UNIVERSITATEA POLITEHNICA DIN TIMIȘOARA FACULTATEA DE MECANICĂ

. •

Inginer IOAN CIORBA

TEZĂ DE DOCTORAT

CERCETAREA PROCESULUI DE AUTOFRETARE A ȚEVILOR DE ARTILERIE

BIBLIOTECA CENTRALĂ						
UNIVERSITATEA "POLITEHNICA"						
TIMISOARA						

AND	ale the state of the state of the state of the f
-	· · · · · · · · · · · · · · · · · · ·
	620174
	369 · A

Conducător științific:

Prof. dr. ing. TUDOR ICLĂNZAN

CUVÂNT ÎNAINTE

Lucrarea de față a fost elaborată pe baza cercetărilor pe care le-am desfășurat în cadrul programului de dotare a Uzinei Mecanice Reșița cu o instalație de autofretare a țevilor de artilerie.

Uzina Mecanică Reșița a fost înființată în anul 1972, cu scopul de-a relua fabricația de guri de foc de artilerie în orașul Reșița – oraș cu tradiție, înainte de 1945, pentru producția cu specific militar

În momentul lansării programului de asimilare în fabricație a instalației de autofretare mecanică a țevilor de artilerie, îndeplineam funcția de director adjunct tehnic la U.M.Reșița și aveam o vechime ca inginer în această unitate economică de circa 20 ani și de 15 îndeplineam, prin cumul sau plata cu ora, o funcție didactică în cadrul Universității Eftimie Murgu din Reșița.

Cu ocazia finalizării lucrării de doctorat, primele mele gânduri se îndreaptă spre toți aceia care m-au încurajat, sprijinit material și profesional pentru realizarea fizică a instalației de autofretare, omologarea ei și finalizarea cercetărilor teoretice și practice, care fac posibilă aplicarea acestei tehnologii de creștere a capacității portante a țevilor de artilerie la Uzina Mecanică Reșița

Dacă în acest ultim deceniu, în majoritatea cazurilor, s-a distrus industria constructoare de mașini din România, mă simt mândru că beneficiind de sprijinul dezinteresat al profesioniștilor români, cu colectivul de specialiști de la U.M.Reșița, am reușit să implementăm o nouă tehnologie, care face posibilă dorința armatei române de-a trece la execuția țevilor de artilerie tip NATO cal. 155 mm.

Doresc să aduc, pe această cale, mulțumirile mele tuturor celor care m-au ajutat să sper a obține această ultimă împlinire profesională a fiecărui inginer. Pentru mine titlul de "doctor inginer" este, ceea ce cred eu că este ca împlinire a profesiei, pentru un ofițer – gradul de general. Funcțiile sunt de multe ori obținute în urma unor împrejurări (situații) favorabile și de regulă temporare. Gradele și titlurile științifice sunt, în majoritatea cazurilor, o distincție a unei calificări profesionale superioare și, foarte important, sunt "perene"

Consider că am avut un mare noroc în viață să-l am conducător științific pe domnul prof dr ing. Tudor Iclănzan, căruia îi rămân profund îndatorat pentru îndrumarea științifică competentă, căldura sufletească și tactul cu care a contribuit la formarea mea profesional-științifică și ca om. Nu voi putea uita niciodată profesionalismul de care a dat dovadă încă din momentul în care s-a decis a mă îndruma științific. Atunci mi-am dat seama că este un om de calitate, care nu acceptă compromisurile și că nu începem un lucru fără a fi siguri că îl finalizăm.

Toată stima și admirația domnule profesor !

Mii de mulțumiri aduc domnului fost secretar de stat MCT prof.dr.ing. Florentin Tănăsescu fără al cărui sprijin material nu ar fi fost posibilă execuția instalației de autofretare a țevilor de artilerie. O singură dată am discutat cu acest om deosebit și îi mulțumesc mult că a avut curajul să aprobe programul pe care l-am prezentat și să aloce fondurile necesare. Oricâte cunoștințe științifice am fi avut cei ce ne-am ocupat de proiectarea, execuția și omologarea acestei instalații, realizarea practică nu ar fi fost posibilă fără riscul pe care dumnealului și l-a asumat.

Nu voi putea uita niciodată pe bunul meu prieten, prof.dr.ing. european Tiberiu Ștefan Mănescu, care în anul 1980 m-a acceptat ca și coleg la disciplina "Rezistența materialelor" și mi-a dat

primele sfaturi pedagogice. A fost cel care m-a "agasat" tot timpul pentru a mă înscrie la doctorat și a finaliza această teză. Pentru mine a fost, este și va rămâne un frate mai mare.

În egală măsură țin să mulțumesc colegilor mei din cadrul Companiei Naționale "RomArm"pentru contribuția adusă la proiectarea și realizarea acestei instalații: ing. Gheorghe Nemțanu, ing. Petre Marin, ing. Petru Lațcu, ing. Adrian Ponoran, ing. Zanfir Ciorba și nu în ultimul rând col.ing. Ion Ioan.

Profund îndatorat rămân familiei mele care m-a sprijinit moral, mi-a preluat o parte din sarcinile specifice capului de familie și a renunțat la multe zile de week - end și concediu de odihnă pe perioada elaborării acestei teze.

Reșița, 2001

Ioan T. Ciorba

C U P R I N S

I. INTRODUCERE	1
CAP. 1 TEHNICI DE AUTOFRETARE A ȚEVILOR DE ARTILERIE	
 1.1. Descrierea generală a tipului de țevi de artilerie și definirea țevii autofretate 1.2. Ecruisare/autofretare materiale pentru țevi de artilerie, rezultate pe plan mondial 1.3. Procedee de autofretare, avantaje/dezavantaje, costuri, implicații 	5 14 17
CAP. 2. OBIECTIVELE CERCETĂRII ȘI METODE DE LUCRU	25
CAP. 3. STUDIUL TEORETIC AL STĂRII DE TENSIUNE ȘI DEFORMAȚII LA ȚEVI CU PEREȚI GROȘI AUTOFRETATE. STABILIREA MODELULUI MATEMATIC AL SOLICITĂRII ELASTO-PLASTICE	
3.1. Aspectul teoretic privind calculul tevilor de artilerie (tuburi cu pereți groși)	
în domeniul elastic	27
3.1.1. Starea plană	27
3.1.2. Starea spațială	33
3.2. Teorii de rezistență posibil de utilizat în calculul țevilor de artilerie solicitate	
în domeniul elastic.	39
3.2.1. Teoria deformației specifice maxime	40
3.2.2. Teoria efortului unitar tangențial maxim (Ch. Coulomb)	43
3.2.3. Teoria energiei de deformație modificatoare de formă (Hencky-Mises)	44
3.3. Autofretarea țevilor. Calculul țevilor de artilerie în domeniul elasto-plastic	48
3.3.1. Principiul autofretării. Criterii de plasticitate	48
3.3.2. Calculul țevilor de artilerie autofretate după teoria tensiunilor tangențiale maxime.	
Curba caracteristică tip PRANDTL	51
3.3.2.1. Tub parțial autofretat	52
3.3.2.2. Tub total autofretat	55
3.3.2.3. Calculul deformațiilor	56
3.3.3. Calculul țevilor de artilerie autofretate după teoria efortului tangențial maxim	58
3.3.4. Calculul țevilor de artilerie autofretate după teoria energiei de deformație	
modificatoare de formă. Curba tip PRANDTL	63
3.3.5. Calculul țevilor de artilerie autofretate după teoria energiei de deformație	
modificatoare de formă. Curba cu întărire	68
CAP. 4. ANALIZA CARACTERISTICILOR MECANICE ȘI DE DEFORMABILITATE LA SOLICITĂRI STATICE ȘI DINAMICE PENTRU OȚELUL OHN3MFA ÎN STARE DE SEMIFABRICAT PENTRU AUTOFRETARE	70
4.1. Consideratii generale	70
4.2. Încercările la tractiune statică	70
4.3 Încercările la tracțiune dinamică	78
4 4 Încercările la încovoiere prin soc	28
4.5. Cercetări de deformabilitate plastică și unele aspecte privind evoluția durității	97
4.6. Cercetări privind durabilitatea la socuri repetate	92 96
4.7 Determinarea tenacității la rupere	00 00
	19

