Universitatea "**Politehnica**" din Timişoara Facultatea de **Mecanică**

CERCETĂRI TEORETICE ȘI EXPERIMENTALE PRIVIND TEHNOLOGIA DE PRELUCRARE PRIN EXPANDARE A TABLELOR SUBȚIRI

UNIV. "POLITEHNICA" TIMIȘOARA BIBLIOTECA GENTRALĂ Nr. Volume UTJ. 10 369 Dulap

Coordonator științific: Prof. dr. ing. Ion **SPOREA**

> Doctorand: Dipl. ing. ec. Laurențiu **JITARU**

2006

Cuprins

Introducere 4
Capitolul I – Considerațiuni generale legate de tabla expandată. Stadiul
actual 7
1.1 Tabla expandată, utilizări, materiale 7
1.1.1 Utilizări ale tablelor expandate11
1.1.2 Materiale utilizate în procesul de expandare 17
1.2 Realizarea tablei expandate 19
1.3 Concluzii
Capitolul II – Analiza procesului de expandare
2.1 Caracterul complex al expandării 32
2.1.1 Procesul de crestare
2.1.2 Procesul de îndoire
2.1.3 Procesul de alungire
2.2 Tensiuni, deformații și forțe ale deformărilor componente și a
rezultantei acestora 43
2.2.1 Starea de tensiune – deformare din procesul de
expandare 43
2.2.1.1 Starea de tensiune – deformare la crestare 43
2.2.1.2 Starea de tensiune – deformare la îndoire și
alungire 47
2.2.2 Determinarea forței de tăiere în procesul de expandare
2.2.3 Determinarea lucrului mecanic în procesul de expandare 63
2.3 Determinarea puterii în procesul de expandare
2.4 Concluzii
Capitolul III – Caracteristicile tehnice și tehnologice ale tablei
expandate
3.1 Rețeaua de crestături 72
3.1.1 Rețeaua de crestături – descriere matricială
3.1.2 Rețeaua de crestături – descrierea geometrică
3.2 Forma golului
3.2.1 Caracteristicile constructive ale cuțitului
3.3 Geometria golului 102
3.4. Limitele tehnologice ale expandării 106
3.5 Gradul de expandare 110
3.5.1 Nomograma gradului de expandare

3.6 Caracteristicile de rezistență ale tablei expandate	129				
3.6.1 Elementele de calcul teoretic pentru încovoierea plăcilor					
plane circulare încastrate pe contur și încărcate pe contur și					
încărcate cu o sarcină concentrată în centru	129				
3.7 Concluzii	131				
Capitolul IV – Cercetări experimentale	135				
4.1 Considerații generale	135				
4.2 Determinări ale forțelor din proces	135				
4.3 Cercetări privind rezistența tablei expandate încastrată pe contur					
circular și încărcată cu o sarcină concentrată în centru	152				
4.4 Cercetări privind rezistența firelor de tablă expandată încastrate					
la capete	158				
4.5 Bazele matematice ale studiului rezistenței plăcilor de tablă					
expandată	161				
4.6 Cercetări ale deformațiilor și tensiunilor din timpul procesului					
de expandare	164				
4.6.1 Echipamente și metodologie utilizate	164				
4.6.2 Studiul cu element finit ale deformațiilor și tensiunilor	172				
4.6.3 Variația deformațiilor	174				
4.6.4 Variația tensiunilor	177				
4.6.5 Determinarea revenirii elastice	180				
4.7 Cercetări ale tensiunilor și deformațiilor din tabla expandată în					
diverse cazuri ale rezemării sau încastrării acesteia	181				
4.8 Reprezentarea prin curbe Bézier a rezultatelor experimentale	209				
4.9 Concluzii					
Capitolul V – Concluzii și contribuții personale	220				
5.1 Concluzii	220				
5.2 Contribuții personale	230				
Bibliografie	233				
Anexe	239				

Introducere

Lucrarea de față, după cum se spune și în titlul "Cercetări teoretice și experimentale privind tehnologia de prelucrare prin expandare a tablelor subțiri", este un studiu teoretic și experimental privind tehnologia de prelucrare prin expandare a tablelor.

Expandarea reprezintă procesul tehnologic prin care se creează goluri în tabla plană. Prin aplicarea acestui proces foilor de tablă laminată, se obține tabla expandată, care face parte din categoria plăcilor. Acestea se deosebesc de plăcile plane continue prin faptul că suprafața lor este mărită prin crearea unei rețele uniforme de găuri, fără pierderi de material.

Tabla expandată are profil de grătar, rezultat în urma unor crestări combinate cu îndoirea și întinderea materialului semifabricatului.

Tabla supusă procesului de expandare suferă, în consecință, modificări ale formei, respectiv ale pozițiilor diferitelor puncte din interiorul acesteia, față de pozițiile avute înainte de expandare.

Tabla metalică expandată se utilizează sub două forme: standard și aplatizată. Ea are o plajă mare de utilizare putând fi folosită la realizarea unor componente constructive metalice, cărora li se impun, sau, nu li se impun condiții de rezistență în funcționare, utilizate în domeniul industrial sau casnic.

În societatea de astăzi, datorită necesității reducerii consumului de materiale utilizate la realizarea produsului, a scăderii cantității de resurse naturale (minereuri feroase și neferoase), datorită exploatării cu costuri ridicate a zăcămintelor sărace în conținut de minerale, s-a încercat să se realizeze semifabricate ce au caracteristici și proprietăți asemănătoare sau mai performante, cu costuri de fabricație mai reduse.

În cazul tablelor expandate, tehnologia de obținere a acestora, în comparație cu tabla plană neexpandată, necesită o operație de prelucrare în plus, deoarece materia primă a tablelor expandate este tabla plană neexpandată.

Făcându-se comparație, din punctul de vedere almasei. între tabla plană neexpandată și ceaexpandată, se constată că cea de-a doua are o greutate mult mai mică în comparație cu prima, la o aceeași suprafață a acestora.

La diverse construcții metalice, care prezintă necesitatea unui design deosebit, precum și reducerea greutății acestora, este indicată utilizarea tablelor expandate.

4

În cazul utilizării tablelor perforate la realizarea unor construcții metalice, cantitatea de material utilizată este mai mare în comparație cu cantitatea de material a tablei expandate utilizate la realizarea aceleiași construcții.

Tabla expandată asigură un raport mare între rezistență și greutate fiind des utilizată la protecția mașinilor și oamenilor datorită structurii sale fără aglomerări de material într-un singur loc. Ea poate fi ușor debitată în forme neregulate și instalată rapid prin sudare sau cu ajutorul cuielor.

Datorită multiplelor avantaje, pe care le prezintă tabla expandată, firmele producătoare de acest tip de tablă, în prospectele lor, alături de dimensiunile ochiurilor din tabla expandată, prezintă și aria deschiderii (aria golurilor) în procente.

Analizând informația care se găsește în publicațiile de specialitate (citate în bibliografie), cât și cea publicată pe internet, se remarcă lipsa totală a datelor care să definească caracteristicile de rezistență mecanică a tablelor expandate. Asemenea date sunt absolut necesare în cazurile în care tabla expandată va fi utilizată la fabricarea unor produse cărora li se impun și condiții de rezistență. Acesta este unul din motivele principale pentru care s-a ales această temă.

Alte motive principale sunt acelea: de a defini și determina o relație de calcul pentru raportul dintre aria tablei expandate și aria semifabricatului; de a determina relațiile de calcul ale forțelor din procesul de expandare; de a stabili limitele tehnologice ale procesului de expandare; realizarea unei descrieri a rețelelor de crestături etc.

Teza de doctorat este structurată pe 5 capitole.

Cap. 1 intitulat "Considerațiuni generale legate de tabla expandată. Stadiul actual", tratează tabla expandată în general, utilizările acesteia, materialele din care sunt realizate tablele expandate precum și realizarea tablei expandate.

Cap. 2 este consacrat pentru "Analiza procesului de expandare" fiind analizate: caracterul complex al expandării, tensiuni, deformații și forțe ale deformărilor componente și a rezultantei acestora.

Cap. 3 analizează "Caracteristicile tehnice și tehnologice ale tablei expandate", prin rețeaua de crestături, forma golului, geometria golului, limitele tehnologice și gradul de expandare.

Cap. 4 tratează "Cercetări experimentale", prin determinări ale forțelor din proces, cercetări privind rezistența tablei expandate încastrată pe contur circular și încărcată cu o sarcină concentrată în centru, rezistența firelor de tablă expandată încastrată la capete, bazele matematice ale studiului rezistenței plăcilor de tablă expandată, cercetări ale tensiunilor și deformațiilor din timpul procesului de expandare, cercetări ale tensiunilor și deformațiilor din tabla expandată în diverse cazuri ale rezemării sau încastrării acesteia și reprezentarea prin curbe Bézier a rezultatelor experimentale. **Cap. 5** "Concluzii și contribuții personale", în cadrul căreia au fost adunate toate concluziile și contribuțiile personale.

Teza mai cuprinde partea de anexe, în care sunt prezentate utilizări ale tablelor expandate, tabele cu dimensiuni ale tablelor expandate, poze ale mașinilor de expandat, program de determinare a polinomului de interpolare a coeficientului de poziție a fibrei neutre K și program de generare a pânzelor grafice ale gradului de expandare, în programul utilitar MathCad.

În finalul acestei scurte introduceri doresc să mulțumesc regretatului prof. dr. ing. Ștefan Rosinger, precum și domnului prof. dr. ing. Ion Sporea, pentru competența și profesionalismul cu care au coordonat stagiul meu de doctorat și pentru ajutorul oferit în elaborarea prezentei teze de doctorat.

Aduc mulțumiri domnișoarei prof. univ. dr. Gabriela Cristescu pentru ajutorul oferit în elaborarea problemelor matematice din cadrul acestei teze.

Doresc să mulțumesc colectivului catedrelor din Facultatea de Mecanică, din cadrul Universitatea "Politehnica" din Timișoara, în care miam desfășurat stagiul de pregătire doctoral, colectivului catedrei A.A.M.R. din cadrul Facultății de Inginerie a Universitatea "Aurel Vlaicu" din Arad pentru sprijinul și ajutorul acordat, conducerii S.C. SIMEROM S.A. Sibiu, în deosebi domnului dipl. ing. I. Munteanu - șef serviciu proiectare, pentru ajutorul acordat în vederea documentării privind realizarea tablei expandate, doamnei prof. dr. M. Mihoc de la Universitatea "Babeș – Bolyai" din Cluj, pentru sprijinul acordat la realizarea nomogramei gradului de expandare, conducerii S.C. FERONERIA S.A. Arad, în deosebi domnului dr. ing. Radu Dragomir – director adjunct, pentru ajutorul acordat în vederea realizării instalațiilor și sculelor utilizate la determinările experimentale.

Aduc mulțumiri domnului prof. dr. ing. Ion Copaci - șef catedră, catedra A.A.M.R., prin punerea la dispoziție a unor elemente de măsură cu ajutorul cărora am realizat determinările experimentale, precum și pentru ajutorul acordat la realizarea unor măsurători.

Mulțumesc, nu în ultimul rând, familiei care mi-a fost aproape și m-a sprijinit tot timpul cât am elaborat această teză, și în mod aparte doresc să le mulțumesc regretaților mei părinți fără de care nu aș fi ajuns astăzi aici, care m-au îndrumat, sprijinit și ajutat să urmez forma de învățământ doctorală.

Capitolul I

Considerațiuni generale legate de tabla expandată. Stadiul actual

1.1 Tabla expandată, utilizări, materiale

Expandarea reprezintă procesul tehnologic prin care se creează goluri în tabla plană. Prin aplicarea acestui proces foilor de tablă laminată, se obține tabla expandată, care face parte din categoria plăcilor.

Acestea se deosebesc de plăcile plane continue prin faptul că suprafața lor este mărită prin crearea unei rețele uniforme de găuri, fără pierderi de material.

Tabla expandată are profil de grătar, rezultat în urma unor crestări combinate cu îndoirea și întinderea materialului semifabricatului.

Tabla supusă procesului de expandare suferă, în consecință, modificări ale formei, respectiv ale pozițiilor diferitelor puncte din interiorul acesteia, față de pozițiile avute înainte de expandare.

Tabla expandată se utilizează sub două forme: standard, prezentată în fig. 1.1 și aplatizată, prezentată în fig. 1.2;

Fig. 1.1 Tabla expandată standard

Fig. 1.2 Tabla expandată aplatizată

În fig. 1.3 se prezintă diferite variante constructive ale golurilor realizate în tabla expandată standard [40].

Fig. 1.3 Diferite variante constructive ale golurilor realizate în tabla expandată standard

Forma cea mai frecvent întâlnită de tablă expandată este cea din fig. 1.3 a, b, pentru care, în fig. 1.4 [90] și în tab. 1.1 centralizator, precum și în tabelele din Anexa 1, sunt prezentate principalele dimensiuni constructive ale golului, cu precizări legate de produsele unora dintre firmele cele mai renumite în fabricația tablelor expandate.

Fig. 1.4 Principalele dimensiuni constructive ale golului

é
C.
P .
ţ.
S
5
Ũ
e
E
Z
Ť
·15
e la
Ĩ
e
at
Ë
ţ
Ľ
fe
<u> </u>
in
þ
e,
Ť
ă
ล
ц,
6
•
Ĭ
ţ
e
a
e
ic.
st
1
e
อ
2 2
a
Ú
l.
Ë
le
.n
Õ
-
q
<u>5</u>

Dimensiuni								i a				t + ut with	
Material	inch	um	inch	mm	inch	mm	inch	mm	inch	mm	inch	mm	[%]
Oțel	0,5	12,7	1,2	30,48	0,438	11,125	0,938	23,825	0,048	1,219	0,082	2,082	72-78
carbon	0,5	12,7	1,2	30,48	0,375	9,525	0,938	23,825	0,06	1,524	0,087	2,209	61-65
standard	0,5	12,7	1,2	30,48	0,312	7,924	0,938	23,825	0,09	2,286	0,096	2,438	52-58
Otel	0,5	12,7	1,25	31,75	0,313	7,950	1	25,4	0,04	1,016	0,097	2,463	53-57
carbon	0,5	12,7	1,25	31,75	0,313	7,950	1	25,4	0,05	1,27	0,096	2,438	53-57
aplatizat	0,5	12,7	1,25	31,75	0,375	9,525	1	25,4	0,07	1,778	0,11	2,797	50-56
Aluminiu	0,5	12,7	1,25	31,75	0,375	9,525	0,937	23,8	0,051	1,295	0,093	2,362	65
standard	0,5	12,7	1,25	31,75	0,375	9,525	0,937	23,8	0,081	2,057	0,096	2,438	60
Aluminiu	0,5	12,7	1,27	32,258	0,312	7,924	1	25,4	0,04	1,016	0,104	2,641	61
aplatizată	0,5	12,7	1,27	32,259	0,312	7,924	1	25,4	0,06	1,524	0,105	2,667	58
Tablă	0,5	12,7	1,2	30,48	0,438	11,125	0,938	23,85	0,036	0,914	0,072	1,828	80
galvanizată	0,5	12,7	1,2	30,48	0,438	11,125	0,938	23,85	0,048	1,219	0,088	2,235	72
standard	0,5	12,7	1,2	30,48	0,438	11,125	0,938	23,85	0,06	1,524	0,087	2,209	65
	0,5	12,7	1,25	31,75	0,375	9,525	1	25,4	0,029	0,736	0,079	2,006	65
I aDIA colmonizotă	0,5	12,7	1,25	31,75	0,312	7,924	1	25,4	0,039	0,990	0,097	2,463	60
galvaliizala anlatizată	0,5	12,7	1,25	31,75	0,312	7,924	1	25,4	0,05	1,27	0,096	2,438	63
apiauzata	0,5	12,7	1,25	31,75	0,265	6,731	1	25,4	0,078	1,981	0,107	2,717	52
	0,5	12,7	1,2	30,48	0,43	10,922	0,94	23,876	0,05	1,27	0,087	2,209	77
Inox standard	0,5	12,7	1,2	30,48	0,43	10,922	0,94	23,876	0,062	1,574	0,087	2,209	70
	0,5	12,7	1,2	30,48	0,31	7,874	0,88	22,352	0,093	2,362	0,12	3,048	58
بر مربع ا	0,5	12,7	1,25	31,75	0,31	7,874	1	25,4	0,04	1,016	0,093	2,362	68
anlatizată	0,5	12,7	1,25	31,75	0,31	7,874	1	25,4	0,05	1,27	0,093	2,362	60
apianzara	0,5	12,7	1,25	31,75	0,25	6,35	-	25,4	0,08	2,032	0,132	3,352	56

9

Analizînd datele din tabelele de mai sus și cele din Anexa 1, se desprind următoarele concluzii:

- datele tehnice, care sunt precizate spre caracterizarea tablelor expandate, cuprind exclusiv:

- precizarea materialului tablei expandate;

- parametrii geometrici definitorii pentru golul rezultat prin expandare;

- aria procentuală a deschiderii, adică a golurilor rezultate, în raport cu aria totală a tablei expandate;

- se remarcă lipsa totală a datelor care să definească caracteristicile de rezistență mecanică a tablelor expandate. Asemenea date sunt absolut necesare în cazurile în care tabla expandată va fi utilizată la fabricarea unor produse cărora li se impun condiții de rezistență, adică care vor fi supuse în exploatare unor solicitări mecanice considerabile;

- aria deschiderii variază în funcție de dimensiunile A, B, C, D și F prezentate în fig. 1.4 și mai ales de materialul utilizat așa cum rezultă din datele prezentate în tab. 1.1;

- în cazul tablelor expandate aplatizate aria deschiderii este mai mică cu 10 - 20%, decât în cazul tablelor expandate standard;

- aria deschiderii pentru aceleași dimensiuni este mai mare în cazul tablelor expandate standard din tablă galvanizată și tablă inox decât în cazul tablelor expandate din oțel carbon și din aluminiu;

- se observă creșterea dimensiunilor B și D în cazul tablei expandate aplatizate, comparativ cu tabla expandată standard.

1.1.1 Utilizări ale tablelor expandate

Tabla expandată are o plajă mare de utilizare putând fi folosită la realizarea unor componente constructive metalice, cărora li se impun, sau, nu li se impun condiții de rezistență în funcționare.

Fig. 1.5 Domeniile de utilizare a tablelor expandate

1⁰ Tablă expandată utilizată la fabricația de elemente cărora li se impun condiții de rezistență:

a. – acestea pot fi elemente de susținere și antiderapante, spre exemplu: treptele de la vagon fig. 1. 6, scări metalice [94] fig. 1. 7, cât și cele prezentate în Anexa 2: paliere fig. A 2.1, pasarele [79] fig. A 2.2, capace la scurgere [94] fig. A 2.3, platforma frânarului de la vagoane fig. A 2.4, cărucior [81] fig. A 2.5, container [82] fig. A 2.6, nivelator în agricultură [78] fig. A 2.7, armătură la peretele de acumulator [76] fig. A 2.8 etc;

Fig. 1.6 Treptele de vagon

Billion Billio

Fig. 1.7 Scări metalice

b. - element de curățire, spre exemplu ștergătoarea de picioare [87] fig. 1.8;

Fig. 1.8 Ștergătoare de picioare

c. - element elastic (tub elastic utilizat în medicină la înlocuirea unor părți ale tubului digestiv [61], [30], [33], fig. 1.9);

b. Fig. 1.9 Tub elastic utilizat în medicină

2⁰ Tablă expandată utilizată la fabricarea de elemente constructive cărora nu li se impun condiții de rezistență în exploatare:

a. – acestea pot fi elemente de dozare, care determină limitarea debitului de fluid ce trece prin orificiile create în urma expandării [69] fig. 1.10;

Fig. 1.10 Elemente de dozare

b. - elemente de direcționare a fluidului la trecerea acestuia prin tabla expandată, direcționare care este în funcție de unghiul sub care este realizată înclinarea îndoirii;

c. - elemente de aerisire, spre exemplu, panouri de aerisire [85] fig. 1.11;

Fig. 1. 11 Panouri de aerisire

d. - elemente ornamentale, spre exemplu, panou balustradă [56] fig. 1.12, panou – element de separație [93] fig. 1.13, cât

și cele prezentate în Anexa 3, tavane false [80] fig. A 3.1, colțuri pentru tencuieli [71] fig. A 3.2, cutie de parfum fig. A 3.4, coșuri de gunoi [63], [65] fig. A 3.5, bancă din tablă expandată aplatizată [70] fig. A 3.6, scaun din tablă expandată aplatizată [56] fig. A 3.7, masă cu scaune din tablă expandată aplatizată [56] fig. 1.14;

Fig. 1. 12 Panou balustradă

Fig. 1. 13 Panou – element de separație

Fig. 1.14 Masă cu scaune din tablă expandată aplatizată

e. - elemente de siguranță și protecție, spre exemplu, carcasa pentru ventilator fig. 1.15, apărătoare la ventilatorul autovehiculelor fig. 1. 16, cât și cele prezentate în Anexa 4, apărătoare la instalația de gaze [75] fig. A 4.1, apărătoare la mașina unealtă [54] fig. A 4.2, magazie pentru scule [66] fig. A 4.3, panou pentru şemineu fig. A 4.4, grilaj la geam fig. A 4.5;

Fig. 1.15 Carcasa pentru ventilator Fig. 1.16 Apărătoare la ventilatorul autovehiculelor

1.1.2 Materiale utilizate în procesul de expandare

Materialele utilizate în procesul de expandare prezintă o importanță deosebită pentru asigurarea calității produselor finite.

Se utilizează, ca semifabricate, table sau benzi din materiale metalice feroase sau neferoase, cu proprietăți mecanice și tehnologice favorabile prelucrării la rece. Benzile prezintă avantajul de a se preta mai ușor la operațiile de mecanizare și automatizare a procesului de expandare.

Caracteristicile, care influențează hotărâtor prelucrabilitatea prin expandare a tablelor și benzilor metalice, sunt rezistența și alungirea relativă la rupere.

Alegerea materialului pentru tabla expandată este funcție de condițiile tehnice impuse acesteia cum sunt: rezistență mecanică, proprietăți tehnologice, proprietăți termice, proprietăți anticorozive, cît și de aspectul comercial impus pentru produsul ce urmează a fi fabricat.

Materialul semifabricatului, din care se execută tabla expandată, trebuie să fie un material cu bune proprietăți de plasticitate, cu alungire relativă mare, spre a permite realizarea unor grade de deformare plastică superioară, fără a se produce fisurarea, respectiv ruperea materialului [28].

În tab. 1.2 sunt prezentate principalele caracteristici mecanice ale unor materiale metalice, care influențează prelucrabilitatea lor prin expandare, iar în fig. 1.17 sunt prezentate schematic principalele materiale utilizate în procesul de expandare.

Denumirea materialului	Vetce	Rezistanță e a super Statenza	Rezistentata e - Johnesent Gainhard a	
Tablă subțire din oțel carbon obișnuit	OL 32	32 - 40	28 - 34	28
	OL 34	34 - 42	29 - 36	26
	OL 37	38 - 47	33 - 40	21
Bandă de oțel	OLC 15	32 - 50	28 - 43	22
calitate	OLC 20	32 - 55	28 – 47	20
Alamă	Am 58	35	30	25
	Am 63	30	26	35
Cupru	Cu 5, Cu 9	21	18	30
Aluminiu	Al 99; Al 99,5	7 – 8	7	20 - 30
Duraluminiu		34 - 38	27 - 30	15
Alpaca		30	26	30

Tab. 1.2 Principalele caracteristici mecanice ale materialelor metalice

3697 UNIV. "POLITEHNICA" 3697 DIDUNC

BUPT

18

În cazul oțelurilor, prelucrabilitatea prin deformare plastică depinde de cantitatea și starea în care se găsește carbonul, de mărimea și forma grăunților cristalini. Structura cea mai favorabilă a oțelului, este structura monofazică (ferită sau austenită) sau structura formată din ferită și perlită globulară fin dispersată [7].

1.2 Realizarea tablei expandate

Tabla expandată se realizează în mod progresiv, prin prelucrarea succesivă a unei fâșii înguste de lățime constantă, fâșii care au poziție transversală în raport cu direcția de avans a semifabricatului tablei laminate supuse prelucrării. Fâșiile învecinate vor constitui, egal distanțate între ele, un anumit număr de celule de expandare, celule ce dispun de câte un gol de formă definită.

Procesul de expandare, de realizare a golului, se realizează pe o mașină specială, care execută mișcările necesare pentru obținerea tablei expandate. Expandarea se realizează prin intermediul sculei (cuțit superior) cu care este echipată această mașină.

Marile firme producătoare de tablă expandată prezintă pe internet mașini de expandat, cum ar fi: SIMEROM S.A. SIBIU fig. 1.18 [40], BERGANDI [72] fig. A 5.1, EMCi [82] fig. A 5.2, WALLNER TOOLING ESPAC, INC. [83] fig. A 5.3, ALLTRA [56] fig. A 5.4, MANEKLALEXPORTS.COM [85] fig. A 5.5, ANHUA HARDWARE & MESH PRODUCT Co., Ltd. [73] fig. A 5.6 etc.

a.

Fig. 1.18 Maşina de expandat a firmei SIMEROM S.A. SIBIU

Pentru a prezenta modul de realizare a tablei expandate s-a folosit documentația mașinii de expandat produsă de firma SIMEROM S.A. SIBIU [40].

După cum am mai prezentat, tabla expandată se realizează în urma unor succesiuni de mișcări, pe care le execută mașina de expandat. Aceste mișcări sunt realizate de către dispozitive mecanice și electrice grupate în schema funcțională prezentată în fig. 1.19. Dispozitivele au funcționarea conform ciclogramelor prezentate în fig. 1.20 a și fig. 1.20 b.

Fig. 1. 19 Schema funcțională a mașinii de expandat produsă de firma SIMEROM S.A. SIBIU

BUPT

Se observă, în fig. 1.19, că cele trei came acționează asupra unor distribuitoare mecanice, care realizează distribuirea alternativă a uleiului sub presiune în camerele cilindrilor hidraulici, cu ajutorul cărora se realizează avansul și fixarea semifabricatului precum și mișcarea alternativă a cuțitului superior (cuțitul mobil) în berbecul mașini de expandat, după ciclogramele din fig. 1.20 a și b.

Camele sunt montate pe același arbore, care este antrenat prin intermediul unui lanț, fig. 1.21, ce face corelarea între mișcarea de rotație a arborelui cu came și arborele volantului, de care este legat berbecul mașinii de expandat.

Fig. 1.21 Arborele cu came al maşinii de expandat a firmei SIMEROM S.A.

Elementele din fig. 1.21 sunt:

- 1 came;
- 2 distribuitoare;
- 3 lanț.

Succesiunea mişcărilor pe care le execută maşina de expandat asupra sculei și semifabricatului supus prelucrării, în timpul procesului de relizare a tablei expandate are următoarea ordine: 1^{0} - Mișcarea de avans a semifabricatului - mișcarea care realizează distanța dintre rândurile de crestături. Avansul semifabricatului se face prin intermediul dispozitivului de avans, prezentat în fig. 1.22 și fig. 1.23.

Fig. 1. 22 Dispozitivul de avans al maşinii de expandat produsă de către firma SIMEROM S.A. SIBIU

Fig. 1. 23 Schița dispozitivului de avans a mașinii de expandat produsă de către firma SIMEROM S.A. SIBIU

Părțile componente ale acestui mecanism de avans sunt:

- 1 unitate centrală;
- 2 piuliță de reglare a cursei unității centrale;
- 3 contrapiuliță de blocare;
- 4 suport lateral stânga;
- 5 suport lateral dreapta;
- 6 ghidaj lateral pentru tablă dreapta;
- 7 ghidaj lateral pentru tablă stânga;
- 8 elemente rigide de formă tubulară cu rol de ghidare;
- 9 suport cu clește stânga;
- 10 suport cu clește dreapta;
- 11 tijă filetată pentru fixarea semifabricatului între ghidaje.

 2^0 - Fixarea semifabricatului se realizează cu ajutorul cilindrilor hidraulici din blocul de strîngere tablă, prezentat în schema hidraulică din fig. 1.19, după ciclograma din fig. 1.20 a, în funcție de unghiul de rotație al arborelui volantului, de care este legată traversa mobilă (berbecul mașinii de expandat). Perioada de fixare a tablei este atâta timp cât arborele volantului execută o rotație de 200 de grade.

 3^0 - Coborârea berbecului, mişcare imprimată și părții mobile a sculei (cuțit superior), se realizează după ciclograma traversei mobile din fig. 1.20 a, în funcție de unghiul de rotație al arborelui volantului.

 4^0 - Oprirea berbecului în punctul mort inferior al cursei, se realizează atunci când punctul de legătură de pe volant cu berbecul mașini de expandat atinge punctul inferior din mișcarea de rotație a acestuia. Punctul inferior, conform ciclogramei traversei mobile din fig. 1.20 a, este la un unghi de rotație al arborelui volantului de 180 grade, repetânduse din 360 în 360 de grade.

 5^{0} - Ridicarea berbecului este o mișcare imprimată și cuțitului superior, care se realizează tot după ciclograma traversei mobile din fig. 1.20 a.

 6^{0} - Oprirea berbecului în punctul mort superior al cursei, se realizează atunci când punctul de legătură de pe volant cu berbecul mașinii de expandat atinge punctul superior din mișcarea de rotație a acestuia. Punctul superior, conform ciclogramei traversei mobile din fig. 1.20 a, este la un unghi de rotație al arborelui volantului de 0 grade, repetându-se din 360 în 360 de grade.

 7^{0} - Defixarea semifabricatului este operația inversă fixării. Aceasta se realizează din același bloc de comandă și în aceleași condiții ca și fixarea, după aceeași ciclogramă din fig. 1.20 a, în funcție de unghiul de rotație al arborelui volantului, de care este legată traversa mobilă (berbecul mașinii de expandat). Perioada în care semifabricatul este liber, atât timp cât arborele volantului execută o mișcare de rotație între 280 și 80 de grade, adică rotație de 160 de grade.

 8° - Mișcarea alternativă în plan transversal a cuțitului superior, pentru realizarea decalajului dintre goluri, se realizează cu ajutorul unui cilindru hidraulic cu piston.

Scula este constituită dintr-o pereche de cuțite cu muchii tăietoare asociate între ele.

De berbecul mașinii de expandat se fixează cuțitul superior, ce are o formă profilată conform fig. 1.24, și constituie elementul activ mobil al sculei, iar pe batiul mașinii de expandat se află montat cuțitul inferior ce are forma din fig. 1.25, acesta fiind elementul activ fix al sculei.

Fig. 1. 27 Forma cuțitului inferior

Pentru realizarea tablei expandate se așează semifabricatul (tabla sau banda) pe masa mașinii, între ghidaje. Semifabricatul se deplasează până când intră între cuțitele mașinii, după care se fixează cu ajutorul unei traverse acționată de cilindri hidraulici.

Mișcarea berbecului se realizează pe verticală, ciclul complect al mișcărilor acestuia fiind compus din:

- cursa activă de coborâre, care cuprinde;

- o fază de apropiere față de semifabricat;

- o fază de deformare a semifabricatului;

- cursa de întoarcere, de ridicare.

La coborârea berbecului mașinii, cuțitele acționează transversal asupra semifabricatului.

După terminarea fazei de deformare a cursei active (punctul mort inferior), berbecul execută cursa de întoarcere până în punctul mort superior. În această perioadă se realizează defixarea semifabricatului și i se imprimă acestuia mișcarea de avans longitudinal pe o distanță egală cu distanța dintre două rânduri succesive de crestări.

După ce s-a terminat avansul longitudinal al semifabricatului, acesta se fixează din nou și se execută deplasarea transversală a cuțitului superior pe o distanță egală cu jumătatea lungimii crestăturii plus jumătatea distanței dintre două crestături alăturate ale tablei expandate.

Succesiunea mişcărilor cuțitului superior este corespunzătoare unor cicluri complete, prezentate grafic în fig. 1.26 [40].

CICLUL i

Apropiere cuțitului superior de semifabricat

Pătrunderea cuțitului superior în semifabricat

Fig. 1.26 Succesiunea mișcărilor cuțitului superior

Realizarea tablei expandate aplatizate este identică cu cea a tablei expandate standard, în plus acesteia i se aplică aplatizarea deformațiilor create în tabla expandată standard, cu ajutorul unui dispozitiv de aplatizare (laminor) ca cel al firmei ANHUA HARDWARE & MESH PRODUCT Co. Ltd. [77], prezentat în fig. 1.27.

Fig. 1.27 Dispozitiv de aplatizare produs de firma ANHUA HARDWARE & MESH PRODUCT Co. Ltd.

1. Tabla expandată este acea tablă a cărei suprafață este mărită prin crearea unei rețele uniforme de găuri fără pierdere de material. Ea făcând parte din categoria plăcilor.

2. Produsele fabricate prin tehnologia de expandare au o pondere însemnată în industrie precum și în domeniul casnic, utilizându-se în funcție de destinație materiale diferite. Toate materialele au însă comun forma geometrică de table (plăci) sau benzi subțiri.

3. Între produsele realizate prin expandare cea mai largă utilizare o au cele fabricate din materiale metalice. Natura materialelor metalice folosite este determinată de scopul și locul utilizării, ele putând fi materiale feroase (oțeluri carbon și oțeluri aliate) și neferoase (aluminiul, cuprul și aliajele acestora) cu proprietăți mecanice și tehnologice favorabile prelucrării la rece.

4. Indiferent de natura tablei expandate folosite (standard sau aplatizată) acestea posedă după procesul de expandare o caracteristică comună, aceasta fiind "*Aria deschiderii [%]* care reprezintă mărimea suprafețelor golurilor [%] față de suprafața inițială a tablei supuse expandării".

5. Analizând informația care se găsește în publicațiile de specialitate citate în bibliografie, cât și cea publicată pe internet, se remarcă lipsa totală a datelor care să definească caracteristicile de rezistență mecanică a tablelor expandate. Asemenea date sunt absolut necesare în cazurile în care tabla expandată va fi utilizată la fabricarea unor produse cărora li se impun condiții de rezistență.

6. Tabla expandată se realizează în mod progresiv, prin prelucrarea succesivă a unei fâșii înguste de lățime constantă, fâșii care au poziție transversală în raport cu direcția de avans a semifabricatului tablei laminate supuse prelucrării. Fâșiile învecinate vor constitui, egal distanțate între ele, un anumit număr de celule de expandare, celule ce dispun de câte un gol de formă definită.

7. Procesul de expandare, de realizare a golului, se realizează pe o mașini speciale.

8. Pentru realizarea tablei expandate se aşează semifabricatul (tabla sau banda) pe masa maşinii, între ghidaje. Semifabricatul se deplasează până când intră între cuțitele maşinii, după care se fixează cu ajutorul unei traverse acționată de cilindri hidraulici.

Mișcarea berbecului se realizează pe verticală, ciclul complect al mișcărilor acestuia fiind compus din:

- cursa activă de coborâre, care cuprinde;

- o fază de apropiere față de semifabricat;

- o fază de deformare a semifabricatului;

- cursa de întoarcere, de ridicare.

La coborârea berbecului mașinii, cuțitele acționează transversal asupra semifabricatului.

După terminarea fazei de deformare a cursei active (punctul mort inferior), berbecul execută cursa de întoarcere până în punctul mort superior. În această perioadă se realizează defixarea semifabricatului și i se imprimă acestuia mișcarea de avans longitudinal pe o distanță egală cu distanța dintre două rânduri succesive de crestări.

După ce s-a terminat avansul longitudinal al semifabricatului, acesta se fixează din nou și se execută deplasarea transversală a cuțitului superior pe o distanță egală cu jumătatea lungimii crestăturii plus jumătatea distanței dintre două crestături alăturate ale tablei expandate.

Capitolul II

Analiza procesului de expandare

2.1 Caracterul complex al expandării

Expandarea, în sens larg, este procesul prin care un corp își modifică volumul sau suprafața, prin diferite procedee.

Pentru a se realiza, tabla expandată, este necesar ca semifabricatului plan să i se aplice o crestare în combinație cu îndoirea și întinderea părții din semifabricat aflată sub elementul activ (cuțit superior). În acest caz se obține tablă expandată standard.

Dacă tabla expandată standard este supusă procesului de aplatizare se obține tabla expandată aplatizată.

2.1.1 Procesul de crestare

Crestarea este un proces de tăiere a materialului după un contur deschis, fără îndepărtare de material [28], [18], [26], [27].

Tăierea unui material se poate face și după un contur închis, caz în care se îndepărtează o parte din acesta. Ambele tăieri, după contur deschis sau închis, se realizează cu rezemare a semifabricatului pe suprafața elementului activ inferior, pe întreaga lungime a conturului.

Procesul de tăiere a semifabricatului [44], [46], atât după contur deschis cât și după contur închis, cu utilizarea poansoanelor cu muchii tăietoare înclinate, este însoțit de îndoirea părții de semifabricat care se află sub acestea.

În cazul tăierii cu îndepărtare de material, care se execută cu scule ce au muchiile tăietoare înclinate, forma îndoirii părții de semifabricat aflată sub poanson este prezentată în fig. 2.1 pentru cazul utilizării poansonului cu muchiile tăietoare înclinate înspre interior, respectiv în fig. 2.2 pentru cazul utilizării poansonului cu muchiile tăietoare înclinate înspre exterior.

Notațiile de pe fig. 2.1 au următoarea semnificație:

- 1 element activ mobil poanson;
- 2 semifabricat;
- 3 element activ fix placa de tăiere.

Fig. 2.2 Forma semifabricatului îndoit de sub poansonul cu muchiile tăietoare înclinate înspre exterior

Notațiile de pe fig. 2.2 au următoarea semnificație:

- 1 element activ mobil poanson;
- 2 semifabricat;
- 3 element activ fix placa de tăiere.

În cazul crestării, forma părții îndoite a semifabricatului este prezentată în fig. 2.3.

Fig. 2.3 Forma semifabricatului îndoit de sub cuțitul superior în cazul crestării

Notațiile de pe fig. 2.2 au următoarea semnificație:

- 1 element activ mobil cuțit superior;
- 2 element activ fix cuțit inferior;
- 3 semifabricat.

Analizând aspectul formei părților îndoite de semifabricate, prezentate în figurile 2.1, 2.2 și 2.3, se observă că acestea au o aceeași formă și se poate afirma faptul că orice proces de tăiere se realizează cu o crestare prealabilă a materialului semifabricatului.

Variația forței de tăiere în funcție de pătrunderea muchiilor tăietoare ale sculei în semifabricat, pentru cazul ștanțării cu poansoane care au muchii tăietoare înclinate, de formă poligonală (cu contururi drepte), este prezentată în fig.2.4, iar în fig.2.5 este prezentată variația forței în funcție de pătrunderea muchiilor tăietoare ale sculei în semifabricat pentru cazul crestării cu scule care au muchiile tăietoare rectilinii înclinate.

Fig. 2.4 Variația forței de tăiere în funcție de pătrunderea muchiilor tăietoare ale sculei în semifabricat în cazul tăierii pe contur deschis

Fig. 2.5 Variația forței de tăiere în funcție de pătrunderea muchiilor tăietoare ale sculei în semifabricat în cazul crestării

Analizând figurile 2.4 și 2.5, se remarcă faptul că alurile celor două diagrame sunt asemănătoare, ele prezentând o aceeași formă de variație a forței până în punctele Q și Q₁. Din punctul Q al fig. 2.4 tăierea se realizează pe grosimi de semifabricat din ce în ce mai mici, ajungând la zero (ieșirea cuțitului din semifabricat prin îndepărtare de material), motiv pentru care scăderea forței spre zero se face mai lent, iar din punctul Q₁ al fig. 2.8, scăderea spre zero a forței este bruscă, deoarece muchia tăietoare a sculei nu iese din semifabricat prin îndepărtare de material ci se retrage.

Ca urmare a celor prezentate mai sus, se poate afirma faptul că un caz particular al ștanțării este și crestarea [41].

Procesul de crestare se realizează cu sprijinirea semifabricatului pe conturul deschis, după schema din fig. 2.6 [14].

Fig. 2.6 Procesul de crestare

unde:

1 - cuțit superior (mobil);

2 - cuțit inferior (fix) – element de sprijin;

3 - masa maşinii;

4 - dispozitiv de fixare a semifabricatului;

5 - semifabricat.

In procesul de crestare, cu raportare la zone de material al semifabricatului aferente unor porțiuni elementare ale tăieturilor, se disting trei faze:

 1° faza deformațiilor elastice, în care semifabricatul este comprimat și puțin deformat între cuțite. Aceste deformații prezintă următoarele caracteristici:

- sunt proporționale cu tensiunile, (adică se supun legii lui Hooke $\sigma = E\epsilon$);

- au valori mici.

În decursul acestei faze tensiunile și deformațiile din material nu depășesc limitele de elasticitate.

 2^0 faza deformațiilor plastice, în care deformațiile materialului devin remanente, iar tensiunile depăşesc limita de curgere și cresc continuu până la valoarea maximă corespunzătoare rezistenței la forfecare a materialului. În timpul acestei faze, cuțitele pătrund în material pe o anumită adâncime **hf** (zona 2 din fig. 2.7), [28], [14], iar pe suprafața tăiată a materialului se disting zonele 1 și 2 care sunt prezentate în fig. 2.7, [14].

Fig. 2.7 Zonele suprafeței tăiate a materialului din zona crestăturii

Aceste zone sunt:

- o zonă rotunjită (zona 1), corespunzătoare fazei plastice, de imprimare a muchiilor active ale sculei în semifabricat [14];

- o zonă îngustă lucioasă (zona 2), corespunzătoare fazei de tăiere [14];

Lățimea relativă a fâșiei lucioase este specifică durității materialului semifabricatului folosit și are valoare în funcție de grosimea g a semifabricatului.

$$h_f = (0, 2 - 0, 5) \cdot g$$

În cazul în care materialul este mai dur, lățimea relativă a fâșiei lucioase este mai mică, iar când materialul este mai plastic, lățimea relativă a fâșiei lucioase este mai mare [14].

Odată cu creșterea pătrunderii cuțitului superior în materialul semifabricatului, deci cu înaintarea procesului de expandare, deformațiile pe care le suportă materialul devin din ce în ce mai mari. Urmare a acestei
creșteri a deformațiilor pe care le suportă, materialul devine mai rezistent și duritatea sa crește, drept manifestări ale *ecruisării materialului*.

Grosimea stratului de material ecruisat și structura acestuia, pentru același tip de material, depind de următorii factori:

- grosimea semifabricatului supus procesului de expandare – odată cu creșterea grosimii semifabricatului crește și grosimea stratului de material ecruisat;

- proprietățile mecanice ale materialului – la o creștere a durității materialului, grosimea stratului de material ecruisat crește, iar cu creșterea rezistenței la tracțiune grosimea stratului de material ecruisat crește;

- starea muchiilor tăietoare ale cuțitelor – cu creșterea gradului de ascuțire a cuțitelor scade grosimea stratului de material ecruisat;

- valoarea jocului dintre cuțite – creșterea valorii jocului dintre cuțite duce la o creștere a grosimii stratului de material ecruisat;

- viteza de forfecare – creșterea vitezei de forfecare duce la o scădere a grosimii stratului de material ecruisat.

În condiții normale, pentru table cu grosimea $g \le 10$ mm, grosimea stratului de material ecruisat este de până la 0,4·g [14].

 3^0 faza de forfecare, în care apare zona 3 din fig. 2.7, zonă mai lată decât celelalte și mată cu rugozități pronunțate, corespunzătoare fazei de separare a materialului în baza propagării fisurilor în avans față de pătrunderea tăișului elementului activ al sculei în semifabricat. Fisurile de forfecare pornesc de la muchiile tăietoare ale cuțitelor și se propagă în metal pe direcția planelor de alunecare, sub un unghi β cuprins între 4^0 - 6^0 față de verticală, formând o suprafață comună de forfecare. Formarea fisurilor și direcția lor de propagare sunt prezentate în fig. 2. 8 [28].

Fig. 2.8 Formarea fisurilor și direcția lor de propagare

2.1.2 Procesul de îndoire

Îndoirea este "încovoierea semifabricatului după o linie dreaptă" [14], [141], [28], și reprezintă un proces de deformare elasto-plastic ce se realizează pe seama deformațiilor remanente, care apar în material în timpul deformării.

La îndoire, materialul semifabricatului se tensionează și se deformează numai în zona învecinată liniei de îndoire [14] [141].

În zona de îndoire, se înregistrează solicitări de compresiune longitudinală și de întindere transversală în straturile interioare și solicitări de întindere longitudinală și compresiune transversală în straturile exterioare, după cum se prezintă în fig. 2.9 [18], [14].

Fig. 2.9 Forma secțiunii transversale în zona de îndoire, cu prezentarea straturilor exterioare din zona îndoită

După îndoire, în funcție de lungime, se constată că straturile de material situate spre exteriorul părții îndoite se întind în direcție longitudinală [42], producând alungirea materialului, iar straturile de material dinspre interiorul părții îndoite se scurtează, producând compresiunea materialului. Această alungire și compresiune a straturilor de material este prezentată schematic în fig. 2.10.

Fig. 2.10 Alungirea și compresiunea straturilor de material din zona îndoită

Cu ajutorul notațiilor din fig. 2.10, se prezintă matematic alungirea straturilor exterioare și scurtarea straturilor interioare de material a semifabricatului după îndoire.

Lungimea x a fibrei neutre a materialului semifabricatului înainte și după îndoire este:

$$\mathbf{x} = \boldsymbol{\chi} \cdot (\mathbf{r} + \mathbf{K} \cdot \mathbf{g}), \tag{2.1}$$

unde:

- χ unghiul de îndoire [rad];
- r raza de îndoire;
- g grosimea semifabricatului;
- K coeficient de poziție a fibrei neutre.

Lungimea x1 a stratului dinspre interior a materialului semifabricatului după îndoire este:

$$\mathbf{x}\mathbf{l} = \boldsymbol{\chi} \cdot \mathbf{r} \,, \tag{2.2}$$

Lungimea x2 a stratului dinspre exterior a materialului semifabricatului după îndoire este:

$$\mathbf{x}\mathbf{2} = \boldsymbol{\chi} \cdot (\mathbf{r} + \mathbf{g}). \tag{2.3}$$

Straturile interioare și exterioare ale materialului semifabricatului înainte de îndoire au aceeași lungime x ca și fibra neutră, putându-se astfel determina relațiile de calcul ale valorilor y cu care stratul dinspre interiorul îndoirii se scurtează și y_1 cu care stratul dinspre exteriorul îndoirii se lungește:

$$y = \chi \cdot K \cdot g,$$

$$y_1 = \chi \cdot g \cdot (1 - K),$$
(2.4)

Pentru a se depăși deformațiile elastice și a se produce deformații remanente, se impune ca solicitarea straturilor tensionate să atingă valoarea limită de curgere a materialului semifabricatului [28].

Pentru ca deformația să aibă caracter remanent trebuie să fie îndeplinită inegalitatea:

 $\sigma_{c} \leq E \cdot \varepsilon$,

unde:

- $\sigma_{\rm c}$ limita de curgere;
- E modulul de elasticitate;
- -ε-alungirea specifică.

Procesul de expandare se realizează cu îndoirea puntiței dintre două rânduri de crestare, ce are lățimea s (v. fig. 3.1).

La procesul de îndoire a puntiței dintre două rânduri de crestături din cadrul expandării, cu raportare la poziția fibrei neutre, se va determina valoarea razei minime de îndoire [18], ca fiind:

$$r_{\min} = g \cdot \left(\frac{1-K}{\epsilon} - K\right),$$
 (2.5)

Coeficientul de poziție K al fibrei neutre este determinat experimental în funcție de raportul $\frac{r}{g}$, ale cărui valori sunt date în tab. 2.1.

Tab. 2.1 Tabelul cu valorile coeficientului de poziție K al fibrei neutre

Valorile raportului $\frac{r}{g}$	0,1	0,25	0,5	1,0	2,0	3,0	4,0	5,0
Valorile coeficientului K	0,18	0,26	0,33	0,35	0,38	0,40	0,42	0,43

Cu ajutorul datelor din tab. 2.1 și a programului utilitar MACAD 2000 PROFESIONAL, [6], s-a determinat expresia matematică a unui polinom de interpolare de tip Lagrange [24] care să descrie aproximativ variația coeficientului de poziție K în funcție de raportul $\frac{r}{-}$.

Reprezentările grafice ale coeficientului de poziție K în funcție de raportul $\frac{r}{\alpha}$ și a polinomului de interpolare f(x) sunt realizate în fig. 2.11.

Fig. 2. 11 Reprezentările grafice ale coeficientului de poziție K și a polinomului de interpolare f(x) în funcție de raportul $\frac{r}{-}$

g

Polinomul de interpolare f(x) are expresia matematică:

$$f(x) = 0.099 + 0.928 \cdot \frac{r}{g} - 1.316 \cdot \left(\frac{r}{g}\right)^2 + 0.902 \cdot \left(\frac{r}{g}\right)^3 - 0.312 \cdot \left(\frac{r}{g}\right)^4 + 0.052 \cdot \left(\frac{r}{g}\right)^5 - 0.003386 \cdot \left(\frac{r}{g}\right)^6$$

Modul de determinare a polinomului este prezentat în Anexa 6.

2.1.3 Procesul de alungire

Alungirea este deformația liniară a materialului, fiind o modificare a distanței dintre două puncte ale acestuia [43], [45].

Relația cu ajutorul căreia se determină deformația liniară Δl rezultă analizând fig. 2.12, conform lucrării [28], [3], ca fiind:

$$\Delta l = l - l_0 \tag{2.6}$$

unde:

- Δl – deformația principală absolută (deformația liniară);

- 1 – dimensiunea după deformare;

lo

Raportul dintre deformația principală absolută și dimensiunea înainte de deformare poartă denumirea de *Deformație relativă* și este notată cu ε :

$$\varepsilon = \frac{\Delta l}{l_0},$$

$$\varepsilon = \frac{1 - l_0}{l_0} = \frac{l}{l_0} - 1.$$
(2.7)

41

Deformația relativă reprezintă o caracteristică mecanică a materialului semifabricatului, având valori limită pentru fiecare material.

În timpul procesului de expandare materialul suportă o întindere, care este rezultatul acțiunii cuțitului superior asupra semifabricatului în timpul cursei active de deformare. Acest lucru este prezentat schematic în fig. 2.13.

Fig. 2.13 Procesul de alungire a materialului semifabricatului supus expandării

În cazul expandării, dimensiunea l_0 înaintea expandării este $\frac{l_{cr}}{2}$, iar dimensiunea l după deformare este $\frac{l_{cr1}}{2}$, ceea ce conduce la expresia deformației relativă ε_r ca fiind:

$$\varepsilon_{\rm r} = \frac{l_{\rm crl}}{l_{\rm cr}} - 1. \tag{2.8}$$

2.2 Tensiuni, deformații și forțe ale deformărilor componente și a rezultantei acestora

2.2.1 Starea de tensiune – deformare din procesul de expandare

Totalitatea deformațiilor suferite de elemente infinit mici din vecinătatea unui punct, definesc starea de deformare din jurul punctului considerat [43].

Deformațiile care se produc în timpul procesului de expandare sunt rezultatul unor stări de eforturi unitare create în material ca urmare a acțiunii forțelor de deformare imprimate prin intermediul elementelor active – cuțit superior și cuțit inferior.

2.2.1.1 Starea de tensiune – deformare la crestare

În timpul procesului de crestare materialul se găsește sub acțiunea forței de tăiere F, care se exercită prin intermediul cuțitelor. Elementul de material din dreptul muchiilor tăietoare ale cuțitelor corespunde zonei celei mai puternic tensionate.

Pentru a putea determina solicitările, la care este supus materialul în timpul crestării, se consideră situația din fig. 2.14 [14].

Fig. 2.14 Solicitările la care este supus materialul în timpul crestării

În fig. 2.14 s-a descompus forța de tăiere F după direcțiile I-I și II-II ale planelor de alunecare în câte două componente F_1 și F_2 . Componentele F_1 se echilibrează, iar componentele F_2 se vor descompune după două direcții în F_{21} și F_{22} . Aceste componente F_{21} și F_{22} vor acționa asupra materialului solicitându-l la:

- compresiune în zonele notate cu a;
- tracțiune în zonele notate cu b;
- compresiune și tracțiune în zona notată cu c,

solicitări care, în ansamblu, produc forfecarea [7].

Analizând mecanismul tăierii, constatăm că starea de eforturi este concentrată în jurul muchiilor tăietoare și se reduce în imediata apropiere a acestora.

Cele prezentate mai sus sunt ilustrate prin fig. 2.15.

Fig. 2.15 Starea de eforturi din jurul muchiilor tăietoare

Rezistența materialului la crestare [36], [7] se face din teoria energetică a plasticității în funcție de caracteristicile mecanice ale acestuia și adâncimea de pătrundere a cuțitului. Rezultă că între tensiunea reală de forfecare și caracteristicile mecanice ale materialului crestat există relația:

$$\tau_{\text{real}} = \frac{\sigma_{\text{real}}}{\sqrt{3}} \cdot \left(\frac{\gamma}{\sqrt{3} \cdot \varepsilon_{\text{real}}}\right)^n, \qquad (2.9)$$

în care:

- $\varepsilon_{r_{real}}$ - alungirea reală în momentul ruperii;

- $\sigma_{r_{real}}$ - tensiunea reală în momentul ruperii dată de relația:

$$\sigma_{\rm rreal} = \frac{\sigma_{\rm r}}{1 - \psi_{\rm r}},\tag{2.10}$$

unde:

- σ_r – tensiunea convențională în momentul

ruperii;

- ψ_r – gâtuirea relativă la rupere dată de relația:

$$\psi_{\mathbf{r}} = \frac{\varepsilon_{\mathbf{g}}}{1 + \varepsilon_{\mathbf{g}}},\tag{2.11}$$

în care:

 ε_g - alungirea relativă pentru momentul apariţiei gâtuirii;

- γ - deformația unghiulară.

Deformația unghiulară se determină din fig. 2.16 ca fiind:

$$\gamma = \operatorname{arc} \operatorname{tg} \frac{x}{j}, \qquad (2.12)$$

unde:

- x - adâncimea de pătrundere a muchiei cuțitului superior în semifabricat;

Fig. 2.16 Deformația unghiulară și jocul dintre cuțite

Exponentul **n** are următoarea relație [7]:

$$n = \ln \frac{1}{1 - \psi_r}.$$
(2.13)

Tensiunea reală de forfecare în procesul de crestare este dată de relația:

$$\tau_{\text{real}} = \frac{\sigma_{\text{r}} \cdot \left(1 + \varepsilon_{\text{g}}\right)}{\sqrt{3}} \cdot \left(\frac{\arctan \frac{x}{j}}{\sqrt{3} \cdot \varepsilon_{\text{r}_{\text{real}}}}\right)^{\ln(1 + \varepsilon_{\text{g}})} . \quad (2.13)$$

45

Reprezentarea grafică a tensiunii reale de forfecare, conform relației (2.13), este realizată în fig. 2.17.

Fig. 2.17 Reprezentarea tensiunii reale de forfecare

In fig. 2.17 se prezintă sintetic variația tensiunii reale de forfecare τ_{real} în funcție de adâncimea de pătrundere a muchiei cuțitului superior în semifabricat x și de jocului dintre cuțite j.

Se observă că o adâncime de pătrundere x mică a muchiei cuțitului superior în semifabricat, creează o tensiune reală de forfecare (τ_{real}) de valori mici, iar cu creșterea adâncimii de pătrundere a muchiei cuțitului x se determină și creșterea lui τ_{real} .

Modificarea jocului dintre cutite j induce variația tensiunii reale de forfecare τ_{real} astfel:

- valori mici ale jocului dintre cuțite j, determină valori mari ale tensiunii reale de forfecare τ_{real} ;

- odată cu creșterea jocului dintre cuțite j, valoarea tensiunii reale de forfecare τ_{real} are o descreștere lentă.

In cazul oricărui proces de tăiere, jocul dintre cuțite j poate crește pánă la o valoare maximă, la care valoarea tensiunii reale de forfecare τ_{real} este mai mare sau egală cu valoarea tensiunii de forfecare a materialului.

2.2.1.2 Starea de tensiune – deformare la îndoire și alungire

Pentru realizarea golurilor, materialul în timpul crestării suferă întinderi și îndoiri. Starea de tensiune și deformare a materialului [47] pentru întindere și îndoire se poate preciza analizând situația pentru un moment oarecare din cursul procesului de expandare [28], prezentat în fig. 2.18.

Fig. 2.18 Împărțirea pe zone a porțiunii deformate a semifabricatului în funcție de solicitările la care este supus

În zona I materialul este supus unei solicitări de întindere, ca urmare a acțiunii în continuare a cuțitului superior asupra materialului crestat. Starea de tensionare și deformare în zona I este prezentată în fig. 2.19.

Tensiunea de alungire a materialului este dată de relația [4]:

$$\sigma = \frac{F}{A}, \qquad (2.14)$$

unde:

- σ tensiunea de alungire;
- F forța care produce alungirea;
- A aria secțiunii transversale a zonei alungite.

În zona II se înregistrează simultan tensiuni de întindere (la exterior) și de compresiune (la interior) față de planul neutru O - O' [31]. Starea de tensiune și deformare în zona de îndoire este prezentată în fig. 2.20.

Fig. 2.24 Starea de tensiuni și deformații la solicitarea de îndoire

Relația de calcul a tensiunii de încovoiere, conform [4], este:

$$\sigma_i = \frac{M_i}{W_z}, \qquad (2.15)$$

unde:

- σ_i tensiunea de încovoiere;
- M_i momentul încovoietor;
- W_z modulul de rezistență al secțiunii.

Pentru a determina tensiunea de încovoiere vom considera o porțiune de semifabricat, ca fiind o grindă de secțiune constantă având forma secțiunii dreptunghiulară încastrată la capete, ce are dimensiunile prezentate în fig. 2.21, adică;

- lungimea este egală cu lungimea crestăturii l_{cr};

- grosimea g a semifabricatului;

- lățimea este egală cu lungimea puntiței dintre două rânduri de goluri ale tablei expandate s (v. fig. 3.1).

