SCIENTIFIC BULLETIN OF THE "POLITEHNICA" UNIVERSITY OF TIMIŞOARA

Vol 61 (75), Issue 1 MATHEMATICS –PHYSICS 2016

ON INTERPOLATION OF LOCALLY CONVEX COUPLES WITH REAL METHODS

Nicolae COFAN, Ciprian HEDREA, Dan LUPULESCU, Ilie STAN

Abstract

We consider a general form of Peetre's ${\cal K}$ - and ${\cal J}$ - methods of interpolation for locally convex couples. 1

Keywords and phrases: interpolation methods, locally convex couple, interpolation operator, Haussdorff locally convex space.

1 Introduction

In this paper we present a general form of Peetre's \mathcal{K} - and \mathcal{J} - methods of interpolation for locally convex couples. A theorem on interpolation of bilinear operators is given.

2 Preliminaries

Let X_0 and X_1 be two Haussdorff locally convex spaces, so that $X_0 \cap X_1 \neq \{\theta\}$. Then we shall say that $\overrightarrow{X} = (X_0, X_1)$ is a locally convex couple if there is a Haussdorff topological vector space \mathcal{E} so that the space X_0 and X_1 are embleded linearly and continuously in \mathcal{E} ($X_i \hookrightarrow \mathcal{E}, i = 0, 1$).

Everywhere in this paper we suppose that the topology of X_i , i = 0, 1 is generate by the families of semi-norms $\{p_{j\alpha^j}\}_{\alpha^j \in \mathcal{A}_j}, j = 0, 1$, which is directed and filled completed.

We will note by

$$p_{\alpha^{0},\alpha^{1}}^{\Delta}(x) = max \left\{ p_{0\alpha^{0}}(x), p_{1\alpha^{1}}(x) \right\}, \quad x \in X_{0} \cap X_{1}$$

¹MSC (2010): 46M35

N. Cofan et al

$$p_{\alpha^{0},\alpha^{1}}^{\Sigma}(x) = \inf \left\{ p_{0\alpha^{0}}(x_{0}) + p_{1\alpha^{1}}(x_{1}) : x = x_{0} + x_{1}, x_{i} \in X_{i}, i = 0, 1 \right\}$$

Then

i) $\Delta(\vec{X}) = X_0 \cap X_1$ is a Haussdorff locally convex space, whose topology is generated by the family of semi-norms $\left\{p_{\alpha^0,\alpha^1}^{\Delta}\right\}_{(\alpha_0,\alpha_1)\in\mathcal{A}_0\times\mathcal{A}_1}$.

ii) $\Sigma(\vec{X}) = X_0 + X_1$ is a Haussdorff locally convex space, whose topology is generated by the family of semi-norms $\left\{p_{\alpha^0,\alpha^1}^{\Sigma}\right\}_{(\alpha_0,\alpha_1)\in\mathcal{A}_0\times\mathcal{A}_1}$.

The family of semi-norms $\left\{p_{\alpha^0,\alpha^1}^{\Delta}\right\}_{(\alpha_0,\alpha_1)\in\mathcal{A}_0\times\mathcal{A}_1}$ defines the least fine topology for which the canonical maps $i_k: X_0 \cap X_1 \to X_k, k = 0, 1$ are continuous.

The family of semi-norms $\left\{p_{\alpha^0,\alpha^1}^{\Sigma}\right\}_{(\alpha_0,\alpha_1)\in\mathcal{A}_0\times\mathcal{A}_1}$ defines the fines topology for which the canonical maps $j_k: X_k \to X_0 + X_1, k = 0, 1$ are continuous.

Thus we can write

$$X_0 \cap X_1 \hookrightarrow X_k \hookrightarrow X_0 + X_1, \quad k = 0, 1.$$

We denote

$$S(p_{i\alpha_{i}}, r) = \{x \in X_{i} : p_{i\alpha_{i}}(x) < r\}, i = 0, 1,$$

$$S(p_{\alpha_{0},\alpha_{1}}^{\Delta}, r) = \{x \in X_{0} \cap X_{1} : p_{\alpha_{0},\alpha_{1}}^{\Delta}(x) < r\},$$

$$S(p_{\alpha_{0},\alpha_{1}}^{\Sigma}, r) = \{x \in X_{0} + X_{1} : p_{\alpha_{0},\alpha_{1}}^{\Sigma}(x) < r\},$$

and by |co|M absolutely convex hull of a set M.

Proposition 2.1

We have

(a)
$$S(p_{\alpha_0,\alpha_1}^{\Delta}, r) = S(p_{0\alpha_0}, r) \cap S(p_{1\alpha_1}, r)$$

(b) $S(p_{\alpha_0,\alpha_1}^{\Sigma}, r) = |co|(S(p_{0\alpha_0}, r), S(p_{1\alpha_1}, r))$

In this paper $T \in \mathcal{L}(X, Y)$ means that T is a bounded linear mapping from Xinto Y and $T \in \mathcal{L}(\vec{X}, \vec{Y})$ means that T is a linear mapping from $X_0 + X_1$ into $Y_0 + Y_1$ so that $T|_{X_i} : X_i \to Y_i$ is bounded (here $T|_X$ denotes the restriction of T into X).

