
Buletinul Ştiinţific al Universităţii "Politehnica" din Tinnişoara 

Şşria ELECTRONICĂ şi TEIECOMUNICAŢII 
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS 

Tom 49(63), Fascicola 1, 2004 

Standard Sockets Revolution in ASIC Design 
Traian Tulbure, Razvan Jipa, Dan NiculaV Adam Levinthal^ 

Abstract - The current approach for desigoing an 
integrated circuit as SoC (Systcm-on-Chip) is based on 
reusing thc modcls for modules with a well-defined 
functionality. For casier interconnection, these IP cores 
shouid have an interface that obeys the rules of a 
standard socket. 
Ideally, a SoC socket would enable core designers to 
concentrate mainly on thc core functionality. Similarly, 
SoC system integrators shouid be able to concentrate 
mainly on the SoC timing, core service bandwidth and 
latency requîrements, and the final f loor-plan design 
independent of core functionality. The socket would 
therefore provide the necessar> physical and exchange 
protocol delineation necessary to achieve this well-
defined layering. 
This paper presents an integrated circuit 
implementation that uses two s tandard sockets. It also 
depicts the problems and the corresponding solutions for 
socket conversion and interconnection. 
The presented design has been checked in synthesis and 
i t w a s proved by an ASIC implementation. 
Keywords: SoC, OCP, Wishbone, IP core, HDL, Digital 
Integrated Circuits, ASIC. 

I. INTRODUCTION 

Intellectual-property (IP) cores can ofîer a tremendous 
advantage to designers building complex system-on-
a-chip devices. By acquiring pre-built functions, 
designers can shorten design time and focus on the 
application—providing value-added elements that 
emphasize the design organization's apphcation 
expertise and corporate competencies. To work with 
the variety of cores in the market today, designers 
need to focus on a specific strategy for managing IP 
interconnect to ensure efficient integration and 
system-level verification. 

II. STANDARD SOCKETS IN ASIC DESIGN 

For easier IP core interconnection there are used 
severa! standardized SoC busses and sockets as: 
AMBA, ClearConnect, CoreConnect, OCP, 

SilhconBackplane, Wishbone and many others. A 
design can use any thesc standard sockets for IP core 
interconnection and also more sockets can be used in 
the same design. 
This paper will focus on OCP (Open Core Protocol) 
and Wishbone sockets that will be used in the 
presented integrated circuit implementation. 
Open Core Protocol (OCP) is a common standard for 
intellectual property (IP) core interfaces, or sockets, 
that facilitate "plug and play" design. To make 
complex SoC design a reality for a broader audience, 
the industry needs a complete socket standard that 
eveiyone can use, no matter what their on-chip 
architecture is, or whose processor cores they're using. 
The OCP-IP CoreCreator^''^ tool automates the tasks 
of building, simulating, verifying and packaging 
OCP-compatible cores. IP core products can be fully 
"componentized" by consolidating core models, 
timing parameters, synthesis scripts, verification 
suites and test vectors in accordance with the OCP 
specification. 
The 'Wishbone' Interconnection Architecture for 
Portable IP Cores is a flexible design methodology for 
use with semiconductor IP cores. Its purpose is to 
faster design reuse by alleviating System-on-Chip 
integration problems. This is accomplished by 
creating a common interface between IP cores. This 
improves the portability and reliability of the system, 
and results in faster time-to-market for the end user. 
OpenCores recommends the Wishbone Interconnect 
as the interface to all cores that require interfacing to 
other cores inside a chip FPGA or ASIC. 

