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Why automation of human behavior understanding is so challenging 

 

1 Introduction 
 

This chapter aims to describe the topic of this PhD thesis, namely the Tracking 

Solution in Video-Based Sensor Networks. The scope of this research work is to 

propose a video surveillance system that is able to detect important events in the 

urban areas. The sisyem relies on using computer vision algorithms that do not 

demand high computational power. Therefore , my primary focus was to design 

computer vision algorithms that use as litle computation resources as possible. In 

other words I aimed to design not computationaly intensive algorithms that operate 

in real time and are capable of analysing complex scenes so the are able to detect 

human behavio in video. This strategy allows the surveillance camera to process the 

video stream on its own, so the process of detecting behavior in a large surveillance 

system is much simplified.  

 

As we all know, surveillance systems in big cities are composed of many surveillance 

cameras that are connected to several central stations. The cameras usually do not 

include any processing, but instead transmit video to the central stations via the 

network for further analysis. This architecture requires a powerful computing power 

of the central stations and also a fast and reliable network to be able to transmit 

data in real time. In figure 1 is an example of such architecture. 

 

 
 

Figure 1 - Centralized video surveillance architecture 
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Therefore, incorporating video analysis processing into surveillance cameras reduces 

the need for a powerful central station in terms of computational power and also 

reduces the volume of data traffic on the network. Instead of streaming the video 

data to the central station, the surveillance cameras send only small data packets 

containing the results of the video analysis process. Such an distributed processing 

architecture is much more convenient especially for the batery powered surveillance 

systems which are designed to be deployed in zones where there is no video 

surveillance infrastructure.  

 

The video data is analysed individually by each surveilance camera node and the 

results are transmitted via the wireless network to the central station. In this way, 

the data no longer has to be processed by the central unit and thus the central unit 

does not have to have high computing power. Such a surveillance system is 

illustrated in figure 2. 

  

Figure 2 - Wireless surveillance network with embeded video analysis into the surveillance 
camera 
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This architecture also has another advantage. Because the cameras do not require a 

cable connection, they can be, for example, battery-powered devices. This type of 

surveillance system is suitable for use in cases where a quick installation of the 

surveillance system is required. For example, to monitor protests or music concerts. 

 

However, the most sensitive part of this system is the video analysis algorithm. It is 

application oriented and requires a lot of design attention, as it is expected to 

achieve good detection performance and to run on low resource hardware. 

Moreover, designing a video analysis algorithm that is meant to detect behavior is 

not an easy task. Behavior understanding is a complex process that oftentimes is 

misunderstood even by the humans. Therefore, this process must be analyzed in 

great detail in order to design a successful algorithm.  

 

 

2 Why human behavior understanding is 
important 

 

In this section I am going to tackle the reasons why understanding the human 

behavior is so important.My personal opinion is that human behavior is a very 

interesting field to study. Behavior of animals was exploited by the humans from the 

beginning of our era. In the need for food the humans hunted animals for survival. 

The hunting process involved tracing the victims and catching them in a trap. For 

efficient hunting the hunter needs to know the victim next move based on the 

presented clues. In other words, the hunter needs to be familiar with victim’s 

behavior. 

 

Same scenario applies now-days except that the behavior analysis is extended to 

many other areas like biology (analyzing the behavior of a cell), sociology (analyzing 

human behavior), medicine, civil engineering, traffic management and many others. 

Although the idea is old it is exhaustively exploited in many modern science fields 

for ever since. 

 

As an example in medicine, in order to establish the patient's diagnosis, doctors 

have to perform a lot of tests, thus obtaining a lot of data regarding patient 

behavior. By combining these data with the doctor's knowledge, a diagnosis can be 

established. Such a diagnostic technique is used to detect many diseases like 

Parkinson and Alzheimer. Similarly, this technique is also used for the early detection 

of children with intellectual disabilities. Early detection of the disease is very helpful 

for patients because doctors can more easily control it.  

 

Similarly, in sports, it is common practice for coaches and managers to analyze the 

recorded videos of opponent teams. With the help of this analysis, they are able to 
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understand the behavior of their opponents and thus can anticipate certain 

unfavorable actions for their team that have very high chances to occur during the 

football match. This helps the coaches to better plan their game and thus their team 

has higher chances to win the game. 

 

Another example where behavior analysis plays an important role is the analysis of 

the employee behavior. In this sense, the psychological study elaborated in [1] uses 

the analysis of employee behavior to demonstrate that there is a direct link between 

the age of employees and their attitude towards work. Attitude towards colleagues 

and other values such as job satisfaction, preferences and motivation are all 

analyzed through employee behavior. Through this technique, the authors have 

shown that there is indeed a link between the age of the employee and his interest 

in work. This information can be very helpful for company managers. They can 

assign tasks based on this finding, so that the work is done more efficiently. 

 

Similarly, the article elaborated in [2] investigates the behavioral patterns that can 

tell us whether an employee has a carrier or group oriented commitment. More 

precisely, the authors collected the data from 287 employees by using self reports. 

So, by using the acquired data they managed to develop a method that can 

successful classify the employee’s orientation. This type of information can help 

manager better plan tasks. So each employee receives tasks that suit him best. 

 

The technique of recognizing human behavior can also be used to estimate the next 

action of individuals in urban areas. This estimation is particularly important in 

scenes that involve dangerous human actions like fight, robberes and other similar 

activities. If actions are correctly estimated, such unwanted human behaviors can 

be stopped. That is, this approach allows for the early detection of dangerous 

behaviors that can be used, for example, by the police in order to get to the scene 

very quickly. 

 

 

2.1 Why automation of human behavior understanding is so 
challenging 

 

Analyzing people's behavior is a complex task for computers. In order to recognize 

human behavior, the computers need to analyze a lot of data and to recognize many 

patterns in it. People are able to more easily recognize behavior of other people, but 

computers do not. Generally speaking, the human behavior can be described as a 

collection of human actions. Of course, there are exceptions to this rule, in some 

cases the behavior may consist of just one long action. 

 

According to the literature, there are several levels of abstractions for the human 

behavior that are used in computer vision algorithms for detecting human behavior. 

The taxonomy proposed in [3] classifies the behavior analysis tasks based on the 

BUPT



Why automation of human behavior understanding is so challenging 

 

degree of semantics and the amount of time required for the task to complete as 

illustrated in the figure3. 

 

 

Therefore, at very basic level is the motion detection which includes background 

subtraction and motion segmentation. The next level includes action detection in 

winch the human motion is recognized. This task aims to detect the type of action, 

like running, walking, siting, as well as the person's interaction with the objects in 

the scene. After actions, follow the activities in which human behavior is detected 

based on the analysis of several human actions. This level consists of analyzing the 

scene for a very short period of time. The analysis usually takes a few seconds to a 

few minutes. Therefore, this category includes behaviors such as showering, 

cooking, eating and so on. The level with the highest semantics is labeled as 

behavior. It is located at the top of the pyramid in the figure3. The behavior is 

defined by authors as a collection of actions that are captured over a longer period 

of time that is hours, days, or even weeks. In this category belong behaviors like 

personal habits, daily routines and other similar activities. 

 

Similarly, the authors in [4] define an action taxonomy based on three levels of 

abstraction. In this sense, they introduce the primitives of action, the action, and 

the activity. Action primitives include basic human movements that are performed 

at the limb level. A collection of such action primitives forms an action while the 

activity consists of a collection of actions involving interactions between humans and 

objects. For example, the process of making tea includes arm movements that are 

action primitives, taking the glass from the table is the action itself, and since the 

whole process involves multiple actions and interaction with objects, brewing tea is 

defined as an activity. 

 

Nevertheless, action recognition plays a key role in recognizing human behavior. 

Many times, it is hard to predict the behavior of an individual or of a group. The 

Figure 3 - Classification of the behavior analysis tasks [3] 
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main problem is that people can have quite different actions for a certain behavior. 

That is, the same behavior does not necessarily mean the same set of actions. 

 

 

2.2 Behavior understanding in video surveillance 
 

Intelligent video surveillance systems like in thefigure 4.a are becoming increasingly 

important along with today's problems, such as terrorist attacks, natural disasters 

caused by global warming and cities overcrowding. Almost all solutions in this field 

are based on video analysis algorithms which aim to capture important activities like 

human actions, human behavior or traffic surveillance events. The purpose of such 

systems is to help or replace the painstaking work of surveillance officers figure 4.b, 

who face the problem of monitoring multiple screens at once for long period of time. 

Their job is to analyze each video surveillance stream and identify irregularities in it. 

This is where the problem arises. 

 

According to medical experiments, human eyes get tired very easily, especially if 

they constantly change their focus of attention. The authors in [5] have 

demonstrated that human can easily omit actions in a video. They performed an 

experiment in which a man had to detect all human actions in a thirty-minute video 

that was played on a single screen. Upon completion, they found that he had failed 

to detect more than 80% of the actions. This is a very clear indicator that humans 

are not efficient in analyzing surveillance videos. To remedy this problem, an 

automatic video analysis system would be much more suitable for such a task. 

 

       a)      b) 

Figure 4 - Surveillance system in urban areas; a) surveillance cameras; b) camera control 
center 

Nevertheless, another problem that automatic surveillance systems help a lot is due 

to the large amounts of data provided by video surveillance systems in the city. As 

surveillance cameras become cheaper, more and more cities are equipped with 

surveillance systems consisting of hundreds or thousands of cameras. This fact 

creates a new problem. The increased number of cameras in the cities are able to 

capture a lot of information that is unable to process by the surveillance officers. 

Therefore, only part of it is analyzed in real time, and the rest is stored in memory 
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for on demand analysis. However, this is not a very efficient solution because many 

important events are missed. A better option is to use an automated video analysis 

system so that video surveillance streams are quickly analyzed by computers. 

 

Such computer vision systems are popular in various fields. For example, they are 

frequently used in medicine for the task of healthcare monitoring of elderly people 

[6]. In these scenarios the algorithms are used to recognize human actions, human 

behavior, and human incidents. This information is very useful because it can reveal 

mental and physical problems of the monitored patients. In figure 5is an illustration 

of a fall incident that is common in a nursing home.  These types of incidents are 

usually detected late by surveillance officers. So, the patient can stay in this state 

for several tens of minutes or even hours. For this reason, his health may worsen. 

To avoid this situation, it is much more efficient to use a video analysis algorithm 

that constantly monitors video surveillance streams and alerts the surveillance 

officers if something goes wrong. 

 

 
Figure 5 - Four fall incidents captured by surveillance cameras in a nursing home [7] 

 

Another case that surveillance officers cannot cope with is the detection of unusual 

events in urban areas. Due to the large number of surveillance cameras, the officers 

miss many important events such as loitering detection, intrusion detection and 

unsupervised baggage detection which adversely affects public safety. For this 

reason, urban surveillance systems use computer vision algorithms to increase the 

detection rate of such dangerous events. 
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These types of computer vision algorithms are designed to improve public safety by 

monitoring human behavior. For example, loitering is often associated with 

vulnerable people seeking attention. As such, they are considered a real threat to 

public safety because they can harm other people by physically attacking them or 

they can cause material damage by destroying things around them. The act of 

loitering means to hang out in a certain area for longer period of time, with no real 

purpose. Thefigure 6.a illustrates such an act of a person inside a waiting room 

which is successfully captured by the loitering detection algorithm [8]. Nevertheless, 

the immediate detection of loitering behavior is important to public safety because 

can prevent the occurrence of aggressive behavior. 

 

Similarly, computer vision systems are frequently used in airports or railway 

stations by the security operators to early detect the unattended baggage act. 

Because there have been numerous incidents in recent years, caused by terrorist 

organizations that aimed to plant explosive devices with the help of luggage, this 

human behavior is desirable to be captured as soon as possible. Thus, the early 

detection of such unattended baggage act can prevent the destruction of transport 

infrastructure and they also save the lives of many people. The figure 6.bshows an 

unattended baggage from a train station that is captured by the computer vision 

algorithm proposed in [9]. 

a)                                                       b) 

Figure 6 - Surveillance systems using computer vision; a) Loitering behavior of a person inside 
a waiting room[8]; b) Unattended baggage from a train station [9] 

Computer vision algorithms can also aid surveillance officers in the detection of 

anomalies in crowded places. This scenario is often encountered in today's cities, as 

they become larger and larger. According to information gathered form [10] 55% of 

the world's population currently lives in urban areas. This number is constantly 

increasing, so that by 2050 it is estimated that the percentage will reach 68%, 

which means that the cities will get overcrowded. Increasing the number of people 

in a city also means increasing the crime rate. Therefore, the prevention of such 

events is essential for public security. 
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To deal with this problem, surveillance systems must constantly analyze many video 

streams. It is known that the probability of unusual behaviors increases with the 

number of people. Therefore, it is most likely that an unusual event will take place 

in crowded places. For this reason, the surveillance analysis should be focused on 

the crowded places of the city. In this sense the computer vision algorithms such as 

[11][12] may help the surveillance officers to detect unusual behavior in crowded 

areas. 

 

These types of computer vision algorithms differ from the algorithms that detect 

actions of individuals. They analyse the group behavior and not the behavior of 

individuals. The reason for such an approach is that the actions of individuals 

causing problems are difficult to recognize in a crowd. Their bodies are usually 

occluded by other people's bodies and thus recognition of the action is difficult in 

such cases.  

 

Examples of such unusual human behaviors that are common in a crowd are scenes 

in which people run in one direction or scenes in which people disperse from a 

central point due to panic, fight or clash. These scenarios are illustrated in figure 7. 

The first two pictures of figure 7.a fromthe left illustrate the running in one direction 

scenario while the last one shows an example of crowd dispersion. The examples 

are from the UMN dataset that is described in the article[13]. Another type of 

anomalous behavior that is common in crowds is the occurrence of unusual events 

in scene, such as the presence of cyclists, skateboarders or a vehicle in the 

pedestrian area. These scenarios are illustrated in the in figure7.b. They are from 

the UCSD dataset which is described in the article [14]. 

 
a) 

 
b) 

Figure 7 - Anomalous crowd behavior; a) samples from the UMN dataset [13]; b) samples 
from the UCSD dataset [14] 
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3 Thesis structure 
 

In the following sections I am going to describe the achievements that I gained 

during my research period. Beside the revealed novelties, I am also going to 

describe the state of the art approaches that are related to my research. The last 

part of this manuscript points out my contributions. Nevertheless, the thesis is 

structured as follows. 

 

The next chapter that is the chapter three is constrained about describing the state 

of the art solutions that are used in the computer vision applications for detecting 

human activities. More specifically these state of the art approaches are computer 

vision algorithms that are designed to automatically detect human events in video. 

Some of them are concerned about detecting simple human actions whilist others 

are aimed for detecting complex behaviors.My goal was to design a smart 

surveillance system that is able to improve the public safety so I investigated just 

computer vision algorithms that are designed to recognize abnormal human actions 

and unushual human behaviors. Theoretically these algorithms could be a perfect fit 

for a smart surveillance network that I propose in the chapter four,but all have their 

drawbacks so they can not be used in this sort of applications.  

 

In the chaptapter four I propose a novel smart surveillance system.The first part 

describes the details of its architecture and also provides a brief description of the 

procedures for installing surveillance cameras. Beside system description the 

chapter four also contains the details of a computer vision algorithm I designed for 

the novel surveillance system.This novel algorithm was a first step towards 

designing a more advanced computer vision algorithm that could analyze complex 

urban scenes. In this sense, I designed my first video analysis algorithm that is 

capable to recognize simple behaviors that are encountered in the traffic 

surveillance applications. 

 

The chapter five introduces a more advanced computer vision algorithm than the 

one described in chapter four. It uses an advanced technique that is based on 

motion understanding in order to classify human behavior in video.The algorithm is 

able to detect unushual human behavior in video streams that are captured by 

surveillance cameras. These types of events are important to detect because they 

can prevent dangerous situations from happening. 

 

In a similar manner, the chapter six describes another novel computer vision 

algorithm that is an extension of the algorithm presented in chapter five. It serves 

for the same purpose that is to detect unushual human behavior in video, but 

compared to its brother it is able to analyze more complex scenes. The algorithm is 

also based on motion understanding, but in the detection process beside the 

classical computer vision techiques it also uses a deep learning techique. This hybrid 

BUPT



Handcrafted video analysis solutions for action recognition 

 

approach enables it to analyze complex scenes thus it can easely spot the abnormal 

behaviors of people in video. 

It is important to note that all the computer vision algorithms that I propose in this 

thesis are meant for the novel smart surveillance system described in chapter four. 

 

Lastly, the chapter seven contains an overview of my work. The conclusion section 

within this chapter is a brief resume of the approaches that I propose in this thesis. 

It is followed by a contribution sections in which I point out my contribution to 

knowledge. 

 

4 State of the art in behavior recognition 
 

In this chapter I am going to describe the available computer vision algorithms that 

are designed to capture human actions in video. Action detection is a valuable 

approach, because it enables us to recognize the human behavior in video. The first 

generations of action detection algorithms were manually crafted. This means that 

the feature extraction and the action classification consist of manually tuned 

algorithms, relying on human analysis and understanding of the problem at hand. 

Usually, these solutions only work in the environments for which they were designed 

and under the underlying assumptions made by the designer. These assumptions 

are made based on human analysis of the available application data. Due to design 

time constraints and possible memory flows of the designer, the effectiveness of this 

approach in complex problems is limited.  

 

The second generation of action detection algorithms described in this chapter are 

based on the deep learning approach. Opposite to the handcrafted approach, the 

deep learning solutions are automatically derived from data. The amount of data 

that can be used for learning is not limited by the availability of time and the 

perseverance of the designer. Once defined, a deep learning architecture can be 

retrained and used for detecting the actions in many environments with just a little 

fine tuning. One downside of the deep learning solution is the need of considerably 

larger learning datasets than those used in handcrafted solutions.    

 

 

4.1 Handcrafted video analysis solutions for action 
recognition 

 

The handcrafted solutions presented in this chapter include state of the art video 

analysis algorithms that aim to either recognize human actions in video or recognize 

violent events. Violent events are nothing but certain types of actions, so both types 

of algorithms aim to achieve the same general goal.  
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Based on the features used, the handcrafted video analysis solutions can be divided 

into two categories: 

 

 solutions that use holistic representations and 

 solutions that use local features  

 

Solutions that use holistic representations involve detecting and locating the human 

body. They usually use the human shape or silhouette as features to detect the 

action. Instead, the second category includes solutions that use only local features. 

The advantage of this method is that it does not require the explicit detection of the 

human body. It uses one or several feature extractor algorithms, in order to capture 

the human body information relevant for the analysis.  

 

 

4.1.1 Solutions that use holistic representations 
 

In search of a computer vision algorithm, that can run in real time on a smart 

surveillance camera and is designed to detect human behavior in video, I explored 

several state-of-the-art computer vision algorithms that use holistic representations. 

 

One such promising algorithm that caught my attention is the one presented in 

[15]. It is able to detect human abnormal events from the urban surveillance 

videos. The algorithm uses several computer vision techiquies to achieve this task. 

Therefore, in the figure 8 is an illustration that shows its block diagram.  

 

 

Figure 8 - The block diagram of the video analysis algorithm that aims to detect abnormal 
events of people in urban areas [15] 
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In the first phase the video scene is segmented by the object detection and tracking 

block of the algorithm. All humans in the video are recognized and their positionsare 

stored over time. In order to be able to priceisely estimate the object positions the 

approach uses a tracking algorithm that is propose in the article [16]. This method 

of detection seemed to be very effective, so I tried it in my experiments and decided 

to use a similar recipe in the algorithm I propose in chapter five. 

 

Moreover, the proposed approach is able to detect groups by using trajectories in 

the scene. If there are two or more people next to each other, the algorithm groups 

them together and tracks the whole group as one object, by using the algorithm 

proposed in [17]. 

 

In order to reduce the processing time, the authors propose the elimination of the 

trajectory points that are not sufficiently descriptive for action detection. In the 

article, this process is called trajectory snapping.  It consists of applying a grid over 

entire the frame and grouping all the trajectory points that are found within each 

grid element. Therefore, instead of having multiple points each grid element has 

just one most representative trajectory point. This process reduces the number of 

points in each trajectory. 

 

The reduction of the trajectory points is followed by a discovery of the interest 

zones. Both phases are based on grid analysis. Clustering the zones in the videos 

makes it easier to recognize the violent activities. Thus, the algorithm detects areas 

where people stand still, areas where people move at a moderate speed and areas 

where people run. For clustering the zones, the authors decided to apply the affinity 

propagation algorithm [18] to the already extracted trajectories. 

 

The next phase, namely the trajectory filtering, is responsible for detecting 

abnormal trajectories and separating them from normal ones. It implies the use of a 

Gaussian distribution to model the direction and speed of the trajectories. In the 

case when the trajectory direction or the trajectory speed is not found in the model 

it is considered as abnormal. This approach of trajectory filtering is able to detect 

only a small number of anomalous events in the scene. Despite of this limitation the 

approach is very effective in recognizing human actions. For this reason, I decided 

to adopt the trajectory descriptors used by this method in my algorithm that I 

propose in chapter five. 

 

Hence, to further improve the violence detection performance, the authors include a 

spatio-temporal filtering phase. The process consists of extracting the trajectories of 

optical flow and the HOG, HOF, MBHx and MBHy descriptors for several consecutive 

frames. These descriptors extract the appearance and the motion of objects in the 

scene. Furthermore, because the extraction of the descriptors for entire frame 

introduces a processing overhead, the authors apply descriptor extraction only on 

BUPT



State of the art in behavior recognition 

 

 

the bounding boxes provided by the tracking algorithm. So descriptors are 

computed only for zones of the scene that contain people. 

 

For modeling actions using descriptors, the proposed approach uses the Bag of 

Words model. The actions are described by the histogram of visual words and each 

descriptor has its own codebook. In the final phase, the authors aimed to use a 

classifier that do not require training before use. Therefore, they used the affinity 

propagation clustering algorithm defined in [18] for action classification. 

 

The proposed violence detection algorithm was tested on three publicly available 

datasets, namely the Mind’s Eye[19]the Subway [20] and the Vanaheim Metro [21]. 

It achieved decent detection accuracy on all the datasets. However, due to the use 

of a complex video descriptor, this action recognition solution is computationaly 

expensive, so it cannot run in real time on a smart surveillance camera that has 

limited hardware resources. 

 
Another interesting action recognition algorithm,  is proposed in [22]. The algorithm 

is able to detect six actions in videos, namely walking, standing, bending, lying 

squatting and sitting. In order to detect those actions, the algorithm uses shape of 

the human bodies and the AdaBoost algorithm. Its principle of operation is 

illustrated in figure 9. 

 
 

 

Figure 9 - Illustration of internal operations of the human action recognition algorithm [22] 
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The human body segmentation stage of the algorithm is responsible for extracting 

the silhouettes of humans in the video. For this purpose, the authors decided to use 

a custom background subtraction algorithm for separating the foreground objects 

from the static background. As was to be expected, the foreground mask generated 

by this method contains a lot of parasite (noise) pixels that affect the segmentation 

performance of the proposed algorithm. To remedy this issue, they use 

morphological operations in the process. Namely, the authors use the erosion and 

the dilation operations [23] to get rid of many parasite pixels in the foreground 

mask. Those wrongly classified pixels in the foreground mask are usually caused by 

the inability of the background subtraction to precisely construct the background 

model. Due to the efficiency of this noise elimination method, I decided to use it in 

the algorithms I propose in chapters four and five. 

 

Feature extraction is the next step of the algorithm of [22].The proposed approach 

extracts the features of humans by dividing their silhouettes into five regions. Such 

features are simple, invariant to rotation and translation and yet descriptive enough 

to distinguish among the five human actions targeted by the authors.These features 

are easy to extract and are very robust. They also do not demant complex 

operations in their extraction process. So these findings, motivated me to use a 

similar silouethe based feature in the algorithm I propose in chapter five. 

 

Classification of the actions is achieved by using the AdaBoost algorithm. The idea 

behind this learning meta-algorithm is to use several simpler classifiers linked in a 

cascade manner. Therefore, the AdaBoost classification algorithm proposed in [22] 

consist of a cascade composed of several random tree classifiers. The approach is 

One-Against-All. Each “weak” classifier is a binary classifier that can classify the 

data into just two classes. That means that each classifier is able to recognize just 

one action. If the current action is not the action for which the classifier was 

instructed, it is passed to the next classifier in the cascade. 

 

This promising approach claims to achieve a decent detection performance on the 

two of the most well known datasets, namely the fall detection dataset (URFD)[24] 

and the UMAFD dataset [25]. As its name suggests, the first dataset is concerned 

with detecting the fall, while the second one is more generic thus containing daily 

activities. The algorithm succeeded to detect the fall in 96.56% of cases in the URFD 

dataset. The detection of activities in the UMAFD database follows the same trend. 

According to the result presented in the paper the overall action detection accuracy 

for the UMAFD dataset is 93.91%. 

 

The shortcoming of this system is the use of a custom background subtraction 

algorithm that does not automatically update its background model. Consequently, 

the proposed action classification algorithm requires fine tuning during operation. 

Moreover, the algorithm is designed to recognize the actions of a single person, 
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which makes it unsuitable for the analysis of urban surveillance videos for violence 

detection. 

 

In [26], the use of a motion template for the recognition of actions in the video is 

proposed, namely the temporal template. In fact, this is a template matching 

technique. According to the data provided in the paper, this algorithm does not 

require a computationally expensive motion extractor. It uses a simple frame 

difference technique for extracting the person motion. This algorithm inspired me so 

I used a similar motion feature in my algorithms. 

 

 

The temporal template is nothing more than a vector image that encapsulates the 

motion of the object in the scene. In this regard the authors use two motion 

descriptors and a statistical descriptor to construct it. In the figure 10the left column 

shows the original frames, the middle columnillustrates the Motion Energy Image 

(MEI) descriptor and the right column illustrates the Motion History Image (MHI) 

descriptor. 

 

The MEI descriptor is computed by the means of a frame difference technique. It is 

a cumulative binary motion image that is captured from several consecutive frames. 

The MHI descriptor is similar to the MEI descriptor, the only difference being that it 

additionally encodes the direction of motion. For coding it uses the time at which the 

movement took place. Pixels that have a lighter color represent the motion that took 

place a short time ago, while pixels darker in color represent the motion that took 

place some time ago. Therefore, this encoding allows the algorithm to capture the 

direction of motion. 

 

These descriptors are further processed by the extraction of seven Hu moments 

algorithm [27] resulting in a statistical descriptor which is actually the temporal 

Figure 10 - Comparision of the MHI and MEI descriptors for three 
types of human actions [26] 
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template. Because the authors use a template matching technique, they construct 

statistical models of the actions. They use training samples that contain several 

types of actions captured from different angles to generate such temporal template 

models. Finally, in the inference phase of the algorithm, the temporal template of 

the action in the scene is compared with the stored action models.  

 

The experimental results conducted on an aerobic data set show us that this 

solution can successfully recognize the exercises of an aerobics instructor in 

video.So I think it can also be succesfully used to recognize human actions in 

videos. However, the approach has some problems too. It is designed to detect 

actions of just one person in the scene so it will not work if there are two or more 

persons in the scene. Also it is very sensitive to occlusions so it will fail to detect the 

action if the person is occluded by another object. These drawbacks make this 

approach to be unusable in real life scenarios. Therefore, this algorithm is not 

suitable for a smart surveillance camera that needs to analyze real life scenes. 

 

An improved version of the same template matching approach that I investigated is 

defined in [28]. The authors of this paper realized that the volumetric space time 

shape of human action is a more appropriate descriptor for the action recognition 

algorithm than the 2D shape descriptors used in [26]. 

 

 

Figure 11 is an illustration of such space time shape descriptors for the actions of 

jumping-jack, walking, and running. We notice that the motions of each action are 

almost perfectly captured by this simple technique. The space time shape of an 

action is easily obtained by concatenating the actor’s silhouettes for several 

consecutive frames.  

 

For modeling actions, the approach uses the shape features like shape dynamics, 

shape orientation and shape structure. In this sense, the authors use a 

mathematical equation, namely the solutions to the Poison equation to extract the 

features of the volumetric space time shape of the actions. 

Figure 11 - Illustration of space time shapes for three types of actions,namely for jumping-
jack, walking and running [28] 
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Because the solution is based on templates, it requires a database that contains 

human action models. So, in the training phase, the authors extract features of the 

actions that are to be detected. In the detection phase the extracted features of the 

analyzed scene are compared against these stored models by using the Euclidian 

distance. A match is found when this distance is below a predetermined threshold. 

 

This method is indeed an improved version of the algorithm proposed in [26] but it 

has the same limitations. It is designed to recognize only the action of one human 

and is very dependent on the angle at which the silhouette is captured. These 

disadvantages make the algorithm unsuitable for analyzing real live scenes. 

 

 

4.1.2 Solutions that use local features 
 

In this chapter, I am going to contine to describe the computer vision algorithms for 

detecting action in video, but focus only on those that use local features. Therefore, 

a computer vision approach for capturing unusual human actions that could be used 

in a smart surveillance camera to detect human behavior is described in [29]. The 

authors propose several algorithms that are aimed for improving the safety of truck 

drivers while they are in a parking lot. An unwanted action such as the act of theft 

often takes place in a truck parking lot. Usually the driver is attacked by thieves to 

steal his cargo. 

 
Therefore, the authors designed an interesting handcrafted automated video 

analysis solution to capture the theft action. The solution includes the following 

steps: 

 

 preprocessing 

 zone based activity learning 

 individual action recognition 

 group formation 

 

In order to be able to detect suspicious actions that can lead to an attack to truck 

driver, the algorithm requires knowledge of the number and locations of pedestrians 

in the scene.  To detect the pedestrians, the proposed solutions uses the Gaussian 

Mixture Model (GMM) background subtraction algorithm defined in [30] and the 

Fastest Pedestrian Detector in the West (FPDW)[31] algorithm. The GMM is used to 

extract foreground objects, while the FPDW is used to classify the foreground 

objects in either pedestrians or non pedestrians. Also, in the preprocessing phase, 

the proposed algorithm for detecting theft actions uses a Multi Hypothesis Tracker 

(MHT) [32] to track pedestrians. This approach seems to be very effective in 

detecting the pedestrians. Inspired by this finding, I decided to use the GMM 

background subtraction algorithm in the algorithms that I propose in chapters four 

and five. 
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The next step, namely zone based activity learning, involves the automatic detection 

and labeling of the activity zones. These are the zones in the scene where two or 

more people meet or where a person changes his or her behavior, that is starts 

running or stops walking. The algorithm inspects tracklets for speed changes in 

order to detect changes in people's behavior. This is in fact a simple task that can 

reveal the behavior of the traced persons so I also decided to use it in my algorithm 

that I propose in the chapter five.To obtain the activity zones, the algorithm further 

uses the Leader algorithm [33] in order to cluster the selected pedestrians. 

 

 

 

Recognition of human actions in the scene is achieved by using the STIP (Spatio-

Temporal Interest Points) features[34],the random forest algorithm and the SVM 

algorithm. The purpose of the STIP features is to select the points of interest of the 

observed pedestrian in the space-time domain. These extracted points allow the 

random forest to build the histogram of visual words. Human actions are then 

detected by the use of histogram and SVM classifier. 

 

The authors considered that the formation of the group is another good indication of 

an attack scenario. Therefore, they use the K-means algorithm [35], the silhouette 

of pedestrians and the density measure of group to detect the formation of the 

group. By combining these features, the algorithm is able to tell when two or more 

people are standing next to each other thus forming a group. 

