
Buletinul Ştiinţific al Universităţii "Politehnica" din Tinnişoara

Şşria ELECTRONICĂ şi TEIECOMUNICAŢII
TRANSACTIONS on ELECTRONICS and COMMUNICATIONS

Tom 49(63), Fascicola 1, 2004

Standard Sockets Revolution in ASIC Design
Traian Tulbure, Razvan Jipa, Dan NiculaV Adam Levinthal^

Abstract - The current approach for desigoing an
integrated circuit as SoC (Systcm-on-Chip) is based on
reusing thc modcls for modules with a well-defined
functionality. For casier interconnection, these IP cores
shouid have an interface that obeys the rules of a
standard socket.
Ideally, a SoC socket would enable core designers to
concentrate mainly on thc core functionality. Similarly,
SoC system integrators shouid be able to concentrate
mainly on the SoC timing, core service bandwidth and
latency requîrements, and the final f loor-plan design
independent of core functionality. The socket would
therefore provide the necessar> physical and exchange
protocol delineation necessary to achieve this well-
defined layering.
This paper presents an integrated circuit
implementation that uses two s tandard sockets. It also
depicts the problems and the corresponding solutions for
socket conversion and interconnection.
The presented design has been checked in synthesis and
i t w a s proved by an ASIC implementation.
Keywords: SoC, OCP, Wishbone, IP core, HDL, Digital
Integrated Circuits, ASIC.

I. INTRODUCTION

Intellectual-property (IP) cores can ofîer a tremendous
advantage to designers building complex system-on-
a-chip devices. By acquiring pre-built functions,
designers can shorten design time and focus on the
application—providing value-added elements that
emphasize the design organization's apphcation
expertise and corporate competencies. To work with
the variety of cores in the market today, designers
need to focus on a specific strategy for managing IP
interconnect to ensure efficient integration and
system-level verification.

II. STANDARD SOCKETS IN ASIC DESIGN

For easier IP core interconnection there are used
severa! standardized SoC busses and sockets as:
AMBA, ClearConnect, CoreConnect, OCP,

SilhconBackplane, Wishbone and many others. A
design can use any thesc standard sockets for IP core
interconnection and also more sockets can be used in
the same design.
This paper will focus on OCP (Open Core Protocol)
and Wishbone sockets that will be used in the
presented integrated circuit implementation.
Open Core Protocol (OCP) is a common standard for
intellectual property (IP) core interfaces, or sockets,
that facilitate "plug and play" design. To make
complex SoC design a reality for a broader audience,
the industry needs a complete socket standard that
eveiyone can use, no matter what their on-chip
architecture is, or whose processor cores they're using.
The OCP-IP CoreCreator^''^ tool automates the tasks
of building, simulating, verifying and packaging
OCP-compatible cores. IP core products can be fully
"componentized" by consolidating core models,
timing parameters, synthesis scripts, verification
suites and test vectors in accordance with the OCP
specification.
The 'Wishbone' Interconnection Architecture for
Portable IP Cores is a flexible design methodology for
use with semiconductor IP cores. Its purpose is to
faster design reuse by alleviating System-on-Chip
integration problems. This is accomplished by
creating a common interface between IP cores. This
improves the portability and reliability of the system,
and results in faster time-to-market for the end user.
OpenCores recommends the Wishbone Interconnect
as the interface to all cores that require interfacing to
other cores inside a chip FPGA or ASIC.

111. SOC ARCHITECTURE

The IP core described in this paper is part of a bigger
platform called FlexASIC. The FlexASIC structured-
ASIC products are designed as general-purpose
configurable logic devices with standard-cell speed,
density, and production costs, and FPGA ease of use
and prototype costs. Each member of the FlexASIC

' Dept of Electronics and Computers, TRANSILVANIA University of Braşov, Romania
29 Eroilor, 500036 Braşov, Romaiiia, e-mail: tulbure@vega.unitbv.ro, jipa@vega.unilbv ro, nicula@vega.unitbv.ro
Tel +40-268-414482, Tel./Fax +40-268-478705

- eASIC Inc. 3555 Woodford Drive, SanJose. CA 95124, USA, c-mail: aclain@easic corn

