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Chapter 1

Introduction

Within the recent two centuries, humanity already underwent three industrial revolutions and
is standing on the edge of the so-called ”fourth industrial” revolution right now. Each of
them yielded certain accomplishments, which had major positive impact on the quality of life
of many and boosted productivity.

At the beginning of this new industrial revolution, ”industry 4.0” the hope is that devices
will get smaller and smarter, leading to a multiplicity of smart, elegant helpers which are
highly connected and do not in any way remind us of those bulky personal computers we
use today. The hope is that technology gets more integrated and more connected with most
of the things we commonly use. Multiple smart devices, an internet of things, helping and
guiding us within the construction lines, office spaces, and storage.

We also expect that this increased connectivity will leverage the possibility to collect all
sorts of data about processes, monitoring quality and spot shortages within production. Ev-
erything will be uploaded into the ”cloud” and all kinds of complex statistical analyses will be
performed within this ”big data” to optimize processes and predict business development.And,
finally, robots which are already indispensable to production today, are expected to be ubiqui-
tous. In today’s vision of the industry 4.0 factory, robots will also appear as a kind of artificial
assistant. They are expected to become more collaborative and work next to their human
co-workers within the production lines. These collaborative robots do their work without
being caged within security fences.

But operating robots next to humans entails not only that robots act more carefully and
being more sensitive to their environment in order to not harm their co-workers. It also re-
quires them to handle more complex scenarios, since the work environment they must deal
with is the environment of a human, which is usually not specialized for automatic processes.
Hence equipping robots with cameras and sensors, making them smarter so they can be more
flexible in interacting with their environment will be a crucial demand for the foreseeable
future. And yet, reality looks much different. Although there are hundreds of robots and ma-
chines on production lines, there are still numerous humans necessary for multiple assembly

7

BUPT



1. - Introduction

steps. Machines are still missing major sensing capabilities and are not yet able to handle
situations which are not well-defined. One such not well-defined situation occurs as soon as
the parts such robots must deal with are not fixed in position or have irregularities.

This is because machines like robots are built to repeat their work with high accuracy. If
a work piece is misplaced, a robot needs to modulate its path. If it just statically repeats
the path it once learned, it will fail. To empower a robot to recognize such situations, it
needs to be equipped with sensors and software which can determine an exact position of a
workpiece and can provide one or multiple corrections to the robot. This type of software is
usually applying methods of computer vision and therefore it is called a vision system. These
vision systems are using optical devices to detect the parts, their position and irregularities
and guide the machines within their application. They exist in multiple variations; some use
simple camera technology to observe objects, others apply complex combinations of struc-
tured light, laser or other technologies to determine the desired information. Sensor types are
usually chosen by the customer demands in accuracy. For some applications, it is sufficient
to get a simple one-dimensional measure like distance, while others need highly accurate 6-
dimensional 1 measures of the environment where they operate. For some applications, it is
sufficient to have a rough global measurement, within the range of a few millimeters, whereas
others need very high accuracy, which makes it necessary to take the measurement close to
the spot of application to get a higher measurement quality. For high-accuracy applications,
it might also be necessary to determine the shape of an object’s deviations.

In order to understand the requirements of such systems, one needs to understand the prob-
lems arising during production. Further, one also needs to understand where tolerances come
from and how they affect the quality of the final results. For instance, as a car progresses
through the assembly process, the leeway for tolerances rises. Since every part of the body
adds little tolerances to the whole construction, no car will end up in perfect shape. Al-
though these tolerances have been minimized repeatedly during the past decades, they have
not completely disappeared yet. On the other hand, the quality of the car strongly depends
on keeping those tolerances as low as possible. Therefore, since the goal is to raise the pro-
duction quality, localizing such sources of tolerance and reducing them is still one of the main
problems to solve.

Finally, one can state that there are multiple sources of errors, and they are ”adding”2 up
within the different assembly stages. However, this means that keeping the measurements
as local as possible for a given process excludes many of these global influences. The path-
correction algorithm proposed in this thesis is a good example of such a method. It determines
the correction directly at the spot of application, excluding all previous errors within the tol-
erance chain.

Another problem is that, compared to humans, who can with determine objects within their

1Those 6 dimensions are composed of the 3 directions of room space and the corresponding rotations
around each room space direction degree of freedom.

2The word ”adding” should not be interpreted in a mathematical manner, since from a statistical point of
view these values do not just simply add up.
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visual perception and correlate them within the images of both eyes to a 6 dimensional scenery
effortlessly, just by judging their shape and appearances, vision systems do not have such a
flexible perception. These systems still need strong features and some kind of geometrical
information to be able to determine a model in a 6-dimensional space. A vision system has
no human perception; it cannot detect objects as they are but rather concentrates on visually
strong characteristic within the object to determine its position.

Another obstacle is that the dimensionality of most sensors is less than the expected di-
mensionality of the results. An obvious example is a camera, which only provides brightness
levels within a 2-dimensional matrix, but which is sometimes expected to measure within
3-dimensional space. Hence one needs to determine a way to extract the missing information
about the third dimension from the image. This can be rather complicated, and yet there
are multiple approaches to solving this problem today. Each approach has its strength and
weaknesses in certain situations. But almost all are based on a mathematical model copying
the projection model of the light rays registered by the camera chip. This thesis will provide
a basic overview of the common methods and the mathematics behind them in the chapter
”State of the Art”. Many modern sensors that also includes laser-triangulation sensors are
based on mathematical models, which are somewhat similar to the ordinary camera models
presented in that chapter.

One sensor type that especially benefits from theses model equations is the laser line sensor.
This is a type of structured-light sensor that uses the model equations mentioned above to
reconstruct the geometrical characteristics of the observed shape. They often appear as smart
sensors, which achieve laser detection in the image data and the geometric reconstruction
within CPUs and FPGAs embedded within the device. Nowadays, many robot guidance ap-
plications focus on such sensor devices and, therefore, they are the subject of many research
projects. Their benefits are obvious, since they provide information about the objects’ shape
without needing any visual features3. In addition, they are also strongly independent of the
objects’ color or the environmental light. Having such sensors, which can work with surface
shape characteristics rather than visual features, opens the door to a whole new range of
applications. However, existing algorithms need to be adapted to this kind of measurements,
as well. And thus, this whole new set of possibilities also entails a huge demand for research.
Hence, this thesis focuses on the two major applications of theses sensors, which are path cor-
rection and panel fitting. It introduces state-of-the-art modeling and derives new techniques
to apply laser stripe sensors more efficiently. The major focus will be on path correction for
sealing bead on wing parts. This thesis will introduce new model equations to determine
the correction vectors based on laser stripe sensor data, which are applicable for both path
correction and panel fitting. All proposed ideas will be presented as whole concepts, which
means that this work not only focuses on the mathematics for determining the correction
vectors, but also derives methods to perform calibration and optimize the sensor data, in a
way, that fits the requirements of the application cases.

3Features that are visible within an image of the object, like an camera image.
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1. - Introduction

1.1 History of assembly line production
The ideas discussed in this thesis are meant to be applied within automated industrial assem-
bly lines for car production. An assembly line breaks the whole production down into multiple
steps. This is achieved by dividing the complex process of manufacturing a car into multiple
simple steps, which will be performed at numerous so-called workstations.

This concept goes back to Frederick Winslow Taylor, who searched for multiple ways to
improve industrial production outcomes. One of his insights among multiple others was that
by factoring processes into discrete unambiguous units, the workers will perform significantly
better than in doing complex work that consists of multiple steps. His hope was to be able
to break down each step into simple, well-documented, and scientifically analyzed processes
that can be executed almost automatically. Taylor published his famous ideas, which can be
understood as the first fundamentals of horizontal production optimization, in his book The
principals of scientific management [1]. Shortly after, in 1913, Henry Ford pushed these con-
cepts to the next level by introducing the first assembly production lines in his car production
process.

Nevertheless, in those days production lines were full of people and automated worksta-
tions were a rarity. Today, more than 100 years later, this image has changed drastically. In
multiple areas within many production sites, humans are rarely spotted.

One of the major breakthroughs on the road to perfectly subdivided and mechanical au-
tomated production processes, like Taylor imagined them, was the invention of the industrial
robot.

1.1.1 Industrial Robots
As already stated in the introduction [1], robots were a major breakthrough for the automated
production. Generally spoken, a robot can be seen as a flexible and programmable machinery
able to perform complex tasks repetitively and with high accuracy. The idea of robots is
quite old and cannot be dated with precision, but the word “robot“, however, originated in
the Czech language (robota meaning ”forced labor”) and was introduced in the role play
”Rossum’s Univeral Robots (RUR)” written by Karel Capek [2]. The ”Robots” within RUR
were mechanical creatures meant to replace the human workers and eventually turn on their
masters.

Today, robots certainly do replace the work of multiple humans in many cases. Although
this might sound scary at first, it is not necessarily so. There are multiple types of robots
today and many among them serve irreplaceable tasks. They might be used in places which
are dangerous or where humans should not or cannot work. These can be tasks like defus-
ing bombs, operating at hazardous locations like Fukushima, or performing work in remote
locations like the deep sea. But even the industrial robots, which sometimes are blamed for
replacing human labor for the purpose of cost efficiency, are quite beneficial at a close look:

• They can be applied for multiple type of tedious and repetitively tasks, which humans
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1.1. History of assembly line production

unwillingly do.

• They lower production costs and therefore keep production site in high labor costs
countries and save the remaining jobs.

• They are able to perform tasks with higher accuracy and hence deriving better quality
products.

• They empower the production to be more complex since they operate faster and thus
perform more processing steps in the same time.

• They keep the quality repetitively on the same level without fluctuations.

• They keep the materiel usage on the same level.

• They can perform harmful tasks like coating the car with paint.

There are multiple categories of industrial robots. The one type, important for this work,
is the ”articulated robot”.This robot type is made of 6 orthogonal mounted joints. In con-
trast to most other robot types, like for example the SCARA or cylindrical robots, which are
only able to reach a point from a fixed direction, the 6 joints of the articulated robot allow
the robot to approach a single point from different directions, as illustrated in figure (Fig.
1.1). The direction from which the robot is approaching a point is called ”orientation” and
is usually described by 3 angles (Rotation about X: γ,Rotation about Y: β,Rotation about
Z: α) between the active reference frame and the wrist of the robot. The point itself is
described by its coordinate (X,Y,Z). Therefore, each robot configuration can be described

Figure 1.1: Different possibilities to reach a single point

by a 6-dimensional vector, which includes the orientation and the position. This vector is
called a robot pose and is described by a transformation. There are multiple ways to describe
such a transformation and, unfortunately, they can easily be confused. For industrial robots
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1. - Introduction

however, the RPY angles are the most common. Details about transformations and their
representations are in the appendix [C.2].

In the most basic case, the robot’s pose describes the relation form the robot’s base frame4,
which is the coordinate frame originated close to the robot’s base plate, to its wrist. An
additional coordinate frame, called the tool-frame, is used to propagate from the wrist, which
is usually the flange plate of the robot, to the mounted tool. If one considers the situation
illustrated in figure (Fig. 1.1), he would receive the exact pose where the peak is pointing,
if the robot’s controller knew about the tool transformation of the mounted peak.

To determine the robot’s wrist location related to the robot’s origin, the robot controller
calculates the so called ”forward transformation”. The forward transformation can be cal-
culated by considering each joint orientation, which is well-known due to the incremental
encoders within the joints’ engines and the physical length of the joints. This calculation
can be executed by applying a special calculation scheme called the ”Denavit-Hartenberg-
Transformation”[3]5. This scheme describes a standardized way to set up the transformation
matrices based on a set of parameters ”Denavit-Hartenberg-Parameters”), describing the
certain characteristic of the robot’s joints. Nowadays it is the standard way to calculate the
forward kinematic for almost all industrial robots.

Having this forward transformation, the robot now knows where its wrist is positioned within
its base coordinate frame. By knowing the tool transformation, it also knows where the tool
is pointing relative to the base coordinate frame. Finally, it is quite common to provide a fur-
ther information to the robot controller, which is the portion of the ”part” the robot needs to
apply its work on. This relation is often called the ”workobject”6. If all these transformations
are determined correctly, the robot control will be able to calculate the robot’s tool-position
within the coordinate space of the part. Thus, the robot knows where it operates relative to
the part coordinate frame. Figure (Fig. 1.2) illustrates all these relationships. By applying
such a complex system of transformations, the robot is always aware of the position of the
tool center point (TCP) related to the workobject. Therefore, one will be able to plan the
robot programs on a CAD model of the workobject, since the robot can use the transforma-
tions to guide its TCP exactly to the preplanned coordinates. Hence, one major benefit is
being able to prepare program ”offline” within a simulation and then load it into the robot.
The alternative way is to block the robot for hours, sometimes even days, and create the
programs ”online” within the physical scene.

Another benefit is that the robot and the tool can be changed. If, for example, the tool
breaks and the robot gets a new tool that is basically the same but has slight deviations, one
only needs to determine the tool transformation and all the programs will perform as before.
This is also true if the whole robot needs to be exchanged. After measuring the ”workobject”

4Depending on the robot manufacturer this coordinate frame might be named differently (e.g. KUKA
called it RobRoot)

5Sometimes abbreviated by DH-transformation
6Unfortunately there is no unique naming for most of the transformation between the robot manufacturers.

Hence the ”wokobject” is common in ABB controls, whereas KUKA calls it the ”base frame”. Similar situation
like with the name of the origin above.
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Figure 1.2: Relation between the most common frames for an industrial robot

transformations for the new robot, all the programs will run again the same way as on the
old robot.

And, last but not least, having all these complex transformations allows the robot to de-
termine the path in between the points within its programs. As a result, it is possible to
move the robot exactly in circular tracks or a linear track without training the robot all the
points between the start and endpoint. This would not be true if the robot uses only the
joint configuration for determining the positions within its programs.

Nevertheless, all these transformations are fixed within the robot. Once the robot is con-
figured and enters the automatic mode, the transformations cannot be changed. So, if the
scene is not static and the transformations within the robot’s workspace need to be ad-
justed, one needs to enhance the robot with systems that are able to determine the new
configurations, measure the changes, and correct the transformation frames within the robot
controller. Such systems are vision systems. They have a visual perception provided by sen-
sors or cameras and provide the calculation to transform these measures into new frames for
the robot.

1.1.2 Production in modern car plants
For complex goods like cars, the production is also separated further into several departments
like:

• Press shop, where the plain metal sheets, arriving as coils, are cut and shaped;
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• Body shop, where the raw body is assembled by welding and gluing the separate parts
together;

• Paint shop, where the assembled body will be coated with multiple layers of functional
and esthetic coatings; and

• Assembly shop, where the coated body shell will be further assembled with functional
and interior parts until it is completed.
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Figure 1.3: Shows a map of the Volkswagen plant in Zwickau Germany with colored produc-
tion departments (reproduced with permission of Volkswagen AG)

Figure (Fig. 1.3) depicts the map of the Volkswagen production site in Zwickau Germany,
where all the above-mentioned departments have been colored. They gray buildings are not
related directly to production, but are for administrative, logistic or research purpose. Since
the workstations are lined up sequentially along the assembly line7, a workstation that is out
of order can shut down a whole production line. Hence, a single workstation failure can cause
a significant collapse of production output. And if one thinks of the number of workstations
involved in a complex production process, it is easy to imagine that this can happen quite
often. Therefore, each department has a well-trained maintenance team that takes care of
the workstations. But still, every 3 to 5 minutes of line stop is equivalent to one less car in
production output. Since such a variance in the production output would be unacceptable,
there are production buffers in between the departments. Such buffers sometimes provide

7In rare cases workstation are build in parallel.
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capacities within the quantity of a whole shift in order to compensate the missing output of
a line stop. In the later stages of production, the buffers consist of large-capacity, automated
storage in the form of a high rack that keeps assembled car bodies in multiple layers. Im-
age(Fig. 1.4)8 illustrates such a storage for painted car bodies within the paint shop.
And of course, the buffers are highly automated. The car bodies are not moved around by

Figure 1.4: A high rack storing multiple painted car bodies.

fork lift, but automatically put on line. Such automated processes can be found everywhere
within modern production lines. And, as described within the section on industrial robots
(section [1.1.1]), such machines, which include robots, have no perception of the environment
and therefore are only able to handle static scenes if they were not equipped with some kind
of sensor vision. Hence, they depend on static, non-changing, environments. And therefore,
it is natural that one tries to set up automatic workspaces with fixed references between the
automation units. In many situations this is perfectly possible. In the body shop, for example,
the pressed steel sheets will be assembled to a whole car body. During this procedure, they
will be fixed within fixtures in defined positions. Image (Fig. 1.5),for example, illustrates
a fixture for a door frame in the body shop. Within such workspaces, the robot can work
without problems since it only needs to go through the same fixed procedures over and over
again. But while the car gets further assembled, it eventually will not be possible to put it into
tables with fixtures to have a defined position. The car will be transported on a different kind
of assembly belts and remains on those while the robots will perform their tasks. One such
transportation system is called ”skid conveyor”. There, the car will be transported by a con-
struction called ”skid”. The skid is kind of a slay-like metal frame on which the car sits. On
the bottom side of the skid there are rail-like constructions. These rails run on conveyor belts
with rolls that push the skid forward. Since the rails have excessive clearance on rolls, stopping
positions of such conveyor belts are somehow inaccurate. A further problem is that the skids
circulate within production, so they get old and twisted before they are changed. And last
but not least, there usually is very poor contour accuracy of the skids even when they are new.

8Taken from a DURR commercial booklet of the EcoEMOS system at FAW/Volkswagen in Changcung
China. (http://www.durr.com/fileadmin/user_upload/fas/EE_FAW-VW_Changchun_d.pdf)
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Figure 1.5: A door fixture within the body shop.

Another system is the ”overhead conveyor”, where the car hangs in an overhead skid. Just
as with the normal skid conveyor, these skids get worn out over time, the arms get bent, the
rolls get worse, and stopping positions become inaccurate. Both conveyor types are illustrated

Figure 1.6: Image A: Car bodies on a skid conveyor. Image B: Painted body on an overhead
conveyor

in figure (Fig. 1.6). The left image (A) shows an example of the ”skid conveyor” and the
right image (B) depicts an ”overhead conveyor”. The two conveyor types from figure (Fig.
1.6) are the two most common types within automatic robot cells, but there are many other
types, especially within the assembly shop.

However, the two conveyor types can easily have position inaccuracy of ±15mm. For some
applications, such as painting, this might be acceptable. But for most of them this positioning
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tolerance is far for the expected accuracy for most robot applications, which is usually under
1mm. In these situations the robot need guidance to keep its tolerances within the requested
limits.

1.2 Discussed topics and related chapters
The goal of this thesis is to develop new ideas and algorithms which permit path corrections
on sensitive spots, like visible sealing beads on wing parts. For wing parts, such as doors, the
challenge is not only that the door as a part itself is moveable, but it is also less rigid than
bigger parts in the car body. This property also applies to multiple other wing parts like the
fender, trunk lid, or the engine hood. Also, the missing rigidity of most of the wing parts
makes it necessary to provide more than just a single correction vector.

Another challenge is that most of the sealing beads are positioned close to reference edges,
which requires very high application accuracy. This is due to the fact that the human eye
is capable to see even the slightest deviations as soon as there is a valid reference close.
Image (Fig. 1.7) depicts this fact. Figure (Fig. 1.7) illustrates two line pairs. One pair of

Figure 1.7: Visual effect of non parallel lines. Both line pairs are the same. The only difference
is that the red lines are closer to each other.

black lines and another of red lines with exactly the same angle between the lines in both
pairs. However, the average human would recognize the black lines as parallel, whereas no
one would say that for the red lines.

Unlike most sealing beads, the path correction application spots are visible to the end cus-
tomer and, even worse, most path correction tasks are related to a visual edge as well. As an
example, one can consider a sealing bead at a crimped door edge. The edge at the door will
be perfectly straight and thus similar as on the righthand side in (Fig. 1.7), so a human will
be able to see the tiniest irregularity within the bead. Hence the need for accuracy for the
correction vector is very high and, since most parts like doors are not very rigid, it is usually
not sufficient to provide a single correction for a part, but rather multiple corrections along
the contour lines. Therefore, the path correction technology proposed in this thesis provides
multiple correction vectors for different regions on the part. The difficulty, however, turned
out to be that it is hard to achieve a sufficient amount of correction vectors with respect to
low numbers of features available on most of the wing parts. This is due to the fact that
most wing parts are parts of the visible, outer body of the car, which tends to have only weak
features like body lines. Strong visible features like holes or corners, which might serve as
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a vision features, are unlikely to appear on wing parts like doors or trunk lids in sufficient
amount. Therefore, most of the systems available today apply some kind of laser line sensors
to be able to work with the body shape instead of visible features. Those sensors, however,
have the drawback that they are only able to provide their results within the laser plane, which
is two-dimensional. A similar problem appears within camera images, which also only provide
a two-dimensional projection of the real world, and which will be discussed in detail in Section
[2.1.1]. Unfortunately, the methods introduced in section[2.1.1] do not apply for laser line
sensors. Hence, one of the key achievements of this work is the formulation of methods appli-
cable for laser line sensors to perform three-dimensional measurement for position correction.
This new methodology, based on [4], will be discussed in section [3.3.1]. Driven by detection
faults within the laser line sensors on certain surfaces or spots, it is necessary to introduce
a novel statistical method having the ability to detect and eliminate faulty image points.
This method, which leads to more stable images, will be introduced in section [3.1]. And,
finally, this thesis addresses the feature detection within the sensor images itself. Since there
are multiple algorithms for point cloud matching but none of them fulfilled the performance
requirements for the application within an inline path correction system, a new algorithm
based on a special simplification of the sensor data will be presented in section [3.2]. Finally,
in order to transfer the achievements made in path correction to the field of visual servoing,
this work will also introduce a special one-step calibration for laser line sensors [4.1] and also
a method to solve visual servoing tasks in a single step [4.2].
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Chapter 2

Technical foundations

This chapter is meant to give the reader an overview over the methods currently applied for
camera and sensor based 3 dimensional measurements. It will concentrate on the two most
common types of sensors, which are plain cameras and laser triangulation sensors. Both sen-
sors come along with mathematical models to convert their images into a piece of information
capable of guiding the robot during the application. Since laser triangulation is based on a
camera, the principles of plain cameras, which will be covered in the section[2.1], also apply
for these types of sensors.

This section will cover the mathematical model behind a camera and how the two-dimensional
image features will be transferred into the three-dimensional world. The understanding of
these models is essential for the further understanding of this work. Not only to get an insight
of how the laser line sensors are working, but also to understand the basic concepts of the path
correction [3] and [4.2] which can be understood as an extension of the bundle adjustment
and was originally derived from it, but also to be able to understand the principles of camera
calibration which is a central part of the method introduces in section [4.1]. For the static
calibration, as proposed in [4.1], it is also necessary to understand the calibration of the lense
distortion. Hence the modeling of a lens and its distortion, and how to determine the distortion
model and eliminate it will be covered in section [2.1.4]. Section [2.2] will give some insights
into how to calibrate all the internal and external camera parameters. Finally, section [2.3]
will explain how to use all this information in order to perform measurements with the camera.

A second part of this chapter will cover the laser-based camera system. Section [2.4] will
introduce the principle of laser triangulation and its underlying mathematics. Since there are
different requirements for calibrating such sensors, section [2.4.3] will provide some insight
about tool center point (TCP) calibration. This calibration need to be applied to get the tool
frame of a triangulation sensor mounted on the robots wrist. The knowledge of the exact
transformation is essential, to apply the the methods proposed in [3]. Without knowing the
actual position of the measures the proposed path correction will not deliver correct results.
Alternatively one could use the method as proposed in [4.1], but in situations where it is not
necessary to have a static calibration such an approach might be too complex.

19
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2.1 Camera Model
Cameras are very common today and tend to appear in many situations. Starting from the
observation and security cameras in public places to the small built-in cameras in devices of
daily use like mobile phones or notebooks.

Within the automotive industries there are also a vast amount of applications around camera
systems. Most of the time such tasks are pertain to inspection, such as observing a scenery
and validating its correctness. But since cameras provide only a 2D image of the real world,
one does not necessarily connect cameras to 3D measurements, which they are capable to do
as well.

To enable 2D cameras to do 3D measurements, one needs to take the projection geome-
try and some prior knowledge into account. In other words, one needs to know what is going
to be observed and how it will project into the camera image. Based upon this knowledge,
the given image can be compared with the expected model of the projection. This chapter
introduces the state-of-the-art methods to mathematically model a camera and its projection
geometry. Hence, it will serve as a foundation to understand further techniques that are going
to be introduced within this thesis later on.

2.1.1 Simple pinhole camera model
An ordinary camera just creates a two-dimensional image, which is a projection of the usually
three-dimensional scene caught in this image. Therefore, one will not be able to extract clear
three-dimensional information from the image, but it will at least be possible to model the
projection geometry of the image-capturing device in order to calculate the ray trace of light
captured at the image points. The simplest way to model such a projection geometry is the
pinhole camera model. One can imagine the pinhole camera model as a light-tight box with
an infinite small hole (aperture) on one side, as well as a light-sensitive film on the direct
opposite site. Figure (Fig. 2.1) depicts such a pinhole camera. Since the rays of light are

Pi2

Pi1

PA

Figure 2.1: A simple pinhole camera

going to propagate linearly and the only possible point for the rays to enter the box is the
aperture, they all have to intersect in this single theoretical point. Therefore, one can be sure
that each ray visible on the film was going through this aperture point. And, therefore, one
knows two well-defined points in room space, which are the image point Pix on one hand
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and the aperture point PA on the other, which uniquely define a line representing the light
ray’s path through room space (Fig. 2.1). By having this information, one will still not be
able to get the exact position of one point caught within the two-dimensional image, but at
least one can be sure the imaged point is on the calculated ray, which reduces the possible
positions in room space dramatically.

Finally, if some other well-known geometrical information about the observed object is also
available, such as the object’s height or coordinates of features within the object, one might
be able to determine one unique position where the object fits the rays. Figure (Fig. 2.2)

Pi2

Pi1

PA

h

Figure 2.2: Illustrates that there is only one position, where the tree with given height fits on
the rays.

depicts an example, where the height between two points is given as h. If one considers
rotations impossible, there will be only one position where the object, in this case a tree, will
fit in between the rays. Hence by taking some geometrical properties of the observed object
into account, one is able to achieve detailed information of the object’s position.

