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Rezumat: Domeniul interdisciplinar Network Science se ocupă cu analiza reţelor
sociale, facilitând o mai bună inţelegere a societăţii noastre, atât din punct de vedere
fizic, cât şi social. Astfel, odată cu studiul comportamental al agenţilor (social, muzi-
cal, economic, etc.), putem obţine o mai bună inţelegere a proceselor de interacţiune,
colaborare şi influenţare.

Prezenta teză se bazează pe cercetarea proceselor menţionate cu ajutorul sistemelor
de calcul. Astfel, folosind calculatorul ca instrument de bază în analiza reţelor, propun
simularea modelelor complexe emergente într-o manieră dinamică, pentru o mai bună
înțelegere a dinamicităţii sociale înconjurătoare, a comportamentului uman și a modului
in care acestea se influențează reciproc.

În prima parte a tezei analizez reţeaua emergentă formată din muzicieni. Prin apli-
carea unor metode tradiţionale de analiză ale reţelelor complexe, respectiv a elementelor
autentice expuse odată cu teza de faţă — aplicarea network motif -urilor pentru a extrage
proprietăţile topologice ale reţelelor sociale, generarea metricii de sociability (𝑆-metric)
pentru diferenţierea reţelelor similare —, analizez reţeaua muzicienilor din punct de
vedere colaborativ (i.e. dintre muzicieni), dar şi din punct de vedere economic (i.e.
activitatea lor de a produce conţinut muzical).

În cea de-a doua parte a tezei prezint un simulator socio-economic original, bazat
atât pe observaţii empirice, cât și pe modele economice inovatoare. Având capabilităţi
precise de simulare, este folosit la analiza proceselor de colaborare și interacţiune, cât
și la distribuţia emergentă de venit la scară macroscopică, cu reguli specifice bine-
definite în prealabil la scară microscopică. Elementele de originalitate constau atât în
folosirea unei abordări euristice pentru determinarea acţiunilor agenţilor economici, cât
și în implementarea teoremelor economice recunoscute in mediul economic.

Lucrarea de faţă se evidenţiază prin aplicarea conceptelor din domeniul Netwok Sci-
ence atât pe date empirice, cât și pe scenarii simulate, pentru o mai bună înţelegere
(economică și comportamentală) a reţelei noastre înconjurătoare și a proceselor ce stau
la baza acesteia.
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Abstract

The expanding domain of Network Science facilitates the understanding of existing pat-
terns of connection in nature and our own society, both physical and social. Social Network
Analysis, the application of the broader field of Network Science, has received an increase of
interest from the scientific community, due to its relevance in analyzing the intricate nature
of social dynamics, emergent human behaviour, collaboration and influence.

The goal of this thesis is to use Computer Science as an underlying tool for simulating
complex (emergent) models in a dynamic fashion, as well as to uncover crucial aspects re-
garding social and economic collaboration and emergent behaviour. As such, in the first half
of this thesis I analyze the emergent network of musicians, entitled MuSeNet. By employing
both traditional network analysis methodologies to the resulting network — e.g. centrality
analysis, unsupervised machine learning, etc. —, as well as state-of-the-art methodologies
presented in this thesis — i.e. applying network motifs in order to extract important topo-
logical properties of the underlying graph, introducing the 𝑆-metric into literature, in order
to determine the sociability of several networks —, I analyze MuSeNet, the Musical Society
Network, from the context of collaboration. Additionally, due to the musicians’ underlying
activity of creating content, MuSeNet also brings relevance from an economic point of view.

In the second part of this thesis, I present a novel socio-economic simulator, inspired
by empirical observations and state-of-the-art economic models. Capable of simulating
complex scenarios, the Trade and Economic Simulator (TrEcSim) is able to use any network
topology, in order to accurately simulate collaboration and interaction between economic
agents, as well as the emergent payoff distribution on a macroscopic scale, with rules of
interaction defined at a microscopic scale. Introducing a novel heuristic approach to drive the
behaviour of agents according to theories pertaining to main schools of economic thought,
TrEcSim is indeed a valuable tool for simulating the dynamics of trade in economic networks.

Admittedly, the contributions brought with this thesis to the field of Network Science
are significant. By applying state-of-the-art concepts on both empirical data, as well as
on simulated scenarios, I obtain relevant information pertaining our own society — both
behavioural and economical —, and the processes which take part in it. Additionally, the
tools and results presented leave room to further the research I started many years ago,
closely promoting new approaches in the field of Social Network Analysis as well.

Keywords: complex networks, network comparison, music artists, economic agents,
simulation, collaboration, sociability, influence, emergence, payoff distribution, fairness
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1. Introduction

A major trend in Network Science is the study and understanding of the underlying social
models of our society, its dynamics, human behaviours, relationships and connections [2, 69,
85, 91, 97, 106, 116, 201]. Even though Network Science is considered as a stand-alone
science, it contains elements from exact sciences: Computer Science, Mathematics and
Physics [198], as presented in Figure 1.1. As such, combining graph theory with statistical
mechanics, social structures, data mining and information visualization [162], the benefit
of understanding these complex processes is of paramount importance for researchers in
fields like Computer Science [77], Biology [166], Psychology, Criminology [89], Philosophy,
Economics, Marketing [88], Finances and even Warfare [69, 91].

Figure 1.1 Overview of the overlapping fields of Computer Science (Algorithms and
Databases), Mathematics (Graph Theory) and Physics (Complex Systems) in the resulting

Network Science.

In the field of Computer Science, for instance, Network Science can be employed in
applications which entail considerable amount of data and complexity [77, 150]. Indeed,
the ever-increasing use of social networks, such as Facebook, Google Plus, Twitter, etc. is
producing huge volume of data, which can only be analyzed by using the tools and method-
ologies of Network Science [9].
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In the fields of Finance and Marketing, understanding the existing markets and con-
sumers can greatly affect products and their properties (e.g. type, quantity, quality, price,
etc.). By making use of available techniques and models in order to understand the strengths
and weaknesses of individuals — as well as groups — [69], we can gain valuable information
pertaining customer behaviour, interaction and influence [143].

The field of Politics uses techniques from Network Science in order to study the relations
between political parties, as well as their projected influence on voters. Whether an agree-
ment, a cooperative or collaborative consensus is longed-for, political parties generally focus
on the overall public rather than on any given individual [100]; this behaviour is not unlike
computers connected together within a network, in which the correct packet delivery — and
overall throughput — is more important than the performance of an individual computer.

Warfare has always placed emphasis on counter-intelligence, in order to stop enemy
propaganda, all the while greatly affecting the enemy’s morale. Such a psychological warfare
was successfully employed through several wars, by employing airborne leaflet propaganda.
Military forces of various nations have used aircraft to drop propaganda leaflets, in order to
influence the behaviour of both combatants and non-combatants alike, in enemy-controlled
territories; similarly, certain humanitarian missions, with the aid of leaflet propaganda, can
turn the populace against their heads of state, or prepare them for the arrival of enemy
combatants [103, 144, 170].

The field of Social Science itself encapsulates a large number of other sciences stemming
from the study of human behaviour. By using advanced analytics, we are able to identify
different types of relationships between social actors; social leaders who influence the be-
haviour of others in the network; the mechanism of collaboration etc. Thus, the results
obtained by using the tools and methodologies of Social Science are successfully applied in
our everyday life.
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1.1 Thesis Domain

Network Science has received an increased interest during the last couple of decades,
due to the tremendous development in Big Data [99, 177]. Regardless of the underlying
topological model (e.g. friendship networks, protein interaction models, citation networks,
musicians and actors networks, economic networks, political structures, recipe networks etc.
[7, 69, 78, 108, 191, 206]), empirical observations pertaining our own surrounding world
show the same overall properties, be it of natural or synthetic origin [73]. As such, Social
Network Analysis — one of the main branches of Network Science — has caught the attention
of the scientific community, due to its applicability in analyzing and understanding of5 real-
world networks, both from a topological level of a given network (i.e. how each nodes
are connected to each other), and from a behavioural level (i.e. how each nodes interact
with each other). Since both of these are analyzed using empirical studies (e.g. statistical
analysis, direct measurements, indirect measurements, etc.), Social Network Analysis can
lead to the creation of valid models for the observed real-world networks [98].

By using the tools and methodologies available in Social Network Analysis, researchers
can extract relevant patterns from said models, by analyzing the properties of their respec-
tive nodes and edges (e.g. type, direction, weight, etc.) [73, 78]. That being said, there
is no single methodology of identifying similarities and dissimilarities within network, and
instead the analysis is often based on numerical comparison, statistical analysis or empir-
ical observation. As such, the analysis done in this thesis is based only on the topological
properties of the underlying graph.

Computational Social Network Analysis is still in its infancy; even so, an ever-growing
interest is shown from the scientific community. The need to better understand social pro-
cesses has created new possibilities of collaboration between the domains of Computer Sci-
ence and Social Science [91]. By employing computers at their full potential, researchers
can analyze complex mathematical models more accurately and at a much faster rate, before
validating the results with empirical data [95]. Furthermore, with the aid of computer simu-
lation, researchers can identify and analyze emergence in complex systems. When describ-
ing collective behaviour, emergence occurs when a given entity is observed to have proper-
ties its individual parts do not have on their own, or when a certain behaviour, interaction,
dependency or relationship arises at a macroscopic scale according to simple rules of inter-
action defined — or observed — on a microscopic scale [30, 102, 104, 119, 123, 140, 160].
In today’s Computer Science, emergence represents one of the most important challenge
for the engineering and analysis of complex systems.
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1.2 Motivation

Following the presented context of Social Network Analysis and its application in a mul-
titude of scientific fields, this thesis is based on using the tools and methodologies available
in Computer Science in order to model and analyze complex networks, as well as the un-
derlying behaviour of its agents.

The motivation behind the research presented in this thesis is to observe and understand
the professional relationships of agents (both musical and economic), how they form new
links based on their common attributes (e.g. role, profession, location, preference, etc.),
and watching this collaboration network evolve with each new node, all the while staying
within the framework of Computer Science.

Ever since my Master of Science studies, after being exposed to the concept of complex
networks, my research involved more and more often the usage of Network Science in
Computer Science. As a result, I opted to use computer analysis and simulation as research
methodology for this thesis as well, especially due to the fact that a purely mathematical
approach would not offer the possibility of gathering, analyzing and modeling the huge
amount of intricate data required to model complex networks. That being said, in order
to make use of a mathematical approach, researchers are limited to a purely statistical
analysis on networks with either a regular [1], or a random graph topology [39]. Therefore,
by using the analytical power of computer analysis and simulation, I show that the generated
inter-agent relationships are indeed realistic and dynamic in nature, and as a result, they
can be used in real-world applications. This research, along with its results allows us to
elucidate the emergence and mechanisms of various social phenomenon and whether they
share dynamical and structural features or not with other natural, social processes. Closely
observing social phenomena like influential agents, collaborations between two or more
agents, or even the formation of a new agent (or link) will constitute an excellent opportunity
to understand network formation processes and influence dynamics.

Indeed, Network Science brings a better understanding for the structure and behaviour
of social and economic networks, thus proving that human interaction is not only impor-
tant in Social Science, but it is also essential for many other fields such as technology and
engineering.
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1.3 Contributions

This thesis builds upon the emergent and collaborative behaviour of (economic) agents
when grouped together in communities and exposed to certain conditions or restrictions.
To this end, I analyze both a natural (real-world network), as well as synthetic networks
created via a simulation application. As such, the first part of this thesis deals with MuSeNet
[24, 193], a real-world collaboration network of musicians. As such, I bring the following
contributions to this thesis:

• Big Data mining: the nature of information needed for this study meant that the
data itself was not readily available and needed to be gathered from several online
repositories. Furthermore, inspired by the Jazz musicians network [86, 90], MuSeNet
is not limited to one genre, but instead takes into account the bands and musicians
from all musical genre.

• Centrality analysis: I analyze MuSeNet from the perspective of important centralities.

• Machine learning (unsupervised): by using the analytical power of computer analysis
and simulation, I segregate fundamental communities with the help of a 2D force-
directed (community detection) layout algorithm [110, 159]. Furthermore, I identify
the overlapping of genres, detect influential agents, as well determine the ”Kevin Ba-
con” [75, 209] of the music industry.

• Motif analysis: I apply a novel approach of analyzing and differentiating networks by
identifying existing motifs within these networks.

• 𝑆-metric: by introducing a state-of-the-art metric into literature, I determine the so-
ciability of several networks, and by comparing them to MuSeNet, I discuss their real-
world effects.

Considering that creating content is a form of economic activity, the second half of this
thesis deals with TrEcSim, a state-of-the-art trade and economic simulation application [23,
25, 26], with the following features:

• Driven by heuristics: with additional improvement to the mechanism to model the
behaviour of economic agents [26], by using the tolerance-based interaction model
[1, 196] as foundation.

• Tailored according to main schools of economic thought: with high flexibility in terms
of economic theories, agent models, and interaction assumptions.

• Real-life features: complex network topologies, dynamic creation and evolution of
economic agent roles, dynamic creation of new economic agents, diversity in product
types, dynamic evolution of product prices, and investment decisions at agent-level.

• Valuable simulation application: by using TrEcSim, I analyze the following attributes
of (economic) exchange networks:

∘ Static and dynamic distributions of payoff: I analyze inter-agent dynamic and
emergent behaviour.

∘ Ergodicity: I employ computer simulation in order to obtain accurate insight re-
garding the intrinsic fairness of economic systems, based on network topology
and producer/consumer placement.
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Admittedly, the contributions — and associated results — brought with this thesis to
the scientific community are recognized at an international level through the publications
submitted, accepted and presented at international conferences or journals, relevant to the
domain of Computer Science, as presented in section 6.1.
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2. Theoretical Background

Underpinned by empirical studies in many real-world systems (e.g. social networks,
economical networks, communication networks, etc.), complex networks have gained sig-
nificant research interest, due to their applicability in many scientific and social fields [196,
65, 195], including Computer Science, Biology, Sociology [193], and Economy [69]. Over
the last couple of decades however, complex networks have received an increased boost
of interest due to the tremendous development in Big Data techniques and technologies,
including Network Science [99]. Based on the context which they model, complex networks
can be classified into four major types, namely:

• Biological networks: metabolic networks, transcription regulatory networks, protein-
protein interaction networks, protein structure networks, neural networks, ecological
networks, natural food chains, etc. [21, 69, 206].

• Social networks: friendship networks, citation networks, voter networks, world mar-
kets, political structures, actor’s network, musician’s network etc. [188, 206, 165].

• Technological networks: computer networks, electrical circuits, road networks, etc.
[21].

• Semantic networks: word-net, recipe networks etc. [147, 191].

One of the fundamental properties of all networks is the presence of network-motifs.
Initially introduced by Milo et. al. [150], they represent recurring and statistically significant
sub-graphs or patterns. Each of these sub-graphs, defined by the interaction-model between
its various nodes, may represent a framework in which particular functions are achieved in an
efficient manner. In today’s research motifs are considered to have a notable importance due
to their underlying functional properties [139]. As such, taking into account their capacity to
uncover structural design principles of complex networks, motifs became a popular approach
in Network Science when analyzing the functional abilities of a given network. Even though
detecting network motifs is surprisingly not an easy endeavor [65], any of the previously
mentioned network-types can be analyzed using the mentioned motif-approach: in biological
networks, motifs can be associated with functional roles of transcription regulation networks
which control the expression of genes [13], while in transcription networks, motifs serve
as basic building blocks. Yet another example is the understanding of how some cellular
components are preserved across species but others evolve at a much faster rate [215]. A
study was published fairly recently by Wang et. al. [205], in which the authors use a motif-
based approach, instead of the traditional centrality measures, in order to detect important
nodes in specific networks – not unlike the pursued method in MuSeNet. For this, the
networks need to be grouped from a topological point of view, instead from a conceptual one.
To this end, we obtain the following networks: regular networks, random networks, small-
world networks and scale-free networks [206]. Regular and random networks represent the
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basics of complex networks [51, 71]. They can be observed and analyzed by applying by
any of the fundamental properties of complex networks: average path length, clustering
coefficient and degree distribution [188, 206]. A similar importance convey both the small-
world and scale-free network topologies [210, 22]; since their introduction to literature,
most of the new network-types fall into one of these categories, representing the object of
intense studies.
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2.1 Social Networks

A social network is a construction formed by individuals (e.g. actors, musicians, eco-
nomic agents etc.) with bidirectional connections (i.e. relationships, friendships) between
them, effectively resembling a real-world structure of our own society. Social networks
derive from complex networks, together with which they form part of the nascent field of
Network Science [38, 69], ever since their first introduction to literature in the 1970’s [151].
Based on graph theory and network theory, empirical observations of real-world networks
and sociology, their main purpose is to model the various relationships from our own society
[207].

Only recently has the field of social networks started gaining attention from researchers
around the world. This is due to the fact that social networks (e.g. Facebook, Twitter,
Google Plus etc.) gained attention not only in Social Science, but in Network Science as
well. Furthermore, not only do these networks offer valuable data for researchers, but the
results of these studies attract more and more people into this field of science.

Social networks provide valuable information on how various relationships evolve and
how they interact among themselves. The main characteristics of social networks are their
network topology and the agent interaction model. An interesting property is that specific
patterns present at a small scale with a certain group of agents can also be found on a much
larger scale. This is due to the fact that social networks are emergent and self-organizing.
On the other hand, the larger the network size, the more difficult it is to analyze that given
network. To this end, studies are done on relevant groups, with clearly defined properties,
as their results can also be mapped on the larger, extended network.
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2.2 Network Metrics

When studying social networks, we make use of several metrics, specific to these net-
works. To this end, the ones used throughout the course of this thesis will be presented, in
short, in the following subsections.

2.2.1 Centrality

In terms of graph theory and network analysis, the centrality of a vertex measures its
relative importance within a graph. Some of the practical applications include how influential
a person is within a social network, how important a room is within a building and how well-
used a road is within an urban network [151]. There are four main measures of centrality,
which I have extensively used in my thesis in order to analyze networks in terms of structural
properties and similarity: degree, betweenness, closeness, and eigenvector.

Degree Centrality

The degree centrality is the simplest centrality property, which is defined as the number
of edges a particular node has [151]. The degree distribution 𝑃 < 𝑘 > is an important aspect
when studying empirical networks as they usually possess a uniform, normal or power-law
degree distribution.

Closeness Centrality

An important node centrality metric in networks is the closeness centrality, defined by
the length of their shortest path 𝐿 [80, 164, 207]. As such, the more central a node 𝑛𝑖 is,
the lower its total distance to all other nodes [172], as presented in Figure 2.1.

Figure 2.1 Individuals who are highly connected to others within their own cluster will have
a high closeness centrality [141].

This metric can only be applied to networks with disconnected components, since the
distance between nodes in disconnected components of a network is infinite [80, 155, 164,
207]. The closeness of a given node 𝑛𝑖 can be defined with the following equation:

𝐶(𝑖) = 1
∑𝑗 𝑑(𝑖, 𝑗) (2.1)
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2.2 Network Metrics 11

Betweenness Centrality

In network theory, the betweenness is a centrality metric of a particular by quantifying
the control of a node over the communication between other nodes [79, 87, 203]. It is equal
to the number of instances a node acts as bridge along the shortest path from one node to
another — as presented in Figure 2.2.

Figure 2.2 Individuals who act as a bridge between clusters in the network have a high
betweenness centrality [141].

The betweenness centrality is a more useful measure of both the weight (global meaning)
and importance (local meaning) of a node 𝑛𝑖; its betweenness and can be defined, for all
pairs of nodes 𝑛𝑎 and 𝑛𝑏, as follows:

𝐵𝑡𝑤(𝑖) = ∑
𝑎≠𝑖≠𝑗

𝜎𝑎𝑏(𝑖)
𝜎𝑎𝑏

(2.2)

Eigenvector Centrality

The eigenvector centrality is a measure of the influence of a particular node in a network
[18, 157]. It is calculated by evaluating how well an individual is connected compared to
the parts of the network with the greatest connectivity. Individuals with a high eigenvector
score have many connections, with the same being true for their connections, as seen in
Figure 2.3. Google’s PageRank is a variant of the Eigenvector centrality measure [18].

2.2.2 Degree Distribution

In the study of graphs and networks the simplest and perhaps the most important char-
acteristic of any particular node is its degree. The degree of the node 𝑛𝑖 is the number of
connections it has to other nodes in the network and is denoted by 𝑑𝑒𝑔(𝑛𝑖). Depending on
the type of graph, there can be an in-degree (𝑑𝑒𝑔 − (𝑛𝑖)) and an out-degree (𝑑𝑒𝑔 + (𝑛𝑖)), for
incoming respectively outgoing connections. Undirected graphs, like social networks, only
have the degree characteristic [7].

The diameter of the network is the longest distance among all distances between any
pair of nodes in the network [206]. Nodes with a (much) higher degree are called hubs,
as they tend to facilitate communication for distant nodes and in the end, almost always
become even more connected. The degree distribution 𝑃 (𝑘) describes the probability that a

BUPT



12 Theoretical Background

Figure 2.3 Highly connected individuals within a highly inter-connected cluster present a
high eigenvector centrality [141].

Figure 2.4 Visual representation of the degree distribution [10].

randomly selected node has the mentioned degree of 𝑘 and is defined as the ratio between
the total number of nodes with the degree of 𝑘 (𝑁𝑘) and the total number of nodes, 𝑁 [206]:

𝑃 (𝑘) = 𝑁𝑘
𝑁 (2.3)

A regular network has a simple degree sequence due to the fact that most existing
nodes have the exact same number of edges, and as such, a plot of the degree distribution
contains a single sharp spike (i.e. delta distribution), much like the one Figure 2.5. As a
result, increasing the randomness in the network will also increase the shape of this peak,
while a fully random network would have a Poisson-like distribution of degrees [174]; in
the past few years, however, significant empirical results showed that for most large-scale
real networks the degree distribution deviates significantly from this Poisson distribution:
individual nodes are more connected, much like in a scale-free network, thus following a
power-law distribution [174, 175, 206]:

𝑃 (𝑘) ≈ 𝑘−𝛾 (2.4)

where 𝛾 is an empirically observed value, 𝛾 ∈ [2, 3] for a power-law specific to social networks,
as presented in Figure 2.5. In statistics, a power law is a functional relationship between two
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2.2 Network Metrics 13

quantities, where one quantity varies as a power of another. This power-law distribution falls
off more gradually than an exponential one, allowing for a few nodes of very large degree to
exist. As this form of distribution is not subject to network scale, it is characteristic for scale-
free networks [174, 175, 206] and has attracted particular attention for their structural and
dynamical properties [174].

Figure 2.5 Degree distribution in a traditional random network (red) compared to a
power-law distribution in a real-world network (blue). The lowly linked nodes are

represented with green, the average linked with cyan while the highly linked nodes are
represented with magenta.