CAP. 5. INSTALAȚIA INDUSTRIALĂ DE AUTOFRETARE	102
5.1 Domenii de aplicare	102
5.2. Constructia instalatiei	102
5.3 Functionarea instalatiei	103
5.4 Caracteristicile tehnice ale instalatiei	104
5 5 Posibile aplicații în tară	104
CAP. 6. METODE DE CERCETARE EXPERIMENTALĂ ȘI DE SIMULARE A	
PROCESULUI DE AUTOFRETARE	105
6.1. Experimentarea autofretării mecanice cu bilă și cu dorn	105
6.1.1. Prima încercare de autofretare	105
6.1.2. Încercări experimentale de autofretare în laborator	109
6.1.3. Încercări experimentale de autofretare pe instalația industrială IAFD	118
6.2. Studiul asupra procesului de fosfatare a semifabricatelor supuse autofretării	124
6.2.1. Scop	124
6.2.2. Mod de lucru	124
6.3. Prelucrarea rezultatelor experimentale	126
6.3.1. Considerații teoretice și stabilirea unei proceduri de evaluare și	
validare a autofretării	126
6.3.2. Compararea datelor experimentale obținute cu cele calculate	128
6.3.3. Concluzii și evaluări	131
6.4. Studiu asupra stabilității dimensionale a țevii autofretate în timp și la	
temperaturi ce pot apare în procesul de exploatare	132
6.5. Studiu privind influența stratului autofretat asupra regimurilor de așchiere la	
operațiile de prelucrare finală a țevii de tun	133
6.6. Studiul modelării solide a procesului de autofretare în cazul țevilor de artilerie	134
6.6.1. Discretizarea și realizarea modelului cu elemente finite pentru	
ansamblul țeavă-dorn	134
6.6.2. Stări de tensiune	134
6.6.3. Deformații specifice	135
6.6.4. Ecuațiile teoriei elasticității	135
6.6.4.1. Ecuațiile de echilibru	135
6.6.4.2. Relații între deplasări și deformații specifice	136
6.6.4.3. Ecuațiile fizice (constitutive) ale unui corp liniar și izotrop	136
6.6.4.4. Căi de soluționare a problemelor teoriei elasticității	136
6.6.4.5. Modelarea semifabricatului țeavă și dorn cu Pro/ENGINEER	137
6.6.5. Modelarea și analiza cu elemente finite sub mediul MSC Nastran	140
CAP. 7. CONTRIBUȚII PERSONALE	141

. -

INTRODUCERE

Participând la acțiunea de dotare a armatei cu tehnică de artilerie modernă, specialiștii care lucrează în acest domeniu și-au intesificat eforturile pentru stabilirea unor soluții constructive și tehnologice care să facă posibilă execuția în țară a tehnicii de artilerie similară cu ceea din dotarea forțelor NATO.

Teza de doctorat abordează domeniul cercetărilor privind creșterea capacității de rezistență la presiune interioară a tuburilor cu pereți groși. Țevile armamentului de artilerie sunt în fond tuburi cu pereți groși, care trebuie să asigure anumite cerințe legate de presiunea care se realizează la tragere, cadența de tragere și luând sistemul gurii de foc ca ansamblu, precizia tragerii. Toate aceste date trebuie privite în strânsă legătură cu viața gurii de foc, cu masa acesteia, cu mentenanța și implicit mentenabilitatea sistemului de foc.

Asigurarea unei bătăi sporite, constituie o cerință prioritară, impusă de concepția de întrebuințare în luptă a artileriei moderne. Creșterea bătăii se poate realiza prin obținerea unei viteze inițiale mai mari decât cele prezente.

Acest deziderat se poate realiza prin mărirea lungimii țevii sau prin utilizarea unor încărcături de azvârlire care să creeze presiuni mult mai mari. Mărirea lungimii țevii are ca urmare micșorarea manevrabilității și reproiectarea întregului sistem artileristic. Soluția ideală constă, mai ales, pentru gurile de foc de artilerie existente în utilizarea unor încărcături de azvârlire care să creeze presiuni mai mari. Această soluție poate fi viabilă numai dacă se reușește, ca pentru aceeași geometrie a țevii, să se obțină rezistență superioară la solicitările interioare ale presiunii dezvoltate de pulberea de azvârlire utilizată. Cea mai nouă soluție, o constituie mărirea capacității portante a acestor țevi, prin autofretarea semifabricatului într-o fază apropiată de execuția finală. În aceste condiții, geometria țevii și materialul utilizat sunt aceleași, iar sistemul artileristic nu trebuie reproiectat

Dezvoltarea "artileriei" române este în deplină concordanță cu situația economico-socială și politică a țării, fiind puternic influențată, ca întregul parcurs istoric al statului nostru, de factorii externi.

Contextul care a determinat formularea temei de cercetare a consituit-o necesitatea dotării industriei române de apărare cu o instalație de autofretare care să facă posibilă execuția de tunuri tip NATO. Trebuie menționat că România, pe parcursul istoriei sale, a făcut mari eforturi financiare pentru a avea o independență a producției de armament.

Cele mai vechi mențiuni despre gurile de foc de artilerie românești le găsim într-o scrisoare către brașoveni a lui Viad Dracul, datând din prima jumătate a secolului al IV-lea (1432 - 1433), prin care domnitorul îl roagă să-i găsească o sută de "pușci"

Prima consemnare a folosirii gurilor de foc de artilerie de către oștirea Țării Românești este consemnată de cronicarul Wavrin, care a asistat la desfășurarea luptelor din 1445 duse împotriva turcilor de Vladislav Jagello și Ioan Corvin, cu participarea oastei române condusă de Vlad Dracul [85]

In a doua jumătate a secolului al XV-lea artileria din Țările Române se dezvoltă simțitor, atât ca număr, cât și ca varietate a calibrelor. Execuția gurilor de foc de către meșteri români este confirmată și de către cronicarul Leonie Chalcondil, care în lucrarea sa "Expuneri istorice", scrie: "Dar avea împăratul un tunar cu numele Orban, dac de neam, acesta a fost mai înainte la eleni și i-a părăsit, venind la poarta împăratului. Atunci acesta a fost primit cu leafă mare și a avut grijă de pregătirea tunurilor" [85]

În prima jumătate a secolului al XVI-lea oștile române erau înzestrate cu diferite tipuri de guri de foc, printre care și renumitele tunuri cu țeava din lemn de cireș, întărite cu cercuri de fier Țevile pentru aceste tunuri au fost realizate în ateliere improvizate, în comunele Bucium și Cărpiniș, sub îndrumarea meșterului Ioan Sterca Suluțiu. [85] În ceea ce privește fabricarea tunurilor cu țeava din metal, sunt cunoscute consemnările din timpul unor domnitori ca Neagoe Basarab, Ieremia Movilă, Petru Rareş, Aron Vodă. Petru Cercel a pus chiar bazele primei turnătorii de țevi de tunuri în București. Un fragment de tun de pe vremea lui Petru Cercel, având pe culată stema țării și o inscripție care atestă că s-a fabricat pe vremea sa, se găsește la Muzeul Militar Central. Calibrul țevii acestui tun este 54,5 mm, lungimea țevii 580 mm, iar lungimea tunului 1800 mm. [85]

- .*

În legătură cu artileria lui Ioan Vodă cel Cumplit, care în mai puțin de doi ani (1572-1574) și-a organizat o puternică forță artileristică, cronicarul Grigore Ureche menționează că ea se compunea atât din tunuri ușoare ("de cele moldovenești" pe două roți -ca artilerie de însoțire), cât și din obuziere ("hușnițe" sau "haubițe" - cuvinte de origine slavă), care constituiau artileria grea de câmp.