2.1.2 Thin lens model
In practice, the approach discussed in section [2.1.1] does not seem reasonable since common
cameras are not pinhole cameras. Today’s cameras come with usually complex lens systems in
order to capture and focus a sufficient amount of light to achieve a good and quick exposure of
the film or chip behind it. Hence, it is indispensable to purge from the idea of a small aperture
which every ray goes through. The question arises whether the above-described model is still
valid for today’s cameras, since a larger aperture allows multiple rays to enter and the rays are
not all going through the same point. To understand how the light propagates though a lens,
one can apply the thin-lens model. This model serves a geometrical approximation of how
light behaves when it encounters a lens. Figure (Fig. 2.3) shows a sketch of an ideal convex
lens and how the light rays propagate through it. In (Fig. 2.3) ), the blue horizontal line
separates the lens into two identically shaped parts. All rays, which are parallel to the optical
axis before passing through the lens, will meet at the focal point F after passing through
the lens. Figure (Fig. 2.4) illustrates this behavior. The distance between the focal point
and the axis of the lens is called the focal length f (Fig. 2.4). The point behind the lens,
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Figure 2.3: The scheme of an ideal lens

in which all rays coming from one object point converge, is called the image point (Fig.
2.3). The image point is the only point where the image of this object point is undistorted,
since in every other position the rays do not converge and thus spread over a region of other
neighboring image points. As figure (Fig. 2.3) depicts, one can calculate the position where
the outgoing rays converge to the image point related to the focal length. Figure (Fig. 2.3)
shows the two rays going to the focus point, one on the image side of the lens, and another
through the mirrored focal point on the object side. Figure (Fig. 2.4) ) shows a scheme
of the theoretical projection and its approximation by the ray traces. Hence, by knowing the
focal length of a lens, one can easily calculate the image coordinates to expect by using the
interception theorem.

x
f = x′

zi−f

⇔ x
x′ = f

zi−f (2.1)

Therefore, the relationship between the focal length and the expected projection is given by
equation (2.1). In equation (2.1) zi denotes the distance between the camera chip, where the
image of the real world is projected, and the lens. This distance is called the image distance.
Whereas z, which stands for the distance of the real-world object to the camera, is called
the object distance. The position x is representing the x-coordinate of a point on the real
world’s observed object, and x′ marks the x-position of its related image point. Both distances
are depict in figure (Fig. 2.3). Equation (2.1) shows how the ratio between the object’s
x-coordinate and the images x-coordinate is connected to the chip distance and the focal
length. But usually one has no clue about the exact chip position and also the x of the object
shall be unknown, since this is usually the quantity to determine by the camera measurement.
Hence one needs to take a deeper look on the ray trace for further consideration.The ray
trace is the direct connection between the objects point and the image point, as illustrated
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F optical axis

focal length

Figure 2.4: The focal point of an ideal lens
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Figure 2.5: Raytrace and real projection

in figure (Fig. 2.3). By applying the interception theorem one more time, one can point out
the following relationship:

x

z
= x′

zi
(2.2)
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And by inserting the result of equation (2.1) into equation (2.2), one receives (2.3).

⇒
fx′
zi−f
z = x′

zi

⇔ fx′

zi−f = zx′

zi

⇔ zi−f
fx′ = zi

zx′

⇔ zi
fx′ = zi

zx′ + 1
x′

⇔ 1
fx′ = 1

zx′ + 1
zix′

⇔ 1
f = 1

z + 1
zi

(2.3)

Finally, the ray traces are going to intersect in a unique point, and thus can be used in
the same way as the light rays within the pinhole cameras. By taking equation (2.3) into
account, one can also determine the related geometrical properties between the image and
the ray traces, and will be able to calculate them.

2.1.3 A camera model base on the thin-lens model
Although the mechanical construction of lenses can get really complex, especially in photog-
raphy, the equations introduced in chapter [2.1.2] usually hold for a decent projection model.

And, if at all, they only need to be adapted for very special cases. Since in automation
the expected scenes to observe usually are of a very constant nature, meaning that the ob-
served object changes only at a small scale of millimeters, the lenses used are usually prime
lenses. These prime lenses have a fixed focal length, which needs to be chosen in relation
to the observed scene and, of course, in relation to the distance between the scene and the
camera.

If one considers, for example, an object at a three-meter distance and a prime lens with
the focal length of 50 millimeters, the sharp projection of the observed object will appear on
the chip in the image distance zi of 50.85 millimeters. This is due to equation (2.4), which
is directly derived from (2.3).

1
1
f−

1
z

= zi (2.4)

⇔ 1
1
50−

1
3000

= zi

Taking a closer look to the term 1
z of equation (2.4) clearly shows that the further the ob-

served object gets from the camera, the closer the image distance gets to the focal length.
Between ∞ to around 1 meter, the image distance usually varies between 1 and 3 millime-
ters1. Hence, common prime lenses can be adjusted a few millimeters, usually by turning, in
order to have a sharp projection. On the other hand, one can easily see that the image dis-
tance is undergoing this change more rapidly, as soon as the obstacles to observe are getting
very close to the cameras. This is especially an issue when it comes to so-called laser stripe

1Of course this is only approximately since it depends on the focal-length as well.
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sensors, where a sharp projection over the full chip range is only possible by placing the chip
at a certain angle, the so-called Scheimpflug angle.

On the other hand, if the object to observe is a decent distance away from the camera,
one has a rough approximation, where he assumes the image distance to be approximative
equal to the focal length.

zi ≈ f

If we go back to equation (2.2) and rearrange it to solve for x′, and set the image distance
zi to the focal length, we will achieve the following equation for the x-position of the related
image point:

f · x
z

= x′ (2.5)

Since equation (2.6) reproduces equally for y, one can generally state that any visible point
p=̂ (x, y, z)T projects like

(x, y, z)T →
(
f · x

z
, f · y

z

)T
(2.6)

2.1.4 Lens distortion
Equation (2.6) would already hold for a good approximation for a camera model. But usually
the light propagation through the lens is not as simple as the thin-lens model suggested.
Usually, because of the physical shape of the lens, one can expect the image to be slightly
distorted due to the lens’s physical characteristics. This type of distortion is usually called
spherical aberration. This distortion usually grows proportional to the focal length. The
distortion is usually propagating radially from the optical center to the outer edges. Because
of this, it is usually necessary to also determine the exact optical center, which depends upon
the mechanical construction of the lens and the camera. Depending on the type of lens, the
distortion can expand or shrink the image slightly, from the optical center outwards. If the

Figure 2.6: Sample radial distortions. Barrel distortion on the left and pincushion distortion
on the right

distortion in the image tends to radial grow from the center, one talks about a pincushion
distortion. If the image shrinks radially, it is called a barrel distortion. In special cases, there
might also be some kind of tangential distortion, which usually tends to appear when there is
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an angle between the camera chip and the lens. This might appear within devices, which aim
to have a special focal plane by this constructive change. This kind of distortion is illustrated
in image (Fig. 2.7). This kind of distortion appears especially within laser line sensors,

Figure 2.7: Tangential distortion

where the chip and the lens appear to be constructed with a certain angle - the so-called
Scheimpflug angle [5], in between each other. The most common model addressing all these
different kinds of distortions is the Brown-Conrady model [6] & [7]. The Brown-Conrady
model is formulate in the two equations (2.7) and (2.8).

xu = xd + (xd − xc)(K1r
2 +K2r

4 + · · · ) + (P1(r2 + 2(xd − xc)2) +
2P2(xd − xc)(yd − yc))(1 + P3r

2 + P4r
4 · · · ) (2.7)

yu = yd + (yd − yc)(K1r
2 +K2r

4 + · · · ) + (2P1(xd − xc)(yd − yc) +
P2(r2 + 2(yd − yc)2))(1 + P3r

2 + P4r
4 · · · ) (2.8)

where

(xu, yu) = Undistorted points

(xd, yd) = Distorted points

(xc, yc) = Center of distortion

Kn = nth radial distortion coefficient

Pn = nth tangential distortion coefficient

r =
√

(xd − xc)2 + (yd − yc)2

The parameters (xd, yd) are the distorted image points recorded by the camera and (xu, yu)
are the resulting undistorted point coordinates. As indicated by the dots, this model can
be set up to an arbitrary number of coefficients Kn and Pn. In practice though, it is very
common to finish with K3 and P2. The model equation is highly non-linear, which makes
it impossible to derive a close-form solution, or even an inversion, turning an undistorted
point back into a distorted point. Therefore, in order to determine the distortion parameters
vector (K1,K2,K3, P1, P2) and the related center point (xc, yc), one needs to apply iterative
methods2 converging to the final parameter vector.

The distortion calibration should be performed as a separate calibration step, before de-
2see chapter [B.1]
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termining the extrinsic3 camera parameter within a second calibration step. This is due to
the fact that not all of the parameters of the two calibration steps are independent from each
other. For example, changing the center point (xc, yc) of the chip is almost similar to moving
the camera in the chip plane. Thus calibrating both parameters, chip center and extrinsic
position, at the same time, can lead to an unstable Jacobian an therefore singularities. The
distortion calibration should be performed as a separate calibration step, before determining
the extrinsic camera parameter within a second calibration step. This is due to the fact that
not all of the parameters of the two calibration steps are independent from each other. For
example, the center point

In addition, the strength and type of radial distortion will influence the object distance pa-
rameter. Finally, it is important to note that the proportions of the parameters differ strongly.
Hence the calibration appears to be a two-step procedure, where first the step is the calibra-
tion of the intrinsic parameters, distortion and its related center point 4, and the second is
the calibration of the extrinsic parameters that are giving the camera position.

Having no extrinsic calibration also means the feature references are not useable during the
distortion calibration. Therefore, one needs to fall back on geometrical shapes provided by the
calibration body. Points that are linearly aligned5 are very commonly used for that purpose,
since the related equations are quite simple. The line points might be given by some features
with line up in a pattern, like the code features in (Fig. 2.8)) or the chessboard-like pattern
applied within the OpenCv6 calibration. The only important thing is to have some kind of
features aligned in a matrix, where one can extract the edges, corners, or centers, and deter-
mine if they follow the virtual lines within the matrix7. The features can be detected without
extrinsic calibration, they can be extracted within pixel space and they can be arranged to
sets that represent the virtual lines. As a quality measure for a single line, one can apply the
formulas given in equation (2.9).

[
U,Σ, V T

]
= svd


p1x p1y
p2x p2y
...

...
pnx pny


∆dn = V · Σ−1 · UT

‖V · Σ−1 · UT ‖
· pn −

∥∥V · Σ−1 · UT
∥∥ (2.9)

3Camera parameters are separated into two groups, which are the ”intrinsic” and the ”extrinsic” parameters.
Intrinsic parameters are the internal camera parameters, like chip geometry and the projection geometry.
Extrinsic parameters are the outer parameters, which describe the position of the camera in the scene.
Detailed description can be found in section [2.2]

4There are more intrinsic parameters like focus or pixel size, details on that in section [2.2] .
5That means the points should be on a line.
6OpenCv is an free available image processing toolkit. It also provides mod-

ules for camera calibration. Details about the OCV calibration can be found under
”https://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html”

7Theoretically one can use other geometrical schemes, but matrix like schemes are by far the most common.
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The operation ”svd” in (2.9) stands for the ”singular value decomposition” 8, which is used
to calculate the pseudo inverse of the point matrix. The vector p is a vector of points ex-
tracted from the image, which should be arranged on a line, and ∆dn is the distance of the
nth point pn to the best fit line through the whole set p. Hence, ideally all elements of the
vector ∆d should be zero. The function presented in (2.9) can serve as an error function for
a non-linear solver such as described within section [B.1]. But since the proportions of the
distortion parameter (K1,K2,K3, P1, P2), which are usually in the range of 1e7 per pixel,
and the center point, which is 1 : 1, are so much ill-posed, there needs to be an adjusting
factor applied to ensure the relation in between.

Image (Fig. 2.8) presents the resulting image after applying the above-described meth-
ods to a strongly distorted image containing a calibration plate on the left and the resulting
undistorted image on the right. The green boxes are displaying the undistorted reference for
the center region. Within the undistorted image on the right hand, one can clearly observe
that the calibration marks at the edge of the green rectangle stay aligned to the reference
edge, whereas on the left-hand side, those boxed in the center of the edges strongly exceed
the limits.

Figure 2.8: The strongly distorted image on the left and the resulting undistorted image after
applying the Brown-Conarady model

2.2 Camera calibration
As described in the previous section, the calibration of the distortion is the first step and is
usually applied by linear structures within the image. After accomplishing the distortion cali-
bration, the nonlinearities have been removed from the system and the remaining projection
can be described as a linear model. This linear model is set up by the equations describing
the pinhole camera from section [2.1.1] and the lens projection introduced in [2.1.2]. Yet,
these parameters do not cover the complete requirements of a camera calibration, since they
only describe the internal projection behavior. Therefore these parameters are referred to as

8An SVD decomposition factorizes any matrix into the 3 unique matrices
[
U,Σ, V T

]
, which contain both

sides singular values and their scales. In this cased it is used to provide a numerical stable way to calculate
the pseudo inverse of a matrix [8].
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the ”intrinsic” parameters of the camera. In order to be able to use the camera to perform
measurements within the real world, it is important to know where the camera is located in
the world coordinate space. Otherwise one would be able to calculate the ray trajectories of
the light going through a pixel, but could not use it since one does not know where the ray
originated and how it propagates though the world frame.

Therefore, the so called ”extrinsic” parameters, which store the position of the camera,
are also an important part of the camera calibration which needs to be determined. Such
transformations are usually composed of two parts: an orthonormal rotation matrix R of size
3 × 3 and the translation vector tT of size 1 × 3. A detailed description of transformation
matrices can be found in the appendix [C.2]

Therefore a camera calibration must obtain those two sets, the ”intrinsic” and ’extrinsic”
parameters, as a result. A common way to obtain those parameters is the method of ”direct
linear transformation” (DLT), published by [9] and [10]. Unfortunately the method proposed
in [9] only works with non-planar calibration targets, whereas the method presented in this
work by Tsai [11] can also be applied to planar targets, which are more common. This method
starts with a linear model, as given as in equation (2.10).x′y′

z′

 = K [R t] ·


x
y
z
1



⇒ λ

uv
1

 = K [R t] ·


x
y
z
1

 (2.10)

where

u = x′

z′

u = y′

z′

λ = z′

(2.11)

In equation (2.10) u and v are the pixel coordinates, λ is the scale factor, which turns the
projection coordinates into homogeneous coordinates and the vector (x, y, z, 1)T represents
the homogeneous reference coordinates from the calibration target. Matrix K is holding the
intrinsic parameters of the camera and is composed as given in equation (2.12)

K =

f 0 xc
0 f yc
0 0 1

 (2.12)

Here f is the focal length and xc and yc are the center point coordinates, or often also called
the ”principal point”. The extrinsic parameters of the camera are contained in the 3 × 4
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matrix [R t], which is composed of a 3× 3 rotation matrix R and a 3× 1 vector containing
the translations. Both matrices K and [R t] can now be multiplied to a single 3× 4 matrix
P called the camera matrix.

λ

uv
1

 = K [R t] ·


x
y
z
1



λ

uv
1

 = P ·


x
y
z
1

 (2.13)

If one now considers multiple well-known reference features on the calibration target Xi =
(xi yi zi) it follows that for each feature the following equality must hold:

0 = P ·Xi − λi

uivi
1

 (2.14)

And since the matrix multiplication of (2.14) is happening row-wise, one could also write
them separately as stated within the equations to .

0 = Xi
T p1 − λiui (2.15)

0 = Xi
T p2 − λivi (2.16)

0 = Xi
T p3 − λi (2.17)

In equation (2.15) to (2.17) the elements p1, p2, p3 are representing the row vectors of P.
Within the next step equation (2.15) to (2.17) are transformed in a way, that all unknowns,
which are the elements of P and the scale factors for the projection λi, a gathered in a single
vector, whereas the remaining elements are coped within a matrix.

0 =

Xi
T 0 0 −ui

0 Xi
T 0 −vi

0 0 Xi
T −1


︸ ︷︷ ︸

A


p1
p2
p3
λi


︸ ︷︷ ︸

h

(2.18)

Equation (2.18) achieved major step forward by rearranging the equation into the general
linear shape Ah = 0. The next step would be to follow this scheme for a set of multiple
references For the camera matrix P we have 12 elements, but only 11 degree of freedom
due to the invariant scale within the projective geometry. With each reference, we gain 3
degrees of freedom but we also add one unknown scale factor. Thus there is a minimum of 6
references in order to be able to solve the problem. Equation (2.19) provides the full scheme
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for multiple references.

0
...
0

 =



Xi
T 0 0 −u1 0 0

0 Xi
T 0 −v1 0 0

0 0 Xi
T −1 0 0

Xi
T 0 0 0 −u2 0

0 Xi
T 0 0 −v2 0

0 0 Xi
T 0 −1 0

...
...

...
...

. . .
...

Xi
T 0 0 0 . . . −un

0 Xi
T 0 0 . . . −vn

0 0 Xi
T 0 . . . −1


︸ ︷︷ ︸

A



p1
p2
p3
λ1
...
λn


︸ ︷︷ ︸

h

(2.19)

Since the scale along the rays in a projective geometry is arbitrary, there will be a solution
satisfying the constraint ‖h‖2 = 1 for a certain set of λ. Hence the solution can be found by
solving the homogeneous least squares problem of equation (2.20).

min
‖h‖2=1

← ‖Ah‖2 (2.20)

Now one can expand equation (2.20) and replace the matrix A by its eigenvalue representa-
tion Axσmin = σminx (2.21).

‖Ah‖2 = (Ah)T Ah
= hTATAh
= hT (σminxTσminσminxσmin)h
= σ2

min(hT (xTσminxσmin)h) (2.21)

In (2.21) σmin represents the smallest eigenvalue and xσmin is the corresponding eigenvector.
Putting this back into equation (2.20) and settings h = xσmin one achieves equation9 (2.22).

min
‖h‖2=1

← ‖Ah‖2 = σ2
min(xTσmin(xTσminxσmin)xσmin) = σ2

min (2.22)

Therefore a solution of (2.20) can be found through the eigenvalues, since the minimum
must be where h aligned with the smallest eigenvector of A. It is also common practice to
solve for the minimum by using an SVD decomposition. The SVD is a matrix decomposition,
which decomposes matrix A into 3 matrices

[
U,Σ,VT

]
= svd(A) where A = UΣVT .

The interesting property of an SVD decomposition in this case is that VT contains the eigen-
vectors of ATA and the diagonal of Σ are the corresponding eigenvalues ordered by size
σ1,1 > σ2,2 > . . . σn,n. Hence the minimum of equation (2.20) is where the vector h is equal
to the last row of V.

9Keep in mind, that the length of a eigenvector is 1 and therefore the square xT x is 1, as well.
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Now, having the minimizing vector h containing all the unknown elements of the camera
matrix we also have a result for P and the final question is, how can one decompose this
matrix into the two separate matrices containing the intrinsic and extrinsic parameters. Since
matrix K was defined as an upper triangular matrix (equation (2.12)) and that the rotation
matrix R is a 3×3 is an orthogonal matrix, the QR decomposition seems to be an appropriate
method.

If A is an n×n matrix then there is an orthogonal matrix Q and a right triangular
matrix R such that

A = RQ

Considering equation (2.13), the translations that are also contained within the resulting
matrix A must be within the last row of P. Hence the matrix A must be the left-hand 3× 3
sub matrix of P. Finally, since element a3,3 of A might not be 1, every element of A needs
to be divided by a3,3 in order to achieve the structure as given in (2.10).

2.3 Measuring with cameras
To understand how it is possible to measure with cameras, one has to recall the camera model
introduced in section [2.1.2]. It described the model of the linear light propagation through
the camera. Hence, it is possible to calculate the ray of light and how it propagates though
room space. This is due to the fact that there are two well-known points on the ray. First,
there is the principal point, where ideally all rays go through and where the camera coordinate
system has its origin. Second, there is the point where the ray hits the CCD chip. This point
is represented by a pixel position within the image and needs to be extracted with the help
of a feature detection algorithm. The ray going through these two points is the original path
of the light from the obstacle to the pixel position. Therefore, one can be sure the desired
position is on this ray, but still there is an infinite number of possibilities since it can be on
any positive distance away from the camera.

To be able to fix the position on the ray, one needs additional information. In the sim-
plest case, this might be another camera observing the very same position. This constellation
is called a stereo system, or stereo vision. Now there are two cameras and two rays. If
those rays were ideal, they would intersect at some position if they are not parallel. This
position must be the desired point in room space. In reality, however, there are various noise
influences and hence the rays will be skewed but come very close in this certain point. The
target position is then assumed to be the center of the line segment orthogonal to both of
the rays in the point where they are the closest. Since this distance is usually very small, at
least when the cameras are well calibrated, this point will still be referred to as intersection
point.

This constellation of two cameras observing the same spot is depicted in figure (Fig. 2.9).
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F

F

Figure 2.9: The two rays from each camera intersect in the real 3 dimensional position.

One can see the two cameras observing the apple and the schematic of the rays from the pic-
ture though the focal point and intersecting at the apple. Of course, such systems need both
cameras to operate within the same coordinate frame. Therefore, they have to be calibrated
with the same calibration target10, or at least both target positions need to be related by an
external measurement system in order to identify their position within the global measurement
frame. The intersection point will then be a point within the three-dimensional calibration
frame.

Another common measurement constellation with cameras is the so-called bundle adjust-
ment. Bundle adjustment works with multiple features that are all located on a single object.
Each feature will be extracted from the images with the help of an image processing algorithm
and, again, the unique rays (bundles) will be calculated. For each feature one also needs to
know the exact position within the object’s frame. The object frame is the frame connected
to the object. This is the frame which needs to be determined within the scene (e.g. world
frame). Since the bundle adjustment determines not just a point, but a frame, it will also
provide the orientation of the object.

Figure (Fig. 2.10) depicts such an arrangement. There are four cameras, each observing
one feature. Two in the front and two in the back. The rays going through the features and
the pixel within the image are indicated by the purple lines. The front features are marked
with the red cross within the circle. One might be able to imagine that the car will not be
able to move without pulling the features away from the rays. That means, on the other
hand, that there is only a unique position for the car with the given rays. This position is the

10In this context same is also related to the position. The calibration plate should not move, while both
cameras capture an image and perform the calibration
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⊕ ⊕

Figure 2.10: Bundle adjustment for car body detection.

result of the bundle adjustment.

If one considers n to be the number of known reference points in the object frame and
m to be the number of cameras, then equation (2.23) yields the error function for the bundle
adjustment.

min
X

n∑
i=1

m∑
j=1

d(λPjXbi, pi,j)
2 (2.23)

Within equation (2.23), Pi is the camera matrix as derived in equation (2.13) in section
[2.2], mapping the known three-dimensional features bi = (xi, yi, zi, 1)T into the image plane.
And finally X is the transformation which describes the cars position within the world frame.
The function d(p1, p2) determines the Euclidean distance between two pixel positions. Hence
the final vector pi,j must be the extracted pixel position of the feature within the image.
The equation (2.23) needs to be minimized with the help of some non-linear solver, like
”Levenberg Marquard”. Further details about non-linear solving can be found in appendix
[B]. Equation (2.23) just considers the linear projection. A more general approach is in
equation (2.24), where Q() denotes a general function mapping the features into the image
plane. This function might also include some non-linear image distortion as described within
section [2.1.4], as well.

min
X

n∑
i=1

m∑
j=1

vi,j d(Q(aj , bi,X), p
ij

)2 (2.24)

Sine Q() will need the know the camera parameters for each camera, they will be supplied by
the parameter vector aj . Finally, there is also a weight factor vi,j . This can be used to reduce
the influence of certain features, for example if the quality of the pixel position determined by
the image processing is not very high, or just to turn off features which have not been detected.

BUPT



2.4. Laser triangulation for distance measurement

The bundle adjustment can also be applied within camera calibration, with m = 1 providing
an iterative scheme for just solving a subset of the camera parameters.

2.4 Laser triangulation for distance measurement

The path correction technology introduced within this work usually employs laser triangu-
lation sensors to acquire the measurements. Such sensors are able to measure distances to
object surfaces related to an internal sensor coordinate system. This is achieved using a laser
projection observed by a built-in camera. The measurement principle of such sensors is called
”laser triangulation” and there are two basic types of laser triangulation sensors.

Laser distance sensors measure only distances by projecting a laser dot on an obstacle. The
reflection of the laser will be received by an array of small independent photo diodes, rep-
resenting a row of pixels. Image (Fig. 2.11) depicts such an arrangement. In figure (Fig.
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Figure 2.11: Laser triangulation principle

2.11), one can determine the desired distance z if the angle α, the distance d and the focal
length f are fixed and well-known by a calibration method. Therefore, equation (2.26) which
describes the major triangle, and equation (2.25), describing the minor triangle, need to be
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combined into equation (2.27), which gives the distance z as a function over x.

tan(α′) = x

f
(2.25)

tan(α+ α′) = z0 + z

d
= tan(α) + tan(α′)

1− tan(α) · tan(α′) (2.26)

z(x) = d · f tan(α) + x

f − x · tan(α) − z0 (2.27)

2.4.1 Laser-stripe sensors
The basic construction of laser-stripe sensors is similar to that of the simple laser distance
sensors described in the previous section. The major difference is that the whole concept from
above is extended by one dimension. That means that the laser is not just projecting a point,
but a line. And the sensor is not just an array of pixels, but a matrix like the chips in normal
two-dimensional cameras. Figure (Fig. 2.12) depicts such an arrangement. The laser stripe
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Figure 2.12: Illustrates the combination of a laser stripe generator, a camera and the resulting
image

sensor projects a line on the object underneath. Where the laser meets the obstacle, a light
reflection will be visible in the camera image. Hence, the resulting camera image must look
like the image depicted within the monitor on the right side. Furthermore, it is clear that any
possible reflection of an obstacle underneath the laser must be within the plane indicated on
the left side outgoing from the laser. Therefore, the resulting image will always be a vertical
section of what lies underneath the laser.

If the sensor is calibrated, meaning the extrinsic parameter between camera and laser as
well as the intrinsic parameter of the camera are well-known 11, it is possible to transform
pixel positions within the camera image back to real-world measures within the sensors coor-
dinate system. This is possible because for every position within the camera image there is a

11Details about camera calibration and the parameters have been introduced in section [2.2].
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unique ray intersecting the laser plane. Figure (Fig. 2.13) illustrates this working principle.
The rays can be calculated with the methods introduces in section [2.1.1] to [2.1.4]. The
intersection point, then, is the real-world coordinate, achieved by calculating the plane line
intersection point. Therefore, the transformation between the camera and the laser plane
must be determined during calibration.

Since the laser line sensor employs a camera with a common lens, the lens distortion as
described in section [2.1.4] applies 1:1 to the laser line sensor as well. To achieve high accu-
rate measurements this distortion needs to be modeled and the parameter of the model need
to be calibrated. A common way to calibrate such distortions based on a checkerboard, is
described within the publication of Zheng and Kong [12]. Another publication employing a
linearly moved target is [13].
But such a complex model is usually not necessary since, due to the static arrangement of

Camera chip

Laser source

Camera lens

Laser lens

Part

Laser plane

Figure 2.13: Illustrates the working principle of a laser stripe sensor

the laser and the camera, there is only one intersection point for each pixel. In one image the
virtual ray of light from the pixel though the focal point can only intersect the laser plane in
one place. Therefore, the simplest way to calibrate a laser stripe sensor is to position a target
in well-known positions within the laser plane. The target may have a triangular shape, as
depicted in figure (Fig. 2.14). For such a shape it is very easy to extract a point of reference
at the peak, as shown with the two intersecting lines in the top image. But other shapes are
also be possible, as for example spherical objects, where the center might hold for a stable
reference point.

Finally, the real-world position of each pixel within the camera image can be calculated
since the object’s position is well-known. Hence, if the object is moved in such a way that the
majority of pixels have been covered, one will be able to create a matrix which contains the
1:1 relationship between pixel coordinates and the real-world measure. If there are still holes
left within this matrix, or if, to save memory usage, the matrix was chosen to cover only a
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Figure 2.14: Top: Calibrated distance measures. Bottom: Raw camera image.

fraction of all pixels, the remaining pixel positions can be interpolated. The final result will
be a look up table containing a depth value for each or a fraction of each pixel position.

The look up table described above also compensates for the lens distortion. But finally,
it is not always possible to position targets very accurately within the laser plane and there
are several publications12 that offer different methods for solving the relation between the
pixel potions and the laser plane, which are out of the scope of this work.

2.4.2 Sparsity of the measures
Although a laser-stripe sensor produces a cloud of three-dimensional measures, all measures
are within a plane and therefore two-dimensional. The data is, however, different from camera
images because the data is rather a vertical intersection than a projection. But, finally, there
is still a complete degree of freedom missing within the images. If one considers for example
the setup depicted in figure (Fig. 2.15), one might be able to imagine that the image of
position 1 and position 2 will almost result into the same sensor image. There is obviously no
information about the vertical position of the door without considering a position like position
3.

In multiple situations, especially when one wants to make measures within an image, the
orientation of the measurement plane related to the contour is also an essential information.
Figure (Fig. 2.16) depicts such a setup. In the left image, the laser plane is orthogonal to
the surface and thus measures height relative to the surface. Within the right picture, there
is a certain angle between the laser plane and the surface, which leads to a different height
value. Hence knowing the position relative to scene is an important information. One has
to recall that such devices are often built to measure within the 10th of a millimeter and
therefore the correct setup also plays an important role.

