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Chapter 1

Introduction

1.1 Important items in Computer Vision

Having 2D representations of an environment the goal is to obtain information, which
could be used for different purposes. from these available representations. One can divide this
information in two categories. First category includes 3D details of the represented
environment. In the literature, it is called scene reconstruction [Arm96]. The second category
includes the motion of the camera, which generates that sequence of 2D representations. This
is the most important requirement to realize realistic insertion of an artificial object in a video
sequence [HZ03].

The subject of these PhD theses belongs to the first category. The goal of this chapter

is to define preciselv where in the great field of scene reconstruction is placed this work.

1.2 Scene Reconstruction

At a simple thinking, one can say that from a single image it is not possible to obtain
scene reconstruction. But, using techniques of projective geometry it is possible in many cases
to realize it. There are special techniques that involve the analysis of features such as parallel
lines and vanishing points to determine the affine structure of a scene. for example by
determining the line at infinity for observed planes in the image. Knowledge or assumptions
about angles observed in the scene, most particularly orthogonal lines or planes can be used to
upgrade the affine reconstruction to Euclidean. [HZ03].

The general case 1s to reconstruct scenes from several images. There are of course a ot
of mathematical developments. which deals with the cases when there are two. respectively
three images available for reconstruction. The basic tool in the reconstruction of point sets
from two views is the fundamental matrix. This is 3 x 3 matrix of rank 2. This matrix relates
the coordinates of the corresponding points in the two images. For three views the role of the
fundamental matrix is taken by the trifocal tensor. This is a 3 x 3 x 3 array of numbers that

relate the coordinates of corresponding points and lines in the three images.
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For any real scene there is a set of points representing the structure in that scene, and
the position of those points can be measured in a Euclidean world coordinate frame. Any
other representation is related to the original set of points by a transformation of their
homogenecus coordinates. There are four level of representations: projective, affine,
similarity. and Euclidean [Fau95]. Generally. similarity and Euclidean are grouped together as
metric. The level in which a point is represented depends only on the transformation required
to map the point to its real coordinates. Metric transformations are sub-groups of affine
transformations and both are sub-groups of projective transformations [SK79]. For each level
of representation there are different proprieties, which are invariant. Invariant propriety means
that measurements of this propriety give the same value in the original level and in any other

transtormed frame at the same level [HZ03].

1.3 Accurate Visual Metrology

Not all the applications require a metric reconstruction. For example, only a projective
reconstruction is needed for object recognition. and only an affine reconstruction is needed for
path planning. grasping and fixauon point tracking [Arm96]. If we want that the
reconstruction to be the same as the original we need to make it at the Euclidean level.
references [Cri99], and [MenO1]. The goal of this PhD thesis is to analyze the problem of
using stereo cameras to realize accurate 3D measurements. The 3D measured coordinates
must reflect the real position of the measured point in the environment where the
measurements are done. So. it is obviously clear that a Euclidean reconstruction is needed. To
compute a Euclidean reconstruction requires the camera calibration to be known.

The camera calibration problem represents a very important research field. Starting
with the research of Brown, reference [Bro71] a lot of scientists studied this subject having
the goal to obtain a camera model as close as possible to the real camera, and to compute the
parameters defined in their models. references [BC97], [Cum02]. [DG97]. [HA99]. [LDY9].
[MC99]. {Ste97], [TVDF89]. [WMG4] and [WMCO03]. We also have treated detailed the

calibration problem and brought contributions, as one will see in chapter 3 and 4.

1.4 Thesis Outline

This thesis is structured in 8 chapters. Chapter 1 makes a brief introduction in the
ficid of computer vision and tries to place the subject treated in my PhD thesis at the right

place in this field. In chapter 2 are presented basic knowledge about projective geometry,

2
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which is the most important tool used to solve the scene reconstruction problem. Chapter 3 is
an overview of the existing camera models and calibration mcthods. In the last part of this
chapter are presented my own contributions at the simulation and the analysis of the errors
produced by measuring with a calibrated camera. In chapter 4 are presented the two types of
the stereo sensors. which were built for testing the developed algorithm. Then my
improvements and contributions to the calibration procedure are described. Chapter 5
presents in the first half a theoretical introduction in image processing and in the second half
my algorithm developed in order to identify a certain point at sub-pixel level. A detailed
analysis of the measurements done with the stereo sensors, described in chapter 4, is
presented in chapter 6. Here are also presented my contributions in order to eliminate the
systematic errors, which appear for the non-parallel configuration of the stereo sensor.
Chapter 7 describes some possible industrial applications for both fixed and mobile
configurations of the stereo sensor. Also. a test application will be presented together with the
obtained results. Finally. in chapter 8 are presented the most important conclusions of this

work, the main contributions in the field and some ideas for the future work.
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Chapter 2

Projective Geometry

The Projective geometry is an extension of the Euclidean geometry and offers the
possibility to solve different computer vision problems, which are mostly impossible to be
soived using Euclidean geometry [Fau93]. The duality principle and the possibility of treating
points situated at infinity as normal points are the most powerful tools of this geometry. In the
following parts of this chapter are presented basic knowledge concerning the geometry of the
projective 2-space and 3-space, which are mostly used in scene reconstruction.

A good support to learn the necessary knowledge of Projective geometry can be
obtained by studying the references [Sp64], [SK79]. and [Vra62]. Also. the most important
tools of the Projective geometry used in computer vision are treated in the references [Fau93].

[FLO1]. and [HZ03].

2.1 Introduction in the geometry of the projective 2-space

The projective 2-space corresponds to the Euclidean space R*. The projective 2-space
is denoted with P~. One can represent an element of this space using a tri-dimensional vector
(x1. x2, x;)T. Its corresponding element (X, Y)T in R%, is computed using the tollowing

relations:

From these two relations is clear that also the element (kx;, kx, /CX‘;)T of P,
corresponds to the same element (X, Y)T of R® for any non-zero k. In fact, two such vectors
related by an overall scaling are considered as being equivalent. An equivalence class of
vectors under this equivalence relationship is known as a homogeneous vector. Any particular
vector (x1, X2, x3)" is the representative of the equivalence class. The set of equivalence classes

of vectors in R* = (0, 0, 0)" forms the projective 2-space P~

4
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2.1.1 Points and lines in P’- duality

A line in a plane is represented by the following equation:

aX+bY +c=0. (2.3)

Different values for the components a, b, and ¢ defines different lines of that plane. This way,
one can define a line by the vector (a, b, c)", which is an element of P’. So, an element of P
can be internreted as a line or as a point. This represents the duality principle between lines
and points in the projective 2-space.

In the following part we will define some basic operations between points and lines
using also the duality principle. A point x = (x|, x5, x3)" belongs to a line 1 = (a, b, o)’ if it

satisfies the following equation:

I'x=0. (2.4)

The intersection between two lines 1, and I- represents a point x. The equation (2.3)

gives the connection between these elements. as follows:
x=1x1,. (2.3)
Using the duality, one can define a line | passing through the points P, and P- as being

the cross product between the homogencous coordinates of these two points. So. one can

write the following relation:

l=x, xx,, (2.6)

where x; and x- are the respectively the homogeneous vectors of the points Py and P-.

2.1.2 The line at infinity and absolute points

A special category of points belonging to P? are that ones which have the last
component equal to 0. These points have no correspondent in R*. They are called ideal points

or points at infinity. This set of ideal points may be written (xy, x>, 0)'. where a particular
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point is specified by the ratio x, : x;. One can see that all these points lie on a single line. the

line at infinity. We denote this line L, = (0, 0, 1)". One can easy verify the following:

0 0 1)x, x, 0) =0. (2.7)

Using the relation (2.5) one finds that a line 1 = (a, b, ¢)" intersects the line at infinity
in the ideal point (b, -q, 0). A line I, = (g, b, c)) parallel to I intersects the line at infinity in the
same point as line 1. So. an important conclusion is that in the projective 2-space, two lines
always intersect. If the lines are parallel their intersection point is an ideal point situated on
the line at infinity.

Referring now to the line 1 = (a, b, )", using inhomogeneous notation, the vector (b, -
a) is a vector tangent to the line, and orthogonal to the line normal (a. b) and so. represents the
line's direction. If the line’s direction varies, also the ideal point (. -a. 0) varies over the line
at infinity. For this reason one can consider the line at infinity as the set of directions of lines
in the plane.

In figure 2.1. one can see a model of the projective 2-space. Points and lines of P~ are
represented by ravs and planes. respectively. through the origin in R*. Rays Iving in the x,xa-

plane are representing 1deal points. The x,x:-plane represents the line at infinity [HZ03].

A
ideal
point \ 7
.\./v B
/ \‘».\ ll'\,,— -
. = 0
. -
\ (K T \
"\
g N

Fig. 2.1. 4 model of the projective 2-spuce.

Between the ideal points there are two points, which have special propricties. These

points are called circular points or absolute points. Their canonical coordinates are:

1 1
l: I s J= —-i]. (28)
0 0
6
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2.2 Introduction in the geometry of the projective 3-space

The projective 3-space corresponds to the Euclidean space R’. This space will be
denoted with P*. If we consider an element of P’ as being (x;. xa. x1. x3) then one can compute

its corresponding element (.X. Y. Z) in R* as follows:

X =2, (2.9)
x4

y =22 (2.10)
X,

7= (2.11)
X,

The same as in the case of the projective 2-space also, for the projective 3-space its

elements are homogenous vectors.

2.2.1 Points and planes in P’- duality

A plane in the projective 3-space can be written as follows:

mX+nY+mZ+m, =0, (2.12)

where (X. Y. Z) are the inhomogeneous coordinates of any point which lies on this plane.

Using homogeneous coordinates the relation (2.12) will take the following form:

X, X+ X+, =0 (2.13)
This last relation can be also written as follows:
n'x=0, (2.14)

where ® = (m, m, m, m) represents a plane and x = (x|, x3, X3, .vc4)T represents a point. This

way, an element of the projective 3-space can be interpreted as a plane or as a point. So, the
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duality between lines and points from the projective 2-space exists also in the projective 3-

space, but between planes and points.

A line in P is defined by the join of two points or the intersection of two planes. Lines

have 4 degrees of freedom in the projective 3-space [HZ03].

2.2.2 The plane at infinity and the absolute conic

As it was presented in the case of the projective 2-space the line at infinity and the
absolute points as powerful tools ot this space their equivalent in the projective 3-space are
the plane at infinity and the absolute conic.

We consider a point X = (x, x2, X3, x35)" of the projective 3-space. A special category of
points is represented by that ones which have x; = 0. These points have no correspondent in

R’. They are called ideal points or points at infinity. One can easy verify the next relation:

0 00 Dk x. x, 0)=0, (2.15)
( )x, , 0)

where 7., = (0. 0. 0. 1)" represents the planc at infinity. So. the conclusion 1s that ali the 1deal
points lie on the plan at infinity.

The plane at infinity contains all the directions D = (x, x1, x3, O)T, and enables the
identification of affine proprieties such as parallelism. This way, we have the following:

- two planes are parallel if. and only if. their line of intersection is on the 7m.;

- aline 1s parallel to another line, or to a plane. if their point of intersection is on ..

In order to define the absolute conic we have first to explain what is a conic. A conic
1s a curve described by a second-degree equation in the plane. In Euclidean geometry conics
are divided in three main types: hyperbola, ellipse, and parabola. Using inhomogeneous

coordinates the equation of a conic is:

aX* +bXY + Y +dX +ev+ f =0, (2.16)

With homogeneous coordinates the equation (2.16) becomes as follows:

ax} +bx,x, + cxi +dx,x, +ex,x, + fxl =0. (2.17)
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Using matrices and vectors the equation (2.17) can be also written as follows:

x'Cx=0, (2.18)
where
a b/2 d/2
C=|b/2 ¢ e/2], (2.19)
dl2 el2 f

represents the conic coefficient matrix.
The absolute conic, Sk, is a conic on the plane of infinity m.. The points belonging to

the absolute conic satisfy the next two equations:

xi+x;+x;=0, (2.20)

_o. (2.21)

For the directions on 7, the defining equation (2.20) can be written as follows:

(x, x, x)lx, x, x,) =0. (2.22)

This means that absolute conic corresponds to a conic with a coefticient matrix C =~ L.
So, it is a conic of purely imaginary points on the plane of infinity [HZ03].

This basic knowledge about Projective geometry will be used mostly in sub-chapter
3.1 in order to define the camera models. Also, all the on-line camera calibration methods are

making use of this geometry.
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Chapter 3

Camera: Models and Calibration Methods

3.1 Camera Models

A camera is a mapping between the 3D world and a 2D image. A camera model is a
matrix with particular proprieties that represents the camera mapping. Due to the lens
proprieties we have to divide the camera models in two categories: ideal models, which are
distortion free models and real models, which include the influence of the lens distortion.

Both categories will be presented in the following parts of this chapter.

3.1.1 Distortion free models

The simplest camera model is the pinhole model. as one can see in figure 3.1.

tmage plone

Fig. 3.1, Pinhole camera geometry.

We define a coordinate system with the ongin in point C. This coordinate system is
called the cameru coordinate frame. The point C represents the centre of projection called
also optical center or camera center. The axis x and v of the camera coordinate frame are
defining a plane parallel with the image plane. This plane, called also focal plane, is described

mathematically by the next equation:

z=f. 3.1

10
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where fis the focal length. The line from the camera center perpendicular to the image plane
is called the principal axis or principal ray of the camera. The point P where the principal ray
meets the image plane is called principal point or image center.

A point M having the coordinates (x, v, = T in space is mapped to the point on the
image plane where a line joining the point x to the center of the projection meets the image
plane. As one can see in figure 3.2, from similar triangles one can simply computes that the

point M is mapped to the point (fx/z, fv/z)", on the image plane.

» z

Fig. 3.2. Mapping from 3D to 2D.

Using homogeneous coordinates the mapping of the world point M to the image point can be

written mathematically as follows:

~

!
~
o o o

T TN
-

t
—
—

The matrix from the relation (3.2) can be also written as diag(f, f. I)[l | 0] where
diag(f, f, 1) i1s a diagonal matrix and [I | 0] represents a matrix divided up into a 3 x 3 block
(the identity matrix) and a column vector, in this case the zero vector. We introduce now the
notation x for the world point represented by the homogeneous 4-vector (x, v, =. 1)'. the
notation X for the image point represented by the homogeneous 3-vector (fx., fie =)', and the
notation P for the 3 x 4 homogeneous camera projection matrix. This way, the relation (3.2)

can be written compactly as follows:

X = Px, (3.3)

11
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where
P=diag(f s 1)1]0]. (3.4)

The relation (3.4) defines the camera projection matrix for the pinhole model of
central projection. This model assumed that the origin of the coordinates in the image plane is
situated at the principal point P. If they are not the same, as one can see in figure 3.3, then the

mapping will be done according to the next relation:

forzp) [f |
- fv+zP_v = f

‘e

3.5

t

—_ .o .o
o © o

— [N \<

—

where (P.. P.) are the coordinates of the principal point with respect to the image coordinates.

i
f
Yim
P XC.’!I’.‘I
----------------- e —
P
AY E
[}
[}
[}
1
X, 1Py

> i

Fig. 3.3. Image and camera coordinate systems.

The equation (3.5) can be also written in the following form:

(3.6

Cam

where Xc.m is the coordinates vector of the point X relative to the camera frame, and K

represents the camera calibration matrix having the following form:

P.l'
K= [ P| 3.7
1

12
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Generally the points in the space are not given with respect to the camera frame, but
with respect to a difterent Euclidean frame, known as the world coordinate frame. Having a
point X we will denote, as before, with x its homogeneous coordinates and with x° its
inhomogeneous coordinates. Between the coordinates of the point X with respect to the

camera frame and its coordinates with respect to the world frame we have the following

relation:
xt, =R(xf-cf). (3.8)

As one can see in figure 3.4, R represents the rotation from the camera frame to the world
frame and c® the inhomogeneous coordinates of the camera center point with respect to the

world frame.

Fig. 3.4. The transformation between the camera frame and the world frame

Using homogeneous coordinates the relation (3.8) can be written as follows:

R -Rcf

X 39
cam 0 l ( )

Il
—_—
!
| I |
©c X
|
—_ A
(o]
™
| |
x

The general mapping given by a pinhole camera is obtain by replacing the Xc.m from

the relation (3.6) with the relation (3.9):

(3.10)

w

X =KR|I|-¢f K
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This way, the camera projection matrix P of a pinhole camera described by the

following relation:
P=KRl |-c*]. (3114

has 9 degrees of freedom: 3 for K (the elements f, P,, P,), 3 for R, and 3 for c*. The

orientation of the camera. The parameters of R and ¢&, which give the position and the
orientation of the camera frame relative to a world frame, are called the extrernal camera
parameter or the exterior orientation [HZ03}.

In most of the cases is not useful to make the camera center explicit, but to use the

transformation from the camera coordinates to the world coordinates as follows:

X, =Rx+t, (3.12)

t=-Rc”. (3.13)
This way, the camera projection matrix will become as follows:
P=K[R|t]. (3.14)

The pinhole model assumes that the image coordinates are Euclidean coordinates
having equal scales in both directions. In the case of a CCD camera can be possible that the
number of the pixels per unit in both directions to be different. If we denote with s, the
number of the pixels per unit in X direction and with s, the number of the pixels in Y direction
ther the general form of the calibration matrix of a CCD camera will be obtain by multiplving
the calibration matrix of the pinhole model with an extra factor diag(s., s\, 1). This way. we

will obtain as follows:

5, / P s/ s P,
K=| s, f Pl= s.f s.P (3.15)
] 1] 1 1
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With the notations:

p,=5.7» (3.16)
p.=s.f, 3.17)
C =sP., (3.18)
C,=sP, (3.19)

K=| »p G| (3.20)

The conclusion is that a CCD camera has 10 degrees of freedom. one more then the
pinhole camera because the calibration matrix K has is defined by four parameters.

A more complete model has the following form of the calibration matrix:

K= »p C| (3.21)

where s is called the skew parameter. A camera whose calibration matrix has the form
described by the relation (3.21) is called a finite projective camera [HZ03]. Another form to

describe the calibration matrix for a finite projective camera is the following:

p, —-p.cotd C,
K= p./sin8 C, |, (3.22)
]

where frepresents the angle between the axis of the image plane [Arm96]. Usually, this angle
is 90 degrees and then the calibration matrix will have the form described by the equation
(3.20).

A finite projective camera has 11 degrees of freedom. This is the same number of
degrees of freedom as a 3 x 4 matrix, defined up to an arbitrary scale. The conclusion is that
the set of camera matrices of finite projective cameras is identically with the set of

homogeneous 3 x 4 matrices for which the left hand 3 x 3 sub-matrix is non-singular [HZ03].
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The last step in this hierarchy of projective cameras is to define the general projective
camera. This is represented by an arbitrary homogeneous 3 x 4 matrix of rank 3. The rank 3
requirement arises because if the rank is less than 3 then the range of the mapping matrix will

be a line or a point and not the hole plane; in other words not a 2D image [HZ03].

3.1.2 Mede!s including distortion

All the camera models presented before can be applied when the focal lens is big and
the lens has a high quality. If we use normal lenses with a small focal lens then the distortion
will have a big influence to the obtained image. There are two ways to eliminate the effect of
the lens distortion. One way is to make a correction of the image and to obtain an undistorted
image. which can be then used for the models defined in the sub-chapter 3.1.1. This can be
realized using some constrains, for example the constraint that a line must be always straight
[DFO1]. Another way is to find a mathematical function, which relates the distorted
coordinates to the undistorted coordinates and then to replace them in the equations obtained
trom the distortion free models [WCH92}.

There are three types of the distortion, which can influence an image: radial distortion,
decentering distortion and prism distortion {WCH92]. From these types the most important
influence is given by the radial distortion. In the following parts or this chapter it will be
presented a mathematical model, which describes this type of distortion.

As one can see in figure 3.5 there are two types of radial distortion: barrel distortion
and pincushion distortion [Lan58], [Dod82]. Barrel distortion corresponds to a negative
displacement of ihe image points and pincushion distortion to a positive displacement of the

image points.

a) Undistorted image b) Barrel distortion ¢) Pincushion distortion

Fig. 3.5. Lens radial distortion.
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For the cameras we used in our experiments a distortion of type b) was detected. We
take two points as in figure 3.6. P, is the ideal point, undistorted and Py 1s the real point,

distorted. The coordinates of these points are X,,, Y, respectively Xy, Yq.

Fig. 3.6. Details of the lens distortion.

We will approximate the distortion with the tollowing relations:

X, =X,+X, f(R,), (3.23)

Y =Y. +V, - f(R). (2.24)

where Ry is defined by the next relation:

R, =((x,) +(Yd)3ﬁ’. (3.25)

According to the literature there are many ways to approximate the function f. We

decided to use the following form for the function f:
f(R)=k. R, (3.26)

where k; 1s the coefficient of the radial distortion and has a positive value.
With this last relation we can replace f'in the relations (3.23) and (3.24) and we obtain

the next two relations:

X, =X,-(1+k,-R2), (3.27)
Y,=Y,-(L+k,-R2). frmrpy (B2R)
IO e\ o
Taiea
17 TiML A RA "l
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Knowing the fact that &, -R; is very small we can write according to Taylor

approximation the following relation:

1

———=1+k_ -R}, (3.29)
1-k,-R] P

then the relations (3.27) and (3.28) will become:

!
L=X, -, (3.30)
“1-k,-R]
g p—— (3.31)
-k, -R;

When we introduced the coefficient of the radial distortion we considered its value

positive. We will make the following notation:
k =-k, (3.32)

where k takes negative values. With this notation the relation (3.30) and (3.31) the next two

relations. which wili be used in our future calculation:

“=XJ'—1—H
1+k-R;
-
Y1+ k-R
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3.2 Calibration Methods

Considering one of the camera models defined in the sub-chapter 3.1 the goal is to
compute the components of the camera projective matrix, or with other worlds, to compute
camera internal parameters and the camera external parameters. The calibration methods can
be divided in two categories.

The first category includes the traditional calibration methods, based on images from a
special calibration object with a known structure. These methods are called also off-line
calibration methods. The big advantage of these methods is the high accuracy of the obtained
camera parameters. The disadvantages are that they cannot be applied when the camera
parameters are changing during normal operation, as zooming, or when we try to reconstruct a
scene from a pre-recorded image sequence [Arm96]. In the sub-chapter 3.2.1 it will be
presented an overview of the off-line calibration methods.

The second category includes the on-line calibration methods. They were introduced
first by Faugeras and his collaborators [FLM92], [MF92]. They introduced the idea that a
camera can be calibrated using only point matches between images. without requiring the
knowledge of the scene. They called this method camera self-calibrarion method. This allows
the possibtlity 1o reconstruct a scene from pre-recorded images and to compute the camera
parameters during the normal vision tasks, references [AP95], [CDR9Y9]. [CT90], [HAS7].
[LL96] and [Stu92]. In the sub-chapter 2.2.2 it will be presented an overview of the on-line

calibration methods.

3.2.1 Off-line calibration methods

A very good survey of the traditional calibration methods is presented in the reterence
[ASBO00). According to this reference they are five different off-line calibration methods. The
other calibration methods combine these five or are similar to them. The calibration method
depends on the camera model used to simulate the behavior of the camera.

i. The first method is the method of Hall. [HTMS82]. He considers a lincar model
(without distortion) and computes directly the elements of the projection matrix P.
Considering that the 3D position of a set of n (n>6) calibration points and their 2D projection
in the image are known one can obtain the elements of projection mairix using least squares
technique, [PTVF92].

2. The second method is the method of Faugeras — Toscani. [FT86]. Also this method

considers a hnear model. but the method computes directly the elements of the calibration
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matrix K (the internal camera parameters), the clements of the rotation matrix R, and the
translation vector t (the external parameters). They use some special notations and
mathematical operators to solve the obtained system of linear equations [FT86].

3. The third method is the method of Faugeras — Toscani with radial distortion [FTR7].
This method uses a non-linear model considering also the influence of the radial distortion.
This way, the equation system turns into a non-linear system so the least-square techniques,
used before, have to be combined with an iterative algorithm to solve this system.

4. The forth method is the method of Tsai [Tsa86], [Tsa87], and [LT88]. He used also
of a non-linear model including the radial distortion. The method uses a two-stage technique.
In the sub-chapter 3.3.2 we will present in details this calibration method.

5. The fifth calibration method is the method of Weng [WCH92]. He improves the
model of Faugeras — Toscani, by including three tvpes of lens distortion. This method uses a

two-stage technique, the same as the method of Tsai.

3.2.2 On-line calibration methods

One can divide the on-line calibration methods from the bezinning i two categories:
self-calibration of the cameras. which have unchaiged interna! paramicters (A=ci.) ana selt-
calibration of the cameras having fixed internal parameters.

