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Abstract

An underactued drift-free left-invariant control system on the Lie group
ISO(3, 1) is analyzed. 1
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1 Introduction

The Poincaré group ISO(3, 1) was first defined by Minkowski (1908) as the group
of Minkowski space-time isometries. It can be written as a semi-direct product of
the Lorentz group SO(3,1) with the four-dimensional translation group R4. Due
to its big importance in quantum theory of fields, we are interested to study an
optimal control problem on this Lie group. The interest in such problems arise
from their deep applications in engineering (spacecraft dynamics, sub-aquatic
dynamics, the tower control problem), in chemistry (molecular motion control)
or physics (quantum theory).

2 An optimal control problem on the Poincaré Lie
group

Let us consider {Ji,Ki, Pi, H}(1=i,j=3) the usual generators of spatial rotations,
boosts, space translations, and time translation respectively, of the Poincaré in-
homogeneous Lie algebra iso(3, 1); the nonzero brackets are given by:

[Ji, Jj ] = εijkJk; [Ji, Pj ] = εijkPk; [Ji,Kj ] = εijkKk;

[H,Kj ] = Pi; [Ki,Kj ] = −εijkJk; [Pi,Ki] = H.

1MSC(2010): 34A26, 34H05, 34M45, 35A24, 37C10, 49J15, 49K15, 93C15
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6 C. Pop, I. Iosif

A general left invariant drift free control system on the Poincaré Lie algebra
iso(3, 1) with fewer controls than state variables can be written in the following
form:

.
X = X(

m∑

i=1

uiAi),

where X ∈ ISO(3, 1), the functions ui are the control inputs, and m < 10. In all
that follows, we shall concentrate to the following left-invariant, drift-free control
system on ISO(3, 1) with 4 controls:

.
X = X(u1J1 + u2K1u3K2 + u4H). (1)

Theorem 2.1 The system (1) is controllable.

Proof: Since the span of the set of Lie brackets generated by J1,K1,K2, H
coincides with iso(3, 1), the Proposition is a consequence of a result due to Jur-
djevic and Sussman, see [6].

Let C be the cost function given by:

C(u1, u2, u3, u4) =
1

2

tf∫

0

[u21(t) + u22(t) + u23(t) + u24(t)]dt.

The controls that minimize C and steer the system (1) from the initial state
X = X0 at t = 0 to the final state X = Xf at t = tf are giving by the solutions
of the following differential equations:





j
′
1 = k2k3
j
′
2 = −j1j3 − k1k3
j
′
3 = j1j2
k
′
1 = −k2j3 + hp1
k
′
2 = −k3j1 + k1j3 + hp2
k
′
3 = 2j1k2 − j2k1 + hp3
p
′
1 = −hk1
p
′
2 = −j1p3 − hk2
p
′
3 = j1p2
h
′

= k1p1 − p2k2

(2)

The system is obtained by applying Krishnaprasad’s theorem (see [7]) to the
optimal Hamiltonian given by:

Hopt =
1

2
(j21 + k21 + k22 + h2).

BUPT



Stability Problems 7

Theorem 2.2 The dynamics (2) has the following Poisson realization:

(iso(3, 1),Π−, H),

where:

Π− =




0 j3 −j2 0 k3 −k2 0 p3 −p2 0
−j3 0 j1 −k3 0 k1 −p3 0 p1 0
j2 −j1 0 k2 −k1 0 p2 −p1 0 0
0 k3 −k2 0 −j3 j2 h 0 0 p1
−k3 0 k1 j3 0 −j1 0 h 0 p2
j2 −k1 0 −j2 j1 0 0 0 h p3
0 p3 −p2 −h 0 0 0 0 0 0
−p3 0 p1 0 −h 0 0 0 0 0
p2 −p1 0 0 0 −h 0 0 0 0
0 0 0 −p1 −p2 −p3 0 0 0 0




(3)

is the minus-Lie-Poisson structure on iso(3, 1), and

H =
1

2
(j21 + k21 + k22 + h2)

is the Hamiltonian function.