Fig. 2.21 Schema solicitării la încovoiere

Prin simplificarea expandării asupra elementului considerat prezentat în fig. 2.21, acționează o forță F_{ind} , care realizează îndoirea acestuia. În practică, datorită utilizării sculelor cu muchii tăietoare înclinate sub unghiuri de valori reduse, se recurge la o apreciere a forței de îndoire F_{ind} ca fiind o cotă parte din valoarea forței de tăiere. Această forță are următoarea expresie [28]:

$$F_{ind} = k_{ind} \cdot F_t, \qquad (2.16)$$

unde:

- F_t - forța de tăiere propriu-zisă;

- k_{ind} - coeficient de îndoire.

Coeficientul de îndoire k_{ind} se apreciază ca o valoare medie determinată experimental, fiind dat de relația [28]:

$$k_{\hat{i}nd} = \frac{1}{20} \cdot \varphi, \qquad (2.17)$$

în care:

- φ – unghiul de înclinare a muchiei tăietoare a cuțitului [rad].

Unghiul φ de înclinare a muchiei tăietoare a cuțitului este prezentat în fig. 2.22.

Pentru determinarea momentului încovoietor folosim relația:

$$M_{i} = F_{ind} \cdot \frac{l_{cr}}{2}, \qquad (2.18)$$

unde:

- F_{ind} – forța de îndoire;

- l_{cr} – lungimea crestăturii.

Modulul de rezistență al secțiunii are următoarea relație:

$$W_{\mathbf{Z}} = \frac{s \cdot g^2}{6}, \qquad (2.19)$$

unde:

- g – grosimea semifabricatului;

- s – lățimea puntiței dintre două rânduri de crestare (v. fig. 3.1).

2.2.2 Determinarea forței de tăiere în procesul de expandare

La realizarea crestării se exercită o forță capabilă să învingă rezistența opusă de material. Această forță o vom denumi *forța de tăiere propriu-zisă*.

Procesul de expandare este însoțit de îndoirea și alungirea semifabricatului. Această îndoire și alungire se realizează cu un consum de energie. În aceste condiții apare necesitatea unor forțe suplimentare numite forța de alungire a materialului semifabricatului și forța de îndoire a materialului semifabricatului.

Având în vedere cele de mai sus *forța totală de tăiere* are expresia generală dată de relația:

 $F = F_t + F_{alt} + F_{indt},$

unde:

- F - forța totală de tăiere;

- F_t - forța de tăiere propriu-zisă;

- F_{alt} - forța de alungire totală;

- F_{indt} - forța de îndoire totală.

Forța de tăiere propriu-zisă

Procesul de crestare a semifabricatului, fiind unul dintre procesele de bază ce intră în componența procesului complex de expandare, nu se desfășoară simultan pe întreaga lungime care trebuie să fie crestată. În aceste condiții, atacul materialului după lungimea de tăiere se face în mod progresiv.

Reprezentarea schematică a celor prezentate anterior este ilustrată în fig. 2.23 [14] sau [28].

Fig. 2.23 Atacul semifabricatului în decursul procesului de crestare

Procesul crestării cu scule ce au muchii tăietoare înclinate, necesar expandării, se desfășoară după următoarele etape:

 1^0 etapa inițială este acea parte a procesului de crestare în care atacul semifabricatului începe în poziția 1 a muchiei tăietoare a cuțitului superior, sub forma unui contact punctiform, iar prin coborârea în continuare a acesteia, contactul se transformă într-un contact liniar, de lungime continuu crescătoare, până în poziția 2;

 2^{0} etapa caracteristică se realizează prin coborârea muchiei tăietoare a cuțitului superior din poziția 2 în poziția 3. În timpul acestei coborâri lungimea de contact dintre muchia tăietoare și semifabricat rămâne constantă, variabilă fiind zona momentan activă a muchiei tăietoare, respectiv poziția acelei zone de tăiere a semifabricatului care se găsește în diversele momente ale procesului de crestare sub acțiunea muchiei tăietoare.

Lungimea semifabricatului, care se află în contact cu cuțitul superior al mașinii de expandat, în timpul etapei caracteristice, este în funcție de unghiul de înclinare al cuțitului (ϕ) și de grosimea semifabricatului (g). Această lungime rămâne constantă de-a lungul întregii etape caracteristice a procesului de crestare.

În timpul procesului de crestare, variația teoretică a forței în funcție de distanța de pătrundere în semifabricat a cuțitului superior are forma din fig. 2.5.

Se observă creșterea progresivă a forței în decursul *etapei inițiale*, menținerea forței la o valoare constantă în decursul *etapei caracteristice* și scăderea bruscă a forței la zero în momentul în care s-a atins valoarea maximă de pătrundere a cuțitului superior în semifabricat (punctul Q_1 din fig. 2.5), punct în care începe retragerea cuțitului superior din semifabricat.

Forța de tăiere depinde de:

- grosimea semifabricatului;
- proprietățile mecanice ale materialului;
- lungimea porțiunii de tablă ce se foarfecă la un anumit moment [28], [25].

Forța de tăiere propriu-zisă se determină analitic pe baza schemei din fig. 2.24 [28].

Fig. 2.24 Schema de tăiere pentru determinarea forței de tăiere propriu-zise

Se consideră o suprafață infinitezimală dA, din suprafața obținută prin forfecare într-o fază intermediară a procesului de tăiere, situată la distanța x de punctul O. Forța necesară forfecării materialului pe suprafața considerată, ale cărei dimensiuni sunt dx și dy, este dată de relația următoare.

$$dF'' = \tau_{f} \cdot x \cdot tg\varphi \cdot dx, \qquad (2.20)$$

de unde rezultă:

$$F'' = \tau_{f} \cdot tg\phi \cdot \int_{0}^{tg\phi} x \cdot dx.$$

Expresia, formula de calcul teoretic pentru tăierea materialului semifabricatului este:

$$F'' = \tau_{f} \cdot \frac{g^{2}}{2 \cdot tg\phi}.$$
 (2.21)

Datorită uzurii muchiilor tăietoare ale cuțitelor, variației jocului dintre cuțite, neuniformității structurii și ecruisării materialului, în procesul de crestare a tablei, forța de tăiere va fi mai mare cu valoarea unui coeficient de majorare k, unde:

$$k = 1, 1 \dots 1, 3$$

Ca urmare a acestui fapt relația de calcul a forței de tăiere este:

$$F' = k \cdot \tau_{f} \cdot \frac{g^{2}}{2 \cdot tg\phi}$$
(2.22)

unde:

- F' forța de tăiere pentru crestarea tablei pe o jumătate a dintelui;
- g grosimea semifabricatului;
- k coeficient de majorare;
- τ_f rezistența la forfecare a materialului;
- φ unghiul de înclinație al cuțitului.

Unghiul ϕ are următoarea formula de calcul:

$$\varphi = 90 - \frac{\alpha}{2} \tag{2.23}$$

unde α este unghiul la vârf al dintelui [grad].

Unghiul α se află între laturile înclinate ale dintelui, fiind prezentat în fig. 2.25, unde se redă și forma frontală a dintelui cuțitului superior prezentat în fig. 1.24 a.

Fig. 2.25 Forma frontală a dintelui cuțitului superior din fig. 1.24 a

Procesul de expandare se realizează cu îndoirea și alungirea materialului semifabricatului, fapt ce necesită determinarea valorii maxime a unghiului la vârf α al dintelui cuțitului superior.

Pentru a determina valoarea maximă a unghiului α pentru un material cu o anumită alungire relativă la rupere ε_r , se va considera fig. 2.13 sau fig. 2.25, cu ajutorul căreia se va scrie:

$$\cos\left(90 - \frac{\alpha}{2}\right) = \sin\frac{\alpha}{2} = \frac{l_{cr}}{l_{cr1}}.$$
 (2.24)

Cu ajutorul relațiilor (2.8) și (2.24), obținem valoarea alungirii relative ca fiind:

$$\varepsilon = \frac{1}{\cos\left(90 - \frac{\alpha}{2}\right)} - 1 = \frac{1}{\sin\frac{\alpha}{2}} - 1.$$
(2.25)

Pentru a se evita ruperea materialului semifabricatului, alungirea relativă ε se va limita la o valoare mai mică decât valoarea alungirii relative la rupere ε_r .

$$\varepsilon < 0.9 \cdot \varepsilon_{\Gamma} . \tag{2.26}$$

Cu ajutorul relațiilor (2.25) și (2.26) obținem valoarea maximă a unghiului α :

$$\alpha < 180 - 2 \cdot \arccos \frac{111}{\varepsilon_r + 111}, \qquad (2.27)$$

în care valorile alungirii relative la rupere ε_r vor fi introduse în procente.

Valorile uzuale ale unghiului α sunt cuprinse între 120[°] și 150[°], mai rar utilizată fiind valoarea de 60[°].

Datorită îndoirii și alungirii materialului semifabricatului, forța totală de tăiere în procesul de expandare este dată de relația:

$$\mathbf{F} = \mathbf{F}_{\mathbf{t}} + \mathbf{F}_{\mathbf{alt}} + \mathbf{F}_{\mathbf{indt}}, \qquad (2.28)$$

Forța de tăiere propriu-zisă F_t se calculează prin:

$$\mathbf{F}_{\mathbf{t}} = \mathbf{n} \cdot \mathbf{F}_{\mathbf{d}} \,, \tag{2.29}$$

unde:

- F_d – forța de tăiere pe dinte:

$$F_{d} = 2 \cdot F';$$
 (2.30)

- n - numărul de dinți ai cuțitului superior montat pe berbecul mașinii de expandat.

Relația de calcul a forței propriu-zise F_t este:

$$F_{t} = \mathbf{n} \cdot \mathbf{k} \cdot \tau_{f} \cdot \frac{g^{2}}{tg\left(90 - \frac{\alpha}{2}\right)}$$

$$F_{t} = \mathbf{n} \cdot \mathbf{k} \cdot \tau_{f} \cdot g^{2} \cdot tg\frac{\alpha}{2} \qquad (2.31)$$

Forța de alungire totală

Ca urmare a faptului că tabla expandată se realizează și cu alungire de material, este necesar să se calculeze forța de alungire totală aplicată de cuțitul superior pentru realizarea unui rând de goluri ale tablei expandate. Relația de calcul a forței de alungire totale este:

$$\mathbf{F}_{\mathbf{alt}} = 2 \cdot \mathbf{n} \cdot \mathbf{F}_{\mathbf{al}}, \qquad (2.32)$$

unde:

- F_{alt} - forța de alungire totală;

- F_{al} - forța de alungire a puntiței dintre două rânduri de goluri pe o parte a cuțitului.

Forța de alungire F_{al} este:

$$F_{al} = \sigma_c \cdot A, \qquad (2.33)$$

unde:

- σ_c - limita de curgere [N/mm²];

- A – aria secțiunii transversale a puntiței dintre două rânduri de goluri.

Aria secțiunii transversale are expresia:

$$\mathbf{A} = \mathbf{s} \cdot \mathbf{g}, \tag{2.34}$$

unde:

- g – grosimea semifabricatului;

- s – lățimea puntiței dintre două rânduri de crestare (v. fig.3.1).

Prin efectuarea înlocuirilor, relația de calcul a forței de alungire totale devine:

$$F_{alt} = 2 \cdot n \cdot \sigma_c \cdot s \cdot g, \qquad (2.35)$$

Forța de îndoire totală

Îndoirea materialului semifabricatului face parte integrantă din procesul de expandare. Această îndoire necesită o forță suplimentară, care trebuie aplicată cuțitului superior în timpul procesului de expandare. Forța de îndoire totală este dată de:

$$F_{indt} = F_{ind} . \tag{2.36}$$

Relația de calcul a forței de îndoire F_{ind} este dată de (2.16) coroborată cu (2.31), cu ajutorul cărora se poate scrie:

$$F_{indt} = k_{ind} \cdot n \cdot k \cdot \tau_f \cdot g^2 \cdot tg \frac{\alpha}{2}$$
(2.37)

Forța totală de tăiere în procesul de expandare, rezultată în urma înlocuirii în relația (2.28) a termenilor dați de (2.31), (2.35) și (2.37), are următoarea expresie:

$$F = n \cdot k \cdot \tau_{f} \cdot g^{2} \cdot tg \frac{\alpha}{2} \cdot (1 + k_{ind}) + 2 \cdot n \cdot \sigma_{c} \cdot s \cdot g \qquad (2.38)$$

55

Procesul de expandare executat cu un cuțit superior de forma celui prezentat în fig. 1.24 b, care are forma frontală a dintelui prezentată în fig. 2.26, necesită studierea forței de tăiere în cele două cazuri:

- cazul în care cuțitul superior realizează tăierea cu muchiile tăietoare orizontale de lungime L şi muchiile părților laterale înclinate ale dinților;
- cazul în care cuțitul superior execută tăierea doar cu muchiile tăietoare înclinate ale dinților.

Fig. 2.26 Formă frontală a dintelui cuțitului superior prezentat în fig. 1.24 b

Pe porțiunea orizontală de lungime L a dintelui cuțitului superior, materialul nu se încovoaie și se consideră că nici nu se alungește, de aceea forța totală de tăiere pe porțiunile orizontale ale dinților cuțitului superior, în procesul de expandare, este dată de relația:

$$F_{tdr} = n \cdot F_{pd}, \qquad (2.39)$$

unde:

- F_{tdr} – forța totală de tăiere pe porțiunile orizontale ale cuțitului superior;

- F_{pd} – forța propriu-zisă de tăiere pe porțiunea orizontală a dintelui.

Relația de calcul a forței propriu-zise de tăiere pe porțiunea orizontală, de lungime "L", a cuțitului superior F_{pd} este, conform lucrărilor [28], [5R1]:

$$F_{pd} = k \cdot g \cdot \tau_{f} \cdot L \tag{2.40}$$

Prin înlocuirea relației (2.40) în (2.39), obținem forța totală de tăiere pe porțiunile orizontale ale cuțitului superior în procesul de expandare:

$$F_{tdr} = \mathbf{n} \cdot \mathbf{k} \cdot \mathbf{g} \cdot \tau_{\mathbf{f}} \cdot \mathbf{L} \tag{2.41}$$

56

Pe porțiunile înclinate ale cuțitului superior, prezentat în fig. 1.24 b, forța totală de tăiere are expresia identică cu cea determinată pentru forma cuțitului superior prezentat în fig. 1.24 a, fiind dată de (2.38).

Pentru a evalua forța de tăiere care apare la expandarea cu un cuțit de forma celui prezentat în fig.1.24 b, se va avea în vedere existența celor două etape distincte ale procesului de tăiere și anume:

- etapa inițială a tăierii este din momentul atacului semifabricatului până la străpungerea acestuia de către muchiile cuțitului, cum este prezentat în fig. 2.27;

Fig. 2.27 Etapa inițială a tăierii

- etapa caracteristică este tăierea ce se execută după străpungerea materialului semifabricatului de către cuțit, până la valoarea maximă a cursei de deformație l_{cd} , etapă în care lungimile de tăiere realizate de către muchiile tăietoare înclinate ale cuțitului superior se mențin constante (v. fig. 2.28).

Fig. 2.28 Etapa caracteristică a tăierii

 1^{0} În etapa inițială forța maximă de tăiere este dată de suma dintre forța totală de tăiere de pe porțiunile orizontale ale cuțitului superior, care este exprimată prin relația (2.41), și forța totală de tăiere de pe porțiunile înclinate ale cuțitului superior, exprimată prin relația (2.38). În acest caz, forța maximă în cadrul etapei inițiale F_{mei} este dată de:

$$F_{\text{mei}} = F_{\text{tdr}} + F. \qquad (2.42)$$

Înlocuind relațiile (2.41) și (2.38) în (2.42) obținem expresia forței maxime de tăiere în decursul etapei inițiale, ca fiind:

$$\mathbf{F} = \mathbf{n} \cdot \mathbf{k} \cdot \mathbf{g} \cdot \tau_{\mathbf{f}} \cdot \left[\mathbf{g} \cdot \mathbf{tg} \frac{\alpha}{2} \cdot (\mathbf{1} + 2 \cdot \mathbf{n} \cdot \mathbf{k}_{\mathbf{ind}}) + \mathbf{L} \right] + 2 \cdot \mathbf{n} \cdot \sigma_{\mathbf{c}} \cdot \mathbf{s} \cdot \mathbf{g} \,. \tag{2.43}$$

 2^{0} În cadrul etapei caracteristice, forța de tăiere este dată de relația (2.38), deoarece cuțitul superior realizează tăierea doar pe porțiunile înclinate.

Ținând cont de cele prezentate anterior, relația de calcul a forței maxime necesare în procesul de expandare, în cazul utilizării unui cuțit superior ca cel prezentat în fig. 1.24 b, este (2.43).

Dacă expandarea se realizează cu un cuțit superior profilat ca cel prezentat în fig.1.24 c, având forma frontală a dintelui conform fig. 2.29, se constată că porțiunea de tăiş semirotundă, care intră la început în acțiune asupra semifabricatului, este orizontală sau foarte puțin înclinată.

prezentat în fig. 1.24 c

Pe măsură ce cuțitul superior coboară și pătrunde în semifabricat, partea de tăiș semirotundă dispune de înclinări din ce în ce mai pronunțate [28], după cum se poate vedea și din schema prezentată în fig. 2.30, unde $\varphi'_0 < \varphi'_1 < \varphi'_2$.

Fig. 2.30 Variația unghiului φ în cazul tăierii cu muchia semirotundă

Pentru a studia variația forței de tăiere pe porțiunea semirotundă, vom considera fig. 2.31, cu ajutorul căreia s-a determinat expresia lungimii **b** prezentată în fig. 2.24, în funcție de variația unghiului de înclinație momentan ϕ' al tangentei cu orizontala. Acest unghi ϕ' este unghiul ϕ de înclinare al cuțitului superior pentru fiecare moment al tăierii.

Fig. 2.31 Schema determinării lungimii tăiate b momentane și a adâncimii de pătrundere x a cuțitului superior în materialul semifabricatului la un moment dat în funcție de variația unghiului φ'

Se observă, din fig. 2.31, că triunghiul OCB – isoscel este compus din două triunghiuri dreptunghice având o latură comună AB, latură care reprezintă și lungimea de tăiere momentană **b**. La determinarea lungimii **b** s-a utilizat triunghiul ACB, dreptunghic, rezultând:

$$b = \frac{x}{tg \frac{\phi'}{2}}$$
(2.44)

Adâncimea de pătrundere a cuțitului superior în semifabricat x a rezultat din triunghiul dreptunghic OAB, ca fiind:

$$\mathbf{x} = \mathbf{r} - \mathbf{r} \cdot \cos \varphi', \qquad (2.45)$$

unde r este raza părții semirotunde.

Vom studia și în acest caz tăierea în cele două etape, și anume:

1⁰ Etapa inițială

Se consideră că tăierea în această etapă se realizează în întregime pe partea semirotundă a profilului cuțitului superior, deoarece, dacă s-ar realiza tăierea și pe partea orizontală, respectiv înclinată, a profilului dintelui în cadrul acestei etape, partea semirotundă a profilului dintelui nu și-ar avea utilitatea pentru realizarea tablei expandate care este prezentată în fig.1.3 d. În aceste condiții, raza părții semirotunde are o valoare mai mare de 4mm. Acest lucru se datorează grosimii **g** a semifabricatului, care are valoare maximă de 4mm. Valoarea unghiului ϕ' la încheierea acestei etape va fi dată de relația:

$$\varphi' = \arccos \frac{r-g}{r}.$$
 (2.46)

Tăierea în perioada inițială cu muchia tăietoare semirotundă necesită o forță care are expresia (2.38), în care:

$$g \cdot tg \frac{\alpha}{2} = b. \qquad (2.47)$$

În cadrul acestei etape inițiale, vom considera termenul L din relația (2.43) ca fiind porțiunea orizontală momentană pentru partea semirotundă, și o vom lua egală cu lungimea momentană b. Situația prezentată este practic valabilă până la o pătrundere a muchiei tăietoare semirotunde în materialul semifabricatului $\mathbf{q} \approx 0,4$ ·g, deoarece aproximativ până la această valoare există faza deformațiilor plastice. În aceste condiții, relația de calcul a forței de tăiere necesară este:

$$F_{\text{sril}} = 2 \cdot \mathbf{n} \cdot \mathbf{k} \cdot (\mathbf{r} - \mathbf{r} \cdot \cos \varphi') \cdot \tau_{\text{f}} \cdot \frac{\mathbf{r} - \mathbf{r} \cdot \cos \varphi'}{\operatorname{tg} \frac{\varphi'}{2}} \cdot \left(1 + \frac{\pi}{3600} \cdot \varphi'\right) + 2 \cdot \mathbf{n} \cdot \sigma_{\text{c}} \cdot s \cdot g$$

$$F_{\text{sril}} = 8 \cdot \mathbf{n} \cdot \mathbf{k} \cdot \mathbf{r}^{2} \cdot \tau_{\text{f}} \cdot \left(1 + \frac{\pi \cdot \varphi'}{3600}\right) \cdot \sin^{3} \frac{\varphi'}{2} \cdot \cos \frac{\varphi'}{2} + 2 \cdot \mathbf{n} \cdot \sigma_{\text{c}} \cdot s \cdot g \quad (2.48)$$

unde:

- F_{sri1} - forța de tăiere cu partea de tăiș semirotundă în cadrul etapei inițiale pentru o pătrundere q din grosimea g a materialului semifabricatului;

- ϕ' - valoarea unghiului de înclinație momentan [grad].

În cadrul acestei perioade a tăierii, unghiul de înclinație momentan φ' variază în intervalul $\left(0, \arccos \frac{r - 0, 4 \cdot g}{r}\right]$.

Pentru a realiza tăierea în continuare, în intervalul de variație a unghiului ϕ' între $\left(\arccos \frac{r - 0, 4 \cdot g}{r}, \arccos \frac{r - g}{r} \right)$, din cadrul aceleiași etape inițiale, este necesară o forță de tăiere a cărei expresie este:

$$F_{sri2} = \mathbf{n} \cdot \mathbf{k} \cdot \mathbf{g} \cdot \tau_{f} \cdot \left[\frac{\mathbf{r} - \mathbf{r} \cdot \cos\phi'}{\mathrm{tg}\frac{\phi}{2}} \cdot \left(1 + \frac{\pi}{3600} \cdot \phi'\right) + \frac{\mathbf{r} - \mathbf{r} \cdot \cos\left(\arccos\left(\frac{\mathbf{r} - 0.4 \cdot \mathbf{g}}{r}\right)\right)}{\mathrm{tg}\left(\frac{\arccos\left(\frac{\mathbf{r} - 0.4 \cdot \mathbf{g}}{r}\right)}{2}\right)} \right] + 2 \cdot \mathbf{n} \cdot \sigma_{c} \cdot s \cdot g$$

$$F_{sri2} = \mathbf{n} \cdot \mathbf{k} \cdot \mathbf{g} \cdot \tau_{f} \cdot \left[\mathbf{r} \cdot \left(1 + \frac{\pi \cdot \phi'}{3600}\right) \cdot \sin\phi' + \frac{\mathbf{r} - \mathbf{r} \cdot \frac{\mathbf{r} - 0.4 \cdot \mathbf{g}}{\sqrt{2 \cdot \mathbf{r} - 0.4 \cdot \mathbf{g}}} \right] + 2 \cdot \mathbf{n} \cdot \sigma_{c} \cdot s \cdot g$$

$$F_{sri2} = \mathbf{n} \cdot \mathbf{k} \cdot \mathbf{g} \cdot \tau_{f} \cdot \left[\mathbf{r} \cdot \left(1 + \frac{\pi \cdot \phi'}{3600}\right) \cdot \sin\phi' + \sqrt{0.4 \cdot \mathbf{g} \cdot (2 \cdot \mathbf{r} - 0.4 \cdot \mathbf{g})} \right] + 2 \cdot \mathbf{n} \cdot \sigma_{c} \cdot s \cdot g \quad (2.49)$$

$$mude:$$

- F_{sri2} - forța de tăiere cu partea de tăiș semirotundă în cadrul etapei inițiale, care se desfășoară de la pătrunderea q în materialul semifabricatului până la străpungerea acestuia.

2⁰ Etapa caracteristică

În cadrul acestei etape, tăierea se realizează pe porțiunea semirotundă rămasă de la străpungerea materialului semifabricatului până la partea orizontală a tăișului cuțitului superior (partea de lungime L a formei frontale a dintelui prezentată în fig. 2.29), dată de relația:

$$l_{cd} - m = l_{cd} - \frac{l_{cr} - L}{2} \cdot tg\phi,$$
 (2.50)

unde m este lungimea de pătrundere în materialul semifabricatului a părții înclinate a profilului dintelui cuțitului superior (v. fig. 2.29).

Această etapă se desfășoară pentru o variație a unghiului ϕ' între

limitele $\left[\arccos \frac{r-g}{r}, \arccos \frac{r - \left(l_{cd} - \frac{l_{cr} - L}{2} \cdot tg\phi \right)}{r} \right]$, care necesită o

forță de tăiere ce are expresia asemănătoare cu relația (2.38), în care lungimea momentană **b** este $b = \frac{r - r \cdot \cos \phi'}{tg \frac{\phi'}{2}} = r \cdot \sin \phi'$. Această forță de

tăiere are următoarea expresie:

$$F_{\rm src} = n \cdot k \cdot g \cdot \tau_{\rm f} \cdot r \cdot \left(1 + \frac{\pi \cdot \phi'}{3600}\right) \cdot \sin \phi' + 2 \cdot n \cdot \sigma_{\rm c} \cdot s \cdot g. \qquad (2.51)$$

La coborârea în continuare a cuțitului superior pe lungimea **m** (v. fig. 2.29) până la realizarea în întregime a cursei de deformație, tăierea se realizează cu muchia tăietoare orizontală de lungime L și cu muchia, înclinată sub unghiul φ , a profilului dintelui cuțitului superior. Se observă că tăierea în acest caz se poate considera că s-ar realiza cu un cuțit profilat ce are forma frontală a dintelui prezentată în fig. 2.26.

După cum s-a prezentat la expandarea cu cuțitul superior din fig. 1.24 b, forța de tăiere a fost determinată pentru cele două etape (etapa inițială și etapa caracteristică). Așa se va determina forța și la tăierea pe partea orizontală și înclinată a profilului dintelui cuțitului superior din fig. 2.29.

1⁰ Etapa inițială

În cadrul acestei etape, relatia de calcul a fortei de tăiere are o expresie asemănătoare cu cea dată de relația (2.43) în care termenul L este determinat ca L = L - 2 r, fiind dată de:

$$\mathbf{F} = \mathbf{n} \cdot \mathbf{k} \cdot \mathbf{g} \cdot \tau_{\mathbf{f}} \cdot \left[\mathbf{g} \cdot \left(\mathbf{l} + \mathbf{k}_{\mathbf{i} \mathbf{n} \mathbf{d}} \right) \cdot \mathbf{t} \mathbf{g} \frac{\alpha}{2} + \mathbf{L} - 2 \cdot \mathbf{r} \right] + 2 \cdot \mathbf{n} \cdot \sigma_{\mathbf{c}} \cdot \mathbf{s} \cdot \mathbf{g} \,. \tag{2.52}$$

62

2⁰ Etapa caracteristică

În cadrul etape caracteristice, forța de tăiere este dată de relația (2.38), deoarece cuțitul superior, ce are forma frontală a dintelui prezentată în fig. 2.34, realizează tăierea doar pe porțiunile înclinate ale acestuia.

2.2.3 Determinarea lucrului mecanic în procesul de expandare

Lucrul mecanic al oricărui proces la care se cunoaște legea de variație a forței, este aria subgraficului legii respective de variație, fiind dat de relația generală [8]:

$$L = \int_{x_1}^{x_2} F \cdot dx \qquad (2.53)$$

Formula (2.53) de calcul a lucrului mecanic este utilizată pentru a determina valoarea acestuia pe intervalul de la x_1 la x_2 . Calculul lucrului mecanic pentru un întreg proces are limitele de integrare $x_1 = 0$ iar $x_2 =$ lungimea deplasării elementului care creează forța.

În cazul procesului de expandare, limitele de integrare vor fi:

$$\mathbf{x}_1 = \mathbf{0},$$
$$\mathbf{x}_2 = \mathbf{l}_{cd}.$$

În practică, relația de calcul a lucrului mecanic este [2], [5] și [28]:

$$\mathbf{L} = \lambda \cdot \mathbf{l}_{\mathbf{cd}} \cdot \mathbf{F}, \qquad (2.54)$$

unde:

- L – lucrul mecanic consumat în proces[N·mm];

- F – forța totală de tăiere [N];

- l_{cd} – lungimea cursei de deformare - lungimea cursei pe care o execută muchia tăietoare a sculei în decursul procesului [mm];

- λ - coeficient de corelare dintre forța maximă și cea medie de tăiere, utilizat la tăierea cu scule având muchii tăietoare paralele, ales în funcție de grosimea materialului, conform tab. 2.2.

I a D. 2.2 I adei cu valorile coeficientului de corelare A									
Grosimea semit	<u>≤ 1</u>	1 - 2	2 – 4	> 4					
Coeficientul de corelație λ	Oțel moale	0,7-0,65	0,65-0,6	0,6-0,5	0,45-0,35				
	Aluminiu și Cupru (recopt)	0,75-0,7	0,7–0,65	0,65-0,55	0,55-0,4				

Expresia cursei pe care o execută muchia tăietoare înclinată a cuțitului superior, în timpul procesului de expandare, se determină pe baza fig. 2.30, ca fiind:

$$l_{cd} = \frac{l_{cr}}{2} \cdot tg\left(90 - \frac{\alpha}{2}\right) = \frac{l_{cr}}{2 \cdot tg\frac{\alpha}{2}},$$
 (2.55)

unde:

 $-\alpha$ - unghiul la vârf al dintelui [grad];

- l_{cr} – lungimea crestăturii [mm].

Relația lucrului mecanic în procesul de expandare cu un cuțit superior, prezentat în fig. 1.24 a, va fi:

$$L = \lambda \cdot \frac{l_{cr}}{2 \cdot tg \frac{\alpha}{2}} \cdot n \cdot g \cdot \left[k \cdot \tau_{f} \cdot g \cdot (l + k_{ind}) \cdot tg \frac{\alpha}{2} + 2 \cdot \sigma_{c} \cdot s \right]. \quad (2.56)$$

Dacă se utilizează un cuțit profilat ca cel prezentat în fig.1.24 b, formula de calcul a lungimii cursei pe care o execută muchia activă a cuțitului superior în decursul procesului de expandare se determină, pe baza fig. 2.26, ca fiind:

$$l_{cd} = \frac{l_{cr} - L}{2} \cdot tg\left(90 - \frac{\alpha}{2}\right) = \frac{l_{cr} - L}{2 \cdot tg\frac{\alpha}{2}}.$$
 (2.57)

În acest caz, lucrul mecanic va fi exprimat prin două relații, corespunzând, una pentru etapa inițială, iar cealaltă pentru etapa caracteristică. Pentru a putea determina expresia lucrului mecanic, va trebui să descompunem și lungimea cursei de deformație totale pentru fiecare dintre cele două etape (etapa inițială respectiv etapa caracteristică).

1⁰ Etapa inițială

În cadrul acestei etape, lungimea cursei de deformare l_{cd} este egală cu grosimea g a materialului semifabricatului, fiind dată de relația:

$$l_{cd} = g.$$
 (2.58)

Lucrul mecanic pentru etapa inițială se obține prin înlocuirea relațiilor (2.43) și (2.58) în (2.54), rezultând expresia:

$$L = \lambda \cdot g^{2} \cdot n \cdot \left\{ k \cdot \tau_{f} \cdot \left[g \cdot (1 + k_{ind}) \cdot tg \frac{\alpha}{2} + L \right] + 2 \cdot \sigma_{c} \cdot s \right\}. \quad (2.59)$$

2⁰ Etapa caracteristică

După cum s-a prezentat în etapa inițială expresia lungimii cursei de deformație, și în această etapă vom exprima lungimea cursei de deformație, prin expresia:

$$l_{cd} = \frac{l_{cr} - L}{2 \cdot tg \frac{\alpha}{2}} - g. \qquad (2.60)$$

În cadrul acestei etape expresia lucrului mecanic se va obține prin înlocuirea relațiilor (2.38) și (2.60) în (2.54), rezultând:

$$L = \lambda \cdot \mathbf{n} \cdot \mathbf{g} \cdot \left(\frac{\mathbf{l_{cr}} - \mathbf{L}}{2 \cdot \mathbf{tg}\frac{\alpha}{2}} - \mathbf{g}\right) \cdot \left[\mathbf{k} \cdot \tau_{\mathbf{f}} \cdot \mathbf{g} \cdot (\mathbf{l} + \mathbf{k_{ind}}) \cdot \mathbf{tg}\frac{\alpha}{2} + 2 \cdot \sigma_{\mathbf{c}} \cdot \mathbf{s}\right]. \quad (2.61)$$

Expresia lucrului mecanic maxim efectuat în timpul expandării cu un astfel de cuțit superior (v. fig.1.24 b) este dată de (2.59).

Studiul lucrului mecanic, la utilizarea unui cuțit superior profilat ca cel prezentat în fig.1.24 c, va fi exprimat prin mai multe relații care corespund etapelor de tăiere enumerate la determinarea forței de tăiere.

În aceste condiții, lucrul mecanic în cadrul etapei inițiale la tăierea cu muchia tăietoare semirotundă va fi exprimat prin relațiile (2.62) și (2.63), care sunt obținute prin înlocuirea relațiilor (2.48), (2.49) și a lungimilor curselor de deformație din cadrul acestei etape, depinzând de

unghiul momentan φ' (pentru prima parte a tăierii prezentată la determinarea forței $l_{cd1} = 0, 4 \cdot g$, iar pentru partea a doua a tăierii $l_{cd2} = 0, 6 \cdot g$), în (2.54).

$$L_{\text{sril}} = \lambda \cdot 0.8 \cdot n \cdot g \cdot \left[r^2 \cdot k \cdot \tau_f \cdot \left(1 + \frac{\pi \cdot \phi'}{3600} \right) \cdot \sin^3 \frac{\phi'}{2} \cdot \cos \frac{\phi'}{2} + \sigma_c \cdot s \cdot g \right], \quad (2.62)$$

$$L_{sri2} = 0.6 \cdot \lambda \cdot n \cdot g^2 \cdot \left\{ k \cdot \tau_{f} \cdot \left[r \cdot \left(1 + \frac{\pi \cdot \varphi'}{3600} \right) \cdot \sin \varphi' + \sqrt{0.4 \cdot g \cdot \left(2 \cdot r - 0.4 \cdot g \right)} \right] + 2 \cdot \sigma_{c} \cdot s \right\}.$$
(2.63)

Etapa caracteristică a tăierii, cu muchia tăietoare semirotundă a cuțitului superior (v. fig. 2.29), necesită un lucru mecanic care va fi exprimat prin relația (2.64), obținută prin înlocuirea relației (2.51) în relația (2.54), cu valoarea lungimii cursei de deformație $l_{cd} = r - g$:

$$L_{\rm src} = \mathbf{n} \cdot \mathbf{g} \cdot \lambda \cdot (\mathbf{r} - \mathbf{g}) \cdot \left[\mathbf{r} \cdot \mathbf{k} \cdot \tau_{\rm f} \cdot \left(1 + \frac{\pi \cdot \varphi'}{3600} \right) \cdot \sin\varphi' + 2 \cdot \sigma_{\rm c} \cdot \mathbf{s} \right].$$
(2.64)

Ca și la determinarea forței de tăiere pentru cazul când tăierea se realizează cu muchiile tăietoare orizontale și înclinate ale profilului dintelui (v. fig. 2.29), lucrul mecanic va fi determinat pentru cele două etape ale tăierii (etapa inițială și etapa caracteristică).

În cadrul etapei inițiale expresia lucrului mecanic se va obține prin înlocuirea relației (2.52) în (2.54). Lungimea cursei de deplasare a cuțitului superior în cadrul acestei etape este $l_{cd} = g$.

$$L = \lambda \cdot n \cdot g^{2} \cdot \left\{ k \cdot \tau_{f} \cdot \left[g \cdot (1 + k_{\hat{i}nd}) \cdot tg \frac{\alpha}{2} + L - 2 \cdot r \right] + 2 \cdot \sigma_{c} \cdot s \right\}.$$
 (2.65)

Etapa caracteristică a tăierii cu muchiile tăietoare orizontale și înclinate necesită un lucru mecanic care este exprimat prin relația (2.66), obținută înlocuind (2.38) în (2.54) și a lungimii cursei de deformație $l_{cd} = \frac{l_{cr} - L}{2} \cdot tg\phi - g$.

$$L = \lambda \cdot n \cdot g \cdot \left(\frac{l_{cr} - L}{2} \cdot tg \, \varphi - g\right) \cdot \left[k \cdot \tau_{f} \cdot g \cdot (1 + k_{ind}) \cdot tg \, \frac{\alpha}{2} + 2 \cdot \sigma_{c} \cdot s\right]. \quad (2.66)$$

2.3 Determinarea puterii în procesul de expandare

Cunoscànd lucrul mecanic dintr-un proces se poate determina puterea utilă consumată, conform [14], [29] și [28], prin:

$$P_{u} = \frac{L \cdot n_{c}}{6120} \tag{2.67}$$

unde:

- P_u - puterea utilă [kW];

- L - lucrul mecanic în procesul de expandare;

- n_c – numărul de curse duble pe minut ale berbecului mașinii.

Fiind cunoscută relația de calcul a lucrului mecanic din procesul de expandare se poate determina puterea utilă consumată, în cazul utilizării unui cuțit superior prezentat în fig.1.24 a, având muchiile tăietoare înclinate, prin înlocuirea relației (2.56) în (2.67), rezultând:

$$P_{u} = \lambda \cdot n \cdot g \cdot \frac{l_{cr} \cdot n_{c}}{12240} \cdot ctg \frac{\alpha}{2} \cdot \left[k \cdot \tau_{f} \cdot g \cdot (1 + k_{ind}) \cdot tg \frac{\alpha}{2} + 2 \cdot \sigma_{c} \cdot s \right]. \quad (2.68)$$

Puterea medie ce trebuie aplicată berbecului, pentru realizarea deplasării acestuia în procesul de expandare, va fi mai mare decât puterea utilă. În acest caz, puterea medie va fi dată de:

$$\mathbf{P} = \mathbf{k}_{1} \cdot \frac{\mathbf{P}_{\mathbf{u}}}{\eta}, \qquad (2.69)$$

unde:

- P – puterea medie;

- k_1 - coeficient ce ține seama de regimul de lucru și de o oarecare rezervă de putere;

$$k_1 = 1, 3 \dots 1, 4$$

- η - randamentul mediu al mașinii.

$$\eta = 0,7 \dots 0,9$$

Inlocuind (2.68) în (2.69) obținem expresia puterii medii:

$$P = k_1 \cdot \frac{\lambda}{\eta} \cdot \frac{l_{cr} \cdot n_c}{12240} \cdot n \cdot g \cdot ctg \frac{\alpha}{2} \cdot \left[k \cdot \tau_f \cdot g \cdot (1 + k_{ind}) \cdot tg \frac{\alpha}{2} + 2 \cdot \sigma_c \cdot s \right]. \quad (2.70)$$

La obținerea tipului de tablă expandată, care necesită utilizarea unui cuțit superior profilat ce are forma frontală a dintelui prezentată în fig. 2.26, se vor stabili relațiile de calcul pentru puterea utilă și pentru puterea medie în cele două etape (inițială și caracteristică). Puterea utilă în etapa inițială are expresia, obținută înlocuind (2.59) în (2.67):

$$P_{u} = \frac{\lambda \cdot n \cdot g^{2} \cdot n_{c}}{6120} \cdot \left\{ k \cdot \tau_{f} \cdot \left[g \cdot (1 + k_{ind}) \cdot tg \frac{\alpha}{2} + L \right] + 2 \cdot \sigma_{c} \cdot s \right\} \quad (2.71)$$

În decursul aceleiași etape inițiale, puterea medie care trebuie aplicată berbecului se obține prin înlocuirea relației puterii utile dată de (2.71) în (2.69):

$$P = \frac{k_1}{\eta} \cdot \frac{\lambda \cdot n \cdot g^2 \cdot n_c}{6120} \cdot \left\{ k \cdot \tau_f \cdot \left[g \cdot (1 + k_{ind}) \cdot tg \ \frac{\alpha}{2} + L \right] + 2 \cdot \sigma_c \cdot s \right\}.$$
 (2.72)

Puterea utilă în cadrul etapei caracteristice se determină din (2.73), ce a rezultat în urma înlocuirii relației (2.61) în (2.67):

$$P_{u} = \frac{\lambda \cdot n \cdot g \cdot n_{c}}{6120} \cdot \left[\frac{l_{cr} - L}{2} \cdot ctg \frac{\alpha}{2} - g\right] \cdot \left[k \cdot \tau_{f} \cdot g \cdot (l + k_{ind}) \cdot tg \frac{\alpha}{2} + 2 \cdot \sigma_{c} \cdot s\right]. \quad (2.73)$$

Puterea medie necesară aplicată berbecului pentru a se realiza tăierea în decursul etapei caracteristice, cu tipul de cuțit studiat care are forma frontală a dintelui prezentată în fig. 2.26 se obține prin înlocuirea relației (2.73) în relația (2.67):

$$P = \frac{k_{l}}{\eta} \cdot \frac{\lambda \cdot n \cdot g \cdot n_{c}}{6120} \cdot \left[\frac{l_{cr} - L}{2} \cdot ctg\frac{\alpha}{2} - g\right] \cdot \left[k \cdot \tau_{f} \cdot g \cdot (l + k_{ind}) \cdot tg\frac{\alpha}{2} + 2 \cdot \sigma_{c} \cdot s\right]. \quad (2.74)$$

Pentru realizarea tablei expandate cu forma golurilor din fig. 1.3 d, se utilizează un cuțit superior ca în fig. 1.24 c, pentru care relațiile de calcul ale puterilor medii necesare în procesul de expandare, pentru fiecare etapă de tăiere studiată la determinarea forței și la determinarea lucrului mecanic, sunt (2.76), (2.78), (2.80), (2.82) și (2.84). Acestea se obțin prin înlocuirea lucrurilor mecanice, corespunzătoare fiecărei etape considerate, în relația (2.67), obținându-se puterile utile corespunzătoare. Înlocuirea lor în relația (2.69) oferă puterile medii.

Pentru prima parte a etapei inițiale din cadrul tăierii cu muchia tăietoare semirotundă puterea utilă este:

$$P_{usril} = \frac{\lambda \cdot n \cdot n_c \cdot g}{7650} \cdot \left[4 \cdot k \cdot \tau_f \cdot r^2 \cdot \left(1 + \frac{\pi \cdot \phi'}{3600} \right) \cdot \sin^3 \frac{\phi'}{2} \cdot \cos \frac{\phi'}{2} + \sigma_c \cdot s \cdot g \right]. \quad (2.75)$$

Puterea medie din cadrul acestei etape este:

$$P_{\text{srl}} = \frac{k_1 \cdot \lambda \cdot n_c \cdot n \cdot g}{7650\eta} \cdot \left[4 \cdot k \cdot r^2 \cdot \tau_f \cdot \left(1 + \frac{\pi \cdot \phi'}{3600} \right) \cdot \sin^3 \frac{\phi'}{2} \cdot \cos \frac{\phi'}{2} + \sigma_c \cdot s \cdot g \right]. \quad (2.76)$$

În partea a doua a etapei inițiale de tăiere cu muchia tăietoare semirotundă, puterea utilă este dată de relația:

$$P_{\text{usri2}} = \frac{\lambda \cdot n_{\text{c}} \cdot n \cdot g^2}{10200} \cdot \left\{ k \cdot \tau_{\text{f}} \cdot \left[r \cdot \sin \phi' \cdot \left(1 + \frac{\pi \cdot \phi'}{3600} \right) + \sqrt{Q4 \cdot g \cdot (2 \cdot r - Q4 \cdot g)} \right] + 2 \cdot \sigma_{\text{c}} \cdot s \right\}. (2.77)$$

În această etapă, puterea medie este:

$$P_{\text{sri2}} = \frac{\lambda \cdot k_{1} \cdot n_{\text{c}} \cdot n \cdot g^{2}}{10200\eta} \cdot \left\{ k \cdot \tau_{f} \cdot \left[r \cdot \sin \phi \cdot \left(1 + \frac{\pi \cdot \phi}{3600} \right) + \sqrt{0.4 \cdot g \cdot (2 \cdot r - 0.4 \cdot g)} \right] + 2 \cdot \sigma_{\text{c}} \cdot s \right\}.$$
(2.78)

Puterea utilă în cadrul etapei caracteristice la această tăiere (tăiere cu muchia tăietoare semirotundă) este:

$$P_{usrc} = \frac{\lambda \cdot n_{c} \cdot n \cdot g \cdot (r - g)}{3060} \cdot \left\{ k \cdot \tau_{f} \cdot \frac{r}{2} \cdot \left(1 + \frac{\pi \cdot \phi'}{3600} \right) \cdot \sin\phi' + \sigma_{c} \cdot s \right\}, \quad (2.79)$$

iar puterea medie este dată de relația:

$$P_{\rm src} = \frac{\lambda \cdot k_1 \cdot n_{\rm c} \cdot n \cdot g \cdot (r-g)}{3060 \, \eta} \cdot \left\{ k \cdot \tau_{\rm f} \cdot \frac{r}{2} \cdot \left(1 + \frac{\pi \cdot \phi'}{3600} \right) \cdot \sin\phi' + \sigma_{\rm c} \cdot s \right\}.$$
(2.80)

Tăierea cu muchiile tăietoare orizontală și înclinată ale profilului dintelui, în etapa inițială necesită o putere utilă dată de relația:

$$P_{u} = \frac{\lambda \cdot n_{c} \cdot n \cdot g^{2}}{6120} \cdot \left\{ k \cdot \tau_{f} \cdot \left[g \cdot (1 + k_{ind}) \cdot tg \frac{\alpha}{2} + L - 2 \cdot r \right] + 2 \cdot \sigma_{c} \cdot s \right\}, \quad (2.81)$$

iar puterea medie în această etapă are expresia:

$$\mathbf{P} = \frac{\lambda \cdot \mathbf{k}_{1} \cdot \mathbf{n}_{c} \cdot \mathbf{n} \cdot \mathbf{g}^{2}}{6120 \cdot \eta} \cdot \left\{ \mathbf{k} \cdot \tau_{f} \cdot \left[\mathbf{g} \cdot (\mathbf{l} + \mathbf{k}_{ind}) \cdot \mathbf{tg} \frac{\alpha}{2} + \mathbf{L} - 2 \cdot \mathbf{r} \right] + 2 \cdot \sigma_{c} \cdot \mathbf{s} \right\}.$$
 (2.82)

Etapa caracteristică, la tăierea cu muchiile tăietoare orizontale și înclinate ale dintelui, necesită o putere utilă dată de relația:

$$P_{u} = \frac{\lambda \cdot n \cdot g \cdot n_{c} \cdot \left(\frac{l_{cr} - L}{2} \cdot tg\varphi - g\right)}{6120} \cdot \left[k \cdot \tau_{f} \cdot g \cdot (1 + k_{ind}) \cdot tg\frac{\alpha}{2} + 2 \cdot \sigma_{c} \cdot s\right]. \quad (2.83)$$

În cadrul acestei etape caracteristice, puterea medie are expresia:

$$P = \frac{\lambda \cdot k_{1} \cdot n \cdot g \cdot n_{c} \cdot \binom{l_{cr} - L}{2} \cdot t_{g} \varphi - g}{6120 \cdot \eta} \cdot \left[k \cdot \tau_{f} \cdot g \cdot (l + k_{ind}) \cdot t_{g} \frac{\alpha}{2} + 2 \cdot \sigma_{c} \cdot s \right]. \quad (2.84)$$

2.4 Concluzii

1. Tabla expandată are profil de grătar, rezultat în urma unor crestări combinate cu îndoirea și întinderea materialului semifabricatului.

2. Din descrierea procesului de crestare, prezentat în § 2.1, crestarea apare ca un caz particular al ștanțării.

3. Îndoirea semifabricatului se realizează cu tensionarea și modificarea lungimii straturilor de material din zona îndoirii. Astfel, după îndoire, în funcție de lungime, se constată că straturile de material situate spre exteriorul părții îndoite se întind în direcție longitudinală, producând alungirea materialului, iar straturile de material dinspre interiorul părții îndoite se scurtează, producând compresiunea materialului.

4. Lungimile cu care straturile de material se lungesc și se comprimă sunt date de relația (2.4) în funcție de coeficientul de poziție al fibrei neutre K.

Datorită faptului că în literatura de specialitate citată în bibliografie, valorile coeficientul de poziție al fibrei neutre K sunt date ca valori determinate experimental, am considerat necesar determinarea unui polinom de interpolare de tip Lagrange, care să descrie aproximativ variația acestui coeficient.

5. Expresia matematică a deformației relative a materialului ce se alungește în timpul procesului de expandare, dată de relația (2.8), este rezultatul corelării elementelor de lungime ce fac parte din expresia matematică generală a deformației relative ε , cu elementele de lungime ale semifabricatului ce se alungește.

6. În timpul procesului de crestare al semifabricatului se dezvoltă o tensiune de forfecare a cărei expresie matematică este dată de relația (2.13), întâlnită în literatura de specialitate, studiată și prezentată în bibliografie, sub diferite forme. Acestei relații de calcul a tensiunii am

considerat că ar trebui să-i prezint și o variație grafică în funcție de doi parametrii (adâncimea de pătrundere a muchiei tăietoare a sculei x și jocul dintre cuțite **j**) variabili în timp.

Analizând variația grafică a tensiunii reale de forfecare dată de relația (2.13) se observă că o adâncime de pătrundere x mică a muchiei cuțitului superior în semifabricat, creează o tensiune reală de forfecare (τ_{real}) de valori mici, iar cu creșterea adâncimii de pătrundere a muchiei cuțitului x se determină și creșterea lui τ_{real} .

Modificarea jocului dintre cuțite j induce variația tensiunii reale de forfecare τ_{real} astfel:

- valori mici ale jocului dintre cuțite j, determină valori mari ale tensiunii reale de forfecare τ_{real} ;

- odată cu creșterea jocului dintre cuțite j, valoarea tensiunii reale de forfecare τ_{real} are o descreștere lentă.

În cazul oricărui proces de tăiere, jocul dintre cuțite j poate crește până la o valoare maximă, la care valoarea tensiunii reale de forfecare τ_{real} este mai mare sau egală cu valoarea tensiunii de forfecare a materialului.

7. Determinarea forței de tăiere din timpul procesului de expandare s-a realizat prin însumarea forțelor necesare pentru crestare, alungire și îndoire a materialului semifabricatului.

Relația de calcul a forței de tăiere dată de relația (2.38) este valabilă pentru forma cuțitului superior prezentat fig. 1.24 a, fiind considerată relație de bază pentru forțele de tăiere ale cuțitelor superioare ce au profilele prezentate în fig. 1.24 b și c.

Forțele de tăiere necesare pentru realizarea expandării cu ajutorul cuțitelor superioare profilate, prezentate în fig. 1.24 b și c, sunt determinate ținându-se cont de cele două etape ale tăierii (etapa inițială și etapa caracteristică).

Studiul forței de tăiere, pe partea semirotundă a cuțitului superior ce are forma frontală a dintelui prezentată în fig. 2.29, s-a făcut pentru cele două etape ale tăierii în funcție de variația unghiului de înclinare momentan ϕ' pe care-l face tangenta la partea semirotundă a tăișului cu orizontala.

8. În decursul determinării relației de calcul a forței de tăiere dată de relația (2.38), s-a studiat și valoarea maximă pe care o poate avea unghiul dintre flancurile ce formează dintele cuțitului superior, ea fiind în funcție de alungirea relativă la rupere.

9. Pe baza relațiilor de calcul ale forțelor din procesul de expandare s-au determinat, pentru aceleași condiții ca și forțele de tăiere, lucrul mecanic, puterea utilă și puterea medie pentru fiecare tip de cuțit.

Capitolul III

Caracteristicile tehnice și tehnologice ale tablei expandate

3.1 Rețeaua de crestături

Tabla expandată se obține, după cum am mai arătat, în urma unor succesiuni de mișcări ale mașinii de expandat, ce realizează o rețea de goluri obținute în urma unor crestături.

3.1.1 Rețeaua de crestături - descrierea matricială

Considerând două axe de simetrie I-I și II-II perpendiculare între ele, așezate peste rețeaua de crestături realizată pe suprafața semifabricatului, constatăm că această rețea are o dispunere simetrică față de fiecare dintre cele două axe de simetrie, fapt ilustrat în fig. 3.1.

Fig. 3.1 Dispunerea crestăturilor față de axele de simetrie
Rețeaua de crestături este alcătuită din rânduri cu crestături, care au distanțele dintre ele constante, notate cu s. Rândurile cu crestături se mai numesc și linii de crestare.

Orice rând cu crestături realizat pe suprafața semifabricatului conține același număr de crestături având aceleași lungimi I_{cr} , așezate la o distanță constantă p una față de cealaltă.

La realizarea rețelei de crestături se ține cont de faptul că una dintre extremitățile rândului cu crestături se află alternativ pe una din laturile laterale ale semifabricatului. Mijlocul distanței dintre două crestături alăturate ale aceluiași rând cu crestături se află la mijlocul unei crestăturii de pe rândul cu crestături alăturat.

Pentru exemplificarea celor prezentate anterior, în fig. 3.2 am considerat un semifabricat de lățime **B** pe suprafața căruia am reprezentat un număr de rânduri cu crestături având un număr \mathbf{n}_{cr} de crestături pe fiecare rând, cu lungimile crestăturilor \mathbf{l}_{cr} , dispuse la o distanță egală s unul față de celălalt.

Lățimea B a semifabricatului are expresia generală:

$$B = n_{cr} \cdot l_{cr} + n_{cr} \cdot p + \frac{l_{cr}}{2} - \frac{p}{2}$$
(3.1)

În cazul în care atribuim fiecărei crestături valoarea 1 și fiecărui spațiu plin dintre două crestături alăturate de pe același rând cu crestături valoarea 0, rețeaua de crestături se poate scrie ca o matrice ce are m linii și n coloane. Numărul n de coloane al matricei este dat de numărul de crestături \mathbf{n}_{cr} plus numărul de spații dintre crestături \mathbf{n}_{cr} ($\mathbf{n}_{cr} = \mathbf{n}_{cr}$), plus unul corespunzător frontierei din dreapta plăcii ($\mathbf{n} = 2 \cdot \mathbf{n}_{cr} + 1$), iar numărul de linii m al matricei este dat de numărul de rânduri cu crestături \mathbf{r}_{cr} ($\mathbf{m} = \mathbf{r}_{cr}$).

În baza celor prezentate în aliniatul anterior, matricea M_{cr} , corespunzătoare rețelei de crestături din figura 3.2, este:

$$M_{cr} = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & 1 \\ \vdots & & & & & & & \\ \vdots & & & & & & & & \\ 1 & 0 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & \frac{1}{2} \\ \frac{1}{2} & 0 & 1 & 0 & 1 & \cdots & 0 & 1 & 0 & 1 \end{pmatrix}$$
(3.2)

În general, descrierea matricială a unei rețele de crestături, obținută prin metoda de mai sus, va avea toate elementele egale cu 1 sau 0 în alternanță pe orizontală, cu excepția primei coloane și a ultimeia în care se observă alternanța valorilor 1 și $\frac{1}{2}$. Celelalte coloane sunt constante, fie având toate elementele 1 sau toate 0. Valorile $\frac{1}{2}$ apar datorită limitării structurii în punctul $\frac{1}{2}$ - $\frac{p}{2}$ măsurat de la prima, respectiv ultima, crestătură completă. Valoarea $\frac{1}{2}$ se poate înlocui cu o altă valoare subunitară în funcție de poziția marginii structurii față de prima și de ultima crestătură completă.

3.1.2 Rețeaua de crestături - descrierea geometrică

Tabla, obținută printr-un proces de expandare, se observă că este formată din suprafețe plane, ce sunt racordate între ele prin suprafețe conice. În acest paragraf vom descrie fiecare tip de suprafață care compune o structură numită tablă expandată. Vom alege cazul structurii realizate cu un cuțit superior de forma celui prezentat în fig. 1.24 a, celelalte studiindu-se analog.

I Suprafetele plane

Ecuația plăcii plane, care se supune procesului de expandare, este z = 0.

Introducem următoarele notații:

- h_x pasul pe Ox;
- h_y pasul pe Oy;
- h_z pasul pe Oz;
- q semidistanța dintre celule.

Elementele h_x , h_y și q sunt numere reale pozitive, iar h_z este un număr real negativ, față de sistemul axelor de coordonate tridimensional ales.

Semnificațiile fizice ale acestor numere sunt după cum urmează:

 h_x – lungimea unei crestături + lungimea unui pas dintre două crestături alăturate;

 h_v – distanța dintre două rânduri de crestături succesive;

 h_z – distanța la care se află punctul în urma deplasării pe verticală datorită efectuării a doi pași de crestare succesivi față de poziția de zero (poziția avută înaintea primului pas dintre cei doi);

q – jumătate din distanța dintre două crestături alăturate de pe aceeași linie de crestare.

Folosind notațiile din paragraful precedent, putem scrie că $h_x = l_{cr} + p$, iar $h_y = D$, iar $h_z = 2 \cdot (l_{cd} - R)$, unde R este revenirea elastică a materialului.

Reprezentarea grafică a plăcii supuse expandării, raportată la elementele h_x , h_y și q se prezintă în fig. 3.3.

Fig. 3.3 Reprezentarea grafică a plăcii supuse expandării

În cele ce urmează ne vom opri asupra geometriei unei celule, care se formează în momentul expandării prin tăierea executată pe segmentul de dreaptă determinat de punctele din planul z = 0, având coordonatele în plan ((j-1)h_x, (k+1)h_y) și (jh_x, (k+1)h_y). Această celulă este prezentată în fig. 3.4.

