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Abstract

In this paper are presented: structure of the bone tissue, anisotropic linear-
elastic models of cortical bone and Analysis numerical propagation of a cracks
into the cortical bone. To determine the fracture mechanics parameters at the
crack tip, the finite element method was implemented in the FRANC2D / L
1.5 software. 1
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1 The structure of the bone tissue

The tissue has a complex hierarchical structure (Figure 1) which, due to its
reduced density, results in a unique combination of properties: high strength and
toughness, good stiffness, absorption capacity of deformation energy, Taylor (2010).

Also, this complex structure allows the bone tissue to perform important me-
chanical, biological and chemical functions, Sabet(2018):
• The structural support, ensuring body shape and weight support;
• It forms cavities for the protection of internal organs (the cranial box, thorax box,
vertebral canal, etc.);
• Mineral ion homeostasis, bone tissue depositing 99% of the total Ca2+ in the
body, 85% of the total phosphorus and 66% of the total magnesium);
• The spongy tissue of the epiphyses hosts the hematopoietic tissue (red marrow);
• The regenerative function that provides bone remodeling, healing of cracks and
fractures. Bone tissue is divided into two broad categories, namely, compact bone
tissue (osul cortical) and spongy bone (trabecular bone), see Figure 1. The compact
bone tissue, accounting for 80% of the bone mass, represents a dense structure that
contributes to strength and rigidity of the bone. It is located in the diaphysis of
the long bones and in the cortical bones. Spongy bone tissue forms a less dense
structure and is located in the central area of short bones, epiphyses of long bones
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and diploid bones. It is responsible for the absorption of deformation energy and
the distribution of forces in the body. At the nanometric scale, collagen molecules
and apatite crystals constitute collagen mineralized with a diameter of about 100
nm and a length of several µm, Sabet (2016), see Figure 1.

Figure 1:

These mineralized fibers, placed parallel to each other, form sub-micrometric
scaffolds with a thickness of 3-7 µm, called lamellas. On a micrometric scale, the
assembling of the lamellae leads to the formation of a number of tissues, the compact
bone and the spongios. Compact (cortical) structure, approximately 4-20 lamels,
not concentrically disposed around a vascular channel (haversian canal) forming the
osteon, 200-300 µm in diameter a few mm. Between the osteons is the interstitial
tissue, formed by remnants of the aged osteoarthritis, resulting from the bone re-
modeling process. Separation is provided by a cement line containing less collagen
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(mesoscopic scale, see Figure 2).

Figure 2:

In the structure of the spongy trabecular bone, the lamelele are assembled into
branched trabecular forming a network that delimits areolele of different shapes
and sizes. Areas contain connective tissue, blood vessels, nerve endings, and bone
marrow. Thus, on a mesoscopic scale results a cellular structure illustrated in Figure
3. On a macroscopic scale the bone contains both compact tissue and spongy tissue.

Figure 3:

The composition of the human bone depends on a large number of factors: sex,
age, type of tissue, site of sampling, Katz (2008). Thus, bone tissue is thought
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to contain 32 − 44% organic substance (mainly collagen), 33 − 43% minerals (as
hydroxyapatite) and 15− 25% water, Sabet. (2016).

2 Anisotropic linear-elastic models of cortical bone

Although in reality bone-elastic tissue exhibits visco-elastic behavior, both in
mechanical tests at low velocities and in the numerical analysis of stress and defor-
mation state, it is considered, in an acceptable approximation, an anisotropic solid
with a linear-elastic behavior, Katz (2008).

2.1 Tensions and deformations

The state of tension is known at a point P of a solid if the voltages that act on
three orthogonal planes that pass through this point are known. In Figure 4, these
are represented by even the coordinate planes of the orthogonal Cartesian system
x1x2x3.