Interesting calibration methods belonging to the tirst categories are presented in the
references [AHHO9G]. [AHRO1], [HMO03] and [{Stu97]. They are dealing with the problem of
calibrating zooming cameras.

Different approaches of the self-calibration methods belonging to the second categors
are very well summarized in the reference [Arm9¢]. He divides these methods in another two
sub-categories: approaches for self-calibration for a monocular camera and approaches for
self-calibration for a stereo head.

Concerning the monocular camera, important calibration algorithms were developed
tv Faugeras et al.. references [FLMO92], [LF96]. {LF97] and Hartley. reterences [Har92}.
[Har94}, [Har97]. Their methods are based on identifving the image of the absolute conic,
which is equivalent with finding the camera calibration.

Concemning the stereo head, important calibration algorithms were developed by
Zissermann et al., reference [ZBR95]. He shows that is possible to obtain constraints to the
plane at infinity and the image of the absolute conic from the vector decomposition of the
projective transformation [Arm96]. Other interesting algorithms belonging to the same

category were developed by and Zhuang et al.. reterences [Zhu93]. [ZRXWY3].
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3.3 Analysis of Camera Off-line Calibration Methods

3.3.1 General presentation of a camera calibration procedure

In this sub-chapter we will present two of the most important camera off-line
calibration methods. Before starting to present them it is necessary to make a short description
of a general calibration procedure.

There are two important steps, which must be presented. The first one is refereeing to
the transformation from the 3D scene to a 2D chip image and the second one is referring to

the transformation from the chip image to the computer image.

A. The transformation from a 3D scene to a 2D chip image

In the following part it will be analyzed the relations between the 3D coordinates of a

real point P(x. v. ) and the 2D coordinates of his correspondent point PA.X,. Y;) on the chip.

X
A
P(x,.s
Pix.v.2)

Fig.3.7. The transformation from the 3D scene to the 2D image.

The notations used in figure 3.7 have the following meaning:
- S. represents the world frame or the reference frame;

- S, represents the camera frame;
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- P represents a point whose coordinates are: (x,. V.. o). with respect to the world
frame, and (x, v, 2). with respect to the camera frame;

- P.(X.. Y.) is the image point of P if a perfect pinhole camera model is used;

- PAX. Y. is the actual image point which differs from P,(X.. Y,) due to lens
distortion;

Going further, it will be established first the mathematical relations between 3D
coordinates (x, y, z) and the 2D coordinates (X,, Y,). Using the geometry we obtain, as

follows:

AC  CO, -X
= = =

AACO. = A4,00. = == =X =-f=, (3.35)
40 00. X, f :
PO. CO
APCO. =~ APOO. — =>-—2t =——c
A PO 00 |_ AP _CO_ _ -v_:
AMPO, = a1 PO, =L _FO | 4R 00 voo 7
l Y AFf, PO
=Y, =/, (3.36)

where OO, represents the focal length, and his value was noted by f.
The relations between the distorted coordinates (X, Y, and the undistorted
coordinates (X,, Y,) are given by the relations (3.33), and (3.34). From these two relations one

can obtain the following:

ﬁ:.X_d_. (3.37)
v )
Using now the relations (1.1), (1.2) and (1.6) we obtain:
;’\_«l_zi. (3.38)
Y,

In this moment we have the relations (3.35), (3.36) and (3.38), which represent the
connection between the 3D scene and his correspondent 2D image. The next step is to find
some relations between the world coordinates of the point P, which are (x.. 1.. z.) and their

correspondents (., Y,)), from the chip.
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Between the world frame S, and the camcera frame S 1s possible to write the next

relation:

(3.39)

where T;- represents the transformation from the camera system to the world system. From

the mathematical point of view T;* is a matrix, which has the following form:

rl r: 4 t.l
h " £
S r4 r5 rb t\' :
T, = " |, where R =|r, r r, | represents the rotation, and
‘ r, r; r. I
X ’ & £ T
0 0 1|

T= [rr 1, t__]T the translation between these two systems.

Going further. one can write the next relation:

! o
! A 2
=|r v A i’\ +(1 | (3.40)
£ r ro_] lf'\. l

where (x, v, z) are the coordinates of the point P with respect to the camera frame and (x,,, V.,
=) are the coordinates of the same peint P. but with respect to the world trame.

From the relation (3.40) one can simply write the next three relations:

xzxu’rl+ynr2+zur3+,\‘ (341)
y=Exr+vrtzrn+t, (3.42)
I=EX RV A (3.43)

Using the relations (3.38), (3.41) and (3.42) we will obtain the relation between the 3D

coordinates of a point and its 2D correspondent coordinates in the chip image:

X xrn+yr+zr+t
-d - w'l yu 2 w3 t (3.44)
YJ 'ru r4 + .vn r5 + :n rh + ’1
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B. The ransformation from the 2D chip image 1o the 2D computer image

In the following part we will find the relations between the coordinates (X, Y,) of a

point P, from the chip image and the coordinates (.X,, Y,) of its correspondent point, on the

computer image.

Chip Image

Real Chip Image Center

/

Computer Image

>

J man

<

Fig. 3.8. The correspondence between the center of the chip image and the center of the computer image.

ideal Chip Image Center

X

J mav

>

~t

£ max

Using the information from the figure 3.8. it is possible to write the next two relations:

X, =coefc- X, +C,.

Y, =coefy-Y, +C,.

(3.43)

(3.46)

where (C,, C,) represent the coordinates of the real center image from the chip and coefx and

coefy are two scale factors, which will be presented detailed in the next part.

d,
-.’:.---‘E‘.-
J Y. d o o
S T i I s R
A
O o O
1 2 3
Chip Area

00

d.
-.’r....-.ﬁ-
] S Y.®e e o
, d o @ @
- 4
N e o 0
R

Pixels Area

Fig. 3.9. The structure of chip area and pixels area.
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In tigure 3.8, Ximu. Yima are the chip dimensions and \X,.,.... Y,ma represent the total

number of pixels in x, respectively v, direction. So, we can write the next relations:

dea.\ = ‘Mnd\ » (347)
}fdma.\ = ‘\r('\'d\ ’ (348)
p max = IVp.r M (349)
paax = Ny (3.50)

where, as one can see in figure 3.9. we have made the following notations:

- N, N, represent the total number of the sensor elements in x, respectively y,
direction;

- d., d, represent the center to center distances between adjacent sensor elements n x.
respectively v, direction;

- NV,e, N, represent the total number of the pixels in x, respectively y direction.

1Vpxs
Using the relations (3.45) and (3.46) we obtain, as follows:

X =coefx- X

p max

Y ma =cOEN Y, (3.52)

J max *

max

From the relations (3.47), (3.48), (3.49), (3.50), (3.51), (3.52) and the fact that the

number of the lines from the chip 1s equal with the number of the lines from the computer

image:

N,=N, (3.53)

coefx = L N (3.54)
" d N’ '
coefy = 1 (3.55)

a : .55
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Due to a variety of factors, such as slight hard-were timing mismatch between image
acquisition hard-were and camera scanning hard-were, or the imprecision of the timing of TV
scanning itself the scale factor in x direction will be different from that, computed with
relation (3.54). We must correct this factor with a parameter named the uncertainty of the
scale factor, u,,. which can be different from 1 with maximum five-percent. reference [Tsa87].

We will obtain the next relation:

. 1 N,
coefx =u“d_N : (3.56)

X «x

Numerical example for the scale factors!

For a Panasonic WV-CD50 camera we have the following characteristics:

-sensor area is &.5mmx6.4mm :
-d =17pn, d =1lym;
-N_ =500, N, =3582.

The standard used for image acquisition is standard CCIR, which means that for the
computer image we have:

-N, =752, N, =582 (standard CCIR).

Using the relations (3.54) and (3.55) and the dates presented just before one can obtain
the next values:

- coefx = 88.471 pixel/ mm coefx™ =0.01303mm/ pixel

- coefy = 90.91 pixel/ mm coefy™ =0.011mm/ pixel .

As it was said in the beginning of the sub-chapter 3.3, two methods for camera
calibration will be presented here. The first is called Lenz calibration method, reference
[Len87] and the second is called Tsai calibration method, reference [Tsa87]. Betore starting to
describe these methods we will present the camera parameters, which will be calibrated.

For both methods we must compute the position and the orientation of the camera, so
the rotation matrix R and the translation vector t will be determined.

The focal length is a parameter for both methods. Both methods don’t considering the
offset of the image center, and the image center is chosen in the middle of the computer image
(Cy = 0. and C. = 0). Also the coefficient of radial distortion is considered, as being zero (k =

0).
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We will compute the scale factors for the first method using the relations (3.54) and

S, =coefx . (3.57)

S, =coefv. (3.5%)

But, in the second method we will use also, as a parameter, the uncertainty of the x scale
factor, according to the refercnce [Tsa87]. This parameter is denoted with w,, so the x scale

factor will be computed with the next relation:

S. =coefx =u_ -coefx=u_S,. (3.59)

The v scale factor is computed in the same way, as in the first method.

We made this choice of the camera’s parameters according to the conclusions from
reference [Jim93], which are the following:

-the offset of the image center has little effect on the determination of the position and
ortentation of a coordinate frame:

-the lens distortion will not dramatically change the position and orientation of a
coordinate frame;

-the scale factor has a great effect on the position of the coordinate frame, and on the
accuracy of the measurements:

-the oftset of the image center is more sensitive than the lens distortion on the

determination of the position and orientation of a coordinate frame.

3.3.2 Lenz calibration method

As we said at the end of sub-chapter 3.3.1. the camera parameters. which will be
calibrated in the Lenz method. according to the reference {L.enS7], are:

- focal length (f), as internal parameter;

- the rotation matrix (R), and the translation vector (t), as external parameters.

We know the coordinates (x.i, Jwi, Z.i), In millimeters, for a point P; in the worid
frame, and the coordinates (X, ¥,), in pixels, for its correspondent on the computer image.

We also. know some specifications for our camera (the model used is CV-M350), and using
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this information we can simply compute the scale factors with the relations (3.54) and (3.55).

We will obtain the next values:

S, =coefx =116.589 mm/ pixel . (3.60)

S, =coefy =120.248mm / pixel . (3.61)

We need in our next operations the values for S,”, and S,”. In fact, S;, and S, are the scale
factors from the chip image to the computer image, and S,”', and S_.-" are the scale factors from

the computer image to the chip image. These values are:

S-' = coefx™ =0.008577 pixel / mm , (3.62)

S:' = coefi”" =0.008316pixel i mm . (3.63)

The specifications for the camera model CV-MS50, which gives the possibility to
compute the scale factors, are the next ones:

-scanning area: 6.45mmx34.84mm :
-CCIR standard: 752(H)x582(}V).

Going further, this method is divided in six steps, which will be presented in the
following parts.
Step 1

Using the relations (3.45), (3.46), (3.62), and (3.63) one can find the values for .\};,

and Y, as follows:

X, = S;lem, (3.64)

Y,=S'Y,. (3.65)

where X;;. and Y, are the distorted coordinates of the point P; from the chip image.
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Step 2
For this method we use a calibration board. like in figure 3.10, which contains all the
calibration points P;. The calibration board 1s a plate with marked points all of them being in

the same plane. The world coordinate frame S, is chosen, as one can see in the tigure 3.10.

-_’;‘

Fig. 3.10. The calibration board.

Any point P;, from the calibration board, will have the coordinates (x.., )., 0) and in

this case the relation (1.13) becomes:

Xy, _ X h+y, s+

_ue ) ) (3.66)
Ydi xu'ir4 + .Vwirf + ,\
From the relation (2.7) one can obtain an equation, as follows:
’ r. ')
'- > Ly | 4 r, 2 .
Ydixm — |+ Ydiyu’i -t }d'i —J - /Ydl xu'l = |- Xdiyn'l —I|= ’\ dr (367)
tl ’l‘ I\' ’\' t\‘

For N points P;, it will be obtained an over determined system with N equations, each
of them having the same nature with the one noted (3.67). Using the matrices one can write

the next relation:

Cla, a, a, a, a]) =[x, x, ... x,]. (3.68)
where

C = [),‘I’x“i YJl'vN'i Ydl —A’dl 'rnl —/Ydi«vn/ ]/=L LN (369)
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and

::
-~
N
o

La =l (3.70)

3 1 v 1 v

The solution for this system is, according to the reference [PTVF92], the following:
[a, a, a, a, o) =C'[x, X, . . . X, (3.71)

where C' is the inverse of the matrix C.

We have the next relation between the elements of the rotation matrix R:

t

[(rl +r5): +(r2 —)'4)2]% +[(rI —rs): +(r2 +r4):]? =2. (3.72)

From the relations (3.70), and (3.71) one can find the value of the translation 7 . as

follows:

2
t = ) 3.7

" [(ax +a.) +(a, "04)2]% +[(al —a.) +(a, +a4)z]%

Knowing now the value for 7. from (3.73), the values for a;. a>, a:, a; and as from
(3.71). and using the relation (3.70) it 1s possible to compute the values for r;, 7>, 7., ¥y and rs.

as follows:

(3.74)

n=at, n=ad., t =al, r=ad, r=ad.

Step 3
Using the proprieties of the elements of the rotation matrix R we can find the values

for ry, and ry:

ro=(l-rt = r2), (3.75)

ro=—(1-r2 = r2)sign(nr, +1.7,). (3.76)
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Step 4
In this step we will compute the focal length f, and the translation . from an over

determined system of equations. Using the fact that the coefficient of the radial distortion was

chosen zero the relations (3.33). and (3.34) become, as follows:

(3.77)

(3.78)

where (X,;, Y..) are the undistorted coordinates of the point P; from the CCD-chip. With these

last, two relations. (3.35), and (3.36) become, as follows:

X,
X,=—f—, (3.79)
vl
Y,=—-f—, (3.80)
where (x;. ;. ) are the coordinates of the point P, with respect to the camera system. In this

moment it is possible to compute the values for x,, and y; using the relations (3.41), and (3.42),

because the values for all the parameters which define these two relations, are known:

xl = xnlrl + —vh’lrl + t.r » (38 l)

V, =X T (3.82)
For z; we use the relation (3.43), which in this conditions becomes:

z. = 'r'.\/r7 + -v\\l’tq + ,_' : (3'83)

Using the last five relations one can obtain a system with two equations, where fand 7.
are the unknowns. These equations are:
(3.84)

- xi./. - Xdl,_' = xl"lr7Xdl + yu'lrﬂXdl 9

- -vif - Y(./Ir.' = 'rnlr7Yd.- + -"‘«/';),(// . (385)
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If there are taken .V points P;, it is possible to obtain 2V equations having the same
form like (3.84), and (3.85). Using the matrices one can write this system of equations, as

follows:

- r »
- -X, X nX g yony, -I

= . (3.86)

— Xy _X.tv f:l xw.vr7XdN +yu;vrsX¢v
xu‘lr7Ydl +ywlr8Ydl

-y, Y, i R Yo +3RY

-l

The solution for this over determined system is, according to the reference [PTVF92],
as follows:

- X -X4 X hXy +yanX,

I
—
e
72

N
—

[f:l -x, =X, X BX, Hy X,

-v. =Y, x, Y, +yv. o}t

¥y Yy 3 _xu_vr7Yd.v+.Vu_\erd_\‘

-

Step 5

In this step we will establish the right sign for all of the parameters determined before.

For that we must do the next operations:

l’rZ’r-t’rS’t.r’t_r}

{rl’r2’r4’r5’t.r’ty}= ’ (388)
sigr{éj
t.'
{r.,)‘r _{r;,r;,t:} (3.89)
' sign(t.)
by= {b}. : (3.90)
sign(b)
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Step 6
We will compute here the last three parameters, which are: r3, rs, and ro. We will make
use of the propriety that any two columns of the rotation matrix R must be orthogonal. It

means that one can write the next relation:

i j k
ri+rj+rk=|r r, rl. (3.91)
L5 s Ts

From the relation (3.91) it is possible to compute the values for our last unknown parameters:

r, =g = (3.92)
re = nh —nk, (3.93)
Ty =rr.—nr,. (3.94)

So. after these six steps for all the camera parameters we have a mathematical
expression. The next step was to make a logical algorithm, which would contain all these
expressions in such an order that can be later implemented in a C program. This logical

algorithm is presented in Annex A. The corresponding C program is presented in Annex B.

3.3.3 Tsai calibration method

The camera’s parameters, which will be calibrated in Tsai method, according to the
reference [Tsa87] are:

- focal length (f), and the x scale factor by considering the uncertainty of the x scale
factor (u..), as a camera internal paranicter. reference [Tsa87):

- the rotation matrnix (R). and the translation vector (t), as external parameters.

As in the first method, we know the coordinates (x.i, ywi, Zwi), in millimeters, for a
point P; in the world frame, and the coordinates (X}, Y,,), in pixels, for its correspondent on
the computer image. Going further, this method is divided in five steps, which will be

presented in following parts.
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Step 1
For any point P; having the coordinates (X, Y,). on the computer image. and the
coordinates (Y. Y,). on the chip image. using the relation (3.45), (3.46). (3.57), (3.58). and

(3.59). with the observation that in this case instead of coefy we have coefx ', one can obtain,

as follows:

X, =coefx - X, =u.SX,, (3.95)

X, =coefv-Y, =5 X,, (3.96)

where S, and S, are computed in the same way as the ones computed in the sub-chapter 3.3.2,
with relations (3.60), and (3.61). Obvious, because we use the same camera in both methods

of calibration. the values for S, and S, will be the same in both cases. So, we have:

S, =coefx =116.589 mm/ pixel , (3.97)

S, =coefy =120.248 mm / pixel . (3.98)

From the relation (3.95), and (3.96) one can obtain:

X:ﬁ = S;lXpl A (399)

Y,=57Y,. (3.100)
where

Xy=u,X,. (3.101)

From (3.101) we can simply obtain. as follows:

X, =ulX,. (3.102)
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Step 2

For this method of calibration we need a non-coplanar set of points. One can obtain

this set of points using the same calibration board. as in the first method. but it will be moved

to different heights in z direction. as it is shown in the figure 3.11:

- m

} | J
_;' e
..
N
v

LN}
I
]

R&

b\

Fig. 3.11. The calibration board in three different - positions.

In this case for any calibration point P,, which has the coordinates (x,., Vi, Z.;) With

respect to the world frame §,, the relation (3.44) becomes:

d

»

X, x

{ Y +yulr:+:
Y,

! r: + t.r

1

xui,:i + .vuiri +z urb + {vr

Using the relations (3.102), and (3.103) we obtain the following relation:

-1 -1 -
Yd,.xw.t}. u_r + Yl,,y_‘,t"_'u“r2 +Y, .zt 'uﬂr3 +

i di“wity

+ Ydit_)—'lus.\'tx - X:Iixul’;]r-i - X(.Ilyn'it\_'lrS - X. z t_lrb = Xt'll

dEwity
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One can make the next notations:

t''u r=a,, (3.105)
[T =d. (3.106)
t'u r,=a,, (3.107)
Cut =a,, (3.108)
1'r, = ag, (3.109)
17'r. =a,, (3.110)
t'r, = a,. (3.111)

With these notations the relation (3.104) becomes, as follows:

Y,x.a +Y,v.a,+Y,z a,+Y,a,-X, x a,-X, v, a-X,z. a,=X,. (3.112)

Jiwi 3 di 7w

For .\ points P.. one can obtain an over determined system with N equations having the

same nature with the one noted (3.112). Using the matrices one can write the next relation:

Cla, a, a, a, a, a, a,]rz[XJ, X, X'JI\]T, (3.113)

where

C = [Ydixul Ydiyhl Ydizn’i Yd - XL./l-r\\l - X(_‘/ly\t‘l - X('hzul],gl_ N (3'1 14)

i

The solution for this system is, according to the reference [PTVF92]. the following:

[al a, a, a, a; a, a7]T=C“[X"“ X, X;i\,]’, (3.115)

3

where C”! is the inverse of the matrix C.
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Step 3

In this step the goal is to compute ry, r2, 13, 1y, s, re, t, and t, knowing the values for
a,. a-. ax. as, as, as, and a; which were computed in the step 2.

In the next derivation it is used the fact that the norm of any rows or columns of the

rotation matrix R is equal with one. So. one can write the next two relations:

P e =1, (3.116)

e +rl=1 (3.117)

From the relations (3.109), (3.110), (3.111), and (3.117) we obtain:

lt‘,lz(a§+a:+af)3. (3.11%)

We don’t know the sign for 1,. This problem will be solved a little later.

From the relations (3.105). (3.106), ..., (3.111) one can obtain:

uu_=(af+a§+af)§(a§+a§+af) :, (3.119)

Now it’s time to find the right sign for #,. The procedure is, as follows:

a) we take a point Pi(x,,.. y.i, Zw;) Whose computer image coordinates (X}, },.) are
far away from the image center:

b) we chose +1 as being the sign of t,;

c) we compute ry, 1, ¥3, s, Fs, ¥e, and t, from the relations (3.105), (3.106), ....

(3.111). We will obtain the following:

r=ault, (3.120)
ro=au (3.121)
r= a3u”11_‘_ , (3.122)
t, =au’t, (3.123)
r,=aJd, , (3.124)
r,=agd,, (3.125)
r,=a-_; (3.126)
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d) using the relations (3.42), and (3.43) it is possible to compute x;, and y; as

follows:
X, =x Lty L+ ntt, (3.127)
yi =xwir4 +ywlr5 +zwir6 +tv ; (3'128)
e) IF ((x; and X, have not the same sign) and (1, and Y,, have not the same sign))
then 1 = lll

f)  ELSEf, =-l,

Note!
If the sign for #, is equal to —1 we must also change the signs for ry. s, r3, ry, rs, 16, and
tx in the relations (3.120), (3.121), ..., (3.126). If the sign for 7. is equal to +1 the values

computed for ry, ra. rs. ra. rs, re. and £, remain unchanged.

Step 4
In this step we will compute the values for r;, r3, and ry. The procedure is the same as
the one used in step 6 from Lenz method. We will use the fact that the cross product between

the first row and the second row of the rotation matrix R must be equal to the third row:

! j .

ri+rj+rnk=| r r. (3.129)
r, 1 r,

The values for r+. r«, and ro are:
r= = (3.130)
R=nry,—nr, ., (3.131)
o =nr—nr . (3.132)
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Step §
Here, we will compute the focal length /, and the translation r.. This step is almost the

same with the step 4 from Lenz method. The single difference 1s that here z,; is not all the
time equal with zero. We remind that the lens distortion was not considered. In this case for
any point Pi(x,,. v, z..;) which has the coordinates (X}, ¥,;) on the computer image, and the

coordinates (X, Y) on the chip image, the relations (3.33), and (3.34) become:

X, =Xss (3.133)
Y,=Y,. (3.134)

With these two last relations, (3.35), and (3.36) will be written, as follows:

Xy =—f'—}, (3.135)

1

Y, =-f, (3.136)

!

where (x;, y;, z;) are the coordinates of the point P; with respect to the camera system. In this
moment it is possible to compute the values for x,. and y; using the relations (2.41), and (3.42).

because the values for all the parameters which define these two relations are known:

X, =X n+yv itz on+t, (3.137)

Y, =x.,n +y“_,"5 +Z“’)'6+Il,. (1138)
For z; we use the relation (3.43), which in this conditions becomes:
Zl :XHI’.7 +-“u1’:\ +Zn1r9 +r_- . (3139)

Using the last five relations one can obtain a system with two equations, where fand ¢.

are the unknowns. These equations are:

-xf-Xt.=x nX,+y. rX,+z.nX,, (3.140)
-y f=-Y,t.=x nY, +y Y, +z rY, . (3.141)
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If N points P; are taken, it is possible to write 2.V equations having the same type like
(3.84), and (3.85). Using the matrices one can write the system of equations obtain for N

poirts Py, as follows:
- -X, T Xy Yy anX 206X,

= . (3.142)

'rulr.'Ydl + —v\\'IrSYJI + zulr()y

J1

-xy —Xunl|S XX gy + Yty 2 X oy
-V _Ydl I

I i L Xy Yo +yvahta o6y,

The solution for this over determined system is, according to the reference [PTVF92].

as follows:
- X -X, X hX vy X, 20X,
rf - X, _‘\-J'- BRI ,"'XJ,\ + V. ’.\"\’_;x TN X A - "
= ) ) (3.143)
. =V -1, ST PR S AN I ST o
L ¥ "Y_/\ _ _'rn\ r Yd.\' + Vs er‘/_\ + s r\)Yd.‘- g

So, after these five steps for all the camera parameters we have a mathematical
expression. The next step 1s to make a logical algorithm. which will contain all these
expressions in such an order that can be later implemented in a C program. This logical
algorithm is presented in Annex C. The corresponding C program is presented in Annex D.

The big difference between Tsai method, and Lenz method is that in Tsat method the x
scale factor is very precisely known by considering the uncertainty of x scale factor, as a
parameter, which is computed in this method, reference [Tsa87].

