UNIVERSITY “POLITEHNICA” OF TIMISOARA
FACULTY OF AUTOMATIC CONTROL AND COMPUTER
SCIENCE AND ENGINEERING

A COMPUTATIONAL METHODOLOGY AS AN
ARTIFICIAL LANGUAGE ABOUT
NATURAL LANGUAGE RULLS

PhD - Thesis

PhD coordinator:
Prof. Univ. dr. ing. Stefan HOLBAN

R B Author
: LV PO R T Konstantinos Fouskakis
s S O N s
! “-?EL:}'-J-‘;'.,W '
t 3 s T —. s .. i
H B § \. i, i
v _bhE 04 |
. T
20 9k Lt A

Timsoara — 2005

BUPT

BUPT

2.2 THE UNIFICATION BASED APPROACH

CONTENTS

1. INTRODUCGTION cuccciiererrinteessssinesssesesssessssnsssenssansssastosestissnssasssnsssssssasassssssnsses 4
2. THE STAGE OF KNOWLEDGE......... treeecsenesssneiesateestessesstssss T s ates et RS es st e eessRe e tenbEeseseustsses 14
2.1 THE X-BAR THEORY L.oiiieiiitiiitees ittt e eraes s s seesssresmas s res b e sebes s e st e saa e s s s s aaes s ars e st s s tanacs 14
2,01 The School of Sructuralism . 14
2.1.2 The Standard of the SYyMIactic SIFUCIUPCS ... 15
2.0.3 The SIandard THCOIY.c.ccooiiiii it 18
2.1.4 The Extended Standard TTCory ... 20
2.1.5 The Government and Binding theory ..., 24
2.1.5.1 The BOVEIMMCIE HICOTY ..ottt e 25
2.1.5.2 THe BIRAING BCOTY ..ot
2.1.5.3 The bounding theory
2.1.5.4 The thematic role theory ...
2.1.5.5 The casc theory
2.1.5.6 The control theory ..o

2.2.1 The context free grammarsc.ccccooiiiii ittt
2.2.2 The feature structures and the unific@Uion ... 32
2.2.3 The HPSG Grammiar.................cccc.cciiiiiiiiiiioi oot 36
224 The PATR Gramumar ..ot 37
2.2.5 The FUG Grammarcococoiiii i 38
226 The TAG rammarccoooiioiie i 38
3. THE PERSONAL CONTRIBUTIONconeeierniniiriiensiansnnnnneracnniaes 41
3.1 DESCRIPTION OF THE LINGUISTIC SYSTEM'S STRUCTURE OF THE PRESENTED METHODOLOGY41
3oL T TRHE SIFUCIUICS ... e 42
3.1.1.1 The EBNF of the X-Dar SITUCIUICS. ... 55
3.1.2 The Principles and Transformauions.cc...cci i 36
3.1.2.1 The EBNF of the principles and transformations of the methodology ... 58
3.1.3 The LiNGUISHC TRCOIY ..ot 58
3.1.3.1 The EBNF of the grammar rules in the theory part of the system ... o4
3.4.4 The LinguiStic PrOgra.............cccccovoiviimioiioriiitiies et e 05
3.1.4.1 The EBNF of the linguistic PrOBrami...............ooooiiiiiiii e 66
3.2 DESCRIPTION OF THE PRINCIPLES AND TRANSFORMATIONS FIELDS.....coveoviiiinirriiicrtesinieisssenens 67
3. 2.1 The variables field. ... 67
3.2.1.1 The EBNF of the vaniables ficld.............o e 74
3.2.2 The structureDescription field of the principles and transformations 77
3.2.2.1 The variables in the structureDescription ficld of principles and transformations...................... 78

3.2.2.2 The variables of the general CalCory ... e

3.2.2.3 The variables of the trans[oMAtion CAUCGOTY ..ot

3.2.2.4 The trce operators in the structureDescription licld

3.2.2.5 The structureDescription field examples with one operator ... 113
3.2.2.6 The structurcDescription ficld examples with more than one operatorc.ccocooieiinns 131
3.2.2.7 The EBNF of the structureDescription ficld.......................iiii e 135
3.2.3 The structureCommands field of the principles and transformations................................ 141
3.2.3.1 Declaration of variables in the structureCommands ficld.....................oooiiiiiii e 141
3.2.3.2 The change of variables values in the structureCommands field....... ... 145
3.2.3.3 The grammar variables in the structureCommands fickd ..., 151
3.2.3.4 The transformations in the structurcCommands field of transformations rules..... . 152
3.2.3.5 The controls in the structureCommands field..............................—.. 159
3.2.3.6 The EBNF of the structurcConymands field ... 168
3.3 THE DESIGN OF THE SOFTWARE SYSTEM — THE MODULES .vvvevivevivevnreserstesssseresssisssssssssesesssesees 174
3.3.1 Implementation Specific detdils................coc.coccoooioooeeeeeeeeeeeeeeeeeeeee e 177
33,11 The comment COMMANG ... e 177
3.3.1.2 The user depending application of the rules ..., 178
3.3.1.3 The changes on the operators and other asSUmMpoNS ... 179
3.3.2Module Sys_db e 179
2

BUPT

3.3 3 Module OPErators................ ... 181

3.3.4 Module general predicales...........................cooocooiiiei e s 185

3.3.5 Module sys_elements...........................oc.iiiiiie s 188

3.3.6 Module main_ module.......................c.c.c...ocoiiiiiiiiiiiiis e 193

3.3.7 Module read filesc..c..coooooiioiiiiii e e 194

3.3.8 Module read write _SIPUCIUIES...............c.cocoooovieiiiiceieiiceeeee e e 195

3.3.9 Modde execule FUlESc.c.ccoooiiiioiiii e e 195

33.9. 0 Module vars_ficld ... et 197

3392Module sd_fICId ..o s 198

3393 Module sce_fichd ..o e e 198

3.3.9.4 Module sCC_ChECKS ... e e e e 201

3.3.9.5 Module sce_transfOrMAationsocoiiiiiiii et e e e 203

3310 Module cOMMENIS ... 204

3.4 GENERAL EXAMPLES OF PRINCIPLES AND TRANSFORMATIONS AND ANAPHORIC CONNECTIONS .205

3.4.1 The problem of unaphoric connections outside of an N-bar tree.......................cc.coc........ 208

3.4.2 The problem of anaphoric connections inside an X-bar tree..................ccoo.ocoevveiinnnnn... 216

3.5 THE GRAPHICAL MONITORING OF THE SYSTEM ..ccutiiiiiiiiiiiniiinicici st ssessensssessssesses 220

4. CONCLUSIONSiciiiriininisssnssssssnssisassssssssssssasssssassossarsassassassssssassnes 228

4.1 THE EXISTING COMPUTATIONAL METHODOLOGIESuuveieiiirieeirenrireeasisnnesssesssanmesssessesssassnaransnnes 228

4.2 THE PRESENTED METHODOLOGY ..ottt stemssessssssassssssssonissssnsssnonssssasssssensossnens 230

5. BIBLIOGRAPHY ...t nensseaeas 232

INDEX .ot iinnsnininisisessnssssnssessesssssesessasssssses 239
3

BUPT

1. Introduction

Nuatural language processing is a ficld that has concerned both artificial
intelligence (Winston, 1992) (Dumitrescu, 2002) in the terms of its broader cognitive
fields and the computational linguistics (Cecile, 1991) (Gilbert, 1991) (Grishinan,
1989) (Noble, 1988) especially during the 60°s and alter.

Generally, the modern theoretical linguistics (Babiniotis, 1980) (Philippaki,
1987, 1992) (Lyons, 1981) is concerned with the scicntific study of lunguage.
Nancly, the ovject of the linguistics is the language. With the term lunguage we are
limited only to that natural communication system that is used by man and that is
bascd on parolc. Also linguistics is not limited only to one particular lunguage (Fodor,
1964) and ncither scts as a goal the study of cach one of these languages individually.
Linguistics studics the language as a phenomenon and its purpose is to define the
gencral universal characteristics, of this phenomenon,

Linguistics has the following branches:
e Phonetics and phonology

Phonetics is concerned on how the words of a language are pronounced (Malikouti,
1988), both individually and in combination among them within scntences or
phrases. For the description of the words/ pronunciation, that is called phonctic
description, we use special symbols that are called phonctic symbols (Halle, 1984).
These phonetic symbols belong 1o the International Phonetic Alphabet. The
science of phonetics analyses and describes the linguistic sounds, the phonemes
(Abcrcrombic, 1967).

The study of the phonemes’ function within a particular linguistic system is called
phonology and is differentiated from phonctics. Phonology studics the allocation of
the phonemes and their contribution to communication and the phonological
phenomena. The allocation of a plioneme is the linguistic environment in which it
exists, that is, the elements that exist before and afier the particular phoneme that
wc study, for example, we have the words “mive ™ (drink) and “teivw” (tend) that
with the usc of phonctic symbols are described as [pino] and [tino] respectively. As
we obscrve, these two words are differentiated only by the first phoneme, p and t.
Thercfore, the colloquists understand from these words two different meanings
when they hear them, because the first phoneme is different.

BUPT

An introductory general book about phonetics is the book of (Abercrombie. 1967).
Also. a book about the uscful sources of the gencetic phonology is the book of
(Chomsky, 1968). The books of (Durand, 1990) and (Roca, 1999) presents a more
modcrn introduction.

Morphology

Morphology is concerned with the internal form of the word. The word constitutes
the basic unit both in the syntactic and the lexical level, while the words are not the
minimum units of this level. In many cases the words are composite units and their
clements have a specific meaning and thus they function as units in the syntactic
level. These word clements are also observed in other environment, cither alonc or
with other clements (Philippaki, 1976). Also, there are elements that cannot be
analyzed any further.

A book with the more contemporary speculations around the field of morphology
is the book of (Spencer, 1991). Another similar book is the book of (Sclkirk,
1982). Also the book of (Haspclmath, 2002) presents a broad range of
morphological phenomena from a wide varicty of languages.

Syntax

The syntax is concerned with the rules under which the words arc combined in
bigger structures, like the phrases, the sentences and the utterances. With the term
utterancc we mean the sentences within a text.

A first report in the term grammar of the phrasal structure is madc in the first book
of Chomsky Syntax Structurcs in 1957. The book is for the standard theory
(Chomsky, 1965), while for the extended standard theory is the book (Chomsky,
1970), where we have for the first time the theory of the x-bar. The government
and binding was originally developed in the book (Chomsky, 1981), whilc in the
books (Thcofanopoulou, 1989a, 1994) and (Philippaki, 1992) we have a generic
consideration around the transformational syntax.

Semantics
Semantics (Babiniotis, 1985) is concerned with the meaning of the words within

the sentence and also with the meaning of the sentences.

A very useful introductory book on semantics is that of (Lyons, 1981) and on

formal semantics (Cann, 1993).

Pragmatics

Pragmatics is concerned with issues regarding the meaning of the sentences, as

these are interpreted in a specific place and time, as well as in the terms of certain
application ficlds.

A general introductory-book which concerns pragmatics in particular is that of
(Leech, 1983), while the book of (Philippaki, 1992) is about linguistics in general

BUPT

with important rcports on pragmatics (Wirth, 1985). Also, another book that
combines meaning with context is (Cruse, 2004).

The standard linguistic theory that has influenced linguistics since 1957 up
today, is the one that mainly Chomsky has developed in 1957 and still does up today.
This theory is known as generative transformational grammar.

The following can be considered as the basic stages in the cvolution of this theory:

1) the standard of the Syntactic Structures in 1957 (Chomsky, 1957), that
constituted the base for any further development.

2) the Standard Theory standard (Chomsky, 1965)

3) the Extended Stundard Theory with its allocated realizations, that constitutes
an evolution of the gencrative transformational grammar during the 70°s
(Chomsky. 1970) (Chomsky, 1972) (Chomsky. 19706).

4) The Government and Binding standard in 1981, that has been developed in the
terms of the Extended Stundard Theory (Chomsky, 1981, 1982) and for the
Greek language (Theofanopoulou, 1994) (Philippaki, 1992).

5) Since the beginning of the 90’s, we obscrve once again a new tendency to
modify the standard, having as a starting point more general questioning about
the role that the principles of economy play (Chomsky, 1988, 1995, 2000)
(Samuel, 1999) (Belletti, 2002).

The evolution of the generative transformational grammar theory (Radford, 1981,
1988, 1997), resulted in a substantial turn for a rewriting rules system (Jacobs, 1970)
towards a gencralized system of universal principles that, with their coordinated co-
operation define the organtization of the language clements in every level.

Two arc the main points that resulted in the evolution of the generative
transformational grammar:

a) The attempt of the rescarchers for a simpler theoretical pattern based on a small
number of gencralized principles. Their target is the definition of abstract logic
principles that arc so gencral, that they cannot always be found in a direct response to
the empiric data of the several languages. This took place only after the differcnce
between the internalized lunguage and the various language realizations was verificd.
This tendency leads to the formation of the Universal Grammar theory (UG) with the
paramectric diversitics according to the various language realizations.

b) The parallel finding that many phenomena that up to now had been considered
as different (c.g. the transformational rules and the binding rules) have been proved

BUPT

the result of common principles function. More specifically, the binding of clements,
like the reflexive pronouns with their reference point and the binding of the movable
nominal components with the trace that can be found in the place from which they
were moved are controlled by common principles.

So there was the alteration of the transformational theory fundamental senses and,
as a result, its modification from the standard of translormational interrelation of its
deep-surface structure phrase markers o the abstract total of principles and
paramcters that constitute what is generally called Universal Grammar.

According to Chomsky, the existence of the Universal Granmimar, that is, common
linguistic schemes in all the languages of the world is based on the following;:

a) the existence of common ubstract principles (general limitations, gencralized
structurc patters) in the systems of the several languages, despite the superficial
diversity that the scveral languages scem to have.

b) the data of the language acquisition, where the following have becn observed:

1) Language lcarning presents a unified form to all people. From
experiments that have becen conducted to the most uneven languages it has
been proved that the stages through which every man passes during the
lcarning of the maternal language in all its levels are basically the same for
cvery language. The uniformity of the language acquisition is defined by the
existence of universal linguistic clements that may refer to the way that the
perceptive mcchanisms, that the child used to analyze his/her language,
function. Also, the child lcarns the language of the community in which he/she
belongs naturally and cffortlessly and this happens regardless its intelligence.
2) The perfection and speed of the language learning also count for its
inherent character. It is amazing how man manages in a rather short period of
time (within the 3 or 4 first years of his life) to conquer the basic system of his
language.

According to Chomsky’s conclusions (Chomsky, 1986a), the following applics:

“The universal grammar is a theory of the
linguistic ability initial state, before any
linguistic experience”

The more exponent representative of the universal grammar is the theory of
government and binding. This thcory pays special attention to two basic principlcs,
the government principle that describes the syntactic dependencies between the
various lexical elements within the sentence, and the binding principle, that explains
how the scveral elements are inter-connected in the sentence.

This theory has developed a set of several Principles. These principles include the
following allocated theorigs:

BUPT

a) the government theory
b) the binding theory

¢) the bounding theory
d) the @-theory

€) the case theory

f) the control theory

The government theory defines the principles concerning the relation between the
head of a structure and the terms that depend on it. The principles also concern the
case of the empty categorics and the problems that derive. While the binding theory is
concerned with the conditions that control the way of binding an anaphoric clement
with its reference point in a natural language tree. Another theory is the bounding
theory that sets the terms that bound locally the transfers, defining which nodes are
constrained in their transfers and under which conditions. The thematic roles theory
includes principles that define the semiotic function (thematic role) of a name phrase
(NP) (if this phrase declares the action taker, the receiver, the theme, the instrument,
the place, etc). This thecory refers to the terms that control the determination of a
thematic role: level, kind of position, as wecll as the cases where this is impossible.
The case theory includes the principles that define the “abstract” casc in a NP (when a
NP is characterized as nominative, accusative or possessive) and the conditions that
must exist in order for this theory to be fulfilled. While finally, the control theory
defines the terms that control the presence of the empty PRO category, a fact that has
been in question in the Greek language. It is namely concerned with the empty
positions in the tree that are not created by the elements' transfer.

Since the beginning of the 90°s and after, we observe another new tendencey to alter
the standard, having as a staring point gencral speculations about the role that the
economy principles play in the formulation of the theoretical principles and the
description of the language structure. The standard is simplified, including now a pair
of two levels regarding the phonological and logic structure. The syntactic sectors are
limited to the lexical and calculating department of production, while at the same time
transformations function, that control the alternation of the phrasc markers, the trees.

The structure of the phase marker components and the form of the rules arc according
to the convention of the x-bar (Thcofanopoulou, 1989a) (Theolanopoulou, 1994)
(Philippaki, 1992). This convention goes back to (Chomsky, 1970) and it was shaped
with the works of (Jackendoff, 1977) and today constitutes the established method of
the structural depiction, making the phrasal structure rules of the older standards
unnecessary.

The general figure is as follows:

a) X — Spec X’
b) X* — X Compl

The X represents one of the main lexical categories such as the noun, the verb, the
preposition and the adjcctive. The tone represents the level and we have the X, X’

BUPT

and X. The X’ is the biggest projection (phrase) for every lexical category, the X' is
the intermediate head and the X is the lexical head.

Every biggest projection is analyzed in a specifier (Spee) and in the intcrm_cdiate
category. Bvery intermediate category is analyzed in the lexical head and in ic
complement (Compl). There is also the possibility to repeat X* under the following
rule:

¢) X’ — X’ Compl

The complement and specifier are of X’ category, they derive from the general form
of the x-bar. Also, the specifier can be a node of the X category with the terminal that
is connected to it.

The X-bar tree is the following:

X7

N

Spec X

X Compl

In the recent studics the basic figurc has been simplified (Hacgeman, 1995) and
replaced by the following rules:

a) XP — Spec X’
b) X* —- X Compl

The above are some of the basic clements of the generative transformational grammar
that we shall analyze in detail in the chapter about the X-bar theory that follows.

Also, there are parsers (Shaban, 1994) (Fong, 2000) that implement the Chomsky’s
government and binding theory and the minimalist program.

Finally, since language is a basic element in a series of human manifestations,
linguistics co-operate with other sciences so that several branches of linguistics have
derived. Next it follows a short description of the content of some of thc main
branches of linguistics (Babiniotis, 1980) (Philippaki, 1982, 1992).

Psycholinguistics studics the relation between the language behavior and the
psychological mechanisms.

BUPT

Sociolinguistics studies the ways in which language is affected by the social
differences among the members of a linguistics socicty.

Stylistic linguistics examines the selections of a litterateur in certain texts.
Mathematic linguistics examines the mathematical properties of the language.

Computational linguistics studies the language with the usc of computers
aiming to confront a scrics ol subjects such as the automatic translation, the
information retrieval or the general development of the artificial intelhigence.

Clinical linguistics uses the linguistic theory mainly in order to study
problems in pronunciation or writing.

The main applications in the computational linguistics arc:
o Machine translation

The automatic translation (Ananiadou, 1990) (Efthimiou, 1991) with the use of a
computer is an application with great interest since the era of the cold war. A
characteristic program is the Translcarn/LRE that had as a target the development of
an automatic translation tool that would not give high quality translations. The basic
purpose of this system is to rclicf the translator from the recurrent parts in his job,
mainly in special technical texts, as well as to raisc the quality of the {inal product, by
helping the translator, providing him with alternatives for every text (Gabriilidou,
1990). This system is based on extremely developed techniques that use linguistic and
statistic information in order to define the bigger related text that has alrecady been
translated and stored accordingly in the system’s text base. The text part that will be
translated is given to the user for the appropriate corrections that he would wish to
make, as well as for the confirmation and acceptance of the final result. Another
characteristic and well-known program is the EUROTRA (Alshawi, 1992) (Schnellc,
1992) that has as a purpose the development of a machine translation system among
the languages of the Europcan Union member states. Another system for automatic
translation that the European Community has developed for its internal nceds is the
SYSTRAN. This system provides translation scrvices in 16 language pairs of
languages. Gencerally, SYSTRAN can be secn as a tool for a first translation and is
particularly quick since it can provide up to 2000 pages per minute.

e Informational retrieval

The informational retrieval from natural language texts is another extremely
interesting application of the computational linguistics. The reason is that since the
biggest part of the information lics in books, magazines and references, it is necessary
to retrieve it from them. A program developed currently by the Greek Institute of
Parolc Processing is concerned with the collection of Greek multiform texts. This
system creates a text base that is used from publishing organizations and linguists
researchers for their studies. The body of the texts is accompanied also by
computational tools that give the possibility to draw information from them as well as

10

BUPT

to process them linguistically. Another information retricval program is the
RENOS/LRE that had as a purposc the development of methods and tools in order to
improve the performance of a full text recall system through the addition of linguistic
information.

e Man-machine interface

The natural language is also the best case in order for man to communicate with a
certain computational system. cspecially for pcople that do not have special
knowledge on how to communicate with a computer. In 1983, Filgueiras presented a
corc of a general communication system between man and a computer through natural

languagc.

Also, computational linguistics, while trying to achieve the development of systems
that would perform a complete translation, proceeded in the study of several scientific
domains that had not been investigated. For cxample, they were concerned with
computational modcls that imitate the human rcaction in the understanding of
sentences and they were also concerned with computational models that represent
knowledge.

Comparing the domains that the linguists and the computational linguists are
concerned with, we observe that their intercsts are different. Also, we see the
uscfulness of the results that derive from the research of the theoretical linguists
(Kosma, 1988)(Mackridge, 1985) on the problems of the computational linguistics.
Computational linguistics trics to find solutions that would cover the categories of the
sentences we are concerned with for every application, while theoretical linguistics is
concerned with issues such as:

* How peoplc accept certain sentences as grammatically correct and others as
incorrect

* The principles of grammar that can be applicd in cvery natural language.

e The mcchanisms with which people arc able to lcarn and usc the natural
languages.

Independently of the differences between theoretical and computational
linguistics, the theorcetical linguistics (many stydies there are about the greek language
(Philippaki, 1970, 1971, 1973, 1975, 1985) (Photopoulou, 1990) (Ralli, 1990a,
1990b)) is very uscful for the computational linguistics (Ralli, 1992). The existence of
a certain constraint, for example, that defines the grammatical correctness of a
sentence is very uscful because it will give us the ability to select among different
syntactic analyses the correct one. Also, the abilitics of the sentences transformation
enable us to deal with a total of sentences that will present similar tree structure.

After the grammar of the phrase structure was developed in 1957 by Chomsky
(Chomsky, 1957) it was defined that in order to produce sentences in a natural
language, rewriting rules must be sct. For example, for the formation of a simple
sentence with subject and object we can sct the following rules:

11

BUPT

S— NP VP
NP — AN
VP — V NP

Where S is the sentence, NP is the nominal phrase, VP is the verbal phrase, A is the
article and N is the Noun.

The rules that have been used by the computational systems (Gilbert, 1991) cxamined
also the environment of an clement, c.g. of a NP that would be replaced by the
application of a rulc.

In posterior publications of the gencerative transformational grammar, the standard of
the grammar was becoming more and more abstract. The tree of a phrase or a
sentence derives now from the x-bar figure and the rules that theory scts have a
general form and describe the laws that such a tree should fulfill. The generality of the
description of the gencrative transformational grammar rules and principles has as a
consequence the non-utility of the theory in computational systems uscd to process
the natural language. because it made their description in some systematic and
standard way very difficult.

Thus, the grammars used for the computational process of natural language usc
mainly rewriting rules in order to describe all the rules, cither these are rules for the
production/processing of the sentences or rules for the transformation of the
sentences(Pedersen. 2000). Also. systems with network construction have appearcd
for the processing of sentences or phrases. Some well-known networks are the RTN
and ATN. A detailed presentation of these methodologies can be found in the books
of (Gilbert, 1991) and (Noble, 1988).

In the present doctorate dissertation (thesis) there was an attempt to develop a new
systematic methodology that gives us the ability to define typically the rules of the
gencrative transformational grammar in general (x-bar theory) and more gerenal other
linguistic rules. The methodology Icads to the development of the respective softwarec.
The result of this attempt is that the aspects and the rescarch conclusions can be uscd
and applicd directly. It is a rescarch cffort that leads to a new artificial language that
integrates the ideas of other theories in a more general and abstract way by presenting
some new ideas.

Until today, most of the natural language processing systems used the rewriting rules
that Chomsky had proposed in 1957. These rules are also used to describe the typical
languages. Thus, by using this mcthodology, they were trying to solve all the
problems of the natural language processing. However, with the cvolution of the
linguistic theorics, a new basic scheme was developed, and all the trees of the
sentences or phrases of any natural language derive from that scheme. The basic
scheme is the x-bar scheme that we saw above but we shall analyzc in the next
chapter. This gives us the ability to deal uniformly with all the trecs of a natural
language, since all derive from the same basic scheme, an ability that we didn’t have
with the rewriting rules or other grammars and mcthodologics (Fouskakis, 2004b,
2005b) uscd to process a natural language in a computer. The linguists sct also rules

12

BUPT

and a series of subtheorics was developed, regarding the structure and content of the
natural language trees that derive from the x-bar schema.

The above show the great value of a systematic methodology for the definition of the
linguists” rules (Fouskakis, 2000, 2004a, 2005a) that could be applied on natural
language trecs that derive from the x-bar scheme. It must permit the definition of
fewer and more general rules that are applicable in many trees since they arc
derivations of the same tree.

This methodology differs from the classic use of the rewriting rules for the
development of natural language processing systems that use the linguists’
conclusions and aspects.

The methodology that was developed is open to the changes in the linguists’ theory
and enablcs us to set the rules that arc necessary cach time. These rules are set in a
simple way, while they are also more descriptive. Also, we arc cnabled to deal in a
general and uniform way the several issucs of the natural language trees.

The respective system that was developed is a very uscful tool in the linguist’s hands
in order for him to study scveral rules and sub-theories in practice, applying them on
trees that derive from the x-bar.

Also, this system can be uscd as a sub-system in a natural language processing
system, since can describe also rules that haven’t been formulated by the linguists in
their theory.

The rules that onc can sct in the present system belong in two categories, the
principles and the transformations. The principles study the structure and the content
of the natural language trees that derive from the basic x-bar schema, while the
transformations modify the structure of the trees and the contents of their nodes. Both
the principles and the transformations apply on sub-trees of the natural languages
sentences or phrase trecs. These sub-trees are described in the declaration of the
principles and the transformations rules. This fact enables us to describe more
accurately the rules and the cases where cach of these rules is applied in a way
corresponding to the respective rules of the theory.

Also, the mcthodology cnables us to describe sub-theories. Each sub-theory uscs
certain principles and certain transformations that we have already defincd. Each sub-
theory uses these rules according to the sequence and the conditions that have been
setted in this sub-theory. A sub-theory can also use some other sub-thcorics that have
been defined.

Also, the present methodology enables us to definc which of the rules and in what
sequence are going to be applied on the natural language trees that are under
processing.

The methodology that was developed enables us to casily expand, modify and rcusc
the defined rules according to the situation, without the requirement for big and
complex changes in the total of these rules.

13

BUPT

2. The stage of knowledge

2.1 The X-bar theory

2.1.1 The School of Structuralism

The last forty years, since 1957, there is a special attempt to study the syntax,
as well as a big turn regarding the older school of structuralism in the study of the
language that appcars mainly in the beginning of our century by Saussure.

Later on, we shall present some basic principles and positions of Saussure
(Babiniotis, 1980).

The first important turn of Saussure, was to secc the language as a
communication instrument among the members of a language socicty and since
through language communication is achieved, both in written and in its spoken form,
it should comprise a system. The elements and symbols that uses function regularly
and systematically and so language has a structure that the linguistic theory has to
discover and describe.

Also, according to Saussurc, there arc two possibilities to describe the
language system, the synchronic and diachronic. Using the synchronic description of
language, the linguist describes language in a given moment in time, as this is
presented in a language community. Using the diachronic description, the change of
language is described from a previous to a later stage of the samc language, since
language, through time, gocs through changes. According to Saussure the synchronic
study of the language is more important, because this is also the condition for the
correct diachronic study. The synchronic study of the language is a rcaction towards
the traditional grammar that ignored the modern language form and studied the
previous form of the classic languages. Traditional grammar attempted to teach a
language form that had becn idealized for various social or esthetic reasons, while
Saussure points out that the linguist should not act regulatory but he should describe
objectively.

Another essential distinction of the language is in langue and parole. Langue
is the abstract language system that all members of a language community possess in
common and this system enables them to communicate among cach other. Purole is
the specific application and exploitation of the language system by every person of
the community in communicating to the others. This distinction between languc and
parole has a great methodological value and stresses that a linguist that wishes to
approach langue proceeds ablatively, based on the parolc data.

14

BUPT

Also, according to Saussure, the language or rather the langue comprises of a
sign system. The sign is a connection between two things: the meaning (the significr)
and the acoustic image (the significd).

2.1.2 The Standard of the Syntactic Structures

The big “revolution™ regarding the school of structuralism and Saussurc, was
made by Chomsky in his book “Syntactic Structures” (Chomsky, 1957).

The structural standard of the language description and analysis is
characterized by the absolute attachment to a subtotal of data, the application of a
strict hicrarchy in the analysis of the levels of grammar and by the use of finding
procedurcs for the definition of the minimum units in every level (phoncmes,
morphemes, syntactic categorics). Unlike the above theses of the structuralists,
Chomsky rcgards grammar as a mechanism that produces an infinite number of only
grammatically correct sentences. (Chomsky, 1957) (Theofanopoulou, 1989a, 1994)
(Philippaki, 1982, 1992).

Chomsky’s standard theory in 1957 is that the language is considered as a total
of sentences that cach of them has a finite size and is structured by a finite total of
elements. The basic target of the linguistic analysis is the differentiation of the
grammatical scquences that are language sentences from the un-grammatical ones, as
well as the study of the grammatical sentences structure.

Through out the whole work of Chomsky, the basic question is how can we
know if the ecach timc proposcd standard of grammatical description is adequate or
not.

Thus we have scveral levels of adequacy that we shall learn below.

The grammar of a language is observatorily adequate if it can predict correctly
which sentences are formed correctly or not regarding the syntactic, the semantic and
the phonological level.

The grammar of a language is descriptively uadequate if, apart from the above,
it can also describe correctly the syntactic, semantic and phonological structure of the
language scntences, in such a way that it can correspond theoretically to the intuition
that the natural colloquist of this language has for its structure.

The grammar of a language is interpreteraly adequate if it, apart from the
above, the description is based on general theoretical principles that are simple to
describe, limited in number and universal. These principles represent psychological
and intellectual human principles that depict the way in which a child can lcarn
cffortlessly, naturally and in a short period of time the language of his/her community,
bascd on the fragmentary data to which he/she is exposed.

15

BUPT

A standard of grammar, that fulfills the conditions for an interpretative
adequacy, is based on the existence of universal characteristics. The universal
characteristics define the way in which the language acquisition is being made.

Chomsky's contribution in the theory of syntax does not lic only to the
rcconsideration of the language theory purposes and to the foundation of the
principles of a general descriptive standard that is subjected to certain adequacy
conditions. Alrcady, in his work “Syntactic Structures™ (Chomsky, 1957), aims at the
standardization of the principles that produce sentences, by using the mcthodology
and the symbolisim applicd in the analysis of the typical languages.

Let us see an example with which he standardized the description of language
production.

Suppose that we have the following natural language sentences:

a) the child reads the book
b) thc teacher drives the car
¢) the farmer ploughs the ficld

During the first phase of the transformational grammar (Chomsky, 1957), in
order to describe the above sentences, we should sct the following rules:

S->NP VP

NP->AN

VP ->V NP

A ->the

N -> farmer, teacher, child
V ->reads, drives, ploughs

Where:
Sentence
P Noun Phrase
P Verb Phrase
Article
Noun
Verb

<Z>»<Z@

These symbols are called non-rerminal, while the “the”, “child”, “teacher”, “farmer”,
“reads”, “drives” and “ploughs™ arc called terminal.

This standard of description corresponds to the analysis of the sentence in
direct components that arc arranged in hierarchy and this standard that had been
adopted by certain structuralists. The basic characteristic of the above rules is that
they are applied in a certain sequence. All the rules, apart from the first one, are
applicd at the end of the last rule, where cvery symbols is replaced (rewritten) by the
application of onc of these rules. Also, all the rewriting rules do not take under
consideration the neighboring symbols of what is being rewritten. Therefore, we have
a grammar that is context frec.

16

BUPT

Each onc of the above rewriting rules has the following general form:
X—-Y
where X represents a sign (symbol) and Y can be one or morc signs (symbols).
The sentence production procedure with the rewriting rules creates a tree. This
tree is called also phrase marker. The phrase marker contains explicit information
about the hicrarchical construction of the sentence components, while senses like the

subject are defined structurally.

Supposc we have the sentence:

The teacher drives the car

The respective phrase marker is the following:

SENTENCE

tcacher the

the

. The standard of the grammatical structure that Chomsky presented in 1957 in
his book “Syntactic Structures” approaches more the structural way of description.

This standard includes the three following levels:
1) the phrasal structure level

2) the transformational level

3) the morphophonological level

with the respective rules for each one of them.

The phrasal structure rules have the following general form:

X—Y

17

BUPT

which we have alrcady presented in detail above.

These rules function independently of the environment and their function
produces a finite total of terminal clements, if of course no rules of recursion exist.

The transformational rules, which transform the structural level of the
sentence that has been produced by the phrasal structure rules. A characteristic
transformation is the transformation of the passive voice. The transformational rules
are divided in obliszatory and optional. An obhgatory transformation is for cxample,
in the English language, the use of the auxiliary DO in a question or negation. An
optional transformation is the transformation ol passive voice.

The morphophonological rules perform morphophonological changes.
For example: tie + past tense — ticd

2.1.3 The Standard Theory

After the introduction of the Standard Theory (Chomsky, 1965) the
articulation of grammar changed. This ncw standard became the reference point of the
later evolutions of the grammar theory.

The changes that the Standard Theory introduced regarding the previous
standard were the following;:

1) The extension of a syntactic ficld that is now distinguished in the deep
structure, the transformations and the surface structure. These perform the
production of the sentence.

2) The consideration of the recursion as a part of the phrasal marker and not as a
part of the transformations as it used to be in the standard of the syntactic
structures (Chomsky, 1957).

3) The addition of the semantic domain in grammar that defines the secmantic
interpretation of the sentence.

According to this standard grammar compriscs of the following components:

1) the syntactic component
2) the phonological component
3) the semantic component

The syntactic component, that is the basic component of grammar, can be
divided in the following parts:

A) The base
The basc includes the phrasal structure rules and the dictionary. The phrasal structure
rules correspond to those applied in the Syntactic Structure rulcs (Chomsky, 1957).

18

(58 04 9

UNIV. “POLITEHNICA™

/19(3% A T HHOARA

Bii L OTECA CENTRALA

BUPT

The lexicon contains a list of the language morphemes as well as special information
referring to their phonological disposition and their syntactic function. There are three
kinds of lexical features. The first kind is the category, such as Noun, Article, Verb.
The sccond one refers to the category environment of the word. For example, the verb
through contains the information [+NP], meaning that the verb is used as transitional,
having as a complement a NP (nominal phrasc). Finally, the third category of features
is the selection features that are related to the gencral frame in which the word can
exist. These features can give scmantic information. For example, thc feature
[+animate] that describes the action taker (subject) in a verb means that the action
taker is an animated being.

B) The deep structurc
The sentence produced by the function of the phrasal structure rules and the addition
of the dictionary morpheimes, constitutes the decep structure of the sentence.
According to the standard theory, the semantic interpretation of the sentence lies in
the deep structure, where the functions of the several terms of the sentence are defined
structurally.

C) The transformational schemc
The transformational scheme of grammar with the transformational rules, deletes,
adds or transfers elements in the deep structure and thus the surface structure derives.

D) The surface structurc
The surface structure is the result after the application of the transformational rules.

Finally, according to this standard, the phonological and the semantic
component have an interpretative character.

The semantic component includes a lexicon that doesn’t include only the
syntactic featurcs and the frames in which cach word exists, but also all scmantic
characteristics as well as all the rules with which the meaning of thc scntence is
defined, according to the mcaning of each word.

The phonological component defines the phonological form of the sentence
that has dcrived from the syntactic component, according to the elements that exist for
the words of this sentence.

The schema of the standard theory (Chomsky, 1965) is the following:

19

BUPT

Syntactic Component

A) The Base

) Phrase Structure Rules Scemantic Component
I1) Dictionary -

B) Deep Structure

C Transformational Com_onent _ l ________

D) Surface Structurc Semantic

Representations

A

Phonological Component

4

: Phonological Representations

2.1.4 The Extended Standard Theory

Following the Standard Theory (Chomsky, 1965), we have the Extended

Standard Theory (Chomsky, 1970), wherc we observe gradual changes that depict the
tendency for greater generalization and apheresis (subtraction).

The changes in the Extended Standard Theory (Chomsky, 1970), are the following:

D

2)

3)

4)

5)

The phrasal structure rules subject to the X-bar (Jackendoff, 1977).

The transformational component of grammar is limited to only one
generalized transformation (Move a). In this lic the transformational rules that
are known from the previous stages of the theory, such as passivisation and
question.

The function of the transformational rule (Move a) and the function of the
sentences interpretation rules are regulated by constraints that are gencral and
universal. If these constraints are violated, they lcad to the formation of
ungrammatical scntences.

The transformations, during their function, Icave traces that result during the
transfer of the trec elements and remain in the place wherc the transferring
element was occupied. The trace and the transferring clements are connected
to cach other.

In all the formation levels, empty component may arise, namely components

without any phonological content. These empty elements create problems and
several studies are conducted regarding these cases.

20

BUPT

6) The interpretation of the sentence is not conducted any more in the deep
structure but in the surface structure. The surface structure is morc complete
because the place of the transferring clements can be scen from their traces.

7) Finally, the lexicon that now is enriched and extended is very important. It
also includes, in relation to the previous phasces of the theory, rules with which
the composite and derivative words are formulated.

Therefore, between the Standard Theory (Chomsky, 1965) and the Extended
Standard Theory (Chomsky, 1970) there are differences regarding the structurc of the
original phrase marker, the form, the kind and the function of the transformational
rules. Also, the content of the lexicon has changed. Regardless though of these
changes, the purpose remains the definition of the structural correspondence of the
phrasc markers between, e.g. interrogative-affirmative or active-passive sentences.
The definition of the structural correspondence is conducted with the definition of the
transformational rules with which the two levels of the sentence are connccted, that is,
the deep and the surface structure, as well as with the parallel examination of the way
these rules function and interact, that is, the cycle and the sequence of their function.

The construction of the phrase marker components and the form of the rules
are according to the convention of the X-bar (Theofanopoulou, 1989a)
(Theofanopoulou, 1994) (Philippaki, 1992). This convention that goes back to
(Chomsky 1970) and was formed with the works of (Jackendoff, 1977), constitutes
today the cstablished way of the natural depiction of the several catcgorics, making
the phrasal structure rules of the older standards unnecessary.

The general pattern has as follows:
a) X’ — Spee X’
b) X’ — X Compl

Where X denotes one of the main lexical categories such as the noun, the verb,
the preposition and the adjective. Also, X may state one of the functional categorics.
As functional categorics we regard the inflection and the supplementary marker.
These functional categories are not the only oncs, but continual research leads to new
ones.

The tone denotes the level and we have the X*°, X’ and X. The X’ is the
biggest projection (phrasc) of every lexical category, the X’ is the intermediate head
and the X is the lexical head. Each biggest projection is analyzed in a specifier (Spec)
and in the intermediate category. Each intermediate category is analyzed in the
lexical head and the complement (Compl).

There is also the possibility to repeat the X’ following the rule below:

¢) X’ — X’ Compl

21

BUPT

The complement and the specifier are of the X' category, mecaning that they
derive from the gencral pattern of the x-bar. Also, the specifier can be a node of the X
category with the terminal connected to it.

X

N

Spec X’
X Compl

Next we shall give a series of examplcs.
Example |
We have the sentence:

The athlete with the cap

N”

athlete cap

22

BUPT

This nominal phrase has the word athlete, which has a complement the phrase
with the cap. This complement specifics the athlete that he is an athlete who is
wearing a cap. Thercfore, we assign a feature to this particular athlete. This fcature is
complement of the athlcte’s nominal phrase.

Observing the tree, we can see that its top is in N, therefore this tree is a
nominal phrase. The left subtrec is the article “the™ and the right one is of the N’
category. We also observe that since there is a complement, the phrase “with the cap”,
we see a second repetition of the node N* on the above tree. The first N” node has as a
right sub-trec a sub-tree with the P°" as a top nodec, this is the prepositional phrase
“with the cap”. This phrasc can be analyzed in the tree that has the P*’ as a top, a left
sub-trec the empty space and a right sub-tree the one with the Prep’ as a top. The
latter has as a left subtree the preposition “with” and as a right subtrec the nominal
phrase “the cap”. (The cion the trees shows that there is no clement in the
corresponding place of the tree.)

Example 2
We have the phrase:

this very good person

P”

Adverb
person
very good

_ This tree has a top with the P, that has a left subtree the cmpty spccificr and
right sub-trcc of type P’ with left subtree the P and right subtrec N** with lcfl subtree
for the phrase ‘very good® and right subtree a N for the word ‘person’,

23

BUPT

Example 3
We havce the phrasc:

right on the bed

Prep™’

Adverb

right

bed

This trec has as a top the Prep’’. The adverb right is the left subtree, while the
Prep’ is the right subtree, with “on™ as the left element and the tree for the noun
phrase “the bed”. This phrasc is a prepositional phrase that has as a head the word
“on” and as a complement the nominal phrase “the bed™.

2.1.5 The Government and Binding theory

Two are the main parts in the development of the gencrative transformational
grammar theory. These parts contributed to the decisive turn towards a generalized
grammar standard.

1) The finding that the binding phenomena and the phenomena concerning the
moving of the terms arc controlled by common principles. A binding example is
the connection of the reflexive pronoun to the reference point, meaning the
respective word to which it refers. Another example of the moving conditions is
the connection of the interrogative pronouns to the trace that can be obscrved in
the place from which they were moved.

