
UNIVERSITY "POLITEHNICA" OF TIMIŞOARA
FACULTY OF AUTOMATIC CONTROL AND COMPUTER

SCIENCE AND ENGINEERING

A COMPUTAŢIONAL METHODOLOGY AS AN
ARTIFICIAL LANGLAGL AIÎOLJT

NATURAL LANGUAGE RULES

PhD - Thesis

PhD coordinator:
Prof. Univ. dr. ing. Ştefan HOLBAN

I

I . ' ^ ^ a n ^ O A - ; , I

Aulilor
Konslanlinos l-ouskakis

^ O

Timişoara - 2005

BUPT

BUPT

CONTENTS

1. INTRODUCTION ^

2. THE STAGE OF KNOWLEDGE

2.1 TUR X -RARTIIR^RY
2. /. / ///f Schoo/ of Structuralism
2. /. 2 /'//c Stan Jar J of thc Syntactic Structurcs 15
2. /. J Thc Standard Thcory
2.1.4 The Extended Standard Thcory 20
2.1.5 The Government and Binding thcory 24

2.1.5.1 Tlie govcmnicnt Ihcory 25
2.1.5.2 Tlic binding ihcory 27
2.1.5.3 Thc bounding thcory 27
2.1.5.4 Tlic thcmalic role thcor>' 28
2.1.5.5 Thc casc lhcor>' 28
2.1.5.6 Thc control lhcor>' 29

2 . 2 THE UNIFICATION BASED APPROACH 31
2.2. / The context free grammars I /
2.2.2 The feature structurcs and thc unification ^2
2.2.3 The HPSG grammar 36
2.2.4 The PA TR grammar 37
2.2.5 Thc FUG grammar 38
2.2.6 The TA G grammar 38

3. THE PERSONAL CONTRIBUTION 41

3.1 DESCRIPTION OF THE LINGUISTIC SYSTEM'S STRUCTURE OF THE PRESENTED METHODOLOGY 41
3.1.1 Thc Structurcs 42

3.1.1.1 Thc E B N F o f t h c X-bar structurcs 55
3.1.2 The Principles and Transformations 56

3.1.2.1 Thc EBNF o f thc pnnciplcs and translomialions o f l l i c mcthodology 58
3.1.3 Thc Linguistic thcory 58

3. l .3.1 Thc EBNF of llic grammar ruics in thc thcory part o f thc systcm 64
3.1.4 The Linguistic program 65

3.1.4.1 Thc EBNF o f thc linguistic program 66
3 . 2 DESCRIPTION OF THE PRINCIPLES AND TRANSFORMATIONS FIELDS 6 7

3.2.1 Thc variables ftcld. 67
3.2.1.1 Thc EBNF o f thc variables ficld 74

3.2.2 The structurcDcscription ficId of thc pr inciples and trans formations 77
3.2.2.1 Tlic variables in thc structurcDcscription ficld o f principics and Iransfonnations 78
3.2.2.2 Thc variables o f thc general category 7^
3.2.2.3 Thc variables o f thc translomiation categor>' 92
3.2.2.4 Thc trec opcralors in thc structurcDcscription ficld 112
3.2.2.5 Thc structurcDcscription ficld exampics with one operator 113
3.2.2.6 Thc stmcturcDcscription ficld exampics with morc than one operator 131
3.2.2.7 Thc EBNF o f thc structurcDcscription ficld 135

3.2.3 The structurcCommands ficld of thc principics and transformations 141
3 .2.3.1 Dcclaration o f variables in thc structurcCommands ficld 141
3.2.3.2 Thc changc o f variables valucs in thc stmcturcCommands ficId 145
3.2.3.3 Tlic grammar variables in thc structurcCommands ficld 151
3.2.3.4 The transformations in thc structurcCommands ficld o f transformations rules 152
3.2.3.5 Tlie controls in thc stmcturcCommands ficld 159
3.2.3.6 Tlic EBNF o f thc structurcCommands ficld 168

3 . 3 THE DESIGN OF THE SOFTWARE SYSTEM - THE MODULES 174
3.3.1 Implcmentation specific dctails 177

3.3.1.1 Thc comment command 177
3.3 .1.2 Thc uscr depending appiication o f the mies 178
3.3.1.3 Thc changcs on the opcrators and other assumptions 179

3.3.2 Module sysjdb 179

BUPT

3.JJ Module operators ISl
3.3.4 Module general jyredicates IS5
3.3.J Module sys elements 1S8
3.3.6 Module main module 193
3.3.7 Module read Jiles 194
3.3.8 Module read write structures 195
3.3.9 Module execute rules 195

3.3.9. l Module vars_ncld 197
3.3.9.2 Module sd_ncld 198
3.3.9.3 Module scc_f ic ld 198
3.3.9.4 Module scc_checks 201
3.3.9 5 Module scc transformalions 203

3.3.10 Module comments 204
3 . 4 GENERAL EXAMPLES OF PRINCIPLES AND TRANSFORMATIONS AND ANAPHORIC CONNECTIONS . 2 0 5

3.4.1 The problem of anaphoric connections outside of an X-bar tree 208
3.4.2 The problem of anaphoric connections inside an X-bar tree 216

3 . 5 T H E GRAPHICAL MONITORING OF THE SYSTEM 2 2 0

4. CONCLUSIONS 228

4 . 1 T H E EXISTING COMPUTAŢIONAL METHODOLOGIES 2 2 8

4 . 2 T H E PRESENTED METHODOLOGY 2 3 0

5. BIBLIOGRAPHY 232

INDEX 239

BUPT

1. Introduction

Natural lan^iias;c proccssin^ is a ficld Ihat has conccriied bolh artificial
intclligcncc (Winslon, 1992) (Diimilrcscii, 2002) in thc Icrms of ils broadcr cognitivc
fielus and Ihe computaţional lin^uistic.s (Cecile, 1991) (Gilbcrt, 1991) (Grishman,
1989) (Noblc, 1988) cspccially diiring Ihc 60^s and aller.

Gcncrally, thc modern (hcorctical lini:u!stics (Babiniotis, 1980) (Philippaki,
1987, 1992) (Lyons, 1981) is concerncd wilh Ihc scicntiTic sliidy of languagc.
Naincly, Ihe oojccl of thc linguistics is thc langiiagc. With Ihe Icrni lan};ua^c wc arc
limilcd oniy Io that natural coiumunication systcin that is uscd by man and thai is
bascd on parole. Also lin^uistic.s is not liniitcd only to onc particular langua^c (Fodor,
1964) and ncithcr scts as a goal thc study of cach onc of thcsc languagcs individually.
Linguistics studics thc languagc as a phcnonicnon and its purposc is to dcfinc thc
general universal characteristics, of this phcnonicnon.

Linguistics has thc follovving branchcs:

• Phonctics and phonology^

Phonetics is concerncd on how thc vvords of a languagc arc pronounced (Malikouti,
1988), both individually and in combinalion aniong thcm within sentences or
phrases. For thc description of thc words/ pronunciation, that is callcd phonctic
description, wc usc special synibols that are callcd phonctic symbols (Mallc, 1984).
Thcsc phonctic symhols bclong to thc International Phonctic Alphahct. The
scicnce of phonctics analyscs and describes thc linguistic sounds, thc phoncmes
(Abercronibic, 1967).

Thc study of thc phoncmes' function within a particular linguistic systcm is callcd
phonology and is diffcrentialcd from phonctics. Phonology studics thc allocation of
thc phoncmes and thcir contribution to comnuinication and thc phonological
phenomena. The allocation of a phoncmc is thc linguistic environmcnt in which it
exists, that is, thc elemcnts that exist beforc and after thc particular phoncmc that
WC study, for cxample, wc have thc words "tiivo) '' (drink) and "icivco" (tend) that
with thc usc of phonctic symbols arc described as fpino] and [tinoj rcspcctivcly. As
wc observe, thcsc two words are differcntiated uniy by thc Tirst phoncmc, p and t.
Therefore, Ihe colloquists understand from these words two diffcrent meanings
when they hcar thcm, becausc thc first phoncmc is diffcrent.

BUPT

An inlrodiictory general book aboiit phonelics is ihe book of (Abcrcronibie, 1967).
Also, a book aboiil Ihe useUiI soiirces of Ihe genetic phonology is Ihe book of
(Chomsky, 1968). The books ofCDiirancl, 1990) and (Roca, 1999) presents a more
modern inlroduction.

• Morphology

Morphology is concerned with the internai form of the word. The word constitutes
the basic unit both in the syntactic and the lexical level, while the vvords are not Ihe
mininuun units of this level. In niany cases the vvords are composite units and their
elements have a specific nieaning and thus they function as units in the syntactic
level. These word elements are also observed in other environment, either alone or
with other elements (Philippaki, 1976). Also, there are elements that cannot be
analyzed any further.

A book with the more contemporary speculations around the fieid of morphology
is the book of (Spencer, 1991). Another similar book is the book of (Selkirk,
1982). Also the book of (Haspelmath, 2002) presents a broad range of
morphological phenomena from a wide variety of languages.

• Syntax
The syntax is concerned with the rules under which the words are combined in
bigger structures, like the phrases, the sentences and the utterances. With the term
utterance we mean the sentences with in a text.

A first report in the term grammar of the phrasal structure is made in the first book
of Chomsky Syntax Structures in 1957. The book is for the standard theory
(Chomsky, 1965), while for the extended standard theory is the book (Chomsky,
1970), where we have for the first time the theory of the x-bar. The government
and binding was originally developed in the book (Chomsky, 1981), while in the
books (Theofanopoulou, 1989a, 1994) and (Philippaki, 1992) we have a generic
consideration around the transformational syntax.

• Semantics
Semantics (Babiniotis, 1985) is concerned with the meaning of the vvords vvithin
the sentence and also with the meaning of the sentences.

A very useful introductory book on semantics is that of (Lyons, 1981) and on
formal semantics (Cann, 1993).

• Pragmatics

Pragmatics is concerned with issues regarding the meaning of the sentences, as
these are interpreted in a specific place and time, as well as in the terms of certain
appiication fields.

A general introductory book which concerns pragmatics in particular is that of
(Leech, 1983), while the book of (Philippaki, 1992) is about linguistics in general

BUPT

with important rcports on pragmalics (Wirth, 1985). Also, anothcr book that
combincs mcaning with context is (Criisc, 2004).

The standard hngiiistic theory that has inlliienced linguistics since 1957 up
today, is the one that mainly Choinsky has developed in 1957 and still does up today.
This theory is known ^s gcncralivc transfornuitionul ^rummur.

The following can be eonsidered as the basic stages in the evolution of this theory:

1) the standard of the Syntactic Strucîurcs in 1957 (Chomsky, 1957), that
constituted the base for any further developnient.

2) the Standard Theory standard (Chomsky, 1965)

3) the Extcndcd Standard Theory with its allocated realizations, that constitutes
an evolution of the generative transformational gramniar during the 70's
(Chomsky, 1970) (Chomsky, 1972) (Chomsky, 1976).

4) The Government and Bindin^ standard in 1981, that has been developed in the
terms of the Extended Standard Theory (Chomsky, 1981, 1982) and for the
Greek language (Theofanopoulou, 1994) (Philippaki, 1992).

5) Since the beginning of the 90's, we observe once again a new tendency to
modify the standard, having as a starting point more general questioning about
the role that the principles of economy play (Chomsky, 1988, 1995, 2000)
(Samuel, 1999) (Belletti, 2002).

The evolution of the generative transformational grammar theoi7 (Radford, 1981,
1988, 1997), resulted in a substantial turn for a rewriting rules system (Jacobs, 1970)
towards a generalized syslem of universal principles that, with thcir coordinated co-
operation defme the organization of the language clements in evcry level.

Two are the main points that resulted in the evolution of the generative
transformational grammar:

a) The attempt of the researchers for a simpler theoretical pattern based on a small
number of generalized principles. Their target is the defmition of abstract logic
principles that are so general, that they cannot always be found in a direct response to
the empiric data of the several languages. This took place oniy afler the difference
between the internalized language and the various language realizations was verified.
This tendency leads to the formation of the Universal Grammar theory (UG) with the
parametric diversities according to the various language realizations.

b) The parallel finding that many phenomena that up to now had been eonsidered
as different (e.g. the transformational rules and the binding rules) have been proved

BUPT

the rcsull of common principlcs funclion. Morc spccirically, lIic binding of clcments,
like Ihc reflexive pronouns wilh iheir refercncc point and the binding of the movable
nominal components with the trace that can be found in the place from which they
were moved are controlled l-̂ y coninion principles.

So there was the alteration of the transforniational theory fundamental senses and,
as a result, its modification from Ihe standard of Iransformational interrelation of its
deep-surfaee structure piuase markers to the abstract total of principles and
parameters that constitute what is general ly cal led Universal Grammar.

According to Chomsky, the existence of the Universal Grammar, that is, common
linguistic schemes in all the languages of the vvorid is based on the following:

a) the existence of common abstract principles (general limitations, generalized
structure patters) in the systems of the several languages, despite the superficial
diversity that the several languages seem to have.

b) the data of the language acquisition, where the following have been observed:

1) Language learning presents a unified form to all people. From
experiments that have been conducted to the most uneven languages it has
been proved that the stages through which every man passes during the
learning of the maternal language in all its levels are basically the same for
every language. The uniformity of the lanţ^uagc acquisition is defmed by the
existence of universal linguistic elements that may refer to the way that the
perceptive mcchanisms, that the child used to analyze his/her language,
function. Also, the child learns the language of the community in which he/she
belongs naturally and effortlessiy and this happens regardiess its intelligence.
2) The perfeclion and speed of the language learning also count for its
inherent character. It is amazing how man manages in a rather short period of
time (within the 3 or 4 fnst years of his life) to conquer the basic system of his
language.

According to Chomsky's conclusions (Chomsky, 1986a), the following appiies:

'The universal grammar is a theory of the
linguistic ability iniţial state, before any

linguistic experience''

The morc exponent representative of the universal grammar is the theory of
government and binding, This theory pays special atlention to two basic principles,
the government principie that describes the syntactic dependencies between the
various lexical elements within the sentence, and the binding principie, that explains
how the several elements are inter-connected in the sentence.

This theor>' has developed a set of several Principles. These principles include the
following allocated theories:

BUPT

a) the govenvnent theory
b) the binding theory
c) the bounding theory
d) the (:)'theory
e) the case theory
f) the control theory

The government theory clcfincs the prineiples eoneerning Ihe relalion between Ihe
head of a strueture and Ihe ternis Ihal depend on il. 1 he prineiples also eoncern Ihe
case of the empty eategories and the problems that derive. While the binding theory is
concerned with the eonditions that control the way oHiinding an anaphoric element
with its reference point in a natural language trec. Another theory is the bounding
theory that sets the ternis that bound locally the transfers, deUning vvhich nodes are
constrained in their transfers and under vvhich eonditions. The themutic roles theory
includes prineiples that dellne the semiotic function (thematic role) of a name phrase
(NP) (if this phrase declares the action taker, the receiver, the theme, the instrument,
the place, etc). This theory refers to the terms that control the determination of a
thematic role: level, kind of position, as well as the cases where this is impossible.
The case theofy includes the prineiples that defme the "abstract" case in a NP (vvhen a
NP is characterized as nominative, accusative or possessive) and the eonditions that
must exist in order for this theory to be fulfilled. While tlnally, the control theory
defines the terms that control the presence of the empty PRO category, a fact that has
been in question in the Greek language. It is namely concerned with the empty
positions in the tree that are not created by the elements' transfer.

Since the beginning of the 90's and after, \ve observe another nevv tendency to alter
the standard, having as a staring point general speculations about the role that the
economy prineiples play in the formulation of the theoretical prineiples and the
description of the language strueture. The standard is simplified, including now a pair
of two levels regarding the phonological and logic strueture. The syntactic sectors are
limited to the lexical and calculating depailment of production, while at the same time
transformations function, that control the alternation of the phrase markers, the trees.

The strueture of the phase marker components and the form of the rules are according
to the convention of the x-bar (Theofanopoulou, 1989a) (Theofanopoulou, 1994)
(Philippaki, 1992). This convention goes back to (Chomsky, 1970) and it was shaped
with the works of (Jackendoff, 1977) and today constitutes the established method of
the structural depiction, making the phrasal strueture rules of the older standards
unnecessary.

The general figure is as follows:

a) X " - > S p e c X '
b) X ' - > X C o m p l

The X represents one of the main lexical eategories such as the noun, the verb, the
preposition and the adjective. The tone represents the level and we have the X ' \ X'

BUPT

and X. The X " is Ihc biggcsi projcction (phrasc) for every Icxical catcgory, thc X' is
thc intermediate head and thc X is Ihc lexical head.
Every biggest projcction is analyzed in a specifier (Spec) and in thc intermediate
categorv. Every intermediate category is analyzed in thc lexical head and in thc
complement (CompI). Therc is also thc possibility to rcpcat X^ under thc following
rule:

c) CompI

The complement and specifier are of X " category, they derive from thc general form
of the x-bar. Also, thc specifier can bc a node of thc X category with the terminal that
is connected to it.

J\\^X'bar tree is the following:

X^'

Compl

In the recent studies the basic figure has been simplified (Haegeman, 1995) and
replaced by the following rules:

a) XP- ->SpecX '
b) X' -> X Compl

The above are some of the basic elements of the generative transformational grammar
that we shall analyze in detail in the chapter about the X-bar theory that foilows.
Also, there are parsers (Shaban, 1994) (Fong, 2000) that implement the Chomsky's
government and binding theory and the minimalist program.

Finally, sincc language is a basic clement in a series of human manifestations,
linguistics co-operate with other sciences so that several branches of linguistics have
derived. Next it foilows a short description of the content of some of the main
branches of linguistics (Babiniotis, 1980) (Philippaki, 1982, 1992).

Psycholinguistics studies the relation between the language behavior and the
psychological mechanisms.

BUPT

Sociolinguistics studies Ihc vvays iii vvhicli langiiagc is arfcclcd by Ihc social
differcnccs among Ihc mcmbcrs of a lingiiislics socicly.

Stylistic lin^uislics cxaniincs llic sclcclions of a littcralciir in ccrlain Icxls.

Mathemaîic lin^uistics cxaniincs Ihc nialhcnialical propcrlics of Ihc hinguagc.

Computaţional lin^uistics studies llic langiiagc wilh Ihc usc of conipulcrs
aiming Io confronl a scrics oT subjccls such as Ihc automatic translalion, thc
information rctrieval or Ihc general dcvclopmcnt of thc artificial intciligcncc.

Clinical linguLstîcs uscs thc linguistic thcory mainly in ordcr to study
probicms in pronunciation or writing.

The main applications in Ihc computaţional lin^ui.stics are:

• Machinc translation

The automatic translation (Ananiadou, 1990) (Efthimiou, 1991) with the usc of a
computer is an application with great interest since thc era of the cold war. A
characteristic program is thc TransIcarn/LRli that had as a target the dcvclopment of
an automatic translation tool that vvouid not give high quality translations. The basic
purpose of this system is to relief the translator from the recurrent parts in his job,
mainly in special technical texts, as well as to raise the quality of thc final product, by
helping the translator, providing him with alternatives for every text (Gabriilidou,
1990). This system is based on extremely developed techniques that usc linguistic and
statistic information in ordcr to dcfine the biggcr related text that has already been
translated and stored accordingly in thc system's text base. The text part that vvill be
translated is given to the user for the appropriate corrections that he would wish to
make, as well as for the confirmation and acceptance of thc final result. Another
characteristic and wcll-knovvn program is thc l iUROfRA (AIshawi, 1992) (Schnelle,
1992) that has as a purpose thc dcvclopmcnt of a machinc translation system among
the languages of the l^uropcan Union member states. Another system for automatic
translation that thc European Community has developed for its internai necds is the
SYSTRAN. This system provides translation scrvices in 16 languagc pairs of
languages. Gencrally, SYSTRAN can be scen as a tool for a first translation and is
particularly quick since it can provide up to 2000 pages per minute.

• Informaţional retrieval

The informaţional retrieval from natural languagc texts is another extremely
interesting application of the computaţional linguistics. The reason is that since the
biggest part of the information lies in books, magazines and references, it is necessary
to retrieve it from them. A program developed currently by the Greek institute of
Parole Processing is concerned with the collcction of Greek multiform texts. This
system creates a text base that is used from publishing organizations and linguists
researchcrs for their studies. The body of the texts is accompanied also by
computaţional tools that give the possibility to draw information from them as well as

10

BUPT

to proccss thcm linguislically. Anolhcr informalion relricval program is thc
RENOS/LRl: tlial hacl as a purposc llie dcvclopmcnl of inclhocJs and lools in ordcr to
improvc Ihc performancc ol a l'iill tc\l rccall syslcni Ihroiigh Ihc addilion of linguislic
information.

• Man-machine interfacc

Thc natural languagc is also thc bcsl casc in ordcr for man Io communicatc with a
certain computaţional systcm, cspccially for pcopic that do not havc spccial
knowlcdgc on how to communicatc with a computcr. In 1983, Filguciras prcscntcd a
corc of a general communication syslcm bctvvccn man and a computcr through natural
languagc.

Also, computaţional linguistics, vvhilc trying to achicvc thc dcvclopmcnt of systcms
that wouid pcrform a compictc translation, procccded in thc study of scveral scicntific
domains that had not bccn invcstigalcd. Vor cxampic, thcy wcrc conccrncd with
computaţional modcis that imitate thc human rcaction in thc undcrstanding of
scntcnccs and thcy wcrc also conccrncd with computaţional modcis that rcprcscnt
knowlcdgc.

Comparing thc domains that thc linguists and thc computaţional linguists are
conccrncd with, we observe that their interests are difTerent. Also, we sec thc
uscfulness of thc rcsults that derive from thc research of thc theoretical linguists
(Kosma, 1988)(Mackridge, 1985) on thc problems of the computaţional linguistics.
Computaţional linguistics tries to find solutions that vvouid cover the categories of the
sentences we are conccrncd with for every appiication, vvhile theoretical linguistics is
conccrncd with issues such as:

• How peopic accept certain sentences as grammatically correct and others as
incorrect

• Thc principics of grammar that can bc appiied in every natural languagc.
• Thc mechanisms with which pcopic arc able to Icarn and usc the natural

languagcs.

Indcpendently of thc diffcrences betwcen theoretical and computaţional
linguistics, thc theoretical linguistics (many stydics there are about the greek languagc
(Philippaki, 1970, 1971, 1973, 1975, 1985) (Photopoulou, 1990) (Ralli, 1990a,
1990b)) is very uscful for the computaţional linguistics (Ralli, 1992). The existence of
a certain constraint, for cxampic, that defincs the grammatical correctness of a
sentence is very uscful becausc it will give us the ability to select among differcnt
syntactic analyses the correct one. Also, the abilities of the sentences transformation
enable us to deal with a total of sentences that will present similar trec structure.

After thc grammar of thc phrasc structure was devclopcd in 1957 by Chomsky
(Chomsky, 1957) it was dcfincd that in ordcr to produce sentences in a natural
languagc, rcwriting rules must bc set. For cxampic, for the formation of a simple
sentence with subject and object we can set the follovving rules:

11

BUPT

S - ^ N P VP
N P - ^ A N
V P - ^ V N P

Whcrc S is thc scntencc, NP is tho nominal phrasc, VP is Ihc verbal phrasc, A is Ihc
articic and N is Ihc Noun.
The rules that have becn used by ihc conipiitalional systcms (Gilbert, 1991) examined
also the environmcnt of an clcnicnl, c.g. of a NP Ihal would bc rcplaced by thc
application of a mic.

In posterior publications of thc generative transformational grammar, the standard of
the grammar was becoming morc and more abstract. The trec of a phrasc or a
sentence derives now from thc \-bar Tigiirc and thc rules that theory sets have a
general form and describe thc lavvs that siich a trec shoiild fiilfill. The generality of thc
description of the generative transformational grammar rules and principics has as a
consequence the non-utility of thc theory in computaţional systcms used to process
the natural languagc, becausc it made thcir description in some systcmatic and
standard way very difficult.

Thus, the grammars used for the computaţional process of natural language usc
mainly rcwriting rules in ordcr to describe all thc rules, cither these are rules for the
production/processing of thc scntenccs or rules for thc transformation of the
sentenccs(Pedersen, 2000). Also, systcms with nctwork construction have appeared
for the processing of scntenccs or phrases. Some well-known networks are the RTN
and ATN. A detailed presentation of these mcthodologics can bc found in the books
of (Gilbert, 1991) and (Noble, 1988).

In the present doctorate dissertation (thesis) therc was an attempt to develop a new
systematic methodology that gives us the ability to define typically the rules of the
generative transformational grammar in general (\-bar theory) and morc gcrcnal other
linguistic rules. The methodology leads to the development of the respective software.
The result of this attempt is that thc aspects and the rescarch conclusions can bc used
and applied directly. It is a rescarch cffort that leads to a new artificial language that
integrates thc ideas of other thcorics in a more general and abstract way by presenting
some new ideas.

Until today, most of the natural language processing systcms used the rcwriting rules
that Chomsky had proposed in 1957. These rules are also used to describe the typical
languages. Thus, by using this methodology, they were trying to solve all the
problems of the natural language processing. Howevcr, with the cvolution of the
linguistic thcorics, a new basic scheme was dcvelopcd, and all the trees of the
scntenccs or phrases of any natural language derive from that scheme. The basic
scheme is the x-bar scheme that wc saw above but wc shall analyze in the next
chapter. This gives us the ability to deal uniformiy with all the trees of a natural
language, since all derive from the same basic scheme, an ability that wc didn't have
with the rcwriting rules or other grammars and mcthodologics (Fouskakis, 2004b,
2005b) used to process a natural language in a computer. The linguists set also rules

12

BUPT

and a serics of sublheorics vvas clevclopcd, rcgarding the slruclurc and conicul of Ihc
naliiral languagc Irccs Ihal derive froni Ihc \-har sclicma.

The above show Ihe grcal value of a systenialic melhodology for llic dcnnilion of Ihc
hnguisls' rules (Fouskakis, 2000, 2004a, 2005a) Ihat couid bc applicd on natural
languagc trccs Ihat derive from thc x-bar scheme. It must permit the dcfinition of
fewcr and more general rules Ihal are applicablc in many trccs since thcy arc
derivations of the same trec.

This melhodology ditTcrs from Ihc classic usc of the rcvvriting rules for thc
development of natural languagc processing systcms Ihat usc thc linguists'
conclusions and aspects.

Thc melhodology Ihat vvas dcveloped is open Io thc changes in thc linguists' thcory
and enabics us Io set thc rules Ihat are necessary cach timc. Thcsc rules are set in a
simple way, while thcy are also more descriptive. Also, we arc cnabicd to deal in a
general and uniform way thc scveral issues of the natural languagc trccs.

Thc respective system Ihat was dcveloped is a very uscful tool in thc linguist's hands
in order for him Io study scveral rules and sub-theories in practice, appiying them on
trccs that derive from thc x-bar.
Also, this system can bc used as a sub-syslem in a natural languagc processing
system, since can describe also rules Ihat haven't becn formulatcd by the linguists in
thc ir theor)'.

Thc rules Ihal onc can set in Ihc presenl system bclong in two categorics, thc
principlcs and thc transformalions. The principles study thc slruclurc and thc content
of the natural languagc trccs Ihal derive from thc basic x-bar schema, while thc
transformalions modify the slruclurc of thc trccs and the contcnls of thcir nodes. Both
the principlcs and the transformalions appiy on sub-lrccs of thc natural languagcs
sentences or phrasc trccs. Thcsc sub-lrccs arc describcd in thc dcciaration of thc
principlcs and thc transformalions rules. This faci enabics us to describe more
accurately thc rules and thc cascs wherc cach of thcsc rules is applicd in a way
corresponding to thc respective rules of thc thcory.

Also, the melhodology enabics us Io describe sub-theories. Cach sub-theory uscs
ccrtain principles and ccrtain transformalions Ihal we have aiready defincd. Each sub-
theory uscs thcsc rules according to thc scqucncc and thc conditions that have becn
scttcd in this sub-theory. A sub-theory can also usc some olher sub-theories that have
becn defincd.
Also, thc presenl melhodology enabics us to definc which of thc rules and in what
sequence are going to bc applicd on thc natural languagc trces that are under
processing.
The melhodology that was dcveloped enabics us to casily expand, modify and rcusc
the defincd rules according to the situation, without thc requiremcnt for big and
complex changes in the total of thcsc rules.

13

BUPT

2. The stage of knowledge

2.1 The X'bar theory

2.1.1 The School of Structuralism

The last forty years, sincc 1957, Ihcrc is a spccial allcmpt to sludy Ihc synlax,
as well as a big turn rcgarding Ihc oldcr school of structuralism iii Ihc sludy of Ihc
language that appcars mainly in Ihc bcginniiig of oiir ccnlury by Saussurc.

Later on, vvc shall prcscnt some basic priiicipics and positions of Saussurc
(Babiniotis, 1980).

The first important turn of Saussurc, was to sec thc language as a
communication instrument among thc members of a language socicty and sincc
through language communication is achieved, both in vvritten and in its spoken form,
it should comprise a system. The elements and symbols that uses function rcgularly
and systematically and so language has a structura that thc linguistic theory has to
discover and describe.

Also, according to Saussurc, therc arc two possibilities to describe thc
language system, thc synchronic and diachronic. Using thc synchronic description of
language, thc linguist describes language in a given moment in time, as this is
presented in a language community. Using thc diachronic description, thc change of
language is described from a previous to a later stage of thc same language, sincc
language, through timc, gocs through changes. According to Saussurc thc synchronic
study of thc language is morc important, becausc this is also thc condition for thc
correct diachronic study. Thc synchronic study of thc language is a reaction towards
the traditional grammar that ignored thc modern language form and studied thc
previous form of thc classic languagcs. Traditional grammar attcmptcd to teach a
language form that had bcen idealized for various social or esthetic reasons, vvhilc
Saussurc points out that thc linguist should not act rcgulatory but he should describe
objectively.

Another essential distinction of the language is in langue and parole. Languc
is the abstract language system that all members of a language community possess in
common and this system enables them to communicate among cach other. Parole is
the specific application and exploitation of the language system by every person of
the community in communicating to the others. This distinction betwcen languc and
parole has a great methodological valuc and strcsscs that a linguist that wishcs to
approach langue proceeds ablatively, based on thc parole data.

14

BUPT

Also, according Io Saussurc, Ihc language or ralher Ihc languc comprises of a
sign syslcm. Tlic sign is a conncction bclwccn two things: Ihc mcaning (Ihc signillcr)
and Ihc acoiislic imagc (thc signiUcd).

2.1.2 The Standard of the Syntactic Structures

Thc big '^rcvohilioiv^ rcgardiiig ihc school oF slrucluralism and Saussurc, was
madc by Chomsky in his book ''Syntactic Structurcs'' (Chomsky, 1957).

Thc structural standard of thc language dcscription and analysis is
charactcrizcd by the absolute attachmcnt to a subtotal of data, the appiication of a
strict hicrarchy in the analysis of the levels of grammar and by the usc of finding
procedurcs for thc dcfinition of thc minimum units in every Icvcl (phoncmes,
morphcmcs, syntactic catcgorics). Uniikc thc abovc thescs of the structuralists,
Chomsky regards grammar as a mcchanism that produccs an infinite number of oniy
grammatically corrcct scntcnccs. (Chomsky, 1957) (Thcofanopoulou, 1989a, 1994)
(Philippaki, 1982, 1992).

Chomsky's standard thcoiy in 1957 is that thc language is considered as a total
of sentences that cach of them has a finite size and is structured by a finite total of
elements. The basic target of the linguistic analysis is the differentiation of the
grammatical scqucnccs that arc language sentences from the un-grammatical ones, as
well as thc study of thc grammatical sentences structurc.

Through out the whole work of Chomsky, the basic question is how can we
know if the cach time proposed standard of grammatical dcscription is adequate or
not.

Thus we have scvcral levels of adequacy that we shall learn below.

The grammar of a language is observatorii}' adequate if it can predict correctly
which sentences are formed correctly or not regarding thc syntactic, the semantic and
thc phonological Icvcl.

The grammar of a language is descriptively adequate if, apart from the abovc,
it can also describe correctly the syntactic, semantic and phonological structurc of the
language sentences, in such a way that it can correspond thcoretically to the intuition
that the natural colloquist of this language has for its structurc.

The grammar of a language is interpreteraly adequate if it, apart from the
abovc, the dcscription is based on general thcoretical principles that are simple to
describe, limited in number and universal. These principles represent psychological
and intellectual human principles that depict thc way in which a child can learn
effortlessiy, naturally and in a short period of timc thc language of his/her community,
based on thc fragmentary data to which hc/shc is cxposcd.

15

BUPT

A standard of graînmar, Ihal rulfills Ihc condilions for an inlcrprclalivc
adcquacy, is bascd on Ihc cxislcncc of universal characlcrislics. Tlic universal
characlcrislics dcTnic Ihc way in which Ihc languagc acquisilion is bcing niadc.

Chomsky's conlribution in Ihc thcory of synlax docs not lic oniy Io Ihc
rcconsidcration of thc languagc thcory purposcs and to thc Foundation of thc
principlcs of a general descriptive standard that is subjected to certain adcquacy
conditions. AIready, in his vvork ^^Syntactic Structures" (Chonisky, 1957), aims at thc
standardization of thc principlcs that produce sentences, by using thc mcthodology
and the symbolism appiicd in thc analysis of thc typical languagcs.

Let us sec an cxaniplc with which hc standardized thc description of languagc
production.

Suppose that vve have thc following natural languagc sentences:

a) the child reads the book
b) thc teacher drivcs the car
c) thc farmer ploughs thc llcid

During the first phase of the transformational grammar (Chomsky, 1957), in
order to dcscribe thc abovc sentences, we shouid set the following ruics:

S - > N P VP
NP -> A N
VP-> V N P
A -> the
N -> farmer, teacher, child
V -> reads, drives, ploughs

Where:
s Sciitcnce
NP Nouii Plirasc
VP Verb Piuase
A Articlc
N Noun
V Verb

These symbols are called non-terminaU while the "the", "child", "teacher", "farmer",
"reads" "drivcs" and "ploughs" are called terminal.

This standard of description corresponds to the analysis of the sentence in
direct components that are arranged in hierarchy and this standard that had been
adopted by certain structuralists. The basic characteristic of the abovc ruIcs is that
they are appiied in a certain sequencc. AII the rules, apart from the first one, are
appiied at the end of thc last rule, where every symbols is replaced (rewritten) by thc
appiication of one of these rules. Also, all the rewriting rules do not take under
consideration the neighboring symbols of what is bcing rewritten. Thercfore, we have
a grammar that is context frec.

16

BUPT

Each onc of thc abovc rcwriling mics has the following general form:

X - > Y

wherc X rcprescnts a sign (symbol) and Y ean be one or more signs (symbols).

The sentcnce production proccdiire vvith thc rcwriling rules creales a tree. This
tree is called also phrase markcr. The phrasc markcr contains explicit information
about the hierarchical construclion of Ihc sentcnce components, while senses likc the
subject arc defined structurally.

Supposc we have the sentcnce:

The teacher drives the car

Thc respective phrasc markcr is thc following:

S I Z N T I Z N C E

Thc standard of thc grammatical structurc that Chonisky presented in 1957 in
his book ''Syntactic Structures" approaches more the structural way of description.

This standard includes the three following levels:

1) the phrasal structure le vel
2) the transfonnational le vel

3) the morphophonological level

with the respective rules for each one of them.

Thc phrasal structura rules have the following general form:

Y

17

BUPT

vvhich WC have aircady prcscnlcd in dclail abovc.

Thcsc rulcs function indcpcndcntly of Ihc environmcnt and thcir funclion
produccs a Tinitc tolal of terminal clcments, if of coursc no rulcs of rccursion exist.

The transformat ionul rulcs ^ wliich transform thc structural levcl of the
sentence that has been produccd by thc phrasal structurc rulcs. A characteristic
transformation is thc transformation of thc passivc voicc. The transformational rulcs
are divided in ohli^atory and opţional. An obligatory transformation is for cxampic,
in the English languagc, thc usc of thc auxiliary DO in a question or ncgation. An
opţional transformation is thc transformation of passivc voicc.

The morphophonological rulcs perform morphophonological changes.
For example: tie + past tense —> ticd

2.1.3 The Standard Theory

After the introduction of thc Standard Theory (Chomsky, 1965) the
articulation of grammar changed. This ncw standard became the reference point of the
later evolutions of the grammar theory.

The changes that the Standard Theory introduced regarding the previous
standard were the foilowing:

1) The extension of a syntactic ficld that is now distinguished in the dccp
structurc, the transformations and the surfacc structurc. These perform the
production of the sentence.

2) The consideration of the rccursion as a part of the phrasal marker and not as a
part of the transformations as it used to be in the standard of the syntactic
structures (Chomsky, 1957).

3) The addition of the semantic domain in grammar that defines the semantic
interpretation of the sentence.

According to this standard grammar comprises of the foilowing components:

1) the syntactic component
2) the phonological component
3) the scmantic component

The syntactic component, that is the basic component of grammar, can bc
divided in the foilowing parts:

A) The basc
The basc includes the phrasal structurc rules and the dictionary. The phrasal structurc
rules correspond to those appiied in the Syntactic Structurc rules (Chomsky, 1957).

18

L \ M V . P O L I T E H N I C A '

A i - n ş O A R A
Bli L.OTeCA C E N T R A L Â

BUPT

The lexicon conlains a list of llic langiiagc morplicnics as wcll as spccial information
rcfcrring Io their phonological disposilion and ihcir synlaclic funclion. Thcrc are thrce
kinds of lexical fealures. The first kind is Ihc calegoi-y, such as Noun, Article, Verb.
The sccond onc refers to the calegory cnvironmenl of Ihe word. For example, the verb
through conlains the infonnalion [h-NP], nicaning that the verb is used as Iransitional,
having as a complement a NP (nominal phrase). Finally, the third calegory of fealures
is the selection fealures ihat are relaled Io the general frame in which the word can
exist. These fealures can give semantic information. For example, the fealure
[-l-animate] that describes the act ion laker (subject) in a verb means that the action
taker is an animated being.

B) The deep structure
The sentence produced by the funclion of the phrasal structure rules and the addition
of the dictionary morpliemes, constilules the deep structure of the sentence.
According to the standard theory, the semantic interpretation of the sentence lies in
the deep structure, where the f unctions of the several terms of the sentence are defined
structurally.

C) The transformalional scheme
The transformalional scheme of grammar with the transformalional rules, deleles,
adds or transfers elemenls in the deep structure and thus the surface structure derives.

D) The surface structure
The surface structure is the result after the appiication of the transformalional rules.

Finally, according to this standard, the phonological and the semantic
component have an interpretative character.

The semantic component includes a lexicon that doesn'l include oniy the
synlaclic fealures and the frames in which each word exists, but also all semantic
characleristics as well as all the rules with which the meaning of the sentence is
defined, according to the meaning of each word.

The phonological component defines the phonological form of the sentence
that has derived from the synlaclic component, according to the elemenls that exist for
the words of this sentence.

The schema of the standard theory (Chomsky, 1965) is the foilowing:

19

BUPT

Synlaclic Coinponcnl

A) The Basc
I) Phrasc Slruclurc Riiics
II) Diclionarv

B) Deep Strucliirc
C) Transformational Component
D) Surface Slruclurc

Phonological Componcnl

j Phonological Rcprcscnlations

Scmanlic
Rcprcscnlalions

2.1.4 The Extended Standard Theory

Foilowing Ihe Standard Theory (Chomsky, 1965), wc have Ihe Extended
Standard Theory (Chomsky, 1970), where we observe gradual changcs that depict Ihe
tendency for greater generalizalion and apheresis (subtraclion).

The changcs in Ihe Extended Standard Theory (Chomsky, 1970), arc Ihe foilowing:

1) The phrasal slruclurc rulcs subjccl Io Ihe X-bar (Jackcndoff, 1977).

2) The transformalional componcnl of grammar is limilcd Io only onc
generalized Iransformalion (Move a). In Ihis lie Ihe Iransformalional rulcs Ihal
arc known from Ihe previous slagcs of Ihe Ihcory, such as passivisalion and
queslion.

3) The function of Ihe Iransformalional rule (Move a) and Ihe funclion of Ihe
scnlcnccs inlcrprclalion rulcs are regulalcd by conslrainls Ihal arc general and
universal. If thesc conslrainls are violaled, Ihcy Icad Io Ihe formalion of
ungrammalical scnlcnccs.

4) The Iransformalions, during Iheir funclion, Icave Iraces Ihal resull during Ihe
transfer of Ihe trec elemenls and remain in Ihe place where Ihe Iransferring
clcmcnl was occupied. The Iracc and Ihe Iransferring elemenls arc conneclcd
Io cach olhcr.

5) In all the formalion levcis, emply componcnl may arise, namely componenls
wilhout any phonological conlenl. Thesc emply elemenls crcale probicms and
several sludics arc conduclcd regarding Ihcsc cases.

20

BUPT

6) The inlcrprctalion of thc scnlcncc is not condiictcd aiiy morc in Ihc dccp
struclurc but in Ihc siirfacc struclure. The surface slruclure is morc compictc
bccausc Ihc placc of Ihc transfcrring clcmcnls can bc scen from their traces.

7) Finally, Ihc Icxicon ihat now is cnrichcd and cxlcndcd is vcry important. It
also incUidcs, in rclation Io Ihc prcvious phascs of Ihc thcory, ruics with which
thc compositc and derivative words arc formulatcd.

Thcrcforc, bctwccn thc Standard Thcory (Chomsky, 1965) and thc Extcndcd
Standard Thcory (Chomsky, 1970) thcrc arc diffcrcnccs rcgarding thc structurc of thc
original phrase markcr, thc form, thc kind and thc function of thc transformational
rulcs. Also, thc content of thc lexicon has changed. Regardlcss though of thcse
changcs, thc purposc remains thc definition of thc structural correspondencc of thc
phrase markers bctwccn, c.g. intcrrogativc-afrirmativc or active-passive scntcnccs.
Thc definition of thc structural correspondencc is conducted with thc definition of thc
transformational rulcs with which thc two Icvels of thc sentcncc arc connected, that is,
thc dcep and thc surface structurc, as wcll as with thc parallcl examination of thc way
thcse rulcs function and interact, that is, thc cyclc and thc scqucncc of their function.

The construction of thc phrase marker componcnts and thc form of thc rulcs
are according to thc convention of thc X-bar (Theofanopoulou, 1989a)
(Theofanopoulou, 1994) (Philippaki, 1992). This convention that gocs back to
(Chomsky 1970) and was formed with thc works of (Jackendoff, 1977), constitutes
today thc cstablished way of thc natural dcpiction of thc several categorics, making
thc phrasal structurc rulcs of thc older standards unneccssary.

The general pattern has as foilows:

a) X " - ^ S p e c X '

b) X ' - ^ X C o m p l

Where X dcnotes onc of thc main lexical categorics such as thc noun, thc verb,
the prcposition and thc adjective. Also, X may state onc of thc funcţional categorics.
As funcţional categorics we regard the infiection and the suppiementary marker.
Thcse funcţional categorics arc not the oniy oncs, but continual research leads to new
ones.

The tone denotcs the Icvel and we have the X " , X' and X. Thc X " is the
biggesî projection (phrase) of every lexical category, the X' is the intermediate head
and the X is thc lexical head Each biggest projection is analyzed in a specifier (Spec)
and in the 'intermediate catci^ory. Kacli intermediate category is analyzed in the
lexical head m^d the complement (CompI).

There is also the possibility to repcat the X' foilowing the rule below:

c) X ' - > X ' C o m p l

21

BUPT

The complcmcnt and Ihc spccificr arc o f lhc X' ' calcgory, mcaning that Ihcy
derive from the general pallern of lhe \-bar. Also, Ihe spccificr can be a node of Ihe X
calegory with Ihe terminal connected Io il.

Spec X^

X CompI

Next we shall give a series of examples.

Example 1

We have the sentence:

The alhlete with the cap

athlete cap

22

BUPT

This nominal phrase has llie word athlete, which has a complement the phrase
vvith the cap. This complcmcnl spccifics Ihc alhlclc Ihal he is an alhlctc who is
vvcaring a cap. Thercforc, vvc assign a fcature Io Ihis particular athlete. This feature is
complement of the athlctc's nominal phrase.

Observing the trec, vve can sec that its top is in N " , therefore this tree is a
nominal phrase. The left subtree is the article "the" and the right one is of the N'
category. We also observe that since there is a complement, the phrase "vvith the cap",
\ve see a second repetition of the node N' on the above tree. The first N ' node has as a
right sub-tree a sub-tree with the as a top node, this is the prepositional phrase
"vvith the cap". This phrase can be analyzed in the tree that has the P " as a top, a left
sub-tree the empty space and a right sub-tree the one with the Prep' as a top. The
latter has as a left subtree the prcposition "vvith" and as a right subtree the nominal
phrase "the cap". (The eion the trees shovvs that there is no element in the
corresponding place of the tree.)

Example 2

We have the phrase:

this very good person

person
very good

This tree has a top with the P ' \ that has a left subtree the empty specifier and
right sub-tree of type P' with left subtree the P and right subtree N " with left subtree
for the phrase Wery good' and right subtree a N' for the word 'person'.

23

BUPT

Example 3

We havc thc phrase:

right on thc bcd

Prep''

This tree has as a top thc Prep". The adverb right is the left subtrec, while thc
Prep' is thc right subtrcc, with as thc left element and the trec for the noun
phrase ''the bcd". This phrase is a prepositional phrase that has as a head the word
''on" and as a complement the nominal phrase "the bcd".

2.1.5 The Government and Binding theory

Two are the main parts in the development of the generative transformational
grammar theor>'. These parts contributed to the decisive turn tovvards a generalized
grammar standard.

1) The finding that the binding phenomena and the phenomena concerning the
moving of the terms are controlled by common principles. A binding example is
the connection of the reflexive pronoun to the rcfcrence point, meaning the
respective word to which it refers. Another example of the moving conditions is
the connection of the interrogative pronouns to the trace that can be observed in
the place from which thcy were moved.

2) The defmition of generalized constraints, not in the particular rules more, like for
example the constraint in passivisation or the move of an anaphoric element, but
also in structural schemes. These are veiy general principles that control the
relation of interdependent conditions, like the relation of an anaphoric element
with its rcfcrence point and the terms in which the bindings are performed.

24

BUPT

Thcsc two devclopinenls resiillcd in thc modification of thc fundamental
scnscs of thc transformational thcory. Thc transformational thcory ccascs to bc a
standard of transformational intcrrclation of thc dccp and surfacc structure phrasc
markers. It was altcred in a gcncralizcd thcory of ailowabic bindings to thcir rcfcrcncc
point with thc parallcl dcfmition of universal constraints that cxcludc such a
conncction, rcgardicss of thc way that thc scntcncc was formcd.

This grammar, known also as thc Government and Binding thcory, was
introduccd by Chomsky in his work "Lccturcs on govcrnmcnt and binding"
(Chomsky, l98l)(Hacgcman, 1990). According to this standard, grammar includcs
two systcm catcgorics: a systeni ofndes and systems ofprinciples.

Thc systcm of rulcs includcs ruics that function in thc various Icvcis and thcy
gcncrally corrcspond to thosc of thc prcvious stagcs (phrasal structure rulcs,
transformational rulcs, interpretative rulcs etc).

The systems of principics include sets of theoretical principles that refer to
allocatcd structures of grammar and are interdependent both to cach other and to thc
theoretical framc. This thcory, although it constitutes a further phase of thc generative
transformational grammar dcvclopmcnt, presents an important difTcrencc regarding
thc prcvious phases of thc thcory's dcvclopment. This diffcrence is that for thc first
time an attempt is being made to derme an abstract, gcncralizcd and universal systcm
ofprinciples which describes thc language structure in general. Thcsc principles are
so general that appiy to all languages. But in order to solve thc special issues in every
language, there is need for another set of complementary principles (parameters).
Thus WC have a diffcrentiation bctvvccn thc universal grammar and thc several
parameters needed for every language.

The titic of this thcory shows that it pays much attcntion to two basic principles, the
government principie that describes the syntactic dependencies among the various
word elemcnts in the scntcncc, and the binding principie, which explains how two
different elements in the sentence are bound.

This theory has developed a set of allocatcd principles that belong to the respective
sub-systems, which include thc sub-theorics that we shall present next.

2.1.5.1 The government theory

The government thcory dcfines the principles tliat conccrn tiie reiation
between the head of an x-bar structure and tlie conditions depended on it. Thc
principles also concern the case of thc einpty categories and the problems that derive.

In the Government and Binding theory (Chomsky, 1981) the sense of government is
very important and its definition is the follovving:

25

BUPT

An X clcmciU govcrns a Y clement i f lhe Ursi node of llie
biggesl projcclion ihat doniinatcs Ihc X cloniinatcs also tlic
Y and ncilher ol'lhcsc Iwo clcnicnls doniinales each other.
If Ihcre is more Ihan onc govcrnor \vc chosc llie one Ihal is
closer Io Ihe governabic element.

