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Chapter 1 

Introduction 

1.1 Important items in Computer Vision 

Having 2D representations of an environment the goal is to obtain information, which 

could be used for different purposes, from these available representations. One can divide this 

infomiation in two categories. First category includes 3D details of the represented 

environment. In the literature, it is called scene reconstruction [Arm96]. The second category 

includes the motion of the camera, which generates that sequence of 2D representations. This 

is the most important requirement to realize realistic insertion of an artificial object in a \ ideo 

sequence [HZ03]. 

The subject of these PhD theses belongs to the first category. The goal of this chapter 

is to define precisely where in the great field of scene reconstruction is placed this u ork. 

1.2 Scene Reconstruction 

At a simple thinking, one can say that from a single image it is not possible to obtain 

scene reconstruction. But, using techniques of projective geometry it is possible in many cases 

to realize it. There are special techniques that invoK e the analysis of features such as parallel 

lines and vanishing points to determine the affine stmcture of a scene, for example by 

determining the line at infmity for observed planes in the image. Knowledge or assumptions 

about angles observed in the scene, most particularly orthogonal lines or planes can be used to 

upgrade the affme reconstruction to Euclidean, [HZ03]. 

The general case is to reconstruct scenes from several images. There are of course a lot 

of mathematical developments, which deals with the cases when there are two, respecti\ ely 

three images available for reconstruction. The basic tool in the reconstruction of point sets 

from two views is the fundamental matrix. This is 3 x 3 matrix of rank 2. This matrix relates 

the coordinates of the corresponding points in the two images. For three views the role of the 

fundamental matrix is taken by the trifocal tensor. This is a 3 x 3 x 3 array of numbers that 

reiate the coordinates of corresponding points and lines in the three images. 
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For any real scene there is a set of points representing the structure in that scene, and 

the position of those points can be measured in a Euclidean vvorld coordinate frame. Any 

other representation is related to the original set of points by a transformation of their 

homogeneous coordinates. There are four level of representations: projective, affine, 

similarit\'. and Euclidean [Fau95]. Generally. similarity and Euclidean are grouped together as 

metric. The level in which a point is represented depends only on the transformation required 

to map the point to its real coordinates. Metric transformations are sub-groups of affme 

transformations and both are sub-groups of projective transformations [SK79]. For each level 

of representation there are different proprieties, which are invariant. Invariant propriety means 

that measurements of this propriety give the same value in the original level and in any other 

transformed frame at the same level [HZ03]. 

1.3 Accurate Visual Metrology 

Not all the applications require a metric reconstruction. For example, only a projective 

reconstruction is needed for object recognition, and only an affme reconstruction is needed for 

path planning, grasping and fixation point tracking [Anii96]. If \\e want that the 

reconstruction to be the same as the original we need to make it at the Euclidean levcl. 

references [Cri99], and [MenOl]. The goal of this PhD thesis is to analyze the problem of 

using stereo cameras to realize accurate 3D measurements. The 3D measured coordinates 

must reflect the real position of the measured point in the environment where the 

measurements are done. So, it is obviously clear that a Euclidean reconstruction is needed. To 

compute a Euclidean reconstruction requires the camera calibration to be known. 

The camera calibration problem represents a very important research field. Starting 

with the research of Brown, reference [Bro71] a lot of scientists studied this subject having 

the goal to obtain a camera model as close as possible to the real camera, and to compute the 

param.eters defmed in their models, references [BC97]. [Cum02]. [DG97], [HA99], [LD99], 

[MC99]. [Ste97], [TVDF89]. [WM94] and [WMC03]. We also have treated detailed the 

calibration problem and brought contributions, as one will see in chapter 3 and 4. 

1.4 Thesis Outline 

This thesis is structured in 8 chapters. Chapter 1 makes a brief introduction in the 

tleid of computer vision and tries to place the subject treated in my PhD thesis at the righr 

place in this field. In chapter 2 are presented basic knowledge about projective geometry. 
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vvhich is the most important tool used to solve ihe scene reconstruction problem. Chapter 3 is 

an overview of the existing camera models and calibration methods. In the last part of this 

chapter are presented my own contributions at the simulation and the analysis of the errors 

produced by measuring vvith a calibrated camera. In chapter 4 are presented the two types of 

the stereo sensors, which were built for testing the developed algorithm. Then my 

improvements and contributions to the calibration procedure are described. Chapter 5 

presents in the first half a theoretical introduction in image processing and in the second half 

my algorithm developed in order to identify a certain point at sub-pixel level. A detailed 

analysis of the measurements done with the stereo sensors, described in chapter 4, is 

presented in chapter 6. Here are also presented my contributions in order to eliminate the 

systematic errors, which appear for the non-parallel configuration of the stereo sensor. 

Chapter 7 describes some possible industrial applications for both fixed and mobile 

configurations of the stereo sensor. Also, a test application will be presented together with the 

obtained results. Finally, in chapter 8 are presented the most important conclusions of this 

work, the main contributions in the field and some ideas for the fliture work. 
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Chapter 2 

Projective Geometry 

The Projective geometry is an extension of the Euclidean geometry and offers the 

possibility to solve difTerent computer vision problems, which are mostly impossible to be 

solved usmg Euclidean geometry [Fau93]. The duality principie and the possibility of treating 

points situated at infmity as nomial points are the most powerful tools of this geometry. In the 

following parts of this chapter are presented basic knowledge conceming the geometr>^ of the 

projective 2-space and 3-space, which are mostly used in scene reconstruction. 

A good support to leam the necessary knowledge of Projective geometr>' can be 

obtained by studying the references [Sp64], [SK79], and [Vra62J. Also, the most important 

tools of the Projective geometry used in computer vision are treated in the references [Fau93], 

[FL01],and [HZ03]. 

2.1 Introduction in the geometry of the projective 2-space 

The projective 2-space corresponds to the Euclidean space R' . The projective 2-space 

is denoted with P^ One can represent an element of this space using a tri-dimensional vector 

Ctî, X2, JC3/. Its corresponding element {X, Yf in is computed using the following 

relations: 

= (2.1) 

— . (2.2) 
.V-

From these two relations is clear that also the element kx2, kx^)^ of 

corresponds to the same element (X Y)̂  of R^ for any non-zero k. In fact, two such vectors 

related by an overall scaling are considered as being equivalent. An equivalence class of 

vectors under this equivalence relationship is known as a homogeneous vector. Any particular 

vector (A l, A':, A'3)̂  is the representative of the equivalence class. The set of equivalence classcs 

of vectors in R ' - (O, O, 0)^ forms the projective 2-space P^ 
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2.1.1 Points and lines in P^- duality 

A line in a plane is represented by the following equation: 

aX- i -by-^c = 0. (2.3) 

Different values for the components a, b, and c defines different lines of that plane. This way, 

one can define a line by the vector (a, b, c)^, which is an element of P^. So, an element of P^ 

can be internreted as a line or as a point. This represents the duality principie between lines 

and points in the projective 2-space. 

In the following part we will defme some basic operations between points and lines 

using also the duality principie. A point x = {x\, X2, belongs to a line 1 = (a, b, cf if it 

satisfies the following equation: 

r x = 0 . (2.4) 

The intersection between two lines li and 1: represents a point x. The equation (2.5) 

gives the connection between these elenients, as follows: 

x = I, (2.5) 

Using the duality, one can defme a line 1 passing through the points Pi and ? : as being 

the cross product between the homogeneous coordinates of these iw o points. So, one can 

write the following relation: 

1 = Xj X x, , (2.6) 

where Xi and v. are the respectively the homogeneous vectors of the points Pi and P:. 

2.1.2 The line at infinity and absolute points 

A special category of points belonging to P̂  are that ones which have the last 

component equal to 0. These points have no correspondent in R^ They are called ideal points 

or points at infinity. This set of ideal points may be written (.vi, a':, 0)^, where a particular 
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point is specified by the ratio .V| : .V2. One can see that all these points lie on a single line. the 

line at infinity. We denote this line Lo = (O, O, 1)^. One can easy verify the following: 

(O O l)(.v, .r, 0 ) ' = 0 . (2.7) 

Using the relation (2.5) one finds that a line 1 = {a, b, c)^ intersects the line at infinity 

in the ideal point {b, -a, 0). A line li = {q, b, c\) parallel to 1 intersects the line at infinity in the 

same point line I. So. an important conclusion is that in the projective 2-space, two lines 

always intersect. If the lines are parallel their intersection point is an ideal point situated on 

the line at infinity. 

Referring now to the line 1 = {a, b, c f , using inhomogeneous notation, the vector {b, -

a) is a vector tangent to the line, and orthogonal to the line normal {a. b) and so. represents the 

line's direction. If the line's direction varies, also the ideal point {b. -a. 0) varies over the line 

at infinity. For this reason one can consider the line at infinity as the set of directions of lines 

in the plane. 

In figure 2.1, one can see a model of the projecti\ e 2-space. Points and lines of P ' are 

represented by rays and planes, respectively, through the origin in R \ Rays lying in the A IA:-

plane are representing ideal points. The ,ri.r2-plane represents the line at infinity [HZ03]. 

idi;il 
point V 

\ O 71 

X 

Fig. 2.1. A model of the proiective 2'Space. 

Between the ideal points there are two points, which have special proprieties. These 

points are called circular points or absolute points. Their canonical coordinates are: 

1 = 

vO. 

J = 
1 ^ 

(2.8) 

BUPT



2.2 Introduction in the geometry of the projective 3-space 

The projective 3-space corresponds to the Euclidean space R \ This space will be 

denoted with P \ If we consider an element of P^ as being (.ri, .v:, .v̂ , X4) then one can compute 

its corresponding element (A" Y\ Z) in R ' as foilows: 

^ = (2.9) 

r , (2.10) 

Z = (2.11) 
>̂4 

The same as in the case of the projective 2-space also, for the projective 3-space its 

elements are homogenous vectors. 

2.2.1 Points and planes in P^- duality 

A plane in the projective 3-space can be written as foilows: 

+ = 0 , (2.12) 

where (A', )', Z) are the inhomogeneous coordinates of any point w hich lies on this plane. 

Using homogeneous coordinates the relation (2.12) will take the following form: 

;r,jc, -f TT.x. + TTyX̂  -f /r^x^ = O (2.13) 

This last relation can be also written as foilows: 

= (2.14) 

where n = (tT], n^, tt^, tc^) represents a plane and x = (x\, X2, xy, .ta)^ represents a point. This 

way, an element of the projective 3-space can be interpreted as a plane or as a point. So, the 
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duality between lines and points from the projective 2-space exists also in the projective 3-

space, but between planes and points. 

A line in P^ is defined by the join of two points or the intersection of two planes. Lines 

have 4 degrees of freedom in the projective 3-space [HZ03]. 

2.2.2 The plane at infinity and the absolute conic 

As it was presented in the case of the projective 2-space the line at infinity and the 

absolute points as powerful tools oî this space their equivalent in the projective 3-space are 

the plane at infinity and the absolute conic. 

We consider a point x = (.vi, .v:, .vj, of the projective 3-space. A special category of 

points is represented by that ones which have .r4 = 0. These points have no correspondent in 

R \ They are called ideal points or points at infinity. One can easy verify the next relation: 

(0 0 0 1)(A-, 0 ) ' = 0 , (2.15) 

where tIx = (0. O, 0. 1)^ represents the plane at infinity. So. the conclusion is that alî the ideal 

points lie on the plan at infinity. 

The plane at infinity contains all the directions D = (a'i, .v:, jti, 0)^, and enables the 

identification of affine proprieties such as parallelism. This way, we have the following: 

- two planes are parallel if and only if. their line of intersection is on the TÎ ; 

a line is parallel to another line, or to a plane, if their point of intersection is on TCx. 

In order to define the absolute conic we have first to explain what is a conic. A conic 

is a curve described by a second-degree equation in the plane. In Euclidean geometr>^ conics 

are divided in three main types: hyperbola, ellipse, and parabola. Using inhomogeneous 

coordinates the equation of a conic is: 

+ bXY + cY' + cJX + ev + / - O . (2.16) 

With homogeneous coordinates the equation (2.16) becomes as follows: 

ax^ -h bx^x. + cx; + dx^x, -h ex,x^ + = O. (2.17) 

8 
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Using matrices and vectors the equation (2.17) can be also written as follows: 

(2.18) 

where 

C = 

a hti dH 

hH c ell (2.19) 

d u ell f 

represents the conic coefficient matrix. 

The absolute conic, Qoc, is a conic on the plane of infinity TIoo. The points belonging to 

the absolute conic satisfy the next two equations: 

x; + x; -h xj = O, (2.20) 

(2.21) 

For the directions on TIoo, the defining equation (2.20) can be written as follows: 

(x, ^3)1(^1 x j =0, (2.22) 

This means that absolute conic corresponds to a conic with a coefficient matrix C I. 

So, it is a conic of purely imaginary points on the plane of infinity [HZ03]. 

This basic knowledge about Projective geometry will be used mostly in sub-chapter 

3.1 in order to define the camera models. Also, all the on-line camera calibration methods are 

makinc use of this geometrv. 
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Chapter 3 

Camera: Models and Calibration Methods 

3.1 Camera Models 

A camera is a mapping between the 3D world and a 2D image. A camera model is a 

matrix with particular proprieties ihat represents the camera mapping. Due to the lens 

proprieties \ve have to divide the camera models in two categories: ideal models, which are 

distortion free models and real models, which include the influence of the lens distortion. 

Both categories will be presented in the follovving parts of this chapter. 

3.1.1 Distortion free models 

The simplest camera model is the pinhole modei as one can see in tlgure 3.1. 

z 

Fi^. 3.1. Pinholc cuniera geometty. 

Wc define a coordinate system w iîh the origin in point C. This coordinate system is 

called ihe camera coordinate frame. The point C rcprescnîs the c^nwc of piojection called 

also opîical cenîer or camera cenîer. The axis x and y of the camera coordinate frame are 

defming a plane parallel with the image plane. This plane, called d\so focal plane, is described 

mathematically by the next equation: 

(3.1) 

10 
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w h e r e / i s the focal lengfh. The line from the camera center perpendicular to the image plane 

is called the principal axis or principal ray of the camera. The point P where the principal ray 

meets the image plane is called principal point or image center. 

A point M having the coordinates (.v, v, z)^ in space is mapped to the point on the 

image plane where a line joining the point x to the center of the projection meets the image 

plane. As one can see in figure 3.2, from similar triangles one can simply computes that the 

point M is mapped to the point {fxiz.fylzf, on the image plane. 

Ay 

' Av'z 

p ^ w 
f 

p 

Fig. 3.2. Mapping from 3D to 2D. 

Using homogeneous coordinates the mapping of the world point M to the image point can be 

written mathematicallv as follows: 

/ \ X 

y f-^ ' l 
fi-

\ f o l 

/ 0 

/ \ 

y 

\ ^ J 1 0_ 

(3.2) 

The matrix from the relation (3.2) can be also w^ritten as diagif f , l)[l \ 0] where 

diagif.f, 1) is a diagonal matrix and [I | 0] represents a matrix divided up into a 3 x 3 block 

(the identity matrix) and a column vector, in this case the zero vector. We introduce now the 

notation x for the world point represented by the homogeneous 4-vector (v, w r, 1 the 

notation X for the image point represented by the homogeneous 3-vector (fx. f}\ r)^, and the 

notation P for the 3 x 4 homogeneous camera projection matrix. This way, the relation (3.2) 

can be written compactly as follows: 

X = Px , (3.3) 

11 
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vvhere 

? = diag(f f l)[l|0; (3.4) 

The relation (3.4) defmes the camera projection matri.x for the pinhole model of 

central projection. This model assumed that the origin of the coordinates in the image plane is 

situated at the principal point P. If they are not the same, as one can see in figure 3.3, then the 

mapping wil! be done according to the next relation: 

/ ^ X 

y 
(fx^-.P,^ 7 P. ol 

Jy + ^P, — / P. 0 

\ " ) 1 o j 

(3.5) 

where {Px. P.) are the coordinates of the principal point vvith respect to the image coordinates. 

Py 

Y, 

X̂carn 

X, Px 

Fig. 3.3. Image and camera coorJinale systems. 

The equation (3.5) can be also written in the following form: 

X = K I O X . (3.6) 

where Xcam is the coordinates vector of the point X relative to the camera frame, and K 

represents the camera calibration matrix having the following form: 

K = 
/ P. 

f P. 

1 

(3.7) 

12 
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Generally the points in the space are not given with respcct lo the camera fraine, but 

with respect to a different Euclidean frame, known as the world coorJinatc frame. Having a 

point X vve will denote, as before, with x its homogeneous coordinates and with x^ its 

inhomogeneous coordinates. Between the coordinates of the point X with respect to the 

camera frame and its coordinates with respect to the world frame we have the following 

relation: 

(3.8) 

As one can see in figure 3.4, R represents the rotation from the camera frame to the world 

frame and c^ the inhomogeneous coordinates of the camera center point with respect to the 

world frame. 

Fig. 3.4. The transfonnaîion hehveen the camera frame and the world frame 

Using homogeneous coordinates the relation (3.8) can be written as follows: 

^cam 

X 

R - R c ^ " y R - R c ^ ' 

0 1 z 
1 

0 1 
(3.9) 

/ 

The general mapping given by a pinhole camera is obtain by replacing the Xcam from 

the relation (3.6) with the relation (3.9): 

X = KR I - c X.. . (3.10) 

13 
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This way, the camera projection matrix P of a pinhole camera described by the 

follovving relation: 

P = KR I ( 3 . 1 1 

has 9 degrees of freedom: 3 for K (the elements / Px, Py \ 3 for R, and 3 for c^. The 

parameters contained in K are called the internai camera parameters, or the internai 

orienîation of the camera. The parameters of R and c^, which give the position and the 

orientation of the camera frame relative to a world frame, are called the externai camera 

parameter or the exterior orientation [HZ03]. 

In most of the cases is not useful to make the camera center explicit, but to use the 

transformation from the camera coordinates to the world coordinates as follows: 

x _ = Rx + t , ( 3 . 1 2 ) 

where 

t = 

This way, the camera projection matrix will become as follows: 

P = K[R t . 

( 3 . 1 3 ) 

( 3 . 1 4 ) 

The pinhole model assumes that the image coordinates are Euclidean coordinates 

having equal scales in both directions. In the case of a CCD camera can be possible that the 

number of the pixels per unit in both directions to be different. If we denote with .Vx the 

numher of the pixels per unit in A'direction and with .̂ y the number of the pixels in /direction 

then the general form of the calibration matrix of a CCD camera will be obtain by multiplying 

the calibration matrix of the pinhole model with an extra factor diag{Sx, Sy, 1). This way, we 

will obtain as follows: 

K = 
7 P: 

f p. = (3.15) 

1 1 1 
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With the notations: 

P. = s j , 

P. = s j , 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

the relation (3.15) becomes as follows: 

K = PY CV 

1 
(3.20) 

The conclusion is that a CCD camera has 10 degrees of freedom. one more ihen the 

pinhole camera because the calibration matrix K has is defined by four parameters. 

A more complete model has the following form of the calibration matrix: 

K = 
P. s C, 

1 

(3.21) 

where s is called the skew parameter. A camera whose calibration matrix has the fonn 

described by the relation (3.21) is called â finiteprojective camera [HZ03]. Another form to 

describe the calibration matrix for a finite projective camera is the following: 

K = 
p^ - p ^ c o i O c ; 

p j s m e c . (3.22) 

where ^represents the angle between the axis of the image plane [Arm96]. Usually, this angle 

is 90 degrees and then the calibration matrix will have the form described by the equation 

(3.20). 

A finite projective camera has 11 degrees of freedom. This is the same number of 

degrees of freedom as a 3 x 4 matrix, defined up to an arbitrary scale. The conclusion is that 

the set of camera matrices of finite projective cameras is identically with the set of 

homogeneous 3 x 4 matrices for which the left hand 3 x 3 sub-matrix is non-singular [HZ03]. 
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The last step in this hierarchy of projective cameras is to define the general projective 

camera. This is represented by an arbitrary homogeneous 3 x 4 matrix of rank 3. The rank 3 

requirement arises becaiise if the rank is less than 3 then the range of the mapping matrix will 

be a line or a point and not the hole plane; in other words not a 2D image [HZ03]. 

3.1.2 Modeîs including distortion 

AII the camera models presented before can be applied when the focal lens is big and 

the lens has a high quality. If we use normal lenses with a small focal lens then the distortion 

will have a big influence to the obtained image. There are two ways to eliminate the effect of 

the lens distortion. One way is to make a correction of the image and to obtain an undistorted 

image, which can be then used for the models defmed in the sub-chapter 3.1.1. This can be 

realized using some constrains, for example the constraint that a line must be always straight 

DFOl]. Another way is to fmd a mathematical function, which relates the distorted 

coordinates to the undistorted coordinates and then to replace them in the equations obtained 

from the distortion free models [\VCH92\ 

There are three rypes of the distortion, which can influence an image: radial distortion, 

decentering distonion and prism distortion [WCH92]. From these types the most important 

influence is given by the radial distortion. In the following parts of this chapter it will be 

presented a mathematical model, which describes this type of distortion. 

As one can see in figure 3.5 there are two types of radial distortion: barrel distortion 

and pincushion distortion [Lan58], [Dod82]. Barrel distortion corresponds to a negative 

displacement of the image points and pincushion distortion to a positive displacement of the 

image points. 

a) Undistorted image b) Barrel distortion 

Fig. 3.5. Lens radial distonion. 

c) Pincushion distortion 
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For the cameras vve used in our experiments a distonion of type b) was detected. We 

take two points as in figure 3.6. Pu is thc ideal point, undistortcd and Pj is ihe real point, 

distorted. The coordinates of these points are X^, Yy, respectively Ad, Ŷ . 

Fig. 3.6. Details of the lens distortion. 

We will approximate the distortion with the following relalions: 

(3.23) 

(3.24) 

where R^ is defined by the next relation: 

(3.25) 

According to the liierature there are many ways to approximate the function f . We 

decided to use the following form for the fijnction f . 

(3.26) 

where kp is the coefficient of the radial distortion and has a positive value. 

With this last relation we can replace/ in the relations (3.23) and (3.24) and we obtain 

the next two relations: 

r f / M 

(3.27) 

(3.28) 
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Knowing the fact that k^ • R] is very small we can write according to Taylor 

approximaiion the following relation: 

r = 1 + /t • 
\-k-R: ' ' 

(3.29) 

then the relaiions (3.27) and (3.28) vvill become: 

P ^ 

y,. = y j — — r . n . 3 n 

When we introduced ihe coefficient of the radial distortion we considered its \ alue 

positive. We will make the following notation: 

(3.32) 

where k takes negative values. With this notation the relation (3.30) and (3.31) the next two 

relations, which will be used in our fiiture calculation: 
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3.2 Calibration Methods 

Considering one of the camera models defined in the sub-chapter 3.1 the goal is to 

compute the components of the camera projective matrix, or with other worlds, to compute 

camera internai parameters and the camera externai parameters. The calibration methods can 

be di\ ided in two categories. 

The first category includes the traditional calibration methods, based on images from a 

special calibration object with a known structure. These methods are called also off-line 

calibration methods. The big advantage of these methods is the high accuracy of the obtaineH 

camera parameters. The disadvantages are that they cannot be applied vvhen the camera 

parameters are changing during normal operation, as zooming, or when we try to reconstruct a 

scene from a pre-recorded image sequence [Arm96]. In the sub-chapter 3.2.1 it will be 

presented an over\'ie\v of the off-line calibration methods. 

The second category includes the on-line calibration meihods. They were introduced 

first by Faugeras and his collaborators [FLM92], [iMF92]. They introduced the idea that a 

camera can be calibrated using oniy point matches between images, without requiring the 

knowledge of the scene. They called this method camera se/f-caUbrafion method. This ailows 

the possibility to reconstruct a scene from pre-recorded images and to compute the camera 

parameters during the normal vision tasks, references [AP95], [CDR99], [CT90], [HA97], 

[LL96] and [Stu92]. In the sub-chapter 3.2.2 it will be presented an over\'iew of the on-line 

calibration methods. 

3.2.1 Off-line calibration methods 

A ver>' good sur\^ey of the traditional calibration methods is presented in the reterence 

[ASBOO]. According to this reference they are five different off-line calibration meihods. The 

other calibration methods combine these five or are similar to them. The calibration method 

depends on the camera model used to simulate the behavior of the camera. 

î. The first method is the method of Hali, [HTMS82]. He considers a linear model 

(without distortion) and computes directly the elements of the projection matrix P. 

Considering that the 3D position of a set of n (n>6) calibration points and their 2D projection 

in the imiage are known one can obtain the elements of projection matrix using least squares 

technique, [PTVF92]. 

2. The second method is the method of Faugeras - Toscani, [FT86]. Also this method 

considers a linear model, but the method computes directly the elements of the calibration 
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matrix K (the internai camera parameters), the elements of the rotation matrix R, and the 

translation vector t (the externai parameters). They use some spccial notations and 

mathematical operators to solve the obtained system of linear equations [FT86]. 

3. The third method is the method of Faugeras - Toscani with radial distortion [FT87]. 

This method uses a non-linear model considering also the influence of the radial distortion. 

This way, the equation system tums into a non-linear system so the least-square techniques, 

used before, have to be combined with an iterative algorithm to solve this system. 

4. The forth method is the method of Tsai [Tsa86], [Tsa87], and [LT88]. He used also 

of a non-linear model including the radial distortion. The method uses a two-stage technique. 

In the sub-chapter 3.3.2 \ve vvill present in details this calibration method. 

5. The fifth calibration method is the method of Weng [WCH92]. He improves the 

model of Faugeras - Toscani, by including three types of lens distortion. This method uses a 

two-stage technique, the same as the method of Tsai. 

3.2.2 On-line calibration methods 

One can divide the on-line calibration methods fron the begmning in caiegories: 

self-calibration of the carneras. vvhich have unch.inged interna! parameters lA'-cM and self-

calibration of the cameras having fixed internai parameters. 

Interesting calibration methods belonging to the first categories are presented in the 

references [AHH99]. [AHROl], [HM03] and [Stu97]. They are dealmg with the problem of 

calibrating zooming cameras. 

Different approaches of the self-calibration methods belonging to the ^^econd category 

are very well summarized in the reference [Arm96]. He divides these methods in another two 

sub-categories: approaches for self-calibration for a monocular camera and approaches for 

self-calibration for a stereo head. 

