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Rezumat,  
 
We investigate multi-query motion planners that use sparse 
roadmaps, and extend their domain of applicability to non-
reversible systems and path-existence LTL trajectory 
specifications; we prove probabilistic completeness for the 
extensions. We offer simulation and experimental evidence that 
such planners are competitive with single-query planners for 
changing environments. We present a planner system for 
intricate manipulation tasks that would be too difficult for a 
single-query planner to handle in a practical amount of time. We 
propose a data structure to guide planning in highly constrained 
environments and provide an object classification criterion that 
captures kinematic interactions between objects and is suitable 
for motion planning. 
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1. Motion planning: history and current 

trends 
 
 

1.1 Motion planning and its applications 
 

In a general sense, to plan is to find a sequence of simple actions that will 
accomplish some given goal. A chess-player might plan several moves ahead, taking 
into account the possible responses of their opponent, with the ultimate goal of 
winning; a taxi-driver might plan the route to take in order to reach their 
destination. Plans can therefore be sequences of discrete actions (like moves in a 
chess-game), or continuous ones. This work will focus on the latter, as motion 
planning is most often concerned with finding trajectories through continuous 
spaces. 

 
Figure 1-1. Block diagram for a robotic system. 

 
Motion planning means finding a sequence of movements that will take a 

given system from an initial state to a goal state, or accomplish some given task, 
while respecting certain constraints imposed either by the environment in which the 
system moves, by the task, or by the system itself. The kinds of systems that this 
work will most be interested in are mechanical systems, robots specifically. As will 
be shown, motion planning has found applications beyond the field of robotics. 

A robot includes, and sometimes is considered to be synonymous with, a 
mechanical system with several actuators that allow it to move. At this level of 
description, it is not very "smart"- it doesn't even know how to move the actuators. 
A control system is an information processing system tasked with issuing commands 
to these actuators, telling each of them how much force or torque to exert at any 
given moment in order to follow a given, desired, trajectory. 

The robot with a control system still isn't very smart (even though designing 
a good controller is itself a challenging task!). It might know how to follow a 
trajectory, but it doesn't know what trajectory to follow unless one is given. This 
might be enough for robots which will only ever do predetermined movements, in 
rigurously controlled environments, as is the case for industrial robots. However, for 
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a robot to have any autonomy, it must be able to convert a task supplied by the 
human operator into a sequence of trajectories, preferably without needing the 
user's assistence in doing so. This is where the planner comes in. 

The simplest kind of planning problem for a robot is to navigate itself inside 
an environment in which obstacles restrict the kinds of available motions (we refer 
to these as geometric constraints). We gain some further insight here about how 
a planner differs from a controller: a controller will just tell the robot to move 
toward a given goal, without knowing or caring whether something is in the way. 
It's the job of the planner to give such a trajectory to the controller, so as to avoid 
any obstruction. 

 
Figure 1-2. Geometric constraints. The robot arm must move from the start (green) to the goal 

configuration (orange) while avoiding the objects and table. 

 
There are other kinds of constraints that a planner must take into account. 

A plan is useless unless it is feasible, that is, the system can follow it. For example, 
a car, can only move along the direction in which the wheels are aligned, this 
direction cannot change instantly, and there's a limit to its possible values. As 
consequences, a car has a certain minimum turning radius, and cannot move 
sideways; such constraints that restrict the velocities and paths a system may take, 
but do not restrict where it can go to, are referred to as nonholonomic 

constraints. Their relevance becomes clear for a task like parallel parking; the 
planner can't just tell the car to move sideways, and instead, a sequence of 
maneuvers must be performed. 

The robot's mechanical system itself brings some constraints to the planner: 
the mechanism parts have mass and friction. Further, the actuators can only supply 
at most a certain finite force (or torque). The deformability of moving parts, in 
particular their elastic behaviour, may also impact the way that a system behaves, 
in ways that are significant to the given task. Sometimes, these restrictions can be 
ignored; maybe the mass is small, the movements are slow, and the actuators are 
"powerful enough". In real applications however, they become increasingly 
important to account for, particularly if performance at accomplishing the task is 
sought. Such constraints are refered to as differential, or sometimes dynamic, 
constraints. 

To be able to plan, the robot needs to know its surroundings. Sometimes, 
the environment it moves in is static, or rigurously controlled, but for most 
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applications where planning is needed, it is also the case that the environment may 
be, at least at first, unknown, or might change with time (dynamic environment) 
in ways that are not always predictable. The robot needs to have a sensor system, 
and the planner and sensor system will work together to keep the robot's plans 
updated.  

 
Figure 1-3. An example of non-holonomic constraint. A car cannot go sideways but parallel 

parking is possible. 

 
Uncertainty is also a factor while planning. As previously mentioned, the 

robot might not know its environment and needs to explore and map it; or the 
environment might change under the influence of unpredictable agents. Further, 
sensors themselves have measurement errors and actuators have limited precision. 
A planner would need to account for all this and manage this uncertainty: keep 
some safety margins in the plan, use an estimator of the current state of the 
system, some kind of filtering on measurements etc. 

Tasks might also specify some kind of cost function that must be 
minimized: fuel consumption, or time to accomplish, for example. An optimal plan 
is one that minimizes this cost. Sometimes, a reward function that an optimal 
plan would maximize is defined instead of a cost. 

Ideally, a planner should work in real-time, or close to it. That is, it can grab 
new information about the environment, and elaborate a plan quickly enough so 
that the plan remains useful after the time spent planning. A planner that can 
manage this mode of operation is called on-line. For example, a robot moving in an 
unknown and uncertain environment needs an on-line planner to be able to 
intelligently respond to changes. Some problems can be handled by off-line planners 
however. An off-line planner would get to study a problem without the constraint 
to plan fast; the plan will be useful later, and possibly many times. Grasping is a 
problem of this kind. The robot knows what its arm is like, and might know the 
geometry of the objects it will have to grab. Given this information, it can spend 
quite some time looking for efficient grasps around those objects. When it actually 
comes to grasping, the robot can quickly search through a library of pre-planned 
movements. 

One other important factor necessary to describe a planning problem is the 
number of degrees of freedom of the system that the planner commands, and, if 
the environment is dynamic, its degrees of freedom of the environment, if it can 
change. Simply speaking, degrees of freedom are the independent motions that a 
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system can perform. A rigid body in free ordinary space has six: it can be displaced 
and/or rotated along three mutually perpendicular axes. A rigid body constrained to 
move on a plane has just three: it can be displaced along two perpendicular 
directions, and it also has a heading. The degrees of freedom in a planning problem 
however are often different from those of a free rigid body. For example, a car has 
two actuated degrees of freedom (turning and forward velocity), even if it can reach 
any point and heading combination and therefore its possible destinations need 
three degrees of freedom to specify. A robot arm with ten revolute joints has ten 
degrees of freedom, one for each joint. In general, if a robot has n joints, each with 
one degree of freedom (also known as class 5 joints) then the robot itself has n 
degrees of freedom.  

 

 
Figure 1-4. Degrees of freedom. A rigid object in three dimensional space has six; planar 

motion has three. 

 
As mentioned in the beginning, the focus of this work will be continuous 

systems, which mechanical systems are; their states vary continuously in 
continuous time. Of course, a planner, operating on a numerical computer, must 
discretize the system in both state and time. Further, it is sometimes useful to 
model the system dynamics as capable of discrete transitions between state 
domains. For example, a walking robot has several sets of possible states: one 
when no legs contact the ground, and a set for each possibility of legs-to-ground 
contact. A similar situation occurs when grasping, and finger to object contacts. 
Maintaining a certain arrangement of contacts to the ground or to an object requires 
enforcing certain constraints that are not present when no contact is required, and 
this changes the equations of the system. The planner must take these changes into 
account as it instructs a walking robot on how to step on uneven terrain, or a 
manipulator on how to grasp an object of complicated geometry. 

From the above it can be seen that planners have tackled a variety of 
problems, and indeed motion planning has found applications in several fields: 
vehicle navigation, obstacle avoidance for manipulators, grasp planning, walking 
robots[Goo02], service robots moving in public environments[Liu10], but also 
character animation for virtual reality[Kal01], unit movement for computer 
games[Li08]; crowd simulation; chemists might use motion planning methods to 
study how proteins fold, or how enzymes interact[Apa04]; motion planning can also 
be used for system verification[Kim05], by attempting to find a legal trajectory that 
would result in system failure. The table below summarizes various applications of 
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motion planning, as well as the capabilities they require of a planner. Green cells 
are soft requirements, yellow cells indicate important ones. 

 
Table 1-1. Planning problems and capabilities required from a planner. 

 Best 

paths 

Many 

DoF 

On-

line 

Dynamics Noise Changing 

work 
space 

Resolution 

complete 

Manipu-
lators 

       

Vehicle 

navigation 

       

Grasping        

Walking        

Service/ 

Rescue 

       

Protein 

folding 

       

Animation        

Computer 
games 

       

Crowd 
simulation 

       

System 

checking 

       

 
 
 

1.2 Brief history of the field 
 
 

Research into motion planning for robots began in the 1970s, when the 
problem of moving a robot, considered as a chain of linked polyhedrals, among an 
environment populated by static polyhedral obstacles, was first given attention. The 
algorithms developped in this period used to decompose the environment into 
regions based on certain geometric properties. They could find a solution, if one 
existed, but were too computationally demanding to be practical. Nevertheless, 
hope remained that more efficient algorithms could be found. 

Such hopes were dashed when the complexity of the planning problem was 
proven, in works by Reif[Rei87] and Canny[Can87], to be such that algorithms 
capable of always finding a feasible plan (if one exists; these are called complete or 
exact planners) must be too computationally expensive for practical applications. 
Though Canny's PhD thesis[Can87] described what was at the time the most 
efficient exact planner for the generalized piano mover problem (also known as 
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geometric planning), his work contributed to shifting the focus of research away 
from exact planners. Even Canny's planner was too slow for problems of practical 
interest. Today, if they are researched at all, exact planners are more of a 
theoretical curiosity [Var05, Che07]. 

 

 
Figure 1-5. Evolution of various motion planning approaches, with some landmark papers. 

 
Instead of exact planners, what is now sought are planners that are, in 

some sense, "good enough". They find the solution often enough to be useful, 
without using an impractically large amount of computational resources like time 
and memory. 

Two basic approaches to planning have been developped in the 80s, from 
which subsequent planners can be said to have branched off. The first is the idea of 
a roadmap[Bar91]. Rather than being aware of the whole environment and 
everything in it, to the level of precision supported by the number representation on 
the computer, the planner instead attempts to construct a structure that is as 
simple as possible but still captures the connectivity of the environment- what 
points are directly accessible from where. A graph of places and simple paths 
between them is the typical roadmap. Another kind of roadmap is a grid of cells that 
covers the environment, where each cell simply records whether an obstacle 
intersects its volume; algorithms using such a data structure were usually refered to 
as grid-based, rather than roadmap however. 

The second approach is that of potential functions[Kha86]. The goal that 
must be reached generates an "attractive field" (a ficticious field, it has no physical 
existence; the planner just pretends it's there). Meanwhile, the obstacles generate 
repulsive fields, ficticious as well. The planner uses these fields to compute "forces" 
on the robot, and instructs the robot to move as if those forces were real. 

It quickly became clear that potentials defines as above (attractive goal, 
repulsive obstacles) may suffer from a problem of local minima, that is, points 
where the ficticious field doesn't generate any force on the robot, but without being 
a goal point [Kod87]. Potential functions that avoid this problem for spherical 
obstacle shapes have been presented, called "harmonic potential functions" [Con90, 
Kim92]. Another approach has been to utilize the then-newly-developped level set 
methods used to numerically simulate wave propagation [Set96] in order to 
generate "navigation functions"- functions whose extremal points are all located at 
goal points. Navigation function based methods have since grown quite 
sophisticated, and are the standard for applications to vehicle navigation[Phi08]. 
They are capable even to provide plans that are optimal under many kinds of 
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criteria. Note however, that vehicle navigation problems have few degrees of 
freedom, typically three (for planar movement). Computing a navigation function 
becomes impractical as the number of degrees of freedom increases, because they 
rely on the existence of a grid of points to calculate the navigation function at. The 
number of points needed in such a grid, while imposing a maximum distance (or 
some other resolution) criterion on it, grows exponentially in the number of degrees 
of freedom. Triangulating polihedra in spaces of dimension more than 2 is also a 
difficult problem[Rup92], which further complicates grid construction. 

 

 
Figure 1-6. A potential function approach (left) has local minima that can trap a robot away 

from the goal. Navigation functions constructed by a marching method (right) avoid this 

problem, but are more computationally expensive. 

 
Therefore, applications of navigation function-based methods are limited to 

situations where there are few degrees of freedom, or the high-dimensional problem 
can be split into several lower dimensional ones that are either independent or 
"almost" so. Such is the case of several vehicles moving in formation is one such 
problem, and so is the case of planning simultaneously for several otherwise 
independent vehicles: the planner can check for any conflicts in the plan and use a 
few relatively simple strategies to resolve them. 

Another approach to evade local minima of potential functions has been to 
construct a roadmap between local minima of a potential function, effectively 
merging the roadmap and potential function approaches[Bar91]. Though itself not 
later used, the method proved instrumental in developping randomized roadmaps, 
which have been the dominant approach for problems with many degrees of 
freedom, from the 1990s onwards. 

The idea behind a randomized roadmap[Ama96, Kav96] is to take random 
"samples" from the environment: these are random positions in space. Advances in 
collision checking algorithms have made it possible to quickly check whether a 
sample is inside an obstacle (and therefore invalid) or not[Que09]; methods to 
compute the level sets of the point-to-3D obstacle distance function also 
exist[Tsa02] and may be used to speed up collision checking of 3D objects. The 
planner would keep only valid samples, and check to see which sample can be 
connected, by way of some simple paths, to nearby samples. This produces a graph 
that describes the connectivity of the environment. 

The Probabilistic Roadmap Method[Kav96] was the first such method to be 
developped. It constructs a roadmap (a process which is allowed to take a long 
time), which once constructed allows quick searches for plans. Since the roadmap is 
a graph, looking for paths through it is easy, and several efficient algorithms exist 
for this purpose. Since the initial and goal state might not be in the roadmap, they 
must be added to it before searching for a plan; nodes from the graph, close to the 
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starting state (and goal, respectively) are chosen, and simple connecting paths are 
attempted. 

The 2000s saw planners attacking problems with dynamics, and the 
development of exploring-tree methods, also known as diffusion or single-query 
methods, to distinguish them from the multi-query methods inspired by PRM. At 
their core, single-query methods are also based on probabilistic roadmaps; they 
however are constructed so as to rapidly construct the roadmap, and do not reuse it 
later. 

The most representative single-query motion planning algorithm is the 
Rapidly exploring Random Trees method (RRT)[Kuf00]; many other planning 
methods are variations on its ideas. The RRT method proceeds by growing trees 
from the start, and towards the goal. Tree growth happens by selecting a random 
vertex in the tree and a random direction to take a "small" step towards. When the 
start and goal trees get sufficiently close, some kind of gap reduction algorithm 
starts to look for connections between them. 

There has been some recent interest however in algorithms that use 
deterministic sampling strategies, to obtain somewhat better guarantees of finding a 
solution (if one exists) and to do this, if possible, with fewer samples taken from the 
environment[Lin03]. As a consequence of this as well as the need of randomized 
roadmaps to estimate how well they have covered a region with samples, interest in 
grid-based methods has increased somewhat in recent years. 

Improvement in planner capabilities has resulted in more complicated 
problems being tackled. One direction of research focuses on how to split a problem 
with many degrees of freedom into a hierarchy of simpler (fewer degrees of 
freedom) problems, as this can dramatically improve a planner's 
performance[Shk10]. There is also some literature on replanning and uncertainty 
management for systems with many degrees of freedom[Toi10]. 

 
 

1.3 Current trends: single-query planners 
dominate 

 
Most recent papers in motion planning concern themselves with topics about 

single-query planners (also known as tree-based, or diffusion planners). Further, 
while support for roadmap planners exists in libraries like OMPL[Şuc12], it is 
minimal in robotics software packages like MoveIt![Mov12] or OpenRAVE. For 
MoveIt!, the planning architecture strongly favors a single-query planner that does 
not keep data between calls. For OpenRAVE, PRM-like planners do not exist in the 
core installation; a few users have written PRM-like planners as plugins. In general, 
it appears that single-query planners are added in robotics suites by default, with 
roadmap based planners considered, at best, as an afterthought. At first, this 
migration away from roadmap, multi-query planners appears counterintuitive. 
However, there are a few good reasons for why it has happened.  

First, the assumption behind multi-query planners is that a lot of the data 
they accumulated about the freespace stays relevant; passages that the planner 
believes are free stay so. In other words, multi-query planners work best if the 
environment doesn't change. If however, as has been the focus of recent research, 
we are interested in dynamic environments, then we might as well run a (hopefully 
fast) single-query planner, and explore the environment fresh each time[Şuc10]. 
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The second assumption multi-query planners tend to make is that 
trajectories are bidirectional, reversible, and therefore roadmaps are undirected 
graphs. This is likely because, when sampling to construct a roadmap for future use, 
there are no special start or goal samples to diffuse away from, or diffuse to, 
respectively. As a result, most implementations of PRM variants do not use directed 
graphs for roadmaps. 

The situation is completely different for single-query planners. The fact that, 
when such a planner is run, start and goal configurations are known, imposes a 
directionality on the trees it constructs. They diffuse away from the start, towards 
the goal, and trajectories are not checked for reversibility.  

A lot of real systems have non-reversible maneuvers. For example, inertia 
and actuator limits may make it possible for a robot to accelerate in one direction 
with minimal cost, but reversing its present trajectory in time to avoid colliding with 
a wall may well be impossible for its actuators. If one is interested in the costs of 
various maneuvers, these are also not identical for maneuvers that are reverses of 
each other: it may take no fuel expenditure to go from A to B for example, if that's 
what the system does because of inertia, but it will take some actuator effort to 
overcome that inertia and go from B to A. 

One sees then that single-query planners make fewer assumptions and are 
therefore more naturally amenable to a wider class of systems, including systems 
that are interesting in current research. 

 

1.4 Thesis summary: multi-query planners 
deserve to be brought back 

 
Recent trends notwithstanding, it seems that the computational effort 

invested in exploring and building a roadmap should not be discarded from one 
planning query to the next. The rest of the thesis will investigate ways in which 
multi-query planners could compete with single-query ones, as well as suggest 
areas where multi-query planners would be not just well suited but practically the 
only useful choice. 

Chapter 2 presents some theoretical background. Chapters 3 and 6 
investigate how sparse planners using the visibility heuristic can be extended so as 
to apply to a larger class of problems than previously considered. Chapter 4 deals 
with using multi-query planners in a changing environment. Chapter 5 presents how 
multi-query planners are suitable for intricate manipulation problems in spaces with 
many degrees of freedom and narrow passages, as well as suggest an object 
classification criterion specifically tailored for motion planning applications. 
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2. Theoretical background 
 
 In this chapter we give some definitions and technical background that will 
be useful in the later chapters: basic notions of graph theory, control theory, 
temporal logic and motion planning, with an emphasis on sample based planning 
and its variants.  
 

2.1 Graph theory 
 

A graph is a tuple G={V, E} where V is a set, referred to as the vertex 
set, and E is a set of pairs of elements from V referred to as the edge set. 
Elements of V are called vertices and elements of E are called edges. Depending on 
whether the edges are ordered pairs or not, one speaks of directed graphs (or 
digraphs) and undirected graphs (or simply, graphs). One may think of 
undirected graphs as being directed graphs where for any edge going from one 
vertex to another, there also exists an edge going the opposite way. 

The general definition of graphs places no restriction on the number of 
edges that may exist between the same two vertices. In this work however, we will 
only work with simple graphs in which, given a pair of vertices and a direction from 
one to the other, at most one edge exists inside the graph between the given 
vertices, in the specified direction.  

Undirected edges which contain a given vertex are said to be incident at 
that vertex. Vertices connected by an undirected edge are said to be adjacent to 
each other. The case of directed edges needs more care when speaking about 
incidence and adjacency. A directed edge is interpreted as allowing one to "go" from 
one of its ends to the other but not in the opposite direction. One can then define 
two incidence relations (edges leaving, versus edges entering the vertex) and two 
adjacency relations (vertices reachable from a given vertex via a single edge, versus 
vertices that can reach a given vertex via a single edge). We'll take adjacency to 
mean vertices reachable from a given vertex via a single edge. 

A path in a graph is a sequence of vertices, such that each vertex is 
adjacent to its predecessor in the path (except for the first vertex, which has no 
predecessor). A cycle is a sequence of vertices that begins and ends at the same 
vertex, and each vertex is adjacent to its predecessor. 

It is easy to see that in undirected graph, any given path can be converted 
into a cycle by simply going along the path in the usual way, then reversing the 
sequence of vertices to return to the beginning. This is not necessarily the case in 
digraphs. 

A subgraph of a graph G is a graph G'={V', E'} where V' is a subset of the 
vertex set of G, and E' is a subset of the edge set of G, such that, if an edge 
appears in E', then both of its ends are from V'. It is not necessarily the case that all 
edges from G, that have vertices from V' as their ends, are in E'. 

A connected component of a graph is a subgraph with the property that 
through any two vertices from the connected component, there exists a cycle that 
passes through them and is completely included in (uses only vertices and edges 
from) the connected component. In digraphs, one speaks of strongly connected 
components, but the definition is identical. 

Trivially, a vertex is a connected component. However we will require a 
definition that is more restrictive, so we will also impose a maximality condition on 
connected components. A connected component is maximal if, given any vertex in 
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the component and any vertex in the graph but not in the component, there is no 
cycle in the graph that includes the two vertices. In the rest of this work, when we 
say connected component we usually mean maximal connected component. 

Various properties can be associated with vertices and edges beyond the 
relations of incidence and adjacency. For example, vertices may represent points in 
some space. Often, edges are labeled with some flow capacity or cost of travel. It is 
the latter property which makes possible to speak of "best paths" inside a graph. 

Graphs are fairly abstract, and one can argue that most data structures in 
computer science are special cases of graphs. As such, graphs and algorithms for 
solving various problems involving them are central to many applications. In this 
work we will concentrate on two of these- roadmaps for planning and (strongly) 
connected component maintenance- and will now review some specific definitions 
and algorithms. 

As will be shown later, a roadmap is a simplified representation of a 
configuration space of a robot, where vertices are points in that space and edges 
are "simple" paths between them. Supposing that such a roadmap is provided, in 
order to solve a planning query one would need to find a path in the roadmap that 
goes from the start to the goal configuration. 

Since typically edges have costs attached to them (for example, distance 
between the edge's endpoints, time of travel or energy expenditure) it makes sense 
to ask for the least cost path inside the roadmap. Further, since edge costs in 
planning applications are typically above 0, one may use the Dijkstra shortest 
path algorithm, which, when implemented with Fibonacci heaps, has                 
O(|E| + |V|log(|V|)) asymptotic complexity, where |A| is the number of elements of 
the set A. 

Dijkstra's algorithm needs to be provided with a graph to work on and an 
initial vertex to grow the path from. For all other vertices in the graph it constructs 
a minimum cost and/or predecessor function; the minimum cost function returns, 
for a specified vertex, the cost of the least cost path starting from the initial vertex 
and ending at the specified vertex. The predecessor function returns, for a 
specified vertex, its predecessor in the least cost path from the initial vertex. 

It follows that the Dijkstra shortest path algorithm can be used to find the 
best paths to all vertices in a graph, starting from a given intitial vertex. Extracting 
a path can be done, for example, by iterating the predecessor function starting from 
the goal vertex. When one has several goals to choose from, knowing the minimum 
cost to reach each of them offers a good way to rank them in some order of 
efficiency of reachability. The simplicity of the algorithm, both conceptual as well as 
computational, make it a tried and true component of most roadmap planners. 

The developments in this work on the roadmap planners require that a 
certain heuristic- visibility- be employed when constructing the roadmap. Details on 
the visibility heuristic will be provided in later sections, however it requires the 
maintenance of connected components, and so we review that problem, and ways 
to tackle it, here. Since roadmaps are constructed incrementally, by adding new 
vertices and edges, we are primarily interested in dynamic component maintenance 
that is efficient to readjust as the graph changes. 

One can treat the connected components of a graph as defining another 
graph, which we will refer to as SCC(G)- the graph of (strongly) connected 
components of the graph G. We have that the vertex set of SCC(G) is comprised of 
the connected components of G. An edge in SCC(G) between two components A and 
B means that there exists at least one edge in G which goes from a vertex in the A 
component to a vertex in the B component. 
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Figure 2-1. A directed graph (left) and its graph of strongly connected components (right). 

 
Naturally, the case of undirected graphs is simpler. If we require that 

connected components be maximal, then it follows that SCC(G) is a collection of 
vertices without edges between them. Should an edge appear between two 
components, then the maximality requirement implies that they should be merged 
into a single component. It is then easily seen that maintaining connected 
components in undirected graphs, as long as only vertex/edge additions take place, 
is the same as maintaining sets when union operations are performed. Disjoint-set 
data structures solve this problem efficiently; an algorithm by R. E. Tarjan[Tar75] 
has  O(α(|V|) complexity, where α is the inverse of the Ackermann function and as 
such very slow growing. For practical roadmaps, Tarjan's disjoint-set union 
algorithm is effectively constant time per query and very fast. 

Maintaining connected components in case of vertex/edge deletions is more 
involved, but an algorithm exists due to Y. Shiloach and S. Even with O(|V|) 
amortized complexity per edge deletion. 

The case of directed graphs is more complex, as SCC(G) is no longer a 
collection of disconnected vertices. However, if we require connected components to 
be maximal, SCC(G) has the property of being acyclic. For, assuming that SCC(G) 
does contain a cycle, it follows that a cycle exists in G linking nodes from different 
components. 

Therefore if the addition of an edge to G produces a cycle in SCC(G), it 
follows that several connected components can be merged into one. This 
observation allows incremental algorithms for topological sorting/cycle detection to 
be adapted to strong connected component maintenance[Hae12]. 

The case of edge deletion doesn't have specialized algorithms. Instead, one 
could simply use Tarjan's strongly connected components algorithm, which has    
O(|V|+|E|) complexity. 
 

2.2 Control theory 
 
While aspects of control are beyond the scope of this thesis, control and 

motion planning are related topics; these two processes also need to work together 
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in a real system, so it pays to have some overview of what motion control is 
supposed to do. 

Roughly speaking, control is also tasked with taking a system from some 
start configuration to a goal configuration or trajectory. The difference between 
control and planning is that an approach that considers only the dynamical 
equations of the system would be called "control". One that takes into account 
various constraints in the environment like obstacles would be called "planning". 

One could then say that control is motion planning, if the environment were 
free of obstacles. And indeed, the role of control methods inside a sampling motion 
planner (to be described in section 2.4.5) is to provide some simple trajectories to 
link configurations into a graph called the roadmap. "Simple" here just means the 
control algorithm is not tasked with obstacle avoidance. Depending on the 
dynamical system, control can be quite a challenging task. 

2.2.1 Optimal control 

 
With the application of motion planning to dynamic systems, concepts and 

methods from optimal control theory are becoming increasingly relevant to motion 
planning research[Wes04, Tas07, Atk08, Chi08, Mit08, Ted09, The10]. This chapter 
will briefly review a few of those concepts. 

The system dynamics is characterized by a state update function which 
takes as parameters the current system state and current control input, and outputs 
the next state (for discrete time systems) or the rate of change of the state (for 
continuous time systems). The state update function may not be linear, may vary 
with time, and may also be affected by some kind of noise or disturbance (process 
noise)[The10]. Often, one uses a linearized approximation of the state update 
function, by retaining terms from its Taylor expansion only up to first order 
derivatives[Tas07, Atk08]. Second-order approximations are sometimes used as 
well[Wes04]. 