2) The definition of generalized constraints, not in the particular rules more, like for
example the constraint in passivisation or the move of an anaphoric element, but
also in structural schemes. These are very gencral principles that control the
relation of interdependent conditions, like the relation of an anaphoric element
with its reference point and the terms in which the bindings arc performed.

24

BUPT

These two developments resulted in the modification of the fundamental
scnses of the transformational theory. The transformational theory ccases to be a
standard of transformational interrelation of the deep and surface structure phrase
markers. It was altcred in a gencralized theory of allowable bindings to their reference
point with the parallel definition of universal constraints that exclude such a
connection, regardless of the way that the sentence was formed.

This grammar, known also as the Government and Binding thcory, was
introduced by Chomsky in his work “Lectures on government and binding”
(Chomsky, 1981)(Hacgeman, 1990). According to this standard, grammar includes
two systcm categories: a system of rules and systems of principles.

The system of rules includes rules that function in the various levels and they
generally correspond to those of the previous stages (phrasal structure rules,
transformational rules, interpretative rules etc).

The systems of principles include sets of theoretical principles that refer to
allocated structures of grammar and arc interdependent both to each other and to the
theoretical frame. This theory, although it constitutes a further phasc of the gencrative
transformational grammar development, presents an important difference regarding
the previous phases of the theory’s development. This difference is that for the first
time an attempt is being made to define an abstract, generalized and universal system
of principles which describes the language structure in general. These principles arc
so general that apply to all languages. But in order to solve the special issues in every
language, there is nced for another sct of complementary principles (parameters).
Thus we have a differentiation between the universal grammar and the scveral
parameters needed for every language.

The title of this theory shows that it pays much attention to two basic principles, the
government principle that describes the syntactic dependencies among the various
word clements in the sentence, and the binding principle, which cxplains how two
different elements in the sentence are bound.

This theory has developed a sct of allocated principles that belong to the respective
sub-systems, which include the sub-theories that we shall present next.

2.1.5.1 The government theory

The government theory defines the principles that concern the relation
between the head of an x-bar structure and the conditions depended on it. The
principles also concern the case of the empty categories and the problems that derive.

In the Government and Binding theory (Chomsky, 1981) the sense of government is
very important and its definition is the following:

25

BUPT

An X clement governs a Y element if the first node of the
biggest projection that dominates the X dominates also the
Y and ncither of these two clements dominates cach other.
If there is more than one governor we chose the one that is
closer to the governable element.

On the above definition we used the sense of domination. According to this
sense, a node dominates the nodes of its subtrees, that is, all the nodes that lic below
this one on its subtree, where this node is the top.

Next we will see a government example in the following sentence:

Nick bought the bicycle

cp»

+{cnse
+AGR

bicycle
Nick

. With the definition of government we observe that 1P governs N in the
qualifier of IP**, because the biggest [P projection that dominates 1P, dominates also
the nominal phrase of the qualifier and the IP is the closest governor.

26

BUPT

2.1.5.2 The binding theory

This theory covers the arca called binding. The binding thcory rcfers to the
conditions that control the way an anaphor is bound to its reference point.

This theory classifics the NP according to their anaphoric propertics. The NP
categorics arc the following:

a) Compulsory Anaphors, where the binding must be within the same structure.
For cxample, we have in a sentence the binding of a reflexive pronoun with the
NP. In the sentence “John admires himself” we have binding between “John” and
the reflexive pronoun “himsclf™.

b) Pronouns, that can be bound with a NP inside the same structure or obtain a
reference point out of the sentence.

For example, in the sentence “George says that he loves Evaggcelia” the pronoun

he can correspond to George or to sommeone else.

¢) Independent anaphor, where we have lexically expressed NP that each one has
an independent anaphor. The heads of the NP refer to particular persons and
things of the real and imaginative world.

The conditions that Chomsky cstablished for the bindings that arc also called
Binding Conditions arc the following:

A) An anaphor must be bound to its governing category.
B) A pronoun must be free within its governing category
C) A lexical NP must be always free everywhere.

These principles correspond to the three NP categories that we mentioned
above.

Also, in Chomsky’s establishment of principles, we used the term governing category
that has the following definition:

Governing category for an A clement is the minimum
nominal phrase or sentence that contains A, a governor
for A and a subject, while this subject should be
structurally higher towards A.

2.1.5.3 The bounding theory

The bounding theory sets terms that limit movements, defining which nodes
are restrictive and under what conditions. The nodes on a subtree of a phrasc or
sentence may, in certain conditions, allow the movement of the subtree’s clements in
another place in the trec of this phrase or sentence.

27

BUPT

A characteristic rule is the constraint of the subjective bounding category.
No rule can extract an clement out of more than one bounding catcgorics

(Sentence or Nominal Phrase). Also there is a study about greek language (Horrocks,
1987) (Staurou, 1987).

2.1.5.4 The thematic role theory

The ©-theory or theory of thematic roles includes principles that define the
semantic function (thematic rolc) of'a NP (i.c. the action taker, the receiver, the issuc,
the instrument. the place). This theory refers to the terms that control the apodosis of a
thematic role: level. position, and the cases where this is impossible.

The main principle of the theory is the Thematic Criterion or the O-criterion.

Each term brings only one thematic role and every thematic role is attributed
to only one term within the sentence.

2.1.5.5 The case theory

The case theory includes the principles that define the case of a nominal
phrase (when a NP is characterized as nominal, accusative or genitive) and the
conditions that must exist in order to be realized.

The case theory is bascd on the case filter
The case filter is the following:

Case Filter

No Noun phrasc (NP) can stand in a structure unless it bears a casc.

The syntactic cases are of two kinds, the structural and the inherent.

The structural casc is assigned in a NP by the clements that have the property
to be case assigners under the governing conditions. Therefore, in this occasion, the
case depends on the element that governs the clement that will bear the case.

For examplc, we have the phrase “with the cap”

28

BUPT

cap

We observe that the Prep nodc governs the N°°, assighing it an accusative
structural case. That means that the NP “the cap” is in the accusative case, because of
the preposition with.

Unlike the structural case, the inherent case is connected directly and
exclusively to the thematic roles provided by the verb and not so much to the
structural features of the tree. That means that the inherent case is mainly connected
to the semantic features of the elements and not to the tree’s geomectry, like the
structural case.

In Modern Greck, the genitive case of the indirect object is inhcrent. The
genitive case is assigned when a verb can stand with an indirect object, supporting the
thematic role of the indircct receiver. Also, the indirect object can be positioned on
the tree or right after the verb or after the direct object or in several other places. The
fact that a verb supports the thematic role of the indirect receiver, and that the indirect
objcct cab be positioned in several places, makes the genitive of the indirect object an
inherent and not a structural casce.

2.1.5.6 The control theory

The control theory defines the conditions that control the presence of the
empty category PRO. During the construction of a sentence or a phrase tree, some
terminal spacces, without any content, remain on the final tree. These empty elements
have not been created by the shifting of the elements with the application of certain
transformations, but they cxisted since the creation of the trec (Philippaki, 1985, 1987,
1989, 1990). The empty category PRO appears mostly in the English language.

29

BUPT

The verbs of the main clauses that contain an infinitival supplement with the
cmpty category PRO contain in their lexical representation a feature that shows
whether they arc subject control verbs or object control verb.

In the subject control verbs, the PRO reference point is the same with the
reference point of the subject of the verb in the main clause therefore we have the
same as the reference point of the subject of the verb in the main clause.

Such a verb in English is promise that is a control subject verb.

In the object control verbs. the PRO reference point is identical with the
reference point of the object of the verb in the main clause therefore we have the same
with the reference point of the object of the verb in the main clause.

Such a verb in English is persuade that is a control object verb.

Finally there are cases where PRO is not in a control position but in a

supplementary sentence after the verbs that are not control verbs; then its reference
point is frcc or arbitrary.

30

BUPT

2.2 The unification based approach

2.2.1 The context free grammars

An example of a CFG can be the following:

e S->NPVP
e VP->VNP
e VP>V

e NP->DN
e NP->PRON
e NP ->PROPER_NOUN

e D->the|a]every

e N ->car| bicycle | boat | bus

e V->drives! repairs; drive | repair | rides | ride
e RPON ->1]you| hc|shc|they | us|thcm

e PROPER_NOUN -> ANN | GEORGE | NICK

e Terminal symbols: the, a, every, car, bicycle, boat, bus, drives, repairs, drive,
repair, rides, ride, 1, you, he, she, they, us, them, ANN, GEORGE, NICK
e No terminal symbols: S, VP, NP, V, N, D

This grammar produccs a sct of grammatically and semantically correct and
incorrect sentences.
Some examples of sentences that arc produced and arc not grammatically or
semantically correct arc the following:
e them repairs bicycle
e bicyclc drives car
e Anndrive George
e the bus repair Nick

The context-free grammars have the following problems:

e The phrase structure is the only syntactic relationship.

e The terminal and non-terminal symbols are atomic with out any properties.

e The information that cncoded in the grammar is based only on production

rules and any attempt to cncode semantic information requires additional
mechanism.

The CFG mechanism must be stronger in order to be able to fulfill the linguistic
requirements:

e Features structures
e Generalized phrase structures

31

BUPT

o Unification grammars

2.2.2 The feature structures and the unification

The CFG can be extended by associated features structures with the terminal
and no terminal symbols ot a CFG. The features structures are known and as AVM
(attribute value matrixes).

The words in the lexicon can be enhanced with additional information by
using the features:

Two examples are the following:

— ~
NUM: singular
Word: Car
PLER: third
— ~/
— ~
NUM: singular
Word: |
PLR: first
- /

Except the simple atomic values of the features NUM and PERSON in the
above examples, it is possible to have as value of the features other features
structures. An example of a verb and its feature AGR is the following:

NUM: singular
Word: Runs AGR:
PER: third

Also, it is possible to use variables with name ¢.g. X or with number ¢.g. [1] as
in the following example (Fouskakis, 2005a):

NUM: singular NUM: singular
AGR: X AGR: [1]

PER: third PER: third

The variables arc used in order to determine that two clements of an AVM
have the same valucs.

The general format of an AVM is the following:

32

BUPT

El: i) Al dom(A)
A= i) £ L

Fn: [i)] An)
val(A.F) = A,

According to this, the previous example has:
e dom(a) = {ARG}

NUM: singular
e val(A.ARG) = PER: third

Also, there is the notion of path n. At the same example the value of the path:
e val(A,<AGR, NUM>) = singular
* val(A,<AGR. PER>) = third
e Dbut the val{A,<PLR. AGR>) = undcfined

Between two different features structures we can define the relation of
subsumption.
If A and B are two AVMs the A subsumes B (A<B):
e Aisanatomic AVM and B is an atomic AVM with the same atom
e lor cevery IY that belongs in dom(A) then and I° belongs in dom(B) and
val(A.F) subsumes val(I3.F).
e If two paths arc re-cntrant in A they arc also re-entrant in B,

An example is:
il NUM: singular
[NUM: singular :l < PER: third

An operation between two features structures A and B is the unification. An
cxample of unification:

/\=[NUM: singular] B:[PLER: third]

and after the unification we have the:

NUM: singular
PER: third

If variables exist in the A and B features structures:

33

BUPT

A = | AGR: 1] r-_T\—JUI\A: singulurﬁ
— — —/
~ I =

B = | AGR: |2} PIER: third
— — =

—

NUM: singular
After the unification AGR: [1]]2]
PER: third
e

We can add features in the rules except the words of the lexicon. An example
1s one of the rules that are described above.

NP - > D N
[NUM: X] [NUM: X] [NUM: X]

In this example the scope of the variable X is inside the rule and means that
the noun phrase (NP), determiner (D) and noun (N) have the same number. Also, if
we want to control the case we can add a second teature the CASL and the result is
the following:

NUM: X NUM: X NUM: X
CASE: Y CASL: Y

The rule for the verb phrasc (VP) depends from the type of the verb. There are
transitive and no-transitive verbs that they do not have a noun phrasc as complement.
In this case we have two rules with their corresponding features structures.

[NUM: X] NUM: X
SUBCAT: intransitive

VP e > Vv NP

[NUM: X] NUM: X [NUM:Y]

SUBCAT: transitive

34

BUPT

[n the above examples it was used the CFG rules associated by the features
structures. It is possible to include the no-terminals as values of a CATEGORY
fcature. An example is the following:

NP e >

[o x] [s] [woex]

which can be as:

CAP: NP CAT:D CAT:N

NUM: X NUM: X NUM: X

In order to have complete sub categorization information we can enter in the
lexicon the complete list of complements and the subject. It is possible to add
additional fcatures like the CASE that is determined for the subject of the verb take in
the following example:

— ™

CAT: verb

SUBCATEGORIZATION: <{CAT:NP], [CAT:NP] >

CAT: noun phrase

SUBJLECT;
UBJEC CASL:: nominative

NUM: singular

N _

According to the above if we want to express the initial rule of the CFG:

S->NP VP
with the usc of fcatures structures it will be as:

CAT: NP CAT: VP
[CAT: S]_;, (1] CASE:nominative NUM: [2]
NUM: [2] SUBJECT:[1]

35

BUPT

2.2.3 The HPSG grammar

All the above cxamples and different cases describe the main notions and

mechanisms of the unification based grammars. The different grammar formalisms
(FUG, PART-II, LFG. CUG, IFTAG) usc the fcatures structures that have been
described in the previous section but the current formalism that is used very much
with big research ctlort is the HPSG (Tatar 2001, 2003). None from the above doces
not be designed to be used on the Chomsky's x-bar schemie.
The HPSG is a declarative approach, it provides a model of what linguistic enitics arce
possible. It is scen as a later development of GPSGs (Gazdar, 1985) and makes morc
specific claims about universals and variation than the more conservative GPSG. It
was designed as a synthetic grammar model. It combines the advantages of different
grammatical theorics Generalized Phrase Structure Grammars (GPSG)., Categorical
Unification Grammars (CUG) and Lexical Function Grammars (LFG). The TAGs are
defined as a tree rewriting system. The TAG grammars use elementary trees which
can be of any depth, in contrast to rewrite rules which have only two levels (left and
right part of rule) and these trees are separated in initials and auxiliarics. A auxiliary
tree has a noteriminal as root node and exact onc noterminal as foot node that must be
the same noterminal. This is presented only in TAG grammars. Also, The HPSG has
the dominance paradigm (expessed by the head feature principle: the HEAD value of
the a headed phrasc is identified with that of its head-daughter) that it was presented
in the government and binding theory. This approach is not a transformational
approach, like chomsky’s theories, but it is based on the main mechanisms of the
unifications grammars and supports features structures (AVM). It docs not support
rewriting rules in the general sence and there is no notion of deriving one structure
from the another. It supports the sign structure with very detailed information from
the lexicon. The sign has a format like the feature structure of the verb that is
described below. It is said to be surface oriented becausc it provides a dircct
characterization of the surface order of clements in a sentence. The information about
the specifiers and the complements is present in the argument structure attribute
(ARG-ST). The value of this argument is an ordered list of the arguments that arc
required by the sign. The order is very important for every possible phrasc in cvery
language. The variables have a very important role in these grammars. They declare
that two clements in a sign have the same values. The HPSG is based in all the
mechanisms of the unification grammars as they have described in the above section.

The HPSG puts a lot of emphasis on the precise mathematical modelling of
linguistic entitics. Because of the focus on precision, a lot of linguistic computer
implementations arc basced in HPSG. It is a declarative approach and the combination
of the declared intformation is depending from the corresponding software system
(Copestake, 2002) that permits the declaration of the HIPSGs. The number of these
signs is increased cnormously in order of every different case in a language to be
described. Also. there are problems in translation systems because the sign of the
source and destination language are not possible to be determined directly and it
neseccary for another semantic mechanism to be uscd (Copestake, 2002).

The sign has a collection of phonological, syntactic and semantic constraints
that are includced in hicrarchical featurcs structures (attribute-value-matrixes AVM).

36

BUPT

Sings have the attributes like:
e word or phrasc status
e phonology (PHON)
e syntax/scmantics (SYNSLEM)

The structure of the last attribute can contain other attributes (AVM) that may
contain other attributes (AVM) in any depth and structure. An example is the verb
walks that have the following general format.

| word]
PHON (waiks)
g— "
[iocal]
[casegany]
g -
[jocal]
SYNSEM CAT SUBJ <’ e >
LOCAL - JLOCAL | | ref
CONT DMDEX [NUM ang
PER Jnd
| L | 4]]
n eanlent
L CONTET | WALEEP I_T]}
L <

In general terms a HPSG has the following parts:
e A sign that describes specific attributes and types. A grammar that is
complex enough, is characterized by a impressively complex sign.
e A inhcritance hicrarchy of types and a agrecment specification about their
attributes.
e A lexicon and a small list of rewriting rules that named schemes.
e A list of some gencral principles.

2.2.4 The PATR grammar

The PART (Tatar 2001) has its initials from the words parse and translate. 1t is
one of the oldest unification based approach (after the FUG) and it supports grammar
(CFG) rules that consists of a mother category and zero or more daughter categorics
with a list of featurc cquations. A catcgory is a sct of featurc-valuc pairs. A feature is
an atom and a value can be an atom, a variablc or a category. The feature cquations on
a rule set constraints on their values. The lexical items are viewed as rules without
daughter categorics.

A rule of this type of grammars can be as:

37

BUPT

XS = XNP XVvP

<XS§ cat>=5 <XNP cat>=np <XVP cat>=vp
<XS head>=<XVP head>

<XS head subject> = <XNP hcad>

The PATR formalism is rcasonably cxpressive. But, it docsn’t have some
desirable propertics, like disjunction and negation of a sct or list of value features. It
declarative, monotonic and reversible. Also, it is turing equivalent and if a PATR
contains only atom-valued fcatures it is as CFG of Q(n).

As conclusion. the main characteristics of the PATR grammars arc:

e CFG
e unification
e paths in equations

2.2.5 The FUG grammar

The FUG has the initials of the words functional unification grammars. It was
presented before the PATR grammars and in many ways is similar. The context free
part in the PATR grammars is replaced by two features the c¢set and the pattern. They
declare which itcms arc the daughters of a category and at which order they appear.
Multiple CFG ‘rules” about one category are declared by disjunction. Finally, therc is
the feature valuc «nv that declares the requircment that it is obligatory of a feature to
cxist. This possibility adds the non-monotonic in the unification based approach.

2.2.6 The TAG grammar

The Trec Adjoining Grammar (TAG) is defined as a tree rewriting system
(Joshi, 1975). In the definition given traditionally, TAG is defined by a finite set of
trees and an operation called adjoining to compose trees. It represents a extension of
the basic rule rewriting scheme that underlying other modern grammatical
formalisms. Unlike these string rewriting formalisms that write recursion into the
rules that generate the phrase structure, a TAG captures recursion and dependencics
(agreement, subcategorization filler-gap connections) into a finite set of elementary
trees. The TAGs have provided a theoretical framework for linguistic description and
natural language processing that has been shown to be superior to simply using rules
of a context free grammar (CFG) due in large part to the extended context or “domain
of locality” that TAG provides(Babko-Malaya, 2004).

There arc three kinds of clementary trecs: initial trees, auxiliary and lexical
trees. The initial trees were defined to correspond to minimal sentential structures.
Therefore, the root of an initial tree was required to be labeled by the symbol S. The
following scheme has two clementary trees of this kind.

38

BUPT

Qg S

NPl S
/N
ag ! s NPL vP
/N /\
NP4 VP v NP,
/N |
vo NP e

The sccond kind of clementary trees is the auxiliary trees. They have as root
node any nonterminal symbol. The lowest nodes have only terminal symbols except
for exact one nonterminal (foot node) that is the same as the nonterminal of the root
node. The following arc two cxamples of auxiliary trees:

Ba: S
br: VP /\
/\ NP4 ve
VP* advo vo/\st

The pairs of nontcrminals arc (VP, VP*) in the first By and (S, S*) in the
second P trec.

Later, a new catcgory of treces have be introduced, named lexical trees
(Schabes, 1988). They associated with particular words in the lexicon. They have as
root node any nonterminal. In a lcxicalized TAG, frontier nodcs labeled by
nonterminals (like the NP nodes in the above examples), with the exception of foot
nodes, are marked for substitution (specified by |) and are not claborated any more.
Their claboration is donc by the lexical trees.

An example of a lexical tree is the following:

a3 - NP

/N

detl no

An cxample of substitution is the trce v3 as result of a; and a;.

39

BUPT

Y3 : s

N

NP vP

AN

Det n v NPL

In deriving tree structures top-down from the grammar the usual opcration of
substitutution of a mother by its daughters has been augmented by the adjoining
operation about composing trees. An auxiliary tree, whosc root and its foot node arc
labeled X, can bc adjoined at a node that is also labeled X. Adjoining may be
described as follows: the subtree below the node of adjunction is excised; the
auxiliary tree is inserted in its place; and the excised subtree is substituted at the foot
node of the inserted auxiliary tree.

Two examples of trees adjunction:

e v, results from the «; and f3,
e v results from the ap and 3>

At the second example, it is observed that the co-indexed nodes (NP,) remain

and after adjunction.

s
Y2
NP, S
NPIL ve
"o S v S
NP vP NP$ vpP
ve ady v NP,
v NP)

The TAG has been embedded in a feature structure based unification system
and the resulting formalism is the FTAG (Vijay-Shanker, 1988). At cach node has
ossociated both a top and a bottom feature structure. If a djunction operation is taking
place at a node the top feature structure unifies with that of the root node of the
auxiliary tree and the bottom feature structure unifies with that of the foot node. If
there is not adjunction at a node then its top and bottom feature structures must be
unified. It functions equivantly with the PATR. The TAGs have extended domain of
locality and provide greater expressive power. The formalism is fully declarative,
reversible and monotonic. Different variations have been published that permit morc
flexible manipulation of long distance dependences and word order variations
(Millett, 2004).

40

BUPT

3. The personal contribution

3.1 Description of the linguistic system’s structure of the
presented methodology

The linguistic knowledge of this methodology has a structure which is
presented in the following figure (Fouskakis, 2004¢, 2005a). It is artificial language
for linguistic rules, different that the classical approaches of grammar declaration and
a parser that implements the corresponding grammar.

- N

rPrillciplcs | [Transformations|

Initial X-bar trees]—»L Program }—P{ Final X-bar trees l
))

<

This structure represents the system of the linguistic knowledge.

Let define:
e LS: the system of the linguistic knowledge
PR: the set of rules in the Principles
TR: the set of rulcs in the Transformations
GR: the set of rules in the Theory
SR: the linguistic program
o SR is subset of the concatenation of the sets GR, PR and TR
e [T: the sct of initial X-bar trees
e OT: the sct of final X-bar trees

LS=(PR,TR,GR,SR,IT,OT)

41

BUPT

e The initial X-bar trees
It contains trees that derive from the X-bar scheme. These trees will be usced by the
methodology, in order to apply on them the rules. Their format is given in the
corresponding scction below and it is according to the X-bar theory.

e Principles
It contains all the principles that have defined so far. The principles check an X-bar

structure if it accomplishes certain structural requirements as a whole or at its parts.
Also, they can check if nodes, features of nodes, anaphors, cven terminals are
according to certain linguistic requirements.

e Transformations
It contains all the transformations that have defined so far. The transformations
additionally, transform the X-bar structures and produce one or more new X-bar trees
with different structure, nodes, fcaturcs of nodes, anaphors or even terminals.

e The Linguistic Theory
It contains rules that express the linguistic theory that one wishes to develop. These
rules are expressed as sequences of principles and transformations. We can also have
a conditional application of the rules by using expressions if-then-else and change the
X-bar trees that arc uscd by the next rules. The abilities that these rules have will be
described in detail in the next sections.

e The Linguistic Program
It is the part of the linguistic system which declares the rules of the theory, principles,
transformations scts that arc applicd on the initial X-bar structurc and their order.

o The final X-bar trecs

It contains the generated X-bar structures according to the linguistic program.

3.1.1 The Structures

The structures processed by the methodology are trees that derive from the
basic scheme of the x-bar standard theory. The choosing of this binary scheme
(Fouskakis, 2004b, 2005b) is bascd on its computational simplicity by permiting the
declaration of more gencral rules on the produced trees.

These trees are described by one or more of the following rules:

X’— Spee X’ X’ — Spec X°

X’ — X’ Complement X’ — X Complement
Spec — X’ Spec — X
Complement — X’ X — Terminal

42

BUPT

As it is noticed from the abovec rules the general x-bar scheme is improved in
the presented work with the possibility of repetition of the node X’ which facilitates
in frce order languages and in the case that we have many specifiers with adverbs,
adjcctives and quantificrs. Usually, the specifier is about the articles or the quantifiers
of the nouns and the complement is for their complementary phrases or their
adjectives. Similary, at verb phrases, the complement is about adverbs and
complementary phrases (objects). The exact representation depends from the
application and the language.

x’,
Spec X’
X Compl

The basic schema of the X-bar theory

In the present methodology the X-bar structures are expressed with the use of
parcntheses as follows:

(X7 (Spec) (X (X) Y™))
(X7 (Spec) (X* (X (...) Y™))
(X (Spec) (X (Spec)...

In these structures the Y’ is the complement that is an X’ category tree, an x-
bar trec. The specificr (spec) can be either an X category tree or an X category node
with a terminal connected to it (see EBNI form of the X-bar trees below).

Every phrase, sentence or utterance can be represented by more than onc X-
bar trees. This is the reason that their trees can be represented as an table where every
position has a list with the possible different X-bar trees of the corresponding phrasc
(Fouskakis, 2004c¢), sentence or utterance. The next scheme shows this broblem.

43

BUPT

X-bar trees |

Phrasc 1

X-bar trees 2

X-bar trees Ny

X-bar rees |

Phrasc 2

X-bar trees 2

X-bar trees N»

X-bar trees |

Phrase M

X-bar trees 2

X-bar trees N,

Next we will describe in detail the abilities of the methodology regarding the
X-bar structures, that is, the trees that derive from the above basic scheme. Thesc
trees correspond natural language sentences or phrases. Also, duc to the gencrality of
the X-bar trees, it can be used in other branches of the linguistic rescarch, in which

there is an attempt to use the X-bar scheme, as in morphology. in order to describe the
structure of a word.

The X-bar trees have nodes, terminal elements, anaphors and nodcs features.

- The nodes of the trces

In order to describe a node on a tree we use its name that is a symbol followed
by the node’s category. The node name is described as a prolog atom. It is a sequence
of letters and numbers, that its first character is a lower-case letter or, if this letter is
capital we should use quotes. For each node category we have the following cascs:

1. we enter the X’ category node as x barii
2. we enter the X category node as x bari
3. we enter the X category node as x bar

44

BUPT

Every node, apart from its category and its name, can also have features that
are entered with the operator features. The features of the nodes give grammatical,
syntactical, semantic and pragmatic information about the node and the subtrece that
has this node as a top. The features of the node are enclosed in [and | and separated
by commas. The scquence of the node’s features is irrelevant.

The features of the node arc notated as follows:
1. +nume of the feature
name of the feature
name of the feature
name of the featureX = name of the featureY
. [name of the featurel, ..., name of the featureN]= name of the
featureX

Their semantics depend from our interpretation. In the forth and fifith case the
order of the features is important and these cases are not supported by the X-bar
theory of Chomsky. They permit better well expressed additional descriptions.

For example, we can say that a node may have the following features:
e -+animate
e -inanimate
* person
o [+live_being,+thing]=complements
e phrasc_time=t3, focus=vl
Therefore, the nodes of an X*’, X, X trec arc described in the following general way:

7.3 QU

node name of the node tvpe of the node: features characteristics of the node

For example, the node:
having A’’ as a name and the charactceristics singular, nominative
is expressed as follows:
node ‘A’ barii : features [singular, nominative]

- The terminal elements

Apart from the nodes, a treec has also the terminal elements that can be
connected to other terminal elements of the tree or to whole subtree with anaphors. In
order to denote that the specific clement of the trec is terminal we use the operator
terminal, while for the anaphors we use the operator anaphor.

Therefore, if we have the terminal element “the” and the anaphor “il” that
connects the terminal clement to another element of the tree, we can describe this as
follows:

terminal the : anaphor il
If the terminal element of the tree didn’t have an anaphor, then we have:

terminal the

Therefore the terminal element of a tree is generally described as follows:

45

BUPT

terminal rcrminal element @ anaphor name of the anaphor
Next we shall present the tree of the sentence below that derives from the x-bar
scheme:
The woman hit the child with the bicycle

The above sentence can be represented by one more than one trees, depending on the
sentence’s meaning,.

A) If in the scntence above the prepositional phrase “with the bicycle” is a
complement to the nominal phrase “the child™, it specifies the child we are talking

about, meaning the child with the bicycle and not another child, then the tree for
the above sentence is the following:

NH

The N

Prep™
woman

child

Prep

the

bicycle

46

BUPT

B) If in the sentence above the prepositional phrase “with the bicycle™ is not 3
: ’ - (13 A
complcment to the nominal phrase “the child” but a complement of the verb “hit
and specifics the instrument with which the woman hit the child, then the trec for

the above sentence is the following:

V”

Prep’

The N empty

woman

\Y

hit

the

child

These two different trees denote two different interpretations of the sentence
The woman hit the child with the bicycle

Therefore we can describe these two trees in this methodology as:

a) The first tree is:

(node v barii,(node n barii,
(node a bar,terminal the),

47

BUPT

(node n bari, (node n bar, terminal woman),cmpty)
).
(node v bari,
(node v bar, terminal hit),
(node n barii.
(node a bar, terminal the),
(node n bari,
(node n bar, terminal child),
(node prep barii,
cmpty,
(node prep bari,
(node prep bar, terminal with),
(node n barii,
(node a bar, terminal the),
(node n bari,
(node n bar, terminal bicycle),
empty)

)

b) The sccond tree is:

(node v barii,
(nodc n barii,
(node a bar, terminal the),
(node n bari, (node n bar, terminal woman),empty)
),
(node v bari,
(node v bari,
(node v bar, terminal hit),
(node n barii,
(node a bar.terminal the),
(node n bari,
(node n bar, terminal child),

cmpty)
)
)7
(node prep barii,
empty,

(node prep bari,
(node prep bar, terminal with),
(node n barii,
(node a bar, terminal the),

48

BUPT

(nodc n bari,
(node n bar, terminal bicycle),
cmpty)

We observe that the names of the tree nodes are in lower case letters and we
also use the word empty. As we observe in the respective trees, empty corresponds to
an cmpty subtrce, meaning that the respective branch of the tree is empty.

On the above trecs the nominal phrase “The woman” is described in the
following tree:

(node n barii,
(node a bar. terminal the),
(node n bari, (node n bar, terminal woman).empty)

)

We observe that this is a phrase of the N’ category that has as a left subtree
the article and a right subtrce of the N' category, with the noun “woman” as a left
subtrce and an cmpty tree as a right subtree, that is cxpressed with the code word

empty.

Also, the verbal phrasc “hit the child with the bicycle” is expressed in two
trees, depending on the meaning of the sentence.

a) the firsttree is :

(nodc v bari,
(node v bar, terminal hit),
(node n barii,
(node a bar, terminal the),
(node n bari,
(node n bar, terminal child),
(node prep barii,
empty,
(node prep bari,
(node prep bar, terminal with),
(node n barii,
(node a bar, terminal the),
(node n bari,
(node n bar, terminal bicycle),

cmpty)

49

BUPT

This tree is of the V™ category and has as a left subtree the verb “hit” and as a
right subtree the phrasc “the child with the bicycle™. This phrasc is a nominal phrasc
with a complement and is expressed with a tree of the N category. This trec has as a
left subtree the article “the™ and as a right subtree a tree of the N’ category, that has as
a left subtrec the noun “the child” and as a right subtree the prepositional phrasc that
is expressed with a right subtree of the Prep’” category. This tree has an cmpty left
subtree and its right subtree is of the Prep’ catcgory with the preposition “with” as a
left subtree and the nominal phrasc “the bicycle™ as a right subtrec. This nominal
phrase is also analyzcd in a nominal phrase of the N category.

b) the second tree is:

(node v bari,
(node v bari,
(node v bar, terminal hit),
(node n barii,
(node a bar,terminal the),
(node n bari,
(node n bar, terminal child),

empty)
)
),
(node prep barii,
cmpty,
(node prep bari,
(node prep bar, terminal with),
{node n barii,
(node a bar, terminal the),
(node n bari,
(node n bar, terminal bicycle),
empty)
)
)
)

This trec is of the V* category and has as a left subtrec a V’ category subtree
and as a right subtree, a subtrec of the Prep’’ category that corresponds to the
prepositional phrase “with the bicycle”, that states the instrument with which the
woman hit the child. The left subtree is of the V* category and corresponds to the

50

BUPT

phrase “hit the child™. This subtrce has a left subtree of the V category apd the verb
“hit™ and a right subtrec ol the N* catcgory for the nominal phrase “the child”.

The phrasc “hit the child™ is described by the following tree:

(node v bari,
(nodc v bar, terminal hit),
(node n barii,
(node a bar.terminal the),
(node n bari.
(node n bar, terminal child),

cmptly)

)

The prepositional phrase “with the bicycle” describes the instrument with the
following tree:

(node prep barii,
empty,
(node prep bari,
(node prep bar, terminal with),
(node n barii,
(node a bar, terminal the),
(node n bari,
(node n bar, terminal bicycle),

empty)

Apart from of the opcerators for the nodes and the terminal elements, there is
also the operator that denotes the anaphors of a tree. The anaphors are conncections
between a tree’s elements that have a relation between them, for example:

a) the pronoun and the word or phrasc to which it refers
b) the reflexive pronoun and the clement to which it refers

In order to state this anaphor we usc the operator anaphor and the name of the
anaphor. The name of the anaphor must be an atom of the prolog, that is, a sequence
of letters and numbers with the first letter in lower-case or, if it is a capital letter, it
should be enclosed in quotcs.

The following are examples of anaphors:
a) anaphor il

b) anmaphor ‘11’ _

¢) anaphor ‘anaphor_1’

51

BUPT

d) anaphor *‘Anaphor_1I"~

With the anaphor we can connect elements. These clements can belong to the
following categories:
a) terminal clement to terminal clement
b) terminal element to subtree that can belong to the categories X, X', X’
¢) subtree to subtree. that can belong to the categories X, X7, X™’

Next we shall present an example of a sentence with a binding between the
reflexive pronoun and the noun to which it refers. This noun should always be within
the same sentence

George admires himself

lP”

George / il Pron
-s [+tense,+AGR]

admire- Pron

himself/ il

In this methodology the above tree is expressed as follows:

(node ‘1P’ barii,
(node ‘N’ barii,
empty,
(node ‘N’ bari,
(node ‘N’ bar, terminal ‘George’:anaphor il),
empty

),
(node ‘IP’ bari,

(node ‘IP’ bar : features [+tenses,+AGR],terminal ‘-s’),
(node ‘V’ barii,

52

BUPT

empty,
(node ‘V’ bari,
(node ‘V’ bar, terminal ‘admirc-"),
(node ‘Pron’ barii,
empty,
(node ‘Pron’ bari,
(node ‘Pron’ bar, terminal ‘himscif”:anaphor i1),
cmpty

The above trec is a tree of the 1P category having as a left subtree the onc
that corresponds to the nominal phrase “George™.

(node ‘N’ barii,
cmpty,
(node ‘N’ bari,
(node ‘N’ bar, terminal ‘Gceorge :anaphor il),
empty

The right subtrec is of the IP’ category and has a left subtrec the head of the
trce with the IP’” top. The head of this tree has the features +tense and +AGR and as a
terminal element the ending.

(node ‘1P’ bar:features [+enses,+AGR], terminal ‘-s’)

Also, the IP” has as a right subtrec the verbal phrase “admires himself™.

(node *IP’ bari,
(node ‘IP’ bar:features [+tenscs,+AGR], terminal ‘-s),
(node ‘V’ barii,
cmpty,
(node ‘V’ bari,
(node ‘V’ bar, terminal ‘admire-"),
(node ‘Pron’ barii,
empty,
(node ‘Pron’ bari,
(node ‘Pron’ bar, terminal ‘himself :anaphor il),
empty
)
)

53

BUPT

The tree of this phrase has an cmpty left subtree and a V' category right
subtree that its left subtree corresponds to the stem of the verb “admire™ and its right
subtree is a subtree of the Pron™ category that corresponds o the pronoun “himself™.

Examining the subtrces that correspond to the nominal phrase “George” and to
the pronoun “himsclf”, we obscrve that the terminal clement “George™ and the
terminal clement “himself™ arc connected to cach other with the anaphor “i17.

Finally, regarding the subtrees that the methodology manipulates, apart from
the empty subtree which is expressed with the word empty, we can also describe
subtrecs or terminal elements that were moved in the tree structure, Ieaving in the tree
an empty space in the place where this clement was. In the place that’s left empty we
enter the t from the word trace that states the trace that this clement lcaves after it
was moved. The trace can be bound with the element that occupicd that place and has
been moved to another place on the tree.

For example, if we moved the word “George”, then the trace and the word
would be connected as follows:

‘George’:anaphor il
t: anaphor il

Finnlay, the following schema presents the different possibilities of using
between the different elements of a x-bar structure of this methodology as has been
described above. These elements are of type subtree, node, terminal, fcatures of node
and anaphor.

subtrees

nodes terminals

-t anaphors

The element at the end of the arrow is used by the other one in order to be
structured.

54

BUPT

3.1.1.1 The EBNF of the X-bar structures

The EBNF of the structurcs that the methodology can manipulate is the
following:

structure = tree-x’ .

€@,

tree-y’’ = “(** node-x’" " specifier *.” (tree-x”" | tree-y") “)” [“:” anaphors].
tree-y’ = “(** node-y’ “,” (tree-x | tree-x) *,” trec-y’” “)” [“:” anaphors].
tree-x, = “(* node-x *,” terminal **)"" [**:” anaphors].

tree-y'” = “cmpty”.

tree-y’’ = "t

tree-y’ = “t”.

tree-y = “t”.

specifier = tree-y’’ | tree-y.

node-y”’ = “node” node-name “barii” [“:”” node-features }.
node-x’ = “node” node-name “bari” [“:” node-features }.

node-x = “node” node-name “bar” [“:” node-fecatures].

node-features = “features” “[“ feature { «,” feature } “]”.

55

BUPT

feature = “+ feature-name | - featurc-name | fcature-name
| featurc-name ‘=" fcaturc-name

“[feature { v, feature } =T feature-name.

YO

anaphors |.

terminal = “terminal™ terminal-clement |

anaphors = “anaphor™ anaphor-name { *:™ “anaphor” anaphor-name }.

node-name = name.

feature-name = name.

anaphor-name = name.

terminal-element = name | “t”.

name = lower-letter { lower-letter | capital-letter | humber | “_” }.

name = “” capital-letter { lower-letter | capital-letter | number |

lower-letter= a|bjc|d|e|f|g|h|i|jlk]|l|m]|n]jo|plqlr|s|tiul|v]|

wlx|y|z

capital-letter = A |B|C|D|E|F|G|H|[I[J|K|LI|M|N|O|P|Q|R|S]

TIU|VIW|X]|Y]|Z

number=0|1]2]3|4]|5|6]7]|8]9

3.1.2 The Principles and Transformations

(I RA) } 19999

The principles and the transformations are rules that we define according to
the presented methodology(Fouskakis, 2004c). These rules are stated to be applicd on
the x-bar trees that were described in the previous chapter. The principles are used to
control the correctness of an X-bar tree according to the requirements that we state.

56

BUPT

The transformations are stated in the same way and have the same abilitics with the
principles, but they can also change the structure and the clements of the tree to which
they arc applied. leading on one or more treces.

The principles enable us to study on the tree they are applicd on the content of
its nodes, the existence of a subtree, the relation between two or more subtrecs of the
X-bar tree, the bindings, cte.

The transformations provide us with the same abilities and furthermore, we
can modify the structure of the X-bar tree and produce onc or morc new trecs that can
have a totally different structure from the structure of the original tree. We can also
change the content of the nodes, by changing for example the features of the node or
we can change the terminal clements by entering new words.

The principles and transformations arc the main part of the methodology and
arc declared in the presented linguistic knowledge system. We can enter in the system
a big sct of such rules and usc only these rules that we wish to apply cach time on the
x-bar trces.

With these rules we express the main linguistic knowledge that is of our
interest and thus we can process the natural language trees accordingly. The
complexity and the number of the rules depend on our requirements.

Both the principles and the transformations are stated using the same general
pattcrn.

The principles in the methodology have the following pattern:

principle name of principle

variables decnotation of the variables that will be used in the next fields

structureDescriptiondescription of the X-bar subtreee on which the rule will be
applied.

structurcCommands the different elements checks, the variables values changes, the
new declarations of variables other possible commands are
usced according to the application

The transformations in the methodology have the following pattern:

transformation name of transformation

variables denotation of the variables that will be used in the next ficlds

structureDescriptiondcscription of the X-bar subtreee on which the transformational
rule will be applied.

structureCommands the different elements checks, the variables values changes, the
new dcclarations of variables, the transformations and other
possiblc commands are used according to the application

The schema of the gencral function of the principles of the presented
mecthodology is the following:

List of X-bar trees on List of X-bar trees on

which the principle —»L Principle }—n which the principle
must be applicd has been applied
correctly

57

BUPT

The schema of the gencral function of the transformations of the presented
methodology is the following:

List of X-bar trces on
which the .

transformation must
be applicd

- -] _{ List of produced new
I'ransformation > X-bar trees

3.1.2.1 The EBNF of the principles and
transformations of the methodology

The EBNF form of principles and transformations is the following;:

principle = “principle” principle-name
“variables” variables-declaration
“structureDescription” structureDescription-structure
“stucturccommands” stucturecommands-principle.

transformation = “transformation” transformation-name
“variables” variables-declaration
“structureDescription” structureDescription-structure
“stucturecommands”stucturecommands-transformation.

principle-name= name.

transformation-name = name.

Regarding the EBNF form of these rules, the name was declared in the
previous EBNF denotation that is for the X-bar structures of the methodology.

