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Abstract

A generalization of classical Young’s inequality for non-convex linear com-
binations is given, followed by applications to functionals. 1
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1 Introduction

William Henry Young published in 1912 an inequality which extends the well known
relation between arithmetic and geometric means. Now, that is called Young’s
inequality:

xαyβ ≤ αx+ βy,

for any x, y ≥ 0 and any positive α, β such that α+ β = 1.

In the last years, Young’s inequality reappeared as a research theme and many
improved inequalities, originated from that, were published by authors as: T. Ando,
F. Kittaneh and Y. Manasrah, M. Tominaga, S. Furuichi, N. Minculete, J. M.
Aldaz, S. S. Dragomir and O Hirzallah, see [2, 13, 14, 5, 10, 9, 11, 17, 1, 8, 7] and
the references therein. T. Ando, O. Hirzallah and F. Kittaneh and Y. Manasrah
used it for matrices and also S. Furuichi and N. Minculete and S. S. Dragomir used
it for operators. Also W. Liao, J. Wu and J. Zhao and S. Manjeani generalized this
inequality in recent years.

As a common feature of these new inequalities is the relation α+ β = 1.

In the followings we are going to state and prove inequalities beyond that con-
dition.
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2 Generalization of Young’s theorem

Theorem 2.1 (a) In case α+ β > 1, and α ∈ (0, 1), then

αx+ βy > xαyβ,

for all x, y > 0.
(b) In case α+ β = 1, and α, β ≥ 0, then

αx+ βy ≥ xαyβ,

for all x, y ≥ 0.
(c) In case α < 0, β < 0, then

αx+ βy < xαyβ,

for all x, y > 0.

Proof. Let’s find the extremes of the mapping

f(x, y) = αx+ βy − xαyβ,

for x, y > 0, α, β ∈ R∗.
The stationary points of f are given by the system

{
∂f
∂x = α− αxα−1yβ = 0
∂f
∂y = β − βxαyβ−1 = 0 .

That system is equivalent to the following one:

{
xα−1yβ = 1
xαyβ−1 = 1

which gives, by division: y
x = 1, hence x = y, and the unique stationary point

of f is (1, 1). The hessian matrix of f is:

(Hf)(x, y) = −
(
α(α− 1)xα−2yβ αβxα−1yβ−1

αβxα−1yβ−1 β(β − 1)xαyβ−2

)
=

= −xα−2yβ−2

(
α(α− 1)y2 αβxy
αβxy β(β − 1)x2

)
.
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The minor determinants ∆1,∆2, of Sylvester’s theorem, have the same sign as
d1 = −α(α− 1), d2 = −

[
αβ(α− 1)(β − 1)− α2β2

]
= −αβ(1− α− β).

1. The point (1, 1) is a global minimum for f if ∆1, ∆2 > 0, ∀ x, y > 0, that
is d1, d2 > 0 or

{
α(α− 1) < 0
αβ(1− α− β) < 0 .

(1)

1.1 By the first inequality of (1), if α > 0, then α − 1 < 0, α < 1, hence
α ∈ (0, 1). Here, we may have two cases, depending on the second inequality of (1):

1.1.1 If β > 0, then 1− α− β < 0, α+ β > 1, and

f(x, y) ≥ f(1, 1) = α+ β − 1 > 0, ∀ x, y > 0,

hence f(x, y) > 0 or αx+ βy > xαyβ, which is the statement (a).

1.1.2 If β < 0, then 1− α− β > 0, α+ β < 1, and

f(x, y) ≥ f(1, 1) = α+ β − 1 < 0, ∀ x, y > 0.

By that we have no conclusion.

1.2 If α < 0, then α− 1 > 0, α > 1, and that is impossible.

2. The point (1,1) is a global maximum for f if ∆1, ∆2 < 0, ∀ x, y > 0, that
is d1, d2 < 0, or

{
α(α− 1) > 0
αβ(1− α− β) > 0 .

