ON INTERPOLATION OF LOCALLY CONVEX COUPLES WITH REAL METHODS

Nicolae COFAN, Ciprian HEDREA, Dan LUPULESCU, Ilie STAN

Abstract

We consider a general form of Peetre's \mathcal{K} - and \mathcal{J} - methods of interpolation for locally convex couples. ${ }^{1}$

Keywords and phrases: interpolation methods, locally convex couple, interpolation operator, Haussdorff locally convex space.

1 Introduction

In this paper we present a general form of Peetre's \mathcal{K} - and \mathcal{J} - methods of interpolation for locally convex couples. A theorem on interpolation of bilinear operators is given.

2 Preliminaries

Let X_{0} and X_{1} be two Haussdorff locally convex spaces, so that $X_{0} \cap X_{1} \neq\{\theta\}$. Then we shall say that $\vec{X}=\left(X_{0}, X_{1}\right)$ is a locally convex couple if there is a Haussdorff topological vector space \mathcal{E} so that the space X_{0} and X_{1} are embleded linearly and continously in $\mathcal{E}\left(X_{i} \hookrightarrow \mathcal{E}, i=0,1\right)$.

Everywhere in this paper we suppose that the topology of $X_{i}, i=0,1$ is generate by the families of semi-norms $\left\{p_{j \alpha^{j}}\right\}_{\alpha^{j} \in \mathcal{A}_{j}}, j=0,1$, which is directed and filled completed.

We will note by

$$
p_{\alpha^{0}, \alpha^{1}}^{\Delta}(x)=\max \left\{p_{0 \alpha^{0}}(x), p_{1 \alpha^{1}}(x)\right\}, \quad x \in X_{0} \cap X_{1}
$$

[^0]$$
p_{\alpha^{0}, \alpha^{1}}^{\Sigma}(x)=\inf \left\{p_{0 \alpha^{0}}\left(x_{0}\right)+p_{1 \alpha^{1}}\left(x_{1}\right): x=x_{0}+x_{1}, x_{i} \in X_{i}, i=0,1\right\}
$$

Then
i) $\Delta(\vec{X})=X_{0} \cap X_{1}$ is a Haussdorff locally convex space, whose topology is generated by the family of semi-norms $\left\{p_{\alpha^{0}, \alpha^{1}}^{\Delta}\right\}_{\left(\alpha_{0}, \alpha_{1}\right) \in \mathcal{A}_{0} \times \mathcal{A}_{1}}$.
ii) $\Sigma(\vec{X})=X_{0}+X_{1}$ is a Haussdorff locally convex space, whose topology is generated by the family of semi-norms $\left\{p_{\alpha^{0}, \alpha^{1}}^{\Sigma}\right\}_{\left(\alpha_{0}, \alpha_{1}\right) \in \mathcal{A}_{0} \times \mathcal{A}_{1}}$.

The family of semi-norms $\left\{p_{\alpha^{0}, \alpha^{1}}^{\Delta}\right\}_{\left(\alpha_{0}, \alpha_{1}\right) \in \mathcal{A}_{0} \times \mathcal{A}_{1}}$ defines the least fine topology for which the canonical maps $i_{k}: X_{0} \cap{\underset{X}{X}}^{\rightarrow} X_{k}, k=0,1$ are continuous.

The family of semi-norms $\left\{p_{\alpha^{0}, \alpha^{1}}^{\Sigma}\right\}_{\left(\alpha_{0}, \alpha_{1}\right) \in \mathcal{A}_{0} \times \mathcal{A}_{1}}$ defines the fines topology for which the canonical maps $j_{k}: X_{k} \rightarrow X_{0}+X_{1}, k=0,1$ are continuous.