One also defines, for any system trajectory, a cost functional that must be 
minimized (or conversely, a reward functional that must be maximized). The 
optimal (best possible) cost (or reward) for getting from one state to another is the 
value function for trajectories that link those states. Several control algorithms 
attempt to either compute, or approximate, this value function, usually by an 
iterative process referred to as a value iteration[Tas07], and in so doing, determine 
the sequence of controls that will optimally guide the system between two states. A 
function which will, for any state of the system, provide the control to apply in 
response, is called a policy. The policy does not have to be a globally linear 
function, and can implement more complicated behaviours than linear controllers. 

Several planners have used libraries of motion primitives as simple 
connections between samples in a roadmap. These are sequences of controls for 
which the cost can be precalculated. They are often selected to be in some sense an 
optimal link between their endpoints, or at least obey a necessary condition for 
optimality[Chi08]. 

Stability concerns the behaviour of a system when subject to disturbances. 
Intuitively, a stable system will respond with small variations in output to small 
variations in input. There are more mathematically rigurous criteria for stability. 
Lyapunov stability (of a point x) means that if the system starts close to the point 
x, it will stay close to x as time passes. If it actually converges to x, then it is 
asymptotically stable. If it converges at least as fast as a certain given 
exponential rate, then it is also exponentially stable. Stability is relevant for 
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planning because the controller must be able to follow the trajectory that the 
planner puts forth as a solution and stabilize to the goal[Ted09]. 

2.2.2 Kinematically reducible systems 

 
In general, real physical systems have inertia. A consequence of this is that 

velocity cannot jump discontinuously, and needs to be included in the state 
variables that describe the system. 

On the other hand, the fewer state variables a system has, the easier it is to 
construct plans for it. In particular, if one can remove velocity considerations from 
planning, one can construct plans much easier. While such an approach does not 
make any attempt at optimality, it can be quite efficient in practice. 

Let then a driftless system be a system with no inertia, whose state 
variables are only positions and whose inputs are velocities. As previously 
mentioned, physical systems tend not to be driftless. 

However, a physical system can be kinematically reducible if there exists 
a driftless system such that any trajectory that the driftless system is capable of, 
the dynamic system can also follow in a controlled fashion[Bul02, Bul10]; the 
driftless system is called a kinematic reduction of the dynamic system. Without 
entering into the details of the geometrical formalism, the condition for a driftless 
system to be a kinematic reduction is that any trajectory it can follow requires only 
accelerations that the actuators/controls on the dynamic system can produce. Note 
that a kinematic reduction might not be able to follow all trajectories that the 
original dynamic system can. 

A special case of kinematic reduction is the kinematic decoupling field, 
which is a kinematic reduction whose space of possible velocites is one dimensional. 
Intuitively, a kinematic decoupling field describes trajectories that the dynamic 
system can follow, starting from a zero velocity configuration, using only one of its 
actuators/controls. 

Another case is that of a maximal kinematic reduction (dynamic systems 
for which such a reduction exists are called maximally reducible), where the 
space of possible velocities has the same number of dimensions as the space of 
controls for the dynamic system. Intuitively, the trajectories of a maximal kinematic 
reduction are the trajectories that the dynamic system can have, when starting from 
a zero velocity configuration. 

Kinematic reductions are useful for local planning (taking a system from one 
state to another, assuming obstacles are absent) because simple sequences of 
maneuvers along decoupling fields, or subspaces of a maximal reduction, can take 
the system from any position to any other (again, assuming no obstacles present). 
To concatenate trajectory segments along different decoupling fields/subspaces, the 
velocity at the start and end of the segments need to be zero. Planning then is done 
by selecting a sequence of segments, seeing how long each segment should be, and 
finally producing a velocity profile to make the concatenations possible. 

Selecting the sequence is usually trivial- often, a single sequence is capable 
to reach anywhere, depending on the length of the various segments. 

Selecting the lengths of the segment is analogous to the inverse kinematics 
problem in robotics, and is solved by similar algorithms. One has a specified 
destination in the system's workspace, and needs to find parameters in a "joint 
space" of the robot (or in this case, lengths of segments along kinematic 
reductions). 
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The most important constraint on the velocity profile along the segments is 
that velocity at the start and end needs to be zero for each segment. One would 
then start at zero velocity, accelerate to some maximum velocity that doesn't 
require the actuators to overexert themselves, then slow down to zero by the time 
the end of the segment is reached. 
  

2.3 Temporal logic 
 

Temporal logic is a catch-all term for various formal systems meant to 
capture and reason about the time evolution of transition systems. Subsequent 
sections will describe what a formula in a temporal logic looks like, and how it 
relates to an abstract description of a system capable to transition, under some 
rules, from one state to another. Such abstract descriptions of transition systems 
are known as Kripke structures.  

One then defines a verification problem (checking that the transition 
system can behave as indicated by the temporal logic formula) and a control 

synthesis problem (finding a sequence of actions that will satisfy the formula). 
Temporal logic emerged as a method to verify the execution flow of programs, but 
it, or subsets of it, have found use in other domains like planning. 
 Several versions of temporal logic exist, of various levels of expressive 
power: CTL, LTL[Pnu77], their superset CTL*[Eme86], and the even more powerful 
µ-calculus [Koz82]. In this work we will use a subset of LTL that is concerned with 
path existence formulas. 

2.3.1 Kripke structures 

 
 Kripke structures are abstract representations of transition systems- 
systems for which various states, each with a set of properties, are defined along 
with transition possibilities between these states. Mathematically, a Kripke 

structure is a tuple K={V, v0, E, Π, L} where V is a set of states, E is a set of 
transitions between these states (and one can think of V and E as forming a directed 
graph), is v0 an initial state,  Π is a set of atomic propositions and L:V->2Π is the 
labelling function. 
 Kripke structures can be used to model program flow (and indeed, program 
verification was one of their first uses), but in the context of planning they can be 
employed to describe the behaviour of a dynamic system, or rather, of a discrete 
model of it. Vertices are then states of the system and edges give what transitions 
are possible with the allowed controls. The atomic propositions are some statements 
that can be checked knowing simply the coordinates of a state; for example, 
belonging to a certain region of the configuration space can be atomic proposition. 
 

2.3.2 Temporal logic formulas 

 
 In order to define the subset of LTL, one first needs to define the syntax of 
the formulas in the language. The syntax can be given in Backus-Naur form will now 
be given: a formula Φ can be one of: 
 
 φ : := p∣¬ p∣φ∧φ∣φ∨φ∣φU φ
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 where p is an atomic proposition. In other words, a formula may be an 
atomic proposition or the negation of an atomic proposition, a conjuction or a 
disjunction of formulas, or the product of two formulas by the U operator. We also 
allow, as "syntactic sugar", the names true and false as atomic propositions and 
hence formulas (true holds everywhere, false holds nowhere). 
 The recursive way in which the syntax is defined can naturally be 
interpreted as describing a way to construct a syntactic tree of subformulas for a 
given formula of LTL, whose leaves would be the atomic propositions. For a given 
operator (U, conjuction, disjunction), a subformula appears on either side. 
 Formulas that do not contain the U operator are called locally checkable, 
because the validity of such a formula can be verified at a state simply by knowing 
the state in question, without any information about the possible transitions. Locally 
checkable formulas therefore describe what atomic propositions hold at a given 
state. In this paper, we will use syntactic trees where the leaves are the locally 
checkable subformulas. 
 

 
Figure 2-2. A syntax tree for an LTL formula. 

 
 The U (or, "until") operator in a formula like Φ1UΦ2 has the following 
meaning: until a state where  Φ2 holds is reached,  Φ1 must hold all along the path 
that gets there (it is not required to hold once Φ2 is reached however). Formulas 
containing the U operator therefore describe paths. One can however say that a 
formula containing U operators holds (or not) at a state if there exists a path, 
starting at that state, which obeys the formula.  
 We denote the set of states of a Kripke structure K where a formula Φ holds 
as ⟦Φ⟧K. 
 Notice that we do not allow negations on general formulas, which is what 
restricts this fragment of LTL to path existence formulas. Without the restriction, we 
could write formulas like the example below 
 
 
 which means that it is impossible to reach a state where Φ does not hold (or 
equivalently, Φ holds on all paths). In the case of this work, where we are 
concerned with planning for a single system, or possibly a collection of cooperative 
systems, we only need path existence formulas however. If there's a good choice 
for the path, then the planner can choose it. 
 Intuitively, one expects that as a planner discovers new possible transitions 
of a system, new ways for it to move among the obstacles, then the repertoire of 
plans it can find increases. This is true for path existence plans, and will be 
formalized below in the "more isn't less" lemma. It is not true however for all-paths 

¬(trueU (¬φ))
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specifications, as finding previously unknown behaviors of the system may 
invalidate an all-path specification that was previously thought to hold. 
 All-paths specifications become important in adversarial scenarios,  where 
one wants to make sure certain properties hold, whatever the adversary may do. 
Even then, the full power of all-path specifications is overkill, as one only needs to 
account for all possible "reasonable" choices of the adversary. This is beyond the 
scope of this work however. 
 We now state the "more isn't less" lemma (an analogous result can be 
found in [Kar09] for µ-calculus): let there be two Kripke structures K={V, E, v0, Π, 
L} and K'={V', E', v0, Π, L'} which are such that: {V, E} is a subgraph of of {V', E'} 
and for any vertex v from V, L(v) = L'(v). Then, for any formula Φ in the subset of 
temporal logic defined above we have that ⟦Φ⟧K is a subset of ⟦Φ⟧K'. 
 The proof proceeds by structural induction on formulas. It trivially follows 
that locally checkable formulas can not provide counterexamples to the lemma. 
Suppose now that Φ1 and Φ2 are formulas that do not provide counter-examples to 
the lemma. Then, Φ1^Φ2 is also not a counter example to the lemma because if it 
were, then it means there exists a vertex v at which one of the component formulas 
ceased to hold in the larger Kripke structure, whereas it held in the smaller one. But 
since neither formula is a counterexample to the lemma, this cannot happen. A 
similar reasoning shows that a disjunction of formulas that do not contradict the 
lemma will itself not contradict the lemma. 
 Suppose now that Φ1UΦ2 is a counter-example to the lemma. Therefore one 
can find a vertex v at which it holds in the smaller Kripke structure, but not in the 
larger one. Let v, v1, v2, ..., vN be a path that verified the formula in the smaller 
Kripke structure, such that Φ2 holds at vN, and Φ1 holds at all previous points. Since 
by assumption neither Φ1 nor Φ2 are counterexamples to the lemma, they continue 
to hold at those vertices in the larger Kripke structure as well. This then implies that 
v, ..., vN is no longer a valid path in the larger Kripke structure, which further 
implies that at least one edge has disappeared. But this contradicts the manner in 
which the larger Kripke structure was constructed. Therefore Φ1UΦ2 isn't a counter-
example to the lemma. 
 Finally, one sees that all formulas that can be constructed in the considered 
subset of LTL can be constructed from formulas that are not counter-examples to 
the lemma, via operations that do not produce counter-examples to the lemma. 
Therefore the subset considered does not contain counter-examples, and the lemma 
holds. QED. 
 The "more isn't less" lemma guarantees that as the number of vertices and 
edges in a roadmap increases, the ability of a planner to find paths to satisfy plans 
does not decrease. 
 

2.3.3 Specifying robotic tasks in temporal logic 

 
 A typical robot task is to go from some location A to another location B; we 
can consider these as regions of the workspace. A real robot with real actuators and 
sensors will always have some positioning error, so one should allow for some 
tolerances when defining regions[Lah10, Ciz12]. Also, suppose we want our robot to 
avoid a region C (which can be some kind of obstacle). Nonetheless, for 
computational purposes one would also model the continuous workspace of the 
robot as a finite collection of points with some links between them, in a graph that 
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then becomes the Kripke structure we have to validate the formula over. A temporal 
logic formula to describe this task is: 

))(()( CBUC ¬∧¬  

 Notice we need to explicitly require that the robot reaches a region that is 
inside B but outside C. Notice also that the formula does not include the region A. 
The formula defines a subset of points from the workspace that satisfy it. 

The condition for a plan's existence then is that there are points in A that 
are also inside the subset of points that satisfies the formula. To find a plan, if one 
exists, one will run a graph search on points that are inside the region of points that 
satisfy the formula. 

Other specifications are possible. For example, to visit regions A, B, and C, 
in this order, one would use: 

))))()((()((()( CUtrueBUtrueAUtrue ∧∧  

Searching whether a plan exists, and identifying that plan, would proceed 
similar to the process described before. One would see which points in the Kripke 
structure modelling the robot's possible configurations satisfy the formula. General 
tools for finding sequences of states in a Kripke structure that obeys an LTL 
specification exists[Cim02, Hol04]. In a later chapter, we'll present a more efficient 
procedure adapted to our subset of LTL. 
 

2.4 Motion planning 
 

2.4.1 Spaces of planning 

 
The workspace is simply the three dimensional space that the system 

exists in. A fourth degree of freedom, time, may be considered in some replanning 
approaches to handle changing environments. 

The configuration space is the space defined by the degrees of freedom of 
the system. A rigid body moving freely in a three dimensional workspace  has six 
degrees of freedom (three for translations, three for rotations), while a robot arm 
has as many degrees of freedom as it has joints. Note that the configuration space 
usually has more dimensions than the workspace. Typical robot arms have six or 
seven joints, not including any degrees of freedom introduced by the end effector; a 
robot with several arms and/or legs has even more. Also, the configuration space is 
often not just some higher dimensional Euclidean space (Rn). For example, the 
configuration space of a rigid body is R3×SO(3), where SO(3) is the space of 
Special (det(A) = 1) Orthogonal (AT = A-1) 3×3 matrices, and corresponds to the 
rotation part.  Several kinds of coordinates may be used on SO(3) (Euler angles, 
Axis-Angle, Quaternions etc.), and one must choose carefully so as to fit the 
application.  

The task space is some task-defined space, of lower dimension than the 
configuration space. For example, the task space of a painter robot might simply be 
the surface it paints on, which can be specified by a mere two degrees of freedom. 
Another example of task space would be the orientation of the end effector (three 
degrees of freedom). A task space is useful precisely because it is of lower 
dimension than the configuration space. As will be shown later, the number of 
dimensions a space has drastically affects the complexity of a planning problem, and 
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thus the time and memory resources needed to solve it. It is a lot preferable to plan 
in spaces of fewer dimensions, if possible. 

For systems with dynamics (where notions like inertia and momentum are 
significant to the behaviour of the system), one can also define the state space, 
the degrees of freedom of which are the state variables. These are all the variables 
that one would need to know, in order to be able to predict the system's reaction to 
inputs. Most of the time, the state space is simply the product of the configuration 
space of the system, together with the space of velocities of the system; it therefore 
has twice as many degrees of freedom as the configuration space. For example, for 
a rigid body, the state space is R3×SO(3) ×R3×Sk(3)  where Sk(3) is the space of 
skew-symmetric (AT = -A) 3×3  matrices. 

Finally, one can define the control space as the space of possible control 
inputs to the system. For a rigid body, it might be the space of all possible forces 
and torques that can be applied to the body. For a car-like robot, it might be the 
combination of the possible values for the throttle and steering wheel angle. For a 
robot arm where each joint has one degree of freedom (which is typical), this space 
would have as many degrees of freedom as the robot has actuated joints (some of 
the joints may be passive, in which case one speaks of an underactuated 

system). 
Obstacles are regions of a space through which movement is forbidden. An 

obstacle exists because some object (a wall or another robot, for example) is 
located somewhere in the workspace. An obstacle in the workspace also defines a 
forbidden region in configuration space (a robot's position may not be inside the 
obstacle; or, if the robot is close to the obstacle, it cannot rotate freely any more). 
All the points in configuration space through which movement is possible make up 
the free space. 

2.4.2 Topological issues involved in planning 

 
 A topology on a set is a collection of subsets, referred to as the "open 
sets", which has the following properties: the set itself is open; the empty set is 
open; any union of open sets is open; any finite intersection of open sets is open. A 
set which is the complement of an open set is closed. An open set which contains a 
point is a neighbourhood of that point. 
 The usual definitions of open and closed intervals (don't contain, and do 
contain their endpoints, respectively) on the real line obey the above definition. It is 
worthy of note however that one can define a topology by stipulating that intervals 
which contain their endpoints are open sets as well. If one defines such a topology, 
it quickly follows that for every point there is a neighbourhood that contains only 
itself. This is the discrete topology in which all points are isolated from each other; 
such topologies are unlikely to appear in a planning context, because they describe 
totally disconnected spaces.  
 It is therefore not too misleading to think of open sets as sets which are the 
same as their interior. Every point in an open set is surrounded "on all sides" by 
other points from the open set. In contrast, closed sets have points that sit on the 
boundary.  
 A collection of open sets such that their union is a superset of some set B is 
said to be an open covering of B. A set is called compact if, given any open 
covering of it, one can select a finite number of sets from that covering that will still 
form an open covering of it. 
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 If one can define a real-valued function on pairs of element of a set, such 
that the function is non-negative, zero valued if the pair is of the form (x, x), 
symmetric, and obeying the triangle inequality, then that set is called a metric 

space and the function is a distance function. Actual distance in geometric space 
is the prototypical example, but one can also use cost to reach to define a 
(pseudo)metric; the "pseudo" is because cost to reach is not necessarily symmetric. 
 Given a set, one can define a σ-algebra on it as a collection of subsets 
obeying these properties: the set itself is in the algebra; if a set is in the algebra, 
then so is its complement; any countable union of sets from the algebra is a set in 
the algebra. Given a σ-algebra on a set, one can define a measure function on the 
algebra as a real-valued function which is non-negative, returns 0 for the empty set, 
and the value returned for the union of pairwise disjoint sets is the sum of the 
values of the function for the disjoint sets. 
 Measure functions are used to describe two related mathematical concepts, 
volume and probability. Volume is an intuitive enough concept, but care must be 
taken to remember that a set of volume 0 is not necessarily empty. A plane in three 
dimensional space has volume 0 (is a measure 0 set) but does contain points. 
 The measure as probability interpretation arises by saying that the measure  
of the original, entire set be called 1. The sets of the σ-algebra then represent 
events and their volume represents the probability of occurrence. Points in a set 
become possible outcomes of some random experiment.  
 Same observation applies to the measure as probability interpretation. Just 
because an event has measure 0 doesn't mean that there are no outcomes 
consistent with it. It does mean however that the event almost surely will not 
happen. 
 An example can be supplied by considering a cube, and some process which 
selects a random point inside this cube. Assuming the process isn't biased towards 
any cube region, then the probability of the selected point to be a specified point 
inside the cube is 0 (there are 'an infinity of points' that could be selected instead of 
the given point). The probability of the selected point to lie on a given two 
dimensional slice is also 0 (there are 'an infinity of slices', all disjoint, that the 
selected point may be in, rather than the specified slice). The probability of the 
point lying inside some three-dimensional region (assuming the region is well 
formed, ie. part of the σ-algebra) is equal to the ratio of its volume to that of the 
cube. 
 

2.4.3 Complexity of motion planning 

It is known, due to work by Reif[Rei87] and Canny[Can87], that even a 
simple version of the planning problem (moving a chain of rigid bodies from one 
configuration to another while avoiding obstacles; only geometric constraints, no 
dynamics or uncertainty, no optimization requirements) is PSPACE-complete. 

PSPACE means is that any algorithm that can solve any instance of this 
problem, or correctly report that there is no solution (such an algorithm is called a 
complete algorithm, do not confuse with PSPACE-complete explained below) will 
require memory space that is proportional to a polynomial in the number of 
dimensions of the configuration space. 

A problem class X is PSPACE-complete if any other problem that is in 
PSPACE may be efficiently reformulated as an instance of the problem class X. 
Efficient reformulation means that the reformulation takes few computational 
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resources- polynomial time in the instance complexity. For example, the fact that 
geometric motion planning is PSPACE-complete means that any other problem in 
PSPACE may be efficiently reformulated as a planning problem. It is not yet proven, 
but after decades of research it is currently believed that PSPACE-complete 
algorithms  require computation time that is exponential in the problem instance 
complexity; in this case, degrees of freedom of the configuration space. Since 
typical systems in robotics have six or more degrees of freedom (indeed, humanoid 
robots may exceed fifty!), complete algorithms are impractical even for simple 
versions of the planning problem. 

Some of the more complex versions of the planning problem (where 
uncertainties and/or system dynamics are considered) are not even proven to be 
decideable. This means, it is not known whether there even exists an algorithm that 
will correctly find a solution (or lack thereof) for any problem instance in some finite 
time, however large. There is the recent work by P. Cheng, G. Pappas and V. Kumar 
which shows that planning under differential constraints, and some assumptions on 
the system's trajectories, is decideable[Che07], but further research on this and 
related topics has been pursued less. Reif and Canny's complexity results from the 
80s have shifted the focus of research into other kinds of algorithms for planning. If 
completeness of an algorithm is too expensive to ensure, then a compromise 
becomes acceptable instead. Two such compromises have been pursued in the 
literature. 

Resolution completeness means that the algorithm maintains enough 
information about the environment, so as to be able to tell apart features that are 
not too small. If solving a planning problem instance does not depend on features 
that are below the resolution of the data that the algorithm uses, then the algorithm 
will find a solution[Che02]. The typical resolution-complete algorithm is grid-based: 
a grid of cells is constructed, and each cell knows whether there is an obstacle there 
or not. The smaller the cells, the better the resolution, but the greater the number 
of cells required to cover the environment. In fact, the number of cells needed to 
ensure a certain resolution is itself growing exponentially in the number of 
dimensions of the configuration space, apparently an even worse situation than the 
PSPACE algorithm designed by Canny[Can87]. The strength of resolution-complete 
approaches however lies in the ability to prioritize degrees of freedom- some may 
be undersampled, and thus the algorithm would have poor resolution over them, 
but may still efficiently find solutions. Careful selection of which degrees of freedom 
to undersample, and conversely which to sample at high resolution (identifying a 
task space), is key [Zha07]. 

Probabilistic completeness means that the algorithm has a chance of 
finding a solution, if one exists, and that, as the algorithm runs for a longer time, 
this chance improves. Current probabilistic algorithms have good rates of 
convergence to certainty (almost surely, the chance of solving converges to 1 
exponentially in the time spent on searching), but of course they do not guarantee 
that a solution will in fact be found. If a solution does not exist, then the algorithm 
may run forever if allowed to do so. In practice, a probabilistically complete planner 
is allowed to run for a given interval of time, and whatever solution it found in that 
time (if any) is used. Planning may fail to find a solution in the allocated time, even 
if one exists. 

Resolution-completeness is, in a sense, a better guarantee than probabilistic 
completeness. If a resolution-complete algorithm reports no solution, then indeed 
no solution exists that does not depend on too fine features of the environment. 
Because of sensor or actuator errors, such too fine features may also be too small 
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for the system to manipulate or maneuver through anyway, and any plan that 
depends on them unfeasible. This ability to guarantee that a solution exists (or not) 
at a given level of resolution is critical in applications like system verification. 

On the other hand, probabilistically-complete algorithms seem to not require 
a grid-like structure the way resolution-complete algorithms do, and as such seem 
free from the curse of dimensionality. This however is, if at all, only partially true. 
The chance of a probabilistically-complete algorithm to find a solution grows as it 
gains more information about the environment, and in effect what it does is 
construct a grid-like structure of its own, only irregular because of random 
sampling. However, it often has a better chance of finding a solution "early", before 
constructing the equivalent of an extensive "grid", unlike resolution-complete 
algorithms. The two approaches have since influenced each other, as methods from 
one kind of algorithm have been applied to the other. There is some research for 
example that suggests using deterministic sampling sequences, whose long term 
output resembles a regular grid, will bring better results for sampling 
planners[Lin03]. 
 

2.4.4 Planning approaches 

The first planning algorithms to be developped were complete planners 
based on computational geometry algorithms. Such approaches, while workable for 
simple problems with few degrees of freedom, have fallen out of favour in light of 
Reif and Canny's complexity results. 

Most of the time, higher dimensional problems are handled by constructing 
road maps. These are graphs, the vertices of which are points in (usually) the 
configuration space; an edge between two vertices is then a trajectory between 
those two configurations. The purpose of the roadmap then is to capture the 
connectivity of the space that the problem is formulated in. A planner would 
contstruct the roadmap (or use an already available one), connect the initial and 
final configurations to vertices in the roadmap, then use graph search algorithms to 
find a path from the initial to the final configuration. 

The advantage of this approach is that once a roadmap is built, searching 
for a path along it is an easy problem; graph search algorithms are already efficient 
(for example, Dijsktra's algorithm requires time polynomial in the number of 
vertices), and several heuristic methods may find paths even faster (A*, 
D*)[Ste94]. 

Building the roadmap itself can also be done fairly efficiently, as long as 
resolution-completeness or probabilistic-completeness is acceptable. This means 
modern planners do not explicitly use knowledge of obstacle shape and distribution 
to identify passages, cul-de-sacs or any other feature. Indeed, identifying narrow 
passages among obstacles is at least as hard a problem as planning! It turns out 
however that collision checking (testing that a configuration is not inside an 
obstacle) can be solved fairly efficiently, regardless of the number of dimensions of 
the space. In fact, it is most often enough to perform collision checking in the 3D 
work-space, or 4D space-time, and not the configuration space itself. This  is what 
suggested a very commonly used method of roadmap construction, which the next 
section describes. 
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2.4.5 Sample-based planners 

 
A sampling planner is a method of planning that proceeds by first 

constructing a roadmap of the (free) configuration space of a system via an iterated 
sample and connect process, and then using that roadmap to answer planning 
queries. 

A roadmap is a graph in which vertices are states in the free space, and 
edges are simple trajectories between them that do not collide with obstacles. A 
roadmap therefore attempts to capture the connectivity of the free space. 

Several ways to construct roadmaps exist, but one that has proven 
especially useful in practice is the sample-and-connect approach, which is now 
described. A sequence of points from the free space is generated, often by using a 
random process. When a point is generated, a list of points stored previously in the 
roadmap and that are "close" to the new point is produced, and connection attempts 
between points on the list and the new one is performed. The connections are 
trajectories generated by some local planning procedure, which is some 
control/steering method for the system, required to find a path between given 
points. The local planner does not take obstacles into account however, and the 
generated trajectory needs to be checked to be free of obstacle collisions before it 
can be accepted to the roadmap. 
 Even if the local planner would be unable to navigate around obstacles, the 
sampling planner nonetheless may have this capability. By placing "enough" 
samples in the free space, and connecting close ones, paths around obstacles will 
form if the planner is probabilistically complete: as the number of samples 
increases, the probability that a path between two points is found (if one exists) 
tends to one. Many sampling planners are probabilistically complete, at least for 
certain versions of the planning problem in static and/or well-known environments. 

The central notion behind sampling theory (as used in motion planning) is 
coverage. A planner needs to "know" what the environment looks like, while at the 
same time not require too many samples, which would make computation 
inefficient. Coverage of an area then means that the planner has taken samples 
from it. Ideally, all the configuration space should be covered by samples so as to 
capture its connectivity (and possible paths). 

 
It follows that a natural requirement for samples is uniformity. The planner 

should not oversample some areas and ignore others; this might result in it 
functioning slowly or even missing a path! In random planners, uniformity is 
ensured by having samples selected according to a random, but uniformly 
distributed, procedure. 

 
Recent research has focused on uniformity criteria for both probabilistic- and 

resolution-complete algorithms. Two such criteria are mentioned in the literature: 
discrepancy and dispersion. 

Dispersion is, roughly speaking, the radius of the largest open ball in 
configuration space that does not contain any sample. More rigurously, the 
dispersion of a collection of points P in a configuration space C, under some 
distance function ρ is defined as such: 
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Figure 2-3. A roadmap for an environment. Only connections in the roadmap are known to the 

planner. 

 
Discrepancy is, intuitively, an indicator of how good a set of points is for 

estimating the volume of a region in configuration space, when knowing only the 
fraction of the points that lie inside the region. More rigurously, the discrepancy of a 
collection of points P in a configuration space C, under some measure function µ 
(measure as in mathematical measure theory, corresponding to the volume and not 
the distance function!), and for a collection R of subsets of C is: 
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where |  | applied to a finite set (like P) is the number of its elements. Low 
discrepancy means low dispersion, but the converse is not necessarily true. 

