Contributii la imbunatatirea dependabilitatii si securitatii
informatiei

Teza de doctorat

Rodica Tirtea

Coordonator stiintific: prof. dr. ing. Mircea Vladutiu
Universitatea Politehnica Timisoara

Presedinte: Prof. dr. ing. Prostean Octavian

Conducator de doctorat: Prof. dr. ing. Vladutiu Mircea

Membrii:

1. Prof. dr. ing. Petrescu Mircea, Universitatea ,Politehnica” din Bucuresti
2. Prof. dr. ing. Deconinck Geert, Universitatea Catolica Leuven din Belgia
3. Prof. dr. ing. Mang loan, Universitatea din Oradea.

BUPT

Dependability and information security enhancements

Ph.D. thesis
Rodica Tirtea

BUPT

CUVANT INAINTE

Aceasta teza de doctorat a fost elaboratd sub coordonarea d-lui profesor dr.
ing. Mircea Vladutiu din cadrul Universitatii ,Politehnica” din Timisoara. Doresc sa-i
multumesc si pe aceasta cale conducatorului de doctorat, prof. dr. ing. Mircea
VlIadutiu, pentru sugestiile si incurajarile deosebit de utile in munca de cercetare dar
si pentru promptitudinea cu care a raspuns intotdeauna. Pe parcursul anilor care au
trecut de cand m-am inscris la doctorat, desi o buna perioada mi-am desfasurat
activitatea de studiu si cercetare in strainatate, discutiile profesionale, coordonarea
si indrumarea nu s-au diminuat.

Doresc de asemenea sa multumesc membrilor comisiei de doctorat,
referentilor, pentru ca au acceptat sa faca parte din comisia de doctorat. Le
multumesc d-lui academician prof. dr. ing. Mircea Petrescu, d-lui prof. dr. ing. Ioan
Mang de la Universitatea din Oradea si nu in ultimul rand d-lui prof. dr. ing. Geert
Deconinck cdruia tin sa-i multumesc si pe aceastd cale pentru colaborarea foarte
bune pe care am avut-o pe durata studiilor mele de doctorat in K.U.Leuven, Belgia.

As dori de asemenea sda multumesc membrilor colectivului din Catedra de
Calculatoare a Facultatii de Automatica si Calculatoare a Universitatii ,Politehnica”
din Timisoara pentru sugestiile utile pe care le-au exprimat cu ocazia sustinerii
examenelor sau referatelor.

Le multumesc de asemenea profesorilor mei din Universitatea din Oradea,
colegilor din Catedra de Calculatoare, pentru indrumare si sprijin.

Aceasta teza nu ar fi fost posibila fara sustinerea permanenta si
neconditionata a parintilor mei. Le multumesc si pe aceasta cale pentru rabdarea de
care au dat dovada in toti acesti ani dedicati studiului.

Oradea, ianuarie 2007 Rodica Tirtea

BUPT

Parintilor mei.

Tirtea, Rodica

Contributii la imbunatatirea dependabilitatii si securitatii
informatiei

Teze de doctorat ale UPT, Seria 1, Nr. 23, Editura Politehnica,
2006, 104 pagini, 33 figuri, 17 tabele.

ISSN:1224-6069

Cuvinte cheie:

dependabilitate, toleranta la defecte, securitatea informatiei,
algoritmi criptografici

Rezumat,

Conform ultimelor cercetari conceptele de dependabilitate si
securitate nu mai pot fi separate chiar daca pana recent s-au
dezvoltat independent. Aceasta lucrare adreseaza nevoia de
securitate in sistemele cu cerinte de dependabilitate, si in acelasi
timp, nevoia de dependabilitate a mecanismelor de securitate
implementate. Dependentele dintre securitate si dependabilitate
sunt identificate si sunt introduse contributii in domeniul
implementarilor criptografice tolerante la defecte. Toleranta la
defecte este necesara in implementarile criptografice pentru a
preveni noile tipuri de atacuri si vulnerabilitati (atacuri bazate pe
analiza erorilor). Data fiind gama larga de algoritmi criptografici,
in aceasta lucrare este analizat cazul cifrurilor bloc (algoritmi care
asigura confidentialitatea). In aceasta lucrare tehnici noi de
detectare a erorilor sunt propuse, analizate si evaluate pentru
cifruri bloc. Rezultatele obtinute Tn urma simularilor hardware
sunt comparate cu cele ale cercetarilor anterioare. Aceasta
lucrare aduce noi argumente care sustin dependenta dintre
dependabilitate si securitate si contribuie, cu tehnici noi,
avantajoase din punct de vedere al costului, la asigurarea
dependabilitatii implementarilor criptografice.

BUPT

TABLE OF CONTENT

Cuvant INAINtE. ..o s 3
Table of contentcoiciiciiiie i e s s r s s s na 5
List Of figUresS ...ccciieirimiriei i s nre s s s s s e e s s nn s 8
List of tables ...ciicririrrrrmrmranranranrse s s s s s s s ssassnssansansansansansannas 9
List of abbreviationsccccvciiiiiiirisris i s 10
224 T 1 T 11
Y 5 T o - T ot o 12
B N 3 3 o T o 11Tt o o o T 13
1.1. Context Of tRE WOIKoueie ittt ettt aieaeas 13
I @e) 1 g 150 (o] g K-S 14
1.3. TRESIS SEIUCEUIE ...seere s e et e e ea e e s aanaaans 14
2. On the need for security in dependable systems.......ccccvcrvervannans 16
B B =T n 0] 1o Lo« V25 16
2.1.1. BASIiC CONCEPLS .vieiiiiiiiiii e a e aes 16
2.1.2. Dependability, security and their attributes.................cooeil. 17
2.1.3. Cryptography and cryptanalysiS.......ccoiiiiiiiiiiiii i i 19
2.1.4. Systems and their characteristicsccoooviiiiiiii 24
2.2. Security as requirement for dependable systems......................... 25
2.3. Intrusion tolerance approaches. Using fault tolerance to address
Rl B g 1V KT L= 27
2.4. Contributions and CONCIUSIONScceuviueieiiiiiiisiasiasnsiesiennenns 29
3. Security — means, trends, challenges........cceccvvcmiimncsnnsnn s s 30
3.1. State-of-the-art in cryptography. Competitions and selected
GIGOFTEAMIS. . e 30
3.1.1. NIST Selection ProCeSS ...vviviiiiiiiiii i eeaaeaaeees 30
3.1.2. NESSIE research project......ccoooeiiiiiiiiieeeee e 33
3.1.3. CRYPTREC IPA research project (CRYPTography Research and
Evaluation Committees)cooiiiiiiiiii i 36
3.1.4. Summary on the state-of- the- art in cryptography................ 38

BUPT

3.2. Cryptanalysis. Attacks based on implementation. Fault analysis

AU ACKS vttt e e 39
3.2.1. Cryptosystems and side-channel attackscccoeviieiinnnn. 40
3.2.2. Fault attacks. Fault injection methodsccccoviiiiiiiiinnn, 41
3.2.3. Fault analysis attackccooeiiiiii 42

3.3, StANAAIAS. ...t e 43

3.4. Conclusions and contribUtionsc.ccvuvieiiiiiiiiiiiiiiiiiiieiieninnns 44

4. Modes of operation and their security in case of faults 46

200 B 7 [os [=1-3e] o] o =1 0= 1 4 (o] o BV 46
4.1.1. ECB (Electronic Code Book) mode......ccvviiiiiiiiiiiiiiiinens 47
4.1.2. CBC (Cipher Block Chaining) modeccocoviiiiiiiiiiiiiiniiaen, 47
4.1.3. CFB (Cipher FeedBack) modecciiiiiiiiiiiiiiiiiic e 48
4.1.4. OFB (Output FeedBack) modecociviiiiiiiiiiiiiic i 49
4.1.5. CTR (Counter) MoOdecouiiiiiiiiiiii it asas e 49

4.2. Modes of operation and bit €rrorsc..couvviiiiiiiiiiiiiiiiiiieniienins, 51

4.3. Counter Mode standardized implementationscccooevieinnns 52
4.3.1. Standard Incrementing Function in NIST Recommendations.... 53
4.3.2. Counter Mode and IPSEC......cciiviiiiiiiiiii i nee e aneanenes 54
4.3.3. Counter Mode in ATM Security Specifications.................cceveee. 55

4.4. Faults and their impact on security in case of Counter Mode 56

4.5. How to avoid vulnerabilities for the modes of operation................ 58

4.6, CONCIUSIONS .ottt ettt ettt ettt e et a et s aansasneanes 58

5. Fault tolerance for secure implementations of block ciphers 60

5.1. Available mechanisms protecting block ciphers against fault analysis

AEEACKS oot 60
5.1.1. Fault analysis attacks for block ciphers.......ccccoviiiiiiiiiiinnnn. 60
5.1.2. Error detection mechanisms for block ciphers........................ 61

5.2. Case study. Triple-DES.........ccoouiiiiiii it 62
5.2.1. Short presentation of Triple-DEScciiiiiiiiiiiiiiiiii e, 62
5.2.2. Applying error detection methods for Triple-DES algorithm 63
5.2.3. Fault analysis attack resistant key scheduling algorithm for
TP E-DES .ttt e 68
5.2.4. Using complementation property for fault tolerance purposes.. 68

5.3. Conclusions and contribuUtionscccuiiiiiiiisiisiisasinsieniennes 70

6. Cost analysis of error detection techniques for MISTY1

cryptographic algorithm........ccocciiiiiicinicinissnne s s s s s s ra s rannas 72
6.1. MISTY1 @lgoritRm 72
6.1.1. Why MISTY1 algorithm? ... 73
6.1.2. Encryption with MISTY L ...oooiiiiiiiiiii i 73
6.1.3. Considerations regarding the security analysis of MISTY1 78
6.2. Hardware simulation environmentccooveviieiiiiiiiiiiiiiieiiinnins 78

BUPT

6.3. Error propagation in MISTY1 algorithmcccocveviiiiiiiiiiniinnnns 81
6.4. MISTY1 and the available error detection techniques.................... 83
6.5. Complemented duplication error detection.............cccocvvveviievinnnn. 84
6.5.1. Error detection using complemented duplication.................... 84
6.5.2. Description of CD error detection using Boolean algebra......... 85
6.5.3. Applying CD error detection for MISTY1 functions.................. 86
6.5.4. Analysis of overhead CoStS.......ccviiiiiiiiiiiiii 88
6.6. Using parity prediction for error detection.............coveuveiieiieiinnnnn, 89
6.7. Analysis of overhead in related work. Comparison 91
6.8. CONCIUSIONS .vvsees sttt ettt e et as e s aa e snnaneenens 92
728 070] 4 1ol 1T F=T T Y 5 - 94
7.1. Findings of this diSSertationc.ccuuuiuiiiiisisiiiisnsiesieiienien, 94
7.2. Personal contribUtioNS.........ccuuuuiuiieiieiiesasastastastastasasesnnnennens 94
7.3. Possible further research tOPiCS......c.cvcuvueiiiiiiiiiie i 95
Annex A. Misty1 algorithm, S-boxes......cccvcirieirieiriesriesre s v s e s rran e 97
2 =) Y = 3 ol 99

BUPT

LIST OF FIGURES

Figure 2.1. Chain of threats [5] ciuiiiiiiiii i e 16
Figure 2.2. Dependability and security relationship........cccooiviiiiiiiiiiiiic i 18
Figure 2.3. Dependability and security tree [5].....cooviiiiiiiiiiii e 19
Figure 2.4. Feistel cipher [8] ..o 21
Figure 2.5. Attack-vulnerability-intrusion chain [18].......ccovviiiiiiiiiiiii e, 27
Figure 2.6. Security means and methodscooviiiiiiiiiii e 28
Figure 3.1. Encryption (decryption), real world interactions and side-channel attacks
.. 40
Figure 4.1. Electronic Code BOOK MOAE......cciuiiiiiiiiiiiiiiiiiii e neree e eees 47
Figure 4.2. Cipher Block Chaining mode........ccviiiiiiiiiiiiiic e 48
Figure 4.3. Cipher Feedback modeciieiiiiiiiii e 48
Figure 4.4. Output Feedback Modecviiiiiiiiiiii e 49
Figure 4.5. The CTR MOGE. .. .ciiiiiii ittt e e e s aee e 50
Figure 4.6. Summary of effect of bit errors on decryptionccocvviiiiiiiiiiinnn. 52
Figure 4.7. Counter mode. Encryption and decryption..........ccooviiiiiiiiiiiiiiiennnn, 53
Figure 4.8. IPsec counter block formatc.cooiiiiiiiii 54
Figure 4.9. ATM state vector fieldsovviiiiiii e 55
Figure 4.10. Fault on the LSB of the Counter module output (n =the size of the
encryption/decryption BIOCK). ..o e 57
Figure 5.1. Triple-DES - general architecture..........coooiiiiiiiiiiee, 63
Figure 5.2. Algorithm level error detection. General View.covvvviiiiiiiiiinennnn. 64
Figure 5.3. Round level error detection. General View.cccviviiiiiiiiiiiiinnenenn, 65
Figure 5.4. Operation level error detection. General View.ccocvvviiiiiiiinnnnnn. 67
Figure 5.5. Error detection mechanism for Triple-DES relying on complementation
05T o 69
Figure 6.1. Encryption procedure for MISTY 1 .. .oiiiiiiiiiiiiii e e 74
Figure 6.2. FUNCEION FL. o.inui it e e 75
Figure 6.3. FUNCLION FO. .o sttt e e eeas 75
Figure 6.4. FUNCEION FL. .ot 76
Figure 6.5, FUNCEION FL . 1ottt e e e e e 77
Figure 6.6. Virtex. 2-slice CLB [60] ..oviviriiiiiiieii i e e e e ees 79
Figure 6.7. Virtex slice. One slice accommodates two 4-input LUTs [60] 80
Figure 6.8. FO error propagation. Percentage distribution (up) and logarithmic
distribUtioN (AOWN) euuii et e 82
Figure 6.9. Using CD error detection. General representation.cccvevvevnennnn. 85
Figure 6.10. FL function broken down in steps.cccoviiiiiiiiiiiiiic e 88
Figure 6.11. FL function and parity points.cooiiiiiiiiii e 90

BUPT

LIST OF TABLES

Table 3.1. AES finalists. Encryption and decryption performance by platform........ 31
Table 3.2. AES finalists. Key scheduling performance by platform. 31
Table 3.3. AES finalists. Overall performance.cocoviiiiiiiiiiii e 31
Table 3.4. AES finalists. A smart card study of power analysis defence................. 32
Table 3.5. AES finalists. Critical path and instruction-level parallelism. 32
Table 3.6. NESSIE POrtfOlio ..uuuieiieeieie it e e e e e e ae e 36
Table 3.7. CRYPTREC evaluated primitivesccoiiiiiiiiiiii e 37
Table 3.8. CRYPTREC selected primitivesccoviiiiiiiiiii e 38
Table 5.1. Trade-off analysis for different concurrent error detection methods...... 66
Table 5.2. Trade-off analysis CED vs. complemented error detection for Triple-DES
.. 69
Table 6.1. Mapping table for the subkeys.cooviiiiiiiii 78
Table 6.2. Functions and operations used in MISTY1coiiiiiiiiiiiii e eens 86
Table 6.3. MISTY1 operations and their complements..........ccviiiiiiiiiiiiiiicie i 87
Table 6.4. Implementation resultS........coviiiiiii 87
Table 6.5. Analysis of overhead for CD error detectionsc.covviviiiiiiiiiiiiininnns 88
Table 6.6. Parity prediction for MISTY1 operationscoccviiiiiiiiiiiiiiii i iieeaens 89
Table 6.7. Analysis of overhead for parity prediction error detection in case of FL
FUNCE 0N e e 91

BUPT

10

3GPP
AES
ATM
CBC
CD
CED
CFB
CRYPTREC
CTR
DES
DFA
ECB
FIPS
FPGA
GSM
IETF
IPsec
ISO
ITUA
LFSR
LUTs
MAC
MAFTIA
NDFA
NESSIE
NIST
OFB
TLS

LIST OF ABBREVIATIONS

3rd Generation Partnership Project

Advanced Encryption Standard

Asynchronous Transfer Mode

Cipher Block Chaining

Complemented Duplication error detection
Concurrent Error Detection

Cipher FeedBack

CRYPTography Research and Evaluation Committees
Counter Mode

Data Encryption Standard

Differential Fault Analysis

Electronic Code Block

Federal Information Processing Standards
Field-Programmable Gate Array

Global System for Mobile Communications

Internet Engineering Task Force

Internet Protocol security

International Organization for Standards

Intrusion Tolerance by Unpredictable Adaptation
Linear Feedback Shift Register

Look-Up Tables

Message Authentication Code

Malicious and Accidental Fault Tolerance for Internet Applications
Non-Differential Fault Analysis

New European Schemes for Signature, Integrity and Encryption
National Institute of Standards and Technology
Output FeedBack

Transport Layer Security

BUPT

11

REZUMAT

Dezvoltarea tehnologiei informatiei, a sistemelor de calcul si a aplicatiilor lor,
au determinat si continuda sa determine expansiunea unor domenii cu o istorie
lungd. Securitatea informatiei, mii de ani utilizata pentru secretizarea comunicatiilor
din domeniul militar sau diplomatic, este influentatd astdzi de evolutia tehnologiei
informatiei. Proliferarea calculatoarelor si a informatiei in format digital determina
dezvoltarea unor tehnici si concepte noi care sa raspunda cerintelor cunoscute si
utilizate de secole (concepte cum ar fi semnatura digitala, autentificarea sursei, etc.
sunt dezvoltate pentru a extinde conceputul clasic de semnatura de pe pergament
sau hartie). Mai mult, data fiind tendinta spre o societate informatizata, alte
domenii, cum ar fi telecomunicatiile civile, domeniul medical, etc. au nevoie de
astfel de tehnici.

Un factor important in dezvoltarea si extinderea aplicatiilor care beneficiaza
de tehnologia informatiei este increderea. Pentru a dezvolta sisteme sigure si fiabile
in care sa putem avea justificat incredere este nevoie ca aceste sisteme sa raspunda
cerintelor de dependabilitate si securitate. Altfel, ignordnd aceste cerinte,
consecintele pot fi grave (pierderi materiale si umane etc.) periclitand inclusiv
increderea societdtii in noile tehnologii.

Conform ultimelor cercetdri, conceptele de dependabilitate si securitate nu
mai pot fi separate, chiar daca pana recent s-au dezvoltat independent. Securitatea
informatiei, prin cateva din obiectivele ei (integritatea datelor, autentificarea partilor
sau mesajelor etc.) apartine conceptului de dependabilitate, in timp ce conceptul de
securitate utilizeaza mijloacele dependabilitatii (toleranta la defecte, prognosticarea
defectelor) pentru a combate defectele intentionate si vulnerabilitatile. Avand in
vedere acest context, aceasta lucrarea se concentreaza pe dependenta care exista
intre dependabilitate si securitate.

