
Buletinul Ştiinţific al Universităţii Politehnica" din Timişoara 

Seria ELECTRONICĂ si TELECOMUNICAŢII 
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS 

Tom 49(63), Fascicola 1, 2004 

On the use of Modelica modelling language in modelling 
and sîmulation of electronic circuits 

Dorel Aiordăchioaie' 

Abstract - The is related to the use of Modelica 
modelling language^ object oriented and physical 
decomposition based, as a neutral modelling language in 
the modelling of the electronic circuits. Such a language 
is suitable for hybrid circuits, with various 
transformations of energy, e.g. from mechanical to 
electrical one or vice versa. The following circuits are 
considered for modelling and simulation: a passive 
circuit (RLC) to put in the light the basic principles of 
the modelling language, and an oscillator, to present the 
fle.xibility and the portability of the models. 
Keywords: Electronic Circuits, Modela, Modelling and 
Simulation, Modelling languages, Object-Oriented 
Technology, Physical decomposition. 

1. INTRODUCTION 

Working and continuously looking to new modelling 
languages and simulation environments could be 
strânge for an electronic engineering worid, where the 
offer is quite various and structural complcte, i.e. 
covcring both analogous and digital circuits. There 
must be a reason tor such an interes! in new modelling 
languages and simulation environments. The reason is 
on the reality that no modelling language can cover 
the diversity of electronic circuits and applications. 
Obviously, each language has an optimum conceming 
the set if suitable problems and aims to cover. A very 
nice, efficient and practicai state-of-the-art in the field 
of modelling and simulation must include some sound 
references like [6], [8] and [11]. 

Modelica is a declarative modelling language useful 
lor hybrid circuits and especially for multi-domain 
systems, as is robotics. Modelica is independent of the 
solver and from here a strong feature is obtained: the 
portability of the model among various simulation 
platform. 

The aim of the work is lo present the main features of 
the Modelica modelling language using two simple 
electric circuits and lo sketch some similarities with 
other existing and intensively used modelling 
languages. 

In section II the main features of the modelling 
language are presented . The next two sections are for 
examples, with the goal of modelling and simulating 
simple scenarios. 

One of the best paper regarding the use of Modelica 
modelling language in conjunction with SPICE is [7]. 
It is the reason also of the present incursion and 
exploration. Also, in the field of electric circuits, 
some results could be referred in the modelling and 
simulating of MOSFETs. [19], or DC-DC converters, 
[16J. 

The effort of the research community involved in 
modelling and simulating, Modelica related, is 
oriented to the design of specialized libraries, i.e. 
domain oriented, and into design of automated 
translation of models in/to Modelica f rom other 
intensively used modelling and simulation 
environments, like SPICE, [2], and Matlab-Simulink, 
[19]. 

II. A B O U T MODELICA 

Modelica is a declarative modelling language for 
continuous, discrete and mixed systems based on 
declarative models and description of the knowledge. 
The main attraction for such a language is coming 
from the faci that it follows some natural modelling 
principles, as physical decomposition of the 
considered system or object based technology. It is 
interesting that process modelling under Modelica is 
no longer a challenge but a pleasure. 

A strong feature is that it is continuously improving 
based on collaborative work of people coming from 
industry, research centres and universities. More 
details and explanation could found in, e.g. [3], [4], 
[9], [12], and [15]. 
Based on these sound principles a lot of work was 
done to study and develop formalism to represent 
some classical formalism of modelling as bondgraph, 
[1], or Petri Nets, [13]. A lot of effort is also made to 
develop domain specific libraries as in [18] for a 

' "Dunarea de Jos" Galaţi Univcrsity 
Elcctncal Engineering Faculiy, Domneasca-47, Galaii-800008 
email Dorel.Aiorclachioaie@ugal ro 

106 BUPT



thermo-hydraulic processes, [14] and [15] in 
mechanical application with emphasis on multi-body 
mechanical arms and hybrid domains. 

The reason for a such high interesi in Modelica is 
based on the natural and easy understanding of the 
modelling principles. Also, Modelica could serve as a 
neutral format for model interchanging across various 
and possible distributed simulation environments. 

Fig.l presents a parţial metastructure of any Modelica 
model. A model is an aggregation of components and 
devices, connected with properly connection. The 
connection are developed by using ports. A port has a 
set of variables, which describes the interaction 
among sub-models. 

