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Abstract

The paper considers a notion of nonuniform splitting with growth rates
for skew-evolution semiflows in Banach spaces. Characterizations for this
concept are given through Lyapunov functionals with invariant and strongly
invariant families of projections. 1
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1 Introduction. Preliminaries

The asymptotic property of (exponential) splitting was introduced by B.
Aulbach and J. Kalkbrenner in [1] as a generalization of (exponential) dichotomy
for difference equations. Regarding the qualitative results obtained for the di-
chotomy notion, we mention the contributions from [2], [4], [6] and the references
therein.

Recent studies for more general concepts of splitting are made in [3] for
noninvertible differential equations with impulse effect, respectively in [5] for
skew-evolution semiflows.

The integral conditions represent an important tool to give criteria for asymp-
totic behaviours (see for instance [7], [8]). In this article, a result for nonuniform
splitting with Lyapunov functionals is proved from the point of view of invariant
families of projections, using an auxiliary integral characterization. Also, similar
results are shown in the case of strongly invariant families of projections.
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50 C. L. Mihiţ

Let X be a real or complex Banach space and Θ a metric space. B(X)
represents the Banach algebra of all bounded linear operators on X and the
norms on X, respectively on B(X), will be denoted by || · ||. We consider the sets

∆ = {(t, s) ∈ R2
+ : t ≥ s}, T = {(t, s, t0) ∈ R3

+ : t ≥ s ≥ t0}

and Γ = Θ×X.

Definition 1.1. A continuous mapping ϕ : ∆ × Θ → Θ is called evolution
semiflow on Θ if the following relations hold:

(es1) ϕ(s, s, θ) = θ, for all (s, θ) ∈ R+ ×Θ;

(es2) ϕ(t, s, ϕ(s, t0, θ)) = ϕ(t, t0, θ), for all (t, s, t0, θ) ∈ T ×Θ.

Definition 1.2. We say that Φ : ∆ × Θ → B(X) is evolution cocycle over the
evolution semiflow ϕ if:

(ec1) Φ(s, s, θ) = I (the identity operator on X), for all (s, θ) ∈ R+ ×Θ;

(ec2) Φ(t, s, ϕ(s, t0, θ))Φ(s, t0, θ) = Φ(t, t0, θ), for all (t, s, t0, θ) ∈ T ×Θ;

(ec3) (t, s, θ) 7→ Φ(t, s, θ)x is continuous for every x ∈ X.

Definition 1.3. If ϕ is evolution semiflow on Θ and Φ is evolution cocycle over
the evolution semiflow ϕ, then the pair C = (ϕ,Φ) is called skew-evolution semi-
flow on Γ.

Definition 1.4. A continuous mapping P : R+ ×Θ→ B(X), which satisfies

P 2(t, θ) = P (t, θ), for all (t, θ) ∈ R+ ×Θ,

is called family of projections on X.

If P : R+ ×Θ → B(X) is a family of projections, then Q : R+ ×Θ → B(X),
Q(t, θ) = I − P (t, θ) is the complementary family of projections of P .

Definition 1.5. A family of projections P : R+ ×Θ→ B(X) is called invariant
for the skew-evolution semiflow C = (ϕ,Φ) if:

P (t, ϕ(t, s, θ))Φ(t, s, θ) = Φ(t, s, θ)P (s, θ), for all (t, s, θ) ∈ ∆×Θ.

If in addition, for all (t, s, θ) ∈ ∆ × Θ the mapping Φ(t, s, θ) is an isomorphism
from Range Q(s, θ) to Range Q(t, ϕ(t, s, θ)), then we say that P is strongly
invariant for C = (ϕ,Φ).

BUPT



Lyapunov functionals 51

Let C = (ϕ,Φ) be a skew-evolution semiflow, P : R+ × Θ → B(X) an in-
variant family of projections for C and h, k : R+ → [1,+∞) growth rates (i.e.
nondecreasing functions with lim

t→+∞
h(t) = lim

t→+∞
k(t) = +∞).