12Like [14] or [15]

BUPT



2.4. Laser triangulation for distance measurement

Figure 2.15: multiple measurement positions all having similar results

2.4.3 Sensor TCP calibration

The sensor coordinate system is determined within the calibration process of the sensor. Un-
fortunately, this coordinate system represents a type of virtual zero position related to the
calibration process. For many sensors, it slightly varies due to production variations and vari-
ations within the calibration process. This might not be too consequential if the sensor is
only used to measure distances within its own coordinate space, such as an object’s height
or gaps. On the other hand, if one imagines that multiple sensor images will be combined,
or one or several sensors will be mounted on the robot wrist in order to provide information
within the robot’s coordinate space, then it becomes clear that it is important to know exactly
the coordinate system of the sensor and its relation to the related components.

Finally, a major question discussed within this chapter is how to determine the position
of the coordinate frame of the sensor, which is defined by the sensor’s extrinsic parameters.
Furthermore, since the major topic is path correction, we are interested in finding the relation
between the robot’s wrist and the sensor frame. If this distance is known, one can relate the
measured points to the robot’s work object, which is usually the ideal position of the object
being measured.

One of the first publication about ”Hand-Eye calibration” [16] by Zhuang, Roth and Sudhakar
adresses a similar problem, but in the case they describe, the sensor was a camera. Since
the camera is providing a fully qualified transformation if used with a calibration target (see
[2.2]), this calibration can be done in a single step. But, in Aristos and Tzafestas analy-
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4 Pixel

6 Pixel

A B
Figure 2.16: Measuring the box height from different angles

sis [17]13 of this method, they highlight that the robot causes the main inaccuracy in this
process. There are similar methods described for laser stripe sensors, as described in [18].
Finally, these methods are strongly affected by the fact that the laser-stripe sensor is not able
to achieve direct measures outside it’s laser plane. All the information about the unobserved
degree of freedom are based on geometrical assumptions, which affect the observable degrees
of freedom. If one considers a slope, for example, the measured height can provide an insight
about the position on this slope. But, as one can easily imagine, such indirect measures are
not very accurate. Such methods usually work with structured bodies, where one can obtain
the 3D position by analyzing the structure properties of the body from the given viewpoint.

A much better approach is to use a simpler body but multiple robot poses. This approach is
schematically depicted in figure (Fig. 2.17). Here the calibration target is a sphere, which has
a simple and distinct mathematical description. The robot is moving around the calibration
target and records multiple images with the laser-stripe scanner. All poses from the robot base
Tbase
tooli

to the robots flange, where i is the ith pose of n calibration poses, are well-known and
can be supplied by the robot controller. Due to having multiple poses, the expected error will
shrink since it will converge to an optimal average with the rising number of calibration poses.

Since one can expect each point pi, within the sensor image, to be a measure of the spherical
calibration target, one will be able to describe the target’s equation as a given (2.28).

r2 = (csx − pxi)
2 +

(
csy − pyi

)2 + (csz − pzi)
2 (2.28)

Here r is the radius of the calibration target and cs = (csx , csy , csz )T is the center point
of the sphere. Since all points pi have been measured with the sensor, the described center
point cs is also related to the sensor, which is denoted by the subscript s.

Therefore, equation (2.28) can be rewritten as a linear least square problem14, which re-
13[17] is not only analyzing the accuracy, but there is also a closed form extension of the original method.
14Details about how to solve linear least square problems are laid out in the appendix [A.2]
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Figure 2.17: Procesure of laser stripe calibration

sults into the center point of the calibration sphere (2.29).

r2 = c2sx − 2csxpxi + p2
xi + c2sy − 2csypyi + p2

yi + c2sz − 2cszpzi + p2
zi

⇒


p2
z1 + p2

y1
+ p2

x1

p2
z2 + p2

y2
+ p2

x2
...

p2
zn + p2

yh
+ p2

xn

 =


−2px1 −2py1 −2pz1 1
−2px2 −2py2 −2pz2 1

...
...

...
...

−2pxn −2pyn −2pzn 1
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cy

c2x + c2y + c2z − r2
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cy
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(
ATA

)−1 ATb (2.29)

with

A =


−2px1 −2py1 −2pz1 1
−2px2 −2py2 −2pz2 1

...
...

...
...

−2pxn −2pyn −2pzn 1



b =


p2
z1 + p2
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+ p2

x1

p2
z2 + p2

y2
+ p2

x2
...

p2
zn + p2

yh
+ p2

xn


The basic idea is now that this center point of the sphere will be transformed into the ”world”
space of the robot. Since the calibration sphere is mechanically fixed, the center of the sphere
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must always be in the same place.

In order to transform the sensor measures into the world space, one needs to take a closer
look at the transformation chain illustrated in image (Fig. 2.18). It illustrates all relations
between the frames and the sphere for a single robot pose. Following the scheme given in
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Figure 2.18: Relation of the transformation for a single calibration pose

(Fig. 2.18) we can set up formula (2.30). Within (Fig. 2.18), the transformation from
robot base to tool Tbase

tool is well-known and can be extracted from the robot controller for
each point.

pbase = Tbase
tool ·Ttool

sensor · psensor (2.30)
pbase = fsensorbase

(
Ttool
sensor

∣∣Tbase
tool ,psensor

)
(2.31)

psensor are the points measured by the sensor and thus are also known, which leaves us
with Ttool

sensor as the only unknown quantity within this equation. Hence (Fig. 2.18) will be
rewritten as a function of psensor (2.31).

Finally, since there is a function to transform the measured points into the world frame,
which in this case is the robot base, we can transform all points measured by the sensor.
Once all points are transformed, they can be put into formula (2.29),since those points must
be a sphere. Therefore, going from equation (2.29), one needs to insert for A (2.32) and
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for b (2.33).

A =



−2fsen.base

(
Ttool
sens

∣∣Tbase
tool1

,psens11

)T 1
...

...
−2fsen.base

(
Ttool
sens

∣∣Tbase
tool1

,psensn1

)T 1
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)T 1
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(2.32)

b =
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(2.33)

When inserting (2.32) and (2.33), the result is the theoretical sphere center for a given sensor
mounting position Ttool

sens.Since this mounting position is the unknown quantity, it will be the
parameter vector of the non-linear optimization function as given described in appendix [B].
Finally, the last step is to derive the objective function, which is given in equation (2.34).

ε
(
Ttool
sens

)
=
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
(2.34)

2.5 Path correction
The path correction is separated in two phases, where the first is the measurement phase
and the second is the correction phase. For the measurement, the robot positions the laser
line sensor described in section [2.4] to the pre-defined measurement spots. To be able to do
so, the sensor is mounted on the robot’s wrist (Fig. 2.19) close to the application tool. As
soon as the robot positions the sensor at a measurement spot, it will also trigger the sensor
to record an image. Depending on the cycle time, the robot can stop at each measurement
spot to make an image or trigger dynamically while moving over the spot. If the image is
triggered during motion, it is necessary to ensure that the robot motion is linear15 within the

15A linear robot motion”linMove” keeping same distance and orientation relative to the edge contour.
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Figure 2.19: Robot wrist with sensor at roof-ditch application

region of the measurement spot. This is necessary since it is almost impossible for dynamic
measures to trigger the sensor exactly in the right position. There will be all kinds of delays
starting from cycle times of all CPUs employed within the communication up to the signal
runtimes and repeating delays at bus interfaces. Hence, this will result into a trigger jitter,
which, depending on the underlying bus system, can be quite big.

Thus, it follows that the measure at each spot provides no information in the direction
of motion but still the remaining two degrees of freedom providing some information which
will be used for further calculations. Therefore, it is very important to set the robot’s path in
such a way that the sensor images do not change within a certain distance around the mea-
surement spot. If, however, the sensor images change due to the trigger jitter, the algorithm
will calculate slightly different correction values for the very same position. Therefore, setting
up the system carefully is crucial for stable results.

At least three measurements are necessary to calculate the correction values. These measures
need to cover different orientations of the sensor. If there are numerous spots, the system
can also provide multiple correction vectors, which might make sense if the path is not of
static shape but provides slight deformations. Figure (Fig. 2.20) illustrates such a situation.

Figure 2.20: Difference between position correction and path correction

In the first sub-image, it shows the red arrow, which was the original path. It followed the
outer right edge of a part. For the actual part, displayed in gray, this edge exhibits some
deformations since its outer shape is curved and the part is not in its original position as
well. If there is only one correction, the resulting path will end up as illustrated by the yellow
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arrow. It will be at the right spot, but must follow the different outer shape. The green arrow
illustrates what will happen if there are multiple corrections available. Deformation within the
outer shape will be balanced since the correction vector can change during the application.

2.5.1 Panel fitting Systems
Vision systems for panel fitting are designed as an open control loop, guiding the robot iter-
atively until it achieves a final good position. In general, it would be desirable to have the
panels fit in a single step, but due to missing features on most of the car bodies’ panels there
is no globally applicable fitting algorithm available yet. Hence, iterative control loop-based
systems are primarily in used for panel-fitting applications. One example for such processes
is the positioning of moveable panels into a car body. One can consider a front door as an
example for such a panel.

A front door in a common production line will exhibit slight deformations and the same
thing happens with the door frame where it needs to be installed. Furthermore, both the
door and the car will not be in perfect position on the production line. After all, the part
needs to be placed relative to the body. That means the vision system needs to determine
both the frame where the part needs to be placed and the part itself. Thus, such systems have
to deal with multiple unknowns, since a position needs to be determined which is not related
to any absolute point in room space, but relative to the door coordinate frame predefined
within the robot’s cell.

On the other hand, the demand for accuracy is very high since there is only a small gap
between the door and its frame and a customer can notice even slightest asymmetries 16.
Therefore, such systems usually are built with multiple sensors located around the parts to
provide live measures during the robot’s movement. The robot’s position will then be con-
trolled by the system until all sensors measure the desired values. The heuristics applied to
control the robot are usually based on sensitivity matrices. Such matrices can be generated
within the process or primarily set up in a training process[19].]. A common type of sensor for
such systems is usually a combination of a laser and a camera acting as a laser-stripe sensor,
similar to the sensors introduced in sectio [2.4.1].

Hence, one will achieve a two-dimensional scan of the underlying objects shape. Sometimes
these sensors are combined as double heads. This means that two sensors are combined in
a way that the angle in between the sensors is about 90 degree and their laser lines overlap.
This arrangement ensures that both sensors have a different view of the very same spot, so
one achieves the same position from different view ports. This is especially beneficial in cases
where the gap between the parts is high and deep, or the parts have overlapping structures.

For a door within a frame, the quantities targeted by the control loop are the gap and
the flush values for each measurement spot. The gap is, as the name might already indicate,
the gap between the frame and the door. The flush indicates how much the door overlaps
the frame or dives into it. But both measurements are purely relative measures, providing

16This is because the frame serves as reference edge, similar as described in [1.2]
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no information about where exactly these measures have been taken. To get a relationship
between the sensor values and the robot’s motion, a training process will be initiated. This
training usually means that the robot is moving the part over a defined distance within the
frame and records the behavior of the control values. Finally, one is able to say:

” by moving the robot about x mm in y-direction the flush in sensor 1 will change about k
mm and the gap in sensor 2 will change about l mm”.

These values, providing the change of the measures divided by motion of the robot, will
be stored in a matrix. And, finally, the inversion of this matrix will give an insight about
the necessary motion to perform to acquire a certain change within the sensors. Therefore,
the recorded matrix is called a sensitivity matrix since it stores the sensitivities of the values
related to the robot motions, and its inversion is called a Jacobian matrix [19]. Image (Fig.

Figure 2.21: An illustration of the VMT-BestFit system mounting a trunk lid.

2.21) depicts such a visual servoing system mounting a trunk lid. One can see that the sen-
sors installed on the robot’s grabber are surrounding the part and are arranged in a manner
that both the trunk lid and the trunk lid’s frame are in an observable control position17. As
soon the robot reaches the control position, the control process is triggered and the sensor
signal will be sent to the control PC, where new controls are calculated and sent back to the
robot.

17The control position is a position close to the mounting position, providing some extra space for the robot
control.
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2.6 State of the art
As the title of this thesis implies, the main target of this work was to develop a path correction
system for industrial robots. Hence this ”state of the art” section is trying to give a general
overview about the actual development and research of which most publication concentrate
on visual servoing systems.
However, a more detailed overview, regarding the content of each research topic within this
work, can be found in the introduction of the related chapters [3.2], [3.1], [3], [4.1] and [4].

The scientific research in the field of sensor based robot guidance and more specific in ”visual
servoing” dates back to 1979 [20], but is still very active today. ”Visual servoing” systems
utilize sensor generated data to actively correct the robot motion and are therefore frequently
applied in path correction applications [21], [22] and [19]. These systems can appear in mul-
tiple configurations. Sensors can have a static position within the workspace [23],[24] and
[25], or can appear in a so called ”eye-in-hand” configuration where the sensor is directly
mounted on the robots wrist [26] or [27].

However for any type of visual servoing system the aim is to minimize the error e(t) be-
tween the given m(t) measures and the expect values in a final target position s∗. Which
has been summarized in a general formulation (2.35) by Chaumette and Hutchinson [28].

e(t) = s(m(t), a)− s∗ (2.35)

In (2.35) m(t) is a vector of features within the sensor image at a given time t. The function
s(m(t), a) converts the raw sensor information to ”visual features” [28] which usually requires
some sensor or environment specific parameters, represented by the vector a.

In a very simple case the visual servoing can work with direct image features, which means
the the features can directly be extracted from the sensor image. Such systems are called
IBVS 18. In this case (2.35) reduces to (2.36).

e(t) = s(t)− s∗ (2.36)

Starting with the error definition of (2.36) one needs to find a scheme to improve the actual
position p(t) of the robot, in order to reduce the error e(t) over time. The traditional concept
for such a scheme is given in equation (2.37).

ṡ(t) = LLL · ṗ(t) (2.37)

In (2.37) the matrix LLL is called the feature Jacobian matrix, which maps the speed vector
ṗ(t) into the image space ṡ(t).

However, due to their simplicity and the limited capability of pure IBVS based approaches,
a pure IBVS based correction is usually not appropriate to control a robot in all 6 degree
of freedom, since for such complex cases a pure IBVS approach is prone to singularities and

18Image-based Visual Servoing
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falling for local minima [29].

Nevertheless the are some really promising approaches where multi-view port systems, like
stereo cameras, were successfully implemented for 6 dimensional correction. One of these
publications is [30], where the authors were able to overcome the stability problems of IBVS
in 6 dimensional space by introducing a ”virtual visual space”. This ”virtual visual space”
has been created based on the homography between the two view ports of the cameras and
results into as virtual 3D space. Having such a virtual space, encoding the physical geometry
of the two view ports solves a lot of stability issues.

Another interesting IBVS approach is proposed in [31], where the authors use a ANN19

based approach. In [31] the authors created a four layer feed-forward ANN. Within their
approach they track features of the target object while the robot is in motion. Similar to
[30], they use a homography projection to map features into an ”image feature space”. This
”image feature space” will then serve as an input for the ANN. The task of the ANN is to
solve the complex an highly non linear mapping of the ”image feature space” movements to
robotic arm movements. By using an ANN the authors proposed a very efficient mechanism
to learn the non linear relations between the joint in the real world and the related feature
responses within the ”image feature space”.

An alternative approach for visual servoing systems are the so called PBVS20 systems. Such
systems determine the objects real pose in a 3 dimensional reference system by using the
objects geometrical information, which is called the ”object localization problem” [28].

Such PBVS based systems provide enhanced stability and high convergence speed, which
is due to the fact that objects are located within a ”real world” frame and not within some
projection space. On the other hand they have the disadvantage, that geometrical informa-
tion about the object to localize are necessary to solve the ”object localization problem”.

That means if the actuator, which is performing the task, knows his postion relative to the
measurement frame with high accuracy and can also perform its motions with high accuracy,
it is possible to approch the target position in a single step. By having such a configuration
a control process based on sensor data is simply superfluous. Such a system is introduced
in [32], where the authors are proposing a system for depalletizing and bin picking. For the
object detection and localization the authors use surfels21 coupled with a ”soft assign’ regis-
tration22 approach. After determining the object the robot will be commanded to the target.
In addition, to determine a collision free path, the authors also proposed a motion planing
module.

A more general approach is proposed in Pfitzner et al [33], where the authors present a
”object localization” approach combining multiple sensor data and types. As mentioned be-

19ANN = Artificial neuronal network
20Position-Based visual servoing
21surfel: surface elements, which are tiny planar elements detected within 3 dimensional point clouds.
22Soft assign is an extension of ICP where points have a weighted relation to multiple correspondences

instead of a 1:1 relation. See section [3.2]

BUPT



2.6. State of the art

fore, the exact knowledge of the sensor position is crucial. Also in [33] the authors wrote,
that one of the fundamental problems in the object localization were the inaccuracies caused
by the moving sensors:

Commonly, high precision is only given while moving the sensor with low speed
or in deadlock. In addition, the acquisition of encoder and 3D data needs to be
synchronized.

For the path correction, as it is presented within this work, the previous statement is no longer
true. The proposed algorithm is designed to work with an ”unobserved” degree of freedom,
which is configured to be always in motion direction. Therefore the proposed path correction,
as it is presented in section [3.3], is also applicable in dynamic cases.
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Chapter 3

A new approach for path
correction

The major aim of this thesis is to derive a new type of path correcting system. This system
should utilize laser-stripe sensors, which have been introduced in section [2.4].Beside the im-
provement of the plain calculation of the correction vectors, it is also important to improve
the data supplied by the sensors, as well as the methods of feature extraction.

Hence, as the first step, we will take a closer look at a statistical method for filtering and
improving the data provided by the sensors. Section [3.1] will propose a novel technique to
filter noisy sensor data. Despite the high capabilities of laser stripe sensors, these sensors
become unstable when measuring in dark or strongly-reflective environments. Ambiguous
points within a camera image can appear on dark surfaces and be confused with noise when
the laser-reflection intensity approaches the noise level. Similar problems arise when strong
reflections within the sensor image have intensities comparable to that of the laser.

Another major requirement is the detection of features within the sensor image. Flexibil-
ity is the major requirement for such an algorithm. Hence section [3.2] proposes a new
algorithm to perform pattern matching on laser stripe sensor data. It is ICP-based, but unlike
the ordinary ICP, it executes considerably faster. This is achieved by a smart reduction of
features within the sensor data.

Finally, the information extracted about the feature locations within the sensor data, needs to
be post processed to a correction vector. Therefore, section [3.3] introduces an algorithm ca-
pable of calculating corrections specialized on sparse measures. The sparsity is due to limited
dimensionality of the laser stripe sensors, which had already been discussed within section
[2.4.2]. Finally the algorithm proposed in section [3.3] outlines a solution for overcoming this
problem and combine multiple measures to a complete correction vector.
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Figure 3.1: Laser-stripe Sensor. The bright red region indicates the laser curtain and the dark
red line is the empirical path of a single beam.

3.1 A novel statistical method for noise filtering within
the sensor data

Laser-stripe sensors are capable of measuring a vertical section of a surface related to an
internal-sensor coordinate system using a laser-line projection observed by an internal camera.
There has been a lot of research done on laser-stripe sensors, with one of the first publications
introducing the measurement technique in the mid-eighties [34]. Currently, applications for
such sensors are ubiquitous, covering engineering fields such as industrial automation, geode-
tic measurements, computer vision (3D modelling), and robot guidance. When laser-stripe
sensors are properly calibrated, i.e. the extrinsic parameter between camera and laser and
the intrinsic parameter of the camera are known, it is possible to transform pixel information
of the laser-line reflection in the camera into real-world measurements within the sensor-
coordinate space [35]. This is possible given that for every position within the camera image,
there exists a unique ray intersecting the laser plane. This intersection point represents the
real-world coordinate, which is computable if the camera calibration is known. To transform a
coordinate from the image space to the sensor-coordinate space, a linear operation is applied
and represented by a homography matrix [36, 37]. However, since the images are slightly
distorted due to the lens system, it is necessary to model lens distortion in order to first
untwist the images.
Various calibration methods for laser-stripe sensors have been published [38, 39].
Figure (Fig. 3.1) depicts a laser-stripe sensor observing a calibration body on the left-hand
side and the associated measurement image on the right-hand side. Since the laser projection
is observed by a camera, one fundamental task of such sensors is to extract pixel coordinates
from the laser-line reflection within the camera image. Unfortunately, limited research exists
concerning line-extraction from laser line sensor images. Currently, most commercial devices
continue to use standard techniques introduced in the early nineties [40]. Small changes
have been proposed, e.g. alternative methods for extracting the centre line of the laser [41].
Among the few works concerning image noise, W. Quing-Yang, et al., introduced a method to
remove environmental noise by subtracting two images [42]. We still do not have methods for
enhancing the stability of laser-line detection on dark or reflective surfaces involving dynamic
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noise caused by the laser. Although strong laser reflections leave bright, easily extractable
signals within the camera image, laser-line detection becomes challenging when additional re-
flections are visible within the image or, in the case of dark surfaces, if the reflection intensity
approaches noise level.

Given the growing industrial popularity of laser-stripe sensors, applications involving com-
plicated situations are becoming more common. Even in environments with strong reflective
properties, the algorithm presented here can support line recognition in case of ambiguous
situations involving contour gaps, jumps, or structural shadows. In such circumstances, an
efficient method is required to determine the most probable candidate or decide whether a
candidate exists. One common technique defines a threshold limiting the range for expected
valid successors. If there are multiple candidates within the threshold, one strategy might be
to consistently choose the neighbour candidate located closest to the latest laser reflection
point. Unfortunately there is no equidistant spacing between samples and the closest point is
not always the correct choice. In fact, the spacing between measured samples can vary due
to the angular relation between the sensor and the object surface (Fig. 3.2).

One can expect the highest density of sample spots to exist where the sensor directly faces
the object surface and lower sample density in regions where the angle between the surface
and the sensor offsets from 90 degree. In order to address these situations, it is necessary to
consider drift properties within the model equations. Here, we propose an algorithm based
on geometric Brownian motion (GBM), an extension of the Brownian motion [43] used in
modelling asset-price behaviour in mathematical finance [43]. However, since line-detection
logic is an integral part of the real-time software controlling the sensor hardware1, execution
speed offers an additional challenge. This algorithm is intended to run on embedded systems
in real-time environments, making the avoidance of complex calculations or iterative root-
finding algorithms a major requirement.

An additional application for the proposed algorithm involves scan segmentation. Given
that points of discontinuities are detected automatically, the algorithm can be applied to
determine separate segments within a scene. This can be useful for filtering, since points
of discontinuities usually constitute critical spots, or for object detection or separation, since
one segment usually represents one object within an observed scene.

3.1.1 Working principle
The algorithm is arranged into two logical steps, where the first step determines whether or
not a measurement is within the estimated range for a successor. This step is not limited
to just one successor, but can determine parameters for an arbitrary number of successors.
Therefore, step one verifies whether only a few successors exceed the estimated expected
range by being classic outliers or if all upcoming successors are outside the expected range.
In the event that there are many candidates for the next successor, the algorithm chooses the
point with the highest probability, which is often the measure closest to the predicted mean.
Points outside the limits defined by the predicted variance will be rejected as outliers.

1Usually an embedded system with only limited resources
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Figure 3.2: A typical car-body scan showing differences in sample densities.

The second step constitutes the update-step, wherein a maximum a posteriori (MAP)-
estimator is utilized to predict the most probable measurement state, s̄i. The prediction
of s̄i is based on its actual measurement, si, and its previous state, s0. Therefore, s̄i serves
as a recursive input for subsequent prediction steps.

To determine a segmentation point, the algorithm determines if a well-defined number of
measurements violates the expected sample distance. If so, it is probable that these points
are not outliers, but rather define a new segment of contour points. In this case, the al-
gorithm needs to be reinitialized with the first contour point of the new segment. In cases
involving outliers, these points will be removed from the dataset. For model determination, it
is necessary to assess the nature of the distances between samples. Given the simplest case,
where the distances are constant and with normally-distributed noise superimposed, one can
establish an initial model as (3.1).

ps(si| s̄i, σ2) =
(
σ ·
√

2π
)−1

exp
(
− (si − s̄i)2

2σ2

)
(3.1)

where (3.1) si denotes spacing (sample distance)2 at the ith measurement sample. The
parameter, s̄i, denotes the expected spacing, predicted based on previous measures. Finally,
σ2 represents the variance between previous measures and their predictions. Thus, this initial
model (3.1) represents a normal distribution, wherein both parameters represent the mea-
surement expectation, s̄i, and the variance, σ2, and are unknown and considered random
variables. Therefore, the primary goal is to derive a model for these two parameters.
Starting with the spacing expectation, s̄i, it is possible to model it as its own random variable.
Then, given a PDF for s̄i relative to the given data, si, it is possible to solve for s̄i, such

2We use s (spacing) for the spacing between two samples instead of d, since d might be confused with the
differential operator d

dx
later on.
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that ps̄(s̄i| si) → max. Therefore, in order to solve for the most probable s̄i, the first step
is to derive pŝi(s̄i| si).

3.1.2 A MAP estimator for s̄i

To find a proper model for the distribution of s̄i, it is necessary to define the spacing properties
between measurements. The following sample-spacing properties for the PDF were defined
as follows.

• The distances are always positive.

• Direction changes are random, but with drift taken into account.

• The drift influences the quantity of the spacing.

The direction changes described imply that distances between samples can grow or diminish,
with either resulting in a specific direction. Without any additional information, there is no
assumption of a preferred direction. The angle between the sensor and surface will influence
sample spacing, which will also correlate to angular change and explains the necessity of the
model to consider drift. Furthermore, it is expected that distances will rise more rapidly as
the angle between surface and sensor increases. However, if the angle does not change, both
directions will have equal probability.
A situation having equal probabilities for both directions is referred to as the Wiener Process.
Due to the assumption that previous values can indicate a direction, the model also needs to
take this drift into consideration. This leads to a process referred to as Wiener Process with
drift or GBM. GBM is a method widely used in finance mathematics to model stock-price
behavior [43, 44]. The GBM model equation for the ith value of the spacing, si, and a given
drift, µ, is expressed in equation (3.2).

ds = si (µdi+ dWi) (3.2)

Since the GBM is based on a Wiener Process, Wi, it is also a stochastic process. The PDF
of the GBM results in a log-normal distribution Øksendal [45]. Equation (3.3) shows the
PDF of the GBM.

p(si) = 1
siσ
√

2πi
exp

(
− β2

2σ2i

)
(3.3)

with β = ln
(
si
s0

)
−
(
µ− 1

2σ2

)
i

In equation (3.3), s0 is the current measurement, where si is the ith value ahead of s0. By
providing probabilities for future values, the PDF of equation (3.3) offers insight into the
likelihood of a measurement belonging to the actual segment.
Thus, a first step in finding a measurement for the expected spacing between two samples
is to use the PDF (3.3) to calculate the expected value, s̄i. The expectation of a sample,
distributed according to equation (3.3) is given by equation (3.4).

E(si) = s0 · exp (µi) (3.4)
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The initial estimate of the distance can now be compared to the real measurement. In order
to determine the certainty of this expectation, a confidence interval around the expected value
needs to be calculated prior to the measures being validated. This interval will increase relative
to the prediction supplied by equation (3.4). This uncertainty will be a linear combination
of the expected variance for the ith value of equation (3.4) and can be derived from the
log-normal distribution in equation (3.3), resulting in the expected variance (3.5).