On thc above definition we iised the sense oWlominatiofi. Aecording Io this
sense, a node dominatcs the nodes of i t s sublrees, that is, all the nodes that lie below
this one on its subtree, vvhere this node is the top.

Next we will see a governmenl example in Ihe foilowing sentence:

Niek boiight the bieyele

C P "

bicycle

Nick

With thc definition of govcrnmcnt wc observe that IP govcrns N " in the
qualificr of IP", because the biggest IP" projcclion that dominatcs IP, dominatcs also
the nominal phrase of the qualificr and the IP is thc closcst govcrnor.

26

BUPT

2.1.5.2 The binding theory

TIlis Ihcory covers thc arca callcd binding, The binding theory refers to the
conditions Ihal control thc way an anaphor is bound to its refcrence point.

This theory classitles thc NP according to thcir anaphoric properties. Thc NP
catcgorics arc thc foilowing:

a) Compulsory Anaphors, whcrc thc binding must bc within the same structure.
For cxamplc, wc havc in a scntcncc thc binding of a reflexive pronoun with the
NP. In the scntcncc ''John admires h imseir wc havc binding bctween "John" and
thc reflexive pronoun "himseir .

b) Pronouns, that can bc bound with a NP inside the same structure or obtain a
refcrence point out of thc scntcncc.

For cxamplc, in thc scntcncc ''Gcorge says that he lovcs Evaggelia" thc pronoun
hc can correspond to George or to someonc else.

c) Independent anaphor, where wc havc lexically expressed NP that each one has
an independent anaphor. The hcads of the NP refer to particular persons and
things of the real and imaginative world.

The conditions that Chomsky cstablishcd for the bindings that are also callcd
Binding Conditions are the foilowing:

A) An anaphor must bc bound to its governing category.
B) A pronoun must bc frec within its governing catcgor\'
C) A lexical NP must bc always frec everywhcrc.

Tlicse principics correspond to thc threc NP catcgorics that wc mentioned
above.

Also, in Chomsky's establishment of principics, wc used the term governing category
that has the foilowing definition:

Governing category for an A clement is the minimum
nominal phrase or sentence that contains A, a governor
for A and a subject, whilc this subject shouid be
structurally higher towards A.

2.1.5.3 The bounding theory

The bounding theory sets terms that limit movements, defining which nodes
are restrictive and under what conditions. Thc nodes on a subtree of a phrase or
scntcncc may, in certain conditions, allow thc movcmcnt of thc subtree's elements in
anotlier place in the trec of this phrase or scntcncc.

27

BUPT

A characteristic rulc is ihc coiislrainl ofllic suhjcctivc hounclin^ cafegory.

No rulc can extract an clcincnt oiit of niorc than onc bounding catcgorics
(Scntcncc or Nominal Phrasc). Also thcrc is a stiidy about grcck langiiagc (Morrocks,
1987)(Staurou, 1987).

2.1.5.4 The thematic role theory

The 0-theoi7 or theory of thematic roles includes principles that define the
semantic function (thematic role) of a NP (i.e. the action taker, the rcceiver, the issue,
the instrument, the place). This theory refers to the terms that control the apodosis of a
thematic role: level, position, and the cases where this is impossible.

The main principie of the theory is the Thematic Critcrion or the O-criîcrion.

Each term brings oniy one thematic role and every thematic role is attributed
to onIy one term vvithin the sentence.

2.1.5.5 The case theory

The case theory includes the principles that define the case of a nominal
phrase (when a NP is characterized as nominal, accusative or genitive) and the
conditions that must exist in order to be realized.

The case theory is based on the casc filter
The case filter is the foilowing:

Case Filter

No Noun phrase (NP) can stand in a structure uniess it bears a case.

The syntactic cases are of tvvo kinds, the structural and the inherent.

The structural case is assigned in a NP by the elements that have the property
to be case assigners under the governing conditions. Therefore, in this occasion, the
case depends on the element that governs the element that will bear the case.

For example, we have the phrase ^'with the cap"

28

BUPT

Prep'

cap

Wc observe ihat llie Prep node governs the N " , assigning it an accusative
structural case. That means that the NP "the cap" is in the accusative case, because of
the preposition with.

Uniike the structural case, the inherent case is connected direclly and
exclusively to the thematic roles provided by the verb and not so much to the
structural features of the tree. That means that the inherent case is mainly connected
to the semantic features of the elements and not to the tree's geometry, like the
structural case.

In Modern Greek, the genitive case of the indirect object is inherent. The
genitive case is assigned when a verb can stand with an indirect object, supporting the
thematic role of the indirect receiver. Also, the indirect object can be positioned on
the tree or right after the verb or after the direct object or in several other places. The
fact that a verb supports the thematic role of the indirect receiver, and that the indirect
object cab be positioned in several places, makcs the genitive of the indirect object an
inherent and not a structural case.

2.1.5.6 The control theory

The control theory defines the conditions that control the presence of the
empty category PRO. During the construction of a sentence or a phrase tree, some
terminal spaces, without any content, remain on the final tree. These empty elements
have not been created by the shifting of the elements with the application of certain
transformations, but they existed since the creation of the tree (Philippaki, 1985, 1987,
1989, 1990). The empty category PRO appears mostly in the English language.

29

BUPT

The vcrbs o f lhc inain clauscs Ihal contaiii an infinilival supplcnicnl with Ihc
cmpty calcgory PRO coiUain in Ihcir Icxical rcprcscntalion a Icalurc Ihal sliovvs
whcthcr thcy arc .siih/ccf control vcrbs or oh/cc(control verb.

In the subject control verbs, Ihe PRO reference poinl is Ihe same wilh Ihe
refercnce point of the subjecl of Ihe verb in Ihe main elaiise Iherelore we liave Ihe
same as the reference poinl of lhc subjecl of Ihe verb in Ihe main clause.
Such a verb in I£nglish is promise Ihal is a conlrol subjecl verb.

in Ihe abject control verbs, Ihe PRO reference point is identical wilh the
reference point of the object of lhc verb in the main clause therefore we have the same
with the reference point of the object of lhc verb in the main clause.
Such a verb in English is pcrsuadc thal is a conlrol object verb.

Finally there are cases where PRO is noi in a control position but in a
suppiementary sentence afler the verbs ihal are noi conlrol verbs; ihen its reference
point is frec or arbitrary.

30

BUPT

2.2 The unification based approach

2.2.1 The context free grammars

An exampic of a CFG can bc Ihc foilowing:

S ->NP VP
VP-> V N P
VP-> V
NP-> D N
NP -> PRON
N P - > PROPER_NOUN

D -> the I a | cvcry
N -> car I bicycle | boat | bus
V -> drives | repairs ; drive | repair | rides | ride
RPON -> I I you I hc | shc | thcy | us | thcm
PROPER__NOUN -> ANN | GEORGE | NICK

Terminal svmbols: Ihe, a, every, car, bicycle, boat, bus, drives, repairs, drive,
repair, rides, ride, I, you, he, she, they, us, them, ANN, GEORGE, NICK

• No terminal svmbols: S, VP, NP, V, N, D

This grammar produccs a set of grammatically and semantically correct and
incorrect scntences.

Some cxampics of senlcnccs that arc produced and arc not grammatically or
semantically correct arc thc foilowing:

• them repairs bicycle
• bicycle drives car
• Ann drive George
• the bus repair Nick

The context-free grammars have the foilowing problems:
• The phrase structure is the oniy syntactic rclationship.
• The terminal and non-terminal symbols are atomic with out any properties.
• The information that cncoded in the grammar is based onIy on production

rules and any attempt to encode semantic information requires additional
mechanism.

Thc CFG mechanism must bc stronger in order to be able to fulfill the linguistic
requirements:

• Features structures
• Generalized phrase structures

31

BUPT

Unillcatioii graiiiniars

2.2.2 The feature structures and the unification

The CFG can bc cxlcndcd bv associalccl Ibalurcs slruclurcs wilh Ihc Icrniinal
and no terminal symbols of a CFG. The fealiires strucliires arc known and as AVM
(altribulc value nialrixcs).

Tlie words in ihc Icxicon can bc cnhanccd vvith addilional inlornialion by
Lising Ihe Fcatures:

Tvvo exampics arc Ihc rollowing:

Word: Car

Word:

NUM: singular

PFR: Ihird

NUM: singular

PliR: firsl

Except the simple atomic valucs of the fcatures NUM and PERSON in the
above examples, it is possible to have as value of the fcatures other fcatures
structures. An example of a verb and its feature AGR is the following:

Word: Runs AGR:
NUM: singular

PER: third

Also, it is possible to usc variables vvith name e.g. X or vvith number e.g. [1] as
in the following example (Fouskakis, 2005a):

AGR: X
NUM: singular

PER: third
AGR: [I]

NUM: singular

PER: third

The variables are used in order to determine that tvvo elcmcnts of an AVM
have the same valucs.

The general format of an AVM is the following:

32

BUPT

A = [io]

\ \: li,l Al

Fn: [ini An

doiii(A)

val(A,F,) = A,

According Io ihis, Ihc prcvious cxamplc lias:
• dom(a)= {ARGî

• val(A,ARG)-
NUM: singular
PtK: Ihird

Also, thcrc is Ihe nolion of palh n. Al Ihc same cxamplc ihc valiic o f thc path:
• val(A,<AGR, NUM>) = singular
• val(A,<AGR, PER>) = ihird
• but Ihc val(A,<Pi:R, AGR>) = undcfincd

Bclwccn Iwo dilTcrcnl fcalurcs slruclurcs vvc can dcfinc thc rclation oF
subsumption.

If A and B are two AVMs thc A subsumes B (A<B):
• A is an alomic AVM and B is an atomic AVM wilh thc same atom
• For every F that l:)clongs in dom(A) then and V bclongs in dom(B) and

val(A,F) subsumes val(B,F).
• If two paths arc rc-entrant in A they arc also rc-entrant in B.

An cxamplc is:

NUM: singular <
NUM: singular
PER: third

An operation betwccn two fcalurcs slruclurcs A and B is thc unification. An
cxamplc of unification:

A - NUM: singular B- IM-R: third

and aflcr thc unification vvc have thc:

NUM: singular
PUR: third

If variabics exist Ih the A and B fcalurcs slruclurcs:

33

BUPT

A =

B =

AGR: [IJ

AGR: [2]

NUM: singular

Pl-R: Ihiid

Aftcr tlic uni ficat ion AGR: 11112]
NUM: singular

PLR: thirci

Wc can acid fcaturcs in (lic ruics cxccpt ihc worils ol llic Icxicon. An cxaniplc
is one of the rules tliat are dcscribcd above.

NP

NUM: X

- > D

NUM: X

N
NUM: X

In this exampic thc scopc o f thc variabic X is insidc Ihc rulc and nicans that
thc noun plirasc (NP). dclcrmincr (D) and noun (N) havc thc sanie nunibcr. Also, if
WC want to control thc casc wc can add a sccond fcaturc thc CASIv and thc rcsult is
thc foilowing:

NP

NUM: X
CASE: Y

-> D

NUM: X

N

NUM: X
CASl-: Y

Thc rulc for the verb phrasc (VP) dcpcnds IVoni thc typc of thc verb. Therc are
transitivc and no-transitive verbs that they do not havc a noun plirasc as conipiemcnt.
In this case we havc two ruIcs with thcir corresponding fcaturcs structurcs.

VP

NUM: X

- >

NUM: X
SUIÎCAT: intransitive

VP

NUM:X
V

NUM: X
SUBCAT: transitivc

NP

NUM: Y

34

BUPT

In tlic above cxamplcs it vvas iiscd Ihe Cl-G riilcs associatccl by thc features
slmclurcs. h is possiblc Io includo (hc no-lcnninals as valiics i)l" a CATliGORY
fcalurc. An cxanipic is thc loilowing:

NP

NUM: X

-> D

NUM: X

N

NUM: X

which can bc as:

CAP: NP

NUM: X

CA T: D

NUM: X

CAT:N

NUM: X

In order Io havc compiclc sub catcgorization informalion \vc can cnter in thc
Icxicon thc compictc list of complcmcnts and thc subjcct. I(is possiblc to add
addilional rcatiircs likc thc CASI: thal is dctcrniincd for thc subjcct of thc verb takc in
thc foilowing cxampic:

CAT: verb

SUBCATl£GORlZATION: < (CAT:NP1. [CAT:NP] >

SUBJECT:

NUM: singular

CA T: noun phrasc
CASII: nominative

According to the above ifvve want to express thc iniţial rulc o f thc CFG:

S - > NP VP
with the usc of features structurcs it will bc as:

CAT: S
CA T: NP
CASK:nominative
NUM: [2]

CA 1": VP
NUM: [2|
SUBJnCT:[l

35

BUPT

2.2.3 The HPSG grammar

AII thc abovc cxamplcs and dilTcrcnl cascs dcscribc Ihc iiiain notions and
mechanisms of Ihc unification bascd gramniars. I hc dilTcrcnl grammar formalisms
(FUG, PART-II, LIG, CDG, ITAG) usc thc Icatiircs slruclurcs Ihal havc bccn
described in thc prcvioiis scction but tlic currcnt formalism that is uscd vcry much
with big rcscarch clTorl is thc HPSG (Tatar 2001, 2003). None from thc abovc docs
not bc dcsigncd to bc uscd on thc Chomsky's x-bar schcmc.
The HPSG is a dcciarativc approach, it providcs a model ofvvhat linguistic cnitics arc
possible. It is sccn as a latcr dcvclopmcnt of GPSGs (Gazdar, 1985) and makcs morc
specific claims about univcrsals and variation than thc morc conservative GPSG. It
was dcsigncd as a synthctic grammar model. It combincs thc advantages of diffcrcnt
grammatical theorics Gcncralized Phrasc Structurc Grammars (GPSG), Catcgorical
Unification Grammars (CUG) and Lexical I-unction Grammars (LI G). The TAGs are
defined as a trec rcwriting systcm. Thc TAG grammars usc cicmentary trecs which
can be of any dcpth, in contrast to rcvvritc ruics which havc oniy two Icvcis (left and
right part of rulc) and thcse trecs are separated in initials and auxiliaries. A auxiliary
tree has a notcrminal as root node and exact onc noterminal as foot node that must be
the same notcrminal. This is presented onIy in TAG grammars. Also, Thc HPSG has
the dominancc paradigm (expessed by thc hcad fcaturc principie: the HEAD value of
the a headed phrasc is idcntificd with that of its hcad-daughter) that it was presented
in the governmcnt and binding thcory. This approach is not a transformational
approach, likc chomsky\s theorics, but it is bascd on the main mechanisms of thc
unifications grammars and supports fcatures structures (AVM). It docs not support
rewriting ruIcs in thc general sence and therc is no notion of deriving onc structurc
from thc another. It suj^ports thc sign structurc with vcry dctailcd information from
the lexicon. Thc sign has a format likc the fcaturc structurc of thc verb that is
described bclow. It is said to be surface oriented becausc it providcs a direct
characterization of thc surface order of cicmcnts in a sentencc. The information about
the specifiers and thc complcments is present in the argument structurc attributc
(ARG-ST). Thc value of this argument is an ordered list of the arguments that arc
required by the sign. Thc order is vcry important for every possible phrasc in every
language. Thc variabics havc a vcry important role in thcse grammars. They declare
that two elemcnts in a sign havc the same values. Thc HPSG is bascd in all thc
mechanisms of thc iinificalion grammars as they havc described in thc abovc scclion.

The HPSG puts a lot of cmphasis on thc precise mathcmatical modciling of
linguistic entitics. Hccausc of thc focus on precision, a lot of linguistic computer
implementations arc bascd in HPSG. It is a declarative approach and thc combination
of the declarcd information is depending from the corrcsponding software systcm
(Copestake, 2002) ihat pcrmits the dcciaration of thc HPSGs. Thc number of thcse
signs is incrcascd cnormousiy in order of every diffcrcnt casc in a language to be
described. Also, thcre arc problems in translation systcms becausc the sign of the
source and destination language arc not possible to be determincd directiy and it
neseccary for another semantic mechanism to be uscd (Copestake, 2002).

The sign has a collcction of phonological, syntactic and semantic constraints
that are includcd in liicrarchical fcatures structures (attribute-value-matrixes AVM).

36

BUPT

Sings havc the attributcs likc:
• word or phrasc status
• phonology (PHON)
• syntax/scmantics (SYNStM)

The structurc of thc last altributc can contain otlicr attributes (AVM) that may
contain olhcr aUributcs (AVM) in any dcplli and structurc. An cxampic is thc verb
walks that havc tlic foilowing general format.

>»ord
PHON (wu^'/tfi)

Si'NSEM
LOCAL

hcal

C A T

COiVgr/rv

SUBJ
I

{
LOCAL

iocal

COOT

Hom-obj

HIDEX [U
mf
ITOM sing
PER

CC'MTEÎIT
COHifKt

WALI:EP \T\

In general terms a HPSG lias Ihe foilowing paris:
• A sign Ihal describes spccific altribules and lypes. A grammar that is

compicx enough, is characlcrizcd by a imprcssivcly complex sign.
• A inheritancc hicrarchy of typcs and a agreemcnt speciTication about Iheir

attributes.
• A lexicon and a small list of revvriling riiles that named schemes.
• A list of some general principles.

2.2.4 The PATR grammar

The PART (Tatar 2001) has its initials from the vvords parse and translate. It is
one of the oldest unification based approach (aller the FUG) and it supports grammar
(CFG) rules that consists of a mother category and zero or more daughter categories
with a list of feature equations. A category is a set of feature-value pairs. A feature is
an atom and a value can be an atom, a variable or a category. The feature equations on
a rule set constraints on their values. The lexical items are viewed as rules without
daughter categories.

A rule of this type of grammars can be as:

37

BUPT

XS ^ XNP XVP
<XS cat>= s <XNP cal>=np <XVP cal>=vp
<XS licacl>=<XVP licad>
<XS hcad siibjcct> = <XNP hcad>

The PATR formalism is rcasonably cxprcssivc. But, il docsiri havc somc
desirabic propcrtics, likc disjiinclion and ncgalion of a scl or lisl of valiic fcalurcs. It
declarative, monotonie and rcvcrsibic. Also, it is turing cquivalcnt and if a PATR
contains only atom-\'alucd fcaturcs it is as CF'G of Q(n^).

As concliision, thc main charactcristics of thc PATR grammars arc:
• c r c i
• unification
• paths in equations

2.2.5 The FUG grammar

The FUG has tlie initials of thc words funcţional unification grammars. it was
presented before thc PATR grammars and in many ways is similar. The context frec
part in the PATR grammars is rcplaccd by two fcaturcs thc cset and thc pattcrn. Thcy
declare which itcms arc thc daughtcrs of a catcgory and at which ordcr thcy appcar.
Multiple CFG 'ruics' about onc catcgory arc dcclarcd by disjunction. Finally, therc is
the feature valuc any that dcclarcs thc rcquircmcnt that it is obligatory of a fcaturc to
exist. This possibility adds thc non-monotonic in thc unification bascd approach.

2.2.6 The TAG grammar

The Trec Adjoining Grammar (TAG) is defined as a trec revvriting systcm
(Joshi, 1975). In thc dcfinition given traditionally, TAG is defined by a finite set of
trees and an opcration callcd adjoining to composc trecs. It represents a cxtcnsion of
the basic rule rcwriting schcmc that undcrlying othcr modern grammatical
formalisms. Uniikc thcsc string rcwriting formalisms that writc rccursion into thc
rules that generate llic phrase structurc, a TAG captures rccursion and dcpcndcncics
(agreement, subcategorization fillcr-gap connections) into a finite set of clcmcntary
trees. Tlie TAGs havc providcd a thcorctical framcwork for linguistic description and
natural languagc proccssing that has becn shovvn to bc superior to simply using ruics
of a context frec grammar (CFG) duc in large part to thc extendcd context or "domain
of locality" that TAG providcs(Babko-Malaya, 2004).

There arc thrcc kinds of clcmcntary trees: iniţial trees, auxiliary and lexical
trees. The iniţial trees vverc defined to correspond to minimal sentential structures.
Therefore, the root of an iniţial trec was requircd to bc labcicd by the symbol S. Thc
following schcmc has two clcmcntary trees of this kind.

38

BUPT

Gf2 :

NP̂ ^ s

a , : 5 NFi VF

NP4 v p yo NP,

VO NFi «

The sccond kind of cIcmciUary trccs is thc aiixiliary trees. They havc as root
node any nonterminal synibol. Thc lowcst nodes have only terminal symbols except
for exact one nonterminal (foot nodc) that is thc same as thc nonterminal of the root
node. The foilowing arc two cxampics of aiixiliar>' trees:

VP
NP4 VP

V P * advO vo S*

Thc pairs of nontcrminals arc (VP, VP*) in Ihc first Pi and (S, S*) in thc
sccond p2 trcc.

Latcr, a ncw calcgory of trccs havc bc introduccd, namcd lexical trccs
(Schabcs, 1988). Thcy associatcd vvith particular words in thc Icxicon. Thcy havc as
root nodc any nonterminal. In a Icxicalizcd TAG, fronticr nodes labcled by
nontcrminals (likc thc NP nodes in thc above cxampics), with the exception of foot
nodes, arc marked for substilution (spcciTicd by [) and arc not claboratcd any morc.
Their claboration is donc by thc lexical trees.

An cxampic of a lexical trec is thc foilowing:

ora : N P

d e t J . n O

An example of substilution is the trcc 73 as rcsult of ai and a3.

39

BUPT

/\ /\
Pe(n V NPt

In deriving trec slruclurcs top-down froin Ihe grammar Ihc usual opcration of
substitulution of a niolhcr by ils daughtcrs has bccii augmenlcd by thc adjoinin^
operation about coiiiposing Irccs. An aiixiliary Ircc, whosc root and its foot nodc arc
labeled X, can bc adjoincd at a nodc tliat is also labcicd X. Adjoining may bc
described as follovvs: thc subtrce bclow Ihc nodc of adjiinction is cxciscd; thc
auxiliary trec is inscrlcd in ils placc; and Ihc cxciscd sublrcc is subslilulcd al Ihc fool
node of thc inscilcd auxiliary Ircc.

Two cxaniplcs of Irccs adjunclion:
• yi rcsulls from thc U| and Pi
• y: rcsulls from thc a : and

At the sccond cxampic, it is obscrvcd that thc co-indcxcd nodcs (NP,) rcmain
and after adjunclion.

isrp.i

7 1 -

NPX VP

A
NPl VP NPA VP

/ \ / \
VP mdv V NP.

/ \
IHP4

The TAG has bccn cmbcddcd in a fcaturc structurc bascd unification systcm
and the resulting formalism is thc FTAG (Vijay-Shankcr, 1988). Al cach nodc has
ossociatcd bolh a top and a bottom fcaturc structurc. If a djunction opcration is taking
place at a nodc thc top fcaturc structurc unifics with that of thc root nodc of thc
auxiliary trec and thc bottom fcaturc structurc unifics with that of thc foot nodc. If
there is not adjunclion at a nodc then its top and bottom fcaturc slruclurcs must bc
unified. It functions cquivantly with thc PATR. Thc TAGs have cxtcndcd domain of
locality and providc grcatcr cxprcssivc powcr. Thc formalism is fully dcciaralivc,
reversible and monotonie. Diffcrcnt variations have bccn published that permit morc
flexible manipulation of long dislance dependences and word order variations
(Millett, 2004).

4 0

BUPT

3. The personal contribution

3.1 Description ofthe linguistic system's structure ofthe
presented methodology

The linguistic knowlcdge of lliis mclhodology has a structure which is
presented in the follovving figure (Touskakis, 2004c, 2005a). It is artificial language
for linguistic rules, diffcrent that thc classical approaches of grammar dcciaration and
a parser that implements the corresponding graniniar.

This structure represents the system of the linguistic knowledge.

Let define:
• LS: the system of the linguistic knowledge
• PR: thc set of rules in the Principles
• TR: the set of rules in the Transforniations
• GR: the set of rules in the Theory
• SR: the linguistic program

o SR is subset of the concatenation of the sets GR, PR and TR
• IT: the set of iniţial X-bar trces
• OT: the set of final X-bar trees

LS=(PR,TR,GR,SR,IT,OT)

41

BUPT

• The iniţial X-bar trecs
It contains trees that derive from llie X-bar scheme. I hese Irees will be used by ihe
methodology, in order to appiy on Ihem the rules. Their format is given in the
corresponding section belovv and it is according to the X-bar theory.

• Prineiples
It contains all the prineiples that have dellned so far. Hie prineiples check an X-bar
structure if it accomplishes certain structural requirements as a vvhole or at its parts.
Also, they can check if nodes, features of nodes, anaphors, even terminals are
according to certain linguistic requirements.

• Transformations
It contains all the transformations that have defined so far. The transformations
additionally, transform the X-bar structures and produce one or more new X-bar trees
with different structure, nodes, teatures of nodes, anaphors or even terminals.

• The Linguistic Theoi-y
It contains rules that express the linguistic theory that one wishes to develop. These
rules are expressed as sequences of prineiples and transformations. We can also have
a condiţional appiication of the rules by using expressions if-then-else and change the
X-bar trees that are used by the next rules. The abilities that these rules have will be
described in detail in the next sections.

• The Linguistic Program
It is the part of the linguistic system which declares the rules of the theory, prineiples,
transformations sets that are appiied on the iniţial X-bar structure and their order.

• The final X-bar trees

It contains the generated X-bar structures according to the linguistic program.

3.1.1 The Structures

The structures processed by the methodology are trees that derive from the
basic scheme of the x-bar standard theory. The choosing of this binary scheme
(Fouskakis, 2004b, 2005b) is based on its computaţional simplicity by permiting the
declaration of more general rules on the produced trees.

These trees are described by one or more of the following rules:

X " - . S p e c X " X " - > S p c c X'
X' —• X' Complement X' X Complement
S p e c - ^ X " S p e c ^ X
Complement -> X " X -> Terminal

42

BUPT

As it is noticed from tlie abovc riiles tlie general x-bar scheme is improved in
the prescntcd work with Ihc possibiiity of rcpctition of tlie node X " which facilitatcs
in frce order languagcs and in llic case tliat we have many specifiers with adverbs,
adjectives and quantificrs. Usually, the specifier is about the articles or the quantifiers
of the nouns and the complement is for thcir complementary phrases or their
adjectives. Similary, at verb phrases. the complement is about adverbs and
complementary phrases (objccts). The exact rcpresentation depends from the
appiication and the language.

CompI

The basic schema of the X-bar theorv

In the present methodology the X-bar structures are expressed with the use of
parentheses as foilows:

(X"(5pc'c) (X ' (X) Y "))
(X"(5pec) (X ' (X ' (. . .) Y "))
(X''(Spec)(X"(Spcc)...

In these structures the Y " is the complement that is an X " category tree, an x-
bar tree. The specifier (spec) can be either an X " category trec or an X category node
with a terminal connected to it (sec l-BNI- form of the X-bar trees bclow).

Every phrase, sentence or utterance can be represented by more than onc X-
bar trees. This is the reason that their trees can be represented as an table where every
position has a list with the possibic different X-bar trees of the corresponding phrase
(Fouskakis, 2004c), sentence or utterance. The next scheme shows this broblem.

43

BUPT

Phrasc
1 ————^ X-bar trccs 1

X-bar trees 2

X-bar Irccs Ni

Phrasc 2
X-bar Irccs 1

X-bar Irccs 2

X-bar trces N:

Phrasc M
X-bar Irccs

X-bar trccs 2

X-bar Irccs Nr

Next WC will dcscribc in dctail thc abilitics of thc mcthodology rcgarding thc
X-bar structurcs, thal is, Ihc trccs thal derive from thc abovc basic schcmc. Thcsc
trees corrcspond natural languagc scnlcnccs or phrascs. Also, duc to thc gcncrality of
the X-bar trces, it can bc uscd in othcr branchcs of thc linguistic rcscarch, in which
there is an atteinpt to usc thc X-bar schcmc, as in morphology, in order to dcscribc thc
structure of a word.

The X-bar trccs have nodes, terminal elcments, anaphors and nodcs fcatures.

- The nodes of thc trccs

In order to dcscribc a node on a trec we usc its namc that is a symbol foilowcd
by the node's catcgory. Thc node namc is describcd as a prolog atom. It is a scqucncc
of letters and numbers, that its first character is a lowcr-case Ictter or, if this lettcr is
capital we shouid usc quotes. For cach node catcgory we have thc foilowing cascs:

1. WC cntcr thc X" catcgory node as x barii
2. WC cntcr thc X' catcgory node as x bari
3. WC cntcr thc X catcgory node as x bar

4 4

BUPT

Every iiode, apari froni ils calcgory and ils name, can also liave fealurcs tlial
are entcred witli thc operator fcatiircs. Tlie fealures of Ihe iiodes give grammatical,
syntaclical, semantic and pragmatic information about the node and tlie subtree that
has this node as a top. The Teatures of the node are enclosed in [and | and separated
by commas. The sequencc of the node's fealures is irrelevant.
Thc fealures of thc node arc notated as follows:

1. -^numc of thc fcat urc
2. nume of thc fculurc
3. namc of thc fculurc
4. namc ofthcfcaturcX ^ namc of thc fcaturcY
5. [namc ofthcfcaturcl namc of thc fcaturcNJ= namc of thc

fcaturcX
Their semantics depend from our interpretation. In the forth and fiflh case the

order of the fealures is important and these cases are noi supported by the X-bar
Iheory of Chomsky. They permit better well expressed addilional descriptions.
For example, we can say that a node may have thc foilowing fealures:

• +animate
• -inanimate
• person
• [+|ive_being,-i-thing]=complements
• phrase_time=l3, focus=vl

Therefore, the nodes of an X" , X \ X Iree are described in the foilowing general way:

node namc of thc node typc of thc node: features charactcristics of the node

For example, the node:
having A'' as a name and the characleristics singular, nominative

is expressed as follows:
node 'A ' barii : features [singular, nominative]

- The terminal elements

Apart from the nodes, a trec has also the terminal elements that can be
connected Io other terminal elements of the trec or Io whole subtree wilh anaphors. In
order Io denote that thc specific element of the trec is terminal we usc the operator
terminal, while for the anaphors we usc thc operator anaphor.

Therefore, if we have the terminal element "Ihe" and the anaphor " i i " that
connects the terminal element Io another element of the trec, we can describe this as
follows:

terminal the : anaphor il

If the terminal element of the tree didn't have an anaphor, then we have:

terminal the

Therefore the terminal element of a trec is general ly described as follows:

45

BUPT

tcriinii:il tcrnunal dcnictu : :iii:iplior fuinic of thc lUiaphor

Next we shall prcscnl Ihc licc of Ihc scnlcncc bclow Ihal dcrivcs froni Ihc x-bar
scheme:

Thc wonian hit Ihc cliild wilh thc bicycic

The above senlcncc can bc rcprcscnlcd by onc morc than onc Irccs, dcpcnding on Ihc
sentence's meaning.

A) If in the scntcncc above thc prepositional phrase "with thc bicycic" is a
complement to thc nominal phrase "the child'\ it spcciTics thc child wc arc talking
about, meaning thc child vvith thc bicycic and not anothcr child, thcn thc trcc for
the above scntcncc is thc loilowing:

V '

bicycic

46

BUPT

B) if in tlie scntcncc abovc llie prcposilional phrasc "wilh tlie bicycic" is not a
compicmcnt to thc nominal phrasc 'Mhc chilcl" but a complement of the verb "hit"
and spccifics thc instrument with which thc woman hit thc chilcl, then the trec for
the abovc scntcncc is thc foilowing:

V "

bicycle

child

These two different trees denote two different interpretations of the sentence

The woman hit thc child with the bicycle

Therefore we can describe these two trees in this methodology as:

a) The first tree is:

(node V barii,(no(le n barii,
(liode a bar,termiiial the).

47

BUPT

(nocle n hari, (node n har, terminal wonian),cmpty)

(iiocic V bari,
(node V bar, terminal hil),
(node n barii,

(node a bar, terminal Ihc),
(node n bari,

(node n bar, terminal chikl),
(node prep barii,

empty,
(node prep bari,

(node prep bar, terminal with),
(node 11 barii,

(node a bar, terminal llie),
(node n bari,

(node II bar, terminal bieyclc),
empty)

)
)

)

)
)

b) The second tree is:

(node V barii,
(node n barii,

(node a bar, terminal llie),
(node n bari, (node n bar, terminal woiiian),enipty)),

(node V bari,
(node V bari,

(node V bar, terminal hil),
(node n barii,

(node a bar,terminal Ihe),
(node n bari,

(node n bar, terminal child),
empty)

)

(node prep barii,
empty,
(node prep bari,

(node prep bar, terminal with),
(node n barii,

(node a bar, terminal Ihe),

48

BUPT

(iioilc n bari,
(iiodc n bar, (erinîiial bicycle),
cnipty)

)
)

Wc observe Ihat the naiiies of Ihe Iree nodes are in lower case letters and we
also use the word eiiipty. As we observe in the respective trees, cnipty corresponds to
an empty subtree, meaning that the respective branch of the tree is empty.

On the above trees the nominal phrase "11ie vvonian" is described in the
following tree:

(nodc n barii,
(node a bar Ccrmiiial the),
(nodc n bari, (nodc n bar, terminal woman),cnipty)

)

We observe that this is a phrase of the N ' ' category that has as a left subtree
the article and a right subtree of the N' category, with the noun "woinan" as a left
subtree and an empty tree as a right subtree, that is expressed with the code word
cnipty.

Also, the verbal phrase "hit the child with the bicycle" is expressed in two
trees, depending on the meaning of the sentence.

a) the first tree is :

(nodc V bari,
(nodc V bar, terminal hit),
(nodc n barii,

(nodc a bar, terminal the),
(nodc n bari,

(nodc n bar, terminal child),
(nodc prep barii,

cnipty,
(nodc prep bari,

(nodc prep bar, terminal with),
(nodc n barii,

(nodc a bar, terminal the),
(nodc n bari,

(nodc n bar, terminal bicycle),
cnipty)

)

4 9

BUPT

)

This trcc is or ihc V calcgory and has as a Icll siiblrcc Ihc verb and as a
right subtree the piuase ^Hhe ehild vvilh Ihe bieyele". This plirasc is a nominal phrase
with a complement and is expressed wilh a Iree of Ihe N ' ' category. This Iree has as a
left subtree the article ''the" and as a right subtree a tree of the N' category, that has as
a left subtree the noun "the child" and as a right subtree the prepositional phrase that
is expressed with a right subtree of the Prep'' category. This tree has an empty left
subtree and its right subtree is of the Prep' category with the preposition "with" as a
left subtree and the nominal phrase "the bicycle" as a right subtree. This nominal
phrase is also analyzed in a nominal phrase of the N " category.

b) the second tree is:

(node V bari,
(nodc V bari,

(node V bar, terminal hit),
(node n barii,

(node a bar,terniinal the),
(node n bari,

(nodc n bar, terminal child),
empty)

)

(node prep barii,
empty,
(nodc prep bari,

(nodc prep bar, terminal with),
(nodc n barii,

(nodc a bar, terminal the),
(nodc n bari,

(nodc n bar, terminal bicycle),
empty)

)
)

)
)

This tree is of the V category and has as a left subtree a V category subtree
and as a right subtree, a subtree of the Prep" category that corresponds to the
prepositional phrase "with the bicycle", that states the instrument with which the
woman hit the child. The left subtree is of the V category and corresponds to the

50

BUPT

phrase "hit Ihc child'\ This sublrcc has a Icfl sublrcc of thc V calcgory and Ihe verb
^Miir and a righl sublrcc of thc N^' calcgory for Ihc nominal phrase "thc child".

Thc phrase "hil Ihc child^' is dcscribcd by Ihc following Iree:

(nodc V bari,
(nodc V bar, terminal hil),
(nodc n barii,

(node a barlerminal Ihc),
(nodc n bari,

(node n bar, terminal child),
empty)

)
)

The prepositional phrase "wilh Ihc bicycle" describes Ihe instrument with the
following tree:

(nodc prep barii,
empty,
(nodc prep bari,

(nodc prep bar, terminal wilh),
(nodc n barii,

(nodc a bar, terminal Ihc),
(nodc n bari,

(node n bar, terminal bicycle),
empty)

)
)

Apart from of Ihc opcralors for Ihc nodcs and thc terminal elcments, there is
also the operator thal dcnolcs Ihc anaphors of a trcc. Thc anaphors arc conncclions
bctvvccn a trcc's elcments thal havc a rclation bclwccn Ihcm, for cxampic:

a) the pronoun and thc vvord or phrase Io which it refers
b) the reflexive pronoun and the clement Io which it refers

In order to state this anaphor wc usc the operator anaphor and the name of the
anaphor. The name of the anaphor must be an atom of the prolog, that is, a sequcnce
of letters and numbers wilh thc first Icltcr in lowcr-casc or, if it is a capital Ictter, it
shouid bc encloscd in quotcs.
The following arc cxamples of anaphors:
a) anaphor i I
b) a n a p h o r ' i r
c) anaphor 'anaphor l '

51

BUPT

d) anaplior 'Anaphor_l '

Wilh the anaphor vvc can conncct clcnicnts. I hcsc clemcnts can bclong Io Ihc
following calegories:

a) terminal element to terminal element
b) terminal element to siibtree that can belong to the categories X, X \ X "
c) subtree to subtree, that can belong to the categories X, X \ X ' '

Next we shall present an example of a sentence with a binding between the
reflexive pronoun and the noun to which it refers. This noun shouid always be within
the same sentence

George admires himself

IP"

himself/ il

In this methodology the above tree is expressed as foilows:

(node 'IP' barii,
(node 'N' barii,

cmpty,
(node 'N' bari,

(node 'N ' bar, terminal 'George':anaphor il),
empty

)),
(node 'IP' bari,

(node 'IP' bar : features [+tenses,+AGR],terminal '-s '),
(node ' V barii.

52

BUPT

eiiipty,
(iiodc bari,

(nodc ' V bar, Icrminal admire-),
(nodc 'Proir barii,

cniply,
(nodc 'Proiv bari,

(nodc 'Proir bar, terminal liimscir:anaphor il),
emply

)
)

)

)

The above Iree is a Iree of the IP' ' calegory having as a left subtree the one
that corresponds Io Ihe nominal phrase ' 'George'\

(nodc 'N' barii,
cnipty,
(nodc 'N' bari,

(nodc 'N ' bar, terminal George':anaplior il),
cmpty

)
)

The right subtree is of the IP' calegory and has a left subtree the head of the
tree with the IP" top. The head of Ihis tree has the features +tense and +AGR and as a
terminal element the ending.

(nodc ' IP' barfcaturcs [+tenses,+AGR], terminal ' -s ')

Also, the IP' has as a right subtree the verbal phrase "admires h imsel f .

(nodc MP' bari,
(nodc MP' bar:fcaturcs [+lenses,+AGR], terminal ' -s ') ,
(nodc ' V barii,

cmpty,
(nodc ' V bari,

(nodc ' V bar, terminal 'admire-'),
(nodc 'Pron' barii,

cnipty,
(nodc 'Pron' bari,

(nodc 'Pron' bar, terminal 'himselPianaplior il),
cmpty

)
)

53

BUPT

The tree of this plirasc lias an enipty Icfl sublrcc and a V catcgory riglu
subtrcc that its left subtree corresponds Io Ihe sleni of llie verb "admire" and ils righl
subtree is a sublree of Ihe Pron'' calegory Ihal corresponds Io Ihe pronoun "hiniself.

Examining the sublrees Ihal eorrespond Io Ihe nominal phrase ''George" and to
the pronoun ''hiniseif', we observe thal the terminal element "George'' and the
terminal element "himseir are connected to eaeh other with the anaphor " i r \

Finally, regarding the subtrees that the methodology manipulates, apart from
the empty subtree whieh is expressed with the word cmply, we ean also describe
subtrees or terminal elements that were moved in the tree structure, leaving in the tree
an empty spaee in the place wherc this element was. in the place that's left empty we
enter the t from the word tracc that states the trace that this element leaves after it
was moved. The tracc can be bound with the element that occupied that place and has
been moved to another place on the tree.

For example, if we moved the word ''George", then the trace and the word
wouid be connected as follows:

'George':anaphor il
t: anaphor il

Finnlay, the foilowing schema presents the difTerent possibilities of using
between the different elements of a x-bar structure of this methodology as has been
described above. These elements are of type subtree, node, terminal, features of node
and anaphor.

subtrees

termmals

features anaphors

The element at the end of the arrow is used by the other one in order to be
structured.

54

BUPT

3.1.1.1 The EBNF of the X-bar structures

The EBNF of (hc stiucliircs lliat the nielhodology cau iiianipulalc is the
foilowing:

structure = trcc-x

tree-x" = T ' nodc-x" speciller (Ircc-x" 1 trce-x') ")" [aiiaphors].

tree-x' = "(" "ode-x' " " (Iree-x I trec-x) tree-x" ")" [anaphors].

tree-x = T ' node-x"," terminal l anaphors].

tree-x ' ^ "cnipty".

tree-x" = "t"-

tree-x' = "t".

tree-x = "t".

specifier = tree-x" | tree-x-

node-x" = "node" node-namc "barii" [node-features].

node-x' = "»ode" node-name "bari" [":" node-features].

node-x ~ "node" node-name "bar" [":" node-features].

node-features = "features" "[" feature { "," feature } "]".

55

BUPT

feature = rcatine-naine | realiire-nanic | rcalurc-naiiic
I featurc-nainc rcaliuc-nanic
I fcaturc { rcaturc } Icalurc-naiiic.

temiinal = "terminal" Icrminal-clenicnt [aiiaphors].

anaphors =' 'anaphor" anaphor-namc { "i^^anapliof anaphor-nainc }.

node-name = name.

feature-name = name.

anaphor-name = name.

terminal-element = name | \

name = lower-letter { lower-lelter | capital-leller | number | }.

name = """ capital-letter { lower-letler | capital-letler | number |

lower-letter = a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v
w I X I y I z.

capital-letter = A | B | C | D | E | l ^ | G | H | I | J | K | L | M | N | O | P | 0 | R | S
T I U I V I W I X I Y I Z.

number = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

3.1.2 The Principles and Transformations

The principles and tlie transformations are rules that we defuie according to
the presented methodology(Fouskakis, 2004c). These rules are stated to be appiied on
the x-bar trees that were described in the previous chapter. The principles are used to
control the correctness of an X-bar tree according to the requircments that wc state.

56

BUPT

The iransformations are statcd in the same way and have the same abilities with the
principles, but they can also change Ihe slmctiire and Ihe elemenls of the Iree Io which
they arc applied, leading on one or more trees.

The principles cnablc iis Io sludy on Ihc Ircc they are applied on the content of
its nodes, the existcncc of a subtree, the relation between two or more subtrees of the
X-bar trec, the bindings, etc.

The transformations provide us with the same abilities and furthermore, we
can modify the structure of the X-bar trec and produce one or more new trees that can
have a totally different structure from the structure of the original trec. We can also
change the content of the nodes, by changing for example the features of the node or
we can change the terminal elements by cntering new words.

The principles and transformations are the main part of the methodology and
are declared in the presentcd linguistic knowlcdge system. We can enter in the system
a big set of such ruics and usc oniy these rules that we wish to appiy each time on the
x-bar trees.

With these rules we express the main linguistic knowlcdge that is of our
interest and thus we can proccss the natural language trees accordingly. The
complexity and the number of the rules depend on our requirements.

Both the principles and the transformations are stated using the same general
pattern.

The principles in the methodology have the foilowing pattern:
principic name of principie
variables denotation of the variables that will be used in the next fields
structureDescriptiondescription of the X-bar subtreee on which the rule will be

applied.
structurcCommandsthe different elements checks, the variables values changes, the

new declarations of variables other possible commands are
used according to the appiication

The transformations in the methodology have the foilowing pattern:
transforniation name of transformation
variables denotation of the variables that will be used in the next fields
structureDcscriptiondescription of the X-bar subtreee on which the transformational

rule will be applied.
structurcCommandsthe different elements checks, the variables values changes, the

new declarations of variables, the transformations and other
possible commands are used according to the appiication

The schema of the general function of the principles of the presented
methodology is the foilowing:

57

BUPT

The schcma of Ihc general riinction of Ihc Iransrorinations of Ihe presenled
inethodology is Ihe rollovving:

3.1.2.1 The EBNF of the principles and
transformations of the methodology

The EBNF form of principles and transformations is the foilowing:

principie = ''principie" principle-nanie
''variables" variables-declaration
"structureDescription" structureDescription-structure
"stuctureconimands'' stuctiirecommands-principle.

transformat ion = "transformation" transformation-name
''variables" variables-declaration
"structureDescription" structureDescription-structure
"stucturecommands"stucturecommands-transformation.

principle-name= name.

transformation-name = name.

Regarding the EBNF form of these rules, the name was declared in the
previous EBNF denotation that is for the X-bar structures of the methodology.

In the foilowing chapters we will describe the abilities provided in each one of
the above fieids (variables-declaration, structureDescription-structure,
structureCommands-principle, structureCommands-transformation) of principles and
transformations.

3.1.3 The Lînguistic theory

We can describe a set of rules by using principles and transformations that we
have defined in the linguistic system. The set of all the rules that we declare constitute
our theory. This theory is the grammar we define.

58

BUPT

The general paltern ordescribing ihcse rules, is Ihe following:
graiiiniar uamc of^rammar
the muin part of thc ^rummar

The namc of the grammar is an aloni of prolog, meaning a sequenee of letlers
and numbers. If the first letter is capital, the whole name should be enelosed in quotes,
while if it is a lower case letter, there is no need to usc quotes.

For exaniple:
• g r a m n i a r l
• ' G r a m m a r _ r
• ^ G R A M M A R _ r

AII the above are acceptable grammar names that we can be used in the methodology.

In the main part of the grammar, that constitutes the second part of grammar
and is also its most important part, wc iise principles and transformations, as well as
other grammars that wc have already defined. Each one of these rules is used to the
main part of the grammar, indicating first the operator and then the name of the
principie, thc transformation or the grammar respectivcly.

Therefore we have the following cases of stating rules in the main part of thc
grammar:

principie namc of principie
transforiiiation namc of transformation
grammar namc of grammar

Apart from the above way of applying the rules that a grammar uses, we can
also have a condiţional appiication of the rules in a grammar, depending on the result
from the appiication of some other rules.

The command that is also used by the programming languages is the
following:

If conJition tlicn rules I cise rules 2

In the part of the control condition of this command we appiy one or more
rules on the X-bar structurc and depending whethcr the result is truc or false we apply
the rules after thcn or after eisc respectivcly.

In this methodology, this command has the following form:
lfThcn{conJition, rules 1)

IfThenElse(cY;^7j/7/c;/î, rules 7, rules 2)

Every rule that we define in our system is either a principie or a transformation
or a grammar. When we apply this rule in an X-bar structure then it gives a truc or
false value, depending oji whethcr this rule was appiied successfully or not in the

59

BUPT

particular X-bar slriicturc. Tliis cnabics us Io cxccutc logical calculations in Ihc
condition part.

if iii Ihc condition vvc appiy niorc ihan onc nilcs, Ihcn vvc sliouid usc ihc logic
operators and, or and iiot.

The First logic operator requires that all rules are successful in ordcr for Ihe
condition to be truc, whilc Ihc sccond logic operator or requires at least onc of the
rules to be successful in ordcr lor the condition to be truc.

The general syntactic pattern of the condition will be one the following:

rule I and rulc 2 and ride 3 and...
rulc 1 or rulc 2 or rulc 3 or...

The third operator iiot enables us to have a truc condition oniy when the rule
faiis. In this case the general syntactic pattern of the condition will be the following:

not rulc
The rule can be either one or more rules that are connected to each other with

tlie operators and and or. We can also usc in any conibination the operators and, or
and not together with the appropriate parentheses that will dcfine the sequence of the
logic calculations, in ordcr to perforni the appropriate check each tinie.

The same kind of rule conibinations (with the operators and, or and not) is
possible and in the main body of a grammar.

Also, the command acceptanccJevcl(Z.c'vc'0 exists. It returns the level of
acceptance between the number of input structures that a rule is apllied on and the
corresponding output structures of this rule (principie or transforniation). It is possible
to combine the acceptance levels of more than one rules (principles or
transformations) by doing arithmetic opcrations and to calculate a total acceptance
level. This possibility permits the implementation of an evolutionary approach in the
production and checking of the manipulated X-bar structures, which is a more general
and abstract that the Chomsky's minimalist ideas.

Finally we shouid notice that within the main part of a grammar we can have a
rule that is the grammar that we enter. That means that we can perform a repeated
application of the grammar. Therefore, in the main part of the grammar we can have
the rule, which is the following:

grammar nume of the same grammar

This ability enables the repeated application of a grammar's rules. Also, if we
use a command of the category ir-tlien-else then we can repeat the rules of a grammar
onIy if the if condition is valid.

From what we described so far regarding the abilities of a grammar that we
state, we observe that every grammar uses rules that we have stated. These rules appIy
on every X-bar structurc and with the sequence that they have been denned in this
grammar. The transformational rules however are able to produce one or more new X-
bar trees. These trees can be used by the next rule for further processing either this
rule is a principie or a transforniation or a grammar.

