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Abstract

In this paper we study the Falkner-Skan equation. Some stability prob-
lems, Lax formulation and an approximate analytic solution by means of the
Optimal Homotopy Asymptotic Method (OHAM) were discussed. 1

Keywords and phrases: stability, Lax formulation, optimal homotopy
asymptotic method (OHAM), nonlinear differential system.

1 Introduction

The proprieties of viscoelastic materials have been intensively studied in re-
cent years because of their industrial and technological applications such as plastic
processing, cosmetics, paint flow, adhesives, accelerators, electrostatic filters, etc
[1].

The Falkner-Skan equation describing this proprieties were studied from var-
ious points of view: some approximate procedures to solve a boundary layer
equations [2], numerical solution [3], existence of a unique smooth solution [4], [5]
and [6], was analytically investigated [7] and [8], by using Adomian decomposition
method [9] and [10], etc.

The aim of the present paper is to propose a geometrical point of view and
an accurate approach to Falkner-Skan equation using an analytical technique,
namely optimal homotopy asymptotic method [11], [12], [13].

The validity of our procedure, which does not imply the presence of a small
parameter in the equation, is based on the construction and determination of
the auxiliary functions combined with a convenient way to optimally control the

1MSC (2010): 34-XX, 34A26, 34H05, 34M45, 35A24, 37C10, 49J15, 49K15, 65Lxx, 93C15,
93D05
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10 C. Petrişor, R. D. Ene

convergence of the solution. The efficiency of the proposed procedure is proves
while an accurate solution is explicitly analytically obtained in an iterative way
after only one iteration.

From the geometry point of view, we establish the equilibrium states of the
studied system and define a control function. Using specific Hamilton-Poisson
geometry methods, namely the energy-Casimir method [14] we are able to study
the nonlinear stability of these equilibrium states.

In this paper, a control function is proposed in order to study the stability
of the equilibrium states of the system and the numerical integration via the
Optimal Homotopy Asymptotic Method of the controlled system is presented.

The paper is organized as follows: in the second paragraph we put the Falkner-
Skan equation in a differential system form and find the equilibrium states of
the system. In the third section we find a control which preserves the equilib-
rium states of the system and give a Hamilton-Poisson realization of a controlled
system. The fourth section is dedicated to study of stability of the controlled
system. In a fifth paragraph is given a Lax formulation for the controlled system
and finally in the sixth section a briefly presentation of the Optimal Homotopy
Asymptotic Method, developed in [13] and used in the last part in order to obtain
the approximate analytic solutions of the controlled system.

2 The Falkner-Skan equation in the flow of a viscous
fluid

The dimensionless Falkner-Skan equation in the flow of a viscous fluid can be
written as [2], [3], [7], [10]:

X ′′′(t) +X(t)X ′′(t) + β
(

1− (X ′(t))2
)

= 0, (1)

with the initial and boundary conditions

X(0) = 0, X ′(0) = 0, lim
t→∞

X ′(t) = 1, (2)

where t > 0, β is a measure of the pressure gradient, and prime denotes derivative
with respect to t.

Using the notations:

X(t) = x1(t), X ′(t) = x2(t), X ′′(t) = x3(t),

BUPT



The Falkner-Skan equation: stabilization, instability and Lax formulation 11

the nonlinear equation Eq. (1) becomes:




x′1 = x2
x′2 = x3 , t > 0.

x′3 = −β
(

1− x22
)
− x1x3

(3)

The nonlinear differential system (3) has an equilibrium state
eM = (M, 0, 0),M ∈ R iff β = 0.

3 The Hamilton-Poisson realization of the system (3)

For the beginning, let us recall very briefly the definitions of general Poisson
manifolds and the Hamilton-Poisson systems.

Definition: Let M be a smooth manifold and let C∞(M) denote the set of
the smooth real functions on M. A Poisson bracket on M is a bilinear map
from C∞(M)× C∞(M) into C∞(M), denoted as:

(F,G) 7→ {F,G} ∈ C∞(M), F,G ∈ C∞(M)

which verifies the following properties:
- skew-symmetry:

{F,G} = −{G,F} ;

- Jacobi identity:

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0;

- Leibniz rule:
{F,G ·H} = {F,G} ·H +G · {F,H} .

Proposition: Let {·, ·} a Poisson structure on Rn. Then for any
f, g ∈ C∞(Rn,R) the following relation holds:

{f, g} =
n∑

i,j=1

{xi, xj}
∂f

∂xi

∂g

∂xj
.

