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Abstract 

The purpose of the thesis is the applications of Artificial Neural Networks in 

predicting the propagation path loss for telecommunication systems. The tremendous growth 

of wireless commimication systems and especially mobile radio systems requires radio 

coverage prediction models that provide accurate results and fast processing time for several 

types of environments, which includes a large number of parameters describing the outdoor 

and indoor enviromnent. 

Neural Networks models are proposed for the prediction of propagation path loss in 

different environments (urban, suburban and indoor), through which some important 

disadvantages of both statistical and deterministic propagation models can be overcome. The 

proposed Neural Networks models are designed based on propagation measurement results. In 

order to examine the validity of the Neural Networks models, the predicted path loss by them 

is compared to the measured values and to the path loss obtained by applying empirical 

models. 

Within the proposed models, environmental characteristics are considered more subtly 

than in standard statistical models, what usually provides greater accuracy of the model. On 

the other side, the Neural Network models are not computationally extensive as the 

deterministic models. The implementation of the proposed Neural Networks models requires 

a database that is easy to obtain. 
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Rezumat 

Scopul prezentei lucrări este folosirea Reţelelor Neuronale Artificiale pentru predicţia 

pierderilor prin propagare în sistemele de telecomunicaţii. Dezvoltarea puternică a sistemelor 

de comunicaţie fară fir şi în special a sistemelor radio mobile necesită modele de predicţie a 

acoperirii radio care să furnizeze rezultate precise şi un timp de procesare mic, în cazul 

diferitelor medii de propagare a undelor radio. 

Reţelele Neuronale Artificiale sunt sisteme de procesare a informaţiei care încearcă să 

imite comportarea creierului uman. Aplicaţii ale Reţelelor Neuronale Artificiale sunt foarte 

numeroase. Clasificatori, procesoare de semnal, optimizatoare şi regulatoare au fost deja 

implementate. Deşi există numeroase tipuri de Reţelele Neuronale Artificiale, caracteristicile 

comune ale acestora sunt [Haykin, 94]: 

> Imposibilitatea definirii unor formule analitice exacte 

> Precizia necesară: de ordinul a câteva procente 

> Cantitatea de date procesate: medie 

> Adaptabilitate la mediu, care permite reţelelor să înveţe de la un mediu în schimbare 

> Structură paralelă, ceea ce permite reţelelor să ofere o viteză de calcul mare. 

Toate aceste caracteristici ale Reţelele Neuronale Artificiale recomandă utilizarea lor pentru 

predicţia intensităţii câmpului în diverse medii de propagare. Predicţia intensităţii câmpului 

poate fi descrisă ca o transformare a unui vector de intrare conţinând informaţii topografice si 

morfo-grafice într-o valoare de ieşire dorită. Transformarea necunoscută este o funcţie scalară 

de mai multe variabile (mai multe intrări si o singură ieşire). Datorită influenţelor complexe 

ale mediului natural, fimcţia de transformare nu poate fi descrisă analitic. Este cunoscută doar 

în puncte discrete, pentru care există disponibile valori măsurate, sau în cazuri în care 

condiţiile de propagare sunt clar definite, ceea ce permite aplicarea unor reguli simple cum ar 

fi, de exemplu, propagarea în spaţiul liber. 

Problema predicţiei pierderilor prin propagare între două puncte poate fi tratată ca o 

fimcţie de mai multe intrări şi o singură ieşire. Intrările conţin informaţii despre poziţiile 

emiţătorului si a receptomlui, clădirile înconjurătoare, frecvenţă, etc, în timp ce ieşirea 

reprezintă pierderea prin propagare corespunzătoare intrărilor respective. 

Din acest punct de vedere, cercetările în modelarea pierderilor prin propagare constă 

în găsirea intrărilor si a funcţiei care aproximează cel mai bine pierderea prin propagare. 
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Capacitatea de aproximare a funcţiilor, caracteristică reţelele neuronale artificiale, justifică 

utilizarea lor pentru modelarea pierderilor prin propagare. 

Reţelele neuronale cu propagare înainte îndeplinesc criteriile de utilizare pentru 

scopuri de predicţie deoarece nu permit nici o reacţie dinspre ieşire (intensitatea câmpului sau 

pierderea prin propagare) spre intrare (date topografice sau morfografice). 
A 

Predicţia intensităţii câmpului este o sarcină foarte complexă şi dificilă. In cele mai 

multe cazuri nu există condiţii de vizibilitate clară între emiţător si receptor. Multe metode de 

predicţie a intensităţii câmpului au fost propuse în literatură [COST231, 99]. Pentru a 

îmbunătăţi precizia predicţiei, modelele de predicţie trebuie să fie adaptabile la fiecare caz 

special şi aceasta necesită dezvoltarea unor sisteme de predicţie cu o flexibilitate structurală 

ridicata 

în general, modelele de predicţie sunt empirice (denumite şi statistice) sau teoretice 

(ideterministice), sau o combinaţie a celor două. în timp ce modelele empirice se bazează pe 

măsurători, modelele teoretice se bazează pe principiile ftmdamentale ale fenomenelor de 

propagare a undelor radio. 

Principalul avantaj al modelelor empirice este faptul că toate influenţele mediului sunt 

luate în considerare implicit. Pe de altă parte, precizia modelelor empirice depinde nu doar de 

precizia măsurătorilor dar şi de asemănările dintre mediul analizat şi cel în care au fost 

efectuate măsurătorile. 

Datorită faptului că modelele deterministice sunt bazate pe principiile fizicii, ele pot fi 

aplicate în diferite medii, fără a afecta precizia predicţiei. De obicei, implementarea lor 

necesită o bază de date mare a caracteristicilor mediului, condiţie uneori imposibil de obţinut. 

Algoritmii acestor modele sunt de obicei foarte complecşi şi necesită un timp mare de calcul. 

Datorită acesui fapt, implementarea modelelor deterministice este de obicei restrânsă la zone 

de dimensiuni mici ale celulelor micro- sau medii interioare. Totuşi, în cazul în care modelele 

teoretice sunt corect implementate, precizia obţinută poate fi mai mare decât în cazul 

modelelor empirice. 

Problema principală a modelelor empirice clasice este precizia nesatisfacătoare, în 

timp ce modelele deterministice necesită un timp de calcul ridicat. 
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Contribuţii 

Prezenta lucrare prezintă rezultatele cercetării în domeniul aplicaţiilor bazate pe Reţele 

Neuronale Artificiale pentru predicţia pierderilor prin propagare în diferite medii (urban, 

suburban şi interior). Modelele propuse sunt următoarele: 

> Modelul de predicţie MLP - NN în mediul urban, 

> Modelul de predicţie MLP - NN în mediul suburban, 

> Modele hibride de predicţie MLP - NN în mediile urban şi suburban, 

> Modelul de predicţie MLP - NN în mediul interior, 

> Modelul de predicţie RBF - NN în mediul urban, 

> Modelul de predicţie RBF - NN în mediul suburban, 

> Modele hibride de predicţie RBF - NN în mediile urban şi suburban, 

> Modelul de prediţie RBF - NN în mediul interior. 

în sub-capitolele 7.2.2 - 7.2.5 sunt comparate reţele neuronale de tip MLP (Perceptron 

Multistrat) cu diferite structuri şi diferiţi algoritmi de antrenare. Intr-o primă fază, este 

investigată comportarea reţelei MLP - NN antrenată cu algoritmul Levenberg-Marquardt, cu 

număr diferit de neuroni în unul sau două straturi ascunse. în urma acestor simulări, este 

stabilită reţeaua neuronală cu configuraţia optimă iar în continuare, sunt investigate 

performanţele algoritmului Resilient Backpropagation şi a versiunii Powell-Beale a 

algoritmului gradientului conjugat. 

în sub-capitolele 7.3.1 - 7.3.4 sunt analizate modele bazate pe reţele neuronale cu 

fimcţii de bază radiale (Generalized Radial Basis Function Neural Networks RBF-NN). 

Performanţele tuturor modelelor RBF-NN cu diferiţi parametri de intrare sunt evaluate prin 

compararea statisticilor erorilor de predicţie, în funcţie de eroarea medie absolută, deviaţia 

standard, eroarea medie pătratică şi coeficientul de corelaţie dintre valoarea prezisă şi cea 

măsurată. 
A 

In modelele propuse, bazate pe reţele neuronale artificiale, caracteristicile mediului 

sunt luate în considerare de maniera mult mai subtilă decât în modelele statistice obişnuite, 

ceea ce în general duce la o precizie mai mare a predicţiei. Pe de altă parte, modelele propuse 

nu necesită timp mare de calcul iar implementarea lor necesită o bază de date uşor de obţinut. 

In comparaţie cu alte modele de predicţie investigate, modelele propuse, bazate pe 

reţele neuronale prezintă o precizie foarte bună. Avantajul principal al acestor modele constă 

în faptul că sunt uşor de adaptat la medii specifice şi condiţii de propagare complexe. în unele 

cazuri, precizia poate fi îmbunătăţită prin antrenări suplimentare ale reţelei neuronale. 

i i i 
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Rezultatele sunt caracterizate întotdeauna de o anumită deviaţie, dar precizia obtinută este 

suficientă pentru predicţie. 

Rezultatele obţinute de un sistem bazat pe reţeaua MLP-NN, folosit pentru predicţie, 

sunt interesante. Dar rezultatele obţinute de un sistem MLP-NN, care combină într-o abordare 

neliniară rezultate ale algoritmilor clasici pentru pierderea prin propagare şi date fizice, 

deschid noi căi de investigare. Algoritmii conţin o cantitate considerabilă de cunoştinţe-expert 

cu privire la propagarea undelor terestre; utilizarea reţelelor neuronale artificiale pentru 

predicţia intensităţii câmpului permite integrarea eficientă a acestor cunoştinţe precum şi a 

altor informaţii, de exemplu informaţii topografice. 

Analiza modelării hibride a predicţiei pierderilor prin propagare arată că reţelele 

neuronale pot fi utilizate în modele adaptive. Prin introducerea unor parametrii adiţionali, este 

posibilă chiar o extensie a modelelor empirice. în contrast cu algoritmii de autoregresie, 

reţelele neuronale oferă multiple avantaje datorită abilităţii lor de a reprezenta dependenţe cu 

o neliniaritate ridicată a mai multor parametri simultan, incluzând informaţii care nu pot fi 

tratate analitic. în plus, aplicarea simultană a tuturor informaţiilor disponibile conduce la 

rezultate bune chiar şi în cazul în care se dispune de o bază de date săracă. Se arată că această 

abordare flexibilă si cu randament mare de calcul poate fi utilizată pentru calibrare şi ca o 

extensie a modelelor de predicţie convenţionale. 

Avantajul utilizării reţelelor neuronale este acela că un model de propagare particular 

poate fi proiectat să ia în considerare tipuri diferite de medii, pe baza măsurătorilor efectuate 

în mediul dorit. Rezultatele simulărilor au arătat că abordarea bazată pe utilizarea reţelelor 

neuronale furnizează o predicţie mai precisă a intensităţii câmpului decât cea a modelelor 

empirice analizate în această lucrare. 

IV 
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1. Introduction 

1.1. Motivation 

The purpose of the thesis is the applications of Artificial Neural Networks (ANN) in 

predicting the propagation path loss for telecommunication systems. The tremendous growth 

of wireless communication systems and especially mobile radio systems requires radio 

coverage prediction models that provide accurate results and fast processing time for several 

types of environments, which includes a large number of parameters describing the outdoor 

and indoor environmenL 

During last years Artificial Neural Networks (ANN) have experienced a great 

development. Artificial neural networks are information processing systems that aim to copy 

the behavior of human brain. ANN applications are already very numerous. Classificators, 

signal processors, optimizers and controllers have already been realized. Although there are 

several types of ANN's all of them share the foliowing features [Haykin, 94]: 

- Exact analytical formula impossible 

- Required accuracy: some percent 

- Quantity of data to process: medium 

- Environment adaptation that allows them to leam ft-om a changing environment 

(different terrain databases and terrain) 

- Parallel structure that allows them to achieve high computation speed. 

These characteristics of ANN's make them suitable for predicting field strength in 

different environments. The prediction of field strength can be described as the transformation 

of an input vector containing topographical and morphographical information (e.g. path 

profile) to the desired output value. The unknown transformation is a scalar fimction of many 

variables (several inputs and a single output), because a huge amount of input data has to be 

processed. Ovrâig to the complexity of the influences of the natural environment, the 

transformation fimction cannot be given analytically. It is known only at discrete points where 

measurement data are available or in cases with clearly defined propagation conditions which 

allow to apply simple rules like free space propagation, etc. 
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The problem of predicting propagation loss between two points may be seen as a 

function of several inputs and a single output. The inputs contain information about the 

transmitter and receiver locations, surrounding buildings, frequency, etc while the output 

gives the propagation loss for those inputs (figure 1.1). 

Transmitter 

Receiver 

-imldmgŞ ^ Propagation loss 
F(x) 

Frequency 

Distance 

Figure 1.1. Propagation loss prediction as a function of several inputs 

From this point of view, research in propagation loss modeling consists in fînding both 

the inputs and the function F(x) that best approximate the propagation loss. Given that ANN's 

are capable of function approximation, they are useful for the propagation loss modeling. 

The feedforward neural networks are very well suited for prediction purposes because 

do not allow any feedback from the output (field strength or path loss) to the input 

(topographical and morphographical data). 

The prediction of field strength level is a very complex and difficult task. In most 

cases, there are no clear line-of-sight (LOS) conditions between the transmitter and the 

receiver. Many field strength prediction methods have been proposed in the literature 

[COST231, 99]. Usual databases include classifîcation of land usage and urban areas but a lot 

of questions still remain. Cities and open ranges are quite different in structure and may also 

be different in the way of database classifîcation. Propagation models should be adapted to 

every special case to improve accuracy. As a consequence, the development of prediction 

systems with a high structural flexibility it is very desirable. 

Generally, the prediction models can be either empirical (also called statistical) or 

theoretical (also called deterministic), or a combination of these two. While the empirical 

models are based on measurements, the theoretical models deal with the fundamental 

principles of radio wave propagation phenomena. 
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In the empirical models all environmental influences are implicitly taken into account 

regardiess of whether or not they can be separately recognized. This is the main advantage of 

these models. On the other hand, the accuracy of the empirical models depends not only on 

the accuracy of the measurements but also on similarities between the environment to be 

analyzed and the environment where the measurements are carried out. 

The deterministic models are based on the principles of physics and due to that, can be 

applied in dififerent environments without affecting the accuracy. Their implementation 

usually requires a great database of environmental characteristics that is sometimes 

impossible to obtain. The algorithms of these models are usually very complex and lack in the 

computaţional efficiency. Due to that, the implementation of the deterministic models is 

usually restricted to the smaller areas of micro-cell or indoor environments. However, if the 

deterministic models are implemented correctly, greater accuracy of the prediction can be 

expected than in the case of empirical models. 

The main problem of the classical empirical models is the unsatisfactory accuracy, 

while the theoretical models lack in computaţional efficiency. On brief, characteristics of a 

field strength prediction system for mobile radio can be summarized as foliows: 

- Exact analytical formula impossible 

- Required accuracy: some percent (around 6 dB in field strength level) 

- Quantity of data to process: medium 

- Flexibility to adapt to different terrain databases and terrain. 

1.2. Thesis contributions 

This thesis presents the results of the research m the area of Neural Networks (NN) 

applications for prediction of propagation path loss in different environments (urban, 

suburban and indoor). The proposed NN models are the follows: 

> MLP - NN prediction model in urban environment, 

> MLP - NN prediction model in suburban environment, 

> Hybrid MLP - NN models in urban and suburban environment, 

> MLP - NN model for indoor environment, 

> RBF - NN prediction model in urban environment, 

> RBF - NN prediction model in suburban environment, 

> Hybrid RBF - NN models in urban and suburban environment. 
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> RBF - NN model for indoor environment. 

In section 7.2.2 - 7.2.5 a number of comparisons are made for Multilayer Perceptron 

Neural Networks (MLP-NN) with different architectures and different training algorithms. At 

a first step, the performance of the MLP-NN trained with Levenberg-Marquardt (LM) 

algorithm, with different numbers of neurons in one and two hidden layer was investigated. 

These simulations were done with the use of early stopping method. Following these 

simulations, the MLP-NN with the optimum configuration is established and investigations 

are done on the performance of two other training algorithms: the Resilient Backpropagation 

(RP) and the Powell-Beale (PB) version of the conjugate gradient algorithm. 

In section 7.3.1 - 7.3.4 a number of Generalized Radial Basis Function Neural Networks 

(RBF-NN) models are studied. The performance of all RBF-NN models with different input 

parameters is evaluated by comparing their prediction error statistics based on absolute mean 

error, standard deviation, root mean square error and the correlation between predicted values 

and measurement data, 

Within the proposed models, environmental characteristics are considered more subtly 

than in standard statistical models, what usually provides greater accuracy of the model. On 

the other side, the NN models are not computationally extensive as the deterministic models. 

The implementation of the proposed NN models requires a database that is easy to obtain. 

In comparison with other field strength prediction models, the proposed NN models 

showed very good accuracy. The main advantage of the proposed NN models lays in the fact 

that the models should be easily adjusted to some specific environments and complex 

propagation condition. In more specific local cases, the accuracy can be improved by some 

additional NN training. Results are always connected with some uncertainty but accuracy may 

be sufficient for prediction purpose. 

The results obtained by a pure MLP-NN system used for prediction are very 

interesting. But the results obtained by a MLP-NN system that combines a nonlinear NN 

approach, results of classical propagation loss algorithms and physical data open new ways of 

investigations. The algorithms carry a considerable expert knowledge on terrestrial wave 

propagation; the use of NN as fîeld strength prediction model allows to effîciently integrate 

this knowledge as well as topographic and land cover information. 

The hybrid modeling approach for the prediction of propagation path loss is studied 

and it is shown that NN can be used in highly adaptive models. By introducing of additional 

parameters during the training process even an extension of empirical models is feasible. In 

contrast to well-known regression algorithms, NNs offer many advantages owing their ability 
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to represent highly nonlinear dependencies of many parameters simultaneously, including 

information that cannot be treated analytically. In addition, the application of all available 

information at the same time is a way of getting the most even from poorly defined databases. 

It is shown that this flexible and computationally effective approach can be used for 

calibration and as an extension of convenţional prediction modeis. 

The advantage of the NN approaches is that a particular propagation model can be 

constructed to take account of various types of environments based on measurement data 

taken in the desired environment. This approach enhances the flexibility of the NN based 

prediction model to adapt to the terrain database of the environment. Simulation results have 

shown that the NN approach provides more accurate prediction of field strength loss than that 

of the empirical modeis studied in this work. This verifies the effectiveness of the best 

approximation capability of the NN. 
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2. Neural Networks 

2.1. Introduction 

In this chapter, the ftmdamental characteristics of artificial neural networks are briefly 

presented. The next sections are focused on the feedforward neural networks known as Multi-

layer Perceptron (MLP) and Radial Basis Functions (RBF) networks. 

2.1.1. Definition 

Artificial neural networks (ANN), commonly referred to as neural networks (NN), can 

be defined as a large number of units (also called neurons) organized in different layers that 

are interconnected. These units are simple processors that operate only on their local data and 

on the inputs they receive via the connections. It is interesting to note that this model stems 

from the recognition that the brain operates m a completely different manner than 

convenţional digital computers. The analogy between ANN and the human brain has been 

summarized in [Haykin, 94] as foliows: 

"A neural network is a massively parallel-distributed processor made up of simple 

processing units, that has a natural propensity for storing exponenţial knowledge and making 

it available for use, It resembles the brain in two aspects: 

1. Knowledge is acquired by the network from its environment through a learning 

process, 

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge^'. 

The procedure used to perform the leaming process is called leaming algorithm, the flmction 

of which is to modify the synaptic weights of the network in an orderly fashion to attain a 

desired design objective. The modification of synaptic weights provides the traditional 

method for the design of neural networks. It is also possible for a neural network to modify its 

own topology, which is motivated by the fact that neurons in the human brain can die and new 

synaptic connections can grow [Haykin, 99]. 

In [Schalkoff, 97] the following definition of artificial neural network is given: 

"A structure (network) composed of a number of interconnected units (artificial 

neurons), Each unit has an input/output (I/O) characteristic and implements a local 

computation or function. The output of any unit is determined by its I/O characteristics, its 
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interconnection to other units. and (possibly) externai inputs, Although 'hand cra/ting' of the 

network is possible, the network usually develops an overall functionality through one or 

more forms of training'\ 

Neural networks are in fact a diverse family of networks. The overall function or 

functionality achieved is determined by the network topology, the individual neuron 

characteristics, the leaming (or training) strategy and training data. 

2.1.2. Beneiits of neural networks 

A neural network derives its computing power through its structure and its ability to leam, 

and therefore to generalize. Generalization can be defined as the ability of the trained neural 

network to produce reasonable outputs for inputs not encountered during the training process. 

The use of neural networks gives the foliowing properties and capabilities [Haykin, 94]: 

1. Nonlinearity. A neuron can be linear or nonlinear. A neural network formed by 

interconnections of nonlinear neurons, is itself nonlinear. 

2. Input-output mapping. A popular paradigm of leaming, called leaming with a teacher 

or supervised leaming, involves modification of the synaptic weights of a neural 

network by applying a set of labeled training examples or task examples. Each 

example consists of a unique input signal and a corresponding desired response. The 

network is presented with an example picked at random from the set and the synaptic 

weights (free parameters) of the network are modified to mininaize the difference 

between the desired response and the actual response of the network produced by the 

input signal in accordance with an appropriate statistical criterion. The training of the 

network is repeated for many examples in the set until the network reaches a steady 

state where there are no further significant changes in the synaptic weights. The 

previously applied training examples may be reapplied during the training session but 

in a different order. Thus the network leams from the examples by constmcting an 

mput-output mapping for the problem at hand. 

3. Adaptivitv. Neural networks have a built-m capability to adapt their synaptic weights 

to changes in the surrounding environment. hi particular, a neural network trained to 

operate in a specific environment can be easily retrained to deal with minor changes in 

the operating environmental conditions. Moreover, when it is operating in a non-

stationary environment, a neural network can be designed to change its synaptic 
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weights in real time. It should be emphasized, however, that the adaptivity does not 

always lead to robustness; indeed, it may do the opposite. 

4. Evidential response. In the context of pattem classifîcation, a neural network can be 

designed to provide information not only about which particular pattem to select but 

also about the confidence in the decision made. This latter information may be used to 

reject ambiguous pattems, should they arise, and thereby improve the classification 

performance of the network. 

5. Contextual information. Knowledge is represented by the structure and the activation 

state of the network. Every neuron in the network is potentially affected by the global 

activity of all other neurons in the network. Consequently, a neural network deals with 

contextual information naturally. 

6. Fault tolerance. A neural network, implemented in hardware form, has the potential to 

be fault tolerant or capable of robust computation. For example, if a neuron or its 

connecting links are damaged, due to the distributed nature of information stored in 

the network, the damages have to be extensive before the overall response of the 

network is degraded seriously. Thus, in principie, a neural network exhibits a graceful 

degradation in performance rather than catastrophic failure. In order to be assured that 

the neural network is in fact fault tolerant, it may be necessary to take corrective 

measures in designing the algorithm used to train the network. 

7. VLSI implementabilitv. Due to its massively parallel nature, a neural network may be 

fast for the computation of certain task. This feature makes neural networks well 

suited for implementation using very-large-scale-integrated (VLSI) technology. 

8. Uniformitv of analvsis and design. Basically, neural networks enjoy universality as 

information processors. Neurons, in one form or another, represent an ingredient 

common to all neural networks. This commonality makes it possible to share theories 

and leaming algorithms in dififerent applications of neural networks. Modular 

networks can be buih through a seamless integration of modules. 

9. Neurobiological analogy. The design of a neural network is motivated by the analogy 

with the brain. Neurobiologists look to (artificial) neural networks as a research tool 

for the interpretation of neurobiological phenomena. Engineers look to neurobiology 

for new ideas to solve problems more complex than those based on convenţional hard-

wired design techniques. 
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2.1.3. The model of a neuron 

An elementary neuron with m inputs is shown in Figure 2.1. The three basic elements 

of the neural model are: 

1. A set of synapses or connecting links, each of which is characterized by a weight of its 

own. A signal xj (j=l, m) at the input of synapse j connected to neuron k is 

multiplied by the synaptic weight wjg. 

2. An adder for summing the input signals weighted by the respective synapses of the 

neuron. This operation constitutes a linear combiner. 

3. An activation function for limiting the amplitude of the output of the neuron. Neurons 

may use any differentiable transfer function f to generate their output. 

The model depicted in Figure 2.1 also includes an extemally applied bias, noted bk, 

that has the effect of increasing or lowering the net input of the activation function, depending 

on whether it is positive or negative, respectively. 

^ 1 

m 

- f(.) 
Output 

Figure 2.1. The noniinear model of a neuron 

In mathematical tenns: 

m 
U k = Z W k j X j 

j=l 
(2.1) 

and 

yk = f(uk + bk) (2.2) 

where xj (j = 1,2,. . .^) are the input signals, Wkj are the synaptic weights of the neuron k, m is 

the number of the inputs, ujc is the linear combiner output due to the input signals, bk is the 

bias, f(.) is the activation function and yk is the output signal of the neuron. 
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The bias bk is an externai parameter of the neuron k. The use of bias bk has the effect 

of applying an affine transformation to the output Uk of the linear combiner in the model of 

Figure 2.1, as shown by 

vk = uk + bk 

In particular, depending on whether the bias bk is positive or negative, the relationship 

between the induced local fîeld or activation potential Vk of neuron k and the linear combiner 

output Uk is modified as illustrated in Figure 2.2. 
Induced local 

fieid, v^ b^ > O 
, b = O 

'b < O 

Linear combiner's 
output, u^ 

Figure 2.2. Affine transformation produced by the presence of a bias 

It is possible to reformulate: 

m 

v k = S WkjXj 
j=0 

(2.4) 

and 

Yk = f ( v k ) (2-5) 

In equation (2.4) it was added a new synapse with the input xo = 1 and the weights wico = bk. 

Types of activation flmctions 

The activation flmction f(v) defines the output of a neuron in temis of the induced 

local field v. In this section are presented several basic types of activation functions. 

f(v) = (2.6) 

1. The threshold function (Figure 2.3a): 

1 v > 0 
O v < 0 

In engineering literature this form of threshold flmction is commonly referred to as a 

Heaviside function. Such a neuron, whose activation flmction is the threshold flmction, is 
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referred to in the literature as the McCulloch-Pits model. In this model, the output of the 

neuron takes on the value of 1 if the induced local field of that neuron is nonnegative, and O 

otherwise. This statement describes the all-or-none property of the McCulloch-Pitts model 

[Haykin, 99]. 

2. The piecewise linear flinctions (Figure 2.3b): 

1 v . l 

f (v )= . 

2 

- - < v < - (2.7) 
2 2 

O v < - -
2 

where the amplification factor inside the linear region of operation is assumed to be unity. 

The following two situations may be viewed as special forms of the piecewise linear fimction 

[Haykin, 99]: 

- A linear combiner arises if the linear region of operation is maintained without 

running into saturation. 

- The piecewise-linear function reduces to a threshold fimction if the amplification 

factor of the linear region is made infinitely large. 

3. The sigmoid fimction is the most common form of activation fimction used in the 

design of artificial neural networks. Sigmoid fimctions are defined by the following 

characteristics [Haykin, 94]: 

> Strictly increasing fimctions, 

> Asymptotically limited, 

> Smoothness. 

Two sigmoid fimctions are of particular interest for neural network implementation. First, the 

logistic fimction, depicted in Figure 2.3c and defined by 

f(v) = - (2.8) 1 + exp(-a v) 

where a is the slope parameter of the sigmoid function. By varying the parameter a, sigmoid 

fimctions of different slopes are obtained. The slope at the origin equals a/4. In the limit, as 

the slope parameter approaches infinity, the sigmoid fimction becomes the threshold fimction. 

Whereas a threshold fimction assumes the value of O or 1, a sigmoid fimction assumes a 
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continuous range of values from O to 1. Note also that the sigmoid function is differentiable, 

whereas the threshold function is not. 

-2 -1.5 -1 -0.5 O 0 5 
V 

a) 

c) 

0 8 ' 

b) 

- 5 - 4 - 3 -2 -1 0 1 2 3 
V 

d) 

Figure 23: Types of activation functions: (a) - the threshold function; (b) - the piecewise linear function; 

(c) - the logistic function and (d) - the hyperbolic tangent function 

The activation fimctions defined above range from O to 1. Sometimes it is desirable to 

have the activation function range from - l to +1. In this case, the activation fimction is an odd 

function of the activation potential v. The corresponding fomi of the threshold fimction, 

which range from - l to +1, is commonly referred to as the signum fimction. The hyperbolic 

tangent fimction, depicted in Figure 2.3d, is the corresponding form of a sigmoid fimction and 

is defined by: 

tanh(v) = 
1 + exp(-v) 

(2.9) 
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2.1.4. Knowledge representation 

The following generic definition for the term ^'knowledge" is given in [Haykin, 99]: 

''Knowledge refers to stored information or models used by a person or machine îo interpret, 

predict, and appropriately respond to the outside world\ 

The challenge of the neural network is to leam the model of the environment in which 

operates and to maintain this model sufficiently accurately independent of any changes that 

this environment might undergo. [Haykin, 99] contends that knowledge in the world can be 

classified in two major categories: 

> A prior knowledge about the environment in which the network operates. This 

knowledge can be communicated to the NN engineer by a subject matter expert and 

there are ways of incorporating this knowledge into the design of the NN. 

> Observations (measurements) of the world, obtained by means of sensors designed to 

probe the environment in which the neural network is supposed to operate. Quite often 

these observations are noisy or incomplete, or both because of errors due to sensor 

noise and system imperfections. In any event, the observations so obtained provide the 

pool of information from which the examples used to train the neural network are 

drawn. 

The training of the NN using the available observations proceeds as follows: Each example 

(observation) consists of an input-output pair; an input signal and the corresponding desired 

response for the NN. Thus, a set of examples represents knowledge about the environment of 

interest. This set of input-output pairs is referred to as a set of training data or training sample. 

In a neural network of specified architecture, knowledge representation of the 

surrounding environment is defined by the values taken on by the free parameters (i.e. 

weights and biases) of the network. The subject of knowledge representation inside an 

artificial neural network is, however, very complicated, because a particular weight in a 

neural network is affected by many inputs to it, and the knowledge about a single input to the 

NN is distributed amongst many interconnection weights. Nevertheless, there are four rules 

for knowledge representation that are of a general commonsense nature [Haykin, 99]: 

1. Similar inputs fi-om similar classes should usually produce similar representations 

inside the network, and should therefore be classified as belonging to the same 

category. 

2. Items to be categorized as separate classes should be given widely different 

representations in the network. 

i: 
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3. If a particular feature is important, then there should be a large number of neurons 

involved in the representation of that item in the network. 

4. Prior information and invariances should be built into the design of a neural network, 

thereby simplifying the network design by not having to leam them. 

2.1.5. Learning processes 

The property that is of primary significance for a neural network is the ability of the 

network to leam from its environment and to improve its performance through leaming. A 

neural network leams about its environment through an interactive process of adjustments 

applied to its synaptic weights and bias levels. The leaming in the context of neural networks 

is defined as [Haykin, 99]: 

"Learning is a process by which the free parameters of a neural network are adapted through 

a process of stimulation by the environment in which the network is embedded. The type of 

learning is determined by the manner in which the parameter changes take place'\ 

A prescribed set of well-defined mles for the solution of a leaming problem is called a 

leaming algorithm. Basically, leaming algorithms differ from each other in the way in which 

the adjustment to a synaptic weight of a neuron is formulated. Another factor to be considered 

is the manner in which a neural network, made up of a set of interconnected neurons, relates 

to its environment. 

a). Error correction leaming [Haykin. 99] 

Consider the simple case of a neuron k constituting the only computaţional node in the 

output layer of a feedforward neural network, as depicted in Figure 2.4. 

Input vector 
One or more 

layers of Output 
hidden neuron k 

neurons 

1 

Figure 2.4. Error-correction learning 

Neuron k is driven by a signal vector x(n) produced by one or more layers of hidden 

neurons that are themselves driven by an input vector applied to the source nodes (i.e. input 
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layer) of the neural network. The argument n denotes the time step of an iterative process 

involved in adjusting the synaptic weights of neuron k. The output signal of neuron k is 

denoted by yk(n). This output signal, representing the only output of the neural network, is 

compared to a desired response, denoted by dk(n). Consequently, an error signal, denoted by 

ek(n), is produced. By definition, we thus have 

e k W = d k ( n ) - y k ( n ) (2.15) 

The error signal ek(n) actuates a control mechanism, the purpose of which is to apply a 

sequence of corrective adjustments to the synaptic weights of neuron k. The corrective 

adjustments are designed to make the output signal yk(n) come closer to the desired response 

dk(n) in a step-by-step manner. This objective is achieved by minimizing a cost fimction or 

index performance, E(n), defined in terms of the error signal ek(n) as: 

E(n) = ^e^(n) (2.16) 

That is, E(n) is the instantaneous value of the error energy. The step-by-step adjustments to 

the synaptic weights of neuron k are continued until synaptic weights are essentially 

stabilized. At that point the leaming process is terminated. 

The leaming process described herein is referred to as error-correction leaming. In 

particular, minimization of the cost-function E(n) leads to a leaming mie commonly referred 

to as the delta-rule of Widrow-Hoff mie [Widrow, 1960]. Let Wkj(n) denote the value of 

synaptic weights wy of neuron k excited by element Xj(n) of the signal vector x(n) at time step 

n. According to the delta rule, the adjustment Awig(n) applied to the synaptic weights wjg at 

time step n is defined: 

Awkj(n)=^ek(n)xj(n) (2.17) 

where is the leaming rate parameter (a positive constant that determines the rate of leaming 

as the leaming process proceeds firom one step to another). In other words, the delta rule may 

be stated as [Haykin, 99]: 

"The adjustment made to a synaptic weight of a neuron is proporţional to the product of the 

error signal and the input signal of the synapse in question 

Having computed the synaptic adjustments Awig(n), the update value of synaptic 

weight wţq is determined by 

w kj (n +1) = w kj (n) + A wkj (n) (2.18) 

In effect, Wkj(n) and Wkj(n+1) may be viewed as the old and new values of synaptic weight 

Wţq, respectively. 
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In practice, the leaming rate parameter |j. plays a key role in determining the 

performance of error-correction leaming and the choice of also has a profound influence on 

the accuracy of the leaming process. It is therefore important that ^ is carefiilly selected to 

ensure that the stability or convergence of the iterative leaming process is achieved. 

b). Memory - based leaming 

In memory-based leaming, all (or most) of the past experiences are explicitly stored 

in a large memory of correctly classified input-output examples: {(xi»di)}ili» where Xj 

denotes an input vector and di denotes the corresponding desired response. Without loss of 

generality, the desired response is restricted to be a scalar. For example, in a binary pattem 

classification problem there are two classes, denoted by Ci and C2, to be considered. In this 

example, the desired response di takes the value O (or -1) for class Ci and the value 1 for class 

C2. When classification of a test vector Xtest (not seen before) is required, the algorithm 

responds by retrieving and analyzing the training data in a "local neighborhood" of Xtest-

All memory-based leaming algorithms involve two essential ingredients: 

> Criterion used for defining the local neighborhood of the test vector Xiest-

> Leaming rule applied to the training examples in the local neighborhood of Xtest-

The algorithms differ firom each other in the way in which these two ingredients are defined. 

In a simple yet effective type of memory-based leaming known as the nearest neighbor mie, 

the local neighborhood is defined as the training example that lies in the immediate 

neighborhood of the test vector Xtest- In particular, the vector 

Xj, G{X,,X2,...,XN} (2.19) 

is said to be the nearest neighbor of Xtest if 

n m d ( x i , x ^ ) = d(x„,x,^) (2.20) 

where d(xi, Xtest) is the Euclidean distance between the vectors Xj and Xtest- The class associated 

with the minimum distance, that is, vector xn', is reported as the classification of Xtest- This 

mie is independent of the underlying distribution responsible for generating the training 

examples [Haykin, 99]. 

c). Hebbian leaming 

To formulate Hebbian leaming in mathematical terms, consider a synaptic weight wjg 

of neuron k with presynaptic and postsynaptic signals denoted by xj and yk, respectively. The 

adjustment applied to the synaptic weight W|g at time step n is expressed in the general form 
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Awkj(n)=F(y;,(n),xj(n)) (2.21) 

where F(-, ) is a ftmction of both postsynaptic and presynaptic signals. The signals Xj(n) and 

yk(n) are often treated as dimensionless. The formula of equation (2.21) admits many forms, 

all of which qualify as Hebbian. In what follows, we consider two such forms [Haykin, 99]. 

Hebb's hvpothesis 

The simplest form of Hebbian leaming is described by 

^wkj(n)=Hyk(n)xj(n) (2.22) 

where ^ is a positive constant that determines the rate of leaming. Equation (2.22) clearly 

emphasizes the correlational nature of a Hebbian synapse. The repeated application of the 

input signal (presynaptic activity) xj leads to an increase in yjc and therefore exponenţial 

growth that finally drives the synaptic connection into saturation. At that point no information 

will be stored in the synapse and selectivity is lost. 