Proof: Indeed, it is not hard to see that the dynamics (2) can be written as

(
j
′
1 j

′
2 j

′
3 k

′
1 k

′
2 k

′
3 p

′
1 p

′
2 p

′
3 h

′
)t

= Π− ·H

and Π− is the minus-Lie-Poisson structure on iso(3, 1).

Corollary 2.1 The Lie-Poisson structure Π− admits two linear independent Casimir
operators:

C1 =
1

2
(p21 + p22 + p23 − h2), (4)

and

C2 = (−hj3 − p1k2 + p2k1)
2 + (hk2 − p1k3 + p3k1)

2+

+(−hj1 − p2k3 + p3k2)
2 − (p3j3 + p1j1 + p2j2)

2. (5)
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3 Stability

The goal of this section is to analyze the spectral stability of the equilibrium
states of the dynamics (2):

eMNPQRS
1 = (0,M,N, 0, 0, P,Q,R, S, 0), eMNPQ

2 = (0, 0, 0,M,N, 0, P,−MP

N
,Q, 0),

eMNPQ
3 = (0,M, 0, 0, N, 0, P, 0, Q, 0), eMNPQ

4 = (0, 0,M, 0, 0, N, P, 0, Q, 0),

eMNP
5 = (0, 0, 0,M, 0, 0, 0, N, P, 0), eMN

6 = (M, 0, 0, N, 0, 0, 0, 0, 0, 0, ),

eMN
7 = (M, 0, 0, 0, 0, 0, N, 0, 0, 0), eMN

8 = (−M√
2
, 0, 0, 0, N, 0, 0, 0,

√
2,M),

eMN
9 = (M, 0, 0, 0, 0, 0, 0, 0, 0, N), eMNPQ

10 = (0,M,N, 0, 0, P, 0, 0, 0, Q).

Theorem 3.1 (i) The equilibrium states eMNPQRS
1 are spectrally stable iff

P 6= 0 and Q 6= 0.

(ii) The equilibrium states eMNPQ
2 are unstable for any nonzero reals M,N,P,Q.

(iii) The equilibrium states eMNPQ
3 are spectrally stable iff N = 0.

(iv) The equilibrium states eMNPQ
4 are spectrally stable iff P 6= 0 and N 6= 0.

(v) The equilibrium states eMNP
5 are are unstable for any nonzero reals M,N,P.

(vi) The equilibrium states eMN
6 are are unstable for any nonzero reals M,N.

(vii) The equilibrium states eMN
7 are are spectrally stable for any reals M,N.

(viii) The equilibrium states eMN
8 are are unstable for any nonzero reals M,N.

(ix) The equilibrium states eMN
9 are spectrally stable iff M < − |N |√

2
or M > |N |√

2
.

(x) The equilibrium states eMNPQ
10 are spectrally stable iff Q 6= 0.
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Proof: Let A be the matrix of the linear part of the system (2):

A =




0 0 0 0 k3 k2 0 0 0 0
−j3 0 −j1 −k3 0 −k1 0 0 0 0
j2 j1 0 0 0 0 0 0 0 0
0 0 −k2 0 −j3 0 h 0 0 p1
−k3 0 k1 j3 0 −j1 0 h 0 p2
2k2 −k1 0 −j2 2j1 0 0 0 h p3
0 0 0 −h 0 0 0 0 0 −k1
−p3 0 0 0 −h 0 0 0 −j1 −k2
p2 0 0 0 0 0 0 j1 0 0
0 0 0 −p1 −p2 0 −k1 −k2 0 0




.

The corresponding eigenvalues of the linearized A(e1) are λi = 0, i = ¯1, 6, and

λ7,8,9,10 = ±
√
−N2 − P 2 −Q2 −R2 ±

√
−4P 2Q2 + (N2 + P 2 +Q2 +R2)2

2
,

so the assertion follows immediately.
Similar arguments provides us all the statements.

4 Numerical Integration via Lie-Trotter Integrator

We shall discuss now the numerical integration of the dynamics (2) via the Lie-
Trotter integrator (see [11]). For the beginning, let us observe that the Hamilto-
nian vector field XH splits as follows:

XH = XH1 +XH2 +XH3 +XH4 ,

where

H1 =
1

2
j21 , H2 =

1

2
k21, H3 =

1

2
k22, H4 =

1

2
h2.