Let the matrix given by:
Π = [{xi, xj}] .

Proposition: Any Poisson structure {·, ·} on Rn is completely determined
by the matrix Π via the relation:

{f, g} = (5f)tΠ(5g).
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12 C. Petrişor, R. D. Ene

Definition: A Hamilton-Poisson system on Rn is the triple (Rn, {·, ·} , H),
where {·, ·} is a Poisson bracket on Rn and H ∈ C∞(Rn,R) is the energy (Hamil-
tonian). Its dynamics is described by the following differential equations system:

.
x = Π · ∇H

where x = (x1, x2, ...xn)t.

Definition: Let {·, ·} a Poisson structure on Rn. A Casimir of the configu-
ration (Rn, {·, ·}) is a smooth function C ∈ C∞(Rn,R) which satisfy:

{f, C} = 0, ∀f ∈ C∞(Rn,R).

Let us employ the control u ∈ C∞(R3,R),

u(x1, x2, x3) = (0 , x1x2 , −x22 − x21x2), (4)

for the system (3). The controlled system (3)−(4), explicitly given by:





x′1 = x2
x′2 = x3 + x1x2 , t > 0,
x′3 = −x1x3 − x22 − x21x2.

(5)

Proposition: The controlled system (5) has the Hamilton-Poisson realization

(R3,Π−, H),

where

Π− =




0 1 −x1
−1 0 x2
x1 −x2 0




is the minus Lie-Poisson structure and

H(x1, x2, x3) =
1

2
x22 − x1x3 − x21x2

is the Hamiltonian.
Proof: Indeed, we have:

Π− · ∇H =



x′1
x′2
x′3




and the matrix Π− is a Poisson matrix, see [15].
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The Falkner-Skan equation: stabilization, instability and Lax formulation 13

The next step is to find the Casimirs of the configuration described by the
above Proposition. Since the Poisson structure is degenerate, there exist Casimir
functions. The defining equations for the Casimir functions, denoted by C, are

Πij∂jC = 0.

It is easy to see that there exists only one functionally independent Casimir
of our Poisson configuration, given by C : R3 → R,

C(x1, x2, x3) = −x3 − x1x2.

Consequently, the phase curves of the dynamics Eq. (5) are the intersections
of the surfaces H(x1, x2, x3) = const. and C(x1, x2, x3) = const..

4 Stability Problem

The concept of stability is an important issue for any differential equation.
The nonlinear stability of the equilibrium point of a dynamical system can be
studied using the tools of mechanical geometry, so this is another good reason
to find a Hamilton -Poisson realization. For more details, see [15]. We start this
section with a short review of the most important notions.

Definition: An equilibrium state xe is said to be nonlinear stable if for
each neighbourhood U of xe in D there is a neighbourhood V of xe in U such
that trajectory x(t) initially in V never leaves U.

This definition supposes well-defined dynamics and a specified topology. In
terms of a norm ‖‖ , nonlinear stability means that for each ε > 0 there is δ > 0
such that if

‖x(0) − xe ‖ < δ

then

‖x(t) − xe ‖ < ε, (∀) t > 0.

It is clear that nonlinear stability implies spectral stability; the converse is not
always true.

The equilibrium states of the dynamics Eq. (1) are

eM = (M, 0, 0), M ∈ R.

Proposition 1: For the equilibrium states eM = (M, 0, 0) the following state-
ments hold:
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14 C. Petrişor, R. D. Ene

a) eM = (M, 0, 0) are unstable for M > 0;
b) eM = (M, 0, 0) are unstable for M = 0

Proof: We will use energy-Casimir method, see [15] for details. Let

Fϕ(x1, x2, x3) = H(x1, x2, x3) + ϕ[C(x1, x2, x3)] =

=
1

2
x22 − x1x3 − x21x2 + ϕ(−x3 − x1x2)

be the energy-Casimir function, where ϕ : R → R is a smooth real valued
function.