Covariance hvpothesis 

One way of overcoming the limitation of Hebb's hypothesis is to use the covariance 

hypothesis introduced in [Sejnowski, 77a,b]. In this hypothesis, the presynaptic and post 

synaptic signals in equation (2.22) are replaced by the departure of presynaptic and 

postsynaptic signals from their respective average values over a certain time interval. Let x 

and y denote the time-averaged values of the presynaptic signal xj and postsynaptic signal yk, 

respectively. According to the covariance hypothesis, the adjustment applied to the synaptic 

weight Wkj is defined by 

Awkj(n) = ^ 

/ \ / \ 

X j - X Y k - y 
\ / \ / 

(2.23) 

where ^ is the leaming rate parameter. The average values constitute presynaptic and 

postsynaptic thresholds that determine the sign of synaptic modification. 

hi both cases, Hebb's hypothesis and the covariance hypothesis, the dependence of 

Awkj on yk is linear; however, the intercept with the y-axis in Hebb's hypothesis is at the 

origin, whereas in the covariance hypothesis it is at yk = y. 

The following observations can be made from equation (2.23) [Haykin, 99]: 
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> Synaptic weight Wkj is enhanced if there are sufficient levels of presynaptic and 

posts>-naptic activities, that is, the conditions Xj > x and yk > y are both satisfied. 

> Synaptic weight w^ is depressed if there is either 

- a presynaptic activation (i.e. xj > x) in the absence of sufficient postsynaptic 

activation (i.e. yk < y ) , or 

- a postsynaptic activation (i.e. yk > y) in the absence of sufficient presynaptic 

activation (i.e. xj < x) 

This behavior may be regarded as a form of temporal competition between the incoming 

pattems [Haykin, 99]. 

dy Competitive leaming 

In competitive leaming the output neurons of a neural network compete among 

themselves to become active. Whereas in a neural network based on Hebbian leaming several 

output neurons may be active simultaneously, in competitive leaming only a single output 

neuron is active at any one time. 

There are three basic elements to a competitive leaming rule [Rumelhart, 85]: 

> A set of neurons that are all the same except for some randomly distributed synaptic 

weights and which therefore respond differently to a given set of input pattems. 

> A limit imposed on the "strength" of each neuron. 

> A mechanism that permits the neurons to compete for the right to respond to a given 

subset of inputs, such that only one output neuron, or only one neuron per group, is 

active at a time. The neuron that wins the competition is called a "winner-takes-all" 

neuron. 

Accordingly the individual neurons of the network leam to specialize on ensembles of similar 

pattems; in so doing they become feature detectors for different classes of input pattems. 

2.1.6. Supervised learning 

An essential ingredient of supervised leaming is the availability of an extemal teacher, 

as indicated in Figure 2.5. The teacher may be thought as having knowledge of the 

environment that is represented by a set of input-output examples. The environment is, 
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however, imknown to the neural network of interest. Suppose now that the teacher and the 

neural network are both exposed to a training vector drawn from the environment. The teacher 

is able to provide the neural network with a desired response for that training vector. The 

desired response represents the optimum action to be performed by the neural network. The 

network parameters are adjusted under the combined influence of the training vector and the 

error signal. The error signal is defined as the difiference between the desired response and the 

actual response of the network. This adjustment is carried out iteratively in a step-by-step 

manner. The knowledge of the environment available to the teacher is transferred to the neural 

network through training as fully as possible. When this condition is reached, the teacher may 

be dispensed and let the neural network deal wdth the environment completely by itself 

[Haykin, 94]. 
Vector descnbing 

state of the 
environment 

Environment- Teacher 

ActuaJ 
^ Leaming response ^ 

system 

Desired 
response 

Error signal 

Figure 2.5. Learning with a teacher 

The form of supervised leaming described above is the error-correction leaming 

discussed previously. It is a closed-loop feedback system, but the unknown environment is 

not included in the loop. As a performance measure for the system we may think in terms of 

the mean-square error or the sum of squared errors over the training samples, defined as a 

function of the free parameters of the system. This flmction may be viewed as a 

multidimensional error-performance surface with the free parameters as coordinates. The true 

error surface is averaged over all possible input-output pattems. Any given operation of the 

system under the teacher's supervision is represented as a point on the error surface. For the 

system to improve performance over time and therefore leam from the teacher the operating 

point has to move down successively towards a minimum point of the error surface; the 

minimum point may be a local minimum or a global minimum. A supervised leaming system 

is able to do this with the useful information it has about the gradient of the error surface 

19 

BUPT



corresponding to the current behavior of the system. The gradient of an error surface at any 

point is a vector that points in the direction of steepest descent. In fact, in the case of 

supervised leaming from examples, the system may use an instantaneous estimate of the 

gradient vector, with the example indices presumed to be those of time. The use of such an 

estimate results in a motion of the operating point on the error surface that is typically in the 

form of a "random waik'\ Nevertheless, given an algorithm designed to minimize the cost 

flmction, an adequate set of input-output examples and enough time permitted to do the 

training, a supervised leaming system is usually able to perform tasks such as pattem 

classifîcation and flmction approximation [Haykin, 99]. 

2.1J. Unsupervised leaming 

In unsupervised leaming there is no externai teacher to oversee the leaming process, 

as indicated m Figure 2.6. Suppose that the neural network is exposed to a training vector 

dravm from the environment. Since the teacher is absent m this setting, v̂ e are not able to 

pro vide the neural network with a desired response for the training vector. 

Vector describing 
state of the 

. environment ^ Leaming Environment" ^ ^ 
I system 

Figure 2.6. Unsupervised leaming 

Instead, a provision is made to identify a measure of the quality of the representation 

that the network is required to leam and the free parameters of the network are optimized with 

respect to that measure. After training is over, a grouping of the training inputs presented to 

the network is achieved, based on the similarity measure imposed by the network. 

2.1.8. Function approximation 

The choice of a particular leaming algorithm is influenced by the leaming task that a 

neural network is required to perform. In [Haykin, 99] are described six leaming tasks that 

apply to the use of neural networks: pattem association, pattem recognition, function 

approximation, control, filtering and beamforming. The leaming task of interest in this section 

is that of function approximation. 
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Consider a nonlinear input-output mapping described by the funcţional relationship 

[Haykin. 99]: 

d = f(x) (2.24) 

where the vector x is the input and the vector d is the output. The f(-) is assumed to be 

imknown. Consider {(xi,di)}iii being a set of labeled examples. The requirement is to design a 

neural network that approximates the unknown function f(0 such that the function F(-) 

describing the input-output mapping actually realized by the network is closed enough to f( ) 

in an Euclidean sense over all inputs, as shown by 

F(x)-f(x) | |<8 for all X (2.25) 

where 8 is a small positive number. Provided that the size N of the training set is large enough 

and the network has an adequate number of free parameters, than the approximate error 8 can 

be made small enough for the task. 

The described approximation problem is a perfect candidate for supervised leaming 

with Xi playing the role of mput vector and di serving the role of desired response. 

The ability of a neural network to approximate an unknown input-output mapping may 

be exploited in two important ways [Haykin, 99]: 

> System Identification. Consider that equation (2.24) describe the input-output relation 

of an unknown memoryless (time invariant) multiple input - multiple output (MIMO) 

system. The set of labeled examples {(xi,d,)}iii may be used to train a neural network 

as a model of the system. Let yi denote the output of the neural network produced in 

response to an input vector Xj. The difference between di (associated with Xi) and the 

network output yi provides the error signal vector Ci, as depicted in Figure 2.7. This 

error signal is in tum used to adjust the free parameters of the network to minimize the 

squared difference between the outputs of the unknovm system and the neural network 

in a statistical sense, and is computed over the entire training set. 

Input vector 

Unknown 
system 

Neural 
network 
model 

Error 
6, 

System output 
Input vector d 

Inverse 
model 

Model output 
y, 

Figure 2.7. System identificatîon Fig. 2.8. Inverse system modeling 
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> Inverse system. Suppose next it is given a known memoryless MIMO system whose 

input-output relation is described by equation (2.24). The requirement in this case is to 

construct an inverse system that produces the vector x in response to the vector d. The 

inverse system may thus be described by 

î = f ^(d) (2.26) 

where the vector-vaiued fimction f ' (•) denotes the inverse of f( ). Note, however, that 

f'(•) is not the reciprocal of f( ); the use of superscript - l is merely a flag to indicate 

an inverse. In many situations encountered in practice, the vector-vaiued fimction f( ) 

is much too complex. Given the set of labeled exampies {(xi,di)}iii a neural network 

approximation of f'(•) may be implemented by using the scheme shown in Figure 2.8. 

In the situation described here, the roles of Xj and di are interchanged; the vector di is 

used as the input and Xi is treated as the desired response. Let the error signal vector Ci 

denote the difference between Xi and the actual output yi of the neural network 

produced in response to di. As with the system Identification problem, this error signal 

vector is used to adjust the free parameters of the neural network to minimize the 

squared difference between the outputs of the unknown inverse system and the neural 

network in a statistical sense and is computed over the complete training set. 

2.2. The perceptron 

The perceptron has marked an important step in the development of artificial neural 

network for two main reasons. First leaming algorithms, allowing the training of the neural 

network to partition the input space into two regions, were found. Moreover, Rosenblatt 

[Rosenblatt, 58] proved that when the training example belong to two linear separable classes, 

the perceptron algorithm would always converge and drawn the decision surface in the form 

of a hyper-plane between the two classes. 

2.2.1 Introduction 

The perceptron is the simplest and the best-known model of neural network. It was 

proposed in 1958 in [Rosenblatt, 58] as the first model for leaming with a teacher. The 

perceptron is built around a nonlinear neuron, namely, the McCulloch-Pitts model of a neuron 
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[Haykin. 94]. The model consists of a linear combiner foliowed by a hard limiter, as depicted 

in Figure 2.9: 

X. 

Xn, 

Figure 2.9. The perceptron 

The hard limiter input or the activation potential v of the neuron is 

m 
v = ZwiXi + b 

i=l 
(2.27) 

f(v) = (2.28) 

The hard limiter performs the signum fimction f(v) 

+ 1 v > 0 
- l v < 0 

The goal of the perceptron is to correct ciassify the set of inputs xi, X2, ..., Xm into one 

of two classes, denoted Ci and C2. The decision nile for the classification is to assign the 

point represented by the inputs xi, X2, ..., Xm to class Ci if the perceptron output y is +1 and to 

class C2 if it is - l . 

hi the simplest form of the perceptron there are two decision regions separated by a 

hyperplane defined by 

m 
Z w i x i + b = 0 
i=l 

(3.29) 

hi Figure 2.10 it is depicted the case of two input variables xi and X2, for which the 

decision boundary takes the form of a straight line. A point (xi, X2) that lies above die 

boundary line is assigned to class Ci and a point (xi, X2) that lies below the boundary line is 

assigned to class C2. The effect of the bias is to shift the decision boundary away from the 

origin. 
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Class C, Class C, 

Decision boundary 
w^x, + WjXj + b = O 

Figure 2.10. Decisioo boundary for a two classes pattern classification problem 

The synaptic weights wi, W2, Wm of the perceptron can be adapted on an iteration-

by-iteration basis, using an error-correction mie known as the perceptron convergence 

algorithm [Haykin, 99]. 

2.2.2. Perceptron convergence theorem 

In order to derive the error-correction leaming algorithm, the following variables and 

parameters are defined: 

> n denotes the iteration step m applying the algorithm, 

> x(n) = [l, X j (n), X 2 (n),..., X (n)] ̂  is the (m+1 )-by-1 input vector, 

> w(n) = [l, w, (n), w 2 (n),..., w ̂  (n)] ̂  is the (m+1 )-by-1 weight vector, 

> b(n) is the bias treated as a synaptic weight driven by a fixed input equal to 1, 

> d(n) is the desired response, 

> y(n) is the actual response (quantized), 

> |i is the leaming rate parameter (a positive constant less than unity). 

The linear combiner output is written in the compact form 
m 

v{n) = Wi (n)xj (n) = w^ (n)x(n) (2.30) 
1=0 

where wo(n) represents the bias b(n). 

The perceptron convergence algorithm can be summarized as follows [Haykin, 99]: 

1. Initialization. Set w(0) = 0. Then perform the following computations for time step n 

1 , 2 , . . . . 
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2. Activation. At time step n, activate the perceptron by applying continuous-valued 

input vector x(n) and desired response d(n). 

3. Computation of actual response. Compute the actual response of the perceptron 

y(n) = f[w^(n)x(n)J (2.31) 

where f(*) is the signum ftmction. 

4. Adaptation of the weight vector. Update the weight vector of the perceptron 

w(n +1) = w(n)+ |i[d(n)- y(n)]x(n) (2.32) 

where 

+1 if x(n) belongs to class C i d(v) = , X (2.33) 
- 1 if x(nj belongs to class C j 

is the quantized desired response and d(n) - y(n) plays the role of an error signal. 

5. Continuation. Increment time step n by one and go back to step 2. 

The leaming rate parameter |i is a positive constant, limited to the range O < |i < 1. When 

assigning a value to it inside this range, two conflicting requirements has to be taken into 

account [Lippmann, 1987]: 

> Averaging of past inputs to provide stable weight estimates, which requires a small |i, 

> Fast adaptation with respect to real changes in the imderlying distributions of the 

process responsible for the generation of the input vector x, which requires a large |i. 

2.3. Multilayer perceptron (MLP) 

It has been shown in section 2.2 that the perceptron could only design linear decision 

boundaries. This might provide extremely restrictive for a wide range of problems. Some 

problems can involve classes that are not linearly separable. By creating a network organized 

in different layers, as depicted in Figure 2.11, it is possible to implement complex decision 

boundaries [Lippmann, 87]. 

23.1. Introduction 

The multilayer perceptron (MLP) is a neural network that consists of an input layer of 

source nodes, one or more hidden layers of nodes and an output layer, also made up of 

neurons. The source nodes provide physical access point for the application at hand. The 

neurons in the hidden layers act physically inaccessible from the input end or output end of 

25 

BUPT



the network. The neurons in the output layers present to a user the conclusions reached by the 

network in response to the input signals. 

Input Hidden 
layer layer ^ 

Figure 2.11. Multilayer perceptron with a single hidden layer. 

Figure 2.11 depicts a multilayer perceptron with a pair of input nodes, a single hidden 

layer of neurons and a single output neuron. Two key characteristics of such a structure are 

immediately apparent from this figure [Haykin, 96]: 

1. A multilayer perceptron is a feedforward network, in the sense that the input signals 

produce a response at the output of the network by propagating in the forward 

direction only. There is no feedback in the network. 

2. The network may be fiilly connected, as shown in figure 2.11, in that each node in a 

layer of the network is connected to every node in the layer adjacent to it. 

Altematively, the network may be partially connected in that some of the synaptic 

links may be missing. Locally connected networks represent an important type of 

partially connected networks; the term local refers to the connectivity of a neuron in a 

layer of the network only to a subset of possible inputs. 

The number of nodes in the input layer is determined by the dimensionality of the 

observation space that is responsible for the generation of input signals. The number of nodes 

in the output layer is determined by the required dimensionality of the desired response. Thus, 

the design of a multilayer perceptron requires that we address three issues [Haykin, 96]: 

1. The determination of the number in the hidden layers, 

2. The determination of the number of neurons in each of the hidden layers, 

3. The specification of the synaptic weights that interconnect the neurons in the 

different layers of the network. 
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Figure 2.12 presents the decision boundaries that can be produced using the 

perceptron and the MLP with one and two hidden layers and two inputs. 

Figure 2.12. The capability of the MLP to design complex decision boundaries: (a) - single perceptron; 
(b) - MLP with one hidden layer; (c) - MLP with two hidden layers 

Figure 2.12 indicates that the perceptron can only draw linear decision boundaries. 

When one hidden layer of neurons is added, it is then possible to implement arbitrary complex 

convex decision boundaries [Lippmann, 87]. It was shown later that neural networks with 

only one hidden layer are able to create regions arbitrarily close to any non-linear decision 

boundary [Makhoul, 89]. Finally, with two hidden layer it is also possible to design any 

decision boundary [Lippmann, 87]. Moreover, certain problems can be solved with a small 

number of neurons and two hidden layers, whereas a network with only one hidden layer 

would require an infinite number of neurons. The choice of the number of hidden layers in the 

multilayers perceptrons is generally open. 

23.2. Training algorithms for MLP 

In the previous sections, a general presentation of the artificial neural networks was 

given. It has been shown that artificial neural networks are adaptive algorithms and therefore 

require a training algorithm to adapt their synaptic weights. The derivation of the 

backpropagation algorithm (BKP) [Rumelhart, 86] marked an important point in the 

development of ANN. Using this algorithm made it possible to efficiently perform the weight 

adaptation of MLP and widened the range of possible areas of appiications for ANN. The 

training algorithm is in fact performed in two separate steps. First, the derivative of the error 

function to be minimized is computed with respect to the weights of the neural network. This 

procedure corresponds to the propagation of errors backwards m the network and is the BKP 

algorithm itself. Then, these derivatives can be used in conjunction with some other 

algorithms, such as gradient descent (GD), to update the weights of the network. 
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23.2.1. The backpropagation (BKP) algorithm 

First some notations are presented. A ftilly connected MLP consisting of Nk layers is 

considered. Each layer k of the neural network is made of neurons. The internai activity 

level and the fiinction signal of the i^ neuron in the layer k are noted yJ'̂ ^Cn) and 

respecţively and are computed according to the foliowing equations: 

y f ' \ n ) = I v^i^^-x^^-^Hn) (2.34) 
i=0 ^ 

x(k)(n) = f(yW(n)) (2.35) 

where is the synaptic weight connecting the i'*' neuron in the layer k to the j'*' neuron in 

the layer k-1 and f represents the nonlinear activation fiinction of the neuron that maps the 

internai activity level to output. 

The error fiinction to be minimized is denoted as E and it is expressed as a sum of the 

error fiinctions over the number of training examples in the following form: 

E = ZEn (2.36) 

n 

The error function En is assumed to be differentiable with respect to the outputs of the 

network. Using activation fiinctions that are differentiable, such as sigmoid fiinctions, ensures 

the derivability of the error fiinctions with respect to the weights m the network. Using the 

chain mie for parţial derivatives, the following equation can be written: 
5 E , _ 8 E „ Sy!"' , , „ , 

Hence: 

^ = (2.3S) 

with 

= ^ (2.39) 
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The coefGcients gj'^) are referred to as local errors and are the only parameters to be 

estimated in the network in order to compute the whole set of derivatives. For the output 

layer. the local errors can be easily computed through the following formula: 

5(NK) = = . f'(ytNK)) (2.40) 

For the first hidden layer the chain rule for the parţial derivatives is used again: 

Jk) 8E„ _ N.., Se 

5W = t ' 8 f e ^ ' > - w W f ' ( y S ' ' ) ) (2.42) 

which then leads to: 

Nk., 
Z 

m=l 

Equation (2.40) allov^s the computation of the derivatives with respect to all the weights in the 

neural network starting from the output layer and processing backward through hidden layers. 

The BKP algorithm makes it possible to compute the derivatives of the error fimction 

to be minimized with respect to the weights for the whole network. Knowing these derivatives 

values, it is then possible to update the weights using a simple gradient-descent (GD) 

algorithm: 

wO^)(n + l)= (2.43) 

where \i is the adaptation step. 

In the application of the BKP algorithm, two distinct passes of computation are 

distinguished: the forward pass and the backward pass. In the forward pass the synaptic 

weights remain imaltered throughout the network and the fimction signals (that propagate 

forward through the network) of the network are computed on a neuron-by-neuron basis. In 

other words, the forward phase of computation begins at the first hidden layer by presenting it 

with the input vector and terminates at the output layer by computing the error signal for each 

neuron this layer. The backward pass, on the other hand, starts at the output layer by passing 

the error signal leftward through the network, layer by layer, and recursively computing the 

local gradient for each gradient. This recursive process permits the synaptic weights of the 

network to undergo changes in accordance with the equation (2.43). 

Sequential and batch modes of training 

In practicai applications of the BKP algorithm, leaming results fi-om the many 

presentations of a prescribed set of training examples to the multilayer perceptron. One 
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complete presentation of the entire set during the leaming process is called an epoch. The 

leaming process is maintained on an epoch-by-epoch basis until the synaptic weights and bias 

levels of the network stabilize and the average squared error over the entire training set 

converges to some minimum value. It is good practice to randomize the order of presentation 

of training examples from one epoch to the next [Haykin, 99]. 

In the sequentiai mode of BKP leaming (also referred to as on-line, pattem, 

incremental or stochastic mode) the gradient is computed and the weights are updated after 

the presentation of each training example. In the batch mode of BKP leaming the weight are 

changed after the presentation of all the training examples. 

From an "on-line" operaţional point of view, the incremental mode of training is 

preferred over the batch mode because it requires less local storage for each synaptic 

connection and, given that the pattems are presented to the network in a random fashion, the 

use of pattem-by-pattem updating of weights makes the search in weight space stochastic in 

nature. This in tum makes it less likely for the BKP algorithm to be trapped in a local 

minimum. In the same way, the stochastic nature of the incremental mode makes it diffîcult to 

establish theoretical conditions for convergence of the algorithm. In contrast, the use of batch 

mode of training provides an accurate estimate of the gradient vector; convergence to a local 

minimum is thereby guaranteed under simple conditions [Haykin, 99]. 

When the training data are redundant (i.e. the data set contains several copies of 

exactiy the same pattem), it was found that unlike the batch mode, the incremental mode is 

able to take advantage of this redundancy because the examples are presented one at a time. 

This is particuiarly when the data set is large and highly redundant [Haykin, 99]. 

Stopping Criteria 

One of the differences between the BKP leaming rule (generalized delta mie) and the 

perceptron leaming rule is that the perceptron leaming rule will converge to a solution, if such 

a solution exists, in a finite number of steps, while the BKP leaming rule can go on forever 

without ever reaching a time when all the actual outputs are equal to the desired outputs. 

Hence, stopping criteria must be established to designate the end of the training process. It 

may be formulated a sensible convergence criterion for BKP leaming as follows [Haykin, 99]: 

'The back-propagation algorithm is considered to have converged when the Euclidean norm 

of the gradient vector reaches a sufficiently small gradient threshold". 

The drawback of this convergence criterion is that, for successful trials, leaming time 

may be long and also requires the computation of the gradient vector. 
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In [Haykin, 99] is suggested a different criterion of convergence: 

'The back-propagation algorithm is considered to have converged when the absolute rate of 

change in the average squared error per epoch is sufficiently small 

The rate of change in the averaged squared error is typically considered to be small 

enough if it lies in the range of 0.1 to 1 percent per epoch. Sometimes a value as small as 0.01 

percent per epoch is used. Unfortimately, this criterion may result in a premature termination 

of the leaming process [Haykin, 99]. 

Heuristics for making the BKP algorithm perform better 

It is often said that the design of a neural network using the BKP algorithm is more of 

an art than a science in the sense that many of numerous factors involved in the design are the 

results of one's personal experience. There are methods that will significantly improve the 

BKP algorithm's performance [Haykin, 99]. 

1. Incremental versus batch update. The incremental mode is computationally faster than 

the batch mode, especially when the data set is large and highly redundant. 

2. Maximizing information content. As a general rule, every training example presented 

to the BKP algorithm should be chosen on the basis that its information content is 

largest possible for the task at hand. Two ways of achieving this aim are: (1) the use of 

an example that results in the largest training error and (2) the use of an example that 

is radically different from all those previously used. 

3. Activation fimction. A MLP trained with the BKP algorithm may, in general, leam 

faster (in terms of the number of training iterations required) when the sigmoid 

activation fimction built into the neuron model of the network is antisymmetric (i.e. 

odd fimction of its argument) than when it is nonsymmetric. 

4. Desired response. It is important that the desired response be chosen within the range 

of the sigmoid activation fimction. More specifically, the desired response for a 

neuron in the output layer of a MLP should be offset by some amount away fi-om the 

limiting value of the sigmoid activation fimction, depending on whether the limiting 

value is positive or negative. Otherwise the BKP algorithm tends to drive the firee 

parameters of the network to infinity and thereby slow down the leaming process by 

driving the hidden neurons into saturation. 

5. Normalizing the inputs. Each input variable should be preprocessed so that its mean 

value, averaged over the entire training set, is close to zero, or else it is small 

compared to its standard deviation. In order to accelerate the BKP leaming process. 

31 

BUPT



the normalization of the inputs should also include two other measures: (1) the input 

variables contained in the training set should be uncorrelated and (2) the decorrelated 

input variables should be scaled so that their covariances are approximately equal. 

6. Initialization. The first step in BKP leaming is to initialize the network. The 

customary practice is to set all the free parameters (weights) in the MLP to random 

numbers that are unifonnly distributed inside a small interval of values, symmetric 

around zero. The wrong choice of iniţial weights can lead to a phenomenon known as 

premature saturation. There are ways to counter this premature saturation problem. 

One way is to choose the weights converging to a node i in the MLP uniformly 

distributed over an interval of the form [-ai/Fi ai/Fi], where a» is an appropriately 

chosen constant and Fi is the fan-in of the nodes that are aflfecting node i (or the 

number weights converging to node i). In this way it can be guarantee that the output 

of a node in the MLP structure will not be initially saturated to an incorrect value. 

Another way to avoid the premature saturation problem is to design an error ftmction 

whose minimization will guarantee the correct mapping for the training data 

[Christodoulou, 01]. 

7. Leaming from hints. Leaming Ifrom a set of training examples deals with an unknown 

input-output mapping fimction f('). In effect, the leaming process exploits the 

information contained in the examples about the fimction f(-) to infer an approximate 

implementation of it. The process of leaming from examples may be generalized to 

include leaming from hints, which is achieved by allowing prior information that it 

may exist about the fimction f(-) to be included in the leaming process. Such 

information may mclude invariance properties, symmetries or any other knowledge 

about the fimction f(-) that may be used to accelerate the search of its approximate 

realization, and more importantly, to improve the quality of the final estimate. 

8. Leaming rates. All neurons in the MLP should ideally leam at the same rate. The last 

layers usually have larger local gradients that the layers at the front end of the 

network. Hence, the leaming rate parameter should be assigned a smaller value in the 

last layers than in the front layers. Neurons with many inputs should have a smaller 

leaming rate parameter than neurons with few inputs so as to maintain a similar 

leaming time of all neurons in the network. In [LeCun, 93] it is suggested that for a 

given neuron, the leaming rate should be inversely proporţional to the square root of 

synaptic connections made to that neuron. 
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23.3.2. Advanced learning algorithms in MLP 

The basic backpropagation algorithm described in section 2.3.2.1 is a gradient descent 

algorithm based on the estimation of the instantaneous sum-squared error for each layer. The 

simplest implementation of the BKP leaming updates the network weights and biases in the 

direction in which the performance function decreases most rapidly - the negative of the 

gradient. An iteration of this algorithm can be expressed as (based on equation (2.43)) (the 

weight update): 

AW(n) = W(n +1)- W(n) = • V w E(n) = • g(n) (2.44) 

where W(n) is a vector of ciurent weights and biases (iteration n), g(n) is the ciurent gradient 

and n is a positive constant called leaming rate. The performance of the algorithm is very 

sensitive to the proper setting of the leaming rate: if the leaming rate is set too large the 

algorithm will become unstable and if the leaming rate is set too small, the algorithm will take 

a long time to converge. 

Such an algorithm is slow for three basic reasons [Haykin, 94]: 

1. It uses an instantaneous sum-squared error E(W) to minimize the mean squared error, 

denoted J(W), over training epoch (iteration). The gradient of the instantaneous is not 

a good estimate of the gradient of the mean squared error. Therefore, satisfactory 

minimization of this error requires more iterations of the training process. 

2. It is a first-order minimization algorithm that is based on the first-order derivaţives (a 

gradient). Faster algorithms use also the second derivatives (the Hessian matrix). 

3. The error propagation serializes computations on the layer-by-layer basis. 

The mean squared error, J(W), is a relatively complex surface in the weight space, possibly 

with many local minima, flat sections, narrow irregular valleys and saddle points. The 

complexity of the error surface is the main reason that the behavior of the simple steepest 

descent minimization algorithm can be very complex and may have oscillations around a 

local minimum. 

The faster algorithms fall into two main categories. The fîrst category use heuristic 

techniques that were developed from an analysis of the performance of the standard steepest 

descent algorithm. The heuristic techniques discussed are: the momentum technique, the 

adaptive leaming rate backpropagation and the resilient backpropagation. The second 

category of fast algorithms uses standard numerical optimization techniques. In this chapter 

will be presented three types of numerical optimization techniques for neural networks: the 

conjugate gradient, the quasi-Newton and the Levenberg-Marquardt techniques. 
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In the next section we will consider improvements to the basic backpropagation 

algorithms based on heuristic methods. These methods aim to an improvement of the 

algorithm by making modifications to its parameters or to the form. 

A. Heuristic improvements of the BKP algorithm 

Al. The momentum term 

The BKP algorithm provides an "approximation" to the trajectory in weight space 

computed by the method of steepest descent (appendix 1). The smaller is the leaming rate 

parameter the smaller the changes to the synaptic weights in the network will be jfrom one 

iteration to the next and the smoother will be the trajectory in weight space. However, this 

improvement is attained at the cost of a slower rate of leaming. If the leaming rate parameter 

\i is chosen too large in order to speed up the rate of leaming, the resulting large changes in 

the synaptic weights assume such a form that the network may become unstable (oscillatory). 

A simple method of increasing the rate of leaming yet avoiding the danger of instability is to 

modify the delta mie of equation (2.43) by including a momentum term. 

One simple method to avoid an error trajectory in the weight space being oscillatory is 

to add to the weight update a momentum term (denoted Q) that is proporţional to the weight 

update at the previous step. Momentum allows a network to respond not only to the local 

gradient, but also to recent trends in the error surface. Acting like a low pass fîlter, this 

modification to the steepest descent algorithm is able to ignore small features in the error 

surface. Without momentum a network may get stuck in a shallow local minima. 

AW(n) = . g(n)+ Q • AW(n -1) (2.45) 

A2. Adaptive leaming rate 

An adaptive leaming rate during the training process will attempt to keep the leaming 

step size as large as possible while keeping the leaming stable. A typical strategy is based on 

monitoring the rate of change of the mean square error and can be described as folio ws: 

- If the mean square error J is decreasing consistently, that is VJ is negative for a prescribed 

number of steps, then the leaming rate is increased linearly: 

|i(n +1) = ^(n) + a , a > O (2.46) 

- If the error has mcreased (VJ > 0), the leaming rate is exponentially reduced: 

^(n + l) = p.^(n), 0 < p < l (2.47) 
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A3. Resilient backpropagation 

Multilayer neural networks typically use sigmoid transfer fonction in the hidden 

layers. Sigmoid ftmctions are characterized by the fact that their slope must approach zero, as 

the input gets large. This causes a problem when using steepest descent, since the gradient can 

have a very small magnitude and therefore causes small changes in the weights and biases. 

The purpose of the resilient backpropagation algorithm is to eliminate these effects of the 

magnitudes on the parţial derivatives. Only the sign of the derivatives is used to determine the 

direction of the weight update, the magnitude of the derivative has no effect on the weight 

update. The update value for each weight and bias is increased by a factor y whenever the 

derivative of the performance fimction with respect to that weight has the same sign for two 

successive iterations. The update value is decreased by a factor y whenever the derivative with 

respect to that weight changes sign from the previous iteration. If the derivative is zero, there 

are no changes in the update value. Whenever the weights are oscillating the weight change 

will be reduced. If the weight continues to change in the same direction for several iterations, 

then the magnitude of the weight change will be increased. Generally, the resilient 

backpropagation algorithm converges much faster than the previous algorithms. 

B. Conjugate gradient algorithms 

In most of the training algorithm discussed in the previous section, a leaming rate is 

used to determine the length of the weight update (step size). In most of the conjugate 

gradient algorithms the step size is adjusted at each iteration. In the conjugate gradient 

algorithms a search is performed along conjugate directions to determine the step size that 

will minimize the performance function along that line. AII of the conjugate gradient 

algorithms start by searching in the steepest descent direction (negative of the gradient) on the 

first iteration (g denotes the current gradient): 

P(0) =-g (0 ) (2.48) 

A line search is then performed to determine the optimal distance to move along the search 

direction: 

w(n +1) = w(n) + ^(n)p(n) (2.49) 

where next value of the weight vector w(n+l) is obtained from the current value of the weight 

vector, w(n), by moving it m the direction of a vector p(n) (n is the time step). 
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Then the next search direction is determined so that it is conjugate to previous search 

directions. The general procedure for determining the new search direction is to combine the 

new steepest descent direction with the previous search direction: 

p(n+l) = - g ( n ) +P(n)p(n) (2.50) 

where P(n) are scaling factors to be determined and are selected so that the direction p(n+l) 

and p(n) are conjugate with respect to the Hessian matrix, V^ J(w) = H, that is, 

p(n + l)-H-p^(n) = 0 (2.51) 

For all conjugate gradient algorithms, the search direction will be periodically reset to 

the negative of the gradient. The standard reset point occurs when the number of iterations is 

equal to the number of network parameters (weights and biases) but there are another reset 

methods that can improve the effîciency of training. In our application the neural networks is 

trained with the Powell-Beale version of the conjugate gradient algorithm. This method was 

proposed by Powell [Powell, 77], based on the earlier version proposed by Beale [Beale, 72]. 

For this techrdque the restart takes place if there is very little orthogonality left between the 

current gradient and the previous gradient. This is tested with the following inequality: 

gT (n- l )g (n) |>0.2-||g(n) (2.52) 

If this condition is satisfied, the search direction is reset to the negative of the gradient. 

The Fletcher-Reeves update formula is: P(n) = — g W g — (2. 53) 
g ( n - l ) g T ( n - l ) 

The Polak-Ribiere formula is: P(n) = (2. 54) 
g(n-l)gT"(n-l) 

In summary, the conjugate gradient algorithm involves: Iniţial searching p(0) = - g (0); 

line minimization with respect of n; calculation of the next search direction as in equation 

(2.50) and P firom one of the above presented formula. 

C. Quasi-Newton Algorithms 

Newton's method [appendix 2] is an alternative to the conjugate gradient methods for 

fast optimization. The basic step of Newton's method is: 

w(n +1) = w(n) - H"^(n)g(n) (2. 55) 

where H is the Hessian matrix (second derivatives) of the performance index at the current 

values of the weights and biases. The Hessian matrix provides additional mformation about 
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the shape of the performance index surface in the neighborhood w(n). Newton's method often 

converges faster than conjugate gradient methods. However, it requires computations of the 

inverse of the Hessian matrix that is relatively complex and expensive. 

The quasi-Newton method (also called secant method) is based on Newton's method 

but do not require the calculation of the second derivatives. An approximate Hessian matrix is 

updated at each iteration of the algorithm. The update is computed as a flmction of the 

gradient. 

D. Levenberg-Marquardt algorithm 

One problem with the Newton's algorithm is that the approximate Hessian matrix may 

not be invertible. To overcome this problem in the Levenberg-Marquardt algorithm a small 

constant \i is added such as the weight update rule becomes: 

Aw = w(n + 1 ) - w(n) = -[jT(w).J+^i-l]"^ • J^(w) • e(w) (2. 56) 

where J(w) is the Jacobian matrix that contains the first derivatives of the network errors with 

respect to the weights and biases, I is the identity matrix, e(w) is a vector of the network 

errors and ji is a small constant. For large values of |i the J^(w) J(w) terms become negligible 

and leaming progresses according to J^(w) e(w), which is gradient descent. Whenever a 

step is taken and error increases, [i is increased until a step can be taken without increasing 

error. However, if |i becomes too large, no leaming process takes place (i.e. J^(w) e(w) 

approaches zero). This occurs when an error minima has been found. For small value of the 

above expression becomes the Gauss-Newton method [appendix 3]. 

2 3 3 . Generalization 

After the presentation of the training set to the neural network, it is hoped that the 

weights have converged to a point allowing a good operation when the data set is presented. 

The ability of the network to operate on unknown data (test data never used in training the 

network) is referred to as generalization. The generalization mainly depends on three 

parameters [Haykin, 94]: 

1. The training process (number of training examples and the extent to which they 

represent the classes to be classified), 

2. The network confîguration (number of hidden layers and neurons), 

3. The complexity of the problem to be solved. 
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Clearly, there is no control over the latter. In the context of the other two factors, the issue of 

generalization may be viewed from two different perspectives [Haykin, 99]: 

> The architecture of the network is fixed (hopefully in accordance with the physical 

complexity of the underlying problem) and the issue to be resolved is that of 

detennining the size of the training set needed for a good generalization to occur. 

> The size of the training set is fixed and the issue of interest is that of detennining the 

best architecture of network for achieving good generalization. 

The choice of the network architecture impacts on the training procedure. In [Hush, 89] it is 

shown that a small number of training examples would imply better performance when only 

one hidden layer is considered rather than two. This is due to the high flexibility and the large 

number of fi-ee parameters associated with three layer neural networks, which then call for a 

long training procedure in order to converge. The influence of the number of neurons in the 

network and the number of training examples on the generalization capabilities of the network 

are closely linked. [Huang, 91] has proved that, for a given size of training examples, the 

number of neurons in the network necessary to implement the training data is of the order of 

the number of training examples. If the network is oversized, the training data will be 

memorized and the generalization will not be possible. Hence, the neural network should be 

complex enough in order to be able to draw decisions boundaries complex enough to solve 

the problem at hand. Nevertheless, as the number of neurons increases, the length of the 

required training sequence will increase. It is therefore important to keep the size of the 

network as low as possible in order to reduce the transmission overhead induced by the 

training sequence. 

