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CHAPTER 1 
Introduction: Aims and Scope 

1.1. Aspects of "Structural Design Standards" 

Structural Design Standards for bridges and structures influences greatly on the 

design process, design calculations and structural detaiis. This influence can be 

obsen/ed even nowadays as the "Stnjctural Eurocode" Standards are finalized. 

Beside changes in the standards the design strategy has also changed significantly: 

- In the fieid of modern steei structures the increase in the variety of prefabricated 

components (e.g. hot-rolled and cold folded sections) brought significant 

changes in the design theory, design techniques and quality management. 

- The developing welding techniques and fabricating processes in the past 

decades lead to structural detaiis that differ from traditional solutions. 

- The computaţional technology has been developed enormousiy in the past 

decades. This development helped that the design and research methodology 

can also go through an extensive transformation. 

The Structural Eurocode Standards are the results of a long research and developing 
activity. The structure of the Eurocode system is well known: 
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EC-0 EN 1990 Eurocode : E 

EC-1 EN 1991 Eurocode 1: 

EC-2 EN 1992 Eurocode 2: 

EC-3 EN 1993 Eurocode 3: 

EC-4 EN 1994 Eurocode 4: 

structures 

EC-5 EN 1995 Eurocode 5: 

EC-6 EN 1996 Eurocode 6: 

EC-7 EN 1997 Eurocode 7: 

EC-8 EN 1998 Eurocode 8: 

resistance 

EC-9 EN 1999 Eurocode 9: 

In the rest of the thesis references to the section of the standard will be shortened, for 

example EC3 means EN1993-1.1-2005. 

I have used the foilowing Structural Eurocode: 

EN 1993-1-1 (2005) General rules and rules for buildings 

prENV 1993-1-5 (1992) General mles. Suppiementary rules for planar 

plated structures without transverse loading 

EN 1993-1-5 (2007) 

EN 1993-2 (2007) Design of steei structures. Steel bridges 

EN 1994-1-1 (2005) General rules and rules for buildings 

EN 1994-2 (2006) Composite bridges 

Out of the standards that are based on the limit-states principie EC 3 discusses 

plated structures. EC 3 contains the design methodology and structural details of 

planar plated structures. The design of planar plated steeI structures is summarized 

in Fig. 1.1. It can be seen in the figure that two sections of the "Generic Code Side" 

deal with steeI plated structures: 

- EC-3-1.5 Planar plated structures without transverse loading: This class of 

stiffened planar plates will be called "orthotropic steeI plate" in the foilowing 

chapters. 

Ch.2-2 

BUPT



- EC-3-1.7 Planar plated structures with transverse loadîng: This class of 

stiffened planar plates will be called "orthotropic steei deck" in the foilowing 

chapters. 

Fig. 1.1. also shows that on the "Structural Code Side" oniy one section of EC-3-2 

Steel Bridges deals detailing in detail with the structural. The titie of this section is 

"Annex G: Special Considerations for Structural Detailing of Orthotropic Decks". 

Fig. 1.1 emphasizes strongly the currently used design practice that although the 

calculation of the two types of planar plated structures are significantly different, at 

the same time similar or the same structural details are used in the two types of 

planar plated structures. 

EC 3 EN 1993-1-1 2005 Desig of Steei Structures 

Generic Code Side Structural Code Side 

EC 3-1-5 Planar plated structures^ 

othotropic steei plate 

EC 3-1-7 Planar plated structures 

with transverse loading 

orthotropic steei deck 

EC3-2 Steel Bridges 

Annex G: Special 

Considerations for 

structural detailing of 

orthotropic decks 

Fig. 1.1. Design of planar plated steei structures 

1.2. Aspects of structural details 

The most commonly used structural solution for bridges for orthotropic steei decks 

with different holes and closed cross section stiffeners is that a large U-shaped hole 

is cut into the top part of the web of the cross beams, which ailows longitudinal U-

shaped stiffeners to pass through. These U-shaped holes in the web of the cross 

beams reduce the cross section and thus cause weaknesses. Furthermore the 

overall structural behaviour is also affected by these holes. 
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Experimental results are available for orthotropic steei decks with U-shaped holes. 

The experimental and theoretical work of KUNERT (1967) and KUNERT and 

WAGNER (1968) must be mentioned, however in their study the longitudinal ribs 

have small open sections that pass through the cross beams. Another important work 

is due to FALKE (1983) (1984) who presented "an approximate method for 

calculating the reduction in the effective stiffness of a cross beam due to the cutting 

of a web". By performing experiments Falke also studied the collapse mechanism of 

the cross beam. In his study NARUSE (1975) emphasized that both ends of the slit 

shape under the ribs and the buckling strength of the web with large holes must be 

investigated. He has based his recommendations on the observation of higher than 

expected stress concentrations around the holes. 

ITO, M. et al (1991) reported the "results of static loading tests on beams with U-

shaped holes in the top part of the web", then presented "an evaluation of the 

bending and shearing stresses for such beams and the ultimate strength properties". 

They performed tests with simply supported beams loaded by a concentrated force, 

as they have regarded the cross beams as beams with holes in the top part of the 

web. Furthermore they designed the tests in such a way, that yielding will occur first 

rather than buckling. 

WOLCHUK, R. and OSTAPENKO, A (1992) "attempted to asses the unexplored 

secondary local stresses in the rib walis, their relationship to the geometric 

parameters at the rib - floor-beam intersection and their effect on the level of 

combined stresses in the rib walIs at the floor-beam cutouts". 

1.3. Aspects of welding technology 

Tradiţional structural details of steeI plate girders with open cross-section stiffeners 

are not suitable for robotic welding. One of the most problematic part is the 

connection between the horizontal and vertical stiffeners. In the case of plates 

stiffened with open cross-section, horizontal and vertical stiffeners the modern 

welding technology requires the existence of a "gap" between the components, 

however in the design continuous stiffeners are assumed. This kind of connections 

has been investigated in a joint research project between the University of Osaka, 
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Japan and the Budapest University of Technology and Economics (BME), Hungary 

and the results have been summarized by IVANYI (2001). 

In the framework of the joint research project static load tests of girders with different 

stiffener-end-gaps have been conducted (OKURA et al, 1997). On the basis of these 

experiments several numerical studies have been performed (OKURA et al, 1997; 

DUNA! et al, 1998; NEZâ et al, 1999; OKURA et al, 1999). First the influence of the 

aspect ratio of web panels and the iniţial out-of-plane deflection of webs on the 

ultimate behaviour of girders have been investigated (OKURA et al, 1997; DUNAI et 

al, 1998). Later the focus has been on the effects of bending stiffness of the 

horizontal stiffeners. The results has shown that the ultimate behaviour of girders with 

large gaps become independent from the bending stiffness of the horizontal stiffeners 

(NEZO et al, 1999). In the last stages of the research a variety of gap sizes have 

been investigated to determine a limitation for the gap which wouid limit the reduction 

of the ultimate strength (OKURA et al, 1999). 

1.4. Aims and scope of the Thesis 

In the case of bridges with orthotropic steei girders one of the most sensitive 

stmctural component is the orthotropic deck, which is directiy loaded by the wheels of 

the vehicles. Due to this sensitivity the behaviour of the orthotropic deck dictates the 

structural details of the other orthotropic plates such as stiffened web and flanges. 

There is a completely different situation in the case of composite bridges, since the 

wheels of vehicles load the reinforced concrete plate directiy. The other parts of the 

bridge are made out of steeI and they are loaded oniy in their plane. The difference 

between the othotropic bridge and a composite bridge implies that the structural 

details must also be different. 

Furthermore in the case of composite bridges different components must be 

designed according to different rules. "EC 4 Composite Structures Part 2" gives 

guidelines for the design of a composite bridge. The steeI plate components (web 

and flanges) must be designed according to "EC 3 Generic Code Side" and the 

design of the structural details is described in "EC 3 Structural Code Side". 
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In Hungary the number of composite bridges is increasing as there is a possibility to 

use a new, simple and more easily fabricated structural detail for longitudinal 

stiffeners. This detail has several benefits compared to the stmctural detail used for 

orthotropic plates (Fig. 1.2). The new structural detail ("E" economic solution) has 

been proposed by Dr. Istvân Szatmâri (BME) and it has been utilised in several 

bridge designs by UVATERV Co. with some minor modifications. In these bridges I 

have designed the structural details of the steei parts. 

cross girder 

trapezei dai stiffener 

orthotropic plate 

Type R: Rigid Type S: Standard Type E: Economic 

Fig. 1.2. Connections of trapezoidal stiffeners and cross beams 

Since 2005 the Engineering Journal of "American Institute of Steel Construction" 

regularly publishes a column about steeI research (Current Steel Structures 

Research). This column is edited by Prof. REIDAR BJORHOVDE. The volume of the 

second quarter in 2005 of the Engineering Journal presents my research in the 

foilowing format: (ENGINEERING JOURNAL/ SECOND QUARTER /2005 p.117). 

"Design of a New Type of Orthotropic Plate: Mikios Ivanyi Jr. directs this study for 

the company Uvaterv in Budapest, Hungary with the cooperation of Professor Mikios 

Ivanyi of the Budapest University of Technology and Economics. 
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In traditional orthotropic plates the trapezoidal longitudinal stiffener is welded to the 

transverse girder web and to the bottom flange of the main girder, as shown in 

Fig. 1.3.a. In a recently developed orthotropic plate the stiffeners and the transverse 

girder web are not connected, as illustrated in Fig. 1.3.b. 

cross girder wcb .uclding , frcc cduc ,\\cldiniţ 

* bottom flange of longitudinal slifTcncr 

the niain girder 

a) b) 

Fig. 1.3. Traditional and new orthotropic deck detaiis. 

This approach provides for a significant reduction in the amount of flame cutting and 

welding, but more importantly there is no longer a need to assess the fatigue 

condition of the weid between the stiffener and the web. On the other hand, the 

potential for local buckling of the free edge of the web near the trapezoidal stiffener 

must be considered. Finite element analyses of the new and traditional plates have 

been conducted, and a design guide is under development." 

The basis of my Doctoral Thesis is the study the new structural detail. During my 

research work I have investigated the "Ultimate Limit State" of orthotropic steei 

plates. The "Serviceability Limit State" and the "Fatigue Limit State" of orthotropic 

plates (although they are also very important) are not in the scope of this Doctoral 

Thesis. I have investigated the foilowing problems: 

- I have designed experiments to study the connection between a trapezoidal 

stiffener and a cross beam (Fig. 1.2). As a comparison study three geometric 

arrangements has been designed. In the first design the web of the cross beam 

is fully welded to the trapezoidal stiffener. This arrangement is called rigid (R). It 

must be emphasized that this geometric arrangement is not recommended and 
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not used due to its fatigue-sensitivity considering the current welding 

technology. The results performed with this geometric arrangement are used for 

comparison with the other two geometric arrangements. The other two 

geometric arrangements are the "standard" (S) and the economic (E). 

- I have prepared 3D linear finite element models to study the elastic stiffness of 

the three geometric arrangements (R,S,E). 

- I have also prepared 3D non-linear finite element models to investigate the 

behaviour of the three geometric arrangements (R,S,E) while the structural 

details go under plastic deformations. Furthermore the failure mode of the 

structural details couid be observed. 

- I have developed a design methodology for "orthotropic buckling" of 

compressed plates which considers the joint behaviour of several cross 

stiffeners and the structural detail (R,S,E). "Orthotropic buckling" means that the 

longitudinal and transversal stiffeners buckle at the same time. 

- Finally I have also studied the experimental, numerical and analytical results 

with the emphasis on the economic (E) solution. In this study I have used the 

experience that was gained during the design and construction of the composite 

bridge over the floodplain of the Danube at Szekszârd. 

The Doctoral Thesis contains the foilowing chapters: 

Chapter 1: Introduction: Aims and Scope. The chapter summarizes the 

conditions and aims of the research, it introduces the relevant aspects of the design 

standards, stmctural detailing and welding technologies. The chapter describes the 

new type of orthotropic plate with the new type of structural detail. 

Chapter 2: Composite Bridges. This chapter reviews the different aspects of 

the design of composite bridges. Sections 2.1 and 2.2 have been written using the 

relevant sections of ESDEP "European Steel Design Education Programme" (1994) 

{www.esdep.com). Some of the composite bridges designed by the UVATERV Co. 

are also discussed in the chapter. The bridge over the floodplain of the Danube at 

Szekszârd utilizes the new stmctural detail (connection type E) at the bottom flange 
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and at the web of the composite box girder. On the other hand the main bridge over 

the Danube at Szekszârd is an orthotropic steei bridge with the S type of connection 

in the deck and the plates. 

Chapter 3: Experimental Tests. The chapter contains all the details about the 

design of the experiments, how the tests were performed and what kind of 

measurements have been taken. 

Chapter 4: Numerical Analysis. This chapter discusses the linear and non-

linear 3D finite element analysis of the structural details. 

Chapter 5: Behaviour and Design of Plated Steel Structures. This chapter 

deals with the behaviour and design of stiffened plates and plates without stiffening. 

Sections 5.1-5.3 have been written using the relevant sections of ESDEP "European 

Steel Design Education Programme" (1994) (www.esdep.com). The chapter shows 

the design of the different connections (R, S, E) in an orthotropic plate according to 

EC 3-1-5. The concept and appiication of "ideal" cross section is also discussed. 

Chapter 6: Summary and Conclusion. The chapter summarizes the results and 

draws conclusions. 

The Doctoral Thesis is closed by a bibliography renference in the text. 

Finally the Appendix contains the MathCAD program which was used in the 

calculation of the load bearing capacity of an orthotropic plate with stiffening. 
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CHAPTER 2 
Composite Bridges 

The advantages of composite bridges are outiined with emphasis on the use of this 

bridge type for normal spans. The different types of cross-sections appiied in the 

technology are introduced, concentrating mainly on box and plate girders. Attention is 

drawn to the many different construction and erection stages with different "active" 

cross-sections and structural systems. 

2.1. Introduction 

Composite bridge construction has experienced considerable development since the 

first solutions in the 1940's using simple parallel beam grids over short spans (from 

20 to 25 metres), to its present usage in large framed or cable stayed bridges, or in 

very important truss girders designed to meet the severe funcţional requirements of 

high speed trains. It is now commonly used for medium and large works, and also in 

cases of minor spans competing with prefabricated prestressed concrete systems, 

where, for example, problems of quick erection or slenderness arise. 

It is neither possible, in this general chapter, to describe or to catalogue the complete 

range of actual solutions that composite construction offers for bridges, nor is it 

possible to outiine the general problems of details, construction procedures, choices 

of analysis, etc. The chapter therefore concentrates on emphasising the advantages 

that the composite structure offers, dealing mainly with the systems and construction 

processes for medium span bridges. The chapter is completed with brief references 
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to other methods that can be useful in more important cases that require wider 

specialization and experience before they can be appiied. 

First an understanding of the nature of the inherent aspects of the bending of 

composite systems and the rheological interaction of the deck's construction 

materials is required. Starting from certain fundamental global considerations, an 

understanding of the phenomena that principally determine the funcţional 

performance, stmctural behaviour and execution problems of composite bridges can 

then be reached. (DOWLING et al, 1988, JOHNSON, 1975, 1979, PETERSEN, 

1982, BONDARIUC, BANCILA 1987) 

Therefore, the chapter analyses questions related to: 

Regions of dominant positive bending moments (sagging), i.e. simply 

supported decks or the central part of spans of continuous systems, with 

some consideration given to the transverse characteristics and the 

construction process. 

Regions of dominant negative bending moments (hogging), i.e. supports of 

continuous and cantilever systems, and their interaction with transverse 

shear and torsionai effects, leading to the significant potential for double 

composite action in these zones. 

Shear connection of the composite systems and its influence on the 

analytical treatment, local effects at the beam ends, etc. 

Fabrication and erection methods have a large influence on the detailed design of the 

Steel structures. The supporting steei members must be designed so that they do not 

interfere with the placing of the concrete slab. 

2.1.1. Composite bridges - principal types 

The foilowing general observations can be made concerning the principal types of 
composite bridge decks: 
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For short spans, 25 to 45m approximately, solutions using multiple plate 

girders without any kind of transverse bracing are preferred with the 

concrete deck slab performing the total function of transverse distribution 

and stability (Fig. 2.1). The number of beams shouid be the least 

compatible with the transverse distribution capability of the concrete slab. 

a x m 

- 2,5 to 3,5m 

IX 25 

- 3,0 to 4,5m 

Fig. 2.1. Multiple plat girders 

Twin plate girders with haunched slab can be a very attractive solution for 

narrow bridges (Fig. 2.2). 

0,45 - jL 

0 , 5 0 m y 

A 0.2b 
- J 0 , 3 0 m 

2 , 5 4 , 0 m 7 , 0 - 1 0 , 0 m 

< 
1 2 , 0 1 8 , 0 m > 

Fig. 2.2. Twin plate girders 

For longer spans (50 to lOOm) the system of widely spaced twin girders 

(Fig. 2.3) joined with transverse composite beams, spaced at about 4 to 5 

metres, is very suitable. Main and transverse girders can be plate girders 

or, in cases with very long spans or very severe deflection limits, trusses. 
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Support secTion Midspan section 2 5 , 0 - 3 5 , 0 m 

T 

1 5 . 0 - 2 5 . 0 m 

\\ 

Fig. 2.3. Twin girders for wide and long-span bridges 

Box girders, preferably with trapezoidal semi-open cross-sections 

(Fig. 2.4a-b), also provide adequate solutions for all of the above 

mentioned cases, especially when curvatures exist in plan. Box girders 

become almost obligatory if the curvatures are very sharp. 

Midspan | Support . 
section section | 

y / / y / y / / / / / / A / / / / / / / / / / / / x 

J J w 

zza 

czz 

Fig. 2.4a. Twin box girders 
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15 2 5 m 

\ /> V/' 
6 12 m 

1 0 - 1 8 m 

4 6 m 

6 - 1 0 m < — H 
Fig. 2.4b. Large box girders 

5 - 7 m 

5 7 m 

For very large railway bridges, cross-sections formed by two large 

composite lattice girders (Fig. 2.5) and used with or without bottom 

concrete slabs, give very suitable solutions in terms of ease of 

construction, economy, serviceability and durability. 
12 16 m 

Lattice 
girders 

Horizontal 
bracing 

8 - 1 0 m 

5 7 m 

Fig. 2.5. Long span composite trusses 

Other solutions are based on the use of lattice webs joined to top and 
bottom concrete slabs (Fig. 2.6), or profiled steei sheet webs concreted to 
concrete filled and prestressed steei tubes (Fig. 2.7). 
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Fig. 2.6. Composite box girder with composite bottom flange 

\ Profiled steei sheet 

Concrete filled ' 

tube 

Fig. 2.7. Cross-section from le Viaduc de Maupre 

2.1.2. Main advantages of composite bridges 

By the appropriate combination of the two principal construction materials, structural 

Steel and concrete (reinforced or prestressed), more efficient bridge construction can 

be achieved than is possible using the two materials independently. This advantage 

is gained particularly when the work specification is demanding in relation to short 

construction periods, funcţional conditions of high slenderness, the site topography, 

road or services complexity, or complex layouts in plan or elevation. 

In particular, the use of self-supporting steeI systems ailows, in the same way as for 

Steel bridge construction, the execution to proceed without shoring during the 

concreting of the deck slab thereby giving rapid execution even with difficult layouts, 

(strong curvatures in plan, complex transverse sections, etc.). Later the deck slab is 

used as an element of great inerţia and resistance, which reduces the total amount of 

Steel required, especially in the compression zones where its use reduces the need 

for additional stiffening and/or bracing. 
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This advantage, which is clear in the sagging regions, can be extended to the 

hogging regions through the correct use of prestressing methods, or to a lest extent, 

with longitudinal reinforcement of the concrete slab, giving parţial improvement to its 

properties. Likewise, an intelligent additional steel-concrete combination in double 

composite action couid extend the global appiication of the composite solutions. 

The resultant performance-structural-executional symbiosis of these two major 

materials improves the whole to a much greater extent than the simple juxtaposition 

of the two materials. The designer shouid carefully combine the steei and concrete in 

proportions that optimise the bridge performance in all the above-mentioned 

respects. 

Essentially the principal advantages of composite bridges in comparison with others 

of similar dimensions are: 

In comparison with concrete systems: 

Smaller depths and seif weights. 

Greater simplicity and easy of execution, especially when the conditions 

are severe (high rises or plan curvature, etc.). 

Minimisation of environmental problems during execution. 

Favourable and simple use of continuous systems, including bottom 

concrete slabs in support regions. 

In comparison with steeI systems: 

Increased stiffness and better funcţional response. 

Better maintenance and durability characteristics. 

Reduction of secondary bracing systems. 

Lower costs because of a reduction in the total steeI required, especially in 

continuous systems. 
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2.2. Structural action 

2.2.1. Positive "Bending Moment Regions" 

Irrespective of the type of bridge considered, maximum efficiency is achieved by 

adopting transverse cross-sections and execution processes that maximise the 

potential of the composite system. 

This consideration in the past yielded rise to the use of propped construction of the 

parţial steei section, or systems with pre-deformation (prestressed, precambered, 

preflected). Alternatively, provisional continuity has been provided by temporary 

restraint of joints in the steeI section, the effect being transferred to the whole 

composite system after the hardening of the slab. Today, this technique is no longer 

necessary due to the adoption of limit state methods or non-linear elastic-plastic 

analysis to establish the ultimate resistance of the cross-sections, together with 

adequate control of serviceability and funcţional conditions. In this way the total 

benefit of all the structural materials included in the section can be achieved without 

complicating the process of execution, but by taking into consideration some special 

aspects in the design of the section. 

In current practice, by including a slightiy larger top flange, a longitudinal web 

stiffener, and by giving the steeI member a precamber of approximately L/200 in the 

workshop, ultimate and serviceability conditions for the non-propped steeI beam can 

be obtained which are similar to those of the propped solution. Construction problems 

can thereby be reduced and/or sometimes solutions that are almost impossible to 

achieve in any other way are feasible. 

The elastic-plastic behaviour of cross-sections, with the consequent redistribution of 

the internai stress pattern that ailows the total usage of the materials in the ultimate 

state, begins earlier for the unpropped beam than in the propped beam. In the 

propped case it occurs much closer to the collapse, with a higher rate of transition to 

the plastic state. 
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The compact character of cross-sections which ailows the development of a plastic 

hinge can be established from the criteria defined in EUROCODE 4. These criteria 

depend upon the steei quality and the compressed web regions. Given the variation 

of the neutral axis depth in the elastic or elastic-plastic ranges, the position of the 

neutral axis must be considered for the most unfavourable value that can occur. 

In cases where, because of the large beam depth required, a compact section cannot 

be economically used, it is better to adopt semi-compact (Class 3) or slender (Class 

4) cross-sections with elastic calculation methods. The procedures for propping and 

cambering, provisional restraints, preflection or prestressing, etc. couid then be of 

interest in order to obtain the most favourable solution. 

When propped construction is used, the stability of the upper flanges of steeI 

members during the non-composite work must be carefully considered because of 

the minimum sizes usually adopted. This aspect is especially important when decking 

is placed parallel to the beams. 

2.2.2. The behaviour of composite beams 

2.2.2.1. Component behaviour 

Since a composite beam is formed from three components, steeI, concrete and 

connection, it is necessary to review the behaviour of each before describing the 

overall behaviour of the combination. 

Under both tension and compression, steeI behaves in a linearly elastic fashion until 

first yieid of the material occurs. Thereafter it deforms in a perfectiy plastic manner 

until străin hardening occurs. This behaviour is shown in Fig. 2.8a together with the 

idealisation of steeI behaviour which is assumed for design. In general, most of the 

Steel section is in tension for simple sagging bending and local buckling of slender 

sections is not a problem. However, for continuous beams, significant parts of the 

Steel section are subject to compression and local buckling has to be considered. 
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Fig. 2.8a. Mechanical properties of steei 

The behaviour of concrete is more complex. Two situations have to be considered. 

Concrete in compression foilows a non-linear stress/strain curve. This behaviour is 

shown in Fig. 2.8b together with the two idealisations used in design. The parabolic 

stress block is often used in reinforced concrete design but the rectangular block is 

normally assumed in composite beam design. The non-linear material behaviour 

gives rise to an inelastic response in the structure. Concrete in tension cracks at very 

low loads and it is normally assumed, in design, that concrete has no tensile strength. 

0 , 0 0 3 5 străin 

ŝk/'Ym 

T r—I 1 r 
0 , 0 0 2 0 , 0 0 4 0 , 0 0 6 

Străin 

Fig. 2.8b. Mechanical properties of concrete 
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The connection behaviour (see Fig. 2.8c) is sufficient, here, to say that it is also non-

linear. This behaviour adds to the complexity of design. 

Load 
on 
connec to r 

S t r e n g t h 

Deformat ic m 
cap aci ty 

! • 
Slip 

Fig. 2.8c. Mechanical properties of shear connectors 

2.2.2.2. Description of a simply supported composite beam 

Composite beams are formed with a solid, composite or precast concrete slab 

spanning between, and connected to, the steei sections. 

The slab usually spans between parallel steeI sections and its design is normally 

dictated by this transverse action. Consequently the span, depth and concrete grade 

are determined separately and are known prior to the beam design. 

For non-composite constmction, the steeI sections alone are designed to carry the 

load acting on the floor plus the seif weight of the slab, as shown in Fig. 2.9. The 

Steel section is symmetric about its mid depth and has a neutral axis at this point. 

The section strains around this neutral axis and both the outer fibre tensile and 

compressive stresses are identical. The stresses (cr) in tension (r) and in 

compression (c) in the steeI section may be evaluated using simple bending theory. 

The concrete slab is not connected to the steeI section and therefore behaves 

independently (Fig. 2.9). As it is generally very weak in longitudinal bending it 

deforms to the curvature of the steeI section and has its own neutral axis. The bottom 

surface of the concrete slab is free to slide over the top flange of the steeI section 

and considerable slip occurs between the two parts. The bending resistance of the 

slab is often so small that it is ignored. 

Ch.2-11 

BUPT



Slip 

Load 

Shear force 

Bending moment 

Deflected shape 
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Fig. 2.9. Non-composite beam 

Stage 1 Fig. 2.10. 

Alternatively, if the concrete slab is connected to the steei section, both act together 

in carrying the service load as shown in Fig. 2.10. Slip between the slab and steeI 

section is now prevented and the connection resists a longitudinal shear force similar 

in distribution to the vertical shear force shown. 
Connectors 

Load 

Shear force 

Bending moment 

Deflected shape 

1 
v. 

Vi 

Section Străin 

Fig. 2.10. Composite beam -stage 1 

Stress 

The composite section is non-symmetric and shown a single neutral axis often close 

to the top flange of the steeI section. The tensile and compressive stresses at the 

outer fibres are therefore dependent upon the overall moment of inerţia (I) of the 
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composite section and their distance from the single neutral axis. Assuming that the 

loading causes elastic deformation the stresses generated in the section may be 

determined using simple bending theory. The stresses for the service load condition 

may be obtained (Fig. 2.10). The I value of the composite section is normally several 

times that of the steei section. It can therefore be seen that, for a similar load, the 

extreme fibre stresses generated in the composite section will be much smaller than 

those generated in the non-composite beam. 

This difference also has an effect on the stiffness of the beams. The stresses 

developed in the slab as it spans transversely to the length of the beam are assumed 

not to affect the longitudinal behaviour. They are generally ignored when designing 

the composite beam. However, the span of the beam often dictates how much of the 

slab may be assumed to help in the longitudinal bending action.. Here half the 

transverse span, each side of the steeI section, is assumed to be effective in carrying 

the longitudinal compression. 

The connection between the slab and steeI section may be made in many ways. In 

general it is formed using a series of discrete mechanical keys. This stage 

corresponds to the service load situation in the sagging moment region of most 

practicai composite beams. 

Stage 2 Fig. 2.11. 

Load 

Shear force 

Connectors 

Deflected shape 

t 7 y 
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7 7 

/ / 
Bending moment Section Străin Stress 

Fig. 2.11. Composite beam -stage 2 
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As the load increases the shear stress between the slab and steei section gives rise 

to deformation in the connection. This deformation is known as 'slip' and contributes 

to the overall defomiation of the beam. Fig. 2.11 shows the effect of slip on the străin 

and stress distribution. For many composite beams slip is very small and may be 

neglected. 

This stage corresponds to the service load stage for that class of composite beams 

which has been designed as partially connected. 

Stage 3 Fig. 2.12 and Fig. 2.13. 

Load 

Shear force 

Bending moment 

Connectors 
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Fig. 2.12. Composite beam -stage 3 

3 

7 1 
7 / 

Stress 

Eventually the load becomes sufficient to cause yieid strains in one or more of the 
materials. 

Stage 3a 
In the case of yieId occurring in the steeI, plasticity develops and the stress block 

develops as it is shown in Fig. 2.12. It is normally assumed that, for the ultimate limit 

state, the plastic stress block develops such that the whole steeI section may 

eventually reach yieId as it is shown by the dotted line in Fig. 2.12. 
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Flg. 2.13. Longitudinal shear connectors 

Stage 3b 
Concrete is not a plastic material. If strains develop such as to cause overstress it is 

potentially possible that explosive brittie failure of the slab wouid occur. This 

behaviour wouId be similar to the brittie failure expected in an over-reinforced 
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concrete beam. The volume of concrete in most practicai slabs means that it is 

uniikeiy that this situation couid ever arise in practice. 

With increase in stress within the concrete, induced by increasing străin, the stress 

block changes from the triangular shape shown in Fig. 2.11 to the shape shown in 

Fig. 2.12. For design this shape is difficult to represent in mathematical form and 

approximations are used. For composite beams the most common approximation is 

the rectangular stress block shown by the dashed line in Fig. 2.12 and in more detail 

in Fig. 2.8b. 

Stage 3c 
The remaining components of the composite beam that may fail before the steei 

yieids or the concrete crushes are the connectors. As the load increases the shear 

străin, and therefore the longitudinal shear force between the concrete slab and steeI 

section, increases in proportion. 

Since the longitudinal shear force is directiy proporţional to the appiied vertical shear 

force, the force on the end connectors is the largest. For low loads the force acting on 

a connector produces elastic deformations. This the slip between the slab and the 

Steel section will be greatest at the end of the beam. The longitudinal shear and 

deformation of a typical composite beam, at this stage of loading, are shown in 

Fig. 2.13a. 

If the load is increased the longitudinal shear force increases, and the load on the 

end stud may well cause plastic deformation. A typical load slip relationship for the 

connectors is shown in Fig. 2.13. The ductility of the connectors means that the 

connectors are able to deform plastically whiist maintaining resistance to longitudinal 

shear force. Fig. 2.13b shows the situation when the two end connectors are 

deforming plastically. 

Increasing appiied load will produce increasing longitudinal shear and connector 

deformation. In consequence, connectors nearer to the beam centreline also begin 

sequentially to deform plastically. Failure occurs once all of the connectors have 
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reached their ultimate resistance as shown in Fig. 2.13c. This sequence of shear load 

and connector straining is shown in an exaggerated manner in Fig. 2.13a, b, and c. 

This failure pattern is dependent upon the connectors being able to deform 

plastically. The end connector in Fig. 2.11 must be able to deform to a considerable 

extent before the connector close to the beam centreline even reaches its ultimate 

capacity. 

It can be seen that the failure of the composite beam is dictated by the resistance of 

its three main components. As the elastic interaction of these components is very 

complex it is normal to design these sections assuming the stress distribution shown 

in Fig. 2.8b. 

Composite beams designed to fail when the steei yieids, the concrete just reaches a 

failing străin and all of the connectors deform plastically wouid appear to be the ideal 

situation. There are however several reasons why this situation rarely occurs. 

2.2.2.3. Practicai load situations 

It has been assumed so far that the loading on the beam is uniformiy distributed and 

gives rise to a parabolic bending moment diagram. This is a common situation but it 

is also equally possible to find situations where concentrated loads act on beams. 

In the case of uniform loading the maximum bending moment occurs at mid span. 

This section is then termed the criticai section in bending. The stress block at the 

criticai section is that described in Fig. 2.12. It results in a longitudinal shear 

distribution to the shear connectors shown in Fig. 2.13c. It can be seen that the 

longitudinal shear developed at the criticai section must be resisted by the 

connectors between this point and the end of the beam. It can be deduced that, if the 

criticai section is closer to the beam end, as wouId be the case for a single point load 

close to the support, the number of connectors between this point and the support 

needs to increase. 

