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Abstract

Although the matrix-rings M(m;R) (R is a unital commutative ring) are
unital rings, yet their classical direct limit is a non-unital ring. It is presented
a direct system of matrix-rings that has a unital ring as a direct limit. 1
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1 Introduction

Let N = {1, 2, . . .}, let R be a unital commutative ring of characteristic zero, and
let Rng, Ring, R-mod respectively be the classical categories: rings, unital rings
and unital morphism, R-modules.

It is known that the direct limit, in Rng, of the matrix rings M(m;R), m ∈ N
is isomorph to R(N×N) , which belongs to Rng, although the matrix-rings belong
to Ring. By R(N×N) we mean the R-module of all mappings f : N ×N −→ R
having finite support (only a finite number of images are non-zero). Any such
mapping may be considered as a double infinite matrix

M =



f(1, 1) f(1, 2) . . .
f(2, 1) f(2, 2) . . .

...




Thus, one may say that the direct limit of the matrix-ring in Rng is the set
of infinite matrices having a finite support with the usual operations extended as
much as needed. That renders R(N×N) as a non-unital ring. We are going to use
a special case of block-diagonal matrices:

1. diag(A;r):= diag(A,...,A), where A appears on r slots

1MSC (2010): 13A99
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Direct Limit of Matrix-Rings may be Unital 5

2. diag(A,∞):=diag(A,...,A,...)∈ RN×N

The only possible unit of RN×N is diag(1,∞) , which has no finite support,
hence R(N×N) ∈ Rng−Ring.

Is it possible to have a unital ring as the direct limit of matrix-rings ? The
answer will be given in the followings. Firstly, one must remark that the direct
system of matrix-rings used for the direct limit in Rng is not a direct system in
Ring. Indeed, the mappings of the usual direct system are

fmn : M(m;R) −→M(n;R)

for any m < n, fmn(M) = (νij), where

νij =

{
µij , i, j ≤ n
0, else

and M = (µij). Those are not unital morphisms (fmn(Im) 6= In) In fact, the
direct limit in Rng is the direct limit in the category R-mod, plus the remark
that the objects and the morphisms implied belong to the category Rng, see [1],
p. 34. Therefore, if one wants to have a direct limit in Ring, one must firstly find
a direct system of matrix-rings in Ring. But here there is a problem shown in
the following theorem.

Theorem 1.1 If f : M(m;R) −→M(n;R) is a Ring-morphism for m < n, then
m|n (m divides n).

Proof. For the properties of matrices mentioned here, one may see [2] or the
Romanian translation [3]. Lets suppose f : M(m;R) −→ M(n;R) is a Ring-
morphism. That means:

1. f(M1 +M2) = F (M1) + f(M2), ∀M1,M2 ∈M(m;R)

2. f(M1 ·M2) = f(M1) · f(M2), ∀M1,M2 ∈M(m;R)

3. f(Im) = In.

The identity matrix Im may be decomposed into a sum

Im =
m∑

i=1

Ei

where Ei = (δij · δik)jk
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6 S. Lugojan

is the matrix having just one non-zero entry in the cell
(i, i). The images of Ei, denoted by Fi = f(Ei), i = 1, 2, . . . .m, inherit properties
of Ei, for example:

a)
∑m

i=1 Fi = In
b) the ranks of Fi are all equal.

The a) statement is due to 1) and 3). For b) we consider the matrix Mk,
which is obtain from Im by exchanging the k -th and the (k+1 )-th rows, that is

Mk =




1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...
0 0 · · · 0 1 · · · 0
0 0 · · · 1 0 . . . 0
...
0 0 · · · 0 0 · · · 1




The effect of leftwards multiplication of any matrix M ∈ M(m;R) by Mk is
the exchange of the k -th row by the (k+1 )-th row in M. The effect of rightwards
multiplication is the exchange of the k -th by the (k+1 )-th column in M. All the
matrices Mk, k = 1, . . . ,m− 1 are invertible, since their determinants equal
-1, the opposite of 1 in R, which is invertible in R. Then the images by f of
Mk, denoted by Nk = f(Mk), are invertible due to 2.) and 3.). By repeated
multiplication by Mk, leftwards and rightwards, it is possible to connect any two
matrices Ei. Then, any two matrices Fi may be connected by leftwards and
rightwards multiplication using invertible matrices in M(n, R), as a consequence
of 2.) and 3.). That means Fi has the same rank, ∀i ∈ {1, . . . ,m}.