V(si) = s2
0
(
exp

(
σ2i
)
− 1
)
· exp (2µi)

σ̂(i) = s2
i−1
(
exp

(
σ̄2(i− 1)

)
− 1
)

· exp (2µ(i− 1)) (3.5)

In equation (3.5), σ̄2 represents the recursive measurement of mean variation between the
measurements relative to their expectation. This should not be confused with σ̂, which is
the uncertainty of the expected future mean calculated by the GBM. The variance, σ̂, will be
used to calculate the upper and lower envelope of the 95% confidence interval range, which
is ±2σ̂i+k around the expected value, s̄i+k (3.4). A measurement within this 95% range
will be accepted as valid and used to update the model parameter. However, if the actual
measurement is outside the interval s̄i+k ± 2σ̂i+k, it is rejected as an outlier. Given that
this value might represent a single outlier, a defined number of successors also need to be
tested. Since equations (3.4) and (3.5) are capable of predicting an arbitrary number of
possible future values, the (i + 1)th...(i + n)th values can be calculated and tested. Large
numbers of values not fulfilling the expectations are treated as a new segment, however, in
the event that only a single value or a small number of values fails to meet expectations,
these measurements will be treated as outliers.
If the actual measurement has been accepted, the density function, (3.5), and the actual mea-
surement represent the prior distribution, allowing a MAP-estimator to update the estimation
parameter for the following step.

3.1.3 Updating the model parameter
In the previous section, methods were derived to estimate successive values. To predict a
range for acceptable measurements, the variance of the prediction was used. Given this range,
it is possible to decide whether or not a measurement can be used for further calculations. The
ability to eliminate invalid samples improves the model parameter by utilizing all remaining
samples to estimate the ”optimal” spacing, s̄i. This value should be the one value, s̄ ∈ R+,
that maximizes the density function, p(s̄|si). To derive the density function, p(s̄|si), it is
necessary to apply Bayes rule. This results in a MAP-estimator [46, 47], which estimates the
most probable state for s̄i based on previously collected data.

p(s̄i|si) = pN (si|s̄i, σ2) · pG(s̄i)
ps(si)

⇔ p(s̄i|si) = pN (si|s̄i, σ2) · pG(s̄i)∫
s̄i∈S

pN (si|s̄i) · pG(s̄i) ds̄i
(3.6)
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The numerator of equation (3.6) includes two density functions, where the first, pN (si|ŝi, σ2),
is given in (3.1) and the second, pG(s̄i), is given in equation (3.3). The denominator
contains the normalizing integral, which limits the area of the resulting density function to
one. Following the integration of s̄i, the expression becomes constant relative to s̄i and thus
can be removed from (3.6), given that a constant factor does not alter the extrema position.
This results in equation (3.7), which provides a maximum threshold for the expected sample
spacing from the ith step.

ŝi = max
∀si∈R

(p(s̄i|si))

= max
∀si∈R

(
pN (si|s̄i) · pG(s̄i)

ps(si)

)
= max

∀si∈R
(pN (si|s̄i) · pG(s̄i)) (3.7)

Combining a normal distribution with a log-normal prior results in a non-conjugate pair,
meaning that the maximum threshold derived from equation (3.7) has no analytical solution.
Therefore, the goal is to provide a reliable method for accurate approximation of the real
maximum threshold for s̄i. Starting with the equation (3.7), it follows:

max
∀s̄i∈R

(pN (si|s̄i) · pG(s̄i))

= max
∀si∈R

(
e

(
− (si−s̄)2

2σ2

)
· 1
s̄i
· e

(
− β2

2σ2i

))

= max
∀si∈R

(
e

(
− (si−s̄)2

2σ2

)
· e

(
− β2

2σ2i
−ln(s̄i)

))

= max
∀si∈R

(
e

(
− (si−s̄)2

2σ2

)
· e

(
− β

2−ln(s̄i)(2σ2i)
2σ2i

))
(3.8)

The next step is to evaluate the numerator in the exponent of the second term in (3.8), from
which some constants can be eliminated, given that they do not affect the maximum of s̄i.

β2 − ln (s̄i) (2σ2i)

= ln

(
s̄i
s̄0

)2
− 2α · ln

(
s̄i
s̄0

)
+ α2 + ln(s̄i)c1

where c1 = (2σ2i)

= ln

(
s̄i
s̄0

)2
+ 2 · α · ln(s̄0) + α2 +

ln(s̄i) · c3 + c3 · log(s̄0)− c3 · ln(s̄0)
where c3 = c1 − 2α

=
(
ln

(
s̄i
s̄0

)
+ c3/2

)2
− (c3/2)2 +

c3 · ln(s̄0) + 2 · α · ln(s̄0) + α2 (3.9)
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Note that s̄0 in equation (3.9) is the recursive variable, representing the last valid estimate
from the previous step.
Next, the constant from equation (3.9), specifically c3 · log(s0)+2 ·α · log(s0)+α2−(c3/2)2,
will be represented as ρc.

=
(
log

(
s̄i
s̄0

)
+ c3/2

)2
+ ρc

⇒ max
∀si∈R

e
(
− (s̄i−s̄)2

2σ2

)
· e

(
(log( s̄is̄0 )+c3/2)2

+ρc
−c1

)

= max
∀si∈R

e
(
− (s̄i−s̄)2

2σ2

)
· e

(
(log( s̄is̄0 )+c3/2)2

−c1

)
= max

∀s̄i∈R

(
e−

(s̄imeas−s̄i)
2

2·σ2 +
(log( s̄is̄0 )+c3/2)2

−c1

)
(3.10)

In equation (3.10), both e-functions have been reduced to a single e-function and the con-
stant, ρc, has been eliminated. Due to the strict monotony of the e-function, it is sufficient
to maximize its argument, since the point derived from the maximum argument will be the
same as the point derived from maximizing the function.

= max
∀s̄i∈R


(
log
(
s̄i
s̄0

)
+ c3/2

)2

−c1
− (si − s̄i)2

2 · σ2
norm



To shorten the equation, four new constants, d1 to d4, are introduced.

d1 = 2σ2
norm d2 =

(c3
2

)2

d3 = −2sic1 d4 = c3d1
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= max
∀s̄i∈R

 log
(
s̄i
s0

)2
+ log

(
s̄i
s0

)
c3 + (c3/2)2

−c1
−

s2
i − 2sis̄i + s̄2

i

d1


= max

∀s̄i∈R

((
log

(
s̄i
s0

)2
+ log

(
s̄i
s0

)
c3 + d2

)
d1+

(
s2
i − 2sis̄i + s̄2

i

)
c1

)
= max

∀s̄i∈R

(
d3s̄i + (log(s̄i)− log(s0))2

d1 +

log(s̄i)d4 + s̄2
i c1

)
(3.11)

In equation (3.11), the original equation, (3.7), has been reduced such that only terms
dependent upon si remain and all static additives and constant gains have been removed.
The following step calculates the derivative for equation (3.11) in order to determine the
extrema points.

d

ds̄i
= d3 + 2s̄ic1 +

2
(
ln( s̄is̄0 )

)
d1

s̄i
+ d4

s̄i
(3.12)

The extrema is identified by setting the derivative, d
ds̄i

= 0. The logarithm prevents a
closed-form solution from equation (3.12) and since a numerical solution is not desired due
to its negative performance properties, the best option is to approximate the log-function.
Using the Mercator formula, it is possible to calculate an accurate approximation for a given
interval around an arbitrary point, s̄i, of the ln-function. Given that s̄i represented the
previous prediction of where si is expected, this s̄i prediction should closely approximate its
real position and represent an initial estimate for the starting point of the Mercator-Row. By
calculating the first two elements of the Mercator-Row, leading to a quadratic function, the
result is a function annealing closely to the original ln-function at an interval ±50% of s̄i.

ln(s̄i) ≈ ln(2)m− 1 + s̄i
2m −

( s̄i2m − 1)2

2 (3.13)

= ln(2)m+ 1
2 −

1
2

( si
2m − 2

)2
(3.14)

with m = ln(s0)
ln(2)

Figure (Fig. 3.3) depicts the approximation given by equation (3.14). In figure (Fig.
3.3), the dotted line represents the original function and the continuous line represents its
approximation by the quadratic polynomial function from equation (3.14). As illustrated
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Figure 3.3: Approximation of the ln-function over the interval ±50% of si−1

in figure (Fig. 3.3), the approximation provides results within the interval [0.5si; 1.5si].
Therefore, the ln-function is replaced by the approximation of equation (3.14), resulting in
equation (3.15).

d

ds̄i
≈

2d1

(
d6 − 0.5

(
s̄i
2m − 2

)2)+ d5

s̄i
+

d3 + 2s̄ic1 (3.15)

with d5 = d4 − 2ln(s0)d1

d6 = ln(s0)m+ 0.5

The terms of the approximation, (3.15), will be sorted by the factors, si, and all remaining
constants for each factor will be represented by new constants, U1 to U3. This results in the
final equation (3.16).

d

ds̄i
≈ U1s̄i + U2

1
s̄i

+ U3 = 0 (3.16)

where U1 = 2c1 −
1

22m d1

U2 = 2d6d1 − 4d1 + d5

U3 = d3 + 1
2m−2 d1

Given the equation (3.16), the extrema can now be determined analytically. There are
four possible solutions for equation (3.16). With respect to the constants, U1 to U3, only
two solutions offer realistic candidates for the desired maximum. These two candidates are
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Figure 3.4: Estimated s̄i = 0.1284 for si = 0.13, s0 = 0.146, µ = −0.111, σ = 0.13 and
σ̂ = 0.02

presented in equation (3.17) ∧ (3.18).

l1 ≈
√
U2

3 − 4U1U2 − U3

2U1
(3.17)

l2 ≈ −
√
U2

3 − 4U1U2 + U3

2U1
(3.18)

To determine whether equation (3.17) or equation (3.18) constitutes the desired maximum,
the second derivative of equation (3.16) is determined. The one, lx, where x ∈ [1, 2] and for
which (3.19) is true, constitutes the desired maximum point.

U1 − U2
1
l2x
> 0 (3.19)

Figure (Fig. 3.4) illustrates the resulting maximum within a graph overlaying the PDF. The
density function shown in figure (Fig. 3.4) represents the original, unchanged density func-
tion. The maximum point, marked by the vertical line, is the analytical maximum determined
by the approximation terms from equations (3.17) and (3.18). The developing point for
the approximation, s̄i, was chosen to provide 20% deviation from the final maximum. The
resulting approximated maximum has a deviation < 1%�3. The quality of the final approx-
imation is strongly dependent upon distribution parameters and the expansion point, s̄i, of
the Mercator-Row, making it difficult to ascertain approximation quality. However, while the
distribution parameter are yet unknown, it is possible to choose the expansion points, s̄i.

3.1.4 Updating drift and variance
The final computation updates both variance, σ̂, and drift, µ. The variance, σ̂, quantifies
the variation between the measurement estimate and the actual measurement. The drift

3The ’real’ maximum was determined using the GNU Octave Root Finding algorithm.
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factor, µ, determines the directional drift and is determined by comparing the actual estimate
with that of its predecessor. Since both measurements are sensitive to noise, an averaging
mechanism is introduced to decrease its influence. This mechanism is an exponential moving
average, which has a higher weight on the latest predecessors instead of having a window
or same weight for all previous values. Therefore, it is expected that the values will rapidly
adapt to new conditions without large fluctuations between measurements. The exponential
average, X̄i, for a measurement, Xi, at position i is given by equation (3.20).

X̄i = α ·Xt + (1− α) · X̄i−1 (3.20)

3.1.5 Implementation
Finally, all calculations require implementation into an algorithm. As mentioned previously in
section [3.1.1], the algorithm is divided into two steps. The first step generates a prediction4
of the actual measurement by calculating the expectation of the GBM from equation (3.4)and
represents a pre-selection criterion. If the actual measurement passes this pre-selection step,
the MAP-estimator will be applied to calculate a more accurate estimate.
The pre-selection is essential, given that MAP operates with the log approximation. As dis-
cussed in section [3.1.3], the logarithm needs to be replaced by the Mercator-Row, which can
adapt to false values as soon as the measurement becomes too distant from its expectation.
Following the first step, the measure is verified to be within the acceptable range and suitable
for further calculations.
The following step calculates the MAP estimate, against which the actual measurement will
be once again validated. If the measurement is accepted, the variance will be updated and
the algorithm restarts for the succeeding measurement based on the previously calculated
MAP expectation. If at any point the actual measurement is deemed an outlier, the algo-
rithm tests a fixed number of succeeding measurements to determine if any of them return
to the expected range. This is achieved by incrementing i. If the succeeding points return to
the expectation within a fixed range, all points in between will be considered as outliers and
removed. Otherwise, all of these points may belong to a new segment, in which case the first
outlying point will be considered as a new starting point and the algorithm restarts. Figure
(Fig. 3.5) depicts the related flowchart.

4This prediction does not rely on the actual measurement
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Figure 3.5: A scheme of the algorithm.
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3.2 An improved method of ICP contour matching
After improving the sensor data by pure statistical means, the next logical step is to determine
the desired structure within the data. Hence the following section describes a novel method
to determine a predefined feature within the data.

This feature is a point within a contour segment which will be used for further measure-
ments. The segment contour itself is provided by the sensor and can be understood as 2D
point cloud. Thus, the features need to be extracted from such a point cloud. Sometimes
this can be very simple. Most of the time the sensor can be fixed in a way that the point
of interest is simple to extract, such as the last contour point or a top edge (Fig. 2.14).
Those features can be determined almost effortlessly by algorithms, which usually run very
fast. However, in some situations it might be necessary to extract measures at very complex
spots of the contour, which is usually a very time-consuming task.
This feature is a point within a contour segment which will be used for further measure-
ments. The segment contour itself is provided by the sensor and can be understood as 2D
point cloud. Thus, the features need to be extracted from such a point cloud. Sometimes
this can be very simple. Most of the time the sensor can be fixed in a way that the point of
interest is simple to extract, such as the last contour point or a top edge []. Those features
can be determined almost effortlessly by algorithms, which usually run very fast. However,
in some situations it might be necessary to extract measures at very complex spots of the
contour, which is usually a very time-consuming task.

In the publication[48] we proposed a mechanism that determines contour spots of arbitrary
shapes very fast. To achieve this, we offered a matching algorithm that integrated a two-step
approach. First, the points have been reduced in order to perform as fast pre-position on the
reduced point set. After having a pre-position, a final positioning step ensures the accurate
fitting.

The proposed algorithm is able to match an arbitrary predefined contour pattern into the
corresponding position within the measurement. Thus, if there is a measurement spot related
to the pattern, this spot will be rediscovered within scans of the contour. Since the last
decades, point cloud matching has been a very active field of research in machine learning.
One of the early papers on this topic was [49] describing a method for ”representation-
independent .. registration of 3-D shapes”5, the so-called iterative closest point algorithm
(ICP). Many variations of this algorithm have been developed, each resulting in advantages,
but also some disadvantages. The original formulation of the ICP depends strongly on the
choice of good start values, therefore the improvement of robustness of the ordinary ICP is
and has always been one of the main topics for further research. Since the lack of robustness
is a direct consequence of the hard point-to-point correspondences used in the ordinary ICP,
the most promising approaches use a soft correspondence for the point matches. Today there
are two common specializations of the ordinary ICP-the Softassign-ICP (or SA-ICP) by Gold
et al. [50] and the EM-ICP by Granger et al. [51]. Both use the above-mentioned soft cor-
respondence for the point relationship. The SA-ICP uses a softmax -function, usually as an

5p.239 [49]
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3.2. An improved method of ICP contour matching

Figure 3.6: Sketch of the proposed algorithm

activation function in connection with neuronal networks, to archive the soft correspondence
in between the scene- and model-points. The EM-ICP on the other hand uses the matching
probability as a weight for correspondences. Both approaches lead to a significantly smaller
number of local minima and therefore to higher robustness with regard to the start values. We
chose the EM-ICP, since the computation of point correspondences for the SA-ICP seems to
be an adverse, due to the Shinkhorn iteration [52]. But one could easily replace the EM-ICP
with the SA-ICP for the given description, if desired.
To provide a robust and also fast-matching algorithm, the computationally intensive EM-ICP
is only used as a means of prepositioning a reduced point set. This results in an adequate
set of start values for use with an ordinary ICP on the full set, which will lead to a high level
of convergence. The aforementioned reduced point set is generated by using Ramer’s curve
approximation algorithm [53], which reduces the original point set to a number of marginal,
but significant points. That algorithm and its implementation will be introduced in the first
section.

After that, we give a short outline of the EM-ICP and its implementation. Finally, we
present the last step of the point cloud matching algorithm, the ordinary ICP implemented
in combination with kD-tree-based neighbor search [54].The idea of the proposed is sketched
in Fig. 3.6.

3.2.1 Point reduction
Due to the soft correspondence property of the EM-ICP, the cost of calculation is signifi-
cantly higher than that of an ordinary ICP. This is due to the costs of calculation of the
correspondences itself on the one hand and the calculation of the transformations between
the matching points on the other hand, due to the fact that one model point can match vari-
ous scene points. Therefore, Granger et al. [51] introduced a decimation scheme, called ”the
greedy sphere decimation”: only those points are taken into account that are within a sphere
centered on the barycenter of its containing points and has a radius of α · σ (where α ∈ R
is a constant and σ is the standard deviation over the actual estimation of the variance).
This makes sense since points beyond this sphere would receive an insignificant weight and
therefore would not be of interest. Since σ shrinks during the iteration process we might still
use too many points during the first iterations.
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To be more efficient, it would be advantageous to reduce the overall scene measurements in
such a way that the loss of information is minimized on those parts of the point cloud which
are rich in information and sparse the point cloud where the measurements are unservice-
able. That is to say, scene measurements in regions of curvature should be left untouched
because those regions are important for the matching, whereas linear or plane segments are
less important and we can accept them to be sparse. This leads to a polygonal curve rep-
resentation in 2D space for 2D data, or to a polygonal surface triangulation for 3D data,
where the distance between the representation and the closest measurement never exceeds a
fixed-threshold value. Since this algorithm was meant to fit contours, this thesis will discuss
the 2D case 6.

Such a curve representation has been introduced by Ramer [53]7. Ramer tried to reduce
the curve to ”polygons with few edges but which still retain the significant features of the
curves they represent”8. This algorithm expects an ordered set of point measurements Ms

which then will be reduced to a subset M
′

s ⊆ Ms gathering those points p′ ∈ M
′

s which
satisfy the condition (3.21).

max
∀p
i

(
⊥
(
p
i
,
〈
p′
k−1, p

′
k

〉))
≤ α (3.21)

Where p
i
∈
{
p
∣∣∣p′
k−1 ≤ p < p′

k
, p ∈Ms, p

′ ∈M
′

s

}
p′
k−1, p

′
k
∈M

′

s. The functional 〈·, ·〉 de-
notes the linear interpolation between the two neighboring points and the function ⊥ (·, ·)
calculates the perpendicular distance in between a point p and the interpolation 〈·, ·〉.

To generate the desired set M′

s, two points need to be chosen as initial values. For contours
that are not closed, these points are the left- and right-most points p1 and p|Ms|

. The next
step is to search the most distant contour point p

i
from the linear interpolation in between

those two starting points. If this point exceeds condition (3.21), the contour will be divided
at pi from the linear interpolation in between those two starting points. This will be repeated
until condition (3.21) is not exceeded in any subsegment. By recursively breaking the given
sets down to subsets, this algorithm can be classified as a divide-and-conquer algorithm which
leads to an average time complexity of O(n log n), given a worst case complexity of O

(
n2)

but only under the circumstances that α has been chosen inappropriately. Therefore, the
Ramer algorithm is a very efficient technique to reduce the number of points drastically9,
especially within plane or straight segments of less importance for the EM-Prepositioning. A
graphical example of the Ramer-Algorithm is shown in Fig. 3.7.

6Although the discussed techniques could be extended to process 3D data
7Which was also independently developed by David Douglas and Thomas Peucker [55] and therefore is

sometimes referred to as the ”Douglas Peucker algorithm”
8p. 245 [53]
9Unfourtunatelly an exact shrinkage cannot be determined due to the fact, that the shrinkage depends on

the contour’s shape and the chosen α.
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Algorithm 1 Reduce_Meas_Points
(
M̂
)

Require: M̂ ⊆Ms

Ensure: M
′ :=

{
p
∣∣p satisfies condition (3.21)

}
px ← ∅
maxDist← 0
`←

〈
p1, p|M̂|

〉
for i = 1 to

∣∣∣M̂∣∣∣ do
if ⊥

(
p
i
, `
)
> maxDist then

maxDist←⊥
(
p
i
, `
)

p
x
← p

i
end if

end for
if maxDist > α then
M̂1 :=

{
p
∣∣∣p1 ≤ p < p

x

}
M̂2 :=

{
p

∣∣∣∣px < p ≤ p|M̂|

}
M
′

1 ← Recursive call Reduce_Meas_Points
(
M̂1

)
M
′

2 ← Recursive call Reduce_Meas_Points
(
M̂2

)
return M

′

1 ∪M
′

2 ∪
{
p
x

}
end if
return ∅
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Figure 3.7: Example of the Ramer-Algorithm

3.2.2 The EM-ICP prepositioning

After the amount of points was reduced in the first step, the next step is the prepositioning
of the reduced sets. For this step the aforementioned EM-ICP is the instrument of choice.
This is not only due to its strong convergence property, but also because the EM-ICP is a
fully stochastic approach which models the transformation TTT in between the model and scene
points, as well as the matches in between the point sets AAA as a stochastic variable, based
on the EM10 algorithm [56]. Since there are no fixed point matches, it was valid to reduce
the number of points as described in section 3.2.1. Or, in other words, reducing the point as
described in section 3.2.1 is only possible because there is a soft correspondence between the
model and scene points.

We assume the set of scene points to be si ∈ S and the model points to be mi ∈ M.
The first step done by Granger et al. [51] is to model the probability of a scene point, given
the model points and a transformation TTT . As soon as the scene points are expected to be

10Expectation maximization algorithm
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Gaussian distributed with zero mean and Σ variance, this leads to equation (3.22).

p
(
si
∣∣mj ,TTT

)
= k−1e−0.5·fm(TTT ·si,mj) (3.22)

Where k is the norm factor given by equation (3.23) and the function fm
(
TTT · si,mj

)
cal-

culates the Mahalanobis distance in between a model and a scene point with respect to the
transformation, given by equation (3.24).

k = (2π)
p
2 |Σ|

1
2 (3.23)

fm(x1, x2) = (x1 − x2)trΣ−1(x1 − x2) (3.24)

The probability given in equation (3.22) works only for corresponding points. This corre-
spondence will be managed by a matching matrix AAA. In the simplest case AAA can be a binary
matrix which is AAAij = 1 if a scene point si corresponds with model a point mj , or 0 if they
do not correspond. Since these correspondences are independent, the probability of p(AAA) is
given by equation (3.25).

p(AAA) :=
|S|∏
i

|M|∏
j

(p(AAAij = 1))AAAij (3.25)

This results in a maximum probability p(AAA) = 1 for a binary matching matrix, where we have
a unique matching for each point. But, since we want a soft correspondence, we allow each
matching expectation to be EEE(AAAij) = p(AAAij = 1) ∈ [0, 1] as a convex combination over all
model points (equation (3.26)).

|M|∑
j

p(AAAij = 1) =
|M|∑
j

EEE(AAAij) = 1 (3.26)

With the given probability of AAA in equation (3.25) and the matching probability of equation
(3.22), we can now rewrite the conditioned probability for a single scene point si with respect
to the model, the transformation, and the correspondence matrix, as in equation (3.27).

p (S |AAA,TTT ,M ) =
|S|∏
i

p (si |AAA,TTT ,M )

=
|S|∏
i

|M|∏
j

(
p
(
si
∣∣TTT ,mj

))AAAij (3.27)

Now the a-priori probability for AAA is chosen to be uniformly distributed p(AAAij = 1) = πij =
|M|−1 as stated in [51]. This leads to the scene matching likelihood of equation (3.28) and
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the single scene point probability of equation (3.29).

p (S,AAA |TTT ,M ) = p (S |AAA,TTT ,M ) · p (AAA |TTT ,M )

=
|S|∏
i

|M|∏
j

(
πij · p

(
si
∣∣TTT ,mj

))AAAij (3.28)

p (si |M,TTT ) =
|M|∑
j

πij · p
(
si
∣∣mj ,TTT

)
(3.29)

From now on, given the scene, the model and the transformation, the probability of AAA can
be derived by Bayes’ theorem, as stated in equation (3.30).

p (AAA |TTT ,S,M ) = p (S,AAA |TTT ,M )
p (S |TTT ,M ) =

|S|∏
i

|M|∏
j

(
πij · p

(
si
∣∣TTT ,mj

)∑|M|
k πik · p (si |TTT ,mk )

)AAAij
(3.30)

For a single correspondence probability, this leads to equation (3.31) with respect to equation
(3.25).

EEE(AAAij) = πij · e−0.5·fm(TTT ·si,mj)∑|M|
k πik · e−0.5·fm(TTT ·si,mk)

(3.31)

Equation (3.25) represents the ”E-Step” of the EM-Algorithm, as soon as it denotes the
estimation of the matching matrix. For the maximization step (”M-Step”) we can simply use
the full scene probability given in (3.28) and build the log likelihood, equation (3.32).

−EEE(log p (S,AAA |TTT ,M )) =
−
∑
ij

AAAij log πijp
(
si
∣∣mj ,TTT

)
(3.32)

Since the Mahalanobis distance function fm is reduced to equation (3.33) for isotropic and
uncorrelated noise

fm(x1, x2) = ‖x1 − x2‖
2
σ−2 (3.33)

and the constants do not affect the minimization, we can rewrite equation (3.32) to equation
(3.34), which enables us to find the optimal transformation for the given configuration.

min
∀TTT

(
−log L

(
TTT
∣∣σ2,AAA,S,M

))
= min

∀TTT

(∑
ijAAAij

∥∥si − TTTmj

∥∥2
σ−2

)
(3.34)

The last missing variable is σ2, which is the variance estimate, but since Granger states in
[57] that an estimation of σ2 tends to be unstable because of its rapid shrinkage, a constant
σ2 is used, which will be multiplied by an annealing coefficient each iteration step.
These results can now be formulated as an algorithm 2. Since during the estimation step the
calculation ofAAAij is independent for each i and j, it can be computed in parallel. For a discus-
sion of possible optimations see Tamaki et al. [52], where details about the implementation
of an EM-ICP algorithm in CUDA and OpenMP are provided.
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Algorithm 2 Calculate_EM-ICP(S,M)
Require: S,M
Ensure: Max. likelihood estimate of TTT
TTTnew ← initial TTT
repeat
for i = 0 to |S| do
for j = 0 to |M| do

AAA∗ij ←
πij ·e

−0.5·fm(TTTnew·si,mj)∑|M|
k

πik·e−0.5·fm(TTTnew·si,mk)

end for
end for
TTT old ← TTTnew

TTTnew ← FindMinArg
(∑

ijAAA
∗
ij

∥∥si − TTTmj

∥∥2
)

M← TransformModel(TTTnew)
until ‖TTTnew − TTTnew‖ < ε

3.2.3 Finalizing with the ordinary ICP
The ordinary ICP is used as the last step to finalize the matching process. From here on, one
needs to continue with the original point set, not the reduced version used in section 3.2.2.
Since a good guess of the contour position is known due to the EM-ICP, we can expect the
ICP to converge in only a few iterations. The neighbor search is implemented as a kD-Tree
search, since this is a very intuitive and efficient improvement that was already stated in the
original paper [49] as an outlook11. kD-trees are virtually dividing the k-dimensional space
into subspaces, which are organized by a tree structure and can therefore be searched very
quickly (O(log n) for the search of the nearest neighbor point). Though the neighbor search
is very fast, the construction of a kD-Tree is about O(kn log n). Therefore, it makes sense to
build it in parallel during the prepositioning. Since kD-trees are very common in the field of
image processing and can be considered to be a standard technique, the kD-trees algorithm
shall not be discussed in this work12.