Now, the first variation of Fϕ is given by

δFϕ(x1, x2, x3) = x2δx2 − x1δx3 − x3δx1 − 2x1x2δx1 − x21δx2+

+ϕ̇ (−x3 − x1x2) · (−x1δx2 − x2δx1 − δx3)
so we obtain

δFϕ(eM ) = [M + ϕ̇ (0)] · (−Mδx2 − δx3)
that is equals zero for any M ∈ R∗ if and only if

ϕ̇ (0) = −M. (6)

The second variation of Fϕ at the equilibrium of interest is given by

δ2Fϕ(eM ) = [ϕ̈(0)]−1 · [ϕ̈(0)δx3 − δx1 +M · ϕ̈(0)δx2]
2 +

+[ϕ̈(0)]−1[1 +M2ϕ̈(0)−M2(ϕ̈(0))2]−1 ·
[(

1 +M2ϕ̈(0)−M2(ϕ̈(0))2
)
δx2+

+
(
Mϕ̈(0)−M

)
δx1

]2
+[1+M2ϕ̈(0)−M2(ϕ̈(0))2]−1·

[
−1 +M2ϕ̈(0)−M2

] (
δx1

)2
.

If we choose now ϕ such that the relation (6) is valid and δ2Fϕ(eM ) is positive
defined, i.e.

ϕ̈(0) > 0 and 1 +M2ϕ̈(0)−M2(ϕ̈(0))2 > 0 and − 1 +M2ϕ̈(0)−M2 > 0

then the second variation of Fϕ at the equilibrium of interest is positive defined.
We can assume that M > 0. From these inequalities we deduce that:

M2 + 1

M2
< ϕ′′(0) <

M2 +M
√
M2 + 4

2M2
,
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The Falkner-Skan equation: stabilization, instability and Lax formulation 15

that implies

2M2 + 2 < M2 +M
√
M2 + 4 ⇒ (M2 + 2)2 < M2(M2 + 4) ⇒ 4 < 0,

that is false.
Therefore, the equilibrium state eM (M, 0, 0) is unstable.
In the same way, we conclude that eM (M, 0, 0) is unstable for M = 0. �

Table 1: The comparison between the approximate solutions x̄1 given by Eq. (7)
and the corresponding numerical solutions for β = 0
(relative errors: εx1 = |x1numerical

− x̄1| )

t x1numerical
x̄1 given by Eq.
(7)

εx1

0 1.5671 ·10−25 -1.3322 ·10−15 1.3322 ·10−15

4/5 0.149674539444 0.149401535388 2.73004 ·10−4

8/5 0.582956328320 0.582978942361 2.2614 ·10−5

12/5 1.231527648000 1.231539489179 1.1841 ·10−5

16/5 1.990581010375 1.990607740256 2.6729 ·10−5

4 2.783886492275 2.783817337929 6.9154 ·10−5

24/5 3.583254092715 3.583303973631 4.9880 ·10−5

28/5 4.383220411026 4.383289581820 6.9170 ·10−5

32/5 5.183219409763 5.183234915896 1.5506 ·10−5

36/5 5.983219388168 5.983199995268 1.9392 ·10−5

8 6.783219382599 6.783194882759 2.4499 ·10−5

5 Lax formulation

Let introduce the matrices:

L =

(
1
2x

2
2 −x1x3 − x3 − 1

8x
4
2 − 1

2(−x1x3 − x21x2)2
1 −x1x3 − x21x2

)
,

B =

(
1 −x2(x3 + x1x2)
0 1

)
.

Then an easy computation we can establish the following result:

Theorem 5.1 The controlled system (5) have a Lax formulation, i.e., it can be
put in the equivalent form:

dL

dt
=
[
L , B

]
⇔ dL

dt
= L ·B −B · L.
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16 C. Petrişor, R. D. Ene

As in [15], the following properties hold:

H = Trace(L) and C =
1

2
Trace(L2),

where H- Hamiltonian function and C- Casimir function.

Table 2: The comparison between the approximate solutions x̄′1 from Eq. (7)
and the corresponding numerical solutions for β = 0 (relative errors: εx′

1
=

|x′1numerical
− x̄′1|)

t x′1numerical
x̄′1 from Eq. (7) εx′

1

0 -3.8645 ·10−21 8.8817 ·10−16 8.8818 ·10−16

4/5 0.371963259413 0.372477797312 5.1453 ·10−4

8/5 0.696699514599 0.696023892471 6.7562 ·10−4

12/5 0.901065461379 0.901471382767 4.0592 ·10−4

16/5 0.980364982283 0.980092859963 2.7212 ·10−4

4 0.997770087958 0.997861518336 9.1430 ·10−5

24/5 0.999859396033 0.999974757114 1.15361 ·10−4

28/5 0.999995149208 0.999946428194 4.8721 ·10−5

32/5 0.999999902864 0.999935247532 6.4655 ·10−5

36/5 0.999999992429 0.999977995910 2.1996 ·10−5

8 0.999999993273 1.000005054164 5.0608 ·10−6

6 Numerical simulation

In this section, the accuracy and validity of the OHAM technique is proved
using a comparison of our approximate solutions with numerical results obtained
via the fourth-order Runge-Kutta method for β = 0.