Thus we can write

$$
X_{0} \cap X_{1} \hookrightarrow X_{k} \hookrightarrow X_{0}+X_{1}, \quad k=0,1
$$

We denote

$$
\begin{gathered}
S\left(p_{i \alpha_{i}}, r\right)=\left\{x \in X_{i}: p_{i \alpha_{i}}(x)<r\right\}, i=0,1 \\
S\left(p_{\alpha_{0}, \alpha_{1}}^{\Delta}, r\right)=\left\{x \in X_{0} \cap X_{1}: p_{\alpha_{0}, \alpha_{1}}^{\Delta}(x)<r\right\} \\
S\left(p_{\alpha_{0}, \alpha_{1}}^{\Sigma}, r\right)=\left\{x \in X_{0}+X_{1}: p_{\alpha_{0}, \alpha_{1}}^{\Sigma}(x)<r\right\}
\end{gathered}
$$

and by $|c o| M$ absolutely convex hull of a set M.

Proposition 2.1

We have
(a) $S\left(p_{\alpha_{0}, \alpha_{1}}^{\Delta}, r\right)=S\left(p_{0 \alpha_{0}}, r\right) \cap S\left(p_{1 \alpha_{1}}, r\right)$
(b) $\quad S\left(p_{\alpha_{0}, \alpha_{1}}^{\Sigma}, r\right)=|\operatorname{co}|\left(S\left(p_{0 \alpha_{0}}, r\right), S\left(p_{1 \alpha_{1}}, r\right)\right)$

In this paper $T \in \mathcal{L}(X, Y)$ means that T is a bounded linear mapping from X into Y and $T \in \mathcal{L}(\vec{X}, \vec{Y})$ means that T is a linear mapping from $X_{0}+X_{1}$ into $Y_{0}+Y_{1}$ so that $\left.T\right|_{X_{i}}: X_{i} \rightarrow Y_{i}$ is bounded (here $\left.T\right|_{X}$ denotes the restriction of T into X).

Proposition 2.2

Let $\vec{X}=\left(X_{0}, X_{1}\right), \vec{Y}=\left(Y_{0}, Y_{1}\right)$ be two locally convex couples and $T \in \mathcal{L}(\vec{X}, \vec{Y})$. (a) Then $T: \Sigma(\vec{X}) \longrightarrow \Sigma(\vec{Y})$ and $T: \Delta(\vec{X}) \longrightarrow \Delta(\vec{Y})$ are bounded maps;
(b) If in addition $\left.T\right|_{X_{i}}: X_{i} \longrightarrow Y_{i}, i=0,1$ are completed bounded then $T: \Sigma(\vec{X}) \longrightarrow \Sigma(\vec{Y})$ is complete bounded;
(c) If in addition $\left.T\right|_{X_{i}}: X_{i} \longrightarrow Y_{i}, i=0,1$ are compact then $T: \Sigma(\vec{X}) \longrightarrow \Sigma(\vec{Y})$ is compact.

3 The real interpolation method

Let us begin by remembering some basic notation. Let $\vec{X}=\left(X_{0}, X_{1}\right)$ be a locally convex couple and $t>0$.

The Peetre K - functional, $\mathcal{K}_{\alpha^{0}, \alpha^{1}}, \alpha^{i} \in \mathcal{A}_{i}, i=0,1$, is defined for $x \in \Sigma(\vec{X})$ by

$$
\mathcal{K}_{\alpha^{0}, \alpha^{1}}(t, x, \vec{X})=\inf \left\{p_{0 \alpha^{0}}\left(x_{0}\right)+t p_{1 \alpha^{1}}\left(x_{1}\right), x=x_{0}+x_{1}, x_{i} \in X_{i}\right\}
$$

Similarity the J - functional,

$$
\mathcal{J}_{\alpha^{0}, \alpha^{1}}(t, x, \vec{X})=\max \left(p_{0 \alpha^{0}}(x), p_{1 \alpha^{1}}(x)\right)
$$

Let E be a \mathbb{Z}-lattice, i.e. E is quasi-Banach space of two-sided numerical sequences $a=\left(a_{n}\right)_{-\infty}^{\infty}$ (with \mathbb{Z} as index set) which has the following monotonicity property: there is a constant $c>0$ such that $\left\|\left(a_{n}\right)_{n}\right\|_{E} \leq c\left\|\left(b_{n}\right)_{n}\right\|_{E}$ whenever $\left|a_{n}\right|<\left|b_{n}\right|, \forall n \in \mathbb{Z}$.

