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Abstract - In this papcr we introduce the iterative 
dccoding principie, "the turbo principie", for the 
bidimensional Turbo Product Codes (TPC's). The 
constituent codes used for encoding on rows and columns 
are two concatenated (7,4) Hamming block codes. 
Several Soft Input Soft Gutput (SISO) algorithms can be 
used for the iterative decoding process. At each iteration, 
the t^'o decoders decode all rows, then all columns. For 
particular SISO algorithms, Maximum A Posteriori 
(MAP) algorithm and Soft Output Viterbi Algorithm 
(SOVA), the system is simulated and performances, in 
terms of Bit Error Rate (BER), are evaluated for an 
AWGN channel with BPSK modulation. 

Key^vords: turbo principie, iterative decoding, extrinsic 
information 

1. INTRODUCTION 

Turbo codes were introduced as binary Error 
Correcting Codes (ECC's) built up from two Recursive 
Systematic Convolutional (RSC) codes concatenated in 
parallel. The turbo decoding algorithm. which 
processes the data in an iterative vvay, can achieve very 
high coding gain, reaching almost the Shannon limit 
[1]. For the decoding of the component codes are used 
the Soft Input-Soft Output (SISO) algorithms like 
Maximum A Posteriori (MAP) algorithm [1][2] or Soft 
Output Viterbi Algorithm (SOVA) [2]. 

Turbo Product Codes (TPC's), also known as 
Block Turbo Codes (BTC's), are based on linear block 
codes not on convolutional codes. Here, ' 'turbo" refers 
to the iterative decoding approach and ''product'' refers 
to the fact that the TPC parameters are the product of 
those of its component codes. 

Usually. TPC's are built on two or three-
dimensional arrays of block codes. While the encoding 
process is done in a single iteration, the decoding 
process works with a fixed number of iterations or with 
a variable number of iterations and with a stop 
criterion. 

The turbo principie, more exactly the turbo iterative 
decoding algorithm has been successfully applied in 
several decoding and detection problems as block 
turbo coding (1][2)[3], coded modulation [4], multi-
user detection [5], etc. 

This paper presents the application of turbo 
principie to block array codes, using the BPSK 
modulation, the transmission over an AWGN channel 
and two SISO algorithms for the decoder. 

II THE SYSTEM MODEL 

A. The product code construction 

Elias first introduced product codes (or iterated 
codes) in 1954 [7]. The concept of product codes is 
very simple and relatively efficient for building very 
long block codes by using two or more short block 
codes. 

A product code C = C, ( ^ Q is defmed by the serial 

concatenation of two block codes and 

where n„ k, and d, (/ = 1, 2) denote the 

codeword length, the number of information bits and 
the minimum Hamming distance of the code C,. 
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Fig. I. The constniction of ihe produci code. 

The constniction of the product code is shovm in 
Fig. l and can be described by the following steps: 

a) the information bits are arranged, line by line, in 
an array of k] rows and ki columns; 

b) the all /:, rows are encoded horizontally using 
the code Ci, 

c) the all ni columns are then encoded vertically 
using the code Cj; 

d) the bidimensional codewords are transmitted 
row by row over the transmission channel. 

The parameters of the product code C(n,k,d) are : 

- the matrix codeword dimension n = n̂  n^ ; 

- the number of information bits/: = 

- the minimum Hamming distance d 

The code rate R is given hy R = k^k^/n^n^ . 
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If the two codes can correcl /, = [(J , - l ) / 2 j , 

respectively ^ - 0 / 2 j eiTors, then tJie product 

code C is capable of correcting any combinalion of 

t = [(i/ic/j --1)/2 J = 2/,/, errors. Thus, wc can 
build very long block codes vvith large minimum 
Hamming distaiice by combining short codes with 
small minimum Hamming distance. 

The parity check matrix H of a product code C is 
computed using the parity check matrices H, and H2 of 
individual systematic codes C| and C2 as; 

L / = Lcc is used as a priori information in conjunction 
with Y. The decoder generates the a posteriori log-
likehhood ratios L / for all bits. The extrinsic 

(1) 

where I„ and I are the unit matrices of order ni and 

a22» respectively. 
Given the construction procedure, it is clear that 

(ni'kj) last coiumns of the matrix are the control bits of 
C:. Also, all last rows of matrix C are the 
control bits of C). Hence, all the rows of matrix C are 
the codevvords of Cj and all the coiumns of matrix C 
are codewords of C[. 

B. The iterative decoder 

The Bahl, Cocke, Jelinek and Raviv (BCJR) 
decoding algorithm, used in turbo decoding schemes, 
is a Soft-Input/Soft-Output algorithm while the Viterbi 
is a Soft-lnput/Hard-Output (SIHO) algorithm [6]. 

McEliece presented a generalized description for 
the Viterbi Algorithm (VA), which acts as a unifying 
concept tying together the Viterbi and BCJR 
algorithms [7]. According McEliece, the Viterbi and 
BCJR are the same algorithm, difTering only in the 
defmition of the semi-ring operation and both 
algorithms can be used to produce an SISO decoder. 