23.4. Cross - validation 

The network selection problem may be viewed as choosing, v^thin a set of candidate 

model stmctures, the "best" one according to a certain criterion. Cross-validation is a standard 

tool used in statistical prediction and model selection in control theory. First, the available 

data set is randomly partitioned into a training set and a test set. The training set is fiirther 

partitioned into two disjoint sets: estimation subset (used to select the model) and validation 

subset (used to test or validate the model). 

The motivation here is to validate the model on a data set different fi-om the one used 

for parameter estimation. In this way, the training set may be used to assess the performance 

of various candidate models, and thereby choose the "best" one. There is, however, a distinct 
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possibility that the model with the best-performing parameter values so selected may end up 

overfitting the validation subset. To guard against this possibility, the generalization 

performance of the selected model is measured on the test set, which is different from the 

validation subset. The use of cross-validation is appealing particularly when we have to 

design a large neural network with good generalization as the goal. For example, cross-

validation may be used to determine the multilayer perceptron with the best number of hidden 

neurons and when it is best to stop training. 

On the basis of the results reported in [Keams, 96], 80 percent of the training set could 

be assigned to the estimation subset and the remaining 20 percent are assigned to the 

validation subset. 

Early stopping method of training 

A multilayer perceptron trained with the backpropagation algorithm leams in stages 

and during the training process the mean square error decreases with an increasing number of 

epochs: it starts from oflf at a large value, decreases rapidly and then continues to decrease 

slowly as the network makes it way to a local minimum on the error surface. With good 

generalization as the goal, it is very difficult to figure out when is the best to stop training. In 

particular, it is possible for the network to end up overfitting the training data if the training 

session is not stopped at the right point. 

In the early stopping method of training the estimation subset of examples is used to 

train the network, in the usual way, with the observation that the training session is stopped 

periodically and the network is tested on the validation subset after each period of traming. 

More specifically, the periodic estimation-foUowed-by-validation process proceeds as follows 

[Haykin, 99]: 

> After a period of estimation (training), the synaptic weights and bias levels of the 

multilayer perceptron are all fixed, and the network is operated in its forward mode. 

The validation error is thus measured for each example in the validation subset. 

> When the validation phase is completed, the estimation (training) is resumed for 

another period, and the process is repeated. 
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Figure 2.13. Illustration of the early stopping rule based on cross validation 

From Figure 2.13 it can be noticed that the model does not as well on the validation 

subset as it does on the estimation subset. The estimation leaming curve decreases 

monotonically for an increasing number of epochs and the validation leaming curve decreases 

monotonically to a minimum, it then starts to increase as the training continues. What the 

network is leaming beyond the minimum point on the validation leaming curve is essentially 

noise contained in the training data. This heuristic suggests that the minimum point on the 

validation leaming curve be used as a sensible criterion for stopping the training session. 

If the training data are noise free, both of the estimation and validation errors cannot 

be simultaneously driven to zero and this implies that the network does not have the capacity 

to model the function exactly. The best that can be done in that situation is to try to minimize, 

for example, the integrated squared error that is (roughly) equivalent to minimizing the usual 

global mean-square error with a uniform input density. 

2.4. Radial Basis Function networks 

2.4.1. Introduction 

The backpropagation algorithm for the design of a multilayer perceptron as described 

in the previous section may be viewed as the application of a recursive technique known in 

statistics as stochastic approximation. A completely different approach is considered in this 

section by viev^g the design of a neural network as a curves fitting (approximation) problem 

in a high dimensional space. According to this viewpoint, leaming is equivalent to finding a 
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surface in a multidimensional space that provides a best fit to the training data, with the 

criterion for "best fit" being measured in some statistical sense. Correspondingly, 

generalization is equivalent to the use of this multidimensional surface to interpolate the test 

data. 

The construction of a Radial Basis Function (RBF) Neural Network (or RBF-NN) 

involves three layers of nodes with entirely different roles. 

1. The input layer, made up of source nodes, where the inputs are applied 

2. The hidden layer, where radial basis functions are applied on the input data; this layer 

applies a nonlinear transformation fi-om the input space to the hidden space; in most 

applications the hidden space is of high dimensionality. 

3. The output layer, where the outputs are produced. 

Radial basis fimction (RBF) Neural Networks can solve any approximation problem. 

Park and Sandberg [Park, 93] proved that RBF neural networks (RBF-NN) are capable of 

universal approximation. Broomhead and Lowe in 1988 [Broomhead, 88] were the first to 

explore the use of RBFs in the design of NNs and to show how RBF-NNs model nonlinear 

relationships and implement interpolation. Mitchelli [Mitchelli, 86] showed that RBF-NNs 

can produce an interpolating surface that exactly passes through all the pairs of the training 

set. However, in applications the exact fit is neither useful nor desirable since it may produce 

anomalous interpolating surfaces. Poggio and Girosi viewed the leaming process as an ill-

posed problem, in the sense that the information in the training data is not sufficient to 

uniquely reconstruct the mapping in regions where the data are not available. 

A popular choice of the radial basis fimctions at the hidden layer is Gaussian functions (i.e. 

they resemble multidimensional Gaussian probability density fimctions) with appropriate 

centers (means) and autocovariance matrices. One of the major differences between RBF 

neural networks and ML? neural networks (with one hidden layer) is that RBFs (which can be 

thought of as activation fimctions) have localized centers. That is, they provide a nonzero 

output for portions of the input space that is closely concentrated around the center of the 

RBF. This is not true for the activation fimctions used in the hidden layers of the MLPs. 

Another major difference is that if we choose the parameters of the RBFs a priori (e.g., 

centers of Gaussian and autovariances of Gaussians), then the leaming of weights can focus 

only on the weight parameters converging to the output layer of the RBF network. Hence, in 

this case, the leaming process of an RBF neural network becomes equivalent to the leaming 

process of a single layer perceptron. Since the leaming of the weights of a single layer 

perceptron is much faster process than the leaming of weights of an MLP, the convergence to 
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a solution for such an RBF network can be orders of magnitude faster than the convergence to 

a solution for the MLP. Of course, the problem remains how to choose the centers and the 

autocovariance matrices of the Gaussian functions. One of the most straightforward 

approaches to making this choice was proposed in [Moody, 89]. In [Moody, 89], Moody and 

Darken proposed a K-means clustering procedure to choose the means of the Gaussian 

fimctions and a P-nearest neighbor heuristic to determine the diagonal elements of the 

autocovariance matrices; the nondiagonal elements of the autocovariance matrices; the 

nondiagonal elements of the autocovariances matrices are arbitrarily chosen to be equal to 

zero. The weights converging to the output layer are updated according to a supervised least 

mean square procedure (e.g., delta rule of a single layer perceptron). This leaming approach 

[Moody, 89] is a classic example of hybrid leaming, where unsupervised methods are used to 

fînd the parameters (weights) associated with the hidden layer, while a supervised procedure 

is utilized in leaming the weights converging to the output layer. Another way of fînding the 

centers of the Gaussian in an RBF-NN is by utilizing the self-organizing-feature map (SOFM) 

neural networks (SOFM-NN), introduced by Kohonen [Kohonen, 90]. The K-means 

procedure and the SOFM procedure to find the centers of the Gaussian in an RBF-NN will be 

discussed later. Since [Moody, 89], a variety of supervised approaches to leam the parameters 

of the hidden layer m the RBF-NN have been proposed. The supervised procedures to leam 

the centers and autocovariance matrices tend to make the training process more time-

consuming. On the other hand, supervised procedures to find centers and autocovariances of 

Gaussian leads us to trained RBF neural networks that tend to generalize better. 

2.4.2. Stnicture of RBF networks 

Figure 2.14 depicts the block diagram of a RBF-NN with M input nodes, K hidden 

nodes (plus the bias node 0) and one output node. The input-output mapping performed by the 

RBF-NN may be expressed as: 

y = (2.57) 

The term (p(u; Vk) is the k^ radial basis function that computes the "distance" between an 

input vector x and its own center v̂ ; the output signal produced by the k^ hidden node is a 

nonlinear ftmction of the distance. The scaling factor Wk in equation (2.57) represents the 

weight that connects the k^ hidden node to the output node of the network. The constant term 

wo represents the bias. 

The input-output mapping performed by the RBF-NN is accomplished in two stages: 
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> A nonlinear transformation that maps the input space onto an intermediate space 

> A linear transformation that maps the intermediate space onto the output space. 

The nonlinear transformation is defined by the set of radial basis fimctions (pk and the 

linear transformation is defined by the set of weights Wk, k = 1, 2, . . K . 

Input layer Hidden layer Output layer 

Figure 2.14. Architecture of a RBF-NN 

1A3. Radial basis fimctions 

At the heart of RBF network is the hidden layer that is defined by a set of radial basis 

fimctions firom which the network derives its name. The following fimctions are of particular 

interest in the study of RBF networks [Haykin, 99]: 

1. Gaussian, 

(p(r)=exp (2.58) 

2. Multiquadratic fimction 

3. Inverse - multiquadratic fimction 

1 

(2.59) 

(2.60) 

4. Piecewise linear approximation 
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(p(r)=r 

5. Cubic approximation 

6. Thin plate spline 

<p(r) = 
/ \2 / \ 

tofi r for some a>0 and r>0 

(2.61) 

(2.62) 

(2.63) 

Of these examples, the Gaussian function is the most commonly used in practice. 

Given an input vector x, the k* Gaussian radial basis function of the RBF network is defined 

as follows: 

9 ( x ; v J = exp 
1 

x - v , k=l ,2 , . . . ,K (2.64) 

where Vk is the center, Ok is the width and ||x-Vk|| denotes the Euclidean distance between x 

and Vk. 

Substituting equation (2.64) in (2.57), the input-output mapping realized by a 

Gaussian RBF network may be reformulated as follows: 
IV 

y = Z ^ k e x p 
k=l 

1 
X - V . (2.65) 

From a design point of view, the requirement is to select suitable values for the parameters of 

the K Gaussian radial basis functions, namely <Tk and Vk, k = 1,2, ..., K, and solve for the 

weights of the output layer. 

2.4.4. Learning strategies with RBF-NN 

There are a number of choices for these functions (p, and all of these choices guarantee 

that the resulting RBF-NN structure can implement any continuous mapping from an input 

space of arbitrary dimensionality to an output space of arbitrary dimensionality. The most 

popular choice for the fimction (p is a multivariate Gaussian fiinction with an appropriate 

mean and autocovariance matrix. That is, 

(p,(x) = e x p - i ( x - v j ' ' 2 - ' ( x - v , ) (2.66) 

where Vk is the mean vector and 2k is the autocovariance matrix of the multivariate Gaussian 

fimction corresponding to hidden node k. Given the above expression for the functions (p 

involved in the hidden layer of the RBF-NN structure, we can see that we have at our disposal 

a lot of parameters that can be modified to achieve our objective. These parameters are the 
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mean vectors and the autocovariance matrices of each Gaussian fiinction in the hidden layer 

and the interconnection weights from the hidden to the output layer. There are four primary 

leaming strategies that have been proposed in the literature for changing the parameters of an 

RBF-NN. 

A. Fixed centers selected at random 

hi this leaming strategy, the means (centers) of the Gaussian ftmctions are chosen 

randomly from the training data set. hi other words, each Vk is chosen to be equal to one of the 

training input pattems x, selected randomly from the training data. In effect, the standard 

deviation (i.e. width) Ok for each Gaussian radial basis ftmctions is fixed at the common value: 

a = (2.67) 

where K is the number of centers and dmax is the maximum distance between the chosen 

centers. This formula ensures that the individual radial basis ftmctions are not too peaked or 

too flat; both of these extreme should be avoided [Haykin, 99]. 

The only parameters that would need to be leamed in this approach are the linear 

interconnection weights from the hidden layer to the output layer. These interconnection 

weights are chosen in a way that minimizes the error ftmction 

E(w.) = XE''(W.) (2.68) 
p=i 

where P represents the number of the training pattems. One way of finding the weights that 

minimize the aforementioned error ftmction is by following the gradient descent procedure 

that modifîes the weights by an amount proporţional to the negative gradient of E(wi). The 

minimum of the above error ftmction is zero if the transformed input pattems at the hidden 

layer are linearly independent. If an exact solution does not exist, an approximate solution can 

be found by using the pseudoinverse of a matrix, The constraints can be put into a matrix 

form 

0 W = D (2.69) 

where O is the Nx(K+l) matrix of the transformed input pattems, the W matrix is a (K+l)xl 

vector of interconnection weights from the hidden-to-output layer, and D is the Nxl vector of 

desired outputs. The pseudoinverse approach gives a solution for (2.69) that is of the form 

W = (<D''(d)"'O^D (2.70) 

In (2.70) it is assumed that the G matrix has (K+1) linearly independent columns. hi the case 

where the RBF-NN has many output nodes (i.e., I output nodes), the solution will be given by 

45 

BUPT



(2.70), where W is now a matrix (K+1)*I of interconnection weights, and O is a matrix N*I of 

desired outputs [Christodoulou, 01]. 

B. Self-organized selection of centers 

The main problem with the method described above is the fact that the random 

selection of centers is arbitrary and it might lead to poor performance of the network if the 

centers are not chosen properly. One way of overcoming this limitation is to use some kind of 

clustering procedure to define the centers of the Gaussian functions in the RBF-NN. Popular 

clustering procedures that have been proposed include the K-means algorithm [Tou, 74] and 

the SOFM [Kohonen, 90]. A clustering approach involves two steps: 

> The unsupervised leaming algorithm for the selection of the centers of the Gaussian 

radial basis functions. 

> The supervised leaming algorithm for the computation of the interconnection weights 

from the hidden to the output layer. 

K-means clusterins procedure 

The K-means clustering algorithm [Duda, 73] places the centers of the Radial Basis 

Functions in only those regions of the input space where significant data are present. A 

description of the K-means algorithm may be found in [Haykin, 99]: 

1. Initialization. Choose random values for the iniţial centers Vk(0); the only restriction is 

that these iniţial values be different. It may also be desirable to keep the Euclidean 

norm of the centers small. 

2. Sampling. Draw a sample vector x from the mput space with a certain probability. The 

vector X is input into the algorithm at iteration n. 

3. Similarity matching. Let k(x) denote the index of the best-matching (winning) center 

for input vector x. Find k(x) at iteration n by using the minimum distance Euclidean 

criterion: 

k(x)= arg min||x(n)-v,(n)|| k= 1,2,..., K (2.71) 
k 

where Vk(n) is the center of the k*̂  radial basis fimction at iteration n. 

4. Updating. Adjust the centers of the radial basis fimctions using the update rule: 

Vk(n + 1)= ^ ^ ^ ^̂  ^̂  (2.72) 
v^ţ^nj, otherwise 

where |x is a leaming rate parameter that lies in the range O < <1. 
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5. Continuation. Increment n by 1, go back to step 2, and continue the procedure until no 

noticeable changes are observed in the centers v^. 

Once the centers are identified by the K-means clustering algorithm, the variances of 

the Gaussians are chosen to be equal to the mean distance of every Gaussian center from its 

neighboring Gaussian centers. 

A limitation of the K-means clustering algorithm is that it can only achieve a local 

optimum solution that depends on the iniţial choice of cluster centers. Consequently, 

computing resources may be wasted in that some iniţial centers get stuck in regions of the 

input space with a scarcity of data points and may therefore never have the chance to move to 

new locations where they are needed. The network result in possible an unnecessarily large 

network. To overcome this limitation of the convenţional K-means clustering algorithm, 

[Chen, 95] proposed the use of an enhanced K-means clustering algorithm due to 

[Chinunmeng, 94] that is based on a cluster variation weighted measure that enables the 

algorithm to converge to an optimum or near optimum confîguration, independent of the 

iniţial center locations [Haykin, 99]. 

Having identified the individual centers of the Gaussian radial basis functions and 

their common widths using the K-means clustering algorithm or its enhanced version, the next 

stage is to estimate the interconnection weights from the hidden to the output layer. A simple 

method for this estimation is the least-mean-square (LMS) algorithm (appendix 4). The vector 

of output signals produced by the hidden units constitutes the input vector to the LMS 

algorithm. Note also that the K-means clustering algorithm for the hidden units and the LMS 

algorithm for the output unit(s) may proceed with their own individual computations in a 

concurrent fashion, thereby accelerating the training process. 

The Self'0r2anizin2 Feature May (SOFM) Clusterins Procedure 

The SOFM-NN consists of an input layer of nodes, where the inputs to the NN are 

applied, and an output layer of nodes, where the groupings of the inputs are formed. Most 

often, the nodes in the output layer of an SOFM-NN are organized m a two-dimensional array 

(Figure 2.15, where an SOFM-NN, with many output nodes, organized in a two-dimensional 

array, and two input nodes, is shovm). 

Each mput is fully connected to every output node, and a weight is assigned to each 

connection. Training is performed in an unsupervised way using the Kohonen leaming 

algorithm [Kohonen, 90]. The Kohonen leaming algorithm belongs to the broader class of 

competitive algorithms, which can be viewed as a procedure that leams to group input 
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pattems in clusters in a way inherent to the data. To train the SOFM-NN, continuous valued 

input vectors are presented in random sequence to the network. The mapping from the 

externai input pattems to the network's activity pattems is realized by correlating the input 

pattems with the connection weights. After enough input pattems have been presented, 

weights converging to output nodes of the SOFM-NN specify cluster centers that represents 

the input pattems. 

Figure 2.15. The SOFM-NN with two input nodes and output nodes organized in a two-dimensional array 

The two most central issues to the Kohonen leaming algorithm are the weight 

adaptation process and the idea of a topographical neighborhood of nodes. The network 

operates in two phases: the similarity matching phase and the weight adaptation phase. The 

SOFM-NN can be described in a number of easy to implement steps [Christodoulou, 01]: 

1. Initializing the network. Define vian, 1 < k < K and 1 < m < M, to be the weight from 

input node m to output node k, where M is the dimensionality of the input pattems and 

K is the number of nodes in the network. Choose the number of training iterations 

equal to nmax-

2. Similarity matching phase. Present an input pattem x(p) from the training collection of 

P input pattems and compute the Euclidean distance of this input pattem from each 

weight vector associated with the output nodes. 

(2.73) 
m=l 

3. Selecting the minimum distance. Find the index kmax of the output node that minimizes 

dk- That is 
(2.74) 

4. Weight adaptation phase. Update the weights converging to node kmax and the weights 

converging to all the other nodes j that are in the neighborhood Nk,max of the winning 

node kmax- Specifically, 
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Vkm(n +1) = v ^ (n)+ n(t)h(k,k,,, )(n) (p)- v ^ (n); 

(2.75) 

where 

h ( k , k ^ ) = exp (2.76) 

where r̂  - rt max is the distance between the nodes k and kmax. AII the weights converging to 

nodes that are not the wiiming node or the nodes in the neighborhood of the winning node 

remain imaltered. 

5. Checking the stopping criterion. If n = nmax, stop. Otherwise, go to step 2 and present 

the next in sequence input pattem. 

C. Supervised seiection of centers 

Although leaming strategies A and B are simple to implement and converge on a 

solution relativeiy quickly, they have been criticized because of their heuristic way of 

choosing the centers and covariance matrices of the Gaussian functions at the hidden layer. 

Heuristic approaches of choosing the centers and covariances of the Gaussian functions lead 

to RBF-NNs that are suboptimal (i.e., they do not generalize well when exposed to data with 

which they have not been trained). One v^ay around this problem is to apply a gradient 

descent procedure to choose the centers of the Gaussians or the centers and the covariances of 

the Gaussians. In the following are demonstrated the equations that pertain to the changes of 

weights and the centers of the Gaussians in the case where the covariance matrices are 

assumed to be diagonal of constant variance. 

The fîrst step in the development of this supervised leaming procedure is to define the 

error ftmction associated with the RBF-NN, when p^ input pattem is presented at the input 

layer of the RBF-NN 

^ i=l 
(2.77) 

The gradient descent procedure tells us that the change of Wik should be proporţional (constant 

of proportionaiity designated as pi) to the negative gradient. That is, 

8EP(w 
AWfl, = - n — — ^ 

It can be easily obtained that 

Aw, =^[df(p)-y,'(p)](pjx(p); 

(2.78) 

(2.79) 
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As in the MLP case. it can be seen that a weight from a hidden to an output nodes needs to be 

changed by an amount that is proporţional to the error of the node to which the weight 

converges and proporţional to the output of the node from which the weight emanates. 

To calculate the amount of change required by each one of the centers of the Gaussian 

fimctions, we apply again the gradient descent rule to determine that 

5EP(w) Av, =-^1-
8v. 

(2.80) 

and finally, 
I r 

AVk = m Z Pi (p)- y.' (p)J ̂ ac^k [^(p)] ) (2.81) 

In the special case where the variances of the Gaussian fimctions in the hidden nodes are 

equal, equation (2.81) simplifîes to 
1 r 1 

AVk ( x ( p ) - v j (2.82) 

It is not difficult to see that the weight change equation, (2.82) resembles the weight change 

equations obtained for the MLP case. The error terms for the output layer nodes and the 

hidden layer nodes of the RBF-NN are identical with the error terms produced in the MLP 

case. The only term that is missing, compared to the MLP expression, is the output of the 

node with which the corresponding v component is associated. 

The error fimction that we focused on above is the error associated with a particular 

pattem presentation (input pattem p). In this case, we apply weight changes after every 

pattem presentation in a continuous update or pattem-by-pattem update. If instead of 

considering the error fimction of (2.77), the cumulative error fimction (the sum of squared 

errors over all the output nodes and input pattems) defined as follows 

E(w) = i : E ' { w ) = t i k ( p ) - y ? ( p ) ] ' (2.83) 
p=l p=l i=l 

is considered, then weight updates are applied after the presentation of all the input pattems in 

the training list in a batch update. The corresponding change of the weights and centers 

equations are provided as follows: 
p 

p=i 
p I 

Av, = n l l [d?(p)- y?(p)J w.cp, [i(p)] (x(p)- V,) 
p=l i=l 

for Gaussians with unequal variances, and 

(2.84) 

(2.85) 
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p I 

p=l 1=1 

for Gaussians with equal variances. 

(2.75) 

D. Supervised selection of centers and variances 

In the previous leaming strategy, it is described a procedure that fînds the centers of 

the Gaussian through a supervised procedure. It is possible to extend this procedure to the 

case where not only the centers of the Gaussians but also the covariances matrices of the 

Gaussians are chosen in a supervised way. Once more, the objective is to minimize the sum of 

the squared differences between the actual and the desired outputs, defined in equation (2.77) 

where 
j 
i=i (2.87) 

If the gradient descent procedure is applied on the error fiinction with independent 

parameters Wik, Vk and I t we obtain the following equations for the change of these 

parameters: 

(2.88) 

I 

Av, = X [df ( p ) - yf (p)J w^cp, [x(p)] (x(p)~ V J 
1=1 

I 
= ^ ^ z Z [ d f ( p ) - y f ( p ) j w ^ c p j x ( p ) ] ( x ( p ) - v j ( x ( p ) - v j 

(2.89) 

(2.90) 
i=i 

where in the above equations |iw, |iv and |ii are the corresponding leaming rates of the 

parameters w, v and I , respectively. If the error fimction of interest is the cumulative error 

ftmction E(w) of equation (2.83), we first calculate the error changes of the weights and 

network parameters (centers, covariance flmctions of Gaussians) for every pattem 

presentation and then we sum up these changes to obtain the required weight/parameter 

change. The weight/parameter change for every pattem presentation is provided by equations 

(2.88).(2.90). 

E. Comparison of RBF-NN leaming strategies 

The methods that first choose the centers and the variances of the Gaussians through 

some kind of heuristic procedure tend to converge to a solution faster than the methods that 

employ supervised means of changing centers and variances of the Gaussians. On the other 

hand, heuristic procedures to choose the centers and variances of the Gausssians sometimes 
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leads to trained networks that do not generalize very well. In [Wettschereck, 92] was 

experimented a number of approaches to improve the performance of a RBF-NN. The 

conclusions of this study were that 

> Supervised selection of the centers of the Gaussians improved the performance of the 

network considerably, compared to heuristic techniques of choosing the Gaussian 

centers, 

> Simultaneous supervised leaming of the centers and variances of the Gaussians 

exhibited an inferior performance compared to the network where only supervised 

selection of centers was unplemented. 

However, it was admitted that these results might be biased because of the fact that only a 

specific problem was tested. 

2.4.5. A RBF-NN algorithm 

In this section, a step-by-step complete training process corresponding to the 

supervised selection of centers is presented [Christodoulou, 01]. 

1. Select iniţial values for the weights fi-om hidden to output layers. These weights are 

chosen to be small random values. Select iniţial values for the centers of the Gaussian 

in the hidden layer. These centers are randomly chosen from the training data. Select 

iniţial values for the diagonal elements of the covariances of the Gaussian fimctions. 

These variances are all chosen to be equal to some constant. The off-diagonal 

elements of the covariances of the Gaussians are chosen to be equal to zero. 

2. Present the p'*' input pattem at the mput layer of the RBF-NN. 

3. Calculate the outputs of the nodes in the hidden and output layers of the RBF-NN, 

according to (2.91) and (2.92). 

cp, [x(p)] = expj - i ( x ( p ) - v, (x(p)- V J ^ I (2.91) 

yMx(p)) = Zw^(pJx(p)] (2.92) 
k=0 

4. Compare the actual outputs at the output layer and the desired outputs. If 

yf(p) = df(p) for 1 < i < I, go to step 5. If yf df (p) for some i, proceed to 

change the weight/parameter values as follows: 

AWfl, =^ [d f (p ) -y f (p ) j<p jx (p ) ] (2.93) 
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Av, =^cpJx(p)]X[dr(p)-yr(p)]w, ( x ( p ) - v j (2.94) 
i=l 

5. If p = P and the cumulative error function E(w) is smaller than a prespecified 

threshold, we consider the training completed. If p = P and E(w) is larger than the 

prespecified threshold, then we retum to step 2 starting with the first input pattem of 

index p = 1. If p PT, we retum to step 2, by increasing the pattem index p by one. 

Note that the above algorithm procedure is the continuous update version of the algorithm. 

The periodic update is very similar, with the only difference being that after every pattem 

presentation we do not apply weight and parameter changes; instead we wait until all the 

parameters are presented to implement a cumulative weight/parameter change according to 

(2.84) and (2.86). The algorithmic procedure, when both the centers and the covariances of 

the Gaussian are changing, is also very similar with the only difference being that in step 4 we 

need to apply the changes to the covariance matrices designated by (2.90). Also, if the 

unsupervised selection of the parameters is chosen, the algorithmic procedure is not that 

different either. In this case, the centers and the covariances matrices will be chosen in step 1 

and stay fixed thereafter. Beyond this point only weight changes will be enforced according to 

(2.88) [Christodoulou, 01]. 

2.4.6. Issues with RBF-NN learning 

The weights between the hidden and the output layer are, in most cases, initialized to 

random numbers that are uniformly distributed in a small interval of values, symmetric 

around zero. The centers of the Gaussians in leaming strategies C and D could initially be 

chosen to be the cluster centers of a K-means clustering applied on the input pattems, or K 

randomly chosen input pattems. Once the centers of the Gaussian are chosen, a number of 

heuristics can be applied to fmd the iniţial elements of the covariance matrices of the 

Gaussians. The premature saturation problem will occur if the activation fimctions at the 

output layer of the RBF-NN are of the sigmoid or hyperbolic tangent type. These types of 

activation functions are most often used when the types of problems under consideration are 

classification problems. All the equations presented so far for the RBF-NN leaming strategies 

assume that the activation functions at the output layer are linear. Linear activation functions 

do not suffer fi-om the premature saturation problem. The RBF-NN can operate in the 

continuous update training mode (where changes of the weights/parameters are applied after 

every pattem presentation), or in the periodic update training mode (where changes of the 
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weights/parameters occur after the presentation of all the pattems), or finally in the hybrid 

training mode (where changes of the weights parameters occur after a fixed number of 

training pattem presentation; this fixed number is larger than one and smaller than the number 

of pattems of P). The stopping criteria for RBF-NN leaming are identical with the stopping 

criteria mentioned for the backpropagation leaming method. The number of hidden layers is 

not an issue with the RBF-NN since we always have one hidden layer of nodes. The number 

of nodes in the hidden layer should be chosen as large as possible to take advantage of the 

increased dimensionality of the transformed space compared with the dimensionality of the 

input space. At the same time, the number of nodes in the hidden layer should be as small as 

possible if we are committed to designing the smallest possible NN structure. All the 

variations of the backpropagation algorithm discussed in this chapter, can also be applied to 

the RBF-NN algorithm, since they both are gradient descent procedures applied to same error 

flmction [Christodoulou, 01]. 

2.4.7. The General Regression Neural Network 

The general regression neural network (GRNN) is an NN architecture that shares a lot 

of similarities with the RBF-NN. In this section we discuss the necessary background 

information and the specifics of this architecture. The information included below is obtained 

from [Christodoulou, 01]. 

Regression is the least-mean-squares estimation of the value of a variable of interest 

based on observations of other variables that are related with the variable of interest. The term 

general regression implies that the regression surface is not restricted by being linear. If the 

variable of mterest is the fliture value of an observed variable, the GRNN is a predictor. If 

they are dependent variables related to input variables related to input variables in a process, 

plant, or system, the GRNN can be used to model the process, plant or system. 

Figure 2.16 is the overall network topology implementing the GRNN. As it can be 

seen from the figure, the NN consists of two layers of nodes (excluding the input layer where 

the input data are applied). The hidden layer units are very similar with the hidden layer units 

of the RBF-NN discussed so far. Hence, the outputs of these units are of the form 

cp, [x] = exp[- (x - v,̂  J (x - v,̂  )/(2 a^ )J (2.95) 

when wl are the corresponding clusters for the inputs and v^ are the corresponding clusters 

for the outputs obtained by applying a clustering technique of the input/output data that 

produces K cluster centers. 
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v^ isdefinedas 

I y(p) y(pkciusKrk 

Nk is the number of input data in the cluster center k, and 

d ( x . v : ) = ( x - v ; ) ' ( » - v : ) 

with 

S (̂p) 
i(p)eduaerk 

(2.75) 

(2.97) 

(2.98) 

Input layer Hidden layer Output layer 

Figure 2.16. General regression neural network 

The outputs of the hidden layer nodes are muitiplied with appropriate interconnection 

weights to produce the output of the GRNN. The weights for the hidden node k (i.e., w^) is 

equal to 

w, = Vi 

k=l 2 o' 

(2.99) 

In the case where we have to estimate a vector y instead of a scalar y, the output layer consists 

as many nodes as the number of components of the vector y and the weights from the hidden 

layer nodes to output nodes are chosen according to (2.99), where now v^ depends on the 

component of the output vector that is estimated. 
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2.4.8. Comparison of RBF and MLP neural networks 

RBF networks and MLP are examples of nonlinear layered feedforward networks. 

They are both universal approximators. These two networks differ from each other in several 

important respects. 

1. An RBF neural network has a single hidden layer, whereas an MLP may have one or 

more hidden layers. 

2. The kemel characterizing a hidden unit of the RBF network is defined, for example by 

the Gaussian function 
\ 

(p(x;xj=exp 
x - x . 

.2 
/ 

k = l , 2 , . . . , K , (2.100) 

where x is the input vector, Xk is the center of the k'*' unit and a^ is a common 

bandwidth. The input-output map realized by the RBF network with K hidden units is 

then defined by 

y = (2.101) 
k=l 

By contrast, the kemel characterizing a hidden unit of the multilayer perceptron is 

defined, for example, by the logistic function 

(p(x;xj = - k = l , 2 , . . . , K . (2.102) 
l + exp(-xi xj 

The Radial Basis Function neural network is a local approximator, whereas the Multilayer 

Perceptron is a global approximator. 
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3. Mobile radio channels 

3.1. Introduction 

The mobile radio channel places fiindamental limitation on the performance of 

wireless commimication systems. The transmission between the transmitter and the receiver 

can vary from simple line-of-sight to one that is severely obstructed by buildings, mountains 

and foliage. Unlike wired channels that are stationary and predictable, radio channels are 

extremely random and do not offer easy analysis. Even the speed of motion impacts how 

rapidly the signal level fades as a mobile terminal moves in space [Rappaport, 96]. 

In the mobile radio environment, a part of the electromagnetic energy radiated by the 

transmitting antenna reaches the receiver antenna by propagating through different paths. 

Along these paths, interactions that are commonly referred to as propagation mechanisms may 

occur between the electromagnetic field and various objects. Possible interactions are specular 

reflection on large plane surfaces, diffuse scattering from surfaces exhibiting small 

irregularities or from objects of small size, transmission through dense material like walls or 

floors, shadowing by obstacles like trees, etc. The attributes small and large are to be 

imderstood here with respect to the wavelength, A detailed description of these propagation 

mechanisms is given in Chapter 4. 

The propagation of electromagnetic waves either near the groimd or inside a building 

due to diffraction, scattering, reflection and absorption of the incoming signal is broken into 

several components that are attenuated and delayed differently. The signal at the receiver 

antenna is thus composed of a direct component and a delayed, scattered component. The 

direct path can be obstructed, depending on the antenna location and shadowing conditions. 

The degree of shadowing varies very strongly with the movement of the mobile antenna, 

leading to equivalent time fluctuations of the received power of the direct ray and delayed 

components. 

As a result of the multipath propagation, the received signal presents rapid fluctuations 

that are characterized as fast fading or Rayleigh fading. In fast fading, the received signal 

power may vary by as much as three or four orders of magnitude (30 or 40 dB) when the 

receiver is moved by only a fraction of a wavelength. The median value of the received signal 

strength also fluctuates due to large-scale variations along the path. The median value fadings 
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are defined as slow fades or log-normal fading. Typically, the local average received power is 

computed by averaging signal measurements over a measurement track of to 40X.. When 

the received signal also includes the line-of-sight component, the envelope is Rice-distributed. 

3.2. Representation of a mobile radio signal 

The field strength can be represented as a fimction of distance in space (the spaţial 

domain) or as a fimction of time (the time domain). The received field strength (the envelope 

r(x) of a received signal s(x) along x-axis in space) show severe fiuctuation when the mobile 

unit is away fi"om the base station. Field strengths r(x) can be studied either by associating 

them with geographical locations or by averaging a length of field strength data to obtain a so-

called local mean at each corresponding point. The speed of the mobile unit must remain 

constant while the data are measured. Since the speed is kept constant, the time axis can be 

converted to spaţial axis. Both field strength representations are usefiil. The representation r(t) 

in the time domain is used to study the signal fading phenomenon. The representation r(x) in 

the spaţial domain is used to generate the propagation path loss curve. 

The mobile radio signal is received while the mobile unit is in motion. In this situation 

the field strength (also called the fading signal) of a received signal with respect to time t, or 

space X, is observed. When the operating fi-equency becomes higher, the fading signal 

becomes more severe. The average signal level of the fading signal r(x) or r(t) decreases as 

the mobile unit moves away firom the base station transmitter. 

3.3. Fadings 

The received signal strength r(t) can be artificially separated into two parts by cause: 

long-term fading m(t) and short-term fading ro(t) as 

r(t) = m(t) ro(t) or r(x) = m(x) ro(x) 

Long-term fading is the average or envelope of the received fading signal. It is also 

called a local mean since along the long-term fading each value corresponds to the mean 

average of the field strength at each location pomt. The estimated local mean m(xi)at point 

xi along x-axis can be expressed mathematically as 

= (3.1) 
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Assume that m(xi) is the true local mean, then at point xi 

m(x = x, )= m(x = Xţ) x , - L < x < x , - h L (3.2) 

when L is properly chosen and the estimated local mean m(xi) becomes 

m(xi) = m ( x , r " ^ ' To(x)dx (3.3) 

To let m(xi) approach m(xi), the following relationship holds 

(3.4) 

The length L will be determined in section 3.4. The long-term signal fading m(x) is 

mainly caused by terrain configuration and the built environment between the base station and 

the mobile unit. The terrain configuration causes local mean (long-term fading) attenuation 

and fluctuation, whereas the human-made environment also causes short-term fluctuation 

(fading) in signal reception. Under certain circumstances the fluctuation of a long-term fade 

caused by the terrain configuration can form a log-normal distribution because of the 

statistical nature of the fluctuation. We must difîerentiate between the terms "radio path" and 

"mobile path". The former is the path that the radio wave travels and the other is the path that 

the mobile unit travels. In [Lee, 93] are considered two cases: one is when mobile unit is 

circling around the base station and the other is when the mobile unit is moving away from 

the base station. In the first case the radio path does not correspond to the mobile path. In the 

second case the fluctuation of the long-term fading received is affected by the radial terrain 

contour where the mobile travels in a certain direction. The radio path corresponds to the 

mobile path and the terrain contour where the mobile unit travels has a strong correlation with 

the received signal. 

Short-term fading is mainly caused by multipath reflections of a transmitted wave by 

local scatterers such as houses, buildings and other human-built structures or by natural 

obstacles such as forest surrounding a mobile unit. It is not caused by a natural obstruction 

such as mountain or hill located between the transmitting site and the receiving site. 

3.4. Obtaining meaningful propagation loss data from measurements 

In a mobile radio environment the irregular configuration of the natural terrain, the 

various shapes of architectural structures, changes in weather and changes in foliage 

conditions make the predicting of propagation loss very difBcult. In addition the signal is 
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received while the mobile unit is in motion. There is no easy analytic solution to this problem. 

Combining both statistics and electromagnetic theory helps to predict the propagation loss 

with greater accuracy. 

The local mean can be obtained by averaging a suitable spaţial length L over a piece 

of raw data as shown in Figure 3.1. 