Fig. 3.4 Geometria celulei expandate

Considerăm că, în urma executării crestăturii (înaintarea cuțitului urmată de revenirea elastică a materialului) pe linia $y = kh_y$, punctul de abscisă $x = jh_x - \frac{h_x}{2}$ s-a deplasat pe verticală cu $u = \frac{h_z}{2}$ unități de măsură, astfel încât crestarea pe linia $y = (k+1)h_y$ va avea drept consecință coborârea punctului de abscisă $x = jh_x - \frac{h_x}{2}$ cu încă $h_z - u = \frac{h_z}{2}$ unități de măsură.

Celula realizată în urma expandării, prezentată în fig. 3.4, este limitată de patru plane notate cu $P_1 = (ABC)$, $P_2 = (CDE)$, $P_3 = (DFG)$ și $P_4 = (GHK)$ care au ecuațiile și normalele la acestea date de expresiile care se vor determina în continuare.

Ecuația planului P_1 se determină din observația că acest plan trece prin punctele A, B și C, unde:

$$A\left(j \cdot h_{x} - \frac{h_{x}}{2} - q, \ k \cdot h_{y}, \ \frac{k}{2} \cdot h_{z}\right),$$
$$B\left((j-1) \cdot h_{x}, \ k \cdot h_{y}, \ \frac{k+1}{2} \cdot h_{z}\right),$$
$$C\left((j-1) \cdot h_{x} + q, \ (k+1) \cdot h_{y}, \ \frac{k+1}{2} \cdot h_{z}\right).$$

Atunci planul se reprezintă, sub forma de determinant, astfel:

$$\begin{vmatrix} \mathbf{x} - \mathbf{x}_{\mathbf{A}} & \mathbf{y} - \mathbf{y}_{\mathbf{A}} & \mathbf{z} - \mathbf{z}_{\mathbf{A}} \\ \mathbf{x}_{\mathbf{B}} - \mathbf{x}_{\mathbf{A}} & \mathbf{y}_{\mathbf{B}} - \mathbf{y}_{\mathbf{A}} & \mathbf{z}_{\mathbf{B}} - \mathbf{z}_{\mathbf{A}} \\ \mathbf{x}_{\mathbf{C}} - \mathbf{x}_{\mathbf{A}} & \mathbf{y}_{\mathbf{C}} - \mathbf{y}_{\mathbf{A}} & \mathbf{z}_{\mathbf{C}} - \mathbf{z}_{\mathbf{A}} \end{vmatrix} = 0,$$

ceea ce devine, prin înlocuire și scăderea liniei a doua din cea de-a treia:

$$\begin{vmatrix} x - j \cdot h_x + \frac{h_x}{2} + q & y - k \cdot h_y & z - \frac{k}{2} \cdot h_z \\ q - \frac{h_x}{2} & 0 & \frac{h_z}{2} \\ q & h_y & 0 \end{vmatrix} = 0.$$

După dezvoltarea acestui determinant se obține ecuația planului P₁ sub forma:

$$-\frac{h_{z}h_{y}}{2} \cdot x + \frac{h_{x}q}{2} \cdot y + h_{y}\left(q - \frac{h_{x}}{2}\right) \cdot z + \frac{-1 - 2k}{2}h_{y}h_{x}q + \frac{2j + k - 1}{4}h_{x}h_{y}h_{z} = 0$$
(3.3)

Direcția normalei la planul P_1 , după cum rezultă din ecuația sa, este:

$$\overline{N_1}\left(-\frac{h_zh_y}{2}, \frac{h_zq}{2}, h_y\left(q - \frac{h_x}{2}\right)\right).$$
(3.4)

Ecuația planului P_2 se determină din observația că acest plan trece prin punctele C, D și E, unde:

$$C\left((j-1)\cdot h_{x}+q, (k+1)\cdot h_{y}, \frac{k+1}{2}\cdot h_{z}\right),$$
$$D\left(j\cdot h_{x}-\frac{h_{x}}{2}, (k+1)\cdot h_{y}, \frac{k+2}{2}\cdot h_{z}\right),$$
$$E\left(j\cdot h_{x}-\frac{h_{x}}{2}-q, (k+2)\cdot h_{y}, \frac{k+2}{2}\cdot h_{z}\right).$$

Atunci planul se reprezintă, sub forma de determinant, astfel:

$$\begin{vmatrix} x - x_{C} & y - y_{C} & z - z_{C} \\ x_{D} - x_{C} & y_{D} - y_{C} & z_{D} - z_{C} \\ x_{E} - x_{D} & y_{E} - y_{D} & z_{E} - z_{D} \end{vmatrix} = 0,$$

ceea ce devine, prin înlocuire:

$$\begin{vmatrix} x - (j-1) \cdot h_x - q & y - (k+1) \cdot h_y & z - \frac{k+1}{2} \cdot h_z \\ \frac{h_x}{2} - q & 0 & \frac{h_z}{2} \\ -q & h_y & 0 \end{vmatrix} = 0.$$

După dezvoltarea acestui determinant se obține ecuația planului P_2 sub forma:

$$-\frac{h_{y}h_{z}}{2} \cdot x - \frac{h_{z}q}{2} \cdot y + h_{y}\left(\frac{h_{x}}{2} - q\right) \cdot z + \frac{2j - k - 2}{4}h_{x}h_{y}h_{z} + \frac{2k + 3}{2}qh_{y}h_{z} = 0.$$
(3.5)

Direcția normalei la planul P2, după cum rezultă din ecuația sa, este:

$$\overline{N_{2}}\left(-\frac{h_{z}h_{y}}{2},-\frac{qh_{z}}{2},h_{y}\left(\frac{h_{x}}{2}-q\right)\right).$$
(3.6)

Ecuația planului P_3 se determină din observația că acest plan trece prin punctele D, F și G, unde:

$$D\left(j \cdot h_{x} - \frac{h_{x}}{2}, (k+1) \cdot h_{y}, \frac{k+2}{2} \cdot h_{z}\right),$$

$$F\left(j \cdot h_{x} - \frac{h_{x}}{2} + q, (k+2) \cdot h_{y}, \frac{k+2}{2} \cdot h_{z}\right),$$

$$G\left(j \cdot h_{x} - q, (k+1) \cdot h_{y}, \frac{k+1}{2} \cdot h_{z}\right).$$

Atunci planul se reprezintă, sub forma de determinant astfel:

$$\begin{vmatrix} \mathbf{x} - \mathbf{x}_{\mathbf{D}} & \mathbf{y} - \mathbf{y}_{\mathbf{D}} & \mathbf{z} - \mathbf{z}_{\mathbf{D}} \\ \mathbf{x}_{\mathbf{F}} - \mathbf{x}_{\mathbf{D}} & \mathbf{y}_{\mathbf{F}} - \mathbf{y}_{\mathbf{D}} & \mathbf{z}_{\mathbf{F}} - \mathbf{z}_{\mathbf{D}} \\ \mathbf{x}_{\mathbf{G}} - \mathbf{x}_{\mathbf{D}} & \mathbf{y}_{\mathbf{G}} - \mathbf{y}_{\mathbf{D}} & \mathbf{z}_{\mathbf{G}} - \mathbf{z}_{\mathbf{D}} \end{vmatrix} = 0,$$

ceea ce devine, prin înlocuire:

$$\begin{vmatrix} x - j \cdot h_x + \frac{h_x}{2} & y - (k+1) \cdot h_y & z - \frac{k+2}{2} \cdot h_z \\ q & h_y & 0 \\ \frac{h_x}{2} - q & 0 & -\frac{h_z}{2} \end{vmatrix} = 0.$$

După dezvoltarea acestui determinant se obține ecuația planului P₃ sub forma:

$$-\frac{h_{z}h_{y}}{2} \cdot x + \frac{h_{z}q}{2} \cdot y - h_{y}\left(\frac{h_{x}}{2} - q\right) \cdot z + \frac{2j + k + 1}{4}h_{x}h_{y}h_{z} - \frac{2k + 3}{2}qh_{y}h_{z} = 0.$$
(3.7)

Direcția normalei la planul P₃, după cum rezultă din ecuația sa, este:

$$\overline{N_{3}}\left(-\frac{h_{z}h_{y}}{2},\frac{h_{z}q}{2},-h_{y}\left(\frac{h_{x}}{2}-q\right)\right).$$
(3.8)

Ecuația planului P_4 se determină din observația că acest plan trece prin punctele G, H și K, unde:

$$G\left(j \cdot h_{x} - q, (k+1) \cdot h_{y}, \frac{k+1}{2} \cdot h_{z}\right),$$

$$H\left(j \cdot h_{x}, k \cdot h_{y}, \frac{k+1}{2} \cdot h_{z}\right),$$

$$K\left(j \cdot h_{x} - \frac{h_{x}}{2} + q, k \cdot h_{y}, \frac{k}{2} \cdot h_{z}\right).$$

Atunci planul se reprezintă, sub forma de determinant astfel:

$$\begin{vmatrix} x - x_{G} & y - y_{G} & z - z_{G} \\ x_{H} - x_{G} & y_{H} - y_{G} & z_{H} - z_{G} \\ x_{K} - x_{G} & y_{K} - y_{G} & z_{K} - z_{G} \end{vmatrix} = 0,$$

ceea ce devine, prin înlocuire și scăderea liniei a doua din a treia:

$$\begin{vmatrix} x - j \cdot h_x + q & y - (k+1) \cdot h_y & z - \frac{k+1}{2} \cdot h_z \\ q & -h_y & 0 \\ -\frac{h_x}{2} + q & 0 & -\frac{h_z}{2} \end{vmatrix} = 0.$$

După dezvoltarea acestui determinant se obține ecuația planului P_4 sub forma:

$$-\frac{h_{y}h_{z}}{2} \cdot x - \frac{qh_{z}}{2} \cdot y + h_{y}\left(\frac{h_{x}}{2} - q\right) \cdot z + \frac{2k+1}{2}qh_{y}h_{z} + \frac{2j-k-1}{4}h_{x}h_{y}h_{z} = 0.$$
(3.9)

Direcția normalei la planul P₄, după cum rezultă din ecuația sa, este:

$$\overline{N_4}\left(-\frac{h_xh_y}{2},-\frac{h_xq}{2},\ h_y\left(\frac{h_x}{2}-q\right)\right). \tag{3.10}$$

Ecuația planului P₅ determinat de punctele A, X și M este:

$$z = \frac{k}{2} h_z \qquad (3.11)$$

Revenind la semnificația tehnică a notațiilor, adică:

$$h_x = l_{cr} + p, h_y = s, h_z = 2(l_{cd} - R), q = \frac{P}{2}$$

cele de mai sus demonstrează următoarea proprietate:

Proprietatea 3.2.1. O placă de tablă expandată este formată din trei tipuri de suprafețe plane: una paralelă cu planul xoy, iar celelalte două având normalele $\overline{N_1} = \overline{N_3}$ și $\overline{N_2} = \overline{N_4}$ unde:

$$\overline{N}_{1}\left(s(R-l_{cd}),\frac{p}{2}(l_{cd}-R),\frac{-sl_{cr}}{2}\right)$$
$$\overline{N}_{2}\left(s(R-l_{cd}),\frac{p}{2}(R-l_{cd}),\frac{sl_{cr}}{2}\right)$$

П Suprafețele conice

Fie punctul M
$$\left(jh_{x} - \frac{h_{x}}{2}, (k+1)h_{y}, \frac{k}{2}h_{z}\right)$$
.

Planul (P_1) nu conține punctul M, deoarece, la crestare placa plană se îndoaie astfel încât rezultă o suprafață conică având vârful în punctul A

și fiind tangentă la planul orizontal (KAM) de ecuație $z = \frac{k}{2}h_z$ și planul (P₁). Suprafața conică are generatoarea AM drept dreaptă de tangență cu planul (KAM). Ecuația dreptei AM este:

$$\frac{x - x_{A}}{x_{M} - x_{A}} = \frac{y - y_{A}}{y_{M} - y_{A}} = \frac{z - z_{A}}{z_{M} - z_{A}},$$

$$\frac{x - jh_{x} + \frac{h_{x}}{2} + q}{q} = \frac{y - kh_{y}}{h_{y}} = \frac{z - \frac{k}{2}h_{z}}{0},$$

$$\begin{cases} xh_{y} - qy + \frac{1 - 2j}{2}h_{x}h_{y} + q(k + 1)h_{y} = 0\\ z = \frac{k}{2}h_{z} \end{cases}$$
(3.12)

Pentru a scrie ecuația suprafeței conice, care se observă că are curba directoare parabolică, va trebui să determinăm această curbă. Ea este situată în planul de ecuație $y = (k + 1)h_y$, având vârful în punctul M și conținând punctele C și G. Căutăm această parabolă, pe care o vom nota cu II, sub forma:

$$\Pi : \begin{cases} z = a \left[(x + \zeta)^2 + \zeta \right] \\ y = (k + 1)h_y \end{cases}$$
(3.13)

Deoarece vârful acestei parabole este punctul M, obținem:

$$\zeta = -jh_{x} + \frac{h_{x}}{2},$$
$$\zeta = \frac{k}{2}h_{z},$$

astfel încât formula (3.13) devine:

$$\Pi: \begin{cases} z = f(x) = a \left[\left(x - jh_x + \frac{h_x}{2} \right)^2 + \frac{k}{2}h_z \right] \\ y = (k+1)h_y \end{cases}$$
(3.14)

Ecuația (3.14) reprezintă parabola căutată.

Deoarece punctul C aparține parabolei, coordonatele acestuia trebuie să verifice ecuația (3.14), adică:

$$\frac{\mathbf{k}+\mathbf{l}}{2}\mathbf{h}_{\mathbf{Z}} = \mathbf{a}\left[\left(\mathbf{q}-\frac{\mathbf{h}_{\mathbf{X}}}{2}\right)^{2}+\frac{\mathbf{k}}{2}\mathbf{h}_{\mathbf{Z}}\right],$$

De aici rezultă:

$$a = \frac{2(k+1)h_{z}}{(2q-h_{x})^{2} + 2kh_{z}}.$$

Astfel, ecuația parabolei (3.13) cu condiția să conțină punctele C și G este:

$$\Pi: \begin{cases} z = \frac{2(k+1)h_{z}}{(2q-h_{x})^{2} + 2kh_{z}} \left[\left(x - jh_{x} + \frac{h_{x}}{2} \right)^{2} + \frac{k}{2}h_{z} \right] \\ y = (k+1)h_{y} \end{cases}$$
(3.15)

Formula (2.15) oferă raza minimă de curbare a acestei parabole în zona vârfului său M, în funcție de elementele de bază implicate în procesul tehnologic.

Suprafața conică are vârful A
$$\left(j \cdot h_x - \frac{h_x}{2} - q, k \cdot h_y, \frac{k}{2} \cdot h_z\right)$$
,

care este intersecția planelor paralele cu planele de coordonate, rezultând:

$$\begin{cases} \mathbf{x} = \mathbf{j}\mathbf{h}_{\mathbf{X}} - \frac{\mathbf{h}_{\mathbf{X}}}{2} - \mathbf{q} \\ \mathbf{y} = \mathbf{k}\mathbf{h}_{\mathbf{y}} \\ \mathbf{z} = \frac{\mathbf{k}}{2}\mathbf{h}_{\mathbf{z}} \end{cases} \stackrel{\mathsf{def}}{=} = 0 \\ \begin{cases} \mathbf{x} - \mathbf{j}\mathbf{h}_{\mathbf{X}} + \frac{\mathbf{h}_{\mathbf{X}}}{2} + \mathbf{q} = 0 \\ \mathbf{y} - \mathbf{k}\mathbf{h}_{\mathbf{y}} = 0 \\ \mathbf{z} - \frac{\mathbf{k}}{2}\mathbf{h}_{\mathbf{z}} = 0 \end{cases}$$

Ecuațiile generatoarelor conului sunt:

$$\begin{cases} x - jh_{x} + \frac{h_{x}}{2} + q = \omega \left(z - \frac{k}{2} h_{z} \right) \\ y - kh_{y} = \tau \left(z - \frac{k}{2} h_{z} \right) \end{cases}, \quad \omega, \tau \in \Re.$$

Generatoarele se sprijină pe parabola dată de relația (3.15), rezultând:

$$\left[x - jh_x + \frac{h_x}{2} + q = \omega\left(z - \frac{k}{2}h_z\right)\right]$$
(3.16)

$$\begin{cases} y - kh_y = \tau \left(z - \frac{k}{2} h_z \right) \\ (k+1) \end{pmatrix}$$
(3.17)

$$z = \frac{\frac{(k+1)}{2}h_z}{\left(q - \frac{h_x}{2}\right)^2 + \frac{k}{2}h_z} \left[\left(x - jh_x + \frac{h_x}{2}\right)^2 + \frac{k}{2}h_z \right]$$
(3.18)

$$y = (k+1)h_y$$
(3.19)

Înlocuind relația (3.19) în (3.17), se obține:

$$z = \frac{h_y}{\tau} + \frac{k}{2}h_z. \qquad (3.20)$$

Înlocuind relația (3.20) în (3.16), găsim:

$$x = jh_{x} - \frac{h_{x}}{2} - q + \frac{\omega}{\tau}h_{y}.$$
 (3.21)

Înlocuind relațiile (3.20) și (3.21) în (3.18), găsim condiția de compatibilitate a sistemului de ecuații, care exprimă proprietatea ca generatoarele conului să se sprijine pe parabola directoare.

$$\frac{h_{y}}{\tau} + \frac{k}{2}h_{z} = \frac{\frac{(k+1)}{2}h_{z}}{\left(q - \frac{h_{x}}{2}\right)^{2} + \frac{k}{2}h_{z}} \left[\left(\frac{\omega}{\tau}h_{y} - q\right)^{2} + \frac{k}{2}h_{z} \right]. (3.22)$$

Forma mai simplă a legii de mișcare a generatoarei este:

$$\frac{h_{y}}{\tau} - \frac{\frac{k+1}{2}h_{z}}{\left(q - \frac{h_{x}}{2}\right)^{2} + \frac{k}{2}h_{z}} \left(\frac{\omega}{\tau}h_{y} - q\right)^{2} = \frac{\frac{k}{2}h_{z}^{2} - \frac{k}{2}\left(q - \frac{h_{x}}{2}\right)^{2}h_{z}}{\left(q - \frac{h_{x}}{2}\right)^{2} + \frac{k}{2}h_{z}}.$$
 (3.23)

Din relația (3.16) rezultă:

$$\omega = \frac{x - jh_{x} + \frac{h_{x}}{2} + q}{z - \frac{k}{2}h_{z}}.$$
 (3.24)

Din formula (3.17) rezultă:

$$\tau = \frac{y - kh_y}{z - \frac{k}{2}h_z}$$
(3.25)

Ecuația suprafeței conice cu vârful în punctul A și de directoare parabola cu vârful în punctul M, trecând prin punctul C, se obține înlocuind relațiile (3.24) și (3.25) în (3.23):

$$\frac{h_{y}\left(z-\frac{k}{2}h_{z}\right)}{y-kh_{y}}\frac{\frac{k+1}{2}h_{z}}{\left(q-\frac{h_{x}}{2}\right)^{2}+\frac{k}{2}h_{z}}\left(\frac{x-jh_{x}+\frac{h_{x}}{2}+q}{y-kh_{y}}h_{y}-q\right)^{2}=$$

$$=\frac{\frac{k}{2}h_{z}^{2}-\frac{k}{2}\left(q-\frac{h_{x}}{2}\right)^{2}h_{z}}{\left(q-\frac{h_{x}}{2}\right)^{2}+\frac{k}{2}h_{z}}$$
(3.26)

Revenind la semnificațiile tehnice ale notațiilor, putem enunța:

Proprietatea 3.2.2. Suprafețele plane P_1 și P_4 se racordează prin suprafața conică parabolică:

$$\frac{s(z-kl_{cd}+kR)}{y-ks} - \frac{4(k+1)(l_{cd}-R)}{l_{cr}^2 + 4k(l_{cd}-R)} \left[\frac{2x + (1-2j)(l_{cr}+p)}{2(y-ks)} s - \frac{p}{2} \right]^2 = \frac{k(l_{cd}-R)(8l_{cd}-8R-l_{cr}^2)}{l_{cr}^2 + 4k(l_{cd}-R)}.$$

Pentru calculul elementelor metrice ale structurii folosim formulele:

Aria triunghiului ABC este:

$$S^{2}(ABC) = \frac{1}{4} \begin{pmatrix} \begin{vmatrix} y_{A} & z_{A} & l \end{vmatrix}^{2} & \begin{vmatrix} x_{A} & z_{A} & l \\ y_{B} & z_{B} & l \\ y_{C} & z_{C} & l \end{vmatrix}^{2} + \begin{vmatrix} x_{A} & z_{A} & l \\ x_{B} & z_{B} & l \\ x_{C} & z_{C} & l \end{vmatrix}^{2} + \begin{vmatrix} x_{A} & y_{A} & l \\ x_{B} & y_{B} & l \\ x_{C} & y_{C} & l \end{vmatrix}$$
(3.27)

Pentru triunghiul AXM formula ariei este:

$$S^{2}(AXM) = \frac{1}{4} \begin{pmatrix} \begin{vmatrix} y_{A} & z_{A} & 1 \\ y_{X} & z_{X} & 1 \\ y_{M} & z_{M} & 1 \end{vmatrix}^{2} + \begin{vmatrix} x_{A} & z_{A} & 1 \\ x_{X} & z_{X} & 1 \\ x_{M} & z_{M} & 1 \end{vmatrix}^{2} + \begin{vmatrix} x_{A} & y_{A} & 1 \\ x_{X} & y_{X} & 1 \\ x_{M} & y_{M} & 1 \end{vmatrix}^{2}$$
(3.28)

Determinarea ariei suprafeței triunghiulare curbilinii, parte a conului parabolic de ecuație explicită z = f(x,y), se face prin:

$$S(AMC) = \iint \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy \qquad (3.29)$$

Frontiera unei celule este reuniunea a patru bare congruente. Aria frontierei unei celule este:

$$A(\text{celul}\check{a}) = 4[S(ABC) + 2S(AXM) + S(AMC)], \qquad (3.30)$$

unde expresia din paranteza pătrată reprezintă aria unei bare rezultate după expandare. Aceasta se obține însumând ariile triunghiurilor plane ABC, AMX și triunghiul curbiliniu spațial AMC, prezentate în fig. 3.5.

Fig. 3.5 Reprezentarea triunghiurilor ABC, AMX şi AMC pe un element expandat

Vom considera k = 1 și j = 1, deoarece toate celulele sunt identice din punct de vedere metric, rezultând astfel:

$$A\left(\frac{h_{x}}{2} - q, h_{y}, \frac{h_{z}}{2}\right),$$

$$B\left(0, h_{y}, h_{z}\right),$$

$$C\left(q, 2h_{y}, h_{z}\right),$$

$$M\left(\frac{h_{x}}{2}, 2h_{y}, \frac{h_{z}}{2}\right),$$

$$X\left(\frac{h_{x}}{2}, h_{y}, \frac{h_{z}}{2}\right).$$

 $\hat{I}n$ acest caz vom avea:

$$S^{2}(ABC) = \frac{1}{4} \left(\begin{vmatrix} \frac{h_{x}}{2} - q & \frac{h_{z}}{2} & 1 \\ 0 & h_{z} & 1 \\ q & h_{z} & 1 \end{vmatrix}^{2} + \begin{vmatrix} h_{y} & \frac{h_{z}}{2} & 1 \\ h_{y} & h_{z} & 1 \\ 2h_{y} & h_{z} & 1 \end{vmatrix}^{2} + \begin{vmatrix} \frac{h_{x}}{2} - q & h_{y} & 1 \\ 0 & h_{y} & 1 \\ q & 2h_{y} & 1 \end{vmatrix}^{2} \right)$$

Deci aria triunghiului ABC este:

$$S(ABC) = \frac{1}{4}\sqrt{h_z^2 q^2 + h_y^2 h_z^2 + h_x^2 h_y^2 - 8h_x h_y^2 q + 4h_y^2 q^2}.$$
 (3.31)

Aria triunghiului AXM se calculează analog, deci:

$$S^{2}(AXM) = \frac{1}{4} \left(\begin{vmatrix} h_{y} & \frac{h_{z}}{2} & l \\ 2h_{y} & \frac{h_{z}}{2} & l \\ h_{y} & \frac{h_{z}}{2} & l \end{vmatrix}^{2} + \begin{vmatrix} \frac{h_{x}}{2} - q & \frac{h_{z}}{2} & l \\ \frac{h_{x}}{2} & \frac{h_{z}}{2} & l \\ \frac{h_{x}}{2} & \frac{h_{z}}{2} & l \end{vmatrix}^{2} + \begin{vmatrix} \frac{h_{x}}{2} - q & h_{y} & l \\ \frac{h_{x}}{2} & \frac{h_{z}}{2} & l \\ \frac{h_{x}}{2} & \frac{h_{z}}{2} & l \end{vmatrix}^{2} + \left| \frac{\frac{h_{x}}{2} - q & h_{y} & l \\ \frac{h_{x}}{2} & 2h_{y} & l \\ \frac{h_{x}}{2} & h_{z} & l \end{vmatrix}^{2} \right)$$

Prin urmare, aria triunghiului AXM este:

$$S(AXM) = \frac{1}{2}h_yq. \qquad (3.32)$$

Aria triunghiului curbiliniu, generat de suprafața conului parabolic dat de relația (3.26), se obține scriind ecuația (3.26) sub formă explicită, pentru k = 1 și j = 1, astfel:

$$z(x, y) = \frac{y - h_y}{h_y} \left[\frac{\frac{1}{2}h_z^2 - \frac{1}{2}(q - \frac{1}{2}h_x)h_z}{(q - \frac{1}{2}h_x)^2 + \frac{1}{2}h_z} + \frac{h_z \left(\frac{x - \frac{1}{2}h_x + q}{y - h_y} \right)^2}{(q - \frac{1}{2}h_x)^2 + \frac{1}{2}h_z} + \frac{\frac{1}{2}h_y h_z}{(q - \frac{1}{2}h_x)^2 + \frac{1}{2}h_z} + \frac{\frac{1}{2}h_y h_z}{(q - \frac{1}{2}h_y h_z)^2 + \frac{1}{2}h_z} \right]$$

Derivatele parțiale ecuației anterioare sunt:

$$\frac{\partial z}{\partial x} = \frac{2h_z \left(\frac{x - \frac{1}{2}h_x + q}{y - h_y} - q\right)}{h_y \left[\left(q - \frac{h_x}{2}\right)^2 + \frac{1}{2}h_z\right]},$$
(3.33)

$$\frac{\partial z}{\partial y} = \frac{\frac{1}{2}h_{z}^{2} - \frac{1}{2}\cdot\left(q - \frac{h_{x}}{2}\right)h_{z} + q^{2}h_{z} - \frac{h_{y}h_{z}\cdot\left(x - \frac{1}{2}h_{x} + q\right)^{2}}{(y - h_{y})^{2}}}{h_{y}\left[\left(q - \frac{h_{x}}{2}\right)^{2} + \frac{1}{2}h_{z}\right]}.$$
(3.34)

Aria suprafeței conice parabolice AMC se obține prin înlocuirea relațiilor (3.33) și (3.34) în (3.29), rezultând:

$$S(AMC) = \frac{1}{4}\sqrt{h_z^2 q^2 + h_y^2 h_z^2 + h_x^2 h_y^2 - 8h_x h_y^2 q + 4h_y^2 q^2} + \frac{1}{2}h_y q \quad (3.35)$$

Astfel, aria frontierei unei celule se obține prin înlocuirea relațiilor (3.31), (3.32) și (3.35) în (3.30), fiind dată de:

$$A(\text{celu}) = 2\sqrt{h_z^2 q^2 + h_y^2 h_z^2 + h_x^2 h_y^2 - 8h_x h_y^2 q + 4h_y^2 q^2} + 6h_y q \quad (3.36)$$

Aria golului unei celule este egală cu dublul ariei triunghiului curbiliniu MCD din fig. 3.4. De asemenea ea este aproximativ egală cu dublul ariei triunghiului CDG, eroarea fiind neglijabilă.

Avem, astfel, pentru k = 1 și j = 1,

$$C(\mathbf{q}, 2\mathbf{h}_{\mathbf{y}}, \mathbf{h}_{\mathbf{z}}),$$
$$D\left(\frac{\mathbf{h}_{\mathbf{x}}}{2}, 2\mathbf{h}_{\mathbf{y}}, \frac{3\mathbf{h}_{\mathbf{z}}}{2}\right),$$
$$G(\mathbf{h}_{\mathbf{x}} - \mathbf{q}, 2\mathbf{h}_{\mathbf{y}}, \mathbf{h}_{\mathbf{z}}),$$

iar aria triunghiului CDG este dată de relația următoare:

$$S^{2}(CDG) = \frac{1}{4} \begin{pmatrix} 2h_{y} & h_{z} & 1 \\ 2h_{y} & \frac{3}{2}h_{z} & 1 \\ 2h_{y} & h_{z} & 1 \end{pmatrix}^{2} + \begin{vmatrix} q & h_{z} & 1 \\ \frac{h_{x}}{2} & \frac{3}{2}h_{z} & 1 \\ h_{x} - q & h_{z} & 1 \end{pmatrix}^{2} + \begin{vmatrix} q & 2h_{z} & 1 \\ \frac{h_{x}}{2} & 2h_{z} & 1 \\ h_{x} - q & 2h_{z} & 1 \end{vmatrix}^{2}$$

Efectuând calculele rezultă expresia ariei triunghiului CDG sub forma:

$$S(CDG) = \frac{1}{2} \left| h_z q - \frac{1}{2} h_x h_z \right|$$
 (3.37)

Prin urmare, aria golului unei celule este:

$$\mathbf{A}_{\mathbf{g}} = \mathbf{h}_{\mathbf{z}} \left| \mathbf{q} - \frac{1}{2} \mathbf{h}_{\mathbf{x}} \right|$$
(3.38)

Revenind la semnificațiile tehnice ale mărimilor folosite analitic, obținem:

Proprietatea 3.2.3.: Ariile frontierei și golului unei celule sunt date de:

A(celulă) =
$$2\sqrt{(p^2 + 4s^2)(l_{cd} - R)^2 + s^2(l_{cr} + p)(l_{cr} - 3p) + p^2s^2} + 3ps$$
, (3.39)

 $A_g = l_{cr} (l_{cd} - R).$

Precizarea dimensiunilor h_x , h_y , h_z , și q permit estimarea, eventual procentuală, a parametrilor unei plăci expandate în comparație cu placa

de origine. O celulă a unei plăci expandate este rezultatul unei expandări a unei plăci plane cu dimensiunile $2h_x h_y$.

Aplatizarea este operația prin care tabla expandată este readusă din nou la forma plană avută înaintea expandării. Astfel, fiecare componentă a laturii (triunghi plan sau curbiliniu) unei celule execută o mișcare de rototranslație până când punctele sale se suprapun peste un plan. Măsurătorile făcute în timpul experimentelor au dovedit că avem de-a face cu o izometrie. Prin urmare, după expandare aria frontierei celulei dată de relația (3.36) rămâne constantă. Însă dimensiunile plăcii nou obținute se modifică astfel:

$$h_{x} \xrightarrow{\text{devine}} 2 \cdot AB + AK,$$

$$h_{y} \xrightarrow{\text{rǎǎmân}} h_{y}.$$
(3.40)

Avem expresia segmentelor AB şi AK ca fiind:

$$AB = \sqrt{\left(\frac{h_{x}}{2} - q\right)^{2} + \frac{1}{4}h_{z}^{2}},$$

$$AK = 2q.$$
(3.41)

Cu ajutorul relațiilor (3.40) și (3.41) putem scrie:

$$h_{x} = 2\sqrt{\left(\frac{h_{x}}{2} - q\right)^{2} + \frac{1}{4}h_{z}^{2}} + 2q,$$

$$h_{y} = h_{y}.$$
(3.42)

Forma unei celule aplatizată nu mai este însă dreptunghiulară, ca a plăcii inițiale, ci un dreptunghi curbiliniu, ca în fig.3.6, putând fi aproximată cu un octogon (X1X2...X8).

Fig. 3.6. Forma unei celule aplatizate

În acest caz, golul se transformă într-un romb cu un vârf înlocuit cu un arc de parabolă conținând vârful acesteia, (Y1Y2Y3Y4). Aria golului se micșorează depinzând de caracteristicile de material ale semifabricatului.

3.2 Forma golului

O caracteristică legată de aspectul tablelor expandate o constituie forma și dimensiunile golurilor, fapt care oferă posibilitatea de a prezenta golurile realizate sub două aspecte:

- ale formei;

- ale dimensiunilor.

Formele golurilor. Golurile sunt realizate în urma a două lovituri ale berbecului mașinii de expandat și a deplasării transversal alternative a cuțitului superior profilat, ce se află montat pe berbecul mașinii (v. fig. 1.24).

În timpul crestării semifabricatului, cât și în timpul procesului de deformare a acestuia, materialul semifabricatului ia forma profilului cuțitului superior.

O corelare dintre forma golului rezultat în urma expandării și cuțitul superior profilat, utilizat pentru obținerea tablelor expandate prezentate în fig. 1.3, se va face în tab. 3.1.

Tab. 3.1 Corelarea dintre formele golurilor și cuțitele superioareprofilate

Analizând tab. 3.1, se observă că forma golurilor este influențată, în primul rând, de forma și dimensiunile profilului cuțitului superior, precum și adâncimea de pătrundere a acestuia în semifabricat.

Pentru realizarea unui anumit tip de tablă expandată, trebuie analizate, în primul rând, caracteristicile constructive ale cuțitului superior.

3.2.1 Caracteristicile constructive ale cuțitului

Caracteristicile constructive ale cuțitului superior influențează în mod direct procesul de expandare, calitatea și precizia tablei expandate.

Cuțitul superior, cu ajutorul căruia se realizează tabla expandată standard, este prezentat în fig. 3.7.

Fig. 3.7 Cuțit superior pentru realizarea tablei expandate standard

unde:

- 1- cuțitul superior;
- 2 cuțitul inferior;
- 3 masa port cuțit;
- 4 dispozitivul de fixare;
- 5 semifabricat.

Cuțitul superior, fiind cuțit cu muchii tăietoare înclinate și, prin similitudine cu unghiurile sculelor utilizate la așchiere, putem afirma faptul că dimensiunile geometrice ale acestuia au conform lucrărilor [14] și [29]următoarele limite, prezentate în tab. 3.2.

Tab. 3.2Valorile limită ale unor dimensiuni geometrice
ale cuțitului superior

Otel moale	$0^{0}30" - 1^{0}30"$	$5^0 - 10^0 (0^0)$	$2^{0} - 8^{0} (12^{0})$	
Cupru, Aluminiu	$1^{0}30" - 3^{0}$	$10^{\circ} - 15^{\circ} (0^{\circ})$	$2^{0} - 8^{0}$ (12 ⁰)	

Pentru tablele expandate, ce impun anumite condiții de rezistență, anumite dimensiuni ale golului, a înclinării puntiței dintre două rânduri de goluri și a numărului de goluri de pe un rând, se vor studia valorile unghiurilor de poziție φ și de degajare γ .

Determinarea din punct de vedere al rezistenței tablei expandate, a caracteristicilor constructive ale cuțitului (unghiul de degajare γ și unghiul de poziție φ), se face pornind de la condiția de rezistență a puntiței dintre două rânduri de crestături s, deoarece se presupune că tabla expandată va fi utilizată ca element de rezistență, condiție de utilizare cea mai defavorabilă.

Studiul unghiului de degajare y

În urma expandării, puntița dintre două rânduri de crestături se va afla sub un unghi γ_1 . Numim puntiță dintre două rânduri de crestături succesive, banda de metal de lățime s, ce devine, după expandare, partea superioară a frontierei unui rând de celule. Considerăm că, în exploatare, asupra acesteia acționează o forță oarecare Q.

Alegem o fâșie din puntița dintre două rânduri de crestături, la care lățimea se consideră unitară, după cum se prezintă în fig. 3.8.

Fig. 3.8 Forma și dimensiunile fâșiei din puntița dintre două rânduri de crestături

În fig. 3.9 se consideră sistemul de încărcare al puntiței s.

Fig. 3.9 Sistemul de încărcare al puntiței s

Se pornește de la formula tensiunii de încovoiere:

$$\sigma_{i} = \frac{M_{i}}{W_{z}}, \qquad (3.43)$$

unde:

- M_i - momentul încovoietor;

- W_z - modulul de rezistență al secțiunii.

Expresia modulului de rezistență al unei secțiuni transversale, ce are lățimea unitară este:

$$W_z = \frac{g^2}{6}.$$
 (3.44)

Momentul încovoietor M_i este dat de relația:

$$M_i = Q_n \cdot s, \qquad (3.45)$$

unde Q_n este componenta normală a forței Q și are expresia:

$$Q_n = Q \cdot \cos \gamma_1, \qquad (3.46)$$

în care γ_1 este unghiul de înclinare a puntiței s în urma expandării.

Prin înlocuirea relațiilor (3.46), (3.45) și (3.44) în relația (3.43) vom obține expresia tensiunii încovoietoare σ_i , ca fiind:

$$\sigma_{i} = \frac{6 \cdot Q \cdot s \cdot \cos \gamma_{1}}{g^{2}}.$$
(3.47)

Din relația (3.47) vom obține expresia unghiului γ_1 care va fi:

$$\gamma_1 = \arccos \frac{\sigma_i \cdot g^2}{6 \cdot Q \cdot s}.$$
 (3.48)

În urma procesului de expandare al tablei are loc o revenire elastică a materialului acesteia, notată cu R.

Cunoscând valoarea revenirii elastice R a materialului, conform fig. 3.10, se poate scrie relația între unghiul γ și γ_1 .

Fig. 3.10 Legătura între unghiurile γ și γ_1

Expresia unghiului γ_1 , conform fig. 3.10, este:

$$tg\gamma_1 = \frac{l_{cd} - R}{x}.$$
 (3.49)

Expresia unghiului γ , tot conform fig. 3.10, este:

$$tg\gamma = \frac{l_{cd}}{x}.$$
 (3.50)

Pentru a avea dependența unghiului γ de unghiul γ_1 , vom înlocui, din relația (3.49), pe x în (3.50) și vom obține:

$$tg\gamma = \frac{l_{cd}}{l_{cd} - R} \cdot tg\gamma_1.$$
 (3.51)

Se observă că în (3.51), valoarea unghiului γ este mai mare decât valoarea unghiului γ_1 de $\frac{l_{cd}}{l_{cd} - R}$ ori, care este supraunitară.

Înlocuind relația (3.48) în (3.51) vom obține:

$$tg\gamma = \frac{l_{cd}}{l_{cd} - R} \cdot tg\left(\arccos\frac{\sigma_i \cdot g^2}{6 \cdot Q \cdot s}\right),$$

$$tg\gamma = \frac{l_{cd}}{l_{cd} - R} \cdot \frac{\sqrt{36 \cdot Q^2 \cdot s^2 - \sigma_i^2 \cdot g^4}}{\sigma_i \cdot g^2},$$

$$\gamma = \arctan\left(\frac{l_{cd}}{l_{cd} - R} \cdot \frac{\sqrt{36 \cdot Q^2 \cdot s^2 - \sigma_i^2 \cdot g^4}}{\sigma_i \cdot g^2}\right). \quad (3.52)$$

Valoarea unghiului γ depinde de:

- proprietățile fizico-mecanice ale materialului, prin tensiunea σ_i ;

- caracteristicile materialului, prin grosimea g și revenirea elastică R;

- caracteristicile de lucru, prin valoarea puntiței dintre două rânduri de crestături s și lungimea cursei pe care o execută muchia sculei în decursul procesului de expandare l_{cd} .

Studiul unghiului de poziție φ

Studiul pentru unghiul de poziție φ se va face pornind de la condiția de rezistență a puntiței deformate dintre două rânduri de crestături, ce are lungimea $\frac{l_{cr}}{2}$, aflându-se înclinată sub un unghi φ_1 ,

asupra căreia acționează o forță Q. Secțiunea se consideră ca fiind dreptunghiulară având grosimea g iar lățimea unitară.

Alegem și în acest caz o fâșie din puntița deformată dintre două rânduri de crestături, la care lățimea se consideră unitară, după cum se prezintă în fig. 3.11.

Sistemul de încărcare al fâșiei din puntița deformată dintre două rânduri de crestături este prezentat în fig. 3.12.

Fig. 3.12 Sistemul de încărcare al puntiței deformate dintre două rânduri de crestături

Momentul încovoietor M_i este dat de relația:

$$M_i = Q_n \cdot \frac{l_{cr}}{2}, \qquad (3.53)$$

unde Q_n este componenta normală a forței Q și are expresia:

$$Q_n = Q \cdot \cos \varphi_1, \qquad (3.54)$$

în care ϕ_1 este unghiul de înclinare a părții de material alungite în urma expandării.

Prin înlocuirea relațiilor (3.54), (3.53) și (3.44) în (3.43) vom obține expresia tensiunii încovoietoare σ_i , ca fiind:

$$\sigma_{i} = \frac{3 \cdot Q \cdot l_{cr} \cdot \cos \varphi_{l}}{g^{2}}.$$
(3.55)

Din relația (3.55) vom obține expresia unghiului φ_1 , care va fi:

$$\varphi_1 = \arccos \frac{\sigma_i \cdot g^2}{3 \cdot Q \cdot l_{cr}} . \qquad (3.56)$$

În baza notațiilor din fig. 3.13, se va scrie relația între unghiul φ și unghiul φ_1 în funcție de revenirea elastică a materialului.

Fig. 3.13 Legătura între unghiurile φ și φ_1

Definirea unghiului φ_1 rezultată din fig. 3.13 ca fiind:

$$tg\phi_1 = \frac{2 \cdot (l_{cd} - R)}{l_{cr}}.$$
 (3.57)

Cu ajutorul fig. 3.13 se poate scrie și expresia unghiului φ ce este:

$$tg\phi = \frac{2 \cdot l_{cd}}{l_{cr}}.$$
 (3.58)

Relația de legătură dintre φ și φ_1 este:

$$tg\phi = \frac{l_{cd}}{l_{cd} - R} \cdot tg\phi_1.$$
 (3.59)

Şi în cazul valorii unghiului φ , dată de relația (3.59) se observă că acestea sunt mai mari decât valoarea unghiului φ_1 cu același raport $\frac{l_{cd}}{l_{cd}-R}$ supraunitar ca și în relația unghiului γ .

Pentru exprimarea unghiului ϕ , vom înlocui relația (3.56) în (3.59) și vom obține:

$$tg\phi = \frac{l_{cd}}{l_{cd} - R} \cdot tg\left(\arccos\frac{\sigma_{i} \cdot g^{2}}{3 \cdot Q \cdot l_{cr}}\right),$$

$$tg\phi = \frac{l_{cd}}{l_{cd} - R} \cdot \frac{\sqrt{9 \cdot Q^{2} \cdot l_{cr}^{2} - \sigma_{i}^{2} \cdot g^{4}}}{\sigma_{i} \cdot g^{2}},$$

$$\phi = \arctan\left(\frac{l_{cd}}{l_{cd} - R} \cdot \frac{\sqrt{9 \cdot Q^{2} \cdot l_{cr}^{2} - \sigma_{i}^{2} \cdot g^{4}}}{\sigma_{i} \cdot g^{2}}\right). \quad (3.60)$$

Din relația (3.60) se observă că valoarea unghiului φ depinde de:

- proprietățile fizico-mecanice ale materialului prin tensiunea

- caracteristicile materialului, prin grosimea g și revenirea elastică R ;

σ;;

- caracteristicile de lucru, prin valoarea lungimii crestăturii l_{cr} și lungimea cursei pe care o execută muchia sculei în decursul procesului de expandare $\ l_{cd}$.

Prin compararea expresiei unghiului de poziție φ dată de relația (3.60) și expresia unghiului de degajare γ , dată de relația (3.52), se

constată că ambele unghiuri depind de proprietățile fizico-mecanice ale materialului, de caracteristicile acestuia precum și de caracteristicile de lucru.

Caracteristicile de lucru, care diferă în relațiile de calcul a celor două unghiuri sunt:

- valoarea puntiței dintre două rânduri de crestături s – în relația de calcul a unghiului de degajare γ ;

- lungimea crestăturii $\ensuremath{l_{cr}}$ – în relația de calcul a unghiului de poziție $\phi.$

3.3 Geometria golului

În societatea de astăzi, datorită necesității reducerii consumului de materiale utilizate, a scăderii cantității de resurse naturale (minereuri feroase și neferoase), datorită exploatării cu costuri ridicate a zăcămintelor sărace în conținut de minereuri, s-a încercat să se realizeze semifabricate ce au caracteristici și proprietăți asemănătoare sau mai performante, cu costuri de obținere mai reduse.

În cazul tablelor expandate, tehnologia de obținere a acestora, plecând de la extracția minereului și până la produsul finit de tablă expandată, necesită o operație de prelucrare în plus față de tehnologia de obținere a tablelor, deoarece materia primă a tablelor expandate este tot tabla plană.

Făcându-se comparație, din punct de vedere al greutății, între tabla plană neexpandată și tabla expandată, se constată că cea de-a doua are o greutate mult mai mică în comparație cu prima, la o aceeași suprafață a acestora.

La diverse construcții metalice, care prezintă necesitatea unui design deosebit precum și reducerea greutății acestora, este indicată utilizarea tablelor expandate.

În cazul utilizării tablelor perforate la realizarea unor construcții metalice, cantitatea de material utilizată este mai mare în comparație cu cantitatea de material a tablei expandate utilizate la realizarea aceleiași construcții.

Datorită multiplelor avantaje, pe care le prezintă tabla expandată, firmele producătoare de acest tip de tablă, în prospectele lor, alături de

dimensiunile ochiurilor din tabla expandată, prezintă și aria deschiderii (aria golurilor) în procente, după cum se poate vedea și în tab. 1.1 până la tab. 1.9, precum și în anexa 1.

Ca urmare a celor prezentate este necesar de precizat elementele metrice ale golurilor din tabla expandată: dimensiuni, arie, eventual caracterizare analitică.

Dimensiunile golurilor

După destinația tablelor expandate, acestea necesită anumite dimensiuni ale golurilor.

Tablele expandate standard au ca dimensiuni principale ale golului înălțimea C și lungimea D, care sunt prezentate în fig. 1.4.

Dimensiunea C (înălțimea golului) este influențată de parametrii de lucru ai mașinii de expandat, prin lungimea cursei active de deformație l_{cd} , precum și de caracteristicile materialului, prin revenirea elastică R.

După cum am mai arătat, pentru un gol din tabla expandată, fiind rezultatul a două lovituri ale berbecului mașinii de expandat, putem scrie relația înălțimii C a golului în funcție de lungimea cursei de deformație l_{cd} și revenirii elastice R ca fiind:

$$C = 2 \cdot (l_{cd} - R).$$
 (3.61)

Dimensiunea D (lungimea golului), la rândul ei, este influențată de lungimea cursei active de deformație l_{cd} , precum și de dimensiunea cuțitului profilat, cu care s-a efectuat expandarea, prin unghiul de înclinare a dintelui φ sau unghiul la vârf al dintelui α . Lungimea golului D este egală cu lungimea crestăturii l_{cr} . Analizând fig. 2.25, putem scrie relația lungimii D a golului, ca fiind:

$$D = \frac{2}{tg\phi} \cdot l_{cd} \quad sau \quad D = 2 \cdot l_{cd} \cdot tg \frac{\alpha}{2}.$$
 (3.62)

Aria golurilor.

Pentru determinarea ariei golurilor de pe suprafața unei table expandate, la care se cunoaște aria semifabricatului din care provine aceasta, se va utiliza următoarea relație:

$$A_{tg} = A_{te} - A_s, \qquad (3.63)$$

unde folosim notațiile:

- A_{tg} – aria tuturor golurilor;

- A_{te} – aria tablei expandate;
- A_s – aria semifabricatului.

Aria unui ochi al tablei expandate, cunoscând aria tuturor golurilor și numărul de goluri ng, este dată de relația:

$$A_g = \frac{A_{tg}}{n_g}$$
(3.64)

(3.65)

Printr-o altă metodă, această arie s-a calculat în paragraful precedent, fiind dată de formula (3.39).

În practică, este necesar să se cunoască procentul ariei golurilor din aria totală a tablei expandate. Pentru aceasta se scrie relația de calcul a procentului ariei totale a golurilor, ca fiind:

$$A_{tg}\% = \frac{A_{tg}}{A_{te}} \cdot 100$$

sau

$$A_{tg}\% = \left(1 - \frac{A_s}{A_{te}}\right) \cdot 100^{-1}$$

La determinarea procentului suprafeței suplimentare de material semifabricat plan, necesară pentru obținerea tablelor perforate, în comparație cu suprafața materialului semifabricatului plan necesar obținerii tablei expandate, se poate utiliza relația (3.65), prin corelarea termenilor.

Caracterizarea analitică a golurilor.

Ecuațiile laturilor golurilor se obțin prin intersecția planelor P₂ și P₃ cu planul paralel cu (Oxz), de ecuație y = (k + 1)s. De asemenea, parabola Π din formula (3.15), împreună cu simetrica sa față de planul de ceuație $x = \frac{j-1}{2}(l_{cr} + p)$, formează celelalte două laturi ale unei celule. Astfel,

o celulă are forma unui romb curbiliniu, având două laturi vecine drepte, iar celelalte două laturi în formă de arc de parabolă. Ecuațiile laturilor rectilinii sunt date de:

(d):
$$\begin{cases} s(R - l_{cd})x + \frac{p}{2}(l_{cd} - R)y - \frac{sl_{cr}}{2}z - \frac{1 + 2k}{2}sp(l_{cd} - R) \\ + \frac{2j + k - 1}{2}s(l_{cr} + p)(l_{cd} - R) = 0 \\ y = (k + l)s \end{cases}$$

și de dreapta simetrică acesteia față de planul $x = \frac{j-1}{2}(l_{cr} + p)$.

Ecuațiile laturilor parabolice sunt date de:

$$(\Pi): \begin{cases} z = \frac{4(k+1)(l_{cd}-R)}{l_{cr}^2 + 4k(l_{cd}-R)} \left\{ \left[x + \frac{1-2j}{2}(l_{cr}+p) \right]^2 + k(l_{cd}-R) \\ y = (k+1)s \end{cases} \right\}$$

și de parabola simetrică acesteia față de planul $x = \frac{j-l}{2}(l_{cr} + p)$.

3.4 Limitele tehnologice ale expandării

Limitele tehnologice ale procesului de expandare a tablelor, determină domeniul în care acest proces de deformare poate avea loc, fără a se produce ruperea materialului supus deformării.

Există două aspecte tehnologice, care determină limite ale procesului de expandare și anume:

I - aspecte legate de efectuarea crestărilor;

II - aspecte legate de deformarea prin alungire a materialului supus prelucrării.

I Aspecte legate de efectuarea crestărilor.

Pentru a preveni ruperea materialului tablei în cursul crestării acestuia, se impune a se preciza:

- distanța minimă p_{min} , care se pretinde între două crestări de pe aceeași linie de crestare;

- distanța minimă s_{min} , care se impune între două linii de crestare succesive, ceea ce reprezintă totodată valoarea minimă a pasului de avans a semifabricatului în procesul expandării.

În fig. 3.1 și fig. 3.2 sunt prezentate distanțele p și s precum și l_{cr} .

Aceste valori se pot asimila cu condițiile limită impuse pentru situații de același gen, întâlnite în orice proces de ștanțare și pentru care se găsesc date în literatura de specialitate.

Pentru distanța p_{min} , dintre două crestături de pe aceeași linie de crestare, corespunde cerinței calitative de distanțare dintre două perforări dintr-un proces valoarea adoptată pentru condițiile cele mai defavorabile (din cauza terminațiilor ascuțite ale crestărilor care se execută), care se va lua [29]:

$$p_{\min} \ge 2 \cdot g, \tag{3.66}$$

unde g este grosimea semifabricatului.

Pentru siguranță împotriva ruperii, neavând influență de substanță asupra parametrilor geometrici ai tablei expandate, recomandăm a se lua:

$$\mathbf{p_{\min}} \ge 4 \cdot \mathbf{g}. \tag{3.67}$$

Valori mici ale distanței p, aproximativ 2g, conform [29] se iau numai în cazul când cerințele deosebite impun aceste valori.

Pentru distanța s_{min} dintre două linii de crestare succesive, corespunzătoare cerinței calitative care definește valoarea minimă impusă

lățimii puntițelor intermediare dintre două perforări ale unui produs, [29], [36] se va lua:

$$\mathbf{s_{\min}} = \mathbf{k_1} \cdot \mathbf{k_2} \cdot \mathbf{k_3} \cdot \mathbf{a} \tag{3.68}$$

unde:

- k_1 este un coeficient ce ține cont de natura materialului supus procesului de crestare;

- k_2 și k_3 vor avea valoarea de 1 pentru cazul crestării dintr-un proces de expandare;

- a este o valoare ce ține seama de grosimea g a semifabricatului, care în mod acoperitor pentru table ce au grosimea g de până la 0,25 mm, o vom lua a = 3,0. Valorile termenului **a**, vor fi redate în tab. 3.3, pentru grosimi mai mari ale semifabricatului, în funcție de lungimea crestături l_{cr} [29].

Grosimea g a	Coeficientul a		
semifabricatului [mm]	$l_{cr} \leq 50 \text{ mm}$	$l_{cr} > 50 \text{ mm}$	
0,25 - 0,5	1,8	2,2	
0,5 - 0,8	1,5	1,8	
0,8 - 1,2	1,2	1,5	
1,2 – 1,6	1,3	1,8	
1,6 – 2	1,8	2	
2 - 2,5	2	2,2	
2,5 - 3	2,2	2,5	
3 – 3,5	2,5	2,8	
3,5-4	2,8	3,2	

Tab. 3.3 Valori ale coeficientului a

Valori ale coeficientului k_1 , pentru diferite materiale, sunt prezentate în tab. 3.4;

Tab. 3.4 Valori ale coeficientului k₁

Material	k ₁
Oțel moale	1
Alamă	1,2
Duraluminiu	1,4

Pentru table din oțel moale, în cazul distanței s dintre două linii de crestare succesive, valorile sale minime se vor lua până aproape de valoarea grosimii semifabricatului g, dar, pentru a compensa eventuale probleme tehnice datorate ecruisării materialului în vecinătatea zonelor crestate, vom adopta o valoare acoperitoare, această valoare minimă s se va lua egală cu 3 mm, pentru table ce au o grosime de până la 0,25 mm. Pentru tablele din alamă, valoarea minimă a puntiței s este de 1,2 g, iar valoarea acoperitoare este de 3,6 mm. Valoarea minimă a distanței dintre două linii de crestare succesive, pentru table din duraluminiu, este 1,4 g, iar valoarea recomandată este de 4,2 mm.

II Aspecte legate de deformarea prin alungire a materialului supus prelucrării.

Pentru a preveni ruperea materialului tablei, în cazul alungirii puntițelor sub acțiunea de pătrundere în jos a dintelui sculei, se face următorul raționament:

- punctul de mijloc al puntiței (corespunde cu mijlocul crestăturii) se deplasează pe verticală în jos. Astfel jumătate din lungimea puntiței lcr se alungește până la o valoare l_{cr1} . Figura în care se prezintă lungimile l_{cr} și l_{cr1} este fig. 2.25.

Legătura dintre aceste două valori ale lungimilor l_{cr} și l_{cr1} se exprimă prin deformația relativă ε ce are expresia:

$$\varepsilon = \frac{l_{cr1} - l_{cr}}{l_{cr}}.$$
(3.69)

Pentru ca materialul semifabricatului să reziste procesului de deformare trebuie ca deformația relativă ε să fie mai mică decât deformația relativă la rupere ε_r , adică:

$$\varepsilon_{\mathbf{r}} > \mathbf{l}, 2 \cdot \varepsilon. \tag{3.70}$$

Transformând inegalitatea (3.70) în egalitate și înlocuind deformația relativă ε cu relația (3.69), obținem:

$$\varepsilon_{\rm r} = 1,2 \cdot \frac{l_{\rm cr1} - l_{\rm cr}}{l_{\rm cr}}.$$
 (3.71)

Situația limită, precizată de relația (3.71), concordă totodată cu definirea valorii maxime a unghiului φ al sculei cu care se admite a se lucra și anume:
$$\varphi_{\text{max}} = \arccos \frac{l_{\text{cr}}}{l_{\text{cr}l}}.$$
 (3.72)

Din relația (3.71) vom obține expresia lui l_{cr1} care va fi:

$$l_{cr1} = \frac{l_{cr}}{l_{,2}} \cdot (\varepsilon_r + l_{,2}).$$
 (3.73)

Prin înlocuire în (3.72), a termenului l_{cr1} dat de (3.73), vom obține valoarea maximă a unghiului φ ca fiind:

$$\varphi_{\max} = \arccos \frac{1,2}{\varepsilon_{r} + 1,2}. \qquad (3.74)$$

Determinarea lungimii de pătrundere a cuțitului în material l_{cd} (cursa activă de deformare) se face cu ajutorul fig. 2.25, de unde avem:

$$tg\phi_{max} = \frac{l_{cd}}{\frac{l_{cr}}{2}} = \frac{2 \cdot l_{cd}}{l_{cr}}.$$
 (3.75)

Efectuând calculele în relația (3.75), vom obține expresia lungimii de pătrundere a cuțitului în material l_{cd} , ca fiind:

$$l_{cd} = \frac{l_{cr}}{2} \cdot tg\phi_{max} . \qquad (3.76)$$

Prin înlocuirea unghiului φ_{max} , dat de (3.74), în relația (3.76) vom obține lungimea de pătrundere a cuțitului superior în materialul semifabricatului l_{cd} , ca fiind:

$$l_{cd} = \frac{l_{cr}}{2,4} \cdot \sqrt{\varepsilon_r^2 + 2,4 \cdot \varepsilon_r} . \qquad (3.77)$$

Parametrii tablei expandate sunt:

- l_{cr} – lungimea crestăturii;

- s – distanța dintre două linii de crestare succesive;

- p – distanța dintre două crestături de pe aceeași linie de crestare, reprezintă și parametrii tehnologici ai procesului de expandare.