, 1 

1 — 
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In practice the number of connectors between each load point on a beam subject to 

multiple point loads must be determined. This calculation often gives rise to variable 

spacing of connectors along the span length. 

Point loads may also give rise to high vertical shear force. Although some of the 

vertical shear may be carried by the slab and beam flanges, it is common practice to 

ignore that and assume all the vertical shear is carried by the web of the steei 

section. 

For continuous beams, there is a possibility of high shear and bending occurring 

together. In this case the moment resistance of the section is reduced. 

2.2.2.4. Creep and shrinkage 

Concrete is subject to two phenomena, which alter the străin and therefore the 

deflection of the composite beam. 

During casting the wet concrete gradually hardens through the process of hydration. 

This chemical reaction releases heat causing moisture evaporation, which in turn 

causes the material to shrink. As the slab is connected to the steeI section through 

the shear connectors, the concrete shrinkage forces are transmitted into the steeI 

section. These forces cause the composite beam to deflect. For small spans this 

deflection can be ignored, but for very large spans it may be significant and must be 

taken into account. 

Under stress, concrete tends to relax, i.e., to deform plastically under load even when 

that load is not close to the ultimate. This phenomenon is known as creep and is of 

importance in composite beams. The creep deformation in the concrete gives rise to 

additional, time dependent, deflection which must be ailowed for in the analysis of the 

beam at the service load stage. 
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2.2.2.5. Propped and unpropped composite beams 

The geometry of most composite beams is often predetermined by the slab size, as 

previousiy discussed, and by the capability of the steei section to carry the load of 

wet concrete during constmction. This construction limitation gives hse to two 

composite beam types, the propped and the unpropped composite beam. 

Consider first the case of the propped beam shown in Fig. 2.14. During construction 

the Steel section is supported on temporary props. It does not have to resist 

significant bending moment and is therefore unstressed and does not deflect. Once 

the concrete hardens the props are removed. Each of the component parts of the 

beam then takes load from the dead weight of the materials. However, at this stage, 

the beam is acting as a composite element and its stiffness and resistance are very 

much higher than that of the steeI section alone. The deformation due to dead loads 

is, therefore, small. Any further live loading causes the beam to deflect. The total 

stresses present in the beam can be found by summing the stresses due to dead and 

live loads. 

t t t t 
Casting stage 

A A 
Props removed 

z ] 
7 

Live load appiied 

Fig. 2.14. Propped composite beams 

Ch.2-19 

BUPT



Consider now the unpropped beam shown in Fig. 2.15. During constmction the steei 

section is loaded with the dead weight of wet concrete. The steeI section is stressed 

and deforms. The concrete and the connectors remain largely unstressed, apart from 

the shrinkage stresses developed within the hardened concrete. It can be seen, in 

Fig. 2.15, that the wet concrete ponds, i.e. the top surface of the concrete remains 

level and the bottom surface deforms to the deflected shape of the steeI section. The 

dead load due to the weight of wet concrete is a substantial proportion of the total 

load and the stresses developed in the section are often high. 

zi 
7 

Casting stage 

Live load appiied 

Fig. 2.15. Unpropped composite beams 

Additional live loads are carned by the composite section, which has almost the same 

stiffness as that of the propped beam. The stresses present in the unpropped section 

can therefore be obtained by summing the wet concrete stresses and the composite 

stresses. This calculation leads to a different stress distribution in the section to that 

present in the propped composite beam. However, the yieid stresses developed in 

the Steel and concrete are the same in both cases and both unpropped and propped 

composite beams carry the same ultimate load. 
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The Steel section of an unpropped composite beam often needs to be substantial so 

that the weight of wet concrete can be carried. The section is, in fact, often 

substantially larger than wouid be required if the beam had been propped. 

The load deflection response of a steei section alone and of a composite beam, both 

propped and unpropped, is shown in Fig. 2.16. The strains present and stresses 

developed are shown in sequence with the section upon, which they act. In the 

unpropped case the steeI section alone takes the load of wet concrete and the strains 

due to this wet concrete load are added to the strains caused by the subsequently 

appiied service loads. The resulting stresses are shown in the stress block. Whiist the 

overall deflection of the unpropped beam may be larger than the propped beam at 

the working load stage, that is often not important as the deflection occurring during 

construction, which can be hidden by the finishes. 
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Fig. 2.16. Load deflection response for a steeI section alone and a composite beam, 

propped and unpropped 

Despite the drawbacks discussed above, unpropped construction is often preferred 

for the foilowing reasons: 

The extra cost involved in providing props. 

The restricted working space available in propped areas. 

The adverse effect on speed of construction. 
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2.2.2. Parţial connection 

In unpropped construction the size of the steei section is often determined by the 

weight of wet concrete, and the size of the slab is determined independently by its 

transverse span. If sufficient connectors are provided to transfer the maximum 

longitudinal force in the steeI section or concrete slab, the resistance of the 

unpropped composite beam becomes very high. Indeed composite beams so formed 

are often capable of carrying several times the required live load. To avoid providing 

such excess resistance the partially connected composite member is used. 

It has been assumed so far that the connection will carry all the shear force in the 

beam up to the time when the steeI section has fully yielded. However, because the 

resistance of the unpropped beam is so high, it is often possible to reduce the 

number of connectors. This reduction results in a beam where the failure mode wouid 

be by connector failure prior to the steeI having fully yielded or the concrete having 

reached its cmshing strength. (STARK, HOVE 1990) 

Such beams require fewer connectors thereby reducing the overall construction cost. 

They are, however, less stiff since fewer connectors allow more slip to occur between 

the slab and steeI section. 

2.2.3. Continuous composite beams 

Although simply supported beam design is most common there may be situations 

where use of continuous beams is appropriate. 

The mid span regions of continuous composite beams behave in the same way as 

the simple span composite beam. However, the support regions display a 

considerably different behaviour. This behaviour is shown diagrammatically in 

Fig. 2.17. 
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Fig. 2.17. Continuous composite beams 

The concrete in the mid span region is generally in compression and the steei in 

tension. Over the support this distribution reverses as the moment is now hogging. 

The concrete cannot carry significant tensile strains and therefore cracks, leaving 

oniy the embedded reinforcement as effective in resisting moment. 

The Steel section at the support then has to carry compressive strains throughout a 

considerable proportion of its depth. Slender sections are prone to local buckling in 

this region and any intervening column section may need to be strengthened to 

absorb the compression across its web. 

As well as local buckling it is possible that lateral-torsional buckling of the beam may 
occur in these regions. 
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2.2.4. Design aspects of the concrete flange in compression 

2.2.4.1. Effective width 

A typical form of composite construction consists of a slab connected to a series of 

parallel steei members. 

Mean bending stress 
in concrete flange 
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Support Midspan Support 

(c) Vanation of effective width 

Fig. 2.18. Concrete flange 

The construction is essentially a series of interconnected T-beams with wide, thin 

flanges, as shown in Fig. 2.18a. In such a system "shear lag" may cause the flange 
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width to be not fully effective in resisting compression (DOWLING, at. al, (1988)). 

This phenomenon can be explained by reference to a simply supported member, part 

of whose length is shown on plan in Fig. 2.18b. 

The maximum axial force in the slab is at midspan, while the force at the ends is 

zero. The change in longitudinal force is associated with shear in the plane of the 

slab. The resulting deformation, shown in Fig. 2.18b is inconsistent with simple 

bending theory, in which initially plane sections are assumed to remain plane after 

bending. The edge regions of the slab are effectively less stiff, and a non-uniform 

distribution of longitudinal bending stress is obtained across the section. Simple 

theory gives an effective value for width, beff, such that the area GHJKG equals the 

area ACDEFA. 

The ratio betf/bv depends not oniy on the relative dimensions of the system, but also 

on the type of loading, the support conditions and the cross-section considered; 

Fig. 2.18c shows the effect of the ratio of the beam spacing to span length, bJL, and 

the type of loading, on a simply supported span. 

In most codes of practice very simple formulae are given for the calculation of 

effective widths, although this may lead to some loss of economy. According to 

EUROCODE 4, for simply supported beams, the effective width on each side of the 

Steel web shouid be taken as Io/8, but not greater than half the distance to the next 

adjacent web, nor greater than the projection of the cantilever slab for edge beams. 

The length Io is the approximate distance between points of zero bending moment. It 

is equal to the span for simply supported beams. A constant effective width may be 

assumed over the whole of each span. This value may be taken as the midspan 

value for a beam. 

2.2.4.2. Maximum longitudinal shear in the concrete slab 

In the concrete slab, a complex (three-dimensional) force distribution occurs in the 

region of the connector. The reason for this behaviour is that bending moments and 

vertical shear forces act parallel as well as perpendicular to the beam. It is difficult to 
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find a physical design model for this complex stress distribution, and therefore, most 

design rules are empirical. Two design criteria can be identified: 

Longitudinal shear in the concrete slab, along the shear planes indicated 

in Fig. 2.19. 
Splitting of the concrete. 
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Fig. 2.19. Planes of shear failure 

It is possible to avoid these failure modes by providing sufficient transverse 

reinforcement and choosing the correct distance between the connectors. In some 

cases, satisfying these criteria may lead to an increase in concrete slab thickness or 

resistance. 

If the connectors are welded or shot fired through a continuous profiled steei sheet of 

a composite slab, the cross-section of the steeI sheet can also be considered as 

transverse reinforcement. 

2.2.5. Types and behaviour of shear connection 

2.2.5.1 The forces appiîed to connectors 

It has been assumed that the concrete and steeI were fully connected together (full 

connection). If there is no connection then the concrete slab and steeI section slide 

relative to one another and the bending stresses in the section are as shown in 

Fig 2.20. 
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a) No connection 

7 

A 
7 

b) Full connection 

1 

Beam section 

2 

I 

Bending stress 

Elastic stress 

Ultimate plastic 
stress 

Shear stress 

Străin Bending stress Shear stress 

Fig. 2.20. Străin, bending and shear stresses for no connection and full connection 

Clearly, if longitudinal shear resistance is provided by some form of connection, so 

that the stresses at the interface of the two materials are coincident, then the beam 

acts as a fully composite section. If it is assumed that the fully connected composite 

beam acts in an elastic way then the shear flow (shear force per unit length) between 

the concrete slab and the steei section may be calculated. 

Fig. 2.20 also shows the elastic shear stress developed in the section for the 
conditions of both full and zero connection. 

It can be seen, that the longitudinal shear forces, that must be carried by the 

connection, will vary depending upon the vertical shear present. Fig. 2.21a shows the 
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distribution of longitudinal shear, along the interface between the steei section and 

slab, for a beam that has a rigid full connection. It must be remembered, however, 

that this appiies oniy when the beam is assumed to be behaving in an elastic 

manner. As the ultimate moment of resistance is reached, the steeI section or 

concrete slab will yieid or crush and a plastic hinge will form at the criticai section. 

The bending stresses in the beam are as shown in the dashed lines in Fig. 2.20. the 

distribution of longitudinal shear in the beam also changes and the connectors close 

to the hinge are subject to higher loads. The dashed line, in Fig. 2.21a, shows the 

plastic distribution of shear force along a uniformiy loaded beam. 

t 
I 

Connector 
foroe (kN) 

120-

1 2 3 4 5 

(a) Rigid connection 

Distanoe along 
beam (m) 

Conr>ector 
force (kN) 

1 2 3 4 5 6 

(b) Flexible connection 

q = 0 ,7 times the plastic failure load 

Distanoe along 
beam (m) 

q = 0 , 9 8 times the plastic failure load 

Fig. 2.21. Connector loads for rigid and flexible connectors 

In practice, connectors are never fully rigid, and there is always some slip between 

the slab and the steeI section. The flexibility of the connectors ailows more ductility 

and a variation in the distribution of longitudinal shear between slab and steeI 

section. The longitudinal shear force present in a composite beam with flexible 

connection it is shown in Fig. 2.21b (YAM, CHAPMAN, 1968). 
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The major force resisted by the concrete is one of bearing against the leading edge 

of the connector. It has aiready been mentioned that the concrete in this region is 

likeiy to cmsh ailowing bending deformation to occur in the connector. The bearing 

resistance of the concrete in this region is dependent upon its volume as well as 

strength and stiffness. In fact, where there is sufficient concrete around the 

connector, the bearing stress may reach several times the unconfined crushing 

strength of the concrete (ARIBERT, ABDEL, 1985, ARIBERT, 1990). 

There is also likeiy to be direct tension in the connector. The different bending 

stiffnesses of the slab and the steei section, coupled with the deformed shape of the 

connectors, gives rise to the tendency for the slab to separate from the steeI section. 

It is, therefore, usual for connectors to be designed to resist this tensile force. 

In most composite beams the connectors are spaced along the steeI section and, 

therefore, provide a resistance to longitudinal shear oniy locally to the top flange. The 

longitudinal shear force must, therefore, be transferred from the narrow steeI section 

into the much wider slab. This transfer is normally achieved using bar reinforcement 

that runs transverse to the beam line. These bars are normally placed below the 

head of the stud and extend into the slab. 

2.2.5.2 Basic forms of connection 

Early forms of shear connector were shop welded, using convenţional arc welding. 

The most common types are the hoop connector and T connector which serve to 

show the complexity of the forming and welding operation necessary. The popularity 

of composite beam construction has led manufacturers to develop very simple forms 

of shear connector (ANDRA, 1990). 

Despite the plethora of connection types available, the shear stud connector has now 

become the primary method of connection for composite beams. The stud can be 

forge welded to the steeI section in one operation, using micro-chip controlled 

welding equipment. These machines, operating at current settings of up to 2000 

Amps allow operators to weid approximately 1000 studs per day. The most advanced 
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machines allow studs to be welded through galvanised steei sheeting. This ability has 

enabled the economic advantages of composite floor decks to be fully exploited. 

Fig. 2.22 shows a typical shear stud before and after welding and the sequence of 

weid current required (ANSI/AWS,1985). 

Weid / 
penetration 

Stud positioned 
in gun 

mm 
Slight lift and 
small arc 

Large current 
and plunge 

Fig. 2.22. Stud connector welding 

Such complex welding technology does have disadvantages when used on 

construction sites. The weid relies on the two surfaces being clean, free of mill-scale 

and, above all, dry. These conditions are often difficult to achieve especially when the 

studs are welded through a galvanised steeI sheet; in this case, the weid current is 

maintained for a sufficient period to burn away the zinc galvanising, which wouid 

othenvise cause imperfect weids. Welding 22mm, rather than the more common 

19mm studs, through deck also demands care. An alternative to through deck 

welding is to punch holes in the steeI deck and then weid the studs directiy to the 

Steel section. A more reliable weid is obtained in this way but the construction 

process is made more complex. 

Ch.2-30 

BUPT



The designer may also obtain stud resistance values from tests. Full beam tests are 

expensive and a model test known as the "push-out" test is often used. This test is 

shown in Fig. 2.23, together with a typical graphs of load against slip from the test. 

The resistance is, of course, dependent upon the concrete cube strength and is also 

reduced if the concrete is made from lightweight aggregate. 

(a) (b) (b) 

Load 
(kN/stud) 

150-

100̂  

50 -
• b 

2 4 6 6 8 Î0~1 12 14 Slip (mm) 

Fig. 2.23. Push-out test and load slip curves 

Shear studs carry very high loads and are normally made from drawn steei rod. Most 

codes quote steeI properties for stud shear connectors; in addition to a high yieid 

value the studs must be ductile and a minimum elongation is often specified. The 

necessity for ductility has aiready been explained (DOWLING et al, 1988). 
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2.3. Aspects of the structural design and details 

2.3.1. Introduction 

In recent years the development of network of motonA^ays and highways of Hungary 

is flourishing. There are several construction sites throughout the country (KOVÂCS, 

2002, IVÂNYI, IVÂNYI Jr, 2005, IVÂNYI Jr. 2004, IVÂNYI Jr. 2005). This section 

introduces some bridges connected with these road constructions. Some of these 

bridges have aiready been finished and other bridges exist oniy in the planning 

phase. The structures are composite bridges. This structural system of the bridges is 

partly dictated by the requirement of the commission and partly by economic reasons 

as these composite bridges provide the most competetive solution for short and 

middie span. It must be noted that during the design of the bridges discussed in this 

section the UT 2-3.401, UT 2-3.413, UT 2-3.414. Standard was used and not 

Eurocode. 

2.3.2. The bridge at Oszlăr over the river Tisza 

The highway road (M3) towards Ukraina crosses the river Tisza at Oszlâr. The width 

of the road is 26.50m which requires two bridges placed next to each other. One 

bridge has three parts. The superstructure over the flood area is precasted, 

prestressed reinforced concrete beam. The arrangement of the spans is symmetrical 

on both banks and the distribution of the spans is: 24.00+24.20+23.95m. 

The middie section of the bridge over the river bed has also three spans: 

72.00+112.00+72.00m. The structural system of the bridge is composite with steei 

haunched main girders. The width of the deck is 12.35+0.87+12.35=25.57m, which 

supports in both directions a two lane road with a safety lane. The distance between 

the main girders is 6400mm. The height of the web plate is 2565mm at the end cross 

girders, 5600mm at the middie supports and 3000mm along the span. The thickness 

of the web plate is 16mm which increases to 20mm around the middie supports. The 

width of the upper flange is 800mm and the thickness varies between 30-1 OOmm. 

However the width of the bottom flange is 1200mm and the width changes between 

30-150mm. 
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The web plate is stiffened by closed-section trapezoidal stiffeners in the longitudinal 

direction, while there are cross-girders at every 4000mm. The concrete deck slab has 

varying depth and it is connected to the main girders by shear connectors. These 

features are shown in Fig. 2.24, Fig. 2.25. 
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Fig. 2.24. The elevation drawing of the main bridge at Oszlâr over the river Tisza 

Fig. 2.25. The cross section drawing of the main bridge over the river Tisza 

The fabricated units of the main girder has been assembled in the factory to try their 

fitting, then they have been transported to the on-site workshop by trucks. The pieces 

have been reassembled and painted on site. The finished superstructure has been 

lifted to its final position by floating barrages. The seif weight of one bridge is 

approximately 1050 tons. The most important aspect of this bridge design is that in 

Hungary probably this is the first bridge structure where on-site welding was used for 

100-150mm flanges. These features are shown in Fig. 2.26-2.44. Figure 2.30-2.33 

show the stiffeners of the plates and show the economic (E) structural detail for the 

longitudinal and transversal stiffeners. 
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Fig. 2.26. Main girder 

Fig. 2.27. Middle of the main girder 
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Fig. 2.28. Main girder around the support 

Fig. 2.29. Welding of the bottom flange 
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Fig. 2.30. Transversal stiffeners 

Fig. 2.31. Stiffeners from inside 
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Fig. 2.32. Support cross girder 

Fig. 2.33. Constructed bridge on site 
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Fig. 2.34. Part of the bridge on a barrage 

Fig. 2.35. Putting the bridge in place 
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Fig. 2.36. Positioning the bridge 

Fig. 2.37. Next stage in positioning 
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Fig. 2.38. Same stage in positioning 

Fig. 2.39. Lifting the bridge 
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Fig. 2.40. Building the framework for the concrete deck 

Fig. 2.41. First stage of the concrete slab 
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Fig. 2.42. Creating the curbs 

Fig. 2.43. Placing the fences 
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Fig. 2.44. The finished bridge 

2.3.3. The bridge at Szekszărd over the Danube 

In the Southern part of Hungary the connection between the east and the west part of 

the country is partly ensured by the new M9 road which can be developed into a 

highway. The road has a single lane in both directions and its width is 12.00m. A part 

of the development project is the bridge at Szekszârd over the Danube. The total 

length of the bridge is 916m which is divided into two bridges over the floodplain 

(196.5m) and a bridge over the river bed (520m). 

The structure of the bridge over the river bed is orthotropic box girders with inclined 

webs. The two brides over the floodplain foilows the structure of the bridge over the 

river bed and they are composite box girders (SZATMÂRI, FARKAS, 2003). The 

distance between the supports for the floodplain bridges is three times 65.50m. The 

width of the bridge is 14.00m which has two, 3.75m wide lanes with safety lanes. On 

one side there is sidewalk and a bicycle road. This feature is shown in Fig. 2.45. 
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Fig.2.45. The elevation drawing of the floodplain bridge at Szekszârd over the 

Danube 

The box girder has inclined webs which are 5500mm apart at the bottom plate while 

they are 7500mm apart at the top plate. The width of the web is 12mm which 

increases to 16 and 20mm at the supports. The width of the bottom plate changes 

between 12 and 30mm. The web and bottom plate is stiffened by closed section 

trapezoidal stiffeners and there are cross girders at every 3640mm. This feature is 

shown in Fig. 2.46. 

2S5G 

Fig. 2.46. The cross section of the floodplain bridge at Szekszârd over the Danube 

The concrete deck slab has varying depth and it is connected to the box girders by 
shear connectors. 

The prefabricated units of the structure is assembled on site on temporary supports, 

then the monolitic concrete slab is casted. The important feature of the bridge is that 

the stiffeners of the web and the bottom plates are not connected to the cross girders 
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as it is expected in the classical bridge design. These features are shown in 

Fig. 2.47- 2.57. The correctness of this arrangement was veryfied on the structure by 

experiments. 

Fig. 2.47. First stages in the construction of the box girder 

Fig. 2.50 and 2.51 show the structural details (connection type E) of the longitudinal 

and transversal stiffeners on the web and on the bottom flange. 
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Fig. 2.48. Construction of the box girder 

w 

Fig. 2.49. Finished section of the box girder 
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Fig. 2.50. Inside view of the box girder 

Fig. 2.51. Stiffeners of the box girder 
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Fig. 2.52. Framework for the concrete deck 

Fig. 2.53. View of the propped box girder 
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Fig. 2.54. Before pouring the concrete 

Fig. 2.55. Finished bridge 
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Fig. 2.56. View of the full bridge 

Fig. 2.57. Another view of the full bridge 
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2.3.4. The bridge over the Eastern Main Chanel 

The M35 road towards Debrecen, which is a part of the MS highway, joins the 

eastern regions to the heart of the country. The highway crosses the Eastern Main 

Channel before Debrecen with the finished bridge described in this section. 

The width of the road is 28.73m that in both directions has 2 lanes with a safety lane. 

The distances between supports are 44.00+60.00+44.00m. The 60.00m middie span 

will be passable by ships, while on top of the the two embankments service roads 

and wiidroads are planned. The angle between the axis of the road and the line of 

the supports is 70 degrees. This feature is shown in Fig. 2.58. 
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Fig. 2.58. The elevation drawing of the bridge over the Eastern Main Channel 

The distance between the open main girders is 7300mm. The height of the web plate 

is 2100mm at the end cross girders, 3000mm at the supports and 2100mm along the 

span. The thickness of the web plate is 12mm, which increases to 20mm around the 

supports. The width of the top plate is 600mm and the thickness is 20-60mm. The 

width of the bottom plate is 800mm while the thickness varies between 30-1 OOmm. 

The web and bottom plate is stiffened by closed section trapezoidal stiffeners and 

there are cross girders at every 3000mm. The concrete deck slab has varying depth 

and it is connected to the girders by shear connectors. The cross-slope of the deck is 

3.5%. This feature is shown in Fig. 2.59. 
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Fig.2.59. The cross section of the bridge over the Eastern Main Channel 

This bridge is similar to the bridge at Szekszârd over the Danube where the stiffeners 

of the web and the bottom plates are not connected to the cross girders. This bridge 

design unites all the advantages of the experience gained during the construction of 

the previousiy described bridges. 

2.3.5. The bridge over the river Mura 

The M7 highway ensures the road connection to Croaţia. Croaţia has made large 

scale road infrastructure development, which has aiready reached the borders of the 

two countries. This also means that now Hungary must make the investment to 

connect the two highways. Furthermore, it also makes a constraint on the design of 

the bridge, since the line of the road is fixed. 

This composite bridge has six supports where the total length of the bridge is 216m. 

Under the concrete deck slab there are two main box girders. A box girder has 

parallel, vertical web plates. The height of the web plate is 2000mm, its thickness is 

12mm upto 20mm around the supports. The web plates, the top and bottom plates 

are stiffened by trapezoidal longitudinal stiffeners and at every 4000mm there are 

400mm high cross girders. The two main box girders are identical, which heips the 

manufacturing of the structure. The angle between the axis of the road and the line of 

the supports is 70 degrees. These features are shown in Fig. 2.60, Fig. 2.61. 
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Fig.2.60. The elevation drawing of the bridge over the river Mura 
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Fig.2.61. The cross section of the bridge over the river Mura 

The components of the structure are assembled on top of the embankment and the 

structure is sliding into position with the help of hydraulic jacks. For this construction 

process special temporary supports have been constructed. 

2.4. Conclusion 

The system of composite bridges is used for new road and railway bridges in 

Hungary. Considering the different aspects of design and fabrication a new type of 

connection (E, economic) for the stiffeners has been developed and it has been used 

in the bridges designed by the UVATERV Co with some minor modifications (IVÂNYI 

Jr, 2004). 
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CHAPTER 3 
Experimental Test Program 

I will study the effect of the different structural details between the trapezoidal 

stiffener and the open cross section cross girder. Three models will be investigated: 

a continuous welded connection (R-rigid type) 

a standard connection (S type) 

a new type of connection, proposed in this thesis (E-economic type). 

(IVÂNYI, Jr., BANCILA 2006, IVÂNYI, Jr. et al 2006/a, 2006/b, 2006/c) 

It shouid be emphasized again, that the rigid (R) type of structural detail is never 

used in practice due to fatigue sensitivity. The rigid type of connection oniy serves as 

a basis for the comparison with the other two (S and E) type of solutions and onIy the 

ultimate limit state solution of the rigid type of connection is used. 

The experiments were conducted in the Structural Laboratory of Pollack Mihâly 

Faculty of Engineering, University of Pecs. The machine in this laboratory is enabled 

me to perform half scale experiments. The structures for the experiments were 

constructed by the KOZGEP Company. 

3.1. Test specimens 

Nine welded, simply supported beams were tested. The beams were classified as 

foilows: type R (rigid), type S (standard) and type E (economic). Each beam was 
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assembled from steei plates, as shown in Fig. 3.1. The dimensions of the U-shaped 

holes around the trapezoidal stiffener were determined so they wouid permit the 

passage of U-shaped stiffeners with the standard size of 153/75x100 mm. The depth 

of the slit is 20 mm. The form of the U-shaped hole was kept as simple as possible 

(Fig. 3.2, Fig. 3.3, Fig. 3.4). It must be noted that due to easier fabrication the quarter 

circle hole in the web of the cross girder at the corner of the trapezoidal stiffener is 

not cut out. The experimental specimens were prepared for the study of the ultimate 

limit state thus this modification is acceptable. On the other hand the numerical 

models contain this cut out hole in the web of the cross girder. 

The problem of the effective width of the stiffened plates for the steeI deck is beyond 

the scope of this test since this study is intended to evaluate the normal and shear 

stresses for a web with holes. 

Type R: Rigid M24x75 
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Fig. 3.1. Test specimens 
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Fig. 3.3. "S" Standard joint fabrication drawing 

Ch.3-3 

BUPT



'i 1 : 1 
003 ' 001' II . _« 0 

II u II • -ir -D 

A 
001' II . _« 0 

II u II • -ir -D 

\ 
001' II . _« 0 

II u II • -ir -D \ 
001' II . _« 0 

II u II • -ir -D \ 
X 

v 1 ^ 

M 
II li n m 

4 

K> in 

o fN 

ozi ozvrozi 

Fig. 3.3. "S" Standard joint fabrication drawing 
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Fig. 3.4. "E" Economic joint fabrication drawing 
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3.2. Test procedures 

The other parts of the beam specimens were reinforced by cover plates and vertical 

stiffeners. Fig. 3.5 shows the loading systems: sagging moment (M+), hogging 

moment (M-), shear force (V). Fig. 3.6 shows the geometrical arrangement with the 

loading beam and annex beams (Fig. 3.7, Fig. 3.8). 

M(+) Saggmg moment (1) ^̂ ^̂  load 
k r 

/ 
f ' 1 

[ / 1 
^ - L 

HEB240 - û  -
- ' \ -

HEB240 

support test specimen support 

M(-) Hogging moment (2) ^̂ ^̂  load 

: \ support 

V Shear force (3) 

support 

k f 
/ / 1 

HEB240 

- m\ -
HEB240 

1 
i 
i 
i 

test specimen 

load 

support 

load 
/ i 

HEB240 

- . m -

HEB240 

U cJ 
test specimen \ support 

Fig. 3.5. The loading system 

The notation used in the experiments: 

TR: Trapezoidal stiffener. 

R-S-E : different connection type between the stiffener and the cross girder. 
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1-2-3 : type of internai force in the structure. 

1 : sagging moment, 

2 : hogging moment, 

3 : shear force. 
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Fig. 3.6. Geometric arrangement 
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Fig. 3.7. Loading beam 
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Fig. 3.8. Annex beam 
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3.2.1. Load equipment 

The test procedures were in the laboratory of Department of Stmctural Engineering 
Pollack Mihâly Faculty of Engineering, University of Pecs. Fig. 3.9 shows the loading 
equipment. 

Fig. 3.9. Loading equipment 

3.2.2. Preparation for the experiments 

Special annex beams have been attached to the experimental structure to be able to 
produce the required internai forces. The connection between the parts has been 
made with high strength boits. To reduce the deformation of the connections the bolts 
are tensioned to the required level. 

A special track has also been constructed to be able to roll the experimental pieces 

under the machine. In this way the experiments couid be conducted without any 

power lifting machine or crane. This track structure is shown in Fig. 3.10. This track 

can be easily disassembled and therefore it was not present in the experiments 
during the loading stage. 
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Fig. 3.10. Special track for the specimens 

3.2.3. Measurement procedures 

A rosette străin gage and several single străin gages around the U-shaped holes 

were placed to obtain the web buckling behavior. The single străin gages were 

placed in such a way as to obtain primarily bending stresses. The locations of the 

străin gages in the vicinity of the U-shaped hole, but closest to the loading point are 

shown in Fig. 3.11 and Fig. 3.12. The rosette străin gage was placed to obtain 

principal stresses of the web section. 

The vertical displacements were measured at the middie of the specimens by using 

deformation gages. AII data of strains, displacements and loads were measured at 

each of the loading stages simultaneousiy. 
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Fig. 3.11. Geometric arrangement of străin gauges 
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Fig. 3.12. Arrangement of the străin gauges 

Special measurement of strains was used when the specimen was loaded by shear 

forces. The measurements were performed between point A and D (Fig. 3.13). This 

measurement result in a so called "push out" test. 

3F 

C 

D 

B 

A 
\ \ m \ \ \ 

a 

Fig. 3.13. Relative displacement measurement point "A" and "D" 
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3.3. Test for mechanical properties of the steei material of test girders 

The mechanical properties of the steeI material have been determined by standard 

tensile tests, see Fig. 3.14. 