V 

2L — 

V y w V 

m 2L-4lk B TIC «MOOW SOE or THE lUMIMGICAR 
(2) 50 SMMCS ARE KEDCD FOt A LEII6TH OF 

Figure 3.1. Obtaining the local meao 

The length L can be treated as an average window over a long piece of raw data. If the 

length L is too short, the short-term variation cannot be smoothed out and will affect the local 

mean. If the length L is too long, the averaged output cannot represent the local mean since it 

washes out the detailed signal changes due to terrain variation. Therefore it is essential that 

the suitable length L to be determmed. 

Determining the length L [Lee. 93] 

Let the short-term fading ro be a Rayleigh fading. Then 

(3.5) 

where r^is the average power of the short-term fading or ^fP' is an RMS vaiue of r. This 

equation shows that the tnie mean equals the mean of the sample mean; m(x) = (m(x)). 

1 -
2L 

JS(py)dy (3.6) 

The 1 a^ spread is defined as 

1 a^ spread = 10 log dB (3.7) 
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The computed results of equations (3.6) and (3.7) are given in Table 3.1. 

Table 3,1. a« versus2L 

2L 1 a„ Spread fdB| 
5 0.165 3 
10 0.122 2.1 
20 0.09 1.56 
40 0.06 1 

As can be seen from Table 3.1, the length 2L = 40A. is desirable because its 1 a^ spread for 

40A. approaches 1 dB. The 40A. is considered to be the proper length to use in smoothing out 

the Rayleigh fading. If the length 2L is shorter than 40X, the average output would retain only 

a weaker portion of Rayleigh fading. If the length 2L is greater than 40A., the excessive length 

of averaging would smooth out the local mean information, which it is not supposed to do. 

Therefore, 2L = 40A, is considered to be the appropriate length. However, in practice L in the 

20X to 40A, range is acceptable. 

Determining the number of sample points required over 40X FLee. 931 

Since most data processing is done digitally, what is the proper number of samples 

required for a piece of analog data? Experimental autocorrelation has shown that a separation 

of 0.8A- is required for a correlation coefficient below 0.2 between two adjacent samples. Then 

50 weak-correlated samples would be needed to represent a length of 40A, in digital form. It 

must be determined whether 50 samples are enough to obtain an average value over a length 

of 40X with great confidence, From the ensemble average f̂  of a set of N variables, r» along a 

piece of M-sample data is shown as 

_ i=(j-l)N-hl 

N 
T i = l < j < M 

N 
(3.8) 

We defîne m and â as the mean and standard deviation of r ,̂ respectively. t- is always a 

Gaussian variable if all N variables ri are added in linear scales. Since rj itself is a Rayleigh 

with both mean m and standard deviation Or expressed in linear values, it can be shown that 

m = (r^) = m (3.9) 

(3-10) 
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Applying the confidence interval of 90% 
- « \ r - m 

-1.65 <1.65 = 90% (3.11) 

Equation (3.11) can be restated 

P(m - 1 .65CT < fj < m +1.65c) = 90% (3.12) 

Equation (3.11) shows the 90% confidence interval CI of r̂  is within m ± 1 . 6 5 â - f j 

approaches m if â becomes smaller. 

Inserting equation (3.9) and (3.10) into equation (3.36) yields 

= 90% 

or 

Vn m 
m < r j < 

VN m 
m = 90% 

Inserting the values of m and Gr of Rayleigh distribution: 

m = and <T. = V 2 - 7 t 

in equation (3.13) yields 

1 -
1.65 4 - 7 1 

VN n 
m < f j < 1 + 1.65 

Vn"^ 
4 - 7 t 

7t 
m = 90% 

Simplifying the above equation we obtain the following expression 

0.8625 0.8625 ̂  

\ VN J m < r j < 1 + 
VN J m = 90% 

The 90% confidence interval (CI) expressed in dB is 

CI = 20 log 
1 + 

0.8625 
VN 
m 

= 20 log 1 + 
0.8625 

VN 

Let N = 50; equation (3.39) becomes 

90%CI = ldB 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The estimated value of t- with N = 50 and 2L = 40A, for a 90% confidence interval is 

within 1 dB of its true mean value. If N is reduced to 36, the 90% confidence interval 

mcreases to 1.17 dB of its mean. 
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Perhaps using 36 or up to 50 samples in an interval of 40 wavelengths is an adequate 

averaging process for obtaining the local means. A simpler way of obtaining local means is to 

use a rimning mean with a 40X, window. For a low frequency operation, we may have to take 

an interval of 20X for obtaining local means. The reason is that the terrain contour may change 

at a distance greater than 20X when the wavelength becomes longer [Lee, 93]. 

3.5. Modeling requirements 

To characterize the mobile channels requires a complete knowledge of the propagation 

parameters mentioned above for all environments where the system will operate. Conducting 

measurements to obtain all propagation parameters for all possible environments is an 

impossible task and for a limited number of environments a time-consuming exercise. In 

addition, testing a new system requires repetition of the measurements with the same 

propagation medium (i.e. a stable propagation environment). Therefore a propagation model 

is required that provides all the parameters which characterize the mobile channel. 

The equipment and the mobile radio systems design engineers require complete 

channel characterization. Propagation models that apply to a wide variety of locations, but in 

a limited jfrequency band and for limited distances, are needed for general system design, such 

as when systems are being developed that will operate in many locations. When a given 

performance objective is not to be met in a known location, the specific system design 

requires a propagation model that accounts for relevant environmental and topographical 

information. 
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4. Propagation mechanisms for mobile communication systems 

4.1. Introduction 

The purpose of this chapter is to introduce the propagation mechanisms for mobile 

radio systems in order to be used in ANN based models. 

This chapter describes the radio propagation mechanisms. The propagation 

mechanisms are examined in order to help the deveiopment of propagation prediction models 

and to enhance the understanding of electromagnetic wave propagation phenomena involved 

when dealing with radio transmission in mobile communication environments. 

The radio propagation phenomena do not depend on the environment considered. 

Considering all existing radio propagation phenomena, the most important one must be 

identifîed and investigated in order to improve the modeling of the mobile radio 

communication channel or of the prediction of radio coverage and signal quality in radio 

communication systems. The radio propagation phenomena to be identifîed as the most 

important depend on the environment and differ whether we consider flat terrain covered with 

grass, or brick houses in a suburban area, or buildings in a modem city center, etc. 

Propagation models are more efficient when only the dominant phenomena are taken into 

account. Which radio propagation phenomena need to be taken into account and in how much 

details do they have to be considered will differ if we are interested in modeling the average 

signal strength, delay spread or any other characteristics. 

The mobile radio environment causes some special difficulties to the investigation of 

the propagation phenomena [COST231, 99]: 

1. The distance between a base station and a mobile unit ranges from some meters to 

several kilometers. 

2. Man-made structures and natural features have size ranging from smaller too much 

larger than a wavelength and affect the radio wave propagation. 

3. The description of the environment is not usually available in very much detail. 

The main propagation mechanisms usually taken into account when modelling the 

radio propagation in macro - cell, micro - cell and indoor environments are reflection. 
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diffraction, scattering, absorption and guide wave. For different propagation mechanisms the 

range dependence of the field strength is given in the following: 

> For specular reflection the field is proporţional to (di+d2)'^ (di and d2 are the distances 

from the reflection point to the transmitter and receiver, respectively); 

> For single diffraction, the field is proporţional to (di / d: (di+d2))'^^ (di and d2 are the 

distances from the diffraction pomt to the transmitter and receiver, respectively); 

> For multiple diffraction and for a source illuminating all edges, the field is 

proporţional to d"̂ ^ (d is the distance between transmitter and receiver); 

> For volume scattering and rough surface scattering, the field is proporţional to (did2)'̂  

(dl and d2 are the distances from the scattering object to the transmitter and receiver, 

respectively); 

> For penetration and absorption, the field is mainly attenuated by a constant; 

> For the wave guiding phenomena, the logarithm of the field is proporţional to d (d is 

the distance between transmitter and receiver). 

In macro - cells 

Forward propagation including multiple diffractions over terrain and buildings is used 

in most propagation prediction models for macro - cells. Scattering or reflection from large 

buildings, hills, mountains are modeled to improve the prediction quality and especially to 

characterize the time dispersion of the radio channel. 

In micro - cells 

Most models rely on specular reflection and diffraction phenomena. Some empirical 

formulations use guided wave (Telekom model and Uni - Karlsrhue 2D - URBAN - PICO 

model) or virtual source at intersections that can be viewed as a way to model the combined 

effects of diffraction and scattering (Ericsson model). Scattering effects from walls and trees 

as well as from individual scatterer such as balcony, lamppost, windows, cars, etc. remain to 

be carefiilly examined. Contributions from over rooftop propagation are usually modeled 

using models similar to the ones for macro - cells. 

Indoor 

Mainly reflection from and transmission through walls, partitions windows, floors and 

ceilings are used to predict propagation within buildings. Wave guiding in corridors or in 

hallways are more difficult to model and thus are usually not considered. Although diffraction 
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effects have been sometimes identified, dif&action at edges from walls or windows is usually 

not taken into accoimt due to the difFiculties related to the requirement on the input database 

and due to the resulting large computation time. 

4.2. Propagation in free space 

The available power at a receiver antenna that is separated from a radiating transmitter 

antenna by a distance d is given by Friis free space equation: 

PţGţGrX-

where 

Pt = transmitted power, 

Pr = received power, 

Gt = transmitter antenna gain. 

Gr = receiver antenna gain, 

L = system loss factor not related to propagation (L>1) 

X= wavelength in meters. 

The losses L are usually due to the transmission line attenuation, filter losses and 

antenna losses m the communication systems. A value of L = 1 indicates no loss in the system 

hardware. 

The propagation loss (or path loss), which represents signal attenuation as a positive 

quantity measured in dB, is defined as the difiference (in dB) between the effective transmitted 

power and the received power. 
L[dB] = 10 • log ̂  = -10 log Gt - 1 0 log Gr + 20 log f - 20 log d - k (4.2) 

Pr 

where 

k = 20- log—= 147.6 (4.3) 
471 

It is often useful to compare path loss with the basic path loss between isotropic 

antennas, that is: 

Lb [dB] = -32.44 - 20 log f - 20 log d (4.4) 

Equation (4.1) shows that the received power obeys an inverse square with range d, so 

that it falls by 6 dB when the range is doubled (or reduces by 20 dB/decade). The Friis free 
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space model is only valid for values of d that are in the far field of transmitting antenna. The 

far-fîeld (or Fraunhofer region) of a transmitting antenna is defmed as the region beyond the 

distance df that is related to the largest linear dimension of the transmitting antenna aperture 

and the wavelength by: 

df = ^ (4.5) 
A. 

where d is the largest physical dimension of the antenna. Additionally, to be in the far -field 

region, df must satisfy: 

d f » D and df»A, (4.6) 

4.3. Reflection 

Reflection occurs when a propagating electromagnetic wave impinges upon an object 

that has very large dimensions when compared to the wavelength of the propagating wave. 

Reflections occur from the surface of the earth and from buildings and walls. 

43.1. The Fresnel reflection coefQcients 

Figure 4.1 shows the case of propagation over a plane earth, the distance between the 

two anteimas being small enough to neglect curvature and to assume the reflecting surface to 

be flat. In Figure 4.1 the subscripts i and r refer to the incident and reflected E-fields, 

respectively. The amplitude and phase of ground-reflected wave depend on the reflection 

coefficient of the earth at the point of reflection and differs from vertical and horizontal 

polarlzation. In practice, the earth is neither a perfect conductor nor a perfect dielectric so the 

reflection coefficient depends on the ground constants, in particular and dielectric constant 8 

and the conductivity o. The most common expression for the reflection is the Fresnel 

reflection coefficient that is valid for an infinite boundary between two media: 

s in9-(g -cos^^y^ 
Rh = Ţ^ — (horizontal incidence) (4.7a) 

SrSin 9 - (sr-cos^Q^^ 
Rv = f incidence) (4.7b) 
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where Rj, and Ry are the complex reflection coefficients, 8 is the angle of incidence, X is the 

wavelength of the incident wave field and ec is the relative dielectric constant ec = 8r -

Er is the relative pemiittivity and a is the special conductivity of the reflecting surface. 

The reflection coefficients are complex and the reflected wave will therefore difîer in 

both magnitude and phase from the incident wave. For horizontal polarization the relative 

phase of the incident and reflected waves is nearly 180° for all angles of incidence. For very 

small values of c (near-grazing incidence) equation (4.7a) shows that the reflected wave is 

equal in amplitude and 180° out of phase with the incident wave for all frequencies and all 

ground conductivities. As the angle of incidence is increased, the amplitude and the phase of 

the reflected wave change, but only by relative small amounts. This change is greatest at 

higher frequencies and when the ground conductivity is poor. At grazing incidence there is no 

difference between horizontal and vertical polarization. 

Fig. 4.1. Propagation over a plane earth 

The Brewster angle is the angle at which no reflection occurs in the medium of the 

origin. It occurs when the incident angle 0b is such that the reflection coefficient Ry is equal to 

zero. For the case when the first medium is the free space and the second medium has a 

relative permittivity Sr the Brewster angle is given by the value of 9b that satisfîes: 

sin(eB) = 
i 

S r - l 
2 _ i er 

Note that the Brewster angle occurs only for vertical polarization. 

43.2. Ground reflection (2-ray) model 

For distances less than a few tens of kilometres, it is permissible to neglect the earth 

curvature and assume the surface to be smooth and flat. The 2-ray ground reflection model 

68 

BUPT



represented in Fig. 4.2 is based on geometric optics and considers both the direct path and a 

groimd reflected path between transmitter and receiver. 

This modei has been found to be reasonable accurate for predicting the large scale 

signal strength over distances of several kilometres for mobile radio systems that use tall 

towers (heights which exceed 50 m), as well as for LOS micro-cell channels in urban 

environment. 

E = Ed + Eg 

Figure 4.2. Two-ray ground reflection modei 

The total received E-field strength, E, is then a result of the direct line-of-sight 

component, Ed, and the ground reflected component, Eg: 

E = Ed [l - R V j Acp) (4.9) 

where Ry represents the reflection coefficient and Acp is the phase difference between the two 

rays. This phase difference can be expressed as 

A(p = p.Ad = —Ad (4.10) 

where p is the wave number (P=27i/X) and Ad is the difference between the two radio paths 

(Ad=di-do). 

Since in the mobile radio environment Ry is always approximately equal to - l and A(p 

is much less than one radian, the received power can be expressed [Lee, 93] 

Pr = PtGtGr v47rd. 
(A^f (4.11) 

where, in case of d »ht + hr 

Xd 

The plane earth propagation equation becomes: 

(4.12) 
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Pr = P t G t G r M ^ (4.13) 

l d' J 

This equation is an imperfect formula since it does not take into account the 

wavelength and it shows an inverse fourth-power law with range rather than the inverse 

square law of the free space formula. This means a more rapid decrease in received power 

with range, 12 dB for each doubling of distance in this case. This equation applies only ranges 

where the assumption d »ht + hr is valid. 

4.4. Diffraction over irreguiar terrain 

Diffraction occurs when the radio path between the transmitter and receiver is 

obstmcted by a surface that has sharp irregularities (edges). The secondary waves resulting 

from the obstructing surface are present throughout the space and even behind the obstacles, 

giving rise to a bending of waves around the obstacle, even when a line-of-sight path exists 

between transmitter and receiver. At high frequencies, dif&action, like reflection, depends on 

the geometry of the object, as well as the amplitude, phase and polarization of the incident 

wave at the point of dif&action. The phenomena of dif&action can be explained by Huygens's 

principie. Huygens assumed that every point on a wave front might be regarded as a source of 

spherical wavelets the envelope of which is the position of the wave front at a later time. 

Huygens was thus able to account for rectilinear propagation and for the laws of reflection 

and refraction. Fresnel added the hypothesis that the wavelets can interfere, and this led to a 

theory of diffraction. The field strength of a diffracted wave in the shadowed region is the 

vector sum of the electric fîeld components of all secondary wavelets in the space around the 

obstacle. 

Consider a transmitter and a receiver separated in free space as shown in Figure 4.3. 

Also consider an obstructing screen of height h with infinite width placed between them at a 

distance di from the transmitter and a distance d2 from the receiver. The ways propagating 

from the transmitter to the receiver via the top of the screen traverse a longer path than if a 

direct line-of-sight path (through the screen) exists. 

In terms of the geometry of Fig. 4.3 and Fig. 4.4 the "excess path length" is given by 

A ^ h ^ di + d2 
2 did2 

assuming h«di, d2 and h»X. The corresponding phase difference is 

(4.14) 
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o = 
27tA 27 ih^d i + d2 

X X 2 d\d2 

The dimensionless Fresnel-Kirchoff diffraction parameter v that is given by: 

2(di+ d2) 

(4.15) 

v = h 
V ^d\d2 

and from equation the phase difference can be expressed as 

^ 2 

Altematively, using the same approximations, it can be written: 

(4.16) 

(4.17) 

Ttg did2 
X di + d2 

and 

V = a 2did2 
V^(di + d2) 

Figure 43. Knife-edge difTraction geometry when the transmitter and the receiver are not at the same 
height 

T 

. i a 

O. 
R 

d1 d2 

Figure 4.4. The knife-edge difTraction equivalent geometry. The point T denotes the transmitter and R 
denotes the receiver, with an infinite knife-edge obstruction biocking the line-of-sight path. 

In practice, in order to obtain transmission under free space conditions, usually 

involves raising the antenna height imtil the necessary ciearance over terrain obstacles is 
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obtained. If the terminals of a radio link path for which line-of-sight clearance over obstacles 

exists are low enough for the direct path to pass close to the surface of the earth at some 

intermediate point, then there may weil be a path loss considerably in excess of the free space 

loss even though the path is not actually blocked. It is needed a quantitative measure of the 

required clearance over any terrain obstniction and this may be obtained in terms of Fresnel-

zone ellipsoids drawn around the path terminals. 

4.4.1. Fresnel zone geometry 

The Fresnel zones explain the concept of diffraction loss as a function of the path 

difference around an obstniction. The Fresnel zones represent successive regions where the 

secondary waves have a path length from the transmitter to the receiver which are rikll greater 

than the total path length of a line-of-sight path. In Fig. 4.5 is represented a family of 

ellipsoids defining the first three Fresnel zones around the terminals of a radio path. 

Figure 4.5. Family of ellipsoids defining the first three Fresnel zones around the transmitter and the 
receiver of a radio path 

The successive Fresnel zones have the effect of altematively providing constructive 

and destmctive interference to the total received signal. The radius of the n* Fresnel zone 

circle can be expressed as 

rn = 
nX,di d2 
di + d2 

(4.18) 

This is an approximation that is valid for di, ăi » rn and is, therefore, realistic except in 

the immediate vicinity of the terminals. The volume enclosed by the ellipsoid defined by n = 

1 is known as the first Fresnel zone, the volume between this one and the ellipsoid defined by 

n = 2 is the second Fresnel zone, etc. 
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Contributions to the field at the receiving point from successive Fresnel zones tend to 

be in phase opposition and therefore interfere destructively rather than constnictively. If an 

obstructed screen was actually placed at a point between transmitter and receiver, then if the 

radius of the aperture was increased from that corresponding to the first Fresnel zone to that 

defining the limit of the second Fresnel zone, then to the third Fresnel zone, etc., then the field 

at the receiver would oscillate. The amplitude of the oscillations would gradually decrease 

since smaller amounts of energy propagate via the outer zone. 

In mobile commimication systems, diffiaction losses occur from the blockage of the 

secondary waves such that only a portion of the energy is diffracted around an obstacle. That 

is, an obstruction causes a blockage of energy from some of the Fresnel zones, thus allowing 

only some of the transmitted energy to reach the receiver. Depending of the geometry of the 

obstruction, the received energy will be a vector sum of the energy contributions from all 

unobstmcted Fresnel zones. 

4.4.2. Diffraction losses 

Estimating the signal attenuation caused by diffraction of radio waves over hills and 

buildings is essential in predicting the field strength in a given service area. Generally, it is 

impossible to make very precise estimates of the diffraction losses, and in practice prediction 

is a process of theoretical approximation modified by necessary empirical corrections. 

Though the calculation of diffraction losses over complex and irregular terrain is a 

mathematically diflScult problem, expressions for diffraction losses for many simple cases 

have been derived. As a starting point, the limiting case of propagation over a knife-edge 

gives good insight into the order of magnitude of diffraction loss. 

If an ideal, straight, perfectly absorbing screen is mterposed between T and R it will 

have little effect when the top of the screen is well below the line-of-sight path. The field at 

the receiver will be then the free space value Eq. It will begin to oscillate as the height of the 

screen is increased, blocking more of the Fresnel zones below the LOS path. The amplitude of 

the oscillations increase until the obstruction edge is just in line with T and R at which point 

the field strength is exactly half the unobstmcted value i.e. the loss is 6 dB. As the height is 

increased above this value the oscillations cease and the field strength decrease steadily. 

In order to express this in a quantitative way, any obstmction between transmitter and 

receiver is replaced by an absorbing plane placed at the same position and the classical 
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dif&action theory is used. The plane is normal to the direct path and extends to infinity in all 

directions except vertically where it stops at the height of the original obstruction. 

Considering a receiver point R, located in the shadow region (also called the 

dif&action zone) (Figure 4.3), the field strength at receiver is determined as the sum of all 

secondary Huygens sources in the plane above the obstruction and can be expressed as 

= FvV = - ^ J e x p - J - t " 
Eo 2 V 2 

dt (4.19) 

where F(v) is known as the complex Fresnel integral with v being the value given by equation 

(4.16) for the height of the obstruction under consideration. If the obstruction lies below the 

line-of-sight then h and v are negative. If the path is actually obstructed then h and v are 

positive as depicted in Figure 4.6. 

T R 
O-'TTT 1 

A . \ ° 
• ii 1 f' 

a 

li ' 
I \ ' 

h 

_J0 

T ^ R i ^ 

(a) (b) 

Figure 4.6. Knife - edge diffraction: (a) h and v positive, (b) h and v negative 

In practice, the Fresnel integral is commonly evaluated using tables or graphs for 

given values of v. The dif&action gain due to the presence of a knife-edge as compared to the 

free space EQ, is given by 

Gd[dB]=201og|F{v)| (4.20) 

In practice, graphical and numerical solutions are relied upon to compute dif&action 

gain. The approximate solution provided by Lee [Lee, 93] is expressed as follows: 

L(V)=0 V<-1 (4.21.a) 

L(V) = 20 log(0.5 - 0.62v) -1 <v < O (4.21 .b) 

L(V) = 20 log(0.5 exp{- 0.95v)) O < v < 1 (4.21 .c) 
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L(v) = 20 logf 0.4 - ^0.1184-(0.38-0. IV)-

L(v)=201og 
^0.225^ 

1 < V < 2.4 

v>2.4 

(4.2 l.d) 

(4.2 l.e) 

Ground reflections 

The previous analysis has ignored the possibility of ground reflections either side of 

the terrain obstacle. This possibility is expressed in figure 4.7 and then, four paths have to be 

taken into account in computing the field at the receiver point [Anderson, 58]. It should be 

noted that the four rays depicted in Figure 4.7 travel different distances and therefore have 

different phases at the receiver. In addition, the Fresnel v parameter is different in each case 

so the field at the receiver has to be computed firom: 

E = Eo IL(VK)expO(l)K) (4.22) 
k=l 

In any particular situation a ground reflection may exist only on the transmitter or the 

receiver side of the obstacle in which case only three rays exist. 

To 

R 

Figure 4.7. Knife - edge difTraction with grouad reflections 

DifiTraction over rounded obstacles 

Objects encountered in the physical world often have dimensions that are large 

compared with the wavelength of transmission. In [Hacking, 68] it has been showed that the 

loss due to rounded obstacles exceeds the knife-edge diffraction loss. If a rounded hilltop as 

depicted in Figure 4.8 is replaced by a cylinder of radius r equal to that of the crest, then the 

cylinder supports reflections either side of the hypothetical knife-edge that coincides with the 

peak, and the Huygens wave front above that point is therefore modified. The mechanism is 

similar to that in the "four - ray" situation described above. An excess loss can be added to 
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the knife - edge loss to account for this, the value being given by [Hacking, 68]: 
n2 

-ex dB =11.7 
Tir a (4.23) 

If the hilltop is rough, due of the presence of trees, then the diffraction loss is about 

65% of the value given above. 

Figure 4.8. Diffraction over a cylinder 

An alternative solution given in [Dougherty, 64] is available through a dimensionless 

parameter p defîned as: 

P = .1/3 di+d2 
. d,d2 j 

1/2 
(4.24) 

The diffraction loss can then be represented by the quantity A(v,p), normally 

expressed in dB. It is related to the ideal knife - edge loss A(v,p) by 

A(v,p) = A(V,0)+ A(0,P)+ U(vp) (4.25) 

where U(vp) is a correction factor. Approximations are available for A(0,p) and U(vp) 

[Causebrook, 71] as: 

A(0,p) = 6 + 7.19p-2.02p2 + 3.63p^-0.75p'^ p<1.4 (4.26) 

f(43.6 + 23.5vp)log(l + vp) - 6 - 6.7vp vp < 2 
U(vp) = 

22vp-201og(vp)-14.13 vp>2 
(4.27) 
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Both the above methods are strictly applicable only to horizontally - polarized signals, 

but measurements [Hacking, 68] have shown that at VHF and UHF they can be applied to 

vertical polarization with reasonable accuracy. 

The radius of a hill crest (Figure 4.8) may be estimated as: 

(4.28) 

4.5. Scattering 

Rough surfaces and finite surfaces scatter the incident wave in all directions with a 

radiation diagram that depends on the roughness and size of the surface or volume. The 

dispersion of energy through scattering means a decrease of the energy reflected in the 

direction of the receiving antenna so the ground reflected wave might therefore make a 

negligible contribution to the received signal. 

A measure of the surface roughness is given by the Rayleigh criterion that is set at 

A ^ Aq) = -

where A(p is the phase difference between the two rays shown in Fig. 4.9. 

(4.29) 

Ray2 

Rayl 

Fig. 4.9. Surface roughness criterion 
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For a small angle of incident, the Rayleigh height HR and the minimum spacing SR 

between protuberances is expressed as: 

(4 .30 , 

According to the Rayleigh criteria, if the imdulation surface height is greater than HR 

under the constraint that the spacing between two noticeable humps is greater than SR, then it 

is a rough terrain. hi a mobile radio environment we would assume different criteria for 

different propagation path lengths. The reason is that the mobile anterma is usually close to 

the ground so that the reception of both the direct ray and specular reflected wave is weak. In 

this case, even if the phase difference A(p between direct and specular reflected wave is about 

71/4 at a path distance larger than 9.7 km, unexpected reflected waves often received and will 

fiirther weaken the resultant. 

Therefore, the following criteria are suggested for different propagation path lengths 

[Rappaport, 96]: 

A(p = —(lessthan3.2km), HR = — ; SR = ^ 
2 80 49^ 

A<p = ^ (from 3.2 to 9 .6 km) H R = ; SR = (4 .31) 
3 120 60^ 

A(p = ^ (9.6 km and up) H R = ; SR = ^ 
4 " "" 160 802 

The parameters HR and SR are fimctions of the incident angle 0 that can be computed from the 

following expression: 

Q ^ H - h h t + hr 32) 
d 

where ht and hr are the antenna heights of the base and mobile unit, respectively, and H is the 

difference in eievation between the high and low spots aroimd the mobile unit. 

The roughness is determined by the frequency, the incident angle and the terrain 

irregularity heights and spacing as it is expressed in equation (4 .31) . Therefore, at one 

frequency a surface can be considered rough but not at another frequency. This statement also 

applies to different incident angles. 

In the mobile radio environment we use the following criteria to determine the terrain 

roughness. If H is the difference of two adjacent extremes in eievation and H > HR in the 

vicinity of Ax = 1/2SR at the mobile site, then the terrain is rough. Based on the location of the 

mobile unit, which is on the hump or in the valley, the incident angle 0 is within 
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ht + h r ^ Q ^ H + h t + hr (433^ 
d d 

Usually, the base station anteima height is greater than the mobile antenna height so 

the reflection point is closer to the mobile unit. The distance Ax = 1/2SR from the mobile unit 

towards the base station only needs to be searched to fmd out if any variation of elevation is 

greater than HR. If one variation of elevation H within Ax is greater than HR, the terrain is 

called a rough terrain. 

4.6. Propagation mechanism in ray theory 

The main propagation mechanisms defined by the ray theory are on brief explained 

below. A radio ray is assumed to propagate along a straight line bent only by refraction, 

reflection, dif&action or scattering. These are the concepts of Geometrical Optics. There is no 

transversal dimension associated to the rays. However, the finite size of the wavelength at 

radio frequencies leads to hinder in some ways the assumption of infinitely thin rays. Related 

to the "thickness" of a radio ray is the concept of Fresnel zones. 

Speculai reflection 

The specular reflection phenomenon is the mechanism by which a ray is reflected at 

an angle equal to the incident angle. The reflected wave flelds are related to the incident wave 

fields through the Fresnel reflection coefficient. The application of the Fresnel coefficient 

formulas is very popular in ray tracing software tools. Specular reflection are mainly used to 

model reflection from the ground surface and from building walls. The mechanism of 

specular reflections have been used to interpret measurements in some particular 

environments such as high rise city center, micro - cells, indoor and down in a street canyon 

illuminated from over the roof. Whether scattering (l/did2 dependence) or truly specular 

reflection (l/(di+d2) dependence) is the proper propagation phenomena was not mentioned 

and cannot be readily determined since the two phenomena are usually involved 

simultaneously. The reflection from a finite surface can be seen either as the sum of the two 

phenomena specular reflection and edge dif&action, or as a scattering process. 
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Dif&action 

The dif&action process in ray theory is the propagation phenomenon that explains the 

transition from the lit region to the shadow regions behind the comer of a building or over the 

rooftops. Dif&action by a single wedge can be solved in various ways: empirical formulas 

[Kreuzgruber, 94], [Jakoby, 95]; Perfectly Absorbind Wedge (PAW) [Wagen, 93]; 

Geometrical Theory of Dif&action (GTD) [Wagen, 93], [Keller, 62]; Uniform Theory of 

Dif&action (UTD) [McNamara, 90] or even more exact formulation. The advantages and 

disadvantages of using either one formulation is difîicult to address since it may not be 

independent on the environments under investigations. Indeed, reasonable results are claimed 

for each formulation. The various expressions dififer mainly from the approximations being 

made on the surface boundaries of the wedge considered. One major diffîculty is to express 

and use the proper boundaries in the derivation of the dif&action formulas. Another problem 

is the existence of wedges in real environments: the complexity of a real building comer or of 

the building roofs clearly illustrates the modeling diffîculties. Despite these difFiculties, 

dif&action around a corner or over a rooftop are commonly modeled using heuristic UTD 

formulas since they are fairly easy to program, are well behaved in the list/shadow transition 

region, and account for the polarization and the wedge material. 

Multiple dif&action 

For the case of multiple dif&actions the complexity increases dramatically. In the case 

of propagation over rooftop the results of Walfîsch and Bertoni [Walfîsch, 88] have been used 

to produce the COST - Walfîsch - Dcegami model (chapter 5). The approximate procedure of 

Giovanelli or Deygout have been revisited by some authors. The limitations of these 

approximations lead several researchers to more accurate methods that are numerical schemes 

to compute the multiple diffiractions and apart from the last contribution they do not give a 

clear physical understanding of the multiple diffiaction processes, at least not yet [COST231, 

99]. 

One method frequently applied to multiple dif&action problems is UTD. The main 

problem with straightforward applications of the UTD is that in many cases one edge is in the 

transition zones of the previous edges. Strictly speaking this forbids the application of ray 

techniques but in the spirit of UTD the principie of local illumination of an edge should be 

valid. At least within some approximate degrees, a solution can be obtained. In [Andersen, 

96] a solution is shown that is quite accurate in most cases of practicai interest. The key point 

in the theory is to include slope diffraction that is usually neglected as a higher order term in 
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an asymptotic expansion, but in transition zone diffraction the terni is of the same order as the 

ordinary amplitude dif&action term [Andersen, 94]. Another key element in the method is 

automatic enforcement of continuity of amplitude and slope at each point. 

For the case of diffraction over multiple screens of arbitrary heights and spacing a 

solution is obtained within the frame of UTD. This solution agrees to a good approximation 

within the known results for constant spacing and numerical results using Vogler's solution 

[Vogler, 82]. The limitation of the method is that it is not applicable when one spacing 

becomes very small relative to other spacings. Thus the method cannot predict the collapse of 

two screens into one. 

In ITU - R 526 - 2 [ITU, 94] equations are given to compute efifects of multiple 

diflBractions around curved cylinders. In [Li, 96] an investigation of this method revealed that 

a modification of the ITU equations yields good results even for multiple knife - edge 

difBractions. The diffraction losses for the single obstacles are replaced by the diffraction 

losses for single knife - edges; fiirthermore, a modified correction factor has to be used. 

The ITU equations are simply to apply and cannot account for knife - edges with 

unequal heights and separations. In the special case of grazing incidence over a series of equal 

distance and equal height knife - edges, the modified ITU equations yield the correct 

analytical results. This holds true even for large number of edges. 

Scattering 

Rough surfaces and finite surfaces scatter the incident energy in all directions with a 

radiation diagram that depends on the roughness and size of the surface or volume. The 

dispersion of energy through scattering means a decrease of the energy refiected in the 

specular direction. This simple view leads to account for the scattering process only by 

decreasing the reflection coefficient and thus, only by multiplying the refiection coefficient 

with a factor smaller than one which depends exponentially on the standard deviation of the 

surface roughness according to the Rayleigh theory [COST231, 99]. This description does not 

take into account the true dispersion of radio energy in various directions but accounts for the 

reduction of energy in the specular direction due to difîuse components scattered in all other 

directions. 

More realistic scattering processes have been investigated within COST 231. Most 

investigations deals with the application of the bistatic radar equation to account for the 

scattering fi-om hills or mountain slopes. A preliminary study investigated the scattering 

pattem fi-om large irregularities on a building wall [Rizk, 94]. The concept promoted in that 
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study was to model the scattering by equivalent sources of scattering located at the buildings 

comers. 

Penetration and absorption 

Penetration loss due to building walls have been investigated and foimd very 

dependent on the particular situation. Absorption due to trees or the body absorption are also 

propagation mechanisms difiScult to quantify with precision. 

Another absorption mechanism is the one due to atmospheric effects. These effects are 

usually neglected in propagation models for mobile communication applications at radio 

frequencies but are important when higher frequencies (e.g. 60 GHz) are used. 

Atmospheric efiFects 

Atmospheric effects are usually not taken into account for mobile radio applications at 

UHF jfrequencies, although empirical correction factors can be incorporated in some coverage 

prediction tools to handle seasonal variations. 

Guided wave 

Wave guiding can be viewed as a particular propagation mechanism to describe the 

propagation in street canyons (Telekom model), in corridors or tunnels. The wave guiding 

phenomena can be explained based on multiple reflections or propagation models. 
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5, Propagation Prediction Models 

5.1. General considerations 

Propagation prediction models are required in order to compare classical propagation 

prediction methods with the ones obtained by neural network applications. The phenomena 

that influence radio wave propagation can generally be described by four basic mechanisms: 

reflection, penetration, dif&action and scattering, described in chapter 4. For the practicai 

prediction of propagation in a real environment these mechanisms must be described by 

approximations. This requires a three-stage modeling process. hi the first step the real 

(analogue) terrain has to be digitized yielding digital terrain database. The information 

includes terrain height information, land usage data, building shape and height information 

and building surface characteristics. The second modeling step includes the defmition of 

mathematical approximations for the physical propagation mechanisms. Based on the 

solutions for the basic problems both deterministic and empirical approaches have been 

developed for the various environments, which is the third modeling step. In the different 

environments distinctions of the models are required both in terms of the dominant physical 

phenomena and the specification of the digital terrain data. In section 5.2 are treated models 

dedicated for macro-cells. As the defînition of cell type is not unique in the literature, the cell 

type defînition used in this work is explained more detailed in [COST231, 99]. The summary 

of the different cell types is shown in Table 5.1. [COST231, 99]. 

Table 5.1. Definition of cell type 
Cell type Typical cell radius Typical position of base station antenna 
Macrocell 
(large cell) 1 km to 30 km Outdoor; mounted above medium rooftop level, heights of 

all surrounding are below base station antemia height 
Small macro 
ceU 0.5 km to 3 km 

Outdoor; mounted above medium rooftop level, heights of 
some surrounding buildings are above base station 
antenna height 

Microcell Up to 1 km Outdoor; mounted belov^ medium rooftop 
Picocell/in 
house Up to 0.5 km Indoor or outdoor (mounted below rooftop level) 

In large cells and small cells the base station antenna is installed above rooftops. In 

this case the path loss is determined mainly by dif&action and scattering at rooftops in the 
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vicinity of the mobile, i.e. the main rays propagate above the rooftops. In micro-cells, the base 

station antennas are mounted generally below rooftops. Wave propagation is determined 

dif&action and scattering around buildings, i.e. the main rays propagate in street canyon 

somehow like in grooved waveguides. Pico-cells are applied to cover mainly indoor or very 

small outdoor areas. In any case the base station antenna of a pico-cell is mounted inside a 

building or fairly below rooftop level in outdoors. 