 

As the attack on the truck driver by thieves involves a complex behavior, the 

authors propose to use the activity zones, individual recognition of actions and the 

Figure 12 - Confusion matrix of activities detected by the algorithm [29] 
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formation of the group to accurately capture the attack action.  According to the 

results published in paper, the algorithm obtained an average accuracy of 

approximately 70.8% in recognition of seven human actions on the ARENA2013 

data set. The confusion matrix given in figure 12shows the scores for each action. 

 

These results are quite good, but there is room for improvement, as many actions 

are misclassified. The algorithm uses the STIP features that demand complex 

calculations. This process requires serious computing resources that are not 

available in a smart surveillance camera device. 

 

 
Another state of the art approach that could be used in a smart surveillance camera 

for detecting human behavior in video is presented in [36]. The proposed solution is 

able to detect only violent actions in videos, such as fights. 

 

The recipe of this algorithm is almost identical to the action detector proposed in 

[29]. The algorithm is based on the Bag of Visual Words (BoVW) method and it uses 

the STIP [37] and the  MoSIFT [38] feature extractors to detect the interest points 

of the fight action. The visual word vocabulary is build by the use of a K- means 

clustering algorithm. Thus , the center of each cluster is a visual word. The last 

stage of the algorithm is responsible for classification. For this task the authors 

decided to use the SVM classifier.Thus, in the training phase, the SVM classifier was 

trained with the attack samples. 

 

Due to the lack of data sets containing fights, the authors built a new video data 

base called the Hockey dataset. They recorded a hockey game and manually labeled 

the fight actions. I believe that the selection of a hockey game was made because it 

contains many fights between players. The detection accuracy of the proposed fight 

detection algorithm for these videos is around 90%. The algorithm has also been 

tested on action movie clips that contain fights. According to these data, the 

algorithm seems to work quite well in detecting fight events. Both STIP and SIFT 

feature extractors are robust algorithms. The only downside is that they use 

complex calculations, so the smart surveillance camera can't run them in real time. 

 

The approach proposed in [39] is another interesting solution for capturing human 

actions in video. The authors propose an algorithm for human violence detection. In 

this context, they define violence as individual or group fighting in public spaces.  

 

The proposed algorithm introduce a novel descriptor, namely the Violent Flow (ViF). 

This descriptor is based only on the motion information extracted from the video. It 

encapsulates the changes of the optical flow magnitude over time. The features 

extracted by the ViF descriptor are classified by the popular SVM classifier. Of 

course, before use, the classifier is trained to detect the violent motions. The 

algorithm is able to classify the scene into violent or non violent. This approach 
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caught my attention because it uses only motion data and the SVM classifier, so it 

seemed to be a simple solution that does not require large computing power. 

 

The authors designed three versions of the algorithm. The first use the Lucas-

Kanade [40] optical flow to construct the ViF, the second one uses the Horn-

Schunch [41], and the third uses the Iterative Reweighted Least Squares (IRLS) 

[42]. They aimed to compare the performance of the proposed violence detection 

algorithm based on the optical flow algorithm used.  The Lucas-Kanade version of 

the algorithm obtained 96.5% on the Movies dataset, 74.1% on the Hockey dataset 

and 69.11% on the Crowded dataset. The Horn-Schunch version obtained 96% on 

the Movies , 81,3% on the Hockey and 74,8% on the Crowded dataset. Finally the 

IRLS version scored 100% on the Movies, 77.9% on the Hockey and 69.11% on the 

Crowded dataset. 

 

After detailed investigation I realized that the solution is quite effective in detecting 

violent actions, but it actually requires a lot of computational power. Employing the 

optical flow to extract motion from the video is a dealbreaker for using this solution 

in a smart surveillance camera. It requires large computing resources that are not 

available on such a device. 

 

Inspired by the promising result of using motion feature for recognizing actions in 

video and consequently recognizing the human behavior I explored the solution 

presented in article [43].The authors designed an algorithm that uses the dense 

trajectories. Operation of such action detection system is based on analyzing the 

trajectories of optical flow. In addition to optical flow, the authors include additional 

features in the algorithm, such as the object appearance descriptor and the 

localmotion descriptor. 

 

 

 

An illustration of dense trajectories is given in figure 13. The green lines in the four 

frames illustrate the dense trajectories of the upper parts of the human body. 

According to the theory presented in the paper [43] this descriptor is very effective 

in capturing motion in video. Even the slightest movements are detected 

successfully. This finding motivated me to further investigate the proposed 

approach. Capturing motion in such fine detail theoretically means that all human 

actions can be recognized by using this motion descriptor. 

Figure 13 - Illustration of the dense trajectories descriptor [43] 
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The block scheme of the proposed algorithm is illustrated in figure 14. In the first 

phase the algorithm applies the Farneback [44] method to calculate the optical flow 

over the whole frame. But because the motion of each pixel in the video does not 

need to be captured, the authors decided to sample the optical flow data. For this 

purpose they use a grid that is spaced by five pixels. This process is illustrated in 

figure 14 left. The algorithm is designed to work on multiple spatial scales.  

Therefore, optical flow extraction and dense sampling processes use the original 

frame and a few other scaled frames. That's why there are four grids in the figure 

14. 

 

 
 

 

Tracing all the sampled points is not effective for detecting the action. Hence to 

reduce the complexity of the algorithm the authors decided to remove the sampled 

points that are extracted from the homogeneous areas in the scene. The optical 

optical flow in these areas should be none, but due to the camera noise, they 

contain small amount of optical flow motion. These areas are not relevant for 

recognizing the actions, as they do not contain any human movements. Therefore, 

the authors eliminate these points by using the algorithm proposed by Shi and 

Tomasi in [45].This method of removing the motion data that is not relevant for the 

action recognition attracted my attention so I used a similar approach in the solution 

discussed in chapter six. 

 

After sampling and removal of the irrelevant motion data , the remaining motion 

features generated by the optical flow algorithm are tracked throughout the video. 

For obtaining better detection accuracy, the algorithm limits the length of the 

trajectories. It uses a time window of fifteen frames. So the dense trajectories are a 

result of tracking optical flow features along this time window.  

 

At the end of time frame the algorithm computes the shape of each trajectory. The 

shape is a single normalized vector which is calculated by summing all the 

components of the trajectory. Before using dense trajectories, the algorithm 

removes erroneous trajectories, such as trajectories with large displacements. While 

Figure 14 - The process of generating the dense trajectories descriptor [43] 
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researching this phase of the algorithm, I realized that tracking the motion of 

objects and analyzing the shape of their trajectory can reveal us usefully 

information that I can use to detect their behavior.  

 

To further improve detection accuracy the proposed algorithm computes the HOG 

(histogram of oriented gradients), HOF (histogram of oriented flow) and MBH 

(motion boundary histograms) descriptors. The idea of this approach is to use the 

appearance and the local motion, along with the dense trajectories of the object in 

the process of detecting the action. The HOG captures the appearance of object and 

the HOF and MBH capture the local motion. These descriptors are calculated in each 

of the trajectory point as illustrated in figure 14 right. 

 

The last phase of the algorithm is responsible for detecting the action. It receives 

the trajectories, HOG, HOF and MBH descriptors and outputs the action label . The 

classifier is based on the bag of features approach. For each descriptor the 

algorithm constructs a codebook by using the k means clustering algorithm. In the 

classification phase the algorithm uses the SVM classifier to classify the action. 

 

An extensive evaluation of the proposed action detection algorithm was performed 

on nine action datasets. The best accuracy is 98.4% on the KTH dataset and the 

worst is 58.2% on the Hollywood2 dataset. Despite of the achieved results the 

performance of the proposed algorithm dependents on the quality of the optical flow 

algorithm used. The available methods are far from beeing perfect and often the 

algorithm can behave poorly.  Another limitation is the demand of high 

computational power for computing the optical flow. This was a deal breaker 

because the algorithm cannot run in real time on a smart surveillance camera that 

has limited hardware resources. 

 

A more advanced video analysis solution for capturing violent actions in video 

presented in [46] uses a complex motion descriptor. It is an interesting approach to 

detecting violence in crowded and non-crowded scenes. The proposed Bag-of-Words 

(BoW) framework is based on the motion of the objects in video. It uses the Dense 

Trajectories (DT) [47] and the MPEG flow motion (MF) [48] descriptors for 

estimating the object motions. 

 

The motion of the objects in the video is extracted by the DT and the MF algorithms. 

The DT descriptor is a complex feature extractor made of Histogram of Oriented 

Gradient HOG, Histogram of Oriented Flow HOF [49] and Motion Boundary 

Histogram MBH. By combining several feature extractors the DT is able to 

successfully extract the appearance, the shape of motion trajectories and the 

motion boundaries of the objects in the scene. This novel motion feature promises a 

high detection accuracy of actions in videos because it includes two motion 

descriptors. Motivated by this finding I analyzed more deeply the proposed 

approach. 
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Although the MF and DT are descriptors of the same type, they both extract the 

object motions, the authors use them both in the feature extraction process. The MF 

descriptor extracts additional motion information thus it improves the overall 

detection performance of the proposed violence detection algorithm.  The MF uses 

the video demux to extract the motion so basically it does not require any additional 

processing except of video decoding. This feature of MF means that we can extract 

the motion of objects at almost no computational cost. Therefore, the MF is a very 

efficent motion extraction algorithm that can be run on low resource hardware. So, 

after a few experiments I decided to exploit the MF in the solution that I propose in 

chapter six. 

 

The output of both descriptors used by the proposed algorithm is a high dimensional 

vector. The DT provides 426 dimensional vector and the MF gives 396 dimension 

vector. This huge amount of data makes it hard the process of learning the 

dictionary. To face this problem the authors use the Principal Component Analysis 

(PCA) for reducing the vectors dimension. However, the reduced data is still large, 

so learning the dictionary is not an easy task. The next phase of the algorithm 

involves the feature encoding. The reduced feature vectors processed by the PCA 

are encoded by the Fisher Vector FV [50] algorithm. In the final phase these 

features are classified as violence or normal by the use of SVM classifier.  

 

Certainly, to function properly the algorithm requires a training phase. The 

codebook of the BoW model is constructed based on the Gaussian Mixture Model 

(GMM), the K means ++ [51] algorithm and a set of training videos. 

 

The experimental section of the paper convinced me that the proposed approach 

performs quite well. It was tested on two datasets. The best detection accuracy on 

the Hockey Fight dataset [52]  is 95.8% and the best detection accuracy on the 

Crowd Violence dataset [53] is 95.11%. After a complete analysis of this appealing 

solution, I conclude that it may be suitable for use in a system that has a high 

computing power. The reason why the solution requires a high computing power is 

due to the algorithm for extracting dense trajectories. Therefore, the proposed 

violence detection algorithm cannot be run in real time by hardware with limited 

resources, such as a smart surveillance camera.  

 

 

4.2 Deep learning video analysis solutions for action 
recognition 

 
In this section I investigate the video analysis algorithms that are based on deep 

learning approach. The first part of this section contains a short theoretical 

background, while the second part explores several state of the art computer vision 

algorithms that use deep learning for detecting action in video. 
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4.2.1 Brief history 
 

The next level in image and action recognition are the deep convolutional neural 

networks. These types of network have been invented long time ago but were not 

extensively used until now because of lack of computational power, large databases 

and efficient training schedules.   

 

Among the first pioneers who used the neural network to recognize patterns in 

images is the K. Fukushima in the article [54] dated from the 80’s. The name of 

network used in this article is “Neocognition”. It was inspired by the human visual 

system. Hence the first layer of the network is made of cells that correspond to the 

photo receptors of the human retina. The following layers are made of S-cells and 

C-cells. The S-cells layers mimic the operation of the primary visual cortex. 

Features, such as lines or edges are extracted by this layer. Layers that are made of 

C-cells are based on the operation of the human visual cortex. In these layers the 

network extracts more complex features such as graphical patterns. To recognize 

the patterns in the image, the network requires training before use. 

 

The deep convolutional neural networks that proved to be so successful in image 

recognition in today’s VA applications, use the identical principle. They consist of 

several linked layers which are responsible for extracting image features. The 

convolutional neural networks belong to the big neural networks “family”. It is a 

special network designed to recognize patterns in image. In the flowing section the 

operation of this type of network is briefly reviewed. 

 

4.2.2 Internal operation 
 

The operation principle of the deep CNN is similar with the operation of a traditional 

deep neural network (NN). Deep signifies the network has more than just three 

layers. They both are composed of interconnected neurons whose links have 

weights, which multiply the incoming signal. The main difference between these two 

networks is the way neurons are connected between layers, i.e. the architecture of 

the network. In the case of a deep NN, one neuron in a hidden layer is connected to 

all the neurons in the previous hidden layer. This is not true for the deep CNN. A 

neuron from a hidden layer is connected only to a group of few neurons from the 

previous hidden layer. Each such group of neurons receives information from a 

specific part of the image. As a result, the neuron is  activated and enforced to 

extract only local information, i.e. local image features, in the case of image inputs. 

A major benefit of the convolutional architecture is that, for the same number of 

neurons, the number of weights to be learned is several orders of magnitude 

smaller than the number of weights for a fully connected architecture. 

Consequently, considerably less data is needed to avoid overfitting problems at 
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training. Yet, the model is complex enough to capture vital information for 

recognition.  

 

The neuron used in neural networks can be thought of as a mathematical model of 

the biological neuron. The illustration in figure 15 shows the biological neuron (left) 

and its corresponding mathematical model (right). Its principle of operation is quite 

simple. If viewed as a black box, it has inputs named dendrites and an output, 

named axon.  

 

The signals received thru the dendrites (or dendrons) are firstly multiplied by 

weights, namely the synaptic strengths of the cell, and then forwarded to the cell 

body (the black box). This means that the signal received thru a dendrite may or 

may be not entirely used in the final result, because of the multiplication constant. 

The dendrites of a neuron are actually the output signals of the axons of previous 

neuron cells. So, the usage of the outputs of the previous neurons in the current cell 

is influenced by the multiplication constants. These constants are the learnable 

parameters of the network. 

 

After multiplication with the synaptic strengths, the dendrite signals are summed up 

by the neuron cell connected to them, which also adds a bias value to the sum. The 

interesting part is that this sum is not forwarded directly to the axon, instead the 

sum is thresholded according to a certain rule (embedded in the activation 

function). So, if the value of the sum exceeds a certain threshold condition, the cell 

will be activated, thus sending an impulse through its axon. A mathematical model 

of a neuron illustrated in figure 15.bis described by theformula (1): 

 

𝑦 = 𝑓(∑𝑤𝑖 ∗ 𝑥𝑖 + 𝑏) (1) 

 

The y is the output, xi are the inputs, the wi are the weights, b is the bias and f is 

the activation function. 

 

a) b) 

Figure 15 - a) biological neuron ; b) mathematical model of the neuron [55] 

The activation function f is a nonlinear function whose purpose is to allow the 

network to learn complex data. Without the nonlinearity, a convolutional network 
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with several layers would remain linear and do just convolutions. Each neuron in the 

network has its own activation function.  

 

In practice, many types of activation functions are used. They accept one real 

number and perform a certain mathematical operation on it. Among the most 

popular are: 

 

 the sigmoid  

 the tanh 

 the Rectified Linear Unit (ReLU) 

 

The graph of a sigmoid function is illustrated in figure 16. Its mathematical formula 

is given by equation (2). 

 

𝜎 𝑥 = 1/(1 + 𝑒−𝑥) (2) 

 
Figure 16 - The sigmoid activation function 

 

The function limits the input number to either 0 or 1. The large negative numbers 

are transformed to 0 and the large positive numbers are transformed to 1. The main 

drawback of using this activation function in neural networks is that when saturated 

it “kills” the gradients so the network can barely learn in this situation. The function 

gets saturated when its output is at is limits that is 0 or 1. Another drawback of the 

sigmoid activation function is that its output is not zero centered. This negatively 

affects the gradient descent learning algorithm during the learning phase of the 

network. 

 

The second most used activation function in neural networks is the tanh function. 

The illustration of this function is found in figure 17. 
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Figure 17 - The tanh activation function 

As opposed to a sigmoid function the tanh function is zero centered. It limits the 

output values to either -1 or 1. In a similar way as the sigmoid function, the tanh 

function transforms the large positive numbers to 1. In the case of large negative 

number the function limits it to -1. The mathematical formula of this function is 

given in equation (3). 

 

tanh 𝑥 = 2𝜎 2𝑥 − 1 (3) 

 

Because it is zero centered the tanh function is more frequently used than the 

sigmoid function in a neural network. Its disadvantage is that it can saturate and kill 

gradients, just like the sigmoid function. 

 
Figure 18 - The rectifier linear unit activation function 
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The most popular type of activation function is the rectifier linear unit (ReLU) 

function. Unlike the sigmoid and the tanh functions the ReLU “cuts” the negative 

numbers as illustrated in the figure 18. That is, it transforms any negative number 

to zero. It does not affect the positive numbers. The mathematical formula of the 

ReLU function is given in the equation (4). 

 

𝑓 𝑥 = max(0, 𝑥) (4) 

 

The strong points of the ReLU activation function are that it accelerates the training 

process and the function is not computationally expensive [56]. Despite of its 

benefits the function has its weakness that is it in certain situations it may make the 

neuron die (for negative activation values). This means that the weights of a neuron 

update during training may be suppressed andthat neuron may never activate.  

 

A variant of the ReLu function meant to solve the dying issue is the leaky ReLu 

function. This modified function does not “cut” completely the negative values of the 

input as ReLu does. Instead it has small slope α on the negative inputs branch, thus 

the negative input values never become zero after processing. 

 

The mathematical formula of the leaky ReLU is given by the equation (5): 

 

𝑓 𝑥 =  
𝛼𝑥, 𝑥 < 0 
𝑥, 𝑥 ≥ 0

 ; ∝= 0.01 (5) 

 

The convolutional layers are operating a feature extraction process on the image. To 

recognize objects or perform other tasks, like object detection (i.e. recognition plus 

localization), tow other kind of layers are needed: pooling layers and fully connected 

layers. The block scheme of a typical deep convolutional neural network designed to 

operate on images is shown in figure 19.  

 

 

 

The deep CNN analyses pixel by pixel so the input is raw image whilst the output is 

a vector of  classification probabilities. The network consists of: 

 

 convolution layers 

 pooling layers 

 and fully connected layers 

Figure 19 - Typical CNN architecture 
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4.2.2.1 The convolution layer 
 

The convolution layers are the main components of the network. Each convolution 

layer is responsible for extracting image features. Therefore, layers that are close to 

the input extract basic features of the image, such as corners, edges, lines, while 

deeper layers combine the basic features detected, to  extract more complex 

features, such as different types of shapes. In figure 20 an illustration of the 

features extracted at each layer of a neural network that is composed of eight 

convolution layers is given. 

 

 
Figure 20 - Features at each layer of the CNN [57] 
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The convolution layers perform extraction of features from the input image or 

previous layers by using learnable filters, defined by the neuron weights. These 

convolution filters are actually simple processing units. They are defined by small 

sized matrices called the kernels and they perform multiplications of the inputs with 

corresponding weights, add all results of multiplications, and pass the sum to the 

nonlinear activation function units.  

 

Unlike with conventional convolution filters used in signal processing, each 

convolution filter has also a parameter called stride, meant to downsample the 

output of a convolution layer. The stride parameter tells the filter how many pixels 

to slide the kernel on the image to get the result for the next output. In 

conventional convolution, the kernel is translated only one data sample at a time, so 

it will be centered on each sample at some step and the output will have the 

essentially the same dimension as the input. Small differences may exist, depending 

on how the data at the image border, which miss some neighbors is handled. This 

problem is discussed later on. 

 

The size of a filter kernel is very small compared to the image size. Usually, it is 3x3 

or 5x5. An illustration of the operation of a filter is given in the figure 21.  The filter 

slides through the input image (left) which has the size 32x32x3, say from left to 

right with a stride one, until it processes all the pixels. Upon completion, it outputs 

the image features namely the activation map in form of a matrix.  

 

 

 

 

In a serial implementation, ateach iteration the filter computes the dot product of 

the kernel matrix and the sampled matrix of the image, adds a bias and applies an 

activation function. The sampled matrix consists of image pixels contained in the 

filter at one iteration. In other words, the filter makes the dot product between the 

kernel and the pixels in the image with which it overlaps. In the next iteration, the 

filter slides by the number of pixels indicated by stride parameter and repeats the 

same mathematical operations.  

Figure 21 - Structure of a CNN layer. Input image and filter window left in pink color. 
Activation maps(AM) in blue. Neuron cell is in the right. [55] 
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The input is not necessarily the input image, it can be the activation maps of the 

previous layer. If the input image has multiple channels (like R,G,B), convolution is 

computed in a similar manner. The convolution kernel needs to define the weights 

for all channels. Unlike in image or signal processing, the number of output channels 

is not necessarily the same as the input channels. To generate a desired numbers of 

output channels, we simply use the desired number of convolution kernels and 

perform convolution with each of them. 

 

As for the analogy with the brain, a convolution filter consists of a limited number of 

neuronal cells. Each neuron is connected to only a small number of pixels in the 

image. Therefore, each one processes just a small area of the image. 

 

The input size or number of weights of a neuron is equal to the total number of 

pixels with which the neuron is connected times the number of channels. In figure 

21 the input size is [5x5x3] because the filter size is 5x5 and the image has three 

channels, hence the kernel of each neuron has 75 weights. Those weights are 

learned during training and shared among the neurons that belong to the same 

filter.  

 

The pixels connected to a specific neuron are multiplied by the neuron weights, then 

summed all together. A bias is added to the result and then an activation function is 

applied to the sum. Each neuron performs the same type of operations, i.e. 

convolution using its learned weights and the nonlinear activation function computes 

exactly one value of the activation map for each convolution kernel. In figure 21 

there are five convolution filters in one layer, so the layer receives an RGB image 

and produces five activation maps. 

 

A shortcoming of the convolution operation is that it reduces the spatial size of the 

input, if the operator is constrained to keep its window within the input data matrix. 

The size of the activation map is not equal with the size of the input image, with this 

constraint. To maintain the input and output data support equals, the input needs to 

be zero padded. Usually, before applying the convolution filter of size 3x3, having 

the stride parameter set to one, the input image is zero padded by one pixel along 

its borders. 

 

 Other image padding solutions exist, like using nearest neighbors. For a 5x5 filter 

size, two pixel wide image padding is used and so on. This way the size of the input 

remains unchanged after processing, which is the most frequently used solution. 

Nevertheless, some networks use the convolution layers to shrink or extend the 

input shape. If the input data is not padded at all, the convolution operation shrinks 

the input shape. Conversely, if the input data is padded, the output extends or 

retains its original shape.  
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4.2.2.2 The pooling layer 
 

The convolution layer captures features from the image. Even the positions of 

features in the image are implicitly encoded in the activation map. Convolution 

filters produce strong activations where the convolution kernel matches the input 

data. This happens whenever the kernel location is in a close neighborhood of a 

matching pattern. It is the task of the pooling layer to keep only the strong 

activations while downsampling the layer connected at its input. It removes the 

unnecessary data by reducing the size of the activation maps. The function of the 

pooling layer is similar with the function of down sampling used in signal processing. 

 

Like convolution, the pooling operator has a kernel that processes all the pixels 

within the support window. However, the kernel is not evaluated at all input 

locations: it down-samples the input data. Windows of the max pool operator may 

overlap or not. A frequent configuration of the pooling layer used in the CNN is a 

kernel of size 2x2 and a stride of 2. This setup reduces the input size by 2. 

 

At each iteration, the pixels encompassed by the kernel are processed by one of the 

following functions: 

 

 max pooling 

 average pooling 

 

As its name suggests, the average pooling calculates the average of the pixel values 

within each kernel window. On the contrary, if using the max pooling, the maximum 

value pixel is chosen as the result while the remaining pixels of the kernel window 

are ignored. So the filter usesseveral inputvalues and outputs just one value. An 

example of a max pooling operation is illustrated in the figure 22. The max pooling 

function is most commonly oneused in the pooling layers of the CNN. 

 

 
Figure 22 - The max pooling operation [55] 
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While the first few layers of a deep CNN capture local image features, the next 

levels discover more complex structures made up by groups of local features, like 

grouping edges into lines or circles. As the size in the original image layer covered 

by such a group gets larger and larger, the down-sampled image can capture more 

complex and relevant information for recognition with less neurons, which is 

beneficial for keeping the model size as low as possible. 

 

4.2.2.3 Fully connected layer 
 

One layer of a CNN consists of several convolution filters, working in parallel, thus 

each layer extracts several image features at once. The resulting activation maps 

are further supplied to the next convolution layer. In between consecutive 

convolution layers there is usually a pooling layer. And at the end of the network 

there is a fully connected layer. The role of this last layer is to perform the 

classification of the high-level features. In a fully connected layer, each neuron is 

connected to all the inputs. As with convolution layers, each connection includes a 

weight, to be learned. 

 

There is a direct link between the number of neurons in the final fully connected 

layer and the number of classes that the network has been trained to recognize. The 

number of neurons is equal to the number of classes, so the output of a neuron can 

be interpreted as the probability for a class. In fact, to add up to unity like 

probabilities, the network outputs are generated by the SoftMax activation function 

and not directly by the neuron outputs. The SoftMax function transforms the real 

numbers computed by the neurons into numbers that can be interpreted as 

probabilities. To this end, each neuron’s output is rescaled according to theequation 

(6). 

𝜎( 𝑧  ) 𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

 (6) 

 

The integer K represents the number of classes, the variables Zi are the input 

elements for the SoftMax function and the ezi is the exponential function on neuron 

output variables. The SoftMax transforms the real numbers computed by the 

neurons, that can be either positive or negative, into positive probabilities. This 

activation function is used only in the fully connected layer of the CNN, while the 

other layers in the network use the sigmoid or the tanh or the ReLu activation 

function. The only exception to this rule is the pooling layer. It has no activation 

function.  

 

In summary, the CNN is a special type of artificial neural network that was inspired 

by the human visual system. The network is capable to classify images according to 

their content. Therefore, it accepts an image and produces a vector of class 

probabilities. The class with the highest probability is most likely to be the actual 

class of the processed image. The structure of a deep CNN consists of several 
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convolution layers, several pooling layers and a fully connected layer. All are 

connected in a series architecture. The most important part of the learned model is 

encoded by the weights and biases of the convolution layers. They act like filters 

that extract image features, such as edges, lines and complex shapes. The pooling 

layer removes the unnecessary data, and the fully connected layer performs the 

final classification. Similar to convolution layers, the fully connected layer also has 

weights and biases that it learns during training. 

 

 

4.2.2.4 Supervised training 
 

The CNN network can be trained in a supervised, unsupervised or a semi supervised 

manner. It would be ideal if the network could learn on its own, but that way of 

learning does not give very good results. The best way to train a CNN, when enough 

data is available, is by supervised training. This training method gives the best 

results, but it requires the involvement of people in the process, because it requires 

a huge amount of labeled data.   

 

The purpose of the training phase is to set up the learnable parameters of the CNN. 

These parameters are the weights and biases of neurons. They need to be changed 

accordingly to allow the network to correctly classify the input image. When creating 

the network, the weights and biases are chosen at random, so that the network is 

not able to extract the correct image features and produce correct classifications. 

 

The training process uses : 

 the cost function that aims to tell how far the network's prediction is from 

the ground truth 

 and the back-propagation algorithm whose purpose is to update the 

weights and biases 

 

A supervised back-propagation training cycle consist of a forward and backward 

pass of data  throughout the network. In forward pass, the back-propagation 

algorithm finds out how far is the network prediction of a single input image from 

the ground truth. It uses the cost (or loss) function for this purpose. In backward 

pass the algorithm tries to reduce the cost function by adjusting the weights and 

biases for the same input image. This process is iterated many times during 

training, with different input data, according to a schedule, in a quest for the global 

minimum of the loss. Figure 23 illustrates the value of the cost function during 

training.  
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Figure 23 - The cost function during training [58] 

 
The back-propagation process uses the gradient descent algorithm for updating the 

weights and biases and finally finding the global or local minima of the cost function. 

It also defines a learning rate parameter whose purpose is to determine the speed 

of change of the trainable parameters. 

 

The most popular cost function that is used for training a convolutional neural 

network is the cross entropy function. It comes from information theory and is 

designed to measure the difference between two probability distributions.The 

matemathical formula of a cross entropy function isgiven in the equation (7). 

 

𝐷 𝑝, 𝑞 = − 𝑝𝑖 log(𝑞𝑖) (7) 

where qi stands for the predicted distribution by the network and the pirepresent the 

ground truth distribution. 
 

 

4.2.3 Neural network based computer vision algorithms for 

detecting action in video 
 

In this section I investigate several state of the art computer vision algorithms that 

use the deep leaning approach. I aim to select the best deep learning architecture 

for action recognition and, at the same time, the one that does not require intensive 

computing resources. Hence, in the following paragraphs I focus on solutions that 

use various CNN architectures for recognizing actions in video. 
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In the work proposed in[59], the authors propose the use of handcrafted features 

and Convolutional Neural Network(CNN) for recognizing actions in the video. To 

accomplish this task, the approach uses the appearance and motion of objects in the 

scene. The Block diagram in the figure 24 illustrates the proposed concept. There 

are two CNN’s involved in the process of action detection. The purpose of the first 

network is to analyze the spatial domain, and the second network is used to analyze 

the temporal domain. These two networks are complementary to each other, so that 

by combining them in the algorithm, the actions in the video can be captured with 

high accuracy.  

 
Figure 24 - Two-stream architecture for video classification [59] 

 
The spatial stream ConvNet is a network trained for recognizing actions from still 

images. Some of the actions are closely related to the object appearance, hence in 

these cases, the spatial stream ConvNet can recognize the actions on its own. 

However, not all actions can be recognized in this way. Therefore, in order to allow 

the recognition of such actions, the authors decided to include the temporal stream 

ConvNet into the algorithm. 

 

The temporal stream ConvNet is based on the stacked optical flow data. That is, the 

image frames are processed before being supplied to the network. In this 

preprocessing stage the algorithm computes the dense optical flow for each pair of 

frames. This optical flow data is stacked for several frames in order to capture the 

evolution in the time domain thus resulting an optical flow volume. Because the 

network is designed to operate on matrices, the optical flow vectors are firstly 

decomposed into horizontal and vertical matrix components and then stacked. The 

input of the spatial stream ConvNet are the frames while the input of the temporal 

ConvNet consists of the stacked horizontal and vertical components of the optical 

flow.  

 

The configuration of the CNN is illustrated in figure 24. It is a CNN-M-2048 

architecture shared from the article of [60]. It consists of five convolutional layers, 

two fully connected layers and one SoftMax layer. The spatial ConvNet configuration 

differs from the temporal ConvNet configuration only by one layer. Specifically, the 
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latter one does not include the normalization layer in the conv2 layer of the 

network. 

 

In training phase the network use the stochastic gradient descent algorithm to 

update its weights. Before supplying them to the network, the frames are subjected 

to the augmentation operations, such as random flip, random crop and RBG 

jittering. 

 

There are two versions of two stream ConvNet’s presented in the article. The first 

merges the results at the last layer by averaging, thus obtaining an accuracy of 

86.9% on the UCF-101 dataset and an accuracy of 58.0% on the HMDB-51 dataset. 

The second version uses the SVM classifier for merging and thus achieves an 

average accuracy for UCF-101 of 88.0% and for HMDB-51 of 59.4%.The mean 

detection accuracy is slightly better when using the SVM classifier. 

 

Using two CNN’s for recognizing actions requires a huge amount of training data. 

The solution proposed also requires a motion descriptor that is based on the optical 

flow. 

These requirements make this approach unsuitable for use on an intelligent 

surveillance camera, mainly due to the high computational requirements of the 

optical flow algorithm. 

 

My next investigation that seemed to match what I was looking for was the 

approach described in [61]. The authors propose two methods for classifying videos 

according to their content. The first one is based on the temporal feature pooling, 

while the second method implies the use of Long Short-Term Memory (LSTM) cells 

in the final layer of the network. 