Conceming the monocular camera, important calibration algorithms were developed 

by Faugeras eî al., references [FLM921, [LF96j. jLF97J and Hanley. references [Har92]. 

[Har94], [Hur97]. Their methods are based on identifying the image of the absolute conic, 

which is equivalent with finding the camera calibration. 

Conceming the stereo head, important calibration algorithms were developed by 

Zissermann et al., reference [ZBR95]. He shows that is possible to obtain constraints to the 

plane at infmity and the image of the absolute conic from the vector decomposition of the 

projective transformation [Arm96]. Other interesting algorithms belonging to the same 

category were developed by and Zhuang et al., references [Zhu95], [ZRXW93]. 
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3.3 Analysis of Camera Off-line Calibration Methods 

3J .1 General presentation of a camera calibration procedure 

In this sub-chapter \ve will present two of the most important camera off-line 

calibration methods. Before starting to present them it is necessar> to make a short description 

of a general calibration procedure. 

There are two important steps, which must be presented. The first one is refereeing to 

the transformation from the 3D scene to a 2D chip image and the second one is referring to 

the transformation from the chip image to the computer image. 

A. The transformation from a 3D scene to a 2D chip image 

In the following part it will be analyzed the relations between the 3D coordinates of a 

real point P(x.}\ z) and the 2D coordinates of his correspondent point PAXj^ Ky) on the chip. 

Pd(X ,̂ Y,) 

P(x, V. Z) 

Fig.3.7. The transformation from the 3D scene to the 2D image. 

The notations used in figure 3.7 have the following meaning: 

- S,, represents the world frame or the reference frame; 

- S, represents the camera frame; 
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- P represents a point whose coordinatcs are: (.Vu, r,,), vviih respect to thc world 

trame, and {x\ \\ r), with respect to the camera trame; 

- Yu) is the image point of P if a perfect pinhole camera model is used; 

- PAXi. Yj) is the actual image point which differs from Y,,) due to Icns 

distortion; 

Going fiirther, it will be established first the mathematical relations between 3D 

coordinates (jc, y, z) and the 2D coordinates {Xu, Yu), Using the geometry we obtain, as 

foHows: 

AACO^.M^OO^ = = 7 (3.35) A^O OO^ ^^u f -

APCO^ ^ AP:00^ 

AAPO ^A.4.P0 

PO^ _ CO^ 

PO 00. Ii i 
AP PO 

if u c AP PO 

AP CO - V 
A P OO Y, 

(3.36) 

where 0 0 c represents the focal length, and his value was noted by f . 

The relations between the distorted coordinates {Xj, Yj) and the undistorted 

coordinates {Xu, Yu) are given by the relations (3.33), and (3.34). From these two relations one 

can obtain the following: 

^ = (3.37) 
Y Y ' u ^ J 

Using now the relations (1.1), (1.2) and (1.6) we obtain: 

(3.38) 

In this moment we have the relations (3.35), (3.36) and (3.38), which represent the 

connection between the 3D scene and his correspondent 2D image. The next step is to find 

some relations between the world coordinates of the point P, which are (.v.,, , z,,) and their 

correspondents iXj, Yj), from the chip. 
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Between the world frame and ihe camcra frame Ŝ  is possible to write the next 

relation: 

S . r* t ^ (3.39) 

where T/- represents the transformation from the camera system to the world system. From 

the mathematical point of view T/" is a matrix. which has the following form: 

n r, 

r* ty 

n. t. 

0 0 0 1 

T = 

, where R = 

f% 

t. /. t. ^ the translation between these t\\ o systems. 

Going flirther. one can write the next relation: 

represents the rotation, and 

r. ! -V, i i ^ ; t. 
.V - r. + 1 

( 3 . 4 0 ) 

z / 7 ' " o j _ u _ t. 
L - j 

where (jc, y, z) are the coordinates of the point P with respect to the camera frame and (.r„, ;/„, 

Tu ) are the coordinates of the same point P, but with respect to the world frame. 

From the relation (3.40) one can simply write the next three relations: 

^ = -^h'I + >'«'•2 + + v̂ ' 

j = x j , + y j } + z j ; + f . . 

(3.41) 

(3.42) 

(3.43) 

Using the relations (3.38), (3.41) and (3.42) we will obtain the relation between the 3D 

coordinates of a point and its 2D correspondent coordinates in the chip image: 

(3.44) 
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B. The îransfonuaiiofi from îhe 2D chip ima^c îo thc 2D computer iniage 

In the following part we vvill find the relations betvveen the coordinates (Aj, Yj) of a 

point P, from the chip image and the coordinates {Xp, Yp) of its correspondent point, on the 

computer image. 

Chip Image Real Chip Image Center 

J ma.\ 

/ 

• 1 

\ 

[ Ideal Chip Imaije Center 

Computer Image 

• 1 
— • 

(0,0) 

•A-

r 

' J rriax ' " p max 

Fig. 3.8. The corresponJence henveen îhe center of the chip image and the center of the computer image. 

Using the infomiation from the figure 3.8. iî is possible to write the next iwo lelarions: 

.V^ = coefx . -f Q , (3.45) 

(3.46) 

where ( C , Q ) represeni the coordinates of the real center image from the chip and coefx and 

coefy are tv/o scale factors, which will be presented detailed in the next part. 

I I i 
. t - n d • 

.^.n • • 
• • • 

1 2 3 

Chip Area 

• 
• 

• 

1 

-> 
ci 

-t 
r 
I 

T T* 
I I 

Pixels Area 

Fig. 3.9. The s truc ture of chip area and pixels area. 

N 
N 
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In figure 3.8, A'./,,,.,,. are the chip dimensions and A/„„.„. represent the total 

number of pixels in .v, respectively v, direction. So, we can write the next relations: 

(3.47) 

(3-48) 

(3.49) 

(3.50) 

where, as one can see in figure 3.9, we have made the following notations: 

- Nex, Nev represent the total number of the sensor elements in jc, respectively \, 

direction; 

- dx. dy represent the center to center distances between adjacent sensor elements in 

respectively V, direction; 

- Npj, Npy represent the total number of the pixels in .r, respectively direction. 

Using the relations (3.45) and (3.46) we obtain, as follows: 

A ; , . . . ( 3 . 5 1 ) 

(3.52) 

From the relations (3.47), (3.48), (3.49), (3.50), (3.51), (3.52) and the fact that the 

number of the lines from the chip is equal with the number of the lines from the computer 

image: 

(3.53) 

one can compute the values for the scale factors as follows: 

1 N 

coefa = — ^ , (3.54) 

coeJy = —. (3.55) 
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Due to a variety of factors, such as slight hard-were timing mismatch bciween image 

acquisition hard-were and camera scanning hard-were, or the imprecision of the timing of TV 

scanning itself the scale factor in direction will be difTerent from that, computed with 

relation (3.54). We must correct this factor with a parameter named the uncertainty of the 

scale factor, û x. which can be different from 1 with maximum five-percent, referencc [Tsa87], 

We will obtain the next relation: 

(3.56) 
(J. N ̂  

Numerical example for the scale factors! 

For a Panasonic WV-CD50 camera we have the following characteristics: 

-sensor area is "i.Smtnx^Amm : 

'd^ = \1 /M7U d̂  = 1 \/Mn ; 

=500, N̂ .̂ = 582. 

The standard used for image acquisition is standard CCTR, which means ihat for the 

computer image we have: 

. N^̂  = 752, N^̂ . = 582 (standard CCIR). 

Using the relations (3.54) and (3.55) and the dates presented just before one can obtain 

the next values: 

- coefa = 88.471 pixellmm coefx'' = 0.01303mm/pixel: 

- coefy = 90.91 pixelt mm coefy'' = 0.01 \mm! pixeL 

As it was said in the beginning of the sub-chapter 3.3, tw ô methods for camera 

calibration will be presented here. The first is called Lenz calibration method, reference 

[Len87] and the second is called Tsai calibration method, reference [Tsa87]. Before staning to 

describe these methods we will present the camera parameters, which will be calibrated. 

For both methods we must compute the position and the orientation of the camera, so 

the rotation matrix R and the translation vector t will be determined. 

The focal length is a parameter for both methods. Both methods don't considering the 

offset of the image center, and the image center is chosen in the middle of the computer image 

(Cr = O, and C = 0). Also the coefficient of radial distortion is considered, as being zero {k = 

0). 
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\Ve will compule the scale faclors for the first niethod using ihc relations (3.54) and 

(3.55): 

=coef\. (3.57) 

=coef}^. (3.5S) 

But, in the second method we will use also, as a parameter, the uncertainty of the jc scale 

factor, according to the refercnce [Tsa87]. This parameter is denoted with û x, so the x scale 

factor will be computed with the next relation: 

= coejx = u^ • coefx = u^^S^. (3.59) 

The y scale factor is computed in the same way, as in the first method. 

We made this choice of the camera's parameters according to the conclusions from 

reference [Jim93], which are the following: 

-the offset of the image center has little effect on the detenriination of the position and 

orientation of a coordinate frame: 

-ihe lens distortion will not dramatically change the position and orientation of a 

coordinate frame; 

-the scale factor has a great effect on the position of the coordinate frame, and on the 

accuracy of the measurements: 

-ihe offset of the image center is more sensitive than ihe lens distortion on the 

determination of the position and orientation of a coordinate frame. 

3-3.2 Lenz calibration method 

As we said at the end of sub-chapter 3.3. L the camera parameters, which will be 

calibrated in the Lenz method, according to the reference [LenS7], are: 

- focal length (/), as intemal parameter; 

- the rotation matrix (R), and the translation vector (t), as externai parameters. 

We know the coordinates {x,,,, >u/, Zv./), in millimeters, for a point P, in the world 

frame, and the coordinates {Xpi, Yp), in pixels, for its correspondent on the computer image. 

We also, know some specifications for our camera (the model used is CV-M50), and using 
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this infomiation we can simply compule the scale factors with ihc rclations (3.54) and (3.55). 

We will obtain the next values: 

= coefx = 116.5S9 mm / pixel, (3.60) 

Ŝ  = coef}^ mm i pixel. (3.61) 

We need in our next operations the values for Sx \ and Sy \ In fact, S ,̂ and Sy are the scale 

factors from the chip image to the computer image, and Sx'\ and are the scale factors from 

the computer image to the chip image. These values are: 

S-' = coefx-' = O.OOSSnpLxel/mm , (3.62) 

=coef}-' =0.00S3\6pixel/mm. (3.63) 

The specifications for the camera model CV-M50, vvhich gives the possibility to 

compute the scale factors, are the next ones: 

-scanning arca: 6.45m/?7.v4.84/;?/;/: 

-CCIR standard: 752(//).v582(F). 

Going further, this method is divided in six steps, which will be presented in the 

following parts. 

Step 1 

Using the relations (3.45), (3.46), (3.62), and (3.63) one can flnd the values for Xj,, 

and Yji, as follows: 

(3.64) 

(3.65) 

where Xji. and Yji are the distorted coordinates of the point Pj from the chip image. 
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Step 2 

For this method \ve use a calibration board. likc in figure 3.10, which contains all the 

calibration points P,. The calibration board is a plate with marked points all of ilioni being in 

the same plane. The world coordinate frame S» is chosen, as one can see in the figure 3.10. 

f/e. 3.10. The calibration board. 

Any point Pj, from the calibration board, will have the coordinates Cr,,;, 0) and in 

this case the relation (1.13) becomes: 

(3.66) 

From the relation (2.7) one can obtain an equation, as follows: 

/ \ / \ / / \ / \ 

r 
-t , t - t 

' j \ > y 
= A',,. (3.67) 

For N points Pi, it will be obtained an over determined system with N equations, each 

of them having the same nature with the one noted (3.67). Using the matrices one can write 

the next relation: 

a , a, a , a,Y X j , . . . X^, (3.68) 

where 

C = Y, (3.69) 

29 

BUPT



and 

(3.70) 

The solution for this system is, according to the reference [PTVF92], the following: 

9\ «5 'di (3.71) 

where C ' is the inverse of the matrix C. 

We have the next relation between the elements of the rotation matrix R: 

(r, +/-J ' + ( ' : - ' 4 ) ' ^ + -^5) ' +('2 + '4) ' - = 2 . (3.72) 

From the relations (3.70), and (3.71) one can fmd the value of the translation , as 

follows: 

= 

(a, + a , ) ' + (a, - o J " J - + [(a, - a, f + (o, + a,)" J = 
, 1 • (3.73) 

Knowing now the value for t,. from (3.73), the values for ai, a:, a.?, 04 and a< from 

(3.71). and using the relation (3.70) it is possible to compute the values for /-/, r j , n and / 

as follows: 

(3-74) 

Step 3 

Using the proprieties of the elements of the rotation matrix R we can fmd the values 

for Ti, and rg: 

= ( 1 -

= "O - ''2 + ) • 
(3.75) 

(3.76) 
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Step 5 

In this step we will compute the focal length J\ and the translation t- from an over 

determined system of equations. Using the fact that the coefTicient of the radial distortion was 

chosen zero the relations (3.33), and (3.34) become, as follows: 

(3.77) 

(3-78) 

where (X„i, Y„i) are the undistorted coordinates of the point Pj from the CCD-chip. With these 

last, two relations. (3.35), and (3.36) become, as follows: 

(3.79) 

(3.80) 

where (.v/. - ) are the coordinates of the point P, with respect to the camera system. In this 

moment it is possible to compute the values for,v„ and v, using the relations (3.41), and (3.42), 

because the values for all the parameters which defme these two relations, are know n: 

+ ^ (3-81) 

-v. = .Y..„/; + +/„ . (3.82) 

For z/ we use the relation (3.43), which in this conditions becomes: 

z, = + v.,,/-̂  • (3.83) 

Using the last five relations one can obtain a system with two equations, where/and /.-

are the unknowns. These equations are: 

- ^ J - = + A-,, , (3.84) 

. (3.85) 
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If there are taken .V points P„ it is possible to obtain 2iV equations having the same 

form like (3.84), and (3.85). Using the matrices one can write this system of equations, as 

follows: 

.̂V ^ d} \f 

j\ 

^wS^'l^dN ywS^i^dS (3.86) 

The solution for this over determined system is, according to the reference [PTVF92], 

as follows: 

t. - V. -Y,; 

- y . -yjy 

(3.8") 

Step 5 

In this step we will establish the right sign for all of the parameters determined before. 

For that we must do the next operations: 

Ir r r r t t l - k l ^ h ^ i l U 
sign 

sign{t.) 

sign(b) 

(3.88) 

(3.89) 

(3.90) 
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Step 5 

We will compute here the last three parameters, which are: o , and rg. We will make 

use of the propriety that any two columns of the rotation matrix R must be orthogonal. It 

means that one can write the next relation: 

r. 

(3.91) 

From the relation (3.91) it is possible to compute the values for our last unknown parameters: 

(3.92) 

(3.93) 

(3.94) 

So, after these six steps for all the camera parameters we have a mathematical 

expression. The next step was to make a logical algorithm, which would contain all these 

expressions in such an order that can be later implemented in a C program. This logical 

algorithm is presented in Annex A. The corresponding C program is presented in Annex B. 

3.3.3 Tsai calibration method 

The camera's parameters, which will be calibrated in Tsai method, according to the 

reference [Tsa87] are: 

- focal length (/), and the ,v scale factor by considering the uncertainty of the .r scale 

factor (//s j , as a camera internai paramcter, reference [Tsa87]: 

- the rotation matrix (R). and the translation vector (t), as externai parameters. 

As in the first method, we know the coordinates (jc,»/, >V/, Zh/), in millimeters, for a 

point Pi in the world frame, and the coordinates {Xp-,, Ypi), in pixels, for its correspondent on 

the computer image. Going further, this method is divided in five steps, which will be 

presented in following parts. 
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Step 5 

For any point Pj having the coordinates (Xp,, Yp,). on the computer image, and the 

coordinates {Xj;. on the chip image, using the relation (3.45), (3.46), (3.57), (3.58), and 

(3.59), with the observation that in this case instead o[coefx we have coefx \ one can obtain, 

as follows: 

, (3.95) 

(3.96) 

where and S, are computed in the same way as the ones computed in the sub-chapter 3.3.2, 

with relations (3.60), and (3.61). Obvious, because we use the same camera in both methods 

of calibration, the values for 5r and 5, will be the same in both cases. So, we have: 

= coefx = 116.589 mm / pixel, (3.97) 

S. = coefi- = 120.248 mm i pixel. (3.98) 

From the relation (3.95), and (3.96) one can obtain: 

(3.99) 

= (3.100) 

where 

(3.101) 

From (3.101) we can simpiy obtain. as follows: 

(3.102) 
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Step 5 

For this method of calibration we need a non-coplanar set of points. One can obtain 

this set of points using the same calibration board. as in the first method. but it u ill be moved 

to different heishts in r direction, as it is show n in the fieure 3.11: 

Fig. 3.11. The calibration hoard in three different z posilions. 

In this case for any calibration point P„ which has the coordinates VV/, z„,) with 

respect to the world frame 5» the relation (3.44) becomes: 

(3.103) 

Using the relations (3.102), and (3.103) we obtain the following relation: 

(3.104) 
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One can make the next notations: 

(3.105) 

(3.106) 

^'"vv'j = ' (3.107) 

(3.108) 

(3.109) 

(3.110) 

(3.111) 

With these notations the relation (3.104) becomes, as follows: 

+ + + Yĵ a, - - - = • (3.112) 

For .Vpoints P,. one can obtain an over detennined system with Vequations having the 

same nauire with the one noted (3.112). Using the matrices one can write the next relation: 

a^ a, Oy a^ a^ a^ a^ X iiS (3.113) 

where 

C = Yji^^M Yjiy^M Yji^Mi Yjl ^Jl^^M /=! V • (3.114) 

The solution for this system is, according to the reference [PTVF92], the following: 

[a, fl, a, a , a , a , a , Y X , , X d\ (3.115) 

where C" is the inv erse of the matrix C. 
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Step 5 

In this step the goal is to compute r:, /x, and /y knowing the values for 

a:, and ai which were computed in the step 2. 

In the next derivation it is used the fact that the norm of any rows or columns of the 

roiation matrix R is equal with one. So, one can write the next two relations: 

(3.116) 

rr + ^ r ( 3 . 1 1 7 ) 

From the relations (3.109), (3.110), (3.111), and (3.117) we obtain: 

= (3.118) 

We don't know the sign for îy, This problem will be solved a little later. 

From the relations (3.105), (3.106),..., (3.11 1) one can obtain: 

^̂ v = (3.1 19) 

Now it's time to fmd the right sign for ty. The procedure is, as follows: 

a) we take a point j^y, z^i) whose computer image coordinates (A /̂, Yp:) are 

far away from the image center; 

b) we chose +1 as being the sign of ty; 

c) we compute ri, r:, r j , /4, and /x from the relations (3.105), (3.106), 

(3.111). We will obtain the following: 

(3.120) 

(3.121) 

(3.122) 

(3.123) 

(3.124) 

(3.125) 

= ^ ; (3.126) 
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d) using the relations (3.42), and (3.43) it is possible to compute .r„ and v, as 

follows: 

>'/ = + + + ; 

(3.127) 

(3.128) 

e) IF ((A-, and Xpi have noi the same sign) and (y-j and Yp, have not the same sign)) 

then = 

O E L S E / , = - / , 

Note! 

If the sign for /, is equal to - l we must also change the signs for r\, ri, ri, r4, and 

/x in the relations (3.120), (3.121), ..., (3.126). If the sign for ty is equal to +1 the values 

computed for ri, /-;. r^. rs, rf,. and ^ remain unchanged. 

Step 4 

In this step we will compute the values for n, r», and r<). The procedure is the same as 

the one used in step 6 from Lenz method. We will use the fact that the cross product between 

the first row and the second row of the rotation matrix R must be equal to the third row: 

i J k 
r. (3.129) 

The values for n, rx, and r<) are: 

(3.130) 

(3.131) 

(3.132) 
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Step 5 

Here, \ve will compute the focal l ength / and the translation r-, This step is almost the 

same with the step 4 from Lenz method. The single difference is that here z„, is not all the 

time equal with zero. We remind that the lens distortion was not considered. In this case for 

any point P,(.v»„ _v„„ r„,) which has the coordinates {X,,„ ŷ ,,) on the computer image, and the 

coordinates (A'</„ >j,) on the chip image, the relations (3.33), and (3.34) become: 

(3.133) 

(3.134) 

With these two last relations, (3.35), and (3.36) will be written, as follows: 

(3.135) 

(3.136) 

where (x/, yi, z,) are the coordinates of the point Pj with respect to the camera system. In this 

moment it is possible to compute the values for.v,. and v, using the relations (3.41), and (3.42). 

because the values for aii the parameters which defme these two relations are known: 

•v,=-v.„/-,+ + z . „ r , ( 3 . 1 3 7 ) 

(1-138) 

Forz, we use the relation (3.43), which in this conditions becomes: 

+ + + . (3.139) 

Using the last five relations one can obtain a system with two equations, where /and t: 

are the unknowns. These equations are: 

(3.140) 

- + v„,7;r,, . (3.141) 
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If iV points P, are taken, it is possible to write 2N equaiions having ihe same type like 

(3.84), and (3.85). Using the matrices one can write the system of equations obtain for N 

poiius P„ as follows: 

-Y cl\ 

- V.N J 

t. 

J\ 

J\ 

(3.142) 

The solution for this over determined system is, according to the reference [PTVF92], 

as follows: 
1-1 

n - X 

- V, 

-V .v 

J\ 

-^y.s^Jj.K 

(3.1431 

So, after these five steps for all the camera parameters we have a mathematical 

expression. The next step is to make a logical algorithm, which will contain a!l these 

expressions in such an order that can be later implemented in a C program. This logical 

algorithm is presented in Annex C. The corresponding C program is presented in Annex D. 

The big difference between Tsai method, and Lenz method is that in Tsai method the .r 

scale factor is very precisely known by considering the uncertainty of x scale factor, as a 

parameter, which is computed in this method, reference [TsaS'^ . 

Another difference is that in the second method we need a non-coplanar set of 

calibration points, which could be a big disadvantage in the practicai situation where a camera 

calibration is needed. 
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3.3-4 Contributions at the simulation and analysis of the errors 

After the calibration process is made for the same camera using, both methods 

presented in 3.3.2 and 3.3.3, one set of camera's parameters is obtaincd, for each melhod. 

Normally, if there aren't any errors in the calibration process the two scts of parameters must 

have the same values. This is true, as \ve will see later in figure 3.13 and figure 3.14. When 

the camera is calibrated we need the values for all the 3D coordinates of the calibration points 

and the values for the 2D coordinates of their correspondent points in the computer image. 

The values for the scale factors, for the coordinates of the image center and for the coefficient 

of the lens distonion are computed as it was explained before in this chapter. 

In the practicai part we analyzed the effect of three error types. The first type is 

referring to the errors that can appear on the 3D coordinates of the calibration points. We will 

consider these errors less than 2 mm. The second type is referring to the errors that can appear 

on the pixel coordinates of the calibration points from the image after the image processing is 

fmished. These errors will be taken less than 2 pixels. The last error type, which is consider, is 

the error of the .v scale faeton whose real \ alue can be different to the computed value from 

the camera's specifications. This error will be considered less ihan 0.5%. 

Going further, for the same set of errors we make the calibration process, using both 

methods and we obtain two different sets of camera's parameters. This procedure will be 

repeated for 50 different sets of errors. The next problem is to establish, which set of 

parameters is better. For that we need to simulate a camera measurement, made with the 

parameters obtained after each calibration process. 

In the following part an explanation of our procedure to simulate the camcra 

measurements will be presented. We chose a point, whose real position in the world system is 

known. With one set of camera's parameters we must simulate a camera measurement and 

fmd the position of this point in the world system. The difference between the real position of 

the point and his measured position will show which of our two calibration methods is better. 

We will name this difference the error of the position vector of a point. The next step is to 

fmd a mathematical relation in order to be able to compute this error. 

In figure 3.12, S^ is the real world system, and Sc is the real camera system. If there are 

no errors in the calibration process we will obtain the same position and orientation for the 

camera system, as in the reality. If the errors exist in the calibration process we will obtain a 

new position and orientation of the camera system with respect two the reference system. 

Mathematically, we can consider the new camera system the same, as the real one, and we 
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will have then, another world system. a computed vvorld syslcm, noted as one can scc in 

figure 3.12. 

fVe. Ihc simulaîion ofthe cun:cuj mcasurcmtnt. 

We will vvrite novv some mathematical relations. We lake from the calibration poinis a 

point, which has the coordinates , z^) in the real world system. We measure the position 

of this point and we obtain the same coordinates, but in the computed world system. We note 

with CvhcJ^hc, Atr) the coordinates of this point in the world system. So, when we measure the 

position of this point we will obtain instead of (av, r,,), the coordinates )• 

Now, we can defme the error of the position vector as follows: 

V = (3.144) 

Boiween the coordinates (x,,, r,,), and the coordinates (.v,,,, vv,, it is possible to write 

the next relation: 

X ' 
= y. (3.145) 
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where T. '̂ , is the transformation from the computed world system to the real world system. 
H I 

The results of our tests are presented in figure 3.13, respectively 3.14. Both graphics 

show the final error of the position vector for different sets of errors. The graphic from the 

figure 3.13 was obtain in the situation when the calibration process was made without pixel 

errors and the 3D errors of the calibration points were situated between O mm and 2 mm. 

3D error [mm] 

Fig. 3.13. The analysis of the results in the presence of 3D errors of the calibration points. 

The graphic from the figure 3.14 was obtain in the situation when the calibration 

process was made without 3D errors and the pixel errors of the identified calibration points 

were situated between O pixels and 2 pixels. In the references [TomOO], and [TINOO] one can 

find a complex analysis also for all the possible combinations between the 3D errors and the 

pixel errors. 

For the error of the x scale factor we considered five values: 0%, 0.1%, 0.2%, 0.3%, 

and 0.4%. Tsai calibration method computes the uncertainty of the jc scale factor, which will 

completely eliminate the influence of this error. So, for this calibration method the error of 

the X scale factor has no effect on the error of the position vector of a measured point. One can 

see in both graphics the line, having the labei TSM, which represents the error of the position 

vector when the camera calibration is made using the second method. For that there is only 

one line in each graphic for this method. When Lenz Method is used the error of the x scale 

factor has a great effect on the error of the position vector of a measured point, as one can see 
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in both graphics. The line, which has the labei LMO.O, represents the error of the position 

vector when the calibration is made with a 0.0% error of the .t scale factor. For the line with 

the labei LMO.l the error is 0.1%, for the line with the labei LM0.2 the error is 0.2%, for the 

line with the labei LM0.3 the error is 0.3% and for the line with the labei LM0.4 the error is 

0.4%. 