Definition 1.6. The pair (C,P ) admits (h, k)-splitting if there exist α, β ∈ R,
with α < β and a nondecreasing function N : R+ → [1,+∞) such that:

(hs1) h(s)α||Φ(t, t0, θ)P (t0, θ)x|| ≤ N(s)h(t)α||Φ(s, t0, θ)P (t0, θ)x||;
(ks1) k(t)β||Φ(s, t0, θ)Q(t0, θ)x|| ≤ N(t)k(s)β||Φ(t, t0, θ)Q(t0, θ)x||,

for all (t, s, t0, θ, x) ∈ T × Γ.

In particular, if α < 0 < β, then we have the concept of (h, k)-dichotomy.

Definition 1.7. We say that (C,P ) has (h, k)-growth if there exist ω > 0 and a
nondecreasing function M : R+ → [1,+∞) with:

(hg1) h(s)ω||Φ(t, t0, θ)P (t0, θ)x|| ≤M(t0)h(t)ω||Φ(s, t0, θ)P (t0, θ)x||;
(kg1) k(s)ω||Φ(s, t0, θ)Q(t0, θ)x|| ≤M(t)k(t)ω||Φ(t, t0, θ)Q(t0, θ)x||,

for all (t, s, t0, θ, x) ∈ T × Γ.

Further, we recall some results obtained in [5].

Proposition 1.1. If P : R+ × Θ → B(X) is a strongly invariant family of
projections for C = (ϕ,Φ), then there exists an isomorphism Ψ : ∆×Θ→ B(X)
from Range Q(t, ϕ(t, s, θ)) to Range Q(s, θ), such that:

(Ψ1) Φ(t, s, θ)Ψ(t, s, θ)Q(t, ϕ(t, s, θ)) = Q(t, ϕ(t, s, θ));

(Ψ2) Ψ(t, s, θ)Φ(t, s, θ)Q(s, θ) = Q(s, θ);

(Ψ3) Ψ(t, s, θ)Q(t, ϕ(t, s, θ)) = Q(s, θ)Ψ(t, s, θ)Q(t, ϕ(t, s, θ));

(Ψ4) Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ)) = Ψ(s, t0, θ)Ψ(t, s, ϕ(s, t0, θ))Q(t, ϕ(t, t0, θ)),

for all (t, s, t0, θ) ∈ T ×Θ.

Proof. See [5], Proposition 2.9.

We denote by H1 the set of all growth rates h : R+ → [1,+∞) with

+∞∫

0

h(s)cds < +∞, for all c < 0.
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Also, K1 represents the set of all growth rates k : R+ → [1,+∞), with the
property that there exists a constant K1 ≥ 1 such that

t∫

0

k(s)cds ≤ K1k(t)c, for all c > 0, t ≥ 0.

By H we denote the set of all growth rates h : R+ → [1,+∞) with the property
that there exists H > 1 such that

1 ≤ h(t+ 1)

h(t)
< H, for all t ≥ 0.

Theorem 1.1. Let (C,P ) be a pair with (h, k)-growth, where h ∈ H1 ∩ H and
k ∈ K1∩H. Then (C,P ) admits (h, k)-splitting if and only if there exist d1, d2 ∈ R,
d1 < d2 and a nondecreasing mapping D : R+ → [1,+∞) such that the following
assertions hold:

(Dhs1)

+∞∫

s

||Φ(τ, t0, θ)P (t0, θ)x||
h(τ)d1

dτ ≤ D(s)

h(s)d1
||Φ(s, t0, θ)P (t0, θ)x||,

for all (s, t0, θ, x) ∈ ∆× Γ;

(Dks1)

t∫

t0

||Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)d2

dτ ≤ D(t)

k(t)d2
||Φ(t, t0, θ)Q(t0, θ)x||,

for all (t, t0, θ, x) ∈ ∆× Γ.

Proof. See [5], Theorem 3.2.

2 The main results

Let C = (ϕ,Φ) be a skew-evolution semiflow, P : R+×Θ→ B(X) an invariant
family of projections for C and h, k : R+ → [1,+∞) two growth rates.

