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Abstract

In the last years researches in fractional calculus was extended in many
areas. For further study of its applications in Machanical Area this paper
presents numerical methods for solving some differential fractional equations
using MATLAB. This work contains methods for fractional calculus computa-
tions like “Grünwald-Letnikov method” or “Podlubny’s matrix approach” and
examples using MATLAB for solving ordinary fractional differential equations.
1
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1 Introduction

In the past few years, fractional computation has become a field of study that
has been searched for, in the sense of applying to different branches of science [13]
such as:

• Fractals [2]

• Propagation of ultrasonic waves [8, 21]

• The theory of viscoelasticity [22]

• Fluid Mechanics [12]

The concept of fractional computation appeared in 1965 and L’Hospital wrote
to Leibnitz asking him the meaning of the derivative dny

dxn if n = 1
2 . But if n were

fractional, irrational or complex?
Leibnitz replied:

1MSC (2010): 34A08; 35R11; 65K15
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If n = 1
2 then

d
1
2x = x

√
dx : x (1.1)

and “a seeming paradox from which one day will draw very useful consequences”.
Thus, the name of fractional computation has become an improper term for inte-
gration and arbitrary differentials.

In 1812 Laplace defined the arbitrary fractional derivatives as they were pub-
lished in the writings of Lacroix’s 1819.

Starting from y = xm, m ∈ Z+ Lacroix has developed the following n − th
derivative:

dny

dxn
=

m!

(m− n)!
xm−n, m ≥ n (1.2)

Using the Legendre symbol for factorial, Gamma Function, (see Remark 1.1)
will get:

dny

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n (1.3)

If y = x şi n = 1
2 we have:

d
1
2 y

dx
1
2

=
2
√
x√
π

(1.4)

Remark 1.1. Definition of the Gamma function
The most important function of fractional calculation is the Function Γ(z) as it

is presented in [16]. It generalizes n! and allows number n to take different values
of whole numbers even complex.

Definition 1.2. The function Γ(z) is defined by means of the integral:

Γ(z) =

∞∫

0

e−ttz−1 dt,

which converges to the right half of the Complex Re(z) > 0.

Indeed, we have

Γ(x+ iy) =

∞∫

0

e−ttx−1+iy dt

=

∞∫

0

e−ttx−1eiy log(t) dt

=

∞∫

0

e−ttx−1[cos(y log(t)) + i sin(y log(t))] dt.

(1.5)
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64 E. Vasilache

The expression in square brackets is bordered fo ∀ t. Convergence to infinity is
given by t = 0 we have x = Re(z) > 1.

We use (1.3) to evaluate the fractional derivative of f(t) = et.

f(t) = et =
∞∑

k=0

tk

k!
(series) (1.6)

Applying (1.3) we obtain:

dν

dtν
=

∞∑

k=0

tk−ν

Γ(k − ν + 1)

where ν > 0 and ν ∈ R (real number) Fractional derivative of exponential function
does not returns exponential function.

2 Definitions for fractional calculation

This section introduces the main definitions for fractional calculation applied
in the analysis.

Definition 2.1. Euler (1730)

dnxm

dxn
= m(m− 1)(m− 2)...(m− n+ 1)xm−n

Γ(m+ 1) = m(m− 1)...(m− n+ 1)Γ(m− n+ 1)

dnxm

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n

d1/2x

dx1/2
=

√
4x

π
=

2

π
x1/2,

unde Γ(z) =
∞∫
0

e−ttz−1 dt, Re(z) > 0.

Definition 2.2. J. B. J. Fourier (1820-1822) introduced:

f(x) =
1

2π

∞∫

−∞

f(z) dz

∞∫

−∞

cos(px− pz) dp.
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The definition of fractional operation was obtained from the representation of
the integral f(x).

For n integer number, we have

dn

dxn
cos p(x− z) = pn cos[p(x− z) +

1

2
nπ],

meaning

dnf(x)

dxn
=

1

2π

∞∫

−∞

f(z) dz

∞∫

−∞

pn cos[p(x− z) + n
π

2
] dp.

Definition 2.3. N. H. Abel (1823-1826) introduced the definition of fractional
integrals:

x∫

0

S′(η)dη

(x− η)α
= ψ(x).

In fact he has solved the whole for an arbitrary number α and not just for α = 1
2

obtaining:

S(x) =
sin(πα)

π
xα

1∫

0

ψ(xt)

(1− t)1−αdt.