3 5 
%^i^^seetîorofth©posifionv©d^^ point 

2 5 

1 ' 
> 
s 
o 1.5 

0.5 

r • 1 1 

^ LMO 3 

^ ^ LM0.2 

/ 
TSM 

LMOO 

li— j 1 

-

0.5 1 
Image error [pixeO 

1.5 

Fig. 3.14. The analysis of the results in the presence of pixei errors of the idenîified 
calibration poinîs. 

Having these explanations is obvious to see that the error of the x scale factor has a 

great influence on the accuracy of the measurements when the first calibration method is used. 

An error of only 0.4% of this scale factor will produce errors around 3 mm for the position 

vector when there aren't any other errors. If the 3D errors are added the error of the position 

vector increases to almost 6 mm. It's interesting to see that the pixels errors has practically no 

effect when the error of the x scale factor is greater than 0.2%. 

The conclusion of our analysis is that Tsai method for camera calibration is better than 

Lenz method because using Tsai method one can compute an more exact value for the jc scale 

factor. The errors introduced if an approximate value for this parameter is used, are becoming 

insignificant, for Tsai calibration method, because the approximate value of the scale factor 

will be corrected with a computed factor, called by Tsai uncertainty of the x scale factor. 
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Chapter 4 

Stereo Sensor: Improvements and Contributions 

4.1 Mathematical Models 

In this sub-chapter it is presented first the description of the stereo sensor. Then, two 

possible configurations of the stereo sen^ui are presented. The description of the camera 

model used by us ends this sub-chapter. 

4.1.1 Description of the stereo sensor 

The stereo principie is well known and generally, means to look to the same scene 

with two cameras. Using the information given by the pictures made with these cameras it is 

possible to rebuild the scene without knowing any information about it. The dimensions of 

the scene and the distance to the scene are the main causes that influence the constniction of 

the stereo sensor. 

If we have a scene situated at a big distance relative to the cameras then in order to 

obtain optimal 3D information it is recommended also to place the cameras at a big distance 

between them as one can see in figure 4.1. In this situation we have another constraint namely 

to orient the cameras in such a way that both cameras will see the same scene. So, a parallel 

configuration is not possible in this case. 

Scene 

Fig. 4.1. Stereo configuration for big distance. 

If the scene is situated at small distance then both non-parallel and parallel 

configurations are possible, as we will see in 4.1.2 and 4.1.3. 
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4.1.2 Non-parallel configuration 

As one can see in figure 4.2, the stereo sensor is built from two cameras mounted in a 

metallic box. This box has two functions. One flinction is to realize a good fixation between 

the cameras themselves. The other function is to offer the possibility to mount the stereo 

sensor in both calibration and application environments. 

Fig. 4.2. Stereo sensor in non-parallel configuration. 

The distance between the cameras measured from the optical center of the camera left 

to the optical center of the camera right is about 25 cm. The angle between the cameras is 

about 45 degrees. This angle is defmed by the two principal axes of the cameras. The 

measurement space for a fixed stereo sensor is situated at a distance between 200 mm and 300 

mm from the stereo sensor. The visual field of the stereo sensor has the dimensions 200 x 200 

mm at a distance of 200 mm. 
X 

X 

T(CL-SS) T(CR-SS) 

Fig. 4.3. Non-parallel configuration - coordinates frames. 
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In figure 4.3 one can see the three coordinate frames, which are defined for a stereo 

sensor. There are two camera frames, denoted Sc\ for camera left and ^c r for camera right. 

There is also another frame defmed for the stereo sensor. We will call it stereo sensor frame 

and denote it 5ss. We have also represented in figure 4.3 the transformations from both 

camera frames to the stereo sensor frame. We will use them in the sub-chapter 4.2. 

4.1.3 Parallel configuration 

In figure 4.4 one can see the stereo sensor in the parallel configuration. The cameras 

are mounted as near as possible one to the other having parallel directions. 

Fig. 4.4. Stereo sensor in parallel configuration. 

Of course the coordinates frames are the same as for the non-parallel configuration, 

the only difference is that the z directions of all the three frames are parallel. 

4.1.4 Description of the camera model 

To define a camera model means to fmd a set of parameters, which simulate as good 

as possible the behavior of a real camera. Generally, the camera parameters are divided in two 

categories: extrinsic parameters and intrinsic parameters [Fau93]. 

About the camera extrinsic parameters the situation is clear there are six parameters. 

We denote them ty, a , p, y. The first three give the position and the last three the 

orientation of the camera frame with respect to a reference frame or a world frame. In our 

case we called this reference frame the stereo sensor frame. The position of the stereo sensor 

frame is in the middle of the calibration plate and the orientation is as one can see in figure 
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4.3. The axes .v and are in the same plane with ihe calibration plate and the axe r is 

orthogonal to this plane. 

Coneeming the camera intrinsic parameters the situation is a little bit more 

eomplicated. The Mmple.si iiiodel is the pinhole model, as it was presenied in cliapter 3.1.1. 

Tliis model is a distortion-free model and includes four independent parameters: sj\ C , C 

where \ve denote with/ , the focal length, with Vx, the scale factors and with C , C the 

center of the image (the intersection of the optical axis with the CCD chip plane). A better 

simulation of a real camera is given by the model, which includes the radial distortion. We 

denote the coefficient of the radial distortion with k. There are camera models, which includes 

also other typc^ cf dis:orîior,s. dccentering and thin prism distortion [WCH92]. Theoretically, 

we should also consider the skew factor [Fau93]. The skew factor is a function of the angle 

berween the axes defmed by t\vo adjacent sides of the CCD chip. Normally, this angle is 90 

degrees and then the skew factor will have no influence to the projective matrix. Other 

intrinsic parameters can be introduced to model the fact that the optical axe is not orthogonal 

to the CCD chip. This is one of next problems to be solved in our future work. 

We considered that in order to reach the required accuracy it is enough to consider a 

model, which includes the four classical intrinsic parameters C,, C and ihe coefficient 

of the radial distortion k. Because of the technological progresses in building lenses and CCD 

chips the elTect of distortions, other than the radial distortion, and the effect of the skew factor 

are very small. We used for the radial distortion the same model as it was presented in the 

sub-chapter 3.1.2. 

4.2 Contributions at the Calibration Procedure 

As it was explained in the chapters before, if we want metric information we have to 

know both internai and externai camera parameters. The process of computing all the camera 

parameters is called camera calibration. In the following part we will describe first the 

calibration device we used and then the calibration procedure de\eloped. underlining the 

contributions to this procedure. 

4.2.1 Description of the calibration dev ice 

In figure 4.5, one can see the calibration plate. This was made from glass, in order to 

reduce the modifications, which can appear because of the temperature variation. The 

uncertainty of the circle positions is between -0.01 mm and +0.01 mm. 

48 

BUPT



One can also see, from the figure 4.5, that the calibration plate is fixed on a special 

device. This device can provide movements in three orthogonal directions (x, v, z) with an 

uncertainty situated between -0.01 mm and +0.01 mm. The alignment between the special 

device frame and the calibration plate frame is done mechanically and is adjusted and 

controlled using Leica 3D measurement system with an uncertainty of 0.01 mm. Finally, the 

total uncertainty of the position of the circles is situated between -0.025mm and -^•0.025mm. 

T . 

Fig. 4.5. The calibration device. 

4.2.2 Description of the calibration procedure 

As we saw in sub-chapter 4.2.1, using the calibration device, we are able to generate 3D 

points whose coordinates are known very precisely. In chapter 5 we will describe a procedure, 

which will allow us to fmd also very precisely the 2D coordinates of corresponding 3D points 

in the image. Knowing these 3D and 2D coordinates of a set of points we will be able to 

compute the camera parameters. 

We begin the description of the calibration procedure by fmding the relation between 

the 3D coordinates and the 2D pixel coordinates of a point and the camera parameters. We 

start from the next equations: 

1 

1 + A: 

( 7 - c , r 

(4.1) 

(4.2) 
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where (A., };,) arc the pixel coordinates and ( v. v, r) are thc 3D coordinaies of a calibraiion 

point with respect to the camera frame. Between the 3D coordinates of a calibration point 

with respect to the camera frame and the 3D coordinates of the same point but with respect to 

thc w oiid frame one can write (he noxt relation: 

A' y r (4.3) 

where (Th, y . z,,) are the 3D coordinates of the calibration point with respect to the world 

frame. 

The transformation from the camera frame to the world frame can be written as a 

flinction of /.r, ty, a , P and y as follows: 

Cum T = 

cos / cos P cos / s in /3s'\na - s i n / c o s or cos / s in p cosa + s in / s in a /, 

s in / s in P sin / sin ŷ  sin or -i-cos/cos a sin / sin cos a - cos / s in a î ̂  
sin/? cos/? sin a cos/? cos a î, 

0 0 0 1 

This relation is denoted (4.4). From the relations (4.3) and (4.4) we obtain, the next three 

relations, denoted (4.5), (4.6) and (4.7): 

A- = cos / cos Px^ + (cos / sin P s m a - sin / cos + (cos / sin cos a + sin / sin + 
y = sin/cosySx\^ + (s in /s in /? sin or-h c o s / c o s a ) -h ( s i n / s i n c o s a + cos /s ina )r^ 
z ^ - sin Px^ + cos P sin + cos p cos oz ,̂ + 

Starting from the equation (4.1) one can write, as follows: 

{X-C^z-sJ 1 + A- v = O. (4.8) 

With the notations: p, = s j , and d = ^ " t h e relation (4.8) becomes: 

(X-CJz-p^ \+d 
P: P: 

x = 0 (4.9) 
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For each calibration point one can write the relation (4.9). This relation is an equation 

ha\ ing ihe coefficients detennined by the 3D coordinalcs and ihc 2D pixel coordinates oî thc 

calibration point P, One can make the following notation: 

r ^ ' Py. Q , C . , = O. (4.10) 

If we use N (A^IO) calibration points we vvill obtain an over-determined system of 

equations. To solve this system we use the Newton Algorithm [ManSl], [Nas99], [LipOl] and 

[RMOl]. First, we must make this nonlinear system to be linear. According to Newton 

Algorithm starting from relation (4.10) one can write the next relation: 

da 6fi dy dt^ 

+ + + + , (4.11) 
cî. cp^ ci\ cC, 

where t̂ o, ao, po, Yo, Pxo, Pyo, Qo, Cyo and do are iniţial values for the camera parameters. 

dF 

F^ . Fxo and —— (v is anyone from , a , p, y, p^, p^. C,, C and d) are given b\ the next 

three relations: 

= tr , f: > , C. , C,. (4.12) 

= ...... («O'A./O.^O^^-O^ P.O- C,,, . (4. 1 3 ) 

dF dF 
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Going fiirther \ve will write ihc explicit relations for 
- dF, 

d\' 

cF. 
ca 

- = ICOS cos a • - cos p sin a • r,,)(A" „ - C,) -

- (cos 7 sin ^ cos or - + sin 7 sin a - v., - cos / sin/? sin a - r , , + . 

- c . R ( > ' , - c , N 
/ / 

1 + J 
\ V p] PI / / 

(4.15) 

dfi 
- = ( - c o s / ? - A - „ - s i n ^ s i n a - V V - S I N > 9 c o s a R,. ) (A ' - C J -

- ( - c o s v s i n fi-x^ + c o s / c o s ^ s i n a > ' „ + 

/ ( X - c , r ( y - c , . n i 
+ cos;/ cos cos a • r„)p^ \ + d 

\ V P: P: / / 

(4.16) 

dF. - = - ( - sin / cos P • .r„ - sin / sin fisxna- y .. - cos ycosa- -

-sin/siny9cosflr-z„ +cos7sin<2--„ 
/ 

\ + d 

\ \ 

w 

P: P: ^ J 

(4.17) 

dF. 
ct. 

w 

P: P: /y 
(4.18) 

dF 
dt. 

(4.19) 

2L. 
cp. 

f f ' 

1 P: P: ^ j p\ 
X (4.20) 

dF^ i . k - c j 

^P. - P, 
(4.21) 
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— = -r + Ici —^ .V. 
a c . P. 

(4.22) 

cF y. - c , 
cC, p: 

( 4 . 2 3 ) 

aF. 
dd 7 = -P. 

( ( x - c ^ y 

P: P: 
(4.24) 

The relation (4.11) can be written in the following form: 

ÂF BF DF 

ca op cy Ct, - -s -T A cî. cp. dp^ cC, 

+ + ^ d = -F + 

dF vO 
ap. ^p. 

dF. 
a c . 

cF 
C + C + 

a c ct/ 

(4.25) 

One can see that the relation (4.25) is a linear equation. For each calibration point one 

can write this equation and finally obtain an over-determined system of linear equations. We 

write this system using the matrices, as follows: 

Coef , - [a y /, p, p.. C, C. d]'= 

a a d p d r ^ ' a/, ^ a/. 

d F j 
^ ^ c ^ ^ d 

dp, dp^ a c . a c , dd ' 

_ A dF^Q^ - a^O' a^n^ a f . ^ 
aa dp dy dt^ dt. 

dF. S 

ap. ap. a c . T̂0 
a F ' ,0 r -t- ^ j 

ac.. a j 

(4.26) 

where Coef, is a matrix with Arrows and 10 columns. Each row of the matrix is formed by the 

coefficients from the relation (4.25). 
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The next problem is to compute the inverse of the matrix Coef,. This problem will be 

solved using a special algorithm detailed presented in the reference [PTVF92]. Knowing this 

inverse matrix. the solution for our system is given by the relation (4.27), as follows: 

a P r t, t, p, P. Q C. d 

= (CoefJ - l 

+ 

« ^F^^n 
dy 

dFj ^ d f j 

dt, dL 
1 

cp. 

V dF, 

dp, a c . dC. dd 

xO dF, S 
TO dF, JO 

ca dp 

dF.: 

cy 

^FJ d F j 
dî. dt. 

+ 
dp, dp^ a c , ^^^ ac.. " dd ' 

(4.27) 

We will use these values as the new iniţial values and we write the equation (4.25) 

again and we will soh e the system (4.26) and obtain another set of values for the camera 

parameters. We repeat this process until the difference between the last solutions and the last 

iniţial values is less than a certain value. 

Using the same steps, as we made starting with the relation (4.1) and ending with the 

relation (4.27), for the relation (4.2) we will obtain. as follows: 

( Y - C . ) z - s J \+k 
s' 

y = 0 

y J 

(4.28) 

With the noiations; = ,̂ / and d = kf ' the relation (4.8) becomes: 

( y - c , ) z - / 7 . 
P: PR 

>̂  = 0 
/ / 

(4.29) 
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One can make the following notation: 

.V,,.-, (ct, p,, c.. c,. = o. (4.30) 

According to Newton Algorithm starting from relation (4.30) one can write the next 

relation: 

dF. dF^, ^ dF, aF.o 
da cp cy ot^. 

dt, op^ dp^. dC^ 

dC, cd 

(4.31) 

where (,o, /.-o, oo, Po, ?t),Pxo. Go. Cyo and i/are iniţial values for the camera parameters. 

dF. 
Going mrther \ve will write the explicit relations for 

d\> 

dF 
— ^ = (cos >9 cosa - V - COS/!? sin or )(}' - C . ) -
ca '' p • 
- ( s in / s in ;0cosa- .v , . - co s7s ina -> ' „ - s i n / s i n ^ s i n a • 

- c o s / c o s a - z ^ )/j, 
\\ 

P: P: 

(4.32) 

dF.. 
d p " ^ ' ~ " • >« " cos a • z„)(Y^ - C,.) -

- ( - sin 7 sin B • .v,, -i- sin y cos y^sin a • , + 
/ 

+ sin / cos /f cos a • z , ,)p, \ + d 

\ 
P: P: 

(4.33) 

dF. 
- = -(cos ycosfi- x^ + cos y sin ^ sin a • > „ - sin y cos a • + 

oy 

-cosysm/3cosa-z^ + s i n / s i n a z , , 
P: P: 

(4.34) 
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dt. = -P. \+d 
P: P: 

w 

(4.35) 

^ = r - c 
5/. " ' ' 

(4.36) 

dF, 1 
— - = — p ^ a — — ^ V , 

2 p; 
(4.37) 

/ / 

\ + d 
( A > c J . ( r - C , n i , ( K - C J 

\ V P: j ) 
2 P: 

V, (4.38) 

A- . , -C. 

P: 
(4.39) 

- c. 
dC P. 

(4.40) 

Ci/ = -P. 
p: P: 

(4.41) 

In the same way, as we made for the relation (4.11), one can obtain for the relation 

(4.31) the following form: 

cF.., aF, cF,, J F ^ . ^ 
Qr + —— y + — — t + 

da dp cy " 
aF,., dF. dF.,. dF 

t. +——p^ +- P. 
vO 

dC. 
C. + 

dC 

dF.. 

l O . ^^l O I r' 
Oi/ 

a r , 

-rr - R J ^ ^ - . - f vO 
f-.o + • 

dF. dF.. dF^ lO 
dp^ dp^ dC^ dC^ dd 

(4.42) 
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For each calibration point one can wrile this equation and finally obtain an ovcr-

determined system of linear equations. One can write this system using the matrices, as 

follows: 

Coef, a p y t^ l\ C, C.. d 

dF^ 1 dF, I BF. lO 

da 

dF..: 

dp 

dF. 

dr dt. 
'vO dt. -̂0 + 

dF. 
dp^ cp._ a c . 

c. dF. 

" da " dp dy 

dC. 

d F j dF^, 

C.n + 
dF. vO 

dd 

dt.. dt. 

cF,: d F j dF,,' 

dp^ cp^ cC^ cC^ 

d F j vO ^ , vO , 

(4.43) 

where Coef> is a matrix with .Vrows and 10 columns. Each row of the matrix is formed by the 

coefflcients from the relation (4.42 ). \Ve will solve this system in the same way as \\e made 

with the system (4.26) and we obtain, the relation (4.44), as follows: 

a P y t, /, p , p , C. C. d 

= (Coef,) - l 

dF. vO dF. 
ca A. + - r - /o + - T — o + - r — cp dy dt. dt. '-.o 

dC. C.0+-
dF. 
dC 

• C . + -
dd 

S V d F j d F j d F j d F j dF^., 
-F.o + — — — — — ^ - o + da cp cy dt. dt. 

cF.,, 
^ P.0+— P.0 + 

dF.: dF.' 

ac. dc, dd ' 

(4.44) 

We wi!l use these values as the new iniţial values and we write the equation (4.42) again and 

we will solve it and obtain another set of values for the camera parameters. We repeat this 

process until the difference between the last solutions and the last iniţial values is less than a 

certain value. 
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In order to obtain the final solution we make for the camera parameters, which were 

computed in both systems, the average of their computed values. The results of the calibration 

procedure can be seen in figure 4.6. The units for.v, v, and r, which correspond to the camera 

parameters î,, and are millimeters, for Alfa, Beta, and Gama, which correspond to the 

camera parameters a, p, and / a r e degrees, and for CenterX, CenterY, Px, and P}\ which 

correspond to the camera parameter C , C , px, and p, are pixels. The parameter noted 

Disîortion, which corresponds to camera parameter d has no unit. 

S^ereoVîsion 

X = -18.719385, y = -12.940744, z = 234.559060, 

Alfa = -177.443262, Beta = -24.871302, Gama = 180.030586, 

CenterX = 388.912040, CenterY = 296.860806, 

Px = 616.165398, Py - 615.456120, 

Distorton = -0.240072 

OK" 

Fig. 4.6. Results of the calibration procedure. 
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Chapter 5 

Image Processing and Shape Recognition 

5.1 Theoretical Introduction in Image Processing 

In this sub-chapter the goal is to present ihe iheoretical support, which was neccssar\' 

to develop a new image-processing algorithm, as one will see in sub-chapter 5.2. 

5.1.1 Image enhancement techniques 

Using image enhancement techniques, one has the possibihty to improve cenain 

characteristics from an image, characteristics. which presents special interest for the user. 

According to the reference [GLP99], one can divide these techniques in four categories, 

which will be presenied in îhe following parts of this sub-chapter. 

A. Point operators 

The mathemarical defmition for a point operator is given by the following relation: 

= (5.1) 

One can divide this type of operators in tw ô categories, spaţial invariant and spaţial variant, 

The equation (5.1) becomes for a spaţial invariant operator, as follows: 

g{m.n) = 0{f(m,n)}, (5.2) 

where m and n are passive variables. In the following part we will present some examples of 

operators described by different forms of the relation (5.2). 

a) contrast moditication 

ni - f \ O < / < / 

'J\ j\ <f<fH . (5.3) 

•./: ^ • ( / / / - A ) + • ( / - A ) , f H < f ^ 

a = 
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b) binarvsation 

(5.4) 

One used operator, which belongs to the special variant category is named grey level 

correction operator, This operator is described by the relation (5.5), as follows: 

(5.5) 

where Cmji is a correction coefTicient dependent on the pixel position. If we suppose that the 

obtained image is R and the ideal image is / then the coeflîcients are computed with the next 

relation: 

[5.6) 

B. Geometrical transformations 

A geometrical transformation realize a projection of a pixel from the coordinates (x. v) 

to the coordinates {x \y This can be described mathematically with the next t\vo relations: 

X = r A x , y ) , (5.7) 

(5.8) 

Computing the Jacoby, J we will obtain important infomiation about ihe 

transformation proprieties. To compute the Jacoby we will use relation (5.9), as follows: 

J = 

a.r- dx 
Sx 
cy- d}-
5x 

(5.9) 
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We will present now three types from the usual geometrical transfoimations. 

a) linear îransformuîions (translaîion. roîation) 

y ^b^-^b.x-^b^y, (5.11) 

J = a , ( 5 . 1 2 ) 

b) bilinear transformations 

X' = + a^x + a^y + a^xy (5.13) 

y (5.14) 

c) perspective transformat ions 

a,, ̂ a.x^u.y . , . 
A' = ^ 

-h cî y + 1 

V =— ^ (^.iD) 
/7;-V 4 - V + 1 

C Image smoothing 

The goal of image smoothing is to eliminate the noise or small variations of the 

illumination intensity in an image. AII the smoothing operators have the same disadvantage 

because they eliminate some details from the image and they reduce the accuracy of the 

edges. These operators are divided in two categories: linear smoothing operators and non-

linear smoothing operators. 

From the first category we will present shortly two operators. We will start with the 

average operator. If we have N frames from the same image / we will make a temporal 

average according to the following relation: 

c/ o 
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One can see that the white noise having the standard deviation a remains white also in the 

output image g and the standard deviation decreases with N square, reference [GLP99]. 

If we have for an image only one frame then we will make a spaţial average. We will 

use a uniform filter having the dimensions Lx L defmed by the relation (5.18), as follows: 

h=TT 
L: 

1 1 1 
1 1 ••• 1 

1 1 ••• I 

(5.18) 

We will convolve the input image/with this convolution mask and we will obtain the 

output image g. In the figure 5.1, one can see the effect of this filter to an ideal edge. 

Ideal ediic 

Resuli of ihc convolution 

A • 
Fig. 5.1. Effect of the special average to an ideal edge. 

If we see this filter as a modality of estimating the grey level at the location situated in 

the middle of the mask one can see that all the pixels from the mask have the same influence. 

In order to reduce the effect of the pixels, which are situated at the edges of the mask we will 

create another filter called binomial filter, A 2D binomial filter is built on the base of ID 

filter. A ID filter of any range can be built by convolving several times the following mask: 

1 (5.19) 

According to the explanation before, a ID filter having the range 2 will be computed as 

follows: 

i ] 4 [ i 1] l"" 
4 

1 2 1 15.20) 
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A 2D filter having the range 2 will be defined by the rclation (5.21): 

2 
1 

T 
1 

"1 2 f 
J 1 

2 4 2 
4 16 

1 1 2 1 
L J 

( 5 . 2 1 ) 

AII these linear filters give good results when the image is afiected by white noise, but 

they are not so efficient to the binary noise. To eliminate this type of noise we will use a non-

linear filter called median filter, Using this filter we will replace the grey level for a pixel with 

the value, which is calculated as being the value situated at the middle position in a row. This 

row was created by arranging in increasing order all the values of the pixels situated in a 

window centered at that pixel. 

This filter is a particular case of the filters called sîaîisîical ordering filters. All the 

filters from this category have the propriety that before any operation with samples from the 

image these samples are arranged in a certain sequence. 

D. Contour emphasizing and details enhancement techniques 

There are also situations where we are interested to analvze some local structures 

having small dimensions, for example thin lines or points. For these cases we need to use 

filters, which will increase the quality of these details. We will present in the following pan 

two types of such filters. 

We start by presenting a high pass filter. We will define such a filter using the next 

two îclations: 

g = cf-{c-\Y'f 

(5.22) 

(5.23) 

where 7 is the input image, g is the output image, h^ is the transfer function of a low-pass 

filter, which was studied in sub-chapter 5.1.1.3., and c is a constant having values greater than 

1. With this constant we can increase or decrease the effect of the filter to the edges. 
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The second type of filters is represented by band-pass filters. We will build a ID 

band-pass filter starting from the binomial filters presented in sub-chapter 5.I.I.C. The 

relation (5.24) describes a 1D band-pass filter having the range 4: 

BP (5.24) 

5.1.2 Edge detection techniques 

Edge detection is one of the most commonly used operations in the image analysis. 

An edge is the boundary bet\veen an object and the background, and indicates the boundary 

between overlapping objects. Edge detection is a part of the process cal led segmentation, 

which means the identification of regions within an image. 

One can see in figure 5.2 an ideal step edge. 

Grc> 
Lcxcl Ma\iinuiTi Educ Posiiion 

Mini inu i i i 

Posit ion 

Fig. 5.2. Example of step edge. 

This Step edge is an ideal model, which never occurs in an image because of the 

follov/ing three reasons: 

objects rarely have such a sharp outline; 

- a scene is never sampled so that edges occur at margins of a pixel; 

due to noise, which affects an image. 