2.2.3 Average Path Length

The average path length, 𝐿, is one of the three most robust measuring concept in net-
work topology, that is defined being the distance 𝑑𝑖𝑗 between two nodes (in this case 𝑖 and
𝑗), which represents the shortest path between these pairs of network nodes; hence the
diameter 𝐷 of a network is defined to be the maximal distance among all distances between
any pair of nodes in the network. In this case the average path length of the network is
defined as the mean distance between two nodes, averaged over all pairs of nodes [206],
as expressed by equation 2.5:

𝐿 = 2
𝑁(𝑁 − 1) ∑

𝑖≠𝑗
𝑑(𝑛𝑖, 𝑛𝑗) (2.5)

where 𝑁 is the size of the given graph and v are the graph’s vertices. For instance, in
a friendship network, 𝐿 is the average number of friends existing in the shortest chain
connecting two persons in the network [174, 206]; in a road network, 𝐿 is the average
number of roads a driver has to change in order to get from one city to any other city, etc.

A remarkable property is the fact that the average path length of most real complex
networks is relatively small, even in those cases where these kinds of networks have a lot
less edges than a typical globally coupled network with an equal number of nodes. This
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Figure 2.6 Visual representation of the average path length [10].

smallness led to the concept of the small-world effect [210, 188]; as a result, most models
of real networks are created with this taken into consideration.

One of the first models which proved that the average path length depends mostly on
the system size was the random network model. It was followed by the Watts and Stro-
gatz model, while later there were the scale-free networks starting with the Barabási-Albert
model. All these models had one thing in common: they all predicted that the average
path length changes proportionally to log𝑁 - where 𝑁 is the number of nodes in the network
[7]. The real-life applications of this concept are numerous. In a network like the World
Wide Web, a short average path length facilitates the quick transfer of information and re-
duces costs. The effectiveness of mass transfer in a metabolic network can be evaluated by
studying its average path length; the same goes for a power grid network.

2.2.4 Clustering Coefficient

In study of graph theory, the clustering coefficient, 𝐶, is a measure of the degree to which
nodes in a graph tend to cluster together. More precisely, the clustering coefficient can be
defined as the average fraction of pairs of neighbors of the node 𝑛𝑖, as seen in Figure 2.7a.

Figure 2.7 Visual representation of the clustering coefficient [10].

Now, assuming that a node 𝑛𝑖 in the network has 𝑘 edges all connecting to 𝑛 other nodes,
𝑛𝑖 is automatically the neighbor of all these nodes [174], case represented in Figure 2.7b.
The clustering coefficient of node 𝑛𝑖 is thus defined as the ratio between the number 𝐸
edges that actually exist among these 𝑛 nodes and the total possible number (𝑛𝑖(𝑛𝑖 − 1)/2),
represented in Figure 2.7c and described using the following expression:

𝐶 = 2 𝐸
𝑛𝑖(𝑛𝑖 − 1) (2.6)

BUPT



2.2 Network Metrics 15

To this end, we can easily conclude that the maximum clustering coefficient of a network
is 1. Such a network is a fully connected graph with point-to-point connections [174], while a
completely random network has a clustering coefficient approximately equal to 1/𝑁, 𝑁 being
the total number of nodes from the network. This, however, is a small value compared to
the clustering coefficient of other observable networks, of which can be defined using the
following expression:

1
𝑁 ≪ 𝐶 < 1 (2.7)

2.2.5 Modularity

Modularity (𝑄) is one of the measures which helps determines the structure of a net-
work. It was intended as a means to measure the strength of division of a particular network
into modules, also known as communities [157, 202], with substantial importance in un-
derstanding the dynamics of various networks [156].

If a network is characterized by a number of individual connected nodes which signify a
certain degree of interaction between them, communities are defined as groups of densely
organized nodes that are only sparsely connected with the rest of the network. To this end,
it may prove crucial to identify distinct communities, as these may present particular prop-
erties, such as: node degree, clustering coefficient, betweenness, centrality, etc., compared
to that of the network as a whole [157].

There are several means for calculating the modularity of a network [156], but the most
popular version of the concept is the randomization of the edges in such a way, that the
degree of each node is left unchanged and applying the following expression:

𝑄 = ∑
𝜁𝑖∈𝜁𝑠𝑒𝑡

⎡⎢⎢⎣

𝐸𝜁𝑖𝑖𝑛

𝐸 −
(

2𝐸𝜁𝑖𝑖𝑛
+ 𝐸𝜁𝑖𝑜𝑢𝑡

2𝐸 )

2⎤⎥⎥⎦
(2.8)

where 𝜁𝑠𝑒𝑡 is the set of all the communities, 𝜁𝑖 is a specific community in 𝜁𝑠𝑒𝑡, 𝐸𝜁𝑖𝑖𝑛
is the number

of edges between various nodes in the community 𝜁𝑖, 𝐸𝜁𝑖𝑜𝑢𝑡
is the number links which exit

the community 𝜁𝑖 to the outside of it, and 𝐸 is the total number of edges in the network.
Applying equation (2.6) to a network, we obtain a value for its modularity equal to 𝑄 ∈ [0, 1].
Thus, the closer the 𝑄 is to 1, the stronger the community structure [49].

2.2.6 Network Motifs

One important common property of all these networks is that they can be represented
as graphs, as well as sub-graphs called (network) motifs [150]. Motifs are defined as being
recurrent and statistically significant sub-graphs or patterns of complex networks. Since
each and every one of these sub-graphs, defined by a particular interaction-pattern between
graph nodes, reflects a specific function in the network, as a whole, they can also be used to
compare various networks. As already mentioned in this thesis, network motifs may offer a
deep insight into the network’s functional abilities, yet their detection is still computationally
challenging [65]. This is due to the large amount of combinations which need to be detected
and compared. To this end, the smaller the size of the motif, the easier is to detect; as such,
I rely only on motifs of size 3 — as illustrated in Figure 2.8 —, when analyzing MuSeNet
and comparing it to other networks. Even though there are a few approaches by various
authors studying network functionality using motifs of up to 6, I found that using smaller
motifs not only do I obtain far less distinct patterns, but they are also much more numerous
to be found in graphs, thus yielding far more relevant results [13].
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Figure 2.8 All existing motifs of size 3 in a directed graph. The code of each motif
corresponds to the decimal value of its serialized adjacency matrix [193].

2.2.7 Metric Fidelity

A new and alternative method of quantitatively comparing networks — one that is also
used in this thesis — is to compute each network’s metric fidelity (𝜑) [194] and to compare
them among each other based on individual metric measurements. Tailored to express
the similarity between any two generic vectors — in a weighted or unweighted context
and depending on the nature of the comparison —, it can offer insight on network model
resemblance or synthetic model realism compared to a real world network. The metric
fidelity can be expressed with the following equation:

𝜑𝑗 =
⎧⎪
⎨
⎪⎩

1
𝑛 ∑𝑖

𝑚𝑖
2𝑚𝑖−𝑚𝑗

𝑖
, if 𝑚𝑗

𝑖 < 𝑚𝑖

1
𝑛 ∑𝑖

𝑚𝑖
𝑚𝑗

𝑖
, if 𝑚𝑗

𝑖 ≥ 𝑚𝑖
(2.9)

where 𝑗 is the index of empirical distribution model being compared to the reference, 𝑖 =
{1, 2, …, 𝑛} is the index of the motif used to compare the respective models, while 𝑛 represents
the number of motifs which are common. The closer the 𝜑 metric is to 1, the more similar
the models are. The measurements on the reference model are 𝑚𝑖 respectively 𝑚𝑗

𝑖 on the
model being compared [65].

2.2.8 S-metric

In order to better compare two or more networks with each other, I modeled the 𝑆-
metric, with which I can express the so-called sociability of any given complex network
[193]. As a state-of-the-art metric introduced into literature with the advent of this thesis,
it takes into consideration the basic graph metrics — i.e. average degree (𝐴𝐷), average
path length (𝐿), average clustering coefficient (𝐶), modularity (𝑀𝑜𝑑), graph edge density
(𝐷𝑛𝑠) and graph diameter (𝐷𝑚𝑡) — when comparing a given network to a reference model. In
order to obtain an optimal expression, I first normalize the offset from the reference value of
each metric, after which I either add (direct proportional) or subtract (indirect proportional)
the resulting normalized values. Thus, sociability is defined by the following equation:

𝑆𝑗
𝑖 =

6

∑
𝑖=1

𝑘𝑖(𝑚𝑖 − 𝑚𝑗)
𝑚𝑗

(2.10)

where 𝑆𝑗
𝑖 , the sociability of network 𝑖 towards reference model 𝑗, is the sum of the six nor-

malized metrics: average degree (𝑘1 = +1), average path length (𝑘2 = −1), average clustering
coefficient (𝑘3 = +1), modularity (𝑘4 = −1), density (𝑘5 = +1) and network diameter (𝑘6 = −1).
The signs (+/-) of the metrics reflect if the particular metric is direct (𝐴𝐷, 𝐶, 𝐷𝑛𝑠) of indirect
(𝐿, 𝑀𝑜𝑑, 𝐷𝑚𝑡) proportional to a more sociable network. Due to the fact that there are an
equal number of such elements, equation 2.10 can be simplified as follows:

𝑆𝑗
𝑖 =

6

∑
𝑖=1

𝑘𝑖(𝑚𝑖)
𝑚𝑗

(2.11)
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2.3 Topologies

Knowing the basic properties of any given complex network, such as the average path
length 𝐿, clustering coefficient 𝐶 and the degree distribution 𝑃 (𝑘) is just the first step in com-
prehending its structure; the next step is to elaborate a mathematical model which allows
for this particular network’s analysis [206], taking into consideration this model’s layout and
connection patterns of various elements. This model is the network’s topology and, as with
any network-type, a social network too can be described by it. Network topologies can be
grouped into two main classes [206], namely:

• Basic topologies: the most wide-spread of network topologies, herein including the
mesh, star, bus and ring topologies.

• Social network-specific topologies: topologies based on one or more basic topology,
but with a more complex structures capable of representing real-world relations, much
like the random, small-world, scale-free, etc. network-topologies.

The analysis of these topologies is done with the help of graph theory, derived from
mathematical theory and used to describe relations between objects (i.e. nodes, agents). In
order to obtain relevant results for this thesis, a number of social network-specific networks
have been studied.

2.3.1 Regular Mesh

One of the most common network topology, due to the its tightly interconnected layout.
Although its model captures both the small-world and large-clustering properties of many
real networks, it is easy to observe its limitations: a globally coupled network with 𝑁 nodes
has 𝑁(𝑁 − 1)/2 edges, while most large-scale networks are not fully connected: their edge-
count is usually of order 𝑁 rather than 2𝑁 [206].

The mesh topology is known to have a uniform degree distribution, a high average path
length and a low clustering coefficient, being used as a basis for other, more complex network
topologies.

2.3.2 Random

Random networks (also known as the Erdős-Rényi model) consist of nodes with random
connections among them [36, 66].

In mathematics, a random graph is the general term used to describe probability distribu-
tions over graphs or random processes which generates them. The theories which govern
these networks lie at the intersection between graph theory and probability theory, with
their main goal being the possibility to determine at what connection probability 𝜌 a par-
ticular property of a graph will most likely arise [36, 66, 206]. From a mathematical point
of view, random graphs are used to determine certain properties of other, ordinary (basic)
graphs. Its practical applications can be found in all areas in which complex networks need
to be modeled.

Random networks are formed by using any of the basic network topology — though
usually a mesh topology is used — with a set of 𝑁 vertices and randomly adding successive
edges between them [71]. The aim of the studying random networks is to determine at
what stage a particular property of the graph is likely to arise, since it can happen quite
suddenly. Erdős-Rényi proved that, if the probability 𝜌 is greater than the estimated value
in equation 2.12, then almost every random graph is connected [71, 206]:

𝜌 ≈ ln 𝑁
𝑁 (2.12)

BUPT



18 Theoretical Background

where 𝑁 is the total number of nodes in the network. Other important attributes of random
networks have also been observed and reported in literature [56, 71, 82]: the average path
length decreases dramatically when long-range links are inserted into the network. On the
other hand, upon a close-up inspection of these networks, the clustering coefficient remains
low, as there is no rule tying local nodes together in a cluster. Its practical applications can
be found in all areas in which complex networks need to be modeled. Such a network can
be seen in Figure 2.9.

Figure 2.9 A basic example of an Erdős-Rényi model.

2.3.3 Small-world

Small-world networks are specific to social networks as they present attributes found
in real-world societies. The topology is based on a graph with a generally low amount of
interconnectivity, in which the majority of nodes are not neighbors, but in which the average
path length between is small. More specifically, as the network grows, its average path
length 𝐿 only grows at a logarithmic rate, described using equation 2.13, whilst leaving the
clustering coefficient unchanged [208]:

𝐿 ≈ log 𝑁 (2.13)

where 𝑁 is the total number of vertices present in the network. This characteristic property
is found in many of today’s empirical networks such as the world-wide web, musicians’ and
actors’ network, natural food-chains, gene networks, etc. [87, 151, 206].

The main metrics used to define and analyze small-world networks are the small average
path length 𝐿 and the high clustering coefficient 𝐶, creating a bridge between regular and
random networks, as seen in Figure 2.10.

BUPT



2.3 Topologies 19

Figure 2.10 When taking into consideration the average path length 𝐿 (blue) and the
clustering coefficient 𝐶 (red), the small-world network is positioned between the regular

and random networks.

2.3.4 Scale-free

As with the small-world networks, scale-free networks are ideal in representing an
amalgam of real-world (social) relationships, especially since connections within the network
are formed based on preferential attachment: when creating new links, nodes with a high
degree will be able to increase their degree even more, while nodes with small degrees will
stagnate in the process [206].

Individual nodes of a scale-free network follow a power-law distribution [7, 148], mean-
ing that the degree 𝑘 of fraction of nodes from within the network — denoted with 𝑃 (𝑘) —
can be expressed using equation 2.3. This means that within the network most nodes have
a very small degree, multiple nodes act as local hubs while very few nodes are hubs for
most clusters formed in the network, as illustrated in Figure 2.11.

This kind of distribution is present in a vast majority of networks, all the way from social
networks to biological networks, economic networks or networks representing comic-book
lores [6, 21, 161, 163, 206].

A popular example demonstrating the occurrence of scale-free networks in real life is the
collaboration of movie actors. Several studies [81, 169] have shown that all actors are linked
by a relative small number of links and that many actors have been in direct contact with
other actors. One actor in particular has an overwhelming number of connections, namely
Kevin Back, effectively serving as a hub for connecting other actors together with each other.
This led to the development of the well-known parlor game ”Six Degrees of Kevin Bacon”,
focusing on the fact that no actor is more than 6 steps away from Kevin Bacon [21, 55, 75].

A similar study also exists in the musicians network; limited to jazz musicians only, the
formed network closely resembled to the previous networks [90], and as such, I felt inspired
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Figure 2.11 A scale-free network with preferential attachments: nodes with a high degree
are able to increase their degree even further, forming so-called hubs.

(and compelled) to analyze their whole network, effectively creating the prerequisite of
MuSeNet.
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2.4 Social Network Analysis

Identifying certain aspects of any complex network and being able to use them to draw
important conclusions are just few steps out of many any researcher needs to take in order
to document noteworthy results. The prerequisites of such an endeavor involve collecting
data and identifying or creating the tools and methods capable of processing raw data. Some
of these, which are relevant to this thesis are listed in the following subsections.

2.4.1 Databases

• Stanford Large Network Dataset Collection: perhaps the most complex and well-known
general-purpose network analysis dataset library curated by Jure Leskovec [124]. It
contains collections of over one hundred networks of various network-types (i.e. di-
rected, undirected, bipartite, temporal, labeled, as well as multigraphs) and relation-
ship categories (e.g. social networks, communication networks, citation networks,
collaboration networks, web graphs, amazon networks, internet networks, road net-
works, wikipedia networks, articles network, temporal networks, etc.).

• Complex Networks and Soft Matter Lab: personal repository of Herman Makse, with
an impressive collection of networks of various categories (e.g. biological networks,
social networks, transportation networks, collaboration networks, etc.) free to use by
anyone [131].

• Awesome Public Datasets: a list of high-quality open datasets in public domains col-
lected and tidied from blogs, answers, and user responses [52]; biological networks,
weather networks, complex networks, computer networks, economic networks, gov-
ernment networks, software networks, transportation networks, language networks,
etc. are just a few types of relationships that can be found on this repository curated
by Xiaming Chen.

• AllMusic Guide: a comprehensive online, human-readable database referencing thou-
sands of musical artists and bands, currently owned by All Media Network, LLC [127].

• IMDB 5000 Movie Dataset: over 5000 movie-data taken from the IMDB website, or-
ganized and listed publicly by Chuan Sun [189].

2.4.2 Tools

• Gephi: the leading tool in visualization and analysis of large networks [27], fully sup-
ported by an active community due to the fact that it is an open-source application. It
features plug-in support, has a rich variety of tools for measuring and analyzing social
networks and it provides a rich framework that helps developers extend the existing
modules using the Java language. Its main features include the possibility of importing
graph data in multiple formats, visualizing data using a multitude of intuitive layouts,
measuring and displaying graph metrics, coloring nodes and communities based on
custom criteria, filtering out nodes based on custom conditions, exporting data as im-
ages etc. One strong aspect is the amount of supported input formats: gml, gdf, gexf,
graphml, csv, spreadsheet, Tulip TPL, Pajek NET, GraphViz DOT, NetDraw VNA, making
Gephi a very useful network visualization tool.

• Cytoscape: an open source software platform, which, initially designed for visualizing
molecular interaction networks and biological pathways, became a general platform
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for complex network analysis and visualization [179, 184] due to the fact that it too
has a powerful community, responsible for improving or extending its modules.

• Centrifuge: a premium browser-based application with an integrated suite of capabili-
ties that can help rapidly understand and glean insight from new data sources, visualize
network-data by interacting with it and collaborate in real-time with others [190].

• Graphviz: an open source graph visualization software which represents structural
information as diagrams of abstract graphs and networks, with many useful features
for analyzing networks [70].

• SocNetV: a cross-platform, user-friendly tool for the analysis and visualization of social
networks [112].

• Pajek: is a free windows applications for analyzing large network-types [28].

• iGraph: a collection of open-source network analysis tools with the emphasis on effi-
ciency, portability and ease of use [60].
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3. Collaboration in Complex Networks

In general terms, complex networks are formed by a set of social actors connected
together based on certain rules [69, 153], depending on the analyzed point of view: an
actor might be a single person, a team, or an organization, while a connection might be a
relationship among two people, a collaboration or common member of an organization.

Traditional studies of social networks have been carried out through different fields [74,
120, 178], and even though such studies have exposed much about the configuration of
communities, they suffer from two deficiencies that make them poor sources of data for
the kind of approach to network analysis. First and foremost, the collected data are not
numerous; most data sets contain no more than few a hundreds or thousands of actors,
with only a handful of studies exceeding 1,000,000 actors [83, 152, 217]. Also, gathering
the data from these studies is a laborious process, making the statistical accuracy of many
results poor [83, 152]. Secondly, they contain erroneous results due to the subjective
nature of respondents’ replies. As such, a more promising and reliable source of data are
collaboration networks themselves.

A collaboration network consists of a multitude of nodes representing distinctive entities,
like organizations, departments or people. These nodes, though mostly autonomous, geo-
graphically distributed, and heterogeneous in terms of their operating environment, culture,
social capital and goals, all share the same basic property: they collaborate with each other
in order to achieve common or compatible goals [44, 178, 186].

Collaboration is an activity which can be found within various social networks where a
network is considered as a linkage between two nodes. Since this kind of ongoing analysis
of the process of collaboration from a social networking point of view is still rather new, it
is reasonable to assume that collaboration theory stands to expand in future. Collaboration
is encouraged when there is an expected beneficial outcome common for the collaborators
within the entity: the more significant this outcome, the higher the participation and com-
mitment level will be among the collaborators. It also allows a mix of size and scale of
businesses, organizations or communities to share experiences, capabilities, resources and
ideas and become more competitive. Such processes find their ”natural” environment on
the Internet, where collaboration and social dissemination of information are made easier
by current innovations and the proliferation of the web.

Studies performed over a variety of complex networks have resulted in mapping distinc-
tive types of relationships, yet featuring similar properties, namely the desire to collaborate,
in one way or another [178]. As such, a handful of such examples are listed, most of which
constitute prerequisites to MuSeNet.
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3.1 Collaboration in Social Networks

3.1.1 Co-authorship Network

An interesting study regarding collaboration in social networks is the one pertaining the
so-called co-authorship network [152, 154]. This network is a hallmark of contemporary
academic research. Scientists and authors are no longer isolated, independent agents,
but members of a much larger, multi-disciplinary groups [185, 186]. When these agents
collaborate, share ideas and co-author papers, they inadvertently create a new connection
among themselves [68]. This network — such as the one depicted in Figure 3.1 — once
analyzed, can offer answers to a broad variety of questions related to collaboration patterns,
such as number of published papers, their quality, author’s physical location and how these
patterns evolve over time [154], as well as a handful of other interesting properties [152].

In almost all studied cases, the formed communities constitute a small-world network
topology, with an average path length between scientists and intermediate collaborators
scaling logarithmically with the size of their community, having an average of five or six
intermediaries between any two randomly chosen nodes. These networks are also highly
clustered. This property is a tell-tale sign that scientists introduce their collaborators to one
another, an important aspect for the development of the whole scientific community. The
power-law property was also identified in the form of distribution values of both the number
of collaborators of scientists and the numbers of papers they write.

The author Newman [154] also pinpointed important statistical differences between di-
vergent scientific communities. Some differences, like the fact that experimental high-
energy physics, which is famous for its diversified collaborations among authors, has a
much higher average number of collaborators per author than any other examined field, be
it Biology or Computer Science, were obvious. However, biomedical research, for example,
presented the lowest degree of clustering out of the examined fields. This hints to rare col-
laborations among scientists in this field, even with the existence of common collaborators.
Biomedicine is also the only field which is dominated by many people with few collaborators,
rather than by few people with many collaborators, as opposed to other fields [152].

3.1.2 Marvel Universe

Marvel Entertainment has been in business for over 70 years, continuously developing
characters, plots and media (e.g. movies, television shows, games, etc.) only to realize that
for a newcomer, jumping into this plethora of information would be an intimidating process
of manual and time-consuming research. Aiming to simplify this process, and to overcome
its disadvantages, the community behind the Marvel universe resorted to the power of graph
database. As such, they devised a model using graph theory, where two Marvel characters
are considered linked if they jointly appear in the same Marvel comic book, show, movie
or game. The purpose behind all this extensive research was to keep an accurate record
of each Marvel character and its background, but in doing so, they inadvertently created
their very own network. The result is essentially a dynamic database — as opposed to most
databases, which are relational —, which was used in order to make recommendations for
new fans who want to get into the mythos, but have no time to sort through what would
seem to be a bottomless well of lore, spanning through decades.