After which Abel expressed the resulting solution with the help of the α. order:

S(x) =
1

Γ(1− α)

d−αψ(x)

dx−α
.

Abel applied the fractional calculation in the solution of the integral equation
of the formulation the problem of finding the shape of the curve so that the time
of frictionless descent, sliding under the action of gravity independent of the point
starting. If the slip time is constantly known (T ), the equation becomes:

k =

x∫

0

(x− t)−1/2f(t)dt.

This equation, except 1
Γ(1/2) , is the particular case of the defined integrability

represents the first fraction integral 1
2 .

√
π[d−1/2/dx−1/2]f(x)

d1/2/dx1/2, we get

d1/2

dx1/2
k =
√
πf(x).
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66 E. Vasilache

Definition 2.4. J. Liouville (1823-1855):
I. In its first definition, according to the exponential representation of the func-

tion f(x) =
∞∑
n=0

cne
anx, generalized the formula dmeax

dxn = ameax like

dνf(x)

dxν
=

∞∑

n=0

cna
ν
ne
anx

II. The second type of definition was that of the fractional integral:

∫ µ

Φ(x)dxµ =
1

(−1)µΓ(µ)

∞∫

0

Φ(x+ α)αµ−1dα

∫ µ

Φ(x)dxµ =
1

Γ(µ)

∞∫

0

Φ(x− α)αµ−1dα

Substituting τ = x+ α şi τ = x− α in the formulas above, obtain:

∫ µ

Φ(x)dxµ =
1

(−1)µΓ(µ)

∞∫

x

(τ − x)µ−1Φ(τ)dτ

∫ µ

Φ(x)dxµ =
1

Γ(µ)

x∫

−∞

(x− τ)µ−1Φ(τ)dτ.

III. The third definition, introduced the fractional derivative:

dµF (x)

dxµ
=

(−1)µ

hµ

(
F (x)

µ

1
F (x+ h) +

µ(µ− 1)

1 · 2 F (x+ 2h)− ...
)

dµF (x)

dxµ
=

1

hµ

(
F (x)

µ

1
F (x− h) +

µ(µ− 1)

1 · 2 F (x− 2h)− ...
)

Definition 2.5. G. F. B. Riemann (1847-1876):
Its definition for fractional integrals is:

D−νf(x) =
1

Γ(ν)

x∫

c

(x− t)ν−1f(t)dt+ ψ(t)
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Some concepts of fractional differential calculus using MATLAB 67

Definition 2.6. N. Ya. Sonin (1869), A. V. Letnikov (1872), H. Laurent (1884),
N. Nekrasove (1888), K. Nishimoto (1987):
They considered the integral Cauchy formula

f (n)(z) =
n!

2πi

∫

c

f(t)

(t− z)n+1
dt

and replace n cu ν got

Dνf(z) =
Γ(ν + 1)

2πi

∫ x+

c

f(t)

(t− z)ν+1
dt.

Definition 2.7. Definition Riemann-Liouvill:
The classic definition of fractional calculation is the one that shows the link between
the two previous definitions.

aD
α
t f(t) =

1

Γ(n− α)

(
d

dt

)n t∫

a

f(τ)dτ

(t− τ)α−n+1

(n− 1 ≤ α < n)

Definition 2.8. Grünwald-Letnikove:
This is another definition that is sometimes useful.

aD
α
t f(t) = lim

h→0
h−α

[ t−ah ]∑

j=0

(−1)j
(
α
j

)
f(t− jh)

Definition 2.9. M. Caputo (1967):
The second common definition is

C
aD

α
t f(t) =

1

Γ(α− n)

t∫

a

f (n)(τ)dτ

(t− τ)α+1−n

(n− 1 ≤ α < n)
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68 E. Vasilache

Definition 2.10. Oldham and Spanier (1974):

dqf(βx)

dxq
= βq

dqf(βx)

d(βx)q

Definition 2.11. K. S. Miller, B. Ross (1993):
They used a different operator D as

Dᾱf(t) = Dα1Dα2 ...Dαnf(t), ᾱ = (α1, α2, ..., αn)

where Dαi is definition of Riemann-Liouvill or Caputo.

3 Fractional derivatives for some special functions

1. Unit function: For f(x) = 1 we have

dq1

dxq
=

x−q

Γ(1− q) , ∀q.

2. The identical function: For f(x) = x we have

dqx

dxq
=

x1−q

Γ(2− q) .