Their corresponding integral curves are respectively given by:



j1(t)
j2(t)
j3(t)
k1(t)
k2(t)
k3(t)
p1(t)
p2(t)
p3(t)
h(t)




= Ai




j1(0)
j2(0)
j3(0)
k1(0)
k2(0)
k3(0)
p1(0)
p2(0)
p3(0)
h(0)




, i = 1, 2, 3, 4,
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where

A1 =




1 0 0 0 0 0 0 0 0 0
0 1 e−at − 1 0 0 0 0 0 0 0
0 eat − 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 e−at − 1 0 0 0 0
0 0 0 0 eat − 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 e−at − 1 0
0 0 0 0 0 0 0 eat − 1 1 0
0 0 0 0 0 0 0 0 0 1




, a = j1(0),

A2 =




1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 e−bt − 1 0 0 0 0

0 0 1 0 ebt − 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0

0 0 ebt − 1 0 1 0 0 0 0 0

0 e−bt − 1 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 e−bt − 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 e−bt − 1 0 0 1




, b = k1(0),

A3 =




1 0 0 0 0 ect − 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 e−ct − 1 0 0 0 0 0 0
0 0 ect − 1 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

ect − 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 e−ct − 1
0 0 0 0 0 0 0 0 1 0
0 0 0 0 e−ct − 1 0 0 0 0 1




, c = k2(0),

A4 =




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 edt 0 0 0 0 0 0
0 0 0 0 edt 0 0 0 0 0
0 0 0 0 0 edt 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




, d = h(0).
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Then, the Lie-Trotter integrator is given by:




jn+1
1

jn+1
2

jn+1
3

kn+1
1

kn+1
2

kn+1
3

pn+1
1

pn+1
2

pn+1
3

hn+1




= A1A2A3A4




jn1
jn2
jn3
kn1
kn2
kn3
pn1
pn2
pn3
hn




, (6)

i.e.





jn+1
1 = jn1 + edt(−1 + ect)kn3 (t)

jn+1
2 = (−1 + e−bt)(−1 + ect)jn1 + jn2 + (−1 + e−at)jn3 + edt(−1 + e−at)(−1 + e−ct)kn1 +

+edt(−1 + e−at)(−1 + ebt)kn2 + edt(−1 + e−bt)kn3

jn+1
3 = (−1 + eat)(−1 + e−bt)(−1 + ect)jn1 + (−1 + eat)jn2 + jn3 + edt(−1 + e−ct)kn1 +

+edt(−1 + ebt)kn2 + edt(−1 + eat)(−1 + e−bt)kn3

kn+1
1 = (−1 + ect)jn3 + edtkn1

kn+1
2 = (−1 + e−at)(−1 + ect)jn1 + (−1 + e−at)(−1 + e−bt)jn2 + (−1 + ebt)jn3 +

+edt(−1 + ebt)(−1 + e−ct)kn1 + edtkn2 + edt(−1 + e−at)kn3

kn+1
3 = (−1 + ect)jn1 + (−1 + e−bt)jn2 + (−1 + eat)(−1 + ebt)jn3 +

+edt(−1 + eat)(−1 + ebt)(−1 + e−ct)kn1 + edt(−1 + eat)kn2 + edtkn3

pn+1
1 = edt(−1 + e−bt)(−1 + e−ct)kn2 + pn1 + (−1 + e−bt)hn

pn+1
2 = pn2 + (−1 + e−at)pn3 + (−1 + e−ct)hn

pn+1
3 = (−1 + E(at))pn2 + pn3 + (−1 + eat)(−1 + e−ct)hn

hn+1 = edt(−1 + e−ct)kn2 + (−1 + e−bt)pn1 + hn

(7)

Using MATHEMATICA the following can be proven:
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Theorem 4.1 The Lie-Trotter integrator (7) has the following pro-
perties:

(i) It preserves the Poisson structure Π−.

(ii) It preserves the Casimirs C1, C2 of our Poisson configuration (iso(3, 1),Π−).

(iii) It does not preserve the Hamiltonian H of the system (2).
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