To further describe turbo decoding in the context of 
TPC, it is helpful to consider trellis description of 
linear block codes (see ANNEX 1). In this description, 
the Viterbi algorithm use a metric with (min) and (+) 
operations and BCJR algorithm use a metric vvith 
(min_log) and (*) operations. 

The iterative turbo decoding can be view as a 
general Viterbi algorithm used in conjunction with 
MAP or SOVA, with appropriate metric for TPC case 
and specific applications [2][3]. 

As indicated by Elias [8], the TPC codes can be 
decoded by sequentially decoding the rows and 
coiumns of C in order to reduce decoding complexity. 
However, to achieve optimum performance, one must 
use soft decoding of the component codes using SISO 
decoders. More over, we can iterate the sequential 
decoding of C and thus reduce the BER after each 
iteration as for turbo codes [1]. 

The iterative decoding process is described in Fig. 
2. The decoding is performed iteratively column-wise 
then row-wise using SISO decoders. The column 
decoder uses the channel observations Y and the a 
priori information Lc' in the form of log-likelihood 
ratios to generate the a posteriori log-likelihood ratios 
L / for all bits received. The extrinsic information is 
defined as Le, = K^-Lc-L^Y. For the second decoder, 

Fig 2 The I t e ra t ive decoding p r i n c i p i e . 

information is then defined as = L/ -L/ - / . tY and is 
used as a priori information for the coiumns decoder. 

After a fixed number of iterations, the hard decision 
is done for each block of received symbols y. Lr^ is 
computed at the output of the second decoder and the 
original information message u is estimated based on 
the sign of the a posteriori values L / , as: 

u = sigrj V (2) 

It can be easily seen, from Fig. 2, that the iteration 
principie is applicable to one complete decoding of 
coiumns and one complete decoding of rows. Note that 
all the decoding operations are made on all the bits 
within that block. 

For a low complex implementation, we can use the 
same SISO decoder for rows and coiumns decoding if 
we add a block interleaver at the input of the rows 
decoder and a deinterleaver at the output. Also, when 
the constituent codes Ci and C2 are identical, the two 
decoders can be identically. 
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Fig. 3. The eleineniaiy block tiirbo decoder. 

In this case, the decoding procedure described 
above is generalized by cascading elementary decoders 
illustrated in Fig. 3. The parameter / indicates the 
current decoding step of the iterative process. For the 
implementation of SISO decoders, we can use the 
MAP algorithm or the SOVA algorithm, which are 
described below. 

C. The Maximum A Posteriori algorithm 

BahI, Cocke, Jelinek and Raviv proposed the 
Maximum A Posteriori (MAP) decoding algorithm for 
convolutional codes in 1974 [6]. The iterative decoder 
developed by Berrou et al. [1] in 1993 has a greatly 
increased attention. In their paper [1], the MAP 
algorithm was modified to minimize the sequence error 
probability instead of bit error probability for the 
original MAP algoritlim. Because of its increased 
complexity, the MAP algorithm was simplified and the 
optimal MAP algorithm called the Lx)g-MAP 
algorithm was developed. 

The decoder operates based on the Logarithm 
Likelihood Ratio (LLR) for the transmitted bits x 
which is defmed as: 

cUf 
Ux) = log = L (3) 

where the sign of the LLR L(\) indicate whether the 
each bit of x is more likely to be +1 or -l and the 
magnitude of the LLR gives an indication of the 
correct values of x. 

In channel coding theory we are interested in the 
probability that x = ± l , based or conditioned on 
received sequence y. So, we use the condiţional LLR: 

<hj 
L(x\y) = \og 

/>(x = - l | y ) J 
- V (4) 

The condiţional probabilities /^(x = ± l i y ) are the 
a posteriori probabilities of the decoded bits x and L^ 
is the a posteriori information about x. 

Also, it is used the condiţional LLR I (y | x) based 
on the probability that the receiver's output vvould be y 
when the transmitted bits x were either +1 or - l: 

ikf 
L(y IX) - log (5) 

According [9], for AWGN fading channel using 
BPSK modulation we can write: 

P ( y i x - - ± 1 ) = 
1 r -Dl — - ( y - ^ i 

L 
(6) 

where Eh is the transmitted energy per bit, a is the 
fading amplitude and NJ2 is the noise variance. 

We can rewrite the equation (5) as foilowing: 

A' 
= 4a 

C Suled 
^ y = L 
M. 

'cy 

(7) 

where is defmed as the channel 
reliability value. For non fading AWGN channels a=\ 
and 

In [1], [9] the extrinsic information is defmed as: 

C = log 
[P{x--l\y)j 

- l o g 

- l o g 

= L - L -A^y 

P{^y\x = +])) 
[Piy:x^-\)) 

(8) 

In the iterative decoding procedure the extrinsic 
information L^ becomes the a priori information L" for 
the next decoder. If L' is a large (or small) positive 
number, then it wouid be difficult (or easier) to change 
the estimated symbol decision from +1 to - l between to 
consecutive decoding stages [10]. 