Fig. 3.14. Standard tensile test 

The results of the tensile material test can be seen in Fig. 3.15 - Fig. 3.22. 
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Specimen 1 to 1 

20 

Extension ( m m ) 

Specimen # 
1 

Maximum Load 
im 

49,662 

Load at Yîefd (Zero 
Slope) 

im 
49,662 

Tensile extension at 
Maximum Load 

(mm) 
23.41 

Tensile extension at 
Yfeld (Zero Slope) 

(mm) 
23.415 

Hnat fength 
(mm) 

100,000 2005-10.06. 15:48:08 
Start Date 

TensHe străin at 
Maximum Load 

(mm/mm) 
0.23 

Tensile străin at Vleld 
(Zero Stope) 
(mm/mm) 

0,234 

End Date 
2005.10.06. 16:07:08 

Specimen labei 
1 13-as prbbatest 

A=1.0 cm2 

fy=39,0 kN/cm2 fu=49.66 kN/cm2 

Fig. 3.15. Load-extension curve 
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specimen 1 to 1 

10 20 

Extension ( m m ) 

Specimen # 
1 

Maximum Load 
(kN) 

48.411 

Load at Yield {Zero 
Slope) 
(kN) 

48,411 

Tensile extension at 
Maximum Load 

(mm) 
27.02 

TensHe extension at 
Yleid (Zero Slope) 

(mm) 
27.016 

Hnal length 
(mm) 

100,000 2005.10 13. 15:36:28 
Start Date 

Tensile străin at 
Maximum Load 

(mm/mm) 
0.27 

Tensile străin at Yieid 
(Zero Slope) 

(mm/mm) 
0,270 

End Date 
2005.10.13. 15:48:38 

Specimen labei 
1 14-es probatest 

A=1.0 cm2 

ty=40.0 klMycm2 fu=48,4 kN/cm2 

Fig. 3.16. Load-extension curve 
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Specimen 1 to 1 

20 

Extension ( m m ) 

Specimen # 

Maximum Load 
(kN) 

1 48.168 

Loadat Yieid (Zero 
Slope) 
(kN) 

1 48,168 

Start Date 
1 2005.10.13.15:58:03 

Tensile extension at 
Maximum Load 

(mm) 
21.86 

Tensile extension at 
"neld (Zero Slope) 

(mm) 
21,856 

End Date 
2005.10.13. 16:09:48 

Tensile străin at 
Maximum Load 

(mm/mm) 
0.22 

Tensile străin at Yîetd 
(Zero Slope) 

(mm/mm) 
0.219 

Specimen labei 
15-08 probat est 

A=1,0 kN/cm2 

fy=38,5 kN/cm2 fu=48.17kN/cm2 

Fig. 3.17. Load-extension curve 
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Specimen 1 to 1 

20 

Extension ( m m ) 

Specimen # 
1 

1 

Maximum Load 
im 

67.550 

Load at VIeId (Zoro 
Stope) 
tm 

1 67,550 

Tensile extonsion at 
Maxtmum load 

<min) 
24.54 

Tenslie ext€»nston at 
fletd (Zero Steipe) 

(mm) 
24.540 

Hnal length 
(mm) 

100,000 2005.10.06. 16:22:21 
Start Date 

TensHe străin at 
Maxîmum Load 

(mm/mm) 
0.25 

Tensile străin at Vleld 
(ZeraSlope) 

(mm/mm) 
0,245 

End Date 
2005.10.06. 16:33:54 

Spedmen labei 
1 16-os pr6batest 

A=1,2 cm2 

fy=41.66 kN/cm2 fu=56.29 kN/cm2 

Fig. 3.18. Load-extension curve 
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Specimen 1 to 1 

20 

Extension ( m m ) 

Specimen # 
1 

1 

Maximum Load 
m) 

67.692 

Load at Yîeid <Zero 
Slope) 
(kM) 

1 67.673 

Start Dale 
1 2005.10.13. 16:20:14 

TensiLe extension at 
Maximum Load 

(mm) 
24.69 

Tensile extension at 
Yieid (Zero Slope) 

(mm) 
22,854 

End Date 
2005.10.13. 16:30:29 

Tensile străin at 
Maximum Load 

(mm/mm) 
0.25 

Tensile străin at Yîeid 
(Zero Slope) 
(mm/mm) 

0.229 

Specimen labei 
17-es prbbatest 

A=1,2 cm2 

fy=41,5 kN/cm2 fu=56,41 kN/cm2 

Fig. 3.19. Load-extension curve 
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Specimen 1 to 1 

10 20 

Extension (mm) 

Maximum Load (lcN> 
68.818 

U>ad at riold(Zefo 
S»ope) 
(kN) 

68,818 

TensJIe extenaion at 
Maximum Load (mmy 

21.26 

Tensile extaneiorf at 
Yledtt (Zero Stopa) 

(mm) 
21.263 

Tensila sirain at 
Maxfmum ioad 

(mm/mm) 
0.21 

Tansite ârain at Vlald 
(Zero Slop^ 
fmm/mni) 

0,213 

Start Dale End Date Spedmen labei 
1 2005.10.13. 16:37:06 2005 .10 .13 .16 :46 :59 18-as prbbatest 

Specimen # 

1 

A=1.2 cm2 

fy-43.75 kN/cm2 fu=57.35 kN/cm2 

Fig. 3.20. Load-extension curve for TR R-2 
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specimen 1 to 1 

"D CO O 

20 

Extension ( m m ) 

Specimen # 
1 

Maximum Load 
(KN) 

1 47.576 

Tensi»e extension at 
Maximum Load 

(mm) 
1 27,52 

Start Date 
1 2005.10.15. 11:56:52 

Tensile străin at 
Maximum Load 

(mm/mm) 
0.28 

Tensile extension at 
Yleid (Zero Slope) 

(mm) 
25,704 

End Oate 
2005.10.15. 12:08:27 

Load at Yieid (Zero 
Slope) 
(kN) 

47.222 

Tensile străin at YieId 
(Zero Slope) 

(mm/mm) 
0,262 

Specimen labei Merobâlyeg 1. 

A=1,0cm2 

fy=38.5 kN/cm2 fu=47.58kN/cm2 

Fig. 3.21. Load-extension curve 
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specimen 1 to 1 

Extension ( m m ) 

Specimen # 
1 

Maximum Load 
m) 

1 66,871 

Tensile extension at 
Maximum Ljoad 

(mm) 
t 21,97 

Start Date 

Tensile stram at 
Maximum toad 

(mm/mm> 
0.22 

Tensile extenaion at 
Ylekt (Zero Slopâ) 

(mm) 
21.975 

find Oate 

Load at Yield (Zero 
Slope) 
im 

66.871 

Tensite străin at 
(Zero Stope) 
(mm/mm) 

0.220 

Spedmen labei 1 2005.10.15 12:56:20 2005.10.15.13:06:29 Mer6b6lyeg 2. - 20 

A=1.2cm2 

ty=42.08 kN/cm2 fu=55.73 kN/cm2 

Fig. 3.22. Load-extension curve 
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The results of the experiments for mechanical properties of steei material are 

summarized by Table 3.1. 

A fy fu 
[cm^] [kN/cm^] [kN/cm^] 

13 1.0 39,00 49,66 

14 1.0 40,00 48,40 

15 1.0 38,50 48,17 

16 1.2 41,66 56,29 

17 1.2 41,50 56,41 

18 1.2 43,75 57,35 

M1-19 1.0 38,50 47,58 

M2-20 1.2 42,08 55,73 

average 40,62 52,44 

Table 3.1. 

Young's modulus: E=210000 N/mm' 

Poisson ratio: u=0,3 
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3.4. Experimental behaviour of orthotropic plates 
3.4.1. Effect of sagging moment 

Fig. 3.23-Fig.3.25 show the experimental test results for the effect of sagginc 
moment. (R-1, S-1,E-1) 

Specimen 1 to 5 

o 

-100 

^ -200 
z 
^ -300* (0 

-400 r 

- 5 0 0 -

- 6 0 0 ' 
-50 -40 -30 -20 

Extension (mm) 
- 1 0 

Specimen # 

1 
2 
3 
4 
5 

Specimen labei Maximum Load 
(kN) 

1 TR1-1 0,137 
2 TR1-1 0,243 
3 TR1-1 -208,330 
4 TR1-1 0,242 
5 TR1-1 0,236 

Load at Maximum Time Maximum Time 

1 
(kN) (sec) 

1 -212,571 601,91 
2 -209,914 604,88 
3 -302,167 241,11 
4 -0,943 131,70 
5 -335,067 6424,40 

End Date Time at Maximum Load 
(sec) 

1 2006.01.20. 15:14:40 0,20 
2 2006.01.20. 15:28:14 9,10 
3 2006.01.20. 15:33:16 0,00 
4 2006.01.20. 15:47:37 20,10 
5 2006.01.20. 17:36:39 36,40 

Extension at Maximum 
Load 
(mm) 
0,01 
-0,05 
-5,01 
-0,17 
-0,30 

Start Date 

2006.0i.20. 15:04:38 
2006.01.20. 15:18:09 
2006.01.20. 15:29:14 
2006.01.20. 15:45:25 
2006.01.20. 15:49:35 

Load at Maximum 
Extension 

(kN) 
0,137 
0,227 

-208,330 
0,221 
0,212 

Fig. 3.24. Load-extension curve for TR R-2 
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Specimen 1 to 2 

2 
•O 
(X3 O 

- 1 0 0 -

- 2 0 0 t 

-300-

-400-

-500^ 

- 6 0 0 -

Specimen # 
1 
2 

-40 -30 -20 -10 0 

Extension (mm) 

Specimen labei Load at Maximum Time Maximum Time 
(kN) (sec) 

1 TR2-1 -219,759 669,98 
2 TR2-1 -321,422 5087,55 

Start Date End Date Time at Maximum Load 
(sec) 

1 2006.02.03. 08:30:55 2006.02.03. 08:42:05 0,10 
2 2006.02.03. 08:42:31 2006.02.03. 10:07:19 0,10 

Load at Maximum Time at Maximum Loading span 
Extension Extension (mm) 

(kN) (sec) 
1 0,005 0,1 500,0 
2 0,223 0.0 500,0 

Support span Minimum Load Extension at Minimum 
(mm) (kN) Load 

(mm) 
1 1500,0 -219,759 -5,587 
2 1500,0 -542,403 -37,766 

Fig. 3.24. Load-extension curve for TR S-1 
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TR 3 - 1 

-O 
(U O 

o -

-100 r 

-200; 

-3001 
I 

-4001 

-500; 
T 

- 6 0 0 — 
-40 -30 -20 

Extension (mm) 

Specimen # 
- 1 

2 

- 1 0 

1 
2 

1 
2 

1 
2 

1 
2 

Specimen labei 

TR3-1 
TR3-1 

Minimum Load 
(kN) 

-221,392 
-524,238 

Load at Maximum Time Extension at Maximum 
(kN) Time 

(mm) 
-221,392 -5,106 
-274,234 -40,017 

Start Date 

2006.02.03. 12:01:05 
2006.0Z03.12:11:32 

Time at Minimum Load 
(sec) 

612,53 
4109,30 

End Date 

2006.02.0l 12:11:17 
2006.02.03.13:31:38 

Time at Minimum 
Extension 

612,53 
4805,75 

Extension at Minimum 
Load 

-5,106 
-34,211 

Load at Minimum 
Extension 

-221,392 
-274,267 

Maximum Time 

612,53 
4806.11 

Flg. 3.25. Load-extension curve for TR E-1 
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Fig. 3.26. shows the load-displacement curves for specimens R-1, S-1 and E-1 

IU 
ou 

o 

(M50 PBOl 

Fig. 3.26. Load-displacement curves at sagging moment (M+) 
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The specimens have been loaded by a sagging moment, which causes compression 

in the plate that is stiffened by the trapezoidal stiffener. The load carrying capacity 

under the sagging moment does not change significantly for the different 

arrangements of the connection between the trapezoidal stiffener and the web of the 

cross girder. The failure mode (Fig. 3.27, Fig. 3.28 and Fig. 3.29) was similar for aii 

three specimens, specifically the stiffened plate buckied out of the plane between the 

two points where the trapezoidal stiffener is attached to the stiffened plate. 

Fig. 3.27a. Type R test after sagging moment (M+) 

1 

Fig. 3.27b. Type R test after sagging moment (M+) 
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Fig. 3.28a. Type S test after sagging moment (M+) 

Fig. 3.28b. Type S test after sagging moment (M+) 

Fig. 3.29a. Type E test after sagging moment (M+) 

Fig. 3.29b. Type E test after sagging moment (M+) 
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3.4.2. Effect of hogging moment 

Fig. 3.30-Fig. 3.32 show the experimental test results for the effect of hogging 

moment. (R-2, S-2, E-2) 

TR 1 - 2 

-lOOf 

2 

•o (0 o 
-300; 

-400' 

-30 

Specimen # 
' - 1 

2 

- 2 0 - 1 0 

Extension (mm) 

1 
2 

1 
2 

1 
2 

Specimen labei 

TR1-2 
TR1-2 

Minimum Load 
(kN) 

-185,862 
-422,982 

1 
2 

Load at Maximum Time Extension at Maximum 
(kN) Time 

-185,862 
-344,657 

Start Date 

2006.02.03. 15:09:02 
2006.02.03. 15:19:23 

Time at Minimum Load 
(sec) 

603,25 
1832,60 

-5,028 
-32,566 

End Date 

2006.02.03. 115:19:05 
2006.02.03. 16:24:35 

Time at Minimum 
Extension 

(sec) 
603,20 
3911,60 

Extension at Minimum 
Load 
(mm) 

:5;028 
-15,243 

Load at Minimum 
Extension 

(kN) 
-185,837 
-344,678 

Maximum Time 

603,25 
3911,80 

Fig. 3.30. Load-extension curve for TR R-2 
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•o 
O 

-100* 

- 2 0 0 T 

-300-

-400-

TR 2 - 2 

Specimen # 
1 
2 

-30 - 2 0 - 1 0 

Extension (mm) 

1 
2 

Specimen labei 

TR2-2 
TR2-2 

Minimum Load 
(kN) 

-180,316 
-404,243 

Extension at Minimum 
Load 
(mm) 

-5,017 
-13,032 

1 
2 

Load at Maximum Time 
(kN) 

-180,316 
-275,368 

Extension at Maximum 
Time 
(mm) 
-5,017 
-32,560 

Load at Minimum 
Extension 

(kN) 
-180,303 
-275,368 

1 
2 

Start Date 

2006.02.04. 08:50:00 
2006.02.04. 09:00:18 

End Date 

2006.02.04. 09:00:02 
2006.02.04. 10:05:29 

Maximum Time 
(sec) 

601,83 
3910,93 

Fig. 3.31. Load-extension curve for TR S-2 
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TR 3 - 2 

Or 

-100 ' 

Z 1 
es -200; 
-a (O 
o 

-300 r 

-400̂  

-30 

Specimen # 

- 2 0 - 1 0 

Extension (mm) 

1 
2 

1 
2 

1 
2 

1 
2 

Specimen labei 

TR3-2 
TR3-2 

Minimum Load 
(kN) 

-142,636 
-404,934 

Load at Maximum Time 
(kN) 

-142,636 
-257,771 

Start Date 

2006.02X)4. 11:32:52 
2006.02.04. 11:43:09 

Extension at Maximum 
Time 
(mm) 
-5,013 
-32,558 

End bate 

2006.02.04. 11:42:54 
2006.02.04. 12:48:20 

Extension at Minimum 
Load 

-5,013 
-13,423 

Load at Minimum 
Extension 

m 
-142,579 
-257,7^ 

Maximum Time 
(sec) 

601,69 I 
39Î0,77 

Flg. 3.32. Load-extension curve for TR E-2 

Fig. 3.33 shows the load-displacement curves for specimens R-2, S-2 and E-2. In 

these cases the hogging moment causes tension in the stiffened plate. 

The shape of the load-deflection curves and the load carrying capacity are similar, 

however the softening part of curve R-2 is higher than the softening part of curves 

S-2 and E-2. On the other hand the failure mode of the specimens is quite different 

(Fig. 3.34. Fig. 3.35 and Fig. 3.36). 
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Fig. 3.33. Load-displacement curves at hogging moment (M-) 
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In the case of specimen R-2 the web and the flange of the cross-girder near to the 

trapezoidal stiffener have buckied out together. However the trapezoidal stiffener and 

the plate between the two points where the trapezoidal stiffener is attached to the 

plate are unbuckied. In the case of specimen S-2 the web of the cross girder has 

buckied between the top edge of the hole and the flange of the cross girder. 

Moreover, the part of the flange has also buckied out in the region of the buckied 

web. In the case of specimen E-2 the web of the cross girder has also buckied, but 

in a larger region, between the stiffened plate and the flange of the cross girder. 

Similarly to the previous case the flange of the cross girder has also buckied. 

Fig. 3.34a. Type R test after hogging moment (M-) 

Fig. 3.34b. Type R test after hogging moment (M-) 
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Fig. 3.35a. Type S test after hogging moment (M-) 

Fig. 3.35b. Type S test after hogging moment (M-) 

Fig. 3.36a. Type E test after hogging moment (M-) 

Fig. 3.36b. Type E test after hogging moment (M-) 
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3.4.3. Effect of shear ioading 

Fig. 3.37- Fig. 3.39 show the experimental tests results for effect of shear Ioading. 

TR 1 - 3 

0; -

-100-

-200 r 
2 t 
w -300-
T3 
(0 
5 -400T 

f 
-500-

-600 r 
j 

•1 

-40 -30 - 2 0 

Extension (mm) 

Specimen # 

- 1 0 

1 
2 

Specimen labei 

1 TR1-3 
2 TR1-3 

Load at Maximum Time 
(kN) 

1 -307.876 
2 -623,458 

Start Date 

1 2006.02.04. 15:34:08 
2 2006.02.04.15:44:24 

Minimum Load 
(kN) 

-307,876 
-623,494 

Extension at Maximum 
Time 
(mm) 

-5,004 
-35,534 

End Date 

2006.02.04. 15:44:10 
2006.02.04. 16:55:32 

Extension at Minimum 
Load 

-5,004 
-35J532 

Load at Minimum 
Extension 

(kN) _ _ 
-307,847 
-623,461 

Maximum time 

60J,25 
4268,01 

Fig. 3.37. Load-extension curve for TR R-3 
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-100* 

TR 2 - 3 

•a ro 
o 

- 2 0 0 * 
Specimen # 

1 
2 

- 3 0 0 ^ 

- 4 0 0 ^ 
- 3 0 - 2 0 - 1 0 

Extension (mm) 

1 
2 

1 
2 

1 
2 

Specimen labei 

TR2-3 
TR2-3 

Load at Maximum Time 
(kN) 

-163,902 
-294,571 

Start Date 

2006.02.04. 18:48:18 
2006.02.04. 19:02:50 

Minimum Load 
(kN) 

-163,902 
-392,586 

Extension at Maximum 
Time 
(mm) 
-4,007 
-27,131 

End Date 

2006.02.04. 18:56:19 
2006.02.04. 19:57:09 

Extension at Minimum 
Load 
(mm) 

-4,007 
-18,535 

Load at Minimum 
Extension 

(kN) 
-163,837 
-294,571 

Maximum Time 
(sec) 

481,03 
3259,36 

Fig. 3.38. Load-extension curve for TR S-3 
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TR 3 - 3 

-50: 

- 1 0 0 -

§ -150̂  

- 200 ' 

- 250 : 

-30 

Specimen # 
1 
2 

- 2 0 

Extension (mm) 
- 1 0 

1 
2 

1 
2 

1 
2 

Specimen iabel 

TR3-3 
TR3-3 

Minimum Load 
(kN) 

-173,163 
-256,990 

Load at Maximum Time Extension at Maximum 
(kN) Time 

(mm) 
-173,163 ^.023 
-167,095 -30,104 

Start Date 

2006 02.05.08:40:46 
2006.02.05. 08:49:06 

End Date 

2006.02.05. 08^48:49 
2006.02.05. 09:49:23 

Extension at Minimum 
Load 

-4,023 
-14,200 

Load at Minimum 
Extension 

-173,127 
-1^7,121 

Maximum Time 
(sec) 

483,12 
3616,07 

Fig. 3.39. Load-extension curve for TR E-3 

Fig. 3.40 shows the load-deflection curves for specimens R-3, S-3 and E-3. The 

loading for these specimens was shear force. The load-deflection curves are 

significantly different. In the case of specimen R-3 there is no softening in the curve 

even for large displacements. The curves for specimens S-3 and E-3 exhibit 

softening behavior, but there are significant differences between these softening 

behaviors. 
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The failure modes for these specimens are also different (Fig. 3.41, Fig. 3.42 and 

Fig. 3.43). In the case of specimen R-3 diagonal buckied waves appear in the web, 
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Fig. 3.40. Load-displacement curves at shear force (V) 
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however they are not significant at the ultimate failure state. In the case of specimen 

S-3 apparent compressed and tensioned zones are formed at two ends of the hole. 

In the compressed zone the diagonal waves are more significant than in the case of 

specimen R-3. 

Furthermore in the tensioned zone as a result of the large tension force the web plate 

is fractured. The failure mode for specimen E-3 is similar to the failure mode for 

specimen S-3. However the tension is so high at one end of the hole that the weid 

between the web of the cross girder and the stiffened plate is also fractured. 

Fig. 3.41a. Type R test after shear force (V) 

Fig. 3.41 b. Type R test after shear force (V) 
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Fig. 3.42a Type S test after shear force (V) 

Fig. 3.42b Type S test after shear force (V) 

Fig. 3.43a Type E test after shear force (V) 

Fig. 3.43b Type E test after shear force (V) 
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3.5. The results of străin measurements 

In Fig. 3.11 the geometric arrangements of the străin gauges is shown. The străin 

gauges were connected to a device (Spider) to collect the measurements. Fig. 3.44-

Fig. 3.52 shows the measured values in relation to loading. In the figures the 

uncertainties are still visible, which are mostly specific to the plastic state. During the 

experiments the străin was measured directiy, however in the figures - to be able to 

display in a more meaningful way - the străin multiplied by the Young's modulus is 

shown. This value can be called as stress, but after yielding this can be called oniy 

"formally" as stress. 
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Fig. 3.48. TR S-2 Load - Stress curves 
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Fig. 3.45. TR S-1 Load - Stress curves 
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3.6. Elastic behaviour of web with U-shaped holes 

3.6.1. Bending stress 

The bending stress distributions of the web cross section are shown in Fig. 3.53-

Fig. 3.55 for specimens respectively. Străin gauges 1 - 4 provide the stress 

throughthe measured străin at the middie of the U-shaped hole at the load level 

F=200kN. Străin gauges 6 and 7 provide the stress at the edge of the U-shape hole 

at the load level F=200kN. The stresses can be determined from the measurement of 

străin gauge 8 at the point where the U-shape hole starts in the web of the cross 

girder. The rosette of străin gauges 9 - 11 at the corner of the U-shape hole as 

shown in Fig. 3.11. 
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Fig. 3.53. Effect of sagging moment for the distribution of stresses 
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Fig. 3.55. Effect of shear loading for the distribution of stresses 
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3.6.2. VierendeeI behaviour 

Beams with U-shaped holes in the web as used in this test are predicted to behave 

differently from standard beams without openings in the web. 

This different behaviour is explained as foilows in Fig. 3.56, ITO M. et al (1991). The 

bending moment M=Rx, where R-reactions, x-distance from the support, and the 

shearing force V=Vi+V2 are assumed to act on the section of the center part for 

beams with U-shaped holes, where Vi and V2 - the shearing forces acting upon the 

T-shaped sections that correspond to the section under the U-shaped holes and the 

upper flange, respectively. The Vi and V2 values are assumed to be distributed 

according to ratios of the moments of inerţia of the T-shaped sections and the upper 

flanges. 
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Fig. 3.56. VierendeeI action of U-shape holes, ITO M. et al (1991) 

The Vi and V2 values are calculated as foilows: 

V 
^1 = 

1+ ( l 

Ic k e ) 

3 ' 
1 + 

3 ' 

l e h c ) 
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where Ic and Ie - the moments of inerţia of the T-shaped sections and the upper 

flange sections and c and e - the upper and bottom widths of the U-shaped holes 

Fig. 3.56, respectively. 

In Fig. 3.56, the additional moments AMi=Vi(C/2) and AM2=V2(e/2) produced at the 

sections 1-1 and the sections 2-2 by each of the shearing forces are shown in 

Fig. 3.56. 

The tensile and compressive forces act on the sections of the right and left sides 

under the U-shaped holes. Such actions produce additional moments because of 

these shearing forces, which are called the VierendeeI action [e.g., BOWER(1966) 

and REDWOOD (1969)]. 

Overall, the theoretical values shown good agreement with the experimental values. 

Where they do diverge, it seems that the differences between the theoretical values 

and the experimental values were caused by the stress concentrations. Apparently, 

VierendeeI analysis is not limited to beam with circular or rectangular holes in the 

center part of the web, but may also be appiied to beams with U-shaped holes in the 

top part of the web. 

The magnitudes and directions of the principal stresses for the different specimens 

are shown in Fig. 3.53, - 3.55. The stress concentrations are considerably greater at 

the corner section of both sides of the right and left corners under the U-shaped 

holes. 

3.6.3. Shearing stress 

Assuming that the bending moments Mi and M2, and the shearing forces V=Vi+V2 

act between the center section of the U-shaped holes, as shown in Fig. 3.57a, ITO 

M. et al (1991), the arm length z of the resisting moments is z=ln/Wc, where In - the 

moment of inerţia in reference to the neutral axis, and Wc - the geometrical moment 

of area for the upper flange in reference to the neutral axis. 
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Fig. 3.57. Longitudinal searing force, ITO M. et al (1991) 

If it is now assumed that the axis force Mi/z acts at the center of the upper flange, 

since the thickness of the upper flange is small, the longitudinal shearing force Vh 
shown in Fig. 3.57b is obtained as foilows: 

4p 

n 2 z - U ' 'M 

Therefore, the longitudinal shearing stresses t v is obtained as Tv=VH/(e tw), where e 

and tw - the upper width of the U-shaped holes and the web thickness, respectively. 

It appears that the longitudinal shearing stresses acting on the web sections between 

the U-shaped holes can be predicted by ITO et al (1991). 
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3.7. Ultimate strength of test girders 

3.7.1. Yielding of U-shaped sections 

Fig. 3.26, Fig. 3.33, Fig. 3.40 show the load-deflection curves for the different 

specimens. The deflections of the beams with respect to the center part of the U-

shaped holes in the vicinity of the loading point are shown as the abscissa. In these 

figures, the iniţial yieid loads Pyi, when the experimental values showed that the 

corner edge of the U-shaped holes yielded first, are obtained. Further, the yieId load 

Py, at which it was predicted that both the web and the flange sections wouid yieId 

completely, are obtained. 

In general, the full plastic states of the experiment were predicted from the load-

deflection curves or the moment-curvature curves. However, in such cases, it is 

difficult to determine exactiy the full plastic state of the steei beams, because steei 

beams have strain-hardening properties and the yieId stresses are different in 

different parts of the cross section. 

The complete yieId state of the U-shaped sections of this experiment is defined as 

the yieId load Py, obtained from the elastic curves in the foregoing load-deflection 

curves (Fig. 3.26, Fig. 3.33 and Fig. 3.40). 

Table 3.2 shows each test load for all specimens. From Table 3.2 it can be seen that 

yielding, rather than buckling, has taken precedence. The maximum loads Pmax in 

Table 3.2 show the loads obtained when the peak load in the load-deflection curve is 

reached, which occurs when buckling of the compression flange at the U-shaped 

holes in the vicinity of the loading points is observed. 

The iniţial yieId loads Pyj are smaller than Py, Peri and Pmax in Table 3.2 because the 

corner edges of the U-shaped holes carry both additional moments by VierendeeI 

action and the longitudinal shearing forces Vh in addition to the usual bending 

moment and shearing force. Therefore, it seems that this local yielding of the corner 

edges is not directiy related to the ultimate strength of the beams. Accordingly, it is 

not necessary to consider this local yielding in the design of such beams. 
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Specimens Loading Iniţial yieId 
load Py, [kN] 

YieId load 

PylkN] 

Buckling load 
Pcr[kN] 

Maximum load 

Pmax[kN] 

TR R-1 Sagging 381,0 420,1 580,1 595,0 

TR S-1 moment 310,0 400,5 530,2 542,4 

TR E-1 245.1 385,0 510,5 524,2 

TR R-2 Hogging 310,0 405,0 410,0 422,9 

TR S-2 moment 255,2 375,0 390,0 404,2 

TR E-2 220,7 330,6 370,1 404,9 

TR R-3 Shear 450,3 475,2 508,0 623,5 * 

TR S-3 load 272,4 317,1 315,4 392,6 

TR E-3 186,2 210,7 196,2 256,9 

*Load imit of the loading system has been reached 

Table 3.2. Experimental beam load 

3.7.2. Ultimate strength 

In general, the ultimate strength analysis method (BOWER (1966), REDWOOD 

(1969)), taking account of VierendeeI action, as appiied to rolled beams or welded 

beams with circular or rectangular holes in the center part of the web also 

appropriate for these beams. 

In this study, BOWER's (1966) method is appiied to test beams with U-shaped holes 

in the top part of the web. In this analysis the stress distribution at the ultimate load 

was assumed to be as shown in Fig. 3.58. In this case, it is assumed that the 

additional moment caused by VierendeeI action acts on the T-shaped section under 

the U-shaped holes and that the shearing stress is carried uniformiy by the web. The 

combined stress of the bending stress and the shearing stress satisfy Von Mises' 

yieid condition. 
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For the assumed stress distribution as shown in Fig. 3.58 the equilibrium equations 

(1)-(4) for the appiied bending moment M and the shearing force V are able to predict 

behaviour as well as the solution of BOWER (1968), i.e. 

O 
-C .M 

5 /2 t V 

T X 

_w 

a 

fy,b - f y , b 

Fig. 3.58. Assumed stress distribution at Ultimate load, BOWER (1968) 

M = 
fyA H-tJ 

+ 

(H-h^^-k^H^) 

V = TtJ(2^\' 

Vc 

/ I \ 

1 - i " T 

^ ^ ^ b ' h 2 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where k 2 H ^ < H - h ^ , fy,t and fy,b - the yieid stress of the upper and the bottom 

flange, respectively, and ctw - the yieId stress of the web. Ht and Hi - the distance 

from the neutral axis to the top surface of the upper flange and the bottom surface of 

the bottom flange, respectively, k2Hi - the depth of the web after yielding in bending 

and shearing, and kiHi - the depth of the bottom flange reversed by VierendeeI 

action. 
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The interaction diagrams for each test beam obtained by using Eq. 3.1 - Eq. 3.4 are 

shown in Fig. 3.59. The M and V of the ordinate and the abscissa are 

nondimensionalized by the full plastic moment Mp of the net section without holes 

and by the full shearing force 

ordinate and the abscissa. 

w respectively. They were used for the 
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Fig. 3.59. Theoretical and experimental ultimate loads 

3.8. Conclusions 

The ultimate strength of test specimens with trapezoidal stiffeners was 

experimentally investigated. The specimens were constructed from three 

components, the stiffened plate, the trapezoidal stiffener and the cross girder. In the 

experiments three arrangements were considered where the hole around the 

trapezoidal stiffener had three different shapes providing different connection 

between the trapezoidal stiffener and the web of the cross girder. Specifically when 

the components are fully welded to each other then the connection is rigid (R). When 

there is a hole in the web of the cross girder around the flange of the trapezoidal 

stiffener the connection is considered as standard (S). Finally when the trapezoidal 
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stiffener is fully cut around in the web of the cross girder the connection is 

economical (E). 

With the aid of these experiments it was possible to determine the behavior of the 

components under sagging and hogging moment and shear force. 

The experiments investigated the elastic and the plastic behavior of the specimens; 

they determined the load carrying capacity and the failure mode (IVÂNYI, Jr., 

BANCILA, 2006, IVÂNYI, Jr., et al., 2006/a, IVÂNYI, Jr., et al 2006/b, IVÂNYI, Jr., et 

al, 2006/c). 
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CHAPTER 4 
Numerical Analysis 

In this chapter the different structural detalls for the stiffener of an orthotropic plate 

will be investigated numerically (IVÂNYI, Jr., et al 2006). Furthermore the effect of the 

different structural detail of the stiffener on the ultimate limit state of the orthotropic 

plate will be studied. Three arrangements are considered: rigid (R), standard (S) and 

the suggested economic (E). (I note here again, that the rigid structural detail is not 

used in practice due to fatigue problems, therefore it is used here oniy as a 

comparison.) 

Two types of numerical analysis are discussed in this chapter. First a linear 3D finite 

element analysis which will help in the creation of the design formulas. Second a 

non-linear 3D finite element analysis is carried out which will help to analyse the 

different phenomenon (significant plastic deformations, plate buckling and material 

failure) that were experienced during the experiments. (IVÂNYI, Jr., IVÂNYI, P, 2007) 

4.1 Linear 3D finite element analysis 

In the frame of this program a linear 3D finite element model has been analysed to 

study the different structural details and connection between the longitudinal, 

trapezoidal stiffener and the cross girder with open cross section in an orthotropic 

plate. The aim of the analysis was to obtain enough information, which can be utilized 

in the determination of the "iniţial" stiffnesses. First of all the investigation the effect of 
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the different structural details of the stiffener of the orthotropic plate on the local and 
global behaviour of the plates has been Investigated. 

For the analysis the LUSAS (2000) finite element program has been used. LUSAS is 
a commerclally available general finite element program, which has some specialised 
modules for civil engineers. For example one module can help the designer in 
combining the different load cases since the program can automatically do the load 
combination. 

4.1.1 The finite element model 

It was decided from the beginning that a full model will be created. It means that no 
symmetry condition will be used. The main reason for this decision is that the model 
has to be analysed under not oniy moment loading but shear loading. Fig. 4.1 shows 
the schematic layout of the model under sagging moment, Fig. 4.2 shows the layout 
of the model under hogging moment and Fig. 4.3 shows the model in the case of 
shear loading. These models correspond directiy to the experimental setup of the 
different structural details. 