Aceasta teza adreseaza nevoia de securitate in sistemele cu cerinte de
dependabilitate, si in acelasi timp, nevoia de dependabilitate a mecanismelor de
securitate implementate. Deoarece aceste domenii continud sa se extinda, sunt
incluse analize ale stadiului actual de dezvoltare. Dependentele dintre securitate si
dependabilitate sunt identificate si sunt introduse contributii Tn domeniul
implementarilor criptografice tolerante la defecte. Toleranta la defecte este necesara
in implementarile criptografice pentru a preveni noile tipuri de atacuri si
vulnerabilitati (atacuri bazate pe analiza erorilor). Data fiind gama larga de algoritmi
criptografici, in aceasta lucrare este analizat cazul cifrurile bloc (algoritmi care
asigura confidentialitatea). In aceasta lucrare tehnici noi de detectare a erorilor sunt
propuse, analizate si evaluate pentru cifruri bloc. Rezultatele obtinute in urma
simularilor hardware sunt comparate cu cele ale cercetarilor anterioare. Aceasta
lucrare aduce noi argumente care sustin dependenta dintre dependabilitate si
securitate si contribuie, cu tehnici noi, avantajoase, la asigurarea dependabilitatii
implementarilor criptografice.

BUPT

12

ABSTRACT

Since long, advances in computer technologies and networks determine
developments in other fields. Information security, with its roots thousands of years
ago in the need for secrecy associated to diplomacy and military, benefits nowadays
from these advances. The widespread use of computers and information in digital
form, demands new techniques and concepts, equivalent to long time known and
used ones (e.g. digital signature, non-repudiation, data origin authentication are
information security objectives relying on signature concept). Nevertheless, not only
diplomacy and military are using information security today - security products are
developed and deployed to answer security needs in other public services in an
information intensive society (e.g. telecommunications, banking, health care).

However, trust is an important factor in deployment of new technologies and
services in general and computer technologies in particular in an information
society. Without consideration of dependability and security aspects in the design
and development of new products, severe consequences may occur (accidents,
security attacks etc.), besides jeopardizing public trust. Dependability and security
through their means and objectives supply methods and techniques to develop
systems and deliver services in which we can justifiably trust.

Recent research advocates that security and dependability cannot be
separated anymore, even if the two fields developed separately. Information
security through its objectives (data integrity, entity and message authentication,
etc.) is part of the dependability concept, while security uses dependability means
(e.g. fault tolerance, fault forecasting) to address malicious faults. Starting from this
context, this work addresses the dependencies between security and dependability.

This work covers both security and dependability fields concentrating on the
need for security in dependable systems and on the need for dependability of
security mechanisms implementations. Due to extensive research and permanent
evolution in the fields, state-of-the-art surveys are included. The dependencies
between security and dependability are identified and contributions are introduced in
the topic of fault-tolerant cryptographic implementations. Fault tolerance is required
in security implementations to overcome the new types of vulnerabilities and attacks
(e.g. fault analysis attacks). Given the wide area of cryptographic primitives, this
work focuses on confidentiality algorithms, specifically block ciphers. New error
detection techniques are proposed, applied and evaluated in this thesis for block
ciphers. The results of hardware implementations and simulations are compared
with the ones of previous proposed solutions. The findings of this work bring new
arguments supporting the dependencies between security and dependability and
contribute with new, low cost techniques for dependable security implementations.

BUPT

1. INTRODUCTION

1.1. Context of the work

Critical and non-critical applications rely increasingly on information
technologies for their operation. From telephony, or on-board computers, navigation
systems and other technologies in today's automobiles to control systems in power
plants or flight systems, information technology is part of our lives more and more
every day. The introduction of information technology, especially for general public
relies on the trust that the delivered services meet requirements for safety,
reliability, etc. Trust is defined as the expectation that a service will be provided or a
commitment will be fulfilled [1]. The engineering aspects related to trust are
covering issues such as dependability and security.

The dependability of information technologies has to be address to secure
correct and continuous services delivery. Dependability is that property of a
computer system such that reliance can justifiably be placed on the service it
delivers [2].

Besides the requirements for dependability of the systems/applications using
information technologies, the requirements for security have to be addressed. The
market pressure to deploy low cost solutions, the move from centralized to
distributed solutions and from wired to wireless connectivity generate new type of
challenges in order to meet increasingly stringent privacy and security
requirements. Information security has as objectives, between others, privacy or
confidentiality, entity and data authentication, data integrity, non-repudiation [3].

Security is progressively more needed in different fields. Computing
applications deployed for instance in financial systems or health care systems have
to address by default requirements for confidentiality, data and entity
authentication, data integrity, non-repudiation, etc. in order to deliver their services.
However, nowadays, other applications relying on distributed systems, for instance
deployed in infrastructures (e.g. electric power infrastructure), take advantage of
the widespread use of Internet and mobile communications to deliver their services
[4]. In this case the communication between different components of the
applications/systems has to address the challenges of a public environment which
can become hostile (e.g. malicious attempts to jeopardize the security of the
services can be encountered). From these examples can be noticed that security is
needed not only in the fields where traditionally secrecy was required, but also in
other fields where dependability and survivability of services are mandatory. As
such security is indispensable in order to deliver dependable services.

The two concepts, dependability and security, are used together lately [5] to
express requirements for reliable, available, safe, secure etc. services delivered by
computing systems. We illustrated that security is used to deliver dependable
services. Nevertheless, dependability is needed to assure correct, fault-free security
implementations. Hence the requirements for dependability and security cannot be
separated anymore.

In this work the focus is on security as a means to address dependability
requirements. This objective is achieved by identifying vulnerabilities and proposing

BUPT

14 1. Introduction

solutions to diminish the impact of malicious attempts on the dependability of
computing systems. Furthermore, because dependable systems rely on security
techniques (e.g. implemented algorithms) the reliability of cryptographic
implementations is another issue addressed in this thesis. Hence the dependencies
between dependability and security are covered in this work. However this work has
no pretension to cover all aspects of these dependencies.

1.2. Contributions

This thesis addresses the relationship between dependability and security,
and motivates the need for security in dependable systems. However, cryptographic
means (e.g. algorithms, protocols) are used to implement security systems. As
such, these implementations need to be reliable. Thus the reliability of cryptographic
systems facing new type of implementation related attacks is addressed. Starting
from the state-of-the-art research on security and dependability, in this work both
theoretical and practical contributions are introduced. A list of the contributions
follows:

e state-of-the-art investigation of

e security and cryptographic algorithms,
e intrusion tolerance approaches,

e mechanisms to detect/tolerate errors in cryptographic
implementations;

e focusing errors and their impact on cryptographic systems

e identifying vulnerabilities for operation modes;

e proposing solutions to avoid vulnerabilities in operations modes;

e proposing and applying new error detection techniques for
cryptographic implementations;

e cost analysis of new error detection techniques and suitability
analysis of these new error detection techniques to other
algorithms;

e implementation of a new low-cost error detection mechanism for a
cryptographic algorithm;

e comparison of/with related work results.

1.3. Thesis structure

This work has the following structure:

Chapter 2 introduces the need for security in dependable systems. After a
terminology section, the current trends in infrastructures relying on information
systems are analyzed. In this chapter we show that the need for security is not only
justified by the classical requirements i.e. for confidentiality of certain transferred
data, but also by the need for correct/normal functionality/operation, e.g. allowing
protection in case of malicious faults (e.g. intrusion attempts).

In Chapter 3 security is addressed. An up-to-date state-of-the-art
investigation of cryptographic techniques and cryptanalysis is presented. Related
work on intrusion tolerance is introduced. The challenges given by new type of
attacks from the category of side-channel attacks (e.g. fault analysis attacks) are
summarized.

Chapter 4 is focused on security and its need for fault tolerance. Fault
tolerance is a dependability means needed in security implementation not only for

BUPT

1.3. Thesis structure 15

correct operation but also for protection against fault analysis attack. Security
analysis of a new operation mode is included. Vulnerabilities are identified for
different standardized recommendations (e.g. IPsec) and solutions are proposed to
avoid such vulnerabilities.

In Chapter 5 error detection and tolerance mechanisms designed to protect
cryptographic implementation against fault analysis attacks are presented. Security
analysis of a new proposed error detection mechanism is included and also a case
study regarding cost analysis and applicability of available fault tolerance
mechanisms for the Triple-DES algorithm. Properties of cryptographic algorithms
(e.g. complementation property) are analyzed in order to build new error detection
mechanisms. Cost analysis is provided for the new error detection mechanism
relying on complementation property.

Chapter 6 contains evaluation and cost analysis of a new error detection
mechanism, using complemented duplication, applied for Mistyl algorithm. The
implementations costs are compared with the results of other methods, and the
comparison shows that our method has a low hardware and time overhead. Besides
the low cost implementation, this detection technique is more secure than other
techniques from related work. A clear distinction is made between theoretical
assumptions of cost of implementation and the implementation/simulation results
reported by simulation tools, where optimization is used. The related work is
criticized and we show that in case of implementation using FPGA the reported
values are not always in range with the theoretical assumption - due to the
composition of the logical units used in the FPGA and due to the mapping process.

In Chapter 7 conclusions are summarized and future work is proposed.

BUPT

2. ON THE NEED FOR SECURITY IN DEPENDABLE
SYSTEMS

Information technologies deployed in various fields, where dependability and
survivability are required, rely on security techniques. This reliance on security is
justified for instance by traditional requirements for confidentiality and secrecy (e.g.
in finance) and by requirements for authentication, integrity, etc. due to the
environment in which the underlying system is integrated (e.g. the way the
connectivity is assured, for instance using Internet). In this chapter, after
introducing the terminology, the problems addressed in this work are presented
together with the solutions proposed such that the requirements for security in
dependable systems are fulfilled.

2.1. Terminology

2.1.1. Basic concepts

A system is an entity that interacts with other entities, i.e., other systems,
including hardware, software, humans, and the physical world with its natural
phenomena. Those other systems are the environment of the given system [5].

Computing and communication systems are characterized by functionality,
performance, dependability, and cost. Other system properties are usability,
manageability and adaptability. The function of a system is what the system is
intended to do and is described by functional specifications. The behavior of a
system is what the system does to implement its function, and is described by a
sequence of states. The service delivered by a system, in its role as provider, is its
behavior as it is perceived by its user(s); a user is another system that receives
services from the provider [5]. Correct service is delivered when the service
implements the system function. A service failure is an event that occurs when the
delivered service deviates from correct service [5]. The period of delivery of
incorrect service is a service outage.

A deviation from correct state is called an error. The adjudged or
hypothesized cause of error is called fault. Faults can be internal or external to a
system. The prior presence of a vulnerability, i.e., an internal fault that enables an
external fault to harm the system, is necessary for an external fault to cause an
error an possible subsequent failure(s). A fault is active when it causes an error,
otherwise it is dormant. The manifestation mechanisms of faults, errors and
failures are presented in figure 2.1.

activation ropagatio , causation
... —» fault ——— = error M failure ——— = fault —»= ...

Figure 2.1. Chain of threats [5]

When more services are delivered by a system, the failure of one or more of
the services may leave the system in a degraded mode, still offering a subset of the
needed services to the user (e.g. slow service). In this context it can be said that
the system suffered a partial failure of its functionality or performance.

BUPT

2.1. Terminology 17

2.1.2. Dependability, security and their attributes

Dependability is that property of a computer system such that reliance can
justifiably be placed on the service it delivers [2]. The term dependability is used to
encapsulate the concepts of reliability, availability, safety, maintainability,
performability, and testability according to [6], while [5] includes also integrity and
confidentiality.

The reliability of a system is a function of time, R(t), defined as the
conditional probability that the system performs correctly throughout the interval of
time, [to, t], given that the system was performing correctly at time to.

Availability is a function of time, A(t), defined as the probability that a
system is operating correctly and is available to perform its functions at the instance
of time, t.

Safety is the probability, S(t), that a system will either perform its functions
correctly or will discontinue its functions in a manner that does not disrupt the
operation of other systems or compromise the safety of any people associated with
the system. Safety is a measure of the fail-safe capability of a system [6].

The performability of a system is a function of time, P(L,t), defined as the
probability that the system performance will be at, or above, some level, L, at the
instance of time, t. Graceful degradation is the attribute of a system to
automatically decrease its level of performance to compensate for hardware or
software faults, allowing performance at some reduced level [6]. Robustness
characterizes a system’s dependability with respect to external faults.

Maintainability is the probability, M(t), that a failed system will be restored
to an operational state within a period of time ¢t.

Testability is the ability to test for certain attributes within a system [6].

Integrity is defined as the absence of improper system alteration.

Consideration of other type of faults, such as intentional malicious and
nonmalicious faults, justified the introduction of integrity as an attribute for
dependability, and, in the same time bringing together dependability and security to
characterize systems.

Security encapsulates attributes of availability, confidentiality and integrity
requiring the concurrent existence of 1) availability for authorized actions only, 2)
confidentiality, and 3) integrity, as already defined, but with “improper” meaning
“unauthorized” [5]. Confidentiality is the absence of unauthorized disclosure of
information; is a service used to keep the content of information from all but those
authorized to have it. Non-repudiation prevents an entity from denying previous
commitments or actions [3]. Authentication is related to identification and is
applied to both entities and information: entity authentication and data origin
authentication. Data origin authentication implicitly provides data integrity (if a
message is modified, the source has changed). Authorization is defined as a
conveyance, to another entity, of official sanction to do or be something [3].

In figure 2.2 the relationship between dependability and security is
illustrated. As can be seen, availability (for authorized action) and integrity are
common, while other attributes belong to one or the other concepts.

BUPT

18 2. On the need for security in dependable systems

e / RN .
P / Availability \ AN
\
e Safety / \
// (Confidentiality ™\
/
/ Reliability \ / \\
/ \\ Integrity / \
\ / \
// \\ / \
/ Maintainability \ / Authe nticity \\
\ /
\\\\ // \
Dependability ./ Security
\ \< /
\ N /
\ el \\ ’//
. Testabilty - “~._ Nonrepudiability ~
S _— ~ j

~ — -

Figure 2.2. Dependability and security relationship

All security attributes mentioned in figure 2.2 are used according to the
situation and requirements, so that all parties of a transaction must have confidence
that certain objectives associated with information security are met. Besides
confidentiality, integrity, entity or data authentication, authorization and non-
repudiation other concepts are part of information security objectives [3] and some
of them are listed below:

- signature - a means to bind information to an entity;

- validation - a means to provide timeliness of authorization to use or
manipulate information or resources;

- access control - restriction access to resources to privileged entities;

- mcertification - endorsement of information by a trusted entity;

- confirmation - acknowledgement that services have been provided;

- anonymity - concealing the identity of an entity involved in some
process;

- revocation - retraction of certification or authorization.

Security can be achieved through the information itself or through other
physical means (e.g. physical documents recording it, for banknotes special material
and ink are used to avoid counterfeiting). As lately an increased amount of
information is managed in electronic form, information security relies on digital
information itself. Algorithms and protocols have been developed to answer the
objectives of information security. Cryptography supplies a set of techniques for
information security. Cryptography is the study of mathematical techniques related
to aspects of information security such as confidentiality, data integrity, entity
authentication, data origin authentication [3]. In section 2.1.3 further explanations
are given for cryptography and other related topics.

There are four major categories of means to attain dependability and
security [5]: fault prevention, to prevent the occurrence or introduction of faults,
fault tolerance, to avoid service failure in the presence of faults, fault removal,
to reduce the number and severity of faults and fault forecasting, to estimate the
present number, the future incidence, and the likely consequences of faults (figure
2.3).

BUPT

2.1. Terminology 19

A
t Availability
E Reliability
i Safety
2 Confidentiality
t Integrity
D e Maintainability
e s
g S Development faults
n e -|'|1- Faults { Physical faults
d a © Interaction faults
u r
a n P <] Emors
l? d i ? Service failures
: t 5 Failures ~E Development failures
i Yy Dependability failures
; — Fault Prevention
Concurrent Detection
Error Detection
_|: Preemptive Detection
— Fault Tolerance
Emor Handling
Recove
M by _|: Fault Handling
e
L — Static Verification
a T
Verification
n —E Dynamic Verification
s Diagnosis
— Fault Removal
Carrection
Non-regression Verification

Ordinal Evaluation
'— Fault Forecasting {

_— . Modeling
Probabilistic Evaluation {

Operational Testing
Figure 2.3. Dependability and security tree [5]

Survivability is the ability to continue to provide services (even degraded
e.g. supporting graceful degradation) in the case of fault or changes/events causing
degradation of the system or of its operational environment.

2.1.3. Cryptography and cryptanalysis

The art and science of keeping messages secure is cryptography, and it is
the work of cryptographers. Cryptanalysts are practitioners of cryptanalysis, the
art and science of breaking ciphertext; that is, seeing through the disguise. The
branch of mathematics encompassing both cryptography and cryptanalysis is
cryptology and its practitioners are cryptologists [7].

Cryptography provides a set of techniques to support the four major
objectives of the information security: confidentiality, data integrity, authentication
and non-repudiation. Cryptographic tools, also called primitives are used to provide
information security [3]. Primitives have been designed to answer the need for
confidentiality (e.g. encryption schemes), authentication (e.g. digital signature
schemes), etc.

BUPT

20 2. On the need for security in dependable systems

2.1.3.1. Encryption and decryption

One of the purposes of cryptography, especially for confidentiality, is to
protect transmitted information from being read and understood by anyone except
the intended recipient. Encryption means the conversion of the original message
(plaintext) to encrypted text (ciphertext). The reverse process (conversion of
chipertext in plaintext) is called decryption.

Usually the following notation is used. M denotes plaintext for message, or
P, for plaintext. Ciphertext is denoted by C. The encryption function E, operates on
M to produce C:

E(M) =C (2.1)
In the reverse process, the decryption function D operates on C to produce

D(C) = M (2.2)

Since the whole point of encrypting and then decrypting a message is to

recover the original plaintext, the following identity must hold true:
D(E(M)) =M (2.3)

A cryptographic algorithm, also called a cipher, is the mathematical
function used for encryption and decryption. (Generally, there are two related
functions: one for encryption and the other for decryption.)

If the security of an algorithm is based on keeping the way that algorithm
works a secret, it is a restricted algorithm. Restricted algorithms are inadequate by
today’s standards. If someone accidentally reveals the secret, everyone must
change their algorithm.

Modern cryptography solves this problem with a key, denoted by K. The key
might be any one of a large number of values. The range of possible values of the
key is called the key space. Both the encryption and decryption operations use this
key (i.e., they are dependent on the key), so the functions now become:

Ex(M) = C (2.4)
Dk(C) =M (2.5)
These functions have the property that:
Dk(Ex(M)) =M (2.6)
Some algorithms use a different encryption key and decryption key. That is,

the encryption key, Kj, is different from the corresponding decryption key, K. In
this case:
Eki(M) = C (2.7)
Dk2(C) = M (2.8)
Dk2(Exki (M)) = M (2.9)

All of the security in these algorithms is based in the key (or keys); none is
based in the details of the algorithm. This means that the algorithm can be
published and analyzed. Products using the algorithm can be mass-produced. If an
eavesdropper knows the algorithm he/she cannot read the messages as long as
he/she does not have knowledge about the particular key.

There are two general types of key-based algorithms: symmetric and
public-key.