Let $\vec{l}_{p}=\left(l_{p}, l_{p}\left(2^{-n}\right)\right), 0<p \leq \infty$ Then , a \mathbb{Z}-lattice E is called \mathcal{K} - non-trivial if

$$
l_{\infty}\left(\max \left(1,2^{-n}\right)\right)=\Delta\left(\vec{l}_{\infty}\right) \subseteq E
$$

This happens if

$$
\sup _{\|a\|_{E}}\left(\sum_{n=-\infty}^{\infty}\left(\min \left(1,2^{-n}\right)\left|a_{n}\right|\right)^{p}\right)^{1 / p}
$$

Observe that the class of all \mathbb{Z}-lattice contains all interpolation spaces with respect to $\vec{l}_{p}, 0<p \leq \infty$.

We next define \mathcal{K} and \mathcal{J}-spaces.

Definition 3.1

(i) Let E be a \mathcal{K}-non-trivial \mathbb{Z}-latice and $\vec{X}=\left(X_{0}, X_{1}\right)$ a locally convex couple. We define the \mathcal{K}-space $\vec{X}_{E, K}$ to consists of all $x \in \Sigma(\vec{X})$ such that $\mathcal{K}_{\alpha^{0}, \alpha^{1}}\left(2^{n}, x, \vec{X}\right.$ $) \in E$ for all $\left(\alpha^{0}, \alpha^{1}\right) \in \in \mathcal{A}, \times \mathcal{A}_{1}$.
(ii) Let E be a (p, j)-non-trivial \mathbb{Z}-lattice and $\vec{X}=\left(X_{0}, X_{1}\right)$ a locally convex couple. The \mathcal{J}-space $\vec{X}_{E, J}$ consist of all $x \in \Sigma(\vec{X})$ that may be written as

$$
a=\sum_{n=-\infty}^{\infty} a_{n}, a_{n} \in \Delta(\vec{X}), \text { converge in } \Sigma(\vec{X}) \text { with }\left(J\left(2^{n}, a_{n}, \vec{X}\right)\right)_{n} \in E
$$

We put

$$
p_{\alpha^{0}, \alpha^{1}}^{E, K}(x)=\left\|\left(\mathcal{K}_{\alpha^{0}, \alpha^{1}}\left(2^{n}, x, \vec{X}\right)\right)_{n}\right\|_{E}, \text { for all }\left(\alpha^{0}, \alpha^{1}\right) \in \mathcal{A}_{1} \times \mathcal{A}_{1}
$$

Then the family of semi-norms $\left\{p_{\alpha^{0}, \alpha^{1}}^{E, K}\right\}_{\left(\alpha^{0}, \alpha^{1}\right) \in \mathcal{A}, \times \mathcal{A}_{1}}$ generate a Hausdorf locally convex topology of $\vec{X}_{E, K}$. This topology is finner than that of $\Sigma(\vec{X})$ and less fine that of $\Delta(\vec{X})$.

Similarity we put

$$
\left.p_{\alpha^{0}, \alpha^{1}}^{E, J}(x)=\inf _{a=\Sigma_{n} a_{n}} \| \mathcal{J}_{\alpha^{0}, \alpha^{1}}\left(2^{n}, a_{n}, \vec{X}\right)\right)_{n} \|_{E}, \text { for all }\left(\alpha^{0}, \alpha^{1}\right) \in \mathcal{A}_{1} \times \mathcal{A}_{1}
$$

Then the family of semi-norms $\left\{p_{\alpha^{0}, \alpha^{1}}^{E, J}\right\}_{\left(\alpha^{0}, \alpha^{1}\right) \in \mathcal{A}, \times \mathcal{A}_{1}}$ generate a Hausdorf locally convex topology of $\vec{X}_{E, J}$. This topology is finner than that of $\Sigma(\vec{X})$ and less fine that of $\Delta(\vec{X})$.