Proposition 2.2

Let
$$\vec{X} = (X_0, X_1), \vec{Y} = (Y_0, Y_1)$$
 be two locally convex couples and $T \in \mathcal{L}(\vec{X}, \vec{Y}).$
(a) Then $T : \Sigma(\vec{X}) \longrightarrow \Sigma(\vec{Y})$ and $T : \Delta(\vec{X}) \longrightarrow \Delta(\vec{Y})$ are bounded maps;

40

(b) If in addition $T|_{X_i} : X_i \longrightarrow Y_i, i = 0, 1$ are completed bounded then $T : \Sigma(\vec{X}) \longrightarrow \Sigma(\vec{Y})$ is complete bounded;

(c) If in addition $T|_{X_i} : X_i \longrightarrow Y_i, i = 0, 1$ are compact then $T : \Sigma(\vec{X}) \longrightarrow \Sigma(\vec{Y})$ is compact.

3 The real interpolation method

Let us begin by remembering some basic notation. Let $\vec{X} = (X_0, X_1)$ be a locally convex couple and t > 0.

The Peetre K-functional, $\mathcal{K}_{\alpha^0,\alpha^1}, \alpha^i \in \mathcal{A}_i, i = 0, 1$, is defined for $x \in \Sigma(\vec{X})$ by

$$\mathcal{K}_{\alpha^{0},\alpha^{1}}(t,x,\dot{X}) = \inf\{p_{0\alpha^{0}}(x_{0}) + tp_{1\alpha^{1}}(x_{1}), x = x_{0} + x_{1}, x_{i} \in X_{i}\}$$

Similarity the J- functional,

$$\mathcal{J}_{\alpha^{0},\alpha^{1}}(t,x,\dot{X}) = max(p_{0\alpha^{0}}(x),p_{1\alpha^{1}}(x))$$

Let E be a \mathbb{Z} -lattice, i.e. E is quasi-Banach space of two-sided numerical sequences $a = (a_n)_{-\infty}^{\infty}$ (with \mathbb{Z} as index set) which has the following monotonicity property: there is a constant c > 0 such that $||(a_n)_n||_E \leq c||(b_n)_n||_E$ whenever $|a_n| < |b_n|, \forall n \in \mathbb{Z}.$

Let $\overrightarrow{l}_p = (l_p, l_p(2^{-n})), 0 Then , a <math>\mathbb{Z}$ -lattice E is called \mathcal{K} - non-trivial if $l_{\infty}(max(1, 2^{-n})) = \Delta(\overrightarrow{l}_{\infty}) \subseteq E.$

$$\sup_{||a||_{E}} \left(\sum_{n=-\infty}^{\infty} (\min(1, 2^{-n})|a_{n}|)^{p}\right)^{1/p}.$$

Observe that the class of all \mathbb{Z} -lattice contains all interpolation spaces with respect

to \overrightarrow{l}_p , 0 .

We next define \mathcal{K} and \mathcal{J} -spaces.

Definition 3.1

(i) Let E be a \mathcal{K} -non-trivial \mathbb{Z} -latice and $\overrightarrow{X} = (X_0, X_1)$ a locally convex couple. We define the \mathcal{K} -space $\overrightarrow{X}_{E,K}$ to consists of all $x \in \Sigma(\overrightarrow{X})$ such that $\mathcal{K}_{\alpha^0,\alpha^1}(2^n, x, \overrightarrow{X}) \in E$ for all $(\alpha^0, \alpha^1) \in \mathcal{A}_l \times \mathcal{A}_1$.

(ii) Let E be a (p, j)-non-trivial \mathbb{Z} -lattice and $\overrightarrow{X} = (X_0, X_1)$ a locally convex couple. The \mathcal{J} -space $\overrightarrow{X}_{E,J}$ consist of all $x \in \Sigma(\overrightarrow{X})$ that may be written as

$$a = \sum_{n=-\infty}^{\infty} a_n, a_n \in \Delta(\vec{X}), \text{ converge in } \Sigma(\vec{X}) \text{ with } (J(2^n, a_n, \vec{X}))_n \in E.$$

We put

$$p_{\alpha^{0},\alpha^{1}}^{E,K}(x) = ||(\mathcal{K}_{\alpha^{0},\alpha^{1}}(2^{n}, x, \overrightarrow{X}))_{n}||_{E}, \text{ for all } (\alpha^{0}, \alpha^{1}) \in \mathcal{A}_{\prime} \times \mathcal{A}_{1}.$$

Then the family of semi-norms $\left\{p_{\alpha^{0},\alpha^{1}}^{E,K}\right\}_{(\alpha^{0},\alpha^{1})\in\mathcal{A}_{\prime}\times\mathcal{A}_{1}}$ generate a Hausdorf locally convex topology of $\overrightarrow{X}_{E,K}$. This topology is finner than that of $\Sigma(\overrightarrow{X})$ and less fine that of $\Delta(\overrightarrow{X})$.