The ICP algorithm works by searching the nearest neighbor scene point si for each model
point mj , with respect to the Euclidean distance. Those two points are assumed to be
matches. This search can be accelerated with the kD-trees. Now one can consider a match-
ing matrix in a similar way as in section 3.2.2, but in this case as a binary matrix denoting 1
for a match and 0 otherwise (equation (3.35)).

AAAij :=
{

1 if ‖mj − si‖ = min
∀mk∈M

‖mk − si‖
0 otherwise

(3.35)

And, since the likelihood of the scene given in equation (3.27) in section 3.2.2 is a very
general assumption, one can formulate the likelihood for the transformation given the fixed

11p. 254 ”VIII. FUTURE DIRECTIONS” [49]
12Further readings can be found under [58] and [59]
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binary matching matrix of equation (3.35) similarly as denoted in equation (3.36).

L (TTT |AAA,S,M ) = p (S |AAA,TTT ,M ) (3.36)

From there on, the next steps are straight forward since one needs to rewrite it as a negative
log-likelihood function. This results in equation (3.37).

− log (L (TTT |AAA,S,M ))

= − log

|S|∏
i

|M|∏
j

(
p
(
si
∣∣TTT ,mj

))AAAij
=

|S||M|∑
ij

[
AAAij

∥∥si − TTTmj

∥∥2
σ−2

]
(3.37)

In equation (3.37) Σ−1 has already been replaced with σ−2 which denotes the isotropic
and uncorrelated noise assumption, similar as in section 3.2.2. To find the optimal match,
we assume σ to be one, as in the standard normal distribution, and search for a TTT which
minimizes equation (3.38).

min
∀TTT

|S||M|∑
ij

[
AAAij

∥∥si − TTTmj

∥∥2
]

(3.38)

This needs to be repeated iteratively until we converge into our local minimum. This leads
to the formulation of algorithm 3.

Algorithm 3 Ordinary_ICP(S,M)
Require: S,M
Ensure: Max. likelihood estimate of TTT
TTTnew ← inf
repeat
AAA← AAA · 0
for i = 0 to |S| do
j ← FindNNeighborIdx(si) {kD-Search}
AAA∗ij ← 1

end for
TTT old ← TTTnew

TTTnew ← FindMinArg
(∑

ijAAA
∗
ij

∥∥si − TTTmj

∥∥2
σ−2

)
M← TransformModel(TTTnew)

until ‖TTTnew − TTTnew‖ < ε

3.2.4 Finding the minimum Transformation
In both algorithms, algorithm 2 and algorithm 3 in section 3.2.2, one can find a function
named ”FindMinArg”. This method is meant to search the transformation that minimizes
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the criterion passed as the argument. The minimizing TTT can be found in a closed form
solution for a given criterion in R2 as well as in R3. A common solution for R3 based on
quaternions is given by Horn [60]. But, since this algorithm is meant to work in R2 with the
purpose of contour matching, we are going to illustrate how to find the minimizing TTT in R2,
which is a linear least square estimator.
Equation (3.39) illustrates the related linear model,

AAA · β = b (3.39)

⇒ β =
(
AAATAAA

)−1
AAAT b (3.40)

where AAA is the design matrix, the vector b is the resulting vector and the vector β is the
vector of unknowns. Then the best linear unbiased estimation of β is denoted to be as in
equation (3.40).
If one choses AAA to be as in equation (3.41) and b as in equation (3.42), the best linear
unbiased estimation of TTT is given as in equation (3.43).

AAA =



x1 y1 1 0
x1 y1 0 1
x2 y2 1 0
x2 y2 0 1
...

...
...

...
xn yn 1 0
xn yn 0 1


(3.41)

b =



x∗1
y∗1
x∗2
y∗2
...
x∗n
x∗n


(3.42)

TTT =

 β1 β2 β3
−β2 β1 β4
0 0 1

 (3.43)

Where the resulting matrix TTT represents a homogeneous transformation matrix in R2, in
which the squared 2 × 2 sub-matrix t1,1 to t2,2 represents the rotation and the sub-vector
(t1,3, t2,3)T represents the shift of the contour.
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3.3 Position recognition with sparse data
The last two sections concentrate on the data provided by the sensor. The described methods
to improve noisy data (section [3.1]) as well as methods to determine pre-learned features
within the sensor data (section [3.2]). Hence, the next logical step is to determine which
information from those extracted features is applicable for the robot in order to optimize its
motion path. The method described in this chapter is going back on a scheme which was
supplied by Philipp Roebrock in a technical paper for Polytechnical University in Timisoara
in his Ph.D. program13. His basic scheme of a path-correction algorithm has been picked
up, extended, and reformulated within this thesis in a way that serves the needs of industrial
path correction. The algorithm has been implemented within the VMT BK path correction
system and serves in many sealing applications worldwide, today. Therefore, the following
section will introduce a novel method of path correction, which can combine multiple features
extracted from the sensor data to a fully qualified correction vector.

Path correction means correcting an application path of the robot with single or multiple
corrections. There are many ways to achieve corrections for the robot, such as those men-
tioned in [61],[62] and [19]. Most approaches are online corrections, which act like a control
loop in which the recent measurement has a direct effect on the robot path, called point-to-
point correction.

Figure (Fig. 3.8) depicts a typical application spot for a path correction system, which
lies at the back side of a door. The bead marked in red is the sealing bead that covers the
gap between the crimped edge, which is connecting the outer and inner metal part of the
door. This type of bead will stay visible for the customer and might only be partly covered by

Figure 3.8: Depicts a typical sealing bead, marked in red, on the backside of a door.

plastic lids. Most of it might remain visible and the customer will be able to see it whenever
he is entering the car. Since this bead also runs parallel to the door edge, a human observer

13Unfortunately this technical paper has never been published
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will have a straight reference edge. As described in section [1.2], this setup will allow the
human observer to see even the slightest inaccuracies and deviations. Hence, one can easily
imagine that there have to be visible defects within a point-to-point correction in cases of :

• bigger but necessary adjustments (> 0.2mm), causing tiny saw tooth shapes

• erroneous measures, since the correction is point by point, foreign particles or noise

This can lead to huge quality issues. It is, however, more desirable, to have a smooth
alinement along the reference edge, and combine multiple measures to a single correction
to be protected from single erroneous measurements. Thus, one of the key contributions of
this work is a novel algorithm, introduced in ”An over-determined path correction algorithm
for sparse dimensional measurements”[4], which combines multiple measures to a single 6
dimensional correction vector. The proposed algorithm can collect the information in a so-
called measurement run, combining this information with correction vectors, and transmitting
them to the robot during application. It is also possible to define multiple correction spots
with separate corrections, in order to respect the lower rigidity of most of the parts. For such
correction spots, multiple measurement positions will be combined to a correction region.
Since the robot switches the correction by activating frames when entering a new region, its
corrections will be smooth and no sawtooth-like jumps will be visible on the door contours.
Figure (Fig. 3.9) shows a typical configuration for a car door. The sensors indicate the

Figure 3.9: Sensors indicate the measurement positions and the red boxed indicate the mea-
sures which have been combined to a correction.

spots where the robot triggered the measures. All measurement spots gathered in a red
box are combined to a single correction region. It follows that, since multiple measures are
combined for a single correction, the resulting quality is higher and less noise affected due
to over determination. And, finally, there is only one correction on each edge. To be able
to position the sensor at the predefined measurement positions, as indicated in figure (Fig.
3.9), the sensor will be mounted on the robot’s wrist as shown in (Fig. 3.10). The robot
will run two specially prepared programs, which must be generated only once when the robot
is set up. One is called the measuring program and it contains all the predefined measuring
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Figure 3.10: Path correction demo system with wrist mounted sensor.

spots, such as those in (Fig. 3.9). At each measurement spot, a specially prepared trigger
command will be called, which is provided by the path-correction driver package14 installed
on the robot. Whenever the sensor is triggered, it will record an image and send it to the main
system, where the correction vectors will be calculated. After calculating the corrections the
main system will send them back to the robot, where the driver modules will receive them.
Finally in the application run, the driver module will turn the corrections at special, predefined
correction points, which are called application points, on15.
Since the robot is not stopping while it triggers the measurements during the measurement
program, the exact measurement position will be undefined within a small range around the
desired spot. This is called the trigger jitter. This jitter is caused by various reasons. The
major delay originates from the time span between the point where the driver module on
the robot signaled the trigger to the point where it arrives at the sensor. This is strongly
connected to the way the sensor hardware trigger is connected. If the connection is via
a filedbus system, it might already be within a milliseconds range and, depending on the
motion speed of the robot during measurement, it might already cause deviations of about a
few millimeters. But also, the sensor, which continuously records images, has just delivered
the next available image after a trigger event. So the delay is undefined within the image
acquisition time on the sensor as well.Figure (Fig. 3.11) illustrates the trigger latency
problem for a single measurement spot. Since this jitter effect is of significant strength and
cannot be ignored within the position calculations, the following proposed algorithm defines a
special non-considered degree of freedom, which needs to be aligned in the direction of robot
motion. Because the laser line scanner only provides measurements within the X/Z-Plane,
it is desirable to arrange the measurement program in such a way that the non-measurable
degree of freedom within the sensor is aligned with the direction of robot motion at the

14The path correction system has been developed in cooperation with VMT Vision Machine Technic Bild-
verarbeitungssysteme GmbH, who supplied the robot driver package

15”turning on” in this case means, that the base/workobject of the robot will be shifted by the correction
vector
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Figure 3.11: Sensor triggered in motion, so trigger position might vary.

trigger positions. In this case, the full X/Z-Information of the sensor will be used for position
calculation. If for some reason it is not possible to align the measurement plane orthogonal to
the motion direction, which might be at spots with limited reachability, then the weight vector
16 can be used to balance each component in a way that the weights cancel the skewness.
To achieve such a parallel configuration within the trigger range at the measurement spot,
the programs for the robot are prepared in a way that will ensure an entry point within about
20mm before the trigger position and also an exit point about 20mm after the trigger position.
Those positions are set up so that at each of those points the sensor image is equal. The
robot motion type is linear and the Y-direction of the sensor is aligned to the motion direction.
The stability of the setup can be verified by multiple repeated measurements, which should
all result in a zero shift.

3.3.1 Calculation of the correction vector
Combining all measurements to a fully qualified corrections vector17 is challenging since
the sensor measurements are sparse. ”Sparse” means that the sensor only provides two
dimensional information in X an Z. As described in detail in section [2.4.2], this sparsity
causes multiple problems and therefore such values cannot be used for correction directly.One
is also facing the problem described above, which is that the measurement position is some
how uncertain due to the trigger latency. Also, since the desired system is a measurement
system, we can expect the part to move as well. In other words, the position where the
measurement has been made is completely uncertain and it is essential for the proposed
algorithm to consider these circumstances in order to achieve stable results. Image (Fig.
3.12) depicts this type of change in circumstances. Since the original measurement position,
from sub image A is preserved within image B, one is able to see the deviations (∆x,∆z)
that will be measured by the sensor in situation B. It is also clear, that the values (∆x,∆z)
hardly provide any relation to the original spot measured in A, which is marked by the frame
(x′, y′, z′) in image B.
To understand how this problem got solved by the proposed algorithm, we consider the rear
door depicted in figure (Fig. 3.13) as an example. The red bars within the image mark the
measurement spots and denote the orientation of the laser line.

16The weight vector is part of the position calculation and will be covered within the next section.
17”fully qualified” means a 6 dimensional vector combined of 3 components for the position and another 3

for the orientation
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Figure 3.12: Sub image A depicts the original position during set up. Sub image B depicts
the scene after the part got shifted the sensor moved slightly.

If the door now moves, all measures might change in a similar way as illustrated in figure
(Fig. 3.12). Image (Fig. 3.14) shows all relations at a single measurement spot when
the part has moved. One will be able to observe a change of (∆x,∆z), but the information
actually desirable is the transformation T

S′n
Sn

, which is giving the actual movement of the
measurement spot. Unfortunately, this information is still unknown. It could, however, be
expressed if one would know how far away from the original position of measurement the new
measurement within the sensor frame P ′ = (∆x, 0,∆z)T is. This quantity is shown by ∆y′
within figure (Fig. 3.14). By employing ∆y′ the following relation of equation (3.44) could
be assembled.

TSnS′n · P
′ =

 0
∆y
0

 (3.44)

In figure (Fig. 3.15), both doors are visible, the shifted one in dark and the original position
drawn brighter. The resulting shifted measurement spots, denoted as S′n, are also illustrated
in figure (Fig. 3.15). The transformations of the measurement spots TWO

Sn are well-known,
since they are the robot poses for the reference measurements Sn (Fig. 3.13). For the first
measurement pose S1 the position where the edge of the shifted door will be detected is
marked as point P ′. For simplicity, we model the local region around the reference position
to be linear and therefore we can assume this measurement point P ′1 to be directly on
the y-axis of the still unknown, shifted coordinate frame S′1. The system of homogeneous
transformations in between the ”work object” coordinate systems and the sensor positions is
illustrated in figure (Fig. 3.15) as well.
The desired transformation is the transformation between the referenced work object and

the shifted work object TWO
WO′ . And, since we assumed that the sensor’s y-axis is aligned to

the contour shape of the object, as well as that P ′ is a measurement of the shifted contour,
we can expect P ′ to be at the position ∆y with z = and x = 0 in the shifted coordinate
system S1′. So we can expect the relation between TS1

S1′ and P ′ to be as stated in equation
(3.44). Unfortunately, the desired ∆y is not observable since the edge of the door provides

BUPT
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Figure 3.13: A door with possible measurement positions and according transfomations.

Figure 3.14: All relations at the measurement position with a shifted part.
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3. - A new approach for path correction

Figure 3.15: Exemplary shift with transformation for sensor 1.

no informations about this direction, nor is the sensor able to measure in y-direction. In
other words, since the measurement at this position does not provide any information on the
y-direction, this missing y quantity should have no influence on the calculation results. To
achieve this, a weight matrix as given in equation (3.45) will be introduced.

diag

[(
w
1

)]
· TS1

S1′ · P ′ =

diag

[(
w
1

)]
·

 0
∆y
0

 (3.45)

with w =

wxwy
wz


Now, one can simply set the weight of the unobservable degree of freedom - which in this
example is the y degree of freedom, but which could be any other degree of freedom depending
on the scenario, to zero. This leads to equation (3.46).

diag




1
0
1
1


 · TS1

S1′ · P ′ =


0
0
0
1

 (3.46)
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An expression for the transformation TS1
S1′ can be extracted from figure (Fig. 3.15). As

the transformation from the work object to the measurement spot is rigid, it follows that
TWO′

S1′ = TWO
S1 . This assumption leads to the general description of the measurement position

n as given in (3.47).

TSnS′n =
(
TWO
Sn

)−1 · Tcorr · TWO
Sn (3.47)

Since all relationships have been described, a minimizer for an arbitrary set of measurements
can be constructed. Equation (3.48) illustrates such a minimizer for N measurement spots,
with Y as the unobservable degree of freedom and X and Z fully weighted in each position.

N∑
n=1

∥∥∥diag[1 0 1 1] ·
[(
TWO
Sn

)−1 ·

Tcorr(θ) · TWO
Sn

]
· P ′n

∥∥2
2 → min (3.48)

Since the correction vector Tcorr is the element to be adjusted by the solver, we added
the parameter vector θ. The vector θ itself consists of the 6 adjustable degrees of freedom
θ = (x, y, z, α, β, γ)T . Up to this point we assumed that the reference is at the origin of
the sensor coordinate system. To be more general, we now expect the reference point in the
reference measurement to be at Pref . Therefore the general error functions with independent
weight vectors wn for each measurement position, where wn ∈ W is the set of all weights,
is given by equation (3.49).

f(θ |W ) =
N∑
n=1

∥∥∥∥diag [(w1
)]
·
(
P ref,n−[(

TWO
Sn

)−1 · Tcorr(θ) · TWO
Sn

]
· P ′n

)∥∥∥2

2
(3.49)

With function f(θ |W ) (3.49) we now have an expression for the error between the actual
measurement and a guessed position θ with a flexible weighting method. If a degree of
freedom is unobservable with the given choice of sensor, the unobservable degree of freedom
should be suspended by its weight. This is what has been done in (3.48) for Y.
With equation (3.49), one now has a nonlinear function describing the sum of squared
deviations over all measurement poses for a given θ. In order to find a θ which minimizes
the result f(θ |W ), one needs to employ a nonlinear least square solver. For the related
implementation of this algorithm Levenberg Marquard has been chosen, due to its positive
stability properties. This solver is described in detail within appendix [B].

BUPT



3. - A new approach for path correction

BUPT



Chapter 4

Applying the results for visual
servoing

In visual servoing sensor live data will be used within a control loop as feedback informa-
tion of the robot position. That means the robot will be guided iteratively to the target
position based on the measures captured during the control process. Many visual servoing
tasks, and especially those for placing wing parts, rely on laser stripe sensors. A drawback of
such visual servoing systems, however, is their iterative nature. The implementation of such
a system usually requires rather complex interfaces in order to command the robot step by
step into the target position. And not only complexity is an issue, since it is clearly more
time consuming to reach the target position within multiple small steps than in one single step.

Therefore, the subsequent chapter describes how the previously proposed method of path
correction [3.3] can be adjusted to perform the positioning of wing parts in a single step.
For visual servoing, the robot usually holds the wing parts within its grabber. Hence, those
grabbers are significantly bigger and much bulkier than the common tools for sealing applica-
tions. Further, it requires multiple sensors, which are fixed in the predetermined measurement
positions. Figure (Fig. 4.1) depicts such a grabber. The sensors within this picture are ar-
ranged in a double-head formation, whose purpose is to offer much more detail about the
inner structure of the contour than a single sensor would be able to. Each sensor is oriented
to a single edge side and will be able to look deep inside the gap. Then, both images will be
combined to a single image before further processing.

Although this arrangement might be beneficial for the placing process, one might easily imag-
ine how hard it is to calibrate such bulky grabbers with this complex sensor arrangements.
Usually, in common robot cells the space is simply not sufficient for methods as described in
section [2.4.3], since these methods need the sensor to move around a calibration target with
sufficient angular changes. Therefore section [4.1] describes an alternative TCP-calibration
method that is applicable without moving the robot.
Finally section [4.2] proposes an modification of the original path correction algorithm, intro-
duced in section [3.3], to perform the positioning of wing parts.

83
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4.1 Calibration of the sensor in a single step
As described in the introduction, there is a demand for novel calibration methods, due to the
dimensions and the complexity of the grabbers used for panel fitting. State-of-the-art visual
servoing systems do not require accurate extrinsic calibration, since such systems usually rely
on a simple stepwise approach based on Jacobian matrices [63]. However, the novel method
proposed in section [4.2] is designed to place the panel within one single step. Hence a good
knowledge about the sensor positions is crucial.

Similar to the calibration described in section [2.4.3], the proposed method will determine the
relation between the coordinate system within the robots wrist and the coordinate system
related to the sensors origin. The difference, however, is that this needs to happen without
moving the sensors, due to the previously described limitations within motion.
Hence, it will be possible to calibrate a grabber, like the one illustrated in figure (Fig. 4.1),

Figure 4.1: Positioning of a trunk lid

which is a typical grabber for fitting a trunk lid, in one single position in front of a calibration
target.
To be able to perform a single-shot calibration, the proposed algorithm utilizes the internal
camera of the sensor1. For most of the common laser line sensors, next to the extracted
laser line coordinates, it is also possible to acquire the raw camera images. Since a camera
can easily be calibrated by taking a single shot of a calibration plate, one can determine
the camera’s coordinate system by acquiring a single image of a well-known calibration plate
in world coordinates. By having the camera’s coordinate systems origin, the last thing one
needs to determine is the relation between the sensor’s coordinate system and the camera’s
coordinate system. By having the calibrated pinhole camera model, one can calculate the
laser planes origin by positioning a well-defined calibration obstacle underneath the laser in

1Refer to section [2.4] for details of the sensors working principle.
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various positions. Then, by knowing the relation between the camera and the laser planes
origin, as well as the camera’s position over the calibration plate, one will be able to calcu-
late the relation from the robot’s wrist to the sensor coordinate system. Image (Fig. 4.2)
illustrates the interaction between the coordinate systems. The determination of the camera-

Figure 4.2: relation between the calibration coordinate systems

laser relation needs to be done before the sensor is mounted in its final position. This step
still includes motion and thus a calibration robot is used before the sensor is supplied to the
customer. After that, when the sensor is mounted, there will be a calibration rack containing
all the calibration plates such that the robot can find a position where all sensors can observe
their related plate. Now by making a single camera image of the plates and by having the
previously determined camera laser relationship the sensors can be calibrated within a single
shot.

4.1.1 Calibrating the lens distortion
To calibrate the distortion of the lens, we used the model proposed by Horn [64]. This lens
distortion model is principally based on Brown’s distortion model [7], which was introduced in
section [2.1.4]. As suggested in Horn [64], we used the second order radial distortion formula,
since that should be sufficient for optical systems. Furthermore, we are not including the
tangential distortion, since that is only important within electro-optical systems [64]. Thus,
the distortion model is given by equations (4.1) and (4.2).

ud = uu(1 +K1r
2 +K2r

4) (4.1)
vd = vu(1 +K1r

2 +K2r
4) (4.2)

with r =
√

(uu − u0)2 + (vu − v0)2

Within equation (4.1) and (4.2) ud and vd are the distorted-image coordinates, and therefore
uu and vu need to be the undistorted counterparts. The two parameters of the distortion
function K1 and K2 are the two unknown parameters, which we want to solve for. Since
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both equation (4.1) and (4.2) pose a non-linear problem, we need to approximate those
parameters with an iterative algorithm. Such an iterative algorithm usually needs a cost
function which provides some kind of feedback about the quality of the actual state within
the iteration. A common approach is to use linear shapes within the scene to calibrate the
distortion. For laser triangulation sensors one can achieve this by just placing a planar object
underneath the laser, which will result into a line within the sensor image. Therefore, holding
such a planar object in various positions and orientation underneath the laser, will create
an image of multiple lines. Due to the lens distortion, these lines will appear with a slight
curvature within the image. The distortion calibration parameters are then chosen in a way
that ensures that all lines appear as straight as possible.

To solve for the unknown parameters within non-linear equations (4.1) and (4.2), we used
a Levenber-Marquardt solver [65]. And to provide a cost-function for the solver, which mea-
sures the linearity of the lines within the image, we applied a Karhunen-Loeve transformation
[66]. Therefore, we build the covariance matrix of the two-dimensional set of a single line’s
measures and solve for its Eigenvalues. The larger of the two resulting Eigenvalues λmax is
the one which is pointing into line direction, whereas the smaller λmin is orthogonal to the line
direction. The more the points are correlated in a linear way, the bigger λmax gets, whereas
on the other hand λmin is getting smaller. By observing the quotient of λmin/λmin we expect
the best parameter for K1 & K2 to be at the point where the quotient of λmin/λmin gets
the smallest. Let’s consider Li to be a 2×n-Matrix containing the n measures of the ith line.
Then both values λmin and λmin are calculated as illustrated in equations (4.3) & (4.4).

Li =
(
x1 x2 ... xn
y1 y2 ... yn

)
⇒ λmin = min(eig(LiLTi )) (4.3)
⇒ λmax = max(eig(LiLTi )) (4.4)

4.1.2 Camera model
Since all measures of a laser triangulation sensor are within the laser plane, usually no complex
camera models are consulted to calibrate the relationship. Thus a calibration for a laser
triangulation sensor is usually based on a simple two-dimensional homography matrix, often
denoted as H. Let’s consider the two point sets X and X̂, where x̂i ∈ X̂ are the projections
of some observed features within the camera frame and xi ∈ X are the measures of the same
features within the laser frame. One will be able to transfer each point from the camera
plane to the laser plane by simply multiplying with the correct H-matrix, in a way that all
vectors are parallel but of different scale. However, since the goal is to determine the extrinsic
parameters of the sensor, one needs a representation where all parameters are separated and
not just a homography matrix H. Therefore, equation (4.5), which is based on Tasi camera
calibration [67], was chosen to model the point relations. ûi

v̂i
ŵi

 = C · (I3×3|03×1) ·
(

R t
0 1

)
·


xi
yi
zi
1

 (4.5)
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Figure 4.3: Top: Calibrated distance measures. Bottom: Raw camera image.

The resulting vector in equation (4.5) has a third component ŵi, which is the scale. Thus,
to achieve the final pixel coordinates one needs to multiply the unscaled point ûi and v̂i with
its related scale factor ŵi.
The 3 × 3 Matrix C is the camera matrix, which is including all intrinsic parameters. It is
composed as stated in equation (4.6).

C =

 f · sx 0 u0
0 f · sy v0
0 0 1

 (4.6)

The intrinsic parameters of C are well known at this point. The focus f is given by the lens,
sx and sy are the pixel dimensions and can be found within the cameras data sheet and finally
the center point coordinates u0 and v0 had been determined by the distortion calibration in
equation (4.1) and (4.2).
The rotation matrix R is a 3 × 3 Matrix, which is composed by 3 angles, α, β and γ. The
notation used within this paper is the Tait-Bryan (YP’R”) notation and its rotation matrix is
computed as in equation (4.7)2.

R =
(

c(α)c(β) c(α)s(β)s(γ) − s(α)c(γ) c(α)s(β)c(γ) + s(α)s(γ)
s(α)c(β) s(α)s(β)s(γ) + c(α)c(γ) s(α)s(β)c(γ) − c(α)s(γ)
−s(β) c(β)s(γ) c(β)c(γ)

)
(4.7)

And finally t is a 3×1 vector which holds the translation from the world origin to the camera
coordinate systems origin in x, y and z. Since R and T can be composed by 3 parameters each,
one can replace the matrix holding the extrinsic parameter of equation (4.5) by a function
depending on these 6 parameters. And since all other parameters are well-known, we can
replace the whole projection by a function holding these 6 parameters which is illustrated in

2The two function c(x) and s(x) within equation (4.7) are representing the cosine (c) and sine (s) functions.
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equation (4.8).

 ûi
v̂i
ŵi

 = P (x, y, z, α, β, γ) ·


xi
yi
zi
1

 (4.8)

Now, having equation (4.8) one can calculate for any point in world coordinates (xi, yi, zi, 1)T
its related projection within the image plane. This can be achieved by multiplying ûi and
v̂i with the scale factor ŵi. Therefore the desired parameter vector (x, y, z, α, β, γ), is the
vector which minimizes the function given in equation (A.13).

argmin
x,y,z,α,β,γ

∥∥∥∥( ui
vi

)
− ŵi ·

(
ûi
v̂i

)∥∥∥∥2

2
(4.9)

4.1.3 Performing the calibration
The first step to determine the relation between the cameras and the laser planes origin is
to determine the lens distortion. This can be achieved by following the description of section
[4.1.1]. After the distortion has been estimated, one needs to determine the relation between
the camera’s coordinate system and the lasers’ coordinate system. Therefore, we utilized a
calibration body with triangular shape (Fig. 4.3). The calibration body has been placed in
10 positions within the sensor’s field of view. The positions have been chosen in a way that
the whole field of view was covered consistently. For each position, the sensor image and the
cameras image have been recorded. After that, the two outer edges of the triangular body
within the image pairs were extracted and approximated by lines. The intersection of these
two lines, which is the bodies top edge, had been determined for each body position ((Fig.
4.3).