250kN 250kN 

Fig. 4.1. Schematic layout of the model under sagging moment 

:50kN 250kN 

Fig. 4.2. Schematic layout of the model under hogging moment 
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Fig. 4.3. Schematic layout of the model in the case of shear loading 

Fig. 4.1 - 4.3 show that the models are simple supported beams. It means that the 

left hand side boundary condition (point L) restricts the displacements in all 

directions, X, Y and Z but ailows rotations. The boundary condition on the right hand 

side (point R) models a rolling condition as it ailows the displacements in the X 

direction, but restricts displacements in the Y and Z directions. The rotations at point 

L are also free to develop. 

Since these analysis will be used in the determination of the "iniţial" stiffnesses of the 

different structural details a linear, elastic material model is used with standard steei 

properties: 

Young modulus: 210 000 000 kN/m^, 

Poisson's ratio: 0.3. 

The loading conditions can also be seen in Fig. 4.1 - 4.3 for the different experimental 

setups. 

Since the finite element mesh represents the full structure the mesh has to be 

designed carefully. It means that most of the elements must be concentrated around 

the area of interest. Naturally the area of interest is the trapezoidal stiffener and its 

surroundings, which is the middie of the structure. The annex beams connect to the 

middie section "rigidiy" as there is a very strong plate between the middie section and 

the annex beams as it was discussed in Chapter 3. This also means that the number 

of finite elements in the annex beams can be very few. The meshes were generated 

automatically by the program. 

Ch.3-3 

BUPT



Another important decision is that mainly quadrilateral elements must be used in the 

finite element meshes for precision. The LUSAS program can oniy generate a 

quadrilateral dominant mesh, where most the of the elements are quadrilaterals, 

however there are some triangles in the mesh' as well. The name of the quadrilateral 

element in the LUSAS program is QSI4, which is a flat thin shell element. The 

element takes into account both membrane and flexural deformations and as 

required by thin plate theory, transverse shearing deformations are excluded. 

Fig. 4.4 shows the full finite element mesh of the model for the rigid (R) type of 

connection and Fig. 4.5 shows a magnified view of the same mesh. Fig. 4.6 and 4.7 

shows the finite element mesh of the model for the standard (S) type of connection. 

(It must be noted that in the experimental specimens no hole is cut out from the web 

of the cross girder at the corner of the trapezoidal specimen where it connects to the 

plate. On the other hand this hole is present in the numerical models.) Finally 

Fig. 4.8. and 4.9 show the finite element mesh of the model for the economic (E) type 

of connection. 

Fig. 4.4. Overview of the finite element mesh (rigid, R connection) 

I -

Fig. 4.5. Finite element mesh around the trapezoidal stiffener (rigid, R connection) 
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Fig. 4.6. Overview of the finite element mesli 

(standard, S connection) 

Fig. 4.7. Finite element mesh around the trapezoidal stiffener 

(standard, S connection) 

nil 

Fig. 4.8. Overview of the finite element mesh(economic, E connection) 

Fig. 4.9. Finite element mesh around the trapezoidal stiffener 

(economic, E connection) 
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The number of elements in the meshes is shown in Table 4.1. 

Type of connection Number of elements 

Rigid 4729 

Standard 4700 

Economic 4631 

Table 4.1. Number of e ements in the meshes 

4.1.2. Results of the linear 3D finite element analysis for the shear load 

Fig. 4.10 shows the magnified displacements of the finite element mesh with rigid (R) 

cx)nnection when shear loading is appiied on the model. Fig. 4.11 shows the 

magnified displacements for the standard (S) connection and Fig. 4.12 shows the 

magnified displacements for the economic (E) connection under shear loading. 

1 

Fig. 4.10. Displacement of the finite element mesh under shear loading 

(rigid, R connection) 

Fig. 4.11. Displacement of the finite element mesh under shear loading 

(standard, S connection) 

.. - — — 1 

Fig. 4.12. Displacement of the finite element mesh under shear loading 

(economic, E connection) 
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In Fig. 4.12 the contact between the trapezoidal stiffener and web of the cross girder 

is artificial, it oniy occurs because the displacements are magnified. 

The results of the analysis of the models under shear loading will be used in the 

determination of the static properties of the cross girders. I assume - based on the 

experimental results - that the different (R, S, E) connections between the orthotropic 

plate and the cross girder can be modelled as an elastic connection. It is assumed 

that there is an elastic layer between the two structural parts and its physical 

properties can be expressed by e. 

The e parameter of the elastic connection for the different structural details between 

the orthotropic plate and the cross girder can be determined from the results when 

the model is under shear loading. During the loading - due to the geometric and 

loading arrangement of the model - large shear forces will develop in the studied 

area of the structure. The bending moments can be neglected in the same area, thus 

with respect to the elastic "layer" connection this behaves as a "push-out test". 

Fig. 4.13 shows the shear forces and bending moments in the model. 

To determine the e parameter of the elastic connection the relative displacement 

between points A and D must be determined as shown in Fig. 4.13. The determined 

deformation state will be discussed in Chapter 5 along with the experimental results. 
F 3F 
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Fig. 4.13. Shear forces and bending moments in the model 
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4.1.3. Results of the linear 3D finite element analysis for the sagging moment 

The magnified displacements of the finite element meshes under sagging moment 

are shown in Fig. 4.14 for the rigid (R) connection, in Fig. 4.15 for the standard (S) 

connection and in Fig. 4.16 for the economic (E) connection. 

Fig. 4.14. Displacement of the finite element mesh under sagging moment 

(rigid, R connection) 

Fig. 4.15. Displacement of the finite element mesh under sagging moment 

(standard, S connection) 

Fig. 4.16. Displacement of the finite element mesh under sagging moment 

(economic, E connection) 

4.1.4. Results of the linear 3D finite element analysis for the hogging moment 

The magnified displacements of the finite element meshes under hogging moment 

are shown in Fig. 4.17 for the rigid (R) connection, in Fig 4.18 for the standard (S) 

connection and in Fig. 4.19 for the economic (E) connection. 
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Fig. 4.17. Displacement of the finite element mesh under hogging moment 

(rigid, R connection) 

Fig. 4.18. Displacement of the finite element mesh under hogging moment 

(standard, S connection) 

Fig. 4.19. Displacement of the finite element mesh under hogging moment 

(economic, E connection) 

4.2 Non-linear 3D finite element analysis 

In the program a couple of non-linear 3D finite element analysis has also been 

performed. The purpose of these tests to study the effect of the different structural 

details of the connection between the trapezoidal stiffener and the cross girder on the 

regional area. Similarly to the linear tests all three structural details, rigid (R), 

standard (S) and economic (E) have been investigated. Considering the results of the 

experiments the aim was to perform a non-linear 3D FE analysis under shear 

loading. 

For the non-linear finite element calculation the LS-DYNA (2001) package has been 

utilised. LS-DYNA has some special features which are required during the non-

linear calculation. LS-DYNA can perform an explicit finite element analysis. In this 
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case no global stiffness matrix must be assembled and the load is appiied to the 

stmcture in an increasing manner as time passes. Basically a pseudo dynamic 

analysis will be performed where it is possible to study the path to the ultimate state 

but we are more interested in the final state, in a "static" solution. However, 

performing a "static" analysis in this heips to account for geometric and material non-

linearities. 

Another important feature of the LS-DYNA program has, that it can handie material 

failure. Unfortunately not many finite element packages can model material failure 

and even the methodology of LS-DYNA is not perfect. In LS-DYNA material failure is 

modelled in such a way, that when in an element the plastic străin reaches a 

specified limit then the element ceases to exist. The element is taken out of the 

model. The consequence of this element removal, however is that there is no mass 

and energy conservation in the model. Some discussion about this kind of material 

modelling can be found in a paper by IVÂNYI, P., et al (2006). The experience of 

ivănyi is that with this type of material failure modelling the failure mechanism can be 

modelled quite well, however the forces and displacements may not match with the 

experimental resuits. 

It is also important to note that in the finite element analysis "real" material properties 

have been used. These material properties have been determined by experiments. 

Details about these experiments can be found in Chapter 3. Fig. 4.20 shows the 

strain-stress relations for the steei material that was used in the experimental 

specimens for the numerical simulations. 

Fig. 4.20. Stress-strain relation for the steeI material 
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Unfortunately the finite element mesh had to be buiit from scratch for the LS-DYNA 

program. In this case oniy quadrilateral elements are used in the mesh and the 

program has some constraints on the quality of the elements. The number of 

elements in the finite element meshes are shown in Table 4.2. 

Type of connection Number of elements 

Rigid (R) 1887 

Standard (S) 1937 

Economic (E) 1767 

Table 4.2. Number of e ements in the meshes 

The selected quadrilateral element is SHELL 163. SHELL 163 is a 4-node shell 

element with bending and membrane capabilities. The element has 12 degrees of 

freedom at each node: translations, accelerations, and velocities in the nodal x, y, 

and z directions and rotations about the nodal x, y, and z-axes. 

Fig. 4.21 shows the plates in the finite element model. There is another important 

difference compared to the linear elastic analysis, that the loading has been appiied 

on the structure through rigid plates. These plates can be seen in Fig. 4.21, in the 

upper flange. These plates are modelled as rigid as it is assumed that they will not 

deform. The main reason to use them is that in this way the load can be appiied as a 

concentrated load on the rigid plates. The use of these plates is also realistic as they 

model the real loading device. Furthermore in this way the amount of computation 

time can be reduced. The calculation of rigid elements is very short compared to an 

elastic or plastic element. 

Fig. 4.22 - Fig. 4.24 show the side view of the finite element mesh for all three 

connection types, rigid, standard, economic. The finite element mesh around the 

trapezoidal stiffener can be seen in Fig. 4.25 - Fig. 4.27. 

The execution of one these finite element models is approximately 6 hours. 
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Fig. 4.21. Geometry of the finite element model in the case of the economic 

connection 

Fig. 4.22. Overview of the finite element mesh (rigid (R) connection) 

Fig. 4.23. Overview of the finite element mesh (standard (S) connection) 

Fig. 4.24. Overview of the finite element mesh (economic (E) connection) 
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m 
Fig. 4.25. Finite element mesh around the trapezoidal stiffener (rigid (R) connection) 

Fig. 4.26. Finite element mesh around the trapezoidal stiffener 

(standard (S) connection) 

Fig. 4.27. Finite element mesh around the trapezoidal stiffener 

(economic (E) connection) 
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4.2.1 The imperfections according to EC 3 Part 1.5 

The assumed elastic "layer" connection between the two parts of the structural cross 

section is an important part of the static model. To determine the properties of the 

elastic connection the load case with shear loading must be considered, therefore 

these analysis will focus on them. 

The full analysis with attention to every detail requires significant computation power 

therefore oniy "limited" versions of the analysis were performed. I tried to perform 

analysis, which have few number of elements but at the same time they can provide 

information about the local behaviour of the structural details of the connections. 

4.2.2 Comparison of the experimental and numerical tests 

The load carrying capacity is very high in the case of the rigid connection between 

the trapezoidal stiffener and the cross girder in the orthotropic plate (see Chapter 3). 

The web of the cross section that is close to the trapezoidal stiffener buckies, as 

shown in Fig. 4.28 - Fig. 4.36. The full diagonal buckling cannot form since the 

trapezoidal stiffener has a strong supporting effect. The numerical results show very 

similar behaviour. 

In the case of the standard, (S) connection the load carrying capacity is significantly 

lower than the load carrying capacity of the rigid (R) connection type (see Chapter 3). 

The web of the cross girder buckies around the cut-out holes at the top of the 

trapezoidal stiffener. Later on the there is a material failure on the tensioned side, as 

shown in Fig. 4.28 - Fig. 4.36. 
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Fig. 4.28. Arrangement of the rigid (R) test 

Fig. 4.29. (R) speciment 

Fig. 4.30. FEM analysis of R speciment 
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Fig. 4.31. Arrangement of the standard (S) test 

Fig. 4.32. (S) speciment 

Fig. 4.30. FEM analysis of R speciment 
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Fig. 4.34. Arrangement of the economic (E) test 

Fig. 4.35. (E) speciment 

Fig. 4.30. FEM analysis of R speciment 

Ch.4-17 

BUPT



In the case of the economic, E connection a reduced load carrying capacity can be 

observed. (It is important to note, that the stiffness of the connection does not exhibit 

this large reduction.) The web of the cross girder buckies in a larger area due to the 

hole, however the buckling shape is very similar to the buckling shape which occured 

in the case of the standard, S connection type. In the case of the economic, E 

connection the tensioned part of the structure also fails later on. 

In the design of the standard (S) connection the Information that can be gained from 

the experimental and numerical analysis can also be utilised, that the behaviour of 

the ridid (R) and standard (S) connections differ significantly. This observation is very 

important since in the traditional design process this difference is not considered. (It 

can be noted that there are also differences between the standard (S) and economic 

(E) connections, but the differences are not that significant.) 

4.3 Conclusions 

Different structural details of the stiffeners of orthotropic plates have been 

investigated by numerical analysis in this chapter. The linear 3D finite element 

analysis heips to analyze the different structural details as elastic connections. In the 

case of the non-linear 3D finite element analysis oniy the effect of the shear forces 

have been investigated. These simulations help to study the local behaviour of the 

connections after the elastic range, during buckling and failure. The reason to 

perform onIy the analysis with shear forces as the calculation requires significant 

computaţional power. (IVÂNYI, et al 2006/b, IVÂNYI, Jr., IVÂNYI, P., 2007) 
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CHAPTER 5 
Behaviour and Design of Plated Steel Structures 

This chapter introduces the uses of plates and plated assemblies in steei structures. 

It describes the basic behaviour of plate panels subject to in-plane or out-of-plane 

loading, highiighting the importance of geometry and boundary conditions. Basic 

buckling modes and mode interaction are presented. It introduces the concept of 

effective width and describes the influence of imperfections on the behaviour of 

practicai plates. It also gives an introduction to the behaviour of stiffened plates. 

The load distribution for unstiffened plate structures loaded in-plane is discussed. 

The criticai buckling loads are derived using linear elastic theory. The effective width 

method for determining the ultimate resistance of the plate is explained as are the 

requirements for adequate finite element modelling of a plate element. Out-of-plane 

loading is also considered and its influence on the plate stability discussed. The 

requirements for finite element models of stiffened plates are outiined using those for 

unstiffened plates as a basis. 

5.1. Introduction to plate behaviour and design 

5.1.1. Introduction 

Plates are very important elements in steeI structures. They can be assembled into 

complete members by the basic rolling process (as hot rolled sections), by folding (as 

cold formed sections) and by welding. The efficiency of such sections is due to their 
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use of the high in-plane stiffness of one plate element to support the edge of its 

neighbour, thus controlling the out-of-plane behaviour of the latter. 

The size of plates in steei structures varies from about 0,6mm thickness and 70mm 

width in a cormgated steeI sheet, to about lOOmnri thick and 3m width in a large 

industrial or offshore stmcture. Whatever the scale of constmction the plate panel will 

have a thickness t that is much smaller than the width b, or length a. As will be seen 

later, the most important geometric parameter for plates is b/t and this will vary, in an 

efficient plate structure, within the range 30 to 250. 

TIMOSHENKO-WINOWSY-KRIEGER (1959), BLEICH (1952), SZILÂRD (1974), 

WOLMIR (1962), DUBAS, GHERI (1986), BRUSH, ALMROTH (1975), PETERSEN 

(1982) 

5.1.2. Basic behaviour of a plate panel 

Understanding of plate structures has to begin with an understanding of the modes of 

behaviour of a single plate panel. 

5.1.2.1. Geometric and boundary conditions 

The important geometric parameters are thickness t, width b (usually measured 

transverse to the direction of the greater direct stress) and length a, see Fig. 5.1. The 

ratio b/t, often called the plate slenderness, influences the local buckling of the plate 

panel; the aspect ratio a/b may also influence buckling patterns and may have a 

significant influence on strength. 

In addition to the geometric proportions of the plate, its strength is governed by its 

boundary conditions. Fig. 5.1 shows how response to different types of actions is 

influenced by different boundary conditions. Response to in-plane actions that do not 

cause buckling of the plate is oniy influenced by in-plane, plane stress, boundary 

conditions, Fig. 5.1b Initially, response to out-of-plane action is onIy influenced by the 

boundary conditions for transverse movement and edge moments, Fig. 5.1c. 

However, at higher actions, responses to both types of action conditions are 
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influenced by all four boundary conditions. Out-of-plane conditions influence the local 

buckling, see Fig. 5.1d; in-plane conditions influence the membrane action effects 

that develop at large displacements (>t) under lateral actions, see Fig. 5.1e. 

a 

(a) Single plate panel 

(b) In-plane action, 
pre-buckling 

(c) Out-of-plane action 
small displacements 

(d) In-plane action, 
post-buckling 

(e) Out-of plane action, 
large displacements 

Fig. 5.1. Significant boundary conditions for plate panels 

5.1.2.2. In-plane Actions 

As shown in Fig. 5.2a, the basic types of in-plane actions to the edge of a plate panel 

are the distributed action that can be appiied to a full side, the patch action or point 

action that can be appiied locally. 
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Point loading 
Patch loading 

Distributed loading 

Stress distribution 
Stiff,  

(b) Uniform appiied 
displaoements 

In-plane boundary 
displaoements 

^ (c) Uniform appiied 
stress 

Fig. 5.2. Types of in-plane action 

When the plate buckies, it is particularly important to differentiate between appiied 
displacements. see Fig. 5.2b and appiied stresses. see Fig. 5.2c. The former permits 
a redistribution of stress within the panel; the more flexible central region sheds 
stresses to the edges giving a valuable post buckling resistance. The latter, rarer 
case leads to an earlier collapse of the central region of the plate with in-plane 
deformation of the loaded edges. 

5.1.2.3. Out-of-plane Actions 

Out-of-plane loading may be: 

Uniform over the entire panel, see for example Fig. 5.3a, the base of a 
water tank. 
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Varying over the entire panel, see for exemple Fig. 5.3b, the side of a 

water tank. 

A local patch over part of the panel, see for example Fig. 5.3c, a wheei 

load on a bridge deck. 

(a) Uniformiy distributed loading 

(b) Variable distributed loading 

(c) Patch loading 

Fig. 5.3. Types of out-of-plane actions 

5.1.2.4. Determination of plate panel actions 

In some cases, for example in Fig. 5.4a, the distribution of edge actions on the 

panels of a plated structure are self-evident. In other cases the in-plane flexibilities of 

the panels lead to distributions of stresses that cannot be predicted from simple 

theory. In the box girder shown in Fig. 5.4b, the in-plane shear flexibility of the 

flanges leads to in-plane deformation of the top flange. Where these are interrupted, 

for example at the change in direction of the shear at the central diaphragm, the 

resulting change in shear deformation leads to a non-linear distribution of direct 

stress across the top flange; this is called shear lag. 
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(b» Box girder at internai 
^ support 

Fig. 5.4. Effect of shear lag on distribution of stresses in plated structures 

In members made up of plate elements, such as the box girder shown in Fig. 5.5, 

many of the plate components are subjected to more than one component of in-plane 

action effect. Oniy panel A does not have shear coincident with the longitudinal 

compression. 

Compress ion & shear 

Compiebsion 8. sheai Tension & shear 

Fig. 5.5 Examples of components of action on plate panels in a box girder 
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If the cross-girder system EFG was a means of introducing additional actions into the 

box, there wouid also be transverse direct stresses arising from the interaction 

between the plate and the stiffeners. 

5.1.2.5. Variations in buckied mode 

i) Aspect ratio a/b 
In a long plate panel, as shown in Fig. 5.6, the greatest iniţial inhibition to buckling is 

the transverse flexural stiffness of the plate between unioaded edges. (As the plate 

moves more into the post-buckied regime, transverse membrane action effects 

become significant as the plate deforms into a non-developable shape, i.e. a shape 

that cannot be formed just by bending). 

m = Number of half waves 

m = 1 2 l \ 5 
V 1 1 \ \ \ \ 

\ » \ % . V 
1 

1 / 2 2 'v^ 3 4 V 2 0 

Fig. 5.6. Variations in buckied mode with aspect ratio for a plate panel in longitudinal 

compression 
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As with any instability of a continuous medium, more than one buckied mode is 

possible, in this instance, with one half wave transversely and in half waves 

longitudinally. As the aspect ratio increases the criticai mode changes, tending 

towards the situation where the half wave length a/m=b. The behaviour of a long 

plate panel can therefore be modelled accurately by considering a simply-supported, 

square panel. 

ii) Bending conditions 
As shown in Fig. 5.7, boundary conditions influence both the buckied shapes and the 

criticai stresses of elastic plates. The greatest influence is the presence or absence 

of simple supports, for example the removal of simple support to one edge between 

case 1 and case 4 reduces the buckling stress by a factor of 4.0/0.425 or 9.4. By 

contrast introducing rotational restraint to one edge between case 1 and case 2 

increases the buckling stress by 1.35. 

a = k « Et 
1 2 ( k . ) b 

Case Description of support at the unloaded edges k 

1 Both edges simply , Y ^ „ 4 00 
supported A 

> 

2 One edge simply | Y ^ t ^^^ 
supported. the * A 
other fixed 

> 

3 Both edges fixed | Y ^ | 
supported • A * 

6.97 

b > 

4 One edge simply ^ V ^ 0.425 
supported. the A 
other free 

> 

5 One edge fixed l V * 1277 
the other free « A 

b > 

Fig. 5.7. Coefficients for plate buckling in compression for various boundary 

conditions 
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iii) Interaction of modes 
Where there is more than one action component, there will be more than one mode 

and therefore there may be interaction between the modes. Thus in Fig. 5.8bi the 

presence of low transverse compression does not change the mode of buckling. 

However, as shown in Fig. 5.8bii, high transverse compression will cause the panel 

to deform into a single half wave. (In some circumstances this forcing into a higher 

mode may increase strength; for example, in case 5.8bii, predeformation/transverse 

compression may increase strength in longitudinal compression.) Shear buckling as 

shown in Fig. 5.8c is basically an interaction between the diagonal, destabilising 

compression and the stabilising tension on the other diagonal. 

(bl) Biaxial compression, 
longitudinal compression 
predominating 

(bii) Biaxial compression, 
transverse compression 
predominating 

(c) Shear 

Fig. 5.8. Buckling modes for plate panels 

Where buckied modes under the different action effects are similar, the buckling 

stresses under the combined actions are less than the addition of individual action 
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effects. Fig 5.9 shows the buckling interactions under combined compression, and 

uniaxial compression and shear. 

Fig. 5.9. Interaction of buckling modes for square plate panel 

5.1.2.6. Griliage analogy for plate buckling 

One helpful way to consider the buckling behaviour of a plate is as the griliage shown 

in Fig. 5.10. A series of longitudinal columns carry the longitudinal actions. When 

they buckle, those nearer the edge have greater restraint than those near the centre 

from the transverse flexural members. They therefore have greater post buckling 

stiffness and carry a greater proportion of the action. As the griliage moves more into 

the post buckling regime, the transverse buckling restraint is augmented by 

transverse membrane action. 

Fig. 5.10. Grid model of plate in compression 
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5.1.2.7 Post buckling behaviour and effective widths 

Fig. 5.11a, 5.11b and 5.11c describes in more detail the changing distribution of 

stresses as a plate buckies foilowing the equilibrium path shown in Fig. 5.11d. As the 

plate initially buckies the stresses redistribute to the stiffer edges. As the buckling 

continues this redistribution becomes more extreme (the middie strip of slender 

plates may go into tension before the plate fails). Also transverse membrane stresses 

build up. These are seif equilibrating uniess the plate has clamped in-plane edges; 

tension at the mid panel, which restrains the buckling is resisted by compression at 

the edges, which are restrained from out-of-plane movement. 

St :îf 

(a) Pre-buckling 

Stift 

(WINTER) 
(b) Post-buckling 

Stiff -

(c) Post buckling 
P>P c, 

Fig. 5.11. Buckling behaviour of square plate in compression with simply supported 

edges, free to pull in but heid straight 

Ch.5-11 

BUPT



An examination of the non-linear longitudinal stresses in Fig. 5.11a and 5.11c show 

that it is possible to replace these stresses by rectangular stress blocks that have the 

same peak stress and same action effect. This effective width of plate (comprising 

beff/2 on each side) proves to be a very effective design concept. Fig. 5.1 le shows 

how effective width varies with slenderness (Xp is a measure of plate slenderness 

that is independent of yieid stress; \p = 1,0 corresponds to values of b/t of 57, 53 and 

46 for fy of 235N/mm^, 275N/mm^ and 355N/mm^ respectively). 

Fig. 5.12 shows how effective widths of plate elements may be combined to give an 

effective cross-section of a member. 

n 
(a) Effective section (shaded) for typical members 

in axial compression 

|b) Effective section (shaded) for typical 
plate girder under sagging moment 

Fig. 5.12. The appiication of effective width of plate panels to determine effective 

cross-sections 

5.1.2.8 The influences of imperfections on the behaviour of actual plates 

As with all steei structures, plate panels contain residual stresses from manufacture 

and subsequent welding into plate assemblies, and are not perfectiy flat. The 

previous discussions about plate panel behaviour all reiate to an ideal, perfect plate. 
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As it is shown in Fig. 5.13 these imperfections modify the behaviour of actual plates. 

For a slender plate the behaviour is asymptotic to that of the perfect plate and there 

is littie reduction in strength. For plates of intermediate slenderness (which frequently 

occur in practice), an actual imperfect plate will have a considerably lower strength 

than that predicted for the perfect plate. 

(a) Slender plate 

Rigid plastic 
collapse mechanism 

Strength of 
perfect 
plate 

Strength of 
imperfect plate 

(b) Intermediate 
slender plates 

Fig. 5.13. The influence of imperfections on the behaviour of plates of different 

slenderness in compression 

Fig. 5.14 summarises the strength of actual plates of varying slenderness. It shows 

the reduction in strength due to imperfections and the post buckling strength of 

slender plates. 
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Criticai buckling 

1.0 
^ Yielding \ 

1-0,22/Xp (WINTER) 
Reductions due 
to imperfection Post-buckling 

strength 

0.673 

Stocky 
plates 

I 
1,0 2,0 3.0 Xr 

Slender -> 
plates 

Intermediate 
slender 
plates 

Fig. 5.14. Relationship between plate slenderness and strength in compression 

5.1.2.9. Elastic behaviour of plates under lateral actions 

Fig. 5.15 contrasts the behaviour of a similar plate with different boundary conditions. 

The elastic behaviour of laterally loaded plates is considerably influenced by its 

support conditions (Fig. 5.15a). If the plate is resting on simple supports as in 

Fig. 5.15b, it will deflect into a shape approximating a saucer and the corner regions 

will lift off their supports. If it is attached to the supports, as in Fig. 5.15c, for example 

by welding, this lift off is prevented and the plate stiffness and action capacity 

increases. If the edges are encastre as in Fig. 5.15d, both stiffness and strength are 

increased by the boundary restraining moments. 
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Pressure p 

pp^TTrm^TTn r 
T 

(a) Plate undcr 
uniform lateral 
pressure p. 

(b) Simply supported 
edges, corners 
free to lift. 

(c) Simply suppoiled 
edges, corners 
heid down. 

(d) Encastre edges. 

(e) Simply supported 
edges, corners heId 
downjarge 
displacement edges 

heId straight. 

Fig. 5.15. Elastic behaviour of square plate under lateral actions with different 

boundary conditions 

Slender plates may well deflect elastically into a large displacement regime (typically 

where 6 > t). In such cases the flexural response is significantly enhanced by the 

membrane action of the plate. This membrane action is at its most effective if the 

edges are fully clamped. Even if they are oniy heId partially straight by their own in-

plane stiffness, the increase in stiffness and strength is most noticeable at large 

deflections. 

Fig. 5.16 shows the modes of behaviour that occur if the plates are subject to 
sufficient load for full yieid line patterns to develop. The greater number of yieid lines 
as the boundary conditions improve is a qualitative measure of the increase in 
resistance. 
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Pressure p 

(a) Plate under 
uniform lateral 
pressure p 

(b) SImply supported 
edges.corners 
free to lift 

(c) Simply supported 
edges.corners 
heid down. 

(d) Encastră edges. 

Fig. 5.16. Yieid line patterns for square plates under lateral loading with various 

boundary conditions 

5.1.3. Behaviour of stiffened plate 

Many aspects of stiffened plate behaviour can be deduced from a simple extension of 

the basic concepts of behaviour of unstiffened plate panels. However, in making 

these extrapolations it shouid be recognised that: 

"Smearing" the stiffeners over the width of the plate can oniy model overall 

behaviour. 

Stiffeners are usually eccentric to the plate. Flexural behaviour of the 

equivalent tee section induces local direct stresses in the plate panels. 

Local effects on plate panels and individual stiffeners need to be 

considered separately. 

The discrete nature of the stiffening introduces the possibility of local 

modes of buckling. For example, the stiffened flange shown in Fig. 5.17a 

shows several modes of buckling. Examples are: 
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(i) plate panel bucklinq under overall compression plus any local 

compression arising from the combined action of the plate panel with its 

attached stiffening, Fig. 5.17b. 

(ii) stiffened panel bucklinq between transverse stiffeners, Fig. 5.17c. This 

occurs if the latter have sufficient rigidity to prevent overall buckling. Plate 

action is not very significant because the oniy transverse member is the 

plate itself. This form of buckling is best modelled by considering the 

stiffened panel as a series of tee sections buckling as columns. It shouid 

be noted that this section is monosymmetric and will exhibit different 

behaviour if the plate or the stiffener tip is in greater compression. 

(iii) overall or orthotropic buckinq. Fig. 5.17d. This occurs when the cross 

girders are flexible. It is best modelled by considering the plate assembly 

as an orthotropic plate. 

(In this Doctoral Thesis I have created such a design process which can take into 

account the stiffness of the cross girders. The calculations were perfromed according 

to EC 3-1-5 and the stiffness of the cross girders were calculated according to the 

concept of the "ideal" cross section.) 

(a) Suttened plate 

(bi Plale buckJing 

(c) StiHened panel 
buckJing 

(d) Or thotropic buckl ing 

Fig. 5.17. Buckling modes for stiffened plates in compression 
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5.2. Behaviour and design of unstiffened plate 

5.2.1. Introduction 

Thin-walled members, composed of thin plate panels welded together, are 

increasingly important in modern steei construction. In this way, by appropriate 

selection of steeI quality, geometry, etc., cross-sections can be produced that best fit 

the requirements for strength and serviceability, thus saving steel. 

Recent developments in fabrication and welding procedures allow the automatic 

production of such elements as plate girders with thin-walled webs, box girders, thin-

walled columns, etc. (Fig. 5.18a); these can be subsequently transported to the 

construction site as prefabricated elements. 

c D' 

(al 

(b) 

Fig. 5.18. Typical sections (a) examples, (b) in-plane stress conditions for box girder 

subpanels 

Due to their relatively small thickness, such plate panels are basically not intended to 

carry actions normal to their plane. However, their behaviour under in-plane actions 

is of specific interest (Fig. 5.18b). Two kinds of in-plane actions are distinguished: 

those transferred from adjacent panels, such as compression or shear. 

those resulting from locally appiied forces (patch loading) which generate 

zones of highiy concentrated local stress in the plate. 
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The behaviour under patch action is a specific problem on plate girders This 

subchapter deals with the more general behaviour of unstiffened panels subjected to 

in-plane actions (compression or shear) which is governed by plate buckling. It also 

discusses the effects of out-of-plane actions on the stability of these panels. 

5.2.2. Unstiffened plates under in-piane loading 

5.2.2.1 Load distribution 

5.2.2.1.1. Distribution resulting from membrane theory 

The stress distribution in plates that react to in-plane loading with membrane stresses 

may be determined, in the elastic fieid, by solving the plane stress elastostatic 

problem governed by Navier's equations. 

5.2.2.1.2 Distribution resulting from linear elastic theory using Bernouilli's 
hypothesis 
For slender plated stnjctures, where the plates are stressed as membranes, the 

appiication of Airy's stress function is not necessary due to the hypothesis of plane 

străin distributions, which may be used in the elastic as well as in the plastic range, 

(see Fig. 5.19). 

Stresses 

Elastic 

Strains 

Stresses 

Rastic 

Stiains 

Fig. 5.19. Plane stress distribution 
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However, for wide flanges of plated structures, the appiication of Airy's stress 

function leads to significant deviations from the plane străin hypothesis, due to the 

shear lag effect, (Fig. 5.20). Shear lag may be taken into account by taking a reduced 

flange width. 