111. SOC ARCHITECTURE 

The IP core described in this paper is part of a bigger 
platform called FlexASIC. The FlexASIC structured-
ASIC products are designed as general-purpose 
configurable logic devices with standard-cell speed, 
density, and production costs, and FPGA ease of use 
and prototype costs. Each member of the FlexASIC 
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product family contains an embedded 8051-based 
uConlroller. 
The eASlC Manager-uProcessor (eM^ is the 
configuration and control module inside of FlexASIC 
structured-ASIC devices. eM^ performs built-in seif 
test (Logic, LUT and bRAM BIST, etc), logic 
bitstream initialization, and clock configuration of the 
FlexASIC at system reset. After initialization, eM^ 
can (optionally) implement a number of system-level 
functions for the FlexASIC user design, including SPI 
(flash) memory management, system timer functions, 
and clock/power management functions. eMfi 
contains a flex8051 uController that operates from 
128Kbits (16KBytes) of on-chip ROM. FlexASIC 
developers may svrite custom application code for the 
flex8051 in eM^ to extcnd the capabilities of their 
system ([7]). 

Figure 1: eM^i placement m FlexASIC 

The placement of cMp inside the die plot of the 
smallest FlexASIC device is illustrated in Figure 1. 
eM^ vvas designed using a modular design approach 
based on the 'Open Core Protocol' (OCP) interface 
standard. Al! eMji modules interface through OCP 
sockets and are inter-connected through a switch 
fabric created with OCP merge and split modules. The 
socket-based design approach provided numerous 
benefits during the design and implementation 
process, allowing the entire design to be created, from 
architectural specification to tapeout, in 12 weeks. 
This could be achieved by reusing the flex8051 
processor core and a SOC debug interface provided 
by Flextronics semiconductor and also available in the 
public domain. 
The cM|i module is designed around the flex8051 
uController core and nine sub-modules. The 
uController and sub-modules are connected through 
an OCP switch fabric. The overall eM^ block diagram 
is shown in Figure 2. 
The flex8051 core had 'Wishbone' ports (maintained 
at www.opencores.org) as its primary interfaces for 
instruction and data accesses. These ports were 
converted to byte-wide OCP socket connections 
through Wishbone to OCP (wb2ocp) adapters. AII of 

the eMfi sub-modules were connected through an 
^OCP-switch' created with combinatorial 
(unpipelined) OCP merge and split modules. 
The OCP switch was implemented as a 5:1 merge 
(MO .. .M3) followed by a 9:1 split (SO ...S7). The 4:1 
merge limits the overall throughput to one transfer per 
clock. No OCP pipelining was supported, but read 
prefetching was implemented to improve the 
performance of slower modules (such as romPort and 
spiPort). The merge module implementes fixed-
priority arbitration with a priority ordering of: 
jtagPortport (highest) -> flex805J debug -> flex8051 

Inst -> fJex805J data -> OCP user port (lowestj 
The splitter portion of the OCP switch implemented 
address-based splitting based on the most significant 
bit (MSB) the incoming maşter address value. The 
organization of split modules was chosen to 
implement the address map required for eM^i. 
The first 4Kbyte page of the OCP base memory 
region is designated as the 'bootPage' and is 
assignable to viaRom, SPI memory, or bRAM 
memory. The bootPage mapping is selected through a 
control register. This register is initialized at system 
reset to map the bootPage to viaRom, SPI memory, or 
bRAM memory. Boot page accesses complete in a 
variable number of clock cycles, depending on the 
type of memory that is mapped. This assignation of 
the bootPage is realized by the bootMux in the OCP 
switch. 
The cM\i sub-modules are listed in Table 1. The sub-
modules were designed with byte-wide OCP ports as 
their native interfaces. The top-level module 
integration was done using the CoreClreator tool from 
OCP International Partners (www.opcip.com). 
CoreCreator provided generic maşter and slave 
modules for iniţial development use, and was used to 
add OCP protocol checkers to all the OCP 
connections in the design. 

Fort 
Name Port Function 

jtagPort JTAG Tap Controller 
ecPort eCore Array configuration interface. 
brPort bRAM Array interface (through BIST 

ports) 
cgPort ClkGen serial register interface port 
flexPort Interrupt, GPIO, and system register 

interface 
romPort OCP controller for FlexASIC 

viaROM. 
spiPort Off-chip SPI memory controller. 
ipPort OCP Initiator Port to user design 
tpPort OCP Target Port from user design 

Table 1: eM|i sub-modules 

AII sub-modules are OCP compatible and some of 
them were redesigned from a previous platform, 
design that also used the OCP standard socket for IP 
interconnection. 
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Figure 2. cM^i internai architecture 

Having to reuse modules that use different connection 
sockets lead to design of the socket conversion 
bridges. 