 

In order to include the time domain in the feature extraction process, the authors 

propose to process several video frames simultaneously. The interesting fact is that 

each frame is processed by a separate CNN. Therefore, the number of CNN 

networks of the proposed architecture is equal to the number of stacked frames. 

Both methods use either the AlexNet [62] or the GoogLeNet [63] CNN to process 

individual frames.Along with the raw input frames, the approach also uses optical 

flow [64] data. The authors used the two stream concept like in[59] for both 

methods. 

 

The idea of the first method is to add a max pooling layer to the network in order to 

combine the image features provided by the CNN’s. In this regard the authors 

defined five temporal feature pooling architectures: 

 

 conv pooling 

 late pooling 

 slow pooling 
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 local pooling 

 and time domain convolution 

 

The conv pooling carries out a max pooling operation over the last layers of the 

CNN. Similarly,  late pooling performs the max pooling operation on the outputs of 

the two fully connected layers that are added on top each CNN. The slow pooling is 

a combination of conv pooling and late pooling. It combines hierarchically image 

features provided by the CNN, that is it applies max pooling over output of several 

layers of the CNN and then caries out a max pooling over the outputs of the fully 

connected layers. The local pooling performs the max pooling operation over output 

of several layers of the CNN. And the last one, the time domain convolution uses an 

extra time domain convolutional layer that is placed in between the output layer of 

the CNN and the max pooling layer. 

 

The second method uses the same principle of processing the frames. It has a CNN 

for each input frame but instead of pooling layer it uses the Long Short-Term 

Memory (LSTM) cells in its final layer. Based on the experimental data the authors 

found out that five stacked LSTM cells provide the best detection accuracy. 

Therefore, the output of each CNN is passed thru five LSTM cells until it reaches the 

softmax layer.   

 

The proposed methods have a fairly impressive detection accuracy. On the Sports 1 

million dataset the best accuracy is 73.1% and on the UCF-101 the best accuracy is 

88.6%. The downside of this approach is the use of several CNNs and the use of the 

optical flow motion descriptor. These two operations require a huge amount of 

processing power. Therefore, the proposed methods cannot be used in a smart 

surveillance camera that has limited resources. 

 

Another interesting solution for action recognition is defined in [65]. The authors 

use a slightly different approach than the one proposed in [59]. The architecture of 

the network is the same as in [59]. The difference is in the algorithm used to 

generate motion data. This improvement aims to speed up the inference process, 

thus allowing the solution to work in real time. 

 

Because the calculation of the optical flow is expensive, the authors decided to use 

motion vectors generated by block matching in the video encoding process instead 

of the methods proposed by authors in [66] and [67]. The Farneback’s algorithm 

[68] for extracting the optical flow takes 360 ms per frame and the Brox’s flow 

algorithm [69] needs 60ms to process  a frame. These latencies do not allow to run 

the algorithm in real time. 

 

Motion vectors are generated and used in the most video encoding processes and 

can therefore be obtained at no computational cost while decoding the video frame. 

The motion vectors feature is similar to the optical flow feature, although such 
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vectors estimate motions for blocks of image pixels (typically 16x16 pixels). They 

both capture the motion in video. So the authors decided to feed the motion vectors 

instead of the optical flow into the temporal ConvNet. 

 

To gain a higher detection accuracy the approach uses several transfer learning 

techniques. The scope of this training method is to train at first the temporal 

ConvNet with the optical flow data, to learn finer motion information, and then, to 

fine tune it with the motion vector data.  

 

Although this approach proposes an algorithm that claims to have state of the art 

detection accuracy on the UCF101, HMDB51 and THUMOS14 datasets, it requires 

two convolution networks to run in parallel. This requirement makes this approach 

unusable on a smart surveillance camera, as it requires a huge amount of 

computing power needed to run two neural networks in parallel. 

 

Another solution for action recognition I have explored proposes the use of a novel 

video descriptor namely the trajectory-pooled deep-convolutional descriptor (TDD) 

[70]. The TDD is a result of combining the handcrafted features described in [71] 

with the feature maps generated by the ConvNets [59]. 

 

The two features that are used to make the TDD descriptor are:  

 

 the optical flow trajectories  

 the feature maps   

 

Trajectories are extracted using improved trajectory algorithm [70], which is an 

extended version of the dense trajectory algorithm [72]. The extended version is 

able to extract the optical flow trajectories of videos that are captured with either a 

static camera or a moving camera. While in contrast, the dense trajectory algorithm 

only works for videos captured with static cameras. 

 

The feature maps in [70]are generated using a slightly modified version of the two 

stream ConvNets proposed in [59]. Since the original version offers probabilities and 

not feature maps at its output, the authors decided to remove the last layers of the 

network, thus allowing the network to provide feature maps instead of probabilities 

at its output. As a result, the modified version is a ConvNet without the layers five, 

six, seven and eight. Another modification of the network is the addition of a zero 

padding operation before input of each conv layer. This operation preserves the 

shape of the data. 

 

Once the trajectories and feature maps are calculated, the TDD is computed by the 

trajectory-pooling method. That is, the trajectory trackletsare used as a guide for 

summing the feature maps. The TDD descriptor is further encoded by the Fisher 
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vector algorithm [73] and then an SVM classifier is employed to classify the encoded 

data. 

 

By using the proposed approach the authors succeed to obtain the highest detection 

accuracy on the  UCF101 and HMDB51 action dataset compared to the state of the 

art solutions [74][59]. Despite the good results, this approach consumes even more 

resources than the approach defined in [59]. The use of improved trajectories and 

dense optical flow is a real bottleneck to implementing this solution on low resources 

hardware, as it requires high processing power. 

 

At this point, I have realized that solutions that use two or more CNN to detect 

actions in video are not suitable for use in a smart surveillance camera because they 

require high computational resources. Therefore I decided to explore a more simpler 

versions like the one presented in the paper [75]. It is an extended version of the 

classic CNN meant to include the time domain. This type of network, also known as 

3D CNN in the literature, is among the first attempts to use the CNN to recognize 

actions in video. 

 
Figure 25 - 3D convolutional neural network architecture for the recognition of human actions 

in video. The network is composed of one handwired layer, three convolution layers, two 
subsampling layers and one fully connected layer [75] 

 

The idea behind this approach is to use a stack of multiple video frames in order to 

capture motion information from the video. In the figure 25 is an illustration of the 

3D CNN. An interesting novelty of this approach is the use of a hardwired layer to 

ease the learning of actions. The hardwired layer has no learn-able parameters. Its 

weighs and biases are manually established during the initialization phase of the 

algorithm. The purpose of such an approach is to encode prior knowledge on 

features into the algorithm. Therefore, the hardwired layer is designed to extract 

handcrafted features such as gradient, optical flow and gray channel from the video. 

The following layers consist of classic convolution layers, pooling layers and a fully 

connected layer at the end of the network. 

 

The reported results of the proposed 3D convolutions reach an average performance 

of 71% on the TRECVID [76] and KTH dataset. Which is not very impressive for 
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detecting actions in video. Such low performance may be due to inefficient coding of 

the features in the hardwired layer. 

 

A rather similar approach that I have investigated is the one presented in the paper 

[77]. The authors aimed to improve the detection performance of the 3D CNN’s 

proposed in [75]. To this end, they explore several architecture variants and 

compare the obtained results. The idea of this approach is to experiment with 

various temporal depths of the kernel. These include changing only the kernels of 

the convolution layers. 

 

The paper explores two types of architectures: 

 the 3D CNN-s with homogeneous temporal depth 

 and 3D CNN-s with varying temporal depth 

 

In a homogeneous architecture all of the convolution layers have the same temporal 

depth. To explore the possibilities of such an approach the authors use four network 

architectures of this type having the temporal depth set to 1, 3, 5 and 7.  

 

The second type includes the architectures that have a kernel with variable temporal 

depth across the convolution layers. The experiments used in this section are based 

on two network architectures. The first uses the increasing temporal depth scheme 

having the depths set to 3-3-5-5-7 and the second uses the decreasing temporal 

depth scheme having the kernel depths set to 5-5-3-3.  

 

Based on these ideas, the authors tested all the proposed networks on the UCF101 

dataset and found that the best architecture is the homogeneous one having the 

dept set to three. The experiments were caried on the Sports-1M dataset [78]. And 

the results obtained are decent but not impressive.  

 

The paper [77] also explores the usefulness of the video features extracted by this 

network. For this purpose, the features provided by the fully connected layer are 

feed to the multi class linear SVM classifier. This setup successfully captures actions 

invideo. According to the reported results, the detection accuracy  is around 90%, 

which is very good. However, this solution is hard to train because it requires a 

huge amount of training data. For instance violent actions in urban areas are very 

rare, so it is almost impossible to collect such a large amount of training data of this 

type. The reason it requires a huge amount of training data is that it is mostly based 

on the appearance of the object. The motion descriptors that are extracted in the 

hardwired layer are not so descriptive. 

 

The solution to the problem of huge training data would be to use the motion of the 

object instead of  its appearance. This technique is exploited in the approach 

proposed in [79]. It also uses the 3D CNN network to recognize human actions, but 
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in a slightly different way. The main advantages of this paper compared to the 

approach of [75] are:  

 

 the improvement of the detection performance by extending the temporal 

resolution of the network  

 and the improvement of the performance by using quality optical flow 

algorithms 

 
Figure 26 - The convolutional neural network architecture used for recognizing human actions. 

It consists of five convolutional layers and three fully connected layers [79] 

 

Assuming that the actions usually last a few seconds, thus extending over no more 

than hundreds of frames, the paper proposes to extend the temporal resolution of 

CNN 3D to 60 frames. This novel long term temporal convolution (LTC) architecture, 

shown in the figure 26, improves the performance of the action detection by 

including more frames into the analysis process. According to the paper, the reason 

for achieving a lower detection performance of the approaches proposed in 

[59],[80],[77] is the use of small number of stacked frames in the analysis process. 

These algorithms process only sixteen frames at a time. 

 

The architecture benefit from the success obtained by the architectures proposed in 

[77], hence it uses a shape of the filter kernel of 3x3x3. It also defines a novel CNN 

that consist of five convolution layers, three fully connected layers and one fully 

connected layer.  

 

In addition to studying the impact of using larger temporal extents on detection 

performance, the authors investigate the performance of different types of input 

data. They use the raw RGB, the MPEG flow [81], the Farneback flow and the Brox 

flow [82].  According to the provided results, the motion descriptors are more 

effective than the raw image data. The detection accuracy for a RGB input is 59.9 % 

while for the Brox flow is 79.6 % on the same video. For the Farneback flow and 

MPEG flow the paper reports lower detection accuracy. 

 

Since the Brox flow best captures the motion, the authors recommend using it with 

the LTC architecture. This combination achieves the best results, but requires many 

calculations due to the optical flow extraction algorithm. A smart surveillance 

camera with limited resources cannot extract this motion descriptor in real time. 
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Algorithm Advantages Disadvantages 

Toward abnormal trajectory 

and event detection in video 

surveillance 

- uses efficent descriptor 

that is the object  

trajectories 

- it uses  a gausan 

modeling  techniqu for the 

classification  which is 

simple and precise 

- it uses computationaly 

expensive descriptors 

the  optical flow and the 

histogram of oriented 

gradients 

Vision-based human action 

classification using adaptive 

boosting algorithm 

- uses human siluethes as 

action features which are 

easy to extract 

- uses the AdaBoost 

classification algorithm 

which is fast and accurate  

- uses a custom 

background subtraction 

that do not have a 

background update 

procedure so the 

algorithm will work only in 

laboratory conditions 

 

The recognition of human 

movement using temporal 

templates 

- uses two easy to extract 

motion descriptors that 

are based on frame 

difference technique  

- the classification is 

simple, it is a template 

matching technique 

- algorithm is very 

sensitive to oclusions and 

camera angle 

 

Actions as space-time shapes - it uses volumetric space 

time shape of human 

action that is based on 

simple human silouethe 

extraction 

- it is fast and not 

computationaly expensive 

- it is very sensitive to 

oclusion and camera nagle 

 

Activity Recognition and 

Localization on a Truck 

Parking Lot 

- divides the recognition 

task into subtasks 

- it detects the activiti 

zones, the human actions 

and the formation of 

group 

- combines these three 

features to detect human 

behavior 

- it uses the STIP features 

for the action recognition 

which are computationaly 

expensive 

Violence Detection in Video 

Using Computer Vision 

Techniques 

- it uses the bag of visual 

words approach which is 

robust method for 

- it uses the STIP and the 

MoSIFT features  which 

are computationaly 
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detecting actions in videos expensive 

Real time violence detection 

in video 

- it has a high accuracy in 

detecting violent behavior 

because it uses the 

motion of objects in the 

detection process 

- it uses SVM classifer 

which is robust and fast 

- it uses the optical flow 

descriptor for the motion 

estimation , the extraction 

process consumes a lot of 

computational resources 

Dense trajectories and 

motion boundary descriptors 

for action recognition 

- it captures accuratelly 

the human actions 

- it uses the object motion 

and the object appearance 

in the detection process 

- it uses the robust bag of 

visual words approach  for 

the classification 

- it uses the optical flow, 

the histogram of oriented 

gradients and the 

histogram of oriented 

flow. All these descriptors 

require high computing 

power when extracting 

from the video 

Violence Detection based on 

Spatio-Temporal Feature and 

Fisher Vector 

- it uses a complex motion 

descriptor and the MPEG 

flow descriptor which 

enables the algorithm to 

detect precisely the 

violent actions 

- it uses the robust bag of 

visual vords approach for 

violence detection  

- the approcah uses the 

dense trajectories which 

are computationally 

expensive  

Two-stream convolutional 

networks for action 

recognition in videos 

- uses the appearence and 

motion  

- has two ConvNets, the 

first processes the motion 

and the seccond 

processes the appearance  

- requires huge amount of 

training data  

- it uses the optical flow 

which require complex 

computations 

Beyond short snippets: Deep 

networks for video 

classification 

- it has multiple CNN, one 

for frame 

- combines the 

appearance and motion in 

the detection process 

- it is hard to train 

because of using multiple 

CNN’s 

- it uses the optical flow 

which requires complex 

computations 

Real-time action recognition 

with deeply transferred 

motion vector cnns 

- it uses separate CNN’s 

for motion and 

appearance 

- it uses a motion 

descriptor that is not 

computationally 

demanding 

- requires large amount of 

training data because of 

using the appearance in 

the detection process 
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Action recognition with 

trajectory-pooled deep-

convolutional descriptors 

- defines a efficent video 

descriptor that combines 

the optical flow and the 

feature maps of the 

ConvNets 

- it is computationaly 

intensive because it 

requires two CNN’s to run 

in paralel and also uses 

the optical flow  

3D convolutional neural 

networks for human action 

recognition 

-  has a hardwired layer 

that extracts the motion 

of objects 

- it scores low on 

detection accuracy 

Learning spatiotemporal 

features with 3d 

convolutional networks 

- it uses quality optical 

flow for extracting the 

motion 

- uses a extended 

temporal resolution of 

sixty frames 

- it requires high 

computations due to the 

extraction of the optical 

flow 

 

Table 1 - Comparison of video analysis algorithms investigated during the research period. 

 

 

 

5 Basic behavior classification in low 
computational environments. Traffic 
surveillance application 

 

5.1 Introduction 
 

 
My first attempt in designing a surveilance system that is aimed for detecting 

unushual behavior in the crovded cities is aimed for monitoring the traffic 

surveillance. This system has a capability to automatically detect traffic events and 

to send them to the control center in order to be further processed by the 

surveillance officers. In this way, the proposed system can certainly help prevent 

unusual events from happening, thus providing real-time alerts so that police 

officers can reach the scene of the event very quickly. Therefore, the proposed 

system can improve the public sequrity in big cities.This system was a first step 

towards designing a more complex video surveillance system, which can 

automatically detect the unusual behavior of the people.In the rest of this chapter I 

will briefly present the problems encountered in today's traffic and also provide you 

with information about similar solutions that aim to help solve traffic problems by 

using video analysis algorithms. 
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We all know that managing traffic in the today's cities is a real challenge. 

Competitions among car manufacturers influenced the car market. Also the 

advances in technology made the cars last much more longer compared to the old 

cars manufactured in the 90 is era. This facts influenced negatively the car prices. 

Because they are becoming cheaper more people can afford them. As consequence 

there is a constant car number increase. This fact is inconvenient for large urban 

areas. Increased number of cars and inadequate infrastructureunavoidably leads to 

traffic congestion. Hence,  this situation introduces nervousnes among the drivers 

and unavoidabely increases the risk of vehicle accidents. Therefore, drivers caught 

in a jam are usually becoming nervous.Even some of them may exibit anger or 

agression behind the wheell.This state of the mind fires the driver to behave 

inappropriately in a traffic. So, in these situations, these individuals are prone to 

cause an accident. 

 

Another downside generated by this situation is the inefficient transportation that is 

the root cause of many problems. For exampledelays imposed by traffic jams have 

an impact on the goods delivery. If certain goods do not arrive in time they 

maynegatively affect the industry thus causing additional unecessary costs. This is 

especially true for medium sized companies that require raw materials for 

production.  

 

Those are some of thefacts that impose new standards in traffic management 

systems.Therefore, to meet these novel requirements, city management usually 

decides to use technology. Mainly the video sensors (surveillance cameras) are used 

for this purpose. The reason behind this approach is because the cameras are cheap 

and relatively easy to install. So,this has made the number of video cameras in 

cities increase day by day thus the surveillance network in urban areas has a 

growing trend. 

 

This mode of surveillance offers many advantages. For example the video feeds 

could enable the traffic management system to automatically inform the car driver 

(ex. via radio, or Android application) about current traffic status. This way the 

drivers could chose the less congested route. So the unpleasant waiting in a traffic 

jam could be avoided. 

 

Another benefit from a modern traffic management system relaying on a video 

surveillance could be adaptive traffic light timing. By dynamically establishing the 

time of traffic lights the overall flow can be greatly improved. Minimizing the red 

light time if congestion is detected will greatly improve traffic efficiency. The 

proposed work in [83] describes the use of surveillance cameras network for 

adaptive traffic light control. For the ease of installation the authors propose a 

wireless network. Each camera (network node) is able to communicate with central 

unit entitled intersection control agent (ICA). The ICA is directly connected to a set 
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of traffic lights of a particular area. It is engaged for controlling the traffic light 

timing. It also process the data provided by the network nodes.   

 

The nodes are capable of individually processing the video feeds. Speed, total 

vehicle number for a particular lane is computed by each node. Embedded video 

analysis reducers the network bandwidth. Only useful information is transferred to 

the ICA. For further improvement of the proposed system the authors mention a 

more advanced system with duplex communication. Moreover, to further reduce the 

network bandwidth and increase the system efficiency, nodes and the ICA could 

communicate with each other. This kind of concept is quite interesting because it 

promises a solution that could solve the traffic congestion problem. 

 

A common problem in traffic surveillance is the inability of surveillance cameras to 

detect and recognize vehicles at night.Therefore, an interesting solution that 

addresses this problem and would be very useful for a modern traffic management 

system is presented in [84]. Interestingly, instead of car shape the authors propose 

the use of taillights and headlight as vehicle features. Although may appear 

simplistic this „clever” method may be robust enough. The operation of this 

algorithm is quite simple.The preprocessing phase applies a multilevel histogram 

thresholding. Features obtained this way are clustered by a novel method tailored to 

fit this particular application. Therefore, the algorithm main focus is on clustering 

the bright objects obtained after the preprocessing stage. Such clustered objects are 

then classified into either cars or motor bikes. Moreover, in order to improve 

accuracy the authors use a tracker. The tracker is particullary usefull in cases where 

there are many oclussions. So by implying it in the detection process the detection 

errors generated by the oclusions are succesfully solved. 

 

Both forementioned solutions can be successfully used in a modern traffic 

management system. The [83]is mainly focused on the system. It proposes a novel 

approach regarding video data collection and data processing. Complementary the 

work [84] elaborates the object classification in night conditions by using 

conventional surveillance cameras. It is a good fit for extending the performance of 

the proposed adaptive traffic control [83]infrastructure. 

 

The data processed by the video analytic could be further used for better traffic 

management. The routes could be better planned if we know the usual traffic status. 

A collection of data regarding traffic from certain area could be stored on a central 

server and made available to the public. This way the users could benefit from it 

when planning a future route. By future route I mean the route that is planned in 

advance of several hours to several days. The user can know, with certain precision, 

all the traffic status like congestion, traffic flow for the trip day. He can chose the 

most favorable route based on these assumptions. Moreover the collected data 

could be used for identifying the traffic management issues, generating the statistics 

and even used for training a deep neural network.    
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In this regard, the method exposed in [85]presents a solution for classifying and 

tracking vehicles. The output provided by this algorithm can be easily collected and 

used for generating long term traffic data statistics. The system is focused on the 

video analysis rather than on a surveillance system infrastructure. It uses just a 

single camera for collecting video data. The algorithm proposes a novel solution for 

recognizing the lanes. When installed the system automatically recognizes the lanes 

so there is no need for manual selection of the lane delimiters.  

 

The core of the algorithm is based on background subtraction, temporal frame 

difference and vehicle histogram calculation. The classification stage implies the 

novel multiple evidence clustering algorithm,whilst, for tracking detected vehicles, 

the authors use a Kalman filter.Once obtained the tracking trajectory is stored in the 

local database for futher analysis. Interestingly, beside this common features, the 

proposed solution is able to classify the vehicles according to their size. It also 

embeds solutions for maximizing the algorithm performance like algorithms for 

avoiding shadowing and vehicle occlusions. 

 

All the information acquired by the modern traffic management system can be used 

for improving the traffic safety. The concept is already taking shape in today 

modern vehicles. They have numerous driver assistance systems on board that can 

prevent the driver from making the wrong decisions. Nevertheles, some 

manufacturers have made it possible to communicate between the vehicle and the 

control center. On the other hand there is a great effort in enabling the inter vehicle 

communication. This types of concepts will offer the possibility of providing the 

driver with information just in time. Thus making the ride much more safer. 

 

One important onboard system regarding traffic safety is the overtaking system. Its 

purpose is to assist and give the driver instruction about the right timing for making 

safe overtaking maneuver. The system should be able to combine information 

regarding the driver skills with the contextual data. Driver skills should reflect the 

ability of a person to make certain maneuvers. Although this information could be 

manually introduced (for example beginner/mid level/professional) it is more 

convenient to be identified by the system. Even if the driver is experienced it may 

still find difficult do execute specific maneuvering actions. Thus setting manually the 

driver skill level is not a good choice. If the system identifies correctly the driver 

level it will certainly give more accurate instruction to the driver when in overtaking. 

 

The overtaking assistance system should collect its data from numerous sources.A 

high amount of information makes a more accurate prediction.So, combining a large 

amount of quality information offers the system possibility to correctly calculate the 

right timing. This data aquisition can be easely done in modern vehicles. Modular 

organizational structure of the car systems permit easy access to almost all sensors. 

Hence , in a modern vehicle there are a lot of modules that can communicate to 
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each other via a data bus and each one is responsible of collecting the signals from 

numerous sensors connected to it,  the sensor data acquired from one  module can 

be easily accessed by other modules by the means of data bus. Moreover the 

module responsible for collecting data from certain sensors can process data and 

make it available to the others.This means that, in addition to the raw sensor data, 

the modules connected to the bus can also access the processed data.This structure 

allows the novel driver assistance systems to be easely integrated into the car. 

 

Inter-vehicle communication will also contribute to the driver safety. Exchanging 

data between vehicles will enable the onboard systems to make fast estimation of 

the traffic situation. If there is a potential risk the system can take just in time 

actions for avoiding collisions [86]. It can send warning information to the driver or 

take control over the vehicle. In other words the system can just display a warning 

message or directly engage the brakes without driver intervention. Another benefit 

regarding safety is the ability of the driver to see the blind spots. This is particularly 

useful in the overtaking. For example, the video camera installed on the vehicle to 

be overtaken could broadcast live streams to the driver who wants to overtake. So 

the driver who wants to overtake could safely execute the overtaking maneuver.The 

network used for this type of communication in literature is known as a vehicular 

ad-hoc network (VANET). Beside inter vehicle communication the framework 

provides communication with base stations installed on the ground. Moreover, it 

also offers support for vehicles that are far away from each other. Hence, simple 

vehicle to vehicle communication is designed for short distances, thevehicles found 

far away from each other can not exchange data by direct connection. To solve this 

problem, VANET firstly transfers the data to a base station and then forwardrs itto 

the vehicle that requested it.  

 

Nevertheless, the technological solutions mentioned in this introductory chapter aim 

to help modern traffic management systems to cope with the large volume of data 

collected by the surveillance network. The scope of such systems is to increase the 

traffic throuthput by reducing the traffic congestion and to increase the traffic safety 

by reducing the number of accidents. In this regard, I set out to contribute to this 

field, so I designed a computer vision system for the automatic analysis of video 

frames from the video surveillance of a crowded intersection. 

 

5.2 The architecture of the proposed system for traffic 
surveillance 

 

The purpose of the video analysis system proposed in this chapter is to extend the 

capabilities of traffic management centers. Thus, the surveillance infrastructure and 

the video analysis algorithm poposed in this section are aimed for increasing the 

traffic throutput and also can be used for collecting traffic statistical data. Moreover, 

the solution uses computer vision algorithms that do not require high computational 
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resources so it can be implemented using smart surveillance cameras that do not 

have high computantional power. This feature allows installation of several such 

low-complexity computer vision algorithms on each smart surveillance camera, each 

with the aim of performing a particular task.For example, the first algorithm is 

designed to measure traffic flow and the second is meant to detect unusual events, 

such as car accidents or unalowed u turns at a crowded intersection.In this way, the 

proposed system can solve several tasks simultaneously without needinghigh 

endsmart surveillance cameras.Therefore, in the continuation of this chapter I will 

describe the system architecture and later on I will propose a low complexity video 

analysis algorithm that is aimed to measure traffic thruoutput and also has the 

ability to classify detected vehicles in a busy intersection. 

 

That being said, it is obviously that the proposed traffic surveillance system is based 

on the modular concept. Therefore, the network consist of many smart surveillance 

cameras, (reffered as network nodes in this chapter) that have a capability to 

process the captured video on board, the communication tower for establishing the 

wireless comunication and the control center. The control center contains 

powerfullservers whose responsability is to orchestrate the comunication within the 

system. It also contains many monitors that are the tools of the surveillance 

officers. They use thesemonitors to visualise important events. Hence, for a better 

understanding, the figure 27shows the block scheme which ilustrates the 

architecture of the proposed traffic surveillance system. 

 
Figure 27 - The proposed video surveillance architecture 

 

The smart cameras proces the video on board so they send only important events to 

the control center where the surveillance officers analyse and either aprove or 

disregard the received events.In this way the network throutput is reduced and the 

amount of video received by the surveillance officers is also reduced. This means 
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that the surveillance officers analyze only certain events and not the real time video 

streams that are captured by each of the surveillance cameras. Therefore, even if 

the smart cameras send a lot of false events to the control room this approach it is 

still much more convenient than streaming the real time video streams. 

 

The second benefit of the proposed apporach is that it can be easely instaled 

withouth the need for excesive network wiring. The smart cameras require just a 

power cable and an antenna to be able to communicate with the comunication 

tower. Similarly the comunication tower consists of severalantenass that are 

positioned at the top of it. The tower is ahigh power wireless acces point so in 

addition to antennas it also contains networking hardware in order to enable the 

wireless comunication between the smart cameras and the control room. The control 

room and the comunication tower are conected via cables, but they are very close to 

each other, therefore these cables are short in lenght and do not require high cost 

for their instalation. 

 

The smart cameras and the comunication tower should contain networking devices 

that are able to comunicate over longer distances. Hence, the smart surveillance 

cameras must have a antena and powerful transimter/receiver in order to be able to 

receive and transmit data to the communication tower.This involves the use of more 

power compared to cable communication. When I say cable communication, I am 

refering to the similar surveillance architecture presented in the figure 27 that 

instead of wireless comunication uses data cables. 

 

Given the above, using wireless communication and smart cameras, as ilustrated in 

the figure 27, is a very attractive solution because the system can be easily installed 

and is cheaper to install than the classical wired version that uses CCTV 

cameras.Also, it is more efficent because the smart surveillance cameras analyse 

video on board so only important events are send to the control center for further 

analysis.This approach improves the chances of detecting events, as it only sends 

high-value videos to the control center.  If the surveillance officers are required to 

whatch the video streams twenty four seven they will for sure miss many important 

events. This is because human eyes get tired quickly, especially if they need to 

inspect multiple video streams at once.So by providing surveillance officers with 

carefully selected video streams by the video analysis algorithm, the chances of an 

event being detected are much higher. 

 

These features make such a system attractive formany trafiic surveillance 

applications. It is especially suitable for the ones that are suposed to detect events, 

are required to be deployed and set up quickly, and are intended for temporary use. 

For example, if the traffic management board decides that it would be very useful to 

measure traffic on an intersection that does not have surveillance cameras installed 

and there is no AC power available, the proposed system would certainly be the best 

choice. In such cases, instead of using AC power, smart cameras could use energy 
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from batteries and solar cells.The communication layer remains unchanged that is 

the comunication tower and the control center remain as defined in the figure 27. 

Based on these assumptions, I can say with conviction that this system can be 

installed easily and quickly even in places where there is no power source available. 

Moreover, the system can be switched to another intersection at any time, without 

the need for expensive and complex modifications. 

 

Despite its event detection capability, easy installation and low cost,the proposed 

system also has its weaknesses.That is, the long distance wireless communication 

can cause problems due to the fact that the wireless signal may be temporarly 

disrupted due to interference with wireless signals from other devices.In this 

situations tha data packests are lost during transmissions so certain events may be 

lost because of unability to transfer them to the control room.Another downside is 

that the system does not have the posibility to store videos for longer periods of 

time. Even though the smart cameras have a local storage and can save videos, the 

capacity of such local storages is limited. Therefore, surveillance officers cannot 

inspect old videos, such as those recorded a month ago because they are not found 

in the camera memory. 

 

Even with the forementioned shortcomings I am trully convinced that the proposed 

system is still a good choice for the automatic surveillance of a congested 

intersection in urban areas.If the system is configured correctly, it will definitely 

meet the expectations of the end user. 

 

 

5.3 Installation and configuration of smart surveillance 
cameras 

 

The system I propose in this chapter is an event based one, so that smart 

surveillance cameras process the video on board and send only important events to 

the control room. In order to acomplish this task the surveillance cameras need to 

run an video analysis algorithm. Its task is to analyze video frames in order to be 

ableto extract useful information from videos, such as traffic irregularities, traffic 

accidents, etc. This part of the system is very sensitive so it requires a special 

attention. 

 

In order to get the maximum performance of the proposed system for traffic 

surveillance the smart surveillance cameras should be installed correctly. It is vital 

that the camera captures the traffic scene correctly so that the video analysis 

algorithm can successfully analyze the objects in the scene. In the figure 28is an 

ilustration that shows how the camera installation should look like. Therfore, my 

recomandations are that the camera should be installed on the side of the 

intersection and should be placed on a high pole in order to capture the whole 

interesection.  
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This configuration allows the camera to view all important places in an intersection, 

such as sidewalks and all traffic lanes. Which means that the surveillance camera 

can be programmed to detect several traffic events at once.When I say programmed 

I mean that the surveillance camera can run sevaral computer vision algorithms 

onboard.Each algorithm being designed to capture specific events by analyzing its 

portion of the monitored scene. This means that the camera can analyze two or 

more areas simultaneously, so that it can detect for example traffic accidents as well 

as pedestrians crossing the sidewalks when they are not allowed, that is they have 

the red light at the traffic light, at the same time. 

