(Z - O , which is a function
A

of t j -the moment of the generation of the last spiking

puise of FN /. before the time /. If t -1, < O or

/ - f̂ > 0 and high enough, the damping factor is

zero. If / - > O, but of small value (that means the
/ FN just has generated a spiking puise), the damping
factor has strong negative value and inhibits the FN /
to generale a new spiking puise.
Comparing to the Hodkin-Huxley model [2], [5], the
puise reactive model (PRM) is more suitable to
computer analysis, as there are no differential
equations are handled in the model. If we choose
appropriate values for flinctions, the PRM
could model quite good the dynamics of the natural,
biological neurons.
In our model we used a coding algorithm, where each
spiking puise has a separate importance, similar to the
bits in the computers. As the time is continuous, a

215
BUPT

single spiking puise could include more information
than a single bit, as the arriving time (could encode
the analog value (r-7), when T is a reference time
value. In this respect a FN acts as a coincidence
detector, i.e. will generate a spiking puise only if a
great enough number of SSPs will arrive to the neuron
cell (soma), almost simultaneously.
If all the transmission delays A,j between the FN i and
the presynaptic j FNs are identical, then the FN /,
which has a high threshold value , will fire only if
all presynaptic j FNs will have the firing moments tf^
very close to each other (practically are
simultaneous). If the Ajj are different for several j
presynaptic neurons, the FN / will fire only if the
presynaptic neurons will comply to a certain
scheduling in firing times: / will fire if for any j , tf^T-

IV. THE DEVELOPED SIMULATION
ENVIRONMENT AND THE TEST RESULTS

A. The simulaîion algoriîhm

The main aim of the simulation procedures is the
computation of the networks parameters, which are
necessaiy to generate spiking pulses in a given
moment of the network simulation. The spiking pulses
are generated from the membrane potential of neurons
and with the threshold function . Consequently it
must process the pre- and postsynaptic pulses to
evaluate them as membrane potential effect for a
coming neuron, which will fire in the next time-step.
In the same time the synaptic weightings and delays
must compute.
In the FNN model there the classical perceptron
model matrix vector algorithms, used in the previous
generation artificial networks, are not applicable. Here
the neurons and synapses need separate computations,
which are possible in sequential data processing. In
this respect every time step of the simulation must be
divided in two phases: in the first phase we compute
the spiking pulses of all the neurons and after that we
use them in the second phase, when we proceed the
necessar> operations to transmit the spiking pulses.
Based on this two-phase evaluation, the next
algorithm is set up (Fig. 3):
• In the first phase we compute the values of the

membrane potentials and threshold values, based
on the data read from the Neuron Memory. If a
membrane potential reaches a value that exceeds
the threshold, then spiking puise (SP) will be
generated, which is saved in a spiking puise SP
List, together with the identificator of the FN.

• In the second phase the values read from the SP
List are weighted (with coefficients w^) and using
the Neural Network Topology the SP is
transmitted towards the postsynaptic neurons. At
this phase we could use the leaming algorithm,
modifying the effectiveness and timing of the
synapses.

Fig. 3. Schematic diagram of the simulation algorithm

After these phases the state of the network is
deterministic and the next time step of the
computation may start.
As leaming algorithm we used the Hebb leaming
algorithm. This consists in a set of leaming mles,
which allow the tuning of the synapses based on the
pre- and postsynaptic neurons activity.
General ly speaking, the Hebb leaming has the
following four components:

1. A neural connection is fortified (the synaptic
efficacy is increased) if the pre- and postsynaptic
neurons are active simultaneously (are firing).
2. A neural connection is weakened (the synaptic
efficacy is decreased) if only the presynaptic neuron
is active.
3. A neural connection is weakened (the synaptic
efficacy is decreased) if only the postsynaptic
neuron is active.
4. The neural connection is unchanged if none of
the neurons is active.