Definition 2.1. We say that L : T × Γ → R+ is (h, k)-Lyapunov functional for
the pair (C,P ) if there exist two real constants l1 < l2 such that:

(hL1)

t∫

s

||Φ(τ, t0, θ)P (t0, θ)x||
h(τ)l1

dτ ≤ L(s, s, t0, θ, P (t0, θ)x)− L(t, s, t0, θ, P (t0, θ)x)

h(s)l1
;

(kL1)

t∫

s

||Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ ≤ L(t, t, t0, θ,Q(t0, θ)x)− L(t, s, t0, θ,Q(t0, θ)x)

k(t)l2
,
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for all (t, s, t0, θ, x) ∈ T × Γ.

Theorem 2.1. We consider (C,P ) a pair with (h, k)-growth, where h ∈ H1 ∩H
and k ∈ K1 ∩H. Then (C,P ) admits (h, k)-splitting if and only if there exist
L : T × Γ → R+ a (h, k)-Lyapunov functional for (C,P ) and a nondecreasing
function λ : R+ → [1,+∞) with:

(L1) L(s, s, t0, θ, P (t0, θ)x) ≤ λ(s)||Φ(s, t0, θ)P (t0, θ)x||;
(L2) L(t, t, t0, θ,Q(t0, θ)x) ≤ λ(t)||Φ(t, t0, θ)Q(t0, θ)x||,

for all (t, s, t0, θ, x) ∈ T × Γ.

Proof. Necessity. Let L : T × Γ→ R+ be defined by

L(t, s, t0, θ, x) =

+∞∫

t

(
h(s)

h(τ)

)d1
||Φ(τ, t0, θ)P (t0, θ)x||dτ+

+

s∫

t0

(
k(t)

k(τ)

)d2
||Φ(τ, t0, θ)Q(t0, θ)x||dτ,

where d1 < d2 are given by Theorem 1.1.
It is immediate to see that the (hL1) and (kL1) from Definition 2.1 are satisfied.
From Theorem 1.1, we deduce that (L1) and (L2) are verified.

Sufficiency. Using Definition 2.1, (hL1), we have

t∫

s

||Φ(τ, t0, θ)P (t0, θ)x||
h(τ)l1

dτ ≤ L(s, s, t0, θ, P (t0, θ)x)

h(s)l1
≤

≤ λ(s)

h(s)l1
||Φ(s, t0, θ)P (t0, θ)x||,

which implies

+∞∫

s

||Φ(τ, t0, θ)P (t0, θ)x||
h(τ)l1

dτ ≤ λ(s)

h(s)l1
||Φ(s, t0, θ)P (t0, θ)x||, (1)

for all (s, t0, θ, x) ∈ ∆× Γ.
Similarly, from (kL1), for t0 = s it follows
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t∫

t0

||Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ ≤ L(t, t, t0, θ,Q(t0, θ)x)

k(t)l2

and then

t∫

t0

||Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ ≤ λ(t)||Φ(t, t0, θ)Q(t0, θ)x||
k(t)l2

, (2)

for all (t, t0, θ, x) ∈ ∆× Γ.
From (1), (2) and Theorem 1.1 we obtain that (C,P ) has (h, k)-splitting.

In what follows, P : R+ × Θ → B(X) represents a strongly invariant family
of projections for C and Ψ : ∆×Θ→ B(X) is given by Proposition 1.1.

Proposition 2.1. The mapping L : T × Γ → R+ is (h, k)-Lyapunov functional
for the pair (C,P ) if and only if there exist l1, l2 ∈ R, l1 < l2 with the properties:

(hL1)

t∫

s

||Φ(τ, t0, θ)P (t0, θ)x||
h(τ)l1

dτ ≤ L(s, s, t0, θ, P (t0, θ)x)− L(t, s, t0, θ, P (t0, θ)x)

h(s)l1
;

(kL′
1)

t∫

s

||Ψ(t, τ, ϕ(τ, t0, θ))Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ ≤

≤ L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)− L(t, s, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)

k(t)l2
,

for all (t, s, t0, θ, x) ∈ T × Γ.