In the following chapters we will describe the abilities provided in each one of
the above fields (variables-declaration, structure Description-structure,
structureCommands-principle, structureCommands-transformation) of principles and
transformations.

3.1.3 The Linguistic theory

We can describe a set of rules by using principles and transformations that we
have defined in the linguistic system. The set of all the rules that we declarc constitute
our theory. This theory is the grammar we define.

58

BUPT

The general pattern of describing these rules, is the following:
grammar name of grammar
the main part of the grammar

The name of the grammar is an atom of prolog, meaning a sequence of letters
and numbers. If the first letter is capital, the whole name should be enclosed in quotes,
while if it is a lower casce letter, there is no need o use quoles.

FFor example:

e grammar_|

e ‘Grammar_l

¢ ‘GRAMMAR_VI’

k4

All the above are acceptable grammar names that we can be used in the methodology.

[n the main part of the grammar, that constitutes the second part of grammar
and is also its most important part, wc use principles and transformations, as well as
other grammars that we havc already defined. Each one of these rules is used to the
main part of the grammar, indicating first the operator and then the name of the
principle, the transformation or the grammar respectively.

Therefore we have the following cases of stating rules in the main part of the
grammar:

principle name of principle
transformation nunic of transformation
grammar name of grammar

Apart from the above way of applying the rules that a grammar uses, we can
also have a conditional application of the rules in a grammar, depending on the result
from the application of some other rules.

The command that is also used by the programming languages is the
following;:
If condition then rules | else rules 2

In the part of the control condition of this command we apply one or more
rules on the X-bar structure and depending whether the result is true or false we apply
the rules after then or after else respectively.

In this methodology, this command has the following form:
IfThen(condition, rules 1)
IfThenElse(condition, rules 1, rules 2)

Every rule that we define in our system is either a principle or a transformation

or a grammar. When we apply this rule in an X-bar structure then it gives a true or
false value, depending on whether this rule was applied successfully or not in the

59

BUPT

particular X-bar structure. This cnables us to exccute logical calculations in the
condition part.

If in the condition we apply more than one rules, then we should use the logic
operators and, or and not.

The first logic operator requires that all rules are successful in order for the
condition to be true, while the second logic operator or requires at least onc of the
rules to be successful in order for the condition to be truc.

The general syntactic pattern of the condition will be once the following;:

rule | and rule 2 and rule 3 and...
rule 1 or rule 2 or rule 3 or...

The third operator not enables us to have a truc condition only when the rule
fails. In this case the gencral syntactic pattern of the condition will be the following:

not rule

The rule can be either onc or more rules that are connected to each other with
the operators and and or. We can also use in any combination the operators and, or
and not together with the appropriatc parcnthescs that will define the sequence of the
logic calculations, in order to perform the appropriate check each time.

The same kind of rule combinations (with the operators and, or and not) is
possible and in the main body of a grammar.

Also, the command acceptance_level(Level) exists. It returns the level of
acceptance between the number of input structures that a rule is apllied on and the
corresponding output structures of this rule (principle or transformation). It is possible
to combine the acceptance levels of more than one rules (principles or
transformations) by doing arithmetic operations and to calculate a total acceptance
level. This possibility permits the implementation of an evolutionary approach in the
production and checking of the manipulated X-bar structures, which is a more genceral
and abstract that the Chomsky’s minimalist idcas.

Finally we should notice that within the main part of a grammar we can have a
rule that is the grammar that we enter. That mcans that we can perform a repeated
application of the grammar. Therefore, in the main part of the grammar we can have
the rule, which is the following:

grammar name of the sume grammar

This ability enables the repcated application of a grammar’s rules. Also, if we
use a command of the category if-then-else then we can repeat the rules of a grammar
only if the if condition is valid.

From what we described so far regarding the abilities of a grammar that we
state, we obscrve that cvery grammar uses rules that we have stated. Thesc rules apply
on every X-bar structure and with the scquence that they have been defined in this
grammar. The transformational rules however arc able to produce onc or more new X-
bar trees. These trees can be uscd by the next rule for further processing cither this
rule is a principle or a transformation or a grammar.

60

BUPT

If we wish to change the structures to which the next rule of a grammar will be

applicd, we can usc onc of the following operators:

e addStructures: This operator adds the structures that have been

produced by the last principle, transformation on the existing X-bar trces

for the next rule of the grammar.

o sctStructures: This operator scts as X-bar trees for the next rule of the

grammar, the trees that have been produced by the last principle,

transformation.

o setSucceededStructures: This operator scts as X-bar trees for the next

rule of the grammar, only the trees that the last rule has been applicd on

successfully.

e restoreStructure: This operator resets the X-bar structure for the next

rule to the last X-bar trec that has gotten from the initial X-bar trees of the

system.

e getNextStructure: This operator gets the next X-bar structure from

the tnitial X-bar trees of the system in order to continue the application of

this grammar.

e getPreviousStructure: This operator gets the previous X-bar structure

from the initial X-bar trccs of the system in order to continuc the

application of this grammar.

e getParticularStructurce(Num): This operator gets a particular

structure from the initial X-bar trees of the system according to the valuc

of the Num and continues the application of this grammar.

Also, there is an operator that rcturns the id of an input X-bar tree. This id is a
serial number that has the value 1 for the first input tree.
This operator is the following:
e getlnputTreeld(/d)

Except the above operator there arc two other operators that change the input
structures according to the output structures that are the result of the application of the
last principle or transformation. Both need as operand an /d as it is described in the
previous operator.

The first substitutes the corresponding input trees with the output trees of the last
principle or transfotmation:

e newlnputTrees (/d)

The second adds at the existing input trees the output trees of the last principle

or transfotmation:

e addlInputTrees (/d)

The principle has as output structures the subset of its input structures that it has
applied on correctly. The transformation has as output structures the new sct of
structurcs that have been produced by it.

The following schema shows the usage of the above operators(Fouskakis,
2004c¢): :

61

BUPT

Commands that permit
the selection of the list of
input trees:

getNextStructure
getPreviousStructure
getParticularStructure List of X-bar trces
of the next
principle or
The corresponding list of transformation
input trees i

‘ . .
\ Principle or
Transformation

Commands that calculate
the list of input trees of
the next principle or Output list of X-
transformation: bar trees of the
addStructures principle or
setStructures transformation
setSucceededStructures
restoreStructure

Commands that change
the list of input trees:
newlnputTrees
addInputTrees

In order to exchange information of different X-bar trees between the different
rules that are used by the grammar, therc are the grammar variables. They are
variables that can be used by more than one principle or transformation. They permit
smaller rules that use known information from previous rules. If a grammar variable
has been defined in a principle or transformation that has alrcady used it, it is not
possiblc to be defined again in any ficld of any other principle or transformation but it
is only possible to use it or to change its values. It is only possible to remove the
grammar variable and then to define it again in another rule. Also, it is possible to be

used all the commands for variables that arc used in the structureCommands ficld of

the principles only rules.

We can use two operators related with grammar variables:

e addGrammarVariable name of variable
e removeGrammarVariable name of variable

The first operator defines only the name of a new grammar variable. The
second operator deletes a grammar variable. These opcrators can be used in the main
body of a grammar or even outside of a grammar to deletc or declare a grammar
variable that can be uscd in the next rules. At the case of using the operator

62

BUPT

removeGrammarVariable, this grammar variable will not be availablec in the next
rules or grammars. Both operators need the name of variable as an operand.

Finally, there are two operators that check the existence of a variable that has
be declared in a principle or transformation:
e varExists (Name of Variuble): it checks if a variable has alrcady been
declared
e grammarVar (Name of Variable): it checks if a variable has already
been detined as grammar

The first case checks if a variable existed in the last principle or
transformation that was applicd. The second case checks if a variable has already been
defined as grammar once. The above operators are used in the main body of a grammar
and in the if-then-clsc structures. Also, it is possible to be used in the
structureCommands ficld of the principles and transformations.

All the above operators and rules that we can use in the main part of a
grammar are separated by commas and end with a full stop after the last rule. If there
is a requirement that this grammar should be applicd to the X-bar structures, then all
the rules and operators are executed according to the sequence they are denoted in the
grammar. The opcrators for structures manipulations and the gramimar variables
permit cfficient checking of problems like scrambling and long distance dependences
that appears outside of an x-bar phrase structure.

Next we shall give some examples of grammars:
Suppose we have the following rules:

principle ‘Structure Control’
transformation ‘Structurc Modification’

we can define a grammar.

grammar ‘Grammar 1°.
principle ‘Structure Control’,
transformation ‘Structure Modification’.

We observe that this grammar uscs two rules with the names ‘Structure
Control’, ‘Structurc Modification’. The principle examines if the X-bar structure
fulfills our requircments and then the transformation ‘Structure Modification® is
applied, that can produce onc or more structures according to the structure it gets at its
input. If the principle ‘Structure control® fails, then the whole grammar fails as well
and the transformation ‘Structure modification’ cannot be applied. If the principle
“Structure control’ is successful and the transformation “Structure modification® fails,
then the grammar fails again.

. grammar ‘Grammar 2’.
principle ‘Structure Control”,

63

BUPT

transformation *Structure Modification’,
sctstructures,
grammar ‘Grammar 2°.

We can also detine a new grammar, where we have a recursive-application of

the grammar and usc of the operator setstructures. The operator setstructures is
uscd so that we can cach time modity the input structures of the grammar. Its mput
structures, after the application of the transformational rule *Structure modification’
change because of the setstructures operator and become the structures formed by
the transformation. Thus, with the recursive-intlection of grammar we can produce
consecutively structures, until we reach in structures that the principle “Structure
control’ cannot accept as correct or the transformation “Structure Modification” can’t
modify.

3.1.3.1 The EBNF of the grammar rules in the theory
part of the system

The EBNF form of the grammar rule in the methodology is the:

grammar = ‘“grammar’ grammar-name
grammar-main-part.

grammar-main-part = grammar-part { “,” grammar-part }.

grammar-part = rule|
“if Then(** condition *,” rules™)” |
“if ThenElse(* condition™,” rules™,” rules «)” |
*addstructures” |
“sctstructures” |
“setsucceededstructures” |
“restorestructure” |
“getnextstructure” |
“getpreviousstructure” |
“getparticularstructure(” number {number})7 |
“getinputtreeid(” number{number} «)” |
“newinputtrees(” number{number} «)” |
“addinputtrees(” number{number} «)” |
“addGrammarVariable” name |
“removcGrammarVariable” name |
“varExists(* name “)” |
“grammar_var(“ name)" |

64

BUPT

29 9y . 19\
“acceptance _level(™ number{number}”. number{number} ”)” |
sce-principle-command.

(SR}

rules= “(“grammar-part {,” grammar-part } *)

LR}

condition = condition | (“(* condition operator condition ™)™).

condition = “not™ *(** condition *)™.

condition = rule.

operator = “and™ | “or”

rule= “principle” principle-name |
“transformation” transformation-name
“grammar” grammar-name.

prirciple-name = name.

transformation-name = name.

grammar-namc = name.

The name and number are declared at the EBNF form of the structures that the
methodology manipulates.

The scc-principle-command is described below in the¢ EBNF of the
structureCommands ficld of the principles and transformations rules.

3.1.4 The Linguistic program

In the linguistic program we state only that part of the theory that we have
described and we wish to apply on the initial X-bar structure. Our theory has been

described by rules. Thesc rules are grammars but they can also be principles and
transformations.

65

BUPT

The rules that we want to be used and applied by the system on the X-bar
structurcs are stated as follows:

principle name of principle
transformation name of transformation
grammar name of grammar

We obscrve that we call the rules only with their name and the respective
operator that precedes to the rule’s name. Depending on whether the rule is a
principle, a transformation or a grammar, wc¢ have accordingly the opcrators
principle, transformation, grammar. The rules apply to the first X-bar trec under
the scquence they are stated in the system.

Finally, we can use the operators for the declaration of the grammar variables
that are described in the previous chapter.

3.1.4.1 The EBNF of the linguistic program

The EBNF form for the user’s program is the following:

program-user = program_rule “.” { program_rule “.” }

program_rule = rule |
“addGrammarVariable™ name|
“removcGrammarVariable™ name

The rule has been stated in the previous chapter about linguistic theory.

The name declared at the EBNF form of the structures that the mcthodology
manipulates.

66

BUPT

3.2 Description of the principles and transformations
fields

As it was described in a previous section, both principles and transformations
have three different ficlds that are the following:

e variables
e structureDescription
e structurecCommands

In the next chapters the abilitics that are provided by the methodology for each
one of these ficlds will be described.

3.2.1 The variables field

The principles and transformations, apart from their name, have as a next ficld
the ficld variables. It contains the variables (Fouskakis, 2005a, 2005¢) that are uscd
by the next fields of principles and transformations.

The variables of this ficld, depending on the form of data that they can have as
valucs, arc of the following types:

1. tree node

2. trec tecrminal
3. anaphor

4. node featurcs
5. subtree

The variables in this ficld must always have onc or more values that
accompany the variable with its statement. That mcans that we cannot enter a variable
in this field unless it has at Icast onc value.

These variables are very important for the next fields of principles and
transformations. The necessary generality in the content of the fields
structureDescription and structureCommands is achicved by using these variables.
Thus we have the ability to define rules that are general and can be applied to several
cases of the x-bar trees.

In order to definc a new variable in the variables field of principles and
transformations, it is used the following gencral pattern:

type of variable name of variable set value of variable or
value of variable...

67

BUPT

Regarding the above pattern, it is observed that in order to denote a variable it
is necessary to give the variable type that must be one of the five types we mentioned
above. The type of the variable is followed by its name that must be different for cach
variable. After the namce we have the operator set that it is obligatory to usc and which
is followed by the values of the variable. When the values of the variable are more
than one, they are scparated by the operator or. The values of cach variable depend on
the type of the variable. Thus for example, for a variable of the node type, the values
assigned to it will be nodes of trees.

As it is mentioned before, the variables of this ficld arc of five different types.
Depending on the type of the variable, we use an operator that will determine the type

of the variable.

These operators are the following:

I. tree node, operator node

2. terminal element, opcrator terminal
3. anaphor, operator anaphor

4. nodc features, operator features

5. subltree, operator subtree

The name of the variable exists after the type of the variable and must be an
atom of the prolog. That means that the name of the variable is a sequence of
alphanumeric characters that arc cnclosed in quotes, unless the first character is a
lower case letter and therc are no emply characters.

The following arc examples of valid variables names:

¢ ‘Node I’
e ‘nodcl’
e nodc_|

After the type and the name of the variable, there are the values of this
variable. The values of cach variable depend on its type and there are five cascs,
depending on the variable's type:

1. Tree node

The node of the tree must be in accordance to one of the following two general
patterns:

® name of the node category of the node : features features of the node
® name of the node category of the node

The first pattern is used when it is additionally denoted the node’s features.

68

BUPT

The name of the node is an atom of the prolog and states the name of the
specific node and the category of the node determines if the node is of the X, X, X’
type. In order to determine that the node is of the X, X°, X** type, the operators bar,

bari, barii are uscd respectively.

2. Terminal clement

The terminal clement of a tree must be in accordance to one of the following two
general patterns:

o terminal element : anaphor name of the anaphor :
anaphor name of the anaphor :

e terminal element
The first pattern is used if the terminal clement has anaphors with other

terminal elements or subtrees of the X-bar trce. The sccond pattern is used if it doesn’t
have anaphors.

3. Anaphors

The anaphors have a general pattern and this is the name of the anaphor:
e name of the anaphor

the name of the anaphor is also an atom of the prolog.

4. Features of the node

The features of the nodes have been described in the respective chapter where the
X-bar trees were described.
The general pattern is the following:
lfeature, feature,. . .|

where the feature can be one of the following;:

e +name of the feature

e -name of the feature

e name of the feature

® name of the featureX = name of the featureY

» [name of the featurcl, ..., name of the featureN]= name of the featureX

and the name of the feature is an atom of the prolog.

The following are examples of such node features:
e [+human, +singular]

69

BUPT

e [-animatc]

5. Subtree

The subtree is an X-bar tree of the X, X' or X7 category. The method of
describing these subtrees is the same with the one was explained in the section for the

description of the X-bar structures.

Next | shall give an example of stating variables that includes all the

categorics of the variables:

variables
node

also
terminal
also
anaphor
also
anaphor
also
terminal
also
terminal
also
features
also
node

also
node
also
subtree
also
subtrec
also
subtree

nl

tl

al

a2

t2

fl

n2

n3

sl

s2

s3

sct

sct

sct

set

set

set

sct

set

sct

sct

set

set

article bar : features [singular, masculine] or
noun barii

a or the
il or jl or kl
H or &al or wl

the : anaphor &a2
the : anaphor &al
[singular, male, noun] or [plural, adjective]

noun bar : features &f1 or
noun bari : features &f1

&n2

(node &n2, terminal man : anaphor &a2)
(node noun bar, terminal house)

(node noun barii,

empty,
(node noun bari, subtree &s2,anyTree)).

Observing the above variables of the variables ficld of the principles and
transformations, it is noticed that cach variablc is separated from the next onc with the
operator also. Thercfore, the general pattern for denoting the variables of the
variables field is the following:

variable stateinent 1 also variable statement 2 also.

70

BUPT

where the variable statement is a variable statement performed like the onc that was
described above.

Every variable must have a different name. If a variable has been declared as
grammar and has been defined in a principle or transformation that has already been
used, it is not possible to be defined again in this field of a principle or transformation.

At the definition of the new variables, the values of another variable that has
already been stated can be uscd. This helps to designate the total of the variables’
values in a more general way. Thus these variables can be used in the next ficlds in
order to describe in gencral way those cases that must be covered by a rule. This
generality helps especially in the structureDescription ficld of the principles and
variables, when we wish to describe the appropriate subtotal of natural language trecs,
to which the specific principle or transformation can be applied. The abilitics that arc
provided by thesc variables will be presented in the next chapters.

In order to use a variable in the value of a new variable, the following
symbolism is used:

&name of variable

where the name of variable is the name of a variable that has already been
stated. This variable must be stated before the new one that uses it, also can be a
grammar variable.

A variable that has been stated can be used by another variable on the
following cases:

1. as onc of the values for the new variable and in this case, the variable
must be of the same type with the new variable.

2. as part of the valuc of a variable and in this case, the variable must be
of the same type with the clement it replaces.

The following schema presents the different possibilities of using variables
according to their typc.

subtrees

10des tcrminals

fecatures anaphors /

Qo QU

_The variable at the end of the arrow is used by the other one. These
ppssnbllmes facilitate the declaration of general and abstract rules that control the
different cases in hierarchical way.

ral

BUPT

For the first case, there are the following variables from the above example:

1. a2
2. n3

The variable with the name a2 gets values from the variable al. It is obscrved
that both variables are of the same type and they are anaphors. The variable al has the
following valucs: il, j1, k1, while the variable a2 has the values 11 and wl, as well as
the values of the variable al that has the values il, jI, k1. Therefore, the variable a2
has the values:

¥
il
il
Kl

wl

It is observed that the values of the variable n3 are the same with the values of
the variable n2. Also, It is obscrved that both variables are of the same type, they are
tree nodes. Therefore, the variable n3 has the values noun bar:features &f1 and noun
bari:features &f1. Both valucs use the variable f1 that has the following two valucs:
[singular, male, noun] and [plural, adjective]. Therefore, the variable n3 has the
following four values:

noun bar : features [singular,male,noun]
noun bar : features [plural,adjcctive]
noun bari : features [singular,male,noun]
noun bari : features [plural.adjective]

At the second case of the values of the variables that use variables for the
replacement of certain clements in their values, we have the following variables from
the above examplc:

1. t2
2.y
3. n2
4, sl
5. s3

The variable t2 is of the terminal data typc and has a value that uses for its
anaphor values the values of the variable a2. Therefore, the variable t2 has the
following five values of:

e the:anaphor 11
e the:anaphor il
e the:anaphor jl
[]

the:anaphor k1

72

BUPT

e the:anaphor wi

The variable y is also of the terminal clement type and uses for its anaphors
the variable al. Therefore, the variable y has the following three values of:

e thc:anaphor il
e the:anaphor ji
e thec:anaphor ki

The variable n2 is of the tree node type and uses the variable fl for the node’s
features. Therefore, the variable n2 has the following four valucs:

e noun bar : features [singular,male,nounj
e noun bar : fecatures [plural,adjcctive]
e noun bari : features [singular,male,noun}
e noun bari : features [plural,adjective]

The variabie sl is of the x-bar tree type and uses the variables n2 and al that
are of the node type and anaphor type respectively. Thercfore, this variable can have
all of the ten values.

e (node noun bar : features [singular,male,noun), terminal man : anaphor [1)
e (node noun bar : features [singular,male,noun], terminal man: anaphor il)

e (node noun bar : features [singular,male,noun], terminal man: anaphor j1)

e (node noun bar : features [singular,male,noun), terminal man: anaphor k1)
e (nodec noun bar : features [singular,male,noun}, terminal man: anaphor wl)
e (node noun bar : features plural,adjcctive], terminal man: anaphor 11)

e (node noun bar : features [plural,adjcctive], terminal man: anaphoril)

¢ (node noun bar : features [plural,adjcctive], terminal man: anaphor 1)

e (node noun bar : features [plural,adjective], terminal man: anaphor k1)

e (node noun bar : features [plural,adjective], terminal man: anaphor wl)

The second valuc of the variable n2, the noun bari: features &fl is not possible
to be used because we have an X type tree.

Finally, the variable s3 is of the x-bar tree type and uses a variable of the x-bar
trec type with the name s2. Therefore, the variable s3 has the following value:

(node noun barii,
cmpty’
(node noun bari,
(nodc noun bar, terminal house),
anyTrece)).

If in a principle or transformation no variable exists in the variables field, then
the operator noVariables is used in the place of the operator variables.

73

BUPT

In this paragraph, all the abilities of stating variables in the variables ficld of
the principles and transformations was described.

3.2.1.1 The EBNF of the variables field

The EBNF form for stating variables in the variables ficld, which has the
name variables-declaration in a previous paragraph where the principles and
transformations structure was described, 1s the following:

variables-dcclaration = “(* variable-declaration

[

{“also” variable-declaration} *)™ . .

variable-declaration= “nodc™ node-variable-name “sct™
tree-node-value {*“or™ trec-node-value }.

variable-declaration= “features™ features-variable-name “set”

o

nodc-features-value {“or” node-features-value §.

variable-declaration= “terminal” terminal-variable-name “set”
trece-terminal-value {“or™ tree-terminal-value }.

variable-declaration= “subtrce™ subtree-variable-name “sct”

g

subtrce-value {“or” subtree-value}.

variable-declaration= “anaphor” anaphor-variable-name “sct”
anaphor-valuc {“or” anaphor-valuc}.

anaphor-valuc = name | “&’"anaphor-variable-name.

tree-terminal-value= (terminal-element
[*“:” subtree-terminal-variable-anaphors]) |
(“&”tecrminal-variable-name).
(note: the terminal-clement is declared in the chapter that describes the X-bar
trees that the presented methodology manipulates)

subtree-terminal-variable-anaphors =
“anaphor” anaphor-value {“:” “anaphor” anaphor-valuc }.

74

BUPT

node-features-value = (“[** feature {“,” feature} “]”) |
(“&”features-variable-name)).

(note: the feature is declared in the chapter that describes the X-bar trees that
the presented methodology manipulates.)

trec-node-value= trec-node-value-y’".
tree-node-value= trec-node-value-y’.
trec-node-value= trec-node-value-y.
trec-node-value-y’” = “&” node-variable-name.
trce-node-valuc-y” = “&” node-variable-namec.
trec-node-valuc-y = “&” nodec-variable-name.

tree-node-value-y’’ = node-name “barii”
[« “featurcs” node-features-value].

tree-node-value-y’ = node-name “bari”
[« “features™ node-features-value].

tree-node-value-x = nodc-name “bar”
[“” “features” nodce-features-value].
(note: the node-name is declared in the chapter that describes the X-bar trees

that the presented methodology manipulates)

subtree-value= subtree-value-y’’ |
subtrec-value-y’ |
subtrec-value-y.

subtrec-value-x’’ = “(* “node” tree-node-value-y’* «,”

b
(122

subtree-value-specifier «,
(subtree-value-x’’ | subtree-value-y’) «)”

75

BUPT

[*:" subtree-terminal-variable-anaphors |.

T e M

subtree-value-y’ = *(** “nodc” tree-node-value-y’ .
(subtrce-value-y” | subtree-value-y) "
subtrce-value-y’” **)”

[" subtree-terminal-variable-anaphors |.

. 9

nodc™ trec-node-value-y *,
“terminal” tree-terminal-value *)”
[™ subtree-terminal-variable-anaphors |.

TS

subtree-value-y = *(

subtree-value-specifier = subtree-value-y’” | subtrec-value-y.

node-variable-name = name.

features-variable-name= namec.

terminal-variable-name= name.

subtree-variable-name= name.

anaphor-variable-name= name.
(note: the name is declarcd in the chapter that describes the X-bar trecs that the
presented methodology manipulates)

76

BUPT

3.2.2 The structureDescription field of the principles and
transformations

In previous chapters, the structure of the principles and transformations of the
methodology was described. It is observed that both the principles and the

transformations have the ficld structureDescription.

This ficld is used for the designation of the subtree to which the specific rule
will apply; cither this rule belongs to the principles category or to the transformations
category. In order to apply the principle or the transformation on an X-bar trce that
derives from the x-bar basic scheme, the subtrec that is described in the
structureDescription ficld of principles and transformations must be part of the trce
or cven the whole X-bar tree. By describing the structure of the structureDescription
ficld is possiblc to have a large enough structure that most cooccurrence dependencies
(predicatc-argument, wh-dependencies, filler-gap dependencies) can be localized
within this subtrec and manipulated by the corresponding principle or transformation.

An example of the subtree in the structureDescription ficld of principles and
transformations is the following:

(node noun bari, (node noun bar, terminal home), empty)

This subtrec schematically is the following:

NOUN’

NOUN

EMPTY
home

Every trec that derives from the x-bar basic scheme and has a subtree similar
to the onc we described above, is appropriate for the application of the specific
principle or transformation that has in the structureDescription ficld the above
structure.

The above subtree, apart from the specific structure, has also specific names
for its nodes and its terminal clements. This subtree is of the X’ catcgory. The
variable X has the valuc NOUN and the terminal element is the word *“home”. The
specific structure and clements of the above tree limit the application of the specific
rule in only one subtree. Thercfore in order to apply the rule, it is necessary to find an
X-bar tree with exactly the same subtree. This constraint however doesn’t enable us to
state principles and transformations that will cover the general cases of a set of trecs

77

BUPT

that will have a certain common structure and characteristics to which the specilic
principle or transformation can be applicd.

The theory that has been developed by linguists regarding the form and the
characteristics of the trees, as well as the rules that should govern these trees and
especially the long distance dependencics, demands general rules that should cover a
lot of cases that’s why the delinition of this field is very important. The usc of the
mcthodology in order to study new rules requires flexibility in the way that these rules
are stated either they arc principles or transformations. Also, the methodology can be
uscd for the study of natural language trees that have been produced by another
system, but in these cascs the definition of a small number of rules that would cover
in a general way the different cases regarding the natural language trees is also
necessary in order to have an efficient processing system. This is more unportant in
embedded systems that have reduced resources and the recursion and repetition ol
other theories can be eliminated by defined the appropriate structures in this field.
Due to the above, it was found necessary to develop a group of appropriate operators,
as well as the use of variables in this ficld of principles and transformations.

Also an assumption is stated:

If the tree of structureDescription field or a subtree of this trec contains
less anaphors or features of nodes than the X-bar tree in its corresponding
position, the rule is possible to be applied on this tree.

This assumption is bascd on the principle:

If the required information for the application of this rule exists in a X-bar
tree then it is possible to apply on it this principle or transformation. The
examination of this ficld is from left to right.

The principles and the transformations are the most important part of the
methodology and constitute the base for the statement of the more complicated rules
that are the grammars.

3.2.2.1 The variables in the structureDescription field
of principles and transformations

A group of variables can be used in the structureDescription field of
principles and transformations. These variables enable the declaration of principles
and transformations in a general way.

There are two categories of these variables (Fouskakis, 2005c¢):

e the general variables that are the variables of the variables ficld of the
principles and transformations

e the transformation variables that arc declared in the structureDescription
field of the principles and transformations and arc used in the
structurcCommands ficld. Their purpose is the declaration of the
transformations of the X-bar trees.

78

BUPT

The variables of first « tegory can be either variables that have already bcen
defined in the ficld variables « new variables. If a variable has already been defined
then it must be of the sae type with the corresponding element of the
structurcDescription structui that it substitutes. This variable constraints the
corresponding element of an X-var tree that the rule is applied on, in a specific sct of
values. Also. we can use new variables of the variables type. They are defined
automatically the first time they appear in the structureDescription structurc by
taking their values from the corresponding clement of the X-bar structure where this
rule is applied on. The main importance of these variables is that they provide an casy
way to checek if two or more clements of the structureDescription structure arc of the
same typc and have the same values.

The variables of the sccond category can be of type node of tree, terminal
clement or subtree. They can be used in combination with the other category of
variables. The result of its detinition is the declaration of a new variable. The name of
this variable is the name that follows the transformationVariable operator. The type
of this variable is the type of the corresponding clement of the structureDescription
structure. The initial valuc of this variable is the value that has the corresponding
element of the X-bar structure on which the rule is applicd.

We shall present them in the following chapters in details.

3.2.2.2 The variables of the general category

As it was mentioncd in a previous chapter where the variables of the variables
field of principles and transformations were described, there arc the following types
of variablcs:

1. anaphor

2. terminal

3. featurcs of the tree node
4. trec node

5. tree

It is know that cach variablc that is declared in a principle or transforination
must have a different name. That mcans that two different variables are not allowed to
have the same name in a principle or a transformation. Special care must be taken for
the variables that have been declared as grammar variables. Their functionality was
described in the linguistic thecory chapther.

In the structurcDescription field of principles and transformations, in order
to use the variables of their variables field, the following format is used:

& name of the variable of the variables ficld
where the name that is the name of a variable that was declared in the variables ficld

of principles and transformations. Therefore, in order to use a variable that was
declared in the variables ficld of the structureDescription field of principlcs and

79

BUPT

transformations, the character & is used followed by the name of that particular

variable.
According to what has been mentioned up to now, there are the

following cases of using the variables ol the variables ficld:

node &variable name

node node name and node category: features &variable name
terminal &variable name

terminal (erminal element: anaphor &variable name

subtree &variable name

subtree &vuriable name:anaphor anaphor nume

subtree &variable name:anaphor &variable name

subtree: anaphor &variable name

NS EDN -

From all the above cascs the respective part of the subtree that is described in
the structureDescription ficld, can be replaced by one of the above.

In the first case, a node is replaced with a variable of the node category. In the
second case, the node’s features are replaced with a variable of the variables ficld. In
the third case, a terminal is replaced of the subtree in the structureDescription ficld
with a variable. In the fourth case, the anaphor of the terminal is replaced with a
variable. In the fifth casc, a whole subtree is replaced by a variable. In the sixth case,
the subtree is replaced by a variable, while the possible anaphors of the tree are given.
In the seventh case, the subtrec and its anaphors are replaced by two different
variables. In the eighth case, only the anaphors of a tree are replaced by a variable.

In all the above cases, the respective operator that designates the type of the
variable must be used in front of cvery variable.

The operators are the following:

1. node for tree node

2. features for features of node

3. terminal for terminal clement

4. anaphor for anaphor of terminal element or subtrec
5. subtree for subtree

In all the above cases the variables have already been declared in the
variables field of the specific principle or transformation. There is however a
possibility to usc variables of the variables ficld category that are not stated in the
variables field of the specific rule. In this case these eight different cases also apply.
There are however two more cases of variables that fall to this category.

These two cases are the following;:

1. node &node variable name: features &variable name
2. terminal &terminal variable name: anaphor &variable name

80

BUPT

In the first casc the variable of the features is already known, that is, it must
have values. In the second case the variable for the anaphor must also have valucs.
However, the variables for the node in the first case and for the terminal clement in
the sccond casc must be new.

When a variable is not deciared then a new variable is defined automatically
that has as name, the name that is uscd in the structureDescription field and typc, the
type that is declared by the respective operator that is before the variable. The values
that this new variable will have depend on the X-bar tree that will use the specific
principle or transformation. That means that the valuc of the new variable will be the
clement of the specific X-bar tree used by the specific principle or transformation in
the specific place, as this is designated by the subtrec of the structureDescription
ficld.

A variable can be used morc than once in the subtree that is described in the
structureDescription ficld of principles and transformations. If a new variable is
used in the structureDescription ficld more than once, then the first time it will have
its valuc automatically from the X-bar structurc as if it was declared in the variables
field of principles and transformations. Therefore, when the same variable is reused in
the subtree of the structureDescription, then this variable will have values and the
respective element of the X-bar tree should be the same with one of the values of this
variable.

The great utility of this ability is that it is casy to check if two clements of the
subtrec in the structureDescription ficld of principles and transformations arc the
samc, without considering the possible valucs of these elements.

Finally, it must be stressed that when a node of the structureDescription field
structurc is associated with a node of the X-bar tree, apart from the fact that this node
must have the same name and the same type, the fcatures of the structureDescription
structurc node must be cither the same with the features of the X-bar trec that uscs the
rule, or a subtotal of them. It also applics for the terminal clements that the terminal
clement of the structureDescription structure must be the same with the respective
terminal clement of the X-bar tree and that the anaphors of the terminal in the
structureDescription ficld must all exist as anaphors in the respective element of the
X-bar tree.

Next a series of examples is presented in order to explain the utility of the
variables that were described above.

Example 1

In this example we wish to define a rulc that will apply only to those trees that
include one of the following nodes:

V., N that correspond to the words Verb and Noun respectively

These nodes are of the X category.

The tree that the rule sceks is the following:

81

BUPT

VorN

The terminal clement

The rule that we nced in this casce is the following:

principle ‘Example 1.
variables node nl set ‘V’ baror ‘N’ bar
structurcDescription (node &nl. terminal &anyTerm)

In this rule we do not usc the structurecCommands ficld of principles and
transformations because it is not necessary in this example.

The principle that we described above has as name the ‘Example 1. [talso has
a variable declared in the variables ficld under the name nl and having as values the
‘V’ bar and ‘N’ bar. In the structureDescription ficld we described the subtree that
can be seen above. This subtrec is of the X category and uses for the node a variable
under the name nl that has the two known values. As a result, this rule identifics only
the trees that have a subtree of the X category with node name cither “V’ or “N". Apait
from the node though, the subtree of the X category has also the terminal clement
connected to this node. However, we are not concerned with the valucs that the
terminal element will have, this is why we use a variable that has not been declared in
the variables field and does not have values that constrain us. According to thosc
mentioned above about the function of the variables, the variable with the name
anyTerm will get valucs from the terminal element that exists in the respective place
of the X-bar tree that uses this rulc.

Example 2

In this example we shall define a rule that will identify those trees that have a
subtree of the X category and the name of the node will be Noun.
This node can have one of the following features:

a) [+human,+singular]

b) [+singular,+nominative]

The features of the node always express grammatical and scmantic
information.

Thus we can say schematically that the expressed subtrec of this rule is the
following;:

82

BUPT

Noun : features [+human,+singular] or [+singular,+nominative]

Any terminal

The rule that describes the above is the following:

principle ‘Example 2°.
variables features f1 set [+human,+singular] or
[+singular,+nominative]
structurcDescription
(node ‘Noun’ bar:features &fl.terminal &anyTerminal)

The principle that we described above has the name ‘Example 2°. It also has a
variable of the features typc stated in the variables ficld under the name fl1 and
values of the [+human,+singular] and [+singular,+nominative]. In the
structureDescription ficld we described the subtrec that appears on the figure above.
This subtree is of the X category with Noun as a node name and features that are
assigned by the variable f1 that has two known values. As a result, this rule identifies
only thosc trees that have a subtree of the X category with node either ‘Noun’ bar :
features [+human,+singular] or ‘Noun’ bar : features [+singular,+nominative]. Apart
from thc node however, the subtree of the X category has also the terminal clement
connected to this node. However, we are not concerned with the values that the
terminal clement will havc, this is why we usc a variable that has not been declared in
the variables ficld and does not have values that constrain us. According to those
mentioned above about the function of the variables, the variable with the name
anyTerminal will get values from the terminal clement that exists in the X-bar tree
that uscs this rule.

Example 3

In this example we shall define a rule that will identify those trees that have a
subtrec of the X category and one of the following terminal elements:

a) run

b) drink

c) play

d) drive

83

BUPT

Schematically we can say that the expressed subtree of this rule is the
following;:

Any nodce X category

terminal ‘run’ or ‘drink” or ‘play’ or “drive’

The rule that describes the above is the following:

principle ‘LExample 3.
variables terminal tl set ‘run’ or ‘drink’ or
‘play’ or ‘drive’
structurcDescription
(node &anyNode,terminal &tl)

The principle that we described above has the name ‘Example 3°. It also has a
variable of the terminal type stated in the variables ficld under the name t1 and has
as values the ‘run’, ‘drink’, ‘play’, ‘drive’. In the structureDescription ficld we
described the subtrce that appears on the figure above. This subtree is of the X
category. The name of the subtree’s node docs not concern us this is why we usc a
variable that has not been declared in the variables ficld of the above principle. This
variable has the name anyNodc and since it doesn’t have initial values, it takes valucs
from the X-bar trec. Morc specifically, the value that this variable will have will be
the node that the X-bar tree has in its respective position. The terminal clement of this
X category subtreec must be onc of those that are assigned as valuces to the variable of
the terminal typc tl that has been stated in the variables ficld of this principle.
Thercfore, this rule can be applied to X-bar trees that have a subtree of the X category
and one of the ‘run’, ‘drink’, *play’, ‘drive’ as terminal elements for this subtree.

Example 4

In this example we shall define a rule that will identify only those trees that
have a subtree of the X category with terminal element the article “the”. Also, they
will be bound cither to a reflexive pronoun or to the trace that results from the moving
of this element from the place that it has occupicd to the new onc that it occupics now.

These two types of binding are scparated by their name that we consider being
the anaphorPro for the first one and the anaphorTrace for the sccond one.

84

BUPT

Schematically we can say that the subtree that the X-bar tree should have is
the following:

Any nodc of X calcgory

terminal ‘the’ : anaphor anaphorPro or anaphorTrace

The principle that corresponds to the above is the following:

principle ‘Examplc 4°.
variables

anaphor al set anaphorPro or anaphorTrace
structureDescription

(node &anyNode, terminal ‘the’:anaphor &al)

The principle that we described above has the name ‘Example 4°. This rule has
in the variables ficld a variable of the anaphor type under the name al. This variable
has two values, the anaphorPro and the anaphorTrace. In the structureDescription
field of the rule we describe the subtree of the X category that appcars schematically
above. In this subtrce we are not concerned with the X category node this is why we
use a variable with the namc anyNode that has not been declared in the variables
ficld of the specific principle and as a resull, it has no specific valucs. This variable
takes values from the X-bar tree that uses this rule. The value of the variable will be
the node that exists in the respective position of the X-bar tree. The terminal tree
however that follows the node is specified and must have one of the two anaphors,
cither anaphorPro or anaphorTrace. The requirement that the terminal element should
have onc of the above anaphors is covered by the use of the variable al that we have
stated in the variables ficld of the specific principle.

Example 5

In this example we shall define a rule that will identify those X-bar trees that
have one of the following subtrees of the X category:

a) (mode, article bar, terminal ‘the’)

b) (mede noun bar, terminal ‘home’).

Schematically, the X-bar trees should include the following subtrees:

85

BUPT

node article bar node noun bar

terminal ‘the’ terminal ‘home’

The principle that describes the above is the {following:

principle ‘Example 5°.
variables
subtrce sl set (node article bar, terminal ‘the’) or
(node noun bar, terminal ‘*homce’)
structurcDescription
subtree &sl

The principle that we described above has the name ‘Example 5°. This rule has
in the variables ficld a variablc of the subtree type under the name sl. This variable
has two values, the (node, article bar, terminal “the”) and (node noun bar, terminal
“home”). In the structureDescription ficld of this principle we describe the subtree
that the input structure must have. In the structureDescription ficld of the above
principle, the subtree is designated by the variable s1. As a result, the subtree of the
structureDescription ficld is cither (node, article bar, terminal ‘the’) or (node noun
bar, terminal ‘home’).

Example 6

In this example we shall define a rule that will identify those X-bar trees that
have one of the following subtrees of the X category:

a) (node article bar, terminal ‘the’)

b) (node noun bar, terminal ‘home’)

with an anaphor that will have the name anaphorTrace.

Schematically, the X-bar trees should include the following subtrees:

86

BUPT

node article bar

/——- anaphor anaphorTrace

terminal ‘the’

node noun bar
‘ /—— anaphor anaphorTrace

terminal ‘home’

The principle that describes the above is the following:

principle ‘Example 0°.
variables
subtree s! set (node articlc bar, terminal ‘the’) or
(node noun bar, terminal ‘home’)
structurcDescription
subtree &sl:anaphor anaphorTrace

The principle that we described above has the name ‘Example 6°. This rule has
in the variables ficld a variable of the subtree type under the name s1. This variable
has two values, the (node, article bar, terminal “the™) and (node noun bar, terminal
“home”). In the structurcDescription ficld of this principle we describe the subtree
that the input structure must have. In the structureDescription ficld of the above
principle, the subtree is designated by the variable st followed by the anaphor under
the name anaphorTrace. As a result, the subtrec of the structureDescription ficld is
cither (node article bar, terminal ‘the’):anaphor anaphorTrace or (node noun bar,
terminal ‘home’):anaphor anaphorTrace.

Example 7

In this example we shall definc a rule that will identify those X-bar trecs that
have an anaphor with the name anaphorTrace.

The principle that describes the above is the following:

principic ‘Example 7°.