On the other hand for any B ∈ M(n;R) there is a unique decomposition of
B in terms of Fi : B =

∑m
i=1BFi, by multiplying the relation a.) by B. Indeed,

if
∑
BFi =

∑
CFi, it results that

∑
(B − C)Fi = 0, hence B − C = 0. That

means BFi, BFj have non-zero entries in different cells ∀i, j. In order to realise
that Fi must have zero-columns. The same is true for FiB, but here Fi must
have zero-rows. Further, all the Fi must have the same number of zero-rows (and
zero-columns), else their ranks wouldn’t equal. It results that m|n.

Corollary 1.2 The conclusion is that there is no direct system in Ring made
by the matrix-rings M(m; R), over the index set N, endowed by the usual order
relation.

Still, we may have a direct system of matrix-rings over N, as is stated in the
followings.

BUPT



Direct Limit of Matrix-Rings may be Unital 7

Lemma 1.3 The family M(m; R), m ∈ N is a direct system in Ring, over the
index set N, endowed by the relation ”divides”.

Proof The set N and the ”divides” relation is a directed set. If m|n, there is
r ∈ N such that n = r ·m. Then the Ring-morphism

fmn : M(m;R) −→M(n;R), fmn(M) = diag(M, r)

is the ring-morphism of a direct system in Ring. The requirements of direct
system are:

1. fmm = id, ∀m ∈ N (obvious)

2. fnp ◦ fmn = fmp, ∀m|n|p.

Indeed, supposing that n = r ·m, p = s · n, we have fmn(M) = diag(M, r), then
fnp(fmn(M)) = fnp(diag(M, r)) = diag(M, rs), and also fmp(M) = diag(M, rs).

Theorem 1.4 The direct limit in Ring of the matrix-rings M(m;R), m ∈ N,
corresponding to the direct system of the Lemma 1.3, is:

L = {diag(M,∞) |M ∈M(m;R), ∀m ∈ N}.

Proof. Following [1], p. 33, the direct limit of the direct system in Lemma 1.3 is
constructed by considering the direct sum of the R-modules M(m;R), m ∈ N.
Those are identified by their images in the direct sum. The direct limit is the
quotient set of the direct sum by the R-submodule generated by all the elements
M − fmn(M),∀M ∈ M(m;R) and m|n. That is, the image in the direct sum
of any M ∈ M(m;R) is identified by its image fmn(M) = diag(M, r), where
n = rm. Hence all the diagonal matrices diag (M, r) are identified, and the
equivalence class bijectively corresponds to diag(M,∞). Hence the quotient set
is L. L is also a unital ring, and all the implied morphisms are morphisms of
unital rings. That results by [1], p. 34 or by straightforward computation.
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Sorin Lugojan
Department of Mathematics,
Politehnica University Timisoara,
P-ta Victoriei 2, 300006, Timisoara, Romania
E-mail: sorin.lugojan@upt.ro

BUPT



SOME NEW REMARKS ON THE
FALKNER-SKAN EQUATION: STABILIZATION,

INSTABILITY AND LAX FORMULATION
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Abstract

In this paper we study the Falkner-Skan equation. Some stability prob-
lems, Lax formulation and an approximate analytic solution by means of the
Optimal Homotopy Asymptotic Method (OHAM) were discussed. 1
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asymptotic method (OHAM), nonlinear differential system.

1 Introduction

The proprieties of viscoelastic materials have been intensively studied in re-
cent years because of their industrial and technological applications such as plastic
processing, cosmetics, paint flow, adhesives, accelerators, electrostatic filters, etc
[1].

The Falkner-Skan equation describing this proprieties were studied from var-
ious points of view: some approximate procedures to solve a boundary layer
equations [2], numerical solution [3], existence of a unique smooth solution [4], [5]
and [6], was analytically investigated [7] and [8], by using Adomian decomposition
method [9] and [10], etc.