Symmetric algorithms, sometimes called conventional algorithms, are
algorithms where the encryption key can be calculated from the decryption key and
vice versa. In most symmetric algorithms, the encryption key and the decryption

BUPT

2.1. Terminology 21

key are the same. These algorithms, also called secret-key algorithms require that
the sender and receiver agree on a key before they can communicate securely. The
security of a symmetric algorithm rests in the key; divulging the key means that
anyone could encrypt and decrypt messages. As long as the communication needs
to remain secret, the key must remain secret.

Encryption and decryption with a symmetric algorithm are denoted as in
equations (2.4) and (2.5) and the equation (2.6) holds for any key.

Symmetric algorithms can be divided into two categories:

Some operate on the plaintext, a single bit (or sometimes byte) at a time;
these are called stream algorithms or stream ciphers.

Others operate on the plaintext in groups of bits. The groups of bits are
called blocks, and the algorithms are called block algorithms or block ciphers
(the block size can be of 64 bits).

Symmetric block ciphers can be further described based on the techniques
used for encryption e.g. substitution ciphers, transposition ciphers, product
ciphers, Feinstel ciphers [3]. Substitution ciphers replace symbols (or groups of
symbols) by other symbols or group of symbols. Transposition ciphers rely on
permutation of symbols in a block. A product cipher combines two or more
substitutions and/or transpositions in a manner intended to generate a more secure
cipher. A substitution-permutation network (SPN) is a product cipher
composed of a number of stages each involving substitutions and permutations.

Iterated block ciphers encrypt a plaintext block by a process that has
several rounds. In each round, the same transformation (also known as a round
function) is applied to the data using a subkey. The set of subkeys is usually
derived from the user-provided secret key by a special function. The set of subkeys
is called the key schedule. The number of rounds in an iterated cipher depends on
the desired security level and the consequent trade-off with performance. In most
cases, an increased number of rounds will improve the security offered by a block
cipher, but for some ciphers the number of rounds required to achieve adequate
security will be too large for the cipher to be practical or desirable [8].

In a Feistel cipher (see Figure 2.4), the text is split into two halves (Lo and
Ro). The round function F is applied to one half using a subkey and the output of F is
XORed with the other half. The two halves are then swapped. Each round follows
the same pattern except for the last round where there is no swap. For Feistel
ciphers encryption and decryption are structurally identical, though the subkeys
used during encryption at each round are taken in reverse order during decryption
(i.e. the input in the decryption algorithm is the pair (R, L) instead of the pair (Lo,
Ro), and the ith subkey is kri+1, not ki. This means that we obtain (R, L) instead of
(Li, R) after the ith round.)

Figure 2.4. Feistel cipher [8]
In case of block ciphers, for encryption/decryption the plaintext/ciphertext is

BUPT

22 2. On the need for security in dependable systems

split into blocks. The way these blocks are manipulated during
encryption/decryption is described by so called modes of operation. Several
modes are also used for hiding existing patterns in the plaintext/ciphertext. Some of
the standardized modes of operation are presented in Chapter 4.

Public-key algorithms (also called asymmetric algorithms) are designed so
that the key used for encryption is different from the key used for decryption.
Furthermore, the decryption key cannot (at least in any reasonable amount of time)
be calculated from the encryption key. The algorithms are called public-key because
the encryption key can be made public: a complete stranger can use the encryption
key to encrypt a message, but only a specific person with the corresponding
decryption key can decrypt the message. In these systems, the encryption key is
often called the public key, and the decryption key is often called the private key
(sometimes also called the secret key). Encryption using public key K; is denoted by
as in equation (2.7), decryption using private key K, as in (2.8).

Sometimes, messages will be encrypted with the private key and decrypted
with the public key; this is used in digital signatures.

A cryptosystem is an algorithm, plus all possible plaintexts, ciphertexts,
and keys.

2.1.3.2. Attacks

We are going to introduce shortly only the relevant attacks for this work. An
attempted cryptanalysis is called an attack. A fundamental assumption in
cryptanalysis is that the secrecy must reside entirely in the key [7]. It is assumed
that the cryptanalyst has complete details of the cryptographic algorithm and
implementation.

The standard technique for defeating a cryptosystem is known as the brute
force method/attack. This assumes trying all the keys until a key is found which
produces the plaintext message. Even if this method is simple and inglorious, brute
force is still a form of cryptanalysis. However, using larger keys can make brute
force a less than feasible technique. For example, a message encrypted with a 56-
bit DES key could be broken within a few days of intense computing. A 128-bit key
makes the cipher much more effective, ad there are algorithms using even larger
keys e.g. RSA encryption commonly uses 512-bit keys. As a result, even with the
increased computation power of the computers, better techniques for cryptanalysis
are needed. Such a method (any which takes less time or energy than brute force)
is termed a break.

The parts of the cryptosystem subjects for attacks are:

The key. Though the effectiveness of brute force is inversely proportional to
the size of they key space, some ciphers have revealing characteristics which help
find the proper key. These "hints" can dramatically reduce the key space that must
be searched.

The data. Not only the keys, but also the ciphertext itself may have relevant
and revealing information embedded within it (e.g. text pattern).

The algorithm. The strength of an algorithm is often based upon another
problem that has been considered mathematically “difficult”. If this characteristic
problem can be solved more easily (than previously thought), the cipher may no
longer be effective. For example, factoring large numbers is at the heart of RSA
encryption. When factoring becomes more efficient than brute force, the cipher will
be broken.

The complexity of an attack can be measured in different ways:

Data complexity. The amount of data needed as input to the attack.

BUPT

2.1. Terminology 23

Processing complexity. The time needed to perform the attack. This is
often called the work factor.

Storage requirements. The amount of memory needed to do the attack.

The complexity of an attack is taken to be the minimum of these three
factors. Some attacks involve trading off the three complexities: a faster attack
might be possible at the expense of a greater storage requirement.

While the complexity of an attack is constant (until some cryptanalyst finds
a better attack, of course), computing power is not. There have been phenomenal
advances in computing power during the last half-century and there is no reason to
think this trend is not going to continue. Many cryptanalytic attacks are perfect for
parallel machines: the task can be broken down into billions of tiny pieces and none
of the processors need to interact with each other. Pronouncing an algorithm secure
simply because it is infeasible to break, given current technology, is hazardous.
Good cryptosystems are designed to be infeasible to break with the computing
power that is expected to evolve many years in the future [7].

There are numerous techniques for performing cryptanalysis, depending on
what access the cryptanalyst has to the plaintext, ciphertext, or other aspects of the
cryptosystem. Below are some of the most common types of attacks:

Ciphertext-only attack. A ciphertext-only attack is one in which the
cryptanalyst obtains a sample of ciphertext, without the plaintext associated with it.
This data is relatively easy to obtain in many scenarios, but a successful ciphertext-
only attack is generally difficult, and requires a very large ciphertext sample;

Known-plaintext analysis. With this procedure, the cryptanalyst has
knowledge of a portion of the plaintext from the ciphertext. Using this information,
the cryptanalyst attempts to deduce the key used to produce the ciphertext. A
known-plaintext attack is one in which the cryptanalyst obtains a sample of
ciphertext and the corresponding plaintext as well;

Chosen-plaintext analysis (also known as differential cryptanalysis).
There is often a statistical correlation between a key and the ciphertext which it
produces. Understanding the specifics of this correlation and by using sufficient
chosen plaintext can help find an unknown key. The cryptanalyst is able to have any
plaintext encrypted with a key and obtain the resulting ciphertext, but the key itself
cannot be analyzed. A chosen-plaintext attack is one in which the cryptanalyst is
able to choose a quantity of plaintext and then obtain the corresponding encrypted
ciphertext;

Ciphertext-only analysis. The cryptanalyst has no knowledge of the
plaintext and must work only from the ciphertext. This requires accurate guesswork
as to how a message could be worded. It helps to have some knowledge of the
literary style of the ciphertext writer and/or the general subject matter.

Man-in-the-middle attack. This attack relies on tricking individuals into
surrendering their keys. The cryptanalyst/attacker places him or herself in the
communication channel between two parties who wish to exchange their keys for
secure communication (via asymmetric or public key infrastructure cryptography).
The cryptanalyst/attacker then performs a key exchange with each party, with the
original parties believing they are exchanging keys with each other. The two parties
then end up using keys that are known to the cryptanalyst/attacker. This type of
attack can be defeated by the use of a hash function.

Side-channel attacks. The ciphers are implemented on many different
platforms. Certain implementations of cryptosystems allow an attacker to derive the
secret key with very low effort - an algorithm which is strong with respect to
conventional cryptanalytic attacks can be useless if it cannot be implemented

BUPT

24 2. On the need for security in dependable systems

securely [9]. Side-channel attacks address ciphers implementations.

Power analysis attacks are based on the assumption that the
instantaneous power consumption of a circuit is dependent to some small extent on
instructions and processed data. Such patterns can be detected also measuring the
electromagnetic radiation of the unit. Simple power-analysis attacks exploit
instruction dependence where every instruction has its unique power-consumption
trace. Such an attack typically targets implementations which use key-dependent
branching. For example, one can exploit a strong relationship between Hamming
weight of the processed data and the power-consumption trace [9][10]. The leakage
of Hamming weight information is used to determine the secret key. Masks are used
in implementations that try to achieve protection against differential power-analysis
attacks.

Differential power-analysis correlates processed data with instantaneous
power consumption. Output(s) of the real physical device and output(s) of a
hypothetical model (based on a hypothetical key) of the device are correlated. If the
hypothetical model only outputs a single value (i.e. it predicts the power
consumption of the real device for only one moment in time), then the attack is
called first-order differential power-analysis attack. If a model can output more
values then such an attack is called a higher-order differential power-analysis
attack. For the two most common types of block ciphers, Feistel and Substitution-
Permutation Networks (SPNs), different hypothetical models can be developed and
the differences between the two structures will only have an impact on dedicated
hardware implementations. However it is easier to perform effective differential
power attacks on Feistel ciphers rather than on SPN networks [9].

Timing analysis. Information is gained based upon how long encryption
takes, and used to reveal the algorithm, key, or data. Particularly useful against the
smart card, that measures differences in electrical consumption over a period of
time when a microchip performs a function to secure information. This technique
combined with differential power analysis can be used to gain information about key
computations used in the encryption algorithm and other functions related to
security. The technique can be less effective by introducing random noise into the
computations, or altering the sequence of the executables to make it harder to
monitor the power fluctuations.

Fault Analysis. Using this attack, specific faults are introduced into the
technology (e. g. smart cards) which can help to reveal the keys. It is also possible
to force errors to occur during encryption or decryption, and these errors can lead to
hardware faults or software error messages that give away information about the
key of the cipher. Different evaluation methodologies have not concentrated to any
great extent on side-channel attacks. This is because, although they are very
important, there is currently little theoretical strategy one can use to assess such
attacks. It is left to the hardware/software designer to implement these encryption
algorithms without leaving the system open to such attacks (i.e., by masking data
and/or introducing randomness into the order or function of inherent logic
operations) [9]. In this context, for instance, in the evaluation of primitives
submitted to NESSIE only if a side-channel attack applies, regardless of
implementation, is considered as a selection criterion [10].

2.1.4. Systems and their characteristics

A distributed system is a system composed of several computers which
communicate through computer network(s), hosting processes that use a common

BUPT

2.2. Security as requirement for dependable systems 25

set of distributed protocols to assist the coherent execution of distributed activities
[11].

A real-time (RT) system is a system [11] for which the progression is
specified in terms of timeliness requirements dictated by the environment. Three
classes of real-time systems are defined: hard real-time systems, where timing
failures are to be avoided (e.g. on-board flight control systems); soft real-time
systems, where occasional timing failures are acceptable (e.g. on-line reservation
systems) and mission-critical real-time systems, where timing failures should be
avoided and occasional failures are handled as exceptional events (e.g. air-traffic
control system) [11].

The system-of-systems concept describes the large-scale integration of
many independent, self-contained systems in order to satisfy a global need.
Systems-of-systems are characterized by operational independence of elements
(components operate independently), managerial independence of elements (the
component systems maintain a continuing operational existence that is independent
of the system-of-systems), evolutionary development (functions and purposes can
be added, removed, and modified), emergent behaviors (the system-of-systems
performs functions and carries out purposes that do not reside in any component
system) and geographic distribution (component systems mainly interact through
the exchange of information) [12].

2.2. Security as requirement for dependable systems

As defined in the Terminology section, dependability relies on fault
prevention, fault tolerance, fault removal and fault forecasting and addresses
threats as [5]:

Development faults such as software flaws, hardware errata, malicious logic;

Physical faults generated by product defects, physical deterioration;

Interaction faults e.g. physical interference, input mistakes, attacks
including viruses, worms, and intrusions.

Interaction faults are all operational faults [5] as they occur during the use
phase, and they are all external as they are caused by the environment. Most of
them are human-made (e.g. configuration faults, reconfiguration faults), but they
can be caused also by external factors such as cosmic rays.

Interaction faults are more common with the development of more complex
distributed systems such as system-of-systems. An example is the Internet - a
collaborative system-of-systems. Internet component sites collaboratively exchange
information using documented protocols. This concept can be considered in other
fields as well. For instance integrated air defense system consists of geographically
distributed network of semi-autonomous elements (e.g. surveillance systems,
radars, launch batteries, control systems). All these components are tied together
by a communication network with command and control applied at local, regional
and national centers [12]. Real-time communication is required in order to consider
the system dependable.

Systems-of-systems cannot deliver all their services without communication.
Because the elements of the system-of-systems are independent, i.e. from energy
point of view for instance, they collaborate only through information exchange.

For an interaction fault to have an impact on the functionality of the system,
usually a prior presence of a vulnerability is required. Such vulnerability can be an
internal fault that enables an external one to harm the system. Vulnerabilities can
be development or operational faults, and they can be malicious or non-malicious.

BUPT

26 2. On the need for security in dependable systems

Based on the above examples we can distinguish two ways to exploit
vulnerabilities of a system-of-systems through the information exchange process:

e by faulty information (e.g. a faulty component sends incorrect data -
deliberate or not deliberate - to other(s) components, or the response time
overcomes the defined requirements).

o by faulty communication (e.g. due to failures in communication or due to
malicious faults when malicious attempts to manipulate the communications
are successful).

For the second way, when vulnerabilities are exploited due to faulty
communication, security is required to address malicious attempts using
cryptographic algorithms for assuring confidentiality, data integrity, entity and data
authentication, etc.

This is the first motivation supporting the need for security in dependable
systems. Security is needed to avoid failure of systems due to errors that could be
caused in the system by interaction faults (e.g. malicious faults in system
implementation).

We are going to bring a second motivation for the need for security in
dependable systems. This comes in the context of fault tolerance mechanisms
developed in dependable systems. Fault tolerance mechanisms in such systems also
require protection i.e. security.

Fault tolerance aims to avoid failures using error detection and system
recovery. Fault tolerance techniques are designed to improve the availability of the
distributed systems, based on adaptation to changing run-time conditions. Given the
transition from a single application per machine to distributed systems, new
problems have to be solved (e.g. new type of faults left after fault removal). These
problems are generated by the interaction between different components of a
system, components that usually have a different location, and rely on
communication channels for the normal operation of the applications [13]. New
types of fault tolerance techniques have to address new interaction problems and
they need to adapt to the changes in the environment (e.g. due to crash fault, or
due to dynamic nature of the system). Proactive techniques (such as software
rejuvenation) rely on monitoring the behavior and the resources of the system, in
order to predict possible failures and to trigger preventive actions accordingly. Some
of the decisions generated by the fault tolerance mechanisms are based on
monitoring [14], detection, or prediction of the behavior of the components of the
distributed system [15]. However, if a third party can modify the input data for
monitoring, detection or prediction of fault tolerance mechanisms the decisions
taken based on those data are compromised (this is an example of exploited
vulnerability using faulty information) [16]. In the same time, by faulty
communication, if messages are manipulated (modified or duplicated by an
unauthorized third party) the fault tolerance mechanism can trigger an unsuitable
action, or the component executing recovery action may execute a wrong action
[17]. Furthermore the overall purpose of fault tolerance (improving reliability,
dependability) can be compromised.

We can conclude that a dependable system needs security both for the part
delivering services for its normal functionality and for the fault tolerance
mechanisms designed to assure the dependability of the system.

Authorization, authentication, data integrity, confidentiality required for
security purposes are achieved by implementing cryptographic tools. In Chapter 3
cryptographic tools are addressed.

BUPT

2.3. Intrusion tolerance approaches. Using fault tolerance to address security issues 27

2.3. Intrusion tolerance approaches. Using fault
tolerance to address security issues

Introduced with malicious objectives, malicious faults intend to alter the
functionality of the system during use. The goals of malicious faults [5] are:

- to disrupt or halt service, causing denials of service;

- to access confidential information;

- or to improperly modify the system.

Malicious faults are grouped in two classes: malicious logic faults and
intrusion attempts. First class covers (internal) development faults e.g. Trojan
horses, and operational faults e.g. viruses.

Intrusion attempts are operational (external) faults, so interaction faults.
Intrusion attempts may use physical means such as radiations, variation on
temperature, power fluctuation to cause faults.

Even if the fault tolerance techniques and mechanisms do not always
consider malicious faults (generated by intrusion attempts on the security of the
system by both insiders and outsiders), fault tolerance techniques are used to build
intrusion-tolerant systems.

To address the specificity of malicious faults, the fault-error-failure model
(represented in figure 2.1.) has been extended to security. The extended model
(figure 2.5) presents the manifestation mechanism of a successful attack exploiting
existing vulnerabilities, which results in intrusion.

Intrusions are resulting from (at least) partially successful attacks
exploiting existing vulnerabilities.

other faults
(non-malicious)

attack

hacker ----)O

vulnerability

hacker, e
designer .. eeemer®
or operator

Figure 2.5. Attack-vulnerability-intrusion chain [18]

Besides extending the fault model, based on the dependability means (fault
prevention, fault tolerance, fault removal and fault forecasting) presented in the
dependability tree in figure 2.3, security means were defined in MAFTIA (Malicious
and Accidental Fault Tolerance for Internet Applications) project [19]. Figure 2.6
summarizes security means and the methods to handle attacks, vulnerabilities and
intrusions.

The use of fault tolerance techniques to built intrusion-tolerant systems has
been explored in the European funded research project MAFTIA. Intrusion detection
concerns the set of practices and mechanisms used towards detecting errors that
may lead to security failure, and/or diagnosing attacks.

Intrusion tolerance is the ability of a system to continue providing a
secure service (even degraded) despite the presence of malicious faults (i.e.

BUPT

28 2. On the need for security in dependable systems

deliberate attacks on the security of the system by both insiders and outsiders)
[19]. In MAFTIA, intrusion tolerance is achieved using an intrusion-tolerant group
communication protocol and an intrusion-tolerant distributed authorization service.
MAFTIA uses fault masking to achieve intrusion tolerance and does not address fault
removal or system reconfiguration.