87

BUPT

noVariables.
structureDescription
subtree &anyTree:anaphor anaphorTrace

The principle that we described above has the name *Example 7°. This rule has
no variables in the variables ficld this is why we replace the operator variables with
the operator noVariables. In the structureDescription ficld ol this principle we
describe the subtrec that the input structure must have. Since we are not interested in
the form of the sutrec of the X-bar tree that the rule accepts, but only in having an
anaphor with the name anaphorTrace, we use a variable with the name anyTrece that
has no value. This variable takes cach time as a value the subtree of the X-bar tree that
has an anaphor with the name anaphorTrace.

Example 8

In this example we shall define a rule that will identify thosc X-bar trees that
have an anaphor with the name anaphorTrace or anaphorPron.

The principle that describes the above is the following:

principle ‘Examplec 8’.
variables

anaphor al set anaphorPron or anaphorTrace
structureDescription

subtree &anyTrec:anaphor &al

The principle that we described above has the name ‘Example 8. This rule has
in the variables ficld a variable with the name al. It also has the values anaphorPron
and anaphorTrace. These two values of the variable are two different anaphors that
the X-bar trees can have. In the structureDescription field of this principle we
describe the subtree that the input structure must have. Since we are not interested in
the form the subtrec of the X-bar tree that the rule accepts, but only in having an
anaphor with thc name anaphorTrace or anaphorPron, we use a variable with the
name anyTree that has no value. This variable takes each time as a value the subtree
of the X-bar tree that has an anaphor with the name anaphorPron or anaphorTrace.
The anaphors of the subtrce anyTree are specified by the variable al.

Examplc 9
In this example we shall define a rule that will identify the X-bar tree of the X

category (mode noun bar, terminal ‘house’) that has as anaphor cither the
anaphorTrace or the anaphorPron.

88

BUPT

Schematically. the X-bar trees should include the following subtrees:

anaphorTrace

node noun ba

terminal "housc’

anaphorPron

node noun bap

terminal ‘housc’

The principle that describes the above is the following:

principle ‘Example 9°.
variables

anaphor al set anaphorTrace or anaphorPron
structureDescription

(node noun bar, terminal ‘housc’):anaphor &al

The principle that we described above has the name ‘Example 9°. This rule has
in the variables field a variable of the anaphor typc with the name al. This variable
has two values, the anaphorTrace and the anaphorPron. In the structureDescription
field of this principle we describe the subtree that the input structure must have. On
the above principle the subtree to the structureDescription ficld is the (node noun
bar, terminal ‘housc’). This subtrce however must have an anaphor with the name
anaphorTrace or anaphorPron, this is why we use a variable with the name al that has
the above two valucs.

89

BUPT

Example 10
In this example we shall define a rule that will identify those trees that have a
subtree of the X category, but we are not interested in the name of this subtree node.
This node is of the X category and must have one of the following features:
a) [+human, +singular)
b) [+singular, +nominative]

The terminal element of this node is not of our intercst cither.

Schematically we can say that this rule will express the following subtree:

node : features [+human, +singular] or [+singular, +nominative]

A terminal

The rule that describes the above is the following;:

principle ‘Example 10°.
variables
features f1 set [+human, +singular] or
[+singular, +nominative]
structureDescription
(node &anyNode:features &f1, terminal &anyTerminal)

The principle that we described above has the name ‘Example 10°. It also has
a variable of the features type stated in the variables ficld with the name f1 and has
the values [+human,tsingular] and [+singular,+nominative]. In the
structureDescription ficld we have described the subtree shown above. This subtree
is of the X category and the name of its node is not of our interest, this is why wc usc
a variable that doesn’t have any valuc. The name of this variable is anyNode. Also,
this node must have features that should be cither [+human,+singular] or
[+singular,+nominative]. This constraint is achieved with the variable f1 that is uscd
in the place of this node’s features. Also, we are not interested in the terminal clement

of the particular subtree, this is why we use a variable that doesn’t have values yet.
The name of this variable is anyTerminal.

90

BUPT

Examplc 11

In this example we shall define a rule that will identify only those X-bar trees
that have a subtree of the X category with a terminal element, that will be bound
cither with a relative pronoun or with the trace that results from this clement’s moving

from the place it occupied to the new one it occupies now.

These two types of binding are scparated by their name that we consider to be
anaphorPro for the first and anaphorTrace for the second one.

Schematically, the X-bar tree should include the following subtree:

A node X catcgory

Terminal efement : anaphor anaphorPro or anaphorTrace

The principle that corresponds to the above is the following:

principle ‘Example 11°.
variables
anaphor al sct anaphorPro or anaphorTrace

structurcDescription
(node &anyNodc, terminal &anyTerm:anaphor &al)

The principle that we described has the name ‘Example 11°, This rule has in
the variables field a variable of the anaphor type with the name al. This variable has
two values, the anaphorPro and the anaphorTrace. In the structureDescription field
of this principle we describe the subtree of the X category that is shown on the above
figure. In this subtree we are not concerned with the X category node, this is why we
usc a variable with the namc anyNode that has not been stated in the variables field
of the specific principle and as a result, it doesn’t have specific valucs. This variable
takes the values from the X-bar tree that uses this rule. The value of the variable will
be the node that exists in the respective place of the X-bar tree. Also, we are not
concerned with the terminal element, this is why we use a variable with the name
anyTerm that has no valucs and takes its values from the X-bar tree. It is required
however that the terminal element has one of the two anaphors, the anaphorPro or the
anaphorTrace. That’s why we usc the variable al that has thesc two values.

91

BUPT

3.2.2.3 The variables of the transformation category

Apart from the variables in the structureDescription ficld of principles and

transformations that arc described so far and that they belong in the category of the
variablcs that arc stated in the variables ficld, there is another category of variables
that are uscd to perform the transformations.

These variables can be stated only in the structureDescription ficld of

principlcs and transformations and they are used by the structureCommands ficld of
these rules.

The variables of this category can be one of the following types:
a) tree node
b) terminal
¢) subtree

The various ways of dcclared the transformation variables at the clements of

the above types are:

B~

~

10.
1.
12.
13.

14.

15.

node node : transformationVariable variable name

node &node type variable name: transformationVariable variable name
node (node : features node features) : transformationVariable variable name
node (node : features &node features variable name)
transformationVariable variable name

node (&node : features &node features variable nanie) -
transformationVariable vuriable name

terminal terminal ¢lement : transformationVariable variabic name
terminal &terminal element variable name: transformationVariable variuble
name

terminal (terminal element: anaphor anaphor name) :
transformationVariable variuble name

terminal (terminal element: anaphor &anaphor variable name) -
transformationVariable vuriable name

subtree : transformationVariable variable name

subtree &subtree variable name: transformationVariable variable name
(subtrece: anaphor anaphor name) : transformationVariable variable nume
(subtreee : anaphor &anaphor variable name) : transformationVariable
variable name

subtree (&subtree variable name: anaphor anaphor name)
transformationVariable variable nume

subtree (&subtree variable name: anaphor &anaphor variable name) :
transformationVariable variable name

In the above cascs the variables that are symbolized as:
&name of the variable

92

BUPT

can alrcady be statcd and have valuces, but they can also be unstated and take a value
from the X-bar tree. In case a variable is not stated then it is stated and gets values
automatically, as it was described in the preveious chapter.

Each of the above cascs results in the declaration of a new variable of the
transformation category. The name of this variablc is thc name that follows the
transformationVariable opcrator. The type of the variable is the type of the
respective clement of the structureDescription structurc. Therefore, in the cases
from | to 5, the new variable is of the node type and in the cases from 6 to 9 the new
variable it of the terminal eicment type. In the cases from 10 to 15 the new variable is

of the subtree type.
The value that this variable will have initially is the corresponding element of

the X-bar trce that occupics this place.

Next examples arc analyzed that are according to the above cases of stating
transformation variables.

Example |

We shall define a rule that will usc a variable of the transformationVariable
category for the node named noun of the X catcgory subtree. The terminal element of
the node may be one of the following;:

a) house
b) table
c) chair

The rule will recognize the following subtree:

node noun bar : transformationVariable nvi

terminal ‘house’ or ‘table’ or ‘chair’

This rule is expressed as follows:

transformation ‘Example 1°
variables

terminal t] set ‘house’ or ‘table’ or ‘chair’
structureDescription

X (node noun bar: transformationVariable nvi
terminal &tl)

9’

93

BUPT

The above rule is a transformation that has the name “Example 1. This rule
doesn’t have the structurcCommands ficld, because we are not interested in these
examples in demonstrating the abilities of the transformation that the system provides
us. This rule has a variable of the terminal element type that has the name tl and has
the values ‘home’, ‘table’. ‘chair’. This variable is usced in order to specify the
terminal element of the X category subtree. In the structureDescription ficld of the
transformation we describe the subtree of the category X that should exist in the input
structure. In the tree’s node that is ‘noun bar’ we state a variable of the
transformationVariable catcgory under the name nvl. This variable cnables us, as
we shall see in the following chapters, to transform the X-bar tree by changing the
node and adding, for example, features to this node.

Example 2

We shall define a rule that will use a variable of the transformationVariable
category for the node of an X category trce, with one of the following as a terminal
element:

a) housc
b) table
c) run

The node of this subtree can be cither noun bar or verb bar. We will also sce
the same example for the case where we don’t have specific name of the node of the

X category subtree.

The rule will recognize the following subtree:

node noun or verb bar : transformationVariable nv|

terminal ‘house’ or ‘table’ or ‘run’

This rule is expressed as follows:

transformation ‘Cxample 2’

variables
terminal t] set ‘house’ or ‘table’ or ‘run’
node nl set noun bar or verb bar

94

BUPT

structureDescription
(node &nl: transformationVariable nvl,terminal &tl)

The above rule is a transformation that has the name “Example 2”. This rule

has a variable of the terminal clement type that has the name tl and has the valucs
‘home’, “table’. ‘run’. It also has a variable of the nodc type under the name nl that
has the values noun bar or verb bar. The variable t1 is used in order to specify the
terminal element of the X category subtree in the structureDescription field of the
transformation. The variable nl is uscd in order to specify the node of the subtree in
the structureDescription ficld.
In the node of the subtree in the structureDescription ficld we state a variable of the
transformationVariable category under the name nvl. This variable cnables us, as
we shall see in the following chapters, to transform the X-bar tree by changing the
nodc and adding, for cxample, features to this node. The result of the transformation
is the change of the nodc in the X-bar tree and the addition, for example, features.

As an example, the node noun bar can become noun bar : features [animate].

Apart from the above case, where we know the names of the nodes, maybe we
do not wish to constrain the rule in specific nodes. In this case, the rule is as follows:

transformation ‘Example 2°
variables

terminal t1 set ‘housc’ or ‘table’ or ‘run’
structureDescription

(node &nl: transformationVariable nvl,terminal &tl)

In this transformation apply everything we described for the previous one. The
difference is that this transformation uscs for the node of the tree a variable with name
nl. This variable is not stated in the variables field of the rule. Thercfore, the above
rule can apply to any tree that has an X category subtree and as a terminal clement
one of the ‘house’, ‘table’ and ‘run’.

Example 3

In this example wc shall dcfine a rule that will specify a variable of the
transformationVariable category for the node with name noun and the features
[+animate, +singular] of an X category subtree. The terminal element of this subtree
may be onc of the following:

a) house

b) table

¢) chair

The rule will recognize the following subtree:

95

BUPT

node (noun bar : features [+animate +singular]): transformationVariable nvl

terminal ‘housc’ or *table’ or “chair’

This rule is expresscd as follows:

transformation ‘Example 3’
variables
terminal tl set "house’ or ‘table’ or ‘chair’
structurcDescription
(node (noun bar : features [+animate,+singular]):
transformationVariable nvl, terminal &tl)

The above rule is a transformation that has the name “Example 3”. This rule
has a variable of the tcrminal clement type that has the name t1 and has the values
‘home’, ‘table’ and ‘chair’. This variable is used in order to speccify the terminal
element of the X category subtrce. in the structureDescription ficld of the
transformation we describe the subtree of the category X that should exist in the input
structure. In the tree’s node that is noun bar:features {+animate,+singular] we state a
variable of the transformationVariable category under the name nvl. This variable
enables us to change the node’s features and to add the fcaturc +nominative. As a
result of this transformation, the respective node of the X-bar tree becomes as follows:

noun bar : features [+animate,+singular,+nominative]

Example 4

In this example we shall dcfine a rule that will use a variable of the
transformationVariable catcgory for the node of the X category subtree. The name
of this node is noun and its features can be either {-animate, +singular] or [-animate,

+nominative]. Also, the terminal element of this subtree can be anything,

The rule will recognize the following subtree:

96

BUPT

node (noun bar : features [-animate,+singular] or [-animate,+nominative]):
transformationVariable nvl

Any terminal

This rule is expressed as follows:

transformation ‘Example 4°
variables
features f1 sct [-animate,+singular] or [-animate,+nominative]
structurcDcscription
(node (noun bar : features &f1): transformationVariable nvl,
terminal &anyTerm)

The above rulc is a transformation that has the name “Example 4. This rule
has a variable of the nodc features type that has the name fl and the values [-animate,
+singular] and [-animate, +nominative]. This variable is used to specify the features
of the node in the X catcgory subtrce. In the structureDescription ficld of the
transformation we describe the subtree of the category X that should exist in the input
structure. The node of the tree can be cither noun bar : features [-animate,+singular]
or noun bar : features [-animate,+nominative]. In this node we assign a variable of
the transformationVariable catcgory under the name nvi. This variablc enables us
to change, for cxample, the node’s features and to leave only the feature +animate. As
a rcsult of this transformation, the respective node of the X-bar tree becomes as
follows:

noun bar : features [+animate]

The terminal of the subtree can be anything. This is why in the respective place of the
subtree we use a variable with no initial value.
Example 5

In this example we shall define a rule that will use a variable of the
transformationVariable catcgory for the node of the X category subtrce. The node
can have any name and its features can be either [+animate,+singular] or

[+animatc,+nominative]. Also, the subtree can have any terminal element.

The rule will recognize the following subtree:

97

BUPT

node (node name bar : features [+animate,+singular] or [+animate +nominative]):
transformationVariable nvl

Any tcrminal

This rule is expresscd as follows:

transformation ‘Lxample 5°
variables
features f1 set [+animate,+singular] or {+animate,+nominative]
structurcDescription
(node (&anyNode: features &f1): transformationVariable nvl,
terminal &anyTerm)

The above rule is a transformation that has the name “Example 5. This rule
has a variable of the node features type that has the name fl and the values
[+animate,+singular] and [+animate,+nominative]. This variable is used to spccify the
features of the nodc in the X category subtree. In the structureDescription ficld of
the transformation we describe the subtree of the category X that should exist in the
input structure. The node of the tree can have any name. This is why we usc a variable
that has not been stated in the variables field of the transformation. We also use the
features [+animate,+singular] or [+animate,+nominative}]. In this node we assign a
variable of the transformationVariable category under the name nvl. This variable
enables us to change, for cxample, the node’s features and to sct as a feature the
+nominative. As a result of this transformation, the respective node of the X-bar tree
becomes as follows ¢.g.:

noun bar : features [+nominative]

The subtree can have any terminal element. This is why in the respective place
of the subtree we use a variable with no initial value.
Example 6

In this example we shall define a rule that will use a variable of the
transformationVariable catcgory in a terminal clement of the X-bar trece. The
subtree, to which this rule will apply, shall be a subtree of the X category having as a

terminal element the word ‘door’.

Schematically, the X-bar tree should include the following subtrees:

98

BUPT

Any node of category X

terminal *door’ : transformationVariable sv!

The rulc that expresscs the above is the following:

transformation ‘Examplc 6
noVariables.
structureDescription
(node &anyNodc, terminal ‘door’: transformationVariable sv1)

The above transformation has the name “Example 6”. This rule doesn’t have
any variable in the variables ficld. In the structureDescription field of the
transformation we describe the subtree of the category X that should exist in the X-bar
tree that uses this particular transformation, in order to apply this transformation on
that tree. The subtrce of the structureDescription ficld is of the X calcgory, has a
node that can have any namc and fcatures, and the word ‘door’ as a terminal element.
In this terminal element we assign a variable of the transformationVariable category
under the name svl. This variablc cnables us to change the terminal node. By
applying thc appropriate transformation we can, for example, change the word and
make it a window, or to add an anaphor.

Example 7

In this example we shall define a rule that will specify a variable of the
transformationVariable catcgory in a terminal clement of the X-bar trece. The
subtree to which this rule will apply, shall be a subtree of the X category having as a

terminal clement the word *door’ or the word ‘window”’.

Schematicaily, the X-bar tree should include the following subtrecs:

Any node of category X

terminal ‘door’ or ‘window’ : transformationVariable sv1

99

BUPT

The rule that expresses the above is the following:

transformation ‘Example 7°
variables
terminal tl set *door’ or *window’
structurcDescription
(node &anyNodce, terminal &t1: transformationVariable sv1)

The transformation has the name “Example 7. It also has a variable in the
variables field. This variable has the name tl and the values *door’ and *window’. In
the structureDescription ficld we describe the subtree of the category X that should
exist in the X-bar trec that uses this particular transformation, in order to apply this
transformation on that tree. The subtree of the structureDescription ficld is of the X
category, has a nodc that can have any name and features, and the word *door’ or
‘window’ as a tcrminal clement. These two values of the terminal element are given
by the wvariable tl. In this terminal element we assign a variable of the
transformationVariable category with the name svl. This variable cnables us to
change the terminal clement. By applying the appropriate transformation we can, for
example, change the word of the X-bar tree and make it a *roof”, or to add an anaphor
to this terminal element.

Example 8

In this example we shall define a rule that will specify a variable of the
transformationVariable category in a terminal clement of the X-bar trce. The
subtree to which this rulc will apply, shall be a subtree of the X category having as a

terminal element the word ‘door’ bound to the name anaphorTrace.

Schematically, the rule will apply to the following subtree:

Any node category X

terminal (‘door’:anaphor anaphorTrace): transformationVariable sv

The following transformation expresses the above requirements:

transformation ‘Example 8’

100

BUPT

noVariables.

structurcDescription

(node &anyNodc, terminal (‘door’:anaphor anaphorTracc):
transformationVariable svl)

The above rulc is a transformation that has thc name “Example 8”. This
transformation doesn’t have a variable in the variables ficld. In the
structureDescription ficld of the above rule we describe the subtrec of the X-bar
tree, to which this rulc will apply. This subtree can have any node of the X category.
This is why we use a variablc with the name anyNodc that has no values. Also, this
subtree must have a terminal element which is the word ‘door’:anaphor
anaphorTrace and to which we assign a variable of the transformationVariable type
with the name svl. This variable cnables us to transform the terminal clement of the
X-bar trec that exists in its respective place.

Thus, for example:
the terminal ‘door’:anaphor anaphorTrace
can become ‘window’ :anaphor anaphorTrace or
‘door’: anaphor anaphorPronoun.

Example 9

In this example we shall define a rule that will specify a variable of the
transformationVariable catcgory in a terminal element of the X-bar tree. The
subtree, to which this rule will apply, shall be a subtree of the X category having as a
terminal clement the word ‘door’ bound either to the anaphorTrace or the
anaphorPronoun.

We shall also define a rule to which the above will apply, only that we will
have no constraints from special anaphors.

Schematically, the rule will apply to the following subtree:

Any node category X

terminal (‘door’:anaphor anaphorTrace or anaphorPronnoun):
transformationVariable svl

The following transformation cxpresses the above requircments:

101

BUPT

transformation ‘Example 9°
variables
anaphor al set anaphorTrace or anaphorlPronoun
structureDescription
(node &anyNode, terminal (*door :anaphor &al):
transformationVariable svl)

The transformation has the namc “Example 97 This transformation has a
variable of the variables ficld. This variable is of the anaphor category and has the
name al and the wvalues anaphorTrace and anaphorPronoun. In the
structureDescription ficld of the above rule we describe the subtree of the X-bar
tree, to which this rule will apply. This subtree can have any node of the X category.
This is why we usc a variable with the name anyNodc that has no values. Also, this
subtrec must have a terminal clement which is the word ‘door:anaphor
anaphorTrace or ‘door’:anaphor anaphorPronoun’ and to which we assign a variable
of the transformationVariable type with the name svl. This variable enables us to
transform the terminal element of the X-bar tree that exists in its respective place.
Thus, for example,

the terminal ‘door’ :anaphor anaphorPronoun

can become ‘window’ :anaphor anaphorPronoun.

The rule we dcfined above had known anaphors for its terminal clement. If we
don’t know the anaphors then the above rule becomes as follows:

transformation ‘Examplc 9’
noVariables
structureDescription
(node &anyNodc, terminal (‘door’:anaphor &anyAnaphor):
transformationVariable svl)

In this rule apply the same as to the above rule, only that instcad of the
variable al that has as values the two anaphors, we use the variable any Anaphor that
has no values. As a result, the above rule applies to any X-bar tree that has a subtree
of the X category with terminal element the word ‘door’ and onc of more anaphors
regardless of their names.

Example 10

In this example we shall define a rule that will specify a variable of the
transformationVariable category in a terminal clement of the X-bar tree. The
subtree, to which this rule will apply, shall be a subtree of the X category with a

terminal clement that has as an anaphor the anaphorTrace or the anaphorPronoun.

Schematically, the rule will apply to the following subtrec:

102

BUPT

Any node category X

terminal (any terminal:anaphor anaphorTrace or anaphorPronnoun):
transformationVariable svl

The following transformation cxpresses the above requircments:

transformation “Lxample 10’
variables
anaphor al set anaphorTracc or anaphorPronoun
structureDescription
(node &anyNode, terminal (&anyTerm:anaphor &al):
transformationVariable svi)

The above transformation has the name “Example 10”. This transformation
has a variablc of the variables ficld. This variable is of the anaphor catcgory and has
the name al and thc values anaphorTrace and anaphorPronoun. In the
structureDescription ficld of the above rule we describe the subtree of the X-bar
tree, to which this rulc will apply. This subtrce can have any node of the X category,
this is why we use a variable with the name anyNode that has no values. Also, this
subtrece must have a tcrminal clement that can be any element this is why we use the
variable anyTerm that has no values. This terminal clement however must have as an
anaphor either the anaphorTrace or the anaphorPronoun. The requirement of having
one of these two variablcs is fulfilled with the variable al. In this terminal clement we
assign a variable of the transformationVariable typc with the namc svl. This
variable enables us to transform the terminal clement of the X-bar tree that cxists in
its respective place. Thus, we can change the terminal element of the X-bar trec as we
wish,

Example 11
In this example we will define a rule that wiil apply to X-bar trees that have
the following subtree:

(node article bar, terminal ‘the’)

This rule will specify for this subtree a variable of the
transformationVariable catcgory with the name svl.

Schematically, the transformation that we will define will recognizc the
following subtree:

103

BUPT

node article bar

transformationVariable svl

terminal ‘the’
The transformation is the following:

transformation ‘Example 11°
noVariables.
structureDescription
(node article bar, terminat ‘the’): transformationVariable svi

This transformation has the name “Example 117, It has no variables in the
variables field. In the structureDescription ficld we describe the subtree that the X-
bar tree must have in ordcr to apply the rule. This subtree is the (node article bar,
terminal ‘the’), to which we will assign a variable of the transformationVariable
type with the name svl. The transformation can use this variable to modify the
respective subtree of the X-bar tree that uscs the transformation.

Example 12

In this example we will define a rule that will apply to X-bar trees that have
one of the following subtrees:

a) (node pron bar, terminal ‘he’)
b) (mode pron bar, terminal ‘she’)

c) (mode pron bar, terminal ‘it’)

This rule will specify for this subtrcc a variable of the
transformation Variable category with the name svl.

Schematically, the transformation that we will define will recognize one of the
following subtrees:

node pron bar

/ transformationVariable sv1

terminal ‘he’

104

BUPT

nodc pron bar

/

terminal ‘she’

transformationVariable svl

node pron bar

/

transformationVariable svi

terminal ‘it’

The transformation is the following:

transformation ‘Example 12’
variables
subtree sbl set (node pron bar, terminal ‘he’) or
(node pron bar, terminal ‘she’) or
(node pron bar, terminal ‘it’)
structureDescription
subtree &sbl: transformationVariable svi

The transformation has the name “Example 12” and it also has a variablc of
the subtree type in the variables ficld. This variable has the name sbl and the values
(mode pron bar, terminal ‘he’), (node pron bar, terminal ‘she’) and (node pron bar,
terminal ‘it”). In the structureDescription ficld we describe the subtree that the X-
bar trce must have in order to apply the rule. This subtree must one of these that the
variable sb! has as valucs. Thercfore, the variable sbl enables us to apply the above
transformation in trces that have at lcast one of these three subtrees. Also, to the
subtree of the sbl we assign a variable of the transformationVariable type with the
name svl. The transformation can usc this variable to modify the respective subtree of
the X-bar tree that uses the transformation.

Example 13
In this example we will define a rule that will apply to X-bar trees that have

the following subtree:
(node articlc bar, terminal ‘the’):anaphor anaphorTrace

105

BUPT

This rule will specity for this subtree a variable of the
transformationVariable catcgory with the name svl.

Schematically, the transformation that we will define will recognize the
following subtree:

node article bar transformationVariable sv i

anaphor anaphorTracc

I

terminal ‘the’

The transformation is the following:

transformation ‘Example 13’
noVariables.
structureDescription
((node article bar, terminal ‘thc’):anaphor anaphorTrace):
transformationVariable sv!

This transformation has the name “Example 13 and it has no variables in the
variables field. In the structureDescription field we describe the subtree that the X-
bar tree must have in order to apply the rule. This subtree is the (node article bar,
terminal ‘the’):anaphor anaphorTrace, to which we assign a variable of the
transformationVariable category with the name sv1. The transformation can usc this
variable to modify the respective subtree of the X-bar tree that uscs the
transformation. For example, we can change the article and the anaphor name and
make it (node article bar, terminal ‘the’):anaphor anaphorPronoun.

Example 14

In this examplc we will define a rule that will apply to X-bar trces that have
one of the following subtrees:

a) (node article bar, terminal ‘the’):anaphor anaphorTrace
b) (node article bar, terminal ‘the’):anaphor anaphorPronoun

This rule will specify for this subtrce a variable of the
transformationVariable category with the name svl.

Schematically, the transformation that we define will recognize one of the
following subtrees:

106

BUPT

transformationVariable sv i

nodc article bar

g

terminal ‘the’

anaphor anaphorTrace

transformationVariable svl

node article bar

g

terminal ‘the’

anaphor anaphorPronoun

The transformation is the following;:

transformation ‘Examplc 14’
variables
anaphor al set anaphorTrace or anaphorPronoun
structureDescription
((node article bar, terminal ‘the’):anaphor &al):
transformationVariable sv1

The above transformation has the name “Example 147 and it has a variablc of

the anaphor category in the variables ficld. This variable has the name al and the
values anaphorTrace and anaphorPronoun. This variable is used in the
structureDescription ficld 1o describe the desired subtree. In the
structurcDescription ficid we describe the subtree that the X-bar tree must have in
order to apply the rule. This subtree is cither the (node article bar, terminal ‘the’):
anaphor anaphorTrace or the (mode article bar, terminal ‘the’); anaphor
anaphorPronoun to which we assign a variable of the transformationVariable
category with the name svl. The transformation can usc this variable to modify the
respective subtree of the X-bar tree that uses the transformation. For example, we can
change the article and make it (node articlc bar, terminal ‘a’): anaphor
anaphorPronoun instcad of the original (node article bar, terminal ‘thc’): anaphor
anaphorPronoun.

The above rule can be modified in order to recognize the following subtrecs:
(node article bar, terminal ‘the’): anaphor any anaphor

107

BUPT

Namely, there will be no constraint for the name of the anaphor.
Therefore, the above transformation becomes as follows:

transformation ‘LExample 14°
noVariables.
structurcDescription
((node article bar, terminal ‘the) anaphor &anyAnaphor):
transformationVariable svi

As we observe, we do not need the variable al and instcad we have put the
variable anyAnaphor that has no values and takes cach time the value from the X-bar
tree. As a result from the above description in the structureDescription ficld of the
rule all the trces that have the sublrce (mode article bar, terminal ‘the’) arc
recognized, regardless of the subtree’s anaphor name.

Example 15

In this example we will define a rule that will apply to X-bar trees that have
one of the following subtrees:

a) (node pron bar, terminal ‘he’): anaphor anaphorTrace
b) (node pron bar, terminal ‘she’): anaphor anaphorTrace

This rule will specify for this subtree a variablc of the
transformationVariable catcgory with the name svli.

Schematically, the transformation that we define will recognize one of the
following subtrees:

nodc pron bar transformationVariable sv1

/ anaphor anaphorTrace

terminal ‘he’

node pron bar transformationVariable svl

/ anaphor anaphorTrace

terminal ‘she’

108

BUPT

The transformation is the following:

transformation *Examplc 15’

variables
subtree sbl set (node pron bar, terminal ‘he’) or
(node pron bar, terminal ‘she’)

structureDescription
subtree (&sbl:anaphor anaphorTrace): transformationVariable svl1

This transformation has thc name “Example 15” and it also has a variable of
the subtree type in the variables ficld. This variable has the name sbl and the values
(node pron bar, terminal ‘he’) and (node pron bar, terminal ‘she’). In the
structureDescription ficld we describe the subtree that the X-bar tree must have in
order to apply the rule. This subtrce must be one of these that the variable sbl has as
values. This variablc is uscd in the structureDescription ficid to describe the desired
subtree. In the structureDescription field we describe the subtree that the X-bar tree
must have in order to apply the rule. This subtree is either the (node pron bar,
terminal ‘he’): anaphor anaphorTrace or the (node pron bar, terminal ‘she’):
anaphor anaphorTrace to which we assign a variable of the transformationVariable
category with the name svl. The transformation can use this variable to modify the
respective subtree of the X-bar tree that uses the transformation. For example, we can
change the pronoun and make it (node pron bar, terminal ‘it’): anaphor
anaphorTrace instcad of the original (nede pron bar, terminal ‘hc’): anaphor
anaphorTrace.

The above rule can be modificd in order to recognize the following subtrees:
any subtree: anaphor anaphorTrace

Namely, there will be no constraint for the subtree but only for the name of the
anaphor.

Therefore, the above transformation becomes as follows:

transformation ‘Cxamplc 15°
noVariables.
structureDescription
subtree (&anyTrec:anaphor anaphorTrace): transformationVariable sv1

As we observe, we do not need the variable sbl and instecad we have put the
variable anyTree that has no values and takes each time the value from the X-bar tree.
As a result from the above description in the structurcDescription ficld of the rule,
all the trees that have the subtree with the anaphor anaphorTrace are rccognized.

109

BUPT

Example 16

In this example we will define a rule that will apply to X-bar trees that have
one of the following subtrees:

a) (mode article bar, terminal “a’):anaphor anaphor{race

b) (nmede article bar, terminal *the™):anaphor anaphorTrace
c) (mode article bar, terminal ‘a’):anaphor anaphorPronoun
d) (mode article bar, terminal ‘the’):anaphor anaphorPronoun

This rule will specify for this subtree a variable of the
transformationVariable category with the name svl.

Schematically, the transformation that we define will recognize one of the
following subtrees:

node article bar transformationVariable sv|

anaphor anaphorTrace

o

terminal ‘a’

node article bar transformationVariable sv i

/ anaphor anaphorTrace

terminal ‘the’

node article bar transformationVariable sv|

/ anaphor anaphorPronoun

terminal ‘a’

110

BUPT

transformationVariable svl

node articlc bar

anaphor anaphorPronoun

g

terminal ‘the’

The transformation is the following:

transformation ‘Example 10°
variables
subtree sbl set (node article bar, terminal ‘a’) or
(node article bar, terminal ‘the’)
anaphor al set anaphorTrace or anaphorPronoun
structurcDescription
subtrec (&sbl:anaphor &al): transformationVariable svl

This transformation has the name “Example 16” and it also has two variables
in the variables ficld. Thc first variable has the name sbl, is of the subtree type and
has the values (node article bar, terminal ‘a’) and (node article bar, terminal ‘the’).
The second variable is of the anaphor type, it has the name al and the values
anaphorTrace and anaphorPronoun. Thesc two variable are used in the
structureDescription ficld to describe the desired subtrce. In the
structureDescription ficld we describe the subtree that the X-bar tree must have in
order to apply this rule. This subtree is the (&sbl :anaphor &al) to which we assign
a variable of the transformationVariable catcgory with the name svl. The
transformation can usc this variable to modify the respective subtree of the X-bar tree
that uses the transformation. IFor cxample, we can change the article and make it
(node article bar, terminal ‘an’): anaphor anaphorTrace instead of the original
(node article bar, terminal “the’): anaphor anaphorTrace.

The above rule can be modified in order to recognize subtrees that have an
anaphor:

transformation ‘Examplc 16’
noVariables.
structureDescription
subtrce (&anyTree:anaphor &anyAnaphor):
transformationVariable sv1i

111

BUPT

As we obscrve, we do not need the variables sbl and al and instead we have
put the variable anyTree and the variable anyAnaphor that have no valucs. As a result
from the above description in the structureDescription ficld of the rule, all the trees
that have the subtree with an anaphor are recognized.

3.2.2.4 The tree operators in the structureDescription
field

The operators for the subtrces in the structureDescription ficld of the
principles and transformations arc described in this chapter.

These operators belong in the following categories:

a) Operators that express thce constraints between two or more subtrees that are
described in the structureDescription ficld.

These operators are the following:

1) Subtree I :subtree Subtree 2
2) Subtree I :notSubtree Subtrec 2
3) Subtree | :nodeSubtree node
4) Subtree | :nodeNotSubtree node

From the abovc operators the first one cxpresses the constraint that the subtree
I should be a subtree of the subtree 2 subtree. The second one expresses the constraint
that the subtree I should not be a subtree of the subtree 2 subtrec. The third onc
expresses the constraint that the subtree 1 should be a subtree of a tree that has the
head node node. The subtree 1 can be cither at the left or at the right subtree of the
subtree that has the head node. The forth one expresses the constraint that the subtree
1 should not be a subtrce of a tree that has the node node. In the first two cases, the
Subtree 1 can be a left or a right subtree of the Subtree 2. This is declared by the
operator subtrecPosition.

b) Operators that express the constraints that should apply to onc subtree, that may
contain other subtrees and operators, in the structureDescription.
Thesc operators arc the following;:
1) not subtree
2) aTree subtree

3) aFirstTree subtree
4) leftMost subtree

112

BUPT

From the above operators the first one states that the subtree subtrec should
not exist as a subtrec of the X-bar trec in the respective place. The second operator
states that the subtree subtree should cxist as a subtree in any depth in respective
place of the X-bar trce. The third operator states that the subtree subtree is the first
subtree in any depth it the tree is scanning top-down left to right starting from the
respective place of the X-bar trec. The forth operator specifies that the subtree is the
Icft most subtree in any depth in the respective place of a X-bar tree if it is scanned
top-down left to right.

This operator is very uscful for the determination of the X-category node of an
X-bar tree. The X-category node has a central role in the X-bar scheme and by using
the above operators (aTree, leftMost) it is possible to determine in an easy way
possible governing or c-commands relations (Chomsky, 1981, 1988, 1995) in the
structures that are under processing. This can be in more general way than the
Chomsky’s theory by using variables (Fouskakis, 2005b) that detcrmine possible
connections between different clements of x-bar structures or their acceptable values.

c) Operators that express the constraints that should apply to N subtrees in a position
of the structureDescription ficld of principles and transformations. N may be
bigger or equal to 2.

These operators arc the following;:

1) subtree | and subtree 2 and. ..
2) subtree I or subtree 2 or. ..

From the above operators the first one states that the subtrees subtree I,
subtree 2, etc. should all be subtrees of the subtree that exists in the X-bar tree that
uses the rule and in the respective position. While the second operator states that at
least one of the subtrees subiree 1. subtree 2, etc. should be a subtrec of the subtree
that exists in the X-bar tree that uscs the rule and in the respective position,

d) The operator that has no constraint for a trec and that is used in the place of the
subtrees of the trcc that we describe in the structureDescription field of
principles and transformations, is the following:

1) anyTree
The above operator takes the place of the subtree of the tree in the

structureDescription ficld of principles and transformations, only when it is not
necessary any constraint for this subtree.

3.2.2.5 The structureDescription field examples with
one operator

Next, we will analyze examples that use only one operator on subtrees of the
structureDescription field of the principles and transformations.

113

BUPT

Example |

We will define a principle that will apply to those trees that have a subtree of
the X category. with noun as a node name and the word *house™ as a terminal clement.
This subtree should be the right subtree of another subtree of the X' category with
verb as a node name.

Schematically the subtree that we wish the X-bar tree to have is the following:

Verb’

Complement

Verb

Noun

‘house’

The principle that expresses the above requirements is the following:

principle ‘Examplec 1°.
noVariables.
structureDescription
(node noun bar, terminal ‘house’):
subtrec (node verb bari, anyTree, subtreePosition)

The above principle has the name “Example 1" and has no variables in the
variables field of stating the variables. In the structureDescription ficld we describe
the subtree that the X-bar trec must have in order to apply the rule. This subtree,
according to the figurc we have show above and our requirements for the rule, must
be (node verb bari, anyTree, subtrcePosition) that has as a subtrec the (node noun
bar, terminal ‘house’) in the place of the subtreePosition. Namely, the (node noun
bar, terminal ‘house’) is a subtrce of the subtree that occupies the place of
subtreePosition.

For example, the above rule could apply to the X-bar trec of the sentence.
John came to the house.

but it could not apply to the sentence

114

BUPT

The house was demolished.

This is shown schematically by the trees that correspond to the above two
sentences:

The first sentence has the tree:

Verb™

Verb’

Noun’

came Noun ’

! Nour’
John
to

Article Noun

the house

Therefore the subtrec recognized by the above principle is the subtree that has
as a top ‘Verb’ and includes the subtree of the X category that has as a terminal
element the word house.

The second sentence has the following tree:

Verb”’
Noun”’ /\ Verb’
Noun’ Verb
Article
e e
Noun
the was demolished
housc

115

BUPT

In the second sentence's tree, we observe that we have the subtree of the X
category that has the node name Verb but this subtree has no right subtree. As a result
the principle does not accept the above tree.

Examplec 2

We will define a principle that will apply to those trees that have a subtree of
the X category, with article as a node name and the word “the™ as a terminal clement.
This subtree should not be the left subtree of another subtree of the X category with
verb as a node name.

Schematically the subtree that we do not wish the X-bar trec to have in order
to apply the rule is the following:
Verb™”

Verb’

article

‘the’

The principle that expresses the above requirements is the following:

principle ‘Example 2°.
noVariables.
structurcDescription
(node article bar,terminal ‘the’):
notSubtree (node verb barii, subtreePosition,anyTrec)

The above principle has the name “Example 2” and has no variables in the
variables field of stating the variables. In the structureDescription ficld we describe
the subtree that the X-bar tree that uses the rule should have. In the case of this rule
we do not want the X-bar tree to have a subtree (node article bar, terminal ‘the’) that
is the left subtree of the subtree of the X category with verb as a node name and
description (node verb barii, subtreePosition, anyTree). We use the operator
anyTree in the place of the right subtree because we are not concerned with its
structure and its element. While we use subtrecPosition in the place of the left
subtree because we don’t want the subtree (node article bar, terminal ‘the’) to be a
subtree of the subtree that has Verb’” as a top.

116

BUPT

For example, the above rule could apply to the X-bar tree of the sentence
George is driving the car

but it could not apply to the sentence
The car is being repaired

This is shown schematically by the trees that correspond to the above two

sentences:
The first sentence has the tree:

Verb™
Noun®’ /\\ Verb’
Noun’ Verb
c
N Noun’
Noun o
is driving
Article
George ¢

car

the

Since the above subtrce (node article bar, terminal ‘the’) is the right and not
the left subtrec of the Verb’” category tree, the specific principle can apply to this X-
bar tree.

The second sentence has the following tree:

Verb”’

Article

is being repaired

117

BUPT

In the second sentence’s tree, we observe that the subtree (node article bar,
terminal ‘the’) is the Icft subtrec of the Verb™™ category tree. As a result, the subtree
that we describe in the structureDescription ficld of the above principle, is not
correct and thercfore we cannot apply this principle.

Examplc 3

In this example we will define a principle that will apply to those trees that
have a subtree of the X category, with noun as a node name and the word ‘machine’
as a terminal clement. This subtree should be a subtree of another subtree that has
Verb’’ as a top nodec.

Schematically the subtrce that we wish the X-bar tree to have is onc of the
following two:

Verb™
Verb’
noun
‘machine’
Verb”’
Verb’
noun
‘machine’

118

BUPT

The principle that cxpresses the above requirements is the following:

principle "Examplc 3.
noVariables.
structurcDescription
(node noun bar, terminal ‘machinc’):nodeSubtree verb barii

The above principle has the name “Example 3” and has no variables in the
variables ficld of stating the variables. In the structureDescription field we describe
the desired subtrec that the X-bar trce that uses the rule should have. According to the
above figure and our requircments for the rule, the subtree (node noun bar, terminal
‘machine’) should be a subtrce of another subtree that has at its top the node verb
barii.

For example, the above rule could apply as a right subtree to the X-bar tree of
the sentence below:

Costas bought the machine
But it could also apply as a lefl subtree to the sentence below:
‘The machine has been sold

This is shown schematically by the trees that correspond to the above two
sentences:

The first sentence has the tree:

Verb”’

Noun’

bought

Costas

machine
the

119

BUPT

Thercfore, the subtree recognized by the above principle is the subtree that has
Verb’’ at the top and includes the subtree of the X category with the word machine as
a terminal clement.

The second sentence has the following tree:

Verb™

Article

the has been sold

machine

In the tree of the sccond sentence we observe that there is the subtree of the X
category with Verb as node name. Wc also observe that the subtree of the X’
category with noun as node name and the word “‘machine’ as terminal element (node
noun bar, terminal ‘machine”) is the left subtrec of the tree that has Verb’’ as a top
node. As a result, this rule can also apply to the second example.

Example 4

We will define a principle that will apply to those trees that have a subtree of
the X category, with noun as a node name and the word ‘house’ as a terminal element.
This subtree should not be a subtrec of another subtree that has Verb’ as a top node.