60

BUPT

If we wish Io changc Ihc slrucliires Io wliicli thc ncxt rulc o f a grammar will bc
appiicd, we can usc one of thc foilowing opcralors:

• adclStructurcs: Tliis operator adds tlie structures that have been
produccd by thc last principlc, transformation on thc cxisting X-bar trccs
for thc next rulc of the grammar.
• setStructures: This operator sets as X-bar trces for the ncxt rule of thc
grammar, the trccs that have bccn produccd by tlie last principlc,
transformation.
• setSucceecledStructures: This operator sets as X-bar trces for thc next
rule of thc grammar, oniy thc trccs that thc last rule has been appiicd on
successfully.
• restoreStruclurc: This operator rcscts the X-bar structure for thc next
rule to the last X-bar trec that has gotten from the iniţial X-bar trccs of the
system.
• gctNcxtSiructurc: This operator gets thc next X-bar structure from
the iniţial X-bar trccs of the system in order to continue thc application of
this grammar.
• gctPreviousStructurc: This operator gets the previous X-bar structure
from the iniţial X-bar trccs of the system in order to continue the
application of this grammar.
• getParticularStructurc(M//;/): This operator gets a particular
structure from the iniţial X-bar trccs of the system according to the value
of the Num and continues the application of this grammar.

Also, there is an operator that returns the id of an input X-bar trec. This id is a
serial number that has the value 1 for the first input trec.

This operator is thc foilowing:
• gctInputTrecI(I(A/)

Except thc above operator there are two other operators that changc thc input
structures according to the output structures that are the result of thc application of the
last principie or transformation. Both need as operand an Id as it is described in the
previous operator.

Thc first substitutes thc corresponding input trccs with the output trccs of the last
principlc or transfotmation:

• ncwInputTrces {Id)
The second adds at the cxisting input trces the output trccs of the last principie

or transfotmation:
• addInputTrecs {Id)

The principie has as output structures the subset of its input structures that it has
appiicd on correctiy. The transformation has as output structures the new set of
structures that have been produccd by it.

The foilowing schema shows the usage of the above operators(Fouskakis,
2004c):

61

BUPT

In order to cxchangc information of diffcrcnt X-bar trecs bctwccn the diffcrcnt
rules that are used by the gramniar, there are llie gramniar variables. Thcy are
variables that can be used by more than one principie or transformation. They permit
smaller rules that use known information from previous rules. If a grammar variabic
has been defmed in a principie or transformation that has already used it, it is not
possible to be defmed again in any field of any other principie or transformation but it
is oniy possible to use it or to change its values. It is oniy possible to remove the
grammar variable and then to define it again in another rule. Also, it is possible to be
used all the commands for variables that are used in the structurcCoiiiiiiaiicls field of
the principles oniy rules.

We can use two operators related with grammar variables:

• addGraminarVanablc name of variable
• removcGranimarVariablc name of variable

The first operator defines oniy the name of a new grammar variable. The
second operator deletes a grammar variable. These operators can be used in the main
body of a grammar or even outside of a grammar to delete or declare a grammar
variable that can be used in the next rules. At the case of using the operator

62

BUPT

rcmovcGrammarVariablc, Ihis grammar variable will not be availablc in tlic ncxt
ruics or graniniars. Bolii opcralors nccd Ihc nunic ofvuriahlc as an operand.

Finally, thcrc arc Iwo opcralors Ihal chcck ihe exislcnce of a variable tliat has
bc declarcd in a principic or Iransformalion:

• varExists {Nume of Variable)'. ii cliccks if a variable has alrcady bcen
declared

• grammarVar {Namc of Variable)'. it checks if a variable has already
been dctlncd as granimar

The first casc checks if a variable existed in Ihc last principic or
transformation that was applicd. The sccond case checks if a variable has already been
defmed as grammar one. The abovc opcralors are used in thc main body of a grammar
and in thc if-then-clsc structiircs. Also, it is possible Io be used in thc
structureCommands ficld of thc principles and transformations.

AU the abovc opcralors and rules that we can usc in the main part of a
grammar are separated by commas and end with a full stop after the last rule. If there
is a requirement that tliis grammar should bc applicd Io the X-bar structures, then all
thc rules and operators are execulcd according Io the sequence they arc denoted in thc
grammar. The operators for structures manipulations and thc grammar variablcs
permit cffîcient chccking of probicms like scrambling and long distance depcndences
that appcars outside of an x-bar phrase structure.

Next we shall give some examples of grammars:

Suppose we have the foilowing rules:

principie 'Structure ControP
transformation 'Structure Modification'

we can define a grammar.

grammar 'Grammar \ \
principie 'Structure ControP,
transformation 'Structure Modification'.

We observe that this grammar uscs two rules with the names 'Structure
Control', 'Structure Modification'. The principie examines if the X-bar structure
fulfills our requirements and then thc transformation 'Structure Modification' is
applied, that can produce one or more structures according to the structure it gets at its
input. If thc principie 'Structure controf fails, then the whole grammar fails as vvell
and the transformation 'Structure modification' cannot be applied. If the principic
'Structure control' is successful and the transformation 'Structure modification' fails,
then the grammar fails again.

. grammar 'Grammar 2'.
principie 'Structure Controf,

63

BUPT

traiisformatioii 'Slruclurc Modificalion',
setstructurcs,
{ţraiiiiiuir 'Graniinar 2 \

We can also dcfinc a ncvv graininar, whcic \vc havc a rccursivc-appiicalion of
thc grammar and usc of llic operator sctstructurcs. flic operator sctstructurcs is
used so that vve can cach tinic inodify thc inpiit structurcs of thc graniniar. Its iiiput
structures, atter thc apphcation of thc traiisforinational riilc 'Structurc iiiodificatioir
change bccausc of thc sctstructurcs operator and bcconic thc structurcs fornicd by
thc transformation. Thus, with thc recurşivc-inllcction of graniniar we can produce
consecutivcly structurcs, until vve reach in structures that thc principie 'Structurc
contror cannot accept as correct or thc transformation 'Structurc Modification' can't
modify.

3.1.3.1 The EBNF of the grammar rules in the theory
part of the system

The EBNF form of the grammar rule in the methodology is the:

grammar = "grammar" grammar-name
grammar-main-part.

grammar-main-part = grammar-part { grammar-part }.

grammar-part = rule|
"inrhen(" condition ruIcs 'T I
"ifThcnElse(" condition"," rules"," rules ")" |
^'addstructures" |
"sctstructurcs" |
''setsucceededstructures" |
''restorestructure" |
''getnextstructure" |
''getpreviousstructure" |
''getparticularstructure(" number{number} "'Ţ
''getinputtreeid(" numbcr{number} ")" |
"newinputtrees(" number{number} ")" |
''addinputtrees(" number{number} ")" |
"addGrammarVariabIc" name |

"removcGrammarVariable" name |
"varExists(" name ")" |
''grammar varC name ")" |

64

BUPT

^^acccplaiicc_levcl(^^ numbcr{numbcr}'\"numbcr{number} T
scc-principle-coinmaiicl.

rulcs= "("grammar-part gramiiiar-parl } ' T -

condilion = coiidition | (condition operator condition "V').

condilion = ' 'noC T^ condition ' T .

condition = rulc.

operator = "and'' | "or"

rulc= "principie" principle-naine |
"transformation" transformation-name
"grammar" grammar-naine.

principle-name = namc.

transformation-name = name.

grammar-name = name.

The name and number are declared at the EBNF form of the structiires that the
methodology manipulates.

The scc-principle-command is described below in the EBNF of the
structureCommands Fieid of the principles and transformations rules.

3.1.4 The Linguistic program

In the linguistic program we state oniy that part of the theor>' that we have
described and we wish to appiy on the iniţial X-bar structure. Our theory has been
described by rules. These rules are grammars but they can also be principles and
transformations.

65

BUPT

The rules Ihal wc wanl Io bc uscd and appiicd by llic syslcm on Ihc X-bar
structurcs are stated as foilows:

principie nume of principia
traiisrormatioii namc of transformation
granimar namc of^raninuir

We observe thal \ve call the rules oniy wilh llieir nanie and the respective
operator tliat preeedes to tlie rule's naine. Depending on whether the rule is a
principie, a transforniation or a granimar, we have accordingly the operators
principie, transforniation, granimar. The rules appiy to the first X-bar trec under
the sequence they are stated in the systeni.

Finally, we can use the operators for the declaration of the granimar variables
that are described in the previous chapter.

3.1.4.1 The EBNF of the linguistic program

The EBNF form for the user's program is the follovving:

program-user = program rule { program rule }

program_ruIe = rule |
"addGrammarVariable'' name|
''removcGranimarVariable" nanie

The rule has been stated in the previous chapter about linguistic theory.
The name declared at the EBNF form of the structures that the methodology

manipulates.

66

BUPT

3.2 Description ofthe principles and transformations
fieids

As it was dcscribcd in a prcvious seclion, both principles and transformations
havc thrce diflercnt ficIds ihal arc tlic Ibllowing:

• variabics
• struclurcDcscriptioii
• structurcCoiiiinaiids

In thc next chaptcrs tlic abilitics that arc providcd by the methodology for each
one of thcsc ficIds will bc dcscribcd.

3.2.1 The variables fieid

The principles and transformations, apart from their name, havc as a next fieid
the fieid variabics. it contains thc variabics (Fouskakis, 2005a, 2005c) that arc uscd
by the next fields of principles and transformations.

The variabics of this Ticld, depending on the form of data that they can havc as
valucs, arc of thc follovving typcs:

1. trec node
2. trec terminal
3. anaphor
4. node features
5. subtree

The variabics in this field must alvvays havc one or morc values that
accompany the variabic vvith its statcment. That means that \vc cannot enter a variable
in this ficld unlcss it has at Icast one value.

Thcsc variabics are very important for thc next fields of principles and
transformations. Thc ncccssary gcncrality in thc content of the fields
structurcDcscriptîoii and structureCoiiimaiuls is achicvcd by iising thcsc variabics.
Thus WC havc thc abilily to dcfinc riilcs that arc general and can bc applicd to scvcral
cases of the x-bar trecs.

In order to dcfinc a nevv variable in thc variabics field of principles and
transformations, it is uscd the follovving general pattern:

type of variable name of variable set value of variable or
value of variable...

67

BUPT

Regarding Ihe abovc pallcrn, il is obscrvcd Ihal in ordcr Io denote a variable it
is necessary to give Ihe variable lype Ihal nuisl be one of the five types we nientioncd
above. The type of the variable is foilowed by its nanie that must be different for each
variable. After the name we have the operator set that it is obligatory to iise and which
is foilowed by the valiies of the variable. When the valiies of the variable are niore
than one, they are separated by the operator or. I he values of eaeh variable depend on
the type of the variable. l luis lor exaniple, for a variable of the node type, the values
assigned to it will be nodes of trees.

As it is nientioned before, the variables of this field are of five different types.
Depending on the type of the variable, we use an operator that will determine the type
of the variable.

These operators are the following:

1. tree node, operator iiodc
2. terminal element, operator terminal
J. anaphor, operator anaplior

node features, operator featurcs
J. subtree, operator subtrce

The name of the variable exists after the type of the variable and must be an
atom of the prolog. That means that the name of the variable is a sequenee of
alphanumerie characters that are enelosed in quotes, unless the first charaeter is a
lower case letter and there are no empty characters.

The following are examples of valid variables names:
• 'Node 1'
• 'node 1'
• node 1

After the type and the name of the variable, there are the values of this
variable. The values of each variable depend on its type and there are five cases,
depending on the variable's type:

1. Tree node

The node of the tree must be in accordance to one of the following two general
patterns:

name of the node category of ihe node : features features of the node
name of the node category of the node

The first pattern is used when it is additionally denoted the node's features.

68

BUPT

The name of the nodc is an aloiii of Ihe prolog and statcs thc namc of Ihc
specific node and ihc catc^ory of thc nodc delermines if the node is of thc X, X\ X"
t>'pe. In order to determine that the node is of the X, X \ X" type, the operators bar,
bari, barii are used respectively.

2. Terminal element

The terminal element of a trec must be in accordance to one of the foilowing two
general patterns:

• terminal element : aiiaphor name of the anaphor :
aiiapiior name of the anaphor :

• terminal element

The first pattern is used if the terminal element has anaphors with other
terminal elements or subtrees of the X-bar trec. The second pattern is used if it doesn't
have anaphors.

3. Anaphors

The anaphors have a general pattern and this is the name of the anaphor:

• name of thc anaphor

the name of the anaphor is also an atom of the prolog.

4. Features of the node

The features of the nodes have been describcd in the respcctive chapter wherc the
X-bar trees were described.

The general pattern is the foilowing:
\fcat urc, fcaturc,... |

wherc thc feature can be one of the foilowing:
• -^name of the feature

-name of the feature
name of the feature
name of the featureX = name of the featurcY

[name of the feature i ..., name of thefeatureN]= name of the featureX

and the name of the feature is an atom of the prolog.

The foilowing arc examples of such node features:
• [+human, +singular]

69

BUPT

[-animate]

5. Subtrcc

The sublrcc is an X-bar Ircc of Ihc X, X^ or X'^ calcgory. I hc niclhod of
describing thesc siibtrces is the sanie wilh the one was explained in Ihe seclion for Ihe
description of Ihc X-bar slrucliires.

Next I shall give an e xaniple of stating variables that includes al
categories of the variables:

variablcs

node ni set article bar : features [singular, masculine] or
noun barii

also
terminal tl set a or the
also
anaplior al set il or jl or kl
also
anaplior a2 set 11 or &al or wl
also
terminal t2 set the : anaphor &a2
also
terminal y set the : anaphor &al
also
features fi set [singular, male, noun] or [plural, adjective]
also
node n2 set noun bar : features &fl or

noun bari : features &fl
also
node n3 set &n2
also
subtree sl set (node &n2, terminal man : anaphor &a2)
also
subtree s2 set (node noun bar, terminal house)
also
subtree s3 set (node noun barii,

cnipty,
(node noun bari, subtree &s2,anyTrcc)).

Observing the abovc variablcs of the variablcs lleld of the principles and
transformations, it is noticed that each variable is separated from the next one with the
operator also. Therefore, the general pattern for denoting the variables of the
variables fieid is the foilowing:

variable statement I also variable statement 2 also

70

BUPT

wherc Ihe vuriable statcmcnt is a variablc slatemenl performcd likc Ihc onc that was
describcd above.

Evcry variablc must liave a diffcrenl nainc. If a variablc has been dcciared as
grammar and has bcen dcflncd in a principic or Iransformation tliat has aiready bcen
used, it is not possibic Io bc dcllncd again in Ihis ficid of a principie or Iransformation.

Al thc dcfinition of Ihc ncw variabics, Ihc valiics of anolher variablc that has
alrcady bccn statcd can bc uscd. Tliis hcips Io designate thc total of the variabics'
valucs in a morc general way. Thus these variabics can bc uscd in thc ncxt ficids in
order to describe in general way those cases that must bc covered by a rulc. This
generality heips espccially in the slructurcDescriptioii field of the principles and
variabics, when we wish to describe the appropriate subtotal of natural language trces,
to vvhich the specific principie or transformation can bc appiicd. The abilities that are
provided by these variabics will bc presented in the ncxt chapters.

In order to usc a variablc in the value of a nevv variable, the foilowing
symbolism is uscd:

&name of variable
where the name of variable is the namc of a variable that has aiready been

stated. This variable must bc statcd before the nevv onc that uscs it, also can be a
grammar variable.

A variable that has been stated can be uscd by another variable on the
foilowing cases:

1. as onc of the values for the new variable and in this case, the variable
must be of the same type with the nevv variable.

2. as part of the value of a variable and in this case, the variable must be
of the same lypc wilh Ihc clement it rcplaces.

Thc foilowing schema presents the differcnt possibilities of using variabics
according to their type.

subtrecs

fcalurcs anaphors

The variablc at tlic cnd of llic arrow is uscd by the other one. These
possibilities facilitate the dcciaration of general and abstract ruics that control the
diflferent cases in hierarcliical way.

71

BUPT

For Ihc firsl casc, ihcic arc thc Ibilowing variabics Iroin Ihc abovc cxaniplc:

1. a2
2. n3

The variabic wilh Ihe nainc a2 gcls valucs from Ihc variabic a l . It is obscrvcd
that both variabics arc of thc same lypc and Ihcy arc aiiaphors. I hc variabic al has Ihc
foilowing valucs: il, j l , kl , whilc Ihc variabic a2 has Ihc valucs II a i i d w l , a s wcll as
the valucs of thc variabic al Ihal has thc valucs il, j l , kl . Ihcrcforc, thc variabic a2
has the valucs:

il
j l
kl
wl

It is observed that the valucs of the variabic n3 are the same with the values of
the variable n2. Also, It is observed that both variabics are of the same type, they arc
tree nodes. Thereforc, thc variabic n3 has the valucs noun bar:fcaturcs &fl and noun
bariifeatures &f l . Both values usc the variable fl that has the foilowing two values:
[singular, male, noun] and [plural, adjective]. Thereforc, the variable n3 has thc
foilowing four values:

• noun bar : featurcs [singular,male,noun]
• noun bar : features [plural,adjective]
• noun bari: featurcs [singuIar,male,noun]
• noun bari : features [plural,adjectivc]

At the second case of thc values of thc variabics that usc variabics for thc
replacement of certain elements in their values, we have the foilowing variabics from
the above example:

1. t2
2. y
3. n2
4. sl
5. s3

The variable t2 is of the terminal data type and has a value that uscs for its
anaphor values the values of the variable a2. Thereforc, the variable t2 has the
foilowing five values of:

• the:anaphor 11
• theianaphor i)

theianaphor jl
theianaphor kl

72

BUPT

• the.anaphor vvl

The variable y is also of thc terminal clement type and uses for its anaphors
the variable a l . Therefore, the variable y has the foilowing three values of:

• the.anaphor il
• the:anaphor jl
• theianaplior kl

The variable n2 is of the tree node type and uses the variable fl for the node's
features. Therefore, the variable n2 has the foilowing four values:

• noun bar : features [singular,male,nounJ
• noun bar : features [plural,adjective]
• noun bari : features [singular,male,noun]
• noun bari : features [plural,adjective]

The variable si is of the \-bar tree type and uses the variables n2 and al that
are of the node type and anaphor type respectively. Therefore, this variable can have
all of the ten values.

• (node noun bar : features [singular,male,noun], terminal man : anaphor 11)
• (node noun bar : features [singular,male,noun], terminal man: anaphor i l)
• (node noun bar : features [singular,male,noun], terminal man: anaphor J l)
• (node noun bar : features [singular,male,noun], terminal man: anaphor k l)
• (node noun bar : features [singular,male,noun], terminal man: anaphor w l)
• (node noun bar : features [plural,adjective], terminal man: anaphor 11)
• (node noun bar : features [plural,adjective], terminal man: anaphor i l)
• (node noun bar : features [plural,adjective], terminal man: anaphor j l)
• (node noun bar : features [plural,adjective], terminal man: anaphor k l)
• (node noun bar : features [plural,adjective], terminal man: anaphor w l)

The second value of the variable n2, the noun bari: features &f l is not possiblc
to be used because we have an X type trec.

Finally, the variable s3 is of the x-bar tree type and uses a variable of the x-bar
tree type with the name s2. 1 herefore, the variable s3 has the foilowing value:

(node noun barii,
empty,
(node noun bari,

(node noun bar, terminal house),
anyTrec)).

If in a principie or transformat ion no variable exists in the variables fieid, then
the operator noVariables is used in the place of the operator variables.

73

BUPT

In this paragrapli, all thc abililics ofslaling variabics in Ihc vahabics ficid of
the principlcs and transforniations was dcscribcd.

3.2.1.1 The EBNF of the variables fieid

The EBNF form for staling variabics in llic variabics ficId, which has Ihc
name variablcs-dcclaration in a prcvious paragraph whcrc Ihc principlcs and
transforniations structurc was dcscribcd, is (hc lollowing:

variables-dcclaration = variabic-dcciaration
{''also'" variabic-dcciaration} .

variablc-dcclaration= ''nodc" nodc-variablc-nanic ''scl"
trcc-nodc-valuc {"or" trcc-nodc-valuc }.

variable-declaration= "fcaturcs" fcaturcs-variabic-namc "set''
nodc-fcaturcs-valiic ["or''nodc-fcaturcs-valuc }.

variable-declaration= "terminal" terminal-variable-namc "set"
trce-tcrminal-value {"or" trec-terminal-value }.

variable-declaration= "subtrce" subtree-variable-nanie "set'
siibtrce-valiie {"or" sublrcc-value}.

variable-declaration= "anaphor" anaphor-variable-namc "set'
anaphor-valuc {"or" anaphor-value}.

anaphor-value = name | "&"anaphor-variable-name.

tree-terminal-value= (terminal-elemcnt
[":" subtrce-terminal-variable-anaphors]) |
("&"tcrminal-variable-name).

(note: the terminal-elemcnt is declared in the chapter that describes the X-bar
trees that the presentcd mcthodology manipulatcs)

subtree-terminal-variable-anaphors =
"anaphor" anaphor-value {":" "anaphor" anaphor-value }.

74

BUPT

node-features-value = { ' T fcalure fcalure} |
(''&'Tcalures-variable-name)).

(note: the fcature is dcciarcd in Ihc chaptcr Ihat dcscribes the X-bar trees that
llie presented melliodology manipulates.)

trcc-node-value= trec-nodc-valuc-x".

lree-nodc-valuc= trec-node-value-x' •

trec-node-value= trcc-nodc-value-x.

trec-nodc-value-x" = node-variable-name.

trcc-nodc-valiic-x' = nodc-variablc-nanic.

trec-nodc-valuc-x = nodc-variabic-name.

tree-node-value-x" = nodc-namc "barii"
[' T c a t u r c s " node-features-value].

tree-nodc-value-x' = nodc-namc "bari"
['Tcalurcs" nodc-fcalures-value].

trec-nodc-valuc-x = nodc-namc "bar''
['Tcaturcs" nodc-fcaturcs-value].

(note: the nodc-namc is dcciarcd in the chaptcr that dcscribes the X-bar trees
that the presented mcthodology manipulates)

subtree-value= subtree-value-x" |
subtree-value-x' |
subtree-valuc-x.

subtrec-value-x" = "node" trce-node-value-x"
subtree-value-specifier
(subtrce-value-x" | subtree-value-x')

75

BUPT

[sublrcc-lcrniiiml-variablc-anapliors

subtree-value-x' = "nodc'' trcc-nodc-value-x'
(subtrcc-valuc-x' | sublrcc-valuc-x)
subtrcc-valuc-x"

[sublrcc-lcrminal-variablc-anaphors].

subtree-value-x = ''nodc'' Ircc-nodc-valuc-x
''terminaP' Iree-lcrminal-valuc
[subtrcc-tcrminal-variabic-anaphors].

subtree-value-spccifier = siibtree-valuc-x" | siiblrec-value-x-

node-variable-namc = namc.

features-variable-nanic= namc.

terminal-variable-name= name.

subtree-variable-name= namc.

anaphor-variable-namc= name.
(note: the name is declarcd in Ihe chapler Ihat describes the X-bar trees that the
presented methodology manipulales)

76

BUPT

3.2.2 The structureDescription fieid of the principles and
transformations

In previous chapters, Ihc stnicturc of ihc principles and transformations of tiie
mcthodology was dcscribed. It is obscrvcd that botii thc principles and thc
transformations havc thc Ucid sIructurcDcscription.

This ficid is uscd for thc dcsignation of thc subtrcc to which Ihc specific rule
will appiy; cithcr this rulc bclongs to the principles category or to the transformations
categor>'. In order to appiy the principie or the transformation on an X-bar tree that
derives from the x-bar basic scheme, the subtree that is described in the
structureDescription ficid of principles and transformations must be part of the tree
or cven tlic whole X-bar trec. By dcscribing tlic structure of thc structurcDescription
fieId is possibic to havc a large cnough structiirc that most cooccurrence dependencies
(prcdicatc-argumcnt, wh-dcpcndcncies, fillcr-gap dcpendencies) can be localized
vvithin this subtree and manipuiatcd by thc corrcsponding principie or transformation.

An example of thc subtree in the structureDcscription fieId of principles and
transformations is the foilowing:

(nodc noun bari, (nodc noun bar, terminal home), cnipty)

This subtree schcmaticaiiy is the foilowing:

NOUN'

NOUN

IZMPTY
homc

Every trec that derives from the x-bar basic scheme and has a subtree similar
to the one wc described above, is appropriate for tlie appiication of thc specific
principie or transformation that has in tiie structureDescription fieId the abovc
structure.

The abovc subtree, apart from thc spccific structurc, lias also specific names
for its nodes and its terminal elements. This subtree is of the X' category. The
variable X has the valuc NOUN and the terminal element is the word "homc". Thc
specific structurc and elements of thc above tree limit the appiication of the specific
rulc in oniy one subtree. Thercfore in order to appiy the rule, it is necessary to find an
X-bar tree with exactiy the same subtree. This constraint however doesn't enable us to
state principles and transformations that will cover thc general cases of a set of trees

77

BUPT

Ihat will have a cerlain coninion slructurc and charactcristics Io wliich Ihc spccillc
principic or Iransfonnalion can hc appiicd.

The theory Ihal has bccn dcvcloped bv linguisls rcgarding Ihc form and thc
charactcristics of thc Irccs, as wcll as thc ruics that shouid govcrn Ihcsc trccs and
cspccially thc long distancc dcpcndcncics, dcniands general riiles that shoiild cover a
lot of cascs that's why thc dellnition of this field is very important. The usc of thc
mcthodology in ordcr to study new rules requires Ilexibihty in thc way that these ruIcs
are stated cither thcy are principles or transformations. Also, thc mcthodology can bc
uscd for thc study of natural language trccs that have bccn produced by another
systcm, but in these cascs thc dellnition of a small number of rules that wouid cover
in a general way thc diffcrent cascs rcgarding thc natural language trccs is also
necessary in ordcr to have an efficient processing systcm. This is more important in
cmbcddcd systcms that have reduced resources and thc recursion and repetition of
other theorics can bc climinated by dellned thc appropriatc structures in this ficld.
Due to thc above, it was found necessaiy to devclop a group of appropriatc operators,
as wcll as thc usc of variables in this llcld of principles and transformations.

Also an assumption is stated:

If thc trec of structurcDcscription field or a subtrce of this trec contains
less anaphors or fcatures of nodes than thc X-bar trec in its corresponding
position, thc rulc is possible to bc appiicd on this trec.

This assumption is based on thc principic:

If thc required information for thc application of this rule exists in a X-bar
trec then it is possible to apply on it this principic or transformation. Thc
examination of this ficld is from left to right.

The principles and thc transformations are thc most important part of thc
mcthodology and constitute thc basc for thc statement of thc more complicated rules
that are thc grammars.

3.2.2.1 The variables in the structureDescription field
of principles and transformations

A group of variables can bc uscd in the structurcDcscription field of
principles and transformations. These variables enable the declaration of principles
and transformations in a general way.

There are two categories of these variables (Fouskakis, 2005c):
• the general variables that are the variables of the variables field of the

principles and transformations
• the transformation variables that are dcciared in the structurcDcscription

field of the principles and transformations and are uscd in the
structurcCommands field. Their purpose is the declaration of the
transformations of the X-bar trccs.

78

BUPT

The variablcs of firsl . icgory can bc cilhcr variabics Ihat liave aiready bcen
dcfincd in thc ficld variablcs v ncw variablcs. If a variabic lias aiready been defined
thcn it must bc of Ihc sn. ÎC lypc with thc corresponding element of thc
struclurcDcscriptioii structin thal it substitiitcs. ihis variabic constraints thc
corrcsponding clement of an X-î)ar trec thal thc riilc is appiied on, in a specific set of
valucs. Also, WC can usc ncw variablcs of thc variablcs type. They are defmcd
automatically thc first timc thcy appcar in thc striiclurcDcscription structure by
taking thcir valucs from thc corrcsponding clement of thc X-bar structure wherc this
rulc is appiied on. Thc main importancc of Ihcsc variablcs is that thcy provide an casy
way to check if two or morc cicmcnts of thc slructurcDcscriptioii structure are of thc
same type and have thc same valucs.

Thc variablcs of thc second category can bc of type node of trec, terminal
clement or subtrec. Thcy can bc uscd in combination with thc other category of
variablcs. Thc rcsult of its dcfinition is thc dcclaration of a ncw variabic. The name of
this variabic is thc name that foilows thc transformalioiiVariabic operator. The type
of this variabic is thc type of Ihc corrcsponding clement of thc structurcDcscriptioii
structure. The iniţial valuc of this variabic is thc value that has thc corrcsponding
clement of thc X-bar structure on which thc rulc is appiied.

We shall present them in thc foilowing chapters in detaiis.

3.2.2.2 The variables of the general category

As it was mentioned in a previous chapter wherc the variables of the variablcs
field of principles and transformations were described, there are the foilowing types
of variablcs:

1. anaphor
2. terminal
3. features of the trec nodc
4. trec node
5. tree

It is know that cach variabic that is declared in a principie or transformation
must have a different name. That means that two diffcrent variables are not allowed to
have the same name in a principie or a transformation. Special care must bc taken for
thc variablcs that have bcen declared as grammar variablcs. Thcir functionality was
described in the linguistic theory chapther.

In the structurcDcscriptioii field of principles and transformations, in order
to use the variables of thcir variablcs field, the foilowing format is uscd:

& name of thc variabic of thc variablcs ficld

where the name that is the name of a variabic that was declared in the variablcs field
of principles and transformations. Therefore, in order to use a variabic that was
declared in the variablcs field of the structurcDcscriptioii field of principles and

79

BUPT

transfonnations, the charactcr & is iiscd foilowcd by Ihc namc of lliat particular
variable.

According Io vvhat has hccn nicnlioncd iip Io now, thcrc arc thc
followiiig cases of usiiig thc variabics of thc variablcs Ucid:

1. nodc Scvariahle nume
2. nodc noJc nume anJ nodc caic^ory: fcaturcs Scvariahlc namc
3. terminai Scvariahlc namc
4. terminal terminal element: anaplior Scvariahlc namc
5. subtree Scvariahlc namc
6. subtree Scvariahlc A;6imc':ana|)lior anaphor namc
7. subtree Scvariahlc //ameianaplior Scvariahlc namc
8. suhtrcc: anaplior Scvariahlc namc

From all the abovc cascs thc rcspcctivc part of thc subtree that is dcscribcd in
the structureDescription field, can be replaccd by onc of the above.

In the first casc, a node is rcplaccd vvith a variable of the nodc category. In thc
second case, the nodc's fcaturcs arc rcplaccd vvith a variable of thc variables ficId. In
the third case, a terminal is replaccd of thc sublrec in thc structureDescription field
vvith a variable. In thc fourth casc, thc anaphor of thc terminal is rcplaccd vvith a
variable. In the fifth casc, a wholc subtree is rcplaccd by a variable. In thc sixth casc,
the subtree is replaccd by a variable, whilc the possibic anaphors of the trec arc given.
In the seventh casc, the subtree and its anaphors arc rcplaccd by tvvo diffcrcnt
variables. In thc eighth casc, oniy thc anaphors of a trec arc rcplaccd by a variable.

In all the above cases, thc respective operator that designates thc typc of thc
variable must bc uscd in front of cvcry variable.

The operators arc thc follovving:

1. nodc for trec nodc
2. fcaturcs for fcaturcs of node
3. terminal for terminal clement
4. anaplior for anaphor of terminal clement or subtree
5. subtree for subtree

In all the above cascs the variables have aircady bcen dcciarcd in thc
variabics field of thc specific principie or transformation. Thcrc is howcvcr a
possibility to usc variables of thc variabics field category that arc not stated in thc
variables field of thc specific rulc. In this casc thcse eight diffcrcnt cascs also appiy.
There are however two morc cascs of variabics that fall to this category.

These two cases are the follovving:
1. nodc Scnodc variahlc namc: fcaturcs Scvariahlc namc
2. terminal Sctcrminal variahlc namc: anaphor Scvariahlc namc

80

BUPT

In Ihe first casc Ihc variable of tlic fcalures is aiready known, that is, it must
have valucs. In thc sccond casc Ihc variable for thc anaphor must also havc valucs.
Howcvcr, thc variablcs for thc nodc in Ihc first casc and for thc terminal element in
thc sccond casc must bc ncw.

Whcn a variable is not dcclarcd then a ncw variable is defincd automatically
that has as namc, thc namc thal is uscd in thc structurcDcscription field and type, thc
type that is dcclarcd by thc respective operator that is beforc the variable. The valucs
that this ncw variable will have depend on thc X-bar trec that will usc the specific
principie or transformation. That means that the valuc of the ncw variable will be the
element of the specific X-bar trec uscd by the specific principie or transformation in
thc specific place, as this is designated by thc subtree of the structurcDcscription
field.

A variable can be used morc than once in thc subtree that is described in the
structurcDcscription field of principles and transformations. If a ncw variable is
uscd in thc structurcDcscription field morc than once, then the first time it will have
its valuc automatically from thc X-bar structure as if it was dcclarcd in the variablcs
field of principles and transformations. Thereforc, whcn the same variable is reused in
thc subtree of the structurcDcscription, then this variable will havc valucs and the
respective clement of the X-bar trec shouid be the same with one of the valucs of this
variable.

Thc great utility of this ability is that it is casy to check if two elcmcnts of the
subtree in the structurcDcscription field of principles and transformations are the
same, without considering the possible valucs of these elcmcnts.

Finally, it must be stressed that whcn a nodc of the structurcDcscription field
structure is associated with a nodc of the X-bar trec, apart from the fact that this nodc
must have the same namc and the same type, the fcatures of the structurcDcscription
structure nodc must be cither the same with the fcatures of the X-bar trec that uscs the
rule, or a subtotal of them. It also appiies for the terminal elcmcnts that the terminal
element of the structurcDcscription structure must be the same with the respective
terminal clement of the X-bar trec and that thc anaphors of the terminal in the
structurcDcscription field must all exist as anaphors in the respective element of the
X-bar trec.

Next a scrics of cxampics is presented in order to explain the utility of the
variablcs that werc described above.

Example 1

In this example \ve wish to definc a rule that will apply only to those trecs that
include one of the foilowing nodes:

V, N that correspond to the words Verb and Noun respcctively
These nodes are of the X category.
The trec that the rule seeks is the foilowing:

81

BUPT

V o r N

The Icmiinal element

The rule that we need in Ihis case is Ihe foilowing:

priiicipic 'Example W
variables nodenl set ' V bar or 'N bar
structurcDcscription (noile 4&n I Jermînal &anyTerm)

In this rule we do not use Ihe struclurcCoiiimaiids field of principles and
transformations becaiise il is not necessary in this exaniple.

The principie that we described above has as nanie the 'ILxample \ \ It also has
a variable declared in the variables field under the nanie ni and having as values the
' V bar and 'N ' bar. In the structurcDcscription field we described the subtree that
can be seen above. This subtree is of the X category and uses for the node a variable
under the name nl that has the two known values. As a result, this rule identifies only
the trees that have a subtree of the X category with node name either ' V or Apart
from the node though, the subtree of the X category has also the terminal clement
connected to this node. However, we are not concerned with the values that the
terminal element will have, this is why we use a variable that has not been declared in
the variables field and does not have values that constrain us. According to thosc
mentioned above about the function of the variables, the variable with the name
anyTerm will get values from the terminal element that exists in the respective place
of the X-bar trec that uses this rule.

Example 2

In this example we shall define a rule that will identify thosc trees that have a
subtree of the X category and the name of the node will be Noun.
This node can have one of the foilowing features:

a) [+human,+singular]
b) [+singular,+nominative]

The features of the node always express grammatical and semantic
information.

Thus we can say schcmatically that the expressed subtree of this rule is the
foilowing:

82

BUPT

Noun : fcaturcs [+liuman,+singiilar] or [+singular,+nominativc]

Any terminal

The rulc Ihal dcscribcs the above is Ihc foilowing:

princîpic Bxample T .
variables fcaturcs fl set [+luiman,+singular] or

[+singular,-+-nominalive]
structurcDcscriptioii

(iiodc 'Noun' barifcaturcs &fl,terminal i&anyTerminal)

The principie that we described above has the name 'Example 2' . It also has a
variable of the fcaturcs type stated in the variables fieid under the name fl and
values of the [-fhuman,+singularj and [+singular,+nominative]. In the
structurcDcscription fieid we described the subtree that appears on the figure above.
This subtree is of the X category with Noun as a node name and features that are
assigned by the variable fl that has two knovvn values. As a result, this rule idcntifies
only thosc trees that havc a subtree of the X category with node either 'Noun' bar :
features [+human,+singular] or 'Noun' bar : features [+singular,+nominative]. Apart
from the node however, the subtree of the X category has also the tenninal element
connected to this node. However, we are not concerned with the values that the
terminal element will have, this is why we usc a variable that has not been declared in
the variables fieid and does not have values that constrain us. According to those
mentioned above about the function of the variables, the variable with the name
anyTerminal will get values from the terminal element that exists in the X-bar trec
that uses this rule.

Example 3

In this example we shall define a rule that will identify those trees that have a
subtree of the X category and one of the foilowing terminal elements:

a) run
b) drink
c) play
d) drive

83

BUPT

Sclicmatically wc can say lliat Ihc cxprcsscd siiblrcc of tliis mie is Ihc
follovving:

Any nodc X calcgory

terminal 'mir or 'drink' or 'play' or 'drivc'

The mie that describes the above is Ihe roilowing:

principie 'Example 3 \
variables terminal ll set 'mn ' or 'drink' or

'play' or 'drive'
structureDescription

(node &anyNode,terminal &l l)

The principie that wc dcscribcd above has Ihc name 'Example 3'. It also has a
variable of the terminal lype stalcd in the variables field under the naine ti and has
as values the ' m n \ 'drink', 'play', 'drive'. in the structureDescription field wc
described the subtrce that appears on the figure above. This subtrec is of the X
category. The name of the subtrcc's node does not concem us this is why wc usc a
variable that has not bcen dcciarcd in the variables field of the above principie. This
variable has the name anyNodc and sincc it docsn't havc iniţial valucs, it takes valucs
from the X-bar trec. Morc specifically, the value that this variable will havc will bc
the node that the X-bar trec has in its respective position. The terminal clement of this
X category subtrce must bc onc of those that arc assigncd as valucs to the variable of
the terminal typc tl that has bcen stated in the variables field of this principlc.
Therefore, this mic can bc applicd to X-bar trccs that havc a subtrcc of Ihc X catcgor>
and one of the ' run \ 'drink', 'play', 'drive' as terminal clcmcnts for this subtrcc.

Example 4

In this example we shall definc a mie that will identify oniy those trccs that
have a subtrce of the X category with terminal element the article "thc'\ Also, they
will be bound cither to a reflexive pronoun or to the trace that rcsults from the moving
of this element from the place that it has occupied to the new onc that it occupics now.

These two typcs of binding arc scparatcd by thcir name that wc consider bcing
the anaphorPro for the first one and the anapliorTrace for the second onc.

84

BUPT

Schematically we can say Ihat Ihe subtree that the X-bar tree shouid havc is
the foilowing:

Any nodc ol X calcgory

terminal 'Ihc' : aiiaphor anaphorPro or anaphorTrace

The principic that corresponds to the above is the foilowing:

principIc 'Exampic 4 \
variabics

anaphor al set anaphorPro or anaphorTrace
structureDescription

(node &anyNode, terminal 'the'ranaphor &al)

The principic that we described above has the name 'Examplc 4' . This rule has
in the variables ficid a variable of the anaphor type under the name a l . This variable
has two values, the anaphorPro and the anaphorTrace. In the structureDescription
field of the rulc we dcscribc the subtree of the X category that appears schematically
above. In this subtree we are not concerned with the X category nodc this is why we
use a variable with the name anyNode that has not been declared in the variables
ficId of the specific principic and as a rcsult, it has no specific values. This variable
takcs values from the X-bar trec that uscs this rulc. The value of the variable will be
the node that exists in the respective position of the X-bar tree. The terminal tree
howcvcr that foilows the node is specificd and must have one of the two anaphors,
cither anaphorPro or anaphorTrace. The rcquirement that the terminal element shouid
have one of the above anaphors is covered by the use of the variable al that we have
stated in the variables field of the specific principie.

Example 5

In this example we shall define a rule that will identify those X-bar trees that
have one of the foilowing subtrees of the X category:

a) (node, article bar, terminal Mhe')
b) (node noun bar, terminal 'home').

Schcmatically, the X-bar trees shouid include the foilowing subtrees:

85

BUPT

i iodeai l ic lchar noile noun bar

terminal thĉ terminal liomc'

The principie Ihat describcs Ihe abovc is Ihe rollovviiig:

principie 'Bxample 5 \
variables
subtree sl set (node article bar, terminal Ihc) or

(node noun bar, terminal 'homc')
structureDescription

subtree &sl

The principie that we described above has the name 'Example 5'. This rule has
in the variables fieid a variable of Ihc subtree lype linder the name sl . This variable
has two values, the (node, article bar, terminal ''Ihe") and (node noun bar, terminal
"home"). In the structureDescription field of this principie we dcscribc the subtree
that the input structure must havc. hi the structureDescription ficld of the above
principie, the subtree is designated by the variable s l . As a result, the subtree of the
structureDescription field is either (node, article bar, terminal ' the') or (node noun
bar, terminal 'home').

Example 6

In this example we shall define a rule that will identify those X-bar trees that
have one of the following subtrees of the X category:

a) (node article bar, terminal 'the')
b) (node noun bar, terminal 'home')

with an anaphor that will have the name anaphorTrace.

Schematically, the X-bar trees shouid include the following subtrees:

86

BUPT

noile article bar

aiiaplior anaphorTrace

terminal Mhc'

node noun bar

anaplior anaphorTrace

terminal 1iomc'

The principie that describes the above is the following:

principie 'Example 6 \
variables
subtree sl set (node arliclc bar, terminal Uhe') or

(node noun bar, terminal Miome')
structureDescription

subtree &sl :anaplior anaphorTrace

The principic that vve described above has the name 'Example 6\ This rule has
in the variables field a variable of the subtree type under the name s l . This variable
has two values, the (node, ailicic bar, terminal "Ihc") and (node noun bar, terminal
'Miome"). In the structureDescription Ucid of this principic vve dcscribc the subtree
that the input structurc must have. In the structureDescription field of the above
principie, the subtree is dcsignatcd by the variable sl foilowed by the anaphor under
the name anaphorTrace. As a result, the subtree of the structureDescription field is
either (node article bar, terminal Mhe'):anaplior anaphorTrace or (node noun bar,
terminal 'home'):anapIior anaphorTracc.

Example 7

In this example we shall define a rule that will identify those X-bar trees that
have an anaphor with the name anaphor Trace.

The principie that describes the above is the following:

principie 'Example 7'.

87

BUPT

noVariables.
structurcDcscriptioii

subtree &anyTrcciaiiaplior anaphor'l race

The principic that vvc dcscribed abovc has thc namc 'lixampic 1 \ This rulc has
no variabics in thc variablcs Ticld Ihis is why vvc rcplacc Ihc operator variabics wilh
thc operator iioVariablcs. In thc strucCureDcscriptioii Ucid of this principic vvc
describe thc subtree that thc input structurc nuist have. Since vvc arc not interested in
the form of the sutree of thc X-bar trec that Ihe rulc accepts, but oniy in having an
anaphor with the namc anaphor'l race, vvc usc a variabic wilh thc namc anyTree that
has no value. This variabic takcs cach timc as a valuc the subtree of thc X-bar trec that
has an anaphor with thc namc anaphor Fracc.

Example 8

In this example we shall definc a rulc that vvill identify those X-bar trees that
have an anaphor with thc namc anaphorTracc or anaphorPron.

The principie that describes the abovc is the foilowing:

principie 'Example 8'.
variabics

anaphor al set anaphorPron or anaphorTracc
structurcDescription

subtree &anyTree:anaplior &al

The principie that we dcscribed abovc has the name 'Example 8'. This rulc has
in the variabics field a variabic with the namc al . It also has the values anaphorPron
and anaphorTracc. These two values of the variabic are two different anaphors that
the X-bar trees can have. in the structurcDescription field of this principie vvc
describe the subtree that the input structurc must have. Since we arc not interested in
the form the subtree of the X-bar trec that the rulc accepts, but onIy in having an
anaphor with the name anaphorTracc or anaphorPron, we usc a variabic with thc
name anyTree that has no value. This variabic takcs cach time as a valuc the subtree
of the X-bar trec that has an anaphor with thc namc anaphorPron or anaphorTracc.
The anaphors of the subtree anyTree are specified by the variabic a l .

Example 9

In this example we shall derme a rulc that will identify the X-bar trec of the X
category (node noun bar, terminal 'house') that has as anaphor cither the
anaphorTracc or the anaphorPron.

88

BUPT

Schematically, Ihc X-bar Irccs shoiild include Ihc foilowing subtrces:

anapliorTrace

notic noun bai

terminal 'housc'

anaphorPron

nodc noun bai

terminal Mioiisc'

The principie thal dcscribes Ihe above is Ihe foilowing:

principie 'Example 9\
variables

anaplior al set anapliorTrace or anaphorPron
structureDescription

(node noun bar, terminal Miouse'):anaplior i&al

The principie thal we described above has Ihe name 'Example 9'. This rule has
in the variables field a variablc of the anaplior lype with the name a l . This variable
has two values, Ihe anapliorTrace and Ihe anaphorPron. in Ihe structureDescription
fieid of this principie we describe Ihe subtree that the input structure must have. On
the above principie the subtree to the structureDescription field is the (node noun
bar, terminal Miouse'). This subtree hovvever must have an anaphor with the name
anaphorTrace or anaphorPron, this is why we usc a variable with the name al that has
the above two values.

89

BUPT

Examplc 10

In this cxample \ve shall dcfinc a mic llial vvill idcntily thosc Irccs Ihal havc a
subtrcc of thc X catcgory, but vvc arc not intcrcslcd in Ihc namc oftliis sublrcc nodc.
This node is of thc X calcgory and nuisl liavc onc ofllic lollowing fcalin cs:

a) [+human, ^singular]
b) [-i-singular, -i-nominalivc]

The terminal element of this node is not of our inlercst cither.

Schematically we can say thal Ihis rulc will cxprcss Ihc follovving sublrcc:

node : featurcs [-fhuman, +singularj or [^singular, +nominalivcJ

A terminal

The rule that describes the abovc is the foilowing:

principic 'Example 10'.
variables

featurcs fl set [+human, +singular] or
[+singular, ^nominative]

structureDescriptioii
(node &anyNode:features & terminal &anyTerminal)

The principie that we described above has the name 'Example 10'. It also has
a variable of the fcatures type stated in the variables field with the namc fl and has
the values [+human,+singular] and [-^singular,+nominalivc]. In Ihc
structurcDcscription field we havc described thc subtrcc shown above. This subtrcc
is of the X category and the name of its node is not of our interest, this is why wc usc
a variable that doesn't havc any valuc. The name of this variable is anyNodc. Also,
this node must havc featurcs that should bc cither [H-human,+singular] or
[+singular,-+-nominative]. This constraint is achicved with thc variable fl that is uscd
in the place of this node's featurcs. Also, vvc arc not intcrcstcd in thc terminal clement
of the particular subtree, this is why wc usc a variable that doesn't havc valucs yct.
The name of this variable is anyTcrminal.

90

BUPT

Exampic 11

In this exampic vvc shall define a rule that will identify only those X-bar Irees
that have a subtree of Ihc X category wilh a terminal element, that will be bound
cither with a relative pronoun or with the trace that results from this element's moving
from the place it occupicd to thc ncw onc it occupies now.

Thesc two types of binding are separated by their name that we consider to be
anaphorPro for the first and anaphor'frace for the second one.

Schematically, thc X-bar trec shouid include the foilowing subtree:

A node X category

Terminal element: anaplior anaphorPro or anaphorTrace

The principie that corresponds to the above is the foilowing:

princîplc 'Exampic 11 \
vâriables

anaphor al set anaphorPro or anaphorTrace
structurcDcscriptioii

(node &anyNode, terminal &anyTerm:anaphor &al)

The principie that we described has the name 'Exampic 1 \ \ This rule has in
the variables field a variable of thc anaplior type with the name a l . This variable has
two values, the anaphorPro and thc anaphorTrace. in the structurcDcscription fieid
of this principie we describe thc subtree of the X category that is shown on the above
figure. In this subtree we are not concerned with the X category node, this is why we
usc a variable with the name anyNodc that has not been stated in the variables fieid
of the specific principie and as a result, it docsn't have specific values. This variable
takes the values from the X-bar trec that uses this rule. The value of the variable will
be the node that exists in the respective place of the X-bar trec. Also, we are not
concerned with the terminal element, this is why we usc a variable with the name
anyTerm that has no values and takes its values from the X-bar trec. It is required
however that the terminal clement has one of the two anaphors, the anaphorPro or the
anaphorTrace. That's why we usc the variable al that has thesc two values.

91

BUPT

3.2.2.3 The variables of the transformation category

Apart from thc variables in llic structurcDescriptioii Ticld of principics and
transforniations Ihat arc dcscribcd so l'ar and Ihal Ihcy hclong in Ihc calcgory of ihc
variables thal are slaled in Ihe vnriables lleid, there is anolhcr calcgory of variables
that are used Io perform Ihe IransTorniations.