Another difference is that in the second method we need a non-coplanar set of
calibration points, which could be a big disadvantage in the practical situation where a camera

calibration is needed.
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3.3.4 Contributions at the simulation and analysis of the errors

After the calibration process is made for the same camera using, both methods
presented in 3.3.2 and 3.3.3. one sct of camera’s parameters s obtained. for cach method.
Normally, if there aren’t any errors in the calibration process the two sets of parameters must
have the same values. This is true, as we will see later in figure 3.13 and figure 3.14. When
the camera is calibrated we need the values for all the 3D coordinates of the calibration points
and the values for the 2D coordinates of their correspondent points in the computer image.
The values for the scale factors, for the coordinates of the image center and for the coefficient
of the lens distortion are computed as it was explained before in this chapter.

In the practical part we analyzed the effect of three error types. The first type is
referring to the errors that can appear on the 3D coordinates of the calibration points. We will
consider these errors less than 2 mm. The second type is referring to the errors that can appear
on the pixel coordinates of the calibration points from the image after the image processing is
finished. These errors will be taken less than 2 pixels. The last error type, which is consider. 1s
the error of the x scale factor. whose real value can be different to the computed value from
the camera’s specifications. This error will be considered less than 0.5%.

Going further, for the same set of errors we make the calibration process, using both
methods and we obtain two different sets of camera’s parameters. This procedure will be
repeated for 50 different sets of errors. The next problem is to establish. which set of
parameters is better. For that we need to simulate a camera measurement, made with the
parameters obtained after each calibration process.

In the following part an explanation of our procedure to simulate the camcra
measurements will be presented. We chose a point, whose real position in the world system is
known. With one set of camera’s parameters we must simulate a camera measurement and
find the position of this point in the world system. The difference between the real position of
the point and his measured position will show which of our two calibration methods is better.
We will name this difference the error of the position vector of a point. The next step is to
find a mathematical relation in order to be able to compute this error.

In figure 3.12, S, is the real world system. and S, is the real camera system. If there are
no errors in the calibration process we will obtain the same position and orientation for the
camera system, as in the reality. If the errors exist in the calibration process we will obtain a
new position and orientation of the camera system with respect two the reference system.

Mathematically, we can consider the new camera system the same, as the real one, and we
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will have then, another world system. a computed world system, noted S.... as one can see in

figure 3.12.

Fig. 2.12. The simulation of the cumora measurement.

We will write now some mathematical relations. We take from the calibration points a
point, which has the coordinates (x,,, ), z..) in the real world system. We measure the position
of this point and we obtain the same coordinates, but in the computed worid system. We note
with (Xu¢, Ywe, Zue) the coordinates of this point in the world system. So, when we measure the
position of this point we will obtain instead of (x.. v,. z..). the coordinates (x, . V... 2..).

Now, we can define the error of the position vector as follows:

v=((r =5 P4 0= 0 P+ -2 ) F (3.144)

Between the coordinates (x,,. 1., o.), and the coordinates (x... Vi, Z..) 1t 1S possible to write

the next relation:

\’“ x“_
Ve |=T50 0 |5 (3.145)
zu‘( zu
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where T." . is the transformation from the computed world system to the real world system.

The results of our tests are presented in figure 3.13, respectively 3.14. Both graphics
show the final error of the position vector for different sets of errors. The graphic from the
figure 3.13 was obtain in the situation when the calibration process was made without pixel

errors and the 3D errors of the calibration points were situated between 0 mm and 2 mm.

- “Thgerror of the position vettor for @ MEsUred poirt
6 T ¥ T -

1Y
T

LMO.3 3
LMO. 2/’

deitaV [mm]
w
™~

N

0 L 1 1
0 05 1 15 2

3D error [mm]

Fig. 3.13. The analysis of the results in the presence of 3D errors of the calibration points.

The graphic from the figure 3.14 was obtain in the situation when the calibration
process was made without 3D errors and the pixel errors of the identified calibration points
were situated between 0 pixels and 2 pixels. In the references [Tom00], and [TINOO] one can
find a complex analysis also for all the possible combinations between the 3D errors and the
pixel errors.

For the error of the x scale factor we considered five values: 0%, 0.1%, 0.2%, 0.3%,
and 0.4%. Tsai calibration method computes the uncertainty of the x scale factor, which will
completely eliminate the influence of this error. So, for this calibration method the error of
the x scale factor has no effect on the error of the position vector of a measured point. One can
see in both graphics the line, having the label TSM, which represents the error of the position
vector when the camera calibration is made using the second method. For that there is only
one line in each graphic for this method. When Lenz Method is used the error of the x scale

factor has a great effect on the error of the position vector of a measured point, as one can see

43

BUPT



in both graphics. The line, which has the label LMO0.0, represents the error of the position
vector when the calibration is made with a 0.0% error of the x scale factor. For the line with
the label LMO.1 the error is 0.1%, for the line with the label LMO0.2 the error is 0.2%, for the
line with the label LMO.3 the error is 0.3% and for the line with the label LMO0.4 the error is
0.4%.

g .0 %y Therervor of the position vector of a.meaéured point

LM0 4
3r _
25r / LMO0 3
T -l }
E 2
= LM0 .2
©
215 ?‘---—~Z
© “\\‘————v_
Tr LMO.1
05l LMO0.0 |
0 il 1 i
0 05 1 15 2
image error [pixel]

Fig. 3.14. The analysis of the results in the presence of pixel errors of the identified
calibration points.

Having these explanations is obvious to see that the error of the x scale factor has a
great influence on the accuracy of the measurements when the first calibration method is used.
An error of only 0.4% of this scale factor will produce errors around 3 mm for the position
vector when there aren’t any other errors. If the 3D errors are added the error of the position
vector increases to almost 6 mm. It’s interesting to see that the pixels errors has practically no
effect when the error of the x scale factor is greater than 0.2%.

The conclusion of our analysis is that Tsai method for camera calibration is better than
Lenz method because using Tsai method one can compute an more exact value for the x scale
factor. The errors introduced if an approximate value for this parameter is used, are becoming
insignificant, for Tsai calibration method, because the approximate value of the scale factor

will be corrected with a computed factor, called by Tsai uncertainty of the x scale factor.
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Chapter 4

Stereo Sensor: Improvements and Contributions

4.1 Mathematical Models

In this sub-chapter it is presented first the description of the stereo sensor. Then, two
possible configurations of the stereo sensor are presented. The description of the camera

model used by us ends this sub-chapter.

4.1.1 Description of the stereo sensor

The stereo principle is well known and generally. means to look to the same scene
with two cameras. Using the information given by the pictures made with these cameras it is
possible to rebuild the scene without knowing any information about it. The dimensions of
the scene and the distance to the scene are the main causes that intfluence the construction of
the stereo sensor.

If we have a scene situated at a big distance relative to the cameras then in order to
obtain optimal 3D information it is recommended also to place the cameras at a big distance
between them as one can see 1n figure 4.1. In this situation we have another constraint namely
to orient the cameras in such a way that both cameras will see the same scene. So. a parallel
configuration 1s not possible in this case.

Scene

Camera | Camera 2

Fig. 4.1. Stereo configuration for big distance.

If the scene is situated at small distance then both non-parallel and parallel

configurations are possible. as we will see in 4.1.2 and 4.1.3.

45

BUPT



4.1.2 Non-parallel configuration

As one can see in figure 4.2, the stereo sensor is built from two cameras mounted in a
metallic box. This box has two functions. One function is to realize a good fixation between
the cameras themselves. The other function is to offer the possibility to mount the stereo

sensor in both calibration and application environments.

Fig. 4.2. Stereo sensor in non-parallel configuration.

The distance between the cameras measured from the optical center of the camera left
to the optical center of the camera right is about 25 cm. The angle between the cameras 1s
about 45 degrees. This angle is defined by the two principal axes of the cameras. The
measurement space for a fixed stereo sensor is situated at a distance between 200 mm and 300
mm from the stereo sensor. The visual field of the stereo sensor has the dimensions 200 x 200

mm at a distance of 200 mm.

Sci Scr

4 z

Sss
z T y
T(CL-SS) f

N

Calibration plate

T(CR-SS)

Fig. 4.3. Non-parallel configuration — coordinates frames.
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In figure 4.3 one can see the threc coordinate frames. which are defined for a stereo
sensor. There are two camera frames. denoted S¢; for camera left and Scr for camera right.
There is also another frame defined for the stereo sensor. We will call it srereo sensor frame
and denote it Sss. We have also represented in figure 4.3 the transformations from both

camera frames to the stereo sensor frame. We will use them in the sub-chapter 4.2.

4.1.3 Parallel configuration

In figure 4.4 one can see the stereo sensor in the parallel configuration. The cameras

are mounted as near as possible one to the other having parallel directions.

> o @ o
® ©o o o o o
© ©o ® © o o
o o @ @ o ©
© ©o ©o © o O
o © © © © ©o
o © © © © O

-

Fig. 4.4. Stereo sensor in parallel configuration.

Of course the coordinates frames are the same as for the non-parallel configuration.

the only difference is that the z directions of all the three frames are parallel.

4.1.4 Description of the camera model

To define a camera model means to find a set of parameters, which simulate as good
as possible the behavior of a real camera. Generally, the camera parameters are divided in two
categories: extrinsic parameters and intrinsic parameters [Fau93].

About the camera extrinsic parameters the situation is clear there are six parameters.
We denote them ¢, ¢, t-, o, B, y. The first three give the position and the last three the
orientation of the camera frame with respect to a reference frame or a world frame. In our
case we called this reference frame the stereo sensor frame. The position of the stereo sensor

frame is in the middle of the calibration plate and the orientation is as one can see in figure
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4.3. The axes v and v are in the same plane with the calibration plate and the axe - is
orthogonal to this plane.

Concerning the camera intrinsic parameters the situation i1s a little bit more
complicated. The sumplest model is the pinhole model. as 1t was presented in chapter 3.1.1.
This model is a distortion-tree model and includes four independent parameters: s\ f. s,/. C.. C,
where we denote with f, the focal length, with »,, s,. the scale factors and with C.. C, the
center of the image (the intersection of the optical axis with the CCD chip plane). A better
simulation of a real camera is given by the model, which includes the radial distortion. We
denote the coefficient of the radial distortion with &. There are camera models. which includes
also other tyvpes o distortions. decentering and thin prism distortion [WCH92]. Theoretically.
we should also consider the skew factor [Fau93]. The skew facror is a function of the angle
between the axes defined by two adjacent sides of the CCD chip. Normally. this angle i1s 90
degrees and then the skew factor will have no influence to the projective matrix. Other
intrinsic parameters can be introduced to model the fact that the optical axe is not orthogonal
to the CCD chip. This is one of next problems to be solved in our future work.

We considered that in order to reach the required accuracy it is enough to consider a
model. which includes the four classical intrinsic parameters s,/. s,/. C.. C. and the coefficient
of the radial distortion A. Because of the technological progresses in building lenses and CCD
chips the eftect of distortions, other than the radial distortion, and the effect of the skew factor
are very small. We used for the radial distortion the same model as it was presented in the

sub-chapter 3.1.2.

4.2 Contributions at the Calibration Procedure

As it was explained in the chapters before, if we want metric information we have to
know both internal and external camera parameters. The process of computing all the camera
parameters 1s called camera calibration. In the following part we will describe first the
calibration device we used and then the calibration procedure developed. underlining the

contributions to this procedure.

4.2.1 Description of the calibration device

In figure 4.5, one can see the calibration plate. This was made from glass, in order to
reduce the modifications, which can appear because of the temperature variation. The

uncertainty of the circle positions is between —0.01 mm and +0.01 mm.
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One can also see, from the figure 4.5, that the calibration plate is fixed on a special
device. This device can provide movements in three orthogonal directions (x, y, z) with an
uncertainty situated between -0.0lmm and +0.01lmm. The alignment between the special
device frame and the calibration plate frame is done mechanically and is adjusted and
controlled using Leica 3D measurement system with an uncertainty of 0.01lmm. Finally, the

total uncertainty of the position of the circles is situated between -0.025mm and +0.025mm.

Fig. 4.5. The calibration device.

4.2.2 Description of the calibration procedure

As we saw in sub-chapter 4.2.1, using the calibration device, we are able to generate 3D
points whose coordinates are known very precisely. In chapter 5 we will describe a procedure,
which will allow us to find also very precisely the 2D coordinates of corresponding 3D points
in the image. Knowing these 3D and 2D coordinates of a set of points we will be able to
compute the camera parameters.

We begin the description of the calibration procedure by finding the relation between

the 3D coordinates and the 2D pixel coordinates of a point and the camera parameters. We

start from the next equations:

| X,, ~-C, x
=f=, (4.1)
1+k((x,,_c‘)z+(yp-c_‘_)z) /3
Si S.i
I YP _Cv Vv
; —-=f=, (4.2)
1+k((Xp —C‘)Z + (YP -C,")—] S, z
S_‘z, svﬁ
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where (... },) are the pixel coordinates and (v. v, 2) are the 3D coordinates of a calibration
point with respect to the camera frame. Between the 3D coordinates of a calibration point
with respect to the camera frame and the 3D coordinates of the same point but with respect to

the world frame one can write the next relation:
7 “um T
[x » = 1] =1 [v, ». =z 1), (4.3)

where (x,, v.. z,) are the 3D coordinates of the calibration point with respect to the world

<
frame.

The transformation from the camera frame to the world frame can be written as a

function of ¢, #,, 1., a, B and y as follows:

cos y cos 3 cosysin fsina —sinycosa cosysinfcosa+sinysina 1

—

o _ siny sin f sinysin fsina@ +cosycosa sinysin fcosa —cosysina 1
W - . .
—sin cos fAsina cos fcosa r.

I 0 0 0 !

This relation i1s denoted (4.4). From the relations (4.3) and (4.4) we obtain, the next three

relations, denoted (4.5), (4.6) and (4.7):

x=cosycos fix, +(cosysin Bsina —sinycosa)y, +(cosysin fcosa +sinysina)z, +1,
Vv =sinycosfx, +(sinysinfsina+cosycosa)y, +(sinysinfcosa+cosysina)z, +1.

z=-sinflx_ +cosfsinay, +cosffcosaz, +1,

Starting from the equation (4.1) one can write, as follows:

( _ u ;o .
(X, -C, ):—s,f|1+k (X"’ :C‘)+()” C) x=0. (+.8)
‘ 5

\ 5

With the notations: p, =s_f.and d = kf* the relation (4.8) becomes:

(X,-C)z—p,|1+d , _ZC-') +(Y”—2C-“)z x=0 (4.9)

P, p.
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For each calibration point one can write the relation (4.9). This relation is an equation
having the coetticients determined by the 3D coordinates and the 2D pixel coordinates oi the

calibration point P. One can make the following notation:

F;P.,’J'__',_J_.(a, Byt t,,p., p_‘,,CI,Cy,d) =0. (4.10)

If we use N (N>10) calibration points we will obtain an over-determined system of
equations. To solve this system we use the Newton Algorithm [Man81], [Nas99], [Lip01] and
[RMO1]. First, we must make this nonlinear system to be linear. According to Newton

Algorithm starting from relation (4.10) one can write the next relation:

oF cF OF cF
F,o+—2(a-a,)+—2(f-L)+—(y -y, ) +—2(t, ~t )+
LY ( o) PY: (B-5) 3y (Y= 7,) ar. (r, =1)
+Cfr() (t:_r:())-*.c-\F:n(p‘_p‘0)+c“F\0(p‘ —p'.“)-‘f-c;Fv“(C‘(—C'O)-{_’ (411)
Ct. cp, cp, cC,
oF cF,
+—2(C. -C ) )+—=(d-d,)=0
aC ( ¥ .\O) ad ( 0)

3

where ., -0, 20, Bo, Yo, Pxo, Pyo, Cxo, Cyo and dj are initial values for the camera parameters.

F . :
Fy.Fyand —= (v is anyone from .. -, a. B. 7. p.. p,. C.. C, and d) are given by the next
Cv '

three relations:

Fw = F‘.;p-)D.‘_."-_:_ (a’ﬂ’},”_w’t:’pt’p\ "C.l"Cr‘d) ’ (412)
Fr(i = F/\r,)r ALl (a()’ﬂﬁ’}/ﬂ”_(()’,:(l’ p.\(l'p_t(l’Cf(i‘Cl(l'd(‘)' (413)
oF, &F,
ay” == (Qos By Vorteorta00 Pror Pror Con Crgndy) - (4.14)
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Going further we will write the explicit relations for —

(4.15)

cF. : o .
— =(cos ffeosa -y, —cos fsima-z )N, -C )~
Ca
—(cos¥sinfcosa- v +sinysina-y, —cosysinfsina-z, +.
(x,-c.y (r,-c.f
+ 2
P,

+sinycosa-z, )p,|1+d >
p,

=(-cos f-x, —sinfBsina-y, ~sinfcosa-z, (X, -C,)-
(4.16)

D

op
—(—cosysinf-x, +cosycos fBsina-y, +
et et
P,

+cosycos fcosa - z“)p,[l + d[
p.

(4.17)

=—(-sinycos f-x_ —sinysin fsina-y_ —cosycosa-yv, —
- A\ .
-c.f v, -cf
+ 3
. P,

oF,
7

o . (x
~sinysin fcosa-z, +cosysina -z, )p |1 +d| —=&

|

p:
(4.18)

(Xp —Ct)2 + (Yp _C_r)z
’ p;
4.19)

p;

o _x -c.,
(4.20)

(Yp - C_r ) _ _l_at (){/,
J 2 p:

il+a’ —
N G |
4.21)
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Y -C
cr, ST S (4.22)

=+ 2d X
oC, P,
5 Y. -C
Fp i (4.23)
cc, p
x -c.f (v, -C,
o, _ ‘(( ’ ’,)+(,, ,-')2 x. (4.24)
od A p.

The relation (4.11) can be written in the following form:

aF.\'O a+ aFrO ’B+ aFwO }/+ afr() " + af:‘\O o+ éiF\U 1)‘ + aFrO p‘. + C;F\ﬂ C‘ +

ca op Cy ct, ct. ~  ¢Cp, op, = oC,

+—0F‘° C, +—6F"U d=-F + o,y a, + ok, B, + Fy Yo+ o 1o+ oy I+, (4.25)
oC, = od Ja op Oy or, or. -

+ aF\O p‘,o + (iF\H p‘U - C;F\I) CXO + C‘;Fl‘l Clo + sz(l d“
ép, cp.  cC, cC, cd

One can see that the relation (4.25) is a linear equation. For each calibration point one
can write this equation and finally obtain an over-determined system of linear equations. We

write this system using the matrices, as follows:

Coef,-l0 B y 1, 1. p, p, C. C d| =

] | 1 1 !
- FxOI + a}?_"oao + aFYO ﬁ[) + a}:f\'O }’0 + aF‘.\'O ’,0 + anO t.o +
oa op Oy ot or. -
1 1 1 1 ]
6;}0 Do +——a§‘° Do+ af;:" C,+ 5@0 C.,+ af‘/” d,
P P o o “ (4.26)
A ~ AY A -~ A Ay
-F," it a, + it By + it Vot it Lo+—"—1,+
oa op oy o, or. -
N N Al N N
+ oy Pw t it Pt o, C. +6F;OC‘.O + gﬂo—do
op, op, oC, oC, od |

where Coef, is a matrix with N rows and 10 columns. Each row of the matrix is formed by the

coefficients from the relation (4.25).
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The next problem is to compute the inverse of the matrix Coef,. This problem will be
solved using a special algorithm detailed presented in the reference [PTVF92]. Knowing this

inverse matrix. the solution for our system is given by the relation (4.27), as follows:

e 871 1. b, p C C d]-=

-~ -

1 ! ! ! !
~F, + s a, + i By + o Yo+ e tot P Lo+
ca aﬂ a}/ atl aI: :
- i -~ ! 1 ! !
+ _Cf:v P +0F_10p.~0 + afxo Co+t 2 - Coo +§F;—od°
Cp X ap v OCX aC' ad
et _ : 4.27)
=(Coef ) -|....
N N v v ~
_ F'O'\ . 61‘2}0 a+ oF , B, + oF,, 7o+ oF, L+ oF , 1, +
ca aﬂ 87 a’x a’-' )
-+ CF: . pr + G«XO p\’O + of-r(l CXO + aF;O CrO +£F.‘Ld0
&p. . oC, oC, od

We will use these values as the new 1nitial values and we write the equation (4.25)
again and we will solve the system (4.26) and obtain another set of values for the camera
parameters. We repeat this process until the difference between the last solutions and the last
1nitial values is less than a certain value.

Using the same steps, as we made starting with the relation (4.1) and ending with the

relation (4.27). for the relation (4.2) we will obtain. as follows:

x,-c.f (r,-cCf
(YP—C__)z-s,/(l+k[( - ’)+(’ - ')J}y=0. (4.28)
s s:
With the notations: p. =5 f and d = kf " the relation (4.8) becomes:
XxX,-C.J (v, -cC,
(YP—C))z—p,(l+d{( £ _ ’)+( f— ")z]]y=0. (4.29)
P P,
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One can make the iollowing notation:
F,{.;_‘,-M (@ Byt .a.p.p.C.C.d)y=0. (4.30)

According to Newton Algorithm starting from relation (4.30) one can write the next

relation:
aF\O 8F\U aEG aFIO
Fot——A(a-a)+—(f-F)+——W-r)+—U -1+
oa c Oy or,
+6F-"° (t. —1.,)+—2( )+aF-"°( )+6F-"° (C.-C. )+ (4.31)
af: - -0 ap‘ P. pr ap‘ pr p\o aC‘ x X0 ’ -4
aF""(C C )+6F‘°(d d)=0
+ - - _ =
oc. " " ad 0

v

where 1,9, t-0, @0, [o, 1, Pxo. P+o, Cx0. Cvo and d are initial values for the camera parameters.

aF.
Going further we will write the explicit relations for —
oF, ) )
—==(cos fcosa -y, —cosfsina-z (¥, -C )-
—(sinysin fcosa-y, —cosysina-y, —sinysinfsina-z, —, (4.32)

(x.-c ,b-ch)
P, .

- CcoSycosa -z, )p‘(l +d[

oF

v

—==(-cosf-x,—sinfsina-y, —sinﬂcosa-zu.)(Yp -C)-

op

—(=sinysinf-x_ +sinycosfsina-v, + (4.33)

Y. -c} (r.-cFf
+sin7cos[3cosa-:“)p{l+a’[( L ")+( - F‘" N
P p;

I
1
)

3 —~=—(cosycosf-x, +cosysinfsina-), —sinycosa-y, +

) (o) (439
p; i )J

. . (x,
—cosysin fcosa-z, +sinysina-z,)p |1+d| —£

55

BUPT



P, p:

8i=—p..(l+dtk'\" —.C‘ +().”—,C"))]. (4.35)

a
=Y -C. . (4.36)
at: P 3
| X -CJ
aizlp‘d(_:_‘_J}._ (4.37)
. 2 P,
| X -cf (r.-c 7} Y -C,
?F, -_ 1+d ( r _ X +(p ’))- -ld'(L,; y’ (438)
ap, p: P, 2 P
oF . X, -C.
—=2pd—t——1y. (4.39)
cC, ' 28
oF, Y -C,
—L =—z42d- v, (4.40)
» p.
5 X -c¥ (vr,-cY¥
o (lroch boch)
cd 28 12

In the same way, as we made for the relation (4.11), one can obtain for the relation

(4.31) the following form:

CF . cF , cF ., OF oF , oF oF cF .,
—a + pr——y+——t +——t. +——p_+ L+ C +
oa op cy or, ' o ~ ap, ap, ocC,
OF . OF OF . oF. OF, OF, oF,
+—2C +—d=-F  + =L+ —=F +—2y, +—2p 1, +. (4.42)
cC, od oa op oy or, - ot. -
+ aF\O + aF‘_\O + a vO C + aF\‘O C + aF\'O d
. Pxo . Po ac. x0 aC_V o T o
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For each calibration point one can write this equation and finally obtain an over-

determined system of linear equations. One can write this system using the matrices, as

follows:

Coef, -[ar gy t. . p p C C, a’] !
[ 1 aerOl aF\ U: aF‘\'Ol a}?\'Ol ai:\'ol
-F,o + a, Bot—F—Vot——1t,+ lot
: Oa op Oy or, ot,
oF ., oF oF ' c oF ., c oF.,' 4
+— ) g +—C +—— —
ap‘ p.‘O - l/\O aCt x0 aC‘ vO0 ad 0
N ~ Al A AY A
v OF, oF , oF oF , oF
—Fy t——ayt—— Bttt 1ot
oa op oy or, or.
erF " oF erF * oF ° oF "
+— p‘0+cﬂ' Poot+—0C,,+———C,,+——d,
ap. cp, ec aC. ad

-

(4.43)

where Coef, is a matrix with Vrews and 10 columns. Each row of the matrix is formed by the

coefficients from the relation (4.42). We will solve this system in the same way as we mude

with the system (4.26) and we obtain, the relation (4.44), as follows:

[a gyt . p.p. C C d]’:

1 a1:\ 0l aF\ ()l aF 0I aFrOl aF\ Ul
—F;o + 2o a, + Y /Bo+ 3y ot o [t ot lo*
6F\ 0; EF\ (i. 6F\ nl an'Ul ~ 6F‘\ 0!
+ ap p',O a p\0+ 6C 0+ 6C (‘\0 ad d(]
=(Coef,)| ... | |
oF " oF " oF " oF " oF "
-F,) + 62 a, +——— B, + 6:) Yo ¥ 5;0 to+ a-;“ 1o+
eF " ér.,’ oF éF .’ oF )"
+ ap p\(’ -~ p_\'O + aC C,\O + 6C C‘.'O ad C{O

(4.44)

We will use these values as the new initial values and we write the equation (4.42) again and

we will solve it and obtain another set of values for the camera parameters. We repeat this

process until the difference between the last solutions and the last initial values is less than a

certain value.
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In order to obtain the final solution we make for the camera parameters, which were
computed in both systems, the average of their computed values. The results of the calibration
procedure can be seen in figure 4.6. The units for x, v, and =, which correspond to the camera
parameters f,, f., and . are millimeters, for A/fa, Beta, and Gama, which correspond to the
camera parameters . f. and y are degrees. and for CenterX, CenterY, Px, and Py, which
correspond to the camera parameter (., C.. p.. and p, are pixels. The parameter noted

Distortion, which corresponds to camera parameter d has no unit.