3. The exponential function: f(x) = ex is

dqe±x

dxq
=

∞∑

k=0

xk−q

Γ(k − q + 1)
.

4. The sinus function: If f(x) = sinx then

dq sin(x)

dxq
= sin

(
x+

qπ

2

)
.

5. The cosinus function: If f(x) = cosx then

dq cos(x)

dxq
= cos

(
x+

qπ

2

)
.
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6. Fractional derivatives LD
α
+ according to Liouville for some func-

tions special

f(x) dα

dxαf(x)

ekx kαekx k ≥ 0

sin(kx) kα sin(kx+ π
2α)

cos(kx) kα cos(kx+ π
2α)

erf(kx) divergent

e−kx
2 k

α
2

Γ(1−α)(Γ(1− α
2 )1F1(1

2 + α
2 ; 1

2;−kx2)

−
√
kαxΓ(1

2 − α
2 )1F1(1 + α

2 ; 3
2;−kx2))

− 2
√
kαxΓ(3

2 − α
2 ); 1F1(1

2 + α
2 ; 3

2;−kx2)

− 2
3k(1− α2)x2Γ(1

2 − α
2 )1F1(3

2 + α
2 ; 5

2;−kx2))

pFq({ai}; {bj}; kx) kα
p∏

i=1

Γ(ai+α)
Γ(ai)

q∏

j=1

Γ(bj)

Γ(bj+α)

pFq({ai + α}; {bj + α}; kx)

|x|−k Γ(k+α)
Γ(k) |x|−k−α, x < 0

7. Several special functions and their fractional derivatives RD
α

according to the Riemann definition

f(x) dα

dxαf(x)

ekx sign(x)(sign(x)k)α
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70 E. Vasilache

ekx
(

1− Γ(−α,kx)
Γ(−α)

)

sin(kx)
(2−α) ksign(x)|x|−αx
(2−3α+α2)Γ(1−α) 1F2

(
1; 3

2 − α
2 , 2− α

2 ;−1
4k

2x2
)

− k3sign(x)|x|−αx3
(32−α2 )(2−α2 )(2−3α+α2)Γ(1−α) 1F2

(
2; 5

2 − α
2 , 3− α

2 ;−1
4k

2x2
)

cos(kx) sign(x)
|x|−α
Γ(4−α)

((α− 1)(α− 2)(α− 3)1F2(1; 1− α
2 ,

3
2 − α

2 ;−1
4k

2x2)

+ 2k2x2
1F2(2; 2− α

2 ,
5
2 − α

2 ;−1
4k

2x2))

erf(kx) − 2−1+αk sign(x)|x|−α

((α− 2)2F̄2(1
2, 1; 3

2 − α
2 , 2− α

2 ;−k2x2)

+ k2x2
2F̄2(3

2, 2; 5
2 − α

2 , 3− α
2 ;−k2x2))

pFq({ai}; {bj}; kx) sign(x)|x|−α1
Γ(1−α)p+1Fq+1({1, 1 + ai}; {bj , 2− α}; kx)

+ ksign(x)|x|−αx1
(1−α)(2−α)Γ(1−α)

p∏

i=1

ai

q∏

j=1

1
bj

× p+1Fq+1({2, 1 + ai}; {1 + bj , 3− α}; kx)

log(x) x−α
Γ(2−α)(1− (1− α)(H1−α + log(x))), x > 0

xk
Γ(1+k)
Γ(1+k−αsign(x)|x|−αxk

4 Method Grünwald-Letnikov

For the numerical calculation of the fractional derivatives we can use the rela-
tion:

(k−Lm/h)D
q
tk
f(t) ≈ h−q

k∑

j=0

(−1)j
(
q
j

)
f(tk−j) = h−q

k∑

j=0

c
(q)
j f(tk−j) (4.1)

resulting from the Grünwald-Letnikov relation in Definition 2.8.
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Some concepts of fractional differential calculus using MATLAB 71

This approach is based on the fact that for most of the function classes, the def-
initions of Grünwald-Letnikov, Riemann-Liouvill and M. Caputo are equivalent if
f(a) = 0.

Relationship for the explicit numerical approximation of the q−derivative in
the points kh, (k = 1, 2, ...) has the above given form (see 4.1) (Dorčák, 1994;
Podlubny, 1999), where:
−Ln is memory lenght
−tk = kh
−h =the time at that step

−c(q)
j (j = 0, 1, ...., k) = coefficient binomial.