Similarity we put

$$p_{\alpha^{0},\alpha^{1}}^{E,J}(x) = \inf_{a=\sum_{n}a_{n}} ||\mathcal{J}_{\alpha^{0},\alpha^{1}}(2^{n},a_{n},\overrightarrow{X}))_{n}||_{E}, \text{ for all } (\alpha^{0},\alpha^{1}) \in \mathcal{A}_{\prime} \times \mathcal{A}_{1}.$$

Then the family of semi-norms $\left\{p_{\alpha^{0},\alpha^{1}}^{E,J}\right\}_{(\alpha^{0},\alpha^{1})\in\mathcal{A}_{\prime}\times\mathcal{A}_{1}}$ generate a Hausdorf locally convex topology of $\overrightarrow{X}_{E,J}$. This topology is finner than that of $\Sigma(\overrightarrow{X})$ and less fine that of $\Delta(\overrightarrow{X})$.

When $E = l_p(2^{-n\theta}), 0 we recover the spaces <math>\overrightarrow{X}_{\theta,p,K}$ and $\overrightarrow{X}_{\theta,p,J}$.

Like in the case of spaces $\overrightarrow{X}_{\theta,p,K}$ and $\overrightarrow{X}_{\theta,p,J}$ we have

Theorem 3.1

Let $\overrightarrow{X} = (X_0, X_1)$ be a locally convex couple. Then (i) The spaces $\overrightarrow{X}_{E,K}$ and $\overrightarrow{X}_{E,J}$ are interpolator with respect to \overrightarrow{X} ; (ii) If E is \mathcal{K} -and (p, J) non-trivial \mathbb{Z} -lattice

$$\vec{X}_{E,J} \hookrightarrow \vec{X}_{E,K};$$

(iii) If E is \mathcal{K} -and (1, J) non-trivial \mathbb{Z} -lattice and \vec{X} is an Fréchet couple

$$\overrightarrow{X}_{E,J} = \overrightarrow{X}_{E,K}$$
.

Theorem 3.2

Let E_0 , E_1 and E_2 arbitrary \mathcal{K} -and (1, J)-non-trivial \mathbb{Z} -lattice. The following two conditions are equivalent:

(i) for arbitrary Fréchet couples $\overrightarrow{X} = (X_0, X_1)$, $\overrightarrow{Y} = (Y_0, Y_1)$ and $\overrightarrow{Z} = (Z_0, Z_1)$ and any bounded bilinear operator $T: X_i \times Y_i \longrightarrow Z_i$, i = 0, 1, we have

$$T: X_{E_0,K} \times Y_{E_1,K} \longrightarrow Z_{E_2,K}.$$

(ii) the convolution $E_0 * E_1 \hookrightarrow E_2$

Acknowledgement

This paper was presented by Mr. Dan Lupulescu during The Fourteenth International Conference on Mathematics and its Applications (ICMA) which took place in Timişoara on 5-7 November 2015.

References

- S.V. Astashkin, On interpolation of bilinear operator with a real method, Mat Zametki 52 (1992), 15-24, Russian
- [2] H.G. Garnie, M. De Wilde and J. Schmets, Analyse Fonctionnelle, Tome 1, Birkhauser Verlag Basel und Stuttgart, 1968
- [3] C. Goulaouic, Prolongements de foncteurs d'interpolation et applications, Annales de l'institut Fourier, tome 18, n°1, 1968, p. 1-98
- [4] D. Lupulescu, I. Stan, Interpolation of locally convex triples, Analele Universității de Vest Timişoara, Seria Matematică-Informatică, L, 1 (2012), 69-76.
- [5] J. Peetre, A theory of interpolation of normed spaces, Notes, Brasilia, 1963
- [6] Per Nilsson, Reiteration theorems for real interpolation, Anali Matem Pura Applicata, ser 4 131-132 (1982), 291-330

Nicolae Cofan and Ciprian Hedrea Department of Mathematics "Politehnica" University of Timişoara Victoriei Square 2, 300006 - Timişoara, România Email: ciprian.hedrea@upt.ro, nicolae.cofan@upt.ro

Dan Lupulescu Department of Physics "Politehnica" University of Timişoara Victoriei Square 2, 300006 - Timişoara, România Email: danlupulescuv@yahoo.com

Ilie Stan Department of Mathematics West University of Timisoara Bvd. V. Parvan 4, 300223 - Timişoara, România Email: stan@math.uvt.ro

44