There are essentially three common types of operators for locating edges. The first type is a 

derivative operator designed to identify places where there are large intensity changes. The 

second resembles a template-matching scheme, where the edge is modeled by a small image 

showing the abstracted properties of a perfect edge. Finally, there are operators that use a 

maîhematical model of the edge. In the following part we will present all these three types of 

operators, starting with the derivative operators. 
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A. Derivative operators 

Our goal is to detect the position where is located the boundary betvvecn two diffcrcni 

grey levels. This position is given by the maximum valiic of the 2D gradient operator. This 

operator is defmed by the following relation: 

V.-](.v.v) = 
Sx d\-

{5.25) 

Because an image is not a continuous function and can't be differentiated in the usua) 

way we will use differences. We will define the operators Pi and P:. as follows: 

V „ 4 r , v ) = 4 v , v ) - 4 v , y - l ) , 

V ^ 4 v . v ) = i ( 4 v . r + l ) - 4 v . r - l ) ) 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

We will define the edge response Gn,,,̂  and the direction of the edge Gjir vvith the next 

two relations: 

V .^(.v.v) 
G , = arctan 

V 4-V-.V) 

(5.30) 

i 

In figure 5.3, one can see the block scheme of an edge detector using a 2D gradient 

operator. 

IC 

—r 

/ \ 

<p = .AT.4.\' 
( / V v-N \ y 

1 hrcN̂ûld 

Fig. 5.3. Block scheme for an eJiie Jcicctor usiii}.^ a 21) graJicnr. 
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In flgure 3,/represents the inpul image. The gradient operator is then applied in two 

directions x and v. The next block computes the edge response and the edge direction. In the 

last block is taken the decision if the current pixel situated at the location v) is black or 

white. Of course the variable c can take oniy two values one for the black level and another 

one for the white level. 

B. Template-matching edge detection 

The idea behind template matching edge detection is to use a smalK discrete template 

as a model of an edge instead of using a derivative operator directiy (as in sub-chapter 

5.1.2.A) or a complex, more global model (as in sub-chapter 5.I.2.C.). There are a lot of 

models for the possible existing edges. 

One edge detector, which belongs to this category, is Sobei edge detector. The 

templates for this detector, as convolution masks have the following values: 

S = 
-l O 1 
2 0 2 

-l O 

- 2 - l 
S =1 O O O (>.32) 

For a pixel having the coordinates ( i j ) one can compute St, and S,, as follows: 

S^ = l[/ - l][y + l]-f 2I[/][7 + i]+ |[/ + ]][/ ^ 1 -

-(l[/ ~ \][j - l]+ 2l[/][/ - l]+ l[/ + l][/ - l])^ 
(5.33) 

S. = l[/ + l][/ + l]-f 2l[/ ^ l][/]+ l[/ + l][/ - l ] -
.( ,[ / _ i][/ 2l[/ - l[/ - l][/ - l])' (5.3-1) 

A second example of the usc of templates is the one described by Kirsch. The 

templates for this detector, as convolution masks havc the following values: 

- J — : > 5 5 5 5 5 5 — 3 j 
— J 0 5 K, = - 3 0 5 = — j 0 - 3 5 0 - J> . (5.35) 

- J) - 3 5_ - 3 - 3 - 3 - j - 3 -> - j - 3 - * 
— > -3_ 

5 -> — J — 3" • - 3 — > - j - j> — J - 3 " — - 3 - j 
5 0 -o K. = 5 0 - 3 — 0 - j K- = - j) 0 5 . (5.36) 

_5 - 3 - 3_ _ 5 5 - j 5 5 5 - 3 5 5 

66 

BUPT



These masks are produced to model the kind of grey level change near an edge having 

various orientations, rather than an approximation to the gradient There is one mask for each 

of eight compass directions. For example, a large response to mask Kn implies a vertical edge 

(horizontal gradient) at the pixel corresponding to the center of the mask. In order to find the 

edges an image is convolved with all of the masks at each pixel position. The response of the 

operator at a pixel is the maximum of any of the eight masks. The direction of the edge pixel 

is quantized into eight possibilities here, and is where / is the number of the mask 

having the largest response. 

C. Operators using a mathematical model 

In the following part we will describe shortly three detectors, which are included in 

this category. 

1. Morr-Hildreth Edge Detector, In order to build an edge detection algorithm we have to 

carry out the following three steps: 

- convolve the image / with a two-dimensional Gaussian fuiiction: 

complete the Laplacian of the convolved image; call this L\ 

edge pixels are those for which there is a zero crossing in L. 

A convolution in two dimensions can be expressed as follows: 

/ * G(/\ y) = X Z ' - ! " <5.37) 

The function G being convolved with the image is a îwo-diinensional Gaussian. This 

is defined with the next relation: 

= e " (5.3S) 

TTie Laplacian operator is defined as follows: 

(5.39) 
ox' dv~ 
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The order doesn't matter in this case, because both convolution and Laplacian are 

linear operators so, we can make first the Laplacian of the Gaussian (LoG), reference [Par97], 

and then use it to convolve the image /. The relation (5.40) defines the Laplacian of the 

Gaussian: 

where 

(5.40) 

r == (5.41) 

2. The Canny Edge Detector. Canny specified three issues that an edge detector must address, 

references [Par97], and [Can86]. These issues are: 

- error rate - the edge detector should respond only to edges, and should find all of 

them; 

- localization - the distance between the edge pixels as found by the edge detector and 

the actual edge should be as small as possible; 

- response - the edge detector should not identify multiple edge pixels where only a 

single edge exists. 

The goal was to find a filter, which accomplish all these three criteria. Canny decided 

to use the first derivative of a Gaussian function as an approximation for the ideal filter, which 

is too complex to be analytically computed. 

A ID Gaussian function is given by the relation (5.42) and the derivative with respect 

to X is given by the relation (5.43), as follows: 

la- (5.42) 

(5.43) 

A 2D Gaussian function is given by the relation (5.44): 

(5.39) 
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In order to simplify thc implementation of the convolulion procedure we will separate 

the convolution with a 2D operator in two convolutions with a ID operator. Due to this the 

magnitude of the result is computed at each pixel (x, v) as follows: 

= (5.45) 

where Ir and ly are the results of the convolutions with 1D operator. 

The final step in the Canny cdge detector is a non-maximum suppression step whei\; 

pixels there are not maxima are removed. 

3. The Shen-Casten (ISEF) Edge Detector. This method use as an optimal filter an infinite 

symmetrical exponenţial filter (ISFE), defined by the relation (5.46): 

= (5.46) 

In two dimensions the filter is given by the next relation: 

= (5.47) 

This can be applied to an image in the same way, as was the derivative of thc 

Gaussian. But Shen and Castan went one step fiinher and gave a realization of their filters as 

one-dimensional recurşive filters. 

Finally, this method make use of false zero-crossing suppression, which has the same 
goal as the non-maximum suppression used in the Canny edge detector. 

5-1.3 Methods in grey level segmentation 

This sub-chapter is divided in two parts. In the first part we will present some basic 

information about what image segmentation means and we will give some examples of 

segmentation methods. In the second part we will discuss about the use of regional thresholds. 

A. Basics of Gray-Level Segmentation 

Grey-level segmentation or thresholding is a conversion between a grey-level image 

and a bi-level image. The idea is that a bi-level image will contain all the essential 
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information about ihe number, position and shape of objects while containing a Iot less 

information than a grey-level image. 

The most common way to convert an image is to select a single threshold valiie. AII 

the grey levels below this value will be black (0) and all the values above ihis level will be 

white (1). The relation (5.48) describes mathematically this fact: 

/ A [O, if l(x,v)<T 

where y) is the grey level image, //,(A% V) is the bi-level image and T is the chosen 

threshold. The problem is now how to find the right value for the threshold. We will present 

in the following parts some methods to compute this value. 

One used method, called sometimes p-tile method, is to compute the threshold from 

the following equation: 

I / ' O ) 
ra;/o = -S? , (5.49) 

th{i) 
/=0 

where h(i) represents the number of the pixels having the grey level /. Of course this method 

can be applied when we know the ratio between the black pixels and the white pixels. 

Another common method to compute the tlireshold is obtained by iising histograms. 

The threshold is deiermined according to the position where a minimum occurs between iw o 

peaks of the histogram. 

Starting from the fact that the threshold value is influenced by the grey level of the 

pixels situated at the boundary between an object and the background we can make a 

histogram only with the edge pixels. We will compute then the threshold as it was described 

in the method presented before. In order to determine the edge pixels one method is to 

convolve the input image with the following mask: 

L = 
"O 1 O 

1 - 4 1 
O 1 O 

(5.50) 
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We will select then oniy ihe pixels, which have a large valuc of ihe resulling Laplacian and 

we will build the histogram with these pixels. 

Iterative selection is a method, which is based on an iniţial guess of the threshold. 

Then the threshold is adjusted until the final value is reached. The iniţial value of the 

threshold is equal to the mean grey level of the image. Then the mean grey level for all pixels 

below the threshold is computed and called TA, and the mean level of the pixels greater or 

equal to the iniţial threshold is computed and called T^, The new estimation of the threshold 

will be computed with the next relation, as follows: 

(5.5U 

The algorithm is repeated until the difTerence between two consecutive values for the 

estimation of the threshold is smaller than a certain value. 

The relation (5.52) computes the k-ih estimation of the threshold when the first 

threshold was noted To: 

+ . (5.52) 
i.'Y^hii) 2- X M . / ) 

/=0 

where h(i) represents the number of the pixels having the grey level /. 

We will present now very shortly another three methods. For deiails see the reference 

[Par97]. 

We start with the method of grey level histograms. This is based on a statistical 

method, which is called analysis of variance. We will compute first the total variance of the 

grey level values in the image cr/. For any given threshold Tone can compute the variance of 

the object pixels and the variance of the background pixels. These represent the vvithin-class 

variance values noted a j . Finally the variation of the mean values for each class from the 

overall mean of the pixels defmes a between-classes variance, which will be noted CT/,'. We 

can find an optimal value for the threshold T by minimizing the ratio of the between-class 

variance to the total variance, reference [Par97]. 
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The second method makes use of the cntropy. The entropy is a measure of information 

content of an image. If there are n possible symbols x, and the symbol x, appears with the 

probability p(Xi) then the entropy associated to the source of symbols X is defined as follows: 

= (5.53) 

An image ean be thought as a source symbols represented by the grey levels, which appear in 

the image. Having a threshold T one can compute the entropy of the black pixels and the 

entropy of the white pixels as follows: 

(5.54) 

(5.55) 
/=7- + l 

We consider that the grey levels take values from O to 255. We will fmd an optimum for the 

threshold Thy maximizing the sum between Hh and reference [Par97]. 

The last method studied by us is called minimum error thresholding, The histogram of 

an image composed by an object and background can be expressed with the next relation: 

h{i)^ ' - e -f ' ^ e , (5.56) 
O", V ^ CR. V ^ 

where crand /i are the standard deviation and mean of the classes and P, called also scaling 

factor, is the probability that a pixel belongs to one of the classes. One solution to determine 

the threshold is to express the probability of the wrong decision and to minimize it. But, the 

problem is we don't know the values for o; /u and P and it is also difficult to estimate them. 

Kittler and Illingworth, reference [Par97], created a new criterion to be minimized: 

(5.39) 
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where 

M t ) - ^ . (5.59, 

/.(.) PAT) • 
The value Tthat minimizedy(r) will be the best threshold. 

B. The use of the regional thresholds 

In practice in most of the cases, a segmentation with a single threshold is not enough 

to obtain all the necessar\' information, relerences [Ber86], [JM03], and [NR79j. One reason 

is the illumination, which can be difTerent in an image and this way will influence the form 

and the position of the edges in the segmentation process. 

The first problem, which must be solved is to decide in how many regions we should 

divide an image and how big should be these regions. Afterwards, in order to fmd the 

threshold for a region, one can use anyone of the methods presented before in sub-chapier 

5.L3.A. 

We will present in the following parts the solution proposed by Chow and Kaneko, 

according to the reference [Par97]. They divided an image of 256 x 256 pixels in 49 

overlapping regions, each one being 64 x 64 pixels. Going further we will make a histogram 

for each region. We make then a bimodality test for all the histograms. Each bimodal 

histogram has a pair of Gaussian curves fit to it, using least-squares method. The thresholds 

for the regions, which have not a bimodal histogram will be interpolated from those that have. 

The explanation why these regions have not a bimodal histogram is that they include only 

parts from the object or from the background. Finally, a pixel-by-pixel interpolation of the 

thresholds values is done. giving every pixel in the image its own threshold. This algorithm 

historically forms the foundation of the regional thresholding methods, and is frequently cited 

in the literature, reference [Par97]. 
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A bimodal histogram is expressed as a sum of two Gaussians, as wc have sccn in Ihe 

relation (5.56). Our goal is to obtain the mean, the standard dcviation and the scaling factors 

for each of the two Gaussians. First, in order to reduce the influence of the noise the 

histogram for the current window is found, and is smoothed, as one can see in the relation 

(5.61): 

/•)^ //(/ - 2 )^ 2 . /;(/ - 1)^ 3/ ; ( /> 2/;(/ ^ l )^ /;(/ ^ 2) ^̂  ^̂  

We will divide now the smoothed histogram in two parts. The separation point will be 

noted V and represents the grey level where the histogram reaches the minimum value. We 

can estimate now the iniţial guess of the parameters for the Gaussian functions using the next 

relations: 

Z M O . (5.62) 
/=() i=v+\ 

255 

/i, (5.63) 
(=0 /=f+l 

cr, = 
1 

I X M ' ) - (' - P, y = , ^ ÎHO-o - A: ^ (5.M) 
u+l 

u 

/=() /=L>+1 

We will note the Gaussian described by one set of parameters as follows: 

p 
GXx) = ^ e ^̂  , (5.66) 

cr. 

where i can take the values 1 and 2. 

Going fiirther we fmd the exact value for the parameters by minimizing the next 

equation: 

255 

. (5.67) 
/=0 
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Finally, we determine the threshold, as being Ihe intersection point of the two 

Gaussians by solving the next quadratic equation: 

p 0 \ 

•7" + 
/ 

Ml 
\ /^r + 2 log 

Pa 

l ^ i " J Wi J [p.a.j 
= 0. (5.68) 

If the equation has two solutions we chose the one, which is situated between and H2. 

For the regions where it was not possible to compute a threshold using the method 

aescribed beforc we will estimate one from the neighbors, using a linear interpolation or a 

simple weighted scheme. Finally, we will smooth them by local averaging using the following 

mask: 

" 1 

S = 
LI ^ 

1 2 1 
J - 1 - i -
V2 V2 

(5.69) 

The last step is to compute a threshold for each pixel. We will consider the situation as 

on can see in figure 5.4. 

Fig. 5.4. Linear interpolation of individual pixel thresholds. 

The threshold value for the pixel noted in the figure 5.4 with P is computed using the 

next relation: 

^ _ b-J-T, +h-c-Tg + a-d -T^ + a • c • 
{a + b)-{c + d) 

(5.70) 

Ţ), Tb, Tc and Tp are the thresholds for the four adjacent regions to the region where 

our pixel is situated. The position of the pixel in the window is given by the dimensions a, b, c 

and d. 
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5.2 New Image Processing for Stereo Vision 

In stereovision the main problem is to identify the same point in both pictures obiained 

from ihe two cameras, which belong to the stereo sensor. This problem is also known as ihe 

correspondence problenu reference [EF03a]. In our practicai experiments we developed two 

types of stereo sensors, one in non-parallel configuration and the other one in parallel 

configuration. A complex analysis of the measurement errors for these two types of stereo 

sensors was presented in reference [TSIN02]. The conclusion was that the accuracy of the 

image-processing aigorithm has a big influence to the accuracy of the measurement results. 

5.2.1 Marks selection 

The fîrst problem was to decide what types of marks one can use in order to identify 

them in the pictures obtained from the CCD cameras, reference [NITS03]. One solution was 

to use crosses, see figure 5.5.b: the other one was to use circles, see figure 5.5.a. We decided 

to use circles and the reasons w hy we chose them are presented in the follow ing parts of this 

chapter. 

u) CirXic ^^tC'uss 
Fi^. 5.5. Marks used to he identified in ima^e pnjccs.s'ng. 

The accuracy of the information obtained from the marks is directly dependent to the 

accuracy of the detected edge points. If we take a circle having a radius r the total length of 

the cdges is given by the next relation: 

A . . . (5.71) 

For a cross, having the dimensions 2r horizontal and 2r vertical, the total length of the 

edges is given by the following relation: 

(5.72) 
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With these two relations we show the fact that the number of thc edge points for a 

circle is smaller than the number of the edge points for the corresponding cross. So, we have 

to detect more edge points in case we use a cross than in case we use a circle. Each one of the 

edge points is detected with an error and influences the information used in our further 

calculations. That means, more edge points more errors and fmally, bigger influence to the 

usefiil information. 

In the first phase we identify the circle making use of specialized software. This 

software offers the possibility to recognize a model, which was taught in a stage before. The 

problem is that, this software is specialized to identify a form, as an entire, but the information 

we want is at a pixel level. There is a possibility to use a correlation function implemented in 

this software, as a second step for the model recognition, but even if we use it the results are 

not good enough. A detailed analysis of the errors of the 3D stereo measurement system, 

where we used this correlation ftmction for the model recognition, is presented in references 

[NIT02], and [TSIN02]. 

According to these results, we decided to use from this software only the ftinctions 

necessary to recognize a form as an entire and we developed our own functions to go to the 

pixel and further to the sub-pixel level. In figure 5.6, one can see the model we used to be 

recognized in both calibration and measurement procedures implemented for the 3D stereo 

measurement svstem. 

Fig. 5.6. Mode! to he recognized. 

We used, at the beginning this type of circle instead of the type presented in figure 

5.5.a, because our calibration plate was ordered to make use of the correlation function from 

the image processing software we had at that moment. To use the correlation function the best 

model was this one from the figure 5.6. 
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5.2.2 Matheniâtîcal approach 

As we have already explained, in the first phase we recognize all the circles from ihe 

calibration plate using the model from the figure 5.6. With that procedure we will obtain the 

approximate pixel coordinates of the middle of the circles for each circle. In the second phase 

we will take each circle separately and we will determine the pixel coordinates of its weight 

point, as it will be described in the following part of this chapter. 

We started by making a segmentation of the image with a fix threshold. The threshold 

value is taken 127, which means the middle between O and 255. O represents the black level 

and 255 the white level. Between these values we have different grey levels. It's very 

important before we make the segmentation to analyze the image histogram and according to 

the histogram to adjust the illumination. We have to avoid the sitiiation when there is not 

enough light (too many pixels having the value 0. in the image histogram) and the situaiion 

when there is too much light (too many pixels having value 255 in the image histogram). An 

image histogram represents the number of the pixels having a ccrtain level of grey for each 

one of the grey levels, defined between black and white. In figure 5.7, we represented the 

histogram for an image composed by background having, in reality, only one grey le\ el and 

an object also, in reality in one grey level, but of course different to the background grey 

level. 

Pixel No. 4 t 

( i r e y L e v e l 

Fi^. 5. 7. Example of histogram. 

The results after this segmentation with a fix threshold were not so good and we 

decided to make a new image segmentation with a dynamic threshold. This way, we had to 

replace for each circle the fix threshold with a new value, which would provide us a betier 

segmentation of the image. Our idea was to take a square region around each circle so that. in 

this region the raiio between white points and black points is the same. We will consider the 

square having the dimensions 4R x 4/?, where R is the radius of the circle. From the 
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geometrical dimensions we can compute now the ratio between the black points and the total 

number of the points situated in one square region, as one can see in relation (5.73). 

TouIBlackPOISTS ^ , , 
ralu) = 

ToîalPOISTS 
( 5 . 7 3 ) 

Relation (5.74) is a detailed foim for relation (5.73): 

raîio — 
n: • R' - JT • + X' v-.v" 

16-/?' 
(5.74) 

where the meaning of the notations becomes clear looking at figure 5.8. 

Fig. 5.H. Deiails uf a square region from the calibration plate. 

In order to simplify our method and to make it more accurate we will make the small 

circle, situated inside of the big circle, black. There are two possibilities. One is to make it in 

the image; it means to set aii the pixels, which define the small circle to the value zero. The 

second possibility is to paint in black the small circle directly on the calibration plate. Tlie 

second solution has two advantages. First one is that the value for the ratio is computed more 

simply and more accurate. The second one is that we don't need any software function to fmd 

the points, which belong to the small circle and to set them to the black level. If we chose the 

second solution we have to changc also the relation to compute the ratio. This way, the 

relation (5.74) becomes, as follows: 

_ n -
ratio = ' ' \ =0 .19625 

\ 6 R -
(5.39) 
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Also, figure 5.8 vvill bc changcd, as onc can sce in figurc 5.9. 

4»R 

Fig. 5.9. Details oj a region from îhe caiibrarion plate w iîh a black point. 

The problem is now that in order to divide the image in 25 regions where the ratio of 

the black points is constant, given by the relation (5.75), we need for each circle the value of 

the radius R. The method to compute these values is presented in the following parts of this 

chapter. 

We identify flrst an approximate position for the middle of the black circle in the 

image taken with a camera. We used an image processing software, which gives the 

possibility of teaching one model and then this model is identified in the picture. We wiW 

defme now a square region centered on the position where a circle was identified. The side of 

the square is 50 pixels. We took this number because the maximum radius of one circle in our 

case is 20 pixels and this way, we are sure that the circle is inside of the square. 

Going further. we will analyze now the grey level of pixels, belonging to such a square 

region, starting from lefi to right (x direction), for different v values. The values for v should 

be situated between O and 5 pixels in negative direction relative to the detected middle of the 

circle and also between O and 5 pixels in positive direction. This way, we are sure ihat we 

will analyze the entire region where ihe real middle of the circle is located. We start by 

computing the next relation: 

(5.76) 

where gixi. vj) is the grey level for the pixcl whose coordinates are Vy. The value L is equal 

to the corresponding value for / where the maximum was determined. We continue by 

computing now the next relation: 

(5.72) 
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As we said, we repeat this procedure for difTerent y values. For each value » we 

compute the difference according to the relation (5.78): 

(5.78) 

Finally, we compute the maximum radius in x direction, using the following 

relation: 

R ^ = A f a x { R X y , l (5.79) 

We will repeat the same procedure from down to up (y direction) for different x values 

in the same conditions as we did before from left to right. This way, we will compute step by 

step the following four relations: 

A g k , Vo) = , vv_,)- ^{.v,, V,,,)), (5.80) 

Ag{x„y,)= (5.81) 

V, - Vo, (5.82) 

=iV/ar{/?.(x,)}. (5.83) 

The final value for the circle radius will be computed, as one can see just below; 

R +R 
(5.84) 

We obtain two different values for the circle radius, R^ and Ry because what is a circle 

in reality suffers some modifications, by projection in the image and becomes an ellipse. We 

can approximate the surface of this ellipse with the surface of a circle having the radius 

according to the relation (5.84). 

In this moment we have the approximate coordinates of the middle of each circle and 

we know also the radius in pixels for all of them. We can define now a .square region around 

each circle. We know that the total number of the pixels from one region can be computed 

using the next relation: 

255 

TotalPOINTS = 16*7?' , (5.85) 
r = 0 
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where p(z) represents the number of the pixels whose grey level is z. The total number of the 

black points is computed with relation (16), as follows: 

/ 

ToîulBlackPOINTS = ^ p ( r ) , (5.86) 

where T is the threshold. Knowing the ratio between the black points and the total number of 

the points of a square region one can compute the threshold T . Having a new threshold for 

each square region of the image. we will make a new segmentation of the image in all of the 

25 regions. We make again the observation that now each region w ill have its own threshold. 

Going flirther, we have to compute the weight point of each circle. We will use the 

next two formulas: 

Z I . ^ s t v - V ) 

I Z . ? . l - v .v 
iiK-'.^^-R-l. • U . i O I 

;=0 /=0 

where gs(x,y) is defined by relation (19), as follows: 

. ^ .. // V)<7" 
O, tf g{x.y)>T 

If we note with N the total number of the black points from a region the relations 

(5.87) and (5.88) become. as follows: 

A-l 

C, = ^ , (5.90) 

Z.v. 
(5.72) 

' N 
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In this moment w c havc iwo ncw coordinates for thc middlc of cach circic. We have 

to say that the fomnilation "ihe middle of the circle" is not the right one, bccausc of two 

reasons. First reason is that we talk now about the weight point of a geometrica! entity. 

Second reason is that the circle from the calibration plate is not a circle anymore, in the image 

taken with the CCD camera, but an ellipse. 

5.2.3 Sub-pixeI approach 

Until now we worked only at the pixel level. The results were better than in case of 

using only the functions from the dedicated software, but we considered that we could obtain 

more. The solution was to go to the sub-pixel level, reference [Dev95]. We will start by 

explaining a real situation. We will consider a simple plate half white and half black. 

If we look with a camera to this plate the image, which will be stored on the chip, will 

be a little distorted. as one can see in fîeure S.lO.d. 

L / ulcu' cn f/w , /.'//> 

hlach-wuii pljl,. Ji real irr:ai:c nn (hc chin 

Fi^. 5.10. Dcrji/s al the cells level on the chip of a CCD camera 

We consider that the transfer from the chip image to the computer image take place 

without errors so the situation from figure S.lO.d is valid also at the pixcl level. The idea is 

that in rnost of the cases the border between an object and the background in the pixel image 

should be situated on the surface of one pixel not at the border between two pixels. From 

physical considerations we can't have in one cell of the chip two different levels of electricity 

and also the corresponding pixel can't have two levels of grey. We developed a mathematical 

algorithm, which will determine a sub-pixel value associated to thc location where the border 

between two levels of grey should be placed. 
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Our goal is to reach an accuracy of a tenth of pixel. To realize that we have lo cxplore 

each circle in the following way: we start from the weight point of the "circle" with lines to 

the edges of the "circle'\ Thcre are t\vo problems that must be solved. The first one is: how 

many lines we have to use? The second one is to compiite the grey ievel in certain sub-pixcl 

positions situated on this line. 

The number of the lines we should use is determined by the value of the angle between 

two consecutive lines. The length of the circle is computed using the relation (5.92), as 

follows: 

(5.92) 

where ^ p is the length of one edge of a square pixel. We want to make an exploration from 

tenth to tenth of pixel. The angle between two consecutive exploration lines will be computed 

with the next relation: 

r . 
Aa = aes . 

where n is equal to the number of parts in which we want to divide a pixel. In our case we 

take n equal to 10 and the maximum value for the radius. R. equal to 20. This way, we obtain 

for zlorthe value 0.28, which means we have to use approximate 1285 exploration lines. 