C=0 1e-3 L=0.1e-3 

XI II o 

Fig.l . The metastructure of the Modelica model 

Be putting all the variables, wich describes the 
behaviour of the models at the ports, and the 
constitutive equation, which describes the behaviour 
of sub-models, an equation based model is obtained 
and used in simulations. 

in. A SIMPLE EXAMPLE 

The first considered circuit is an RLC circuit as it is 
represented in Fig.2. It is composed of a voltage 
source, a capacitor, an inductor and a resistive load. 
The problem is to study the frequency behaviour of 
the voltage on resistive load, using a signal generator 
with variable frequency. 

First, an interface must be defined for each 
component as the place where the interaction with 
other components or devices is developed. 

gnd 
Fig.2. RLC circuit 

A simple interface (or port), called conector in 
Modelica, may have two variables to describe the 
current and the voltage at the considered interface. A 
common definition is 

connector Pin 
Voltage v; 
flow Current i: 

end Pin; 

where Voltage and Current are defined as 

type Voltage = Real (unit="V"); 
type Current - Real (unit="A"); 

Typically, a component must have at least two 
connectors to properly describe the electrical 
behaviour: 

parţial model TwoPins 
Pin p. n; 
Voltage v "Drop Voltage"; 
Current i; 

equation 
v = p.v - n.v; 
p.i + n.i = 0: 
i = p.i: 

end TwoPins: 

From now on all of the components' description is 
based on the model TwoPins. The model of the ideal 
inductor is 

model Inductor "Ideal electrical inductance" 
extends TwoPins; 
parameter Real L=0.1e-3 "[Henry]"; 
equation 

L • der(i)=-p.v - n.v; 
end Inductor, 

The model of the ideal resistor is 

model Resistor "Ideal electrical resistor" 
extends TwoPins; 
parameter Real R=0.1 "[Ohm]"; 
equation 

R*i = p.v - n.v; 
end Resistor; 

The model of the ideal capacitor is 

107 
BUPT



model Capacitor "Ideal electrical capacitor" 
extends TwoPins; 
parameter Real C=0.1e-3 "[Farads]"; 
equatioD 

C*der(v) = i; 
end Capacitor; 

Finally, the voltage reference must be defined as 

model Ground "The reference" 
Pin p; 
equation 

p.v = 0; 
end Ground; 

The model of the signal voltage source is quite 
complex in the sense that a variable frequency is used: 

model SourceAC 
extends TwoPins; 
parameter Real A(unit="V") = r 'AmpL"; 
parameter Real Fmin(unit="Hz") = 50'Treq": 
parameter Real max(unit="Hz")=2000"Freq"; 
Real freq(start=50); 
Real increment(start=0); 
algorithm 

freq := F min + increment; 
equation 

V = A*sin(2*3.14*freq*time); 
der(increment) = (Fmax - Fmin); 

end SourceAC; 

Finally, the model of the circuit describes the way in 
which the components are connected: 

model RLC_circuit 
SourceAC S; 
Resistor R; 
Inductor L; 
Capacitor C; 
Ground gnd; 

equation 
connect(S.p, C.p); 
connect(S.n, gnd.p); 
connect(C.n, L.p); 
connect(L.n, R.p); 
connect(R.n, gnd.p); 

end RLC circuit: 

The resulted graphicaJ model is presented in Fig.3, 
where each component has a model. As it can be 
recognized from the presented models, a model has 
mainly t\vo parts: one for parameters and another one 
for equations. By considering all the equations from 
the considered models and adding the equation 
generated, when a connection is made between 
components, an equation based model in obtained, as 
it is presented in Annex 1. Such a model is portable in 
the sense that could be solved by any general 

simulation platform. In Fig.4 the behaviour of the load 
voltage is presented on a time horizon of 1 second. 

Fig.3. A graphical model of the RLC circuit 

R.v 

Fig.4. The load voltage 

IV. SECOND EXAMPLE 

The second example is related to a more complex 
circuit, an electronic RC oscillator with an operaţional 
amplifier. The electric circuit is presented in Fig. 5, it 
is a basic Wien oscillator. 