The term L^y is the soft output of the channel for the 
information symbol x. For high SNR, the channel 
reliability value Lc will be high and this information 
symbol will have a large influence on Conversely, 
for low SNR, the L,. is low and it's influence on L ' is 
insignificant. 

D. The Soft Output Viterbi Algorithm 

In practicai systems, we quantize the received 
channel symbols with one (hard decision) or a few bits 
of precision (soft decision) in order to improve the 
performances of the Viterbi decoder. For m-bit 
quantization, one quantization bit is devoted to the sign 
of the decision and m-1 bits are devoted to the signal's 
magnitude. The larger the magnitude, the more 
confidence that the sign bit is correct. Decoders that 
exploit soft decisions can reduce S/N ratio requirements 
by approximately 2 dB over those that use hard 
decisions alone [II] . 

The Viterbi algorithm finds the trellis path or state 
sequence s so that the a posteriori probability /K^ly) is 
maximized. Accordingly to the Bayes ruie, we can 
equivalently maximize: 
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where s, = (j, ) , y^ = (>',, Vj,...> v , ) , = Jy-i 

and ^ = Sj. The u, is the source symbol for tlie state 
transition of trellis path Sj. The path metric Mf{Sj) 
associated with the trellis path Sj is defined as: 

(10) 

Obviousiy, 

p(s^,y^) = exp (A/ / s^ ) ) . (11) 

Substituting (9) into (10) gives: 

= ) + l o g ) ) + \og{p(y, I 5 s ) ) 

(12) 

where log(/?(w^)) is the a priori inforniation of the 

source symbol Uj and is the branch 

metric for the state transition s'—•s given the received 
signal At time j, for each state s, the path metrics for 
all possible paths terminating at state s are calculated. 

III. PERFORMANCE EVALUATION 

To simulate the application of iterative decoding 
principie, we applies the described algorithms to TPC 
ensemble which use two identical systematic 
Hamming block codes //i(7,4,3), //2(7,4,3) 
concatenated in a serial way. 

The product code is // |(7,4,3) 0 //2(7,4,3) = 
//(49,16,9) and the output sequence of TPC is BPSK 
modulated and transmitted over an AWGN channel, 
with fading amplitude a=\ [11]. 

The most important characteristic of iterative 
principie is the dependence of BER(Et/No) the 
number of decoding iterations. 

Bit Error Rate is computed over 10^ blocks, each 
block of dimension 49 bits. 

• For Maximum A Posteriori algorithm we obtain the 
curves plotted in Fig. 4. For each additional 
iteration, we obtain a reduction of BER. We 
observe that for an Ei/No of 3dB the BER is equal 
to 0.0633 for one iteration, 0.0105 at iteration 2, 
0.00054 at iteration 3 and 0.000043 at iteration 5. 

Kig 4 BER(iiV/Vo) pei foni^aiicc for MAP algoritlini. 

• The performances of the SOVA algorithm are 
illustrated in Fig. 5. In this case, for the same Et/N(, 
of 3dB the BER is greater, 0.0867 for one iteration, 
0.0273 at iteration 2, 0.0016 at iteration 3 and 
0.0007 at iteration 5. 

From Fig. 4 and Fig. 5 we observe that the MAP 
algorithm gives better results, in terms of BER, 
compared with SOVA algorithm. 

uncoded 

(dB) 
Fig 5 B E R ( A / / A / o ) p e r f o i m a n c e for S O V A a l g o n t h m . 

IV. CONCLUSIONS 

In this paper, two iterative SISO decoding 
algorithms for TPC have been presented. It has been 
proved that the two-bit soft decision decoding for TPC 
(SISO algorithms) can pick up 2 dB of additional 
coding gain compared with SIHO variant [11][12]. 

For these results, the complexity is low and TPC 
systems starts to be available as standard products. Of 
major interest are the combination of the TPC coding 
with modulation and the development of specific SISO 
algorithms, combined witli helical data scrambling to 
improve burst error performance 
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ANTvJEX 1. TRELLIS DESCRJPTION 
OF BLOCK CODES 

For a Hamming code with control matrix 
H = [hp h j , h J , where h, is the column of H, any 

codeword c, c, eC i = ln 
must satisfy the condition: 

(13) 

where c,. e F^ and ĥ . g . 

For any codeword affected by enors the value of 
the syndrome is: 

(14) 

where yi are the components of received vector y. 
The BCJR trellis construction for linear block 

codes is based on recursive computation of the 
syndrome [6]: 
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S o = 0 (15) 

which determine the unconstrained trellis. Because for 
linear block codes the iniţial and fmal states must be O, 
the branches of the unconstrained trellis, which not 
start from the state O and not end at the state O, are 
removed. Fig. 6 shows the BCJR trellis for the 
systematic Hamming block code H(7,4,3). 

/ 

111 • 

110 • 

101 • 

100 • 

OII • 

010 • 

001 • / 

000 ^ i i 

/ Uf 
/ / l\ I v^x 

symbol "O" symbol" I" 

Fig. 6 Tlie BCJR trellis for the systematic H(7,4,3)-
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