147
BUPT

mailto:tulbure@vega.unitbv.ro
mailto:nicula@vega.unitbv.ro

product family contains an embedded 8051-based
uConlroller.
The eASlC Manager-uProcessor (eM^ is the
configuration and control module inside of FlexASIC
structured-ASIC devices. eM^ performs built-in seif
test (Logic, LUT and bRAM BIST, etc), logic
bitstream initialization, and clock configuration of the
FlexASIC at system reset. After initialization, eM^
can (optionally) implement a number of system-level
functions for the FlexASIC user design, including SPI
(flash) memory management, system timer functions,
and clock/power management functions. eMfi
contains a flex8051 uController that operates from
128Kbits (16KBytes) of on-chip ROM. FlexASIC
developers may svrite custom application code for the
flex8051 in eM^ to extcnd the capabilities of their
system ([7]).

Figure 1: eM^i placement m FlexASIC

The placement of cMp inside the die plot of the
smallest FlexASIC device is illustrated in Figure 1.
eM^ vvas designed using a modular design approach
based on the 'Open Core Protocol' (OCP) interface
standard. Al! eMji modules interface through OCP
sockets and are inter-connected through a switch
fabric created with OCP merge and split modules. The
socket-based design approach provided numerous
benefits during the design and implementation
process, allowing the entire design to be created, from
architectural specification to tapeout, in 12 weeks.
This could be achieved by reusing the flex8051
processor core and a SOC debug interface provided
by Flextronics semiconductor and also available in the
public domain.
The cM|i module is designed around the flex8051
uController core and nine sub-modules. The
uController and sub-modules are connected through
an OCP switch fabric. The overall eM^ block diagram
is shown in Figure 2.
The flex8051 core had 'Wishbone' ports (maintained
at www.opencores.org) as its primary interfaces for
instruction and data accesses. These ports were
converted to byte-wide OCP socket connections
through Wishbone to OCP (wb2ocp) adapters. AII of

the eMfi sub-modules were connected through an
^OCP-switch' created with combinatorial
(unpipelined) OCP merge and split modules.
The OCP switch was implemented as a 5:1 merge
(MO .. .M3) followed by a 9:1 split (SO ...S7). The 4:1
merge limits the overall throughput to one transfer per
clock. No OCP pipelining was supported, but read
prefetching was implemented to improve the
performance of slower modules (such as romPort and
spiPort). The merge module implementes fixed-
priority arbitration with a priority ordering of:
jtagPortport (highest) -> flex805J debug -> flex8051

Inst -> fJex805J data -> OCP user port (lowestj
The splitter portion of the OCP switch implemented
address-based splitting based on the most significant
bit (MSB) the incoming maşter address value. The
organization of split modules was chosen to
implement the address map required for eM^i.
The first 4Kbyte page of the OCP base memory
region is designated as the 'bootPage' and is
assignable to viaRom, SPI memory, or bRAM
memory. The bootPage mapping is selected through a
control register. This register is initialized at system
reset to map the bootPage to viaRom, SPI memory, or
bRAM memory. Boot page accesses complete in a
variable number of clock cycles, depending on the
type of memory that is mapped. This assignation of
the bootPage is realized by the bootMux in the OCP
switch.
The cM\i sub-modules are listed in Table 1. The sub-
modules were designed with byte-wide OCP ports as
their native interfaces. The top-level module
integration was done using the CoreClreator tool from
OCP International Partners (www.opcip.com).
CoreCreator provided generic maşter and slave
modules for iniţial development use, and was used to
add OCP protocol checkers to all the OCP
connections in the design.

Fort
Name Port Function

jtagPort JTAG Tap Controller
ecPort eCore Array configuration interface.
brPort bRAM Array interface (through BIST

ports)
cgPort ClkGen serial register interface port
flexPort Interrupt, GPIO, and system register

interface
romPort OCP controller for FlexASIC

viaROM.
spiPort Off-chip SPI memory controller.
ipPort OCP Initiator Port to user design
tpPort OCP Target Port from user design

Table 1: eM|i sub-modules

AII sub-modules are OCP compatible and some of
them were redesigned from a previous platform,
design that also used the OCP standard socket for IP
interconnection.

148 BUPT

http://www.opencores.org
http://www.opcip.com

Figure 2. cM^i internai architecture

Having to reuse modules that use different connection
sockets lead to design of the socket conversion
bridges.

