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Abstract: In this paper the basic ideas of numerical 
analysis with boundary (constant) elements of 
conductive thermal fields generated or induced into 
plain walls in steady state regime are developed. The 
temperature distribution in two variants of a metallic 
plaque is analyzed using boundary element method, 
implemented in software developed by the author and 
analytical method.  
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1. INTRODUCTION 
 
 Modern computational techniques facilitate 
solving problems with imposed boundary conditions 
using different numerical methods [1–4]. Numerical 
analysis of heat transfer  has been independently 
though not exclusively, developed in following main 
streams: the finite differences method [5], the finite 
element method  [6] and boundary element method 
[7], [8]. 
 The finite differences method (FDM) is 
based on the differential equation of the heat 
conduction, which is transformed into a numerical 
one. The temperature values will be calculated in the 
nodes of the network. Using this method convergence 
and stability problem can appear. The finite element 
method (FEM) is based on the integral equation of the 
heat conduction. This is obtained from the differential 
equation using variational calculus. 
 The temperature distribution is analyzed in 
a solid body, with linear variation of the properties, 
using a software realized by the author on basis of the 
BEM.  
 

 
2. ANALITICAL MODEL OF HEAT   
  CONDUCTION  
 
The temperature in a solid body is a function 

of the time and space coordinates. The points 
corresponding to the same temperature value belong 
to an isothermal surface. This surface in a two- 
dimensional Cartesian system is transformed into an 
isothermal curve. 

 The heat flow rate Q represents the heat 
quantity through an isothermal surface S in the time 
unit: 

sqQ
S
 d                              (1) 

where the density of heat flow rate q is given by the 
Fourier law: 
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in which  is the thermal conductivity of the material. 
 The thermal conductivity of the building 
materials is the function of the temperature and 
variation can accordingly be expressed as: 
 

  00 +1λλ ttb                (3) 
 

in which: 0 is the thermal conductivity 
corresponding to the t0 temperature; b – material 
constant. 
 If there is heat conduction within an 
inhomogeneous and anisotropy material, considering 
the heat conductivity constant in time, the 
temperature variation in space and time is given by 
the Fourier equation: 
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in which: t is the temperature;  – time;  – material 
density; c – specific heat of the material; x, y, z – 
thermal conductivity in the directions x, y and z; Q0 – 
power of the internal sources. 
 To solve the differential equations it is 
necessary to have supplementary equations. These 
equations contain the geometrical conditions of the 
analysis field, the starting conditions (at  = 0) and 
the boundary conditions. The boundary conditions 
(Fig. 1) describe the interaction between the analyzed 
field and the surroundings. In function of these 
interactions different conditions are possible: 
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Figure 1. Boundary conditions  

– the Dirichlet (type I) boundary conditions give us 
the temperature values on the boundary surface St of 
the analyzed field like a space function constant or 
variable in time: 

  τ, , , zyxft            (5) 
 

– the Neumann (type II) boundary conditions gives us 
the value of the density of heat flow rate through the 
Sq boundary surface of the analyzed field: 
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in which: nx, ny, nz are the cosine directors 
corresponding to the normal direction on the Sq 
boundary surface. 
– the Cauchy (type III) boundary conditions gives us 
the external temperature value and the convective 
heat transfer coefficient value between the S 
boundary surface of the body and the surrounding 
fluid: 
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in which:  is yhe convective heat transfer coefficient 
from S to the fluid (or inversely); te – the fluid 
temperature. 
 The analytical model described by the 
equations (4)…(7) can be completed with the material 
equations which provide us information about 
variation of the material properties depending on 
temperature. In the case of material with linear 
physical properties, this equations ( = const.) are not 
used in the model. 
  

3. NUMERICAL MODEL WITH  
BOUNDARY ELEMEMTS OF HEAT 
CONDCTIVITY IN STEADY STATE  
REGIME 

 
Although thermal phenomena take place in 

thru dimensional bodies, the thermal fields that occur 
have predominant variations in certain directions. 
This is why the analysis of thermal field in plain or 
cylindrical walls is usually performed using two 
dimensional computational models. 
 In steady state heat transfer the temperature 
is a constant of time, and for two dimensional 

problems the temperature does not vary in the 
direction of axis Oz. 
 In the case of a flat wall, inside the analysis 
field, the heat conductivity in steady state regime is 
modelled by the Laplace equation [8]: 
 

02  t                        (8) 
 

 On t portion of boundary  of the analysis 
field Dirichlet boundary conditions are imposed and 
left corner portion q Neumann boundary conditions 
are imposed. 
 In order to determine the temperature on the 
boundary of the analysis field one uses the following 
integral equation [7], [8]: 
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where:  is the point in which one writes the integral 

equation (source point); c()  a coefficient; 
o
X   the 

current integration point; 
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derivative of this solution. 

 The distance r(, X
o

) between the current 

point X
o

 and the source point  is calculated with the 
relation: 
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 Boundary  is discretised into N constant 
boundary elements for which one considers 
temperatures tj, respectively the normal derivative 
(t/n)j constant and equal to the mid point (node) 
value of the element. Thus the integral equation is 
obtained under the following discretised form: 
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in which coefficients Aij and Bij have the expressions: 
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 When i = j these become: 
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 Explicitely, equation (12) generates a liniar 
and compatible system of N equations with 2N 
unknowns [tj and (t/n)j] and after implementing the 
boundary conditions, the number of unknowns is 
reduced to N. In the case of constant boundary 
elemnents, coefficient ci has the value 1/2. 
Coefficients Aij and Bij from (13) is computed using a 
Gauss quadrature [8], [9]:  
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in which lj is the length of the j boundary element. 
 Introducing notations: nx=cos(n,x); ny = 

cos(n, y) and using, for  X
o
, the parametric 

equations: 

 1,1   ,;   DCyBAx   (16) 

 
where: x[xj, xj+1] and y[yj, yj+1], the following 
relations are obtained: 
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in which (xj, yj) and (xj+1, yj+1) are the extremities of 
the boundary element j. 
 The analysis field is transformed into a 
dimensionless one by replacing the dimensional 
variables (x, y) with dimensionless ones (x, y): 

 
maxmax
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in which xmax is the maximum extension of the 
analysis field after axis Ox. 
 In order to determine the temperature inside 
of the analysis field is used the integral 
representation: 
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in which:  i 
o

,  where 
o

 represent the inside of 

the analysis field   ( =
o
 ). 