For each of these lines we will arialyze a part of it ha\ ing the lengih equal to the length 

of 5 pixels. The middle of this part is situated at a distance equal to the circle radius R. 

Between the Cartesian coordinates of one point siiuated in this part of the line and the polar 

coordinates of the same point one can write the next iwo relations: 

x = C + (5.94) 

y = +(/? + ( 5 . 9 5 ) 

where J takes values between -2.5 and +2.5. The difference between two consecutive values 

J is 0.1. C and C are the coordinates of the '^circle" weight point. 
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In figure 5.11, one can see thc correspondence between the coordinatcs (x, y) and the 

coordinates {ci. a). 

Fig. 5.1 L Correspondence betw een Carîesian anJ Polar coordinates. 

As we said before we want to have the grey level of the points situated at any location 

d on the exploration line. Using the relations (5.94) and (5.95) we are able to compute for 

each of the 51 values of d his corresponding coordinates (x, y ). 

In figure 5.12, one can see details at the sub-pixel level for one exploration line. 

-2 5 R from thc pomcr 

Fig. 5.12. Details for an exploration line at sub-pixel level. 

The problem is now that these coordinates (x, y) have float values and we know the 

grey level only for those, which have integer values. In the following part we will present a 

solution to compute the grey level of a point whose coordinates take float values. 
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In figure 5.13, we rcpresented a square formcd by nine pixels. 

• # 

• •• # 

# I- # • 

Fig. 5.13. Siih-pi.xel resolution. 

The values x any v are positive integer. They represent the location of the pixel in the 

image. With small circles we represented the grey le vel of the one pixel and we placed this it 

in the middle of the pixel. We are interested to compute the grey level of the point Sitiiated at 

the location (.vi. vi), as one can see in figure 5.13. To simplify the fijrther calculation we make 

firsi the next notations: 

Ar = X, - X, 

Av == v, - V . 

(5.96) 

(5.97) 

Now we can compute the grey level of the point situated at location (.ri, vO using the 

relation (5.98): 

^(-Vp Vi) = v) • O - Ar) • (l - Ay) + 

-f g{x + Uy + l)- Ar • Ay + g{x -h !,>')• ̂  • O - ^y) 
(5.98) 

In order to simplify the mathematical calculation and to avoid working with floai 

numbers we will define a new variable D as follows: 

The new variable D will take integer values between -25 and +25. 

(5.72) 
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One can compute ihe function G(D) using ihe next relation: 

fD-25^ 

10 
( 5 . 1 0 ( 1 ) 

This way, we divided an interval of five pixels in fifty sub-pixels intervals and we compuled 

for each sub-pixel interval the corresponding grey level. 

Going flirther we must find a mathematical relation, which approximates as good as 

possible the function G{D). We will make first a graphical interpretation of the computed 

values for G{D). In figure 5.14, one can see the approximate graphical representation of this 

function. 

G ( D ) 

/ i 

D. 
-> O 

Fi^. 5.14. Graphical representation for G(D). 

One can see that this function can be approximated with an arctan function, as 

follovvs: 

G(D) = G, -f K^ . arctan(A'^ • {D - D,)). (5.101) 

Our final goal is to compute Do. Unfortunately, we can't compute Do without computing the 

other three unknowns Go, Kq. Kd. from the equation (5.101). One can write the equation 

(5.101), as follows: 

(5.102) 

where D, and G/ are calculated in the steps before. As, we told we have fifty pairs of points 

(A,G;). For each pair we can write the equation (5.102). This way, we will obtain an over 

determined system of nonlinear equations. To solve system we have to accomplish two steps. 
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First step is to find a good set of starting values for Do, Go, Ko, and A'G. The sccond step is to 

make the nonlinear equations linear. After making these two steps, we obtain an over 

dctemiined system of linear equations, which will be solved using least square method. VViih 

ihe new solutions we will repeat again the algorithm. We will stop when thc dilTerence 

ber^ een two sets of consecutive solutions is less as a certain value. 

The obtained value for Do will be used to calculate the corresponding xo and vo. For 

that we will usc the relations (5.104) and (5.105). The new coordinates for the circle weight 

point will be computed using the next two relations: 

(5.103) 

tyM 
C , (5.104) 

NP 

where NP is the total number of the edge points and .roCA:) and yo(k) are the computed 

coordinates of the edge points. These new coordinaies were used in our further calculations. 

The results of the 3D measurements made with our stereo sensor will be presented in the 

chapter three of this paper. Also a detailed analysis of the errors of the stereo sensor will be 

presented in chapter three too. 

In the following part of this chapter we will explain the solution developed by us to 

find a good set of starting values for our variables. Do, Go, Kp, and Kq. reference [TSNI04]. 

We will compute first the next difference: 

= (5.105) 

where / takes values from -24 to +24. We will determine maximum of ZIG and according to 

this maximum we will obtain the starting values for Do and Go. 

To obtain the starting values for Kd and Kc we will take two pairs of points (D,, G j 

and (Dy, Gj) and we write the next two equations: 

G, - G, = K,,.arctan(A;,(D - D J ) , (5.106) 

G; - G , = A-̂ . ̂ 2iXCXzn[K,[D - D J ) . (5.107) 

We will solve this system and we will obtain the starting values for Ko and Kq. 
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The solution to solve this system will be presented in ihe following part of this 

chapier. To simplify the form of the equations, described by the relations (5.106) and (5.107) 

vve make the following notations: 

(5.108) 

G: - GO = a , . (5.109) 

(5.110) 

(5.111) 

Kp = X, (5.112) 

(5.113) 

With these notations the relations (5.106) and (5.107) will become as follows: 

a, = v-arctan6j - x , (5.114) 

= v-arctan/>^ - x , (5.115) 

where x and y are our unknowns and a], ai, b\ and bi are known. We eliminate v from the 

equations (5.114) and (5.115) and we obtain, as follows: 

â  •arctan/)^ -x = •arctanZ)^ -x . (5.116) 

We will make now a graphical analysis of the relation (5.116). We will defmc two 

functions f\ and^^. as one can see in the next two relations: 

/ i (x) = a, • arctan • x , (5.117) 

f i = • arctan • x . (5.118) 

89 

BUPT



The graphical representation of these iwo functions is presented in figure 5.15. 

f-( \» 
Fig. 5.15. Graphical represenfafion of the functions f j and f). 

We have to say that the representation from the figure 5.15 shows the situation when 

the equation (5.116) has three solutions O, x\ and xi, This is the case we should have because 

we obtained this equation from a real situation. It means, that the equation must have these 

three solutions. We are only interested to calculate JC2, because we kiiow from the definition of 

ftinction G(D), relation (5.101), that the coefTicient Ko. which is the same with x, relation 

(5.112), has only positive values. 

The situation when the equation (5.116) has only the soiution O is graphically 

represented in figure 5.16. 

f:(x) 

Fig. 5.16. Functions fi and f - thcoretical situation. 

To solve the equation (5.116) we will compute first the deriv ations of the functions in 

the origin. For a function/having the form described by the relation (5.119), the derivation of 

this function will be calculated using the relation (5.120). 

/ ( jc) = a' arctan b • x 

/ ( . v ) = 
I + (arclan b • x)' 

(5.119) 

(5.120) 
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That means that for our functions /l and / : the derivalions in the origin will have the 

following values: 

(5.121) 

(5.122) 

Comparing the values for these two derivations we will know what sigh has the 

difference between f\ andfz in the positive vicinity of O and also in the negative and positive 

vicinity of the solution jc:, see figure 5.15. The solution jc: will be computed numerically using 

a starting value and then several iterations. 

We will present in the next part of this chapter the linearisation procedure. The 

equation (5.102) can be written also in the following form: 

F, , = G : -h K', . arcian(Kl • {D, - Dl))- G, = O, (5.123) 

where are iniţial values for Do, Go, Â D, and Kq and Foi.Gi ^̂  ^̂ ^̂  ^^^^ 

notation from ( d J , g J , , / ^ g ) . 

We will compute then the next four derivations: 

dF d F , . 

SD, 

dF 

SG, SG^, 

dF 

SK, SK, 

dF 

SK, SK„ 

= 1 , 
/>>;;, o ".a;;, A;; 

= A;' • (D - Di;)—p—^—^, 
o:.::.;,.;: ' ^ -(A-D;;))^ 

/X;a;; .A;; 

(5.124) 

(5.125) 

(5.126) 

(5.127) 
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With these last relations we can obtain a linear equation for (5.102) as follows: 

oO,, (j/v ,̂ ()K 

We will make linear all the nonlinear equation of our obtained over-determined system 

of equations, using the equation (5.128). The new over-determined system of linear equations 

will be solved using least square method, in the same way as we made with the systems 

solved in sub-chapter 4.2.2. 
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Chaptcr 6 

Analvsis of the 3D Measurements 

6.1 Contributions at the Development of Accurate Measurement 
Procedures 

To measure we will use the same device as in the calibration procedure, see figure 4.5, 

chapler 4. We will move the plate in different positions and we will measure with the stereo 

sensor the 3D coordinates of the points from the calibration plate. The big advantage of this 

device is that we can control very precisely the x, v, and z movements of the plate (accuracy 

0.025 mm, see 4.2.1). This way, we could verify the accuracy of the measurements made with 

the calibrated stereo sensor and we developed an algorithm to improve substantially the 

accuracy of the measurements. 

The goal is to measure the 3D coordinates of a point with respect to the world frame 

using the stereo sensor. We consider a point P having the coordinates Au. iv, r,, with respect to 

the world frame. This point will have the coordinates XR, VR. IR with respect to the camcra 

right frame and the coordinates A ,̂ VL. -L with respect to the camera left frame. With ihese 

notations one can write the next relation: 

i ! r.. ^ 
1 1 n A', "0", 

V r . 
1 

V 
• 

_ 1 

1 

i 
1 — y 

1 

r= 
0 

0 • 

.Oj 

.6.1 i 

The relation (6.1) can be written, as follows: 

A" 1 
1 r 

j 

i 

y'n — - r (6.2) 

where \ R represents the rotation from the world frame to the camera left frame and R the 

rotation from the world frame to the camera right frame. ^^ are the translations from 
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the world frame to the camera left frame and / ,t, are the translations from the world 
' « »» - » 

frame to the camera right frame. 

From the two images made with the stereo scnsor \ve can find the pixcl coordinatcs of 

the point P. We denote these coordinatcs with Xi. Y'i. for camera left and with Xr. Yr, for 

camera right. 

Between the 3D coordinatcs and the pixel coordinatcs of the point P one can write the 

nest relations: 

-V. - c : . 
/ 

v P: P: J 
1 

N 
P: 

J 

) • , - c f 
/ 

\ 
, P: P: 

I 

/ 

/ 

V p- ' P: J 
1 

/ 

= -Vi . 

r , = V , . 

= V,. 

P: P: 

H ~ A' 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

where / j f , , C f . C , ^ .d^ are the internai parameters for camera left and p ^ X ^ 

are the internai parameters for camera right. The values for these parameters are known 

because they were computed in the calibration procedure. We will make the following 

notations: 

1 -v, - c ; 

({X„-CJ I V - C R ] 

P: P: 

(6.7) 
P: 

Y, -C 
f 

\+d' 

= ctv~ . (6.8) 

P: P: / / 
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l + r f ' 

V - r ' 

P- P: 

(6») 

/ / 

V - c ' fi . 

l+d' 
r ( . v „ - c . y (), - c , n i 

= cn 

— + 

P: P: 

Pr 
(6.10) 

With these notations the reîaiions (6.3), (6.4), (6.5) and (6.6) will become, as follows. 

ctx'- • Z^ = -t^ , (6.11) 

cty'- • z^ = >7, (6.12) 

(6.13) 

c t y ' - z . ^ y , . (6.14) 

From the equation (6.2) and the relations (6.11), (6.12). (6.13) and (6.14) one can 

obtain: 

[rl'ctx'- + rUty^'- + - [r^ctx^ + r^ct)-'^ + rf = t^^ - , 

(rlctx' + r.'-cty' + r / - (r^ctx' + r.'cty' + r / = - , 

(r/ctc^ + r/cH'^ + 

(6.15) 

(6.16) 

(6.17) 

whcre 

'A 
/ 

r: 
r 

/:: 

(6.1<S) 

and 

n 

f\ 

(6.19) 
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The equations (6.15). (6.16) and (6.17) can bc wrilten using ihe matrices, as follovvs: 

coef. • -L 
/ 

(6.20) 

where 

coef. = r^cîx'' -f //cA'^ -l-

r-cîx^ 

[r.'ctx'^r.^cty'^r^) 

(6.21) 

The problem now is to compute ihe inverse of matrix coef:. This problem is solved 

using a special algorithm developed in the reference [PTVF92]. Knovving this inverse mairix, 

the solution for our system is, as follows: 

1 
"L 

" R 

= (coef. )• 

î. -r. 

(6.22) 

Using the relations (6.11), (6.12), (6.13) and (6.14) we can compute the values for x/., 

yt and for XR.yp,. Knovving now the 3D coordinates of the point P with respect to the cameras 

frame we can easy compute the 3D coordinates of this point with respect to the world system: 

r n 

.Vm -V/ 
= J -

-H 
1 1 1 

(6.23) 
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In figure 6.1 one can see the measured coordinates of the calibration points situated in 

a position which is different than the positions used in the calibration procedure. 
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Fig. 6.1. Measured 3D coordinates. 

In figure 6.2 one can see the real coordinates of the same points. 
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R^vwn 1 MMMfUvi 1 

CJI twttailMM 

nonMretrt 1 ' d 
n J 

|C r |D 

( . o ) 
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f / g . 6.2. Real 3D coordinates. 

In the following parts of this chapter we will discuss the results obtained for the two 

possible configurations of the stereo sensor: non-parallel configuration in 6.2 and parallel 

configuration in 6.3. 
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6.2 Non-parallel Configuration 

In this sub-chapter we will present first an analysis of the errors obtained with the non-

parallel stereo sensor. In the second part a special procedure to reduce these errors will be 

explained, followed by a new error analysis. AII of these are also presented in the reference 

[NIT02]. 

6.2.1 Analysis of the errors 

In figure 6.3 we represented the distribution of the measurement errors for the 

coordinate x. The measured points were situated in a plan parallel with the plan defined by the 

axis .r and v of the stereo sensor frame. We made this representation because the variation of 

the errors, if only z coordinate is changed, is much smaller then the variation of the errors if .v 

or V coordinates are changed. The measured points are uniformly placed, on the calibration 

plate, in a square area with a side equal to 150 mm (see sub-chapter 4.2.1). The coordinates of 

these points will be measured relative to the stereo sensor frame. The origin of the stereo 

sensor frame is situated very close to the middle of the square area where the points to be 

measured are located. This means that the points situated on the edges of this square area will 

have their x and y coordinates approximately -75 mm or +75 mm. To simplify the 

representation and the calculations we consider the .r and v coordinates of the measured points 

to be situated between O and 6. This way, O will correspond to -75 mm and 6 to +75 mm. 

o o 

Fig. 6.3. The distribution of the errors for the coordinate x. 

The errors for the coordinate x are situated between -0.33 mm and +0.5 mm. These 

errors are computed as the difference between the measured coordinate jc obtained from the 
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stereo sensor and the real coordinate x generated by our special calibration device (see sub-

chapter 4.2.1). 

In the figure 6.4 we represented the distribution of the measurement errors for the 

coordinate v. 

-0.6 
6 

V 0 0 

y X 

Fig. 6.4. The distribution of the errors for the coordinate y. 

The errors for the coordinate v are situated between -0.42 mm and +0.34 mm. 

In the figure 6.5 we represented the distribution of the measurement errors for the 

coordinate z. 

o o 

Fig. 6.5. The distribution of the errors for the coordinate z. 

The errors for the coordinate z are situated between -0.95 mm and +0.94 mm. 
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6.2.2 New method to eliminate the systematic errors 

Looking to the graphic from the figurc 6.4, it is obvious that a systcmatical error 

appear in the measurement process. We will define a correction lunction vvhich has as 

\anables ihe coordinateXo and voof the measured point. One can vvrile the tbllowing relation: 

= (6.24) 

where .v is the new value for the coordinate .r of the measured point. Our next problem is to 

find a mathematical relation for the flinction/r, knovving its values in aii the 49 measured 

points represented in figure 6.4. If we look in figure 6.4 to the same x we can see that the 

variation of the errors is approximately linear. So, one can write the following relation: 

(6.25) 

where B] and Bo must be computed. For the same v we wi!l approximate the variation of the 

errors with the following relation: 

+ . - I j . r - h . (6.26) 

where Aa, A}, A2, A\ and Ao musi be computed. This represents in fact a polynomial 

approximation. With these two relations one can write the function/c. as follows: 

f ^ A.y A, xB,y C,. (6.27) 

To find all the coefficients we use the least squares method. We start from the next relation: 

Y , Z ( 4 - V - + A-v; + A X ; + 4A- + + Q - J \ (A-,, y,)) = min. (6.28) 
;=(! .=11 

We will note this sum with S. Going further, one can write for each coefficient the next 

relation; 

=0. >6.29) 
dC 
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This way, we will obtain a linear system composed from six equations and having six 

unknowns. We solve the system and we obtained the following correction function: 

f X x . y ) = 0 . 0 0 - 0.0109.V' -h 0.0238jc' - 0.0167.V + 0.038 v - 0.2244 . (6.30) 

Using this correction function the new distribution of the measurement errors for the 

coordinate x is as one can see in figure 6.6. 

y 

Fig. 6.6. The distribution of the errors for the coordinate x after correction. 

The errors of the coordinates x are now situated between -0.125 mm and +0.125 mm. 

These errors are more than 3 times smaller than in the case when no correction was used (see 

figure 6.3). It is also obvious that the systematical errors, which clearly appear in figure 6.3, 

became insignificant after correction, as one can see in figure 6.6. The distribution of the 

errors, presented in figure 6.6, includes also the effect of the uncertainty of the calibration 

device (see 4.2.1). 

We will apply the same procedure for the coordinates y and z to reduce the 

systematical errors. The correction ftinction will be as follows: 

-0.058>' +0.142 ;c€ 

O.OSjF + 0.02 jc € 

0.027;c-0.123>' + 0.49 x e 

[ 0 , 3 b € [ 0 , 3 ) 

(3 ,6l> 'e 
0,6\yG 

0,3) 
3,6 

(6.31) 

In this case it was not possible to approximate all the measurement area with only one 

function, so we had to divide this area in three sub-areas. 
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Using this correction function the new distribution of the measurement errors for the 

coordinate V is as one can see in figure 6.7. 

o o 

Fig. 6.7. The distribution oj the errors for the coordinate y after correction. 

The errors after correction are situated now between -0.12 mm and -K). 12 mm. 

For the coordinate z we use the following correction ftinction: 

f . =-0 .256x + 0 .036>-0 .79 . (6.32) 

Applying this correction ftinction the new distribution of the measurement errors for the 

coordinate z is as one can see in figure 6.8. 

0.2 

V 

Fig .6.8. The distribution of the errors for the coordinate z after correction. 

The errors are situated now between -0.149 mm and +0.149 mm. So, the errors range was 

reduced more than 6 times. 
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In the table 6.K one can see better the obtained improvement of the stereo sensor after 

the correction functions were applied. 

Table 6.L A comparison betw een the errors bcfore and 
a/fer the correction function was appUed 

E r r o r s Min. (mm) Max. (mm) Range (mm) Ratio(before/after) 

X before correction -0 .33 0 .50 0 .83 3.32 
X after correction -0 .13 0 .13 0 .25 

3.32 

y before correction -0 .42 0 .34 0 .76 3.17 

y after correction -0 .12 0 .12 0 .24 
3.17 

z before correction -0 .95 0 .94 1 .89 6.34 
z after correction -0 .15 0 .15 0 .30 

1 
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6.3 Parallel confîguration 

In the following parts of this sub-chapter we will make an analysis of the errors of the 

measurements obtained with a stereo sensor built in parallel confîguration. We will present 

four cases. In the first case we used Lenz calibration method (see 3.3.2) to calibrate the 

cameras combined with our best image-processing algorithm (see 5.2.3). In the other three 

situations we used our calibration method (see 4.2.2), but for the image processing algorithms, 

three different types: algorithm developed only with the functions from the dedicated software 

(see 5.2.2), algorithm based on the weighted point of a circle (see 5.2.2), and algorithm which 

uses the sub-pixel approach. The last one represents our best image-processing algorithm. 

Going flirther, for each case we will present four graphics. The first three graphics 

show the errors distribution obtained for the coordinates x, v, z and the last one the errors of 

the position vector v. The error of the position vector was computed using the next relation: 

Av = ^(Axf + ( A V ) ' + (AZ)' . (6.33) 

We have measured 25 points situated in a plan. In our graphics the coordinates x and v 

indicate the position of the measured point in this plan and the coordinate z indicates step by 

step the four errors presented before. 

As we said before, the first group of four graphics presents the errors obtained when 

we used only the Lenz method to calibrate the stereo sensor. In figure 6.9, we represented the 

errors for the coordinate x, These errors are situated between -0.117 mm and +0.165 mm. 

o o 

Fig. 6.13. The dis tribut ion of the errors for the coordinate x. 
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In figure 6.10, we represented the errors for the coordinate v. These errors are situated 

between -0.553 mm and -^0.437 mm. 

y 0 0 

Fig. 6.10. The distribution of the errors for the coordinate y. 

In figure 6.11, we represented the errors for the coordinate z. These errors are situated 

between -5.516 mm and +4.469 mm. 

Fig. 6.11. The distribution of the errors for the coordinate z. 
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In figure 6.12, we represented the errors for the position vector Av. These errors are 

smaller than 6 mm. 

6000. 

4000̂  
3000, 

• O 

F/g. 6.12. The dis tribut ion of the errors for the position vector. 

We can see from these first four graphics that the errors are very high. This is due to 

the fact that we used a model for the camera in which the scale factors and the image center 

are not calibrated. Only approximate values are used. Also, the effect of the distortion is not 

considered. The calibration points are situated only in one plan not in a 3D space, as it will be 

considered in our final calibration method. 

The second group will show the errors obtained when the camera are calibrated with 

our calibration method, using in the image processing algorithm only the flinctions from the 

dedicated software. 

In figure 6.13, we represented the errors for the coordinate x. These errors are situated 

between -17 |im and +37 |Lim. 

o o 

Fig. 6.13. The dis tribut ion of the errors for the coordinate x. 
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In figure 6.14, we represented the errors for the coordinate v. These errors are situated 

between -116 |Lim and +88 |im. 

o o 

Fig. 6.14. The dis tribut ion of the errors for the coordinate y. 

In figure 6.15, we represented the errors for the coordinate z. These errors are situated 

between -295 |im and +47 |im. 

o o 

Fig. 6.15. The dis tribut ion of the errors for the coordinate z. 
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In figure 6.16, we represented the errors for the position vector A\\ defined by the 

relation (6.33). These errors are smaller than 350 ^im. 

o a 

Fig. 6.16. The dis tribut ion of the errors for the position vector. 

The next four graphics are made for the method where we calculated the weighted 

point of a circle. As we will see, the errors will be situated almost in the same range as for the 

method presented before. 

In figure 6.17, we represented the errors for the coordinate These errors are situated 

between -39 |im and +47 |im. 

O D 

Fig. 6.17. The distribution of the errors for the coordinate x. 
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In figure 6.18, we represented the errors for the coordinate v. These errors are situated 

between -41 fim and +50 |im. 

o Q 

Fig. 6.18. The distribution of the errors for the coordinate y. 

In figure 6.19, we represented the errors for the coordinate z. These errors are situated 

between -175 |im and +272 |im. 

o D y - X 
Fig. 6.19. The distribution of the errors for the coordinate: 
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In figure 6.20, vve represented the errors for the position vector Av. These errors are 

smaller than 300 |im. 

D o 

Fig. 6.20. The disîhbution of the errors for the position vector. 

The last graphics are made for the method where we used the sub-pixel algorithm. 

This method was presented detailed in sub-chapter 5.2.3. As we said in 5.2.3, the problem was 

that the border between white and black is in most of the cases located somewhere between 

two adjacent cells of the CCD camera, respectively somewhere between two adjacent pixels 

of an image. So, in order to determine the exact position of this border a sub-pixel approach is 

needed. This is the best method and we will obtain the smallest errors, as we will see in the 

following part. 

In figure 6.21, we represented the errors for the coordinate jc. These errors are situated 

between -19 |im and +24 |im. 

O Q 

Fig. 6.13. The dis tribut ion of the errors for the coordinate x. 
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In figure 6.22, we represented the errors for the coordinate y. These errors are situated 

between -20 |im and 17 |im. 

o D y - X 

Fig. 6.22. The distribution of the errors for the coordinate y. 

In figure 6.23, we represented the errors for the coordinate z. These errors are situated 

between -91 \xm and +79 ^m. 

IOD 

O • 

Fig. 6.23. The distribution of the errors for the coordinate z. 
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In figure 6.24, we represented the errors for the position vector Av. These errors are 

smaller than 100 |Lim. 

O D 

Fig. 6.24. The distri bulion of the errors for the position vector. 

AII these graphics were obtained using MATLAB programs. The measurement data obtained 

from the stereo sensor were used in these programs to generate the graphics discussed before. 

These programs are presented in Annex E. 

In the table 6.2 we present a brief comparison between all the four cases presented 

before starting with figure 6.9 and fmishing with figure 6.24. 

Table 6.2. A brief comparison between alt the cases 
analyzed before for the parai lei sensor 

E r r o r s Min. (pm) Max. (pm) Range (pm) Ratio(i/( i+1)) 

X L e n z Method +sub-pixel -117 165 2 8 2 
X Our Method + software -17 37 54 5 .22 
X Our Method + weight point -39 4 7 86 0 .63 

X Our Method + sub-pixei -19 24 4 3 2.00 

y L e n z Method +sub-pixel -553 4 3 7 9 9 0 

y Our Method + software -116 88 2 0 4 4 . 8 5 

y Our Method + weight point -41 50 91 2 .24 

y Our Method + sub-pixei -20 17 37 2 .46 
z L e n z Method +sub-pixel - 5 5 1 6 4 4 6 9 9 9 8 5 
z Our Method + software -295 4 7 342 29 .20 
z Our Method + weight point - 1 7 5 2 7 2 4 4 7 0 .77 

z Our Method + sub-pixei -91 7 9 170 2.63 
Am L e n z Method +sub-pixel 0 6 0 0 0 6 0 0 0 

Am Our Method + software 0 350 350 17.14 

Am Our Method + weight point 0 300 300 1.17 

Am Our Method + sub-pixei 0 100 100 3.00 
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Chapter 7 

Industrial Applications 

In industrial applications, a stereo sensor can be used in two configurations: as a fixed 

sensor, references [ICK99], [JT02], and [TSrN04] or, as a mobile sensor mounted on the robot 

hand, references [DK02], and [iK98]. 