StereoVision I X|

/9 x =-18.719385, y = -12.940744, z = 234.553060,
4
Alfa = -177.443262, Beta = -24.871302, Gama = 180.030586,
CenterX = 388.912040, Centery = 296.860806.
Px = 616.165398, Py = 615.456120,
Distortion = -0.240072

Fig. 4.6. Results of the calibration procedure.

58

BUPT



Chapter S

Image Processing and Shape Recognition

5.1 Theoretical Introduction in Image Processing

In this sub-chapter the goal 1s to present the theoretical support. which was necessary

to develop a new image-processing algorithm, as one will sec in sub-chapter 5.2.

5.1.1 Image enhancement techniques

Using image ¢nhancement techniques. one has the possibility to improve cerain
characteristics from an image, characteristics. which presents special interest for the user.
According to the reference [GLP99). one can divide these techniques in four categories,

which will be presented in the following parts of this sub-chapter.

A. Point operators

The mathematical definition for a point operator is given by the following relation:
g(m’n)= OmAn {,f(m’n)} (51)

One can divide this type of operators in two categories, spatial invariant and spatial variant.

The equation (5.1) becomes for a spatial invanant operator, as follows:

glm.n)=0{f(m,n)}, (5.2)

where m and n are passive variables. In the following part we will present some examples of

operators described by different forms of the relation (5.2).

a) contrast moditication
| m - 1. U< </

g=9m - t, +m, -(j'——fL), fo<[f< S, (5.3)
"’! fl +’"2 .(»/;I --fL)+,"'~ '(4f—./fh') ’ fH </‘Sf;na\
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b) binarysation

g . /=,
g = {; Lin . ‘ I ) (54)
gr.m\‘ j > ’h

One used operator, which belongs to the special variant category i1s named grey level

correction operator. This operator is described by the relation (5.5), as follows:
glmn)=c,, - f(m.n), (5.5)

where cn; 1s a correction coefficient dependent on the pixel position. If we suppose that the
obtained image is R and the ideal image is / then the coefficients are computed with the next

relation:

I, .
¢, , =—. (3.6)
R,

B. Geometrical transformations
A geometrical transformation realize a projection of a pixel from the coordinates (x. v)

to the coordinates (x’, v'"). This can be described mathematically with the next two relations:

x =T.(x,v), (5.7)

y =T, (x,). (5.8)

Computing the Jacoby, J we will obtain important information about the

transformation proprietics. To compute the Jacoby we will use relation (5.9), as follows:

ox  ox

J=% | (5.9)
o o
& o
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We will present now three types from the usual geometrical transformations.

aj) linear transformations (translation, rotation)

X =a,+ax+a.,y,
y=b+bx+b,y,
J=ab,—a,b,.
b) bilinear transformations
X =a,+ax+a,y+a,xy
yvi=b+bx+byv+bxy,
c) perspective transformations

a,+d.X+d,y

X = .
ax+av+1

.o b, +bx+b.v
bx+b v+l

C. Image smoothing

(5.10)
(5.11)

(5.12)

(5.13)

(5.14)

The goal of image smoothing is to eliminate the noise or small variations of the

linear smoothing operators.

illumination intensity in an image. All the smoothing operators have the same disadvantage
because they eliminate some details from the image and they reduce the accuracy of the

edges. These operators are divided in two categories: linear smoothing operators and non-

From the first category we will present shortly two operators. We will start with the

average according to the following relation:

g =

L=

61

] ¢ 1
g —VZ(/f +’7‘)=f+§

\

S,
»

i

average operator. 1f we have N frames from the same image / we will make a temporal

—
th
—_—
~d
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One can see that the white noise having the standard deviation ¢ remains white also in the
output image g and the standard deviation decreases with N square, reference [GLP99].
If we have for an image only one frame then we will make a spatial average. We will

use a uniform filter having the dimensions L x L defined by the relation (5.18), as follows:

h=-—x|. | |- (5.18)

We will convolve the input image f with this convolution mask and we will obtain the

output image g. In the figure 5.1, one can see the effect of this filter to an ideal edge.

ldeal edge ——P»

Result of the convolution —ff

L

Fig. 5.1. Effect of the special average to un ideal edge.

If we see this filter as a modality of estimating the grey level at the location situated in
the middle of the mask one can see that all the pixels from the mask have the same influence.
In order to reduce the effect of the pixels. which are situated at the edges of the mask we will
create another filter called binomial filter. A 2D binomial filter is built on the base of 1D

filter. A 1D filter of any range can be built by convolving several times the following mask:
b, = l[1 1] (5.19)
N - 2 . - .

According to the explanation before, a 1D filter having the range 2 will be computed as

follows:

u 1 I .
b‘=5[l 1]*5[1 1]:2[1 2 1. (5.20)

)
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A 2D filter having the range 2 will be defined by the relation (5.21):

(=
]
gure)
)
—
*
[ —
) [
I
o) —
to &t
1o —

S — |

4 4; 6]~

—

All these linear filters give good results when the image 1s affected by white noise, but
they are not so efficient to the binary noise. To eliminate this type of noise we will use a non-
linear filter called median filter. Using this filter we will replace the grey level for a pixel with
the value. which is calculated as being the value situated at the middle position in a row. This
row was created by arranging in increasing order all the values of the pixels situated in a
window centered at that pixel.

This filter is a particular case of the filters called statistical ordering filters. All the
filters from this category have the propriety that before any operation with samples from the

image these samples are arranged in a certain sequence.

D. Contour emphasizing and details enhancement techniques

There are also situations where we are interested to analyze some local structures
having small dimensions. for example thin lines or points. For these cases we need to use
filters, which will increase the quality of these details. We will present in the following part
two types of such filters.

We start by presenting a high pass filter. We will detine such a filter using the next

two relations:

Lf = f*h, (5.22)

g=cf —(c—1)f (3.

wn
[N
wJ
R

where /'is the input image, g is the output image, h® is the transfer function of a low-pass
filter, which was studied in sub-chapter 5.1.1.3., and c is a constant having values greater than

1. With this constant we can increase or decrease the effect of the filter to the edges.
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The second type of filters 1s represented by band-pass filters. We will build a 1D
band-pass filter starting from the binomial filters presented in sub-chapter 5.1.1.C. The

relation (5.24) describes a 1D band-pass filter having the range 4:

ht =4(b> -b*). (5.24)

5.1.2 Edge detection techniques

Edge detection is one of the most commonly used operations in the image analysis.
An edge is the boundary between an object and the background. and indicates the boundary
between overlapping objects. Edge detection is a part of the process called segmentation,
which means the identification of regions within an image.

One can see in figure 5.2 an ideal step edge.

Grey A

Level Manimum

“@— Edge Posivon

Mimnmum

Position

Fig. 5.2. Example of step edge.

This step edge is an ideal model. which never occurs in an image because of the

following three reasons:

- objects rarely have such a sharp outline;

- ascene is never sampled so that edges occur at margins of a pixel;

- due to noise, which affects an image.
There are essentially three common types of operators for locating edges. The first type is a
derivative operator designed to identify places where there are large intensity changes. The
second resembles a template-matching scheme, where the edge is modeled by a small image
showing the abstracted properties of a perfect edge. Finally, there are operators that use a
mathematical model of the edge. In the following part we will present all these three types of

operators, starting with the denivative operators.
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A. Derivative operators

Our goal is to detect the position where is located the boundary betwecn two different
grey levels. This position is given by the maximum valuc of the 2D gradient operator. This

operator is defined by the following relation:

VA(x.v)= (CA ﬁ] : (5.23)

& &

Becaiise an image is not a continuous function and can’t be differentiated in the usual

way we will use differences. We will define the operators ¥} and V5. as follows:

V”A(x,y)= Alx, y)-A(x-1,v), (5.26)
V”A(X, y)= A(x, _v)—A(x, v—1), (5.27)
V\:A(.\'. V)= é(~1(\ +1Lv)=A(x =1 v)). (3.2%)
V_:.»f(.\‘._\')= é(A(.\‘.'\' £1)= (v =1)). (3.29)

We will define the edge response G,.,, and the direction ot the edge G, with the next
two relations:

Gmug = J(V_UA(X’ }.))2 + (V ”A(X,_\')): ) (530)
Vo)

G =arctan ———(l\—) |- (331
V’,_ .4(.\'..\')//

In figure 5.3, one can see the block scheme of an edge detector using a 2D gradient
operator.

A )
—» f*h. —— |2 : !

S g| =gt - " :
-——»
. _
—>

~N
8. 1 hreshold
__> "

/

ro

L f*h\' E— (0:.4TA.V(
: \

Fig. 5.3. Block scheme for an edge detector using a 1) gradient.

BUPT



In figure 3. frepresents the input image. The gradient operator is then applied in two
directions x and v. The next block computes the edge rcsponse and the edge direction. In the
last block is taken the decision if the current pixel situated at the location (x, y) 1s black or

white. Of course the vanable ¢ can take only two values one for the black level and another

one for the white level.

B. Template-matching edge detection

The idea behind template matching edge detection is to use a small, discrete template
as a model of an edge instead of using a derivative operator directly (as in sub-chapter
5.1.2.A) or a complex, more global model (as in sub-chapter 5.1.2.C.). There are a lot of
models for the possible existing edges.

One edge detector. which belongs to this category, is Sobel edge detector. The

templates for this detector. as convolution masks have the following values:

-1 0 1 -1 -2 -1
S =|-2 0 2 S=lo o o} (5.32)
-1 0 1 L2
For a pixel having the coordinates (i. j) one can compute S,, and S,. as follows:
S, =1[i-t][j+1]+21i][j +1]+1fi +1][; +1]- 535
D00

~(fi =)l =]+ 2] = 1)+ 1[0 - 1))

S =i+ 1][i+ 1)+ 20 = [+ i + 1]/ - 1] -

—(i = 1] + 1)+ 21fi = ][]+ i 0] -]

A second example of the usc of templates is the one described by Kirsch. The

templates for this detector. as convolution masks have the following values:

~3 =3 ] 3 5 s (s s 3 S5 -3
K,=|-3 0 SJ K =|-3 0 5K =[-3 0 3| K.,=| 5 0 -3 (535
-3 -3 5 -3 -3 -3 -3 -3 -3 -3 -3 —3J
503 —3] (-3 -3 -3 -3 -3 -3 -3 =3 -3
K,=|5 0 =31 K.=|5 0 -3|K,=|-3 0 -3| K.=|=3 0 5] (536)
5 -3 —3J 5 -3 S 5 s -3 5 SJ
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These masks are produced to model the kind of grey level change near an edge having
various orientations. rather than an approximation to the gradient There is one mask for each
of eight compass directions. For example. a large response to musk K, implies a vertical edge
(horizontal gradient) at the pixel corresponding to the center of the mask. In order to find the
edges an image is convolved with all of the masks at each pixel position. The response of the
operator at a pixel is the maximum of any of the eight masks. The direction of the edge pixel
is quantized into eight possibilities here, and i1s #/4*i, where i is the number of the mask

having the largest response.

C. Operators using a mathematical model
In the following part we will describe shortly three detectors. which are included in
this category.
. Marr-Hildreth Edge Detector. In order to build an edge detection algorithm we have to
carry out the following three steps:
- convolve the image / with a two-dimensional Gaussian fusiction:
- complete the Laplacian of the convolved image; call this L:
- edge pixels are those for which there is a zero crossing in L.

A convolution in two dimensions can be expressed as follows:

(V)]
)
~J

I*G(i.j):ZZl(n.m)-G(i——n,j—m). (

The function G being convolved with the image is a two-diinensional Gaussian. This

1s defined with the next relation:

The Laplacian operator is defined as follows:

. & & .
Vizse—+— (3.39

iy

N o
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The order doesn’t matter in this case, because both convolution and Laplacian are
linear operators so, we can make first the Laplacian of the Gaussian (LoG), reference [Par97],

and then use it to convolve the image /. The relation (5.40) defines the Laplacian of the

Gaussian:

I P _’~
VG :[J]-c““ . (5.40)

where

R sy (5.41)

2. The Canny Edge Detector. Canny specified three issues that an edge detector must address,
references [Par97], and [Can86]. These issues are:
- error rate — the edge detector should respond only to edges, and should find all of

them;

- localization - the distance between the edge pixels as found by the edge detector and
the actual edge should be as small as possible;

- response — the edge detector should not identify multiple edge pixels where only a
single edge exists.

The goal was to find a filter, which accomplish all these three criteria. Canny decided
to use the first derivative of a Gaussian function as an approximation for the ideal filter, which
is too complex to be analytically computed.

A 1D Gaussian function is given by the relation (5.42) and the derivative with respect

to x is given by the relation (5.43), as follows:

G(x) = e? , (5.42)

G'(x)z(—i,]-e?. (5.43)

G(x)= eh[z;—ﬁ;a:J. (5.44)

68

BUPT



In order to simplify the implementation of the convolution procedure we will separate
the convolution with a 2D operator in two convolutions with a 1D operator. Due to this the

magnitude of the result is computed at each pixel (x, v) as follows:

M(xov)= 12 (e y)+ 12 (x.x). (5.45)

where I, and /; are the results of the convolutions with 1D operator.
The final step in the Canny c¢dge detector is a non-maximum suppression step wherc

pixels there are not maxima are removed.

3. The Shen-Casten (ISEF) Edge Detector. This method use as an optimal filter an infinite
symmetrical exponential filter (ISFE). defined by the relation (5.46):

)= %e—p"'i . (5.46)
In two dimensions the filter is given by the next relation:
flx)= Lol (5.47)

This can be applied to an image in the same way. as was the derivative of the
Gaussian. But Shen and Castan went one step further and gave a realization of their filters as
one-dimensional recursive filters.

Finally, this method make use of false zero-crossing suppression, which has the same
goal as the non-maximum suppression used in the Canny edge detector.

5.1.3 Methods in grey level segmentation

This sub-chapter is divided in two parts. In the first part we will present some basic
information about what image segmentation means and we will give some examples of

segmentation methods. In the second part we will discuss about the use of regional thresholds.

A. Basics of Gray-Level Segmentation
Grey-level segmentation or thresholding is a conversion between a grey-level image

and a bi-level image. The idea is that a bi-level image will contain all the essential
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information about the number, position and shape of objects while containing a lot less
information than a grey-level image.

The most common way to convert an image is to select a single threshold value. All
the grev levels below this value will be black (0) and all the values above this level will be

white (1). The relation (5.48) describes mathematically this fact:

0, J I(x, T
I, (X._\‘)= {1 {/ (\’ y)< (5.48)

if e, v)=2T’

where /(x. v) is the grey level image, /i(x, v) i1s the bi-level image and T is the chosen
threshold. The problem is now how to find the right value for the threshold. We will present
in the following parts some methods to compute this value.

One used method, called sometimes p-tile method, is to compute the threshold from

the following equation:

ih(i)

ratio = = , (3.49)

R

le(i)

where h(i) represents the number of the pixels having the grey level i. Ot course this method
can be applied when we know the ratio between the black pixels and the white pixels.

Another common method to compute the threshold is obtained by using histograms.
The threshold is determined according to the position where a minimum occurs between two
peaks of the histogram.

Starting from the fact that the threshold value is influenced by the grey level of the
pixels situated at the boundary between an object and the background we can make a
histogram oanly with the edge pixels. We will compute then the threshold as it was described
in the method presented before. In order to determine the edge pixels cne method is to

convolve the input image with the following mask:

0 1 0
L=t -4 1 (2.50)
0 1 0
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We will select then only the pixels, which have a large value of the resulting Laplacian and
we will build the histogram with these pixels.

Iterative selection is a method. which is based on an initial guess of the threshold.
Then the threshold is adjusted until the final value is reached. The initial value of the
threshold 1s equal to the mean grey level of the image. Then the mean grey level for all pixels
below the threshold is computed and called 7. and the mean level of the pixels greater or
equal to the initial threshold is computed and called 7,,. The new estimation of the threshold

will be computed with the next relation, as follows:

The algorithm is repeated until the difference between two consecutive values for the
estimation of the threshold 1s smaller than a certain value.
The relation (5.52) computes the k-th estimation of the threshold when the first

threshold was noted Tn:

\

> j-h())

i T
=4 -

2:’-11(1)
23 H0) 2 SH() R

g=T .\ +!

N
‘N
|2

I,

where A(i) represents the number of the pixels having the grey level /.

We will present now very shortly another three methods. For details see the reference
[Par97].

We start with the method of grey level histograms. This is based on a statistical
method, which 1s called analysis of variance. We will compute first the total variance of the
grey level values in the image o;". For any given threshold T one can compute the variance of
the object pixels and the variance of the background pixels. These represent the within-class
variance values noted ,”. Finally the variation of the mean values for each class from the
overall mean of the pixels defines a between-classes variance, which will be noted o”. We
can find an optimal value for the threshold 7 by minimizing the ratio of the between—class

variance to the total variance, reference [Par97).
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The second method makes use of the entropy. The entropy is a measure of information
content of an image. If there arc n possible symbols x; and the symbol x; appears with the

probability p(x;) then the entropy associated to the source of symbols X is defined as follows:

n

H(X)==-Y plx)-log(p(x,)). (5.53)

i=1

An image can be thought as a source symbols represented by the grey levels, which appear in
the image. Having a threshold 7 one can compute the entropy of the black pixels and the

entropy of the white pixels as follows:

T
H,=-) p -logp,), (5.54)
H, == p -log(p,). (5.55)

i=T+]

We consider that the grey levels take values from 0 to 255. We will find an optimum for the
threshold 7 by maximizing the sum between H, and H.., reference [Par97].
The last method studied by us is called minimum error thresholding. The histogram of

an image composed by an object and background can be expressed with the next relation:

ol
=N
~—~

I

e
™

Q }
+

B!

n

Sy

5.56)

where o and u are the standard deviation and mean of the classes and P, called also scaling
factor, is the probability that a pixel belongs to one of the classes. One solution to determine
the threshold is to express the probability of the wrong decision and to minimize it. But, the
problem is we don’t know the values for o, 4 and P and it is also difficult to estimate them.

Kittler and Illingworth, reference [Par97], created a new criterion to be minimized:

J(T)=1+2(R(T)logo,(T)+ B, (T)loga,(T)- 2R (T)log A(T)+ A (T)og A(T)).  (5.57)
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where

A(1)= 3 H0) P(T)= D). 558

=T+

>

> i-hli) ‘Zi-h(i)

m(T)= —PW w(T)= _i’W (5.59)

S ()i - 4, (T)F S HE)i - (1))

A ==—7m

(5.60)

The value T that minimized J(T) will be the best threshold.

B. The use of the regional thresholds

In practice in mosi of the cases, a segmentation with a single threshold is not enough
to obtain all the necessary information, references [Ber86], [JMO03], and [NR79]. One reason
is the illumination, which can be different in an image and this way will influence the form
and the position of the edges 1n the segmentation process.

The first problem. which must be solved is to decide in how many regions we should
divide an image and how big should be these regions. Afterwards, in order to find the
threshold for a region. one can use anyone of the methods presented before in sub-chapter
5.1.3A.

We will present in the following parts the solution proposed by Chow and Kaneko.
according to the reference [Par97]. They divided an image of 256 x 256 pixels in 49
overlapping regions, each one being 64 x 64 pixels. Going further we will make a histogram
for each region. We make then a bimodality test for all the histograms. Each bimodal
histogram has a pair of Gaussian curves fit to it, using least-squares method. The thresholds
for the regions, which have not a bimodal histogram will be interpolated from those that have.
The explanation why these regions have not a bimodal histogram is that they include only
parts from the object or from the background. Finally, a pixel-by-pixel interpolation of the
thresholds values is done. giving every pixel in the image its own threshold. This algorithm
historically forms the foundation of the regional thresholding methods, and is frequently cited

in the literature, reference {Par97].
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A bimodal histogram is expressed as a sum of two Gaussians, as we have seen in the
relation (5.56). Our goal is to obtain the mean, the standard dcviation and the scaling factors
for each of the two Gaussians. First, in order to reduce the influence of the noise the
histogram for the current window is found, and is smoothed, as onc can scc in the relation
(5.61):

Ny (i N -
h\(i):h(l 2)+2-hli ])+3(/;(l)+~h(l+|)+/I(l+‘_)‘ (5.61)

We will divide now the smoothed histogram in two parts. The separation potnt will be
noted v and represents the grey level where the histogram reaches the minimum value. We
can estimate now the initial guess of the parameters for the Gaussian functions using the next
relations:

N, = ih(i) N, = fh(i), (5.62)

=0 i=u+!

255

4, =ih(i)-i py = > hli)-i, (5.63)

=u+1

o = L0 u ) N O A et

‘V 1=0 i=u+1
o, N, o, N, B
= ) = 5.65
Pl N (:—ﬂl\f P‘ o (”.U:‘)_ (5.65)
ze 2o; Ze lo:
i=0 1=+l
We will note the Gaussian described by one set of parameters as follows:
G-p )
P
G(x)="t-e * | (5.66)
c

where i can take the values 1 and 2.

Going further we find the exact value for the parameters by minimizing the next
equation:

255

R(P, 1,01, P, p1,0,) = D (G (i) + G, (i) - h()) . (5.67)

i=0
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Finally, we determine the threshold. as being the intersection point of the two

Gaussians by solving the next quadratic equation:

: Coom ) o uou P.o.
L Ll [ A A [ A ed D% 20 (568
o. oy o, O o; o] Po.

If the equation has two solutions we chose the one, which is situated between x4 and .

For the regions where it was not possible to compute a threshold using the method
described beforc we will estimate one from the nieighbors, using a linear interpolation or a
simple weighted scheme. Finally, we will smooth them by local averaging using the following

mask:

(3.69)

-
tol= =51

The last step is to compute a threshold for each pixel. We will consider the situation as

on can see in figure 5.4.

T T

Fig. 5.4. Linear interpolation of individual pixel thresholds.

The threshold value for the pixel noted in the figure 5.4 with P is computed using the
next relation:

7= b-d-T, +b-c-Ty+a-d-T. +a-c-T,
(a+b)-(c+a')

(5.70)

T4, Tp, Tc and Tp are the thresholds for the four adjacent regions to the region where

our pixel is situated. The position of the pixel in the window is given by the dimensions a, b, ¢
and d.
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5.2 New Image Processing for Stereo Vision

In stereovision the main problem is to identify the same point in both pictures obtained
from the two cameras. which belong to the stereo sensor. This preblem is also known as the
correspondence problem. reference [EF03a]. In our practical experiments we developed two
types of stereo sensors, one in non-parallel configuration and the other one in parallel
configuration. A complex analysis of the measurement errors for these two types of stereo
sensors was presented in reference [TSINO2]. The conclusion was that the accuracy of the

image-processing algorithm has a big influence to the accuracy ot the measurement results.

5.2.1 Marks selection

The first problem was to decide what types of marks one can use in order to identify
them in the pictures obtained from the CCD cameras, reference [NITS03]. One solution was
to use crosses, see figure 5.5.b: the other one was to use circles, see figure 5.5.a. We decided
to use circles and the reasons why we chose them are presented in the following parts of this

chapter.

a) Cirdle hy N

Fig. 3.5 Marks used to be identified in imuge processing.

The accuracy of the information obtained from the marks is directly dependent to the

accuracy of the detected edge points. If we take a circle having a radius r the total length of

the cdges 1s given by the next relation:

(N
~J
—
S

L ., =27%r. (5.