The ith intersection point within the camera had been denoted as (ui, vi)T and it’s pen-
dant within the sensor measure as (xi, 0, zi)T 3. Finally, all 6 unknown parameters can be
solved by a Levenber-Marquardt algorithm in combination with the given cost-function of
equation (A.13). The resulting parameters describe the transformation from the camera to
the laser plane CT

S . Figure (Fig. 4.2) illustrates this relationship. These two calibration
steps can be performed anywhere, yet the sensor does not need to be mounted in its final
position.
Now, since the relation between the camera coordinate system and the laser coordinate

frame is known, one only need to find the position of the camera within the world coordi-
nates. Therefore, the sensor needs to be mounted in its final position. To calibrate the final
position, we used an ordinary calibration plate (Fig. 4.4). This calibration plate consists of
well-known markers. Some circular markers with a black cross inside and some bold black
circles. The bold black circles are the markers used to determine the transformation between
the camera and the coordinate system of the calibration plate. The approach to determine
this relation is exactly the same as for the calibration of the laser coordinate system. The

3Y is fixed to zero, since the Y-plane usually is the laser plane.
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Figure 4.4: Plate used for calibration

coordinates (xi, yi, zi)T of the bold circles within the calibration plate’s coordinate system
are well known and act as the reference points. For the scene point measures, the camera
image of the plate has been taken and the centers of the bold black points (ui, vi)T have
been extracted within this image. Having these two data sets, one can use the same function
(A.13) to solve for the optimal transformation between the two frames.
This finally results into two transformations. One describes the relation between the camera
and the laser CTL and the other describes the relation between the camera and the calibra-
tion plate CT

P . Therefore, one achieves the relation between the calibration plate and the
laser PTL by equation (4.10).

PT
L = (CTP )−1 ·C TL (4.10)

This relation is also illustrated in figure (Fig. 4.2). Finally, the last thing one needs to
determine is the position of the calibration plate within the world coordinate system.

4.1.4 Calibration of the plate position in world space
To determine the position of the calibration plate within the world coordinate system, the
circles with the black cross on the calibration plate were used. Their position within the plate
is well-known and thus has been used as reference.Having the cross position within the plate
coordinate system, one also needs the related cross positions within the world coordinate
system. This can be achieved by an external measurement system4. Now, having the two
point-sets which are the reference or model points on the plate pi ∈ R3 and the related
measured points within the world coordinate system p′i ∈ R3 one can determine the relation
in-between the two point-sets by using the method described by K. Arun [68]. With this
method, one can calculate the transformation in three steps. First, the translation vector
between the two point clouds is the translation between the two centroids, thus one needs to
calculate the centroids of the two point-sets.

p̄ = 1
N

N∑
i=0

pi , p̄′ = 1
N

N∑
i=0

p′i (4.11)

4Usually the robot where the sensor has been mounted was used for such an measurement
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It follows then, that after subtracting the centroids from each point of the related point cloud,
the two point sets differ only in orientation.

Q =


pT1 − p̄
pT2 − p̄

...
pTN − p̄

 , Q′ =


p′
T
1 − p̄′

p′
T
2 − p̄′
...

p′
T
N − p̄′

 (4.12)

⇒ qi = R · q′i (4.13)

Thus, the last step is to determine the unknown ration matrix R, which can be calculated by
equation (4.15).

[U,Λ, V ] = svd
(
(Q′)TQ

)
(4.14)

R = V · diag(1, 1, det(V · UT )) · UT (4.15)

Finally, since the transformation from the scene5 to the reference6 has been determined, one
needs to transform the center of mass of the scene points to the model’s orientation and
calculate the relative vector in between the two centers of masses.

t = p̄−R · p̄′ (4.16)

WT
P =

(
R t
0 1

)
(4.17)

Equation (4.17) shows the relation between the scene and the model points, or, as in the
case between the world-coordinate frame and the calibration plate’s coordinate frame. Since
we also derived the relation between the calibration plate’s frame and the laser coordinate
system in equation (4.10), the final step, which calculates the relation between the world
and the lasers’ coordinate system, is given by equation (4.18).

WT
L =W TP ·P TL (4.18)

4.2 Fitting the panel in a single step
The panel-fitting algorithm proposed in this section is an extension of the path correction.
The task is to fit a wing panel such as a fender, a door, the trunk lid or the motor hood
relative to the car body. Due to the oversized grabber, one challenge is the sensor calibration,
as discussed in section [4.1]. On the other hand, all panels will be placed within a frame,
therefore the situation is quite similar, as illustrated in figure (Fig. 1.7). Since the frame and
panel edges are usually very close to each other, they act as references and the slightest devi-
ation will be easily spotted by the customer. For panels, this means they have to be corrected
to a position where all gaps between the panel and the body look symmetrical to the observer.

5Which is the world coordinate system.
6Which is the plates coordinate system.
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To do so, a relative measure is necessary, meaning a measure between body and panel,
different from the path correction. Therefore, the algorithm proposed in this section intro-
duces a new method to find a mounting position for panels within the body frame. It is based
on the path correction introduced in section [2.5]. Other than for existing solutions, which
are working iteratively, it is possible to find the final mounting position in a single step. To
set up the system, the desired position for the panel fitting needs to be trained. This means
the robot teacher needs to grab the panel and needs to position the robot to the final (zero)
position.

This is the position where the panel needs to be mounted. This mounting position is not
always the position where all of the gaps appear to be symmetrical, because after the grabber
opens and the part is only held by its hinges, it will lower a bit into its final position. Hence
this final position is not related to the mathematically perfect position, but to the outcome
after fixation and relaxation of the grabber. As soon as the door has been positioned, the
system starts to measure both the panels and the body frame.

To extract the absolute position for each coordinate system, the path correction algorithm
(section [2.5]) will be utilized. Thus, the mounting points of the sensor need to be calibrated
which we discussed in section [4.1]. After having the absolute measure of both coordinate
systems, one can calculate the relative relation in between the panel and the frame. This
relative relation is what we need to achieve for all misaligned doors. Hence, for a misaligned
door, the correction vector is exactly the difference between this zero-relationship and the
actual measured relationship.

4.2.1 An Offline Single-Step Algorithm
The algorithms proposed in [69] are designed to position car body panels in the so-called
”BestFit”position. That is the position where all measurements have no deviations, or at
least the smallest possible deviations with respect to the statistical model for the expected
residuals. Since the statistical model for the expected residuals is usually a Gaussian, this
is almost always the position where the summed squares of the residuals is minimal. Figure

Figure 4.5: (A): Misplaced panel with deformations (B): ”BestFit”position of deformed panel

(Fig. 4.5) sketches a scene where a deformed and misaligned panel (subfigure A) has been
fitted into the ”BestFit”position relative to the fixed body (subfigure B). The final position
in subfigure B relies on the four distance measures, which are indicated by red arrows. The
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dotted-lined boxes in the background of the panels in both subimages indicate the original’s
panel shape, as well as the desired mounting position. To reach the mounting position for the
given deformed panel, the closed-loop Jacobian approach would estimate improving positions
step by step until the panel position converges.

The panel in sub-image B of (Fig. 4.5) shows the ”BestFit”position, for which the panel
has been moved from its starting position in sub-image A, through a well-defined correction
transformation TTT corr. The correction transformation TTT corr is the transformation where the
difference between current sensor signals s (TTT corr) and the signals for the set-position sset
are at minimum (4.19).

TTT corr = min
∀TTT∈TTT

‖s (TTT )− sset‖
2
2 (4.19)

∆s = s (TTT corr)− sset (4.20)

Where TTT is the set of all possible transformations in R3. Equation (4.20) expresses the
deviations ∆s in the final ”BestFit”position, the so-called residuals.

If one considers a perfectly-shaped panel and a perfectly-shaped object with no deformations
related to the object used during the training, those residuals would completely disappear
in the final mounting position TTT corr. In other words, the residuals represent the deviations
of the objects used for positioning from the objects which were used during training. Since
two objects are involved in the control process – the body and the panel – the residuals in
the final ”BestFit”position ∆sBestFit are the sum of the deviations due to the body and the
panel (4.21).

∆sBestFit = ∆spanel + ∆sbody (4.21)

TTT corr = min
∀TTT∈TTT

∥∥∆spanel (TTT ) + ∆sbody (TTT )− sset
∥∥2

2 (4.22)

The refined definition for residuals in (4.21) can be inserted in equation (4.19) to yield the
expression in (4.22).

Section [3] presents a new method to determine the relative shift between a reference object
and later measurements of similar but deformed and shifted objects, for use in path correction
systems. That algorithm perfectly fits the demand to find the residuals at the panel ∆spanel,
as well as the body ∆sbody. The algorithm proposed in [3] requires no model information
and is able to work on sparse dimensional measurements. That means it is not necessary to
perform measurements for all degrees of freedom, since sparse 1D information – for example
a gap distance in the case of a door – can be sufficient. Therefore, the position determination
can be accomplished with basically the same signals considered in Roebrock [69]. The only
restrictions are that the sensor’s positions need to be calibrated and that the signals need to
represent distances in real-world metric.

To introduce our new algorithm, we consider a rear door as an example. Such a door is
illustrated in figure (Fig. 4.6). The red bars in the image mark the measurement spots
and denote the orientation of the laser line. In a real-world situation one would use more
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measurement spots than those given in figure (Fig. 4.6).
The proposed algorithm is expected to be able to find the relationship between a set of

Figure 4.6: A door with possible measurement positions and according transfomations.

reference measurements and a set of new shifted measurements at arbitrarily shaped objects.
A priori knowledge, for instance a CAD model of the object to be measured, is not required.
After referencing the master position, we expect the door to be shifted and, since the mea-
surement positions are fixed this implies that the measurements of a shifted position are then
related to a slightly different spot at the door. This is illustrated in figure (Fig. 4.7), which
shows a dark door and a bright one. The bright door is the original reference door, whereas
the dark door indicates a shifted door position. The resulting shifted measurement spots, de-
noted as s′n, are also illustrated in figure (Fig. 4.7). The transformations of the measurement
spots TTTWO

Sn are well-known, since they are the robot poses for the reference measurements
sn (Fig. 4.6). For the first measurement pose s1 the position where the edge of the shifted
door will be detected is marked as point p′. For simplicity, we model the local region around
the reference position to be linear and therefore we can assume this measurement point p′1
to be directly on the y-axis of the still unknown, shifted coordinate frame s′1. The system
of homogeneous transformations in between the ”work object” coordinate systems and the
sensor positions is illustrated in figure (Fig. 4.7), as well.
The desired transformation is the transformation between the referenced work object and

the shifted work object TTTWO
WO′ . And, since we assumed that the sensor’s y-axis is aligned to

the contour shape of the object and that p′ is a measurement of the shifted contour, we can
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Figure 4.7: Exemplary shift with transformation for sensor 1.

expect p′ to be at the position ∆y with z = and x = 0 in the shifted coordinate system s1′.
So we can expect the relation between TTTS1

S1′ and p′ to be as stated in equation (4.23).

TTTS1
S1′ · p′ =

 0
∆y
0

 (4.23)

Unfortunately, the desired ∆y is not observable since the edge of the door provides no infor-
mation about this direction, nor is the sensor able to measure in y-direction. In other words,
since the measurement at this position does not provide any information on the y-direction,
this missing y-quantity should have no influence on the calculation results. To achieve this,
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we will introduce a weight matrix as in equation (4.24).

diag

[(
w
1

)]
· TTTS1

S1′ · ′ =

diag

[(
w
1

)]
·

 0
∆y
0

 (4.24)

with w =

wxwy
wz


Now one can simply set the weight of the unobservable degree of freedom to zero. In this
example, this is the y-degree of freedom but it could be any other degree of freedom depending
on the scenario. This leads to equation (4.25).

diag




1
0
1
1


 · TTTS1

S1′ · p′ =


0
0
0
1

 (4.25)

An expression for the transformation TS1
S1′ can be extracted from figure (Fig. 4.7). As

the transformation from the work object to the measurement spot is rigid, it follows that
TWO′

S1′ = TWO
S1 . This assumption leads to the general description of the measurement position

n as given in (4.26).

TTTSnS′n =
(
TTTWO
Sn

)−1 · TTT corr · TTTWO
Sn (4.26)

So far, we have described all necessary relationships to derive a function for the expected
deviation. Equation (4.27) illustrates such a minimizer for the n-th measurement spot, with
Y as the unobservable degree of freedom and X and Z fully weighted in each position.

f∆s
n
(TTT ) = diag[1 0 1 1] ·

[(
TTTWO
Sn

)−1 · TTT · TTTWO
Sn

]
· p′
n

(4.27)

First, the matrix TTT is rearranged into a function depending on the parameter vector θ. The
vector θ itself consists of the six adjustable degrees of freedom θ = (x, y, z, α, β, γ)T . Up to
this point, we assumed that the reference is at the origin of the sensor coordinate system.
To generalize the approach, the reference point in the reference measurement is expected to
be at ref instead. Therefore the general error functions with independent weight vectors wn
for each measurement position, where wn ∈W is the set of all weights, is given by equation
(4.28).

f∆s
n

(θ |wn ) = diag

[(
wn
1

)]
·
(
p
ref,n

−
[(
TTTWO
Sn

)−1

·fTTT (θ) · TTTWO
Sn

]
· p′
n

)
(4.28)
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With the function f∆s
n

(θ |wn ) derived in (4.28), the residuals for a given parameter vector
θ can be calculated. Thus, the residuals in the minimizer for the ”BestFit”position, as given
in (4.22), can be replaced with the function f∆s

n
(θ |wn ) from equation (4.28). This leads

to a new equation for the function to minimize, as illustrated in (4.29).

f∆s (θ |W ) =
N∑
n=1

∥∥∥f∆s
paneln

(θ |wn ) +

f∆sbodyn
(θ |wn )− sset

∥∥∥2

2
(4.29)

Where W is the ordered set of N weight vectors wn. Equation (4.29) now states a function
describing the residuals for a given pose θ. The θ, which minimizes (4.29), is the desired pose
of the ”BestFit”-position for the panel. This resulting pose is related to the measurement
position. To find such a minimizing θ for equation (4.29), one needs to employ a nonlinear
least square solver. For the related implementation of this algorithm a ”Levenberg-Marquardt”
solver [70] was chosen, due to its positive stability properties.
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Chapter 5

Discussion and evaluation of the
model accuracy

Vision systems for robot guidance usually assist the production process by measuring parts,
calculating corrections for those parts and supply the corrections to the robot. After this,
the robot will be able to correct its trajectory according to the correction vector provided
by the vision system, which will result in better product quality. But when one talks about
measurements, he also needs to talk about uncertainty, since no measurement is error-free.

On the one hand, one has to differentiate between two types of uncertainty, which can
be random or systematic. A systematic error is within the applied mathematical model.
Sometimes a mathematical model would simply get too complex if it reproduces the reality
perfectly. Therefore, it is preferable to introduce some shortcomings to keep the model simple
and manageable. Modeling all the factors that influence the realistic behavior would simply
be too complex. The influence of different aspects that have been left out is unmodeled
systematic behavior and can therefore be estimated. An other aspect are the purely random
errors, which are induced by multiple environmental influences as well a technical limitation
while recording the desired quantities from the system. An introduction to the nature of errors
distribution and how to estimate optimal model parameter can be found in the appendix [A.1]

Contrary to systematical errors, a random error is not describable at all for a single value;
only the way it is distributed like the density function or other stochastic features can be
estimated. If one considers the camera model, as discussed in chapter [2.6], then one has a
model which is very accurate and where the systematic error, which might be within the thin
lens and distortion model, is negligible for multiple types of measurements. As a simple rule
of the thumb:

The better the cameras resolution and noise ratio and the less the lense distorts
(which can also be achieved by modeling see [2.1.4]), the more accurate the
results1

1Of course this is only true for a certain range, but with right lense calibration and a good camera one
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Since the proposed algorithms describe only the model functions but can be applied to mul-
tiple devices with different accuracies, the rule as described above holds in the same way.
This means that for a four-megapixel camera, the accuracy almost doubles compared to a
one-megapixel camera. But there also is a systematic error within the path-correction model,
which will be discussed in section [5.1]. Within this section, the error will be approximated
by a theoretical worst-case function.

5.1 Model inaccuracy

The weakness of the algorithm detailed in chapter [3] is that it is based on the assumption
that the observed feature continues linearly in all unobservable degrees of freedom. This
condition is rarely met in modern car bodies, since they have a lot of non-straight contour
lines and curvatures. Therefore, one has to expect errors in the results of the position deter-
mination because the conditions of the real world do not match the theoretical model. Thus,
an elementary question is how severely those deviations influence the results.

Since the accuracy of an ordinary industrial robot can be expected to be about ±0.3mm,
the goal of this section is to determine the critical limit for the surface curvature that would
not influence the resulting accuracy of the application. In this section, we will carve out a
correlation between the shapes’ curvature and the resulting error of the model assumption.

Since the mounting positions of panels usually do not allow a lot of movement without
provoking a collision, the misplacement of panels is expected to not exceed ±10mm. That
assumption is realistic, because it is a reasonable field of view for the sensor devices as well.
One can expect the curvature to not change drastically within the allowed region of ±10mm.
Therefore, we chose an osculating circle at the referenced measurement point as a sufficient
approximation of the local curvature. Figure (Fig. 5.1) shows a car body door with a laser
line sensor’s measuring position at the front edge of the door and the related osculating circle
for the given position.

The radius of the osculating circle is marked as roc in the image, p marks the referenced
measurement position. The question is how big the maximum relative approximation error
δp between the osculating circle and the linear model is within a given region εp. A sketch of
this configuration is shown in (Fig. 5.3). For the scene as depicted in (Fig. 5.3), δp turns

can achieve accuracy within the range of a hundredth of a millimeter.
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out to be as given in (5.1).

δp = roc −
√
r2
oc −

(εp
2

)2
⇔ (5.1)

(roc − δp)2 = r2
oc −

(εp
2

)2
⇔ (5.2)

r2
oc − 2rocδp + δ2

p = r2
oc −

(εp
2

)2
⇔ (5.3)

2rocδp − δ2
p =

(εp
2

)2
⇔ (5.4)

roc =
( εp

2
)2 + δ2

p

2δp
(5.5)

With equation (5.5), equation (5.1) can be rearranged in such a way that the minimum
osculating circle radius roc for a given relative approximation error δp can be determined.
Figure (Fig. 5.2) also shows a sketch of the relation between the relative approximation
error δp and the osculating circle radius roc. In equation (5.5) and figure (Fig. 5.2), it is

Figure 5.1: Measurement positions at a door with the corresponding osculating circle.

evident that the relative approximation error δp is quickly decreasing by a rising osculating
circle radius roc. If one considers an osculating circle radius roc of about 1 meter for instance
(which is almost always true for regular measurement spots) a maximum approximation error
of about 0.05mm within a range of 20mm is achieved. This falls below the measurement
accuracy of most sensor devices and also below what a common robot can compensate within
its accuracy. Even if one would consider extreme shapes like a wheelhouse, an approximation
error of about δp = 0.14mm for a given osculating circle radius roc = 350mm within a range
of 20mm can be achieved, which usually is an acceptable deviation.
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Figure 5.2: Shows the relation between the maximum possible error and osculating circle
radius.
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Figure 5.3: Sketch of relative approximation error around reference position.

5.2 Analysis and Tests

Despite the mathematical analysis it is important to observe and evaluate the practical perfor-
mance of the proposed techniques. Since this thesis was developed in context of an industrial
project at ”VMT Bildverarbeitungssysteme GmbH” for integration of their path correction
application ”VMT BK” and is in production at major automotive companies since a few
years, there is a lot of practical experience and the a major part of the proposed techniques
approved reliability and functionality in practice.

The ”VMT BK” system works in multiple production lines at Audi, Volkswagen, Porsche,
Mercedes and Audi, to name just a few. It is also in use at multiple automotive supplier and
some other industries. According to the VMT brochures and homepage the system is pro-
moted with an in production accuracy of 0.1mm. Although this accuracy had been achieved
multiple times, it is important to monitor some key factors to achieve this quality, otherwise
the accuracy might also be far below 0.1mm. A few of these factors have already been
mentioned earlier, like the shape of the edge, the alignment of the sensor, the locally parallel
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trajectory of the robot path and finally the accuracy of the utilized sensor2.

To validate the quality of the calculated corrections a first test setup had been created.
In this test setup the measurements have been performed on a raw production body around
the door frame. The shift of the object had been simulated by a base shift of the robot and
the resulting measurements have been recorded for multiple shift positions, in which each of
the measures had been executed at different positions. These positions were a set of linear
translation from -10mm to 10mm in all three degree of freedom, after that rotation from
-1◦to 1◦and finally both combined.

Finally, in order to get an idea about the exact accuracy and how much it gets affected from
a poor setup, the system had been reviewed under ”laboratory” conditions. The test setup
was a single door on a moveable stand in front of a Kuka KR30. The door itself was equipped
with measurement fixtures which can hold a 1,5” CCR reflector (Fig. 5.4). The position

Figure 5.4: 1,5” CCR Red Ring Reflector

of such reflectors can be determined very high accuracy by a device called ”laser tracker”.
Depending on the type of ”laser tracker” and the distance to the object3 the measurement
accuracy can be expected about 0.02mm, which is quite sufficient as a reference measure.
With this kind of setup the goal was to perform the following measurement experiments:

1. Standard setup:
Like in a normal production, the positions TWO

Sn
4 will be provided by the robot. Sensors

are well aligned and trajectory runs locally parallel on the edge at trigger time. Mea-
surement results will be compare with measured references from the ”laser tracker”

2. Standard setup (not continuous):
Equal to ”Standard setup” but the sensor images will be recorded while the robot stands
still at each measurement spot. In ”Standard setup” the robot is moving continuously
and just triggering at the spots.

3. Standard with improved feature detection:
This setup is equal to the first setup, but with the improvements proposed in chapter

2No one can expect the system to measure far below 0.1mm if the utilized sensor is only capable the
achieve 0.1mm accuracy.

3Which is quite close under such laboratory conditions
4From (4.28) in chapter [3.3] the Sensor position in the workobject.
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[3.2] and [3.1] activated.

4. Misaligned sensor positions:
This setup is intended to figure out how much the sensor alignment matters. It the
necessary ”local” parallelism between the sensor and the edge will be canceled, to see
how much poor setup will influence the result quality.

5. Misaligned sensor positions (not continuous):
Same like ”Misaligned sensor positions” but with no continuous motion at the mea-
surement spots.

5.2.1 Standard setup
To have an initial benchmark, the system was be configured in the standard setting. That
means ”local” parallelism at the measurement spot, generous chosen entry and exit positions,
carefully monitored ”frozen”5 contour images at dynamic trigger positions, and stable edge
features at straight contour lines. The ”set-values” of the shift positions are determined
by the laser tracker. Image (Fig. 5.5) depicts the absolute deviations of the three test
sets. Sub image 1 displays the magnitude of the average deviation at each measurement
spot after correction. The start position of the measurement (misplacement) is figured out
on the axis of abscissas, going form -10mm to 10mm with steps of half a millimeter. The
shifts themselves had been realized by base shifts, as mentioned above. This is the only way
to grant somehow accurate starting positions, since the door and the frame can hardly be
moved. Sub image 2 presents the same but for rotation from -1◦to 1◦. And finally the last
image, which is sub image 3, which is showing the absolute deviations after corretion from
translation combined with a rotation. All graphs are showing pretty stable results, within the
range of ±0.35mm. In addition for this first test all deviations at the measurement spots
were evaluated at the position at 5mm translation and 0.5◦rotation displacement. The values
are depicted in figure (Fig. 5.6) as histograms with the according estimations of the related
Gaussian distributions overlayed. All samples represent the deviations between the forward
transformation of the detected feature position within the sensor frame forward transformed
by the determined correction after measurement and the ”set” positions on the door frames.
Hence the deviations were determined as 3 dimensional in (∆X,∆Y ,∆Z). The results of the
first test setup can be found in table 5.1. The mean values are almost at zero, as they should

Table 5.1: Test results of test 1

Mean Min Max Var 3σ
Sub Fig. 1 0,0573 mm -0,1570 mm 0,6748 mm 0,0120 mm 0,3284 mm
Sub Fig. 2 0,0517 mm -0,2049 mm 0,6504 mm 0,0150 mm 0,3672 mm
Sub Fig. 3 0,0572 mm -0,1570 mm 0,6748 mm 0,0119 mm 0,3274 mm

be. But the distribution of the min and max values seems to be a little biased, since it tends
5A procedure during setup of the vision system is to slowly run the robot from the entry point over the

trigger point to the exit point, while monitoring the display of the contour. If the system is well configured,
this contour is not moving at all, while the robot tuns through the local parallel spot. Hence it’s called a
frozen contour.
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1 2

3

Figure 5.5: Test results for Test 1 with translation only in sub image 1, rotation only in sub
image 2 and translation with rotation in sub image 3

to drift more in positive direction as in negative. But this effect might mostly be related to
the relatively small sample size, and can hence be expected as normal distributed. And finally
the resulting 3σ accuracy settles stable underneath half a millimeter, which is a really good
result.

5.2.2 Standard setup (not continuous)
The second test setup is almost similar to the first, with the tiny difference that the robot is
not moving when the measurements are taken. Finally due to the nature of the calculation,
this should not make much of a difference. As described chapter [3.3], there is a zero weight
for the vector w in the motion direction, as it is used in formula (4.28). Hence if the system
is configured carefully, the moving robot in the first test should not have a negative influence
and one could expect similar results for this second test setup. Table 5.2 shows the results

Table 5.2: Test results of test 2

Mean Min Max Var 3σ
Sub Fig. 1 0,0514 mm -0,1606 mm 0,6683 mm 0,0192 mm 0,4157 mm
Sub Fig. 2 0,0306 mm -0,4265 mm 0,6879 mm 0,0194 mm 0,4177 mm
Sub Fig. 3 0,0482 mm -0,1732 mm 0,6388 mm 0,0150 mm 0,3670 mm

of the second test and figure (Fig. 5.7) the graphs with the magnitudes of the resulting
deviations. These pictures and number confirm the previous assumptions pretty well. All
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Figure 5.6: Histograms of the deviation after correction of 5mm translation and 0.5◦shift.

differences between the first and the second test seem to be of statistical nature due to the
small sample size of 20. From the magnitudes the results look equally.

5.2.3 Standard with improved feature detection
For the previous two tests the feature detection was the common standard method called
”contour tear off” detection. This very simple method just searches the last contour point
from a certain direction. To analyze the improvements for the proposed methods for feature
detection [3.2] and image stabilization [3.1] this third test had been implemented. The setup
is equal to the first test, which is similar to the industrial setup, but all the sensor images are
filtered and the contour matching had been used for sub-pixel accuracy matching. Table 5.3
presents the results of this previously described test. One can clearly see the stabilization of
the feature detection in the sensor images lead to a huge improvement of the results. The
mean deviation at each measurement spot after correction are with about 0.01mm about 5
times smaller, as before. Furthermore the 3σ measurement uncertainty converges very clearly
to measurement uncertainty denoted for the sensor, which is about ±0.5mm. Finally image
(Fig. 5.8) present the graphical results of test 3.
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Figure 5.7: Test results for Test 2 with translation only in sub image 1, rotation only in sub
image 2 and translation with rotation in sub image 3

21

3

Figure 5.8: Test results for Test 3 with translation only in sub image 1, rotation only in sub
image 2 and translation with rotation in sub image 3
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Table 5.3: Test results of test 3

Mean Min Max Var 3σ
Sub Fig. 1 -0,0118 mm -0,1346 mm 0,0414 mm 0,0007 mm 0,0769 mm
Sub Fig. 2 -0,0107 mm -0,1942 mm 0,0955 mm 0,0008 mm 0,0864 mm
Sub Fig. 3 -0,0123 mm -0,1645 mm 0,0375 mm 0,0003 mm 0,0527 mm

5.2.4 Misaligned sensor positions
As mentioned many times before the proposed algorithm assumes, that the motion directions
of the robot are aligned with the unobservable degree of freedom of the sensor. Or at least,
if a perfect alignment is not possible, one must adjust the weight vector w in a way that the
deltas, cause by misplacement, will cancel out. Hence it is crucial to have an accurate sensor
setup on the measurement target, for being able to guarantee good results. In practice it
turned out being a good idea to employ gauges6 for adjusting the laser. With such tools it
is very possible to ensure a good alignment. For the last two test the goal however was to
find out how much a bad alignment influences the measurement results. The results of this
test can be inspected in table 5.4. Apart from the mean, which is quite similar to the values

Table 5.4: Test results of test 4

Mean Min Max Var 3σ
Sub Fig. 1 0,1263 mm -0,8482 mm 1,4765 mm 0,1468 mm 1,1493 mm
Sub Fig. 2 0,0726 mm -1,8866 mm 1,2093 mm 0,2892 mm 1,6133 mm
Sub Fig. 3 0,0542 mm -2,0709 mm 0,8042 mm 0,2658 mm 1,5466 mm

before, the 3σ values speak a clear language. The values are literally exploding compared
to the test before. This test clearly emphasizes how important it is to have a clean setup
especially regarding the rotation around the z-axis of the sensor frame. The surprisingly good
mean values are related to the fact that for one direction of misplacement the values increase
in positive direction and for the other direction they get negative. Hence in average the values
are looking good, the variance however is showing the real deviations. From the theory it is
expected for the deviations to increase linearly according to the distance to the zero position
(zero shift). Whereby the slope of the linear increasing errors is dependent on the angle by
which the sensor is misaligned and the local linearity.