The study pertaining the Marvel Universe was further analyzed by authors Alberich et
al. [6]. The resulting network — which was formed of 6,486 nodes (corresponding to indi-
vidual Marvel characters) and 96,662 edges (corresponding to individual relationships) —,
presented most of the characteristics of a real-life collaboration networks [6], rather than
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Figure 3.1 Visual representation of the co-authorship network, as presented in the original
paper. The nodes represent scientists with links among them based on common works,

further grouping them based on their research-topics [154].

that of a random collaboration networks. Interestingly however, the clustering coefficient
differed drastically from that of real-life collaboration networks, due to the way how charac-
ters are distributed throughout the media. This completely contradicts the way how real-life
scientists collaborate in writing scientific papers, and is due to the networks’ synthetic origins
[6].

3.1.3 IMDB Actors’ Network

Derived from a famous statement made by Kevin Bacon himself [75, 209], a whole sci-
ence was dedicated to this, sparking an interesting concept in the domain of social networks:
the Bacon number; it is defined as the number of degrees of separation any given Hollywood
actor has from Kevin Bacon. The higher the Bacon number, the farther away from Kevin
Bacon that particular actor is. The computation of a Bacon number for any given actor is
based on the shortest path algorithm, applied to the co-stardom network [7, 133]. One
of the most famous contributions in this aspect is the paper based on the winning entry of
the Graph Drawing Competition [4], presenting the analysis of large and complex temporal
multivariate networks derived from the Internet Movie Database, IMDB. IMDB has become,
over time, a huge and very rich dataset with many attributes. It is currently used to create
visualization graphs based on actor relationships for each particular year, starting from 1911
through recent years. Since the information found on movie database grows with each new
movie release, using all of the data may result in networks that are not that transparent and
hard to analyze. Therefore studying only a subset of the IMDB network, more specifically
the adult collaboration network [81] brought many benefits, for instance by removing any
nodes characterized by long-spanning careers and focusing the resulted network more onto
the time evolution.
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Figure 3.2 Visual representation of the connections between the Marvel Universe
super-heroes split into three major clusters and a multitude of smaller ones. The large

clusters are formed of the X-Men (yellow colored cluster on the left side), Spider-man (red
color on the right side) and the Avengers (blue colored cluster in the middle). The smaller

clusters, like the red colored nodes sprinkled throughout the network are formed of
superheroes that belonged to small Marvel Universe factions that were interconnected with

larger groups [46, 176].

3.1.4 Jazz Musicians’ Network

Similar to the previously presented studies, an analysis involving the collaboration net-
work of jazz musicians [45, 86, 90] represents yet another prerequisite of MuSeNet. In this
particular study, the authors Gleiser et al. present both the collaboration network formed
between two individuals, where two musicians are connected if they have played together
in the same band, as well as the collaboration band network [90]. This network is formed
by creating connections between bands who feature at least one common member, as pre-
sented in Figure 3.4. The resulting network revealed the following information pertaining the
community of jazz musicians of that period: going from the center towards the tips of the
network, the separation and the splitting of the branches into two communities represents
the manifestation of racial segregation present at that particular time. Although collabo-
ration between races did exist, most bands were exclusively formed by people of a single
race or, in some cases, within a specific geographical location. After a closer inspection of
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Figure 3.3 Preview of the collaborative IMDB actors’ network [197].

the names of several artists, the authors Gleiser et al. concluded that the nodes located
on the left part of the community represent African Americans, while the ones on the right
represent Caucasians [90].

Figure 3.4 Graphical representation of the network formed by jazz musicians, as per
original publication. The nodes highlighted with green nodes indicating musicians with a

very high degree [90].

The collective empirical networks — both the network formed by jazz musicians, as
well as the previously-mentioned IMDB actor’s network — to which I compare MuseNet are
presented in Figure 3.5 using a custom representation. Overall, the IMDB network has a
clustered appearance with no visible community structure, while the jazz network has lower
clustering and a very high interaction density. In both cases, the nodes represent artists
(actors/jazz musicians), and are linked by at least one artistic collaboration.
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Figure 3.5 Representation of a) the IMDB movie actors co-appearance network and b)
contemporary jazz musicians collaboration networks. Nodes depict individual artists, which

are linked by an existing professional collaboration. Node-coloring and sizing are
proportional to their degree [24].
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3.2 Collaboration in Economic Networks

Since economical improvements and financial stability are an important factor in our
day-to-day life, researchers have started observing and analyzing the interest of world-wide
companies in their effort of establishing industrial networks by means of studying aspects
such as social interaction and contractual relationships [64]. Due to presence of a plethora
of companies on the market, each with its own division, we can identify both global (i.e.
outside), as well as local (i.e. within the company itself) connections. These connections
act as visual representations of their dependencies generated by their activities, as well as
their resources, both used and created [96]. Results obtained prove that certain companies
rely and trade with each other, but in order to further themselves — and to obtain a profit
—, they are ultimately forced to either cut down production costs or increase production
quality. Also, an increased tendency towards specialization has aided to the introduction of
advanced manufacturing technologies in order to supply niche markets [64].
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3.3 Emergent Properties of Complex Networks

A common characteristic of complex systems — including complex networks — is the
presence of certain emergent properties at a macroscopic scale [119, 158, 160]. Driven by a
rather small variety of a reasonably homogeneous agents collaborating together [123, 187],
emergence is based on simple rules of interaction defined or observed for each agent at a
microscopic scale [30, 102, 104, 140]. Colloquially, this can be expressed as ”the whole is
greater than the sum of its parts”. However, despite the agents’ homogeneity, the resulting
emergent property — and implicitly, the entire system — is irreducible, due to the individual,
self-organizing behaviour of each agent [123, 187].

Figure 3.6 Abstract illustration of local agents interacting and connecting with each other in
unpredictable ways. As a result, certain regularities emerge in their behaviour, resulting in

a complex system.

As emergence generally describes the appearance of interactions, dependencies, or re-
lationships between agents [119, 158, 160], it has important applications in fields like Com-
puter Science, Physics, Mathematics, Biology or Social Science. While emergence is usually
used as reference to the unexpected appearance of organized behaviour or collaboration
within a given complex system, it actually refers to any phenomena which are challenging
or even impossible to anticipate from the characteristics of individual agents that make up
the system [187].

One important characteristic of emergence is novelty itself [123]. This stems from the
fact that observations drawn both at a microscopic scale, as well at a macroscopic scale are
distinct, and concomitantly, the existing (programmed) relationships between each agent
(at microscopic scale) and the collective behaviour observed at macroscopic scale are often
non-obvious [123]. As a result, emergence leads to the change of the initial network —
as depicted in Figure 3.6 —, accounting for the appearance of an outcome which was not
directly specified by the initial rules of interaction set at a microscopic scale [123, 187].

As the analysis of emergent properties represents a key interest in the fields of Computer
Science, Mathematics, Physics etc., I consider it relevant to make reference to it wherever
applicable throughout this thesis.
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3.4 Diffusion Models in Social Networks

A major trend in Network Science is the study and understanding of social diffusion
models, namely how people influence each other and how they can be influenced [2, 69,
85, 91, 106, 116, 201].

The benefit of understanding these complex processes is of paramount importance for re-
searchers in fields like Biology [166], Psychology, Criminology [89], Philosophy, Economics,
Marketing [88], Finances and even Warfare [69, 91]. The type and distribution of specific
diffusion models in a community at a certain time is a reflection of the distribution of in-
fluential people in that particular community [106, 117]. Social influence is the ability of
certain individuals (e.g. musicians, economic agents, etc.) to influence others in their re-
spective fields. Influential people leverage others to participate in certain activities, agree
with their ideas, adopt their style and follow their lead [118]. At first, this is limited to a
small portion of the networks’ population; however, if this initial group is large enough, then
the behaviour grows and spreads to a significant portion of the population, while otherwise
the behaviour collapses so that no one in the population chooses to adopt the respective
behaviour [109].

In today’s world, the most efficient and notable tools of social influence propagation are
the ubiquitous social platforms like Facebook, Twitter, LinkedIn or Google Plus [92, 183].
Using such platforms in order to influence the spread of rumors, political and religious opin-
ions, interests, stories, epidemics, social media recommendations and analytics, behavioral
targeting or viral marketing are just a few examples of means of shaping communities or
entire networks [50]. Consumer groups use social influence to motivate others to act as a
whole in order to obtain an envisioned economic, political or general consumer goal [142].
Present interest is focused on determining when, where, how and why a product or idea
may be sold and/or bought by individuals in our society, and how the psychological fac-
tors behind this process can be influenced [143]. This is achieved by combining elements
from Psychology, Sociology, and Economy [69, 206]. One such pertinent example is the
so-called word-of-mouth marketing. The goal behind it is to trigger specific individuals with
above-average influential abilities within the network, which, in turn, will activate other in-
dividuals via a viral (oral) propagation; more specifically, consider a network represented
by a directed graph 𝐺 = (𝜈, 𝜀) consisting of 𝑁 = |𝜈| nodes/agents (|𝜈| is the cardinality of
node set 𝜈) and a set of edges 𝜀, representing social ties [23, 50]. Additionally, consider
the function 𝑝 ∶ 𝜀 → [0, 1] that associates a given probability of 𝑝(𝑢, 𝑣) — representing the
influence of 𝑢 over 𝑣 —, due to the existing (𝑢, 𝑣) relationship. As a result, this leads to the
reasoning that whenever 𝑢 shares an action or opinion, 𝑣 will do the same by following 𝑢,
with a probability of 𝑝(𝑢, 𝑣), and represents the means of reaching a large target-audience
driven by influence propagation from only a small set of users [50]. Other examples can be
drawn from the field of Psychology, where a recent study [59] describes how an amalgam
of emotional states can be transferred directly from one individual to another via mimicry
or emotionally-relevant bodily actions like facial expressions — also known as emotional
contagion —, greatly influencing the mood of the whole community they form [218]. Sim-
ilarly, from a biological or military point of view specifically influencing certain nodes can
lead beneficial results: vaccinating certain individuals or influencing them may lead to early
disease eradication [14], effectively creating a blockade [72], or improving quality of life
by reducing the cases of obesity [54]; detecting high-profile people of various criminal or
military organizations can prevent tragedies [76]; etc.

In order to identify influential nodes in any network, certain network metrics can be ap-
plied [48]. The degree centrality without a doubt, is such a straightforward and efficient
metric, but only under certain circumstances. This metric can become irrelevant in certain
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edge-cases, as a node linked to a few high influential neighbors may have much higher
influence compared to a node having a larger number of less influential neighbors. Other,
well-known global centrality metrics (e.g. betweenness, closeness, degree, PageRank, etc.)
[40] can yield far more accurate results, but only applied on directed networks and at a high
cost of computational complexity — as needed in case of certain large-scale networks [48].
Recent studies have brought forward more advanced measures meant to identify influen-
tial nodes. The first such noteworthy solution is a random-walk-based algorithm entitled
LeaderRank [130], which, contingent on the results of its authors, significantly outperforms
the PageRank metric. Yet another means of identifying influential nodes is by creating a
semi-local centrality measure as a trade-off of low-degree centrality and time-consuming
centrality measures [14, 48], but yielding similar results. The listed metrics are all impor-
tant in order to establish both the influential nodes and their attributes, each yielding distinct
results. The reason why there isn’t a well-defined metric of establishing influential nodes
comes from Borgatti and Everett’s 2006 review article [37], and reconfirmed on several
occasions [29, 61, 121]. The results presented show that the accuracy of identifying influ-
ential nodes — especially by centrality indices, which only rank nodes but do not quantify
the difference between them — is highly dependent on network topology and since complex
networks have a heterogeneous topology [29, 180], any given centrality measure which is
appropriate for identifying highly influential nodes will most likely be inappropriate for the
remainder of the network.

Conclusively, when taking into consideration relevant metrics for MuSeNet, I did so by
applying the vast majority of the mentioned metrics, focusing on the betweenness and
PageRank centralities for detecting influential nodes, and the eigenvector centrality for the
communities themselves.
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4. MuSeNet - A Musician Collaboration Network

Based on the mentioned publications regarding collaboration in complex networks, we
can notice the emergence of certain communities based on existing ties within the network.
Most of these communities present typical properties of social networks, for instance (but
without losing generality): the small-world property found the actors’ network; a high de-
gree of clustering coefficient present in the recipe network; the scale-free property in the
Marvel universe, where the distribution degree follows a power-law [53, 206]; etc.

Inspired by these studies, I considered it paramount to address the existing relation-
ships — both collaborative and economic — between musicians. As such, by staying within
the framework of Computer Science, MuSeNet, a novel approach of mapping and analyzing
the community formed by musical artists — without limiting it to just one genre —, was
introduced into literature [24, 193]. In the following sections of this chapter, I describe the
methodology used for obtaining the required data, its graphical representation and conclu-
sions obtained by comparing it to other empirical networks.
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4.1 Data Acquisition

The nature of information needed for such a study meant that the data itself was not
readily available. As such, the first step was the gathering of the needed data. This would
be done by using the website AllMusic [127] online database, currently owned by All Media
Network, LLC. However, collecting the data was not an easy endeavor, mainly due to the
fact that the website lacked a much-needed API (i.e. application programming interface) or
means of downloading raw data. This meant that a script had to be written, in order parse
each internal link automatically, and to retrieve the required information. After running for
24 hours, it accessed 781 pages, resulting in 19,881 artists (15,501 after filtering) with the
following dataset saved into an SQL database:

• ID: the internal reference to be used to identify a specific artist in our scripts.

• Name: full name of the artist.

• URL: the URL of the artist, pointing to his/her profile on the AllMusic website.

• Genre: the conventional category that a particular artist identifies with.

• Style: (a list of) style(s) an artist identifies with.

• Member-of: a list of bands he/she was part of, if any.

• Active-period: the time-period in which the artist was reported as being active.

Taking into account future contributions to this thesis, information was also gathered from
the bands’ perspective, totaling in the identification and classification of 5,132 distinct bands.
The only adaptation required was associating each node with a particular band (instead of
an individual musician) and linking them based on presence of at least one common artist
(i.e. a musician who has performed for both interconnected bands); as such, I am able to
connect music artists based on their common bands, common music genre or music styles.

After collecting the data, I proceed to create the network of musicians, using an approach
similar to the state-of-the-art methodology [90, 81]. Considering each artist as an individ-
ual node, I placed the links (between them) according to artist-compatibility. Particularly,
compatibility is defined as the number of common bands two musicians have performed
for. Thus, the more bands two nodes have in common, the greater the weight of the link
between them. It is worth mentioning that this step greatly influences the structure of the
resulting network: a different layout of ties — for instance, based not on common bands,
but on overlapping activity years, gender, music genre, music style etc. — would offer
different insights of the same dataset. This study only focuses on analyzing how common
bands affect the clustering of artists in a complex network, and as such, I did not follow
through with the additional insights mentioned; however, they do represent additional ways
of furthering the research on this subject.

Having created the network, I followed through with computing the MuSeNet social net-
work of musicians into a .gdf file, a valid input file I could load up in Gephi [27], the leading
tool in visualization and analysis of large networks. For the purpose of this particular study I
have truncated the weights of the resulting network’s connections, obtaining an unweighted
graph, where a link denotes one or more common bands between two musicians, while the
absence of a given link denotes the absence of artistic interaction. The reasoning behind
using an unweighted graph instead of a weighted one comes as a desire of optimizing and
balancing out the interaction phenomena: it is shown to yield more accurate results for the
study in terms of determining whether it is a community based meritocracy or topocracy
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[39, 153]. To that end, I have left the attributes of genre, style and active year as param-
eters for doing the clustering of artists. An overview of the main steps taken in order to
create MuSeNet is presented in Figure 4.1.

Figure 4.1 Visual representation of the steps taken in order to create MuSeNet [24].
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4.2 Network Analysis

In this section I present the metrics and visualizations obtained by applying the tech-
niques of Social Network Analysis.

In Figure 4.2 the relevant communities that form over the musical network are high-
lighted. Nodes are placed using ForceAtlas2 [110], a 2D force-directed layout algorithm
[159] available in Gephi. Also, they are colored according to the community they belong
to. The communities themselves are detected using the fast community detection algorithm
implemented in Gephi [34]. This algorithm was chosen in light of the existing methodology
to break down a social network into clusters, namely by using a modularity class clustering
and extracting their representative features [156].

Figure 4.2 Graphical overview of MuSeNet generated in Gephi. Node-coloring highlights
the distinct musical genres communities obtained by applying the community detection

algorithm [24].

One of the analytical advantages of social networks analysis lies in the emergent com-
munity structure of the network it is applied to. Artists are grouped together by partially
overlapping musical genres. As such, the relevant communities which emerge, based on
genre, are: pop-rock (24.56%), jazz (16.72%), blues (15.8%), classical (8%), country
(5.35%) and others.

Even though the proportion of music styles is already a known fact, what network analysis
unveils are the existing spatial distributions as well as their overlapping properties. As such,
the most popular genres are also the ones clustered together, as there are more collaborating
artists. The topologically marginal genres are also the ones less popular, like avant-garde,
reggae, vocal, or religious, so I can confirm there is a correlation between the communities’
center of gravity and their real-world popularity. As a general rule of thumb, the further a
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genre-community is from the absolute center of MuSeNet, the less popular it is. This holds
true for the opposite also.

As the most dominant music style, the community formed by pop/rock artists — repre-
sented with violet in Figure 4.2 — is very central and also tightly clustered, meaning that
artists in this industry prefer to work together with others alike. On the opposite side lies
the community formed by jazz musicians, highlighted with yellow. This community tends to
dissipate and overlap multiple styles. This is due to the (very) collaborative nature of jazz
musicians together with musicians of various other genres.

The same conclusion can be drawn for classical music (green) which, in today’s world,
implies composing contributions for movie scores, commercials, and melodic lines for other
genres. Finally, country music (which is highlighted with cyan in Figure 4.2) shows a sim-
ilarity to the pop/rock community, namely that all artists are linked more with each other
rather than with musicians from other genres. However, the community has a more eccen-
tric position which I correlate with its popularity.

By applying the main centrality metrics — power-law distribution of degree (Figure 4.3),
betweenness (Figure 4.4), eigenvector centrality (Figure 4.5) and PageRank (Figure 4.6),
which is specific for social networks, both empirical and synthetic [7, 56] — to MuseNet, it
helped drawing the following aspects.

Figure 4.3 Power-law degree distribution in MuSeNet [24].

In Figure 4.5 the graphical results of applying the eigenvector centrality metric are pre-
sented. Noteworthy is the cluster visible highlighted in red, which proves that there is a
small single dominant community of nodes with very high eigenvector centrality. On closer
inspection, this community is formed by mature artists who currently own (or have owned)
a record studio. The fact that most published music goes through their studio makes them,
as a whole, the central community in MuSeNet. Referring to the previously mentioned idea
of meritocracy versus topocracy presented in a recent study by Borondo et al. [39], this
community is the one that thrives mostly in the topocratic environment of the music indus-
try, making the most out of its influence in the music industry. This also holds true from an
economic point of view, as content creation is a form of economic activity. Moreover, this
real-world influence is replicated in the graph.
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Figure 4.4 Graphical representation of the degree centrality measurement of MuSeNet
[24].

Table 4.1 shows the top 5 artists with the highest centralities in the music industry. I
have measured all four centralities since they highlight different aspects of importance in a
network.

The musician with the highest degree is Greg Errico (Table 4.1a), an artist and producer
who’s resume spans across the most important musical genres, until today. He was mem-
ber of the band named ”Sly and the Family Stone” and performed with artists like David
Bowie, Santana, Larry Graham, etc. from a multitude of genre-communities like rock, jazz,
or fusion. On the other hand, betweenness (Table 4.1b) depicts importance in terms of in-
teraction control. Dave Grohl, a member of ”Foo Fighters” and ”Nirvana”, lies the crossroads
of most collaboration paths between all other artists.

The eigenvector centrality highlights members of the mentioned community of producers
(colored with red in Figure 4.5) alongside of with Greg Errico, Alphonso Johnson and many
others, as seen in Table 4.1c.

In link analysis, where the PageRank centrality is mostly used, a web page will have a
high PageRank if it has some combination of high in-links, low out-links, and specific in-
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Figure 4.5 Graphical representation of eigenvector centrality measurement of MuSeNet.
The community highlighted with red is formed by influential artists who currently own a

record studio [24].

links from other high ranking pages. In the world of musicians, these artists with a high
PageRank like Greg Errico, John Wetton, and Lu Edmonds — as depicted in Table 4.1d —
have most likely been influenced by either a lot of people, a few very important people, or
some combination of the two.

Finally, similar to the IMDB study which denotes Kevin Bacon as the most influential
node in the Hollywood actor network [75], I identify Dave Grohl as the ”Kevin Bacon” of the
music industry. This aspect is clearly visible in Figure 4.6, where I show the betweenness
distribution, a classical method of computing influence. Dave Grohl is an American rock-
musician, multi-instrumentalist, singer, songwriter, producer and film director. He is best
known for being the lead vocalist, guitarist, main songwriter and founder of the band ”Foo
Fighters”, drummer and song-writer of ”Nirvana”, ”Them Crooked Vultures”, ”Queens of
the Stone Age”, etc. He has also performed session work as a drummer for a variety of
associated acts, like ”Garbage”, ”Nine Inch Nails”, ”David Bowie”, ”Paul McCartney”, ”The
Prodigy”, ”Slash”, ”Iggy Pop”, ”Tenacious D”, ”Lemmy”, ”Stevie Nicks”, etc.
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Figure 4.6 Dave Grohl is the ”Kevin Bacon” of the music industry, fact denoted applying the
PageRank centrality on MuSeNet [24].

MuSeNet can further be analyzed from different perspectives as mentioned in a previous
section, which I consider would yield yet additional and useful information.
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Artist Degree
Greg Errico 81
Alphonso Johnson 79
Dave Walker 67
Don Airey 65
John Wetton 62

(a) Musicians with the highest degree.

Artist Betweenness
Dave Grohl .0124
Josh Freese .0091
Chris Shiflett .0084
Lu Edmonds .0075
John Wetton .0073

(b) Musicians with the highest betweenness.

Artist Eigenvector
Alphonso Johnson .764
Greg Errico .754
David Brown .689
Graham Lear .657
Neal Schon .652

(c) Musicians with the highest eigenvector.

Artist Pagerank
Greg Errico 2.925
John Wetton 2.777
Lu Edmonds 2.7
Jimmy DeGrasso 2.672
Alphonso Johnson 2.641

(d) Musicians with the highest pagerank.

Table 4.1 Numeral results of the centrality metrics applied to MuSeNet.