 After the discretization of boundary  into N 
constant boundary elements one obtains the integral 
equation under discretized form: 
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which can be writhen as such: 
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 Coefficients ijij BA  and  are evaluated 
 using a Gauss quadrature: 
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in which: m is the number of Gauss type points; wk  
weight coefficients. 
 Temperatures ti from points i are easily 
determined taking into account that values tj and 
(t/n*)j are known on the analysis field boundary, 
and coefficients ijij BA  and  are computed with 
equation (16). 
 By knowing values tj and ti of the 
temperature on the analysis field boundary, the group 
of coordinate points (x,y) for which t = const. 
represents the isothermal curves. The numerical 
model develobed above, based on BEM, was 
implemented by the author in   programs TEMPBEM 
and TERMINBEM elaborated in FORTRAN 
programming language, for IBM–PC compatible 
computers.  
 

4. NUMERICAL APPLICATION  
 
 In figures 2 and 3 are considered two 
variants of a metallic plaque, with dimensions 
404070 mm, for which one determines the 
temperature field using BEM and analytical method 
(ANM). In figures 4 and 5 are presented the 
dimensionless analysis domains together with mixed 
boundary conditions for these boundaries.  
 

        
 

Figure 2. Metallic plaque                                
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Figure 3.  Metallic plaque with a  semicylindrical 
cut off 

       
  

Figure 4. Boundary conditions for metallic plaque  
 
   

 
 

Figure 5. Boundary conditions for metallic plaque with  
semi cylindrical cut–out 

  
For metallic plaque in figure 2 the boundary  

can be discretized into N = 16 boundary elements, 
one states 9 internal points (Figure 6) and one applies 
the computational model based on BEM. The 
numerical results obtained by means of an IBM 
computer are presented in Table 1, comparatively 
with the ones obtained with ANM [5]. 
 

 
Figure 6. Discretization of the boundary and internal points 

of analysis field 
 

Table1a. Coordinate values 

Point Coordinates 
j   

jx  
jy  

1 0.125 1.000 
2 0.375 1.000 
3 0.625 1.000 
4 0.875 1.000 
5 1.000 0.875 
6 1.000 0.625 
7 1.000 0.375 
8 1.000 0.125 
9 0.875 0.000 

10 0.625 0.000 
11 0.375 0.000 
12 0.125 0.000 
13 0.000 0.125 
14 0.000 0.375 
15 0.000 0.625 
16 0.000 0.875 
17 0.250 0.250 
18 0.250 0.500 
19 0.250 0.750 
20 0.500 0.250 
21 0.500 0.500 
22 0.500 0.750 
23 0.750 0.250 
24 0.750 0.500 
25 0.750 0.750 

 

 
      Figure 7. Boundary discretization for the plaque 

with semi cylindrical cut–out                                                                         
   

The absolute percentage value of the relative 
difference toward the analytical solution, for both the 
temperature t and it normal derivative ndt is defined 
by:  
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    Table1b. The values jt  and  
jn
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93.052 0.000 93.75 0.0 
80.705 0.000 81.25 0.0 
68.299 0.000 68.75 0.0 
55.821 0.000 56.25 0.0 
50.000 -51.704 50.00 -50.0 
50.000 -48.290 50.00 -50.0 
50.000 -48.290 50.00 -50.0 
50.000 -51.704 50.00  -50.0  
55.821 0.000 56.25 0.0 
68.299 0.000 68.75 0.0 
80.705 0.000 81.25 0.0 
93.052 0.000 93.75 0.0  
98.776 50.000 100.0 50.0 
99.308 50.000 100.0 50.0 
99.308 50.000 100.0 50.0 
98.776 50.000  100.0 50.0  
86.836 0.000 87.50 0.0 
86.876 0.000 87.50 0.0 
86.836 0.000 87.50 0.0 
74.521 0.000 75.00 0.0 
74.536 0.000 75.00 0.0 
74.521 0.000 75.00 0.0 
62.205 0.000 62.50 0.0 
62.240 0.000 62.50 0.0 
62.205 0.000  62.50  0.0 

 
 

Taking into account the results from Table 1 when 
applying equations (23), acceptable values have been 
obtained for t and ndt (t < 1.3%, ndt < 3.5%) even if 
the number of boundary elements considered is small.  

For metallic plaque in figure 3 the boundary 
can be discretized into N = 56 constant boundary 
elements (Figure 7) and using BEM was determined 
isothermal curves presented in Figure 8. 
 
 
 
 
 
 
 
 
 

 
Figure 8. Temperature distribution for the 

                    plaque with semi cylindrical cut–out                                           

5. CONCLUSIONS   

  
The numerical computation of the 

temperature field, on the basis of the boundary 
element method, has led to close values to the ones 
determined analytically even if a small number of 
boundary elements and respectively internal points of 
the analysis domain was used. Using the presented 
method, different simulation programms could be 
realized what makes it possible to effectuate a lot of 
different numerical experiments of practical 
problems.   
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