Circle

For a cross. having the dimensions 2r horizontal and 2r vertical, the total length of the

edges is given by the following relation:

L., =8*r. (5.72)
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With these two relations we show the fact that the number of the edge points for a
circle is smaller than the number of the edge points for the corresponding cross. So, we have
to detect more edge points in case we use a cross than in case we use a circle. Each one of the
edge points is detected with an error and influences the information used in our further
calculations. That means, more edge points more errors and finally, bigger influence to the
useful information.

In the first phase we identify the circle making use of specialized software. This
software offers the possibility to recognize a model, which was taught in a stage before. The
problem is that, this software is specialized to identify a form, as an entire, but the information
we want is at a pixel level. There is a possibility to use a correlation function implemented in
this software, as a second step for the model recognition, but even if we use it the results are
not good enough. A detailed analysis of the errors of the 3D stereo measurement system,
where we used this correlation function for the model recognition, is presented in references
(NITO02]. and [TSINO2].

According to these results, we decided to use from this software only the functions
necessary to recognize a form as an entire and we developed our own functions to go to the
pixel and further to the sub-pixel level. In figure 5.6, one can see the model we used to be
recognized in both calibration and measurement procedures implemented for the 3D stereo

measurement system.

Fig. 5.6. Model 1o be recognized.

We used. at the beginning this type of circle instead of the type presented in figure
5.5.a, because our calibration plate was ordered to make use of the correlation function from
the image processing software we had at that moment. To use the correlation function the best

model was this one from the figure 5.6.
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5.2.2 Mathematical approach

As we have already explained. in the first phase we recognize all the circles from the
calibration plate using the model from the figure 5.6. With that procedure we will obtain the
approximate pixel coordinates of the middle of the circles for each circle. In the second phase
we will take each circle separately and we will determine the pixel coordinates of its weight
point. as it will be described in the following part of this chapter.

We started by making a segmentation of the image with a fix threshold. The threshold
value is taken 127, which means the middle between 0 and 255. 0 represents the black level
and 255 the white level. Between these values we have different grey levels. It's very
important before we make the segmentation to analyze the image histogram and according to
the histogram to adjust the illumination. We have to avoid the situation when there is not
enough light (too many pixels having the value 0. in the image histogram) and the situation
when there 1s too much light (too many pixels having value 255 in the image histogram). An
image histogram represents the number of the pixels having a certain level of grey for each
one of the grey levels, defined between black and white. In figure 5.7, we represented the
histogram for an image composed by background having. in realitv. only one grey level and
an object also, in reality 1n one grey level, but of course different to the background grey

level.

Pixel No. 1

Grey Level

— >

Fig. 53.7. Example of histogram.

The results after this segmentation with a fix threshold were not so good and we
decided to make a new image segmentation with a dynamic threshold. This way, we had to
replace for cach circle the fix threshold with a new value. which would provide us a betier
segmentation of the image. Our idea was to take a square region around each circle so that. in
this region the ratio between white points and black points is the same. We will consider the

square having the dimensions 4R x 4R, where R is the radius of the circle. From the
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geometrical dimensions we can compute now the ratio between the black points and the total

number of the points situated in one square region, as one can see in relation (5.73).

“ - =

TowalBluckPOINTS 0
ToralPOINTS

ratio =

Relation (5.74) is a detailed form for relation (5.73):

. TR - 42 x-v—x"
ratio = . -
16-R-

where the meaning of the notations becomes clear looking at figure 5.8.

A

2*r 'R <*R

> 4
> \ 4

Fig. 5.8 Detuils of a square region from the calibration plate.

In order to simplify our method and to make it more accurate we will make the small
circle. situated inside of the big circle. black. There are two possibilities. One is to make it in
the image; it means to set all the pixels. which define the small circle to the value zero. The
second possibility 1s to paint in black the small circle directly on the calibration plate. The
second solution has two advantages. First one is that the value for the ratio is computed more
simply and more accurate. The sccond one is that we don’t nced any software function to find
the points, which belong to the small circle and to set them to the black level. If we chose the
second solution we have to changc also the relation to compute the ratio. This way. the
relation (5.74) becomes, as follows:

TR

ratio = ~=(.196235 (
16-R-

th
~J
th
-
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Also, figure 5.8 will be changed, as one can sce in figure 5.9.

v

Fig. 5.9. Details or a region from the cuitbration plate with a black point.

The problem is now that in order to divide the image in 25 regions where the ratio of
the black points is constant, given by the relation (5.75), we need for each circle the value of
the radius R. The method to compute these values is presented in the following parts of this
chapter.

We identify first an approximate position for the middle of the black circle in the
image taken with a camera. We used an image processing software, which gives the
possibility of teaching one model and then this model is identified in the picture. We will
define now a square region centered on the position where a circle was identified. The side of
the square is 50 pixels. We took this number because the maximum radius of one circle in our
case is 20 pixels and this way, we are sure that the circle is inside of the square.

Going further. we will analyze now the grey level of pixels. belonging to such a square
region, starting from left to right (x direction). for different v values. The values for v should
be situated between 0 and 5 pixels in negative direction relative to the detected middle of the
circle and also between 0 and 5 pixels in positive direction. This way. we are sure that we
will analyze the entire region where the real middle of the circle is located. We start by

computing the next relation:
Ag(.‘cL. }".): .Uu.r‘:g(_\',_;._r_, )— g(xHI V, )} (3.76)
where g(x;, y;) is the grey level for the pixel whose coordinates are x;, v;. The value L is equal

to the corresponding value for i where the maximum was determined. We continue by

computing now the next relation:

Ag(xk’y/): Max{g(xM ¥, )_g(xi—l B )} (3.77)
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As we said, we repeat this procedure for different y values. For each value y; we

compute the difference according to the relation (5.78):
R, (_v‘,)z.\'k ~X,. (5.78)

Finally. we compute the maximum radius R,. in x direction, using the following

relation:
R, = Max{R (v, )}. (5.79)

We will repeat the same procedure from down to up (v direction) for different x values
in the same conditions as we did before from left to right. This way, we will compute step by

step the following four relations:

Aglx,.yp)= Maxlg(x,, v, )-glx,. v, )}, (5.80)
ag(x,, v )= Maxlglx,, v .. )-glx,. v, ) (5.81)
R(x)=3 =¥, (5.82)
R, = Max{R (x,). (5.83)

The final value for the circle radius will be computed. as one can see just beiow:

R +R

S

R =

We obtain two different values for the circle radius, R, and R, because what is a circle
in reality suffers some modifications, by projection in the image and becomes an ellipse. We
can approximate the surface of this ellipse with the surface of a circle having the radius R,
according to the relation (5.84).

In this moment we have the approximate coordinates of the middle of each circle and
we know also the radius in pixels for all of them. We can define now a square region around
each circle. We know that the total number of the pixels from one region can be computed

using the next relation:

TowalPOINTS =16 * R* = 3 p(z), (5.85)
==0
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where p(-) represents the number of the pixels whose grey level is z. The total number of the

black points is computed with relation (16), as follows:

I
TotulBlackPOINTS =3 p(:). (5.86)

where T is the threshold. Knowing the ratio between the black points and the total number of
the points of a square region one can compute the threshold 7 . Having a new threshold for
each square region of the image. we will make a new segmentation of the image in all of the
25 regions. We make again the observation that now each region will have its own threshold.
Going further, we have to compute the weight point of each circle. We will use the

next two formulas:

t4R-H(4R-D

ng(x,._l'l)'.\'l
C.=— e —. (3.87)
Z Zg\(\\)
t4R=-1113R-1
Z ng(-"n."»)'."‘,
C, =L . (3.%8)
Z Zg\(.\'._\' )
=0 =0

where gg(x, v) is defined by relation (19), as follows:

( ) (1. it glx. <
g\ V)= . Y
T {O. if glxv)2T ( )

If we note with N the total number of the black points from a region the relations

(3.87) and (5.88) become. as follows:

Al
2%
— 4=0

C =, (5.90)
2
C, =t —. (5.91)
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In this moment we have two new coordinates for the middle of cach circle. We have
to say that the formulation “the middle of the circle™ is not the rnight one. because of two
reasons. First reason is that we talk now about the weight point of a geometrical entity.
Second reason is that the circle from the calibration plate is not a circle anymore, in the image

taken with the CCD camera. but an ellipse.

5.2.3 Sub-pixel approach

Until now we worked only at the pixel level. The results were better than in case of
using only the functions from the dedicated software, but we considered that we could obtain
more. The solution was to go to the sub-pixel level, reference [Dev95]. We will start by
explaining a real situation. We will consider a simple plate half white and half black.

If we look with a camera to this plate the image, which will be stored on the chip. will

be a little distorted. as one can see in figure 5.10.d.

[ 11

cradeal imaee on the Chp

|
|

[

at hlack-wai plate di real image on the chip

Fig. 5.10. Details at the cells level on the chip of a CCD camera.

We consider that the transfer from the chip image to the computer image take place
without errors so the situation from figure 5.10.d is valid also at the pixel level. The idea is
that 1n most of the cascs the border between an object and the background in the pixel image
should be situated on the surface of one pixel not at the border between two pixels. From
physical considerations we can’t have in one cell of the chip two different levels of electricity
and also the corresponding pixel can’t have two levels of grey. We developed a mathematical
algorithm, which will determine a sub-pixel value associated to the location where the border

between two levels of grey should be placed.
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Our goal 1s to reach an accuracy of a tenth of pixel. To realize that we have to explore
each circle in the following way: we start from the weight point of the “circle” with lines to
the edges of the “circle™. There are two problems that must be solved. The first one is: how
many lines we have to use? The second one is to compute the grey level in certain sub-pixel
positions situated on this line.

The number of the lines we should use is determined by the value of the angle between
two consecutive lines. The length of the circle is computed using the relation (5.92), as

follows:

L.=27-R-Ap, (5.92)

where 4p is the length of one edge of a square pixel. We want to make an exploration from
tenth to tenth of pixel. The angle between two consecutive exploration lines will be computed

with the next relation:

where n is equal to the number of parts in which we want to divide a pixel. In our case we
take n equal to 10 and the maximum value for the radius. R. equal to 20. This way, we obtain
for Aa the value 0.28. which means we have to use approximate 1285 exploration lines.

For each of these lines we will analyze a part of it having the length equal to the length
of 5 pixels. The middle of this part is situated at a distance equal to the circle radius R.
Between the Cartesian coordinates of one point situated in this part of the line and the polar

coordinates of the same point one can write the next two relations:

x=C. +(R+d) cosa. (3.94)

v=C +(R+d) sina, (5.95)

where d takes values between —2.5 and +2.5. The difference between two consecutive values

dis 0.1. C, and C, are the coordinates of the “circle” weight point.
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In figure 5.11. one can see the correspondence between the coordinates (x, y) and the

coordinates (d. a).

Fig. 5.11. Correspondence between Cartesian and Polar coordinates.

As we said before we want to have the grey level of the points situated at any location
d on the exploration line. Using the relations (5.94) and (5.95) we are able to compute for
each of the 51 values of d his corresponding coordinates (x, y).

In figure 5.12, one can see details at the sub-pixel level for one exploration line.

—>

sl

(i)

ULl

23

20 R from the wardy ponicr -2%

Fig. 5.12. Details for an exploration line at sub-pixel level.

The problem is now that these coordinates (x, y) have float values and we know the
grey level only for those, which have integer values. In the following part we will present a

solution to compute the grey level of a point whese coordinates take float values.
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In figure 5.13. we represented a square formed by nine pixels.

T X LR A2

: : Vel
........ ® ] . .e. . .o . A

Fig. 5.13. Sub-pixel resolution.

The values x any y are positive integer. They represent the location of the pixel in the
image. With small circles we represented the grey level of the one pixel and we placed this it
in the middle of the pixel. We are interested to compute the grey level of the point situated at
the location (x,. y;), as onie can see in figure 5.13. To simplify the further calculation we make

first the next notations:

Ax =x, - x, (3.96)

Av=y —y. (3.97)

Now we can compute the grey level of the point situated at location (x;, ;) using the

relation (5.98):

g(.v(l,_v1 )= g(.r,)‘)- (1 - Ar)- (1 —Av)+g(x. v+ i)~ (1 — Av)-Ar+

. (5.98)
+ g(x+ lLy+ 1)-Ar-Ay+g(.\‘ + l,y)-Ar-(l —Ay)

In order to simplify the mathematical calculation and to avoid working with float

numbers we will define a new variable D as follows:
D=10-d-25. (5.99)

The new variable D will take integer values between -25 and +25.
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One can compute the function G(D) using the next rclation:

G(D)zg(D_zs)=g(</)=‘g(.\'._1'). (5100
10
This way, we divided an interval of five pixels in fifty sub-pixels intervals and we computed
for each sub-pixel interval the corresponding grey level.

Going further we must find a mathematical relation, which approximates as good as
possible the function G(D). We will make first a graphical interpretation of the computed
values for G(D). In figure 5.14, one can see the approximate graphical representation of this

function.

> U
D.

Fig. 5.14. Graphical representation for G(D).

One can see that this function can be approximated with an arcran function. as
follows:

G(D)=G, + K, -arctan(K , -(D-D,)). (5.101)

Our final goal is to compute Dy. Unfortunately, we can’t compute Dy without computing the
other three unknowns Gq. K. Kp. from the equation (5.101). One can wrnte the equation

(5.101), as follows:

F, 6(Dy,Gy, KK, )=0, (5.102)

where D; and G; are calculated in the steps before. As. we told we have fifty pairs of points
(D;,G.). For each pair we can write the equation (5.102). This way. we will obtain an over

determined system of nonlinear equations. To solve system we have to accomplish two steps.
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First step is to find a good set of starting values for Dy, Go, Kp, and K. The second step is to
make the nonlinear equations linear. After making these two steps, we obtain an over
determined system of linear equations, which will be solved using least square method. With
the new solutions we will repeat again the algorithm. We will stop when the difference
between two sets of consecutive solutions 1s less as a certain value.

The obtained value for Dy will be used to calculate the corresponding xo and vo. For
that we will use the relations (5.104) and (5.105). The new coordinates for the circle weight

point will be computed using the next two relations:

Nl

2. %(k)
C, =2, (5.103)
Y k)

C =i , (5.104)
NP

where NP is the total number of the edge points and x(k) and ya(k) are the computed
coordinates of the edge points. These new coordinates were used in our further calculations.
The results of the 3D measurements made with our stereo sensor will be presented 1n the
chapter three of this paper. Also a detailed analysis of the crrors of the stereo sensor will be
presented in chapter three too.

In the following part of this chapter we will explain the solution developed by us to
find 2 good set of starting values for our variables. Dy, Go. Kp;, and K. reference [TSNIO4].

We will compute first the next difference:

AG=G_ -G, (5.103)

i—

where i takes values from -24 to +24. We will determine maximum of 4G and according to
this rmaximum we will obtain the starting values for [J, and G,
To obtain the starting values for Kp and K we will take two pairs of points (D.. (7))

and (D;, G;) and we write the next two equations:

G, -G, =K, -arctan(K (D - D,)), (5.106)

G, -G, =K, -arctan(K ,(D - D,)). (5.107)

We will solve this system and we will obtain the starting values for Kp and K.
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The solution to solve this system will be presented in the following part of this
chapter. To simplify the form of the equations, described by the relations (5.106) and (5.107)

we make the following notations:

G, -G,=a,, (5.108)
G -G, =a, (5.109)
D -D,=b, (5.110)
D,-D, =b,, (5.111)
K,=x, (5.112)
Ks=vy (5.113)
With these notations the relations (5.106) and (5.107) will become as follows:
a, = y-arctan b, - x, (5.114)
a, = y-arctanb, - x , (5.115)

where x and y are our unknowns and ay, a;, b, and b, are known. We eliminate v from the

equations (5.114) and (5.115) and we obtain, as follows:
a,-arctan b, - x = a, -arctan b, - x . {3.116)

We will make now a graphical analysis of the relation (5.116). We will definc two

functions f] and /5. as one can see in the next two relations:

f.(x)=a, -arctanb, - x, (5.117)

f,(x)=a, -arctan b, - x . (5.118)
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The graphical representation of these two functions is presented in figure 5.15.
A iy

fix)
£ ——-—-"‘/

Fig. 5.15. Graphical representation of the furctions f; and f-.

We have to say that the representation from the figure 5.15 shows the situation when
the equation (5.116) has three solutions 0, x, and x,. This is the case we should have because
we obtained this equation from a real situation. It means, that the equation must have these
three solutions. We are only interested to calculate x;, because we know from the definition of
function G(D), relation (5.101). that the coefficient Kp, which is the same with x, relation
(5.112). has only positive values.

The situation when the equation (5.116) has only the soiution 0 i1s graphically

? Y
/__,___

represented in figure 5.16.

IRV

f:(x)

Fig. 5.16. Functions f; and f> - theoretical situation.

To solve the equation (5.116) we will compute first the derivations of the functions in
the origin. For a function f having the form described by the relation (5.119), the derivation of

this function will be calculated using the relation (5.120).

f(x)=a-arctanb- x (5.119)

- a-b
)= , 5120}
s 1+ (arctan b - x) (
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That means that for our functions £, and /> the derivations in the origin will have the

following values:

£,0)=a,-b,. (5.121)
f(0)=a,-b,. (5.122)

Comparing the values for these two derivations we will know what sigh has the
difference between f; and /> in the positive vicinity of 0 and also in the negative and positive
vicinity of the solution x», see figure 5.15. The solution x> will be computed numerically using
a starting value and then several iterations.

We will present in the next part of this chapter the linearisation procedure. The
equation (5.102) can be written also in the following form:

F, . =Gl +K’ - arctan(K’ -(D, - D)) G, =0, (5.123)

DG,

where Dg,Gg,Kg,Kg are initial values for Do, Go, Kp, and K¢ and £} (. is the short

notation from F (Dg,Gg,Kg,Kg )

We will compute then the next four derivations:

oF _0F,| 1

:_KU‘.KU 'D((:' _. 5.124)

D, Dy |y (kD - D)) |
oF _0F, | e (5.125)
560 5Ghlmmﬂw;xﬁ
oF aFLx;' 0 0 l

o =k"-(D -D") _. 5.126
5K1) 5K/) !1){,“(,‘.‘,’./\'}',,&}1 ’ ( ’ ’ ) 1+ (K;)) '(D, - D((: )) ( !
oF _OF, | _
K o ‘D::WW — arctan(K", - (D, - D). (5.127)
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With these last relations we can obtain a linear equation for (5.102) as follows:

cF

F. +
‘§D<.

Pk, -k

(?'[: (I\' _K“):O. (3128)

W.OF
'(D.- - D“ )+ E—C;—‘ . (G G, )'+' ' N G «

i e

We will make linear all the nonlinear equation of our obtained over-determined system
of equations, using the equation (5.128). The new over-determined system of linear equations
will be solved using least square method, in the same way as we made with the systems

solved in sub-chapter 4.2.2.
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Chapter 6

Analysis of the 3D Measurements

6.1 Contributions at
Procedures

the Development of Accurate Measurement

To measure we will use the same device as in the calibration procedure. see figure 4.5,
chapter 4. We will move the plate in different positions and we will measure with the sterco
sensor the 3D coordinates of the points from the calibration plate. The big advantage of this
device is that we can control very precisely the x, v, and z movements of the plate (accuracy
0.025 mm. see 4.2.1). This way. we could vernify the accuracy of the measurements made with
the calibrated stereo sensor and we developed an algorithm to improve substantially the
accuracy of the measurements.

The goal is to measure the 3D coordinates of a point with respect to the world frame
using the stereo sensor. We consider a point P having the coordinates x,,. v,. =, with respect to
the world frame. This point will have the coordinates xz. vz. - with respect to the camera
right frame and the coordinates v;. y;, z; with respect to the camera left frame. With these

notations one can write the next relation:

e e o
o b et o
Ir-l =T = l O 1
!_‘ b z. 0?
RN

The relation (6.1) can be written. as follows:

"‘ﬂl BV LI

‘;R' Ye|=I10 -1 (6.2)

3 R

-
K
|
LR.[.‘.L

where “, R represents the rotation from the world frame to the camera left frame and *, R the

rotation from the world frame to the camera right frame. ¢, ¢, ,7. are the translations from
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the world frame to the camera left frame and ¢ _,¢ s, are the translations from the world

frame to the camera right frame.

From the two images made with the stereo sensor we can find the pixel coordinates of
the point P. We denote these coordinates with X;. };. for camera left and with Xz. Yz, for
camera right.

Between the 3D coordinates and the pixel coordinates of the point P one can write the

nest relations:

l‘ .\'L—Cf':L:\L (6.3)
1+dL (\':'—C\)’_*_(}/»—Cn)»\ /-):
p. p. J
1 r - (6.4)
SzL=, . P
l+{_((\',.,—C‘f+(}"—C‘ W
[4 S S
p: p: J
1 v.-C’
- T Ta =N, (6.3)
i{]+cl"‘ i -C)+(Y maR I
'\ P, r.)
1 Y, -C )
5 - N — "¢ T V- (6.6)
(1“1”((‘\’”{')+()!"C')N PIE
{ P, )]

where p;.p[.Ci.C;.d" are the internal parameters for camera left and pf.pf.CF.CT.d*

are the internal parameters for camera right. The values for these parameters are known
because they were computed in the calibration procedure. We will make the following

notations:

1 Y, -C

\ N ~
( ‘v~ ¥ . -\ o T (6.7)
l+¢[1'(k/‘l’ 1C\)'+(}p F‘) [_)‘
P. P,
1 Y, -C* o 65)
= . ~ent. )
- ,,[(-v,, cf b -c)) 7
[& - 3 L
k P, 28 )
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]
[l P R,

P,

P,

(6.9

(6.10)

With these notations the reiations (6.3), (6.4), (6.5) and (6.6) will become, as follows:

cxt oz, =
cvt oz, =

cix” -z =

cty® -z,

(6.11)
(6.12)
(6.13)
(6.14)

From the equation (6.2) and the relations (6.11). (6.12). (6.13) and (6.14) one can

(rfemxt + rtent + bl = (rfene® + rfen® + it k.= 1, —t
L L L L L R R R R R _
(r4 Cclx +r5 cry +r6 )ZL—(I'4 ctx +r5 cry +r }:R =t

(r,Lcth +rcvt +rf )zL —(rfctx” +rfen® +1f ):R =t -1,

obtain:
where
!
’l
i I
R=r
I'-L
and
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The equations (6.15). (6.16) and (6.17) can be written using the matrices. as follows:

{‘,a' —,\
coef. {:L}: [, =1 |. (6.20)
A | §

where

L L
rlLCth +r cryL +r,

—(r,RCr.rR +rfer® + k)
coef. =| ricrx' +rfent +0f —(lgRCt.\'R +rfen® + th) . (6.21)

g R
l_r.LCI.\'L +rtent +rf —(/'."C!.\'R +1fen™ + 1 )

The problem now is to compute the inverse of matrix coef-.. This problem is solved
using a special algorithm developed in the reference [PTVF92]. Knowing this inverse matrix.

the solution for our system is, as follows:

; I
[-LJ:(coef:)"' o=t 1. (6.22)
S ’
. —-r
[ -4

Using the relations (6.11), (6.12), (6.13) and (6.14) we can compute the values for x;,
yi and for xg, yp. Knowing now the 3D coordinates of the point P with respect to the cameras

frame we can easy compute the 3D coordinates of this point with respect to the world system:

i A 1' —'\.i. 1 i A ]
rll .‘. H .‘.
ELT T (6.23)
<y <, Ze
1 1 1]
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In figure 6.1 one can see the measured coordinates of the calibration points situated in

a position which is different than the positions used in the calibration procedure.

Abiokse Por 18500, 2500, 1000
Releve Pon 00 000 1000
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Fig. 6.1. Measured 3D coordinates.

In figure 6.2 one can see the real coordinates of the same points.
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Fig. 6.2. Real 3D coordinates.

In the following parts of this chapter we will discuss the results obtained for the two

possible configurations of the stereo sensor: non-parallel configuration in 6.2 and parallel

configuration in 6.3.
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6.2 Non-parallel Configuration

In this sub-chapter we will present first an analysis of the errors obtained with the non-
parallel stereo sensor. In the second part a special procedure to reduce these errors will be

explained, followed by a new error analysis. All of these are also presented in the reference
[NITO02].

6.2.1 Analysis of the errors

In figure 6.3 we represented the distribution of the measurement errors for the
coordinate x. The measured points were situated in a plan parallel with the plan defined by the
axis x and y of the stereo sensor frame. We made this representation because the variation of
the errors, if only z coordinate is changed, is much smaller then the variation of the errors if x
or v coordinates are changed. The measured points are uniformly placed, on the calibration
plate, in a square area with a side equal to 150 mm (see sub-chapter 4.2.1). The coordinates of
these points will be measured relative to the stereo sensor frame. The origin of the stereo
sensor frame is situated very close to the middle of the square area where the points to be
measured are located. This means that the points situated on the edges of this square area will
have their x and y coordinates approximately -75 mm or +75 mm. To simplify the
representation and the calculations we consider the x and y coordinates of the measured points

to be situated between 0 and 6. This way, 0 will correspond to —~75 mm and 6 to +75 mm.