BUPT



42 MuSeNet - A Musician Collaboration Network

4.3 Similarity Analysis

Along with the obtained MuSeNet network, I also use the IMDB network of actors
[81, 169], the Jazz network of musicians [45, 86], as well as reference online social net-
works of Facebook, Twitter and Google Plus available from a previous publication by authors
Topirceanu et al. [194], and the Stanford Large Network Dataset Collection [124]. The
IMDB actors network and the Jazz musicians networks were chosen based on their similar
approach, while the Facebook, Twitter, Google Plus models were chosen in order to put in
perspective the particular features that artists have as opposed to everyday Internet users.
The network analysis is done from two perspectives: a metrics-based comparison, by using
the fidelity metric [194], and a motif-based comparison [149].

4.3.1 Metric Fidelity Comparison

The metric fidelity comparison is done using the topological metrics which are specific
for every complex network [7, 151, 188, 206]: average degree (𝐴𝐷), average path length
(𝐿), average clustering coefficient (𝐶), modularity (𝑀𝑜𝑑), graph edge density (𝐷𝑛𝑠) and
graph diameter (𝐷𝑚𝑡). Conclusively, the mentioned metrics, as well as the obtained values
are presented in Table 4.2, collectively representing the difference of sociability from the
perspective of three types of collaboration networks. Interestingly, the Facebook model is
situated at an average level of sociability, due to the fact that all of the metrics are centered
on empirically representative values [194, 113].

As opposed to this, the IMDB actor network and MuSeNet each lie at an extreme. The
former proves to be more sociable (i.e. significantly greater 𝐴𝐷, shorter 𝐿, higher 𝐶, higher
𝐷𝑛𝑠, and shorter 𝐷𝑚𝑡), while the latter the least sociable. From a social perspective the
following conclusion can be drawn: Facebook users (i.e. everyday users) interact and create
new friendships at what we call a normal rate. Actor’s everyday job, however, relies on co-
starring with other actors, in a different movie every time, due to the fact that casts for
movies are very broad. This makes their network very clustered and thus seems more
sociable, in our terms. Musicians, however, do not usually create art (work) with many
others. They mainly rely on their own band (of approximately five members on average),
and not more then on the other artists from their own genre. This makes links in MuSeNet
less dense, clustering very high and the community structure powerful. By applying the
sociability term on MuSeNet, it can easily be considered as a “non-sociable” network.

Conclusively, the Twitter and Google Plus networks, much like Facebook, are moderately
sociable networks, while jazz musicians — surprisingly — are comparable to actors when it
comes to this metric. The explanation for this phenomenon can be seen in MuSeNet itself,
as jazz musicians work with many artists, and foremost with the majority from their own
genre.

In order to better convey the interpretations, I apply the 𝑆-metric described in equation
2.11 by taking into consideration the basic graphmetrics (which are also present in Table 4.2)
and compare them to reference models; to this end, I use the on-line social networks’
model-distribution of metrics as the reference, and compare the metrics of all collaboration
networks together. As such, the sociability of the collaboration networks using the Facebook
model as a reference is given in Table 4.3. The Facebook model compared to itself will have
a sociability 𝑆 = 0. Any model that is considered as less sociable will have 𝑆 < 0, while all
models that are more sociable in terms of their graph metrics will have 𝑆 > 0. We can also
observe that MuSeNet is indeed on the “unsociable” side, while the Jazz and IMDB networks
are more sociable. Changing the reference model (Facebook, Twitter, Google Plus) would
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Network 𝐴𝐷 𝐿 𝐶 𝑀𝑜𝑑 𝐷𝑛𝑠 𝐷𝑚𝑡
Facebook 22.23 2.34 0.256 0.577 0.005 7
Twitter 12.39 2.68 0.239 0.28 0.054 7
Google Plus 12.15 3.9 0.404 0.44 0.035 12
Jazz 27.7 2.23 0.633 0.441 0.141 6
IMDB 113.5 1.55 0.996 0.476 0.062 4
MuSeNet 13.18 7.64 0.884 0.844 0.002 23

Table 4.2 Relevant measures for each empiric network: average degree (𝐴𝐷), average
path length (𝐿), average clustering coefficient (𝐶), modularity (𝑀𝑜𝑑), graph edge density

(𝐷𝑛𝑠) and graph diameter (𝐷𝑚𝑡).

𝑆 Facebook Twitter Google Plus
Jazz 29.34 4.23 5.80
IMDB 19.33 11.62 11.76
MuSeNet -3.56 4.34 -2.46

Table 4.3 Sociability values for similar collaboration networks compared to Facebook,
Twitter and Google Plus.

only change the values associated to each network’s sociability, leaving the scale and signum
the same.

Table 4.4 presents the fidelity values of each collaboration network when compared both
to themselves and to the online social networks Facebook, Twitter and Google Plus. The
results show a similarity of 45-65% between all collaboration networks and online networks.
This is due to the sociability difference compared to the moderate one of the reference
models. On the other hand, the metric comparison supports my sociability evaluation as it
shows the IMDB and Jazz networks — both described a highly sociable — much more similar
(67%) than compared to MuSeNet (<50%).

4.3.2 Motif Distribution Fidelity

Comparing the before-mentioned networks based on the existing motifs was done using
a two-step approach.

First, I measure the distribution of size-3 motifs on each empirical network using FANMOD
[212], which is based on RAND-ESU [211], one of the fastest detection algorithms available.
As a result, I obtain the distribution depicted in Figure 4.7, offering a different perspective
over the already presented conclusions. The Jazz musicians network behaves more like
a normal social network — having a uniform distribution of motifs — while the IMDB and

𝜑 Facebook Twitter Google Plus Jazz IMDB MuSeNet
Jazz .647 .595 .615 - .672 .517
IMDB .472 .535 .537 .66 - .472
MuSeNet .486 .451 .574 .491 .479 -

Table 4.4 Network fidelity values of the three collaboration networks (rows) towards the six
references (columns). A higher 0 ≤ 𝜑 ≤ 1 value denotes a higher similarity.
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Network Facebook Jazz IMDB MuSeNet
Jazz .818 - .36 .662
IMDB .16 .171 - .231
MuSeNet .501 .595 .433 -

Table 4.5 Network fidelity values of the collaboration networks (rows) towards the four
used references (columns) in terms of motif distributions.

MuSeNet networks have a predominant motif characterizing them. The motif size used in
this study is fixed to subgraphs with 3 nodes only, as they are much more numerous to be
found in graphs, and thus substantially more relevant [13]. The motifs can be seen in the
lower part of Figure 4.7.

Figure 4.7 The resulting motif distribution of the chosen empirical network topologies. The
occurrence of each motif is expressed in percentage in the central histogram. As can be
seen, only distinct motifs (not all) characterize each network. All 13 motifs of size 3 are

depicted at the bottom of the figure [24].

As the second and last step, I apply the fidelity metric to compare the motif distribution
vectors with one another. The obtained values are given in Table 4.5. A value of 1 means
complete similarity, while a value of 0 means complete dissimilarity. The data is interpreted
as, for example: the Jazz network has a similarity of 81.8% towards the Facebook model
etc.
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5. Agent-based Simulations of Collaboration and Pay-
off Distributions in Economic Networks Using TrEc-
Sim

Network Science brings a better understanding for the structure and behaviour of social
and economic networks, thus proving that human interaction is not only important in Social
Science, but it is also essential for many other fields such as Technology and Engineering.
To that extent, economic and social networks facilitate understanding the dynamics of our
society and the socio-economic roles we play. For instance, we can identify individuals who
benefit from current topological features (e.g. hub nodes [65, 219], influential spreaders
[196, 216], vital agents [8, 129], etc.). Indeed, the last couple of decades have witnessed
notable developments in Big Data and machine learning, which have boosted various appli-
cations of Network Science [58].

In the field of Economics, it is very important to understand the conditions in which certain
economic agents fare better than others at individual-level. Also, it is important to discern
the types of social and economic networks that are associated with the best outcomes at
system-level [107]; however, due to the fact that economic networks are non-linear, un-
predictable complex systems, it is very difficult to analyze them based only on real-time
quantitative observations [16, 20, 35]. As such, I extend the existing economic models,
simulators and empirical observations by creating TrEcSim1 [23, 25, 26], an extended, dy-
namic version of the embedded markets mathematical model from Borondo et al. [39], to
which I will further refer to as the rockstar model.

The Trade and Economic Simulator is a state-of-the-art economic network simulator,
where agent decision is driven by certain heuristics, that were tailored according to main eco-
nomic theories and is designed to support the following real-life features: complex network
topologies, evolution of economic agent roles, dynamic creation of new economic agents,
diversity in product types, dynamic evolution of product prices, and investment decisions at
agent-level. Here, my scope is to gain a better understanding of economic networks and to
analyze inter-agent dynamic behaviour by means of computer modeling and simulation. As
such, by employing computer simulation, I want to address the following objectives:

• Simulate economic networks based on four underlying network topologies — mesh,
small-world, random and scale-free — in order to get a better insight on static and
dynamic distributions of payoff [26, 204].

• Analyze the influence of topological features (i.e. network topology and placement of
agents according to their roles) on the distribution of payoff.

• Implement a new mechanism for modeling the behaviour of economic agents, inspired
by the tolerance-based interaction model [1, 196].

1Short for Trade and Economic Simulator, TrEcSim is freely available at https://github.com/trecsim/trecsim
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• The analysis of ergodicity in economic systems — and with it the intrinsic fairness of
the system — based on network topology and producer/consumer placement.
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5.1 State-of-the-Art

Visual representation for analyzing the dynamics of social and economic networks fos-
ters data analysis and, at the same time, facilitates a convenient way of representing the
results of network analysis. As such, many of the existing simulation tools offer the possi-
bility of visualizing the simulated economic networks, as well as the obtained results. Data
exploration is performed through displaying nodes and links using a variety of layouts and by
attributing colors and size to nodes/agents, according to certain relevant network properties
and centralities (e.g. modularity, degree, betweenness, etc.).

Visual representations of networks may be a powerful method for conveying complex
information, but care should be taken in interpreting node and graph properties from vi-
sual displays alone, as they may misrepresent structural properties; indeed, such structural
network properties are better captured through statistical, quantitative tools. Nonetheless,
the typical application for any economic simulator is to visualize, analyze, evaluate or verify
specific economic scenarios, or theoretical economic models.

5.1.1 The Rockstar Model

A recent attempt to explain how payoffs are distributed in complex economic networks,
based on the nature of interactions between producers and consumers, was introduced by
Borondo et al. [39]; to this end, the authors explore the way that the revenue (i.e. payoff)
resulted from transactions is distributed among the types of economic agents2 (producers,
consumers, and middlemen) according to the density of economic ties (i.e. the network’s
links or edges).

When considering an ideal model such as Arrow-Debreu, every potential transaction that
can create a surplus actually takes place [15]. However, such a scenario is unattainable in
the real world. In a real-world economic network, most pairs of agents are not connected
directly; instead, their connection is realized via chains of intermediaries — middlemen
— who expect to benefit from their topological positions within the network by mediating
transactions between other agents. This embeddedness of markets is especially important
since forming economic links is expensive, thus further restricting markets to the structure
of the social networks that co-exist with them [101]. Therefore, in a real-world market,
the payoff can be classified based on the corresponding source: either from producing and
selling content (i.e. goods or services), or from filling the role of a middleman [39], as
presented in Figure 5.1.

Borondo et al. argue that as economic networks become more sparse a transition oc-
curs, namely from the meritocratic (fair) distribution to a topocratic (unfair) one, where the
topological placement of economic agents becomes the most important factor determining
the compensation it receives [15]. Conclusively, they argue that as networks become more
sparse, the topology transitions from the meritocratic regime of the Arrow-Debreu model
— in which agents’ income source is their individual talent — to a topocratic one, as illus-
trated in Figure 5.2. However, in [39] the authors assume random networks as underlying
topologies, which do not represent realistic configurations of real-world markets [199].

Both topocratic andmeritocratic topologies are, however, extreme cases of socio-economic
networks (markets), none of which presenting an ideal situation in a real-world application
[199], not to mention its redistributive consequences, would it be so [200]. This is due to
the fact that possible transactions might not take place due to uncertain quality of goods
on the market or search frictions [5, 33, 126, 171, 214]. As such, with the introduction of
middleman, these aspects would be compensated for by their ability of reducing informa-

2Economic agents are represented as network nodes.
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Figure 5.1 Graphical representation of a static transaction iteration presented by Borondo
et al.: the economic agents (grey node) act as a middleman in intermediating the

transaction between the content producing node (i.e. the rockstar in the rockstar model,
represented by the yellow star) and the consumer (red node).

Figure 5.2 Visual representation of payoff distribution for different levels of average
connectivity in a network of size 𝑁 = 250 [39].

tion asymmetries and search frictions, or even controlling information flows in the network.
Socialist Ronald Burt has made a similar remark regarding topocratic networks, pointing out
that the position of a middleman in a network can be viewed as a source of advantage,
as these agents are part of the ”social capital of structural holes” [42, 43]. Nonetheless,
the rockstar model presents the specific issues of mathematical modeling, namely it omits
a lot of real-world details. Indeed, the model is a distilled representation which is able to
approximate some aspects in a real-world economic network, but cannot fully cover it [17].
Moreover, the rockstar model represents only a single iteration of economic interactions, and
the economic agents (rockstars) produce only a single type of products (content) having a
fixed, predefined price (value).

5.1.2 Economic Theories

Ever since the dawn of time, the conscious man realized that, starting from a certain
point, he would not be able to obtain all of the goods he needed all by himself; as such,
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Figure 5.3 Graphical overview for share of total payoffs as a function of the average
connectivity in an Erdős-Rényi network.

the exchanging of goods (products or services) began. According to Marx, the exchange
value of a commodity presents itself as a quantitative relation, just like ”the proportions in
which commodities of one sort are exchanged for those of another sort” [135] taking into
consideration its price.

In the last couple of decades more and more theories came about on how to determine
the value (and consequently, the price) of a given product; however I considered two, totally
opposite theories to be relevant and worth implementing them in the TrEcSim simulator,
namely the labor theory of values and the marginal utility theory.

The Labor Theory of Values

A heterodox economic theory, which is usually associated with Marxian economics [135],
but also used as guidelines for other, liberal economists such as Adam Smith and David
Ricardo. Marx argued that the effective (economic) value of any commodity being bought,
sold or exchanged is determined by the total amount of labor (measured in time and effort)
required to produce it, rather than by the use or pleasure its owner receives from it [84, 136],
and as such it must have the following properties [138]:

• Value: represents a well-defined quantity of human labor resulting in a commodity
(product or service) under a given structure of production [136].

• Use-value: represents a given goods’ usefulness, as it can satisfy human need or want,
physical or ideal, being useful not just to the producer but for the consumer(s) also
[138].

BUPT



50 Agent-based Simulations Using TrEcSim

• Exchange-value: the relative proportion with which a commodity exchanges for an-
other commodity, giving its owner the benefit of others’ labor needed to produce the
later.

• Price: the monetary expression of the exchange-value, though this could also be ex-
pressed as a direct trading ratio between two commodities without using money [137].

Using a simplified mathematical expression, the general formula to define a commodity’s
final value can be expressed as follows:

𝑊 = 𝐿 + 𝑐 (5.1)

where 𝑊 is the value expressed — derived from the German word wert —, 𝐿 is the total
quantity of labor time (considering an average skill and productivity) required for the pro-
duction of the given product and 𝑐 is the constant capital of materials used in production,
including the deprecated values of the various tools and machines used [136].

The Marginal Utility Theory

Searching for a concept that would help properly determine the price of a given product,
philosophers, economists, physicists and mathematicians like Aristotle, Carl Menger, Gabriel
Cramer, Daniel Bernoulli or John von Neumann came to the conclusion that there is a tight
relationship between rarity and utility, which would ultimately determine the final price of a
product, explaining the discrepancy in the value of goods and services by reference to their
secondary, or marginal utility [93, 114, 145]. As such, one of the most notable theories of
value in Economy is the theory of marginality, which examines the increase in satisfaction
consumers gain from purchasing and consuming an extra unit of a given good.

In the widely-accepted terms of marginalism, we can identify a specific, edge-case value
of any commodity, for which it holds true given specific constraints: its marginal value.
Adding extra amounts to an already existing good or services undoubtedly causes a decrease
of their respective marginal value to the point where it reaches 0 (maximum utility). This
economical phenomenon is known as the ”law” of diminishing marginal utility [94]. More
specifically, this refers to the increase in utility and individual gains from increase in the
consumption of a given good or service [134, 146] and states the following:

• The marginal utility of each and every unit decreases as their supply increases, but this
also holds true to the opposite; this property denotes the law of diminishing marginal
utility [168].

• The marginal utility of a larger unit is greater than those of a smaller unit’s, but this
also holds true to the opposite; this property denotes the law increasing marginal utility
[168].

Even though this theory has given birth to the famous ”paradox of water and diamonds”
[213], the marginal utility theory, along with all of the related theories, is successfully applied
in all related fields.

5.1.3 Economic Simulators

Currently, to the best of my knowledge, there are no simulators to fully implement
mainstream economic theories such as the ones previously described, however there are a
few niche simulation tools that are employed for visual representation of dynamic economic
networks; nonetheless, besides the mentioned flaws, the available simulators have other
limiting factors, such as: limited simulation options, the lack of complex algorithms for

BUPT



5.1 State-of-the-Art 51

modeling economic behaviour, or the necessity of supercomputers. Nonetheless, a handful
of such simulation software tools worth mentioning are:

• Minsky: the open-source visual computer software for building and simulating dynamic
and economic models, which is mainly used in accounting [115].

• Ecolego: a computer simulator used for creating dynamic models and performing prob-
abilistic simulation [19, 41]. By interacting with its GUI (i.e. graphical user interface),
users can define a handful, but limited parameters and simulation settings. Ecolego
also helps to create reports and to plot simulation results.

• EMINERS: a computer simulation software for quantitative mineral resource assess-
ment written in C++ [67]. Though initially it was capable of analyzing data for costs of
labor and raw materials, costs for improving mining techniques and their (economical)
advantage, as well as several beneficiation methods, it only took a handful of years
until EMINERS’ algorithms and modules became outdated..

• EURACE: an agent-based model capable of simulating not only single industries, mar-
kets or communities, but also the economic activities at the European Union level.
The presented model is designed to factor in artificial markets for real commodities
(e.g. consumption goods, investment goods, labor, etc.) when simulating a new eco-
nomic scenario, as well as financial assets (e.g. debt securities, bonds and stocks).
EURACE yields results that are identifiable in our day-to-day economical activities, by
running large-model simulations, which require massively parallel computing on large
supercomputers that are not available to the general public [62, 63].

5.1.4 Limitations

As TrEcSim was created by taking into account existing mathematical models, theo-
ries or economic simulators, I took the opportunity of addressing certain limitations of the
presented state-of-the-art.

The Rockstar Model

In the rockstar model the number of economic agents and their roles as producer/rock-
star or intermediary are predefined and fixed. Also, the agents in the rockstar model only
produce one type of product, with a fixed (pricing) value, during the course of a single
iteration cycle. As a result, the rockstar model is static one. Another limitation is that
the rockstar model assumes only the random topology as the underlying network; however,
real-life economic trade networks are not random, as they also exhibit small-world and scale
free-network properties [47, 125]. Taken together, the extensions brought to the rockstar
model are presented in Table 5.1.

Economic Theories

In what pertains to the mainstream economic theories, most mathematical models or
economic simulators, unlike TrEcSim, don’t factor them in at all. To this end, TrEcSim can
account for certain products as requirements for producing other end-products. To a some-
what extent, TrEcSim also factors in the idioms of the theory of marginality by taking into
consideration the products’ importance and quality factors.
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Feature Rockstar model TrEcSim
Agent-role Predefined Variable
Network layout Fixed as random Evolvable complex topologies
Product type(s) Unique Multiple
Product quantity and quality Not applied Variable
Product (pricing) value Fixed Variable
Profit investment Not possible Possible

Table 5.1 Feature-based comparison between the original rockstar model [39] and the
extended simulation model in TrEcSim.

Economic Simulators

With reference to the mentioned economic simulators, it is also worth mentioning that
most common drawbacks are related to simulation restrictions, or the absence of a complex
algorithm capable of realistically driving the behaviour of economic agents. Moreover, some
simulators require certain hardware requirements (i.e. large supercomputers) which are not
available to the general public, rendering them unusable in most situations.
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5.2 Software Implementation

As previously emphasized, the main goal with TrEcSim is to provide a simple-to-use,
web-application with powerful simulation capabilities. These attributes are not only a fun-
damental necessity for any successful socio-economic simulation framework, but they also
ensure that TrEcSim is flexible enough to meet the requirements of tested economic scenar-
ios. Indeed, by providing a wide variety of capabilities, configurable simulation parameters,
extensible methods, complex logging, network topology importing/exporting features, and
fast visual rendering, ensures that TrEcSim can be used in an effective manner, regardless
of user-skill or simulated scenario.

This section focuses on a few key aspects of TrEcSim’s implementation, namely: ubiq-
uitous object-oriented design; ASP.NET integration; data manipulation and representation;
as well as configurability and logging.

5.2.1 Ubiquitous Object-Oriented Design

TrEcSim is designed with flexibility in mind as its main feature; nonetheless, generally
speaking, this is one of the key aspects for any simulation software. Flexibility, however,
is fostered and achieved by careful implementation. To this end, I use object-oriented
programming which provides for the ability to construct various configuration-instances from
individual yet composable objects, thus paving the way for an advanced and fast software
application. In order to offer a better insight regarding the relations between classes in
TrEcSim, an overview of the class interconnectivity is presented in Figure 5.4.

Another important objective is to make TrEcSim’s modules completely extensible via its
API; such extensions can easily, properly, and conveniently be achieved by resorting to
object-oriented implementation.

5.2.2 ASP.NET Integration

TrEcSim obtains significant flexibility and performance, by using the ASP.NET framework
as foundation. From the early development phases I found that ASP.NET is appropriate
for my objectives, especially when comparing against other web-specific frameworks. The
advantages attributed to ASP.NET are motivated by various reasons: vast class libraries
containing a large number of common functions and ready-to-use web-controls, cross-
platform support, performance tweaking, smart caching technologies, drastically reduced
code needed for large-scale implementations, etc. Because it is written in C#, TrEcSim is
more powerful and more flexible; it would also be more scalable and extendable in the near
future, as mentioned in section 6.3.

Another advantage gained due to the usage of ASP.NET includes the possibility of orga-
nizing data by using the popular MVC (Model-View-Controller) design pattern included in the
available packages. Also, due to the inherent fact that ASP.NET has cross-language support,
we can also make use of SQL (Structured Query Language) to store and retrieve both data
stored procedures in and from the Microsoft SQL Server.