 

 
Figure 28 - Position of the smart surveillance camera 

The traffic monitoring system I propose aims to automate vehicle detection and 

classification tasks so it can automatically detect and classify vehicles according to 

their size. The smart surveillance cameras send only simple messages instead of 

video frames to the control room. Moreover, the system also has a metering 

capability, so that, in addition to classification, the algorithm can count the number 

of light and heavy vehicles passing through the intersection. This kind of information 

is very usefull for many trafic surveillance applications. Hence, for example it can be 

used for detecting traffic congestion or to estimate the trafic throuthput. 

 

For achieving this task the proposed system requires just one surveillance camera 

per intersection. This feature is very convenient because it reduces the cost of the 

system and also reduces the installation time. The only weak point of the system 

regarding its installation is the need for a high pole on which the surveillance 

camera is placed. Hovever, this is not a disantvage because instead of puting the 
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camera on a pole it can be instead mounted on the clossest building. Of course, this 

mounting solution is acceptable only if the building is tall and is very close to the 

surveilled intersection. Otherwise, the system requires the installation of a high pole 

near the intersection. 

 

In order to function properly, the algorithm also requires a configuration file. That is  

in addition to the physical installation of the camera, the instalation procedure also 

requires from the installation technicians to manually select an observation zone 

within the surveiled scene and save it in the configuration file. An observation zone 

is the portion of the scene that is used by the computer vision algorithm so it can 

detect and count vehicles in the intersection. Hence, the purpose of the zone is to 

„tell” the algorithm where the traffic lanes are, so that the algorithm can correctly 

count the vehicles in the surveilled intersection. It may have been even more 

practical for the system to recognize this zone automatically, but this would rise the 

complexity of the computer vision algorithm. Which in turn means that it would 

require more computational resources. Hence, I wanted to design an solution that 

uses as low resources as posible this was not acceptable approach for me.Maybe I 

could have designed an independent video analysis algorithm to detect the 

observation zone whichwould have been used only once, that is when installing the 

camera. 

 

However, during this research work I did not manage to design such an auxiliary 

algorithm, so the observation zone must be defined manually for each surveillance 

camera in the system.I consider that this is not a major disadvantage of the system 

due to the fact that the observation zone needs to be defined only once, that is 

when installing the surveillance camera.Nevertheless,  in the figure 29is an 

illustration that shows how an observation zone should look like. 

 

 
Figure 29 - Illustration of the observation zone and the region of interest 
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It should be defined in such a way as to include the traffic lanes that are to be 

monitored by the system as shown by the blue rectangle in the figure 29. The 

observation zone is used by the algorithm for counting the vehicles. More precisely, 

the vehicle is counted at the moment it enters the obervation zone.Hence, it is very 

important to define this zone correctly when installing the surveillance camera so 

that the algorithm to count vehicles correctly.  

 

The size of the observation zone is not fixed and should have a rectangular shape. 

Also, the size of such rectangle should be very small in order to enable the 

algorithm to count vehicles precisely.As a clue the  the width of an observation zone 

should be four times smaller than its height. But, these are just indicative data. In 

order to get the best detection performance of the algorithm my recommendation is 

that this area should be established experimentally. 

Nevertheless, beside the observation zone the proposed algorithm also requires 

form the instalation technicians to define and save in the configuration file the 

region of interest. Indeed, the algorithm works just fine withouth using this region 

but in that case it analyses the entire video frame so it will inavoidabely consume a 

lot of computational resources. To avoid such inefficent approach I decided to use a 

region of interest as illustrated in the figure 29 by the red rectangle. The region of 

interest is an area defined within the video frame that is meant to filter out the 

scene zones that are not important for traffic analisys. 

 

The explanation for this approach is that, in order to classify and count vehicles, it is 

sufficient to analyze only a small part of the video frame and not necessarily the 

whole frame. That is, it is enough to look at the area that captures only the traffic 

lanes. The remaining scene zones do not provide useful information to the algorithm 

so they are of no use for the traffic video analysisapproach proposed in this chapter. 

 

Therefore, for the algorithm to work properly the region of interest must include 

both trafic lanes of the road segment that is being analysed by the algorithm. To 

select such a zone I used a rectangle as illustrated in the figure 29. Its size must be 

considerably larger than the size of rectangle used for the observation zone, as its 

purpose is to select the part of the monitored scene that captures the route of the 

vehicles.Based on the knowledge gained during the experiments I can tell for sure 

that this regionis not as sensitive as the observation area, so even if it has not been 

perfectly defined, the algorithm will still reach its maximum performance. 

 

Of course, the task of defining the region of interest could also be automated. 

Similar to defining the observation zone, I could extend the proposed algorithm to 

automatically recognize the region of interest or maybe even a better solution would 

be to design a separate algorithm specially designed to perform this task.So the 

region of interest would not need to be defined manually by the installation 
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technicians. Implementing such a computer vision algorithm requires a lot of 

research and is not necessarily a task that should be automated. 

 

The reasoning behind this conclusion is based on the fact that the region of interest 

requires to be defined only once, that is when the surveillance camera is installed. 

Therefore the automatic detection of the region of interest will only help technicians 

during the configuration of the intelligent surveillance camera.It will not in any way 

extend the traffic analysis capabilyties of the system. Based on these facts I think 

that it would certainly be nice, but not necessarily useful to have such an auxiliary 

video analysis algorithm that is meant to automatically detect the region of interest 

of a busy intersection. 

 

The observation zone and the region of interest explained to this point and 

ilustrated in the figure 29is the configuration data that is used by the algorithm in 

the process of detecting, clasifying and counting vehicles that are passing thru just 

one road segment of the surveilled intersection. This surveillance configuration can 

be easely extended to monitor more than one road segment of an intersection. In 

this case the smart surveillance cameras need to run several instances of the 

proposed video analysis algorithm for traffic surveilance. Each of them beeing 

responsible for analysing just one road segment. Of course, in order to be able to 

function propoerly each of the computer vision algorithm should have a separate 

configuration file that contains the observation zone and the region of interest for 

the road segment it is analysing. For instance in the case of crossroad ilustrated in 

the figure 29 if the end user whants to monitor the trafic on all lanes the surveilance 

camera requires to run four computer vision algorithms each having its own 

configuration file. 

 

 

5.4 The proposed video analysis algorithm 
 

In this chapter I will describe in detail my video analysis algorithm that I published 

in article [BM1] and presented in the first PhD report [BM5].Remember that the 

target was to design an efficent computer vision algorithm that does not require a 

high computational power to run so it can be used in a harware with limited 

resources. This requirement sould not affect its performance so the algorithm should 

be robust in order to acurattely detect, clasify and count vehicles in an busy 

intersection.  

 

The algorithm I propose in this chapter satisfies both requirements. This features 

makes the proposed algorithm be very attractive for using it in the surveillance 

networks that use smart surveillance cameras for capturing video footages across 

the city. 
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The benefits of using smart surveillance cameras in a surveillance network is that in 

addition to simple video recording, these cameras have the ability to store and 

process data localy before sending it to the control center.We all know that every 

benefit comes with a cost. Hence, the disadvantage of processing data localy is due 

to the fact that the intelligent surveillance camera has a limited processing power 

and therefore cannot run a complex video analysis algorithm in real time. 

 

Due to this shortcoming whichis imposed by the limited hardware of the camera, it 

is very important that video analysis algorithm running on the smart camera donot 

consume a lot of computing resources and in the same time be complex enough to 

be able to analyze complex surveillance scenarios. With this in mind, I designed a 

complex video analysis algorithm that consumes very little computational resources. 

To be able to design such a chalenging algorithm I used several carefully selected 

video analysis algorithms that work together in order to acomplish the task of 

analysing the video footages of a busy intersection. 

 

The operation of the algorithm is divided into phases, so each phase fulfills a 

particular task.This modular design allowed me to design the algorithm easier, as I 

was able to measure the effectiveness of each new phase I added.Therefore, after a 

lot of experiments I ended up using the following phases: 

 

 The fitering phase 

 The Foregroud extraction phase 

 Correction of the foreground mask 

 Detection of the vehicle features 

 Post processing phase 

 Classification and counting phase 

 

All these phases play an important role in the video analysis process. It is essential 

that you understand how each of them works, so that you can understand how the 

video traffic analysis algorithm I designed works.In the folowing chapter I am going 

to describe each algorithm phase in detail.  

 

 

5.4.1 Filtering phase 
 

The first phase of the algorithm is cocerned with removing the unnecesary 

information from the video stream. This phase is engadged to filter out the objects 

that are not relevant for my traffic surveillance application. I am not interested to 

detect pedestrians, cyclists, buildings and other objects that do not belong to the 

small or big class.The small class includes small vehicles such as cars and the big 

class includes large vehicles such as trucks and buses. 
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Therefore, to avoid the analysis of objects that do not fall into either the small class 

or the big class, I decided to only monitor the zone that include the traffic lanes. In 

this way I manage to separate the vehicles from the other objects in the scene. This 

zone is the region of interest that needs to be defined by the instalation technicians 

in the configuration file at the moment of installing the smart surveillance camera. 

 

To better understand the principle of operation of the filtering phase, I will explain 

the process on a concrete case. This use case is the one I am going to use to 

describe the operation of the algorithm. It is used in the following chapters as well 

as in the chapter dedicated to experiments for approving the efficiency of the 

proposed traffic surveillance algorithm. Hence, for testing the proposed algorithm I 

made a dataset by recording a busy intersection with a video camera. Please note 

that the details regarding this novel dataset are not important at this moment and 

are described in one of the folowing chapters.  

 

Nevertheless, the original frame of the recorded intersection is illustrated in the 

figure 30.aas you can see it contains many regions that are not relevant to this 

traffic surveillance application. Such as crosswalks, paths for pedestrians and 

cyclists, buildings, green spaces and parking zones.  

 

a)      b) 

 

Figure 30 - a) Original frame as captured by the camcoder [BM1]; b) The extracted region of 
interest (ROI) 

 

The zone I am interested in is illustrated by the white rectangle in figure 30.a. 

Looking more closely the zone looks like in figure 30.b. It contains two traffic lanes 

and two tramway lines. The selected area was manually defined and is referred to 

as region of interest (ROI) in this manuscript. By including this filtering process I 

literally cropped the image, thus the algorithm processes just the ROI. 
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5.4.2 Foreground extraction 
 

The next phase of the algorithm has a task of detecting the moving objects in the 

video stream. To acieve this task that is to select the best foreground extraction 

algorithm, in my experiments, I explored three widely used background subtraction 

algorithms, namely optical flow, frame difference and Mixture of Gaussian (MOG). 

Even though all of them behave as expected, just one captured my interest.  

 

As far as performance is concerned, the background subtraction algorithm based on 

optical flow has proven to be very good at detecting moving objects. It successfully 

managed to separate the moving objects form the background. Nevertheless, 

despite of the achieved performance, in some cases the algorithm failed. This 

happens because the algorithm relies solely on pixel motion, so foreground objects 

are detected only if they are moving. The algorithm failed to detect a foreground 

object that did not move even if the object stopped for only a few seconds. 

 

The optical flow based background subtraction showed high detection performance if 

the scene objects were moving, respectively low detection performance if the scene 

objects were static. Since the video footage's I used in my experiments were 

captured from a crowded intersection, so that they contained only moving vehicles, 

this lack of performance in detecting static objects did not bother me. The main 

reason why I did not use the optical flow algorithm in my application is because of 

its high computational requirements. 

 

Another algorithm I investigated for extracting the foreground was the frame 

difference algorithm. Although very simple, this method can disclose useful 

information about foreground. It provides the boundaries of the moving object. The 

disadvantage is that the inner area of the object is classified as background. Beside 

this the approach has issues due to ghosting. It does not handle the shadows well. 

Due to these shortcomings, the frame difference algorithm cannot be used alone to 

extract the foreground. Instead, it is suitable for use as additional feature in the 

foreground extraction procedure. 

 

The background subtraction algorithm proposed in [87] is a better option. This 

algorithm involves the use of a statistical modeling method, namely it uses several 

Gausians to capture the intensities of the background pixel. Hence its name Mixture 

of Gaussians (MOG). Accordingly, the probability density of any background pixel is 

modelled by the equation (8). 

𝑝 𝑥 =  𝜋𝑖  𝑁 𝑥 µ𝑖 , 𝜎𝑖)

𝐾

𝑖=1

 (8) 
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Where K represents the number of Gaussians that are used to model the pixel 

values, the 𝜋𝑖 it’s a weight of the i’th component so it is the probability of x 

belonging to the i’th Gaussian. The µi is the mean and the σiis the variance of the 

probability density function Nthat belonghs to the i’th Gaussian. The probability 

density function for each of the component mixture is defined by the equation(9). 

 

𝑁 𝑥 µ𝑖 , 𝜎𝑖 =  
1

𝜎𝑖 2𝜋
𝑒
−

(𝑥−µ 𝑖)2

2𝜎𝑖
2

 (9) 

 

Therefore, the parameters of the model that are learnt during training are the  

𝜋𝑖  , µ𝑖  , 𝜎𝑖 . Tose parameters are learnt by usign the expectation maximization 

algorithm. It is a iterative algorithm for estimating the maximum likelihood. In each 

iteration it computes the probabilities of pixels and updates the model parameters. 

This process continues until the algorithm converges, so it founds a maximum 

likelihood estimate. In this way the algorithm builds a model of the image pixels by 

using several Gaussian distributions. 

 

To better understand this concept, in the figure 31 is an illustration of such a 

Gausian mixture model that uses three Gaussians. Usually, the  background pixels 

appear more frequently in the scene so they are captured by the Gaussians that 

have high mean value and low variance. These features correspond to the blue and 

orange bell shaped curve in the figure 31. On the contrary the foreground pixels 

appear occasionally in the frame so the foreground is captured by the Gaussians 

that have low mean and high variance such as the green bell shaped curve in the 

graph.  

 

At first glance you might think that the number of Gaussian components used for 

modeling follows the rule, the more the better. But this is not true for the MOG 

algorithm. According to the research carried out in the paper [88],the number of 

Gaussians should not be more than seven and not less than three. Indeed the 

algorithm  can work with only one Gaussian, but in this case the algorithm does not 

reach its maximum performance.  

 

Also in the same article I found out that the number of five distributions is the most 

suitable for background modeling. The use of six or seven Gaussians increases the 

complexity of the algorithm and does not greatly improve its performance. 

Therefore, I decided to use five Gaussians in my experiments to model the pixel 

values. 
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Figure 31 - GMM of a pixel with number of gaussians set to three 

An important feature of this algorithm is that it constantly updates its models. So it 

is able to quickly adapt to the ever-changing background. This feature is very 

important, especially if the scene takes place outdoors. 

 

 
Figure 32 - Left original frames , right the foreground masks generated by the MOG algorithm 

 

Another feature of the MOG algorithm is that it can recognize the shadow pixels. It 

also, successfully handles periodical motions of small areas of the background. 

Often, the scene contains trees whose leaves are moving due to wind. Even in this 

case where the background contains objects that exhibit small periodic motion, the 

MOG algorithm can successfully classify foreground pixels. The algorithm adapts 

quickly to the scene. It constantly monitors video frames and updates its model in 

real time. Those features convinced my that the Mixture of Gaussian approach is the 

best fit for my application.Figure 32 is an illustration of the original frames and their 

foreground masks, generated by the MOG algorithm. 
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5.4.3 Correction of the foreground mask 
 

However the MOG has a weakness shared with all currently known background 

segmentation methods. In many cases, due to the classification errors, some of the 

foreground pixels are classified as background instead of foreground. Hence, I 

assume an object, in this application a car,  is oftentimes represented by a couple of 

interconnected foreground regions. Detected foreground often contains holes, where 

object features are more similar to the background model. In order to overcome the 

shortcoming of the background subtraction algorithm, that is to correct the 

foreground mask as much as possible, morphological operations are needed. To 

restore foreground connectivity and to fill in small holes, I use morphological dilation 

[89]. 

 

Dilation operator is a basic operation frequently used in image processing. It is 

usually exploited for the gradual extension of the white pixels areas in binary image. 

The operator is particularly useful for correcting foreground mask imperfections 

generated by the background subtraction algorithm. It extends the foreground area 

and at the same time reduces the parasitic holes found in the foreground mask. 

 

The operator receives two inputs, a binary image and a structuring element, also 

called kernel in the mathematical morphology theory. The dilation combines two 

sets so its operation is defined by themathematical formula (10) which is known as 

the Minkowski sum in geometry: 

 

𝐴 ⊕𝐵 =  𝑎 + 𝑏  𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} (10) 

 

The A is an image while the B is the structuring element that is it is the structuring 

element that is used to dilate the image A. Lets suppose the following example. The 

binary image, illustrated in figure 33.a, is subjected to the dilation operator. To keep 

it simple, the structuring element is set as having a 3x3 rectangular shape. At each 

step the algorithm processes just one pixel. The number of iterations is equal to the 

number of pixels in the image. In each iteration, the center of the structuring 

element is positioned at the pixel to be processed. The pixel color is changed from 

black to white only if any pixel of the structuring element matches at least one white 

pixel in the image. 

 

An iteration of the dilation operator is illustrated in figure 33.a . The pixel to be 

processed is colored  blue and is called the current pixel, whereas the red rectangle 

shows the structuring element. Initially the current pixel value had a black color. 

Because there is at least one white pixel within the structuring element, the current 

pixel changes color to white. 

 

Therefore, the dilation operator makes smaller the black holes found inside a white 

blob and slightly extends the white blob area. The size of the structuring element 
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dictates the size of the filling. After applying the dilation operator the image looks 

like in the figure 33.b. 

 

 
a) b) 

Figure 33 - a) The input image;  b) The image after applying the dilation operator. 

In the proposed traffic surveillance algorithm, the foreground mask is dilated by a 

5x5 kernel at each frame. The reason of chosing a rectangular shape for the 

structuring element is due to the fact that the foreground mask contains many small 

rectangular black holes whinh the contours that need to be corrected. As the shape 

of structuring element depends on the objects that are going to be processed I 

decided to use a rectangular shape for it.  

 

The kernel size defines the maximum gap between segments and the maximum 

diameter of holes that will be restored by morphological dilation. Because the 

foreground mask contains a lot of holes that have a diameter larger than three 

pixels I decided that it is best to use the 5x5 structuring element instead of 3x3. By 

applying the dilation operation, the segments are more connected as illustrated in 

figure 34.b. Small areas resulting from occlusions caused by other objects are 

eliminated. As seen in the example in figure 34.a and figure 34.b morphological 

dilation tends to increase the area of the detected foreground objects. 

 

 
         a)      b) 

 

Figure 34 - a) The foreground mask provided by the background subtraction algorithm; b) 
Dilated foreground mask 
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Beside its benefic effects the dilation operator negatively affects the noise pixels. 

The surveillance camera is not perfect and the captured frames are contaminated 

with noisy pixels. The noisy pixels are not stable, they are usually randomly 

distributed over the entire frame and occur in very small regions that are composed 

of one or several noise pixels. This phenomenon causes the background subtraction 

algorithm to believe that the noise is actually foreground. Figure 34.a illustrates a 

typical foreground mask that is contaminated with parasitic pixels. By applying the 

dilation operator, the noisy regions expand. This is an issue that negatively affects 

the vehicle detection process and can be relatively easy removed. Hence, in order to 

correct this issue I decided to use the morphological erosion operator.  

 

The morphological erosion operator functions in the similar way as the dilation 

operator. It processes the binary image provided at the input using a structuring 

element. The difference between the dilation and erosion is that the former is used 

to increase the image areas, while the latter shrinks the areas. As you may have 

already noticed, erosion and dilation are complementary morphological operators. 

The erosion operator is usually applied to binary images, but can also be used to 

process grayscale images. When applied to the foreground mask, the erosion 

removes a portion of the mask. 

 

Operation of the erosion operator is defined by the formula(11)which is known as 

the Minkowski difference in geometry: 

 

𝐴 ⊖𝐵 =  𝑎 − 𝑏  𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} (11) 

 

The A is the image and the B is the structuring element that is it is the structuring 

element that is used to erode the image A. To better understand this concept I am 

going to describe the process with an example. Hence in figure 35 is an illustration 

that shows how the erosion operator works. It receives the binary input image 

namely  a) in the figure. The structuring element that is used in the process is set to 

have a rectangular shape of 3x3. Then, similarly to dilation, the center of the 

structuring element is positioned at each pixel of the input image. In each step the 

operator processed only one pixel. Value of the pixel is cleared, namely color is 

changed from white to black, if one or more pixels of the image that are 

encompassed by the structuring element have a black color. 

 

An intuitive example of one iteration is shown in figure 35.a. The center of the 

structuring element is positioned at the pixel to be processed called the current pixel 

in the figure. In the initial phase the current pixel had a white color. Since there are 

black pixels within the structuring element, the color of the current pixel is changed 

to black. This operation continues until all image pixels have been processed. The 

result is an eroded image illustrated in figure 35.b. 
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a)          b) 

Figure 35 - Erosion operator 

 

Based on the experimental results, I chose to use the morphological erosion 

operator having the kernel set to a rectangular shape of 3x3. This configuration has 

proven to be the best for my application. After the operator is applied, all the 

foreground blobs are shrinked. In figure 36.a is the input image. The small zones 

that are caused by the dilation of the noise pixels are shrink. Vehicle blobs are also 

reduced in size. The only disadvantage of the erosion operator is that it tends to 

enlarge the cavities within the blob. Please note that in figure 36.a, the top right 

blob has a cavity inside. The same cavity is larger in the eroded image illustrated in 

figure 36.b. 

 

 
a) b) 

 

Figure 36 - a) Dilated foreground mask used as input for the erosion operator; b) Mask after 
erosion 

The foreground mask contained noise when it was provided by the background 

subtraction algorithm. Due to occlusions, some of the pixels in the foreground were 

misclassified as background. This event caused the apparition of cavities inside the 

vehicle blobs. Another error of the background subtraction algorithm is due to the 

camera noise. The noisy pixels were oftentimes classified as foreground.  
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To tackle these issues I used the morphology operators. The dilation operator filled 

up the cavities and enlarged the noisy blobs, whilst the erosion shrink-ed the area of 

all blobs. In this way I managed to remove the blob cavities and to reduce the 

number noisy pixels.  

 

5.4.4 Detection of the vehicle features 
 

To this point, some of the anomalies generated by the background subtraction 

algorithm are removed from the foreground mask. The mask is ready for the next 

processing stage, that is finding the locations of vehicles. In order to fulfill this task 

it was necessary to find out the center of all the contours of the vehicles 

encountered in the foreground mask. 

 

The algorithm proposed by Suzuki and Abe described in [90] proved to be very 

useful in extracting the contours from the foreground mask. It uses a simplistic 

border following technique that can accurately determine the contour of an object. 

In the early research phase, I also explored the algorithms for contour extraction 

described in [91] and [92]. Both solutions use the border flowing technique. But for 

convenience, I chose to use the Suzuki and Abe's algorithm.  

 

By applying it to the foreground mask I managed to extract the contours of all the 

objects present in the scene. Figure 37.b illustrates the results. The algorithm 

received the input binary mask illustrated in figure 37 a. 

 

 
a) b) 

 

Figure 37 - a) Foreground mask after correction;  b) The contours of the vehicles detected by 
the algorithm of Suzuki and Abe 

 

For the classification of vehicles I chose to use the minimum area bounding 

rectangle (MBR) approach. It is a fast and robust method for capturing the size of 

vehicles. The minimum area bounding rectangle of a blob is defined as a rectangle 

with a minimum area that can fully encompass the blob. An example is illustrated in 

figure 38. The blobs are colored white and their corresponding minimum area 
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bounding rectangle is colored green. Also, the figure contains the centers of the 

blobs. These are illustrated by the red dots. 

 

 
Figure 38 - Minimum area bound rectangles of the vehicles. The red dots in the image are the 
centers of the contours. The small green contours that do not belong to vehicles are due to the 

camera noise. 

The method is able to accurately estimate the object size by using only its contour. 

It operates in two steps. In the first phase the method computes the Convex Hull 

(CH) of the contour. The CH in this case is defined as a convex region that can fully 

encompass the set of planar points P. The set  of planar points is provided by the 

contour extraction algorithm. It is actually the contour of an object because each 

contour is saved as a vector of planar points.  

 

Thus, in the first phase, of the computation of the minimum area bounding 

rectangle, the method approximates the contour of the object to a CH. The 

approximate CH of an object is much easier to manipulate than its contour. An 

illustration of the CH of a vector of planar points is given in the figure 39. 

 
a) b) 

Figure 39 - The process of approximating the vector of planar points to a Convex Hull; a) 
Computation of the rotation angle θ; b) The Convex Hull and the bounding rectangle in first 

iteration of the algorithm. 
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There are many popular solutions in computational geometry for computing the CH 

of a set of planar points, like Kirkpatrick–Seidel [93] or the Chan [94] algorithm. 

Some have linear execution time at best, but their average time complexity is 

O(nlogh). The n is the number of planar points and h represents the number of 

points of the approximated convex hull. The complexity is not stable. It varies 

between contours because it depends on the number of input points. In the worst 

case, the parameter h tends to converge to n, so that the time complexity of an 

algorithm in such scenario becomes O(nlogn).  

 

Since there are many approaches in the literature for calculating the CH, I made the 

choice only based on the experimental results. Therefore, I decided to use the 

algorithm described in article [95]. The time complexity of this algorithm is also 

O(nlogn). 

 

After approximating the contours to CH , the method is ready to calculate the  

minimum bounding rectangle. This is the second phase of the algorithm. The 

processing time depends on the number of edges of the convex hull. Thus, the time 

complexity for this phase is O(n). In order to find the MBR, the algorithm involves 

several steps. For each of the CH edges, the algorithm computes an orientation θ by 

the means of the arctangent function. In each iteration the algorithm rotates the CH 

by angle θ and finds the minimum and the maximum values of the x and y.  

 

These values represent the candidate bounding rectangle of a CH. The CH and the 

candidate bounding rectangle in the first iteration show as in figure 39.b. Once 

found, the algorithm stores each rectangle in a buffer. In the last step, the 

candidate bounding rectangles are compared with each other. The algorithm selects 

the rectangle with the smallest area as MBR of the contour. 

 

Afterwards the completion of the second phase, each of the contours in the image is 

assigned a minimum area bounding rectangle. That is, instead of the vector of 

planar points each contour is described by a centroid C(x,y), an orientation θ, and 

an area A(L,H) of the MBR. L is the width and H is the height of the MBR.  

 

Although fast and robust, the classifier also has disadvantages. It fails to 

discriminate the types of cars. This could be a significant problem for other 

applications. In the proposed work, I wanted to classify the detected vehicles in only 

two groups. The first group consists of light vehicles such as cars, SUV's and 

motorcycles, while the second goup comprises big vehicles like, tramway, trucks 

and buses. Therefore, the inability of the classifier to discriminate the types of cars 

did not bother me. Since it is fast and robust and can accurately recognize small and 

big vehicles, I decided to use it in my application. 
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5.4.5 Post processing phase 
 

In addition to ignoring areas that are not of interest to this application, it was also 

necessary to filter out the detected contours. At some point the surveilled scene 

contained objects other than those present in the small and big class. Pedestrians, 

dogs and cyclists often appeared in the selected ROI. As a result, the collection 

contained contours that did not belong to the vehicles. 

 

In addition to this problem, background errors also affected the contour collection. 

Oftentimes the collection contained small contours that did not belong to any object 

as illustrated in the figure 38. Those are the contours of the foreground areas that 

were caused by the camera noise.Therefore, in order to solve these problems, I 

decided to filtered the contours. I removed items from the contour collection that 

have a bounding rectangle area smaller than a threshold. The trickiest part in this 

process was to establish the value of the threshold. But, after a few experiments I 

was able to easely spot the corect value for this parameter, that is five hundred. 

Please notice that this parameter depends on the monitored scene. For some 

scenes, the value of five hundred may not be appropriate. In these cases, the 

threshold value must be determined experimentally. 

 

Beside the noisy contours the foreground mask suffered from the camouflage issue. 

This error is also generated by the background subtraction algorithm. Object pixels 

that are similar in color to the background were often classified as background 

pixels. This phenomenon caused the formation of cavities inside a contours. Usually, 

an interior part of the vehicle that was similar in color to the traffic lane was missing 

from the foreground mask.  

 

To correct this problem, I added another filtering element to the algorithm. The filter 

removes all contours that have their centroid inside another larger contour. The 

experimental results have confirmed that this approach is very effective. By 

applying this process to the contours collection, I managed to eliminate many 

contours generated due to the camouflage issue. 

 

Segmentation performance was also affected by the camouflage problem. In many 

cases, the object was captured by two or more contours instead of one contour. One 

of such cases is illustrated in figure 40 . Usually the contour of an object is detected 

right and afterwards it splits into two or more contours. A typical solution to this 

problem would include a tracking algorithm and a more precise vehicle feature 

descriptor. The idea of this approach is to identify and track the detected objects. 

However, this concept was not acceptable for my application because it requires the 

design of an advanced tracking algorithm.   
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The contour splitting issue generated a lot of miss classifications. Although 

morphological image processing alleviates the problem, it was necessary to design a 

correction method.   

 

 
 

Figure 40 - Illustration of the proposed correction method. The rectangle illustrated by the 
white dot dashed lines represent the MBR of the history blob. Similarly, the rectagles drawn by 

the orange lines are the MBR's of the splited blob. 

The method is based on the indivisibility and linear motion theory of the vehicle. In 

reality, the contour of the vehicle is not possible to break. So if the algorithm 

detected a contour in the previous frame and several smaller contours in the current 

frame at similar positions, probably the contours  belong to the same vehicle. 

Another feature is that vehicle trajectory is mainly linear. Of course there area also 

exceptions to this rule. In some situations the vehicle may stop. But these situations 

are rare, so I didn't take them into account.  

 

Based on this assumptions, I have devised the following simple solution for 

correcting the contour splitting problem. The method labels two or more contours 

detected in the current frame as candidates for merging if the following conditions 

are met. First, the centroids of the MBR's in the current frame must be found within 

the boundaries of the MBR of larger contour in the previous frame. Second, the area 

sum of the MBR's in the current frame should converge to the area of the MBR in 

the previous frame. 

 

Only when these two conditions are satisfied, the candidate contours are merged. 

This results in a new MBR with the following properties: 

 

 the orientation is the same as the orientation of the MBR in the previous 

frame  

 the size is equal to the sum of the MBR’s areas in the current frame 

 the centroid C(x’,y’) is the center of the merged MBR’s in the current frame  
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An illustration of such a case is shown in the figure 40. The MBR of merged contours 

is represented by the white rectangle and the MBR's of contours detected in the 

current frame are illustrated by the orange rectangles. 

 

Later on, I managed to improve the correction method. Instead of just using the 

previous frame, I realized that the performance increases if I use several 

consecutive frames. The improved version of the correction method uses a larger 

history buffer to store the contour of vehicle and its corresponding MBR.  

 

 

5.4.6 Classification and counting phase 
 

The next phase of the proposed traffic surveillance algorithm contains a procedure 

for counting  classified vehicles. To accomplish this task I defined a rectangular 

observation zone in the ROI. This zone is illustrated by the red rectangle in figure 

41.a. Once the mass center of the vehicle’s bounding rectangle passes through the 

observation zone, the algorithm increments the vehicle counter by one.  

 

Since some vehicles move slower than others some of them may cause the vehicle 

counter to be incremented more than once. This situation is present when the 

center of the same vehicle is within the observation zone for more than one frame.  

In addition to the vehicle speed, the value with which the vehicle counter is 

incremented also depends on the camera framerate.  

 

a) b) 

Figure 41 - a) The original frame with the observation zone. The zone is illustrated by the red 
rectangle in the image;  b) Detected vehicle passing through the observation zone. 