VI. SOCKET BRIDGES

The chapter depicts the methods of Wishbone-to-OCP
conversion (wb2ocp modules), conversion issues and
their corresponding solutions.
The Wishbone to OCP (wb2ocp) converters are used
to adapt the flex8051 uController to OCP-compliant
peripherals. The wbd2ocp module converts the
Wishbone data interface to OCP and the wb2ocp
module converts the Wishbone instruction to OCP.
There is also a Wishbone-to-OCP conversion
performed between the uController debug interface
Wishbone port and the rest of the SOC.
Any Wishbone compliant module uses either the
single read/write or the block (burst) transfers. The
flex8051 implements a single read/write transfer ~
any transfer consists of only one phase of read or
write. There can be different types of transfer cycles
signaled from the maşter to slaves through the
Wishbone interface ([2]).
To maximize the bandwidth of the transfer the
wb2ocp bridges use a speculative-address mechanism
based on the burst transfers issued by the maşter
(flex8051). An incremental burst is defmed as
multiple accesses to consecutive address. The
increments can be linear or wrapped. A wrap
incremental transfer means that the address
increments one but the LSBs of the address are
modulo the wrap size. The number of the LSB's used

for a wrap transfer are determined by the transfer
beats number and the data bus width.
The flex8051 uController use a 4-beat wrap burst to
transfer 4 32-bit words from the 16 consecutive
addresses of an 8-bit data bus slave. This transfer
involves only the 4 LSBs of the address. The burst
transfer requires the slave to perform 4 accesses for
any given request of the maşter and then to merge aii
the data into one response. This is the base for the
speculative address since the order of the addresses is
known apriori for a given burst transfer.

maşter address
4 L S B ' s (h e x)

slave generated
address 4 LSB's

(hex)

4

4 5 6 7 8 9 A B j C D E F

O

0 1 2 3

Figuic 2; 4-bcat wrap burst address generation

The uController Wishbone data interface is converted
to an OCP interface in a simple manner because the
transfers are single read/write cycles without any wait
states inserted by the maşter (i.e. CPU). This
translates in the following correspondence rule
between the Wishbone interface control signals
(wbdWe and wbdStb the same with wbdCyc) and the
OCP command:

ocpMCmd={0, (wbdStb_i & !\vbdWe_ i), (wbdStb_i & wbdWc_i)}

The Wishbone interface address, output data and input
data are copied directly in the corresponding OCP
address, output data and input data busses ([3], [5],
[6]).

149

BUPT

V. TESTING

The cMm module design had 272 10 signaJs at the
lop-level.
To create a flexible test environment for all eM^i
interfaces, two copies of the core design were
connected in a 'back-to-back' fashion in the top-level
testbench. Figure 3 illustrates the top-level testbench
created for eM^.

;ROM MoM i(tulunMlir>

spl- I cfa-
DSC*

rom*
cg*
ec*
bf

fx-
tp*
ip*

UskMatter

CS9' spi-
m- DSC*

rom*
cg-
ec-
br

tr
ip*
tp*

6MU

8M FLA5M mod«l
Boundiry Smo Modtl
ROM Modal (»Mu)
gfc 9«n>r»toc Mod»l
•CoffTiy Modrt
bAAM «nay Modil

Croii-conn«ct«d tl0ruli

FigureB: cM^ testbench

The first instance was the main eM^ device under
test. The second instance, called taskMaster, was used
as a general traflîc generator and command co-
processor. The signals in the User bundles (OCP
ports. GPIO ports, interrupts. counter/timer triggers,
and UART signals) were cross-connected between
eM^i and taskMaster, ailowing these signals to be

tested in a flexible way. For example, taskMaster and
eM|i could send commands to each other over their
UARTs, or create traffic on each other's internai
busses over their OCP ports. Protocol checkers
instantiated in CoreCreator® ([4]) were used to
ensure that each instance produced legal transactions
on these OCP ports. A complete 'Wishbone' monitor
was instantiated on all wishbone ports. A command
protocol was created over the UART serial ports to
orchestrate operations between the two devices. For
example, eMji wouid instruct taskMaster to start
random SPI memory access traffic via the OCP ports,
and taskMaster vvouid instruct eM^i to reset itself
([10]).
The taskMaster model was driven from an artificially
fast clock when high-traffic testing was needed and
could issue back-to-back OCP transfers through the
eM^ OCP target port while the normal cM[i test
programs were running.
All the tests were wrote in embedded C for 8051 and
when a test encounters an error in the eMji, the error
handler is called to report the error by writing an error
code to the ''prinţ module'\ The error code is used by
as index to the error message table by the prinţ
module to display the error message string.
Depending on the severity of the error, the error
handler can either retum to the caller if it is a non-
fatal error or it might issue a halt "JMP instruction
for fatal error.