(2)

2.1 If α > 0, then α > 1, hence α > 1.

2.1.1 If β > 0, then 1 − α − β > 0, α + β < 1, but these three conditions are
incompatible.

2.1.2 If β < 0, then 1− α− β < 0, α+ β > 1, and

f(x, y) ≤ f(1, 1) = α+ β − 1 > 0, ∀ x, y > 0,

which gives no conclusion.

2.2 If α < 0, then α− 1 < 0, α < 1, hence it remains that α < 0.

2.2.1 If β > 0, then 1− α− β < 0, α+ β > 1, and

f(x, y) ≤ f(1, 1) = α+ β − 1 > 0, ∀ x, y > 0,
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and we have no conclusion.

2.2.2 If β < 0, then 1− α− β > 0, α+ β < 1, and

f(x, y) ≤ f(1, 1) = α+ β − 1 < 0, ∀ x, y > 0,

hence f(x, y) < 0, ∀ x, y > 0, which is equivalent to the statement (c). The
statement (b) is the classical Young’s inequality.

In order to extend the previous Theorem 2.1, in the frame of functionals theory,
we recall the following definition (one also may see [3], [4], [5] ).

Definition 2.2 Let E be a nonempty set and L be a linear class of real-valued
functions f, g : E → R having the following properties:

(L1) f, g ∈ L imply (αf + βg) ∈ L for all α, β ∈ R.
(L2) 1 ∈ L, i.e., if f0(t) = 1, ∀ t ∈ E, then f0 ∈ L.
An isotonic linear functional is a functional A : L → R having the following

properties:
(A1) A(αf + βg) = αA(f) + βA(g) for all α, β ∈ R;
(A2) If f ∈ L and f(t) ≥ 0 then A(f) ≥ 0.
The mapping A is said to be normalized if
(A3) A(1) = 1.

The extension of the inequality (a) of Theorem 2.1 is stated as follows:

Theorem 2.2 Let A : L → R be an normalized isotonic linear functional. If
f, g ≥ 0, fαgβ ∈ L and A(f), A(g) > 0 and α, β are real numbers so that

α+ β > 1, α ∈ (0, 1) then the following inequality holds:

(α+ β)Aα(f)Aβ(g) > A(fαgβ). (3)

Now, if f, g ≥ 0, fαgβ ∈ L and A(f), A(g) > 0 and α < 0, β < 0, then

(α+ β)Aα(f)Aβ(g) < A(fαgβ), (4)

where f, g : E → R are previous functions.

Proof. If we take in Theorem 2.1 (a), x = f
A(f) , y = g

A(g) then we get,

α
f

A(f)
+ β

g

A(g)
>

fα

Aα(f)

gβ

Aβ(g)
.

Now, if we take the functional A in previous inequality, we find that

A

(
α

f

A(f)
+ β

g

A(g)

)
> A

(
fα

Aα(f)

gβ

Aβ(g)

)
,

BUPT



A generalization of Young’s theorem and some applications 53

or

α+ β >
A(fαgβ)

Aα(f)Aβ(g)
,

or
(α+ β)Aα(f)Aβ(g) > A(fαgβ),

if α+ β > 1, α ∈ (0, 1) and β > 0.
For the second inequality, (4) , we consider Theorem 2.1, (c) and we put
x = f

A(f) , y = g
A(g) . Then we have,

α
f

A(f)
+ β

g

A(g)
<

fα

Aα(f)

gβ

Aβ(g)
,

and from here, using the functional A, we obtain,

α+ β <
A(fαgβ)

Aα(f)Aβ(g)
,

or
(α+ β)Aα(f)Aβ(g) < A(fαgβ),

where α < 0, β < 0.

Another extension of the inequality (a) of the Theorem 2.1 is the following:

Theorem 2.3 Let A,B : L→ R be two normalized isotonic linear functionals. If
f, g : E → R are so that f ≥ 0, g > 0, fαg1−α, fβg1−β ∈ L and α, β ∈ R with
α+ β > 1, α ∈ (0, 1), β ∈ (0, 1), then we have:

αA(f)B(g) + βA(g)B(f) > A(fαg1−α)B(fβg1−β). (5)

Proof. We use inequality (a) from Theorem 2.1 for x = f(z)
g(z) , y = f(t)

g(t) , and we
have:

α
f(z)

g(z)
+ β

f(t)

g(t)
>
fα(z)

gα(z)

fβ(t)

gβ(t)
.