3.5 Gradul de expandare

Prin expandare se obține o suprafață mărită în comparație cu suprafața inițială. Aria acestei suprafețe mărite se poate determina analitic.

Pentru determinarea analitică a ariei suprafeței tablei expandate s-a considerat un semifabricat de formă dreptunghiulară cu dimensiunile lungimii L și lățimii "B", căruia trebuie să i se realizeze un număr de rânduri de expandare cu un anumit pas. Aria semifabricatului considerat este dată de relația:

$$A = L \cdot B, \qquad (3.78)$$

unde:

- A – aria suprafeței tablei înainte de expandare;

- L – lungimea tablei inițiale;

- B – lățimea tablei inițiale.

Aria suprafeței tablei în urma expandării este dată de relația:

$$A_e = L_e \cdot B, \qquad (3.79)$$

unde:

- A_e – aria suprafeței tablei după expandare;

- L_e – lungimea tablei în urma expandării;

- B – lățimea tablei inițiale.

În relația (3.79), termenul B este același ca și în relația (3.78), deoarece tabla în procesul de expandare nu suferă modificări de lățime.

Creșterea ariei suprafeței expandate în raport cu cea a suprafeței de dinaintea expandării, o vom numi *Grad de expandare*, notat cu ε_e , având expresia:

$$\varepsilon_{\mathbf{e}} = \frac{\mathbf{A}_{\mathbf{e}}}{\mathbf{A}}.$$
 (3.80)

Înlocuind relațiile (3.78) și (3.79) în (3.80), vom obține:

$$\varepsilon_{\mathbf{e}} = \frac{\mathbf{L}_{\mathbf{e}}}{\mathbf{L}}.$$
 (3.81)

Considerând că, după fiecare lovitură a berbecului mașinii de expandat, semifabricatul avansează cu un pas s, rezultă că expandarea tablei de lungime L se obține în urma a N_p pași. În acest caz, se poate scrie relația de calcul a lungimii L ca fiind:

$$\mathbf{L} = \mathbf{N}_{\mathbf{p}} \cdot \mathbf{s} \,. \tag{3.82}$$

Din relația (3.82) rezultă:

$$N_p = \frac{L}{s}$$
(3.83)

Prin procesul de expandare, suprafața (planul) tablei expandate primește o orientare diferită față de cea avută de tabla neexpandată. Această orientare este prezentată în fig. 3.14.

Fig. 3.14 Orientarea suprafeței tablei după expandare

În fig. 3.14 s-a notat:

- l_{cd} – lungimea cursei active de deformație;

- s – distanța între două rânduri de crestături (lățimea puntiței), identică cu valoarea pasului de avans al semifabricatului pentru o cursă dublă a berbecului presei;

- g – grosimea semifabricatului.

Lungimea tablei expandate L_e se determină cu ajutorul fig. 3.10, ținându-se seama de faptul că un ochi expandat rezultă în urma a două lovituri de berbec ale presei, adică în urma a doi pași de avans ale semifabricatului.

La fiecare lovitură a berbecului, corespunzător lungimii l_{cd} a cursei active de deformare a cuțitului, se obține o deplasare corespunzătoare zonei de mijloc a puntiței care se crestează, formându-se jumătate din înălțimea y a unui ochi al tablei expandate. Expresia lui y este determinată din fig. 3.14 și este:

$$h_z = 2y = 2\sqrt{(2 \cdot l_{cd})^2 + (2 \cdot s)^2} = 4\sqrt{l_{cd}^2 + s^2}$$
 (3.84)

Numărul de ochiuri N_o care se găsesc de-a lungul tablei, după o axă de simetrie a șirului de ochiuri, va fi:

$$N_{0} = \frac{N_{p}}{2}.$$
(3.85)

Înlocuind în (3.85) relația (3.83), vom avea:

$$N_0 = \frac{L}{2 \cdot s}.$$
 (3.86)

Lungimea L_e a tablei expandate va fi dată de relația:

$$L_e = N_o \cdot y. \tag{3.87}$$

Din (3.86) și (3.87), avem:

$$L_e = \frac{L}{2 \cdot s} \cdot y \,. \tag{3.88}$$

În relația (3.88), înlocuind pe y cu expresia dată de (3.84), obținem:

$$L_{e} = \frac{L}{2 \cdot s} \cdot \sqrt{(2 \cdot l_{cd})^{2} + (2 \cdot s)^{2}}.$$
 (3.89)

Scoțând de sub radical pe 2 și făcând calculele, vom avea:

$$L_{e} = \frac{L}{s} \cdot \sqrt{l_{cd}^{2} + s^{2}} . \qquad (3.90)$$

Introducându-se expresia lui L_e dată de (3.90) în relația (3.81) obținem:

$$\varepsilon_{e} = \frac{L}{L \cdot s} \cdot \sqrt{l_{cd}^{2} + s^{2}} . \qquad (3.91)$$

Efectuându-se calculele în relația (3.91), vom obține expresia gradului de expandare ε_e , ca fiind:

$$\varepsilon_e = \sqrt{\frac{l_{cd}^2}{s^2} + 1}.$$
 (3.92)

Relația (3.92) arată că gradul de expandare ε_e a tablei variază în funcție de raportul $\frac{l_{cd}}{s}$, crescând o dată cu valoarea lungimii l_{cd} a cursei active de deformare a cuțitului superior și cu micșorarea avansului s al semifabricatului. Evident, vor apărea valori limită admisibile pentru l_{cd} și s, raportate la cazuri concrete de prelucrare.

Utilizând în continuare notațiile din fig. 2.30, putem scrie expresia lungimii cursei pe care o execută muchia sculei în decursul procesului de expandare l_{cd} , ca fiind:

$$l_{cd} = \frac{1}{2} \cdot \sqrt{l_{cr1}^2 - l_{cr}^2}$$
 (3.93)

Expresia lungimii cursei active de deformare, pe care o execută muchia sculei în decursul procesului de expandare l_{cd} în funcție de lungimea crestăturii l_{cr} și de valoarea alungirii la rupere ε_r , rezultată prin înlocuirea relației (3.73) în relația (3.93), este:

$$l_{cd} = \frac{l_{cr}}{2,4} \cdot \sqrt{\varepsilon_r \cdot (\varepsilon_r + 2,4)}. \qquad (3.94)$$

Notăm cu K_m constanta de material, ce are expresia:

$$K_{m} = \frac{1}{2,4} \cdot \sqrt{\varepsilon_{r} \cdot (\varepsilon_{r} + 2,4)}$$
(3.95)

În tabelul 3.5 se prezintă valorile constantei de material K_m " pentru diferitele materiale prezentate în tabelul 1.11.

Denumirea materialului	Marca	Coeficientul K _m
Tablă subțire din oțel carbon obișnuit	OL 32 OL 34 OL 37	0,361 0,347 0,308
Bandă de oțel carbon de calitate	OLC 15 OLC 20	0,316 0,300
Alamă	Am 58 Am 63	0,339 0,409
Cupru	Cu 5 Cu 9	0,375
Aluminiu	Al 99 Al 99,5	0,300 - 0,375
Duraluminiu		0,258
Alpaca		0,375

Tab. 3.5 Valorile constantelor de material K_m

Cu ajutorul relației (3.95), expresia lungimii cursei active de deformare dată de (3.94) l_{cd} va fi:

$$l_{cd} = K_m \cdot l_{cr} \,. \tag{3.96}$$

În timpul procesului de expandare, pentru ca materialul semifabricatului să nu se rupă, lungimea cursei de deformație l_{cd} trebuie să îndeplinească următoarea condiție:

$$l_{cd} \le K_m \cdot l_{cr}. \tag{3.97}$$

Înlocuind (3.96) în relația (3.92), vom obține expresia gradului de expandare ε_e :

$$\epsilon_{e} = \sqrt{\frac{K_{m}^{2} \cdot l_{cr}^{2}}{s^{2}} + 1}.$$
(3.98)

Pentru a avea și parametrul tehnologic p al procesului de expandare, în relația (3.98) vom exprima lungimea crestăturii l_{cr} în funcție

de distanța dintre două crestături de pe aceeași linie de crestare p. Legătura dintre l_{cr} și p este dată de relația (3.1), scrisă sub forma următoare:

B = l_{cr}
$$\cdot \left(n_{cr} + \frac{1}{2} \right) + p \cdot \left(n_{cr} - \frac{1}{2} \right).$$
 (3.99)

Din relația (3.99), prin efectuarea calculelor se va obține expresia pentru lungimea crestăturii l_{cr} :

$$l_{cr} = \frac{B - \left(n_{cr} - \frac{1}{2}\right) \cdot p}{n_{cr} + \frac{1}{2}} = \frac{2B - (2n_{cr} - 1)p}{2n_{cr} + 1}.$$
 (3.100)

Introducându-se valorile lui l_{cr} date de relația (3.100), în expresia (3.98), obținem gradul de expandare ε_e sub forma:

$$\varepsilon_{e} = \sqrt{\frac{K_{m}^{2} \cdot \left[B - \left(n_{cr} - \frac{1}{2}\right) \cdot p\right]^{2}}{s^{2} \cdot \left(n_{cr} + \frac{1}{2}\right)^{2}}} + 1} = \sqrt{\frac{K_{m}^{2} \left[2B - (2n_{cr} - 1)p\right]^{2}}{s^{2} (2n_{cr} + 1)^{2}}} + 1} \cdot (3.101)$$

Determinarea unei alte forme a relației de calcul a gradului de expandare se obține prin înlocuirea în relația (3.92) a lungimii cursei active de deformare l_{cd} , dată de relația (3.37), și a lungimii crestăturii l_{cr} , dată de relația (3.100). În acest caz, relația gradului de expandare este:

$$\varepsilon_{e} = \sqrt{\frac{\left[2 \cdot B - \left(2 \cdot n_{cr} - 1\right) \cdot p\right]^{2} \cdot \varepsilon_{r} \cdot \left(\varepsilon_{r} + 2, 4\right)}{9, 6 \cdot s^{2} \cdot \left(2 \cdot n_{cr} + 1\right)^{2}}} + 1.$$
(3.102)

În continuare, se va face un studiu grafic al evoluției gradului de expandare ε_e , pentru diferite valori ale lățimii B și a numărului de crestături de pe aceeași linie de crestare n_{cr} .

Variația distanței dintre două linii de crestare succesive s și variația distanței dintre două crestături de pe aceeași linie de crestare p vor avea o evoluție începând cu valoarea lor minimă admisibilă, prezentată anterior în § 3.4.

BUPT

Graficele vor fi prezentate în tab. 3.6, fiind realizate pe baza relației (3.101) pentru tabla din oțel moale, ce are grosimea g = 1 mm. Astfel, pentru o anumită valoare a lățimii B constantă, se vor trasa grafice ce corespund unui anumit număr de crestături de pe aceeași linie de crestare n_{cr} , având drept variabile distanța dintre două linii de crestare succesive s și distanța dintre două crestături alăturate p, care sunt și factorii de influență ai gradului de expandare.

Graficele au fost realizate cu ajutorul programului utilitar Mathcad 7 Professional, în care s-au parcurs anumiți pași necesari obținerii acestora. Pașii parcurși pentru realizarea graficelor sunt prezentați în Anexa 7.

În urma studierii tab. 3.6, se constată că, la o aceeași valoare a lățimii B a tablei, gradul de expandare ε_e scade odată cu creșterea numărului de crestături de pe aceeași linie de crestare n_{cr} . Se observă că aceste grafice indică valori mari ale gradului de expandare, pentru valori mici ale distanței dintre două linii de crestare succesive s și ale distanței dintre două crestături de pe aceeași linie de crestare p. Graficele sunt pânze ce au o alură parabolică, având cea mai mare netezime orizontală a suprafeței pânzei situată în apropierea valorii spre care tinde gradul de expandare, este $\varepsilon_e = 1$, pentru valorile lui s și p mari.

Gradul maxim de expandare, este determinat de:

- valorile minime ale distanței dintre două linii de crestare succesive s;

- valorile minime ale distanței dintre două crestături de pe aceeași linie de crestare p;

numărul mic de crestături de pe aceeaşi linie de crestare n_{cr}.
Cele prezentate anterior despre gradul maxim de expandare rezultă și din relațiile (3.101) și (3.102) pentru valorile lui s_{min} și p_{min} (v. § 3.4). În consecință, relațiile de calcul ale gradului maxim de expandare sunt (3.103) și (3.104).

$$\varepsilon_{e \max} = \sqrt{\frac{K_m^2 \cdot \left[B - \left(n_{cr} - \frac{1}{2}\right) \cdot p_{min}\right]^2}{s_{min}^2 \cdot \left(n_{cr} + \frac{1}{2}\right)^2} + 1}, \qquad (3.103)$$

$$\varepsilon_{e \max} = \sqrt{\frac{\left[2 \cdot B - (2 \cdot n_{cr} - 1) \cdot p_{min}\right]^2 \cdot \varepsilon_r \cdot (\varepsilon_r + 2, 4)}{9, 6 \cdot s_{min}^2 \cdot (2 \cdot n_{cr} + 1)^2}} + 1. \quad (3.104)$$

3.5.1 Nomograma gradului de expandare

Pentru realizarea nomogramei gradului de expandare dat de relația (3.101) va trebui să aducem această formulă sub forma:

$$f_1 = f_2 \cdot f_3$$
 (3.105)

~

În relația (3.105), s-a notat prin f_i funcția de variabila i.

Obținerea gradului de expandare sub forma (3.105) este posibilă prin ridicare la pătrat a relației (3.101) și trecerea lui 1 din membrul drept în membrul stâng, rezultând:

$$\varepsilon_{e}^{2} - 1 = \frac{K_{m}^{2} \cdot \left[B - \left(n_{cr} - \frac{1}{2}\right) \cdot p\right]^{2}}{s^{2} \cdot \left(n_{cr} + \frac{1}{2}\right)^{2}}$$
(3.106)

Din (3.106), făcând produsul mezilor și al extremilor, vom avea o relație asemănătoare cu (3.105):

$$K_{m}^{2} \cdot \left[B - \left(n_{cr} - \frac{1}{2} \right) \cdot p \right]^{2} = s^{2} \cdot \left(n_{cr} + \frac{1}{2} \right)^{2} \cdot \left(\varepsilon_{e}^{2} - 1 \right) \quad (3.107)$$

Prin identificarea termenilor dintre (3.105) și (3.107), vom avea:

$$f_{1} = K_{m}^{2} \cdot \left[B - \left(n_{cr} - \frac{1}{2} \right) \cdot p \right]^{2}$$

$$f_{2} = s^{2} \cdot \left(n_{cr} + \frac{1}{2} \right)^{2}$$

$$f_{3} = \varepsilon_{e}^{2} - 1$$
(3.108)

Variabilele celor trei funcții sunt:

- pentru funcția f_1 , variabila este p_1 pasul între două crestături alăturate;

- pentru funcția f_2 , variabila este *s*, pasul între două linii de crestare alăturate;

- pentru funcția f_3 , variabila este ε_e , gradul de expandare. Ecuațiile de disjuncție, conform lucrării [1], sunt:

$$\begin{aligned} \mathbf{x} &= \mathbf{f}_2 \\ \mathbf{y} &= \mathbf{f}_1 \end{aligned} \tag{3.109}$$

Cu ecuațiile de disjuncție, date de (3.109), avem:

$$\mathbf{y} = \mathbf{f}_3 \cdot \mathbf{x} \,. \tag{3.110}$$

Ecuația generală a unei drepte într-un plan este dată de relația:

$$\mathbf{A} \cdot \mathbf{x} + \mathbf{B} \cdot \mathbf{y} + \mathbf{C} = \mathbf{0} \tag{3.111}$$

Pentru (3.109) și (3.110), cu ajutorul relației (3.111), vom putea scrie, conform [1], *ecuația lui Soreau* ca fiind:

$$\begin{vmatrix} 0 & 1 & f_1 \\ 1 & 0 & f_2 \\ f_3 & -1 & 0 \end{vmatrix} = 0$$
(3.112)

Membrul stâng al *ecuației lui Soreau* se numește *determinantul lui* Massau.

Pentru realizarea nomogramei, vom introduce niște parametri, care vor face ca erorile de utilizare să fie cele mai mici posibile. Acești parametri vor fi notați cu \mathbf{a} și \mathbf{b} . Valorile parametrilor \mathbf{a} și \mathbf{b} se vor determina din condiția ca punctele inferioare ale scărilor variabilelor \mathbf{p} și \mathbf{s} , ale funcțiilor f₁ și f₂, să se afle pe o aceeași axă. Coliniaritatea punctelor inferioare ale celor două scări este posibilă dacă sunt îndeplinite relațiile:

$$A_1 - a = 0 (3.113) B_1 - b = 0$$

unde:

- A_1 este limita inferioară a intervalului de variație a funcției f_1 (valoarea funcției f_1 pentru $p_{min}-A_1\leq f_1\leq A_2$);

- B_1 este limita inferioară a intervalului de variație a funcției f_2 (valoarea funcției f_2 pentru $s_{min}-B_1\leq f_2\leq B_2$).

Datorită proprietăților determinanților, putem înmulți prima coloană cu (-b) și a doua coloană cu (-a) și adunându-le la a treia coloană a ecuației lui Soreau, dată de relația (3.112), obținem:

$$\begin{vmatrix} 0 & 1 & f_1 - a \\ 1 & 0 & f_2 - b \\ f_3 & -1 & a - b \cdot f_3 \end{vmatrix} = 0.$$
 (3.114)

În continuare, vom înmulți linia întâi a ecuației (3.114) cu μ_1 și a doua linie cu $(-\mu_2)$ și împărțind prima coloană cu $(-\mu_2)$ și a doua coloană prin μ_1 ecuația (3.114) devine:

$$\begin{vmatrix} 0 & 1 & \mu_{1} \cdot (f_{1} - a) \\ 1 & 0 & -\mu_{2} \cdot (f_{2} - b) \\ -\frac{f_{3}}{\mu_{2}} & -\frac{1}{\mu_{1}} & a - b \cdot f_{3} \end{vmatrix} = 0, \qquad (3.115)$$

unde:

- μ₁ este modulul scării parametrului variabilei p;

- μ₂ este modulul scării parametrului variabilei s.

Valorile modulilor μ_1 și μ_2 se determină din condiția lungimii scărilor variabilelor p și s. Vom considera lungimile celor două scări ca fiind egale cu λ , valoare care se alege arbitrar, putând scrie următoarea relație:

$$\mu_2 \cdot L \cdot (B_2 - B_1) = \mu_1 \cdot L \cdot (A_2 - A_1) = \lambda$$
 (3.116)

unde:

- L – lungimea nomogramei.

În continuare, adunând coloana a doua la prima și împărțind coloanele ecuației (3.115) prin elementele coloanei întâi obținem:

$$\begin{vmatrix}
1 & 1 & \mu_{1} \cdot (f_{1} - a) \\
1 & 0 & -\mu_{2} \cdot (f_{2} - b) \\
1 & \frac{\mu_{2}}{\mu_{1} \cdot f_{3} + \mu_{2}} & \frac{\mu_{1} \cdot \mu_{2} \cdot (b \cdot f_{3} - a)}{\mu_{1} \cdot f_{3} + \mu_{2}}
\end{vmatrix} = 0. \quad (3.117)$$

Pentru a putea obține ecuația lui Soreau sub formă finală, de unde să rezulte ecuațiile scărilor nomogramei, vom înmulți elementele coloanei a doua a ecuației dată de relația (3.117) cu M (M – distanța dintre scările variabilei p și ale variabilei s) și ale coloanei a treia cu L, rezultând:

$$\begin{array}{cccc} 1 & M & L \cdot \mu_{1} \cdot (f_{1} - a) \\ 1 & 0 & -L \cdot \mu_{2} \cdot (f_{2} - b) \\ 1 & \frac{M \cdot \mu_{2}}{\mu_{1} \cdot f_{3} + \mu_{2}} & \frac{L \cdot \mu_{1} \cdot \mu_{2} \cdot (b \cdot f_{3} - a)}{\mu_{1} \cdot f_{3} + \mu_{2}} \end{array} = 0.$$
 (3.118)

În acest caz, ecuațiile cu ajutorul cărora se vor trasa scările nomogramei vor fi:

- pentru scara parametrului variabilei p:

$$\begin{cases} x = M \\ y = L \cdot \mu_1 \cdot (f_1 - a)^{\dagger} \end{cases}$$
(3.119)

- pentru scara parametrului variabilei s:

$$x = 0$$

 $y = -L \cdot \mu_2 \cdot (f_2 - b)$; (3.120)

- pentru scara parametrului variabilei ε_e:

$$x = \frac{M \cdot \mu_2}{\mu_1 \cdot f_3 + \mu_2}$$

$$y = \frac{L \cdot \mu_1 \cdot \mu_2 \cdot (b \cdot f_3 - a)}{\mu_1 \cdot f_3 + \mu_2}$$
(3.121)

Înlocuind în relațiile (3.119), (3.120) și (3.121) pe f_1 , f_2 și f_3 cu expresiile lor date de (3.108), vom obține ecuațiile scărilor nomogramei în p, s și ε_e :

- pentru scara parametrului variabilei p:

$$\begin{cases} \mathbf{x} = \mathbf{M} \\ \mathbf{y} = \mathbf{L} \cdot \boldsymbol{\mu}_{1} \cdot \left\{ \mathbf{K}_{\mathbf{m}}^{2} \cdot \left[\mathbf{B} - \left(\mathbf{n}_{\mathbf{cr}} - \frac{1}{2} \right) \cdot \mathbf{p} \right]^{2} - \mathbf{a} \right\}; \quad (3.122)$$

- pentru scara parametrului variabilei s:

$$\mathbf{x} = 0$$

$$\mathbf{y} = -\mathbf{L} \cdot \mu_2 \cdot \left[\mathbf{s}^2 \cdot \left(\mathbf{n}_{cr} + \frac{1}{2} \right)^2 - \mathbf{b} \right]; \qquad (3.123)$$

- pentru scara parametrului variabilei ε_e :

$$\mathbf{x} = \frac{\mathbf{M} \cdot \boldsymbol{\mu}_{2}}{\boldsymbol{\mu}_{1} \cdot \left(\boldsymbol{\epsilon}_{e}^{2} - 1\right) + \boldsymbol{\mu}_{2}}$$
$$\mathbf{y} = \frac{\mathbf{L} \cdot \boldsymbol{\mu}_{1} \cdot \boldsymbol{\mu}_{2} \cdot \left[\mathbf{b} \cdot \left(\boldsymbol{\epsilon}_{e}^{2} - 1\right) - \mathbf{a}\right]}{\boldsymbol{\mu}_{1} \cdot \left(\boldsymbol{\epsilon}_{e}^{2} - 1\right) + \boldsymbol{\mu}_{2}}$$
(3.124)

Nomograma gradului de expandare este prezentată în fig. 3.15.

Fig. 3.15 Nomograma gradului de expandare

3.6 Caracteristici de rezistență ale tablei expandate

Studiul caracteristicilor de rezistență ale tablei expandate au fost realizate în comparație cu tabla plană neexpandată. Determinarea caracteristicilor se va realiza în cazul încastrării pe contur circular, la un diametru D = 115 mm, atât a tablei expandate cât și a celei neexpandate.

3.6.1 Elementele de calcul teoretic pentru încovoierea plăcilor plane circulare încastrate pe contur și încărcate cu o sarcină concentrată în centru

Elementele geometrice, care caracterizează o placă, sunt: forma și dimensiunile suprafeței mediane și grosimea, măsurată perpendicular pe suprafața mediană. Pentru plăcile plane, se alege sistemul de referință format din axele x și y în planul suprafeței mediane și axa z perpendiculară pe acest plan.

În urma deformației plăcii, suprafața mediană ia o formă curbă. Deformațiile suprafeței mediane, măsurate pe axa z, se notează cu w.

Făcându-se o secțiune diametrală printr-o placă deformată, se obține o curbă, care este intersecția suprafeței mediane deformate cu planul secțiunii. La o distanță oarecare r de centru, această curbă are săgeata w și unghiul de pantă φ . Elementele geometrice prezentate anterior sunt ilustrate în fig. 3.16.

Fig. 3.16 Elementele geometrice ale deformațiilor unei plăci circulare

În cazul unei plăci circulare plane încastrate pe contur și solicitată centric cu o forță concentrată F, relațiile de calcul teoretice ale săgeții w și ale unghiului de pantă φ la o distanță r față de centrul plăcii sunt date de următoarele expresii vezi ([4], [23], [35]):

$$w = \frac{F \cdot r^2}{8 \cdot \pi \cdot D} \cdot \ln \frac{r}{R} + \frac{F}{16 \cdot \pi \cdot D} \cdot \left(R^2 - r^2\right), \qquad (3.125)$$

$$\varphi = \frac{\mathbf{F} \cdot \mathbf{r}}{4 \cdot \pi \cdot \mathbf{D}} \cdot \ln \frac{\mathbf{R}}{\mathbf{r}}.$$
 (3.126)

În relațiile de calcul ale lui w și φ avem următoarele elemente:

- F – forța concentrată aplicată în centru;

- R – raza plăcii circulare;

- r – distanța față de centru, unde se calculează săgeata w și unghiul de pantă ϕ ;

- D – rigiditatea la încovoiere a plăcii, care are următoarea relație:

$$D = \frac{E \cdot g^{3}}{12 \cdot (1 - v^{2})},$$
 (3.127)

unde E este modulul de elasticitate $E = 2,1 \cdot 10^6 \text{ daN/cm}^2$, iar v este coeficientul de contracție transversală sau coeficientul lui Poisson, v = 0,3.

Se observă, din fig. 3.16 și din relațiile de calcul, că la o creștere a lui r unghiul de pantă φ crește, iar săgeata w scade.

Deformația w maximă și unghiul de pantă ϕ minim ($\phi = 0$) se află în centru. Formula de calcul pentru deformația maximă w_{max} este dată de relația:

$$w_{\text{max}} = \frac{F \cdot R^2}{16 \cdot \pi \cdot D}.$$
 (3.128)

La distanța r față de centru, unde se calculează săgeata și unghiul de pantă, se pot calcula și eforturile unitare, tensiunea tangențială și tensiunea radială, cu următoarele relații din [4], [23], [35]:

$$\sigma_{t} = \frac{3 \cdot F}{2 \cdot \pi \cdot g^{2}} \cdot \left[\left(1 + \nu \right) \cdot \ln \frac{R}{r} - \nu \right], \qquad (3.129)$$

$$\sigma_{\mathbf{r}} = \frac{3 \cdot \mathbf{F}}{2 \cdot \pi \cdot \mathbf{g}^2} \cdot \left[(1 + \mathbf{v}) \cdot \ln \frac{\mathbf{R}}{\mathbf{r}} - 1 \right]. \tag{3.130}$$

Pentru determinarea tensiunilor tangențiale și radiale pe contur, în relațiile (3.129) și (3.130) se consideră r = R și rezultă următoarele expresii:

$$\sigma_{t} = \frac{3 \cdot F \cdot v}{2 \cdot \pi \cdot g^{2}}, \qquad (3.131)$$

$$\sigma_{\mathbf{r}} = \frac{3 \cdot \mathbf{F}}{2 \cdot \pi \cdot \mathbf{g}^2}.$$
 (3.132)

În centru, formulele (3.129) și (3.130) dau eforturile unitare infinit, deoarece r = 0. Formula de calcul aproximativă a efortului unitar în centru, pe fața opusă tablei, a punctului de aplicare a forței este dată de relația vezi ([4], [23], [35]):

$$\sigma_{\max} = (1+\nu) \cdot \frac{F}{g^2} \cdot \left(0,485 \cdot \ln \frac{R}{r} + 0,52\right).$$
(3.133)

3.7 Concluzii

1. Descrierea matricială a rețelei de crestături, prezentată în fig. 3.2, prin atribuirea fiecărei crestături valoarea 1 și fiecărui spațiu plin dintre două crestături alăturate de pe același rând cu crestături valoarea 0, rețeaua de crestături se poate scrie ca o matrice ce are m linii și n coloane. În acest caz matricea va avea toate elementele egale cu 1 sau 0 în alternanță pe orizontală, cu excepția primei coloane și a ultimei în care se observă alternanța valorilor 1 și $\frac{1}{2}$. Valorile $\frac{1}{2}$ apar datorită limitării structurii.

2. Descrierea geometrică a rețelei de crestături obținută cu un cuțit superior de forma celui prezentat în fig. 1.24 a, se face pe baza observației că, tabla, obținută printr-un proces de expandare este formată din suprafețe plane, ce sunt racordate între ele prin suprafețe conice de directoare parabolice.

O placă de tablă expandată este formată din trei tipuri de suprafețe plane: una paralelă cu planul xoy, iar celelalte două având normalele depinzând de distanța dintre două rânduri de crestături, de revenirea elastică, de lungimea cursei active de deformare și de distanța dintre două crestături alăturate de pe aceeași linie de crestare.

Suprafața conică este tangentă la planul normal al puntiței dintre două rânduri de crestături, prin curbarea căreia rezultă. De asemenea suprafața conică este tangentă la suprafețele plane, pe care le îmbină, de-a lungul generatoarei de intersecție dintre ea și aceste plane. Aceste condiții au permis efectuarea descrierii analitice a structurii.

3. Măsurătorile au arătat că aplatizarea înseamnă, din punct de vedere geometric, o izometrie la nivelul structurii metalice, modificările metrice fiind prezente doar la nivelul golurilor. Aceste modificări depind de caracteristicile de material ale semifabricatului.

4. Cercetarea structurii de tablă expandată, din punct de vedere analitic și metric, oferă funcțiile necesare rezolvării de probleme de optimizare de formă, necesare în minimizarea costurilor de producție și a consumurilor materiale.

5. Determinarea din punct de vedere al rezistenței tablei expandate, a caracteristicilor constructive ale cuțitului (unghiul de degajare γ și unghiul de poziție φ), se face pornind de la condiția de rezistență a puntiței dintre două rânduri de crestături s, deoarece se presupune că tabla expandată va fi utilizată ca element de rezistență, condiție de utilizare cea mai defavorabilă.

Studiile efectuate pentru determinarea celor două unghiuri arată că:

- Valoarea unghiului γ depinde de:

- proprietățile fizico-mecanice ale materialului, prin tensiunea σ_i ;

- caracteristicile materialului, prin grosimea g și revenirea elastică R ;

- caracteristicile de lucru, prin valoarea puntiței dintre două rânduri de crestături s și lungimea cursei pe care o execută muchia sculei în decursul procesului de expandare l_{cd} .

- Valoarea unghiului φ depinde de:

- proprietățile fizico-mecanice ale materialului prin tensiunea $\sigma_{i};$

- caracteristicile materialului, prin grosimea g și revenirea elastică R ;

- caracteristicile de lucru, prin valoarea lungimii crestăturii l_{cr} și lungimea cursei pe care o execută muchia sculei în decursul procesului de expandare l_{cd} .

Prin compararea expresiei unghiului de poziție φ dată de relația (3.60) și expresia unghiului de degajare γ , dată de relația (3.52), se constată că ambele unghiuri depind de proprietățile fizico-mecanice ale materialului, de caracteristicile acestuia precum și de caracteristicile de lucru.

Caracteristicile de lucru, care diferă în relațiile de calcul a celor două unghiuri sunt:

- valoarea puntiței dintre două rânduri de crestături s în relația de calcul a unghiului de degajare γ ;
- lungimea crestăturii l_{cr} în relația de calcul a unghiului de poziție φ .

6. Tablele expandate standard au ca dimensiuni principale ale golului înălțimea C și lungimea D, care sunt prezentate în fig. 1.4.

Dimensiunea C (înălțimea golului) este influențată de parametrii de lucru ai mașinii de expandat, prin lungimea cursei active de deformație l_{cd} , precum și de caracteristicile materialului, prin revenirea elastică R.

7. Prin caracterizarea analitică a golului s-a stabilit că o celulă are forma unui romb curbiliniu, având două laturi vecine drepte, iar celelalte două laturi în formă de arc de parabolă.

8. Descrierea metrică a unei celule oferă aparatul matematic ce constituie premisele unui studiu de defectologie. Cazul ruperii la solicitare se obține ca o situație limită și se poate determina rezolvând o problemă de extrem a funcțiilor care reprezintă dimensiunile formei celulei.

9. Limitele tehnologice ale procesului de expandare a tablelor, determină domeniul în care acest proces de deformare poate avea loc, fără a se produce ruperea materialului supus deformării, existând două aspecte tehnologice, care determină aceste limite și anume:

- aspecte legate de efectuarea crestărilor;

- aspecte legate de deformarea prin alungire a materialului supus prelucrării.

10. Parametrii tablei expandate sunt s, p și l_{cr}, reprezentând și parametrii tehnologici ai procesului de expandare.

11. Vom numi Grad de expandare și-l vom nota cu ε_e - creșterea ariei suprafeței expandate în raport cu cea a suprafeței de dinaintea expandării, având expresia dată de relația (3.80).

Prin raportare a gradului de expandare la parametrii tehnologici ai procesului de expandare, ne conduce la relația de calcul a acestuia, dată de relația (3.92), care arată că gradul de expandare ε_e a tablei variază în

funcție de raportul $\frac{l_{cd}}{s}$, crescând o dată cu valoarea lungimii l_{cd} a cursei active de deformare a cuțitului superior și cu micșorarea distanței dintre rândurile de goluri s (avansul semifabricatului).

12. Am notat cu K_m constanta de material dată de relația (3.95), care a permis calcularea acestui coeficient pentru materialele utilizate la realizarea tablelor expandate, fiind trecute în tab. 3.5.

Gradul de expandare rezultat în urma introducerii constantei de material K_m , a distanței dintre două crestături alăturate de pe aceeași linie de crestare p și a numărului de crestături de pe o linie de crestături n_{cr} , este dat de relația (3.101).

Cu ajutorul relației (3.101) am realizat, în tab. 3.6, studiul grafic al evoluției gradului de expandare, pentru diferite valori ale lățimii B a semifabricatului și a numărului de crestături de pe aceeași linie de crestare n_{cr} .

In urma studierii tab. 3.6, se constată că, la o aceeași valoare a lățimii B a tablei, gradul de expandare ε_e scade odată cu creșterea numărului de crestături de pe aceeași linie de crestare n_{cr} . Se observă că aceste grafice indică valori mari ale gradului de expandare, pentru valori mici ale distanței dintre două linii de crestare succesive s și ale distanței dintre două crestături de pe aceeași linie de crestare p. Graficele sunt pânze ce au o alură parabolică, având cea mai mare netezime orizontală a suprafeței pânzei situată în apropierea valorii spre care tinde gradul de expandare, este $\varepsilon_e = 1$, pentru valorile lui s și p mari.

Gradul maxim de expandare, este determinat de:

- valorile minime ale distanței dintre două linii de crestare succesive s;

- valorile minime ale distanței dintre două crestături de pe aceeași linie de crestare p;

- numărul mic de crestături de pe aceeași linie de crestare n_{cr}.

13. Pentru determinarea pe cale grafică a gradului de expandare, prin studierea lucrărilor trecute în bibliografie, am realizat nomograma gradului de expandare dată în fig. 3.15.

Capitolul IV

Cercetări experimentale

4.1 Considerații generale

Cercetările experimentale [29] urmăresc, pe de o parte, verificarea ipotezelor și teoriilor care au stat la baza studiilor referitoare la procesele cercetate. Pe de altă parte, cercetările experimentale permit investigarea unor fenomene pentru care, pe cale teoretică, nu se pot obține rezultate cu aplicabilitate practică, datorită complexității acestora și necunoașterii în suficientă măsură a unor legi care determină evoluția fenomenului cercetat.

Se poate afirma că toate cercetările experimentale din toate domeniile tehnice, conțin măsurarea unor mărimi mecanice sau de altă natură, în regim static sau dinamic, variabile în timp sau în interdependență, folosind aparatură și mijloace de măsurare adecvate, prelucrarea datelor obținute și, în final, stabilirea con1uziilor pe baza cărora se poate trece la valorificarea rezultatelor [5].

4.2 Determinări ale forțelor din proces

În timpul procesului de realizare a tablei expandate, se dezvoltă forțe ce înving rezistența, pe care o opune materialul semifabricatului. Forțele ce se exercită din exterior, trebuie să fie cunoscute, deoarece pe baza lor se determină puterea și lucrul mecanic care trebuiesc dezvoltate în timpul procesului de realizare a tablei expandate.

Determinările valorilor forțelor se fac pe bază teoretică cu ajutorul relațiilor determinate și prezentate în subcapitolul 2.2.2, cât și pe bază experimentală pe elemente reduse dimensional.

Determinările experimentale pentru forțele din procesul de expandare au fost realizate pe o instalație care este prezentată în fig. 4.1.

Instalația de determinare a forței are următoarele părți componente:

- 1 masă suport mobilă;
- 2 coloane de ghidare;
- 3 cuțit superior;
- 4 punte tensometrică de măsură;
- 5 masă suport fixă;

- 6 - traductor de forță HOTTINGER BALDWINMESTECHNIK

tip C;

- 7 cuțit inferior;
- 8 dispozitiv de fixare a semifabricatului;
- 9 masă mobilă;
- 10 cric hidraulic.

Dispozitivul de fixare a semifabricatului din fig. 4.1 are montat în structura sa și cuțitul inferior, acest dispozitiv se prezintă cu părțile sale componente în fig. 4.2.

Fig. 4.2 Dispozitiv de fixare a semifabricatului cu cuțitul inferior montat

Părțile componente ale dispozitivului de fixare a semifabricatului sunt:

- 1 – elementul de ghidare și deplasare în plan lateral a semifabricatului;

- 2 – cuțitul inferior;

- 3 – șuruburi de fixare a cuțitului inferior;

- 4 – mâner pentru deplasarea laterală a elementului de

- 5 - elementul de strângere și fixare a semifabricatului;

- 6 - elementul de fixare a dispozitivului de masa mobilă a

instalației.

ghidare;

La determinarea experimentală a forțelor totale de tăiere, semifabricatul este montat fix în dispozitivul prezentat în fig. 4.2. Acesta este fixat, la rândul său, pe masa mobilă a instalației prezentate în fig. 4.1, deplasându-se odată cu aceasta pe verticală de jos în sus, constituind totodată și elementul mobil al instalației de determinare a forței totale de tăiere. Deplasarea ansamblului format din masa mobilă și dispozitivul de fixare este realizată cu ajutorul cricului hidraulic așezat pe masa suport fixă.

Masa suport mobilă împreună cu traductorul de forță HOTTINGER, în care este fixat cuțitul superior, formează elementul fix al instalației prezentate în fig. 4.1. Cuțitul superior acționează asupra semifabricatului care se deplasează pe verticală de jos în sus, realizând tăierea și deformarea acestuia, rezultând tabla expandată.

Cele prezentate la aliniatul precedent sunt ilustrate în fig. 4.3.

Fig. 4.3 Acționarea cuțitului superior asupra semifabricatului și modul de fixare a acestuia

Elementele componente ale ansamblului prezentat în fig. 4.3 sunt: - 1 - doză de forță HOTTINGER BALDWINMESTECHNIK

tip C;

- 2 – element de fixare a cuțitului superior în doza de forță;

- 3 – cuțit superior;

- 4 – semifabricat;

-5 - cuțit inferior;

- 6 – dispozitiv de fixare a semifabricatului.

Înregistrările valorilor forțelor s-au realizat în urma deplasărilor pe verticală de jos în sus din 0,1 în 0,1 mm a întregului ansamblul mobil *masă mobilă - dispozitiv de fixare - semifabricat*. Deplasările au fost determinate cu ajutorul unui comparator ce are scala gradată în sutimi. Comparatorul în instalația din fig. 4.1 se sprijină pe masa suport fixă a acesteia și palpează pe masa mobilă.

Forța totală de tăiere (energia mecanică), care este dezvoltată de cuțitul superior în timpul procesului de expandare, este preluată și transformată în energie electrică de către traductorul de forță HOTTINGER, care o transmite punții tensometrice de măsură.

Determinări ale forțelor totale de tăiere s-au realizat pentru trei forme ale cuțitelor superioare profilate, care sunt prezentate cu dimensiuni în fig. 4.4.

Fig. 4.4 Forme ale cuțitului superior utilizat - cotat

Forțele totale de tăiere sunt determinate pentru diferite materiale ale semifabricatului și pentru diferite valori ale pasului s dintre două rânduri de crestături alăturate.

Lățimea semifabricatului este aleasă astfel încât prin deplasarea în plan lateral a acestuia să nu depăşească lungimea cuțitului inferior, deoarece la determinările experimentale pe instalația prezentată în fig. 4.1 cuțitul superior cât și cel inferior sunt montate fixe.

Elemente de table expandate rezultate în urma determinărilor experimentale sunt prezentate în fig. 4.5.

Fig. 4.5 Elemente de table expandate rezultate din determinările experimentale

Determinările experimentale ale forței totale din procesul de expandare sunt realizate în funcție de deplasarea pe verticală a ansamblului mobil masă mobilă - dispozitiv de fixare – semifabricat, deplasări ce corespund cu distanța de pătrundere a cuțitului profilat în semifabricat. Aceste determinări sunt realizate pentru un număr de şase rânduri de crestare succesive.

Valorile forțelor determinate experimental sunt prezentate tabelar în funcție de materialul semifabricatului, de grosimea acestuia, de distanța dintre rândurile de crestare și de profilul cuțitului superior utilizat.

Tab. 4.1 până la tab. 4.6 sunt tabelele cu valorile forțelor pentru rândurile 3 și 4, fiind cele mai reprezentative, din cele 6 realizate pentru fiecare tip de material și fiecare formă a cuțitului superior, iar graficele aferente acestora sunt prezentate în fig. 4.6. până la fig. 4.11.

	Forta [N	pentru re	ealizarea r	àndurilor	de crestăt	uri 3 și 4 rândurile	pe semifal	bricate dir	n aluminiu	i cu grosir	nile g și d	istanțele
Depl.	o = 1	mm	q = 0	75 mm		mm	$\sigma = 0^{2}$	1001 S 75 mm	q = 1 mm		q = 0.75 mm	
լոույ	e = 10) mm	s = 1		s=7	5 mm	s = 75 mm $s = 5$		mm	g = 0,75 mm		
	3 1	4	3	4	3,	4	3 /,	4	3	4	3	4
0.1	122.58	134.84			269.68	269.68	169.89	169.89	367.75	380.01	231.68	239-11
0.1	257.42	269.68	10717	169.89	343.23	392.27	10.73	74713	441.3	429.04	278.02	2 11
0.3	380.01	355.49	239.40	223.05	416.78	478.07	202 57	301-18	490.33	478.07	308.91	3.0.18
0.4	453.56	478.07	285 74	301.18	465.82	527.11	293.46	332.07	539.37	551.62	3348	347 52
0.5	514.85	539.37	324.35	329.01	539.37	600.66	339.80	372.40	637.43	612.92	491.58	386-14
0.6	563.88	612.92	306.52	380.01	588.4	661.95	40011	410.40	661.95	637.43	417.03	401-58
0.7	588.4	612.92	382.46	386.13	637.43	661.95	433.42	436 88	710.98	686.47	447 92	432.48
0.8	612.92	637.43	398 39	433 45	661.95	710.98	450 12 (469/24	710.98	710.98	447.92	447.52
0.9	637.43	661.95	414.33	450 12	686.47	735.5	466.79	485.43	735.5	735.5	403.37	403.37
1	661.95	710.98	450.12	483-46	710.98	735.5	483.46	485.43	735.5	735.5	40337	103 37
1.1	735.5	760.02	500.14	516.8E	735.5	760.02	500-14	501.61	735.5	760.02	463.37	478.81
1.2	784.53	784.53	533.48	533.48	760.02	809.05	516.81	533.07	784.53	760.02	4-14-52	478.81
1.3	809.05	809.05	550.15	550-15	784.53	809.05	533.48	533.97	784.53	809.05	494 25	5097
1.4	833.57	833.57	591.83	591,83	809.05	858.08	55015	56633	784.53	809.05	494.25	5007
1.5	858.08	882.6	609,23	626.64	833.57	882.6	566 82	582 51	833.57	833.57	525.15	525 15
1.6	882.6	907.12	626.64	644.05	858.08	882.6	583.49	582.51	833.57	833.57	525.15	525 15
1.7	931.63	956.15	661.45	678-86	907.12	931.63	616.84	614.87	858.08	833.57	540 59	525.15
1.8	980.67	1005.2	696.27	713.69	931.63	956.15	633 50	631.05	858.08	833.57	540.59	525.15
1.9	1005.2	1029.7	713.69	731.08	956.15	980.67	650.18	666-85	858.08	858.08	540.59	540.59
2	1029.7	1078.7	803.16	765 87	980.67	980.67	686,46	686-46	882.6	858.08	556.04	540.59
2.1	1054.2	1103.2	822.27	783.27	1005.2	1005.2	713.69	-703,64	882.6	858.08	556-04	540.59
2.2	1078.7	1127.8	841.38	800,73	1029.7	1029.7	731.08	731.08	882.6	882.6	556.04	550.04
2.3	1127.8	1176.8	879.68	859.06	1029.7	1029.7	761.97	761.97	907.12	882.6	571.49	550.04
2.4	1152.3	1201.3	898.79	876,94	1054.2	1054.2	780,10	801.19	907.12	882.6	571.49	556.04
2.5	1176.8	1201.3	917.90	937.01	1054.2	1054.2	822.27	822.27	907.12	907.12	571.49	571.49

Tab. 4.1 Valorile forțelor determinate experimental pentru realizarea rândurilor 3 și 4 de crestături, la materialul de aluminiu, cu cuțitul prezentat în fig. 4.4 a

,

	Forța [N] pentru realizarea rândurilor de crestături 3 și 4 pe semifabricate din aluminiu cu grosimile g și distanțele dintre rândurile de crestături s											
Depi.	$\varphi \equiv 1$	mm	q = 0	/5 mm	o = 1	mm	q = 0	75 mm	o = 1	mm	q = ().75 mm	
[]	s = 10) mm	s = 1) mm	s = 7.5 mm		s = 7.5 mm		$\kappa = 5 \text{mm}$		s = 5 mm	
	3	4	3	4	3 4		3	4	3	4	3	4
0.1	183.87	183.87	115 83	115.83	563.88	563.88	35524		159.36	1471	and the second s	
0.2	380.01	343.23	235-46	24, 23	882.6	931 63	550 B	Sixes 1	343.23	318.72		
0.3	588.4	563 88		155.24	1005.2	1078.7		$(i_1,\ldots,i_{n-1}, \sum_{j=1}^{n-1} (i_j) + \sum_{i$	563.88	539.37		
0.4	833 57	760.02	N2 S 1 4	$ J \propto N_{\rm H}$	1127.8	1176.8	76 54	1	760.02	710.98	1.4.4.	
0.5	1005 2	956.15		0 (<u>)</u> (1287.1	1225.8	S 8		956 15	907.12		
0.6	1078.7	1078.7		1. The XX.	1471	1287.1	· · · · ·		1078.7	1029.7	· · · · · ·	
0.7	1201.3	1201.3		- ¹ (<u>X</u>)	1593.6	1471			1225.8	1201.3	· · · · · ·	
0.8	1348.4	1348.4	$S(c \in I)$		1777.5	1593.6	1 1 × 1	· · · · ·	12871	12871	· · ·	· · · · · · · · · · · · · · · · · · ·
0.9	1471	1471			1900	1716.2		· · · · · · · · · · · · · · · · · · ·	1409 7	1409.7	· · · · ·	
	1654.9	1593.6	<u> </u>		1961.3	1838.7	· · · · ·	· · · ·	1532.3	1532.3		
1.1	1777 5	1716.2	<u> </u>	<u> </u>	2083.9	1961.3			1654.9	1654.9	·`-	
1.2	1900	1900			2206 5	2022.6		· · · · · ·	1777 5	1777 5	·	
1.3	2022.6	2022.6			2267.8	2145.2	· · · · ·		1900	1900		
14	2083.9	2145.2			23291	2206.5	· · · ·		2022.6	2022.6		
1.5	2145.2	2267.8		<u> </u>	2390.4	2267.8	· · · · · · · · · · · · · · · · · · ·		2022.6	2083.9		· · · · · · · · · · · · · · · · · · ·
1.6	2206.5	2329.1			2451.7	2329.1			2145 2	2145.2		
1.7	2267.8	2390.4		N 197	2451 7	23904			2145.2	2145.2		
1.8	23291	2451 7			2513	2451 7			2206.5	2145.2		
1.9	2390.4	2513			2574.2	2513		· · · · · · · · · · · · · · · · · · ·	2206.5	2206.5	·	
2	2451.7	2635.5	, 1	 	2574.2	2574.2			2267.8	2206.5	·	
2.1	2513	2696.8			2035 5	25/4.2			220/8	2206.5		
2.2	25/4.2	2/38.1			2090 8	25/42	· · · · · · · · · · · · · · · · · · ·		22078	2200.5		
2.5	2035.5	2819.4			2090.8	20.33.3			22078	220/8		
2.4	2090.8	2880.7			2758 1	2040 8			220/8	2207.8	·	
4.3	20%0.8	2942			2738.1	2090 8			2207.8	2207.0		
2.0	2758.1	2064.6			2019.4	2750.8			2229.1	2329.1	·	
2,1	2138.1	3187 2			2810 4	27591			77011	73701		
2,0	2880 7	3187 2			2880 7	2758 1			2390 1	27291		
2,7	2000.7	3309 7	155.1.55		2880 7	27581	18.1 1		2390.4	2390 1		
31	2942	3309 7			2880 7	27581			2451 7	2190.1		
37	3003 3	3432 3			2880 7	27581		17.5	2451 7	7790 1		
33	3003.3	3432.3			2880 7	2819.4	184374		2451 7	2451 7	<u> </u>	
34	3064.6	3554.9	118 1 34	<u></u>	2880 7	2819.4	818 1		2513	2451.7		
3.5	3064.6	3554.9	1 24 34	1215-11	2880.7	2880 7	18.18	1.5.1	2513	2451 7		
3.6	3187.2	3554.9	2073-0 8 0	231 - 58	2942	2880.7	17123		2513	2513		
3.7	3187.2	3554.9	2 71 68	1.54 ± 8.5	2942	2880 7		N72 (r	2574.2	2513		
3.8	3187.2	3677.5	2016.08	1. N. 1. T.	2942	2942	1 2 2 2	1 X 1 X 2	2574.2	2513		
3.9	3309.7	3677.5	1151.34	21643-57	3003.3	2942	1995 11		2635.5	2574.2	·	
4	33097	3677.5	2-5136	13-24-27 ⁻	3003.3	3003.3	19211	1995 <u>-</u> 1997	2635.5	2574 2		

Tab. 4.2 Valorile forțelor determinate experimental pentru realizarea rândurilor 3 și 4 de crestături, la materialul de oțel, cu cuțitul prezentat în fig. 4.4 a

Fig. 4.6 Valorile forțelor determinate experimental pentru realizarea rândurilor 3 și 4 de crestături, la materialul de aluminiu, cu cuțitul

Fig. 4.7 Valorile forțelor determinate experimental pentru realizarea rândurilor 3 și 4 de crestături, la materialul de oțel, cu cuțitul prezentat în fig. 4.4 a

Dent	Forța [N] pentru realizarea rândurilor de crestături 3 și 4 pe semifabricate din aluminiu cu grosimile g și distanțele dintre rândurile de crestături s											
$\{mm\}$	g = 1	mm	g = 0.7	5 mm	g ≃ 1	mm	g = 0,7	5 mm	g - 1 mm		g ≃ 0,75 mm	
	s = 1() mm	s = 10	mm	<u>s</u> ~ 7,	<u>5 mm</u>	s = 7,5 mm		S [∞] .	mm	s - 5	ՠՠ
	3	4	3	4	3	4	3	4	3	4	3	4
01			· · · ·	Ц <u>Ц</u>	24 517	36 775			73.55	73.55	· · · ·	· · · · · · ·
0.2	110.32	122.58			159 36	183 87			19613	196.13		
04	171 62	183 87	1 N 1	1999 - C	196 13	220 65			232 91	220.65		
0.5	208 39	220.65			245 17	245.17	1944) 1944)	•••	257.42	245.17		
06	245 17	24517		· · · · ·	269 68	2942			294 2	269 68		·
0.8	306.46	306.46			343 23	355 49	· · · · · · · · · · · · · · · · · · ·		367.75	330.97		
09	330.97	343.23		11.13	355 49	367.75			380.01	330.97	· ·	
1	355.49	343 23			367 75	380.01	· · · · ·	•	380.01	343 23		
1.1	367 75	343 23			392 27	392.27			392 27	355.49		
1.2	380.01	355.49			404 52	410 /8			404.52	36775	·	
14	380.01	380.01		· · · · · · · ·	441.3	4413		• · · · · · · ·	4413	404.52		· · · · · · · · ·
15	392.27	392.27		-	441 3	453.56		5 A.	465 82	416 78		
1.6	404.52	416 78			453.56	465 82	· ';		490 33	441.3		
17	416.78	4413			478 07	490 33			502.59	453.56		· · · · · ·
1.0	433.30	403.02			551.62	539.37			539 37	490 33	·	
2	490 33	490.33	1.1		576 14	551.62	· · · · · · · · · · · · · · · · · · ·		551 62	514.85		
21	502 59	502 59	· ·		588.4	563 88		· · · ·	576 14	52711		
2.2	514.85	527.11			588.4	588.4			588.4	551 62		· · · ·
2.3	539 37	539.37	· · · · ·		600.66	612.92		· · ·	600 66	563 88		· · · · ·
25	576.14	588.4			637 43	661.95			637.43	600.66		
2,6	588.4	600.66		1 N 41	661.95	686.47			637.43	612.92		
2,7	600.66	612.92			686 47	710 98		÷	661.95	03743		·
2,8	612.92	637.43			710.98	735 5			661.95	637 43	·	
	661.95	661.95	· · · · · · · · · · · · · · · · · · ·		735 5	760.02			686.47	601.95		
3,1	661.95	686.47			735 5	760.02	1 () 1 ()	4.14	686.47	686 47		
3,2	686.47	686.47	- 4		760.02	760.02			686 47	686 47		
3,3	686.47	710 98			760 02	784 53			686 47	686.47		· · ·
3,4	710.9%	7355	•		784 53	809.05			080.47 686.17	696 3		
3,6	735 5	735 5	4		784.53	809 05			696.5	696.5		
3,7	760 02	760 02	435.43		784.53	809.05			696 5	696 5		
3,8	784.53	760 02		<u> </u>	809.05	833 57			696.5	710.98		
<u>39</u> 4	784 53	784 53 809 05			809.05	833 57			696.5	710.98		
4,1	809.05	809.05	· · · · · · · · · · · · · · · · · · ·	- <u>,</u> , , , , , , , , , , , , , , , , , ,	809.05	833.57	· · · · · ·	5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -	710.98	710.98		
4,2	809.05	809.05	1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 - 1947 -	1	809.05	833 57			710 98	710.98		•
4.3	833 57	833 57			833.57	833 57		<u></u>	710 98	710.98		
4,4	833.57	858.08			833 57	858.08			710.98	710.98		
4.6	858.08	858.08	N.1		858 08	858 08			710 98	710.98		
4.7	882.6	882.6	58 y 48		858 08	858 08	N. 1	- <u></u>	735.5	735 5		•
4,8	8826	882.6			858 ()8	858 08	5. 4	a sa sa s	735 5	735 5		•
4,9	907 12	8826			858 08	858.08			7355	7355	· · · · · · · · · · · · · · · · · · ·	
51	90712	907.12			858.08	858.08			735.5	735.5	·	
5,2	907.12	907.12		11.45	858.08	858 08		+	735.5	735.5		
53	907 12	931 63	•		858 08	882.6			735.5	735.5		· ·
5.4	931 63	931 63			858 (18	8826			735.5	760.02		
56	931 63	931.63			887.6	8876			760.02	760.02		· · · · · ·
5,7	931 63	931.63	· · ·		882.6	8826		· · · ·	760 02	760 02	·	
5,8	931 63	931.63	N MARKA	1 M	882.6	882.6		- 1	760 02	760 02	4	
5,9	956.15	95615	, i 1.4		882 6	882.6			780 2	780.2		
L°.	<u>(1945</u>	כוסכע ן	L		#82.6	882.6	5 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		780 2	/180 2		

Tab. 4.3 Valorile forțelor determinate experimental pentru realizarea rândurilor 3 și 4 de crestături, la materialul de aluminiu, cu cuțitul prezentat în fig. 4.4 b