De remarcat, fabricarea în secolele al XVI-lea și al XVII-lea a unor însemnate cantități de armament de artilerie, chiar și pentru export, în diferite orașe - cetăți din Transilvania, ca: Bistrița, Brașov, Bran, Sibiu, Sighișoara, Făgăraș, Lipova, Alba-Iulia. O probă materială a acestor preocupări o constituie tunul calibru 64 mm, construit de Neculai Olahul, care se află la Muzeul Militar Central (lungimea țevii 2240 mm, afetul din lemn, greutatea tunului 541 kg). [85]

Treptat, însă, datorită frământărilor interne, fabricarea gurilor de foc în Țările Române intră în regres, ajungând ca pe timpul fanarioților ea să se oprească complet

În prima jumătate a secolului al XIX-lea, în perioada luptei intense a poporului nostru pentru unitate națională, apare la noi artileria ca armă separată. Prima baterie de artilerie (4 tunuri), care a luat ființă în 1843 sub domnia lui Gheorghe Bibescu (Țara Românească), avea tunuri cu țeavă de bronz din Turcia. În Moldova, prima baterie ia ființă în 1849, sub domnia lui Grigore Alexandru Ghica și este înzestrată cu 6 piese (după modelul rusesc). [85]

În anul 1864, pe timpul domnitorului Alexandru Ioan Cuza, artileria noastră a fost înzestrată, pentru prima dată, cu tunuri cu țeavă ghintuită (tunuri Md. 1863, cu țeavă de bronz, fabricate în Belgia). În 1868 armata română adoptă sistemul de încărcare pe la culată, iar în 1871 se dotează cu tunuri cal. 78 mm, Md. 1868, sistem Krupp folosind focos percutant și focos fusant. [85]

O dezvoltare deosebită a producției de guri de foc de artilerie și de proiectile pentru artilerie a avut loc la Reșița încă din anul 1776.

Ca urmare, Curtea din Neapole a contractat în anul 1793 execuția a 20.000 proiectile de artilerie, iar în războiul contra lui Napoleon a furnizat un imens material de război - tunuri, ghiulele etc. Datorită reputației tunurilor fabricate la Reșița, în anii 1848 - 1849, Curtea imperială a dat ordin să se reînceapă fabricația, astfel că până în anul 1855 s-au fabricat 46 tunuri. [80] [96]

În anul 1898 colonelul de artilerie Particari a proiectat un tun de câmp cal. 68 mm, cu viteză inițială foarte mare pentru acele vremuri, al cărui prototip a fost construit la Uzina St. Chamond din Franța. Cu ocazia unor experimente efectuate la fortul Chiajna s-a stabilit că proiectilul tras de acest tun avea la bătaia de 8 km viteza pe care șrapnelul tras de tunul Krupp îl avea la bătaia de 4 km. Statul român, din motive economice, nu a reușit să asimileze în fabricație acest tun.

În anul 1904, firma Krupp a fabricat, în baza documentației propuse de partea română, tunul cu tragere rapidă, cal. 75 mm, care, datorită performanțelor tehnico-tactice a constituit un mare progres în artilerie, iar Președintele Consiliului de Miniștri, de atunci, Dimitrie Sturza, l-a numit cu mândrie în Parlament "tunul cu tragere repede model român". Înălțătorul pentru acest tun, inventat de Mr. Ghenea Toma și denumit "goniometrul Ghenea" a fost creat pentru a înlocui trei aparate separate, și anume: înălțătorul cu cremalieră pentru ochire directă, cadranul și alidada de reperaj. [85]

În urma verificării diferitelor sisteme de obuziere construite de uzinele germane și franceze, după testări ce au durat aproape doi ani, pe baza cerințelor artileriștilor români, în 1912 a fost adoptat, pentru înzestrarea armatei noastre un al doilea material de artilerie propriu, prevăzut cu legătură elastică, obuzierul cal. 105 mm. Prin bătaia maximă de 6500 mm și prin greutatea sa această gură de foc de artilerie era superioară celui mai modern obuzier de câmp existent în acea vreme în Europa. [85] În uzinele Schneider din Franța s-a executat, în anul 1912, obuzierul greu cal. 150 mm (existent până în 1994 în dotarea Artileriei Române) în baza condițiilor tehnice impuse prin Caietele de Sarcini întocmite de comisia formată din: G-ral Georgescu Gheorghe, Col. Ghenea Toma, Col. Iliescu Dumitru, Lt.col. Rudeanu Vasile și Cpt. Petrescu Gheorghe. Jumătate din obuzierele cal. 150 mm comandate de țara noastră au fost oprite la livrare de guvernul francez și folosite în perioada 1914 - 1916 pe frontul din Franța și Belgia. Ele erau considerate ca cele mai moderne obuziere grele de câmp de care dispuneau aliații. [85]

. -

În perioada primului război mondial, la Reșița, în afară de imense cantități de muniție, s-au executat 500 țevi de tun cal. 80 și 100 mm, 1250 afete de tun, iar după război, în colaborare cu Uzinele Vickers, s-au pus în funcțiune mașini moderne pentru ghintuirea și șemizarea țevilor de tun La presa de 1200 tf se puteau forja țevi de tun până la calibru 150 mm. [80][96]

După terminarea primului război mondial, datorită uzurii avansate a conului de forțare a țevilor de artilerie, a lipsei de fonduri financiare necesare înlocuirii acestora și a necesității readucerii acestora în parametrii tehnico-tactici corespunzători, s-a aplicat de către specialiștii români, în anii 1934 -1936, metoda șemizării și tubare amovibilă a materialelor de artilerie. [86] Această metodă s-a aplicat și datorită existenței în cantități foarte mari în depozitele armatei, a muniției cal. 75 mm (același principiu a stat la baza deciziei de a executa obuzierul de munte cal. 98 mm "Bucegi" în anul 1993).

Deoarece la sfârșitul primului război mondial artileria română dispunea de materiale foarte eterogene (situație valabilă și astăzi, dar în mai mică măsură), din punct de vedere al categoriilor, al modelelor și al calibrelor, era necesar să se treacă la o simplificare și la o unificare a lor Calea folosită a fost executarea în țară a aruncătoarelor de 60 mm, 81,4 mm și 120 mm, a tunului antitanc cal. 47 mm Schneider, a tunului antiaerian cal. 75 mm Vickers, cât și importul de obuziere de câmp cal. 100 mm Skoda, tunuri de câmp de 105 mm Schneider și obuziere cal. 150 mm Skoda.