The convergence-control parameters K, Ci, i = 1, 8 are optimally determined
by means of the least-square method using the Mathematica 9.0 software.

Observation: If x̄(t) is the approximate analytic solution obtained via Opti-
mal Homotopy Asymptotic Method [13], then for β = 0 the convergence-control
parameters are respectively :

C1 = −5.146692834756 , C2 = −3.319352427903 , C3 = 1.365481026558 ,

C4 = −0.109053890316 , C5 = 63.014570679440 , C6 = −183.226725640327 ,

C7 = 47.317886321776 , C8 = 53.798097627583 , K = 1.679601787261 .
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Figure 1: Comparison between the approximate solutions x̄1 given by Eq. (7)
and the corresponding numerical solutions:
−−−−−−−−−−−−−−− numerical solution, · · · · · · · · · · · OHAM solution.

Table 3: The comparison between the approximate solutions x̄′′1 from Eq. (7)
and the corresponding numerical solutions for β = 0 (relative errors:
εx′′

1
= |x′′1numerical

− x̄′′1|)

t x′′1numerical
x̄′′1 from Eq. (7) εx′′

1

0 0.469599995897 0.469599895897 1.0000 ·10−7

4/5 0.451190185801 0.460093505720 8.9033 ·10−3

8/5 0.342486827279 0.342756074406 2.6924 ·10−4

12/5 0.167560529122 0.167075663254 4.8486 ·10−4

16/5 0.046370185755 0.046300824641 6.9361 ·10−5

4 0.006874039262 0.007295190897 4.2115 ·10−4

24/5 0.000538393988 0.000306981990 2.3141 ·10−4

28/5 0.000022211398 -9.0012 ·10−5 1.1222 ·10−4

32/5 4.7872 ·10−7 4.2932 ·10−5 4.2454 ·10−5

36/5 4.0075 ·10−9 4.9247 ·10−5 4.9243 ·10−5

8 6.8538 ·10−10 1.8697 ·10−5 1.8696 ·10−5

The first-order approximate solutions proposed in [13] becomes:
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18 C. Petrişor, R. D. Ene

x̄1(t) = −1.216776769791− 0.236541146259 · e−6.718407149045t + t+

+e−5.038805361784t · (2.067180899886 + 0.318125112302t− 0.554796671887t2)+

+e−3.359203574522t · (−4.570156113663− 5.624329520194t− 8.333219504464t2−

−4.761785285840t3) + e−1.679601787261t · (3.956293129828 + 4.426059140587t−

−1.432577756121t2 − 0.407499225829t3 + 0.162858423313t4 − 0.012985684004t5) .
(7)

Finally, Tables 1 - 3 and Figs. 1-2 emphasize the accuracy of the OHAM tech-
nique by comparing the approximate analytic solutions x̄1, x̄

′
1 and x̄′′1 respectively

presented above with the corresponding numerical integration values.

2 4 6 8
t

0.2

0.4

0.6

0.8

1.0
x1

' HtL

Figure 2: Comparison between the approximate solutions x̄′1 from Eq. (7) and
the corresponding numerical solutions: −−−−−−−−−−−−−−− numerical solution, · · · · · · · · · · ·
OHAM solution.

7 Conclusion

In this paper we analyze the Falkner-Skan equations from some geometrical
point of view. The stability of a nonlinear differential problem governing the
Falkner-Skan equation is investigated. Finding a Hamilton-Poisson realization,
the results were obtained using specific tools, such as the energy-Casimir method.
We give find a Lax formulation for the studied system.
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The Falkner-Skan equation: stabilization, instability and Lax formulation 19

Finally, the analytical integration of the nonlinear system (obtained via the
Optimal Homotopy Asymptotic Method and presented in [13]) is compared with
the exact solution (obtained as intersections of the surfaces H(x1, x2, x3) = const.
and C(x1, x2, x3) = const).

Numerical integration of the controlled dynamics is obtained via the Optimal
Homotopy Asymptotic Method. Numerical simulations and a comparison with
Runge-Kutta 4 steps integrator are presented, too.
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Abstract

In this paper, we obtaining analytical approximate solutions for frac-
tional ordinary differential equations using Polynomial Least Square Method
(PLSM). An example is illustrated to show the presented methods efficiency
and convenience. 1

Keywords and phrases: Fractional ordinary differential equations, Poly-
nomial Least Square Method(PLSM), Caputos fractional derivative

1 Introduction

In recent years, fractional ordinary differential equations have been investigated
by many authors. Fractional ordinary differential equations are generally used
in many branches of science such as: mathematics, physics, chemistry and engi-
neering.