5.2. Propagation models for macro-cells 

Macro-cell design philosophy is based on the assumption of high radiation centerlines, 

usually placed above the surroimdings, transmitter powers of several tens of Watts and large 

cells (Table 5.1). Under these assumptions, LOS conditions are usually not satisfîed and the 

signal from the transmitter to the receiver propagates by means of the difBraction and the 

reflection. Also, for large cells the effects of refraction are very important. AII of these factors 

make the problem of field strength prediction very diflBcult. In the next sections, only a few 

very popular methods are presented. 

Path loss models for urban areas often comprise two components that correspond to 

the dominant mechanism of propagation: an expression relevant for the propagation in the 

vertical plane (over rooftops) and another one for the horizontal plane (along street canyons). 

The former will be more dominant far away from the base station, whereas the latter can be 

expected to play the dominant role in the vicinity of the base station. There are, of course, 

cases when both of them are important. Much depends on the base station height relative to 

the surrounding buildings. Most of the models of rooftop propagation are based on various 

approximate solutions to the problem of dif&action by multiple (infinitely thin) screens. They 

may be augmented by empirical correction factors derived from measurement data. 

The propagation of radio waves m built-up areas has been found to be strongly 

influenced by the nature of the environment, in particular the size and density of buildings. 

Generally, a description of the environment is often employed using terms such as rural, 

urban and suburban. 

Usually the propagation loss model is used to express the measured propagation loss 

as a ftmction of the variables associated with the environment and terrain of the mobile, base 

station antenna height hes, frequency f, mobile antenna height hM and the distance between 

transmitting and receiving antennas, d. The degree of terrain undulation is given by a 
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parameter known as intercede range Ah [Jakes, 74]. The value of Ah depends on the terrain 

topography. For instance, the value of Ah falls within an interval (20m, 40m) for quasismooth 

terrain or (40m, 80m) for rolling terrain. Thus, a simple mathematical expression for the 

propagation loss, Lp, in a specific type of built-up environment and size of city is represented 

bv 

Lp = f(hBS.hM.f.d,Ah) (5.1) 

5.2.1. The model of Okumura 

Okumura's empirical model is derived from an extensive series of measurements 

made in a variety of environments in and around Tokyo, Japan, at frequencies up to 1920 

MHz. There are published as a number of curves [Okumura, 68] giving the median 

attenuation relative to free space (Amu) ^ an urban area over a quasi-smooth terrain with a 

base station effective antenna height (hese) of 200 m and a mobile antenna height (Iim) of 3 m. 

These curves were developed jfrom extensive measurements using vertical omni-directional 

antennas at both the base and mobile and are expressed as a fimction of frequency (in the 

range 100-3000 MHz) and distance from the base station (in the range 1-100 km). In order to 

determine path loss using Okumura's method, the free space path loss between the points of 

interest is first determined, and then the value of Amu(f,d) (as read from the curves) is added to 

it along v^th correction factors to account for the type of terrain. The model can be expressed 

as follows: 

L50(dB) 

- LFS"*" Amu ( f , d) - G (h BSe) - G(h M) - G AREA (5.2) 

where: 

L50 = the 50^ percentile (i.e. median) value of propagation path loss, Lfs = the free space propagation loss, 
Amu 

= the median attenuation relative to free space, 

G(hBSe) = the base station antenna height gain factor, 

GOim) = the mobile antenna height gain factor, 

Gar£a = the gain due to the type of environment. 

Okumura found that G(hBSe) varies at a rate of 20 dB/decade and GOim) varies at a rate 

of 10 dB/decade for heights less than 3 m. 
hBSe G (hBSe) = 201og 
200 

30 m < hes < 1 km (5.3) 
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G(hM)=101og( i^) hM<3m (5.4) 
V y 

G(hM) = 201og hM 3 m<hM< lOm (5.5) 
V ^ y 

Further corrections are also provided, in graphical form, to allow for street orientation, 

for transmission in suburban and open (rural) areas and over irregular terrain. These must be 

added or subtracted as appropriate. Irregular terrain if further divided into rolling hilly terrain, 

isolated mountain, general sloping terrain and mixed land - sea path. The terrain related 

parameters that have to be evaluated in order to determine the various correction factors are 

the terrain undulation height (Ah), the effective base station antenna height (hsscX isolated 

ridge height, average slope of the terrain and the mixed land-sea path parameter [Parsons, 92]. 

Okumura's model is based on measured data and does not pro vide any analytical 

explanation. For many situations, extrapolations of the derived curves can be made to obtain 

values outside the measurement range, although the validity of such extrapolations depends 

on the circumstances and the smoothness of the curve in question. 

In practice, the Okumura technique produces predictions that correlate reasonably well 

with measurements, although by its nature it tends to average over some of the extreme 

situations and not respond sufficiently quickly to rapid changes in the radio path profile. 

Common standard deviations between predicted and measured path loss values are around 10 

dB to 14 dB [Rappaport, 96]. Allsebrook found that an extended version of the Okumura 

technique produced prediction errors comparable to those of his own method. The comparison 

presented in Pelisle, 85] and [Aurand, 85] also showed the Okumura technique to be 

amongst the better models for accuracy although it was rated as "rather complex". Generally, 

the technique is quite good in urban and suburban areas, but not in rural areas over irregular 

terrain. There is a tendency for the predictions to be optimistic, i.e. suggesting a lower path 

loss than the actually measured [Parsons, 92]. 

A number of authors have fitted equations to these curves, the best known bemg Hata, 

1980, and Reudmk, 1974. Hata's equations include the effects of distance, frequency, mobile 

station antenna height (hi^) and base station antenna height (hes). The application of Hata's 

formulas is restricted to urban, suburban and open areas and to distances up to 20 km. 

However, measurements performed in (Low, 1986) have shown that Hata's formulas can also 

be used in forest and for distances up to 40 km [COST 207]. 
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Akevama '5 modification 

The Okumura's technique adopts curves for urban areas as the datum from which 

other predictions are obtained. Cautions must be exercised in applying the environmental 

definitions as described by Okumura to locations in countries other than Japan. Okumura's 

definition for urban, for example, is based on the type and density of buildings in Tokyo and 

it may not be directly transferable to cities in North America or Europe. Indeed, experience 

with measurements in United States has shown that the typical US urban environment lies 

somewhere between Okumura's definition of suburban and open areas. Since the CCIR have 

adopted the Okumura urban curve as its basic model for 900 MHz propagation, it is also 

prudent to exercise caution when using these curves [Parsons, 92]. 

One other problem that is encountered m the use of Okumura model is that correction 

factor that accounts for environments other than urban (suburban, quasi-open and open) is a 

function only of the buildings in the immediate vicinity of the mobile. The factor is often 

more than 20 dB, is discrete and cannot be objectively related to the height and density of the 

buildings. It is uncertain how the factors suggested by Okumura can be applied to cities other 

than Tokyo, particularly those where the architectural style and construction materials are 

quite dififerent. Some attempts have been made to extend the concept of "degree of 

urbanization". A ground cover (degree of urbanization) factor has been proposed by Akeyama 

[Akeyama, 82] to account for values a less than 50% in a continuous way. The value of S (the 

deviation firom Okumura's reference median field strength due to buildings surrounding the 

mobile station curve at 450 MHz) is given by [Parsons, 92]: 

'30-25 log a 5 % < a < 5 0 % 

S(dB) = ] 20 + 0.19 log a -15.6 (log a)^ 1 % < a < 5% (5.6) 
20 a < l % 

where a is the percentage of the area covered by buildings. 

5.2.2. Hata prediction model 

Okumura [Okumura, 68] published an empirical path loss prediction model based on 

field measurements taken in Tokyo area. It provides an iniţial path loss estimate for the urban 

area with a quasi-smooth terrain (Ah = 20m). In addition, some correction factors must be 

used to adapt to the results in some other conditions, for example, the type of propagation 

environment and the size of city. However, Okumura's method cannot be easily automated. 
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because it involves various curves. In an attempt to make Okumura method easy to apply, 

Hata [Hata, 80] established empirical mathematical relationships to describe the graphical 

information given by Okumura. Hata's formulation is limited to certain ranges of input 

parameters and is applicable only over quasi-smooth terrain. The mathematical expression for 

path loss Lp (in dB) for an urban area is: 

L P [dB] = 69.55 + 26.16 log f -13.82 log h BS - a(h M) + ^^^^ 

+ (44.9-6.551oghBs)logd 

where, for medium or small size city: 

a(hM) = (1. M o g f - 0.7)hM - (1.56 • log f - 0.8) (5.8) 

for large city: 

a(hm) = 8.29 (log 1.54 hm)^ - 1 • 1 f ^ 200 MHz (5.9) 

a(hM) = 3.2(log 11.75 h u ? " 4-97 for f > 400 MHz (5.10) 

For suburban area: 

Lps [dB] = Lp (urban) - 2[log ( î l2%f \ - 5.4 (5.11) 

For open area: 

Lpo [dB] = Lp (urban)- 4.78 (log f +18.33 log - 40.94 (5.12) 

The model is restricted to the foliowing range of parameters: 

f: 150...1500 MHz 

hBs: 30...200 m 

hM: 1...10m 

d: 1...20km 

Although Hata's model does not have any of the path specific corrections that are 

available in Okumura's model, the above expressions have significant practicai values. The 

prediction of the Hata model compare very closely with the original Okumura model, as long 

as d exceeds 1 km [Rappaport, 96]. This model is well suited for large cell mobile systems, 

but not personal communication systems (PCS) that have cells on the order of 1 km radius. 

5.2 J . The Egli's model 

One of the best-known statistical models for predicting propagation loss in the urban 

or rural environment is due to Egli [Egli, 57]. As in the case of Okumura-Hata, it does not 

include dif&action losses caused by propagation over irregular terrain; however, Okumura 
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implicitly takes into account the effect of buildings, which is not the case for Egli. An iniţial 

comparison between two models can then be made for open (rural) areas where both models 

neglect diffraction losses. 

According to Egli, propagation losses are expressed as: 

f76.3-101oghM. hM^lOm 
L = 201ogf + 40logd-201oghBS+ (513) 

g g s n e s |85.9-201oghM. hM^lOm 

where: 

L = total propagation loss, in dB, 

f = frequency, in MHz 

d = distance between base and mobile station, in km, 

hes, ^M = base and mobile station effective antenna height, in m. 

A comparison between the models of Hata and Egli is made in [Delisle, 85] for open 

regions where both models are applicable and neglect dififraction losses due to irregular 

terrain. One point to note is that while Egli predicts the average signal strength will decrease 

with distance at the rate of 40 dB/decade, Hata uses a rate depending on the base station 

effective antenna height, i.e. 44.9 - 6.55 log hes; a 30 m height leads to a loss a 35.2 dB/ 

decade and 70 m to a calculated loss of 32.8 dB/decade. 

5.2.4. COST 231-Hata model 

COST 231 [COST231, 99] has extended Hata's model to the frequency band 

1500...2000 MHz by analyzing Okumura's propagation curve in the upper frequency band. 

The mathematical expression of the path loss for suburban areas is: 

Lp[dB] = 46.3 + 33.91ogf-13.821oghBS-a(hM)+ 

+ (44.9-6.551oghBs)logd + Cm 
(5.14) 

where a(hM) is defined in equation (5.3) and 

O dB for medium sized city and suburban centres with medium tree density 
= ^ J (5.15) 

[3 dB for metroplitan centres 

The application of the COST 213 - Hata model is restricted to large and small micro-

cells, i.e. base station antenna heights above rooftop levels adjacent to the base station. Hata's 

formulation and its modifications must not be used for micro-cells. 
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5.2.5. The COST 231-WaIfisch-Ikegaiiii model 

COST231 [COST231, 99] proposed a combination of the Walfisch [Walfisch, 88] and 

Ikegami [Dcegami, 84] models. The model allows for improved path loss estimation by 

consideration of more data to describe the character of the urban environment, namely: 

- Heights of the buildings hroof, 

- Widths of the roads w, 

- Building separation b, 

- Road orientation with respect to the direct radio path. 

The parameters are defined in figures 5.1 and 5.2. However this model is more 

statistical and not deterministic because only characteristics values can be inserted and no 

topographical database of the building is considered. 

The model distinguished between line-of-sight (LOS) and non-line-of-sight (NLOS) 

situations. hi the LOS case, between base station and mobile antennas within a street canyon, 

a simple propagation loss formula different from free space loss is applied. 

L[dB] = 42.6 + 26 1ogd + 20-logf f o r d > 2 0 m (5.16) 

where the first constant is determined in such a way that L is equal to free space loss for d = 

20 m. In the NLOS case the basic transmission loss is composed of the terms free space loss 

Lo, multiple screen diffraction loss Lmsd and rooftop-to-street diffraction and scatter loss Lrts: 

Lo + Lrts + Lmsd for Lrts + Lmsd > ^ 
Lo forLrts + Lmsd^O 

L = (5.17) 

Base station Mobile unit 

Figure 5.1. Typicai propagation situation in urban areas and definition of the parameters used in the 

COST 231-Wairisch-Ikeganii modei 
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Buildings 

Mobile 

Incident 
wave 

Figure 5.2. Definition of the street orientation 

The free space loss is given by: 

Lo [dB] = 32.4 + 20 • log d + 20 • log f (5.18) 

The term Lns describes the coupling of the wave propagating along the multiple-screen 

path into the street where the mobile station is located. The determination of Lns is mainly 

based on Ikegami's model. It takes into account the width of the street and the street 

orientation. COST 213 has applied another street-orientation fimction than Dcegami: 

Lrts = - 1 6 . 9 - 1 0 - l o g w + 10 1ogf + 20-logAhM + Lori (5-19) 

Lori ~ 

- 1 0 + 0354(p for cp <35° 

2.5 + 0.075(9-35) f o r 3 5 ° < 9 < 5 5 ° 

4 .0-0 .114(9-55) for 55° < 9 <90° 

(5.20) 

AhM = hroof-hM (5-21) 

AhfiS = hBS - hroof (5-22) 

Scalar electromagnetic fonnulation of multi-screen diffiaction results in an integral for 

which Walfisch and Bertoni published an approximate solution in the case of base station 

antenna located above rooftops. COST 231 extends this model for base station antenna 

heights below the rooftop levels using an empirical fimction based on measurements. The 

heights of buildings and their spaţial separation along the direct radio path are modeled by 

absorbing screens for the determination of Lmsd-

Lmsd = Lbsh + ka + kd • log d + k f log f - 9 • log b (5.23) 

where: 
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Lbsh = ' 
-18 1og(l + AhBs) forhBS>hroof 
O forhBS^hroof 

ka = 

54 

54-0.8-AhBS 
forhBS>hroof 
for d > 0.5 km and hBS ^ hroof 

54-0.8-AhBS ~ for d < 0.5km and hBS^ hroof 

(5.24) 

(5.25) 

kd = 

18 

1 8 - 1 5 . ^ 

hroof 

f 

kf = - 4 + 

0.7 

1.5 

925 
- l 

^925 
- l 

for hfiS > hroof 

for hss ^ hroof 

for medium sized city and suburban 

centres with medium tree density 

for metropolitan centres 

(5.26) 

(5.27) 

The term ka represents the increase of the path loss for base station antennas below the 

rooftops of the adjacent buildings. The terms k j and kf control the dependence of multi-screen 

diffi-action loss versus distance and radio frequency respectively. 

The COST231-Walfîsch-Ikegami model is restricted to: 

800... 2000 MHz 

4 ... 50m 

1 ... 3m 

0.02 ... 5 km 

The estimation of path loss agrees rather well with measurements for base station 

antenna heights above rooftop levels. The prediction error becomes large for hes^hrocf 

compared to situations where heŝ ĥrcof- The performance of the model is poor for hBs«hroof. 

The parameters b, w and (p are not considered in a physically meaningful way for micro-cells. 

Therefore the prediction error for micro-cell may be quite large. The model does not consider 

multipath propagation and the reliability of path loss estimation decreases also if terrain is not 

flat or the land cover is inhomogeneous. 

f: 

hfis: 

hM: 

d: 
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5.2.6. Walfisch and Bertoni model 

A model developed by Walfisch and Bertoni [Walfisch, 88] considers the impact of 

rooftops and building height by using diffraction to predict average signal strength at street 

level. This model is a geometrical model of propagation process that takes place in urban 

environments, having a range dependence on 1/d^^ for low transmitting antennas. It shows 

how the buildings influence the propagation and hence identifies those physical properties 

that are signifîcant. It can be considered as a simpler version of COST231-Walfisch-Ikegami 

model. The propagation path loss, in dB is given by: 

L = Lo + Lex (5.28) 

where Lo represents the firee space loss given by equation (5.23) and Lex represents the excess 

path loss and is given by: 

17-AhBS. 

where d is the distance between transmitter and receiver antennas, f is the frequency, Ahes is 

given by equation (5.27) and the last term in equation (5.34) accounts for the curvature of the 

earth. The influence of building geometry is contained in the term 

Lex = 57.1 + A + logf + 181ogd-18-log(AhBs)-18 1og 1 - (5.29) 

A = 51og 
d 
2J •i^hM? - 9 - l o g b + 20 1ogitan~^ 2-AhM (5.30) 

where AhM is given by equation (5.26) and b represents the building separation. 

5.2.7. Xia model 

In [Xia, 97] is presented an analytical propagation model that explains the path loss in 

urban and suburban environments as a result of signal reduction due to free space wavefront 

spreading, multiple diffiaction past rows of buildings, as well as building shadowing. In this 

model, the key system parameters such as frequency, base and mobile station antenna height 

are analytically explicit; and the building environments are specified by using the average 

building height and street width. Hence, the model is applicable for both cellular and PCS 

frequencies and is valid for various antenna heights employed for both macro - cellular and 

micro - cellular propagation environments. The radio propagation paths and the geometrical 

parameters used in this model are depicted in Figure 5.3 pGa, 97]. 
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For base station antennas near the average rooftop level, the path loss can be evaluated 

as: 

L = -101og 
/ \2 

X 
2V2 7id 

- 1 0 log 
1 1 

0 27t+e 
- 1 0 log 

UJ 
(5.31) 

For base station antennas above the average rooftop level, the path loss can be written as: 

L = -101og 

-lOlog 

47id 
-lOlog ,2.35 2 / Ahes 

\ d u j 

1 1 
G 271+9 

(5.32) 

For base station antennas below the average rooftop level, the path loss is given by: 

L = -101og 

-10 log 

2^2 Ttd 

d 

-10 log 

_27i(d-b) 
X. 

1 1 
e 271+0 

1 ^^ 

V ( A h B s f ^ 

(5.33) 

with 

0 = tan"^ AhM 
X y 

(j> = tan - l AhBS 

[rad] 

[rad] 

(5.34) 

(5.35) 

(5.36) r 

where: 

d = transmitter - to - receiver distance [m]; 

Ahes = the base station antenna height with respect to the average rooftop level [m]; 

AhM = the height difference between the average rooftop level and the mobile station antenna 

[m]; 

b = average separation distance between the rows of buildings [m]; 

w = the width of the street [m]; 

X = the horizontal distance between the mobile station and the diffracting edge [m]; in 

general, x is taken as x = w / 2 by assuming that the mobile travel in the middle lane of the 

Street 
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Since the dependence on frequency. base and mobile station antenna heights, building 

height and street width are analytically explicit in the above expressions, the modei is 

appiicable for cellular as well as PCS in both macro - cell and micro - cell environments. 

Base station Mobile unit 

•••--5a---. . . . 

• • • • 
AhM 

w 

Figure 53. Radio propagation paths and geometrical parameters 

5.2.8. The Sakagami - Kuboi model 

In this model nine input parameters are used like street widths and street orientation. 

The new parameters used are the average height of buildings around the base station and 

around the mobile station. The base station antenna height has to be greater than the height of 

the buildings. 

This model is restricted to the following range of parameters: 

Frequency f: 400 ... 2200 MHz 

Distance d: 0.5 ... 3 km 

Location base and mobile stations: hes - hM: 20 ... 100 m 

Average height of buildings around mobile station: 5 ... 50 m 

Height of buildings near mobile station: 5 ... 80 m 

Street width w: 5 ... 50 m 

L = 100-7.11ogw + 0.023(p + 1.41ogHR.M + l l loghR,M 

24.37-3.7 hR.BS 
hes 

log h BS, M + (43.42 - 3. llog h BS, M)log d 

+ 20 log f + exp(l 3 (log f - 3.23)) 

where: 

L = the basic path loss [dB], 

(5.37) 

95 

BUPT



f = the frequency [MHz], 

d = the distance between transmitter and receiver [km], 

w = the Street width [m], 

hesjvi = hes - ^M [m], 

hitBS = the average height of buildings around base station [m], 

^RM = the average height of buildings around mobile station [m], 

Hr,m = the height of buildings nearby mobile station [m], 

9 = the angle between the transmitter - receiver direction and the street direction. 

5.2.9. The Log-distance path loss model 

Most radio propagation models are derived using combination of analytical and 

empirical models. The empirical approach is based on fitting curves or analytical expressions 

that recreate a set of measured data. This has the advantage of implicitly taking into account 

all propagation factors, both knovm and unknown, through actual field measurements. 

However, the validity of an empirical model at transmission frequencies or environments 

other than those used to derive the model can only be established by additional measured data 

in the new environment at the required transmission frequency. 

Both theoretical and measurement-based propagation models indicate that average 

received signal pov^er decreases logarithmically with the distance between the transmitter and 

the receiver. The average path loss for an arbitrary transmitter-receiver separation is expressed 

as a fimction of distance by using a path loss exponent, n. 

L[dB] = L(do)+10 • n • l og f—1 (5.38) 

U o j 

where n is the path loss exponent that indicates the rate at which the path loss increases with 

distance, do is the reference distance determined from measurements close to the transmitter 

and d is the distance between the transmitter and the receiver. The value of n depends on the 

specific propagation environment. For example, in free space, n is equal to 2 and when 

obstructions are present, n has a large value. In macro-cells systems, the reference distance 

commonly used is 1 km [Lee, 85]. The reference distance should always be in the far field of 

the antenna so that near-field effects do not alter the reference path loss. The reference path 

loss is computed using the free space path loss formula or through field measurements at 

distance do. 
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5.2.10. Discussions 

A number of prediction methods have been described in this section. The methods 

difFer widely in approach, complexity and accuracy. Quite often, the application of two 

dififerent methods to precisely the same problem will yield results that differ by a wide 

margin, thereby producing a degree of imcertainty and lack of confidence on the part of the 

user. One fact is quite clear; there is no one method that outperforms all others in all 

conditions as far as accuracy is concemed. Very often, accurate prediction of signal strength 

is a secondary consideration, especially close to the transmitter. Often the primary concem is 

to predict the limits of the coverage area of a given base site and to identify the inevitable 

''black spots" that occur; other objectives may be to predict the probability of interference 

between services or to plan a frequency assignment strategy for radio channels. Choosing a 

method applicable to the specific problem under consideration is a vital step in reaching a 

valid prediction. 

In general, the models described are a mixture of empiricism and the application of 

propagation theory. The empirical approach relies on fitting curves or analytical expressions 

to sets of measured data and has the advantage of implicitly taken all factors (known and 

unknovm) mto account. Hov^ever, a purely empirical model must always be subjected to 

stringent validation by testing it on data sets collected at locations and transmission 

frequencies other than those used to produce the model in the first place. Theoretical 

equations such as those for the fi-ee space or plane earth propagation loss often underpin 

models that provide additional empirical (or semi - empirical) factors to account for 

diffi^ction loss, earth curvature, atmospheric effects or building clutter. In deriving prediction 

models and in considering the applicability of a particular model to a specific problem, it is 

prudent to consider the input data required by the model, the availability of that data and the 

efifect on the prediction if only parţial input data is available. 
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5.3. Micro-cell propagation models 

A micro-cell is a relatively small outdoor area such as a street with the base station 

antenna below the rooftops of the siuroundiiig buildings. The coverage area is smaller 

compared to macro-cells and it is shaped by surrounding buildings. A micro-cell enables 

an effîcient use of the limited iBrequency spectmm and it provides a cheaper infrastructure. 

The main assumptions are relatively short radio paths (on the order of 200 m to 1000 m), 

low base station antennas (on the order of 3 m to 10 m) and low transmitting powers (on 

the order of 10 mW to 1 W). 

5 J . l . Model 1. Two-ray model. 

Numerous propagation models for micro-cells are based on the ray-optic theory. In 

comparison with the case of macro-cells, the prediction of micro-cell coverage based on 

the ray-model is more accurate. One of the elementary models is the two-ray model. The 

two-ray model pCia, 93] is used for modeling of the LOS radio channel and is described in 

Fignre 5.4. 

Figure 5.4. Two-ray model 

The transmitting antenna of height hes and the receiving antenna of height hM are 

placed at distance d from each other. The received signal Pr for isotropic antennas, 

obtained by summing the contribution from each ray, is expressed as: 

2 

Pr = Pt 
2 

-^exp(-jkdi)+r(e>fexp(-jkd2) 
dl d2 

(5.39) 
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where Pt is the transmitted power, di is the direct distance from the transmitter to the 

receiven d2 is the distance through reflection on the ground and r(0) is the reflection 

coefficient depending on the angle of incidence a and the polarization. 

The reflection coefficient is given by: 

(5.40) 
cosa + a^Sr-sin^ct 

where a = 90^ - 0 and a = l/e or 1 for vertical or horizontal polarization, respecţively. 8r is 

a relative dielectric constant of the ground. 

For large distances a is small, and r(a) is approximately equal to -1. For short 

distances, the value of r(a) decreases and it can even be zero for vertical polarization. 

Also, there are more complex models based on the ray-optic theory. The four-ray 

model consists of a direct ray, ground reflected ray and two rays reflected by buildings. 

The six-ray model, besides the direct and the ground reflected rays, takes four rays 

reflected by the building walls along the street. If a model considers a larger number of 

rays, the prediction tends to be more accurate, but the computaţional time is significantly 

increased. The problem deserving special attention is that of comer diffraction. Two 

popular models considering this effect are the GTD (Geometrical Theory of Diffraction) 

model [Luebbers, 84] and the UTD (Uniform Theory of Diffraction) model [Kouyoumijan, 

74]. 

53.2. Model 2 

The models proposed in [Harley, 89] and [Lotse, 90] describe the measured signal 

level along the Une-of-sight path. According to these models, the road guided waves are 

expected to exist only for short ranges. This situation can be described by two distinct 

path-loss slopes and a breakpoint. The breakpoint is the distance from the base station that 

is equal to the maximum distance that has the first Fresnel zone clear. The breakpoint can 

be used to define the size of a micro-cell because the signal level decreases more rapidly 

when the distance increases after the breakpoint. 

The form of the proposed propagation models is given by: 

+ c (5.41) S = -20 log 
. g. 

99 

BUPT



where S is the signal level in ciB|iV/m, d is the distance from the transmitting antenna (m), 

a is the basic attenuation rate for short distances, b is the additional attenuation rate 

coefficient for the distances greater that 100 to 200 m, g is the distance to the breakpoint 

and c is a scalable factor. 

The expression is valid for 5-20 m antenna heights and 200m-l km distances. This model, 

whose coefficients are relatively independent, has two boundary cases: 

1. At distances less than the breakpoint, the form of the propagation model is: 

S = -201og(d^)+c (5.42) 

2. At distances greater than the breakpoint, the form of the propagation model is: 

S = -201og(d^^^)-h c + const (5.43) 

In addition, the signal around the comer decreases by 20-25 dB in a short transition 

distance of only several tens of meters. 

It was shown that for the same conditions, the results of the proposed models for a micro-

cell situation are better than those of the normal linear regression and the Okumura model. 

5 3 3 . Model 3. Wideband PCS micro-ceU model 

In [Feuerstein, 94], using base station antenna heights of 3.7 m, 8.5 m and 13.3 m, 

and a mobile receiver with an antenna height of 1.7 m above groimd, statistics for path 

loss, multipath and coverage area were developed from extensive measurements in line-of-

sight (LOS) and obstructed (OBS) environments, at 1900 MHz. This work revealed that a 

2-ray groimd reflection model is good to estimate for path loss in LOS micro-cells and a 

simple log-distance path loss model holds well for OBS micro-cell environments. 

For a flat earth ground reflection model, the distance df at which the first Fresnel 

zone just becomes obstructed by the ground (first Fresnel zone clearance) is given by: 

+ 
(5.44) 

1 
16 

For LOS cases, a double regression path loss model that uses a regression 

breakpoint at the first Fresnel zone clearance was shown to fit well to measurements. The 

model assumes omnidirecţional vertical antennas and predicts average path loss as: 
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L(cl) = 

10iiilog{d)+pi 

lOnilog 
vdfy 

forl < d < df 

10nilog(df) + Pi fo rd>df 
(5.45) 

where pi is equal to L(do) (the path loss in dB at the reference distance of do = 1 m), d is in 

meters and ni, n2 are path loss exponents which are a function of transmitter height, as 

given in Table 5.2. It can easily be shown that at 1900 MHz, pi = 38 dB. 

Table 5.2. Parameters for the wideband microcell model at 1900 MHz from [Feuerstein, 94) 

Transmitter antenna height 1900 MHz LOS 1900 MHz OBS 

ni N2 o[dB] n o[dB] 

Low (3.7 m) 2.18 3.29 8.76 2.58 9.31 

Medium (8.5 m) 2.17 3.36 7.88 2.56 7.67 

High(I3.3 m) 2.07 4.16 8.77 2.69 7.94 

For the OBS case, the path loss was foimd to fit the standard log-distance path loss law 

L(d)[dB] = 10nlog(d)+pj (5.46) 

where n is the OBS path loss exponent given in Table 5.2 as a fiinction of transmitter 

height. The standard deviation (in dB) of the log - normal shadowing component about the 

distance-dependent mean was found from measurements. The log - normal shadowing 

component is also listed as a ftmction of height for both the LOS and OBS micro - cell 

environments. Table 5.2 mdicates that the log - normal shadowing component is between 7 

and 9 regardless of antenna height. It can be seen that the LOS environments provide 

slightly less path loss than the theoretical 2-ray ground reflected model that would predict 

ni = 2 and nj = 4. 

53.4. Model 4. Lee model 

When the size of the cell is small, less than 1 km, the street orientation and 

individual blocks of buildings make a difference in signal reception. Those street 

orientations and individual blocks of buildings do not make any noticeable difference in 

reception when the signal is well attenuated at a distance over 1 km. Over a large distance 

the relatively great mobile radio propagation loss of 40 dB/decade is due to the situation 

that two waves, direct and reflected, are more or less equal in strength. The local scatterers 

(buildings surrounding the mobile unit) reflect this signal causing only the multipath fading 
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not the path loss at the mobile unit. When the ceils are smail, the signal arriving at the 

mobile unit is blocked by the individual buildings; this weakens the signal strength and is 

considered as part of the path loss. Therefore, the loss is computed based on the 

dimensions of the building blocks. Since the ground incident angles of the waves, are, in 

general, small due to the low antenna heights used in small cells, the exact height of the 

buildings in the middle of the propagation paths is not important, as depicted in Figure 5.5 

[Lee, 93]. 

Building 

Distance 

Figure 5.5. The propagation mectianism of low-antenoa heiglit at the celi site 

The Lee model assumes that there is a high coirelation between the signal 

attenuation and the total depth of building blocks along the radio path. This assumption is 

not entirely tnie because the signal received at the mobile unit comes from the multipath 

reflected waves and not from the waves penetrating through the buildings. However, 

according to the assumption, if the building blocks are larger, the signal attenuation is 

higher. An aerial photograph can be used to calculate the proporţional length of a direct 

wave path being attenuated by the building blocks. The line-of-sight reception curve Pios is 

determined from the measurement data along the streets in an open line-of-sight condition. 

From the measured signal Pnios along the streets in no-line-of-sight conditions within cells, 

it is formulated the additional signal attenuation ae curve due to the portion of building 

blocks over the direct path by subtracting the received signal from Pios. The additional 

signal attenuation ae can be obtained in the following way: 

> Calculate the total blockage length by adding the individual building blocks. 

> Measure the signal strength Pios for line-of-sight conditions. 

> Measure the signal strength Pnios for no-line-of-sight conditions. 
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> If the signal level at a particular point is Pnios, the distance from the base station to 

the mobile unit is (Ia and B is the blockage length between the transmitter and the 

receiven Then the value of ae for a blockage B can be expressed as: 

aB(B)=Plos(d = dA)-Pnlos (5-47) 

A series of measurements have been done for difîerent antenna heights in LOS conditions 

along many streets and it is observed that the antenna height gain for diflferent antenna 

heights is 30 dB/decade. 

In conclusions, in a micro-cell prediction model the two curves Pios and ae are used 

to predict the received signal strength. Therefore, the micro-cell prediction model is given 

by: 

Pr = Plos-aB (5.48) 

where Pios is the line-of-sight path loss (measured) and ae is the additional loss due to the 

length of the total building blocks B along the paths. 

The original Lee model exhibits large errors in the foliowing situations: 

• When the prediction point is in the main street, but there is no direct LOS path. 

• When the prediction point is in a side street near an intersection and large building 

blocks exist between the point of prediction and the transmitter (the case when the 

side street and the transmitter location are on the same side of the main street). 

The accuracy of the model can be significantly improved by introducing specific 

corrections based on the arrangement of the streets and their types [Neskovic, 97], 

[Neskovic, 00a]. There are significant differences in the propagation of radio waves in 

dififerent types of streets (for example, a main street under LOS conditions, a main street 

under NLOS conditions, a narrow side street, a wide side street and a street parallel to the 

main). After these corrections are added to the model, the signal level in side streets and in 

the main street under NLOS conditions is given by: 

Pnlos [dB] = Pios (LOS - dis tan c e ) - ast (NLOS - dis tan ce) (5.49) 

where Pnios is the estimated signal level in the street under NLOS propagation conditions. 

Pios is the signal level on the LOS path at the intersection of the main and side street (at a 

LOS-distance firom the transmitter) and qb is the correction of the signal level in the side 

street at the NLOS-distance fi-om the intersection. 
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53.5. COST 231 models 

The propagation models developed in COST 231 are based on theoretical and 

empirical approaches. Ray optical methods with either simplified analytical solutions or 

pure ray tracing techniques have been proposed. The availability and usage of proper urban 

terrain databases in combination with ray tracing methods enables site-specific propagation 

modeling for the prediction of path loss and time spreading of the signal; the latter has a 

major impact on the performance of digital radio systems. 

Radio transmission in urban environments is subject to strong multipath 

propagation. To consider these effects in a propagation model, it is necessary to gain 

knowledge of aii dominant propagation paths. These paths depend primarily on the base 

station height with respect to the building heights around. A study on micro-cellular 

multipath propagation effects with respect to DECT system performance is given in 

[Kauschke, 94]. For simplification of propagation modeling several two-dimensional 

models have been developed under the assumption of infinitely high buildings. Hence 

these models only take into account wave propagation around buildings. As a result, 

computation-time efficient, analytical path loss models have been derived considering 

simple building geometries. In case of low building heights, over-rooftop propagation has 

to be regarded, too. 

The second group of small-cell models allows a very site specific three-

dimensional path loss and signal spread prediction for base station heights below as well as 

above rooftop level of the buildings. Hence, not only the shape but also the height of a 

building has to be incorporated. Of course, due to the three-dimensional ray tracing these 

models require a higher computation time than the simplified approaches mentioned above. 

The micro-cell models are generally valid only for fiat urban area. Investigations on 

the infiuence of terrain on micro-cell propagation are presented in [Bertoni, 94] and [Wiart, 

95]. Further on the effects of urban-type vegetation (like line-up trees, parks, etc) on radio 

propagation [Causebrook, 90] are not included in these micro-cell models. But aspects are 

of great interest fi-om an engineering point of view and should be regarded in further 

developments of these models. 
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53.6. Model based on UTD and Multiple Image Theory 

The model is quasi three-dimensional UTD propagation model [Tan, 96], which 

ftinctions well for micro-cellular applications. A multiple image concept and generalized 

Femiat's principie are used to describe the multiple reflections and dif&actions. It is 

assumed that the building walls are much higher than the transmitter height so that the 

dif&action from the rooftops can be neglected. The model considers various Ime-of-sight 

propagation paths and, also, non-line-of-sight paths. The propagation paths taking a large 

number of comers and building walls are not necessarily coplanar. This model includes 

multiple reflections between wall-to-wall, wall-to-ground, ground-to-wall, the dif&action 

from the comers of buildings, and also subsequent reflections from such diffracted signals. 

The relative contributions of the diffraction and reflection components to the total received 

signal along a side street depend on the parameters such as the widths of the main street, 

side streets, parallel streets, the distance from the transmitter to the junction, the reflecţivity 

of the surfaces, etc. 

The location and the sequence of all images have to be determined for making use 

of multiple images concept. A ''test ray" or ray-launching technique is used to the plan 

view of the street grid. The intersection of a ray with an object is the fundamental 

operation in the ray-launching technique. This image concept makes the determination of 

the exact point of reflection at a wall or at the ground surface. In the case of diffraction, the 

location of the point of diffraction at the edges has to be determined. The local ray-fixed 

coordinate system or edge-fixed coordinate system and appropriate reflection or diffraction 

coefficients are used for each reflection or diffr^tion. The accuracy of this model is 

limited mainly by the assumption of characterizing the tall building walls as "smoothed-

out" flat surfaces with average relative permittivity 8r and conductivity a. 

The UTD model considers a single ray at a time. Naturally, many rays will 

contribute to the received signal at a particular location of the receiver. The UTD approach 

takes the vector sum of all the reflected and diffiacted rays. In general, a total of j multiple 

wall reflections from the main street, side streets, parallel streets and, at most, one ground 

reflection, with or without diflfractions from the building comers at the junctions can arrive 

at the receiver. This is equivalent to including the multiple transmitter images. Since each 

reflection or diflfraction causes a loss in signal strength, the value of j will depend on the 

values of a and 8r of the walls and ground surfaces as well as the geometry of the 

enviromnent. 
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53.1. Discussions 

The concept of micro-cells has been suggested as the best solution in heavily built-

up areas. A micro-cell may have dimensions of only a few hundred meters up to 1 

kilometer with (see Table 5.1) with base transceivers mounted at the street - lamp level. 