Dintre realizările tehnice românești din timpul celui de-al doilea război mondial se remarcă, în mod deosebit, tunul antitanc românesc cal. 75 mm, Md. 1943, executat la Reșița. Proiectarea acestui tun s-a făcut de către un colectiv condus de colonelul Nestorescu Valerian.

Datorită acestui împătimit ofițer de artilerie și a tradiției reșițene de secole, s-a hotărât în anul 1972, reînființarea unei uzine de execuție a gurilor de artilerie la Reșița. Ca urmare, din anul 1975, s-a trecut la fabricația de serie a tunului antitanc cal. 100 mm, unul din cele mai bune tunuri din lume prin adaptarea sa pentru tragerea loviturii subcalibru "săgeată" Până în prezent s-au fabricat diferite tipuri de tunuri, obuziere și tunuri obuziere, din care amintesc: tunul de pe tancul românesc cal. 100 mm, tunul de pe tancul românesc cal. 125 mm, obuzierul cal. 152 mm, tunul cal. 130 mm, tunul obuzier cal. 152 mm, obuzierul de munte cal. 100 mm etc. - transformat în 1993 în cal. 98 mm. Practic cea mai mare parte a artileriei terestre a Armatei Române este fabricată de Uzina Mecanică Reșița. [96]

企

Fiecare stat, atâta timp cât nu este parte a unei alianțe puternice, nu poate spera la menținerea frontierelor fără o puternică artilerie terestră și antiaeriană

Comerțul cu armament nu trebuie să fie numai o sursă de dezvoltare a țărilor care deocamdată decid soarta noastră.

Dacă vrem pace să ne restructurăm pentru a putea evita un eventual război.

Guvernanții au fost și vor fi responsabili de echiparea , dotarea, instrucția și capacitatea de mobilizare a armatei atât in timp de pace cât și de război.

Tema abordată ridică o serie de probleme științifice și tehnologice. Din punct de vedere științific trebuie clarificat care din cele trei teorii din rezistența materialelor, specifice calculului tuburilor cu pereți groși, este ceea adecvat a fi utilizată. Se impunea obținerea de cunoștiințe teoretice despre procedeul de autofretare, procedeu tehnologic prea puțin cunoscut și stabilirea modelului matematic de calcul a parametrilor care certifică realizarea autofretării. Din punct de vedere tehnologic se cereau următoarele clarificări :

- care procedeul de autofretare se pretează a fi aplicat industrial în România,

- .-

- determinarea parametrilor tehnologici pentru semifabricat, scule, regimul de lucru, comportarea în timp a țevii autofretate,
- controlul procesului de autofretare, validarea autofretării, stabilirea gradului de autofretare,
- determinare regimurilor de așchiere utilizate asupra unui semifabricat autofretat

Având în vedere natura "cofidențială" a experienței tehnologice a tuturor producătorilor de țevi de tun autofretate nu am reușit să obțin prin studiu s-au discuții directe prea multe date de natură a clarifica aspectele enunțate. În general datele și informațiile la care am avut acces au fost "opace" Ca urmare s-a impus un program vast de experimentare pentru a obține o proprie experiență în cunoașterea acestui procedeu tehnologic.

In urma studiului teoretic și experimental efectuat- atât în condiții de laborator cât și pe instalația industrială executată în U.M.Reșița – am reușit să găsesc răspuns la toate aspectele menționate rămânând ca o problemă deschisă, soluția optimă pentru geometria și materialul sculei, fiabilitatea acesteia, precum și noi soluții de micșorare a forței necesare autofretării

Datorită costurilor foarte ridicate atât pentru execuția instalației industriale cât și pentru încercările experimentale am fost limitat în formularea obiectivelor tezei Ași fi dorit să pot executa complet o țeavă de tun și să stabilesc prin trageri numărul de lovituri după care aceasta se decalibrează comparativ cu o țeavă identică dar neautofretată. Toate încercările experimentale s-au efectuat pe probe obținute din țevi rebutate în anii anteriori, în diferite faze de prelucrare mecanică prin așchiere, s-au din țevi care au fost trase la probele de lot și l-a livrarea tunului au trebuit înlocuite cu țevi care au executat numai proba de casă. Menționez că un semifabricat nou adus în faza anterioară autofretării costă cca. 24.000 USD(1kg. de oțel brut forjat =2,8 USD). O instalație de autofretare hidrostatică ne-a fost oferită de o firmă occidentală, în anul 1988, la prețul de 7.000.000 USD.

In viitor se impune a se face o cercetare asupra soluțiilor constructive și de material a dornului folosit la autofretare.Din informațiile neoficiale obținute de la firmele cu care am avut contacte tehnice pe teme de tehnologii de execuție a țevilor de artilerie a rezultat că se utilizează ca materiale oțeluri de scule s-au tungsten. Un dorn rezistă în medie la 3 autofretări.

In realizarea obiectivelor tezei am colaborat cu :

- I.C.D.E.M. București care a proiectat instalația industrială de autofretare,
- Universitatea POLITEHNICA din Timișoara, Facultatea de mecanică, Catedra Tehnologia Construcțiilor de Mașini și Catedra de Rezistența Materialelor unde s-au efectuat majoritatea încercărilor pe eșantioane din capete de țevi și s-au stabilit caracteristicele mecanice ale oțelului OHN₃MFA,
- U M Reşiţa unde s-a executat instalaţia industrială, sculele necesare, probele pentru experimentare, instalaţia de fosfatare şi standul de experimentare pentru încercările pe eşantioane şi s-a experimentat industrial procedeul de autofretare pe ţevi de artilerie S-a stabilit comportarea în timp a semifabricatelor autofretate, curbura după autofretare, regimul tehnologic pentru acest procedeu, regimurile de aşchiere pentru operațile ulterioare autofretării, stabilitatea în timp a semifabricatului autofretat dacă se supune unui tratament termic de detensionare,
- U.C.M.Reșița unde s-a efectuat pe stand de experimentare prima încercare de autofretate mecanică cu dorn,
- S.C. ACTEL S.A. București proiectarea și realizarea echipamentului de comandă a motorului de curent continuu al instalației EASP –70,
- S.C. "NEPTUN" Câmpina execuția reductorului,
- S.C. "Electroputere" Craiova execuția motorului c.c. cod 20248.

CAPITOLUL 1

TEHNICI DE AUTOFRETARE A ȚEVILOR DE ARTILERIE. STADIU ȘI PROBLEMATICĂ.

1.1.Descrierea generală a tipurilor de țevi de artilerie și definirea țevii autofretate.

Calitatea unei guri de foc de artilerie este caracterizată printre altele de distanța maximă la care aruncă proiectilul, de greutatea proiectilului, de precizia la țintă și de manevrabilitatea sa. Din punct de vedere al soluțiilor constructive nu s-au făcut progrese marii în ultimii 50 de ani. Majoritatea producătorilor au făcut progrese în constucțiilor țevilor, a muniției, a aparatelor optice și a sistemului de conducere a focului. Ca urmare unul din principalele domenii de studiu pentru artileriști este creerea de noi tipuri de țevi.

Țeava servește pentru a arunca proiectilul în direcția și la distanța dorită, dându-i în același timp o mișcare de rotație în jurul axului său.

Țevile gurilor de foc de artilerie pot fi ghintuite (cu canal de formă cilindrică sau conică) sau lise.

La proiectarea țevilor gurilor de foc de artilerie s-au avut în vedere mai mulți factori care contribuie în final la realizarea constructivă a acestora.