Figure 4: The state of tension at a point of a required solid

In other words, the voltage state at point P is defined by the voltage tensor with,
a second-order tensor that can be represented by the array of:

σ = [σ] =



σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33




(1)

where the tensions are normal tensions, and tensions are shear stresses (or tensile
stresses). Tensions on the lines of this array act in the planes on which the coordinate
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axes are normal. From the equilibrium conditions of the volume element illustrated
in Figure 4 it is demonstrated that the voltage tensor is a symmetric tensor (i.e.):

σ =



σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


 =



σ1 σ6 σ5
σ6 σ2 σ4
σ5 σ4 σ3




(2)

In relation (2) the notation contraction is used, by the rule:

α = i,pentrui = j;α = 9− i− j,pentrui 6= j

(3)

The contraction of the notation defined by the rule (3) makes it possible to
represent the voltage tensor through the matrix of the column:

{σ} =





σ1
σ2
σ3
σ4
σ5
σ6





(4)

A certain point P of the solid required will move to P ′, the travel vector (a first-
order tensor) being defined by the three components according to the coordinate
axes:

u = ui = (u1, u2, u3), i = 1, 2, 3

(5)

In order to study the state of deformation of a solid-called Lagrange strain Ensor
T is defined:

Lij =
1

2
(ui,j + uj,i + uk,iuk,j)

(5)

where is the deformation gradient, Sadd (2014):

ui,j =
∂ui
∂xj
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(6)

In the field of small deformations, ie, the second order term is neglected, and the
deformation tensor it is:

ε = εij =
1

2
(ui,j + uj,i)

(7)

Specific linear deformations (or specific lenghts for) expressing elongation per
unit of length:

ε11 =
∂u1
∂x1

= ε1; ε22 =
∂u2
∂x2

= ε2; ε33 =
∂u3
∂x3

= ε3

(8)

and specific angular deformations (or specific glides for) measures the change of
right angles between two orthogonal directions:

2ε12 = 2ε21 =

(
∂u1
∂x2

+
∂u2
∂x1

)
= ε6;

2ε23 = 2ε32 =

(
∂u2
∂x3

+
∂u3
∂x2

)
ε4;

2ε31 = 2ε13 =

(
∂u3
∂x1

+
∂u1
∂x3

)
= ε5.

(9)

In the relations (8) and (9) the same notation shrinkage was used. The defor-
mation tensor is a symmetric tensor of the second order that can be represented in
the matrix form:

ε = [ε]



ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33


 =



ε1

ε6
2

ε5
2

ε6
2 ε2

ε4
2

ε5
2

ε4
2 ε3




(10)

Geometric representation of deformations in the plane is illustrated in Figure 5,
the approach being similar in the coordinate planes and x2x3 and x3x1.
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Figure 5: Deformation state

The connection between the voltage tensor and the deformation tensor is achieved
with the aid of the elasticity tensor which contain our parameters of material:

σ = Cε

(11)

or

σij = Cijklεkl

(12)

Therefore,for a material with linear-elastic behavior, the writing of the constitu-
tive equations (Hooke’s law) is based on the hypothesis that each component of the
voltage tensor is expressed by a linear combination of all the components of the de-
formation tensor. Tensor elasticity is a tensor of order 4 which contains, in general,
81 components ( ). Because voltage and strain tensors are symmetrical tensors:

σij = σji, εij = εji,

(13)

tensor elasticity meets conditions, Barbero (2008) and Saddam (2014):

Cijkl = Cjikl = Cijlk = Cjilk

(14)
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Thus, the number of independent components decreases from 81 to 36, and the
elasticity tensor can be represented by a matrix, the constitutive equations (12)
becoming in the matrix form, by the contraction of the notation:





σ1
σ2
σ3
σ4
σ5
σ6





=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66








ε1
ε2
ε3
ε4
ε5
ε6





(15)

where are coefficients of elasticity, Boresi et al. (1993). Explaining the components
of the stress tensor by the specific deformation energy derivatives according to the
components of the deformation tensor, it is demonstrated that the number of inde-
pendent elastic coefficients is reduced from 36 to 21 for a linear-elastic anisotropic
material, Boresi et al. (1993). Thus, the constitutive equations (15), in the matrix
form, become:





σ1
σ2
σ3
σ4
σ5
σ6





=




C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66








ε1
ε2
ε3
ε4
ε5
ε6





(16)

resulting in the elasticity matrix is symmetrical. Hooke’s law (16) is often expressed
using the matrix of compliance, which is the reverse matrix of elasticity, Barbero
(2008): 




ε1
ε2
ε3
ε4
ε5
ε6





=




S11 C12 S13 C14 S15 C16

S21 C22 S23 C24 S25 C26

S31 C32 S33 C34 S35 C36

S41 C42 S43 C44 S45 C46

S51 C52 S53 C54 S55 C56

S61 C62 S63 C64 S65 C66








σ1
σ2
σ3
σ4
σ5
σ6





(17)
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3 The linear elastic orthotropic and that of cortical bone