5.2.3 Data Manipulation and Representation

TrEcSim takes the input information regarding the underlying economic network topology
(e.g. topological model/network type, network size, node-to-node link probability, etc.) via
two methods: either using the built-in basic user interface, or by importing network-related
data from a .csv (i.e. comma-separated values) file that is created by one of the numer-
ous third-party applications (e.g. Gephi [27, 110]). Using the method based on importing
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topologies from .csv files, users can import any type of network, with any complexity and
configuration. A general overview of TrEcSim’s main interface can be seen in Figure 5.5.
Additionally, in order to better convey the information presented in this section, a sequence
diagram is presented in Figure 5.6, showcasing individual actions for creating a new simu-
lation or resuming one, interacting with existing simulations (via drag and drop), as well as
exporting the current state of a network.

As with any web-application, once the user issued a new simulation request on the client,
this information is passed on and processed on the server. To this end, the better the
hardware configuration of the server, the faster TrEcSim will be able to process the required
data. Once the simulation has ended, the latest state of the network is stored in a database.
The client also receives a copy of this data, where using a lightweight visualization library
that is capable of handling large amounts of data (i.e. vis.js [11, 12]), the information is
rendered for the user to see (as depicted in Figure 5.7) and visually manipulate using the
drag and drop idiom.

5.2.4 Configurability and Logging

As previously stated, one of the important features present in TrEcSim is the possibility
of customizing the network, as well as the various parameters before each new simulation,
arranged into three main groups, as highlighted in Figure 5.8.

The simulation settings-group serves to define the global settings and behaviours of the
simulation. To this end, users can configure the basic settings for the current simulation (e.g.
product-requirement fulfillment order, percentage increase of value for each middleman,
furthest distance to search for best producer, etc.), network configuration (e.g. network
topology layout, initial products count, initial producer count, initial product-requirement,
etc.) and agent behaviour (e.g. initial probability of investing in one of the four possible ac-
tions — expanding, creating a new product, increasing production quality, quantity or cost,
or creating a new link —, enabling/disabling actions, normalization of input-values, etc.).
TrEcSim permits either individual definition of the above settings, or automatic normaliza-
tion, based on the ratio of the entered probabilistic value and their total value, essentially
applying the following formula:

𝜑𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝜑𝑒𝑛𝑡𝑒𝑟𝑒𝑑
𝜑𝑡𝑜𝑡𝑎𝑙

(5.2)

By using the aforementioned settings, not only does it yield a simulation tailored to
one’s own needs, but also approximates Borondo’s rockstar model using dynamic model-
simulation. Furthermore, users can also take advantage of the built-in API in order to
overwrite these, and other settings stored in TrEcSim prior to starting the simulation.

All of the generated attributes related to network, economic agents and simulation, as
well as individual actions are be logged and stored in a SQL database. This is, essentially,
a Big Data set, offering insights regarding the changes to the network — up to the point
of the current iteration-cycle —, the decisions taken and their outcome, agent-stance and
much, much more. How these results are processed in the end is up to each individual user,
but just like other similar applications, TrEcSim offers the possibility of resuming individual
simulations or exporting and analyzing the data in its entirety for each iteration of the
respective simulation. An example for the listing of current simulations can be seen in
Figure 5.9.
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Figure 5.4 Overview of the class interconnectivity in TrEcSim using an UML (Unified
Modeling Language) representation.
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Figure 5.5 Screenshot of TrEcSim’s main interface with customizable parameters for
creating a new simulation. Visibly present are the three groups of settings responsible for
creating a new custom simulation, namely: the overall simulation configurations, the
configurations for the economic network, as well as the ones for the agent behaviour.
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Figure 5.6 Sequence diagram showcasing the interaction between the user and the
individual objects in TrEcSim: interface, algorithm and database. Noteworthy actions
highlighted (from top to bottom) are: creating a new simulation or resuming one,

interacting with existing simulations (via drag and drop), as well as exporting the current
state of a network.
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Figure 5.7 Screenshot of TrEcSim’s graph-visualization GUI: overview versus close-up.

Figure 5.8 Basic diagram of TrEcSim’s input and output parameters using basic black-box
representation.

Figure 5.9 Screenshot of current simulations, their respective attributes and available GUI
options.
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5.3 Algorithmic Model Description

The main objective of TrEcSim is to provide a simulation framework that is capable of
supporting an improved, dynamical model for Borondo’s static mathematical model [39].
The framework itself can be split into three main components: initialization phase, trans-
actional phase and decisional phase; an overview of TrEcSim’s framework is presented in
Figure 5.10, corresponding to the implementation of the extended model. In the initial-
ization phase four main processes take place, in order to create the simulation interface,
namely: createNetwork, which creates the network of 𝜈𝑒 based on network-data or import-
data, createProducts which defines the products 𝑃 𝑟𝐺 and their attributes, createProductions
which defines producers 𝜈𝑃 and their production attributes, and createNeeds which defines
the sub-set of demands 𝐺 for each 𝜈𝐸. Each new iteration of the transactional phase starts
with the getBestProduction process, to compute the best option for each 𝜈𝐸 from where to
purchase for satisfying the current needs of each 𝜈𝐸, while the getAffordableQuantity pro-
cess computes the maximum quantity of each demand 𝐷. The transactional phase ends
with the finalizeTransaction process, which finalizes the transaction for each 𝜈𝐸, based on
the affordable quantity. To compute the best investment action for the current 𝜈𝐸 economic
agent (determineCurrentDecision process), the getPastDecisionScores and the getPastDe-
cisionScoresFromNeighbours processes determine which of the past decisions were most
profitable for the current agent and an arbitrary number of neighboring 𝜈𝐸 economic agents.
Once an affordable decision has been computed, the makeDecision process — the last from
the decisional phase — implements the decision. Additionally, Table 5.2 represents a list of
the symbols used to describe the framework.

5.3.1 Initialization Phase

TrEcSim’s dynamic model starts off with a given, well-defined network topology 𝐺 = (𝜈, 𝜀)
consisting of𝑁 = |𝜈| nodes/agents (|𝜈| is the cardinality of node set 𝜈) and a set of unweighted
edges 𝜀, representing economic relationships [23]. Since the roles assigned to individual
economic agents (i.e. producers or middleman) do not exclude the possibility of an agent
being both a producer and a consumer, the relationship between any two agents can go
both ways, as presented in Figure 5.11. Conclusively, we consider our economic graphs as
being undirected, regardless of their underlying topology.

The topology, used for individual simulations, is either generated directly within TrEcSim
or imported as an adjancy matrix from a third-party application (e.g. Gephi [27]). In
Figure 5.10 this is represented by the createNetwork process. As a result, with a fixed
network topology in place, the createProducts process defines a set of attributes, required
for transactioning various goods between economic agents. To this end, we define the
following rules [23]:

• A given product 𝑃 𝑟 fulfills the demand of economic agent 𝜈𝐸 for a given demand 𝐷𝑃 𝑟.

• Product 𝑃 𝑟 is be needed in a certain quantity 𝑄𝑡𝑃 𝑟 and with a given importance 𝐼 (𝐼𝑃 𝑟),
both attributes being unique for each agent and each product.

• A product 𝑃 𝑟 is to be chosen over another based on its quality 𝑄𝑃 𝑟.

• Each product 𝑃 𝑟 has a specific (pricing) value 𝑉𝑃 𝑟, which is defined using equation 5.3
for each product individually, based on the initial cost of the product (𝑉𝑃 𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙

) and the
number of products 𝑃 𝑟 in the network, 𝑄𝑡𝑃 𝑟𝑛

.

𝑉𝑃 𝑟 = 1
𝑉𝑃 𝑟𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑄𝑡𝑃 𝑟𝑛

(5.3)
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Once the total number of products has been determined and created, the simulator
proceeds to instantiate the producers. Each economic agent 𝜈𝐸 ∈ 𝜈 is a consumer, but has a
given chance of also being a producer of a sub-set of products 𝑃 𝑟; refer to Figure 5.11 for
an illustrative example. Computed during the createProductions process from Figure 5.10,
the number of producers is determined either by explicitly defining their total number, or
by their overall percentage. If the economic agent is a producer, then it is also capable of
transacting its produced goods, either directly or indirectly (i.e. via one or more intermediate
middleman).

In order to have a constant supply and demand within the network of economic agents,
the sub-set of demands from the global set of demands 𝐷𝐺 needs to be defined for each
𝜈𝐸 agent, along with the required product 𝜈𝐸𝐷𝑃 𝑟

, where 𝜈𝐸𝐷𝑃 𝑟
∈ 𝑃 𝑟𝐺. This takes place in the

createNeeds process. The demand 𝐷𝑃 𝑟𝑖
(𝑖 ∈ N and 𝑖 = 1, 𝑛) is defined at the start of the

simulation and is not necessarily assigned for production by a producer 𝜈𝑃 ; however, during
the simulation, TrEcSim can assign its production to any agent 𝜈𝐸 which would benefit of its
production. As such, the demand sub-set is defined using one of the following options:

• Single product: a given node may or may not require a particular product, regardless
if it is currently produced in the network or not.

• Single from production: similar with previous option, but with reassurance that this
demanded product indeed exists (it is produced) in the network: ∀ 𝜈𝐸𝐷𝑃 𝑟

∃ 𝑃𝐺.

• Multiple products: a given node may have several demands, which may or may not be
fulfilled.

• Multiple from production: similar to the previous option, except that all products are
present in the product-pool: ∀ 𝜈𝐸𝐷𝑃 𝑟

∈ 𝑃 𝑟𝐺.

The overall simulation duration is quantified in terms of iteration cycles — a substitute
for time in a real-life scenario. Each such iteration cycle consists of two phases for each
agent 𝜈𝐸: a transactional phase and a decisional phase.

5.3.2 Transactional Phase

In the transactional phase, all existing economic agents 𝜈𝐸 identify their current list of
demands (i.e. products that they want to purchase), based on specific attributes of products:
importance factor, quantity needed, quantity available, quality, and pricing. When faced with
the possibility of choice, it is innate human behaviour to choose the product 𝑃 𝑟 with lower
pricing value 𝑉 , if the product has at least a certain quality 𝑄, therefore we use the shortest
path from the producer 𝜈𝑃 to the consumer 𝜈𝐸 agent, as each middlemen 𝜈𝑀 influences the
final cost of the transaction. As a result, in the getBestProduction process (Figure 5.10) each
𝜈𝐸 agent is able to choose between settling for a product with both a lower pricing value 𝑉
and with a lower quality-factor 𝑄 over a more expensive product (with a better quality), even
if limited by purchasable quantity 𝑄𝑡. Additionally, while the starting-value (pricing) of each
product 𝑃 𝑟 is defined at the start of the simulation, it’s subject to change during the decisional
phase. Considering the fact that each middleman also retains a certain percentage of the
final revenue, it is therefore directly influenced by the number of intermediate economic
agents in the current stage of the simulation. As such, by computing the shortest path
between the selected producer 𝜈𝑃 and consumer 𝜈𝐸 — as each middlemen 𝜈𝑀 influences the
final cost of the transaction —, as well as factoring in the product attributes (importance
factor, quantity needed, quantity available, quality and pricing value), possible transactions
are identified for each 𝜈𝐸 agent in the getAffordableQuantity process.
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Before committing the respective goods, the algorithm TrEcSim is built on validates the
following properties of each possible transaction identified: required quantity needed com-
pared to the quantity available, as well as the available currency and — in case of insufficient
funds — the maximum quantity obtainable for the given amount. Conclusively, in the fi-
nalizeTransaction process — the last step of the transactional phase —, all of the validated
transactions are finalized for each 𝜈𝐸 economic agent.

At the end of the transaction phase, each 𝜈𝐸 agent takes turns in initiating the identified
transactions, fulfilling their demands for the required products in exchange for a total amount
of currency. The amount value is then either split into multiple payments based on payoff
percentage for multiple middlemen, or kept in full by the respective producer. In this last
step of the transaction phase, the finalizeTransaction process also computes the payoff for
each economic agent by applying equation 5.4, similar to the one used for computing the
payoff of the content producing agent (i.e. rockstar) in the rockstar model1, 𝜑𝜈𝑃𝑡𝑜𝑡𝑎𝑙

:

𝜑𝜈𝑃𝑡𝑜𝑡𝑎𝑙
= 𝑄𝑃 𝑟𝑖

𝑙

∑
𝑗=1

⟨𝑘⟩𝑗 (1 − 𝜑𝜈𝑀𝑡𝑜𝑡𝑎𝑙𝑝𝑐𝑡
)𝑗−1 (5.4)

where 𝑙 and 𝜑𝜈𝑀𝑡𝑜𝑡𝑎𝑙𝑝𝑐𝑡
can be computed by using equations 5.5 and 5.6, respectively:

𝑙 ≈ 𝑙𝑛𝑁
𝑙𝑛⟨𝑘⟩ (5.5)

𝜑𝜈𝑀𝑡𝑜𝑡𝑎𝑙𝑝𝑐𝑡
=

∑𝑚
𝑖=1 𝜑𝜈𝑀𝑖

100 (5.6)

where 𝑖 ∈ N, 𝑖 = 1, 𝜈𝑀𝑡𝑜𝑡𝑎𝑙
and 𝑚 = |𝜈𝑀 | is the number of middlemen involved in the chain of the

current transaction. Conclusively, in order to compute 𝜑𝜈𝑀𝑖
— i.e. the payoff collected by

middleman 𝜈𝑀𝑖
, where 𝑖 ∈ N and 𝑖 = 1, 𝑚 —, we can apply the following equation:

𝜑𝜈𝑀𝑖
= 𝐶𝑓(𝑇 )

1 + 𝐼𝑝𝐼
(5.7)

and follow through with equations 5.8 to 5.10.

𝐶𝑓(𝑇 ) = 𝑄𝑡𝑃 𝑟𝐶𝑓(𝑃 𝑟) (5.8)

𝐶𝑓(𝑃 𝑟) = 𝐶𝑖𝑄(𝑃 𝑟)(1 + 𝐼𝑝𝐼 )𝜈𝑀𝑚 (5.9)

𝐶𝑖𝑄(𝑃 𝑟) = 𝐶𝑏(𝑃 𝑟)(1 + 𝐼𝑝𝑄)𝑄 (5.10)

where 𝜈𝑀𝑚
is the last middleman in the current list of transaction. As evidenced from equation

5.9, the final cost of the product is directly influenced by 𝜈𝑀𝑛
, where 𝜈𝑀𝑛

∈ [0, 𝜈𝑛]. This means
that the closer the buyer and the producer are to each other, the less the product 𝑃 𝑟 will cost,
and at the same time the more the producer can retain its payoff. Hence, in the particular
case in which 𝑛 = 0 — meaning that there are no middlemen —, the initial cost of product 𝑃 𝑟
will also be the price what the buyer will pay for it:

𝐶𝑓(𝑃 𝑟) = 𝐶𝑖𝑄(𝑃 𝑟) (5.11)
1The equation used in the rockstar model described by Borondo et al. contained variables under different notations

and/or descriptions and, as such, were adapted to fit the attributes implemented in TrEcSim with a similar meaning
and/or role: the talent attribute 𝑇 is substituted with the quality attribute 𝑄, while 𝛼 — the percentage collected by
the middlemen in the current chain of transaction — is substituted by 𝜑𝜈𝑀𝑡𝑜𝑡𝑎𝑙𝑝𝑐𝑡
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Conclusively the payoff of the last middleman in the chain of intermediaries can be de-
termined by applying equation 5.12:

𝜑𝜈𝑀𝑛
= 𝐶𝑓(𝑇 ) − 𝐶𝑓(𝑇 )

1 + 𝐼𝑝𝐼
(5.12)

5.3.3 Decisional Phase

The transactional phase, while important from an economical point of view, does not
entail by itself the network’s dynamicity. On the other hand, it is in the decisional phase —
the essential extension to the rockstar model — where the dynamics of the network and its
topology are determined [26]. It is in this phase, where the economic agents probabilistically
decide which of the following actions3 to adopt:

• Action 1 (determined by the decideCreateLink process): creating new links between
two economic agents and thus circumventing a given number of middlemen. Based on
information gathered so far, the algorithm computes — for each 𝜈𝐸 in the network —
which economic agent would be best suited to link to, in order to improve the current
agent’s economical stance. As already mentioned, the payoff that a given producer
𝜈𝑃 receives in the transactional phase is directly related to quality, quantity and value
of product Pr; this, in turn is greatly influenced by the total number of middlemen
(𝜈𝑀𝑛

) involved in the transaction. Such a process can be modeled, at the start of the
simulation, using either a probabilistic or deterministically calculated value. This value,
however, is greatly influenced by its worth during the simulation process compared to
all other actions. Settling for this action would also be suitable if, for instance, the
demand for new or improved product is much less then the current (global) set of
products: 𝐷𝐺𝑛

≪ 𝑃 𝑟𝐺𝑛
.

• Action 2 (determined by the decideCreateProduction process): investing in the cre-
ation of a new product by allowing the current economic agent to start producing a
specific Pr product, based on ever-growing demands: 𝐷𝑃 𝑟𝑛

≫ 𝑃 𝑟𝐺𝑛
.

• Action 3 (determined by the decideImproveProduction process): invest in improv-
ing current production quality or quantity by looking through all of economic agent’s
current products and deciding upon improving either quality or quantity for a given
product Pr.

• Action 4 (determined by the decideExpand process): expanding the network by cre-
ating a new economic agent. This option requires that the algorithm analyzes several
attributes before computing its outcome: the percentage of the current funds which
will be transferred to the new agent; the advantages and disadvantages of creating dif-
ferent products; the advantages and disadvantages of being linked to the new agent;
how much of the current agent’s debt it should inherit; etc.

5.3.4 Agent Behaviour

In order to implement a realistic process of determining the agent’s course of investment
by selecting one of the four available actions, I create a new mechanism for modeling the
behaviour of economic agents, inspired by the tolerance-based interaction model [196]. The
rationale behind this approach is that the tolerance-based interaction model represents a
dynamic model of opinion spread/contagion, which produces results that are similar to those

3For further information pertaining the implementation of the four actions from a programmatic point of view, please
refer to the code snippets presented in appendix A
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of real-world systems. Hence, I consider that the agent’s attitude towards economic action
is similar to holding an opinion on a given matter, being influenced by individual’s previous
experiences but also by other individuals with whom it interacts. Therefore, I implement
in TrEcSim the possibility of influencing — and being influenced by — other neighboring 𝜈𝐸
economic agents, according to the tolerance-based model (represented by the getPastDe-
cisionScoresForNeighbors process in Figure 5.10) [196].

A similar economic behaviour was also observed and documented by others, the most
notable of which was Herbert A. Simon, a multi-disciplinary pioneer. He introduced the
heuristic decision-making strategy titled ”satisficing” [181] — a combination of satisfy and
suffice [132] — in order to explain the rationale of economic agents under circumstances
in which an optimal solution cannot be established given limited resources. As a result,
economic agents will settle either for the first option that meets a given need, or the option
that seems to address most needs, rather than the optimal solution [57], which is present
only in an ideal world [182]. Similar observations have also been made by Daniel Kahneman
and Amos Tversky, notable for their psychology of judgment and decision-making, as well as
behavioural economics. Their work explored the biases and failures in rationality, which is
systematically exhibited in human decision-making [192], namely that humans are irrational
beings, systematically making choices that defy clear logic (by not weighing up the facts),
only to improve on them on the long run as a result — sometimes even with the help of
other members of society [111].

Starting from the second simulation iteration, at the beginning of the decisional phase
for each agent 𝜈𝐸, economic agents interact with a random number of their neighbors and
become influenced by the last investment these neighboring agents have made. The number
𝑛𝑏 of neighboring agents the current economic agent interacts with (from the total of 𝑛𝑏𝑚𝑎𝑥
neighbors) is determined randomly. As a result, the economic agent is able to recalculate
the probability of investing in a specific action. However, economic agents don’t interact
(i.e. influence economic behaviour of other agents) in every iteration cycle; in fact, after
the interaction, each agent is prohibited from further interacting for a random number of
iterations. This mechanism is implemented by a random timeout interval between 1 and 50
simulation cycles.

According to the presented scenario, each agent 𝜈𝐸 uses the following expression in order
to compute the new probabilities for investing in each 𝐴𝑖 actions (where 𝑖 ∈ N and 𝑖 ∈ [1, 4]):

𝐴𝑖𝑛𝑒𝑤 = 0.5𝐴𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡 +
𝑛𝑏

∑
𝑗=1

𝐴𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑗

0.5
𝑛𝑏 (5.13)

Once the determineCurrentDecision process has computed the best action for the 𝜈𝐸
economic agent to invest in — based on both the getPastDecisionScores and the getPastDe-
cisionScoresForNeighbors processes —, the makeDecision process implements the selected
𝐴𝑖.

5.3.5 Algorithmic Model Complexity

In order to measure the complexity of the heuristic algorithm behind TrEcSim and to
determine the average simulation duration, I first have to identify and isolate key network
properties, which might impact the simulation run-time. As a result, I consider that the fol-
lowing two scenarios might yield valuable information pertaining the complexity of TrEcSim:

• Simulate networks with distinct densities — the density is the number of links in the
networks, normalized by the total number of possible links 𝑁(𝑁 − 1), where 𝑁 is the
number of nodes —, but with a fixed number of economic agents.
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• Simulate networks with linearly increasing number of economic agents (1000 to 1900
nodes), but with the same density.