The aim of the present paper is to propose a geometrical point of view and
an accurate approach to Falkner-Skan equation using an analytical technique,
namely optimal homotopy asymptotic method [11], [12], [13].

The validity of our procedure, which does not imply the presence of a small
parameter in the equation, is based on the construction and determination of
the auxiliary functions combined with a convenient way to optimally control the

1MSC (2010): 34-XX, 34A26, 34H05, 34M45, 35A24, 37C10, 49J15, 49K15, 65Lxx, 93C15,
93D05
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10 C. Petrişor, R. D. Ene

convergence of the solution. The efficiency of the proposed procedure is proves
while an accurate solution is explicitly analytically obtained in an iterative way
after only one iteration.

From the geometry point of view, we establish the equilibrium states of the
studied system and define a control function. Using specific Hamilton-Poisson
geometry methods, namely the energy-Casimir method [14] we are able to study
the nonlinear stability of these equilibrium states.

In this paper, a control function is proposed in order to study the stability
of the equilibrium states of the system and the numerical integration via the
Optimal Homotopy Asymptotic Method of the controlled system is presented.

The paper is organized as follows: in the second paragraph we put the Falkner-
Skan equation in a differential system form and find the equilibrium states of
the system. In the third section we find a control which preserves the equilib-
rium states of the system and give a Hamilton-Poisson realization of a controlled
system. The fourth section is dedicated to study of stability of the controlled
system. In a fifth paragraph is given a Lax formulation for the controlled system
and finally in the sixth section a briefly presentation of the Optimal Homotopy
Asymptotic Method, developed in [13] and used in the last part in order to obtain
the approximate analytic solutions of the controlled system.

2 The Falkner-Skan equation in the flow of a viscous
fluid

The dimensionless Falkner-Skan equation in the flow of a viscous fluid can be
written as [2], [3], [7], [10]:

X ′′′(t) +X(t)X ′′(t) + β
(

1− (X ′(t))2
)

= 0, (1)

with the initial and boundary conditions

X(0) = 0, X ′(0) = 0, lim
t→∞

X ′(t) = 1, (2)

where t > 0, β is a measure of the pressure gradient, and prime denotes derivative
with respect to t.

Using the notations:

X(t) = x1(t), X ′(t) = x2(t), X ′′(t) = x3(t),
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The Falkner-Skan equation: stabilization, instability and Lax formulation 11

the nonlinear equation Eq. (1) becomes:




x′1 = x2
x′2 = x3 , t > 0.

x′3 = −β
(

1− x22
)
− x1x3

(3)

The nonlinear differential system (3) has an equilibrium state
eM = (M, 0, 0),M ∈ R iff β = 0.

3 The Hamilton-Poisson realization of the system (3)

For the beginning, let us recall very briefly the definitions of general Poisson
manifolds and the Hamilton-Poisson systems.

Definition: Let M be a smooth manifold and let C∞(M) denote the set of
the smooth real functions on M. A Poisson bracket on M is a bilinear map
from C∞(M)× C∞(M) into C∞(M), denoted as:

(F,G) 7→ {F,G} ∈ C∞(M), F,G ∈ C∞(M)

which verifies the following properties:
- skew-symmetry:

{F,G} = −{G,F} ;

- Jacobi identity:

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0;

- Leibniz rule:
{F,G ·H} = {F,G} ·H +G · {F,H} .

Proposition: Let {·, ·} a Poisson structure on Rn. Then for any
f, g ∈ C∞(Rn,R) the following relation holds:

{f, g} =
n∑

i,j=1

{xi, xj}
∂f

∂xi

∂g

∂xj
.

Let the matrix given by:
Π = [{xi, xj}] .

Proposition: Any Poisson structure {·, ·} on Rn is completely determined
by the matrix Π via the relation:

{f, g} = (5f)tΠ(5g).
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12 C. Petrişor, R. D. Ene

Definition: A Hamilton-Poisson system on Rn is the triple (Rn, {·, ·} , H),
where {·, ·} is a Poisson bracket on Rn and H ∈ C∞(Rn,R) is the energy (Hamil-
tonian). Its dynamics is described by the following differential equations system:

.
x = Π · ∇H

where x = (x1, x2, ...xn)t.