Multiplying by g(z)g(t) > 0 we obtain,

αf(z)g(t) + βf(t)g(z) > fα(z)g1−α(z)fβ(t)g1−β(t)

for any z, t ∈ E.

BUPT



54 S. Lugojan, L. Ciurdariu

Fix t ∈ E and then by previous inequality we have in the order of L that

αfg(t) + βf(t)g > fαg1−αfβ(t)g1−β(t).

If we take now the functional A in previous inequality then we have:

αg(t)A(f) + βf(t)A(g) > fβ(t)g1−β(t)A(fαg1−α),

for any t ∈ E.
This inequality can be written in the sense of the order of L as

αgA(f) + βfA(g) > fβg1−βA(fαg1−α),

and now, if we take into account the functional B in last inequality, then we obtain
the desired result.

Figure 1: The graph of the function f(x, y) = αx + βy − xαyβ for α = −3
7 and

β = −6
7

BUPT



A generalization of Young’s theorem and some applications 55

References

[1] Aldaz J. M., A stability version of Holder’s inequality, J. Math. Anal. Appl.
343, 842-852, (2008).

[2] Ando T., Matrix Young inequalities, Oper. Theory Adv. Appl. 75 (1995), 3338.

[3] Andrica D. and Badea C., Gruss’inequality for positive linear functionals, Pe-
riodica Math. Hung., 19, 155-167, (1998).

[4] Anwar M., Bibi R., Bohner M., and Pecaric J., Integral Inequalities on Time
Scales via the Theory of Isotonic Linear Functionals, Abstract and Applied Anal-
ysis, Article ID 483595, 16 pages, (2011).

[5] Dragomir S. S., A survey of Jessen’s type inequalities for positive functionals,
RGMIA Res. Rep. Coll., 46 pp, (2011).

[6] Dragomir S. S., A Gruss type inequality for isotonic linear functionals and
applications, RGMIA Res. Rep. Coll., 10 pp, (2002).

[7] Dragomir S. S., A note on Young’s inequality, RGMIA Res. Rep. Coll., 5 pp,
(2015).

[8] Dragomir S. S., Some new reverses of Young’s operator inequality, RGMIA Res.
Rep. Coll., 12 pp, (2015).

[9] Furuichi S., On refined Young inequalities and reverse inequalities, Journal of
Mathematical Inequalities, 5, 1(2011), 21-31.

[10] Furuichi S., Minculete N., Alternative reverse inequalities for Young’s inequal-
ity, Journal of Mathematical inequalities, 5, 4 (2011), 595–600.

[11] Hirzallah O., Kittaneh F., MatrixYoung’s inequalities for the Hilbert-Schmidt
norm, Linear Algebra Appl., 308: 77-84, (2000).

[12] Liao W., Wu J., Zhao J., New versions of reverse Young and Heinz mean
inequalities with the Kantorovich constant, Taiwanese J. Math 19 No.2, pp.
467-479, (2015).

[13] Kittaneh F., Manasrah Y., Reverse Young and Heinz inequalities for matrices,
Linear and Multilinear Algebra, 59, 9 (2011), 1031–1037.

[14] Kittaneh F., Manasrah Y., Improved Young and Heinz inequalities for matri-
ces, J. Math. Anal. Appl., 361 (2010), 262–269.

BUPT



56 S. Lugojan, L. Ciurdariu
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Abstract

A generalization of classical Young’s inequality is applied for operators
in Hilbert spaces. 1
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spaces.

1 Introduction

Let B(H) be the C∗− algebra of all bounded linear operators on a complex Hilbert
space H, and let A,B ∈ B(H) be two positive operators.

We recall the definition of the weighted arithmetic mean of A and B denoted
by A∇νB :

A∇νB = (1− ν)A+ νB,

where ν ∈ [0, 1].
If A is invertible then the weighted geometric mean of A and B, denoted by
A]νB, is defined by:

A]νB = A
1
2

(
A− 1

2BA− 1
2

)ν
A

1
2 .