It turns out that dispersion and discrepancy indicate how good a collection 
of points is for solving a problem[Lin03]. In particular, dispersion indicates the 
resolution of a resolution-complete planner. If the samples used by the planner 
have a certain dispersion, then the planner will find paths as long as those paths do 
not require corridors thinner than the dispersion.  

There are two kinds of point (sample) collections: sets and sequences. A 
point set is simply a finite set of points, generated "at once" by some method. It 
must be known in advance how many points the set should contain. A grid of n-by-n 
points, evenly spaced, is a point set. A point sequence, unlike a set, generates the 
points one by one according to some method, and can be continued indefinitely. 
Picking a new point at random according to a uniform probability distribution is an 
example of a point sequence. Any point sequence, when stopped at a given number 
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of points n, is usually slightly worse in terms of dispersion or discrepancy than a 
dispersion (or discrepancy) optimizing point set with the same number of points. 
Nevertheless, sequences are preferred in practice because it is hard to tell how 
many points will be needed to solve a problem. The ability of sequences to continue 
generating points until a solution is found (or time runs out) trumps their slight 
disadvantages compared to point sets. 

It turns out that deterministic, dispersion-optimizing sequences, obtain 
better dispersion than random uniform sampling[LaV02, Lin03]. Random sampling 
cannot be too uniform (or else it is not actually random). Some of the current 
research in sampling has therefore focused on obtaining dispersion-optimizing 
sample sequences on various spaces common to motion planning in robotics[Yer08]. 

 

 
Figure 2-4. Sampling on SO3: use of Euler angles (left) concentrates samples at the polar 

regions. Sampling quaternions results in a more uniform distribution. 

 
Sequences for Rn have been fairly well known for some time. Recent work 

has developped such sequences for Sn (sphere of dimension n), SO(3) and SE(3) 
(the space of rigid body motion, which includes SO(3))[Kuf04]. Uniform sampling on 
SO(3) is particularly tricky, as one has to carefully choose measure functions on it. 
It turns out that there is such a function, the Haar measure, that is a natural choice 
because it doesn't change after rotation. Therefore, the Haar measure of a subset of 
SO(3) does not change as that subset is "moved around" on SO(3). However, some 
commonly used coordinates on SO(3) (like Euler angles) do not preserve Haar 
measure.  

Random sampling has also been researched. The concept of Voronoi bias 
was introduced to explain why the original RRT is capable to explore a space 
quickly[Lin04]. Voronoi bias means that the probability of a node to be chosen for 
expansion (connection to a new sample) is proportional to the volume of its Voronoi 
cell (the collection of points in the configuration space which are closer to this node 
than to any other node in the tree or roadmap maintained by the planner). 
Therefore, large unexplored areas will tend to be broken up quicker as more 
samples are selected there and nodes are expanded towards them. Note that the 
planner never explicitly constructs a Voronoi diagram, which would be a 
computationally expensive operation. 
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Voronoi bias can also explain a problem with random sampling called the 
bug trap. The planner does not know the shape of the obstacles, nor does it know 
the shape of Voronoi cells. Therefore, it can happen that large Voronoi cells cannot 
be expanded into, because any expansion attempts are blocked by obstacles. 
Nonetheless, random sampling would select more samples in those regions, 
resulting in many failed expansions and/or superfluous nodes and poor planner 
performance. 

To combat this, adaptive sampling domain methods have been 
developped[Jai05, Yer05]. These start by having the sampling domain start as the 
entire configuration space, but failed expansion attempts from a node results in 
sampling around that node being restricted to some sphere. The radius of this is 
either fixed by tuning, or dependent on the number of failed or successful expansion 
attempts. Leaf or obstacle nodes (nodes from which expansion is not allowed, and if 
a sample is closest to one then it is ignored) have also been investigated for 
possible use in planning. Another approach, similar in spirit, is to use principal 
component analysis and similar methods on the set of vertices that have failed 
expansion to try and estimate which directions in the configuration space are 
blocked by obstacles, and thereafter favor sampling in a submanifold that appears 
free of obstacles[Dal09]. Other methods proposed to help planners handle narrow 
passages include obstacle retraction[Sah05] and biasing the sampling process close 
to obstacle edges[Hsu03]. 

Sampling in lower dimensional spaces has been considered. Task-space RRT 
(TS-RRT)[Shk09, Shk10] samples most of the time in some task space selected for 
the planner. The planner also uses some method (like counting successful 
expansions) to determine whether it "got stuck" and if this happened, revert to 
doing a few sample/expansion iterations in configuration space before returning to 
sampling in task space. 

 

 
Figure 2-5. Samples in a roadmap determine an implicit Voronoi diagram (left). Adaptive 

sampling (right) restricts where new samples are generated, to increase the probability of 

successful roadmap expansions. 

 
Some planning problems explicitly require movements that are constrained 

to some submanifolds of the space[Ber09, Gui09, Suh11, Şuc12b]. In such cases, 
constrained sampling algorithms are used, and the relevant measure of sampling 
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quality is dispersion on the constraint submanifold, not on the configuration space 
as a whole. 

Some planners also use a simpler notion of coverage than dispersion or 
discrepancy. They use a projection of the configuration space onto a lower 
dimensional space (like a task-space) and assume that if "enough" samples are 
located in an area in the projection, then the volume in configuration space that 
corresponds to that area is considered to be well-covered by samples[Şuc08]. 

Finally, sampling for systems with dynamics is done in either the state 
space, the product of the state space with the control space, or some lower 
dimensional task-space (with occasional forays into state space in case the planner 
finds itself stuck). More on planning for systems with dynamics in a section below. 
 Various reconnection strategies also exist. The typical RRT connection 
strategy is to seek the nearest neighbour to a sample, and select that neighbour for 
expansion. Therefore, there has been research interest in developping efficient 
algorithms for the nearest neighbour (or neighbour nearness ranking) 
problem[Yer08]. Good algorithms and data structures for Euclidean spaces and 
distance metrics exist, as well as for spaces like SO(3) or Sn. 

One version, called RRT*[Kar10], expands from the node in a 
neighbourhood around the sample (not necessarily the nearest node to the sample) 
that offers the lowest-cost path from the root to the sample. Changing edges in the 
tree is also done, if the newly added node makes cheaper paths to nodes already in 
the tree possible. 

 

 
Figure 2-6. Reconnection strategy to shorten paths in a roadmap. 

 
It is important to note that the concept of a metric (a distance function) is 

at the heart of a planner. Node nearness only makes sense when having a good 
metric, and so do sample uniformity criteria and adaptive sampling domains. Often, 
the metric used is the Euclidean distance metric. This however is not always 
appropriate, in particular for systems where dynamics are significant. 
 In general, sampling planners work by "saturation"; they pick many samples 
from free space and thus guarantee good properties like probabilistic completeness 
and even convergence to optimal paths.  
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 A variation on the sampling planner concept, of interest to this work, are the 
visibility-based planners. They are planning algorithms which attempt to reduce 
the number of vertices needed in the roadmap, by using the information already 
present in the roadmap as a way to decide if a new candidate sample appears 
useful. 
 The visibility heuristic as originally defined works thusly: a candidate sample 
is useful if it cannot be connected via simple trajectories to samples in the roadmap 
(so it improves coverage by exploring as yet unreachable areas) or if it can be 
connected to samples in the roadmap that were previously in different connected 
components (so it improves connectivity). If a sample is not useful by the criteria 
defined before, it is rejected and not stored. 
 

 
Figure 2-7. Example run on a visibility-based planner. (a) the new, gray sample is rejected as 

it's visible from both samples in the roadmap. (b) a sample is placed in the corridor. (c) a new 

sample connects the roadmap. 

 
 It appears at first glance that it is dangerous to reject a sample that is, 
nonetheless, valid (outside of obstacles). Consider the situation in Fig. 2-7 (a): 
while the new sample can look inside the corridor to the right, the planner is not 
aware of the corridor and rejects the sample as it appears to bring no new 
information. However, if the roadmap construction process were to continue, since 
the volume of the corridor is non-zero and samples are generated by a uniformly 
distributed process, at some point a sample will be generated in the corridor (see 
Fig. 2-7 (b)). Afterwards, since the volume of the region containing points visible 
from the corridor and the original pair of samples is non-zero, a sample will be 
placed there and this time it will be kept, as it provides a connection between two 
previously distinct connected components (Fig. 2-7 (c)). 

The number of samples needed to cover a configuration space depends on 
the shape of that space as well as the local planner. It is possible that one local 
planner would require a roadmap with an infinite amount of samples to completely 
cover a space, while with another local planner the same space could be adequately 
covered with a finite number of samples [Sim00]. One would prefer to cover the 
configuration space in such a way that one could select a subset of vertices from the 
roadmap, the guards, whose visibility domains covered the entire allowed 
configuration space, in such a way that no guard vertex is visible from another 
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guard vertex. Whether such coverage is possible again depends both on 
configuration space shape and local planner behaviour. In any case, a random 
algorithm, like sample-based ones usually are, in general will not produce a minimal 
set of guards even if one exists. One can expect however that a visbility-based 
planner will produce a more economical roadmap than other kinds of planners. 
 Visibility based planners are probabilistically complete for the application in 
which they were proposed (point system moving on straight line trajectories in an 
euclidean space with purely holonomic constraints and no dynamics), and they 
produce very sparse roadmaps. The rest of this work considers their applicability 
and efficiency for a wider class of problems. 

2.4.6 Planning in changing or unknown environments 

 
Many environments of interest are changing- they contain moving obstacles 

or other agents, the behaviour of which is only sometimes predictable. The most 
naive approach to this problem is to periodically replan. If the planner is fast 
enough, or the environment simple enough, periodic replanning is workable, but 
wastes the previous work put in by the planner. 

It is often the case that a plan needs only slight adjustments to respond to 
changes in the environment. Several graph search algorithms (A*, D*)[Ste94] are 
constructed in such a way so as to use an old path as a starting point when 
searching for a new path after the graph changed slightly. D* has also been applied 
to the problem of vehicle navigation in an unknown environment- the vehicle finds 
out the structure of the obstacles as it moves around. 

 

 
Figure 2-8. Deformable roadmaps. Connections are pushed away by moving obstacles. 

 
Other planners use adaptive roadmaps. The basic concept here is that the 

roadmaps are "deformable" as if the links between the nodes were elastic 
bands[Gay07, Sud07, Gay09]. Some of the nodes in a roadmap ("milestones") 
behave as weights that are "pushed" around by forces exerted by the moving 
obstacles; some other nodes ("link nodes") form the elastic chains between the 
milestones. If a chain of link nodes becomes too stretched, it will break and its 
nodes removed from the roadmap. It may happen that the roadmap becomes split 
into several disjoint components (subgraphs that have no edge going from one to 
the other). The planner will then periodically try to find connections between 
milestones in the roadmap that belong to disjoint components, so as to repair it and 
detect any new passages that may have appeared. 

Checking for necessary changes to the roadmap may be an expensive 
operation, and one wants to avoid doing it more often than necessary. Grids on  
projections into lower dimensional work- or task space are used to detect 
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whether/where changes to the environment have occured, and where the roadmap 
needs adjustments. 

For dynamical systems with uncertainties (process noise, imperfect state 
information, measurement noise), the planning problem gains a new aspect, that of 
predicting what the state of the dynamical system will be after a plan is performed. 
The prediction uncertainty grows the further in the future one tries to predict, so 
many planners adopt a receding horizon approach: plan a short segment of the 
path, allow the system to perform it, then measure and try to estimate what the 
state of the system is before repeating the procedure. More sophisticated prediction 
algorithms, which make use of expected future information, may manage the 
growth in uncertainty to some extent and allow the planning horizon to be 
extended. 

2.4.7 Planning for systems with dynamics 

 
Systems with significant dynamics pose new kinds of problems for planners, 

not just obstacle avoidance. If a vehicle has momentum, for example, it cannot stop 
or turn instantly; any plan, to be feasible, must take such limitations into account. 
In particular, a region of the configuration space becomes indirectly invalid. While 
the robot is not in collision at those configurations, its momentum is too great for its 
actuators and collision would be imminent. Mapping this region of inevitable collision 
is of research interest, but has turned out to be difficult and is done only 
approximately. 

Also, a planned trajectory is useless if the controller cannot stabilize to it, 
and stabilization is not trivial once the system's dynamics cannot be ignored. 
Therefore, for dynamic systems, the relevant spaces for planning are the state and 
control spaces.  

It's also the case that the simple Euclidean distance between two states is 
not necessarily a reflection of how difficult it is to get from one to the other, and 
offers little information on how to control the system so as to move it toward the 
desired state (or if that control is possible without destabilizing the system). 
Consider a vehicle moving with constant velocity along a straight road, a point A at 
a short distance behind the vehicle, and a point B at a distance in front that is 
slightly larger than the distance between the vehicle and A. However, B is in the 
direction the vehicle's momentum is, whereas, to get to A, the vehicle must stop 
and reverse. 

Observe that it may be easier to get from A to B, than it is getting from B to 
A, if there is momentum from A to B. One therefore speaks of pseudometric 
functions (since unlike a true distance function, they are not symmetric). Finding a 
good (pseudo)metric function for a planner, or some workaround for not having 
one, has been the topic of much research in the area of planning under dynamic 
constraints. 

The best pseudometric function would be the cost-to-go function, that is, 
the smallest possible cost (time, fuel etc) that must be expended to get from one 
state to another. Computing this function however would require too many 
computational resources to be practical, especially for high dimensional state 
spaces.  

A few approaches have been put forward to handle system dynamics. One 
category of approaches uses a library of motion primitives, precalculated "basic" 
trajectories (sequences of controls) that a plan is to be built out of [Fra01]. It is 
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possible to compute the cost of basic trajectories, and one can approximate the 
cost-to-go function from one state to another by ignoring the existence of any 
obstacles between them,  finding basic trajectories that would link those two states 
assuming no obstacles are present,  calculating the cost of those trajectories and 
selecting the one with the smallest cost. 

Another approach based on motion primitives constructs a lattice in state 
space, in which any two neighboring nodes are connected by all feasible motion 
primitives that can get from one to the other[Piv09]. The reason for this is that not 
all sequences of basic trajectories are valid (a car cannot change its turning angle 
instantly, for example). Edges and nodes from the lattice are then removed if they 
intersect with an obstacle. Planning is then achieved by searching the remaining 
graph for a path from the starting to the desired configuration. 

Careful selection of motion primitives for a given system is crucial for the 
good functioning of such planners, and is itself a research problem. The selected 
motion primitives should cover the system dynamics, without being too many (and 
thus result in more complicated lattices and longer processing times, for example), 
while also, ideally, ensuring some kind of optimality conditions. 

A more recent approach also uses the approximate cost-to-go (computed 
assuming no obstacles), but not based on motion primitives. Rather, it attempts to 
approximate the cost-to-go with a Linear-Quadratic-Regulator (LQR) method[Tas07, 
Atk08, Ted09]. This is a method for optimally controlling a linear system while 
optimizing some quadratic cost function; in practice, most systems of interest are 
not linear, and linearizations of them are used. A linearization is an approximation of 
the system dynamics, "good enough" for a region that is "small enough". Several 
linearized models may be used as the system goes along a trajectory. 

The LQR based approach has also been combined with computation of 
Lyapunov functions to estimate coverage of the state space[Ted09, Gla10]. 
Lyapunov functions are used to estimate, for each node in the planner's tree, an 
area of states that can be stabilized to the state of the node by way of an LQR. 
Then, to each node in the tree, a "basin of attraction" is found. The goal state would 
be the root of this tree, and its child nodes would be located in its basin of 
attraction. The algorithm would then proceed by trying to bring as many states in 
the basins of attraction of nodes in the tree. If the initial state is brought in such a 
basin, then a plan (and control sequence) can be found to take it to the goal. 

Yet another recent approach attempts to estimate a "reachable" zone for 
each node in the tree. This may also use some collection of motion primitives to 
estimate the reachable zone, but appears less dependent on the quality of the 
motion primitives[Shk10]. Then, Euclidean distance is used, but not distance 
between the new sample and the nodes of the tree, rather the distance between the 
sample and the reachable zones. The reachable zone of a node may also be coarsely 
estimated by recording failed attempts at node expansion (keeping track of which 
controls, when applied to the state of the node, fail to produce a valid expansion). 

 

2.4.8 Brief intro to task planning 

 
A robot's task is often more complicated than simply moving from one 

position to another. For example, a robot might assemble some piece of equipment; 
it would then need to prepare the relevant pieces, and bring each one, in a certain 
order, to its required position inside the assembly. Task planning is then a field of 
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research concerned with making a robot capable to reason about, and plan for, the 
various actions that are required to complete a task. 

While motion planning concerns itself with the geometry of the robot's 
environment, and possibly the dynamics of the robot as well, task planning tackles 
more abstract concerns. For example, a robot might need to GRAB a piece A and 
PLACE it in a container B. The detailed geometry of the grab and subsequent place 
are not too important at the task planning level. More important would be a logical 
precondition for the action GRAB(A): piece A needs to be at the top of its container.  

Then, more generally, one would specify actions (GRAB, PLACE etc) and 
states of the environment (IS_INSIDE, LOCKED etc) in a symbolic fashion. Actions 
would have effects that change the symbolic state of the environment, while also 
having preconditions: unless certain combinations of state variables occur before an 
action is attempted, then the action cannot succeed. One such logic formalism used 
for task planning is STRIPS[LaV06]. 

Of course, checking which symbolic state descriptions apply at any given 
moment requires there to be some procedure to map configurations of objects in 
the workspace to those symbolic descriptions. Also, each symbolic action should 
have a straightforward way of conversion to a motion planning problem [Pla07, 
Dor09]. 

Using STRIPS or a similar formalism, task planning would search for a 
sequence of actions such that each action in the sequence has its preconditions 
satisfied at the moment the action is attempted, and the state of the environment at 
the end of the sequence is the desired state. Usually such search employs some 
hierarchy of subtasks, where one subtask would have as a goal to create the 
precondition for some subsequent subtask. Various search algorithms like branch-
and-bound, or iterative deepening depth-first search are applied to look for such a 
sequence of actions and subtasks. Actually carrying out the sequence requires not 
just generating the list of actions, but also turning them into a series of motion 
planning queries for the robot. The queries will then be treated at the geometric 
level where motion planning occurs. This is the level that is aware of the geometry 
of the work environment, and the level that can decide if a motion planning query is 
feasible or not. 

Various ways to ensure collaboration between task and motion planning 
exist. The previous paragraph describes the simplest one: generate a discrete 
specification for a sequence of actions or subtasks, and convert it to a sequence of 
planning problems. Sometimes, it may be that the sequence of actions required by 
the task planner has no feasible solution that the motion planner can find. For 
example, a task planner may produce a sequence of subtasks to be achieved, and 
then each subtask would be analyzed recursively until a sequence of motion 
planning queries is obtained. The task planner may also generate several candidate 
solution sequences, in the hope that at least one of them will have feasible plans for 
all required actions. 

Another way that is fairly popular has been to make motion planning 
methods that are themselves capable of some degree of higher level, symbolic 
planning. One of the more studied approaches of this kind is that of manipulation 
graphs. Several subspaces of the configuration space of the robot are 
defined[Gra03, Cam04, Kae11], where one such subspace corresponds to the 
configurations of the robot if keeps a certain grasp on an object. For example, the 
robot grabbing a coffee mug with the left arm would be one such subspace; 
grasping with the right arm another; grasping with both would be yet another 
subspace. There would also be a subspace corresponding to the robot grasping 
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nothing in its arms. Subspaces in which the robot grasps something are called CG 
(continuous grasp), while the subspace with no grasp is called CP (continuous 

planning). A manipulation graph will then represent ways for the robot to go from 
one such subspace to another (chage grasps, in other words), and allows reasoning 
about task preconditions and effects. 

The planner would create roadmaps for the grasping and no-grasp 
subspaces of the configuration space. Two kinds of maneuvers are defined. Transit 
maneuvers are maneuvers through CP (the object(s) to be manipulated are not 
affected by these maneuvers). Transfer maneuvers meanwhile are maneuvers 
through one of the CGs, and affect the configuration of at least one object to be 
manipulated. 

A task plan is then a concatenation of transit and transfer maneuvers; 
concatenation is possible at places where CP and the various CGs intersect. Such 
places are configurations where the robot is "about to grasp" one object, and passes 
from CP into one of the CGs. A manipulation graph would then have (various 
subsets of) the CGs and CP as vertices, and edges would usually go from the CG 
subsets to subsets of CP. 

The approach neatly encapsulates both logical and geometric aspects of task 
planning. The manipulation graph is a representation of what actions are compatible 
to follow one another in a logical sense, while the roadmaps inside the various CGs 
and CP are a representation of what the robot is physically capable of. 

Some refinements on the manipulation graph idea that have appeared in the 
literature include: using constraint satisfaction algorithms to find destination 
specifications for the motion planning subtasks[Pla10]; running several PRM 
searches to avoid having the task planner get stuck if one of the motion planning 
queries fails to return a solution[Hau09]; modeling a robot's redundant actuators as 
a Task Motion Multigraph[Şuc11] (a graph with several edges between pairs of 
vertices), and thus explicitly model the various options a robot has at achieving a 
subtask. 

 
 

 

BUPT



3. Sparse planners 
 
In this chapter we will describe and analyze a new visibility planner that 

uses a variable radius for connection attempts. The radius decreases as the number 
of samples in the roadmap increases. Then we adapt this method to nonreversible 
systems; as far as we know, this is the first time visibility planners have been 
applied to non-reversible systems. We show that the proposed algorithms are 
probabilistically complete by offering original proofs for both the reversible and non-
reversible cases. We analyze the computational complexity of the planning 
algorithms. Finally, we show some simulation results. This chapter contains parts 
from our paper "Visibility based planners for kinematically constrained vehicles" 
[Pom13a]. 

It must be noted that the visibility based planners discussed in this thesis 
will not in general produce optimal paths. Once a path is generated however, one 
can apply some local trajectory optimization to improve it. Or, in the roadmap 
construction, some samples can be kept even when a strict visibility heuristic would 
dictate they be rejected; one can obtain planners that, while not optimal, produce 
"near-optimal" paths that are within some guaranteed factor away from an optimal 
path. We analyze such optimization possibilities in the last section of the chapter. 

 
3.1 The variable radius visibility method 

 
In this section we consider two versions of a new visibility planner for 

reversible systems. In an attempt to reduce the number of visibility tests performed 
for each new sample, visibility tests will be restricted to those nodes in the roadmap 
that are within a certain radius of the new sample. The radius will decrease as the 
number of samples in the roadmap increases, in a similar fashion to the connection 
test range of the RRT* and RRG algorithms, so that the expected number of 
roadmap nodes that will be tested remains constant. If no node within that radius is 
visible from the new sample, then a fallback radius, which is kept constant, is used 
for visibility tests. This section has content from the author's "Compact roadmaps 
from variable radius visibility planners and local trajectory refinement" paper. 

3.1.1 Algorithm description 

 
Define Sample() as a function returning a random point sample of Cfree, with 

uniform distribution. Define rRRT*(n) as a function returning a real number depending 
on the sample count of the roadmap. GenerateTrajectory(x, y) is a function which 
returns true if the local planner procedure can generate a valid trajectory between 
the two points, x and y, of Cfree. Near(x, A, r) is a procedure that, given a point x 
and a set of points A, returns the subset of points from A that are at a distance of at 
most r from x. For a set A, let |A| be the number of elements of A. ImprovesMap(A) 
is a function of a set of points in the roadmap that decides whether a new sample 
should be accepted to the roadmap or not. 
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Figure 3-1. Pseudocode for the variable radius visibility planner. 

 
The first version of the visibility planner considered here (algorithms VRV 

and its map improvement condition) is simply the visibility planner with adaptive 
radius. The improvement condition for a sample to be accepted to the roadmap is: 
the sample should either be invisible to samples currently in the roadmap, or link 
two previously unlinked connected components (see Fig. 3-1 and 3-2).  

The second version (algorithms IVY and its map improvement condition) 
changes the condition for sample acceptance. If the new sample sees only one node 
in the roadmap, then it is accepted, unlike the case of the classical visibility planner. 
The reason for the change is that allowing such samples may allow the roadmap to 
explore faster inside regions at the boundaries of the roadmap. 

One can expect visibility planners, including the proposed versions, to 
explore narrow sections of the map faster than an RRT-like algorithm, because 
samples generated in narrow passages will only be rejected if they are redundant 
(the passage has already been mapped).  
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Figure 3-2. Map improvement conditions for versions of the variable radius visibility planner. 

3.1.2 Probabilistic completeness 

 
Define S(x, r) as the set of all points from Cfree visible from x and that can 

be reached by local-planner generated edges of cost r or less; this set will be called 
the radius r snapzone of x. Let rRRT*(n) be defined as in [Kar10]: 

r RRT∗(n)=(λ∗
log(n)
n

)
1 /dim(C free)

 

where n is the number of samples in the roadmap, and λ is some constant. 
Let rf be a fallback radius, which is kept constant. Define S(x, rf) to be the 

snap zone of x, and the union of snap zones of all vertices in the roadmap is then 
snap zone of the roadmap. These are the regions of the configuration space where, 
if one places a point, it can be connected to at least one vertex of the roadmap 

The interaction between configuration space shape and local planner 
behaviour affects how visibility domains behave. Therefore, in this work we make a 
few assumptions about that interaction. 

Then, let Cfree be a compact subset of the configuration space. We also 
assume it is a metric space which also possesses a measure function, and that for 
all x in Cfree and any positive real r, S(x, r) is a neighbourhood of x in the topology 
of Cfree. Further, for any x in Cfree and any r1 > r2 > 0, Vol(S(x, r1)) ≥ Vol(S(x, r2)) > 
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0 and S(x, r2) ⊆ S(x, r1); if the inclusion is strict, then Vol(S(x, r1)) - Vol(S(x, r2)) ≠ 
0.  

Further, we assume in this section a symmetric visibility relationship 
(because the system is reversible and any trajectory can be taken in either 
direction), and that the shape of Cfree remains constant in time.  

(A technical point should be brought up: often, the shape of Cfree is actually 
an open set, whereas the compactness assumption requires Cfree to be closed. The 
issue is minor however, as one typically considers a Cobs region that was extended 
by some arbitrarily small amount, and one can use that to define a closed Cfree.) 

 

 
Figure 3-3. Wobbly free boundary condition. Moving a sample also moves the free boundary of 

its reachable set. 

 
Finally, we make an assumption referred to as wobbly free boundary: let 

x be a point in Cfree, with S(x, r) its snap zone of some arbitrary radius r, such that 
its boundary has points in Cfree, and x' is another point in Cfree, then almost surely 
Vol(S(x, r) ∆ S(x', r)) ≠ 0 and Cfree ∩ ∂S(x, r) ∩ ∂(S(x, r) - S(x', r)) is open in the 
subspace topology of ∂S(x, r) (see Fig. 3-3).  

An immediate consequence of the wobbly free boundary is that two points 
almost surely have snap zones that either have disjoint closures or intersect in a 
non-zero volume set, since the third possibility (only their boundaries intersect) is 
vanishingly unlikely. This is what allows overlap regions to be sampled; if the 
overlaps had measure 0, then they would almost surely never be sampled, and no 
sample-based planner, whether using visibility or not, would be able to connect a 
roadmap. 

Consider first the situation that there exists a subset of Cfree that has non-
zero volume and such that, if a sample were generated there, it would be accepted 
by VRV (or IVY). Since samples are randomly uniformly distributed, a sample will 
eventually be generated in that subset. In particular, if the subset of Cfree that is 
outside the rf snap-zone of the roadmap has non-zero volume, a sample will 
eventually be generated there and added to the roadmap. 

A consequence of the compactness of Cfree is that a finite number of samples 
is sufficient to produce a roadmap whose rf snap-zone is the whole of Cfree; in fact, 
any (countably) infinite collection of samples whose rf snap zone covers Cfree 
contains a finite subset of samples which will cover Cfree with their rf snap-zones.  