• Groundi 

Fig.5. A model of the Wien oscillator 

The problem could be defined by requiring the 
bevaviour of the signals on all nodes of the circuits. 
The modelling problem is mainly attracted by the 
model of the operaţional amplifier. The first model 
takes into account the general parameters, such as the 
finite input resistance and capacitance, the finite open 
loop voltage transfer coefficient. It is a parţial model 
and it is based on the statements: 

108 BUPT



parţial model AO_simple 
Pin in_m, in_p, out; 
Resistor Rin; 
Capacitor Cin; 
parameter Real a=le6; 
parameter ReaJ Vmax=10; 
parameter Real Vmin=-10; 
parameter Voltage Voffset=0.1; 
Voltage V, Vdif, Vout, Vtr: 

aljgorithm 
Vdif := in_p.v - in_m.v: 
V : = a* Vdif; 
Vout := V + Voffset + Vtr; 

equation 
connect(in_p, Cin.p); 
connect(Cin.n, in_m); 
connect(in_p, Rin.p); 
connect(in_m, Rin.n); 
out.v = if Vout > Vmax then Vmax 

else if Vout < Vmin then Vmin 
else Vout; 

end AO_simple; 

Such a model could be used in some applications as 
amplifîer or comparator. If it will be used in the 
model of Fig.5, some wTong results are obtained, in 
the sense that no signals on any node will be. The 
reason is that the model does not contains knowledge 
of the transient regime, as description of the 
behaviour of the circuit when it is supplied with 
energy. 

The next model is improved with knowledge about 
the transient regime: 

model AO_real_with_transients 
extends AO simple; 
parameter Real startTime=0.0; 
parameter Real endTime=0.001; 

equation 
Vtr = if time < startTime then 0.0 

else if time > endTime 
then 0.0 else Vmax ; 

end AO_real_with_transients; 

Now a model of the circuit will looks like 

model wien 
AO real with transients AOl ; 
Resistor Rl (R=10e3) ; 
Resistor R2(R=50e3); 
Resistor R3(R=20e3); 
Resistor R4(R=20e3); 
Capacitor CI(C=100e-9); 
Capacitor C2(C=100e-9); 
Ground G n d ; 

equation 
connect(R4.p, Gnd.p); 
connect(Gnd.p, C l . p ) ; 
connect(A01.injp, R4.n) ; 
connect(AO 1 .in_p, C1 .n) ; 

connect(Rl.n, AOl.in m ) ; 
conncct(Rl.n, R2.p); 
conncct(R2.n, AOl .ou t ) : 
connect(A01.out, R3.p) ; 
connect(R3.n, C2.n) ; 
connect(C2.p, C l . n ) ; 
connect(Rl.p, Gnd.p); 

end wien; 

Using the last model the simulation results are 
satisfactory, in the sense of the right qualitative 
behaviour, as it is presented in Fig. 6. 

A01.out.v 

O 0.1 0.2 

Fig.6. Oscillator's waveforms: output and the 
difîerential voltage of the operaţional amplifîer 

VI. CONCLUSIONS 

The purpose of the paper was to investigate the main 
features of a new modelling language called 
Modelica. Two simple examples were considered and 
discussed: a passive circuit and an active one. In both 
cases the right results were obtained. 

Using Modelica without libraries seems difficuh, 
especially for complex circuits. For simple cases, like 
those considered here, a library of models is not a big 
drawback. 

Such a language is strongly recommended and used 
for modelling in neutral format, i.e. sol vers 
independent, and for hybrid and multi-domain 
circuits, i.e. circuits with physical variables from 
difîerent domains like electrical, mechanical, 
chemical etc. To exploit the neutral format 
representation, many tools are continuously developed 
to translate models to/from Modelica in other classical 
representation formal isms. Hybrid circuits, not 
considered here, for the sake of simplicity, are 
described in a more natural way by using a physical 

109 
BUPT



decomposition and by using variables with physical 
meanings. 

An interesting study, just started, is the similarity in 
principles with VHDL. Also research is conductcd 
regarding the opportunity to write tools to import and 
to export models under VHDL to and from Modelica 
fo rma t 