The first configuration can be emplo\ ed in measuring the angle betwecn the axles of a 

vehicle and the plane in which the wheels are rotating. The accuracy in such applications has 

to be very high. In sub-chapter 7.1 is presented a measurements system based on stereo 

sensors. which provides the required accuracy. This system can replace the current solution, 

which uses very expensive laser devices. 

The second configuration, mobile sensor, is found useful in automatic processes, such 

as robotic hands mounting of wândows for passenger cars. Here as well, this solution with a 

stereo sensor mounted on the robot hand can replace, with better resuirs, the current solution. 

It needs only two cameras instead of four or eight, which are needed for the multi-camera 

method, which is presently used. In sub-chapter 7.2 is presented a test application, which 

makes use of a mobile stereo sensor. 

7.1 Fixed Sensor Configuration 

The wheel alignment problem is an important task and concems all car producers. 

There were developed a lot of measurement systems to be used for solving this problem. At 

the beginning there were produced systems based only on mechanical methods. The 

disadvantage of these methods was the time for measuring which w as too long. Also, the 

accuracy of the measured results was influenced by the errors of the tire surfaces. The second 

step was to build measurement systems. which use both mechanical and optical methods for 

measuring. In this category we have systems based on laser technology and sysiems, which 

use cameras. The first ones have the disadvantage that they are very expansive. For the second 

type the accuracy is the task that must be improved. It is also important to know that the 

systems, which usc cameras, can be based on the multi-camera conccpt or stereo camera 

concept. We used ihe second possibilily. 
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In the following parts we define and then explain the two angles wc want to measure 

with our vision system. Camber is the inward or outward lilt of the wheel measured from top 

to bottom. This angle is adjusted to prevent excessive tire deterioration and to enhance 

straight ahead stability. It is measured in degrees and has several methods of adjustment. In 

figure 7.1, one can understand better the definition of this angle. In this figure, there are 

presented three possible situations for this angle: positive Camber, negative Camber and zero 

Camber. 

I I 
Positive 

Camber 
Negative (-) 

: Camber 

• t' 

O' Camber 

m 
•j , _ Xv 

Fig. 7.1. Definition of Camber. 

The angle formed by a horizontal line through the plane of one wheel versus a 

perpendicular line to the centerline is called the individual toe. This is the most criticai tire 

angle. When a horizontal line is drawn through the plane of each wheel, and they intersect in 

front of the wheels, this is called toe-in or positive toe. When they intersect behind the wheels, 

this is called toe-out or negative toe. In figure 7.2, one can understand better the definition of 

this angle. 

Toe-in 
Of 

Positive 
ToeW 

Toe-out 
or 

Negative 
Toe {'] 

Fig. 7.2. Definition of Toe. 
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In figure 7.3, one can see the stereo sensor and the light projector used to build the 

required measurement system. For the stereo sensor we used the parallel configuration as it 

vvas presented in sub-ehapter 4.1.3 and 6.3. 

Fig. 7.3. Stereo .sensor and light projecfor. 

The light projector is used to create on the tire surface, some marks, which could be 

further measured with the stereo sensor. In figure 7.4, one can see the shape of the structured 

light created by the light projector on the tire surface. 

Fig. 7.4. Structured light projected on the tire surface. 

There are two possibilities to make use of this structured light. First one is to use as 

marks the intersections between the light and different forms existing on the tire surface. As 

one can see in figure 4, in this category are included points 1 and 3. The second one is to use 

as marks the crosses defined by the structured light itself on the tire surface. To this category 

belongs point 2. 
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Having this information about the angles to be measured and the tools to be used, in 

the next step we have to define a mathematical model for the wheel in order to be able to 

measure these angles. 

First of all we define a coordinate frame for the wheel. We call this, the wheel frame. 

The origin of this frame is situated in the middle of the tire. Axe z is perpendicular to the tire 

so that the plane determined by axes x and v is parallel to the tire. Axe .r is horizontal. One can 

see all these details in figure 7.7. With these notations, Camber is determined by measuring 

the rotation of the wheel frame around x axe and Toe is given by the measured value of the 

rotation of the wheel frame around v axe. 

The angle information we need is obtained by knowing the orientation of the tire plane 

(the plane defmed by axes jc and v) relative to a reference plane. So, the task is to measure this 

tire plane. It is known that a plane is determined by at least three points, which are not all 

situated on the same line. Starting from the plane definition we decided to use three stereo 

sensors placed on a circle at equal relative distances between them, as one can see in figure 

7.5. 

Fig. 7.5. Description of the measurement sy stern. 

We explained in chapter 4 that in the calibration procedure of the stereo sensor is 

defmed a stereo sensor frame, reference [TSNI04]. It means, the coordinates of the points 

measured with a calibrated stereo sensor are given relative to its defmed stereo sensor frame. 

The three stereo sensors, which are fixed on a rigid plate, as one can see in figure 7.5, are first 

calibrated (see chapter 4). This means, each one has its own frame. The next step is to find the 

relative position and orientation of these three frames with respect to a reference frame. This 

is in fact the calibration procedure of our measurement system. 

In figure 7.6, one can see the calibration plate we have used in order to compute the 

position and orientation of the stereo sensors frames with respect to the reference frame. We 
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denoted with Sr the reference frame situated in the middle of the plate and with Ssh ^s: and 

S5.? the stereo sensors frames. In figure 7.6, it is drown only one sensor frame, because the 

situation is similar for the other two. The mathematical explanation, which follows for one 

sensor, will be applied in the same way for the other two sensors. With T(S/?-S5,) we denoted 

the transformation from the reference frame to one sensor frame. 

Fig. 7.6. Calibration of the measuremenî systern. 

The calibration plate, we used, has 121 points and we know very precisely their 

position with respect to the reference frame. We denote the coordinates of one point from this 

plate with xr, yR and zr, The same point will be measured with the stereo sensor and we obtain 

the coordinates xsi, ysh and z^,. According to the reference [Pau81], between these coordinates 

we have the following relation: 

(7-1) 

Using more than four points for each sensor we obtain an over determinate system of 

nonlinear equations. According to the references [ManSl], [Nas99] and [PTVF92] such 

systems are solved in two steps. First step, we make the system linear and second step we use 

least square methods to fmd the solution of the system. 

Going flirther there are two different methods of measuring. Until now, we have 

implemented in practice only one method and obtained test results, which are presented at the 

end of this sub-chapter. 

The method, which we have implemented, is based on identifying marks of type noted 

with 3, as one can see in figure 7.4. This method used the fact that on the surface of the tire 

there are several profiles, which modify the shape of the structured light projected on it. 
UM, ' Î ^ I T r i V N l C V 
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Because these shape modifications are very small we had to develop image processing 

algorithms to provide us enough and accurate information. We have used sub-pixel accuracy 

and segmentation methods according to the references [GLP99], [Par97] and [TSIN04]. 

Our goal is to identify points, which are in the same plane and of course this plane 

must be parallel to the tire plane. As one can see in figure 7.7, there are some profiles having 

circle shape on the surface of the wheel. The big advantage for these circles is that they 

defme, at least theoretically, each one a plane, which is parallel to the tire plane. 

Fîg. 7.7. Explanations for the tneasurement procedare. 

The structured light allows us to take for each stereo sensor maximum three points per 

circle. This way, we can use maximum nine points to compute the plane where the circle is 

situated. Using the best-fit method we eliminate from these points those, which have big 

errors and fmally, compute a plane parallel with the tire plane. Having this plane, we can 

compute the values for Camber and Toe. 

The second method is based on identifying marks of type noted with 2, as one can see 

in figure 7.4. The idea is to use the light crosses for identifying which pixel from the image 

obtain with one camera of the sensor corresponds to a certain pixel from the image obtained 

with the other camera. This way, we can measure the 3D coordinates for a lot of points 

belonging to the light lines projected on the tire. With this information the next step is to 

calculate the tire plane and its orientation relative to a reference plane. 

To test our system we use a special device having a wheel and the possibility to adjust 

it at different angles between - 3 and 3 degrees for both Camber and Toe. Before we start a 

normal measurement the wheel is fixed so that, the special device indicates O for both Camber 

and Toe. For this position, we make a zero measurement. It means all the measurements, 

which follow to this zero measurement, are done relative to this zero wheel frame. 
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For the diagrams, which follow we have measured ten different orientations of the 

wheel, but sometimes keeping one angle fixed. On the horizontal scale we have represented 

the real value of the angle in degrees. On the vertical scale we have represented the difference 

between the measured value and the real value of the angles. The unit used for this difference 

is the minute. 

In figure 7.8, one can see the distribution of the errors for Camber. They are situated 

between 0.40 and 4.06 minutes. It is important to mention that for the same Camber angle we 

obtained different errors, because the measurements system is unfortunately influenced by the 

value of the Toe angle. 

Fig. 7.8. Distribution of the errors for Camber. 

In figure 7.9, one can see the distribution of the errors for Toe. They are situated 

between -0.38 and 4.86 minutes. Also, here we obtained different errors for the same Toe 

angle due to the influence of the Camber angle to the measurement system. 

Fig. 7.9. Distribution of the errors for Toe. 
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Summarizing onc can say that vve havc succcedcd to build a vision sysiem using 

simple meihods and chcap componenls w ith a good accuracy. These first rcsiilts obtaincd in 

the measurement proccdure confirm us the fact that our vision systcm couid bc further 

developed and impro\cd. Using the sccoiwi i'^cthod, improving the qualiiy of the structured 

light and developing better image processing algorithms and mathematical algorithms we will 

be able to reach the accuracy of 0.1 minutes with our vision system. 

7.2 Mobile Sensor Configuratîon 

In this sub-chapter a test application, which use a stereo sensor in a mobile 

configuration will be presented. The stereo sensor will be mounted on the robot tool. The 

robot will be driven in different positions in such a way that certain parts of an object can be 

viewed and measured. In the following parts we will describe both theoretically and 

practically the test application we have developed. 

First step is to establish a frame for the object whose position we want to mcasure. The 

robot tool is moved in a position near the object, posiiion 0. as one can see in tlgure 7.10. We 

consider the robot tool frame for this position of the robot tool as being the object frame. We 

consider also this frame as being the reference frame for the next measurements. We m.easure 

four fixed points from the object using the stereo sensor. These points are noted 1, 2, 3 and 4, 

as one can see in the figure 7.10. We will obtain for each point its 3D coordinates with respect 

to the reference frame. which is the same with the object frame. In this moment the object is 

well defined by an object frame and four points whose 3D coordinates are known with respect 

to the object frame. For each point / we denote its coordinates ^^^Pi. 

Roboi 

^ Sk|—SKcf—S()hj XI 

J ^ / 1 

Fig. 7.10. The ohjcct frame Jefmition. 
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According to the explanations we can write the following relations: 

Ri.- / p ÔN p 

(7.2) 

(7.3) 

In the figure 7.10 one can see the practicai results obtained when we introduced one 

test object. The box named object frame represents the transformation from the robot tool 

frame to the robot base frame. By pressing the button Set Object Frame we set this frame to 

be our reference frame for the next measurements. In the box Relative Coords we have the 

coordinates of the measured point with respect to reference frame. 

New Model Inhoducing 
r Object Frame-

Ala:|-n OOh-Ô  

Beta: -l 

Model Name: 

|Modd_Apfi24_1 

Marii Index: MakNane: 
|MarkNo1 

Gama:pc304̂  
PredefM Frame 

SearchedMark: 

|Doss 

r-Relative Coords-

X: Y: Z: 

|284.14515 |26ai2285 |.274.39996 

Sef Cbiec! r̂ame | « Restart OK Cancd 

New Model Inlioducing 
-ObieclFfan»- ModelNa 

Alla:| n Tĥ  M 

Beta: I 7 h 

Predefined Fr«ne 

Mark Name: 
|M«kNo2 

SearchedMark: 

|Cr«$ l&oss 

Reiabve Coord» 

X: Y: Z 

|301.34478 |287 66071 |204 27027 

Set ubi-icf « Restarl OK Cwicel 

New Modei Intioducing 
-Object Frame 

j X:| 4 ^ 5 5 : 5 : : 

; Y:pnElW 
I Z: 1̂ 59 43040:: 

I Afa: 1-0 0 0 3 5 0 1 

i Beta: 1 3 7 3 : 4 1 0 5 
I ' 

} Gama:|-32 2 0 4 5 3 2 

i 
Predefined Frame 

Model Nane: 
|Model_April24_1 

Mak Index: MtfkName: 

SeachedMark: 

[cî^ 
-Relative Coords-

|MarkNo3 

[ D ^ 

X: Y: Z: 

|302.03443 |-191.23118 |22Z8S470 

Sef Obiect Frame | « Restart Nexf OK Cancd 

- Object Fr«ne-

X: 1-45 5̂ :5::,:. 
Y : 1 - 1 1 3 3 4 2 3 3 5 

Z : | 3 5 3 4 3 0 4 0 3 

Ala: 1-0 0 0 3 5 0 1 

Beta 3 ^ : 4 1 0 5 

Gama:|-32 2 0 4 5 3 2 

Predefined Frâne 

Model N«ne: 

|ModeLAprC4_1 

Mark Index: Mark Name: 
|MarkNo4 

SeachedMtfk: 

|Cro« 

Relative Coords 

X: Y: Z: 

|28&47444 |-2ia30848 |-255 56740 

Obiect Frame « Restart OK Cancd 

Fig. 7.11. Introducing the object - C program. 

After the object was defmed, we move the object from the reference position and we 

measure the deviation of the actual position of the object with respect to the reference 

position. 

In figure 7.12 one can see the frames, which were used in the mathematical 

description. 
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To measure the new coordinates of the fixed points from the object the robot will be 

moved in the same positions as it was done when the coordinates of the fixed points were 

measured first time. One can make this because the actual position of the object is only a little 

different from the reference position and the fixed point can be seen by the stereo sensor. 

Using the same positions for the robot we will eliminate the absolute error of the robot. 

Object to be measured 

Reference Object 

Fig. 7.12. The deviat ion of the actual object with respect to the reference object. 

We denote the measured coordinates of the points / with One can write now for a 

point the following equation, according to the reference [Pau81]: 

Re / P —Re / rp Ohj p 
~ Oh! * ' 

(7.4) 

where is the transformation from the reference frame to the actual object frame. This 

transformation represents the deviation of the actual object position with respect to the 

reference object position. This deviation will be sent to the robot. 

For each point one can write the relation (4.3). This way, we obtain an over 

determinate system of non-linear equations, which will be solved according to the method 

presented in sub-chapter 4.2.2. 

In the figure 7.13 we measured the deviation of the object frame relative to the 

reference frame when the object is still in the reference position. The units for x, v and z are 

millimeters and for alfa, beta and gama are degrees. 

X = 0.010435, y = -0.004319. z = 0.010980 

atfa = -0.001059, beta = 0.002499. gama » 0.000654 

"OK" 

Fig. 7.13. Errors for the reference position of the object. 
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If there were no errors all the deviations would be zero. As one can see the errors are 

very small. The greatest influence in producing these errors comes from the image-processing 

algorithm used to recognize the marked points. Conceming the image-processing algorithm it 

must be said that the stabiHty of lighting conditions is very important for the stability of the 

measurement resuhs. The relative error of the robot is the second factor, which produces the 

final errors. 

In the figure 7.14 we measured the deviation of the object frame relative to the 

reference frame when the object was moved from the reference position. The units for,v, v and 

z are millimeters and for alfa, beta and gama are degrees. 

X = -0.165770. y = -3.334731, z = -6.013426 

alfa = 0.384005. beta = -0.000322. gama = -0.001147 

~m—j| 

Fig. 7.14. Measured relative position of the object frame. 

The measurement system works practically without errors when the range of the 

deviations is between -20 mm and +20 mm for x, v and z and between - l .5 and 1.5 degree for 

alfa, beta and gama. 

For testing our system we developed a simple application. Our testing object will be a 

table. A plate was fixed on this table, as one can see in figure 7.15. 

Fig. 7.15. The description of the test application. 

On the plate there are four points, which are used to make the calibration between the 

robot tool and the stereo sensor. This calibration means to find the transformation from the 

robot tool frame to the stereo sensor frame. The same points are used as fixed points of the 

object, according to the description made in the first part of this sub-chapter. We call these 
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points, Visualpoinfs. We fix on the table another four points, which will be used in our testing 

application. We call these points, appiication points. One can see clearly one pair of these 

points in figure 7.16, the black point is a visual point and the other one is an application point. 

Fig. 7.16. Visual point and application point. 

In the test application, our four application points will be touched with the working 

tool. First step is to teach the robot this test application. We teach manually the robot to touch, 

with an accuracy of 0.1 mm, step by step the application points. This teaching part will be 

made with respect to the robot base. In figure 7.17, one can see the final position of the 

working tool in the teaching procedure for one point. 

Fig. 7.17. The taught position for one application point. 

Second step is to establish a frame for the table and to measure the 3D coordinates of 

the visual points, in order to define completely the table. The established object frame will be 

the reference frame in this test application. It is very important to have the table in the same 

position during step one and two. At the end of step two we make some changes in the 

software to have the application taught in the reference frame. 
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Third step is to move the table, to measure the deviation from the referencc position, 

to send this deviation to the robot and finally to see how preciscly the working tool will touch 

the application points. At^er a lot of practicai tests we can say that the total error of the systcm 

is maximum 1 mm. It means that the maximum distance between the application point and the 

end of the working tool is less than 1 mm. 

This error comes from two reasons. One reason is the error of the measurement 

system, but we explained in the first part of this sub-chapter that the shift of the object is 

measured with high accuracy, so the influence of this error is very small. The second reason is 

the absolute error of the robot. We have seen in our practicai tests that the error was different 

for our four application points when we sent to the robot the same shift. 

125 

BUPT



Chapter 8 

Conclusions and Contributions 

Most of the stereo applications are built to obtain 3D information starting from 2D 

information. This 3D information allows the possibility to reconstruct a real scene and to 

idenniy the form of different objects and their relative position in this real scene. This means, 

the stereo vision was used mostly to obtain qualitative information about the real vvorld. There 

is also the possibility to use stereo vision in order to make 3D accurate measurements. This 

means to obtain quantitative information about the real world. As it was said in the 

introduction, the goal of this PhD thesis was to analyze the problem of using stereo cameras to 

realize accurate 3D measurements. 

My PhD thesis starts by making in chapter 1 a brief introduction in the field of 

computer vision in order to place the treated subject at the right place in this field. From the 

field of computer vision \ve go in the direction called scene reconstruction and then further in 

the direction called accurate visual metrology, which represents the domain vvhere my PhD 

thesis belongs. 

In chapter 2 are presented basic knowledge about Projective geometry, which is a very 

important tool for solving the scene reconstruction problem. We need this tool to be able to 

present in a systematic way the camera models. Also, all the on-Iine calibration methods are 

make use of this Projective geometry. 

In chapter 3 we present an o\ er\'iew of the existing camera models. They are divided 

in two categories: ideal camera models, called also distortion free models and real models, 

which includes the distortion effect. Then an overview of the existing calibration methods is 

presented. They are also divided in two categories: off-line calibration methods, called 

traditional calibration methods and on-line calibration methods, called camera self-calibration 

methods. The calibration method we developed belongs to the first categories. This way, in 

the last part of chapter 3 we analyze two important off-line calibration methods with 

contributions at the simulation and analysis of errors produced by measuring with a calibrated 

camera. 

In chapter 4 are presented first the types of stereo sensors, which were built in order to 

test our calibration method. We developed two types of stereo sensors: in parallel 

configuration and in non-parallel configuration. Then the chosen camera model is presented. 
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This model is a real model, which inciudes efiect of the radia! distortion. The calibration 

de\ ice is presented in ihe follovving parts and finally. the calibration proccdure, including my 

contributions, ends this chapter. 

In the first half of chapter 5 a theoretical introduction in image processing is made. 

Basic knowledge about image enhancemenl techniques, about edge detection techniques and 

about grey level segmentation methods is presented here. In the second half of this chapter 

our sub-pixel image processing algorithm developed in order to identify a certain point is 

described. 

In chapter 6 is described at the beginning the measurement procedare developed in 

order to obtain accurate 3D results. A detailed analysis of the measurement errors for both 

parallel and non-parallel configurations of the stereo sensors is presented. For the non-parallel 

configuration a new method to eliminate the systematic errors is developed. The efficiency of 

the method is demonstrated by the analysis of the errors presented in the sub-chapter 6.2.2. 

For the parallel configuration, vve implemented different image processing algorithms. A 

comparative error analysis, when these different image processing algorithms were used, is 

presented in sub-chapter 6.3. This demonstrates that our sub-pixel image processing algorithm 

is better than the other tested algorithms. 

In chapter 7 some different industrial applications of the stereo sensor as 3D accurate 

measurement tool are described. There are two possibilities of using the stereo sensor: in a 

fixed configuration or in a mobile configuration. For each configuration is presented one 

practicai application. 

To realize the practicai part of this project we had to develop a series of programs. We 

used Visual C-Hh environment to develop them. One part of the programs is made to control 

the calibration device to generate the calibration points and the points to be measured for 

testing the stereo sensor. Another part is made to implement the calibration procedure and the 

measurement procedure. 

The analysis of the errors was made using MATLAB programs because it was easier 

to use this software than the Visual C - - . The programs for the errors analysis are presented in 

the Annex E. We developed also programs in C-H- to implement the two off-line calibration 

methods presented in chapter 3. These programs are presented in Annex B and Annex D. 

The most important contributions developed in this PhD thesis will be briefiy 

presented in the following parts: 

1. In figure 3.12, from the sub-chapter 3.3.4, one can see the method vve consider to 

define the simulation of a camera measurement. During the calibration procedure we compute 
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the camera paramclcrs, which generales a transformalion from ihe world framc lo ihc camera 

frame. Unfortunaiely, this transfonnation is affcclcd by diffcrent errors, which appcar in ihe 

calibration process. Our idea was to obtain a measure of ihcsc errors by computing the error 

of the position vector given by ihc relation (3.144). This error of the position \ cctor includcs 

all the calibration errors and this way, shows the quality of the used calibration method. 

2. To analyze the quality of the two discussed calibration methods presented in chapter 

3 (3.3.2 Lenz calibration method and 3.3.3. Tsai calibration method) we introduced two types 

of errors in the calibration phase. The first type is referring to the uncertainty of determining 

the 3D position of the calibration points in the real scene and the second type is referring to 

the uncertainty of determining the 2D position of the calibration points in the image. The goal 

was to see how sensitive are these two calibration methods to these types of errors. The results 

are presented in the graphics from the figure 3.13 and 3.14. 

3. Knowing the fact that our stereo sensor will be used to measure 3D coordinates of 

points situated at small distance from the cameras (200 mm - 500 mm) we decided to use 

both parallel and non-parallel configurations. At the beginning of chapter 4 is explained way 

it is not possible to use the parallel configuration w hen we want to measure points situated at 

big distance from the cameras. 

4. In sub-chapter 4.1.4 is described the model we considered for the cameras. We have 

6 internai camera parameters: two for scale factors, denoted Sx, and Sy, uvo parameters for the 

image center, denoted and Cy. one parameter for the focal lens, denoted/ and fmally, the 

parameter called coefTicient of the radial distortion, denoted k. Our idea was to make the 

following notations: p^ Pv - ^x f - d = '. This way, we reduced the number of the 

unknowns, which must be computed in the calibration phase, w ithout affecting the complexity 

of our defmed camera model. 

5. To generate the calibration points we used a special device, as one can see in figure 

4.5, in sub-chapter 4.2.1. With this device one can obtain a lot of calibration points covering 

all the working place of the camera. This way, the camera parameters will be computed 

according to the requirements of the user. If a user needs a stereo sensor to measure only in a 

certain space we will use for calibrating the sensor only points situated in this certain space. 

This way, the errors obtained by measuring with the sensor will be smaller than in the case 

when the calibration is made in a space, which is diffcrent from the working space. 

6. Having the camera model defmed in sub-chapter 4.1.4 the mathematical description 

of the calibration procedure is presented in sub-chapter 4.2.2. Our way to compute the camera 

parameters was to obtain two non-linear, over-determined equation systems including all 
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these parametcrs. The systems wcrc solvcd scparatciy, using Ncvvion algorilhm and Icast 

squares mcihod. In order lo obtain the final solution \vc madc for ihc camcra paramelers, 

which werc computed in both systems, the average of their compuicd valucs. The results of 

the calibration proccauic can be secn in figure 4.6. 

7. In sub-chapicr 5.2.1 we had to solve the problem of selecting a certain mark to be 

used as a calibration point. Comparing the relation (5.71) and (5.72) we decided to use a circle 

as a mark because a circle has less edge points than a cross within the same dimensions. 

8. In sub-chapter 5.2.2 we developed an image processing algorithm to compute the 

pixel coordinates of a mark, which was identified in the recognition process. The entire 

algorithm presented here is original. It is important to say that w e make use of a segmentation 

with a variable threshold and that we compute the coordinates of the weight point of the 

identified mark. The value for the threshold is computed with the relation (5.86). The 

coordinates of the weight point for the identified mark are computed with the relations (5.90) 

and (5.91). 

9. In sub-chapter 5.2.3 we developed also an original sub-pixel algorithm in order to 

identify the coordinates of the weight point of an identified mark at sub-pixel level. We used 

the figure 5.10 to explain why it is necessary to adopt a sub-pixel approach if we want high 

accuracy for the stereo sensor. Going flirther it is explained our idea of using exploration lines 

starting from the weight point determined with the algorithm developed in sub-chapter 5.2.2. 

The relation (5.98) is used to compute the grey level for a point situated at any location 

between 4 adjacent pixels. The relation (5.101) represents the approximation fiinction used to 

identify the place w here an edge is located. 

10. In sub-chapter 6.1 is developed the mathematica! part for the measurement 

procedure. We solved the correspondence problem by making use of the sub-pixel image 

processing algorithm presented in sub-chapter 5.2. Having the pixel coordinates in both 

images one can write the relation between the 3D coordinates of a point and its 2D 

corresponding pixel coordinates making use of the notations from the calibration procedure 

(Pc - ^ x f ^ Pv d ^ l r f ' - see chapter 4). This way, we obtain a linear equation 

system. To solve the system we use some special notations, as one can see in the relations: 

(6.7), (6.8), (6.9), and (6.10). Finally we will obtain the 3D coordinates of a measured point 

with respect to the stereo sensor frame. These results are showed in figure 6.1. 