Attack Vulnerability Intrusion
Prevention | How to prevent | Deterrence, laws, Semi-formal and Firewalls,
the occurrence social pressure, formal authentication,
or introduction secret service... specifications, authorization
of... rigorous design (+attack prevention
and and vulnerability
management...# prevention)
Tolerance | How to provide Vulnerability = intrusion Detection/recovery/
a service prevention tolerance masking, + intrusion
capable of or Vulnerability tolerance for fault
implementing removal management* #
the system .
function Intrusion tolerance
despite...
Removal How to reduce No meaning Formal proof, No meaning
the presence model-checking,
(number, inspection, test...*
severity) of...
Forecasting [How to estimate Intelligence Assess presence of Vulnerability
the creation and| gathering, threat vulnerabilities, forecasting, attack
consequences | assessment, attack exploitation forecasting
of... warning... difficulty, potential
consequences

* targeted by MAFTIA project, based on [18], * targeted by this work

Figure 2.6. Security means and methods

The use of unpredictable adaptation was proposed in another intrusion
tolerance related project. The purpose of the ITUA (Intrusion Tolerance by
Unpredictable Adaptation) project (supported by U.S. Defense Advanced Research
Projects Agency) is to develop a middleware based intrusion tolerance solution that
would help applications survive certain kinds of attacks (staged attacks which
assume that the attacker infiltrates some domains before others) [20]. The ITUA
project proposed to add uncertainty in intrusion tolerance technology so that the
adaptive responses become unpredictable to the attacker.

This work addresses vulnerability prevention and intrusion tolerance.
Vulnerability prevention has a positive impact on the security of any system.
Preventing vulnerabilities helps preventing intrusions and failures. Vulnerability
prevention can be achieved by using rigorous specifications and resistant
implementations. On the other hand not all vulnerabilities can be prevented (e.g.
generated by external natural factors) and intrusion tolerance is required. Error
detection mechanisms combined with recovery and masking are used to address
intrusion tolerance. In this work we propose and apply new error detection
mechanisms useful to improve the security of dependable systems.

BUPT

2.4. Contributions and conclusions 29

2.4. Contributions and conclusions

In this chapter we have shown that security is required in dependable
systems, and security mechanisms are deployed to answer the requirements for
security. Security is not only needed in systems where secrecy is traditionally
required but also in other systems and infrastructure where safety, reliability,
survivability are not achieved in case of malicious attempts if security mechanisms
are not implemented.

At the same time we have shown that security is needed not only for the
system but also for its fault tolerance mechanisms. We presented that fault
tolerance mechanisms need to be secure, otherwise they can be misused, and their
entire purpose of tolerating faults can be altered.

Related work on intrusion tolerance has been surveyed. Proposed solutions
rely on intrusion-tolerant group communication and distributed authorization
services and unpredictable adaptation.

In order to answer to the need for security, the use of cryptographic
algorithms and protocols is required. A state-of-the-art survey of cryptographic
algorithms follows in Chapter 3.

BUPT

3. SECURITY - MEANS, TRENDS, CHALLENGES

In this chapter the state-of-the-art in cryptography is presented. We are
addressing the competitions, organized in Europe, USA and Japan, to select the
cryptographic algorithms answering the requirements for complexity and strength
against attacks and facing today’s computational power. Cryptanalysis is targeted
and the trends and challenges of secure cryptographic implementations are
presented. The need for fault tolerance in cryptographic implementation is also
analyzed in this chapter.

3.1. State-of-the-art in cryptography. Competitions and
selected algorithms

3.1.1. NIST selection process

In 1997, the USA National Institute of Standards and Technology (NIST)
initiated a process to select a symmetric-key encryption algorithm as Advanced
Encryption Standard (AES). In 1998, NIST announced the acceptance of fifteen
candidate algorithms and requested the assistance of the cryptographic research
community in analyzing the candidates. This analysis included an initial examination
of the security and efficiency characteristics for each algorithm.

NIST reviewed the results of this preliminary research and selected MARS,
RC6™, Rijndael, Serpent and Twofish as finalists. Having reviewed further public
analysis of the finalists, NIST has decided to propose Rijndael as the AES.

3.1.1.1. AES requirements and finalists

The minimum acceptability requirements for AES candidates mandated in
the Request for Candidate Algorithm Nominations [21] are:
e the algorithm must implement symmetric (secret) key cryptography,
e the algorithm must be a block cipher, and
e the candidate algorithm shall be capable of supporting key-block
combinations with sizes of 128-128, 192-128, and 256-128 bits.
Using the analyses and comments received during AES Round 1, NIST
selected five finalist algorithms from the fifteen. The selected algorithms are MARS,
RC6, Rijndael, Serpent and Twofish.

3.1.1.2. Comparative performance for AES finalists

In this section the five finalists are compared. Besides performance, the
costs generated by masking power consumption (i.e. to protect against power
analysis attacks) and the support for instruction-level paralelism are analysed.

Tables 3.1 -3.3 present the hierarchy based on the comparative
performance for encryption/decryption, key set-up and the overall comparative
performance [22]. The performance values are varying depending on platforms,
implementation language, etc. - for instance, in case of 32-bit CPUs, using C, the
number of clock cycles varies from 260 clock cycles for RC6 to 1030 clock cycles for
Serpent for the encryption and from 850 clock cycles for Rijndael to 8600 clock
cycles for Serpent for key setup.

BUPT

3.1. State-of-the-art in cryptography. Competitions and selected algorithms

Table 3.1. AES finalists. Encryption and decryption performance by platform.

32-bit 32-bit 64-bit (C 8-bit (C 32-bit Digital
(®) (Java) and and smartcard Signal
assembler) assembler) (ARM) Processors
MARS 11 II II II 11 II
RC6 I I II II I II
Rijndael II II I I I I
Serpent 111 II1 II1 II1 111 II1
Twofish II II1 I II 111 I
Table 3.2. AES finalists. Key scheduling performance by platform.
32-bit (C) 32-bit 64-bit (C 8-bit (C Digital
(Java) and and Signal
assembler) assembler) Processors
MARS II II II1 II II
RC6 11 11 II 111 II
Rijndael I I I I I
Serpent 111 11 II 111 I
Twofish 111 111 II1 II III

Table 3.3. AES finalists. Overall performance.

Encryption/Decryption Key Setup
MARS II II
RC6 I II
Rijndael I I
Serpent 111 II
Twofish 11 II1

Rijdael has the best performance values for most encryptions/decryptions
and the best values for key scheduling.

Table 3.4. presents the results of a case study analysing the cost of masking
power consumption in order to defend smart card implementations of the finalists.
In this study [22], implementations were improved with defenses against power
analysis attacks. The performance degradation caused by these defenses is
measured. The study compares the results of implementations both with and
without masking (used as a defense against power analysis attacks). A
generalization of software balancing is used. In software balancing, the bit-wise

BUPT

32 3. Security — means, trends, challenges

complements of data words are generated; in [23], random strings of bits, called
masks, were generated to combine with the input data and key data. The
fundamental algorithm operations were then carried out on the masked data, after
which the masks were removed. Because different random masks were used for
every execution of the algorithm, over a statistical sample, the power consumption
should be uncorrelated with the secret key and the input and output data.

The implementations are performed on a high-end, 32-bit ARM-based card.
In the cases of four of the finalists (all but Twofish) the RAM requirements were
similar and the major distinctions came in speed and ROM requirements.

Table 3.4. AES finalists. A smart card study of power analysis defence
[22] from [23]

Cycle Cycle RAM, no RAM, with ROM, no ROM,
count, no count, with masking masking masking with
masking masking masking

MARS 9425 73327 116 232 2984 7404

RC6 5964 46282 232 284 464 1376
Rijdael 7086 13867 52 326 1756 2393
Serpent 15687 49495 176 340 2676 9572
Twofish 19274 36694 60 696 1544 2656

Table 3.5. AES finalists. Critical path and instruction-level parallelism.

[22]
The first The second Est. Throughput Est. of IPC
estimate estimate of | throughput (bit/cycle) max. no. of
of critical critical (bit/cycle) on an processing
path path (clock ona actual VLIW elem. that
(clock cycles) hypothetical 5 instr. can be
cycles) VLIW proc. issue slots, effectively
5 instr. in feedback used in
issue slots mode parallel
(Par)
MARS 258 214 0,56 0,57 2 2
RC6 185 181 0,69 0,69 2 2
Rijdael 86 71 0,93 0,93 7 10
Serpent 556 526 0,27 0,28 3 3
Twofish 166 162 0,69 0,70 3 6

Potential for Instruction-Level Parallelism. Future processors will support
various modes of parallelism to a greater extent than existing processors. The
support for parallelism is investigated and the five algorithms are evaluated from
instruction-level parallelism perspective. The purpose is to answer question as to
what extent can the finalist take advantage of this situation if an unlimited number

BUPT

3.1. State-of-the-art in cryptography. Competitions and selected algorithms 33

of instruction issue slots are available so that any potential parallelism for single
block encryption in a finalist can theoretically be exploited.

Some information can be gathered from an examination of the operations to
be executed for an algorithm. One concept, in this regard, is that of a critical path
through code for a particular instruction set: each instruction can be weighted
according to the number of latent clock cycles. Latent clock cycles refer to the
number of cycles between the instruction issuance and the availability of the result
to another instruction. A critical path could then be defined to be the path from
plaintext to ciphertext requiring the largest number of cycles. Table 3.5 presents the
results of several studies.

3.1.1.3. Selection conclusions

Each of the finalist algorithms appears to offer adequate security, and each
offers a considerable number of advantages. However, each algorithm also has one
or more areas where it does not perform quite as well as some other algorithm;
none of the finalists is outstandingly superior to the rest.

NIST selected Rijndael as the proposed AES algorithm at the end of
evaluation process. During the evaluation, NIST analyzed public comments, papers,
verbal comments at conferences, and NIST studies and reports. NIST judged
Rijndael to be the best overall algorithm for the AES [22].

Rijndael appears to be consistently a very good performer in both hardware
and software across a wide range of computing environments regardless of its use
in feedback or non-feedback modes. Its key setup time is better than for the other
algorithms, and its key agility is good. Rijndael is also characterized by low memory
requirements, (this makes it very well suited for restricted-space environments, in
which it also demonstrates excellent performance) and its operations are among the
easiest to defend against power and timing attacks. Additionally, it appears that
some defense can be provided against such attacks without significantly impacting
the performance of Rijndael. Rijndael is designed with flexibility in terms of block
and key sizes, and the algorithm can accommodate alterations in the number of
rounds. The internal round structure of Rijndael can benefit from instruction-level
parallelism.

Based on these considerations and evaluations results combining security,
performance, efficiency, implementability, and flexibility, Rijndael has been selected
as AES for current and future use [22].

3.1.2. NESSIE research project

The main objective of the NESSIE (New European Schemes for Signature,
Integrity, and Encryption), European funded IST project, was to put forward a
portfolio of strong cryptographic primitives of various types. The project started with
an open call for the submission of cryptographic primitives as well as for evaluation
methodologies for these primitives. This call includes a request for the submission of
not only block ciphers (as for the AES call), but also of other cryptographic
primitives including hash functions, stream ciphers, and digital signature algorithms.
The call also asked for evaluation methodologies for these primitives. The scope of
the call was defined in conjunction with the project industry board, and was
published in March 2000 [24].

The NESSIE project proposed to disseminate the project results widely and
to build consensus based on these results by using the appropriate bodies: a project
industry board, NESSIE workshops, the 5™ Framework programme, and various

BUPT

34

3. Security — means, trends, challenges

standardization bodies [24].

The open call leaded to the submission of forty cryptographic primitives to
the NESSIE project. These submitted primitives were evaluated (with some external
assistance) from both a security and performance perspective.

3.1.2.1. Evaluation and selection criteria
The evaluation criteria published in the NESSIE call are:

An attack should be at least as difficult as the generic attacks against the
type of primitive (exhaustive search, birthday attack etc.).

Primitives will be evaluated against the security claims of the submitter.
An attack requiring lower computing resources than claimed would
usually disqualify the submission.

Primitives will be evaluated within the stated environment. Thus,
consideration of vulnerability to side channel attacks (e.g. timing attacks,
power analysis) may be appropriate.

The main selection criteria specified in [24] are:

Long-term security. Security is the most important criterion, because
security of a cryptographic primitive is essential to achieve confidence
and to build consensus. Evaluation process considers the evolutions and
developments outside the project (such as new attacks or analysis
techniques).

Market requirements. Market requirements are related to the need for a
primitive, its usability, and the possibility for world-wide use.

Efficiency. From performance perspective, for software, the range of
environments considered include 8-bit processors (as found in
inexpensive smart cards), 32-bit processors (e.g., the Pentium family) to
the 64-bit processors. For hardware, both FPGAs and ASICs are
considered.

Flexibility. 1t is clearly desirable for a primitive to be suitable for use in a
wide-range of environments.

Some of the methodological issues were:

Resistance to cryptanalysis. Submitted primitives were required to be
resistant at the relevant security level to cryptanalytic attacks. The
failure to be resistant to such an attack disqualifies a submission.
However, when assessing the relevance of a cryptanalytic attack, other
factors such as the volume and type of data required to mount the attack
are considered.

Design philosophy and transparency. An important consideration when
assessing the security of a cryptographic primitive is the design
philosophy and transparency of the design of that primitive. It is easier to
have confidence in the assessment of the security of a primitive if the
design is clear and straightforward, and is based on well-understood
mathematical and cryptographic principles. This is particularly relevant
when making relative comparisons between primitives.

Strength of modified primitives. One common technique used to assess
the strength of a primitive is to assess a modified primitive, for example
by changing or removing a component or reducing the number of rounds.

BUPT

3.1. State-of-the-art in cryptography. Competitions and selected algorithms 35

Conclusions about the original primitive based on an assessment of the
modified primitives have to be carefully considered as the inference may
or may not be straightforward.

e Relative security. When assessing primitives designed to operate to the
same security level in similar environments, it is natural to wish to
compare their security. However, care has to be taken when making such
comparisons. One measure that has been suggested for primitives based
on an iterative algorithm is the security margin, which measures the gap
between the maximum number of broken rounds and the total number of
rounds, but there is no general consensus about its definition or use.
Furthermore, whilst the NESSIE project tried to ensure that each
submitted primitive receives equivalent cryptanalysis, it is the case that
some designs are easier to analyze than others. However, it is felt that
there should be some security margin to protect against cryptanalytic
advances.

e Cryptographic environment. In certain cryptographic environments, a
cryptographic primitive may have been designed to possess intrinsic
security advantages or disadvantages. An example would be a primitive
that is resistant to power or timing attacks when implemented on a smart
card. Such properties would be considered when assessing the security of
a primitive.

e Statistical testing. Statistical testing of submitted primitives by NESSIE
project was carrying out. The purpose of this statistical testing is to
highlight anomalies in the operation of the primitive that may indicate
cryptographic weakness and require further investigation.

3.1.2.2. NESSIE selected algorithms

On February 27, 2003, NESSIE project consortium announced final selection
of cryptographic algorithms [25]. The evaluation process was open, based on the
published evaluation criteria. Feedback has been received from the global
cryptographic community; these comments have been made public.

Table 3.6 lists the selected NESSIE algorithms: 12 algorithms from the 42
submissions; other 5 well established standard algorithms have been added to the
NESSIE portfolio (indicated with * in table 3.6).

No weaknesses have been identified in these 17 algorithms till the end of
selection process, however, later, SFLASH was broken, and SFLASHv2, is not
considered secure enough [26]. None of the six submitted stream ciphers meets the
security requirements of NESSIE.

Licenses. The 10 symmetric primitives in this portfolio (4 block ciphers, 4
MAC algorithms and 2 hash functions) can be used for free. The asymmetric
primitives RSA-KEM, RSA-PSS and SFLASH are also in the public domain. PSEC-KEM
is available under favorable conditions. Licenses need to be negotiated for ACE
Encrypt, ECDSA and GPS, but the owners have promised to offer reasonable and
non-discriminatory terms [25].

BUPT

36 3. Security — means, trends, challenges
Table 3.6. NESSIE portfolio
Block MISTY1 Mitsubishi Electric Corp., Japan
ciphers
P Camellia Nippon Telegraph and Telephone Corp., Japan and
Mitsubishi Electric Corp., Japan
SHACAL-2 Gemplus, France
AES * (Advanced Encryption Standard) (USA FIPS 197)
(Rijndael)
Public-key ACE Encrypt IBM Zurich Research Laboratory, Switzerland
encryption)
PSEC-KEM Nippon Telegraph and Telephone Corp., Japan
RSA-KEM* (draft of ISO/IEC 18033-2)
MAC Two-Track-MAC K.U.Leuven, Belgium and debis AG, Germany
algorithms -
and hash UMAC Intel Corp., USA, Univ. of Nevada at Reno, USA, IBM
functions Research Laboratory, USA, Technion, Israel and
Univ. of California at Davis, USA
CBC-MAC* (ISO/IEC 9797-1)
HMAC* (ISO/IEC 9797-1)
Whirlpool Scopus Tecnologia S.A., Brazil and K.U.Leuven,
Belgium
SHA-256*, SHA- (USA FIPS 180-2).
384* and SHA-512%*
Digital ECDSA Certicom Corp., USA and Certicom Corp., Canada
signature .
algorithms RSA-PSS RSA Laboratories, USA
SFLASH Schlumberger, France
Identification GPS Ecole Normale Supérieure, Paris, France Télécom

schemes

and La Poste, France

3.1.3. CRYPTREC IPA research project (CRYPTography
Research and Evaluation Committees)

The Information-technology Promotion Agency (IPA) in Japan has initiated
the CRYPTREC project (CRYPTography Research and Evaluation Committees) with
the scope to define standard cryptographic algorithms for use within the Japanese
e-Government infrastructure [27].

CRYPTREC project started in 2000. Different types of cryptographic
techniques were submitted to the formal Call for Cryptographic Techniques dated
June 13, 2000. As in case of NESSIE initiative, CRYPTREC call was open for different
types of primitives. Also, the purpose was to select a set of techniques not only one
as in AES selection.

Some of the algorithms evaluated in NESSIE project (e.g. RC6, MISTY1,
Camellia, AES) were also submitted to CRYPTREC for evaluation [27].

In the table 3.7, in the second column, there are listed the submissions for
CRYPTREC, and in the last one the primitives added for evaluation.

BUPT

3.1. State-of-the-art in cryptography. Competitions and selected algorithms 37

Table 3.7. CRYPTREC evaluated primitives

Category Submissions to CRYPTREC Other eval. primitives
Asymmetric ACE Encrypt, ECAES(Elliptic Curve RSA OAEP
Cryptographic Augmented Encryption Scheme) in SEC1,

techniques EPOC, HIME-2, PSEC

(Confidentiality)

Asymmetric ESIGN-identification -

Cryptographic

techniques

(Authentication)

Asymmetric ACE Sign, ECDSA(Elliptic Curve Digital DSA, RSA PSS
Cryptographic Signature Algorithm) in SEC1, ESIGN-

techniques signatures, MY-ELLTY ECMR-h

(Signature)

Asymmetric ECDHS (Elliptic Curve Deffie-Hellman DH Key Exchange

Cryptographic
techniques (Key-
sharing)

Scheme) in SEC1, ECMQVS (Elliptic Curve
MQV Scheme) in SEC1, HDEF-ECDH,
HIME-1

Symmetric Ciphers
(Stream ciphers)

MULTI-S01, TOYOCRYPT-HS1

Symmetric Ciphers CIPHERUNICORN-E, FEAL-NX, Triple DES
(64-bit block Hierocrypt-L1, MISTY1

ciphers)

Symmetric Ciphers Camellia, CIPHERUNICORN-A, Hierocrypt- Rijndael

(128-bit block
ciphers)

3, MARS, RC6, SC2000

Hash Functions

MDS5, RIPEMD-160,
SHA-1

Pseudo-Random
Number Generators

TOYOCRYPT-HR1

PRNG based on SHA-1
(BFIPS186)

A second call, Call for attack to evaluate the Cryptographic Techniques, in

this case for public analysis and comments was published in October 23, 2000 by
IPA. Other cryptographic techniques were added for evaluation by CRYPTREC.