5.2.5 Misaligned sensor positions (not continuous)
Although the previous test already demonstrated how crucial a good alignment is, it was
also of interest how much additional error had been caused by trigger inaccuracy within
test 4. Therefore the robot has been stopped at each measurement spot within this final

6The systems had been installed all over the world and in practice there was not always ”professional”
good gauge by hand. It commonly happened that the installing engineer just employed plastic cards (like
credit cards) which turned out to be perfect for perpendicular alignment due to their straight edges and right
angles.
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Figure 5.9: Test results for Test 4 with translation only in sub image 1, rotation only in sub
image 2 and translation with rotation in sub image 3

experiment. This ensures that the measurements will be taken at the right spots without the
trigger jitter, which is, regarding to test 4, prone to high inaccuracies. As expected one can

Table 5.5: Test results for Test 5 with translation only in sub image 1, rotation only in sub
image 2 and translation with rotation in sub image 3

Mean Min Max Var 3σ
Sub Fig. 1 0,0334 mm -0,8137 mm 0,7679 mm 0,1153 mm 1,0189 mm
Sub Fig. 2 -0,0077 mm -2,1940 mm 1,2953 mm 0,2577 mm 1,5229 mm
Sub Fig. 3 -0,0223 mm -2,0024 mm 0,6190 mm 0,2504 mm 1,5012 mm

find slightly smaller values within table 5.10 for the variances and the resulting measurements
uncertainties, compared to test 4. The influence of the trigger jitter gets even more evident
within the graphs, where once can now see the expected linear inclinations quite clear and
less distorted.
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Figure 5.10: Test results for Test 5 with translation only in sub image 1, rotation only in sub
image 2 and translation with rotation in sub image 3
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Chapter 6

Conclusion

6.1 Outline of contributions
This thesis proposes a new set of methods to employ laser line scanner data for an industrial
measurement system. It covers systems for path correction, as well as panel fitting systems.
The methods described in chapter [3.3.1] concentrate on industrial path correction systems
and chapter [4.2.1]extends the previously introduced methods to panel fitting.

The first section [3.1] of chapter [3.3.1]proposes a novel method for filtering the sensor
data. This method uses a unique stochastic approach to determine probabilities for candi-
dates of line points. This is due to the issue that common laser line scanners often confuse
noise or light reflections as valid line points and include them in the images. By applying
the proposed method, one receives a probability for each point being a valid measure and is
therefore able to filter by the odds of the points being noise.

Further, as the next logical step, section [3.2] proposes a new method to match patterns
within the sensor images. The purpose of the pattern matching is to determine the point of
interest as a fixed landmark within the sensor image. One is able to safely identify such a
landmark because it can be tracked within the images and serve as reference for correction.
The proposed method offsets itself form existing methods essentially by improving the bot-
tleneck of detection rate.

And, finally, as the last logical step, section [3] concentrates on the algorithm for correcting
the robot’s trajectory itself. This section outlines a way to calculate a complete transforma-
tion from the sensor data. It introduces a mathematical model to determine position and
orientation by combining a set of sparse sensor data to a fully qualified correction vector.

Chapter [4] focuses on visual servoing. It concentrates on the changes necessary to ad-
just the methods proposed in the previous chapter [4.2.1] from the agile path correction to
the more static panel-fitting tasks. Panel fitting usually requires a setup of sensors mounted
within fixed positions around the robot’s grabber. It was, therefore, necessary to develop a
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new kind of calibration, introduced in section [4.1], where the sensors can be calibrated within
a single position.

Another difference between panel fitting and the path correction is that panel fitting is a
relative measurement. To fit the panel correctly into the frame, one needs to measure both
the frame and the panel. After that, we can adjust the panel relative to the frame. Therefore,
the algorithm introduced in Section [3] needed to be adjusted to perform a relative fitting.
This adjustment was introduced in section [4.2]. The following publications gather all these
contributions:

• Optimization and filtering of the sensor data: ”A MAP estimator based on geometric
Brownian motion for sample distances of laser triangulation data” [71]

• Feature detection within the sensor data:

1. ”Fast and robust point cloud matching based on EM-ICP prepositioning”[48]
2. ”Automatisierung von Fertigungsprozessen großvolumiger Bauteile”[72]

• Path correction: ”An over-determined path correction algorithm for sparse dimensional
measurements”[4]

• Static laser line sensor calibration: ”A method to determine the extrinsic parameter of
laser triangulation sensors, with restricted mobility”[73]

• Panel fitting algorithm: ”A novel approach for automated car body panel fitting.”[74]

Many of the methods, developed within this work, have also been implemented within the
VMT BK-System in parallel and proofed to work within an industrial environment. And,
finally, today VMT BK is the de facto standard system for measuring visual sealing beads for
most of the premium car producers worldwide.

6.2 Outlook
The methods for path correction proposed in this thesis are concentrating on offline path cor-
rection. In offline path correction, the robot first measures and then performs its application.

The next logical step for extension would therefore be an online path correction, where both
steps are combined and therefore save more cycle time. However, this approach is strongly
dependent on real-time interfaces, like KUKA RSI, which are not available on every robot
type yet. And for robots which provide real-time interfaces today, one will suffer with the
strong architectural differences between different manufacturers.
For online path correction, the sensor is another critical element. A sensor for an online system
needs to measure ahead of the application. That cannot be achieved by mounting a sensor
ahead from the point of application. If the contour bends, the sensor needs go around this
contour bend before the robot (and the application). This can only be achieved by enriching
the sensor with an additional independent degree of freedom or by having different view ports
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within the sensor.

Another limitation of the path correction is the assumption of the linear continuation of
the contour. This assumption seems to hold in most cases since, as discussed in section [5.1],
the error is almost always negligible. But for special spots with a strong curvature, like the
wheelhouse for example, one might want to employ different model assumptions.

Another interesting field of research would be the continuous inspection. This inspection
would be performed while the sensors are scanning the part for path correction. The dif-
ference would be that the sensor collects a first scan which will be provided to the path
correction algorithm and after that it starts to scan the contour continuously until the next
measuring point. The continuous scans could be used to evaluate if the gaps provide suffi-
cient space for the application. This could be a way to prevent tearing off nozzles in gaps
that are too tight. Today, some systems already perform a gap check but apply much simpler
evaluations due to performance issues. If the performance of the proposed contour matching
of [3.2] could be further improved, a substantial improvement of the gap inspection would
be possible. Applying a contour detection method once would not only get more accurate
results, but would also get the gaps orientation. A decision of the validity of the gap would
therefore be much more reliable.

Regarding the calibration, the demand of further development might be to determine a cali-
bration method which gets along with little or no motion, but without employing the camera
images. Since, as mentioned in [4.1], there are laser line scanners that do not provide their
camera image, this might be an interesting approach.
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Appendix A

Linear least square problems

A.1 Linear least square
In general, there are usually two type of errors:

• Systematic errors

• Random errors

The systematic errors are fully predicable and can be approximated by a model equation.
There might, however, be situations where models get too complex and it would just not
be efficient to model the reality with such a complexity to avoid all systematic errors. An
example of such a compromise is the path-correction model, which was presented in chapter
[3] and simplifies the model equation by assuming the observed contour to progress linearly.

Other errors are random. They are caused by unknown and unpredictable changes. They
cannot be modeled or predicted. Those errors can usually be understood as a big number of
statistically independent random variables and can therefore be assumed to be approximately
normally distributed due to the CLT 1.

This is because whenever a physical quantity gets measured, the measurement gets influ-
enced by numerous disturbances, which overlay the measured quantity with noise. These
disturbances may have various distributions, but as the CLT states:

A sum over a sequence of independent but not necessarily equally distributed
random variables, having finite mean and variance, satisfying the Lindeberg Con-
dition, converges to a normal distribution.

The Lindeberg Condition is given in equation (A.1) and for the discrete case with a given
sequence of samples X1, X2, ... it is given as in (A.2). Details on the Lindeberg Condition
can be found in [75]. Hence since one expects the resulting error to be a composition of

1Central Limit Theorem
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random effects all fulfilling Lindeberg Condition, one can also expect the error to be normally
distributed.

lim
n→∞

1
s2

n∑
k=1

∫
|x−µk|>εsn

(x− µk)2
fk(x)dx = 0 (A.1)

lim
n→∞

1
s2

n∑
k=1

E
[
(Xk − µ)2 · 1|x−µk|>εsn

]
(A.2)

where s2
n :=

n∑
k=1

σ2
k (A.3)

This allows us to use equation (A.4) as an assumption of the distribution for the measure-
ments.

f(x|µ,Σ) ∼ 1
(2π) p2 |Σ| 12

e(−
1
2 (x−µ)TΣ−1(x−µ)) (A.4)

Where x is an p × 1 vector of the set of measurement values X, µ represents the p × 1

Figure A.1: Normal distribution

vector of mean values and Σ is the p× p covariance Matrix. Figure (Fig. A.1) depicts such
a normal distribution for the case p = 1.

Since, due to CLT, such normal distributed measures are very common, the math to estimate
the real, noise less values, is a well know scientific discipline called ”regression analysis”. The
first ideas are dating back to Gauss and Legendre, who were both tying to solve planetary2
trajectories by applying these ideas. And both were able to predict planetary positions, by em-
ploying theses techniques, with incredible accuracy. Furthermore, they achieved their results
independent from each other at almost the same time, which lead to a bit of a discussion
about who was first. The next sections will give a deeper insight into these ideas and will
derive a solution for a general linear case.

2Gauss way trying to predict the position of Ceres and Legendre was acutely trying to calculate asteroid
positions.
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f(x) = ax+b

X

Y

Figure A.2: Normal distributed measurements around a linear function.

The mean value of the normal distribution itself doesn’t necessarily need to be a fixed single
value. It’s also possible to consider some mean function fµ(x).To avoid being too general,
in the first step we consider a simple linear function as an example. Figure (Fig. A.2) shows
such a linear mean function (dotted line) surrounded by a set of measurements (red dots)
and their schematic distributions. Since the function is a scalar function, we can simplify the
distribution of (A.4) to a scalar function as well. This is given within equation (A.5). The
vectors and matrices of (A.4) turn out to be scalar values in this concrete example due to
the fact that we only deal with one degree of freedom.

fi(x|fµ, σ2) ∼ 1√
2πσ

e−
(xi−fµ(xi))

2

2σ2 (A.5)

The i within function (A.5) indicates the ith experiment of n experiments. Or, in other
words, one can consider a set of experiments X with the cardinality |X| = n and xi ∈ X as
one of its elements. As soon as all measurements are iid., we will be able to formulate an
expression for the over all density which simply is the product of each measurement density
(A.6).

fX(X|fµ, σ2) =
∏
xi∈X

f(xi|fµ, σ2) (A.6)

Equation (A.6) represents the probability of all data within the set X for a given parameter
set fµ and σ2. Since the data is known but the parameters are unknown, we will work out in
the following section how to determine an optimal parameter set.

A.1.1 Optimal model parameters
In the previous example, we considered that we have a set of measurements X but we do not
know the distributions parameters. Thus, one needs to take a deeper look at the parameter
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of (A.6) which has been the denoted as the variance σ2 and the mean function as fµ(x).
Since it is known that for the given example the mean function is a one-dimensional linear
function, we can assume it looks like stated in equation (A.7).

fµ(x|a, b) = ax+ b (A.7)

Now we can create a density function by using (A.7) within the general density function as
given in (A.6). Since the data now is fixed but the parameters of (A.6) are the variables,
we can switch them to get an expression representing the probability of the parameters. This
density function is the so-called likelihood function (A.8) and will be denoted by a L. Since
the measurements are well known within X, the x can be understood as fixed, the missing
parameters a, b and σ2 are now the variables. If all the assumptions about the probability
distribution of those measurements in X and the underlying model are right, finding optimal
parameters is straightforward form this point on. The best, or optimal , parameters are those
that maximize the probability density of the likelihood function (A.9) and therefore for the
unknown elements.

L(a, b|x) =
∏
xi∈X

1
(2π) 1

2σ
e−

(xi−fµ(xi|a,b))
2

2σ2 (A.8)

max
∀a,b∈R

L(a, b|x) = max
∀xi∈X

∏
xi∈X

1
(2π) 1

2σ
e−

(xi−fµ(xi|a,b))
2

2σ2 (A.9)

= max
∀xi∈R

(
1

2πσ2

)n
2

e

(
−

∑n

i=1
(xi−fµ(xi|a,b))

2

2σ2

)
(A.10)

The product term of (A.9) can be rewritten into a sum, which is shown in equation (A.10).
In equation (A.10) one can easily see that, due to the properties of the exponential function,
the maximum refers to the minimum of its argument. Therefore, we can formulate the
problem as stated in (A.13).

max
∀a,b∈R

L(a, b|x) = max
∀xi∈X

∏
xi∈X

1
(2π) 1

2σ
e−

(xi−fµ(xi|a,b))
2

2σ2 (A.11)

= min
∀xi∈R

(
−
∑n
i=1(xi − fµ(xi|a, b))2

2σ2

)
(A.12)

= min
∀xi∈R

n∑
i=1

(xi − fµ(xi|a, b))2 (A.13)

With formula (A.13), we have now a clear expression to find the optimal parameters of the
given linear function. The model function fµ(xi|a, b) can then be replaced with the expression
as given in equation (A.7). To get the minimum of this example function, one can consider
to search for the first derivative of equation (A.13) and set it to zero. Doing so leads to
equation (A.14). From this point on, methods of standard calculus lead us towards the
desired variables. Therefore, we start with the first derivation with respect to b to find the
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first expression (A.15).

d

db

n∑
i=1

(yi − (axi + b))2 = 0

⇔
n∑
i=1

d

db
(yi − axi − b)2 = 0

⇔
n∑
i=1
−2yi + 2axi + 2b = 0

⇔
n∑
i=1

2yi − 2axi =
n∑
i=1

2b

⇔ 1
n

n∑
i=1

yi −
1
n

n∑
i=1

axi = b (A.14)

⇔ ȳ − ax̄ = b (A.15)

So far, we received an expression for b, so we need to do the same for a, which leads us to
equation (A.16).

d

da

n∑
i=1

(yi − (axi + b))2 = 0

⇔
n∑
i=1

d

da
(yi − axi − b)2 = 0

⇔
n∑
i=1
−2yixi + 2ax2

i + 2bxi = 0

⇔
n∑
i=1

yixi −
n∑
i=1

bxi =
n∑
i=1

ax2
i

⇔
n∑
i=1

yixi −
n∑
i=1

ȳxi + a

n∑
i=1

x̄xi =
n∑
i=1

ax2
i

⇔
n∑
i=1

yixi −
n∑
i=1

ȳxi = a(
n∑
i=1

x2
i −

n∑
i=1

x̄xi)

⇔
∑n
i=1(yixi − ȳxi)

(
∑n
i=1 x

2
i −

∑n
i=1 x̄xi)

=
∑n
i=1 yixi −

1
n

∑n
i=1 yi

∑n
i=1 xi∑n

i=1 x
2
i − 1

n (
∑n
i=1 xi)

2

=
∑n
i=1(yixi − ȳxi)

(
∑n
i=1 x

2
i −

∑n
i=1 x̄xi)

= Cov [x, y]
V ar [x] = a (A.16)

With formula (A.16), we derive a very compact expression for the model parameter a, which
only relies to the variance and the covariance of the given measurements. Generally, it is
possible to formulate a formalism in order to find the best-fit parameters for arbitrary linear
and multivariate model functions. This will be discussed in the following section.
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A.1.2 Generalization for the linear case

For the generalization of the given equation in [A.1.1], we first consider a general linear
function, as in (A.17), where the xj ’s indicate the known measurement positions, y represents
the measurement itself, and the βj ’s are the unknown model parameters.

f(x1, x2, ..., xm) = x1β1 + x2β2 + ...+ xnβn =
m∑
j=1

xjβj = y (A.17)

If we take, for example, the simple line model (A.7) of section [A.1.1], and transfer it to this
scheme, it will result in equation (A.18).

f(x) = β2x1 + β1 · 1 (A.18)

Each measurement can be seen as an independent observation of the given model (A.17).
Therefore, we introduce an additional index i for the observed values, to indicate the ith
observation of all n observations. Since the observed variables are x and y, we need to
change xj to xi,j , called the j-th position in the i-th observation and y to yi the result
of the ith observation. Doing so changes the simple model of (A.13) in section [A.1.1] to
equation (A.19). Here m denotes the number of dimensions and therefore also the number
of unknowns and n is the number of observations.

n∑
i=0

yi − m∑
j=0

xjβi,j

2

→ min ∀i ∈ n ∧ m ∈ N (A.19)

Similar to what we did in section [A.1.1] we have to find the partial derivative for each
unknown element xj in the general equation in order to find the minimum of the given
expression (A.19). This results into n equations, which need to be solved for their unknowns.

δ
δβ1

n∑
i=0

(
yi −

m∑
j=0

βjxi,j

)2

= 0

δ
δβ2

n∑
i=0

(
yi −

m∑
j=0

βjxi,j

)2

= 0

...
...

δ
δβm

n∑
i=0

(
yi −

m∑
j=0

βjxi,j

)2

= 0

(A.20)
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n∑
i=0

[
2
(
yi −

m∑
j=0

βjxi,j

)
· xi,1

]
= 0

n∑
i=0

[
2
(
yi −

m∑
j=0

βjxi,j

)
· xi,2

]
= 0

...
...

n∑
i=0

[
2
(
yi −

m∑
j=0

βjxi,j

)
· xi,m

]
= 0

(A.21)

n∑
i=0

yixi,1 − β1
n∑
i=0

x2
i,1 + β2

n∑
i=0

xi,2xi,1 + · · ·+ βm
n∑
i=0

xi,mxi,1 = 0
n∑
i=0

yixi,2 − β1
n∑
i=0

xi,1xi,2 + β2
n∑
i=0

x2
i,2 + · · ·+ βm

n∑
i=0

xi,mxi,2 = 0
...

...
n∑
i=0

yixi,m − β1
n∑
i=0

xi,1xi,m + β2
n∑
i=0

xi,2xi,m + · · ·+ βm
n∑
i=0

x2
i,m = 0

(A.22)

With equation (A.22) we now have a general expression for arbitrary linear equations. We
need to rearrange this equation to bring it into the shape of a linear matrix equation.

n∑
i=0

yixi,1 = β1
n∑
i=0

x2
i,1 + β2

n∑
i=0

xi, 2xi,1 + · · ·+ βm
n∑
i=0

xi,mxi,1
n∑
i=0

yixi,2 = β1
n∑
i=0

xi,1xi,2 + β2
n∑
i=0

x2
i,2 + · · ·+ βm

n∑
i=0

xi,mxi,2

...
...

n∑
i=0

yixi,m = β1
n∑
i=0

xi,1xi,m + β2
n∑
i=0

xi,2xi,m + · · ·+ βm
n∑
i=0

x2
i,m

(A.23)

With the representation we have in equation (A.23) we now can formulate it as a matrix
equation, which is done in equation (A.24).



n∑
i=0

x2
i,1

n∑
i=0

xi,2xi,1 · · ·
n∑
i=0

xi,mxi,1
n∑
i=0

xi,1xi,2
n∑
i=0

x2
i,2 · · ·

n∑
i=0

xi,mxi,2

...
...

. . .
...

n∑
i=0

xi,1xi,m
n∑
i=0

xi,2xi,m · · ·
n∑
i=0

x2
i,m


·


β1
β2
...
βm

 =



m∑
j=0

yix1,j

m∑
j=0

yix2,j

...
m∑
j=0

yixn,m


(A.24)

The left hand matrix in (A.24) is of m × m dimension. If the original problem was not
singular, this matrix should also be of rank m. Therefore it is invertible, which allows us to
the next step, where we rearrange equation(A.24) to (A.25). With equation (A.25) we now
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have an expression for the desired model parameter.


β1
β2
...
βm

 =



n∑
i=0

x2
i,1

n∑
i=0

xi,2xi,1 · · ·
n∑
i=0

xi,mxi,1
n∑
i=0

xi,1xi,2
n∑
i=0

x2
i,2 · · ·

n∑
i=0

xi,mxi,2

...
...

. . .
...

n∑
i=0

xi,1xi,m
n∑
i=0

xi,2xi,m · · ·
n∑
i=0

x2
i,m



−1

·



m∑
j=0

yix1,j

m∑
j=0

yix2,j

...
m∑
j=0

yixn,m


(A.25)

The matrix equation of (A.25) leads us to the optimal parameter set of the given arbitrary
model (A.17). Now we can go back to the initial model equation as given in (A.17). We
define 3 matrices where each row represents one observation. All positions of each observation
in each degree of freedom xi,j are stored in the Matrix A, the so-called design matrix. The
design matrix A is of the dimension n×m, where n is the number of observation and m is
the dimension of the model. All measurement results will be coupled up in the result vector
y. Finally, we create a vector with all unknown parameter elements βj called β (A.27).

A =


x1,1 x1,2 · · · x1,m
x2,1 x2,2 · · · x2,m
...

...
. . .

...
xn,1 xn,2 · · · xn,m

 , β =


β1
β2
...
βm

 , y =


y1
y2
...
yn

 (A.26)

If one now sets up the equation Aβ = y it will directly result into the original definition of
equation (A.17), which is drafted in equation (A.27).

Aβ =


x1,1 · β1 + x1,2 · β2 + · · ·+ x1,m · βm
x2,1 · β1 + x2,2 · β2 + · · ·+ x2,m · βm

...
xn,1 · β1 + xn,2 · β2 + · · ·+ xn,m · βm

 =


y1
y2
...
ym

 = y (A.27)

With (A.27) we now have a general formulation for the linear system as a Matrix. To find the
optimal vector, we have to bring it into the shape as stated in equation (A.25). Therefore,
we take a deeper look at the design matrix A. Equation (A.28) shows that the product of the
transposed of A with A results exactly into the left-hand matrix stated in equation (A.25).

ATA =



n∑
i=0

x2
i,1

n∑
i=0

xi,2xi,1 · · ·
n∑
i=0

xi,mxi,1
n∑
i=0

xi,1xi,2
n∑
i=0

x2
i,2 · · ·

n∑
i=0

xi,mxi,2

...
...

. . .
...

n∑
i=0

xi,1xi,m
n∑
i=0

xi,2xi,m · · ·
n∑
i=0

x2
i,m


(A.28)
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We can also achieve the desired result vector of (A.25) if we multiply the transposed of A
with the vector of measurement samples y, as stated in (A.29).

AT y =



m∑
j=0

yix1,j

m∑
j=0

yix2,j

...
m∑
j=0

yixn,m


(A.29)

This leads us to a general equation for the estimator of the parameter vector β as given in
(A.30).

β =
(
AT ·A

)−1 ·AT · y (A.30)
= A† · y (A.31)

The estimator of (A.30) is often referred to as the pseudo inverse or the Moore-Penrose
inverse. It’s usually marked with a dagger symbol† (A.31) or sometimes by a simple plus
symbol +.

A.2 Homogeneous least squares problem
In many cases, the linear least square solution is not the desired optimal solution, since there
might also be side constraints that have to be met by a valid result. The classic example is
the rotation matrix. It is not enough to find a matrix by projecting a set of points ideally to
another set of points. In order to have a correct rotation matrix, it is also necessary that each
column vector of this rotation matrix is perpendicular to all other column vectors and their
length must be 1. So just tearing down all elements into a 9×1 vector and setting up an equa-
tion of the style Ab = c, which could be solved as described in appendix [A.1], is not sufficient.

In fact, finding a closed form solution for constrained problems can be quite a challenge
and will also be impossible for multiple problems. In many situations, the only possibility
might be to apply non-linear methods, as described in appendix [B]. Nevertheless, if the
instant problem is of the form ‖Ah‖ = 0 where h is the n × 1 unknown vector, with the
constraint ‖h‖ = 1, there is a straightforward solution for this problem.

Since we are searching the least square minimum of the given problem, we have to get the
first derivative of the underlying equation in order to search for the extrema. We also have
to apply the method of Lagrangian multipliers, since this is a constrained problem. Hence
the additional constraint ‖h‖ = 1 also needs to be squared and rearranged to 0. Thereby it
can be added as the subject function g(h) = 0 into the Lagrangian expression. The squared
subject function is given in equation (A.33)

‖h‖ = 1 (A.32)
⇔ 1− hTh = 0 (A.33)
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The expression f(h) = ‖Ah‖ also needs to be squared (A.34). And after all this, both
need to be combined into the Lagrangian expression (A.35) and finally we have to take the
derivative of (A.35) with respect to h in order to find the minimum (A.36).

‖Ah‖ ⇒ hTATAh (A.34)
⇒ hTATAh+ λ(1− hTh) = 0 (A.35)

δ

δh

(
hTATAh+ λ(1− hTh)

)
= 0 (A.36)

In equation (A.37) we have the first derivative of equation (A.36) with respect to h, where
h can be factored out resulting into equation (A.38).

2ATAh− 2λh = 0 (A.37)
(ATA− λI)h = 0 (A.38)

Equation (A.38) is called the eigenvalue equation of ATA, h is called the eigenvector and
λ is the eigenvalue. The eigenvector is a vector h whose direction will not be changed by
the underlying linear transformation. Only the length changes by the factor λ, which is called
the eigenvalue. Hence, ‖h‖ is allays 1 and λ is always the length of h after transforming it
with ATA, equation (A.39).

ATAh = λh (A.39)

Due to the initial equation ‖Ah‖ it follows that the square error for a given h is hTATAh
and with the result form (A.37), we know that the least square error can be rewritten to
hTλh.

ε = hTATAh (A.40)
⇔ hTλh (A.41)

Finally, in equation (A.41), it is obvious that the smallest eigenvalue is leading to the minimal
error ε, as well as the biggest eigenvalue is giving the maximum of ‖Ah‖.
The support for SVD decompositions is very good within many numerical computation li-
braries and the algorithms for SVD decomposition provide high numerical stability. Hence, it
is very desirable to solve the above described problem of ‖Ah‖ = 0 with the given constraint
‖h‖ = 1. Luckily, the derivation of the solution is quite similar to the eigenvector solution
described above.

Any matrix can be decomposed by the singular value decomposition. Decomposing a matrix
A results in 3 matrices, U, Σ and VT for which the following equation (A.42) is valid:

A = UΣVT (A.42)
(A.43)

If A has dimension m× n U will be of m×m,VT will be of n× n and Σ will be of m× n.
The matrix U is called the left-singular vectors and VT the right-singular vectors. Both,
U and VT are orthonormal, which means that their components are perpendicular and the
norm of the row and column vectors is always 1. That said, it must be clear that the product
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between a vector and an orthonormal vector must have the same norm as the equation of the
vector itself (A.44). ∥∥VTh

∥∥ = ‖h‖ (A.44)

Hence equation (A.45) must follow, since ΣVTh results into a vector.∥∥UΣVTh
∥∥ =

∥∥U (ΣVTh
)∥∥ =

∥∥ΣVTh
∥∥ (A.45)

Finally, the remaining matrix Σ, which is called the matrix of singular values, contains all the
singular values in descending order. Having this knowledge, we once again take a look at the
original problem, of ‖Ah‖ = 0 with ‖h‖ = 1. From equations (A.42) and (A.45), we know
that equation (A.46) must follow.