Test category Test description
basicRdWr test This test performs a random sequence of pushes and pops to a stack in bRAM memory.

Pushes write a variable-length data payload of random values, a 32-bit CRC, and an 8-bit
'length' value. Pops read the length value and pop that number of bytes from the stack,
compute the CRC for the payload, and confirm that it matches the CRC fetched from the
stack.

linkedList test A linked-list is pre-computed and initialized in memoiy. A running CRC is computed
from the links traversed. The linked list is followed until it a link of OxFFFF is
encountered. At that point, the current CRC is compared to the 32-bit value stored in
addr-r2. If the values match, a 'test pass' message is posted. If the value does not match, a
'test failed' message is posted. At that point, the test fetches the 16-bit values at addr+6
and continues. The test repeats when a link of 0x0 is encountered.

eCoreArray
access test

This test consists of getLUT (), setLUT (), and traverseLUT() routines that are used to test
various ranges of the LUT and FlipFlop scan-chains. The test issues a random sequence of
these operations, verifying that the getLUT() operations retum what was set using the
setLUTO call at a previous step in the test sequence

memory
relocation test

A small relocatable program is written to memory. The program copies itself to another
memory area, jumps to the new location, and erases the previous program area. This
program is scheduled by timer interrupts and run concurrently with other tests

soft reset test This test writes known data to bRAM, saves the boot reason code in flex8051 data
memory and issues a soft reset to reboot. After rebooting, the Emu examines the boot
reason code and if it indicates a soft reset, the CRC for bRAM is compared against a pre-
computed value.

traffic generator
test

While any of the above tests are running, eM|i instructs taskMaster to start memory read
traffic to bRAM memoiy and viaROM through the OCP target port. Writes are restricted
to regions of memory not being used by currently active tests.

debug interface
test

Taskmaster selects CPU debugging, reads the program counter and accumulator, stalls
CPU, flushes CPU instruction cache, write instructions opcode to cache and unstall CPU.

Table 2: eMp testing

150 BUPT

Iteration Criticai path
(ns)

PrimeTime®
analysis (criticai

path) (ns)

Levels of
logic Area (ptm^)

Synthesis - pass 9.4 14.15 44 400000
Re-synthesis with net delay 12.47 13.25 51 409000

Table 3 Implementation results

Another testing method used was stress testing. The
overall approach to eMji stress testing is to write
simple tests based on expected funcţional behavior of
each individual module, and create a main 'test
scheduler' that calls each tests in an interleaved
fashion while introducing maximum variation in the
test conditions across all tests ({8},[9]).
The testing phase continued after the real chip
manufacturing. The SOC was designed in such way to
ensure access point to almost any important register of
the each sub-module. This was possible in an easy
fashion due to the JTAG port and the OCP compliant
socket architecture of the chip.
The JTAG port proved to be a crucial feature that
allows testing of every feature of the eM|i sub-
modules. The entire suite tests run for RTL and gate
netlist simulations were used to prove that the chip
works.
Designing a test environment close to the one used for
chip testing after manufacturing proved to be very
useful due to the easiness of JTAG stimulus
generation. The test vectors are obtained from the
RTL simulation by observing and dumping into a file
the JTAG bundle signal values.

VL IMPLEMENTATION

Section presents the implementation results of the
SoC in ST 0.13^1 standard cell technology. The chosen
synthesis strategy was the top-bottom one using the
Synopsys Design Compiler® target for 0.13|im ST
process. Place and route stage was accomplished
using the Cadence Silicon Ensemble®.
Improvements were to be made in order to improve
the criticai path of the design. To improve the timing
the net delay information was supplied to the
synthesizer together with the placed&routed netlist.
This synthesis iteration generates a more
place&route suited netlist because the synthesizer was
aware of the additional time penalty incurred by the
net delay and tried to re-structure the netlist
accordingly.
The final placed and routed netlist was analyzed with
a static time analysis tool - Synopsys PrimeTime. The
final analysis included parasitic information about the
design and the silicon die.