Table 3.8 contains the selected CRYPTREC primitives, including the notes
and special recommendations as published on [27]. It can be noticed that some of
the algorithms are selected for the time being due to their integration in widely used
security mechanisms; however stronger algorithms are recommended to be used if
possible.

BUPT

38 3. Security — means, trends, challenges

Table 3.8. CRYPTREC selected primitives

Public-key Signature DSA, ECDSA, RSAASSA-PKCS1-v1 5, RSA-PSS
ciphers
P Confidentiality RSA-OAEP, RSAES-PKCS-v1 5*!

Key agreement DH, ECDH, PSEC-KEM*?

Symmetri 64-bit block CIPHERUNICORN-E, Hierocrypt-L1, MISTY1, 3-key

c-key ciphers *3 Triple DES **

ciphers) -)
128-bit block AES, Camellia, CIPHERUNICORN-A, Hierocrypt-3,
ciphers SC2000
Stream ciphers MUGI, MULTI-S01, 128-bit RC4 **

Others Hash function RIPEMD-160 *¢, SHA-1*%, SHA-256, SHA-384, SHA-512
Pseudo-random PRNG based on SHA-1 in ANSI X9.42-2001 Annex C.1,

:;meer generator ppRNG based on SHA-1 for general purpose in FIPS 186-
2 (+ change *!) Appendix 3.1, PRNG based on SHA-1
for general purpose in FIPS 186-2 (+ change *!)
revised Appendix 3.1.

Notes
*1 this permitted for the time being because it is used in SSL3.0/TLS1.0

*2 On the assumption that is used in the KEM (Key Encapsulation Mechanism) -DEM
(Data Encapsulation Mechanism) construction

*3 128-bit block ciphers are preferable if possible

x4 Using the 3-key Triple DES is permitted for the time being under the following
conditions 1) it is specified as FIPS 46-3, 2) it is positioned as de facto standard

*3 It is assumed that the 128-bit RC4 will be used ONLY in for SSL3.0/TLS(1.0 or later).
If any other cipher listed above is available, it should be used instead.

*6 If any cipher with a longer hash value are available, it is preferable that a 256-bit (or
more) hash function to be selected. However, this does not apply in cases where the
hash to be used has already been designed according to the public-key cryptographic
specifications.

*7 Since pseudo-random number generators do not require interoperability due to their
usage characteristics, no problems will be generated from the use of a
cryptographically secure pseudo-random number generating algorithm. Therefore,
these algorithms are examples.

3.1.4. Summary on the state-of- the- art in cryptography

In the first part of this chapter we analyzed the last three main competitions
and evaluation processes focusing selection of competitive cryptographic algorithms.
NIST competition, compared with NESSIE and CRYPTREC addressed only 128-bit
block ciphers and aimed only one algorithm, while the other two covered several
algorithms from all types of primitives and also evaluation criteria. For comparison
purposes, for NESSIE and CRYPTREC, were added as well standardized algorithms
such as AES. Some algorithms were submitted and evaluated for all competitions
and only Rijndael was selected (e.g. RC6 was not selected, rejection was based also

BUPT

3.2. Cryptanalysis. Attacks based on implementation. Fault analysis attacks 39

on license reasons). Several algorithms evaluated only by NESSIE and CRYPTREC
were selected in both competitions - this is the case of the Japanese algorithms
MISTY1 and Camellia for block ciphers, ECDSA and RSA-PSS for digital signature,
etc. Algorithms such as 3-key Triple-DES were included in the recommendation list
by CRYPTREC due to its usage in SSL3.0/TLS1.0 network security standards. Further
description of these algorithms can be found on the web pages of the selection
projects. However Triple-DES and MISTY1 are further presented in Chapters 5 and 6
respectively, where error detection mechanisms to protect against fault analysis
attacks are covered.

The selections of cryptographic algorithms are made based on a number of
criteria such as security, effectiveness, cost, implementability, intellectual property
status etc. Establishing the level of security is not an easy task. Most cryptographic
mechanisms rely on one or more unproven assumptions or hard problems. An
independent evaluation is required and this implies a substantial amount of
research. Public key cryptography relies on 'hard’ mathematical problems such as
factoring problem or discrete logarithm problem. In general, the conclusions of all
evaluations are valid ‘for the time being’ [26]. Unexpected breakthroughs may
always occur. As such the state-of-the-art in cryptography can change quickly.

Due to the nature of cryptographic techniques, the results of security
evaluations described in previous subsections may not remain valid in the future.
Every year several new weaknesses are identified, leading to changes or even
vulnerabilities are identified in deployed systems that require immediate
modification. Thus, it is considered necessary to continue such evaluations.

Any design of security mechanism must consider this context. Security
mechanisms must be wupgradeable (to face changes and new context).
Composability is required in security mechanisms (cryptographic systems) in order
to allow security mechanisms’ components (algorithms, operational modes) to be
modified/switched/updated according to the ‘reality’ (e.g. new algorithms, new
implementations).

3.2. Cryptanalysis. Attacks based on implementation.
Fault analysis attacks

Cryptographic algorithms, including symmetric ciphers, public-key ciphers,
and hash functions, are used as building blocks to construct security mechanisms
that target specific objectives. For example, network security protocols, such as
SSH, combine these primitives to provide authentication between communicating
entities, and ensure the confidentiality and integrity of communicated data. These
security mechanisms only specify what functions are to be performed. The
specification of a security protocol is usually independent of whether the encryption
algorithms are implemented in software running on a general processor, or using
custom hardware units. The specifications do not consider whether the memory
used to store intermediate data during these computations is on the same chip as
the computing unit or on a separate chip [28].

This separation between security mechanisms and their implementation has
as main advantage the ability to allow for theoretical analysis and design of
cryptosystems and security protocols. Differential cryptanalysis and linear
cryptanalysis are examples of cryptanalysis focusing the mathematical paradigm
and using high-powered mathematical tools to break different ciphers. Such
techniques exploit weaknesses in algorithms and do not address implementation
aspects. Still, various assumptions are made about the implementation of security

BUPT

40 3. Security — means, trends, challenges

mechanisms (i.e. that the implementations can neither be observed nor interfered
by any malicious entity). Due to such assumptions the level of security is quantified
in terms of the mathematical properties of the cryptographic algorithms and their
key sizes.

However cryptographic algorithms are always implemented in software or
hardware. Physical devices are used for implementation and they interact and are
influenced by their environment. These physical interactions can be triggered by an
attacker and monitored, and may result in additional information useful in
cryptanalysis. The additional information can provide enough information to
compromise the security of the system.

Such additional information are power consumption, timing information,
electromagnetic radiations emitted, special behavior due to internal faults, etc. of
the circuit implementing the algorithm (cryptosystem). The attacks based on the
use of such specific information are called side-channel attacks.

3.2.1. Cryptosystems and side-channel attacks

The underlying idea of side-channel attacks is to exploit the way
cryptographic algorithms are implemented, rather than the algorithm itself.

As already mentioned, there are two ways to look at a cryptographic
primitive (i.e. block cipher, digital signature function, etc). The first is only as
mathematical problem, where a message M is encrypted with a key Ki (Exi) to
produce a cipher text C (or, the cipher text C is decrypted with a key K, (Dkz2) to
produce the plaintext M), as in figure 3.1.

Variation in supply voltage Clock rate oiations, hght Temperature
Power supply -—— ~. v , .-
~ N \ ’ e
V_V b NV VvV
M (C) & E, (Dg) - C (M)
- S device
7 Y [\
] _- ! \ ~_
Electromagnetic € —— v | ——>
radiations Power comsumption Timing Fauls
Power analysis attacks Timing analysis attacks Fault analysis attacks

Figure 3.1. Encryption (decryption), real world interactions and side-channel attacks

If K1=K; we have a symmetric algorithm. The second way is as physical (or
software) implementation. The implementation both in software and in hardware
requires the use of devices, and, these devices are interacting with the environment
(figure 3.1). Data (e.g. power consumption, timing) can be collected based on these
interactions in order to gather information (e.g. operation being performed) about
algorithms. The implementation is in this way vulnerable to the external
environment, and intended changes (e.g. variation of power supply, clock rate) may
cause effects useful for an attacker (e.g. faults).

The first side-channel attack, official recorded, was using in 1965 a
microphone to record the sounds produced by a rotor-cipher machine. This method

BUPT

3.2. Cryptanalysis. Attacks based on implementation. Fault analysis attacks 41

deduced the position of couple of rotors adding sufficient information to break the
cipher and to allow British intelligence agency to spy on the embassy’s
communication [28].

Side-channel attacks (timing attacks, power analysis, fault analysis etc.), all
make assumptions about implementation, and use additional information gathered
from attacking these implementations (i.e. how the power consumption changes as
the cipher executes, what the output looks like when you cut some wires) in an
attempt to recover the key. These attacks work because there is a correlation
between the values of different physical parameters at different points during the
computation and the internal state of the processing device, which is itself related to
the secret key [28].

Side-channel attacks do not always generalize. A fault-analysis attack is not
possible against an implementation that does not allow an attacker to create and
exploit the required faults. For instance, attacks that measure power consumption of
a cryptographic device can be possible if the device is a smart card that draws
power from an external, untrusted source. On the other hand, if the device is a
workstation located in a secure office, then power consumption attacks are not a
significant threat.

However side-channel attacks are powerful. For example, differential fault
analysis of DES requires between 50 and 200 ciphertext blocks to recover a key,
while the best non-side-channel attack against DES requires about 64 terabytes of
plaintext and ciphertext encrypted using the same key [28].

To protect the cryptosystems against side-channel attacks there are two
types of measures:

e to reduce the amount of side-channel information that leaks (using

protection, shielding to eliminate or reduce radiations, light), or
e to make the side-channel information irrelevant (by adding redundant
component to make more difficult extracting information from monitored
i.e. power consumption).

The protection methodology cannot be generalized. It depends

e on the algorithm,

e on the implementation and environment, and
e on the side channel attack considered.

And besides these dependencies, protection generates extra costs. In case
of energy masking (to protect against power analysis attack) additional energy is
consumed in the circuits added for masking. In case of fault analysis attack,
protection mechanisms may generate extra hardware or time requirements.
Information about the key can leak (timing attack) in case of ciphers with non-
constant execution time but making the execution time constant reduces
performance.

Protection against side-channel attacks is one of research areas where more
work is required. In the following sections and chapters vulnerabilities are identified
and protection is proposed for limiting the effect of faults and fault analysis attacks
in cryptosystems.

3.2.2. Fault attacks. Fault injection methods

As represented in figure 3.1, besides functional parameters such as power
consumption, timing aspects, etc., faults can be useful for side-channel attacks.
In order to mount fault attacks there are two stages required. In the first

BUPT

42 3. Security — means, trends, challenges

stage the fault is injected and in the second stage the errors are exploited using
cryptanalysis.

For the first stage, the efficiency of a fault attack depends on the type of
faults that can be induced. According to [28], such a fault model is described by the
following aspects

e The precision of the fault - the time and location on which the fault occurs
during the execution of a cryptographic module.

e The length of the data affected by a fault i.e. only one bit, or one byte.

e The persistence of the fault i.e. transient or permanent fault.

e The type of the fault i.e. flip one bit; flip one bit, but only in one direction
(e.g. from 1 to 0); byte changed to a random (unknown) value; and so on.
There are several methods for fault injection. The precision, the length of

data affected, the persistence and the type of faults depend on the fault injection
method. According to [29], some of the fault injection methods are shortly
presented below

e Variation in supply voltage. During execution, such variation determines
missing executions or skipping of instructions.

e Variations in external clocks. Due to higher frequency clock, the circuit
starts executing next instruction before current instruction is executed and
not all results or data are available.

e Temperature. Circuits have defined upper and lower temperature thresholds
for correct functionality. For instance in the case of non-volatile memories
the temperature thresholds for read and write do not coincide and an
attacker may expose the circuit to a temperature where write operates and
read does not operate (or the other way around) to mount attacks.

e White light. Due to photoelectric effects, all electric circuits are sensitive to
white light. If the circuit is exposed to intense white light, the current
induced by photons can induce faults.

e Laser can target a small circuit area with an effect similar with the effect of
white light.

e X-rays and ion beams. Even if is not common, this method allows fault
attacks implementations without requiring de-packaging the chip.

As was mentioned above, from persistency point of view, there are two
types of faults that can be induced into electronic circuits: transient and permanent
faults. Transient faults allow a large number of experiments until the desired effects
are obtained. After the attack ends, the system remains functional. These faults are
preferred compared with permanent ones, where another system/circuit is required
to inject different faults.

3.2.3. Fault analysis attack

A new theoretical model for breaking various cryptographic schemes by
taking advantage of random hardware faults has been presented in 1996 [30], by
Boneh, Demillo and Lipton.

The model consists of a black-box containing some cryptographic secret
[31]. The box interacts with the outside world by following a cryptographic protocol.
The model supposes that from time to time the box is affected by a random
hardware fault causing it to output incorrect values. For example, the hardware fault
flips an internal register bit at some point during the computation. In [31] was
shown that for many digital signatures and identification schemes these incorrect
outputs completely expose the secrets stored in the box.

BUPT

3.3. Standards 43

At the beginning this attack was considered to be applicable to public key
cryptosystems and not to secret-key algorithms. However, Biham and Shamir
propose a related attack called Differential Fault Analysis (DFA) in [32]. They
showed that DFA was applicable to almost any secret key cryptosystem proposed in
the open literature at that moment.

The main criticism against DFA was that the transient fault model that was
claimed to be unrealistic. Starting from this, Biham and Shamir decided to develop a
more practical fault model based on permanent hardware faults. They showed that
their model could be used to break Data Encryption Standard (DES) [32]. They
called this Non-Differential Fault Analysis (NDFA). For this attack they proposed to
cut a wire or permanently destroy a memory cell. A smartcard implementation of
DES was used to describe the attack. Two types of implementation have been
analyzed. In the first case, DES was implemented in hardware as a single round that
is used 16 times (for the 16 rounds of the algorithm). The second uses an unrolled
implementation, where all 16 rounds use different, separate hardware modules. For
second implementation, the attacker is able to retrieve more easily bits of the
subkeys.

As shown in previous section, faults can be induced by radiation, extreme
temperature, incorrect voltage (voltage spikes), atypical clock rate - all of these
difficult to control, and light - which generates much easier to control location and
type of fault. Those external factors can determine malfunction of a part of a circuit
(e.g. wire stuck-at zero, output gate stuck-at one, etc). The implementations of the
security primitives need to be fault-tolerant and mechanisms for error detection are
required to prevent failures generated by such faults.

The rest of the thesis analysis how injected faults can affect the security of
block ciphers implementations and proposes solutions to reduce the vulnerabilities
and to detect errors. Chapter 4 addresses vulnerabilities caused by faults in case of
the standardized modes of operation. In Chapter 5, a more detailed description of
fault analysis attacks is presented together with available methods for protection
against such attacks in case of block ciphers; furthermore new methods are
proposed and evaluated.

3.3. Standards

Security standards, as standards in general can bring benefits such as
interoperability, guarantee of quality and reduced development time and costs.
Security standards are useful also for non-experts in security i.e. they can
implement an evaluated algorithm without investing in security assessment.
However the benefits are not always there. In case of security, due to the long
standardization process, some of the standards are outdated (e.g. algorithms are
not suited anymore to the intended purpose). The extensive use of the same
standard can have a twofold impact in case of security: on one hand it can bring
better evaluation and fast detection of weaknesses, while on the other, it can
increase the security risks (e.g. viruses can spread exploiting a single security
vulnerability if the same operating system is used) [26].

According to [26] standards can be

e base standards, including standards for cryptographic algorithms, for

modes of use, etc.;

e functional standards, where is explained the way base standards are
used in network security (e.g. IPsec, TLS), financial transactions etc.;

e evaluation criteria standards, addressing, as the name states, the

BUPT

44 3. Security — means, trends, challenges

evaluation of products and systems;

e interpretative documents and best practices standards, where, for
instance guidelines are presented.

Example of base standards are FIPS 197 [33] describing the selected AES
algorithm after NIST selection process presented in section 3.1.1 and FIPS 81 [34]
which addresses the modes of operations described in Chapter 4.

As in the case of FIPS 197, standards describing algorithms are created after
selection and evaluation processes. Some standards may also be supported by
industry with large market share. In any case, standards require maintenance. In
case of information security standards, state-of-the-art can change quickly [26] and
due to vulnerabilities immediate modifications are required.

From geographical perspective, standards can be at international level,
European level or national level. Examples of international standards are ISO
(International Organization for Standards, with IEC - International Electrotechnical
Commission) standards (e.g. ISO/IEC 10116 standard dedicated for the modes of
operation of an n-bit block cipher algorithm [35]), IETF (Internet Engineering Task
Force) standards (e.g. IETF standard for IPsec [36]) or IEEE (Institute of Electrical
and Electronic Engineers) standards.

At European level, the equivalent of ISO/IEC are CEN (Comite Europeen de
Normalisation) and CENELEC. Examples of European level standards are the
3GPP/UMTS security specifications developed by ETSI (European Telecommunication
Standardization Institute) for GSM security. For instance for 3GPP (3@ Generation
Partnership Project) security specifications, which solves the GSM previous flaws, a
modified version of MISTY1, algorithm selected both by NESSIE and CRYPTREC,
called KASUMI is used for confidentiality and integrity purposes (see Chapter 6 for
more details on MISTY1).

For national level, the US NIST (National Institute for Standards and
Technology) is one of the key players in information security (for example AES
standard FIPS 197 [33]).

There are also industry standards. An example is the ATM Security
Specifications elaborated by the ATM Forum Technical Committee [37] (see Chapter
4 for some details).

It can be noticed that there are a large number of standards and
standardization bodies in the area of security. However, as the security field knows
a fast evolution, security standards are required to answer the need for changes.
Algorithms and specifications which are included in standards are bringing the
certitude that they have been evaluated and they are under a maintenance process.
Some standards shortly mentioned in this section could be found in the following
chapters of this work. We chose to address in this work standardized algorithms and
recommendations in order to address secure, robust and evaluated primitives and
specifications.

3.4. Conclusions and contributions

In this chapter we introduced the recent major cryptographic selection
competitions organized in USA, Europe and Japan. These selections addressed block
ciphers i.e. NIST selection initiative in USA or secret and public cryptographic
techniques in NESSIE in Europe or CRYTREC in Japan.