Each fîxed base transceiver is associated with a micro-cell and in order to provide 

adequate coverage there is a parţial overlap. The extent of coverage from a given base can 

be adjusted by the use of different antenna pattems and heights and by controlling the 

transmitted power [Parsons, 92]. 

The fact that propagation is required only over short ranges suggests that much 

higher frequencies can be used in micro-cellular systems. Microwave frequencies offer a 

much-enhanced bandwidth potential and the wavelengths are such that space diversity can 

be accommodated even within the dimensions of hand - portable equipment. A suggestion 

that has been much discussed is the use of frequencies where the radiation is partially 

absorbed by oxygen molecules in the atmosphere. Such resonant absorption lines are found 

in the frequency range from about 50 to 70 GHz and the portion of the radio spectrum from 

51.4 to 66 GHz has been designated absorption band Al. Some parts of this band have 

aheady been provisionally allocated for mobile communications. The attenuation due to 

oxygen in the atmosphere at ground level has been measured [King, 77] as 16 dB/km and 

this is in addition to the normal spaţial attenuation and losses due to rain. The 60 GHz band 

has been advocated for use in micro - cellular systems because of the oxygen absorption 

efifects, the potentially large available bandwidths and the prospect of affordable 

transceivers for the public. Micro - cellular systems, however, are not restricted to any 

particular frequency band and investigations of short range propagation characteristics 

have also been carried out at other frequencies [Parsons, 92]. 

In addition to 60 GHz, there have also been measurements made at lower 

frequencies, particularly around 11 GHz [Reudink, 72], [Rustako, 89] in both urban and 

rural areas. Reudink's results at 11.2 GHz in New Jersey and New York City were not 

obtained with micro-cellular systems in mind and the base station antenna heights were 

typical of large-cell systems. 

Several research workers, e.g. Young, Okumura have made measurements in urban 

areas at frequencies up to 3.7 GHz. These were not short range measurements with 

relatively low base station antennas, designed with micro-cellular systems in mind. 
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Measurements of the latter kind show somewhat different results, principally because a 

line-of-sight path often exists over much of the coverage area [Parsons, 92]. 

Whitteher [Whitteker, 88] has conducted measurements at 910 MHz in Ottawa, 

Canada, using street lamp level transmitter at height 8.5 m above the ground while the 

receiving antenna was 3.65 m. The path loss was found to be close to free space value 

along the street on which the transmitter was located (LOS) and 20 dB or more greater than 

free space value on other streets (NLOS) except where there was an open area between 

transmitter and receiver. The received power was found to depend in a detail way on the 

distribution of buildings and the open areas between them. 

A comparative study at 900 MHz and 1.8 GHz has been undertaken in Melboume, 

Australia [Harley, 89]. Antenna heights between 5 and 20 m were used for the fixed site, 

these being well below the height of the surrounding buildings. The signal strength was 

measured at distances up to 1 km, the measuring vehicle having an antenna mounted 1.5 m 

above street level. A line-of-sight path always existed. It was found that the attenuation 

could be modeled by two straight lines, one representing the region between the base 

station and a point about 150 m away, the other representing greater distances. Close to the 

base station the slope is inverse square, which is suggestive of a ducting mode: beyond the 

so-called 'tuming - point" the slope is greater. Other authors have also reported a tuming 

point in the path loss curve, for example, results presented by Kaji and Akeyama [Kaji, 85] 

show a change at about 350 m and a similar trend was observed at 900 MHz in New 

Zealand [Williamson, 84]. There is a high correlation between the measurements made at 

900 MHz and 1.8 GHz, although there is often a larger spread in the results at the higher 

frequency. It has been observed that the 1.8 GHz signal is more sensitive to shadowing 

when other vehicles move in front of the measurement vehicle and this could be the main 

reason for the increased variability. 
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5-4. INDOOR PROPAGATION MODELS 

5.4.L Indoor radio propagation environment 

Indoor radio propagation is a very complex and difficult radio propagation 

environment and differs from the outdoor mobile radio channels in two aspects: the distances 

between transmitter and receiver is shorter (due to high attenuation caused by intemal walls 

and flimitiire and often also because of the lower transmitter power) and the variability of the 

environments is much greater for a much smaller range of transmitter-receiver separation 

distances. 

Indoor radio propagation is dominated by the same mechanisms as outdoor: reflection, 

diffiraction and scattering. However, conditions are much more variable. For example, signal 

levels vary greatly depending on whether interior doors are open or closed inside a building. 

Where antennas are mounted also impacts large-scale propagation. Antennas, mounted at desk 

level in a partitioned office, vastly different signals than those mounted on the ceiling. Also, 

the smaller propagation distances make it more difficult to insure far-field radiation for all 

receiver locations and types of antennas, 

Signals propagate along the corridors and other open areas, depending on the structure 

of the building. The results of measurements indicate that the signal variation inside buildings 

is approximately Rayleigh distributed for non-line-of-sight (NLOS) cases, whereas a Rice 

distribution fîts in the case of line-of-sight (LOS). Therefore, in modeling indoor propagation 

the following environmental parameters must be considered: 

1. Construction materials: reinforced concrete, brick, metal, glass, wood and plastic. 

2. Types of interiors: rooms with windows, rooms without windows, hallways with 

doors, hallways without doors, large hallways or open area, corridors with comers and 

curved corridors. 

3. Locations within a building: ground floor, n^ floor and basement or garage. 

4. Location of transmitting (T) or receiving (R) antennas: transmitting and receiving 

antennas on the same floor; transmitting and receiving antennas within the building, 

but on different floors and transmitting antenna outside the building, receiving antenna 

inside the building. 
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5.4.2, Empirical narrowband models 

5.4.2.1 Model 1 

A common model for estimating the mean path loss (in the case where the transmitter 

and the receiver are on the same floor, inside a hali or a large area) is given by: 
_ f 
L(d)[dB] = L(do)[dB]+10nlog — (5.50) 

U o j 

where: 

L(d) = the mean path loss, in dB, 

d = distance from the transmitter, in meters, 

do = the reference distance, in meters 

L(do) = the path loss at reference distance do, 

n = specifies the path loss behavior for a particularly type of building. 

In micro-cellular and indoor environments, a reference distance of do = 1 m is 

typically used. 

This model is easy to use because only the distance between transmitter and receiver 

appears as an input parameter. However, the dependency of these parameters on environment 

category has to be taken into account. 

Local large-scale path loss is often log-normally distributed about the mean power 

level described by equation (5.50). That is 

L(d)[dB] = L(d)[dB]+X a [dS] (5.51) 

where: 

L(d) = path loss, in dB, at distance d, 

Xa = a normal random variable in dB having a standard deviation of a dB (the uncertainty of 

the model). 

The standard deviation a of the zero-mean log-normal random variable Xo provides a 

quantitative measure of the variability of the model used to predict the path loss. 

This model is simple, efBcient and suitable for computer implementation. During 

implementation, the environmental database is unnecessary. Therefore, there is no 

requirement for investing time and resources in surveying building layouts. Due to the model 

simplicity, great accuracy could not be expected. The main parameter n is very sensitive to the 
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propagation environment, i.e. the type of construction material, type of interior, location 

within building, etc. 

Several researchers have attempted to modify equation (5.50) in order to obtain a 

better fit (smaller o) to their measured data for different indoor environments. The values of n 

range fi-om 1.2 to 6. In addition, the value of n depends on the way the statistical analysis of 

the measurement data is performed. In fi-ee space, n = 2. For n < 2 we have a wave guide 

effect [Cox, 84]. Preliminary measurements conducted by [Bergljung, 89] gives the value of n 

= 2.9. 

5.422. Model 2 

This model describes the non-line-of-sight (NLOS) situation. If a wall(s) exists 

between the transmitter and the receiver (they are on the same floor) and the only signal path 

is through the wall(s), with no channeling effect aroimd comers between transmitter and 

receiver, then path loss is given by: 

L = Lo + 1 0 n l o g ( d i ) + l L w (5.52) 

where: 

L = the path loss in dB, 

Lo = the path loss at 1 meter distance fi-om the transmitter, 

n = the exponent depending on the environment outside the wall, 

dl = distance between transmitter and externai surface of the wall, in meters, 

Lvv = the penetration loss due to the wall(s). 

The parameter Lw depends on the type of the wall construction between the transmitter 

and the receiver and the angle of incidence of the transmitted wave. 

In the case where more than one wall exists between the transmitter and the receiver, a 

detailed analysis is required to calculate the total loss (IL^). In this case, the actual geometry 

of the walls with respect to the incident wave must be considered as well as the construction 

materials of each wall. 

5.4.2 J . Model 3. Floor Attenuation Factor model 

An indoor propagation model that includes the effect of building type as well as the 

variations caused by obstacles was described in [Seidel, 92]. This model provides flexibility 
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and was shown to reduce the standard deviation between measured and predicted path loss to 

around 4 dB, as compared to 13 dB when only a log-distance model was used in two different 

buildings, The attenuation factor model is given by: 
/ N. 

d 
L [dB] = L(do)[dB] +10 nsF log 

do 
+ FAF dB (5.53) 

where: 

L = the path loss, in dB, 

L(do) = the path loss at the reference distance, do, 

d = distance from transmitter, in meters, 

do = the reference distance, in meters, 

nsF = the exponent value for the "same floor" measurement, 

FAF = floor attenuation factor, in dB 

Thus, if a good estimate for n exists on the same floor, then the path loss on a different 

floor can be predicted by adding an appropriate value of FAF [Rappaport, 96]. Typical values 

for FAF that are a fimction of a of the number of intervening floors, are about 15 dB for one 

floor of separation and an additional 6-10 dB for every additional floor up to flve floors. 

There is no significant increase in FAF for more than flve floor of separation. The values of 

FAF have been observed to be smaller at 900 MHz than at 1.7 GHz by about 6 dB. 

5.4.2.4. Model 4. The COST 231 - Motley model 

The COST 231 - Motley model takes mto account obstacles (walls and floors) 

between antennas. This model is one of the most complete empirical models and has been 

developed for a vertical polarization. The wall and floor attenuation have been taken into 

account in this model [Lăhteenmăki, 90]. 

The validity of the model: 

- Frequency range: 1700 ... 1900 MHz 

- Distance range: 2 ... 100 m 

- Location base: 1.5 m 

- Location mobile: 1.5 m - ceiling 

L = Lo + 10nlog(d)+ iKf iLf i+ i K w j L w j (5.54) 
i=l j=l 

where: 
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Lo = the path loss at the reference point (1 meter distance), in dB, 

L = the path loss, in dB, 

n = power decay index, 

d = distance between transmitter and receiver, in meters, 

I = number of floor categories, 

J = number of wall categories, 

Lfi = the path loss factor for floor category i, 

L^ = loss factor wall category j, 

Kfi = number of transversed floors of category i, 

Kwj = number of transversed walls of category j. 

5.4.2.5. Model 5. Lafortune model 

This empirical model is based on estimations of transmission, reflection and 

dif&action phenomena occurring in the transmission path [Lafortune, 90]. The model has 

been developed m the 900 MHz band but the principles used by the author to elaborate it 

could be applicable in the 1800 MHz band. Note that the model is not reciprocal with respect 

to transmitter and receiver positioning. 

Distance range: 1 ... 50 m 

Location base: 1.7 m - ceiling 

L = LO + LOB + GRM (5.55) 

In case of obstacles 

LoB = -3.7 + 1.5n + 10.71og(d) + 

and 

GRM = 

O ford <4m 

7.8-15.31og(d') ford '>4m 
(5.56) 

O in the general case 
mmamcorridor 

Different correction factors can be added to LQB and/or GRM to take into account 

specific configurations (see [Lafortune, 90]). 

Parameters: 

L = the basic path loss, in dB, 

Lo = the free space loss, in dB, 

Lob = the loss due to obstacles, in dB, 
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GRM = the gain due to reflections, in dB, 

d = distance from transmitter to receiver, in meters, 

f = frequency, in GHz, 

n = number of walls between antennas, 

d = distance from transmitter to the fîrst wall, in meters. 

This model is complex enough to be implemented and needs a detailed database to be 

used efficiently. 

5.4.2.6. Model 6. The Multi-waU model 

The Multi-waU model (MWM) gives the path loss as the free space loss added with 

losses introduced by the walls arid floors penetrated by the direct path between the transmitter 

and the receiver. It has been observed that the total floor loss is a non-linear function of the 

number of penetrated floors. This characteristic is taken into account by introducing an 

empirical factor b [Tomevik, 93]. The multi-wall model can then be expressed in the form: 

I r ^ ^ i 
L = LFS + Lc+ZkwiLwi + kf̂ ^^ '̂ ^Lf (5.58) 

i=l 
where: 

Lfs = the free space loss between the transmitter and the receiver, 

Lc = constant loss, 

kwi = number of penetrated walls of type i, 

kf= number of penetrated floors, 

Lwi = loss of wall type i, 

Lf =loss between adjacent floors, 

b = empirical parameter, 

I = number of wall types. 

The constant loss Lc is a term that results when wall losses are determined from 

measurement results by using the multiple linear regression. Normally it is closed to zero. The 

third term in equation (5.58) expresses the total wall loss as a sum of the walls between 

transmitter and receiver. For practicai reasons the number of different wall types must be kept 

low. Otherwise, the difference between the wall types is small and their signiflcance in the 

model becomes unclear. A division into two wall types according to Table 5.3 is proposed in 

[COST231,99]. 
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Table 53. Wall types for the Multi-wall model 

Wall Type Description 
Light wall (Uvi) A wall that is not bearing load: e. g. plasterboard, partide board or thin (<10 

cm), light concrete wall 
Heavy wall (L^i) A load-bearing wall or other thick (>10 cm) wall, made of e. g. concrete or 

brick 

It is important to notice that the loss factors in equation (5.56) are not physical wall 

losses but modei coefficients that are optimized aiong with the measured path loss data. 

Consequently, the loss factors implicitly include the effect of ftimiture as well as the effect of 

signal paths guided through corridors. 

5.43. Deterministic models 

Deterministic models are used to simulate physically the propagation of radio waves. 

Therefore the effect of the environment on the propagation parameters can be taken into 

account more accurately than in empirical models. Another advantage is that deterministic 

models make it possible to predict several propagation parameters. For example, the path loss, 

impulse response and angle of arrival can be predicted at the same time. 

Several deterministic techniques for propagation modeling can be identified. For 

indoor applications, especially, the Finite Difference Time Domain (FDTD) technique and the 

geometrical optics (GO) technique have been studied. In COST 231 the main effort is on the 

geometrical optics that is more computer efficient tiiat the FDTD. There are two basic 

approaches in the geometrical optics techniques: the ray-launching approach and the image 

approach. Computaţional complexity of ray-tracing methods is considered in [Huschka, 94]. 

5.43.1. Ray-iaunching model (RLM) 

The ray-launching approach involves a number of rays launched at the transmit 

antenna in specified directions. For each ray its intersection with a wall is determined and the 

incident ray is divided into a wall penetrating ray and a reflected ray; each of them is traced to 

its next intersection and so on. A ray is determined when its amplitude falls below a specified 

threshold or a chosen maximum number of ray-wall interactions are succeeded. In, e.g. 

[Honcharenko, 92] a uniform angular separation of launching rays is maintained, where the 

spherical surface is subdivided by a geodesic polyhedron with resulting hexagonally shaped. 
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wave front portions that are fiirther approximated by circular areas. Whether a ray reaches a 

receiver point or not can be accoraplished by a reception sphere [Schaubach, 92]. 

In figure 5.6.a, a two-dimensional view of the reception sphere is shown, where the 

unfolded total path length d and the angular separation y of adjacent rays launched at the 

transmitter determines its radius R,^: 

Rrs = yd/V3 (5.59) 

zs 

h AG 

i 

Figure 5.6. (a) - 2-D view of the reception sphere and (b) - Ray launcing 

However, this is an approximate solution for the 3-D propagation case. To achieve a 

complete solid angle discretization under maintenance of unambiguous and practicai 

reception determination, the entire solid angle in is subdivided into rectangularly shaped, 

incremental portions of the spherical wave front [Kreuzgruber, 93], [Cichon, 95]. In [Cichon, 

94a], [Cichon, 95] the propagation directions 0i and \|/i of the central rays of the ray tubes and 

the corresponding A0i and A\j/i as depicted in Figure 5.6.b) are determined by (5.60) and 

(5.61). 

smGi 

Gi = ^ + (i - l)Ae i = 1 ,...,Ne AG = const. 

(5.60) 

(5.61) 

Ray launching approaches are flexible, because different diffiacted and scattered rays 

can also be handled along with the specular reflections. To maintain a sufficient resolution the 

so-called "ray splitting technique" can be used as given in [Kreuzgruber, 93] and [Cichon, 

94b]. 
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5.43.2. Ray Tracing method 

The ray-tracing algorithm determines all relevant rays for each receiver point 

independent of the other points. The computation time increases in comparison to the ray 

launching but on the other hand a constant resolution and accuracy can be obtained. The 

computation of the fieid strength is done with the GTD/UTD for diffracted rays and with the 

Fresnel equations for transmission and reflection. 

T' 

Figure 5.7. Ray tracing. 

The differences between empirical and ray-optical predictions are obvious. Especially 

the wave guiding in corridors due to multiple reflections, the coupling of the waves into the 

rooms and the diffraction around comers are responsible for the high accuracy of the ray-

optical models. Among the main disadvantages of the deterministic prediction models is their 

very long computation time. Different papers presented some ideas to accelerate the 

prediction and some ideas lead to acceleration factor beyond 1000, but for these algorithms a 

preprocessing of the database is necessary and the preprocessing is also very time consuming. 

A further disadvantage with this type of propagation models is the marked dependence on the 

accuracy of the database. Small errors in the positions and materials of the walls mfluence the 

predicted results. These effects are very important and they limit the use of ray-optical models 

for the computation of the indoor wave propagation. 
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6. Neural Networks applications for propagation prediction 

6-1. Outdoor environment 

The early work reported in [Stocker, 92] and [Gschwendtner, 93] showed that artificial 

neural networks are able to give good estimates of propagation path loss in rural environment 

using height profiles as inputs for the network. The proposed neural network is the multilayer 

perceptron and it is trained with measurement data from different environment databases. In 

[Stocker, 92] the neural network has the following configuration: 11 mput units, 8 hidden 

units and 1 output unit (11-8-1). The topography is sampled at 10 pomts that pro vide the 

inputs for 10 units. The sampling width is varied and fed to the 11^ input. The neural network 

output is represented by the normalized field strength for an arbitrary point along the path 

profile at the height of the mobile receiver. It was found a deviation below 6% for the test set. 

In [Gschwendtner, 93] the neural model is based on narrowband measurements at 943 

MHz taken in the city of Mannheim that is characterized by a regular building structure and 

almost no variation in terrain height. Therefore, only land usage has been considered and five 

classes of morphography were distinguished: extremely dense city, dense city, rather dense 

city, wood and streets. First, a neural network with 21 inputs was used: 20 for the sampled 

values of land usage along the path profile and 1 for the distance. The prediction leads to a 

systematical error of - 4.9 dB and standard deviation of 6 dB. It was shown that adding the 

base station antenna height as an input to the neural network the results are improved: mean 

error of 1.4 dB and the standard deviation of 5.2 dB. Another example presented in 

[Gschwendtner, 93] is a neural network trained to reproduce field strength over single 

idealized wedge mountains. The neural network input consists of 20 sampled values for the 

height along the path profile and one parameter for distance. For training purposes, four 

different mountains were used, representing different heights and distances. Testing with an 

unknown mountain with arbitrary heights and distances, the standard deviation was found 1.8 

dB. In a flirther step, a real world scenario that is, a height profile in an open rural area 

replaced the idealized structure. It is not obvious that a neural network trained with single 

idealized mountain leads to at least reasonable results in arbitrary terrain with multiple 

mountains. 

In [Stocker, 93] theoretical investigations into the suitability of neural network 

simulators for the prediction of field strength based on topographical and morphographical 
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data are presented. The neural network has 21 inputs and 10 hidden units and is used to 

approximate field strength for an arbitrary point along the path profile at the height of the 

mobile receiver. The topographic Information along the propagation path is sampled at 20 

points, which provide the mputs for 20 units to the neural network. Distance between 

transmitting and receiving antennas is varied and used as the 21^ input. 

As a first example, the neural network model is trained directly by measurements 

made in the German town of Mannheim, at 943 MHz, which provides a typical urban 

environment with varying buildings heights. Antenna heights are rather low just above 

rooftops. The situation is characterized by virtually no variation in terrain height. There are 

distinguished extremely dense city, dense city and rather dense city. The input of the neural 

network consists of 20 sample point values of morphographical data plus one for the distance 

parameter. The hidden layer has 15 neurons. The improvement obtained by the neural model 

is about 1.25 dB in standard deviation, comparing with Hata formula. 

The second example presented is a different urban scenario in the city of Darmstadt 

[Germany]. For training purposes only morphographical data are considered; topographical 

variations are neglected. The neural network has 21 inputs and 10 hidden units. In this case, 

improvement obtained by the neural network is about 1.5 dB in standard deviation, comparing 

with Hata formula. 

In [Balandier, 95] a semi-empirical model of field strength prediction combining 

neural networks and theoretical results of propagation loss algorithms is considered. Field 

strength measurements used to design the neural network based model have been performed 

at the 170 MHz in the city of Paris (France). The covered urban area is very dense and it is 

characterized by irregular street grids, inhomogeneous built-up structures and street widths. 

AII possible environments are encountered: narrow and large streets, squares, etc. 

The architectures of the multilayer perceptron used are determined by the nature of the 

problem to be solved. The number of input neurons is set by the dimension of the input vector 

used. The output layer always consists m one single neuron, which provides the field strength 

value. The number of hidden units has been set to two layers of neurons. 

There are presented two neural network based models in order to examine the 

potential benefits of the combination of physical and theoretical data. The fist network is 

trained with physical data only including distance between transmitter and receiver, the angle 

of incidence and the description of the main obstacle on the path profile (represented by its 

relative position with regard to the transmitter: distance and altitude). The second network 

uses the same data except the information about the main obstacle that is replaced by results 
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of wave propagation algorithms, which consist of multiple diffraction calculus over knife-

edges by the Deygout method [Deygout, 66]. The two neural network models have been 

processed and compared on three files representing the three distinct base stations. It appears 

that the neural network based hybrid system gives more accurate prediction than the other 

one; the improvement obtained in standard deviation is in the range [0.3, 1.3] dB. Further 

more, the neural based hybrid system is compared to classical prediction models: a semi-

empirical built on the base of Deygout method and linear regression analysis, processed from 

the same propagation loss parameters, field strength measurements and terrain databases, The 

models are tested upon five urban files. The 13% gain on the standard deviation (0.8 dB) 

obtained by the neural network model is quite important in spiţe of the good values of 

standard deviation for the semi-empirical model. 

In [Balandier, 95] are also presented two experiments on the base station antenna 

heights; the three base station antenna studied were set-up above rooftops. First of all, the 

neural network was built up considering one single base station then the network has been 

tested with pattems corresponding to the other base stations. The second experiment includes 

antenna height parameters as input to the neural network and the model is computed with 

several base stations. In this case, the average standard deviation obtained by the neural based 

hybrid system is 4.6 dB. 

In [Gschwendtner, 96a,b] a hybrid modeling approach for the prediction of terrestrial 

wave propagation is presented, based on the Multilayer Perceptron trained with the 

backpropagation algorithm. The base station antenna height is used as a correction parameter. 

Therefore, the neural network consists of one input for the normalized antenna height, 1 

hidden layer with three neurons and one output unit. The model is based on the field strength 

level measurements carried out in the city of Mannheim (Germany). The output unit is 

represented by the difîerence between predicted field strength values computed by COST231 

Walfisch-Dcegami model [COST231, 99] and measured field strength values. It was obtained 

1 dB gain with the neural model on the standard deviation. 

In [Fraile, 97] it is presented a neural network based method for path loss prediction in 

urban environment. Its performance is compared to that of COST 231 models [COST231, 99], 

Walfisch-Bertoni [Walfisch, 88] model and Saunders-Bonar [Saunders, 91] model m terms of 

prediction error and computation time. The multilayer perceptron used has 41 mput units, 4 

hidden units and 1 output. The 41 inputs contain information about the building height profile 

and the distance between transmitter and receiver, while the output represents the estimate of 

the difiference between the propagation loss and the free space loss. The neural network has 
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been trained and tested with measurements from a campaign carried out in Munich 

(Germany). The transmitter height was 13 m about groimd and the measurements were taken 

along three different routes. One of these routes has been used as the training set for the 

neural network, while the others have been used for testing purposes. The values obtained for 

the standard deviation for the test routes are 6.3 dB and 6.6 dB, respectively. It is outlined that 

the neural model is at least four times faster than any of the other methods used for 

comparison. 

In [Chang, 97] is presented a propagation model based on a radial basis function 

neural network that is capable of predicting the field strength based on topographical and 

morphographical. The radial basis function based propagation loss prediction model is trained 

by Okumura's field measurements taken in Tokyo area and the method is compared with 

Hata's formula. The neural network has 4 inputs, corresponding to fi-equency, base station 

antenna height, mobile station antenna height and distance between transmitter and receiver. 

The number of hidden nodes was chosen 30. The neural approach provides a uniform 

approximation to the propagation loss over a wide range of path profile. The mean-square 

error achieved by the radial basis prediction model for the test pattems is 2.35 dB and for the 

Hata's formula is 7.5 dB. 

In [Fraile, 98] it is presented a neural network based method for path loss prediction in 

urban macrocellular environments. It is shown that this method is valid for all ranges of 

antenna height and for propagation distances up to 2 km. In [Fraile, 97] was showed a method 

for propagation loss prediction using a multilayer perceptron and the results were restricted to 

one measurement campaign carried out in Munich, at which the antenna was below the mean 

building height. In [Fraile, 98], the validity of the model is extended by using measurements 

taken fi"om antenna sites placed over rooftop height, hence achieving a method for path loss 

prediction for all ranges of antenna height. It is also obtained a slight improvement in 

computation speed. 

In [Leros, 98] typical backpropagation neural network with different inputs parameters 

are developed and used to evaluate and assess the relative importance of a set of radio 

propagation parameters for field strength prediction. This study develops a number of neural 

network models trained on an extended data set of propagation loss measurements taken in an 

urban area (Athens region) in the 900 MHz band. Each propagation loss measurement is 

associated with a set of parameters with environmental and topographic features. The neural 

model with the best performance is used to indicate the most important set of parameters for 

field strength prediction. 
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Each measurement record consists of the following set of parameters: 

> Measured local mean value of propagation loss [dB]; 

> Horizontal coordinate [m] of the measurement point in the area digital map; 

> Vertical coordinate [m] of the measurement point in the area digital map; 

> Horizontal trace of distance [m] of the measurement point from the transmitting 

antenna; 

> Altitude relative to the sea level [m] of the measurement point; 

> Ground surface slope relative to the horizontal level (0° - 90^; 

> Ground surface aspect (or azimuth) relative to the North (0^ - 360^; 

> Effective height [m], a derived parameter representing the local topographic features 

close to the receiver. 

It is outlined that the most important parameters from the iniţial set of parameters for 

modeling the propagation path loss for an area with no diffraction loss (LOS conditions) and 

terrain morphology forming a positive effective height are the ground surface slope relative to 

the horizontal level, altitude relative to the sea level of the measurement point and horizontal 

trace of distance of the measurement point from the transmitting anteima. 

In [Neskovic, 98] is proposed a model based on the feedforward netsvorks - multi-

layer perceptron. The implementation of the model relies on two databases: terrain elevation 

and groundcover ("clutter") database. Extensive field strength measurements were carried out 

in the wide area of Belgrade, Yugoslavia, a typical European town, in 450 MHz and 900 MHz 

frequency bands. 

The presented neural network model has three groups of inputs (totally 14 inputs). The 

first group consists of an input only and it is the normalized distance between transmitter and 

receiver. The second group of inputs (4 inputs) is based on the terrain profile analysis. These 

inputs are: the portion through the terrain, the modified "clearance angle" factor for 

transmitter site, the modified "clearance angle" factor for receiver site and the rolling factor. 

The third group of mput parameters (9 mputs) is based on the land category analysis along the 

straight line drawn between the transmitter and the receiver. There is a single input for each 

defined land usage category. The network has one output represented by the normalized 

electric field level. The architecture of the neural network is 14-17-7-3-1. After the testing 

phase, the RMS errors between measurements and the predicted values by the artificial neural 

network model are 5.9 dB (450 MHz) and 6.1 dB (900 MHz). 

In [Bargallo, 98] it is presented a comparison of the performance of propagation 

models based on multilayer perceptron neural networks, radial basis fimction neural networks 
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and conventional multiple linear regression techniques. A number of methods for selection of 

training examples are also compared. It is shown that, in most cases, neural networks can 

provide an improvement in performance over conventional empirical models. The multilayer 

perceptron neural network is trained with Levenberg-Marquardt algorithm and the radial basis 

flinction neural network is trained with the orthogonal least squares algorithm. The following 

input parameters to the neural models were used: 

1. Distance d between transmitter and receiver distance [m], 

2. Diffraction Loss, Di [dB]: a combination of the Bullington and Epstein-Peterson 

methods is used to merge multiple knife edges found along the T - R terrain profile. 

The loss is then calculated using standard Fresnel diffraction theory. 

3. Eflfective antenna height, [m]: is calculated using the Slope Algorithm. For the 

measured data set used in this study, the slope algorithm was found to provide the 

highest correlation between path loss and effective antenna height. 

4. Land usage type at receiver locations: the terrain and land usage databases from which 

this information was extracted. 

Inputs 1-3 are each fed into a different neural network input node after normalization to the 

continuous range [-1, 1]. Receiver location clutter codes, ranging from 1 to 10 are assigned 10 

inputs in the neural network. The neural prediction models have a single output that represents 

predicted loss. 

The results were generated based on a set of five test sites in the westem 

Missouri/Kansas City area (denoted sites A to E). The area is characterized by rolling hills, in 

some cases v^th pronounced slopes. Sites A and C-E are located in suburban areas v^th 2-3 

floors houses being most typical. Site B is located in a light urban section of town with a few 

medium size buildings evenly distributed across the area, 

When the models are designed based on data measured at site A, the multilayer 

perceptron and the radial basis flmction prediction models achieve similar performances. 

However, the multilayer perceptron model required 8 hidden layer neurons, while the radial 

basis flmction model required 35 radial basis neurons. When the models are designed based 

on data measured at site B, the multilayer perceptron and radial basis fimction models have 

similar performance vsdth improvement over the multiple linear regression model of about 1 

dB in test root mean squared error. In the next example, the models are trained v^th the 

aggregated data sets from cites C, D and E and are tested with the flill data set from site A. In 

this case, the use of neural prediction models allow for a reduction in test root mean square 

error as large as 1.7 dB with respect to the multiple linear regression model. 
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In [Yang, 99] are presented algorithms for extracting the values of relevant parameters 

from field measurements and 3-dimensional geographical data to be used in neural network 

modeling of wave propagation loss in micro-cells. The algorithms extracts the feature values 

from 3-dimensional elevation map and vector maps based on the theory of Computaţional 

Geometry. The input values of neural networks are quantities representing wave propagation 

environment between a transmitting antenna and a receiving antenna and equivalent to the 

variables of propagation models. The process of feature extraction produces the neural 

netw^ork input vectors. The output values become the predicted loss. 

The neural network is composed of 10 input layer neurons, 2 hidden layers, 10 

neurons in the first hidden layer and 5 in the second and 1 single output neuron (10-10-5-1). 

Training sample data set consists of samples generated from the field measurements of five 

1,8 GHz PCS cell sites operating in Seoul. 

The trained neural network model was used to produce the predicted values for 2 cell 

sites not included in the training and the mean squared errors were 88.2 dB and 70 dB. The 

COST 231 model, used for comparison, produced the prediction with the mean square error of 

450 dB and 819.7 dB, respectively. 

6.2. Indoor environment 

In [Zhou, 95] a three layers feedforward is applied to model the indoor environment. 

The clusters analysis is employed to describe the complicated indoor propagation 

environments. The clusters are used as input pattems; the corresponding radio propagation 

distributions of indoor environments are used as output pattems of the network. 

The model presented in [Wolfle, 97a] is based on Huygen's principie for the 

propagation of electromagnetic waves. The prediction model is described as follows: in a first 

step a grid of prediction points is generated from the database. The distance between the 

prediction points should be equidistant. Distances used for their prediction are in the range of 

0.4 m to 0.6 m. Larger distances lead to less accuracy, smaller distances to a longer 

computation time. The field strength for each point is predicted by the field strength of its 

neighboring points using a NN. 

In the second step, based on the known field strength at a central point, the field 

strength at the four neighboring points is predicted with a NN. After this iniţial prediction, 

the former neighbor pixel v^ll become the new center pixel. AII new neighboring points 
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except the old center pixel are predicted in this phase of the prediction. A feedforward 

perceptron was trained with the Resilient Backpropagation algorithm. 8 input parameters are 

used for the neural prediction model: 

1. Field strength at the center point, 

2. Distance between transmitter and receiver, 

3. Visibility. LOS (Line-of-sight), OLOS (obstructed line of sight - same room but no 

line-of-sight) and NLOS (non line of sight - different rooms), 

4. Orientation. Neighbor point nearer to the transmitter as central point or vice versa, 

5. Shape of the room. Corridor, small room, hali, 

6. Transmission: transmission loss of a wall between neighbor and center point, 

7. Immunity. Improbability of time-variant effects, 

8. Wave guiding. Number and distance of walls, parallel to the line between center and 

neighboring point. 

The network contains 1 simple output representing the field strength in one of the neighboring 

points. Each pixel is predicted from its four neighboring pixels. From four different values of 

the field strength thus obtained, the maximum value is chosen. The four predictions from the 

neighboring points are not computed at the same time and if one or two predictions for a point 

have been made, this point can be a center point for new predictions. If the third prediction for 

this point is higher than the first or second prediction, the field strength for this point will be 

set to this higher field strength and all predictions, based on the old field strength for that 

point must be computed again. To reduce the number of iterations, the difference of the 

predicted field strength for the same pixel must be more than 1 dB to start a new iteration. 

The prediction model is visualized by a tree structure. The root of the tree is the 

transmitter and for each of the four prediction directions a branch links with a further pixel. 

Prediction back to the center point is not possible, so only trees branches must be considered 

for all pixels except the transmitter. 

The model presented in [Wolfle, 97a] is fast m computing the fîeld strength and it is 

possible to include the wave guiding of corridors and also the propagation around comers. 

The dependence on the accuracy of the database is very small, because no coordinates of any 

reflection or dififraction point are necessary. Only the orientation and the materials of the 

walls are included in the prediction. This prediction model can also be calibrated by 

measurements because the neural network is trained with measurements done in different 

environments. 
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In [Wolfle, 97b], a neural network based model for the prediction of electric field 

strength inside buildings is presented and two algorithms for the selection of training pattems 

are presented and compared to each other. 

The described prediction model is an extension of the empirical models, because it is 

based on the direct ray between transmitter and receiver. It is possible to predict the fieid 

strength for a single point or an area. In contrast to the model described in [Wolfle, 97a], each 

point in the area is predicted as a single point and the prediction is independent from the 

neighboring points. This leads to a very small computation time and very fast algorithms. 

The output of the NN represents the field strength at the prediction point and the parameters 

of the prediction model can be subdivided into four groups: 

1. General parameters 

a) Free space attenuation (distance, fi-equency) 

b) Visibility (LOS, NLOS, OLOS) 

2. Influence of the walls between transmitter and receiver 

a) Transmission loss of the direct ray 

b) Wave guiding effect of the walls 

3. Local arrangement of the walls at the transmitter site 

a) Local reflectors 

b) Local shielding effects 

4. Influence of the location at the receiver site 

a) Local reflectors 

b) Local shielding effects 

c) Shape of the room of the receiver 

d) Size of the room at the receiver 

Different structures for the neural network have been examined and the Multilayer Perceptron 

leads to the best results. The neural network is trained with the Backpropagation Algorithm. 

When the prediction is done on measurements used to train the network, a mean error of 0.2 

dB and a standard deviation of 3.5 dB are obtained. For measurements and the environment 

that were not used for training, the mean error of the prediction is 7.7 dB and the standard 

deviation is 8 dB. 

In [Wolfle, 97c] dominant paths for the wave propagation are computed and a 

prediction of the field strength is obtained with neural networks, trained with measurements in 

different buildings. This model has been developed for buildings with very long corridors, as 

often found in offîce buildings. A feedforward perceptron was trained with the standard 
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Backpropagation algorithm. The network is subdivided into three parts, each part representing 

one of the dominant paths, and leads to the most accurate prediction. 

Input parameters of the neural network are transmission loss, path length, accumulated 

angle of the path [Wolfle, 97c], [Wolfle, 97d] and the wave guiding effects along the 

dominant paths. 

An improvement of the prediction is possible, if dififerent dominant paths are 

determined for each prediction point. For the determination of different paths, the criterion for 

the selection of incoming direction of first order must be altered. So it is possible, to assign 

dififerent weights to the parameters transmission loss, length and accumulated angle. Best 

results were obtained with simultaneous consideration of three different paths: shortest path, 

path with lowest transmission loss and path with minimal angle. 