These variables can bc slaled oniy in Ihe striictureDcscription ficld of
principles and transformalions and Ihey are iiscd by Ihe sCrucliircCommaiiils ficId of
these rules.

The variables of this calcgory can bc onc of the foilowing lypes:
a) trec node
b) terminal
c) sublree

The various vvays of declarcd the transformation variables al the elemcnts of
the above types are:

1. node node : transforiiiatioiiVariable variahlc nume
2. node &nodc typc variahlc namc: transformationVariable variahlc namc
3. node {node : fcaturcs nodeJcaturcs) : transformationVariable variahlc namc
4. node {node : features &nodc Jcaiurcs variahlc namc) :

transformationVariable variahlc namc
5. node {&node : features &nodc fcaturcs variahlc namc) :

transformationVariable variahlc namc
6. terminai terminal clement : transformationVariable variahlc namc
7. terminal &terminal clement variahlc namc. transformationVariable variahlc

namc
8. terminal {terminal element: anaplior anaphor namc) :

transformationVariable variahlc namc
9. terminal {terminal clement: anaphor Scanaplwr variahlc namc) :

transformationVariable variahlc namc
10. subtree : transformationVariable variahlc namc
11. subtree &suhtree variahlc namc: transformationVariable variahlc namc
12. {subtreee: anaphor namc) : transformationVariable variahlc namc
13. {subtreee : anaphor &anaphor variahlc namc) : transformationVariable

variable namc
14. subtree {Scsubtrec variahlc namc: anaphor name) :

transformationVariable variahlc name
15. subtree {Scsubtree variahlc name: anaphor Scanaphor variahlc name) :

transformationVariable variahlc namc

In the above cases the variables that are symbolized as:
&name of the variahlc

92

BUPT

can alrcady bc statccl and havc valiics, but (hey can also be uiistatcd and take a value
from the X-bar Ircc. In case a variabic is noi slalcd Ihcn il is staled and gets values
automatically, as it was dcscribcd in Ihc prcvcioiis chaplcr.

Eaclî of the above cascs results in Ihe declaration of a new variable of the
transformation category. The nanie of Ihis variable is the name that foilows the
(raiisrorm;itioiiVan;il)le operator. The type of Ihe variable is Ihe type of the
respective element of Ihe structiireDcscrîption structure. 'Hierefore, in the cases
from 1 to 5, the new variable is of Ihe node type and in the cases from 6 to 9 the new
variable it of the terminal element type. In the cases from 10 to 15 the new variable is
of the subtree type.

The value that this variable vvill have initially is the corresponding element of
the X-bar tree that occupies this place.

Next examples are analyzed Ihat are according to the above cases of stating
transformation variables.

Example 1

We shall define a rule that will use a variable of the traiisformationVariablc
category for the node named noun of the X category subtree. The terminal element of
the node may be one of the following:

a) house
b) table
c) chair

The rule will recognize the following subtree:

node noun bar : traiisformationVariablc nvl

terminal Miouse' or 'table' or 'chair'

This rule is expressed as foilows:

transformation 'Example 1'
variables

terminal tl set 'house' or 'table' or 'chair'
structurcDcscription

(node noun bar: transformationVariable nv 1,
terminal &t l)

93

BUPT

The above rule is a Iransibriiialion thal has tlic namc "Examplc 1". This rulc
docsn't havc tlic structurcCommsiiids ficld, bccaiisc wc arc noi inlcrcslcd in Ihcsc
examples in dcmonstrating the abililics of Ihc Iransformation Ihal Ihc systcm providcs
us. This rule has a variable of Ihc terminal clcnicnl typc (hal has thc nanic ll and has
the values 'home\ ' table\ 'chair\ This variable is uscd in ordcr Io spccify Ihc
temiinal element of the X category subtrcc. in thc striictureDcscription ficId of thc
transformation vve describe the subtrcc of thc calcgory X that shouid exist in thc input
strueture. In the tree's node that is 'noun bar ' wc state a variable of thc
transformatioiiVariabIc category lindcr thc namc nvl. I his variable cnabics us, as
we shall see in the following chapters, to transform the X-bar trec by changing thc
node and adding, for example, fcatures to this node.

Example 2

We shall defme a rule that will use a variable of the transformationVariable
category for the node of an X category trec, with one of the following as a terminal
element:

a) house
b) table
c) run

The node of this subtree can be either noun bar or verb bar. We will also see
the same example for the case where we don't havc specific namc of the node of the
X category subtree.

The rule will recognize the following subtrcc:

node noun or verb bar : transformation Variable nvl

terminal 'house' or 'table' or 'run'

This rule is expressed as follows:

transformation 'Example 2'
variables

terminal ti set 'house' or 'table' or 'run'
nodeni set noun bar or verb bar

9 4

BUPT

structureDcscriptîon
(nodc &n 1: transformalionVariablc nv 1,terminal & t l)

The above rulc is a transfornialion Ihat lias the namc "Examplc 2". This rule
has a variable of thc terminal element type that lias the name tl and has the values
'home', 'table'. ' run \ It also has a variable of the node type under the name nl that
has the values noiin bar or verb bar. The variable tl is used in order to speeify the
terminal element of the X category subtree in the structurcDescription fieid of the
transformation. The variable nl is used in order to speeify the node of the subtree in
the structurcDescription field.
hi the node of the sublree in Ihe sIructurcDescription field we state a variable of the
transformationVariabIc category under Ihe name nvl. This variable enables us, as
we shall see in the following chapters, to transform the X-bar tree by changing the
node and adding, for example, features to this node. The result of the transformation
is the ehange of the nodc in thc X-bar trec and the addition, for example, features.

As an example, thc nodc noun bar can bccome noun bar : features [animate].

Apart from the above case, where we know the names of the nodes, maybe we
do not wish to constrain the rule in specific nodes. In this case, the rule is as foilows:

transformation 'Example 2'
variables

terminal tl set 'house' or 'table' or ' run'
structurcDescription

(nodc 4&nl: transformationVariabIc nvl,terminal 4&tl)

In this transformation appiy everything we described for the previous one. The
difference is that this transformation uscs for thc node of the tree a variable with name
nl . This variable is not stated in the variables field of the rule. Therefore, the above
rule can appIy to any tree that has an X category subtree and as a terminal element
one of the l iouse ' , 'table' and ' run\

Example 3

In this example we shall define a rule that will speeify a variable of the
transformationVariabIc category for the node with name noun and the features
[^animate, -f-singular] of an X category subtree. The terminal element of this sublree
may be one of the following:

a) house
b) table
c) chair

The rule will recognize the following subtree:

95

BUPT

nodc (noun bar : fcaturcs |+aniinatc,+siiigular|): transformationVariablc nvl

terminal Miousc' or Uablc' or ^chair'

This rule is cxpresscd as foilows:

transformation 'I£xample 3'
variabics

terminal tl set Miouse' or 'table' or 'chair'
structurcDescription

(node (noun bar : features |+animalc,+singularj):
transformationVariabic nv 1, terminal &t 1)

The above rule is a Iransformation tliat has the name "Exampic 3". This rule
has a variable of the terminal element type that has the name tl and has the values
'home', 'table' and 'chair'. This variable is used in order to specify the terminal
element of the X eategory subtree. In the structurcDcscription fieid of the
transformation we deseribe the subtree of the eategory X that shouid exist in the input
structure. In the tree's node that is noun barrfeaturcs |H-animate,+singular| we state a
variable of the transformationVariabIc eategory under the name nvl. This variable
enables us to ehange the node's features and to add the feature ^nominative. As a
result of this transformation, the respective node of the X-bar tree becomes as foilows:

noun bar : fcaturcs |-fanimate,+singular,+nominative|

Example 4

In this example we shall define a rule that vvill use a variable of the
transformationVariabIc eategory for the node of the X eategory subtree. The name
of this node is noun and its features ean be either [-animate, +singular] or [-animate,
+nominative]. Also, the terminal element of this subtree ean be anything.

The rule will reeognize the foilowing subtree:

96

BUPT

nodc (noun bar : fcaturcs t-aniinate,-i-singular] or [-animatc,+nominative]):
transformationVariablc nvl

Any terminal

This rulc is expresscd as foilows:

transforniatioii 'Example 4'
variablcs

fcaturcs fi set [-animale,+singular] or [-animate,+nominative]
structurcDcscriptioii

(noile (noun bar : fcaturcs &11): transformationVariablc nvl ,
terminal &any rerm)

The above rule is a Iransformation Ihat has tlie name "Example 4". This rule
has a variable of the nodc fealurcs lype that has Ihe name fl and the values [-animate,
-hsingular] and [-animate, +nominative]. This variable is used to specify the features
of the node in the X categoiy siibtree. In the structurcDcscription fieid of the
transformation we deseribe the subtree of the eategory X that shouid exist in the input
structure. The node of the tree can be either noun bar : fcaturcs [-animate,+singular]
or noun bar : fcaturcs [-animate,+nominative]. In this node we assign a variable of
the transformationVariablc eategory under the name nvl . This variable enables us
to change, for example, the node's features and to leave oniy the feature +animate. As
a result of this transformation, the respective node of the X-bar tree becomes as
foilows:

noun bar : fcaturcs [^animate]

The terminal of the subtree can be anything. This is why in the respective place of the
subtree we use a variable with no iniţial value.

Example 5

In this example we shall define a rule that will use a variable of the
transformationVariablc eategory for the node of the X eategory subtree. The node
can have any name and its features can be either [H-animate,-fsingular] or
[+animate,+nominativeJ. Also, the subtree can have any terminal element.

The rule will recognize the foilowing subtree:

97

BUPT

nodc (nodc namc bar : fcaturcs [+aniiiiatc\-t-singiilaii or [+aniinatc,+noiiiiiialivc]):
traiisformationVarîablc nv I

Any terminal

This rule is expresscd as follows:

transformation 'Exampic 5'
variabics

featurcs fi set [-fanimate,+singular] or [+animate,+nominative]
structurcDcscription

(nodc (&anyNodc: fcaturcs &f l) : traiisformationVariablc nvl,
terminal &anyTcrm)

The above rule is a transformation tliat has tlie name "Example 5". This rule
has a variable of the node features type that has the name fl and the values
[+animate,+singular] and [+animate,+nominative]. This variable is iised to specify the
features of the node in the X category subtree. In the structurcDcscription field of
the transformation we describe the sublree of the category X that shouid exist in the
input strueture. The node of the tree can have any name. This is why we use a variable
that has not been stated in the variabics field of the transformation. We also use the
features [+animate,+singular] or [+animate,+nominative]. In this node we assign a
variable of the transformationVariabIc category under the name nvl. This variable
enables us to change, for cxampic, the node's fcaturcs and to scl as a fcaturc Ihc
^nominative. As a rcsult of this Iranslbrmalion, Ihc rcspcclivc nodc of ihc X-bar Ircc
becomes as follows e.g.:

noun bar : fcaturcs [^nominative]

The subtree can have any terminal element. This is why in the rcspcctive place
of the subtree we use a variable with no iniţial valuc.

Example 6

In this example we shall define a rule that will use a variable of the
transformationVariabIc category in a terminal clement of the X-bar tree. The
subtree, to which this rule will appiy, shall bc a sublrcc of the X catcgoiy having as a
terminal element the word 'door'.

Schematically, the X-bar tree shouid include the follovving subtrees:

98

BUPT

Any node ofcalcgory X

terminal 'door' : traiisforiiialioiiVariabIc svl

The rule that expresses thc above is the foilowing:

transformation ' txample 6'
noVarîablcs.
structurcDcscription

(nodc &anyNode, terminai 'door \ traiisrormationVariable sv l)

The above transformation has the name "Example 6". This rule doesn't have
any variable in the variables field. In the structurcDcscription fieid of the
transformation we describe the subtree of the eategory X that shouid exist in the X-bar
tree that uses this particular transformation, in order to appiy this transformation on
that tree. The subtree of the structurcDcscription fieid is of the X eategory, has a
node that can have any name and features, and the word 'door' as a terminal element.
In this terminal element we assign a variable of the transforinationVariable eategory
under the name svl . This variable enables us to change the terminal node. By
appiying the appropriate transformation we can, for example, change the word and
make it a window, or to add an anaphor.

Example 7

In this example we shall dermc a rule that will specify a variable of the
transformationVariablc eategory in a terminal element of the X-bar tree. The
subtree to which this rule will appIy, shall be a subtree of the X eategory having as a
terminal element the word 'door' or the word 'window'.

Schematically, the X-bar tree shouid include the foilowing subtrees:

Any node of eategory X

terminal 'door' or 'window' : transformationVariablc svl

99

BUPT

The rulc thal cxprcsscs llic abovc is Ihc following:

transforniatioii 'L:\aniplc 7'
variabics

terminal tl set 'door' or 'window'
structurcDcscriptioii

(node &anyNo(Jc, terminal &ll: transformationVariable svl)

The transforinalion has Ihe naiiie ''lixample 7". It also has a variable in thc
variabics field. This variable has Ihe naine tl and Ihe values 'door' and 'windovv'. In
the structureDescription field we deseribe the siibtree of the calegory X that should
exist in the X-bar tree that uses this particular Iransformalion, in order Io appiy this
transformation on that tree. The subtree of thc structureDescription field is of thc X
category, has a node that can have any name and fcatures, and the word 'door' or
'window' as a terminal element. Thesc two values of the terminal element are given
by the variable t l . In this terminal element we assign a variable of the
transformationVariable category vvith the name svl. Ihis variable enables us to
change the terminal element. By appiying the appropriate transformation we can, for
example, change the word of the X-bar tree and make it a ' roo f , or to add an anaphor
to this terminal element.

Example 8

In this example we shall define a rulc that will specify a variable of the
transformationVariable category in a terminal element of the X-bar tree. Thc
subtree to which this rulc will appIy, shall be a subtree of the X category having as a
terminal element the word 'door' bound to thc name anaphorTracc.

Schematically, the rule will appIy to the following subtree:

Any node catcRory X

terminal ('door':anaplior anaphorTracc): transformationVariable svl

The following transformation expresses the abovc requirements:

transformation 'Example 8'

100

BUPT

noVariablcs.
structurcDcscriptioii
(nodc t&aiiyNodc, terminal ('(Joor':anaplior anaphorTracc):

transforniationVariablc sv l)

The above rulc is a iransformalion that has thc name "Example 8". This
transformation docsn'l havc a variable in llic variablcs ficld. In thc
structurcDcscriptioii Ticld of Ihc abovc rule wc describe thc subtrce of the X-bar
tree, to which this rulc will appiy. This subtrcc can havc any nodc of the X category.
This is why we usc a variable wilh thc name anyNodc that has no values. Also, this
subtree must havc a terminal clement which is the word 'door'ianaphor
anaphorTracc and to which wc assign a variable of the transformationVariabIc typc
with thc name svl . This variable cnabics us to transform the terminal clement of the
X-bar trec that exists in its rcspcctivc place.
Thus, for example:

thc terminal 'door':aiiaplior anaphorTracc
can become 'window' laiiaplior anaphorTracc or

'door' : anaphor anaphorPronoun.

Example 9

In this example we shall define a rule that will specify a variable of the
transformationVariabIc category in a terminal element of the X-bar tree. The
subtree, to which this rulc will appIy, shall bc a subtree of the X category having as a
terminal clement the word 'door' bound either to the anaphorTracc or the
anaphorPronoun.

We shall also define a rule to which thc above will apply, only that we will
have no constraints from special anaphors.

Schcmatically, Ihe rule will apply to thc foilowing subtree:

Any nodc category X

terminal Cdoor':anaplior anaphorTracc or anaphorPronnoun):
transformationVariabIc svl

The foilowing transformation expresses the above requirements:

101

BUPT

transformation 'Exainpic 9'
variabics

aiiaplior al set anaphorTracc or anapliorPronoun
structurcDcscriptioii

(iiodc &anyNodc, terminal ('door':aiia|)Iior &al) :
t rai isrormationVariahle svl)

The transformalion has Ihc namc ^'[ixaniplc Ihis Iransformation has a
variable of Ihe variables rield. This variablc is o f l h c anaplior catcgoi-y aud has Ihc
naine al and thc vahies anaphorTracc and anaphorPronoun. In Ihc
structureDescriptioii Ticld of thc abovc rulc wc dcscribc Ihc sublrcc of Ihc X-bar
tree, to which this rulc will appiy. This sublrcc can havc any nodc of thc X catcgory.
This is why we usc a variablc with thc namc anyNodc that has no vahics. Also, this
subtree must have a terminal element which is thc vvord 'door^aiiaplior
anaphorTracc or 'door':anapIior anaphorPronoun' and to which we assign a variablc
of the transformationVariable typc with thc namc svl . Ihis variablc cnabics us to
transform the terminal clement of thc X-bar trec that cxists in its rcspcctivc placc.
Thus, for example,

the terminal 'door ' raiiaplior anaphorPronoun
can become 'window' raiiaplior anaphorPronoun.

The rule we dcfincd abovc had known anaphors for its terminal clement. If wc
don't know the anaphors then the abovc rulc becomes as foilows:

transformation 'Example 9'
noVariables
structureDescription

(nodc 4&anyNodc, terminal ('door':anaplior 4&anyAnaphor):
transformationVariable sv 1)

In this rule appIy the same as to the abovc rule, oniy that instead of thc
variable al that has as values thc two anaphors, wc usc thc variablc anyAnaphor that
has no values. As a result, the abovc rulc appiies to any X-bar trec that has a subtrcc
of the X category with terminal clement the word 'door' and onc of morc anaphors
regardiess of their names.

Example 10

In this example we shall defme a rule that will specify a variable of thc
transformationVariable category in a terminal element of the X-bar trec. Thc
subtree, to which this rule will apply, shall bc a subtree of thc X catcgory with a
terminal element that has as an anaplior thc anaphor I racc or thc anaphorPronoun.

Schematically, the rule will apply to the foilowing subtree:

102

BUPT

Any nodc catcgory X

terminal (any lcrniinal:aiiaplior anaphorTrace or aiiaphorPronnoun):
transformationVariable svl

The foilowiiig Iransformalion cxpresses Ihc above requiremenls:

transformatioii 'lixainpic 10'
variablcs

anaphor al set anaphorTracc or anaphorPronoiin
structureDescriptîon

(node &anyNodc, terminal (&anyTcrmianaplior &al) :
transformationVariable svl)

The above Iransformation has Ihe name ''Bxample 10". This Iransformalion
has a variable of Ihc variables ficld. This variable is of Ihe anaphor category and has
Ihe name al and Ihe valiies anaphorTrace and anaphorPronoun. In Ihe
structureDescription field of Ihe above rule we deseribe the subtree of the X-bar
tree, to vvhich this rule will appiy. This subtree can have any node of the X category,
this is why v^c use a variable with the name anyNode that has no values. Also, this
subtree must have a terminal element that can be any element this is why we use the
variable anyTerm that has no values. This terminal element however must have as an
anaphor either the anaphorTrace or the anaphorPronoun. The requirement of having
one of these two variables is fulfilled with the variable a l . In this terminal element we
assign a variable of the transformationVariable type with the name svl . This
variable enables us to transform the terminal element of the X-bar tree that exists in
its respective place. Thus, we can change the terminal element of the X-bar tree as we
vvish.

Example 11

In this example we will define a rule that will apply to X-bar trees that have
the foilowing subtree:

(nodc article bar, terminal ' the')

This rule will specify for this subtree a variable of the
transformationVariable category with the name svl .

Schematically, the transformation that we will defme will recognize the
foilowing subtree:

103

BUPT

nodc articic bar
IraiisformalioiiVariahlc sv 1

terminal 'Ihe'

The transformation is thc foilowing:

transforniation 'Example 1 T
noVariabIcs.
structurcDcscriptioii

(node article bar, terminal 'llic'): transrormationVariable svl

This transformation has thc name "l£xamplc 1 r \ It has no variabics in thc
variables field. In thc structureDescription ficld vvc dcscribc thc subtrcc that thc X-
bar trec must havc in ordcr to appiy thc rulc. This subtrcc is thc (node articic bar,
terminal 'the'), to vvhich vvc will assign a variabic of thc transformationVariable
type with the name svl. The transformation can usc this variabic to modify thc
respective subtree of thc X-bar trec that uscs thc transformation.

Example 12

In this example vvc will definc a rule that will appIy to X-bar trecs that havc
one of the foilowing subtrecs:

a) (node pron bar, terminal 1ic')
b) (node pron bar, terminal 'shc')
c) (node pron bar, terminal ' it ')

This rule will specify for this subtrcc a variabic of thc
transformationVariable category with thc name svl.

Schematically, the transformation that we will defme will recognize one of thc
foilowing subtrecs:

node pron bar
transformationVariable sv]

terminal 'he'

104

BUPT

nodc pron bar
— traiisformalioiiVariablc svl

terminal 'shc^

node pron bar
(ransformationVariable svl

terminal

The Iransformalion is Ihc following:

transformation 'Lxample 12'
variables

subtree sbl set (node pron bar, terminal Mie') or
(node pron bar, terminal 'she') or
(node pron bar, terminal ' i t ')

struetureDeseription
subtree &sbl : transformationVariable svl

The transformation has Ihe name "Example 12" and it aiso has a variabic of
Ihc subtree typc in thc variables ficld. This variabic has thc namc sbl and the values
(node pron bar, terminal (node pron bar, terminal 'she') and (node pron bar,
terminal 'it '). in the struetureDeseription ficld \vc dcscribc the subtree that the X-
bar trcc must have in ordcr to apply thc rulc. I his subtree must onc of these that the
variable sbl has as valucs. Thercfore, thc variabic sbl cnables us to apply the above
transformation in trces that have at Icast one of these three subtrees. Also, to the
subtree of thc sbl we assign a variabic of thc transformationVariable type with the
name svl . The transformation can usc this variabic to modify the respective subtree of
the X-bar trec that uses thc transformation.

Example 13

In this example wc will definc a rulc that vvill apply to X-bar trees that have
the following subtree:

(node articic bar, terminal 'thc'):anaplior anaphorTrace

105

BUPT

This rulc will spccify for Ihis subtrcc a variabic of llic
transformationVariablc calcgory wilh Ihc nainc svl.

Schematically, thc transfornialion Ihat vvc will definc will rccognizc Ihc
following subtree:

nodc articic baî ^ transformalioiiVahahlc svl

anaplior anaphorTracc

terminal 'thc'

The transformation is the following:

transformation 'Exampic 13'
noVariablcs.
structurcDcscriptioii

((node article bar, terminai 'thc'):anaplior anaphorTracc):
transformationVariable sv 1

This transformation has the namc "Example 13" and it has no variabics in thc
variables field. In the structureDescription ficld wc describe the subtree that thc X-
bar tree must have in order to appiy the rulc. This subtree is thc (nodc articic bar,
terminal 'the'):anaphor anaphorTracc, to which wc assign a variabic of ihc
transformationVariable category with thc namc svl. The transformation can usc this
variabic to modify the respective subtrcc of thc X-bar trec that uscs thc
transformation. For exampic, wc can change thc articic and thc anaphor namc and
make it (node article bar, terminal 'thc'):anaplior anaphorPronoun.

Example 14

In this example we will definc a rulc that will appIy to X-bar trces that have
one of the following subtrees:

a) (node article bar, terminal 'the'):anaplior anaphorTracc
b) (node article bar, terminal 'thc^):anaplior anaphorPronoun

This rule will spccify for this subtree a variabic of thc
transformationVariable category with the namc svl.

Schematically, the transformation that we definc will rccognizc one of thc
following subtrees:

106

BUPT

Iiodc arlicic bAv^ — ti aiisformationVariablc svl

^ aiiaplior anaphorTrace

terminal 'thc'

nodc arlicic bskr^ traiisformationVariable svl

anaplior anaphorPronoun

terminal 'the'

The transformation is Ihc following:

transformation ' txampic 14'
variables

anaplior al set anaphorTrace or anaphorPronoun
structureDescription

((node arlicic bar, terminal 'the'):anaphor &al) :
transrormationVariable svl

The above Iranslbrmalion has Ihc namc "l:\amplc 14" and il has a variable of
the anaphor calegory in Ihc variables ficld. This variable has the name al and the
values anaphorTrace and anaphorPronoun. This variable is used in the
structureDescription ficId lo describe Ihe desired subtree. In the
structureDescription ficld \vc dcscribc Ihc sublrcc that the X-bar Iree must have in
order to apply the rulc. This sublrcc is cilhcr Ihc (node arlicle bar, terminal 'the'):
anaphor anaphorTrace or ihc (nodc arlicic bar, terminal 'Ihe'): anaplior
anaphorPronoun lo which wc assign a variable of the transformationVariable
calegory wilh Ihe namc svl . The Iransformalion can usc Ihis variable lo modify Ihc
respective sublrcc of Ihc X-bar Ircc Ihal uscs Ihc Iransformalion. For cxample, wc can
change Ihe arlicle and makc il (nodc arlicic bar, terminal 'a ') : anaphor
anaphorPronoun inslcad of Ihe original (node arlicle bar, terminal 'Ihe'): anaphor
anaphorPronoun.

The above rulc can be modified in order lo recognizc the following subtrees:
(node arlicle bar, terminal 'Ihc'): anaphor a;?;' anaphor

107

BUPT

Namely, Iherc will bc no coiistraint for llic nanic of thc anaplior.

Thcreforc, Ihc abovc Iranslbriiialion hcconics as Ibllows:

traiisformatîoii 'IZxainpIc 14'
noVariabIcs.
structurcDcscriptioii

((iiodc articic har terminal Mhc'):aiiaplior &anyAnaphor):
transTormatioiiVariablc svl

As we observe, we do noi nccd the variable al and inslead we have put llie
variable anyAnaplior that has no values and takes each time the valiie from the X-bar
tree. As a result from the above description in the structureDescrîptîon field of the
rule all the trees that have the subtree (iiode artiele bar, terminal 'the') arc
recognized, regardiess of the subtree's anaphor name.

Example 15

In this example we will define a rule that will apply to X-bar trees that have
one of the following subtrees:

a) (node pron bar, terminal 'he'): anaphor anaphorTraee
b) (node pron bar, terminal 'she'): anaphor anaphorTraee

This rule will speeify for this subtree a variable of the
transformationVariable category with the name svl.

Schematically, the transformation that we define will reeognize one of the
following subtrees:

node pron bar transformationVariable svl

anaphor anaphor'Frace

terminal 'he'

node pron bar

terminal 'she'

transformationVariable sv]

anaphor anaphorTraee

108

BUPT

The transformation is Ihe foilowing:

transformation Iixamplc 15'
varîablcs

subtrcc sbl set (iioclc pron bar, Ierminal Mic') or
(nodc pron bar, terminal 'she')

structureDescription
subtree («fcsbl :aiiaphor anaphorTracc): traiisformationVariable svl

This transformation has tlic name ''Example 15" and it also has a variable of
the subtree typc in the variables ficld. This variable has the name sbl and the values
(node pron bar, terminal 1ic') and (nodc pron bar, terminal 'she'). in the
structureDescription field wc describe the subtrcc that the X-bar trec must have in
order to apply the rulc. This subtree must be one of these that the variable sbl has as
values. This variable is used in the structureDescription fieid to describe the desired
subtrcc. In the structureDescription ficld wc describe the subtree that the X-bar trec
must have in order to apply the rulc. This subtree is cither the (nodc pron bar,
terminal Mie'): anaplior anaphorlracc or the (node pron bar, terminal 'she'):
anaphor anaphorTracc to which wc assign a variable of the transformationVariable
category with the name svl . The transformation can usc this variable to modify the
respective subtree of the X-bar trec that uscs the transformation. For example, we can
change the pronoun and makc it (nodc pron bar, terminal ' it '): anaplior
anaphorTracc instead of the original (node pron bar, terminal Mic'): anaphor
anaphorTracc.

The above rulc can be modified in order to recognize the foilowing subtrees:
uny subtrcc: anaphor anaphorTracc

Namely, there will be no constraint for the subtree but oniy for the name of the
anaphor.

Therefore, the above transformation becomes as follows:

transformation 'Example 15'
noVariabIcs.
structureDescription

subtree (&anyTree:anaphor anaphorTracc): transformationVariable svl

As we observe, we do not need the variable sbl and instead we have put the
variable anyTree that has no values and takes each time the value from the X-bar tree.
As a result from the above dcscription in the structureDescription field of the rulc,
all the trees that have. the subtrcc with the anaphor anaphorTracc are recognized.

109

BUPT

Example 16

In this cxampic vvc vvill clcfinc a rulc Ihal will appiy Io X-bar trccs Ihal havc
one of the foilowing sublrccs:

a) (nodc articic bar, terminal 'a'):aiiaplior anaphor Fracc
b) (nodc arlicic bar, terminal 'lhc'):ana|)lior anaphorTracc
c) (nodc article bar, terminal 'a'):ana|)lior aiiaphorPronouii
d) (node arlicle bar, terminal 'thc'):anaplior anaphorProiiouii

This rule will spccify for Ihis sublrcc a variabic of Ihc
transformationVariable calcgory with llic naine svl.

Schcmalically, thc transformation that wc clcfinc will rccognizc onc of thc
foilowing subtrees:

node article bar

terminal 'a'

transformationVariable svl

anaphor anaphorTracc

node article bar^

terminal ' the'

transformationVariable svl

anaplior anaphorTracc

node article bar

terminal 'a'

transformationVariable svl

anaphor anaphorPronoun

110

BUPT

nodcarticlebar — transforniationVariablc svl

anaphor anaphorPronoun

terminal 'thc'

The transformalion is ihc following:

transformatioii 'Hxamplc 16'
variablcs

subtrcc sbl set (node arlicle bar, terminal ' a ') or
(node article bar, terminal ' the')

anaphor al set anaphorTracc or anaphorPronoiin
structureDescription

subtree (&sbl lanaplior &al) : transformationVariable svl

This transformation has Ihe namc ''Example 16" and it also has two variablcs
in the variables field. The firsl variable has Ihe nanie sbl , is of the subtree type and
has the values (node article bar, terminal 'a ') and (node article bar, terminal 'the').
The second variable is of the anaphor type, it has the nanie al and the values
anaphorTrace and anaphorPronoun. These two variable are used in the
structureDescription field Io describe the desired subtree. In the
structureDescription field vvc dcscribc the subtree that the X-bar tree must have in
order to appiy this rule. This subtrcc is the (4&sbl :anaphor 4&al) to which we assign
a variable of the transformationVariable category vvith the name svl . The
transformation can usc this variable to modify the respective subtree of the X-bar tree
that uses the transformation. Iov cxamplc, wc can changc the article and make it
(node article bar, terminal \ in'): anaphor anaphorTrace instead of the original
(node article bar, terminal ^thc'): anaphor anaphorTrace.

The above rule can be modificd in order to recognize subtrees that have an
anaphor:

transformation Example 16'
noVariables.
structureDescription

subtree (&anyTree:anaphor &anyAnaphor):
transformationVariable svl

111

BUPT

As we observe, we do not need the variabics sbl and al and inslead vve have
put the variable anyTree and the variable anvAnaphor Ihal have no values. As a result
from the above deseription in Ihe structurcDescriplioii field of the rule, all Ihe trees
that have the subtree with an anaphor are recognized.

3.2.2.4 The tree operators in the structureDescription
field

The operators for the subtrees in the structurcDcscription field of the
prineiples and transformations are deseribed in this chapter.

These operators belong in the follovving categories:

a) Operators that express the constraints belween two or inore subtrees that are
deseribed in the structurcDcscription field.

These operators are the following:

1) Subtrcc 1 :subtrcc Subtree 2
2) Subtree 1 rnotSubtrcc Subtree 2
3) Subtree I :iiodcSubtrec
4) Subtree 1 riiodcNotSubtrcc nocle

From the above operators the first one expresses the eonstraint that the subtree
1 shouid be a subtree of the subtree 2 subtree. The seeond one expresses the eonstraint
that the subtree 1 shouid not be a subtree of the subtree 2 subtree. The third one
expresses the eonstraint that the subtree I shouid be a subtree of a tree that has the
head node node. The subtree I ean be either at the left or at the right subtree of the
subtree that has the head node. The forth one expresses the eonstraint that the subtree
1 shouid not be a subtree of a tree that has the node node. In the first two eases, the
Subtree 1 ean be a left or a right subtree of the Subtree 2. This is deelared by the
operator subtrccPosition.

b) Operators that express the constraints that shouid appiy to one subtree, that may
contain other subtrees and operators, in the structurcDcscription.

These operators are the following:

1) not subtree
2) aTrcc
3) aFirstTrcc
4) X^itMosi subtree

112

BUPT

From the abovc operalors Ihe Tirst one slates that thc subtree subtrec should
not exist as a subtrec of Ihc X-bar trce in the respective place. The second operator
states that the subtrec sublrec should exist as a subtree in any depth in respective
place of the X-bar trce. Thc Ihird operator stales that the subtree subtree is the first
subtree in any depth if thc Irce is scanning top-down left to right starting from the
respective place of the X-bar trec. 1 hc forth operator specifies that the subtree is the
left most subtrec in any depth in thc respective place of a X-bar trce if it is scanned
top-down left to right.

This operator is vcry usclul for thc dctcrmination of the X-category node of an
X-bar tree. The X-category nodc has a central role in the X-bar scheme and by using
the abovc operators (aTrec, leftIVIost) it is possible to determine in an easy way
possible governing or c-commands rclations (Chomsky, 1981, 1988, 1995) in the
structures that are under processing. Ih i s can be in more general way than the
Chomsky's theory by using variablcs (Fouskakis, 2005b) that determine possible
connections betwecn diffcrcnt clcmcnts of x-bar structures or their acceptable values.

c) Operators that express the constraints that should appiy to N subtrees in a position
of the structurcDescriptioii ficld of principles and transformations. N may be
bigger or equal to 2.

These operators are thc follovving:

1) subtree 1 and subtree 2 and...
2) subtree 1 or subtree 2 or...

From the abovc operators the first one states that the subtrees subtree J,
subtree 2, etc. should all be subtrees of the subtree that exists in the X-bar tree that
uses the rule and in the respective position. While the second operator states that at
least one of the subtrees subtrec 1. subtrec 2, etc. should be a subtree of the subtree
that exists in the X-bar trec that uses thc rule and in the respective position.

d) The operator that has no constraint for a tree and that is used in the place of the
subtrees of the trec that we describe in the structurcDcscription field of
principles and transformations, is the foilowing:

1) anyTrce

The abovc operator takcs thc place of the subtree of the tree in the
structureDescription field of principles and transformations, only when it is not
necessary any constraint for this subtree.

3.2.2.5 The structureDescription field examples with
one operator

Next, we wiILanalyze examples that usc only one operator on subtrees of the
structureDescription field of thc principles and transformations.

113

BUPT

Examplc 1

Wc will dcfiiic a principic ihal will appiy Io Ihosc Irccs Ihal havc a subtrcc of
the X categor>', wilh noun as a iiodc iianic and Ihc vvord Miousc' as a Icniiinal clcmcnl.
This subtree shouid be Ihe righl sublrcc of anothcr sublrec of llie X' calcgoiy wilh
verb as a node name.

Schemalically the sublrcc Ihal wc wish Ihc X-bar Ircc Io havc is Ihc following:

Verb'

Coiiiplcmcnl

Verb

Noun

Miouse'

The principie Ihat cxprcsscs Ihc abovc rcquircmcnls is Ihc following:

principie 'Examplc 1'.
noVariables.
structureDescription

(node noun bar, terminal 'house'):
subtree (node verb bari, anyTree, subtreePosition)

The abovc principic has Ihc namc ''Examplc T' and has no variabics in the
variables fieid of stating Ihc variabics. In Ihc structureDescription ficld wc dcscribc
the subtree that the X-bar Irec must havc in ordcr Io appIy Ihc rulc. fliis sublrcc,
according to the figurc wc havc show abovc and our rcquircmcnls for Ihc rulc, musl
be (node verb bari, anyTree, subtreePosition) Ihal has as a sublrcc Ihc (node noun
bar, terminal Miouse') in the place of Ihc subtreePosition. Namely, Ihc (node noun
bar, terminal 'housc') is a sublrcc of Ihc sublrcc Ihal occupics Ihc placc of
subtreePosition.

For example, the abovc rulc couid appIy to Ihc X-bar Irce of the scntcncc.

John came Io the house.

but it could not appIy to the scnlcncc

114

BUPT

I he house was demolished.

This is shown schcnialically by Ihc Irccs Ihal correspond Io Ihc above two
senleiices:

The First sentcncc has thc tree:

Vcrb^^

Noun^' Verb'

Noun"
Noun'

the house

Therefore the sublree recognized by the above principie is the subtree that has
as a top 'Verb' and includes the subtree of the X category that has as a terminal
element the word house.

The second sentence has the foilowing tree:

Article

Noun"

house

Verb"

Verb'

was demolished

115

BUPT

in the second scnlcncc's Ircc, vvc observe Ihat we have the sublree of Ihe X
calegory Ihat has Ihe iiode naine Verb biil ihis sublree has no riglu sublree. As a resull
the prineiple does noi aeeepl ihe above Iree.

Examplc 2

We will define a prineiple Ihal will appiy Io those trees thal have a sublree of
the X category, wilh arliele as a node name and Ihe vvord ^Ihe' as a lerniinal elenienl.
This subtree shouid not be Ihe lefi sublree of anolher sublree of ihe X ' ' ealegory wilh
verb as a node name.

Schematically the subtree that vvc do not vvish the X-bar tree to have in order
to appIy the rule is the following:

Verb' '

Verb'

article

Uhe'

The principie that expresses the above requirements is the following:

prineiple 'Example 2'.
noVariables.
structurcDescriptioii

(iiodc artiele bar,terminal 'the'):
notSubtree (node verb barii, subtrcePosition,anyTree)

The above principie has the name "Example 2" and has no variables in the
variables fieid of stating the variables. in the structureDescription fieid we describe
the subtree that the X-bar tree that uses the rule shouid have. in the case of this rule
we do not want the X-bar tree to have a subtree (node artiele bar, terminal 'the') Ihat
is tlie left subtree of the sublree of Ihe X " category wilh verb as a node name and
description (node verb barii, subtreePosition, anyTree). We usc the operator
anyTree in the place of the righl sublree because we are noi concerned wilh ils
structure and its element. While we usc subtreePosition in the place of the left
subtree because we don't want the subtree (node artiele bar, terminal 'the') Io be a
subtree of the subtree that has Verb" as a top.

116

BUPT

For exampic, Ihc abovc rulc coulcl appiy Io Ihe X-bar Iree of Ihe sentence

Gcorgc is driving the car

but it couid noi appIy Io ihc scnlcnce

The car is bcing rcpaircd

This is shown schcniatically by Ihe Irees Ihat correspond to the abovc two
sentences:

The first sentence has the trec:

Noun"

George

Verb^'

the
car

Since the abovc subtrce (iiocle article bar, terminal Uhe') is the right and not
the left subtrce of the Verb" calcgory trec, the specific principie can appIy to this X-
bar trec.

The second sentencc has the following trec:

Verb"

Noun' Verb'

Article

is being repaired

117

BUPT

In the second sentcncc's Irec, wc observe that the sublree (iioclc arlicic bar,
terminal ' the') is the left subtree of lhe Verb' ' calegory Iree. As a resiilt, Ihe sublree
that we describe iii tlie structiircDcscriptioii lleld of Ihe above prineiple, is noi
correct and therefore we eannol appiy Ihis prineiple.

Example 3

In this example we will deTnie a prineiple Ihal will appIy Io Ihose Irees Ihal
have a subtree of the X eategory, with noun as a node name and the word 'niaehine'
as a terminal element. This sublree shouid be a sublree of anolher sublree Ihal has
Verb" as a top node.

Sehematically the subtree that we wish Ihe X-bar Iree Io have is one of Ihe
following two:

Verb"

Verb'

noun

'maehine'

Verb"

Verb'

noun

'maehine'

118

BUPT

The principie that cxpresses the above reqiiircmenls is tlie foilowing:

princîpic ^Examplc 3 \
noVariables.
structureDcscriptioii

(node noun bar, terminal 'macliiiic'):notleSubtrce verb barii

The above principie has Ihe name "Exainple 3" and has no variables in the
variables fieid of stating Ihe variables. In Ihe structureDcscrîption fieid we describe
the desired subtree that the X-bar trce that uses the rule shouid have. According to the
above figure and our requiremcnts for the rule, the subtree (node noun bar, terminal
'machine') shouid bc a sublrcc of another subtree that has at its top the node verb
barii.

For example, the above rule couid appiy as a right subtree to the X-bar tree of
the sentence below:

Costas bought the inachine

But it couId also apply as a left subtree to the sentence below:

The machine has been sold

This is shown schcmatically by the trees that correspond to the above two
sentences:

The first sentence has the Irce:

Noun"

Costas

Verb"

N o u n "

Noun'

the machine

119

BUPT

Thcrcfore, thc subtrcc rccognizcd by Ihe abovc principic is Ihc subtrcc lliat has
Verb" at the top and includcs Ihc subtrcc of Ihc X calcgory with thc word inachinc as
a terminal clement.

The second sentence has thc following trcc:

Vcrb'^

Noun"
Vcrb^

Articlc

the has bccn sold

machine

In the tree of the second sentence we observe that there is the subtrcc of the X
category with Verb as node name. We also observe that the subtrcc of thc X "
category with noun as node name and thc word 'machine' as terminal clement (node
noun bar, terminal 'machine') is the left subtrcc of thc tree that has Verb" as a top
node. As a result, this rule can also appiy to the second cxample.

Example 4

We will defme a principie that will appIy to those trees that have a subtrcc of
the X category, with noun as a node name and the word 'housc' as a terminal element.
This subtree should not be a subtrcc of another subtrcc that has Verb' as a top node.

Schematically the subtree that we wish the X-bar trec to have is thc following:

Verb'

noun

Miouse'

120

BUPT

The principic thal exprcsscs thc abovc rcquircmeiils is the foilowing:

princîplc 'I^xaniplc 4\
noVariahlcs.
structiireDescriptîoii

(nodc noiin bartcrminal Miouse'):iiotnodeSubtrec verb bari

The above principic has the iianic "Iixamplc 4" and has no variables in the
variables field of stating thc variables. In thc structiireDcscriptioii fieid we describe
the desired subtrcc that thc X-bar trcc thal iiscs thc riilc shouid have. In the
structurcDescription fickl wc state that thc X-bar trec shoiild not have the subtree
(nodc noun bar, terminal Miousc') that is also a subtrcc of the trec with Verb' as thc
top nodc. That mcans that thc subtrcc (nodc noun bar, (crmiiial 'house') shouid bc
ncithcr a left nor a riglit subtrcc of thc trcc with Verb' as the top nodc.

below:
For exampic, thc abovc rulc cannot appiy to the X-bar tree of the sentence

Costas bought the house

but it couid appIy to the foilowing sentence:

The house has been sold

This is shown schcmatically by the trees that correspond to the above two
sentences:

Thc first sentencc has thc trcc:

Noun"

Costas

Verb'^

Noun"

Noun'

the house

121

BUPT

This trcc has Ihc subtrce (iiocic noiin hsir, terminal 'housc') Ihat is a siiblrcc
of anothcr subtrce with Verb' as (hc lop node. I his is vvhy Ihe specific principie
cannot appiy lo Ihis senlence.

The second sentence has ihc following trec:

Verb^^

Noun" Verb'

Articic

has been sold

house

In the tree of the second sentence we observe that there is the subtrce of the X'
category with Verb as node name. We also observe that the subtrce of the X catcgor>'
with noun as node name and the word liouse' as terminal element (iiotlc noun bar,
terminal l iouse') is a left subtrce of the tree that has Verb" and not Verb' as a top
node. As a result, this rule can appIy to this sentence.

Exampic 5

In this example we shall derine a rule that will appIy to those X-bar trees that
havc a verb with two objects and a noun phrasc as subjccl. fhcsc ivvo objccls must bc
noun phrases.

Schematically the subtrce that the X-bar tree must havc is the following:

Verb"

Noun'

Verb

Noun phrasc

Noun phrasc

122

BUPT

Considcring our rcquircinciUs aboiil Ihc dcrinilion of llic riilc and tlic abovc
sublrcc, WC dcfinc Ihc pnnciplc as lollows:

prînciplc Cxample 5 \
iioV'ariablcs.
structurcDcscriptioii

(nodc verb barîi,
IcftMost (nodc iioiin biiri,aiiyTrcc,aiiyTrcc),
(iiodc verb barî,

(iiodc verb bari,
aiiyTrce,
aTrcc (iiodc noun bartcrmiiial &aiiyTerniinall),

aTrcc (iiodc iioun bartermiiial &aiiyTerniinal2)))

The principie we defined above has Ihc name 'Cxaiiipic 5 \ This principie has
no variable in ihe varîablcs Ticld that's why the respective field has been replaced by
ihe operator noVariablcs. In the structureDcscription field we describe the structure
and the elements of the subtree that the X-bar trec must have in order to appiy the
ruie. As we describe in the structurcDcscriptioii field, this subtree is a trec that has
the top Verb ' \ Its left subtree is a trec of a noun phrase. This is described by the
structure IcftMost (nodc noun bari,anyTrcc,anyTrcc) with its left and right subtrees
out of our interest. This is why we usc the operator anyTrcc. The right subtree is a
trec that has the top Verb' and the right subtree that we want to have a subtree of the
X category with noun as a nodc name. 1 his is why we usc aTrcc (nodc noun bar,
terminal &anyTerminal2). Its left subtree is a trec of the Verb' category. li has as
right subtree a trec that includes the subtree of the X category with noun as a nodc
name. This is why we usc aTrcc (nodc noun bar, terminal &any'rerminal2).

Next we shall give an example of a sentence to which the above principie
appiies:

Nick examines the pupils in geography.

The trec of this sentence is the foilowing:

123

BUPT

VcrlV

Nouir ' Verb'

Nouir '

Nouir

Noiiir

Nou.r g-^oyraphy

examincs

the
piipils

We nolicc that Ihe Iree of Ihe abovc scnlcncc includcs a sublrcc Ihal has thc
top Verb" and the riglit subtree Verb\ This subtree has as a right sublree the one that
includes the subtree (nodc noun bar, (ermiiuil 'geography'). The subtree of Verb'
has a left subtree with the Verb' as a top and a righl subtree that inckides the subtree
(nodc noun bar, terminal 'pupils'). Also there is the noun phrase witli root node
Noun\ this is the (nodc noun bari,(nodc noun bar, terminal ^Niek'), cmpCy).

Example 6

In this example we shall define a rule that will reeognize those trees that do
not have a subtree of the X category with noun as a node nanie and the word
'window' as a terminal element.

Sehematieally the subtree that shouid not have the tree that uses the rule is the
foilowing:

Noun

'window'

124

BUPT

The principie Ihat is iii accordancc Io Ihe above is Ihe rollovving:

priiiciplc 'Exampic 6\
iioVariablcs.
structurcDescriptioii

iiot (iiodc noiin har, terminal windovv)

This principie has Ihe name ^Example and has no variables Ihis is why it
has the name iioVariabIcs. in Ihe structurcDescriptioii field we describe Ihe sublree
Ihat Ihe X-bar Iree Ihal iises Ihe rule should have. in our case, we don'l vvanl the X-bar
trec 10 have the subtree (nodc noun bar, terminal ^vindow^).

An exaniple of a sentence that cannot usc the above rule is the following:

The window has becn broken

Verb^^

Noun' Vcrb^

Articic

The has been broken

windovv

The above sentence has a subtree of the X category with noun as a node name.
This subtree is the (nodc noun bar, terminal 'window'). 11iis is why the principie
'Example 6' cannot appiy to the above trec.

lixample 7

In this example we want to define a rule that will apply to those trees that have
two nouns, one in nominative case and the other in the accusative.

According to the above, the two subtrecs that the trec that uses the rule should
have are the following:

125

BUPT

a) The subtrcc in Ihc iioiuinalivc casc

Nouir wilh Icaliirc +noniinalivc

Terminal elcnienl

b) The sublree in ihe accusalive case

Noinv wilh fealure +accusalive

Terminal element

Therefore, the principie Ihal fiilTils Ihe above requiremenls is the foilowing:

principic 'Example 7'.
noVariables.
structurcDcscription

(node noun bar:fcatures [+nominativeJ, (crmiiial &anyTerminal 1)
aud

(iiodc noun bar:fea(ures [+accusative], (eriiiiiial 4&any I crminai2)

This rule has the name 'Example 7'' and it has no variables in the variables
field Ihat's why we use the operator iioVahables. in the structurcDcscription fieid
WC describe the subtree that the X-bar trec shouid have in order to appiy on it this
rule. We notice that in the structurcDcscription field we describe two subtrees that
are connected with the operator and. I his means that the X-bar trec shouid have both
subtrees as its own subtrees in order to appIy the rule on it. VUc sequence of these two
subtrees in the structurcDcscription field is irrelevant. The first of these two subtrees
is the (nodc noun bar : Tcaturcs |+nominative|, terminal i&any l erminall). Il\s a
subtree of the X eategory with noun as a node name and | ^nominalive| as a nodc
feature. We are not concerned with the terminal clement that foilows, this is why we
use the variable anyTerminall that has no values. I he sccond subtree is the (nodc
noun bar : Tcaturcs |+accusalivc|, terminal 4&any rcrminal2). llN a subtrcc ol the X
eategory with noun as a node name and l+accusativcl as a nodc fcaturc. Wc arc noi
concerned with the terminal clement of this subtree, this is why wc use the variable
anyTerminal2 that has no values. We also notice that wc do not usc Ihc same variable
name for the terminal of both subtrees bccausc wc do not wish thcm to have the same
terminal element.