The selection criteria are security, effectiveness, cost, intellectual property
status, etc. Due to the nature of cryptographic techniques, the results of security
evaluations described in this chapter may not remain valid in the future. Every year

BUPT

3.4. Conclusions and contributions 45

several new weaknesses are identified leading to changes, or even vulnerabilities
are identified in deployed systems that require immediate modification. Thus, it is
considered necessary to continue such evaluations.

Even if these evaluations are focusing on mathematical models (algorithms)
and protocols, cryptographic algorithms are always implemented in software or
hardware. Physical devices are used for implementation and they interact and are
influenced by their environments. These physical interactions can be investigated
and monitored, and may result in additional information useful in cryptanalysis.
Such additional information can provide enough information to compromise the
security of the cryptographic system. As such, only a secure mathematical model is
not sufficient in practice, the cryptographic systems must be secure also in front of
side-channel attacks.

Fault analysis attack, one of the side-channel attacks, takes advantage of
faults induced in cryptographic implementations, and may considerably reduce the
effort of cryptanalysis. Fault injection methods are introduced in this chapter and
fault analysis attacks are shortly presented.

The entire chapter investigates and presents the state-of-the-art in
cryptology. It shows the most secure cryptographic primitives selected in world-
level competitions, and illustrates the latest research in cryptanalysis addressing
implementations vulnerabilities. The standardization process is also considered, and
the main conclusion is that even if an algorithm is standardized this does not
guarantee the security of the algorithm in front of new attacks, neither in front of
implementation flows.

The contributions of this chapter are:

e State-of-the-art survey of cryptographic selection competitions;

e Analysis of new trends in cryptanalysis, mainly side-channel attacks

addressing cryptographic implementations vulnerabilities;

e Focusing on fault attacks, analysis of fault injection methods and fault
analysis attacks.

e Analysis of security standards, their evolution and standardization bodies.

This chapter underlines the permanent need for evaluation and evolution of
both cryptographic algorithms and their implementations. Starting from these
findings, the rest of the thesis addresses the need for error detection mechanisms in
cryptographic implementations. These requirements for error detection are meant to
improve the security of cryptographic implementations.

BUPT

4. MODES OF OPERATION AND THEIR SECURITY
IN CASE OF FAULTS

Modes of operations are used to encrypt messages of arbitrary length. To be
useful, a mode must be at least as secure and as efficient as the underlying cipher.
Modes may have properties in addition to those inherent in the basic cipher.

The standard DES modes of operation have been published in FIPS 81 [34]
and as ANSI X3.106 [38]. A more general version of the standard [35] generalized
the four modes of DES to be applicable to a block cipher of any block size. In [39]
an additional confidentiality mode is added, the Counter Mode (CTR), for use with
any FIPS-approved block cipher.

In this chapter we address the five modes of operations standardized by
NIST, recommended to be used with AES. After presenting the five modes of
operation, the error propagation for these modes is analyzed. Afterwards in the
chapter we analyze the effect of faults in three implementation recommendations of
the CTR mode: NIST Recommendations [39], the IETF RFC (Request for Comments)
no. 3686, the standard regarding IPsec [36] and the ATM Security Specifications
[37].

It is shown in the previous chapters that faults can reduce the overall
confidentiality of the cryptosystems. In this chapter we address the vulnerabilities of
the modes of operation. We show in this chapter that faults may generate
vulnerabilities in case of counter mode. If faults are affecting one or more bits of the
encrypting sequences (called counter blocks in CTR mode) then, consecutive
plaintext blocks are XOR-ed with the same counter block to generate the ciphertext
blocks and this, independent of the key value. To overcome failures and to reduce
the vulnerabilities of Counter Mode, several implementation recommendations are
introduced and solutions are identified and presented in this chapter.

4.1. Modes of operation

One of the conditions for a secure encryption requires that the plaintext
contains no pattern, as these will leak to the ciphertext. For this condition to be
satisfied independent of the plaintext to be encrypted, the block ciphers are used in
special ways, called modes of operation. In 1980 four modes of operation were
standardized in [34] ECB (Electronic Code Block) mode (this mode does not hide
patterns); CBC (Cipher Block Chaining) mode; CFB (Cipher FeedBack) mode; OFB
(Output FeedBack) mode. For example, for implementation, the plaintext is split into
blocks and those blocks are encrypted, for CBC each block of plaintext is XORed
with the previous ciphertext block before being encrypted, etc.

In 2001 the NIST added a fifth mode, the Counter Mode (CTR), all of them
recommended as modes of operation to be used with AES [39]. The counter mode
has efficiency advantages over the previous modes of operation (ECB, CBC, CFB,
and OFB). Used with large block size ciphers such as AES, CTR mode is not
weakening the security of the algorithm.

In the following sections the five standardized operation modes are
presented.

BUPT

4.1. Modes of operation 47

4.1.1. ECB (Electronic Code Book) mode

The simplest mode is the ECB (Electronic Code Book) mode. This mode is
not hiding patterns. The plaintext is divided into n-bit blocks (in total m blocks), and
is encrypted block by block (figure 4.1.).

Figure 4.1. Electronic Code Book mode
The decryption also operates on individual blocks:

Ci=Ex (Mj)and M; = Dk (Gi)

where M; are blocks of the plaintext (message) M, and C; are blocks, of
same length, of the ciphertext C, and K is the key. (The same notation is used for
the following operation modes).

Errors in the ciphertext do not propagate beyond the block boundaries (as
long as these can be recovered). However, the ECB mode does not hide patterns
(such as repetitions) in the plaintext), as these are copied to the ciphertext. As
such, this mode can only be used in cases where the plaintext is already random,
such as the encryption of cryptographic keys.

ECB mode is as secure as the underlying block cipher. Because plaintext
patterns are not masked, each identical block of plaintext gives an identical block of
ciphertext. The plaintext can be easily manipulated by removing, repeating, or
interchanging blocks.

The speed of each encryption operation is identical to that of the block
cipher. ECB allows parallelization for higher performance. However, no
preprocessing is possible before a block is available (except for key setup).

4.1.2. CBC (Cipher Block Chaining) mode

The standard mode of operation of a block cipher is the CBC (Cipher Block
Chaining) mode. In this mode the different blocks are coupled by adding modulo 2
(XOR-ed) to a plaintext block the previous ciphertext block before the encryption
operation:

Ci = Ex (M; @ Ci-1) and Mi=Dk(G)) @ Ci-1.

This mode “randomizes” the plaintext, and hides patterns.

An the initial value IV is used to enable the encryption of the first plaintext
block (figure 4.2.). By varying this initial value, the same plaintext is encrypted into
a different ciphertext under the same key. Sender and receiver have to agree on the
value of IV.

The CBC mode has limited error propagation: errors in the /t ciphertext
block will twist the it plaintext block completely, and will be copied into the i + 1t
plaintext block. The CBC mode allows for random access on decryption: if
necessary, one can decrypt only a small part of the ciphertext.

BUPT

48 4. Modes of operation and their security in case of faults

M1 M2 M3

v)4 v
V' —D >D >

e | = |]

*—D

C v C,v Cyv
Figure 4.2. Cipher Block Chaining mode

CBC mode is as secure as the underlying block cipher against standard
attacks. In addition, any patterns in the plaintext are masked by the XORing of the
previous ciphertext block with the plaintext block. The plaintext cannot be directly
manipulated except by removal of blocks from the beginning or the end of the
ciphertext. The initialization vector should be different for any two messages
encrypted with the same key and is preferably randomly chosen. It does not have to
be encrypted and it can be transmitted with (or considered as the first part of) the
ciphertext.

The speed of encryption is identical to that of the block cipher, but the
encryption process cannot be easily parallelized, although the decryption process
can be.

4.1.3. CFB (Cipher FeedBack) mode

In CFB mode (see Figure 4.3.), the previous ciphertext block is encrypted
and the output produced is combined with the plaintext block using XOR to produce
the current ciphertext block. It is possible to define CFB mode using feedback that is
less than one full data block. An initialization vector IV is used as a “seed” for the
encryption.

Ci=Ex(Ci-1)®M;, Mi=Ex(Ci-1)®C;

M} M2 M3

)4)4

—D %D

| |

C, C,v Cywv

Figure 4.3. Cipher Feedback mode

CFB mode requires a parameter, the length of a segment, where the length
sis 1 < s < n, where n is the length of an encryption block. As such the
encryption/decryption functions are executed on a nhumber of bits larger than s, but
only the most significant s bits are XOR-ed with the s bits of plaintext/ciphertext to
produce s bits of ciphertext/ plaintext. The value of s is sometimes incorporated in
the name of the mode e.g. the 8-bit CFB mode, or 128-bit CFB mode [39]. The

BUPT

4.1. Modes of operation 49

figure 4.3 corresponds to the 128-bit CFB mode.

CFB mode is as secure as the underlying cipher and plaintext patterns are
masked in the ciphertext by the use of the XOR operation. Plaintext cannot be
manipulated directly except by the removal of blocks from the beginning or the end
of the ciphertext.

The speed of encryption is identical to that of the block cipher, and the
encryption process cannot be easily parallelized.

4.1.4. OFB (Output FeedBack) mode

OFB mode (see Figure 4.4) is similar to CFB mode except that the blocks
XORed with each plaintext block are generated independently of both the plaintext
and ciphertext. An initialization vector IV=sy is used as a “seed” for a sequence of
data blocks sj, and each data block s; is derived from the encryption of the previous
data block si.1. The encryption of a plaintext block is derived by taking the XOR of
the plaintext block with the relevant data block.

Ci=Mi®s;, Mi=Ci®s; , si=Ek(si-1)

M, M,

My

/
D
L/

N
|v_"| E | o[E |

C1 v C2 v
Figure 4.4. Output Feedback mode

Feedback widths less than a full block are not recommended for security
reasons [8]. OFB mode has an advantage over CFB mode in that any bit errors that
might occur during transmission are not propagated to affect the decryption of
subsequent blocks.

A problem with OFB mode is that the plaintext is easily manipulated.
Namely, an attacker who knows a plaintext block M; may replace it with a false
plaintext block x by XORing M; ®x to the corresponding ciphertext block Ci. There
are similar attacks on CBC and CFB modes, but in those attacks some plaintext
block will be modified in a manner unpredictable by the attacker. Yet, the very first
ciphertext block (that is, the initialization vector) in CBC mode and the very last
ciphertext block in CFB mode are just as vulnerable to the attack as the blocks in
OFB mode. Attacks of this kind can be prevented by using for example a digital
signature scheme or a MAC scheme.

The speed of encryption is identical to that of the block cipher. Even though
the process cannot easily be parallelized, time can be saved by generating the
keystream before the data is available for encryption.

4
)4

v

4.1.5. CTR (Counter) mode

As mentioned earlier, in [39] a fifth mode of operation for encryption was
added.
The Counter (CTR) mode is a confidentiality mode that uses encryption of a

BUPT

50 4. Modes of operation and their security in case of faults

set of input blocks, called counters, to produce a sequence of output blocks that are
XORed with the plaintext to produce the ciphertext, and vice versa. The sequence of
counters must have the property that each block in the sequence is different from
every other block. This condition is not restricted to a single message: across all of
the messages that are encrypted under the given key, all of the counters must be
distinct. In this recommendation, the counters for a given message are denoted ctr;
, Ctra, ..., ctrm.

Given a sequence of counters, ctr;, ctrz, ..., ctrm, the CTR mode is defined
as follows:

CTR Encryption:

Ci=M; ® Ex(ctr)
CTR Decryption:
Mi=C; ® Ex(ctr).

In CTR encryption, each counter block is encrypted and the resulting output
blocks are XORed with the corresponding plaintext blocks to produce the ciphertext
blocks. For the last block, which may be a partial block of u bits, while the length of
the blocks is n, the most significant u bits of the last output block are used for the
exclusive-OR operation; the remaining n-u bits of the last output block are
discarded.

In CTR decryption, also, each counter block is encrypted and the resulting
output blocks are XORed with the corresponding ciphertext blocks to recover the
plaintext blocks. For the last block, which may be a partial block of u bits, the most
significant u bits of the last output block are used for the exclusive-OR operation;
the remaining n-u bits of the last output block are discarded.

In both CTR encryption and CTR decryption, the encryption functions can be
performed in parallel; similarly, the plaintext block that corresponds to any
particular ciphertext block can be recovered independently from the other plaintext
blocks if the corresponding counter block can be determined. For faster encryption,
the encryption functions can be applied to the counters prior to the availability of
the plaintext or ciphertext.

The CTR mode is illustrated in figure 4.5.

J,c’rr 1 J’c’rr 2 ctr m
Y

K Efctr1) K_ Elctr2) o K Ectrm)
KS KS Ks.,

M, * M, ? M,, X
C] CQ ch

Figure 4.5. The CTR mode.

The specification of the CTR mode requires a unique counter block for each
plaintext block that is ever encrypted under a given key, across all messages.
Otherwise, if, a counter block is used repeatedly, then the confidentiality of all of the
plaintext blocks corresponding to that counter block may be compromised. In
particular, if any plaintext block that is encrypted using a given counter block is
known, then the output of the forward cipher function can be determined easily

BUPT

4.2. Modes of operation and bit errors 51

from the associated ciphertext block. This output allows any other plaintext blocks
that are encrypted using the same counter block to be easily recovered from their
associated ciphertext blocks [39].

4.2. Modes of operation and bit errors

If there are bit errors in any ciphertext block (e.g. due to communication),
then the decryption of that ciphertext block is incorrect, i.e., it differs from the
original plaintext block. The effects of error propagation (bit errors, insertion, or
deletion of bits) in ciphertext blocks (or part of them), counter blocks, and IVs on
the modes introduced in this chapter are presented in this section. By bit error is
understood the substitution of a ‘0’ bit for a ‘1’ bit, or vice versa.

Concerning the bit errors in the decrypted ciphertext block, they occur in the
same bit position(s) as in the ciphertext block for the case of CFB, OFB, and CTR
modes, while the other bit positions are not affected. In the ECB and CBC modes, a
bit error may occur, independently of the error position, in any bit position of the
decrypted ciphertext block, depending on the underlying block cipher [39].

Regarding error propagation, for the ECB, OFB, and CTR modes, bit errors
within a ciphertext block do not affect the decryption of any other blocks. In the
CBC mode, any bit positions that contain bit errors in a ciphertext block will also
contain bit errors in the decryption of the succeeding ciphertext block; the other bit
positions are not affected. In the CFB mode, bit errors in a ciphertext segment affect
the decryption of at least one successive ciphertext segment, in any bit position.

Errors in counter blocks and initial values (IV). For the CTR mode, a bit error
in a counter block is determining bit errors in any bit position of the decryption of
the corresponding ciphertext. For IV, bit errors in the OFB mode, affect the
decryption of every ciphertext block. In the CFB mode, bit errors in the IV affect, at
a least, the decryption of the first ciphertext segment, and possibly successive
ciphertext segments, depending on the bit position of the rightmost bit error in the
IV. Such bit errors may occur, in any bit position of the affected ciphertext blocks
for both the OFB and CFB modes, with an expected error rate of fifty percent. In the
CBC mode, if bit errors occur in the IV, then the first ciphertext block will be
decrypted incorrectly, and bit errors will occur in exactly the same bit positions as in
the 1V; the decryptions of the other ciphertext blocks are not affected.

Vulnerabilities. If the integrity of the IV is not protected for the CBC mode,
the decryption of the first ciphertext block is vulnerable to the (deliberate)
introduction of bit errors in specific bit positions of the IV. In the case of OFB and
CTR modes, the decryption of any ciphertext block is vulnerable to the introduction
of specific bit errors into that ciphertext block if its integrity is not protected. This
holds for the ciphertext segments in the CFB mode; however, for every ciphertext
segment except the last one, the existence of such bit errors may be detected by
their randomizing effect on the decryption of the succeeding ciphertext segment.

In figure 4.6, based on [39], the effects of bit errors in ciphertext
respectively IV are presented during decryption of ciphertext block C; (and
successive blocks). Random bit errors occur independently in any bit position with
an expected probability of Y2, while specific bit errors occur in the same bit
position(s) as the original bit error(s).

The deletion or insertion of bits into a ciphertext block (or segment)
destroys the synchronization of the block (or segment) boundaries, as such bit
errors may occur in the bit position of the inserted or deleted bit, and in every
subsequent bit position. Therefore, the decryptions of the subsequent ciphertext

BUPT

52 4. Modes of operation and their security in case of faults

blocks (or segments) will almost certainly be incorrect until the synchronization is
restored [39].

Mode Effect of bit errors in C; during Effect of bit errors in IV during
decryption of Cj and succesive |decryption of C; and succesive block(s)
block(s)
ECB random bit error for decryption of C; not applicable
CBC random bit error for decryption of C; specific bit error for decryption of Ci

specific bit error for decryption of Cj+1

CFB specific bit error for decryption of C; random bit error for decryption of Cq, ...
random bit error for decryption of Cj+1,

OFB specific bit error for decryption of C; random bit error for decryp. of Cy, ..., Ca

CTR specific bit error for decryption of C; bit errors in the j*" counter block result in
random bit error for decryption of Gj *

*in Section 4.3 vulnerabilities due to injection of faults in counter blocks are analysed and
the effect of bit errors is presented

Figure 4.6. Summary of effect of bit errors on decryption

4.3. Counter Mode standardized implementations

Diffie and Hellman introduced Counter Mode in 1979 [40]. Different
institutions or consortia such as NIST [39] or the ATM Forum [37] standardized
Counter Mode. The advantages [41] of this mode compared to others are:

e high speed implementations. CTR is fully parallelizable; Also pre-processing
can be used to increase speed;

e low rate of error propagation;

e arbitrary length of the messages;

e all these without weakening the security.

The encryption and decryption processes using counter mode of operation
are presented in figure 4.7. We use the following notation:

n - number of bits of the encryption/decryption block,

| - length of a message encrypted with the same key K,

m is I/n rounded up to the nearest integer; number of blocks to be
encrypted,

u - value smaller than n so that

[=n* (m-1)+u

A set of input blocks (of length n), called counter blocks (ctr 1, ..., ctr m),
are encrypted using the key K to produce a sequence of output blocks, called key
stream blocks (KSi, ..., KSm), which are XOR-ed with the plaintext blocks (My, ...,
Mm) to produce the ciphertext blocks (Ci, .., Cm). With Ex(ctr j) is denoted
encryption of the counter block ctr j, with the given key K. For decryption, the
ciphertext is XOR-ed with the key stream to produce the plaintext. In this way the
same function is used for encryption and decryption process, only the inputs are
different. This represents an advantage for hardware implementation - the same

BUPT

4.3. Counter Mode standardized implementations 53

hardware can be used for encryption and for decryption even if the algorithm is not
identical for both operation (encryption/decryption) - such as in Rijndael (the AES
selected standard) [22].

Figure 4.7. Counter mode. Encryption and decryption

Equations (4.1) and (4.2) contain the formulas for encryption and
decryption respectively, where Ex represents encryption function with the key K.

KSj=Ek(ctrj), forj=1,2,..m;

C=M; ® KS;, forj=1,2,..m-1; Ch= Mm® MSBu (KSn). (4.1)
KSj=Ek(ctrj), forj=1,2,..m;
M= G;® KS;, forj=1, 2, ..m-1; Mp= Cn® MSBuU (KSm). (4.2)

If the last block of the message encrypted with the same key has a length u
smaller than the block size n, then only the first u bits are XOR-ed with the first u
bits of the key stream KS;,, the rest of them being discarded.