Suppose then that, having taken an infinity of sample-and-connect steps 
using the VRV (or IVY) algorithm, there still exists a subset of Cfree outside the rf 
snap-zone of the roadmap. That set may have volume zero, but that case is 
vanishingly unlikely by the wobbly free boundary assumption. Or, that set may have 
non-zero volume, however that implies that it was never sampled, which is 
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vanishingly unlikely because the samples are uniformly distributed. Therefore the 
supposition is false and hence, after having tried an infinity of sample-and-connect 
steps, the roadmap's rf snap-zone covers Cfree completely. However, by the 
compactness of Cfree, out of that infinity of samples tried, there is some finite 
collection of them, the first N for some sufficiently large N which depends on the 
realization of the sampling process, which completely cover Cfree and are included in 
the roadmap. The number of distinct connected components in the roadmap will 
therefore also be bounded on any run of the VRV (or IVY) algorithm. 

As the number of samples in the roadmap increases, Cfree is covered by 
expanding connected components in the roadmap. Suppose then that there are 
several connected components in the roadmap that are included in the same path 
connected component of Cfree. As the volume of Cfree outside the snap zone of the 
roadmap shrinks to zero, these connected components of the roadmap will "meet", 
meaning that it will eventually be the case that the snap zones of two different 
connected components will overlap. By the wobbly free boundary assumption, the 
overlap has non-zero volume. Further, the overlap region will never decrease, as 
samples, once inside the roadmap, are kept in place and neither the roadmap nor 
Cfree change. Let rRRT*,m = rRRT*(m), where m is the number of samples in the 
roadmap at the time step when the two components first had overlapping rf snap-
zones. Without loss of generality, assume that rf > rRRT*,m and that the rRRT*,m snap-
zones of the two components do not overlap. (These other cases can be handled 
easily as it's immediately clear that the components have non-zero volume overlaps 
of snap-zones.) 

Note that the number n of vertices in the roadmap never decreases, both rf 
and rRRT*,m are constants, and that for all n > m, rRRT*,m > rRRT*(n). 

Consider then the event that two connected components with overlapping 
snap zones will never be connected, no matter how many subsequent sample-and-
connect steps are undertaken. Since the overlap of the snap zones is non-zero 
volume, it will be sampled, infinitely often if the roadmap construction is allowed to 
proceed forever. Suppose that the two connected components will never be 
connected; that supposition implies that whenever their overlap is sampled, the 
sample is placed either in the rRRT*(n) snap-zone of one component or the other. 
However, the rRRT*(n) snap-zone of a component is included in that component's 
rRRT*,m snap-zone, itself included in the component's rf snap-zone. The latter 
inclusion is strict (the rf snap-zones of the components overlap, but the rRRT*,m ones 
do not), so there is a set of volume non-zero in the rf snap-zone that is outside the 
rRRT*,m snap zone. Then, there exists some non-zero volume overlap of the rf snap-
zones that is not included in the rRRT*,m snap zone of either component (or else, the 
rRRT*,m snap-zones would be disjoint but have intersecting closures- vanishingly 
unlikely by the wobbly free boundary assumption). The supposition that the 
connected components are never connected requires that this non-zero volume set 
never be sampled, a contradiction with the uniformly distributed nature of the 
sampling process. Therefore the supposition is false, and if two connected 
components grow to have overlapping snap-zones, they will eventually be merged 
into one component.  

Finally, consider the case in which a path-connected component of Cfree, let 
it be called D, has been covered by the snap-zone of the roamap, in such a way that 
there are several connected components in the roadmap that cover it. By the 
wobbly free boundary, almost surely none of the connected components that cover 
D is such that it is disjoint from all others, while having closures that are not 
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disjoint. Therefore, connected components in the roadmap that cover the same path 
connected component of Cfree will eventually be merged. 

Since there will be a finite number of connected components, which grow 
and/or multiply to fill the entirety of Cfree, and since producing a sample that 
connects two of them is almost sure to happen eventually if the two connected 
components have overlapping snap-zones, all connected components of the 
roadmap that grow to have overlapping snap-zones will almost surely eventually be 
connected. By the wobbly free boundary assumption, any two connected 
components in the roadmap either have non-zero volume overlap of rf snap-zones 
(and will almost surely be merged eventually), or they have disjoint closures. Also, 
as shown above, connected components in the roadmap that cover the same path 
connected component of Cfree will almost surely be connected eventually. 

If that happens, as it almost surely will, then consider any pair of initial and 
target points in Cfree. If they are in the same path connected component of Cfree, 
then they are in the snap-zone of one (and only one) connected component in the 
roadmap, and a path will be generated between them. If however they are not in 
the same path connected component of Cfree, then there is no connected component 
of the roadmap that has both in its snap-zone, and no path is generated. Therefore 
VRV and IVY are probabilistically complete. 

We observe also that at some point the VRV and IVY algorithms will no 
longer accept samples to the roadmap. This sample deadlock happens when the 
configuration space connectivity has been completely covered, by the roadmap. 
 

3.1.3 Computational complexity 

 
In this section, we will further assume that Cfree is an Euclidean space, and 

further, if x1 and x2 in Cfree and r>0 are such that S(x1, r) ⊂ Cfree and S(x2, r) ⊂ Cfree, 
then Vol(S(x1, r)) = Vol(S(x2, r)). The Euclidean space assumption is present in 
other computational complexity analyses [KarARX]. 

Consider then that n points have been placed in Cfree and let r>0 be such 
that for each xk from among those points, S(xk, r) ⊂ Cfree. No other assumption is 
made on the distribution of the x1..n points. Let vr = Vol(S(xk, r)). Let xn+1 be a new 
point, that is generated inside Cfree by a random, uniformly distributed, process. 
Then it is easy to check that the expected value for the number of points from 
among x1..n that are visible from xn+1 is n*vr/Vol(Cfree). 

If we remove the assumption that the x1..n points and value of r be such 
that for all xk, S(xk, r) ⊂ Cfree, then we have that Vol(S(xk, r)) <= vr. One obtains 
that the expected value for the number of points from among x1..n that are visible 
from xn+1 is less than or equal to n*vr/Vol(Cfree). 

In particular, we see that the expected value of nodes from the roadmap 
that are inside the rRRT*(n) snap-zone of a new sample generated by a uniformly 
distributed process is bounded above by a number proportional to 

n∗
Vol(B (r

RRT
∗))

Vol (C free)
∼n∗

r
RRT

∗

dim(C free)

Vol (C free)
∼log(n)  

where n is the number of vertices currently present in the roadmap. 
A similar argument shows that the expected value of the number of vertices 

in the rf snap-zone of a new uniformly distributed sample is bounded above by a 
number proportional to n. 
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The probability that a new sample fails to see any sample in the roadmap 
inside a rRRT*(n) snap-zone is the ratio of the volume of the rRRT*(n) snap-zone of the 
roadmap to the volume of Cfree, and is difficult to estimate.  

We will compare a sample-and-connect step of VRV and IVY, regardless of 
whether it results in the new sample being accepted to the roadmap or not, with a 
sample-and-connect step of the RRG [Kar10] algorithm. At step n, it will usually be 
the case that the number of samples in a VRV (or IVY) roadmap is less than or 
equal to the number of samples in the RRG roadmap, which is n. Nonetheless, we 
will consider that at step n, VRV and IVY have n samples in their roadmaps. 

All of the considered algorithms have exactly one call to the sample 
procedure and all of them contain a number of calls to the Near procedure that is 
bounded above by a constant. To ascertain the differences in complexity, we will 
now look at the differences between the algorithms. 

First, observe that unlike RRG, both VRV and IVY include connected 
component checks and possibly merges. There are methods for which the 
asymptotic complexity of these operations is proportional to α(n), the inverse of the 
Ackerman function A(n, n) [Tar75], which is an extremely slow growing function. 
For example, α(61) is 3, and α(POW(2; POW(2; 265536)) - 3) is 4 (POW(a; b) = ab). 
In other words, for roadmaps of practical size, the asymptotic computational cost of 
the merging and component find operations can be considered proportional to a 
constant. Further, since the operations in the find/merge algorithms are simple 
table lookups and index assignments, one can safely neglect the impact of them in 
the complexity analysis of the sample-and-connect step as a whole. 

The other difference results from the range of the Near query, and the 
number of calls to GenerateAndCheckTrajectory. In a "typical" step of VRV (or IVY), 
a Near search is performed with the same radius as in the case of RRG, yielding the 
same number of expected near vertices in the roadmap, and the same number of 
calls to GenerateAndCheckTrajectory (a number that is proportional to log(n)). If 
however none of the attempted trajectories succeeds, VRV (and IVY) perform a 
second Near query and another set of calls to GenerateAndCheckTrajectory, a 
number that is expected to be proportional to n, the number of vertices in the 
roadmap. The probability of a second call to the Near procedure (and further 
GenerateAndCheckTrajectory attempts) is proportional to the ratio of the volume of 
the rRRT*(n) snap-zone of the roadmap to the volume of Cfree. 
 

3.1.4 Simulation verification 

 
 
We compare the performance of the two visibility planners presented with 

that of PRM by posing five maze solving problems that require finding a path 
between two specified points. "Wide" is a very simple maze, "Basic" is a regular 
perfect maze (a maze with no loops), "Intricate" is a more complex perfect maze, 
"Bug" contains a bug trap (a very narrow passages the robot must pass through 
from one great hall to another) and "Narrow" contains several narrow passages. The 
local planner generates straight-line trajectories. 

The number of samples (both accepted and rejected samples in the case of 
the visibility planners) is tallied for each, and mean and standard deviation statistics 
calculated over one thousand runs of each planning method for each problem. The 
results are shown in Tables 3-1 and 3-2. 
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Figure 3-4. Mazes used for testing the planners, along with sample solutions. 

 
Table 3-1. Average sample counts for the various planners. For visibility planners, averages are 

given as accepted + rejected samples. 

Planner 
Problem 

PRM VRV IVY 

"Basic" 51.86 14.59+56.85 18.24+40.23 

"Wide" 17 11.43 + 14.76 12.83 + 5.59 

"Intricate" 147 36.09 + 243.11 45.13 + 155.77 

"Bug" 123.8 26.55 + 369.47 31.5 + 237.6 

"Narrow" 249.98 29.92 + 387.99 38.04 + 305.99 
 

Table 3-2. Standard deviation sample counts for the various planners. For visibility based 

planners, these are listed as accepted + rejected samples. 

Planner  

Problem PRM VRV IVY 

"Basic" 27.19 1.96+36.39 2.63+32.09 

"Wide" 6.65 2.51 + 9.55 3.15 + 5.56 

"Intricate" 58.39 4.39 + 194.28 5.02 + 110.57 

"Bug" 57.05 2.89 + 305.59 3.58 + 237.73 

"Narrow" 106.98 3.29 + 200.62 3.73 + 163.36 
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Both visbility based algorithms produce roadmaps that are very compact 
compared to those produced by a planner not using a visibility heuristic, and the 
number of samples kept in the roadmap is fairly constant throughout the planner 
runs. VRV tends to make roadmaps that use fewer samples than IVY, while IVY 
solves the planning problems with fewer sample and connect steps as the total 
(accepted plus rejected) is less for IVY. 

Since both proposed variants limit the snap zones of nodes to be of at least 
a minimal fallback radius, which suggests each sample is guaranteed to cover at 
least some constant volume element of the configuration space, it follows that the 
number of samples needed to completely capture the connectivity of a space is still 
exponential in the number of dimensions of that space. Nonetheless, because of the 
constraint that a node should either improve coverage or connectivity when added, 
the number of samples that are kept in a visibility based roadmap will be lower than 
that of not employing this heuristic planners. 

 

 

3.2 Applying sparse planners to nonreversible 

systems 
 

In this section we apply the visibility based planner to problems in which not 
all movements are reversible; specifically, motion planning problems for a few 
simple vehicles. The local planners for these vehicles work by concatenating 
sequences of maneuvers, not all of which will be reversible in a given environment. 
We modify the visibility heuristic to handle the new situation, and present some 
simulation results. This section has content from the author's paper "Visibility based 
planners for kinematically constrained vehicles". 
 

3.2.1 The new visibility heuristic 

 
Since the existence of a trajectory from one state to another does not imply 

the existence of an easy return, the roadmap becomes a directed graph (also called 
a digraph). Therefore, a difference appears in the ImprovesMap heuristic. It is 
expected that the roadmap will contain several strongly connected components 
(indeed, a lone vertex may be a strongly connected component). As such, the new 
notion of "improves connectivity" means a new sample is linked by an inbound edge 
to a strongly connected component, and by an outbound edge to another, so that it 
allows a path to go from the first component to the second. It will not necessarily be 
the case that the sample will allow travel in the other direction; but if it did, then it 
would result in the two strongly connected components merging, if we impose a 
maximality condition on connected components. 

Then the heuristic of deciding when a new sample is "useless" and should be 
discarded is this: either all the edges of that sample are in the same direction (it is a 
sink with all edges inbound, or a source with all edges outbound), or it is visible only 
from several vertices in the roadmap that are all located in the same strongly 
connected component. The first rejection criterion helps eliminate samples that the 
robot cannot leave from or get at; in particular, regions of inevitable collisions 
(because momentum is too great to be changed by the actuators in time to prevent 
a collision) are configurations of the "sink" type. The second rejection criterion 
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prunes unnecessary connections, similar to the visibility heuristic for reversible 
systems and roadmaps on unoriented graphs. 

 

 
Figure 3-5. Pseudocode for map improvement condition on directed graphs. 

 

3.2.2 Non-zero dimensional sample subspaces 

 
We also consider a modificaiton to planner implementations presented in the 

literature: whereas samples are usually points in Cfree, we allow them to be non-zero 
dimensional subspaces of Cfree. Distance functions must be changed accordingly, and 
the sampling procedure must be able to generate such subspaces and make sure 
they stay inside Cfree. The details of the sampling procedure are given in the 
subsections describing the system models for each of the studied vehicles. The 
reason for this change is to ease the validation of maneuver sequences generated 
by the local planner. Storing some maneuvers which are known to be obstacle free 
allows their quick reuse later for validating other maneuvers. 

The necessary condition imposed on a sample subspace is that it be a 
strongly connected subspace of Cfree, meaning, for any two configurations in the 
subspace, the local planner can generate paths between them both ways, such that 
the paths do not exit Cfree. If true, the condition implies that if one point in the 
subspace can be reached from a given configuration, then all are reachable. 
 

3.2.3 Probabilistic completeness 

 
The proof of probabilistic completeness follows similar steps to that of the 

reversible systems case. The assumptions are the same as in the reversible case: 
the free space should be compact, the visibility sets should be open, the sampling is 
a uniformly distributed process, and the local controller should have the wobbly free 
boundary property. 

A difference to the reversible case is that we need to consider, for each 
vertex in the roadmap, two visibility sets: the set of points that can be reached from 
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that vertex, using trajectories generated by the local planner, and the set of points 
that can reach that vertex through trajectories generated by the local planner. 

As opposed to the reversible case, where sampling deadlock (a condition 
where the planner will no longer accept samples to the roadmap) will occur, in the 
non-reversible case it may happen that two or more points in free space exist, 
which cannot be linked in a loop, and thus cannot be in the same strongly connected 
component. So unlike the reversible case, where the fact that sampling deadlock will 
happen if enough samples are taken, and corresponds to fully capturing the 
connectivity, we need to proceed slightly differently here. 

Since the free space is compact, it follows, just as in the reversible case, 
that after some finite number of samples the free space will be covered by the 
reunion of the visibility sets. Also, because of the wobbly free boundary, there will 
be measure non-zero overlaps between the visibility sets. 

Suppose then that two visibility sets overlap: the set of points reachable 
from some vertex x, with the set of points that can reach vertex y. Since the 
overlap is not measure 0, eventually a sample will be placed there. If x and y are 
already in the same strongly connected component, then the new sample isn't 
necessary because there are already connections from x to y and back. However, if 
x and y are not in the same strongly connected component, the new sample adds a 
link between them. 

Suppose then that during roadmap construction, after the entire free space 
is covered by reachability sets of vertices, there is some region of free space A that 
is reachable from other parts of the free space, but there are no links from vertices 
outside of A towards vertices in A. Because of wobbly free boundary, the overlaps 
will eventually contain samples linking at least some vertices of A to other vertices 
in the roadmap, so the volume of free space that is reachable, but not yet 
connected to the rest of the roadmap, will shrink as sampling continues. 

Therefore, by taking more sample and connect steps, the free space will 
eventually be completely covered, and all connections between different regions of 
it will be discovered, and therefore the chance of finding a plan, if one exists, 
increases with the number of sample and connect steps. Therefore, the planner is 
probabilistically complete. 

As in the reversible case, we observe that a sample deadlock (planner 
accepts no new samples to the roadmap) happens when, and only when, the 
roadmap completely captures the connectivity of the configuration space. The rate 
at which samples are accepted to the roadmap can be used to provide an estimation 
of how much of the configuration space is covered. 

 

3.2.4 Simulation verification 

 
 
The vehicles simulated in this section all move in a two dimensional work 

space and will be maneuvered in such a way that kinematic models (position 
variables for state and continuous velocity controls) are enough to describe and plan 
their motion. The following subsections describe, for each vehicle, its model and 
steering procedure. 
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Figure 3-6. Vehicle models and basic maneuvers. (a), (d): planar object with variable direction 

thruster; (b), (e): car; (c), (f): robot with trailer. 

 
Planar object with variable direction thruster 
 
A two dimensional rigid body with a thruster located at some offset away 

from the center of mass (see Fig. 3-6 (a)). Its model is  

[ ẋẏθ̇]=[cos(θ)
sin (θ)

0 ]∗u1+[
�sin (θ)
cos (θ)
m∗h
J

]∗u2  

where x and y give the position of the object's center of mass in the plane, 
while θ is the heading angle. J is the moment of inertia and m is the mass of the 
object, while h is the distance between the center of mass and the thruster. The 
thruster is assumed to be able to swivel from pushing the object to the left, to 
pushing it forward, to pushing it to the right. The thruster is assumed to not be able 
to push the object backwards. 

Steering is done by noticing that the object model is kinematically reducible 
[Bul02] and that two decoupling vector fields exist: 

X 1=cos(θ)∗
∂
∂ x

+sin (θ)∗
∂

∂ y  

X 2=�
m∗h
J

∗
∂
∂θ

�sin (θ)∗
∂

∂ x
+cos(θ)∗

∂
∂ y  

Each field corresponds to a basic maneuver. X1 is simply the object moving 
in the direction given by the heading angle. X2 is the object rotating around a point 
located at a fixed distance in front of the thruster, in the direction given by the 
heading. The trajectory traced by an X2 maneuver is referred to as an X2 circle. The 
X2 maneuver is reversible (the object can spin in either direction in a given circle) 
but the X1 maneuver is not (the object cannot push itself backwards). 

BUPT



Applying sparse planners to nonreversible systems - 3.2 46 

The procedure to steer between two given configurations starts by 
identifying the X2 circles associated to the two configurations, and computing the 
line between their centers. Then, an X2 maneuver on the source configuration is 
done to bring the object on that line such that it faces the destination's X2 circle. An 
X1 maneuver is then done to bring the object to the destination's X2 circle. Finally, 
another X2 maneuver brings the object to the destination (see Fig. 3-6 (d)). Each 
maneuver must start and end with the planar object at 0 velocity, so that they can 
be concatenated; the velocity of a real vehicle cannot vary discontinuously. 

The motion planner uses arcs from X2 circles as samples. An arc is a valid 
sample if it does not intersect obstacles, and is generated thusly: a random 
configuration is selected in the workspace. If it is valid, meaning that it doesn't 
intersect obstacles, then the planner identifies its X2 circle and uses the largest arc 
of that circle that includes that randomly selected configuration and does not include 
configurations that collide with obstacles. 

 

 
Figure 3-7. Reversing the planar object with variable direction thruster. 

 
Notice that it is not necessarily the case that if one can get from a sample A 

to a sample B, one could also move backwards. Two way travel is possible only if 
the line that joins the centers of the samples' X2 circles intersects each sample's arc 
twice (see Fig. 3-7). 

 
Planar car 
 
A two dimensional car with steerable front wheels (see Fig. 3-6 (b)). Its 

model is  

[
ẋ
ẏ

θ̇
ϕ̇
]=[

cos(θ)
sin(θ)
tan(ϕ)
h
0

]∗u1+[
0
0

0
1
]∗u2  

 
where x and y give the position of the car in the plane, θ is the heading 

angle and φ is the steering angle. h is the distance between the front and back 
axles. The car is assumed able to also go in reverse. 

The car model is fully kinematically reducible [Bul10], but for it a different 
approach is illustrated, that of the maneuver automaton [Fra01]. A basic "trim" 
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maneuver is for the car to simply go in a straight line with direction given by the 
heading, with steering angle φ equal to 0. This trim maneuver will be referred to as 
a driving segment, and the states that the planner uses are such driving segments. 

Generating a driving segment goes as follows: a random configuration is 
selected for the car in the workspace. If it is valid (it does not intersect with 
obstacles) then the longest drive segment that passes through that configuration 
and does not collide with obstacles is used. 

Steering between two drive segments is done by a sequence of three 
maneuvers (see Fig. 3-6 (e)). First, the car moves toward the destination segment 
while quickly increasing its steering angle. Second, the car moves in a circular arc 
with constant steering angle, and the length of the arc is varied such that it will 
meet the destination drive segment properly after the third maneuver. The third 
maneuver is the car still moving forward and quickly decreasing its steering angle to 
0. The forward velocity of the car is kept constant throughout all maneuvers. 

The three maneuvers can be thought of as transformations that move an 
initial configuration xini to a final one xfin: 

x fin=Rϕ↓0⋅Rϕ=0(θd)⋅Rϕ↑max⋅xini  
The first and last maneuvers (Rφ↑max and Rφ↓0) result in fixed displacements 

in the configuration variables. It is the second (Rφ=max(θ)) that can be tuned, by 
making the arc longer or shorter, so as to change the heading of the car from the 
heading of the initial drive segment to that of the destination drive segment. Once 
the necessary θd angle for the arc is known, the displacement in position can be 
computed, and therefore one can determine the points on the two segments 
between which the steering maneuvers occur. 

Since the car's maneuvers are fully reversible, if one can go from a given 
drive segment A to a given drive segment B, then one can always make the journey 
backwards. The direction the car is facing on a drive segment is unimportant, as it 
can do the same maneuvers independent of which way it is facing. Drive segments 
are then undirected. 

 
Robot with trailer 
 
A robot with a trailer attached to it via a rigid rod articulated at the robot 

(see Fig. 3-6 (c)). The configuration variables are xr, yr, θr for the robot position and 
heading, and likewise xt, yt and θt for the trailer. h is the distance between the 
trailer's and the robot's centers. Because the system is differentially flat, there are 
certain relations between the robot and trailer variables [Lam00]: 

[ xryr]=[ x tyt ]+[
cos(θt)
sin(θt)]∗h  

tan (θr�θt)=h∗
d θt
ds  

where s is the natural parametrization of the curve traced by the trailer, or 
in other words the time variable if the speed of the trailer is equal to 1. 

Therefore, if one is given a trajectory for the trailer, one can deduce the 
trajectory that the robot needs to follow, and this fact is used for the steering 
procedure. 

Just like in the case of the car, the planner uses drive segments as states, 
where drive segment here means a maneuver in which the robot and trailer are 
aligned and moving with constant heading. It is assumed that a drive segment is 
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reversible (the robot can either push or pull the trailer in a straight line). However, 
unlike the case of the car, it is important which way the robot with trailer is facing in 
a drive segment. Therefore the drive segment is directed, because maneuvers that 
make the robot leave the drive segment are not necessarily reversible. 

Steering from one drive segment to another is done by imposing a circular 
arc trajectory for the trailer that joins points on the two drive segments (see Fig. 3-
6 (f)). The circle is generated with a fixed turning radius. From the trailer trajectory 
the robot's trajectory can then be deduced using the formulae above. 

 
Figure 3-8. Reversing the robot with trailer. 

 
Even if the robot with trailer can be steered from a drive segment A to a 

drive segment B, it doesn't necessarily follow that it can be steered from B back to 
A using the procedure above. In order for getting back to be possible, the robot 
must have enough room to reverse on the drive segment B, and enough room on 
segment A, to fit a circle arc maneuver between them (see Fig. 3-8). 

 
Simulation results 

 
The planar object with variable direction thruster is placed in a simple maze 

and required to go from a given start configuration to a target one (see Fig. 3-9 
(a)). Ten runs are given to the algorithm, and it needs on average 4 vertices in the 
roadmap in order to be able to connect the given start and target configurations. 

All vehicles are then placed in a maze containing "bug traps" (areas with 
narrow entrances, see Fig. 3-9 (b), (c), (d)), and given one hundred runs each. 
Average and standard deviation values for the number of samples stored in the 
roadmap before connecting start to target was possible is given in Tables 3-3 for the 
classical planner (no visibility heuristic) and in 3-4 for the visibility based planner.  

The fully reversible vehicle, the planar car, needs the fewest samples in 
order to solve the planning problem. It's also the least sensitive to unlucky 
sampling. The other two vehicles tend to need more samples on average, but it also 
is the case that the number of samples used varies widely from run to run. 

Of the two non-reversible vehicles, the robot and trailer needs fewer 
samples. This expected to be because its sample subspaces tend to be larger than 
those of the planar object: drive segments can be longer than X2 circle arcs, and 
thus offer more connection opportunities to other sample subspaces. 
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Table 3-3. Classical planner sample count statistics 

Problem 
 

(b) (c) (d) 

Avg 1770.6 14.71 239.25 

StdDev 1697.28 12.86 196.82 

Max 53 3 67 

Min 7769 73 859 

 
Table 3-4. Visibility based planner sample count statistics 

 

Problem 
 

(b) (c) (d) 

Avg 156.45 8.62 45.45 

StdDev 141.11 3.79 29.61 

Max 9 3 6 

Min 630 21 128 

 
Similar tests were run with the planners using point samples, which is the 

typical approach. While sample count statistics are similar, average execution times 
for the planners using point-samples are larger by a factor of two or more than the 
times for non-zero dimensional sample planners. 

It can be seen that the variable radius visibility based algorithm resulted in 
compact roadmaps that could solve the given planning problems, for a set of 
vehicles and local planning strategies that account for the vehicles' kinematics, 
using fewer samples than a planner without the visibility heuristic. Besides using 
local planners adapted to models of real vehicles, our planner was also modified to 
use non-zero dimensional sample subspaces, a different approach than the classical 
sampling approach, so as to ease verification of maneuver sequences generated by 
local planning. 

The effect of non-reversibility manifests in the algorithm needing more 
samples than it would for a reversible system, because the visibility-based sample 
selection heuristic is most efficient when the roadmap tends towards large 
connected components; ideally, only one connected component will cover the 
entirety of Cfree when the roadmap is complete. With non-reversible maneuvers, this 
is no longer necessarily the case. The configuration space may contain irreversible 
passages between regions, and thus several strongly connected components. Also, 
maintaining maximal strongly connected components is more difficult than 
maintaining maximal connected components for undirected graphs; the algorithms 
are still polynomial time, but more expensive than the inverse Ackermann function 
complexity of Tarjan's set union that suffices for undirected graphs. If a heuristic to 
maintain strong connected components is used (as was the case here), then the 
visibility heuristic will not always be aware of components merging, and thus will be 
more permissive with accepting samples to the roadmap. 
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Figure 3-9. Simulation problems with sample solutions: (a), (b) planar object with variable 

direction thruster; (c) car; (d) robot with trailer. 