VI. SOCKET BRIDGES 

The chapter depicts the methods of Wishbone-to-OCP 
conversion (wb2ocp modules), conversion issues and 
their corresponding solutions. 
The Wishbone to OCP (wb2ocp) converters are used 
to adapt the flex8051 uController to OCP-compliant 
peripherals. The wbd2ocp module converts the 
Wishbone data interface to OCP and the wb2ocp 
module converts the Wishbone instruction to OCP. 
There is also a Wishbone-to-OCP conversion 
performed between the uController debug interface 
Wishbone port and the rest of the SOC. 
Any Wishbone compliant module uses either the 
single read/write or the block (burst) transfers. The 
flex8051 implements a single read/write transfer ~ 
any transfer consists of only one phase of read or 
write. There can be different types of transfer cycles 
signaled from the maşter to slaves through the 
Wishbone interface ([2]). 
To maximize the bandwidth of the transfer the 
wb2ocp bridges use a speculative-address mechanism 
based on the burst transfers issued by the maşter 
(flex8051). An incremental burst is defmed as 
multiple accesses to consecutive address. The 
increments can be linear or wrapped. A wrap 
incremental transfer means that the address 
increments one but the LSBs of the address are 
modulo the wrap size. The number of the LSB's used 

for a wrap transfer are determined by the transfer 
beats number and the data bus width. 
The flex8051 uController use a 4-beat wrap burst to 
transfer 4 32-bit words from the 16 consecutive 
addresses of an 8-bit data bus slave. This transfer 
involves only the 4 LSBs of the address. The burst 
transfer requires the slave to perform 4 accesses for 
any given request of the maşter and then to merge aii 
the data into one response. This is the base for the 
speculative address since the order of the addresses is 
known apriori for a given burst transfer. 

maşter address 
4 L S B ' s ( h e x ) 

slave generated 
address 4 LSB's 

(hex) 

4 

4 5 6 7 8 9 A B j C D E F 

O 

0 1 2 3 

Figuic 2; 4-bcat wrap burst address generation 

The uController Wishbone data interface is converted 
to an OCP interface in a simple manner because the 
transfers are single read/write cycles without any wait 
states inserted by the maşter (i.e. CPU). This 
translates in the following correspondence rule 
between the Wishbone interface control signals 
(wbdWe and wbdStb the same with wbdCyc) and the 
OCP command: 

ocpMCmd={0, (wbdStb_i & !\vbdWe_ i), (wbdStb_i & wbdWc_i)} 

The Wishbone interface address, output data and input 
data are copied directly in the corresponding OCP 
address, output data and input data busses ([3], [5], 
[6]). 
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V. TESTING 

The cMm module design had 272 10 signaJs at the 
lop-level. 
To create a flexible test environment for all eM^i 
interfaces, two copies of the core design were 
connected in a 'back-to-back' fashion in the top-level 
testbench. Figure 3 illustrates the top-level testbench 
created for eM^. 
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FigureB: cM^ testbench 

The first instance was the main eM^ device under 
test. The second instance, called taskMaster, was used 
as a general traflîc generator and command co-
processor. The signals in the User bundles (OCP 
ports. GPIO ports, interrupts. counter/timer triggers, 
and UART signals) were cross-connected between 
eM^i and taskMaster, ailowing these signals to be 