Definition: Let {·, ·} a Poisson structure on Rn. A Casimir of the configu-
ration (Rn, {·, ·}) is a smooth function C ∈ C∞(Rn,R) which satisfy:

{f, C} = 0, ∀f ∈ C∞(Rn,R).

Let us employ the control u ∈ C∞(R3,R),

u(x1, x2, x3) = (0 , x1x2 , −x22 − x21x2), (4)

for the system (3). The controlled system (3)−(4), explicitly given by:





x′1 = x2
x′2 = x3 + x1x2 , t > 0,
x′3 = −x1x3 − x22 − x21x2.

(5)

Proposition: The controlled system (5) has the Hamilton-Poisson realization

(R3,Π−, H),

where

Π− =




0 1 −x1
−1 0 x2
x1 −x2 0




is the minus Lie-Poisson structure and

H(x1, x2, x3) =
1

2
x22 − x1x3 − x21x2

is the Hamiltonian.
Proof: Indeed, we have:

Π− · ∇H =



x′1
x′2
x′3




and the matrix Π− is a Poisson matrix, see [15].
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The Falkner-Skan equation: stabilization, instability and Lax formulation 13

The next step is to find the Casimirs of the configuration described by the
above Proposition. Since the Poisson structure is degenerate, there exist Casimir
functions. The defining equations for the Casimir functions, denoted by C, are

Πij∂jC = 0.

It is easy to see that there exists only one functionally independent Casimir
of our Poisson configuration, given by C : R3 → R,

C(x1, x2, x3) = −x3 − x1x2.

Consequently, the phase curves of the dynamics Eq. (5) are the intersections
of the surfaces H(x1, x2, x3) = const. and C(x1, x2, x3) = const..

4 Stability Problem

The concept of stability is an important issue for any differential equation.
The nonlinear stability of the equilibrium point of a dynamical system can be
studied using the tools of mechanical geometry, so this is another good reason
to find a Hamilton -Poisson realization. For more details, see [15]. We start this
section with a short review of the most important notions.

Definition: An equilibrium state xe is said to be nonlinear stable if for
each neighbourhood U of xe in D there is a neighbourhood V of xe in U such
that trajectory x(t) initially in V never leaves U.

This definition supposes well-defined dynamics and a specified topology. In
terms of a norm ‖‖ , nonlinear stability means that for each ε > 0 there is δ > 0
such that if

‖x(0) − xe ‖ < δ

then

‖x(t) − xe ‖ < ε, (∀) t > 0.

It is clear that nonlinear stability implies spectral stability; the converse is not
always true.

The equilibrium states of the dynamics Eq. (1) are

eM = (M, 0, 0), M ∈ R.

Proposition 1: For the equilibrium states eM = (M, 0, 0) the following state-
ments hold:

BUPT



14 C. Petrişor, R. D. Ene

a) eM = (M, 0, 0) are unstable for M > 0;
b) eM = (M, 0, 0) are unstable for M = 0

Proof: We will use energy-Casimir method, see [15] for details. Let

Fϕ(x1, x2, x3) = H(x1, x2, x3) + ϕ[C(x1, x2, x3)] =

=
1

2
x22 − x1x3 − x21x2 + ϕ(−x3 − x1x2)

be the energy-Casimir function, where ϕ : R → R is a smooth real valued
function.

Now, the first variation of Fϕ is given by

δFϕ(x1, x2, x3) = x2δx2 − x1δx3 − x3δx1 − 2x1x2δx1 − x21δx2+

+ϕ̇ (−x3 − x1x2) · (−x1δx2 − x2δx1 − δx3)
so we obtain

δFϕ(eM ) = [M + ϕ̇ (0)] · (−Mδx2 − δx3)
that is equals zero for any M ∈ R∗ if and only if

ϕ̇ (0) = −M. (6)

The second variation of Fϕ at the equilibrium of interest is given by

δ2Fϕ(eM ) = [ϕ̈(0)]−1 · [ϕ̈(0)δx3 − δx1 +M · ϕ̈(0)δx2]
2 +

+[ϕ̈(0)]−1[1 +M2ϕ̈(0)−M2(ϕ̈(0))2]−1 ·
[(

1 +M2ϕ̈(0)−M2(ϕ̈(0))2
)
δx2+

+
(
Mϕ̈(0)−M

)
δx1

]2
+[1+M2ϕ̈(0)−M2(ϕ̈(0))2]−1·

[
−1 +M2ϕ̈(0)−M2

] (
δx1

)2
.