Fig. 6.3. The distribution of the errors for the coordinate x.

The errors for the coordinate x are situated between —0.33 mm and +0.5 mm. These

errors are computed as the difference between the measured coordinate x obtained from the
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stereo sensor and the real coordinate x generated by our special calibration device (see sub-
chapter 4.2.1).
In the figure 6.4 we represented the distribution of the measurement errors for the

coordinate y.

Fig. 6.4. The distribution of the errors for the coordinate v.

The errors for the coordinate y are situated between —0.42 mm and +0.34 mm.
In the figure 6.5 we represented the distribution of the measurement errors for the

coordinate z.

Fig. 6.5. The distribution of the errors for the coordinate z.

The errors for the coordinate z are situated between —0.95 mm and +0.94 mm.
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6.2.2 New method to eliminate the systematic errors

Looking to the graphic from the figure 6.4, it is obvious that a systematical error
appear in the measurement process. We will define a correction function /.. which has as

variables the coordinate xa and yo of the measured point. One can write the following relation:

X=X+, (xo,yo), (6.24)

where x is the new value for the coordinate x of the measured point. Our next problem is to
find a mathematical relation for the function f,, knowing its values in all the 49 measured
points represented in figure 6.4. If we look in figure 6.4 to the same x we can see that the

variation of the errors is approximately linear. So, one can write the following relation:

A (xovy)=31y+Bo- (6.25)

where B and By must be computed. For the same y we will approximate the variation of the

errors with the following relation:
Fleyy)= A + Ax' + A7 + Ax+ A, (6.26)

where Ai, Az, A>, A and Ao must be computed. This represents in fact a polynomial

approximation. With these two relations one can write the funciion f.. as foilows:

flev)=Ax* +4x" + A+ Ax+By+C,. (6.27)

To find all the coefficients we use the least squares method. We start from the next relation:

5: 2 (A + AT + 407 + Ax + By, +C,~ fx. 1)) = min. (6.28)

=0 =

We will note this sum with S. Going further, one can write for cach coefficient the next

relation:

N
tn
!
<o

t6.29)

(o))
)
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This way, we will obtain a linear system composed from six equations and having six

unknowns. We solve the system and we obtained the following correction function:
£.(x.3)=0.0016x* —0.0109x" +0.0238x" —0.0167x +0.038y — 0.2244 . (6.30)

Using this correction function the new distribution of the measurement errors for the

coordinate x is as one can see in figure 6.6.

Fig. 6.6. The distribution of the errors for the coordinate x after correction.

The errors of the coordinates x are now situated between —0.125 mm and +0.125 mm.
These errors are more than 3 times smaller than in the case when no correction was used (see
figure 6.3). It is also obvious that the systematical errors, which clearly appear in figure 6.3,
became insignificant after correction, as one can see in figure 6.6. The distribution of the
errors, presented in figure 6.6, includes also the effect of the uncertainty of the calibration
device (see 4.2.1).

We will apply the same procedure for the coordinates y and z to reduce the

systematical errors. The correction function will be as follows:

~0.058y +0.142 xel0,3}yef0.3)
£, (x,y)=140.03y +0.02 xe(3,6]yel03). (6.31)
0.027x —0.123y + 0.49 xel0.6}y e[3.6]

In this case it was not possible to approximate all the measurement area with only one

function, so we had to divide this area in three sub-areas.
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Using this correction function the new distribution of the measurement errors for the

coordinate v is as one can see in figure 6.7.

Fig. 6.7. The distribution of the errors for the coordinate y after correction.

The errors after correction are situated now between —0.12 mm and +0.12 mm.

For the coordinate z we use the following correction function:

f.=-0.256x+0.036y -0.79. (6.32)

Applying this correction function the new distribution of the measurement errors for the

coordinate z is as one can see in figure 6.8.

Fig .6.8. The distribution of the errors for the coordinate z after correction.

The errors are situated now between —0.149 mm and +0.149 mm. So, the errors range was

reduced more than 6 times.
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In the table 6.1, one can sce better the obtained improvement of the stereo sensor after

the correction functions were applied.

Table 6.1. A comparison berween the errors before and
after the correction function was applied

Erors | Min. (mm){Max. (mm)!Range (mm)‘Ratio(before/after)!
x |before correction -0.33 0.50 0.83 3.32 |
x lafter correction -0.13 0.13 0.25
y [|before correction -0.42 0.34 0.76 3.17
y [after correction -0.12 0.12 0.24
z |before correction -0.95 0.94 1.89 6.34
z lafter correction -0.15 0.15 0.30
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6.3 Parallel configuration

In the following parts of this sub-chapter we will make an analysis of the errors of the
measurements obtained with a stereo sensor built in parallel configuration. We will present
four cases. In the first case we used Lenz calibration method (see 3.3.2) to calibrate the
cameras combined with our best image-processing algorithm (see 5.2.3). In the other three
situations we used our calibration method (see 4.2.2), but for the image processing algorithms,
three different types: algorithm developed only with the functions from the dedicated software
(see 5.2.2), algorithm based on the weighted point of a circle (see 5.2.2), and algorithm which
uses the sub-pixel approach. The last one represents our best image-processing algorithm.

Going further, for each case we will present four graphics. The first three graphics
show the errors distribution obtained for the coordinates x, v, z and the last one the errors of

the position vector v. The error of the position vector was computed using the next relation:

Av = J(Ax) +(Ar) +(az) . (6.33)

We have measured 25 points situated in a plan. In our graphics the coordinates x and v
indicate the position of the measured point in this plan and the coordinate z indicates step by
step the four errors presented before.

As we said before, the first group of four graphics presents the errors obtained when
we used only the Lenz method to calibrate the stereo sensor. In figure 6.9, we represented the

errors for the coordinate x. These errors are situated between —0.117 mm and +0.165 mm.

Fig. 6.9. The distribution of the errors for the coordinate x.
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In figure 6.10, we represented the errors for the coordinate y. These errors are situated

between -0.553 mm and +0.437 mm.

Fig. 6.10. The distribution of the errors for the coordinate y.

In figure 6.11, we represented the errors for the coordinate z. These errors are situated

between —5.516 mm and +4.469 mm.

Fig. 6.11. The distribution of the errors for the coordinate :.
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In figure 6.12, we represented the errors for the position vector 4v. These errors are

smaller than 6 mm.

Fig. 6.12. The distribution of the errors for the position vector.

We can see from these first four graphics that the errors are very high. This is due to
the fact that we used a model for the camera in which the scale factors and the image center
are not calibrated. Only approximate values are used. Also, the effect of the distortion is not
considered. The calibration points are situated only in one plan not in a 3D space, as it will be
considered in our final calibration method.

The second group will show the errors obtained when the camera are calibrated with
our calibration method, using in the image processing algorithm only the functions from the
dedicated software.

In figure 6.13, we represented the errors for the coordinate x. These errors are situated

between -17 um and +37 pm.

Fig. 6.13. The distribution of the errors for the coordinate x.
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In figure 6.14, we represented the errors for the coordinate v. These errors are situated

between -116 um and +88 pum.

Fig. 6.14. The distribution of the errors for the coordinate y.

In figure 6.15, we represented the errors for the coordinate z. These errors are situated

between -295 pum and +47 pm.

100w

Fig. 6.15. The distribution of the errors for the coordinate z.
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In figure 6.16, we represented the errors for the position vector 4v, defined by the

relation (6.33). These errors are smaller than 350 um.

Fig. 6.16. The distribution of the errors for the position vector.

The next four graphics are made for the method where we calculated the weighted
point of a circle. As we will see, the errors will be situated almost in the same range as for the
method presented before.

In figure 6.17, we represented the errors for the coordinate x. These errors are situated

between -39 um and +47 pm.

Fig. 6.17. The distribution of the errors for the coordinate x.
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In figure 6.18, we represented the errors for the coordinate y. These errors are situated

between 41 um and +50 pm.

Fig. 6.18. The distribution of the errors for the coordinate y.

In figure 6.19, we represented the errors for the coordinate z. These errors are situated

between -175 um and +272 pm.

RO
TR XN
RS
) el t

Fig. 6.19. The distribution of the errors for the coordinate z.

109

BUPT



In figure 6.20, we represented the errors for the position vector 4v. These errors are

smaller than 300 pm.

Fig. 6.20. The distribution of the errors for the position vector.

The last graphics are made for the method where we used the sub-pixel algorithm.
This method was presented detailed in sub-chapter 5.2.3. As we said in 5.2.3, the problem was
that the border between white and black is in most of the cases located somewhere between
two adjacent cells of the CCD camera, respectively somewhere between two adjacent pixels
of an image. So, in order to determine the exact position of this border a sub-pixel approach is
needed. This is the best method and we will obtain the smallest errors, as we will see in the
following part.

In figure 6.21, we represented the errors for the coordinate x. These errors are situated

between -19 pm and +24 pm.

Fig. 6.21. The distribution of the errors for the coordinate x.
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In figure 6.22, we represented the errors for the coordinate y. These errors are situated

between -20 pm and +17 pm.

Fig. 6.22. The distribution of the errors for the coordinate y.

In figure 6.23, we represented the errors for the coordinate z. These errors are situated

between -91 pm and +79 pm.

Fig. 6.23. The distribution of the errors for the coordinate z.
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In figure 6.24,

smaller than 100 pm.

All these graphics were obtained using MATLAB programs. The measurement data obtained

from the stereo sensor were used in these programs to generate the graphics discussed before.

Fig. 6.24. The distribution of the errors for the position vector.

These programs are presented in Annex E.

In the table 6.2 we present a brief comparison between all the four cases presented

before starting with figure 6.9 and finishing with figure 6.24.

we represented the errors for the position vector 4v. These errors are

Table 6.2. A brief comparison between all the cases
analvzed before for the parallel sensor

Errors Min. (um) Max. (um) | Range (um) | Ratio (i/(i+1))
X Lenz Method +sub-pixel -117 165 282
X Our Method + software -17 37 54 5.22
X Our Method + weight point] -39 47 86 0.63
X Our Method + sub-pixel -19 24 43 2.00
y Lenz Method +sub-pixel -553 437 990
y Our Method + software -116 88 204 4.85
y Our Method + weight point -41 50 91 2.24
y Our Method + sub-pixel -20 17 37 2.46
z Lenz Method +sub-pixel -5516 4469 9985
z Our Method + software -295 47 342 29.20
z Our Method + weight point -175 272 447 0.77
z Our Method + sub-pixel -91 79 170 2.63
Am Lenz Method +sub-pixel 0 6000 6000
Aa Our Method + software 0 350 350 17.14
Aa Our Method + weight point 0 300 300 1.17
AT Our Method + sub-pixel 0 100 100 3.00
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Chapter 7

Industrial Applications

In industrial applications, a stereo sensor can be used in two configurations: as a fixed
sensor, references [KK99], [JT02], and [TSINO4] or, as a mobile sensor mounted on the robot
hand. reterences [DK02], and {iK98].

The first configuration can be employed in measuring the angle between the axles of a
vehicle and the plane in which the wheels are rotating. The accuracy in such applications has
to be very high. In sub-chapter 7.1 is presented a measurements system based on stereo
sensors. which provides the required accuracy. This system can replace the current solution,
which uses very expensive laser devices.

The second configuration, mobile sensor, i1s found useful in automatic processes, such
as robotic hands mounting of windows for passenger cars. Here as well. this solution with a
stereo sensor mounted on the robot hand can replace, with better resuits. the current solution.
It needs only two cameras instead of four or eight, which are needed for the multi-camera
method. which is presently used. In sub-chapter 7.2 is presented a tcst application. which

makes use of a mobile stereo sensor.

7.1 Fixed Sensor Configuration

The wheel alignment problem is an important task and concerns all car producers.
There were developed a lot of measurement systems to be used for solving this problem. At
the beginning there were produced systems based only on mechanical methods. The
disadvantage of these methods was the time for measuring which was too long. Also, the
accuracy of the measured results was influenced by the errors of the tire surfaces. The second
step was to build measurement systems. which use both mechanical and optical methods for
measuring. In this category we have systems based on laser technology and systems, which
use cameras. The first ones have the disadvantage that they are very expansive. For the second
type the accuracy is the task that must be improved. It is also important to know that the
systems, which usc cameras, can be based on the multi-camera concept or stereo camera

concept. We used the second possibility.
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In the following parts we define and then explain the two angles we want to measure
with our vision system. Camber is the inward or outward tilt of thc wheel measured from top
to bottom. This angle is adjusted to prevent excessive tire deterioration and to enhance
straight ahead stability. It is measured in degrees and has several methods of adjustment. In
figure 7.1, one can understand better the definition of this angle. In this figure, there are

presented three possible situations for this angle: positive Camber, negative Camber and zero

Camber.
L% Positive(s) Negative (-)
;-g.] ‘ Camber ‘Lr‘ * Camber
7 Al T
‘:" “‘\\‘ _J;\ p _ \f".;‘\ d‘
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. A T e
e R
L/ - - -

Fig. 7.1. Definition of Camber.

The angle formed by a horizontal line through the plane of one wheel versus a
perpendicular line to the centerline is called the individual toe. This is the most critical tire
angle. When a horizontal line is drawn through the plane of each wheel, and they intersect in
front of the wheels, this is called toe-in or positive toe. When they intersect behind the wheels,
this is called toe-out or negative toe. In figure 7.2, one can understand better the definition of

this angle.
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Fig. 7.2. Definition of Toe.
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In figure 7.3, one can see the stereo sensor and the light projector used to build the
required measurement system. For the stereo sensor we used the parallel configuration as it

was presented in sub-chapter 4.1.3 and 6.3.

Fig. 7.3. Stereo sensor and light projector.

The light projector is used to create on the tire surface, some marks, which could be
further measured with the stereo sensor. In figure 7.4, one can see the shape of the structured

light created by the light projector on the tire surface.

Fig. 7.4. Structured light projected on the tire surface.

There are two possibilities to make use of this structured light. First one is to use as
marks the intersections between the light and different forms existing on the tire surface. As
one can see in figure 4, in this category are included points 1 and 3. The second one is to use
as marks the crosses defined by the structured light itself on the tire surface. To this category

belongs point 2.
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Having this information about the angles to be measured and the tools to be used, in
the next step we have to define a mathematical model for the wheel in order to be able to
measure these angles.

First of all we define a coordinate frame for the wheel. We call this, the wheel frame.
The origin of this frame is situated in the middle of the tire. Axe z is perpendicular to the tire
so that the plane determined by axes x and v is parallel to the tire. Axe x is horizontal. One can
see all these details in figure 7.7. With these notations, Camber is determined by measuring
the rotation of the wheel frame around x axe and Toe is given by the measured value of the
rotation of the wheel frame around v axe.

The angle information we need is obtained by knowing the orientation of the tire plane
(the plane defined by axes x and y) relative to a reference plane. So, the task is to measure this
tire plane. It is known that a plane is determined by at least three points, which are not all
situated on the same line. Starting from the plane definition we decided to use three stereo

sensors placed on a circle at equal relative distances between them, as one can see in figure

7.5.

Fig. 7.5. Description of the measurement system.

We explained in chapter 4 that in the calibration procedure of the stereo sensor is
defined a stereo sensor frame, reference [TSNIO4]. It means, the coordinates of the points
measured with a calibrated stereo sensor are given relative to its defined stereo sensor frame.
The three stereo sensors, which are fixed on a rigid plate, as one can see in figure 7.5, are first
calibrated (see chapter 4). This means, each one has its own frame. The next step is to find the
relative position and orientation of these three frames with respect to a reference frame. This
is in fact the calibration procedure of our measurement system.

In figure 7.6, one can see the calibration plate we have used in order to compute the

position and orientation of the stereo sensors frames with respect to the reference frame. We
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denoted with Sg the reference frame situated in the middle of the plate and with Sg,, Ss> and
Ss; the stereo sensors frames. In figure 7.6, it is drown only one sensor frame, because the
situation is similar for the other two. The mathematical explanation, which follows for one
sensor, will be applied in the same way for the other two sensors. With T(Sg-Ss;) we denoted

the transformation from the reference frame to one sensor frame.

Fig. 7.6. Calibration of the measurement system.

The calibration plate, we used, has 121 points and we know very precisely their
position with respect to the reference frame. We denote the coordinates of one point from this
plate with xz, yg and zz. The same point will be measured with the stereo sensor and we obtain
the coordinates xs;, vsi, and zs;. According to the reference [Pau81], between these coordinates

we have the following relation:
(xR Yr 2R I)T=§§,T.(xsi Ysi Zsi I)T' (7.1)

Using more than four points for each sensor we obtain an over determinate system of
nonlinear equations. According to the references [Man81], [Nas99] and [PTVF92] such
systems are solved in two steps. First step, we make the system linear and second step we use
least square methods to find the solution of the system.

Going further there are two different methods of measuring. Until now, we have
implemented in practice only one method and obtained test results, which are presented at the
end of this sub-chapter.

The method, which we have implemented, is based on identifying marks of type noted
with 3, as one can see in figure 7.4. This method used the fact that on the surface of the tire

there are several profiles, which modify the shape of the structured light projected on it.
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Because these shape modifications are very small we had to develop image processing
algorithms to provide us enough and accurate information. We have used sub-pixel accuracy
and segmentation methods according to the references [GLP99], [Par97] and [TSINO4].

Our goal is to identify points, which are in the same plane and of course this plane
must be parallel to the tire plane. As one can see in figure 7.7, there are some profiles having
circle shape on the surface of the wheel. The big advantage for these circles is that they

define, at least theoretically, each one a plane, which is parallel to the tire plane.

Fig. 7.7. Explanations for the measurement procedure.

The structured light allows us to take for each stereo sensor maximum three points per
circle. This way, we can use maximum nine points to compute the plane where the circle 1s
situated. Using the best-fit method we eliminate from these points those, which have big
errors and finally, compute a plane parallel with the tire plane. Having this plane, we can
compute the values for Camber and Toe.

The second method is based on identifying marks of type noted with 2, as one can see
in figure 7.4. The idea is to use the light crosses for identifying which pixel from the image
obtain with one camera of the sensor corresponds to a certain pixel from the image obtained
with the other camera. This way, we can measure the 3D coordinates for a lot of points
belonging to the light lines projected on the tire. With this information the next step is to
calculate the tire plane and its orientation relative to a reference plane.

To test our system we use a special device having a wheel and the possibility to adjust
it at different angles between -3 and 3 degrees for both Camber and Toe. Before we start a
normal measurement the wheel is fixed so that, the special device indicates 0 for both Camber
and Toe. For this position, we make a zero measurement. It means all the measurements,

which follow to this zero measurement, are done relative to this zero wheel frame.
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For the diagrams. which follow we have measured ten different orientations of the
wheel. but sometimes keeping one angle fixed. On the horizontal scale we have represented
the real value of the angle in degrees. On the vertical scale we have represented the difference
between the measured value and the real value of the angles. The unit used for this difference
is the minute.

In figure 7.8, one can see the distribution of the errors for Camber. They are situated
between 0.40 and 4.06 minutes. It is important to mention that for the same Camber angle we
obtained different errors, because the measurements system is unfortunately influenced by the

value of the Toe angle.
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Fig. 7.8. Distribution of the errors for Camber.

In figure 7.9, one can see the distribution of the errors for Toe. They are situated
between -0.38 and 4.86 minutes. Also, here we obtained different errors for the same Toe

angle due to the influence of the Camber angle to the measurement system.
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Fig. 7.9. Distribution of the errors for Toe.
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Summarizing onc can say that we have succeeded to build a vision system using
simple methods and cheap components with a good accuracy. These first results obtained in
the measurement procedure confirm us the fact that our vision system could be turther
developed and improved. Using the second method, improving the quality of the structured
light and developing better image processing algorithms and mathematical algorithms we will

be able to reach the accuracy of 0.1 minutes with our vision system.

7.2 Mobile Sensor Configuration

In this sub-chapter a test application, which use a stereo sensor in a mobile
configuration will be presented. The stereo sensor will be mounted on the robot tool. The
robot will be driven in different positions in such a way that certain parts of an object can be
viewed and measured. In the following parts we will describe both theoretically and
practically the test application we have developed.

First step is to establish a frame for the object whose position we want to mcasure. The
robot tool is moved in a position near the object. positon 0. as one can sce in figure 7.10. We
consider the robot tool frame for this position of the robot tool as being the object frame. We
consider also this frame as being the reference frame for the next measurements. We measure
four fixed points from the object using the stereo sensor. These points are noted 1, 2. 3 and 4,
as one can see in the figure 7.10. We will obtain for each point its 3D coordinates with respect
to the reference frame. which is the same with the object frame. In this moment the object is
well defined by an object frame and four points whose 3D coordinates are known with respect

to the object frame. For each point i we denote its coordinates “”P;.

Sterco Sense:
Robot Tool

Waorkmy Tocl 2

" i Sk I:SRd:S()hj

o
|3

Robot .

Fig. 7.10. The object frame definition.
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According to the explanations we can write the following relations:

SRT ZSRL‘I =S()h/" (7.2)

Re s l),=()/v/l)l ) (73)

In the figure 7.10 one can see the practical results obtained when we introduced one
test object. The box named object frame represents the transformation from the robot tool
frame to the robot base frame. By pressing the button Set Object Frame we set this frame to
be our reference frame for the next measurements. In the box Relative Coords we have the

coordinates of the measured point with respect to reference frame.
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r Object Frame ————— Model Name : r~ Object Frame -—————  Model Name :
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Searched Mark: Searched Mark:
[Cross {Cross |Cross [Cross
~ Relative Coords - Relative Coords ————— — -~ - -~
K Y: Z: X Y: Z-
[8414515 [6912286 [27433% | [301.34478  [28766071  [204 27027
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Fig. 7.11. Introducing the object — C program.

After the object was defined, we move the object from the reference position and we
measure the deviation of the actual position of the object with respect to the reference
position.

In figure 7.12 one can see the frames, which were used in the mathematical

description.

121

BUPT



To measure the new coordinates of the fixed points from the object the robot will be
moved in the same positions as it was done when the coordinates of the fixed points were
measured first time. One can make this because the actual position of the object is only a little
different from the reference position and the fixed point can be seen by the stereo sensor.

Using the same positions for the robot we will eliminate the absolute error of the robot.

Object to be measured

(XX} ese0cces0000scs00 Reference Object

Fig. 7.12. The deviation of the actual object with respect to the reference object.

We denote the measured coordinates of the points / with R<'p.. One can write now for a
point the following equation, according to the reference [Pau81]:

Re/ P‘=R(C)Z,T'Ohj P’ ) (74)

!

where %, T is the transformation from the reference frame to the actual object frame. This

transformation represents the deviation of the actual object position with respect to the
reference object position. This deviation will be sent to the robot.

For each point one can write the relation (4.3). This way, we obtain an over
determinate system of non-linear equations, which will be solved according to the method
presented in sub-chapter 4.2.2.

In the figure 7.13 we measured the deviation of the object frame relative to the
reference frame when the object is still in the reference position. The units for x, v and z are

millimeters and for alfa, beta and gama are degrees.

SVR [ X !
& x =0.010435, y = -0.004319, z = 0.010980
alfa = -0.001059, beta = 0.002499, gama = 0.000654

Fig. 7.13. Errors for the reference position of the object.
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If there were no errors all the deviations would be zero. As one can see the errors are
very small. The greatest influence in producing these errors comes from the image-processing
algorithm used to recognize the marked points. Concerning the image-processing algorithm it
must be said that the stability of lighting conditions is very important for the stability of the
measurement results. The relative error of the robot is the second factor, which produces the
final errors.

In the figure 7.14 we measured the deviation of the object frame relative to the
reference frame when the object was moved from the reference position. The units for x, y and

= are millimeters and for alfa, beta and gama are degrees.

SVR Ed
& % =-0.165770, y =-3.334731, 2 = 6.013426
alfa = 0.384005, beta = -0.000322, gama = -0.001147

Fig. 7.14. Measured relative position of the object frame.

The measurement system works practically without errors when the range of the
deviations is between —20 mm and +20 mm for x, y and z and between ~1.5 and 1.5 degree for
alfa, beta and gama.

For testing our system we developed a simple application. Our testing object will be a

table. A plate was fixed on this table, as one can see in figure 7.15.

Fig. 7.15. The description of the test application.

On the plate there are four points, which are used to make the calibration between the
robot tool and the stereo sensor. This calibration means to find the transformation from the
robot tool frame to the stereo sensor frame. The same points are used as fixed points of the

object, according to the description made in the first part of this sub-chapter. We call these
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points, visual points. We fix on the table another four points, which will be used in our testing
application. We call these points, application points. One can see clearly one pair of these

points in figure 7.16, the black point is a visual point and the other one is an application point.