Printre acești factori se enumeră și puterea gurii de foc, care presupune o viteză inițială mare a proiectilului. Viteza inițială depinde, în final, de presiunea din camera de încărcare a țevii, care la rândul ei constituie factorul principal de care trebuie ținut seama în dimensionarea țevii.[4][5][40][62][76][85][86]

Realizarea unor presiuni interioare mari, în camera de încărcare, conduce la o îngroșare excesivă a țevii, deoarece în peretele țevii se crează eforturi unitare mari și conform ipotezelor de rupere acestea nu trebuie să depășească anumite limite.

Îngroșarea excesivă a pereților țevii prezintă multe greutăți, atât în proiectarea celorlalte subansamble ale gurii de foc, cât și în realizarea tratamentului termic a țevilor.

Principalele părți constructive ale țevilor de artilerie sunt prezentate în fig 1 [4][5][40][62][76][85][86]

FIG.1 Părțile principale ale unei țevi de tun

Din punct de vedere al organizării construcției exterioare, țeava trebuie să asigure următoarelele facilități:

- îmbinarea cu culată, care se realizează prin gulerul cilindric 1, fixat în culată prin intermediul unui manșon filetat ce ghidează pe suprafața 2;

- ghidarea în leagăn în timpul reculului, care se realizează prin suprafața cilindrică, rectificată 2.

- fixarea frânei de gură, care se realizează prin filetul 3 de la gura tevii

- -

Din punct de vedere al organizării construcției interioare, țeava de artilerie are de îndeplinit două funcții asigurarea încărcării loviturilor de artilerie și ghidarea proiectilului [4][5][40][62][76][85][86]

În figura 1 se prezintă camera de încărcare pentru tragerea loviturilor neacuplate formată din suprafețe conice, după cum urmează:

- suprafața conică 4 are rolul de-a menține tubul purtător de încărcătură de azvârlire;

- suprafața 5 se numește con de racordare și este parțial ocupat de fundul proiectilului;

- suprafața 6 este conul de rezemare, cu rol de rezemare a brâului forțator al proiectilului;

- suprafața 7 reprezintă conul de forțare care asigură tăierea brâului forțator al proiectilului și ghidarez acestuia pe ghinturi;

Ghidarea proiectilului în țeavă se asigură de partea ghintuită 8 a țevii, care are și rolul de-a imprima proiectilului mișcarea de rotație necesară pentru stabilitatea sa în zbor pe traiectorie. Partea ghintuită se caracterizează prin sensul, înclinarea, profilul, pasul și numărul ghinturilor [4][5][40][62][76][85][86]

Sensul ghinturilor este indiferent din punct de vedere balistic, deoarece nu influențează sensul derivației.

La armamentul de infanterie, sensul ghinturilor se alege spre dreapta, deoarece prin derivație se caută să se compenseze abaterea spre stânga a proiectilului, atunci când ochitorul face ochirea cu ochiul drept. În acest caz, în mod obiectiv, țeava are o ușoară deviere către stânga [4][5][40][62][76][85][86][92]

La armamentul de artilerie, de regulă, sensul ghinturilor este spre dreapta. Pentru o corectă întocmire a tabelelor de tragere (tabele care precizează, pe bază statistică, locul de cădere al proiectilului pe diferite unghiuri de înălțător), se execută și se trag comparativ și țevi cu sensul ghintului spre stânga. Datorită costurilor ridicate, cât și a ritmului impus pentru asimilarea în fabricație, în România nu s-au executat - până în prezent - trageri comparative cu țevi de artilerie similare, dar cu sensul diferit al ghinturilor.

Un ghint este spre dreapta, atunci când privind prin țeavă pe la capul gros observăm ghintul superior înclinat spre dreapta.[4][85]

Înclinarea ghinturilor poate fi constantă sau variabilă (progresivă). Viteza de rotație a proiectilului depinde de înclinarea ghinturilor pe porțiunea finală a părții ghintuite.

Folosirea ghinturilor cu înclinare variabilă (progresivă) este folosită în general la obuziere [4][85]

Ghinturile la țevile de artilerie au de regulă un profil dreptunghiular la care lățimea golului este mai mare decât lățimea plinului (de cca 1,5 - 2 ori), pentru a asigura ca proeminențele formate pe brâul forțator din cupru al proiectilului să nu fie tăiate de flancurile ghinturilor.

Diametrul țevii măsurat între plinul ghinturilor reprezintă calibrul țevii.

Profilul ghinturilor este de regulă constant pe toată lungimea ghintuită.

Pasul ghintului este lungimea măsurată în lungul axului țevii în care ghintul face sau poate să facă o rotație completă. De regulă pasul se măsoară cu calibru.

Numărul de ghinturi depinde de viteza inițială, presiunea maximă, lățimea brâului forțator, calibrul gurii de foc, dar nu poate fi decât un număr par.

De menționat că după 1972 au apărut multe guri de de foc cu țevi lise (neghintuite) care utilizează, așa zisele lovituri săgeată. În România s-a realizat în anul **1987** primul tun cu țeavă lisă calibru 125 mm de pe tancul românesc P. 125.

Construcția țevilor montate pe mașini de luptă impune o organizare suplimentară a exteriorului și interorul țevii care să asigure evacuarea de la gura țevii a gazelor rezultate din arderea încărcăturii de azvârlire, prin utilizarea așa zisului ejector [4][85][107]

În tabelul 1.1 se prezintă principalele elemente ale părți ghintuite pentru câteva guri de foc de artilerie.

Gura de foc	Sensul	Înclinarea	Pasul (nr. cal.)	Nr. ghinturi
Tun cal. 76 mm munte	Dreapta	Variabil	16	24
Obuzier cal. 98 mm munte	Dreapta	Variabil	23	36
Obuzier cal. 100 mm munte	Dreapta	Variabil	23	36
Tun A.T cal. 100 mm	Dreapta	Constant	54	40
Tun cal. 100 mm de pe tanc	Dreapta	Constant	54	40
Obuzier cal. 122 mm	Dreapta	Variabil	33	36
Tun cal. 130 mm	Dreapta	Constant	53	40
Obuzier cal. 152 mm	Dreapta	Constant	28	48
Tun obuzier cal. 152 mm	Dreapta	Constant	47	48

TABEL 1.1.

Asupra tevii finite se execută obligatoriu următoarele verificări [108]

- coaxialitatea camerei de încărcare cu canalul țevii, excentricitatea nu va depăși 0,1

mm;

. .=

- măsurarea dimensiunilor transversale și longitudinale ale conurilor și racordărilor dintre conuri, corespondența profilului cu desenul. Verificările se fac cu calibru disc sau profil adecvat;

- pe camera de încărcare și conul de forțare se admit urme neînsemnate de prelucrare sau zgârieturi date de finisare sau controlul cu calibre. Pentru eliminarea urmelor de prelucrare din camera de încărcare se admite executarea unor ajustări locale a căror adâncime nu va depăși 75 % din tolereanța cotei ajustate și care să nu îngreuneze extragerea tubului cartuș;

- verificarea finală a camerei de încărcare se face cu un tub cartuş calibru cu dimensiunile exterioare executate în toleranțele superioare, tubul trebuie să intre complet în cameră;

- canalul țevii, înainte și după ghintuire, se examinează cu un dispozitiv optic cu putere de mărire de cel puțin 2,5 ori;

- nu se admite teșirea muchiilor de la vârful ghinturilor;

- diferența de grosime de pereți, verificată la 1000 mm de la cele două capete, nu trebuie să fie mai mare de 2 mm;

- abaterea axului țevii datorită curburii nu va depăși 7'.