126

BUPT

An cxamplc o f a scnlcncc thal rullills thc rcquiremcnls o f thc above rulc is Ihc
roilowing:

Costas houghl ihc hicycic

Vcrb'^

NomV

Nouir

Noun'

Noun [+âccusativc]

Coslas

Ihc bicycic

Wc noticc Ihat Ihc Ircc of Ihe above scnlcncc has a subtrcc of Ihc X catcgory
with Noun [+nominalivc] as a noclc and thc word Coslas as a Icrminal element. Also,
thc above trec has another subtrcc of thc X catcgory with Noun [+accusativc] as a
node and thc word bicycic as a Icrminal clement. This is vvhy thc above principie can
appiy Io this trec.

Another cxamplc of using thc operator aud is thc foilowing:

Wc wish to dcfine a principie that will recognize Ihosc Irces thal have a
subtrcc of thc X " catcgory with Verb as a node name. This subtrcc shouid have
subtrces that wouid include thc foilowing Iwo sublrces:
a) thc onc subtrcc will be o f thc X catcgory with Verb as name and a verb as

Icrminal clement.
b) The othcr subtree will be of thc X catcgory with Noun as name and a noun as

terminal element.

Schematically thc subtree thal thc X-bar Iree must have in order to appIy this
rulc is thc foilowing:

127

BUPT

Vcrh^'

VcrIV

Noiin

Verb

a nouii

a verb

Tliercfore, according Io Ihe above, we have Ihe roMowing priiieiple:

principIc 'Example 1 \
noVariabIcs.
structurcDcscriptîoii

(iiodc verb bani,aiiyTrcc,
(nodc verb bartermiiial &anyTerniinal 1)
and
(node noun bar,tcriiiiiial &any rerminal2))

The above prineiple has no variables in Ihe variables field Ihafs vvliy we use
the operator iioVariables. In Ihe structurcDescriptioii fielcl we deseribe Ihe slructure
and the elements of the siibtree that the X-bar tree shouid have in order to appiy on it
this rule. The subtree of the structureDcscriplioii field is the sanie with the one
shown selieniatically above. I hiis, in the structurcDescriptioii field we deseribe a
subtree that has the Verb" as top and a left subtree with strueture and elenients not of
our coneern. This is why we use the operator aiiyTrcc. We want, however, the riglu
subtree to include the following two subtrees:

a) (node verb bar, terminal 4&any l erniinal I)
b) (node noun bar, terminal &any rerniinal2))

These two subtrees are of the X category. I he first subtree has the node nanie
verb and any terminal element. The seeond one has the node name noun and any
terminal element.

An example of a sentenee to which the above rule eould appIy is the following

Costas flevv the airplane.

This sentenee has the following tree:

128

BUPT

VcrlV^

Noun' '

Coslas

Verb'

airplane

Wc noticc Ihal Ihis trec has ihc sublree ihat we dcscribcd schcmalically above
and Ihc onc thal tlic principIc thal wc dcTined dcmands. This Ircc has ihc Verb' ' as lop
and Ihc right siibtrcc ihal includcs ihc Iwo sublrecs thal Ihc mic rcqiiircs.

Thcsc sublrccs arc ihc foilowing:

Verb

flew

Noun

airplane

Example 8

In this example we shall define a riile that will appiy to those X-bar trees thal
have onc of thc foilowing sublrccs of Ihc X calcgory:

a) a sublree with noun as a node name and the word 'honie' as a terminal element
b) a sublree with noun as a node name and the word 'housc' as a terminal element

Sehematically, these subtrees are the foilowing:

Noun

'home'

129

BUPT

Noun

Miousc'

The principie thal describes Ihc above is Ihe following:

principie 'lixainple 8 \
iioVariables.
structurcDcscriptioii

(nodc noun bar,tcriiiiiial Mionie')
or
(nodc noun bartcrminal Miouse')

This principie has the name 'txaniple 8" and it has no variablcs ihat's vvliy vve
use the operator noVariabIcs. In the structurcDcscriplion field we describe thc
subtree that we wish the X-bar tree to have. We wish the tree to have at least one of
the (nodc noun bar, terminal Miome') and (nodc noun bar, terminal liouse'), this is
why we use the operator or. Both the subtrees are of the X category. 1he first one has
the noun bar as a node and thc word lioiiie' as a terminal elenicnl. The sccond
element has the noun bar as a nodc and thc word Miousc' as a terminal clement.

An example of a sentence that the
structureDcscription field fulfils is thc following:

subtree we describe in thc

fhc house was dcmolishcd

Verb^'

Noun' ' Verb'

Article

The was dcmolishcd

house

130

BUPT

Wc nolicc (hat ihis trcc has Ihc siibtrcc ihal Ihc principie M:\ample rcqiiircs.
I'his subtrcc is Ihc following:

Noiin

housc

3.2.2.6 The structureDescription fieid examples with
more than one operator

In all tlic abovc cxaniplcs wc iiscd operators Ihat coulcl appiy Io sublrecs in Ihc
structurcDcscriptîoii ficId of principics and transfonnalions. Lach limc wc havc
uscd oniy one operator but wc could appIy more than one operator to a siibtree.

Next WC shall analyze examples that usc more than one operators to subtrces
of the structurcDcscription field.

Exampic I

in this example we shall deţine a rule that will appIy to those X-bar trees that
havc a subtrcc of thc X category with noun as a node namc. This subtrcc of thc X
category is thc subtrcc of a subtrcc that has thc Noun' as top and of another subtrcc
that has Verb' as top.

Schcmatically thc subtrcc that we wish thc X-bar trec to havc is thc following:

Noun'

Noun

a noun

Thc principie that is in accordance to thc abovc is thc following:

131

BUPT

principie M:\ainplc \ \
iioVariabIcs.
structurcDescriptioii

(iiode noiin l);u\terniinal cV:an\ I cniiinal):
(iiodeSubtree verb bari):(iio(lcSul)trec noun bari)

This principlc has thc nanic 'IZxainpIc \ \ ll has no variabics in Ihc variablcs
ficld and this is vvhy \vc usc Ihc operator noVahabIcs. In Ihe structureDcscriptioii
field vve describe thc subtree thal thc X-bar trec that uses thc riile shoiild have. The
subtrec that we wish thc X-bar trec to havc is a trcc of Ihc X calcgory that has thc
noun as a nodc namc and any terminal elcnicnl. I his is why wc usc Ihc variabic
anyTcrminal that has no valucs. I his subtrec is thc sublrcc (iioilc noun bar, terminal
&anyTerminal). Therc arc howcvcr two conslrainls for this sublrcc. Ihc first
constraints is that it shouid bc a subtrec ot thc subtree that has thc Verb' as top. This
constraint is expresscd wilh thc (nodeSubtrec verb bari). Thc second constraint is
that thc abovc subtree shouid bc a subtrec of thc subtrec that has thc Noun' as top.
This constraint is expresscd with thc (nodeSubtree noun bari).

An example of a sentence to which thc abovc rulc couid appiy is thc
following:

The heat dried thc llowers

On thc contrary, it cannot appIy to thc following sentence:

Thc Howcrs werc dried

The trec of thc first sentence is thc following:

Verb''

Noun' ' Verb'

Articlc

thc

llic llowers

132

BUPT

Wc nolicc Ihal Ihc ahovc ircc has Iwo siiblrccs of llic X calcgory vvilh Ihc
Noun as nodc.

Thcsc subtrccs arc Ihc foilowing:

Noun Noun

hcat f lowcr

However, oniy thc right onc is a subtrcc of the sublrces Ihat have Ihe Verb'
and Ihc Noun' as top.

Thc sccond scnlcncc has Ihc foilowing sublrcc:

Verb"

Noun' '

Ailicic

Thc wcrc dricd

llowcrs

Wc nolicc Ihal Ihc abovc Ircc has a subtrcc of Ihc X catcgory with thc Noun as
nodc namc.

This Ircc is thc foilowing:

Noun

flowcrs

Verb'.
This subtrcc, however, is noi a sublrcc of Ihc sublrces Ihal have as a top thc

133

BUPT

Examplc 2

In Ihis cxamplc vvc shall dcfinc a riilc llial will appiy Io lliosc X-bar trccs ihat
havc two sublrees of Ihe X calcgor}' wilh noiiii as a nodc nainc. I hc Ursi sublrcc of
the X catcgory should bc Ihe sublrce of a sublrce that has llie Noun' as lop and of
another subtree that has Verb' as lop. The sccond sublrce should be Ihe sublree of a
trec that has the Verb' ' as a lop.

Schcmatically the sublrees Ihal the X-bar Iree should have is llie following:

Verb' '

Verb'

Noun

a noun
Noun

a noun

According to the above, \ve have the following principie:

principIc 'Examplc 2'.
noVariabIcs.
structurcDescriptioii

atrec ((node noun bar,terminal &anyTerminall):
(nodcSubtrcc verb bari):(nodcSubtree noun bari))

and
atree ((node noun bar,terminal &anyTerminal2):

(nodeSubtree verb barii))

This principIc has the nanic 'Cxamplc 2\ ll has no variables in the variabics
field of the rule. In the structurcDescription Ucid wc describe the sublree Ihal Ihe X-
bar tree must have. As wc nolice, vvc want the X-bar trec Io havc the two sublrees
(node noun bar, terminal &anyTcrminal]) and (node noun bar, terminal
&anyTerminal2). There are howcvcr constrainls for Ihese sublrees. The firsl should

1 3 4

BUPT

bc a sublrcc of thc subtrccs Ihat lias Ihc Verb' and Noun' as tops. This is cxprcssed
vvilh the (iiotIcSubtrcc verb bari) and (nocleSubtrce verb bari) respeclively. The
second shouid be a siiblree of the sublree thal lias Ihe Verb" as top. This is expressed
with the (iiodcSubtrec verb bariî).

Let us consider as examples of senlences for the above principie the same
examples that we used in the previous example:

a) The heat dried the flowers
b) The flowers were dried

From these sentences and according to their trees that are shown in the
example l, we notice that the above principie can appiy oniy to the first sentence. The
reason is that the above sentence includes the tvvo subtrees that the principie of the
example 2 requires and that they fulfil the constraints of this principie.
These two subtrees are the foilowing:

Noun Noun

Howers

And we notice that the first one is a siibtree of the siibtree that has the Verb"
at the top and the second one is the subtree of the subtrees that have the Verb' and
Noun' at their top.

3.2.2.7 The EBNF of the structureDescription fieid

The EBNF form of the structurcDcscriptioii field of principles and
transformations is the foilowing:

sd-subtree = (sd-subtree-x'' | sd-subtree-x | sd-subtree-x)

sd-subtree-x" = sd-node-x" sd-specifier
(sd-subtree-x" | sd-subtree-x^) ' T
[sd-anaphors] .

sd-subtree-x' = T sd-node-x' (sd-subtree-x' I sd-subtree-x)

135

BUPT

sd-sublrcc-x^' ' T I sd-anaphors].

sd-sublrcc-x = T ' sd-nodc-x"/ ' sd-lcrniinal l sd-aiiapliors J.

sd-sublrec-x" = sd-siiblrcc-x''
"IransformalionVariablc" sd-variabic-namc]

sd-subtree-x' = sd-sublrec-x' ' T
''transformationVariablc'' sd-variable-name].

sd-subtree-x = sd-sublree-x
"transformationVariabIc" sd-variable-name].

sd-subtree-x" = sd-subtree-vars.

sd-subtree-x' = sd-subtree-vars.

sd-subtree-x = sd-subtree-vars.

sd-subtree-x" = sd-subtree-subtree.

sd-subtree-x" = sd-subtree-notSubtrce.

sd-subtree-x" = sd-subtree-nodeSublree.

sd-subtree-x" = sd-subtrec-nolnodeSublree.

sd-subtree-x' = sd-subtree-subtree.

sd-subtree-x' = sd-subtree-notSublree.

sd-subtree-x' = sd-subtree-nodeSubtree.

136

BUPT

sd-sublrce-x' = sd-subtree-notnodeSublrcc.

sd-subtrcc-x = sd-sublree-sublrce.

sd-subtrcc-x = sd-subtrcc-notSubtrcc.

sd-subtrec-x = sd-subtree-nodeSubtrce.

sd-subtree-x = sd-subtree-notnodcSubtrcc.

sd-sublree-x" = "not" sd-subtree.

sd-subtrce-x' = "not" sd-subtree.

sd-subtrce-x = "not" sd-sublree.

sd-subtree-x" = "aTree" sd-sublree.

sd-subtree-x' = "aTree'' sd-subtree.

sd-subtrce-x = "aTree" sd-subtree.

sd-subtree-x" = "aFirstTree" sd-subtree.

sd-subtree-x' = "aFirstTree" sd-subtree.

sd-subtree-x = "aFirstTree" sd-subtree.

sd-subtree-x" = "leftMost" sd-subtree.

sd-subtree-x' = "leftMost" sd-subtree.

137

BUPT

sd-siiblrce-x = 'IcftlVIosl'' sd-siiblrcc.

sd-sublrcc-x'' = "C' sd-subtrcc operator sd-sublrcc

sd-siibtrcc-x' = ''C' sd-subtrcc operator sd-subtrcc

sd-subtrcc-x = sd-subtrcc operator sd-subtrcc

sd-subtrcc-x'' = anyTrcc.

sd-subtrce-x' = anyTrcc.

sd-subtrcc-x = anyTrcc.

sd-spccifier = sd-subtrcc-x" | sd-subtrcc-x-

sd-anaphors = subtrcc-tcrminal-variabic-anaphors.

CNolc: The subtrcc-tcrminal-variabic-anaphors and tlic tcrniinal-variablc-namc,
nodc-variabic-namc, subtrcc-variabic-namc, trcc-tcrniinal-valuc, Ibaturcs-
variablc-namc, nodc-fcaturcs-valuc and anaphor-variablc-nanic arc dcHned at
thc variables definition cliaptcr)

sd-tcrminal = ("terminal" trce-tcrminal-value |
"terminal" "&"tcrminal-variablc-namc

''anaphor" "&"anaphor-variablc-namc)
"transformationVariablc" sd-variablc-namc|.

sd-node-x" = ("node" nodc-name "barii" sd-nodc-l'eaturcs] |
sd-nodc-vars) "transformationVariabIc" sd-variabic-namc].

sd-nodc-x' = ("node" nodc-name "bari" sd-nodc-features] |
sd-nodc-vars) "transformationVariabIc" sd-variabIc-namc].

sd-node-x = ("node" nodc-name "bar" [":" sd-nodc-featurcsj |
sd-nodc-vars) [":" "transformationVariabIc" sd-variabic-namcj.

138

BUPT

(Nolc: The nodc-iiamc is detlncd al Ihe slrucUircs dcfinilion chaplcr)

sd-nodc-vars = "nodc" nodc-variablc-namc|
"nodc" node-variable-namc":"

'Tcaturcs" rcaliires-variablc-nanic.

sd-nodc-fcaliircs = "fcalurcs" (nodc-features-valuc |
C'&"rcalures-variablc-nanic)).

sd-sublrcc-vars = "sublrce" ''&"siiblrcc-variablc-iianic |
"subirce" ''&''sublrcc-variable-iiaiiie
' ' anaphof anaphor-variable-name |
''sublrcc'' (sd-sublrcc-x"| sd-subtrcc-x1 sd-sublrcc-x)

' 'anaphof anaphor-variabic-namc.

sd-sublrcc-sublrcc = (sd-sublrcc-x' | sd-sublrcc-x) ''sublrcc''
(sd-sublrcc-sccond-sublrcc-x" |
sd-sublrcc-sccond-sublrcc-x').

sd-sublrec-nolSublrcc =
(sd-sublrcc-x" | sd-sublrcc-x' | sd-sublrcc-x)

"nolSublrcc"
(sd-sublrcc-sccond-sublrcc-x" |

sd-sublrcc-sccond-sublrcc-x').

sd-sublrec-sccond-sublrcc-x" =
sd-nodc-x"

(sd-spccificr|
sd-sublrcc-sccond-sublrcc-x" | "sublrccPosilion")

(sd-sublrcc-sccond-sublrcc-x" |
sd-sublrcc-sccond-sublrcc-x' | "sublrccPosilion")
[sd-anaphors].

sd-subtree-sccond-sublrce-x' =
"(" sd-nodc-x'

(sd-sublrcc-sccond-sublrcc-x' |
sd-sublrcc-x | "sublrccPosilion")

sd-sublrcc-sccond-sublrcc-x''
[sd-anaphors].

139

BUPT

sd-sublrcc-nodcSublrec =
(sd-siiblrcc-x'' I scl-sublrcc-x' | sd-sublrcc-x)

^^nodcSublrcc^'
(sd-nodc-x'' | sd-nodc-x' | sd-nodc-x).

sd-subtrce-nolnodcSublrec =
(sd-sublrcc-x'' | sd-siiblrcc-x' | sd-sublrcc-x)

"nolnodcSiiblrcc'^
(sd-iiodc-x'' I sd-iiodc-x' | sd-nodc-x).

operator = ' 'and" | ''or".

140

BUPT

3.2.3 The structureCommands fieid of the principles and
transformations

As it was iiiciUioncd in a prcvioiis scclion, bolh principics and transformations
havc thrcc diffcrcnt fields.

Thcsc ficIds arc Ihc lollovving:
• variabics
• structurcDcscription
• structurcCommaiids

In thc structurcCommaiids ficld it is possiblc to dcscribc thc chccks, to
change thc variabics valucs, to dedare variabics and transformations if thc rulc is of
transformation typc or to cxccutc commands dircctiy (c.g. in a man-machinc intcrface
software systcm). Thcsc abilitics arc dcscribcd in thc foilowing chaptcrs.

3.2.3.1 Declaration of var iables in the
structureCommands fieId

in thc structurcCommaiids ficId of principics and transformations vvc can
dcfinc ncw variabics. Thc variabics that \vc can dcfinc arc variabics of thc variabics
ficld catcgory. Thcsc variabics cnabic us to dcscribc thc functions of thc
structurcCommands ficld of principics and transformations.

Thc ways of stating thc ncw variabics arc thc foilowing:

1. vuriablc typc operator variablc nanic set variahle valucs
2. fcaturcs namc of variahle set trcc noclc
3. anaphor name of variablc set terminal
4. anaphor namc of variablc set subtrce
5. subtrce namc of variablc set iiextStructure
6. subtrce namc of variablc set prcviousStructure |(M//7/)l
7. subtrce namc of variablc set particularStructure {Num)

In all thc abovc cascs, it is noticcd that thc dcfinition of a ncw variablc
rcqiiircs a namc. l£vcrytiiing rcgarding thc variabics of thc variabics llcid is applicd
for thc namc of this variablc. Also, thc namc of cach ncw variablc in thc
structurcCommands ficld of principics and transformations must not bc thc same
with thc onc of thc variabics of thc variabics, structurcDcscription and
structurcCommands ficIds.

From thc abovc cascs for declaration of variabics in thc structurcCommands
ficld, thc first onc is thc general way of stating variabics thc same as in thc variables
ficld of principics and transformations. The italic Icttcrs arc elcmcnts that can change

141

BUPT

according to Ihe case. Thus, Ihc variahic typc operator can hc oiic oT Ihc follovving
dcpcnding on Ihc typc of lhc vai iablc:

1. Ircc nodc operator : iiocic
2. terminal elenicnt operator : terminal
3. anaphor operator: aiiaplior
4. nodc leatures operator : lealiircs
5. subtree operator: suhtrcc

The variablc values are the values that are giveii to the variable. The method
that gives values to the new variablc is the sanie with the one that is used for the
variables of the variabics fieid ofprinciplcs and transforniations.

The second case is to state variable of the features typc. In this case, the
diffcrence is that the values that this new variable takes are spccillcd by the features
of the trec nodc. It can be a trec nodc with its features, a variable of the nodc typc that
has been stated or can usc a variablc that has alrcady bccn slalcd.

The third case is about stating variabics o f lhc anaphor typc. Ihc values thal
the new variable will be have are anaphors ol the terminal that foilows the operator
set. It can be a terminal with its anaphors, a variablc of the terminal clement typc thal
has alrcady been stated or a terminal clement that uscs anolhcr variablc that has
alrcady been stated.

The forth casc is for stating variables of the anaphor typc. The values that the
new variable will have are the anaphors of lhc subtree that foilows the operator set. It
can be a whole subtree with its anaphors, a subtree that uscs variabics or a variablc of
the subtree category.

The fifth case defines a new variablc of typc subtree which conlains the next
structurc o f l h c X-bar trecs o f l h c linguislic systcm. Ihc sixlh casc dcllncs a new
variable of typc subtree which conlains the prcvious structure o f lhc X-bar Irccs of
the linguislic systcm. In thesc two cascs it is possibic oplionally Io scicct an n-lh
prcvious or next trec. The scvcnlh casc dcllncs a new variablc of typc subtree which
conlains a particular structurc (according with ihc numbcr thal wc usc as paramctcr)
of lhc X-bar trces of the linguislic systcm. Thesc cascs arc uscful if wc wanl to movc
al diffcrent X-bar trces of lhc linguislic systcm.

The variabics of the transTormationVariable category in the
structureDescription ficld of principics and transformations can be used to the abovc
cascs of stating new variables, likc all the olhcr variabics of lhc variables category.

Next, WC shall analyzc examples of stating new variabics according to the
abovc cascs:

I) The first case is the general way of stating variabics:

142

BUPT

a) iiodc ni set articlc bar : rcaUircs [+iK)niinalivc, -fmasculincl or noiin bari
In this cxampic \vc dcrinc a iicw variablc of Ihc Ircc iioclc typc Ihal has Ihc
namc ni and also has as valiics ihc nodcs arlicic bar : (catiircs [+nominalivc,
^masculinc] and noun bari.

b) terminal ll set a or thc
In Ihis cxampic wc dcfnic a ncw variablc ol Ihc terminal clcmcnl lypc ihal has
Ihc namc ll and il also has as valucs Ihc words and n h c \

c) aiia|)hor al set 11 o r j 1 or kI
In Ihis cxampic wc dcfinc a ncw variablc of ihc anaphor lypc Ihal has Ihc namc
a 1 and il also has ihc valucs i I, j I, k I.

d) terminal l2 set ihc: anaphor &al
in Ihis cxampic wc dcfinc a ncw variablc ot lhc Icrminal clcmcnl lypc Ihal has
Ihc namc l2 and il also has as valucs Ihc Icrminal clcmcnls Ihal derive from ihc
word ^lhe\ ll also has Ihc anaphors i I, j I, k 1.

c) featiires D set [-^-singular, +human] or [+plural, -fadjcclive]
In Ihis cxampic wc dcfinc a ncw variablc of ihe nodc fealures lypc ihal has Ihe
namc fl and il also has Ihc valucs [^singular, +human] and [+pluraK
-Hadjcclive].

O node n2 set noun bar: fealures &fl or noun bari : fealures & fl
In Ihis cxampic we derme a ncw variablc of Ihe Iree node lypc ihal has Ihe
name n2 and il also has as valucs Ihe nodes Ihal derive from Ihe node noun
bar and Ihe nodc noun bari. Io which wc add Ihe fealures [4-singular, +human]
and [-»-plural, -^adjcclive).

g) subtree sl set (node &n2, terminal person) : anaphor &al
In Ihis cxampic we dcfinc a ncw variablc of ihe sublrce lypc Ihal has Ihc name
sl and il also has Ihe value (node &n2, Icrminal person) : anaphor &a2, where
Ihe node is replaced by ihe variablc n2 and ihc anaphors are replaced by Ihe
variablc a l .

2) The second case is aboul Ihe slalemcnl of ncw variables of Ihe node fealures lypc.

a) features fl set noun bar : Teatures [+nominalive,+singular]
In Ihis cxampic Ihc nodc wc arc using is fully dcscribcd wilhoul Ihc usc of
variables. Hicrcforc, Ihe value of Ihc variablc fl is [+nominalive, ^singular].

b) features fl set noun bari : features &nfl
In Ihis example Ihe nodc Ihal exisls on Ihe righl of Ihe operator set uscs Ihe
variablc nfl for ils features. As a rcsull, Ihe valucs for thc ncw variablc fl vvill
be Ihe valucs of Ihe variablc nfl Ihal we usc Io dcscribe Ihe node's fealures.
We musl slress ihal Ihc variablc nfl must be aircady slaled, eilher in Ihc
variables field or in Ihe struetureUeseription fleld, where il lakes valucs
from Ihc X-bar Iree ihal uscs Ihe rulc or Io Ihe struetureCommands field.

c) features fl set &n2
In Ihis example we slale a variablc of Ihe node fealure lypc Ihal has Ihe name
f l . This variablc lakes valucs from Ihc nodes Ihat give as valucs Ihc variablc of

143

BUPT

Ihc nodc typc wilh ihc nanic n2. 11 wc considcr Ihal thc variahic ii2 is llic onc
Ihal WC havc slalcd in Ihc Ursi calcgory of cxaniplcs, ihcn Ihc valucs of llic
variable fi vvill bc [-fsingiilar, +luiinanl and plural, •ad|cclivc|. Wc nuisl
slrcss Ihal Ihc variable \\2 nuist bc aircady slalcd abovc in ihc variabics Ucid
or in Ihc structiircDescriplion llcid, whcrc il lakcs valucs Ironi Ihc X-bar Ircc
Ihal uscs Ihc rulc or Io thc structurcCoiiimaiids Ucid.

3) Thc third casc is aboul slating ncw variabics of Ihc anaphor lypc. 'Hiis variable
takcs valucs from thc terminal clcnicnls.

a) anaphor al set 'window' : aiiaplior tl : aiiaphor 12
In Ihis exampic wc dcfinc a ncw variable of thc anaphor typc Ihal has thc name
al . The valucs of Ihis variable are given by thc terminal clement 'window' and
Ihe anaphors tl and t2.

b) anaphor al set 'vvindovv' : anaphor &lal
In this example wc definc a ncw variable of Ihc anaphor typc Ihal has thc name
al . The values of Ihis variable are given by thc anaphors of thc terminal
clement. These anaphors arc given by thc variable of thc anaphor typc Ihal has
thc name lai. Wc must slrcss Ihal thc variable tal must bc aircady slalcd abovc
in thc variabics field or in thc structureDescription Ucid, whcrc it takcs
values from Ihe X-bar trec that uscs thc rulc or Io thc structureCommands
field.

c) anaphor al set &t2
In this exampic wc define a ncw variable of thc anaphor typc ihal has thc name
al . The values of this variable are given by thc terminal elemcnts that are thc
values of thc variable l2. If wc consider that thc variable 12 is thc onc thal wc
havc slaled in thc cxamples of thc first category of variabics, then thc valucs
thal this variable will havc arc thc il J l , k l . Wc must slrcss that thc variable 12
must bc aircady slalcd abovc in thc variabics dcld or in thc
structureDescription field, whcrc it takcs values from thc X-bar trec that uscs
thc rulc or Io thc structurcCoinniands field.

4) The fourth case is aboul slating ncw variabics of thc anaphor typc. This variable
takes valucs from Ihe sublrccs.

a) anaphor al set (node noun bar, terminal 'window'):anaphor t l : anaphor l2.
In this exampic we define a new variable of thc anaphor typc thal has thc name
al . The values of this variable are thc tl and thc l2 and thcy arc given by thc
sublrcc (node noun bar, (crniinal ^vindow^) wilh thc anaphors tl and 12.

b) anaphor al set (node noun bar, terminal window'):anaphor <ttal
In Ihis example we define a ncw variable of thc anaphor typc that has thc name
al . The values of Ihis variable are given by thc anaphors of thc sublrcc. Ihcsc
anaphors are given by thc variable of thc anaphor lypc Ihal has thc name tal.

144

BUPT

Wc must slrcss thal the variabic tal musl bc aiready statecl above in the
variabics flclcl or in the structurcDcscription ndcl, wherc it takes valucs
IVoni the X-bar tree thal uses the mic or to the structiircConimaiicIs field.

d) anaphor al set &sl
In this example we dcfine a new variable of the anaphor type that has the name
al. The values of this variable are given by the anaphors of the subtrees that
are the values of the variable sl . If we eonsider that the variable sl is the one
that we have stated in the examples of the first eategory of variables, then the
values that this variable vvill have are the i l JKk l . We nuist stress that the
variable sl nuist be aiready stated above in the variables Tield or in the
struclurcDescriptioii lleld, where it takes values froni the X-bar tree that uses
the rule or to the slructurcCommaiuls field.

3.2.3.2 The change of variables values in the
structureCommands field

Apart from the declaration of new variables in the struclurcCoiiimaiids field
of principles and transformations, there is the possibility to change the values of the
variabics that have been stated so far in this rule. Thesc variables can fall cither in the
variabics eategory or in the traiisformatioiiVariable eategory.

AII the mcthods of changing the values of the variables that have aiready been
stated in the variables, structurcDcscription and structureCommands fields are
described in this chapter.

Depending on the type of the variable, the abilities to change the values of the
variables arc the foilowing:

1) For variables of the terminal element type:

a) terminal &name of the icrminal variable set new terminal values
b)terniînalElemcnt Scname of the terminal variable set new terminal value

The first casc changes the values of the variable that has the name name of the
terminal variable. The new valucs arc the new terminal values, The new terminal
values can bc a terminal element or a variable of the terminal type or a terminal that
uses a variabic for its anaphors.

The second casc changes the values of the variable that has the name name of
the terminal variable. The change is that oniy the terminal element changes vvithout
any changes to the anaphors that the terminal element can possibly have. riierefore,
all the values of the terminal variable takc as a value the very same terminal clement.
The terminal clement must be a constant and not a variable. It must be, for example, a
word or an articic.

145

BUPT

2) For variablcs of thc trcc noclc lypc:

a) node &name of thc nodc variahic set new nodcs
b) fcaturcs &name of thc nodc variahic set ncw valuc of thc nodc \s

fcature
c) iiodcNamc Scnamc of thc nodc variahic set ncw namc of thc nodc
d) nodcTypc Scnamc of thc nodc variahic set ncw typc of nodc

The first casc changes thc valucs of thc nodc lypc variablc and scls ncvv nodcs
as valucs with thcir fcaturcs, if Ihcy exist. Thc ncw nodcs can bc givcn vvillioul thc usc
of variablcs or thcy can usc variablcs for thcir fcaturcs or thcy can bc givcn with a
variablc of thc nodc typc that has somc valucs.

Thc sccond casc changcs only nodc fcaturcs of thc nodc typc variablc. In this
case the new features can bc givcn or a variablc is uscd that has as valucs thc ncw
fcaturcs. These nodcs acquire all thc same fcaturcs.

The third case changcs only thc namcs of thc nodcs that arc thc valucs of thc
variablc name of thc nodc variablc. All nodcs acquirc thc same namc vvhich is thc ncw
name of the node, Thc new namc of thc nodc shouid bc givcn. It is not pcrniittcd to
usc a variablc.

The fourth case changcs only thc typc of thc nodcs that arc thc valucs of the
variablc name of the nodc variablc. Thc typcs of thc nodcs arc thc X \ X. All thc
nodcs acquirc thc same typc which is thc ncw typc of nodc. Ihc ncw typc of nodc must
be a constant and it shouid have onc of the foilowing valucs: barii, bari, bar

3) For variablcs of the subtrec typc:

a) subtrec Scname of thc subtrce variablc set ncw subtrccs

For the variablcs of thc subtrce typc therc is only onc casc of changing thc
valucs of the variablcs. The valucs of a subtrcc's variablc arc rcplaccd by thc ncw
values of the new subtrccs. Thc ncw subtrccs can or cannot have variablcs. If thcy do
have variablcs, thcn thc valucs of thc variablc namc of thc subtrcc variablc have all
these subtrccs.

Next we shall analyze cxamples that are according to above cases.

1) First case of variablcs of thc terminal clement typc

a) terminal &ttl set 'computer' : aiiaplior al
In this example we set a ncvv valuc to thc variablc ttl, thc valuc 'computer' :
anaphor al

b) terminal &ttl set 'computer': anaplior &aal

146

BUPT

In this cxamplc \vc set a ncvv valiie Io ihc variable Ul, the value 'computer':
anaphor aal . We noticc that for Ihc anaphors of tlie terminal element we use
the variable that has the name aal. This variable must be stated and it shouid
also be of the anaphor type. The variable aal couid either be stated either in the
variablcs field or in the structurcDcscription field or in the
structureCommaiids field. Thus, if the values of the variable are the
anaphorTrace and the anaphorPronoun, then the new values of the variable ttl
will be the follovving:

'computer', aiiaplior anaphorTrace
'computer^ anaphor anaphorPronoun

c) terminai &ttl set &ttO
In this example we set a new value to the variable t t l . The values that this
variable will have are the values of the variable ttO. We must stress that the
variable ttO shouid bc alrcady stated. I he system will calculate all the values of
the variable ttO and will assign them as values to the variable t t l .

d) tcrminalElement &ttl set the'
In this example we set a new terminal element to the variable t t l . Namely, we
set new values to the terminal elements of all the values of the variable t t l ,
without changing the anaphor. This new value is the article ' the' .

2) The second case of variable of the tree node type

a) noclc &nnl set noun barrfeatures [+human]
In this example we set a new value to the variable nnl . This value is the noun
bar:features [+human].

b) node &nnl set noun barifeatures &ffl
In this example we set a new value to the variable nnl , the value noun
barifeatures & f n . We notice that for the features of the node we use the
variable f f l . This variable must be already stated and it shouid be of the node
features type. The variable ffl couId either be stated either in the variablcs field
or in the structurcDcscription field or in the structurcCommands field. Thus,
if the values of the variable ffl are the [-human, +singular] and the [-human,
+plural], then the new values of the variable ttl will be the following:

noun bar:features [-human, ^singular]
noun banfeaturcs [-human, +plural]

c) node &nnl set &n2
In this example we set a new value to the variable nnl. The new values of this
variable are the values of the variable n2. This variable is of the node type and
shouid have already values.

d) features &nnl set [-i-human]

147

BUPT

In this example wc set a ncvv valiic to Ihc fcalurcs of thc nodcs that arc llic
values of the variable nnl, Ihc valiic [-^^hiinian].

e) fcaturcs &nnl set &ffl
In this cxampic wc set a ncw valuc to thc fcalurcs of thc nodcs that arc thc
values of the variable nnl. Thc ncw values of the fcaturcs are thc fcaturcs that
are the values of the variable ff l . Thus, if thc variable nnl has as a valuc thc
nodcs 'verb' bar:features [+niovcJ and Werb' barii, and thc variable ffl has as
values the [-i-move, -i-human] and [̂ hunianl, then thc ncw values of thc variable
nnl are the foilowing:

'verb' barifcaturcs |+movc, +human]
'verb' barifcaturcs f+hunianj
'verb' barii:fcaturcs [+inovc, +hunian]
'verb' bariî:fcaturcs [fhuinan]

f) nodcNamc &nn 1 set verb
In this example we change the name of the nodcs that are thc values of thc
variable nnl. AII the nodcs of this variable will have the name verb.

g) nodcType &nnl set bari
In this example we change thc typc of thc nodcs that arc thc values of thc
variable nnl. AII the nodcs of this variable will bc of thc bari typc.

3) The second case of variable of the subtree category

a) subtree &ssl set (node article bar, terminal the)
In this example we set a ncw valuc to the variable ssl . This ncw valuc is the
subtree (node article bar, terminal thc).

b) subtree &ssl set (node article bar, terminal &ttl)
In this example we set a ncw valuc to thc variable ssl. This ncw valuc is thc
subtree (node article bar, terminal &ttl) that uscs thc variable ttl. If thc variable
ttl has the values 'a ' , 'an', 'thc', then the ncw values of thc variable ssl will bc
the foilowing subtrces:

(node article bar, terminal 'a ')
(node article bar, terminal 'an')
(node article bar, terminal 'the')

c) subtree &ssl set &ss2
In this example we set as values of the variable ssl, the values of the variable
ss2. We take it as granted that thc variable ss2 has aiready been stated and has
values.

AII the above operators set ncw values to variables of the above types. There
are however operators that modify the values of the variables.

148

BUPT

Thesc cascs arc the follovving:

1) &name of variable addAnaplior nume of anaphor

in this case the variable caii be cilher of the terminal element type or of the
subtree type. The operator adclAnaplior adds a nevv anaphor that is given under the
name name of anaphor. The nevv anaphor is added to all the values of the variable
under the name name of variable. The new anaphor must be a constant and not a
variable.

2) &name of variable rcmoveAnaplior name of anaphor

In this case the variable can be either of the terminal element type or of the
subtree type. The operator rcmoveAnaplior removes the anaphor that is given under
the name name of anaphor. This anaphor is been removed from all the values of the
variable name of variable. The erased anaphor must be given as a constant and not as
a variable.

3) node &name of the node \s variable addFcaturcs node features

In this case it is possible to add features to the nodes of the node type variable.
The node features are those that follow the operator addFeaturcs. They shouid be
given and it is not permitted to usc a variable.

4) node &name of the node ^ variable removcFcatures node features

In this case it is possible to remove features from the nodes of the node type
variable. The node features that are removed are those that follow the operator
addFcaturcs. The node features shouid bc given and it is not permitted to usc a
variable.

5) For the variables of every possible type, there are the foilowing two operators:

a) &variable name addValucs values of variable
b) &variable name dcleteValucs values of variable

Thesc operators change the values of variables of any type by adding or
removing their values.

149

BUPT

Next we shall analyzc cxainpics Ihal correspond Io llic abovc cascs aud sliow
the possibilitics providcd by Ihc incthodology.

a) &ttl addAnaphor anaphorTrace

In this examplc, the anaphor anaphorTrace will be added to all the terminal
elements that are the values of the variable ttl. If the variable ttl has the
values 'the': anaphor anaphorl and 'a ' : anaphor anaphor2, then the nevv
values of the variable ttl are Ihe follovving:

'the': anaphor anaphorl: anaphor anaphorTrace
'a ' : anaphor anaphor2: anaphor anaphorTrace

b) &ttl removeAnaphor anaphorTrace

In this example, the anaphor anaphorTrace will be removed froni all the
terminal elements that are the values of the variable ttl. If the variable ttl has
the values 'the': anaphor anaphorl: anaphor anaphorTrace and 'a ' : anaphor
anaphor2: anaphor anaphorTrace, then the nevv values of the variable ttl are
the follovving:

'the': anaphor anaphorl
'a ' : anaphor anaphor2

c) node &nnl addFcatures [-human,-i-singular]

In this example we will add the features [-human,+singular] to all the nodes
that are the values of the variable nnl. For example, if the variable nnl has the
values 'computer' bar and 'car' barifcaturcs [^nominative], then the new
values of the variable nnl are the follovving:

'computer' bar :features [-human,-»-singular]
'car' bar:featurcs [+nominative, -human,+singular]

d) node&nnl removeFeatures [-human,+singular]

In this example we will remove the features [-human,-»-singular] from all the
nodes that are the values of the variable nnl. I or example, if the variable nnl
has the values 'computer' bariTcaturcs [-human,+singular] and 'car'
bar:fcatures [+nominative,-human,+singular], then the new values of the
variable nnl are the follovving:

'computer' bar
'car' bartfcalurcs [^nominative]

All the above operators can change the values of variables. They calculate all
the possible values of the left and right part then they set according to the operator the

150

BUPT

ncw set of valucs for ihc variable on thc Icfl argument. These values do not contain
variables. For the calculation of Ihe values of a subtree variable the operator anyTrcc
that may exist is substituled by the trace operator t. 1 lie oniy exception is the first
operator addValues that does not calculate all the values of the left and right part. It
only adds the right argument in the set of values of the left argument.

Also, it is possible to calculate all the possible values of a variable according to
the other variables that it may use.

The format of this case is the:

• &namc of variable set &namc of variable

The left and right arguments must have the same variable name. This variable
must have been declared.

Finally, there is a command that calulates all the values of variable and deletes
all the possible duplicate values that may exist.

This command is the foilowing:
• dclctcDuplicatcs(Variable Name)
The variable name can be the name of a variable of every type and kind.

3.2.3.3 The grammar variables in the
structureCommands fieid

Both the general variables and the transformation variables can be declared as
grammar variables. These grammar variables can be used by more than one principie
and transformation. This means that a variable that has been declared in a rule can
be used and manipulated (use this variable or change the values of this variable) by
the next rule or rules in eveiy field of the three fields of a principie or transformation.

There are two operators related with grammar variables:
• addGranimarVariable name of variable
• rcmovcGranimarVariable name of variable

The first operator defines as grammar a variable that has already been defined
in one of the fields of a principie or transformation or it is possible to be declared by a
next principie or transformation.

The second operator resets a grammar variable as a local one but this variable
is still availabe in this principie or transformation that the renioveGrammarVariable
was executed.

Both of the above operators are used in the structureCommands field of a
principie or transformation.

Also, as it w âs mentioned above, these operators can be used in the main body
of a grammar or even outside of a grammar to delete or declare a grammar variable
that can be used in the next rules and grammars. At the case of using the operator

151

BUPT

rcniovcGrammarVariablc, Ihis graînniar variabic will noi bc availabic in Ihc ncxl
rules or granimars.

3.2.3.4 The transformations in the structureCommands
fieid of transformations rules

So far, the abilities regarding (he changc of Ihc values of Ihc variabics havc
been described. Apart Ihough from changing the vahies of Ihe variables, it is also
possible to modify the X-bar striictiire on vvhich a transformation is appiicd. The
various variables are very important for the niodifieation of the X-bar trees.

The operator in order to state a set of transformations is the transrormations.

The general pattern for the transformations is the follovving:

transformations transformation 1 also transformation 2 also...

It is possible to exist more than one such pattern in a transformation rule.
Every transformation is deelared by the operator transformations and a

sequenee of transformations that are conneeted by the operator also.

Eaeh transformation of transformations is defined as follovving:

&name of variabic of type transformationVariahlc transform ncw valuc

The name of variabic of typc transformationVariahlc is a variable of type
transformation variable that have been deelared in the structurcDcscription fieId
of the transformation rule.

The new valuc can be a variable of type tree, node or terminal. Also, it ean be
a tree, a node or a terminal that may eontain differrent kinds of variables. These
variables can be variables of transformation type. The type of variable with name
&name of variabic of typc transformationVariahlc must mateh the type of ncw valuc.

It must be mentioned that it is possible to ehange the values of the
transformation variables with the operators that have been described in the previous
sessions or to declare transformation variables as grammar ones.

The above description of the transformations in the presented methodology
shows that its possibilities are more general than the Chomsky's minimal program
(Chomsky, 1995) that has as central operations the generalized transformation and the
move-a. The generalized transformation is a structure building operation that buiids
trees in a bottom-up order. This is possible in the presented methodology by using
transformations rules and iniţial or produced x-bar structures of category X, X' and
X" . These trees can be selected by principles or grammars that usc different
commands and especially commands that get a specific X-bar structure from the set of
available structures. The move a of the Chomsky's theory is a transformation that

152

BUPT

movcs an element in a higher position (il moves left for the position that it has) in a x-
bar tree that aiready has bcen built. So, the transformation rules and especially the
transforinatioiis command of the presented methodology gives higher and more
general possibilities for describing the required transforinations than the Comksky's
approaches (Fouskakis, 2005b).

The format of Ihe abovc rules shows that the transformation possibilities are
open and more flexible and powerful than in the TAG (R. Millett, 2004). Operations
like adjunction or subjunction in TAGs and in the minimalistie program of Chomsky
are a subset of the transformation possibilities of this language.

Also, the presented language takes in eonsideration eomments related the
parsing strategies with elemenlary trces (Fong, 2005). The above transformation rules
and the variables permils nuilliply parallel conslrunction of structures by its
elementary trees and overcome these eomments.

Next we shall analyze a ser ies of examples about the transformations.

Example 1

We consider that we have staled two variables of the transformationVariabic
category in the structurcDcscriptioii field of a transformation. These variables have
been stated on two different nodes of the X-bar tree. These nodes are described in the
structure of the structurcDcscriptioii field of this transformation. We want to change
the content of these nodes.
We consider that these two variables have the names sdnl and sdn2.

in order to changc these two nodes we have the foilowing possibilities to state
transformations:

a) transformations
&sdnl transform noun b;ir:fcaturcs [+human] also
&sdn2 transform verb biirii:fcaturcs [+plural]

In this case we have the alterntion of two nodes that result in a new tree that
has these nodes changed. The new values of the nodes are given directiy
without using any variables and are the foilowing:

i) for the variable sdnl is the noun bar:fcatures [+human]
ii) for the variiible sdn2 is the verb bariirfcaturcs [+plural]

b) transformations
&sdnl transform &nl niso
&sdn2 transform verb l)ani:fcaturcs &fl

In this case we have the alterai ion of two nodes where both the stated variables
of the transformationVari:ibIc category also change. We couid of course
change oniy one of the two values, by using one of the two transformations.

153

BUPT

The transformalion for Ihc variahic sdl has as a rcsiill, tlic noclc of lhc Ircc llial
iiscs Ihc rulc Io gel all Ihc valiics ol thc variahic ol Ihc iiodc lypc ihal has ihc
nainc n I.
I hc variabic Ihal givcs thc ncw valiics couid hc Ihc sdnl ilscIT. This couid bc
donc bccausc thc syslcni chaiigcs Ihc striictiirc and ihc clcniciUs of thc trcc thal
uscs thc Iraiisformation oiily il wc cxcculc thc transforniation conimand. Thc
variabic sdVarl can changc in contcnt likc all thc variabics and with thc
mcthods that \vc dcscribcd in prcvious chaptcrs.
Thus, for cxampic, wc can add a fcaturc to a nodc or rcniovc a fcaturc froni
onc nodc.
Siipposc that thc variabic sdnl had thc valuc:

verb bariifeaturcs [-i-hunian]
and WC cxccutc thc command

iiodc&sdnl adclFcaturcs [^plural]
thcn thc variabic sdnl has thc valuc:

verb bari:featurcs [-fhuman, -Hplural]
now WC can perforni thc transforniation:

transformatioiis &sdnl traiisronn &sdnl
that will changc thc respective nodc of thc X-bar trec that uscs thc rulc.

The transformalion for thc variabic sdn2 has as a result, thc nodc of thc trec
that uscs the rule to get as values all thc nodes verb barii (Verb' ') that have as
features the values of the variabic f l . For exaniple, if the variabic fl has thc
values [+human] and [+plural], thcn the two ncw nodes for the X-bar trec are
the foilowing:

i) verb barii : features [+hunuin|
ii) verb barii : features [+pluralj

Therefore, from the X-bar trec that uscs the transforniation wc have the
production of all the possibic ncw trees thal derive from thc rcplacenient oflhc
respective Iree nodes by the ncw nodes.

Example 2

We consider that wc have staled a variabic of the traiisformationVariablc
category in the structurcDcscriptioii (Icld of a transformalion. This variabic has bcen
stated on a terminal element dcscribcd in the structure of the structurcDcscriptioii
fieid of this transformalion. We want to changc thc conteni of this terminal element.
Suppose thal this variabic has thc nanie sdtl.

In order to changc this terminal clement we have thc Ibllowing possibilitics to
state transformations:

a) traiisformatioiis
&sdtl transform ' lhe\anaphor anaphorTrace

1 5 4

BUPT

In this casc vvc liavc Ihc allcralion of thc terminal element o f t h c X-bar trec
and thc production of a new trec. Tliis transfomiation assigns a new terminal
element, thc word 'iUc with thc anaphor anaphor I race.

b) traiisroriiiatioiis
ctsdtl transform &tl

This transfomiation changes thc respective terminal element of thc X-bar trec
and assigns as valiies all thc terminal elements that are the valiies of thc
variable t i . This variable must be o f thc terminal typc and it should be aiready
stated. This rcsiilts in thc production of as many new trees as the values o f thc
variable t l .

We can also usc the variable sdtl instead of the variable t l . For example, we
can add an anaphor to the terminal element of the tree that uscs thc rule.
In order to do that, we must perform the following steps:
Suppose that thc variable sdtl had as terminal clement the word:

Miouse'
and we execute the command:

&sdt 1 addAiiaplior anaphor Trace
thcn thc variable sdtl has the value:

Miouse': anaphor anaphorTrace

now we can perform the transfomiation:
transformations &sdtl transform &sdtl

that will change the respective node of the X-bar tree that uscs the rule.

Example 3

We consider that we have stated a variable of the transformationVarîable
catcgory in the structurcDescription field of a transfomiation. This variable has becn
stated on a subtrec described in the structurc o f thc struclurcDcscription ficId of this
transfomiation. We want to change the content of this subtrec.