Fig. 7.16. Visual point and application point.

In the test application, our four application points will be touched with the working
tool. First step is to teach the robot this test application. We teach manually the robot to touch,
with an accuracy of 0.1 mm, step by step the application points. This teaching part will be
made with respect to the robot base. In figure 7.17, one can see the final position of the

working tool in the teaching procedure for one point.

Fig. 7.17. The taught position for one application point.

Second step is to establish a frame for the table and to measure the 3D coordinates of
the visual points, in order to define completely the table. The established object frame will be
the reference frame in this test application. It is very important to have the table in the same
position during step one and two. At the end of step two we make some changes in the

software to have the application taught in the reference frame.
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Third step is to move the table, to measure the deviation from the reference position,
to send this deviation to the robot and finally to see how preciscly the working tool will touch
the application points. After a lot of practical tests we can say that the total error of the system
1s maximum ! mm. It means that the maximum distance between the application point and the
end of the working tool is less than 1 mm.

This error comes from two reasons. One reason is the error of the measurement
system, but we explained in the first part of this sub-chapter that the shift of the object is
measured with high accuracy, so the influence of this error is very small. The second reason is
the absolute error of the robot. We have seen in our practical tests that the error was different

for our four application points when we sent to the robot the same shift.
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Chapter 8

Conclusions and Contributions

Most of the stereo applications are butlt to obtain 3D information starting from 2D
information. This 3D information allows the possibility to reconstruct a real scene and to
idenuiiy the form of different objects and their relative position in this real scene. This means,
the stereo vision was used mostly to obtain qualitative information about the real world. There
is also the possibility to use stereo vision in order to make 3D accurate measurements. This
means to obtain quantitative information about the real world. As it was said in the
introduction, the goal of this PhD thesis was to analyze the problem of using stereo cameras to
realize accurate 3D measurements.

My PhD thesis starts by making in chapter 1 a brief introduction in the field of
computer vision in order to place the treated subject at the right place in this field. From the
field of computer vision we go in the direction called scene reconstruction and then further in
the direction called accurate visual metrology, which represents the domain where my PhD
thesis belongs.

In chapter 2 are presented basic knowledge about Projective geometry, which is a very
important tool for solving the scene reconstruction problem. We need this tool to be able to
present in a systematic way the camera models. Also. all the on-line calibration methods are
make use of this Projective geometry.

In chapter 3 we present an overview of the existing camera models. They are divided
in two categories: 1deal camera models, called also distortion free models and real models,
which includes the distortion effect. Then an overview of the existing calibration methods is
presented. They are also divided in two categories: off-line calibration methods, called
traditional calibration methods and on-line calibration methods. called camera seclf-calibration
methods. The calibration method we developed belongs to the first categories. This way. in
the last part of chapter 3 we analyze two important off-line calibration methods with
contributions at the simulation and analysis of errors produced by measuring with a calibrated
camera.

In chapter 4 are presented first the types of stereo sensors, which were built in order to
test our calibration method. We developed two types of stereo sensors: in parallel

configuration and in non-parallel configuration. Then the chosen camera model is presented.
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This model is a real model, which includes effect of the radial distortion. The calibration
device is presented in the following parts and finally. the calibration procedure. including my
contributions. ends this chapter.

In the first half of chapter 5 a theoretical introduction in image processing i1s made.
Basic knowledge about image enhancement techniques, about edge detection techniques and
about grey level segmentation methods is presented here. In the second half of this chapter
our sub-pixel image processing algorithm developed in order to identify a certain point is
descnbed.

In chapter 6 is described at the beginning the measurement procedure developed in
order to obtain accurate 3D results. A detailed analysis of the measurement crrors for both
parallel and non-parallel configurations of the stereo sensors is presented. For the non-parallel
configuration a new method to eliminate the systematic errors is developed. The efficiency of
the method is demonstrated by the analysis of the errors presented in the sub-chapter 6.2.2.
For the parallel configuration, we implemented different image processing algorithms. A
comparative error analysis, when these different image processing algorithms were used, is
presented in sub-chapter 6.3. This demonstrates that our sub-pixel image processing algorithm
is better than the other tested algorithms.

In chapter 7 some different industrial applications of the sterco sensor as 3D accurate
measurement tool are described. There are two possibilities of using the stereo sensor: in a
fixed configuration or in a mobile configuration. For each configuration is presented one
practical application.

To realize the practical part of this project we had to develop a series of programs. We
used Visual C++ environment to develop them. One part of the programs is made to contro!
the calibration device to generate the calibration points and the points to be measured for
testing the stereo sensor. Another part is made to implement the calibration procedure and the
measurement procedure.

The analysis of the errors was made using MATLAB programs because it was easier
to use this software than the Visual C-+. The programs for the errors analysis are presented in
the Annex E. We developed also programs in C++ to implement the two off-line calibration
methods presented in chapter 3. These programs are presented in Annex B and Annex D.

The most important contributions developed in this PhD thesis will be briefly
presented in the following parts:

1. In figure 3.12, from the sub-chapter 3.3.4, one can see the method we consider to

define the simulation of a camera measurement. During the calibration procedure we compute
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the camera paramcters, which generates a transformation from the world frame to the camera
frame. Unfortunately. this transformation i1s affected by different crrors. which appear in the
calibration process. Our idca was to obtain a measurc ot these errors by computing the error
of the position vector given by the relation (3.144). This error of the position vector includes
all the calibration errors and this way. shows the quality of the used calibration method.

2. To analyze the quality of the two discussed calibration methods prescented in chapter
3 (3.3.2 Lenz calibration method and 3.3.3. Tsai calibration method) we introduced two types
of errors 1n the calibration phase. The first type is referring to the uncertainty of determining
the 3D position of the calibration points in the real scene and the second type is referring to
the uncertainty of determining the 2D position of the calibration points in the image. The goal
was to see how sensitive are these two calibration methods to these types of errors. The results
are presented in the graphics from the figure 3.13 and 3.14.

3. Knowing the fact that our stereo sensor will be used to measure 3D coordinates of
points situated at small distance from the cameras (200 mm — 500 mm) we decided to use
both parallel and non-parallel configurations. At the beginning of chapter 4 is explained way
it is not possible to use the parallel configuration when we want to measure points situated at
big distance from the cameras.

4. In sub-chapter 4.1.4 is described the model we considered for the cameras. We have
6 internal camera parameters: two for scale factors. denoted sy, and s,, two parameters for the
image center, denoted C;, and C,. one parameter for the focal lens, denoted /. and finally. the

parameter called coefficient of the radial distortion, denoted k. Our idea was to make the

following notations: p, =s f. p, =5, f.d= kf - . This wav. we reduced the number of the

unknowns, which must be computed in the calibration phase, without affecting the complexity
of our defined camera model.

5. To generate the calibration points we used a special device, as one can see in figure
4.5. in sub-chapter 4.2.1. With this device one can obtain a lot of calibration points covering
all the working place of the camera. This way. the camera parameters will be computed
according to the requirements of the user. If a user needs a stereo sensor to measure only in a
certain space we will use for calibrating the sensor only points situated in this certain space.
This way, the errors obtained by measuring with the sensor will be smaller than in the case
when the calibration is made 1n a space, which is different from the working space.

6. Having the camera model defined in sub-chapter 4.1.4 the mathematical description
of the calibration procedure is presented in sub-chapter 4.2.2. Our way to compute the camera

parameters was to obtain two non-linear, over-determined equation systems including all
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these parameters. The systems were solved scparately, using Newton algorithm and least

squares mcthod. In order to obtain the final solution we made for the camera parameters.

which were computed in both systems. the average of their computed values. The results of

the calibration proccaure can be secen in figure 4.6.

7. In sub-chapter 5.2.1 we had to solve the problem of sclecting a certain mark to be
used as a calibration point. Comparing the relation (5.71) and (5.72) we decided to use a circle
as a mark because a circle has less edge points than a cross within the same dimensions.

8. In sub-chapter 5.2.2 we developed an image processing algorithm to compute the
pixel coordinates of a mark, which was identified in the recognition process. The entire
algorithm presented here is original. It is important to say that we make use of a segmentation
with a variable threshold and that we compute the coordinates of the weight point of the
identified mark. The value for the threshold is computed with the relation (5.86). The
coordinates of the weight point for the identified mark are computed with the relations (5.90)
and (5.91).

9. In sub-chapter 5.2.3 we developed also an original sub-pixel algorithm in order to
identify the coordinates of the weight point of an identified mark at sub-pixel level. We used
the figure 5.10 to explain why it is necessary to adopt a sub-pixel approach if we want high
accuracy for the stereo sensor. Going further it is explained our idea of using exploration lines
starting from the weight point determined with the algorithm developed in sub-chapter 5.2.2.
The relation (5.98) is used to compute the grey level for a point situated at any location
between 4 adjacent pixels. The relation (5.101) represents the approximation function used to
identify the place where an edge is located.

10. In sub-chapter 6.1 is developed the mathematical part for the measurement
procedure. We solved the correspondence problem by making use of the sub-pixel image
processing algorithm presented in sub-chapter 5.2. Having the pixel coordinates in both
images one can write the relation between the 3D coordinates of a point and its 2D

corresponding pixel coordinates making use of the notations from the calibration procedure
(p.=sf.p =sf.and d= kf* - see chapter 4). This way. we obtain a linear equation

system. To solve the system we use some special notations, as one can see in the relations:
(6.7), (6.8), (6.9), and (6.10). Finally we will obtain the 3D coordinates of a measured point
with respect to the stereo sensor frame. These results are showed in figure 6.1.

11. From the errors analysis of the stereo sensor built in non-parallel configuration it 1s
obvious that a systematic error appears in the measuring process. One can sce that from the

graphics presented in figure 6.3, 6.4, and 6.5. In sub-chapter 6.2.2 we present a method to
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ehiminate this systematic error. We will use a correction function defined by the equation
(6.24). This correction function will be computed for each of the 3 coordinates x, y and . This
function represents a polynomial approximation of the errors. To find its coefficients we used
the least squares method. After we applied the correction the restlts are much better as one
can see in the graphics presented in figure 6.6, 6.7. and 6.8. It is also obvious that the
influence of the systematic errors after the correction is insignificant.

12. In subchapter 6.3 is presented the analysis of the errors for the stereo sensor built
in parallel configuration. This analysis shows the fact that the smallest errors are obtained
when the sub-pixel algonthm is used. In table 6.2 we presented a comparison between the
obtained errors in the four analyzed cases. The table shows of course the same results as the
graphics presented in this sub-chapter namely that our calibration method combined with the
sub-pixel algorithm gives the best results.

13. In sub-chapter 7.1 we presented an industrial application. which uses three pairs of
stereo sensors fixed on a rigid plate as one can see in figure 7.5. The system was build to
solve a part of the wheel alignment problem. This means to measure the angles called Camber
and Toe. These angles are defined in figure 7.1 and 7.2. The system produced by us is totally
new being a prototype.

14. In sub-chapter 7.2 we presented a test application to show the advantages of using
a stereo sensor mounted on the robot hand as a 3D measurement tool. The first advantage 1s
represented by the accuracy of the 3D measurements made using the stereo sensor. Another
advantage is represented by the low costs necessary to produce and to calibrate this type of

stereo Sensor.

For the future we think 10 improve the camera model by introducing new camera
parameters and to develop a self-calibration method making use of the tool called Projective
geometry (see chapter 2), tool that helped considerably to solve different camera problems in
the last 10 years. Another very important aspect that we will try to solve in the future is the
recalibration of the sensor when by different reasons at least one of the camera parameters

was changed.
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Annex A

Logical Algorithm for Lenz Calibration Method

In this annex it is presented a logical algorithm for Lenz camera calibration method.

This algorithm will be used to create a C program.

1 / INPUT ¥, 8., S, /

> READ X,,. Y, <
3 COMPUTE \.,. Y,
4 READ x,..v.,

'

COMPUTE A LINE
- OF MATRIX C

l

6 N=N-1
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~1

Continue to block 8.
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Annex A

Each block of the logical algorithm will be described in the next parts of this annex.

INPUT V.S S

1. N represents the number of calibration points. which are

going to be used in order to find the camera parameters. §,, S, are the scale factors, whose
values are given by the relations (3.62), and (3.63). At the beginning of our C program we

must introduces the values for all these three variables.

2. READ .X.. 1. The pixels coordinates of z point P, are red from a file

containing the coordinates for every calibration point used in this case.

3. COMPUTE X,. Y, Using the values for §,, S,, X,, and Y,; one can compute

the values for Xy . and Yy:

X,=S'X,, (A.1)
Y,=S]'Y,. (A.2)

4. READ . .x. In the same way as it was made in block 2. the 3D

coordinates. in millimeters, for a point P; are read from a file, which contains the 3D
coordinates for all the calibration points, with respect to the world system. There are only two
coordinates to recad because all the calibration points are in the same plane, and the world

system was chosen in such a way that z,,; is zero for all the points.

- COMPUTE A LINE . . . . . .. . .
5. OF MATRIN C Using matrices for every point P, it is possible to obtain

an equation, as follows:

—a! 11 ’Jl 1
d, X,
Dy Yo, ¥, —-XN,x. Vv ) a =) ] (A.3)
a. |
i |
[ . | _\_J'

So, here using the values for xw;, ywi, Zui» X4, and Yy, the C program must compute the values

ror :’dixwi- Ydi_vwh Ydia '/Ydixwi, and 'XdLv“'i~
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6. N=N-1 The C program will use the variable N to count the

number of the calibration points P;. At the beginning N is equal with the total number of the
calibration points. and it is decreased with one, for each execution of the loop formed by the

blocks noted 2. 3. 4, and 5.

7. This loop will be repeated for every calibration point, it

means until N is equal with zero. Finally, the matrix C will have the following form:

Y x., Yoy, ¥, =X, %, =X, x
C = },(/l xn'i ),dl./vul Y:l'.' _Xill'rnl _-‘Ydl .vu, . (A4)
YXo Foov., Y\ =X, X i
COMPUTE THE
MATRIX C . . .
8. From the reference [PTVF92]. in the C program will be

used the function which gives the inverse of a matrix, in order to compute the matrix Cc'.

COMPLTE

d|, >, d:ody. s

9.

the reference [PTVF92]. This function makes the multiplication between a matrix and a

In the same way as before. it will be used a function from

vector, as follows:

a, X,
da, X,
a, |[=C *|. : (A.5)
a-‘
| a [ X ]
COMPUTE
10. , In this block the C program must implement the

following relation in order to compute the value for #,:

9

r [(al +a.) + (. —aj]—é +[(al —a.) +(a, +a4)3}i
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COMPUTE
1. AN The values tor r;. r. t. ryoand rs are computed in the C

program using the next relations:

rn=at., n=al , I =at. ro=a ,and 1 =ad, (A7).

COMPUTE
12. A Using the following relations the C program computes

the values for »-. and r«:

I =(l—r,_:—rf), (A.8)
r, = —(l —r - r_f)vign(rlrz +rr). (A9)
COMPUTE
13 1. This block can be divided 1n some smaller blocks. as one

can see in the following schema:
Block 12

l

151 COMPUTE

AN

l

COMPUTE 2 LINES OF THE
i3.2 MATRIN A AND 2 ELEMENTS
OF THEVECTORB

l

133 N=N-1

YES

134 N>0

,\'ol

COMPUTE
13.5 A

l

COMPLTE
1.

Block 14

HRW
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| covpL

[3.1. : vev For this block. the C program must implement the net

two relations:

"i = "-n:r’ + .vnlrz + ’\ - (A.IO’

Vv, =Xty st (A.11)

- 1 wi

COMPUTE 2 LINES OF THE
MATRIN A AND 2 ELEMENTS
13.2. OF THE VECTOR B For each point P, it is possible to obtain the

following two equation:

-xf=-X, . =x X, +v. nX,. (A.12)

rY, . (A.13)

wio ¥

-vf=Y =xrY, +v

Using matrices we obtain. as follows:

|- x X, 7 Ry +’\'“_l;.\',‘q§

! = . . (A 14
. - |

So. here the C program only has to put the values for -x,. -X;.. and -y;, -Y,. as two lines of a
matrix noted A. because these values were computed before. but for the vector B it must be

first. computed the values for x_»r.X, +y, n.X,.x »rY, + v nY,.and then they must be put

< Wi

as two elements of the vector B.
With the blocks 13.3. and 13.4 the loop formed by the blocks 13.1. and 13.2 1s
repeated for NV times. It means, that for each point P, two new lines will be put in the matrix A,

and two new clements in the vector B. Finally, we will obtain the next equation:

| - , (A.15)
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COMPUTE

| A

P
th

From the reference IPTVE92] 1t will be used the

function which gives us the inverse of a matrix. in order to compute the matrix A™

COMPUTE
1.1

13.6. In the same way. as it was madc in block 13.5 be. it will

be used a function from the reference [PTVF92], function which makes the multiplication

between a matrix and a vector. This way, we will implement the following operation:

I" N
/ N
) = A ‘B (f\ 1 6)
.|
FIND THE GOOD
SIGH FOR ALL THE
PARAMETERS ‘ S
14. COMPUTED BEFORE We must write o function in the C program. which will
implement the next operations, (see step 5 from Lenz Calibration Method):
"i' AN M DO S
':rj.r..l",.r;.t\.t_}= SRS, — U (A7)
T (h)
sign| = |
I: 4
: rt
{r..l;.l_}z{—'—’. (A1)
) sign(r.)
by
{h}:—{—i—— . (A.19)
\ sign(h)
COMPUTE
5. i e The C program must make the next three operations. (sce
step 6 from Lenz Calibration Method):
ro=rE =L (A.20)
r, = nhr, —hh, (A.21)
= hr = nr. (A.22)

Using now this logical algorithm it will be casier to write the C program than starting
dircctly, and making use only of the information from these six steps of the Lenz method.

described in sub-chapter 3.3.2.
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Annex B

In this annex is presented the C program developed following the logical algorithm

from Annex A. This C program implements Lenz calibration method.

//Liviu Toma C Program for Lenz Calibration Method

#include "matrix.h"
#include "Includes.n"
#incluae “celiipreticn.n”

vold rain(veoid?

{

int N=121,M; //number of calibration points
int 1i,3,1iav;
dz:ble Tx,Ty,Tz,xl,x2,x3,2%,22,2r6€,x7,28,19;
dcible X,
izucle dScale_1in X; /7 = T.GL23809;
doukle dScele_in Y; // = 0.302316;
dcuble sx=12C; //90.%;
doubls syv=120; //°22.75;
doinle Tw=33Zs%; //387%;
deunle =287 /7295
douglie I; //fcczl lerzin
dcable 7vccordX¥YZ in reifyster;
dizuple **cooraXY in pixels;
deuble **cocraXY on chip;
ccinie 725 /icceificiznts matzix
CuTlis TTINVE;
cle *Xd4;
ble *&;
zle ~~CF; //coelficentes matzix in used ¢ cem
=1 -

double *ComputedTransiAngles;
doukle *CeltaTranslAngles;

TI_Z v Ive:
el f‘f_i'L::,
» :_r?

sealiz: The Correct I¢resopondance
dScale 1a X=1/sx;
d3cale in Y=1/sy;

rwe reserve memory for z11 -he vectors and natrices
crerdX¥? in refSystem = draztrix(1,N,1,2);
C.ordidY in plxels = amatrix(i,N,1,2);
ToLzAXY_en_cnalp = dmetrix(l, i, 1, 2):
T = dmazTtrix(l,N,1,5);
INVC = dmatrix(1,5,1,N);
Xd = dvector (1,N);
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A = dvector(1,5);

CF = dmatrix(1,M,1,2);

INVCE = dmatrix(1,2,1,1);

BF = dveczcr(l,M):

Flz = dveczox(1,2);

Trans = dmazrix(1,4,%,3);
ComputedTrans = dmetrix(1l,4,1,4);
TranslAngles = dvactor(l,6);
ComputedTranslAngles = dvector(l, 6);
DeltaTranslAngles = dvector(l,6);

//we open the file 3Dcoordinates.txt
fvp = fopen ("Myl2lvectorboard.txt","r");
if (£vp==0)
{
printf("Error while opening 3Dcoordinates.txtl\n");
getchazx ()
exit(l);
}
for(i=1;i<=N;i++)
{
//printf("\n");
for(j=1;3j<=3;3++)
{
fscanf (fvp,"zs", feld):
coordXYZ in_refSystem[i] (j]=atof (feld):
S/orintf ("\NT*f",coordXYZ in refSyszem(i]f(j]l):;

3
¥

fclose (fvry:

//we open the file Myl2lchipcoordinates.xt
fvp = fopen ("Myl2lichipcocrdinates.txi","r");
if (fvp==0)
{
printf ("Error while ocopening pixelsCoordinates.zxt\n"):;
getchar();
exit(1l);
for(i=1l;1i<=N;i++)
{
//pzinci("*ia);
for(i=1;3<=2;3++)
{
fscanf (fvp,"%s", feld);
coordXY in_pixels[i][jl=atof (feld);
//printf ("\tif",coordXY in_pixels{i](]j!):

}
fclose (fvp):

//ccrpute the coefficients matrix ¢
for(i=1;1i<=N;1i++)
i

//compute Xdi and Ydi

coordXY on_chiplil{1l] = dScale_in_ X* (coordXY_in pixels{i}{l]-
Xdli] = ccordXY cn_chip{il[l];
coordXY _cn chiplil (2] = dScale_in_Y*(coo:dXY_in_pixels[i]{2]—

//compute a line of matrix C
C{i}{l)=coordXY_on_chip[i] [2])*coordXYZ in_refSystem[i](1];

149
BUPT



Annex B

Cli]l[2)=coordXY_on_chip(i] (2] *coordXYZ in_refSystem[1i][2];
Cli} [3])=coordXY_on_chipli] [2]:

C[i][4}=—coo:dXY_on_chip[i][l}*::o:dXYZ_i:_:_fS;._cr{i}(l];
C[i]}{S]=-ccordXY_on_chip[i] {1]*coordXY¥Z2 in_refSys=ar(ii[2];

//compute the matrix INVC
inv = invers (INVC,C,N,S5);

//compute the vector A
rmulmatrixvVector (A, INVC,Xd, 5,N,N);

//compute the translation Ty

Ty=2/(sqrtv ((A[1]+A[S5))*(A[1])+A[5])+(A[2]-A[4]))*(A[2]-
Al4]))+sgru ((A[L1~-A[(SI) ~(A[L]-A[S)Y+(A{Z2 .+ 411" (A[2])+A{4])}))

//printi("Ty is: zf",Ty):

//compute rl,r2,r4,r5 and Tx

r1=Ty*Aa[l};

r2=Ty*A[2];

Tx=Ty*A{3]);

r4=Ty*A[4];

r5=Ty*A[S];

//compute r7 and ré8
r7=sgrt(l-rl*rl-r4*r4);
1f(rl*r2+-4*r5<0)
{

r8=sgrt(l1-z2*r2-x5*rs);

élse
{

r8=-sqrt (l1-r2*r2-r5*rb);
}

/rcompute x and y
x=rl*coordXYZ in_refSystem[3][1l]+r2*coordXYZ_ in _refSystem{3][2]+Tx;
CR I

y=rd*coordX¥Z in refSystem[3][1l]+r5*cC oordXYZ in_refSvster 14Ty,
/iverify if t£he chosen sigh ifcr Tv is =he good 2ne
if((x*(coordXY in pixels{31{11-Cxi<llit(y*(cocrdny in pirzlz 21 .-

))

~

—_—

Ty=-Ty;
Tx=-Tx;
rl=-rl;
r2=-r2;
rd=-x4;
r5=-=z5;

//compute the matrix CF and the vector BF

for(i=1;i<=N;i++)

ZEIi}{1l)=r4*cocrdXYZ in refSystem{i|[l)+rS5*cocrdX¥Z in relivstemii]fz

CEl:}[2]=coordXY _on chip(i]{Z]:
BF[i])=-
CF[i}{2]~(ccordXYZ_in_refSystem[i) [1)*r7+coordXYZ_in_refSystem{i]) (2]*r8);
)
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for(i=1;i<=N;1i++)
i

Fil-ii[{ll=rl*coorcx:L_in_refSystem{i]{l}+ro-corarys or zef3ystem([i]
2}1+Tx;
CE{N+i} [2)}=coordXY_on _chip(il([1];
3E[N+i]=-~
CE[N+1) [Z1~ (coordXYZ in_refSystem{i] [1l]*r7+coordXYZ_ in_refSystem([i] (2] *r8);
}

//compute INVCF
inv = invers (INVCF,CF,M,2);

ute § and Tz

1/‘:':'7

rurmatrixVector (FTz, INVCF,BF,2,M,M) ;
£=FTz[1];

Tz= Tz (2]):

//establish the right sign for the elementes of the transformation
1£(Tz<0)
rI==~-r7;

r8=-r8§;
Tz=-Tz;

f=-£f;

R—

i
* ‘T

o
!
R S S O S

o0y g 0O

TEE T N Y N

W N ()
]

LA D S A

//write the matrix ComputedTrans
CcmpuzedTrans (1] [1l]=rl;
CntcuzedTr:ns[11[2]— 2;

R

;:::;:eaT“ans[llléi—‘x,
CcrzutedTrans([2] [11=r4;
CompuatedTrans|[2)[2:=x5;
ComputedTrans{2])(3]=xé6;
ComputedTrans[2) (4])=Ty:
ComputedTrans[3][1]=r7;
CompuatedTrans(3)(2]=r8

ComruzedTr ns[J][?]—:9'
Ceorp-zedTrans (3]} {41=Tz;
CompatedTrans (4] (1)1=0.0;
CorzitedTrans([41{21=0.0;
Com uJ‘cdlrana[4][3‘=0 C:
ComputedTrans([4]1[4])=1.0;

//compute the vector ComputedTranslAngles
TransToéVector3 (ComputedTrans, ComputedTranslAngles);

//grint the solutions
srinzf{("\nThe focal lenght is: %f", f);

printf ("\nThe computed transformation vector is: \n");
for (i=1;i<=3;i++)
{
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printf ("\n%f",ComputedTranslAngles(i]);

for(i=4;i<=6;1++)
i

printf ("\nxf",ComputedTranslAngles(i]*>0/asin (1))

printf ("\n\n");

//read the real transformation from the file RealTransformation.txt
//inv=loaddmatrix(Trans, 4,4, "My37RealTransformation.txt");
inv=loaddmatrix (Trans, 4,4, "camltow.txt");
//printdmatrix(Trans, 4,4);

//compute tine vector TranslAngles
TransTo6Vector3 (Trans, TranslAngles);
printf ("\nThe real transformation vector is: .n");
for(i=1;i<=3;1++)
{

printf ("\n%f", TranslAngles[i]);

for(i=4;1i<=6;1i++)
{
printf ("\n%¥f",TranslAngles[i)*50/asin(1)};

free dmatrix(ccordiX¥YZ_i
free _dmatrix(ccordX¥Y in
free dmatrix(C, 1,N,1,5);
free dmatrix(INVC, 1,5,1,N);
free dvector(Xd,1,N);
free_dvector(i,1,5);

free_dmatrix(CF, 1,M,1,2);
free dmatrix (INVCF, 1,2,1,M);
free_dvector (BF, 1,M);
free_dvector (ETz, 1,2);

free dracrix(Irens, 1,4,1,4):

free dmatrix(ComputedTrans, 1,4,1,4);
free_dvector(TranslAngles, 1,%);

free dvector (ComputedTranslangles, 1,6);

free_dvector (DeltaTranslAngles, 1,6);

getchar();
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Logical Algorithm for Tsai Calibration Method

In this annex it is presented a logical algorithm for Tsat camera calibration method.