 
It was also observed that "luck" while sampling plays an important part in 

determining how many samples are needed in the roadmap, since there is quite 
some variance in the number of samples needed to solve the given problems. It is 
suspected that the size of a sample subspace is a possible indicator of its "quality", 
and that larger sample subspaces will allow roadmaps with fewer samples to cover 
the configuration space. An investigation of such a possible quality metric is left for 
future work. 
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3.3 Path near-optimality of proposed solutions 
 

The main reason to use a sparse or visibility planner is to have a small 
roadmap that nonetheless manages to capture the connectivity of the free space. 
The paths produced by such planners will be suboptimal, however good quality 
paths can be guaranteed, for various notions of near-optimality. 

Sampling based planners that asymptotically converge to a globally optimal 
path exist. However, in order to achieve good quality paths, the planner needs to 
take many samples, which would be counterproductive when planning times should 
be kept small. 

More recently, the notion of asymptotic near-optimality has been 
proposed, as a compromise between optimality and practicality. A planner is 
asymptotically near optimal if it can be shown that it will asymptotically converge to 
a path that is longer (or more costly) than the optimal one by a given factor k. For 
example, for k=2, the planner will asymptotically converge to a path that is at most 
twice the length of the shortest one. 

It turns out that visibility heuristics can be softened, either by the inclusion 
of a graph diameter criterion or a useful loops criterion, or both, and these will 
guarantee asymptotic near-optimality. Of course, for the planner to keep 
converging, it needs to keep adding samples to the roadmap, whereas we'd like to 
keep as few samples as possible, so that the roadmap is quick to reuse. A planner 
seeking to converge to a global optimal, or near optimal, solution needs to sample 
everywhere, and as a result, convergence may in general be slow. 

In contrast, local optimization of a path, while not an easy problem, is easier 
than trying to optimize globally. Assuming the planner produces some solution path 
candidate, of whatever quality, it will be possible to apply some deformation 
procedures to the path and reduce its cost or length. Indeed, planning software 
typically has a path simplification step to post-process the results from a sampling 
planner. Single-query planners like RRT or RRTConnect tend to produce very long 
and windy paths otherwise, which makes path simplification very important for 
them. Some multi-query algorithms like PRM, which keep large roadmaps, can 
produce good quality paths without simplification, but the planners we discuss in 
this work aim to keep few samples in the roadmap. Local path optimization is then a 
natural choice for our visibility-based planners too, because it only needs to analyze 
the candidate path neighborhood, and does not require one to continue to grow a 
roadmap. 

The price paid for local optimization is a restriction on what paths can be 
found. Specifically, there is no guarantee that a local optimization procedure can 
produce a path outside the homotopy class of the initial path candidate. A path's 
homotopy class is the set of all paths that can be continuously deformed into it (and 
therefore into one another). 

The planner should then have some way of exploring the various homotopy 
classes existent in the free space, or at least the homotopy classes that do not wind 
around the obstacles, as these are the classes where optimal solutions will likely be 
found (winding around an obstacle usually means the path is longer than it should 
be, and hence it will not be optimal). Since homotopy groups tend to be difficult to 
compute, guaranteeing that even the non-winding classes all have at least one 
representative in the roadmap turns out to be a difficult problem. However, a good 
heuristic exists, that of 'useful loops' [Nie04], which we will employ in chapters 4 
and 5 when using sparse planners. 
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To decide whether to keep a new sample in cases where the visibility 
heuristic would decide to reject it, the useful loop heuristic selects two vertices 
already in the roadmap that can both be connected to this new sample; the 
selection can either be random, or simply the closest two vertices, from the visibility 
set of the sample. If there is some point on the shortest path between the vertices 
that is not in the visibility set of the new sample, then it is kept. 

 

 
Figure 3-10. Homotopy classes are sets of curves that can be deformed continuously into one 

another. Left: black paths are in the same homotopy class, gray paths are in another. Right: the 

winding path  is in a different homotopy class from those on the left. 

 

 
Figure 3-11. "Useful loops" heuristic: path between neighbors of new sample contains 

unreachable points from the new sample. Therefore, a loop around an obstacle is created by the 

new sample. 

 
An often used approach for improving path quality is to locally refine a 

trajectory once it has been obtained from the planner. We describe a simple 
procedure below.  

Let there be a current best path between a start and goal configuration, 
produced by the planner. Then at each step the algorithm will either produce a new 
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vertex halfway on an edge in the path or select one of the vertices already present 
between but not including the start and goal and perturb it randomly. If xk is the 
original vertex and x'k is the perturbed one, let xk-1 and xk+1 be the vertices 
immediately before and after xk in the path. If both xk-1 and xk+1 are visible from x'k 
and the sum of the costs of the edges (xk-1, x'k) and (x'k, xk+1) is smaller than the 
sum of the costs of the edges (xk-1, xk) and (xk, xk+1), then x'k replaces xk in the 
path. 

To justify why this will eventually converge to an optimal path, consider the 
requirement that the path between start and goal be of minimal cost. This 
corresponds to a problem of minimizing the functional: 

L=∑
k=1

n

c( xk�1 , xk )  

where c(xk-1, xk) is the cost of the corresponding edge and n is the number 
of vertices on the path.  

Suppose x* is a function that maps the positive integers to points in the 
configuration space such that x*

0 is the start, x*
n is the goal, and the value of L is 

smaller on this path than on any path with the same number of vertices. Consider 
then a perturbed function, x~ = x* + ε*χ where ε is a real scalar, and χ is any 
perturbation. Since x* is the path of n vertices which minimizes L, one expects the 
following condition to hold: 

d

d ǫ
L( x∗+ǫ∗χχχχ)∣ǫ=0=0  

Performing the derivation, and grouping together terms multiplied by the 
same index of χ and remembering that the sum must be null for any χ, results in the 
following condition on x* which is known as the discrete Euler-Lagrange equation: 

∂
∂ xk

c( xk�1

∗
, xk

∗)+
∂

∂ x k

c( xk
∗
, xk +1

∗ )=0  

Suppose then that for a given path from start to goal with n vertices, 
selecting and perturbing any node inside the path will produce a worse cost sum 
to/from its neighbours. In that case, the path is already the best possible path with 
n nodes in its neighbourhood. (To be more rigurous, the edge cost function should 
be such that edges crossing obstacles be evaluated as having infinite cost, and that 
there be an arbitrarily small radius such that the cost of an edge increases rapidly 
as it approaches an obstacle at distances smaller than this radius.) 

One can usually make the following assumption on paths and their costs: if 
some perturbations of one vertex from the current path will yield a better cost 
to/from its neighbours, the perturbations also form a non-zero volume set, 
therefore they will eventually be sampled and the path tends to become the locally 
optimal path with its number of nodes.  

The step where vertices are produced along the edges in the currently 
known path is justified by the fact that paths with more vertices can approximate an 
optimal path in continuous space better. The method described above then will tend 
to increase n (the count of vertices in a path) from time to time, as well adjust 
vertices to converge to the best paths of length n. 

Typically, samples produced by post-processing/local path optimization are 
not retained in the roadmap. When post-processing is done for a single-query 
planner, there is no persistent roadmap to store the vertices to. In the case of our 
visibility based planners, though we do use path optimization, we will also decide in 
later chapters to not store samples obtained from post-processing. The reason for 
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the decision is that the roadmaps will typically contain some useful configurations 
and trajectory segments which should better not be perturbed in unpredictable ways 
by local path optimization, or function as landmarks for other heuristics about the 
configuration space and as such roadmap vertex positions should stay constant. We 
will not handle changes in the environment by roadmap deformation, but rather in a 
way to be described in chapter 4. 

 
3.4 Conclusions 

 
In this chapter we provided a new proof of probabilistic completeness for 

visibility planners applied to reversible systems. We clarify the necessary conditions 
for probabilistic completeness on the interaction between the local trajectory 
planner and the shape of the free space. The proof we give is more general than the 
one given in [Nis99], which applies only to local planners that generate linear 
trajectories for point robots. 

We then extend our proof to systems that have non-reversible maneuvers 
and/or non-holonimc constraints. We show that a suitably modified visibility 
heuristic remains probabilistically complete in this case, and we propose such a 
modification to the visibility heuristic.  

We propose the use of non-zero dimensional samples in a roadmap as a way 
to speed up construction. We verify this approach in simulation, where it is shown 
that roadmap construction is sped up by a factor of two or more. 

We verify our planners in simulations for both the reversible and non-
reversible cases. They prove capable to generate more compact roadmaps than 
classical sample based planners (PRM) when capturing the configuration space's 
connectivity. 
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4. Handling changes in the environment 
 

The environment in which a robot works changes over time, often due to 
actions not controlled by the robot, so the robot must detect and cope with these 
changes and adjust its behavior. Planning, in particular, is strongly affected by 
changes to the workspace. If the robot had a roadmap to describe the connectivity 
of the workspace a few minutes ago, that roadmap may now not be valid. Places 
that the robot thinks are free have become occupied by obstacles, or places once 
thought disconnected can now reach each other because some obstacles moved or 
disappeared. Nonetheless, most often the changes to the robot's environment are 
gradual. If a roadmap was useful and correct a minute ago, at least parts of it may 
still be useful now. In this chapter, we study ways to eficiently reuse roadmaps in 
changing environments. We present, for comparison, a naive approach as a 
baseline, then a refinement existent in the literature called "lazy PRM"[Boh00], and 
our own cost bump method. We show our cost bump method to be able to improve 
on planning efficiency compared to the other approaches. It also performs better 
than single-query methods, which are the ones most often used for changing 
environments. This chapter contains material from the author's paper "Motion 
planning for manipulators in dynamically changing environments using real-time 
mapping of free space" [Pom13b]. 
 

4.1 Previous approaches for handling changes 
 
The problem with multi-query planners when used in changing 

environments is the roadmap does not necessarily describe connectivity after a 
change. Some vertices or edges in the roadmap might now pass through obstacles 
and should not be used. Or, some disconnected components should not be 
disconnected because now a passage exists between them that the roadmap does 
not contain. 

Assuming one nonetheless wishes to reuse the roadmap (as is our case), 
then some roadmap update procedure is necessary. The simplest, "naive" approach 
is to revalidate the entire roadmap: check each vertex, then check each edge, for 
obstacle collisions. If a roadmap element collides with an obstacle, it is marked as 
unusable, perhaps by way of some flag bit. 

The naive approach is however very inefficient. The number of vertices in a 
roadmap often exceeds the hundreds. The number of edges meanwhile is often of 
the same order of magnitude as the square of the number of vertices. Not only are 
edges very numerous, they are also difficult to check, as they require several 
collision checks along the way, or some kind of continuous collision checking on 
solids of revolution. 

So a naive approach would require several tens of thousands of collision 
checks. However, a single-query planner like RRTConnect[Kuf00] would often be 
able to solve a planning query with only a few hundred. The workspace of the robot 
is actually often "simple", in that there's a lot of free space for the robot to move in, 
so placing new random samples will likely result in quick connections from start to 
goal. One can see then that RRTConnect (or some single-query method like it) 
would be more efficient than the naive complete roadmap revalidation. Further, 
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checking the entire roadmap before planning may in fact be self-defeating: since the 
checks take so long, by the time they complete, the environment might have 
changed again. 

Since the naive approach is unworkable as-is, it needs improvement. One 
such improvement is to delay collision checking of a roadmap segment until it is 
actually necessary; this approach is known as "lazy PRM"[Boh00]. 

The method is still fairly simple. Assume there is a roadmap for the 
environment. All vertices and edges are assumed valid at first. When given a 
planning query, the planner links the start and goal states to the closest k (for some 
value of the parameter k) vertices in the roadmap, and runs a shortest path 
algorithm like A* to find a solution path candidate. 

Only now is collision checking performed, and only on the vertices and 
edges in the path candidate. If everything is valid, the path candidate is returned as 
the solution. If some vertex or edge is invalid, then a flag bit is flipped and the 
offending vertex or edge is marked unusable. The shortest path algorithm is run 
again (with the understanding that it will treat invalid vertices or edges as if they 
did not exist, and will therefore not use them), and a new path candidate is 
produced. The process is repeated until either a solution is found, or some planner 
termination condition happens (typically, this is a time condition: the planner is only 
allowed a few seconds to find a solution). 

Lazy PRM greatly reduces the number of necessary collision checks. 
However, in practice, it is still less efficient than RRTConnect. We tested this by 
giving a PR2 (Willow Garage's Personal Robot 2, a two armed manipulator with 
mobile base) five planning problems for the right arm, and running each problem for 
one hundred times. We collected planning times for each problem and each run, and 
computed averages and standard deviations which can be seen in the next table. 
The roadmap for lazy PRM was constructed by a sparse planner implemented in 
OMPL SPARS2, for an environment containing nothing except the robot; the 
problems we run have other obstacles as well. The resulting roadmap is fairly small 
(357 vertices), but it still manages to describe the connectivity of the arm's 
configuration space as well as describe good quality paths. 

 
Table 4-1. Planning time statistics for RRTConnect and lazy PRM 

RRTConnect lazy PRM Problem 

Avg. time (s) Std. dev. (s) Avg. time (s) Std. dev. (s) 

0 0.205 0.095 0.311 0.001 
1 0.170 0.091 0.152 0.001 
2 0.202 0.079 1.157 0.005 
3 0.059 0.034 0.233 0.001 
4 0.095 0.060 0.113 0.001 
 
The increased planning times for lazy PRM are a direct effect of it needing 

more collision checks than RRTConnect (more than 95% of the time for both 
algorithms is covered by collision checking, as measured with the Profiler class of 
OMPL). While more deterministic in terms of running times, and often capable to 
produce better quality paths, lazy PRM still appears the less practical choice if 
compared to RRTConnect. 

What lazy PRM attempts to do is to get the best path (that the roadmap 
contains) which is still valid between start and goal. However, if the first solution 
path candidate fails, meaning, the shortest path is not actually feasible, then lazy 
PRM will attempt to find the second best path. Often, the second best path is not 
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that different from the first, because it passes through more or less the same 
regions. It might therefore pass through the same obstacles that invalidated the 
best path, and be unfeasible too. 

So while RRTConnect can try any shape of random paths, and find one 
quickly because the environment is often simple and placing a random path is likely 
to result in success, lazy PRM slowly moves away from an invalid optimal path. It 
loses efficiency by being biased towards path optimality. 

 
4.2 The cost bump method 

 
To counter this bias, we propose a "cost bump": when a vertex or edge is 

found invalid, then the costs of other vertices in the roadmap are increased by some 
value depending on the distance to the invalid vertex (or edge). We choose the 
following formula for the cost bump: 
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where cb is the cost bump to be applied to a vertex x, p is the point (vertex 
or position along an edge) found invalid, and q and r are parameters that control 
the shape of the cost bump function: its height and fall-off, respectively. These 
parameters should be tuned so that the bump is high close to the center, with quick 
fall-off as distance increases. An intuitive justification for the cost bump is, if a 
vertex is invalid (so, inside an obstacle) then vertices near it are probably invalid 
too. 

 

 
Figure 4-1. Shape of the cost bump function. 

 
The pseudocode for the cost bump method is given in the next figure. Note 

that in our version, we apply the cost bump to all vertices in the roadmap. The 
roadmaps we use are constructed by visibility or sparse methods, and are therefore 
small. Computing the cost bump is then a cheap operation, even if applied to all 
vertices. Alternatively, one could instead do a nearness query first, to restrict cost 
bump computation to only the vertices inside a sphere of a given radius around the 
invalid point. 

The above pseudocode starts with a preconstructed roadmap G, which is 
assumed fully valid at the start of a planner run. All vertex costs are zero, all 
vertices are usable by the computeShortestPath algorithm. Obstacle collisions 
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remove pieces of the roadmap if necessary, by flagging them unusable. Vertices 
receive cost bumps when collisions are detected. 

 

 
Figure 4-2. Pseudocode for planning with cost bumps. 

 
Note that vertex and edge removal are temporary; future planning runs, 

using the algorithm presented above, will all start with the same fully valid 
roadmap. All cost or validity information discovered in one planning run is discarded 
before the next planning run begins. 

 

4.2.1 Roadmap construction 

 
In this work we use roadmaps constructed offline; the construction process 

need not be time-efficient therefore, as long as it produces a good quality roadmap. 
Good quality here means that the roadmap is small (has few vertices and few 
edges) while at the same time being rich enough to capture a wide variety of 
behaviors of the robot. Since we want the roadmap to be useful in changing 
environments, some redundancy in the trajectories between points is 
recommended. Rather than a simple visibility heuristic, which tries to minimize the 
number of connections in a roadmap, we use a visibility heuristic augmented with 
some considerations of path near-optimality as described in the previous chapter, 
section 3.3. The robot will then know of several ways to move between points in the 
roadmap, so that if one will fail in an actual environment, there will still be other 
options to consider. 

During roadmap construction we are interested in what the robot can do, 
and how well it can do it: what points it can reach, and how long are the paths 
between those points. Putting obstacles inside the planning environment while we 
construct the roadmap is counterproductive; they will simply prevent us from 
getting a good picture of the robot's maneuvering capabilities. 
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Therefore, we construct the roadmap in an almost empty environment. The 
only obstacle is the one guaranteed to be forever present: the robot itself. Our 
roadmap filters out self-colliding maneuvers and configurations. 

In actual use, the environment will contain other obstacles as well, not just 
the robot. Depending on how these obstacles are placed, various vertices or edges 
in the roadmap will be unusable or avoided. 

 

 
Figure 4-3. The sparse roadmap for the PR2 right arm. Each end effector position is represented 

by a black dot. 

 
For this study, we constructed a roadmap for PR2's right arm using OMPL 

SPARS2. The roadmap contains 357 vertices, and the end effector positions 
corresponding to the vertices' configurations are shown in Fig. 4-3. 

 

4.2.2 Cost as a way to learn the environment 

 

In the previous subsections, we described a method to adjust a roadmap 
during a planner run so as to avoid regions that might be obstacles; however, we 
did not keep the cost or flag information from one planning run to the next. 
However, in the same spirit of reusing as much work as we can (which is why in this 
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thesis we argue for multi-query planners), we should try to reuse the vertex costs 
too. 

Since environment changes can either increase or reduce the number of 
vertices passing through invalid regions, we also need to reverse cost bumps. We 
define a "cost unbump" function using the same formula as for the cost bump, but 
apply it as a reduction to vertex costs. Also, cost unbumps cannot take a vertex's 
cost below 0 (or an edge's cost below its natural cost). 

We apply cost unbumps when a vertex is found to be valid. The intuitive 
justification is similar to the one for the cost bump: if a vertex is valid, then vertices 
close to it are likely valid too. 

Vertex costs will then track the distribution of obstacles in the environment. 
We obtain a representation that is tailored for the planner and maintained by it, 
updated whenever necessary during planner queries. Note that the representation 
we maintain is of the configuration space of the robot, which has as many degrees 
of freedom as the robot has joints (seven, for the PR2 arm). Other data structures, 
for example octrees as implemented in the software package Octomap, keep 
representations of the three dimensional task space of the robot: which 
voxels/cubes in the task space are occupied by obstacles. A single occupied voxel in 
the task space however may have complex effects on the shape of the free space 
for the robot, which is why we need our representation, created by the planner.  

We can also reuse vertex and edge validity flags from one planner run to 
another, as long as there is a way for the flags to be reset. Since the planner will 
ignore vertices and edges if they are marked invalid, then some other, background 
thread should run periodic collision checks on flagged vertices and edges in between 
planner runs. In this work however we simply reset validity flags once a planner run 
is over. 

 

 
Figure 4-4. Vertex costs (black and purple indicate low values; oranges and yellows indicate 

high ones) in a planning environment after a query. 
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4.3 Fallbacks 

 
It is possible that, during a planning run, enough vertices and edges are 

marked invalid that there is no longer any path in the roadmap from start to goal. 
Such events can be detected, because computeShortestPath also creates a list of 
vertices reachable from the start vertex. If the list does not contain the goal, the 
roadmap has become too disconnected to contain a solution and the planner can 
terminate early. While our cost bump method is therefore faster at finding solutions 
than single-query planners, and often produces better quality paths (as will be 
shown in the next section), it does so with a penalty to reliability: by relying on a 
roadmap, it becomes sensitive to the roadmap being so different to the current 
environment so as to be unusable. In practice, this does not happen often, but one 
would still want some kind of fallback for the times when it does. 

One can increase reliability by running a single-query planner in parallel 
with our roadmap based method, and return the first valid solution (found either by 
the single-query or the roadmap based planner). This way, one obtains the 
reliability and performance of a single-query planner as a baseline, with the bonus 
that the roadmap based planner is also available to speed up planning 
computations, especially once roadmap costs capture a good representation of the 
current state of the obstacles. 

 
4.4 Simulation verification 

 
We used The Open Motion Planning Library (OMPL)[Şuc12] and 

MoveIt![Mov12] for the implementation. 
 

 
Figure 4-5. The PR2 and the environment used for planning. 
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For a first set of tests, we ran our planner and RRTConnect on a set of 
planning queries (different from the problems in subsection 4.1) and recorded 
execution times and path lengths. The queries are planning problems requiring the 
manipulator to move around a table (taking the end effector from beneath the table 
to above it, for example) as well as around objects on that table. Our planner was 
run for 30 times for each problem. Every planner run started from zero vertex costs, 
and the planner had to rediscover the environment. Because its results show more 
variation, RRTConnect was run 100 times for each problem. Averages and standard 
deviations of the results from these runs are available in Tables 4-2 and 4-3 for 
execution times and path lengths respectively. Box plots are given in Fig. 4-6 and 4-
7. 

 
Table 4-2. Planning time statistics for RRTConnect and our method 

RRTConnect our method Problem 

Avg. time (s) Std. dev. (s) Avg. time (s) Std. dev. (s) 

0 0.102 0.057 0.065 0.003 
1 0.075 0.053 0.024 0.002 
2 0.292 0.309 0.054 0.003 
3 0.331 0.270 0.128 0.003 
4 0.201 0.143 0.136 0.002 

 
Table 4-3. Path length statistics for RRTConnect and our method 

RRTConnect our method Problem 

Avg. path 

len. 

Std. dev. 

path len. 

Avg. path 

len. 

Std. dev. 

path len. 

0 7.314 2.895 4.553 0.000 
1 5.205 1.900 3.606 0.000 
2 7.597 3.353 3.826 0.000 
3 8.626 3.238 5.224 0.000 
4 9.976 3.068 9.420 0.000 
 
As the table and plots reveal, the proposed planner is capable of finding 

better quality paths faster than RRTConnect, sometimes twice as fast or better. The 
performance of the planner is dependent of course on the sparse roadmap used, 
which should be small enough to enable fast queries, but large enough to capture 
manipulator movements that would allow it to move gracefully in a cluttered 
environment. 

For a second set of tests, we keep the vertex cost values from one planning 
problem to another. We run our planner 30 times for each problem, and each 
planner run starts from the same initial vertex costs. However, the vertex costs at 
the end of the last run for a problem will become the initial vertex costs for all runs 
of the next planner problem. To compare, we use RRTConnect, which we run for 
100 times for each problem. We again collect averages and standard deviations of 
planning time and path length. Boxplots for planning time are shown in Fig. 4-8; 
statistics for planning time and path length are also shown in Tables 4-4 and 4-5 
respectively. 
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Figure 4-6. Planning time boxplots for RRTConnect and our method. 

 
 

 
Figure 4-7. Path length boxplots for RRTConnect and our method. 
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Table 4-4. Planning time statistics for RRTConnect and our method. Vertex costs in one 

problem run are initialized with the costs from the previous problem 

RRTConnect our method Problem 

Avg. time (s) Std. dev. (s) Avg. time (s) Std. dev. (s) 

0 0.174 0.072 0.082 0.001 
1 0.242 0.200 0.097 0.002 
2 0.157 0.075 0.127 0.001 
3 0.165 0.079 0.252 0.012 
4 0.173 0.080 0.142 0.003 
5 0.209 0.198 0.054 0.002 
6 0.197 0.183 0.136 0.002 
7 0.181 0.078 0.103 0.002 
8 0.163 0.069 0.083 0.002 
9 0.097 0.092 0.048 0.002 
10 0.207 0.169 0.158 0.001 
11 0.284 0.180 0.158 0.002 

 
Table 4-5. Path length statistics for RRTConnect and our method. Vertex costs in one problem 

run are initialized with the costs from the previous problem 

RRTConnect our method Problem 

Avg. path 

len. 

Std. dev. 

path len. 

Avg. path 

len. 

Std. dev. 

path len. 

0 10.644 2.563 6.861 0.000 
1 7.910 3.321 6.552 0.000 
2 10.253 2.524 7.959 0.000 
3 10.461 2.244 10.008 0.000 
4 10.984 2.808 10.008 0.000 
5 6.361 2.887 2.938 0.000 
6 7.250 3.731 3.525 0.000 
7 11.350 2.564 9.796 0.000 
8 10.876 2.505 5.725 0.000 
9 5.599 2.375 4.212 0.000 
10 6.977 2.534 9.977 0.000 
11 10.406 3.342 7.777 0.000 

 
Again we can see our planner is usually faster than the RRTConnect average 

and median. One exception is problem 3. Problem 4 is the same start/goal state 
pair, and our planner is now faster, because vertex costs help steer the planner 
away from some dead ends. Also the environment changes between problems 5 and 
6, but our planner re-adapts costs quickly and maintains its efficiency. 

The proposed heuristic of adjusting vertex costs while planning proved a 
promising way to obtain good quality plans and fast planning times. Having a good 
precomputed roadmap however is key; the roadmap needs to be small enough to be 
quick to query, yet rich enough to capture enough variety of behavior for the robot. 
It may be useful, as future work, to investigate other procedures for roadmap 
generation, not just sparse planners; for example, some other methods that 
explicitly take into account the geometry of the configuration space. 
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Figure 4-8. Boxplots for planning times for RRTConnect and our method when vertex costs in 

one problem run are initialized to the vertex costs from the previous problem. 

 
 

4.5 Conclusions 
 
In this chapter we study ways to use multi-query planners in changing 

environments. We first show that a classical solution (lazy PRM) is slower than a 
single query planner (RRTConenct), and we observe that this is a result of lazy PRM 
seeking an optimal path inside its known roadmap. We then propose a cost bump 
heuristic to steer graph search algorithms away from regions that might be 
obstacles. The cost bump heuristic can also be used as a way for the planner to 
learn an approximate shape of the free space of the robot, and we show how this 
may be done. It should be noted that the dimensionality of a robot's configuration 
space is typically much larger than 3, the dimension of the workspace for which it 
has a 3D model reconstruction, and that simple objects in the 3D workspace may 
result in very complex shapes in the configuration space. 

We use a PR2 from Willow Garage to validate our cost bump approach in 
simulation and experiment. A PRM using cost bump can outperform single query 
planners, both in terms of planning time (reduced by a factor of two or better), as 
well as shorter, more efficient paths. It is important for the performance gain that 
the roadmap be small in number of samples, and therefore generated by some kind 
of sparse planner like a visibility based one. The roadmap should be small to allow 
fast queries, but large enough to capture a variety of possible behaviors.  
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5. Planning for manipulation tasks 
 
Manipulation is an important component of a robot's tasks. It also can 

quickly become a very challenging problem for the robot if it is to plan its motion 
autonomously. Manipulation tasks often require precision, and the manipulated 
objects may be such that only a few of the maneuvers a robot can do are actually 
useful, and it will be difficult to find a sequence of movements just by a usual 
search for a plan. Further, manipulation tasks often make use of all of a robot's 
arms as well as end effector degrees of freedom for grasping and changing of 
grasps. As a result, manipulation planning is difficult because of the high-
dimensional configuration space. In this chapter we investigate a multi-level 
approach to manipulation planning and provide an intuitive justification for it, as 
well as a simulation verification of the concept. This chapter contains parts from the 
author's papers "A two-level approach for intricate manipulation planning" 
[Pom13c], "Improving reliability and efficiency of intricate manipulation planning 
through mapping of grasp feasibility zones" [Pom14b], and "Mapping kinematic 
interactions between objects for robot motion planning" [Pom13d]. 