Schematically the subtree that we wish the X-bar tree to have is the following:

Verb’

noun

*house’

120

BUPT

The principle that expresses the above requirements is the following:

principle ‘Example 47
noVariables.
structureDescription
(node noun bar,terminal ‘housc’):notnodeSubtree verb bari

The above principle has the name “Example 4 and has no variables in the
variables field of stating the vanables. In the structureDescription field we describe
the desired subtrec that the X-bar tree that uscs the rule should have. In the
structureDescription ficld we state that the X-bar tree should not have the subtree
(node noun bar, terminal "housc’) that is also a subtrce of the tree with Verb’ as the
top node. That means that the subtree (node noun bar, terminal ‘house’) should be
ncither a left nor a right subtree of the tree with Verb® as the top node.

For example, the above rule cannot apply to the X-bar tree of the sentence
below:

Costas bought the house
but it could apply to the following sentence:
The house has been sold

This is shown schematically by the trees that correspond to the above two
sentences:

The first sentence has the tree:

Verb’”

b4

Noun

bought

Costas

the house

121

BUPT

This tree has the subtree (node noun bar, terminal ‘housc’) that is a subtree
of another subtrce with Verb' as the top node. This is why the specific principle
cannot apply to this sentence.

The second sentence has the following tree:

Verb™

The has been sold

house

In the tree of the seccond sentence we observe that there is the subtree of the X°
category with Verb as node name. We also observe that the subtree of the X category
with noun as nodc namc and the word ‘house” as termitnal clement (node noun bar,
terminal ‘housc’) is a left subtree of the tree that has Verb™ and not Verb™ as a (op
nodc. As a result, this rule can apply to this sentence.

Example 5

In this example we shall define a rule that will apply to those X-bar trees that
have a verb with two objects and a noun phrase as subject. These two objects must be
noun phrascs.

Schematically the subtree that the X-bar tree must have is the following;:

Verb™’

Noun’
Noun phrase

hrasc
Verb Noun phrase

122

BUPT

Considering our requircments about the definition of the rule and the above

subtree, we define the principle as follows:

principle *‘Example 5°.
noVariables.
structureDescription
(node verb barii.
leftMost (node noun bari.anyTreeanyTree),
(node verb bari,
(node verb bari,
anyTree,
aTree (node noun bar.terminal &anyTerminall),
aTree (node noun bar terminal &anyTerminal2)))

The principle we defined above has the name ‘Example 5°. This principle has
no variable in the variables ficld that’s why the respective field has been replaced by
the operator noVariables. In the structureDescription ficld we describe the structure
and the clements of the subtree that the X-bar trec must have in order to apply the
rule. As we describe in the structureDescription ficld, this subtree is a trec that has
the top Verb™. Its left subtree is a trec ol a noun phrase. This is described by the
structure leftMost (node noun bari,anyTree,anyTree) with its left and right subtrees
out of our interest. This is why we use the operator anyTree. The right subtree is a
tree that has the top Verb® and the right subtree that we want to have a subtree of the
X category with noun as a node name. This is why we use aTree (node noun bar,
terminal &anyTerminal2). Its Jeft subtree is a tree of the Verb' category. It has as
right subtree a tree that includes the subtree of the X category with noun as a node
name. This is why we use aTree (node noun bar, terminal &any Terminal2).

Next we shall give an example of a sentence to which the above principle
applics:

Nick examines the pupils in geography.

The tree of this sentence is the following:

123

BUPT

Verb™

Noun Verb Prep™
Prep’
Noun l
¢ o Noun™
¢ dpen
Noun Prep Noun
Verb’)
n
Nick .
¢ Noun
. ¢
Noun
Verb Noun" geography
X Noun
) Article!
examines ¢
pupils
the

We notice that the tree of the above scntence includes a subtree that has the
top Verb’” and the right subtree Verb’. This subtree has as a right subtree the one that
includes the subtree (node noun bar. terminal ‘geography’). The subtree of Verb’
has a left subtree with the Verb® as a top and a right subtree that includes the subtree
(node noun bar, terminal ‘puptils’). Also there is the noun phrase with root node
Noun’, this is the (node noun bari,(node noun bar, terminal *Nick™), empty).

Examplc 6

In this example we shall define a rule that will recognize thosc trees that do
not have a subtrce of the X catcgory with noun as a node name and the word
‘window’ as a terminal clement.

Schematically the subtree that should not have the tree that uses the rule is the
following:

Noun

‘window’

124

BUPT

The principle that is in accordance (o the above is the following:

principle ‘Example 67
noVariables.
structurcDescription
not (node noun bar. terminal *window’)

This principlc has the name ‘Example 6° and has no variables this is why it
has the name noVariables. In the structureDescription ficld we describe the subtree
that the X-bar tree that uses the rule should have. In our case, we don’t want the X-bar
tree to have the subtree (node noun bar, terminal *window’).

An example of a sentence that cannot use the above rule is the following:

The window has been broken

Verb™

Article

Noun
The has been broken

window

The above sentence has a subtree of the X category with noun as a node name.
This subtrec is the (node noun bar, terminal ‘window’). This is why the principlc
*Example 6’ cannot apply to the above tree.

Example 7

In this example we want to define a rule that will apply to those trees that have
two nouns, one in nhominative case and the other in the accusative.

According to the above, the two subtrees that the tree that uses the rule should
have are the following;:

125

BUPT

a) The subtree in the nomimative case

Noun' with feature +nonunative

Termimal clement

b) The subtree in the accusative case

Noun™ with feature +accusative

Terminal clement

Therefore, the principle that fulfils the above requirements is the following:

principle ‘Example 7°.
noVariables.
structureDescription
(node noun bar:features [+nominative], terminal &anyTerminall)
and
(node noun bar:features [+accusative], terminal &any Terminall)

This rule has the name ‘Example 7 and it has no variables in the variables
ficld that’s why we usc the operator noeVariables. In the structureDescription ficld
we describe the subtree that the X-bar trec should have in order to apply on 1t this
rule. We notice that in the structureDescription ficld we describe two subtrees that
are connected with the operator and. This means that the X-bar tree should have both
subtrees as its own subtrees in order to apply the rule on it. The scquence of these two
subtrees in the structureDescription ficld is irrelevant. The first of these two subtrees
is the (node noun bar : features [+nominative]. terminal &any Terminall). It's a
subtrec of the X category with noun as a node name and [*+nominative] as a node
{feature. We are not concerned with the terminal clement that follows, this is why we
usc the variable anyTerminall that has no values. The second subtree is the (node
noun bar : features [+accusative]. terminal &anyTerminal2). 1Cs a subtree of the X
category with noun as a node name and J+accusative] as a node feature. We are not
concerned with the terminal clement of this subtree, this is why we use the variable
anyTerminal2 that has no values. We also notice that we do not use the same variable
name for the terminal of both subtrees because we do not wish them to have the same
terminal clement.

126

BUPT

An example of a sentence that fulfills the requirements of the above rule is the

following: .
Costas bought the bicycle

Verb™

Noun’’ Verb

hl

Noun’

e)
e Noun
Noun [+nominative] I
bought
. Noun [+a¢cusative]
Article

Coslas \
c

the Dbicycle

We notice that the tree of the above sentence has a subtrce of the X catcgory
with Noun [+nominative] as a node and the word Costas as a terminal clement. Also,
the above tree has another subtree of the X category with Noun [+accusative] as a
node and the word bicycle as a terminal element. This is why the above principle can
apply to this tree.

Another example of using the operator and is the following:

Wec wish to define a principle that will recognize those trees that have a
subtree of the X’° category with Verb as a node name. This subtrcc should have
subtrees that would include the following two subtrees:

a) the onc subtrec will be of the X category with Verb as name and a verb as
tcrminal element.

b) The other subtree will be of the X category with Noun as name and a noun as
terminal clement.

Schematically the subtree that the X-bar tree must have in order to apply this
rule is the following:

127

BUPT

Noun

a4 poun

a verb
Therefore, according o the above, we have the following principle:

principle ‘Example 7°.
noVariables.
structureDescription
(node verb barii,anyTree,
(node verb bar,terminal &anyTerminall)
and
(node noun bar,terminal &anyTerminal2))

The above principle has no variables in the variables ficld that's why we usc
the operator noVariables. In the structureDescription ficld we describe the structure
and the elements of the subtree that the X-bar tree should have in order to apply on it
this rule. The subtree of the structureDescription ficld is the same with the one
shown schematically above. Thus, in the structureDescription ficld we describe a

subtrce that has the Verb’’ as top and a left subtree with structure and elements not of

our concern. This is why we use the operator anyTree. We want, however, the right
subtree to include the following two subtrees:

a) (node verb bar, terminal &anyTerminall)
b) (mode noun bar, terminal &any'Tcrminal2))

These two subtrees are of the X category. The first subtree has the node name
verb and any terminal element. The second one has the node name noun and any
terminal clement.

An example of a sentence to which the above rule could apply is the following

Costas flew the airplanc.

This sentence has the following tree:

128

BUPT

Verb™

Noun™’

Noun™

(¢

Noun’

Noun

Noun

Article
Costas

the airplane

We notice that this tree has the subtree that we described schematically above
and the one that the principle that we defined demands. This tree has the Verb™ as top
and the right subtree that includes the two subtrees that the rule requires.

These subtrecs are the following:

Verb Noun

airplane

Example 8

In this example we shall define a rule that will apply to those X-bar trees that
have onc of the following subtrees of the X category:

a) asubtree with noun as a node name and the word *home’ as a teriminal element
b) a subtree with noun as a node name and the word *house” as a terminal clement

Schematically, these subtrees are the following:

Noun

‘home’

129

BUPT

Noun

‘house”

The principle that describes the above is the following:

principle ‘Example §°.

noVariables.

structureDescription
(node noun bar,terminal *home’)
or
(node noun bar,terminal “housc’)

This principle has the name ‘Example 8™ and it has no variables that’s why we
use the operator noVariables. In the structureDescription field we describe the

subtree that we wish the X-bar tree to have. We wish the tree to have at least one of

the (node noun bar, terminal *homc’) and (node noun bar, terminal “housc’), this is
why we use the operator or. Both the subtrees are of the X category. The first one has
the noun bar as a node and the word ‘home’ as a terminal clement. The second
element has the noun bar as a node and the word “house™ as a terminal ¢lement.

An example of a sentence that the subtree we describe in the
structureDescription ficld fulfils is the following:

The house was demolished

Verb™
Noun™ /\ Verb'
Noun® Verb
Article . o

The

was demolished

housc

130

BUPT

We notice that this tree has the subtree that the principle “Example 87 requires.
This subtree is the following:

Noun

house

3.2.2.6 The structureDescription field examples with
more than one operator

In all the above examples we used operators that could apply to subtrees in the
structureDescription ficld of principles and transformations. Each time we have
uscd only one operator but we could apply more than one operator to a subtree.

Next we shall analyze examples that use more than one operators to subtrees
of the structureDescription ficld.

Example |
In this example we shall definc a rule that will apply to those X-bar trees that
have a subtree of the X category with noun as a node name. This subtree of the X

category is the subtree of a subtree that has the Noun® as top and of another subtree
that has Verb’ as top.

Schematically the subtree that we wish the X-bar tree to have is the following:

Verb’ .
Noun

Noun

a noun

The principle that is in accordance to the above is the following:

131

BUPT

principle “Example 1.
noVariables.
structureDescription
(node noun bar terminal &anyTerminal):
(nodeSubtree verb bari):(nodeSubtree noun bari)

This principle has the name *Example 17, It has no variables m the variables
ficld and this is why we usc the operator noVariables. In the structureDescription
field we describe the subtree that the X-bar tree that usces the rule should have. The
subtrec that we wish the X-bar tree to have is a tree of the X category that has the
noun as a node name and any terminal element. This is why we use the variable
anyTerminal that has no values. This subtree is the subtree (node noun bar, terminal
&anyTerminal). There are however two constraints for this subtree. The first
constraints is that it should be a subtree of the subtree that has the Verb™ as top. This
constraint is expressed with the (nodeSubtree verb bari). The second constramt is
that the above subtree should be a subtree of the subtree that has the Noun™ as top.
This constraint is expressed with the (nodeSubtree noun bari).

An example of a sentence to which the above rule could apply is the
following;:

The heat dried the flowers
On the contrary, it cannot apply to the following sentence:
The flowers were dried

The tree of the first sentence is the following:

Verb™

. Noun™*
Article o

Noun’

the

the flowers

132

BUPT

We notice that the above tree has two subtrees of the X category with the
Noun as nodc.

These subtrees are the following:

Noun Noun

heat flower

However, only the right onc is a subtree of the subtrees that have the Verb’

and the Noun’ as top.
The second sentence has the following subtree:

Verb”?

Noun’ Verb
Article

(¢

Noun
The were dried

flowers

We notice that the above tree has a subtree of the X category with the Noun as
node name.
This tree is the following;:

Noun

flowers

This subtree, however, is not a subtree of the subtrees that have as a top the
Verb’.

133

BUPT

Example 2

In this example we shall define a rule that will apply to those X-bar trees that
have two subtrees of the X category with noun as a node name. The first subtree of
the X category should be the subtree of a subtree that has the Noun® as top and of
another subtree that has Verb™ as top. The second subtree should be the subtrec of a
trec that has the Verb™ as a top.

Schematically the subtreces that the X-bar tree should have is the following:

Verb™

Verb’

Noun Noun’

a noun
Noun

a noun

According to the above, we have the following principle:

principle ‘Examplc 2°.
noVariables.
structureDescription
atree ((node noun bar terminal &anyTerminall):
(nodeSubtree verb bari):(nodeSubtree noun bari))
and
atree ((node noun bar,terminal &anyTerminal2):
(nodeSubtree verb barii))

This principle has the name ‘Example 2°. It has no variables in the variables
field of the rule. In the structureDescription ficld we describe the subtree that the X-
bar tree must have. As we notice, we want the X-bar trce to have the two subtrees
(node noun bar, terminal &anyTerminall) and (node noun bar, terminal
&anyTerminal2). There are however constraints for these subtrees. The first should

134

BUPT

be a subtrec of the subtrces that has the Verb® and Noun’ as tops. This is expressed
with the (nodeSubtree verb bari) and (nodeSubtree verb bari) respectively. The
second should be a subtree of the subtree that has the Verb”’ as top. This is expressed
with the (nodeSubtree verb barii).

Let us consider as cxamples of sentences for the above principle the same
examples that we used in the previous example:
a) The heat dricd the flowers
b) The flowers were dried
From thesc sentences and according to their trees that are shown in the
cxample I, we notice that the above principle can apply only to the first sentence. The
reason is that the above sentence includes the two subtrees that the principle of the

example 2 requires and that they fulfil the constraints of this principle.
These two subtrees are the following:

Noun Noun

heat flowers

And we noticc that the first one is a subtree of the subtree that has the Verb”’
at the top and the second one is the subtree of the subtrecs that have the Verb’ and
Noun’ at their top.

3.2.2.7 The EBNF of the structureDescription field

The EBNF form of the structureDescription field of principles and
transformations is the following:

sd-subtrec = “(* (sd-subtrec-x’’ | sd-subtrec-y | sd-subtree-y))™ «.” .

sd-subtrec-y”* = “(“ sd-node-y’* “.” sd-specificr "
(sd-subtrce-x™ | sd-subtrec-x '))”
[“:” sd-anaphors] .

sd-subtree-y’ = “(“ sd-node-y’ «,” (sd-subtree-y’ | sd-subtrec-y) «,”

135

BUPT

sd-subtrce-x'")" | *:7 sd-anaphors .

sd-subtrec-y = *(** sd-node-y . sd-terminal)™ | *:" sd-anaphors |.

p—

sd-subtrec-y’’ = “(** sd-subtree-x')"
[“transformationVariable™ sd-variablc-name].

sd-subtree-x’ = “(** sd-subtree-y’ “)”
[“:” “transformationVariable™ sd-variable-name].

Sd-SUbtl’ee-x = “(“ Sd-subtree_x u)w
[“transformationVariable™ sd-variable-name].

sd-subtree-y’’ = sd-subtree-vars.

sd-subtree-y’ = sd-subtrce-vars.

sd-subtree-y = sd-subtrec-vars.

sd-subtree-y’’ = sd-subtree-subtree.

sd-subtree-y’’ = sd-subtree-notSubtrece.

sd-subtree-y’’ = sd-subtree-nodeSubtree.

sd-subtrec-y’’ = sd-subtrec-notnodeSubtree.

sd-subtree-y’ = sd-subtree-subtree.

sd-subtree-y’ = sd-subtree-notSubtree.

sd-subtree-y’ = sd-subtree-nodeSubtree.

136

BUPT

sd-subtree-y’ = sd-subtree-notnodeSubtree.

sd-subtree-y = sd-subtrec-subtree.

sd-subtrce-y = sd-subtrec-notSubtrce.

sd-subtrec-y, = sd-subtree-nodeSubtree.

sd-subtree-y = sd-subtree-nothodeSubtrec.

sd-subtree-y’’ = “not” sd-subtree.

sd-subtree-y’ = “not” sd-subtree.

sd-subtree-y = “not” sd-subtree.

sd-subtree-y’’ = “aTree” sd-subtree.

sd-subtrec-y’ = “aTree” sd-subtree.

sd-subtrce-x = “aTree” sd-subtree.

sd-subtree-y’’ = “aFirstTree” sd-subtree.

sd-subtree-y’ = “aFirstTree” sd-subtree.

sd-subtree-y = “aFirstTrec” sd-subtree.

sd-subtree-y’’ = “leftMost” sd-subtree.

sd-subtree-y’ = “leftMost” sd-subtree.

137

BUPT

sd-subtrec-y = “leftMost™ sd-subtree.

sd-subtree-y’" = **(** sd-subtree operator sd-subtree)™

sd-subtrec-yx” = *(** sd-subtree operator sd-subtree)™

sd-subtree-y = *“(** sd-subtree operator sd-subtree).

sd-subtree-y’" = anyTree.

sd-subtree-y’ = anyTree.

sd-subtree-y = anyTree.

sd-specifier = sd-subtree-y’" | sd-subtrece-y.

sd-anaphors = subtree-terminal-variable-anaphors.

(Notc: The subtree-terminal-variable-anaphors and the terminal-variable-name,

node-variable-name, subtree-variable-name, tree-terminal-value, features-

variable-name, node-features-value and anaphor-variable-name are defined at

the variables definition chapter)

sd-terminal

sd-nodc-y”’

sd-node-y’ =

sd-node-y =

|’$

(“terminal” trec-terminal-value |

“terminal” “& ™ terminal-variable-name ;™
“anaphor™ “&"anaphor-variable-namc)

[“transformationVariable™ sd-variable-name].

YSRL}

(“node” node-name “barii” [*:"" sd-node-fcatures] |
6.9 ee

sd-node-vars) [“:” “transformationVariablc™ sd-variable-name].

(TP L)

(“node” node-name “bari” [*:” sd-node-features] |

[T LI

sd-node-vars) [“transformationVariable™ sd-variable-name].

(“node” node-name “bar” [*:” sd-node-features] |
sd-nodc-vars) [“:” “transformationVariable” sd-variable-name].

138

BUPT

(Note: The node-name is defined at the structures definition chapter)

sd-node-vars = “node” “&” node-variable-namc
“node” “&” node-variable-name™:™
“featurcs™ “&” features-variable-name.

sd-node-features = *“features™ (node-features-value
(“&features-variable-namece)).

sd-subtree-vars = “subtree™ “&subtrec-variable-name |
“subtree™ “&subtree-variable-name *:
“anaphor™ “&" anaphor-variable-name
“subtree” (sd-subtree-y’’| sd-subtrec-y’| sd-subtree-y)

* “anaphor” “&” anaphor-variable-name.

[P AT

sd-subtree-subtree = (sd-subtree-y” | sd-subtree-y) “: “subtree™
(sd-subtree-second-subtree-y” |
sd-subtree-second-subtree-y).

sd-subtrec-notSubtree =
(sd-subtree-x™’ | sd-subtrec-y’ | sd-subtree-y)
“” “notSubtree”
(sd-subtrce-sccond-subtree-y’” |

sd-subtrec-sccond-subtree-1).

sd-subtree-second-subtrec-y’’ =
“(* sd-node-y* "
(sd-specifier
sd-subtrec-second-subtree-y’” | “subtreePosition™) «,”
(sd-subtree-second-subtree-y” |
sd-subtrce-second-subtree-y’ | “subtreePosition”) «)”
[*“: sd-anaphors].

sd-subtree-second-subtree-y’ =
“(* sd-node-y’ «“,”
(sd-subtree-second-subtree-y” |
sd-subtree-y | “subtreePosition™) «,”
sd-subtree-second-subtree-y** «)”
[“: sd-anaphors }.

139

BUPT

sd-subtree-nodeSubtree =
(sd-subtree-y ™" | sd-subtree-x™ | sd-subtree-y)
M *nodeSubtree™
(sd-node-y’" | sd-node-y’ | sd-node-y).

sd-subtree-nothodeSubtree =
(sd-subtrce-y’" | sd-subtrec-x” | sd-subtree-y)
“” “notnodeSubtree™
(sd-node-y"" | sd-node-x" | sd-node-y).

"

operator = “and” | “‘or”.

140

BUPT

3.2.3 The structureCommands field of the principles and
transformations

As it was mentioned in a previous scetion, both principles and transformations
have three different ficlds.
These ficlds are the following:
¢ variables
e structurcDescription
e structurecCommands

In the structurcCommands ficld it is possible to describe the checks, 1o
change the variables values, to declare variables and transformations if the rule is of
transformation type or to exccute commands directly (¢.g. in a man-machine interface
software system). Thesc abilities are described in the following chapters.

3.2.3.1 Declaration of variables in the
structureCommands field

In the structureCommands ficld of principles and transformations we can
define new variables. The variables that we can define are variables of the variables
ficld category. These variables enable us to describe the functions of the
structureCommands ficld of principles and transformations.

The ways of stating the new variables are the following:

. variable type operator variable name set variable values

2. features nuame of variable set nree node

3. anaphor name of variable set terminal

4. anaphor nume of variable set subtree

5. subtree name of variable sct nextStructure [(Num)]

6. subtree nume of variable set previousStructure [(Num)|
7. subtree name of variable set particularStructure (Num)

In all the above cases, it is noticed that the definition of a new variable
requires a name. Everything regarding the variables of the variables ficld is applicd
for the name of this variable. Also, the name of cach new variable in the
structureCommands f{icld of principles and transformations must not be the same
with the one of the variables of the variables, structurcDescription and
structureCommands ficlds.

From the above casces for declaration of variables in the structureCommands

ficld, the first one is the general way of stating variables the same as in the variables
ficld of principles and transformations. The italic letters are clements that can change

141

BUPT

according to the case. Thus, the variable type operator can be one of the following
depending on the type of the vanable:

l. tree node operator : node

2. terminal element operator : terminal
3. anaphor operator : anaphor
4. node features operator : features
5. subtree operator : subtree

The variable values arc the values that are given to the variable. The method
that gives values to the new variable is the same with the one that is used for the
variables of thc variables ficld of principles and transtormations.

The sccond case is to state variable of the features type. In this case, the
difference is that the values that this new variable takes are specified by the features
of the rree node. It can be a tree node with its [eatures, a variable of the node type that
has been stated or can usce a variable that has already been stated.

The third casc is about stating variables of the anaphor type. The values that
the new variable will be have are anaphors of the terminal that follows the operator
set. It can be a terminal with its anaphors, a variable of the terminal clement type that
has alrcady been stated or a terminal clement that uses another variable that has
alrcady been stated.

The forth casc is for stating variables of the anaphor type. The values that the
new variable will have arc the anaphors of the subtree that follows the operator set. It
can be a whole subtree with its anaphors, a subtree that uses variables or a variable of
the subtree category.

The fifth case defines a new variable of type subtree which contains the next
structure of the X-bar trees of the linguistic system. The sixth case defines a new
variablc of type subtree which contains the previous structure of the X-bar trees of
the linguistic system. In these two cases it is possible optionally to sclect an n-th
previous or next tree. The seventh case defines a new vaniable of tvpe subtree which
contains a particular structure (according with the number that we use as parameter)
of the X-bar trces of the linguistic system. These cases are usclul il we want to move
at different X-bar trees of the linguistic system.

The variables of the transformationVariable category in the
structureDescription ficld of principles and transformations can be used to the above
cases of stating new variables, like all the other variables of the variables category.

Next, we shall analyze examples of stating new variables according to the
above cases:

1) The first casc is the gencral way of stating variablcs:

142

BUPT

a)

<)

d)

g)

b)

<)

node nl set article bar : features [+nominative, +masculine] or noun bari
In this example we define a new variable of the tree node type that has the
name nl and also has as values the nodes article bar @ features [+nominative,
+masculine} and noun bari.

terminal t] sct a or the
In this example we define a new variable of the terminal clement type that has
the name t1 and it also has as values the words “a” and *the”.

anaphor al set1l orjl orkl
In this example we define a new variable of the anaphor type that has the name
al and it also has the values il)1 K1

terminal (2 set the: anaphor &al
In this example we define a new variable of the terminal clement type that has
the name 12 and it also has as values the terminal clements that derive from the
word *the'. It also has the anaphors il, j1, K1.

features f1 set [+singular, +human] or [+plural, +adjective]
In this example we define a new variable of the node features type that has the
name fl and it also has the values [+singular, +human] and [+plural,
+adjective].

node n2 set noun bar: featurcs &f1 or noun bari : features &fl
In this example we define a new variable of the tree node type that has the
name n2 and it also has as values the nodes that derive from the node noun
bar and the node noun bari, to which we add the features [+singular, +human]
and [+plural, +adjective].

subtree si set (node &n2, terminal person) : anaphor &al
In this example we define a new variable of the subtree type that has the name
s1 and it also has the value (node &n2, tcrminal person) : anaphor &a2, where
the node is replaced by the variable n2 and the anaphors are replaced by the
variable al.

The second case is about the statement of new variables of the node features type.

features f1 set noun bar : features [+nominative,+singular]
In this example the node we are using is fully described without the use of
variables. Therefore, the value of the variable f1 s [+nominative, +singular].

features f1 set noun bari : features &nfl
In this examplc the node that exists on the right of the operator set uscs the
variable nfl for its features. As a result, the values for the new variable f1 will
be the values of the variable nfl that we use to describe the node’s features.
We must stress that the variable nfl must be alrcady stated, either in the
variables field or in the structureDescription field, where it takes valucs
from the X-bar tree that uses the rule or to the structureCommands field.

features f1 set &n2

In this example we state a variable of the node feature type that has the name
f1. This variable takes values from the nodes that give as values the variable of

143

BUPT

the node type with the name n2. If we consider that the variable n2 s the onc
that we have stated in the first category of examples, then the values ol the
variable 1 will be [+singular, +human] and [+ plural. +adjective]. We must
stress that the variable n2 must be alrcady stated above in the variables ficld
or in the structureDescription licld, where it takes values from the X-bar tree
that uscs the rule or to the structureCommands ficld.

3) The third casec is about stating new variables of the anaphor type. This variable

takes values from the ternunal elements.

a) anaphor al set *window’ : anaphor tl : anaphor 2

In this example we define a new variable of the anaphor type that has the name
al. The values of this variable are given by the terminal element “window™ and
the anaphors tl and t2.

b) anaphor al set ‘window’ : anaphor &tal

In this example we define a new variable of the anaphor type that has the name
al. The values of this variable arc given by the anaphors of the terminal
clement. These anaphors are given by the variable of the anaphor type that has
the name tal. We must stress that the variable tal must be already stated above
in the variables ficld or in the structureDescription ficld, where it takes
values from the X-bar tree that usces (he rule or to the structureCommands

field.

c) anaphor al set &t2

4)

a)

b)

In this example we define a new variable of the anaphor type that has the name
al. The values of this variable arc given by the terminal elements that are the
values of the variable 2. If we consider that the variable 2 is the one that we
have stated in the examples of the first category ol variables, then the values
that this variable will have are the 111 kI, We must stress that the variable (2
must be alrcady stated above in the wvariables field or in the
structureDescription ficld. where it takes values from the X-bar tree that uses
the rule or to the structureCommands ficld.

The fourth casc is about stating new variables of the anaphor type. This variable
takes values from the subtrees.

anaphor al set (node noun bar, terminal ‘window"):anaphor t1: anaphor (2.

In this example we define a new variable of the anaphor type that has the name
al. The values of this variable are the t1 and the 12 and they are given by the
subtree (node noun bar, terminal *window’) with the anaphors t1 and 2.

anaphor al set (node noun bar, terminal ‘window "):anaphor &tal

In this example we define a new variable of the anaphor type that has the name
al. The values of this variable are given by the anaphors of the subtree. These
anaphors are given by the variable of the anaphor type that has the name tal.

144

BUPT

We must stress that the vanable tal must be already stated above in the
variables ficld or m the structureDescription ficld, where it takes valucs
from the X-bar tree that uses the rule or to the structureCommands ficld.

d) anaphor al set &sl

In this example we define a new variable of the anaphor type that has the name
al. The values of this variable arc given by the anaphors of the subtrees that
arc the values of the variable s1. 1 we consider that the variable st is the one
that we have stated in the examples of the first category of variables, then the
values that this variable will have are the il jl.kl. We must stress that the
variable s1 must be already stated above in the variables ficld or in the
structurcDescription ficld, where it takes values from the X-bar tree that uses
the rule or to the structureCommands ficld.

3.2.3.2 The change of variables values in the
structureCommands field

Apart from the declaration of new variables in the structureCommands ficld
of principles and transformations, there is the possibility to change the values of the
variables that have been stated so far in this rule. These variables can fall cither in the
variables category or in the transformationVariable category.

All the methods of changing the values of the variables that have already been
stated in the variables, structureDescription and structurecCommands ficlds arc
described in this chapter.

Depending on the type of the variable, the abilitics to change the values of the
variables are the following:

1) For vanables of the terminal clement type:

a)terminal &name of the terminal variable set new terminal values
b)terminalElement &name of the terminal variable set new terminal value

The first case changes the values of the variable that has the name nume of the
terminal variable. The new valucs are the new terminal values. The new terminal
values can be a terminal element or a variable of the terminal type or a terminal that
uscs a variable for its anaphors.

The second case changes the values of the variable that has the name name of

the terminal variable. The change is that only the terminal clement changes without
any changes to the anaphors that the terminal element can possibly have. Therefore,
all the valucs of the terminal variable take as a value the very same terminal clement.
The terminal clement must be a constant and not a variable. It must be, for example, a
word or an article.

145

BUPT

2) For variables of the tree node type:

a) node &name of the node variable set new nodes

b) features &name of the node variable set new value of the node’'s
Jfeature

¢) nodeName &name of the node variable set new name of the node

d) nodeType &name of the node variable set new type of node

The first case changes the values of the node type variable and sets new nodes
as values with their features, if they cxist. The new nodes can be given without the use
of variables or they can use variables for their features or they can be given with a
variable of the node type that has some values.

The second case changces only nodc features of the node type variable. In this
case the new features can be given or a variable is used that has as values the new
features. These nodes acquire all the same features.

The third case changes only the names of the nodes that are the valucs of the
variable name of the node variable. All nodes acquire the same name which is the new
name of the node. The new name of the node should be given. It is not permitted to
use a variable.

The fourth case changes only the type of the nodes that are the values of the
variable name of the node variable. The types of the nodes are the X'7, X7, X, All the
nodes acquire the same type which is the new type of node. The new type of node must
be a constant and it should have onc of the following values: barii, bari, bar.

3) For variables of the subtrce type:
a) subtree &name of the subtree variable set new subtrees
For the variables of the subtree type there is only one case of changing the
values of the variables. The values of a subtree’s variable arc replaced by the new
values of the new subtrees. The new subtrees can or cannot have variables. If they do
have variables, then the values of the variable name of the subtree variable have all
thesc subtrees.
Next we shall analyze examples that are according to above cases.
1) First case of variables of the tcrminal element type
a) terminal &ttl set ‘computer’ : anaphor al
In this example we sct a new value to the variable ttl, the value ‘computer’

anaphor al

b) terminal &tt] set ‘computer’: anaphor &aal

146

BUPT

d)

2)

b)

In this cxample we sct a new value to the variable ttl, the value ‘computer’:
anaphor aal. Wc notice that for the anaphors of the terminal element we use
the variable that has the name aal. This variablc must be stated and it should
also be of the anaphor type. The variable aal could cither be stated cither in the
variables ficld or in the structurcDescription ficld or in the
structureCommands ficld. Thus, if the values of the variable arc the
anaphorTrace and the anaphorPronoun, then the new values of the variable ttl
will be the following:

‘computer’: anaphor anaphorTrace
‘computcer’: anaphor anaphorPronoun

terminal &ttl set &tt0

In this example we sct a new value to the variable ttl. The values that this
variable will have are the values of the variable tt0. We must stress that the
variable tt0 should be alrcady stated. The system will calculate all the values of
the variable 10 and will assign them as values to the variable ttl.

terminalElement &tt] set ‘the’

In this example we set a new terminal clement to the variable tt1. Namely, we
set new values to the terminal clements of all the values of the variable ttl,
without changing the anaphor. This new value is the article ‘the’.

The second case of variable of the trce node type

node &nnl set noun bar:features [+human]

In this example we sct a new value to the variable nnl. This value is the noun
bar:features [+human].

node &nnl set noun bar:features &1

In this example we set a new value to the variable nnl, the value noun
bar:features &{fl. We notice that for the features of the node we use the
variable ffl. This variable must be already stated and it should be of the node
features type. The variable {1 could cither be stated either in the variables ficld
or in the structureDescription ficld or in the structureCommands ficld. Thus,
if the values of the variable {fl arc the [-human, +singular] and the [-human,
+plural], then the new values of the variable tt1 will be the following;:

noun bar:features {-human, +singular]

noun bar:features [-human, +plural]

c) node &nnl set &n2

In this example we sct a new value to the variable nnl. The new values of this
variable are the values of the variable n2. This variable is of the node type and
should have already values.

d) features &nnl set [+human]

147

BUPT

In this example we sct a new value to the features of the nodes that are the
values of the variable nnl, the value [+human].

¢) features &nnl set &ftl

In this cxample we sct a new value to the features of the nodes that are the
values of the variable nnl. The new values of the features arc the [eatures that
arc the values of the variable 1. Thus, if the variable nnl has as a valuc the
nodes ‘verb’ bar:features [+move] and *verb® barii, and the variable ff1 has as
values the [+move, +human] and [+human]. then the new values of the variable
nnl are the following:

‘verb” bar:features [+move, thuman]

‘verb’ bar:features [+human]

‘verb’ barii:features [+move, +human]

‘verb” barii:features [-+Hhuman|

f) nodeName &nnl set verb
In this example we change the name of the nodes that are the values of the
variable nnl. All the nodes of this variable will have the name verb.

g) nodeType &nnl set bari
In this example we change the type of the nodes that are the values of the
variable nnl. All the nodcs of this variable will be of the bari type.

3) The second case of variablc of the subtree category

a) subtree &ssl set (node article bar, terminal the)
In this example we sct a new value to the variable ssl. This new value is the
subtree (node article bar, terminal the).

b) subtree &ssl set (node article bar, terminal &ttl)

In this example we sct a new valuc to the variable ssl. This new valuc is the
subtree (node article bar, terminal &ttl) that uses the variable ttl. If the variable
tt1 has the values *a’, *an’, ‘the’, then the new values of the variable ssl will be
the following subtreces:

(node article bar, terminal *a’)

(node article bar, terminal ‘an’)

(node article bar, terminal ‘the’)

c) subtree &ssl set &ss2
In this example we set as values of the variable ssl, the values of the variable

ss2. We take it as granted that the variable ss2 has already been stated and has
values.

All the above operators set new values to variables of the above types. There
are however operators that modify the values of the variablcs.

148

BUPT

These cascs are the following:

1) &name of variable addAnaphor name of unaphor

In this case the variable can be cither of the terminal clement type or of the
subtree type. The opecrator addAnaphor adds a ncw anaphor that is given undcr the
name name of anaphor. The new anaphor is added to all the values of the variablc
under the name name of variable. The new anaphor must be a constant and not a
variable.

2) &name of variable removeAnaphor name of anaphor

In this case the variable can be either of the terminal element type or of the
subtree type. The opcrator removeAnaphor removes the anaphor that is given under
the name name of anaphor. This anaphor is been removed from all the values of the
variable name of variable. The crased anaphor must be given as a constant and not as
a variable.

3) node &name of the node's variable addFeatures node features
In this case it is possible to add features to the nodes of the node type variable.

The node features arc those that follow the operator addFeatures. They should be
given and it is not permitted to usc a variable.

4) node &name of the node's variable removeFeatures node features

In this case it is possible to remove features from the nodes of the node type
variable. The node featurcs that are removed are those that follow the operator
addFeatures. The nodc fcatures should be given and it is not permitted to usc a
variable.

5) For the variables of every possible type, there are the following two operators:

a) &variable name addValues values of variable
b) &variable name deleteValues values of variable

Thesc operators change the valucs of variables of any type by adding or
removing their values.

149

BUPT

Next we shall analyze examples that correspond to the above cascs and show
the possibilities provided by the methodology.

a) &ttl addAnaphor anaphorTrace

In this example, the anaphor anaphorTrace will be added to all the terminal
elements that are the valucs of the variable ttl. If the variable ttl has the
values ‘the’: amaphor anaphorl and ‘a’: amaphor anaphor2, then the new
values of the vaniable ttl arc the following:

‘the’: anaphor anaphorl: anaphor anaphorTracc

‘a’: anaphor anaphor2: anaphor anaphorTracc

b) &ttl removeAnaphor anaphorTrace

In this example, the anaphor anaphorTrace will be removed from all the
terminal clements that arc the values of the variable ttl. If the variable tt] has
the values ‘the’: anaphor anaphor!: anaphor anaphorTrace and ‘a’: anaphor
anaphor2: anaphor anaphorTrace, then the new values of the variable ttl are
the following:

‘the’: anaphor anaphorl

‘a’: anaphor anaphor2

¢) node &nnl addFeatures [-human,+singular]

In this example we will add the features [-human,+singular] to all the nodes
that are the values of the variable nnl. For example. if the variable nnl has the
values ‘computer’ bar and ‘car’ bar:features [+nominative], then the new
values of the variable nnl are the following:

‘computer’ bar :features [-human,+singular]

‘car’ bar:features [+nominative, -human,+singular]

d) node &nnl removeFeatures [-human,+singular]

In this example we will remove the features [-human,+singular] from all the
nodes that are the values of the variable nnl. For example, if the variable nnl
has the values ‘computer’ bar:features [-human,+singular] and ‘car’
bar:features [+nominative,-human,+singular], then the new values of the
variable nn1 are the following:

‘computer’ bar

‘car’ bar:features [+nominative]

All the above operators can change the values of variables. They calculate all

the possible values of the left and right part then they set according to the operator the

150

BUPT

new set of values for the variable on the left argument. These values do not contain
variables. For the calculation of the values of a subtrec variable the operator anyTrce
that may exist is substituted by the trace opcerator t. The only exception is the first
operator addValues that docs not calculate all the values of the left and right part. [t
only adds the right argument in the sct of values of the left argument.

Also, it is possible to calculate all the possible values of a variable according to

the other variables that it may use.
The format of this case is the:

o &name of variable set &name of variable

The left and right arguments must have the same variable name. This variable
must have been declared.

Finally, therc is a command that calulates all the values of variable and deletes
all the possible duplicate valucs that may cxist.
This command is the following:
e deleteDuplicates(Variuble Name)
The variable name can be the name of a variable of every type and kind.

3.2.3.3 The grammar variables in the
structureCommands field

Both the general variables and the transformation variables can be declared as
grammar variables. These grammar variables can be used by more than one principle
and transformation. This means that a variablc that has been declared in a rule can
be used and manipulated (use this variable or change the values of this variable) by
the next rule or rules in every field of the three ficlds of a principle or transformation.

There are two operators related with grammar variables:
e addGrammarVariable name of variable
e removeGrammarVariable name of variable

The first operator defines as grammar a variable that has already been defined
in one of the fields of a principle or transformation or it is possible to be declared by a
next principle or transformation.

The second operator resets a grammar variable as a local one but this variable
is still availabe in this principle or transformation that the removeGrammarVariable
was executed.

Both of the above operators are usced in the structureCommands ficld of a
principle or transformation.

Also, as it was mentioned above, these operators can be used in the main body
of a grammar or even outside of a grammar to dclete or declare a grammar variable
that can be used in the next rules and grammars. At the case of using the operator

161

BUPT

removeGrammarVariable, this grammar variable will not be available in the next
rules or grammars.

3.2.3.4 The transformations in the structureCommands
field of transformations rules

So far, the abilities regarding the change of the values of the variables have
been described. Apart though from changing the values of the variables, it is also
possible to modify the X-bar structure on which a transformation is applicd. The
various variables arc very important for the modification of the X-bar trees.

The operator in order to state a sct of transformations is thc transformations.
The general pattern for the transformations is the following;:
transformations (ransformation 1 also transformation 2 also. ..

It is possible to exist more than one such pattern in a transformation rule.
Every transformation is declared by the operator transformations and a
sequence of transformations that are connected by the operator also.

Each transformation of transformations is defined as following:
&name of variable of type transformationVariable transform new value

The name of variable of type transformationVariable is a variable of type
transformation variable that have been declared in the structureDescription ficld
of the transformation rule.

The new value can be a variable of type tree, node or terminal. Also, it can be
a tree, a node or a tcrminal that may contain differrent kinds of variables. These
variables can be variables of transformation type. The type of variable with name
&name of variable of type transformationVariable must match the type of new value.

It must be mentioned that it is possible to change the values of the
transformation variables with the operators that have been described in the previous
sessions or to declare transformation variables as grammar oncs.