Suppose that this variable has the nanie silstl.

a) transformations
&sdtl transform (notie noun bartcrmînal ' the')

In this case we have thc alteration of the subtrec of the X-bar trec and thc
production of a new tree. This transfomiation results in thc new subtrec (node
noun bar, terminal 'the').

b) transformations
&sdl transform &tl

This transfomiation changes the respective subtrec of the X-bar tree with the
subtrees that are the values o f t h c variable t l . This variable must be of the

155

BUPT

sublrec lype and il sliouid aliciulv bc stalcd in this mic bcforc ihc
iransfornialion.

c) traiisrormatioiis
&sdl transform (iiotic cVin Ijerniinal Mhc)

This transformalion changcs Ihc rcspcclivc sublrcc of llic X-bar Ircc vvilh thc
sublrcc (nodc &nl , terminal Uhc'). Hiis sublrcc has ihc variablc nl ihal
shoLiId bc of thc Ircc nodc lypc and it shouid ahcady bc slalcd in ihis rulc
bcforc Ihc abovc Iransfornialion. I hcrcforc, wc will havc as niany sublrccs as
thc values of thc variablc nl thal lll in Ihc sublrcc.

lixamplc 4

Next we shall sce how thc transforniation of thc passivc voicc (l lacgcinan,
1995) is dcscribed in thc prcscnt mcthodology.

transformation 'Passivc Voicc Transforniation'.

noVariabIcs.

structurcDcscrîption
(nodc 'V' barîi,

anyTrcc,
(nodc &nd,

subtrec &sbl ,
(nodc 'N ' barii, anyTrcc, anyTrcc):transformationVariablc sdl)

):transformationVariablc sd2.

structurcCommands (
&sdl addAnaphor il,

transforniations
&sd2 transform
(nodc ' V barii, subtrcc 4&sdl,(nodc i&nd,subtrcc&sbl, t.anaplior il))

).

Analyzing the above transformation, we notice that no variables are statcd in
thc variables field, this is why wc usc thc operator noVariabIcs.

Also, in the structurcDcscription field we describe the follovving trec:

156

BUPT

anyTrce

Subtrcc sbl

anyTrcc aiiyTree
In Ihc s tructurcCommaiuls ficld wc dcscribe thc Iransformation. In ordcr Io

achicve Ihc dcsircd Iransformation, wc add Tirst Ihe anaphor il Io thc sublrce ihat has
thc top N ' ' and tlicn wc usc thc subtrcc with thc transformation comniand and wc
producc thc follow ing subtrcc:

V "

Nodc nd

Subtrcc sdl

Subtrcc sbl t with anaphor il

whcrc thc subtrcc sdl is thc subtrcc with thc top N ' ' and thc anaphor il .

lixampic 5

Wc will also dcscribc thc rulc that shows thc shift of thc anaphoric element in
a scntcncc that has a relative clause.

transformation 'Transformation of Anaphor Scntcncc'.

noVariabIcs.

structurcDcscription
(nodc 'CP' barii,

anyTrcc,
(nodc 'CP' bari,

subtrcc &sbl ,
(nodc ' IP ' barii,
(nodc anaphor bar, terminal &anl), subtrcc &sb2))

):transformationVariablc sd I.

157

BUPT

structurcCommands (
&anl addAnaphor iK

transforniatioiis
&sdl transform

(node CP' barii,
(iiodc anaphor harifcatiircs | faccusalivc|, (criiiiiial 4&anl),
(node CP' bari,

subtrcc &sbU
(node MP' barii, t:anaplior il, subtree 4&sb2)

)
)

With the transformalion lliat we have slatcd abovc, wc transform thc foilowing
subtree.

CP"

anyTree

subtree sbl

anaphor
clement

subtree sb2

The new tree of the input sentence will contain the foilowing subtree and in
this way we move the anaphoric element to the qualifier of the CP' ' node and we put
the trace in the previous position of the anaphoric element.

CP"

Anaphor
Element

Subtree sbl

Anaphor
trace

subtrcc sb2

158

BUPT

3.2.3.5 The controls in the structureCommands fieid

In the structureCommands fidel of principles and transformations it is
possibic to conduct a serics of controls by using if-tlicii-clsc structures. Thcse
controls deal vvith the scvcral cases that the riilc must cover.

In order to conduct thcsc controls, Ihere is a scries of control opcrators for the
control condition if which is a part of the if-tlien-cise structure.

Morc specifically, there are the foilowing tvvo control commands:

i iT h e II(condu ion, commands 1)
iJThcnElse(conditionxommands I,commands 2)

It is noticed that both commands have the condition which examines if certain
desired conditions exist. The result of these control commands can be true or false.

The first of the above tvvo commands has tvvo operands, the condition and the
commands 1, The command i m i e n examines the condition, namely the first operand,
and if it's false, then it doesn't execute Ihe commands of the second operand and the
system proceeds in the execution of the next command in the structureCommands
fieId of principles and transformations. If the condition is true, then the command
ifThcn proceeds in the execution of the commands of the second operand. If these
commands are not executed properly, Ihen Ihe execution of the ifTIicn command is
considered to have failed. As a result, the specific principie or transformation also
fails, since a command of the structureCommands fieId was not executed
successfully.

The second command, the iiTlicnElse, has one more operand apart from the
condition and commands 1 which is the commands 2. The imienEIsc command
examines if the condition is true and then executes the commands I. If the condition is
false, then the command ifTiienEIse executes the commands 2 and proceeds in the
next after the ifThenEIse command. If one of the commands 7, commands 2 fails,
then the whole ifThenEIse command fails too and as result, the specific principie or
transformation also fails, since a command of the structureCommands field has
failed.

The controls in the condition definition of the above commands, can be
appiied on the elements of the foilowing types:

1) Anaphors
2) Terminal elements
3)Node Features
4) Tree Nodes
5) Subtrees

159

BUPT

A) Opcralors for the anaphors

1. anuplîor I eqiial tniaphor 2
2. unuphor I iio([L(|ual (Uia/^hor 2
3. unuphor I exists unuphor 2

The abovc opcrators can havc as left and right dcllnition onc of lhc Ibllowing
elcnienls:

a) a sequencc of anaphors or a variabic of anaphor lypc
b) a variabic of Icrniinal lypc or a Icrniinal that niay conlain variabics
c) variabic of subtrcc lypc or a sublrcc Ihal niay conlain variabics

hi the case of a seqiicncc of anaphors, il is ncccssary to forni Ihc lefi and righl
arguments as:

anaphor &VariablcNamcI lanaplior &VariablcNamc2:.. .ele....
The olher cases do not requirc opcrators in the left and right arguments.

The first operator checks if al leasl onc of the valucs of anaphors of lhc left part
is equal with one of lhc valucs of anaphors ol lhc sccond pari. If Ihc left and the righl
parts are sequencc of anaphors, il is ncccssary Io exist al leasl onc sequencc of valucs
of anaphors al the left part equal with a sequencc of valucs in ihc righl part.

The sccond operator is opposile of lhc tlrst.
The third operator checks if in the left anaphor exists the righl anaphor. The

right operator must be one speciric anaphor. The variabics arc not pcrmitcd in this
case.

Next we shall analyze a series of examples that show all the cases of using the
abovc opcrators:

a) &al equal &a2
b) &al notEqual&a2

In these two examples we check if the anaphors o f lhc left dcfinition variabic
are same with the anaphors of lhc righl dcfuiition or diffcrcnl from them. The
variabics al and a2 must be of lhc anaphor lypc and Ihcy shouid havc aircady
been statcd. The operator equal will check if al leasl one value of lhc anaphors
of the variabic al is equal to al leasl one value of the anaphors of the variabic
a2, while the operator iiotEquaIwilI check if all the valucs are diffcrcnl.

c) &al exists anaphorTracc

In this example we check if the anaphor with the name anaphorTracc is one of
the anaphors that has as valucs the variabic al . Ihis variabic shouid be of lhc
anaphor type and it shouid havc aircady been statcd.

d) &t] exists anaphorTracc

160

BUPT

In this cxampic vvc chcck il lhc aiuiplior wilh Ihc nanic anaplior l racc is onc of
Ihc anaphors of onc o f lhc Icrminal clcmcnls Ihal arc Ihc valiics ofll ic variabic
l l . The variabic ll should bc ofl l ic Icrminal element lypc and il should have
alrcady bccn slatcd.

c) &sll cxists anaphorTracc

In Ihis cxampic wc chcck if lhc anaphor wilh Ihc name anapliorl race is onc of
Ihc anaphors o f o n e o f lhc siiblrccs ihal arc Ihc valiics o f l hc variabic sil. The
variabic sil should bc o f l h c subhcc lypc and il should have alrcady bccn
slalcd. The anaphors of ihc sublrccs Ihal ihc opcralor lakcs inlo accounl, arc
Ihosc Ihal have bccn slalcd lor Ihc sublrcc and noi for a sublrcc of Ihis sublrcc.
For cxampic, supposc wc have ihc following sublrcc:

(iiodc articic bar, tcriiiiiial 'Ihc'.aiiaphor al):anaplior a2

this sublrcc is o f l hc X calcgory and has arliclc as a nodc namc and thc word
'thc' as a terminal clement. The anaphor Ihal thc opcrators cqual,
iiotEqualand cxists takc inlo accounl is Ihc a2 Ihal concerns thc vvholc sublrcc
Ihal WC consider.

O anaphor anaphorTrace:aiiaplior anaphorPronoun cqual &al

In this cxampic we chcck iflhc variabic al has as valucs thc anaphorTracc and
anaphorPronoun. This variabic should bc of thc anaphor lypc and it should
have alrcady bccn slalcd. Also, in this cxampic, wc nolicc thc way in which
WC should describe thc anaphors, when thcy arc given in dclail and noi wilh
thc usc of a variabic. fhus, thc Iwo anaphors arc described as follows:
anaphor anaphorTracc:anaphor anaphorPronoun. The opcralor anaphor is
Ihc operator for thc anaphor.

B) Opcrators for terminal clcmcnls

1. terminal terminal 1 cqual terminal terminal 2
2. terminal Ze/vz/mc//7 notEqual terminal/e/v;///?^/2
J terminalElcmcnt/c'r/////;^;/y cqual tcrminalElcmcnt/c/v;///?^//2
4. tcrminalElcmcnt terminal J notEqual tcrminalElcmcnt terminal 2

Thc first and thc second opcrators chcck i f lhc lerminals are cqual or not. Thc
terminals can bc cithcr variables or lerminals Ihal may conlain variablcs.

The third and thc forth opcrators chcck if thc lerminals are cqual or not
withoul checking thc anaphors.

Thc left is cqual wilh the right part if al Icast onc of Ihcir possible valucs is
cqual.

161

BUPT

Ncxt WC shall analyzc a scrics ofcxaniplcs Ihat show all Ihc cascs ofusiiig Ihc
abovc opcrators:

a) termiiial &tl cc|ual terminal Scil
b) terminal &ll iiotEqual tcM iiiiiial cSct2

In ihcsc two cxaniples wc coiiiparc ihc Icrniinal cicincnts o f lhc variabic tl to
tliosc of Ihc variabic l2. I hc variabics ll and l2 nuist bc of Ihc Icrniinal
element typc and Ihcy shouid havc bccn slalcd. In Ihc cxaniplc a) wc comparc
i f a terminal clement of thc left part is thc same as thc terminal clement of lhc
right part. In thc cxampic b) wc examinc if ihcy arc dilfcrcnt. In order to
compare thesc terminals wc also takc into account thc anaphors of thc terminal
cicmcnts.

c) tcrmiiiarthc'ianaphor anaphorTracc equal terminal &tl

In this exampic we examinc if thcianaplior anaphor Trace is thc terminal
clement that thc variabic tl has as a valiic. 'fhis variabic must bc of thc
terminal element typc and it shouid havc bccn stated.

d) tcrminalElemcnt &tl equal terminalElement &t2
e) terminalElement &tl notEqual terminalElement &t2

In these two examples wc comparc thc terminal elemcnts of thc variabic tl to
those of the variable t2. The variabics tl and t2 must bc of thc terminal
element type and they shouid havc bccn stated. In the exampic d) we comparc
if a terminal element of the left part is the same as thc terminal clement of the
right part. In the example e) we examinc if they are diffcrent. In order to
compare these terminals we do not takc into account thc anaphors of thc
terminal elemcnts, but oniy thc terminal element.
For example, if we supposc that thc variable tl has thc valuc:

'the^anaplior anaph 1: anaplior anaph2
and thc variabic t2 has thc valuc:

'the' :anaplior anaphor Trace
then we appiy the condition of thc example d) but not ol'thc example e). I hc
reason is because both variabics havc as a terminal thc word ' the\ Also, we
don't appIy the condition of the example a) but we appIy the condition of the
example b). The reason is that the variable tl has a terminal element with thc
anaphors anaph 1 and anaph2, whilc the variabic t2 has a terminal clement with
the anaphor anaphorTrace.

C) Opcrators for node fcatures

1. fcatures 1 equal feuturcs 2
2. fcatures 1 notEqual fcatures 2
3. fcatures 1 exists featurc 2

162

BUPT

4. fcaturcs 1 subsets featurcs 2
5. fcaturcs I aComiiioii /c't/////v.v 2

The Icfl and thc righl argumcnls of Ihc above opcralors can be cilhcr iiodes or
Icalurcs of a nodc. Also, ihcy can bc eilhcr variabics of Ihc fcalurcs lypc or nodcs thal
niay conlain variabics.

Il is not requircd lo usc Ihc lypc opcrators bcforc thc left or thc right part.
At thc third casc thc right part must bc a simple fcaturc:

-H Nume oflhc jcuiurc
' Namc of ihc fcaturc
Namc of thc fcaturc
Namc of thc fcaturcX=Namc ofthcfcaturcY
[namc of thc fcaturc ! namc of thc fcaturcNj= namc of
thc JcaturcX

Thc above operators have thc follovving function:
Thc first operator examines if thc fcaturcs of thc left operand are thc same as

the fcaturcs of the right operand. If variabics are used, thc operator examines if they
have a value for which thc fcaturcs of thc left operand are the same as thc fcaturcs of
Ihc right operand.

The second operator examines if thc fcaturcs of the lefi operand are different
from the fcaturcs of the right operand, if variabics are used, the operator must not find
a value of these variabics, for which value the fcaturcs of the left operand is the same
as thc fcaturcs of the right operand.

The third operator examines if thc fcaturcs of thc left operand have thc fcaturc
of thc right operand. The fcaturc of thc right operand must be given and it shouid not
bc a variable. If a variable is used for the left operand, then the operator shouid find a
value of this variable for which value thc fcaturcs of thc left operand have the fcaturc
of thc right operand.

The fourth operator examines if the fcaturcs of the left part are a subtotal of
the fcaturcs of thc right part. Namely, thc fcaturcs of the left part shouid exist in the
fcaturcs of thc right part. If variabics are used in thc left or thc right operands, then the
operator examines if the above appiies on a value of these variabics.

Thc fifth operator examines if the fcaturcs of thc left definition have onc
common fcaturc with thc fcaturcs of the right definition. If variabics arc used in thc
left or the right operands, then thc operator examines if thc above appiies to a value of
these variabics.

Except the general opcralors for fcaturc checking, therc arc additional
opcrators thal are oniy for the follovving kind of fcaturcs:

• Namc of thc fcaturc X^ Namc ofthcfcaturcY
• [namc of thc fcaturc 1 namc ofthcfcaturcNJ= namc of thc fcaturcX

These operators check the value of the right part of these kind of fcaturcs by
taking as id their left part. Il means thal they check the right part if their Iert part is the
same. They return truc if therc is at leasl onc fcaturc of thc above lypc thal has thc
same Iert value in bolh operands and Ihc right part of the fcaturc has a relation
bctwccn thc two opercuids cqual, smallcr or greater respectively to the used operator.
These opcrators are the foilowing:

163

BUPT

2. smk\l\crVcMuix(/'\\inircUill\irlJ)f)crink/IJ)/K'm
3. gvcMcrVcMurc{FccifurcLc/tl\irf^()[)cranJL()f)criinJ2)

The Opcnmdl and OpcranJJ of ihc abovc opcralors can bc cilhcr iiodcs or
fcatures of a nodc. Also, Ihcy can bc cithcr variabics of lhc Icaturcs lypc or nodcs ihal
niav conlain variabics.

Next vve shall analyzc a scrics ol cxaniplcs Ihal show all thc cascs ofusing Ihc
abovc opcralors:

a) &fl equal &f2
b) &fl notEqual &f2

In Ihcsc two examplcs wc coinparc Ihc nodc fcalurcs of lhc variabic fl Io Ihosc
of the variable f l . Thc variabics fl and (2 niiisl bc of Ihc nodc fcalurcs lypc
and thcy should havc bccn slalcd. In Ihc cxampic a) wc coniparc i fonc of lhc
valucs of Ihc variable fl is Ihc same as Ihc valucs o f l h c variable (2. In Ihe
example b) we examine if all valucs are diffcrcnl.

c) [+plural,-fhuman] cqual &fl

In Ihis example we examine if one of Ihc valucs of ihc variabic fl is Ihc
[-i-plural,+human]. The variable fl musl bc of Ihc nodc fcalurcs lype and il
should have aiready bccn slaled.

d) &fl exists +plural
In Ihis example we examine if one of Ihe valucs of Ihc variabic fl has Ihc
fcalure +plural. The variable fl musl bc of lhc nodc fcalurcs lypc and il should
have aiready bccn slaled.
For example if the variable fl has Ihe valucs:

1. (-f-human,+plural|
2. [-»-human,-plural]

Ihcn Ihis operalor gives a Iruc value. The reason is Ihal Ihc (Irsl valuc o f lhc
variable fl is Ihe [+human,^-plural) Ihal has Ihe fcalurc +plural.

e) &fl subsets &r2
O &fl aCommoii &r2

In Ihese two examplcs we compare Ihe nodc fcalurcs of lhc variabic fl Io thosc
of the variable f2. The variabics fl and 17 must bc of thc nodc fcalurcs typc
and thcy should havc bccn slaled. In the example e) we compare if onc of Ihc
valucs of the variable fl has fcalurcs thal arc a subsel o f lhc fcalurcs assigncd
Io a value o f l hc variabic 12. In thc cxampic O wc examine if a valuc o f lhc
variable fl has al least one common fcalurc Ihal exists in a value of thc
variable f2.

1 6 4

BUPT

g) [+plural,+human] subscts & r i

In Ihis cxamplc vvc cxaminc if ihc fcaliircs [+plural,-Muimanl exist in a value
ot lhc variablc H. ThiM nicans llial a valiic of Ihc variablc fi shouid havc al
Icast thc fcaturcs +pliiral and +liunian. The variable fi nuisl be of the node
featiires lype and il shoiild have been staled.

h) [-i-pluraL+humanJ aCoiiimon &fl

In Ihis exaniplc we exaniine if ihe lealures [+pliiral,+human] and onc of Ihc
values of Ihe variable fl have al leasl one eonimon feature. The variable fl
nuisl be of ihe node fealiires lype and il shouid have been slaled.

D) Operalors for Iree nodes

1. node node 1 cqual node node 2
2. node node 1 notEqual node node 2
3. nodeName node 1 cqual nodcName node 2
4. nodeName node 1 notEqual nodeName node 2
5. nodeType node 1 equal nodeType/;c;c/e 2
6. nodeType node l notEqual nodeTypeA/oJc 2

In all Ihe above nodes il is possible Io iise eilher node variables or nodes Ihal
may eonlain variables.

Thc firsl operator examines if Ihe node of the left operand is Ihe same as the
node of the right operand. In order for the Ivvo nodes Io be the sanie, Ihey must have
Ihe same name, the same lype X' or X) and Ihe same fealures. If variables are in
Ihe left or the right operand, then the above shouid appiy for a value of these
variables.

The seeond operator examines if the node of the left operand is different from
the node of the right operand. In order for Ihe Iwo nodes to be different, Ihey must
have different name or different lype (X ' \ X' or X) or different fealures. If variables
are used in the left or the right operand, then for all the values of these variables the
nodes must be different.

The third operator examines if the node of the left operand has the same name
with the node of the right operand. If variables are used in the left or the right
operands, then the above shouid appIy for a leasl one value of these variables.

The fourth operator examines if the node of the left operand has different
name from the node of the right operand. If variables are used in the left or the right
operand, then the above shouid appIy for every value of these variables.

The fiflh operator examines if the node of the left operand has the same lype
with the node of the right operand, if variables are used in the left or the right
operand, then the above shouid appIy for a leasl one value of these variables.

165

BUPT

The sixth operator exaniines if lhe node oTlhe lefi operand has dilTerciU lype
trom Ihe node of the right operand. If variables are used in Ihe lefi or Ihe right
operand, Ihen ihe above sliouid appiy for all Ihe vahies of ihese variahles.

Nexl we analyze a series of exaniples that show all Ihe eases of iising the
above operators:

a) nodc&nl cqual node &n2
b) nodc&nl notEqual node &n2

In this example we compare the values of the variables nl and n2. These two
variables must be of the tree node type and they shoiild have aiready been
stated. The example a) exaniines if the variable nl and the variable n2 have a
eommon value. The example b) examines if all the vahies of the variable nl
and the variable n2 are different.

c) nodeName &nl equal nodeName &n2
d) nodeName &nl notEqual nodeName &n2

In this example we compare the values of the variables nl and n2. These two
variables must be of the tree node type and they shouid have aiready been
stated. The example c) examines if the variable nl has a value with the same
node name with a value of the variable n2. fhe example d) examines if the
variable nl doesn't have a value with the same node name of a value of the
variable n2.

e) nodeType&nl equal nodeType&n2
O nodeType&nl notEqual nodeType&n2

In this example we compare the values of the variables nl and n2. These two
variables must be of the tree node type and they shouid have aiready been
stated. The example e) examines if the variable nl has a value with the same
node type with another value of the variable n2. I he example I) examines if
the variable nl doesn't have a value with the same node type of a value of the
variable n2.

g) nodeType (article bar) equal nodeType&n I

In this example we check if the variable nl has a value of the X category. The
variable nl must be of the node type and it shouid have been aiready stated.

h) nodeName (article bar) equal nodeName &n 1

hi this example we check if the variable nl has a value with the node name
article. The variable nl must be of the node type and it shouid have been
aiready stated.

166

BUPT

t:) Opcralors for sublrccs

/. subircc Mihirce I cqual subtrcc suhtrec 2
2. subtrec .v///7/rcv / iiotlu|Uiil subtrcv Muhlrcc 2

The Icll and ihc righl sublrcc ofllie abovc opcralors can bc givcn or it can bc a
variabic or a subtrec ihat uscs variables. Tlic above opcralors lakc argumcnts that can
bc cilhcr variables or sublrccs Ihal may contain variables. The special operator
aiiyTrce can bc uscd al any posilion in Ihe lefi or righl sublrccs. This operator
dcciarcs that it is not inlcrcsling Ihe sublrcc Ihal is going Io bc al this posilion of a
Ircc. Also, Ihe operator t for Ihe dcnolation of a trace of a trec is uscd. Bolh of thesc
opcralors can bc foilowcd or noi by anaphors.

The first operator examincs if Ihe sublrcc of Ihe left definition is ihe same as
Ihe sublrcc of ihe right dcnnilion. If variables are uscd in thesc two operands, then al
Icast one of Ihe values of thesc variables shouid have ihc same sublrcc.

The first operator examincs if Ihe subtrec of Ihe left definition is diffcrcnt from
Ihe subtrec of the right definilion. If variables arc uscd in Ihcsc two operands, ihcn all
Ihcsc variables values of Ihc lefi and righl subtrec musl bc diffcrcnl.

Two Irccs arc cqual if Ihcy have Ihc same nodcs, fcalurcs of nodcs, Icrminals,
anaphors and structure.

Ncxt WC shall analyzc a scrics of cxampics that show all the cases of using the
above opcralors:

a) subtrec &stl cqual subtrce &sl2
b) subtrce &stl notEquai subtrcc &sl2

in this exampic we compare the values of the variables sti and st2. The
variables stI and st2 shouid bc of the trec node type and they shouid have been
stated. The exampic a) chccks if the variabic sil and the variabic st2 have a
common valuc. The exampic b) chccks if all Ihc values of the variabic sil arc
diflcrcnt from the values of Ihc variabic sl2.

c) subtrce (iiodc article, tcriiiiiial Ihc : aiiaplior anapi):anaplior anap2 cqual
subtrce &stl

In this exampic we examine if one of the values of the variabic is the (iiodc
article, termiiial ' the': anapiior anapI):anaplior anap2. The variabic stI musl
bc of the sublrcc calcgory and il shouid have bccn aircady slalcd.

F) Finally, there are two opcralors that check the existence of a variabic:
• varExists {Nume of Variabic)

167

BUPT

• grainiiiarVar (Nanic of I ariahlc)

The firsl case checks i fa variabic has already bccn dcciaicd.
The second case checks if a variable has aheady been dellned as graiiiiiiai one.
These operators can be used in a il-then-else mie, in Ihe niain body of Ihe

structurcComniaiids field ofllie principles and iransforniations and in the graminars.

So far, various opeialois have been described ihal can be appiied on elenicnls
of dilTerenl lypes. There are however operalors Ihal combine ihe above check
possibihlies.

/. chcck y aud chcck 2
2. chcck I or chcck 2
3. iiot chcck

From the above operators the first one, in order Io give a Iriie resull, rec|uires
both the chcck 1 and the chcck 2 to be irue.

The second operator, in order to give a truc resull, requires eilher ihe chcck 1
or the chcck 2 to be truc or both ofllieni.

The third operator gives a true resiilt ifthe chcck gives a false resull.

At all the above cases, the names of the variables are used with the format:
of Variabic

In this part of the principles or transformations, it is possible to use
respectively the follovving commands:

• priiiciplclncorrcct
• transformationliicorrect
These commands declare that the appiication of a rule on an X-bar tree is

false.

3.2.3.6 The EBNF of the structureCommands field

The statement for the scc-principle and scc-lransformat ion of the
structureCommaiids field of principles and transformalions is Ihe following:

scc-principle = scc-principle-commands'\'\

scc-transformation = scc-transformation-commands''/\

scc-principle-command =
scc-variables-declaration-vars
scc-variable-value-change |

168

BUPT

(^1fThcn(" scc-condition V scc-principic-commands) I
(^^ifThcnEIscC^ scc-conclilioii scc-principlc-commands

scc-principle-comniands) |
''addGramniarVariable^' name |
^'rcinoveGraniiiiarVariablc" name |

name |
"gramiiiarVar r name |
^^deleleDuplicales('' name |
' 'principleincorreci'' |
''IransTormalionlncorrecr'.

scc-lransformalion-command=
scc-variablcs-declaralion-vars|
scc-variable-valiie-change|
(' IfThen sce-condilion sec-lransformation-commands")") |
('MfTIienlilse C scc-condilion sec-lransformalion-commands

scc-lransformation-commands |
scc-command-tranformalions |
' 'addGrammarVariable' ' name |
'VcmovcGramniarVariablc'' name |
"varExisls name I
' 'grammarVar(' ' name |
' 'deleleDuplicales C name |
"principlelneorrecl' ' |
' 'transformat ioni neon e c r \

scc-prineiple-eommands = see-prineiple-eommand
see-prineiple-eommand }

sce-transformation-eommands = see-transformation-eommand
scc-transformation-command}

scc-variablcs-deelaralion-vars=
variablcs-declaration |
("fealures" features-variable-name "set" tree-node-valiie) |
C'anaphor" anaphor-variable-name ' ' se f '

(Iree-terminal-valiie | subtree-value)) |
("subtree" subtree-variable-name "set' '

"nextStrueture" number{niimber}) |
("subtree'' subtree-variable-name "set' '

"previoiisStriieture" ["(" niiniber{number}) |
("subtree" subtree-variable-name "set"

''partieularStrueture number{number} ")").

169

BUPT

scc-variablc-valuc-changc=
r & " n a m e "set" "&"namc) |
("&"subtree-variablc-namc "addValucs" subtrcc-valiic) |
("&"node-variable-name ''addValiics" Irec-nodc-value) |
C'&"terininal-variable-name ''addValucs" Ircc-lcrminal-valiic) |
("&"anaphor-variable-name "addValucs" anaplior-valuc) |
("&'Tealures-variablc-nanic ^'addValucs'^ nodc-rcaliircs-valuc) |
("&"subtrcc-variable-namc "dcIclcValiics " siiblrcc-valuc) |
("&"node-variablc-namc ''dcIctcValiics " Ircc-nodc-valiic) |
("&"terminal-variablc-namc ''delclcValiics " Ircc-lcrininal-valuc) |
("&"anaphor-variablc-namc "dclelcValucs '' anaphor-valuc) |
("&"features-variablc-namc ''delclcValiics nodc-fcalurcs-valiic).

scc-variable-value-change=
("terminar' terminal-variabic-namc "sc f Irec-lerminal-value) |
("terminalElemenr Icrminal-variable-nainc "scl" terminal-elemcnl).

scc-variable-value-changc=
("node" node-variable-iiamc ' ' sef trec-node-valiie) |
("features" "&"nodc-variable-namc ''set'' node-fealures-value) |
("nodeName" node-variable-name ''set'' node-naiiie) |
("nodeTypc" node-variable-name "set" ("barii" | "bari" | "bar")).

scc-variable-value-change=
"subtree" subtree-variable-name "set" subtree-value.

scc-variable-value-change=
"&" (terminal-variable-name | subtree-variable-name)
("addAnaphor" | "removeAnaphor")
anaphor-name.

scc-variable-value-change=
"node" "&"node-variable-name
("addFeatures" | "removeFeatures")

feature{"," feature} "]".

scc-condition =
(subtree-terminal-variable-anaphors |

("&" anaphor-variable-name) |
tree-terminal-value |
("&" terminal-variable-name) |

170

BUPT

sublrcc-valuc |
sublrcc-variablc-nainc)

)
{^LXiiiar^r^nolIiquar') I
(sublrcc-lcrminal-variablc-anaphors

anaphor-variable-namc) |
Ircc-tcriniiial-valiic |

icrminal-variablc-namc) |
sublrcc-valiie |

sublree-variablc-name)
).

scc-condilion =
(sublree-lerminal-variablc-anaphors |

anaphor-variabic-namc) |
ircc-tcrminal-valuc |

icrminal-variablc-iiaiiie) |
subtrcc-valuc |

sublrcc-variablc-namc)
)
' 'cxisls"
anaplior-name.

scc-condilion =
('Uerminal" Ircc-tcrniinal-valuc ("cqiiar' | "notlfcţiiaT')

'Merniinar' trce-lerniinal-valuc) |
("IcrminalEIcnicnf' Ircc-lcrniinal-valuc ('Vqiiar' | ^MiotKquar')

"Icrniinall-icnicnt'' Ircc-tcrniinal-valuc).

scc-condilion =
(trcc-nodc-valuc | nodc-fcalurcs-valiic)

(^V^qual" I ^'notliqiiar^ | ^^subsels" | ' 'aCommon")
(tree-node-valuc | node-fcaliires-value).

scc-condilion =
(''equalFcalurcC' fcalurc (Irce-nodc-valuc | node-rcaturcs-value)

(Ircc-nodc-valuc | nodc-fcalurcs-valuc))
("smallerFcatiircC' fealiire (Irce-nodc-value | node-featurcs-value)

(Ircc-node-valuc | nodc-fcaliires-valuc))
(^^grcalcrl'caturc(" fcalurc (Ircc-nodc-value | nodc-fcalurcs-valuc)

(Ircc-nodc-valuc | nodc-fcalurcs-valuc)) .

scc-condilion ^

171

BUPT

(tree-node-valuc | node-fcalurcs-valuc)
^^wisls"

featurc.

scc-condilion =
"nodc" tree-nodc-value (''cquaT' | ''nolliciual") "iiodc" trec-nodc-valuc.

scc-condition =
"nodeName" Irce-nodc-valuc (''cciiiar' | ' 'notliquar')
"nodeName" Iree-nodc-valuc.

scc-condition =
"nodeType" tree-node-valuc (^'cquaP' | ' 'notliquar')
"nodeType" tree-node-valuc.

scc-condition =
"subtree" subtree-value ("equal" | "notEquaP') "subtree" subtree-value.

scc-condition =
"varExists(" name | "grammarVar (" name

scc-condition = "not" scc-condition

scc-condition = scc-condition ("and" | "or") scc-condition

scc-command-tranformations =
"transformations" scc-conimand-transform
{ "also" scc-comniand-transfbrm }.

scc-command-transform =
sd-variable-name "transform" scc-variable-value.

scc-variable-value =
tree-node-value |
tree-terminal-value |
subtree-value.

BUPT

From llic above slalcnicnls Ihc variabics-dcciaration, trec-nodc-valuc, trcc-
icrniinal-valuc, siiblrcc-valuc, anaplior-valuc, noclc-rcalmcs-valiic, tcnninal-variablc-
namc. noclc-var iablc-nanic, subtrcc-variahlc-nanic, aiiaphor-variablc-nanic, fcaturcs-
variablc-nanio. subtrcc-tcrniinal-variablc-anaphois wcrc dcclared in Ihc chaplcr for
thc vahabics ficld of ihe principles and (ransformalions. Also, thc tcrniinal-clcmcnt,
nodc-namc, anaphor-name, fcaturc, namc, nunibcr wcrc dcciarcd in thc chaptcr that
dcscribcs thc structurcs that thc nicthodolody.

173

BUPT

3.3 The design ofthe software system - the modules

The software Ihat iniplcnicnls Ihc dcscribccl runctionalily has bccn
implemenled in SWI-Prolog 5.0.10. I his prolog has bccn crcatccl by Ihc Dcparlnicnl
of Social Informalics (SWl) of Ihc Univcrsily of Ainslcrclani. I his prolog is possibic
to be installed as cmbedded appiication in a pockct PC. It has bccn iniplcnicnlcd as a
set of difîcrent modules in the nientioncd prolog. Thcsc arc Ihc foilowing:

1. User

2. Sys_db
This module contains all the predicates that storc the current status of
the system when it manipulatcs the X-bar structures.

3. Operators
This module contains all the operators that arc uscd by all other
modules of the system.

4. Generai predicates
This module contains a set of predicates that are uscd in diffcrent
modules of the system.

5. Sys elcmcnts
This module describes the different elemcnts that are manipulatcd by
the system. Different predicates determine the corrcct form of the
different kind of elemcnts (hodes, tcrminals, anaphors, features, trecs).

6. Main modulc
The main module is the first module that stails the appiication.

7. Read_rilcs
This module reads the principles, transformations and grammars.

8. Read Write Structures
This module reads the input structures and produces the output
structures according to the ruics and the grammars.

9. Executc ruics
This module executes the grammars, principles and transformations.
They are determined by the corrcsponding operator and the name.

10. Vars_rield
This module manipulatcs the declaration of variables in the fieid vars
of the principles and transformations.

I 1. Sd_rield
This module analyses the current input structurc that the particular rulc
is appiied, according to the structural description of its sd ficId.

12. Scc fieId

1 7 4

BUPT

This module contains all Ihe prcciicaics (or variablcs dcciaration and
changc of variablcs valucs in llic scc Ucid of principlcs and
Iransformalions.

13. Scc chccks
The diffcrcnl kinds of chccks in thc scc ficld of principlcs and
iransformations.

14. Scc Iransformalions
riiis module has all ihc ncccssary prcdicalcs for thc dcfmilion of ihc
Iransformalions ihal \vc can appiy in Ihe inpul slruclurc.

I 5. Commcnls
This module wriles thc commcnls Ihal arc dcciarcd in ruics.

As il is menlioned above:
• The User module is Ihe default module Ihal is visible by all thc othcr

modules.
• Thc module Operators dennes thc operators in the User module.

These operators are used by all the modules of the system.
• The module sys db stores the current status of the natural processing

system.
The remains modules follovv with thcir corresponding dependenccs:

1. Gencral_predicatcs

2. Sys elements

3. Mainmodule

• operators

• rcadl l lcs

• readvvritestructurcs

4. Readf i les

• s y s d b

• generaipredicatcs

5. Read_Write_Structures

• sys_db

• general_predicates

• syselements

• executerules

6. l ixccuterules

• s y s d b

• generaipredicatcs

175

BUPT

• sysclcnicnls

• vais Ucid

• sd_rield

• scc_ricld

• scc_cliecks

• scc_transformalions

• comments

7. Vars_field

• sys_db

• gcneralprcdicates

• syselenicnls

8. Sd_field

• sys_db

• general j)redicates

• sys__elements

• vars_ficld

9. Scc_field

• sys_db

• generaipredicates

• syselements

• vars_field

• scc_checks

• comments

10. Scc_checks

• sys_db

• general_predicates

• sys_elements

• vars_rield

11. Scc_transformalions

• sys_db

• general_predicates

176

BUPT

• varst lcld

12. CommciUs

• s y s d b

• gcncralprcdicalcs

• vars ficld

AII Ihe above modulcs will bc dcscribed in details in the foilowing seclions
iising thc notalion and predicatcs of prolog.

3.3.1 Implementation specific details

3.3.1.1 The comment command

In principics and Iransformalions it is possibic to stale commcnts in thc
structurcCommaiuls ficld. Thcsc commcnls are cntcred in Ihc systcm's output as
furlhcr informalion lor ihc spccillc principic or Iransformalion. Also, Ihcy are possible
and in the main body of a graniniar but at this case it is not possibic to usc variables.

For the comment we usc the command commcnt and then we enter the
comment that we \\ ish to be printed in the system's output.
The general form ofthis command is the foilowing:

comiiiciit {comnicfU I conimcnl 2: comnioU J. ..J

We notice that in this command the commcnts are separated with thc charactcr
:. Each one of the commcnts can be a constant, a prolog atom. Namely, it is a
sequence of letters and numbers included betvveen quotes. The atom of the prolog is
printed as it is. Also, every comment can bc a variable that shouid have bcen stated.
Then the system prints all thc values ofthis variable. Each variable is used as foilows:

{&Lnanic oj variable)
we notice that we must usc parentheses that will include the name of the variable and
the charactcr &.

Thcre is also the operator newliiie that changes the line in the output and
vvrites the rest of the commcnts in thc next line.

Next we shall analy/e a scries of examples:

a) comment ('The values of the variable al are the foilowing' : (&al))

177

BUPT

This comment prints Ihe incssagc 'I l ic valiies of Ihc variabic al arc Ihc
following' and llicn a lisl of llic valiics of Ihc variabic al . Ihc variabic al
should havc bccn stalcd.

b) commcnt ('The values of thc variabic nl arc Ihc follovving' : (&nl) : ncwlinc : '
and o f t h e t l are the^ : (&ll))

This comment prints thc mcssagc ' Thc valucs of thc variabic nl arc thc
foilowing' and thcn prints a list o f the valucs of thc variabic nl and changcs
thc line. Thcn it prints thc mcssagc ' and of thc tl arc : ' and thcn thc valucs of
the variabic t l . Thc variablcs nl and tl should havc bccn statcd.

The EBNF form for the commcnts is thc foilowing:

scc-message = "comment" scc-commcnt { scc-commcnt }.

scc-comment = name | ("X" commcnt-variablc-namc) | ''ncwlinc'

comment-variable-name =
node-variable-namc |
features-variable-namc |
terminal-variablc-namc |
subtree-variable-name |
anaphor-variablc-name.

From the above statements the node-variable-namc. fcaturcs-variablc-namc.
terminal-variablc-namc, subtrce-variablc-name havc bccn dcscribcd in thc liBNF of
the variablcs fieid of the principles and traiisformations.

3.3.1.2 The user depending appiication of the rules

Another possibility is the ability to selcctively apply a rulc according to thc
response of the user. This is available in the main part of a grammar of thc Linguistic
Theories input and in the Linguistic Program input.

These cases are the foilowing:

askprinciple name of principie
asktransformation name of transformation
askgrammar name of grammar

178

BUPT

Wc nolicc Ihal vvc can usc Ihc opcralors askprinciplc, asktraiisformation and
askRraiiiiiiar, inslcad of thc opcralors phncipic, transfoniiatîoii and Rraiiimar.
Whcn a graniniar in llic Lins^tnMic Thcorics inpul wislics Io appiy onc ol lhcsc ruics or
in Ihc Lins:iflMic rros^i'tnn inpul il is rcqucslcd ihc appiicalion of Ihc a principic,
iranslornuilion or graniniar wilh Ihc opcralors askpriiiciple, asklraiisformatioii and
as kg ram mar, il is ncccssary ihc posilivc or ncgalivc rcsponsc of ihc uscr.

Thc liBNF form of Ihc Lin^uLslic Thcorics inpul has addilionally thc:

rulc= ^^askprinciplc'' principlc-nanic \
''asklransformalion'' iranslbrinalion-nanic |
^'askgrammar" grammar-nainc.

3.3.1.3 The changes on the operators and other
assumptions

Thcrc arc somc cliangcs on thc opcralors at the implcmcnled system
comparing with thc dcscription in thc prcvious chaptcrs. Thcsc changes facilitate
niorc thc usc of thc software syslcni. fhcsc changes arc:

• variables bcconics vars
• noVariablcs bcconics noVars
• structurcDcscriptioii bcconics sd
• structureCommaiuls bcconies scc
• structurepositîoii becomes position
• traiisformationVariable bcconics stIVar

Backlracking is possibic in thc sd llcid. In thc scc Ucid il is possible to usc any other
prolog predicate exccpl ihc clcnicnls (chccks, Iransfornialions ele) llial liavc becii
described for this fieid of thc priiiciplcs and traiisformatioiis. Also, in thc main
body of a grammar it is possibic Io usc any prolog predicate exccpl the principics,
traiisformatioiis and thc other coniniands lliat had becn described about thc main
body of a grammar rulc. A traiisrormatioii rule succecds if at least onc of thc
rcqucslcd Iransfornialions in ils scc Ucid succecds and produces a new X-bar trec.
Thc transfornialion and principic rules arc appiicd on on all thc sd subtrces that
exist in an x-bar trec. If thc operator aFirstTrcc is uscd thc rule is appiicd on thc
first sd sublrce (scanning top-down lefl-right) that cxisls in an X-bar trec.

3.3.2 Module sys.db

This module contains all thc predicates that storc thc current status of thc
syslcni whcn il manipulatcs thc X-bar slrucUircs.

179

BUPT

Thcsc arc thc following prcdicatcs vvith Ihcir corrcspoiuling arity:

• iiipulfilc/l

• oulpul_rilc/l

• c\cculc_rulc_grammar/l

• grainmar/2

• principic riilc/4

• transformalionrulcM

• newis / l

• nc\v_os/l

• read_is/2

• in_slriicl/l

• oiit_strucl/l

• is_trees/l

• rule_succeecl_trees/l

• variablcs/2

• grammar_variablcs/l

• scclraiisformations/1

The above prcdicatcs storc thc following iiiformalion in niorc dclails:

• It kccps thc input filc strcam for thc input slriicturcs
• input_filc(_).

• It kccps thc output file strcam for thc rcsiilts
• outpiit_filc(_).

• It kccps all thc grammars, principics and transformations that wc want to
cxccutc according to thc linguistic program

• cxccutc_rulc_grammar([]).

• It kccps cvcry grammar
• grammar(999999,_). (diimmy grammar)

• It kccps cvcry principic
• principlc_rulc(999999,_,_,_). (dummy principic)

• It kccps cvcry transformation
• transformation_rulc(999999,_,_,_). (dummy transformation)

180

BUPT

• ll kccps thc X-bar Irecs Ihat arc going Io bc used by the next grammar,
principie or transformation.

• ncvv_is([]).

• It kecps thc final X-bar Irces thal liave been prodiiced by Ihe last grammar,
principic or transformation.

• ncw_os(||).

• It kecps thc last structurc that has been gottcn from thc input file trces
• rcadjs(0,[]).

• It kccps thc current input X-bar trec for the running riile
• in_striict(_).

• It kccps thc current output X-bar trec for thc running rule
• out_struct(_).

• It kccps thc set of all thc input file X-bar trces
• is_trccs([]).

• it kecps the oniy succeeded trces that a rule is apllicd on
• ru le_succeed_trees([]).

• It kccps thc variables of the current principie or transformation that is executed
and appiicd on an X-bar trec

• variablcs([],[J).

• It kccps all the transformations of thc transformation rule that is currently
executed

• scc_transformalions([]).

• It kccps thc names of thc grammar variables
• grammar_variablcs([]).

3.3.3 Module operators

This module contains all the operators that arc used by all other moduics of thc
system. Thesc operators are set in the user module.

Thc operators that wc usc for the description of thc transformations and
principics arc thc following:

:-op(100,fy,uscr:principle).

181

BUPT

:-op(100,fy ,uscr:transfornialion).

:-op(100,ry,uscr:gi aniniar).

>op(950,ry,uscr:vars).

:-op(950,ry,uscr:scl).

:-op(950,ry,uscr:scc).

:-op(100,ry,uscr:askprinciplc).

:-op(100,ry,iiscr:asklransformalion).

:-op(100,ry,iiser:askgrammar).

The operators vars, sd and scc arc iiscd for ihc dcclaration of thc
corresponding variablcs, structurcDcscriptioii and sti ucturcCommands ficlds of
the principles and transforniations.

The operators that we can usc in tlicse llelds of Ihc principles and
transforniations are the:

-op(800,xfy,user:set).

-op(850,\fy,user:also).

-op(800,xfy,iiser:addValucs).

-op(800,xfy,iiscr:deleteValucs).

The first operator is used in the fieids vars and scc to set valucs.
The second operator is used in the field vars to declare two or more diffcrcnt

variables and also in the field scc to declare a sequencc of transforniations.
The third and forth operator arc used in ordcr to add and to rcniovc valucs of

variables respectively

The operators that are used in diffcrcnt parts of a trec arc thc following:

-op(620,fy,uscr:nodc).

-op(400,fy,user:fcaturcs).

-op(620,fy,uscr:tcrminal).

-op(400,fy,user:anaphor).

The first operator is for thc dcclaration of a nodc in a X-bar trec or in thc ficlds
of a principie or transformation. 1 hc sccond operator is for thc dcclaration of thc
features the nodes. The third operator is for thc dcclaration of a terminal clement. Thc
forth operator is for the dcclaration of the anaphors of the trces and of thc tcrminals.

182

BUPT

The varioiis calcgories of nodcs are derined by Ihe roilowing operators:

:-op(20(),ylUiscr:barii).

:-op(2()0,yr,user:bari).

:-op(200,yr,user:bar).

The first operator is for ihe X^' nodes Ihe second is for Ihe X' nodes and Ihe
third is for the X nodes.

The operalors for Ihe declaralioii of Ihe transfornialions in Ihe sec field of the
transformalions are the:

:-op(900,fy,user:transfornialions).

:-op(650,\fy,user:transforni).

The first operator determines a vvhole seqiienee of transformations and the
second is iised to declare every different part in a transforniation sequence.

In the field sd of the principles and transformations we can use additionally
the follovving:

:-op(400Jy,user:sdVar).

:-op(400,fy,user:subtree).

:-op(400,fy,user:notSubtree).

:-op(400,fy,iiser:nodeSubtree).

:-op(400,fy,iiser:nodeNotSiibtree).

>op(400,\f,iiser:any'iree).

:-op(600,fy,iiser:a Tree).

:-op(600,fy,user:aFirst Iree).

>op(600,fy,iiser:leftMost).

The first operator is used for the declaration of transforniation type variables
that are going to be mainly used in the field scc for the transformations.

The other operators correspondingly declare the foilowing:

• subtree of a tree
• not subtree of a tree
• subtree of a tree that is described by a root node
• not subtree of a tree that is described by a root node

183

BUPT

• any tree
• a trcc ihal is a arbilrary subtrcc of a Ircc
• a irce that is Ihc first subtrcc of a trcc
• a trcc is thc left niost subtrcc (top-down Icft-riglU trcc scanning)

In thc scc Ucid of thc principics and transforniations vvc can usc thc lollovving
opcrators:

For thc dctcrmination of a part of an element:

:-op(620,fy,uscr:tcrminalL:lcmcnt).

:-op(620,fy,uscr:nodcType).

:-op(620,fy,uscr:nodcNamc).

Thc first operator is uscd for thc dctcrmination of thc name of a terminal.
The second is uscd for thc dctcrmination of thc type of a node.
The third operator is uscd for thc dctcrmination of thc name of a node.

For thc change of anaphors or features of an element:

-op(650,yfy,user:addFeatures).

-op(650,yfy,user:removcFeatures).

-op(650,yfy,user:addAnaphor).

-op(650,yfy,user:removeAnaphor).

The first operator is uscd for thc addition and thc second for thc substraction
of the features of a node.

The third is uscd for the addition and thc forth for thc subtraction of an
anaphor in a terminal or subtrcc variable.

For the checks of the various elcments are the opcrators:

:-op(650,xfy,user:equal).

:-op(650,xfy,user:notEqual).

:-op(650,xfy,user:aCommon).

:-op(650,xfy,user:subsets).

:-op(650,xfy,user:exists).

The above opcrators determine accordingly thc foilowing:

• the first checks if two elcments are equal
• the second checks if two elcments arc not equal

184

BUPT

• the third chccks iflvvo clements have a common fcature
• thc forth checks if ihc fealures arc subset of anolhcr set
• thc fifth chccks if a l'caturc or an anaphor cxists

Thcrc arc thc opcrators for grammar variablcs:

:-op(100,fy,uscr:addGraminarVariablc).