Fig. 5.20. Effective width due to shear lag 

5.2.2.1.3. Distribution resulting from finite element methods 
When using finite element methods for the determination of the stress distribution, 

the plate can be modelled as a perfectiy flat arrangement of plate sub-elements. 

Attention must be given to the load introduction at the plate edges so that shear lag 

effects will be taken into account. The results of this analysis can be used for the 

buckling verification. 

5.2.2.2. Stability of unstiffened plates 

5.2.2.2.1 Linear buckling theory 
The buckling of plate panels was investigated for the first time by BRYAN in 1891, in 

connection with the design of a ship huli (BRYAN, 1891). The assumptions for the 

plate under consideration (Fig. 5.21a), are those of thin plate theory KirchhofTs 

theory, see (SZILARD, (1974), BRUSH, et al (1975), WOLMIR, (1962), 

TIMOSHENKO, et al (1959)): 

a) The material is linear elastic, homogeneous and isotropic. 

b) The plate is perfectiy plane and stress free. 
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C) 

d) 

e) 

f) 

g) 

h) 

The thickness T of the plate is small compared to its other dimensions. 

The in-plane actions pass through its middie plane. 

The transverse displacements w are small compared to the thickness of 

the plate. 

The slopes of the deflected middie surfaces are small compared to unity. 

The deformations are such that straight lines, initially normal to the middie 

plane, remain straight lines and normal to the deflected middie surface. 

The stresses normal to the thickness of the plate are of a negligible order 

of magnitude. 

(a) A panel 

cr 

w 

(b) Load/lateral deflection curve 

cr 

b/t 

(c) Plate buckling curve 

Fig. 5.21. Linear buckling theory-notation 

Due to assumption (e) the rotations of the middie surface are small and their squares 

can be neglected in the străin displacement relationships for the stretching of the 

middie surface. 
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An important consequence of this assumption is that there is no stretching of the 

midclle surface due to bending, and the differential equations goveming the 

deformation of the plate are linear and uncoupled. This theory, in which the equations 

are linear, is referred to as linear buckling theory. 

Of particular interest is the appiication of the linear buckling theory to rectangular 

plates, subjected to constant edge loading (Fig. 5.21a). The load lateral deflection 

curve is given by Fig. 5.21b. In this case the criticai action, which corresponds to the 

Euler buckling load of a compressed strut, may be written as: 

CTcr=ks^E (5.1) 

tt^E where a . = — ^ . (5.2) 

12 

and ks, kt are dimensionless buckling coefficients. 

Oniy the form of the buckling surface may be determined by this theory but not the 

magnitude of the buckling amplitude. The relationship between the criticai stress Ocu 

and the slenderness of the panel X = b/t, is given by the buckling curve. This curve, 

shown in Fig. 5.21c, has a hyperbolic shape and is analogous to the Euler hyperbola 
for struts. 

The buckling coefficients, "k", may be determined either analytically or numerically, 

using the energy method, the method of transfer matrices, etc. Values of ks and kt for 

various actions and support conditions are shown in Fig. 5.22 as a function of the 

aspect ratio of the plate a =a/b. The curves for ks have a "garland" form. Each 

garland corresponds to a buckling mode with a certain number of waves. For a plate 

subjected to uniform compression, as shown in Fig. 5.22. Obviousiy, the buckling 

mode that gives the smallest value of k is the decisive one. For practicai reasons a 

single value of ks is chosen for plates subjected to normal stresses. This is the 

smallest value for the garland curves independent of the value of the aspect ratio. In 

the example given in Fig. 5.22 ks is equal to 4 for a plate which is simply supported 

on all four sides and subjected to uniform compression. 
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Compression 

a) 

Boundary conditions 
AII edqe-5 smoly suppoaed 
'Jnloa'Sed edges cten-iped 
411 edges ciamped 
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Fig. 5.22a-b. Buckling coefficients ka for kompession and buckling modes 
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Fig 5.22c-d. Buckling coefficients kr for shear 
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Combination of stresses cj*. ay and r 

For practicai design situations some further approximations are necessary. They are 

illustrated by the example of a plate girder, shown in Fig.5.23. 

l i ii i i i i 

M 

V 

1=2 -A 

' 1 1 1 

11 

r 
r 

(a) Simplified stress condrtions 

i i 

(b) Unstiffened subpanel 

Fig. 5.23. Separation of unstiffened subpanels for a plate girder 

The normal and shear stresses, cr* and r respectively, at the opposite edges of a 

subpanel are not equal, since the bending moments M and the shear forces V vary 

along the panel. However, M and V are considered as constants for each subpanel 

and equal to the largest value at an edge (or equal to the value at some distance 

from it). This conservative assumption leads to equal stresses at the opposite edges 

for which the charts of ks and kt appiy. The verification is usually performed for two 

subpanels; one with the largest value of cTx and one with the largest value of t. In 

most cases, as in Fig. 5.23 each subpanel is subjected to a combination of normal 

and shear stresses. A direct determination of the buckling coefficient for a given 

combination of stresses is possible; but it requires considerable numerical effort. For 
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practicai situations an equivalent buckling stress GCT^^ is found by an interaction 

formula after the criticai stresses CTcr®*̂  and r c ° , for independent action of s and t 

have been determined. The interaction curve for a plate subjected to normal and 

shear stresses, cr* and T respectively, varies between a circle and a parabola 

(CHWALLA (1944)), depending on the value of the ratio of the normal stresses at 

the edges (Fig. 5.24) 

Circle 

(a) Interaction curves 

t 

T -

T a 

(b) Stress conditions 

Fig. 5.24. Consideration of plate under combined shear and direct in plane stresses 

5.2.2.2.2 Ultimate resistance of an unstiffened plate 
General 
The linear buckling theory described in the previous section is based on assumptions 

from (a) to (h) in 5.2.2.2.1, that are never fulfilled in real structures. The 

consequences for the buckling behaviour when each of these assumptions is 

removed is now discussed. 
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The first assumption of uniimited linear elastic behaviour of the material is obviousiy 

not valid for steel. If the material is considered to behave as linear elastic-ideal 

plastic, the buckling curve must be cut off at the level of the yieid stress (Ty 

(Fig. 5.25b). 

C I 
^ b/t 

Assumed curves : linear theory 

s 

(a) o - s for Steel (b) Buckling curves 

'Real' curves 

Fig. 5.25. a - t diagrams for steel and corresponding buckling curves 

When the non-linear behaviour of steel between the proportionality limit CTp and the 

yieId stress CTy is taken into account, the buckling curve will be further reduced 

(Fig. 5.25b). When străin hardening is considered, values of ctct larger than ( j y , as 

experimentally observed for very stocky panels, are possible. In conclusion, it may be 

stated that the removal of the assumption of linear elastic behaviour of steel results in 

a reduction of the ultimate stresses for stocky panels. 

The second and fourth assumptions of a plate without geometrical imperfections and 

residual stresses, under symmetric actions in its middie plane, are also never fulfilled 

in real stnjctures. If the assumption of small displacements is still retained, the 

analysis of a plate with imperfections requires a second order analysis. This analysis 

has no bifurcation point since for each level of stress the corresponding 

displacements w may be determined. The equilibrium path (Fig. 5.26a) tends 
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asymptotically to the value of Ger for increasing displacements, as is found from the 

second order theory. 

cr 

w 

w 

(a) Action lateral deflection curve for plate with imperfections 

Wrthout imperfections 

With imperfections 

b/t 

(b) Buckling curves for linear theory with plasticity 

Fig. 5.26. Action-deflection curve for a plate with imperfections and buckling curve for 

linear theory with plasticity 

However the ultimate stress is generally lower than aer since the conrjbined stress 

due to the buckling and the membrane stress is limited by the yieid stress. This 

limitation becomes relevant for plates with geometrical imperfections, in the region of 

moderate slenderness, since the value of the buckling stress is not small (Fig. 5.26b). 

For plates with residual stresses the reduction of the ultimate stress is primarily due 

to the small value of (7p (Fig. 5.25b) at which the material behaviour becomes non-

linear. In conclusion it may be stated that imperfections due to geometry, residual 

stresses and eccentricities of loading lead to a reduction of the ultimate stress, 

especially in the range of moderate slenderness. 
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The assumption of small displacements (e) in 5.2.2.2.1. is not valid for stresses in the 

vicinity of cjcr as shown in Fig. 5.26a. When large displacements are considered the 

equation are known as the von Karman equations (TIMOSHENKO, at. al (1959)). 

They constitute the basis of the (geometrically) non-linear buckling theory. For a plate 

without imperfections the equilibrium path still has a bifurcation point at dcr, but, 

uniike the linear buckling theory, the equilibrium for stresses u > CTcr is still stable 

(Fig. 5.27). 

The equilibrium path for plates with imperfections tends asymptotically to the same 

curve. The ultimate stress may be determined by limiting the stresses to the yieid 

stress. It may be observed that plates possess a considerable post-critical carrying 

resistance. This post-critical behaviour is more pronounced the more slender the 

plate, i.e. the smaller the value of Oat-

>. w / t 

Fig. 5.27. Action-deflection curves of plates with imperfections for (geometrically) 

non-linear buckling theory 

Buckling curve 
For the reasons outiined above, it is evident that the Euler buckling curve for linear 

buckling theory (Fig. 5.22c) may not be used for design. A lot of experimental and 

theoretical investigations have been performed in order to define a buckling curve 

that best represents the true behaviour of plate panels. For relevant literature 

reterence shouid be made to Dubas and Gehri (DUBAS, at. al (1986)). For design 
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purposes it is advantageous to express the buckling curve in a dimensionless form as 

described below. 

The slenderness of a panel may be written according to Eq. 5.1 and Eq. 5.2 as: 

i 

12 1-v 

^s M ^cr 

If a reference slenderness given by: 

(5.3) 

y i f y 

is introduced, the relative slenderness becomes: 

I T - ^ P -

(5.4) 

(5.5) 

The ultimate stress is also expressed in a dimensionless form by introducing a 

reduction factor: 

a y 
(5.6) 

Dimensionless curves for normal and for shear stresses as proposed by Eurocode 3 

(EUROCODE 3 (1992)) are illustrated in Fig. 5.28. 

I wiear ttieorv 

O bH 

Lineiu theory 

Fig. 5.28. Buckling curves (a) normal and (b) shear stresses 
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These buckling curves have higher values for large slendernesses than those of the 

Euler curve due to post criticai behaviour and are limited to the yieid stress. For 

intermediate slendernesses, however, they have smaller values than those of Euler 

due to the effects of geometrical imperfections and residual stresses. 

Although the linear buckling theory is not able to describe accurately the behaviour of 

a plate panel, its importance shouid not be ignored. In fact this theory, as in the case 

of stmts, yieids the value of an important parameter, namely Xp , that is used for the 

determination of the ultimate stress. 

Effective width method 
This method has been developed for the design of thin walled sections subjected to 

uniaxial normal stresses. It will be illustrated for a simply-supported plate subjected to 

uniform compression (Fig. 5.29a). 

Assumed 

/ 
Real 
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V / / / / y 
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1 
/\ y 1 
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i \ 1 V 
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o < T * 

(b) 

iiiiiiir 

- 1 £ «i' -i 
b, 
O 

1 11 11 11 I 

- 1 < T < 

Fig. 5.29. Definition of the effective width for a plate supported on one side 
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The stress distribution which is initially uniform, becomes non-uniform after buckling, 

since the central parts of the panel are not able to carry more stresses due to the 

bowing effect. The stress at the stiff edges (towards which the redistribution takes 

place) may reach the yieid stress. The method is based on the assumption that the 

non-uniform stress distribution over the entire panel width may be substituted by a 

uniform one over a reduced "effective" width. This width is determined by equating 

the resultant forces: 

b(Tu=becry, (5.7) 

and accordingly 

= (5.8) 

which shows that the value of the effective width depends on the buckling curve 

adopted. For uniform compression the effective width is equally distributed along the 

two edges (Fig. 5.29a). For non-uniform compression and other support conditions it 

is distributed according to rules given in the various regulations. Some examples of 

the distribution are shown in Fig. 5.29b. The effective width may also be determined 

for values of o" < cju- In such cases Eq. 5.8 is still valid, but Ăp , which is needed for 

the determination of the reduction factor k, is not given by Eq. 5.5 but by the 

relationship 

The design of thin walled cross-sections is performed according to the foilowing 

procedure: 

For given actions conditions the stress distribution at the cross-section is 

determined. At each subpanel the criticai stress (!„, the relative 

slenderness Ăp and the effective width be are determined according to 

Eq. 5.1, Eq. 5.5 and Eq. 5.8, respectively. The effective width is then 

distributed along the panel as illustrated by the examples in Fig. 5.29b. 

The verifications are finally based on the characteristic Ae, U, and We of 

the effective cross-section. For the cross- section of Fig. 5.30b, which is 
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subjected to normal forces and bending moments, the verification is 

expressed as: 

N M + Ne 
y< (5.10) 

I ' Ym 

where e is the shift in the centroid of the cross-section to the tension side and jm the 

parţial safety factor of resistance. 

Neut ra l 

3XIS 

t ' 

N o r v e f f e c t i v e 

zone 

/ 

N e u t r a l 

a x i s o f 

e f f e c t i v e 

a r e a 

(a) (b) 

Fig. 5.30. Determination of the effective cross-section 

Finite element methods 

When using finite element methods to determine the ultimate resistance of an 

unstiffened plate one must consider the foilowing aspects: 

The modelling of the plate panel shouid include the boundary conditions 

as accurately as possible with respect to the conditions of the real 

structure, see Fig. 5.31. For a conservative solution, hinged conditions can 

be used along the edges. 

Thin Shell elements shouid be used in an appropriate mesh to make 

yielding and large curvatures (large out-of-plane displacements) possible. 

The plate shouid be assumed to have an iniţial imperfection similar in 

shape to the final collapse mode. 
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FEM model 

Fig. 5.31. FEM modeling from the real structure 

The first order Euler buckling mode can be used as a first approximation to this 

shape. In addition, a disturbance to the first order Euler buckling mode can be added 

to avoid snap-through problems while running the programme, see Fig. 5.32. The 

amplitude of the iniţial imperfect shape shouid reiate to the tolerances for flatness. 

ŵ  is the amplitude of the Euler buckling mode 
The size is related to the tolerances for fabrication. 

Wj is the amplitude of the disturbance. 
Wj --- 5 • 10% of w , 

0,= w, + w^-.are the iniţial 
w, - •'imperfections 

Fig. 5.32. Iniţial imperfections for FEM model 

Ch.5-33 

BUPT



The program used must be able to take a true stress-strain relationship into account, 

see Fig. 5.33 and if necessary an iniţial stress pattern. The latter can also be included 

in the iniţial shape. 

The computer model must use a loading which is equal to the design loading 

multiplied by an action factor. This factor shouid be increased incrementally from zero 

up to the desired action level (load factor = 1). If the structure is still stable at the load 

factor = 1, the calculation process can be continued up to collapse or even beyond 

collapse into the region of unstable behaviour (Fig. 5.34). In order to calculate the 

unstable response, the program must be able to use more refined incremental and 

iterative methods to reach convergence in equilibrium. 

or 

s 

Fig. 5.33. Material model for FEM model 

F 

crit — 

- Plastic 

" Ultim ate 

" Design action 
(action factor 
is 1) 

initial 

Fig. 5.34. In-plane action - out-of-plane displacement characteristic 
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5.2.3. Unstiffened plates under out-of-plane actions 

5.2.3.1. Action distribution 

5.2.3.1.1. Distribution resulting from plate theory 

If the plate deformations are small compared to the thickness of the plate, the middie 

plane of the plate can be regarded as a neutral plane without membrane stresses. 

This assumption is similar to beam bending theory. The actions are heid in 

equilibrium oniy by bending moments and shear forces. The stresses in an isotropic 

plate can be calculated in the elastic range by solving a fourth order parţial differential 

equation, which describes equilibrium between actions and plate reactions normal to 

the middie plane of the plate. 

An approximation may be obtained by modelling the plate as a grid and neglecting 

the twisting moments. 

Plates in bending may react in the plastic range with a pattern of yieid lines which, by 

analogy to the plastic hinge mechanism for beams, may form a plastic mechanism in 

the limit state (Fig. 5.35). The position of the yieId lines may be determined by 

minimum energy considerations. 

Section A - A 

Fig. 5.35. YieId mechanism in a plate 
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If the plate deformations are of the order of the plate thickness or even larger, the 

membrane stresses in the plate can no longer be neglected in determining the plate 

reactions. 

The membrane stresses occur if the middie surface of the plate is deformed to a 

curved shape. The deformed shape can be generated oniy by tension, compression 

and shear stains in the middie surface. 

This behaviour can be illustrated by the deformed circular plate shown in Fig. 5.36b. 

It is assumed that the line a c b (diameter d) does not change during deformation, so 

that a', c', b' is equal to the diameter d. The points which lie on the edge "akb" are 

now on a', k', b', which must be on a smaller radius compared with the original one. 

(a) 

<b) 

(c) 

Fig. 5.36. Model to show membrane action in a circular plate under out-of-plane 

actions 

Therefore the distance akb becomes shorter, which means that membrane stresses 

exist in the ring fibres of the plate. The distribution of membrane stresses can be 

visualised if the deformed shape is frozen. 
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It can oniy be flattened out if it is cut into a number of radial cuts, Fig. 5.36c, the gaps 

representing the effects of membrane stresses; this explains why curved surfaces are 

much stiffer than flat surfaces and are very suitable for constructing elements such as 

cupolas for roofs, etc. 

The stresses in the plate can be calculated with two fourth order coupled differential 

equations, in which an Airy-type stress function which describes the membrane state, 

has to be determined in addition to the unknown plate deformation. 

In this case the problem is non-linear. The solution is far more complicated in 

comparison with the simple plate bending theory which neglects membrane effects. 

The behaviour of the plate is governed by von Karman's equations. 

5.2.3.1.2. Distribution resulting from finite element methods (FEM) 
More or less the same considerations hold when using FEM to determine the stress 

distribution in plates which are subject to out-of-plane action as when using FEM for 

plates under in-plane actions, except for the foilowing: 

The plate element must be able to describe large deflections out-of-plane. 

The material model used shouid include plasticity. 

5.2.3.2. Deflection and ultimate resistance 

5.2.3.2.1. Deflections 
Except for the yieid line mechanism theory, all analytical methods for determining the 

stress distributions will also provide the deformations, provided that the stresses are 

in the elastic region. 

Using adequate finite element methods leads to accurate determination of the 

deflections, which take into account the decrease in stiffness due to plasticity in 

certain regions of the plate. Most design codes contain limits to these deflections 

which have to be met at serviceability load levels (see Fig.5.37). 

Ch.5-37 BUPT



1. Lineai - elastic relationships 
2. Non - linear elastic relationshlp due to membrane action 
3. Elastic - plastic behaviour 
4. Ultimate resistanoe 
5. Action level at serviceability 
6. Deflection due to serviceability action level 
7. Deflection limit at serviceability action level 

Fig. 5.37. Out-of-plane displacement 

5.2.3.2.2 Ultimate resistance 
The resistance of plates, determined using the linear plate theory oniy, is normally 

much underestimated since the additional strength due to the membrane effect and 

the redistribution of forces due to plasticity is neglected. 

An upper bound for the ultimate resistance can be found using the yieid line theory. 

More accurate results can be achieved using FEM. 

Via an incremental procedure, the action level can increase from zero up to the 

desired design action level or even up to collapse (see Fig. 5.37). 

5.2.4. Influence of the out-of-plane actions on the stability of unstiffened plates 

The out-of-plane action has an unfavourable effect on the stability of an unstiffened 

plate panel in those cases where the deformed shape due to the out- of-plane action 

is similar to the buckling collapse mode of the plate under in-plane action onIy. 
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The stability of a square plate panel, therefore, is highiy influenced by the presence 

of out-of-plane (transversely directed) actions. 

When adequate Finite Element Methods are used, the complete behaviour of the 

plate can be simulated taking the total action combination into account. 

5.3. Behaviour and design of stiffened plates 

5.3.1. Introduction 

The automation of welding procedures and the need to design elements not oniy to 

have the necessary resistance to externai actions but also to meet aesthetic and 

serviceability requirements leads to an increased tendency to employ thin-walled, 

plated structures, especially when the use of rolled sections is excluded, due to the 

form and the size of the structure. Through appropriate selection of plate thicknesses, 

Steel qualities and form and position of stiffeners, cross-sections can be best adapted 

to the actions appiied and the serviceability conditions, thus saving material weight. 

Examples of such structures, shown in Fig.5.38 are webs of plate girders, flanges of 

plate girders, the walis of box girders, thin-walled roofing, facades, etc. 

(a) 

O O U 

r r 
(b) 

Fig. 5.38. Examples of stiffened plates 
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Plated elements carry simultaneousiy: 

a) actions normal to their plane, 

b) in-plane actions. 

Out-of-plane action is of secondary importance for such steei elements since, due to 

the typically small plate thicknesses involved, they are not generally used for carrying 

transverse actions. In-plane action, however, has significant importance in plated 

structures. 

The intention of design is to utilise the full strength of the material. Since the 

slenderness of such plated elements is large due to the small thicknesses, their 

carrying resistance is reduced due to buckling. An economic design may, however, 

be achieved when longitudinal and/or transverse stiffeners are provided. Such 

stiffeners may be of open or of torsionally rigid closed sections, as shown in 

Fig. 5.39. When these stiffeners are arranged in a regular orthogonal grid, and the 

spacing is small enough to 'smear' the stiffeners to a continuum in the analysis, such 

a stiffened plate is called an orthogonal anisotropic plate or in short, an orthotropic 

plate (Fig. 5.40). 

(a) (b) 

(c) 

Fig. 5.39. Stiffened plate with (a) open, (b) closed stiffeners, (c) corrugated plate 
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Fig. 5.40. Orthotropic plate 

There is an extensive literature about the investigation and design of stiffened plates 

(orthotropic plates). The differential equation for an orthotropic plate has been written 

by HUBERT (1914). Other authors were studying this differential equation, including: 

TROITSKY (1987), HAWRANEK, STEINHARDT (1958), HARDING (1989), HALÂSZ, 

HUNYADI (1959), KLOPPEL, MOLLER (1968), KLOPPEL, SCHEER (1960), 

MASSONNET, MAQUOI (1971), PELIKAN, ESSLINGER (1957), SEDLACEK (1992), 

SKALOUD, et al (1965), IVANYI (2003) 

5.3.2. Stiffened plates under in-plane loading 

5.3.2.1 Action distribution 

5.3.2.1.1 Distribution resulting from membrane theory 
The stress distribution can be determined from the solutions of Navier's equations, 

but, for stiffened plates, this is limited to plates where the longitudinal and transverse 

stiffeners are closely spaced, symmetrical to both sides of the plate, and produce 

equal stiffness in the longitudinal and transverse direction, see Fig. 5.41. This 

configuration leads to an isotropic behaviour when the stiffeners are smeared out. In 

practice this way of stiffening is not practicai and therefore not commonly used. 
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(a) 

(b) 

Fig. 5.41. Isotropic behaviour of symmetrically stiffened plate 

AII deviations from the "ideal" situation (eccentric stiffeners, etc.) have to be taken 

into account when calculating the stress distribution in the plate. 

5.3.2.1.2 Distribution resulting from linear elastic theory using Bernoulli's 
hypothesis 
As for unstiffened plates the most practicai way of determining the stress distribution 

in the panel is using the plane străin hypothesis. Since stiffened plates have a 

relatively large width, however, the real stress distribution can differ substantially from 

the calculated stress distribution due to the effect of shear lag. 

Shear lag may be taken into account by a reduced flange width concentrated along 

the edges and around stiffeners in the direction of the action (see Fig. 5.42). 
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Stress distribution in a stiffened flange plate differs from 
the distribution based on the plain section hypothesis, 
due to shear lag. 

Fig. 5.42. Shear lag in stiffened plate panel 

5.3.2.1.3 Distribution resulting from finite element methods 
The stiffeners can be modelled as beam-column elements eccentrically attached to 

the plate elements. 

In the case where the stiffeners are relatively deep beams (with large webs) it is 

better to model the webs with plate elements and the flange, if present, with a beam-

column element. 

5.3.2.2 Stability of stiffened plates 

5.3.2.2.1 Linear buckling theory 

The knowledge of the criticai buckling load for stiffened plates is of importance not 

oniy because design was (and to a limited extent stil! is) based on it, but also 

because it is used as a parameter in modern design procedures. The assumptions 

for the linear buckling theory of plates are as foilows: 

a) The plate is perfectly plane and stress free. 
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b) The stiffeners are perfectiy straight. 

c) The loading is absolutely concentric. 

d) The material is linear elastic. 

e) The transverse displacements are relatively small. 

The equilibrium path has a bifurcation point which corresponds to the criticai action 

(Fig. 5.43). 

' A 

a = vp = 

Fig. 5.43. Idealised stiffened plate under de-stabilising loading 

Analytical solutions, through direct integration of the governing differential equations 

are, for stiffened plates, oniy possible in specific cases; therefore, approximate 

numerical methods are generally used. Of greatest importance in this respect is the 

Rayleigh-Ritz approach, which is based on the energy method. 

The most extensive studies on rectangular, simply supported stiffened plates were 

carried out by KLOPPEL and SCHEER (1960) and KLOPPEL and MOLLER (1968). 

They give charts, as shown in Fig. 5.44 for the determination of k as a function of the 

coefficients (5 and 7 , previousiy described, and the parameters a= a/b and '̂ =(72/cri 
as defined in Fig. 5.43. Some solutions also exist for specific cases of plates with fully 

restrained edges, stiffeners with substantial torsionai rigidity, etc. For relevant 
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literature the reader is referred to books by PETERSEN (1982) and by DUBAS and 

GEHRI (1986). 

y 2 0 2.S 3,0 a i ? 

5 =0 .05 

Fig. 5.44. Buckling coefficient for a stiffened plate 

When the number of stiffeners in one direction exceeds two, the numerical effort 

required to determine k becomes considerable. Practicai solutions may be found by 

"smearing" the stiffeners over the entire plate. The plate then behaves orthotropically, 

and the buckling coefficient may be determined by the same procedure as described 

before. 

An alternative to stiffened plates, with a large number of equally spaced stiffeners 

and the associated high welding costs, are corrugated plates, see Fig. 5.39c. These 

plates may also be treated as orthotropic plates, using equivalent orthotropic rigidities 

(BRIASSOULIS(1986)). 

So far oniy the appiication of simple action has been considered. For combinations of 

normal and shear stresses a linear interaction, as described by Dunkerley, is very 

conservative (Fig. 5.45). On the other hand direct determination of the buckling 

coefficient fails due to the very large number of combinations that must be 

considered, therefore an approximate method has been developed, which is based 

on the corresponding interaction for unstiffened plates, provided that the stiffeners 

are so stiff that buckling in an unstiffened sub-panel occurs before buckling of the 

stiffened plate. 
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Fig. 5.45. Interaction diagram 

Optimum rigidity of stiffeners 

Three types of optimum rigidity of stiffeners 7', based on linear buckling theory, are 

usually defined (CHWALLA,(1944)). The first type 71', is defined such that for values 

7 > 71' no further increase of k is possible, as shown in Fig. 5.46a, because for 

7 = 71' the stiffeners remain straight. 

a = (xb 

b/2 

b/2 k 
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a= a.b 

T = - 1 

k 

7 

a = a.b 
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2 
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3b/4 

O 4 8 12 16 20 

k ^^^ i L 
max K 

30-
1 a^ 1,2 / / î 

20- l ' " iiZ 
7 ^ 

(a) (b) (c) 

Fig.5.46. Definition of the optimum rigidities 

The second type 711', is defined as the value for which two curves of the buckling 

coefficients, belonging to different numbers of waves, cross (Fig. 5.46b). The 
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buckling coefficient for 7 < 711' reduces considerably, whereas it increases slightiy for 

7 > 711'. A stiffener with 7 = 711' deforms at the same time as the plate buckies. 

The third type 7111' is defined such that the buckling coefficient of the stiffened plate 

becomes equal to the buckling coefficient of the most criticai unstiffened subpanel 

(Fig. 5.46c). 

The procedure to determine the optimum or criticai stiffness is, therefore, quite 

simple. However, due to iniţial imperfections of both plate and stiffeners as a result of 

out of straightness and welding stresses, the use of stiffeners with criticai stiffness 

will not guarantee that the stiffeners will remain straight when the adjacent 

unstiffened plate panels buckie. 

This problem can be overcome by multiplying the optimum (criticai) stiffness by a 

factor m, when designing the stiffeners. 

The factor is often taken as m = 2,5 for stiffeners which form a closed cross-section 

together with the plate, and as m = 4 for stiffeners with an open cross-section such 

as flat, angle and T-stiffeners. 

5.3.2.2.2 Ultimate resistance of stiffened plates 

Behaviour of stiffened plates 
Much theoretical and experimental research has been devoted to the investigation of 

stiffened plates. This research was intensified after the collapses, in the 1970's, of 4 

major steei bridges in Austria, Australia, Germany and the UK, caused by plate 

buckling. It became evident very soon that linear buckling theory cannot accurately 

describe the real behaviour of stiffened plates. The main reason for this is its inability 

to take the foilowing into account: 

a) the influence of geometric imperfections and residual welding stresses. 

b) the influence of large deformations and therefore the post buckling 

behaviour. 

c) the influence of plastic deformations due to yielding of the material. 
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d) the possibility of stiffener failure. 

Concerning the influence of imperfections, it is known that their presence adversely 

affects the carrying resistance of the plates, especially in the range of moderate 

slenderness and for normal compressive (not shear) stresses. 

Large deformations, on the other hand, generally allow the plate to carry loads in the 

post-critical range, thus increasing the action carrying resistance, especially in the 

range of large slendemess. The post-buckling behaviour exhibited by unstiffened 

panels, however, is not always present in stiffened plates. Take, for example, a 

stiffened flange of a box girder under compression, as shown in Fig. 5.47. Since the 

overall width of this panel, measured as the distance between the supporting webs, is 

generally large, the influence of the longitudinal supports is rather small. Therefore, 

the behaviour of this flange resembles more that of a strut under compression than 

that of a plate. This stiffened plate does not, accordingly, possess post-buckling 

resistance. 

4 i 
< 

CD 

< 

4 

B 

Section A - A 

Fig. 5.47. Strut model of a stiffened plate, i.e. each stiffener considered separately 
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As in unstiffened panels, plastic deformations play an increasingly important role as 

the slenderness decreases, producing smaller ultimate actions. 

The example of a stiffened plate under compression, as it is shown in Fig. 5.48, is 

used to illustrate why linear bucking theory is not able to predict the stiffener failure 

mode. For this plate two different modes of failure may be observed: the first mode is 

associated with buckling failure of the plate panel; the second with torsionai buckling 

failure of the stiffeners. The overall deformations after buckling are directed in the first 

case towards the stiffeners, and in the second towards the plate panels, due to the 

up or downward movement of the centroid of the middie cross-section. Experimental 

investigations on stiffened panels have shown that the stiffener failure mode is much 

more criticai for both open and closed stiffeners as it generally leads to smaller 

ultimate loads and sudden collapse. Accordingly, not oniy the magnitude but also the 

direction of the imperfections is of importance. 

(b) 

Fig. 5.48. Geometrical imperfections favouring (a) plate failure, (b) stiffener failure 
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Due to the above mentioned deficiencies in the way that linear buckling theory 

describes the behaviour of stiffened panels, two different design approaches have 

been recently developed. The first, as initially formulated by the ECCS-

Recommendations (1978) for ailowable stress design and later expanded by DIN 

18800, part 3 (1990) to ultimate limit state design, still uses values from linear 

buckling theory for stiffened plates. The second, as formulated by recent EC3-1-5, is 

based instead on various simple limit state models for specific geometric 

configurations and loading conditions. Both approaches have been checked against 

experimental and theoretical results: 

(A) Design approach with values from the linear buckling theory 
With reference to a stiffened plate supported along its edges (Fig. 5.49), distinction is 

made between individual panels, e.g. IJKL, parţial panels, i.e. EFGH, and the overall 

panel ABCD. The design is based on the condition that the design stresses of all the 

panels shall not exceed the corresponding design resistances. The adjustment of the 

linear buckling theory to the real behaviour of stiffened plates is basically made by 

the foilowing provisions: 

a) Introduction of buckling curves as illustrated in Fig. 5.49b. 

b) Consideration of effective widths, due to local buckling, for flanges 

associated with stiffeners. 

c) Interaction formulae for the simultaneous presence of stresses cjx, (7y and 

T at the ultimate limit state. 

d) Additional reduction factors for the strut behaviour of the plate. 

e) Provision of stiffeners with minimum torsionai rigidities in order to prevent 

lateral-torsional buckling. 
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BucHing curve 

(bl 

Fig. 5.49. (a) Definition of subpanels for a stiffened plate, (b) buckling curve 

(B) Design approach with simple limit state models 

The stiffened plate can be considered as a grillage of beam-columns loaded in 

compression column buckling attitude and plate (plate buckling attitude) loaded in 

impression, which consist of the stiffeners themselves together with the adjacent 

effective plate widths. This effective plate width is determined by buckling of the 

unstiffened plates. The bending resistance Mu, reduced as necessary due to the 

presence of axial forces, is determined using the characteristics of the effective 

cross-section. Where both shear forces and bending moments are present 

simultaneousiy an interaction formula is given. 