tested in a flexible way. For example, taskMaster and 
eM|i could send commands to each other over their 
UARTs, or create traffic on each other's internai 
busses over their OCP ports. Protocol checkers 
instantiated in CoreCreator® ([4]) were used to 
ensure that each instance produced legal transactions 
on these OCP ports. A complete 'Wishbone' monitor 
was instantiated on all wishbone ports. A command 
protocol was created over the UART serial ports to 
orchestrate operations between the two devices. For 
example, eMji wouid instruct taskMaster to start 
random SPI memory access traffic via the OCP ports, 
and taskMaster vvouid instruct eM^i to reset itself 
([10]). 
The taskMaster model was driven from an artificially 
fast clock when high-traffic testing was needed and 
could issue back-to-back OCP transfers through the 
eM^ OCP target port while the normal cM[i test 
programs were running. 
All the tests were wrote in embedded C for 8051 and 
when a test encounters an error in the eMji, the error 
handler is called to report the error by writing an error 
code to the ''prinţ module'\ The error code is used by 
as index to the error message table by the prinţ 
module to display the error message string. 
Depending on the severity of the error, the error 
handler can either retum to the caller if it is a non-
fatal error or it might issue a halt "JMP instruction 
for fatal error. 

Test category Test description 
basicRdWr test This test performs a random sequence of pushes and pops to a stack in bRAM memory. 

Pushes write a variable-length data payload of random values, a 32-bit CRC, and an 8-bit 
'length' value. Pops read the length value and pop that number of bytes from the stack, 
compute the CRC for the payload, and confirm that it matches the CRC fetched from the 
stack. 

linkedList test A linked-list is pre-computed and initialized in memoiy. A running CRC is computed 
from the links traversed. The linked list is followed until it a link of OxFFFF is 
encountered. At that point, the current CRC is compared to the 32-bit value stored in 
addr-r2. If the values match, a 'test pass' message is posted. If the value does not match, a 
'test failed' message is posted. At that point, the test fetches the 16-bit values at addr+6 
and continues. The test repeats when a link of 0x0 is encountered. 

eCoreArray 
access test 

This test consists of getLUT (), setLUT (), and traverseLUT() routines that are used to test 
various ranges of the LUT and FlipFlop scan-chains. The test issues a random sequence of 
these operations, verifying that the getLUT() operations retum what was set using the 
setLUTO call at a previous step in the test sequence 

memory 
relocation test 

A small relocatable program is written to memory. The program copies itself to another 
memory area, jumps to the new location, and erases the previous program area. This 
program is scheduled by timer interrupts and run concurrently with other tests 

soft reset test This test writes known data to bRAM, saves the boot reason code in flex8051 data 
memory and issues a soft reset to reboot. After rebooting, the Emu examines the boot 
reason code and if it indicates a soft reset, the CRC for bRAM is compared against a pre-
computed value. 

traffic generator 
test 

While any of the above tests are running, eM|i instructs taskMaster to start memory read 
traffic to bRAM memoiy and viaROM through the OCP target port. Writes are restricted 
to regions of memory not being used by currently active tests. 

debug interface 
test 

Taskmaster selects CPU debugging, reads the program counter and accumulator, stalls 
CPU, flushes CPU instruction cache, write instructions opcode to cache and unstall CPU. 

Table 2: eMp testing 
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Iteration Criticai path 
(ns) 

PrimeTime® 
analysis (criticai 

path) (ns) 

Levels of 
logic Area (ptm^) 

Synthesis - pass 9.4 14.15 44 400000 
Re-synthesis with net delay 12.47 13.25 51 409000 

Table 3 Implementation results 

Another testing method used was stress testing. The 
overall approach to eMji stress testing is to write 
simple tests based on expected funcţional behavior of 
each individual module, and create a main 'test 
scheduler' that calls each tests in an interleaved 
fashion while introducing maximum variation in the 
test conditions across all tests ({8},[9]). 
The testing phase continued after the real chip 
manufacturing. The SOC was designed in such way to 
ensure access point to almost any important register of 
the each sub-module. This was possible in an easy 
fashion due to the JTAG port and the OCP compliant 
socket architecture of the chip. 
The JTAG port proved to be a crucial feature that 
allows testing of every feature of the eM|i sub-
modules. The entire suite tests run for RTL and gate 
netlist simulations were used to prove that the chip 
works. 
Designing a test environment close to the one used for 
chip testing after manufacturing proved to be very 
useful due to the easiness of JTAG stimulus 
generation. The test vectors are obtained from the 
RTL simulation by observing and dumping into a file 
the JTAG bundle signal values. 