In [Wolfle, 97d] is presented a model based on the determination of the dominant 

paths between the transmitter and the receiver. The field strength is predicted with artificial 

neural networks, trained with measurements. The best results were obtained with the 

following input parameters: 

1. General parameters 

a) Free space attenuation along the path (includes distance and 

fi-equency) 

b) Visibility (LOS, OLOS, NLOS) 

c) Accumulated transition angle 

2. Influence of walls along the paths 

a) Transmission loss along the path 

b) Wave guiding along the path (the wave guiding effect due to walls 

oriented more or less parallel to the path 

3. Local arrangements of the walls at the transmitter site 

a) Local reflectors (local directivity due to the arrangement of walls) 

b) Local shielding efifects (local shielding influenced by walls 

4. Influence of the receiver site 

a) Local reflectors 

b) Local shielding efifects 

c) Shape of the room containing the receiver 

d) Size of the room containing the receiver 

These parameters are described in [Wolfle, 97b]. 
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The training pattems of a multilayered feedforward perceptron, trained with the 

backpropagation algorithm, are obtained from measurements at the University of Stuttgart. 

The diflference between the measurements and the prediction for a transmitter location (not 

used during the training process of the network) is small and the mean error of the magnitude 

is smaller than 3.3 dB. The field strength prediction within a building of the Technical 

University of Viena gives a mean error smaller than 8 dB. 

In [Wolfle, 98] is presented an algorithm for the determination of the dominant paths 

for indoor wave propagation. Based on these dominant paths, three different prediction 

models are presented and compared with one another and with measurements. Two of the 

models are based on neural networks and the third model is an empirical model. 

For the computation of the field strength with neural networks, the parameters of the 

minimum-loss dominant path are determined. Good results have been obtained with the 

following parameters: 

1. Free space attenuation along the path, 

2. Transmission loss, 

3. Interaction loss, 

4. Wave guiding along the path. Each dominant path represents different rays. AII of 

them are guided by reflections at the walls or by dif&actions at the comers of wedges 

in the same direction. To include all these rays in the prediction, they are described by 

a parameter wave guiding. The wave guiding of the wall depends on their material 

(reflection loss), their orientation (reflection angle) and the distance between the walls 

and the path. These three parameters are combined to give the parameter wave guiding 

as described in [Wolfle, 97c]. 

5. Local reflectors and shielding effects at the transmitter site. 

6. Local reflectors and shielding effects at the receiver site. 

For each dominant path, all mentioned parameters are gained from a vector-oriented database 

and are normalized for the input of the neural network. The prediction of the field strength is 

based only on these parameters. 

The backpropagation algorithm was used to train the neural network, and the 

measurements were taken at the University of Stuttgart. 

In the second neural network model presented in [Wolfle, 98] besides the minimum-

loss dominant path (MLDP) are considered also the altemative dominant paths (ADP). The 

structure of the neural network is similar but four additional parameters are taken into account 

for the description of the altemative paths. These additional inputs are represented by the 
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normalized difference of the parameters (path length, transmission loss, interaction loss and 

wave guiding) between the alternative and the minimum-loss dominant path. 

In contrast to the model described in [Wolfle, 97d], the relative and not the absolute 

parameters of the altemative paths are used. The mean errors of the prediction made by the 

two neural model are -0.4 dB and 0.2 dB, with standard deviations of 3.3 dB and 1.6 dB. 

In [Wolfle, 99] two different approaches to the computation of the field strength are 

presented: empirical computation and neural netsvorks. The parameters of the dominant path, 

that are path length, accumulate penetration loss of the walls passed, loss due to changes in 

the direction of propagation and wave guiding gain) represent the input values of the neural 

network and the measured field strength is the output value. Both approaches require many 

measurement values fi-om different buildings for the calibration of the models. 

The model presented in [Neskovic, 00b] has the form of a Multilayer Perceptron with 

three hidden layers (12 inputs and 1 output). The implementation of the model requires a 

database of the floor plan in which all particular locations are classified into several 

environmental categories, for example wall, corridor, classroom, window, etc. The way 

proposed by the authors to do that, is to make a color picture over the scanned floor plan. 

There are several inputs based on the number of previously defined environmental categories. 

One of the inputs represents the normalized distance fi-om the transmitter. The remaining 

inputs are based on the analysis of the straight line drawn between the transmitter and the 

receiver with respect to the environmental categories, e. g. how many doors, what percentage 

of the line passes through the classroom, etc. The proposed model has a single output that is 

the normalized electric field level. The average results of the prediction obtained in two 

buildings are: mean errors of 1.52 dB and 2.3 dB, standard deviations of 6.5 dB and 5.24 dB. 
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7. Proposed neural network modeis 

In the next sections several proposed neural network modeis for the prediction of 

propagation path loss in different environments (urban, suburban and indoor) are investigated. 

In the presented studies the multilayer feedforward networks, commonly referred to as 

Multilayer Perceptron (MLP) and Radial Basis Function (RBF) Neural Networks (NN), were 

used. Specifically, the foliowing NN are proposed: 

> MLP-NN propagation prediction modeis for outdoor and indoor environment; 

> MLP-NN hybrid modeis for outdoor environment; 

> RBF-NN propagation prediction modeis for outdoor and indoor environment; 

> RBF-NN hybrid modeis for outdoor environment. 

In section 7.1 is given a short description of the measurements used to design the neural 

modeis presented in sections 7.2 and 7.3. In section 7.2.1 is also presented a proposed neural 

network model for the implementation of Hata's formula and the knife-edge diffraction. 

7.1. The measurements 

Field strength measurements used to design and to test the neural network modeis 

presented in the next sections, were performed at 1890 MHz jfrequency band m the city of 

Kavala (Greece), in Oia village on Santorini Island (Greece) and at the Hellenic 

Telecommunication Organization premises in Athens (Greece). A detailed description of the 

measurement procedure can be found in [Kanatas, 99] and [Papadakis, 98]. 

In case of the measurements collected in the urban and suburban environment, 

respectively, the fast fluctuations effects were eliminated by averaging the measured received 

power over a distance of 6 m that corresponds to approximately 40A. sliding window. After 

converting the values jfrom received power to path loss versus distance, the measured path 

loss is compared to the predicted path loss by the proposed neural network modeis and the 

empirical modeis based on the absolute mean error ()i), standard deviation (a) and root mean 

square error (RMS). The absolute error between the measured and predicted path loss is 

computed with: 

E. = - P L f ^ ^ (7.1) 

where i represents the number of the measured sample. The absolute mean error is computed 

by: 
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. = (7.2, 

where N is the total number of measured samples. The standard deviation is determined from 

the absolute error (7.1) and the mean absolute error (7.2): 

a = 
1 /M 

V 1=1 N - 1 

The RMS error is given by: 

(7.3) 

RMS = V M ^ ^ (7.4) 

The neural network models proposed for propagation prediction in outdoor 

environments and the examined empirical models require parameters that describe the 

propagation environment such as the street width, the roof top height and the building block 

spacing. Average values were used since these variables change continuously along one route. 

For the determination of these geometric parameters a map with building database was used 

[Kanatas, 99]. 

The measurements conducted in the 1890 MHz frequency band, at the Hellenic 

Telecommunication Organization premises are following different scenarios. Each floor of the 

building consists of a circular sector of 60 m in circumference located at the center of each 

floor and 3 branches, denoted A, B and C, departing from the circular sector, where at each 

branch there are one main long corridor and two short back corridors with offices flanked on 

both sides of corridors, as shown in Figure 7.1 [Papadakis, 98]. 

OfQces are in consecutive order and are separated by soft partitions. Measurements 

were done along the corridors and inside the offices, in all three branches. In every position of 

the receiver inside the offices about 10000 samples of the received power were recorded 

while the receiving antenna was rotating. The transmitting antenna was located always in the 

same sector of the eleventh floor in two different sites (position: 1 or 2 in Figure 7.1). The 

base station antenna heights used were 2.2m, 2.6m and 2.7m. The measurements were 

performed using two different types of transmitting antenna: OMNI and direcţional. The 

receiving antenna was always an OMNI antenna. 

In case of indoor environment, the performance of the neural network models is 

evaluated by making a comparison between predicted and measured values based on the 

absolute mean error, standard deviation and root mean squared error, as described by 

equations 7.2-7.4. 
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Figure 7.1. The building topology and the transmitter posîtîons 

7.2. Proposed MLP-NN models for the prediction of propagation path loss 

In this section the performance of MLP neural networks for the prediction of 

propagation path loss in different environments are presented. A detailed description of this 

type of neural network is given in chapter 2. 

The leaming phase of the MLP neural network proceeds by adaptively adjusting the 

free parameters of the system based on the mean squared error between predicted and 

measured path loss for a set of appropriately selected training examples. When the MSE 

between the MLP neural network output and the desired output is minimized, the leaming 

process is terminated and the neural network can be used in the testing phase with test vectors. 

At this stage, the neural network is described by the optimal weight confîguration, which 

ensures the output error minimization. 
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The goal of the prediction is not only to produce small errors for the set of training 

examples but also to be able to perform well with examples not used in the training process. 

This generalization property is very important in this practicai prediction situation where the 

intention is to use the propagation prediction model to determine the coverage area of 

potential transmitter locations for which no or limited measured data are available. 

The Universal Approximation Theorem states that a single hidden layer is sufficient 

for a MLP to compute a uniform approximation to a given training set represented by the set 

of inputs and a desired output. However, the theorem does not say that a single hidden layer is 

optimum in the sense of leaming time, ease of implementation or (more importantly) 

generalization [Haykin, 99]. 

It is very difBcult to know which training algorithm will be faster and a good 

generalization will be obtained for a given problem. It depends on many factors, including the 

complexity of the problem, the number of data points in the training set, the number of 

weights and biases in the network, the error goal and on the task performed by the neural 

network (fimction approximation in the presented work). 

The selection of the set of training examples is very important in order to achieve good 

generalization properties [Wolfle, 97] [Haykin, 94]. The set of all available data is separated 

in two disjoint sets that are training set and test set. The test set is not involved in the leaming 

phase of the networks and it is used to evaluate the performance of the neural model. One of 

the problems that may occur during neural network training is overfitting. The error on the 

training set is driven to a very small value but when the new data is presented to the network, 

a large error is obtained and the network has not leamed to generalize to new situations. It is 

difficult to know beforehand how large a network should be for a specific application. In this 

work, in order to improve generalization and due to the fact that the dimension of the training 

data is much smaller than the dimension of the test data, the early stopping method is used. 

However, it was investigated the performance of some algorithm s (on the same training set) 

without the use of early stopping method. 

Neural network training can be more efficient if certain preprocessing steps are 

performed on the network inputs and desired outputs. Two approaches are used in this work: 

> The inputs and the desired outputs are scaled so that they fall in the range [-1,1]. 

> The inputs and the desired outputs are scaled so that they will have zero mean and 

unity standard deviation. 

In section 7.2.2 - 7.2.5 a number of comparisons are made for MLP neural networks with 

different architectures and dififerent training algorithms. At a first step, the performance of the 
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MLP-NN trained with Levenberg-Marquardt (LM) algorithm, with different numbers of 

neurons in one and two hidden layer was investigated. These simulations were done with the 

use of early stopping method. Following these simulations, the MLP-NN with the optimum 

configuration is established and investigations are done on the performance of two other 

training algorithms: the Resilient Backpropagation (RP) and the Powell-Beaie (PB) version of 

the conjugate gradient algorithm. 

7.2.1. MLP implementation of Hata^s formula and knife-edge-difTraction model 

This section presents a neural network implementation for path loss prediction models 

[Popescu, 00a]. The models implemented are Okumura-Hata formula for path loss prediction 

in urban area, COST231-Hata model [COST231, 99] for path loss prediction in suburban 

areas and knife-edge diffraction model. 

A MLP with one hidden layer, trained with the Levenberg-Marquardt algorithm was 

used for these simulations. As a first step, the Hata's formula for urban area is simulated. The 

neural network has four inputs corresponding to the four parameters: 

> frequency (f), 

> base station antenna height (hes), 

> mobile station antenna height ( J i m ) , 

> distance between transmitter and receiver (d) 

and ten units in one single hidden layer (4-10-1). The output of the neural network represents 

the normalized path loss. Free space field strength was not separated in this experiment. As a 

quality criterion the mean square error is defined as foliows: 

1 ^ 

V̂max ^min/ 

that is to be minimized during the training process. Lp,i represents the path loss computed 

according to Hata formula and Lp,net,i represents the path loss derived from the network output. 

For comparison with other methods the mean error (ji) and the standard deviation (c), as 

described by equations 7.2 and 7.3, are used. 

The number of the training points in the 4-D parameter space is 2162. Testing the 

neural network with a test pattem that has not been presented to the network during the 

training phase (f = 922MHz, hes = 220 m and hM = 3m) it was obtained a mean error of 0.34 

dB and a standard deviation of 0.1 dB. 
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In order to simulate the COST231 - Hata model it was used the same configuration for 

the neural network. The number of training pattem used for training was 722. For a test 

example the obtained values for mean error and standard deviation were 0.14 dB and 0.44 dB, 

respectively. 

The configuration of the neural network used to simulate the difîraction losses due to 

wedge obstruction is the following: 6 inputs units representing 

> distance between transmitter and difîraction point, 

> distance between dif&action point and receiver, 

> height of the obstruction wedge, 

> height of the transmitter antenna, 

> receiver antenna height, 

> wavelength. 

By taking into account different sites and heights for the knife-edge obstruction, different 

frequencies and antenna heights, the training set consists in 2720 pattems. The simulated 

neural network has 12 neurons in a single hidden layer. 

The tests were done using a test set containing a height of the knife-edge dif&action 

that was not presented to the network in the training phase. The number of the tested pattems 

is 1991, due to the sampling rate used for the distance between the dif&action point and 

receiver. 

45-
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<ţkn1 
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Figure 7.2. Comparison between predicted values achieved by neural network and knife-edge difîraction 
modei versus the distance between tlie difTraction point and receiver 

Figure 7.2 shows the comparison between the path loss value computed according to 

the knife-edge dif&action model and the predicted value derived from the neural network 
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output, when the height of the obstruction point is 90 m. the frequency is 1200 MHz and the 

base station antenna height is 20 m. That is a situation that was not used for training. The 

mean error obtained in this case is 0.69 dB and the standard deviation is 0.91 dB, respectively. 

7.2.2. Proposed MLP-NN models for propagation prediction in urban environment 

In this section are presented MLP-NN based models for the prediction of propagation 

path loss in urban environments (city of Kavala). The neural networks are designed separately 

for line-of-sight (LOS) and non-line-of-sight (NLOS) cases. The applications of neural 

network are considered as function approximation problems consisting of a nonlinear 

mapping from a set of input variables containing information about potential receiver onto a 

single output variable representing the predicted path loss. 

The performance of the proposed MLP-NN models is compared to that of the 

COST231-Walfisch-Ikegami model (CWI) [COST 231, 99], the Walfisch-Bertoni model 

(WB) [Walfisch, 88] and the single slope model (SSM) [Rappaport, 96], based on the 

absolute mean error, standard deviation and the root mean square error between predicted and 

measured values. 

A. LOS case 

For the LOS case, the neural network model is trained with physical data, as foliows: 

> distance between transmitter and receiver, 

> width of the streets, 

> height of the buildings, 

> building separation, 

> position of the transmit antenna with respect to the rooftop. 

The model has a single output which represents the normalized propagation path loss. Each 

training example consists of target values of measured path loss (normalized to the range [0,1] 

and the corresponding input parameter values for the measurement location. 

A set of 1013 examples is used for training (out of which, 63 examples are used for 

validation) while 2026 pattems were used to test the neural models. Different architectures of 

the MLP were studied using the Levenberg-Marquardt (LM) algorithm. In the case of two 

hidden layers, only the case with an equal number of neurons in both layers was investigated. 
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In figure 7.3 is shown the performance of the MLP-NN trained vsâth LM algorithm, for 

different number of neurons in one and two hidden layers. 

6.5 
6 7 8 9 10 11 12 13 14 

Number of neurons In the hidden layers 
15 16 17 18 19 20 

1 hidden layer — A — 2 hidden layers 

Figure 13. Performance of MLP-NN on the test set, with diflTerent number of neurons in 1 and 2 hidden 
layers, 5 inputs, LOS case, urban environment 

As it can be seen from Figure 7.3 the smallest value for the RMS was obtamed in case 

of a MLP with 10 neurons in 2 hidden layers (6.63 dB). Further investigations were done on 

the 5-10-10-1 MLP-NN's configuration with RP and PB algorithms. Due to the fact that the 

RMS errors for the test set obtained by using the early stopping method were big (9.45 dB in 

case of RP and 8.12 dB for PB), the simulations were done without the use of early stopping 

method, for different number of epochs. The results are presented in Figure 7.4. 

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 

Number of epochs PB A RP 

Figure 7.4. Performance of MLP-NN on the test set, with RP and PB training algorithms, 5-10-10-1, LOS 
case, urban environment 
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The results obtained in the case of the neural model designed with two hidden layers 

with 13 neurons each are presented in [Popescu, 00b]. As it can be seen from Figures 7.3-7.4, 

the best performance is achieved with a neural model with two hidden layers with 10 neurons 

each, trained with LM algorithm [Popescu, 01a] and the resuhs obtained in this case are 

presented below. A test set of 2026 examples is used to compare the proposed MLP-NN 

model to the Walfisch-Bertoni model (WB), the single slope model (SSM) and the COST 

231-Walfisch-Ikegami model (CWI). Table 7.1 represents the performance achieved by each 

of the above-mentioned models for the entire test data. 

Table 7.1. Comparison between the proposed MLP-NN model and the other empirical models, LOS case 

MLP-NN SSM CWI WB 
nfdBl 5.08 5.43 7.04 9.09 
ofdBI 4.23 4.80 4.06 4.51 
RMS[dBl 6.63 7.24 8.23 10.24 

Figure 7.5 represents the measured and predicted propagation path loss by the 

proposed MLP-NN model, the single slope model and the Walfisch-Bertoni model, for a 

specific route, in the LOS case. For this route, the results are presented in Table 7.2. As it is 

shown in Table 7.2, making a comparison with the single slope model, the gain obtained by 

the neural model lays around 3.69 dB for the mean error, 1.77 dB for the standard deviation 

and 4.06 dB for the RMS error. 
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Distance from transmitter [m] 

-Measurements •MLP -e—CWI —*-SSM 

Figure 7.5. Measured and predicted path loss for LOS case in urban environment. 
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Table 7.2. Comparison betweea the prediction models in LOS case, for a particular route 

MLP-NN SSM CWI 
nldBl 1.65 5.34 11.20 
<T[dBl 1.35 3.12 6.51 
RMS [dBl 2.13 6.19 12.95 

Between the empirical algorithms, in LOS case, the single slope model achieves the 

best performance. However, this model is based on the distance between transmitter and 

receiver, the frequency and the propagation factor. It was found that in the LOS paths the 

power decay factor ranges from minimum 1.56 up to 3.05. The better performance achieved 

by the neural network model is due to the various inputs parameters used to predict the 

propagation path loss and due to the generalization properties of the network 

B. NLOS case 

The study is based on a MLP-NN model trained with physical data that includes: 

> distance between transmitter and receiver, 

> width of the streets, 

> height of the buildings, 

> building separation, 

> Street orientation, 

> position of the transmit antenna with respect to the rooftop. 

The MLP-NN model has a single output which represents the nomialized propagation path 

loss. A set of 394 examples is used for training, a set of 26 examples is used for validation 

and for testing purpose a set of 1680 examples is used. 

In Figure 7.6 the performance of the MLP-NN over the entire test set is shown for 

different numbers of neurons in 1 and 2 hidden layers, using the LM training algorithm. 

Due to the fact that the value obtained for RMS obtained for the test is above 6 dB, m 

addition to the above-mentioned data fiirther investigations were done by including in 

simulations some parameters used in the propagation path loss computation by COST231-

Walfisch-Dcegami algorithm: 

> free space loss Lo, 

> roof-to-street diffiaction, L^s, 

> multiple screen dif&action loss, Lmsd, 

> loss factors due to the street orientation, Lori, 
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> loss factor due to the difference between base station antenna height and roof top 

height, Lbsh. 

The formulas used for the computation of these parameters are presented in section 5.2.5. 

By using these parameters as additional inputs to the MLP the potential benefits of the 

combination of physical parameters and a theoretical model for this specific environment is 

studied. 

7 8 9 10 11 12 13 14 
Number of neurons in hidden iayers 

— 1 hidden layer - 2 hidden Iayers 

Figure 7.6. PerformaDce of MLP-NN oo the test set, with difTerent number of neurons in 1 and 2 hidden 
Iayers, 6 inputs, NLOS case, urban environment 

The performance of the MLP-NN over the test set, having 11 inputs, with one and two 

hidden Iayers, trained with LM aigorithm, is presented in Figure 7.7. 

10 11 12 13 14 15 
Number of neurons in hidden Iayers 

1 hidden layer - 2 hidden Iayers 

Figure 7.7. Performance of MLP-NN on the test set, LM aigorithm, 11 inputs, different number of 
neurons in 1 and 2 hidden Iayers, NLOS case, urban environment 
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As it can be seen from the above figure, the ''best" prediction is made by the MLP-NN 

with 11 inputs and two hidden layers of 18 [Popescu, 01a] or 16 neurons each, trained with 

LM algorithm, with an RMS error of 5.84 dB for the entire test set. Further investigations for 

RP and PB algorithms are done on the confîguration of MLP with 16 neurons in 2 hidden 

layers, for 6 inputs and 11 inputs. The RMS errors on the entire test set obtained by using the 

early stopping method were unsatisfactory and the simulations were done for dififerent 

number of epochs. The performance of the MLP on the entire test set having the following 

configurations: 6-16-16-1 and 11-16-1-6-1 are presented in Figure 7.8 and Figure 7.9, 

respectively. 

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 

Number of epochs — p b — ^ R P 

Figure 7.8. Performance of MLP-NN on the test set, with RP and PB training algorithms, 6-16-16-1, 
NLOS case, urban environment 

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 

Number of epochs j ; •RP PB 

Figure 7.9. Performance of MLP-NN on the test set, RP and PB training algorithms, 11-16-16-1, NLOS 
case, urban environment 
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Table 7.3 represents the performances achieved by two MLP models, having 2 hidden 

layers with 16 neurons each, MLP-NNl (with 6 inputs), MLP-NN2 (with 11 inputs) and the 

performance obtained by the single slope model (SSM), the Walfisch-Bertoni model (WB) 

and the COST 231-Walfisch-rkeganii model (CWI) for the entire test data. 

Table 7 J . Comparisoa between the MLP-NN approach and the other empirical models in NLOS case 

MLP-NN2 MLP-NNl SSM WB CWl 
nfdBl 4.01 4.61 6.35 6.08 6.96 
<T[dB1 4.25 4.65 4.37 4.14 4.62 
RMSldBI 5.84 6.55 7.75 7.40 8.38 

Figure 7.10 represents the measured and predicted propagation path loss by the MLP-

NN models and the single slope model (SSM) for one route characterized by a base station 

anteima located bellow rooftop (NLOS case). 

82 94 106 118 131 143 156 168 181 
Distance from transmitter [m] 

194 206 219 232 245 257 270 
-Measurements O MLP2 O MLP1 ă SSM 

Figure 7.10. Measured and predicted path loss for NLOS case with hBs<hrooA urban case 

Figure 7.11 represents the measured and predicted propagation path loss by the 

Multilayer Perceptron models and single slope model for one route characterized by a base 

station antenna placed above rooftop (NLOS case). 

The performances of the models, in the case of a particular route are shown in table 7.4. 
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Figure 7.11. Measured and predicted path loss for NLOS condition with heŝ hrocft urban case 

Table 7.4. MLP-NN modeis and other empirical models in NLOS case, for heŝ hrocf ^̂ nd hBs<hroof 

iifdBl o[dB] RMS fdB] 
hBS<hroof hBS>htoof hBŜ hroof hsŝ hfoof hsŝ hroof hsŝ hroof 

MLP-NN2 3.34 3.08 2.60 2.88 4.24 4.22 
MLP-NNl 3.90 3.81 3.26 3.11 5.09 4.92 
SSM 8.05 4.69 5.67 5.05 9.85 6.89 

In the neural network model MLP-NN2, the training pattems combine Information 

about the physical propagation conditions (transmitter and receiver locations) and about the 

dif&action losses that characterize the path between transmitter and receiver. The simple 

neural model MLP-NN 1 gives good results but the results obtained by the system that 

combines a nonlinear neural network approach, propagation loss algorithms and physical data 

gives more accurate prediction. 

1.23. Proposed MLP-NN models for propagation prediction in suburban environment 

In this section are presented neural network based models for the prediction of 

propagation path loss in suburban environment for in NLOS case [Popescu, 01b]. The 

performance of the neural model is compared to the measured path loss values from the 

measurements conducted in Oia village on Santorini Island, Greece, based on the absolute 
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mean error, standard deviation and the root mean squared error between predicted and 

measured values. In addition, the measured values were compared with the results obtained by 

Walfisch-Bertoni model (WB) [Walfisch, 88], COST231-Walfisch.Ikegami model (CWI) 

[COST 231, 99] and Single Slope model (SSM) [Rappaport, 96]. 

At the first step, the study is based on a MLP-NN trained with physical data that 

includes: 

> distance between transmitter and receiver, 

> width of the streets, 

> height of the buildings, 

> building separation, 

> Street orientation. 

A set of 333 measurement points (out of which 21 examples is used for validation purpose) is 

used for training and a set of 1332 measurement points is used for testing purpose. The neural 

model has a single output which represents the normalized propagation path loss. 

In Figure 7.12 the performance of the MLP-NN on the test set is represented for 

different numbers of neurons in one and two hidden layer, using the LM training algorithm 

and the early stopping method. 

3.5 
7 8 9 10 11 12 13 14 

Number of neurons In hidden layers _ 

15 16 17 18 19 20 

• 1 hidden layer A 2 hidden layers 

Figure 7.12. Performance of MLP-NN on the test set, LM algorithm, different number of neurons in 1 and 
2 hidden layers, 5 inputs, suburban environment 

In order to investigate the effect of the combination between physical and theoretical 

parameters used to train the MLP-NN, two more inputs were added: 

> multi-screen diffiaction loss, Lmsd, 

> roof-to-screen dif&action loss, L^s, 
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computed by COST 231 -Walfisch-Dcegami algorithm, as presented in section 5.2.5. 

The performance of the MLP on the entire test set, having 7 inputs with one and two 

hidden layers is presented in Figure 7.13. 

8 9 10 11 12 13 14 15 16 17 18 19 20 

Number of neurons in hidden layers -
• 1 hidden layer - 2 hidden layers 

Figure 7.13. Performance of MLP for LM training algorithm, diflerent number of neurons in 1 and 2 
hidden layers, 7 inputs, suburban environment 

As it can be seen from the above figure, a good prediction is made by the MLP-NN 

with 7 inputs and 2 hidden layer having 12 neurons each, with an RMS error of 3.74 dB for 

the entire test set. Using this configuration of the MLP-NN, further investigations for RP and 

PB algorithms are done for diJBferent number of epochs. The performance of the MLP-NN 

(having the foliowing configurations: 5-12-12-1 and 7-12-12-1) over the entire test set, for RP 

and PB training algorithms, are represented in Figure 7.14 and Figure 7.15, respectively. 

3.6 
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 

Number of epochs -PB —A—RP 

Figure 7,14. Performance of MLP-NN, 5-12-12-1, RP and PB algorithms, suburban environment 
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5.0 

3.6 
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 

Number of epochs PB —A—RP 

Figure 7.15. Performance of MLP-NN, 7-12-12-1, RP and PB algorithms, suburban environment 

The proposed MLP neural network model is the one with 7 inputs, two hidden layers 

with 12 neurons each, trained with LM algorithm by using the early method stopping. The 

results obtained over the entire test set by the proposed MLP-NN model have been compared 

with the results obtained by using the Walfisch-Bertoni model (WB), the COST231-Walfîsch-

Dcegami model (CWI) and the Single Slope model (SSM) and are presented in Table 7.5. 
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Figure 7.16. Comparison between the measured and the predicted propagatioo path loss by the neural 
model and the CWI model for one particular route. 
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Table 7.5. Comparisoo between the proposed MLP-NN model and the other empirical models, suburban 
environment 

MLP-NN SSM WB CWI 
n[dBl 3.01 5.61 5.29 5.71 
ofdBI 2.23 3.81 3.92 3.70 
RMS [dB] 3.74 6.82 7.06 6.84 

Figure 7.16 represents the measured and predicted propagation path loss by the 

proposed MLP model and CWI model in case of one particular route. 

7.2.4. Hybrid model based on MLP-NN 

This section presents a hybrid model for the prediction of propagation path loss based 

on the combination between a theoretical model and a neural network [Popescu, 01c]. The 

neural network, based on the principles of feedforward multilayer neural networks, is used to 

compensate for the errors obtained by applying COST231-Walfisch-Ikegami (CWI) model 

[COST231, 99] in the urban (city of Kavala) and the suburban area (Oia village), respecţively. 

Physical daca 

PLcompoted 
Compoted PL 

Measured PL 

Neural Network 
Traininf .-VlgoHthin 

PLaeasnred 

Neural Network 

Pli-n 

PLcorrected - PLcompoted - E 

Figure 7.17. The schematic diagram of the training process 

The purpose is to build a correction model: the neural network is used to compensate 

for the errors obtained by applying CWI model. In Figure 7.17 is represented the training 

phase of the neural network and in Figure 7.18 is represented the schematic diagram of the 
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prediction phase. The inputs of the neural network consist of the available physical 

parameters and the output is represented by the difference error between the path loss 

computed by COST-Walfisch-Dcegami model and measurements: 

E ~ PLcomputcd ~~ PLtneasured 

Physical data 

Neural Network 

COST-Walfuch-
Ikegami Model 

PL = P^computed - E 

1 + 
PLcomputed 

Figure 7,18. The schematic diagram of the prediction 

A. Urban environment 

The MLP-NN error correction model is built for the NLOS case and the size of the 

training and test sets are the same as the ones used to build the prediction model presented in 

section 7.2.2.B. 

The first MLP-NN model investigated has as inputs the following physical parameters: 

> distance between transmitter and receiver, 

> width of streets, 

> height of the buildings, 

> building separation, 

> Street orientation. 

6 7 8 9 10 11 12 13 
Number of neurons in hidden layers — 

• 1 hidden layer A 2 hidden layers 

Figure 7.19. Performance of hybrid MLP-NN, LM algorithm, 1 and 2 hidden layers, 5 inputs, urban 
environment 
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In Figure 7.19 the performance of the MLP-NN trained with LM algorithm is 

presented, for different number of neurons in one and two hidden layers. 

In addition to the above-mentioned parameters, the position of the transmit antenna 

with respect to the rooftop is used as input to the MLP-NN. The performance of the MLP-NN 

over the entire test seţ obtained for 6 inputs, LM algorithm, is presented in Figure 7.20. 

6.0 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Number of neurons in hidden layers 

— # — 1 hidden layer — A — 2 hidden layers 

Figure 7.20. Performance of hybrid MLP-NN, LM algorithm, 1 and 2 hidden layers, 6 inputs, urban 
environment 

As it can be seen from Figure 7.20, the results obtained in the case of MLP-NN with 6 

inputs, 2 hidden layers with 16 neurons each, are RMS = 6.24 dB. 

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 

Number of epochs PB —A—RP 

Figure 7.2L Performance of hybrid MLP-NN, 5-16-16-1, PB and RP training algorithms, different 
number of epochs 
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Further investigations were done on the configurations 5-16-16-1 and 6-16-16-1 for 

RP and PB training algorithms and for different number of epochs and the results are 

presented in Figure 7.21 and Figure 7.22, respectively. 

8.2 

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 
Number of epochs PB -RP 

Figure 7.22. Performance of hybrid MLP-NN, 6-16-16-1, PB and RP training algorithms, urban 
environment 

The best performance was achieved by the MLP-NN having 2 hidden layers with 16 

neurons each and 5 inputs and trained with the PB algorithm (1700 training epochs). The 

Street orientation parameter gives no improvement in the prediction done by the neural 

network. The performance of the hybrid MLP-NN model, as described above, is compared 

with the measurement values and with the COST231-Walfisch-Ikegami (CWI) model (see 

Table 7.6). 

Table 7.6. Comparison between the proposed hybrid MLP-NN and the CWI model in urban environment 

nfdBl ordB] RMS rdBI 
MLP-NN&CWI 4.14 4.43 6.07 
CWI 6.97 4.61 8.35 

In Figure 7.23 is represented the comparison between the prediction made by the error 

correction model, CWI model and measurements for a particular route in urban environment. 

149 

BUPT



-50 

-140 

120 

18 36 54 72 90 108 126 144 162 180 198 216 234 252 270 288 306 324 

Distance [m] -Measurements -MLP-NN&CWI —K-CWI 

Figure 7.23. The comparison between the predîction made by the proposed error correction modei, CWI 
model and measurements in case of a particular route, urban environment 

B. Suburban environment 

In order to model the suburban environment, the size of the training and test sets are 

the same as the ones used to build the prediction model presented in section 7.2.3. 

As a first step, the study is based on a MLP-NN trained with the following physical 

parameters: 

> distance between transmitter and receiver, 

> width of the streets, 

> height of the buildings, 

> building separation. 

]n Figure 7.24 the performance of the MLP-NN on the test set, trained with LM 

algorithm is presented, for different number of neurons in one and two hidden layers. 

hi addition to the above-mentioned parameters, the street orientation is used as an 

input to the MLP-NN, The perfomiance of the MLP-NN over the entire test set, obtained in 

case of 5 inputs, LM algorithm, is presented in Figure 7.25. 

As it can be seen from Figure 7.25, a good prediction is made by the MLP-NN with 5 

input parameters and 2 hidden layers having 17 neurons each (RMS = 4.21). Following the 

results of these simulations, further investigations were done on the configurations 4-17-17-1 

and 5-17-17-1 for RP and PB training algorithms and for different number of epochs. The 

results are presented in Figure 7.26 and Figure 7.27, respectively. 
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7 8 9 10 11 12 13 14 
Number of neurons in hidden layers 

• 1 hidden layer — A — 2 hidden layers 

Figure 7.24. Performance of hybrid MLP-NN, LM aigorithm, 4 inputs, 1 and 2 hidden layers, suburban 
environment 

7 8 9 10 11 12 13 14 
Number of neurons in hidden layers — 

1 hidden layer — A — 2 hidden layers 

Figure 7.25. Performance of hybrid MLP-NN, LM algorithm, 5 inputs, 1 and 2 hidden layers, suburban 
environment 

6.2 

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 

Number of epochs • PB A RP 

Figure 7.26. Performance of hybrid MLP-NN, RP and PB algorithms, 4-17-17-1, suburban environment 
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3.6 

i A A 

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 
Number of epochs PB - l i—RP 

Figure 7.27. Performance of hybrid MLP-NN, 5-17-17-1, RP and PB aigorithms, suburban environment 

The best performance was achieved by the MLP-NN having the confîguration of 5-17-

17-1 and trained with the RP algorithm. The performance of the hybrid ML? model, as 

described above, is compared to the measured values and with the COST231-Walfisch-

Dcegami (CWI) model (see Table 7.7). 

In Figure 7.28 is represented the comparison between the prediction made by the error 

correction model, CWI model and measurements in case of a particular route, in suburban 

environment. 

-60 

-130 
10 19 28 37 46 55 64 

Distance [m] 

73 82 91 100 109 118 127 136 

-Measurements —e-MLP-NN&CWI - ^ ^ C W I 

Figure 7.28. The comparison between the prediction made by the proposed hybrid model, CWI model and 
measurements for a particular route, suburban case. 
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Table 7.7. Comparison bet>veen the proposed hybrid MLP-NN model and the CWI model, suburban 

environment 

HfdBI <T[dB] RMS IdB] 
MLP-NN&CWI 2.86 2.46 3.77 
CWI 5.71 3.70 6.84 

7.2.5. Proposed MLP-NN modeis for propagation prediction in indoor environment 

The presented study includes the single floor scenario and the procedure used to select 

the measurement data is described below. 

In order to train the neural network we have used the measurements collected from 

two branches of the building, denoted sector B, where the transmitter was always located, and 

sector A. The fast fading was eliminated, in the case of longitudinal measurements (along the 

corridors), by averaging the measured received power using a 2k windowing technique 

[Honcharenko, 92]. In the case of static measurements the average values of the recorded 

samples in every position of the receiver inside the ofifices were computed. In this way we 

have obtained two values for the received power in each office (with closed doors 

respectively with open doors) for each combination of the position, height and gain of the 

transmitter antenna. Following the filtering process of the measured data we obtained more 

than 1400 measurement locations corresponding to the non-line-of-sight (NLOS) case. 

The inputs of the neural network are the following: 

> Three inputs for the transmitter site: position, gain and height of the antenna; 

> Two inputs for the distance: one is the distance between transmitter and the staring 

point of the measurements and the second input is represented by the distance covered 

by the mobile unit; 

> Two inputs describing the receiver site: the sector and the location within the sector. 

> Three inputs for the smallest number of walls and windows penetrated by the ray 

between transmitter and receiver and their accumulated losses. 

The input parameters that describe the transmitter and receiver location are quantized so the 

effect of each parameter is more obvious for the neural network [Haykin, 94]. For example, 

the parameters like size of the corridors where the receiver is located are quantized as follows: 

1 for the large corridor and 0.3 for the medium corridor. AII parameters are normalized to the 

range [-1,+!]. 
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The output layer consists of one neuron that provides the normalized received power. 