REFERENCES 

[1] Broenink J.F, Bond-Graph Modeling In Modclica, The 
European Simulat ion Symp., 1997, Passau Gennany, Oct. 19-22. 
[2] Dempsey Mike, Automatic translation of Simulink models into 
Moddica using Simelica and the AdvancedBlocks Library, 
Proceedings of the 3rd International Modelica Cortference, 
Linkeping, Sweden, November 3-4, 2003, Peter Fritzson (editor), 
pp.115-124. 
[3] Elmqvist H., S.E Mattsson, and M. Otter,"Modelica - An 
International Effort to Design an Object-Oriented Modeling 
Language", Summer Computer SimuJation Conference -98 , Reno, 
Nevada, USA, July 19-22, 1998. 
[4] Elmqvist H., S.E Mattsson, and M. Otter, "Modelica - A 
Language for Physical System Modeling, Visualization and 
Interaction", The 1999 IEEE Symposium an Computer-Aided 
Control System Design, CACSD'99, Hawaii, August 22-27, 1999. 
[5] Engelson, V., H. Larsson, and P. Fritzon, "Design, simulation 
and visualization environment for object-oriented mechanical and 
mult-domain models in Modelica." In Proceedings of the IEEE 
International Corrference on Irrformation VisualisatiorL IEEE 
Computer Society, London, UK, 1999. 
[6] Kâgedal D, "A Natural Semantics specification for the equation-
based modeling language Modelica" LiTH-IDA-Ex-98/48, 
Linkdping University. Sweden, 1998 
[7] Martin Caria, Alfonso Urquia and Sebastian Domiido, 
SPICELib - Modeling and Analysis of Electric Circuits with 
Modelica, Proceedings of the 3rd International Modelica 
Conference, Link<5ping, Sweden, November 3-4, 2003, Peter 
Fritzson (editor), pp. 161-170. 
[8] Mattsson S.E, M. Andersson, and K. J. Âstrflm: "Object-
oriented model ling and simulation". In Linkens, Ed, CAD for 
Control Systems, chapter 2, pp. 31-69 Marcel Dekker Inc, New 
York, 1993. 
[9] Mattsson, S. E , H. Elmqvist, and M. Otter, "Physical system 
modeling with Modelica'', Control Engineering Practice, 6, pp 
501-510. 
[10] Mattsson, S. E. and H. Elmqvist, "An Overview Of The 
Modeling Language Modelica", Eurosim'98 Simulation Congress, 
April 14-15, 1998, Helsinki, Finland 
[11] Mattsson. S. E , M. Andersson, and K. J Âstrâm, ^Object-
oriented modelling and simulation^ In Linkens, Ed., CAD for 
Control Systems, chapter 2, pp. 31-69. Marcel Dekker Inc, New 
York, 1993. 
[12] Modelica Group, "A untfied object-oriented language for 
physical systems modeling". Modelica homepage: 
http://wwwModelica.org. 
[13] Mosterman P. J., M. Otter, H. Elmqvist, "Modeling Petri Nets 
as Local Constraint Equations for Hybrid Systems Using 
Modelica", Summer Computer Simulation Conference -98 , Reno, 
Nevada, USA, July 19-22, 1998. 
[14] Otter M.. C. Schlegel, and H Elmqvist, "Modeling and 
Realtime Simulation of an Automatic Gearbox using Modelica". 
ESS'97 - European Simulation Symposium, Oct., 1997. 
[15] Otter. M., H. Elmqvist, and S. E. Mattsson, "Hybrid modeling 
in Modelica based on the synchronous data flow principie." In 
Proceedings of the 1999 IEEE Symposium on Computer-Aided 
Control System Design, CACSD'99. IEEE Control Systems Society, 
Hawaii, USA, 1999. 
[16] Torrey D.A., Selamogullari U.S., A behavioral Model for DC-
DC Converter using Modelica , Proceedings of the 2nd 
International Modelica Conference, March 18-19, 2002, 
Oberpfaffienhoficn,Germany, pp.l67-172. 
[18] Tunrniescheit, H. and J. Ebom, ~Design of a thermo-hydraulic 
model library in Modelica." In Zobel and Moeller, Eds., 

Proceedings of the I2th European Simulation Multiconference, 
ESM'98, pp. 132-136 Sodety for Computer Simulation 
International, Manchcster, UK, 1998. 
[19] Urguia A . Dormido S., DC, AC SmaJl-Signal and Transient 
Analysis of Lvel 1 N-Channel MOSFET with Modelica, 
Proceedings of the 2nd Iruernational Modelica Conference, March 
18-19,2002, Oberpftirenhofen, Germany, pp. 99-108. 