 

To correct the counting issue I added an inactivity counter to the algorithm. Its 

purpose is to count the frames that do not contain activity in the observation zone. 

The inactivity state is present when there is no vehicle centroid inside the 

observation zone. Otherwise , the activity is detected whenever a vehicle bounding 

box mass center is within the observation zone. The idea of the proposed method is 

to wait a few moments after detection in order to allow the vehicle to exit the 

observation zone. For this purpose I defined a minimum inactivity parameter Imin.  
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Figure 41.b illustrates the moment when a mass center of the vehicle bounding box 

is in the observation zone. Let’s suppose that the mass center just entered the zone 

and the inactivity counter I > Imin. In this case the vehicle counter is incremented by 

one and the inactivity counter is reset. The inactivity counter is constantly reset 

until the mass center exits the observation zone.  

 

In order to count the next vehicle, there must be inactivity in the observation zone 

for at least Imin frames. Hence, the method is waiting for the vehicle to exit the zone. 

Afterwards it waits for at least Im inactivity frames. Only at this point, it is ready to 

accept the next vehicle. This procedure enabled me to solve the vehicle counting 

issue. When detected, the vehicle is counted only once. 

 

The Imin parameter is very sensitive. It depends on the camera framerate and the 

speed of the vehicle. Therefore, the optimal value for the Imin parameter must be 

determined experimentally. For this application I found out that the value thirty is 

the best fit for the Imin parameter.  

 

Finally, the last phase of the traffic surveillance algorithm is responsible for the 

classification of vehicles. I aimed to classify vehicles in only two categories. The light 

and the heavy ones. To accomplish this task I designed a simple classifier that can 

separate heavy vehicles from light vehicles. It uses the area of the vehicle bounding 

rectangle and a threshold. These two values are compared. If the area is greater 

than the threshold, the vehicle is classified as heavy. Otherwise, the vehicle is 

classified as light. Mathematically the operation of the classifier is described by the 

equation (12). 

 

𝐿 𝑥 =
1, 𝐴 > 𝐴𝑡𝑟𝑒𝑠

0, 𝐴 < 𝐴𝑡𝑟𝑒𝑠
 (12) 

 

The A is the area of the vehicle bounding rectangle whilst the Athresh is the threshold. 

The value 1 is the label for the heavy vehicle, and the value 0 is the label for the 

light vehicle. Since the camera zoom establishes the vehicles sizes it was necessary 

to experimentally extract the Athres value.  

 

 

5.5 The dataset 
 

For testing the traffic surveillance algorithm I used two custom datasets. Both were 

recorded by me. The first one consists of a video recording of a crowded intersection 

in Timisoara. It is the intersection between Str. Stefan Cel Mare and Str. Stefan 

Octavian Iosif. The traffic on these streets is very intense because many heavy and 

light vehicles pass through them every day. This is exactly what I needed to test the 

algorithm. 
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To capture many traffic patterns, I recorded the video at different times of the day 

such as during rush hour when traffic is congested, during the morning when many 

heavy vehicles cross the intersection and during the afternoon. At first I captured 

four video sequences that last approximately ten minutes each. Afterwards I 

combined all four clips and so I created only one video that lasts forty-one minutes.  

 

The figure 42 ilustrattes several frames from this novel dataset. Each frame is from a 

separate video sequence. 

 

 
Figure 42 - Samples from the first dataset 

    

For my experiments I used only the road pointed by the red arrow. In the forty-one 

minute video on these two lanes of the road, I managed to capture a total of 490 

vehicles of which 422 are cars, 4 are bicycles, 34 are vans, 6 are buses and 24 are 

trucks. In addition to vehicles there are also many other objects in the dataset such 

as pedestrians and trees. These objects were not of interest to me, but I could not  

avoid them because they are part of the scene. 

 

I recorded the video from a balcony of an apartment that is located near this 

intersection. The camera used to record the video was a Samsung WB210 with a 

video resolution set to 1280x720 pixels and a frame rate set to 30 frames per 

second.  
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The second dataset I made is more challenging for the algorithm. In addition to the 

large number of large and small vehicles, it also contains video sequences that are 

captured in low light conditions. Similar to the previous dataset, I recorded four 

video seqences at diferent times of the day, each lasting about ten minutes. But this 

time I wanted to capture the scene under various lighting conditions.  

 

In the figure 43 are samples from the captured video sequences. The left frame in 

the first row is from the video recorded at 9AM, while the right frame is from the 

video recorded at 13h. Samples in the bottom row of the figure 43 are from videos 

that are recorded in the afternoon of the same day. The frame on the left is from 

the video recorded at 18h, and the one on the right is from the video recorded at 

23h. 

 

 
Figure 43 – Samples from the second dataset. 

 

The frames in the figure 43, as well as the four recorded videos, capture traffic from 

a very crowded intersection in Belgrade. It is the loop of the Pancevo Bridge that 

connects the Pancevo Bridge with Despot Stefan Boulevard. This intersection 

contains many roads, but only some of them are suitable for use by the algorithm. 

This is because the algorithm is designed to analyze vehicles that are captured from 

a side view.  
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In order to fulfil the algorithm requirements, I selected only a portion of Despot 

Stefan Boulevard. It is the road shown by the red arrow in the frames in figure 43. 
In this road segment which is composed of two traffic lanes I managed to capture: 

 for the video recorded at 9AM which lasts 11 minutes and 12 seconds , 164 

small vehicles and 25 large vehicles  

 for the video recorded at 13h which lasts 9 minutes and 21 seconds, 407 

small vehicles and 24 large vehicles 

 for the video recorded at 18h which lasts 12 minutes and 9 seconds, 146 

small vehicles and 14 large vehicles 

 for the video recorded at 23AM which lasts 10 minutes and 33 seconds, 77 

small vehicles and 10 large vehicles  

 

All four videos that make up the dataset are captured from the same location, that 

is, from the roof of a nearby tall building. To record them I used the Samsung 

WB210 camera with the resolution set to 640x480 pixels. 

 

5.6 Experiments and results 
 

To validate the approach, I used in my experiments the two novel datasets, the 

openCV computer vision library and the C++ programming language.  

 

The user interface that I used to capture data provided by the algorithm is a 

graphical interface provided by the openCV library. It is simple and very easy to 

use. It is based on the imshow function that is aimed to display a video frame. 

 

 

  
Figure 44 – User interface of the traffic surveillance algorithm 
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Prior to displaying the frame the user can add geometric shapes to it as well as text. 

For my experiments I drawed a small red rectangle in the frame by using the 

openCV rectangle function with the scope of displaying the observation zone on the 

user interface. Moreover, in the top left corner I drawed the value of the counter for 

small vehicles and the value of the counter for large vehicles by using the putText 

function of the openCV library. I was preaty satisfied with the results obtained, the 

appearance of the interface is quite decent and practical as you can observe in the 

figure 44. 

 

 
Figure 45 - Graphical interface used for visualizating the vehicle features. 

 

Beside the user interface from the figure 44 I managed to display another interface 

(figure 45) which is aimed to show the algorithm features in action. With the use of 

it I managed to fine tune my algorithm because it displays the vehicle contours 

alongside with the vehicle’s bounding boxes. It also contains the observation zone 

and the value of the contours for small and large vehicles. I used the same principle 

as for constructing the first interface. That is the imshow function to display the 

frame, the rectangle function to draw observation zone, the putText to draw the 

value of the counters, the circle to draw the centroid of the bounding rectangles, the 

polylines to draw the contours and the line to draw the minimum bounding 

rectangles. 

 

5.6.1 Experiments performed on the first data set 
 

The frame displayed in the figure 44 is just a region of the original frame. 

Remember that, the algorithm processes just the zone where the vehicles travel and 

ignores the remaining portions of the frame. In order to do so it requires from the 

user to define the parameters of the region in the configuration file. In my 

experiments, I realized that for the first dataset the region of interest that captures 

traffic lanes is best defined by a rectangle that has the following coordinates: 
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 top left point x=160, y=245 

 bottom right point x =650, y=480 

 

The resolution of the video frame from which the region of interest is extracted is 

1280x720 pixels. The coordinates x=160 and the y=240, of the top left point, 

represents the horizontal and vertical distance in number of pixels from the top left 

corner of the video frame. The same rule applies to the bottom right point.  

 

Beside the region of interest the algorithm requires from the user to define the 

coordinates of the observation zone. This zone is also of rectangular shape. In my 

experiments it has the following coordinates: 

 

 top left point x=160, y=90 

 bottom right point x =180, y=150 

 

Similar to the region of interest, these coordinates are absolute coordinates. They 

represent the positions of the vertices of the rectangle relative to the origin of the 

region of interes frame. In openCV, the region of interest is treated as a separate 

frame with the origin in the top left corner. 

 

In the figure 46 is the original frame and the two rectangular zones. The red 

rectangle is the region of interest and the blue rectangle is the observation zone.  

 

 
Figure 46 - Original frame of the first data set with the region of interest (red rectangle) and 

the observation area (blue rectangle) 
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In addition to specifying the parameters of the region of interest and the 

observation zone the algorithm requires the user to define three configuration 

variables. That is the area threshold variable, the inactivity counter threshoold 

variable and the correction history buffer size variable. The area threshold is 

expresed in number of pixels and it is used by the algorithm to make diference 

between small and large vehicles. If the vehicle size exceds the area threshold 

variable, the algorithm classifies the vehicle as belonging to the large vehicles class. 

Otherwise the algorithm classifies the vehicle as a belonging to the small vehicle 

class. Obviously, the size of small and large vehicles depends on the distance 

between the surveillance camera and the vehicles. The greater this distance, the 

smaller the vehicles appear in the video and vice versa. Therefore, this parameter 

depend on the environment and must be established experimentally. It is not 

affected by the inactivity counter threshoold and the history buffer size, so this is 

the first configuration variable to be set in the algorithm configuration process. 

 

In order to find the correct value of the area threshold variable I conducted the 

folowing experiment. I chose six vaues ranging from 2000 to 7000 with increments 

of 1000 as specified in the table 2. Then I selected a portion of the video in which a 

small vehicle (a car) and a large vehicle (a truck) pass through the observation 

zone. For each of the six values I inspected the counters of the algorithm, so that I 

wanted to find out if the classification goes well.                      

 

 
Threshold values(expressed in number of pixels) 

2000 3000 4000 5000 6000 7000 

Small 

vehicle 

counter 

0 0 1 1 1 2 

Large 

vehicle 

counter 

2 2 1 1 1 0 

Observati

on 

The 

small 

vehicle is 

missclass

ified 

The 

small 

vehicle is 

missclass

ified 

All 

vehicless 

are 

classified 

corretly 

All 

vehicless 

are 

classified 

corretly 

All 

vehicless 

are 

classified 

corretly 

The 

large 

vehicle is 

missclas

sified 

 

Table 2 - Results of classification on the first data set for different values of the area threshold 
variable. 

 

The values 2000 and 3000 are too small and the algorithm classifies both vehicles 

as belonging to large vehicle class. If the value of thresold is set too high like when 
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using the value 7000 the algorithm does the opposite that is it classifies the large 

vehicles as belonging to the small vehicle class. It seems that the values 4000, 5000 

and 6000 are the right ones because in these circumstances the algorithm correctly 

classifies both vehicles. Just to be safe, I decided to use the 5000 value for the area 

threshold variable.  

 

The seecond configuration variable that is required to be established experimentaly 

is the inactivity counter threshold. It is used by the algorithm to avoid counting a 

vehicle multiple times. As you may remember from chapter 4.4.6, it is a waiting 

time used by the algorithm which is activated when a vehicle exits the observation 

zone. Its purpose is to block vehicle counters for a period of time so that the 

algorithm can count vehicles correctly.  

 

Inactivity counter threshold is expressed in number of frames so its value depends 

on the framerate of the camera. As such it must be established experimentally. It 

should be neither too small nor too big. In my experiments, to determine its value, I 

inspected the results of the vehicle counting reported by the algorithm for different 

threshold values as shown in the table 3. 

 

 Inactivity counter threshold 

1 2 3 4 5 

Small vehicle 

counter 
600 575 522 382 348 

Large vehicle 

counter 
52 48 26 25 19 

 

Table 3 - Results of classification on the first data set for different values of the inactivity 
counter threshold variable. 

For values one and two the algorithm counts the same vehicle multiple times. This is  

because the centroid of some vehicles are not stable. After the centroid of a vehicle 

exits the observation zone it may shift back in the inside of the obervation zone for 

a few frames. As the values one and two are too low for the thresold, the algorithm 

waits too short after one vehicle leaves the observation zone and thus counts the 

same vehicle more than once. This is the reason why the number of small and large 

vehicles are too high for the thresold values one and two.  

 

For the thresold values four and five the number of small and large vehicles are too 

low. In this situations, the algorithm waits too long after one vehicle exits the 

obervation zone and misses counting the next vehicle. The results that are close to 

the ground truth are when the inactivity counter threshold is set to three. This 

configuration seems to be the best choice, so I decided to select it for my 

experiments. 
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The last configuration variable that needs to be determined experimentally is the 

size of the correction history buffer. This variable is used by the algorithm correction 

method which aims to correct the problem of contour splitting of a vehicle. In many 

cases, instead of one contour a vehicle is represented by two or more contours. This 

phenomenon has a negative impact on vehicle counting, as some vehicles are 

counted more than once. To overcome this problem, the corection method detects 

the contours belonging to the same vehicle and joins them. In this way, the vehicle 

that was before the correction represented by several contours it is after the 

correction represented by a single contour.  

 

The corection history buffer plays an important role in the correction procees. Its 

size determines the number of previous frames that the algorithm will take into 

account when performing contour correction. According to the experimental results 

shown in table 4 the size of the correction history buffer does not make sense to be 

large. Indeed, there is a slight improvement in detection performance from size two 

to size three. But for larger buffer sizes like for five ten and fifteen the detection 

performance remains unchanged. This indicates that the background subtraction 

accoplishes its task sucesfully, so that only in one or two consecutuve frames the 

vehicle is representred by several smaller contours instead of a large one. Based on 

these results I conclude that there is no need for using large buffer size. The buffer 

of size three is sufficent for the correction method to perform its task sucesfully.  

 Correction history bufer size 

2 3 5 10 15 

Small 

vehicle 

counter 

520 516 516 516 516 

Large 

vehicle 

counter 

27 29 29 29 29 

 

Table 4 - Results of classification on the first data set for various sizes of the correction history 
buffer variable. 

With the regions of interest and the configuration variables set, the algorithm 

achieves a very good performance in detecting and counting vehicles. The graph in 

figure 47 illustrates the number of small and large vehicles counted by the algorithm 

and the ground truth that is the actual number of small and large vehicles in the 

first dataset. The algorithm succeeded to detect almost all vehicles. It failed to 

detect only the vehicles that stopped. This was to be expected, because the 

background subtraction algorithm classifies the vehicles as background shortly after 

they stopped. The problem can be alleviated by working with a lower learning rate 

for the MOG, at the expense of a slower adaptation for illumination changes. 

Another possible solution without altering the learning rate is to detect stationary 

foreground and to suppress background model updating for pixels belonging to 

stationary background.  
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The experimental results show that for the first dataset the error ratio of the 

proposed algorithm for traffic surveillance is as follows: 

 

 +12.17% or +56 for small vehicles and  

 -14.70% or -15 for large vehicles 

 

 
Figure 47 - Classification results and ground truth for the first dataset 

 

These data reveal us that the results obtained are good enough so that the 

algorithm can be used safely in real traffic surveillance applications. The values of 

the error ratio which is + 12.17% for small vehicles and -14.70% for large vehicles 

indicate that the algorithm detected a few extra small vehicles and missed the 

detection of several large vehicles.  Hence, the detection performance is not perfect 

but given that the algorithm is robust and is not computationally expensive these 

results are excelent. 

 

5.6.2 Experiments performed on the second data set 
 

The second data set aims to test in more detail the detection performance of the 

traffic surveillance algorithm. It consists of four video sequences each recorded in 

different lighting conditions. This scenario is meant to show us how much the 

lighting conditions of the scene affect the detection performance of the algorithm. 

 

Before testing, I had to go through the configuration process. I established the new 

values for the region of interest, the observation zone and the configuration 
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variables. I could not use the configuration parameters from the first dataset, 

because each scene is unique and requires its own parameters. 

 

The region of interest needs to capture a portion of the road where the vehicles are 

captured from the side. To meet this requirement I chose for the region of interest 

the zone delimited by red rectangle in the figure 48. It is a portion of Despot Stefan 

Boulevard where vehicles are captured from the side. The coordinates that I used to 

extract this region are: 

 top left point x=320, y=380 

 bottom right point x= 580, y=430 

 

After defining the region of interest, I proceeded with the definition of observation 

zone. This zone must be small in width, must cover the entire height of the region of 

interest and must be within the region of interest. It should also be positioned away 

from stationary objects, such as light poles, to avoid occlusion of vehicles with these 

objects. The perfect place for the observation zone is the area delimited by the blue 

rectangle in the figure 48. It meets all the above requirements. The coordinates of 

the two points I used in my experiemnts to select the observation zone are: 

 top left point x=130, y=5 

 bottom right point x=150, y=45 

 

The coordinates of this two points are the distances relative to the upper left point 

of the region of interest. 

 

 
Figure 48 - Original frame of the second data set with the region of interest (red rectangle) 

and the observation area (blue rectangle). 
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In the next stage of the configuration process I defined the configuration variables 

using the video sequence recorded in the morning at 9AM. For the area threshold 

variable I followed the same experiment as for the first dataset. That is, I inspected 

the output of the algorithm for six values of the variable, but this time ranging from 

500 to 3000 with steps of 500 as specified in the table 5.  

 

 
Threshold values(expressed in number of pixels) 

500 1000 1500 2000 2500 3000 

Small vehicle 

counter 0 0 0 1 1 2 

Large vehicle 

counter 2 2 2 1 1 0 

Observation The 

small 

vehicle is 

missclass

ified 

The 

small 

vehicle 

is 

missclas

sified 

The 

small 

vehicle is 

missclass

ified 

All 

vehicless 

are 

classified 

corretly 

All 

vehicless 

are 

classified 

corretly 

The 

large 

vehicle is 

missclas

sified 

 

Table 5 - Results of classification on the second data set for different values of the area 
threshold variable. 

The values of the threshold variable chosen to perform the experiment are lower 

compared to the values used to test the first data set. These smaller values are due 

to the fact that the distance between the camera and the portion of the road 

analyzed by the algorithm is greater compared to the same distance of the first data 

set.  

 

Nevertheless, according to the experimental results, only the values 2000 and 2500 

are appropriate for the area threshold variable. Values between 500 and 1500 are 

too low, while the value 3000 is too high. So, for testing the second data set, I 

chose to use the value 2000 for the area threshold variable. I consider that the 

2500 is too high, because some large vehicles, such as small trucks, do not have an 

area larger than about 2200 pixels. 

 

To define the second configuration variable that is the inactivity counter threshold, I 

used the same principle. I chose five values between one and five and inspected the 

output of the algorithm for each of them. 
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 Inactivity counter threshold 

1 2 3 4 5 

Small vehicle 

counter 
203 184 154 142 140 

Large vehicle 

counter 
35 18 16 16 15 

 

Table 6 - Results of classification on the second data set for different values of the inactivity 
counter threshold variable. 

 

In the  table 6 are the results obtained. As you can see, the value two provides the 

results that are closest to the ground truth. For this value the algorithm reports 184 

small vehicles and 18 large vehicles. These numbers are very close to the actual 

number of vehicles in the test video sequence. That is the ten-minute video 

recorded at 9 AM which contains 164 small vehicles and 25 large vehicles.  

 

For the remaining values, the results are not so good. Value one makes the 

algorithm count more vehicles than they are in the video.  Values three, four and 

five also negatively affect the counting process, so the algorithm reports fewer 

vehicles than are in the video. Therfore, the only value that provides the best 

results is value two. So I used this one in the dataset testing process. 

 

The last stage of the configuration process involves setting the correction history 

buffer variable. To find the optimal value for this variable I proceeded as in the case 

of the first two variables. That is, I chose five values and inspected the output of the 

algorithm for each of them, as shown in table 7. 

 

 Correction history bufer size 

2 3 5 10 15 

Small 

vehicle 

counter 

180 178 176 176 176 

Large 

vehicle 

counter 

20 21 22 20 20 

 

Table 7 - Results of classification on the second data set for various sizes of the correction 
history buffer variable. 

 

I noticed that as the buffer size increases, the results get better, but this is only 

valid for buffer sizes of up to five. For buffer sizes larger than five, the classification 

performance does not improve any further. Thus, I decided to use the value five for 

the correction history buffer size variable. 
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At this point the configuration process is completed, so that the algorithm is ready 

to be tested on the second dataset. To test it, all I had to do was give it the path to 

the configuration file and the name of the video. The configuration file contains the 

region of interest, the observation zone and the configuration varibles.  

 

 

 
Video 1(09h) Video 2(13h) Video 3(18h) Video 4(23h) 

Algorithm Small 

vehicles 
176 421 140 40 

Large 

vehicles 
22 21 12 6 

Ground 

truth 

Small 

vehicles 
164 407 146 77 

Large 

vehicles 
25 24 14 10 

Error 

ratio 

Small 

vehicles 

+12 

+7.31%  

+14 

+3.44% 

-6 

-4.11% 

-37 

-48.05% 

Large 

vehicles 

-3 

-12% 

-3 

-12.5% 

-2 

-14.29% 

-8 

-40% 

 

Table 8 – Algorithm testing results on the second dataset 

 

Because the dataset contains four video sequences I run the algorithm four times. 

Each time with a different video file. After each run I gathered the results and thus I 

built table 8. The classification results are show in the row labeled Algorithm. For 

convenience the table also contains the number of vehicles that were manually 

counted by me for each video. These are used to evaluate the performance of the 

algorithm and are displayed in the second row of the table labeled Ground truth. 

The last row of the table contains the error ratio of the algorithm for each of the 

video. 

 

In addition to the table, I also built four graphs, one for each video. The graphs are 

much more practical than the table because they visually display the performance of 

the algorithm. Therfore, the classification results for the video 1 that was recorded 

in the morning at 9AM are shown in figure 49. The algorithm counted 176 small 

vehicles and 22 large vehicles. That is, it reported 12 small vehicles more and 3 

large vehicles less than are in the video. The error ratio for small vehicles is only + 

7.31%, and for large vehicles it is only -12%. These results are very good.  
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Figure 49 - Classification results and ground truth for the first video 

 

For the video 2 that was recorded at 13h the classification results along with the 

ground truth are shown in figure 50. The algorithm reported 421 small vehicles and 

21 large vehicles. That is, 14 small vehicles more and 3 large vehicles less than are 

in the video. The error ratio for small vehicles is +3.44% and for large vehicles is -

12.5%. The higher value of the error ratio for large vehicles does not mean that the 

algorithm misclassified many large vehicles. It is larger because there are very few 

large vehicles in video and so each vehicle has a high weight in error rate. 

 

 
Figure 50 - Classification results and ground truth for the second video. 
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Figure 51 - Classification results and ground truth for the third video 

Figure 51 shows the results for video 3, which was recorded at 18h. In this test 

scenario the algorithm detected 140 small vehicles and 12 large vehicles. That is, 6 

small vehicles less and 2 large vehicles less than are in the video. These results are 

the closest to the ground truth compared to the results for the video 1 and video 2. 

The error ratio for small vehicles is only -4.11% and for large vehicles is only -

14.29%.  

    

 
Figure 52 - Classification results and ground truth for the fourth video 
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The results for the video 4 are not so good. These are shown in the graph in the 

figure 52. The algorithm detected only 40 small vehicles out of 77 and only 6 large 

vehicles out of 10. In this test scenario the error ratio for small vehicles is –48.05% 

and for large vehicles is -40%. This lower detection performance of the algorithm is 

due to poor scene lighting. At the time of recording the video, that is at 11 pm, the 

intersection was artificially lit by street lamps. Under these conditions, the algorithm 

struggled to distinguish vehicles from objects in the background and thus failed to 

count some of the vehicles in the video. 

 

With video 4 I finished testing the algorithm on the second data set. Of the four 

videos in the dataset, the algorithm detection performance was best for videos 1, 2, 

and 3. Although the results for these videos are close to the ground truth, they are 

not perfect. The algorithm failed to count a few large vehicles in each video. Also, 

for videos 1 and 2 the algorithm counted more small vehicles than are in the scene. 

 

These counting errors are due to the imperfections of the background subtraction 

algorithm. Normally, a vehicle is represented by a big white blob in the foreground 

mask. But sometimes part of the vehicle's texture matches the texture of the scene 

and the background subtraction algorithm classifies this part of the vehicle as 

belonging to the backround. This phenomenon tricks the background subtraction 

algorithm. 

 

So instead of representing the vehicle as one big blob in the foreground mask, the 

algorithm represents it by two or more smaler blobs. Therefore, a large vehicle or a 

small vehicle is perceived by the algorithm as two or more small vehicles. This  

problem makes the algorithm to count more small vehicles and less large vehicles. 

It is difficult to solve because the background subtraction algorithm can not make a 

diference between the background color and the vehicle color.  

 

In video 4 is another problem for which the algorithm failed to get good results. 

Many of the vehicles were not recognized by the algorithm. This is because the 

background subtraction algorithm is not able to segment very well the foreground 

objects during night conditions. Unfortunately, to solve this issue, it is needed either 

to use the night vision camera or to increase the lighting in the intersection by 

adding more street lamps. 

 

As a conclusion, I consider that the detection performance of the proposed 

algorithm for traffic surveillance is decent for monitoring vehicles in daylight 

conditions. In practice no better estimation is needed. The proposed video analysis 

solution is a good compromise between costs of deployment and accuracy. It has an 

excelent detection accuracy and it can run on low resource hardware. 
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6 A framework for behavior classification based 
on motion understanding 

 

6.1 Introduction 
 

Inspired by the success achieved by the algorithm for traffic surveillance I managed 

to design another computer vision algorithm. I published this algorithm in the article 

[BM2] and presented it in the first PhD report [BM5]. This novel approach is the 

continuation of the work presented in the previous chapter. That is, it is a computer 

vision algorithm that is meant to run on smart surveillance cameras in order to 

detect important events in the scene. The algorithm is meant to extend the 

capabilities of the surveillance system I propose in the figure 27.  

 

Therefore, similar to the traffic monitoring algorithm, it is carefully designed. It uses 

low complexity computer vision algorithms that work in harmony in order to analyze 

complex video scenes. This approach allowed me to design an algorithm that has 

excellent detection accuracy and does not consume much computing power, so it 

can run on a smart surveillance camera. 

 

The algorithm I propose in this chapter is more advanced than the first, because it is 

based on detecting the behavior of objects in the scene. It is aimed for increasing 

the public security in the big cities. Specifically, the algorithm is able to 

automatically detect a dog attack on humans by analyzing video images. It does not 

consume many resources, so it can run on the smart surveillance camera.Therefore, 

the algorithm enables the surveillance system to detect in real time dog attack 

events, which are for example very useful for the police. If the system alerts the 

police in real time that a dog attack is taking place, they can get to the crime scene 

very quickly to stop such dangerous or even in some cases deadly actions. 

 

I believe that dog attacks in urban areas is an emerging issue that needs to be 

addressed as soon as possible.If you do a simple Google search for dog attacks, it 

will show you about 12,900,000 results. This is a huge number which demonstrates 

the seriousness of this problem.This finding motivated me to design a computer 

vision algorithm that can automatically detect such dangerous events. It is more 

advanced than the first one as it can detect behavior of dogs and humans. 

 

Nevertheless, the proposed algorithm can run in parallel with the algorithm for 

traffic surveillance on a smart surveillance camera. In this way, the functionality of 

the system I propose in this manuscript is extended because each camera is able to 

detect two types of events. Every time the camera detects an event regarding traffic 

or attacks of dogs on people it immediately sends it to the control center. 
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Of course the algorithm does not depend on the traffic surveillance algorithm. They 

both work idependently. Therefore, the algorithm for detecting dog attack events 

can run on its own on a smart surveillance camera. Also, it is not designed to 

analyze only the scenes that contain traffic. It successfully detects the dog attack 

events in video footages that are captured from places in large cities where these 

types of events are more likely to happen like crowded urban streets. 

 

Regarding the installation of the cameras, the proposed algorithm requires only two 

conditions to be fulfilled in order to function correctly. That is the camera must 

capture the scene from a side view and the surveilled zone must be close enough to 

the camera.Both conditions are due to the fact that the algorithm uses the 

silhouettes of objects in the classification process. As we all know, silhouettes are 

very sensitive to the angle of the camera. So in order to classify objects correctly, it 

is absolutely necessary for the algorithm to view the objects from the side. 

Otherwise, the silhouettes will be deformed and the algorithm will not be able to 

classify them.Similarly, if the monitored scene is too far from the camera, the 

analyzed objects are very small, and as such their silhouettes are useless for the 

algorithm. 

 

The camera angle and the distance between camera and the surveilled zone are two 

mandatory requirements. The algorithm will not work at all if they are not met.My 

recommendation on the distance is that the observed area should not be more than 

twenty meters away from the surveillance camera for the algorithm to work 

properly. 

 

To better understand why these requirements are mandatory and also to understand 

the principle of operation of the proposed attack behavior detection algorithm, in the 

following chapter, I will describe in detail all the building blocks of this algorithm. 

 

 

6.2 Block diagram 
 

The main components of the proposed attack behavior detection algorithm are 

illustrated in the block diagram in figure 53. I grouped the components into two 

groups. The low level processing group and the high level processing group. 

 
Figure 53 - Block diagram of the proposed attack behavior detection algorithm [BM2]. 
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Basic video analysis operations such as foreground extraction and shape 

classification are performed by the first group.These algorithms are used to detect 

and classify foreground objects in the scene. Specifically, foreground extraction 

separates moving objects from static background, and shape classification identifies 

and classifies foreground objects. 

 

The shape classification component is able to identify the humans and dogs in the 

scene. For each frame, it tracks the detected objects and saves their location, 

velocity and acceleration in the feature vector Tj. Because thesizeof feature vector is 

fixed, the objects are tracked only for N frames. To maintain the continuity, the 

content of the feature vector is updated with each new frame.  

 

More complex operations are performed by the high level processing group.The 

algorithms used in this group are capable of recognizing the activities in the video 

with the help of trajectories.Trajectory feature extraction and event detection are 

the two operations involved in this process. 

 

 

6.3 Low level processing 
 

6.3.1 Foreground extraction 
 

The foreground extraction phase includes a background subtraction algorithm and 

several image processing algorithms. Similar to the traffic surveillance application, 

described in the previous chapter, the foreground objects are extracted using the 

Mixture Of Gaussian (MOG) background subtraction algorithm [96]. Image a) in 

figure 54 shows a frame from a video that I use in my experiments, and image b) 

illustrates the foreground mask of the frame that is generated by the MOG 

algorithm. 

 

In order to extract the foreground pixels, the mask is applied on the original frame. 

As a result, the newly generated foreground frame contains only groups of pixels 

that represent the foreground objects.But, beside of moving objects, the foreground 

frame also contains many pixels from the background. These noise pixels are due to 

the imperfection of the background subtraction algorithm and due to the camera 

noise.Usually they are single pixels, but in some cases the noise pixels can be 

grouped together. They appear as tiny blobs in the foreground mask.To fix this issue 

I apply the morphological opening operator on the mask.  

 

The morphological opening is a composite operator. It is composed of an erosion and 

a dilation.  First, the operator uses erosion to remove the noise pixels. Next, to 

remove the mask deformations introduced by the erosion, it applies the dilation to 

the eroded mask. Figure 54.b illustrates the mask before processing, and figure 54.c 
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illustrates the foreground mask after processing. The opening operator uses the 

same kernel for both erosion and dilation. In the current application, this kernel has 

been set to a rectangular shape of size 3x3. 