From figure 4.7 and from the equations can be noticed that the encryption
function can be executed for the counters before the plaintext is available for
producing the ciphertext.

The sequence of counter blocks must have the property that each block is
different from others while the same given key is used. If this requirement is not
satisfied, then, the confidentiality of all the plaintext blocks encrypted with the same
counter block may be compromised [41].

So, the security of the encryption can be reduced in case that more plaintext
blocks are encrypted with the same counter block.

4.3.1. Standard Incrementing Function in NIST
Recommendations

The function used for generation of the counter blocks has to satisfy the
uniqueness requirements, meaning that for the same key, all counter blocks should

BUPT

54 4. Modes of operation and their security in case of faults

be different.

Starting from an initial counter block ctri1, the successive counter blocks are
derived by applying an incrementing function.

In [39] this is called Standard Incrementing Function. The Standard
Incrementing Function can be applied to entire block or to part of a block. If p is the
number of bits in the part to be incremented (p <n), and x<2P a positive integer,
then the function takes [x], (the binary representation of the last p bits of the
integer x) and returns [x+1 mod 2P]p.

An example with small values of p=5 and n=8 is given in [39]. The symbol *
represents an unknown bit in the example, and ***11110 is the initial value, which
is incremented to generate the rest of the counter blocks. After four applications of
the Incrementing Function the output is the following:
¥**11110
**11111
¥**00000
**00001

***00010.

This function satisfies the uniqueness requirements in case of m<=2P blocks
encrypted with the same key. The recommendations are not restrictive. There is
also mentioned that in case of a non-zero initial string, a linear feedback shift
register can be used.

The next sections present two other modes for implementing of the
Incrementing Function for the counter block. The first one is using 128 bits blocks
and the AES encryption algorithm in an Internet Draft concerning IPsec [36] and the
second one, is the one used in the ATM Security Specifications [37].

*

* % ¥

4.3.2. Counter Mode and IPsec

In [36] an Internet Engineering Task Force’s RFC is presented, and it
describes the use of AES Counter Mode of operation (called here AES-CTR). It
contains also the explicit initialization vector as an IPsec Encapsulating Security
Payload (ESP) confidentiality mechanism.

It also shows the need for a unique combination of initial value and key, and
the requirement that the same counter block is not repeated during the use of a
key.

e Counter Block Format. The counter block contains 128 bits (see figure 4.8).

The components of the counter block are as follows:

e nonce, a single use value field of 32 bits. It is assigned at the beginning of
the security association;

e initial vector, a field of 64 bits, chosen only once for a given key;

e block counter, the last 32 bits of the counter block, starts with a value of
one and is incremented to generate the next counter blocks.

The block counter field starts with the value of one and is incremented to
generate the subsequent field of the counter block.

Nonce (32 bits) Initial vector (64 bits) Block counter (32 bits)

Figure 4.8. IPsec counter block format

This assures 232-1 distinct counter blocks, or 4,294,967,295 blocks, which is
considered to be sufficient to handle IPv6 requirements.

BUPT

4.3. Counter Mode standardized implementations 55

The IETF RFC [36] contains also 9 test vectors. The test vectors contains
maximum the first 3 consecutive counter blocks.

Every time when a security association is established or a key is changed
(meaning new nonce or initial vector are established between parties) the initial
value for the least significant 32 bits is set to 1 and then it is incremented till a new
association or key is established.

4.3.3. Counter Mode in ATM Security Specifications

ATM Security Specifications [37] presents the utilization model for the
counter mode with any 64-bit block encryption algorithm. Version 1 of the
specification was published in 1999 and Version 1.1 in 2001. The part relevant for
our dissertation has no major changes.

In [37] the counter mode is considered the most efficient mode of operation
in ATM encryption due to the parallel encryption capabilities.

State Vectors Fields. The counter blocks are called in [37] State Vectors
(SVs). In order to ensure unique key stream value for each block that is encrypted
with the same key, each State Vector contains fields with various counters and a
Linear Recurring Sequence.

The State Vector has 64 bits belonging to five fields (figure 4.9). The fields
of the State Vector are as follows:

e Galois LFSR, 21 bits;
Initiator/Response (I/R) bit;
Sequence Number, 4 bits;
Segment Number, 3 bits;
Jump Number, 35 bits.

Sequence | Segment
Galois LFSR (21 bits)] number number Jump number (32 bits)
(4 bits) (3 bits)

Figure 4.9. ATM state vector fields

The first field is composed of a Galois Linear Feedback Shift Register (LFSR).
The Galois implementation of the shift register is used. The LFSR is pre-set back to
initial value at each resynchronization of the communication pairs. The maximum
interval of time between resynchronizations determinates the selection of a 21-bit
size LFSR, generating 22!-1 values, meaning 2,097,151 distinct blocks.

The I/R bit is used to avoid the same cipher text to be used with the original
message and with the response message in case of the same key and SV used in
duplex connections. This determines that the responder’s key stream to be different,
so enclosing the original plaintext would produce different ciphertext.

The Sequence Number bits are set to different values depending on the
context of use (AAL1 connections, AAL3/4 connections or other connections).

The Segment Number is a 3-bit field that defines which 64-bit segment
within the payload is encrypted/decrypted. (The 384-bit ATM cell payload is
segmented into 6 segments of 64 bits for encryption and decryption). The LFSR is
constant for the entire cell payload.

The Jump Number starts from all zeros and it is incremented each time a
resynchronization occurs or in case of AAL5 with each end-of-message cell. The 35-
bit field allows 235-1 resynchronizations without repetition and is incremented as

BUPT

56 4. Modes of operation and their security in case of faults

binary counter.

From all 64 bits of State Vector, only the Jump number requires to be
transmitted to the receiver during a resynchronization or key changeover. The other
fields are preset to their default values. The generation of the next counter block
between resynchronizations is mainly based on the output of the LFSR. Even if at
the resynchronization the LFSR has the same initial value, the Jump number
(incremented at every resynchronization) gives the differentiation. The
specifications contain also a requirement. The jump number should be always
greater than the previous jump number. If the new Jump number is less or equal to
the previous Jump number, then this is rejected and considered as an error
condition.

4.4. Faults and their impact on security in case of
Counter Mode

In context of secure encryption algorithms such as AES, the operation
modes should not reduce the overall cipher security. As mentioned in section 4.3,
the main concern for Counter Mode of operation is regarding the generation of the
counter. The counter should generate a unique value for all messages encrypted
with the same key. In this section the security of the Standard Incrementing
Functions presented in section 4.3 are analyzed.

We consider the following sequence (adding one more counter block to the
initial sequence from section 4.3.1):

ctri=*%.*11110
ctr2=*_.*11111
ctr3=*.*00000
ctr4=*_.*00001
ctr5=*.*00010
ctre=*.*00011

It is easy to notice that the Hamming distance between each two pairs of
counters (ctrl, ctr2), (ctr3, ctr4), (ctr5, ctr6) etc. is 1. This is true for all pairs of
(even, odd) counter block values.

In this example we consider that the Standard Incrementing Function is
applied to the least significant bits of the initial value counter (as it is also in [39]
and [36]). If the positioning is different, the example is valid also, but we call the
least significant bit - the one situated on the least significant position of segment
affected by the incrementing function.

If a fault occurs on the least significant position of the counter, denoted f,
then we have the following sequence:

ctri=*__.*1111f
ctr2=*__.*1111f
ctr3=*_.*0000f
ctr4=*_.*0000f
ctr5=*_.,*0001f
ctre=*_.*0001f

BUPT

4.4. Faults and their impact on security in case of Counter Mode 57

where f can be 0 or 1. Which is the value of fis not important, as long as it is the
same for consecutive (ctr j, ctr j+1) pairs of block counter values (with j being odd,
and the value of ctr j in this context being even). In this case the encryption process
is generating the following sequence of ciphertext blocks:

KS;=Ex(ctr j), KSj+1=Ek(ctr j+1), ...
M; ® KS;j, Mj+1 ® KSj+1, Mjr2 ® KSji2, Mjr3 @ KS;j43,...

with ctr j=ctr j+1 and further KS;=KS;:; due to the fault f. So, a XOR operation
between two consecutive ciphertext blocks will give:

G ® Cj+1= M;® Mj41, with j odd;
independent of the key K.

This is not revealing directly the plaintext, but if patterns exist, the plaintext
could be extracted. And, as mentioned in section 2, the uniqueness requirement of
the Incrementing Function generating the counter blocks is not fulfilled any more.

In hardware implementation this fault can be generated cutting the wire
connection of the LSB of the Counter Module to the Encryption Module in figure
4.10. The same effect can be obtained due to trap implementation.

The fault assumption can be extended. If the two least significant bits are
faulty, then four consecutive plaintext blocks are XOR-ed with the same key stream
block, independent of the key.

Counter Module
(generating counter blocks ctr j from ctr j-1)
n-1 n-2 n-3 1 0

\ 4 A 4 h 4 ‘ -

|K:A‘:> Encryption Module
n

E,(ctr j)

Figure 4.10. Fault on the LSB of the Counter module output (n =the size of the

encryption/decryption block).

We consider that a pair sender/receiver is communicating encrypted data
using CTR mode. From the model of fault presented before, there are different
situations:

e no fault present;

e fault(s) present at one side. In this case errors are detected, and the
receiver will have one of the following situations after the decryption
process:

e every second block of decrypted data is unintelligible — due to a
single fault at the least significant position of the counter segment;

e every plaintext block is followed by three unintelligible blocks - due
to a number of two faults, etc;
e same fault(s) present on both sides. In this case the presence of fault(s) is
undetected; no errors are detected;

BUPT

58 4. Modes of operation and their security in case of faults

e different faults present at the two sides. Errors are detected; at the receiver
side, certain (or all) blocks are unintelligible.

From these situations, the most dangerous one is the case of the same
fault(s) present at both sides, when no error is detected due to such faults. This can
be due to a malicious implementation of the encryption mode of operation if all the
parties involved in the secure communication are using the same corrupted
implementation.

4.5. How to avoid vulnerabilities for the modes of
operation

In this section we propose solution to avoid vulnerabilities of Counter Mode
in front of our model of fault and then we analyze the case of other modes for the
same model of fault.

Counter Mode. In NIST Recommendations and IPsec Specifications the least
significant bit of the counter blocks assures the differentiation of the key stream
blocks which are XOR-ed with the plaintext blocks to produce the ciphertext blocks.
If a fault affects the least significant bit, then two consecutive plaintext blocks are
using the same key stream block for encryption. The confidentiality of all the
plaintext blocks encrypted with the same counter block can be compromised. The
change of the key is not removing the problem.

However there are two options to avoid such vulnerability. An option would
be to use other counter generator, for instance instead of consecutive values, to use
LFSR.

The use of a LFSR is recommended to avoid the vulnerability of a single or
multiple bit faults based on the model presented in section 4.4. We consider that the
ATM Security Specifications are more reliable in context of such a fault. The NIST
recommendation [39] mentions but not establishes the use of LFSR for Standard
Incrementing Function.

Another mode to avoid this model of fault is to test if the output of the
Counter module (Fig. 2.10) used for encryption of current plaintext block is different
from the one used for previous plaintext block. However, one cannot be sure that
the fault cannot occur just after the point of test, before the input of encryption
module.

Our model of fault in case of other operation modes. Operation modes such
as CBC (Cipher Block Chaining), CFB (Cipher FeedBack) and OFB (Output FeedBack)
are designed to hide existing patterns in the plaintext. In context of these modes,
the blocks that are consecutive encrypted are not consecutive values, output of a
counter module. If the ECB (Electronic Code Block) mode is used, where blocks of n-
bits are encrypted one by one, no counter module is involved. So, in case of these
operation modes our model of fault is not causing security concerns and the faults
are detectable due to unintelligible blocks at decryption. The effect of error
propagation for the operation modes is presented in section 4.2. Other modes of
operation (e.g. Statistical Cipher Feedback (SCFB) mode [42]) may be considered
for further research.

4.6. Conclusions
Operation modes are used in the implementation of block algorithms. The

five modes of operation standardized and recommended to be used with standard
algorithms are presented in this chapter and the propagation of errors is analyzed.

BUPT

4.6. Conclusions 59

An error can have different effects: it can determine a single bit error at decryption
side, or random bits error depending on the input being affected by fault: plaintext,
initial value where applicable.

Also, we present the CTR mode and how it is used based on NIST, IPsec or
ATM recommendations. In NIST Recommendations and IPsec Specifications the least
significant bit of the counter blocks assures the differentiation of the key stream
blocks which are XOR-ed with the plaintext blocks to produce the ciphertext blocks.

We presented a model of fault that can reduce the security of Counter Mode.
If a fault affects the least significant bit, then two consecutive plaintext blocks are
using the same key stream block for encryption. The confidentiality of all the
plaintext blocks encrypted with the same counter block can be compromised. The
change of the key is not removing the problem.

Two recommendations are made. The use of a LFSR is recommended to
avoid the vulnerability of a single or multiple bit faults based on the model
presented in section 4.4. The ATM Security Specifications are more reliable in
context of such a fault. The NIST recommendation [39] mentions but not
establishes the use of LFSR for Standard Incrementing Function. Another mode to
avoid this model of fault is to test if the output of the Counter module (Fig. 2.10)
used for encryption of current plaintext block is different from the one used for
previous plaintext block.

The main contributions of the chapter are:

e description of the five standardized modes of operation;

e analysis of the bit errors and error propagation for all modes of

operation;

e focusing on Counter Mode, analysis of the security of three
implementation recommendations, namely NIST recommendations, IPsec
specifications and ATM security specifications;

e identification of vulnerabilities and introducing a model of fault that can
reduce the security of Counter Mode; analysis of error detection for this
model of fault;

¢ recommendations useful for secure implementations of Counter Mode.

The confidentiality of the Counter Mode presented in specifications (e.g.
NIST specifications) can be compromised with the model of fault presented in
section 4.4 independent of the key value used for encryption [43]. We have shown
that fault detection/tolerance is required to avoid such vulnerabilities.

BUPT

5. FAULT TOLERANCE FOR SECURE
IMPLEMENTATIONS OF BLOCK CIPHERS

Fault tolerance is the attribute that enables a system to achieve fault-
tolerant operation. A fault-tolerant system is one that can continue to correctly
perform its specified tasks in the presence of hardware failures and software errors
[44]. Starting from this definition of fault-tolerant system, it is obvious that
cryptographic implementations need to be fault-tolerant in order to function
correctly. A faulty encryption or decryption would generate faulty output, and this,
in case of a message, means unintelligible decrypted messages to the receiver. The
request for re-transmission will generate delays and extra cost. But, this is not the
only reason why fault tolerance is now needed in cryptographic implementations.

Due to the vulnerabilities that can be generated through fault analysis
attack (as seen in previous chapters), the faults can allow the attacker to retrieve
e.g. key data (which can be used even later i.e. when no fault is affecting the
encryption/decryption process). So, also for security reasons fault tolerance
techniques/mechanisms are needed.

In this chapter we identify different techniques proposed for self-testing
cryptographic architectures able to detect transient or/and permanent faults injected
by an attacker in hardware implemented algorithms.

Trade-off analysis of different resources required for detection mechanisms
is also included: the cost of hardware or the delay generated by testing mechanisms
vs. the type of detected faults. However given the consequences of a successful
attack (which can retrieve key information with a quite low cost), the extra cost
generated by detection and avoidance mechanisms is reasonable.

A case study is given for Triple-DES, an algorithm still used in many
protocols (e.g. IPsec). In this chapter we identify which method is most appropriate
in case of Triple-DES algorithm from the perspective of a realistic attack model.

5.1. Available mechanisms protecting block ciphers
against fault analysis attacks

5.1.1. Fault analysis attacks for block ciphers

Even if from a mathematical point of view, and from applying conventional
attacks such as linear and differential cryptanalysis, the cryptographic algorithms
are proven to be secure, faults can reduce the overall confidentiality of the
cryptosystem. Attacks based on random faults were announced by Boneh, DeMillo
and Lipton [30] in 1996. From this work, Eli Biham and Adi Shamir proposed next
year a new attack, based on both transient faults and permanent faults targeting
secret key cryptosystems, DES (Data Encryption Standard) in this case [32]. As DES
was the standard at that moment, all analysis was carried out targeting DES.

BUPT

5.1. Available mechanisms protecting block ciphers against fault analysis attacks 61

5.1.2. Error detection mechanisms for block ciphers

Different methods have been proposed to overcome the fault analysis
attack. Most of these are focusing the probabilistic attacks (where the attacker has
little or no control for the injected fault location and type). These methods include
redundancy-based error detection schemes inspired from already existing fault
tolerance techniques. Time-redundancy based concurrent error detection assumes
two (several) encryption (or decryption), one after the other, and comparison of the
result.

Such methods, in which encryption is done several times and the results are
compared (e.g. in case of fault-tolerant smartcard design), are not always suitable
[32]. For some fault models, key information can be retrieved based on the
comparison, or, if the plaintext register is damaged, a faulty plaintext will be
encrypted every time, and the fault will pass undetected.

Another type of redundancy-based technique, where the encrypted message
is decrypted and the input value is compared, was proposed by Karri et al. in [45].
This method, called Concurrent Error Detection (CED) was applied at algorithm and
round level for AES finalists (the five algorithms submitted for NIST evaluation for
Advanced Encryption Standard, selected for the second round). The method can be
used for symmetric encryption due to the inverse relationship that exists between
encryption and decryption at algorithm level, round level and operation level. A
trade-off analysis is presented regarding area overhead, performance penalty and
fault detection latency for four cases - no fault tolerance (no concurrent error
detection schemes), concurrent error detection schemes at algorithm, round and
operation level. Based on their implementations, round level concurrent error
detection has the most convenient area overhead, performance penalty and fault
detection latency balance.

In [46], Bertoni et al., a scheme based on error detection codes (i.e. parity
codes) is described and evaluated for the specific case of AES (Rijndael). The
method described in the paper proposes the use of a parity bit with each byte
element. It requires prediction of the parity bits from one round to the other, being
in this way algorithm dependent. This approach has a low cost (limited hardware
overhead and short detection latency) compared with concurrent error detection
schemes from [45].

The fault coverage for single bit faults is high; however in case of multiple
bit faults the coverage is lower.

The methods presented in [45] were considered to be expensive in terms of
area overhead or output delay [47]. Karpovsky &co., in [47], used symmetric
nonlinear (cubic) error detection codes for a fault analysis attack resistant AES
implementation, so, for a fault-tolerant implementation.

From the point of view of fault coverage, the redundancy-based techniques
are more efficient and easier to generalize even if the cost is higher. Other
techniques, using error detection codes, have to be specifically designed for the
given cryptographic algorithm.

However all techniques require considerable overhead if fault-tolerant
implementations are used for cryptographic algorithms. And, as it can be seen also
from this presentation of proposed methods to detect fault analysis attack, this field
requires further research.