ANNEX 1 - The complete equation model 
of the R L C circuit 

model RLC_circuit 
parameter Real S A = 1 "Amplitude"; 
parameter Real S.Fmin = 50 "Frequcncy"; 
parameter Real S Fmax = 2000 "Frequcncy"; 
parameter Real R.R = 0.1 "[Ohm]"; 
parameter Real L.L =0.0001 "[Henry]"; 
parameter Real C C = 0.0001 "[Farads]"; 
Real S.p.v; 
Real S.p.i; 
Real S.n.v; 
Real S.n.i; 
Real S.v "Drop Voltage"; 
Real S i, 
Real S.freq(start = 50), 
Real S.increment(start = 0); 
Real R-p.v; 
Real R.p.i; 
Real R.n.v, 
Real R.n.i; 
Real R.V "Drop Voltage"; 
RealR.i; 
Real L.p.v; 
Real L p.i; 
Real L.n.v; 
Real L.n.i; 
Real L.v "Drop Voltage", 
Real L i; 
Real C.p.v; 
Real Cp.i; 
Real C n.v; 
Real C.n.i; 
Real C.v "Drop Voltage"; 
Real Ci; 
Real gnd-p v; 
Real gndp.i; 

equation 
S.v = S.p.v-S.n.v; 
S.p.i-S.n.i=0; 
S i = S.p.i; 

algorithm 
S.fireq := S.Fmin-^S.increment; 

equation 
S.v = S.A*sin(6.28*S.freq*time); 
der(S.increment) = S Fmax-S.Fmin; 
R.V = R.p.v-R-n.v; 
R.p.i+R.n.i = O, 
R.i = R.p.i; 
R.R*R.i = R.p v-R.n.v; 
L.v = L.p v-L.n.v, 
L.p.i+L.n.i = 0 , 
Li = L.p.i; 
L L*der(L.i) = L.p.v-L n.v; 
C.v = C.p.v-C.n.v; 
C.p.i-K:.n.i = O, 
C.i = C.p.i, 
C.C*der(C.v) = Ci; 
gnd.p.v = 0; 
C.n.i+L.p.i = 0; 
L.p.v = C.nv; 
C.p.i+S.p.i = 0; 
Sp.v = C.pv; 
L.n.i^R.p.i = 0; 
R p.v = L n v; 
R.n.i-^S.n.i^gnd.p.î = 0; 
S.nv = R.n.v, 

110 BUPT

http://wwwModelica.org


gndp.v = R.n.v; 
end RLC_circuit; 

ANNEX 2 - The complete equation model 
of the Wien oscillator 

model wien 
parameter Real AOl a = 1000000.0; 
parameter Real AOl.Vmax = 10; 
parameter Real AOl .Vmin = (-10); 
parameter Real AOl.VofFset = 0.1; 
parameter Real AOl Rm.R = 0.1 "[Ohm]"; 
parameter Real AOl.Cin.C = lE-010 "[Farads]"; 
parameter Real AOl.startTime = 0; 
parameter Real AOl endTime = 0.05; 
parameter Real Rl.R - 10000.0 "[Ohm]"; 
parameter Real R2.R = 50000.0 "[Ohm]"; 
parameter Real R3.R = 20000.0 "[Ohm]"; 
parameter Real R4.R = 20000.0 "[Ohm]"; 
parameter Real Cl.C=lE-007 "[Farads]"; 
parameter Real C2.C=lE-007 "[Farads]"; 
Real AOl.V; 
Real AOl.Vdif; 
Real AOl.Vout, 
RealAOl.Vtr, 
Real A01.in_m.v; 
Real A01.in_m.i; 
Real AOl.in_p.v; 
Real A01.in_p.i; 
Real AOl.outv; 
Real AOl.outi; 
Real AOl.Rin.p V, 
Real A01.Rin.p.i; 
Real AOl.Rin-n.v; 
Real AOl.Rin.n.i; 
Real AOl.Rin.V "Drop Vohage"; 
Real AOl.Rin.i; 
Real AOl .Cin.p.v; 
Real AOl .Cin.p.i; 
Real AOl.Cînn.v; 
Real A01.Cin.n.i; 
Real A01.Cin.v "Drop Voltage"; 
Real A01.Cin.i; 
RealRl.p.v; 
Real Rl.p i; 
RealRl.n.v; 
Real Rl .n i; 
RealRl.v "Drop Voltage"; 
RealRl.i; 
Real R2.p.v, 
Real R2.p.i; 
Real R2.n.v; 
Real R2.n.i; 
Real R2.V "Drop Voltage"; 
Real R2.i; 
Real R3.p.v; 
Real R3.p.i; 
Real R3.n.v; 
Real R3.n.i; 
Real R3.V "Drop Voltage"; 
Real R3.i; 
Real R4.p.v; 
Real R4.p.i; 
Real R4.n.v; 
Real R4.ai; 
Real R4.V "Drop Voltage"; 
Real R4.i; 
RealCl.p.v; 
Real Cl.p.i, 
RealCl.av; 
Real Cl.n.i, 
Real Cl .v "Drop Voltage"; 
Real CI.i; 
Real C2.p.v; 
Real C2.p.i, 