 

 
a)      b) 

 
   c)     d) 

Figure 54 - a) Original frame; b) Foreground mask; c) Foreground mask after morphological 
opening; d) Object contours 

 

The objects in the scene are segmented according to the same algorithm used in the 

traffic surveillance application. The border following technique, proposed by Suzuki 

and Abe [90], successfully generate the contours of humans and dogs (figure 54.d).  

 

During the experiments, I noticed that in certain cases, the objects are far away 

from the surveillance camera. In these situations, their features such as legs and 

arms are extremely small. The noise of the camera also affects the objects. It 

further distorts the already small features. Under these conditions, it is practically 

impossible to identify any distant object in the scene.  

 

As a solution to this problem, I propose the use of a filtering procedure. Its purpose 

is to disregard small objects. The procedure consists in comparing the contour area 

of the object with a threshold. The object is disregarded if its contour area is smaller 
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that five houndred pixels. After applying this filtering procedure, the resulting 

foreground mask contains only the objects of interest.   

 

 

6.3.2 Shape classification 
 

The process of classifying the shape of objects was another challenge that I faced in 

the process of designing the proposed algorithm for detecting attack behavior. I 

considered several shape classification algorithms from the literature. 

 

An interesting algorithm for shape classification I investigated was proposed in 

[97].The algorithm is based on the idea of shape decomposition. It defines the 

shape as having strand and base structures. In the process the algorithm uses a set 

of shape templates. Each element in the template set is represented by its base and 

strand structures.  

 

The algorithm at first decomposes the input shape. Then it tries to find a match by 

comparing the strand and base structures of the input shape with the base and 

strand structures of the elements in the template set. As you may have guessed, 

the algorithm recognizes the input shape if a match is found. The disadvantage of 

this approach is that it is very sensitive to shape deformations. If the shape of the 

object is distorted even with a small amount, the algorithm will not recognize it. Due 

to this shortcoming, I decided not to use it in my application.  

 

Another solution that appeared appealing to me was the shape classification 

algorithm presented in [98]. It works in the same manner as the algorithm 

described in [97]. The solution uses the template matching technique. But, instead 

of decomposing the shape into strand and base structures, it uses the object's 

skeleton. The algorithm thins the blob of the object until a skeleton is obtained. 

However, my first attempt to use this shape classification algorithm was a failure. 

Many objects were not correctly identified. Usually, the algorithm fails to identify an 

object if its skeleton is not nearly perfect.This is due to the fact that even a small 

change in shape results in a rather large change in the skeleton of the object.  

 

The urban areas are mostly crowded. Many object shapes are deformed due to 

occlusions. Therefore, it was no surprise that the algorithms proposed in [97] and 

[98] did not work. Based on the knowledge gained from the experiments, I 

managed to successfully develop a novel shape classification algorithm. The 

classifier is based on the following features:  

 

 Rbound; blob bounding circle radius 

 ∆S = circle area – blob area; area difference 
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The algorithm calculates minimum bounding circle of each blob in the foreground 

mask. Figure 55.a illustrates a simplified foreground mask that contains only a 

human and a dog. The bounding circles corresponding to these objects are 

illustrated in figure 55.b. You can see that object sizes are successfully captured by 

the radii R1 and R2 of the circles. A simple comparison of these radiuses can tell us 

whether the silhouette is of a human or a dog. The radius of the human silhouette is 

much larger than the radius of the dog's silhouette.  

 

At first glance it may seem that this approach will work well. Still, experiments have 

revealed that, in certain cases it fails. Sometimes, the silhouettes are the same size 

but they represent different objects.  

 

 
a) b) 

Figure 55 - a) A simple foreground mask that contains only a human and a dog; b) The objects 
features. The radii and areas of the minimum bounding circles [BM2]. 

 

To solve this shortcoming, I have designed an additional shape feature that I use in 

the proposed classification algorithm. The area difference ΔS, that is the bounding 

circle area minus the blob area, provides additional information about the blob 

shape. An illustration of this principle is shown in figure 55.b. The A1 is the ΔSH of a 

human and A2 is the ΔSD of a dog. The area difference of the human siluet is 

greater that the area difference of the dog silhouette ΔSH> ΔSD. 
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The proposed classification algorithm uses two thresholds, Tradius and Tarea. An object 

is identified as belonging to the human class if the radius of its bounding circle R is 

greater than the threshold Tradius and its area difference ΔS is greater than the 

threshold Tarea. Otherwise, if the R is smaller than Tradius and the ΔS is smaller than 

Tarea the object is identified as dog. If the object does not meet the requirements to 

be classified as a dog or human, it is labeled as belonging to the other class. 

 

In order for the classification to work properly, the paramers Tradius and Tarea of the 

proposed algorithm should be carefully set. They depend on the environment, 

therefore their values must be established experimentally. For this application I 

discovered that the Tradius set to two centimeters and the Tareaset to eight houndred 

pixels give the best results. 

 

Both, the radius of minimum bounding circle and the area difference are robust 

features. They tolerate small deformations of the shape. The proposed shape 

classification algorithm has a high detection rate, and it can be easily modified to 

recognize other types of objects. In this application there was no need for many 

classes. Dog attacks usually take place in places that do not contain vehicles or 

other types of objects other than humans and dogs.  

 

 

6.4 High level processing 
 

6.4.1 Trajectory and movement analysis 
 

In order to capture the attack of dogs on humans it was necessary to understand 

the nature of such events. Usually the attack is carried out by a group of dogs and 

not by a single dog. In the beginning phase, the dogs observe the victim and begin 

to form a group. After that, they start to run in the group until they reach the 

target. To capture this event, I propose the use of blob trajectories and the speed of 

the blob as features in the detection process. 

 

Trajectory analysis 
 

Trajectories can reveal us significant information about dog attacks. By carefully 

analyzing them, it is possible to predict such dangerous events. The idea relies on 

the fact that the trajectories of dogs aiming to attack a human converge to a single 

place in the scene.  

 

Therefore, by testing the trajectories of dogs running for convergence, you may find 

out if the scene contains attack actions. Usually, all the dogs in the scene are 

involved in the attack. Of course, this is not always true. In very rare situations, not 

all of them participate in the attack. Sometimes one or two dogs do not engage in 

this action. So, the analysis of all the trajectories of the dogs is not suitable for such 
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a case. To deal with this situation as well, the proposed algorithm analyses the 

trajectories of the crowd and ignores the trajectories of isolated objects. 

 

According totheseobservations, the trajectories of dogs can be either convergent or 

divergent. If the trajectories converge to a point in the scene, there is a high chance 

that an attack will occur. On the other hand, if the trajectories are divergent, this 

means that the group of dogs breaks and that there is very little chance that the 

dogs will attack the victim. 

 

 

Movement analysis 
 

In order to improve the detection accuracy of the proposed attack behavior 

detection algorithm, I decided to include a new feature in the process. My belief is 

that the velocities and accelerations of the dogs will improve the detection accuracy. 

These features can accurately reveal attack phases.  

 

In a typical attack scenario, the accelerations and velocities change as follows:  

 

 acceleration > 0    – indicates the beginning phase 

 acceleration = 0 and velocity > 0  – this is the intermediary phase 

 acceleration < 0    – denotes the final phase  

 

The attack begins when the dogs see the victim and start running towards her. This 

is the time when the accelerations of all dogs reach their highest values. Also, the 

velocity of each of them starts to increase gradually. 

 

Soon after the beginning phase, the accelerations will start to decrease until they 

are zero. This indicates the start of the intermediary phase. The dogs have set their 

maximum speed and are on their way to the victim. This phase is the longest one. 

Certainly, there are some exceptions, such as when the distance between the group 

and the victim is very short. In this scenario, dogs do not have   enough time to 

reach their maximum speed. Therefore, the intermediary phase may be very short 

or, in some cases, may disappear.  
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a) b) 

Figure 56 - a) Convergent trajectories; b) Divergent trajectories [84] 

 

 

After the intermediary phase follows the final phase. At this stage the group is very 

close to the victim. This phase begins when the individuals in the group begin to 

decelerate, that is their accelerations are negative and the velocities begin to 

decrease. Finally, when the group reaches the victim, their velocities and 
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accelerations are all zero. The dog trajectories of such scenarios are illustrated in 

the figure 56. The image in a) shows the trajectories that correspond to the attack 

action. In this case all the trajectories converge towards the victim position. In 

contrast, the trajectories from the image b) correspond to the non attack scenarios. 

That is, the dogs are not interested to attack the victim, so they randomly walk in 

the scene. In this scenario the trajectories of dogs are all divergent.  

 

 

6.4.2 Trajectory feature extraction 
 

According to the hypothesis described in Sections A and B, two trajectory 

characteristics are required for event classification. The trajectory points describe 

the path of each dog in the scene. While the speed of the path points helps the 

algorithm to capture the phases of the attack. 

 

To find the path of the object, the proposed algorithm uses the vector and positions 

of the object. The position is calculated in each frame according to the following 

principle. Once the contour of an object is available, the algorithm calculates its 

center of mass using the image moments. The mass center P(x,y) illustrated in 

figure 57.a is actually the position of the object in the current frame. By storing the 

object positions for multiple frames the proposed algorithm is able to compute the 

trajectory of a dog in the scene. The same procedure applies to all dogs on the 

scene. 

 

Since the trajectories are not enough to detect the attack, the proposed algorithm 

calculates the speed and the acceleration of each dog in each frame. These two 

features can be easily obtained from the trajectory points. Two successive trajectory 

points Pt-1 and Pt (figure 57.b) of the object indicate how far he moved from time t-

1to time t. This distance is measured by counting the number of pixels between the 

position of the object at time t-1 and time t.  

 
a) b) 

 

Figure 57 - a) Blob mass center; b) Distance between two successive blob points 
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To this point we know how far the object moved and the elapsed time needed for 

this action. Therefore, its velocity can be easily computed by using the equation 

(13). 

 

𝑣𝑡 = (𝑃𝑡 − 𝑃𝑡−1)/𝑑𝑡 (13) 

 

The acceleration of the object is defined as velocity change in a time interval. So the 

acceleration of the object is obtained by dividing the velocity difference vt -vt-1 with 

the elapsed time from the moment t-1 to the moment t as in equation (14). 

 

𝑎𝑡 = (𝑣𝑡 − 𝑣𝑡−1)/𝑑𝑡 (14) 

 

The information regarding the object is stored in the feature vector Tj(15). This 

vector contains all the object data that is collected in a video frame. The position is 

represented by the coordinates xj and yj, the velocity by vj and the acceleration by 

aj. 

 

𝑇𝑗 =  𝑥𝑗  , 𝑦𝑗  , 𝑣𝑗  , 𝑎𝑗  (15) 

 

The trajectory feature of the objectT (16) is defined as a collection of such feature 

vectors. It consists of a group of feature vectors extracted from N video frames. 

 

𝑇 = [𝑇1 ,𝑇2 ,…  , 𝑇𝑁] (16) 

 

The trajectory feature T captures both the static and dynamic feature of the object 

in a time-frame. Each dog in the scene has a trajectory feature vector. 

 

6.4.3 Event detection 

 
The data stored in the trajectory feature vector T is further used to classify the 

video frames. A video frame is classified as belonging to normal or dangerous class. 

It cannot belong to both classes in the same time and it cannot be left unclassified. 

For the classification task I chose to use the (Support Machine Vector) SVM 

algorithm. The algorithm has been used successfully in similar applications for event 

detection [99], [100]. Therefore, after a few experiments we became convinced that 

this algorithm will be able to classify attacks based only on the feature vector. 

For each video frame, the feature vector Tj is calculated. The vector is saved in a 

circular buffer that is three hundred in size.This principle allows the storage of the 

trajectory features of objects for a time interval of about twelve seconds. Because 

the event cannot be accurately captured by one or several frames, the algorithm 

waits until the circular buffer is full and only then calls the classifier. When this 

happens, all data in the circular buffer is transmitted to the input of the SVM 

algorithm. 
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The qualities of the SVM classifier are that it has a low computational complexity 

and good classification performance. During the experiments I noticed that, even if 

it was trained with a small number of samples, the algorithm managed to classify 

the data correctly. The algorithm uses support vectors in the decision making 

process, therefore the result is very little influenced by class distributions. This 

feature allows the classifier to have good classification performance and high 

processing speed. 

 

6.5 The dataset 
 
The dataset used for testing the proposed dog attack detection algorithm is made of 

a set of 119 video clips collected from public internet sources [101], [102]. Samples 

of several video clips are illustrated in figure 58. All of them contain at least one dog 

attack scene. The surveillance camera with which the videos were recorded was 

positioned so as to capture all the objects in the scenes from the side. 

 

Figure 58 - Samples of the dataset used to test the proposed algorithm for detecting dog 
attack 
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6.6 Experiments and results 
 

To assess the performance of the proposed attack event detection algorithm we 

designed a software prototype. The program was written in C++ programming 

language and uses the basic algorithms defined in the openCV computer vision 

library. To save time, we decided to take advantage of this library and not write the 

basic image processing algorithms from scratch.  

The validation software consists of the feature extraction part and the classification 

part. As you may already have noticed the prototype software written in C++ is 

responsible of extracting the features.  After the video is processes the software 

saves the generated features in a Weka Attribute-Relation File Format (ARFF). The 

classification is done using the Weka framework. This is why the output follows the 

ARFF file format.  

We used the Weka framework for the classification part because it offers the SVM 

classifier and is relatively easy to use. In order to be able to classify attack events, 

the classifier had to be trained before use. For this purpose, I selected a set of 89 

videos from the public Internet [101],[102]. The training videos were chosen very 

carefully, so as not to contain inappropriate camera angles or unfavorable weather 

conditions, such as rain or fog. 

In testing phase, we selected another 30 videos, other than those used for training. 

After processing, the prototype program generated a total of 503 trajectories. 230 

of them were the trajectories of the videos that contained a dog attack, and the rest 

were of the videos that did not contain an attack event. 

The SVM correctly detected the attack events. It also classified right almost all 

normal events. Only a small portion of normal events were miss classified as shown 

in the confusion matrix in Table 9. Out of a total of 273 normal events, the algorithm 

correctly detected 268 and missed only 5 events. Thus, the SVM algorithm classified 

99% of the trajectories correctly and only 0.99% of the trajectories incorrectly. 

 

 
Predicted 

 attack normal 

Actual class 

attack 230 TP 0FN 

normal 5 FP 268 TN 

 

Table 9 - Confusion matrix [BM2]. 
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From the confusion matrix, the following performance assessment parameters were 

evaluated: 

 

True positive rate (17) - Sensitivity: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
=

230

230 + 0
= 1 (17) 

 

 

True negative rate (18) - Specificity: 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
=

268

268 + 5
=

268

273
= 0.98 (18) 

 

 

False positive rate (19): 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 1 − 𝑇𝑁𝑅 = 1 − 0.98 = 0.02 (19) 

 

 

False negative rate (20): 

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
= 1 − 𝑇𝑃𝑅 = 1 − 1 = 0 (20) 

 

Performance parameters show us that the algorithm was able to accurately detect 

events in the scene. It has a true positive rate (sensitivity) equal to one which 

means that it correctly detected all dog attacks. Hence, in this testing case, none of 

the attacks were classified as belonging to the normal class. 

 

Regarding the normal class detections, the score is similar to the attack class 

detections. The true negative rate (specificity) reveals us that the algorithm 

classified almost all normal scenarios correctly. It classified only five normal 

sequences wrongly, while the remaining two hundred sixty-eight sequences were 

classified correctly. Similarly, the false negative rate and the false positive rate 

performance indicators tell us the same think. That is, the algorithm did not classify 

any attack event as belonging to the normal class and it classified only two percent 

of the normal eventsas belonging to the attack events. 

 

Given these results, I can conclude that the proposed algorithm for detecting dog 

attacks is excellent for capturing such dangerous events in urban areas. If used 

properly it can surely improve the security in the smart cities by automatically 

analyzing the videos which are captured by surveillance cameras. This fact will ease 

the work of the surveillance officers and improve the efficiency of the whole 

surveillance network. Hence, the security in the urban areas which uses such a 

system will also be improved. 
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Another benefit of the proposed algorithm is that it can be easily adapted to 

recognize new events. It uses trajectories in the analysis process so this makes it 

more flexible to adaptations. That is, it can be easily adapted to recognize other 

events of interest, such as human fights, robberies, loitering detection at the 

airport, etc. I believe that the detection results of the novel versions of the 

algorithm will still be very close to the results presented in this chapter. 

 

 

7 Proposed hybrid Deep learning/VA features 

solution for complex behavior classification in 
sensors environments 

 

7.1 Introduction 

 
In this chapter I am going to present another computer vison algorithm that is 

aimed to extend the functionality of the surveillance system illustrated in Figure 27.  

I published this algorithm in articles [BM3], [BM4] and presented it in the second 

PhD report [BM6]. Similar to the traffic analysis algorithm and the dog attack 

behavior detection algorithm that I proposed in the previous chapters, the algorithm 

in this chapter has also been carefully designed to be able to run on a smart 

surveillance camera. Moreover, it also pursues the same goal as the algorithm for 

detecting dog behaviors. That is, the algorithm is meant to increase the public 

safety in the big cities.  

 

As already mentioned the algorithm does not require high computing resources to 

perform this task, so it can run on a smart surveillance camera along with the traffic 

analysis algorithm and the dog attack behavior detection algorithm. This means that 

the algorithm extends the functionality of the system proposed and illustrated in 

Figure 27. In addition to traffic analysis and detection of dog attacks, the system is 

now able to detect human fighting events in video. This is very useful for the public 

safety. If, for instance, the detected events are used to alert the police about the 

fight, the fighting action can be stopped, because the police will arrive on the spot 

very quickly. In this way, the proposed algorithm for detecting human fighting 

events will considerably increase public safety in these areas. 

 

I believe that this approach to detecting violence in big cities will have a positive 

impact on the quality of life, because it makes cities safer. Thus, citizens living in 

this environment will feel safer. It is important to note that the detection of violence 

in large cities is an important issue. In the last decade, big cities are becoming 

overcrowded as more and more people migrate from rural to urban areas. This 

phonemenon increases the number of violence cases. So it is very momentous to 
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take steps to reduce these unpleasant events in order to increase the quality of life 

in these areas. This fact motivated me to design a computer vision algorithm for 

detecting fight events. 

 

The algorithm is designed very carefully, so that it will successfully analyze almost 

any type of scenes. For instance, it is able to analyze the scenes that besides 

pedestrians also contain traffic lanes, as well the scenes that contain only 

pedestrians such as the streets in a city. In addition to this feature, the algorithm 

does not have any dependences, it can run alone or in parallel with other similar 

computer vision algorithms on a smart surveillance camera. For instance, the 

algorithm can run in parallel with either the traffic analysis algorithm, or the dog 

attack detection algorithm, or them both. This modular design makes the 

surveillance system flexible. That is, extending or reducing the functionality of the 

system is easy. The algorithms running on the camera do not depend on each other. 

So one can be added or removed on demand without affecting the algoritms that 

are already running on the camera. 

 

In order for the algorithm to work properly the camera must be installed correctly. 

The requirements regarding smart surveillance camera installation are the same as 

for the algorithm for detecting dog attacks. That is, the camera should be installed 

so as to capture people from the side and the distance between the camera and the 

monitored area should be about twenty meters. This would be the setting for 

maximum detection performance. But, because the algorithm is robust, I am 

convinced that it will work correctly even if this distance does not fall within the 

imposed limit and the camera does not perfectly capture people from the side. 

 

Neverthless, the work presented in this chapter refers to an effective network-based 

surveillance system capable of detecting human fighting events in urban areas. The 

system consists of low-performance nodes. That is smart surveillance cameras that 

are connected wirelessly to a control center, as shown in the Figure 27. Nodes are in 

charge for obtaining a maximum recall in capturing violent events. Hence, the goal 

is to catch as many as possible violent events and at the same time reduce the false 

alarm rate.  

 

The benefit of such an approach is that only video data that is detected as violent is 

transmitted to the control centre for additional processing. In this way, the proposed 

system facilitates the work of surveillance officers, as they are not required to 

inspect video recordings continuously. They only need to inspect certain portions of 

the video that are reported by the system. Another advantage is that the system 

increases the detection rate of events, because it eliminates the human error 

generated by the "tired eye" syndrome from the process. 

 

An important aspect of the novel violence detection algorithm described in this 

chapter is that it only uses a motion field feature and does not take into account the 
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appearance. Its block scheme is illustrated in the figure 59. The algorithm consists 

of a motion feature extractor, a deep neural network and a temporal filter.  

 

 
Figure 59 - Block diagram of the proposed surveillance system 

  

The reason why I used only a motion feature for the fight detection algorithm was 

influenced by the experimental evidence on the recognition of human action 

presented in the paper [103]. It proved that the motion is able to capture more 

details than the appearance. According to the experimental results carried in this 

paper, in order for the appearance information to be used efficiently in the action 

classification process, large data volumes and sophisticated models are needed.  

 

On the other hand, the approach that uses only motion features is completely 

invariant to appearance changes and does not require large volumes of data and 

sophisticated models. Moreover, the motion information remains stable even when 

ambient light changes. Thus, this allows the system to function successfully even in 

the night.  

 

Another crucial choice in the design phase of the algorithm was the selection of the 

motion descriptor. I have to choose between MPEG flow and optical flow. According 

to the study conducted in the paper [104], the efficiency of MPEG motion vectors in 

recognition of human action is very high. Experimental results show that 

performance in detecting human action is close, and even better in some cases, to 

the performance of the optical flow based method. 

 

In terms of computational complexity, the MPEG flow hugely outperforms the optical 

flow. The calculation of optical flow consumes a lot of resources, while MPEG flow 

can easily be obtained from encoded video stream without the need for major 

processing power. Moreover, the MPEG flow vector operates on blocks of size 16x16, 

thus for each block it provides only one motion vector. This means that the output 

generated by the MPEG for a video frame is small so that the input size required for 

the CNN classifier is greatly reduced. Although small in size, this motion descriptor 

still retains enough detail to discriminate actions in video. 

 

Motivated by this finding I was convinced that the best choise for my application is 

the MPEG flow motion descriptor. But despite the fact that this handcrafted feature 

is used as classifier input, the network still needs to discover new features in the 
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MPEG flow vector field. This process forces the network to capture spatio-temporal 

nature of the motion patterns. 

 

Nevertheless, in addition to selecting the motion descriptor, a key decision in the 

architecture configuration process was the selection of a cascade model for linking 

time domain with spatial domain. Most DL based action recognition systems use as 

inputs two streams, one for appearance and one for motion information. Such 

approach was not suitable for my application because it require large size 

architectures. 

 

Therefore, in the spirit of the divide and conquer philosophy, I divided the fight 

event detection task between two processing cascaded modules. The first one is the 

CNN itself that receives the motion information for each frame from the video 

decoder. Its role is to output the likelihood of the presence of a fight action in a 

frame based on the spatial distribution of the motion within that frame. The role of 

the CNN in the system can be interpreted as a violence feature extractor, using a 

motion field input.  

 

To make the final prediction regarding the presence of the human fighting event in a 

larger group of frames, the output of the CNN is used subsequently by a time 

domain processing module called the time domain filter. This module is the second 

one and is much simpler than the first one. It has scalar and binary inputs and so its 

computational burden is insignificantly small. Also I decided to use the cascade 

structure for this module, because it is easier to configure it this way.  

 

The time complexity of the proposed algorithm for human fight event detection that 

I propose in this chapter is O(NxNxT). It is directly proportional to the size of the 

CNN input and the number of frames used in the classification process.   

 

7.2 The Video Processing Unit 
 

The ability of DNN to learn the features itself seems very attractive, so that skilled 

work, which otherwise requires specific application knowledge, to design features 

can be replaced by this approach. But this comes at a price. The qualified work 

needed for crafting the features is replaced by the process of data labeling. 

Sometimes, the labeling process can take advantage of publicly available datasets 

that are already labeled and prepared for training the convolutional network. Sadly, 

not all applications can benefit from this advantage because available datasets are 

limited to just a few domains. 

 

Surveillance videos containing violence are very rare. It is almost impossible to find 

a large labeled dataset that encompasses this behavior. Indeed, there are a lot of 

small surveillance videos capturing violence in urban areas but they are not 

appropriate for my work. Based on research, I found that only the BEHAVE [105] 
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and ARENA [106] dataseets meet the requirements. Since they contain violent video 

clips that are short, I decided to use both of them to demonstrate the concept 

proposed in this thesis. 

 

The purpose of this work is to combine the potential of a deep convolutianal network 

with the capability of carefully handcrafted motion features. To make learning 

possible by using a relatively small volume of data, the deep convolutional network 

is powered by a compact motion feature called MPEG flow vectors. As already 

mentioned in the previous chapter this feature encodes the motion that belongs to 

the 16x16 frame blocks. 

 

Due to the efficient distribution in time and space, a wide variety of human 

movements can be captured by these low level features such as walking, jumping 

and running. To extract high level features from MPEG flow vectors, like fight and no 

fight events, the proposed approach combines a DNN and a time domain filter. More 

details about the filter are described in the subsequent section. 

 

To reduce processing time, the proposed approach benefits from a small number of 

convolutional layers. At first glance, it may seem that the small data set causes 

lower performance. Because of the carefully tailored architecture, the algorithm 

presented in this work attains state of the art performance even if the training 

samples are small in number. Hence, I managed to design a modular distributed 

system capable of capturing violent events in urban areas.  

 

7.3 Low Level Feature Extraction 
 

The algorithm I propose in this chapter uses MPEG flow [104] motion features that 

are extracted by the video codec. The features are estimates of 16x16 image micro-

block motions which are used by the video encoder to compress the data. According 

to the results published in [103],[104], MPEG flow is an efficient feature for 

capturing human motion in video. The authors of [103] use it with a bag of words 

model, whilst the paper [104] uses the feature with a spatiotemporal convolutional 

neural network. 

 

Pixel movement in the 16x16 micro-block is estimated by exactly one motion vector. 

Its computation is made by using the position of the current micro-block and the 

best matching position in the previous frame, as illustrated in Figure 60. The yellow 

rectangle in the left image shows the position of a micro-block in the current frame, 

while the green rectangle in the right image shows the position of the block in the 

previous frame. The motion vector, representing the movement of the block, is 

shown by the red arrow in the right image. It is represented by the video encoder 

through two reference points. The first corresponds to the position of the block in 
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the current frame and the second is the position in the previous frame as stated in 

equation (21). 

v𝑚 = p𝑠𝑜𝑢𝑟𝑐𝑒 −  p𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛  (21) 

 
Figure 60 - Motion estimation rule; The image on the upper left illustrates a block in the 

current frame, the yellow rectangle; The image on the upper right illustrates its best fit in the 
previous frame, the green rectangle and the red arrow shows the motion vector. In a similar 

manner, the yellow rectangle in the bootom right image illustrates a block in the current frame 
and the red rectangle in the bottom left image illustrates its best fit in the previous frame. 

Note that the blocks are not in real size, it’s just for the illustration purpose. 

 

For discovering the best match of the micro block, the video encoder takes 

advantage of a distortion measure called the sum of absolute differences SAD(v) 

defined by equation (22). 

   

𝑆𝐴𝐷 𝒗 =  𝐷 𝒑, 𝒗 

𝑝

 (22) 
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Parameter p from the equation is the position vector corresponding to the pixel in 

the current micro-block, and parameter v is the approximate pixel motion vector. 

Equation (23) specifies the distortion measure used in the estimation process. 

 

 

𝐷 𝒑, 𝒗 = |𝐼𝑚𝑔 𝒑 − 𝑅𝑒𝑓 𝒑 + 𝒗 | (23) 

 

The variable Img (b) is the pixel with position b in the current micro-block. Ref (b + 

v) denotes a pixel with position b in the micro-block displaced by position vector v 

in previous frame. Computation of the distortion measure of the whole block is given 

by the Equation (24). 

 

𝑆𝐴𝐷 𝒗 =  𝐷 𝒑, 𝒗 =   𝐼𝑚𝑔 𝒑 − 𝑅𝑒𝑓(𝒑 + 𝒗) 
𝑝

𝑝

 (24) 

 

In comparison with the more traditional L2 norm, the L1 norm used in the SAD 

equation is less sensitive to the presence of outliers in the data [107]. 

 

Computation of the MPEG flow features is very fast. Due to the hardware support for 

the video decoding process, the cost of calculating it in terms of resources used is 

low. For each frame, the decoder produces a list of motion features. These are 

calculated at block level and only the 16x16 blocks showing movements are 

encoded in the motion feature extraction process.  

 

Each element of the extracted list contains a pair of source and destination position 

vectors of a 16x16 micro block. Subsequently, the motion vectors are obtained by 

processing all the elements of the list. To eliminate the noise introduced by the 

surveillance camera and small objects that are not of interest for this application, I 

applied a threshold procedure on each vector vm in the list. In this way the vector 

vmth (25) is set to zero whenever the original magnitude is small: 

 

v𝑚𝑡 =   
v𝑚 , if  v𝑚  > 𝑚𝑖𝑛𝑀𝑜𝑡𝑖𝑜𝑛𝑇

0 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  (25) 

 

The main steps of the algorithm used for estimating the MPEG flow motion 

magnitude are presented in the following pseudo code.   
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For the threshold variable minMotionTh I chose to use the value three. This value 

depends on the configuration of the surveillance system and should be determined 

experimentally. Another parameter of the algorithm is the nCorrection offset. I used 

it to translate the vector magnitude interval from [-128,127] to [0, 255]. This 

parameter is independent of the application and I set it to 128. 

 

 
Figure 61 - The illustration of optical flow of a street fight. The first row contains original 
frames of the fight video while the second row illustrates the optical flow of each frame. 

 

For illustrative purposes only, I encoded the motion vectors in the HSV color space. 

The result of the conversion is shown in Figure 61. The hue channel encodes the 

motion direction and the value channel encodes the magnitude of the motion. The 

saturation channel was necessary to facilitate the display of the image. It is not 

used to store any motion information. Hence, all values in the saturation channel 

are set to max value. To enhance visibility, the motion vector images shown in 

Figure 61 are resized and interpolated. 

 

In a similar manner, the motion vectors are encoded into an RGB image format and 

fetched to the input of the proposed CNN. Only the R and G channels are used for 

storing the motion. The B channel is not used to save motion data. All values for this 

channel are set to zero. 
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7.4 The CNN Architecture 
 

One of the important requirements of the proposed system for detecting violence 

was to be suitable for embedded processing. In this regard, I analyzed several 

lightweight CNN architectures. That is the MobileNet [108] the SquezeNet [109] and 

the CNN network proposed by Krizhevsky [111]. 

 

In addition to these architectures, in the early stages of my research, I also 

analyzed a more complex architecture such as the one defined in paper [103]. It is 

designed to recognize several human actions. The solution works well both on 

captured videos with static surveillance cameras and those captured with dynamic 

PTZ (pan tilt zoom) cameras. But this approach requires huge datasets and 

performance hardware to build and use the model. Indeed, complex CNN are 

capable of recognizing more actions, but require much more training data. 

 

Nevertheless, the MobileNet and the SqueezeNet are better fit for my application but 

require a fairly large input image size. Also, these networks have a large number of 

parameters, which involves using a large datasets to train them. Basic version of 

MobileNet uses 0.47 million parameters, while the compressed SqueezeNet uses 

0.42 million parameters. These requirements are incompatible with my 

requirements. I needed an architecture that accepts small images and can be 

trained using a small data set. 