Depl	Forța [N] pentru realizarea rândurilor de crestături 3 și 4 pe semifabricate din aluminiu cu grosimile g și distanțele dintre rândurile de crestături s											
[mm]	g = 1 mm		g = 0,	g = 0,75 mm		mm S	g = 0.	75 mm	8	mno	g = 0,	75 mm
	3 10	J mm	3 - 1		<u>s /.</u>		<u>s</u> = 7,		3			mm L
0.1	110 32	108.07			319.71	319.71		1	245.17	745 17		
0.1	320 07	208.30			420 04	404 52			243.17	245.17		
0.2	514.85	392 77	1111		514.84	502.59	<u> </u>		453.56	392 27		
0.4	661.95	576 14	1		588 39	600.65	7		576.14	478.07		
0.5	809.05	710.98	··· · *	147.54	686.46	637 43	132.47	41.1.15	661.95	551 62		
0.6	956.15	907.12	1007-57	-87 F 48	882.59	760.01		125.5	760.02	637.43	1-1-1	: •
0.7	1103.2	1054.2	1.15		980.66	882.59		S. 6. 5	833.57	735.5	1.1	
0.8	1201.3	1176.8	11. S.	21138	1029.7	931.63	o la Te	. V .	931 63	833.57		1 N. 1
0.9	1287.1	1225.8	$[S, \{i, j\}]$		1127.76	1103.25	S	i →	1005.2	907.12		
1	1409.7	1409 7	ASK 1	1887.11	1176.8	1225 83			1029 7	1029.7		
1.1	1532.3	1532.3		5 - S - S - E - E	1225.83	1287.12		1. 1. 	1054 2	1054.2	,	
1.2	1654.9	1654.9	1647.58	a 10 88	1164.54	1348 41	1. 1. A.	10 IV	1078.7	1103.2		
1.3	1716.2	1777.5	18 SE 74		1164.54	1348.41	3.3		1103.2	1127.8		**
1.4	1777.5	1838.7	$(1,1) \in \mathcal{K}_{1}^{\infty}$	5.5 S.S.	1225.83	1348.41			1103.2	1152.3		
1.5	1838.7	1900	1. 1. 1.		1225 83	1.348.41	-	$\sim \sqrt{16 - 1}$	1127.8	1176.8	· · · · · ·	
1.6	1900	2022.6	1927	4.25	1287 12	1348.41		5 4 - 1 	1127.8	1176.8		
1.7	1961.3	2083.9	1235		1287.12	1348-11	· · · · · ·		1127 8	1176.8		
1.8	2022.6	2083.9			1287.12	1348.41	1. A. N.N.		1127.8	1201.3	· · · · · · · · · · · · · · · · · · ·	
1.9	2083.9	2145.2			1348 41	1.348.41			1127.8	1201.3		· · ·
2	2083.9	2145.2		1 1 1 1 1	1.548.41	1348.41	· · · · · · · · · · · · · · · · · · ·		1127.8	1201 3		
2.1	2145.2	2145.2	· · · · · · · · · · · · · · · · · · ·		1409 71	1.548.41			1152.3	1201.3		
2.2	2145.2	2145.2			1409 /1	1409.71			1152.3	$-\frac{1201.3}{1201.2}$	<u>```</u>	
2.5	2143.2	2145.2			1532.20	1409.71			1176.9	1201 3		
24	2200.5	2145.2			1532.27	1409.71			1176.8	1201 3		
26	2260.5	2145.2			1593 58	1171	· · · · · · · · · · · ·		12013	1225 8		
2.7	2267.8	2206.5	1.5; ••		1593.58	1471	Territor and		1225 8	1225 8		
2.8	2267.8	2206.5			1654.87	1471	1.51		1287 1	1225 8		
2.9	2329.1	2206.5	14000	1411	1654 87	1471			1287.1	1287.1		• •
3	2329.1	2206.5	1414145	4 . <u>.</u> .	1716 16	1471	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1348.4	1287 1		
3,1	2329.1	2267.8	1200 02	1481.55	1716 16	1471	1.5.5		1409.7	1287 1		
3,2	2329.1	2267 8	11999	11151.34	1716 16	1471	1005-54	14.4	1471	1287 1	1.1	
3.3	2390.4	2329.1	R SS SS		1716.16	1532.29	10025-54	1100 44	1532.3	1287 1		
3,4	2390.4	2329 1	1529.88	$(14.6, 5)^{\circ}$	1716 16	1532.29	16 Style 41	$\sum_{i=1}^{n} f_i(t)-f_i = 1$	1532.3	1287.1		N 8 1
3,5	2390.4	2329.1	14.10.54	$\{1,1,\dots,n\}$	1777.46	1532.29	14.57.57	$= 22 N_{\rm e} M_{\rm e} \mu_{\rm e}$	1532.3	1287.1	5	
3,6	2451.7	2390 4	1986 March 1986		1777 46	1593.58	1147.87	- <u>1</u> 64 - 82	1532.3	1287.1	1	
3,7	2451.7	2390.4	<u>.</u>	<u>- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5</u>	1777.46	1654.87	1137-57	- Index 13	1532.3	1287.1		
3,8	2451.7	2390.4	i torga ta x		1838.75	1654.87	1174.5	- 148 A.1.1.	1593.6	1287 1		
3,9	2513	2390.4		: < ⁰ : < 4 × + . →	1838 75	1716.16	1 2 2 3 4 3 1 2 1 2 1		1593.6	1348.4		
4	2513	2451.7	<u> </u>	↓	1838 75	1716.16		· · · · · · · · · · · · · · · · · · ·	15936	1.348 4		
4,1	2574.2	2513	1 (14) 4 % 1 4 5 7 5 5		1838 /3	1/77.46	11.4		1393.6	1348.4		
4,2	2514.2	2513			1838.75	1777 46			1593.0	1,548.4		
4,5	2033.5	2513			1000.04	1777 46			1593.0	1248 4		
4.4	2033.3	2574 2		10.1 1	1900.04	1839 75			1501 6	1246.4		
4.5	2070.8	2574 2	1.70.5	1 31517 15	1900 04	1839 74			1593.0	1249.4		
47	2758 1	2635 5		1	1900 04	1838.75			1491 6	1 248 1		
4 8	2819 4	2635 5	1842.64	1	1961 33	1838 75	12 1 1		15916	1348 1		
4.9	2819.4	2696.8		10125-05	1961.33	1900.04		4, 744	1593.6	1348.4		
5	2880.7	2758.1	1972 15		1961 33	1900.04		1256.2	1593.6	1409.7	1.54.84	
5,1	2880.7	2758.1	1372.45	1.142.24	1961.33	1900.04	1274.57	12-542	1593.6	1409.7		1
52	2942	2758 1	1552	1	2022 62	1900.04	1.14.4	123302	1593.6	1409.7	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
5,3	3003.3	2819.4	n 12 4	$\{1, \xi_{n}\} = 1$	2022.62	1961.33	13,476	1274 554	1593 6	1409.7		

Tab. 4.4 Valorile forțelor determinate experimental pentru realizarea
rândurilor 3 și 4 de crestături. la materialul de oțel, cu cuțitul prezentat în
fig. 4.4 b
1

Depl.
[mm]
5.4
5,5
5.6
5.7
5,8
5.9
6
6,1
6,2
6,3
6.4
6.5
6,6
6,7
6,8
6.9
7
7,1
7,2
7.3
1,4
7,5
7,0
7,7
7,0
/, y
0 91
8,1
83
8,5
85
86
87
8.8
8.9
9
9.1
9.2
9,3
9,4
9,5
9,6
9,7
9,8
9,9
10

Tab. 4.4Valorile forțelor determinate experimental pentru realizarearândurilor 3 și 4 de crestături, la materialul de oțel, cu cuțitul prezentat înfig. 4.4 b - continuare

Fig. 4.8 Valorile forțelor determinate experimental pentru realizarea rândurilor 3 și 4 de crestături, la materialul de aluminiu, cu cuțitul prezentat în

Fig. 4.9 Valorile forțelor determinate experimental pentru realizarea rândurilor 3 și 4 de crestături, la materialul de oțel, cu cuțitul prezentat în fig. 4.4 b

	Forța [N] pentru realizarea rândurilor de crestături 3 și 4 pe semifabricate din aluminiu cu grosimile g și												
Depl.				<u>d</u> :	istanțele c	lintre ran	durile de (crestaturi	s				
[mm]	g = 1	mm	g = 0, 7	75 mm	g =]	mm	g = 0,1	75 mm	g = 1	mm	g = 0,	75 mm	
	s = 1() mm	s =](0 mm	s = 7,	5 mm	s = 7,	5 mm	s = 5	mm	s = 5	mm	
	Rnd. 3	4	3	4	3	4	3	4	3	4	3	4	
0.1	502.59	502.59	201.34	201.34	245.17	147.1	127.48	76.49	168.48	104.2	8676	53.66	
0.2	637.43	661.95	331.40	344 21	404.52	269.68	21035	140.23	303.57	160.05	15633	<u>ND 42</u>	
0.3	760.02	686.47	395.21	350.90	539.37	392.27	280.47	203.98	448.93	270.18	231-19	13944	
0.4	760.02	686.47	305.21	350.90	612.92	502.59	318 71	261,34	516.4	423.98	262.91	218.34	
0.5	760.02	686.47	395.21	350.90	637.43	582.92	331.40	<u>- 303 </u>	540.22	516.31	2 8 21	265 89	
0.6	514.85	514.85	207 72	207 72	441.3	416.78	229.47	208-39	540.22	516.31	278.21	265,897	
0.7	539.37	514.85	280,47	207 72	465.82	416.78		208.39	386.23	320.18	198.9	104 59	
0.8	539.37	514.85	280.4		490.33	429.04	224.9	214.52	398.05	338.7	204 22		
0.9	539.37	514.85	280.4	()	514.85	441.5	20 -		410.5	334.81	211 +	1 + 1	
	500.4	514.85	202.20	20 2	539.37	455.50	- 2014	220 8	429.73	3/2.50	221 11	191 80	
$\frac{1.1}{1.2}$	588.4	520.27	20230	201 2	520.27	403.82	- 261-4	- 1- 11	429.73	381.07			
1.2	288.4	539.37	2112.003		520.27	4/8.07	28/017	<u>, , , , , , , , , , , , , , , , , , , </u>	429.73	393.44	221.21	208.11	
1.3	612.92	539.37	20101	280.4	562.00	520.27		241 24	429.75	404.1	221 11	210 11	
1.4	637 /2	563.90	337 434		563.99	539.51		270.51	433.10	410.39	2.13.67	<u>ר אין אין אין אין אין אין אין אין אין אין</u>	
1.5	627.43	562.99	227.92	200 24	563.88	570.14	21121	2 11 23	473.10	457.41	2411		
1.0	661.05	562.99	350 83	200.02	563.88	637.43	20021	200.14	403.10	455.78	290.02		
1.7	661.95	588.4	350.83	311.85	563.88	637.43	121021	315 915	493.10	455.70	253.5	2 14 -	
1.0	686.47	588.4	303.82	311.85	588.4	637.43	305.50	305.90	507 33	465.5	201.27		
2	710.98	588.4	370.81	311.85	588.4	686.47	3115 111	320.5	490 33	472 24	2372	713.7	
$\frac{2}{21}$	760.02	612.92	102.81	321.81	588.4	686.47	317 73	374.5	526.6	493 74	271.19	254.01	
2.1	760.02	612.92	402.81	324.84	588.4	686.47	317 73	3745	520.6	520.81	2081	208.21	
23	784 53	612.92	415.8	324.84	612.92	710.98	330.97	3.11 77	520.6	520.01	208.1	208.21	
2.4	809.05	637.43	478.70	337 83	612.92	710.98	330.97	341 7	520.6	540.81	268.1	278.51	
2.5	809.05	637.43	428.79	337 83	661.95	735.5	357.45	353-04	543.52	540.81	274.91	278.51	
2.6	833.57	637.43	441 70	337 83	661.95	735.5	357.45	353.04	543.52	540.81	274.91	278.51	
2,7	833.57	637.43	441 ~0	337 83	710.98	784.53	383.92	370.57	612.19	580.02	315.27	298 71	
2,8	882.6	735.5	467,77	389,81	710.98	784.53	383.92	376 57	612.19	580.02	315.27	29871	
2,9	882.6	735.5	476,6	389.81	735.5	833.57	397 17	400,11	640.5	580.02	329.85	3001.45	
3	907.12	735.5	489.84	389.81	735.5	833.57	397.17	40011	640.5	580.02	329.85	300.45	
3,1	931.63	760.02	503.08	402.81	760.02	858.08	410.41	411.87	660.12	605.25	339.96	313.51	
3,2	956.15	760.02	516.32	402.81	760.02	882.6	41041	423.64	690.92	605.25	355.82	313.51	
3,3	956.15	760.02	516.32	4]041	809.05	907.12	436.88	435.41	710.05	605.25	305.07	313.51	
3,4	956.15	760.02	516.32	41041	809.05	907.12	436,88	435.41	710.05	678.45	305.67	351.43	
3,5	980.67	784.53	529.50	423.64	882.6	931.63	- 1 76 6	437.86	768.31	698.54	395.67	361.84	
3,6	980.67	784.53	529.56	423.64	882.6	931.63	476.6	437.86	768.31	698.54	397.98	361.84	
3,7	980.67	784.53	529.50	423 64	882.6	931.63	476.6	437.86	778.31	698.54	403-10	361.84	
3,8	980.67	809.05	529.56	436.88	882.6	931.63	476.6	437.86	778.31	700	403 [0	362.6	
3,9	980.67	809.05	529.56	436.88	882.6	956.15	476.6	449,39	778.31	730.23	403.16	378.25	
4	784.53	833.57	423.64	450.12	637.43	956.15	344.21	449.39	547.22	730.23	283.45	378.25	
4,1	809.05	833.57	436.88	450.12	637.43	980.67	344.21	400.91	547.22	740.3	283.45	383.47	
4,2	833.57	882.6	450.12	4/6.6	637.43	1005.2	344.21	472.44	547.22	740.3	283.45	383.47	
4,3	833.37	882.0	420.12	470.0	661.95	1029.7	357.45	483.95	572.58	748.14	200.20	387.25	
4,4	808.08	907.12	176.6	489.84	661.95	1054.2	370.69	495.47	572.58	762.22	290.59	394 85	
4,5	882.0 007.12	931.03	14/0.0	502.08	710.09	1054.2	3/0,69	492.47	5/2.58	102.22	290.29	. 394.83	
4,0	907.12	931.03	189.04	503.08	710.98	10/8./	398.14	200.98	606.13	704 11	212.07	- 401./4 - 1/0-1-1	
4,1	907.12	951.05	180.81	516.22	784 52	1103.2	120.22	518.2	677.25	/84.11	250.81	400.10	
7,0 10	931 63	956.15	502.04	516.22	781 52	1103.2	439.33	520.04	677.25	104.11	250.01	+00.10	
7 ,7 5	931.63	956.15	503.08	516.32	781 52	1127.0	120 22	530.00	677 25	805.02	350.81	+17	
51	956 15	980.67	516.32	520.54	832 57	1127.0	4.59.55	530.00	750.0	805.02	303.01	117	
5.2	980.67	980.67	529.56	529.56	833.57	1127.0	400,79	530.00	7500	833.12	303.62	131.58	
5.3	980.67	980.67	529.56	529.56	833 57	1157 3	475.13	553.1	7500	833.10	395.1.1	131.58	
2,2	,,		/ / /		16.50	1152.3	- - 772712	22.0.1	137.7	013.10	272.14	4.41.20	

Tab. 4.5 Valorile forțelor determinate experimental pentru realizarearândurilor 3 și 4 de crestături, la materialul de aluminiu, cu cuțitulprezentat în fig. 4.4 c

Denl	Forța	Forța [N] pentru realizarea rândurilor de crestături 3 și 4 pe semifabricate din aluminiu cu grosimile g și distanțele dintre rândurile de crestături s												
[mm]	g = 1	mm	g = 0.7	75 mm	g = 1	mm	g = 0,7	75 mm	g ~ 1	mm	g = 0,1	75 mm		
	s ≠ 1() mm	s = 10) mm	s = /,5 mm		s = 7,5 mm		<u>s = 5 mm</u>		s = 5 mm			
	Rnd. 3	4	3	4	3	4	3	4	3	4	3	4		
5.4	980.67	1005.2	529 50	542.8	858.08	1152.3	489-1	5531	768.88	833.18	309 81	131 58		
5.5	980.67	1005.2	529 50	542.8	858.08	1152.3	4894	553-1	768.88	887.8	399.84	459.88		
5,6	1005.2	1005.2	542.8	542.8	882.6	1152.3	503-08	5531	779.34	887.8	408.25	489.88		
5.7	1029.7	1029.7	550.03	550.03	882.6	1152.3	503.08	504.02	779.34	887.8	102.52	489 88		
5.8	1029.7	1029.7	550.03	500.33	907.12	1152.3	517.05	57615	795.15	905.75	41347	469.17		
5.9	1029.7	1029.7	550.93	570.03	907.12	1152.3	517.05	57045	795.15	905.75	413.47	-40 <u>9</u> -[7]		
6	1054.2	1029.7	569.26	507 22	931.63	1152.3	331.02	57645	814.46	905.75	423 51	170.50		
6.1	1054.2	1054.2	579.81	600.89	931.63	1152.3	231.02	576-15	814.46	960.85	423 51	199.64		
6.2	1078.7	1054.2	593.28	000 80	956.15	1152.3	545	57645	840.04	960.85	436-82	499.64		
6,3	1078.7	1054.2	593.28	611.43	956.15	1152.3	543	\$76.15	840.04	960.85	436.82	19994		
6,4	1103.2	1054.2	0.0070	olt.43	1005.2	1176.8	512 96	- 588-4	883.32	960.85	459 32	490.64		
6,5	1127.8	1078.7	020.20	614,85	1005.2	1176.8	572 965	588.4	883.32	1011.9	459.32	526-18		
6,6	1127.8	1078.7	020.29	014 85	1029.7	1176.8	586.92	588-4	892.07	1011.9	463.87	526-18		
6,7	1127.8	1103.2	020.29	028-82	1029.7	1176.8	547 22	588.4	892.07	1011.9	463.87	526.18		
6,8	1152.3	1103.2	033-0	628-82	1078.7	1176.8	025.04	588.4	957.17	1091.9	442.00	567,78		
6,9	1152.3	1127.8	0.33-0	147.84	1103.2	1197.3	0.39 85	598.65	957.17	1091.9	47772	567-78		
7	1176.8	1176.8	647.24	670.77	1152.3	1245.8	n45.28	597.98	1013.2	1164.4	526 86	-605.48		
7,1	1225.8	1225.8	n74.19	5987	1176.8	1245.8	659	507 08	1100.2	1174.4	572.1	010.68		
7,2	1287.1	1225.8	707.9	6987	1225.8	1245.8	080-44	000.27	1153.1	1219.3	5000	034-3		
7,3	1471	1471	809.05	838-47	1287.1	1348.4	-33 M	800.04	1195	1257	0214	053.04		
7,4	1532.3	1593.6	842.7h	908.35	1471	1471	838.47	83111	1255	1367.2	052.0	710-94		
7,5	1654.9	1593.6	91010	008.35	1571	1571	887.61	887.01	1367.2	1367.2	- 10 V1	710.94		

Tab. 4.5 Valorile forțelor determinate experimental pentru realizarea rândurilor 3 și 4 de crestături, la materialul de aluminiu, cu cuțitul prezentat în fig. 4.4 c – continuare

FIG. 4.10 Valorile forțelor determinate experimental pentru realizarea rândurilor 3 și 4 de crestături, la materialul de aluminiu, cu cuțitul prezentat în fig. 4.4 c

	Forța [N] pentru realizarea rândurilor de crestături 3 și 4 pe semifabricate din aluminiu cu grosimile g și distanțele												
)epl.					di	ntre råndi	urile de cres	stāturi s					
mm]	g = 1	mm	g = 0.7	75 mm	g = 1	mm Smm	g = 0,	75 mm	g = 1	mm	g = 0,7	5 mm	
	$\frac{3-1}{Rnd}$	4	3 10	- <u>4</u>	3 7.	4	3 - 7.	<u> </u>	3-5	4	3-5	1 1	
0.1	502.59	502 59	310.03	310.03	245 17	147.1	151.15		168.48	104.2	106.21	05.01	
$\frac{0.1}{0.2}$	637.13	661.95	101.58	117.07	404 52	269.68	25.1.8.1	169.89	303 57	160.05	10171	Luc X3	
$\frac{0.2}{0.3}$	760.02	686 47	478.81	432.42	539 37	392 27	339.8		448.93	270 18		170.21	
$\frac{0.2}{0.4}$	760.02	686.47	478.81	432.47	612.92	502.59	380-13	310.03	516.4	423.98	325 33	2.7	
0.5	760.02	686.47	478.81	432.47	637.43	582.92	401.58	347-23	540.22	516.31	340.33	325.27	
0.6	514.85	514.85	324.35	324.35	441.3	416.78	278.01	242 13	540.22	516.31	340-33	325.27	
0.7	539.37	514.85	330.8	324.35	465.82	416.78	293.46	202.13	386.23	320.18	24332	20171	
0.8	539.37	514.85	339.8	324.35	490.33	429.04	308.9	208.08	398.05	338.7	250 77	213-38	
0.9	539.37	514.85	345.19	329.5	514.85	441.3	324 35	214.03	410.5	334.81	258.61	21003	
1	588.4	514.85	370.57	329.5	539.37	453.56	339.8	219.97	429.73	372.56	270 72	234 71	
1.1	588.4	514.85	370.57	329.5	539.37	465.82	39.8	225.42	429.73	381.67	270 72	240-45	
1.2	588.4	539.37	370.57	345.19	539.37	478.07	339.8	231.80	429.73	393.44	27472	247.86	
$\frac{1.3}{1.4}$	612.92	539.37	302.20	- 345-19	539.37	502.59	339.8	243 75	429.73	404.1	27072	254.58	
1.4	612.92	539.37	<u> </u>	342 19	563.88	539.37			433.16	416.39	2 2 80	262 62	
$\frac{1.3}{1.4}$	637.43	563.88	40 95	2	563.88	5/0.14	· · · · · · · · · · · · · · · · · · ·	2 9 42	4/3.10	457.41	298.00	2 200	
1.0	661.05	562.00	40 95	200,88	562.00	627.42	32324	201.52	483.10	455.78	214.25	- <u> </u>	
1.7	661.95	588 /	173.64	370 57	563.88	637.43	300.88	309.15	493.10	455.78	315.62		
$\frac{1.0}{1.9}$	686.47	588.4	130.31	370.57	588.4	637.43	370.57	309/15	<u>493.10</u> 507.33	405.5	324.05		
$\frac{1.7}{2}$	710.98	588.4	155 (12)	370 57	588.4	686.47	370.57	332.03	490 33	403.5	313.81	3.0.03	
$\frac{2}{2.1}$	760.02	612.92	486.41	342.20	588.4	686.47	370.57	332.93	526.6	493 24	337.07	315 47	
2.2	760.02	612.92	486.41	392.26	588.4	686.47	370.57	332.93	520.6	520.81	333-18	33331	
2.3	784.53	612.92	502,09	392.26	612.92	710.98	392.26	344.82	520.6	520.81	333-18	333.31	
2.4	809.05	637.43	517 70	407.95	612.92	710.98	342.26	344.82	520.6	540.81	333-18	345 []	
2.5	809.05	637.43	517.79	407.05	661.95	735.5	423.64	35671	543.52	540.81	347-85	351.52	
2,6	833.57	637.43	533.48	407.95	661.95	735.5	423.64	350-1	543.52	540.81	347.85	351 52	
2,7	833.57	637.43	541.82	407.05	710.98	784.53	455.02	380.49	612.19	580.02	391.8	377.04	
2,8	882.6	735.5	573.69	470 72	710.98	784.53	455.02	380.49	612.19	580.02	391.8	377.63	
2,9	882.6	735.5	573.69	470.72	735.5	833.57	470.72	404.28	640.5	580.02	409.92	377-04	
3	907.12	735.5	589.62	470.72	735.5	833.57	470.72	404.28	640.5	580.02	400.02	377.141	
$\frac{3,1}{2,0}$	931.63	760.02	002.22	480-11	760.02	858.08	486.41	$\frac{4!6!6}{10}$	660.12	605.25	422.47	393.41	
$\frac{3,2}{2,2}$	956.15	760.02	621.49	486.41	760.02	882.6	486.41	428.00	690.92	605.25	442 18	303.11	
$\frac{3,3}{24}$	956.15	760.02	021.49	44.01	809.03	907.12	517.79	4,30 0.5	710.05	603.23	424 45		
$\frac{3,4}{3,5}$	930.13	794 52	621 49	500.01	882.6	907.12	50180	151.81	769.21	609.54	401.22	4412-001	
$\frac{3,5}{36}$	980.07	784.53	037.13	- <u> </u>	882.0	931.63	501.80	151.84	768.31	608 54	1991	15.1.05	
$\frac{3,0}{3,7}$	980.67	784 53	037.43	509.94	882.6	931.63	564.86	451.84	778.31	698 54	505.9	454.65	
3.8	980.67	809.05	637.43	525 88	882.6	931.63	573.69	451.84	778.31	700	505.9	155	
3,9	980.67	809.05	637.43	525.88	882.6	956.15	573.69	403 73	778.31	730.23	505.0	474.05	
4	784.53	833.57	517.78	541.82	637.43	956.15	414.32	463.73	547.22	730.23	355 60	474.05	
4,1	809.05	833.57	533.97	541.82	637.43	980.67	414.32	475.62	547.22	740.3	355 00	481 IV	
4,2	833.57	882.6	550.15	573,69	637.43	1005.2	414.32	487.52	547.22	740.3	355 (3)	488.59	
4,3	833.57	882 .6	550.15	573.69	661.95	1029.7	430.26	400,4	572.58	748.14	372.17	493 77	
4,4	858.08	907.12	566.33	589.62	661.95	1054.2	430.26	511.28	572.58	762.22	372-17	503.06	
4,5	882.6	931.63	582.51	605 55	661.95	1054.2	430.26	511.28	572.58	762.22	377.0	503.00	
4,6	907.12	931.63	598,69	605.55	710.98	1078.7	462.13	523.16	606.13	775.56	40000	511.87	
4,7	907.12	931.63	598.69	605.55	710.98	1103.2	462.13	535.05	606.13	784.11	400.04	517.51	
4,8	907.12	930.15	298.69	621.49	784.53	1103.2	>09.94	262.63	677.25	784.11	46.98	21/21	
4,9	931.03	930.13	61.1.97	021.49	184.35	1127.8	200.04	212 17	677.25	805.02	446.98	321 21	
51	951.03	930.13	631.05	627 12	922 57	1127.8	550.15	575.17	750.0	805.02	440.98	53121	
5.2	980.67	980.67	647.21	637 13	833.57	1127.0	550.15	575.17	750 0	833.19	501.52	510.80	
5.3	980.67	980.67	647.24	637.43	833.57	1152 3	550.15	587.67	759.9	833.18	501 53	540.80	
-		· · · · · ·											

Tab. 4.6Valorile forțelor determinate experimental pentru realizarearândurilor 3 și 4 de crestături, la materialul de oțel, cu cuțitul prezentat înfig. 4.4 c

	Forța [N] pentru	i realizare	a rànduri	lor de cre	stāturi 3 s	i 4 pe semi	fabricate din	aluminiu	i cu grosii	mile g și di	stanțele
Depl.				du	ntre randu	unle de cres	täturi s	· · ·			
[mm]	g = 1 mm	g = 0,7	75 mm	g l	៣៣	g - 0,	75 mm	g 1	mm	g 0.75 mm	
	s = 10 mm	s = 10	mm	s = 7,5 mm		s = 7,5 mm		s 5 mm		s 5 mm	
	Rnd. 3 4	3	4	3	4	Rnd 3	4	3	4	3	4
5.4	980.67 1005.2	14721	1533	858.08	1152.3		58 T 57	768 88	833.18		$(-2^{n-1})^{1-1}$
5,5	980.67 1005.2		1123-35	858.08	1152.3	Starsx		768.88	8878		
5,6	1005.2 1005.2		1583.38	882.6	1152.3	18.200	5 S. 1	779.34	887 8	4 - Se	• :
5,7	1029.7 + 1029.7		1.5	882.6	1152.3			779.34	887.8		1. A
5.8	1029.7 1029.7	1 TH 6		907.12	1152.3	Statistics.	10.00	795.15	905.75		
5.9	1029.7 1029.7	201		907.12	1152.3	E. L.N.	1.0	795.15	905.75		1997 - ¹¹ 4
6	1054.2 1029 7	1.1	the second	931.63	1152.3			814.46	905 75	- 4 C - 8 C	
6,1	1054.2 1054.2	1018 57	1.11.	931.63	1152.3	1.1	:	814.46	960.85	· · ·	1.2.2
6.2	1078.7 1054.2	1 + 1		956 15	1152.3			840.04	960 85	42	
6.3	1078.7 1054.2		14. N. 144	956.15	1152.3	, i		840.04	960.85	· · · ·	
6,4	1103.2 1054.2	7 St. 1.4		1005.2	1176.8	1		883.32	960.85	· .	
6,5	1127.8 1078.7	783.52	71,94	1005.2	1176 8	•		883.32	10119		
6.6	1127.8 1078.7		(1029 7	1176.8		1.11	892 .07	1011.9	· · ·	
6,7	1127.8 1103.2		11 × 14	1029.7	1176.8	$(-2,\infty)^{2} = 1$		892.07	1011.9	NN 16	· -
6.8	1152.3 1103.2			1078.7	1176.8	~	* ****	957.17	1091.9		
6,9	1152.3 1127.8		733 6	1103.2	1197.3	× ,		957.17	1091.9	121	E1
7	1176.8 1176.8	- 75X-18	7X5 (5)	1152.3	1245.8	T 12 - 4		1013.2	1164.4	14 x 1	1 < 11
7,1	1225.8 1225.8	82 - 28	N. 21	1176.8	1245.8	1 N.N. 4	· · ·	1100.2	1174.4		
7,2	1287.1 1225.8	862.35		1225 8	1245.8	100 A.	4.5	1153-1	1219.3		•
7,3	1471 1471	1985,87	· · · · · · · · · · · · · · · · · · ·	1287.1	1348 4	·		1195	1257	N. N	1
7.4	1532.3 1593.6	1403.25		1471	1471			1255	1367.2	5 (S	
7,5	1654.9 1593.6	114.51	111 S.	1571	1571	5	41 ×	1367.2	1367.2	- 10 - 10	

Tab. 4.6 Valorile fortelor determinate experimental pentru realizarea	
rândurilor 3 și 4 de crestături, la materialul de oțel, cu cuțitul prezentat î	n
fig 44 c - continuare	

Fig. 4.11 Valorile forțelor determinate experimental pentru realizarea rândurilor 3 și 4 de crestături, la materialul de oțel, cu cuțitul prezentat în

fig. 4.4 c

Analizând variația forței în funcție de deplasare, pentru diferitele valori ale distanțelor dintre rândurile de crestături (s), pentru oțel și aluminiu se constată că odată cu scăderea distanței s valoarea forței scade, ceea ce se explică prin scăderea secțiunii transversale a puntiței dintre 2 rânduri de crestături.

Pentru formele cuțitului superior prezentate în fig. 4.4 a și b, valorile forțelor sunt continuu crescătoare, până la o valoare la care se mențin aproximativ constante, iar în schimb în cazul utilizării cuțitului superior profilat prezentat în fig. 4.4 c, nu este continuu crescătoare ceea ce se observă din analiza graficelor din fig. 4.8 și fig. 4.11.

La tăierea pe porțiunea de tăiș semirotundă, pentru cazul expandării cu cuțitul superior profilat prezentat în fig. 4.4 c, variația forței este crescătoare până la o valoare aproximativ 0,4 din grosimea g a semifabricatului, după care scade brusc urmând să crească din nou, ceea ce corespunde tăierii în decursul etapei inițiale.

Analizând în continuare graficele din fig. 4.8 și fig. 4.11 se constată o a doua creștere bruscă a valorilor forțelor, la o cursă a deplasării cuțitului superior de aproximativ 7 mm, ceea ce corespunde razei părții semirotunde a profilului cuțitului superior. Această creștere se datorează începutului tăierii pe partea plană orizontală a profilului cuțitului superior.

Se observă, că unele curbe ale variațiilor forței în funcție de deplasare, pentru cazul tăierii cu cuțitul prezentat în fig. 4.4 c, existența unei adoua scăderi bruște a valorilor forțelor, ceea ce se datoreză ruperii materialului supus expandării la unul din capete. Ruperea materialului la capăt este datorat lungimii cuțitului superior în comparație cu lățimea tablei utilizate. Părțile componente ale dispozitivului de fixare a semifabricatului sunt:

- 1 – elementul de ghidare și deplasare în plan lateral a semifabricatului;

- 2 – cuțitul inferior;

- 3 – şuruburi de fixare a cuțitului inferior;

- 4 – mâner pentru deplasarea laterală a elementului de

- 5 - elementul de strângere și fixare a semifabricatului;

- 6 – elementul de fixare a dispozitivului de masa mobilă a

instalației.

ghidare;

La determinarea experimentală a forțelor totale de tăiere, semifabricatul este montat fix în dispozitivul prezentat în fig. 4.2. Acesta este fixat, la rândul său, pe masa mobilă a instalației prezentate în fig. 4.1, deplasându-se odată cu aceasta pe verticală de jos în sus, constituind totodată și elementul mobil al instalației de determinare a forței totale de tăiere. Deplasarea ansamblului format din masa mobilă și dispozitivul de fixare este realizată cu ajutorul cricului hidraulic așezat pe masa suport fixă.

Masa suport mobilă împreună cu traductorul de forță HOTTINGER, în care este fixat cuțitul superior, formează elementul fix al instalației prezentate în fig. 4.1. Cuțitul superior acționează asupra semifabricatului care se deplasează pe verticală de jos în sus, realizând tăierea și deformarea acestuia, rezultând tabla expandată.

Cele prezentate la aliniatul precedent sunt ilustrate în fig. 4.3.

Fig. 4.3 Acționarea cuțitului superior asupra semifabricatului și modul de fixare a acestuia

Elementele componente ale ansamblului prezentat în fig. 4.3 sunt: - 1 – doză de forță HOTTINGER BALDWINMESTECHNIK

tip C;

- 2 – element de fixare a cuțitului superior în doza de forță;

- 3 – cuțit superior;

- 4 – semifabricat;

Instalația are următoarele părți componente:

- 1 masă suport fixă:
- 2 masă mobilă;

3 - coloane de ghidare;

4 - masă suport mobilă;

5 - cric hidraulic;

6 - traductor de forță HOTTINGER BALDWINMESTECHNIK tip C:

7 - punte tensometrică de măsură;

8 - comparator:

9 - dispozitiv de încastrare pe contur (dispozitiv prezentat în fig. 4.12);

10 - poanson.

Determinările valorilor deplasării se fac prin citire, pentru fiecare valoare a forței.

În prima parte, vom prezenta o comparație între valorile determinate cu ajutorul relației (3.128) și valorile determinate experimental pentru o tablă circulară plană neexpandată, încastrată pe contur cu grosimea g = 2 mm.

În relația (3.128), pentru determinarea valorilor săgeții maxime avem următoarele valori ale elementelor ce intră în componența acesteia:

- R - raza de încastrare a tablei R = 57,5 mm;

- g – grosimea tablei g = 2 mm;

- E – modulul de elasticitate E = $2.1 \cdot 10^6 \text{ daN/cm}^2$;

- v – coeficientul de contracție transversală sau coeficientul lui Poisson v = 0.3;

- F – forța concentrată aplicată în centru.

Valorile forței sunt date în tab. 4.7, cu ajutorul cărora, prin înlocuire în relația de calcul a săgeții w (relația (3.128)) rezultă valorile acesteia. În tab. 4.7 mai sunt prezentate și valorile săgeții w1 determinate experimental.

Forța F [daN]	Săgeata w [mm]	Săgeata wl [mm]			
,	determinata analitic	determinata experimentai			
0	0	0			
12,5	0.07	0.15			
25	0.14	0,26			
37.5	0.21	0.35			
50	0.29	0,44			
62.5	0.36	0,54			
75	0,43	0.62			
87.5	0,50	0.72			
100	0,58	0,81			
112.5	0.65	0,90			
125	0,72	1.01			
137.5	0.79	1,11			
150	0,87	1,20			
162,5	0,94	1,29			
175	1,01	1,38			
187,5	1,08	1,48			
200	1,16	1,58			
212,5	1,23	1,68			
225	1,30	1,78			
237,5	1,37	1,88			
250	1,45	1,98			
275	1,59	2,15			
300	1,74	2.35			
325	1,88	2,50			
350	2,03	2.68			
375	2,17	2,85			
437,5	2,54	3,21			
500	2,90	3,57			
562,5	3,26	3,94			
625	3,63	4,21			
687,5	3,99	4,50			
750	4,35	4,80			
900	5,22	5,28			
1025	5,95	5,88			
1150	6,67	6,41			
1275	7,40	6,98			

Tab. 4.7 Valorile săgeții w determinate prin calculul și valorile săgeții w1determinate experimental

Curbele săgeții w calculate (curba teoretică) și săgeții wl determinate experimental, în funcție de valoarea forței F sunt prezentate în fig. 4.14.

Fig. 4.14 Variația săgeții în funcție de valoarea forței aplicate pentru placa plană neexpandată

Analizând fig. 4.14 se pot trage următoarele con10uzii:

- curba determinată teoretic are o variație liniară;

- curba determinată cu valorile experimentale are o variație neliniară, dar strict crescătoare.

Se constată, pe parcursul determinării experimentale, că materialul își modifică comportarea, ceea ce se observă și din analiza curbei rezultate experimental din fig.4.14;

- pe porțiunea 0A, curba are o variație liniară (sau aproape liniară), porțiune pe care materialul se comportă *elastic*;

- pe porțiunea de curbă AB, diagrama se abate de la forma lianiară (începe să devină curbă), porțiune pe care comportarea materialului este o comportare *elasto – plastică*;

- după punctul B se constată din nou o oarecare liniaritate a curbei ceea ce corespunde comportării *plastice* a materialului.

În continuare, vom prezenta comportarea unor table expandate, ce au fost studiate în aceleași condiții de încărcare și constrângeri ca și tabla plană neexpandată investigată anterior. Tablele expandate avute în vedere au grosimea și lungimea crestăturii prezentate în tab. 4.8.

Forta F	Săgeata w2	Săgeata w3	Săgeata w4	Săgeata w5
[daN]	a = 2 mm	a = 2 mm	a = 1.6 mm	a = 1.6 mm
[]	g = 2 mm, 1 = 7.5 mm	$g = 2 \min_{x}$	g = 1,0 mm, 1 = 7.5 mm	g = 1.0 mm,
	$I_{cr} = 7.3 \text{ IIIII}$	$I_{cr} = 8 \text{ mm}$	$I_{cr} = 7.5 \text{ mm}$	$I_{cr} = 8 \text{ mm}$
0	0	0	0	0
12.5	0,17	0.18	0.22	0.23
25	0.35	0.38	0.47	0.50
37.5	0.60	0.66	0.78	0.83
50	0.95	1,04	1,05	1,10
62.5	1,14	1.25	1,38	1.59
75	1,35	1,48	1.62	1,90
87.5	1,53	1,68	1,92	2,22
100	1.74	1,98	2,28	2,48
112.5	2.01	2,29	2,78	2,90
125	2.22	2,53	3,28	3.37
137.5	2.43	2.77	3,70	3.86
150	2.62	2.98	4,00	4,10
162,5	2,85	3,24	4,37	4.64
175	3,10	3,72	4.70	4,95
187,5	3,38	4,05	5.07	5,40
200	3.64	4,36	5,47	5.53
212,5	3.87	4,64	5.83	5.96
225	4,14	4,96	6.13	6,42
237,5	4,40	5,28	6,40	6,83
250	4,67	5,60	6,60	7.05
275	5,04	6,04	7,03	7,57
300	5,49	6,58	7.49	8,12
325	5,88	6,62	7.96	8,59
350	6,22	6,65	8,31	9,35
375	6,70	7,16	8,78	9,75
437,5	7,60	8,13	9,80	10,59
500	8,31	8,89	11.00	11,45
562,5	9,03	9,66	11,77	12,50
625	9,84	10,52	12,65	13,33
687,5	10,57	10,88	13,30	14,22
750	11,37	11,71	14,31	15,02
900	13,86	14,27	15,80	16,39
1025	15.00	15,45	17,00	17,52
1150	16.67	17,17	18,68	19,16
1275	17,69	18,22	20,42	20,69

Tab. 4.8 Valorile săgeților w determinate experimental pentru diferitetable expandate

Variația săgeții w în funcție de valoarea forței F, vor fi prezentate în fig.4.15.

Fig. 4.15 Variația săgeții în funcție de valoarea forței aplicate pentru plăci expandate

La compararea curbelor, prezentate în fig. 4.15, se observă faptul că variația săgeții w este influențată de:

1 - grosimea tablei - cu cât grosimea tablei este mai mare cu atât săgeata este mai mică;

2 – lungimea crestăturii - cu cât lungimea crestăturii este mai mare cu atât săgeata este mai mare.

Comportarea la solicitarea de apăsare centrică a plăcilor circulare din tablă expandată încastrate pe contur, este practic asemănătoare cu cea a plăcilor plane neexpandate, ceea ce rezultă din analiza alurii curbelor prezentate în fig. 4.14 și fig. 4.15.

Se observă că porțiunile de curbă pe care tabla expandată se comportă *elastic* și *elasto – plastic* sunt mai mari datorită expandării (fig. 4.15 față de fig. 4.14).

4.4 Cercetări privind rezistența firelor de tablă expandată încastrate la capete

Elementul de semifabricat, deformat în urma expandării și a porțiuni dintre deformări de pe aceeași linie de crestare, l-am considerat ca fiind fir de tablă expandată.

Firul de tablă expandată este prezentat în fig. 4.16.

Fig. 4.16 Fir de tablă expandată

Studiul firelor de tablă expandată s-a realizat prin încastrarea la capete a acestora și aplicarea unor forțe lent, continuu, progresiv și fără șocuri pe direcția verticală, la jumătatea distanței de încastrare, prin intermediul unei suprafețe circulare, determinându-se variația forței de deformație în funcție de deplasare pentru un număr de 1, 2, 3, 5, 7 și 9 fire ale unei table expandate.

Tablele expandate realizate din 2, 3, 5, 7 și 9 fire sunt prezentate în fig. 4.17.

С.

Fig. 4.17 Table expandate realizate din fire

Valoarea distanței dintre încastrări este de 50 mm, iar suprafața circulară prin intermediul căreia se transmite forța de deformare are diametrul de 31 mm.

Caracteristicile firelor de tablă expandată sunt:

- grosimea g = 1,8 mm;

- lungimea crestăturii $l_{cr} = 27,5$ mm;

- lungimea puntiței dintre două crestături alăturate de pe aceeași linie de crestare p = 7 mm;

- lungimea puntiței dintre două rânduri de crestare alăturate este s = 2, 1mm.

În tab. 4.9 se prezintă valorile forțelor pentru deplasările din 0,5 în 0,5 mm pe verticală, în cazul încastrării la capete a firelor. Evoluția grafică a forței de deformare în funcție de deplasare este prezentată în fig. 4.18.

Depl.	Fo	orta [N]	pentru 1	nr. firelo	r studia	te
[mm]	1	2	3	5	7	9
0,5	18.387	36.775	61.292	85.808	110.32	134.84
1.0	24.517	49.033	85.808	110.32	140.97	171.62
1,5	27.581	67.421	98.067	128.71	165.49	208.39
2.0	30.646	79.679	110.32	147.1	196.13	239.04
2.5	30.646	98.067	134.84	196.13	232.91	269.68
3.0	33.71	116.45	159.36	232.91	269.68	318.72
3.5	36.775	134.84	183.87	257.42	294.2	349.36
4.0	42.904	171.62	208.39	294.2	343.23	380.01
4,5	61.292	196.13	232.91	318.72	367.75	422.91
5.0	76.614	226.78	269.68	349.36	392.27	459.69
5.5	85.808	251.3	294.2	380.01	416.78	484.2
6.0	91.937	281.94	312.59	416.78	447.43	514.85
6,5	98.067	306.46	330.97	453.56	478.07	557.75
7,0	104.2	330.97	380.01	484.2	514.85	600.66
7,5	110.32	361.62	416.78	514.85	551.62	661.95
8.0	116.45	392.27	447.43	545.49	612.92	723.24
8.5	128.71	422.91	478.07	576.14	661.95	809.05
9,0	140.97	441.3	514.85	600.66	710.98	845.82
9,5	153.23	459.69	551.62	661.95	772.27	907.12
10.0	171.62	478.07	576.14	710.98	809.05	968.41
10.5	190	490.33	612.92	772.27	870.34	1017.4
11.0	214.52	502.59	637.43	833.57	931.63	1042
11,5	245.17	514.85	698.72	894.86	992.92	1078.7
12,0	281.94	539.37	735.5	931.63	1054.2	1140
12,5	306.46	563.88	809.05	968.41	1103.2	1176.8
13,0	330.97	588.4	858.08	1029.7	1140	1213.6
13,5	361.62	600.66	894.86	1066.5	1189.1	1287.1
14,0	392.27	612.92	943.89	1127.8	1225.8	1348.4
14,5	416.78	637.43	980.67	1164.5	1287.1	1440.4
15,0	429.04	649.69	1029.7	1189.1	1440.4	1532.3
15,5	441.3	661.95	1054.2	1225.8	1501.6	1593.6
16,0	453.56	686.47	1078.7	1287.1	1562.9	1685.5
16,5	459.69	710.98	1127.8	1379.1	1654.9	1777.5
17,0	465.82	723.24	1176.8	1471	1716.2	1869.4
17,5	465.82	747.76	1213.6	1562.9	1777.5	1992
18,0	471.95	784.53	1287.1	1716.2	1869.4	2083.9

Tab. 4.9 Valorile forțelor pentru diferite valori ale deplasări

Fig. 4.18 Evoluția forței de deformare în funcție de deplasare pentru fire de tablă expandată

Analizând evoluția forței în funcție de deplasare pentru curbele din fig. 4.18 se observă că, odată cu creșterea numărului de fire se înregistrează o creștere a forței pentru aceeași valoare a deplasării.

4.5 Bazele matematice ale studiului rezistenței plăcilor de tablă expandată

Pentru studiul rezistenței plăcilor de tablă expandată am pornit de la datele obținute experimental prin măsurători efectuate în laborator. În urma observațiilor asupra datelor numerice obținute am ajuns la con10uzia că relațiile dintre forțe și deplasări, forțe și deformații, forțe și tensiuni sunt, în mod necesar, funcții continue definite pe suprafețele conexe reprezentate de plăcile de tablă expandată studiate.

Procedeul obișnuit de generare a unei funcții care să descrie un anumit fenomen, pornind de la date experimentale, este interpolarea rezultatelor experimentale. Nu urmăm acest procedeu, ci folosim aproximarea funcției necunoscute printr-o altă funcție, suficient de simplă din punctul de vedere al complexității calculului, care să păstreze unele proprietăți de alură observate pe parcursul cercetărilor experimentale. Ne referim la proprietăți de monotonie și de convexitate pe rețele, eventual în sens generalizat (vezi [10]).

Instrumentul de bază în aproximarea unei funcții prin polinoame care conservă proprietățile de alură amintite este polinomul introdus de S.N. Bernstein în [2]. Fie un interval [a,b] de numere reale, împărțit în n părți egale prin punctele echidistante

$$a_i = a + i \cdot \frac{b-a}{n}, i = 0, 1, \dots, n.$$
 (4.1)

Evident, $a_0 = a$ și $a_n = b$. Presupunem cunoscute valorile $f(a_i)$, i = 0, 1, ..., n, ale unei funcții $f : [a, b] \rightarrow \Re$. Această funcție se aproximează prin polinomul lui Bernstein de gradul n definit astfel:

$$B_{n}(f;x) = \frac{1}{(b-a)^{n}} \cdot \sum_{k=0}^{n} C_{n}^{k} \cdot f(a_{k}) \cdot (x-a)^{k} \cdot (b-x)^{n-k}$$
(4.2)

Proprietățile acestui polinom sunt studiate în [20] și [24]. Se demonstrează că polinomul lui Bernstein de gradul $n \in N^*$ al unei funcții crescătoare (descrescătoare) este, de asemenea o funcție crescătoare (descrescătoare). Mai mult, dacă o funcție este convexă (concavă) atunci la fel este și polinomul lui Bernstein de gradul n al acestei funcții, oricare ar fi $n \in N^*$.

Întrucât măsurătorile de laborator au avut în vedere valori neechidistante ale variabilei independente, pe care le vom numi noduri, vom împărți intervalul de variație al acesteia în subintervale care conțin noduri echidistante. Pe fiecare subinterval, vom aproxima funcția necunoscută prin polinomul de tip Bernstein de grad corespunzător numărului de noduri echidistante. Reuniunea acestor polinoame este o funcție spline, adică funcție segmentar polinomială [15], scrisă folosind polinoame de tip Bernstein. Graficul unei astfel de funcții se numește curbă Bézier, fiind folosită pentru prima dată de către inginerul P. Bézier de la uzinele Renault pentru aproximarea unor profile de autoturisme [3].

Curbele Bézier se generează astfel: Considerăm polinoamele de tip Bernstein

$$B_{i}^{n} = C_{n}^{i} (x - a)^{i} \cdot (b - x)^{n - i}, i = 0, 1, ..., n.$$
 (4.3 a)

Mulțimea $B = \{B_0^n, B_1^n, ..., B_n^n\}$ formează o bază în spațiul liniar al polinoamelor de grad cel mult n, numită baza Bernstein. O mulțime ordonată de numere reale (b₀, b₁, ..., b_n) se numește poligonul de control. O curbă Bézier definită de poligonul de control (b₀, b₁, ..., b_n) este curba polinomială, exprimată în baza Bernstein, prin:

$$b(\mathbf{x}) = \sum_{i=0}^{n} b_i \cdot B_i^n \cdot (\mathbf{x})$$
(4.3)

Proprietățile acestui tip de curbe se găsesc în [3], [21], [19].

După cum o curbă Bézier se definește folosind o linie poligonală cadru, numită poligon de control, construcția se poate reface în spațiu. Se pornește de la un poliedru de control care va juca rolul unei suprafețe poliedrale cadru. Dacă notăm poliedrul de control cu $(b_{ij} | | i = \overline{0, n}, j = \overline{0, n})$, atunci o suprafață Bézier este:

$$B(u,v) = \sum_{i,j=0}^{n} b_{ij} \cdot B_i^n(u) \cdot B_j^n(v)$$
(4.4)

 $cu u, v \in [a,b].$

4.6 Cercetări ale deformațiilor și tensiunilor din timpul procesului de expandare

4.6.1 Echipamente și metodologie utilizate

În cadrul acestui paragraf, studiul tensiunilor s-a realizat prin tensometrie electrică rezistivă, pe material din oțel OL 32 ce are dimensiunile:

- lungime L = 115 mm;

- lățime l = 50 mm;

- grosime g = 1,5 mm,

pe suprafața cărora au fost fixați relativ simetric 5 traductori electrotensometrici rezistivi (TER), pentru a urmări fidel deformațiile, ca în fig.4.19.

Fig. 4.19 Epruveta cu dispunerea traductorilor electrotensometrici rezistivi

Prin această dispunere s-a studiat evoluția tensiunilor ce apar pe suprafața epruvetei pe care se aplică forța, în timpul alungirii semifabricatului în procesul de expandare.

Alegerea tensometriei electrice este consecința importantelor avantaje pe care aceasta le prezintă:

- metoda este nedistructivă;

- permite executarea măsurătorilor în condiții reale de funcționare;

- asigură o precizie și o sensibilitate mare, datorită folosirii aparatajului electronic;

- permite măsurarea și înregistrarea fenomenelor cu variație rapidă.

În condițiile de temperatură și umiditate, în care s-au efectuat determinările experimentale, se utilizează traductori electrotensometrici rezistivi din fir de constantan, pe suport de material sintetic.

BUPT

Caracteristicile principale ale traductoarelor tensometrice rezistive utilizate la determinarea tensiunilor [39] sunt:

a) tipul rețelei fir;

b) dimensiunile rețelei sunt prezentate în fig.4.20;

Fig.4.20 Principalele dimensiuni ale traductorului electrotensometric rezistiv (TER)

unde:

- l_0 – lungimea părții active a rețelei (bază de măsurare)

 $l_0 = 10 \text{ mm};$

- b – lățimea părții active a rețelei b = 4,9 mm.

c) materialul suportului este din rășină epoxidică;

d) dimensiunile suportului sunt prezentate în fig. 4.20;

unde:

- c – lungimea suportului c = 18,5 mm;

- d – lățimea suportului d = 9,5 mm.

e) rezistența electrică a traductorului $R = 120 \Omega$;

f) constanta k a traductorului (coeficient de tensosensibilitate) k =2,0 este dată de relația:

$$k = \frac{1}{\varepsilon} \cdot \frac{\Delta R}{R}$$
(4.5)

unde:

- R - rezistența inițială a firului;

- ΔR – variația rezistenței electrice;

- ε – deformația specifică a firului traductorului.

g) domeniul de temperatură: de la -70° C la $+200^{\circ}$ C.

Pentru realizarea măsurărilor de precizie se folosește montajul în punte al traductoarelor. Datorită variației de rezistență ΔR foarte mici este dificil să se măsoare cu precizie ridicată, folosind ohmmetrul obișnuit. Datorită acestui fapt, se impune utilizarea unui montaj electric în punte, montaj ce poate să asigure precizia dorită. Puntea reprezintă elementul principal al oricărui aparat pentru măsurări tensometrice. În fig. 4.21 s-a reprezentat cel mai simplu tip de montaj în punte (puntea Wheatstone) [34], [16], [17].

Fig. 4.21 Puntea Wheatstone

Scala instrumentului de măsură este etalonată direct în valori ε , datorită proporționalității dintre alungirea ε și variația ΔR , și datorită proporționalității rezultate din admiterea liniarității relației de legătură dintre variația de rezistență și intensitatea I_g.

Dacă intensitatea $I_g = 0$ puntea este echilibrată. Apariția unei deformații provoacă un curent I_g care deviază acul indicator al instrumentului de măsură. Valoarea lui ε se va citi direct pe cadranul instrumentului de măsură.

Pentru compensarea efectelor temperaturii mediului ambiant de lucru, se utilizează un traductor de compensare. Această metodă realizează și compensarea variației cu temperatura a factorului k (constanta traductorului). Traductorul de compensare se conectează întrun braț al punții, așa cum se vede în fig. 4.22.

F

 $\begin{bmatrix} R_{1} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_{4} \\ R_{5} \\ R_{4} \\ R_{5} \\ R_{4} \\ R_{5} \\ R_{5} \\ R_{1} \\ R_{2} \\ R_{2} \\ R_{3} \\ R_{4} \\ R_{3} \\ R_{3} \\ R_{4} \\ R_{3} \\ R_{3} \\ R_{4} \\ R_{5} \\ R_$

Fig. 4.22 Conectarea în punte a traductorului de compensare

Traductorul R_1 este traductor activ, care măsoară deformațiile structurii S fiind aplicat pe aceasta.

Traductorul R_2 , este identic cu traductorul R_1 și se lipește cu același adeziv pe o piesă P separată, care este confecționată din același material ca și structura S.

Piesa P cu traductorul de compensare R_2 nu este solicitată mecanic, însă este plasată astfel încât R_2 să sufere aceleași variații de temperatură ca și traductorul activ R_1 .

Traductorul activ R_1 , ca și cel de compensare R_2 , fiind identici și suferind aceleași variații de temperatură, vor avea aceeași variație de rezistență ΔR . Traductorii R_1 și R_2 se montează în punte în brațe adiacente, iar conform celor arătate anterior puntea va rămâne echilibrată. Puntea se va dezechilibra doar în momentul în care structura va suferi solicitări mecanice, solicitări sesizate de traductorul activ [34], [16], [17].

Pentru realizarea determinărilor, a fost necesar utilizarea unui dispozitiv de încastrare a epruvetei pe lățimea "l". Acest dispozitiv este prezentat în fig. 4.23.

Fig. 4.23 Dispozitiv de încastrare a epruvetei pe lățimea "l"

În fig. 4.24 se prezintă dispozitivul de fixare pregătit pentru efectuarea determinărilor experimentale.

Fig. 4.24 Dispozitivul de fixare cu epruveta pregătită pentru efectuarea determinărilor experimentale

Dispozitivul prezentat în fig. 4.24 este montat în instalația de încercat prezentată în fig. 4.25.

Fig. 4.25 Instalația de determinare a tensiunilor pregătită pentru efectuarea determinărilor experimentale

Elementele componente ale instalației sunt:

- 1 masă suport fixă;
- 2 masā mobilā;
- 3 coloane de ghidare;
- 4 masă suport mobilă;
- 5 cric hidraulic;
- 6 traductor de forță HOTTINGER BALDWINMESTECHNIK

tip C:

- 7 punte tensometrică de măsură;
- 8 comparator:
- 9 poanson;
- 10 amplificator;
- 11 cutie de comutație;
- 12 dispozitiv de fixare.

Determinările experimentale constau în aplicarea unor forțe ce variază lent, continuu, progresiv, liniar și fără șocuri pe direcția verticală, pe o lungime egală cu lățimea poansonului tip "Dinte - cuțit superior", asupra epruvetei prezentate în fig. 4.19, în drepul traductorului electrotensometric rezistiv nr. 5, după cum este prezentat în fig. 4.26.

Fig. 4.26 Dispunerea TER și poziția de aplicare a forței

Aplicarea forței se face cu un poanson tip "Dinte - cuțit superior" ce are unghiul $\gamma = 0^{0}$ și $\gamma = 15^{0}$.

Valorile citite la amplificator și valorile tensiunilor determinate pentru fiecare traductor electrotensometric rezistiv în parte, în urma aplicării forței prin intermediul poansonului tip "Dinte - cuțit superior", ce are unghiul de degajare $\gamma = 0^{0}$, sunt prezentate în tab. 4.10.

Fc	orța [daN]	0 **	7,25	12,5	25	•37,5	50	75	112,5	135
	Citire aparat	15000	15195	15430	15540	15760	15850	16000	16465	16760
	Deformația									
~	relativă ε	0	195	430	540	760	850	1000	1465	1760
E	[µm/m]					_				
	Tensiunea	0	109 5	903	1134	1596	1785	2100	3076 5	3696
	$\sigma [daN/cm^2]$	Ŭ				1370	1705	2100	5070,0	5070
	Citire aparat	15000	15175	15425	15540	15755	15855	15985	16475	16770
m	Deformația				1					
2	relativă ε	0	175	425	540	755	855	985	1475	1770
IE)	[µm/m]			· ·					•	
	Tensiunea	0	367.5	892.5	1134	1585.5	1795.5	2068.5	3097.5	3717
	$\sigma [daN/cm^2]$	Ů		0,2,0		1000,0		2000,0	0077,0	5,1,
	Citire aparat	15000	15205	15410	15540	15600	15890	16160	16675	16850
3	Deformația			1						
Ľ	relativă ε	0	205	410	540	600	890	1160	1675	1850
ĽE	[µm/m]			 						
	Tensiunea	0	430.5	861	1134	1260	1869	2436	3517.5	3885
	σ [daN/cm ²]		100,0							0000
	Citire aparat	15000	15190	15385	15550	15600	15890	16165	16680	16890
4-	Deformația									
·2	relativă ε	0	190	385	550	600	890	1165	1680	1890
巴	[µm/m]									
	Tensiunea	0	399	808.5	1155	1260	1869	2446 5	3528	3969
	σ [daN/cm ²]	Ŭ		000,0			100,	2110,5	0010	
	Citire aparat	15000	14730	14415	13000	11130	10100	8610	8150	7650
6	Deformația									
2	relativă e	0	-270	-585	-2000	-3870	-4900	-6390	-6850	-7350
E.	[µm/m]									
	Tensiunea	0	-567	-1228.5	-4200	-8127	-10290	-13419	-14385	-15435
	σ [daN/cm ²]	Ľ							1.000	

Tab. 4.10 Valorile citite la amplificator și valorile tensiunilor pentru poanson tip "Dinte - cuțit superior", ce are unghiul de degajare $\gamma = 0^0$

În urma analizei valorilor din tab. 4.10 se constată următoarele:

- zonele în care sunt fixați traductorii 1, 2, 3 și 4 se alungesc;

- zona în care este fixat traductorul 5 se comprimă;

- valorile tensiunilor date de traductorii 1 și 3 sunt aproximativ egale între ele, dar și valorile tensiunilor date de traductorii 2 și 4 sunt aproximativ egale între ele, datorită simetriei montării traductorilor față de poziția de aplicare a forței; - valorile tensiunilor date de traductorii 1 și 3 sunt mai mici decât cele date de traductorii 2 și 4.