 
5.1 Justification for a two level approach for 

planning 
 
Sample-based planners do not explicitly analyze the geometry of a 

configuration space; they do not identify boundary regions or narrow passages. 
Since the task space of the robot is often occupied with only a few obstacles, the 
result is a configuration space with plenty of free space to place samples in, and 
easy connections between them. A geometrical analysis on a configuration space 
will always be hard, and must complete before a plan can be searched for. Sample 
based planners meanwhile may quickly stumble into a solution by chance, especially 
if there is lots of free space, and this is one reason they are the standard today. 

However, a robot must also be able to work in cluttered environments, on 
tasks that involve precise manipulations of objects that might be tangled with one 
another. The result is the presence of narrow passages in the free space of the 
robot, regions of small volume and poor visibility from other parts of the free space. 
They are difficult to handle by sample based planners; the small volume of a 
passage means the chance of samples being placed there is low. Plans that traverse 
narrow passages are therefore hard to find. 

Problems of manipulation may present such narrow passages. Objects often 
need to be manipulated in close proximity to another, and may need to pass 
through or around one another. Consider for example placing a key in, or removing 
it from, a keychain, or hanging a coat in a wardrobe. Day to day life presents 
several such problems of (dis)entangling objects. The circumstances in which these 
appear are also varied, so simple static approaches (e.g., as done for industrial 
robots programming[Cho05, Pir07]) may not always be adequate. The 
quintessential disentangling problem is the puzzle, and by construction these are 
made to be hard for humans too. While rather artificial, they easily showcase, in an 
exaggerated form, the kinds of manipulation problems described here. 
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Apart from the narrow passages, manipulation problems can also be difficult 
because of the number of degrees of freedom involved. Often, the manipulation will 
have to be performed with two arms, either because there are two or more objects 
that must be manipulated, or because manipulating one requires changing grasps. 
This greatly increases the configuration space to explore for a solution, especially if 
the grasps themselves add even more degrees of freedom (the placement of gripper 
elements around the object) to consider. 

 

 
Figure 5-1. Entangling or disentangling motion planning problems. Some are common in daily 

life, others are difficult enough to be challenging for humans. 

 
Since having high-dimensional configuration spaces increases the 

complexity of the search for plans, one should try to work in as few dimensions as 
possible. Human intuition appears to take this approach when planning manipulation 
tasks. We seem to first think of how the manipulated object should move, or at 
least establish a few waypoints, and then think of how the arms should move and 
grasp, so that the object follows the planned trajectory. 

In this chapter, we propose a two-level approach for complex manipulation 
planning: plan for the object considered as if it were capable to move on its own, 
then for the arms to manipulate it into following the solution trajectory. The benefit 
of our approach is planning now happens in the configuration space of the object 
(six dimensional), rather than the configuration space of robot with the object (for 
the PR2: 16 DoF for the arms and grippers). The plan obtained at this stage will be 
called solution path, or solution trajectory, for the manipulated object. 

The plan we obtain for the object will constrain the space we need to search 
for arm and grasp planning. Rather than searching in the full space of possible 
motions of the manipulator, we search the subspace capable to manipulate the 
object towards following the previously planned trajectory. This greatly reduces 
dimensionality and improves efficiency. We will say the robot follows the solution 
path for the object when the robot grips the object, and moves its arms such that 
the object follows the solution path we obtained at the first level of our approach. 

Our approach allows representing, in a compact fashion, a set of useful 
motions in the object configuration space as a roadmap; for example, trajectories 
passing through narrow passages. We can then concatenate trajectories from the 
roadmap into more complex plans as needed by the task. The construction of the 
roadmap for the object is done with human assisted motion planning, to ease 
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identification of the narrow passages and interesting regions in configuration space. 
The capability to use human in the loop planning is also important in some contexts 
like industrial robotics, as it allows the operators to have a greater degree of control 
over the robot's repertoire of manipulation maneuvers. However, our approach is 
not the same as teaching a robot by demonstration, as seen in for example [Arg09, 
Nie13]. The roadmap stored by the planner allows solving queries not formulated 
during training. 

To validate our approach, we consider here a particular problem class: 
manipulating a ring piece around a card with two holes. A particular planning 
problem in this class requires the ring to be taken from some start to some goal 
state. A small arc of the ring is missing, which allows it to slide along the card and 
through the holes. The card is assumed to be a fixed obstacle in space and the the 
ring is assumed to be stable at the start and goal configurations. In our experiment, 
the robot doing the manipulation is a PR2. The PR2 has two 7-DOF arms, and a 
typical problem will require the use of both arms. Planning is done using a modified 
OMPL plugin for the MoveIt! package, and the simulation is viewed in RViz (the 
default visualization tool for ROS). 

 

 
Figure 5-2. PR2 and an example disentangling problem. 

 
For this particular problem class, one needs to make use of both the robot's 

arms and grippers, which results in a fairly high dimensional configuration space. 
Furthermore, by design, there are several narrow passages to make the problem 
difficult. However, it is natural to consider subspaces of fewer dimensions when 
solving this problem, and we pursue such an approach here. 

One level of planning concerns the object to be manipulated, treated as a 
rigid body capable to move under its own power, in the environment with obstacles 
(but without the robot being present, or not considered as an obstacle in any case). 
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The purpose of this level of planning is to provide a solution path for the object to 
follow from start to goal. 

 

 
Figure 5-3. Two-level planner fora disentanglement problem. 

 
Of course, in reality the object is not capable to move by itself. The second 

level of planning is then tasked with getting the robot arms to move in such a way, 
so they will drag the object along the solution path provided by the first level. The 
movements of the arms must themselves be feasible, and the feasibility constraint 
may require grasp changes on the object, for example when continuing to move the 
object using the current grasp results in a collision, or is kinematically impossible. 

We present a planning architecture that fits our approach, and implement it 
atop the MoveIt! software package. We describe the method, and a test class of 
problems, in sections 5.2 to 5.4. We give some experimental results and analysis in 
section 5.5. 

 
5.2 Motion planning for the manipulated object 

 
The first step of our approach is to obtain a solution to the simplified motion 

planning, which considers the ring as a free-flying object. Note that the small 
missing arc, the card and the holes create several narrow passages. As a result, the 
single query sampling-based planners implemented in MoveIt! will have a difficult 
time solving it. Even with a couple of minutes allowed, we found such planners fail 
to find a solution for problems manipulating the ring through the card. These 
planning problems are for a relatively small-dimensional space (the possible 
configurations of the ring, which has six degrees of freedom), not the space of the 
two manipulator arms (which has fourteen, with two more DoFs for the grippers). 
Trying to use a single-query planner on the larger space would require even longer 
planning times. 

On the other hand, a human can easily identify a few interesting 
configurations for the ring, which will guide the search for a solution. For this class 
of problems, humans can quickly see the narrow passages and place samples inside 
them. Thus, a roadmap is constructed with human assistance, to speed up planning. 
The roadmap construction proceeded as illustrated in the algorithm in Fig. 5-5: the 
user would set a start and goal configuration, then request a plan to link them. The 
customized OMPL planner then attempts to link the start and goal to the constructed 
roadmap. If they can be linked to the same connected component, then they are 
not interesting samples and discarded, to keep the roadmap small. However, if they 
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cannot be linked to the same component (because the roadmap is fragmented, or 
empty, or simply cannot see the start or goal), then they are added to the roadmap, 
and the planner spends some time generating random samples in an attempt to 
connect start and goal. 

 

 
Figure 5-4.  Example disentangling problem: the card and ring piece. 

 
 

 
Figure 5-5. Growing a roadmap for the rigid object planner. 

 
At this stage, with the roadmap empty or small, and the user would place 

start and goal at interesting locations. In effect, the user grows the roadmap, not 
the planner. At each step, a list of maximally connected components of the roadmap 
is maintained. The goal is to have a roadmap with several interesting configurations 
of the ring around the card, which also contains only one maximal connected 
component. We used 167 vertices in the roadmap. Thus prepared, the planner 
proved capable to solve planning queries for the ring quickly and reliably. 

With the roadmap prepared, we can submit planning queries for the ring 
object. The result is a solution path, in other words a series of poses for the ring to 
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move through. We feed this path to the next level, where we define a sequence of 
planning problems for the arms. 

One thing to notice is, the strategy presented here constructs a solution 
path, then imposes on the robot the task to make the ring follow the path. The path 
may become infeasible if changes in the environment occur. However, that is not a 
disadvantage of our strategy; if the solution becomes infeasible, then replanning is 
possible, with the currently reached configuration as a starting point. Indeed, 
because of the presence of narrow passages, simple path deformation may not be 
adequate, leaving replanning as the only choice. Further, having a roadmap can 
greatly speed replanning for a problem with narrow passages, assuming the 
roadmap is rich enough to capture a wide enough variety of behaviors, while also 
being small enough to be fast to query. 

 
5.3 Planning for the robotic arms 

 
The second level of our approach obtains a sequence of arm motions to take 

the manipulated object along the solution trajectory found by the first level. In our 
case, the arms must manipulate the ring around and through the card obstacle. 

One thing to note is that hooking/unhooking the ring to/from the card will 
often require changing the arm with which the robot does the manipulation; a single 
arm has limited reach. 

There are therefore two subtasks the second level of planning needs to 
implement. One is grasp selection and switching, and it provides the start and goal 
configurations for the second subtask, actual planning of arm motion. It should be 
noted that grasp switching is itself a task on which some intuitive constraints are 
imposed. Simply put, the robot should not drop the object. Or, if the robot does 
release the object at some point, it should leave it in a stable or otherwise 
predictable configuration. 

In our problem class, we allow the robot to "drop" the object only at the 
start and goal states. At all other times, at least one arm must grip the ring. A more 
general approach would also include a physics engine, or at least some procedure to 
reason about and generate configurations for a manipulated object that are stable. 

 

5.3.1 Grasp selection 

 
For our study here we defined twentyfour grasps around the ring for each 

arm. A grasp is indexed by a so called incident angle (six choices) of the gripper 
towards the ring. For each incidence angle, we have "aligned" (gripper forward 
direction is parallel to normal of ring plane) and "side" (gripper forward direction 
perpendicular to ring normal) configurations. Each aligned and side configuration 
also has a flipped version of itself, depending on which of the gripper fingers is 
inside/on top of the ring while gripping. 

Grasp selection is guided by a few criteria. The most obvious is feasibility: if 
an arm cannot reach the grasping position (either because of kinematic constraints 
of the arm itself or because of obstacles), then that grasp cannot be an option.  

 
Some kind of optimality measure may also help refine the search. In 

particular, one can try to select grasps in such a way so as to minimize the number 
of necessary grasp switches during the solution. What we do here is more a greedy 
approach than a true minimum of grasp switches: we try "promising" grasps first 
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and backtrack if the robot encounters dead ends. A promising grasp is one which 
allows the arm to take the manipulated object through many waypoints on the 
solution trajectory before the grasp needs to be changed. While not guaranteed to 
be optimal, this heuristic gives good results in practice without having to search 
through all possible grasp sequences. 

 

 
Figure 5-6. Grasp positions and orientations on the ring piece. Grasps can be side (a) or aligned 

(b). 

 

5.3.2 Grasp switching 

 
Grasp switching becomes necessary when the robot cannot continue, using 

the current grasp, to manipulate the object along the solution trajectory found by 
our first level of planning. This produces a sequence of planning problems for the 
two arms as they need to grip/ungrip the object. The sequence is straightforward, 
since the robot must always keep at least one gripper on the ring. Also, the arm 
currently not gripping is moved away, so as to not interfere with the solution path. 

It may happen however that the other arm cannot reach the ring, and 
therefore a grasp switch is not possible. Since continuing with the current grasp is 
also not possible (or else, there would not have been a need for a grasp switch), 
such a situation is called a "dead end". To escape it, the robot should move back 
along the solution trajectory of the manipulated object, and try grasp switches at 
past points. 

For our implementation here, we try to avoid dead ends at the planning 
stage by using a backtrack procedure, to be described in section 5.4.2. In effect, 
our robot "moves back" while thinking about a solution. As a result, our robot has a 
complete plan when it starts moving, and doesn't need to retrace its steps during 
actual execution. 

In an actual environment, where changes might appear, the capability to go 
back along the solution path while executing the manipulation is however useful. We 
do not implement it here, but it is a straightforward extension to our approach. 

 

5.3.3 Trajectory checking 

 
While planning for the arms, we need to check the validity of manipulation 

motions while the robot arm grasps the manipulated object (the ring, in our case). A 
particular grasp, which in our case entails a choice of incidence angle, alignment, 
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and flip status, induces a transformation from the pose of the object to that of the 
end effector, and from that an arm configuration may be deduced by inverse 
kinematics (IK). 

 

 
Figure 5-7. Grasps are represented as pose transformations between moveable rigid object and 

gripper. 

 
It may happen however that IK fails to find an arm configuration that brings 

the gripper into the desired pose. Or, while the IK can find a solution, it's a "jump" 
from the previous one, which indicates that the arm cannot follow, using a 
continuous trajectory, the motion described by the ring solution path. 

Finally, another source of possible failure to follow the solution path are the 
obstacles- including the robot and ring themselves. If the IK computation yields a 
solution without jumps, we also perform collision checking as well on each step the 
arm makes while following the solution trajectory. 

 
5.4 Improving the two level approach 

 
The core idea of our approach is to split a complicated manipulation problem 

into several simpler ones, where "complicated" and "simple" have a clear meaning 
in terms of degrees of freedom we need to consider at any time. Rather than plan 
for the whole robot at once, or at least arms with grippers (16DoF), we plan for the 
manipulated object once (6DoF) and for the arms (7DoF; gripper action is handled 
outside of planning) as needed because of grasp switches while following the 
solution trajectory. 

We now present two further additions to this basic outline to improve 
efficiency and reliability. 
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5.4.1 Roadmaps for the arms 

 
We saw in the previous chapter that roadmap planners can improve search 

speed, if helped with a heuristic like our cost bump. Further, the cost bump can help 
the planner learn the free space of the robot. 

This is especially helpful for our approach since we need several planning 
queries solved as we try various grasp switches, all in quick succession. Our cost 
bump method is then given plenty of opportunity to learn about change in the 
environment. Further, the planning problems are about moving the arms between a 
given known configuration (the "arm away" configuration) and some configuration 
around the ring, which will not move too far away as we try several grasps. As a 
result, the movements of the arms will be similar for the various grasp/ungrasp 
actions. The cost bump method will be particularly apt to try such exercised 
trajectories first, because having a valid region to move the arms through will 
reduce costs in that region and reinforce its prioritization in future searches, in a 
similar manner to how a human being would do manipulation. 

Cost bumps can also provide assistance with another problem, that of dead 
ends, by tracking which regions of space contain configurations that are awkward 
for the robot to reach and grasp. Planning for the manipulated object will then avoid 
such regions, which should improve the chance that a solution candidate produced 
by the first level is actually feasible for the robot. 
 

5.4.2 Backtracking 

 
In section 5.3.2 we described the problem of dead ends- situations when 

the robot cannot follow forward along the solution trajectory for the manipulated 
object. We observed that, at least for the manipulation problems we posed to the 
robot, our greedy grasp selection heuristic was often good enough to avoid dead 
ends. 

Nonetheless, dead ends can happen, hence the need to backtrack. In our 
implementation here, at every moment where a grasp switch is necessary, we make 
a list of feasible grasps with the other arm and the length of the segment of the 
object solution trajectory that they can follow. When we need to backtrack, we 
return to the moment of the grasp switch and select the next best. If all the grasps 
in the list have been tried, we go back a further step and so on. This type of 
backtrack is done in the planning and validation stage, before execution; it is the 
type of backtracking we implement. 

Backtracking may also be done while the robot performs the manipulation. 
The idea is the same: have the robot move backwards along the object's trajectory, 
possibly testing for grasp changes along the way as well. We do not implement this 
here, but it is a straightforward extension of our approach. 

We limited the moments at which we can backtrack to, to the moments 
when grasp switches must happen. In principle, one could test grasps at every step 
(every waypoint) along the solution trajectory for the manipulated object. However, 
these waypoints are often very close to each other so that testing grasps 
everywhere is a waste of effort; feasible grasp lists will not change much between 
close waypoints. In practice, we found that switching grasps only when we have to 
(because continuing to follow using the current grasp is unfeasible) works reliably. 
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Increasing the moments when we consider grasp switches only increases complexity 
and reduces the efficiency of the method. 

 

5.4.3 Grasp feasibility zones 

 
Our heuristic (select a grasp based on the length of object solution path that 

it can be kept on) produces good results in terms of number of grasps needed, 
however it is expensive to evaluate. To speed grasp selection, we first rank them 
according to a grasp suggestion strength metric, which is easy to compute and will 
define in this section. The grasp suggestion strength provides a quick, provisional 
ranking, which we can use to see which grasps are promising to test first. Further, 
we will limit tests to the first k grasps in order of suggestion strength; only when all 
these grasps fail will we test the others. 

 

 
Figure 5-8. Grasp suggestion strength. 

 
In order to define suggestion strength, we first define a grasp feasibility 

zone z(x, g) as a real number representing an estimate of the radius of a ball 
around vertex x (representing a configuration of the manipulated object) where 
grasp g can be maintained. This is estimated off-line after roadmap construction, for 
each vertex and each grasp. In order to compute z(x, g), we attempt to follow, 
using grasp g, every edge in the manipulated object roadmap which has x as an 
endpoint. The smallest distance before the grasp becomes infeasible is z(x, g). 

In general, grasp switches will not happen at vertices in the roadmap, so let 
the configuration of the manipulated object at the point of grasp switch be y. We 
find the set Nk of closest k neighbors to y and let x be some vertex in the set. For 
each known grasp g, we can get the suggestion strength from x for grasp g at y:  
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For each grasp g, we collect suggestions strengths from all vertices in Nk. 
The maximum is the grasp suggestion strength for g at y: 

),,(max),( ygxyg Nx ss k∈=  

Intuitively, grasp feasibility zones give the robot some knowledge of what 
grasps to try in various regions of the manipulated object configuration space. Once 
computed offline, the grasp feasibility zones allow a quick estimation of how 
promising some particular grasp is for use when solving a given problem. 

 

5.4.4 Recalculating object solution paths 

 
Splitting the manipulation planning into two stages as we do here creates a 

potential problem: what if the solution path found for the object is infeasible for the 
robot? For example, the solution path might pass through some kind of tunnel which 
would prevent the robot to reach and manipulate the object. Such a solution path 
cannot be used, and a new one should be tried. 

To help steer the planner from problem areas, we reuse the concept of the 
cost bump we introduced in chapter 4. If a configuration along a solution path is a 
dead end, meaning we must backtrack, it is an indication the solution path 
candidate passes through a region that is awkward for the robot to reach, and we 
apply a cost bump to vertices in the object roadmap. Only a small number of 
backtracks are allowed before the planner attempts to find a new solution path 
candidate and reset the grasp selection process. Conversely, if a solution path 
candidate results in a complete, feasible sequence of grasps, we apply cost 
unbumps to the vertices from the roadmap, to mark that regions the path passed 
through allow the robot to reach and manipulate.  

In this way, the manipulated object roadmap also contains information 
about the robot's ability to reach the object from various configurations. The regions 
may change as the environment changes and obstacles move, but the planner will 
track them as needed, during planning queries, by updating vertex costs when 
invalid regions are detected as intersecting roadmap vertices. 

 

5.4.5 Separation of grasp selection from arm motion 
planning 

 
Arm planning for grasping/ungrasping is a computationally costly operation, 

which nonetheless is necessary whenever the robot switches grasps during 
manipulation. However, it is not necessary to plan for the arms at every grasp test. 
Since not all grasp tests will result in grasps used for the final solution to the 
manipulation problem, we further split the second level of our planning approach 
into two stages: "grasp selection" and "plan extraction". 

During grasp selection the planner attempts to find a sequence of grasps 
that is feasible and will allow the robot to take the manipulated object all along the 
trajectory obtained from the first level, from the start to the goal configuration of 
the manipulated object. 

Only after we have one such complete sequence of grasps do we pass to the 
plan extraction phase, which generates arm planning queries for each grasp switch. 
Should arm planning fail for any of the switches, we go back to grasp selection, and 
resume backtracking from the last grasp switch for which we had an arm plan, to 
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avoid maneuvers for which arm planning doesn't find answers. In general, this will 
result in a small number of motion planning queries since we only plan when we 
have a likely good and complete grasp sequence. 

 

 
Figure 5-9. Three-level planner block diagram. Arm planning queries are delayed until 

absolutely needed, to improve planning time. 

 
5.5 Simulation verification 

 
We implement our planner as an addition to the MoveIt! package and test it 

on a few manipulation problems that require moving a ring piece around a card with 
two holes. The card is a fixed obstacle. The ring has a small arc missing, to allow it 
to hook or slide around the card. We allow the robot to leave the ring ungrasped 
only at the start and goal configurations; everywhere else, the robot must keep at 
least one gripper on the ring. The simulation is visualized in RViz, the default ROS 
visualization tool. We run the simulations on an Intel® Core™ i5-3210M CPU 
running at 2.5GHz. 

The problems are: change the hole that the ring is hooked to (query 
"change"); take the ring out, flip it, then rehook it to the same hole (query "flip"); 
starting from the ring hooked on both holes, take it out of the card, flip it, rehook it 
to both holes in the card (query "dhook"). 

For a first test, we test our planner without grasp suggestion (which is the 
same as setting k to infinity). All grasps are tested for feasible length along the 
solution path and the one allowing the longest following of the candidate trajectory 
is chosen. Each problem is run five times. Average and standard deviations of 
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planning times, split in the three stages of planning, as well as number of grasp 
switches (including the first grasp) are given in Table 5-1. 

 
Figure 5-10. Test problem queries (start and goal configurations): "change" (a), "flip" (b), 

"dhook" (c), "change" with a new obstacle in the environment (d). 

 
 

Table 5-1. Planning time statistics without grasp suggestion 

puzzle plan grasp selection plan extraction Query 

avg 

(s) 

sdev 

(s) 

avg 

(s) 

sdev 

(s) 

avg 

(s) 

sdev 

(s) 

grasp 

switches 

change 0.4 0.04 6.5 0.16 5.24 0.59 2 
flip 0.52 0.02 15.63 0.26 16.22 0.97 7 

dhook 0.51 0.06 25.91 1.46 26.48 1.17 13 
 
As a second test, we now run our planner with k=8: we use grasp 

suggestion strength to find at most 8 grasps to test first, and only test more if these 
first 8 fail. Again, each of the three problems is run five times, and we show the 
collected statistics in Table 5-2. 

 
Table 5-2. Planning time statistics with grasp suggestion (k=8) 

puzzle plan grasp selection plan extraction Query 

avg 

(s) 

sdev 

(s) 

avg 

(s) 

sdev 

(s) 

avg 

(s) 

sdev 

(s) 

grasp 
switches 

change 0.37 0.02 3.21 0.07 5.5 0.42 2 
flip 0.49 0.01 6.71 0.12 15.89 1.0 7 

dhook 0.48 0.01 11.62 0.35 24.45 1.35 13 
 
For a third test, we run the problem "change" several times, however we 

insert an obstacle in some of the runs. Planning times are shown in Table 5-3; 
where several solution path candidates were generated, we list planning times for 
each. The first two runs are in an environment where the only obstacle is the card. 
For run 3, we insert an obstacle and as a result, the plan times for this situation are 
large because several solution path candidates are attempted. Eventually a seven 
grasp solution is found. However, once the planner learns what regions to avoid, it 
quickly finds good solution paths; in three subsequent runs (4, 5 and 6) the planner 
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is much quicker to find a solution, using even fewer grasps (five). For the next runs, 
we remove the obstacle. Fewer grasp switches are needed (four), but the planner 
will revert to the original solution only after it learns that the regions it passed 
through are available again. 

 
Table 5-3. Planning times on runs in a changed environment 

Problem run puzzle plan 

(s) 

grasp 

selection 
(s) 

plan 

extraction 
(s) 

grasp 

switches 

1 0.33 2.62 5.04 2 
2 0.33 2.51 5.03 2 
3 0.37; 0.35; 

0.37; 0.35; 
0.35 

79.51 13.46 7 

4 0.39 4.29 9.31 5 
5 0.39 4.31 8.94 5 
6 0.43 4.32 8.4 5 
7 0.4 3.83 7.86 4 
8 0.42 4.4 7.75 4 
9 0.4 4.13 7.49 4 
 
Finally, using a precomputed roadmap is not equivalent to storing one 

precomputed behavior for a given task. The roadmap is capable to answer more 
planning queries, and it needs not be constrained to a particular environment. In 
our case, only the ring and the card are relevant when the roadmap is constructed. 
The environment can be different and include more obstacles when the roadmap is 
actually used. As long as the roadmap is rich enough to contain various movements 
of the ring relative to the card in an otherwise empty space, it will work well in an 
environment with other obstacles and/or the card in a different pose. To handle 
such situations, one can use roadmap planners adapted for changing environments, 
for example lazy versions of PRM. 

 
5.6 Reusing roadmaps for manipulation 

 
The previous sections have presented a manipulation planner which uses a 

roadmap for the object manipulation task. The approach splits the planning problem 
into tasks in lower dimensional configuration spaces, and allows handling complex 
situations that contain narrow passages, but leaves open the question of how a 
roadmap is specified in such a way so as to be useful for a broader category of 
objects. Not all keychains are the same, not all door latches are strictly identical 
geometrically, not all containers are the same, etc. Nonetheless, in some sense all 
door latches are similar to one another, a keychain has the same function and 
operates in almost the same way as another keychain, and so on. While operating 
such objects requires maneuvers that pass through narrow passages and tightly 
fitting parts, once a human being learns to operate one object in the class, they will 
quickly generalize that knowledge to other objects in the class. It is worth therefore 
to find ways in which roadmaps used for planning are similarly reusable. 

Typically, roadmaps are specified as graphs with vertices being points in the 
configuration space of a given object. As such, a roadmap specification depends on 
the exact geometry of an object- its size and shape. Consider the test problem of 
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the ring and card from the previous section. The relative pose of the ring to the card 
has a translational component that depends on the size of the two bodies. Scaling 
them twice means the translational components in the vertex specifications must 
also be scaled. 

 

 
Figure 5-11. A roadmap constructed for the ring piece around the card on the left would not 

work for the card on the right, even if for a human being the two cards are similar. 

 
However, that is not the only possible transformation we could apply to the 

ring and card objects, and still consider it the same problem. Imagine, for example, 
that the positions of the holes in the card changes (see Fig. 5-11). This would 
invalidate the roadmap constructed with the original card and ring pair; 
nonetheless, the modified card still seems sufficiently similar to the original, so that 
a slightly, and hopefully cheaply, modified roadmap based on the roadmap for the 
original could be useful for planning. 

One obvious way to address this problem is to specify the vertices in the 
roadmap as poses relative to "important" features on the two objects. For example, 
one could, rather than give the exact coordinates of the ring relative to the card 
piece, specify its position as being inside a plane defined by the centers of the two 
card holes. In general, translation components of a pose would be specified in terms 
of dimensions of the pieces like diameters and thicknesses, while orientation 
components would be specified so that vectors between object features align in 
certain ways, to obtain a scale- and coordinate-free specification of the roadmap 
vertices. 

This approach would then make use of some object detection and 
recognition methods to see where the important features of the objects the robot 
works with are, and automatically adjust the roadmap based on the information 
about those features. 

One problem remains unadressed however- just what is an "important" 
feature? A human operator could define the card piece as having two holes and a 
thicker segment on the ridge, then proceed to define the roadmap vertices 
according to these features. However, if we want some autonomy in the robot, it 
should be able to identify at least some features that are important enough to 
define an object class. 

Previous work in reasoning about object parts has specifically focused on 
identifying affordances for grasping: just where an object can be grasped by the 
robot's hand [Kra01, Mil03, Dia09, Cio10, Xue09, Krm10, Nie12]. More recently, 
there has been some work about identifying the geometric primitives that 
approximately make up an object and, based on what primitives an object contains 
and how they are arranged, recognize it [Ten13]. Other work[Hoo12] attempts to 
find plans that will maximize a robot's knowledge of how objects are situated in an 
environment. There exists a gap between such research and motion planning 
however, in that even when knowing the shape primitives that make up an object, it 
is not trivial to describe how an object would interact with another. One can 
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describe a ring piece as a torus, and a hook as a bent cylinder, but the robot still 
has to infer- or more often, be told- that the hook can stop the ring from falling 
down. 