 

As the forementioned networks were not suitable for my application I investigated 

the CNN proposed by Krizhevsky.  Therefore, inspired by the work [110] that was 

designed to classify the CIFAR dataseet I designed a novel architecture shown in 

Figure 62. This architecture is a slight modification of the CNN proposed by 

Krizhevsky in [111]. I designed it to meet the requirements of the violence 

detection system. That is, to accept 16x16x3 image at the input and use a small 

number of parameters. The architecture has only 0.21 million parameters of which 

20 418 are variables that represent weights and biases. This small number of 

parameters allows the network to be trained using a small number of training 

samples and run smoothly on an embedded architecture, such as a smart 

surveillance camera.  

 

The network is feed with the MPEG flow motion vectors stored in a 16x16x3 matrix. 

For each 256x256 frame in a video sequence, the video encoder provides a 16x16 

array representing the motion vectors. The reason for such a small array of motion 

vectors is due to the coding technique involved in the process. The decoder divides 

the frame into 16x16 blocks and generates just one motion vector for each block. 

Even though only two matrix channels are used for inference, I used a matrix of 

depth three to store motion vectors. This is only due to the fact that it was easier 

for me to store the motion vectors in RGB image format rather than in a two depth 

matrix. 
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Figure 62 - Proposed CNN architecture 

The convolution kernels of all layers have the size 3x3x3. The first convolutional 

layer of the network consists of 32 filters and the second one is composed of 64. 

Doubling the number of filters in the second layer leads to the extension in the 

channel depth. Moreover, the Rectified Linear Unit (ReLU) and Max Pooling layer 

follow each convolutional layer. The Max Pooling with a kernel set to 2x2 slightly 

reduces the size of network activation maps. Consequently, the first fully connected 

layer receives 4x4x64 activation maps. Finally, the last network layer is also one 

fully connected, but it has only two outputs. One output corresponds to fight and 

the other to no fight class. 

 

 

7.5 Time Domain Filter 
 

A post-processing phase consisting of two filters, linked in a cascade manner, is also 

part of the proposed solution for detecting violence. Data processed by the CNN is 
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forwarded to the input of the filter. The purpose of the filter is to capture the 

temporal features of the activity of the observed scene and to smooth the 

predictions.  This allows predictions to be closer to human judgment. 

 

The nature of a fight action directed the design of the time domain filter. The idea 

was to design a filter that imitates human judgments about urban fights. Commonly, 

the fight action is composed of short motion intervals.  It contains a few unusual 

interactions such as punching or kicking followed by a pause with no motion. There 

are also particular cases of violent actions, such as wrestling, where the intensity of 

the motion is even more irregular. In order to declare the action belonging to the 

violent class, the observer must inspect the video for a while and look for patterns 

that contain both motion and no motion time slots. 

 

Creating a model capable of identifying fight events in urban areas is a rather 

difficult task. In the solution presented here, the algorithm relies on the capabilities 

of the CNN to capture figting actions by using only the MPEG flow feature. However, 

the network output classifies some of the frames encountered in a non violent 

sequence, such as running and walking in a group, as violent. Moreover, prediction 

oscillates in the sequences that contain violent actions. To avoid such a behavior, the 

network output is further filtered by the means of two temporal filters. The short 

bursts of false predictions generated by no motion within the fight clip are 

eliminated by the first filter. The second one is committed to account for a minimum 

time required for analyzing the fight action. 

 

Based on the assumption that the CNN output is not stable in video sequences 

containing fights, the following hypothesis is conceived. Measurement of the 

frequency of fight labels for a certain amount of time will indicate the presence of a 

violent action in video. The probability density estimation framework has proven to 

be the best choice for making the frequency measurement. Since the CNN output 

can not be assumed to follow a known distribution, I chose to use nonparametric 

density estimation. A continuous K (26) kernel estimates the density of a group that 

is made up of a limited number of predictions. The kernel selection criterion was 

optimization of measurement of the density of samples that belong to the violence 

class and that are enclosed by a time window. The bandwidth of the estimator is 

defined by the width of the time span of time window. The kernel shape is not so 

important. Hence, the filter uses a rectangular kernel defined by: 

 

𝐾 𝑥 =   
1, if  𝑥 < 
0, if  𝑥 ≥ 

  (26) 

 

where x is the input and h is the scale parameter. The video is sampled by a time 

window, of size 2T+1 that has always its center situated at current time t0. 

Sampling is done byusing the following formula (27): 
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𝑛 𝑡0; 𝑇 =   𝑥(𝑡)𝐾𝑇(𝑡 − 𝑡0)

𝑡

 (27) 

The variable x(t) is the binary output provided by the CNN. It can take only two 

values. The value 1 stands for fight class and the value 0 represents no fight class. 

It is worth mentioning that the probabilities generated by the CNN can also be 

exploited in the action prediction process. The output of the filter is represented by 

the formula (28): 

𝑦 𝑡 ; 𝑇, 𝑝 =   
1 , if 𝑛 𝑡;𝑇 ≥ 𝑝(2𝑇 + 1)

0 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  (28) 

The parameter p in the equation represents the percentage of fight predictions 

generated by the CNN in a 2T+1 length time window. 

 

To adjust the first filter, it was necessary to discover the values for p and T that 

provide the best performance. The optimization of the second filter follows the same 

procedure. However, because the roles of the filters differ, the optimization criterion 

for the second one is not exactly the same. More details are provided in chapter 

6.7.3, which is concerned with optimizing time domain filters. 

 

7.6 The datasets 
 

For testing the proposed approach I investigated four datasets and ended up using 

only two of them. The first data set that seemed appropriate for the validation of the 

proposed algorithm is the UCF101 data set defined in article [112]. It contains 101 

human actions classes. This large number of classes led me to believe that the data 

set also contains human fighting actions, but I was wrong. Thus, I could not use it in 

my experiments. For the same reason I could not use the second data set in my 

experiments, namely the UCSD data set defined in article [113]. 

 

The next two data sets I investigated are the BEHAVE data set [105] and the ARENA 

data set [106]. These data sets are best suited for my experiments. The BEHAVE 

dataset was made by the computer vision students of the University of Edinburgh. 

They made this data set to offer the computer vision researches a common way to 

test the performance of their computer vision algorithms. In this regard, the video 

within this dataset contain ten types of human behaviors: 

 

 in group – two or more people are in a group and they are not moving very 

much 

 approach – the group of people approaching another group of people  

 walk together – two or more people walking toghether 

 split – two or more people walk toghether and then split into several 

smaller groups  

 ignore – people who ignore each other 
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 following – people who follow each other 

 chase – two or more people that form a group are chasing another group 

 fight – two or more groups of people fighting  

 run together – the group of people is runing together 

 and meet – two or more people met each other 

 

All those scenarios were acted out by the students. In the Figure 63 is an illustration 

of several such scenarios contained in this dataset. I believe the surveillance camera 

was installed on the second or third floor of the university building, with the 

intention of capturing the scene in a similar way to the city's surveillance cameras.  

 

The dataset also provides ground truth bounding boxes and a markup file that 

contains labels of all the frames in the video. This information is very useful because 

the users of the data set do not need to spend time for generating the video ground 

truth. In terms of the number of videos, this dataset contains only one video that 

lasts 57 minutes. Its resolution is 640x480 pixels and the frame rate is 25 fps. 

 

a)     b) 

 
   c)     d) 

Figure 63 - Samples from the BEHAVE dataset; a) in group scenario; b) walk together 
scenario; c) fighting scenario; d) running scenario 

BUPT



The datasets 

 

The second dataset I used to evaluate the proposed approach is the ARENA dataset 

[106]. It is intended to test video analysis algorithms that aim to capture abnormal 

behaviors in a truck parking lot. In this sense, the authors of this dataset installed a 

video camera in every corner of the truck. The rectangle in the figure 64 illustrates 

the truck and the four light blue semicircles illustrate the field of view of the four 

non-overlapping on-board video cameras. Moreover, the authors used an additional 

surveillance video camera to capture the entire parking lot. 

 

 
Figure 64 - The truck and the four surveillance cameras used to generate the ARENA data set 

 

In figure 65 are some samples of the ARENA dataset. In the middle is the frame that 

is captured by the video camera that views the entire parking lot. In the corners of 

the same figure are frames captured by the four on-board cameras.  

 

 
Figure 65 - Samples from the ARENA dataset. 

 

It is worth mentioning that all the scenes in the ARENA dataset are directed. These 

contain the following human behaviors: 
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 person falling to ground 

 loitering in the vicinity of the vehicle 

 walking around the vehicle 

 attack to driver  

 stealing from vehicle 

 

All surveillance cameras used to build this dataset have the same configuration. 

That is, their resolution is set to 1280 x 960 pixels, while the frame rate is set to 30 

fps. 

 

7.7 Experiments and results 

7.7.1 Data Preparation 
 

Because real threats are rare, it has been challenging for me to find datasets that 

contain violent actions.  Moreover, the requirement that all videos within the dataset 

must be recorded by static surveillance cameras made this task even more difficult. 

However, after spending a lot of time looking for the right datasets, I came across 

the BEHAVE [105], ARENA [106] and UCSD [113] datasets. Although of low 

complexity, these data sets are suitable for training and evaluating the video 

analysis algorithm I propose in this chapter. Both the BEHAVE and the ARENA 

datasets contain violent and non-violent human actions. The UCSD dataset is 

slightly different. It contains unusual actions and a lot of non-violent sequences. 

 

In order to keep the dataset in balance, I decided to exclude the UCSD from 

experiments since the BEHAVE and ARENA already contain sufficient non-violent 

scenes. Specifically, for testing the algorithm I used the BEHAVE and the ARENA 

datasets. While for training, I only used the BEHAVE data set. The ARENA contains 

only a few violent actions and is not suitable for this purpose. 

 

To keep the balance, I grouped the sequences from the BEHAVE dataset into 22 

sub-clips totaling 11872 frames. The reorganized dataset contains the following 

activities: 

 

 Attack (seven clips) 

 Group (four clips) 

 Run (six clips) 

 Walk (five clips) 

 

I grouped all these subclips into just two classes. The no fight class is made up of 

Group, Run and Walk video clips whereas the fight class includes only the Attack 

video clips from the database. The violent actions are barely present in the ARENA 

dataset. There are just two small fighting sequences in this dataset. Each lasts only 
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several seconds. Therefore, I choose to use the ARENA dataset exclusively for 

testing. 

 

To address the issue of the small number of videos that contain fight action, I 

decided to take advantage of the augmentation technique. In this way, the volume 

of violent clips in the BEHAVE dataset is considerably increased. The reason I chose 

the augmentation is that it curtails the classification model capacity thus reducing 

the necessity for regularization. It also supports the network to learn to be invariant 

to translation.  

 

In this regard, I designed an augmentation algorithm that relies on the sliding box 

technique. The algorithm uses a list of region of interest (ROI) of size 256x256 to 

create new short videos. These regions must be defined manually so that each 

region in the list delimits the actors of an action at a given time in the video. In 

addition to the list of ROI’s the algorithm also uses a list of integers. They specify 

the number of frames to be extracted for each region. 

 
Figure 66 - Augmentation technique 

 

Let’s suppose that the list contains only two ROI’s as shown in the figure 66. To 

generate the first video sequence, the algorithm crop the portion indicated by the 

ROI Position1 from several frames of the video. The exact number of frames used in 

this process is taken from the list of integers. Upon completition, the result of this 

process is a new short video of size 256x256. The same applies for extracting the 

second video sequence. But in this case the algorithm uses the Position2 instead of 

Position1 in the extraction process.   
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The idea behind this approach is that if the ROI position is conveniently changed 

within the frame, it is possible to “grab” a fight action over a longer period of time. 

Each position generates a short fight clip. Thus, it is possible to generate several 

fight samples from a fight activity. The only requirement is to maintain the actors 

within the ROI. 

 

To further improve accuracy, I applied another augmentation to the dataset. It is the 

horizontal frame mirroring. I flipped the images along the horizontal axis. 

 

Using these data augmentation techniques, I increased the number of video clips 

from 22 to 366. This technique is very useful because it greatly increases the variety 

of the dataset. I enlarged equally both the fight class and the no fight class thus 

resulting in a balanced dataset that contains the following video clips: 

 

 184 clips containing the Attack action 

 48 clips containing  the Group action  

 63 clips containing the Run action 

 71 clips containing the Walk action 

 

To prepare the data for model training, I divided the classes into two equal parts. 

The training data set consist of 92 videos from the fight class and 91 videos from 

the no fight class. Similarly, the test data set consist of 92 videos from the fight 

class and 91 videos from the no fight class. 

 

 

7.7.2 Learning the CNN Model 
 

To evaluate the performance of the CNN classifier in detail, I trained the network 

with two motion descriptors. So that the first model that I build was trained with the 

MPEG flow and the second one was trained with the optical flow. This approach 

enabled me to evaluate the classification performance of the CNN architecture and 

also to compare the eficency of motion descriptors. 

 

In the training stage, I followed the same steps for both models. I used the same 

data and the same training process. The only difference is in the algorithms for 

extracting motion from the video. For training the CNN with the MPEG flow I used 

the motion vectors provided by the video codec, while for build the optical flow 

model I used the motion vectors extracted by the Farneback optical flow algorithm 

proposed in [116]. For the MPEG stream I didn't have to resize the matrix provided 

by the video codec, because the CNN was designed to accept 16x16 arrays. 

Unfortunately for the optical flow I had to resize the motion vectors matrix to 16x16 

using bilinear interpolation. This operation was necessary because the Farneback 
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optical flow produces an array of size 256x256 that is incompatible with the input 

size of the network.  

 

Prior to training the network I had to configure the training environment.  For the 

batch size parameter, I chose to use size 50. I consider that this value is suitable for 

network training, because it is neither too small nor too high. The Adam optimizer 

[114] learning rate was set to 0.0001, while the remaining parameters were left to 

the default values [110], so beta1 = 0.9, beta2 = 0.999, epsilon = 10-8. Beside 

these parameters I chosed to use the dropout [115] with keep probability equaling 

0.5. This regularization method alongside with the data augmentation is intended to 

reduce the network overfitting. As a loss function I used the Softmax cross entropy 

with logits.  

 

For training the CNN classifier, I used the Python programming language and the 

Tensorflow v1.9 GPU library. The framework ran on a PC that had the following 

configuration: Nvidia GFORCE 1070 ti, Intel I5, 4GB RAM, 1TB HDD. This 

configuration enabled me to train the network fast, because I took advantage of the 

graphics card and the tensorflow GPU API. 

 

During the training process I managed to save the loss and the accuracy values of 

both models into the tensorboard event file. The tensorboard is a powerful tool 

provided by the tensoflow framework. It is a web based application that allows 

developers to analyse the training process of their network. Nevertheless, the loss 

and accuracy values were saved after each training epoch. Thus I was able to 

visually inspect the training flow in real time using the tensorboard tool.  

 

The event files are not automaticaly deleted when the training ends. They remain 

stored in the computer memory. This tensorboard feature allowed me to extract the 

graphs shown in figure 67, figure 68, figure 69 and figure 70. Using these graphs I 

also made table 10, table 11, table 12 and table 13. 

 

Table 10 shows the loss values of the network when trained with MPEG flow. It 

contains the values of the loss for both train data and test data. Because it is not 

practical to put all the values from the graph in a table, I only extracted the loss 

values that corespond to epochs 20,40,60,80,100,120,140,160 and 170. These data 

are sufficient to analyze the training process of the network. 

 

 Epoch 

20 40 60 80 100 120 140 143 144 160 170 

Loss 

Train 0.72 0.58 0.41 0.40 0.34 0.39 0.30 0.34 0.26 0.33 0.34 

Test 0.76 0.63 0.50 0.42 0.44 0.45 0.43 0.40 0.42 0.44 0.59 

Table 10 - Loss values for multiple epochs. These values are obtained during training the 
network with the MPEG flow. 
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Figure 67 - Network loss obtained during training with the MPEG flow. 

According to the data displayed in the table 10 and in the figure 67 by the blue line, 

the loss of the network during traning drops nicely until the epoch 60. After this 

epoch, it seems that the network is stable, which means that the loss function 

decreases only slightly until the end of the training, that is the epoch 173. 

 

The drop in loss values during the training phase does not mean that the network is 

getting better and better. From the epoch 160 the model starts to overfit the 

training dataset. This  phenomenon is indicated by the orange line in the figure 67 

which increases starting from the epoch 160.  From now on, it doesn't make sense 

to continue training the network. The minimum loss equals 0.26 at epoch 144 for 

the training dataset while for the test dataset it equals 0.40 at epoch 143. 

 

The accuracy of the model is closely related to the loss of the model. The graph in 

the figure 68, as well as the data in table 11, show that the accuracy for the train 

dataset continues to improve as the number of epochs increases. The evolution of 

the accuracy for the test dataset is different from the accuracy of the training 

dataset.  

 

Because of the overfitting issue the accuracy for the test dataset starts to decline at 

epoch 160. The maximum accuracy atained by the model during training is 82% at 

epochs 59 and 136 while for the testing dataset the maximum accuracy is 81% at 

epoch 136. 
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 Epoch 

20 40 59 60 80 100 120 136 140 160 170 

A
c
c
u
ra

c
y
 

Train 0.64 0.72 0.82 0.79 0.71 0.78 0.76 0.82 0.76 0.74 0.75 

Test 0.57 0.65 0.80 0.73 0.68 0.79 0.74 0.81 0.70 0.69 0.61 

Table 11 - Accuracy values for multiple epochs. These values are obtained during training the 
network with the MPEG flow. 

 
Figure 68 - Network accuracy obtained during training with the MPEG flow. 

 

Regarding the second model, the one built using optical flow, the evolution of the 

loss is very similar to the evolution of the loss of the first model. In table 12 are the 

values of this function for epoch 20,40,60,80,100,120,140,160 and 180 for both 

train and test data sets. 

 

 
 Epoch 

20 40 60 80 100 120 129 140 156 160 180 

L
o
s
s
 Train 1.19 1.02 0.89 0.65 0.64 0.51 0.42 0.50 0.52 0.52 0.54 

Test 1.34 1.15 1.00 0.83 0.74 0.52 0.72 0.62 0.52 0.65 0.82 

Table 12 - Loss values for multiple epochs. These values are obtained during training the 
network with the optical flow. 
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Figure 69 - Network loss obtained during training with the optical flow. 

 

As illustrated in the figure 69 the loss decreases smoothly during training until 

epoch 60 for both the train data set and the test data set.  After this epoch the loss 

for the train data set drops just for very small amount at each epoch until the end of 

the training, that is until the epoch 184. The loss for the test data set also decreases 

slowlly until the epoch 158. But, from this epoch and until the epoch 184 the loss 

increases.  

 

This means that the network starts to overfit the training data set at epoch 158. 
Therefore, from this point on, it does not make sense to further train the network. 

The minimum loss equals 0.42 at epoch 129 for the training dataset while for the 

test dataset it equals 0.52 at epochs 120 and 156. 

 

 Epoch 

20 40 60 80 100 120 134 140 160 175 180 

A
c
c
u
ra

c
y
 

Train 0.54 0.60 0.68 0.65 0.64 0.69 0.67 0.66 0.68 0.72 0.65 

Test 0.47 0.52 0.56 0.58 0.64 0.61 0.69 0.60 0.64 0.56 0.55 

 

Table 13 - Accuracy values for multiple epochs. These values are obtained during training the 
network with the optical flow. 
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Figure 70 - Network accuracy obtained during training with the optical flow. 

The accuracy of the optical flow model is displayed in the graph of figure 70. The 

accuracy for the train data set increases continuously until the end of training. In a 

similar manner the accuracy for the test data set increases but only to the epoch 

158. From this point until the end of training, the accuracy of the test dataset 

decreases. The maximum accuracy atained by the model during training is 72% at 

epoch 175 while for the testing dataset the maximum accuracy is 69% at epoch 

134. 

 

 

These analyses of the training process of the networks reveal that the training 

should be stopped at epoch 143 for the MPEG flow model and at the epoch 156 for 

the optical flow model.  To be able to use the models from these epochs I used the 

tensorflow saving feature. That is, I instructed the tensorflow to save the weights of 

the model after each epoch, so that I could use any of the generated models. 

Therefore, for the MPEG flow classifier I chose the model generated at epoch 143 

and for the optical flow classifier I chose the model generated at epoch 156. 

 

 

7.7.3 Time Domain Filter Optimization 
 

After establishing the models of the two classifiers I proceeded with the adjustment 

of the time domain filter. Remember that, the time dimain filter consists of two 

identical filters that are aimed to smooth the output of the CNN. Because of the 

nature of the fight action the network output is not stable when it processes the 

fight videos. It oscillates between fight label and no fight label. This is normal 

because the fight consists of several kicks followed by pause moments in which 

nothing happens. The filters are designed to attenuate the oscillating output of the 

network thus making the predictions of the algorithm more natural. 

 

BUPT



Proposed hybrid Deep learning/VA features solution for complex behavior 

classification in sensors environments 

 

 

 

To function properly, the first filter requires the definition of the parameters T and p. 

The T parameter stores the duration of pre and post frame inspection intervals. It is 

used by the filter to establish the time frame window length which is 2T+1. This 

parameter is closely related to the nature of the fight. Hence in order to establish 

the value for it I analyzed the fight videos within the dataset.  

 

I found that a second is fair enough for a human observer to conclude that there is 

a fighting action in the video stream. This means that the filter will work correctly if 

the time frame window is equal to one second. To get one second for the time 

window, I chose to set the T parameter to 10. Indeed, if the time frame window 

length is increased, the false alarm rate decreases. But that has a cost. The video 

streams that contain short fights are omitted by the system, so the detection rate 

decreases. 

 

The p is the percentile parameter that is used by the filter to differentiate the no 

fight sequences from the fight sequences. To filter the prediction for frame F, the 

filter uses the prediction of twenty one frames when T=10. That is, the predictions 

of the ten frames before frame F, the prediction for frame F, and the predictions of 

the ten frames after frame F. If in this time frame window the percentage of frames 

that are labeled by the network as fight exceeds the value p the filter labels the 

frame F as fight. In this way the output of the CNN is smoothed out. 

 

The trickiest part was to choose the value for the p parameter. If it is too small, the 

filter increases the false alarm rates, while if it is too large, the filter omits short 

fights. To get the best value for this parameter I used the F1 (29) performance 

metric. It shows how accurate the model is by using precision and recall. The F1 

score is calculated by the following formula: 

 

𝐹1 = 2 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (29) 

 

Precision (30) is concerned about the network predictions related to the positive 

class that is the attack class. It shows how many fight predictions are correct out of 

the total fight predictions. The formula used for computing the precision is: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (30) 

 

Wherein the TP corresponds to true positives (frames correctly labeled as fights) and 

FP represents false positives (frames that do not contain fight but are labeled as 

fight). 
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Recall is a metric related to the ground truth. It measures how many fight 

predictions the network correctly predicted from the total fight frames in the video. 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (31) 

 

Wherein the TP corresponds to true positives (frames correctly labeled as fights) and 

FN represents false negatives (frames that contain fight but are labeled as no fight). 

 

The best value for the parameter p is the point where the F1 score reaches the 

maximum value. To find out this value it was necessary to calculate the precision 

and recall of the algorithm for several values of the parameter p. In this process I 

used only the test data set. For each p I made predictions of all the frames within 

the test dataset using the MPEG flow model and the first time domain filter. At first I 

stored the results provided at the output of the filter into an excel spreadsheet. 

Then I calculated the precision and recall for each value of the p parameter.  

 

Moreover, in order to be able to compare the performance of the MPEG flow motion 

descriptor with the optical flow descriptor I repeated the experiment. But this time, I 

replaced the MPEG flow model with the optical flow model. So, the predictions of all 

frames within the test dataset were made using the optical flow model and the first 

time domain filter. The data from these experiments are displayed in table 14 and 

table 15. For the sake of simplicity, the pair MPEG flow model and the first filter are 

refered in the continuation of this manuscript as MPEG flow model. The same applies 

foor the optical flow model and the first filter. This pair is refered as optical flow 

model. 

 

For convenience, in my experiments I used the number of frames instead of the 

percentage. This is why in table 14, table 15, table 16, figure 71, figure 72 and 

figure 73 appears the threshold. The threshold 𝜃 is nothing but p expressed in 

number of frames. The relation between the threshold and the parameter p is 

defined by equation 32. 

𝜃 = 𝑝 ∗ (2𝑇 + 1) (32) 

 

The p is always positive as is the threshold. Because the threshold denotes the 

number of frames, it is always an integer number. In my experiments, I chose to 

use a set of numbers for the threshold that starts with the value 1 and ends with the 

value 21. In this set each number is computed by adding one to the previous 

number. Thus, I managed to cover the entire range of possible values for the 

threshold variable. I chose to use 1 as the minimum value, because this is the 

minimum number of frames for which the filter works correctly. The maximum value 

is dictated by the length of the time window which is 2T + 1 that is 21. 
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Threshold 
Precision 

Optical flow MPEG flow 

1 0.20 0.30 

2 0.25 0.36 

3 0.29 0.41 

4 0.32 0.44 

5 0.34 0.47 

6 0.37 0.48 

7 0.39 0.48 

8 0.40 0.49 

9 0.41 0.50 

10 0.43 0.51 

11 0.44 0.53 

12 0.45 0.55 

13 0.47 0.56 

14 0.48 0.58 

15 0.47 0.60 

16 0.47 0.60 

17 0.47 0.61 

18 0.47 0.62 

19 0.48 0.67 

20 0.50 0.78 

21 0.42 0.85 
Table 14 – Precision for both the optical flow model and the MPEG flow model 

Using the data from table 14 I generated the graph in figure 71 which shows the 

precision as a function of the threshold for both models. The precision for the MPEG 

flow model is represented by solid curves, whereas the precision for the optical flow 

model is expressed by dashed-dotted curves.  I intentionally plotted the curves of 

both models on the same graph in order to compare them visually. 

 

 
Figure 71 – Precision graph for both the optical flow model and the MPEG flow model  
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Up to the threshold value of twenty, for both models, the precision increases as the 
the threshold increases. The precision for the MPEG flow model grows even more 

rapidly starting from the threshold value of nineteen.  
 
This is a clear indication that for the MPEG flow model,  higher values of this 
parameter make fight predictions more precise. The number of true positives 
increases and the number of false positives decreases. Which means that false 
alarm rates are going down. This rule also applies to optical flow model, but only up 
to the threshold value of twenty. For threshold values greater than twenty, the 

precision for the optical flow model begins to decrease. 
 

Threshold 
Recall 

Optical flow MPEG flow 

1 0.96 1.00 

2 0.92 1.00 

3 0.91 1.00 

4 0.90 1.00 

5 0.89 1.00 

6 0.88 1.00 

7 0.83 1.00 

8 0.78 0.98 

9 0.74 0.97 

10 0.71 0.94 

11 0.68 0.92 

12 0.63 0.90 

13 0.60 0.87 

14 0.54 0.83 

15 0.49 0.79 

16 0.44 0.75 

17 0.37 0.63 

18 0.28 0.54 

19 0.22 0.45 

20 0.17 0.36 

21 0.08 0.20 
Table 15 – Recall for both the optical flow model and the MPEG flow model 

 

For the recall, I generated the graph in figure 72 using the data from the table 15. 

The recall for the MPEG flow model is represented by solid curves, whereas the 

recall for the optical flow model is expressed by dashed-dotted curves. The values 

for the recall are high for both models when the threshold is low. For threshold 

values up to eight, the recall for the MPEG flow model is constant and is equal to 

one. From this point on, the increase in the threshold value decreases the recall 

value of the MPEG flow model. 

 

For the optical flow model, the recall decreases continuously. Up to the threshold 

value of six, the recall decreases only by a small amount. From this point on, the 

recall decreases more abruptly for each subsequent threshold. 
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Figure 72 – Recall graph for both the optical flow model and the MPEG flow model 

 

Using the values for precision and recall from tables 14 and 15 I computed the 

values for the F1 score. These are shown in table 16.  

 

Threshold 
F1 score 

Optical flow MPEG flow 

1 0.33 0.46 

2 0.39 0.53 

3 0.44 0.58 

4 0.47 0.61 

5 0.49 0.64 

6 0.52 0.65 

7 0.53 0.65 

8 0.53 0.65 

9 0.53 0.66 

10 0.54 0.66 

11 0.53 0.67 

12 0.53 0.68 

13 0.53 0.68 

14 0.51 0.68 

15 0.48 0.68 

16 0.45 0.67 

17 0.41 0.62 

18 0.35 0.58 

19 0.30 0.54 

20 0.25 0.49 

21 0.13 0.32 
Table 16 – F1 score for both the optical flow model and the MPEG flow model 

F1 scores for both the MPEG flow model and the optical flow model evolve similarly. 

They slowly increase in value and then at some point begin to fall sharply. The graph 
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in figure 73 shows the evolution of these scores. The F1 score for the MPEG stream 

model increases to the point when the threshold value is twelve. For treshold values 

between twelve and fourteen, the value of the score remains constant. After this 

point that is for threshold values greater than fourteen, the F1 score for the MPEG 

flow model begin to fall sharply. 

 

A similar pattern follows the score for the optical flow model. It increases slowly 

until the threshold value reaches nine. The score stabilizes for a while and then 

starts to decrease for threshold values greather than eleven. 

 

 

 
Figure 73 – F1 score graph for both the optical flow model and the MPEG flow model 

 

Based on these data, I conclude that for the MPEG flow model the best value for the 

threshold θ of the first time domain filter is 14. For this value, the F1 score reaches 

the maximum value as shown in graph of figure 73. In this setting the parameter p 

becomes equal to 66%.  

 

It can be easily noticed that, regardless of threshold value, precision, recall and 

consequently the F1 score have higher values for MPEG than for Farneback optical 

flow. This is a clear indicator that the MPEG flow motion descriptor outperforms the 

optical flow descriptor. For this reason, I was no longer interested in the optical flow 

model, so I did not use it any more in my subsequent experiments. 

 

Hence for adjusting the second time domain filter I used only the MPEG flow model 

and the first time domain filter. The second time domain filter is designed to filter 

the noise. In some no fight sequences, the noise generated by short motions is still 

present in the output of the first filter.  
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One such case is illustrated in figure 74. The graph in figure 74.a displays the output 

of the CNN network. You can notice that it contains several spikes. Most are at the 

beginning of the chart. All these spikes are generated by the noise that is present in 

the video frame. In some frames, noise is perceived by the MPEG flow as motion 

that is similar to fight motion. These frames are labeled by the CNN as belonging to 

the fight class which is incorrect. 

 

The first filter manages to filter right many of the false predictions generated by 

noise, such as predictions for frames 13, 14, 15, 16, 17, 25, 37, 63 and 69. But in 

cases where false predictions are more frequent, like for frames 1, 7, 9, and 10, the 

filter fails to filter them correctly. This behavior of the first filter can be observed in 

the graph of figure 74.b. The graph illustrates the output of the second filter. 

 

 
a) 

 

 
b) 
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c) 

Figure 74 - Output of the algorithm stages; a) CNN output; b) Filter 1 output; c) Filter 2 
output. 

To remedy this problem, I added a second time domain filter to the algorithm. This 

filter eliminates parasitic impulses using a much longer time interval for the 

analysis. Its operation is identical to the operation of the first filter. The filter uses a 

time window and a percentile parameter p. It compares the percentage of fight 

predictions found in the time window with the percentile parameter. Only when the 

percentage equals the percentile p the filter outputs a fight label. 

 

I have optimized the filter parameters so as to minimize the false positive rate and 

keep the recall at 100%. Notice that the optimization is done by implying the 

labeling of predictions at video clip level. I chose to use 100% for the percentile 

parameter and for the time window I chose length seven. In this configuration, to 

filter the prediction for frame F, the filter uses the prediction of seven frames. That 

is, the predictions of the three frames before frame F, the prediction for frame F, and 

the predictions of the three frames after frame F. 