This algorithm will be used to create a C program.

1 INPUT V.S.. S,
2 READ V. )

CONIPLTE N L),

v

4 READ N v Lo,

\ 4
COMPUTE A LINE
OF MATRIX C

[
YES
1
. COMPUTE THE
OF MATRIX C!

l

]

i
v

Continue to block 9.
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From block §.

|

v
CONMPLUTE

Wdicdodsodoo ol

l

COMPLTE
10 ",

l

COMPLTE

I Pl T Lo et

.

COMPLTE

r-.raor

l

COMPLUTE
1o

.

As one can see. there are no big differences between the logical schematic presenied
here and that one from Annex A. In the following parts of this annex there will be presented
only the blocks. which are different from those described in Annex A.

The blocks noted 1, and 2 are the same as the blocks 1, and 2 from the Annex A.

The block 3 differs only by the fact that instead of computing X, the C program will

1

compute X . using the following relation:
-1 ~
‘Y-/l = Svr Xpl * ((" l)

In block 4 the C program will read instead of two coordinates, as we did in block 4 from
Annex A. three coordinates because in this case, the calibration points are not in the same

plane. so we have different values for z,,.
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In block 5 appear some differences because the equation which must be implemented
1s different from the one which has already been implemented in block S from Annex A. In
this case the equation. which is obtained for cach point P, has the tollowing form:

} v a'; + }Al':-\--\,('l:‘ + )l(/l:llla:' + ydta-‘ - A .l'l'rnla." - '\ J.u\'ulué - ‘X J::u/u7 = "x ai (C‘2)

dittwe

If we use the matrices one can write this equation, as follows:

ay |
o
Ll_-‘
D PR TS WET SR G B vz e =t ]

ui

L]
So. here using the values for x,;, Vui. Zuwi. X 4. and Yy, the C program computes the values for
Yarduis Yarwis Yaicui Yoo -Xatui, -Xay . and -Xyiz..,.

The blocks 6 and 7 have the same goal as the blocks 6. and 7 from the annex A. After
the loop formed by the blocks 2. 3. 4. and 5 has been executed for .V times. where .V is the

number of the calibration points we will have the matrix C, as follows:

Y x., Yo Y,z Y o -\ x X v -V
C={Y,x V. Y, = } —\ ~\ AU
Y.ox..o X Y, = Y. -\ v -\ -\ -

The block 8 realizes the same function as the block 8 described in Annex A.

The function implemented in the block 9 is the same function as that implemented 1n
the block 9 from Annex A. the differences are onlv in the dimension of the vector and the
matrix which must be multiplied.

The block 10 is new. This means that we have not this block in the algorithm
presented in Annex A. Here, in the C program must be implemented a function which will
compute the uncertainty of the x scale factor «,,, given by the following relation:

u,=(a’+d +a flai +al +ai)?. (5.4)

[y
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The block 11 1s also new. This block can be divided in some smaller blocks, as one

can sce in the following figure:

Block 10
i
v
N COMPUTE
!
\ 4
11.2 READ AV .Y ox ovi.cw

FOR A POINT P,

11.3 Y
L==1
COMPUTE
1.4 LS A AR SRR AR A
|
\ 4
s COMPUTE
3 Vo
!
11.6
YES NO
i
|
\ 4
l l7 ,-: - [l

CHANGE THE SIGH OF

[T LN LU S LR AT

1.8

Block 12
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COMPLUTE
1.1 ! The C Program will compute the value for ir,! using the

following relation:

Ir\l=(a§+a§+a§)3. (C.:

th
e

READ .. Yoo Xui Vin Sug

FOR A POINT P,

11.2 In order to cstablish the right sign for ¢, we need this

information in the next steps. It would be good if the chosen point P; will be situated iar from

the image center.

11.3 n==1 In the C program it will be chosen the sign +1 for ..

COMPLTE

11.4 Vis bz s L Ta Ty Using the values for ;. a-. a:. a,. as. de. a-. u,.. and t,.

computed before. the C program computes rp. »:. ra ra rs. s and t, using the following

relations:
r=au.t , (C.6)
ro=auli, . (C.7)
n=augl,, (C.8)
1.=aut, . (C.9)
ry=ad,, (C.1h
r,=ad,. (C.11)
re = a.l, (C.12)

b ocospuie

v

1.5 [t must be computed v and v, which are two ot the three

coordinates of the point P; with respect to the camera system. We will use the following two
relations:

X, =X L+Vy.n+tI r+t. (C.13)

S (C.14)
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The C program tests here it it was made the right choice

in the block 11.3 for the sign of 7,. With our systems and notations. if the right choice was

done, we should have x; and X,; with opposite sign, and in the same time y; and Y, also with

opposite sign. If not. it means that the sigh for 7. must be change, and also we must make

other changes. as one can see in the next two blocks.

11.7

11.8

r=-1 In the C program it is chosen the sign -1 for ¢,.

CHANGE THE SIGH OF
R R A From the relauons (C.6)..... (C.12) 1t’s obvious that if the

sign of 7. was changed. also the signs of r;. r>. ri. 1o rs. rs. and 1, must be changed. The C

rogram must make here the following operations:
p — N

n=-rn. (C.15)
ro=—r. (C.16)
r,o=-r,. (C.17)
ro=-1 . (C.18)
ry=-r,, (C.19)
r,=-r, (C.20)
r,=—r,. (C.21H)

In the block 12 it must be computed the values for r-. rv. and ry so. we have t

implement in the C program the following relations:

r=nr—nr, (C.22)
X, =rr,—nr, . (C.23)
Y, =R = nr. (C.24)
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The block 13 has the same structure and the same function as the block 13 from Anncx
A. which was explained detailed in Annex A. The differences appears when it must be

computed the values for x. v,.. and the elements of the vector B. The new relations are. as

follows:

=X n+v otz ontt . (C.25)
- yI = ‘.ul':i + -v\rl’.S + :nl"h + I\ ’ (C26)

B v _'\'./z ] "\,“I’,_‘\»L“ +v :’;XJ: + :\\:’:"\' i ﬂ

| ;

- I . ‘
-x, =X,/ v NS WP S RN 0 W = B0 W ; (€27,

-1 =Y, | x Y, v Y, oY, ‘

vy Y. x oY, o+v . onY o+ oY :

We also have to say that X, is given by the relation following relation:
X, =ulX,. (C.28)

Using now this logical algorithm it will be easier to write the C program than starting
directly. and making use only ot the information from these five steps of Tsai calibration

method. described in sub-chapter 3.3.3.
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C Program for Tsai Calibration Method

In this annex is presented the C program developed following the logical algorithm

trom Annex C. This C program implements Tsai calibration method.

//Liviu Toma C Program for Tsai Calibration Method

#include "matrix.h"
£include "Includes.h"
#inmlnde "call :

void main(vcid)

I

int N=363,M; //number of celibrationpoints
int 1i,Jj,1nv;

double usx;

double Tx,Tv,Tz,zi,r2,x3,24,5,r€, 7,2, 032;

double =,

double ZSzale_in X = §.538509;

double 33czie_in_ Y = 0.008316;

double Z; t/focel length

double "7z ZXYZI in refSvstem;

double ; ixe

doukblie ot

double TaTIriy

double ~~Ii7VC2;

double *x2z;

dcukle X

double ~~Z:; //coefficentes matrix ir. .sed tc cowpuzes £ oz2nd T2z
dcuble -2V IE;

double *z%;

double *:7z; //vecicr which conteins twe elements, £ znd T2
doukle ~~*Trzans; //7nh2 real transfsorrmazticon

double *~ClzZnmzatesdTzens,

doubles ~Trzrslinclses

double T

double g

FILE *fve;

char feld{13};

M=2*N;

/we zZzszziva r 2.1 The wvecTors and m3Iricas
ccordAYL I rei mo= dmaTrix(l, v, i, 3
CoordX¥ in girels = dreatrixz(l,MN, 1,24
ceordXy oo ocnin = dmatzix(l,N,1,2);

C = dratroxti,,1,7);
INVC = drmecrix(1,7,1,N);
Xd = dvect=or(1l,N);

A = dvector(l,7);

CF = Zdraztri«ii,M,1,2);
INVCE = Zma—-ix(1,2,1,0);
B = dvectortl,N);

ETz = Zrectox(l,2);

Trans = drmalrix(i,4,1,4);

ComputecTrans = dmatrix(1,4,1,4);
TranslAngles = dvector(l,6);
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Comput
DeltaT

//prin

}

for(i=

edTranslAngles = dvector(l,6);

ranslAngles = dvector(l,6);

L ("\nSemnul este: ¥d™, 3ICN(l));

pen the file 3Dcoordinates.Ixz

fcpen ("My3é333coordinatesl.zxz",%r");

Annex D

printf("Errcr while opening 3Dcoordinates.txt\n");

getchar();
exit(l):

1;i<=N;i++)

: ("\\_1")’
1;3j<=3;j++)

fscanf (fvp,"%s", feld);

coordXYZ_in_refSystem([i] [j]=atof (feld):;
//printf ("\t3f",coordXYZ in_refSystem([i] [3]);

n the file pixelsCoordinates.txt
cren ("My363pixelsCoordinetesl.txt","r"j;
o

prinTi("Zrrxcr while openinz pixelsCocrdinatss.cxz n");
gezchar();
exit (1)

riprintE(M\am);

for(i=1;3<=2;]3++)

{
fscanf (fvp, " ¥s",fe:d);
ccordXY_in pixels{:i =ztof (f=l4d);
;Kp:"?:("‘*’f" cocIziXY _in pixels(iliZ:
(fvp);

‘fcoxpate ¥Xdi oand Ydi

ccordXY_on_chipf{i}[l] = ZZczle_in X*coordXy
¥»i[:] = cocrdXY_on chipfzi{lj;
tecrddY_on c.10[1][23 = ZZ2cal=a 1 Y*coordXy

//compute a line of matrix C

Cfil[1l) = coordXY_on_chip{i}[2]*coordXYZ in_
Cfil12] = coordXY on_chip([i][2]*coordXYZ in_

161

C{1113] = coordXY con chip{i]{2]*coordXY¥Z in_
C{il[4] = cocrdXY_on crhiplii:i2};

Z{i}]{5] = ccordXY_on chip[i]{l]*cocrdXYZ in_
Ziij[2] = coordXY on _chip{ij(l]}*cocrdXYzZ in
Clil

! 4

)

in pixels{ilil}:

_in pixelslii(2]:

refSystem(i] [1};

refSvystem(1]) [2]):
refSystem({1] (31

refSvscem[i} {1}

refiystem{ij{z];
[7] = coordXY_on_chip[i][l]*coordXYZ_in_refSystem{i][3];
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//compute the matrix INVC
inv = invers (INVC,C,N,7);

//compute The vector A
mulmatrixiector (A, INVC, Xd,

//compute Tne uncertalinty

usx=sqgrT(A[1T~A[L]+A[2]*A[2]+A(3]*A[3])/sqgrc(A{S3}*A{S]+A[6]*A[6]+A[T7]

*A{7]):

//compute the translation
Ty=1/sqrt (A[S5}*A[S5)+A[6]*A

//esteblish the right sign

//cempuze 1, x2, r3, Tx,
Ty<Q)

if (Ty<Q)

{Ty=-Ty;}

rl1=(A[1]*Ty) /usx;
r2=(A[{21*Ty) /usx;
r3=(A[3]*Tv) /usx;
Tx=(&A[4]*Tv) /usx;
rd=A[S]1~Tv:
r5=A[6}~Ty:
r6=A[7]*Ty:

x7z

_in_refSysztem
ccordXYZ in reiZvszem[40]{3]+7Tx;

y=;4*Eoo:dXIZ_in_refSys:em
coordXYZ in refSystem{40){3]+Ty:

)4

//verify 1f <he chosen sig
if((x7ccorddY_in _pixels {40
{}
else
{

Tw=-T2;

Tu=-"x;

ri=-z.;

ri=-x1;

ri=-xZ;

r€=-x6;
}
//compute r7,r8 and r9
ri1=r2*z6-r3*r5;
r8=r3*ré--1"z4h;
r9=rl*rt-r2-x4;
//cerpute 1he matrix CF zn

for(i=1l;i<=N;i++)

{

CE[il{l)=(r4*coordXYZ in refSystem[i][1])+(z5*coordxYZ_in_reflysteml(:

1[2)])+(x6*coord¥?Z _in refSysteml
TF{il[Z)=coordXY cn

S E

{1

CE[i]IZ]*((coo:dZYZ_in_refSys:em[i}[1]*:7)+(cco:dXYZ_in_:efSystem[ij[2]*:8)

+(coordXYZ_in_refSystem([i]) [3]}*r9

}

T,N,N)

of the scale factor usx

Ty
(6)+A[7])*A[7])
for Ty
-4, 5 and =¢ for Ty chczsen

{451 [1}+r2*ccordX¥YZ_in_refSw

{4C] [1]+r5*coordX¥YZ in_

o fer Ty 1s the goodsona
1 [11<0)&s(y*coord¥? in pixe
4 ~he vectgr ZF

11[3})+Ty:
chiplil (2]

))

162

Annex D

BUPT



Annex D

for(i=1l;i<=N;i++)

{

*f'w+11[11—*L*coc QXY in refSvstem(i]{l]+r2*coordX¥Z in refSystem|i]
2z _ _ i

[<1+r3*coordX¥Z in refos:em[ljl?]+Tx,
CF[N+1][ J=cczzdXY¥_on_chip{i]([l]/usx;
BE[N+i]=-

CEIN+i] [2]*(coordX¥Z_in_x
coroxYZ_ln_refSystem[ll13_
}

efSystem(i) [1]*r7+ccordXYZ in_reflystem{i] [2]*xz8+cC
1*r9);

//compute INVCF
inv = invers (INVCF,CF,M,2);

//compute £ and T.
mulmatrixVector (F
f=FTz([1l];
Tz=FTz[2]:

L )

z, INVCF,BF,2,M,M);

//write the matrix ComputedTrans

1
ComputedTrans[1l]({li=x1;

CcmputedTrans(iliz]=z2;

ComputedTrans[1]{3]=r3;

ComputedTrans[1] [41=Tx;

ComputedTrans({2]{1])=r4;

ComputedTrans([2] [2)==¢%;

ComputedTransi2]l [2i=x%;

ComputedTransi{zli {4 .=Tv;

ComputedTransi{3]{l.;=x7;

ComputedTrzans[3) [{2:=x8;

ComputedTrans([3}(3]=r9;

ComputedTrans{31({4.=Tz;

ComputedTrans 4} {1:=0.3;

ConputedTrens (4] :2.=0.2;

ComputedTrens (4] [21=0.0;

ComputedTrans([4]{41=1.0;

//compute the vectcr ComputedTraenslAnglies
TransTobVec-cr3 (CcroutedTrans, ComputedTranslAngles);

//print the soluzicn
rintf ("\nThe fccel leanght is: %f", f1;
printf ("\nThe uncertalinty of the scale factor is: f",usx};

(n

//printf ("\nThe computed transformatiocn is: \n"):
//printdmecrix (ComputedTrans,4,4);
/*for(i=1;i<=4;1i++)

{

'10-‘

pri
for
{

princf("\tzf",ComputedTrans{i}ijl):

p:lﬂ"f("\“T'E compuzed transformation vector is: \n");
or (i=0;i<=5;1++)

—

printf("\n%£f",ComputedTranslAngles{i]);
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//read the real transformation from the file RealTransformazion.txt

inv=loaddmatrix (Trans, 4,4, "My3RealTransformation.txt");
//printdmatrix (Trans, 4,4);

aslAngles
nslAngles);

z c:
6vector3(Trans,
< sformation vector 1s: \n");

£("\nThe real =

for (i=0;1<=5;1i++)

{
printf("\n%f",TranslAngles[i]};

}*/

//compute the difference vector DeltaTranslAngles
printf ("\nThe vector DeltaTranslAngles is: ");
tor(i=3;1<=5;1++)
{
DeltaTranslAngles[i]=ComputedTranslAngles(i]-TranslAn
printf("\n%f",2eltaTranslAngles(i]);
}

/t
printf ("\nTx is: %£", Tx);
printf ("\nTy is: =£", Ty);
printf("\nTz is: *£", Tz);
printf("\nf is: =zf", f):
printf("\n%f", rl);
princtf("\t:f", =z2);
printf("\cxzf", =3):
priazi("\n=f",
princf (" zz£f",
printf("\cxf",
printf ("\n%f",
princf("\czf",
printf("\cxf",

L4
—
EEE TR YRR

[ S S o S & SR S
WO M ~J N
~.

e e e
-

*/

~e

free dmatrix(coordX¥Z in refSystem, I,N,1,3);
free dmatrix(coordXY_in_pixels, 1,N,1,2);
free_dmatrix(C, 1,N,1,7);:

free dmacrix(INVC, 1,7,1,N);
free_avectori{Xd,i,N);
[ree_dvector(A,1,7):

ree_dmetrix{CTF, 1,4,1,2);

ree _dmatrix (INVCF, 1,2,1,M);
free_dvector (BF, 1,M):

free dvector (FTz, 1,2);

free dmatrix(Trans, 1,4,1,4);

free dmatrix (ComputedTrans, 1,4,1,4);
free_dvectcr(Translingles, 1,8);

free dvector(CeomputedTranslangles, 1,81
free dvector(DeltaTranslAngles, 1,4);

-t

[ 1)

Hh

getcnar () ;
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\nneyx E

MATLAB Programs for making the analysis of the
measurement errors

In this annex are presented two MATLAB programs developed for making the
analysis of the measurement errors. This analysis was discussed in chapter 6.

The first program is done only to represent the error distribution. The measurement
errors are saved in a matrix having 5 columns. The first two columns represent the x, y
position of the measuccd point and the cther three represents the crrers Torxo 3 and = measured

coordinates.

//Livia Tome MATLAB Program for Error Zistribution

A=~ 1A 3
a="C T 12 22 34
10 2 T =47
22 . iz 1w
z 2 T Lz -lf
L
2Tz Loz
T X
s A .
J 1 -12 -2 -4¢%
R e
£ T L L&
-~ - - .. .-
T
4 N —_— -2 o
- = — -
~ S .
C 2 - ¢ -Z:Z
1 2 -4 -2 -z
N a e -
2 z =l7 =%
a e a
202 -1z =22
4 2 -2 . °z
3 3 -z72 -1 =27
o~ a aa .
12 -2 -12 -47
- = 0%y
2 2 -5 = =22
3 TS T T
& - -l =_. Zi
O z
T4 -l LI o=z
2 4L —-£ -5 4
-~ < a1
3 4 7 -3t a1
4 -21 =87 92
;
TLooL=lulE
Ll ULzl v a3 vz, el e et Ty Ta
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_ . Ny .
T L, 0

Z=u;

zI=griddata(X,Y,Z,XI,YI,"'<1"');

DLy Ly

!

’

surf (XI,YI,21)

colorbar
xlabel ('~x")
ylabel (')
disp('moilza=")
disp (mean (a))
disp('mzu=")
disp(max(a))
disp('mi=")

disp(min{(a))
disp(max(a)-min(a))

Annex E

The second program is done to represent the error distribution after the correction

function was applied, (see 6.2.2).

//Liviu Toma MATLAB Program for Error Correction

V]
It
o
o

-0.20 0.34 0.82
-0.30 0.26 0.50
-0.29 0.25 0.21
-0.33 0.24 -0.03
-0.22 0.14 -0.36
-0.05 0.04 -0.60
0.27 -0.08 -0.94
-0.10 0.27 0.93
-0.25 0.14 0.53
-0.24 0.13 0.32
-0.24 0.08 0.02
-0.15 0.06 -0.25
0.10 -0.01 -0.49
0.32 -0.07 -0.75
-0.19 0.12 0.95
-0.24 0.11 0.56
-0.22 0.11 0.28
.23 0.11 0.09
-0.08 0.08 -0.13
0.14 0.08 -0.42
0.36 0.04 -0.66
-0.12 0.05 0.95
-0.25 0.08 0.57
-0.19 0.09 0.32
-0.22 0.15 0.12
-0.03 0.16 -0.09
0.15 0.16 -0.38
0.34 0.19 -0.58
-0.04 -0.22 0.95
-0.17 -0.21 0.65
-0.14 -0.13 0.35
-0.11 -0.11 0.14
-0.01 -0.14 -0.11
4 0.20 -0.13 -0.25
4 0.40 -0.12 -0.64
5 -0.02 -0.19 0.90

COAUd WNEHFRFOONUB WNRFRPOOTUWNFRF OB WNHF OO S WN
BB DB B WWWWWWWNNMNNOMNNNNNRERREREREPRERPREPEPOOOOOO

I

o
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-0.12 -0.17 0.67
-0.08 -0.12 0.37
-0.07 -0.10 0.16
0.01 -0.08 -0.06
0.24 -0.0° -0.27
J.42 -2.22 -C.55
-2.22 -3.42 3.86
-0.10 -3.42 0.65
-0.08 -C.34 0.40
-0.0% -0.27 0.18
0.04 -0.27 -0.05
0.27 -0.21 -0.29
0.5C -0.16 -0.56

Gy N s W N

DA AANTOG N WL » W

AU WN - O

for J = 1:N
fzx I = 1:N
a({(J-1)*7+1,3)=0.00156*(I-2.75)*(I1-2.75)* (1-2.75) *(I-
2.75)+0.038*(J-4)-0.125;

NX=30;
NY=30;

zz=zexos (7,7);
XI=linspace (0, 6,NX);
YI=linspace (0, 6,NY);
(XI,Y¥I)=meshgrid(XI,YI):;
=z(:,1);

Y=a(:,2);

Z=a{(:,3);

R = Z-B;
at:,3)=R;
ZI=griddeaza(X,Y,R,XI,YI,"'<");
surf(XI,YI,zI)
cclorber
xlabel (' ")
ylabel ('+")
disp('m=4.z2=")
disp(mean(a))
disp('~=zu=")
disp(max(a))
disp('mi:=")

disp{min(a))
disp(max(a(:,3))-min(a{:,3)))
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