VL IMPLEMENTATION 

Section presents the implementation results of the 
SoC in ST 0.13^1 standard cell technology. The chosen 
synthesis strategy was the top-bottom one using the 
Synopsys Design Compiler® target for 0.13|im ST 
process. Place and route stage was accomplished 
using the Cadence Silicon Ensemble®. 
Improvements were to be made in order to improve 
the criticai path of the design. To improve the timing 
the net delay information was supplied to the 
synthesizer together with the placed&routed netlist. 
This synthesis iteration generates a more 
place&route suited netlist because the synthesizer was 
aware of the additional time penalty incurred by the 
net delay and tried to re-structure the netlist 
accordingly. 
The final placed and routed netlist was analyzed with 
a static time analysis tool - Synopsys PrimeTime. The 
final analysis included parasitic information about the 
design and the silicon die. 

VIL FURTHER DEVELOPMENT 

The STA analysis shown that the criticai paths owe to 
the signal bundle that connects eM\i to the bRAM 
banks. This problem can be solved by a redesign of 

the bRAM interface insidc eM(i that will cut the 
criticai path by registering all the outputs to the 
bRAM banks. These criticai paths appeared due to the 
floor plan of the design that placed the farthest bRAM 
in the opposite corner of the die than eM|i (sec Fig 1). 
Another improvement that can be added is the OCP 
syncronizers for the user ip and tp ports. Since these 
ports assure communication with the user design 
placed on the eASICCore® array the data and conn-ol 
signals passed between eM|i and user design must be 
synchronized and must maintain OCP compliance. 
Since there can be no assumption regarding the eMp 
and user design clock ratio the oniy valid solution 
couid be an OCP synchronizer using FIFO semantics. 
This synchronizer could use 2 paths: 

• one for the maşter command; 
• one for the slave response. 

The key of synchronization of a bundle is to 
synchronize only a l-bit signal preferably a puise that 
becomes active after the entire bundle is latched. 
When the load signal is synchronized on the other 
clock domain the entire bundle can be latched onto 
the target clock. It can be looked as a 1 level depth 
dual clock FIFO whose implementation is simplified 
because of the particular depth (requires toggle flip-
flops as 1 bit Gray counters). 

VIII. CONCLUSIONS 

Cores designed for reuse with standard sockets ease 
the design effort considerably. Although a lot of cores 
use standard sockets, they use different standards and 
one needs to connect them using bridges that do not 
affect the socket's perfomiance. Bridging standard 
sockets is a key point in designing large SoC with less 
design effort and very high reliability. 
Converting one standard socket to another is driven 
by a set of decision. The main factor is the number of 
the IP using a standard socket and the possibility of 
reusing it. Another factor that favors the choosing of 
one standard socket over the other is the amount 
support ofiered. The software tools offered by Sonics 
for OCP socked based design developers take the test-
bench and protocol integri ty burden off the 
developer's shoulders. It also provides to the user 
with an of-the-shelf IP library that are OCP compliant 
and can be hooked together without considerable 
design effort. 
The use of a commercial uController core (the 
flex8051) and OCP socket connections to all 
peripherals, as well as uController-based testing 
written in C, allowed design and testing of individual 
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modules in eM^i to occur in parallel. The ability to rc-
use unit tests in the fiill-module finaJ testbench using 
a top-level test sequencer eliminated the need for 
additional ftili-chip test development. The entire 
process represents a streamlined approach to 
uController-based ASIC design based on standard 
sockets. 
This project was developed in the frame of the 
research program between the eASIC Inc. and the 
Transilvania" University of Braşov. 
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