11. From the errors analysis of the stereo sensor built in non-parallel configuration it is 

obvious that a systematic error appears in the measuring process. One can see that from the 

graphics presented in figure 6.3, 6.4, and 6.5. In sub-chapter 6.2.2 we present a method to 
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eliminate ihis syslemalic error. We will use a correction funcliun defined by ihc equalion 

(6.24). This correclion function will be computed for each of thc 3 coordinatesx,;/ and r. This 

iunction represenls a polynomial approximation of ihe errors. To find its coefflcienis we used 

the least squares meihod. Aficr we applied the correclion thc rcvihs are much beltcr as one 

can see in the graphics presented in figure 6.6, 6.7, and 6.8. It is also obvious that the 

influence of the systematic errors after the correction is insignificant. 

12. In subchapter 6.3 is presented the analysis of the errors for the stereo sensor built 

in parallel configuration. This analysis shows the fact that the smallest errors are obtained 

when the sub-pixel algorithm is used. In table 6.2 we presented a comparison between the 

obtained errors in the four analyzed cases. The table shows of course the same results as the 

graphics presented in this sub-chapter namely that our calibration method combined with the 

sub-pLxel algorithm gives the best results. 

13. In sub-chapter 7.1 we presented an industrial application, which uses three pairs of 

stereo sensors fixed on a rigid plate as one can see in figure 7.5. The system was build to 

solve a part of the wheel alignment problem. This means to measure the angles called Camber 

and Toe. These angles are defined in figure 7.1 and 7.2. The system produced by us is totally 

new being a prototype. 

14. In sub-chapter 7.2 we presented a test application to show the advantages of using 

a stereo sensor mounted on the robot hand as a 3D measurement tool. The first advantage is 

represented by the accuracy of the 3D measurements made using the stereo sensor. Another 

advantage is represented by the low costs necessary to produce and to calibrate this type of 

stereo sensor. 

For the ftjture we think to improve the camera model by introducing new camera 

parameters and to develop a self-calibration method making use of the tool called Projective 

geometry (see chapter 2), tool that helped considerably to solve different camera problems in 

the last 10 years. Another very important aspect that we will tr\ to soKe in the ftjture is the 

recalibration of the sensor when by different reasons at least one of the camera parameters 

was changed. 
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Anncx A 

Logical Algorithm for Lenz Calibration Method 

In this annex it is presenied a logical algorithm for Lenz camera calibration method. 

This algorithm will be used to create a C program. 

INPUT 5„ 5, 

READ A;,. 

COMPUTE a;,,. }'./, 

READ i ,, 

COMPUTE A LINE 
OF MATRIX C 

YES 

Continue to block 8. 
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From block 7. 

Annex A 

10 

12 

13 

14 

15 
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Annex A 

Each block of the logical algorithm will be described in the next parts of this anncx. 

INPUT .V. 5 , . 5 .Vrepresents the number of calibration poinis. which are 

going to be used in order to find the camera parameters. Sj, Sy are the scale factors, whose 

values are given by the relations (3.62), and (3.63). At the beginning of our C program we 

must introduces the values for all these three variables. 

READA. . . }'. The pixels coordinates of a point P, are red from a file 

containing the coordinates for every calibration point used in this case. 

Using the values for Sy, Xpi, and Yp, one can compute 3. COMPUTE Yj. 

the values for Xji. and Yj^: 

(A.l) 

(A.2) 

4. READ x . V In the same way as it was made in block 2. the 3D 

coordinates. in millimeters, for a point Pi are read from a file, which contains the 3D 

coordinates for aii the calibration points, with respect to the world svstern. There are only rwo 

coordinates to read because all the calibration points are in the same plane, and the world 

system was chosen in such a way that z„, is zero for all the points. 

CO.MPUTE A LINE 
OF MATRIX C Using matrices for every point P; it is possible lo obtain 

an eqiiation, as foilows: 

-A ' r . 

a. A',: 
Ci, 
a. • 

A',, 

{.A.3) 

So, here using the values for JCh-,, y^i, Zwi, Xji, and Yji, the C program must compute the values 

for VjiX î, Yji, -Xjpc^i, and 
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6. N=N-1 The C program will use the variable N to count the 

number of the calibration points Pj. At the beginning N is equal with the total number of the 

calibration points, and it is decreased with one, for each execution of the loop formed by the 

blocks noted 2, 3, 4, and 5. 

7. This loop will be repeated for every calibration point, it 

means until A^is equal with zero. Finally, the matrix C will have the following form: 

C = (A.4) 

COMPLTE THE 

8. MATRIX C From the reference [PT\T92] . in the C program will be 

used the ftinction which gives the inverse of a matrix, in order to compute the matrix C ' . 

9. 

COMPLTE 
« 1 , a^. Uy. (V4. lU 

In the same way as before. it will be used a function from 

the reference [PTVF92]. This ftinction makes the multiplication between a matrix and a 

vector, as follows: 

r.v,, a, 

a. 

Ch 

= C 
A'.: 

X j\ 

(A.5) 

10. ' In this block the C program must implement the 

following relation in order to compute the value for / / 

t. = 

(a, + a , f + (a , - + {a^ - ch )" + ( a , + a^)" 
(A.6) 
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11. 

Annex A 

The \ alucs for / / r^. and n arc coinputed in the C 

(A.7). 

program using the ne\t relations: 

/j = c//^, = aj^ , t^ = , r^ = aj^ ,and ;; = 

12. 

ihe values for r-, and /M 

Using the following relations the C program computes 

(A.8) 

(A.9) 

13. 

can see in the followina schema; 

1 3 . 4 

13.5 

I .•>.0 

Thii block caii bc dix idcd in .some smaller blocks. as ono 

Block 12 

Block 14 
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COMPL I i 
V . \ For this hlock. ihe C proijrain mu>«t implenicni thc ne\i 

t\\ o relations: 

•V = -V„,/-, + (A.IO) 

(A. l l ) 

13.2. 

CO.MPITE : LlNtS(^F THE 
M.ATRIX A .\ND : hLEMENTS 

OF THE \ ECTOR B For each point P, it is possible to obtain the 

foilowing two equation: 

(A.12) 

(A.13) 

Usinii matrices \ve obtain. as foHows; 

.V 

V 

-A' 

J 

/ ! [ v, /-A', +.\\,,/;A' 

r. \ ~\ X r.Y + V r j 
(A.14) 

So, here the C program only has to put the values for -.v„ -Xj,. and -y„ -Yji. as two lines of a 

matrix noted A, because these \ alues were computed before. but for the vector B it must be 

first, computed the values for x r-Xj. . x.^nYj^ and then they must be put 

as two elements of thc \ cctor B. 

With the blocks 13.3, and 13.4 the loop formed by the blocks 13.1, and 13.2 is 

repeated for yVtimes. It means, that for each point P, two new lines will be put in the matrix A, 

and two new elements in the vector B. Finally, we will obtain the nexl equation: 

- i'. 

- V. 

-X J\ 

- } . 

.V R - . V + I . 

.V / • - } ' . + \ . / ; } ' , . 

v /•-}'. 4- V r) . 

(A.15) 
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From iho rcfcrcncc !PTVFy2]. il uill bc û o<l ihc 

function which givcs us the inverse of a matrix. in order lo coinpute the matrix A ' 

COMIN TH 
/. I. 13.6. In the same way. as il was madc in block 13.5 bc. it u ill 

be used a function from the reference [PTVF92], function which makes the multiplication 

between a matrix and a vector. This way, we will implement the following operation: 

14. 

r . 
= A B (A.16) 

FINDTHE GOOD 
SIGH FOR.ALLTUB 

P.ARAMETERS 
COMPLTEDBEFORH We must write o function in the C program, which will 

implement the next operations, (see step 5 from Lenz Calibration Method): 

s/e/? 

signir^) 

sii^nih) 

( A . l T i 

(A.IS) 

( A . 1 9 ) 

15. The C program must make the ncxl thrcc operations. (see 

step 6 from Lenz Calibration Method): 

= r^r, - r^r^. 

(A.20) 

(A.21) 

(A.22) 

Using now this logical algorithm it will be casier to write the C program than starting 

directly, and making use only of the information from these six steps of the Lenz method. 

described in sub-chapter 3.3.2. 
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C Program for Lenz Calibration Method 

In this annex is presented the C program developed follovving the logical algorithm 

from Annex A. This C program implements Lenz calibration method. 

/ / L i v i u Toma C Program fo r Lenz C a l i b r a t i o n Method 

#include "rr.atrix.h" 
#include " Inc ludes .h" 
#include ' c a l i D r a t i c n . h " 

void r.ain (void^ 

i n t N^121,M; //number of c a l i b r a t i o n p o i n t s 
i n t i , j , i n v ; 
d c u b 1 e T x , T y , T z , r l , r •2,r3, r4 . r c , r 6 , r - ^ r 8 , r 9 ; 
dcuble x, y ; 

dScale_in_X; / / = C . 0 :5509; 
double dScale i n Y; / / = 0 . : G3316; 
dcuble sx=12C; / / 9 0 . c; . 
double sy=120; / / 92 . "5; 
dc-ib 1 e C>:=3c4; //35C • ; 

dcuble Cy=23"; / / 2 95 ; 
doubie f ; / / f c c a l le c c h 
dcuble ""ccordXYZ_in _re iSysc eiT ; 
dcuble * *coordXY_in_ p i x e l s ; 
dcuble -*-*coordXY_on_ chip; 
CC uble " " C ; / / ccef f i c i ' er*. cs rr.ac r ix 

v -r "VT-;/̂  . 1 » V w / 
j cuble ^Xd; 
double 
double - - C F ; / / coef f ice: nces mat r i x in used 
^ ̂  . , U "! -
CC :ble " B F ; 
CC u c -i e r -ŢT - ' / / vecccr v; ccn ca ins cv:c c 
CC uble —rrans ; / / c r ans fo rmacion 
dcuble " Co.T-pu-edTra > - : ^ / 

zwc f and Tz 

dcuble 'Trans lAngles ; 
doubie *ComputedTransiAngles; 
double *Deli:aTranslAngles; 

if-aliz'z zhe c o r r e c - corespcndance 
aScale_in_X=l/sx; 
dScale_in_Y=l/sy; 

''''.^e rese rve .T.err:Ory fo r a i i -.he v e c t o r s and 
cocrdXYZ_ in_ref System = drr.aT r ix (1, N, 1, 3 ) ; 
c r dX 1 _ i r . _ p i x e i s = d.T.a~ r i x (1 , N, 1, 2 ) ; 

ordXY_on_chip = drr.arrix (1, 1 ,2) ; 
C - d T a : , r i x ( l , N , l , 5 ) ; 
IN7C = dma t r ix (1 ,5 ,1 ,N) ; 
Xd = dvec to r (1 ,N) ; 
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A = d v e c t o r ( 1 , 6 ) ; 
CF = d m a t r i x 1 , 2 ) ; 
INVCF = drr.a-rix (1, 2, 1,!-:) ; 
BF = dvec^cr(1,M); 
FTz = dve : - : : r (1,2) ; 
Trans = dmai.rix (1, 4, 1, 4 ) ; 
ComputedTrans = a x a t r i x ( 1 , 4 , 1 , 4 ) ; 
TranslAngles = dvector (1 ,6 ) ; 
CorrputedTranslAngles = dveccor (1, 6) ; 
Del taTranslAngles = dvector (1 ,6 ) ; 

/ /we open the f i l e 3Dcoord ina t e s . t x t 
fvp = fopen ( " M y l 2 1 v e c t o r b o a r d . t x t " , " r " ) ; 
i f ( fvp==0) 
1 

p r i n t f ( " E r r o r while opening 3Dcoordina tes .cx tXn") ; 
g e t c h a r ( ) ; 
e x i t (1); 

} 
fo r ( i= l ; i<=N; i++) 
{ 

/ / p r i n r f ( " \ n " ) ; 
f o r ( j = l ; j<=3; { 

fscanf (fvp, "^s" , f e l d ) ; 
coordXYZ__in__refSystem[i] [ j ] =atof ( fe ld ) ; 
/ / p r i n t f ( " \ - % f " , c o o r d X Y Z _ i n _ r e f S y s - e m [ i ] [ j ] ) ; 

} 
\ 
} 

f c l o s e ( fvp) ; 

//we open the f i l e Myl21ch ipcoord ina tes . tx t 
fvp = fopen ( " M y l 2 1 c h i p c o o r d i n a t e s . t x t " , " r " ) ; 
i f ( fvp==0) { 

p r i n t f ( " E r r o r while opening p i x e l s C o o r d i n a t e s . t x t \ n " ) ; 
g e t c h a r ( ) ; 
e x i t ( 1 ) ; 

1 

f o r ( i = l ; i < = N ; i ^ + ) 
{ 

/ / p r i n t f f " \ n " ) ; 
f o r ( j = l ; j<=2 ; j++) { 

f s c a n f ( f v p , f e l d ) ; 
coordXY__in_pixels ( i ] [ j ] =atof ( f e ld) ; 
/ / p r i n t f ( " \ t ^ f coordXY__in__pixels [ i ] [ j ] ) ; 

} 
} 
f c l o s e ( fvp ) ; 

/ /compute the c o e f f i c i e n t s mat r ix C 
fo r (i = l ; i<=N; i + -»-) { 

/ /compute Xdi and Ydi 

CGordXY_on_chip[i][1] = dScale_in_X*(coordXY__in_pixels[i][1] 

Xd[il = coordXY_Gn_chip[iI [1] ; coordXY_on_chip [ i ] [2] = dScale_in_Y* (coordXY___in_pixels [ i i [2]-

/ /compute a l i n e of matr ix C 
C[i] [ l ]=coordXY_on_chip[ i ] [2]*coordXYZ_in_refSystem[i][1] ; 
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C [ i ] [ 2 ] = c o o r d X Y _ o n _ c h i p [ i ] [ 2 ] * c o o r d X Y Z _ i n _ r e f S y s t e m [ i ] [ 2 ] ; 
C ( i 1 ( 3 ] = c o o r d X Y _ o n _ c h i p [ i ] [ 2 ) ; 
C [ i ] [ 4 ] = - c c o r d X Y _ _ _ o n _ c h i p [ i ] [ 1 ] " c c o r d X Y Z _ i r . _ r - f S y - i ] [ i i 
C [ i ] ( 5 ] = - c o o r d X Y o n c h i p [ i ] ( i ] ^ c o c r d X Y Z i n r e f Sys- :c : r [ 11 [ 2 j 

/ / c o m p u t e zhe m a n r i x INVC 
i n v = i n v e r s ( I N V C , 5 ) ; 

/ / c o m p u t e t h e v e c n o r A 
m u l m a t r i x V e c t o r { A , I N V C , X d , 5 , N , N ) ; 

/ / c o m p u t e t h e t r a n s l a t i o n Ty 
T y = 2 / ( s q r L ( ( A [ 1 ] + A [ 5 ] ) * ( A [ 1 ] + A [ 5 ] ) + ( A [ 2 ] - A [ 4 ] ) * ( A [ 2 ] -

A [ 4 1 ) ) + s q r t ( ( A [ l i - A ( 5 j ) M A [ 1 j - A [ 5 ] ) + (A [ 2 : ^ A [4 ] ) MA [2 ]+A [4 ] ) ) ) ; 
/ / p r i n t f ( " T y i s : % f " , T y ) ; 
/ / c o m p u t e r l , . r 2 , r 4 , r 5 a n d Tx 
r l = T y * A [ I l 
r 2 = T y * A [ 2 ] 
T x = T y * A [ 3 ] 
r 4 = T y * A [ 4 ] 
r 5 = T y * A [ 5 ] 

/ / c o m p u : : e r 7 a n d r 8 
r 7 = s q r t ( l - r l * r l - r 4 * r 4 ) ; 
i f ( r l * r 2 + r 4 * r 5 < 0 ) 
{ 

r S = s a r t ( l - r 2 * r 2 - r 5 * r 5 ) ; 

e i s e 
{ 

} 
r 8 = - 5 q r t ( l - r 2 ^ r 2 - r 5 * r 5 ) ; 

/ / c o m p u t e x a n d y 
x = r l * c o o r d X Y Z _ i n _ r e f S y s t e m [ 3 ] [ 1 ] + r 2 * c o o r d X Y Z _ i n _ r e f Syszer r . [ 3 ] [ 2 ] + T x ; 
y = r 4 * c o o r d X Y Z _ i n _ _ r e f S y s t e m [ 3 ] [ 1 ] + r 5 * c o o r d X Y Z _ i n _ _ r e f Syscer r . • 3 ] [21 + T y ; 

/ / v e r i f y i f t h e chosen s i g h f o r l y i s zhe g o o d o n e 
i f ( ( x * ( c c c r d X Y _ i n _ p i x e l s [31 [ l ] - C x ; < C ) t : ( y* ( c o o r â A Y _ i n _ p i x : : : 5 : 3 ] ' 2 ; -

C v ; < 0 ) ) 
{ 

T y = - T y ; 
T x = - T x ; 
r l = - r l ; 
r 2 = - r 2 ; 
r 4 = - r 4 ; 

/ / c o m p u t e t h e m a t r i x CF a n d t h e v e c t o r BF 

f o r ( i = l ; i < = N ; i + +) 
{ 

C F [ i ] [ 1 ] - r 4 * c o c r d X Y Z _ i n _ _ r e f S y s : : e . T j : i j [ 1 ] + r 5 * c o G r d X Y Z _ i n _ r e i S y s - p m [ i ] [2 

C F T ; ] [ 2 ] = c c o r d X Y _ c n _ c h i D [ i ] [ 2 ] ; 
B F [ i l = -

C F [ i ] [ 2 ] ' ( c c o r d X Y Z _ i n _ _ r e f S y s t e m [ i ] [ 1 ] * r 7 - ^ c o o r d X Y Z _ i n _ r e f S y s t e m [ i ) ( 2 ] * r 8 ) ; } 
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f o r ( i = l ; i < = N ; i + + ) 

CF ' î [ 1 ] = r l *cooraAi Z_in_ref SysLem [ i ] [ 1 ] + r2 ' 'jcora>: i System [ i 
[2]+Tx; 

CF[U+i](2]=coordXY_on_chip[ i ] [1] ; 

CF[N + i ] [2] ' (coordXYZ__in_r9fSystem[i] [1] *r7-i-coordXYZ_in__refSysiem[i] [2] *r8) 
) 

/ /compute INVCF 
inv = invers(INVCF,CF,M,2); 

y / ccrrpute L and Tz 
mulr-atr ixVector (FTz, INVCF.BF, 2,M,M) ; 
f = F T z [ l ] ; 
Tz=FTz[2]; 

/ / e s t a b l i s h the r i g h t s ign f o r t he e lementes of the t r a n s f o r m a t i o n 

i f (Tz<0) { 
r7=- r7 ; 
r3=- r8 ; 
Tz=-Tz; 

} 
i f ( f < 0 ) { 

f = - f ; 
) 
//ccrr.p-Jte r3 , r6 , r9 
r3=r4* r8 - r5* r7 ; 
r 6 = r 2 " r 7 - r l * r 8 ; 
r 5 = r l - r 5 - r 2 * r 4 ; 

/ / v ; r i t e the ma t r ix ComputedTrans 
Ccrr.pu-edTrans [1] [ l ] = r l ; 
Corr.pu^edTrans [1] [2]=r2; 
Co.T .cj-edTrans[l] [3]=r3; 
Cc.T.cu-edXrans [1] L4j=Tx; 
Cc:nr;u-edTrans[2] [ l ] = r 4 ; 
Corr.puredTrans [2 ] r2]=r5; 
Corr.pucedTrans [2] [31=r6; 
ComputedTrans[2][4]=Ty; 
ComputedTrans[3][1]=r7; 
ComputedTrans[3][2]=r8; 
Co.Tcu-edTrans [3] [ 3 ] = r 9 ; 
Ccrrpu-edTrans [3] [4]=Tz; 
Corrp-LedTrans [4] [ i ]=0 .0 ; 
Corr.pu-edTrans [4] [2] =0.0 
Ccrrpu-.edTrans [4] [3] =0.0 
Com.putedTrans [4] [4] =1.0; 

/ /compute the vec to r ComputedTranslAngles 
TransTo6Vector3 (Com.putedTrans, ComputedTranslAngles) ; 

/ / p r i n t : the s o i u t i o n s 
pr in t f ( "XnThe f o c a l lenght i s : k f " , f ) ; 

p r i n t f ( " \ n T h e computed t r a n s f o r m a t i o n vec to r i s : \ n " ) ; 
f o r (i = l;i<=3;i-»-+) { 
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p r i n ţ f ( " \ n % f " , C o m p u t e d T r a n s l A n g l e s [ i ] ) ; 

f o r ( i = 4 ; i < - 6 ; i + + ) 
{ 

p r i n r f C o m p u t e d T r a n s l A n g l e s [ i ] * 9 0 / a s i n ( 1 ) ) ; 

p r i n t f ( " \ n \ n " ) ; 

/ / r e a d t h e r e a l t r a n s f o r m a t i o n f r o m t h e f i l e R e a l T r a n s f o r m a t i o n . t x t 
/ / i n v = l o a d d m a t r i x ( T r a n s , " M y 3 7 R e a l T r a n s f o r m a t i o n . t x t " ) ; 
i n v = l o a d d m a t r i x ( T r a n s , 4 , 4 , " c a m l t o w . t x t " ) ; 
/ / p r i n t d m a t r i x ( T r a n s ^ 4 ^ 4 ) ; 
/ / c o m p u t e u h e v e c t o r T r a n s l A n g l e s 
T r a n s T o 6 V e c t o r 3 ( T r a n s , T r a n s l A n g l e s ) ; 
p r i n t f ( " \ n T h e r e a l t r a n s f o r m a t i o n v e c t o r i s : , n " ) ; 
f o r ( i = l ; i < = 3 ; i + + ) 
{ 

p r i n t f ( " \ n % f " , T r a n s l A n g l e s [ i ] ) ; 
} 

f o r ( i = 4 ; i < = 6 ; i + +) 
{ 

p r i n t f ( " \ n % f " , T r a n s l A n g l e s [ i ] ^ 9 0 / a s i n ( 1 ) ) ; 
} 

f r e e ^ d i r . a - r i x ( c c o r d X Y Z _ i n _ _ r e f S y s t e r r . , 1 , 3 ) ; 
f r e e _ _ d r r i a t r i x ( c c o r d X Y _ i n _ p i x e l s , 1 , N, 1 , 2 ) ; 
f r e e _ d m a t r i x ( C , 1 , N , 1 , 5 ) ; 
f r e e _ _ d m a i : r i x (INVC, 1 , 5 , 1 , N ) ; 
f r e e _ _ d v e c L o r (Xd, 1 , Nj ; 
f r e e _ d v e c t o r ( A , 1 , 5 ) ; 

f r e e _ d m a t r i x ( C F , 1 , M , 1 , 2 ) ; 
f r e e _ _ d m a t r i x (INVCF, 1 , 2 , 1,M) ; 
f r e e _ _ d v e c t o r ( 3 F , 1 , M) ; 
f r e e _ _ d v e c t o r ( F T z , 1 , 2 ) ; 

f r e e _ _ d r r . a i : r i x ( T r a n s , 1 , 4 , 1 , 4 ) ; 
f r e e _ d m a i : r i x ( C o m p u t e d T r a n s , 1 , 4 , 1 , 4 ) ; 
f r e e _ _ d v e c t o r ( T r a n s l A n g l e s , 1 , 6 ) ; 
f r e e _ d v e c t o r ( C o m p u t e d T r a n s l A n g l e s , 1 , 6 ) ; 
f r e e _ d v e c t o r ( D e l t a T r a n s l A n g l e s , 1 , 6 ) ; 

g e t c h a r ( ) ; 
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Logical Algorithm for Tsai Calibration Method 

In ihis anncx it is presentcd a logical algorithm for Tsai camera calibration method. 

This algorithm will be used to create a C program. 

S T A R T 

1\PLT.\.5,.5, 

RHAD.V . }•, 

C O M P L T E T H E 
Of MATRIX C ' 

CrAlPL'I "h" A . 

1 f 

RhADx , 

i t 
• 

CCniPLTH A LINL 
OF MATRIX C 

i 

_. _ T _ _ 1 
N=. N-l 

Continue to block 9. 
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From block 8. 

COMPLTE 

COMPLTE 

COMPLTE 
/ ' i . / : . r ; . î, r^. / r . 

Anncx C 

COMPLTE 
/ ' - . r r 

COMPLTE 
1. 

STOP 

As one can see. there are no big differences betvveen the logical schematic presenicd 

here and thai one from Annex A. !n the following parts of th is annex there will be presentcd 

only the blocks, which arc different from those described in Annex A. 

The blocks noted and 2 are the same as the blocks I, and 2 from the Annex A. 

The block 3 differs only by the fact that instead of computing Xj. the C program will 

compute X^^, using the following relation: 

( C . l ) 

In block 4 the C program will read instead of two coordinates, as we did in block 4 from 

Annex A. three coordinates because in this case, the calibration points are not in the same 

plane, so we have different values forz,,/. 
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In block 5 appear some differences because the equation which must be implemcnted 

is diffcrent from the onc which has aiready bccn implemcnted in block 5 from Annex A. In 

this case the equation. which is obtained for each point P, has the tbllowing form: 

(C.2) 

- . V V -A ' r A" (C.3) 

If we use the matrices one can winte this equation, as follows: 

a, 

lU 

t-l. 

a. 

So, here using the values for A-„„ v„/. z„,. X j „ and Yj„ the C program computes the vaiues for 

^cliXwif ydiywi- î'c/i-u;- K/V- '-^Jy^Hi-, '-^diy^M' and -XjiZx-i. 

The blocks 6 and 7 have the same goal as the blocks 6. and 7 from the annex A. After 

the loop formed by the blocks 2, 3. 4. and 5 has been executcd for V times. where N is the 

number of the calibration points we will have the matrix C, as follow s; 

C = 

) ,.v . Y .v ) 

- A ' .V 

-A" .V 

- A ' , .V 

- A . r 

- A ' V 

- A , r . 