To calculate them, we can use mathematical relations:

c
(q)
0 = 1, c

(q)
j =

(
1− 1 + q

j

)
c

(q)
j−1. (4.2)

Binomial coefficients c
(q)
j (j = 0, 1, ...., k) can also be expressed factorial. By

factorial writing, Function Gamma allows us to generalize the binomial coefficients
for arguments that are not integers.

(−1)j
(
q
j

)
= (−1)j

Γ(q + 1)

Γ(j + 1)Γ(q − j + 1)
=

Γ(j − q)
Γ(−q)Γ(j + 1)

. (4.3)

Obviously, for this simplification, the accuracy of the result is lost.

If f(t) < M, we can very easily set the estimated Lm (with accuracy ε)

Lm ≥
(

M

ε|Γ(1− q)|

) 1
q

. (4.4)

This is called Power Series Expansion (PSE). Transfer function discreetly re-
sulting, the approximate fractional order operators can be expressed in the range
−z in the following way:

0D
±r
kTG(z) =

Y (z)

F (z)
=

(
1

T

)±r
PSE

{
(1− z−1)±r

}
n
≈ T∓rRn(z−1), (4.5)

where:
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72 E. Vasilache

−T − reference;

−PSE{u} − The function results from the application of the PSE function u;

−Y (z) is converted ”Z” of the output sequence y(kT );

−F (z) is converted ”Z” of the input sequence f(kT );

−n− the order of approximation;

−R− the n-polynom in variable z−1 and k = 1, 2, ....

Aplication 4.1. Let the order of fractional derivation α ∈ [0, 1] for the function
y = sin(t) with t ∈ [0, 2π]. The following code in MATLAB uses the command f
deriv () entered by Bayat (2007) and based on 4.1.

Input data:

clear all; close all;
h = 0.01; t = 0 : h : 2 ∗ pi;
y = sin(t);
order = 0 : 0.1 : 1;
for i = 1 : length (order)
yd(i, :) = fderiv(order(i), y, h);

end
[X,Y ] = meshgrid (t, order);
mesh (X,Y, yd)
xlabel (t′); ylabel (′\alpha′); zlabel (′y′)

Figure 1: Fractional derivative of function y = sin(t)
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Figure 1 is a graphical derivative of the sinus function for fractional derivation
order 0 < α < 1 and 0 < t < 2π.

Aplication 4.2. We can get a better approximation of the fractional derivative if
h of the first relation h is small enough so it can be demonstrated that the accuracy
of this methods is 0. The MATLAB code for the application function 4.1 and the
function ex.

Input:

function dy =gdiff(y, x, gam)
h = x(2)− x(1); dy(1) = 0; y = y(:);x = x(:);
w = 1;
for j = 2 : length(x), w(j) = w(j − 1)∗(1− (gam+ 1)/(j − 1));
end
for i = 2 : length(x), dy(i) = w(1 : i)∗[y(i : −1 : 1)]/h∧gam;
end
by Matlab code
t = 0 : 0.001 : pi; y = sin(t); dy = gdiff(y, t, 0.9); plot(t, dy)
t = 0 : 0.001 : pi; y = sin(t); dy = gdiff(y, t, 0.9); plot(t, dy);
hold on;
t = 0 : 0.001 : pi; y = sin(t); dy = gdiff(y, t, 0.1); plot(t, dy);
t = 0 : 0.001 : pi; y = sin(t); dy = gdiff(y, t, 0.5); plot(t, dy);

we get 0.1, 0.5 a 0.9 derivative of function sin(x) see the fig below:

Figure 2: The 0.1, 0.5, 0.9 derivative of function sin(x)

BUPT



74 E. Vasilache

By Matlab:

t = 0 : 0.001 : 5; y = exp(t); plot(t, y)
t = 0 : 0.001 : 3; y = exp(t); plot(t, y)
hold on;
t = 0 : 0.001 : 3; y = exp(t); dy = gdiff(y, t, 0.3); plot(t, dy)
t = 0 : 0.001 : 3; y = exp(t); dy = gdiff(y, t, 0.5); plot(t, dy)
t = 0 : 0.001 : 3; y = exp(t); dy = gdiff(y, t, 0.7); plot(t, dy)

Figure 3: The 0.3, 0.5, 0.7 derivative of function ex

It is observed in figurative representation how 0.3−a 0.5-a şi 0.7−a derivatives
of ex are almost identical, which is similar to the classical derivation so (ez)′ = ez

and ez α derivativetimes that is also maintained for α =fractional.