Since most of these equations have no exact solutions, it has been necessary
to develop numerical methods or analytical methods to find the approximate
solutions of these equations.

In order to find approximate solutions of these equations, many methods were
proposed, such as:

• Fractional Adams-Bashforth-Moulton method [2];

• Adomian decomposition method [4];

• Homotopy analysis method [3], [8];

• Variational iteration method [9], [10].

We consider the following fractional ordinary differential equation:

Dαy(x) = f(x, y(x)) (1)

1MSC (2010): 60H20, 34F15

41
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α > 0, with the initial condition:

y(0) = ν0 (2)

where ν0 are real constant and Dα denote the Caputo’s fractional derivative:

Dαỹ(x) =
1

Γ(n− α)
·
x∫

0

(x− ζ)n−α−1 · ỹ(n)(ζ)dζ

n− 1 < α < n where n ∈ N∗.
In the next section we will introduce the Polynomial Least Square Method

(PLSM) which allows us to determine analytical approximate polynomial solu-
tions for fractional ordinary differential equations and in the third section we
will compare our approximate solutions with approximate solutions presented by
fractional Adams-Bashforth-Moulton method (FABMM).

2 The Polynomial Least Squares Method

We denote by ỹ an approximate solution of equation (1). The error obtained by
replacing the exact solution y with the approximation ỹ is given by the remainder:

R(x, ỹ(x)) = Dαỹ(x)− f(x, ỹ(x)). (3)

For ε ∈ R+, we will compute approximate polynomial solutions ỹ of the problem
(1, 2) on the interval [0, b].

Definition 2.1. We call an ε-approximate polynomial solution of the problem
(1, 2) an approximate polynomial solution ỹ satisfying the relations

|R(ỹ)| < ε (4)

ỹ(0) = ν0. (5)

We call a weak ε-approximate polynomial solution of the problem (1, 2) an
approximate polynomial solution ỹ satisfying the relation:

b∫

0

|R(ỹ)|dx ≤ ε (6)

together with the initial conditions (5).
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Definition 2.2. Let Pm(x) = c0 + c1x + c2x
2 + · · · + cmx

m, ci ∈ R, i = 0,m
be a sequence of polynomials satisfying the condition:

Pm(0) = ν0.

We call the sequence of polynomials Pm(x) convergent to the solution of the
problem (1, 2) if lim

m→∞
D(Pm(x)) = 0.

We observe that from the hypothesis of the initial problems (1, 2) it follows
that there exists a sequence of polynomials Pm(x) which converges to the solution
of the problem.

We will compute a weak ε - approximate polynomial solution, in the sense of
the Definition 2.1, of the type:

ỹ(x) =

m∑

k=0

dkx
k (7)

where d0, d1, · · · , dm are constants which are calculated using the following steps:

• By substituting the approximate solution (7) in the equation (1) we obtain
the expression:

R(ỹ) = Dαỹ(x)− f(x, ỹ(x)). (8)

If we could find d0, d1, · · · , dm such R(ỹ) = 0, ỹ(0) = ν0, then by substi-
tuting d0, d1, · · · , dm in (7) we obtain the solutions of equation (1).

• Then we attach to the problem (1,2) the following functional:

J (d1, d2, d3, · · · , dm) =

b∫

0

R2(ỹ)dx (9)

where d0 is computed as functions of d1, d2, d3, · · · , dm using the initial con-
dition (5).

• We compute the values d01, d
0
2, d

0
3, · · · , d0m as the values which give the mini-

mum of the functional J , and the values of d0 is function of d01, d
0
2, d

0
3, · · · , d0m

using the initial condition.

• With constants d01, d
0
2, d

0
3, · · · , d0m previously determined we consider the

polynomial:

Mm(x) =
m∑

k=0

d0kx
k. (10)
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Theorem 2.1. The sequence of polynomials Mm(x) from (10) satisfies the prop-
erty:

lim
x→∞

b∫

0

R2(Mm(x))dx = 0. (11)

Moreover, ∀ε > 0, ∃mo ∈ N, m > m0 it follows that Mm(x) is a weak ε-
approximate polynomial solution of the problem (1, 2).