The above description of the transformations in the presented methodology
shows that its possibilities are more general than the Chomsky’s minimal program
(Chomsky, 1995) that has as central operations the generalized transformation and the
move-a. The generalized transformation is a structure building operation that builds
trees in a bottom-up order. This is possible in the presented methodology by using
transformations rules and initial or produced x-bar structures of category X, X" and
X?’. These trees can be sclected by principles or grammars that usc different
commands and especially commands that get a specific X-bar structure from the sct of
available structures. The move a of the Chomsky’s theory is a transformation that

152

BUPT

moves an element in a higher position (it moves left for the position that it has) in a x-
bar tree that already has been built. So. the transformation rules and cspecially the
transformations command of the presented methodology gives higher and more
gencral possibilities for describing the required transformations than the Comksky’s
approaches (Fouskakis, 2005b).

The format of the above rules shows that the transformation possibilities are
open and more flexible and powerful than in the TAG (R. Millett, 2004). Operations
like adjunction or subjunction in TAGs and in the minimalistic program of Chomsky
are a subset of the transformation possibilities of this language.

Also, the presented language takes in consideration comments related the
parsing strategies with clementary trees (Fong, 2005). The above transformation rules
and the variables permits multiply parallel construnction of structures by its
clementary trees and overcome these comments.

Next we shall analyzc a series of examples about the transformations.
Example |

We consider that we have stated two variables of the transformationVariable
category in the structurcDescription ficld of a transformation. These variables have
been stated on two different nodes of the X-bar tree. These nodes are described in the
structure of the structureDescription ficld of this transformation. We want to change
the content of these nodes.

We consider that these two variables have the names sdnl and sdn2.

In order to change these two nodes we have the following possibilities to state
transformations:

a) transformations
&sdnl transform noun bar:features [+human] also
&sdn2 transform verb barii:features [+plural]

In this case we have the alteration of two nodes that result in a new tree that
has these nodes changed. The new values of the nodes are given directly
without using any variables and are the following:

1) for the variable sdnl is the noun bar:features [+human]

i1) for the variable sdn2 is the verb barii:features [+plural]

b) transformations
&sdnl transform &nl also
&sdn2 transform verb barii:features &1

In this case we have the altcration of two nodes where both the stated variables

of the transformationVariable category also change. We could of course
change only onc of the two valucs, by using one of the two transformations.

153

BUPT

The transformation for the variable sd1 has as a result, the node of the tree that
uses the rule to get all the values of the variable of the node type that has the
name nl.
The variable that gives the new values could be the sdnl itself. This could be
done because the system changes the structure and the elements of the tree that
uses the transformation only 1 we exccute the transformation command. The
variable sdVarl can change i content like all the vanables and with the
methods that we described in previous chapters.
Thus, for example, we can add a feature to a node or remove a feature from
one node.
Supposce that the variable sdnl had the value:
verb bari:features [+human]
and we cxccute the command
node &sdnl addFeatures [+plural]
then the vanable sdnl has the value:
verb bari:features {+human, +plural]
now we can perform the transformation:
transformations &sdnl transform &sdnl
that will change the respective node of the X-bar tree that uses the rule.

The transformation for the variable sdn2 has as a result, the node of the tree
that uses the rule to get as values all the nodes verb barii (Verb®’) that have as
features the values of the variable f1. For example, if the variable {1 has the
values [+human] and [+plural]. then the two new nodes for the X-bar tree are
the following:

i) verb barii : features [+human]

i1) verb barii : features [+plural]

Therefore, from the X-bar trce that uscs the transformation we have the
production of all the possible new trees that derive from the replacement of the
respective tree nodes by the new nodes.

Example 2

We consider that we have stated a variable of the transformationVariable

category in the structureDescription ficld of a transformation. This variable has been
stated on a terminal element described in the structure of the structureDescription
ficld of this transformation. We want to change the content of this terminal clement.
Suppose that this variable has the name sdtl.

In order to change this terminal clement we have the following possibilities to

state transformations:

a) transformations

&sdtl transform ‘the :anaphor anaphorTrace

154

BUPT

in this case we have the alteration of the terminal element of the X-bar tree
and the production of a new tree. This transformation assigns a new terminal
clement, the word ‘the” with the anaphor anaphorTrace.

b) transformations
&sdtl transform &t

This transformation changes the respective terminal clement of the X-bar tree
and assigns as values all the terminal clements that are the values of the
variable t1. This variable must be of the terminal type and it should be alrcady
stated. This results in the production of as many new trees as the values of the
variable t1.

We can also use the variable sdtl instcad of the variable tl. For cxample, we
can add an anaphor to the terminal clement of the tree that uscs the rule.
In order to do that, we must perform the following steps:
Supposc that the variable sdtl had as terminal clement the word:
*housce’
and we cxecute the command:
&sdtl addAnaphor anaphorTrace
then the variable sdtl has the value:
‘house’: anaphor anaphorTrace

now we can perform the transformation:
transformations &sdt!l transform &sdtl
that will change the respective node of the X-bar tree that uses the rule.

Example 3

We consider that we have stated a variable of the transformationVariable
category in the structureDescription ficld of a transformation. This variable has been
stated on a subtree described in the structure of the structureDescription ficld of this
transformation. We want to change the content of this subtree.

Supposc that this variable has the name sdstl.

a) transformations
&sdtl transform (node noun bar terminal ‘the”)

In this case we have the alteration of the subtrec of the X-bar tree and the
production of a new tree. This transformation results in the new subtree (node

noun bar, terminal ‘the’).

b) transformations
&sd] transform &t

This transformation changes the respective subtree of the X-bar tree with the
subtrees that are the values of the variable tl. This variable must be of the

155

BUPT

subtrec type and it should alrcady be stated in this rule before the
transformation.

¢) transformations
&sdl transform (node &nl terminal ‘the’)

This transformation changes the respective subtree of the X-bar tree with the
subtree (node &nl, terminal “the’). This subtree has the variable nl that
should be of the tree node type and it should already be stated e this rule
betore the above transformation. Thercefore, we will have as many subtrees as
the values of the variable nl that fit i the subtree.

Example 4
Next we shall sce how the transformation of the passive voice (llacgeman,
1993) is described in the present methodology.
transformation ‘Passive Voicc Transformation’.
noVariables.
structureDescription
(node 'V’ barii,
anyTree,
(node &nd,
subtree &sbl,
(node ‘N’ barii. anyTree. anyTree):transformationVariable sdi)

):transformationVariable sd2.

structureCommands (
&sdl addAnaphor il,

transformations
&sd2 transform
(node ‘V’ barii, subtree &sdl.(node &nd.subtree&sbl, t:anaphor il))

Analyzing the above transformation, we notice that no variables are stated in
the variables ficld, this is why we use the operator noVariables.

Also, in the structureDescription ficld we describe the following tree:

156

BUPT

\aw

Node nd

anyTree N™

Subtree sbl

anyTree anyTree
In the structureCommands ficld we describe the transformation. In order to
achicve the desired transformation, we add first the anaphor il to the subtree that has
the top N*™ and then we use the subtree with the transformation command and we
produce the following subltree:

V’§

Node nd

Subtree sdl

Subtree sbi t with anaphor il

where the subtree sd |l is the subtree with the top N™* and the anaphor il.

Cxample 5

We will also describe the rule that shows the shift of the anaphoric element in
a sentence that has a relative clause.

transformation ‘Transformation of Anaphor Sentence’.
noVariables.

structureDescription
(node ‘CP’ barii,
anyTree,
(node ‘CP’ bari,
subtree &sbl,
(node ‘IP’ bartii,
(node anaphor bar, terminal &anl), subtree &sb2))
):transformationVariable sd1.

157

BUPT

structureCommands (
&anl addAnaphor i1,

transformations
&sdl transform
(node ‘CP’ barii,
(node anaphor bar:features [+accusative], terminal &antl),
(node *CP’ bari,
subtree &sbl,
(node ‘IP’ barii, tanaphor il, subtree &sb2)
)
)

With the transformation that we have stated above, we transform the following
subtree.

Ccp>

anyTree P>

subtree sbl

anaphor subtree sb2
clement

The new tree of the input sentence will contain the following subtree and in
this way we move the anaphoric element to the qualifier of the CP*" node and we put
the trace in the previous position of the anaphoric element.

cp”

Anaphor

P’
Element

Subtree sbl

Anaphor
trace

subtree sb2

158

BUPT

3.2.3.5 The controls in the structureCommands field

In the structureCommands ficld of principles and transformations it is
possible to conduct a serics of controls by using if-then-else structures. These
controls dcal with the scveral cases that the rule must cover.

In order to conduct these controls, there is a scries of control operators for the
control condition if which is a part of the if-then-else structure.

More specifically, there are the following two control commands:

ifThen(condition.commands 1)
ifThenElse(condition.commands 1,commands 2)

It is noticed that both commands have the condition which examines if certain
desired conditions exist. The result of these control commands can be true or false.

The first of the above two commands has two operands, the condition and the
commands 1. The command ifThen examines the condition, namely the first operand,
and if it’s falsc, then it doesn’t exccute the commands of the second operand and the
system procecds in the exccution of the next command in the structureCommands
field of principles and transformations. If the condition is true, then the command
ifThen proceeds in the exccution of the commands of the second operand. If these
commands are not exccuted properly, then the execution of the ifThen command is
considered to have failed. As a result, the specific principle or transformation also
fails, sincc a command of the structureCommands ficld was not cxecuted
successfully.

The second command, the ifThenElse, has one more operand apart from the
condition and commands 1| which is the commands 2. The ifThenElse command
cxamines if the condition is true and then exceutes the commands 1. 1f the condition is
false, then the command ifThenElse exccutes the commands 2 and procecds in the
next after the ifThenElse command. If onc of the commands 1, commands 2 fails,
then the whole ifThenElse command fails too and as result, the specific principle or

transformation also fails, since a command of the structureCommands ficld has
failed.

The controls in the condition dcfinition of the above commands, can be
applied on the elements of the following types:

1) Anaphors

2) Terminal elements
3) Node Features

4) Tree Nodcs

5) Subtrees

159

BUPT

A) Opcrators for the anaphors

anaphor 1 equal anaphor 2
anaphor 1 notEqual anaphor 2
anaphor 1 exists anaphor 2

o I -

The above operators can have as left and right definition one of the tollowing
clements:
a) asequence of anaphors or a variable of anaphor type
b) a variablc of terminal type or a terminal that may contain variables
¢) variable of subtree type or a subtree that may contain variables

In the case of a sequence of anaphors, it is necessary to form the left and right
arguments as:
anaphor & VariableNamel :anaphor & VariableName2: . .ctc.. ..
The other cases do not require operators in the left and right arguments.

The first operator checks if at least one of the values of anaphors of the left part
is ecqual with one of the values of anaphors of the sccond part. T the left and the right
parts are sequence of anaphors. it is necessary (o exist at least one sequence of values
of anaphors at the left part equal with a scquence of values in the right part.

The second operator is opposite of the first.

The third opcrator checks if in the left anaphor exists the right anaphor. The
right operator must be onc specific anaphor. The variables arc not permited in this
case.

Next we shall analyze a scries of examples that show all the cases of using the
abovc operators:

a) &al cqual &a2
b) &al notEqual &a2

In these two examples we check if the anaphors of the left definition variable
are samc with the anaphors of the right definition or different from them. The
variables al and a2 must be of the anaphor type and they should have alrcady
been stated. The operator equal will check if at [east one value of the anaphors
of the variable al is equal to at lcast one value of the anaphors of the variable
a2, while the operator notEqualwill check if all the values are different.

¢) &al exists anaphorTrace
In this example we check if the anaphor with the name anaphorTrace is one of
the anaphors that has as valuces the variable al. This variable should be of the

anaphor type and it should have alrcady been stated.

d) &tl exists anaphorTrace

160

BUPT

In this example we cheek il the anaphor with the name anaphorTrace is onc of
the anaphors of one of the terminal clements that are the values of the variable
t1. The variable t1 should be of the terminal clement type and it should have

already been stated.
¢) &stl exists anaphorTrace

In this example we check if the anaphor with the name anaphorlrace is one of
the anaphors of one of the subtrees that are the values of the variable stl. The
variable stl should be of the subtree type and it should have alrcady been
stated. The anaphors ol the subtrees that the operator takes mto account. are
those that have been stated for the subtree and not for a subtree of this subtree.
For example, suppose we have the following subltree:

(node articlc bar, terminal ‘the’:anaphor al):anaphor a2

this subtree is of the X catcgory and has article as a node name and the word
‘the as a terminal clement. The anaphor that the opcrators cqual,
notEqualand exists take into account is the a2 that concerns the whole subtree
that we consider.

f) anaphor anaphorTracc:anaphor anaphorPronoun cqual &al

In this example we check if the variable al has as values the anaphorTrace and
anaphorPronoun. This variable should be of the anaphor type and it should
have alrcady been stated. Also, in this example, we notice the way in which
we should describe the anaphors, when they are given in detail and not with
the use of a variable. Thus, the two anaphors are described as follows:
anaphor anaphorTracc:anaphor anaphorPronoun. The operator anaphor is
the operator for the anaphor.

B) Opcrators for terminal clements

{. terminal terminal 1 equal terminal terminal 2

2. terminal terminal 1 notEqual terminal terminal 2

3. terminalElement terminal | equal terminalElement terminal 2

4. terminalElement terminal 1 notEqual terminalElement erminal 2

The first and the second operators check if the terminals are cqual or not. The
terminals can be cither variables or terminals that may contain variables.

The third and the forth opcrators check if the terminals are cqual or not
without checking the anaphors.

The left is equal with the right part if at least onc of their possible values is
cqual.

161

BUPT

Next we shall analyze a scrics of examples that show all the cases of using the
above operators:

a) terminal &t equal terminal &12
b) terminal &1l notEqual terminal &t2

In these two examples we compare the terminal elements of the variable th to
those of the variable (2. The variables (1 and 2 must be of the terminal
clement type and they should have been stated. In the example a) we compare
if a terminal clement of the left part is the same as the terminal clement of the
right part. In the example b) we examine if they are diflerent. In order to
compare these terminals we also take into account the anaphors of the terminal
clements.

¢) terminal ‘the’:anaphor anaphorTrace equal terminal &t

In this example we cxamine if the:anaphor anaphorTrace is the terminal
clement that the variable t1 has as a value. This variable must be of the
terminal element type and it should have been stated.

d) terminalElement &tl equal terminalElement &12
e) terminalElement &t]1 notEqual terminalElement &2

In these two examples we compare the terminal elements of the variable t1 to
those of the variable t2. The variables t1 and t2 must be of the terminal
element type and they should have been stated. In the example d) we compare
if a terminal element of the left part is the same as the terminal clement of the
right part. In the example ¢) we examine if they are different. In order to
compare these terminals we do not take into account the anaphors of the
terminal clements, but only the terminal clement.
For cxample, if we supposc that the variable t1 has the value:

‘the:anaphor anaphi: anaphor anaph?2
and the variable 12 has the value:

‘the” :anaphor anaphorTrace
then we apply the condition of the example d) but not of the example ¢). The
reason is because both variables have as a terminal the word ‘the’. Also, we
don’t apply the condition of the example a) but we apply the condition of the
example b). The reason is that the variable t1 has a terminal clement with the
anaphors anaphl and anaph2, while the variable (2 has a terminal clement with
the anaphor anaphorTrace.

C) Operators for node features

1. features I equal features 2
2. features | notEqual features 2
3. features | exists feature 2

162

BUPT

4. features | subsets features 2
S. features | aCommon features 2

The left and the right arguments of the above operators can be cither nodcs or
[eatures of a node. Also, they can be either variables of the features type or nodes that
may contain variables.

It is not required to usc the type operators before the lelt or the right part.

At the third casc the right part must be a simple feature:

+ Nume of the feature

- Nume of the feature

Name of the feature

Name of the feature X=Name of the featurey

[name of the featurel, ... name of the featureNj= name of
the featureX

The above operators have the following function:
The first operator examines if the features of the left operand are the same as

the features of the right operand. If variables are used, the operator examines if they
have a value for which the fcatures of the left operand are the same as the featurces of
the right operand.

The sccond operator examines if the features of the left operand are different
from the features of the right operand. If variables are used, the operator must not find
a value of these variables, for which value the features of the Ieft operand is the same
as the features of the right operand.

The third operator examines if the features of the left operand have the feature
of the right operand. The feature of the right operand must be given and it should not
be a variable. If a variable is used for the Ielt operand, then the operator should find a
value of this variable for which valuc the features of the left operand have the feature
of the right operand.

The fourth operator examines if the features of the left part are a subtotal of
the features of the right part. Namely, the features of the left part should exist in the
fcatures of the right part. I variables are used in the left or the right operands, then the
operator examines if the above applies on a value of these variables.

The fifth operator examines if the features of the left definition have onc
common fcature with the features of the right definition. If variables are used in the
left or the right operands, then the operator examines if the above applies to a value of
these variables.

Except the gencral operators for feature checking, there are additional
operators that arc only for the following kind of featurcs:
® Name of the featureN=Name of the featureY
o [name of the featurel, ..., name of the featureNJ]= name of the featureX’
Thesc operators check the value of the right part of these kind of features by
taking as id their Ieft part. It means that they cheek the right part if their lefit part is the
same. They return true if there is at least one feature of the above type that has the
same lefl value in both operands and the right part of the feature has a relation
between the two operands equal, smaller or greater respectively to the used operator.
These operators are the following:

163

BUPT

1. equalFeaturc(FeatureLeftPart Operand 1 .Operand2)
2. smallerFeaturce(/fcaturel.eptPart Operand 1 .Operand?)
3. greaterFeature(/caturel.eftPart. Operand 1 .Operand?)
The Operandl and Operand? of the above operators can be cither nodes or
fcatures of a node. Also, they can be cither variables of the features type or nodes that
may contain variables.

Next we shall analyze a serics of examples that show all the cases of using the
abovc opcerators:

a) &fl equal &f2
b) &f1 notEqual &f2

In these two examples we compare the node features of the variable {1 to those
of the variable f2. The variables {1 and 2 must be of the node features type
and they should have been stated. In the example a) we compare if one of the
values of the variable f1 is the same as the values of the variable 2. In the
example b) we examine if all values are different.

¢) [+plural,+human] cqual &fl

In this example we examine if one of the values of the variable t1 is the
[+plural,+human]. The variable f1 must be of the node features type and it
should have already been stated.

d) &f1 exists +plural

In this example we examine if one of the values of the variable f1 has the
fcature +plural. The variable {1 must be of the node features type and it should
have already been stated.
For example if the variable 1 has the valucs:

[. [+human,+plural]

2. [+human,-plural]
then this operator gives a true value. The rcason is that the first valuce of the
variable I1 is the [+human,+plural} that has the feature +plural.

e) &fl subsets &f2
f) &fl aCommon &f2

In these two examples we compare the node features of the variable f1 1o those
of the variable f2. The variables {1 and 2 must be of the node features type
and thcy should have been stated. In the example ¢) we compare if one of the
values of the variable f1 has features that arc a subset of the featurcs assigned
to a value of the variable 2. In the example) we examine it a value of the
variable 1 has at least one common featurc that exists in a value of the
variable 2.

164

BUPT

g) |+plural,+human) subsets &1

In this example we examine if the features [+plural,+human] cxist in a value
of the variable 1. That means that a value of the variable 1 should have at
feast the fcatures +plural and +human. The variable {1 must be of the node
features type and it should have been stated.

h) [+plural.+human] aCommon &f1

In this example we examine if the features [+plural,+human] and onc of the
values of the variable f1 have at least one common feature. The variable fl
must be of the node features type and it should have been stated.

D) Opcerators for tree nodes

node node | equal node node 2

node node ! notEqual node node 2
nodeName node I equal nodeName node 2
nodeName node | notEqual nodeName node 2
nodeType node | equal nodeTypenode 2
nodeType node | notEqual nodeTypernode 2

S AW -

In all the above nodcs it is possible to use either node variables or nodes that
may contain variables.

The first operator examinges if the node of the left operand is the same as the
nodc of the right operand. In order for the two nodes to be the same, they must have
the same name, the same type (X', X* or X) and the same features. If variables arc in
the left or the right operand, then the above should apply for a value of these
variables.

The second operator examines if the node of the left operand is different from
the node of the right operand. In order for the two nodes to be different, they must
have different name or different type (X', X” or X) or different features. If variables
are used in the left or the right operand, then for all the values of thesc variables the
nodes must be different.

The third operator examinces if the node of the left operand has the same name
with the node of the right operand. If variables arc used in the left or the right
operands, then the above should apply for a least one value of these variables.

The fourth operator examines if the node of the left operand has different
name from the node of the right operand. If variables are used in the left or the right
operand, then the above should apply for every value of these variables.

The fifth operator examines if the node of the left operand has the same type
with the node of the right operand. If variables are used in the left or the right
opcrand, then the above should apply for a least one value of these variablcs.

165

BUPT

The sixth operator examines if the node of the left operand has different type
from the node of the right operand. If variables are used in the left or the right
operand. then the above should apply for all the values of these variables.

Next we analyze a series of examples that show all the cases ol using the
above operators:

a) node &nl cqual node &n2
b) node &nl notEqual node &n2

In this example we comparc the values of the variables nl and n2. These two
variables must be of the tree node type and they should have alrcady been
stated. The example a) examines if the variable nl and the variable n2 have a
common valuc. The example b) examines if all the values of the variable nl
and the variable n2 arc different.

¢) nodeName &nl equal nodeName &n2
d) nodeName &nl notEqual nodeName &n2

In this example we compare the values of the variables nl and n2. These two
variables must be of the tree node type and they should have already been
stated. The example ¢) examines if the variable nl has a value with the same
node name with a valuc of the variable n2. The example d) examines if the
variable nl doesn’t have a value with the same node name of a value of the
variable n2.

¢) nodeType &nl equal nodeType&n2
f) nodeType &nl notEqual nodeType&n?2

In this example we compare the values of the variables nl and n2. These two
variables must be of the tree node type and they should have alrecady been
stated. The example ¢) examines if the variable nl has a value with the same

node type with another value of the variable n2. The example) examines if

the variable nl doesn’t have a value with the same node type of a value of the
variable n2.

g) nodeType (article bar) equal nodeType&n|

In this example we check if the variable nl has a value of the X category. The
variable nl must be of the node type and it should have been alrcady stated.

h) nodeName (article bar) equal nodeName &nl
In this example we check if the variable nl has a value with the node name

article. The variable nl must be of the node type and it should have been
already stated.

166

BUPT

) Operators for subtrees

!. subtree subtree I equal subtree subtree 2
2. subtree subtree | notEqual subtree subtree 2

The Ieft and the right subtree of the above operators can be given or it can be a
variable or a subtrec that uses variables. The above operators take arguments that can
be cither variables or subtrecs that may contain variables. The special operator
anyTree can be uscd at any position in the left or right subtrces. This opcrator
declares that it is not intercsting the subtree that is going to be at this position of a
tree. Also, the operator t for the denotation of a trace of a tree is used. Both of these
operators can be followed or not by anaphors.

The first operator examines if the subtree of the left definition is the same as
the subtree of the right definition. If variables are used in these two operands, then at
Icast onc of the values of these variables should have the same subtree.

The first operator examines if the subtree of the left definition is different from
the subtree of the right definition. If variables are used in these two operands, then all
these variables values of the left and right subtree must be different.

Two trees are cqual if they have the same nodes, features of nodes, terminals,
anaphors and structure.

Next we shall analyze a scries of examples that show all the cases of using the
abovc opcrators:

a) subtree &stl equal subtree &st2
b) subtrec &stl notEqual subtree &st2

In this example we compare the values of the variables stl and st2. The
variables stl and st2 should be of the tree node type and they should have been
stated. The example a) checks if the variable stl and the variable st2 have a
common value. The example b) checks if all the values of the variable stl are
different from the values of the variable st2.

¢) subtree (node article, terminal ‘the’: anaphor anapl):anaphor anap2 equal
subtree &stl

In this example we examine if one of the values of the variable is the (node

article, terminal ‘the’: anaphor anapl):anaphor anap2. The variable stl must
be of the subtree category and it should have been already stated.

F) Finally, there are two operators that check the existence of a variable:
e varExists (Name of Variable)

167

BUPT

o grammarVar (Nume of Variable)

The first case checks if a variable has alecady been declared.

The sccond case checks if a variable has alrcady been defined as grammar one.

Thesc operators can be used in a if-then-cise rule, in the main body of the
structurcCommands ficld of the principles and transformations and in the grammars.

So far, various operators have been desceribed that can be applicd on elements
of dillerent types. There are however operators that combine the above check
possibilities.

1. check 1 and check 2
2. check I or check 2
3. not clicck

From the above opcrators the first one. in order to give a true result, requires
both the check 1 and the check 2 to be truce.

The sccond operator, in order 1o give a true result, requires cither the check |
or the chieck 2 1o be true or both of them.

The third operator gives a true result if the check gives a lalse result.

At all the above cases, the names of the variables are used with the format:
&Name of Variable

In this part of the principles or transformations, it is possiblc to use
respectively the following commands:

e principlelncorrect

¢ transformationlncorrect

These commands declare that the application of a rule on an X-bar trce is
falsc.

3.2.3.6 The EBNF of the structureCommands field

The statement for the sce-principle and sce-transformation of the
structureCommands ficld of principles and transformations is the following:

scc-principle = scc-principle-commands®.”.

scc-transformation = scc-transformation-commands*.™.

scc-principle-command =
scc-variables-declaration-vars |
sce-variable-valuc-change |

168

BUPT

(“if Then(* scc-condition *.” scc-principle-commands)™) |

(“ifThenElse(* sce-condition . sce-principle-commands ="
sce-principle-commands *)”) |

“addGrammarVanable” name |

“removeGrammarVariable™ name |

“varExists(* name)" |

“grammarVar (" name *)" |

“deleteDuplicates(** name)™ |

“principlelncorrect™ |

“transformationIncorrect™.

scc-transformation-command=
scc-variables-declaration-vars|
scc-variable-value-change|
(“if Then (** scc-condition *,” sce-transformation-commands*)”) |
(“if ThenLlse (** sce-condition . sce-transformation-commands
“” sce-transformation-commands *)”) |
scc-command-tranformations |
“addGrammarVariable™ name |
“removeGrammarVariable™ name |
“varExists (** name)™ |
“grammarVar(* name *)" |
deleteDuplicates (name 7)™ |
*principlelncorrect™ |
“transformationlncorrect™.

scc-principle-commands = *“(** sce-principle-command

f oo

17 see-principle-command }).

scc-transformation-commands = *(** scc-transformation-command
{“.” scc-transformation-command}).

scc-variables-declaration-vars=
variables-declaration |
(“features” featurcs-variable-name “set” tree-node-valuce) |
(*‘anaphor” anaphor-variable-name “set”
(trece-terminal-value | subtree-value)) |

(“subtree™ subtree-variable-name “set”

“nextStructure™ [number{number})"}) |
(**subtree” subtrec-variable-name “set”

“previousStructure™ [number {number} <)) |
(“subtree™ subtree-variable-name “set”

“particularStructure ("’ number{number} “)™).

169

BUPT

scc-variable-valuc-change=
(“&”name “set” “&’namc) |
(“&”subtree-variable-name “addValues™ subtree-valuc) |
(“&node-variable-name “addValues™ trec-node-value) |
(“&”terminal-variable-name “addValucs™ tree-terminal-value) |
(“& anaphor-variable-name “addValues™ anaphor-value) |
(“&features-variable-namc “addValues™ node-features-value) |
(“&subtree-variable-name “deleteValues ™ subtree-value) |
(“&”’node-variable-name “delete Values ™ tree-node-value) |
(“&”terminal-variable-name “deleteValues ™ tree-terminal-value) |
(“&’anaphor-variable-name “deleteValues ™ anaphor-valuc) |
(“&features-variable-name “deleteValues ™ node-features-value).

scc-variable-value-change=
(“terminal” “&” terminal-variablc-name “set” trec-terminal-value) |

(“terminalElement” “&” terminal-variable-name “sct™ terminal-element).

scc-variable-value-change=
(“node” “&” node-variable-name “set” trec-node-value) |
(“features” “&’nodc-variable-name “sct™ nodc-features-value) |
(“nodeName” “&” node-variable-name “set”™ node-name) |

(“nodeTypc” “&” node-variablc-name “sct” (“barii™ | “bari™ | “bar™)).

scc-variable-value-change=
“subtree” “&” subtree-variable-name “set” subtrce-value.

scc-variablc-value-change=
“&” (terminal-variable-namec | subtree-variablc-name)
(“addAnaphor” | “remove Anaphor”)
anaphor-name.

scc-variable-value-change=
“node” “&”node-variable-name
(“addFeatures” | “removeFeatures™)
“[feature{*,” feature} “]”.

scc-condition =
(subtree-terminal-variable-anaphors |
(“&” anaphor-variable-name) |
tree-terminal-value |
(“&” terminal-variable-name) |

170

BUPT

subtrec-value
(“&™ subtree-variable-name)

)

(“equal™ | *notlzqual™) |

(subtree-terminal-variable-anaphors |
(“*&" anaphor-variable-namc) |
tree-terminal-value
(& terminal-variable-name) |
subtree-value |
(& subtree-variable-name)

subtree-terminal-variable-anaphors |
(& anaphor-variable-name) |
trce-terminal-value
(“&™ terminal-variable-name) |
subtrec-value |

(*&™ subtrec-variable-namce)

sce-condition =
(

“exists”
anaphor-name.

sce-condition =
("terminal™ tree-terminal-value (“cqual™ | “notkqual™)
“terminal™ tree-terminal-value) |
(“terminal Element™ tree-terminal-value (“equal™ | “notEqual™)
“terminalllement™ tree-terminal-value).

scc-condition =
(trcc-node-value | node-features-valuce)
(“equal™ | “notl:qual™ | “subsets™ | “aCommon™)

(tree-node-valuc | node-features-value).

scc-condition =
(“equalFecature(™ feature . (tree-node-value | node-features-value) .
(tree-node-value | node-features-value) <)™)|
(“smallerFeature(™ feature . (tree-node-value | node-features-value) .
(tree-node-value | node-features-value))") |

(“greaterleature(™ feature .7 (tree-node-value 0

node-features-value) =,
(tree-node-value | node-features-value))™).

sce-condition =

171

BUPT

(tree-node-value | node-features-valuc)
“exists”
feature.

scc-condition =
“node” trec-node-value (“equal”

“notliqual™) “node™ tree-node-value.

sce-condition =
“nodeName” tree-node-value (“cqual”
“nodeName” tree-node-value.

“notkqual™)

scc-condition =
“nodeType” tree-nodec-value (“equal™ | “notEqual™)
“nodeType” tree-node-valuec.

scc-condition =
“subtree” subtree-value (“cqual” | “notEqual™) “subtrece” subtree-value.

scc-condition =
“varExists(“ name “)” | “grammarVar (“ name *)”.

scc-condition = “not” “(** scc-condition *)”.

scc-condition = “(* scc-condition (“and” | “or™) scc-condition).

scc-command-tranformations =
“transformations” scc-command-transform
{ “also” scc-command-transform }.

scc-command-transform =
“&” sd-variable-name “transform’ scc-variable-value.

scc-variable-value =
tree-node-value |
tree-terminal-valuc |
subtree-value.

BUPT

From the above statements the variables-declaration, tree-node-value, tree-
tcrminal-value, subtree-value, anaphor-value, node-leatures-value, terminal-variable-
name. node-variable-name, subtree-vanable-name, anaphor-variable-name, fcatures-
variable-name, subtree-terminal-variable-anaphors were declared in the chapter for
the variables ficld of the principles and transformations. Also, the terminal-clement,
node-name. anaphor-name, feature, name, number were declared in the chapter that
describes the structures that the methodolody.

173

BUPT

3.3 The design of the software system — the modules

The software that implements the described functionality has been
implemented in SWI-Prolog 5.0.10. This prolog has been created by the Departiment
of Social Informatics (SWI) of the University ol Amsterdam. This prolog is possible
to be installed as embedded application in a pocket PC. It has been implemented as a
set of different modules in the mentioned prolog. These are the following:

1. User

2. Sys_ db
This module contains all the predicates that store the current status of
the system when it manipulates the X-bar structures.

3. Operators
This module contains all the operators that are used by all other
modules of the system.

4. General_predicates
This module contains a set of predicates that are used in different
modules of the system.

5. Sys_elements
This module describes the different elements that are manipulated by
the system. Different predicates determinc the correct form of the
different kind of elements (nodes, terminals, anaphors, teatures, trees).

6. Main_module
The main module is the first module that starts the application.

7. Read filcs
This module reads the principles, transformations and grammars.

8. Read_Write_Structures
This module reads the input structures and produces the output
structures according to the rules and the grammars.

9. Executc_rules
This module executes the grammars, principles and transformations.
They are determined by the corresponding operator and the name.

10. Vars_field
This module manipulates the declaration of variablcs in the field vars
of the principles and transformations.

I11.Sd_field
This module analyses the current input structure that the particular rule
is applied, according to the structural description of its sd ficld.

12. Scc_field

174

BUPT

This module contains all the predicates for variables declaration and
change of variables values in the sce ficld of principles and
transformations.

13. Sce_checks
The different kinds of checks in the sce ficld of principles and
transformations.

4. Sce_transformations
This module has all the necessary predicates for the definition of the
transformations that we can apply in the input structure.

15. Comments
This module writes the comments that are declared in rules.

As itis mentioned above:
e The User module is the default module that is visible by all the other
modules.
e The module Operators defines the operators in the User module.
These operators arc used by all the modules of the system.
® The module sys_db stores the current status of the natural processing
system.
The remains modules follow with their corresponding dependences:
. General _predicates

2. Sys_clements
3. Main_modulc
e opcrators
e rcad_liles
e rcad_write_structures
4. Read_files
e sys db
e general predicates
5. Rcad_Write_Structures
e sys db
e ocneral_predicates
e sys clements
e cxecute_rules
6. Exccute_rules
e sys db

e general_predicates

175

BUPT

sys_clements
vars_licld
sd_field
sce_field

scc_checks

scc_transformations

comments

7. Vars_field

sys_db
general_predicates

sys_clements

8. Sd field

sys_db
general_predicates

sys_elements

e vars_ficld
9. Scc_field
e sys db

general_predicates
sys_clements
vars_ficld
scc_checks

comments

10. Scc_checks

sys_db
general_predicates
sys_elements

vars_field

11. Scc_transformations

sys_db

general_predicates

176

BUPT

e vars ficld
12. Comments
e sys db
e gcneral_predicates

e vars ficld

All the above modules will be described in details in the following sections
using the notation and predicates of prolog.

3.3.1 Implementation specific details

3.3.1.1 The comment command

In principles and transformations it is possible to state comments in the
structurcCommands ficld. These comments are entered in the system’s output as
further information for the specitic principle or transformation. Also, they are possible
and in the main body of a grammar but at this casc it is not possible to usc variables.

For the comment we use the command comment and then we enter the
comment that we wish to be printed in the system’s output.
The general form of this command is the following:

comment (comment [comment 2: comment 3:...)

We notice that in this command the comments are separated with the character
.. Each one of the comments can be a constant, a prolog atom. Namely, it i1s a
sequence of letters and numbers included between quotes. The atom of the prolog is
printed as it is. Also, every comment can be a variable that should have been stated.
Then the system prints all the values of this variable. Each variable is used as follows:

(&name of variable)
we notice that we must usc parentheses that will include the name of the variable and
the character &.
There is also the opcrator newline that changes the line in the output and
writes the rest of the comments in the next line.

Next we shall analyze a series of examples:

a) comment (*The values of the variable al are the following® : (&al))

177

BUPT

This comment prints the message “The values of the variable al arc the
following* and then a list of the values of the variable al. The variable al
should have been stated.

b) comment (‘ The values of the variable nl are the following* : (&nl) : newline :’
and of the tl are the’ : (&tl))

This comment prints the message ‘The values of the variable nl are the
following‘ and then prints a list of the valucs of the variable nl and changes
the line. Then it prints the message * and of the t1 are : * and then the valuces of
the variable t1. The variables nl and t1 should have been stated.

The EBNF form for the comments is the following:

TR 1

scc-message = “comment’ scc-comment { scc-comiment }.

scc-comment = name | (“(** “&" comment-variable-name “)”) | “newline”.

comment-variable-name =
node-variable-name |
features-variable-name
terminal-variablc-namc |
subtree-variable-name |
anaphor-variable-name.

From the above statements the node-variable-name, features-variable-name.
terminal-variable-name, subtrec-variable-name have been described in the EBNFE of
the variables field of the principles and transformations.

3.3.1.2 The user depending application of the rules

Another possibility is the ability to sclectively apply a rule according to the
response of the user. This is available in the main part of a grammar of the Linguistic
Theories input and in the Linguistic Program input.

These cases are the following:

askprinciple name of principle

asktransformation name of transformation
askgrammar name of grammar

178

BUPT

We notice that we can use the operators askprinciple, asktransformation and
askgrammar, instcad of the operators principle, transformation and grammar.
When a grammar in the Linguistic Theories input wishes to apply one of these rules or
in the Linguistic Program input it is requested the application of the a principle,
transformation or grammar with the operators askprinciple, asktransformation and
askgrammar, it is nccessary the positive or negative response of the user.

The EBNF form of the Linguistic Theories input has additionally the:

rule= “askprinciple™ principle-name

“asktransformation™ transformation-name
“askgrammar™ grammar-name.

3.3.1.3 The changes on the operators and other

assumptions

There are some changes on the operators at the implemented system
comparing with the description in the previous chapters. These changes facilitate

morce the use of the software system. These changes arc:

variables

noVariables
structureDescription
structurcCommands
structureposition
transformationVariable

becomes
becomes
becomes
becomes
becomes
becomes

vars
noVars
sd

sce
position
sdVar

Backtracking is possible in the sd ficld. In the see field it is possible to use any other
prolog predicate except the clements (checks. transformations cte) that have been
described for this field of the principles and transformations. Also, in the main
body of a grammar it is possible to use any prolog predicate except the principles,
transformations and the other commands that had been described about the main
body ol a grammar rule. A transformation rule succeeds if at least one of the
requested transformations in its sec ficld succeeds and produces a new X-bar trec.
The transformation and principle rules are applied on on all the sd subtrees that
exist in an x-bar tree. If the operator aFirstTree is used the rule is applicd on the
first sd subtree (scanning top-down left-right) that exists in an X-bar tree.

3.3.2 Module sys_db

This module contains all the predicates that store the current status of the
system when it manipulates the X-bar structures,

179

BUPT

Thesc are the following predicates with their corresponding arity:

e input_file/l

e output_file/l

e c¢xccule_rule_grammar/|
e grammar/2

e principle_rule/d4

e {ransformation_rulc/4
e ncw is/|

e new os/l

e read_is/2

e in_struct/!

e out_struct/l

e is_trces/l

e rule_succeed_trees/|
e variables/2

e grammar_variables/l

e scc_transformations/|

The above predicates store the following information in more details:

e It keeps the input file strcam for the input structures
= input_file().

e [t keeps the output file strecam for the results
= output_file().

o It keeps all the grammars, principles and transformations that we want to
execute according to the linguistic program

= execute_rule_grammar([}).

e It keeps every grammar
= grammar(999999,). (dummy grammar)

e [t keeps every principle
= principle_rule(999999, , ,). (dummy principle)

o [t keeps every transformation
= transformation_rule(999999, , .,). (dummy transformation)

180

BUPT

e It keeps the X-bar trees that are going to be used by the next grammar,
principle or transformation.
= new_is([].

e It keeps the final X-bar trees that have been produced by the last grammar,
principle or transformation.

= new os(]]).

e It keeps the last structure that has been gotten from the input file trees
* read_is(0.[]).

e It keeps the current input X-bar tree for the running rule
* n_struct(_).

e It keeps the current output X-bar tree for the running rule
= out_struct(_).

o It keeps the set of all the input file X-bar trees
* is_trees([]).

o it keeps the only succeeded trees that a rule is apllied on
* rule_succeed trees(|]).

e [t keeps the variables of the current principle or transformation that is exccuted
and appliced on an X-bar tree
= variables({].[])-
e [t keeps all the transformations of the transformation rule that is currently
executed

= scc_transformations([]).

e |t keeps the names of the grammar variables
* grammar_variables([]).

3.3.3 Module operators

This module contains all the operators that are used by all other modules of the
system. These operators are set in the user module.

The operators that we usc for the description of the transformations and
principles arc the following:

-op(100.fy.user:principle).

181

BUPT

:-op(100,fy,user:transformation).
-op(100,fy uscr:grammar).
~op(950, 1y user:vars).
-0p(950,fy.uscr:sd).
-0p(950,fy.userisce).
-op(100,fy,uscr:askprinciple).
:-op(100,fy,uscr:asktransformation).

-op(100.fy.user:askgrammar).

The operators vars, sd and scc arc used for the declaration of the
corresponding variables, structureDescription and structurecCommands ficlds of
the principles and transformations.

The operators that we can use in these fields of the principles and
transformations are the:
:-op(800,xfy,user:set).
:-op(850,xfy,user:also).
:-op(800,xfy,user:addValues).
:-0p(800,xfy,user:delete Values).

The first operator is used in the fields vars and scc to set values.

The second operator is used in the field vars to declare two or more different
variables and also in the field scc to declare a sequence of transformations.

The third and forth opcrator arc used in order to add and to remove values of
variables respectively

The operators that arc used in diffcrent parts of a tree are the following:

:-0p(620,fy,user:node).

:-op(400,fy,user:fcatures).
:-0p(620,fy,uscr:terminal).
:-op(400,fy,user:anaphor).

The first operator is for the declaration of a node in a X-bar tree or in the ficlds
of a principle or transformation. The sccond operator is for the declaration of the
features the nodes. The third operator is for the declaration of a terminal element. The
forth operator is for the declaration of the anaphors of the trees and of the terminals.

182

BUPT

The various categories of nodes are defined by the following operators:

-op(200,y Fuser:barii).
-op(200,yfuser:bari).

-0p(200,y Luser:bar).

The first operator is for the X' nodes the second is for the X' nodes and the
third is for the X nodes.

The operators for the declaration of the transformations in the sce ficld of the
transformations are the:
:-0p(900,fy, user:transformations).

-op(650,xfy.uscr:transform).

The first operator determines a whole sequence of transformations and the
second is used to declare every different part in a transformation sequence.