În funcție de posibilitățile tehnologice, caracteristicile mecanice ale oțelului țevii și presiunea maximă din camera de încărcare, s-au realizat, din punct de vedere constructiv, următoarele tipuri de țevi [4][5][40][62][76][85][86][92]:

Tevile fretate, cu tub amovibil și autofretate se consideră ca fiind țevi compuse [[85][86]

<u>**Teava simplă**</u> (monobloc) este țeava executată dintr-un singur semifabricat (forjat plin, forjat pe dorn sau turnat centrifugal) în pereții căreia nu se găsesc, înaintea executării tragerilor nici un fel de tensiuni interne create pe cale artificială, cu excepția celor care pot apare datorită tratamentului termic sau regimurilor de așchiere necorespunzătoare utilizate în procesul tehnologic de execuție a acestuia. După executarea probei individuale de tragere a țevii, pot apare tensiuni interne datorate ecruisajului balistic. [4][5][40][62][76][85][86][92]

Majoritatea produselor de artilerie din înzestrarea tuturor armatelor au tevi simple Presiunile de serviciu pe care le suportă acestea sunt sub 350 MPa.

O secțiune longitudinală printr-o astfel de țeavă se vede în fig. 2.

-

Fig.2 Secțiune longitudinală printr-o țeavă simplă

<u>Tevi compuse</u> sunt acele țevi în care înaintea primei trageri s-au creat, prin diferite procedee tehnologice, tensiuni interne de semn contrar tensiunilor create de presiunea realizată în camera de încărcare, de încărcătura de azvârlire. [4][5][40][58][62][76][85][86][92]

Țeava fretată (fig.3) este acea țeavă în pereții căreia s-au creat înainte de tragere, prin îmbinarea prin strângere de regulă a 2 cilindri, tensiuni care sunt de semn contrar tensiunilor create de presiunea realizată în camera de încărcare, de încărcătura de azvârlire. Țeava tunului cal. 125 mm de pe tancul T72, T80 (Rusia) și P125 (România) este realizată prin acest procedeu și are presiunea de serviciu în camera de încărcare de 450 MPa. Țevile fretate se compun din câteva tuburi simple de diferite lungimi, montate concentric cu seraj, din care cauză tubul interior este comprimat încă înainte de tragere, iar tuburile exterioare sunt solicitate la întindere.

Diametrele exterioare ale tubului interior d_1 , d_2 sunt mai mari decât diametrul interior al tubului exterior d_2 , d_4 ($d_1 > d_3$; $d_2 > d_4$)

Inainte de a fi introdus tubul exterior se încălzește la o temperatură la care diametrele lui interioare d_3 și d_4 , în urma dilatării termice, devine mai mare decât diametrele exterioare d_1 și d_2 ale tubului exterior. La stabilirea temperaturii de încălzire trebuie ținut cont și de pierderile de căldură până la realizarea îmbinării tuburilor, precum și de a nu determina modificări ale caracteristicilor mecanice ale materialului supus încălzirii.

Prin răcire controlată și asigurarea tot timpul a contactului celor doi cilindri (utilizând o instalație specială), tubul exterior tinde sa-și revină la dimensiunile inițiale comprimând tubul interior. Ca urmare, tubul exterior va fi solicitat la tensiuni de întindere, iar cel interior va fi supus la compresiune. În ambele țevi vor lua naștere tensiuni, care vor mări rezistența țevii.

In timpul tragerii, într-o țeavă fretată presiunea gazelor acționând asupra tubului interior, supus la compresiune, îl va întinde, mai întâi până la dimensiunile lui inițiale (exterioare), după care

această întindere va atinge valoarea deformației elastice admise de material. Astfel, presiunea care poate fi admisă în interiorul țevii se mărește (p_{max.adm.} ≅ 530 MPa).

Fig.3 Principiul fretării țevilor de artilerie

După modul de realizare a fretării, țevile fretate pot fi:

- țevi fretate cu inele;

- .*

- tevi fretate cu manşon,
- țevi fretate cu tub;
- țevi fretate cu sârmă.

Țeava fretată cu inele se întâlnește la gurile de foc vechi (Md. 1877). Fretarea se făcea numai pe acea porțiune a țevii care este supusă unor presiuni mari (fig. 4).

Inelele se montează pe țeavă cu seraj. Pentru fixarea longitudinală a inelelor se utilizează un inel tăiat și un inel de acoperire.

Fig.4 Țeavă fretată cu inele

Țeava fi etată cu manşon (fig.5) se deosebește de cea cu inele numai prin faptul că manșonul reprezintă un multiplu longitudinal de inele (mai dificil de realizat tehnologic). Manșonul fretează țeava în zona presiunilor maxime și față de inele, el preia și eforturile de încovoiere la care este supusă țeava.

Fig.5 Țeavă fretată cu manșon

Țeava fretată cu tub este acea țeavă la care peste tubul interior se introduce un tub exterior lung, care fretează tubul interior pe întreaga sa lungime sau, în majoritatea cazurilor, pe o porțiune însemnată a lungimii acestuia, care este supusă la presiuni mari.

Țeava fretată cu tub are trei tipuri constructive:

- cu locașul închizătorului în tub;
- cu locașul închizătorului în țeava interioară;
- cu locașul închizătorului în culată.

La țeava la care închizătorul se găsește în tub (fig. 6), țeava interioară nu este supusă la ruperea transversală. Acest efort îl suportă în întregime tubul datorită fixării sale de afet. Țeava interioară este supusă numai la rupere longitudinală împreună cu tubul. Astfel, se mărește sarcina preluată de tubul exterior, ceea ce mărește considerabil rezistența țevii. Acest principiu de construcție a țevii fretate s-a utilizat la gurile de foc cu afet rigid.

Când s-a trecut la guri de foc cu reculul țevii în direcția axială, au început să fie pe larg răspândite țevile cu locașul închizătorului în tubul interior, deoarece la aceste guri de foc forțele de intindere axiale sunt cu mult reduse față de gurile de foc cu afet rigid

Fig.6 Țeavă fretată cu tub (închizătorul în tub)

în fig.7.

Teava fretată la care locașul închizătorului este în țeava interioară este prezentată

Fig.7 Țeavă fretată cu tub (închizătorul în țeavă)

Construcția cea mai răspândită a produselor de artilerie (cu țevi simple sau compuse) este aceea la care locașul închizătorului este în culată.

În fig.8 se prezintă principiul constructiv al unei țevi fretate care are locașul închizătorului în culata demontabilă a tunului

Fretarea cu tub este unul din procedeele cele mai perfecționate și mai răspândite de fretare, deoarece nu este mai complicată tehnologic decât fretarea cu manșon și asigură participarea la încovoierea țevii.

Fig. 8 Țeavă fretată cu tub (închizătorul în culată)

Țeava fretată cu sârmă (fig. 9) este acea țeavă la care peste tubul interior se înfășoară cu o anumită tensiune, pe mai multe straturi, o sârmă de oțel de secțiune dreptunghiulară. Acest tip de țeavă fretată a fost folosit numai în Anglia de către firma Vickers (Obuzier cal. 152 mm) [85]

Fig.9 Țeavă fretată cu sârmă

Țeava cu tub amovibil este o țeavă formată dintr-un manșon și un tub cu pereți subțiri care se montează cu joc. Așadar, în cazul uzurii tubului se poate introduce un tub nou fără măsuri speciale (fig. 10).