Proof. Based on the way the polynomials Mm(x) are computed and taking into
account the relations (8)-(11), the following inequalities are satisfied:

0 ≤
b∫

0

R2(Mm(x))dx ≤
b∫

0

R2(Pm(x))dx, ∀m ∈ N,

where Pm(x) is the sequence of polynomials introduced in Definition 2.2.
It follows that:

0 ≤ lim
x→∞

b∫

0

R2(Mm(x))dx ≤ lim
x→∞

b∫

0

R2(Pm(x))dx = 0.

We obtain:

lim
x→∞

b∫

0

R2(Mm(x))dx = 0.

From this limit we obtain that ∀ε > 0, ∃mo ∈ N, m > m0 it follows that Mm(x)
is a weak ε-approximate polynomial solution of the problem (1, 2).

In order to find ε-approximate polynomial solutions of the problem (1,2) by
using the Polynomial Least Squares Method we will first determine weak approx-
imate polynomial solutions, ỹ.

If |R(ỹ)| < ε then ỹ is also an ε approximate polynomial solution of the
problem.

3 Application

We consider the following linear fractional differential equation ([2]):

Dαy(x) + y(x)− xα+3 − Γ(4 + α)

6
· x3 = 0 (12)

α = 0, 25; x ∈ [0, 1
30 ] and the initial condition: y(0) = 0.
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The exact solution of the problem is:

y(x) = x3+α.

A numerical solutions for this problem is presented by Baskonus at all in [2] using
fractional Adams-Bashfort-Moulton method (FABMM).

Using (PLSM):

• We compute a solution of the type:

ỹ(x) = d0 + d1 · x1 + d2 · x2 + d3 · x3 + d4 · x4

with initial condition: ỹ(0) = 0 we obtain: d0 = 0.

• The approximate solution becomes:

ỹ(x) = d1 · x1 + d2 · x2 + d3 · x3 + d4 · x4.

• The corresponding remainder is:

R(x) =
4x3/4

(
385d1 + 8x

(
55d2 + 60d3x+ 64d4x

2
))

1155Γ
(
3
4

) +

+ d1x+ d2x
2 + d3x

3 + d4x
4 − x13/4 − 1

6
x3Γ

(
17

4

)
. (13)

Next we compute:

J (d1, d2, d3, · · · , dm) =

1
30∫

0

R2(ỹ)dx

and minimize it obtaining the values:

d1 = 3, 53901 · 10−6; d2 = 0, 00131029; d3 = 0, 387136, d4 = 2, 29079.

• The approximate analytical solution of the problem (12) using (PLSM) is:

ỹ(x) = 3, 53901 · 10−6 · x+ 0, 00131029 · x2 + 0, 387136 · x3 + 2, 29079 · x4.

Table 1 present the comparison between absolute errors coresponding to the
numerical solution proposed by Baskonus in [2] using (FABMM) and aur solution
(PLSM).

From the table, it is easy to see that using (PLSM) results are better than
using (FABMM).

Additionally, (PLSM) obtains the analytical solution of the polynomial form
of the problem, not only numerical solutions, thus demonstrating the usefulness
and accuracy of the (PLSM).
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Table 1: Numerical results

x Exactsolution Error(FABMM) Error(PLSM)

0.0033333 2.82× 10−3 3.8343× 10−9 2.9598× 10−9

0.0066667 1.73× 10−3 2.1194× 10−8 7.4355× 10−11

0.0100000 3.31× 10−4 5.4419× 10−8 1.8279× 10−9

0.0133333 1.15× 10−3 1.0405× 10−7 1.1658× 10−9

0.0166667 1.75× 10−3 1.7047× 10−7 6.2667× 10−10

0.0200000 2.36× 10−3 2.5705× 10−7 1.8004× 10−9

0.0233333 1.49× 10−3 3.5512× 10−7 1.2389× 10−9

0.0266667 2.66× 10−3 4.7380× 10−7 7.2161× 10−10

0.0300000 4.88× 10−3 6.1050× 10−7 1.7042× 10−9

0.0333333 0 7.6535× 10−7 3.1652× 10−9

Figure 1 - The approximate analytical solution using (PLSM)

Figure 2 - The absolute errors corresponding to the approximations given by
(PLSM)
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4 Conclusions

The computations performed show that (PLSM) allows us to obtain approxima-
tions with an error relative to the exact or numerical solution smaller than the
errors obtained using by fractional Adams-Bashforth-Moulton method (FABMM).

The application presented emphasize the high accuracy of the method by
means of a comparison with previous results.
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