After running both scenarios for 600 iterations — I determined this threshold through
empirical testing needed to obtain a stabilized network, regardless of topology or density
—, and averaging the results over 10 independent networks, I obtain the results depicted in
Figure 5.12 and Figure 5.13; as such, the evolution of time for the two mentioned scenarios
follows a polynomial (i.e. cubic) growth and a linear growth, respectively. In both cases,
the evolution in time indicates that the current implementation of the algorithm does not
require significant computational resources and is indeed scalable.
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Symbol Interpretation
𝜈𝐸 Economic agent ∈ 𝜈
𝜈𝑃 Producer ∈ 𝜈
𝜈𝑀 Middleman ∈ 𝜈
𝑃 𝑟 Product

𝑃 𝑟𝐺
All products produced globally in the network; 𝑃 𝑟 ∈ 𝑃 𝑟𝐺 = {𝑃 𝑟1, 𝑃 𝑟2,

𝑃 𝑟3, ⋯ , 𝑃 𝑟𝑖, ⋯ , 𝑃 𝑟𝑛}, where 𝑖 ∈ N and 𝑖 = 1, 𝑛
𝑄𝑡𝑃 𝑟 Quantity of product 𝑃 𝑟

𝑄𝑡𝑃 𝑟𝐺

Global product quantities in the network; 𝑄𝑡𝑃 𝑟 ∈ 𝑄𝑡𝑃 𝑟𝐺
= {𝑄𝑡𝑃 𝑟1

, 𝑄𝑡𝑃 𝑟2
, 𝑄𝑡𝑃 𝑟3

,
⋯ , 𝑄𝑡𝑃 𝑟𝑖 , ⋯ , 𝑄𝑡𝑃 𝑟𝑛

}, where 𝑖 ∈ N and 𝑖 = 1, 𝑛
𝐼𝑃 𝑟 Importance of product 𝑃 𝑟

𝐼𝑃 𝑟𝐺

Global product importance (factors) in the network; 𝐼 ∈ 𝐼𝑃 𝑟 = {𝐼𝑃 𝑟1
, 𝐼𝑃 𝑟2

, 𝐼𝑃 𝑟3
,

⋯ , 𝐼𝑃 𝑟𝑖 , ⋯ , 𝐼𝑃 𝑟𝑁
}, where 𝑖 ∈ N and 𝑖 = 1, 𝑛

𝑄𝑃 𝑟 Quality of product 𝑃 𝑟

𝑄𝑃 𝑟𝐺

Global product qualities in the network; 𝑄𝑃 𝑟 ∈ 𝑄𝐺 = {𝑄𝑃 𝑟1
, 𝑄𝑃 𝑟2

, 𝑄𝑃 𝑟3
,

⋯ , 𝑄𝑃 𝑟𝑖
, ⋯ , 𝑄𝑃 𝑟𝑛

}, where 𝑖 ∈ N, 𝑖 = 1, 𝑛 and 𝑄𝑃 𝑟𝑖
∈ [0, 100]

𝐷𝑃 𝑟 Demand for product 𝑃 𝑟

𝐷𝑃 𝑟𝐺

Global product demands in the network; 𝐷𝑃 𝑟 ∈ 𝐷𝐺 = {𝐷𝑃 𝑟1
, 𝐷𝑃 𝑟2

, 𝐷𝑃 𝑟3
,

⋯ , 𝐷𝑃 𝑟𝑖
, ⋯ , 𝐷𝑃 𝑟𝑛

}, where 𝑖 ∈ N, 𝑖 = 1, 𝑛 and 𝐷𝑃 𝑟𝑖
∈ [0, 100]

𝜈𝐸𝐷𝑃 𝑟
Economic agent’s (𝜈𝐸) demand for product 𝑃 𝑟

𝑉𝑃 𝑟
Pricing (value) of product 𝑃 𝑟; 𝑉𝑃 𝑟 ∈ 𝑉𝑃 𝑟𝐺

= {𝑉𝑃 𝑟1
, 𝑉𝑃 𝑟2

, 𝑉𝑃 𝑟3
, ⋯ , 𝑉𝑃 𝑟𝑖

, ⋯ , 𝑉𝑃 𝑟𝑛
},

where 𝑖 ∈ N, 𝑖 = 1, 𝑛 and 𝑉𝑃 𝑟𝑖
∈ R+

𝑙 Cutoff

⟨𝑘⟩ Average degree of network

𝑇 Transaction

𝜑𝜈𝑀𝑡𝑜𝑡𝑎𝑙𝑝𝑐𝑡

Percentage of payoff collected by the middlemen 𝜈𝑀 participating
in a given transaction 𝑇

𝐶𝑓(𝑇 ) Final cost of a given transaction 𝑇
𝐶𝑓(𝑃 𝑟) Final cost of product 𝑃 𝑟
𝐼𝑝𝐼 Increased price per intermediary (𝜈𝑀)

𝐶𝑖𝑄(𝑃 𝑟) Initial cost for producing product 𝑃 𝑟, taking into consideration
its quality 𝑄

𝐶𝑏(𝑃 𝑟) Base cost of product 𝑃 𝑟
𝐼𝑝𝑄 Increased (new) price of the product for each quality value 𝑄
𝐴 Investment action ∈ {𝐴1, 𝐴2, 𝐴3, 𝐴4}
𝐴𝑖𝑛𝑒𝑤

New probability of investing in action 𝐴𝑖; 𝑖 ∈ N and 𝑖 ∈ [1, 4]
𝐴𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Current probability of investing in 𝐴𝑖; 𝑖 ∈ N and 𝑖 ∈ [1, 4]

𝐴𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑗

Neighboring agent 𝑗’s current probability of investing in 𝐴𝑖; 𝑖 ∈ N and 𝑖 ∈ [1, 4],
𝑗 is the index of the nodes that are selected neighbors of the agent 𝜈𝐸

𝑛𝑏 Number of neighboring economic agents the current 𝜈𝐸 interacts with;
𝑛𝑏 ∈ N0 and 𝑛𝑏 = 0, 𝑛𝑏𝑚𝑎𝑥 (𝑛𝑏𝑚𝑎𝑥 is the total number of neighbors)

Table 5.2 List of used symbols, along with their associated interpretations used in the
TrEcSim model.
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Figure 5.10 (previous page) Flowchart describing the implementation of our extended
model within the TrEcSim framework. Visually delimiting the three main components (i.e.
initialization phase, transactional phase and decisional phase), the flowchart highlights the
individual processes — which implement the components of the simulator — and the

relations between them [23].

Figure 5.11 Visual representation of different user-roles in the economic network and of
how roles can change when taking into consideration different products. An economic
agent 𝜈𝐸 producing 𝑃 𝑟1 (represented with a violet rectangle) may also be a 𝜈𝐸 in need of

𝑃 𝑟2 — produced by the same agent —, while all other agents, who may or may not be
middlemen in these two transactions, are represented with a blue circle [25].

Figure 5.12 Graphical representation of the evolution in time for networks of varying
densities.
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Figure 5.13 Graphical representation of the evolution in time for networks of varying
number of economic agents.
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Network ID Nodes Edges ⟨𝑘⟩ 𝐷𝑛𝑠
1 100K 1M 20 0.0002
2 100K 2M 40 0.0004
3 100K 5M 100 0.001
4 100K 10M 200 0.002
5 100K 20M 400 0.004
6 100K 30M 600 0.006
7 100K 40M 800 0.008
8 100K 50M 1000 0.01
9 100K 60M 1200 0.01
10 100K 70M 1400 0.014

Table 5.3 Edge-count, average degree ⟨𝑘⟩, and density 𝐷𝑛𝑠 for each of the 10 distinct
synthetic networks of size 𝑁=100,000 nodes and distinct fundamental topologies. All 10
density configurations are used for each synthetic topology considered in this paper (i.e.

mesh, small-world, random and scale-free).

5.4 Simulating Trade in Economic Networks

First, in subsection 5.4.1 I present the simulation results and the analysis for economic
transactions using the extended rockstar model. Then, in subsection 5.4.2 I observe the
preferred choice of investment for each economic agent when face with limited actions at
their disposal. In subsection 5.4.3 I analyze the distribution of payoff based on agent role,
while subsection 5.4.4 introduces the novel approach to determining and analyzing the fair-
ness of economic exchange networks.

In all four subsections I make use of the same network properties and initial conditions
for each new simulation in order to obtain accurate results. As such, I generate 10 distinct
networks (i.e. with different densities) for each of the following fundamental topologies: 2D
mesh [32], small-world (Watts-Strogats) [210], random (Erdős-Rényi) [71] and scale-free
(Barabási-Albert) [22] networks; each network has a size of 100,000 nodes.

The generated networks are summarized in Table 5.3 and are created with the intent
of simulating two distinct cases for each topology, one where the producers are assigned
randomly to the existing 𝜈𝐸 economic agents, and one where the algorithm within TrEcSim
assigns the producer roles based on a probability that is proportional to the agent’s degree;
as a result, the higher the agent’s degree, the higher its probability of becoming a producer.
The network density 𝐷𝑛𝑠 represents the ratio between the actual number of edges in the
network 𝐸 = |𝜀| and the highest possible number of edges in a network with 𝑁 nodes (i.e.
number of edges in a fully connected network):

𝐷𝑛𝑠 = 𝐸
𝑁(𝑁−1)

2

(5.14)

Each simulation is run with the exact same custom-defined settings. As such, I custom-
define the following network properties: the initial number of economic agents (1,000),
initial number of links between them (5,328), initial product-types (30) and initial production
count (45 units/product type, 1,350 in total). The other parameters are left at their default
value, as listed in Table 5.4.

All simulations are run for 600 iterations; I determined this threshold through empirical
testing needed to obtain a stabilized network, regardless of topology. Finally, the results
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Settings-group Parameter Value

Simulation
configuration

Fulfill needs by priority order Ascending
Search productions by distance order Ascending
Search productions by final cost order Ascending

Productions price increase per intermediary 1.1
Fulfill needs by quantity order Ascending

Search productions by base cost order Ascending
Production price increase per quality 1.2

Agent network
configuration

Product creation 30 (Amount)
Production selection 45 (Amount)
Base Spending limit 1000
Network pattern Import .gdf file
Producer selection 10 (Amount)
Need selection 10 (Random product)

Spending limit deviation 250

Agent behaviour

Chance to expand 0.25*
Chance to create new production(s) 0.25*

Chance to improve quality of production(s) 0.25*
Chance to create new link(s) to node(s) 0.25*

Table 5.4 Settings used for each new simulation with TrEcSim. The values marked with (*)
change during the simulations described in 5.4.2.

presented in the upcoming charts are obtained by averaging 10 independent simulations for
each network topology.

5.4.1 Results Obtained for the Extended Model

By plotting the amassed payoff of both producers and middlemen for all of the 10 dis-
tinct densities — in each of the considered topologies — based on the random allocation of
producers and averaging the values, I uncover the difficulty that producers encounter when
trying to surpass the payoffs gained by the middlemen. In the 2D mesh (Figure 5.14),
small-world (Figure 5.15) and random (Figure 5.16) networks the producers surpass the
50% threshold of the total (network-wide) payoff only after a significant number of iteration
cycles (≈230). However, in the scale-free network (Figure 5.17) the total payoff earned by
the producers does not surpass that of the middlemen. Therefore, when randomly assigning
the producers throughout the network, increasing only the network density does not guar-
antee that the producers will get the larger portion of the total payoff. Such a result can
be attributed to the presence of many highly connected middlemen which act as exchange
hubs.

On the other hand, when preferentially assigning the roles of producers to the economic
agents with the highest degrees, and plotting the share of total payoffs resulted from sim-
ulations, I obtain an evident transition from a topocratic network layout (i.e. where the
middleman obtain most of the payoff) to a meritocratic one (i.e. where the producers ob-
tain the largest share of the payoff) [39], as presented in Figure 5.18 (mesh network), Fig-
ure 5.19 (small-world network), Figure 5.20 (random network), and Figure 5.21 (scale-free
network). This scenario, however, is not completely accurate with respect to the real-world,
as the layout of economic networks are not (necessarily) governed by such prerequisites.
Furthermore, by analyzing the evolution of payoff for both cases, I can clearly identify the
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Figure 5.14 Share of the total payoff evolution with iteration count in a mesh topology for
producers (P) and middlemen (M). The producers were randomly assigned from the pool of

economic agents throughout the network [25].

unfair advantages of a topocratic environment over a meritocratic one — regardless of the
underlying topology —, as well as the presence of emergent behaviour among the 𝜈𝐸 eco-
nomic agents. As such, each agent is adapting to its current environment and is investing
in viable actions accordingly. This is most prominent in the scale-free network topology,
where the presence of hubs limits the payoff of each 𝜈𝐸 agent.

At first sight, the simulation results obtained for the extended model — especially for the
preferential assignment of the agent-roles — contradict the findings presented by Borondo
et al. in [39], namely that an increased network density alone automatically leads towards a
meritocratic environment in economic exchange networks; indeed, while increasing network
density might eventually shift the respective network from a topocratic environment to a
meritocratic one, it only truly impacts the outcome of the share of total payoff — which
from an economic point of view is not that relevant on itself —, and not that of the payoff
of each 𝜈𝐸 economic agents itself. If, however, we would like to obtain relevant information
regarding the topic of meritocracy versus topocracy in economic exchange networks, we
have to analyze the given network from other perspectives as well, most important of which
is the payoff distribution at agent-level.

5.4.2 Limiting Actions of Investment

Whilst the previous charts accurately depict the share of total payoff for both producers
and middlemen for networks of a certain topology, they do so by enabling the 𝜈𝐸 economic
agents to invest in all available actions, most importantly in creating new links. As such,
in order to better differentiate the behaviour of the 𝜈𝐸 in the network when limiting certain
(emergent) behavioural aspects and analyzing the results, I simulate two distinct scenarios
for all network topologies, namely:
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Figure 5.15 Share of the total payoff evolution with iteration count in a small-world
topology for producers (P) and middlemen (M). The producers were randomly assigned

from the pool of economic agents throughout the network [25].

• Scenario 1: all settings are left at default values — as listed in Table 5.4 —, but
economic agents are limited to Actions 2, 3 and 4 to invest in. All of these three
investment-actions have the same probability (≈ 33%), while Action 1, the possibility
of creating new links between economic agents is set to 0%.

• Scenario 2: much like the previous scenario, but instead of allowing the possibility
of creating new 𝜈𝐸 economic agents (i.e. Action 4), agents are allowed to create new
links, thus enabling Actions 1, 2 and 3.

Mesh Topology

Assigning the roles of producers randomly throughout the mesh network topology, the
analysis of the simulation results for Scenario 1 yields interesting results indeed. Conclu-
sively, 27 new products are created, totalling to 57 products (90% increase), while the
number of production units increases to 2392 (77% increase). Upon close analysis, the
number of increased products and production units is the result of the 𝜈𝐸 economic agents
not being able to invest in the most efficient option, namely creating new links throughout
the network (i.e. Action 1). The number of economic agents does increase however to 1335,
meaning an approximated increase of 34%. For Scenario 2, 8,723 new links were created
(i.e. Action 1), effectively increasing by 156% and as a result, being the most preferred
option of investment. The number products throughout the network increased also by 40%
(to a total of 42), while individual production count increases to 89 units (98%).

For the second case, when producers are assigned preferentially to 𝜈𝐸 economic agents,
simulating Scenario 1 yields the following results: the total number of products increases
to 59 (97% increase), each with 55 individual production units, meaning an increase of
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Figure 5.16 Share of the total payoff evolution with iteration count in a random topology
for producers (P) and middlemen (M). The producers were randomly assigned from the

pool of economic agents throughout the network [25].

22%. In Scenario 2, TrEcSim increases the number of links in the network to 17,109 (221%
increase), the number of 𝑃 𝑟 products to 52 (73% increase), and the total number of units to
1,805 (roughly by 34%). The similar choices of investment and their associated outcomes
can be interpreted as follows: having almost the same average degree as any random node
in a small-world network, economic agents in a random network take advantage of their
increased production quality or lower prices per each unit of production; the middleman, on
the other hand, have no other choice but to increase the price for each product intermediated
or risk losing their payoff. To this end, production of individual units has also increased in
number, namely to 89 units (an increase of 98%).

Small-World Network Topology

After 600 iterations, assigning the producers randomly to the existing 𝜈𝐸 economic
agents and using the hypothesis for Scenario 1, the simulation creates 294 (30%) new
economic agents, implicitly linking them to the agent choosing the expansion. The eco-
nomic agents, without the possibility of shortening their path to the buyer (i.e. investing in
Action 1), choose by a very large margin to invest in increasing production count instead,
generating a total of 2529 units, representing an increase of 87%. This is of no surprise,
as choosing to increase production for the same cost (i.e. Action 3) is the only remaining
viable action, leaving only a couple of agents to invest in new products (i.e. Action 2),
increasing total product count to 52 (a 73% increase). Using Scenario 2, I identify 9,335
new links, meaning an increase of 175%. This strongly suggests that the custom algorithm
behind TrEcSim — just like in any real-life scenario — deems it more advantageous (from an
economic standpoint) to extend each producer’s reach in the network. As such, by invest-
ing in Action 1, that particular 𝜈𝐸 economic agent gains several advantages. One of these
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Figure 5.17 Share of the total payoff evolution with iteration count in a scale-free topology
for producers (P) and middlemen (M). The producers were randomly assigned from the

pool of economic agents throughout the network [25].

advantages is the retention of an ever-growing payoff for the producers, compared to that
of the middlemen. Another advantage when agents are allowed to invest in creating new
links is the ability to sell the same amount of products cheaper, or — even better from an
economic point of view — to sell more products for the same amount of production costs.
To this end, production increases to 92 units, representing an increase of 105% for each
product, supplemented by an increase of 9 new products being produced (30%).

For the second case, when producers are assigned preferentially and using the hypothesis
for Scenario 1, the simulation creates 415 (42% increase) new 𝜈𝐸 agents economic agents
(i.e. Action 4), linking them to the agent choosing the expansion. Similar the previous
results, increasing production count (i.e. Action 3) was the preferred investment, obtaining
a total of 3,729 units (representing an increase of 176%), whereas the total number of 𝑃 𝑟
products increased to 49 (63% increase, Action 2). For Scenario 2 TrEcSim creates 6,615
new links, increasing the total number of links in the network by 105%(i.e. investing in
Action 1), 39 𝑃 𝑟 products (30% increase) and a total of 1,825 of units (35% increase).

Random Network Topology

After simulating Scenario 1, the number of 𝑃 𝑟 products increases to 52 (an effective
increase of 73%), while the total number of production units increases to 1409 (an estimate
increase of 4%). Similar to the simulation corresponding to the small-world topology, the
only viable option the agents have is to invest in either Action 2 or Action 3, compared to
the benefit a new link would bring by choosing Action 1. Nonetheless, producers eventually
start obtaining more after each transaction compared to middlemen, adopting an effective
strategy against a topocratic, oligarchic society. Similar to the previous topology, when
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Figure 5.18 Share of the total payoff evolution with iteration count in a mesh topology for
producers (P) and middlemen (M). The producers were assigned preferentially to the

agents with highest degrees [25].

considering the conditions for Scenario 2, TrEcSim slowly but consistently increases the
number of links in the network to 104,072, obtaining an effective increase of 29%.

Assigning the producers preferentially throughout the network and simulating Scenario
1 with the same starting conditions, the number of 𝑃 𝑟 products increases to 67 (an effec-
tive increase of 123%), while the total number of production units — fairly similar to the
initial simulations — increases to 1,604 (19% increase). The number of economic agents
present increases also, namely to 1271 (27% increase). In Scenario 2, TrEcSim increases
the number of links in the network to 17,109 (221% increase), the number of 𝑃 𝑟 products
to 52 (73% increase), and the total number of units to 1,805 (roughly by 34%). The similar
choices of investment and their associated outcomes can be interpreted as follows: having
almost the same average degree as any random node in a small-world network, economic
agents in a random network take advantage of their increased production quality or lower
prices per each unit of production; the middleman, on the other hand, have no other choice
but to increase the price for each product intermediated or risk losing their payoff. To this
end, the total number of units has also increased in number, namely to 1541 units (an
increase of 14%).

Scale-Free Network Topology

The most interesting result from all simulations pertains to the scale-free topology. In
this case, the evolution of the payoff for the producers and middlemen is of more importance,
due to the fact that the individual economic agents of a scale-free network are linked to so-
called hubs; as a result, the well-positioned middlemen take advantage of their topocratic
position within the network. This fact clearly shows in all generated figures pertaining the
scale-free topology, as well as its analysis.
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Figure 5.19 Share of the total payoff evolution with iteration count in a small-world
topology for producers (P) and middlemen (M). The producers were assigned preferentially

to the agents with highest degrees [25].

When assigning producers randomly throughout the network and applying the conditions
for Scenario 1, the number of 𝑃 𝑟 products increases to 34 units, meaning an increase of
13%, while individual product count increases to 2085 units (an increase of 54%). The
development of this simulation yields an interesting observation, namely that even after
the 600 cycles of simulation the producers do not manage to rival the payoff gained by
the middlemen; this, in turn, strongly supports the hypothesis that the clustering is still
present in the network, keeping the remaining middlemen in favorable positions. In Scenario
2, where economic agents are allowed to create new links, the number of links increases
to 19,224, meaning an effective increase of 522%, representing the preferred choice of
investment. Only when they manage to create enough new links within the network does
the payoff gained by the producers rival that of the middlemen. To this end, in this scenario, I
observe only a relatively small increase of products (14 new 𝑃 𝑟 products, roughly equivalent
to 47%), and with a final production count of 73 units for each 𝑃 𝑟 product, representing
an increase of 62%. Much like in the case of the previous two network topologies, agents
do not have the option to expand, thus providing incentives for increasing the number of
economic agents in the network.

When the producers are assigned preferentially, the number of 𝑃 𝑟 products increases to
59 (97% increase, almost double to that of the initial simulation), while the total product
count increased to 1,611 units (an increase of 19%). The number of 𝜈𝐸 agents present in
the network increases only by 7%, to a total of 1,072. This is true when considering the
conditions for Scenario 1. For Scenario 2, where economic agents are allowed to create new
links, the number of links increases to 21,701, meaning an effective increase of 307% —
by far the preferred choice of investment, much like in the initial results, leaving the other
two investment options seem less profitable for the 𝜈𝐸: the total number of 𝑃 𝑟 products
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Figure 5.20 Share of the total payoff evolution with iteration count in a random topology
for producers (P) and middlemen (M). The producers were assigned preferentially to the

agents with highest degrees [25].

increased by 23 new 𝑃 𝑟 products (meaning an increase of 77%, roughly double the increase
of the previous results) and with a final (total) production count of 4,207 units for each
product, representing an increase of 212%.

5.4.3 Payoff Distribution for Each Agent Role

Obtaining the payoff distribution for each agent role is done by looking at the results
of the simulations performed in subsection 5.4.1 and analyzing the distribution of payoff
among both types of agents: producers and middleman. When the producers are assigned
randomly I observe that the average payoff (obtained from simulating the same type of
topology with 10 different densities, as seen in Table 5.3) of the producers for the mesh,
small-world and random network topologies — Figure 5.22, Figure 5.23 and Figure 5.24,
respectively — represent a positively skewed distribution of payoff among the rest of the
producers. In other words, only a handful of them benefit from an increased payoff, while
the rest of the producers earn a lot less. Conversely, the normalized share of total payoff for
the middlemen closely resembles a normal (i.e. Gaussian) distribution, meaning that there
are a lot more economic agents that gain (percentage-wise) the maximum payoff when
comparing their payoff to both their producing counterparts, and the rest of the middlemen.

When using the scale-free topology and assigning the producers randomly throughout
the network (and averaging the results for all 10 densities) I obtain a log-normal distribution.
This is not only due to the presence of hubs in the network, but also because some hubs
become producers. As seen in Figure 5.25, when producers are assigned randomly, the
majority of the middlemen tend to earn a lot more than the average.

Upon assigning the producers preferentially to high-degree agents in the mesh, small-
world and random networks, I obtain a Gaussian distribution of payoff for the producers, as
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Figure 5.21 Share of the total payoff evolution with iteration count in a scale-free topology
for producers (P) and middlemen (M). The producers were assigned preferentially to the

agents with highest degrees [25].

presented in Figure 5.26, Figure 5.27 and Figure 5.28, while for the middlemen I obtain a
positively skewed distribution. The fact that in both cases the distribution patterns alternate
indicates that the physical location of economic agents plays an important role regarding
the payoff of the agents, not only for the middlemen, but also for the producers acting as
intermediaries.