A data set of 289 pattems is used for training (out of which, 18 pattems are used for 

validation). A set of 1155 training pattems was used to test the model. 

In Figure 7.29 the performance of the MLP on the test pattems is presented for 

dififerent number of neurons in 1 and 2 hidden layers, using the LM training algorithm. 

Investigations were done on the configuration of the MLP wit 2 hidden layers having 

14 neurons each trained with RP and PB algorithms. The RMS errors obtained for the entire 

test set by using the early stopping method were unsatisfactory and the simulations were done 

for dififerent number of epochs. In case of RP and PB training algorithms, the performance of 

the MLP on the entire test set is shown in Figure 7.30. 

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Number of neurons in hidden layers •1 hidden layer - 2 hidden layers 

Figure 7.29. Performance of MLP-NN, 10 inputs, LM training aigorithm, 1 and 2 hidden layers, indoor 
environment 
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Figure 7 JO. Performance of MLP-NN, RP and PB algorithms, 10-14-14-1, indoor environment 
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As it can be seen from Figures 7.29-7.30 the best performance is achieved with the 

MLP with 2 hidden layers with 14 neurons each and trained with the LM algorithm. ]n Table 

7.8 are represented the absolute mean error, the standard deviation and the root mean squared 

error obtained for the training set and for the test set. 

Table 7.8. Results of the prediction, MLP-IVN, îndoor environment 

Training patterns Test patterns Particular route 
lifdBl 2.77 3.05 2.33 
ofdB] 2.31 3.15 1.79 
RMSfdBI 3.61 4.38 2.94 

In Figure 7.31 .a is represented a comparison between predicted and measured values 

of the normalized received power when the transmitter is in position 1 and the receiver is 

located along the main corridor in sector A. For this particular route, the values for the 

absolute mean error, standard deviation and RMS are presented in Table 7.8. The percentage 

of the predicted values with a mean error below 5 dB is 81.55 % in the case of the entire test 

set respectively 90.17 % in the case of the particular route. In Figure 7.3l.b the comparison 

between the predicted path loss by the MLP-NN, measured values and predicted path loss by 

the empirical model (described in section 5.4.2.2) is shown. In case of the theoretical model 

the foUowing results were obtained: = 5.29 dB, a = 5.04 dB and RMS = 7.31 dB. 
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b) 
Figure 731. Comparison between predictions and measurements with the transmitter in position 2 and 

the receiver located in sector A, along the main corridor: a) normalized received power, b) path loss 

73. Proposed RBF-NN models for the prediction of propagation path loss 

In this section the performance of the generalized Radial Basis Function Neural 

Networks (RBF-NN) applications for the prediction of propagation path loss in urban and 

suburban environment. A detailed description of this type of neural network is given in 

chapter 2. A number of RBF-NN models, trained on extended sets of propagation path loss 

measurements taken in different environments, are studied. The performance of all RBF-NN 

models with different input parameters is evaluated by comparing their prediction error 

statistics of absolute mean error (ji), standard deviation (a), root mean square error (RMS) 

and the correlation (R) between predicted values and the measurement data. 

73.1. Proposed RBF-NN models for propagation prediction in urban environment 

In this section are studied RBF-NN models for the prediction of propagation path loss 

in urban environment (city of Kavala, Greece). The RBF-NN models are designed separately 

for line-of-sight (LOS) and for Non-line-of-sight (NLOS) cases. The performance of the 
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proposed RBF-NN models is compared to that of the COST231-Walfisch-Ikegami model 

(CWI) [COST 231, 99], the Walfisch-Bertoni model (WB) [Walfisch, 88] and the Single 

Slope model (SSM) [Rappaport, 96], based on the absolute mean error, standard deviation and 

the root mean squared error between predicted and measured values. 

A. LOS case 

For the LOS case, the proposed RBF-NN model is trained with physical data that 

mcludes the distance between transmitter and receiver, the width of the streets, the height of 

the buildings, the building separation and the diflference between the base station antenna 

height and the rooftop height. The model has a single output which represents the normalized 

propagation path loss. The dimension of the training set is 1013 and the rest of 2026 examples 

were used to test the model. 

Table 7.9 represents the performance achieved by the proposed RBF-NN model and 

the other empirical models over the entire test data. 

Table 7.9. Proposed RBF-NN modei and otber empirical models, LOS case, urban environment 

RBF-NN SSM CWI WB 
lildBl 5.04 5.43 7.04 9.09 
<T[dB] 4.54 4.80 4.06 4.51 
RMS[dB] 6.78 7.24 8.23 10.24 

13 21 30 39 48 57 67 76 86 95 105 114 124 133 143 152 155 159 164 169 
Distance from transmitter [m] p -Measurements --e—RBF-NN CWI —&-SSM 

Figure 7.32. Measured and predicted path loss for LOS case, urban environment 
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Figure 7.32 represents the measured and predicted propagation path loss by the 

proposed RBF-NN model, the SSM model and the CWI model for a specific route, in LOS 

case. 

B. NLOS case 

Three RBF-NN models with different inputs were studied: 

> The first one, named RBFl, is trained with four parameters: the distance between 

transmitter and receiver, the width of the street, the building separation and the 

building height. 

> The second model, named RBF2, in addition to the above-mentioned data we also 

include the difference between the base station antenna height and the building height. 

> In the third neural model, named RBF3, we have included the street orientation m 

addition to the parameters used for the training of RFB2. 

A set of 420 examples was used for training purpose while the rest of 1680 was used 

for test purpose. Table 7.10 presents the results obtained by the three different RBF-NN 

models, for the test set. R represents the correlation between predicted values and the 

measurement data. 

Table 7.10. RBF-NN models for NLOS case, urban environment 

ufdBl ordBI RMS fdB] R 
RBFl 5.50 5.27 7.62 0.911 
RBF 2 5.31 5.07 7.34 0.917 
RBF 3 3.67 3.88 5.35 0.957 

Table 7.11 represents the comparison of the performance achieved by the RBF 3 

model and the Single Slope model (SSM), the Walfisch-Bertoni model (WB) and the 

modifîed COST231-Walfisch-Ikegami model (CWI) for the entire test pattems. 

Table 7.11. Proposed RBF3 model and other empirical models, NLOS case, urban environment 

RBF 3 SSM WB CWI 
^[dB] 3.67 6.35 6.08 6.96 
o[dB1 3.88 4.37 4.14 4.62 
RMS [dB| 5.35 7.75 7.40 8.38 
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Figure 7.33 represents the measured and predicted propagation path loss by the 

proposed RBF3 model, CWI model and measurements for one route characterized by a base 

station antenna located below rooftop. 

19 29 40 54 71 89 108 127 145 164 183 202 221 240 259 278 297 316 

Dîstance [m] Measurements —0—RBF-NNI — B - C W I 

Figure 133. Measured aad predicted path loss, in case of a particular route, NLOS case, urban environment 

73.2 Proposed RBF-NN models for propagation prediction in suburban environment 

In the case of suburban environment, four RBF-NN models were studied: 

> The first model, RBF 4, has four inputs: the distance between transmitter and receiver, 

the width of the street, the building separation and the building height. 

> The second model, RBF 5, in addition to the above-mentioned data we also included 

the Street orientation. 

> The third model, RBF 6, has six inputs: the distance between transmitter and receiver, 

the width of the street, the building separation, the building height, the roof-to-screen 

dif&action and mulţi screen diffraction losses computed with the modified COST231-

Walfisch-Dcegami formula. 

> The fourth model, RBF 7, uses as inputs all the seven parameters mentioned above. 
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A set of 333 examples (20% from the data measurement set) was used for training 

purpose while the rest of 1332 was used for test purpose. Table 7.12 presents the results 

obtained by the four different RBF-NN models, for the entire test set. 

Table 7.12. Generalized RBF-NN models, suburban environment 

nfdBl ordBl RMS fdB] R 
RBF4 3.68 3.71 5.23 0.958 
RBF5 2.76 2.65 3.83 0.963 
RBF6 2.68 2.60 3.73 0.964 
RBF7 2.65 2.55 3.68 0.966 

Table 7.13 represents the comparison of the performance achieved by the proposed 

RBF7 model and the Single Slope model (SSM), the Walfisch-Bertoni model (WB) and the 

modified COST231-Wamsch-Ikegami model (CWI) for the entire test pattems. 

Table 7.13. Proposed RBF 7 model and the other empirical models, suburban case 

RBF7 SSM WB CWI 
HldBl 2.65 5.61 5.29 5.71 
<r[dB] 2.55 3.81 3.92 3.70 
RMS [dB] 3.68 6.82 7.06 6.84 

Figure 7.34 represents the measured and the predicted path loss by the proposed RBF7 

model and CWI model in case of one particular route, in suburban environment 

-155 
25 46 68 90 112 134 156 179 201 223 245 267 289 312 334 356 378 400 423 445 
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Fig. 734. Measured and predicted propagation path loss by the proposed RBF 7 model and the CWI 
model, suburban environment 
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133. Hybrid models based on RBF-NN 

The purpose is to build an error correction model: the neural network is used to 

compensate for the errors obtained by applying the COST-Walfisch-Dcegami model, as 

described in section 7.2.4. 

For training and test purpose we have used the same number of pattems as in the 

prediction models, for both cases, urban and suburban environment. 

A. Urban environment 

In the case of urban environment, the foliowing RBF-NN models were investigated: 

> RBF8 that has four inputs: distance between transmitter and receiver, the width of the 

Street, the height of the buildings and the building separation. 

> RBF9 that has 5 inputs: the above-mentioned parameters used to design RBF 8 plus 

the difference between the base station height and the building height. 

> RBF 10 with 5 inputs: the parameters used to design RBF 8 plus the street orientation. 

> RBF 11 with 6 inputs represented by all parameters used to design the above-

mentioned models. 

The comparison between the results obtained by the Generalized RBF-NN models for 

the test pattems are presented in Table 7.14. 

Table 7.14. Hybrid RBF-NN models for NLOS case, urban environment 

nfdBl ordB] RMS fdB] R 
RBF8 6.12 6.13 8.66 0.774 
RBF9 5.68 5.59 7.97 0.812 
RBFIO 3.79 4.07 5.57 0.913 
RBFll 3.65 3.85 5.30 0.922 

Table 7.15 represents the comparison between the proposed RBFl 1 hybrid model and 

CWI model for the entire test set. 

Table 7.15. Proposed RBFll model and the CWI model 

nfdBl oldB] RMS 
RBFll+CWI 3.65 3.85 5.30 
CWI 6.97 4.62 8.38 
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In Figure 7,35 is represented the comparison between the prediction made by the 

proposed error correction model RBFll, the CWI model and measurements, for a particular 

route in urban environment. 

19 29 40 89 108 127 145 164 183 202 221 240 259 278 297 316 

Distance [m] J Measurements —9—RBF 11 

Figure 135. Prediction made by the proposed RBFll hybrid modei, CWI model and measurements, 

urban environment 

B. Suburban environment 

In the case of suburban environment, the foliowing two hybrid RBF-NN models were studied: 

> RBF 12 that has four inputs: distance between transmitter and receiver, the width of the 

Street, the height of the building and the building separation. 

> RBF 13 that has 5 inputs: the above-mentioned parameters plus the street orientation. 

The comparison between the results obtained by the Generalized RBF-NN models for the 

entire set of test pattems are presented in Table 7.16. 

Table 7.16. Hybrid RBF-NN models, suburban case 

nfdBl <T[dB] RMS[dBl R 
RBF 12 3.22 2.99 4.40 0.832 
RBF 13 2.71 2.54 3.71 0.883 

Table 7.17. Comparison between the proposed RBF13 hybrid model and the CWI model 

nfdBl ofdBI RMS 
RBF 13 2.71 2.54 3.71 
CWI 5.71 3.70 6.84 
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Table 7.17 represents the comparison between the proposed hybrid model RBF 13 and 

CWI model for the entire test set. 

Figure 7.36 represents the comparison between the prediction made by the proposed 

error correction model RBF13, the CWl model and measurements for a specific route in 

suburban environment. 
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Fig. 736. Prediction made by the proposed hybrid model RBF13, CWl model and measurements, 

suburban case 

7.3.4. Proposed RBF-NN model for propagation prediction in indoor environment 

In the case of indbor environment, the input vector used to design the proposed RBF-

NN model is the same as described in section 7.2.5. A data set of 289 pattems is used for 

training and a set of 1155 training pattems is used for test purpose. 

In Table 7.18 are represented the mean error, the standard deviation and the root mean 

square error obtained for the training set and for the test set by the proposed RBF-NN model. 

Table 7.18. Results of prediction, indoor environment 

Training patterns Test patterns 
HfdBl 1.49 3.09 
<î[dB1 1.71 2.88 
RMSfdBI 2.27 4.23 
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In Figure 7.37.a is represented a comparison between predicted and measured values 

of the normalized received power for an NLOS route. In Figure 7.37.b the comparison 

between the predicted path loss by the RBF-NN model, by the empirical model (described in 

section 4.4.2.2) and measured values is shown. 
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Covered distance [m] 

24 26 28 30 32 34 36 
- M e a s u r e m e n t s — 0 — R B F - N N 

a) 

12 14 16 18 20 22 24 
Covered distance [m] — 

Measurements — 9 — R B F - N N —A—Mode l 

b) 
Figure 131. Comparison between predictions and measurements with tlie transmitter in position 2 and 

the receiver located in sector A, along the main corridor: a) normalized received power; b) path loss 
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7.4. Discussions 

Propagation measurement results for different environment (urban, suburban, indoor) 

were used to design neural network based models. In order to examine the validity of the NN 

models, the predicted path loss by them is compared to the measured values and to the path 

loss obtained by applying empirical models. 

The empirical propagation models that have been examined in case of outdoor 

environment are the COST231-Walfisch-Dcegami (CWl) and Walfisch-Bertoni (WB) that are 

complex and require a more detailed description of the environment. A simple model, Single 

Slope model (SSM), is also examined. The SSM is determined by fitting the data in the sense 

of the minimum square error, while the other empirical models need more real and accurate 

environment parameters to validate their accuracy and capability. 

Between the empirical algorithms, the single slope model achieves the best 

performance. However, this model is based on the distance between transmitter and receiver, 

the frequency and the propagation factor. The linear regression model used to predict path 

loss for both LOS and NLOS cases is of the form given by equation (5.38) considering the 

reference distance as 1 m. hi LOS case, urban environment, the path loss exponent was found 

to range from 1.56 to 3.05. The low value implies waveguiding effect while the maximum 

value occurs due to the obstnicted first Fresnel zone [Kanatas, 99]. The total RMS error for all 

LOS test set is 7.24 dB. In NLOS case, urban environment, the path loss ranges from 2.1 to 

5.2 that show highly obstructed routes [Kanatas, 99]. The total average path loss exponent for 

NLOS case, urban environment is 3.65 dB. The RMS error for the all NLOS data test, urban 

environment, was found to be 7.75 dB. 

In CWI model, LOS case, urban environment, a simple propagation loss formula is 

applied, as described in section 5.2.5 by equation (5.16), and an RMS error of 8.23 dB was 

obtained. In NLOS condition the CWI model is designed to provide better results for base 

station antenna heights above the rooftop. The RMS error obtained over the entire test data is 

8.38 dB. 

In LOS condition, the obtained RMS error with the WB model is 10.24 dB. In NLOS 

case the RMS error decreases to 7.40 dB and this confirms that the model is more appropriate 

to predict path loss in NLOS case. 

In case of suburban environment, the only NLOS condition routes were examined. 

The average path loss exponent in this case was found to be 3.1. The overall RMS error is 
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6.82 dB, Applying CWI formula in suburban environment, it was obtained 8.38 dB RMS 

error and by applying WB formula in suburban environment, an RMS error of 7.40 dB was 

obtained. 

The performance of the CWI model is poor for hes^brocf. The model does not consider 

multipath propagation and the reliability of path loss estimation decreases also if the terrain is 

not flat or the land-cover in not homogeneous [Kanatas, 99]. 

In general, the CWI model describes adequately the site-specific environment in both 

LOS and NLOS cases. If the examined environment had flat terrain and the land cover was 

more homogeneous, the model would provide much better results. Furthermore a significant 

parameter is that the street layout and the city plan are non-uniform (characteristic in most 

Greek cities) and this reduces the model reliability according to the required parameters 

[Kanatas, 99]. 

The WB model is in general designed to provide better results for wide space 

buildings and for base station antennas placed above the rooftop. 

Taking into account these observation, an investigation of the NN applicability to the 

prediction of propagation path loss was done. 

The intention of this work was to develop micro-cell and indoor propagation 

prediction models with satisfactory accuracy, which relies on a database not difBcult to create. 

In Table 7.19, the performances, in terms of mean error ()i), standard deviation (a) and 

root mean square error (RMS) (in dB), achieved by all the proposed NN models in urban, 

suburban and indoor environment are indicated. 

Table 7.19. Proposed NN models performance in difTerent environments 

NN models Urban Suburban Indoor NN models 
LOS NLOS 

Suburban Indoor 

1» o RMS <T RMS a RMS <T RMS 
MLP-NN 5.08 4.23 6.63 4.61 4.65 6.55 3.01 2.23 3.74 3.05 3.15 4.38 
Hybrid MLP-
NN - - - 4.14 4.43 6.07 2.86 2.46 3.77 - - -

RBF-NN 5.04 4.54 6.78 3.67 3.88 5.35 2.65 2.55 3.68 3.09 2.88 4.23 
Hybrid RBF-
NN - - - 3.65 3.85 5.30 2.71 2.54 3.71 - - -

In general, for both urban and suburban environment, in the prediction made by the 

NN models is noticed a significant improvement as comparing to the empirical models. The 

only exception occurs in LOS case, urban environment, the prediction is very close to the one 
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made by the SSM, the diflference in the RMS sense being 0.46 dB in case of MLP-NN and 

0.61 dB in case of RBF-NN (both values in NN favor). 

In NLOS case, for both urban and suburban environment, an investigation was done 

on the potential benefits of the combination of physical parameters and a theoretical model, 

by applying MLP-NN. The improvement obtained in case of urban environment lies around 

0.71 dB and in case of suburban environment is 1.11 dB. However, this combination between 

physical and theoretical parameters had no efîect on the prediction done by RBF-NN models. 

Besides the simple NN prediction models, an error correction model was studied v^hen 

the NN is used to compensate for the error introduced by applying CWI model. In case of 

urban environment, the hybrid MLP-NN has shown an improvement at the order of 0.48 dB 

comparing to the simple prediction whilst in case of suburban environment the hybrid MLP-

NN has the same behavior as the simple prediction model (Table 7.19). 

Referring to the simple prediction models, for both urban and suburban environment, 

as depicted in Table 7.19, a slight improvement was obtained by the RBF-NN models over 

the MLP-NN models, 1.2 dB in case of urban (NLOS) and 0.06 dB in case of suburban. 

In case of hybrid NN models, the hybrid RBF-NN model for urban environment gives 

an improvement of 0.77 dB comparing to the hybrid MLP-NN whilst there is no significant 

difiference between the prediction done by hybrid MLP-NN and hybrid RBF-NN in suburban 

environment. These lead to the conclusion that both NN investigated, either as simple 

prediction models or incorporated in an error control system, give similar results. 

RBF-NN models v^th different inputs, representing physical parameters, were 

developed and used to evaluate their importance for the prediction of propagation path loss. 

For both types of environments (urban and suburban) under investigation, by using the street 

orientation parameter as an input to the RBF-NN, together with the other physical parameters, 

it was noticed a significant improvement in the prediction made by the both, RBF-NN and 

hybrid RBF-NN models. 

The best results obtained by the MLP-NN trained by LM algorithm were obtained in 

urban, suburban environments, for the simple prediction models and in indoor case. The 

proposed hybrid MLP-NN models give better prediction when the NN is trained vnth PB 

algorithm (urban environment) and RP algorithm (suburban environment). 

In general, the RP algorithm is about 41-43 % time faster than the PB algorithm. The 

LM algorithm is slower and it was tested only with early stopping method. The time used for 

training, for the proposed models, ranges between 100 s and 200 s. 
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Referring to the previous work reported in literature, in case of urban and suburban 

environmenţ a summary of the results are presented in the following table (Table 7.20): 

Table 7.20. Background studîes, outdoor environmeiit 

Environment Frequency 
[MHz] 

Results [dB] Observations 

[Gschwendtner, 93] 
Mannheim 
(Germany) 943 1.4 

o = 5.2 
MLP 
Urban 

[Stocker, 93] 

Mannheim 
(Germany) 943 H = 0.20 

o = 6.20 
MLP 
Urban 

[Stocker, 93] Darmstadt 
(Germany) 943 ^ = 4.9 

o = 6 
MLP 
Urban 

[Balandier, 95] Paris [France] 170 

o = 6.73 
(average) 

MLP, Urban 
Simple model 

[Balandier, 95] Paris [France] 170 a = 4.6 
(average 

Hybrid MLP model 
Urban 

[Gschwendtner, 96] Mannheim 943 ^ = 0 
a = 5.7 

Error correction MLP 
Micro-cell, urban 

[Fraile, 97] Munich 940 o = 6.45 
(average) MLP, Urban 

[Chang, 97] Tokyo o = 2.35 RBF, Urban 
-cell 

[FraUe, 98] Mimich 940 ^= 1.779 
o = 7.345 

MLP, Macro-cell 
Urban 

[Leros, 98] 
Athens 
(LOS) 900 

=1.079 
o = 6.888 

RMS = 6.97 
MLP 
Urban 

[Neskovic, 98] Belgrade 450 & 900 
RMS=5.9 dB 

(450 MHz 
RMS=6.1 dB 
(900 MHz). 

MLP 
Urban 

[BargaUo, 98] 
Missouri/Kansas 
City 
4sites: suburban 
1 site: urban 

11 = 0.37 
o = 1.6 MLP [BargaUo, 98] 

Missouri/Kansas 
City 
4sites: suburban 
1 site: urban 

^1=1.13 
a = 7.8 RBF 

[Yang,99] Seoul 1800 = 9.39 
aarea2 = 836 

Micro-cell 

The applications of the NN presented in this work were designed based on 

measurements performed in micro-cell at 1.89 GHz. Due to that it occurs a difQcult in making 

a comparisons with the other modeis, due to the different frequencies and different 

environments where the measurements were collected. For exampie, the German town of 

Mannheim is characterized by a regular building structure and almost no variation in terrain 
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height; in the city of Paris the area is very dense, characterized by irregular street grids, 

inhomogeneous built-up structures and street widths. 

In this work the measurements used to design the proposed NN based models were 

collected in two different environments, characterized by a non-flat terrain, an 

inhomogeneous land cover, street layout and city (village) plan are non-uniform. The centre 

of the city of Kavala is heavily built, mainly with five storey buildings, apartments, shopping 

centers and shops. Due to the fact that the city is placed between the city and a hilh the 

elevation varies from one meter to one hundred meters above sea le vel. Most of the roads in 

the city centre are narrow and there are only a few four-lane roads. The village of Oia is built 

on a high peninsula on the island of Santorini. It is a unique Cycladic environment, 

characteristic in the Greek islands. It has narrow walking paths, except of three main streets. 

The buildings are mostly stony and two-storeyed and many of them are embedded into the 

rock, being carved out of the stones with non-canonical shape. 

However, making a comparison between the results obtained by the proposed NN 

models in this work for urban environment with the results presented in [Yang, 99], the 

improvement obtained in the average standard deviation obtained ranges from 3.92 dB to 4.51 

dB. 

The hybrid model presented in [Balandier, 95], that includes antenna height parameter 

as an input to the NN, gives a standard deviation of 4.6 dB. The hybrid models proposed in 

this work (for urban environment) lead to a standard deviation of 4.43 dB (in case of MLP-

NN) and 3.85 dB (in case of RBF-NN). 

As far as the indoor environment is concemed, the previous studies are briefly 

described in section 6.2. 

The standard deviation indicated for the prediction done with measurements that were 

used for training is smaller than 3.3 dB and the standard deviation for measurements not used 

for training is smaller than 8 dB [Wolfle, 97b]. 

In [Neskovic, 00b] the mean errors of the fîeld strength prediction obtained by the 

neural network model in two old-style university buildings range between -2 dB to 2.4 dB for 

one building; -5.3 dB to 1.7 dB for the second building. The standard deviations reported 

range between 4.7 dB to 7.4 dB for the first building and 3.4 dB to 6.3 dB for the second one. 

The performances of the NN model in indoor environment presented in this work are 

shown in Table 7.19. In contrast to well-knovm empirical models high accuracy can be 

obtained, because the NN is trained with measurements inside buildings and thus include 

realistic propagation effects and also consider parameters, which are difficult to include in 
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analytic equations. It is difficult to make a comparison between the NN based models 

proposed in this work and the models proposed by the other authors due to differences in 

building stnicture. 

7.5. Conclusions 

New NN models are presented, through which some important disadvantages of both 

statistical and deterministic propagation models can be overcome. The proposed NN models 

are: 

1. MLP-NN prediction model in urban environment, 

2. MLP-NN prediction model in suburban environment 

3. Hybrid MLP-NN models in urban and suburban environment, 

4. MLP-NN model for indoor environment, 

5. RBF-NN prediction model in urban environment, 

6. RBF-NN prediction model in suburban environment, 

7. Hybrid RBF-NN models in urban and suburban environment, 

8. RBF-NN model for indoor environment. 

Within the proposed models, environmental characteristics are considered more subtly 

than in standard statistical models, what usually provides greater accuracy of the model. On 

the other side, the NN models are not computationally extensive as the deterministic models. 

The implementation of the proposed NN models requires a database that is easy to obtain. 

In comparison with other field strength prediction models, the proposed NN models 

showed very good accuracy. The main advantage of the proposed NN models lays in the fact 

that the models should be easily adjusted to some specific environments and complex 

propagation condition. In more specific local cases, the accuracy can be improved by some 

additional NN training. Results are always connected with some uncertainty but accuracy may 

be sufficient for prediction purpose. 

The results obtained by a pure MLP-NN system used for prediction are very 

interesting. But the results obtained by a MLP-NN system that combines a nonlinear NN 

approach, results of classical propagation loss algorithms and physical data open new ways of 

investigations. The algorithms carry a considerable expert knowledge on terrestrial wave 

propagation; the use of NN as field strength prediction model allows to efficiently integrate 

this knowledge as well as topographic and land cover information. 
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The hybrid modeling approach for the prediction of propagation path loss is studied 

and it is shown that NN can be used in highly adaptive models. By introducing of additional 

parameters during the training process even an extension of empirical models is feasible. In 

contrast to well-known regression algorithms, NNs offer many advantages owing their ability 

to represent highly nonlinear dependencies of many parameters simultaneously, inciuding 

information that cannot be treated analytically. In addition, the application of all available 

mformation at the same time is a way of getting the most even from poorly defmed databases. 

This flexible and computationally effective approach can be used for calibration and as an 

extension of convenţional prediction models. 

The advantage of the NN approaches is that a particular propagation model can be 

constructed to take account of various types of environments based on measurement data 

taken in the desired environment. This approach enhances the flexibility of the NN based 

prediction model to adapt to the terrain database of the environment. Simulation results have 

shovra that the NN approach provides more accurate prediction of field strength loss than that 

of the empirical models studied in this work. This verifies the effectiveness of the best 

approximation capability of the NN. 

7.6. Further work 

> It is proposed NN to be also investigated for the prediction of the delay spread and in 

general for the prediction of several parameters related to fast fading (time delay, 

Doppler effect, etc.). 

> The collection of measurements at different frequencies and in several types of 

environments will permit the development of a more general model. 

> NN applications in Telecommunications such as: 

- Automatic Modulation Recognition 

- Direction of Arrivals Estimation 

- Call Admission Control 
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Appendix 1 

Method of Steepesî Descent 

Consider a cost fiinction E(w) that is a continuously differentiable function of some unknown 

weight (parameter) vector w. The function E(w) maps the elements of w into real numbers. 

In this method, the successive adjustments appiied to the weight vector w are in the direction 

of steepest descent, that is, in a direction opposite to the gradient vector VE(w). For convenience of 

presentation 

g = VE(w) (A.l) 

Accordingly, the steepest descent algorithm is formally described by 

w(n + 1 ) = w(n) - | L I g(n) (A.2) 

where |i is a positive constant called the leaming rate parameter and g(n) is the gradient vector 

evaluated at the point w(n). In going from iteration n to n+l the algorithm applies the correction 

Aw(n) = w(n +1) - w(n) = g(n) (A.3) 

To show that the formulation of the steepest descent algorithm satisfies the condition for iterative 

descent E(w(n+l))<E(w(n)), it is used a first-order Taylor series expansion around w(n) to 

approximate E(w(n+1)) as 

E(w(n +1)) = E(w(n))+ g ^ (n)Aw(n) 

the use of which is justified for small and yields to 

E(w(n +1)) = E(w(ii))- ^ g T(n)g(n) = E(w(n))- ^ | | g (n f (A.4) 

which shows that, for a positive leaming rate parameter the cost function is decreased as the 

algorithm progresses from one iteration to the next. The reasoning presented here is approximate m 

that this end result m only true for small enough leaming rates. 

The method of steepest descent converges to the optimal solution w' slowly. Moreover, the 

leaming rate parameter |i has a profound influence on its convergence behavior: 

> When )i is small, the transient response of the algorithm is overdamped, in that the trajectory 

traced by w(n) follows a smooth path in the W-plane (weights plane). 

> When )i is large, the transient response of the algorithm is underdamped, in that the 

trajectory of w(n) follows a zigzagging (oscillatory) path. 

> When exceeds a certam criticai value, the algorithm becomes unstable (i.e., it diverges). 
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Appendix 2 

Newton 5 method 

The basic idea of Newton's method is to minimize the quadratic approximation of the cost 

function E(w) around the current point w(n); this minimization is performed at each iteration of the 

algorithm. Specifically, using a second-order Taylor series expansion of the cost function around the 

point w(n), we may write 

AE(w(n))=E(w(n + l))-E(w(n))=g'^(n)Aw(n) + ^ (A.5) 

As before, g(n) is the m-by-1 gradient vector of the cost ftinction E(w) evaluated at the point w(n). The 

matrix H(n) is the m-by-m Hessian matrix of E(w), also evaluated at w(n). The Hessian of E(w) is 

defined by 

H = v2E(w) = 

dwf 

d^E 
' wi 

5 wi^ W2 

d'E 
a w ? 

^ w i ^ w m 

d^E d^E d-E 
'wm^wi dwm 

(A.6) 

Equation (A.6) requires the cost function E(w) to be twice continuously differentiable with respect to 

the elements of w. Differentiating equation (A.5) with respect to Aw, the change AE(w) is minimized 

when 

g(n)+ H(n)Aw(n) = O (A.7) 

Solving this equation for Aw(n) yieids 

Aw(n )= -H"Kn)gW (A.8) 

That is, 

w(n +1) = w(n)+ Aw(n) = w(n) - H (n)g(n) (A.9) 

where Br^(n) is the mverse of the Hessian of E(w). 

Generally speaking, Newton's method converges quickly asymptoticaily and does not exhibit 

the zigzagging behavior that sometimes characterizes the method of steepest descent. However, for 

Nev^on's method to work, the Hessian H(n) has to be a positive definite matrix for all n. 

Unfortunateiy, in general there is no guarantee that H(n) is positive definite at every iteration of the 

algorithm. If the Hessian H(n) is not positive definite, modification of Newton's method is necessary 

[Haykin, 99]. 
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Appendix 3 
GausS'Newton method 

The Gauss-Newton method is applicable to a cost function that is expressed as the sum of 
error squares. Let 

2i=i 
(A. 10) 

where the scaling factor 1/2 is included to simplify matters in subsequent analysis. AII the error terms 
in this formula are calculated on the basis of a weight vector w that is fixed over the entire observation 
interval 1 < i < n. 

The error signal e(i) is a function of the adjustable weight vector w. Given an operating point 
w(n), the dependence of e(i) on w is linearized by writing 

T 
e'(i,w) = e(i)- M) 

5w 
(w-w(n)) 

w=w(n) 

Equivalently, by using matrix notation we may write 

e'(n,w) = e(n) +j(nXw - w(n)) 

where e(n) is the error vector 

e(n) = [e{lW2)i. . . .e(nr 
and J(n) is the n-by-m Jacobian matrix of e(n): 

i= 1,2, ...,n 

J(n) = 

rae(i) ae(l) ae(i) 1 
5W2 

ae(2) 5e(2) ae(2) 
âw2 

ae(n) ae(2) 5e(n) 
_ 5wi 5W2 w =w(n) 

The Jacobian J(n) is the transpose of the m-by-n gradient matrix Ve(n), where 

Ve(n)=[Ve(l),Ve(2),...,Ve(n); 

The updated weight vector w(n+l) is then defined by 

w(n +1) = arg minJ ̂ ||e'(n,w)|P > 
w [ 2 J 

Using equation (A. 12) to evaluate the squared Euclidean norm of e'(n, w), we get 

+ e''(n)j(nXw-w(n)) 

+ i{w-w(n)fjT(n)j(nXw-w(n)) 

(A.ll) 

(A. 12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A. 17) 
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Hence, differentiating this expression with respect to w and setting the result equal to zero, we obtain 

j T (n)e(n) + J ^ (n)j(n)(w - w(n)) = O (A. 18) 

Solving this equation for w, we may thus write in light of equation (A. 16): 

w(ii +1) = w(n)- ( y (n) J(n))"^ J ^ (n)e(n) = O (A. 19) 

which describes the pure form of the Gauss-Newton method. 

Unlike Newton's method that requires knowledge of the Hessian matrix of the cost ftinction 

E(n), the Gauss-Newton method only requires the Jacobian matrix of the error vector e(n). However, 

for the Gauss-Newton iteration to be computable, the matrix product J^(n)J(n) must be nonsingular. 

With regard to the latter point, we recognize that J^(n)J(n) is always nonnegative definite. To 

ensure that it is nonsingular, the Jacobian J(n) must have row rank n; that is, the n rows of J(n) in 

equation (A. 14) must be linearly independent. To guard against the possibility that J(n) is rank 

deficient, the customary practice is to add the diagonal matrix 51 to the matrix J^(n)J(n). The 

parameter 5 is a small positive constant chosen to ensure that J^(n)J(n) + 51: positive definite for all n. 

On this basis, the Gauss-Newton method is implemented in the slightly modified form: 

w(n +1) = w(n)- (j^(n)j(n>h5l)""^ jT(n)e(n) (A.20) 

The effect of this modification is progressively reduced as the number of iterations, n, is increased. 
Note also that the recurşive equation (A.20) is the solution of the modified cost function: 

E(w) = i i 5 | ^ - w ( 0 f - h Ze^O) (A.21) 
2 I i=l . 

where w(0) is the iniţial value of the weight vector w(i). 
We are now equipped with the optimization tools we need to address the specific issues 

involved in linear adaptive filtering. 

175 

BUPT



Appendix 4 

Least'meari'square algorithm 

The least-mean-square (LMS) algorithm is based on the use of instantaneous values for the 

cost function, namely 

E(w) = l e 2 ( n ) (A.22) 

where e(n) is the error signal measured at time n. Differentiating E(w) with respect to the weight 

vector w yields 

^ = (A.23, 

As with linear least-squares filter, the LMS algorithm operates with a linear neuron so we may express 

the error signal as 

e(n) = d(n)-x '^(n)wW (A.24) 

Hence, 

^ = (A.25) 

and 

| 5 g = - . (n)e(n) (A.26) 

Using this latter result as an estimate for the gradient vector, we may write 

g = -x(n)e(n) (A.27) 

Finally, using equation (A.27) for the gradient vector for the method of steepest descent, the LMS 

algorithm may be formulated as follows: 
A A 

w(n +1) = w(n)-h x(n)e(n) (A.28) 

A 

where |LI is the leaming rate parameter. The feedback loop around the weight vector w(n) m the LMS 

algorithm behaves like a low-pass filter, passing the low frequency components of the error signal and 

attenuating its high frequency components [Haykin, 96]. The average time constant of this filtering 

action is inversely proporţional to the leaming rate parameter |i. Hence, by assigning a small value to 

[L, the adaptive process will progress slowly. 

A 

In equation (A.28) it has been used w(n) in place of w(n) to emphasize the fact that the LMS 

algorithm produces an estimate of the weight vector that would result fi-om the use of method of 
steepest descent. As a consequence, in using the LMS algorithm a distinct feature of the steepest 
descent algorithm is sacrificed. In the steepest descent algorithm the weight vector w(n) follows a 
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well-defined trajectory in weight space for a prescribed |i. In contrast, in the LMS algorithm the 

A 

weight vector w(n) traces a random trajectory. For this reason, the LMS algorithm is sometimes 

referred to as a ''stochastic gradient algorithm". As the number of iterations in the LMS algorithm 
A 

approaches infinity, w(n) performs a random walk (Brownian motion) about the Wiener solution wq. 

The important point is the fact that, unlike the method of steepest descent, the LMS algorithm does not 

require knowledge of the statistics of the environment. 

A summaiy of the LMS algorithm is presented in Table A.l that clearly illustrates the 
simplicity of the algorithm. 

Table A.l Summary of the LMS algorithm 

Training sample: Input signal vector = x(n) 

Desired response = d(n) 

User-selected parameter: |i 
A 

Initialization. Set w(o) = O 

Computation. For n = 1, 2, compute 

e(n) = d(n). w V M n ) 
A A 

w(n +1) = w(n)+|i x(n)e(n) 
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