Proof. It is sufficient to justify the equivalence (kL1) ⇔ (kL′
1) and we use the

relations from Proposition 1.1.
If (kL1) holds, then for all (t, s, t0, θ, x) ∈ T × Γ we have:

t∫

s

||Ψ(t, τ, ϕ(τ, t0, θ))Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ =

=

t∫

s

||Q(τ, ϕ(τ, t0, θ))Ψ(t, τ, ϕ(τ, t0, θ))Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ =

BUPT



Lyapunov functionals 55

=

t∫

s

||Φ(τ, t0, θ)Ψ(τ, t0, θ)Q(τ, ϕ(τ, t0, θ))Ψ(t, τ, ϕ(τ, t0, θ))Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ =

=

t∫

s

||Φ(τ, t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ =

=

t∫

s

||Φ(τ, t0, θ)Q(t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x||
k(τ)l2

dτ ≤

≤ L(t, t, t0, θ,Q(t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)

k(t)l2
−

−L(t, s, t0, θ,Q(t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)

k(t)l2
=

=
L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)− L(t, s, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x)

k(t)l2
.

Conversely, if (kL′
1) is satisfied, then

t∫

s

||Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ =

t∫

s

||Q(τ, ϕ(τ, t0, θ))Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ =

=

t∫

s

||Ψ(t, τ, ϕ(τ, t0, θ))Φ(t, τ, ϕ(τ, t0, θ))Q(τ, ϕ(τ, t0, θ))Φ(τ, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ =

=

t∫

s

||Ψ(t, τ, ϕ(τ, t0, θ))Q(t, ϕ(t, t0, θ))Φ(t, t0, θ)Q(t0, θ)x||
k(τ)l2

dτ ≤

≤ L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))Φ(t, t0, θ)Q(t0, θ)x)

k(t)l2
−

−L(t, s, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))Φ(t, t0, θ)Q(t0, θ)x)

k(t)l2
=

=
L(t, t, t0, θ,Q(t0, θ)x)− L(t, s, t0, θ,Q(t0, θ)x)

k(t)l2
,

for all (t, s, t0, θ, x) ∈ T × Γ.
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Theorem 2.2. Let (C,P ) be a pair with (h, k)-growth, h ∈ H1∩H and k ∈ K1∩H.
Then (C,P ) has (h, k)-splitting if and only if there exist L : T ×Γ→ R+ a (h, k)-
Lyapunov functional for (C,P ) and a nondecreasing mapping λ : R+ → [1,+∞)
such that:

(L1) L(s, s, t0, θ, P (t0, θ)x) ≤ λ(s)||Φ(s, t0, θ)P (t0, θ)x||;
(L′

2) L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x) ≤ λ(t)||Q(t, ϕ(t, t0, θ))x||,

for all (t, s, t0, θ, x) ∈ T × Γ.

Proof. We show the equivalence between the conditions (L2) and (L′
2), using

Proposition 1.1.
If (L2) is verified, then we deduce:

L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x) =

= L(t, t, t0, θ,Q(t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x) ≤

≤ λ(t)||Φ(t, t0, θ)Q(t0, θ)Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))x|| =

= λ(t)||Q(t, ϕ(t, t0, θ))x||,

for all (t, t0, θ, x) ∈ ∆× Γ.
In a similar manner, if (L′

2) holds, then we obtain:

L(t, t, t0, θ,Q(t0, θ)x) = L(t, t, t0, θ,Ψ(t, t0, θ)Φ(t, t0, θ)Q(t0, θ)x) =

= L(t, t, t0, θ,Ψ(t, t0, θ)Q(t, ϕ(t, t0, θ))Φ(t, t0, θ)Q(t0, θ)x) ≤

≤ λ(t)||Q(t, ϕ(t, t0, θ))Φ(t, t0, θ)Q(t0, θ)x|| = λ(t)||Φ(t, t0, θ)Q(t0, θ)x||,

for all (t, s, t0, θ, x) ∈ T × Γ.
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Department of Mathematics,
West University of Timişoara,
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