It is however these object interactions that are important for planning. 
Some of these interactions are of a physical nature: will the two objects stick to 
each other, what is the friction between them, how would they behave in a gravity 
field? Some interactions, and these will be the focus of the next subsections, are 
kinematic: how do the objects restrict each other's movement in various 
configurations? 

We will study the problem of describing the kinematic interaction of two 
complicated rigid objects in such a way that would be both compact and reusable to 
planning queries involving a larger class of objects of similar, but not identical, 
geometry. The classic kinematic pairs are included, but do not exhaust, the 
categories of objects we consider here. As an example, there is no lower kinematic 
pair with two rotational degrees of freedom; however, the gear stick of a car is such 
a system, as rotations around its length axis are restricted; further, rotations along 
axis perpendicular to its length are restricted depending on where the kinematic 
stick is in its configuration space. 

We will introduce a datastructure, a degree of freedom map (or DoF map), 
which stores information about how the degrees of freedom of one object change as 
it moves around the other. Important configurations are those where the degrees of 
freedom in the motion change. 

Unlike most previous approaches, ours is compatible with a robot exploring 
the environment through touch. The sense of touch for robots has been used to 
allow safe interaction with humans[Had08] and exploring a one-dimensional 
object[Had11]; we extend it to explore more complicated geometries here. While 
the sense of touch cannot replace vision, it offers a good complement because in 
many cases a robot's vision systems cannot see all the relevant parts in a 
mechanism: occlusions prevent a robot from getting a complete picture of an 
object. Even if some features are detected, there will be errors in reconstructing a 
3D model from them. If, as is often the case, several objects fit very snuggly 
together, even very tiny errors would result in the robot believing there are no 
solutions because all possible corridors have been blocked by noise. Humans 
however can easily solve these problems: we don't need to know what's inside a 
lock in order to use it; we can do that almost entirely by touch. 

The next sections will describe procedures to construct and reuse DoF maps 
for planning queries. We will end with a discussion of what would be an object 
classification criterion that would be useful for motion planning, and argue that DoF 
maps are such a criterion. 

5.6.1 Degree of freedom (DoF) maps 

 
A degree of freedom map (or DoF map) is defined as a graph where the 

vertices are regions in the configuration space of a pair of rigid objects, one of which 
is considered a fixed obstacle. Vertices can be corridors (long regions where only 
one degree of freedom is important at any point, and the free directions at nearby 
points must be close to parallel to each other; there must be no sudden change in 
allowed direction of movement). Vertices can also be junctures, small regions 
where several degrees of freedom are available, and for each degree of freedom 
there is at most one corridor passing through (or stopping at) the juncture. A 
corridor may pass through several junctures. Also, a corridor can be circular; an 
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example of such a corridor is spinning in place. An, L-shaped bend is not considered 
a corridor (the allowed direction changes too fast), but a juncture where two 
corridors meet and stop. 

During the construction phase, the DoF map includes geometric information 
such as relative object poses expressed in some coordinate system and the exact 
components of the vectors describing the degrees of freedom. Each juncture has 
exactly one representative pose, whereas a corridor will often have several 
representatives, closely spaced along its length. Links between a juncture and a 
corridor are treated as short paths between representative poses.  

Also, for every degree of freedom at a vertex in a DoF map, we store step 
lengths along both positive and negative directions to keep information about how 
far one can go before either colliding or reaching a maximum step threshold. This 
data is used to represent whether junctures provide abrupt stops for corridors (see 
Fig. 5-12, left), and characterize 'how free' a degree of freedom is. 

During reuse, the geometric information about representative poses is 
discarded. There is no need to keep exact coordinate representatives if the objects 
the DoF map is used for are different from those used for its construction. Step 
length information for junctures is kept however. 

 

5.6.2 Constructing a DoF map 

 
To avoid singularities, during construction the relative poses of the 

moveable object to the fixed one are stored as elements of the special Euclidean 
group SE(3). Such an element is a 4-by-4 homogenous matrix, which contains a 
linear translation part and a rotation submatrix. 

In order to discover the DoFs at some pose, we will perform small relative 
motions relative to that pose. These small movements are represented as elements 
in the Lie algebra se(3) of the special Euclidean group. Let v be a direction in se(3) 
and t a small time interval to follow this direction, then new pose obtained after 
such a motion, assuming it is successful and does not encounter a collision, is given 
by 

 

)exp( vgg ⋅⋅= tnext  

 
where g is the current pose and the vector v is of unit length and of the 

form (ωx, ωy, ωz, dx, dy, dz), in which the first three components are an angular 
velocity axis, while the last three are a translation one. The product tv gives a 
vector representation of the displacement. 

DoFs at a pose will be identified by collecting several (tk, vk) pairs (or 
equivalently, displacement vectors tkvk). In previous literature, principal component 
analysis was used to identify directions of roadmap expansion from such collections 
of vectors[Dal09]. 

However, principal component analysis assumes all components in the 
collected vectors are similar quantities with similar scales and units of 
measurement. In our case however, some components are linear displacements, 
while others are angles. 

To address this problem, to identify the DoFs at a pose we first perform only 
purely translational movements around that pose. From the resulting collection of 
vectors we obtain the maximum distance travelled from the starting pose; let it be 
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called rs, and it will serve as a rotation scaling parameter for the pose. Other data 
vectors representing displacements around the pose which have rotation 
components will be modified to have the form tk�(rs�ωx, rs�ωy, rs�ωz, dx, dy, dz). The 
principal component analysis is then run on these modified vectors, in which all 
components are linear displacements. 

The result from the analysis is a collection of eigenvalues and eigenvectors 
which characterize the directions in which there is the most variance in the collected 
displacement vector data. The eigenvectors are by construction orthogonal, and the 
larger the eigenvalue associated to an eigenvector, the "freer" the movement is 
along that vector. Therefore a cut-off threshold on eigenvalues can be used to 
decide whether a direction is free, or is sufficiently constrained that it can be called 
blocked.  

 
Figure 5-12. Left: types of junctures for two degrees of freedom. Right: PCA skew at a juncture 

where corridors end. 

 
If after DoF identification only one direction is found to matter, the current 

region is a corridor. Corridors are explored by alternating steps along the free 
direction with DoF identification procedures. If following the previously estimated 
corridor direction results in a collision, we take a step back and do another DoF 
identification procedure. If there is no close to parallel direction of continuation, one 
end of the corridor has been reached. The angle between two vectors can be 
estimated by their dot product; for orthogonal vectors, it is zero, for parallel vectors 
that go in the same direction it is positive and equal to the product of their lengths, 
while if the vectors are parallel but opposite, it is the negative of their length 
product. 

A corridor is explored until both of its ends are encountered, or the corridor 
is found to be circular, which happens when a neighborhood of the starting point is 
found without changing the direction of exploration. 

If while exploring a corridor a pose is found with several degrees of 
freedom, the new pose becomes a candidate to represent a juncture. It is first 
compared with previously encountered junctures, and if it is not close to any of 
them, a new juncture region is added to the roadmap and for each of its free 
directions, except that of the current corridor, pairs of the form (juncture index, 
direction vector) are added to a "to explore" list. If however the encountered pose is 
close to a previously recorded juncture, we remove the corresponding (juncture, 
direction) pair from the "to explore" list. 

If we find more representatives for a juncture, we keep the most central 
one. The centrality of a pose inside a juncture is estimated by the balance of the 
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eigenvalues corresponding to degrees of freedom at that pose. For example, if a 
juncture has three degrees of freedom, we store the representative which has three 
large eigenvalues that are closest to equal. 

The eigenvectors which describe the directions at a juncture however are 
taken from the eigenvectors of the incident corridors. This is because if corridors 
end at a juncture, the principal component analysis produces skewed results inside 
the juncture (see Fig. 5-12, right). Principal component analysis first substracts the 
average from the data vectors. This should be the equal to the pose that we 
collected the data vectors around, however if a corridor ends at the juncture, 
displacements towards the end will be shorter, and as a result the average moves 
away from the pose, which also changes the detected free directions. 

The map DoF construction process is assumed to operate with tactile 
feedback only (the robot knows where the moveable piece is because it can know its 
end effector position, and can detect when collisions are encountered by force 
disturbances at the end effector). First, identify whether the starting location is 
inside a corridor or juncture. If a corridor, explore it and add junctures and 
(juncture, direction) pairs as encountered; if the start is a juncture,  add (juncture, 
direction) pairs to the 'to explore' list. Keep exploring corridors from the 'to explore' 
list until it is empty.  
 

5.6.3 Reusing DoF maps 

 
Exploring the configuration space of a rigid object is a costly operation, 

regardless of the method used, so it pays to reuse information by generalizing to 
other object pairs than those previously explored for DoF map construction. In 
particular, it may be the case that two pairs of rigid bodies may look different, but 
have DoF maps that are isomorphic graphs. As will be discussed later, daily life 
offers several examples of classes of objects defined by DoF map isomorphism (see 
Fig. 5-13 for an example, or the simulation test case for another). We now describe 
a DoF map reusal procedure for such cases. 

 

 
Figure 5-13. Two objects (left and middle) with isomorphic DoF map (right). 

 
For reuse, we modify the DoF map representation slightly. Previously, in the 

construction phase, it was a graph of corridors and junctures. For reuse, we split 
each corridor into segments, and a segment is such that junctures can appear only 
at its ends. Junctures and corridor segments will thereafter be referred to as 
regions, and let R be the set of all regions in the DoF map. Geometric information 
about representative poses is discarded, as it is no longer relevant. Step length 
information for the regions is still useful however to characterize them as junctures 
where corridors pass through or stop. 
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Suppose then that a DoF map is known, which was constructed for some 
previously encountered pair of rigid objects, and we wish to reuse this DoF map to 
solve planning queries involving a new pair of rigid objects that are such that their 
DoF map, if it were constructed, would be isomorphic to the known one. We assume 
that the DoF map region which contains the goal is known and that, while the exact 
goal configuration may be unknown, either the exact goal is unimportant (all that 
matters is to bring the object in a certain region of its configuration space) or, if the 
goal is near, the robot will know this. In these conditions, we can run a simple 
shortest path search from the goal region to every other region in the DoF map, so 
that for every possible starting region, we have a direction to go to next so as to 
approach the goal region. 

First we must estimate the starting region. Prior estimations may be 
available from a vision-processing method, or the priors may be completely 
uninformative (all regions are equally likely to be the starting region). In either 
case, there is an initial, quantified belief about the start, which is adjusted based on 
a degree of freedom identification step at the starting pose. For every discovered 
degree of freedom, a minimum and maximum step value is observed, which 
represent the distance one can go by using the degree of freedom in the negative 
and positive direction until either a collision or a maximum step threshold is 
encountered. Let b be the data of such step limits along the degrees of freedom at 
the start. Then, the posterior probability that a region j of the DoF map is in fact the 
start is given by a Bayes formula: 
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where pj,0|-1 is the prior probability that region j is the starting region, pj,0|0 

is the posterior probability, and s(b|j) is a function quantifying the similarity 
between the observed data and the data we would expect if j were indeed the 
starting region. 

We also need to estimate the "previous" region, and use a (current, 
previous) region pair to describe the direction through the DoF map; even if it is not 
strictly speaking physical, we still need an estimation of this previos region at the 
start. For a region j, let L(j) be the set of regions that are linked to it. Then, the 
probability that j was the previous region is given by 
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where |L(j)| is the number of elements in L(j). 
The region with the maximum posterior probability is considered to be the 

starting region, and from its neighbors, we select the one with the greatest 
probability of being the previous region. This information is then used to determine 
a direction to move in so as to reach the goal. 

As the object is moved, steps along the current direction are alternated with 
DoF identification procedures. When the number of DoFs changes, the current 
region has changed, and the estimations need to be updated. Estimating the current 
region is done with a similar formula as before: 
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where pj,k|k-1 is the prior probability that region j is the starting region after 

k region changes, and pj,k|k is the posterior probability. Unlike the previous equation 
however, the prior probabilities need estimating themselves, based on the structure 
of the DoF map and our beliefs of what the current region and direction of 
movement are. Consider then the region j, with L(j) its set of linked regions; let m 
be a region in L(j). Then, let L(m,j) be the set of regions that are linked to m, and 
are such that a (current, previous) pair of the form (m, n ∈ L(m, j)) implies a 
direction towards j. Then the prior probability of j is given by: 
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To update the estimations for the previous region, first we define the 

auxiliary events pj
m,k as "after k region changes, current region is j and previous is 

m". The probability of such an event is given by 
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Then, to get the new posterior probability that j was the previous region we 

use 
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Throughout the previous formulas, we have used sets of the form L(j) and 

L(m, j). Of these, L(j), the set of neighbors of j, is trivial to obtain from the DoF 
map structure. For the L(m, j) sets there is a slight complication because, at a 
juncture, we may choose to stay on the same direction (and remain in the same 
corridor as before), or switch to an orthogonal direction. If the direction stays the 
same, then L(m,j) is the set that contains the other neighbor of m that is on the 
same corridor as j; otherwise, the set contains the neighbors not on the same 
corridor as j. 
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5.6.4 Simulation verification 

 
To test the DoF map strucutre, we implemented code for DoF map creation 

and reusal that works with the MoveIt! robotics software package and used RViz 
(the default visualization tool for ROS) as a simulation front end. The computer 
hardware was a laptop with 3.8GB RAM and an Intel® Core™ i5-3210M CPU 
quadcore processor running at 2.5GHz. Tactile feedback was approximated by 
moving the object in very small increments, and performing collision checking after 
each one. A step is undone if it generates a collision. A real robot equipped with 
force-torque sensors may gain more information than just collision from the force 
disturbance; it may obtain some knowledge about the shape at contact and speed 
up constrained direction estimation. The primary bottleneck in our simulations is the 
collision detection steps. On a real robot, the limit would be given by how fast the 
robot could move, and still obtain good data from the force disturbance observer. 

 

 
Figure 5-14. Two objects with isomorphic DoF maps: a planar maze (left) and a gear stick 

(right). Teal is fixed, purple is moveable. 

 
For the simulation we used two pairs of objects, referred to as the "planar 

maze" and the "gear stick" (see Fig. 5-14). Both are similar to the pattern on a car's 
gearstick, but the two shapes are different. Also, the "planar maze" allows two 
translational degrees of freedom, while the "gear stick" allows one rotation and one 
translation. However, they have isomorphic DoF maps. 

For both object pairs, motion planning queries done with a general motion 
planner like RRTConnect (a well established planner for robotic manipulators) will 
fail even if allowed five minutes of computation time as the presence of narrow 
passages and movement constraints makes expansion of roadmaps very difficult. 

As a first test, we run five DoF map construction procedures for each of the 
rigid object pairs, and keep statistics of construction times. The averages are 17.4s 
for the planar maze and 97.1s for the gear stick; the difference is a result of 
collision checking being more time consuming for the gear stick because of the more 
complex geometry. The variance in run times is small (on the order of teths of a 
second), and is explainable by background thread activity in the laptop. The 
resulting DoF maps from the construction steps are isomorphic graphs, as expected. 
Once constructed for a rigid object, a DoF map allows very fast planning queries 
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(twenty milliseconds)  for the same object pair, since we also can reuse pose 
coordinate information. 

As a next test, we ran a motion planning query for the gear stick (see Fig. 
5-15), by reusing the DoF map constructed for the planar maze; no pose coordinate 
information is reused. We assume goal region known, but the priors for the starting 
region are uninformative (all regions equally likely). Even so, the method quickly 
identifies the current location (it does so after the transition from the start to the 
next region), and reaches the goal in an average of 50.1s, about half of the time 
needed to construct the DoF map, which is consistent with the path necessary to 
reach the goal being about half the total length of the corridors that needed to be 
explored for map construction. The results are summarized in Table 5-4. 

 

 
Figure 5-15. A motion planning query on the gear stick: start (left), goal (right). 

 
Table 5-4. Average planning times for the test problems with different planning methods 

Test case Planning method Average time (s) 

RRTConnect (fails) Planar maze 
DoF map construction 17.4 

RRTConnect (fails) 
DoF map construction 97.1 Gear stick 

DoF map (planar maze) 
reuse 

50.1 

 

5.6.5 DoF maps as object classification criterion for motion 

planning 

 
Object classification allows reasoning about classes, rather than particular 

objects, and is a useful tool to generalize knowledge gained through specific 
examples[Pan12]. However, this raises the problem of what a useful classification 
criterion is; and, for this thesis in particular, what a criterion useful for motion 
planning would be. 
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The exact shape and size of an object carries too much information and 
does not generalize well. An object's topology is at the opposite extreme; it carries 
too little information. For example, an open cupboard with three shelves is 
topologically identical to a sphere, because there exists a continuous deformation  
from it to a sphere that does not use tearing nor gluing (inflating the back panel 
until the cupboard is filled, then rounding the shape). However, one cannot put 
plates inside a sphere, whereas with a cupboard, one can. 

Previous work has focused on fitting simple geometric primitives to an 
object[Ten13], and while this is a good way to classify what an object "looks like", 
it's not trivial to extract from this what an object can "do". The DoF map approach 
presented here focuses precisely on how shapes can restrict each other's 
movement, and attempts to identify interesting configurations by noticing where 
and how degrees of freedom change, and what paths exist between these 
interesting configurations. As such, it is a classification criterion specifically meant 
for motion planning. 

The DoF map is meant as a complementary approach to the vision-based 
methods that involve shape primitives. Image processing, together with machine 
learning, can suggest regions of configuration space to explore, which is especially 
useful if the objects aren't too tightly constrained; for example, the existence of 
features like holes or toroidal handles can suggest constructing DoF maps near 
them to see whether two objects can become interlocked. It is the DoF map 
representation that will function as a bridge between visual object recognition and 
recognizing motion planning opportunities. 

The DoF map is also meant to complement a vision based approach in that 
object recognition can suggest what DoF map (or maps) may be appropriate for an 
encountered object pair. The suggested DoF maps will then guide planning, and 
update confidence in their suggestions, using the procedures outlined above. 

 
5.7 Conclusions 

 
In this chapter we describe a multi-level planning architecture for intricate 

manipulation tasks. The problem class we consider here is that of entangling and 
disentangling two rigid objects with/from one another. Sources of difficulty in such 
problems are the existence of narrow passages, the high dimensionality of the 
configuration space of the robot, the necessity of using both of a robot's arms, and 
finding a sequence of grasp changes on the movable object as the robot performs 
the manipulation. A single-query planner was unable to solve the planning queries  
even in the lower dimensional configuration space of a rigid object, despite having 
several minutes of allowed computational time.  

Our approach handles the high dimensionality problem by first planning in a 
smaller dimensional space, that of a rigid object. It uses a roadmap that was 
previously constructed with human assistance to navigate through narrow passages 
and between configurations of interest. Once a solution candidate path for the rigid 
body is found, we use it to guide planning for the arms and grasp selection. 

We then improve the efficiency of our multi-level architecture for complex 
manipulation planning by providing a grasp suggestion heuristic, which ranks grasps 
by an easily computed expected measure of how good they appear. More expensive 
testing of grasps is then done in this order, from most to least promising. This 
ranking allows sequences with few grasp changes to be found. 

We then improve the robustness of our multi-level architecture for complex 
manipulation planning. There is no guarantee that any sequence of arm movements 
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exists that is capable to follow a given solution path candidate, because while 
searching for the solution path candidate, we do not consider the higher dimensional 
configuration space of the robot. To prevent such infeasible solution candidates, we 
reuse the cost bump concept previously introduced in chapter four, which allows the 
robot to learn which regions of the rigid object's configuration space are awkward to 
grasp and should be avoided. Replanning for the rigid object is done if the current 
solution candidate appears too difficult to follow. 

We validate our multi-level planning architecture for complex manipulation. 
in simulation Unlike single-query planners that fail even with minutes of 
computation time allowed, our proposed planner architecture is capable to handle 
queries in reasonable time (a few tens of seconds, depending on the number of 
grasp changes needed). 

We then investigate automatic construction of roadmaps in very constrained 
environments, so that the robot would not need to rely on a human operator, but 
instead might identify the narrow passages and interesting configurations on its 
own. We propose a data structure called a degree of freedom map (or DoF map) to 
model configuration spaces that can be described as a collection of narrow corridors 
linking small regions where more degrees of freedom are available, then provide 
procedures to construct and reuse DoF maps for pairs of rigid objects. We intend for 
our approach to allow a robot to construct a DoF map using tactile feedback only. 
This is not meant as a replacement for visual feedback, but integration with visual 
perception systems remains for future work. 

We then argue that the DoF map is a good object classification criterion for 
motion planning, in that it captures just enough information about the interaction of 
objects, rather than too much and thus fails to generalize easily, or too little and 
thus fails to be useful. 

We validate the DoF map concept in simulation. We show that classical 
sample-based planners fail in the highly constrained cases we studied, but that our 
DoF map construction procedure allows planning queries to be solved. Further, if it 
is known that two pairs of rigid objects have isomorphic DoF maps, then we show it 
is necessary to construct only the DoF map for one of the pairs. Then, the same DoF 
map can be reused to efficiently solve planning queries for the other pair.  
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6. Going beyond point to point planning 
 
The typical motion planning problem requires a robot to find a way to reach 

some goal configuration, starting from some other given state. However, real 
robotic tasks are often more complicated than simply reaching a goal. Sequences of 
goals may be required[Fai05, Fai09], or additional conditions on the solution 
imposed, beyond its mere feasibility[Bha10]. An overlap should appear therefore 
between task planning at some symbolic level, which produces sequences of 
subtasks and motion plan queries, and motion planning, which must find some 
feasible maneuvers to perform the queries. Some constraints on task sequences are 
then at the logical level, and concern what prerequisites tasks have before they can 
be attempted, and what side-effects they produce. Some other constraints on tasks 
are at a geometric level, and concern whether there are any trajectories to get the 
task done. Various ways have been proposed in the literature to allow an integration 
between the logic level and the geometric level of task planning; among them, the 
use of temporal logic for planning specifications, to make planners more aware of 
the sequencing or branching requirements of a task (therefore, more aware of the 
logical constraints). In this chapter, we look at some planning problems with 
specifications more complicated than simple reachability, and investigate how to 
augment roadmap based planners so as to handle some aspects of task planning 
efficiently. This chapter contains content from the author's paper "Visibility based 
planners for path existence queries in temporal logic" [Pom14a]. 

 
6.1 Planner algorithm for LTL specifications 

 
In this section, we modify and apply the variable radius visibility based 

planner to problems specified in a subset of temporal logic that can encode 
specifications on path existence. Goals like visiting some regions in a certain 
sequence, while staying inside a region from which some other, 'safe haven' region 
can be reached, are an example of planning problem that can be posed using this 
fragment of temporal logic. Though the kinds of paths that can be described in the 
logic are finite, one can also obtain infinite loops by closing the obtained path in on 
itself with some gap reduction algorithm. We analyze the probabilistic completeness 
of the visibility based planner, including for systems with non-reversible maneuvers, 
and provide some simulation results.  

 

6.1.1 A new sparsity heuristic 

 
Visibility based planners attempt to use information already present in the 

roadmap to decide whether a newly generated sample is worth keeping: either it 
improves coverage, or the connectivity of the roadmap [Nis99, Lam00b]. Both 
requirements are formulated in terms of changes to the graph of (strongly) 
connected components of the roadmap. A change to this graph means that either a 
new SCC has appeared (the new sample explores a previously uncovered region of 
the free space), or a connection between two previously unconnected SCCs, or two 
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or several SCCs have merged into one (the new sample improves roadmap 
connectivity). 

The heuristic described above is probabilistically complete for simple 
reachability queries of the type that "free space Until free space and goal" formulas 
can express. We now present a modification to the heuristics, meant to tackle some 
general formula in the subset of temporal logic we consider here.  

Suppose we have a formula Φ for which we want to design a planner. We 
first construct the syntactic tree of subformulas of Φ; in order to minimize the tree 
size, we allow locally checkable formulas to be leaves. Based on the syntactic tree, 
we then create a list of all distinct subformulas of Φ. This list includes Φ itself. 

For each subformula φ in the list, we define a subgraph of the roadmap 
thusly: a vertex belongs to the φ subgraph if the φ formula holds at that vertex; an 
edge belongs to the φ subgraph if φ holds at all points on the trajectory represented 
by the edge. An edge may be such that a subformula does not hold all along it 
however. We'll call such an edge a bridge, because it connects vertices from 
different subgraphs. 

We need to define how to check which subformulas hold at vertices and 
edges. In the case of vertices and locally checkable formulas, this is obvious as by 
definition locally checkable formulas are made of conjunctions and disjunctions of 
atomic propositions, which can be verified knowing only a position in configuration 
space. Verification of locally checkable subformulas along an edge is analogous to 
collision checks along the edge in usual planners. 

If all along an edge, the same locally checkable formulas hold, then that 
edge is also a member of whatever locally checkable subgraphs its endpoints are 
members of. If instead one finds that along an edge there are regions where 
different locally checkable formulas hold, then one can cut it by either generating 
new vertices at the points of contact between regions, or inside each region. The 
resulting edges will then be bridge edges between locally checkable subgraphs. 

Suppose then that a subformula φ1 holds at a vertex, or respectively along 
an edge. Then that vertex, or respectively edge, is added to the subgraph for a φ1 ∨ 
φ2 subformula (if one exists). 

Supposing that both φ1 and φ2 hold at a vertex, or along an edge, then that 
vertex (or edge) is added to the subgraph for a φ1 ∧ φ2 subformula (if one exists). 

If φ2 holds at a vertex or all along an edge, then that vertex (or edge) is 
added to the subgraph for a φ1 U φ2 subformula, if one exists. Then, one can then 
recursively add vertices from the φ1 subgraph to the φ1 U φ2 subgraph, if they 
connect via an edge where φ1 holds everywhere (except maybe in a region around 
the destination where φ2 holds) to a vertex already in the φ1 U φ2 subgraph; the 
edges used for connection are also added to the subgraph.  

For each of these subgraphs, one can define a graph of strongly connected 
components. Let SCC(φ) be that graph for the subgraph defined by the subformula 
φ. Further, one can define, by way of the briding edges, connections between 
components in different subgraphs. 

Then, we can define the visibility heuristic for a formula Φ, in which we 
denote subformulas by φ. A new sample is useful if adding it to the roadmap causes 
a change in at least one of the SCC(φ), or it adds a new connection between 
components in some SCC(φ1) and SCC(φ2). A change in an SCC(φ) means either a 
change in its number of vertices, where each vertex represents an SCC of the φ 
subgraph, or the appearance of a new edge in SCC(φ), which means a new 
connection between SCCs of the φ subgraph. If no such change nor new connection 
between subgraphs occurs, then the sample, along with any auxiliary samples 
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produced by edge splits, is rejected. An exception to the heuristic described before, 
the sample representing the start configuration is always added to the roadmap. 

 

 
Figure 6-1. An example environment and roadmap (below) and subformula subgraphs (above). 

 
Usually, visibility based algorithms check possible connections between a 

new sample and all vertices already present in the roadmap. In the interests of 
computational efficiency, we check the new sample against those vertices that are 
inside some distance threshold from it, where this distance threshold is decreased 
by a pow((log(N)/N);dim(Cfree)) factor, where N is the number of vertices in the 
roadmap and dim(Cfree) is the dimensionality of the free space, until a minimal, 
"fallback" value is reached, which is used thereafter. 

 

6.1.2 Probabilistic completeness 

 
We will assume that the free space in which planning occurs is a metric 

space which is also equipped with a measure. For a subformula φ, we define the φ 
subspace as the subset of points of the configuration space at which φ holds. The 
roadmap will always contain only an approximation of such a subspace, but we use 
this theoretical construct here to check the algorithm. 