Real C2.n.v; 
Real C2 n i; 
Real C2 V "Drop Voltage"; 
Real C2 i; 
Real Gnd.p.v, 
Real Gnd.p.i; 

equation 
AOl.Rin.v = AOl.Rin.p.v-AOl Rin n v, 
AOl.Rin.p.i-AOl Rin.n.i =• 0; 
AOl Rin i = AOl.Rm.p i, 
AOl.Rin.R^AOl Rin i = AOl.Rm.p.v-AOl.Rin.n v; 
AOl Cm V = AOl Cin.p.v-AOl Cin.n.v-
AOl.Cin.p.i^AOl.Cin.ni =0, 
A01.Cm.i=A01.Cin.pi; 
AOl.Cin.CMeitAOl Cm V) = AOl Cin.i, 

algorithm 
AOl.Vdif := AOl.in_pv-A01in_mv; 
AOl.V-AOl.a*AOl.Vdif; 
AO1. Vout - A 01. V-r AO1. Voffset ^ AO1 Vtr; 

equation 
AOloutv = if AOl.Vout > AOl.Vmax then 
AO1. Vmax else if AO1. Vout < AO1. Vmin 
then AOl.Vmin else AOl.Vout; 

AOl .Vtr -- if time < AOl .startTime then O else if time > 
AOl endTime then O else 
AOl.Vmax; 
Rl.v = Rl.p.v-Rl.n.v, 
Rl.pi-Rl.n.i = 0; 
Rl.i = Rl.pi; 
Rl.R^Rl.i-Rl.p.v-Rl.nv; 
R2 V = R2 p V-R2 n v ; 

R2.pi-R2.n.i = 0; 
R2.i = R2.p.i; 
R2.R*R2i-R2p.v-R2.n.v; 
R3.V = R3 p.v-R3.n.v, 
R3.p.i-»-R3.n i = 0; 
R3i = R3.p.i; 
R3.R*R3.i - R3.p.v-R3.n.v; 
R4.v=R4.pv-R4.n v; 
R4.p.i+R4.n.i = 0; 
R4.i = R4.p.i. 
R4.R*R4.i = R4.p V-R4 n.v; 
Cl.v = Cl.p.v-Cl n.v; 
Cl.p.i+CI.n.i - O, 
Cl,i = Cl.p.i; 
Cl.C*der(Cl.v)-Cl.i; 
C2.V = C2.p.v-C2.n.v; 
C2.p.i-»-C2 n.i = 0; 
C2.i = C2.p.i; 
C2.C»der(C2.v) = C2.i; 
Gnd.p V - O, 
AOl.in_m.i-(AOl.Cin.n.i-HAOl.Rin.n.i) = 0. 
A01.Rin.n.v = AOl.Cin.nv; 
AOl.in m V = AOl.Cin n.v; 
A01.in_p.i-(A01.Cin.p.i^A01.Rin.p.i) = 0; 
A0l.Rin.p.v = A01.Cin.p.v; 
A01.in_p.v = AOl Cin.p.v; 
A01.in_m.i-Rl.n.i^R2.p.i = 0: 
Rl.nv = AOl.inm.v; 
R2.p.v = AOl.inm.v; 
A01.in_p.i+Cl.n.i-K:2.p.i-R4 n i = 0; 
Cl .n .v-AOl .injj v; 
C2.p.v = A01.in_p.v; 
R4.n.v = A01.in_p.v; 
A01.oui.i+R2.n i-^R3.p.i = 0; 
R2.n.v = AOl.outv; 
R3.p.v = AOl.out.v, 
Cl.p.i+Gnd.p i+^Rl.p.i+R4.p i = 0; 
Gnd.p.v = CI.pv; 

- R l . p . v - C l . p v ; 
R4.p.v = Cl p.v; 
C2.n.i+R3.ni = 0; 
R3.n.v =C2 n.v; 

end wien; 

111 
BUPT