When ν = 1
2 we notate A∇B and A]B instead of A∇ 1

2
B and A] 1

2
B.

If A and B are positive invertible operators, it is well-known that:

A∇νB ≥ A]νB, ∀ ν ∈ (0, 1),

which is the operatorial version of the classical Young’s inequality, see [9]
In the followings we will give some variants of the non-convex Young’s oper-

atorial inequality based on [10].

1MSC (2010): 26D15
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2 Main results

Proposition 2.1 Let A, B be two positive invertible operators on H so that there
is an r > 0 such

(1− r)B ≤ A ≤ (1 + r)B.

Then we have:

αA+ βB > B]αA, (1)

for any α, β fulfilling the conditions α+ β > 1, α ∈ (0, 1).
Moreover,

αA+ βAβ > Aα+β2
, (2)

as well as

αA+ βAα > Aα+αβ, (3)

for all α, β checking α+ β > 1 and α ∈ (0, 1).

Proof. We take y = 1 in the inequality (a) of Theorem 2.1 presented in [10]
and we get αx+ βy > xα when α+ β > 1 and α ∈ (0, 1).

Using the functional calculus with continuous functions of spectrum, see [1]
page 8, we find out that

αX + βI > Xα,

where X is the strictly positive operator on H.
If we put instead of the operator X the strictly positive operator B− 1

2AB− 1
2

we obtain

αB− 1
2AB− 1

2 + βI >
(
B− 1

2AB− 1
2

)α
,

when α+ β > 1 and α ∈ (0, 1).

Multiplying both sides of previous inequality by B
1
2 , it results

αA+ βB > B
1
2

(
B− 1

2AB− 1
2

)α
B

1
2 ,

when α+ β > 1 and α ∈ (0, 1), which is the relation (1) of the statement.
For the second inequality considering y = xβ > 0 and then y = xα > 0 in the

inequality (a) of Theorem 2.1 ([10]) we obtain

αx+ βxβ > xαyβ
2
, αx+ βxα > xα+αβ

BUPT



Applications of Young’s inequality 59

for any α, β fulfilling α+ β > 1 and α ∈ (0, 1).

Using again the fumctional calculus with continuous functions on spectrum,
for the strictly positive operator A, we have

the relations (2) and (3) of the statement.

Proposition 2.2 Let X, Y be two strictly positive operators on H, then there
is r > 0 having the properties (1 − r)I ≤ X,Y ≤ (1 + r)I, such that for any
α, β ∈ R α+ β > 1 and α ∈ (0, 1), it is true that

αX + βY + (α+ β)I ≥ X α
2 Y

β
2 + Y

β
2X

α
2 . (4)

Proof. We know by Theorem 2.1 (a) ([10]) that there is r > 0, such that

αx+ βy ≥ xαyβ

for any x, y ∈ [1− r.1 + r], when α+ β > 1 and α ∈ (0, 1),

In particular, for x = 1, it results that

α+ βy ≥ yβ

and for y = 1, it results that

αx+ β ≥ xα

in the same mentioned conditions.

Using now the functional calculus with continuous functions on the spectrum
we will respectivelly find

αI + βY ≥ Y β

and

αX + βI ≥ Xα.

Then

αX + βY + (α+ β)I ≥ Xα + Y β (5)

For any strictly positive operators U, V it is known that (U − V )2 ≥ 0, hence
U2 + V 2 ≥ UV + V U.

By that result applied in (5) taking U = X
α
2 and V = Y

β
2 it results the

desired inequality (4) of the statement.
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Corollary 2.3 In particular, if X = B− 1
2AB− 1

2 , Y = B− 1
2CB− 1

2 , ( where
A,B,C are strictly positive operators) check the hypothesis of Proposition 2.2
then

αA+ βC + (α+ β)B >

> B
1
2

(
B− 1

2AB− 1
2

)α
2
(
B− 1

2CB− 1
2

)β
2 B

1
2 +B

1
2

(
B− 1

2CB− 1
2

)β
2
(
B− 1

2AB− 1
2

)α
2 B

1
2 .
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