În timpul tragerii, sub acțiunea gazelor pulberii, tubul interior se va deforma și va anula jocul; după aceea, tubul exterior va participa la preluarea eforturilor unitare create de presiunea interioară din camera de încărcare.

După tragere între tubul interior și tubul exterior va reapărea jocul.

Această soluție a fost realizată la noi în țară între anii 1934-1936 (Sibiu, Reșița) cu ocazia modernizării unor materiale de artilerie

Fig.10 Țeavă cu tub amovibil

<u>Teava autofretată</u> se deosebește de restul țevilor compuse prin faptul că tensiunile inițiale create în diferite straturi ale materialului nu se realizează prin îmbinarea cu strângere a două tuburi, ci printr-o tehnologie specială aplicată unui semifabricat monobloc.[5][12][30][35][76][85][86]

În procesul de autofretare semifabricatul țevii este supus la presiuni interioare ce depășesc în mod obligatoriu limita de elasticitate a materialului. Țeava autofretată poate fi asimilată cu o țeavă fretată cu un număr infinit de manșoane așezate peste tubul interior (pres. max.adm.cca. 700 MPa).[12][30][35][47][49]

Autofretarea tuburilor cu pereți groși, în particular a țevilor de artilerie, este un procedeu tehnologic de deformare elasto-plastică prin care capacitatea de încărcare a acestora crește în măsură însemnată. Creșterea capacității de încărcare se realizează pe de o parte datorită unei stări de tensiune remanentă, cu efect favorabil, generată în peretele tubului ca urmare a unei deformări elasto-plastice și pe de altă parte datorită întăririi materialului.

În exploatare, atunci când țeava autofretată este supusă la presiunea de serviciu din camera de încărcare, tensiunile de compresiune produse prin autofretare se scad din tensiunile ce iau naștere în timpul tragerii, creând posibilitatea țevii de a rezista la presiuni interioare, până la limita presiunii de autofretaj (fără modificări dimensionale ale interiorului țevii datorate deformațiilor plastice).

De asemenea, metalul țevii, ca urmare a deformațiilor plastice se va ecruisa, câștigând în felul acesta o limită de elasticitate superioară celei naturale și variabilă radial, de la interior la exterior, proporționale cu deformațiile remanente suferite de aceste fibre.

Țeava, după înlăturarea presiunii de autofreatj, este cunoscută sub numele de țeavă autofretată.

Autofretajul are ca efect producerea unei autostrângeri variabile radial de la fibră la fibră (similar fretărilor multiple), precum și creșterea limitei elastice prin ecruisare.

1.2. Ecruisare/autofretare, materiale pentru țevi de artilerie, rezultate pe plan

mondial.

Pentru înțelegerea **fenomenului de ecruisare**, se analizează curba caracteristică a unui oțel, obținută prin solicitarea la întindere a unei epruvete (fig. 11).

Fig.11 Fenomenul de ecruisare

Se observă că dacă epruveta este solicitată la întindere peste limita de curgere σ_c a materialului (pe linia de întărire), până la un efort unitar σ_M și se descarcă apoi încet, linia de descărcare MO' este aproximativ paralelă cu linia OA. Epruveta rămâne, însă, cu o deformație remanentă ϵ_0

La o nouă încercare la întindere, tensiunea crește după curba caracteristică O'MD cu modulul de elasticitate inițial E al materialului, deformațiile fiind proporționale cu eforturile până în punctul M.

Se constată că în urma încărcării inițiale până în M și descărcării complete, materialul și-a mărit limita de elasticitate până la valoarea $\sigma_{\mathbf{M}}$, în același timp și-a mărit și lungimea Acest tratament mecanic, executat la rece, poartă numele de **ecruisaj.**

Experiențele au arătat că o astfel de epruvetă solicitată peste limita de curgere (în domeniul elaso-plastic), deci cu deformații remanente, își menține, după suprimarea sarcinii, volumul său inițial, deci volumul se conservă.

Pentru o anumită limită de deformații remanente (grad de ecruisaj nu prea ridicat) linia MO' este paralelă cu OA, ceea ce arată că în anumite limite modulul de elasticitate longitudinal E nu este influențat de ecruisaj.

Experiențele au demonstrat că o dată cu apariția deformațiilor remanente și elastice, ce apar în epruvetă în direcția forței, în timpul ecruisajului, apar și deformații remanente și elastice perpendiculare pe primele care sunt proporționale ce cele de pe direcția forței (cele remanente cu cele remanente, cele elastice cu cele elastice).

Coeficientul de contracție transversală pentru deformațiile elastice este întotdeauna același μ (constanta lui Poisson $\mu = 1/m$). Pentru deformațiile remanente, aplicând legea volumului și considerând materialul izotrop se poate admite, prin simetrie, că la acționarea unei singure forțe avem (pentru o epruvetă de secțiune circulară) [8][10][13][26][35]:

$$\varepsilon'_{\mathbf{y}} = \varepsilon'_{\mathbf{z}} = -\frac{1}{2}\varepsilon'_{\mathbf{x}}$$
⁽¹⁾

Dacă dintr-o epruvetă ecruisată prin tracțiune, se prelevează o nouă epruvetă a cărei axă să fie perpendiculară pe prima, iar aceasta se supune la tracțiune pură, se constată că diagrama relativă a deformațiilor este aproximativ egală cu cea a materialului neecruisat.

Ca urmare, putem desprinde următoarele concluzii:

- la anumite piese putem crește rezistența acestora la solicitări în timpul lucrului, dacă în prealabil, piesei respective i s-a aplicat un tratament mecanic de ecruisare, în acest fel crește limita de elasticitate a materialului piesei;

- pentru anumite grade de ecruisare, modulul de elasticitate E poate fi considerat că nu suferă modificări datorită ecruisajului;

- în anumite limite de ecruisare, există proporționalitate între deformațiile elastice și remanente ce apar la ecruisare pe direcțiile perpendiculare și cele ce apar în direcția forței ce a produs ecruisarea.

Plecând de la considerentele de mai sus, a apărut ideea utilizării acestui tratament mecanic la rece, pentru creșterea rezistenței tuburilor cu pereți groși Aplicarea acestui fenomen de ecruisare s-a făcut în special la țevile gurilor de foc de artilerie solicitate la presiuni mari în timpul tragerilor, mărindu-se astfel capacitatea portantă a acestora pentru aceeași grosime a pereților

Aplicarea ecruisării mecanice la rece a țevilor gurilor de foc a fost denumită autofretare.

Procedeul tehnologic de autofretare a tevilor gurilor de foc de artilerie, constă în crearea la interiorul tubului semifabricat a unei presiuni mari, ce va produce tensiuni echivalente în tub, care depăşesc limita de curgere (σ_c) pe toată grosimea peretelului tevii (autofretaj total) sau până la un anumit diametru intermediar (D_c), cuprins între diametrul interior și cel exterior (autofretaj parțial). Când presiunea de autofretaj este înlăturată în tub vor rămâne deformații variabile în grosimea peretelui, maxime la interiorul tubului și minime la exterior. [13][17][18] [35][49][53][81][116]

În tubul autofretat parțial, când în timpul presiunii de autofretare efortul unitar echivalent atinge valoarea limitei de curgere (σ_c), pe startul situat la diametrul intermediar (D_c), se disting două zone (fig. 12).