When the producers are assigned preferentially in scale free networks (Figure 5.29), the
obtained charts clearly depict a fat-tailed, power-law distribution of payoff for producers,
where only a handful of economic agents earn a lot (i.e. those in a favorable topological
location), while the rest of them benefit from minimal payoff. Additionally, I obtain a log-
normal distribution of payoff among the middlemen.

Similarly, as in previous cases, the obtained results are a clear indication of emergent
behaviour among the 𝜈𝐸 economic agents, adapting to the way they were assigned by means
of selective investment in one of the four actions.

5.4.4 Ergodicity of Payoff Distribution in Economic Networks

In economic networks, it is important to analyze both static (i.e. population-level) payoff
distribution, as well as dynamic (i.e. time distribution at individual-level) payoff distribution.
Furthermore, it is also important to compare and correlate the two distributions according to
the ergodic theory: if the two distributions are similar, then the economic system is ergodic
and may be considered as being fair: the individual agent has good chances of improving
its payoff if it undertakes the right decisions, but it can also be punished for the wrong
ones. If the two distributions are substantially different, then the system is non-erogodic
(or path-dependent) and considered as unfair [31]. This underlines the assumption that the
median behaviour of an economic agent over time on a given trajectory is not influenced
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Figure 5.22 Distribution of payoff in a mesh topology, where the payoff and number of
economic agents (separately accounted for producers (P) and middlemen (M)) are
normalized to the total network payoff and the total number of economic agents,

respectively. The producer roles were assigned randomly to the agents throughout the
network [25].

by the particular trajectory selected and represents the key analytical device in Statistical
Physics [105, 167]. As such, I investigate the ergodicity of complex (economic) systems
by analyzing the distribution of wealth based on the number of iterations (time) spent in
a particular payoff category, as well as on the number of economic agents (space) in each
payoff category and comparing their payoff distributions, in order to determine the fairness
of economic exchange networks.

In accordance with the simulation scenarios from section 5.4, the role of producer is
assigned to economic agents in two ways: randomly and preferentially. By gathering infor-
mation on the number of iterations each economic agent spends in a given payoff category
— e.g. 0-5k, 5k-10k, 10k-15k, etc. —, as well as the number of total economic agents in
each payoff category, I obtain the charts presented in Figures 5.30 — 5.37. Also, after fit-
ting the distributions for each scenario (i.e. random and preferential producer-assignment),
I obtain the results presented in Tables 5.5 — 5.8. The fitting process was carried out by
employing EasyFit, a software system for data fitting in dynamical systems [173].

The numerical analysis highlights the similarities between the payoff distributions in
space (i.e. number of economic agents) and time (i.e. time interval), depending on the
underlying topology. In general, the scale-free topology is the only one with significant
differences in distributions, while the other three topologies (i.e. mesh, random and small-
world) have small to very small variation, proving that our economic (extended) model is
ergodic. Specifically, for the random assignment of middlemen I measure an absolute dif-
ference of 4.25% between space and time distributions on the mesh; 8.37% on the small-
world; 6.18% on the random network; 40.6% on the scale-free network. For preferential
attachment I obtain differences of 6.06% on the mesh; 1.74% on the small-world; 2.96%
on the random network; 31.05% on the scale-free network. When switching over to the
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Distribution type Agent-role Random Preferential

Time
interval

Middlemen Normal
(𝜎 = 6131.4, 𝜇 = 13664)

Chi-squared
(𝜐 = 13604)

Producers Chi-squared
(𝜐 = 14482)

Lognormal
(𝜎 = 0.62544, 𝜇 = 8.9898)

Number of
economic agents

Middlemen Normal
(𝜎 = 6404, 𝜇 = 14398)

Chi-squared
(𝜐 = 14482)

Producers Normal
(𝜎 = 6191.7, 𝜇 = 13518)

Lognormal
(𝜎 = 0.65137, 𝜇 = 9.0931)

Table 5.5 Payoff distributions (for random versus preferential assignment of producers)
fitting and associated parameters for the charts presented in Figure 5.30 and Figure 5.31

pertaining to the mesh topology.

Distribution type Agent-role Random Preferential

Time
interval

Middlemen Normal
(𝜎 = 6544.4, 𝜇 = 13933)

Chi-squared
(𝜐 = 10529)

Producers Normal
(𝜎 = 6848.2, 𝜇 = 14337)

Lognormal
(𝜎 = 0.49823, 𝜇 = 9.1823)

Number of
economic agents

Middlemen Normal
(𝜎 = 5904.7, 𝜇 = 13374)

Chi-squared
(𝜐 = 10716)

Producers Normal
(𝜎 = 6726.2, 𝜇 = 13619)

Lognormal
(𝜎 = 0.68406, 𝜇 = 9.1128)

Table 5.6 Payoff distribution (for random versus preferential assignment of producers)
fitting and associated values for the charts presented in Figure 5.32 and Figure 5.33

pertaining to the small-world topology.

Distribution type Agent-role Random Preferential

Time
interval

Middlemen Normal
(𝜎 = 7313.7, 𝜇 = 13935)

Chi-squared
(𝜐 = 14482)

Producers Normal
(𝜎 = 7128.4, 𝜇 = 10722)

Lognormal
(𝑠𝑖𝑔𝑚𝑎 = 0.7826, 𝜇 = 8.9259)

Number of
economic agents

Middlemen Normal
(𝜎 = 6861.3, 𝜇 = 14147)

Chi-squared
(𝜐 = 14295)

Producers Normal
(𝜎 = 6221.8, 𝜇 = 10803)

Lognormal
(𝜎 = 0.7049, 𝜇 = 8.7353)

Table 5.7 Payoff distribution fitting (for random versus preferential assignment of
producers) and associated values for the charts presented in Figure 5.34 and Figure 5.35

pertaining to the random topology.
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Figure 5.23 Distribution of payoff in a small-world topology, where the payoff and number
of economic agents (separately accounted for producers (P) and middlemen (M)) are
normalized to the total network payoff and the total number of economic agents,

respectively. The producer roles were assigned randomly to the agents throughout the
network [25].

preferential assignment of producers, the numerical differences between the distribution
fits remain within the same margins, with the exception of the scale-free topology where
they rise up to 79.9%. An investigation of all simulation scenarios makes us conclude that
assigning the producers preferentially rather than randomly does not change the ergodicity
of the tested models, with the notable exception of the scale-free topology.

In order to obtain more, in-depth information regarding the ergodicity of economic net-
works, I also investigate if there are any economic agents, who based on the outcome of
the chosen actions of investments, have reached a point where they can no longer afford
to undertake — i.e. invest in — any additional action(s). As a result, after simulating eco-
nomic activities according to the prerequisites presented in section 5.4, I obtain the values
presented in Table 5.9. The percentages of bankrupt economic agents are indeed within the
boundaries of empirical observations for all the fundamental network topologies — albeit
more pronounced in the case of the scale-free topology —, both for random and preferential
agent assignment; this leads us to the conclusion that the obtained results are indeed good
ergodicity indicators for economic exchange networks.
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Figure 5.24 Distribution of payoff in a random topology, where the payoff and number of
economic agents (separately accounted for producers (P) and middlemen (M)) are
normalized to the total network payoff and the total number of economic agents,

respectively. The producer roles were assigned randomly to the agents throughout the
network [25].

Figure 5.25 Distribution of payoff in a scale-free topology, where the payoff and number of
economic agents (separately accounted for producers (P) and middlemen (M)) are
normalized to the total network payoff and the total number of economic agents,

respectively. The producer roles were assigned randomly to the agents throughout the
network [25].
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Figure 5.26 Distribution of payoff in a mesh topology, where the payoff and number of
economic agents (separately accounted for producers (P) and middlemen (M)) are
normalized to the total network payoff and the total number of economic agents,

respectively. The producers roles where roles were assigned preferentially to the agents
with the highest degrees in the network [25].

Figure 5.27 Distribution of payoff in a small-world topology, where the payoff and number
of economic agents (separately accounted for producers (P) and middlemen (M)) are
normalized to the total network payoff and the total number of economic agents,

respectively. The producers roles where roles were assigned preferentially to the agents
with the highest degrees in the network [25].
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Figure 5.28 Distribution of payoff in a random topology, where the payoff and number of
economic agents (separately accounted for producers (P) and middlemen (M)) are
normalized to the total network payoff and the total number of economic agents,

respectively. The producers roles where roles were assigned preferentially to the agents
with the highest degrees in the network [25].

Figure 5.29 Distribution of payoff in a scale-free topology, where the payoff and number of
economic agents (separately accounted for producers (P) and middlemen (M)) are
normalized to the total network payoff and the total number of economic agents,

respectively. The producers roles where roles were assigned preferentially to the agents
with the highest degrees in the network [25].
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Figure 5.30 Payoff evolution in a mesh network, in relation to both the time spent in each
payoff category interval (upper panel) and the number of economic agents — producers
(P) and middlemen (M) — in each payoff category (lower panel). The producers were

assigned randomly in the network [25].
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Figure 5.31 Payoff evolution in a mesh network, in relation to both the time spent in each
payoff category interval (upper panel) and the number of economic agents — producers
(P) and middlemen (M) — in each payoff category (lower panel). The producers were
assigned preferentially to the agents with the highest degrees in the network [25].
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Figure 5.32 Payoff evolution in a small-world network, in relation to both the time spent in
each payoff category interval (upper panel) and the number of economic agents —

producers (P) and middlemen (M) — in each payoff category (lower panel). The producers
were assigned randomly in the network [25].
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Figure 5.33 Payoff evolution in a small-world network, in relation to both the time spent in
each payoff category interval (upper panel) and the number of economic agents —

producers (P) and middlemen (M) — in each payoff category (lower panel). The producers
were assigned preferentially to the agents with the highest degrees in the network [25].
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Figure 5.34 Payoff evolution in a random network, in relation to both the time spent in
each payoff category interval (upper panel) and the number of economic agents —

producers (P) and middlemen (M) — in each payoff category (lower panel). The producers
were assigned randomly in the network [25].
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Figure 5.35 Payoff evolution in a random network, in relation to both the time spent in
each payoff category interval (upper panel) and the number of economic agents —

producers (P) and middlemen (M) — in each payoff category (lower panel). The producers
were assigned preferentially to the agents with the highest degrees in the network [25].
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Figure 5.36 Payoff evolution in a scale-free network, in relation to both the time spent in
each payoff category interval (upper panel) and the number of economic agents —

producers (P) and middlemen (M) — in each payoff category (lower panel). The producers
were assigned randomly in the network [25].
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Figure 5.37 Payoff evolution in a scale-free network, in relation to both the time spent in
each payoff category interval (upper panel) and the number of economic agents —

producers (P) and middlemen (M) — in each payoff category (lower panel). The producers
were assigned preferentially to the agents with the highest degrees in the network [25].
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Distribution type Agent-role Random Preferential

Time
interval

Middlemen Lognormal
(𝜎 = 0.6136, 𝜇 = 8.9864)

Lognormal
(𝜎 = 0.80805, 𝜇 = 8.8074)

Producers Lognormal
(𝜎 = 1.2853, 𝜇 = 7.6585)

Normal
(𝜎 = 7246.9, 𝜇 = 16271)

Number of
economic agents

Middlemen Lognormal
(𝜎 = 0.36445, 𝜇 = 10.0009)

Lognormal
(𝜎 = 0.55708, 𝜇 = 8.4677)

Producers Lognormal
(𝜎 = 0.25708, 𝜇 = 8.4677)

Normal
(𝜎 = 5630, 𝜇 = 19323)

Table 5.8 Payoff distribution fitting (for random versus preferential assignment of
producers) and associated values for the charts presented in Figure 5.36 and Figure 5.37

pertaining to the scale-free topology.

Topology Random Preferential
Mesh 8.2% 10.11%
Small-World 6.58% 8.42%
Random 7.84% 9.03%
Scale-Free 18.72% 21.9%

Table 5.9 Financially bankrupt economic agents in the four distinct fundamental topologies,
both for random and preferential agent-role assignment.
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6. Conclusions

Complex networks are comprehensively studied due to their important applications in
various fields, from Medicine and Sociology, to Architecture, Music, Engineering and Econ-
omy, as well as an amalgam of these fields. They can also be considered collaboration
networks, because they represent actors (indirectly) connected through their common col-
laboration entity, be it movie acting [210] or economic activity [3, 122].

In the first half of this thesis, I presented a state-of-the-art analysis of MuSeNet, an
emergent network formed solely by musical artists. Very similar to other complex net-
works, MuSeNet presents all of the usual properties: it is scale-free — meaning that artists’
connectivity distributions are in a power-law form — and has a high degree of centrality
[206]. With this study, the sociability of several networks were also highlighted via graph
metrics: MuSeNet is a more closed network than the IMDB actors network [81] — and other
usual friendship networks —, due to the fact that music artists do not usually work with
many others, since they rely on their on band and associated acts; additionally, links are
also formed at a much slower rate, compared to the Facebook model. Motif-based analysis
was also used to numerically express the characteristic aspects of collaboration networks, a
technique that has recently been adopted from Systems Biology [128].

In light of the study nominating Kevin Bacon as the most influential node in the IMDB
actor network [75], I found Dave Grohl to be the ”Kevin Bacon” of the music industry.
Moreover, by analyzing MuSeNet from the perspective of important centralities, I reached
the conclusion that similar to both the IMDB actors network [81] and the Jazz musicians
network [90], certain artists have higher centrality indices than the rest. As such, I found
artists like Greg Errico to have the highest degree and Pagerank, and Alphonso Johnson
to have the highest eigenvector centrality. A second important empirical observation is
the existence of a small single dominant community of nodes with very high eigenvector
centrality. This is the community formed by artists who currently own a record studio. It
is through their studios that most music is recorded and produced and it is because of this
topocratic environment they managed to secure a thriving, central role in MuSeNet.

With the broader perspective of social networks analysis in mind — namely to better
understand and model complex networks [51, 69, 113, 206] —, the obtained results pave
the way for a better understanding of the particular concepts of social collaboration, our
society as a whole and the role we play in it, especially from a socio-economic point of view.
For instance, we would often identify individuals who would benefit from a topological op-
portunity, though without any creative contribution to the network itself. Hence, we cannot
fully understand a meritocratic network without factoring in topocracy. Conclusively, in the
second half of this thesis, I presented a state-of-the-art economic simulator; TrEcSim was
specifically created to simulate economic activities with high flexibility in terms of economic
theories, agent models, and interaction assumptions. One such simulated economic model
concludes that an increased economic interconnectivity fosters meritocracy, as opposed to
topocracy, which is promoted in a poorly connected network [39].
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At first glance, the findings presented by Borondo et al. in [39] were also confirmed
after simulating multiple network topologies. However, by analyzing the payoff distribution
in a meritocratic environment based on agent roles, I showed that the topological place-
ment of the economic agents directly influences the payoff distribution within the separate
categories of producers and middleman. Indeed, the payoff distribution within the same
economic agent category is strongly non-uniform, often following a fat tailed, power-law
distribution. This observation holds true for both middlemen and producers acting as inter-
mediaries. Nevertheless, I found that the distribution inside each agent role is not influenced
by the network’s topology, but instead by the placement strategy of agents within the net-
work. Indeed, when producers are assigned randomly to topological positions, the payoff
distribution within the producers category is fat-tailed (only a handful of producers benefit
from an increased payoff), while the payoff of the middlemen category closely resembles a
Gaussian distribution. Conversely, when the topological positions of producers are assigned
preferentially, the payoff distributions of the two role categories reverse. Taken together,
these results also highlight the emergent behaviour economic agents exhibit on a macro-
scopic scale, in order to further themselves in a specific economic community.

By applying a new, state-of-the-art approach, I gained even more valuable insight re-
garding the distribution of the income for each agent-role in various economic exchange
networks. In all cases, the evolution of the total payoffs closely followed the overall re-
sults already obtained by other means, and offered yet another argument in reference to
the unfair advantages of a topocratic economic network over a meritocratic one, regardless
of the network’s topology, as well as the presence of emergent behaviour among the 𝜈𝐸
economic agents. By analyzing both time and space payoff distribution fitting, I concluded
that the payoff distribution generated with TrEcSim is indeed ergodic — i.e. fair — for all
topologies except the scale-free topology; moreover, the ergodicity seems to be determined
by the topology type alone, as agent-role assignment does not play a role in this case. A
good ergodicity indicator is also the presence of a (limited) number of financially bankrupt
economic agents, otherwise non-existent in the rockstar model.

Admittedly, the contributions brought with this thesis to the field of Network Science
are significant. The tools and results presented leave room to further the research and
experimentation I started many years ago; moreover, the work started also promotes new
approaches and research in the field of Social Network Analysis.
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6.1 Publications

To this date I have the following publications submitted, accepted and presented at
international conferences or journals, relevant to the domain of Computer Science:

6.1.1 International Conferences

1. Gabriel Barina, Alexandru Topirceanu, and Mihai Udrescu. ”MuSeNet: Natural pat-
terns in the music artists industry.” In: 9th IEEE International Symposium on Applied
Computational Intelligence and Informatics (SACI), pp. 317-322. IEEE, 2014. In-
dexed WoS (Accession Number: WOS:000343400600055, ISBN:978-1-4799-4694-
5).

2. Alexandru Topirceanu, Gabriel Barina, and Mihai Udrescu. ”Musenet: Collaboration
in the music artists industry.” In: European Network Intelligence Conference (ENIC),
pp. 89-94. IEEE, 2014. IndexedWoS (Accession Number: WOS:000361480100014,
ISBN:978-1-4799-6914-2E).

3. Gabriel Barina, Mihai Udrescu, Alexandru Topirceanu, and Mircea Vladutiu. ”Sim-
ulating Payoff Distribution in Networks of Economic Agents.” In: IEEE/ACM Interna-
tional Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp.
467-470. IEEE, 2018. Indexed WoS (Accession Number: WOS:000455640600076,
ISBN:978-1-5386-6051-5).

4. Maria-Alexandra Barina, Gabriel Barina. ”From Elusive to Ubiquitous: Understanding
Smart Cities.” In: 19th International Conference on Informatics and Economy (IE).
2020. In press; pending WoS indexation.

6.1.2 International Journals

1. Gabriel Barina, Mihai Udrescu, Alexandra Barina, Alexandru Topirceanu, and Mircea
Vladutiu. ”Agent-based simulations of payoff distribution in economic networks.” In
Social Network Analysis and Mining (SNAM) 9, no. 1, p. 63. 2019. Indexed WoS
(Accession Number: WOS:000492592200001, ISSN: 1869-5450).

6.1.3 Book Chapters at International Publishers

1. Gabriel Barina, Calin Sicoe, Mihai Udrescu, and Mircea Vladutiu. ”Simulating trade
in economic networks with TrEcSim”. In: Alhajj R., Hoppe H., Hecking T., Bródka
P., Kazienko P. (eds) Network Intelligence Meets User Centered Social Media Net-
works (European Network Intelligence Conference, ENIC), pp. 169-185. Lecture
Notes in Social Networks. Springer International Publishing, Cham, 2017. Indexed
WoS (Accession Number: WOS:000507984600012, ISBN:978-3-319-90312-5; 978-
3-319-90311-8).
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6.2 Research Milestones

Throughout the entirety of my doctoral studies, I have aimed at following and achiev-
ing the milestones presented in Table 6.1; these milestones were planned in advance and
approved by my advisers in my first year of studies, however they were adjusted based on
both the results obtained and the feedback obtained from the scientific community. Concur-
rently, in order to provide a meaningful contribution to the field of Social Network Analysis,
not only did I have to meet these requirements, but I also had to monitor the scientific
activities of other researchers on an international level, ensuring me that the proposals and
results presented in this thesis are indeed original, relevant and useful.

# Milestone Result Year
Keep track of the

state-of-the-art in topics of
interest in the field of
Social Network Analysis

1 - 2014 - 2019

Using data mining to obtain
relevant data, create a
state-of-the-art emergent

collaboration network based on
real-world data in order to
analyze and compare its
fundamental properties to
other, similar networks

MuSeNet, the musical artists’
society network

2 2014

Propose a new metric capable
of quantifying the sociability of
a node in regard to the social

features

The sociability 𝑆-metric
for complex networks

3 2014

Create a simulator based on either
a heuristic or a genetic algorithm,
that is capable of simulating

emergent relationships between
(economic) agents and releasing it

as a tool

TrEcSim, the Trade and
Economical Simulator,

available online. It uses a
heuristic algorithm

4 2017

Enhance TrEcSim by implementing
several improved mechanisms of
modeling the interaction of the

(economic) agents

Implementation of the
tolerance-based interaction
model, as it represents a
dynamic model of opinion

spread, offering results similar
to other, real-world systems.
Further improvements are
pending implementation

5 2018

Publish results at international
conferences relevant to the field
of Social Network Analysis 6 scientific papers written6 2014 - 2020

7 Elaborate and defend thesis - 2019 - 2020

Table 6.1 Proposed milestones for my doctoral studies and the results obtained.
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6.3 Future Research Directions

Obtaining relevant results is the driving force for any researcher, even more so when
the domain one is working in is still in its relative infancy. As such, in light of the recent
advancements in the field of Social Network Analysis and the direction my studies have
brought me in this field during my studies, I foresee the following contributions to have
immediate effect on the research I started:

• Improved heuristic algorithm: additional effort will be put into the enhancement of
TrEcSim’s heuristic algorithm. Currently, the algorithm analyzes past decisions made
by the economic agents and computes its outcome, however it will be improved as to
allow the heuristic algorithm to use this information and create a buffer simulation; in
other words, the algorithm will create a side-simulation based on several steps ahead
and (probabilistically) analyze its results, greatly improving the accuracy of choices in
the process.

• Genetic algorithm: converting from the existing heuristic algorithm to a genetic algo-
rithm will improve TrEcSim in more than just a couple of ways. The implementation of
said algorithm will allow users to find fit solutions in a short computational time, while
the random mutation guarantees a wider range of solutions.

• Economic theories: improved implementation of the main schools of economic thought
will greatly increase TrEcSim’s applicability and usability in the field of Social Network
Analysis, herein including the economic domain as well; two such theories are ”the
theory of marginality” and ”the labor theory of values”.

• Added realism: by implementing new mechanisms into TrEcSim, it will undoubtedly
improve the realism of the simulator further by taking into consideration several real-
world factors like information asymmetry — which often occurs in transactions — as
well the role of government involvement and regulatory red-taping. Adding cost (or
other form of burden on the economic agent) in maintaining certain actions in place
(e.g. links, new products, improved production, etc.) will also contribute to said
realism.

• Improved interface: an even more customizable GUI is necessary in order to interface
the mentioned improvements with the user, as well as to allow flexibility during and
after simulations.