B. The implemented software simulaîion

The complexity of the simulation task determined a
very carefiil selection of the development tool and
environment. As it was presented in the previous
sections the studied natural neural networks as well as
the developed artificial ones relay on signal timings,
therefore timing has a very important role. Hence, we
had to find a solution which gives tools for exact and
schedulable timings beside the proper programming
environment. After running a few tests and
considering their results we decided to drop the path
of an interpreter (Matlab) or a compiler (Visual C -^)
under the Windows operating system. Instead we
tumed towards a compiler running on a RedHat
Linux operating system. This way we have gained not
only much better timing tools but relatively faster 2D
and 3D plotting interfaces (Gnuplot, Povray) and a
modem and usefijl way of saving network structures
with the XML file format
A considerable amount of our software developing
work was based on the previously developed spike-
response model and threshold-based leaming. Here
we can briefly mention the programming of the

216 BUPT

behavior of the individual spiking neurons and their
synapses, and of the layer building and connection
establishing procedurcs. Any 3D network can be built
either giving the architecture neuron by neuron or
layer by layer.
The networks can possess feedbacks, for instance one
can create a recurrent network formed of several
layers where the outputs of the last layer arc
connected to the inputs of the second layer (the first
layer neurons are special neurons without synapses.
accepting only one input), thus creating a pulsing
output. This can be used as some form of
synchronization signal for other groups of neurons.
The simulation environment, therefore uses three
t>'pes of neurons as follows: input layer neurons,
hidden layer neurons and output layer neurons.

Fig. 4 The tested spiking neural network built m the simulation
environment

The test appiication we have prepared is a letter
recognition from a 7x5 matrix of inputs. The
developed spiking neural network architecture is
presented in a spaţial form in Fig. 4, where the matrix-
shape arranged blue balls represent the input neurons,
the smaller inner balls the hidden layer neurons and
the ones in the background the neurons of the output
layer. The meeting points of the connecting iines
between neurons are the synapses. The hidden layer
has the same number of neurons as the input layer,
while the output layer has seven neurons. As the
output neurons have binary outputs these may stand
for the elements of a seven segment display. Though,
an additional binary logic is necessary to display the
characters correctly on the seven segment display.
This occurs because the network - with the currently
implemented unsupervised leaming algorithm -
performs only a categorization of the noised matrixes
given at the input.
The input matrixes are the representations of different
characters presented randomly to the network with
adjustable noise percentage. The simulation is
composed of a prescribed number of time-steps. At
each time-step a different input is presented to the
network and all the necessary computations - for all
neurons and synapses - are executed.
If enough time-steps have elapsed the output of the
spiking neural network will start to present similar
values for a certain input matrix, hence it will learn
the given task. In order to be able to follow the
evolution of the system at each time-step all active
(spiking) neurons are marked and saved.

V. FPGA IMPLEMEN I A riON OF THE SPIKING
NEURONAL MODEL

An artificial neural network (ANN) is a parallel and
distributed network of simple nonlincar processing
units interconnected in a layered arrangement.
Parallelism. modularity and dynamic adaptation are
three computaţional characteristics typically
associatcd with ANNs. FPGA-based reconfigurable
computing architectures are well suited to implernent
ANMs as one can exploit concurrency and rapidly
reconfigure to adapt the weights and topologies of an
ANN.
FPGA realisation of ANNs with a large number of
neurons is still a challenging task because ANN
algorithms are usualy *'multiplication-rich'* and it is
relatively expensive to implement muhipliers on fine-
grained FPGAs. By utilizing FPGA reconfigurabilit>',
there are strategies to implement ANNs on FPGAs
cheaply and etTiciently.
One of these strategies, which we have applied,
consists in implementing third generation neural
models on FPGAs, because it is possible, as you can
read further in this paper, to build them without using
any multiplicator circuits. Most multiplier-like task
are fulfilled by sequential counter logic circuits. This
makes our approach more cost-eftlcient than the
hardware built, perceptron based ANNs. Due to the
high level of paralellism achieved in this manner
speed enhancement is also obvious, as Section VI and
Section VII present.
Based on the mathematical model and the results of
the simulated network we developed a hardware
implementation of spiking neural networks. The two
main parts of the neuron model, the synapse and the
soma, were designed and developed separately. As the
previously section of this papcr presented, one of the
developed neural model's specific properties is that
the inputs and outputs can be easily given as binary
values (pulses). This was one of the reason which led
to the digital hardware implementation. The device
used was a XESS XSAIOO prototyping board having
as main module a XILINX XC2S100 Spartan II
FPGA (lOOk logic gates). Beside the FPGA chip there
is a CPLD IC for the PC parallel port connection
interface, a 16Mb SDRAM, a 256Kb FlashRAM
memory module present on the prototyping board, the
FPGA being driven by a programmable oscillator
with the maximum frequency of 100 Mhz.