After presenting a theoretical case study for Triple-DES algorithm in this
chapter and another one, with implementation results for MISTY1 in Chapter 6, a
critical analysis of the reference papers is included. In these two chapters new

BUPT

62 5. Fault tolerance for secure implementations of block ciphers

methods, not applied before in security, are introduced. These methods have good
implementation results, showing this way that they are suited in the field of fault
tolerant security implementations.

5.2. Case study. Triple-DES

Even if new algorithms have been developed, which are presented to be
more secure (e.g. AES (Rijndael) [22]), a lot of infrastructures are still using some
of the ‘old" cryptographic algorithms. This is due to certain latency in
implementation and integration caused by the cost involved in those procedures.
ATM Security Specifications include usage recommendation for Triple-DES [37].
Even NIST allows the use of the Triple-DES also called Triple Data Encryption
Algorithm (TDEA); this in conditions in which on one side the agencies are
encouraged to use and to implement the faster and stronger algorithm, the AES,
and on the other side NIST proposes to withdraw the standard and the
recommendations regarding DES [48].

Also, IPSec (the most commonly used protocol when implementing Virtual
Private Networks) supports, next to other encryption protocols, Triple-DES [36].

Due to this extensive use of Triple-DES, different implementations could be
subjects of attacks.

5.2.1. Short presentation of Triple-DES

Triple-DES, was developed to overcome the short key vulnerability of DES
algorithm in front of brute force attack.

Triple-DES key consists of three DES keys. This means that the input data
is, in effect, encrypted three times using DES algorithm but with 3 keys. The
algorithm encrypts the message with the first key, decrypts it with the second and
encrypts it again with the third key using the normal DES algorithm.

For a better understanding we use the following notations. M denotes the
plaintext (the message to be encrypted). The ciphertext is denoted by C. The
encryption function E, operates on M to produce C using a key K. Or, in
mathematical notation:

Ex(M) = C
In the reverse process, the decryption function D operates on C using a key
K to produce plaintext M.
Dk(C) = M, and so Dk (Ex (M)) = M.

In figure 5.1 a general representation of Triple-DES is given.
In case of Triple-DES we have three keys: K1, K2, K3. So, the encryption
respectively the decryption processes are written as below:

C = Ek3(Dk2(Ex1(M))).
M = DK1(EK2(DK3(C)))
Different options can be specified for the keys:
e K1, K2 and K3 are independent keys;
e K1 and K2 are independent and K3 = K1;
e Kl1=K2 = K3.
The last option allows Triple-DES to be backward compatible with DES.

BUPT

5.2. Case study. Triple-DES 63

Plaintext

I
1\

| DES Encryption |é— Key 1
2

| DES Decryption |é— Key 2
v
| DESEncryption [¢T— Key3

[
\Z

Ciphertext

Figure 5.1. Triple-DES - general architecture.

Given the independent nature of initial permutation IP and its inverse IP1, in
case of Triple-DES implementation, the entire Triple-DES process of encryption can
be described as following:

e 16 rounds encryption with K1 subkeys,
e 16 rounds decryption with K2 subkeys,
e 16 rounds encryption with K3 subkeys.

For Triple-DES the encryption function and the decryption function differ
only through the order of the subkeys used inside the rounds. In those conditions,
the algorithm can be seen as a 48 round algorithm, using 16 subkeys generated
from K1 in order, 16 subkeys generated from K2 in inverse order and 16 subkeys
generated from K3 in order.

Given this similarity of Triple-DES with DES algorithm ([34] and others), we
are not going to present details regarding DES encryption, decryption or key
scheduling algorithm here.

5.2.2. Applying error detection methods for Triple-DES
algorithm

5.2.2.1. Using CED for Triple-DES

As presented by Karri & co in [45], the concurrent error detection (CED)
method takes advantage of the inverse relationship between encryption and
decryption functions in the symmetric block ciphers. This inverse relationship exists
at three levels: algorithm level, round level and operation level.

Algorithm level CED for Triple-DES. This method can be implemented in
two modes, depending on the available resources and requirements: time overhead
or hardware overhead. The mode with time overhead requires extra hardware only
for storage for the plaintext (till the decryption is complete), for the comparison
module and for the switching encryption/decryption mode module. However, from
time perspective, the total time increases from the time required to execute 3 x 16
rounds to more than double (2 x (3 x 16) rounds plus comparison time).

The general representation of the algorithm level concurrent error detection
mechanism is represented in figure 5.2. An error signal is generated if the
comparator detects different values.

The mode with hardware overhead requires a second encryption/decryption
module, so, implies 100% hardware overhead. This mode is efficient when a
continuous data flow is encrypted/ decrypted, and in this mode, the new plaintext is
encrypted in parallel with the decryption of the previous encrypted plaintext. After

BUPT

64 5. Fault tolerance for secure implementations of block ciphers

the initial delay, the output flow has the same throughput as for the algorithm used
without error detection mechanisms. So, for N blocks of data, the total time of
encryption/decryption is (N+1) x time to encrypt/decrypt a data block. This
algorithm level CED method can detect both transient and permanent faults as long
as the storage of the plaintext is not affected by faults.

Plaintexti~~——r—————~—r—4——f—A—ﬁ
v

Round 1
h 4 \ 4
Round 2 Register

v
Round n

Encryption

Ciphertext
i |Ciphertext

v ,
Round 1 ‘
\ 4
Round 2

Error
>
v
Comparator

h 4

Round n

Decryption

Figure 5.2. Algorithm level error detection. General view.

Regarding detection latency (the time between the error occurred and the
moment it is detected) this is 2 x (3x16) x time to encrypt/decrypt a round for both
modes (hardware or time overhead).

Round level CED for Triple-DES. Round level CED is similar with the
algorithm level CED, only that the inverse function and the comparison are executed
after each round. Round level CED is represented in figure 5.3, where E means
encryption and D means decryption. There are error signals (r1,.., rn) for each
round of the algorithms. Given the DES algorithm structure, the only difference
between an encryption round and a decryption round is given by the order of the
subkeys used for encryption respectively decryption (for encryption from subkey one
to sixteen and from decryption from the subkey sixteen to subkey one). In this
context the same hardware can be used for both encryption and decryption.

The time required detecting a fault is twice the time required for a round
encryption/decryption.

Regarding the hardware/time overhead trade-off, this is similar to algorithm
level CED. A 100% overhead is required or for hardware or for time in order to have
the other part kept in the original value domain. More details are presented in table
5.1.

BUPT

5.2. Case study. Triple-DES 65

Plaintextt —————— -Pi Register i
___________ l____________' : |
 Comparator |
‘ E round 1 ‘ r———— parator |
» Droundn - Error rl

***** » D round n-1 Error r2

| ; !
‘ E round n ‘ -2 Comparator |
———
L _____ > D round 1 Error rn
Ciphertext

Figure 5.3. Round level error detection. General view.

Round level CED method can detect both transient and permanent faults as
long as the storages of the plaintext and intermediate values between rounds are
not affected by faults. However, if only permanent faults are targeted (such as the
ones assumes by the fault model in [32] for Non-Differential Fault Analysis for the
attack to be more realistic), CED is not required for all rounds. If same module is
used for all rounds of encryption, then, due to the permanent nature of the fault, is
enough that the /ast round is using the CED mechanism to detect possible faults. We
call this new method applicable for permanent faults, which applies error detection
only for the last round, /ast round CED.

Last round level CED. For time overhead mode, last round CED gives a
low overhead (2.08 %), equivalent with the time required to encrypt a round, so
that the total time to encrypt a block will become (3 x 16 +1) x time required for a
round encryption / decryption.

This low time overhead is given by the high number of rounds (3 x 16 = 48)
used in Triple-DES for encryption/decryption. For hardware overhead mode, this
solution is not useful because the 100% hardware overhead is already there, even if
the redundant module is used only 2.08 % of the time.

From table 5.1 it can be noticed, that in case that only permanent faults are
targeted, the most efficient method is the one using Concurrent Error Detection with
time redundancy mode of implementation. Even if the same hardware is used, there
are different input values for the last round respectively error detection round. The
output of the 48t round is decrypted and compared with the output of 47t round,
and there is low probability that the output of 2 consecutive rounds to be identical.
So the probability to have an undetected permanent fault is low.

BUPT

66 5. Fault tolerance for secure implementations of block ciphers

If this probability of detection is considered insufficient, the method can be
applied to the last 2 rounds. As such, this new error detection method has the lower
cost. The only disadvantage is given by the fact that it targets only permanent
faults.

Table 5.1. Trade-off analysis for different concurrent error detection methods

CED level Overhead Detection Hardware Time Total time
mode latency |overhead) |overhead ®
Algorithm time 2x48 xr 100% 2xNx48 xr
(for N blocks)
hardware 2x48 xr 100% (N+1)x48xr
(for N blocks)
Round time 2xr 100% 2x48 xr
(for 1 block)
hardware 2Xxr 100 % (48 +1) xr
(for 1 block)
Only last time r+1® 2.08% (48 +1) x r
round) (for 1 block)
hardware r+1® 100 % (48 +1) xr

(for 1 block)

Mplaintext and intermediate results between rounds storage, comparison block, mode
selection block not mentioned in the table, but to be considered,

(@ comparison time considered negligible,
(3 allows only permanent faults detection, r= time for a round encryption/decryption.

Operation level CED for Triple-DES. This method relies on the fact that
applying input data through an encryption operation and the corresponding
decryption inverse-operation yields the original input data [45].

In figure 5.4 the general representation for error detection mechanism at
operation level is given.

In case of DES (and Triple-DES), for decryption, the so-called inverse-
operation is identical with the encryption operation. The F-function of the round can
be splitted in 4 stages: expansion, key mixing, substitution (using the S-boxes) and
permutation. However, due to the same order of the operations (for both encryption
and decryption) and due to the substitution stage, the decryption operations cannot
be executed in parallel with the encryption for the same round. But, decryption
operations of the current round could be overlapped with encryption operations of
the next round, however reducing the model to the case of round level CED.

BUPT

5.2. Case study. Triple-DES 67

Intermediate plaintext

round J » Register
4 : i remmemm e,
. » Comparator |
Operation 1 ‘ ———— D | }
|
el
= N » Inverse op 1 Erzor opl
cC
=
0 |
— ~——-—-—~® Register |
c — ¥ S, S
0 . - » C ¢
% | Operation 2 ‘ R
> : . | |
3 | >
c [T » |nverse op 2 ’ Error op2
L
~————~-® Register |
, A [P SRR
. » Comparator |
Operation m ‘ | 4 W
| L
¥ » Inverse op m Error opm
Intermediate

ciphertext round j

Figure 5.4. Operation level error detection. General view.

5.2.2.2. Using error detection codes and nonlinear robust codes for
Triple-DES

The method proposed in [46] to associate a parity bit for each byte element
requires prediction function for certain operations in the AES algorithm. Due to this,
the method is algorithm dependent. Applying this method to the Triple-DES requires
generation a prediction function for some operations, e.g. for substitution boxes S-
boxes.

The method from [47] relying on nonlinear codes uses a hardware extension
for detection purposes. This extension includes a prediction module. As in the case
of error detection codes, the error detection architecture is algorithm dependent.

These two methods have less overhead compared to the theoretical CED
and coverage for both permanent and transient faults (as it is published in [46],
[47]). If the cost assumed by the concurrent error detection methods is above the
requirement of the fault detection architecture, then algorithm dependent detection

BUPT

68 5. Fault tolerance for secure implementations of block ciphers

mechanisms are required.
In this context, using those methods in case of Triple-DES requires
development of prediction module/functions according to the specific method.

5.2.3. Fault analysis attack resistant key scheduling
algorithm for Triple-DES

From the surveyed literature, there is no method presented for the
protection of the key-scheduling algorithm.

As presented in [32], for the case of Differential Fault Analysis attack, faulty
subkey bit(s) generated by a fault in key scheduling algorithm can be used for
cryptanalysis. The number of ciphertext required for such analysis was considered to
remain the same as in DFA attack using faults in the encryption/decryption
algorithm.

The development of a fault analysis attack resistant key scheduling
algorithm is a future research topic.

5.2.4. Using complementation property for fault tolerance
purposes

DES exhibits the complementation property, namely that:
Ex(M)=C < E(M)=C

where R,M,E are the bitwise complements of K, M and C.

From security perspective, the complementation property means that the
work for a brute force attack could be reduced by a factor of 2 (or a single bit)
under a chosen-plaintext assumption.

However from fault tolerance perspective this complementation property can
be useful. Encrypting the complement of the plaintext with the complement of the
key allows for detection of errors: if both encryptions are executed (encryption of
the plaintext using the key and the encryption of complement of the plaintext with
the complement of the key) and the ciphertexts are not complements.

5.2.4.1. Specific error detection method for DES/Triple-DES
algorithms

Starting from complementation property, error detection mechanisms for
DES/Triple-DES can be developed. In this thesis, the new error detection
mechanism relying on complementation property is called complemented error
detection.

In this case (figure 5.5), compared with concurrent error detection
technique presented in section 5.2.2, this technique does not need such long
detection latency. As long as there are no hardware constraints to run two
encryptions in parallel, both direct and complemented plaintexts can be encrypted.
In such a case, only the verification - if the ciphertexts are complements - generates
delay. So, detection latency is half compared with CED technique.

If from hardware perspective both encryptions (for original plaintext and for
complemented plaintext) cannot be executed in parallel, the time overhead is 100%
as for the case of concurrent error detection techniques already presented (see
table 5.2 for comparison).

BUPT

5.2. Case study. Triple-DES 69

Complemented

lerte}d Plaintext
Key —» T1'iple-I_)ES C'mupl—emeute(_l’ Triple-DES
encryption Key encryption
- p» Not complements?
Cishertext Complemented ot comy
A ay Ciphertext ¥ v Error

Figure 5.5. Error detection mechanism for Triple-DES relying on complementation property

Based on the theoretical results presented in table 5.2 it is noticeable (last
column for total time required to encrypt/decrypt of one block) that complemented
error detection brings higher speed for the encryption/decryption when hardware

overhead is used.

Table 5.2. Trade-off analysis CED vs. complemented error detection for Triple-DES

Method Overhead | Detection | Hardware Time Total encryption/
mode latency overhead | overhead decryption time for
@ @ one block
CED, algorithm time 2x48xr 100% 2x48 xr
level redundancy
hardware | 2 x48 xr 100% 2x48 xr
Complemented time 2x48 xr 100% 2x48 xr
error detection -
algorithm level hardware 48 xr 100 % 48 x r
CED, round level time 2Xr 100% 2x48 xr
redundancy
hardware 2xr 100 % (48 +1) xr
Complemented time 2xr 100% 2x 48xr
error detection -
round level hardware r 100 % 48 xr

Mplaintext storage and intermediate results between rounds storage, comparison block,
mode selection block not mentioned in the table, but to be considered,

(comparison time considered negligible, r= time for a round encryption/decryption.

5.2.4.2. Complementation property and cryptographic algorithms

As mentioned at the beginning of section 5.2.4, for a cryptographic
algorithm complementation property is considered a drawback from security
perspective. As such, the algorithms designed and published after discovering this
property, are tested in order not to have this property.

BUPT

70 5. Fault tolerance for secure implementations of block ciphers

Thus, other algorithms cannot use the complementation property for error
detection purposes. However, a mechanism not used before in cryptographic
implementations, relying on redundancy techniques can be deployed for fault
detection purposes. Such a mechanism, using duplication with complementary logic
[44], is described and implemented in Chapter 6.

5.3. Conclusions and contributions

After introducing some security considerations, fault analysis attacks
developed for block ciphers are shortly presented. These attacks gave reasons for
developing fault detection mechanisms inside the cryptographic system. An
overview of fault analysis resistant implementations is given in this chapter. Based
on these available techniques, in section 5.2, after Triple-DES is shortly presented, a
case study is shown.

Because Triple-DES is one of the cryptographic algorithms extensively used
in different protocols, we considered that it is important to identify the most
appropriate mechanisms to detect the possible injected faults in hardware
implementations.

Based on the surveyed literature, keeping in mind the Triple-DES algorithm,
we can draw couple of conclusions and point out future research topics. First, if only
permanent faults are targeted, concurrent error detection mechanism used for the
last round generates the lowest overhead - only 2.08% time overhead (this
overhead depends on the number of rounds). This new method that we published in
[49] and present here has as advantages simplicity and low overhead in the case
that permanent faults are targeted.

If both transient and permanent faults are targeted, and mechanisms with
hardware or time overhead lower than 100% are required, algorithm dependent
implementations are needed for the specific encryption/decryption rounds of Triple-
DES. Also, mechanisms for fault analysis resistant key scheduling algorithm are
required due to vulnerability of scheduling algorithm in front of DFA.

DES and Triple-DES have a special characteristic called complementation
property. Even if this property is a disadvantage from security perspective, it allows
to be used for error detection purposes as we showed here and in [50]. This
property cannot be further used for other algorithms, as later developed algorithms
are designed not to have such a characteristic.

The contributions of this chapter are:

e overview of available mechanisms for error detection in cryptographic

algorithms;

e proposing a new method to reduce the cost of error detection

mechanisms, using last round error detection CED;

e suitability analysis of available mechanisms for Triple-DES algorithm;

e cost analysis of the error detection mechanisms in case of Triple-DES;

e analysis of DES/Triple-DES characteristics vs. fault tolerance
requirements and error detection costs;

e analysis of complementary property of DES/Triple-DES for fault tolerance
purposes;

e identification of possible research paths, e.g. addressing the key
scheduling algorithm.

Even if these error detection mechanisms were designed to overcome the

effect of fault injection by an attacker, they are useful also from reliability

BUPT

5.3. Conclusions and contributions 71

perspective (also in the case of non-malicious faults).

However, insertion of fault detection mechanisms must be made considering
other types of attacks (e.g. power analysis). As such, these mechanisms must not
generate vulnerabilities for other types of attacks.

BUPT

6. COST ANALYSIS OF ERROR DETECTION
TECHNIQUES FOR MISTY1 CRYPTOGRAPHIC
ALGORITHM

Error detection mechanisms using both general and specific techniques were
discussed in Chapter 5. However, most of these mechanisms are characterized by a
high cost due to redundancy, in hardware or time, estimated up to 100%. Some of
these general techniques in case of permanent faults are not able to detect errors
(e.g. in the case of a permanent fault if same module is encrypting twice the same
plaintext, no error will be detected as both outputs are identical). Other drawbacks
of the mechanisms presented in Chapter 5 are due to the requirements for storing
keys or plaintext for later comparison; these memory locations can be affected by
faults as well. For specific techniques, the main disadvantage is given by the design
of prediction logic which is algorithm and method (parity based or error codes
based) dependent.

In this chapter we are proposing another technique for error detection in
cryptographic implementations. Our method is using complemented duplication and
it relies on duplication with complementary logic technique [44]. This technique is
applied to MISTY1 algorithm. A fault tolerant implementation, designed using VHDL
language and simulated using ModelSim XE III 6.0d and Xilinx's ISE 8.1i
environment targeting Virtex (VIRTEX1000bg560-6) device, is used for evaluation.
The results are compared, for evaluation purposes, with other implementations -
which are not considering fault detection mechanisms. Considerations regarding
parity prediction based error detection mechanisms are also presented in this
chapter.

This chapter has the following structure. After introducing MISTY1