• Extensive simulations: the simulations in this thesis represent just a few possible sce-
narios that we can realistically analyze using TrEcSim. Consequently, continuing the
research and simulating real-world economical systems by using other possible con-
figuration settings within TrEcSim can yield significant results, for instance pertaining
product saturation and product shortage.
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6.4 Closing Thoughts

Complex networks are comprehensively studied due to their multitude of applications
throughout many fields of science. As a result, such fields, starting from Medicine and
Sociology all the way to Architecture, Engineering and Economy, benefit from the theories
and methodologies of Social Network Analysis.

Economy and Marketing, for instance, constantly strive to increase their income by ana-
lyzing markets and consumers. As such, they study the ever-changing needs of consumers,
as well as their strengths and weaknesses. Medicine applies network theory in order to
help determine outbreaks, model the dynamic evolution of diseases and to limit or stop its
spread completely, while Sociology applies graph theory in order to analyze and influence
the opinion of everyday users. These are just but a few examples of applying Social Net-
work Analysis in order to better understand, shape and improve our everyday life. Even so,
network theory is still in its relative infancy. Coupled with the fact that markets, diseases,
human behaviour, etc. are mostly erratic and somewhat unpredictable, we can see how
social network analysis is still deficitary. To counter this detriment, we can combine Social
Science with applied sciences, and by using computers as a tool, scientists can simulate and
analyze interleaved mathematical and psychological models much faster and with greater
ease than ever before. As a results, recent advancement in a multitude of fields have come
up with new ways of modeling and analyzing said markets, diseases, human behaviour, etc.
and to convey results of great theoretical and scientific value.

Evolved gradually from basic network topologies (e.g. bus, star, mesh, etc.), complex
networks have infused our daily lives profoundly; ranging from natural networks (e.g. actors
network, musicians network, recipe network, etc.) to synthetic network (e.g. air traffic net-
work, the World Wide Web, etc.), have generated interest in all fields of science. Nowadays,
due to an increased interest in network theory, fostered by social, economic and computa-
tional advancements, complex networks encompass newer and more advanced topologies,
which better resemble real-world networks.

Such real-world networks are also studied in this thesis. In chapter 4, by gathering
relevant data, I created MuSeNet and investigated how artists work and co-exist together.
Similar to an existing study pertaining actors, I analyzed the source of their relationship,
how they form communities based on music genre or race and how they all converge to
those few agents, who own a recording studio. I also compared the resulting network not
only with other similar networks (i.e. Jazz musicians, IMDB actors), but also with social
networks from platforms like Facebook and Twitter. Due to their popularity, the available
data regarding these platforms is near infinite, and as such, they represent the perfect
means to map and compare MuSeNet to.

Similarly, modern science, along with Economy and Marketing, are trying to create im-
proved topologies that resemble real-world networks, in order to better analyze behaviour,
need and outcome. As such, they make use of graph theory as well as Computer Science,
in order to create a dynamic environment that resembles our own. Such is the case of TrEc-
sim, presented in chapter 5. As a state-of-the-art economic simulator, TrEcSim was used
to simulate dynamic behaviour of economic agents, and how network topology affects their
payoff.

As a conclusion, Social Network Analysis, coupled with numerous other fields of science,
has proved countless times to be of paramount importance in understanding how we, as a
society function, how we chose to collaborate with others, how we influence — willingly or
unwillingly — the choices of others and how we profit from them.
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A. Implementation of Investment Actions

In order to offer a better insight regarding the implementation of the investment actions
presented in section 5.3.3 of this thesis, in what follows I disclose code snippets I deem
important from a programmatic point of view 1. That being said, the implementation of each
investment is done in the DecisionManager static class, extended from the BL.Node class;
this allows for direct calls for each existing method of the BL.Node class. Additionally, each
action of investment — initially enabled via the existing graphical user interface presented in
Figure 5.5 — has its own investmentCost property, which determines the cost of investment
for the given action.

1 public static class DecisionManager{
2 private static readonly Random Rng = new Random((int)DateTime.Now.ToBinary());
3

4 public static async Task<bool> DetermineDecisionScore(this Node node, FullSimulation
currentSim)...

5

6 public static async Task<bool> Expand(this Node parentNode, FullSimulation sim,
ExpansionPattern pattern)...

7

8 public static async Task<bool> ImproveProductionQuality(this Node node, FullSimulation
sim)...

9

10 public static async Task<bool> CreateProduction(this Node node, FullSimulation
currentSim)...

11

12 public static async Task<bool> CreateLink(this Node node, FullSimulation currentSim)...
13 }

Listing A.1 Overview of the DecisionManager class.

A.1 Action 1: Creating a New Link

As a first step, all eligible target nodes are identified, namely the ones which are not
directly linked to the node implementing the current action:

1 var validNodes = currentSim.Network.Where(n => n.Id != node.Id && node.Neighbours.All(nb =>
nb.Id != n.Id);

Listing A.2 Snippet for creating a new link.

A random node is chosen from the validNodes array as an endpoint for the new link, by
determining the shortest path between one such node and the one implementing the deci-
sion. This is achieved by using a variant of the breadth-first algorithm. The implementation
of the search algorithm (Listing A.3) is done by means of a function which returns a new

1The term node is used to programmatically represent an economic agent
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dictionary Dictionary <int, int> object. In this key-value dictionary object, each key is the
index of the node through which the current link is created, while each value represents the
index of a given node in the network (i.e. List <Node>).

1 public static class NetworkManager{
2 public static void GetShortestPathsHeap(this Node start, List<Node> network){
3 var networkSize = network.Count;
4 var bfsResult = new Dictionary<int, int> { { start.Id, -1 } };
5

6 bfsResult = GetShortestPathsByNeighbours(bfsResult, networkSize, new List<Node> {
start }, network);

7

8 start.ShortestPathsHeap = bfsResult;
9 }
10

11 public static List<Node> GetShortestPathToNode(this Node origin, Node dest, List<Node>
network){

12 if (origin == null || dest == null){
13 return null;
14 }
15

16 if (origin.ShortestPathsHeap == null || origin.ShortestPathsHeap.Count == 0){
17 return null;
18 }
19

20 if (!origin.ShortestPathsHeap.ContainsKey(dest.Id)){
21 return null;
22 }
23

24 var res = new List<Node>();
25

26 while (true){
27 if (!origin.ShortestPathsHeap.ContainsKey(dest.Id)){
28 return null;
29 }
30 if (origin.ShortestPathsHeap[dest.Id] == -1){
31 res.Add(origin);
32 return res;
33 }
34 res.Add(dest);
35 dest = network.First(node => node.Id == origin.ShortestPathsHeap[dest.Id]);
36 }
37 }
38

39 private static Dictionary<int, int> GetShortestPathsByNeighbours(Dictionary<int, int>
heap, int networkSize, List<Node> startNodes, List<Node> network){

40 while (true){
41 if (heap.Count == networkSize || startNodes == null || startNodes.Count == 0){
42 return heap;
43 }
44 var nextIterationNodes = new List<Node>();
45

46 foreach (var startNode in startNodes){
47 var neighbours = startNode.Neighbours;
48 if (neighbours == null){
49 continue;
50 }
51

52 foreach (var neighbour in neighbours){
53 if (heap.ContainsKey(neighbour.Id)){
54 continue;
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55 }
56

57 heap.Add(neighbour.Id, startNode.Id);
58 nextIterationNodes.Add(network.First(node => node.Id == neighbour.Id));
59 }
60 }
61

62 if (nextIterationNodes.Count == 0){
63 return heap;
64 }
65

66 startNodes = nextIterationNodes;
67 }
68 }
69 }

Listing A.3 Implementation of the breadth-first algorithm in TrEcSim.

If the current network is not connected one, creating a link might not be possible, in
which case the breadth-first algorithm returns a null value; otherwise, the result is stored
in the pathToTarget variable in order to compute the cost of the investment for the current
decision. The snippet for computing this cost can be found in Listing A.4.

1 var investmentCost = 100.0;
2

3 if (pathToTarget == null){
4 investmentCost *= Math.Pow(1.3, node.Neighbours.Count);
5 } else {
6 investmentCost *= Math.Pow(1.3, pathToTarget.Count);
7 }

Listing A.4 Snippet for the breadth-first algorithm used to create identify the shortest
path between any two nodes.

If the investmentCost is less than node.SpendingLimit (the available currency for the
current node), a link is created between the node initiating the current action and the target-
node. The full implementation of Action 1 can be found in Listing A.5.

1 public static async Task<bool> CreateLink(this Node node, FullSimulation currentSim){
2 var validNodes = currentSim.Network.Where(n => n.Id != node.Id && node.Neighbours.All(nb

=> nb.Id != n.Id)).ToList();
3

4 if (validNodes.Count == 0){
5 return false;
6 }
7

8 var targetIndex = Rng.Next(0, validNodes.Count - 1);
9 var targetNode = validNodes[targetIndex];
10

11 node.GetShortestPathsHeap(currentSim.Network);
12

13 var pathToTarget = node.GetShortestPathToNode(targetNode, currentSim.Network);
14

15 var investmentCost = 100.0;
16 if (pathToTarget == null){
17 investmentCost *= Math.Pow(1.3, node.Neighbours.Count);
18 } else {
19 investmentCost *= Math.Pow(1.3, pathToTarget.Count);
20 }
21

22 if (node.SpendingLimit < investmentCost){
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23 return false;
24 }
25

26 node.SpendingLimit -= investmentCost;
27

28 var newLinks = new List<NodeLink>();
29 newLinks.Add(new NodeLink { NodeId = node.Id, LinkId = targetNode.Id, SimulationId =

currentSim.Simulation.Id });
30 newLinks.Add(new NodeLink { NodeId = targetNode.Id, LinkId = node.Id, SimulationId =

currentSim.Simulation.Id });
31

32 var createdLinks = await NodeLinkCore.CreateAsync(newLinks, true).ConfigureAwait(false);
33 if (createdLinks == null){
34 return false;
35 }
36

37 var savedNode = await NodeCore.UpdateAsync(node, true).ConfigureAwait(false);
38 if (savedNode == null){
39 return false;
40 }
41

42 var logEntry = await SimulationLogCore.CreateAsync(new SimulationLog{
43 Type = (int)SimulationLogType.Decision,
44 NodeId = node.Id,
45 Content = $"{(int)Enum.Decision.CreateLinks} {investmentCost}"
46 }).ConfigureAwait(false);
47

48 if (logEntry == null){
49 return false;
50 }
51

52 savedNode.Neighbours = node.Neighbours;
53 savedNode.ShortestPathsHeap = node.ShortestPathsHeap;
54 node = savedNode;
55

56 return true;
57 }

Listing A.5 Full implementation of Action 1: the creation of a new link between two
nodes.

A.2 Action 2: Creating a New Product

The algorithm searches for the set of products for which are neither produced, nor in
demand by the current node (see Listing A.6). If this set is an empty one (i.e. no such
products have been identified), the decision for investing in Action 2 will be aborted.

1 var validProducts = currentSim.Products.Where(product => !node.Productions.Any(p =>
p.ProductId == product.Id) && !node.Needs.Any(n => n.ProductId == product.Id))

Listing A.6 Snippet for identifying the set of products which the current node can
decide to produce.

On the other hand, if at least one such product has been identified, the underlying al-
gorithm chooses a product in a random manner, along with all existing productions and
demands from the current network.

1 var productionsForChosenProduct = currentSim.Productions.Where(p => p.ProductId ==
chosenProduct.Id);
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2

3 var needsForChosenProduct = currentSim.Needs.Where(p => p.ProductId == chosenProduct.Id);

Listing A.7 Snippet for identifying the set of products which the current node can
decide to produce.

The average base cost of the respective product is computed, as well as the average
quality, quantity needed and quality available. If there are any demands for the current
product, the algorithm will compute the supply-demand ratio using the following snippet:

1 var generalRatio = Math.Sqrt(Math.Pow(1 - (double)neededQuantity / producedQuantity, 2));

Listing A.8 Snippet for computing the supply-demand ration for a given product.

The quality, quantity and base cost of the current product are determined by the following
snippet:

1 var chosenPrice = averagePrice * generalRatio;
2

3 var chosenQuality = (int)(averageQuality * generalRatio);
4

5 var chosenQuantity = Rng.Next(0, (int)(neededQuantity * generalRatio));

Listing A.9 Snippet for computing the quality, quantity and the base cost of the current
product.

The new production will be generated based on the obtained results. The cost of investing
in Action 2 is computed using the following snippet:

1 var investmentCost = production.Quantity * production.PriceByQuality(currentSim.Simulation);

Listing A.10 Snippet for computing the cost of investment in Action 2.

If the cost of investing in Action 2 (i.e. investmentCost) is less than the curent node’s
available currency, the decision to invest in this actions is aborted. The full implementation
of this decision is presented in Listing A.11.

1 public static async Task<bool> CreateProduction(this Node node, FullSimulation currentSim){
2 var validProducts = currentSim.Products.Where(
3 product =>
4 !currentSim.Productions.Any(p => p.ProductId == product.Id && p.NodeId == node.Id) &&
5 !currentSim.Needs.Any(n => n.ProductId == product.Id && n.NodeId ==

node.Id)).ToList();
6

7 if (validProducts.Count == 0){
8 return false;
9 }
10

11 var chosenProductIndex = Rng.Next(0, validProducts.Count - 1);
12

13 var chosenProduct = currentSim.Products[chosenProductIndex];
14

15 var productionsForChosenProducts = currentSim.Productions.Where(p => p.ProductId ==
chosenProduct.Id).ToList();

16 var needsForChosenProducts = currentSim.Needs.Where(p => p.ProductId ==
chosenProduct.Id).ToList();

17

18 var averagePrice = 10.0;
19 if (productionsForChosenProducts.Count > 0){
20 averagePrice = productionsForChosenProducts.Average(p => p.Price);
21 }
22
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23 var averageQuality = 20;
24 if (productionsForChosenProducts.Count > 0){
25 averageQuality = (int)productionsForChosenProducts.Average(p => p.Quality);
26 }
27

28 var neededQuantity = 0;
29 if (needsForChosenProducts.Count > 0){
30 try {
31 neededQuantity = needsForChosenProducts.Sum(p2 => p2.Quantity);
32 }
33 catch (Exception){
34 //overflow
35 neededQuantity = Rng.Next(10, 100);
36 }
37 }
38

39 var producedQuantity = 0;
40 if (productionsForChosenProducts.Count > 0){
41 try{
42 producedQuantity = productionsForChosenProducts.Sum(p2 => p2.Quantity);
43 }
44 catch (Exception){
45 //overflow
46 producedQuantity = Rng.Next(0, 100);
47 }
48 }
49

50 var chosenPrice = averagePrice;
51 var chosenQuality = averageQuality;
52 var chosenQuantity = 30;
53

54 if (producedQuantity != 0){
55 var generalRatio = Math.Sqrt(Math.Pow(1 - (double)neededQuantity / producedQuantity,

2));
56 chosenPrice = averagePrice * generalRatio;
57 chosenQuality = (int)(averageQuality * generalRatio);
58

59 if (neededQuantity != 0){
60 chosenQuantity = Rng.Next(0, (int)(neededQuantity * generalRatio) + 1);
61 }
62 }
63

64 var production = new Production{
65 NodeId = node.Id,
66 ProductId = chosenProduct.Id,
67 Price = chosenPrice,
68 Quality = chosenQuality,
69 Quantity = chosenQuantity
70 };
71

72 var investmentCost = production.Quantity *
production.PriceByQuality(currentSim.Simulation);

73

74 if (node.SpendingLimit < investmentCost){
75 return false;
76 }
77

78 node.SpendingLimit -= investmentCost;
79

80 var createdProduction = await ProductionCore.CreateAsync(production,
true).ConfigureAwait(false);
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81 if (createdProduction == null){
82 return false;
83 }
84

85 var savedNode = await NodeCore.UpdateAsync(node, true).ConfigureAwait(false);
86 if (savedNode == null){
87 return false;
88 }
89

90 savedNode.Neighbours = node.Neighbours;
91 savedNode.ShortestPathsHeap = node.ShortestPathsHeap;
92 node = savedNode;
93

94 var logEntry = await SimulationLogCore.CreateAsync(new SimulationLog{
95 Type = (int)SimulationLogType.Decision,
96 NodeId = node.Id,
97 Content = $"{(int)Enum.Decision.CreateProductions} {investmentCost}"
98 }).ConfigureAwait(false);
99

100 return logEntry != null;
101 }

Listing A.11 Full implementation of Action 2: the creation of a new product.

A.3 Action 3: Improving Current Production

For the node investing in Action 3, the algorithm iterates over the current node’s pro-
ductions set, namely node.Productions:

1 foreach (var production in node.Productions)

Listing A.12 Snippet for iterating over a given node’s own productions.

For each of the node’s own productions, the algorithm computes the cost of investment
(i.e. investmentCost) by using the snippet in Listing A.13. As previously, if this cost is less
than the current node’s available total currency, the quality of production will increase by 1
unit. The full implementation of this action can be found in Listing A.14.

1 var investmentCost = production.Quantity * Math.Pow(1 +
sim.Simulation.ProductPriceIncreasePerQuality, production.Quality);

Listing A.13 Snippet for computing the cost of investment.

1 public static async Task<bool> ImproveProductionQuality(this Node node, FullSimulation sim){
2 var ownProductions = sim.Productions.Where(p => p.NodeId == node.Id).ToList();
3

4 foreach (var production in ownProductions){
5 var investmentCost = production.Quantity * Math.Pow(1 +

sim.Simulation.ProductPriceIncreasePerQuality, production.Quality);
6 if (node.SpendingLimit < investmentCost){
7 continue;
8 }
9

10 production.Quality++;
11 node.SpendingLimit -= investmentCost;
12

13 var savedProduction = await ProductionCore.UpdateAsync(production,
true).ConfigureAwait(false);

14 if (savedProduction == null){
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15 return false;
16 }
17

18 var savedNode = await NodeCore.UpdateAsync(node, true).ConfigureAwait(false);
19 if (savedNode == null){
20 return false;
21 }
22 savedNode.Neighbours = node.Neighbours;
23 savedNode.ShortestPathsHeap = node.ShortestPathsHeap;
24 node = savedNode;
25

26 var logEntry = await SimulationLogCore.CreateAsync(new SimulationLog{
27 Type = (int)SimulationLogType.Decision,
28 NodeId = node.Id,
29 Content = $"{(int)Enum.Decision.ImproveProductions} {investmentCost}"
30 }).ConfigureAwait(false);
31

32 if (logEntry == null){
33 return false;
34 }
35 }
36

37 return true;
38 }

Listing A.14 Full implementation of Action 3: the improvement of production quality.

A.4 Action 4: Creating a New Node

The decision to invest in Action 4 implies — as previously stated in this thesis — the
creation of a new node, which will inherit, to some extent, the characteristics (e.g. demands,
productions, etc.) of the node initiating this action. In order to implement this mechanism
(of inheriting from the parent node), I created the ExpansionPattern class (Listing A.15);
the members of this class model the way a new node is created in the network.

1 public class ExpansionPatterns{
2 public static ExpansionPattern SimpleChild { get; } = new ExpansionPattern{
3 WealthPercentage = 10,
4 LinkToParent = true,
5 AdditionalLinks = 0,
6 InheritNeeds = true,
7 AdditionalNeeds = 0,
8 InheritProduction = true,
9 AdditionalProductions = 0
10 };
11 }

Listing A.15 Snippet showing the declarations of the members inside the
ExpansionPatterns class.

The algorithm starts off with the creation a new instance of the BL.Node: childNode class.
The available currency available to the newly created node equals the cost of investment
(i.e. investmentCost) of the current action; to this end, the WealthPercentage member
plays an important role in computing this cost:

1 childNode.Money = parentNode.Money / ExpansionPattern.WealthPercentage;

Listing A.16 Snippet for computing the newly created node’s currency.
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Based on the values of the other members of the ExpansionPattern class (i.e. Inher-
itNeeds, InheritProductions), the childNode will also possibly inherit both the needs and
productions of the parent node as well; similarly, the newly created node might also pro-
duce new products or have its own set of demands based on the AdditionalNeeds and the
AdditionalProductions members.

1 public static async Task<bool> Expand(this Node parentNode, FullSimulation sim,
ExpansionPattern pattern){

2 var investmentCost = parentNode.SpendingLimit / pattern.WealthPercentage;
3

4 var childNode = new Node{
5 Id = -1,
6 SimulationId = sim.Simulation.Id,
7 Name = $"Node {sim.Network.Count + 1}",
8 SpendingLimit = investmentCost
9 };
10

11 childNode = await NodeCore.CreateAsync(childNode).ConfigureAwait(false);
12 if (childNode == null){
13 return false;
14 }
15

16 parentNode.SpendingLimit -= investmentCost;
17

18 var childLinks = new List<NodeLink>();
19

20 if (pattern.AdditionalLinks > 0){
21 add additional links
22 }
23

24 parentNode = await NodeCore.UpdateAsync(parentNode, true).ConfigureAwait(false);
25 if (parentNode == null){
26 return false;
27 }
28

29 if (pattern.LinkToParent){
30 childLinks.Add(new NodeLink { NodeId = parentNode.Id, LinkId = childNode.Id,

SimulationId = sim.Simulation.Id });
31 childLinks.Add(new NodeLink { NodeId = childNode.Id, LinkId = parentNode.Id,

SimulationId = sim.Simulation.Id });
32

33 var createdLinks = await NodeLinkCore.CreateAsync(childLinks,
true).ConfigureAwait(false);

34 if (createdLinks == null){
35 return false;
36 }
37 }
38

39 if (pattern.InheritNeeds){
40 var newNeeds = sim.Needs.Where(need => need.NodeId == parentNode.Id).ToList();
41 newNeeds.ForEach(need => need.NodeId = childNode.Id);
42

43 var createdNeeds = await NeedCore.CreateAsync(newNeeds, true).ConfigureAwait(false);
44 if (createdNeeds == null){
45 return false;
46 }
47 }
48

49 if (pattern.InheritProduction){

BUPT



120 Implementation of Investment Actions

50 var newProductions = sim.Productions.Where(prod => prod.NodeId ==
parentNode.Id).ToList();

51 newProductions.ForEach(prod => prod.NodeId = childNode.Id);
52

53 var createdProductions = await ProductionCore.CreateAsync(newProductions,
true).ConfigureAwait(false);

54 if (createdProductions == null){
55 return false;
56 }
57 }
58

59 var logEntry = await SimulationLogCore.CreateAsync(new SimulationLog{
60 Type = (int)SimulationLogType.Decision,
61 NodeId = parentNode.Id,
62 Content = $"{(int)Enum.Decision.Expand} {investmentCost}"
63 }).ConfigureAwait(false);
64

65 return logEntry != null;
66 }

Listing A.17 Full implementation of Action 4: the creation of a new node.
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