A. The FPGA implemented synapse

Considering the behavior of a cerebral synapse the
main function of the circuit developed by us as the
artificial synapse is a puise multiplier, although it
doesn't contain any real multiplicators.
As the ^chitectural schematic in Fig. 5 presents, the
synapse is also made up by two - structurally and
functionally ~ separate units.

217
BUPT

Control Unit (CL) Superviaing Unit (SU)
Fig.5. The synapse

The Control Unit (CU) consists of a register and a
counter and performs the following tasks on the rising
edge of the clock signal:
• If the Write (WR) signal is active, it updates and

stores the weight value of the synapse from the
externai weight bus;

• If the Read (RD) signal is active, the CU writes
out the weight value to the externai weight bus;

• Signals PRS (pre-synaptic spike) and POS (post-
synaptic spike, axonal spike) are used to
implement the leaming algorithm which
described in VHDL code looks like this:
if PRS='0' and POS=V' then
new weight: =old_weight; end if:
if PRS=1' and POS='0' then
new weight: =^old_weight-l; end if:
if PRS='0' and POS-^T then
new_weight: =old_weight' 1; endif
if PRS- 7 ' and POS= 7 ' then
new_weight:=old_weight^I; endif:

• Counter I (limited to four bits. due to lack of
space on the FPGA) is increasing or decreasing as
the actual weight is modified, value which is then
transmitted to the Supervising Unit (SU).

The SU watches for an incoming spike puise. When
such a puise arrives the SU emits a number of output
pulses, exactly as much as the weight value shows.
When Counter II reaches this value, the Validation
Logic inhibits flirther output spikes.
These output spikes are then transmitted towards the
neuron body, the soma for flirther processing.

B. The FPGA implemented soma

The soma module can be considered as the Central
Processing Unit of neuron model. It is the most
complex part of the whole neuron, hence it uses the
most circuit logic blocks (CLB's) of the FPGA.
Consequently, it has required the development of
various version until a fairly optimized configuration
has been reached. Though, it is still too large, uses too
much of the FPGA logic, to allow large networks to
be built.
The architecture of the soma is built on four modules
(Fig. 6). The main task of the soma is to calculate the
membrane potential using the input spikes from the
synapses, compare it to the threshold potential and if

Fig. 6 The hardware implemented soma

the latter is the smaller one it has to emit an axonal
spike. On the falling edge of the clock signal, the
SYNIN unit of the soma reads the output values of the
synapses and performs a multiplication with a
programmed factor, then sums these into an input
value. Through an internai bus, this value reaches the
MPCU unit where it is added to the previous value of
the membrane potential, stored here on seven or eight
bits. If there were no input spikes, then the membrane
potential is gradually decreased, down to the resting
potential (4-5% of the maximal membrane potential
value) to reflect the natural neuronal behavior
presented in section 2. The MPCU module also
contains a time-frame creation counter used to limit
the time vvhile a cenain number of input spikes have
to arrive in order to cause an axonal spike. Here, it has
to be noted, that we implemented the soma oniy for
excitatory synapses.
The updated membrane potential is then compared to
the adjustable threshold-potential. If the required
criteria is met (membrane potential greater then
threshold-potential), an axonal spike is emitted and
the neuron is placed into hyperpolarisational phase,
when the membrane potential is set below the resting
potential (zero).

VI. THE FPGA BUILT NEURON

After months of extensive experimental testing on
single neuron models we have selected one with nine
synapses to be used in a multiple neuron test
schematic (a test neural network). The mentioned
model represents the membrane and the threshold
potential on seven bits, with four bit weight values
while the spike emitting time window is set to 16
clock cycles. As first test appiication the classic
problem of classifying two different shapes was
selected. One of the great assets of these neural
models is the fact, which we have show in the next
section, that the mentioned problem can be solved
with a network consisting of only two spiking
neurons. The network (Fig. 8) is able to leam to
distinguish betvveen any two shapes represented is
3x3 matrix of points, eliminating the effect of noise.
Communication between a PC and the XSA
protot>'ping board is possible through the parallel port
Interface (8+4 bits).