The resistance of a box girder flange subjected to compression can be determined 

using the method presented in the EC3-1-5 referred to previousiy, by considering a 

strut composed of a stiffener and an associated effective width of plating. The design 

resistance is calculated using the Perry-Robertson formula. Shear forces due to 

torsion or beam shear are taken into account by reducing the yieid strength of the 

material according to the von Mises yieId criterion. An alternative approach using 

orthotropic plate properties is also given. 
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Generally this approach gives rigidity and strength requirements for the stiffeners 

which are stricter than those mentioned previousiy. 

Discussion of the design approaches 
Both approaches have advantages and disadvantages. 

The main advantage of the first approach is that it covers the design of both 

unstiffened and stiffened plates subjected to virtually any possible combination of 

actions using the same method. Its main disadvantage is that it is based on the 

limitation of stresses and, therefore, does not allow for any plastic redistribution at the 

cross-section. 

The second approach also has some disadvantages: there are a limited number of 

cases of geometrical and loading configurations where these models appiy; there are 

different methodologies used in the design of each specific case and considerable 

numerical effort is required, especially using the tension fieid method. 

Another important point is the fact that reference is made to webs and flanges that 

cannot always be defined clearly, as shown in the examples of Fig. 5.50. 

z 
Flange 

Web 

n.a. 

n.c 

(a) (b) 

Fig. 5.50. Definition of webs and flanges 

For a box girder subjected to uniaxial bending (Fig. 5.50a) the compression flange 

and the webs are defined. This is however not possible when biaxial bending is 

present (Fig. 5.50b). 
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Finite Element l\/lethods 
In determining the stability behaviour of stiffened plate panels, basically the same 

considerations hold as described in previous subchapter. In addition it shouid be 

noted that the stiffeners have to be modelled by shell elements or by a combination 

of shell and beam-column elements. Special attention must also be given to the iniţial 

imperfect shape of the stiffeners with open cross-sections. 

It is difficult to describe all possible failure modes within one and the same finite 

element model. It is easier, therefore, to describe the beam-column behaviour of the 

stiffeners together with the local and overall buckling of the unstiffened plate panels 

and the stiffened assemblage respectively and to verify specific items such as lateral-

torsional buckling separately (see Fig. 5.51). Oniy for research purposes is it 

sometimes necessary to model the complete structure such that all the possible 

phenomena are simulated by the finite element model. 

Lateral torsionai 
buckling 

Tripping 

Fig. .5.51. Lateral buckling and tripping 

5.3.3. Stiffened plates under out-of-plane action appiication 

5.3.3.1 Action distribution 

(i) Distribution resulting from plate theory 

The theory described previous points can oniy be appiied to stiffened plates if the 

stiffeners are sufficiently closely spaced so that orthotropic behaviour occurs. If this is 

not the case it is better to consider the unstiffened plate panels in between the 

stiffeners separately. The remaining grillage of stiffeners must be considered as a 

beam system in bending. 
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(ii) Distribution resulting from a grillage under lateral actions filled in with 
unstiffened sub-panels 
The unstiffened sub-panels can be analysed previous points. 

The remaining beam grillage is formed by the stiffeners which are welded to the 

plate, together with a certain part of the plate. The part can be taken as for buckling, 

namely the effective width. In this way the distribution of forces and moments can be 

determined quite easily. 

(iii) Distribution resulting from finite element methods (FEM) 
Similar considerations hold for using FEM to determine the force and moment 

distribution in stiffened plates which are subject to out-of-plane actions as for using 

FEM for stiffened plates loaded in-plane except that the finite elements used must be 

able to take large deflections and elastic-plastic material behaviour into account. 

5.3.3.2 Deflection and ultimate resistance 

AII considerations mentioned in previous points for unstiffened plates are valid for the 

analysis of stiffened plates both for deflections and ultimate resistance. It shouid be 

noted, however, that for design purposes it is easier to verify specific items, such as 

lateral-torsional buckling, separately from plate buckling and beam-column 

behaviour. 

5.4. Planar orthotropic plated structures wlthout transverse loading 
according to EC 3 (Part 1.5) 

EC 3 (Part 1.5) studies the planar plated structures without transverse loading. To be 

compliant with EC3 for the rest of this chapter, the foilowing definitions will appiy: 

elastic criticai stress: Stress at which an elastic structure without imperfections 

becomes unstable according to small deformation theory. 

gross cross-section: The total cross-sectional area of a member but excluding 

longitudinal stiffeners that are not continuous, battens and splice material. 
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effective cross-section: The gross cross-section reduced for the effects of plate 

buckling and shear lag. 

membrane stress: Stress at mid-depth of the plate. 

plated stmcture: A structure that is buiit up from nominally flat plates which are 

welded together. The plates may be stiffened or unstiffened. 

stiffener: A plate or rolled section attached to a plate with the purpose of delaying or 

preventing buckling of the plate or reinforcing it against local loads. A stiffener is 

denoted: 

longitudinal if its direction is parallel to that of the member; 

transverse if its axis is perpendicular to that of the member. 

stiffened plate: Plate with transverse and/or longitudinal stiffeners. 

subpanel: Unstiffened plate surrounded by flanges or stiffeners. 

The suggested methods for the design of planar plated structures have been 

summarised by JOHANSSON et al (1999) and JOHANSSON et al (2001) and they 

are repeated here for completeness (see Fig. 5.52- Fig. 5.56): 
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Actions 

Deckplate with 
/ effective widths 1 V^ • /effectivê  

Longitudinal stresses 

Longitudinal normal stresses with gross 
cross-scction 

\ n / 
1 - { 

Buckiing of subpanel 
Ppa, rcduction factor for each subpanel 
(Supposc: rigid supports and stiffcners) 

Buckiing of paoel 
Pc reduction factor for panel buckiing 

(Suppose: rigid supports for panels) 

Join ppM, and pc 

Shift in tfae position of neutral axis 

TI, = 

Verificadon 
a . E . N 

TI1 + M plRd 

Shear stresses with shear force including 
shear from torque 

Shear stresses with gross cross-section 
^ - _ _ 

) \ 
\ ^ ^ T / 

J 

Buckiing of plates in shear 
Xvi reduction factor 

(Suppose: rigid supports and stiffeners) 

Shear buckiing of panel 
Xv2 reduction factor 

(Supposc: rigid supports for panels) 

I I I I 

Minlxvi;Xv2l = Xv 

I I I I 

Verification 

n, = 
' X v f ^ / V 3 Xvbtf^/V3 

<1 

[2Ti3-ir<i 

Transverse stresses with 
transverse forces 

Xf reduction factor 

Verification 

TI2 
V d fywdLefft 

<1 

ti2+0,8TI, <1,4 

Interaction between shear force, bending moment, axial and transverse force 

Fig. 5.52. Flow chart describing the general procedare for the design of plated 

structures according to EC3, Part 1.5. 
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co 

vj'cy 

Efifective cross-section for subpanel buckling: Pa = A c f f 

^geometr 

Column buckling attitude 

fy 
Pa — 

Ocrc 

ae = 0 , 3 4 ( 0 , 4 9 ) + ^ 

<p = 0,5 l + a e ^ c - 0 , 2 ) + X c 

Xc=-
(p+ 

Interpolation between column buckling attitude and 
plate buckling attitude 

Simplified method: 
neglect the plate buckling 

attitude: ^=0 

JL 

^CT.C 

^p,effJoc = ̂ sl,eff + "^Ploc Kjoc ̂  

Effective area for a compression flange with respect to 
plate buckling 

= Pc'^p,effJoc + ̂ ^edge,eff ̂  

I 
Efifective area at ultimate limit states the efifect of shear 

lag and plate buckling 
Aeff = Ac.cfifP*" 

Fig. 5.53. Flow chart describing the procedure for the determination of effective 

cross-section properties of a longitudinally stiffened class 4 panel 

Ch.5-57 

BUPT



i i 

Web plate 
-L 

Web with transverse 
stiffcners at supports only 

Web with transverse stiffcners at the supports 
and intermediate transverse and/or longitudinal 

stififeners 

Other cases 

kţ shear buckling coefficient: 

k^ = 4,0 + 5,34(h^/a)^ + k^ ţ for a / h ^ < 1 

k , =5,34 + 4 , 0 ( h ^ / a ) ^+k„ i for a / h ^ > l 

3 1 

T̂St 
St 

.3 1 and k^s^ > 
2,1 st 

A.W —" 
86,4 t ^ e 

= 

V = kxOcr 

Web with longitudinal stiffeners 
I 
' w l >.w2=— I 

kxi = 0 ) 

A.W = MIN 

I 
X v = X w + X f 

VSy M 

Fiange plate 

Effective thickness factor Xw for shear buckling 
Rigid end post Non-rigid end post 

<0,83/ri N TI 
0,83/TI<Xw<1,08 0,83/Xw 0,83/Xw 

>1,08 l,37/(0.7+Xw) 0,83A^ 

TI=1,20 YMI/YMO for S235, S275 and S355 
TI=1,05 YMI/YMO for S420 and S460 

Fig. 5.54. Flow chart describing the procedure for the determination of effective 

cross-section resistance in the shear buckling 
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Forces appUed through one flange 
,Fs 

v i . s t n n ^ T ^ a . s 

kf = 6 + 2 

Forces appiied through both flange 

T 

Forces appiied through one flange to 
an unstifTened end 

|Vs 

kf =3,5 + 2 
2 

l a > 
kf = 2 + 6 
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F e r = 0 , 9 k f E -

I Effective ioaded iength 
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I 

^eff^Xfly Ym 
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2 

m 2 = 0 , 0 2 " W f o r X f > 0 , 5 m 2 = 0 , 0 2 
1 ^ f > 

m 2 = 0 f o r X f < 0 , 5 

l y =Mm [ l y , ; l y 2 ; l y 3 j 

kf E t^ ^ 

, = Uf +tf(^nî, +012) 
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»y3 = Sj + 2tf (1 + ^mj + m2 ) 

Fig. 5.55. Flow chart describing the procedure for the determination of the cross-

section resistance under patch loading 
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Definitions of notations for shear 
lag 

EfTective length L^ for continuous beam and distribution of efTective width 

1 1 

CL 

L b, 
' Outstand ' 
plate 
element « 

internai plate etemeni 

L , = 0 25 lor L , = 2L3lor 

L,=0 85L,for(i. P ^ L . =0.70L,fof p. 

/ 
/ 

L, L2 L3 

L,/2 L2/2 Lî/4 

/ 

Asi: Area of all longitudinal stiffeners 
ao 

bot u w u w u 
«0 

Effective width factor P 

Le 

Location for 
verification 

P - Value 

<0,02 P = i , o 
0,02 - 0,07 Sagging bending 

P = P i — 
0,02 - 0,07 

Hogging bending 

2500K J 

>0,70 Sagging bending 
P = Pl ' 

>0,70 

Hogging bending 
P = P2 — 

allK End support Po=(0,55 + 0,025/k)P,, 
but po<Pl 

allK Cantilever P = P2 at support, 
Po=l ,0 attheend 

Effective width imder serviceability 
limit state 
t>eff = P^O 

Efîective area imder ultimate 
limit state 

Aeff =Ac,effP' 

Fig. 5.56. Interaction between effective widths due to shear lag effects and effective 

widths from plate buckling 
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EC 3 (Part 1.5) section describes the general steps to perform for the analysis of 

planar orthotropic plated structures, however ECS describes the analysis of the plate 

section oniy between two cross girders in detail in Annex A and the stiffness of the 

cross girders is examined separately. In this way onIy the effect of stiffened panel 

buckling is investigated by EC3 (Fig. 5.57) and it may also be necessary to 

investigate to effect of orthotropic buckling. (Fig. 5.17 is repeated here as it is 

important in respect of this section.) 

(a) Stidened plate 

(b) Plate buckling 

(c) Stillened panel 
buckling 

(d) Orthotropic buckling 

Fig. 5.57. Buckling modes for stiffened plates in compression. 

The aim of the research: Analysis of compressed stiffened plates 

To study the effect of the orthotropic buckling a special model is required 

which takes into account this phenomenon and is based on the results of 

known analytical methods. 

For the analysis of the effect of the orthotropic buckling the value of 

Ch.5-61 

BUPT



(Tcr,c column buckling type and 

plate buckling type 

formulas are required (Fig. 5.53). In this way the results of the analytical 

methods can be rearranged and introduced into a calculation according to 

EC 3. 

The rearranged formulas must be checked for those equations of EC 3 

Part 1.5 that are provided for the effect of stiffened plate buckling. 

To be able to analyse the effect of the orthotropic buckling the structural 

details of the cross girder must be known the effect and behaviour of the 

cross girder must be taken into account. In other words the connection 

between the web of the cross girder and the longitudinal stiffeners must be 

considered. 

During the investigation the results of the experiments and numerical 

studies must be taken into account. The results presented in this chapter 

are compared to the results obtained during the design of the composite 

floodplain Danube bridges at Szekszard. Furthermore by executing a 

parametric study advices are provided to perform a design procedure 

according to the regulations of EC 3 Part 1.5. 

5.5. Orthotropic buckling of compressed stiffened plates 

The book (HANDBOOK OF STRUCTURAL STABILITY (1971)) published by the 

"Column Research Committee of Japan" is one of the most complete collection in this 

research area. In the foilowing sections the basic assumption are collected with the 

aid of this book. 

(A) Column buckling attitude, cr, cr,c 

HANDBOOK (1971) Chapter "2-25 II Frames and Curved Members", Reference No. 

105 (PIN-YU, MICHELSON 1969) provides easily manageable formulas for the 

investigation of the column buckling attitude of the orthotropic buckling of 

compressed, stiffened plates. Fig. 5.58 shows the corresponding page from the 

HANDBOOK (1971). 
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Assumptions 

(1 ) T h e stiffeners are 

identical in properties 

and in spacing. 

( 2 ) T h e spacing of stiff-

eners is small. 

( 3 ) T h e axial forces are 

proporţional to the 

moment of inerţia of 

the girders. 

results 

( 1 ) A I I ends are bui l t - in . 

T h e criterion for the criticai buckling load 

bi sinh a i L ± a i sin ^ | L = 0 

where 

Xi =s Eigen-valuea of flexibility matr ix [a,>] 

for girdert» in which is the influence 

coeSicient of stiffener 

I i = moment of inerţia of i th girder 

0 = 1. 2. n) 
T h e envelope of the curves which can be plotted to 

show Pi for different grillages is approximately expressed 

hy 

Pcr^i-

Per,i = 

where 

4 + 0 . 0 8 6 6 

3 + 0 . 2 0 2 

if 

if 

•cr,i 

P. 

P. 
> 5 

n*EI 

W h e n the girders are identica! in size and in spacing, 

=CO. 020833+ 0.01022 (n - 1 ) ] - ^ I , 
where 

n = the number of girders 

momenţ of inerţia for stiffeners or girders 

( 2 ) A I I ends are simply supported. 

1+0.0866 
V O T 7 J 

i f 
P, 

S2 

ref. 

49 

Fig. 5.58. Column buckling attitude of the orthotropic buckling of compressed, 
stiffened plates (HANDBOOK, 1971) 

Formulas under subsection (2) will be used as it is assumed that all ends are simply 

supported. 

Using the notation of EC 3 Part 1.5 the equations in Fig. 5.58 can be rewritten as 

foilows. The arrangement of the stiffeners and cross girders can be seen in Fig. 5.59. 
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stiffener (longitudinal) 

cross girder ( 

IT) 

P. 

P 

{ / 

a 

a, 

ransversal) 

b, 

Fig. 5.59. Arrangement of the stiffeners and cross girders 

When the stiffeners are identical in size and in spacing 

a = {m-\)aj, 

b = {n-\)bj, 

then 

/Io = [0.020833 + 0.01022(« -1) 
Eh 

(5.11) 

where Isi, is the inerţia of the stiffener, is the inerţia of the girder, n is the number 

of stiffeners including the webs of the main girder, b is the length of the bottom flange 

of the main girder and E is the Young's moduius. Eq. 5.11 is usually written in the 

short form of 

(5.12) / l o = Z 
Eh 

'5/, , 

where Z = [0.020833+0.01022(«-lJ 

When all ends are simply supported: 

.2 

= 1 + 0.0866 
a p 

i f ^ < 2 (5.13) 
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where a and Oj can be seen in Fig. 5.58 and P̂  is Pe = ^ 

Eq. 5.13 can be rearranged into the form of 

^ = 1 + 0 . 0 8 6 6 
Pe 

m-\ Eh 

a 
where ^ = t • Further rearrangement result in the foilowing equation: 

b 

^ = 1 + 0 . 0 8 6 6 , = < 2 1 cN 

where ^o = "t^ . 
h 

When ^ > 2 then 
Pe 

P 
P 

= 0.202 
e 

(5.16) 

which can be rearranged into the form of 

^ = 0 . 2 0 2 , = > 2 
p n ^ (T , • (5-1/) 

\ m-\ 

(i) Comparison 

Comparing the derived results to the results of EC 3 Part 1.5 Annex A the foilowing 

conclusions can be drawn. If a = aj and the cross girders are simply supported then 

the second component of Eq. 5.15 disappears and the method to study the stiffened 

panel buckling is obtained. 

(ii) Parametric study 

Fig. 5.60 - Fig. 5.62 show the relation between the Per force and the a parameter of 

the plate. The different figures show the results for different number of trapezoidal 

Ch.5-65 

BUPT



stiffeners (n) and cross girders (m). In a figure the different curves represent different 

ratio of the inerţia between the trapezoidal stiffener and cross girder. 

M O 5 O K,=0 5 K,=2 0 

Pe 

^ O 

K,=2 0 

Fig. 5.60. The relation of Per and a in the case of n=2, m=2 

»C=0 5 IC=1 O IC=0 5 Ko=2 0 K,=1 O 

3 5 

2 5 

cr 2 

15 

OS 

-

P c , 
< 2 / 

P e 

< 2 

y 
P . 

> 2 

1 1 

P e 

. . . . 1 1 

> 2 

K,=2.0 

0.5 1.5 2 a 2.5 

Fig. 5.61. The relation of Per and a in the case of n=2, m=3 
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K.̂ O 5 

K=20 

Fig. 5.62. The relation of Per and a in the case of n=3, m=3 

(B) Plate buckling attitude, cr̂ ^ ^ 

HANDBOOK (1971) Chapter "3-158 III Plates", Reference No. 203 (OKURA, ARIMA 

1922) provides easily manageable formulas for the investigation of the plate buckling 

attitude of the orthotropic buckling of compressed, stiffened plates (see Fig. 5.63). 

condiţiona r e s a i U 

203 
M a n y longi tudinal and 

transverse stiffeners e-

qual ly spaced 

I.xm 

( i ) A U edges simply supported 

n^aE 
Ok = -bt 

laim+X) h(_n-\-\-) 
1 ' 

( i i ) A U edges ciamped 
i An^aE f7„(m + l ) 

bt a' 
+— 

b' 

3 

TX 

/ » X n 

( i i i ) a-edges ciamped, 6-edges simply supported 

3bt 
37, (m + l ) /> (n + l ) 

16 a» b' 
( i v ) a-edges simply supported, 6-edges ciamped 

An^aE 
bt a' 16 b̂  

m , n = the number of stiffeners in a- and 6-direc-

tions, respectively 

ref. 

339 

Fig. 5.63. The plate buckling attitude of the orthotropic buckling of compressed, 
stiffened plates, HANDBOOK (1971) 
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Formulas under subsection (i) will be used as it is assumed that all ends are simply 

supported. 

Using the notation of EC 3 Part 1.5 the equations in Fig. 5.63 can be rewritten as 

foilows. The arrangement of the stiffeners and cross girders can be seen in Fig. 5.64. 

stiffener (longitudinal) 

cross girder (transversal) 

\ X m \ X n 

a 

Fig. 5.64. Arrangement of the stiffeners and cross girders 

When the stiffeners are identical in size and in spacing: 

(^k = 

TT^Ea 

tb a' 
1 + 

a' 

(5.18) 

When Eq. 5.18 is multiplied and divided by and by b and rearranged 

then its form will be 

a . ^ ^ a'Pb 

1 m + \ 3 
1 + a^ 

K. n + l 
(5.19) 

where ^e - and « = T . anci ^o = . When introducing the inerţia 
b ib 

t'b 
of the plate ^p - 2. and S = — 

U ) Ip 
then 

(5.20) 
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(i) Comparison 

Comparing the derived results to the results of EC 3 Part 1.5 Annex A the foilowing 

conclusions can be drawn. Annex A examines the influence of stiffened plate 

buckling on oniy one plate. Considering the bottom flange around the middie pier of 

the floodplain Danube bridge at Szekszard the calculation according to Annex A 

gives 

235.428. 

Using the newly derived Eq. 5.9 and n=4, I^i = 10415cm ,̂ = 402.9cm^ and 

a = 0.6618 then 

402.9 0.6618^ 

In the case of this example the newly derived method provides a 13% higher value. 

(ii) Parametric study 

Fig 5.65-Fig. 5.69 show the relation between the k^^ parameter and the a 

parameter of the plate. The different figures show the results for different number of 

trapezoidal stiffeners (n) and cross girders (m). In a figure the different curves 

represent different ratio of the inerţia between the trapezoidal stiffener and cross 

girder. 

. K„=0.5 

K,=2.0 

a 

Fig. 5.65. The relation of k̂xp and a in the case of n=1, m=1 
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K,-0.5 

Ko=2.0 

Fig. 5.66. The relation of kap and a in the case of n=2, m=1 

Ko=1.0 

K<,=2.0 

Fig. 5.67. The relation of k^p and a in the case of n=2, m=2 
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K =0.5 

K=1 .0 

K = 2 . 0 

Fig. 5.68. The relation of kap and a in the case of n=3, m=2 

K,=0.5 

K.,=1.0 

K.=2.0 

Fig. 5.69. The relation of k^p and a in the case of n=3, m=3 

5.6. The analysis of elastically "layer" connected structures, 
The concept of the "ideal" cross section 

FALKE (1983) (1984) suggested a new technique to analyze the orthotropic plates 

based on the method used for composite structures where the parts of the structure 

are elastically connected. Several other researched have worked on the problem of 

elastically connected structures. Several other researched have worked on the 
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problem of elastically connected structures (SATTLER (1955), LESKELA (1986), 

STUSSI (1943), TOMMOLA, JUTILA (2001), SZABO (2006), PLATTHY (1965), 

COSENZA, MAZZOLANI (1994), ARIBERT (1990)) 

(see Fig. 5.70) 

4,. A top part 
web of cross girder 

/ 1,. A, 

c-

\ 1 . A. / c , 

bottom parf^ 
/ 

C, the centroid of the bottom part of the structure 
C the centroid of the "ideal" cross section 

N. 
V(x) / 

E,. A, E„ I, 

X 
E, . A, E„ 1, 

« J 1' N, 

dx lamellas M, 

Fig. 5.70. Elastic "layer" connection model 

One of the basic assumptions in the case of elastically connected structures is that 

the connection between the two parts of the structural cross section is continuous. 

This means that the model can be viewed as a structure where there is a continuous, 

elastic layer between the two parts (see Fig. 5.71). The differential equation to 

describe the behaviour of the static model of the orthotropic plate can be formulated 

after FALKE (1984). If the spring constant of the "layer" is denoted by e then the 

change of the length of the layer due to V(x) force can be written as 

S(x) = £V(x). 

In this case the relative elongation is 

dS(x) dV(x) 
= £• 

dx dx 
(5.20) 
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H v + A H \ 

M,(X) 
r^ N ( x ) • 

M,(x) 
r^ N ( x ) < — 

M,(x)+dM,(x) 

e -

a , + a , = a 

M,(x)+dM„(x) 

N(x)+dN(x) 

Fig. 5.71. State of equilibrium considering an "elastic" layer 

On the other hand Eq. 5.23 can be written as the function of the relative elongation of 

the two parts of the structure. To perform this rewriting an infinitesimally small part of 

the structure (with length dx) will be considered and the displacements will be 

investigated at the connection. It can be easily understood that the elastic layer has 

to counter the relative displacements of the two parts of the structure, thus 

(cbc + Adx^)-(dx + Adx,) = dS(x) (5.24) 

Substituting Eq. 5.23 into Eq. 5.24 the foilowing can be written 

Adx^ Adx, _ dSix) _ dV(x) 
— ^' 

dx dx dx dx 
(5.25) 

However knowing the internai forces, m^, m, and N it is possible to write 

Adx, _ N M, 

dx El, Al, El, Ii, 

and 

Adx, N M, 
a t, 

dx E, A( Ef I , 

Considering that a,+ai,=a and taking advantage of the equal rotation 

M, ^ M, 

Eq. 5.25 can be written as 
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Nix) 
E^ Af, E, A, 

, , a dV{x) = . — . (5.26) 

The right hand side of Eq. 5.26 can be rewritten, since from the condition of 

equilibrium (see Fig. 5.71) 

X N{x) = N{x) + V{x)dx- N{x) - dN{x) = O , 

thus 

^ = (5.27) 

and 

dVjx) ^ d~N{x) 

dx ~ dx^ 
(5.28) 

Furthermore from the equation of equilibrium 

M = Mi,+M,+aN , 

if Mt is neglected we get 

M t , ^ M - a N . (5.29) 

Using Eq. 5.27, 5.28 and 5.29 then Eq. 5.26 can be rewritten as 

1 1 a^ 

dx"" £ sE^If, 

in a second order differential equation. By introducing the foilowing two new notations 

a 
0) = 

and 

1 1 
+ 

^ E, Aţ Eb ^b ^b h 
£ 

the differential equation has the form of 

d^N(x) ,2 

dx 2 
-Ă'N(x) + o)M(x) = 0^ (5.30) 
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which is the usual form of the differential equation for elastically connected 

structures. Eq. 5.30 is solved for load cases that can occur in practice, for example in 

the book of SATTLER (1955) several approximate methods can be found. 

HOMBERG (1952), HOISCHEN (1954), PLATTHY (1965) had suggested a new 

method where instead of solving the elastically connected composite structures by 

differential equation the problem is solved by an energy method. In this case an 

"ideal" stiffness can be determined and then the elastically connected composite 

structure can be calculated as a normal beam structure. One of them conclusions 

that the displacements of the elastically connected, simple supported composite 

beam are similar to the displacements of a homogeneous beam. 

(i) The difference is in the stiffness (El) and for an elastically connected composite 
structure it can be written as: 

( £ / ) , = + E,I, + — ( 5 . 3 1 ) 
i f + — £ 

which is the "reduced" or "ideal" stiffness, where Eb and Et are the Young's modulus 

of the bottom and the top stmctural details, a is the sum of the distance between the 

centre of gravity of the top part and the centre of gravity of the whole structural cross 

section and the distance between the centre of gravity of the bottom part and the 

centre of gravity of the whole cross section. 

( 5 . 3 2 ) 

Ab and At are the areas of the bottom and top part [cm^] 

I is the span [cm], 

£ is the elastic "layer" parameter [cm^/kN] 

i^=2n+1; n=0, 1,2 

When £=0 - the structure is infinitely stiff - then the "ideal" stiffness gives the same 

formula which is used for composite structure: 
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(5.33) 

where at is the distance between the centre of gravity of the top part and the centre of 

gravity of the whole cross section, ab is the distance between the centre of gravity of 

the bottom part and the centre of gravity of the whole cross section (a = at +ab). 

When f = 00 then there is no connection between the parts of the structural sross 

section and 

( £ / ) , = £ , / , + £ „ / „ . (5.34) 

The intermediate values for e are schematically shown in Fig. 5.72. 

a 
K 

E, 1, + E , I 

{EI), = + E,I, + 

K + ——s 

Fig. 5.72. Stiffnes of elastically connected composite structure 

(ii) The "ideal stiffness" in relatlon to the e elastic "layer" parameter can be 

approximated with the exponenţial function (see Fig. 5.73): 

.2 - J L 

£ = 0, (EI), =E,I,+£,!,+ 
a 

e = £o, (EI), = E, I , + Ei,Ii,+ 

K ' 

K e' 

(5.35) 

(5.36) 

(5.37) 

(5.20) 
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The € elastic parameter to take into account the structural detail of the orthotropic 

plate has been determined by a numerical analysis and it was compared to the 

experimental resuits. 

a' 

K 

E, 1, + E , 1 

.2 -J?-

Fig. 5.73. Elastic "layer" parameter with exponenţial function 

5.7. Application of an „Ideal" cross section 

5.7.1. The inerţia of the "ideal" (reduced) cross section for the experimental 
models 

Lets determine the inerţia of the ideal cross section for the cases investigated by the 

experiments (R, S, E). 

a" 

2 2 

l' 

j 5 0 0 , 4 

12 

=l94,9cm^, = 106,38cm4, 

where a is the distance between the centroids of the top and bottom sides 

= 1 9 , 8 3 5 c m , ^ s £ " 2 0 , 7 5 9 c m , 
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=35 + ̂  = 0,12424 

crrP' 

c m 2 

E f = 21000 ̂  f = 82,90f , 

v = 2 « + l , (w = 0 , 1 , 2 , . . . ) , 

v = l , 

0,9+ 194,9+ 0,11496 + 82,90f ' 
2 

The e spring constant of the elastic "layer" can be determined by numerical 

experiments and it is checked with the experimental resuits. 

5.7.2. Resuits of the numerica! analysis and the experimentai tests 

A 3D linear finite element model has been calculated in the numerical analysis. The 

elastic layer is defined between the two structural components, thus the e spring 

constant can be determined by the length change due to shearing. 

In the numerical analysis the displacements due to V shear force have been 

determined. The c spring constant can be calculated according to the displacement 

difference between point A and D. In this way the analysis of the elastic "layer" 

between the two structural parts means a "push-out" test (Fig. 5.74). 

Numerical analysis has been performed at the load level N=125 kN, Table 5.1 

summarizes the resuits. 
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N 3N 

C 

D 

a 

B 

a 

Fig. 5.74. The effect of shear load 

TR R-3 C X -0,3821x10-3 m B -0,3814x10-3 m 

y -1,0x10-8 m -0,1284x10-6 m 

z -0,2906x10-4 m -0,1553x10-2 m 

A X -0,17928x10-4 m D 0 

y -0,1240x10-7 m 0 

z -0,1459x10-2 m 0 

TR S-3 C X -0,56313x10-3 m B -0,56256x10-3 m 

y -0,2239x10-8 m -0,31574x10-6 m 

z -0,2787x10-4 m -0,19549x10-2 m 

A X -0,42429x10-4 m D 0 

y -0,40876x10-7 m 0 

z -0,18582x10-2 m 0 

TR E-3 C X -0,65531x10-3 m B -0,6473x10-3 m 

y -0,17002x10-7 m -0,17684x10-7 m 

z -0,274471 x10-4m -0,20464x10-2 m 

A X -0,5387x10-4 m D 0 

y -0,73969x10-7 m 0 

z -0,19498x10-2 m 0 

Table 5.1. Deflec ions of different point (ABCD) by numerical analysis 

In case of N=125kN the relative displacements in the x direction of point A and D 

calculated by the numerical analysis are: 
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R rigid: 

S standard: 

E economic: 

( e A x ) R = 0 . 0 0 1 7 9 3 c m , 

( e A x ) s = 0 . 0 0 4 2 4 3 c m , 

( e A x ) E = 0 . 0 0 5 3 8 7 c m . 

The load level in the experiments were N=50kN when the relative displacements 

have been measured in the experiments (Chapter 3). After adjusting the values by 

considering the load difference the relative displacement and their relation to the 

numerically determined relative displacements are: 

R rigid: 

S standard: 

E economic: 

( e A x ) R = 0 . 0 0 1 5 c m , 

( e A x ) s = 0 . 0 0 3 8 c m , 

( e A x ) E = 0 . 0 0 5 8 c m . 