A material with three mutually orthogonal planes of symmetry and that are
called orthotropic. The most well-known examples are wood with cylindrical or-
thotropy and unidirectional fiber composites with a Cartesian ortho- pie, Barbero
(2008). The model of the ortotropic material was used by Van Buskirk and Ash-
man (1981) to characterize the anisotropy of the cortical tissue. Their suggestion is
based on experimental observations that the elastic properties of the tibia and hu-
man femur are different in the radial and circumferential directions of the transversal
section (normal on the longitudinal axis of the bone). Conveniently, in Fig. 6 the
coordinate planes are even the symmetry planes of the material.

Figure 6: The planes of symmetry for an orthotropic material acid, Sadd (2014)

From the condition of symmetry to plan it follows that the following coefficients
of elasticity are canceled, Barbero (2008) and Sadd (2014):

Ci4 = Ci5 = C46 = C56 = 0 (i = 1, 2, 3)

(18)

Symmetry towards the plan leads to the following condition:

C16 = C26 = C36 = C45 = 0

(19)

and the symmetry towards the plan is the result of the other two, without making
any further changes to the elastic matrix.
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Therefore, in the case of an orthoprophoric matrix the elasticity matrix will
have 9 independent coefficients that characterize the behavior of such material. The
constituent equations (16) and (17) in the matrix form are simplified as follows:





σ1
σ2
σ3
σ4
σ5
σ6





=




C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66








ε1
ε2
ε3
ε4
ε5
ε6





(20)

respectively 



σ1
σ2
σ3
σ4
σ5
σ6





=




S11 S12 S13 0 0 0
S21 S22 S23 0 0 0
S31 S32 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66








ε1
ε2
ε3
ε4
ε5
ε6





(21)

Matrix of Compliance was first deployed using the elastic properties of the ex-
perimentally determined material, as follows:

[S] =




1
E1

−ν21
E2

−ν31
E3

0 0 0

−ν12
E1

1
E2

−ν32
E3

0 0 0

−ν13
E1

−ν23
E2

1
E2

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G12




(22)

In (22) represents the longitudinal modulus of elasticity in the direction the
symmetry of the material, is the coefficient of transverse contraction (Poisson’s co-
efficient) defined as the ratio of specific lenghts when applying normal tension , and
is the transverse elastic modulus in the plane. An ortotropic material is character-
ized by a set of 9 independent elastic constants, out of a total of 12, due to the
symmetry of the tensor, ie we have the following relationships fulfilled:

ν12
E1

=
ν21
E2

,
ν13
E1

=
ν31
E3

,
ν23
E2

=
ν32
E3
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(23)

Also, the coefficients of the elastic matrix can be expressed by the elastic con-
stants of the material, taking into account the relationship. Thus, Christmas, etc.
(2018):

C11 =
1− ν23ν32
E2E3∆

, C12 =
ν21 + ν31ν23
E2E3∆

=
ν12 + ν32ν13
E1E3∆

C13 =
ν31 + ν21ν32
E2E3∆

=
ν13 + ν12ν23
E1E2∆

, C22 =
1− ν13ν31
E1E3∆

C23 =
ν32 + ν12ν31
E1E3∆

=
ν23 + ν21ν13
E1E2∆

, C33 =
1− ν12ν21
E1E2∆

C44 = G23, C55 = G13, C66 = G12

(24)

where

∆ =
1− ν12ν21 − ν23ν32 − ν31ν13 − ν21ν32ν13 − ν12ν23ν31

E1E2E3

(25)

Relationships (23) and (25) represent restrictions that experimentally determined
elastic properties have to meet. Also, from (24) and (23) the restriction follows:

1− νijνji > 0, 0 < νij <

√
Ei
Ej

(i, j = 1, 2, 3; i 6= j)

(26)

4 The isotropic cross-sectional arthroplasty
of the cortical bone

The transverse-isotropic material has an axis of symmetry, and consequently the
planes containing this axis are symmetry planes (see Figure 7, the symmetry axis
is). The transversal-isotropic model was used by Lang (1969), Katz and Ukraincik
(1971) and Yoon and Katz (1976) to characterize cortical bone anisotropy.