218 BUPT

axon
Matrix of

input

- " Spiking
nRiimn

Fig. 7. The architecture of the FPGA implemented test neuraJ
network

In order to be able to deliver the input stimulus for the
network from a PC (using a C++ program) we used
serial data input by implementing a special (serial to
parallel) interface on the FPGA. This Serial Input
Device (SID) assures the addressing and loading of
iniţial weight values into the synapses, followed by
the input spikes corresponding to the different shapes
(T and H or + and X). The SID uses separate clock
signal and several control signals sent through the
parallel port data register. The weight values and the
axon signals can be read back altematively to the PC
using the parallel port status register.

A. Measurement results on the test neural network

In the iniţial experimental measurements the values of
the synapses during leaming were read back from
each neuron after those were presented with both
input shapes. This slow communication through the
SID allowed accurate measurements but was not
working real-time. To achieve this, we switched the
input feeding from the parallel port to a PIC16F876
microcontroller working at 20 MHz, connected to the
XSA board (all 9 input bits connected parallely).
Hence, we could present to the SNN a new input
shape at eveiy two clock cycles of the PIC
(2x50=100ns).

Fig 8. Leaming: weight values of one of the neurons

Fig. 8 shows how one neuron leams to identify one of
the input shapes. One can observe, that the weight
values (Y axis) stabilize around the extremes (O & 15)
depending on which input received incoming spikes.
This process takes around 20 time slices (X axis) each
time slice taking 16 clock cycles. At the PIC's
frequency this yields: 16x20x 100ns=J2/xs leaming

time. In other words, the network learns to identify
two shapes in ~32}is. If we switch off the leaming and
connect the clock to lOOMHz (XSA board maximum),
then the SNN vvill rccognize the leamed shapes in
-3,2|is. This means a big improvcmcnt in speed
compared to the prcviously presented software
environment, where a similar network leamed the
same task in about -200ms or to a perceptron network
in Mailab with it's -300ms. Fig. 9 and 10 presents
data acquired with a 34 channel Tektronix Logic
Analyzer from the working neural network
implemented on the FPGA.

a
SalM

Fig. 9. Axon spikes at different inputs

M l 1 : 1 1 1 1 1

m
lljjJiilljHIJTO

3 3
ÎT IA

aiSfH

T
Fig. 10. Al temated input shapes with weight

VII. CONCLUSIONS

So far we have a working, hardware implemented
spiking neural model capable of classification through
unsupervised leaming. The main drawback at the
moment is the size of one neuron (^15000 logic gates)
which undoubtedly needs optimization. We also plan
to develop more complex leaming algorithms by
tuning several neural parameters. The ultimate goal is
to build a system with structural self-organizing
capabilities followed by application in industrial
adaptive control processes.
The current research is part of the prime author's PhD
thesis theme which is under development since 2003
and has been partly funded by the Research Institute
of the Sapientia Foundation.

REFERENCES
[1] W. Gerstner and W.M. Kistler, "Spiking Neuron Models. Single
Neurons, Populations, Pîasticity"; Cambndge Univtrsiry Press, 2002.
[2] T P. Trappenberg; 'Fundamentals of Computaţional
Neuroscience", Oxford IJmversity Press, 2002.
[3] W Maas, "Networks of spiking neurons. the third generation
of neural network models". Neural Networks, 10(9): 1659-1671,
1997
[4] W. Maas, "A simple model for neural computation with
fîring rates and firing correlations", Network: Computation m
Neural Systems, 9:1 -17, 1998.
[5] W. Maas and C M. Bishop. "Pulsed Neural networks", SdlT
Press, 1999.
[6] J. J. Hopfield, "Panem recognition computation using action
potential timing for stimulus representation'\ Nalure, 376:33-36,
1995.

219
BUPT