In the field sd of the principles and transformations we can use additionally
the following:
-op(400.fy.user:sdVar).
:-op(400.fy . user:subtree).
-op(400,fy uscr:notSubtree).
:-0p(400.fy.user:nodeSubtree).
:-op(400.fy.user:nodeNotSubtree).
:-op(400.xf uscr:any Tree).
-op(600.fy uscr:aTrec).
-op(0600,ty,user:aFirstTrec).

-0p(600.fy user:lefiMost).

The first operator is used for the declaration of transformation type variables
that are going to be mainly used in the ficld sce for the transformations.

The other operators correspondingly declare the following:

e subtrec of a tree

e not subtree of a tree

e subtree of a tree that is described by a root node

e not subtrec of a tree that is described by a root node

183

BUPT

e any tree

e atrce that is a arbitrary subtree of a tree

e atrce that is the first subtree of a tree

e atrcc is the lelt most subtree (top-down left-right tree scanning)

In the see Gicld of the principles and transformations we can use the tollowing
operators:

For the determination of a part of an clement:

:-0p(620,fy,user:terminal:lement).
:-0p(620,fy,user:nodeTypce).
:-o0p(620,fy,user:nodeName).

The first operator is used for the determination of the name of a terminal.
The second is used for the determination of the type of a node.
The third operator is used for the determination of the name of a node.

For the change of anaphors or fcatures of an element:

:-0p(650,yfy,uscr:addFcaturcs).
:-0p(650,yfy,uscr:removelcatures).
:-0p(650,yfy,user:addAnaphor).
:-0p(650,yfy,user:removeAnaphor).

The first operator is used for the addition and the sccond for the substraction
of the features of a node.

The third is used for the addition and the forth for the subtraction of an
anaphor in a terminal or subtree variable.

For the checks of the various clements are the operators:

:-op(650,xfy,uscr:equal).
:-op(650,xfy,uscr:notEqual).
:-0p(650,xfy,uscr:aCommon).
:-0p(650,xfy,user:subscts).
:-0p(650,xfy,user:exists).

The above operators determine accordingly the following:

o the first checks if two clements are equal
e the sccond checks if two clements are not equal

184

BUPT

e the third checks if two clements have a common feature
e the forth checks if the features are subset of another set
e the fifth checks if a feature or an anaphor exists

There are the operators for grammar variables:

:-op(1 00,fy,uscr:addGrammarVariablc).

:-op(100,ly,uscr:removeGrammarVariable).

The first operator adds a new grammar variablc the second rcmoves a
grammar variable from the sct of the grammar variables. They are used in the
principles and transformations input. in the linguistic theory input and in the

linguistic program input.
Also. there is the following general operator that is used in ditferent parts of a

principle or transformation:
:-op(500,xfy,:).
We finally use the following sequence of operators:

:-op(300,fy,uscr:(&)).
:-op(670,yfx,usecr:and).
-op(675.ytx,uscr:or).
:-0p(900,fy,uscr:not).

The first is used in front of the variables names.

The sccond, third and forth function as the known logical operators in the
different kind of checks.

_ The operators and and or can be uscd in the sd ficld to describe combinations
of trees.
:-0p(520,fy,user:comment).

It is used for the description of a comment in a rule (grammar, principle and

transformation)

3.3.4 Module general_predicates

This module contains a set of predicates that are used in difterent modules of
the system.

The first determines the module that stores the current intormation ot the

system when it functions. We can casily change the module name in order to use
another module for storage.

185

BUPT

main_database(sys_db).

It follows a brief description of the predicates:
It converts a term of the form (terml or term2 or ... or termN) in a list of the form
[term],term2,...,tcrmN)]

orTermToList(+(term1 or term2 or ... or tcrmN), ?[term 1. term2,....tcrmN])

It searches if an operator is in a sct of operators

It compares two lists
compare(+Listl,+List2)

It deletes the repeated elements of a list
delete_duplicates(List, List2 without the repeated clements)

It substitutes an element of a list with another element
replace(+A, +B. +L_in, ?L_out)

It checks if an element is a list or not
list(+List)

It deletes an element from the main database if it exists
sys_retract_all(+Element)

It inserts an element in the main databasc
sys_asseri(+Element)

It reads an element in the main databasc
sys_read(+Element)

186

BUPT

It succeeds if Condition and Clause succeed or if the Condition fails
i Then(+Condition +Clausce)

Succeeds if Condition and Clausel succeed or if the Condition fails and Clause2
succeeds
irThenlse(+Condition, +Clause | . +Clausc2)

Succeeds if Clause]l and Clause2 succeeds
and(+Clause!,+Clause2)

Succeeds if Clausel or Clause2 succeeds
or(+Clausel . +Clausc2)

It converts a set of terms in the corresponding list
list_to_term(?List of clements, 7Compound term)

It converts a list of elements in a compound term with the elements connected by the
opcrator and
convert_list_to_and_term(+Input list, 7Compound Output Structure)

It inserts the (not) opcrator in cvery element of the list
insert_not_operator(+input List, 70Output List)

It writes in the output device a tree
writetree(+OutStream.+Subtrec)

It gives the correct form in an input X-bar tree
input_str_conv(+InTree,?CovertedTree)

The checking of the main part of a grammar
chk_grammar(+The main body of the grammar)

It checks the term if it is one of the accepied forms
chk_rule_grammar(+Term)

Dcletion of the existing clements of list |

deletc_common_features(+features list 1, +fcatures list 2,

187

BUPT

+features list 2 without features of list 1)

It checks if the feature exists in a list of fcaturcs
feature_exists(+Feature, +List of features)

It returns all the anaphors in onc list
list_anaphors(?Sequence of anaphors, ?Anaphors List)

It substitutes the node name
replace_node_name(+Node, +New node name, ?New node)

It substitutes the type of a node
replace_node_type(+Node, +New node type, ?New nodce)

3.3.5 Module sys_elements

This module describes the different elements that are manipulated by the
system. Different predicates dctermine the correct form of the different kind of
elements (nodes, terminals, anaphors, features, trecs).

ANAPHORS
The form of anaphors that the system accepts, are determined by the following
predicates:

A single anaphor
a_anaphor(+Anaphor).

A sequence of anaphors
a_anaphors(+Anaphor).

TERMINALS
The form of the terminals that the system accepts is determined by the
following predicates.
Terminals without anaphors:
a_simple_terminal(+Terminal).

Terminals with anaphors
a_terminal(+Terminal).

188

BUPT

FEATURES] .
The form of the features of the nodes that the system manipulates is
determined by the following predicates:

The following determines the different kind of single feature:
a_feature(+leature).

The following determines a complete set of the fcatures of a node:
a_fcatures(+Featurcs).

NODLES

The form of the nodes that the system accepts, are the following:

The following determines the nodes of type X™*. X°, X in a general form:
a_node(+Node).

The following determines the nodes of type X, X*, X in a form without
features:

a_simplc_node(+Node).

The following predicates determine in details the nodes of type X*°, X°, X in a
form with or without fcatures:

a_nodc_barll(+Node).
a_node_barl(+Nodec).
a_node_bar(+Node bar).
TREES
The following predicates determine the X-bar trees that the system accepts as

input, produces as output and manipulates.

The following predicates determines a tree of type X2, X1, X0 and returns the
list of all its anaphors.

a_tree_value(+Tree,AnaphorsList) :-
But the most important predicates that determine the exact form of trees that
the system manipulates are described in the following lines. Every predicate has two
anaphor lists. The first is the input list of anaphors and the second pair is the new list

of anaphors.

The different kinds of trees are represented with the different predicates:

189

BUPT

A tree of type X without anaphors

a_trec_bar(LAnaphors.(node Node.terminal Terminal),NodeName,LAnaphors) :-
return_node_name(Node,NodeName),
a_node_bar(Node).
a_simple_terminal(Tcrminal).

A tree of type X with anaphors in the terminal element

a_tree_bar(LAnaphors|,(node Node.terminal Terminal: Anaphors). NodeName,
LAnaphors2) :-
return_node_name(Node,NodeName),
a_node_bar(Node),
a_simple_terminal(Terminal),
value anaphors_seq(Anaphors,ValAnaphors),
chk_anaphors_connections(LAnaphors!,ValAnaphors.LAnaphors2).

A tree of type X with anaphors at X

a_tree_bar(LAnaphors!,(node Node,terminal Terminal): Anaphors, NodeName,
LAnaphors2) :-
return_node_name(Node,NodeName),
a_node_bar(Node),
a_simple_terminal(Terminal),
value_anaphors_seq(Anaphors,ValAnaphors),
chk_anaphors_connections(LAnaphorsl,ValAnaphors,LAnaphors2).

A tree of type X with anaphors at the terminal clement and at X

a_tree_bar(LAnaphors|,(node Nodc,terminal Terminal: Anaphorsl):Anaphors2,
NodeName, LAnaphors3) :-

return_node_name(Node , NodeName),
a_node_bar(Node),
a_simple_terminal(Terminal),
value_anaphors_seq(Anaphorsi,ValAnaphors!),
chk_anaphors_connections(LAnaphors1,ValAnaphors!,LAnaphors2),
value_anaphors_seq(Anaphors2,ValAnaphors2),
chk_anaphors_connections(LAnaphors2,ValAnaphors2,LAnaphors3).

A tree trace with anaphors
a_tree_bar(LAnaphorsl,t:Anaphors, ,LAnaphors2) :-
value_anaphors_seq(Anaphors,ValAnaphors),

chk_anaphors_connections(LAnaphors1,ValAnaphors,LLAnaphors2).

A tree trace without anaphors

190

BUPT

a_trce_bar(LAnaphors,t._.LAnaphors).
A tree of type X'

a_tree_barl(LAnaphors!.(node Node,SubTreel SubTrec2).NodeName,
LAnaphors3) :-
return_node_name(Node.NodeName),
a_node_barl(Node),
a_tree_barl(LAnaphors|.SubTreel NodecName,LAnaphors2).
a_trec_barll(LAnaphors2. SubTree2._.LAnaphors3).

A tree of type X' with anaphors

a_tree_barl(LAnaphors 1. (node Node SubTreel.SubTree2):Anaphors, NodeName,
LAnaphorsd) :-

return_node_name(Node,NodeNamce).
a_node_barl(Nodc),
valuc_anaphors_scq(Anaphors.ValAnaphors),
chk_anaphors_connections(LAnaphors!,ValAnaphors,LAnaphors2),
a_tree_barl(LAnaphors2.SubTreel NodeName, L Anaphors3),
a_tree_barll(LAnaphors3 . SubTree, L Anaphorsd).

A trec of type X'

a_trec_barl(LAnaphorsi,(node Node,SubTreel ,SubTrece2), NodeName,
LAnaphors3) :-
return_node_name(Node,NodeName),
a_node_barl(Node),
a_tree_bar(LAnaphors|,SubTreel NodeName.LLAnaphors2),
a_trec_barll(LAnaphors2,SubTree2, ,LAnaphors3).

A trec of type X' with anaphors

a_tree_barl(LAnaphors!,(node Node,SubTreel, SubTree2):Anaphors, NodeName,
LAnaphors4) :-

return_node_name(Node NodeName),
a_node_barl(Nodc).
valuc_anaphors_seq(Anaphors,ValAnaphors),
chk_anaphors_connections(L.Anaphors1.ValAnaphors,LAnaphors2),
a_tree_bar(LAnaphors2,.SubTreel . NodeName,LAnaphors3),
a_tree_barll(LAnaphors3,SubTree2, ,LAnaphors4).

A tree trace with anaphors

a_trec_barl(LAnaphors|,t:Anaphors,_,LAnaphors2) :-
value_anaphors_seq(Anaphors,ValAnaphors),
chk_anaphors_connections(LAnaphors!,ValAnaphors,LAnaphors2).

191

BUPT

A tree trace without anaphors
a_tree_barl(LAnaphors.t,_,LAnaphors).

A empty tree
a_tree_barl(LAnaphors.cmpty. .LAnaphors).

A tree of type X"

a_trec_barll(LAnaphors],(nodc Node,SubTreel . SubTree2). NodeName,
LAnaphors3) :-
return_node_namec(Node,NodcName),
a_node_barll(Nodc),
a_trece_bar(LAnaphors1 . SubTreel,_,LAnaphors2),
a_tree_barl(LAnaphors2,SubTree2 NodeName,LAnaphors3).

A type X" tree with anaphors

a_tree_barll(LAnaphors|,(node Node,SubTreel,SubTree2): Anaphors, NodeName,

LAnaphors4) :-

return_node name(Node,NodeNamc),

a_node_barll(Node),

value_anaphors_seq(Anaphors,ValAnaphors),

chk_anaphors_connections(LAnaphors1,ValAnaphors.LAnaphors2),

a_tree_bar(LAnaphors2,SubTreel,_,LAnaphors3),

a_tree_barl(LAnaphors3,SubTrec2,NodeName,LAnaphors4).

A type X" tree

a_tree_barll(LAnaphors],(node Node,SubTreel,SubTree2),NodeName,
LAnaphors3) :-
return_node_name(Node,NodcName),
a_node_barll(Node),
a_tree_barll(LAnaphors1,SubTreel, ,LAnaphors2),
a_tree_barl(LAnaphors2,SubTree2,NodeName,LAnaphors3).

A type X" tree with anaphors

a_tree_barll(LAnaphors1,(node Node,SubTree!,SubTree2): Anaphors,NodeName,

LAnaphors4) :-

return_node_name(Node,NodeName),

a_node_barll(Node),

value_anaphors_seq(Anaphors,ValAnaphors),

chk_anaphors_connections(LAnaphors!l,ValAnaphors,LAnaphors2),

a_tree_barll(LAnaphors2,SubTrecl, ,LAnaphors3),

a_tree_barl(LAnaphors3,SubTree2,NodeName,lLAnaphors4).

192

BUPT

A tree trace with anaphors

a_trec_barll(LAnaphors!.t:Anaphors,_,LAnaphors2) :-
value_anaphors_scq(Anaphors,ValAnaphors),
chk_anaphors_connections(LAnaphors| .ValAnaphors,LAnaphors2).

A tree trace without anaphors
a_trec_barll(LAnaphors.t._.LAnaphors).
A cmipty tree

a_trec_barll(LAnaphors,empty,_.LAnaphors).

3.3.6 Module main_module

The main module loads the module with the operators. It is the first module
that is loaded in order to start the application. Also, it uses the modules read_files and
read_write_structures.

The available predicates to other modules are the:

e rcad_rules/0, read_rules/3
o read_rules without arguments it uscs the default file names
(fl.rg, fl.gr, fl.11)
o read_rules(+LinguisticProgramFile, +LinguisticTheoryFile,
+PrinciplesTransformationsl-ile)
It reads the following files:

I. The sequence of rules, linguistic programm, (principles,
transformations and grammars) that we want to apply on
the input X-bar trees.

2. The grammars that we have declared.

3. The principles and the transformations that we have
declared.

e rw_trees/0, rw_trces/2
o rw_trces without arguments it uses the default file names (f1.is,
f1.0s)
o rw_trees(HnputStructuresFile, +OutputStructuresFile)
It applics the rules on the input X-bar trees and produces the output
file with the results.

The uscd predicates from other modules are the:
e from the read_files module:

193

BUPT

o get_cxceute_grammar_rule/|
o get_grammars/|
o get_rules/]
e from the recad_write_structures modulc:
o get_structurcs/2

The next section describes in details the functionality of these predicates.

3.3.7 Module read_files

This module reads the three input files:
1. The sequence of rules (principles, transformations and grammars)
that we want to apply on the input X-bar trees.
2. The grammars that we have declared.
3. The principles and the transformations that we have declared.
The first kind of file is read by the following predicate:
get_exccute_grammar_rule(+The file name)
The second kind of file is read by the following predicate:
get _grammars(+1he name of file)
The third kind of file is read by the following predicate:
get_rules(+HThe name ot the rules file)
The above predicates use a sct of supplementary predicates that mainly are the
following:
o It reads the principles, transformations and grammars that we¢ want to apply on
the input X-bar trees — The linguistic program

* recad_execute_grammar_rule(+FileHandle)

o It reads the grammars from the input file
» read_grammar(+FileHandle)

o It reads the principles and transformations from the input file
» read _rules(+FileHandlc)

o It reads a principle or transformation from the input file
» rcadRule(+FileHandlc, ?Rule, ?Rule name)

194

BUPT

o It checks if the rule is priciple or transformation
= rule_cat(+Rule name, ?Rule structure,
2Rule name, ?Variables field, 72SD structure ficld,

7SCC field)

o It checks if the principle or transformation has variables or not
* rule_vars(+The input field, +The output ficld)

3.3.8 Module read_write_structures

Reading of the input structurcs and production of the output structures
according to the principles, transformations and grammars that we want to apply on

input structurcs.
The main predicate is:
get_structures(+The name of the input file, +The name of the output file)
The above predicate uses the following:

o read_structures(+TreeNumber, +Input file, ?TreesList)
e cxccute_rules_on_input_trees(+Grammars, +Input Trees List)

It reads every input structure and applies on them the set of principles,
transformations and grammars that we have declared that we want to apply.

The above uses the predicate:

perform(+List of rules that we want to apply)

3.3.9 Module execute_rules

The grammars, principles and transformations are determined by the
corrcsponding operator and the name.

The following predicates define the operators:
grammar
askGrammar
principle
askPrinciple
transforimation
askTransformation

195

BUPT

and the:
addStructures
sctStructures
setSuccecdedStructures
restoreStructure
getNextStructure
getPreviousStructure
addGrammarVariable
removeGrammarVariable
getlnputTrecld
newlnputTrees
addInputTrees

The predicate for the application of a grammar with user question:
askgrammar(+Grammar name)
and without user question
grammar(+Grammar Name)

The predicate for the application of a principle according to the user answer
askprinciple(+Principle name)
The procedure for the application of a principle on all the X-bar trecs
principle(+Principle name)
It applies the principle on one X-bar tree
perform_principle(+Principle name, +Input structure)

The predicates for the transformations according to the user choice
asktransformation(+Transformation name)
The application of a transformation on a set of input structures
transformation(+Transformation name)
The application of the transformation in one input structure
perform_transformation(+Transforamtion name, +Input structure)

The procedures for the change of the input structures in different cascs:

An addition of the produced structures in the current input structures for the
next rule

addstructures

It sets as a new set of structures for the next rule the structures that have been
prodused by the last rule

sctstructures

It sets as X-bar trees for the next rule of the grammar, only the trecs that the last
rule have been applied on successfully

setsucceededstructures

It restores as input structure the structure that has rcad from the input file
restorestructure

196

BUPT

It gets the next input structure from the input file for use by the next rule
getnextstructure
It gets the previous input structure from the input file for use by the next rule
getpreviousstructure
It gets the a particular input structure from the input file for use by the next
rule
getparticularstructure(+Location)
It returns the id of the current input X-bar tree.
getinputtreetd(?1d)

They change the input structures and nceds as operand an /d
newinputtrees (+1d)
addinputtrees(+1d)

The operators for the grammar variables are the following:
It adds a variable to the grammar variables list
addgrammarvariable(+VariableName)

It removes a variable from the grammar variables list
removegrammarvariable(+VariableName)

3.3.9.1 Module vars_field

This module manipulates the declaration of variables in the ficld vars of the
principles and transformations.
The main top level predicate for the declaration of the predicates of vars ficld
is the:
declareVars(+The ficld for the declaration of the variables)

which takes as a parameter the field vars of a principle or a transformation in order to
declare its variables.

The following predicate is used for the declaration of a variable
varList(+The variables that the user have declared)
The above use the predicate newVariable/S that analyses and checks cvery
new variable:
new Variable(+a variable with its type,
+Values of a variable,

?Name of a variable,
?Type of a variable,

197

BUPT

?Values of a variable)

3.3.9.2 Module sd_field

This module analyses the current input structure that the particular rule is
applied, according to the structural description of its sd ficld. The analysis of the input
structure results at a new output structure that is used by the sec ficld of principles and
transformations.

It checks if the input structure is according with the structure that is described
in the field SD.
The predicate is:

declareSD(+SD Description, +Input Structure, ?Output Structure)

The following predicate checks the input structure in order to find the structure
of the SD ficld (the input structure must be subtree of the categories X2, X1, X0):

searchSD(+Input Variablcs,
+Structure of the SD, +Input Structure, ?Output Structurc,
?0utput Variables)

It checks the tree of the SD if it is equal with the input structure according to
the operators and the abilities of that had been described in the above sections.
The predicate is the:
check_sd_is_tree(+Variabels, +SD structure Variables,
+Structure of the SD, +Input Structure,
?70utput Structure,

?New set of Variables,
?New set of Variables of the SD type)

3.3.9.3 Module scc_field

This module contains all the predicates for variables declaration and change of
variables values in the SCC field of principles and transformations.

The declaration of the operator set for the variables of the SCC ficld

+variable sct +values of variable

198

BUPT

The variables are separated in different categorics according with their type
and we have the following cascs:

The general casc for the declaration of the new variables of the Vars field type
is implemented by the following predicates:

It declares a new variable with value the next input structure
sct(subtree Var, nextstructure).
set(subtree Var, nextstructure(Num)).

It declares a new variable with value the previous input structure
set(subtrec Var, previousstructure).

set(subtrec Var, previousstructure(Num)).

it declares a new variable with value a particular input structure that is
according to the number that we use as parameter
set(subtree Var, particularstructure(Num)).

It declares the new variable and adds to the list of variablies

scl(+Var,+VarValues).

Variable declaration for the node features that takes values from another
variable or node formula

set(features +VarName, +Node).

Variable dcclaration for the terminals clements and subtrees anaphors that
takes values from other variables or formulas of type subtree or terminal

set(anaphor +VarName, +SubtreeTerminal)

The other case is the setting of new values in variables that we have defined.
The cases are the followings:

The change of the values of a terminal variable

set(terminal &+VarName,+Terminal).

The change of the values of a terminal variable without to change the cxisting
anaphors:

set(terminalElement &+VarName,+TerminalElement).

The change of the value of a tree node:
“set(node &+VarName, +NewNode).

199

BUPT

The change of the value of node features:
sct(features &+VarName,+Newlcatures).

The change of the name of a node:
set(nodeName &+VarName, +NewNodeName).

The change of the node type (barll,barl.bar):
set(nodeType &+VarName, +NewNodeType).

The change of a subtree variable values:
set(subtree &+VarName, +SubTree).

Except the operators that set new valucs in different variables, therc arc also
operators for the addition or the deletion of nodes features and the addition or the
deletion of terminals or subtreces anaphors.

The case of addition of an anaphor in the values of the variable:
+variable addAnaphor anaphor name

addAnaphor(&+VarName, +AnaphorName).

The following case describes the subtraction of an anaphor from a vanable
with anaphors. The variable can be of anaphor type, subtree or terminal.

+variable removeAnaphor anaphor name

removeAnaphor(&+VarName, +AnaphorName).

The case for the declaration of the command for the addition of the node
features of a node variable.
+variable addlcatures tfecatures list

addFeatures(node &+NodeVar,+FeaturesList).

The case for the declaration of the command for the substraction of the node
features of a node variable.
+variable removeFeatures +{catures list

removeFeatures(node &+NodeVar,+FeaturesList).

Operators for addition or deletion of variables values for variables have
already been declared.

200

BUPT

addValues(&+VarName, +VarValues)
deleteValues (&+VarName, +VarValues)
It possible to calculate all the values of a variable and to delete the duplicate
values.
delcteDuplicates(+VarName)
The above predicates require a set of additional predicates.
The most important are described in brief:

The addition of an anaphor in terminals and subtrees
add_anaphor(+Element, +New anaphor, ?New clement)

The deletion of anaphor of terminals or subtrecs
remove_anaphor(+Element, +Anaphor, ?New Element)

The features addition in a node
add_nodc_features(+Node, +Fcatures that we have to add,
?7The node with the new features)

The deletion of features of a nodc
remove_node_[eatures(+Node, +Features that we have to delete,
?The node with the new features)

3.3.9.4 Module scc_checks

The different Kinds of checks in the sce field of principles and transformations
are in this module. They arc used in the condition part of the ifThen or ifThenElse at
the scc ficld.

The anaphors are cqual

cqual(+L_Anaphors, +R_Anaphors).

The terminal elements arc equal

cqual(terminal +L_Terminal, terminal +R_Terminal).

The terminals are equal independent of their anaphors

cqual(terminalElement +L_Terminal, terminalElement +R_Terminal).

The features are equal

201

BUPT

equal(+L_Features, +R_Features).

The comparison of nodes and their features
equal(node +L_Node, node 4R _Node).

The comparison the node names
cqual(nodeName +L_Node, nodeName +R_Nodce).

The comparison of the node types
equal(nodeType +L_Node, nodeType+R_Node).

The operator equal for the comparison of the trees:
equal(subtrec +L_Subtree. subtrec +R_Subtree).

Also, there are the opcrators notEqual that are the opposite of all the above.

Except the operator equal and notEqual there arc also the operators exists,
subsets, aCommon.

An anaphor exists in the anaphors
exists(+Anaphors, +Anaphor).

A feature exists in the features of a node or a features variable
exists(+L_Features, +R_Feature).

It checks if the features of the left part are subset of the features of the right
part. The node or features variables can be used in both parts.
subsets(+L_Fcaturcs, +R_Fcatures).

If the features of the left part have at least one common feature with the
features of the right part.
aCommon(+L_Features, +R_Featurcs).

The cases of special checks of the features with the format (name of the
featureX = name of the featureY or [name of the fcaturel, ..., name of the featureN]=
name of the featureX)

equalFeature(+Feature LeftPart,+Operand | . +Operand2)
smallerFeature(+FeatureLefiPart,+Operand 1, +Operand?)
greaterFeature(+FeatureLefiPart,+Operand |, +Operand?2)

The above predicates use a sct of additional predicates. Most of them arc
described in the following predicates:

It compares the two terminal elements

202

BUPT

comparc_terminals(+Terminal 1, +Terminal 2')

It returns the valuc of a terminal formula
get_terminal(+Variables, +Formula, ?Terminal Valuc)

It returns the terminal element without its anaphors
get_terminal_element(+Variables, +Formula, ?Node Value)

[t compares two nodes
compare_nodes(+Node |, +Node 2).

It returns the valuce of the corresponding node representation
get_node(+Variables, +Formula. ?Node Value)

It returns the node name
get_node_name(+Variables, +FFormula, ?Node Valuc)

It returns the type of node
get_node_type(+Variables, +Formula, ?Node Type)

It comparcs the two scts of {catures
compare_features(+Features List | +Features List 2)

It compares the two features sets / if the first is subset of the sccond sct
subset_[eatures(I catures List | | +Features List 2)

It compares (wo sets if the first has a common clement with the second
aCommon_fecatures(+Fcatures List 1, +FFcatures List 2)

It returns the features of a formula or node
get_features(+Vanables, +Formula, ?I°catures List)

It compares two subtrees if they are equal
compare_subtree(+Left Subtree, 7Right Subtrec)

3.3.9.5 Module scc_transformations

This module has all the necessary predicates for the definition of the

transformations that we can apply on an X-bar tree. The transformations are declared
only in the transformation rules in the sce field.

The transformations can be applied on the nodes, terminals and trees.

transformations(+Transformations)

203

BUPT

The sequence of transformations that we want to apply on an X-bar tree are
manipulated be the predicate:
transformation_list(+Transtormations)
The different transformations in a transformation sequence arce declared by

the:
transform_to(+Transformation that we want (o exceulte)

3.3.10 Module comments

This module writes to the output the comments. The main predicate that
implements this is the:

comment(+Sequence of comments)

204

BUPT

3.4 General examples of principles and transformations
and anaphoric connections

The principle of case filter(Hacgeman, 1995) and in the greek language the casce
problem(Drachman, 1984)

principle ‘Casc Filter’. % definition of principle of case
variables
node noun set ‘NP’ bar or ‘O’ bar.

structurcDescription
(node &noun: transformationVariable sd1, terminal &t):
transformationVariable sd2.

structureCommands
(features case set [+ptosi] or [+case].

ifThenElse(&sdl aCommon &casce,
comment “The principle of case filter is valid at : **:&sd2,
comment “ The principle of case filter is not valid at : *:&sd2)).

The above principle acts upon X-bar structures which have one of the
following two sub trees:

NP O

any terminal any terminal

Then at the ficld structurecCommands checks if the node NP or O has the
fcature +case or the feature +ptosi and sends the corresponding message at the output.

The following are examples of linguistics rules that have been expressed
according the presented methodology. Also, a grammar variable is declared in the
ficld structure commands of the principle *The rule of dominance’.

205

BUPT

The rule of ¢c-command (Roberts, 1997)

C-commuands
An X element commands structurally (c-commands) an Y clement, if and only if the
first bifurcated nodc that dominates the X, dominates also the Y and ncither the X
dominatcs the Y nor the Y dominates the X,

principle ‘The rule of constituent command’.
variables
node nodel set ‘Verb’ bar or ‘V™ bar or
‘Preposition” bar or ‘P’ bar
also node n set ‘Noun’ bar or ‘N’ bar.
structureDescription
(node &node?2,
(node &nodel, terminal &t1): transformationVariable sdl,
aTree (node &n, terminal &t2): transformationVariable sd2)
structureCommands

comment &sdl:’ c-commands ‘:&sd?2,
addGrammarVariable sd!l.

The above principle acts upon a X-bar structure that has a sub trec of the
following structure:

Any node (node2)

Verb or V., Preposition or I ~<

Nounor N

any terminal any terminal

The discontinuous line means that the right sub tree can be at any depth as the

operator aTree describes.

206

BUPT

The _rule of noun_phrase _attachment(Roberts. 1997) and about the greek language

passive voice and movements(Campos, 1987)(Theofanopoulou, 1986, 1989b)

transformation ‘Attachment of noun phrase’.
variables
node ‘Noun® set ‘N’ barii or "Noun™ barii

also node 'V’ set ‘V’® bari or ‘Verb™ bari.

structureDescription
(node &'V isdVar sd3,
subtree &sbl,
(node & Noun’, anyTree, anyTree):sdVar sdl
):sdVar sd2.

structurcCommands
(&sdl addAnaphor il, % addition of anaphor reference

% declaration of transformations
transformations &sd2 transform
(node &sd3,

(node &sd3, subtree &sbl, t:anaphor il),

subtree &sdl)
).

The above transformation acts upon a X-bar structure that has a sub trec of the

following structure and produces a new X-bar structure:

207

BUPT

And the produced X-bar structurce is the following:

Since, the sd1 variable of the first rule was declared as a grammar variable and
the second rule use a variable with the same name we will have a conflict, if we
execute these two rules, because we have two variables with the same name in the
transformation rule (the grammar onc from the first rule and the local one from the
transformation). We must always use¢ a different notation for the names of the
variables that we intend to use as grammar variables.

Additionally, the above transformation it is possible to be used in a grammar
rule and to be applied repeatedly. In this case it is possible to usc a grammar variable
for the anaphoric connections in order to have the same anaphoric connections
between the different traces.

3.4.1 The problem of anaphoric connections outside of
an X-bar tree

In an application, it is posstble 1o translate the sentences without to know
explicitly the anaphoric connections that are outside of the X-bar trce of a sentence. If
it is necessary for an application to have anaphoric connections outside of an X-bar
tree, there is the ability to connect two or more trees (backward or forward from the
current tree) with a conjunction by using the word “and’ and declaring the necessary
transformations for the production of the new trees. Also, it is possible to connect two
or more X-bar trees by using other words or pseudo-words that are related with the
semantic connection (result, explanation, parallcl information, analysis) between these
sentences. It is necessary for this semantic connection to declare principles that
specify the type of a sentence according to its clements (verbs, nouns, articles,
pronouns and their combinations). Additionally, it is possible to use grammar

208

BUPT

variables in the rules of the above cases in order to exchange information between
them.

An example with two phrascs is the following;:
e The woman hit the child with the bicycle
e He goes to the hospital.

The mitial X-bar trees of the above two phrases can be produced by using the
phrase structure rules of the X-bar scheme. Their correct final forms are produced by

using a set of principles, transformations or theories that are necessary.

The tree of the first sentence is the following:

The N

woman

bicycle

209

BUPT

The tree of the second scentence is the following:

v

Pronoun

hospital

Let’s assume the following:
o Sentencel 1s the X-bar tree of the sentence:
o The woman hit the child with the bicycle
e Sentence? is the X-bar tree of the sentence:
o He goes to the hospital.

Then the sentence that combines that above two sentences is the following:
The woman hit the child with the bicycle and he goes to the hospital.

The corresponding final tree has the form:

Conjunction”’

Conjunction’

Sentencel
Conjunction

Sentence?

and

210

BUPT

The rule that produces the above new tree is the following:
transformation ‘Conjunction’.
noVariables.

structureDescription -
subtree (&sentencel):transformationVariable conj_trec

structurcCommands
subtree sentence2 set nextstructure,
transformations
&conj_tree transform
(node conjunction barii,
subtree &sentencel,
(node conjunction bari,
(node conjunction bar, terminal *and’).
subtree &sentence?

The above transformation has the name *Conjunction’. This transformation
does not have any variable in the variables field and the operator noVariables is
used. In the structureDescription field it is declared a transformation variable with
name conj_tree. This variable is used in order to produce a new tree that has the tree
of the current sentence and the tree of the next sentence. Also. there is the general
variable sentencel that its value is the tree of the sentence that the rule is applied on.
In the structureCommands ficld, the X-bar tree of the next sentence is read and sct
as value of the variable sentence2 by using the first command of this field of the
above transformation rule. Since, both the trees are valucs of the variables sentence
and sentence? we can produce the new tree by using the transformation variable
conj_tree. This is that second rule in the structureCommands ficld ot the above
transformation rule.

Except the above rule that produces the new sentence, it is necessary to
declare a new rule that sets the anaphoric connection between the two words of the
sentences that refer to the same object.

transformation ‘Anaphoric_Connection’.
noVariables.

structureDescription
(node conjunction barii,
aTree (node n bar:features &feat_first,
(terminal &nounTerm): transformationVariable &tvl)
aTrce (node pronoun bar:features &feat_second,

»

211

BUPT

(terminal &pronounTerm): transformationVariable &tv2)

structurcCommands
features man set [+human,+masculin],
features woman set [+human +feminine},

ifThenElse(
(&man subsets &lcat fust and &man subsets &lcat sccond) or
(&woman subsets &icat_[irst and &woman subsets &fcat_sccond),

(&tvl addAnaphor al,

&tv2 addAnaphor al,

transformations &tvl transform &tvl also
&tv2 transform &tv2

),
fail)

This transformation rule does not use any variables in the variables field. The
two terminal elements one of the first sentences and one of the second sentences are
described in the structureDescription ficld. Also, there are the two transformations
variables tvl and tv2 that arc used in order to change the tree and add the anaphors.
The variables feat_first and feat_second contain the features of the nodes of category
X that are in the corresponding trees. In the structureCommands ficld we declare
two new variables that describe the fcatures that must have the terminals in order to
be connected. The ifThenElse checks if both terminals have the same required
features, adds the anaphoric conncction with the name al between them and then it
does the transformations of the two terminal elements. The result is a new tree that
has the required anaphoric connection.

Additionally, it is possible to separate the two sentences. The necessary
transformation rule is the following;:

transformation ‘Scparation’”.
noVariables.

structureDescription
(node conjunction barii,
subtree &sbl,
(node conjunction bari,
(node conjunction bar, tcrminal *and’),
subtree &sb2
):transformationVariable &trccVar.,

structureCommands
transformations &treeVar transform &sbl,

212

BUPT

transformations &treeVar transform &sb2.

The above transformation produces the two trees that had been connected with
the *Conjunction® transformation. These two trees will contain the anaphoric
connection that has been added by the transformation *Anaphoric_Conncection’.

The transformation *Separation” does not use variables in its variables ficld.
In the structureDescription ficld it is described the following tree:

Conjunction™

/\ Cunjunction’
’ T~
Sbl
Cunjunction
Sb2

and

The variables sbl and sb2 take as values the trees of the first and second
sentences respectively and the two transformations in the structureCommands field
produce the two trees.

The above rules can be applied and in the following case:
e The woman hit the child with the bicycle.
e It is difficult for him to ride.
The result will be the connection of the terminal ‘child’ with the pronoun
“him’,

Also, in the following casc:
e The woman hit the child with the bicycle.
e She is very angry.

But there is problem in the following sentences:
e The woman hit the boy with the bicycle.
e She believes that he stole it.

This case has two sentences that can have more than anaphoric connections.
Thesc connections are the following:

e Woman -> she
e Boy -> he
e Bicycle >t

213

BUPT

The problem is how we can extend the above rules in order 1o cover this case
of anaphoric conncections.

The only rule that has to be changed is the transformation rule with name
*Anaphoric_Conncction’. The other two rules must remain unchanged.

This transformation rule connccts only two clements that is feminine or
masculine; this is examined by their features. One element is noun and the other is
pronoun. But in the last two sentences the there is the word “bicycle™ and the pronoun
‘it’ that refers to things not to humans. So, it is nccessary to extend the cheeks and for
the features [+thing]. This extension permits the anaphoric connection between the
words ‘bicyclc’ and “it’.

The above transformation rule will be as following:
transformation ‘Anaphoric_Connection’.
noVariables.

structureDescription
(node conjunction barii,
aTree (node n bar:features &feat_first,
(terminal &nounTerm): transformationVariable &tvl),
aTree (node pronoun bar:features &feat_second,
(terminal &pronounTerm): transformationVariable &tv2)

structureCommands
features man set [+human,+masculin},
features woman set [+human. +feminine],
features thing set [+thing].

ifThenElse(

(&man subsets &feat_first and &man subset &feat_second) or
(&woman subsets &feat first and &woman subsets &feat_second) or
(&thing subsets &fcat_first and &thing subsets &fcat scecond).,

(&tv]l addAnaphor al,

&tv2 addAnaphor al,

transformations &tvl transform &tvl also
&tv2 transform &tv2

),
fail)

There is another problem. The anaphoric connection must be different
between the different elements. This requires an implementation specific predicate
that returns different anaphors; Ict’s say new_anaphor (c.g. a counter that returns a
different value for every anaphoric connection). In order to have all the anaphoric

214

BUPT

connection (three in this example) it is necessary the repeated application of the above
rule. This is possible by a grammar rule with recursion.

grammar ‘Anaphoric Conncections’.
transformation ‘Anaphoric_Connection’.
grammar ‘Anaphoric Connections’.

The above transformation rule “Anaphoric Connection™ in order to have
correct repeated application must check it an anaphoric connection has already been
created. So, it is necessary for a new cheek to be added and the transformation rule
becomes finally as following:

transformation ‘Anaphoric_Connection’.
noVariables.
structureDescription

(node conjunction barii,
aTree (node n bar:features &feat first,
(terminal &nounTerm): transformationVariable &tvl),
aTree (node pronoun bar:features &fcat second,
(terminal &pronounlerm): transformationVariable &tv2)

structurcCommands
ifThen(&tvl aCommon &tv2 fail).

features man set [+human,+masculin],
features woman set [+human,+feminine],
features thing set [+thing],

ifThenElse(
(&man subsets &fcat_first and &man subsets &fcat_sccond) or
(&woman subsets &feat_first and
&woman subsets &fcat_second) or
(&thing subsets &fcat_first and &thing subsets & feat_second),

(new_anaphor(CommonAnaphor),
&tvl addAnaphor CommonAnaphor,
&tv2 addAnaphor CommonAnaphor,

transformations &tvl transform &tvl also
&itv2 transform &tv2

)s

fail)

215

BUPT

The predicate new_anaphor(CommonAnaphor) can have additionally a
second argument that is a grammar variable of anaphor type and return accordingly a
new anaphor name.

3.4.2 The problem of anaphoric connections inside an
X-bar tree

Let’s assume the following examples of anaphoric connections between an
element of a sentence and a reflexive pronoun: (Theofanopoulou,1994)
e John; admires himself,.
¢ John thinks that George, is himself,.
e John; considers himself, to be the best.

All the above examples have anaphoric connection between the proper nouns
‘John’ and ‘George’ and the reflexive pronoun ‘himself’. The problem is how it is
possible to definine a general transformation rule that automatically puts the
anaphoric connection between the two clements in the above examples.

In the above examples it is noticed that the reflexive pronoun is connected
with the closest proper noun.

In the first sentence the pronoun is connected with the proper noun. It is the
simplest case.

In the second case the reflexive pronoun is possible to be connected with the
closest proper noun that is the word ‘George'.

In the third casc the connection is between the reflexive and the closest proper
noun.

The first sentence is represented by the following tree:

I’,

John/il
+tense
+agr
-s

(¢4

admire

himself/il

216

BUPT

The second sentence is reprersented by the following tree:

I’\

John

+lense
+agr
-S

think

that
Pr”
George/il
+ense \Y; ¢ Pr’
+agr ¢ Pr
-S
c
himself/il
be
217

BUPT

The third sentence is represented by the following tree:

l’!

John/il
+tense
+agr
-S

consider

Ad”
himself/il A Ad’
+tense \Y)
+agr ¢ Ad
to ¢
the best
be

The transformation rule that covers the case of anaphoric connection of a
reflexive pronoun with the corresponding noun is the following;:

transformation ‘Reflexive_Anaphoric_Conncction’.

noVariables.

218

BUPT

structurcDescription
(node &nodel,
aTree (node noun bar:features &feat_first,
(terminal &nounTerm1): transformationVariable &ivl),
(not (node i barii,aTrce (node noun bar. terminal &nounterm2),
anyTree)
and
aTree (node pr bar:features &feat_sccond.
(terminal &pronounTerm): transformationVariable &tv2))

structureCommands
ifThen(&tvl aCommon &tv2 fail),

features man set {+human,+masculin].
features woman set [+human,+fcminine],

ifThenElse(
(&man subsets &feat first and &man subsets &feat_second) or
(&woman subsets &fcat_first and &woman subsets &fleat_second)

(new_anaphor(CommonAnaphor),

&tvl addAnaphor CommonAnaphor,

&tv2 addAnaphor CommonAnaphor,

transformations &tvl transform &tvl also
&tv2 transform &tv2

),
fail)

This rule is the same as the same as the last one that was described in the
previous section. The additional constraint in the structureDescription ficld is that
the subtree (node i barii,aTree (node noun bar, terminal &nounTerm2), anyTree)
is forbidden in the right subtree. It means that it is not permitted the another noun that
is closest in the reflexive pronoun. This tree is as following:

. any lree
nounTerm?2

219

BUPT

3.5 The graphical monitoring of the system

The linguistic knowledge of the system that we described in the previous
chapters has a series of input-outputs. We can process these files with a text editor.
However, in order to be able to change these files more casily and in an intcgrated
environment, a system was implemented that runs in a window environment.