BUPT



40 I. R. Iosif

Figure 7: Symmetry axis for a transverse-isotropic material, Sadd (2014)

A transversal-isotropic material is characterized by a set of 5 independent elastic
constants with the elastic matrix:




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0

0 0 0 0 0 C11−C12
2




(27)

and relationships between elastic properties, Katz (2008):

E1 = E2, ν12 = ν21, G12 =
E1

2(1 + ν12)

ν31 = ν32 = ν13 = ν23, G23 = G31

(28)

5 Analysis numerical propagation of a cracks
into the cortical bone (how mixed I-II)

The method of the finite element (MEF) is used into the biomechanics for The
study TAD’s behavior Mechanical Tissue bone, and examples are numerous: analysis
st country voltage of femur human, Basuşa (1985 ); prediction breaking bone fem,
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ral, Marco et al . (2018); estimate property mechanical of the vertebral bone, Brown
et al. (2014); micrometric scale modeling of cortical bone breakage, Idkaidek and
Jasiuk (2016), Li et al. (2013).

The conditions for starting the break cortical bone, for call into the module
mixed I-II, is studied numeral into the continuation on The bending specimens NTI
symmetric into the four points (AFPB - Asymmetric Four Point Bendspecimen )

5.1 Geometry of the AFPB specimen

The AFPB test was used in the mixed I-II breakdown study for ceramic materi-
als, Suresh et al. (1990), granite, Razavi et al. (2017), alumina-PMMA, Marsavina,
and others. (2013) or cortical bone, Zimmermann et al. (2009).

Geometry of the AFPB specimen and how to apply for the pattern used in this
study are presented into the Figure 8, with thickness.

Figure 8: The AFPB test

Force is applied at a distance to the crack length (see Figure 8). Thus, the
request into this plan (rift) is bending with force cutting efforts calculating with the
relationships:

T = F
L2 − L1

L
, M(s) = Ts

(29)

Into the case, the crack is produced only shear pure, obtaining a request in Mode
II. Changing distance of the direction of force action and the crack plane, that is,
for, is achieved applications into the module. C mixed ombi nation from Modules I
and II are characterized through parameter to dimensional:

M e =
2

π
arctan

(
k1
k11

)
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(30)

The relationship (30), and the voltage for mode are the factors of intensity I of
the request, so mode II, expressions of the form, Suresh et al. (1990)

K1 = ς
√
πaY1(a/W ) =

6M

W 2t

√
πaY1(a/W ) = 6τ

s

W

√
πaY1(a/W )

Kll = τ
√
πaY1(a/W )

(31)

Some functions depend on the report. Into the configuration, we have obtained
superior values to about the results published by Suresh and others. (1990). Ten-
sions and are produced by the bending and shearing requirements in the crack plane.

Mode I application ( ) is not obtained in antisymmetric configuration your pres-
ence into the Figure 8 because for any parameter value. Throughout, in the skeleton,
a symmetric configuration is involved and i, for the epoch in the study.

Figure 9: The variation of the M parameter is based on the position of the crack
plane

Figure 9 is presented combination from Module I and Module II, in depending
on the report, for:

5.2 Numerical Determination of Breaking Mechanics Parameters

To determine the fracture mechanics parameters at the crack tip, the finite ele-
ment method was implemented in the FRANC2D / L 1.5 software developed at Cor-
nell University, Wawrzynek (1991). Two types of isotropic and transverse isotropic
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materials were studied comparatively. The working steps are further described for
the AFPB sample shown in Figure 8.

The geometric modeling and meshing is performed with the CASCA pre-processor.
The specimen geometry is made up of three sub-regions, especially because onvenabil
for meshing (G e ometry menu commands Get Line LinesConnected). To control
meshing parameters, such as number of elements and spacing along one side, the
No. of segments and Ratio commands in the Subdivide menu are used (see Figure
10).

Figure 10: Determining the number of elements and spacing along the sides

Mesh Mesh specimen is carried out by selecting the menu items Q8 and technical
quadratic bilinear 4side type recommended for the rectangular regions of the same
apple nodes not on opposite sides (Figure 11).

Figure 11: Specimen design

After completion meshed country save a CASCA file (e.g. afpb.csc, Write com-
mand) that can change then. Also, further analysis is saved a FRANC2D / L file,
for example afpb.inp (Write Mesh command), file which import computing model.