If we choose now ϕ such that the relation (6) is valid and δ2Fϕ(eM ) is positive
defined, i.e.

ϕ̈(0) > 0 and 1 +M2ϕ̈(0)−M2(ϕ̈(0))2 > 0 and − 1 +M2ϕ̈(0)−M2 > 0

then the second variation of Fϕ at the equilibrium of interest is positive defined.
We can assume that M > 0. From these inequalities we deduce that:

M2 + 1

M2
< ϕ′′(0) <

M2 +M
√
M2 + 4

2M2
,
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that implies

2M2 + 2 < M2 +M
√
M2 + 4 ⇒ (M2 + 2)2 < M2(M2 + 4) ⇒ 4 < 0,

that is false.
Therefore, the equilibrium state eM (M, 0, 0) is unstable.
In the same way, we conclude that eM (M, 0, 0) is unstable for M = 0. �

Table 1: The comparison between the approximate solutions x̄1 given by Eq. (7)
and the corresponding numerical solutions for β = 0
(relative errors: εx1 = |x1numerical

− x̄1| )

t x1numerical
x̄1 given by Eq.
(7)

εx1

0 1.5671 ·10−25 -1.3322 ·10−15 1.3322 ·10−15

4/5 0.149674539444 0.149401535388 2.73004 ·10−4

8/5 0.582956328320 0.582978942361 2.2614 ·10−5

12/5 1.231527648000 1.231539489179 1.1841 ·10−5

16/5 1.990581010375 1.990607740256 2.6729 ·10−5

4 2.783886492275 2.783817337929 6.9154 ·10−5

24/5 3.583254092715 3.583303973631 4.9880 ·10−5

28/5 4.383220411026 4.383289581820 6.9170 ·10−5

32/5 5.183219409763 5.183234915896 1.5506 ·10−5

36/5 5.983219388168 5.983199995268 1.9392 ·10−5

8 6.783219382599 6.783194882759 2.4499 ·10−5

5 Lax formulation

Let introduce the matrices:

L =

(
1
2x

2
2 −x1x3 − x3 − 1

8x
4
2 − 1

2(−x1x3 − x21x2)2
1 −x1x3 − x21x2

)
,

B =

(
1 −x2(x3 + x1x2)
0 1

)
.

Then an easy computation we can establish the following result:

Theorem 5.1 The controlled system (5) have a Lax formulation, i.e., it can be
put in the equivalent form:

dL

dt
=
[
L , B

]
⇔ dL

dt
= L ·B −B · L.
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16 C. Petrişor, R. D. Ene

As in [15], the following properties hold:

H = Trace(L) and C =
1

2
Trace(L2),

where H- Hamiltonian function and C- Casimir function.

Table 2: The comparison between the approximate solutions x̄′1 from Eq. (7)
and the corresponding numerical solutions for β = 0 (relative errors: εx′

1
=

|x′1numerical
− x̄′1|)

t x′1numerical
x̄′1 from Eq. (7) εx′

1

0 -3.8645 ·10−21 8.8817 ·10−16 8.8818 ·10−16

4/5 0.371963259413 0.372477797312 5.1453 ·10−4

8/5 0.696699514599 0.696023892471 6.7562 ·10−4

12/5 0.901065461379 0.901471382767 4.0592 ·10−4

16/5 0.980364982283 0.980092859963 2.7212 ·10−4

4 0.997770087958 0.997861518336 9.1430 ·10−5

24/5 0.999859396033 0.999974757114 1.15361 ·10−4

28/5 0.999995149208 0.999946428194 4.8721 ·10−5

32/5 0.999999902864 0.999935247532 6.4655 ·10−5

36/5 0.999999992429 0.999977995910 2.1996 ·10−5

8 0.999999993273 1.000005054164 5.0608 ·10−6

6 Numerical simulation

In this section, the accuracy and validity of the OHAM technique is proved
using a comparison of our approximate solutions with numerical results obtained
via the fourth-order Runge-Kutta method for β = 0.