It is often considered natural to use some approximation of the cost to go as 
a metric for Cfree. For dynamic systems, it is usually a pseudometric as it may be the 
case that the cost to go from some state s to another s' differs from the cost to go 
from s' to s. One can define a proper metric by selecting the minimum cost from 
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between the two, and thus one can, at least in theory, define a metric on Cfree that 
is related to the system dynamics. 

Let the reunion of all φ subspaces, where φ here represents a locally 
checkable formula, be called the subspace of interest, Cfree. To be relevant for the 
specification, a state must satisfy at least one of the locally checkable subformulas, 
therefore it must be a member of the subspace of interest, and one can safely 
restrict the sampling procedure to this subspace. 

For some φ subspace, one may find that it contains several path-connected 
components. Here, path connected refers simply to the existence of some path in 
the subspace topology induced by Cfree, not necessarily that said path is feasible for 
the robot. 

We require that the sampling procedure be "fair": given any subset of any 
path connected component of some φ subspace, such that the subset has the same 
dimensionality as the component it is included in, then the chance to produce a 
sample inside that subset is non-zero. 

Typically, the fair sampling requirement is simplified to uniform sampling, if 
we also require that all φ subspaces be of measure non-zero. In general however, it 
may happen that some atomic proposition holds only on some surface inside Cfree. 
This is not necessarily an obstacle to probabilistic completeness as long as the 
sampling procedure is guaranteed to generate samples on that surface as well. Note 
that a uniform sampling procedure over Cfree will almost surely not generate a 
sample inside a surface in Cfree, because a surface has 0 volume according to the 
measure defined over Cfree. 

For a sample s, let R(s, r) be the set of states reachable from s with a cost, 
or distance, of at most r, where r ≥ 0. We require that R(s, r) be a closed set, and in 
keeping with the distance/cost semantics, if r1 < r2 then it must follow that R(s, r1) 
⊂ R(s, r2). Finally, it must be the case that ∪∪∪∪{r < r0} R(s, r) is open. We similarly 
define S(s, r) as the set of points that may reach s with a cost, or distance, of at 
most r, and place similar conditions. 

We require that the local planner have the "wobbly free boundary" property: 
let s, s' be any states inside Cfree generated by the sampling procedure. The it must 
almost surely be the case that either R(s, r) ∩ S(s', r) = ∅ or R(s, r) ∩ S(s', r) is a 
subset in which the sampling procedure has a non-zero chance of generating a 
sample. Often, the latter condition translates into the intersection being a measure 
non-zero set, however if we allow certain surfaces inside Cfree to have non-zero 
probability to be sampled, then we also allow R(s, r) ∩ S(s', r) to contain a subset 
of such a surface, of the same dimension as the surface. 

Intuitively, "wobbly free boundary" ensures that either there exists some 
space between two samples that neither can reach or be reached from if given a 
distance limit, or that their reachability zones overlap in such a way that the overlap 
will eventually be sampled. 

Finally, we require that for any subformula φ, the φ subspace be compact. 
Note that coverage of any subformula subspace can only improve as the 

planner adds new samples to its corresponding subgraph because of the "more isn't 
less" lemma. We will now show that a finite number of attempted samples will be 
sufficient for coverage. 

Define "finite total coverability" to be a property of a φ subspace that means 
that, for any infinite sequence of samples taken from Cfree, there exists a finite 
sequence of samples, starting with the first, such that the subspace is covered by 
(completely included in) the union of R and S sets for all the samples in the 
sequence that are also themselves inside that subspace. In other words, a subspace 
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is finitely totally coverable if it will eventually be completely covered by the R and S 
sets of samples generated inside it by any realization of the fair sampling process. 

Finite total coverability follows easily for any compact set if the sampling is 
fair, since if the negation were true it would follow there is some open subset in 
which no sample is generated, in violation of the fair sampling assumption. We also 
assumed that subspaces for all subformulas are compact, therefore they are all 
finitely totally coverable. 

The planner constructs a covering of φ subspace by placing samples in the φ 
subgraph. It must now be shown that, in a fair sampling process run forever with a 
wobbly free boundary local planner, the algorithm will attempt to place an infinite 
number of samples in all subgraphs in such a way that, if all those samples were 
kept, they would generate a complete covering for all the subspaces. Since all 
subgraphs correspond to finitely totally coverable subspaces, this implies that 
eventually, after some finite number of samples taken and kept, the planner will 
have constructed a covering for all of the subspaces corresponding to subformulas 
of the problem specification. We call this property "finite total constructible cover" or 
FTCC, and will now prove that all subspaces corresponding to subformulas in the 
specification have it. We do this in a manner similar to structural induction on the 
subformulas. 

From the compactness of locally checkable subspaces and the fairness of 
sampling, it follows immediately that the locally checkable subspaces are FTCC. For 
if the negation were true, it would imply that there is some subset in the space 
which is not ever covered, even by an infinity of samples; but that means that no 
samples are ever generated there, in contradiction with the fair sampling 
assumption. 

Suppose then that φ1 and φ2 are (not necessarily locally checkable) 
subformulas that define subspaces that are FTCC. Then it follows easily that φ1 ∨ φ2 
is FTCC.  

It also follows that φ1 ∧ φ2 is FTCC. Since a fair sampling procedure will 
generate, over any realization of the sampling process if extended forever, an 
infinity of samples inside the subspace corresponding to φ1 ∧ φ2, and since this 
subspace is by definition compact and thus finitely totally coverable, one finds that a 
finite sequence of samples will eventually cover it completely with the union of its R 
and S sets. 

Finally, consider the subspace corresponding to a subformula φ1 U φ2, 
where the subspaces for φ1 and φ2 are FTCC. The subspace for φ1 U φ2 can be 
thought of as containing two components, both of them compact and thus finitely 
totally coverable: the subspace corresponding to φ2 and a subset of the φ1 
subspace, of points that may reach φ2 points; let the latter component be referred 
to as X.  

Since the φ1 and φ2 subspaces are FTCC, it will be the case that after some 
finite number of samples they will be totally covered. Because of the wobbly free 
boundary assumption, we have that there will exist an overlap between R sets of φ1 
vertices and S sets of φ2 vertices, in which some samples will be eventually placed 
by the planner. Therefore we have that after a finite number of samples, some φ1 
samples have been placed inside X and thus inside φ1 U φ2. In fact, all samples in 
the roadmap that are in φ1 and are then known to reach φ2 samples will be placed 
in φ1 U φ2 and thus in X. 

Thereafter, the planner, using a fair sampling procedure and a wobbly free 
boundary local planner, will improve the coverage of X either by discovering 
samples that connect previously known vertices from the φ1 subgraph to vertices 
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already in X, or by finding new samples from φ1 that can reach samples already in 
X. Either event will happen infinitely often in a fair sampling process continued 
forever, and since X is compact and therefore finitely totally coverable, it follows 
that it is also FTCC.  

Therefore, one finds that the subspace corresponding to the specification 
formula is FTCC. Therefore, if a plan exists to satisfy the specification, the vertex 
corresponding to the starting configuration will eventually be placed inside the 
subgraph corresponding to the specification formula, and it will also be the case that 
a path will exist in the roadmap that will satisfy the specification formula. 

Therefore, the algorithm is probabilistically complete; the chance that it 
finds a plan that meets the specification (if one exists) tends to certainty as the 
number of sampling attempts goes to infinity. 

 

6.1.3 Changing the start configuration 

 
In the previous sections, we considered that the start configuration is known 

from the start and added to the roadmap. Should we desire to change it however, 
one simply adds the new start configuration to the roadmap, and thereafter 
proceeds with sample-and-connect steps, using the algorithm described before. If 
the new start is inside the subspace corresponding to the specification, it will 
eventually be added to the subgraph corresponding to that subspace of Cfree. 

 

6.1.4 Extracting a plan from the roadmap 

 
Checking that a plan exists is made very easy by the process of roadmap 

construction. If the starting vertex is inside the subgraph corresponding to the 
specificaiton, then a plan exists; otherwise, it does not. 

Once a roadmap is constructed, the issue remains to extract a plan from it, 
if one exists, to meet a given specification. Tools for general LTL formulas exist, like 
SPIN [Hol04] and NuSMV [Cim02], which have also been used in a planning context. 
They check a formula by providing a counter-example to its negation, if such a 
counter-example can be found, and if it can be, the counter-example is the sought 
after plan. 

SPIN and NuSMV are capable of handling general LTL formulas, outside the 
subset of interest to this paper. Restricting to the subset of "existence of paths" 
formulas allows one to work with a formula directly, instead of requiring its 
negation, so we present a plan finding procedure specialized to this subset of LTL 
and which makes use of the auxiliary structures maintained by the planning 
algorithm. 

The basic planning query, "pUq" where p and q are some locally checkable 
statements, is typically done with a Dijkstra's Shortest Paths algorithm, which 
provides a distance map over the vertices in the roadmap. Each vertex has 
associated with it the smallest cost required to reach it from some given starting 
vertex. Based on the distance map, the shortest path between the given starting 
vertex, and any other vertex in the graph, can be obtained. 

Further, one can use the Dijkstra algorithm to find all the q nodes which are 
such that there is a shortest path to them, from the initial configuration, that does 
not pass through any other q node. We'll refer to the set of such nodes as a front. 
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While finding a plan, we'll need to concatenate path segments. We say that 
two paths can be concatenated if the end of the first is the same vertex as the start 
of the second. The cost of the concatenation of paths is the sum of their cost. We 
say that an infinite cost path is infeasible. In practice, some other flag variable will 
be used to signal unfeasibility, but thereafter we'll use infinite cost for this purpose 
because of its intuitive semantics; if an infinite cost segment is added to a path, it 
renders it unfeasible.  

We can now define a function, FindFront, which takes as input a start 
configuration, and an LTL formula representing a specification on paths. It will 
return a list of front vertices and the paths to them from the starting vertex. We will 
now specify the behavior of FindFront in more detail. 

If the starting vertex is not in the subgraph corresponding to the LTL 
formula, then the function returns one path, containing just the starting vertex, 
which is said to have infinite cost. We therefore have a quick test to check whether 
searching for a plan is fruitless because none exists. 

If the LTL formula is locally checkable, and is obeyed at the starting vertex, 
then FindFront returns a path containing just the starting vertex, of cost 0. 

If the LTL formula is of the φ1 U φ2 type, then FindFront will restrict itself to 
the subgraph corresponding to the formula. Assuming the starting vertex can be 
found in this subgraph (or else, an infinite cost path containing just the start vertex 
would have been returned), FindFront will run a Dijkstra algorithm and locate the φ2 
front vertices and the paths toward them. After that, for each front vertex v, a new 
instance of FindFront is called, with v as start vertex and φ2 as the formula. The 
return value of the upper level FindFront is then the set of paths obtained by 
concatenating, to the paths to each front vertex v, the paths obtained for that 
vertex by the lower level FindFront. 

If the LTL formula is of the φ1 ∧ φ2 type, where one of the formulas, say φ1, 
is locally checkable, then FindFront first checks that the starting vertex is inside the 
φ1 ∧ φ2 subgraph. If it is (which implies that φ1 also holds at it), then another 
instance of FindFront is called with the same starting vertex and φ2 as the formula. 
The return value for the upper level FindFront is then the return value from the 
lower level one. 

If the LTL formula is of the φ1 ∧ φ2 type, where neither formula is locally 
checkable, then one should first use rewrite rules to bring it to a form in which the ∧ 
operator always has at least one locally checkable formula as operand. Some useful 
rewriting rules are summarized in table 6-1; notice that the rewrite rules tend to 
shorten the formulas appearing as operands to the ∧ operator, and therefore 
eventually we will only apply it to operands out of which at least one is locally 
checkable. 

Table 6-1. Some formula rewrite rules for the path existence LTL fragment 

(ϕ1∨ϕ2)∧ϕ3  (ϕ1∧ϕ3)∨(ϕ2∧ϕ3)  

ϕ1∧(ϕ2U ϕ1)  ϕ1  

ϕ1∨(ϕ2U ϕ1)  ϕ2U ϕ1  

ϕ1U (ϕ1U ϕ2)  ϕ1U ϕ2  

(ϕ1U ϕ 2)∧(ϕ3U ϕ4)  ((ϕ1∧ϕ3)U (ϕ2∧(ϕ3U ϕ4)))∨
((ϕ1∧ϕ3)U (ϕ4∧(ϕ1U ϕ2)))  
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Finally, if the LTL formula is of the φ1 ∨ φ2 type, then two instances of 
FindFront are called, both with the same start vertex, but one with the φ1 and the 
other with the φ2 formula. The return value of the upper level FindFront is the union 
of the return values of the lower level FindFronts. 

Looking for a plan then requires that a FindFront be called, with the starting 
vertex and plan specification. From the resulting set of paths, one can pick the 
lowest cost one as the plan to follow. 

 
6.2 Simulation verification 

 
We apply the planner to the problem used for simulation verification of RRG 

in [Kar09], which asks for a discrete time linear dynamic system to be steered 
towards a looping trajectory that passes through two specified regions while 
avoiding a third. The system is characterized by the equations of state: 

[ x [k+1]
y [k +1]]=[1.019 �0.029

0.049 0.95 ]⋅[ x [k ]
y [k ]]+[ 0.101 �0.0015

0.0025 0.098 ]⋅[u1[k ]
u2[k ]]  

  
from which it is straightforward to define a local steering procedure between 

arbitrary positions, assuming obstacles are not in the way. Note further that the 
system is fully reversible. 

 
Figure 6-2. Problem environment and syntactic tree for the specification. 

 
The environment is shown in Fig. 6-2. The system starts at (0, 0), on the 

edge of the s region. We require that it reach the p region, then the q region while 
avoiding s, then the p region again while avoiding s. We then formulate a 
specification: 

(true)U ( p∧((¬s)U (q)))  
Note that, while the specification above produces a finite path, the problem 

in [Kar09] requires a loop to be formed between p and q, which avoids s. To close 
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the loop, notice that the system's reversibility allows the s-free path from p to q to 
be used in reverse. 

 

6.2.1 Customizing the visibility heuristic 

 
We will first make an inventory of the distinct subformulas that we need to 

track: true (which has the roadmap in its entirety as representative subgraph), p, q, 
¬s, (¬s)U(q), p ∧ ((¬s)U(q)), and finally the specification itself, (true)U(p ∧ 
((¬s)U(q))). Each subformula will have a subgraph in the roadmap to represent it; 
vertices and edges inside a subformula's subgraph satisfy that subformula, meaning 
a path exists which starts at the vertex, or the point on the edge, and satisfies the 
subformula. 

We maintain connected components for each subgraph using Tarjan's set 
union algorithm[Tar75], and keep track of edges between the subgraphs. If a new 
sample changes the graphs of strongly connected components or the connections 
between formula subgraphs, it is kept in the roadmap. Sampling for this problem 
will be uniform on the problem area. 

 

6.2.2 Results 

 
One thousand runs of the algorithm are performed, and statistics on final 

roadmap size and rejected sample counts are shown in table 6-2. As can be seen, 
the size of the roadmap is reliably small, as an average of nine samples is sufficient 
to find a suitable path. In comparison, RRG used more than one thousand samples 
for the same problem [Kar09].  

One notices that the average number of rejected samples is around the 
same order of magnitude as the number of samples used by the RRG, suggesting 
that a uniformly sampling planner needs a few hundred attempts in order to pick 
some samples useful for a solution. The visibility based planner however can 
determine that most of those samples do not improve the ability of the roadmap to 
solve the problem. 

In terms of time spent, whereas RRG requires several seconds [Kar09], the 
visibility based planner is nigh-instant. Although roughly the same number of 
sample and connect steps are made, the fact that the roadmap is kept dramatically 
smaller makes each of these steps much less expensive. 

 
Table 6-2. Sample count statistics for the visibility planner 

Samples Avg StdDev Max Min 

Kept 8.84 1.63 12 5 

Rejected 368.6 257.43 1445 5 

 
We have presented an extension of the visibility heuristic which is applicable 

to planning problems written as specifications in a path-existence subset of 
temporal logic, defined an algorithm to handle such specifications, and showed that 
it is probabilistically complete. 

It should be noted that while the kinds of specifications the algorithm can 
natively handle are about existence of paths, it may be useful in some cases where 
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the existence of an infinite loop is sought. To form a loop, one would need to get a 
path from some starting point, to a destination, then back inside the region of the 
starting point, then use some gap closing procedure to close the loop. 

The formulation of the planning problem used here assumed perfect 
actuation. Probabilistic temporal logics exist which account for errors in motion 
[Lah10, Ciz12], and it may be possible to extend the strategies presented here for 
planning specifications written in such logics. Other methods for obtaining sparse 
roadmaps besides visibility exist, including methods which aim for some guarantee 
of partial optimiality. It may be fruitful to apply the subgraph constructions 
presented here to such methods, so that partially optimal, sparse roadmaps are 
made possible for general path existence temporal logics specifications, which would 
be useful in contexts like grasping and manipulation. Both of the previous topics are 
left for future work. 

 
6.3 Conclusions 

 
In this chapter we give a proof of probabilistic completeness for visibility 

based planners applied to more complex planning queries specified in a path-
existence subset of LTL. These queries allow specification of not only go-to location 
queries, but also sequencing, region avoidance based on step along a sequence, 
staying inside a reachability region in case falling back to another region is 
necessary, robot synchronization and coordination, task planning etc. We show the 
planner needs to maintain subformula subgraphs, and we use the outline provided 
by the proof to describe a probabilistically complete visibility based planner for path 
existence LTL, which is novel. 

We then show how the subformula subgraphs can be used to quickly test 
whether a roadmap contains a path capable to satisfy a plan specification, then give 
a method to search for such a path. 

Path-existence LTL describes only open paths, however we show how our 
planner can be enhanced into handling a specification requiring a possibly infinite 
looping trajectory by first planning to obtain a path equivalent to the opened loop, 
then using a gap reduction step to close the loop ends. 

We simulate and check our visibility based planner against another planner 
capable to handle LTL specifications (RRG), on a problem which appeared in the 
paper that proposed the RRG algorithm [Kar09]. Simulation shows our planner can 
solve the problem faster and with fewer samples tested than what was reported for 
RRG [Kar09]. 
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7. Contributions 
 

 
 

7.1 Summary of results 
 

In this thesis we have studied how multi-query roadmap algorithms can be 
adapted and efficiently applied to more challenging motion planning problems in the 
field of robotics. The theoretical contributions are: 

 
1) a new proof of probabilistic completeness for visibility planners applied to 

reversible systems that makes clear the assumptions needed on the interaction 
between the local trajectory planner used to generate connections between vertices 
in a roadmap and the shape of the free space. Our proof is more general than that 
of [Nis99], which applies only to local planners that generate linear trajectories for 
point robots. 

2) extend our proof to systems that have non-reversible maneuvers and 
non-holonimc constraints, and provide a guarantee for probabilistic completeness 
for a suitably modified visibility based planner. We propose such a modification to 
the visibility heuristic. 

3) further extend the proof of probabilistic completeness of visibility based 
planners for more complex planning queries specified in a path-existence subset of 
LTL. Such queries allow specification of not only go-to location queries, but also 
sequencing, region avoidance based on step along a sequence, staying inside a 
reachability region in case falling back to another region is necessary, robot 
synchronization and coordination etc, and are relevant for task planning. Our proof 
shows the need for a planner to maintain subformula subgraphs, and we use the 
outline provided by the proof to describe a probabilistically complete visibility based 
planner for path existence LTL, which is novel. 

4) we describe a multi-level planning architecture for intricate manipulation 
tasks. We focus on the problem of entangling and disentangling two rigid objects 
with one another, a problem made difficult by the existence of narrow passages. 
Further, the manipulation problem requires the use of both of a robot's arms, 
therefore a solution must contain a sequence of grasp changes on the movable 
object as the robot performs the manipulation; this adds a further complication, 
since the number of dimensions of the space to explore is increased. A single-query 
planner proved unable to solve the planning queries in several minutes. On the 
other hand, our approach tackles the dimensionality problem by first planning in a 
smaller dimensional space, that of a rigid object. To help with narrow passages, it 
uses a roadmap that was previously constructed with human assistance for 
identifying narrow passages and configurations of interest. Once a plan for the rigid 
body is found, we use it to guide planning for the arms and grasp selection. 

5) we investigate automatic construction of roadmaps in very constrained 
environments, so that the robot might identify the narrow passages and interesting 
configurations on its own, rather than rely on a human operator. We propose a data 
structure called a degree of freedom map (or DoF map) and present procedures to 
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construct and reuse such maps for pairs of rigid objects, when the free configuration 
space can be described as one-dimensional corridors linking small juncture regions 
where several degrees of freedom are available. Our approach is intended to allow a 
robot to construct a DoF map using tactile feedback only, and extends previous 
work in the literature which has explored single-degree-of-freedom configuration 
spaces by sense of touch. 

6) we argue for the DoF map as an object classification criterion that would 
be useful to motion planning. 

7) we describe a variable radius visibility planner for reversible systems 
(VRV) and analyze its probabilistic completeness and computational complexity per 
sample and connect iteration. 

8) we propose the usage of non-zero-dimensional sample subspaces, in 
contrast with the usual sampling based approach where each roadmap vertex is a 
point in configuration space. We show that using non-zero-dimensional subspaces 
as samples greatly speeds up collision checking during the roadmap construction 
and expansion phases. 

9) We show how the subformula subgraphs can be used as quick tests of 
whether a roadmap contains a path capable to satisfy a plan specification, and 
provide a method to extract such a path if it exists. 

10) though path-existence LTL describes only open paths, we show how our 
planner can be enhanced into handling a specification that requires a looping 
trajectory by first planning to obtain a path equivalent to the opened loop, then 
using a gap reduction step to close the path ends. 

11) we propose a cost bump method as a way to steer graph search 
algorithms on the planner's roadmap away from regions that may be invalid or 
inside obstacles. We further show how the cost bump method can be used as a way 
for the planner to learn an approximate shape of the free space of the robot. We 
stress that the three dimensional representation of the environment that a robot 
may get through its sensors is not the same as its free space, which has as many 
dimensions as the robot has degrees of freedom. 

12) we improve the efficiency of our multi-level architecture for complex 
manipulation planning by proposing a grasp suggestion heuristic, which orders 
expensive grasp testing according to an easily computed expected measure of how 
good a grasp appears.  

13) we improve the robustness of our multi- level architecture for complex 
manipulation planning. Planning for the rigid object first doesn't guarantee there is 
any sequence of arm movements capable to make it follow that plan, so to prevent 
such infeasible solution candidates, we reuse the cost bump concept previously 
introduced in chapter four, to allow the robot to learn which regions of the rigid 
object's configuration space are awkward to grasp and should be avoided. 

 
Applicative/experimental contributions are: 
 
14) we verify our variable radius visibility algorithm in simulation and show 

it is capable to generate more compact roadmaps than classical sample based 
planners (PRM) to capture the connectivity of a configuration space. 

15) we implement and verify our visibility planner for non-reversible 
systems in simulation on a variety of vehicle models. Application of visibility based 
planners to such systems is new in the literature, as so far such problems would 
have been handled by single-query planenrs. Our approach is capable to construct a 
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compact and reusable roadmap, which would make future queries faster than 
resorting to single-query planners. 

16) we validate our LTL planner in simulation by checking it against another 
planner capable to handle LTL specifications (RRG). Our planner is capable to solve 
the problem faster and with fewer samples tested than RRG. 

17) we validate our cost bump approach in simulation and experimentally on 
a PR2 from Willow Garage. We show that it can outperform single query planners, 
both in that it reduces the planning time by a factor of two or better, but it also 
tends to produce shorter, more efficient paths. Key to this performance is the fact 
that the roadmap used by the planner is compact, which allows fast queries, and 
that the roadmap is also capable to capture connections through the configuration 
space, the way visibility based planners can. We also show that a simple, classic 
solution based on Lazy PRM would not be able to outperform single-query planners 
for a robotic manipulator, and hence an approach such as our cost bump is 
necessary.  

18) we validate our multi-level planning architecture for complex 
manipulation. Unlike single-query planners that fail even with minutes of 
computation, our proposed planner architecture is capable to handle queries in 
reasonable time (a few tens of seconds, depending on the number of grasp changes 
needed). 

19) we show that classical sample-based planners fail in the highly 
constrained cases we studied, but that our DoF map construction procedure allows 
planning queries to be solved.  

20) we show that if it is known that two pairs of rigid objects have 
isomorphic DoF maps, it's necessary only to construct the DoF map for one of the 
pairs. Then, that DoF map can be reused to efficiently solve planning queries for the 
other pair. Objects of very different geometry may have isomorphic DoF maps, and 
by design the DoF map structure captures the kinematic interaction between rigid 
objects.  

 
7.2 Contributed papers 

 
"Visibility based planners for kinematically constrained vehicles", in 

proceedings of the 8th IEEE International Symposium on Applied Computational 
Intelligence and Informatics (SACI), 2013. 

(with Ioan A. Şucan) "Motion planning for manipulators in dynamically 
changing environments using real-time mapping of free space", in proceedings of 
the 14th IEEE International Symposium on Computational Intelligence and 
Informatics (CINTI), 2013. 

(with Ioan A. Şucan) "A two-level approach for intricate manipulation 
planning", in proceedings of the 14th IEEE International Symposium on 
Computational Intelligence and Informatics (CINTI), 2013. 

"Mapping kinematic interactions between objects for robot motion planning", 
in proceedings of the 12th IEEE International Symposium on Applied Machine 
Intelligence and Informatics (SAMI), 2014. 

"Visibility based planners for path existence queries in temporal logic", 
accepted for the Advances in Electrical and Computer Engineering Journal. 

(with Ioan A. Şucan) "Improving reliability and efficiency of intricate 
manipulation planning through mapping of grasp feasibility zones", accepted for 
ICRA 2014. 
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7.3 Future work 

 
Open source robotics software packages like MoveIt! offer, at present, very 

limited support for either multi-query planners or task planning, and integration of 
our algorithms, in particular the planner for path-existence LTL and the multi-level 
planning approach for intricate manipulation, would be a useful addition to such 
software that would also allow more extensive testing on real robots. 

Research-wise, one direction that stands out is extending the DoF map 
concept to allow description for spaces with large regions with multiple degrees of 
freedom. In particular, such an extension would require interaction with an object 
recognition/image processing pipeline as well as force feedback from the robot's end 
effector. The image processing would have the task to recognize whether a rigid 
object pair 'looks like' it has a DoF map that's isomorphic to an already known one. 
Conversely, the DoF map approach would augment the image processing, in that it 
is able to get some information about the objects' shape even when occlusions 
prevent 3D models of them from being reconstructed through vision. The DoF map 
would also help train image processing to look for regions of space that may be 
'interesting', because they are junctures of narrow corridors. Identifying narrow 
passages through geometric analysis is a computationally costly operation; instead, 
the approach we propose here is a machine learning one, which makes a hypothesis 
about certain regions being narrow passages, tests the hypothesis, and remembers 
visual features of the interesting regions found. 

The DoF map concept should further be generalized to deformable objects 
like strings, ropes, or sheets of cloth, since several tasks a robot might be required 
to perform in a human environment may involve disentangling, knotting/unknotting, 
or folding such objects. 

The long term goal is to experimentally validate the DoF map concept as a 
way to classify objects for motion planning, which allows the robot to abstract most 
of the objects' geometry and reason about them at the logical, task planning level; 
it is at this level that the robot realizes how the objects affect each other, and also 
at this level that the robot needs to discover what preconditions an action has, as 
well as its results on the world state. So far, robotic ability to reason about objects 
involved in a task plan is limited, as the actions, pre-conditions and effects must be 
defined by human operators, and apply to fairly limited test cases; the robot cannot 
easily generalize from a specific object or action to a concept of the object or action 
class. It is our conjecture that the DoF map can improve generalization and abstract 
reasoning about tasks. Note that the tasks humans encounter every day (and solve 
easily with experience and habit) often involve more than two objects interacting 
with each other. Nevertheless, we conjecture that a good portion of those multi-
object interactions can be described by reducing them to several pairs of interacting 
objects, and applying a suitably extended DoF map concept. 
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