88% 
9 0 % 

108% 

In the calculations the numerical results have been used. 

5.7.3. Structural details investigated by experimental models 

The £ spring parameter for the inerţia of "ideal" structural cross section can be 

determined of the elastic "layer". (Geometry of the models can be found in Chapter 

3.) In this section a fourth structural details is considered, full connection. In this case 

the web of the cross girder is continuousiy welded to the orthotropic plate, the 

trapezoidal stiffeners do not cut a hole into this web. 

(i) (F) Full connection 

£ = 0, 

J p = 0 , 9 + 1 9 4 , 9 + = 0 ,9+194,9+3422,3 = 3618 , l cw ' 

(ii) R-rigid connection 

= ^ ^ ^ = 1793[cm]- 50[cw 
^ ^ 2N B t e r 

= 0 ,0003586 
cm 

kN ' 

= 195,8 +2532 ,6 = 2728,5cm'^ . 

The ratio between the 

inerţia of a structural 

detail (R,S,E) and the 

inerţia of the structural 

details with full (F) 

connection 

7 5 , 4 % 
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cm' 

(iii) S-standard connection 

( / y ) ^ = 1 0 7 , 2 8 + 2 2 1 4 , 6 = 2 3 2 64,1% 

(iv) E-economic connection 

0 0 . 0 7 7 4 ^ , 

( / • = 1 0 7 , 2 8 + 2 0 1 7 , 9 = 2 1 2 5 , 2 c m ' * . 58,7% 

(v) When there is no connection between the two stmctural components: 
f = 00, 

/ q = 1 9 5 , 8 c m ' ^ . 

5.7.4. Case study of the floodplain bridge at Szekszărd over the Danube 

The inerţia of the ideal (reduced) cross section of the floodplain bridge at Szekszârd 

over the Danube will be determined in this section. The studied orthotropic plate 

section is under compression, therefore the bottom flange near the middie pier will be 

considered (Fig. 5.75). 

295C •cooo lObC 

2 ,5% 
> 2 , 5% > 

h-

Fig. 5.75. The cross section of the floodplain Danube bridge at Szekszârd 
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a' 

, 1 0 0 1 , 4 
I , = — — ^ — = 1 4 , 4 c / w ^ . 

12 

It has been assumed that that the e spring constant can be used in the case of the 

floodplain bridge at Szel<szârd over the Danube. 

(i) F-full conection 

Ip- =5S43\cm'^ 

(ii) R-rigid connection 

( i t ) j ^ = 3 1 1 8 , 5 c m 4 . = 1 5 2 3 , 6 c m 4 , 

aj^ = 4 6 , 2 - 6 , 5 3 = 39,61 cm, 4 6 , 2 - 5 , 0 4 = 4 1 , 1 6 c m , 

1 
cm" 

1 

cm 

2 2 2 
£ f = 2 1 0 0 0 f = 1 7 , 1 2 8 f , 

l = ^ = nOcm, 

= 0 , 0 0 0 3 5 2 8 5 

110^ 

cm 

l Ă T 

The ratio between the 

inerţia of a structural 

detail (R,S,E) and the 

inerţia of the structural 

details with full (F) 

connection 

(82,5%) 

(iii) S-standard connection 

2 
0 , 0 0 0 8 4 8 5 9 

cm 

Tn 
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=14,4 + 1523,6 + 4 1 , 1 6 2 

0,030555 + 17,1288f 
= 39111cm^. (72,9%) 

(iv) E-economic connection 

2' 
0,0010774 cm 

~w 

(67,3%) 

5.7.5. Study of the bottom flange at the middie pier in the floodplain bridge at 
Szel(szârd over the Danube when an exponenţial function is used 

To determine fo first the inerţia must be calculated 

R-rigid connection 

(/,.)« = 1 4 , 4 . 3 1 , 8 , 5 . i ^ ^ = 23276,6c.4 

S-standard and E-economic connection 

= 1 4 , 4 . 1 5 2 3 , 6 . ^ ^ ^ = 2 1 9 3 5 , 2 0 . 4 

The values of Eq: 

„ R " , ^ 0 = 0 , 0 0 2 8 8 3 2 ^ 

2 

1 7 , 1 2 8 8 ^ 0 = 1 ^ - 0 , 0 3 0 5 5 5 , ^ ^ = 0 , .0030652 cm 

'W 

The inerţia in the case of different structural details: 
0,00035285 

„R" = 3 1 3 2 , 9 + 1 ^ . W28832 .45001,4cm4 

0,00084859 
„S" W30652 =43575,4,^4 

Percentages 

compared to the 

inerţia determined 

in Section 5.7.4 

(5%) 

(11%) 
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, 0 . 0 0 1 0 7 7 4 

.E" 0.0030652 (12%) 

Thus it is possible to investigate the effects of the different structural details with the 

approximation of an exponenţial function which does not contain I. 

5.7.6. Study of the floodplain bridge at Szekszărd over the Danube 

In this section first the ultimate limit state of the bottom flange will be calculated 

considering the "ideal" cross section of the cross girders. 

(Full) cross girder: IF=58431 cm^, 

(Rigid): (li)R=48375cm^ 

(Standard): (li)s=39111cm^ 

(Economic): (li)E=36105cm'̂ . 

The calculation has been performed on a part of the stiffened panel sections with the 

effect of stiffener of cross girders. 

The calculations were carried out by the MathCAD program and the details can be 

found in the Appendices. 

Appendix 1 contains the analysis of one plate section between two cross girders 

according to EC 3-1-5 (2005). The values of p and cTcr,c have been determined 

according to Annex 1 of EC 3. 

The load bearing capacity is Nj^^^ = 2,2\09kN . 

The load bearing capacity considering shear lag is ^R,dsheariag =^955\kN . 

Appendix 2 contains the analysis of one plate section between two cross girders 

according to prENV EC 3-1-5 (1992). These analysis were performed foilowing the 

examples of EISEL et al (1995) and BANCILA (1996). 
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The load bearing capacity is M r j = 29439 kN . 

The load bearing capacity considering shear lag is R,dsheariag = - • 

Appendix 3 contains the analysis of two plate sections with three cross girders 

according to EC 3-1-5 (2005). To be able to determine (̂ cr.p and <Jcr,c the stiffness 

of the cross girders is required. In this case the full cross section of the cross girder is 

taken into account. The results are shown in Table 5.2. 

Appendix 4 contains an analysis similar to the analysis in Appendix 3 with the 

exception that in this case the stiffnes of the cross girder has been determined with 

the concept of the "ideal" cross section (Section 5.7.4) and the connection between 

the trapezoidal stiffener and the cross girders is rigid (R). The results are shown in 

Table 5.2. 

Appendix 5 contains an analysis similar to the analysis in Appendix 4 with the 

exception that in this case the connection between the trapezoidal stiffener and the 

cross girders is the type of standard (S). The results are shown in Table 5.2. 

Appendix 6 contains an analysis similar to the analysis in Appendix 4 with the 

exception that in this case the connection between the trapezoidal stiffener and the 

cross girders is the type of economic (E). The results are shown in Table 5.2. 

Based on the these calculations the foilowing conclusions can be drawn: 

• The stiffnes of the cross girders is significantly different when using different 

structural details (R, S, E). 

• The load bearing capacity of the structure with two compressed plates is 

influenced in a less significant way by the structural details (R, S, E). 

Furthermore the structural detail of the connection between the stiffener and 

the cross girder has smaller effect on the load bearing capacity when 

considering shear lag. 
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[mm"*] [kN] 

^R,cl,sheari 

[kN] 
^R^djiheaiag 

App. 3 

F (Ful!) 
5.84 10® 1.000 38 290 1.000 22 428 1.000 

App. 4 

R (Rigid) 
4,837 10® 0.825 37 577 0.981 22 103 0.985 

App. 5 

S (Standard) 
3.911 10® 0.669 36 691 0.958 21 698 0.967 

App. 6 

E (Economic) 
3,611 10® 0.618 36 337 0.948 21 535 0.960 

Table 5.2. The effect of the structural detail in the stiffness and the load bearing 

capacity 

5.7.7. "Supporting" effect of the cross girders 

In the case of traditional structural details the connection between the longitudinal 

stiffeners and the cross girders is direct and thus the supporting effect is also direct. 

On the other hand the supporting effect is not direct and therefore it is worth to study 

in the stmctural detail investigated in this thesis. 

(i) It is important to note that EC 3 Part 1.5 is still valid for the type of orthotropic steei 

plates that are going to be investigated in this chapter. The main assumption that 

there are no transversal loading on the plates. 

(ii) The Japanese-Hungarian joint research work (IVÂNYI, 2001) discussed in the 

introduction of this chapter have investigated the requirements for the automatic 

welding (with robots) and studied the stmctural details of the open cross section, non 

continuous stiffeners for plates. The conclusion of this research was that a gap, 

causing the disruption in the continuity of the stiffeners, do not significantly affect the 

load carrying capacity if its size do not exceed a certain size. Thus this structural 

details is acceptable for stiffeners. 
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In the engineering practice there are well-known basic problems where due to the 

lack of direct support the structure utilizes an indirect support. Classic example is the 

stability analysis of the top flange of an open truss system, where the columns and 

cross beams form a U-shaped frame and the stiffness of this frame determines the 

elastic support of the compressed flange. Another example is the elastically 

supported, compressed bar (HALÂSZ-IVÂNYI, 2001). This example can be seen in 

Fig. 5.76. 

a» h 

C - :— 
i ; 

Fig. 5.76. Elastically supported, compressed bar 

Beyond a certain value of the elastic parameter the buckling of the bar is not 

influenced, however below this value the buckling length is modified. 

In this study, in the case economic (E) structural detail there is no direct connection 

between the trapezoidal stiffener and the web of the cross girders, however the 

"neighbouring" plates can provide indirect support. In this section this problem will be 

investigated with a simple engineering model (see Fig. 5.77). 

Fig. 5.77. Stiffened plate between stiffeners with economic (E) connections 
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The web of the cross girder is connected directiy to the plate. It is assumed that the 

trapezoidal stiffeners provide a simple support for the plates. Lets examine two 

adjacent plates, or in other words oniy one cross girder is assumed. To determine the 

elastic parameter it is required to calculate the elastic displacement of plate that is 

simple supported at all four sides and loaded by a parţial distributed load. SZILARD 

(1974) provides a solution for this problem: 

Dtt^ m=\n=\ 
mn 

a 

(5.39) 

where the explanation of the variables can be seen in Fig. 5.78. The convergence of 

this solution is relatively fast, provided that the dimensions a and b are not too small. 

The displacement can be obtained with sufficient accurary by taking the first four 

terms of the series. 

simple support 

O 

X/ 

A r 
/ / 

/ / 
y v / / 

/ / 
/Â . 

X/ 

A r 
/ / 

/ / 
y v / / 

/ / 
/Â . 

' / / / — 

d l / d l ,y 

/ ^ / 7 / 
A 

r 
"7 

Fig. 5.78. Uniform load over a small rectangular area 

It is also assumed that the area of the parţial load is equivalent to the cross section 

area of the cross girder and assuming p=1 N/m^ load then the deflection of the plate 

will provide the elastic parameter. By knowing this elastic parameter the stability 

model can be solved now (see Fig. 5.79 - Fig. 5.80). 
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/ \ ^ / - A A A , 

' examined part 

b = 5500 m m 

Fig. 5.79. The examined cross section 

t - 20 mm simple supported 

\ 
y 

10 

4 . 2 0 \ 

p„ = 1 kN/cm' 

- Ţ 2 0 

a = 3640 mm a = 3640 mm 

L = 7220 mm 

b, - 874 mm 

Fig. 5.80. Structural model for the calculation of the plate displacement 

The area and inerţia of the cross section of the trapezoidal stiffener: 

kN 
Loading is Pq = \ — 

crrr 

The loading surface of the web of the cross girde is A=83,4cm^. 

The deflection at the examined point: ez=0,427cm, 

0,427 cm 

C â _ 1953-7223 _ 
E l ^ ^ 21000 10307 

In the case of the simple supported beam that is elastically supported in the middie 

the elastic parameter can be taken from TABLE (2004) 
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If the elastic parameter is larger than 150, which is the case here, the support can be 

considered rigid. 

5.8. Conclusions 

I have studied the connection of the stiffeners of a stiffened plate. It can be stated 

that the economic (E) connection can also provide sufficient support for the 

longitudinal stiffeners. 

The concept of the ideal cross section can be recommended to determine the 

stiffness of the cross girders. The formula can be generalized using the exponenţial 

function 

2 -i o 

where t is the top of the cross section, 

b is the bottom of the cross section, 

a is distance between the centroids of the two parts of the structure, 

1 . 1 
K = 

E^A^ EfAf 

The recommended values for the e elastic "layer" parameter: 

In the case of S standard stmctural detail: (£)s=0,00084859 [cm^/kN], 

In the case of E economic structural detail: (£)E=0,0010774 [cm^/kN]. 

The value of eq parameter when the structural detail of the cross girder of the 

floodplain bridge at Szekszârd is used: (£)o=0,0030652 [cm^/kN], 

(IVANYI, Jr, BANCILA, 2006, IVANYI, Jr., et al, 2007), 
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CHAPTER 6 
Summary and Conclusions 

I have investigated the connection between the trapezoidal stiffener and the open 

cross section girder in an orthotropic plate which is loaded oniy in its plane. The 

calculations determine the effect of the different connection types on the load bearing 

capacity of the orthotropic plate. 

6.1. Examining the design process 

The basis of the analysis is the EC 3-1-5 standard and determines the values of 

(plate buckling attitude) and crcr,c (column buckling attitude). In Annex 1 of 

EC 3-1-5 contains formulas onIy for the design of one plate section between two 

cross girders. 

(i) The method discussed in this study makes it possible to examine two plate 

sections with three cross girders. 

(ii) I have also presented a method which can take into account the different 

structural detail between the cross girders and the trapezoidal stiffeners in 

a compressed plate with stiffeners. In this way it is possible to study the 

"orthotropic buckling" phenomena. 

(iii) I have examined three structural details for the connection between the 

trapezoidal stiffener and the cross girder. In the case of the rigid (R) 

connection the web of the cross girder is fully welded to the plate. Two 

other types of connections have been considered, the standard (S) (the 
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traditional used) and the economic (E) (the newly proposed). The results 

have shown that the structural details have littie effect on the load bearing 

capacity, even when shear lag is considered. 

(iv) The structural detail has a significant effect on the stiffness of the cross 

girder. For the calculatlons the concept of the "ideal" cross section has 

been introduced which can take into account the effect of the structural 

detail through the introduction of an elastic layer. 

(v) The elastic parameter for the elastic layer has been determined by 

numerical analysis and experiments. 

(vi) The "ideal" cross section has also been determined by the exponenţial 

function which is well known in the engineering practice. 

6.2. Experiments 
(vii) I have designed and carried out experiments to study the different 

structural details (R, S, E) between a trapezoidal stiffener and a cross 

girder. The experimental specimens were loaded by sagging and hogging 

moments and by shear forces. 

(viii) The results of the experiments show that the stiffnesses of the different 

structural details (R, S, E) are significantly different. 

(ix) It can also be concluded that the plastic behaviour of the different 

structural details under different loadings is different, especially under 

shear loading. 

(x) It can be similarly stated that the deformation capacities are also different 

under different loading considering different structural connections. 

6.3. Numerical simulation 
(xi) I have designed and executed numerical simulations to study the different 

structural details (R, S, E) between a trapezoidal stiffener and a cross 

girder. Using a linear 3D finite element analysis the effect of the different 

structural details (R, S, E) couid be studied. 

(xii) In the frame of non-linear 3D finite element analysis I have studied the 

behaviour of the different connection types (R, S, E) under shear loading. 

In this case the plate buckling and material failure couId be modelled at 

the final stages of the loading. 
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6.4. New Scientific Results 

Thesis 1. 

I have design and performed an experimental program on half scale test under static 

loading in bending and shear with the purpose of defining the static load bearing 

capacity and behaviour of the joints between the trapezoidal stiffeners and the web of 

the cross beam for orthotropic plate. 

On the basis of the experimental results I have characterized the static behaviour of 

the joints as foilows: 

a) I determined the load bearing capacity of the tested joints and 

characterized the different failure modes (web buckling around the 

different structural details of the joints). Based on the results I described 

the effect of the "Rigid", "Standard" and "Economical" solutions of joints. 

b) I determined the elastic behaviour of the joints under bending and shear 

separately. The effect of the shear forces gave very important 

experimental Information of the behaviour of the different structural details. 

It was a special push-out experimental program. 

Thesis 2. 

I have performed an investigation on the stiffness of the different stmctural details of 

joints between the trapezoidal stiffeners and the web of the cross girder by a 3D 

linear element model on the basis of the appiication of the experimentally determined 

characteristics of the special "push-out test" for shear forces. 

a) I showed that the determination of joint-stiffness based on push-out test 

contains several uncertainties due to the observed iniţial noniinearity in the 

behaviour, consequently, I proposed the approximate consideration of the 

joint stiffness by stiffness coefficient. 

b) By a parametric study I proved the acueracy of the appiication of the 

stiffnes coefficient in design. 
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c) Comparing the numerical and test results I estabilished that the proposed 

linear model gives good prediction - despite of the observed noniinearity -

until the load level belonging to the serviceability limit state is reached. 

Thesis 3. 

I have developed a 3D nonlinear finite element model for the investigation of the 

different joints structural details between the trapezoidal stiffeners and the web of the 

cross girder. The model is buiit by shell and solid elements and considers the 

geometrical and material noniinearities, the model includes the "special push-out test" 

for shear forces based joints characteristics. 

a) Based on the comparison of numerical and experimental results I 

determined the model level that is required to describe the complex 

behaviour (accuracy) and permit the practicai appiication (efficiency). 

b) By numerical analysis I determined the effect of each behavioural 

component on the nonlinear behaviour of the joints between the 

trapezoidal stiffeners and the web of the cross girder. 

c) I proved numerically the development of the slip distribution in the shear 

effect that is one of the basic assumptions of the design model. 

Thesis 4. 

Since the Eurocodes (3 and 4) do not give recommendation as to the evaluation of 

the design resistance of the different structural details of joints, I have performed 

analytical studies of these joints types based on the component method. The results 

of these analytical studies are summarized as foilows: 

a) I developed a design method to evaluate the so called "orthotropic 

buckling" case when the effect of the plate elements, the trapezoidal 

stiffeners and the cross girders joint to each other different cases (Rigid, 

Standard and Economical solutions) - I verified and validated the design 

method using the test and numerical analysis results. 

b) I developed a EC3 compatible design method for the joints. With the 

appiication of the developed method the design resistance of the joints 
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including the "column type attitude" and "plate type attitude" for the 

"orthotropic buckling". 

Thesis 5. 

Based on the comparison of the experimental, numerical and analytical results I have 

derived practicai design njles that ensure favourable ultimate behaviour and 

resistance. 

a) I demonstrated that within certain certain limits the "Economical" solution 

for the joints has enough stiffness for the ultimate limit states of the 

orthotropic plate. 

b) I verified the design method based on the numerical analysis and 

experimental results of half-scale beam test. I proved that the failure load 

and the stress distribution in the ultimate state are in good agreement if 

the measured material properties are used. 
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APPENDIX 1 
Analysis of one stiffened plate section between two cross girders 
according to prEN 1993-1-5 (2005) 

-l i 

v v — ^ ^ 
V : n A 
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N:= kg-
m 

kN := lOOO N 
sec 

V := 0.3 

fy := 355 -

E:= 210000- N 

N 
mm 

mm 
e := 

235 
N 

mm 
8 = 0.814 

Bottom of the trapezoidal stiffener: 

Hight of the trapezoidal stiffener 

btr := 306 mm 

htr:= 200 mm 

Cross section area of the trapezoidal stiffener Agn := 5534 mm 

Inerţia of the trapezoidal stiffener 

No. of the trapezoidal stiffener n := 4 

Distance between the cross girders 

Width of the plate 

Thickness of the plate 

Cross secţionai area of the plate 

Inerţia of the plate 

Bottom flange and trapezoidal stiffeners 

lsii := 1.041510^ .mm'^to the edge of the plate 

Ysh := 121.mm e := ysii 

isl1 
'sl1 

Asl1 

a := 3640 mm 

b:= 5500-mm 

t := 20 mm 

Ap := b t 

ip: 

A := b t + 4 Asii 

isn = 137.186 mm 

Ap = 110000 mm 

lp = 4.029 X 10̂ mm"̂  

A = 1.321 X 10̂  mm^ 

Isi := 4.123 10® mm 
Distance between the center of gravity and the edge of the bottom flange ŷ  := 32 mm 
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PLATE BUCKLING ATTITUDE 

aE:= 

y := 1 

ji E t 

Isl 

Yn 
YL := — n 

aE = 2.51 
N 

mm 

Yn = 102.325 

YL = 25.581 

7 : = ( n + l ) y L y = 127.907 

Isl - plate+stiffeners 

Ip - oniy plate 

a 
a := — 

b 

kţjp :-

6 n := 
(n-Asn) 

6L := 

6n = 0.201 

6 l = 0.05 

6 := (n+ l ) -5L 5 = 0.252 

a = 0.662 

AsI - area of the all stiffeners 

Ap - area of the plate 

a 

g := VY g = 3.363 

if a < ^ 

2j 
(1 + M')(1 +5) 

1 + V Y 4 / -4 ^ if a > V Y 
(m/ + 1 ) ( 1 + 5 ) kap = 237.102 

ocrp := kop OE CTcrp = 595.066 
N 

mm 
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COLUMN BUCKLING ATTITUDE 

Closest stiffener to the edge of the plate where the compression stresses highest 

calculation of the effective plate: (Fig.:4.1) in the EC3 

bi := 827 mm 

b2 := 874 mm 

blinf := 

/ 

3 -
i b i biinf= 413.5 mm 

5 - XiiJ 
2 ^ 

b2sup := T I b2sup = 437 mm 

width of the effective plate adjacent to the stiffener 

btot := inf + btr + b2sup l>tot = 1156.5 mm 

area of the stiffener and the adjacent effective plate 

Asl1 tot := Asii + btoft Asii tot = 28664 mm^ 

"^•E'sM N 
acre •= T *̂ crc = 568.38 A 2 2 Asii tot-a mm 

Determination of P^^- PAP ^ slendemess 

a) flange of the trapezoidal stiffener 

btr_flange:= 150 mm ttr_fiange := lO mm 

2c* 2 ^ c ttr flange N 
cfE_tr_flange 7 T <JE_tr_flange = 843.556 I • / V 

12 (1 - V ) btr_fiange 

kap_tr_fiange := 4 (Table 4.1) in the EC3 

^crp_tr_flange kop_tr_flange«yE_tr_flange 

N 
®crp_tr_flange = 3374.224 2 mm 

fy 
^p_tr_flange / ^p_tr_flange - 0-324 

^crpjr__flange 

PpJr__flange ' := 1 
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b) web of the trapezoidal stiffener 

t>tr web:= 214.67 mm ttr web := lO mm 

2 c • 2 71 h ttr web N 
CV E_tr_web := 7 ^ E_tr_web = 411.864 • ^ 

12 (1 - V j btr web "nf" 

kap_tr_web := 4 (Table 4.1) in the EC3 

N 
^crp_tr_web kCTp_tr_webCfE_tr_web CTcrp_tr_web= 1647.455 

2 mm 

fy 
^p_tr_web := / ^p_tr_web = 0.464 

cvcrp_tr_web 

Pp_tr_web'= 1 

c) b., plate 
b i = 827mm t=20mm 

.^•E.t^ N 
OEi:- 7 ^ CJE 1 - 111.006-

- 2\ 2 - 2 
1 2 U - v j b i mm 

k a p j := 4 (Table 4.1) in the EC3 

N 
®crp_1 kţ jpj •aE_l CTcrp_1 = 444.023 2 mm 

Xp 1 := / — ^ ?ip 1 = 0.894 
' acrp_1 

A.D 1 - 0.055 (3 + v ) 
P1 := ^ pi = 0.843 

>.p_1 
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d) b2 plate 

b2 = 874 mm t = 20 mm 

71 E t 
CTE 2 -

12 
CTE 2 = 99.388-

N 

mm 

kop 2 := 4 (Table 4.1) in the EC3 

<Jctp_2 := kop_2 aE_2 o c r p _ 2 = 397.552 
N 

mm 

>.p_2 := 
cfcrp_2 

Xp_2 = 0.945 

P2 := 
Xp_2- 0.055 (3 + v|/) 

! 2 P2 = 0.812 

Asl1_eff_tot Asii + t 

Asl1 eff tot 
PAC:= 

Asl1 tot 

bi b2^ 2 
• Y + btr + P2 y J As|i_eff_tot = 25723.045 mm 

PAC = 0.897 

Ap= 1.1 X 10̂  mm̂  AsI eff := 4 Asii Agi eff = 22136 mm 

b-| b2 2 
Apeff joc := Agieff + 2 p i y t + 4btr t + 3 p 2 y t - 2 Apeff joc = 103136.929mm 

PAP 
^P_effJoc 

PAP = 0.938 
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X slendemess 

Plate buckling attitude: 

Pp:= 

pApfy 
CTcrp 

1 if Xp< 0.673 

Xp - 0.055(3 + y) 
if ?.p> 0.673 

Column buckling attitude: 

PAC-f' • l y 

ĉ crc 

«e - «stiff + 
0.09 

^ := 0.5 

e j 

1 + ae (Xc- 0.2) + 

^crp 
CTcrc 

bl 

Ac_eff := Pc Ap_effJoc + 2 pi Y 

YM- 1 

Xp = 0.748 

Pp = 0.944 

Xc = 0.749 

astiff - 0-34 

tte = 0.419 

^ = 0.895 

Xc = 0.721 

^ - 0.047 

Pc = 0.742 

Ac eff = 90448.472 mm' 

Npd := Ac_eff fy 
YM 

NRd = 32109.208 kN 
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Taking into account the SHEAR LAG 

section 3.3 

Le:= 0.25-2-65500mm 

bo = 2750 mm 

Le = 32750 mm 
Le 
— = 655 mm 
50 

must be examine 

ao 
Ac_eff 

bo-t 
ao= 1.282 

K := ao" 
ţo 

Le 
K = 0.108 

P:= 1.0 if k<0.02 
1 

K i—^ + 1.6K^ 1 + 6 

1 

8.6k 

if 0.02 < K A K < 0.70 

2500 k J 

if k>0.70 p = 0.609 

Aeff_sheai1ag P • Ac eff A e f f _ s h e a r l a g = 55072.497 mm 

NRd sheariag Aeff sheartag'̂ y 
Y M 

N R d _ s h e a r i a g = 19550.737 kN 
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APPENDIX 2 
Analysis of one stiffened plate section between two cross girders 
according to prEN 1993-1-5 (1992) 

/ a ' 
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N:- kg 
m 

kN := lOOO N 
sec 

V := 0.3 E 210000-
N 

mm 
fw:= 355-

N 

mm 

Bottom of the trapezoidal stiffener 

Bottom of the trapezoidal stiffener 

Cross section area of the trapezoidal stiffener 

Inerţia of the trapezoidal stiffener 

btr:= 306 mm 

htr:= 200 mm 

Asn := 5534 mm^ 

lsii := 1.041510^ mm'̂ to the edge of the plate 

ysii:=121mm e:=ysii 

'sl1 := 

No. of the trapezoidal stiffener 

Distance between the cross girders 

Widthofthe plate 

Thickness of the plate 

Cross secţionai area of the plate 

Inerţia of the plate 

Bottom flange and trapezoidal stiffeners 

'sl1 

. Asii 
n:= 4 

a := 3640 mm 

b := 5500 mm 

t := 20 mm 

isn = 137.186 mm 

Ap := b t 

ip:= 
(b-t̂ ) 

12 . ( l -v^ ) 

Ap = 110000 mm 

lp = 4.029 X 10̂ mm"̂  

A:= b t + 4 Asii A = 1.321 X lO^mm^ 

Isi := 4.123 10® mm 

Distance between the center of gravity and the edge of the bottom flange •= 32 mm 

Dy:= 

Eisi 
Dx= 15.742 m' 3 N 

mm 

Et^ 

12 . ( l -v^ ) 

Y:= Dy 

a 
a := — 

b 
2 c .2 

71 E t 
CTE-

12.(I-v2).| 

Dy= 0.154 m 

Y = 10.116 

a = 0.662 

CTE = 2.51 

3 N 
mm 

N 

mm 
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1 ai := a 

kap 
YY a + - , 

ai = 0.208 

kcjp = 254.287 

CTcrp •- kţjp CTE 

ĉ crc 
T Ţ ^ 

a .̂t 

CTcrp = 638.198 

acre = 586.323 

N 

mm'̂  

N 
1 mm 

P p : = 

CTcrp 

(Xp - 0.22) 

Xp = 0.746 

pp = 0.945 

CTcrc 
Xc = 0.778 

I := 
b-Dx 

A E 
i = 55.859 mm 

a 0.34 + 
0.09 

i 
e 

(t>c:- 0.5 

a =0.535 

1 + a_-(Xc - 0.2) + J (t)c = 0.957 

Pc-= 

<t>c + •/"l'c^ ~ ^c^ 

Pc = 0.66 

CTcrp 
CTcrc 

^ = 0.088 

p : = ( p p - p c ) - ^ ( 2 - ^ ) + P c p = 0.708 
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a) flange of the trapezoidal stiffener 

t>tr_flange := 150 mm ttr_fiange := 10 mm 

" •E ttr_fiange N 
EJrJange 7 ^ ^E_tr_flange = 843.556 

12 (l - V j btr fiange Tif" 

kcTrcp_tr_flange 4 

®crp_tr_flange ^̂  kcn-cp jr_flange CfE_tr_flange 
N 

Ocrp_tr_flange = 3374.224 2 mm 

^Pjr.flange / ^pjr_flange - 0-324 
^crp_tr_flange 

^pjr_flange " 0-22 

^p_tr_flange 
Ppjr_flange •= ^— Pp_tr__flange = 0-992 

b) web of the trapezoidal stiffener 

btr web214.67 mm ttr web 10-mm 

2 I- . 2 
K •E ttr_web N 

^E tr web-= 7 7 ^E tr web =411.864 12-(l - v^)-btr_web^ ^ ^ ^ 

l̂ arcp̂ tr̂ web •= 4 

^crp_tr__web •= karcp_tr_web'̂ E_tr__web 

N 
Ocrpjr_web = 1647.455 

mm̂  

fy 
^p_tr_web •= I ^pjr_web = 0-464 

^crp_tr_web 

Pp_tr__web-- ^— Pp_tr_web- 1-133 
^pjr_web - 0.22 

, 2 
p̂__tr_web 

Pp_tr__web •= 1 
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c) b̂  plate 

bi := 827mm t=20mm 

CTE 1 
12.(1 

k^p 1 := 4 (Table 4.1) in the EC3 

^crp_1 := k(jp_iaE_1 

OE 1 = 111.006-
N 

mm 

<Jcrp_1 = 444.023 
N 

mm 

<̂ crp_1 
X p j = 0.894 

P 1 : = 

Xp_i - 0.22 
~ 2 

>.p_1 

d) b2 plate 

b2 := 874mm t = 20 mm 

7t E t 
OE 2 -= 

12.(1 - v ^ j V 

P1 = 0.843 

OE 2= 99.388-
N 

mm 

kap 2 - 4 (Table 4.1) in the EC3 

^crp_2 - kop_2 CJE_2 c^crp_2= 397.552-
N 

mm 

Xp_2 Xp_2 = 0.945 

P 2 : = 

?ip_2 - 0.22 
P 2 = 0.812 
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e) 63 plate 

b3 := 306mm t = 20mm 

OE 3:= 
2 c 

71 -E-t 

kap_3 := 4 (Table 4.1) in the EC3 

fîcrp_3 := kop_3 0E_3 

aE 3= 810.8 
N 

mm 

<Jcrp_3 = 3243.199-
N 

mm 

fu 

p 3 : = 

<Jcrp_3 

A.p_3 - 0.22 
^ 2 
A p _ 3 

Xp_3 = 0.331 

p 3 = 1.013 

p 3 : = 1 

AsI eff := 4 Asii Asi eff = 22136 mm 

Ac:= Asi_eff + ( 2 p i b i t + 4btrt + 3 p 2 b 2 t ) Ac= 117083.599mm^ 

Ac eff := p Ac 

N R d : = A c e f f f y 

Ac eff = 82925.873 mm 

NRd = 29438.685 kN 
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APPENDIX 3 
Analysis of two stiffened plate sections between three cross girders 
according to prEN 1993-1-5 (2005) (F) full 

m r\ 

i - ^ 0 6 

9 5 0 1180 1 ;SC ^180 

! 

i 980 

i 
5500 

f 
L . 