The convergence-control parameters K, Ci, i = 1, 8 are optimally determined
by means of the least-square method using the Mathematica 9.0 software.

Observation: If x̄(t) is the approximate analytic solution obtained via Opti-
mal Homotopy Asymptotic Method [13], then for β = 0 the convergence-control
parameters are respectively :

C1 = −5.146692834756 , C2 = −3.319352427903 , C3 = 1.365481026558 ,

C4 = −0.109053890316 , C5 = 63.014570679440 , C6 = −183.226725640327 ,

C7 = 47.317886321776 , C8 = 53.798097627583 , K = 1.679601787261 .
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2 4 6 8
t

1

2

3

4

5

6

7
x1HtL

Figure 1: Comparison between the approximate solutions x̄1 given by Eq. (7)
and the corresponding numerical solutions:
−−−−−−−−−−−−−−− numerical solution, · · · · · · · · · · · OHAM solution.

Table 3: The comparison between the approximate solutions x̄′′1 from Eq. (7)
and the corresponding numerical solutions for β = 0 (relative errors:
εx′′

1
= |x′′1numerical

− x̄′′1|)

t x′′1numerical
x̄′′1 from Eq. (7) εx′′

1

0 0.469599995897 0.469599895897 1.0000 ·10−7

4/5 0.451190185801 0.460093505720 8.9033 ·10−3

8/5 0.342486827279 0.342756074406 2.6924 ·10−4

12/5 0.167560529122 0.167075663254 4.8486 ·10−4

16/5 0.046370185755 0.046300824641 6.9361 ·10−5

4 0.006874039262 0.007295190897 4.2115 ·10−4

24/5 0.000538393988 0.000306981990 2.3141 ·10−4

28/5 0.000022211398 -9.0012 ·10−5 1.1222 ·10−4

32/5 4.7872 ·10−7 4.2932 ·10−5 4.2454 ·10−5

36/5 4.0075 ·10−9 4.9247 ·10−5 4.9243 ·10−5

8 6.8538 ·10−10 1.8697 ·10−5 1.8696 ·10−5

The first-order approximate solutions proposed in [13] becomes:
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18 C. Petrişor, R. D. Ene

x̄1(t) = −1.216776769791− 0.236541146259 · e−6.718407149045t + t+

+e−5.038805361784t · (2.067180899886 + 0.318125112302t− 0.554796671887t2)+

+e−3.359203574522t · (−4.570156113663− 5.624329520194t− 8.333219504464t2−

−4.761785285840t3) + e−1.679601787261t · (3.956293129828 + 4.426059140587t−

−1.432577756121t2 − 0.407499225829t3 + 0.162858423313t4 − 0.012985684004t5) .
(7)

Finally, Tables 1 - 3 and Figs. 1-2 emphasize the accuracy of the OHAM tech-
nique by comparing the approximate analytic solutions x̄1, x̄

′
1 and x̄′′1 respectively

presented above with the corresponding numerical integration values.

2 4 6 8
t

0.2

0.4

0.6

0.8

1.0
x1

' HtL

Figure 2: Comparison between the approximate solutions x̄′1 from Eq. (7) and
the corresponding numerical solutions: −−−−−−−−−−−−−−− numerical solution, · · · · · · · · · · ·
OHAM solution.

7 Conclusion

In this paper we analyze the Falkner-Skan equations from some geometrical
point of view. The stability of a nonlinear differential problem governing the
Falkner-Skan equation is investigated. Finding a Hamilton-Poisson realization,
the results were obtained using specific tools, such as the energy-Casimir method.
We give find a Lax formulation for the studied system.
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Finally, the analytical integration of the nonlinear system (obtained via the
Optimal Homotopy Asymptotic Method and presented in [13]) is compared with
the exact solution (obtained as intersections of the surfaces H(x1, x2, x3) = const.
and C(x1, x2, x3) = const).

Numerical integration of the controlled dynamics is obtained via the Optimal
Homotopy Asymptotic Method. Numerical simulations and a comparison with
Runge-Kutta 4 steps integrator are presented, too.
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