Generally we can say that this system comprises of a window with multiple
tabs. In each tab we can process a different input or output. There is also on-line help
that describes the system’s function and the abilities provided by the system in cach
tab. Also, the help includes the rules and the commands of the system that we
described in the previous chapters.

Next we shall analyze each tab of the system.

220

BUPT

The first tab is for the design, the presentation and the alteration of the
system’s input trees.

« An open system for linguistic rules on the X-bar tiees - {O] x|

Exsoulion | Execulon Rules | Grammar | Pinciples - Translomations X bar Trees | xbar Fies |

¥-bar Structures Design
L Anode v barii

- Anode v bari Delete Node I
- Anode prep barii
| Anode prep bari Delete Tree l
Anode n barii
|> Anode n bari Movement Ways

! empty l————-z]

|: | node n bar, terminal bicycle Child Node

| node a bar, terminal the New Node
i node prep bar, terminal with

- 1 empty Child Node l

L Anode v bari

- Anodc n barii Right Node J
Anode n bari
1 empty LeftNode |
I node n bar, terminal child

| node a bar,terminal the
“ | node v bar, terminal hit
- Anode n barii
AR ode n bari
t | empty

I node n bar, terminal woman
| node a bar, terminal the

Change Node |

Node Context I

EXIT

The empty space on the above tab is the space where the tree is drawn.

In the bottom we see a button that has the name EXIT. When we press this
button we exit the system.

In the bottom there is a field in which we write the content of the node that
exists on the tree that we draw. This node is given with the name, the type and the
possible features of the node, as well as with the possible anaphors of the subtree that
has this node at the top. Also. we write the node of the X category together with the
terminal element and the possible anaphors of the terminal element.

In the vertical column on the right of the empty space where the subtree is, we
have a scries of buttons.

The first one has the name Delete Node. is button deletes a tree node that we
have already selected with the mouse, as well as the whole subtree that has this node
at the top.

221

BUPT

The second button has the name Delete Tree. This button deletes the whole
drawn tree.

The third button has the name Child Node. This button scts a new node as a
child node of the node that we have sclected with the mouse.

The fourth button has the name Right Node. This button sets a new nodc as the
right node of the one that we have selected. In the tree that we see, this node is above
the node that we have sclected.

The fifth button has the name Lelt Node. This button scts a new node as the
left node of the one that we have sclected. In the tree that we see, this node is below
the node that we have selected.

The sixth button has the name Change Node. This button changes the content
of the node that we have sclected with the mouse and sets as new content the one that
exists in the field Node Content.

Finally, we have the ability to move a part of the tree that we have drawn. The
move is made with the drag and drop mecthod. For the way that the moved subtree will
be connected, we have the following possibilitics provided by the selector:

1. Child node
2. Left node
3. Right node

We must finally point out that cach new child node takes the last place from
all the children of the node. Also, if we move a node with the drag and drop method
and set it as a child nodc of another node, then it takes the last place from the children

of this node.

In the above window we can see this tab and a designed tree.

222

BUPT

Next we shall wee the following tab. This tab processes the input tree files and
the result output files of the system.

1 An open system los linguistic tules on the X-bar tiees [JOf x|

Euacuml Emﬁmﬁde:l Glammul Prhc'de:-hmdamaﬁmtl Xba Trees X-bar Fies I
X-bar Structures Files

2l
% N
%

% The woman hit the child with the bicycie

(node v barn (node n bari,(node a bar terminal the) (node n bari, (node n bar, terminal woman),empty)),(node v b

%
%
(nede v bani {node n barn (node a bar, terminal the) (node n ban, (node n bar, terminal woman).empty)).(node v b

4

o,

To

% George admites himself

(node 1P’ bari,{node N’ bani,empty (node N’ ban {node N' bar, ternunal ‘George"anaphor 11),empty)),(node 1P" b

y | o
Design | Wrile l
Clear J |[Open -.I Save I Print I

EXIT '

This tab has a series of buttons used in the processing of these files.

The button Design enables us to see in a graphically the tree that we have in
this tab. In order to sec a tree graphically this tree should be in one line and we should
highlight it with the mouse. Next we press the Design Button.

We also have the Write button that writes on this tab’s text editor the tree
that’s been drawn in the tree drawing tab that we described above.

Apart from these two buttons that are used for the trees, we also have a series
of other buttons. Thesc are:

The Clear button deletes the whole content of this tab’s text editor.

The Open button opens a dialogue window in which the user finds and
downloads the desired file.

The Save button saves in the desired file the content of this tab’s text editor.

The Print button prints the content of this tab's text editor.

223

BUPT

Next we shall sce the following tab in which we describe the several rules that
constitute our thecory.

) An open system for linguistic rules on the X-bar trees

3!Enewhm {Exacution Aules | Grammas . Panciples - Transformations IX-bu Treas | X-ba Fies |
MRS T s

.23+ Principles - Transformations Declaration
e [% 2]
1% The case filter of the government and binding theery
%
principle 'Case Filter'".
%6
vars [node noun set "N’ bar:features [-case]).
%
sd ((node &noun, terminal &1:sdvar sd2).
GHPs
1scc
:] (comment 'The Case Filter is not valid in the tree : ":[8sd?2]]. -

In this tab we have a text editor that enables us to write the grammars we

want.

In this tab we have a scries of buttons that give us the following abilities:

The Clear button deletes the whole content of this tab’s text editor.

The Open button opens a dialogue window in which the user finds and
downloads the desired file.

The Save button saves in the desired file the content of this tab’s teat editor.

The Print button prints the content of this tab’s text editor.

224

BUPT

Next we shall see the following tab in which we write the several principles
and transformations.

Linguist's Theory Declaration

1 An open system lot linguistic tules on the X-bar biees [{O] X]

Exscution | Execuion Rues Grammar | Principles - Translomations | X-bar Trees | X bar Fies |

%
%
%
%
grammar ‘Grammar 1°.
principle 'Case Filter'.

%

%

%

grammar 'Grammar 2'.
principle 'The domination rule’.

Clear Open Save

In this tab we have a text editor that cnables us to write the desired principles
and transformations.

In this tab we have a series of buttons that give us the following abilities:

The Clear button deletes the whole content of this tab’s text editor.

The Open button opens a dialogue window, in which the user finds and
downloads the desircd file.
The Save button saves in the desired file the content of this tab’s text editor.
The Print button prints the content of this tab’s text editor.

225

BUPT

Next we shall see the following tab in which we write those grammars,
principles and transtormations that we wish to apply to the iput trees.

~ An open system for linguistic rules on the X-bar tiees

'} Euulm EE”B?M' Rules lGlummal Punciples - Transiomations | X-bar Tress | X-bas Fies |
Dedlare the Rules to apply on the Input X-bar Structures

% =
- 1% we want to apply the Grammar 1 on the input structures

%

%

grammar 'Grammar 1°.

5

"
&y
7

[yt
e

,..w,vu,..,,..—,,-
— 4,
P

s
Ty

O

.,.‘_..,.V._‘.,,:,.
ISR AT T ALY
R S Ak A S

P20

A
wE ~
,"‘
A
13 -
¢ Clear, Open Save Print
N
o |

In this tab we have a text editor that enables us to write the desired grammars,
principles and transformations to apply on the input trees.

In this tab we have a scries of buttons that give us the following abilitics:

The Clear button deletes the whole content of this tab’s text editor.

The Open button opens a dialogue window, in which the user finds and
downloads the desired file.

The Save button saves in the desired file the content of this tab’s text cditor.

The Print button prints the content of this tab’s text editor.

226

BUPT

In the following tab we specify the input and output files that we wish the
system to use and then we press the Execution button. The result is the production of
a file in the subdirectory that we had sclected the last time. This file has the name
exec.ari and we download it in the prolog in order for the system (o run.

~+ An open system fot linguistic rules on the X-bar lrees B=1E3

Execution Execution Rules | Grammas | Principles - Transformations | X-bax Trees | X bar Fes |
Declare the Rules to apply on the Input X-bar Structures

% B
% we want to apply the Grammar 1 on the input struclures

%

%

grammar 'Grammar 1°.

«} - , . - | _,_I:"

Clear Open Save l Print |

or |

This tab in its left part has a sclector in which we can select the subdirectory
that contains the desired file. Below there is the ability to sclect the appropriate filter
for the files that we will see in the scrolling list that lies below.

In the right part there is a series of buttons. Each of them corresponds to a file.
Thus, we sclect every time a file with the mouse and then we press the respective
button to write it next to it. In this way we read all five files of the system. After doing
this, we press the execution button that produces the file that the SWl-prolog needs to
exccute the linguistic system.

227

BUPT

4. Conclusions

4.1 The existing computational methodologies

A. The phrase-structure grammars

They were presented mainly by Chomsky in 1957, They have the general form
of X >y, where x, y can be any combination of terminal and no-teriminal clements.

The different categories of the phrasc-structure grammars are the following:
e regular grammars:
o left-linear grammars
o right-linear grammars
e context-free grammars
e context sensitive grammars
e unrestriced grammars

These grammars are used in computational systems with different kinds of
enhancements in order to produce or recognize natural language phrases. They are not
restricted to specific tree structures and it is difficult to maintain and extend an
application that uses this type of grammars. Howcever the advantage of these grammar
is that they have a very simple general format.

B. Transition networks

They are represented as finite states automatons. They arc directed graphs with
arcs noted by terminal elements. One node of the graph is denoted as starting point
and another onc as ending point. A sentence is accepted by the system if there is a
path from the starting point to the ending point and its arcs contain the words of this
sentence.

There arc diffcrent kinds of transition networks :
e (STN) simple transition networks
e (RTN) recursive transition networks that are the same with the STNs but they
additionally permit at their arcs phrasal categories except the lexical categories
and recursions.
e (ATN) augmented transition nctworks that arc RTNs with a sct of registers for
each network.

The disadvantages of these networks arc:

e It is not possible to describe every grammar.
e The networks are very complicated.

228

BUPT

e It is not possible to describe general rules for the different phrase catcgories in
onc network(Crystal, 1982). Usually, they arc spread in many different
networks.

e The check, the maintainance and the extension of these networks is very
difTicuit.

The main advantage is that they have a simple general formalism that is
possible to be implemented casily in prolog.

C. Lexical functional grammuar

The basic characheristic of this grammar type is that the lexical records are
declared as predicate structures with arguments. These structures are independent
from the phrase structurcs and they are a form of functional comments for the lexical
records. Also, there is the functional information of the phrase structures. This
information is combined with the functional information of the lexical records and the
final functional structure of a phrase is produced. The disadvantage of this theory is
the only two functional cquations between the functional information of the phrase
structures and the lexical records. This scts restrictions on the declaration of rules.

D. Generalized Phrase Structure Grammar

This grammar type emphasizes on the information that the syntactic categorics
have. The internal structure of the syntactic categorics is recognized.

The corresponding theory suggests the separation of the rules of syntactic structures in
lwo calcgorics:

e Rules of immediate dominace

e Rules of linear precedence

The first type refers to the hicrarchical relation between different categorics.
The second type refers to the position that the different categories have in a sentence.
This type of grammar is better for free order languages but it has been substituted by
the newer model, the HPSGs. They do not support a specific tree structure and it is
more difficult to extent an application or to declare reusable and genceral rules.

E. Head-driven Phrase Structure Grammar

This grammar type requires the existence of detailed morphological,
syntactical and scmantical information for every word. It requires more dctailed
information than the lexical functional grammars. This grammar is not a syntactical
grammar but it combines both syntax and semantics. It organizes the linguistic
knowledge as features structures. These features are sorted according to the
specialization of them. Also, there is the possibility for paths that define the relation
between them. The biggest difference between this theory and the previous ones is the
way for the manipulation of the lexical records. Lvery representation requires very
complicated information and there are very big problems for the maintainance of this
buge information. Additionally, there is not any specific format and it is possible to

229

BUPT

have arbitrary different structures. [t is not a good formalism for translation systems
since the sing of the source and the destination language are not possible to be
determined. That is way it is necessary for another semantic representation at this kind
of systems.

4.2 The presented methodology

A computational system that implements the presented methodology is
possible to be used as a tool by rescarchers. They can define rules and they can apply
them on a sct of X-bar trees. Additionally, it is possible to combine this with another
software system that produces the X-bar trees. That system can use a set ol very
simple rewriting rules (even only lexical rules that produce all the X0 -> Terminal
subtrees of the words of the phrases) for the production of the initial X-bar structures.
The rules can be based only on genceral phrase structure information and they are the
rules that were described in the corresponding section of the X-bar trees. The software
that implements the presented methodology can be used in any natural language
processing software system.

The main characteristics of the presented methodology are the followings:

e Is is an artificial computer language with variables, operators, if-then-clse
structures and repetitions-recursions dedicated in the natural language
processing,.

e It provides a mechanisim for the declaration of rules that:
o examines X-bar structures and rejects invalid onces.
o transforms X-bar structures and produces new oncs by permitting
multiply simultaneous transformations on every X-bar structure.

e It manipulates the syntactic, semantic and pragmatic information of the X-bar
structures. Additionally, it supports the checking of the accepted rate at a rule
application and permits the evolutionary changing of the manipulated X-bar
structures ([Fouskakis, 2004¢, 2005D).

e The syntactic and semantic information has simpler structure than the HPSG.
The relation between the elements is determined and by the structure of the X-
bar scheme. The variables have much stronger functionality with hicrachical
way of declaration that can change dynamically in the presented language
which is better than in the unification grammars like the HSPG (Fouskakis,
2005a, 2005c¢) (the most interesting computational linguistics approach).

e The features of the nodes of X-bar structures can be changed dynamically by
using transformations.

e It is more flexible than the TAGs (IFouskakis, 20050).

230

BUPT

It is possible to define general rules that arc applicable in many different X-bar
trees since they are produced from the same general scheme and have the
same structure and the same way of linguistic trcatment (Fouskakis, 2004b,
2005b).

It is according to the Chomsky ideas of the universal grammar theory, it
combines his idcas in more gencral and abstract new approach (Fouskakis,
2004c¢) and it is unic in this sense (Fouskakis, 2000, 2005b).

It is a different approach than the classical parsers that implement a version of
the Chomsky’s theory (GB-government and binding or Minimalistic
Program).

It is an artificial language that permits the declaration of natural language rules
and its main characteristics are simplicity and gencrality.

It supports anaphoric connections inside or outside of an x-bar structure.

A better and simpler covering of the ambiguity problems of the phrases of
natural languages by supporting morc that one structures in the
structureDescription field of the principles and transformations connected
by the and, or operators and by using the variables (Fouskakis, 2005b).

It integrates idcas from different theories.

The simplicity, flexibility and generality facilitates the implementation, the
maintenance and cxtension of the corresponding applications.

It is better for embedded applications since the defined and produced
structures are simpler and smaller and it is not necessary to have large memory
size and strong processor.

It facilitates the man-machine communication for the exccution of commands
and the retrieving of the required information that is expressed by natural
language phrascs. Possible applications can be in the domain of railway,
airway or tourist information software systems. Also, it is possible to be used
in the automotive domain to facilitate the communication with the today
complicate information systems.

231

BUPT

5. Bibliography

+ Abercrombiec D., 1967: Elements of General Phonetics, Ediburgh University
Press.

* Alshawi H., Arnold D., Backofen R., Carter D, Lindop J.. Netter K., Pulman §.,
Tsujii J., Uszkoreit H. and edited by Pulman G.. 1992: FUROTRA Rule
Formalism and Virtual Machine Design Study-Final — Report, Cambridge,
Cambridge Computer Scicnee Department — Commission of the Luropcan
Communitices.

* Ananiadou S., Antona M., 1990: “Linguistic Opinions about the Multi-Language
Translation from the Greek Language™. Studies For The Greek Language
proceedings of the 11 meeting of the linguistic department of the Faculty of
Philosophy of The Aristotle University of Thessaloniki.

* Babiniotis G., 1980: Theorcetic Linguistics — An Introduction in Modern
Linguistics, University of Athens.

* Babiniotis G., 1985: Introduction in Semantics, University of Athens.

*+ Babko-Malaya O., 2004: “LTAG Semantics of Focus™, Seventh International
Workshop on Tree Adjoining Grammar and Related Formalisms, Vancouver.

* Belletti A, Rizzi L., 2002: Noam Chomsky On Nature and Language, Cambridge:
University Press.

* Campos H., 1987: “Passives in Modern Greck™. Lingua, 73, 301-312.

* Cann R., 1993: Formal Semantics An Introduction, Cambridge University Press.

* Paris C., Swartout W., Mann W._ 1991: Natural Language Generation in Artificial
Intelligence and Computational Linguistics, Kluwer Academic Publishers.

* Chomsky N., 1957: Syntactic Structures, The Tague: Mouton.

* Chomsky N., 1965: Aspects of the Theory of Syntax, MIT Press: Cambridge Mass.

* Chomsky N., 1968: Language and Mind, New York: Harcourt-Brace.

* Chomsky N., Halle M., 1968: The Sound Puttern of English, New York : Harper
and Row.

* Chomsky N., 1970: “Remarks on Nominalisation™, Jacobs R. - Roscnbaum P.
184-221.

232

BUPT

Chomsky N., 1972: Studies in Semantics in Generative Grammar, The Hague:
Mouton.

Chomsky N., 1976: Reflections on Language, London Fontana.

Chomsky N., 1981: Lectures on Government und Binding, Dordrecht Foris.

Chomsky N., 1982: Some Concepts and Consequences of the Theory of

Government and Binding, Cambridge Mass: MIT Press.

Chomsky N., 1986a: Knowledge of Lunguage. Its Nature, Origin and Use, New
York: Pracger.

Chomsky N., 1986b: Barrics, Cambridge: Mass MIT Press, Linguistic Inquiry
Monograph 13.

Chomsky N., 1988: “Some Notes on Economy of Derivation and Representation™,
MIT Working Papers 10.

Chomsky N., 1995: The Minimalist Program, MI'T Press.

Chomsky N., 2000: New Horizons in the Study of Language and Mind,
Cambridge: University Press.

Copestake A., 2002: Implementing Typed Feature Structure Grammars,
Standford: CSLIS.

Cruse A., 2004: Meaning in Language: An Introduction to Semantics uand
Pragmatics, Oxford University Press.

Crystal D., 1982: Linguistic Controversies, London Arnold.

Drachman G., 1984: Introduction to Greek Case, University of Salzburg.

Durand J., 1990: Generative and Non-linear Phonology. London: Longman.
Dumitrescu D., 2002: Principiile Inteligentei Artificiale, Cluj Napoca:Editura
Albastra.

Efthimiou E., 1991: “Structural Substitution of Anaphoric Elements — a Casc for
Processing of Greek Language from the Computer”, Studies For The Greek
Language proceedings of the 12 mecting of the linguistic department of the

Faculty of Philosophy of The Aristotle University of Thessaloniki.

Fodor J., Katz J., 1964: The Structure of Language. Readings in the Philosophy of

Language, Englewood cliffs: Prentice Hall.
Fong S., 2000: “The Pappi System: Lexical Semantics and Morpho-Syntax™, 38th

Annual Meeting of the Association for Computational Linguistics. Hong-Kong,.

233

BUPT

Fong S., 2005: "Computation with Probes and Goals: A Parsing Perspective”™, In
UG and External Systems, Eds. Di Sciullo, A. M., John Benjamins Publishing
Company.

Fouskakis C., Halatsis C.. 1997: “An Open System for Language Constraints on
the X-Bar Trees”, Working Papers in Natural Language Processing, An
International Workshop. Athens Greece.

Fouskakis C. 2000: “An Open System for Linguistics Rules on the X-Bar Trees™,
Ukrainian Journal of Computational Linguistics, Lviv Ukraine.

Fouskakis C. 2004a: “A Computational Mcthodology for Linguistic Rules”,
Romanian-Hungarian International Conference SACI2004 on Applicd
Computational Intelligence. Timisoara Romania.

Fouskakis C. 2004b: *An Overview of a Computational Approach for Linguistic
Rules on the X-bar Trees™, Development and Application Systems DAS2004
International Conferencc, Suceava Romania.

Fouskakis C. 2004c: “The Organization of the Linguistic Knowledge in a
Computational Methodology as Computer Language for Linguistic Rules™,
Symbolic and Numeric Algorithms for Scientific Computing SYNASCO04
International Conference (University of West Timisoara and Recascarch Institute
for Symbolic Computation from the Johannas-Kepler University of Linz-Austria),
Timisoara Romania.

Fouskakis C., 2005a: “A Computational Mcthodology as an Artificial Language
for Natural Language Rules and The Unification Basced Approach”, Romanian-
Hungarian International Conference SACI2005 on Applied Computational
Intelligence, Timisoara Romania.

Fouskakis C., 2005b: “The Basic Notions of the Tree Adjoining Grammars and a
Methodology as Artificial Language about Linguistic Rules™, Intelligent
Linguistic Technologies Conference — World Academy of Science, Las Vegas
Nevada USA.

Fouskakis C., 2005c: “The Variables in the Computational Methodology as an
Artificial Language for Linguistic Rules™, 8th Intenational Conference -
Computer Science Session, Oradca , Romania.

Gabriilidou M., Lambropoylou P., Ronioth S., 1990: *Design and Commentary of

a Greek Texts Corpus”, Studies For The Greek Language proceedings of the 11

234

BUPT

Meeting of the Linguistic Department of the Faculty of Philosophy of The
Aristotle University of Thessaloniki.

Gazdar G., Klcin E.. Pullum G.. Sag L., 1985: Generalised Phrase Structure
Grammar, Oxford: Blackwell.

Gilbert K., 1991: Computer Processing of Natural Language. Prentice Hall,
Englewood Cliffs: New Jersey 07632,

Grishman R., 1989: Computational Linguistics an Introduction, Cambridge:
University Press.

Hacgeman L., 1990: /ntroduction to Government and Binding, Oxford: Blackwell.
Hacgeman L., 1995: Introduction to Government & Binding Theory 2 “ edition,
Blackwell.

Halle M., Clements G., 1984: Problem Book in Phonology, Cambridge,
Massachusetts and London, England: The MIT Press.

Halatsis C., Stamatopoulos P., Karali 1., Mourlas C., Gouskos D., Margaritis D.,
Fouskakis C., Kolokouris A., Xinos P., Reeve M., Veron A., Schucrman K., Li
L.L., 1994: "MATOURA: Multi-Agent TOUrist Advisor”, Proccedings
ENTER’94. Insbruck.

Halatsis C.. Stamatopoulos P.. Karali [.. Bitsikas T.. Fesakis G., Schizas A,
Sfakianakis S., Fouskakis C.. Coukoumpetsos Th., Papageorgiou D.. 1996: “Crew
Scheduling Based on Constraint Programming: The PARACHUTE Experience” ,
Proc. HERMIS’ 96, Athens.

Haspelmath M., 2002: Understanding Morphology, Arnold Publishers.

Horrocks G., Stavrou M., 1987: “Bounding Theory and Greek Syntax. Evidence
for Wh-movement in NP”, Journal of Linguistics, 23, 79-108.

Jackendoff R., 1977: The X-bar Syntux, MIT Press.

Jacobs R., Rosenbaum P., 1970: Readings in English Transformational Grammar,
Xerox College.

Wirth J., 1985: Beyond the Sentence : Discourse and Sentential Form, Karoma
Publishers, Inc.

Joseph B., Philippaki-Warbuton 1., 1987: Modern Greek, London Routledge.

Joshi A., Levy L., Takahashi M., 1975: "Tree Adjunct Grammars", Journal of
Computer and Systcm Sciences, 10(1), 136-163.

Mckeown K., 1985: Text Generation, Cambridge University Press.

235

BUPT

Kosma D., Stratou S., Lolou A., 1988: “Analytic Grammar of th¢ New Greek
Language”, Publications 2002 scrics Linguistic Library.

Leech G., 1983: Principles of pragmatics, London: Longman.

Lyons J., 1981: Language. Meaning and Context, London: Fontana.

Mackridge P., 1985: The Modern Greek Language, Oxtord University Press.
Malikouti-Drachman A., Drachman G.. 1988: “Accentuation in Greek”, Studies
for the Greek language, Thesaloniki Kiriakidis 127-144.

Millett K., Lonsdale D., 2004: “L:xpanding Trce Adjoining Grammar to crealc
Junction Grammars trees”, Seventh International Workshop on Tree Adjoining
Grammar and Related Formalisms, Vancouver.

Noble H., 1988: Nutural Language Processing, Blackwell Scientific Publications.
Pedersen M. 2000: Usability Evaluation of Grammar Formalisms for Free Word
Order Natural Language Processing. Qucensland, University of
Queensland: Thesis of Doctor of Philosophy.

Philippaki-Warbuton 1., 1970: On the Verb in Modern Greek, Bloomington
Indiana University.

Philippaki-Warbuton 1., 1971: “Rules of Accentuation in Classical and Modcrn
Greek”, Glotta, 48, 107-121.

Philippaki-Warbuton 1., 1973: “Modern Greek Verb Conjugation. Inflectional
Morphology in Transformational Grammar™, Lingua, 32, 193-226.
Philippaki-Warbuton [., 1975: “Passive in English and Greek™, Foundations of
Language, 13, 563-578.

Philippaki-Warbuton I., 1976: ““On the Boundaries of Phonology and Morphology.
A Case Study from Modern Greek™, Journal of Linguistics, 12, 259-78.
Philippaki-Warbuton 1., 1982: “Constraints on Rules of Grammar as Universals™,
Crystal D. 95-107.

Philippaki-Warbuton 1., 1985: “Word Order in Modern Greek™, Transactions of
Philological Socicty, 113-143.

Philippaki-Warbuton 1., 1987: “The Theory of Empty Categories and the PRO-
drop Parameter in Modern Greek™, Journal of Linguistics, 23, 289-318.
Philippaki-Warbuton 1., 1989: “Subject in English and Greek™, Proceedings of the
3 Symposium on the Description and/or Comparison of Lnglish and Greek,

Thessaloniki Aristotle University School of English.

236

BUPT

Philippaki-Warbuton 1., 1990: “Analysis of the Verb Sct in New Greek”, Studies
For The Greek Language Proceedings of the 11 Meceting of the Linguistic
Department of the Facully of Philosophy of The Aristotle University of
Thessaloniki.

Philippaki-Warbuton 1., 1992: An Introduction in Theoretical Linguistics, Nefeli,
Athens.

Photopoulou A.. 1990: **Analysis of the Components of the Stercotype Sentences
— Comments about their Classification”, Studies For The Greeck Language
Proceedings of the 11 Mecting of the Linguistic Department of the Faculty of
Philosophy of The Aristotle University of Thessaloniki.

Radford A., 1981: Transformational Syntax, Cambridge University Press.

Radford A., 1988: Transformational Grammar, Cambridge University Press.
Radford A., 1997: Syntux a minimalist Introduction, Cambridge University Press.
Ralli A., 1990a: “‘Lexical Phrase : Objcct of Morphological Interest”, Studies For
The Greek Language Proceedings of the |1 Meeting of the Linguistic Department
of the Faculty of Philosophy of The Aristotle University of Thessaloniki.

Ralli A., Touratzidis L., 1990b: “Computational Processing of Accents at New
Greck Language”, Studies For The Greek Language Proceedings of the |1
Meeting of the Linguistic Department of the Faculty of Philosophy of The
Aristotle University of Thessaloniki.

Ralli A., 1992: “The Theory of Features and the Inflectional Words Structure at
New Greek Language™, Studies For The Greek Language Procecdings of the 13
Meeting of the Linguistic Department of the Faculty of Philosophy of The
Aristotle University of Thessaloniki.

Roca L., Johnson W., 1999: 4 Course in Phonology, Blackwell Publishers.

Samucl D., Norbert H., 1999: Working Minimalism, Cambridge: MIT Press.
Schabes Y., Abeille A., Joshi A. K.. 1988: "New Parsing Strategies for Trec
Adjoining Grammars." In Proceedings, 12" International Conference on
Computational Linguistics, 578-583.

Schnelle H., Pierrot A., Hellwig P., Wicgand H., Naught J. Atkins B., Gross M.,
Calzolari N., Uszkoreit H., Schutz J., Caroli F., Devillers C., Rohrer C., Al B.,
Martin W. And Heid U., 1992: EUROTRA: Feasibility and Project Definition

Study an the Reusability of Lexical and Terminological Resources in

237

BUPT

Computerized Applications:Final - Report, Stuttgart, University - of - Stuttgart
Germany:EUROTRA study.

Selkirk E., 1982: The Syntax of Words, MU Press,

Shaban M., 1994: A Minmimal GB Parser, Boston, Boston University.

Spencer A., 1991: Morphological Theory. An Introduction to Word Structure in
Generative Grammar, Oxford: Blackwell.

Staurou M., Philippaki-Warbuton 1., 1987: *"The Parameter of Reconciliation and
the Independent Anaphoric Sentences™, Studies for the Greek language, 311-322,
Thesaloniki: Kiriakis.

Tatar D., 2001: Inteligenta Artificiala — Demonstrare Automata De Teoreme,
Prelucrarea Limbajului Natural, Cluj-Napoca: Editura Albastra.

Tatar D., 2003: Inteligenta Artificiala - Aplicatii In Prelucrarea Limbajului
Natural, Cluj-Napoca: Editura Albastra.

Theofanopoulou D., 1986: “Structures for the Removal of the Object of a
Complement”, Studies for the Greek language, 87-108, Thesaloniki: Kiriakidis.
Theofanopoulou D., 1989a: Transformation Syntax from the Theory to Practice,
Kardamitsas: Athens.

Theofanopoulou D., 1989b: “Compound Structures of NI> and the Movement in
Greek language”, Studies for the Greek language, 337-354, Kirnakidis:
Thesaloniki.

Theofanopoulou D., 1994: Transformation Syntax from the Theory to Practice 11,
linguistics department of the Philosophy Faculty of the University of Athens.
Vijay-Shanker K., Joshi A., 1988: "Feature Structure Based Tree Adjoining
Grammars", in the proceedings of the 12" International Conference on
Computational Linguistics, 714-719.

Winston P., 1992: Artificial Intelligence Third Edition, Addison-Wesley
publishing company.

238

BUPT

INDEX

A

acceptance_level - 65

aCommon - 163, 164, 165, 171, 184, 202, 203. 205,

215,219

addAnaphor - 149,150, 155,156, 158, 170. 184,
200,207,212, 214.215. 219

addFeatures - 149, 150, 154, 170, 184, 200

addGrammarVariable - 62, 64, 66. 151, 169, 196,
206

addlnputTrecs - 61

addStructures - 61, 196

addValues - 149, 151, 170, 182, 201

akirstTree- 112,137, 183

also - 70, 152

anaphor - 27,45, 52, 54, 56, 67. 68, 69. 72, 74. 79,
80. 85.87.88.89.91.92_ 101, 102. 103. 106,
107.108.109. 110, 111.138. 141,142,143,
144, 145, 146, 149, 154, 155, 156, 157_ 158,
160, 61, 162. 167, 178, 182, 184, 185, 188.
189, 199, 200. 201. 202, 207. 214, 215. 2106. 219

anaphonc connections - 205, 208, 213, 214, 216

and - 60. 113, 168

anyTrec-70.73. 113, 114, 116, 123, 128, 138, 151,

156, 157, 167, 183, 207, 219
alrce- 112,123 183.206. 211,214,215, 219
AVM -32 33

Chomsky - 6

comment - 177, 178, 185, 204, 205, 2006
computational Iimguistics - 10

context free - 16. 31

D

deleteDuplicates - 151, 169, 201
deleteValuces - 149,170, 182, 201

descriptively adequate - 15

E

EBNF form for stating variables - 74

EBNF form of the grammar rule - 64

IEBNF form of the structureDescription ficld - 135
EBNEF of the linguistic program - 66

EBNF of the structureCommands ficld - 168

EBNF of the structures - 8§

empty - 49,54

equal - 160, 161162, 164, 165,166, 167171, 172.

184, 198, 201, 202, 203
cqualkeaturc - 164, 171, 202
exists - 68, 73, 78, 82. 83, 160, 161, 162, 164, 171,
172184, 185, 186, 188,202,221, 222
Lxtended Standard Theory - 20

B

bar - 44_48 52,55, 69.72. 73, 75. 82. 83, 86. 87,
89. 93.94. 96, 97. 104, 105, 106, 107. 108, 109,
VIO TTL V14, 116, 119, 121, 125, 126, 128,
130, 132, 134, 143, 144, 1406, 147_ 148, 153,
155, 157,158, 161. 1606, 170, 181, 183, 189,
190. 191. 192, 200, 205, 206. 211,212,214,
215,219

bari- 44, 48,52, 55.69.72,73.75. 114, 121. 132,
134, 143, 146. 148, 154, 157, 158, 170. 183,
207.211.212

barii - 44,47 52,5569, 73, 75. 116, 119, 128, 134,

146, 153, 156, 157, 158, 170, 183. 207. 211.
212,214, 215,219

binding theory - 27

bounding theory - 27

F

features - 19,32, 33, 34, 35,42, 45,53, 55, 57.67.
68.69.72.73,74.75.76.78. 79, 80. 81, 82. 83.
90.92.96.97.98. 126. 138. 141, 142, 143, 146,
147, 148. 149, 153, 154, 158, 162, 163, 1064.
165, 174, 178, 182, 184, 185, 187, 188, 189,
199,200, 201, 202, 203. 205,211,212, 214,
215,219,221, 229

C

Cuse Filter - 28
case theory - 28

G

general variables - 78, 151

getlnputTreeld - 61

getNextStructure - 61, 196

getParticularStructure - 61

getPreviousStructure - 61, 196

Government and Binding (heory - 25

government theory - 25

grammar - 5. 6.9 LI 15 16, 18.20,25. 31, 58. 59.
60, 01,62, 63,64, 65,66, 151,152, 168, 177.
178,179, 1RO IR, 182, 185, IR7. 194, 195,
196, 197,205, 208, 215, 2106, 228, 229

239

BUPT

grammar variables - 62. 71,79, 151 208
grammarVar - 63, 168. 169,172
greaterFeature - 164, 171, 202

observatoriy adequate - 1S
or - 60, 113, 16R

I

ifThen - 59. 64, 159, 169, 187 201,215,219
ifThenElse - S9. 64, 159 169, 187 201,208 212

214,215,

mherent casc - 29

219

mterpreteraly adequate - |5

L

leftMost - 112, 123, 137, 183
linguistic knowledge of this methodology - 41
linguwistic program - 42, 65, 180, 185, 194

M

Morphology

-5

N

newlnputTrees - 61

nextStructure - 141, 169

node - 9,22 43 44,4547 48,52, 55.56.57.67.
68.69.73.74.75,76.79. 80 81,82, 83 R4 RS,
86.87.89.90,91.92.93. 94,95 96,97, 98,99,

100, 101,
109, 110.
126. 128,
144, 146,
157, 158,
170, 178,
192, 199,
211,212,
nodeName -

102,
11
130,
147,
161,
182,
200,
214,
146.

103,
112,
132,
148,
162,
183,
201,
215,
148,

104, 105, 106
114,116, 119
134, 135, 141
149, 150, 154
163, 164, 165
184, 188, 189
202, 203, 205
219.221.222
165. 166, 170

. 107, 108,
121,125,
. 142,143,
L IS5 156,
. 166, 167,
190, 191,
L2006, 207.
. 228

. 172, 184, 200,

l)

particularStructure - 141, 169

Phonencs and phonalogy - 4

position - 78 R4 179 229

Pragmane s S

previousStructure - 141,169

principle - 2542 57 58.59,60, 61. 62, 63. 65, 66,
TE 73777980, 81, B2 B3 B4 85 RO, 87, 88.
89,90, 91 114116, 119121, 123, 1251206,
128, 130,132, 134, 168 177, 178, 179, 180,
PRI, 182, 185, 194, 195,196, 197, 205, 2006

principlelncorrect - 168, 169

principles - 56

PROY - 29

Prolog - 174

R

removeAnaphor - 149,150, 170, 184, 200

removeFeatures - 149150, 170, 184, 200

removeGrammarVariable - 62, 63, 64, 60, 151,
169, 196

restoreStructure - 61, 190

202

nodeNotSubtree - 112, 183

nodes of the trees - 44

nodeSubtree - 112, 119, 132 134183

nodeType - 146, 148, 165, 166. 170. 172. 184, 200,
202

not- 60, 112, 168

notEqual - 160, 161, 162, 164, 165, 166, 167. 171.
172. 184, 202

notSubtree - 112, 116, 183

noVariables - 73, 88,99, 101. 102. 104, 106. 108,
109, 111, 114, 116, 119, 121, 123, 125, 126,
128. 130. 132, 134, 156, 157, 179, 211, 212.
214.215.218

noVars - 179

o

object control verb - 30

S

scc - 175,176, 178, 179, 180, 181, 182, 183, 184,
198. 201, 203

sd- 174,176,179, 182, '83, 185, 198

sdVar - 179 183, 207

ser - 67.68.74_ 82, 83 84_85. 86, 87, 88. 89. 90,
91.93.94 95969798, 100. 102, 103_ 105,
TO7_ 109 011, 141, 143, 144, 145, 146, 147,
148, 151, 169, 182, 198, 199, 200, 202, 205,
206,207, 211.212. 214,215,219, 222, 228

sctStructures - 61, 196

sctSuccecdedStructures - 61, 196

smallerFeature - 164, 171, 202

Standard Theory - 18

structural case - 29

Structuralism - 14

structureCommands - 57, 58. 67. 82, 92, 141, 145,
156, 158, 168, 177, 179, 182,205, 206, 207,
211,212,213.214, 215,219

structurcDescription - 57.58.67.71.77.78. 79,
80, 81,82 83, 84, 85. 86. 87, 88, 89,90,91. 92,
93.95.96.97,98. 99,100, 101. 102, 103, 104,
105, 106, 107, 108, 109, 111, 112, 114, 116,
119, 121,123, 125,126, 128, 130, 132, 134,
141, 156, 157,179, 182, 205. 206, 207, 211,
212.213.214, 215,219

subject control verbs - 30

subsets - 163, 164 165, 171, 185,202, 203. 212.
214,215,219

77,7880, 81,82, 83, 84, 86, 87. 88,92, 105,

240

BUPT

109, 111, 112, 113, 114, 135,141,142, 143,
146, 14K, 149156, 157, 158, 160, 167,172,
178, 183, 184, 198, 199,200, 202, 203, 207.
241,212,219, 221,222

subtrecPosition - 112, 114, 116,139

Syntactic Structures - 15

Svatax - S

system of rules - 25

systems ol principles - 25

T

t-54.151
terminal - 9. 18,22.29.31,32. 43,45, 48, 52, 53.

55,56, 57.67,68.69.72.73.74.76. 79, 80. &1.
82. 83, 84, 85. 86. 87. 89.90,91,92,93, 94,95,

96.97.98.99. 100, 101, 102, 103, 104, 105,
106, 107.108. 109, 110, 111, 114, 116, 119,
121,125,126, 128, 130, 132, 134, 138, 141,
142, 143, 144145, 146. 147, 148, 149, 155,
156, 157, 158. 160, 161, 162, 167. 178. 182.
184, 188, 190. 199, 200. 201, 202, 203, 205,
206.211.212.213.214,215.219.221.228

terminalElement - 145, 147, 161, 162, 170. 171.
184.199. 201

The final X-bar trees - 42

The imtial X-bar trees - 42

The Linguistic Program - 42

The Linguistic Theory - 42

The terminal clements - 45

Thematic Cruerion - 28

trace - 54

transform - 152 153, 154_ 155,156

transformation - 18.20. 42,57, 58. 39, 60.61. 62.
63.65.66.71.73.77.79. 80, 81.93. 94, 95 96,

97.98. 99, 100. 102. 103, 104, 105, 106, 107.
10R. 109, 111, 152, 154, 156, 157. 168. 177.
178,179, 180, 181. 182, 183, 185, 194, 195,
196. 197,203, 204. 207, 208. 211.212. 213,
214.215. 210,218

transformation variablcs - 78. 92 151, 152

transformationincorrcct - 168, 169
transformations - 18, 29, 56, 5§7. 58. 59, 63. 65, 67.
70.74.77.78. 79 81, 82, 142, 152, 153, 154,
155156, 158172174, 175.176. 177, 178,
179, 180, 181, 182, 183, 184, 185,193, 194,
195,196, 197, 198, 201, 203 204, 205, 207,

208,200, 201,212,213, 214, 215, 219,225,226

transformationVariable - 79, 92,93, 95,96, 97,
98.99. 100 101, 102. 103 104. 105, 106. 107.
10K, 109, 111,136, 142, 145,152, 156, 157,
179. 205,206, 211,212,214, 215, 219

U

unification - 31.32.33. 3436
umiversal grammar - 7
Umiversal Grammar - 6

Vv

varExists - 63,64 167.169. 172

variables - 3233 57, 58. 62, 60, 67. 68. 70, 73. 74,
78.79.80.81. 82, 83. 84. 85. 86. 87. 88. 89, 90.
91,92.93.94,95.96. 97, 98. 100, 102, 103,
105, 107109, 111, 141, 142, 145, 149,150,
182,160, 165, 167, 168,174, 175,177, 178,
179, 180, 181, 182, 183, 185. 195,197, 198,
199, 200, 202, 205. 206, 207, 208. 209, 211,
212,213

variables ficlkl - 67

vars - 174176, 177. 179, 182, 195,197

X

x-bar - 5.8.9.12,13,21.42.73.77
X-bar structurcs - 43

241

BUPT