VIL FURTHER DEVELOPMENT

The STA analysis shown that the criticai paths owe to
the signal bundle that connects eM\i to the bRAM
banks. This problem can be solved by a redesign of

the bRAM interface insidc eM(i that will cut the
criticai path by registering all the outputs to the
bRAM banks. These criticai paths appeared due to the
floor plan of the design that placed the farthest bRAM
in the opposite corner of the die than eM|i (sec Fig 1).
Another improvement that can be added is the OCP
syncronizers for the user ip and tp ports. Since these
ports assure communication with the user design
placed on the eASICCore® array the data and conn-ol
signals passed between eM|i and user design must be
synchronized and must maintain OCP compliance.
Since there can be no assumption regarding the eMp
and user design clock ratio the oniy valid solution
couid be an OCP synchronizer using FIFO semantics.
This synchronizer could use 2 paths:

• one for the maşter command;
• one for the slave response.

The key of synchronization of a bundle is to
synchronize only a l-bit signal preferably a puise that
becomes active after the entire bundle is latched.
When the load signal is synchronized on the other
clock domain the entire bundle can be latched onto
the target clock. It can be looked as a 1 level depth
dual clock FIFO whose implementation is simplified
because of the particular depth (requires toggle flip-
flops as 1 bit Gray counters).

VIII. CONCLUSIONS

Cores designed for reuse with standard sockets ease
the design effort considerably. Although a lot of cores
use standard sockets, they use different standards and
one needs to connect them using bridges that do not
affect the socket's perfomiance. Bridging standard
sockets is a key point in designing large SoC with less
design effort and very high reliability.
Converting one standard socket to another is driven
by a set of decision. The main factor is the number of
the IP using a standard socket and the possibility of
reusing it. Another factor that favors the choosing of
one standard socket over the other is the amount
support ofiered. The software tools offered by Sonics
for OCP socked based design developers take the test-
bench and protocol integri ty burden off the
developer's shoulders. It also provides to the user
with an of-the-shelf IP library that are OCP compliant
and can be hooked together without considerable
design effort.
The use of a commercial uController core (the
flex8051) and OCP socket connections to all
peripherals, as well as uController-based testing
written in C, allowed design and testing of individual

151
BUPT

modules in eM^i to occur in parallel. The ability to rc-
use unit tests in the fiill-module finaJ testbench using
a top-level test sequencer eliminated the need for
additional ftili-chip test development. The entire
process represents a streamlined approach to
uController-based ASIC design based on standard
sockets.
This project was developed in the frame of the
research program between the eASIC Inc. and the
Transilvania" University of Braşov.

REFERENCES

[1] w^A^ easic.com
[2] Wishbona System'On-Chip (SoC). Interconnection Archnecture
forPortabU IP Cores. Rcvision: B.3, Rcleased: Septcmbcr 7, 2002
[3] Open Core Protocol Speaftcation. Version 1.2. Sonics Inc.
2000
[4] FustForward Development Environment - FastForward
Tuional. Rcvision B03, Sonics Inc., 2001
[5] J Bhaskcr, A Venlog Primer, Second Edition, Star Galaxy
Publishing, 1999
[6] D.E Thomas, P.R Moorby, The Venlog Hardware Descnption
Language, Fourih Edition, Kluwer Academic Publishers, 1998
[7] M.J S. Smith, Application-Specific Integrated Circuit, Addison-
Weslcy, 1997
[8j Simon Teran, Marko Mlinar, Flex805I Design Documents,
Revision 0.2
[9] Igor Mohor, SOC Debug Interjace, Revision 2.0
[10] Janick Bergeron, Whtmg Testbenches:Funcţionai Verification
oJ HDL Modeis, Kluwer Academic Publishers. 2000
[11] \vw\vopencores.ofg

[13] • • • wx^w. solvne! \ynopsys.com

152 BUPT