 

This filtering technique allowed me to eliminate false predictions generated by noise, 

which were filtered incorrectly by the first filter. In the graph of figure 74.c are the 

outputs of the second filter. You may notice that the false predictions are gone. 

 

7.7.4 Inference on Raspbery PI 
 

 

After training the model and setting the values for the filters, the algorithm is ready 

for the testing phase. In this phase I used the following hardware: a Raspberry PI 3 

with a 1.2 GHz Quad Core processor and 1 GB of RAM, a USB video camera and, of 

course, a moitor, a keyboard and a mouse. 

 

Because the algorithm is meant to run on hardware with limited resources, I wanted 

to test it on such a device and not on a PC. Since I had a Raspberry PI 3 at hand, 

which is a mini computer with limited resources, I decided to use it to test the 

algorithm. 
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For the software part I used the QtCreator 4.2.0 integrated development 

environment, the OpenCV 3.4.0 computer vision library, the gcc 6.2.1 compiler and 

the C++ programming language. Implementing the algorithm in this development 

environment was an easy task. To load the MPEG flow model that I generated with 

the tensoflow API I used the dnn module of the OpenCV library. I also used this 

library for basic image processing tasks like loading videos, displaying frames or 

loading video stream of the USB camera. The two time domain filters are 

implemented using buffers and arithmetic operations that are provided by standard 

C++ programming language libraries. 

 

 
Figure 75 – The hardware used to test the algorithm 

 

To test the algorithm in detail, I performed two types of tests. Both are based on the 

predictions at video clip level and use the MPEG flow model and the two time 

domain filters. The first type of test uses videos from the datasets and the second 

type of test uses live streams captured by the USB camera.  

 

For the first type of test, I used some of the videos from the BEHAVE dataset [105] 

and the ARENA dataset [106]. That is, from the BEHAVE dataset I used only the test 

data set, because it did not make sense to test the algorithm with the train data set. 

The BEHAVE dataset was already familiar to me. Therefore, it did not take much 

work to extract the relevant data from it. I already divided it into the train data set 
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and the test data set when I trained the network. All I had to do was to extract the 

testing data set and divide it into video clips. 

 

I divided the test dataset into clips because I wanted to compare the detection 

performance of the algorithm with the performance of similar algorithms from the 

literature, such as those defined in papers [117] and [118]. The authors of these 

papers report the performance of their algorithm at video clip level. So I needed to 

use the same testing approach. 

 

The analysis of the test data set resulted in 86 videos. In order to extract these 

videos I used the criterion defined in article [117]. Therefore, each clip includes one 

of the following types of activities: run, group, walk and fight. Obviously, the fight 

clips belong to the fight class, while the no fight class contains the run, group and 

walk activities. The algorithm labels a clip as fight only if at least one fight label is 

present in the output of the second filter. It is important to mention that I have 

excluded frames that do not contain any motion from the videos. Their classification 

is insignificant and rather trivial for the purpose of this work. 

 

 

 
Labeled class 

Fight No fight 

Predicted class 
Fight 15 19 

No fight 0 52 

 

Table 17 – Confusion matrix of the proposed algorithm [BM4] 

 

After preparing the data set, I proceeded with testing the algorithm. The results for 

the 86 videos are shown in Table 17. These are quite satisfactory. Recall attaied 

100%, the false positive rate is only 26.76% and the acuracy is 77.9%. This means 

that all fight events are captured by the algorithm so it doesen't miss any of them. 

Regarding false alarms, the score is 26.76%, which is not bad. Only a small number 

of video clips were incorrectly predicted. Instead of being classified as belonging to 

the no fight class, the algorithm classified them as belonging to the fight class. 

 

For a fair comparison with other works reported in literature, I did another set of 

experiments. This time I wanted to adjust the algorithm so as to obtain the best 

accuracy. To do so, I only changed the threshold value of the first filter. Instead of 

using the value 14, I used the value 21. The threshold value of the second filter 

remains set to 7 as for the first experiment. In this configuration, the algorithm 

obtained an accuracy of 86.93% for the 86 videos from the BEHAVE dataset. This 

result is excelent. 

 

To evaluate the performance of the algorithm, I compared the obtained results with 

the results of similar methods found in the literature. It was very difficult for me to 
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find computer vision algorithms that use the BEHAVE dataset. But after a thorough 

research I managed to find a few. The performance of these algorithms as well as 

the performance of my algorithm are shown in table 18. 

 

Algorithm ACC±SD AUC 

Existing 

algorithms 

HOG+BoW [53] 58.69±0.35% 0.6322 

HOF+BoW [53] 59.91±0.28% 0.5893 

HNF+BoW [53] 57.97±0.31% 0.6089 

ViF [53] 82.02±0.19% 0.8592 

MoSIFT+BoW [112] 62.02±0.23% 0.6578 

RVD [163] 85.29±0.16% 0.8878 

AMDN [158] 84.22±0.17% 0.8562 

MoWLD+BoW [117] 83.19±0.18% 0.8517 

MoWLD+SparseCoding [117] 85.75±0.15% 0.8891 

MoWLD+KDE+SparseCoding 

[117] 
87.17±0.13% 0.8993 

 Proposed method 86.93±0.21% 0.9543 

 

Table 18 - My solution compared to similar approaches in the literature using the BEHAVE 

dataset. 

 

Zhang's [117] paper states that it attains the 87.17% accuracy on the BEHAVE 

dataset but it doesent provide the recall. This metric is much more significant than 

the accuracy for a violence detection system.  Another solution [118] using the 

same dataset provides results through the graph. It plots true positive rate as a 

function of false positive rate. The graph shows that for true positive rate of 100%, 

the recall is almost identical to that obtained by the algorithm proposed in this 

thesis. 

 

All these findings convinced me that the algorithm I proposed in this chapter works 

excellently on the BEHAVE dataset. But I wanted to test it on another data set, to 

make sure that the algorithm has good generalization performance. For this purpose 

I used the ARENA dataset [106]. This data set was not the most suitable for this 

task, but it was all I had. It contains only two short fight actions, which last only a 

few seconds. The algorithm succesfully recognized both actions. It also correctly 

predicted ten videos from this dataset that did not contain fights. These are excelent 

results. The recall as well as the accuracy of the algorithm is 100% for this dataset. 

 

At this point I ran out of test data and I wasn't very convinced that the algorithm 

generalizes well. Since I had no other options, I decided to test the algorithm on my 

own data. This is the the second type of test that uses video stream captured by the 

USB camera. 
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For a successful test, I had to set up the camera first. The algorithm is designed to 

process videos that are encoded by the MPEG-4 video codec. Hence, in order to 

work properly I had to configure the camera to encode the video in this format. This 

was an easy task. I just had to select the MPEG-4 codec in the camera software 

settings. Also through these settings I configured the camera resolution to 640 x 

480 pixels at 25 fps. This setting provides the best results because the MPEG stream 

model used in the algorithm was trained at this resolution.  

 

To test the algorithm using live data captured by the camera, I installed the system 

in an outdoor laboratory environment. Afterwards I simulated the fight and no fight 

actions with a colleague of mine in front of the camera. The test was madeup of 10 

scenarios. Five of them involved fights, and the rest were normal. The system 

captured all events correctly. It did not generate false alarms not missed any fight 

event. I was very pleased with these results. The recall and accuracy of the 

algorithm are both 100%. 

 

The algorithm that I propose in this chapter is also very efficient in terms of 

processing speed. To extract the MPEG motion vectors from a frame, the ffmpeg 

library used by the algorithm consumes only 2 ms. The average inference time for a 

frame is also low, being only 19,783 ms. In terms of hardware resources, the 

algorithm is good in this regard as well. During the inference it uses only about 

85MB of RAM and around 48% of CPU. 
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8 Conclusions 
 
In this thesis I investigated diferent approaches that use compter vision in order to 
recognize human behavior in video. The goal was to propose a wireless video 
surveillance system based on a network of smart surveillance cameras to 
automatically recognize human behaviors in the video.  

 
Such an approach has many benefits. The system can be easily deployed because it 
does not require many electrical wiring. The data transfer in the network is very low 
because video analysis is done by each smart surveillance camera. Moreover, the 
system is easely extensible in terms of functionality. Extending its functionality to 

recognize a new human behavior only involves loading the new computer vision 

algorithm on all smart surveillance cameras. From the user’s perspective, the 
system greatly improves the eficency of the surveillance officers. They should only 
review the events reported by the video analysis algorithm instead of continuously 
inspecting the video streams. 
 
The problem I encountered during this research was that all the algorithms I found 
in the literature either had low detection performance or were not designed to run 

on low-resource hardware, such as smart surveillance camera. Therfore, I designed 
new computer vision algorithms. They consume very little hardware resources and 
are very effective in detecting behavior in video.  
 
The first computer vision algorithm I designed is a basic behavior classification 
algorithm capable of detecting and counting vehicles in traffic monitoring 
applications. It can count vehicles and discriminate among small and large vehicles 

during daytime traffic surveillance. In the detection process the algorithm extracts 
vehicle features using foreground extraction algorithm and contour extraction 
algorithm and stores them in a history buffer. It also uses a correction method in 

the post processing phase to increase the recall. These operations are of low 
complexity, so that the algorithm consumes very little hardware resources during 
operation. The algorithm was tested on two datasets that I made and obined 

excelent results. 
 
The second computer vision algorithm I designed is more advanced than the first 
one, because it is based on detecting the behavior of objects in the scene. It is 
aimed for increasing the public security in the big cities. Specifically, the algorithm is 
able to automatically detect a dog attack on humans by analyzing motion in video. 
The solution uses object trajectories and the SVM classifier to detect the dog attack 

behavior.  
 
To extract the trajectories, the algorithm employs the foreground extraction 
algorithm and the contour extraction algorithm. It also involves a simple silhouette 
based object classification phase to distiungishing human trajectories from dog 
trajectories. These techniques do not consume much hardware resources, thus 
allowing the algorithm to run on the smart surveillance camera. In addition to this 

benefit, the algorithm also has a high detection performance. It has been 
extensively tested using 119 video clips collected from public internet sources. 
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The last computer vision algorithm I managed to design, is meant to detect complex 

human behavior in video. More preciselcy, the algorithm is able to automatically 

detect fight events in urban areas. It is hybrid approach that uses a deep neural 

network (DNN) and handcrafted features.  

 

The approach defines a novel principle of using only the motion features generated 

by the MPEG stream to power the DNN with data. Therefore, instead of using the 

optical flow which is computationally expensive the solution uses the MPEG flow 

offered by the video decoder. Since MPEG flow is computed during video decoding, 

the processing power required for obtaining it, after a frame was decoded, equals to 

zero. Thus, the proposed approach is suitable for use in a distributed, low resource, 

processing system. 

 

The architecture involves a cascade of two filters, namely a deep neural network and 

a time domain classifier. Spatial data processing is separate from time domain 

processing. The advantage offered by using only the motion features is that the 

illumination changes and variations of the color spectrum do not affect the 

performance of the algorithm. Moreover, I believe that this approach allows the 

solution to be easily adapted for night vision surveillance, such as infrared video 

surveillance. 

 

To evaluate the proposed approach, I tested the solution using a Raspberry Pi. The 

experimental results showed that the algorithm attained state of the art 

performance.  In this process I used two publicly available data sets as well as my 

own data that I generated using the USB camera. 

 

Because the proposed algorithm for detecting human fight behavior is designed to 

work only with static cameras, any camera motion will disturb its operation. 

Therefore, the algorithm is not suitable for applications that use dynamic cameras. 

Another drawback is that it cannot detect crowd fights. This is normal because the 

CNN model has not been trained to recognize such events. Indeed, the datasets 

used in performance evaluation process contain fights that involve several people, 

but they do not contain crowd violence. 
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8.1 Contributions 
 

 I have developed a method for detecting violent behavior in urban areas 
using machine learning algorithms run on a network of video sensors with 
limited computational resources. 

 
 I have studied various algorithms for tracking the moving entities in a video 

having various speeds – implying various driving behaviors. Case study: 

Urban traffic surveillance application. 
 

 I have studied detection of violent actions in urban areas, focusing on 
movements generated by several entities that interact with each other. Case 

study: Attacks conducted by stray dogs in urban environment. 
 

 I propose a new approach to develop video surveillance using a network of 

smart surveillance cameras. The system is event based. Sensor node uses a 
video analysis algorithm to detect events in the video. 

 
 I compared the performance obtained by using two motion descriptors as 

optical flow motion descriptor and MPEG motion descriptor. 
 
 I propose an augmentation algorithm to increase the volume of the video 

dataset used for training the network. 
 

 I designed an efficient algorithm to count the vehicles in video independent 
of driving behavior. It uses computer vision techniques to avoid counting a 
vehicle more than once. 

 

 I have developed a correction method for solving the contour splitting issue. 

This problem is frequent in traffic surveillance and afects negatively the 
performance of the video analysis algorithms. 

 
 I developed a simple but effective shape based method for classifying 

humans and dogs in video suitable to be run on low computational 
environment. 

 
 I analyzed and compared the performance of various background 

subtraction algorithms in the process of separating moving entities from 
static background. 

 
 I created two video databases for testing the traffic surveillance applications 

 

o Video footage of the intersection between Str. Stefan Cel Mare and 
Str. Stefan Octavian Iosif in Timisoara (41 minutes). 
 

o Video fooatge of the loop of the Pancevo Bridge that connects the 
Pancevo Bridge with Despot Stefan Boulevard in Belgrade, Serbia 

(43 minutes) 
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[74] H. Wang, A. Kl äser, C. Schmid, and C.-L. Liu.  Dense trajectories and motion boundary 

descriptors for action recognition.IJCV, 103(1), 2013. 

[75] Ji, Shuiwang, et al. "3D convolutional neural networks for human action recognition." 

IEEE transactions on pattern analysis and machine intelligence 35.1 (2012) 

[76] TRECVID dataset [Online]. Available: http://www-nlpir.nist.gov/projects/trecvid/ 

[77] Tran, Du, et al. "Learning spatiotemporal features with 3d convolutional networks." 

Proceedings of the IEEE international conference on computer vision. 2015. 

[78] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, andL. Fei-Fei. Large-scale 

video classification with convolutional neuralnetworks. InCVPR, 2014. 

[79] Varol, Gül, Ivan Laptev, and Cordelia Schmid. "Long-term temporal convolutions for 

action recognition." IEEE transactions on pattern analysis and machine intelligence, 2017. 

[80] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, andL.  Fei-Fei,  “Large-scale  

video  classification  with  convolutionalneural networks,” inCVPR, 2014. 

[81] V. Kantorov and I. Laptev, “Efficient feature extraction, encoding,and classification for 

action recognition,” inCVPR, 2014. 

[82] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracyoptical flow estimation 

based on a theory for warping,” inECCV,2004 

[83]  Malik Tubaishat, Yi Shang, Hongchi Shi ”Adaptive Traffic Light Control with Wireless 

Sensor Networks”, Proceedings of IEEE consumer, 2007. 

[84] Yen-Lin Chen, Bing-Fei Wu, Hao-Yu Huang, Chung-Jui Fan „A Real-Time Vision System for 

Nighttime Vehicle Detection and Traffic Surveillance”, IEEE Transactions on Industrial 

Electronics Volume: 58, Issue: 5, May 2011. 

[85] Jun-Wei Hsieh, Yung-Sheng Chen, Wen-Fong Hu „Automatic Traffic Surveillance System 

for Vehicle Tracking and Classification” , IEEE Transactions on Intelligent Transportation 

Systems  Volume: 7, Issue: 2, June 2006. 

[86] Tarik Taleb,Member, IEEE, Abderrahim Benslimane,Senior Member, IEEE, and Khaled Ben 

Letaief,Fellow, IEEEToward an Effective Risk-Conscious and Collaborative Vehicular Collision 

Avoidance System. 

[87] Stauffer C, Grimson W. “Adaptive background mixture models for real-time tracking”. 

Proc IEEE Conf on Comp Vision and Patt Recog (CVPR 1999) 1999; 246-252. 

[88] Power, P. Wayne, and Johann A. Schoonees. "Understanding background mixture models 

for foreground segmentation." Proceedings image and vision computing New Zealand. Vol. 

2002. 2002. 

[89] Soille P. (1999) Erosion and Dilation. In: Morphological Image Analysis. Springer, Berlin, 

Heidelberg. http://doi-org-443.webvpn.fjmu.edu.cn/10.1007/978-3-662-03939-7_3. 

[90] Suzuki, Satoshi. "Topological structural analysis of digitized binary images by border 

following." Computer Vision, Graphics, and Image Processing 30.1 (1985): 32-46. 

[91]  Ren, Mingwu, Jingyu Yang, and Han Sun. "Tracing boundary contours in a binary image." 

Image and vision computing 20.2 (2002): 125-131. 

[92] Chow, Louis R., et al. "A new dynamic approach for finding the contour of bi-level 

images." CVGIP: Graphical Models and Image Processing 56.6 (1994): 507-509. 

BUPT

http://www-nlpir.nist.gov/projects/trecvid/


Bibliography 

 

 

[93] Kirkpatrick, David G., and Raimund Seidel. "The ultimate planar convex hull algorithm?." 

SIAM journal on computing 15.1 (1986): 287-299. 

[94] Chan, Timothy M. "Optimal output-sensitive convex hull algorithms in two and three 

dimensions." Discrete & Computational Geometry 16.4 (1996): 361-368. 

[95] Graham, Ronald L., and F. Frances Yao. "Finding the convex hull of a simple polygon." 

Journal of Algorithms 4.4 (1983): 324-331. 

[96]. Zoran Zivkovic, Ferdinand van der Heijden,”Efficient adaptive density estimation per 

image pixel for the task of background subtraction”, Faculty of Science, University of 

Amsterdam, The Netherlands, 2004 

[97]. Andrew Temlyakov, Brent C. Munsell, Jarrell W. Waggoner, Song Wang, “Two Perceptually 

Motivated Strategies for Shape Classification”. 

[98]. T.Y.Zhang, C.Y.Suen, “A Fast Parallel Algorithm for Thining Digital Patterns”. 

[99]. Indriyati Atmosukarto, Bernard Ghanem, Shaunak Ahuja, Karthik Muthuswamy, Narendra 

Ahuja, “Automatic Recognition of Offensive Team Formation in American Football Plays”, 2013. 

[100]. Maria Andersson, Luis Patino, Gertjan J. Burghouts, Adam Flizikowski, Murray Evans, 

David Gustafsson, Henrik Petersson, Klamer Schutte, James Ferryman, “Activity Recognition 

and Localization on a Truck Parking Lot”, 2013. 

[101]. Norsk Kennel Klub (NKK). “European Dog Show 2015 - Day 3.” Online video clip. 

YouTube. YouTube, Sep 6, 2015. 

[102]. Canal de PES10vsFIFA10. “Mujer atacada por manada de perros callejeros.” Online 

video clip.YouTube. Youtube, Jul 20, 2010. 

[103] Varol, G.; Laptev, I.; Schmid, C. Long-term temporal convolutions for action recognition. 

IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 1510–1517. 

[104] Kantorov, V.; Laptev, I. Efficient feature extraction, encoding and classification for action 

recognition. In Proceedings of the Conference on Computer Vision and Pattern Recognition, 

Columbus, OH, USA, 23–28 June 2014; pp. 2593–2600. 

[105] Blunsden, S.; Fisher, R.B. The BEHAVE video dataset: Ground truthed video for multi-

person behavior classification. Ann. BMVA 2010, 4, 1–12. 

[106] Patino, L.; Cane, T.; Vallee, A.; Ferryman, J. PETS 2016. Dataset and challenge. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 

Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1–8. 

[107] Rousseeuw, Peter J.; Hubert, Mia (2011), "Robust statistics for outlier detection", Wiley 

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1 (1): 73–79. 

[108] Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, 

M.; Adam, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications. 

arXiv 2017. arXiv:1704.04861. 

[109] Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: 

AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size. arXiv 2016. 

arXiv:1602.07360. 

[110] Advanced Convolutional Neural Networks. Available online: https://www.tensorflow.org 

/tutorials/images/ deep_cnn (accessed on 12 September 2018). 

[111] Krizhevsky, A. Cuda-Convnet. Available online: https://code.google.com/archive/p/cuda-

convnet/ (accessed on 12 September 2018). 

[112] Soomro, K.; Zamir, A.R.; Shah, M. UCF101. A dataset of 101 human actions classes from 

videos in the wild. arXiv 2012. arXiv:1212.0402. 

[113] UCSD Anomaly Detection Dataset. Available online: http://www.svcl.ucsd.edu/projects 

/anomaly/dataset. html (accessed on 12 September 2018). 

[114] Kingma, D.P.; Adam, J. A method for stochastic optimization. arXiv 2014. 

arXiv:1412.6980. 

BUPT



Bibliography 

 

[115] Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from 

overfitting." The journal of machine learning research 15.1 (2014): 1929-1958. 

[116] Fortun, D.; Bouthemy, P.; Kervrann, C. Optical flow modeling and computation: A survey. 

Comput. Vis. Image Underst. 2015, 134, 1–21. 

[117] Zhang, T. MoWLD: A robust motion image descriptor for violence detection. Multimed. 

Tools Appl. 2017, 76, 1419–1438. 

[118] Cui, X.; Liu, Q.; Gao, M.; Metaxas, D.N. Abnormal detection using interaction energy 

potentials. In Proceedings of the Conference on Computer Vision and Pattern Recognition, 

Colorado Springs, CO, USA, 20–25 June 2011; pp. 3161–3167. 

[119] De Jong, M.; Joss, S.; Schraven, D.; Zhan, C.; Weijnen, M. Sustainable smart resilient 

low carbon eco knowledge cities; making sense of a multitude of concepts promoting 

sustainable urbanization. J. Clean. Prod. 2015, 109, 25–38. 

[120] Juan, I.E.; Juan, M.; Barco, R. A low-complexity vision-based system for real-time traffic 

monitoring. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1279–1288. 

[121] Mohammad, R.; Sami, F. Adaptive vision-based crack detection using 3D scene 

reconstruction for condition assessment of structures. Autom. Constr. 2012, 22, 567–576. 

[122] Bermejo Nievas, E.; Deniz, O.; Bueno, G.; Sukthankar, R. Violence detection in video 

using computer vision techniques. In Proceedings of the International Conference on Computer 

Analysis of Images and Patterns, Seville, Spain, 29–31 August 2011; pp. 332–339. 

[123] Partha Pratim, R.; Mukherjee, M.; Shu, L. Internet of things for disaster management: 

State-of-the-art and prospects. IEEE Access 2017, 5, 18818–18835. 

[124] Bautista-Durán, M.; García-Gómez, J.; Gil-Pita, R.; Mohíno-Herranz, I.; Rosa-Zurera, M. 

Energy-Efficient Acoustic Violence Detector for Smart Cities. Int. J. Computat. Intell. Syst. 

2017, 10, 1298–1305. 

[125] Hadjkacem, B.; Ayedi, W.; Abid, M.; Snoussi, H. A new method of video-surveillance 

data analytics for the security in camera networks. In Proceedings of the IEEE International 

Conference on Internet of Things, Embedded Systems and Communications IINTEC 2017, 

Gafsa, Tunisia, 20–22 October 2017; pp. 140–145. 

[126] Mabrouk, A.B.; Ezzeddine, Z. Abnormal behavior recognition for intelligent video 

surveillance systems: A review. Expert Syst. Appl. 2018, 91, 480–491. 

[127] LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to 

document recognition. Proc. IEEE 1998, 86, 2278–2324. 

[128] Lee, Y.; Tsung, P.; Wu, M. Technology trend of edge AI. In Proceedings of the IEEE 

International Symposium on VLSI Design, Automation and Test, Hsinchu, Taiwan, 16–19 April 

2018; pp. 1–2. 

[129] Saif, S.; Tehseen, S.; Kausar, S. A survey of the techniques for the identification and 

classification of human actions from visual data. Sensors 2018, 18, 3979. 

[130] Nam, J.; Alghoniemy, M.; Tewfik, A. Audio-visual content-based violent scene 

characterization. In Proceedings of the 1998 International Conference on Image Processing, 

Chicago, IL, USA, 7 October 1998; pp. 353–357. 

[131] Clarin, C.; Dionisio, J.; Echavez, M.; Naval, P. DOVE: Detection of movie violence using 

motion intensity analysis on skin and blood. PCSC 2005, 6, 150–156. 

[132] Chen, L.-H.; Su, C.-W.; Hsu, H.-W. Violent scene detection in movies. IJPRAI 2011, 25, 

1161–1172. 

[133] Giannakopoulos, T.; Makris, A.; Kosmopoulos, D.; Perantonis, S.; Theodoridis, S. Audio-

visual fusion for detecting violent scenes in videos. In Proceedings of the Hellenic Conference 

on Artificial Intelligence, Athens, Greece, 4–7 May 2010; pp. 91–100. 

[134] Davis, J.W.; Bobick, A.F. The representation and recognition of human movement using 

temporal templates. In Proceedings of the IEEE Computer Society Conference on Computer 

Vision and Pattern Recognition, San Juan, Puerto Rico, 17–19 June 1997; pp. 928–934. 

BUPT



Bibliography 

 

 

[135] Laptev, I. On space-time interest points. Int. J. Comput. Vis. 2005, 64, 107–123. 

[136] Chen, M.; Hauptmann, A. MoSIFT: Recognizing Human Actions in Surveillance Videos; 

Tech. Rep.; Carnegie Mellon University: Pittsburgh, PA, USA, 2009. 

[137] Lowe, D. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 

2004, 60, 91–110. 

[138] Fei-Fei, L.; Perona, P. A Bayesian hierarchical model for learning natural scene 

categories. In Proceedings of the Conference on Computer Vision and Pattern Recognition 

CVPR, San Diego, CA, USA, 20–26 June 2005; pp. 524–531. 

[139] Peng, X.; Wang, L.; Wang, X.; Qiao, Y. Bag of visual words and fusion methods for action 

recognition: Comprehensive study and good practice. Comput. Vis. Image Underst. 2016, 150, 

109–125. 

[140] Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. 

[141] Andersson, M.; Patino, L.; Burghouts, G.J.; Flizikowski, A.; Murray, E.; Gustafsson, D.; 

Petersson, H.; Schutte, K.; Ferryman, J. Activity recognition and localization on a truck parking 

lot. Adv. Video Signal Based Surveill. 2013, 10, 263–269. 

[142] Zivkovic, Z. Improved adaptive Gaussian mixture model for background subtraction. In 

Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 26 

August 2004; Volume 2, pp. 28–31. 

[143] Blackman, S.; Popoli, R. Design and Analysis of Modern Tracking Systems; Artech 

House: Boston, MA, USA, 1999. 

[144] Wang, H.; Klaser, A.; Schmid, C.; Liu, C.-L. Action recognition by dense trajectories. In 

Proceedings of the Conference on Computer Vision and Pattern Recognition, Colorado Springs, 

CO, USA, 20–25 June 2011; pp. 3169–3176. 

[145] Wang, H.; Kläser, A.; Schmid, C.; Liu, C.-L. Dense trajectories and motion boundary 

descriptors for action recognition. Int. J. Comput. Vis. 2013, 103, 60–79. 

[146] Rota, P.; Conci, N.; Sebe, N.; Rehg, J.M. Real-life violent social interaction detection; a 

new benchmark. In Proceedings of the International Conference on Image Processing, Quebec 

City, QC, Canada, 27–30 September 2015. 

[147] Farneback, G. Fast and accurate motion estimation using orientation tensors and 

parametric motion models. In Proceedings of the International Conference on Pattern 

Recognition, Barcelona, Spain, 3–7 September 2000; Volume 1, pp. 135–139. 

[148] Hassner, T.; Itcher, Y.; Kliper-Gross, O. Violent flows: Real-time detection of violent 

crowd behavior. In Proceedings of the Conference on Computer Vision and Pattern Recognition 

Workshops, Providence, RI, USA, 16–21 June 2012; pp. 1–6. 

[149] Gao, Y.; Liu, H.; Sun, X.; Wang, C.; Liu, Y. Violence detection using Oriented Violent 

Flows. Image Vis. Comput. 2016, 48, 37–41. 

[150] Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.; Brox, T. Flownet 2.0: Evolution 

of optical flow estimation with deep networks. In Proceedings of the Conference on Computer 

Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; Volume 2, pp. 1–6. 

[151] Hui, T.-W.; Tang, X.; Loy, C.-C. LiteFlowNet: A Lightweight Convolutional Neural Network 

for Optical Flow Estimation. In Proceedings of the Conference on Computer Vision and Pattern 

Recognition, Salt Lake City, UT, USA, 18–22 March 2018; pp. 8981–8989. 

[152] Taylor, G.W.; Fergus, R.; LeCun, Y.; Bregler, C. Convolutional learning of spatio-temporal 

features. In Proceedings of the European Conference on Computer Vision, Heraklion, Greece, 

5–11 September 2010; pp. 140–153. 

[153] Donahue, J.; Hendricks, L.A.; Guadarrama, S.; Rohrbach, M.; Venugopalan, S.; Saenko, 

K.; Darrell, T. Long-term recurrent convolutional networks for visual recognition and 

description. In Proceedings of the Conference on Computer Vision and Pattern Recognition, 

Boston, MA, USA, 7–12 June 2015; pp. 2625–2634. 

BUPT



Bibliography 

 

[154] Wang, L.; Xiong, Y.; Wang, Z.; Qiao, Y.; Lin, D.; Tang, X.; Van Gool, L. Temporal 

segment networks: Towards good practices for deep action recognition. In Proceedings of the 

European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; 

pp. 20–36. 

[155] Herath, S.; Harandi, M.; Porikli, F. Going deeper into action recognition: A survey. Image 

Vis. Comput. 2017, 60, 4–21. 

[156] Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Li, F. Large-scale video 

classification with convolutional neural networks. In Proceedings of the Conference on 

Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1725–

1732. 

[157] Baccouche, M.; Mamalet, F.; Wolf, C.; Garcia, C.; Baskurt, A. Sequential deep learning 

for human action recognition. In Proceedings of the International Workshop on Human 

Behavior Understanding, Amsterdam, The Netherlands, 16 November 2011; pp. 29–39. 

[158] Xu, D.; Ricci, E.; Yan, Y.; Song, J.; Sebe, N. Learning Deep Representations of 

Appearance and Motion for Anomalous Event Detection. arXiv 2015. arXiv:1510.01553. 

[159] Dai, Q.; Zhao, R.W.; Wu, Z.; Wang, X.; Gu, Z.; Wu, W.; Jiang, Y.G. Detecting Violent 

Scenes and Affective Impact in Movies with Deep Learning. In Proceedings of the MediaEval 

2015 Workshop, Wurzen, Germany, 14–15 September 2015. 

[160] Sudhakaran, S.; Lanz, O. Learning to Detect Violent Videos using Convolutional Long 

Short-Term Memory. In Proceedings of the IEEE International Conference on Advanced Video 

and Signal Based Surveillance, Lecce, Italy, 29 August–1 September 2017. 

[161] Zhou, P.; Ding, Q.; Luo, H.; Hou, X. Violent Interaction Detection in Video Based on 

Deep Learning. J. Phys. Conf. Ser. 2017, 844, 012044. 

[162] Kuehne, H.; Jhuang, H.; Stiefelhagen, R.; Serre, T. Hmdb51, a large video database for 

human motion recognition. High Perform. Comput. Sci. Eng. 2013, 12, 571–582. 

[163] Zhang, T.; Yang, Z.; Jia, W.; Yang, B.; Yang, J.; He, X. A new method for violence 

detection in surveillance scenes. Multimed. Tools Appl. 2016, 75, 7327–7349. 

BUPT


		2021-11-05T10:28:35+0200
	Computerul meu
	DORIN LELEA
	Atest integritatea acestui document