Ca urmare a diferențelor de valori ale tensiunilor date de cele două perechi de traductoare, zonele în care sunt fixați traductorii 1 și 3 au o alungire mai mică în comparație cu alungirea zonei în care sunt fixați traductorii 2 și 4. Alungirile diferite se datorează alinierii diferite a traductorilor față de poziția de aplicare a forței.

S-au realizat determinări și cu poanson tip "Dinte - cuțit superior", ce are unghiul de degajare $\gamma = 15^{\circ}$, în aceleași condiții și pe epruvete identice ca și determinările realizate pentru poanson tip "Dinte - cuțit superior", ce are unghiul de degajare $\gamma = 0^{\circ}$. Valorile determinării sunt prezentate în tab. 4.11.

	in the second							· · · · · · · · · · · · · · · · · · ·	//	
Fo	orța [daN]	0	7,25	12,5	- 25	37,5	50	75	112,5	135
	Citire aparat	18000	18110	18295	18485	18565	18700	19035	19480	19695
ER 1	Deformația relativă ε [μm/m]	0	110	295	485	565	700	103,5	1480	1695
T	$\frac{\text{Tensiunea}}{\sigma [\text{daN/cm}^2]}$	0	2310	619,5	1018,5	1186,5	147	2173,5	3108	3559,5
	Citire aparat	18000	18105	18300	18475	18565	18700	19040	19480	19700
TER 3	Deformația relativă ε [μm/m]	0	105	300	475	565	700	1040	1480	1700
	Tensiunea σ [daN/cm ²]	0	220,5	630	997,5	1186,5	1470	2184	3108	3570
	Citire aparat	18000	18180	18290	18460	18545	18795	19100	19620	19785
ER 2	Deformația relativă ε [μm/m]	0	180	290	460	545	795	1100	1620	1785
	$\frac{\text{Tensiunea}}{\sigma \left[\text{daN/cm}^2 \right]}$	0	378	609	966	1144,5	1669,5	2310	3402	3748,5
	Citire aparat	18000	18170	18285	18465	18540	18805	19100	19620	19775
ER 4	Deformația relativă ε [μm/m]	0	170	285	465	540	805	1100	1620	1775
L	Tensiunea $\sigma [daN/cm^2]$	0	357	598,5	976,5	1134	1690,5	2310	3402	3727,5
	Citire aparat	18000	17875	17780	17065	16670	15465	14860	14250	13680
TER 5	Deformația relativă ε [μm/m]	0	-125	-220	-935	-1330	-2535	-3140	-3750	-4320
	Tensiunea σ [daN/cm ²]	0	-262,5	-462	-1963,5	-2793	-5323,5	-6594	-7875	-9072

Tab. 4.11	Valorile citite la amplificator și valorile tensiunilor pentr	u
poanson tip	"Dinte - cuțit superior", ce are unghiul de degajare $\gamma = 1$	5 ⁰

Comparând valorile din tab. 3.10 cu cele din tab. 3.11 se observă că valorile tensiunilor rezultate în urma utilizării poansonului cu unghiul $\gamma = 0^0$ sunt mai mari cu aproximativ 50%, decât valorile tensiunilor rezultate în urma utilizării poansonului cu unghiul $\gamma = 15^0$.

4.6.2 Studiul cu element finit ale deformațiilor și tensiunilor

Metoda elementului finit este un procedeu de rezolvare aproximativă, cu ajutorul calculatorului, a unei varietăți largi de probleme inginerești. Ea este instrument deosebit de eficient de cercetare științifică și de proiectare [11].

În rezolvarea problemelor se urmărește determinarea, într-un domeniu considerat a valorilor uneia sau mai multor funcții necunoscute cum sunt: tensiunile, deformațiile, deplasările etc.

Fenomenele fizice sunt descrise din punct de vedere matematic de ecuații diferențiale, prin a căror integrare, în condiții de limită date se obține soluția exactă a problemei. În acest fel se poate calcula valoarea funcției sau funcțiilor în orice punct al domeniului considerat. Rezolvarea analitică nu se poate efectua decât prin crearea unui model într-atât de simplificat încât integrarea ecuațiilor diferențiale să fie realizabile. Se obține astfel soluția exactă, doar pentru un model simplificat. Deseori este preferabil ca în locul soluției exacte a unui model simplificat, să se dispună de o soluție aproximativă a problemei reale. Soluțiile aproximative obținute prin metode numerice, sunt susceptibile să reflecte în multe cazuri mai bine realitatea decât soluțiile exacte ale unor modele simplificate, dar necesită un efort de calcul mai mare.

O asemenea metodă numerică este bine cunoscuta metodă a elementului finit în care ecuațiile diferențiale se obțin într-un număr finit de puncte ale unei rețele rectangulare, printr-o aproximare de natură matematică.

Metoda elementului finit folosește de cele mai multe ori un principiu variațional. Potrivit calculului variațional, rezolvarea unei ecuații diferențiale într-un anumit domeniu și în anumite condiții de limită este echivalentă cu minimizarea în acel domeniu a unei mărimi fundamentale corespunzătoare ecuațiilor diferențiale și condițiilor la limită date. Specific pentru metoda elementului finit este faptul că minimizarea se face pe subdomenii ale domeniului studiat, denumite elemente finite, legate între ele în puncte numite noduri. Ca urmare a minimizării în toate elementele finite în care a fost împărțit domeniul și ansamblării pe tot domeniul a efectelor obținute pe elementele finite, rezultă un sistem de ecuații algebrice prin a căror rezolvare se determină valorile funcției studiate în noduri [11].

Studiul tensiunilor, ce apar în timpul procesului de alungire al materialului supus expandării cu un cuțit ce are unghiul $\gamma = 0^0$, au mai fost studiate și cu ajutorul programului de element finit NASTRAN [37]. Alături de valorile tensiunilor mai este prezentată spațial și starea de deformație a elementului considerat, asupra căruia acționează, la jumătatea sa, o forță liniară, ce are valoarea de 135 daN.

Acest studiu cu element finit s-a realizat pentru o figură geometrică ce are dimensiunile identice cu dimensiunile epruvetei asupra căreia s-a studiat variația tensiunilor cu ajutorul traductorilor. Figura geometrică a fost discretizată cu un număr de 20 de noduri pe fiecare lungime și cu un număr de 10 noduri pe fiecare lățime. Constrângerile au fost aplicate în nodurile de pe lățime, la care s-au suprimat cele trei translații și două rotații, iar a treia rotație, după axa y se consideră existentă.

Valorile tensiunilor și deformația, determinate cu ajutorul programului NASTRAN, sunt prezentate în fig. 4.27.

Fig. 4.27 Tensiunile și deformația determinate cu ajutorul elementului finit

Din compararea rezultatelor experimentale cu cele oferite cu ajutorul programului NASTRAN, se observă că diferențele sunt în procente de sub 10%.

4.6.3 Variația deformațiilor

Cu ajutorul programului MCAD 2000 Profesional [6], s-a realizat aproximarea deformațiilor relative, în funcție de forță prin funcții spline polinomiale de gradul I pentru TER 1, TER 2, TER 3 și TER 5.

Funcția ce descrie aproximativ variația deformației în funcție de forță aplicată pentru valorile determinate ale TER 1 din tab. 4.4 este:

$$\epsilon 1(f) := \begin{cases} \frac{195}{7.25} \cdot f & \text{if } f > 0 \land f \le 7.25 \\ \frac{(235 \cdot f - 680)}{5.25} & \text{if } f > 7.25 \land f \le 12.5 \\ \frac{(110 \cdot f + 4000)}{12.5} & \text{if } f > 12.5 \land f \le 25 \\ \frac{(310 \cdot f + 5750)}{25} & \text{if } f > 25 \land f \le 50 \\ \frac{(150 \cdot f + 13750)}{25} & \text{if } f > 50 \land f \le 75 \\ \frac{(760 \cdot f + 3000)}{60} & \text{if } f > 75 \land f \le 135 \end{cases}$$

unde $\varepsilon 1(f)$ este funcția de deformație relativă, în funcție de forța aplicată, iar f este forța aplicată.

Reprezentarea grafică a funcției $\varepsilon l(f)$ și a rezultatelor experimentale este prezentată în fig. 4.28.

Fig. 4.28 Evoluția deformației relative, rezultată cu ajutorul funcției ε1(f) și determinată experimental E, în funcție de forța aplicată

Analizând fig. 4.28 se observă că variația funcției $\varepsilon 1(f)$ este aproape identică cu variația deformației relative (E₁), determinate experimental, în funcție de valorile forțelor aplicate.

Pe domeniul de variație a forței între 25 și 50, variația funcției se abate de la variația determinată experimental, deoarece funcția este liniară, iar evoluția variației experimentale nu este liniară.

Funcțiile de aproximație ale deformațiilor relative date de TER 1, TER 2, TER 3 și TER 5 pentru valorile din tabelul 4.10 sunt:

$$\epsilon 2(f) := \begin{cases} f \cdot \frac{250}{7.25} & \text{if } f > 0 \land f \le 7.25 \\ \frac{(205 \cdot f - 410)}{5.25} & \text{if } f > 7.25 \land f \le 12.5 \\ \frac{(130 \cdot f + 3500)}{12.5} & \text{if } f > 12.5 \land f \le 25 \\ \frac{(350 \cdot f + 4750)}{25} & \text{if } f > 25 \land f \le 50 \\ \frac{(270 \cdot f + 8750)}{25} & \text{if } f > 50 \land f \le 75 \\ \frac{(690 \cdot f + 17850)}{60} & \text{if } f > 75 \land f \le 135 \end{cases}$$

$$\epsilon 3(f) := \begin{cases} f \cdot \frac{175}{7.25} & \text{if } f > 0 \land f \le 7.25 \\ \frac{(250 \cdot f - 893.75)}{5.25} & \text{if } f > 7.25 \land f \le 12.5 \\ \frac{(115 \cdot f + 3875)}{12.5} & \text{if } f > 12.5 \land f \le 25 \\ \frac{(315 \cdot f + 5625)}{25} & \text{if } f > 25 \land f \le 50 \\ \frac{(130 \cdot f + 14880)}{25} & \text{if } f > 50 \land f \le 75 \\ \frac{(785 \cdot f + 225)}{60} & \text{if } f > 75 \land f \le 135 \end{cases}$$

$$\epsilon 5(f) := \begin{vmatrix} -f \cdot \frac{270}{7.25} & \text{if } f > 0 \land f \le 7.25 \\ \frac{(-315 \cdot f + 866.25)}{5.25} & \text{if } f > 7.25 \land f \le 12.5 \\ \frac{(-1415 \cdot f + 10375)}{12.5} & \text{if } f > 12.5 \land f \le 25 \\ \frac{(-2900 \cdot f + 22500)}{25} & \text{if } f > 25 \land f \le 50 \\ \frac{(-1490 \cdot f - 48000)}{25} & \text{if } f > 50 \land f \le 75 \\ \frac{(-960 \cdot f - 311400)}{60} & \text{if } f > 75 \land f \le 135 \end{vmatrix}$$

iar evoluția grafică a acestor funcții este prezentată în fig. 4.29.

pentru TER 1, TER 2, TER 3 și TER 5

În urma reprezentării grafice a variației funcțiilor deformațiilor relative, prezentate în fig. 4.29, se observă suprapunerea variațiilor funcțiilor deformațiilor relative ale lui TER 1 și TER 3, datorită simetriei de fixare a celor două traductoare față de poziția de aplicare a forței, ceea ce rezultă și din analiza fig. 4.26.

Variația funcțiilor de deformație, date de TER 2 și TER 5, sunt diferite datorită dispunerii acestor traductori față de poziția de aplicare a forței.

În urma suprapunerii graficelor variației deformațiilor relative, date de funcțiile $\varepsilon 1(f)$ și $\varepsilon 3(f)$, și a simetriei traductorilor TER 1 și TER 3 față de poziția de aplicare a forței, se poate afirma că și funcția deformației relative $\varepsilon 4(f)$ a traductorului TER 4, are variația identică cu funcția $\varepsilon 2(f)$ a traductorului TER 2, datorită simetriei acestora față de punctul de aplicare a forței.

4.6.4 Variația tensiunilor

S-a studiat și aproximarea tensiunilor, din tab. 4.4, în funcție de forța aplicată pentru valorile determinate ale lui TER 1, prin funcții spline polinomiale de gradul I.

Aproximanta tensiunii în funcție de forța aplicată este:

$$\sigma 1(f) := \begin{cases} f \cdot \frac{490.5}{7.25} & \text{if } f > 0 \land f \le 7.25 \\ \frac{(493.5 \cdot f - 1428)}{5.25} & \text{if } f > 7.25 \land f \le 12.5 \\ \frac{(231 \cdot f + 8400)}{12.5} & \text{if } f > 12.5 \land f \le 25 \\ \frac{(651 \cdot f + 12075)}{25} & \text{if } f > 25 \land f \le 50 \\ \frac{(315 \cdot f + 28875)}{25} & \text{if } f > 50 \land f \le 75 \\ \frac{(1596 \cdot f + 6300)}{60} & \text{if } f > 75 \land f \le 135 \end{cases}$$

în care $\sigma l(f)$ reprezintă tensiunea în funcție de forța aplicată, iar f este forța aplicată.

Reprezentarea grafică a funcției $\sigma_1(f)$ și a rezultatelor experimentale este prezentată în fig. 4.30.

Fig. 4.30 Evoluția tensiunii, cu ajutorul funcției aproximantei spline $\sigma l(f)$ și determinată experimental T, în funcție de forța aplicată

Comparând forma de variație a tensiunii din fig. 4.30 cu variația deformației relative din fig. 4.28 se observă că ele au aceeași formă datorită faptului că tensiunile sunt rezultate din deformații.

Datorită acestui fapt, vom determina funcțiile de aproximație ale tensiunilor $\sigma 2(f)$ și $\sigma 5(f)$, datorită dispunerii traductorilor electrotensometrici rezistivi 2 și 5, față de punctul de aplicare a forței, ca fiind:

$$\sigma 2(f) := \begin{cases} f \cdot \frac{430.5}{7.25} & \text{if } f > 0 \land f \le 7.25 \\ \frac{(430.5 \cdot f - 861)}{5.} & \text{if } f > 7.25 \land f \le 12.5 \\ \frac{(273 \cdot f + 7350)}{12.5} & \text{if } f > 12.5 \land f \le 25 \\ \frac{(735 \cdot f + 9975)}{25} & \text{if } f > 25 \land f \le 50 \\ \frac{(567 \cdot f + 18375)}{25} & \text{if } f > 50 \land f \le 75 \\ \frac{(1449 \cdot f + 37485)}{60} & \text{if } f > 75 \land f \le 135 \end{cases}$$

$$\sigma 5(f) := \begin{vmatrix} -f \cdot \frac{567}{7.25} & \text{if } f > 0 \land f \le 7.25 \\ \frac{(-661.5 \cdot f + 1819.125)}{5.25} & \text{if } f > 7.25 \land f \le 12.5 \\ \frac{(-2971.5 \cdot f + 21787.5)}{12.5} & \text{if } f > 12.5 \land f \le 25 \\ \frac{(-6090 \cdot f + 47250)}{25} & \text{if } f > 25 \land f \le 50 \\ \frac{(-3129 \cdot f - 100800)}{25} & \text{if } f > 50 \land f \le 75 \\ \frac{(-2016 \cdot f - 653940)}{60} & \text{if } f > 75 \land f \le 135 \end{vmatrix}$$

iar evoluția grafică a acestor funcții este prezentată în fig. 4.30 a.

Fig. 4.30 a Reprezentarea grafică a variației funcțiilor tensiunilor în funcție de forța aplicată, pentru TER 1, TER 2 și TER 5

4.6.5 Determinarea revenirii elastice

Legat de revenirea elastică a materialului supus procesului de expandare, am realizat studiu pe epruvetele din oțel OL 32, cu ajutorul cărora s-a studiat tensiunile din procesul de expandare prezentate în subcapitolul 4.6.

Valoarea revenirilor elastice determinate în urma procesului de deformare al materialului, se situează în jurul valorilor de 2 mm, pentru o cursă maximă de deformare a cuțitului superior de aproximativ 10 mm. Determinarea valorii s-a realizat cu ajutorul comparatorului (elementul 8 - fig. 4.25) prin măsurarea deplasării de descărcare a instalației din fig. 4.25 cât timp traductorul de forță HOTTINGER (elementul 6 - fig. 4.25) sesizează prezența unei forțe exercitate de epruvetă.

În tab. 4.12 se vor prezenta valorile cursei de deformare a cuțitului superior, pentru cuțite ce au valoarea unghiului $\gamma = 0^{0}$ și $\gamma = 15^{0}$, în funcție de forța de aplicație, cât și revenirea elastică.

Forță [daN]	Cursa de deformare pentra $\gamma = 0^{\circ}$ [mm]	Cursa de deformare pentru $\gamma = 15^{\circ}$ [mm]
6	0,675	0,565
12,5	2,765	1,865
25	4,300	2,565
37,5	5,300	3,750
50	5,970	4,530
75	7,350	6,535
112,5	9,000	8,650
135	9,983	9,400
Revenirea elastică	2,000	1,950

Tab. 4.12Valorile cursei de deformare a cuțitului superiorși revenirea elastică
4.7 Cercetări ale tensiunilor și deformațiile din tabla expandată în diverse cazuri ale rezemării sau încastrării a acesteia

Studiul tensiunilor s-a realizat și în acest caz prin tensometrie electrică rezistivă, pe elemente de tablă expandată ce au dimensiunile:

- lungime $l_1 = 160$ mm;
- lățime l = 66 mm;

- grosimi $g_1 = 1,75 \text{ mm}$ și $g_2 = 2 \text{ mm}$;

- lungimea crestăturii $l_{cr} = 44,3$ mm;

- lungimea puntiței dintre două crestături alăturate de pe aceeași linie de crestare p = 18,5 mm;

- lungimile puntiței dintre două rânduri de crestare alăturate sunt $s_1 = 10 \text{ mm}$ și $s_2 = 15 \text{ mm}$,

pe suprafața cărora au fost fixați relativ simetric 5 traductori electrotensometrici rezistivi (TER), după cum este prezentat în fig. 4.31.

Fig. 4.31 Epruveta de tablă expandată cu dispunerea traductorilor electrotensometrici rezistivi

Prin această dispunere s-a studiat evoluția tensiunilor care apar pe suprafața tablei expandate în timpul acțiunii forței de deformație pe partea opusă fixării traductorilor electrotensometrici rezistivi. Dispunerea traductorilor este relativ simetrică în centrul epruvetei.

Și în acest caz instalația cu ajutorul căreia s-au realizat determinările experimentale, este cea din fig. 4.25.

Studiul tensiunilor s-a realizat pentru cazurile de rezemare simplă la o distanță L (L = 131,5 mm) între reazeme, de încastrare la capete pe lățimea l la o distanța între încastrări L, precum și pentru cazul încastrării

pe lățimea I din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4.

I Cazul simplei rezemări pe lățimea l la distanța L a epruvetei de tablă expandată

Schema de încărcare și de rezemare a epruvetelor de tablă expandată utilizată la determinarea tensiunilor este prezentată în fig. 4.32, iar valorile tensiunilor rezultate, pentru epruvetele de tablă expandată prezentate în fig. 4.31, în cazul simplei rezemări pe lățimea I la distanța L. sunt prezentate în tab. 4.13, tab. 4.14, tab. 4.15 și tab. 4.16. Evoluția grafică a tensiunilor din aceste tabele se poate vedea în fig. 4.33, fig. 4.34, fig. 4.35 și fig. 4.36.

Fig. 4.32 Schema simplei rezemări pe lățimea l la distanța L și dispunerea traductorilor

Ď	eplasarea [mm]	0	1	1,5	2	2,5
	Citire aparat	15000	14895	14705	14570	14455
ER 1	Deformația relativă ε [μm/m]	0	-105	-295	-430	-545
L	Tensiunea σ [daN/cm ²]	0	-220.5	-619.5	-903	-1145
	Citire aparat	15000	15150	15250	15400	15565
TER 2	Deformația relativă ε [μm/m]	0	150	250	400	565
	Tensiunea σ [daN/cm ²]	0	315	525	840	1187
	Citire aparat	15000	15440	15705	15895	16115
TER 3	Deformația relativă ε [μm/m]	0	440	705	895	1115
	Tensiunea σ [daN/cm ²]	0	924	1481	1880	2342
	Citire aparat	15000	15455	15720	15960	16200
rer 4	Deformația relativă ε [μm/m]	0	455	720	960	1200
	Tensiunea σ [daN/cm ²]	0	955.5	1512	2016	2520
	Citire aparat	15000	15415	15710	15930	16230
TER 5	Deformația relativă ε [μm/m]	0	415	710	930	1230
	Tensiunea σ [daN/cm ²]	0	871.5	1491	1953	2583

Tab. 4.13 Valorile deformațiilor relative și valorile tensiunilor pentrutabla expandată prezentată în fig. 4.31, având g = 2 mm și s = 10 mm, încazul simplei rezemări pe lățimea I la distanța L

D	eplasarea [mm]-	.		1,5	2	2,5
	Citire aparat	15000	14865	14825	14795	14785
rer 1	Deformația relativă ε [μm/m]	0	-135	-175	-205	-215
	Tensiunea σ [daN/cm ²]	0	-283.5	-367.5	-430.5	-451.5
	Citire aparat	15000	15100	15220	15320	15450
TER 2	Deformația relativă ε [μm/m]	0	100	220	320	450
	Tensiunea σ [daN/cm²]	0	210	462	672	945
	Citire aparat	15000	15290	15495	15715	15880
ER 3	Deformația relativă ε [μm/m]	0	290	495	715	880
Ľ	Tensiunea σ [daN/cm ²]	0	609	1040	1502	1848
	Citire aparat	15000	15305	15515	15730	15900
ER 4	Deformația relativă ε [μm/m]	0	305	515	730	900
	Tensiunea σ [daN/cm ²]	0	640.5	1082	1533	1890
	Citire aparat	15000	15315	15505	15725	15890
rer s	Deformația relativă ε [μm/m]	0	315	505	725	890
	Tensiunea σ [daN/cm ²]	0	661.5	1061	1523	1869

Tab. 4.14 Valorile deformațiilor relative și valorile tensiunilor pentru tabla expandată prezentată în fig. 4.31, având g = 1,75 mm și s = 10 mm, în cazul simplei rezemări pe lățimea I la distanța L

Fig. 4.34 Evoluția grafică a tensiunilor rezultate pentru cazul simplei rezemări pe lățimea l la distanța L a epruvetei de tablă expandată prezentată în fig. 4.31, având g = 1,75 mm și s = 10 mm

D	eplasarea [mm]	0	1	1,5	2	2,5
	Citire aparat	15000	14983	14792	14656	14540
ER 1	Deformația relativă ε [um/m]	0	-17.12	-208.2	-344	-459.7
	Tensiunea σ [daN/cm ²]	0	-35.95	-437.3	-722.5	-965.4
	Citire aparat	15000	15244	15345	15495	15662
ER 2	Deformația relativă ε [μm/m]	0	243.93	344.55	495.48	661.5
L	Tensiunea σ [daN/cm ²]	0	512.3	723.6	1041	1389
	Citire aparat	15000	15551	15818	16010	16231
ER 3	Deformația relativă ε [μm/m]	0	551.48	818.39	1009.8	1231.4
	Tensiunea σ [daN/cm²]	0	1158	1719	2120	2586
	Citire aparat	15000	15568	15835	16077	16318
TER 4	Deformația relativă ε [μm/m]	0	567.82	834.76	1076.5	1318.3
	Tensiunea σ [daN/cm ²]	0	1192	1753	2261	2768
	Citire aparat	15000	15526	15823	16045	16347
rer s	Deformația relativă ε [μm/m]	0	526.14	823.27	1044.9	1347
	Tensiunea σ [daN/cm ²]	0	1105	1729	2194	2829

Tab. 4.15 Valorile deformațiilor relative și valorile tensiunilor pentrutabla expandată prezentată în fig. 4.31, având g = 2 mm și s = 15 mm, încazul simplei rezemări pe lățimea I la distanța L

E	eplasarea [mm]				a) 27.	.2,5~
	Citire aparat	15000	14954	14914	14884	14874
rer 1	Deformația relativă ε [μm/m]	0	-45.81	-86.05	-116.2	-126.3
	Tensiunea σ [daN/cm²]	0	-96.2	-180.7	-244.1	-265.2
	Citire aparat	15000	15130	15250	15351	15481
rer 2	Deformația relativă ε [μm/m]	0	130.2	250.44	350.64	480.9
	Tensiunea σ [daN/cm²]	0	273.4	525.9	736.3	1010
	Citire aparat	15000	15366	15572	15794	15959
TER 3	Deformația relativă ε [μm/m]	0	366.45	572.47	793.57	959.4
5	Tensiunea σ [daN/cm ²]	0	769.5	1202	1667	2015
	Citire aparat	15000	15412	15624	15840	16011
rer 4	Deformația relativă ε [μm/m]	0	412.13	623.6	840.11	1011.3
	Tensiunea σ [daN/cm ²]	0	865.5	1310	1764	2124
	Citire aparat	15000	15453	15645	15867	16033
TER 5	Deformația relativă ε [μm/m]	0	452.83	644.54	866.52	1033
	Tensiunea σ [daN/cm ²]	0	951	1354	1820	2169

Tab.4.16 Valorile deformațiilor relative și valorile tensiunilor pentru tabla expandată prezentată în fig. 4.31, având g = 1,75 mm și s = 15 mm, în cazul simplei rezemări pe lățimea I la distanța L

Analizând evoluția grafică a tensiunilor în funcție de deplasare, se constată că zona în care este fixat TER 1 se comprimă, iar zonele în care sunt fixați TER 2, TER3, TER 4 și TER 5 se alungesc.

Zona din dreptul TER 2 are deformări mai mici decât zonele din dreptul TER 3, TER 4 și TER 5, ce rezultă din analiza tab. 4.13, tab. 4.14, tab. 4.15 și tab. 4.16, și a fig. 4.33, fig. 4.34, fig. 4.35 și fig. 4.36, deoarece la o aceeași valoare a deplasării în jos a poasonului, prin intermediul căruia se exercită forța, valorile tensiunilor sunt mult mai mici la o aceeași deplasare.

Analizând variația tensiunilor în funcție de deplasare pentru epruvete ce au o aceeași grosime dar distanțele dintre rândurile de goluri diferite, se constată că valorile tensiunilor la aceeași deplasare cresc odată cu creșterea valorii distanței dintre goluri. Dacă epruvetele au aceeași valoare a distanței dintre rândurile de goluri dar grosimi diferite se constată că valorile tensiunilor cresc odată cu creșterea grosimii.

II Cazul încastrării pe lățimea I din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4, a epruvetei de tablă expandată

Schema de încărcare și de încastrare a epruvetelor de tablă expandată utilizată la determinarea tensiunilor este prezentată în fig. 4.37, iar valorile tensiunilor rezultate, pentru epruvetele de tablă expandată prezentată în fig. 4.31. în cazul încastrării pe lățimea I din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4, rezultatele sunt prezentate în tab. 4.17, tab. 4.18, tab. 4.19 și tab. 4.20, iar evoluția grafică a tensiunilor din aceste tabele este reprezentată în fig. 4.39, fig. 4.40 și fig. 4.41.

Fig. 4.37 Schema încastrării pe lățimea I din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4

Tab. 4.17 Valorile deformațiilor relative și valorile tensiunilor pentru tabla expandată prezentată în fig. 4.31, având g = 2 mm și s = 10 mm, în cazul încastrării pe lățimea I din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4

Pe													
	Citire aparat	14000	14075	14085	14105	14140	14175	14210	14240	14270	14305	14335	14370
	Deformația					·		•					
~	relativă	0	75	85	105	140	175	210	240	270	305	335	370
Ξ	ε [μm/m]								¦ •				
	Tensiunea	0	157.5	178 5	220.5	794	367 5	111	50.1	567	6.10.5	703.5	777
	σ [daN/cm ²]	Ľ	••••	• / 0	220.0	274	50711				040		
	Citire aparat	14000	14070	14090	14110	14145	14175	14220	14235	14265	14310	14340	14360
5	Deformația												
2	relativă	0	70	90	110	145	175	220	235	265	310	340	360
E	ε [μm/m]								¦ •				
	Tensiunea	0	147	189	231	304.5	367.5	462	493.5	556.5	651	714	756
	σ [daN/cm ⁻]								1				
	Citire aparat	14000	14025	14030	14040	14055	14070	14090	14100	14115	14135	14145	14160
3	Deformația												
2	relativă	0	25	30	40	55	70	90	100	115	135	145	160
E	<u>ε [μm/m]</u>												
	Tensiunea	0	52.5	63	84	115.5	147	189	210	241.5	283.5	304.5	336
	$\sigma [daN/cm^{2}]$								ļ				
	Citire aparat	14000	14020	14025	14035	14045	14070	14095	14105	14110	14130	14145	14155
4	Deformația								1				
2	relativă	0	20	25	35	45	70	95	105	110	130	145	155
E	<u>ε [μm/m]</u>						<u> </u>						
	I ensiunea	0	42	52.5	73.5	94.5	147	199.5	220.5	231	273	304.5	325.5
· · · · ·	o [dain/cm]												
	Citire aparat	16000	16115	16160	16210	16280	16360	16430	16495	16570	16645	16700	16745
S	Detormația	0		140	210	180	240	120	105	570	615	700	715
R	relativa	0	6115	100	210	280	300	450	493	370	C+0	700	(42
E													
Ľ	σ [daN/cm ²]	0	241.5	336	441	588	756	903	1039.5	1197	1354.5	1470	1564.5
	$\sigma [daN/cm^{-}]$					L							

pentru cazul încastrării pe lățimea l din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4, a epruvetei de tablă expandată prezentată în fig. 4.31, având g = 2 mm și s = 10 mm

Tab. 4.18 Valorile deformațiilor relative și valorile tensiunilor pentru tabla expandată prezentată în fig. 4.31, având g = 1,75 mm și s = 10 mm, în cazul încastrării pe lățimea I din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4

Die	plasarea. [mm];	2 Å Å		Ra		233			3,5	40	4,5	510	2.6
	Citire aparat	15000	15080	15085	15095	15125	15150	15170	15190	15205	15225	15245	15255
<u>ER 1</u>	Deformația relativă ε [µm/m]	0	80	85	95	125	150	170	- 190 I	205	225	245	255
TE	Tensiunea σ [daN/cm ²]	0	168	178.5	199.5	262.5	315	357	399	430.5	472.5	514.5	535.5
	Citire aparat	1 5000	15075	15085	15090	15115	15140	15160	15180	15195	15215	15235	15250
IR 2	Deformația relativă ε [µm/m]	0	75	85	9()	115	140	160	180	195	215	235	250
TF	Tensiunea σ [daN/cm ²]	0	157.5	178.5	189	241.5	294	336	378	409.5	451.5	493.5	525
	Citire aparat	15000	15030	15035	15045	15065	15070	15075	15090	15095	15105	15130	15140
.R 3	Deformația relativă ε [μm/m]	0	30	35	45	65	70	75	90	95	105	130	140
TE	Tensiunea σ [daN/cm ²]	0	63	73.5	94.5	136.5	147	157.5	189	199.5	220.5	273	294
	Citire aparat	15000	15035	15040	15045	15060	15070	15080	15085	15095	15110	15125	15135
R 4	Deformația relativă ε [μm/m]	Ο	35	40	45	60	70	80	85	95	: 110 	125	135
T	Tensiunea σ [daN/cm ²]	0	73.5	84	94.5	126	147	168	178.5	199.5	231	262.5	283.5
	Citire aparat	17000	17095	17160	17190	17245	17280	17330	17385	17440	17500	17555	17605
3R 5	Deformația relativă ε [μm/m]	0	95	160	190	245	28 0	330	385	440	500	555	605
IL	Tensiunea σ [daN/cm ²]	0	199.5	336	399	514.5	588	693	808.5	924	1050	1165.5	1270.5

pentru cazul încastrării pe lățimea l din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4, a epruvetei de tablă expandată prezentată în fig. 4.31, având g = 1,75 mm și s = 10 mm

Tab. 4.19 Valorile citite la amplificator și valorile tensiunilor pentru tabla expandată prezentată în fig.4.31, având g = 1.75 mm și s = 15 mm, în cazul încastrării pe lățimea I din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4

Þ													
	Citire aparat	15000	15215 7	15220.765	15230 855	15261 125	15286 35	15306 53	15326.71	15341 845	15362 025	15382 205	15392 295
ER 1	Deformația relativă ε [um/m]	0	215 72	220 765	230 855	261 125	286 35	306 53	326 71	341 845	362 025	382 205	392 295
Ĺ	Tensiunea	0	453.012	463.6065	484.7955	548.3625	601.335	643.713	686.091	717.8745	760.2525	802.6305	823.8195
	Citire aparat	15000	151654	15175 51	15180.54	15205.69	15230.84	15250 96	15271 08	15286 17	15306 29	15326 41	15341 5
ER 2	Deformația relativă ε [μm/m]	0	165 45	175.51	180.54	205 69	230 84	250 96	271 08	286 17	306 29	326 41	341 5
L	Tensiunea σ [daN/cm ²]	0	347.445	368.571	379.134	431.949	484.764	527.016	569.268	600.957	643.209	685.461	717.15
	Citire aparat	15000	15075.0	15080 105	15090.135	15110.195	15115 21	15120 225	15135.27	15140.285	15150.315	15175 39	15185 42
ER 3	Deformația relativă ε [μm/m]	0	75.09	80 105	90 135	110 195	11521	120.225	135.27	140 285	150 315	175.39	185 42
L	Tensiunea o [daN/cm ²]	0	157.689	168.2205	189.2835	231.4095	241.941	252.4725	284.067	294.5985	315.6615	368.319	389.382
	Citire aparat	15000	15065.0	15070.08	15075.09	15090.12	15100 14	1511016	1511517	15125 19	15140.22	15155.25	15165.27
ER 4	Deformația relativă ε [μm/m]	0	65.07	70 08	75 09	90 12	100-14	110.16	115 17	125.19	140.22	155 25	165 27
L	Tensiunea σ [daN/cm ²]	0	136.647	147.168	157.689	189.252	210.294	231.336	241.857	262.899	294.462	326.025	347.067
	Citire aparat	17000	17108.6	17173 728	17203.752	17258.796	17293.824	17343.864	17398.908	17453.952	17514	17569.044	17619.084
ER 5	Deformația relativă ε [μm/m]	0	108.676	173 728	203 752	258.796	293 824	343.864	398 908	453.952	514	569 044	619.084
T	Tensiunea σ [daN/cm ²]	0	228.219	364.8288	427.8792	543.4716	617.0304	722.1144	837.7068	953.2992	1079.4	1194.9924	1300.076-

Fig. 4.40 Evoluția grafică a tensiunilor rezultate pentru cazul încastrării pe lățimea l din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4, a epruvetei de tablă expandată prezentată în fig. 4.31, având g = 1,75 mm și s = 15 mm

Tab. 4.20 Valorile citite la amplificator și valorile tensiunilor pentru tabla expandată prezentată în fig. 4.26, având g = 2 mm și s = 15 mm, în cazul încastrării pe lățimea I din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4

Ð		O											
	Citire aparat	14000	14201 68	14211 77	14231 95	14267 26	14302 58	14337 89	14368-16	14398 43	14433 75	14464 02	14499 33
	Deformația												
	relativă ε	0 00	201.67	211 76	231 94	267 26	302 57	337 89	368 16	398 43	433 74	464 01	499 33
E	[µm/m]												
	Tensiunea	0.00	423.52	444.71	487.08	561.25	635.41	709.57	773.14	836.70	910.86	974.43	1048.59
	$\sigma [daN/cm^2]$												
	Citire aparat	14000	14140.35	14160 45	14180 55	14215.73	14245.88	14291 10	14306 18	14336.33	14381 55	14411 70	14431 80
2	Deformația								• •				
2	relativă E	0.00	140 35	160.45	180 55	215 72	245 87	291-10	306 17	336 32	381.55	411 70	431 80
E	[µm/m]									·	} 		
	Tensiunea	0.00	294.74	336.95	379.15	453.02	516.34	611.31	642.97	706.28	801.25	864.57	906.78
	σ [daN/cm ⁻]												
	Citire aparat	14000	14067 08	14072.09	14082 12	14097 17	14112.21	14132 27	14142 30	14157 35	14177 41	14187 44	14202 48
ξ	Deformația												
R K	relativa E	0.00	67.07	72.09	82 12	97 16	112.21	132.27	142.30	15734	17740	18/43	202 48
E	[µm/m]												
	1 ensiunea	0.00	140.86	151.39	172.45	204.05	235.64	277.77	298.83	330.42	372.55	393.61	425.21
	σ [dalv/cm]										1 41 72 20		1.1.07.47
	Citire aparat	14000	14062.06	14067.08	14077.11	14087 14	14112.21	14137 29	14147 32	14152.33	14172.39	14187.44	14197.47
4	Deformația	0.00	(2.0)	(7.07	77.10	0717	112.21	90.221	1 17 21	157.32	177 30	197 42	107.16
ĸ	relativa ε	0.00	02.00	07.07	//.10	6/13	112.21	137.20	147.31	152.55	1/2,39	107.45	177.40
E	Tensiunea						<u> </u>						
	$\sigma \left[da N/cm^2 \right]$	0.00	130.33	140.86	161.92	182.98	235.64	288.30	309.36	319.89	362.02	393.61	414.68
	Citire anarat	16000	16195 58	16240 80	16291.05	16361 40	16441.80	1651215	16577.48	16652.85	16728.23	16783 50	16828 73
	Deformatia											<u> </u>	
\mathbf{S}	relativă £	0.00	195.57	240.80	291.05	361 40	441 80	512.15	577 47	652 85	728 22	783 50	828 72
ER	[um/m]												
L	Tensiunea σ [daN/cm ²]	0.00	410.71	505.68	611.20	758.94	9 2 7.78	1075.52	1212.70	1370.99	1529.27	1645.35	1740.32

Fig. 4.41 Evoluția grafică a tensiunilor rezultate pentru cazul încastrării pe lățimea l din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4, a epruvetei de tablă expandată prezentată în fig. 4.31, având g = 2 mm și s = 15 mm

În cazul încastrării epruvetei la capătul de lățime 1 înspre care este montat TER 5 și aplicarea forței la celălalt capăt de lățime 1 înspre care sunt montați TER 4 și TER 3 (fig. 4.37), se constată că toate zonele în care sunt fixați traductorii se alungesc.

Analizând variația tensiunii în funcție de deplasare pentru cei cinci TER, din tab. 4.17, tab. 4.18, tab. 4.19 și tab. 4.20, precum și din fig. 4.38, fig. 4.39, fig. 4.40 și fig. 4.41, se constată că tensiunile date de TER 1 și TER 2, respectiv TER 3 și TER 4 au valori relativ identice, iar variația tensiunii este mult mai mare în zona lui TER 5.

Variația relativ identică a tensiunii pentru TER 1 și TER 2, respectiv pentru TER 3 și TER 4 se datorează poziției locurilor de pe tabla expandată în care sunt montați acești traductorii.

Pentru o anumită valoare a deplasării valorile tensiunilor pentru TER 1 și TER 2 sunt mai mari decât valorile tensiunilor pentru TER 3 și TER 4, iar valoarea tensiunii pentru TER 5 este mult mai mare.

III Cazul încastrării la ambele capete a epruvetei, pe lățimea l la distanța L

Schema de încărcare și de încastrare a epruvetelor de tablă expandată utilizată la determinarea tensiunilor este prezentată în fig. 4.42. Valorile tensiunilor rezultate, pentru epruvetele de tablă expandată prezentată în fig. 4.31, în cazul încastrării la ambele capete pe lățimea I la distanța L, se găsesc în tab. 4.21, tab. 4.22, tab. 4.23 și tab. 4.24, iar evoluțiile grafice ale tensiunilor din aceste tabele sunt reprezentate în fig. 4.43, fig. 4.44, fig. 4.45 și fig. 4.46.

Fig. 4.42 Schema încastrării la ambele capete pe lățimea I la distanța L

Tab. 4.21 Valorile citite la amplificator și valorile tensiunilor pentrutabla expandată prezentată în fig. 4.31, având g = 2 mm și s = 10 mm, încazul încastrării la ambele capete pe lățimea I la distanța L

	Deplasarea [mm]	0	0,5	1,0	1,5	2,0	2,5	3,0	3,5
	Citire aparat	15000	14930	14835	14780	14765	14900	15145	15550
ER 1	Deformația relativă ε [μm/m]	0	-70	-165	-220	-235	-100	145	550
	Tensiunea σ [daN/cm ²]	0	-147	-346.5	-462	-493.5	-210	304.5	1155
	Citire aparat	15000	15045	15100	15140	15335	16100	17495	19360
ER 2	Deformația relativă ε [μm/m]	0	45	100	140	335	1100	2495	4360
L	Tensiunea σ [daN/cm ²]	0	94.5	210	294	703.5	2310	5239.5	9156
	Citire aparat	15000	15290	15560	15840	16045	16720	17800	19580
ER 3	Deformația relativă ε [μm/m]	0	290	560	840	1045	1720	2800	4580
E	Tensiunea σ [daN/cm ²]	0	609	1176	1764	2194.5	3612	5880	9618
	Citire aparat	15000	15295	15545	15820	16135	16745	17910	19600
ER 4	Deformația relativă ε [μm/m]	0	295	545	820	1135	1745	2910	4600
Ľ	Tensiunea σ [daN/cm ²]	0	619.5	1144.5	1722	2383.5	3664.5	6111	9660
	Citire aparat	13000	13300	13595	13850	14180	14715	15915	17660
ER 5	Deformația relativă ε [μm/m]	0	300	595	850	1180	1715	2915	4650
F	Tensiunea σ [daN/cm ²]	0	630	1249.5	1785	2478	3601.5	6121.5	9786

pentru cazul încastrării la ambele capete pe lățimea l la distanța L a epruvetei de tablă expandată prezentată în fig. 4.31, având g = 2 mm și s = 10 mm

4 MANY THOUGH IN , TINTONAKA BIBLIOTEUA CUNTRALA 202

Tab. 4.22 Valorile citite la amplificator și valorile tensiunilor pentrutabla expandată prezentată în fig. 4.31, având g = 1,75 mm și s = 10 mm,în cazul încastrării la ambele capete pe lățimea I la distanța L

De	plasarea [mm]	<u>.</u> 0	0,5	1,0	1,5	2,0	2,5	3,0	3,5
	Citire aparat	15000	14975	14915	14860	14825	14905	15100	15455
TER 1	Deformația relativă ε [μm/m]	0	-25	-85	-140	-175	-95	100	455
	Tensiunea σ [daN/cm ²]	0	-52.5	-178.5	-294	-367.5	-199.5	210	955.5
	Citire aparat	15000	15050	15065	15100	15315	15960	16995	18980
TER 2	Deformația relativă ε [μm/m]	0	50	65	100	315	960	1995	3980
	Tensiunea σ [daN/cm ²]	0	105	136.5	210	661.5	2016	4189.5	8358
	Citire aparat	15000	15200	15455	15685	15995	16420	17305	18875
ER 3	Deformația relativă ε [μm/m]	0	200	455	685	995	1420	2305	3875
	Tensiunea o [daN/cm ²]	0	420	955.5	1438.5	2089.5	2982	4840.5	8137.5
	Citire aparat	15000	15215	15480	15575	15895	16345	17210	18960
ER 4	Deformația relativă ε [μm/m]	0	215	480	575	895	1345	2210	3960
	Tensiunea σ [daN/cm ²]	0	451.5	1008	1207.5	1879.5	2824.5	4641	8316
	Citire aparat	14000	14215	14470	14675	14925	15475	16285	17955
ER 5	Deformația relativă ε [μm/m]	0	215	470	675	925	1475	2285	3955
	Tensiunea σ [daN/cm ²]	0	451.5	987	1417.5	1942.5	3097.5	4798.5	8305.5

Fig. 4.44 Evoluția grafică a tensiunilor rezultate pentru cazul încastrării la ambele capete pe lățimea l la distanța L a epruvetei de tablă expandată prezentată în fig. 4.31, având g = 1,75 mm și s = 10 mm

Tab. 4.23 Valorile citite la amplificator și valorile tensiunilor pentrutabla expandată prezentată în fig. 4.31, având g = 1,75 mm și s = 15 mm,în cazul încastrării la ambele capete pe lățimea I la distanța L

	Citire aparat	16000	15723 75	15660 75	15603	15566-25	15650-25	15855	16227 75
-	Deformația								
2	relativă ε	0	-276 25	-339 25	- <u>3</u> 97	-433 75	-349 75	-145	227 75
ΓE	[µm/m]								
	Tensiunea	0	-580.125	-712.425	-833.7	-910.875	-734.475	-304.5	478.275
	σ [daN/cm ²]								
	Citire aparat	15000	15200 5	15215.65	15251	15468 15	16119.6	17164 95	19169 8
5	Deformația								
2	relativă E	0	200 5	215 65	251	468 15	1119.6	2164 95	4169.8
ΓE	<u>[μm/m]</u>								
	1 ensiunea	0	421.05	452.865	527.1	983.115	2351.16	4546.395	8756.58
	σ [dain/cm]								
	Citire aparat	15000	15352	15609 55	15841 85	16154 95	16584.2	17478 05	19063 75
m	Deformația								
R	relativă E	0	352	609 55	841 85	1154.95	1584-2	2478.05	406375
E	<u>[µm/m]</u>								
· ·	= 1 ensiunea	0	739.2	1280.055	1767.885	2425.395	3326.82	5203.905	8533.875
	σ [dain/cm]	 							
	Citire aparat	15000	15367.15	15634.8	15730 75	16053.95	16508 45	17382 1	19149.6
4	Deformația		2/715	(24.0	720 75	1052.05	1509 15	11011	41.40.4
R	relativa ε	U	367 15	0348	730 75	1053.95	1208 43	23821	4149.0
	$r [da N/cm^2]$	0	771.015	1333.08	1534.575	2213.295	3167.745	5002.41	8714.16
<u>}</u>	Citing anomt	1000	1 1 2 5 7 1 5	146147	11071 75	1507175	15620.75	16117.85	19124 55
1	Deformatio	14000	14357 13	14014 /	14821 73	13074 23	1302975	10447.85	10134 33
S	relativă c	0	357 15	614.7	821.75	1071 25	1629.75	2447.85	4 34 55
R H	fum/m]	Ŭ	01.10		52175		10277-	2117.02	
	Tensiunea								
	σ [daN/cm ²]	0	750.015	1290.87	1725.675	2255.925	3422,475	5140,485	8682.555

Fig. 4.45 Evoluția grafică a tensiunilor rezultate pentru cazul încastrării la ambele capete pe lățimea l la distanța L a epruvetei de tablă expandată prezentată în fig.4.31, având g = 1,75 mm și s = 15 mm

Tab. 4.24 Valorile citite la amplificator și valorile tensiunilor pentrutabla expandată prezentată în fig. 4.31, având g = 2 mm și s = 15 mm, încazul încastrării la ambele capete pe lățimea I la distanța L

;,D	eplașarea [mm]	Ö	0,5	1,0	1,5	2,0	2,5	3,0	3,5
	Citire aparat	16000	159751	15873-45	15814.6	15798 55	15943	16205.15	16638.5
	Deformația								
	relativă ɛ	0	-24 9	-126 55	-185.4	-201 45	-57	205 15	638.5
IΕ	[µm/m]								
L .	Tensiunea	0	-52.29	-265.755	-389.34	-423.045	-119.7	430.815	1340.85
ļ	$\sigma [daN/cm]$								
	Citire aparat	15000	15210 495	15266 1	15306.54	15503-685	16277.1	17687 445	19572.96
7	Deformația relativă c	0	210,195	266-1	306 51	503 685	1777 1	2682 772	1577.96
H H H H	[um/m]	U.	41V 772	200 1		202 002		2007 772'	4.112 10
Ē	Tensiunea								
Ē	σ [daN/cm ²]	0	442.0395	558.81	643.734	1057.7385	2681.91	5643.6345	9603.216
	Citire aparat	15000	15442.9	15715.6	15998-4	16205 45	16887 2	17978	19775 8
3	Deformația								
	relativă E	0	442 9	715.6	998-4	1205 45	1887 2	2978	4775 8
Ε	[µm/m]				 	 	ļ. <u>.</u> —		
	Tensiunea	0	930.09	1502.76	2096.64	2531.445	3963.12	6253.8	10029.18
	σ [daN/cm ⁻]								
	Citire aparat	15000	15447 95	15700 45	15978-2	16296 35	16912 45	18089 1	19796
4	Deformația		11795	700.45	- 07g 7	1796 35	בריטו	3089-1	1796
H H H	[um/m]			100 4-	,,,,, _		1'(= 7.)	20007-1	-,,,,
ΙL	Tensiunea								
ł	σ [daN/cm ²]	0	940.695	1470.945	2054.22	2722.335	4016.145	6487.11	10071.6
	Citire aparat	13000	13433	13730.95	13988.5	14321 8	14862 15	16074 15	17836 6
2 V	Deformația				-				
	relativă ε	0	433	730 95	988 5	1321.8	1862-15	3074 15	4836.6
Ē	[µm/m]		ļ				 		
	Tensiunea	0	909.3	1534.995	2075.85	2775.78	3910.515	6455.715	10156.86
i	$\sigma [daN/cm^{2}]$]					

Fig.4.46 Evoluția grafică a tensiunilor rezultate pentru cazul încastrării la ambele capete pe lățimea l la distanța L a epruvetei de tablă expandată prezentată în fig.4.31, având g = 2 mm si s = 15 mm

În cazul încastrării, pe întreaga lățime l, la ambele capete a epruvetei de tablă expandată și acțiunea forței în dreptul traductorilor TER 1 și TER 2 (fig. 4.42), se constată analizând tab. 4.21, tab. 4.22, tab. 4.23 și tab. 4.24, precum și fig. 4.43, fig. 4.44, fig. 4.45 și fig. 4.46 că zonele în care sunt montați TER 2, TER 3, TER 4 și TER 5 se alungesc, iar zona în care este montat TER 1 are o variație de comprimare urmată de o alungire, datorită deformării în prealabil a părții de material deformat în urma expandării.

Zona epruvetei în dreptul căreia este montat TER 2 are la început o variație crescătoare lentă a tensiunii, aproximativ liniară, după care are o variație crescătoare puternică pe un interval foarte scurt al deplasării.

Zonele din dreptul TER 3, TER 4 și TER 5 au la început și ele o variație crescătoare aproximativ liniară, dar mai pronunțată decât a zonei în care este montat TER 2, iar spre sfârșit, variația tensiunilor este mai lentă pe același intervalul pe care tensiunea este pronunțată din zona în care este montat TER 2.

Studiind și analizând modurile de încărcare și rezemare a tablelor expandate studiate, se poate afirma, că în cazul acționării cu forțe pe zone ale tablei deformate prin expandare, pentru cazul simplei rezemări și

Fig. 4.47 Reprezentarea grafică a variației deformațiilor relative în funcție de deplasare, prin curbe Bézier cubice

Funcțiile de variație a tensiunilor în funcție de deplasare pentru valorile din tabel sunt:

$$\sigma 1(d) := \frac{2.1}{3.375} \cdot \left(-35 \cdot d^3 + 352.5 \cdot d^2 - 1882.5 \cdot d + 1210.625\right)$$

$$\sigma 2(d) := \frac{2.1}{3.375} \cdot \left(-35 \cdot d^3 + 330 \cdot d^2 - 120 \cdot d + 91.25\right)$$

$$\sigma 3(d) := \frac{2.1}{3.375} \cdot \left(105 \cdot d^3 - 652.5 \cdot d^2 + 2778.75 \cdot d - 746.25\right)$$

$$\sigma 4(d) := \frac{2.1}{3.375} \cdot \left(25 \cdot d^3 - 187.5 \cdot d^2 + 2088.75 \cdot d - 390.625\right)$$

$$\sigma 5(d) := \frac{2.1}{3.375} \cdot \left(155 \cdot d^3 - 1073.125 \cdot d^2 + 3131.25 \cdot d - 1083.125\right)$$

unde $\sigma 1(d)$, $\sigma 2(d)$, $\sigma 3(d)$, $\sigma 4(d)$ și $\sigma 5(d)$ reprezintă funcția de variație a tensiunilor în funcție de deplasare, iar d este deplasarea.

Reprezentarea grafică a variației funcțiilor $\sigma(d)$ este prezentată în fig. 4.48.

Fig. 4.48 Reprezentarea grafică a variației tensiunilor în funcție de deplasare, prin curbe Bézier cubice

Din proprietățile de concavitate ale graficelor variațiilor deformațiilor relative (respectiv tensiunilor) exprimate în funcție de deplasarea, se observă că o creștere a deplasării nu produce o creștere proporțională a acestor mărimi. O creștere accentuată a deplasării conduce la diminuarea vitezei de creștere a deformației relațive (respectiv tensiunii).

II Cazul încastrării pe lățimea 1 din partea traductorului electrotensometric rezistiv nr. 5 și liberă la partea traductorilor electrotensometrici rezistivi nr. 3 și nr. 4, a epruvetei de tablă expandată

Pentru tab. 4.17, s-a făcut reprezentarea variațiilor deformațiilor relative și a tensiunilor în funcție de deplasare, prin curbe Bézier de gradul patru date de relația (4.2.),

Funcțiile de variație ale deformațiilor relative în funcție de deplasare pentru valorile din tabel sunt:

$$\varepsilon 1(d) := \frac{1}{256} \cdot \left(30 \cdot d^4 - 360 \cdot d^3 + 1380 \cdot d^2 + 14840 \cdot d + 3310 \right)$$

$$\varepsilon 2(d) := \frac{1}{256} \cdot \left(90 \cdot d^4 - 840 \cdot d^3 + 1980 \cdot d^2 + 17400 \cdot d - 710 \right)$$

$$\varepsilon 3(d) := \frac{1}{256} \cdot \left(30 \cdot d^4 - 360 \cdot d^3 + 1380 \cdot d^2 + 5880 \cdot d - 530 \right)$$

$$\varepsilon 4(d) := \frac{1}{256} \cdot \left(115 \cdot d^4 - 1420 \cdot d^3 + 5970 \cdot d^2 - 1740 \cdot d + 2195 \right)$$

$$\varepsilon 5(d) := \frac{1}{256} \cdot \left(-5 \cdot d^4 + 100 \cdot d^3 - 1710 \cdot d^2 + 45380 \cdot d - 14325 \right)$$

unde $\varepsilon 1(d)$, $\varepsilon 2(d)$, $\varepsilon 3(d)$, $\varepsilon 4(d)$ si $\varepsilon 5(d)$ reprezintă funcția de variație a deformațiilor relative în funcție de deplasare, iar d este deplasarea.

Reprezentarea grafică a variației funcțiilor $\varepsilon(d)$ este prezentată în fig. 4.49.

Funcțiile de variație a tensiunilor în funcție de deplasare pentru valorile din tabel sunt:

$$\sigma 1(d) := \frac{1}{256} \cdot \left(63 \cdot d^4 - 756 \cdot d^3 + 2898 \cdot d^2 + 31164 \cdot d + 6951 \right)$$

$$\sigma 2(d) := \frac{1}{256} \cdot \left(189 \cdot d^4 - 1764 \cdot d^3 + 4158 \cdot d^2 + 36540 \cdot d - 1491 \right)$$

$$\sigma 3(d) := \frac{1}{256} \cdot \left(63 \cdot d^4 - 756 \cdot d^3 + 2898 \cdot d^2 + 12348 \cdot d - 1113 \right)$$

$$\sigma 4(d) := \frac{1}{256} \cdot \left(241.5 \cdot d^4 - 2982 \cdot d^3 + 12537 \cdot d^2 - 3654 \cdot d + 4609.5 \right)$$

$$\sigma 5(d) := \frac{1}{256} \cdot \left(-10.5 \cdot d^4 + 210 \cdot d^3 - 3591 \cdot d^2 + 95298d - 30082.5 \right)$$

unde $\sigma 1(d)$, $\sigma 2(d)$, $\sigma 3(d)$, $\sigma 4(d)$ și $\sigma 5(d)$ reprezintă funcția de variație a tensiunilor în funcție de deplasare, iar d este deplasarea.

Reprezentarea grafică a variației funcțiilor $\sigma(d)$ este prezentată în fig. 4.50.