The calculation of the number of mechanical parameters break with the method
element Efe ctuează program is finished FRANC 2D / L.

Stage Understanding-processing assume the establishment conditions in which
it is settled application: the type of problem, and material properties the limiting
conditions.

Thickness taking account the specimen, equal with it was considered a mat-
ter of state plane stress (Pre-Process menu, submenu Problem Type, Plane Stress
command).

Defined two material is first a behavior isotropic, and the second with a trans-
versely isotropic behavior, properties, and Burstein Reilly (1975) considering speci-
men taken into the over axis The main material (Pre-Process menu, submenu Mate-
rial / New Mat, ElastIso command / ElastOrth), through cancellation travel appro-
priate (Pre-Process menu, submenu fixity, Ind Fix command), and the load applied
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applied applying the specimen (Pre-Process menu, submenu Loads, Load command
Point).

Into the Processing steps and post processing is carried out analyze the stress
and strain (Analysis menu, submenu Linear, Stiff direct command) and the view-
ing Results (Post-Process menu, submenu Contour command Stress / Strain). The
program performs the linear-elastic analysis of the stress state using the direct elim-
ination method (Gauss Removal Method).

Analyze parameters of mechanics breaking for the AFPB sample is being initi-
ated through introduction of a edge cracks, whose sides are unencumbered (Modify
menu, submenu New Crack, Non-Cohesive and EdgeCrack commands). Specify the
edge node leading to the crack, the crack tip and the minimum number of finite
elements on the crack length. At the tip of the crack, the program introduces a
rosette consisting of 8 singular finite elements for modeling singularity, Figure 12.

For that a new one has emerged s STRUCTURE (specimen cracked), is carried
out nine analysis of the state of tension and is calculated mechanical parameters
Breaking: the angle the crack extension and the stress intensity factors and i. The
FRANC2D / L program uses some techniques for calculation of stress intensity
factors: extrapolation displacements, integral, the extension virtual crack. The
method of extrapolation travel was used for evaluation stress intensity factors and in
simulation of crack propagation on AFPB specimens (Post-Process menu, submenu
fraction Mech, DSPCorr SIF / SIF History commands).

Figure 12: Starting the edge crack detail and propagating it in the II mode of
application; isotropic material, increment 0.2 mm, 15 steps

Propagation crack is performed into the FRANC2D / L through standard tech-
nique or through technique automatic . Direction of propagation and the position
new the peak of the crack is determined on the base of three initiation criteria into
the module mixed, and namely: criterion blood circumfer Entiat maximum, crite-
rion energy ie specific deformity minimum, respectively, the criterion ie force and
maximum extension of the crack. After the establishment increment and a dir ECTI
extension FIS hatred finite elements positioned along the path are removed and a

BUPT



Some properties of cortical bones 45

surface polygonal temporary intended for re-use mesh it is generated . Fissure initial
It is exile nLet into the nine position of the tip and it is brought a rosette consisting
of 8 triangular finite elements isobar a metric singular . Surface in the neighborhood
ii crack it is discretized automatic. Into the Figure 12 is this t the outcome spread
crack for an increment equal to and 15 consecutive steps using automatic technique
(Modify menu, submenus Move Crack / Automatic, the Propagate command).

6 Results and conclusions

Trajectories crack, for the two materials, in Module I and Request Module II
are presented into the Figures 13 and 14. Conditions critical crack extension, as
the critical opening angle, are different for the two materials; same observation
results and Figure 15, where for three stress situations (how I, how mixed I + II
and module II) results number are represented into the compared to the solution
criterion blood circumferential maximum (MTS criterion), Erdogan and Sih (1963).
Validation results number and determination force critical crack extension assume
Tests mechanical on cortical bone.

Also, it is proposed, in studiu a future use the XFEM method , implemented
into the ABAQUS program, for modeling spread cracks into the case materials
anisotrope.

Figure 13: Fracture trajectory for load mode I (left - isotropic material, right -
isotropic cross-sectional material

Figure 14: Fracture trajectory for load mode II (left - isotropic material, right -
isotropic cross-sectional material

BUPT



46 I. R. Iosif

Figure 15: Critical angle of initiation to crack extension
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