‖Ah‖ =
∥∥UΣVTh

∥∥ =
∥∥ΣVTh

∥∥ (A.46)

We also know that
∥∥VTh

∥∥ = ‖h‖ ((A.44)) and that this, given the original constraint, must
be 1. If we now substitute x = VTh we achieve equation (A.47) to minimize with subject
to (A.48).

min ‖Σx‖ (A.47)
‖x‖ = 1 (A.48)

Recalling that Σ is a diagonal matrix containing the singular values in descending order the
minimum must be the last singular value and x therefore must be (0 . . . 0, 1). With the given
substitution for x, it therefore follows that the searched minimum must be the last column
of V due to equation (A.50).

x = VTh (A.49)
⇔ h = Vx (A.50)
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Appendix B

Non linear solving

B.1 Non linear minimisation
Not every mathematical problem has an analytical closed form solution. For multiple reasons,
like non linearity or complex constraints an iterative algorithm might be the only way to find
a solution. For such kind of iteration schemes one usually needs to supply an error function,
which calculates the deviation between the results for the current1 parameter vector and the
desired target properties. Although such functions are usually very straight forward and hence
very simple to provide, it is not always preferable to solve all problems iteratively. This is due
to the fact that an iterative algorithm usually is considerably slower than a direct calculation,
but most important, it might get stuck within a local minimum, or even diverge far away form
the result. Therefore it might be necessary to provide an initial guess, from where on the
iteration starts. If this guess is far away from potential local minima it might guarantee that
the iteration will succeed. This initial guess is called a start value, but again getting these
start values is also not always easy. The following sections will provide a general overview
of common iterative algorithms to solve non linear minimisation problems. Basically there
are two algorithms discussed, first the gradient descent algorithm and second the Gauss-
Newton algorithm. Both have their strength and weaknesses, therefore a third algorithm,
called Levenberg-Marquardt algorithm, will be introduces which combines both methods to
a very efficient algorithm for solving non linear least square problems like given in equation
(4.28).

B.2 Gradient descent algorithm
The gradient descent algorithm is a very simple and straight forward iterative method to find
local extrema in differentiable functions. Sometimes it is referred to as the steepest descend
algorithm, as well. This algorithm is, like the name implies, based on the gradient of the given
objective function. The algorithm itself is based on the observation, that for a continuous
function at some point x(n) the negative gradient points into the descending direction, at

1Within the iteration step.
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Figure B.1: Illustration of ”ping pong”-effect.

least within a arbitrarily small region around x(n). Therefore one only has to determine the
gradient at the position x(n) of the objective function f(x(n)) and a step width γ for which
the objective function decreases. Equation (B.1) shows such an iteration step at n.

x(n+1) = x(n) − γ∇f(x(n)) (B.1)

The function ∇f(x(n)) is the derivative of the objective function f(x(n)) and therefore points
in ascending direction. And finally by subtracting it, one moves in the the descending di-
rection. This derivative is called the total derivative and stated in equation (B.2) where k
denotes the cardinality of the parameter vector x and ei are the unit vectors in direction of
the variables xi.

∇f(x) =
k∑
i=1

ei
δf

δxi
dxi (B.2)

It can be shown, that the convergence speed for the gradient descent algorithm is only linear
and depending on the estimated step width γ. Most of the time it gets even worse the closer
one iterates towards the minimum. This is, because with a badly chosen step width γ the
algorithm tends to descend by ”ping ponging” downwards the closer one iterates downhill
torwards the minimum. This ”ping pong”-effect is illustrated in figure (Fig. ??). Thus a
poor chosen γ-factor can drastically slow down the algorithm the closer one iterates towards
the minimum. Due to the importance of choosing a good γ for each step, there exist a vast
number of different methods to determine it. To get a better understanding of the problem
we take a deeper look at the behavior of the objective function in descent direction around
the arbitrary position x(n). Therefore we introduce a new function as given in equation (B.3)
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Figure B.2: Illustrates the behavior of φ(n)(γ) .

which represents the objective functions behavior in dependence to the step width γ at the
current position x(n).

φ(n)(γ) = f
(
x(n) + γ∇f

(
x(n)

))
(B.3)

A possible trend for such function φ(n)(γ) is also illustrated in figure (Fig. ??). However
the most fundamental demand for any method determining the step width γ at any position
x(n) is to fulfill the constraint given as equation (B.4).

φ(n)(γ) < φ(n)(0) (B.4)

This constraint is also denoted by the red line in figure (Fig. ??). Any point underneath
this limit would be valid for a next update step because it assures the desired descending
behavior. If we define the set Γ(n) as a set of all possible arguments γ for φ(n)(γ) at position
x(n) fulfilling the given constraint (B.4), we can define the best possible stepsize γ̂ for the
actual iteration as stated in (B.5).

γ̂ := min
∀γ∈Γ(n)

(φ(γ)) (B.5)

The method to determine γ̂ is called the exact line search. The exact line search would always
result into the optimal parameter for each iteration step and assure the fastest possible
convergence of gradient descent. But on the other hand doing the exact line search is
demanding some kind of nonlinear solving process itself and would therefore be inefficient to
do it in each step of iteration. Since it is not important to find the exact γ̂ but a more or
less good approximation there exist a lot of fast methods ought to find an approximation for
the exact line search, usually called lossy line search. One of the most common methods is
to simply use a constant factor for γ. This very simple method usually is not advisable able
because it is not assured that the descending constraint (B.4) is true for every step and this
can result into divergence. Another very popular method is to use a fixed factor ν by which
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one can divide γ if the constraint (B.4) is not true for the current γ. Which means that the
step width will successively be decreased.
The method to determine γ̂ is called the exact line search. The exact line search would always
result into the optimal parameter for each iteration step and assure the fastest possible
convergence of gradient descent. But on the other hand doing the exact line search is
demanding some kind of nonlinear solving process itself and would therefore be inefficient to
do it in each step of iteration. Since it is not important to find the exact γ̂ but a more or
less good approximation there exist a lot of fast methods ought to find an approximation for
the exact line search, usually called lossy line search. One of the most common methods is
to simply use a constant factor for γ. This very simple method usually is not advise able
because it is not assured that the descending constraint (B.4) is true for every step and this
can result into divergence. An other very popular method is to use a fixed factor ν by which
one can divide γ if the constraint (B.4) is not true for the actual γ. Which means that the
step width will successively be decreased if it was not sufficient.
To start the search for the minimum of the objective function one has to choose a start
position called x(0). As previously discussed the algorithm iterates from this start point x(0)

on towards the descent direction given by the negative gradient −∇f(x) with the step width
γ until the stop criterion is fulfilled. This yields to equation (B.6) for determining the position
x(n+1) of the upcomming step.

x(n+1) = x(n) − γ(n)∇f(x(n)) (B.6)

B.2.1 Gauss-Newton algorithm

The Gauss-Newton algorithm is a specialization of the Newton algorithm to find local minima
within least square problems. It’s specialization concerns the cubic nature of its objective
function. Based on this assumption one will be able to replace the calculation of the Hessian
matrix with an approximation, which saves computational complexity and increases numerical
stability. But first we take a deeper look at the more general Newton algorithm to get a deeper
insight into the basics.
The basic idea for the Newton algorithm is to get an approximation for the objective function
f(x) by developing the second order Taylor expansion and setting it’s derivative to zero. For
a multivariate function this Taylor expansion will result in equation (B.7).

f(x+ φ) ≈ f(x) + φTJf (x) + 1
2φ

THf (x)φ (B.7)
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With Jf (x) as the Jacobian matrix, given as in equation (B.8) and Hf (x) as the Hessian
matrix, given as in (B.9).

Jf (x) = δf(x)
δx

=


δf1
δx1

δf1
δx2

. . . δf1
δxn...

...
. . .

...
δfm
δx1

δfm
δx2

. . . δfm
δxn

 (B.8)

Hf (x) =
(
δ2f(x)
δxiδxj

)
i,j=1,...,n

=


δ2f1
δx1δx1

δ2f1
δx1δx2

. . . δ2f1
δx1δxn...

...
. . .

...
δ2fm
δxnδx1

δ2fm
δxnδx2

. . . δ2fm
δxnδxn

 (B.9)

Since the Taylor expansion is only an approximation of f(x+φ) the resulting vector is not the
result of the problem, but at least a more or less close approximation. Therefore one needs
to repeat this step until the desired abortion criterion is fulfilled. The equations (B.12)
and (B.13) are showing how to update the function parameter vector x for the n-th step of
iteration. Calculating the derivative of equation (B.7) with respect to φ and setting it to
zero leads to (B.11).

d
dφ

(
f(x(n)) + φTJf (x(n)) + 1

2φ
THf (x(n))φ

)
(B.10)

= Jf (x(n)) +Hf (x(n))φ = 0 (B.11)
⇔ −φ = Hf (x(n))−1 · Jf (x(n)) (B.12)
⇒ x(n+1) = x(n) + φ (B.13)

Now we can take a deeper look at the differences between the ordinary Newton algorithm
and the Gauss-Newton algorithm. The Gauss-Newton algorithm is a specialization for least
square problems. Since for least square problems the objective function usually is based on
the square over the L2-norm of the differences between some measurements yi and a model
function fM (x) which is usually called the residual function (B.14).

r2
i = ‖yi − fM (xi)‖22 (B.14)

Therefore we can consider the objective function to be of the shape f(x) = r(x)2. This extra
knowledge provides some benefits with respect to its derivative. Thus one can rewrite the
Jacobian into equation (B.15). With the extra knowledge one can also rewrite the expression
for the Hessian matrix. With the help of the product rule and the fact that the derivation of
the Jacobian leads to the Hessian we can simplify equation (B.9) to equation (B.16).

Jf =

 2r1
δr1
δx1

2r1
δr1
δx2

. . . 2r1
δr1
δxn...

...
. . .

...
2rm δrm

δx1
2rm δrm

δx2
. . . 2rm δrm

δxn

 = 2Jrr(x) (B.15)

Hf = 2
(
JTr Jr +Hrr(x)

)
(B.16)

≈ 2JTr Jr (B.17)
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Usually JTr Jr is the dominating therm and therefore equation (B.17) holds for a good ap-
proximation of the Hessian Hf . Thus the simplification in the Gauss-Newton algorithm is to
replace the Hessian and Jacobian for f(x) in (B.12) with the results of (B.17) and (B.15).
This leads to an expression for each iteration step as given in equation (B.18).

x(n+1) = x(n) −
(
JTr Jr

)−1 · Jrr(x) (B.18)

Equation (B.18) yields to less computational complexity and more numerical stability. The
rate of convergence of the Gauss-Newton algorithm can approach quadratic time complexity
close to a local minimum, which makes it more efficient than the gradient descent algorithm.
Convergence is however not guaranteed and significant worse than the convergence properties
of the gradient descent algorithm.

B.2.2 Levenberg-Marquardt algorithm
The Levenberg-Marquardt algorithm is a combination of both previously introduced algo-
rithms, the gradient descent and Gauss-Newton. It has been introduced in two steps, the
first by Levenberg which is to combine both the gradient descent with the Gauss-Newton and
the second by Marquardt which is to optimize the convergence rate by introducing a more
dynamic damping.
The equation (B.19) states the basic Levenberg algorithm, which introduces the damping
variable λ to the standard Newton-Gauss algorithm of equation (B.18).

x(n+1) = x(n) −
(
JTr Jr + λI

)−1 · Jrr(x) (B.19)

The I in equation (B.19) denotes the identity matrix. One can easily see, that for big λ’s
the term JTr Jr in

(
JTr Jr + γI

)−1 can be disregarded. So if one considers γ := (λI)−1 we
obtain the same equation like (B.6) for the gradient descent algorithm. On the other hand,
for a small λ we obtain (JTr Jr)−1 for the significant term which leads to the Gauss-Newton
algorithm as given in (B.18).
If one contemplates the Levenberg algorithm from the ordinary Gauss-Newton algorithm, a
big λ factor results into shorter steps each iteration. Therefore the Levenberg algorithm can
be seen as some kind of damped Gauss-Newton algorithm. The goal is now to choose the
λ in a way that equation (B.19) comes closer to the gradient descent algorithm as long the
position x(n) is far away from a minimum, because the gradient descent algorithm provides
better convergence properties. With a x(n) close to the local minimum the λ factor should
shrink. Because under this circumstances one profits from the fast convergence properties
of the Gauss-Newton algorithm, which has approximately quadratic convergence rate and no
”ping pong”-effect.
The simplest strategy to set λ is to introduce a constant factor ν. Now we decrease the
λ-factor in each step of iteration by dividing by ν. Additionally we setup the constraint that
for each step of iteration the next function value of x(n+1) never exceed the value of x(n),
equation (B.20).

f(x(n+1)) < f(x(n)) (B.20)

BUPT



B.2. Gradient descent algorithm

If the constraining inequality (B.20) is not true for a step, λ will be iteratively increased by
multiplying with ν until the constraint (B.20) is true again. A second more comprehensive
approach is to use Trust-Region methods to determine the damping. For the Trust-Region
we take a deeper look at an other characteristic of the approximation, called the gain ratio.
The gain ratio is the proportion between the model and the real functions behavior given as
in equation (B.21).

%n = f(x(n))− f(x(n+1))
G(x(n), x(n+1))

(B.21)

with

G(x) = 1
µ

(
JT f(x)

)T (JT f(x)) (B.22)

The rest of this method depends on two thresholds and a constant factor ν. The factor ν is
usually set in between 2 and 5. If the gain ration falls underneath 0, what usually indicates a
bad approximation, it is invalid. Further detail regarding the derivation can be found in [76].
Therefore the iteration will be stopped at the current position x(n) and λ will be increased,
by multiplying it with ν, until the gain ration raises above 0 again. On the other hand for a
% > 0 the iteration continues normally. Within each step of iteration the λ-factor then will
be decreased by multiplying it with max

{ 1
3 , 1− (2%− 1)3}.

Marquardt concerned, that with the fading form Gauss-Newton to gradient descent by a rising
λ factor, the Hessian approximation JTr Jr looses influence. Therefore he suggested not to
use the identity matrix for multiplication with λ but with the diagonal matrix diag(JTr Jr).
Therefore we can rewrite equation (B.19) to the Levenberg Marquardt algorithm given as
(B.23).

x(n+1) = x(n) −
(
JTr Jr + λdiag(JTr Jr)

)−1 · Jrr(x) (B.23)

With the given formula (B.23) one now has a stable and efficient method to solve problems
like given with the arbitrary path correction of equation (4.28) in section [B].
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Appendix C

Transformations

Transformations can be expressed in multiples ways. The most common and also human
understandable is the representation as a vector. Such vectors contain 6 components, where
usually the first 3 describe the translation between the actual and the described frame and
the final 3 components the rotations. This representation is very compact, but the major
problem is that this description is not unique. There exist multiple ways to interpret the
rotation information within this vector. These interpretations can be categorized into two
groups, the so called Euler angles and Tait-Bryan angles which themselves provide multiple
different notations:

• Proper Euler angles (z-x-z, x-y-x, y-z-y, z-y-z, x-z-x, y-x-y)

• Tait-Bryan angle (x-y-z, y-z-x, z-x-y, x-z-y, z-y-x, y-x-z)

Hence to be able to interprete the rotation correctly it is essential to know which notation to
use, because each will end up in something completely different1 than the other.
Yet, there are other ways to describe transformations and especially rotations in a unique way.
The most common way for a unique description are matrices. One of these matrix based no-
tation is the so called homogeneous transformation matrix. The homogeneous transformation
matrix is combining both, translation and rotations in a 4 dimensional (4× 4) homogeneous
matrix usually denoted with T. Since both parts, the translation as well as the rotation
are packed into a single matrix T, it is quite simple to transform a simple point p by just
multiplying it with T:

T · p = p̂ (C.1)

Sometimes rotations and translations are handled in separate matrices, where the rotation
then is represented by a 3x3 matrix usually denoted with R and a 3× 1 vector t containing
the translation. In order to represent the same transformation, like in equation (C.1) above,
one needs to perform the following two step calculation:

R · p+ t = p̂ (C.2)
1For small angles the values actually tend to look quite similar, but as soon as the angles grow larger the

differences between the notations also rise.
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Sometimes transformations are also coded within Dual-Quaternions. Quaternions provide
some benefit especially when it comes to rotations. A quaternion is a vector within a 4
dimensional hyperbolic space, with 3 complex dimensions. The subset of all unit quaternions
then form a 4 dimensional sphere within this space. The basic idea founded on Euler’s rotation
theorem, which states:

When a sphere is moved around its center it is always possible to find a diameter
whose direction in the displaced position is the same as in the initial position.

One can imagine a quaternion as a vector pointing into the direction of rotation where the
vector itself can be rotated around the direction where it is pointing. This finally results into

Figure C.1: Representation of an quaternion as vector and rotation

three components, giving the unit vectors direction and one angle Θ describing the rotation
around this vector. To retrace this idea one can image a sphere e.g. a ball, where a (large)
needle is stuck inside. The peek of the needle needs to be imagined sitting right at the center
of the ball and it’s tail is visible on the outer hull. If the ball will now be rotated around this
center the peek keeps it position, but the tail of the needle moves around and its position can
be described by the first three components. Additional on can also try to keep the position of
the needles tail in room space and he still has one degree of freedom left for moving the ball.
This will be turning around the axis the needle is pointing. After all, there will be no other
way to rotate the ball around the origin (within 3 dimension space), in order to perform a
different motion of the needle, as the two described above. But still, a quaternion is not just 4
for dimensional vector. They form a special algebra, which provides special properties related
to interpolation and transformation of rotations which makes it quite simple to interpolate
from one orientation to an other. Finally, the vector notations are only serving visualization
purpose, since they usually are interpretable by humans. If somebody gets told that there is
a 50◦ rotation around Z and 30◦ around X, he will have some idea about the constellation.
But on the other hand if there is just a transformation matrix or a quaternion, it might be
hard understand immediately what rotations are encoded, unless they don’t represent plain
90◦ rotations. Nevertheless the matrix and quaternion representation proofed to be quite
efficient within direct calculations on the machines, so both representations are necessary.
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Figure C.2: Representation of an quaternion as vector and rotation

C.1 Deriving a 2 dimensional rotation matrix
In order to derive the equations for 2 dimensional rotation matrix we begin with a very simple,
straight forward case, where a point x lies directly on the X-Axis so its components can be
considered as (x0, 0)T . Any rotated position of this point around the origin will be on the
radius x0. Therefore the point will move on a circular path if rotated from 0◦ to 360◦ around
the origin. Further, for any angle α there exists one right triangle, where the hypotenuse is

x 0

cα

cos(cα  )x0

sin(cα  )x0

Figure C.3: Representation of an quaternion as vector and rotation

connecting the rotated point with the origin, and the catheti are aligned to the coordinate
frames axis (Fig. C.3). Hence by knowing the desired angle α it will be easy to determine
the rotated points coordinates by just applying basic trigonometric rules.

x̂ = x0cos(α) (C.3)
ŷ = x0sin(α) (C.4)

For this simple case where the original point is positioned directly on the X-Axis equations
(C.3) and (C.4) provide a fairly simple scheme to rotate the given point around the origin.
But what if the given point to rotate has not such a nice position? In order to rotate an
arbitrary point, we consider a setup like illustrated in figure (Fig. C.4). Clearly, if one
considers the triangle spanned between the tree points p̂, p and the origin, neither any axis is
aligned to the coordinate frames axis, nor is it a right triangle. Hence the formulas presented
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x 0

cα

y

x

Figure C.4: Rotation of an arbitrary point

in equation (C.3) and (C.4) won’t apply in the given scenario. In order to find a solution for
the given problem, we will introduce the angle β, which is the angle between the new point
and the x-axis (Fig. C.5). Furthermore it is clear, that β must be the combination of α and

x 0

cα

y

x

β

p

p^

�

Figure C.5: Introducing the angle β and γ

γ, which is β = α + γ. Assuming that all angles are well known, one can directly derive p̂
and p by applying equation (C.3) and (C.4).

p̂ =
(
x0cos(β)
x0sin(β)

)
=
(
p̂x
p̂y

)
(C.5)

p =
(
x0cos(γ)
x0sin(γ)

)
=
(
px
py

)
(C.6)

By consulting any mathematical formulary like, one can find the following laws (C.7) and
(C.8) concerning the addition of arguments within the sine and cosine function.

sin (α± β) = sin(α) cos(β)± cos(α) sin(β) (C.7)
cos (α± β) = cos(α) cos(β)∓ sin(α) sin(β) (C.8)
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And since in β = α+γ, the argument β can be removed from (C.5) by α+γ and the above
rules (C.7) and (C.8) can be applied. (C.4).

p̂ =
(
x0cos(β)
x0sin(β)

)
=

(
x0cos(α+ γ)
x0sin(α+ γ)

)
=

(
x0 (cos(α) cos(γ)− sin(α) sin(γ))
x0 (sin(α) cos(γ) + cos(α) sin(γ))

)
=

(
cos(α) [x0 cos(γ)]− sin(α) [x0 sin(γ)]
sin(α) [x0 cos(γ)] + cos(α) [x0 sin(γ)]

)
=

(
cos(α) − sin(α)
sin(α) cos(α)

)(
x0 cos(γ)
x0 sin(γ)

)
(C.9)

In equation (C.9) the formula had already been separated into a matrix-vector product.
Finally by taking a closer look to the right hand vector of equation (C.9) and recalling the
result of equation (C.6) it is very simple to derive the final result (C.11) for an rotation
within the x/y - plane.

p̂ =
(

cos(α) − sin(α)
sin(α) cos(α)

)(
px
py

)
(C.10)

=
(

cos(α) − sin(α)
sin(α) cos(α)

)
p (C.11)

With equation (C.11) any arbitrary point in the 2 dimensional X/Y-plane can be rotated
around the origin. The next logical step would be to extend this to the 3 dimensional space.
Figure (Fig. C.6) depicts the perpendicular planes within the 3 dimensional euclidean space
with a right handed coordinate frame. As one can see, the Z/Y-plane is exactly equal to
the X/Y-plane and hence the equations in (C.11) will apply 1:1 to it. Finally there is the
X/Z-plane, which appears to be mirrored about the vertical axis compared to the two others.
Hence the equations given in (C.11) need to be slightly adjusted.
First thing to be recognized is that the positive rotation within the X/Z-plane is now inverted
to the other planes. Figure (Fig. C.7) illustrates this by aligning the X and Z axis in the
same way as the axis for the X/Y and Z/Y planes in figure (Fig. C.6). The perpendicular Y
direction is now pointing into the opposite direction and therefore the positive rotation turns
around. Hence for a point on the X-axis x0 the positive rotation about α will be going into
negative Z direction (C.12) & (C.13).

x̂ = x0cos(α) (C.12)
ẑ = −x0sin(α) (C.13)
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Hence the equations for an arbitrary point for the X/Z-plane, with the same setup of the
angles with β = α+ γ, is given by equation (C.14).

p̂ =
(

x0cos(β)
−x0sin(β)

)
=

(
x0cos(α+ γ)
−x0sin(α+ γ)

)
=

(
x0 (cos(α) cos(γ)− sin(α) sin(γ))
−x0 (sin(α) cos(γ) + cos(α) sin(γ))

)
=

(
cos(α) [x0 cos(γ)] + sin(α) [−x0 sin(γ)]
− sin(α) [x0 cos(γ)] + cos(α) [−x0 sin(γ)]

)
=

(
cos(α) sin(α)
− sin(α) cos(α)

)(
x0 cos(γ)
−x0 sin(γ)

)
=

(
cos(α) sin(α)
− sin(α) cos(α)

)(
px
pz

)
(C.14)

Finally, the rotations in all planes in 3 dimensional space are covered and the equations can
be rewritten for a general 3 dimensional point p = (px, py, pz)T .

p̂ = Rz(γ) · p =

1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

 ·
pxpy
pz

 (C.15)

p̂ = Ry(β) · p =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 ·
pxpy
pz

 (C.16)

p̂ = Rx(α) · p =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 ·
pxpy
pz

 (C.17)

Since equation (C.15)-(C.17) are giving the separate rotations, one can achieve a complete
function about all angles by simply multiplying them R(α, β, γ) = Rz(γ) · Ry(β) · Rx(α)
which would be the Tait-Bryan zyx notation. This notation is often also called RPY (Roll
Pitch Yaw) and is the de facto standard in automotive robotics.

R(α, β, γ) =

c(γ)c(β) c(γ)s(β)s(α)− c(α)s(γ) s(γ)s(α) + c(γ)c(α)s(β)
c(β)s(γ) c(γ)c(α) + s(γ)s(β)s(α) c(α)s(γ)s(β)− c(γ)s(α)
−s(β) c(β)s(α) c(β)c(α)

 (C.18)

C.2 Affine transformations in homogeneous coordinates
An affine transformation in Rn euclidean space is a transformation which

• preserves lines.
If a set of points forms a line they also do in the transformed set.
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C.2. Affine transformations in homogeneous coordinates

• preserves parallelism.
If there are parallel lines transformed they will remain parallel.

• preserves the ratio.
If there are multiple points on a line, the ratio of the distances between points will be
preserved after transformation.

Considering now the above described rotations they clearly satisfy the fundamental require-
ments of an affine transformation. In general one can find affine transformations in the
euclidean Rn space, that not only rotates but also shear, mirror and scale points. Further-
more they can all be presented by a linear transformation within Rn. Unfortunately translating
the points, which also is a affine transformation, is not possible by a linear transformation
within Rn. Hence an affine transformation in general is allays described as given in equation
(C.19).

A · p+ t = p̂ (C.19)

In equation (C.19) p is a point in Rn, A is a Rn×n matrix representing the linear trans-
formation and t, also Rn, is the translation vector. However, in many situations it will be
more practically to just have one matrix, say T, which contains the whole transformation.
An example of such a situation is where multiple transformations will be chained to a single
transformation, like equation (C.20), or when one just needs to get the inverse of a certain
transformation, which just turns out to be T−1.

p̂ = T1 ·T2 · ...Tn · p
= Tx · p (C.20)

where

Tx = T1 ·T2 · ...Tn

Since T can not be within Rn×n, as discussed above it needs to be extended by one dimension
and thus T needs to be within R(n+1)×(n+1). The transformation matrix as given in equation
(C.21).

T =
(

R t
0 1

)
(C.21)

As one can see in equation (C.21) the last row of the transformation matrix will be the
vector (0 · · · 0 1). Hence the vector p needs also be extended for being 4× 1. This turns p
technically speaking into a so called homogeneous coordinate. A homogeneous coordinate
is an point in an projective space. But as long one keeps the final row of the transformation
as (0 · · · 0 1) and extends the point vector by 1, such a transformation ends up to be a
simple affine transformation within Rn. The benefit though is that this affine transformation
is now wrapped up by a simple multiplication of the form T · p.
By changing the 1 either in the transformation at position (n+1, n+1), or in the last element
of the point, one achieves something like a scaling effect, since the hyperplane in which the
coordinates are embedded is shifted within the projective space. However, as long as all
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C. - Transformations

points remain within a single hyperplane within the projective space this transformations
always appear to be affine transformations. Only by changing the null-vector in the last
row of the transformation the points will be spread over multiple hyperplanes within the
projective space, which turns the resulting transformation into a non affine transformation
with distortion effects.
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C.2. Affine transformations in homogeneous coordinates
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Figure C.6: All perpendicular planes in 3 dimensional space
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Y pointing out of the image Y pointing into the image

X

Z

Rotation about (Y)  �

X

Z

Rotation about (Y)  �

Figure C.7: Mirroring the X/Z-plane
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