:-op(100,fy,uscr:rcmovcCirammarVariablc).

Thc first operator adds a ncvv grammar variabic thc sccond rcmovcs a
grammar variabic from thc set of thc grammar variablcs. They arc uscd in thc
prmaplcs and tninsformations injnil. in thc lin^uistic thcory inpiit and in thc
lin^uistic program input.

Also, thcrc is thc foilowing general operator that is uscd in different parts of a
principie or transformation:

:.op(500,xfy,:).

Wc llnally usc thc foilowing sequence of opcrators:

>op(300,fy,uscr:(iS:)).

:-op(670,yfx,uscr:and).

:-op(675,yfx,uscr:or).

:-op(900,fy,uscr:not).

Thc first is uscd in front of thc variablcs names.
Thc sccond, third and forth function as the known logical opcrators in thc

different kind of checks.
The opcrators aiul and or can bc uscd in the sil llcld to dcscribc combinations

of trees.
:-op(520,fy,uscr:commcnt).

It is uscd for the description of a comment in a rule (grammar, principie and
transformation)

3.3.4 Module generaLpredicates

This module contains a set of predicates that are uscd in different modules of
thc systcm.

The first determines thc module that storcs the currcnt information of thc
systcm when it functions. Wc can easily change thc module namc in ordcr to usc
another module for storage.

185

BUPT

main_dalabase(sys_(Jb).

It follows a bricfdcscriplion oflhc prcciicatcs:

It convcrts a tcrm of thc form (Icrinl or lcrin2 or ... or IcrniN) in a lisl o f lhc forin
[term 1 ,term2,...,tcrmN]

orTcrmToList(+(terml or tcrm2 or... or tcrinN), ?[lcriiil ,lcrni2 IcrniN])

It searches if an operator is in a set of operators
member_op(?Operator, ^(Operatori :Operator2:...:Operator(l:))

It deletes an operator from a set of operators
remove_op(+Operator, ^(Operatori :Operator2:...:Operator(E),

?(Operatorl:...:Operator(E),)

It compares two lists
compare(-i-Lisl 1 ,+List2)

It deletes the repeated elements of a list
delete_duplicates(Lisl, Lisl2 withoul the repeated elements)

It substitutes an element of a lisl wilh anolher element
replace(+A, +B, +L_in, ?L_oul)

It checks if an element is a list or noi
list(+List)

It deletes an element from the main database if it exists
sys_retracl_all(-i-Elemenl)

It inserts an element in the main dalabase
sys_assei1(+Elemenl)

It reads an element in the main dalabase
sys_read(-fClemenl)

186

BUPT

Il succccds ifCondition and Clause succccd or iflhc Condition tails
irrhcn(+Coiidilion,+Claiisc)

Succccds ifCondition and Claiiscl succccd or i f l h c Condition fails and Clause2
succccds

inhcnl: lsc(f Condition,4 Clausc I ,^CIausc2)

Succccds if ClauscI and Clause2 succccds
and(+Clausc I ,+Clausc2)

Succccds if ClauscI or Clausc2 succccds
or(+Clausc I ,-»-Clausc2)

ll convcrls a set of tcrms in thc corrcsponding list
list_to_tcrm(?List of clcmcnts, ?Compound tcrm)

it convcrts a list of clcmcnts in a compound tcrm with thc clemcnts conncctcd by thc
operator and

convcrtJist_to_andJcrm(-Hinput list, ?Compound Output Structurc)

It inserts thc (not) operator in cvcry element of thc list
insert_not_operator(+lnput List, ?Output List)

It writes in thc output device a trec
writetree(-»-OutStream,-HSubtree)

It gives thc correct form in an input X-bar trec
input_str_conv(+Inrrce,?CovcrtedTree)

The chccking of the main part of a grammar
chk_grammar(-fThc main body of the grammar)

It checks the tcrm if it is one of the accepted forms
chk_rulc_grammar(+ rerm)

Dcletion of the existingjclements of list I
delete_common_fcatures(+featurcs list I, -ffcatures list 2,

187

BUPT

+reatiires lisl 2 vvilhoul fealurcs of list 1)

It checks if the feature exists in a lisl orfcatiircs
fealiire_e\isls(4-Fcatiire, -i-Lisl of fcatiircs)

It retums all the anapliors in onc list
list_anaphors(?Seqiicncc of anaphors, ?Anaphors List)

It substitutes the node name
replace_node_namc(^-Nodc, +Nc\v node name, ?Ne\v node)

It substitutes the type of a node
replace_node_type(+Node, -i-New node type, ?Nevv node)

3.3.5 Module sys_elements

This module describes Ihe different elements that are manipulated by the
system. Different predicates determine the correct form of the different kind of
elements (nodes, terminals, anapliors, features, trees).

ANAPHORS
The form of anaphors that the system accepts, are determined by the foilowing

predicates:

A single anaphor
a_anaphor(+Anaphor).

A sequence of anaphors
a_anaphors(+Anaphor).

TERMINALS
The form of the terminals that the system accepts is determined by the

foilowing predicates.
Terminals without anaphors:

a_simple_terminal(-i-Terminal).

Terminals with anaphors
a_terminal(+Terminal).

188

BUPT

FEATURBS
The forni of thc fcalurcs of Ihc nodcs Ihal llic syslcm manipulatcs is

dctcrniincd by ihc following prcdicatcs:

The following dctermines ihe different kind of single fealure:
a_fealiire(-+-Fealure).

The following dctermines a complete set of thc fcalurcs of a node:
a fcatures(+Features).

NODi:S

The form of Ihe nodes Ihal ihe syslcm accepls, are thc following:

The following dctermines thc nodes of typc X \ X in a general form:

ajiodc(+Nodc).

The following dctermines Ihe nodes of typc X ' \ X \ X in a form without
fcalurcs:

a_simplc_node(+Nodc).

The following prcdicatcs determine in dclails thc nodes of typc X " , X\ X in a
form with or without fcalurcs:

a_node_barlI(+Node).

a_nodc_barl(+Node).

a_node_bar(+Node bar).

TREES
Thc following prcdicatcs determine thc X-bar trees Ihal thc syslcm accepls as

inpul, produces as oulpul and manipulatcs.

Thc following prcdicatcs dctermines a trec of typc X2, XI, XO and relurns thc
lisl of all ils anaphors.

a_trce_value(-i-Tree,AnaphorsList) :-

But thc mosl important prcdicatcs ihal determine thc exact form of trees Ihal
thc syslcm manipulatcs arc described in thc following lines. Every predicate has two
anaphor lisls. Thc first is thc inpul lisl of anaphors and thc second pair is thc new lisl
of anaphors.

Thc different kinds of trees are reprcscntcd with thc different prcdicatcs:

189

BUPT

A tree oflypc X wilhoul anaphors

a_lrec_bar(LAnaphors,(no(Je Noclc,lciniinal rcriiiinal),NoclcNanic,LAnaplK)rs)
return_node_name(Tslode,NodeNanie),
ajiodc_bar(Nodc),
asimpIe_terminal(Tcrminal).

A tree of typc X wilh anaphors in Ihc terminal element

a_tree_bar(LAnaphorsl,(node Node,terminal Terminal:Anaphors), NodeName,
LAnaphors2)

return_node_nameCNode,NodeName),
a_node_bar(Node),
a_simple_terminal(Terminal),
value_anaphorsseq(Anaphors, Val Anaphors),
chk_anaphors_connections(LAnaphors 1, Val Anaphors,LAnaphors2).

A tree of type X with anaphors at X

a_tree_bar(LAnaphorsI,(node Node,terminal Terminal):Anaphors, NodeName,
LAnaphors2) >

return_node_nameCNode,NodeName),
a_node_bar(Node),
a__simple_terminal(Terminal),
value_anaphors_seq(Anaphors,Val Anaphors),
chk_anaphors_connections(LAnaphors],ValAnaphors,LAnaphors2).

A tree of type X with anaphors at the terminal element and at X

a_tree_bar(LAnaphorsl,(node Node,terminal TerminaLAnaphorsI):Anaphors2,
NodeName, LAnaphors3)

return_node_name(Node,NodeName),
a_node_bar(Node),
a_simple_terminal(Terminal),
value_anaphors_seq(Anaphors I,Val Anaphors I),
chk_anaphors_connections(LAnaphors 1, Val Anaphors I ,LAnaphors2),
value_anaphors_seq(Anaphors2,ValAnaphors2),
chk_anaphors_connections(LAnaphors2,ValAnaphors2,LAnaphors3).

A tree trace with anaphors

a_tree_bar(LAnaphorsl ,t:Anaphors, ,LAnaphors2)
value_anaphors_seq(Anaphors, Val Anaphors),
chk_anaphors_connections(LAnaphors I, Val Anaphors,LAnaphors2).

A tree trace without anaphors

190

BUPT

aJrcc_bar(LAnaphors,l,_XAnaphors).

A irce of lypc X'

aJrce_barI(LAnaphors 1 ,(nodc Nodc,SiibTrce 1 ,SubTrec2),NodeNamc,
LAnaphors3)

rclurnjiodc_namc(Nodc,NodcNanie),
ajiodc_barl(Mode),
a_trcc_barl(LAnaphors I ,SubTrce 1 ,NodcNaineX Aiiaphors2),
aJrcc_barlI(LAnaphors2,SiibTrcc2,_XAnaphors3).

A iree of lypc X' vvilh anapliors

a_lrcc_barI(LAnaphors 1 ,(nodc Nodc,SubTrcc 1 ,Siib rrec2):Anapliors, NodcName,
LAnaphors4)

rctiirnjiodcjiamc(Nodc,NodcNaiiic),
ajiode_barl(Nodc),
valuc_anaphors_scq(Anaphors,ValAnaphors),
chk_anaphors_conncclions(LAnaphorsl ,ValAnaphors,LAnaphors2),
aJrcc_barl(l.AnaplK^rs2,Subrrccl,NodcNaiiic,LAiiaphois3),
a trcc barlI(LAiiaplu)rs3,Subrrcc2, ,LAiiaphors4).

A trec of type X'

a_lrcc_barl(LAnaphors 1 ,(nodc Nodc,SiibTrcc l ,SubTrcc2), NodcName,
LAnaphors3)

rclurn_nodejiamc(Node,NodeNanie),
a_node_barl(7slode),
a_lree_bar(LAnaphors I,Sub Trec 1 ,NodeNanie,LAnaphors2),
a_lree_barIl(LAnaphors2,SubTree2,_,LAnaphors3).

A trec of lypc X' wilh anaphors

aJrec_barl(LAnaphorsl,(node Node,SiibIrcel, SiibTrce2):Anaphors, NodcName,
LAnaphors4)

rcturn_nodc_namc(Nodc,NodcNamc),
a_nodc_barlCNodc),
valuc_anaphors_scq(Anaphors, Val Anaphors),
chk_anaphors_conncclions(LAnaphors I ,ValAnaphors,LAnaphors2),
a_lrcc_bar(LAnaphors2,Sub'rrec I ,NodcNamc,LAnaphors3),
aJrcc_barll(LAnaphors3,SubTrec2,_,LAnaphors4).

A trec Iracc with anaphors

a_trec_barl(LAnaphorsl,t:Anaphors,_,LAnaphors2)
value_anaphors_scq(Anaphors, Val Anaphors),
chk_anaphors_conncclions(LAnaphorsl, Val Anaphors,LAnaphors2).

191

BUPT

A tree trace without anaphors

a_tree barl(LAnaphors,t,_,LAnaphors).

A emply tree

a_tree_barl(LAiiaphors,cmpty,_,L Anaphors).

A tree of type X"

a_trec_barII(LAnaphorsl,(nodc No(Jc,SubTrccl,SubI rcc2),No(JcName,
LAnaphors3) :-

return_nodejiame(Node,NodcName),
a_node_barII(Node),
a_tree__bar(LAnaphorsl,SubTrccl ,_,LAnaphors2),
a_tree_barI(LAnapliors2,Sub l rcc2,NodeNainc,LAnaphors3).

A type X" tree vvith anaphors

a_tree_barII(LAnaphors 1 ,(nodc Node,SubTree 1 ,SubTrce2):Anaphors, NodeName,
LAnaphors4)

return_node_name(Node,NodeName),
a_node_barII(Node),
value_anaphors_seq(Anaphors, Val Anaphors),
chk_anaphors_connections(LAnaphorsl, Val Anaphors,LAnaphors2),
a__tree_bar(LAnaphors2,SubTrec 1 ,_,LAnaphors3),
a_tree_barI(LAnaphors3,SubTree2,NodeName,LAnaphors4).

A type X" tree

a_tree_barII(LAnaphors 1 ,(node Node,SubTree 1 ,SubTree2),NodeName,
LAnaphors3) :-

return_node_name(Node,NodeName),
a^nodebarl I (N ode),
a__tree_barII(L Anaphors 1 ,SiibTree I ,_,LAnaphors2),
a_tree_barI(LAnaphors2,SubTree2,NodeName,LAnaphors3).

A type X" tree vvith anaphors

a__tree_barII(LAnaphors 1 ,(node Node,SubTree I ,SubTree2):Anaphors,NodeName,
LAnaphors4)

return_node_name(Node,NodeName),
a n o d e b a r i i(Node),
value_anaphors_seq(Anaphors, Val Anaphors),
chk anaphors conneclions(LAnaphors I,ValAnaphors,LAnaphors2),
a_tree_barII(LAnaphors2,SiibTree 1 ,_,LAnaphors3),
a__tree_barI(LAnaphors3,SubTree2,NodeName,LAnaphors4).

192

BUPT

A trce trace with anaphors

aJrec__barll(LAnaphorsKt:Anaphors,_,LAiiaphors2)
value_anaphors_scq(Anaphors,Val Anaphors),

chk_anaphors_conncclioiis(LAnaphorsl,ValAnaphors,LAnaphors2).

A Iree trace without anaphors

a_trec_barll(LAnaphors,t,_XAnaphors).

A cmpty tree

a_tree_barll(LAnaphors,empty,_XAnaphors).

3.3.6 Module main_module

The main module loads the module with the operators. It is the first module
that is loaded in order to start the appiication. Also, it uses the modules read files and
read_write_structures.

The availablc predicates Io olher modules are the:

• rcad_ruIes/O, r e a d j ules/3
o read_rulcs without arguments it uses the default file names

(fl.rg, fl.gr, fl.rl)
o read_rules(-MJnguisticProgramlMle, +LinguisticTheoryFile,

+Principles'l ranslormationsFile)
It reads the follovving files:

1. The sequence of rules, lin^uistic programm, (principles,
transformations and grammars) that we want to appiy on
the input X-bar trees.

2. The grammars that we have declared.
3. The principles and the transformations that we have

declared.

• rw_trees/0, rw_trees/2
o rw^trees without arguments it uses the default file names (fl.is,

fl .os)
o rw_trees(+lnputSlrucluresf ile, +OutpulStructuresFile)
It appiies the rules on Ihe input X-bar Irees and produces the output
file with the resulls.

The used predicates from other modules are the:
• from the read files module:

193

BUPT

o gctcxccutegraînniarrulc /1
o get_grammars/l
o getruics/ l

• from the rcad wrilc strucliircs module:
o get_structurcs/2

The next section describcs in dclails the Functionalily ofthesc prcdicalcs.

3.3.7 Module read_files

This module reads Ihe three inpul 11 Ies:
1. The sequence of rules (principles, Iransformations and grammars)

that we wanl Io appiy on the inpul X-bar Irces.
2. The grammars Ihal \vc have dcciarcd.

3. The principles and Ihc transformalions Ihal vvc have declared.

The first kind of file is read by the following predicate:

get_execute_grammar_rule(+The file name)

The second kind of file is read by the following predicate:

get_grammars(H-'I he name of file)

The third kind of file is read by the following predicate:

get_rulcs(> rhe name of the rules file)

The above predicates use a set of supplementary predicates that mainly are the
following:

o It reads the principles, Iransformations and grammars that vvc want to appiy on
the input X-bar trees - The linguistic program

• read_execute_grammar_rule(+KileHandle)

o It reads the grammars from the input file
• read_grammar(ilcHandlc)

o It reads the principles and transformalions from the input file
• read_rules(-i-Filel landie)

o It reads a principie or transformation from the input file
• rcadRule(+FileHandle, ?Rule, ?Rule name)

194

BUPT

o II chccks if the mic is pricipic or Iransformalion
• rulc caU +Rulc nanic, ?Rulc slruclurc,

?RLIIC namc, ?Vai iabics Tielcl, ?SD slruclurc ficid,
?SCC liclcl)

o ll chccks if thc principic or Iransformalion has variables or noi
• rulc_vars(+Thc inpul flcId, +Thc oulpul ficId)

3.3.8 Module read_write_structures

Rcading of Ihc inpul slruclurcs and produclion of Ihc oulpul slruclurcs
according Io the principlcs, Iransfornialions and gramniars Ihal wc wanl Io appiy on
inpul slruclurcs.

Thc niain prcdicalc is:

gct_structurcs(+Thc namc of Ihc inpul file, -f TIic namc of Ihc oulpul filc)

Thc abovc prcdicalc uscs Ihc foilowing:

• rcad_slruclurcs(-i-TrccNumbcr, +lnpul file, ?TrcesLisl)
• cxccule_rulcs_on_inpul_lrccs(+Grammars, +Inpul Trces Lisl)

ll rcads every inpul slruclurc and appiics on Ihcm Ihc scl of principlcs,
Iransformations and gramniars Ihal wc have dcciarcd Ihal wc wanl Io appIy.

Thc abovc uscs Ihc prcdicalc:

perform(+Lisl of ruics Ihal wc wanl Io appIy)

3.3.9 Module execute_rules

Thc gramniars, principlcs and Iransfornialions arc dclcrmincd by Ihc
corrcsponding opcralor and Ihc namc.

The foilowing prcdicalcs dcfinc Ihc opcralors:
grammar
askGraniinar
principic
askPrincipIc
transforlnation
a s kT r a 11 s fo r 111 a (i o II

195

BUPT

and thc:
addStructiircs
sctStructurcs
sctSucccedcclStructurcs
rcstorcStrucUirc
gctNcxtStructurc
gctPrcviousStructurc
addGraiiimarVariablc
rcmovcGrammarVariahlc
gctliipulTrccId
lîcwInputTrccs
addliiputTrccs

The predicate lor Ihe appiicalioii of a granimar wilh uscr qucstion:
askgraniiiiar(-i-Graiiimar nanic)

and without uscr qiicslion
granimar(4-Graiiiniar Naiiic)

The predicate for the appiication of a principie according to thc uscr answcr
askprinciple(+Principle name)

The procedure for the appiication of a principie on all the X-bar trces
principle(+Principlc name)

It appiies the principie on one X-bar trec
perform_principlc(-i-Principle name, +lnput structurc)

The predicates for the transformations according to the uscr choice
asktransformation(+Transformation name)

The appiication of a transformation on a set of input structures
transformation(+Transformation name)

The appiication of the transformation in onc input structurc
perform__transformation(+Transforamtion name, +lnput structurc)

The procedures for thc changc of thc input structures in diffcrcnt cascs:

An addition of the produced structures in the current input structures for the
next rule

addstructures

It sets as a new set of structures for the next rule the structures that have bcen
prodused by the last rule

setstructures

It sets as X-bar trees for the next rule of the grammar, oniy the trces that the last
rule have been appiied on successfully

setsucccededstructures

It restores as input structurc thc structurc that has rcad from thc input file
restorestructure

196

BUPT

rulc

ll gets the next input struclure from Ihe inpul file Ibr use by the next rule

gclncxlstmclurc

ll gets Ihe prcvioiis inpul slriicUirc from Ihc inpul file for use by Ihe nexl rulc

gelpreviousslruclure

ll gels Ihe a particular inpul slruclure from Ihe inpul file for use by ihe next

gclparlicularslruclurc(+Localion)

îl rclurns ihe id of ihe currenl inpul X-bar Ircc.

gelinpullrceid(?ld)

They change Ihe inpul slruclures and needs as operand an Id
newinpullrces (+Id)
addinpullrecs(+ld)

The operalors for ihc grammar variables are ihe foilowing:
ll adds a variable Io Ihe grammar variables lisl

addgrammarvariable(+VariablcName)

ll removes a variable from Ihc grammar variables lisl
removegrammarvariablc(+VariableName)

3,3.9.1 Module vars_field

This module manipulales Ihe declaralion of variables in Ihe fieid vars of Ihe
principles and Iransformalions.

The main lop level predicale for Ihe declaralion of Ihe predicalcs of vars fieid
is Ihe:

declareVars(-»-The fieid for ihe declaralion of Ihe variables)

which lakes as a parameler Ihe fieid vars of a principie or a Iransformalion in order Io
declare ils variables.

The foilowing predicale is used for Ihe declaralion of a variable

varLisl(-fThe variables Ihal ihe uscr have declared)

The above usc the predicale newVariable/5 ihal analyses and checks cvcry
new variable:

nevvVariable(+a variable vvilh ils lype,
+Values of a variable,
?Name of a variable,
?Type of a variable.

197

BUPT

?Valiics of a variabic)

3.3.9.2 Module sd Jieid

This module analyscs the cuncnt inpiil slruclurc Ihat Ihc particular rulc is
appiied, according Io Ihc structural dcscription ol its sd ficld. I hc analysis of thc input
structure results at a new output structurc that is used by thc scc ficld of principics and
transformations.

It checks if the input structure is according vvith the structure that is described
in the field SD.

The predicate is:

declareSD(+SD Description, +lnput Structure, ?Output Structure)

The foilowing predicate checks the input structure in ordcr to find the structure
of the SD field (the input structure must be subtree of the categories X2, XK XO):

searchSD(+Input Variables,
-fStructure of the SD, +Input Structure, ?Output Structure,
?Output Variables)

It checks the tree of the SD if it is equal vvith the input structure according to
the operators and the abilities of that had been described in the abovc sections.

The predicate is the:

check_sd_is_tree(+Variabels, +SD structure Variables,
^Structure of the SD, +Input Structure,
?Output Structure,
?New set of Variables,
?New set of Variables of the SD type)

3.3.9.3 Module scc_field

This module contains all the predicates for variables declaration and changc of
variables values in the SCC field of principics and transformations.

The declaration of the operator set for the variables of the SCC field

+variable set +values of variable

198

BUPT

The variablcs are separaled in differenl calcgories according wilh their lype
and WC havc Ihe roilowing cascs:

The general case for Ihc dcclaralion of the ncw variablcs orihc Vars field lypc
is implcmcnlcd by tlie foilowing prcdicalcs:

It dcciarcs a ncw variabic wilh valiic ihc ncxt inpiil slriiclurc
scl(sublrcc Var, ncxlslruclurc).

scl(sublrcc Var, ncxlslruclurc(Num)).

Il dcciarcs a ncw variabic w ilh valuc Ihc prcvioiis inpul slriiclurc
scl(sublrcc Var, prcviousslruclurc).

sel(sublrcc Var, prcviousslruclurc(Num)).

Il dcciarcs a ncw variabic wilh valuc a particular inpul slructure Ihal is
according Io Ihc nunibcr Ihal wc usc as paramclcr

scl(sublrcc Var, parlicularslruclurc(Num)).

Il dcciarcs Ihc ncw variabic and adds Io Ihc lisl of variablcs

scl(+Var,+VarValucs).

Variabic dcclaralion for Ihc nodc fcalurcs Ihal takes values from another
variabic or node formula

sct(fcalurcs +VarNanic, +Node).

Variable dcclaralion for Ihc Icrniinals clcmcnls and sublrccs anaphors Ihat
lakes values from other variablcs or fornuilas of lype sublrcc or terminal

sel(anaphor +VarName, +SubtrceTcrminal)

The other case is the selling of ncw values in variablcs Ihal we have defmed.
The cascs arc Ihc foilowings:

The change o f the values of a terminal variabic

sel(tcrminal &+VarNamc,V| crminal).

The change of the values of a terminal variable without to change the existing
anaphors:

set(terminall£lcmcnt &+VarNamc,-fTerminalElement).

The change of the value of a trec node:
sct(nodc &+VarNamc,+NewNodc).

199

BUPT

The change of llic valuc ofnodc rcalurcs:
scHfcaliircs &+VarNanieJ NcwToalurcs).

The change of the name of a nodc:
set(nodcNainc &^^VarNanic,»NcwNocIcNanic).

The change of Ihe node type (baril,bari,bar):
set(nodeType &+VarNanic, +Nc\vNodc rypc).

The change of a sublrec variabic values:
scl(sublrcc &+VarNamc, +SubTrec).

Except the operators Ihat set nevv values in different variables, Ihere arc also
operators for the addition or the deletion of nodes features and the addition or the
deletion of terminals or subtrecs anaphors.

The case of addition of an anaphor in Ihe values of the variabic:
+variable addAnaphor anaphor name

addAnaphor(&+VarName, +AnaphorName).

The foilowing case describes the subtraction of an anaphor from a variabic
with anaphors. The variabic can be of anaphor type, subtrec or terminal.

+variable removeAnaphor anaphor name

removeAnaphor(&+VarName, +AnaphorName).

The case for the declaration of the command for the addition of the nodc
features of a node variabic.

^variabic addPcaturcs » features list

addFeatures(node &+NodeVar,-»-FeaturesList).

The case for the declaration of the command for the substraction of the node
features of a node variabic.

+variable removcFeaturcs +features list

removeFeatures(node &+NodeVar,+FeaturesList).

Operators for addition or deletion of variables values for variables have
aiready been declarcd.

200

BUPT

addValues(&-^VarName, +VarValues)

deleleValues (&+VarName, +VarValues)

It possibic lo calculate all Ihc valucs of a variabic and Io delctc Ihc duplicalc
valucs.

dclctcDuplicates(+VarNamc)

The above predicates require a sel ofaddilional predicalcs.

The iiiost iiiiportanl are described in brief:

riie addilion of an anaphor in lerniinals and sublrees
add_anaphor(+l:lenienl, +Nevv anaphor, ?Ne\v elenienl)

The delelion of anaphor of terniinals or subtrees
remove_anaphor(-flilemenl, + Anaphor, ?New lilement)

The fealures addilion in a node
add_node_features(H-Node, +rcalures that we have lo add,

?Thc node wilh the new fealures)

The delelion of fealures of a node
remove_node_fealures(+Node, +i'ealures Ihal we have lo delele,

?The node wilh Ihe new fealures)

3.3.9.4 Module scc_checks

The differenl kinds of checks in Ihe scc field of principles and Iransformalions
are in ihis module. They are used in ihe condilion pari of Ihe iiTlicii or ifTIicnElse al
the scc field.

The anaphors are equal
equal(+L_Anaphors, +R_Anaphors).

The terminal elements are equal

equal(terminal +L_Terminal, terminal +R_Terminal).

The terminals are equal independent of Iheir anaphors

equal(terminalElement +L_Terminal, lerminalElemenl +R_Terminal).

The fealures are equal

201

BUPT

equal(+L_Fcatures, +R J ealiires).

The comparison of nocics and llicir fcaluics
equal(nodc +L_Noclc, IUKIC ^ R NCKIC).

The comparison the nodc nanics
equal(nodcName +L_Nodc, nodcNanic +R_Nodc).

The comparison of the nodc typcs
equal(nodcTypc +L_Nodc, nodd ypc+R Nodc).

The operator equal for the comparison of the trces:
equal(subtree -f L Subtrcc, subtrcc +R_Subtree).

Also, there arc the opcrators iiotEqual that are the oppositc of all the abovc.

Except the operator cqual and notEqual there are also the opcrators exists,
subsets, aCommon.

An anaphor exists in the anaphors
exists(+Anaphors, +Anaphor).

A feature exists in the fcatures of a nodc or a features variable
exists(+L_Features, +R_Feature).

It checks if the features of the left part are siibset of the features of the right
part. The node or features variables can be used in both parts.

subsets(+L_Featurcs, +R_Features).

If the features of the left part have at least one common feature with the
features of the right part.

aCommon(+L_Features, +R_Featurcs).

The cases of special checks of the features with the format (name of the
featureX = name of the featureY or [name of the feature 1, name of the featureN]=
name of the featureX)

smdA\Qx¥QdX\\XQ{+FeatiircLcftPart,H)pcrand I ,-^Operat^^
gVQatQvFQatuvci-^FeatureLefiPari.-^OperanJ 1 ,+OperanJ2)

The above predicates use a set of additional predicates. Most of thcm arc
described in the foilowing predicates:

It compares the two terminal elements

202

BUPT

comparcJcriiiinals(+'rcrminal 1 , + rcrminal 2)

It rctiirns thc valuc of a Icrmiiial formula
get_terminal(+Variables, +Formiila, ?Terminal Valuc)

It returns the terminal element without its anapliors
get_tcrminal_element(H-Variables, +1 ormula, VNocle Value)

It eompares two nodes
compare_nodes(+Node I , +Node 2).

It returns the value of the corresponding node representation
get_node(+Variables, ^^l'ornuila, ?Node Value)

It returns the node name
get_nodejiame(+Variables, +1 ormula, ?Node Value)

It returns the type of node
get_node_type(^Variables, -»-l'ornuila, ?Node 'Iype)

It eompares the two sets of features
eompare_features(^l eatures List 1 , +l'eatures List 2)

It eompares the two features sets / if the first is subset of the second set
subset_features(-i-l'eatures L.ist 1 , M-eatures List 2)

It eompares two sets if the llrst has a eommon element with the second
aCommon_fcatures(+l'eaturcs List I , +reatures List 2)

It returns thc features of a formula or node
get_features(+Variables, +l'ornuila, ?reatures List)

It eompares two subtrees if they are equal
compare_subtree(-fLeft Subtree, ?Right Subtree)

3.3.9.5 Module scc.transformations

This module has all the neecssary predicates for the defmition of thc
transformations that wc can appiy on an X-bar trec. I he transformations arc dcciarcd
oniy in the transformation rules in the scc field.

The transformations can bc appiied on thc nodes, tcrminals and trces.

transformations(+ fransformations)

203

BUPT

The scqucncc of Iransrorniations llial wc wanl to appiy on an X-bar Ircc arc
maiiipulated be Ihe predicalc:

transfoimalion J is l (-i-Transrorinalions)

The difTerenl translormalions in a IransTornialion scqucncc arc dcciarcd by
the:

lransform_to(+ I ransforniation thal wc wanl Io cxcculc)

3.3.10 Module comments

This module writes to thc oulput thc commcnts. The niain predicate that
implements this is the:

commenl(+Sequence oTconinicnls)

204

BUPT

3.4 General examples of principles and transformations
and anaphoric connections

The principlc of casc nitcrdlacucman. 1995) and in thc grcck languagc the casc
problcni(Drachnian, 1984)

principlc T a s c Fiilcr'. % dcfinition of principlc ofcasc

variabics
nodc noun set NP' bar or 'O' bar.

structurcDescriptioii
(nodc &noun: transformationVariablc sdl , terminal & l) :

(ransformationVariabIc sd2.

structurcCommands
(fcaturcs casc set [+piosi] or [-fcasc],

imicnElsc(&sdl aCommon &casc,
conimcnt "'Thc principlc ofcasc fillcr is valid al : ^':&sd2,
commcnt ' ' Thc principlc ofcasc llllcr is noi valid al : ' ':&sd2)).

Thc abovc principlc acls iipon X-har slruclurcs which havc onc of Ihc
foilowing Iwo sub Irccs:

NP o

any terminal any terminal

Thcn al Ihc ficid structurcCommands chccks if Ihc nodc NP or O has thc
fcalurc H-casc or ihc fcaliirc +plosi and scnds Ihc corrcsponding mcssagc al thc outpul.

Thc foilowing arc cxaniplcs of lingiiislics riiics Ihal havc bccn cxprcsscd
according Ihc prcscnlcd mcthodology. Also, a graniniar variabic is dcciarcd in Ihc
ficId structurc commands of thc principie ^Thc rulc of doniinancc'.

205

BUPT

The rulc of c-command (RobeiIs, 1997)

C-conimanJs
An X clement commands slniclurally (c-coiiimands) an Y elemenl, i fand oniy if the
first bifurcated node thal dominates Ihe X, doniinates also Ihe Y and neither thc X
dominates the Y nor llie Y doniinates Ihe X.

principic 'The rule of constituent comniand\

variables
node nodel set 'Verb' bar or bar or

Trepositioir bar or'P' bar
also node n set 'Noun' bar or 'N' bar.

structureDescription

(node &node2,
(node &node 1, terminal &t 1): transforinationVariable sd I,
aTree (node &n, terminai &t2): transformationVariable sd2)

structureCommands
comment &sd l : ' c-commands ':&sd2,
addGrammarVariable sd I.

The above principie acts upon a X-bar striicture that has a sub trec of the
following structure:

Any nocic (iHHic2)

Verb or V, Preposition or I'

any terminal

Noun or N

any terminal

The discontinuous line means that the right sub trec can bc at any depth as the
operator aTree describes.

206

BUPT

Tlic rulc of noiin phrasc attachnicnt(Robci1s, 1997) and about ihc grcek languagc
passivc voicc and movcmcnts(Canipos, l987)(11icol'anopoiilou, 1986, 1989b)

transformation 'Attaclimeiit of noun phrasc'.

variabics
iiodc Noun' scl 'N ' barii or Noun' barii
also nodc V'sct 'V' bari or Verb' bari.

structurcDcscriptioii
(iiode&'V':sdVarsd3,

subtrcc i&sbl,
(node 4S:'Noun\ aiiyTrce, aiiyTrcc):sdVar sdl

):sdVarsd2.

structurcCoininands
(&sdl addAnaplior i l , % addition of anaplior rcfcreiicc

% dcciaratîon of transrormatioiis
traiisrormatioiis &sd2 traiisrorm

(nodc &sd3,
(nodc &sd3, subtrcc &sb 1, t:anaphor i 1),
subtrcc &sdl)

).
The above transformation acls upon a X-bar slmeturc (hat has a sub trec of the
foilowing structure and produces a new X-bar sîructure:

V '

N ••

vSpcc

207

BUPT

And the produced X-bar sirucliirc is Ihe follovving:

Since, the sd l variabic of thc firsl riilc was dcciarcd as a granimar variabic and
the second rule use a variabic with Ihc same namc we vvill havc a conflict, if vvc
execute these two rules, because vvc havc Ivvo variabics with thc same namc in tlic
transformation rule (the grammar onc from thc first rulc and thc local onc from thc
transformation). We must alvvays usc a dificrcnt notation for thc namcs of thc
variabics that we intend to usc as grammar variabics.

Additionally, the above transformation it is possibic to bc uscd in a grammar
rule and to be appiied repeatcdly. In this casc it is possibic to usc a grammar variabic
for the anaphoric conncctions in ordcr to havc thc same anaphoric conncctions
between the differcnt traces.

3.4.1 The problem of anaphoric connections outside of
an X-bar tree

In an application, it is possible to translate the sentcnces without to know
explicitly the anaphoric connections that arc outside of thc X-bar trec of a scntcncc. If
it is necessary for an application to havc anaphoric conncctions outside of an X-bar
tree, there is the ability to conncct two or morc trccs (backward or forward from thc
current tree) with a conjunction by using thc word 'and' and dcciaring thc ncccssary
transformations for the production of thc ncw trccs. Also, it is possibic to conncct two
or more X-bar trees by using othcr words or pscudo-words that arc rclatcd with thc
semantic connection (result, explanation, parallcl information, analysis) bctwccn thcsc
sentences. It is necessary for this semantic conncction to dedare principics that
specify the type of a scntcncc according to its clcmcnts (vcrbs, nouns, articics,
pronouns and their combinations). Additionally, it is possibic to usc grammar

208

BUPT

variabics in the rules of Ihc above cases in order to exchange inTormation bctween
Ihcm.

An exampic with two phrascs is thc foilowing:
• Thc woman hil Ihc child wilh llic bicycic
• HC goes Io Ihc hospilal.

Thc iniţial X-bar Irccs of Ihc abovc Iwo phrascs can bc produccd by using Ihc
phrasc struclurc rulcs of thc X-bar schcmc. Thcir corrcct llnal fornis arc produccd by
using a set of principics, transformations or thcorics Ihat arc ncccssary.

Thc trcc of tlic first scntcncc is thc foilowing:

The

wonian

bicycle

209

BUPT

The tree of Ihc second scnlcncc is Ihc IblIoNving:

Pronoun

hospilal

Let's assumc the following:
• Senlencel is thc X-bar Irce of Ihc scnlcncc:

o The woman hit Ihe child with thc bicycic
• Sentence2 is thc X-bar trec of thc scntcncc:

o He goes to thc hospital.

Then the scntcncc that combincs that abovc two scntcnccs is thc following:

The woman hit thc child with thc bicycic and hc gocs to thc hospital.

The corresponding final trec has thc forni:

Conjunction"

Conjunction'

Scntcncc I

Scntcncc2

and

210

BUPT

The rulc Ihat produces Ihe above nevv tree is Ihe tbllovving:

traiisrormation 'Conjunctioir.

noVariablcs.

slructureDcscriplion
subtrcc (&sen le i i ce l):lraiisformatioiiVariablc conj lrec

structurcCommaiids
subtrcc sciUcncc2 set iicxtstructurc,
transformations

&conj_lrec transform
(nodc conjunction barii,

subtrcc &scnlcncel,
(nodc conjunction bari,

(nodc conjunction bar, terminal 'and'),
subtrcc &sentence2

)
).

The above transformation has the name 'Conjunction'. This transformation
does not have any variable in the variabics field and the operator noVariablcs is
used. In the structurcDcscription field it is declared a transformation variable with
name conjjree. This variable is used in order to produce a new tree that has the tree
of the current sentence and the tree of the next sentence. Also, there is the general
variable sentence 1 that its value is the tree of the sentence that the rule is appiied on.
In the structurcComniands field, the X-bar tree of the next sentence is read and set
as value of the variable senlence2 by using the first command of this field of the
above transformation rule. Since, both the trees are values of the variables sentcnccl
and sentence2 we can produce the new tree by using the transformation variable
conjjree. This is that second rule in the structurcComniands field of the above
transformation rule.

Except the above rule that produces the nevv sentence, it is necessary to
declare a new rule that sets the anaphoric connection between the two words of the
sentences that refer to the same object.

transformation 'Anaphoric_Connection\

noVariablcs.

structurcDcscription
(nodc conjunction barii,

aTrcc (nodc n barifcaturcs &feat first,
(terminal i&nounTerm): transformationVariabIc &tvl) ,

aTrcc (nodc pronoun bar:fcaturcs 4&feat_second,

211

BUPT

(terminal &pronoun I erni): traiisformatîoiiVariablc &[\2)
).

structurcConiniands
features man set [+humaii,+masculinl,
features vvoman set [+luiman,+rcmininc],

imieiiElse(
(&man suhsets Afcal J lrs t and &iiian snhsets Alcal sccond) or
(&woman subscts Afcat Urst and &woinan suhsets Afeat sccond),

(&tvt addAnaplior aK
&tv2 addAnaplior aK
transformations &lvl transform &tvl also

&lv2 transform &tv2

fail)

This transformation rule does not use any variables in the variables field. The
two terminal elements one of thc firsl scntences and onc of the sccond senlences are
described in the structureDescription (Icld. Also, therc arc the two transformations
variables tvl and tv2 that are used in order to changc the trec and add the anaphors.
The variables feat Jirst ?l\\{\ feut sccond contain the features of the nodes of categor>'
X that are in the corresponding trees. In the structureCommands ficId we declare
two new variables that describe thc features that must havc thc tcrminals in order to
be connected. The ifThenElse chccks if both tcrminals havc thc same rcquircd
features, adds the anaphoric connection vvith the name al bctwccn them and thcn it
does the transformations of the two terminal elements. The result is a new trec that
has the required anaphoric connection.

Additionally, it is possible to separate the two scntences. The ncccssar>'
transformation rule is the follovving:

transformation 'Scparation\

noVariables.

structureDescription
(node conjunction barii,

subtree &sbl ,
(node conjunction bari,

(node conjunction bar, terminal 'and'),
subtree 4&sb2

):transrormationVariable &trecVar.

structureCommands
transformations &treeVar transform &sbl ,

212

BUPT

transformations &treeVar transform &sb2.

The above transformation produces Ihc Ivvo Irecs ihat liad been connected willi
thc ^Conjunctioir transformation. Thesc tvvo trccs will contain the anaphoric
conncction that has bccn addcd by thc transformation ^Anaphoric Conncction'.

The transformation 'Separation' does not use variables in its variablcs ficid.
hi the structurcDcscription field it is described the foilowing trce:

Conjunction' '

Conjiinction'

Sbl
Conjunction

Sb2

Thc variablcs sbl and sb2 takc as values the trccs of thc first and sccond
scntenccs rcspcctivcly and thc tvvo transformations in thc structurcCommands field
produce thc tvvo trccs.

Thc above riiles can bc appiicd and in thc foilowing casc:
• The woman hit thc child with thc bicycle.
• It is difficult for him to ride.

Thc resiilt will bc thc conncction of thc terminal 'child' with thc pronoun
1iim\

Also, in thc foilowing casc:
• Thc woman hit thc child with thc bicycle.
• She is vcry angry.

But therc is problem in thc foilowing scntenccs:
• Thc woman hit thc boy with thc bicycle.

She belicves that hc stole it.

This casc has two scntenccs that can have more than anaphoric connections.
Thesc connections arc the foilowing:
Woman -> she
Boy -> hc
Bicycle -> it

213

BUPT

The problem is hovv vve can cxtcnd thc abovc ruics iii ordcr Io covcr Ihis casc
of anaphoric conncclions.

The oiily rulc Ihat has lo bc cliangccl is (hc (ransfonnation rulc wilh naiiic
'Anaphoric_Connection\ Thc otiicr two ruIcs must rcmain linchaiigcd.

This transformation rulc connccts only Iwo clcmcnls Ihal is feminine or
masculine; this is examincd by thcir fcalurcs. One clcmcnl is noun and Ihc olhcr is
pronoun. But in thc lasl two scnlcnccs thc Ihcrc is thc word Miicyclc' and thc pronoun
Mt' that rcfers to things not to humans. So, it is ncccssary to cxtcnd thc chccks and for
the features [+thing]. This extension pcrmits thc anaphoric connection bctwccn thc
words 'bicycle' and Mt'.

The above transformation rulc will bc as foilowing:

transformation 'Anaphoric_Connection\

noVariables.

structureDescription
(node conjunction barii,

aTree (node n barifeatiires &fcat first,
(terminal &nounTerm): (ransformationVariable 4&tvl),

aTree (node pronoun bar:features &fcat_sccond,
(terminal 4&pronounTcrm): transformationVariable &tv2)

).

struetureCommands
features man set [+human,-»-masculin],
features woman set [-f human,+fcmininc|,
features thing set [+thingj,

ifnienElse(
(&man subsets &feat_first and &man subset 4&feat_second) or
(&woman subsets &feat_first and &woman subsets &feat_sccond) or
(&thing subsets &fcat first and &thing subsets cScIcat sccond),

(&tvl addAnaphor aU
&tv2 addAnaplior a I,
transformations &tvl transform &tvl also

&tv2 transform i&tv2

fail)

There is another problem. The anaphoric connection must be diffcrcnt
between the different elements. This requires an ii7iplemcntation spccific predicatc
that returns different anaphors; Ict's say new anaplior (e.g. a countcr that rcturns a
different value for every anaphoric conncction). In ordcr to havc all thc anaphoric

214

BUPT

connection (three in this cxample) it is nccessary the rcpealcd application of thc above
rulc. This is possiblc by a grammar rulc witli rccursion.

gramiiiar 'Anaphoric Conncctions'.
transformation 'Anaphoric_Conncction\
grammar 'Anaphoric Connections\

riie abovc Iraiisfornialion rulc 'Anaphoric Coiincclioif in ordcr Io havc
coiTcct rcpcatcd application must chcck il an anaphoric conncction has aiready bccn
crcatcd. So, il is ncccssary lor a ncw chcck Io bc addcd and Ihc transformation rulc
bcconics finally as follovving:

transformation 'Anaphoric_Conncction\

noVariabIcs.

structureDcscripCion

(node conjunction barii,
aTrcc (node n bar:rcaturc$ Alcat llrst,

(terminal AnounTcrni): transformationVariabIc i&tvl),
aTrcc (node pronoun bar:reatures 4&fcat sccond,

(terminal &pronoun I erni): transformationVariabIc &tv2)
).

structurcCommands

imicn (&tvl aCommon &tv2,fail),

fcaturcs man set [+hunuin,-i-masculin],
fcatures woman set [+human,+fcmininej,
fcaturcs thing set [-i-thingj,

imicnElsc(
(&man subsets &fcat_rirst and &nmn subsets &fcat_sccond) or
(&woman subsets iStlcal first and

&woman subsets &fcat_sccond) or
(i&thing subsets iS:fcat_first and 4&thing subsets &fcat_sccond),

(ncw_anapIior(CommonAnaphor),
&tvl addAnaphor CommonAnaphor,
4&tv2 addAnaphor CommonAnaphor,

transformations &tvl transform &tvl also
4&tv2 transform &tv2

),
fail)

215

BUPT

The predicate iie\v_aiiiiplior(CoinnionAnaphor) can havc addilionally a
second argument that is a graniniar variabic of anaphor lypc and rclurn accordingly a
new anaphor name.

3.4.2 The problem of anaphoric connections inside an
X-bar tree

Let's assume the foilowing exaniples of anaphoric conncctions betwcen an
element of a sentence and a reflexive pronoun: (ThcofanopoLiloiiJ994)

• John, admires himself,.
• John thinks that George, is himself,.
• Johni considers himself, to be the best.

AII the above exaniples have anaphoric connection betvveen the proper nouns
'John' and 'George' and the reflexive pronoun l i iniself . The problem is how it is
possible to definine a general Iransformation rulc thal automatically puls the
anaphoric connection betvveen the two clemcnls in the above exaniples.

In the above exaniples it is noticed that the reUexive pronoun is connected
with the closest proper noun.

In the first sentence the pronoun is connected with the proper noun. It is the
simplest case.

In the second case the reflexive pronoun is possible to be connected with the
closest proper noun that is the word 'George'.

In the third case the connection is betwcen the reflexive and the closest proper
noun.

The first sentence is represented by the foilowing tree:

admire
himself/il

216

BUPT

The second scnlence is rcprcrsenlcd by Ihe foilowing Iree:

George/i 1

himself/il

217

BUPT

The third scntencc is represciUcd by llic following trec:

The transformation rule that covers thc case ofaiiaphoric conncction o f a
reflexive pronoun wilh the corresponding noun is Ihe following:

transformation 'Reflexive_Anaphoric_Coiincction'.

noVariables.

218

BUPT

structurcDcscription
(nodc &nodcl,

aTrcc (iiocle noiin barifcaturcs Afcal firsl,
(terminal AnouiiTcrm 1): (raiisformationVariable &tv I),

(iiot (iiodc i bariî,aTrce (nodc iioun bar, terminal &noun I crm2),
anyTree)

and
aTree (nodc pr barifcaturcs Afeal scconcl,

(terminal 4&proiiounTerni): transformationVariable 4&lv2))
).

structurcCommands
imicn(&lvl aCommon &lv2,fail),

fcaturcs man set [+human,+masculin],
featurcs woman set [-fhuinan,+fcniiniiiej,

imicnElsc(
(&man subscts iScfeat first and &man subscts &feat_second) or
(&\voiiian subscts i&fcat firsl and &\voman subscts iStfeal second)

(nc\v_anaphor(CommonAnaphor),
&tv 1 addAnaplior CommonAnaphor,
&tv2 addAnaplior CommonAnaphor,
transformations &tvl transform &tv I also

&lv2 transform &lv 2

fail)

This rulc is Ihc same as Ihc same as Ihc last onc thal was dcscribcd in Ihc
previous section. The additional conslraint in Ihe structurcDcscription field is Ihat
Ihe subtrce (nodc i barii,aTrcc (nodc noiin bar, terminal &noimTerm2), anyTree)
is forbiddcn in ihe righl sublrcc. Il means Ihal it is noi pcrmiltcd thc anolhcr noiin Ihat
is closesl in thc reflexive pronoun. This tree is as following:

N

any IVee
nounTerm2

219

BUPT

3.5 The graphical monitoring of the system

The linguistic knowledgc of Ihe syslem that we dcscribecl in Ihc prcvious
chapters has a series of input-oulpuls. We can process thcse files wilh a lexl editor.
However, in order to be able Io cliange Ihese (llcs niore easily and in an inlcgratcd
environment, a system was iniplemented that runs in a window environnient.

Generally we can say that this system comprises of a window with multiple
tabs. In each tab we can process a different inpiit or oiitput. 11iere is also on-line help
that describes the system's function and the abilities provided by the system in each
tab. Also, the help includes the rules and the commands of the system that we
described in the previous chapters.

Next we shall analyze each tab of the system.

220

BUPT

The Tirst lab is for Ihc dcsign, llic presentalion aud Ihe alleration of the
syslcnrs inpul Irccs.