Fig. 4.50 Reprezentarea grafică a variației tensiunilor în funcție de deplasare, prin curbe Bézier de gradul patru

III Cazul încastrării la ambele capete a epruvetei, pe lățimea l, la distanța L

Pentru tab. 4.21, s-a făcut reprezentarea variațiilor deformațiilor relative și a tensiunilor în funcție de deplasare, prin curbe Bézier cubice date de relația (4.2.),

Funcțiile de variație ale deformațiilor relative în funcție de deplasare pentru valorile din tabel sunt:

$$\varepsilon 1(d) := \frac{1}{27} \cdot \left(260 \cdot d^3 + 2040 \cdot d^2 - 6335 \cdot d + 847.5\right)$$

$$\varepsilon 2(d) := \frac{1}{27} \cdot \left(1435 \cdot d^3 + 5632.5 \cdot d^2 - 3593.75 \cdot d + 1699.375\right)$$

$$\varepsilon 3(d) := \frac{1}{27} \cdot \left(1650 \cdot d^3 + 495 \cdot d^2 + 13977.5 \cdot d + 941.25\right)$$

$$\varepsilon 4(d) := \frac{1}{27} \cdot \left(1530 \cdot d^3 + 1305 \cdot d^2 + 12595 \cdot d + 1586.25\right)$$

$$\varepsilon 5(d) := \frac{1}{27} \cdot \left(1765 \cdot d^3 + 187.5 \cdot d^2 + 14196.25 \cdot d + 1163.125\right)$$

unde $\varepsilon 1(d)$, $\varepsilon 2(d)$, $\varepsilon 3(d)$, $\varepsilon 4(d)$ si $\varepsilon 5(d)$ reprezintă funcția de variație a deformațiilor relative în funcție de deplasare, iar d este deplasarea.

Reprezentarea grafică a variației funcțiilor $\varepsilon(d)$ este prezentată în fig. 4.51.

Funcțiile de variație a tensiunilor în funcție de deplasare pentru valorile din tabel sunt:

$$\sigma_{1}(d) := \frac{1}{27} \cdot \left(546 \cdot d^{3} + 4284 \cdot d^{2} - 13303.5 \cdot d + 1491\right)$$

$$\sigma_{2}(d) := \frac{1}{27} \cdot \left(3013.5 \cdot d^{3} + 11828.25 \cdot d^{2} - 7546.875 \cdot d + 3568.688\right)$$

$$\sigma_{3}(d) := \frac{1}{27} \cdot \left(3465 \cdot d^{3} + 1039.5 \cdot d^{2} + 29352.75 \cdot d + 1976.625\right)$$

$$\sigma_{4}(d) := \frac{1}{27} \cdot \left(3213 \cdot d^{3} + 2740.5 \cdot d^{2} + 26449.5 \cdot d + 3331.125\right)$$

$$\sigma_{5}(d) := \frac{1}{27} \cdot \left(3706.5 \cdot d^{3} + 393.75 \cdot d^{2} + 29812.125 \cdot d + 2442.563\right)$$

unde $\sigma 1(d)$, $\sigma 2(d)$, $\sigma 3(d)$, $\sigma 4(d)$ și $\sigma 5(d)$ reprezintă funcția de variație a tensiunilor în funcție de deplasare, iar d este deplasarea.

Reprezentarea grafică a variației funcțiilor $\sigma(d)$ este prezentată în fig. 4.52.

Fig. 4.52 Reprezentarea grafică a variației tensiunilor în funcție de deplasare, prin curbe Bézier cubice

4.9 Concluzii

1. Studiile efectuate pentru determinarea forțelor din procesul de expandare, pe instalația din fig. 4.1, au fost realizate pentru trei forme ale cuțitului superior profilat, care sunt prezentate în fig. 4.4.

Forțele totale de tăiere sunt determinate pentru diferite materiale ale semifabricatului și pentru diferite valori ale pasului s dintre două rânduri de crestături alăturate.

Lățimea semifabricatului este aleasă astfel încât prin deplasarea în plan lateral a acestuia să nu depăşească lungimea cuțitului inferior, deoarece la determinările experimentale pe instalația prezentată în fig. 4.1 cuțitul superior cât și cel inferior sunt montate fixe.

2. Analizând variația forței în funcție de deplasare, pentru diferitele valori ale distanțelor dintre rândurile de crestături (s), pentru oțel și aluminiu se constată că odată cu scăderea distanței s valoarea forței scade, ceea ce se explică prin scăderea secțiunii transversale a puntiței dintre 2 rânduri de crestături.

3. Pentru formele cuțitului superior prezentate în fig. 4.4 a și b, valorile forțelor sunt continuu crescătoare, până la o valoare la care se

mențin aproximativ constante, iar în schimb în cazul utilizării cuțitului superior profilat prezentat în fig. 4.4 c, nu este continuu crescătoare ceea ce se observă din analiza graficelor din fig. 4.8 și fig. 4.11.

4. La tăierea pe porțiunea de tăiș semirotundă, pentru cazul expandării cu cuțitul superior profilat prezentat în fig. 4.4 c, variația forței este crescătoare până la o valoare aproximativ 0,4 din grosimea g a semifabricatului, după care scade brusc urmând să crească din nou, ceea ce corespunde tăierii în decursul etapei inițiale.

5. Analizând în continuare graficele din fig. 4.8 și fig. 4.11 se constată o a doua creștere bruscă a valorilor forțelor, la o cursă a deplasării cuțitului superior de aproximativ 7 mm, ceea ce corespunde razei părții semirotunde a profilului cuțitului superior. Această creștere se datorează începutului tăierii pe partea plană orizontală a profilului cuțitului superior. Se mai observă, că unele curbe ale variațiilor forței în funcție de deplasare, pentru cazul tăierii cu cuțitul prezentat în fig. 4.4 c, existența unei adoua scăderi bruște a valorilor forțelor, ceea ce se datoreză ruperii materialului supus expandării la unul din capete. Ruperea materialului la capăt este datorat lungimii cuțitului superior în comparație cu lățimea tablei utilizate.

6. Determinările experimentale efectuate asupra elementului de tablă plană neexpandată și compararea cu rezultatele determinate teoretic pentru placă plană neexpandată în aceleași condiții de constrângeri și de încărcare (v. fig. 4.14), se constată că comportarea materialului este liniară atunci când acesta se comportă elastic sau plastic. Între fazele elastice și plastice apare o fază în care materialul se comportă elastoplastic, această evoluție fiind neliniară.

În fig. 4.14, curba determinată teoretic are o variație liniară iar curba determinată cu valorile experimentale are o variație oarecare.

7. Comportarea la solicitarea de apăsare centrică a plăcilor circulare din tablă expandată încastrate pe contur. este practic asemănătoare cu cea a plăcilor plane neexpandate, ceea ce rezultă din analiza alurilor curbelor prezentate în fig. 4.14 și fig. 4.15, cu mențiunea că variația săgeții w este influențată de grosimea tablei (cu cât grosimea tablei este mai mare cu atât săgeata este mai mică) și de lungimea crestăturii (cu cât lungimea crestăturii este mai mare cu atât săgeata este mai mare).

8. Creșterea numărului de fire (numărul de puntițe dintre rândurile de crestături) se înregistrează o creștere a forței pentru aceeași valoare a deplasării (deformație).

9. Studiul alungirii materialului semifabricatului în timpul expandării, s-a făcut pe un elemente considerate ca fiind puntița dintre 2 rânduri de crestături care se alungește, pe suprafața cărora au fost fixați

relativ simetric 5 traductori electrotensometrici rezistivi (TER), pentru a urmări fidel deformațiile. Aplicarea forței se face cu un poanson tip "Dinte - cuțit superior" ce are unghiul $\gamma = 0^{\circ}$ și $\gamma = 15^{\circ}$.

În urma analizei valorilor rezultate ca urmare a aplicării forței cu poansonul tip "Dinte - cuțit superior" ce are unghiul $\gamma = 0^0$ (tab. 4.10) se constată următoarele:

- zonele în care sunt fixați traductorii 1, 2, 3 și 4 se alungesc;

- zona în care este fixat traductorul 5 se comprimă;

- valorile tensiunilor date de traductorii 1 și 3 sunt aproximativ egale între ele, dar și valorile tensiunilor date de traductorii 2 și 4 sunt aproximativ egale între ele, datorită simetriei montării traductorilor față de poziția de aplicare a forței;

- valorile tensiunilor date de traductorii 1 și 3 sunt mai mici decât cele date de traductorii 2 și 4.

Ca urmare a diferențelor de valori ale tensiunilor date de cele două perechi de traductoare. zonele în care sunt fixați traductorii 1 și 3 au o alungire mai mică în comparație cu alungirea zonei în care sunt fixați traductorii 2 și 4. Alungirile diferite se datorează alinierii diferite a traductorilor față de poziția de aplicare a forței.

10. Tensiunile și deformațiile care apar în cazul utilizării poasonului cu unghiul de degajare $\gamma = 15^{\circ}$ sunt cu aproximativ 50% mai mici decât valorile tensiunilor și deformațiilor determinate cu poason ce are unghiul de degajare $\gamma = 0^{\circ}$.

11. Studiul cu element finit a tensiunilor, pentru placa plană considerată ca fiind puntița dintre două rânduri de crestături pe suprafața căreia s-au montat 5 traductori electrotensometrici rezistivi (placa cu ajutorul căreia s-a realizat studiul alungirii), conduce la con10uzia că diferențele de valori sunt în procente de sub 10%.

12. Aproximarea deformației relative, în funcție de forța aplicată, prin funcții spline polinomiale de grad I, pentru TER 1, prezintă în fig. 4.28 variația funcției de aproximare, care este aproape identică cu variația deformației relative determinată experimental.

Pe domeniul de variație a forței între 25 și 50, variația funcției se abate de la variația determinată experimental, deoarece funcția este liniară, iar evoluția variației experimentale nu este liniară.

13. În urma reprezentării grafice a variației funcțiilor deformațiilor relative, prezentate în fig. 4.29, se observă suprapunerea variațiilor funcțiilor deformațiilor relative ale lui TER 1 și TER 3, datorită simetriei de fixare a celor două traductoare față de poziția de aplicare a forței, ceea ce rezultă și din analiza fig. 4.27.

Variația funcțiilor de deformație, date de TER 2 și TER 5, sunt diferite datorită dispunerii acestor traductori față de poziția de aplicare a forței.

BUPT
În urma suprapunerii graficelor variației deformațiilor relative, date de funcțiile $\varepsilon 1(f)$ și $\varepsilon 3(f)$, și a simetriei traductorilor TER 1 și TER 3 față de poziția de aplicare a forței, se poate afirma că și funcția deformației relative $\varepsilon 4(f)$ a traductorului TER 4, are variația identică cu funcția $\varepsilon 2(f)$ a traductorului TER 2, datorită simetriei acestora față de punctul de aplicare a forței.

14. Comparând forma de variație a tensiunii din fig. 4.30 cu variația deformației relative din fig. 4.28 se observă că ele au aceeași formă datorită faptului că tensiunile sunt rezultate din deformații.

15. Studiul revenirii elastice s-a făcut pe epruvetele cu care s-au determinat deformațiile și tensiunile care apar în timpul alungirii materialului semifabricatului supus procesului de expandare. Revenirea elastică este rezultatul deplasării înregistrate, atât timp cât traductorul de forță din instalația sesizează prezența unei forțe exercitate de către epruvetă. În urma acestei înregistrări s-a determinat o revenire elastică de aproximativ 2 mm.

16. Tensiunile și deformațiile ce apar în tabla expandată, prezentată în fig. 4.31, în diversele condiții de încărcare și rezemare, indică solicitările la care sunt supuse părțile din tabla expandată în dreptul cărora sunt fixați traductorii electrotensometrici rezistivi.

17. Analizând evoluția grafică a tensiunilor în funcție de deplasare, în cazul simplei rezemări a epruvetelor de tablă expandată (fig. 4.32), se constată că zona în care este fixat TER 1 se comprimă, iar zonele în care sunt fixați TER 2, TER3, TER 4 și TER 5 se alungesc.

18. Zona din dreptul TER 2 are deformări mai mici decât zonele din dreptul TER 3, TER 4 și TER 5, ce rezultă din analiza tab. 4.13, tab. 4.14, tab. 4.15 și tab. 4.16, și a fig. 4.33, fig. 4.34, fig. 4.35 și fig. 4.36, deoarece la o aceeași valoare a deplasării în jos a poasonului, prin intermediul căruia se exercită forța, valorile tensiunilor sunt mult mai mici la o aceeași deplasare.

19. Analizând variația tensiunilor în funcție de deplasare pentru epruvete ce au o aceeași grosime dar distanțele dintre rândurile de goluri diferite, se constată că valorile tensiunilor la aceeași deplasare cresc odată cu creșterea valorii distanței dintre goluri. Dacă epruvetele au aceeași valoare a distanței dintre rândurile de goluri dar grosimi diferite se constată că valorile tensiunilor cresc odată cu creșterea grosimii.

20. În cazul încastrării epruvetei la capătul de lățime 1 înspre care este montat TER 5 și aplicarea forței la celălalt capăt de lățime l înspre care sunt montați TER 4 și TER 3 (fig. 4.37), se constată că toate zonele în care sunt fixați traductorii se alungesc.

21. Analizând variația tensiunii în funcție de deplasare pentru cei cinci TER, din tab. 4.17, tab. 4.18, tab. 4.19 și tab. 4.20, precum și din fig. 4.38, fig. 4.39, fig. 4.40 și fig. 4.41, se constată că tensiunile date de

TER 1 și TER 2, respectiv TER 3 și TER 4 au valori relativ identice, iar variația tensiunii este mult mai mare în zona lui TER 5.

Variația relativ identică a tensiunii pentru TER 1 și TER 2, respectiv pentru TER 3 și TER 4 se datorează poziției locurilor de pe tabla expandată în care sunt montați acești traductorii.

22. Pentru o anumită valoare a deplasării valorile tensiunilor pentru TER 1 și TER 2 sunt mai mari decât valorile tensiunilor pentru TER 3 și TER 4, iar valoarea tensiunii pentru TER 5 este mult mai mare.

23. În cazul încastrării, pe întreaga lățime l. la ambele capete a epruvetei de tablă expandată și acțiunea forței în dreptul traductorilor TER 1 și TER 2 (fig. 4.42), se constată analizând tab. 4.21, tab. 4.22, tab. 4.23 și tab. 4.24, precum și fig. 4.43, fig. 4.44, fig. 4.45 și fig. 4.46 că zonele în care sunt montați TER 2, TER 3, TER 4 și TER 5 se alungesc, iar zona în care este montat TER 1 are o variație de comprimare urmată de o alungire, datorită deformării în prealabil a părții de material deformat în urma expandării.

24. Zona epruvetei în dreptul căreia este montat TER 2 are la început o variație crescătoare lentă a tensiunii, aproximativ liniară, după care are o variație crescătoare puternică pe un interval foarte scurt al deplasării.

25. Zonele din dreptul TER 3, TER 4 și TER 5 au la început și ele o variație crescătoare aproximativ liniară, dar mai pronunțată decât a zonei în care este montat TER 2, iar spre sfârșit, variația tensiunilor este mai lentă pe același intervalul pe care tensiunea este pronunțată din zona în care este montat TER 2.

26. Studiind și analizând modurile de încărcare și rezemare a tablelor expandate studiate, se poate afirma, că în cazul acționării cu forțe pe zone ale tablei deformate prin expandare, pentru cazul simplei rezemări și pentru cazul de încastrare la capete ale epruvetei de tablă expandată, acestea se comportă mai elastic și au o rezistență la rupere mai bună decât tabla plană neexpandată, datorită deformărilor în prealabil a zonelor deformate prin expandare.

27. Funcțiile determinate pentru a aproxima tensiunile și forțele în funcție de deplasare pot face obiectul unui studiu de defectologie. Ruperea unei structuri de tablă expandată apare ca un caz limită, atunci când deplasarea produce o alungire care atrage după sine atingerea punctului de maxim al dimensiunilor celulei.

Capitolul V

Concluzii și contribuții personale

5.1 Concluzii

I. Cu privire la considerațiuni generale legate de tabla expandată și stadiul actual al cercetării, prelucrării și utilizării acesteia

1. Tabla expandată face parte din categoria materialelor subțiri cu proprietăți de rezistență remarcabile. Aceasta se obține mărind suprafața unei plăci de tablă originale prin crearea unei rețele uniforme de găuri fără pierdere de material. Materialul astfel rezultat se clasifică prin includerea în categoria plăcilor.

2. Ponderea produselor fabricate prin tehnologia de expandare crește în industrie precum și în domeniul casnic. Se utilizează felurite forme și tipuri de astfel de materiale. în funcție de destinație. Toate materialele au însă în comun forma geometrică de table (plăci) sau benzi subțiri. Cea mai largă utilizare. între produsele realizate prin expandare, o au cele fabricate din materiale metalice. În raport cu scopul și locul utilizării, se folosesc materiale feroase (oțeluri carbon și oțeluri aliate) și neferoase (aluminiul, cuprul și aliajele acestora) cu proprietăți mecanice și tehnologice favorabile prelucrării la rece.

3. Indiferent de natura tablei expandate folosite (standard sau aplatizată) acestea se descriu, după procesul de expandare, printr-o caracteristică nouă comună, *"Aria deschiderii* [%], care reprezintă mărimea suprafețelor golurilor [%] față de suprafața inițială a tablei supuse expandării".

4. În mod surprinzător, informația care se găsește în publicațiile de specialitate citate în bibliografie, cât și cea publicată pe internet, nu oferă date asupra caracteristicilor de rezistență mecanică a tablelor expandate. Aceasta cu atât mai mult cu cât asemenea date sunt absolut necesare în cazurile în care tabla expandată urmează a fi utilizată la fabricarea unor produse cărora li se impun condiții de rezistență.

5. Procesul de fabricare a tablei expandate este progresiv, prin prelucrarea succesivă a unei fâșii înguste de lățime constantă, așezată transversal în raport cu direcția de avans a semifabricatului tablei laminate supuse prelucrării. Din fâșiile învecinate vor rezulta un anumit număr de celule de expandare egal distanțate între ele, celule ce dispun de câte un gol de formă definită. Acest proces tehnologic de realizcare a golului, numit expandare, necesită mașini speciale.

6. Pentru realizarea tablei expandate se așează semifabricatul (tabla sau banda) pe masa mașinii, între ghidaje. Semifabricatul se deplasează până când intră între cuțitele mașinii, după care se fixează cu ajutorul unei traverse acționată de cilindri hidraulici.

Mișcarea berbecului se realizează ciclic pe verticală. Un ciclu complet al mișcărilor acestuia fiind compus din:

- cursa activă de coborâre, care cuprinde;

- o fază de apropiere față de semifabricat;

- o fază de deformare a semifabricatului;

- cursa de întoarcere, de ridicare.

La coborârea berbecului mașinii, cuțitele acționează transversal asupra semifabricatului.

După terminarea fazei de deformare a cursei active (punctul mort inferior), berbecul execută cursa de întoarcere până în punctul mort superior. În această perioadă se realizează defixarea semifabricatului și i se imprimă acestuia mișcarea de avans longitudinal pe o distanță egală cu distanța dintre două rânduri succesive de crestări.

După ce s-a terminat avansul longitudinal al semifabricatului, acesta se fixează din nou și se execută deplasarea transversală a cuțitului superior pe o distanță egală cu jumătatea lungimii crestăturii plus jumătatea distanței dintre două crestături alăturate ale tablei expandate.

II. Cu privire la analiza procesului de expandare

1. Profilul tablei expandate este de grătar, rezultat în urma unor crestări combinate cu îndoirea și întinderea materialului semifabricatului.

2. Descrierea procesului de crestare din § 2.1 îl arată ca un caz particular al ștanțării.

3. Îndoirea semifabricatului presupune tensionarea și modificarea lungimii straturilor de material din zona îndoirii. Astfel, după îndoire, în funcție de lungime, se constată că straturile de material situate spre exteriorul părții îndoite se întind în direcție longitudinală, producând alungirea materialului, iar straturile de material dinspre interiorul părții îndoite se scurtează, producând compresiunea materialului. Alungirea și comprimarea straturilor de material sunt descrise. în funcție de coeficientul de poziție al fibrei neutre K, prin relația (2.4).

4. În literatura de specialitate citată în bibliografie, valorile coeficientul de poziție al fibrei neutre K sunt date ca valori determinate experimental. Noi am fost interesați de studiul variației acestui coeficient. Am făcut aceasta interpolând datele experimentale prin metoda

polinomială de tip Lagrange, pe un interval care a fost ales convenabil în funcție de domeniul de interes. Metoda de lucru oferă posibilitatea transpunerii studiului în contexte diferite, furnizând de fiecare dată informații utile asupra dinamicii coeficientului de poziție.

5. Relația (2.8) oferă modalitatea de calcul a deformației relative a materialului supus prelucrării în funcție de elementele de lungime, din expresia matematică generală a deformației relative ε , și elementele de lungime ale semifabricatului ce se alungește.

6. Tensiunea de forfecare, dezvoltată în timpul procesului de crestare a semifabricatului, se poate calcula prin relația (2.13), întâlnită sub diferite forme în literatura de specialitate citată. Am studiat și tensiunea de forfecare din punctul de vedere al dinamicii sale, având în vedere doi parametri variabili în timp: adâncimea de pătrundere a muchiei tăietoare a sculei \mathbf{x} și jocul dintre cuțite \mathbf{j} . Graficul tensiunii reale de forfecare (2.13) dezvăluie că o adâncime de pătrundere x mică a muchiei cuțitului superior în semifabricat creează o tensiune reală de forfecare (τ_{real}) de valori mici, iar creșterea adâncimii de pătrundere a muchiei cuțitului x determină și creșterea lui τ_{real} .

Modificarea jocului dintre cuțite j induce variația tensiunii reale de forfecare τ_{real} astfel:

- valori mici ale jocului dintre cuțite j, determină valori mari ale tensiunii reale de forfecare τ_{real} ;

- odată cu creșterea jocului dintre cuțite j, valoarea tensiunii reale de forfecare τ_{real} are o descreștere lentă.

În cazul oricărui proces de tăiere, jocul dintre cuțite j poate crește până la o valoare maximă, la care valoarea tensiunii reale de forfecare τ_{real} este mai mare sau egală cu valoarea tensiunii de forfecare a materialului.

7. Însumarea forțelor necesare pentru crestare, alungire și îndoire a materialului semifabricatului conduce la determinarea forței de tăiere din timpul procesului de expandare. Calculul forței de tăiere se face prin relația (2.38), valabilă pentru forma cuțitului superior din fig. 1.24 a. Aceasta este o relație de bază pentru forțele de tăiere ale cuțitelor superioare ce au profilele prezentate în fig. 1.24 b și c. Forțele de tăiere necesare pentru realizarea expandării cu ajutorul cuțitelor superioare profilate, prezentate în fig. 1.24 b și c, sunt determinate ținându-se cont de cele două etape ale tăierii (etapa inițială și etapa caracteristică).

Studiul forței de tăiere, pe partea semirotundă a cuțitului superior ce are forma frontală a dintelui prezentată în fig. 2.29, s-a făcut pentru cele două etape ale tăierii în funcție de variația unghiului de înclinare momentan ϕ' pe care-l face tangenta la partea semirotundă a tăișului cu orizontala.

8. Determinarea formulei de calcul a forței de tăiere (2.38), a făcut posibil studiul maximului posibil pentru unghiul dintre flancurile ce formează dintele cuțitului superior, în funcție de alungirea relativă la rupere.

9. Pe baza relațiilor de calcul ale forțelor din procesul de expandare s-au determinat, pentru aceleași condiții ca și forțele de tăiere, lucrul mecanic, puterea utilă și puterea medie pentru fiecare tip de cuțit.

10. Metodologia de deducere a tuturor formulelor de calcul și studiul dinamicii mărimilor avute în vedere în condiții date poate fi utilizată și în alte contexte (alte forme ale cuțitului etc.). Acest tip de investigație oferă informații de amănunt deosebit de utile, descriind în mod rafinat procesul de fabricație al tablelor expandate.

III. Cu privire la caracteristicile tehnice și tehnologice ale tablei expandate

1. Modelarea matricială a rețelei de crestături din fig. 3.2, se poate face atribuind fiecărei crestături valoarea 1 și fiecărui spațiu plin dintre două crestături alăturate de pe același rând de crestături valoarea 0. Astfel, rețeaua de crestături se poate scrie ca o matrice ce are m linii și n coloane. În acest caz matricea va avea toate elementele egale cu 1 sau 0 în alternanță pe orizontală, cu excepția primei și a ultimei coloane, în care se

observă alternanța valorilor 1. $\frac{1}{2}$ sau o altă valoare fracționară apărută datorită limitării structurii

datorită limitării structurii.

2. Observația că tabla, obținută printr-un proces de expandare cu un cuțit superior de forma celui prezentat în fig. 1.24a, este formată din suprafețe plane racordate între ele prin suprafețe conice de directoare parabolice, ne conduce la descrierea geometrică a rețelei de crestături.

O placă de tablă expandată este formată din trei tipuri de suprafețe plane: una paralelă cu planul xOy, iar celelalte două având normalele depinzând de distanța dintre două rânduri de crestături, de revenirea elastică, de lungimea cursei active de deformare și de distanța dintre două crestături alăturate de pe aceeași linie de crestare. Suprafața conică este tangentă la planul normal al puntiței dintre două rânduri de crestături, prin curbarea căreia rezultă. De asemenea, suprafața conică este tangentă la suprafețele plane, pe care le îmbină, de-a lungul generatoarei de intersecție dintre ea și aceste plane.

Aceste condiții ne-au permis efectuarea descrierii analitice a structurii. Această descriere este utilă pentru determinarea proprietăților metrice ale structurii și furnizează aparatul matematic necesar rezolvării unor probleme de optimizare de formă, care pot fi necesare în urma unor restricții de formă, de material sau de resurse financiare.

Studiul analitic al structurii de tablă expandată s-a făcut având în vedere tabla expandată standard, dar constituie un model ușor de transpus pentru alte tipuri de table expandate.

3. Măsurătorile au arătat că aplatizarea înseamnă, din punct de vedere geometric, o izometrie la nivelul structurii metalice, modificările metrice fiind prezente doar la nivelul golurilor. Aceste modificări depind de caracteristicile de material ale semifabricatului.

4. Cercetarea structurii de tablă expandată, din punct de vedere analitic și metric, oferă domeniile de definiție ale unor funcții necesare rezolvării de probleme de optimizare de formă, utile în minimizarea costurilor de producție și a consumurilor materiale. Metodologia folosită aici pentru tabla expandată standard poate fi transpusă prin analogie la alte tipuri de expandări.

5. Determinarea, din punctul de vedere al rezistenței tablei expandate, a caracteristicilor constructive ale cuțitului (unghiul de degajare γ și unghiul de poziție φ), s-a făcut pornind de la condiția de rezistență a puntiței dintre două rânduri de crestături s, presupunând că tabla expandată va fi utilizată ca element de rezistență, condiție de utilizare cea mai defavorabilă.

Studiile efectuate pentru determinarea celor două unghiuri arată că:

- Valoarea unghiului γ depinde de:

- proprietățile fizico-mecanice ale materialului, prin tensiunea σ_i ;

- caracteristicile materialului, prin grosimea g și revenirea elastică R;

- caracteristicile de lucru, prin valoarea puntiței dintre două rânduri de crestături s și lungimea cursei pe care o execută muchia sculei în decursul procesului de expandare l_{cd} .

- Valoarea unghiului φ depinde de:

- proprietățile fizico-mecanice ale materialului prin tensiunea σ_i ;

- caracteristicile materialului, prin grosimea g și revenirea elastică R;

- caracteristicile de lucru, prin valoarea lungimii crestăturii l_{cr} și lungimea cursei pe care o execută muchia sculei în decursul procesului de expandare l_{cd} .

Prin compararea expresiei (3.60) a unghiului de poziție φ cu expresia (3.52) a unghiului de degajare γ , constatăm că ambele unghiuri depind de proprietățile fizico-mecanice ale materialului, de caracteristicile acestuia precum și de caracteristicile de lucru.

Caracteristicile de lucru, care diferă în relațiile de calcul a celor două unghiuri sunt:

BUPT

- valoarea puntiței dintre două rânduri de crestături s în relația de calcul a unghiului de degajare γ;
- lungimea crestăturii l_{cr} în relația de calcul a unghiului de poziție φ .

6. Tablele expandate standard au ca dimensiuni principale ale golului înălțimea C și lungimea D, care sunt prezentate în fig. 1.4. Dimensiunea C (înălțimea golului) este influențată de parametrii de lucru ai mașinii de expandat, prin lungimea cursei active de deformație l_{cd} , precum și de caracteristicile materialului, prin revenirea elastică R.

7. Studiul analitic al golului a revelat forma de romb curbiliniu a unei celule, având două laturi vecine drepte, iar celelalte două laturi în formă de arc de parabolă.

8. Descrierea metrică a unei celule oferă aparatul matematic ce constituie premisele unui studiu de defectologie. Cazul ruperii la solicitare se obține ca o situație limită și se poate determina rezolvând o problemă de extrem a funcțiilor care reprezintă dimensiunile formei celulei.

9. Limitele tehnologice ale procesului de expandare a tablelor, determină domeniul în care acest proces de deformare poate avea loc, fără a se produce ruperea materialului supus deformării, existând două aspecte tehnologice, care determină aceste limite și anume:

- aspecte legate de efectuarea crestărilor;

- aspecte legate de deformarea prin alungire a materialului supus prelucrării.

10. Parametrii tablei expandate sunt s, p și l_{cr} , reprezentând și parametrii tehnologici ai procesului de expandare.

11. Vom numi grad de expandare, notându-l cu ε_{e} , creșterea ariei suprafeței expandate în raport cu cea a suprafeței de dinaintea expandării, având expresia dată de relația (3.80).

Raportarea gradului de expandare la parametrii tehnologici ai procesului de expandare ne conduce la relația de calcul a acestuia (3.92). Se observă că gradul de expandare ε_e a tablei variază în funcție de raportul $\frac{l_{cd}}{s}$, crescând o dată cu valoarea lungimii l_{cd} a cursei active de

deformare a cuțitului superior și cu micșorarea distanței dintre rândurile de goluri s (avansul semifabricatului).

12. Am notat cu K_m constanta de material dată de relația (3.95), care a permis calcularea acestui coeficient pentru materialele utilizate la realizarea tablelor expandate, fiind trecute în tab. 3.5.

Gradul de expandare rezultat în urma introducerii constantei de material K_m , a distanței dintre două crestături alăturate de pe aceeași linie de crestare p și a numărului de crestături de pe o linie de crestături n_{cr},

este dat de relația (3.101). Cu ajutorul acesteia am realizat, în tab. 3.6, studiul grafic al evoluției gradului de expandare, pentru diferite valori ale lățimii B a semifabricatului și a numărului de crestături de pe aceeași linie de crestare n_{cr} .

In urma studierii tab. 3.6, se constată că, la o aceeași valoare a lățimii B a tablei, gradul de expandare ε_e scade odată cu creșterea numărului de crestături de pe aceeași linie de crestare n_{cr} . Se observă că aceste grafice indică valori mari ale gradului de expandare, pentru valori mici ale distanței dintre două linii de crestare succesive s și ale distanței dintre două crestături de pe aceeași linie de crestare p. Graficele sunt pânze ce au o alură parabolică, având cea mai mare netezime orizontală a suprafeței pânzei situată în apropierea valorii spre care tinde gradul de expandare, este $\varepsilon_e = 1$, pentru valorile lui s și p mari.

Gradul maxim de expandare, este determinat de:

- valorile minime ale distanței dintre două linii de crestare succesive s;

- valorile minime ale distanței dintre două crestături de pe aceeași linie de crestare p;

- numărul mic de crestături de pe aceeași linie de crestare n_{cr}.

13. Pentru determinarea pe cale grafică a gradului de expandare. prin studierea lucrărilor trecute în bibliografie, am realizat nomograma gradului de expandare dată în fig. 3.15. Studiul nomografic vine să regăsească, pe o altă care, proprietățile descrise mai sus.

IV. Cu privire la cercetările experimentale

1. Trei forme ale cuțitului superior profilat, prezentate în fig. 4.4, constituie materialul pe care am făcut studiile pentru determinarea forțelor din procesul de expandare, pe instalația din fig. 4.1. Forțele totale de tăiere sunt determinate pentru diferite materiale ale semifabricatului și pentru diferite valori ale pasului s dintre două rânduri de crestături alăturate. Lățimea semifabricatului este aleasă astfel încât, prin deplasarea în plan lateral a acestuia, să nu depășească lungimea cuțitului inferior, deoarece, la determinările experimentale pe instalația prezentată în fig. 4.1, atât cuțitul superior cât și cel inferior sunt montate fixe.

2. Analiza variației forței în funcție de deplasare, pentru diferitele valori ale distanțelor dintre rândurile de crestături (s), pentru oțel și aluminiu, ne-a dezvăluit că odată cu scăderea distanței s, valoarea forței scade, ceea ce se explică prin scăderea secțiunii transversale a puntiței dintre două rânduri de crestături alăturate.

3. Pentru formele cuțitului superior, prezentate în fig. 4.4 a și b, valorile forțelor sunt continuu crescătoare, până la o valoare la care se

mențin aproximativ constante. În schimb, în cazul utilizării cuțitului superior profilat, prezentat în fig. 4.4 c, analiza graficelor din fig. 4.8 și fig. 4.11 arată că forța nu este continuu crescătoare.

4. La tăierea pe porțiunea de tăiș semirotundă, pentru cazul expandării cu cuțitul superior profilat prezentat în fig. 4.4 c, variația forței este crescătoare până la o valoare aproximativ 0,4 din grosimea g a semifabricatului, după care scade brusc, urmând să crească din nou, ceea ce corespunde tăierii în decursul etapei inițiale.

5. Analizând în continuare graficele din fig. 4.8 și fig. 4.11 se constată o a doua creștere bruscă a valorilor forțelor. la o cursă a deplasării cuțitului superior de aproximativ 7 mm, ceea ce corespunde razei părții semirotunde a profilului cuțitului superior. Această creștere se datorează începutului tăierii pe partea plană orizontală a profilului cuțitului superior.

6. Determinările experimentale, efectuate asupra elementului de tablă plană neexpandată, urmate de compararea cu rezultatele determinate teoretic pentru o placă plană neexpandată, în aceleași condiții de constrângeri și de încărcare (v. fig. 4.14), dezvăluie o comportare liniară a materialului, atunci când acesta se comportă elastic sau plastic. Între fazele elastice și plastice apare o fază în care materialul se comportă elasto-plastic, această evoluție fiind neliniară.

În fig. 4.14, curba determinată teoretic are o variație liniară iar curba determinată cu valorile experimentale are o variație oarecare.

7. Comportarea la solicitarea de apăsare centrică a plăcilor circulare din tablă expandată, încastrate pe contur, este practic asemănătoare cu cea a plăcilor plane neexpandate, ceea ce rezultă din analiza alurilor curbelor prezentate în fig. 4.14 și fig. 4.15, cu mențiunea că variația săgeții w este influențată de grosimea tablei (cu cât grosimea tablei este mai mare cu atât săgeata este mai mică) și de lungimea crestăturii (cu cât lungimea crestăturii este mai mare cu atât săgeata este mai mare).

8. Creșterea numărului de fire (numărul de puntițe dintre rândurile de crestături) atrage după sine o creștere a forței, pentru aceeași valoare a deplasării (deformație).

9. Studiul alungirii materialului semifabricatului în timpul expandării, s-a făcut pe un element considerat ca fiind puntița dintre 2 rânduri de crestături care se alungește, pe suprafața cărora au fost fixați relativ simetric 5 traductori electrotensometrici rezistivi (TER), pentru a urmări fidel deformațiile. Aplicarea forței se face cu un poanson tip "dinte - cuțit superior" ce are unghiul $\gamma = 0^{\circ}$ și $\gamma = 15^{\circ}$. În urma analizei valorilor rezultate ca urmare a aplicării forței cu poansonul tip "dinte cuțit superior", ce are unghiul $\gamma = 0^{\circ}$ (tab. 4.10) se constată următoarele:

- zonele în care sunt fixați traductorii 1, 2, 3 și 4 se alungesc;

- zona în care este fixat traductorul 5 se comprimă;

- valorile tensiunilor date de traductorii 1 și 3 sunt aproximativ egale între ele, dar și valorile tensiunilor date de traductorii 2 și 4 sunt aproximativ egale între ele, datorită simetriei montării traductorilor față de poziția de aplicare a forței;

- valorile tensiunilor date de traductorii 1 și 3 sunt mai mici decât cele date de traductorii 2 și 4.

Ca urmare a diferențelor de valori ale tensiunilor date de cele două perechi de traductoare, zonele în care sunt fixați traductorii 1 și 3 au o alungire mai mică în comparație cu alungirea zonei în care sunt fixați traductorii 2 și 4. Alungirile diferite se datorează alinierii diferite a traductorilor față de poziția de aplicare a forței.

10. Tensiunile și deformațiile, care apar în cazul utilizării poasonului cu unghiul de degajare $\gamma = 15^{\circ}$, sunt cu aproximativ 50% mai .mici decât valorile tensiunilor și deformațiilor determinate cu poason ce are unghiul de degajare $\gamma = 0^{\circ}$.

11. Studiul tensiunilor, bazat pe elemente finite, pentru placa plană considerată ca fiind puntița dintre două rânduri de crestături, pe suprafața căreia s-au montat 5 traductori electrotensometrici rezistivi (placa cu ajutorul căreia am realizat studiul alungirii), conduce la concluzia că diferențele de valori nu depăşesc 10%.

12. Aproximarea deformației relative, în funcție de forța aplicată, prin funcții spline polinomiale de grad I, pentru TER 1, prezintă în fig. 4.28, variația funcției de aproximare, care urmează cu acuratețe variația deformației relative determinată experimental. Pe domeniul de variație a forței între 25 și 50, variația funcției se abate de la variația determinată experimental, deoarece funcția este liniară, iar datele obținute experimental arată evoluția neliniară a acestei mărimi.

13. Studiul variației deformațiilor relative, prezentat în fig. 4.29, dezvăluie suprapunerea variațiilor funcțiilor deformațiilor relative în TER 1 și TER 3, datorită simetriei de fixare a celor două traductoare față de poziția de aplicare a forței. Aceasta rezultă și din analiza fig. 4.27. Variația funcțiilor de deformație, date de TER 2 și TER 5, sunt însă diferite, datorită dispunerii nesimetrice a acestor traductori față de poziția de aplicare a forței. De asemenea, funcția deformației relative $\varepsilon 4(f)$ a traductorului TER 4, are variația identică cu funcția $\varepsilon 2(f)$ a traductorului TER 2, datorită simetriei acestora față de punctul de aplicare a forței.

14. Comparând variația tensiunii din fig. 4.30 cu variația deformației relative din fig. 4.28 se observă că ele au aceeași alură, datorită faptului că tensiunile sunt rezultate din deformații.

15. Studiul revenirii elastice s-a făcut pe epruvetele cu care s-au determinat deformațiile și tensiunile apărute în timpul alungirii materialului semifabricatului supus procesului de expandare. Revenirea

elastică este rezultatul deplasării înregistrate, atât timp cât traductorul de forță din instalație sesizează prezența unei forțe exercitate de către epruvetă. În urma acestei înregistrări, s-a determinat o revenire elastică de aproximativ 2 mm.

16. Tensiunile și deformațiile ce apar în tabla expandată, prezentată în fig. 4.31, în diversele condiții de încărcare și rezemare, indică solicitările la care sunt supuse părțile din tabla expandată în dreptul cărora sunt fixați traductorii electrotensometrici rezistivi.

17. Analizând evoluția grafică a tensiunilor în funcție de deplasare, în cazul simplei rezemări a epruvetelor de tablă expandată (fig. 4.32), se constată că zona în care este fixat TER 1 se comprimă, iar zonele în care sunt fixați TER 2, TER3, TER 4 și TER 5 se alungesc.

18. Zona din dreptul TER 2 are deformări mai mici decât zonele din dreptul TER 3, TER 4 și TER 5, ce rezultă din analiza tab. 4.13, tab. 4.14, tab. 4.15 și tab. 4.16, și a fig. 4.33, fig. 4.34, fig. 4.35 și fig. 4.36, deoarece la o aceeași valoare a deplasării în jos a poasonului, prin intermediul căruia se exercită forța, valorile tensiunilor sunt mult mai mici la o aceeași deplasare.

19. Analizând variația tensiunilor în funcție de deplasare pentru epruvete, ce au o aceeași grosime dar distanțele dintre rândurile de goluri diferite, se constată că valorile tensiunilor la aceeași deplasare cresc odată cu creșterea valorii distanței dintre goluri. Dacă epruvetele au aceeași valoare a distanței dintre rândurile de goluri dar grosimi diferite se constată că valorile tensiunilor cresc odată cu creșterea grosimii.

20. În cazul încastrării epruvetei la capătul de lățime 1 înspre care este montat TER 5 și aplicarea forței la celălalt capăt de lățime l înspre care sunt montați TER 4 și TER 3 (fig. 4.37), se constată că toate zonele în care sunt fixați traductorii se alungesc.

21. Analizând variația tensiunii în funcție de deplasare pentru cei cinci TER, din tab. 4.17, tab. 4.18, tab. 4.19 și tab. 4.20, precum și din fig. 4.38, fig. 4.39, fig. 4.40 și fig. 4.41, se constată că tensiunile date de TER 1 și TER 2, respectiv TER 3 și TER 4 au valori relativ identice, iar variația tensiunii este mult mai mare în zona lui TER 5.

Variația relativ identică a tensiunii pentru TER 1 și TER 2, respectiv pentru TER 3 și TER 4 se datorează poziției locurilor de pe tabla expandată în care sunt montați acești traductorii.

22. Pentru o anumită valoare a deplasării valorile tensiunilor pentru TER 1 și TER 2 sunt mai mari decât valorile tensiunilor pentru TER 3 și TER 4, iar valoarea tensiunii pentru TER 5 este mult mai mare.

23. În cazul încastrării, pe întreaga lățime l, la ambele capete a epruvetei de tablă expandată și acțiunea forței în dreptul traductorilor TER 1 și TER 2 (fig. 4.42), se constată analizând tab. 4.21, tab. 4.22, tab. 4.23 și tab. 4.24, precum și fig. 4.43, fig. 4.44, fig. 4.45 și fig. 4.46 că

zonele în care sunt montați TER 2, TER 3, TER 4 și TER 5 se alungesc, iar zona în care este montat TER 1 are o variație de comprimare urmată de o alungire, datorită deformării în prealabil a părții de material deformat în urma expandării.

24. Zona epruvetei în dreptul căreia este montat TER 2 are la început o variație crescătoare lentă a tensiunii, aproximativ liniară, după care are o variație crescătoare puternică pe un interval foarte scurt al deplasării.

25. Zonele din dreptul TER 3, TER 4 și TER 5 au la început și ele o variație crescătoare aproximativ liniară, dar mai pronunțată decât a zonei în care este montat TER 2, iar spre sfârșit, variația tensiunilor este mai lentă pe același intervalul pe care tensiunea este pronunțată din zona în care este montat TER 2.

26. Studiind și analizând modurile de încărcare și rezemare a tablelor expandate studiate, se poate afirma că, în cazul acționării cu forțe pe zone ale tablei deformate prin expandare, pentru cazul simplei rezemări și pentru cazul de încastrare la capete al epruvetei de tablă expandată, acestea se comportă mai elastic și au o rezistență la rupere mai bună decât tabla plană neexpandată, datorită deformărilor în prealabil a zonelor deformate prin expandare.

27. Creșterile sau descreșterile unor mărimi în raport cu altele sunt, în general, neliniare, depinzând și de caracteristici de rezistență și elasticitate ale materialului supus prelucrării. Dar monotonia comportării rămâne o constantă a procesului de expandare. De asemenea, sunt de reținut, drept caracteristice, simetriile constatate în raport cu punctul în care acționează solicitarea. Experimentele efectuate au pus în evidență aceste proprietăți.

5.2 Contribuții personale

1. Datorită faptului că, în literatura de specialitate citată în bibliografie, valorile coeficientul de poziție al fibrei neutre K sunt date ca valori determinate experimental, am considerat necesară determinarea unui mod de descriere a variației acestui coeficient. Interpolarea de tip Lagrange ne-a furnizat suportul matematic al acestui demers.

2. Relația (2.8), reprezentând deformației relative a materialului ce se alungește în timpul procesului de expandare, a fost determinată în urma corelării elementelor de lungime din expresia matematică generală a deformației relative ε , cu elementele de lungime ale semifabricatului ce se alungește. 3. În timpul procesului de crestare a semifabricatului, se dezvoltă o tensiune de forfecare, a cărei expresie matematică este dată de (2.13), întâlnită în literatura de specialitate citată. Studiul static prezent în bibliografie este completat în prezenta teză prin analiza dinamicii tensiunii de forfecare în funcție de doi parametri variabili în timp: adâncimea de pătrundere a muchiei tăietoare a sculei x și jocul dintre cuțite j.

4. Ținând cont de cele două etape ale tăierii (etapa inițială și etapa caracteristică), pentru cuțitele superioare profilate din fig. 1.24 b și c, am determinat forțele de tăiere necesare pentru realizarea expandării pe fiecare etapă în parte.

5. Studiul forței de tăiere, pe partea semirotundă a cuțitului superior, ce are forma frontală a dintelui prezentată în fig. 2.29, l-am făcut pentru cele două etape ale tăierii, în funcție de variația unghiului de înclinare momentan φ' pe care-l face tangenta la partea semirotundă a tăişului cu orizontala.

6. Am numit grad de expandare și l-am vom notat cu ε_e - creșterea ariei suprafeței expandate în raport cu cea a suprafeței de dinaintea expandării. Gradul de expandare se calculează prin relația (3.80). Raportarea gradului de expandare la parametrii tehnologici ai procesului de expandare m-a condus la relația de calcul a acestuia (3.92). Aceasta arată că gradul de expandare ε_e a tablei variază în funcție de raportul led

 $\frac{l_{cd}}{s}$, crescând odată cu valoarea lungimii l_{cd} a cursei active de deformare

a cuțitului superior și cu micșorarea distanței dintre rândurile de goluri s (avansul semifabricatului).

7. Am notat cu K_m constanta de material dată de relația (3.95), care a permis calcularea acestui coeficient pentru materialele utilizate la realizarea tablelor expandate, fiind trecute în tab. 3.5.

8. Cu ajutorul relației (3.101) am realizat, în tab. 3.6, studiul dinamicii gradului de expandare, pentru diferite valori ale lățimii B a semifabricatului și a numărului de crestături de pe aceeași linie de crestare n_{cr} .

9. Pentru determinarea, pe cale grafică, a gradului de expandare, am realizat nomograma gradului de expandare dată în fig. 3.15.

10. Am realizat descrierea matriceală, descrierea analitică și descrierea metrică a rețelei de crestături, necesare în rezolvarea problemelor de optimizare de formă și de proces tehnologic.

11. Studiile pentru determinarea forțelor din procesul de expandare s-au făcut pe o instalație concepută și realizată de autorul lucrării de față (v. fig. 4.1). Au fost avute în vedere trei forme ale cuțitului superior profilat, prezentate în fig. 4.4, pentru diferite materiale ale semifabricatului și pentru diferite valori ale pasului s dintre două rânduri de crestături alăturate.

12. Am studiat alungirea materialului semifabricatului în timpul expandării, prin considerarea unor elemente ca fiind puntițe dintre 2 rânduri de crestături care se alungesc, pe suprafața cărora au fost fixați relativ simetric 5 traductori electrotensometrici rezistivi (TER), pentru a urmări fidel deformațiile. Aplicarea forței am realizat-o cu un poanson tip "Dinte - cuțit superior" ce are unghiul $\gamma = 0^0$ și $\gamma = 15^0$.

13. Am realizat studiul cu element finit al tensiunilor, pentru placa plană considerată ca fiind puntița dintre două rânduri de crestături pe suprafața căreia am montat 5 traductori electrotensometrici rezistivi (placa cu ajutorul căreia am realizat studiul alungirii).

14. Am studiat variația deformației relative, în funcție de forța aplicată, prin aproximarea acesteia cu funcții spline polinomiale de grad I.

15. Am realizat studiul revenirii elastice pentru epruvetele cu care s-au determinat deformațiile și tensiunile care apar în timpul alungirii materialului semifabricatului supus procesului de expandare.

16. Am realizat determinarea tensiunilor și deformațiilor ce apar în tabla expandată, prezentată în fig. 4.31, în diversele condiții de încărcare și rezemare.

17. Am studiat dinamica mărimilor determinate experimental prin aproximarea acestora cu ajutorul unor curbe Bézier cubice sau de gradul patru. Am urmărit acuratețea procesului de aproximație prin compararea cu rezultatele experimentale. Alura curbelor obținute oferă informații deosebit de rafinate asupra variației mărimilor avute în vedere.

18. Am dezvoltat o metodologie de studiu. pentru cazul tablei expandate standard, care poate fi transpusă cu ușurință la alte forme de tablă expandată.

Bibliografie

1	Bal L., Rado F.	Lecții de nomografie. Ed. Tehnică, București, 1956
2	Bernstein S.N.	Demonstration du teoreme de Weierstrass fondee sur le calcul des probabilites. Harkov, Soobsci. Matem. ob – va, (2) 13 (1912), 1-20
3	Bézier P.	Numerical control mathematics and applications, Wiley, New York, 1972
4	Buzdugan Gh.	Rezistența materialelor. Ed. Tehnică, București, 1980
5	Ciocîrdia C.	Bazele cercetării experimentale în tehnologia construcțiilor de mașini, E.D.P. București, 1979
6	Cira O.	Lectii de Mathcad, Ed. Albastra, Cluj Napoca, 2001
7	Cirilo A.,	Tehnologia matrițării și ștanțării la rece. Editura Didactică
	Picoş C.,	și Pedagogică, București, 1966
	Bohosievici	
	C .	
8	Crețu T.,	Fizică. Editura Didactică și Pedagogică, București, 1982
	Preda A.,	
	Ghizdeanu C.	
9	Cristescu G.,	Geometrie analitica si diferentiala. Univ. "Aurel Vlaicu"
		din Arad, Arad, 1991
10	Cristescu, G.,	Non – conected convexities and applicatios, Kluwer
	Lupsa, L.	Academic Publishers, Dordrecht/Boston/london, 2002
11	Gârbea D.	Analiza cu element finit. Ed. Tehnică, București, 1990
12	Iliescu C	Tehnologia stantarii si matriterii la rece – indrumar
		pentru lucrari practice, Universitatea din Brasov, 1973
13	Iliescu C s.a.	Cercetari privind arcuirea pieselor in V obtinute din tabla prin indoire libera, În constructia de masini nr. 6-7, 1966
14	Iliescu C.	<i>Tehnologia ștanțării și matrițării la rece</i> . Ed. Didactică și pedagogică, București, 1977
15	Micula Gh.,	Functii spline si aplicatii, Ed. Tehnica, Bucuresti, 1978
16	Mocanu	Analiza experimentală a tensiunilor. Ed. Tehnică,
	R.D., s.a.,	București, 1980
17	Mocanu	Utilizarea tensometriei electrice la determinarea
	R.D., s.a.,	<i>eforturilor unitare</i> . Ed. Institutului Central de Documentare Tehnică, București, 1967
18	Munteanu I.	, Presarea la rece. Ed. Tehnică, București, 1969
	Olariu V.,	
	Başca S.	
19	Munteanu,	Algoritmi geometrici 2D si aplicatii in C.A.G.D., Ed. Univ.