5 Differential fractional equations

The general fractional system can be described by means of the differential
equation fractional form:

anD
αn
t y(t)+an−1D

αn−1

t y(t)+...+a0D
α0
t y(t) = bmD

βm
t u(t)+bm−1D

βm−1

t u(t)+...+b0D
β0
t u(t),

(5.1)

where Dγ
t ≡ 0D

γ
t express Grünwald-Letnikov, Riemann-Liouvill sau Caputo

derivatives fractional. The corresponding irrational transfer function has the form
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G(s) =
bms

βm + ...+ b1s
β1 + b0s

β0

ansαn + ...+ a1sα1 + a0sα0
=
Q(sβk)

P (sαk)
, (5.2)

where ak(k = 0, ...n), bk(k = 0, ...m) are constants, and αk(k = 0, ...n), βk(k =
0, ...m) are real or rational numbers of any kind and without limitation the gener-
ality may be arranged

αn > αn−1 > ... > α0, βm > βm−1 > ... > β0. (5.3)

In a particular case for systems of commensurable order, keep αk = αk, βk =
αk, (0 < α < 1), ∀k ∈ Z, and the transfer function has the following form:

G(s) = K0

M∑
k=0

bk(s
α)k

N∑
k=0

ak(sα)k
= K0

Q(sα)

P (sα)
. (5.4)

With N > M, the function G(s) becomes its own rational function in complex
variables sα and what can be extended to form:

G(s) = K0

[
N∑

i=1

Ai
sα + λi

]
,

where λi(i = 1, 2, ..., N) are the roots of the pseudo polynomial or the polynomial
system. The analytical solution of the system can be expressed

y(t) = L−1

{
K0

[
N∑

i=1

Ai
sα + λi

]}
= K0

N∑

i=1

Ait
αEα,α(−λitα), (5.5)

anD
αn
t y(t) + ...+ a1D

α1
t y(t) + ...+ a0D

α0
t y(t) = 0, (5.6)

where ak(k = 0, 1, ..., n) are constant coefficients; αk(k = 0, 1, 2, ..., n) are real
numbers.

Without restricting generality, we ca assume that αn > αn−1 > ... > α0 ≥ 0.

The analytical solution of 5.6 is given by the general formula in the form:

y(t) =
1

an

∞∑

m=0

(−1)m

m!

∑

k0+k1+...+kn−2=m

k0≥,...,kn−2≥0

(m; k0, k1, ..., kn−2)

×
n=2∏

i=0

(
ai
an

)ki
Em(t,−an−1

an
;αn − αn−1, αn +

n=2∑

j=0

(αn−1 − αj)kj + 1),
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where (m, k0, k1, ..., kn−2) are multinomial coefficients.

It is the control function that modifies the system 5.6 in:

anD
αn
t y(t) + ...+ a1D

α1
t y(t) + a0D

α0
t y(t) = u(t). (5.7)

Through Laplace, we get the fractional transfer function:

G(s) =
Y (s)

U(s)
=

1

ansαn + ...+ a1sα1 + a0sα0
. (5.8)

Aplication 5.1. Given a fractional differential of the second order, with initial
zero conditions, α = 1.5, a = 2, b = 1, pasul = 0.001 calculation time 20sec. :

aDα
t y(t) + by(t) = 1. (5.9)

The solution can be obtained using Laplace’s transformation method, it can be
expressed:

Y (s) =
1/a

s(sα + b/a)
(5.10)

and the general solution is as follows:

y(t) =
1

a
E0(t,− b

a
;α, α+ 1) ≡ 1

a
tαEα,α+1

(
− b
a
tα
)
. (5.11)

To get the solution in MATLAB, we can use the following commands:

clear all; close all;
a = 2; b = 1; alpha = 1.5;
t = 0 : 0.001 : 20;
y = (1/a) ∗ t.∧(alpha). ∗mlf(alpha, alpha+ 1, ((−b/a) ∗ t.∧(alpha)));
plot(t, y);
xlabel(′Time[sec]′);
ylabel(′y(t)′);
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Figure 4: The equation solution
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Ion Voda 58, 900573, Constanţa, ROMANIA
E-mail: elena lmm@yahoo.com

BUPT