^ An open system fot linguislic rules on the X-bat tiee»

Execulion | ExecUion R u l « | Gidcnmar | Ptinoples • Trarislofmaljons X-b« Trces | X-bdf Fie« |

X-bar Structurcs Dcsign
A n o d c V barii

^ A n o d c V bari
[- A n o d c prep barii

A n o d c prep bari
f - A n o d e n barii

A n o d e n bari
- I cmpty
- I node n bar. terminal bicycic

^ \ node a bar, terminal the
^ I node prep bar. terminal with

^ I empty
' - A n o d e v bari

[- A n o d c n barii
[- A n o d e n bari

- I empty
^ I node n bar, terminal child

^ I node a bar.terminal the
^ I node V bar, terminal hlt

^ A n o d e n barii
A T O n r m

- I empty
^ I node n bar, terminal woman

^ I node a bar, terminal the

Node Context

Delete Node

Deletc Trec

Movement Ways

Child Node

New Node

Child Node

Right Node

Left Node

Change Node

EXIT

The ciiiply spacc on Ihc abovc tab is ihc spacc wlicrc ihc Ircc is dravvn.

In Ihc bolloni we sec a biilton Ihal has Ihc nanic liXTl'. When vvc press Ihis
bulion WC exil the syslcni.

In the botlom there is a ficld in which vvc write the conteni of the node that
exisls on Ihc trec that we dravv. This node is given vvilh the name, Ihc lype and the
possible fcatiires of the node, as vvcll as with the possible anaphors of the sublrcc that
has this node at the top. Also, vvc write the node of the X category together with the
terminal clement and the possible anaphors of the Icrminal clement.

In the vertical column on the right of the empty space wherc the sublrcc is, we
have a serics of buttons.

The first onc has the name Delclc Node. I Iis bulion dcicles a trec node that we
have aircady sciccted with the mousc, as wcll as Ihc wholc sublrcc Ihal has this node
al the top.

221

BUPT

The second butlon has thc nainc Dclclc Vvcc. I his biitlon dclclcs Ihc wholc
drawn Iree.

Thc third bulion has Ihc naiiic C hikl Nodc. I his buUon scls a iicw iiodc as a
child node of the node Ihal wc liavc sclcclcd wilh Ihc niousc.

The fourth button has Ihe namc Righl Nodc. 'I his bulion scls a ncvv nodc as thc
right node of the one that we have sclcclcd. In thc Ircc Ihat wc sec, this nodc is abovc
the node that we havc sclcclcd.

The fiflh bulion has Ihc nanic Lefi Nodc. This bulion scls a ncw nodc as Ihc
left node of the one that wc havc sclcclcd. In Ihc Ircc Ihal wc sec, Ihis nodc is bclow
the node that we havc sclcclcd.

The sixth butlon has thc namc Changc Nodc. I his bulion changcs Ihc conteni
of the node that wc havc sclcclcd wilh Ihc niousc and scls as ncvv conlcnl thc onc that
exists in the fieid Node Conteni.

Finally, we havc thc abilily Io niovc a part of thc Ircc that wc havc drawn. Thc
move is made with the drag and drop mcthod. For thc way that thc niovcd subtrcc will
be connected, we havc thc foilowing possibililics providcd by thc scicctor:
1. Child node
2. Left node
3. Right node

We must finally point oul that cach ncw child nodc lakcs thc last place from
all the chiidren of the node. Also, if wc movc a nodc wilh thc drag and drop mcthod
and set it as a child nodc of anothcr nodc, Ihcn il lakcs Ihc last place from thc chiidren
of this node.

In the above window we can sec this tab and a dcsigncd trec.

222

BUPT

Ncxt we shall wec Ihe rollowing lab. Tliis lab processcs Ihc input Irce files and
ihc result outpul files of the systcin.

^ An open jystem lof linguiilic luleî on the X-bar Ifceî

E«cubon I ExecUbon RiJes | Grwnmai | Principlct • Tianslamaliont | X-b« Ttees X bar Fies |

X-bar Stnictures Fllee

m i s a

U
% %
% The woman hil the child wi lh the bicycle
(node V barii.(node n barii,(node a bar,terminal the).(riode n ban. (node n bar. terminal woman).emply)).(node v bi

%
%
(node V barii.(node n bani.(node a bar. terminal the).(node n ban. (node n bar. terminal woman).empty)).(node v b

% Georqe admires himself
(node IP' bani.(node "N" bârii.empty.(node M" ban.(node Tvl' bar. terminal 'George' anaphor i1).empty)),(node 1P' bi

Design Wrilc

Clear Open Savc Prînt

Exrr

Hiis tab has a serics of biilloiis iisccl in Ihc proccssing of Ihcsc files.

The bulion Design enables us Io see in a graphically Ihe Iree Ihal we have in
Ihis tab. In order Io see a Iree graphically Ihis Iree shouid be in one line and we shouid
highiiglu il wilh Ihe nunise. Nexl we press Ihe Design lîiillon.

We also have Ihe Wrile bulion Ihal wriles on Ihis lab's le.\l edilor Ihe Iree
Ihafs been drawn in Ihe Iree drawing lab Ihal we deseribed above.

Apari from Ihese two bullons Ihal are used for Ihe Irees, we also have a series
of olher bullons. These are:

The Clear bulion deleles Ihe vvhole eonlenl of Ihis lab^s lexl edilor.
The Open bulion opens a dialogue vvindovv in whieh Ihe user finds and

downioads Ihe desired file.
The Save bulion saves in ihe desired file Ihe eonlenl of Ihis lab's text editor.
The Prim bulion prinls the content of Ihis lab's lexl edilor.

223

BUPT

Ncxt WC shall scc Ihc rollowing lab in which wc cicscrihc thc scvcral ruics Ihal
constiliitc our Ihcory.

An open jystem (oi linguislic lule» on the X-bar heet H S Q

Gr«T*w Pnnciptes-Traf̂ ofmaUoftt |x-bâf Trew | X-twf Ftet |

fjli^Prindples-Transfonnations Declaration

%The case filter of the government and binding theory %

principie 'Case Filler*. %

vars (node noun set 'N' barifeatures [case]). %

sd ((node &noun, terminal &t):sdvar sd2). %

scc
(comment 'The Case Filter is not valid in the tree : ':(&sd2| |.

Open Save Prinţ

EXIT

In this tab we have a lext editor ihat enabics iis to writc Ihc grammars wc
want.

In this tab we have a serics of biiltons that givc iis Ihc following abihtics:
The Clear button deleles thc wholc conlcnt of this tab\s text editor.
The Open button opens a dialoguc window in which thc uscr finds and

downloads the desired file.
The Save button saves in thc desired file thc contcnt of this tab\s text editor.
The Prinţ button prints thc contcnt of this tab's text editor.

224

BUPT

Next WC shall sec ihc loilowing lab in which wc vvrile thc scvcral principlcs
and Iransformalions.

^ An open «ytlem for linguistic luleionlhe X-bar licet

EicecubonI EKeoiionRiies Giammai Priiciples Tfâmformations| X^Treesj X-bâiFÎ
Unguisl's Thcory DccJaration

B O B

"U %
%
%
%

grammar 'Grammar 1*.
principie 'Casc Filtcr*.

%
%
%

grammar 'Grammar 2\
principie 'The domination rule*.

L j

Clear Open Save Prinţ

EXIT

In this lab we have a texl editor Ihal cnabics iis Io wrile Ihc dcsircd principlcs
and Iransforniations.

In this tab we have a series of biittons that give us thc foilowing abilities:

The Clear bulion deleles Ihe whole conlenl of this tab's text editor.
The Open bulion opens a dialogue window, in which Ihe user finds and

downioads Ihe desired file.
The Save bulion savcs in thc desired file thc content of this lab's text editor.
The Prim bulion prints thc content of this tab's text editor.

225

BUPT

Ncxt WC shall scc Ihc following lab in vvhich wc vvritc Ihosc grammars,
principles and IransTormalions Ihal wc wish Io ap|ily Io Ihc input trccs.

An open system for linguisUc tules on (he X-bai trees

Rirwpteî • Tr«wlofma(ions | X-bar Trees | X-bar Fiet |
• Dedare thc Rules to appiy on thc Input X-bar Structures • • w 1.1 • I - I , ••

H Y

fi;
ri::

I Iu h;-

it

% we wanl Io appIy the Grammar 1 on Ihe input siruclurcs %

%
grammar 'Grammar 1*.

Clear Open Save Prinţ

EXIT

In Ihis tab wc havc a Icxt editor Ihal cnabics us Io vvritc thc dcsircd graniniars,
principlcs and transfonnations to appiv on thc input trccs.

In this tab wc havc a scrics ofbuttons that givc us thc Ibllowing abihtics:
The Clear button deletes the whole content of this tab's text editor.
The Open button opcns a dialoguc window, in which thc uscr finds and

downloads the desired file.
The Save button saves in thc desired file the content of this tab's text editor.
The Prinţ button prints the content of this tab's text editor.

226

BUPT

In Ihc foilowiiig lab wc spccify llic inpiit and oiilpul Tilcs that wc wish thc
systcm Io usc and ihcn wc prcss llic l:xcculion bulion. I lic rcsull is Ihc production of
a nic in thc subdircclory ihal wc had sclcclcd ihc lasl linie. Tliis file has Ihc namc
cxcc.ari and wc downioad il in llic prolog in ordcr for ihc syslcm Io run.

^ An open syslem for linguisUc rules on ihe X-bai Ireet

Execubon ExecUionRiiw | Grarnfnac | Pnncipleî* Tramfwmâlions | X-bâf Trees | X-ba(Fle$]

Dedare the Rules to appiy on the Input X-bar Structures

% WC want to appIy the Grammar 1 on the input structures %

%
grammar 'Grammar V.

iL

Clear Open Save Prinţ

EXIT

This tab in its left part has a scicctor in wliich wc can scicct Ihc subdircclory
Ihal conlains thc dcsircd lllc. Bclow Ihcrc is Ihc abilily to sciccl Ihc approprialc filtcr
for thc filcs Ihal wc will scc in ihc scrolling list Ihal lics bclow.

In thc right part thcrc is a scrics of bullons. IZach of thcin corrcsponds Io a file.
Thus, WC sciccl cvcry linie a file wilh thc niousc and then wc prcss Ihc respective
bulion to write il ncxl to it. In this way wc read all five fiIcs of the systcm. After doing
this, WC prcss thc cxcculion bulion Ihal produces the file Ihal thc SWI-proIog nccds to
execute the linguislic systcm.

227

BUPT

4. Conclusions

4.1 The existing computaţional methodologies

A. The phrasc'structure grammurs

They were prcscnted mainly bv Chonisky in 1957. Thcy havc Ihc general form
of X -> y, where x, y can be any combinalion of Icnninal and no-terminal elemenls.

The different categories of Ihe phrase-striicture graînmars are Ihe foilowing:
• regular grammars:

o left-linear grammars
o right-linear grammars

• context-free grammars
• context sensitive grammars
• unrestriced grammars

These grammars are used in compulalional systems with different kinds of
enhancements in order to produce or recognize natural language phrases. They are not
restricted to specific trec structures and it is difficult to maintain and extend an
appiication that uses this type of grammars. llowever tlie advantage of these grammar
is that they have a very simple general format.

B. Transition networks

They are represented as finite states automatons. They are directed graphs with
arcs noted by terminal elements. One node of the graph is denoted as starting point
and another one as ending point. A sentence is accepled by the system if there is a
path from the starting point to the ending point and its arcs contain the words of this
sentence.

There are different kinds of transition networks :
• (STN) simple transition networks
• (RTN) recursive transition networks that arc the same with the Sllsls but thcy

additionally permit at thcir arcs phrasal categories except the lexical categories
and recursions.

• (ATTM) augmented transition networks that are R'FNs with a set of rcgisters for
each network.

The disadvantages of these networks are:
• It is not possible to describc every grammar.
• The networks are very complicated.

228

BUPT

• ll is noi possibic Io dcscribc general rules for Ihc dirferent phrase catcgorics in
one network(Cr>'stal, 1982). Usually, lliey arc spread in many diffcrcnl
nclworks.

• The check, Ihe maintainance and Ihe exlension of Ihese nclworks is vcry
difTicuIl.

The main advanlage is ihal ihey have a simple general formalism Ihal is
possibic Io bc implemcnlcd casily in prolog.

C. Lexical funcţional grammar

The basic characheristic of Ihis grammar lypc is Ihal ihc lexical records arc
declared as prcdicalc slruclures wilh argumenls. Thesc slruclurcs are indcpcndcnl
from Ihe phrase slruclurcs and Ihey are a form of funclional commenls for Ihe lexical
records. Also, Ihere is ihe funclional informalion of ihe phrase slruclures. This
informalion is combined wilh Ihe funclional informalion of ihe lexical records and ihc
final funclional slruclure of a phrase is produced. The disadvanlage of Ihis Iheory is
Ihe oniy Iwo funclional equalions belvvecn ihe funclional informalion of ihe phrase
slruclures and ihe lexical records. 'Hiis sels reslriclions on Ihe declaralion of rules.

D. Generalizcd Phrase Structure Grammar

This grammar lype emphasizes on Ihe informalion Ihal Ihe synlaclic calcgories
have. The inlernal slruclure of Ihe synlaclic calcgories is recognized.

The corrcsponding iheory suggesls ihe separalion of Ihe rules of synlaclic slruclurcs in
Iwo calcgories:

• Rules of immcdiale dominace
• Rules of linear precedence

The firsl lype refers Io Ihe hierarchical relalion belween diffcrcnl calcgories.
The second lype refers Io Ihe posilion ihal Ihe diffcrcnl calcgories have in a senlcnce.
This lype of grammar is beller for frec order languages bul il has becn subsliluled by
Ihe newer model, Ihe UPSGs. Thcy do noi supporl a specific Iree slruclure and il is
more difficull Io exlenl an appiicalion or Io declare rcusable and general rules.

E. HeaJ-cJriven Phrase Slruclure Grammar

This grammar type requires Ihe exislencc of delailed morphological,
syntaclical and scmanlical informalion for cvery word. ll requires more delailed
informalion Ihan Ihc lexical funclional grammars. This grammar is noi a synlactical
grammar bul il combines bolh synlax and semanlics. ll organizes Ihe linguislic
knowledgc as fealures slruclures. Thesc fealures are sorled aceording Io Ihe
specializalion of Ihem. Also, Ihere is Ihe possibilily for palhs Ihal definc Ihe relalion
belween Ihem. The biggesl difference belween Ihis iheory and Ihe previous ones is Ihe
way for Ihc manipulalion of Ihe lexical records. Hvery represenlalion requires vcry
complicalcd informalion and Ihere are vcry big problems lor Ihe mainlainance of Ihis
hugc informalion. Addilionally, ihere is noi any specific formal and il is possibic Io

229

BUPT

have arbilrary clilTerent slnicUircs. It is not a gooci Ibmialisni lor Iranslalion syslcins
silice Ihc sing of llic soiircc and ihc clcslinalion languagc arc noi possibic Io hc
delcnnincd. Tlial is way it is ncccssary for anolhcr scnianlic rcprcscnlalion al ihis kind
of syslenis.

4.2 The presented methodology

A computaţional systeni that iniplenicnts Ihc prcscntcd nietliodology is
possibic to be used as a tool by rcscarchcrs. Thcy can dcllnc ruics and thcy can appiy
llicm on a set ofX-bar trccs. Additionally, it is possibic Io conibinc this vvith anothcr
software systeni that produces thc X-bar trccs. I hat systcni can usc a set of vcry
simple rewriting rules (even oniy lexical ruIcs that produce all thc XO -> Terminal
subtrees of the words of the phrases) for thc production of thc iniţial X-bar structures.
The rules can be based onIy on general phrasc structurc information and thcy arc thc
rules that were describcd in the corresponding section of thc X-bar trccs. The software
that implements the presented methodology can bc uscd in any natural languagc
proccssing software systeni.

The main characteristics of the presented methodology are the follovvings:

• Is is an artificial computer languagc with variabics, operators, if-then-cise
structures and repetitions-recursions dedicated in the natural languagc
processing.

It provides a mechanism for the declaration of rules that:
o examines X-bar structures and rejects invalid ones.
o transforms X-bar structures and produces new ones by permitting

multiply simultaneous transformations on cvcry X-bar structurc.

It manipulates the syntactic, semantic and pragmatic information of thc X-bar
structures. Additionally, it supports the checking of thc accepted rate at a rulc
application and permits the evolutionary changing of the manipulatcd X-bar
structures (Fouskakis, 2()04c, 2005b).

The syntactic and semantic information has simpicr structurc than thc IIPSG.
The relation between the elcments is determincd and by the structurc of thc X-
bar scheme. The variables have nuich strongcr functionality with hicrachical
way of declaration that can changc dynamically in thc prcscntcd languagc
which is better than in the unification grammars likc thc HSPG (fouskakis,
2005a, 2005c) (the niost interesting computaţional linguistics approach).

The features of the nodes of X-bar structures can bc changcd dynamically by
using transformations.

it is niore Hexiblc than the 1 AGs (fouskakis, 2005b).

230

BUPT

It is possible Io dcfine general rules Ihal are appiieable in many different X-bar
Irees sinee Ihey are prodiieed froni Ihe same general seheme and have Ihe
same slruclure and Ihe same way of linguislie irealmenl (Touskakis, 2004b,
2005b).

It is aeeording Io Ihe Chomsky ideas of the universal grammar Iheory, it
combines his ideas in more general and abstraet new approaeh (Fouskakis,
2004c) and it is unic in this sense (i-ouskakis, 2000, 2005b).

it is a different approaeh than the classical parsers that implement a version of
the Chomsky's theory (GB-government and binding or Minimalistic
Program).

It is an artificial language that permits the declaration of natural language rules
and its main characteristics are simplicity and generality.

It supports anaphoric connections inside or outside of an \-bar structure.

A better and simpler covering of the ambiguity problems of the phrases of
natural languages by supporting more that one structures in the
structurcDcscriptioii tleld of the priiicîpics and traiisformations connected
by the and, or operators and by using the variables (Touskakis, 2005b).

It integrates ideas from different theories.

The simplicity, flexibility and generality facilitates the implementation, the
maintenance and extension of the corresponding appiications.

It is better for embedded appiications since the dellned and produced
structures are simpler and smaller and it is not necessary to have large memory
size and strong processor.

• It facilitates the man-machine comnuinication for the execution of commands
and the retrieving of the required information that is expressed by natural
language phrases. Possible appiications can be in the domain of railway,
airway or tourist information software systems. Also, it is possible to be used
in the automotive domain to facilitate the comnuinication with the today
complicate information systems.

231

BUPT

5. Bibliography

Abercrombie D., 1967: Elcmcuts of General Phonetics, Ediburgh Univcrsity

Press.

AIshawi H., Arnold D., Backofcn R., Cariei D., Linclop J., Ncllcr K., Pulnian S.,

Tsujii J., Uszkoreit H. and cdiled by Piilman G., 1992: ElIROTRA Rule

Formalism and Virtual Xfachine De.sij^n Stiulv-Final Report, Canibridgc,

Cambridge Computer Science Departnienl - Coniniission of the European

Communilies.

Ananiadou S., Antona M., 1990: "Linguislic Opinions about Ihe Multi-Language

Translation from the Greek Language'\ Studies For The Greek Language

proceedings of the 11 ineeling of the linguistic departnienl of the Faculty of

Philosophy of The Aristolle Univcrsity of I hcssaloniki.

Babiniotis G., 1980: Theoretic Linguistics - An Introduction in Modern

Linguistics, Univcrsity of Athens.

Babiniotis G., 1985: Introduction in Semantics^ Univcrsity of Athens.

Babko-Malaya O., 2004: ''LTAG Semantics of Focus", Sevenlh International

Workshop on Trec Adjoining Gramniar and Related Fornialisms, Vancouver.

Belletti A., Rizzi L., 2002: Noam Chomsky On Nature and Language, Cambridge:

Univcrsity Press.

Campos H., 1987: "Passives in Modern Greek^ Lingua, 73, 301-312.

Cann R., 1993: Formal Semantics Afi Introduction, Cambridge Univcrsily Press.

Paris C., Swartout W., Mann W., 1991: Natural Langitage (ieneration in Artificial

Intelligence and Computaţional Linguistics, Kluvvcr Academic i^iblishcrs.

Chomsky N., 1957: Syntactic Structures, I hc l laguc: Moulon.

* Chomsky N., 1965: Aspects of the Theory ofSyntax, MIT Press: Cambridge Mass.

* Chomsky N., 1968: Language and Mind, New York: I iarcourl-Bracc.

• Chomsky N., Halle M., 1968: The Sound Pattern of English, New York : Harper

and Row.

• Chomsky N., 1970: "Remarks on Nominalisation", Jacobs R. - Rosenbaum P.

184-221.

*

232

BUPT

• Chomsky N., 1972: Studics in Scmantics in Generative Grammai\ The Hague:

Moulon.

• Chomsky N., 1976: Reflections on Lan^ua};e. London Fontana.

• Chomsky N., 1981: Lectures on Government and Bindin^, Dordrecht Foris.

• Chomsky N., 1982: Some Concepts and Consequences of the Theory of

Government and Binding, Cambridge Mass: MIT Press.

• Chomsky N., 1986a: Knowledge of Language. Its Nature, Origin and Use, New

York: Praeger.

• Chomsky N., 1986b: Barries. Cambridge: Mass MIT Press, Linguistic Inquiry

Monograph 13.

• Chomsky N., 1988: ^'Some Notes on Economy of Derivalion and Representation'\

MIT Working Papers 10.

• Chomsky N., 1995: The Minimalist Program^ MI T Press.

• Chomsky N., 2000: New Horizons in the Study of Language and Mind,

Cambridge: University Press.

• Copestake A., 2002: împlementing Typed Feature Structure Grammars,

Standford: CSLIS.

• Cruse A., 2004: Meaning in Language: An Introduction to Semantics and

Pragmatics, Oxford University Press.

• Crystal D., 1982: Linguistic Controversies, London Arnold.

• Draehman G., 1984: Introduction to Greek Case, University ofSalzburg.

• Durând J., 1990: Generative and Non-linear Phonologv. London: Longman.

• Dumitrescu D., 2002: Principiile Inteligentei Artificiale, Cluj Napoca:Editura

Albastra.

• Efthimiou E., 1991: "Struetural Substitution of Anaphoric Elements - a Case for

Processing of Greek Language from the Computer'\ Studies For The Greek

Language proeeedings of the 12 meeting of the linguistic department of the

Faculty of Philosophy of The Aristotie University of Thessaloniki.

• Fodor J., Katz J., 1964: The Structure of Language. Readings in the Philosophy of

Language, Englewood cliffs: Prentice Hali.

• Fong S., 2000: "The Pappi System: Lexical Semantics and Morpho-Syntax", 38th

Annual Meeting of the Association for Computaţional Linguistics, Hong-Kong.

233

BUPT

Fong S., 2005: "Compiilation vvitli Probcs and Goals: A l\irsing Pcrspcclivc", In

UG and Externai Systems, Uds. Di Sciiillo, A. M., John Bcnjaniins Publishing

Company.

Fouskakis C., Halatsis C., 1997: '̂An Open System for Langiiage Constraints on

the X-Bar Trccs", Working Papers in Natural Language Processing, An

International Workshop, Athens Greece.

Fouskakis C. 2000: "An Open Syslem for Linguistics Rules on Ihe X-Bar Trees",

Ukrainian Journal of Compulational IJnguislics, Lviv Ukraine.

Fouskakis C. 2004a: "A Computaţional Melhodology for Linguistic Rules'\

Romanian-Hungarian International Conlerence SACI2004 on Applied

Computaţional Intelligence, Timişoara Romania.

Fouskakis C. 2004b: ''An Overview of a Computaţional Approach for Linguistic

Rules on the X-bar Trees", Development and Application Systems DAS2004

International Conference, Suceava Romania.

Fouskakis C. 2004c: 'The Organization of the Linguistic Knowledge in a

Computaţional Methodology as Computer Language for Linguistic Rules'\

Symbolic and Numeric Algorithms for Scientific Computing SYNASC04

International Conference (University of West Limisoara and Reasearch Institute

for Symbolic Computation from the Johannas-Kepler University of Linz-Austria),

Timişoara Romania.

Fouskakis C., 2005a: "A Computaţional Methodology as an Artificial Language

for Natural Language Rules and The Unification Based Approach", Romanian-

Hungarian International Conference SACI2005 on Applied Computaţional

Intelligence, Timişoara Romania.

Fouskakis C., 2005b: 'The Basic Notions of the Tree Adjoining Grammars and a

Methodology as Artificial Language about Linguistic Rules", Intelligent

Linguistic Technologies Conference - World Academy of Science, Las Vegas

Nevada USA.

Fouskakis C., 2005c: 'The Variables in the Computaţional Methodology as an

Artificial Language for Linguistic Rules", 8th Intenational Conference -

Computer Science Session, Oradea , Romania.

Gabriilidou M., Lambropoylou P., Ronioth S., 1990: ''Design and Cominentary of

a Greek Texts Corpus", Studies For The Greek Language proceedings of the 1 I

234

BUPT

Meeting of the Linguislic Dcparlmcnl of Ihc Faculty of Philosophy of The

Aristotie Univcrsily of Thcssaloniki.

• Gazdar G., Klein E., Pullum G., Sag I., 1985: Gcneraliscd Phrase Structwc

Gram mur, Oxford: BIaekvvell.

• Gilberl K., 1991: Computer Proccssin}:^ of Natural iMH^ua^c. Prenliee Hali,

Englewood Cliffs: New Jersey 07632.

• Grishiiian R., 1989: Computaţional Linţ^uistics an IntroJuction, Cambridge:

University Press.

• Haegeman L., 1990: Introduction to Government anJ BinJin}^, Oxford: Blackwell.

• Haegeman L., 1995: Introduction to Government A BinJinf^ Theory edition,

Blackwell.

• Halle M., Clemenls G., 1984: Problem Book in Phonolo^\ Cambridge,

Massachusetts and London, England: fhe MIT Press.

• Halalsis C., Slamatopoulos P., Karali I., Moiirlas C., Goiiskos D., Margaritis D.,

Fouskakis C., Kolokouris A., Xinos P., Reeve M., Veron A., Schuerman K., Li

L.L., 1994: ^^MATOURA: Mulli-Agenl TOUrist Advisor'\ Proceedings

ENTER^94, Insbruek.

• Halalsis C., Slamatopoulos Karali I., Bilsikas 1., i esakis G., Sehizas A.,

Sfakianakis S., I oiiskakis C., Coukoiimpelsos 1 h., Papageorgiou D., 1996: "Crew

Scheduling Based on Conslrainl Programming: The PARACHUTE Experience'' ,

Proc. HERMIS'96, Alhens.

• Haspelmath M., 2002: Understanding Morphology, Arnold Publishers.

• Horrocks G., Slavrou M., 1987: "Bounding Theory and Greek Syntax. Evidence

for Wh-movement in NP' \ Journal of Linguislics, 23, 79-108.

• Jackendoff R., 1977: The X-bar Syntax, Ml'f Press.

• Jaeobs R., Rosenbaum P., 1970: Readings in English Transformational Grammar^

Xerox College.

• Wirth J., 1985: Beyond the Sentence : Discourse and Sentential Form, Karoma

Publishers, Inc.

• Joseph B., Philippaki-Warbulon I., 1987: Modern Greek, London Roulledge.

• Joshi A., Levy L., Takahashi M., 1975: "Tree Adjunct Grammars", Journal of

Computer and System Sciences, 10(1), 136-163.

• Mckeown K., 1985: Text Generation, Cambridge University Press.

235

BUPT

Kosma D., Stratou S., Loiou A., 1988: "Analytic Grammar of Ihc New Grcck

Language", Publicalions 2002 scrics Linguislic Libiary.

Leech G., 1983: Principlcs of pni^nuUics, London: Longman.

Lyons J., 1981: Lanţ^ua^c. Mcauin^ and Coutcxt. London: Fonlana.

Mackridge P., 1985: The Modern Grcck Lan^iui^c, Oxford Univcrsily Press.

Malikouti-Draehman A., Dracliman G., 1988: "Accenluation in Greek'', Sludics

fortheGreek language, Thesaloniki Kiriakidis 127-144.

Millett R., Lonsdale D., 2004: 'Mixpanding I rcc Adjoining Grammar Io create

Junetion Grammars trees", Seventh Inlernalional Workshop on Tree Adjoining

Grammar and Related Formalisms, Vancoiiver.

Noble H., 1988: Natural Lan^ua^c Proccssin^. Blaekwell Scienlifie Publicalions.

Pedersen M. 2000: Usability Evaluation oj Grammar Formalisms for Frec Word

Order Natural Lan^ua^c Proccssin^. Oueensland, Universily of

Queensland:Thesis of Doctor of Philosophy.

Philippaki-Warbuton !., 1970: On ihc Verb in Modern Grcck, Bloomington

Indiana University.

Philippaki-Warbuton 1., 1971: "Rules of Accentuation in Classical and Modern

Greek", Glolta, 48, 107-121.

Philippaki-Warbuton I., 1973: "Modern Greek Verb Conjugation. Inflectional

Morphology in Transformational Grammar'', Lingua, 32, 193-226.

Philippaki-Warbuton !., 1975: "Passive in IZnglish and Greek", Foundations of

Language, 13, 563-578.

Philippaki-Warbuton L, 1976: ''On the Boundaries of Phonology and Morphology.

A Case Study from Modern Greek", Journal of Linguistics, 12, 259-78.

Philippaki-Warbuton L, 1982: "Constraints on Rules of Grammar as Universals'\

Crystal D. 95-107.

Philippaki-Warbuton !., 1985: "Word Order in Modern Greek", I ransactions of

Philological Society, 113-143.

Philippaki-Warbuton L, 1987: "The Theory of Empty Categories and the PRO-

drop Parameter in Modern Greek", Journal of Linguistics, 23, 289-318.

Philippaki-Warbuton L, 1989: "Subject in English and Greek", Proceedings of the

3̂ ^ Symposium on the Description and/or Comparison of linglish and Greek,

Thessaloniki Aristotie University School of linglish.

236

BUPT

Philippaki-Warbulon 1., 1990: ^'Analysis ofl l ie Verb Scl in New Greek'\ Studics

l or The Greek Language Proceeclings of Ihe I 1 Meeling of ihe Linguislic

Deparlnient of Ihe Facully of Pliilosophy of The Arislotie Universily of

Thessaloniki.

Philippaki-Warbulon I., 1992: An Introduction in Thcorctical Linţruistics, Nefeli,

Alhens.

Photopoulou A., 1990: ^'Analysis of Ihe Coinponenls of the Slereotype Senlences

- Comments about Iheir Classirication", Sludies For The Greek Language

Proceedings of the 11 Meeling of the Linguislic Department of the Faculty of

Philosophy of The Arislotie Universily of Thessaloniki.

Radford A., 1981: Transformational Syntax. Cambridge Universily Press.

Radford A., 1988: Trunsjornnidonal Gramma/\ Cambridge Universily Press.

Radford A., 1997: Syntax a minimalist Introduction. Cambridge Universily Press.

Ralli A., 1990a: ''Lexical Phrase : Objecl of Morphological Interest", Sludies For

The Greek Language Proceedings of the 11 Meeling of the Linguislic Department

of the Facully of Philosophy of The Arislotie Universily of Thessaloniki.

Ralli A., Touralzidis L., 1990b: ''Computaţional Processing of Accents al New

Greek Language", Sludies For The Greek Language Proceedings of the 11

Meeting of the Linguislic Department of the Faculty of Philosophy of The

Arislotie Universily of Thessaloniki.

Ralli A., 1992: "The Theory of Fealures and the Inllectional Words Struclure al

New Greek Language", Sludies For I he Greek Language Proceedings of the 13

Meeting of the Linguislic Department of the Faculty of Philosophy of The

Arislotie Universily of Thessaloniki.

Roca 1., Johnson W., 1999: A Coursc in Phonolo^y. Blackwell Publishers.

Samuel D., Norbert H., 1999: Workin^ Minimalisnu Cambridge: MIT Press.

Schabes Y., Abeille A., Joshi A. K., 1988: "New Parsing Stralegies for Trec

Adjoining Grammars." In Proceedings, 12*'' International Conference on

Computaţional Linguislics, 578-583.

Schnelle H., Pierrot A., Heliwig P., Wiegand H., Naughl J. Atkins B., Gross M.,

Calzolari N., Uszkoreil II., Schulz J., Caroli F., Devillers C., Rohrer C., Al B.,

Martin W. And Heid U., 1992: LUROTRA: Fcasihility and Projcct Dcjinition

Study un ihe Reusability of Lexical and Tcnuinolo^ical Rcsourccs in

237

BUPT

Computcrizcd Applications:Final Report. SliiUgart, Univcrsily of vStullgart

Germany:EUROTRA sliicly.

• Selkirk E., 1982: The Syntax ofWonts. MU Press.

• Shaban M., 1994: A Minimal GB l^usci, Boslon, Boston Univcrsily.

• Spencer A., 1991: Morpholo^ical Thcorv An Introdnction to Word Stnictwc in

Generative Grammar, Oxlord: Blackvvcll.

• Staurou M., Philippaki-Warlniton 1., 1987: ^Thc Paraniclcr oT Rcconciliation and

the independent Anaphoric Sentenccs'\ Studios for the Grcck languagc, 31 1-322,

Thesaloniki: Kiriakis.

* Tatar D., 2001: Inteligenta Artificiala - Demonstrare Automata De Teoreme,

Prelucrarea Limbajului NaturaL CluJ-Napoca: Editura Albastra.

• Tatar D., 2003: Inteligenta Artificiala - Aplicaţii In Prelucrarea Limbajului

Natural^ Cluj-Napoca: Editura Albastra.

* Theofanopoulou D., 1986: "Structures for the Removal of the Object of a

Complement", Studies for the Greek language, 87-108, Thesaloniki: Kiriakidis.

* Theofanopoulou D., 1989a: Transformation Syntax from the Theory to Practice,

Kardamitsas: Athens.

* Theofanopoulou D., 1989b: ''Compound Structurcs of NP and the Movemcnt in

Greek language", Studies for the Greek language, 337-354, Kiriakidis:

Thesaloniki.

• Theofanopoulou D., 1994: Transformation Syntax from the Theory to Practice / / ,

linguistics department of the Philosophy Paculty of the University of Athens.

* Vijay-Shanker K., Joshi A., 1988: "Feature Structure Based Trec Adjoining

Grammars", in the proceedings of the 12̂ '̂ International Conference on

Computaţional Linguistics, 714-719.

* Winston P., 1992: Artificial Intelligence Third Edition. Addison-Wesley

publishing company.

238

BUPT

INDEX

a c c c p l a n c c j c v c l 65
aCommon • 163. 164, 165, 171, 184, 202, 203, 205,

2 1 5 , 2 1 9
addAnaphor • 149, 150, 155, 156, 158, 170. 184,

200, 2 0 7 , 2 1 2 . 2 1 4 , 2 1 5 , 2 1 9
adcJFcaturcs 149, 150. 154, 170. 184. 200
adiJ(;rammarVaiial) lc 6 2 . 6 4 . 6 6 . 151. 169, 1^6.

206
addInputTrecs - 61
addStructurcs 61. 196
addValucs 149, 151. 170, 182.201
aKirstTrcc- 112. 137, 183
also 70, 152
anaphor • 27, 45, 52. 54, 56, 67. 68. 69. 72, 74. 79,

80. 85. 87. 88, 89, 91, 92, 101, 102. 103. 106,
107, 108, 109, 110, 111, 138. 141. 142, 143,
144, 145, 146. 149, 154, 155, 156. 157. 158.
160. 161. 162. 167, 178. 182, 184, 185, 188,
189, 199. 200. 201. 202, 207. 2 1 4 . 2 1 5 . 2 1 6 . 2 1 9

iinaphoric coniicclions • 205, 208. 213, 214. 216
and 60. 113. 168
aiivTrcc 70. 73. 113. 114, 116. 123, 128, 138, 151,

156. 157. 167, 1 8 3 , 2 0 7 , 2 1 9
aTrcc- 112. 123. 1 8 3 . 2 0 6 , 2 1 1 , 2 1 4 , 2 1 5 , 2 1 9
AVM 3 2 , 3 3

C'homskv 6
comiiiciit 177. 178. 185. 204, 205, 206
computcHional linguistics • 10
aintexl Irce • 16, 31

D

dcletcDuplicatcs 151, 169. 201
dcIctcValiics 149. 170, 182. 201
cicscnptn cly iidcquulc 1 5

1-RNl lorm lor slaling variables 74
l :RNr lorni o f l h c granimar mic • 64
l-^BNl' Torni o f llic structurcDcscription ficld • 135
KBNT of Ihc lingiiistic program • 66
lîRNl- o f l h c slmclurcCommands ficld • 168
1-BNl- o f l h c slmclurcs 55
cmpty 49. 54
cqiial' 160. 161. 162. 164. 165. 166. 167. 171. 172.

184, 198, 2 0 1 . 2 0 2 . 2 0 3
cqiialKeaturc 164. 171, 202
cxist.s 68. 73, 78, 82. 83, 160, 161. 162, 164, 171,

172. 184. 185. 186. 1 8 8 . 2 0 2 , 2 2 1 , 2 2 2
Lxteniicd Suindard Thcorv • 20

B

bar • 44, 48, 52, 55, 69. 72, 73, 75, 82. 83, 86. 87,
8 9 . 9 3 , 9 4 . 9 6 , 9 7 . 104. 105, 106. 107, 108. 109,
110, I I I , 114, 116, 119. 121, 125, 126, 128,
130, 132, 134, 143, 144, 146, 147, 148, 153.
155, 157, 158, 161. 166, 170, 181, 183, 189,
190, 191. 192, 200, 2 0 5 . 2 0 6 . 2 1 1 , 2 1 2 , 2 1 4 ,
2 1 5 , 2 1 9

b a h - 4 4 , 4 8 , 52, 55, 69, 72, 73. 75. 114, 121, 132,
134, 143, 146. 148, 154, 157, 158, 170. 183,
2 0 7 . 2 1 1 . 2 1 2

barii • 44. 47, 52, 55, 69, 73. 75. 116, 119, 128, 134,
146, 153, 156, 157, 158, 170. 1 8 3 , 2 0 7 . 2 1 1 ,
2 1 2 . 2 1 4 , 2 1 5 , 2 1 9

binding Ihcory 27
bounding ihcory • 27

Case FiIier • 28
casc lhcor>' 28

fcaturcs • 19. 32. 33, 34, 35. 42, 45. 53. 55, 57, 67,
68. 69, 72. 73. 74. 75, 76, 78, 79, 80, 81, 82. 83,
90. 9 2 . 9 6 . 9 7 , 9 8 , 126, 138. 141, 142, 143, 146,
147, 148. 149, 153. 154. 158. 162, 163, 164,
165, 174. 178, 182, 184, 185, 187, 188, 189,
199. 200, 201, 202, 203. 205, 211, 212, 214,
215 ,219 , 2 2 1 , 2 2 9

general variahlcs 78. 15 1
gctiiipiit I rccid 61
gctNcxtStriictiirc 61. 196
getParl icularStri icdirc 61
Rcll'rcvioiisstriictiirc 61, 196
(iovernmen/ and thnduig Ihcory • 25
govcniinciîl ihcory • 25
grammar 5 , 6 . 9, II. 15. 16. 1 8 . 2 0 . 2 5 . 3 1 . 5 8 . 59.

6 0 . 6 1 . 6 2 , 6 3 , 6 4 . 6 5 , 6 6 . 151, 152, 168, 177.
178. 179. 180. 181. 182, 185. 187, 194, 195.
196. 197. 205. 208, 215. 216, 228. 229

239

BUPT

graiîimar variablc5 62. 71. 15 I, 208
RmmnmrVHr • 63, 168. 16)̂. 172
grcatcrFcaCurc 164, 171, 202

oh.scrvdfonly iulciimilc I 5
or 60. \ 168

ifThcn 59.64, 159, 169, 1 8 7 . 2 0 1 , 2 1 5 . 2 1 9
irrhcnKIsc 59. 64. 159. 169. 187. 201. 205. 212

2M. 215. 219
mheretU casc • 29
interpreteraly adequate • 15

IcftMost- 112. 123, 137, 183
linguistic knowlcdge of this nicthoclolopy 41
linguislic program - 4 2 , 6 5 . 180, 185. 194

particiilarStriictiii c 141. 169
rhonrtics aiul fyhoitnloy^v 4
pnsilinn 7X XI \V) 2V>
l'iiiyinnlii\ ^
piTviniisSinicturc 141. 169
principIc 25. 42. 57. 58, 59. 60. 61. 62. 63, 65, 66.

71. 73. 77. 79. 80. 81. 82. 83. 84. 85. 86, 87. 88.
89. 90. 01. I 14. I 16. 1 19. 121, 123. 125. 126.
128. l '̂ O. 132. 134, 168. 177, 178, 179, 180,
181. 182, 185. 194, 195. 196, 197 ,205 .206

principlclncorrect 168, 169
pniicipics 56
n<() 29
Pr()h>u 174

M

Morphology • 5

N

newlnputTrees • 61
nextStructure • 141, 169
nodc • 9, 22, 43, 44, 45, 47, 48. 52, 55. 56. 57. 67.

68, 69, 73, 74, 75, 76, 79, 80, 81, 82, 83. 84. 85.
86, 87, 89, 90, 91, 92, 93, 94, 95. 96. 97, 9S, go.
100, ICI, 102, 103, 104, 105, 106, 107, 108,
109, 110, 111, 112, 114, 116, 119, 121, 125.
126, 128, 130, 132, 134, 135, 141, 142, 143.
144, 146, 147, 148, 149, 150, 154, 155. 156,
157, 158, 161, 162, 163, 164, 165. 166. 167,
170, 178, 182, 183, 184, 188, 189, 190, 191,
192, 199. 200, 201, 202, 203, 205, 206, 207,
211, 212, 214, 215, 219, 221, 222. 228

nodcNamc- 146. 148, 165, 166, 170, 172. 184.200.
202

nodcNotSubtrcc 112. 183
nodes of ihe trees • 44
nodcSubtrcc- 112, 119, 132, 134, 183
nodcTypc • 146, 148, 165, 166, 170. 172. 184, 200.

202
n o t - 6 0 , 112, 168
notEqual- 160, 161, 162, 164, 165, 166. 167, 171,

172 ,184 ,202
notSubtrcc- 112, 116, 183
noVariabIcs • 73, 88, 99, 101. 102, 104, 106. 108,

109, 111, 114, 116, 119, 121, 123, 125, 126,
128, 130, 132, 134, 156, 157, 179,211.212.
2 1 4 , 2 1 5 . 2 1 8

noVars- 179

O

objecî control verb 30

R

rcmovcAnaphor 149, 150, 170. 184, 200
rcinovcFcatiircs • 149, 150, 170, 184,200
rcmovc(HamiîiarVariablc 62, 63, 64, 66, 151,

169. 196
rcstorcStnictiirc 61. 196

.scc 175. 176. 178. 179, 180, 181, 182. 183, 184,
198. 201, 203

sd • 174, 176, 179, 182, «83, 185. 198
sdVar • 179, 183. 207
set 67. 68. 74. 82. 83. 84, 85. 86, 87, 88, 89, 90.

9 1 . 9 3 . 9 4 , 9 5 . 9 6 . 9 7 , 9 8 . 100. 102, 103. 105,
107. 109. 111, 141, 143, 144. 145, 146, 147,
148, 151, 169, 182, 198, 199, 200. 202, 205,
206. 207, 2 1 1 , 2 1 2 . 2 1 4 , 2 1 5 , 2 1 9 , 222, 228

sctSlriictiircs 61. 196
sctSiiccccdcdvStnicfiircs 61, 196
smallcrl caliirc 164, 171. 202
Standard Theory • 18
structural case 29
Slrucliirali.siii • 14
striictiireC'omiiiaiids 57, 58, 67, 82. 92. 141. 145.

156, 158. 168, 177, 179, 182.205,206, 207,
2 1 1 , 2 1 2 . 2 1 3 . 2 1 4 , 2 1 5 , 2 1 9

sd uctiircDcscriplioii 57. 58. 67, 71. 77. 78, 79,
80, 81.82. 83, 84, 85. 86, 87, 88, 89, 90, 91, 92,
9 3 . 9 5 , 9 6 . 9 7 . 9 8 , 9 9 . 100, 101, 102, 103, 104,
105. 106, 107, 108, 109, 111, 112, 114, 116,
119. 121. 123, 125, 126, 128, 130, 132, 134,
141, 156, 157. 179, 182, 205, 206, 207,211,
2 1 2 , 2 1 3 , 2 1 4 , 2 1 5 , 2 1 9

suhject control vcrbs • 30
suhscls 163. 164, 165, 171, 185, 202, 203.212.

214. 215, 219
siibtrcc • 45. 49. 52. 53, 57, 67, 68, 70, 74. 75. 76,

77. 78. 80. 81. 82. 83, 84. 86, 87, 88 .92 , 105,

240

BUPT

10^, I I I . 112. 113. 114, 135. 141. 142. 143.
146, I4K. 14^ 156, 157, I5X, 160, 167, 172,
I7K. 183. 184. 198, W , 200, 202, 203, 207.
2 1 1 . 2 1 2 . 2 1 9 . 2 2 1 , 2 2 2

siihtrccPosilion 112. 114. 116. 139
Synlaclic SimcUircs • 15
Svnfax 5
s v s l c i n OI RIICS • 2 5
syslcni.s ol principlcs 25

traiisrormatioi i lncorrccl - 168, 169
Iraiisformalioiis 18, 29, 57. 58. .S9, 63, 65. 67,

70, 74, 77, 78. 79, 81, 82. 142. 152. 153. 1.54.
155, 156, 158, 172. 174, 175. 176. 177, 178,
179, 180, 181. 182. 183. 184. 185. 193. 194.
195, 196. 197. 198. 201. 203. 204. 205. 207,
208, 209. 21 1. 212. 213. 214. 215. 219, 225. 226

(I ansformalioiA'ariahIc 79. 92. 93, 95, 96. 97.
9 8 . 9 9 . 100. 101. 102. 103. 104. 105. 106, 107,
108. 109. 1 1 I. 136, 142. 145, 152. 156, 157,
179. 2 0 5 . 2 0 6 . 2 1 1 . 2 1 2 . 214. 2 1 5 . 2 1 9

I 54 .151
Icrminal 9, 18. 22, 29. 3 1. 32. 43. 45. 48. 52, 53.

55, 56, 57, 67, 68, 69. 72, 73. 74. 76. 79, 80. 81,
82. 83, 84, 85, 86. 87. 89. 90, 91. 92. 93, 94, 95,
9 6 , 9 7 . 9 8 , 9 9 , 100, 101, 102. 103. 104. 105,
106. 107. 108. 109, 110. I I I , 114. 116. 119.
121. 125. 126. 128, 130, 132, 134, 138, 141,
142. 143. 144, 145, 146, 147, 148, 149, 155,
156, 157, 158, 160. 161, 162. 167. 178. 182.
184, 188, 190, 199. 200. 201. 202. 203. 205.
2 0 6 . 2 1 1 . 2 1 2 . 213, 2 1 4 . 2 1 5 . 219, 2 2 1 . 2 2 8

tcrminalElcmcnl 145, 147, 161, 162, 170. 171.
184. 199. 201

l l i e final X-bar irccs 42
The iniţial X-bar irccs 42
The Lmguistic Program 42
The Lingiiislic Tlicor>' • 42
l l i c lemiinal cleincnls • 45
The mat IC Cntcrion 28
Irace 54
Iranjţform 152. 153, 154. 155. 156
traii.srornialion 18, 20. 42. 57. 58. 59. 60, 61, 62,

6.3. 65. 66, 71. 73, 77. 79, 80. 81. 93, 94, 95. 96.
9 7 . 9 8 , 9 9 . 100. 102, 103, 104. 105. 106, 107,
108. 109, I 11, 152, 154, 156, 157, 168, 177,
178, 179, 180. 181. 182. 183, 185. 194. 195.
196. 197, 203, 204, 207, 208, 2 1 1 . 2 1 2 . 2 1 3 ,
214, 215. 216, 218

iranslomiation variablcs • 78. 92. 151. 152

u

iinificalion 3 1 . 3 2 , 3 3 , 34, 36
universal graînmar • 7
Universul Gromniar • 6

varr.xisis 63, 64, 167. 169. 172
variahle.s • 32. 33. 57, 58, 62, 66. 67. 68. 70. 73. 74.

78, 79, 80, 81. 82, 83. 84, 85, 86, 87. 88, 89, 90,
91, 92. 93, 94, 95, 96, 97, 98. 100, 102, 103,
105, 107. 109, I 1 I, 141, 142, 145, 149, 150,
152, 160. 165, 167. 168. 174, 175. 177, 178,
179, 180. 181, 182, 183, 185, 195, 197, 198,
199, 200, 202, 205. 206, 207, 208, 209, 211,
2 1 2 . 2 1 3

variahle.s llclcl 67
vars - 174. 176, 177, 179, 182, 195, 197

x -bar-5 , 8, 9, 12, 1 3 , 2 1 , 4 2 , 73, 77
X-bar simclurcs • 43

241

BUPT