20	M. I. Natanson,	"Alexandru Ioan Cuza", Ias;i, 2005 <i>Teoria constructiva a functiilor</i> . Moscova – Leningrad,
	I.P.	1949
21	Oproiu V.	Geometria computationala a curbelor si suprafetelor. Ed. Universitatii "Alexandru Ioan Cuza", Iasi, 2003
22	Petrisor E.	<i>Modelare geometrica algoritmica</i> , Ed. Tehnica, Bucuresti, 2001
23	Ponomariov S.D., ş.a.	Calculul de rezistență în construcția de mașini. Vol. 3, Ed. Tehnică, București, 1964
24	Popoviciu T.	Despre cea mai buna aproximatie a fucntiilor continue prin polinoame, monografii matematice, III, Cluj, 1937
25	Rosinger St	Forta de taiere la foarfeci si stante cu muchii taietoare inclinate
26	Rosinger St	<i>Caracteristica fortei de taiere a stantelor cu muchii taietoare inclinate</i> , a XIII-a sesiune stiintifica a cadrelor didactice din Institutul politehnic galati din 30-31 mai 1997
27	Rosinger St.	Indrumator de proiectare pentru stantare la rece, Timisoara Institutul Politehnic, 1967
28	Rosinger Şt.	Tehnologia presării la rece. Litografia I.P., Timișoara, 1977
29	Rosinger Şt.	Procese și scule de presare la rece. Ed. Facla, Timișoara, 1987
30	Soren Meisner	Ovendinge Finn West, atsmitsleder/medikotekniker ENDOSKOPIAESNITTET H:S BISPEBJERG HOSPITAL juni 2000, Symposium
31	Sporea I.	<i>Tehnologia materialelor</i> . Vol. II, Litografia I. P., Timisoara, 1983
32	Sunwoo, H.	Matrix representation for multi-degree reduction of Bezier curves, Comp. Aided Geom. Des, 22 (2005), 261-273
33	Sympson A.	Endoskopisk behandling af KOLO-REKTAL abstruktion med selvekspanderende metal endoprotese, 8 juni 200
34	Theocaris	Analiza experimentală a tensiunilor. Ed. Tehnică,
	P.S., s.a.,	București, 1976
35	Timoshenco S.P., Wojnowsky-	Teoria plăcilor plane și curbe. Ed. Tehnică, București, 1968
	W OHIOWSKY-	
36	WZgură Gh. Ciocîrdia C. Bude G.	, <i>Prelucrarea materialelor prin deformare la rece.</i> Ed. ,Tehnică, București, 1977

37	*****	MSC/NASTRAN for Windows Evaluation Kit Quick Start
20	*****	Guide. Gnid de utilizare
38	*****	<u>http://cid.uiosibiu.ro/facuitat/gaze/anul1/nou/rezinat/cap4.pdf</u>
39	*****	Catalog timbre tensometrice. Firma HMB
40	*****	Documentație de la SIMEROM S.A. Sibiu
41	*****	http://metal.elte.hu/~cseh/seminar_1997_okt/cyl_abrak.html
42	*****	http://cemsig.ceft.utt.ro/iszabo/fisiere/ZAT2003/prez_b_ZAT200 3.pdf
43	*****	www.me.gatech.edu/jianmin.gu/ASME%20Winter-99-TRS.pdf
44	*****	http://www.expandedmetalcompany.co.uk/general/glossary.php
45	*****	http://www.ifam.fhg.de/fhg/ifam/frameindex.html?/fhg/ifam/2801
τJ		/gus/foam/info/properties/daten_e.html
16	*****	http://www.manat.ump.adu/. klamaaki/Forming/shearing.html
40		http://www.inenet.unin.edu/~kiainecki/Forming/snearing.inini
		<u>http://www.menet.unn.edu/~kiamecki/Forming/maintormi</u>
47	* * * * * * *	
4/	*****	http://nsmwww.eng.ohiotate.edu/Cal_Punch_Opt_BHF_DD.pdf
48	*****	http://www.emcin.com/information/expanded_manual.pdf
49	****	http://www.marcospecialtysteel.com/
		http://www.marcospecialtysteel.com/expstainless.htm
		http://www.marcospecialtysteel.com/expaluminum.htm
		http://www.marcospecialtysteel.com/expcarbon.htm
50	*****	http://www.gratings-ez.com/gratings/0054415_0027937_1.html#
51	*****	http://www.mcnichols.com/products/expanded/stairtreads/em_stai
		rtreads2.htm#top
52	*****	http://www.metalmesh.com.au/html/expanded_metal.html
53	*****	http://amico-grating.com/catalog/exmet.pdf
		http://www.cemcosteel.com/CAD.asp
54	*****	http://www.hartellmachinery.com/Guarding%20Package%20Flier
54		ndf
55	*****	<u>.pur</u> http://www.geocities.com/catalinzaharia/index.html
56	*****	http://www.geoornes.com/catalinzanaria/index.num
50		http://www.altira.com.mx/applications.itinin
		http://www.anua.com/products.html
57	****	http://www.metrx.com/products.ntm
51	*****	http://warry.omios.online.com/
50 50	*****	http://www.amico-onnie.com/
39	*****	<u>nttp://www.me.umist.ac.uk/stai.pgs/mas/cam3/lecture4.pdi</u>
60	~~~~ ~	www.key-to-steel.com/viewArticle.asp/ID=43
61	*****	www.dgs-endoskopi.dk/endo_procedurer/sems/semsmanual.PDF
62	***	http://www.me.mtu.edu/~abdi/courses/ME404/notes.html
63	*****	http://www.newmetals.com/basket.htm
64	****	http://www.perf-plus.com/Products/prod3.htm
65	*****	www.newmetals.com/ basketdecomesh.htm

66	*****	www.foldingguard.com/pages/ s_locker_metal.htm
67	*****	www.dramex.com/
68	*****	www.acousticalsurfaces.com/acoust_ceilings/ square.htm?d=20
69	*****	www.newarkwire.com/fab.htm
70	*****	www.maneklalexports.com/English/
		SmallScale/ExpandMetal.htm
71	*****	http://www.aluminum-expanded-metal.com/aluminum-expanded-
		metal-mesh/specification.htm
72	*****	http://www.bergandi.com/pages/expanded.html
73	*****	http://www.china-wirenetting.com/wire-mesh/2-3expanded-
		metal-mesh-machine.htm
74	*****	www.rumford.com/insti.gif
75	*****	www.energyfor.com/ServicePMC.aspx
76	*****	www.chloride-technical.com/images/expandedbattery.gif
77	*****	http://www.china-wirenetting.com/wire-mesh-machines-
		1/expanded-metal-machine.htm
78	*****	www.bighambrothers.com/ prepmstr.htm
79	*****	amico-grating.com/exmet.htm
80	*****	www.acousticalsurfaces.com/acoust_ceilings/ square.htm?d=20
81	*****	www.mortonproducts.com/ page.cfm/1500
82	*****	www.morsemetalproducts.com/ specialt.htm
83	*****	http://www.expandedmetals.com/
		http://www.emcin.com/information/tolerances_aluminum.pdf
84	*****	http://www.expac.com/
85	*****	http://www.expac.com/Expanded Metal/Open Area Air Flow
		/open area air flow.html
86	*****	http://www.maneklalexports.com/English/SmallScale/ExpandMet
		al.htm
87	*****	http://www.mcnichols.com/products/expanded/stairtreads/index.h
		tml
88	*****	http://ajforsyth.ca/store/ProductList.asp?row=2&step=2&dept_id
		=18
89	*****	http://ajforsyth.ca/store/ProductList.asp?row=2&step=2&dept_id
		=180
90	*****	http://www.ajforsyth.ca/catalog/31.asp?row=1
91	*****	http://www.wxfangtai.com/htmls/en_equipment.htm
92	*****	http://www5.thomasregister.com/olc/directmetals/exptb13.htm
93	*****	http://www.metal-lath.com/foreword.html
94	*****	http://www.metal-lath.com/our_product.html
95	*****	http://www.metal-lath.com/our_product.html
96	*****	
		http://amico-grating.com/catalog/exmet/astm.pdf

97 *****	http://www5.thomasregister.com/olc/73421455/home.htm
	http://www5.thomasregister.com/olc/directmetals/exptb11.htm
	http://www5.thomasregister.com/olc/directmetals/exptbl3.htm
	http://www5.thomasregister.com/olc/directmetals/exptbl2.htm
	http://www5.thomasregister.com/olc/directmetals/exptbl4.htm
98 *****	http://www.metals-inc.com/prexpast.htm
	http://www.metals-inc.com/prexpacf.htm
	http://www.metals-inc.com/prexpana.htm
99 *****	http://www.iaica-alexandria.ro/produse/filtru-static.htm
100 *****	http://www.tech.plym.ac.uk/sme/mfrg315/redundant1.htm
101 *****	http://www.tech.plym.ac.uk/sme/desnotes/fail.htm
102 *****	http://www.tech.plym.ac.uk/sme/desnotes/desintro.htm
103 *****	http://www.aml-emco.net/expander-sam7.html
104 Jitaru L.,	Studiul stărilor de deformație și tensiune la tablele supuse
Copaci I.	procesului de expandare, Analele Univ. "Aurel Vlaicu" din
	Arad, 2002, pag. 99-105
105 Jitaru L.,	Influența calității tablelor expandate asupra formelor și
Sporea I.	dimensiunilor golurilor sau ariei deschiderii, Lucrările sesiunii
	naționale de comunicări științifice "Terra Dacia – România
	Mileniului Trei", Academia Forțelor Aeriene "Henri Coandă",
	Brașov, 4 – 6 mai 2006
106 Jitaru L.,	Considerații privind unele aspecte tehnologice care limitează
Sporea I.	procesul de expandare a tablelor metalice, Lucrările sesiunii
	naționale de comunicări științifice "Terra Dacia – România
	Mileniului Trei", Academia Forțelor Aeriene "Henri Coandă",
	Brașov, 4 – 6 mai 2006
107 Sporea I.,	Considerații privind influența dimensiunilor tablelor expandate
Jitaru L.,	și a formelor constructive din diferite materiale asupra ariei
Bordeiașu I.,	deschiderii, Lucrările sesiunii naționale de comunicări științifice
Sporea Iacob	"Terra Dacia – România Mileniului Trei", Academia Forțelor
	Aeriene "Henri Coandă", Brașov, 4 – 6 mai 2006
108 Cristescu G.,	Matric properties of an expanded metal plane structure, Annals
Jitaru L.	of the Oradea University – Fascicle o management and
	technological engineering, Volume V (XV), Oradea, 2006,
	pag. 199-2004
109 Jitaru L.,	Analitytical description of an expanded metal plane structure,
Cristescu G.	Annals of the Oradea University – Fascicle o management and
	technological engineering, Volume V (XV), Oradea, 2006,
	pag. 1081-1090
110 Jtaru L.,	
~ -	Studii și încercări experimentale în procesele de expandare a
Sporea I.	Studii și încercări experimentale în procesele de expandare a tablelor, Annals of the Oradea University – Fascicle o

Oradea, 2006, pag. 1091-1096

111 Jtaru L., Sporea I. Aspecte legate de procesul îndoirii tablelor supuse expandării, Annals of the Oradea University – Fascicle o management and technological engineering, Volume V (XV), Oradea, 2006, pag.1097-1102

Anexa 1

Tab. 1. 1 Dimensiunile tablei expandate din Al standard produsă de firma MARCO SPECIALTY STEEL, INC. [49]

%	65	60	78	76	69	68	85	79
mm	2,3622	2,4384	2,7686	3,2766	4,191	4,2926	3,2512	4,1148
inches	0,093	0,096	0,109	0,129	0,165	0,169	0,128	0,162
mm	1,2954	2,0574	1,2954	2,0574	2,0574	3,175	2,0574	3,175
inches	0,051	0.081	0,051	0,081	0,081	0,125	0,081	0,125
mm	23,8	23,8	44,45	42,672	42,672	42,672	63,5	63.5
inches	0,937	0,937	1,75	1,68	1,68	1,68	2,5	2,5
mm	9,525	9,525	20,625	19,05	19,05	17,45	30,15	30,15
inches	0.375	0,375	0,812	0,75	0,75	0,687	1,187	1,187
mm	30,48	30,48	50,8	50,8	50,8	50,8	76,2	76,2
inches	1.2	1,2	2	2	2	2	З	3
шш	12,7	12,7	23,444	23,444	23,444	23,444	33,782	33,782
inches	0,5	0,5	0,923	0,923	0,923	0,923	1,33	1,33

Tab. 1. 2 Dimensiunile tablei expandate din Al aplatizată produsă de firma MARCO SPECIALTY STEEL, INC. [49]

%	61	58	72	70	63	62	77	70
mm	2,6416	2,667	3,0988	3,6322	4,5974	4,7498	3,6322	4,5974
inches	0,104	0,105	0,122	0,143	0,181	0,187	0,143	0,181
шш	1.016	1,524	1,016	1,778	1,778	2,413	1,524	2,032
inches	0,04	0,06	0,04	0,07	0,07	0,095	0,06	0,08
mm	25,4	25,4	46,025	44,45	44,45	44,45	69,85	69,85
inches	1	1	1.812	1,75	1,75	1.75	2,75	2,75
mm	7.9248	7,9248	19,05	17,45	17,45	15,875	26,924	25,4
inches	0,312	0,312	0,75	0,687	0,687	0,625	1,06	1
mm	32,258	32.258	53.975	53,975	53,975	53,975	80.01	80,01
inches	1,27	1.27	2,125	2,125	2,125	2,125	3.15	3,15
mm	12,7	12,7	23,368	23,368	23,368	23,368	33,782	33,782
inches	0,5	0,5	0,92	0,92	0,92	0,92	1,33	1.33

Tab. 1. 3 Dimensiunile tablei expandate inox standard produsă de firma MARCO SPECIALTY STEEL, INC. [49]

		_								
%	77	70	58	89	85	78	67	89	86	75
mm	2,2098	2,2098	3,048	2,6924	2,6924	2,7432	4,0894	2,921	2,9464	3,937
inches	0,087	0,087	0,12	0.106	0,106	0,108	0,161	0,115	0,116	0,155
mm	1,27	1,5748	2,3622	1,27	15,748	2,3622	3,556	1,5748	2,3622	3,556
inches	0,05	0,062	0,093	0,05	0,62	0,093	0,14	0,062	0,093	0,14
mm	23,876	23,876	22,352	44,45	44,45	42,926	39,624	69,85	66,548	63,5
inches	0.94	0,94	0,88	1,75	1,75	1,69	1,56	2,75	2,62	2,5
mm	10,922	10,922	7,874	20,574	20,574	19,05	17,526	31,75	31,75	28,702
inches	0,43	0,43	0,31	0,81	0,81	0,75	0,69	1,25	1,25	1,13
mm	30,48	30,48	30,48	50,8	50,8	50,8	50,8	76,2	76,2	76,2
inches	1,2	1,2	1,2	2	2	2	2	3	ß	3
mm	12,7	12,7	12,7	23,368	23,368	23,368	23,368	33,782	33,782	33,782
inches	0,5	0,5	0,5	0,92	0,92	0,92	0,92	1,33	1,33	1,33

Tab. 1. 4 Dimensiunile tablei expandate inox aplatizate produsă de firma MARCO SPECIALTY STEEL, INC. [49]

1			_		_				r		<u> </u>
	%	68	09	56	<i>LL</i>	75	74	64	83	62	76
	шш	2,3622	2,3622	3,3528	2,9972	2,9972	3,048	4,064	3,1496	3,1496	4,191
	inches	0,093	0,093	0,132	0.118	0,118	0,12	0,16	0,124	0,124	0,165
	mm	10,16	1,27	2,032	1,016	1,27	1,778	3,0226	1,27	2,0066	3,0226
	inches	0,4	0,05	0,08	0,04	0,05	0,07	0,119	0,05	0,079	0,119
	mm	25,4	25,4	25,4	45,974	45,974	44,45	42,926	69,85	66,802	66,802
	inches	1	1	1	1,81	1,81	1,75	1,69	2,75	2,63	2,63
	mm	7,874	7,874	6,35	19,05	19,05	16,002	14,224	26,924	25,4	23,876
25.25	inches	0,31	0,31	0,25	0,75	0,75	0,63	0,56	1,06		0,94
	mm	31,75	31,75	31,75	53,34	53,34	53,34	53.34	81,28	81,28	81,28
	inches	1,25	1,25	1,25	2,1	2,1	2,1	2,1	3,2	3,2	3,2
	mm	12,7	12,7	12,7	23,368	23,368	23,368	23,368	33,782	33,782	33,782
	inches	0,5	0,5	0.5	0,92	0,92	0,92	0,92	1.33	1,33	1,33

Tab. 1. 5 Dimensiunile tablei expandate oțel carbon standard produsă de firma MCNICHOLS [87]

%	45	43	80	72	65	57	78	76	72	68	82	85	85	80	76	69
mm	1,8288	1,8288	1,8288	2,2352	2,2098	2,4384	2,5654	2,4384	3.6576	3,81	2,2098	2,7432	2,667	3,5052	3,6576	5,1562
inches	0,072	0,072	0,072	0,088	0,087	0,096	0,101	0,096	0,144	0,15	0,087	0.108	0,105	0,138	0,144	0,203
шш	0,9144	1,2192	0,9144	1,2192	1,524	2,286	1,524	2,286	2,286	3,4036	1,524	1,524	2,286	2,286	3,4036	4,9276
inches	0,036	0,048	0,036	0,048	0,06	0,09	0,06	0.09	0.09	0,134	0.06	0,06	0,09	0,09	0,134	0,194
mm	18,237	18,237	23,825	23,825	23,825	23,825	44,45	42,875	41,275	39,675	52,324	66,675	63,5	63,5	60,325	60,325
inches	0,718	0,718	0,938	0,938	0,938	0,938	1.75	1,688	1.625	1,562	2,06	2,625	2,5	2.5	2,375	2,375
mm	3,175	2,794	11,125	11,125	11,125	7,9248	20,65	19,05	19,05	17,475	23,825	31,75	30,175	30,175	28,575	28,194
inches	0,125	0,11	0,438	0,438	0,438	0,312	0,813	0,75	0,75	0,688	0,938	1,25	1,188	1,188	1,125	1,11
mm	25,4	25,4	30,48	30,48	30,48	30,48	50,8	50,8	50,8	50,8	60,96	76,2	76,2	76,2	76,2	76,2
inches	1	-	1,2	1,2	1,2	1.2	2	2	2	2	2,4	3	3	3	3	3
mm	6,35	6,35	12,7	12,7	12.7	12,7	23,444	23,444	23,444	23,444	25,4	33,782	33,782	33,782	33,782	33,782
inches	0,25	0,25	0,5	0,5	0,5	0,5	0,923	0,923	0,923	0,923	1	1,33	1,33	1,33	1,33	1,33

Tab.

1. 6 Dimensiunile tablei expandate din oțel carbon aplatizate produsă de firma MCNICHOLS [87]

1 33											
	inches	mm	inches	mm	inches	mm	inches	mm	inches	mm	%
	1,05	26,67	0,11	2,794	0,715	18,161	0,03	0,762	0,079	2,0066	35
_	1,05	26,67	0,118	2,9972	0,715	18,161	0,04	1,016	0,08	2,032	35
	1.25	31,75	0,375	9,525	1	25,4	0,029	0,7366	0,079	2,0066	65
	1,25	31,75	0,312	7,9248	1	25,4	0,039	0,9906	0,097	2,4638	60
	1,25	31,75	0,312	7,9248	1	25,4	0,039	0,9906	0,096	2,4384	63
	1,25	31,75	0,265	6,731	Ι	25,4	0,05	1,27	0,107	2.7178	52
4	2	50,8	0,813	20,65	1,75	44,45	0,078	1,9812	0,101	2,5654	78
4	2	50,8	0,75	19,05	1,688	42,875	0,06	1,524	0,096	2,4384	76
4	2	50,8	0,75	19,05	1,625	41,275	0,09	2,286	0,144	3,6576	72
4	2	50,8	0,688	17,475	1,562	39,675	0,134	3,4036	0,15	3.81	68
	2,5	63,5	0,813	20,65	2,25	57,15	0,05	1,27	0,098	2,4892	78
82	3	76,2	1,25	31,75	2,625	66,675	0,06	1.524	0,108	2.7432	85
32	3	76,2	1,188	30,175	2,5	63,5	0,09	2,286	0,105	2.667	85
52	3	76,2	1,188	30,175	2.5	63,5	0,09	2,286	0,138	3.5052	80
2	3	76,2	1,125	28,575	2,375	60,325	0,134	3,4036	0,144	3.6576	76
32	3	76,2	1,11	28,194	2,375	60,325	0,194	4,9276	0,203	5,1562	69

6
ð.
\bigcirc
$\tilde{\Box}$
Ĭ
$\mathbf{\Sigma}$
1
าล
Ξ
Ē
e
р
ă
ñ
p
2
<u>с</u>
5
[g]
Ē
at
p
a
ñ
8
Ţ
S
-
Ę.
0
te
la
ŭ
a
Δ.
ΰ
.2
Ĭ
at
÷
le
Di.
n
.S
5U
ă
ji
Ц
•
Annual
ġ
a
-

	s mm %	0.6096 40		0.7366 39	0.7366 39 0.762 47	0.7366 39 0.762 47 1.016 40	0.7366 39 0.762 47 1.016 40 1.016 45	0.7366 39 0.762 47 1.016 40 1.016 45 0.7366 72	0.7366 39 0.762 47 1.016 40 1.016 45 0.7366 72 0.9906 69	0.7366 39 0.762 47 1.016 40 1.016 45 0.7366 72 0.9906 69 1.27 60	0.7366 39 0.762 47 1.016 40 1.016 45 0.7366 45 0.7366 69 0.9906 69 1.27 60 1.778 57	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.7366 39 0.762 47 1.016 40 1.016 45 0.7366 45 0.7366 69 1.016 60 1.27 60 1.278 57 1.278 57 1.278 75 1.278 75 1.278 75 1.278 75 1.5494 70 1.778 73	0.7366 39 0.762 47 1.016 40 1.016 45 0.7366 45 0.7366 72 0.7366 69 1.016 57 1.27 60 1.278 57 1.278 75 1.278 75 1.278 75 1.278 70 1.778 73 1.778 68	0.7366 39 0.762 47 1.016 40 1.016 45 0.7366 45 0.7366 72 0.9906 69 1.27 60 1.778 57 1.778 57 1.778 75 1.5494 70 1.778 68 1.778 63 3.048 63	0.7366 39 0.762 47 1.016 40 1.016 45 0.7366 45 0.7366 72 0.7366 72 0.9906 69 1.27 60 1.778 57 1.278 75 1.278 75 1.278 76 1.778 70 1.778 68 3.048 63 3.048 63 1.2192 73 1.2192 73	0.7366 39 0.762 47 1.016 40 1.016 45 0.7366 45 0.7366 72 0.7366 69 1.016 72 0.9906 69 1.27 60 1.778 57 1.278 75 1.278 73 1.778 68 3.048 63 1.778 63 1.2192 73 1.278 63 1.278 63 1.278 63 1.278 63 1.2792 77	0.7366 39 0.762 47 1.016 40 1.016 45 0.7366 45 0.7366 72 0.7366 69 1.016 72 0.9906 69 1.27 60 1.278 57 1.278 75 1.278 73 1.278 68 3.048 63 1.778 63 1.778 63 1.778 63 2.159 77 1.2192 77 1.2192 73 1.778 63 2.159 77 2.159 74
	mm Incnes mm	4478 0.024 0.6096	1844 0.029 0.7366		1844 0.03 0.762	1844 0.03 0.762 1844 0.04 1.016	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 .778 0.039 0.9906	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 778 0.039 0.9906 7686 0.05 1.27	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 778 0.039 0.9906 7686 0.05 1.27 6162 0.07 1.778	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 778 0.039 0.9906 7686 0.05 1.27 6162 0.07 1.778 0988 0.048 1.2192	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 778 0.039 0.9906 7686 0.05 1.27 6162 0.07 1.778 0988 0.048 1.5492 921 0.061 1.5492	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 778 0.039 0.9906 778 0.039 0.9906 7686 0.05 1.27 6162 0.07 1.778 0988 0.048 1.2192 0926 0.061 1.5492 0226 0.07 1.778	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 778 0.039 0.9906 778 0.039 0.9906 7686 0.05 1.27 6162 0.07 1.778 0988 0.048 1.2192 0988 0.048 1.2192 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 778 0.039 0.9906 778 0.039 0.9906 7686 0.05 1.27 6162 0.07 1.778 0988 0.048 1.2192 0988 0.048 1.2192 0921 0.061 1.5494 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 064 0.12 3.048	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 778 0.039 0.9906 7686 0.05 1.27 6162 0.07 1.778 0988 0.064 1.2192 0926 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0526 0.07 1.778 064 0.12 3.048 1656 0.048 1.2192	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 778 0.039 0.9906 7686 0.05 1.27 6162 0.07 1.778 0988 0.061 1.5494 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0526 0.07 1.778 0526 0.07 1.778 0526 0.07 1.778 064 0.12 3.048 1656 0.048 1.2192 021 0.07 1.778 1656 0.078 1.2192	1844 0.03 0.762 1844 0.04 1.016 1844 0.04 1.016 1844 0.04 1.016 5146 0.029 0.7366 778 0.039 0.9906 7686 0.05 1.27 6162 0.07 1.778 0988 0.048 1.2192 0926 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0226 0.07 1.778 0526 0.07 1.778 064 0.12 3.048 1656 0.078 1.778 921 0.07 1.778 921 0.07 1.778 921 0.07 1.778 921 0.07 1.778 921 0.07 1.
Inches mm	0 057 1 1 AA78		0.086 2.1844	0.086 2.1844		0.086 2.1844	0.086 2.1844 0.099 2.1844	0.086 2.1844 0.099 2.1844 0.07 2.5146	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778 0.103 2.7686	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778 0.103 2.7686 0.103 2.7686 0.122 2.6162	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778 0.103 2.7686 0.103 2.7686 0.103 2.6162 0.122 2.6162 0.115 3.0988	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778 0.103 2.7686 0.103 2.7686 0.122 2.6162 0.115 3.0988 0.119 2.921	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.76162 0.115 3.0988 0.119 2.921 0.119 3.0226	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778 0.103 2.7686 0.103 2.7686 0.122 2.6162 0.115 3.0988 0.119 2.921 0.119 3.0226 0.10 3.0226	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778 0.103 2.7686 0.103 2.7686 0.122 2.6162 0.115 3.0988 0.119 2.921 0.119 2.9226 0.119 3.0226 0.164 4.064	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.115 3.0988 0.119 2.921 0.119 2.921 0.119 2.9216 0.119 2.9226 0.1164 4.064 0.115 4.1656 0.115 4.1656	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.115 3.0988 0.119 2.921 0.119 2.9216 0.119 3.0226 0.164 4.064 0.165 4.1656 0.165 4.1656 0.115 4.1656 0.1255 2.921	0.086 2.1844 0.099 2.1844 0.07 2.5146 0.109 1.778 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.103 2.7686 0.115 3.0988 0.119 2.921 0.119 2.921 0.119 3.0226 0.164 4.064 0.165 3.0226 0.164 4.064 0.155 2.921 0.156 3.175 0.156 3.175
		11.659	11.659	17.475		17.475	17.475 20.65	17.475 20.65 25.4	17.475 20.65 25.4 25.4	17.475 20.65 25.4 25.4 25.4 25.4 25.4	17.475 20.65 25.4 25.4 25.4 25.4 25.4	17.475 20.65 25.4 25.4 25.4 25.4 25.4 44.45	17.475 20.65 25.4	17.475 20.65 25.4 <	17.475 20.65 20.65 25.4	17.475 20.65 20.65 25.4 44.577 44.577 42.875	17.475 20.65 20.65 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 44.45 44.45 44.577 44.577 42.875 57.15	17.475 20.65 20.65 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 44.45 44.45 44.577 44.577 44.577 42.875 57.15 50.8	17.475 20.65 20.65 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 25.4 44.45 44.45 44.577 44.577 42.875 50.8 50.8
	Inches	0.459	0.459	6 0.688	0070	0.0000	0.813 0.813	8 0.813 1	8 0.813 1 1 1 1	8 0.813 8 0.813 1 1 1 1	8 0.813 8 0.813 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0.0088 8 0.813 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0.0080 8 0.813 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0.0080 8 0.813 1 1	0.0088 8 0.813 1 1	0 0.0080 1 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	mm	2.159	2.159	2.3876	2 3876		4.3688	4.3688	4.3688 9.525 7.1374	4.3688 9.525 7.1374 6.35	4.3688 9.525 7.1374 6.35 6.35	4.3688 9.525 7.1374 6.35 6.35 6.35 19.05	4.3688 9.525 7.1374 6.35 6.35 6.35 19.05 17.475	4.3688 9.525 9.525 7.1374 6.35 6.35 6.35 19.05 17.475 17.475	4.3688 9.525 7.1374 7.1374 6.35 6.35 6.35 19.05 17.475 17.475 16.18	4.3688 9.525 9.525 7.1374 7.1374 6.35 6.35 19.05 17.475 17.475 17.475 16.18 16.18 16.18 14.3	4.3688 9.525 9.525 7.1374 7.1374 6.35 6.35 6.35 19.05 17.475 17.475 17.475 17.475 17.475 17.475 16.18 16.18 14.3 222.225	4.3688 9.525 9.525 7.1374 7.1374 6.35 6.35 6.35 19.05 17.475 17.475 17.475 17.475 17.475 17.475 20.056 20.066	4.3688 9.525 9.525 7.1374 6.35 6.35 6.35 19.05 17.475 17.475 17.475 17.475 17.475 17.475 17.475 17.475 17.475 17.475 16.18 16.18 16.18 16.18 16.18 16.18 19.939
	IIIUUS	0.085	0.085	0.094	0 004	- \>>>	0.172	0.172	0.172 0.375 0.281	0.172 0.375 0.281 0.25	0.172 0.375 0.375 0.281 0.25 0.25	0.172 0.375 0.375 0.281 0.25 0.25 0.25	0.172 0.375 0.375 0.281 0.25 0.25 0.75 0.75	0.172 0.375 0.375 0.281 0.25 0.25 0.75 0.688 0.688	0.172 0.375 0.375 0.281 0.25 0.25 0.25 0.25 0.688 0.688 0.637	0.172 0.375 0.375 0.281 0.28 0.28 0.25 0.688 0.688 0.688 0.688 0.688	0.172 0.375 0.375 0.281 0.25 0.25 0.688 0.688 0.688 0.637 0.637 0.563 0.875	0.172 0.375 0.375 0.281 0.25 0.25 0.688 0.688 0.688 0.637 0.637 0.637 0.637 0.563 0.875	0.172 0.375 0.375 0.281 0.25 0.25 0.25 0.688 0.688 0.637 0.637 0.637 0.637 0.637 0.637 0.79 0.785
-	mm	13.208	13.208	26.162	26.162		0.762	0.762 32.004	0.762 32.004 32.004	0.762 32.004 32.004 32.004	0.762 32.004 32.004 32.004 32.004	0.762 32.004 32.004 32.004 32.004 32.004 53.34	0.762 32.004 32.004 32.004 32.004 53.34 53.34	0.762 32.004 32.004 32.004 32.004 53.34 53.34 53.34	0.762 32.004 32.004 32.004 32.004 53.34 53.34 53.34 53.34	0.762 32.004 32.004 32.004 32.004 53.34 53.34 53.34 53.34 53.34 53.34 53.34	0.762 32.004 32.004 32.004 32.004 53.34 53.34 53.34 53.34 53.34 53.34 53.34 53.34 53.34 53.34 53.34	0.762 32.004 32.004 32.004 32.004 53.34 53	0.762 32.004 32.004 32.004 32.004 53.34 53.34 53.34 53.34 53.34 53.34 53.34 53.34 53.34 53.34 65.024 65.024 65.024
	inches	0.52	0.52	1.03	1.03		0.03	0.03	0.03 1.26 1.26	0.03 1.26 1.26 1.26	0.03 1.26 1.26 1.26 1.26	0.03 1.26 1.26 1.26 1.26 2.1	0.03 1.26 1.26 1.26 1.26 2.1 2.1	0.03 1.26 1.26 1.26 1.26 2.1 2.1 2.1 2.1	0.03 1.26 1.26 1.26 1.26 2.1 2.1 2.1 2.1 2.1	0.03 1.26 1.26 1.26 1.26 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	0.03 1.26 1.26 1.26 1.26 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	0.03 1.26 1.26 1.26 1.26 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	0.03 1.26 1.26 1.26 1.26 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
	mm	5.08	5.08	6.477	6.477		8.4582	8.4582 12.7	8.4582 12.7 12.7	8.4582 12.7 12.7 12.7	8.4582 12.7 12.7 12.7 12.7 12.7	8.4582 12.7 12.7 12.7 12.7 12.7 23.444	8.4582 12.7 12.7 12.7 12.7 12.7 23.444 23.444	8.4582 12.7 12.7 12.7 12.7 12.7 23.444 23.444 23.444 23.444	8.4582 12.7 12.7 12.7 12.7 12.7 23.444 23.444 23.444 23.444 23.444	8.4582 12.7 12.7 12.7 12.7 12.7 23.444 23.444 23.444 23.444 23.444 23.444	8.4582 12.7 12.7 12.7 12.7 12.7 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.444	8.4582 12.7 12.7 12.7 12.7 12.7 12.7 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.4686 27.686	8.4582 12.7 12.7 12.7 12.7 12.7 12.7 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.444 23.446 27.686 27.686 27.686
	inches	0.2	0.2	0.255	0.255		0.333	0.333	0.333 0.5 0.5	0.333 0.5 0.5 0.5	0.333 0.5 0.5 0.5 0.5	0.333 0.5 0.5 0.5 0.5 0.5	0.333 0.5 0.5 0.5 0.5 0.523 0.923	0.333 0.5 0.5 0.5 0.923 0.923 0.923	0.333 0.5 0.5 0.5 0.923 0.923 0.923 0.923	0.333 0.5 0.5 0.5 0.923 0.923 0.923 0.923 0.923	0.333 0.5 0.5 0.5 0.523 0.923 0.923 0.923 0.923 0.923 0.923 0.923	0.333 0.5 0.5 0.5 0.923 0.923 0.923 0.923 0.923 0.923 0.923 0.923 0.923 0.923	0.333 0.5 0.5 0.5 0.923 0.923 0.923 0.923 0.923 0.923 0.923 1.09 1.09

Tab. 1. 8 Dimensiunile tablei expandate din oțel carbon standard produsă de firma AMICO [96]

B M inches mm inches mm inches mm	tches mm inches mm in	mm inches mm in	inches mm in	mm	ii	Ches	mm	inches	mm	Atia deschident. %
12.7 0.166 4.2164 0.437 11.1	.166 4.2164 0.437 11.1	4.2164 0.437 11.1	0.437 11.1	11.1		0.05	1.27	0.03	0.762	60
12.7 0.166 4.2164 0.437 11.1	.166 4.2164 0.437 11.1	4.2164 0.437 11.1	0.437 11.1	11.1		0.05	1.27	0.036	0.9144	57
25.4 0.172 4.3688 0.719 18.263	0.172 4.3688 0.719 18.263	4.3688 0.719 18.263	0.719 18.263	18.263		0.073	1.8542	0.036	0.9144	45
25.4 0.172 4.3688 0.719 18.263	0.172 4.3688 0.719 18.263	4.3688 0.719 18.263	0.719 18.263	18.263	~	0.073	1.8542	0.048	1.2192	43
25.4 0.188 4.7752 0.688 17.475	0.188 4.7752 0.688 17.475	4.7752 0.688 17.475	0.688 17.475	17.475	10	0.094	2.3876	0.048	1.2192	60
30.48 0.438 11.125 0.938 23.82	0.438 11.125 0.938 23.82	11.125 0.938 23.82	0.938 23.82	23.82	10	0.072	1.8288	0.036	0.9144	80
30.48 0.438 11.125 0.938 23.82	0.438 11.125 0.938 23.82	11.125 0.938 23.82	0.938 23.82	23.82	2	0.088	2.2352	0.048	1.2192	77
30.48 0.375 9.525 0.938 23.82	0.375 9.525 0.938 23.82	9.525 0.938 23.82	0.938 23.82	23.82	5	0.086	2.1844	0.06	1.524	11
30.48 0.313 7.9502 0.938 20.3	0.313 7.9502 0.938 20.3	7.9502 0.938 20.3	0.938 20.3	20.3	2	0.096	2.4384	0.092	2.3368	58
30.48 0.25 6.35 0.8 44.4	0.25 6.35 0.8 44.4	6.35 0.8 44.4	0.8 44.4	44.4	Ś	0.188	4.7752	0.092	2.3368	25
50.8 0.813 20.65 1.75 42.8	.813 20.65 1.75 42.8	20.65 1.75 42.8	1.75 42.8	42.8	75	0.099	2.5146	0.06	1.524	85
50.8 0.75 19.05 1.688 41.2	0.75 19.05 1.688 41.2	19.05 1.688 41.2	1.688 41.3	41	275	0.096	2.4384	0.092	2.3368	78
50.8 0.75 19.05 1.625 39	0.75 19.05 1.625 39	19.05 1.625 39	1.625 39	39	٢.	0.144	3.6576	0.092	2.3368	77
50.8 0.688 17.475 1.563 52	0.688 17.475 1.563 52	17.475 1.563 52	1.563 52	52	4	0.148	3.7592	0.134	3.4036	68
60.96 1 25.4 2.063 39	1 25.4 2.063 39	25.4 2.063 39	2.063 39	39	٢.	0.096	2.4384	0.06	1.524	86
60.96 0.875 22.225 1.563 39	.875 22.225 1.563 39	22.225 1.563 39	1.563 39	39	٢.	0.122	3.0988	0.075	1.905	75
60.96 0.907 23.038 1.563 39	0.907 23.038 1.563 39	23.038 1.563 39	1.563 39	39	٢.	0.109	2.7686	0.105	2.667	78
60.96 0.75 19.05 1.563 39	0.75 19.05 1.563 39.	19.05 1.563 39.	1.563 39.	39.	7	0.155	3.937	0.135	3.429	62
60.96 0.725 18.415 1.563 39.	.725 18.415 1.563 39.	18.415 1.563 39.	1.563 39.	39.	7	0.18	4.572	0.135	3.429	09
60.96 0.576 14.63 1.563 39.	.576 14.63 1.563 39.	14.63 1.563 39.	1.563 39.	39.	7	0.275	6.985	0.183	4.6482	45

Tab. 1. 9 Dimensiunile tablei expandate din Al standard produsă de firma DIRECT METALS COMPANY, LLC [97]

 			····				
%	57	57	73	63	55	75	65
mm	1.016	1.524	1.016	1.778	2.413	1.397	2.032
inches	0.04	0.06	0.04	0.07	0.095	0.055	0.08
mm	2.3114	2.6162	2.8956	4.3688	4.572	3.6576	4.826
inches	0.091	0.103	0.114	0.172	0.18	0.144	0.19
mm	32.258	32.258	53.848	53.848	53.848	80.01	80.01
inches	1.27	1.27	2.12	2.12	2.12	3.15	3.15
mm	12.7	12.7	23.444	23.444	23.444	33.858	33.858
inches	0.5	0.5	0.923	0.923	0.923	1.333	1.333
mm	25.4	25.4	46.05	44.45	44.45	69.85	69.85
inches		F	1.813	1.75	1.75	2.75	2.75
mm	7.9502	7.9502	19.05	17.475	15.875	27	25.4
inches	0.313	0.313	0.75	0.688	0.625	1.063	1

Tab. 1. 10 Dimensiunile tablei expandate din Al aplatizată produsă de firma DIRECT METALS COMPANY, LLC [97]

%	57	57	73	63	55	75	65
mm	1.016	1.524	1.016	1.778	2.413	1.397	2.032
inches	0.04	0.06	0.04	0.07	0.095	0.055	0.08
mm	2.3114	2.6162	2.8956	4.3688	4.572	3.6576	4.826
inches	0.091	0.103	0.114	0.172	0.18	0.144	0.19
шш	32.258	32.258	53.848	53.848	53.848	80.01	80.01
inches	1.27	1.27	2.12	2.12	2.12	3.15	3.15
mm	12.7	12.7	23.444	23.444	23.444	33.858	33.858
inches	0.5	0.5	0.923	0.923	0.923	1.333	1.333
mm	25.4	25.4	46.05	44.45	44.45	69.85	69.85
inches	1	1	1.813	1.75	1.75	2.75	2.75
mm	7.9502	7.9502	19.05	17.475	15.875	27	25.4
inches	0.313	0.313	0.75	0.688	0.625	1.063	

5
6
\overline{r}
ý
ц,
. *
Z
2
Ŧ
ž
\mathcal{O}
\mathbf{O}
$\overline{\mathbf{\Omega}}$
. 1
7
5
H
\geq
<u> </u>
5
\mathcal{Q}
Щ
R
Ξ
a
Ξ
Ē
qe
b D
IS
q
ŏ
5
Ē
Ľ
la
ŭ
a B
S
×
0
.u
e
at
g
an
ğ
X
e
<u>a</u>
ta
e.
ii
n
ü
ns
ē
E
<u> </u>
_
<u></u>
Ď,
্র

 										_
%	68	09	56	77	75	74	64	83	62	76
mm	1.016	1.27	2.032	1.016	1.27	1.778	3.0226	1.27	2.0066	3.0226
inches	0.04	0.05	0.08	0.04	0.05	0.07	0.119	0.05	0.079	0.119
mm	2.3622	2.3622	3.3528	2.9972	2.9972	3.048	4.064	3.1496	3.1496	4.191
inches	0.093	0.093	0.132	0.118	0.118	0.12	0.16	0.124	0.124	0.165
mm	32.004	32.004	32.004	53.34	53.34	53.34	53.34	80.01	80.01	80.01
inches	1.26	1.26	1.26	2.1	2.1	2.1	2.1	3.15	3.15	3.15
mm	12.7	12.7	12.7	23.444	23.444	23.444	23.444	33.858	33.858	33.858
inches	0.5	0.5	0.5	0.923	0.923	0.923	0.923	1.333	1.333	1.333
mm	25.4	25.4	25.4	46.05	46.05	44.45	42.875	69.85	66.675	66.675
inches	1	1	1	1.813	1.813	1.75	1.688	2.75	2.625	2.625
шш	7.9502	7.9502	6.35	19.05	19.05	15.875	14.3	27	25.4	23.825
inches	0.313	0.313	0.25	0.75	0.75	0.625	0.563	1.063	1	0.938

5
<u>6</u>
Q.
<u>،</u>
\succ
Z
\sim
\geq
\bigcirc
\bigcirc
\mathbf{S}
Ĺ
\Box
in)
H
2
Ĺ
5
ý
Ц
2
Ξ
\Box
а
E
. <u>E</u>
Ę
e.
р
5 C
n
Ę,
0
d
(۵
at.
Ň
E:
la
d
0
×
č
.=
<u>o</u>
al
p
an
ğ
X
0
G.
5
a
.
<u>e</u>
Ξ.
S.
5U
ň
in
Ω
\Box
—
•
p
្ត
E

%	68	60	56	77	75	74	64	83	62	76
mm	1.016	1.27	2.032	1.016	1.27	1.778	3.0226	1.27	2.0066	3.0226
inches	0.04	0.05	0.08	0.04	0.05	0.07	0.119	0.05	0.079	0.119
mm	2.3622	2.3622	3.3528	2.9972	2.9972	3.048	4.064	3.1496	3.1496	4.191
inches	0.093	0.093	0.132	0.118	0.118	0.12	0.16	0.124	0.124	0.165
mm	32.004	32.004	32.004	53.34	53.34	53.34	53.34	80.01	80.01	80.01
inches	1.26	1.26	1.26	2.1	2.1	2.1	2.1	3.15	3.15	3.15
mm	12.7	12.7	12.7	23.444	23.444	23.444	23.444	33.858	33.858	33.858
inches	0.5	0.5	0.5	0.923	0.923	0.923	0.923	1.333	1.333	1.333
mm	25.4	25.4	25.4	46.05	46.05	44.45	42.875	69.85	66.675	66.675
inches	I	1	1	1.813	1.813	1.75	1.688	2.75	2.625	2.625
mm	7.9502	7.9502	6.35	19.05	19.05	15.875	14.3	27	25.4	23.825
inches	0.313	0.313	0.25	0.75	0.75	0.625	0.563	1.063	1	0.938

Tab. 1. 13 Dimensiunile tablei expandate oțel carbon aplatizate produsă de firma DIRECT METALS COMPANY, LLC [97]

	%	41	40	39	47	40	72	69	60	57	75	70	73	63	77	82	82	80	77
	mm	0.4826	0.6096	0.7366	0.762	1.016	0.7366	0.9906	1.27	1.778	1.2192	1.5494	1.778	3.048	1.2192	1.2192	1.524	1.778	2.794
	inches	0.019	0.024	0.029	0.03	0.04	0.029	0.039	0.05	0.07	0.048	0.061	0.07	0.12	0.048	0.048	0.06	0.07	0.11
	mm	1.4478	1.4478	1.4478	2.1844	2.1844	2.1844	1.778	2.7686	2.6162	3.0988	2.921	3.0226	3.0226	4.1656	2.921	3.1242	3.5052	3.5052
I WAR	inches	0.057	0.057	0.057	0.086	0.086	0.07	0.109	0.103	0.122	0.115	0.119	0.119	0.164	0.115	0.123	0.138	0.138	0.175
	mm	13.208	13.208	13.208	26.162	26.162	32.004	32.004	32.004	32.004	53.34	53.848	53.34	53.848	65.024	81.28	81.28	81.28	81.28
	inches	0.52	0.52	0.52	1.03	1.03	1.26	1.26	1.26	1.26	2.1	2.12	2.1	2.12	2.56	3.2	3.2	3.2	3.2
	mm	5.08	5.08	5.08	6.477	6.35	12.7	12.7	12.7	12.7	23.444	23.444	23.444	23.444	27.686	33.782	33.782	33.782	33.782
	inches	0.2	0.2	0.2	0.255	0.25	0.5	0.5	0.5	0.5	0.923	0.923	0.923	0.923	1.09	1.33	1.33	1.33	1.33
	mm	11.659	11.659	11.659	17.475	17.475	25.4	25.4	25.4	25.4	44.45	46.05	45.263	42.875	57.15	69.85	69.85	69.85	65.1
H.C.	inches	0.459	0.459	0.459	0.688	0.688	1	1	-		1.75	1.813	1.782	1.688	2.25	2.75	2.75	2.75	2.563
	mm	2.159	2.159	2.159	2.3876	2.3876	9.525	7.1374	6.35	6.35	19.05	17.475	17.475	14.3	22.225	27	27	27	25.4
	inches	0.085	0.085	0.085	0.094	0.094	0.375	0.281	0.25	0.25	0.75	0.688	0.688	0.563	0.875	1.063	1.063	1.063	1

APANY, LLC [97	Auto deschident	%	63	60	57	45	43	80	77	71	58	85	78	77	86	93	89	86	85	75	63	86	86
NLS CON		mm	0.6096	0.762	0.9144	0.9144	12.192	0.9144	1.2192	1.524	2.3368	1.524	2.3368	2.3368	1.524	1.2192	1.524	2.3368	2.3368	3.4036	5.0292	2.3368	3.4036
CT MET/		inches	0.024	0.03	0.036	0.036	0.48	0.036	0.048	0.06	0.092	0.06	0.092	0.092	0.06	0.048	0.06	0.092	0.092	0.134	0.198	0.092	0.134
na DIRE(mm	1.27	1.27	1.27	1.8542	1.8542	1.8288	2.2352	2.1844	2.4384	2.5146	2.4384	3.6576	2.4384	1.7018	2.7178	2.6416	3.4798	3.6068	5.1054	4.1656	3.7846
să de fĭrn	I Solar Bar	inches	0.05	0.05	0.05	0.073	0.073	0.072	0.088	0.086	0.096	0.099	0.096	0.144	0.096	0.067	0.107	0.104	0.137	0.142	0.201	0.164	0.149
ird produ		mm	12.7	12.7	12.7	25.4	25.4	30.48	30.48	30.48	50.8	50.8	50.8	50.8	76.2	76.2	76.2	76.2	101.6	76.2	76.2	101.6	101.6
on standa		inches	0.5	0.5	0.5		1	1.2	1.2	1.2	1.2	2	2	5	2.4	3	3	3	3	3	3	4	4
otel carb		mm	5.08	5.08	5.08	6.477	6.477	12.7	12.7	12.7	12.7	23.444	23.444	23.444	27.686	33.782	33.782	33.782	33.782	33.782	33.782	46.99	46.99
ndate din	Ģ	inches	0.2	0.2	0.2	0.255	0.255	0.5	0.5	0.5	0.5	0.923	0.923	0.923	1.09	1.33	1.33	1.33	1.33	1.33	1.33	1.85	1.85
olei expa		шш	11.1	11.1	11.1	18.263	18.263	23.825	23.825	23.825	23.825	44.45	42.875	41.275	52.4	66.675	66.675	63.5	63.5	60.325	58.75	79.705	85.725
siunile tal		inches	0.437	0.437	0.437	0.719	0.719	0.938	0.938	0.938	0.938	1.75	1.688	1.625	2.063	2.625	2.625	2.5	2.5	2.375	2.313	3.138	3.375
4 Dimen:		mm	4.2164	4.2164	4.2164	4.3688	4.3688	11.125	11.125	9.525	7.9502	20.65	19.05	19.05	25.4	33.35	31.75	30.175	47.752	28.575	25.4	41.275	39.7
[ab. 1. 1		inches	0.166	0.166	0.166	0.172	0.172	0.438	0.438	0.375	0.313	0.813	0.75	0.75	1	1.313	1.25	1.188	1.88	1.125		1.625	1.563
Tab. 1. 15 Dimensiunile tablei expandate din Al standard produsă de firma METALS INC. [98]

%	65	60	78	76	69	68	85	62
mm	1.2954	2.0574	1.5494	2.0574	2.0574	3.175	2.0574	3.175
inches	0.051	0.081	0.061	0.081	0.081	0.125	0.081	0.125
mm	2.3622	2.4384	2.7686	3.2766	4.191	4.2926	3.2512	4.1148
inches	0.093	0.096	0.109	0.129	0.165	0.169	0.128	0.162
mm	23.8	23.8	44.45	42.672	42.672	42.672	63.5	63.5
inches	0.937	0.937	1.75	1.68	1.68	1.68	2.5	2.5
mm	9.525	9.525	20.625	19.05	19.05	17.45	30.15	30.15
inches	0.375	0.375	0.812	0.75	0.75	0.687	1.187	1.187
mm	30.48	30.48	50.8	50.8	50.8	50.8	76.2	76.2
inches	1.2	1.2	2	2	2	2	3	3
mm	12.7	12.7	23.444	23.444	23.444	23.444	33.782	33.782
inches	0.5	0.5	0.923	0.923	0.923	0.923	1.33	1.33

Tab. 1. 16 Dimensiunile tablei expandate din Al aplatizată produsă de firma METALS INC. [98]

 _	,					r	r	
%	61	58	72	70	63	62	77	70
mm	1.016	1.524	1.016	1.778	1.778	2.413	1.524	2.032
inches	0.04	0.06	0.04	0.07	0.07	0.095	0.06	0.08
шш	2.6416	2.667	3.0988	3.6322	4.5974	4.7498	3.6322	4.5974
inches	0.104	0.105	0.122	0.143	0.181	0.187	0.143	0.181
mm	25.4	25.4	46.025	44.45	44.45	29.845	69.85	69.85
inches	1	-	1.812	1.75	1.75	1.175	2.75	2.75
mm	7.9248	7.9248	19.05	17.45	17.45	15.875	26.975	25.4
inches	0.312	0.312	0.75	0.687	0.687	0.625	1.062	1
mm	32.258	32.258	53.975	53.975	53.975	53.975	80.01	80.01
inches	1.27	1.27	2.125	2.125	2.125	2.125	3.15	3.15
mm	12.7	12.7	23.444	23.444	23.444	23.444	33.782	33.782
inches	0.5	0.5	0.923	0.923	0.923	0.923	1.33	1.33

Tab. 1. 17 Dimensiunile tablei expandate inox standard produsă de firma METALS INC. [98]

S.S. 72		<u> </u>				<u></u>		1		1		
R. S.	%	30	70	70	52	85	83	80	67	85	83	77
	mm	1.27	1.524	1.5748	2.3622	1.27	1.5748	2.3622	3.556	1.5748	2.3622	3.556
	inches	0.05	0.06	0.062	0.093	0.05	0.062	0.093	0.14	0.062	0.093	0.14
	mm	2.2098	2.2098	2.2098	3.0226	2.6924	2.6924	2.7178	4.064	2.921	2.921	3.937
	inches	0.087	0.087	0.087	0.119	0.106	0.106	0.107	0.16	0.115	0.115	0.155
	mm	15.748	23.8	23.8	22.225	44.45	44.45	42.85	39.675	69.85	66.675	63.5
	inches	0.62	0.937	0.937	0.875	1.75	1.75	1.687	1.562	2.75	2.625	2.5
	mm	3.048	11.1	11.1	8.255	20.625	20.625	19.05	17.45	31.75	31.75	28.575
	inches	0.12	0.437	0.437	0.325	0.812	0.812	0.75	0.687	1.25	1.25	1.125
	mm	25.4	30.48	30.48	30.48	50.8	50.8	50.8	50.8	76.2	76.2	76.2
	inches	I	1.2	1.2	1.2	2	2	2	2	З	3	3
	mm	6.35	12.7	12.7	12.7	23.444	23.444	23.444	23.444	33.782	33.782	33.782
	inches	0.25	0.5	0.5	0.5	0.923	0.923	0.923	0.923	1.33	1.33	1.33

255

 Tab. 1. 18 Dimensiunile tablei expandate inox aplatizate produsă de firma METALS INC. [98]

	_										
%	28	60	60	45	75	75	75	61	80	80	75
mm	1.1938	1.016	1.27	2.032	1.016	1.524	2.032	3.0226	1.27	2.032	3.0226
inches	0.047	0.04	0.05	0.08	0.04	0.06	0.08	0.119	0.05	0.08	0.119
mm	22.86	2.4892	2.5146	3.3528	2.9972	2.9972	3.048	4.191	3.2512	3.302	4.191
inches	0.9	0.098	660.0	0.132	0.118	0.118	0.12	0.165	0.128	0.13	0.165
mm	16.764	25.4	25.4	23.241	46.025	46.025	44.45	43.104	69.85	66.675	66.675
inches	0.66		I	0.915	1.812	1.812	1.75	1.697	2.75	2.625	2.625
mm	20.32	7.9248	7.9248	6.096	19.05	19.05	15.875	14.275	26.975	25.4	23.8
inches	0.8	0.312	0.312	0.24	0.75	0.75	0.625	0.562	1.062	1	0.937
mm	30.48	32.004	32.004	32.004	53.34	53.34	53.34	53.34	80.01	80.01	80.01
inches	1.2	1.26	1.26	1.26	2.1	2.1	2.1	2.1	3.15	3.15	3.15
mm	6.35	12.7	12.7	12.7	23.444	23.444	23.444	23.444	33.782	33.782	33.782
inches	0.25	0.5	0.5	0.5	0.923	0.923	0.923	0.923	1.33	1.33	1.33

 Tab. 1. 19 Dimensiuni ale tablei expandate oțel carbon aplatizate produsă de firma METALS INC. [98]

 								_										_
%	35	35	77	65	60	63	52	74	74	74	68	63	78	63	80	80	75	83
mm	0.762	1.016	1.016	0.7366	0.9906	1.27	1.9812	1.2192	1.5494	1.9812	1.9812	3.048	1.27	1.2192	1.524	1.9812	2.794	2.794
inches	0.03	0.04	0.04	0.029	0.039	0.05	0.078	0.048	0.061	0.078	0.078	0.12	0.05	0.048	0.06	0.078	0.11	0.11
mm	2.0066	2.032	1.4224	2.0066	2.0066	2.4384	2.7178	2.8194	2.667	2.6924	4.064	4.191	2.4892	3.0226	2.9464	2.9464	4.0132	4.318
inches	0.079	0.08	0.056	0.079	0.079	0.096	0.107	0.111	0.105	0.106	0.16	0.165	860.0	0.119	0.116	0.116	0.158	0.17
mm	18.161	18.161	25.4	25.4	25.4	25.4	25.4	44.45	46.05	45.237	44.577	42.875	57.15	69.85	69.85	69.85	65.1	93.98
inches	0.715	0.715	-		1	1	l	1.75	1.813	1.781	1.755	1.688	2.25	2.75	2.75	2.75	2.563	3.7
mm	2.794	2.9972	9.652	9.525	7.9248	7.9248	6.731	19.05	17.475	17.475	16.18	14.3	20.65	26.975	26.975	26.975	25.4	36.703
inches	0.11	0.118	0.38	0.375	0.312	0.312	0.265	0.75	0.688	0.688	0.637	0.563	0.813	1.062	1.062	1.062	1	1.445
mm	26.67	26.67	31.75	31.75	31.75	31.75	31.75	53.34	53.34	53.34	53.34	53.34	63.5	81.28	81.28	81.28	81.28	110.62
inches	1.05	1.05	1.25	1.25	1.25	1.25	1.25	2.1	2.1	2.1	2.1	2.1	2.5	3.2	3.2	3.2	3.2	4.355
mm	6.35	6.35	12.7	12.7	12.7	12.7	12.7	23.444	23.444	23.444	23.444	23.444	25.4	33.782	33.782	33.782	33.782	46.355
inches	0.25	0.25	0.5	0.5	0.5	0.5	0.5	0.923	0.923	0.923	0.923	0.923	1	1.33	1.33	1.33	1.33	1.825

257

5	
r i	
\mathbf{i}	
4	
\mathbf{S}	
L	
A.	
E	
M	
ш	
fīr	
e	
íd	
IS	
کمرا	
orc	
dŗ	
arc	
pc	
tar	
S	
on	
rb	
ca	
el	
oţ	
Е.	
р	
at	
pu	
Dal	
X	
le	
tat	
ē	
al	
n.	
iiu	
Sus	
ne	
)ii	
20	
_	
q	
Ä	

20 Dimens	SIL	iuni ale	tablei exj	oandat d	in otel ca	urbon stan	idard pro	dusă de fi	rma ME	TALS	NC. [98]
											Anna desentetati
inches mm inches	mm inches	inches		mm	inches	mm	inches	mm	inches	mm	%
1 25.4 0.125	25.4 0.125	0.125		3.175	0.718	18.237	0.072	1.8288	0.036	0.9144	45
1 25.4 0.11	25.4 0.11	0.11		2.794	0.718	18.237	0.072	1.8288	0.048	1.2192	43
1.2 30.48 0.44 1	30.48 0.44 1	0.44	—	1.176	0.938	23.825	0.051	1.2954	0.048	1.2192	82
1.2 30.48 (438 1	30.48 (438 1	(438 1	1	1.125	0.938	23.825	0.072	1.8288	0.036	0.9144	80
1.2 30.48 (438 1	30.48 (438 1	1 438 1	-	1.125	0.938	23.825	0.088	2.2352	0.048	1.2192	72
1.2 30.48 0.375 9	30.48 0.375 9	0.375 9	5).525	0.938	23.825	0.087	2.2098	0.06	1.524	65
1.2 30.48 0.312 7	30.48 0.312 7	0.312 7	7	9248	0.938	44.45	0.096	2.4384	0.09	2.286	57
2 50.8 0.813 2	50.8 0.813 2	0.813 2	2	:0.65	1.75	42.875	0.101	2.5654	0.06	1.524	78
2 50.8 0.75 1	50.8 0.75 1	0.75 1	-	9.05	1.688	41.275	0.096	2.4384	0.09	2.286	76
2 50.8 0.75 1	50.8 0.75 1	0.75 1	-	9.05	1.625	39.675	0.144	3.6576	0.09	2.286	72
2 50.8 0.688 1	50.8 0.688 1	0.688 17	1	7.475	1.562	52.375	0.15	3.81	0.134	3.4036	68
2.4 60.96 0.938 2	60.96 0.938 2	0.938 2	2	3.825	2.062	66.675	0.087	2.2098	0.06	1.524	82
3 76.2 1.313	76.2 1.313	1.313		33.35	2.625	66.675	0.088	2.2352	0.048	1.2192	06
3 76.2 1.25	76.2 1.25	1.25		31.75	2.625	63.5	0.108	2.7432	0.06	1.524	85
3 76.2 1.188 3	76.2 1.188 3	1.188 3	<u> (</u>	0.175	2.5	63.5	0.105	2.667	0.09	2.286	85
3 76.2 1.188 3	76.2 1.188 3	1.188 3		30.175	2.5	60.325	0.138	3.5052	0.09	2.286	80
3 76.2 1.125 2	76.2 1.125 2	1.125 2	2	8.575	2.375	58.75	0.144	3.6576	0.134	3.4036	76
3 76.2 1.11 2	76.2 1.11 2	1.11 2	0	8.1,4	2.313	87.325	0.203	5.1562	0.194	4.9276	69
4 101.6 1.63 4	101.6 1.63 4	1.63		41.4 2	3.438	85.725	0.164	4.1656	0.092	2.3368	83
4 101.6 1.563	101.6 1.563	1.563		39.7	3.375	85.725	0.149	3.7846	0.134	3.4036	84

Utilizări ale tablelor expandate

Fig. A 2.1 Paliere

Fig. A 2.2 Pasarele

Fig. A 2.32 Capace la scurgere

Fig. A 2.4 Platforma frînarului de la vagoane

Fig. A 2.5 Cărucior

Fig. A 2.6 Container

Fig. A 2.7 Nivelator în agricultură

Fig. A 2.8 Armătură la peretele de acumulator

Utilizări ale tablelor expandate

Fig. A 3.1 Tavane false

Fig. A 3.2 Colțuri pentru tencuieli

Fig. A 3.3 Cutie de parfum

b.

Fig. A 3.5 Bancă din tablă expandată aplatizată

Fig. A 3.6 Scaun din tablă expandată aplatizată

Utilizări ale tablelor expandate

Fig. A 4.1 Apărătoare la instalația de gaze

Fig. A 4.2 Apărătoare la mașina unealtă

Fig. A 4.3 Magazie pentru scule

Fig. A 4.4 Panou pentru șemineu

Fig. A 4.5 Griloj la geam

Mașini pentru realizarea tablei expandate

Fig. A 5.1 Mașina firmei BENGARDI

a.

b.

Fig. A 5.2 Maşinile firmei EMCi

Fig. A 5.3 Maşina firmei WALLNER TOOLING ESPAC, INC.

Fig. A 5.4 Maşina firmei ALLTRA

b.

Fig. A 5.5 Mașinile firmei MANEKLALEXPORTS.COM

a.

b.

e.

Fig. A 5.6 Mașinile firmei ANHUA HARDWARE & MESH PRODUCT Co., Ltd.

Program de determinare a polinomului de interpolare de tip Lagrange care să descrie aproximativ variația coeficientului de poziție K ORIGIN $\equiv 1$ i := 1...8

rpg _i :=	K _i :=
0.1	0.18
0.25	0.26
0.5	0.33
1.0	0.35
2.0	0.38
3.0	0.40
4.0	0.42
5.0	0.43

Gradul polinomului de aproximare m := 6 n := 8 i := 1... n $k := 1... 2 \cdot m + 1$ $S_k := \sum_{i=1}^{n} (rpg_i)^{k-1}$ k := 1... m + 1 $b_k := \sum_{i=1}^{n} K_i \cdot (rpg_i)^{k-1}$ i := 1... m + 1 j := 1... m + 1 $a_{i,j} := S_{i+j-1}$ $c := a^{-1} \cdot b$ Coeficientii polinomului de aproximare sunt: $c = \begin{pmatrix} 0.099 \\ 0.928 \\ -1.316 \\ 0.902 \\ -0.312 \\ 0.052 \\ -3.386 \times 10^{-3} \end{pmatrix}$

Interpolarea cu ajutorul functiilor SPLINE cubice a coeficientului de pozitie a fibrei neutre K în functie de raportul dintre raza de îndoire si grosimea semifabricatului r/g.

i := 1.. n

$$K_{i} := c_{1} + c_{2} \cdot rpg_{i} + c_{3} \cdot (rpg_{i})^{2} + c_{4} \cdot (rpg_{i})^{3} + c_{5} \cdot (rpg_{i})^{4} + c_{6} \cdot (rpg_{i})^{5} + c_{7} \cdot (rpg_{i})^{6}$$
$$u := cspline(rpg, K) \qquad f(x) := interp(u, rpg, K, x)$$

x := 0.1.. 6

Program de realizare a studiului grafic al gradului de expandare

277

1 Se definesc parametrii

 $\epsilon_r \quad B \quad n_{cr}$

2 Se definește funcția

$$f(s,p) := \sqrt{\frac{\left[\frac{\sqrt{\epsilon r \cdot (2.4 + \epsilon r)}}{2.4}\right]^2 \cdot \left[B - (ncr + 1) \cdot p\right]^2}{s^2 \cdot \left(ncr + \frac{1}{2}\right)^2}} + 1$$

3 Se definește limitele de variație ale parametrilor s și p

 $k := 1 \qquad \qquad w := k \cdot 3$

$$i := w..40$$
 $s_i := i$

$$g := 1 \qquad q := 4 \cdot g$$

$$j := q ... 80$$
 $p_j := j$

4 Se definește funcția M și se reprezintă grafic