- A . r 

•A" _-

-A" 

The block 8 realizes the same flinction as the block 8 described in Annex A. 

The function implemented in the block 9 is the same function as that implemcnted in 

the block 9 from Annex A. the differences are only in the dimension of the vector and the 

matrix which must be multiplied. 

The block 10 is new. This means that we have not this block in the algorithm 

presented in Annex A. Here, in the C program must be implemented a function which will 

compute the uncertainty of the x scale factor given by the following relation: 

(5.4) 
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The block 11 is also new. This block can bc dividcd in some smaller blocks, as onc 

can sec in the following figure: 

I l . l 

11.2 READ.V... ),...v, . v,„. 
FOR A POINT P, 

I 1.3 

11.4 

1 1.5 

11.6 

YES 

- f, 

1 l.S 

NO 

I 
I 

T 

I = -1. 

C l l A N ( i H T H t S l ( . H O F 
/••. /•-. /••• 1 . r-, r<. /•• 

t 
lilock 12 
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1.1 

following relation: 

The C Program w ill compiile thc vahie for i/,| using thc 

(C.5) 

READ.V, . . }.„..v,„. r..„.-., 
FOR A P ( ^ I \ T P 

• In order to esiablish the right sign for /, wc nccd ihis 

information in the nexi sieps. It wouid be good if ihc chosen point Pj will be siluated iar from 

the imaee center. 

11.3 In the C program it will be chosen the sign +1 for . 

11.4 //./;./ . r . U s i n g the valiies for c;/. c/;. ch. eh., u-. and 

computed before. ihe C program computes ry. /v, / j , r/>. and /.v using the following 

relations: 

= ^ ^ (C.6) 

n = . (C.7) 

(C.8) 

(C.9) 

r, = , (C.IO) 

'5 = ' (C. l l ) 

r, = a.t, . (C.12) 

! ( /o.-viPi Ii-: 

11.5 ' • Ii musi bc conipuicd v and \ . uhich arc iwu of ihc thrcc 

coordinates of the point P, with respect to the camera system. \Ve will use the following two 

relations: 

+ + (C.13) 

v; = -h V,,/; ^r^ /; . (C.14) 

157 
BUPT



An nex A 

1.6 \ / The C program icsts here if it was madc ihe right choice 

in ihe block 11.3 for ihe sign o f / , . Wiili oiir s\sicms and notations, if ihe right choice was 

done, we should have .r, and Xpi with opposile sign, and in the same time y, and Yp̂  also with 

opposite sign. If not. it means that the sigh for t, must be change, and also we must make 

other ehanges, as one ean see in the next two blocks. 

11.7 t ^ - t . hi the C program it is chosen the sign - l for t,. 

CHANGE THE SIGH OF 
1 

11.8 r . ' ; . r -, 1 . / • . . . l i. r,. From the relations (C.6) (C. 12) ii's ob\ious that if the 

sign of was changed. also the signs of r j , r;. /•,. n . r^. and /.V must be changed. The C 

program must make here the following operations: 

r, = • (C.15) 

/ ; = (C.16) 

r, = (CAI) 

f . = (C.18) 

= -f'A ' 
lC.19) 

= (C.20) 

= (C.21) 

In the block 12 it must be computed the \alues for r-. rv, and }\ so, we have lo 

implement in the C program the following relations: 

= rn - f y ^ . 

(C.22) 

{C.23) 

(C.24) 
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The block 13 has the same stniclure and the same function as ihe block 13 from Annex 

A, which was explained detailed in Annex A. The difterenees appears when it must be 

computed the values for V,, and the elemcnts of the vector B. The new relations are, as 

follows: 

X = -h y , + z^^^r, H- r^ , (C25) 

(C.26) 

- -V, 

- v , 

. V , , R - A ' , , + V, + R „ / ; , A ,. 

•V. V ' - A ' , , + + R , , / : , A ' , 

. V , , / ; } ' , , + V, / ; ,} ' , 

+- -.i'y 

(C.27) 

We also have to say that A'̂ , is given by the relation following relation; 

A". =u-:x,. ( C . 2 S I 

Using now this logical algorithm it will be easier to write the C program than starting 

directiv, and making use oniy of the information from thesc five steps of Tsai calibraii>.'n 

method. described in sub-chapter 3.3.3. 
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C Program for Tsai Calibration Method 

In this annex is prescnted the C program developed follovving the logical algorithm 

from Annex C. This C program implements Tsai calibration method. 

/ / L i v i u Toma C Program fo r Tsai C a l i b r a t i o n Method 
t i n c l u d e "ma t r i x .h " 
# inc lude " I n c l u d e s . h " 
^ i n r ' i d e " c a l i b r a - i m . h" 

void main(vcid) 

i n t N=363, M; //number of c a l i b r a t i o n p o i n t s 
i n t i , j , inv ; 
double U 5 X 

double Tx, . y , I Z , r l , r 2 , r 3 , r 4 , r 5 , r 6 , r -
double X , y / 

double dS c ale_in_X = 0. 008509; 
double dSc ale_in_Y = 0. 008316; 
double — f / / f o c a l l eng th 
double ccrdXYZ_in_re • f S s w e rr.; 
double - - - • ̂  T - . 

. ^ ^ ^ r 

double ^ " r c 3 r âXY_on_chi / 

double w -r- .''/coe f f i c i e n t s rr.a:: r i X 
double f T ~ 1• . / 
double "Xd ; 
double ; 
double " " C F; / / c o e f f i c e n t e s ma- r i x ir. j sed lo corr.pu-e 
double - ^ I i» . r /' 

double * BF / 
double z; / / v e c l o r which con "air.s zwz e lements , f 
double rar-s; / / ^ n e r e a l u r ans fo rr-d-icn 
double - - : crr.r u.edTrar.s ; 
double " I r lAncles ; 
double -- 2 ^ .r.gles; 
double "Ie l^a l rans lAr .g l e s ; 

FILE *fvp; 
char f e l d [ 1 0 i ; 
M=2^N; 

/ / V.' e r 6 s -31"." T 6 .T. o r f o r a 11 "C h e e c ~ c r 3 a r. z .t 5 ~ r 1 c e s 
ccordXi Z_ir._ = {1 1, 2 i ; 
coordXi_in_pi>:els = UTa-rix (1, 1, 2 ) ; 
ccordXY_2:-._'j'r.ip = dnr.airix f 1, N̂  1, 2 ) ; 
C - d m a - r i x 1 , 1 ) ; 
INVC = a ^ a i r i x ( 1 , 7 , 1 , N ) ; 
Xd = dvec io r (1 ,N) ; 
A = dvec::or (1,7) ; 
CF = i r ra t r ix 1, 2) ; 
INVCF = d : 7 a ^ r i x ( l , 2 , l , M ) ; 
BF = d v e r - c r ( ; 
FTz = dvec 'o r (1 ,2 ) ; 
Trans ±T.a-r ix (1, 4 , 1, 4 ) ; 
ComputedTrans = d m a t r i x ( 1 , 4 , 1 , 4 ) ; 
TranslAngles = d v e c t o r ( l , 6 ) ; 
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ComputedTranslAngles = dvector (1,6); 
DeltaTranslAngles = dvector(1,6); 

//prin-f ("XnSerTinul este: SIGN(l)); 

//we open the file SDcoordinate^.cx^ 
fvp = fcpen (''MyaeaSDcoordinatesl .-XC", "r") ; 
if(fvp==0) { 

printf("£rror while opening 3Dcoordinates.txtXn") ; 
getchar(); 
exit (1); 

} 
for(i=l;i<=N;i++) 
{ 

' prin-f("\n"); 
for(j=l;j<=3;j++) 

fscanf (fvp,"%s•^feld); 
coordXYZ__in_refSysrem[i] [j]=atof(feld); 
//printf("\t%f",coordXYZ_in_refSystem[i][j]); 

fclose (fvp); 

//we open the file pixelsCoordinates.txt 
fvp = fopen ("Ky363pixelsCoordinai:esl. txt"/"r"; ; 

{ 
prin-f ( "Error while openir.g pixelsCocrdina-es . zx" "-n" ) ; 
ge-char (); 
exit (1) ; 

} 
for(i=l;i<=M;i++) 
r 1 

'/prin-f("\n"); 
for(j=l;j<=2; 

f s c a n f ( f v p , f e l d ) ; 
coordXY_in_pixels[i' [j î =azof(feld); 
//pririTif ("\t%f",CG:rdXY_ir:_pixels[i] ; 

} 
fclose (fvp); 

//compute the coefficients matrix C 
for(i=l;i<=N;i++) 
i 

'. ccxpute Xdi and Ydi 
ccordXY__on_chip [ii [1] = dScaie__in__X*ccordXi_i:-._pixeIs i 1 [1]; 
>.i[i] == coordXY__on__chiprij [1 j ; 

:GcrdXY__on_chip[i] [2] = ::Scale__i:i__Y*coordXY_in_r^ixels ( i ] [2]; 

//compute a line of matrix C 
C(i][1] = coordXY_on__chip[i][2]*coordXYZ_in_refSystem[i][1]; 
C[il[2] = coordXY_on__chip[i][2]*coordXYZ_in_refSystem[i][2]; 
C[i][3] = coordXY_on_chip[ij (2]*coordXYZ_in__refSysLem[i][31; 
C[i][4] = coordXY__cn_chip [ij [2] ; 
C [i] [5] = CGordXY__on__chip [i] [1] *cocrdXYZ_in_re f Sys cern [ i ] [1] ; 
Ciij [6] = coordXY__on__chip [i] [ 1 ] *coordXYZ_ir:_reL::y3Lem [ i j [2]; 
C[i] [7] = coordXY_on_chipri] fl] '^coordXYZ_in_re f System [ i ] [3] ; 
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//compute the matrix INVC 
inv = i n v e r s ( I N V C , 7 ) ; 

//coir.puze whe vector A 
mulmaurixVector(A,INVC,Xd, 7, N, N); 

//corr.pu-e ihe uncertain^y of the scale factor usx 
usx=sqrt (A f 1 ] -A [ 1 ]+A [2 ] [2 ] +A [ 31 [ 3 ] ) /sqrt (A [ 5 ] ̂ A [ 5 ] -f A ( 6 ] * A [ 6 ] -HA [ 7 ] 

*A[7]); 

//compute the translation Ty 
Ty=l/sqrt(A[5][5]+A[6]*A[6]+A[7]*A[7]); 

//establish the right sign for Ty 
//compate rl, r2, r3, Tx, l5 and rC for Ty chcser. pcsitive if( 

Ty<0) 
if (Ty<0) 
{Ty=-Ty;} 

rl=(A[l]^Ty)/usx; 
r2=(A[2]*Ty)/usx; 
r3=(A[3]*Ty)/usx; 
Tx=(A[4]*Ty)/usx; 
r4=A[5]-Ty; 
r5=A[6j-Ty; 
r6=A[7]*Ty; 

//corr:pu-e x and y 
x=rl^cccrâ>:YZ__ixn_refSystemi;4G] [ 1 ] +r2^cccrdXYZ_in_refSystem[40] [2] 

cccrdXYZ_in_refSys-em[40][3]-Tx; 
y=r4 *coordXYZ_in_refSystem [40] [1 ] -»-rcoordXYZ_iri_refSystem [40] [2] +r6* 

coordXYZ_in_refSystem[40][3]+Ty; 

//verify if -he chosen sigh fer Ty is the goodor.e 
if ( (x-cGordXY_in_pixels [40] [1]<0) (y*coordXY__in_pixels [40] [2]<0) ) { } 
else { 

T x = - r x ; 

r2=-r2; 

r6=-r6; 
) 
//com.pute r7,r8 and r9 
r7=r2*r6-r3*r5; 
r8=r3-^r4- r l - r6 ; 

//compuie t h e nr.atrix CF and zhe vector 3F 

for(i=l;i<=N;i++) { 

C F [i] [1] = (r4 *coordXYZ_in_refSystem[i] [1]) + (r5*coordXYZ_in_refSystem[i 
1 [2] ) + (r6*cocrdXYZ__in_refSystemri] [3] ) +Ty; 

':F[i: [2]=coordXY_on_chip[i] [2] ; 

CF[i][2]*((cocrdXYZ_in_refSystem[i][1]*r7)+(ccordXYZ_in_refSystem[i][2]-r8) 
+(coordXYZ_in_refSystem[i)[3]*r9)); 
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for (i=l;i<=N;i + + ) { 

CF [N+i] [1) =r cocrdXYZ_in_ref System [ i ] [ 1 ] ̂ r2*coordXYZ_in__refSys::em [ i j 
[ 2 j + r 3 * c o o r dX Y Z n__r e f S y s - eiT. [ i ] [ 3 ) + Tx ; 

CF[N+i][2]=CGcrdXY_on_chip[i][l]/usx; 
BF[N+ij=-

CF[N+i] [2] * (coordXYZ__in__reiSyscem[i] [ 1 ] *r7-HccordXYZ__in__refSystem[i] [2]^r8-Hc 
cordXYZ in refSystem[i][3]^r9); 

//compute INVCF 
inv = invers(INVCF,CF,M.2); 

//compute f and Tz 
mulmatrixVector(FTz,INVCF,5F,2,M,M); 
f=FTz[l]; 
Tz=FTz[2]; 

//write the matrix Com.putedTrans 
ComputedTrans[1][l]=rl, 
CcmputedTrans[1][2]=r2 
ComputedTrans[1][3]=r3 
ComputedTrans[1] [4 j =Tx 
ComputedTrans[2](l]=r4 
ComputedTrans[2][2]=r5 
ComputedTrans[2][3j=r6 
ComputedTrans[2][4]=7y 
Com.putedTrans [ 3 ] [ 1 ] =r" 
ComputedTrans[3][2:=r8 
ComputedTrans[3][3]=r9 
ComputedTrans[3][4;-Tz 
Com.putedTrans [4 j [li=C 
Corr.puredTrans [4 ] [2;=0 
ComputedTrans[4][3;=0.O 
ComputedTrans[4][4]=1.O 

//comipuLe "he veczcr CompucedTranslAngies 
TransTo6Vec::cr3 (Cc.T.pu:,edTrans, Com.putedTranslAngles) ; 

//prinţ the soiu-iions 
printf ("\nThe focal lenght is: f i; 
printf ("\nThe uncemainty of the scale factor is: ^6f",usx); 

//printf ("\nThe com.puted transformat ion is: \n"); 
//printdmiatrix (ComputedTrans, 4,4); 
/^for(i=l;i<=4;i++) { 

prinuf("\n") ; 
for (j-1; j<̂  = 4; { 

printf("\ttfComputedTrans[i] [ j]); 
} 

} * / 

printf (" \nTr.e corr^pu^ed rransform.ation vector is: \n"); 
for (i-0;i< = 5;i + + ; 
1 

printf (" \n'̂ f ComputedTranslAngies [i] ) ; 
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/ / r e a d t h e r e a l t r a n s f o r m a t i o n f r o m t h e f i l e R e a l T r a n s f o r m a i i o n . t x t 
i n v = l o a d d m a t r i x ( T r a n s , 4 , 4 , " M y S R e a l T r a n s f o r m a t i o n . t x t " ) ; 
/ / p r i n t d m a t r i x ( T r a n s , 4 , 4 ) ; 

/ / c o . T . p u ' e r h e v e c t o r T r a n s l A n q l e s 
T r a n s T o 6 V e c ' v : o r 3 ( T r a n s , T r a n s l A n g l e s ) ; 
/ • p r i n r f ( " \ n T h e r e a l - r a n s t o r m a t i o n v e c u o r i s : \ n " ) ; 
f o r ( i = 0 ; i < = 5 ; i+H-) { 

p r i n t f ( " \ n % f ' \ T r a n s l A n g l e s [ i ] ) ; 
} V 

/ / c o m p u t e t h e d i f f e r e n c e v e c t o r D e l t a T r a n s l A n g l e s 
p r i n t f ( " \ n T h e v e c t o r D e l t a T r a n s l A n g l e s i s : " ) ; 
t o r ( 1 = 0 ; i < = 5 ; i-^--»-) { 

D e l t a T r a n s l A n g l e s [ i ] = C o m p u t e d T r a n s l A n g l e s [ i ] - T r a n s l A . n g l e s [ i ] ; 
p r i n ţ f ( " \ n % f " , D e l t a T r a n s l A n g l e s [ i ] ) ; 

/ * 
p r i n t f ( " \ n T x i s : T x ) ; 
p r i n t f ( " \ n T y i s : T y ) ; 
p r i n t f ( " \ n T z i s : T z ) ; 
p r i n r f ( " \ n f i s : % f f ) ; 
p r i n t f ( " \ n % f " , r l ) ; 
p r i n t f ( " \ t % f " , r 2 ) ; 
p r i n t f ( " \ t % f " , r 3 ) ; 
p r i n u f r 4 ) ; 
p r i n t f ( " X - V f " , r 5 ) ; 
p r i n t f ( " \ t : % f " , r 6 ) ; 
p r i n t f ( " \ n % f r 7 ) ; 
p r i n r f ( " \ t % f " , r S ) ; 
p r i n t f ( " X t ^ f " , r 9 ) ; * / 

f r e e _ d i r : a T : r i x ( c o o r d X Y Z _ i n _ r e f S y s t e m , 1 , N, 1 , 3 ) ; 
f r e e _ d m a t r i x ( c o o r d X Y _ i n _ p i x e l s , 1 , N , 1 , 2 ) ; 
f r e e ^ d m a r r i x ( C , 1 , N , 1 , 7 ) ; 
f r e e ^ d m a r r i x ( I N V C , 1 , 7 , 1 , N ) ; 
f r e e ^ d v e c w o r ( X d , 1 , N ) ; 
f r e e _ d v e c t o r ( h , 1 , 7 ) ; 
i r e e _ d i r . a c r i x ( C F , 1 , M , 1 , 2 ) ; 
f r e e ^ d m a c r i x ( I N V C F , 1 , 2 , 1 , M ) ; 
f r e e _ d v e c T : o r ( B F , 1 , M ) ; 
f r e e _ d v e c t o r ( F T z , 1 , 2 ) ; 
f r e e _ d m a t r i x ( T r a n s , 1 , 4 , 1 , 4 ) ; 
f r e e _ d r n a t r i x ( C o m p u t e d T r a n s , 1 , 4 , 1 , 4 ) ; 
f r e e ^ d v e c r o r ( T r a n s l A n g l e s , 1 , 6 ) ; 
f r e e ^ d v e c L o r ( C o r r . p u r e d T r a n s l A n g l e s , 1 , 6 ) ; 
f r e e _ d v e c T : o r ( D e l u a T r a n s l A n g l e s , 1 , 6 ) ; 

g e n c h a r ( ) ; 
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MATLAB Programs for making the anah sis of the 
measurement errors 

In ihis anncx are presented l uo MATLAB programs dc\clopcd for making the 

analysis of ihc measurement errors. This analvsis was discussed in chapter 6. 

The first program is done only to represent the error distribution. The measurement 

errors are saved in a matrix having 5 columns. The first two columns represent the x, y 

position of the nicasuicd point and the other threc iepre:5>cnts ihc CIK^R^ FOR A\ V and Z measured 

coordmates. 

/ / L i v i u Toir.a M^îlAB Prcorarr. fo r Error s n r i b u t i o n 
a— 
1 0 2 5 - 3 

4 O T u - 4" 
3 1 - 1 5 - 2 - 4 5 

4 1 - 4 2 3 
c 2 -15 5 
1 2 - 4 - 2 
2 2 - l ' : - i -7 
3 2 - 1 3 - 2 2 
4 2 - 2 I ~£ 
0 3 - 2 6 - l - c i 
1 3 - 8 - 1 2 - 4 7 

2 3 - c 5 - 2 2 

u — j . ' 

2 4 - 6 - 4 1 41 
3 4 1 - 3 5 4 1 
4 4 - 2 1 - 5 7 9 2 

- • 1 , : i - n u ; I i ; 1 , V: ' a ( . , 3 ) ^ a : i , 4 ) ' i { i , 4 i 

NX=3 0 ; 
NY=3:'; 

z2--=zer :.-: < i . 5; ; 
X : =1 O , 4 , ; 

[ X I , Y I j = r r . c - s ' : y r i d ( X I , Y l ) 
X=â ( : , 1 ; ; 
Y=a ( : , 2 , ; 
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Z = u ; 

; i = g r i d d a t a ( X , Y , Z , X I , y i , ' v-J ' ) ; 

s u r f ( X I , Y I , Z I ) 
c o l o r b a r 
x l a b e l ( • > ; ' ) 
y l a b e l ( ' y ' ) 

zi;;;--:. I ' :•: ' 
d i s p C - o i . . , - ' ) 
d i s p ( m e a n ( a ) ) 
d i s p ( • r c . » - ' ) 
d i s p ( m a x ( a ) ) 
d i s p ( 'n i: 1=' ) 
d i s p ( m i n ( a ) ) 
d i s p ( m a x ( a ) - m i n ( a ) ) 

The second program is done to represent the error distribution after the correction 

fiinction was applied, (see 6.2.2). 

/ / L i v i u T o m a MATLAB P r o g r a m f o r E r r o r C o r r e c t i o n 

a = [ 0 O - 0 . 2 0 0 . 3 4 0 . 8 2 
1 O - 0 . 3 0 0 . 2 6 0 . 5 0 
2 O - 0 . 2 9 0 . 2 5 0 . 2 1 
3 O - 0 . 3 3 0 . 2 4 - 0 . 0 3 
4 O - 0 . 2 2 0 . 1 4 - 0 . 3 6 
5 O - 0 . 0 5 0 . 0 4 - 0 . 6 0 
6 O 0 . 2 7 - 0 . 0 8 - 0 . 9 4 
0 1 - 0 . 1 0 0 . 2 7 0 . 9 3 
1 1 - 0 . 2 5 0 . 1 4 0 . 5 3 
2 1 - 0 . 2 4 0 . 1 3 0 . 3 2 
3 1 - 0 . 2 4 0 . 0 8 0 . 0 2 
4 1 - 0 . 1 5 0 . 0 6 - 0 . 2 5 
5 1 0 . 1 0 - 0 . 0 1 - 0 . 4 9 
6 1 0 . 3 2 - 0 . 0 7 - 0 . 7 5 
0 2 - 0 . 1 9 0 . 1 2 0 . 9 5 
1 2 - 0 . 2 4 0 . 1 1 0 . 5 6 
2 2 - 0 . 2 2 0 . 1 1 0 . 2 8 
3 2 - 0 . 2 3 0 . 1 1 0 . 0 9 
4 2 - 0 . 0 8 0 . 0 8 - 0 . 1 3 
5 2 0 . 1 4 0 . 0 8 - 0 . 4 2 
6 2 0 . 3 6 0 . 0 4 - 0 . 6 6 
0 3 - 0 . 1 2 0 . 0 5 0 . 9 5 
1 3 - 0 . 2 5 0 . 0 8 0 . 5 7 
2 3 - 0 . 1 9 0 . 0 9 0 . 3 2 
3 3 - 0 . 2 2 0 . 1 5 0 . 1 2 
4 3 - 0 . 0 3 0 . 1 6 - 0 . 0 9 
5 3 0 . 1 5 0 . 1 6 - 0 . 3 8 
6 3 0 . 3 4 0 . 1 9 - 0 . 5 8 
0 4 - 0 . 0 4 - 0 . 2 2 0 . 9 5 
1 4 - 0 . 1 7 - 0 . 2 1 0 . 6 5 
2 4 - 0 . 1 4 - 0 . 1 3 0 . 3 5 
3 4 - 0 . 1 1 - 0 . 1 1 0 . 1 4 
4 4 - 0 . 0 1 - 0 . 1 4 - 0 . 1 1 
5 4 0 . 2 0 - 0 . 1 3 - 0 . 2 5 
6 4 0 . 4 0 - 0 . 1 2 - 0 . 6 4 
O 5 - 0 . 0 2 - 0 . 1 9 0 . 9 0 
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1 5 - 0 . 1 2 - 0 . 1 7 0 . 6 7 
2 5 - 0 . 0 8 - 0 . 1 2 0 . 3 7 
3 5 - 0 . 0 7 - 0 . 1 0 0 . 1 6 
4 5 0.01 -0.08 -0.06 
5 5 0 . 2 4 - 0 . 0 9 - 0 . 2 7 
6 5 0 . 4 3 - 0 . 5 5 
0 6 - 0 . C 2 - 0 . 4 2 0 . 8 6 
1 6 - 0 . 1 0 - 0 . 4 2 0 . 6 5 
2 6 - O . O S - C . 3 4 0 . 4 0 
3 6 - 0 . 0 9 - 0 . 2 7 0 . 1 8 
4 6 0 . 0 4 - 0 . 2 7 - 0 . 0 5 
5 6 0 . 2 7 - 0 . 2 1 - 0 . 2 9 
6 6 0 . 5 0 - 0 . 1 6 - 0 . 5 6 

3 = a ( : , 3 ) ; 

N = 7 ; 
f o r J = 1 : N 

f e r I = 1 : N 
a ( ( J - 1 ) * 7 + I , 3 ) = 0 . 0 0 1 5 6 * ( 1 - 2 . 7 5 ) * { 1 - 2 . 7 5 ) * ( 1 - 2 . 7 5 ) * ( I -

2 . 7 5 ) + 0 . 0 3 8 * { J - 4 ) - 0 . 1 2 5 ; 
sr.d 

e n d 

N X = 3 0 ; 
N Y = 3 0 ; 

z z = z e r o s ( 7 , 7 ) ; 
X I = l i n s p a c e ( 0 , 6 , N X ) ; 
Y I = l i n s p a c e ( O , 6 , N Y ) ; 
[ X I , Y I ] = m e s h g r i d ( X I , Y I ) ; 

X = a ( : , 1 ) ; 
Y = a ( : , 2 ) ; 
Z = a ( : , 3 ) ; 

R = Z - B ; 
a ( : , 3 ) = R ; 
Z I = g r i d d a r a ( X , Y , R , X I , Y r , ' ' ) ; 
s u r f ( Z I , Y I , Z I ) 
c o l o r f a a r 
x l a b e l ( ' ; ' ) 
y l a b e l ( ' , • ) 

dispCr^.edi-—') 
d i s p ( m e a n ( a ) ) 
d i s p ( ' ) 
d i s p ( m a x ( a ) ) 
d i s p ( ' i : - ' ) 
d i s p ( m i n ( a ) ) 
d i s p ( m a x ( a 3 ) ) - m i n ( a ( : , 3 ) ) ) 
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