> 1 

Appendix 1- 2 

BUPT



N:= kg. 
m 

kN := lOOO N 
sec 

V := 0.3 E:= 210000- N 

mm 

No. of the trapezoidal stiffener 

Bottom of the trapezoidal stiffener 

Distance of the trapezoidal stiffeners 

Crass secţionai area of the trapezoidal 
stiffener 

Inerţia of the trapezoidal stiffener 

N 
fv:= 355-^ 2 mm 

n:= 4 

btr := 306 mm 

980mm ^ 

1180mm 

bi := llSOmm 

llSOmm 

980mm J 

b . ^ b , 

Asn := 5534 mm^ 

lsii := 1.0415 -10^•mm'* to the edge of the plate 

b= 5500 mm 

Ysn := 121 mm e := Ysn 

No. of the cross girders 

Distance between the cross girder 

Cross secţionai area of the cross girder 

Inerţia of the cross girder 

Thickness of the plate 

Cross secţionai area of the plate 

'sl1 := 

m:= 3 

'sl1 

Asl1 

aj := 3640 mm 

Ab:= 18900mm^ 

lb:= 5.84 10̂ mm'* 

a := (m - l ) aj 

t := 20mm 

Ap := b t 
a 

a := — 
b 

Pp := 
ji^EIsH 

isii = 137.186 mm 

a = 7.28 m 

Ap = 110000 mm 

a = 1.324 

Pe = 4.073 X 10̂  kN 

K:= Işll 

•b 
K - 0.178 
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Plate buckling attitude 

Inerţia of the plate 

aE:= 
. ( , - v ^ ) . , 12 

ln:= 

g:= 

t^b 

12(1-v^) 

'sM 

Ir 

OE = 2.51 
N 

mm 

Ip = 4.029 X 10̂  mm"̂  

g = 25.848 

t̂ crp g-
n+ 1 

a 

f 1 m+ 1 3̂ 1 
1 + a . ap 

K n+ 1 J 
acrp = 2111.076- N 

mm 

Column buckling attitude 

z 0.020833 + 0.01022 (n - 1) z = 0.051 

>̂0 := (z) — ISH 
E'b 

Xo = 7.276 X 10 ' ̂  m"̂  seĉ  kg'"" 

Per a1 1 + 0.0866 • 
a 

V m - 1 

Per a1 = 2.946 

Per a2:- 0.202-
a 

a 

m - 1 
z K 

Per 32 = 4.54 

Per ai Per_a1 'f Per_a1 ^ 2 
Pcr_a2 "f Per_a2>2 
"hiba" otherwise Per ai = 4.54 

cf cr sl •-
Asl1 

ĉ ere-- Per ai <̂er sl 

aer sl- 735.998 
N 

(jcre= 3341.169-

mm 

N 
2 mm 
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y 1 
Calculation of the effective plate (Fig.:4.1) 

bi := 827 mm 

b2 := 874 mm 

biinf •= 
/ 

\ 
/ 
5 - M / j 

2 ^ 

bi bijnf = 413.5 mm 

b2sup \ b2sup = 437 mm 

width of the effective plate adjacent to the stiffener 

btot •= inf + btr + b2sup t̂ot = 1156.5 mm 

area of the stiffener and the adjacent effective plate 

Asl1 tot-= Asii + btoft Asii tot= 28664 mm^ 

tc^EIsM N 
^cr_sl ^ <̂ cr_sl = 142.095 ^ 

Asl1 tot-3 rnm 

N 
^cr c Per ai'^cr sl ^cr c = 645.061 

mm̂  

Determination of /S^p for X slendemess 

a) flange of the trapezoidal stiffener 

btr__flange •= 150 mm ttr flange •= 10 mm 

2 c • 2 
Vflange N 

^E_tr__flange •= 7 ^ ^ ^E_tr__flange = 843.556 

12 (1 - V j btr_fiange ^ ^ 

kapjr_flange 4 (Table 4.1) in the EC3 

^crp_tr_flange •= k(yp_tr_flange-^E_tr_flange 

N 
^crp_tr__flange = 3374.224 

mm 

fy 
^pjr__flange •= / ^pjr_flange = 0-324 

^crp_tr_flange 

PpJr_flange • := 1 
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b) web of the trapezoidal stiffener 

t>tr web •= 214.67 mm ttr web lO mm 

71 E ttr web N 
E Jr_web •= 7 ^ ^ E_tr_web = 411.864 • ^ 

12 \1 - V ) btr_web ^ ^ 

kcTpJr_web := 4 (Table 4.1) in the EC3 

N 
^crp_tr_web kapjr_web ĉ E_tr__web <̂ crp_tr_web - 1647.455 2 mm 

fy 
^Pjr_web - / ^p_tr_web = 0.464 

V ĉrp__tr_web 

Pp_tr_web •= 1 

c) b̂  plate 

bi = 827mm t = 20mm 

n^.E.t^ N 
aE_1 := 7 r ctej = 111 006 • 

12 (1 - mm̂  

k(jp_i - 4 (Table 4.1) in the EC3 
N 

(Jctp_1 - k<jp_i -CTEJ <Tcrp_1 = 444.023 2 mm 

Xp_i / — ^ Xp_i = 0.894 

Xd 1 - 0.055 (3 + v ) 
P1 := ^ pi = 0.843 
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d) b2 plate 

b2 = 874 mm t = 20 mm 

71 Et 
GE 2-= 

k(Tp 2 := (Table 4.1) in the EC3 

aE 2= 99.388-
N 

mm 

A.p_2 := 
<^crp_2 

o c r p _ 2 - 397.552 N 

mm 

Xp_2 = 0.945 

P2-= 
>.p_2- 0.055 (3 + H') 

, 2 Xp_2 
P2 = 0.812 

Ap = 1.1 X 10̂  mm̂  

bl 
Ap_effJoc := As|_eff + 2 pi - y t + 4 btrt + 3 p2-yt-2 

AsI eff 4 Asll Asi eff = 22136 mm 

b2 

P A P := 
^P_effJoc 

Ap_eff_loc= 103136.929 mm 

PAP = 0.938 

Asl1_eff_tot := Asil + t 

Asl1 eff tot 

bi b2^ 
^ P i y + l>tr+ P 2 y J 

PAC:= 
Asl1 tot 

Asl1 eff tot = 25723.045 mm 

PAC = 0.897 
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X slendemess 

Plate buckling attitude: 

PApf • l y 

®ctp 
Xp = 0.397 

Pp:- 1 if 0.673 

Xp - 0.055(3 + v) 
if Xp> 0.673 Pp = 1 

Column buckling attitude: 

Xr.:= 
PAC-f' • l y 

ĉ crc 

0.09 
«e := «stiff + — 

^ := 0.5 

ish^ 
ej 

1 + ae (Xc- 0.2) + Xc 

Xc = 0.309 

astiff := 0.34 

tte = 0.419 

(j) = 0.57 

Xc-
(|) + 

Xc = 0.952 

acrp 
CTcrc 

Pc- (pp - Xc)-̂ -(2 - + Xc 

^ = -0.368 

P c = 0.911 

bl 
Ac_eff := Pc Ap_eff_loc + 2 pi • — t 

YM- 1 

Ac eff= 107859.033 mm 

NrcJ := Ac_eff fy YM 
NRd = 38289.957 kN 

Appendix 1- 2 

BUPT



Taking into account the SHEAR LAG: 

section 3.3 

Le:= 0.25-2-65500mm 

must be examine 

bo = 2750 mm 

Le = 32750 mm 
Le 
— = 655 mm 
50 

ao := 
Ac_eff 

bo-t 

bo 
K := ao " 

ao= 1.4 

K = 0.118 

1.0 if K <0.02 

1 
K î—1 + 1.6K^ 1 + 6 

I 
8.6k 

if 0.02 < K A K < 0.70 

2500 k ) 

if K > 0.70 

Aeff_shearlag • - P Aeff_shearlag = 63177.049 mm 

NRd_shear1ag Aeff sheariag V" 
YM 

NRd_sheartag = 22427.852 kN 
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APPENDIX 4 
Analysis of two stiffened plate sections between three cross girders 
according to prEN 1993-1-5 (2005) (R) rigid 

m 

—V 

A, 

_r\ 

1 
950 1 rao iieo nso 980 

i 5500 ^ 

5600 

^ 'V 

1-
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N:= kg 
m 

kN := lOOO N 
sec 

V := 0.3 E := 210000-
N 

mm 

No. of the trapezoidal stiffener 

Bottom of the trapezoidal stiffener 

Distance of the trapezoidal stiffeners 

Crass secţionai area of the trapezoidal 
stiffener 

Inerţia of the trapezoidal stiffener 

fw:= 355-
N 

mm 

n:= 4 

t>tr:= 306 mm 

'' 980mm ^ 

1180mm 

bi:= llSOmm 

llSOmm 

980mm ) 

b:= b= 5500 mm 

AsU := 5534 mm 

Isn := 1.041510 mm to the edge of the plate 

ysn := 121 mm 

No. of the cross girders 

Distance between the cross girder 

Cross secţionai area of the cross girder 

Inerţia of the cross girder 

Thickness of the plate 

Cross secţionai area of the plate 

'sl1 := 

m:= 3 

'sl1 

Asl1 

aj := 3640 mm 

Ab:= 18900mm^ 

lb:= 4.837 lO^mm"̂  

a.- (m - l ) aj 

t := 20mm 

Ap b t 

a 
a := — 

b 

Pp := 
"^Eisn 

K:= 'sl1 

e := Ysn 

isH = 137.186 mm 

a = 7.28 m 

Ap == 110000 mm̂  

a = 1.324 

Pe = 4.073 X 10̂  kN 

K = 0.215 

Appendix 6- 3 

BUPT



Plate buckling attitude 

Inerţia of the plate 

CTE:= 
12 

ln:= 

g:= 

t^b 

Isl1 
Ir 

OE = 2.51 
N 

mm 

Ip = 4.029 X 10̂  mm"̂  

g = 25.848 

•̂ crp := g-
n+ 1 

a 

1 m+ 1 3̂ 1 
1 + a . a p 

K n+ 1 ) CTcrp = 1780.302- N 

mm 

Column buckling attitude 

z:= 0.020833 + 0.01022 (n- 1) z = 0.051 

•= (z)-— ISH Elb 
Xq = 8.784 X 10 ' ̂  m̂  seĉ  kg"*" 

Per a1 := 1 + 0.0866-
a 

a 

m - 1 
z-K 

Per a1 = 2.771 

Per a2:= 0-202 
a 

V m - 1 

Per 32 = 4.131 

Per ai Per_a1 'f Pcr_a1 ^ 2 

Pcr_a2 Pcr_a2>2 

"hiba" otherwise Per ai = 4.131 

<̂er si •= 
Asl1 

^ere-- Per ai <̂cr sl 

CTcr sl = 735.998 • 
N 

acre= 3040.746-

mm 

N 
2 mm 
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V,/ := 1 

Calculation of the effective plate (Fig.:4.1) 

bi := 827 mm 

b2 874 mm 

blinf:= | b i biinf = 413.5 mm 

( 2 ^ 
b2sup := I •b2 b2sup = 437 mm [5-yi/J 

width of the effective plate adjacent to the stiffener 

btot bi inf + btr + b2sup >̂101 = 1156.5 mm 

area of the stiffener and the adjacent effective plate 

Asl1 tot := Asli + btoft AgH tot = 28664 mm^ 

"^•E'sil N 
fJcr_sl <'cr_sl = 142.095 

Asll tot 3 fTim 

N 
c'= Per aj ĉ cr si 587.06 

mm̂  

Determination of for A slendemess 

a) flange of the trapezoidal stiffener 

btr_flange := 150 mm ttr_flange := 10- mm 

2 c * 2 " t itr fiange N 
<^E_tr_flange:= 7 ^ crE_tr_fiange = 843.556 ^ 

12 (1 - V J btr_flange "if" 

kap_tr_flange := 4 (Table 4.1) in the EC3 

o^crp_tr_flange kop_tr_flange OE_tr_fIange 
N 

^crp_tr_flange = 3374.224 
mm̂  

fy 
^p_tr_flange •= / ^p_tr_flange = 0-324 

®crp_tr_flange 

Pp_tr_flange := 1 
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b) web of the trapezoidal stiffener 

btr_web:= 214.67 mm ttr web lO mm 

2 c • 2 71 •Ettr_web N 
^ E_tr_web 7 T̂ ^ E_tr_web = 411.864 

12 (1 - V j btr_web mf" 

k(Tp_tr_web := 4 (Table 4.1) in the EC3 

N 
<^crp_tr_web:= kCTp_tr_webCfE_tr_web crcrp_tr_web = 1647.455 

2 mm 

^p_tr_web := / ^p_tr_web = 0-464 
*̂ crp_tr_web 

Pp_tr_web-= 1 

c) b., plate 

bi = 827 mm t = 20 mm 

Ti^Et^ N 
CTC 1 ^ ap 1 = 111.006-

- / 2 - 2 1 2 - ^ 1 - v j b i mm 

kjjp 1 := 4 (Table 4.1) in the ECS 

N 
<̂ crp_1 := kţ jp j - a E l CTcrp_1 = 444.023 2 mm 

0.894 
V <̂ crp_1 

Xp i - 0.055 -(3 + v,/) 
P1 := ̂  pi = 0.843 
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d) b2 plate 

b2 = 874 mm t 20mm 

n Et 
CTE 2 - CTE 2 = 99.388-

N 

mm 

kop 2 := 4 (Table 4.1) in the EC3 

<7crp_2 := k(jp_2 aE_2 397.552 • 
N 

mm 

>.p_2 Xp_2 = 0.945 

P2 := 
>.p_2- 0.055 (3 + v ) 

J 2 
P 2 = 0.812 

Ap= 1.1 X 10̂  mm̂  AsI eff 4 AS|I Agi eff = 22136 mm 

bl b2 
Ap_eff_loc := Asi_eff + 2 p i • — t + 4 btrt + 3 p2 — t ^ 

PAP:= 
Ap_effJoc 

Ap_eff_loc= 103136.929 mm 

PAP = 0.938 

Asl1_eff_tot:= Agii + t 

Asl1 eff tot 

bl 
P i y + btr+ P 2 y j 

b2^ 2 
Asl1 eff t o t = 25723.045 mm 

PAC:= 
Asl1 tot 

PAC = 0.897 
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k slendemess 

Plate buckling attitude: 

PApfy 
CTcrp 

Xp = 0.432 

Pp:= 1 if 0.673 

Xp - 0.055(3 + y) 
if >.p> 0.673 Pp = 1 

Column buckling attitude: 

PAC-fy 
cTcrc 

«e := astiff + 
0.09 

.ej 

(1> 0.5 1 + ae (>.c- 0-2) + ^c^ 

Xc = 0.324 

«stiff := 0-34 

tte = 0.419 

(|) = 0.578 

Xc-= 

<t> + 

Xc= 0.946 

cTcrp 
^crc 

^ = -0.415 

P c = 0.891 

bl 
Ac_eff ••= Pc Ap_eff_loc + 2 p i • y 

YM:= 1 

NRd - Ac_eff fy 
_1_ 

YM 

Ac eff= 105849.485 mm 

Npd = 37576.567 KN 
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Taking into accx)unt the SHEAR LAG: 

section 3.3 

Le:= 0.25-2-65500mm 

must be examine 

bo = 2750 mm 

Le = 32750 mm 
Le 
— = 655 mm 
50 

ao -
Ac_eff 

bo-t 

bo 
K := a o — 

•-e 

a o = 1.387 

K = 0.116 

P:= 1.0 if k<0.02 
1 

K î ^ + 1.6K^ 1 + 6 

1 

8.6k 

if 0.02 < K A K < 0.70 

2500 K J 

if K > 0.70 

Aeff_shearlag P Ac eff Aeffshearlag = 62262.871 mm 

NRd_shearlag Aeff sheariag-^y 
YM 

N R d _ s h e a r i a g = 22103.319 kN 
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APPENDIX 5 
Analysis of two stiffened plate sections between three cross girders 
according to prEN 1993-1 -5 (2005) (S) standard 

151^ o 

o 1 
980 

|306 
1180 1180 1180 980 1 

5500 

- V 

5600 

"v-nr^ 

1 T 
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N:= kg 
m 

kN lOOO N 
sec 

V 0.3 E := 210000-
N 

mm 

No. of the trapezoidal stiffener 

Bottom of the trapezoidal stiffener 

Distance of the trapezoidal stiffeners 

Crass secţionai area of the trapezoidal 
stiffener 

Inerţia of the trapezoidal stiffener 

fv:= 355 • 
N 

mm 

n:- 4 

btr:= 306 mm 

980mm ^ 

1180mm 

bj := llSOmm 

1180mm 

980mm J 

b . ^ b i 

AsU := 5534 mm^ 

lsii := 1.0415 10® mm"* to the edge of the plate 

b= 5500 mm 

Vsn := 121 mm 

No. of the cross girders 

Distance between the cross girder 

Cross secţionai area of the cross girder 

Inerţia of the cross girder 

Thickness of the plate 

Cross secţionai area of the plate 

"sl1 

m:= 3 

'sl1 

Asl1 

aj 3640 mm 

Ab:= 18900mm 

lb:= 3.911110®mm'^ 

a := (m - l ) aj 

t := 20mm 

Ap := b t 

a 
a := — 

b 

Pp := 
'î̂ EISM 

a 

K:= IşM 
Ib 

e := ysl1 

isn = 137.186 mm 

a = 7.28 m 

Ap= 110000 mm̂  

a = 1.324 

Pe = 4.073 X lO^kN 

K = 0.266 
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Plate buckling attitude 

Inerţia of the plate 

n E t 
GE-

12 

ln:= 

g:= 

t^b 

12(1 - v )̂ 

Isl1 

Ir 

a E = 2.51 
N 

mm 

Ip = 4.029 X 10̂  mm'* 

g = 25.848 

ĉ crp g -
n+ 1 

a 

f 1 m + 1 3̂ 1 
1 + a . a p 

K n+ 1 J ^crp = 1474.955-
N 

mm 

Column buckling attitude 

z 0.020833 + 0.01022 (n - 1) 

b̂  
• = (z) — IsM 

E'b 

z = 0.051 

Xo= 1.086 x 10 ''m'^sec^kg'"' 

Per a1 - 1 + 0.0866-
a 

V m - 1 

Per a1 = 2.593 

Per a2:= 0.202-
a 

a 

m - 1 
z K 

Per 82 - 3.715 

Per ai Per_a1 Per_a1 ^ 2 

Per_a2 'f Per_a2 > 2 

"hiba" otherwise Per a i = 3.715 

Asl1 

<Jcre'- Per ai *̂ er sl 

CTcr sl == 735.998 -
N 

acre = 2734.271 

mm 

N 
2 mm 
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1 
Calculation of the effective plate (Fig.:4.1) 

b-i := 827 mm 

b2 874 mm 

\ 
/ 

3 -
, b i b-ijnf = 413.5 mm 

5 - y ; 

b2sup b2sup = 437 mm 

width of the effective plate adjacent to the stiffener 

t>tot bi inf + btr + b2sup btot = 1156.5 mm 

area of the stiffener and the adjacent effective plate 

Asl1 tot Asn + btoft Asn tot = 28664 mm^ 

it^Elsn N 
acr_sl := «Jcr_sl = 142.095 

Asii tot a mm 

N 
cfcr c •= Per ai'^cr sl ^cr c = 527.891 

mm̂  

Determination of /S^q, /S^p for A slendemess 

a) flange of the trapezoidal stiffener 

btr_flange:= 150 mm ttr fiange := lO mm 

2c* 2 
ît E ttr flange o., N 

o E_tr_flange 7 ^ ^ E_tr_flange = 843.556 12 (1 - V J btr fiange 

kap_tr_flange := 4 (Table 4.1) in the EC3 

< ĉrp_tr_flange kc7p_tr_flange-̂ E_tr_flange 
N 

^crp_tr_flange = 3374.224 

2 

mm̂  

fy 
^p_tr_flange / ^p_tr_flange = 0-324 

®crp_tr_flange 

Pp_tr_fiange • := 1 
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b) web of the trapezoidal stiffener 

^ • t r _ w e b •= 214.67 mm ttr_web 

n •E ttr_web N 
^E tr web- ? T ^E tr web = 411.864 

12 (1 - v )̂ btr_web̂  "irn^ 

kap_tr_web - 4 (Table 4.1) in the EC3 

N 
®crp_tr_web:= kCTp_tr_web crE_tr_web <̂ crp_tr_web - 1647.455 2 mm 

fy 
X.p_tr_web := / ^p_tr_web = 0-464 

< ĉrp_tr_web 

Pp_tr_web-= 1 

c) b., plate 

bi = 827mm t = 20mm 

n'-E-t^ N aE_1 —7 ^ ^ = H1.006 ^ 
1 2 ( 1 - v j b i mm 

kjjp 1 := 4 (Table 4.1) in the EC3 
N 

acrp_1 := kap_1 CTEJ ^crpji = 444.023 
2 mm 

Kp ^ := I — ^ = 0.894 
«Jcrp_1 

Xp 1 - 0.055 (3 +M/) 
P1 := - 5 = ^ pi = 0.843 
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d) b2 plate 

b2 = 874 mm t = 20mm 

2 c n E t 
GE 2'= 

kap_2 := 4 (Table 4.1) in the EC3 

GE 2= 99.388-
N 

mm 

p̂_2 := 
<'crp_2 

<Jcrp_2= 397.552 • 
N 

mm 

Xp_2 = 0.945 

P 2 : = 

X.p_2- 0.055 (3 + v|/) 

! 2 P 2 = 0.812 

AP= 1.1 X 10̂  MM^ 

bl 
Ap_eff_loc := As|_eff + 2 p i • — t + 4 btr t + 3 p2 — t ^ 

AsI eff := 4 Asii Agi eff = 22136 mm 

b2 

PAP := 
Ap_eff_loc 

Ap_eff_loc= 103136.929 mm 

PAP = 0.938 

Asl1_eff_tot := Agii + t 

Asl1 eff tot 

bl 
P i y + b t r + P 2 - y j 

b2'l 2 
Asl1 eff tot = 25723.045 mm 

PAC:= 
Asl1 tot 

PAC = 0.897 
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X slendemess 

Plate buckling attitude: 

PApf • l y 

ocrp 
Xp = 0.475 

Pp:= 1 if >ip< 0.673 

Xp - 0.055(3 + v|/) 
if Xp> 0.673 Pp= • 

Column buckling attitude: 

Xr:-
PAC-f' • i y 

CTcrc 

«e := cistlff + 
0.09 

ej 

(J) := 0.5 1 + ae-(Xc- 0.2) + Xc 

Xc= 0.341 

astiff := 0-34 

tte = 0.419 

<t> = 0.588 

Xc-= Zc = 0.938 

CTcrc 
^ = -0.461 

Pc = 0.867 

bl 
Ac_eff Pc Ap_eff_loc + 2 p i • — t 

YM:= 1 

Ac eff - 103356.122 mm 

Npd Ac_eff fy 
YM 

NRd= 36691.423 kN 

Appendix 1- 2 

BUPT



Taking into accx)unt the SHEAR LAG: 

section 3.3 

Le := 0.25 2 -65500mm 

must be examine 

ao:= 
Ac_eff 

bo t 

bo 
K := ao-

bo = 2750 mm 

Le = 32750 mm 

a o = 1.371 

K = 0.115 

50 
= 655 mm 

P:= 1.0 if k<0.02 

1 

K î ^ + 1.6-K̂  1 + 6-

1 
8.6k 

if 0.02 < K A K < 0.70 

2500 K J 

if k>0.70 

Aeff_shearlag := P Ac eff Aeff_shearlag = 61121.217 mm 

NRd_sheariag := Aeff shearlag fy NRjj sheariag = 21698.032 kN 
YM 
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APPENDIX 6 
Analysis of two stiffened plate sections between three cross girders 
according to prEN 1993-1-5 (2005) (E) economic 

150, 

-V A-

5 6 0 0 

-V 

i A ^ \ /K /K / . 
o 1 

9 8 0 

| 3 0 6 

1180 1180 1180 9 8 0 
r 1 

5 5 0 0 

-V A-

r 
1 
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N:= kg-
m 

kN := lOOO N 
sec 

V 0.3 E 210000-
N 

mm 

No. of the trapezoidal stiffener 

Bottom of the trapezoidal stiffener 

Distance of the trapezoidal stiffeners 

Crass secţionai area of the trapezoidal 
stiffener 

Inerţia of the trapezoidal stiffener 

fv:= 355-
N 

mm 

n:= 4 

btr:= 306 mm 

980mm ^ 

llSOmm 

bi:= llSOmm 

llSOmm 

980mm J 

b:= b= 5500 mm 

AsU := 5534 mm 

lsii := 1.041510 mm to the edge of the plate 

Ysn := 121 mm 

No. of the cross girders 

Distance between the cross girder 

Cross secţionai area of the cross girder 

Inerţia of the cross girder 

Thickness of the plate 

Cross secţionai area of the plate 

'sl1 := 

m:= 3 

'sl1 

Asl1 

aj := 3640 mm 

Ab— 18900mm^ 

lb:= 3.6105 lO^mm"̂  

a := (m - l ) aj 

t := 20mm 

Ap := b t 

a 
a := — 

b 

n^Elsn 

K:- 'sM 

e := ysM 

isn = 137.186 mm 

a = 7.28 m 

Ap = 110000 mm̂  

a = 1.324 

Pe = 4.073 X 10̂  kN 

K = 0.288 
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Plate buckling attitude 

Inerţia of the plate 

2 IZ 71 E t 

. ( , - v ^ ) . , 12 

ln:= 

g:= 

t^b 

12(1 -v^) 

•sM 

Ir 

aE = 2.51 
N 

mm 

Ip - 4.029 X 10̂  mm"̂  

g = 25.848 

ocrp g-
n+ 1 

a 

1 m + 1 
1 + a . a E 

K n + 1 j 
acrp = 1375.822-

N 

mm 

Column buckling attitude 

z := 0.020833 + 0.01022 ( n - 1) z = 0.051 

•= (z) — 'sil E'b 
>.0=1.177x10 ''m'̂ sec^kg""' 

Per a1 := 1 + 0 0866 • 
a 

yj m - 1 

Per a1 = 2.53 

Per a2:= 0.202 
a 

V m - 1 

Per a2 = 3.569 

Per ai •- Pcr_a1 'f Per_a1 ^ 2 

Per_a2 Per_a2 > 2 

"hiba" otherwise Per ai = 3.569 

^cr sl-= 
Asl1 

c^ere -̂ Per ai ^̂ er sl 

aer sl = 735.998 • 
N 

acre = 2627.095-

mm 

N 
2 mm 
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v|;:= 1 
Calculation of the effective plate (Fig.:4.1) 

bi := 827 mm 

b2 := 874 mm 

blinf •= 
V 

3-vţ/"! 
5 - v t / j 

bi b-ijnf = 413.5 mm 

f 2 ^ 
b2sup I b2sup = 437 mm 

width of the effective plate adjacent to the stiffener 

t>tot := bi inf + btr + b2sup t>tot = 1156.5 mm 

area of the stiffener and the adjacent effective plate 

Asl1 tot - Asii + btoft Asn tot = 28664 mm^ 

"^•EIsH N 
Ocr_sl := ^CT_s\ ^ 142.095 

Asii tot a mm 

N 
<̂ cr c := Per ai ^̂ cr si «̂ cr c = 507.199 2 mm 

Detemnination of /S^p for A slendemess 

a) flange of the trapezoidal stiffener 

t>tr_flange := 150 mm ttr_flange lO mm 

2 c * 2 
^ •^•Hr_flange N 

o E_tr_flange := 7 cr E_tr_flange = 843.556 

12 (1 - V ) btr_flange mm 

k(jp_tr_flange := 4 (Table 4.1) in the EC3 

^crp_tr_flange — kCTp_tr_flange-̂ E_tr_flange 

N 
®crp_tr_flange = 3374.224 2 mm 

fy 
^p_tr_flange •= / ^pjr_flange = 0.324 

^crp__tr_flange 

:= 1 
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b) web of the trapezoidal stiffener 

btr web 214.67mm ttr web"- lO-mm 

71 •Ettr_web N 
f̂ E tr web- 7 T cte tr web = 411.864 

12 -11 - V / btr web mm 

kap_tr_web := 4 (Table 4.1) in the EC3 

N 
ĉ crp_tr_web kCTp_tr_web ''E_tr_web crcrp_tr_web - 1647.455 

mm̂  

^pjr_web := / ^p_tr_web 0-464 
<'crp_tr_web 

Pp_tr_web-= 1 

c) b., plate 

b-| = 827 mm t = 20mm 

N 
CTF 1 ; ^ ap 1 = 111.006-

^ 2K 2 - 2 12-̂ 1 - V j bi mm 

k^jpj := 4 (Table 4.1) in the EC3 

N 
^crp_1 := kap_i oe i OcrpJ = 444.023 

mm̂  

Xp 1 := I — ^ Xn 1 = 0.894 

Xp 1 - 0.055 (3 + v|;) 
P1 := ^ pi = 0.843 
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d) b2 plate 

b2 = 874 mm t = 20mm 

.-•Et^ 
OE 2:= O E 2 = 9 9 . 3 8 8 -

N 

12 mm 

kcjp_2 := 4 (Table 4.1) in the EC3 

CTcrp_2 := kop_2 CTE_2 

cfcrp_2 

<Jcrp_2 = 3 9 7 . 5 5 2 
N 

mm 

X p _ 2 = 0 . 9 4 5 

P 2 := 

^ p _ 2 - 0 . 0 5 5 (3 + \ | / ) 

^ 2 P 2 = 0 . 8 1 2 

A p = 1.1 X 10^ m m ^ 

bi 
Ap_eff_loc:= Asief f + 2 p i • — t + 4 b t r t + 3 p 2 — t ^ 

Asi eff 4 As i i Asi eff = 22136 m m 

b2 

PAP := 
Ap_eff_loc 

Ap 

A p _ e f f J o c = 1 0 3 1 3 6 . 9 2 9 m m ' 

P a p = 0 . 9 3 8 

Asl1_eff_tot := Asii + t 

Asl1 eff tot 

bi b2^ 
P i y + btr+ P2-yj 

PAC 
Asl1 tot 

A s l 1 eff tot = 2 5 7 2 3 . 0 4 5 m m 

P A C = 0 . 8 9 7 
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X slendemess 

Plate buckling attitude: 

pApf' •'y 
ĉrp 

Xp = 0.492 

Pp:= 1 if Xp< 0.673 

Xp - 0.055(3 + v|/) 
if Xp> 0.673 Pp = 1 

Column buckling attitude: 

PAC-f' • l y 

ocrc 
Xc = 0.348 

«e := «stiff + 
0.09 

işll^ 
ej 

ttstiff := 0.34 

ae = 0.419 

(t»:= 0.5- 1 + ae(Xc-0.2) + ?iĉ_ ^ - 0.592 

Xc:= 

4» + 
Xc = 0.934 

cFcrp 
— - l 
ocrc 

^ = -0.476 

Pc - ( p p - X c ) - ^ - ( 2 - ^ ) + Xc Pc = 0.857 

bi 

Ac_eff - Pc Ap_eff_loc + 2 p i — 

YM:= 1 

Ac eff= 102356.5 mm 

NRd := Ac eff fy 
YM 

Npd = 36336.558 kN 
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Taking into account the SHEAR LAG: 

section 3.3 

Le:= 0.25-2-65500mm 

must be examine 

ao 
Ac_eff 

bo-t 

K ao" 
bo 

Le 

bo = 2750 mm 

Le = 32750 mm 

ao= 1.364 

K = 0.115 

50 
= 655 mm 

P:= 1.0 if k < 0 . 0 2 

1 

1 + 6-

1 

8.6k 

K -
2500-K J 

if K>0.70 

1 ^ + 1.6-1 
if 0.02 < K A K < 0.70 

Aeff_shear1ag •- P •Ac_eff Aeff_shearlag = 60661.176 mm 

NRd_shearlag Aeff shearlag fy 
YM 

N R d _ s h e a r l a g = 21534.717 kN 
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