When $E=l_{p}\left(2^{-n \theta}\right), 0<p \leq \infty, 0<\theta<1$ we recover the spaces $\vec{X}_{\theta, p, K}$ and $\vec{X}_{\theta, p, J}$.

Like in the case of spaces $\vec{X}_{\theta, p, K}$ and $\vec{X}_{\theta, p, J}$ we have

Theorem 3.1

Let $\vec{X}=\left(X_{0}, X_{1}\right)$ be a locally convex couple. Then
(i) The spaces $\vec{X}_{E, K}$ and $\vec{X}_{E, J}$ are interpolator with respect to \vec{X};
(ii) If E is \mathcal{K}-and (p, J) non-trivial \mathbb{Z}-lattice

$$
\vec{X}_{E, J} \hookrightarrow \vec{X}_{E, K}
$$

(iii) If E is \mathcal{K}-and $(1, J)$ non-trivial \mathbb{Z}-lattice and \vec{X} is an Fréchet couple

$$
\vec{X}_{E, J}=\vec{X}_{E, K}
$$

Theorem 3.2

Let E_{0}, E_{1} and E_{2} arbitrary \mathcal{K}-and $(1, J)$-non-trivial \mathbb{Z}-lattice. The following two conditions are equivalent:
(i) for arbitrary Fréchet couples $\vec{X}=\left(X_{0}, X_{1}\right), \vec{Y}=\left(Y_{0}, Y_{1}\right)$ and $\vec{Z}=\left(Z_{0}, Z_{1}\right)$ and any bounded bilinear operator $T: X_{i} \times Y_{i} \longrightarrow \longrightarrow Z_{i}, i=0,1$, we have

$$
T: X_{E_{0}, K} \times Y_{E_{1}, K} \longrightarrow Z_{E_{2}, K}
$$

(ii) the convolution $E_{0} * E_{1} \hookrightarrow E_{2}$

Acknowledgement

This paper was presented by Mr. Dan Lupulescu during The Fourteenth International Conference on Mathematics and its Applications (ICMA) which took place in Timişoara on 5-7 November 2015.

References

[1] S.V. Astashkin, On interpolation of bilinear operator with a real method, Mat Zametki 52 (1992), 15-24, Russian
[2] H.G. Garnie, M. De Wilde and J. Schmets, Analyse Fonctionnelle, Tome 1, Birkhauser Verlag Basel und Stuttgart, 1968
[3] C. Goulaouic, Prolongements de foncteurs d'interpolation et applications, Annales de l'institut Fourier, tome 18, n ${ }^{\circ} 1$, 1968, p. 1-98
[4] D. Lupulescu, I. Stan, Interpolation of locally convex triples, Analele Universităţii de Vest Timişoara, Seria Matematică-Informatică, L, 1 (2012), 69-76.
[5] J. Peetre, A theory of interpolation of normed spaces, Notes, Brasilia, 1963
[6] Per Nilsson, Reiteration theorems for real interpolation, Anali Matem Pura Applicata, ser 4 131-132 (1982), 291-330

Nicolae Cofan and Ciprian Hedrea
Department of Mathematics
"Politehnica" University of Timişoara
Victoriei Square 2, 300006 - Timişoara, România
Email: ciprian.hedrea@upt.ro, nicolae.cofan@upt.ro
Dan Lupulescu
Department of Physics
"Politehnica" University of Timişoara
Victoriei Square 2, 300006 - Timişoara, România
Email: danlupulescuv@yahoo.com
Ilie Stan
Department of Mathematics
West University of Timisoara
Bvd. V. Parvan 4, 300223 - Timişoara, România
Email: stan@math.uvt.ro

[^0]: ${ }^{1}$ MSC (2010): 46M35