Fig.12 Tub autofretat parțial

- zona cuprinsă între diametrul interior (D_i) și cel intermediar (D_c) , este numită "zonă elasto - plastică" în care se produc deformații elasto-plastice;

- zona cuprinsă între diametrul intermediar (D_c) și diametrul exterior (D_c) , numită

"zona elastică", unde se produc numai deformații elastice.

La înlăturarea presiunii de autofretaj, zona elasto-plastică nu mai revine la dimensiunile inițiale datorită deformațiilor remanente, zona elastică tinde să revină la forma inițială, dar fiind împiedicată de zona plastică, produce tensiuni de compresiune în aceasta.

Acest fenomen este similar cu tensiunile introduse de o infinitate de tuburi fretate unul peste altul în limitele grosimii de pereți (D_e-D_i) .

Primul procedeu de autofretare a fost aplicat la tevile de tun de artileristul francez L Iacob în anul 1907, dar inventatorul tevilor de tun autofretate este considerat inginerul francez S Malval, care a publicat în anul 1912 un important articol pe această temă. În anul 1913 Franța autofretează o țeavă de tun calibru 140 mm, destinată încercărilor prin tragere, care vor stârni o aprigă discuție, pro și contra avantajelor autofretării, între inspectorii militari de la "Întreprinderile Regale de Tunuri" și autoritățile franceze, care publicate în presa vremii au făcut cunoscut acest procedeu în întreaga lume.

În Marea Britanie, sarcina de-a studia posibilitățile de autofretare a țevilor gurilor de foc de artilerie a fost încredințată maiorului A.E Macrae, inspector adjunct al Departamentului de Proiectare Woolwich. Acesta a devenit ulterior general maior, șef al Departamentului de proiectare Woolwich, ocupându-se de problema autofretării țevilor, timp de zece ani, obținând o soluție completă referioare la autofretare, ale cărei detalii au fost publicate în cartea sa "Overstrains of Metals" în anul 1930.

De la aceea dată fabricarea țevilor prin autofretare s-a dezvoltat rapid în Marea Britanie, pentru toate calibrele până la 6 inches (152,4 mm), cunoscând un apogeu în timpul celui de-al doilea război mondial 1939 - 1945. Experiențele de după război au demonstrat că și țeava tunului de calibru foarte mare (ex. tunul naval de 16 inches = 406,4 mm) poate fi realizată prin autofretare.

Până în anii '60 autofretarea s-a executat numai prin procedeul hidrostatic, care prezintă dezavantajul că necesită presiuni de lichid foarte înalte, și ca urmare instalații foarte scumpe pentru pomparea, transportul și controlul presiunii lichidului.

Ca urmare, în anul 1963, S.U.A. au autofretat două țevi cal. 105 mm pentru tunul de pe tanc, utilizând un procedeu mecanic care constă din împingerea forțată a unui set de dornuri calibrate prin interiorul semifabicatului țevii. Fiind supuse la trageri comparative cu alte două tunuri, având țevile autofretate prin metoda hidrostatică, s-a constatat o comportare similară.

Din punct de vedere al calculului tensiunilor create prin autofretare, acesta s-a efectuat, inițial, în baza teoriei ruperii elastice la efortul de forfecare maxim (efortul tangențial maxim), utilizat de A.E. Macrae. În timpul autofretărilor, britanicii au constatat că multe țevi respinse în baza acestei teorii au dat rezultate foarte bune la trageri. **Rezultă că teoria efortului tangențial maxim, adoptată pentru autofretare, conduce la supradimensionarea țevilor autofretate**. Ca urmare, în urma experiențelor făcute de "Gun Design Comittee", în timpul celui de-al doilea război mondial, a fost elaborată metoda de calcul pentru autofretare a lui A.C. Waren (îmbunătățită de Rarde), având la bază criteriul energiei de deformație, modificatoare de formă a lui Mises- Hencky.

Această teorie este utilizată, în prezent, de către toți constructorii de țevi autofretate.

Realizarea instalațiilor pentru autofretarea țevilor gurilor de foc de artilerie este destul de dificilă și necesită o investiție foarte mare, care pentru a fi amortizată într-un timp scurt presupune o producție de guri de foc mare. Ca urmare, țevi autofretate sunt produse de țări cu economii dezvoltate, cum ar fi: Franța, Anglia, Germania, S.U.A., Israel, Spania, Belgia, Africa de Sud etc. Dintre țările foste socialiste, din datele pe care le dețin, singura țară care produce țevi autofretate (pe o instalație hidraulică proprie) este China. Fosta U.R.S.S. nu a produs până în prezent țevi

autofretate, dar țeava tunului lis calibru 125 mm a fost obținută dintr-un semifabricat turnat centrifugal, pe care în zona presiunilor maxime s-a fretat la cald un manșon, ceea ce asigură o presiune de lucru în camera de încărcare de 530 MPa.

În România țeava tunului lis calibru 125 mm a fost realizată dintr-un oțel rezat (retopit sub zgură), forjat pe G.F.M. și peste care s-a fretat un manșon în zona presiunilor maxime

Preocupări pentru autofretarea țevilor de tun au existat în România, încă din anul 1988, când o delegație română a fost într-o țară din Europa occidentală pentru a sonda posibilitatea importului unei instalații de autofretare prin metoda hidrostatică.Din raportul de activitate prezentat rezultă următoarea componență a "Stației de autofretare"

- instalația hidraulică;

- .-

- instalația electrică,

- instalația electronică de măsură și control,

- partea mecanică de prindere și fixare a tubului de autofretat.

Instalația hidraulică se compune din trei trepte de ridicare a presiunii

a) treapta de joasă presiune - este un grup hidraulic, care utilizează ca mediu hidraulic ulei și poate genera o presiune maximă de 46 MPa;

b) treapta de medie presiune - este un multiplicator de o construcție specială, care primește ulei sub presiune de la prima treaptă, generând la rândul său o presiune maximă de 250 MPa, asupra unui **fluid, care este un amestec de apă cu glicerină;**

c) treapta de înaltă presiune - este o construcție asemănătoare unei prese hidraulice, cu trei coloane, având înălțimea de cca. 3 m. Aceasta primește fluidul sub presiune de la treapta de medie presiune și generează o presiune maximă de 1500 MPa. Transportul fluidului la presiunea de autofretare se realizează prin conducte speciale cu diametrul interior de 0,5 mm și diametrul exterior de 10 mm.

Tot în anul 1988 am participat la o discuție cu o delegație din Asia în același scop

1.3. Procedee de autofretare, avantaje /dezavantaje, costuri, implicații.

În prezent, se cunosc mai multe procedee tehnologice pentru realizarea deformării elastoplastice a țevilor gurilor de foc de artilerie, dintre care cele mai utilizate sunt:

- procedeul hidrostatic;
- procedeul mecanic;
- procedeul balistic.

Procedeul hidrostatic, primul utilizat pentru autofretarea țevilor de artilerie, constă în încărcarea tubului la interior cu o presiune controlată, mai mare decât presiunea corespunzătoare stării limită elastice a metalului, care produce în peretele acestuia o stare elasto-plastică, cu straturile interioare mai puternic plasticizate. După descărcarea tubului, considerată perfect elastică, acesta nu mai revine la dimensiunile inițiale, fapt ce determină apariția unor stări de deformații și tensiuni remanente.

În general o instalație pentru autofretare hidrostatică a țevilor de artilerie, se compune din următoarele părți:

- un complex de organe și dispozitive de etanșare, ce se aplică tubului de autofretat;

- o instalație generatoare de presiune, dotată cu pompe și multiplicatoare de presiune capabilă să producă presiuni de 800 - 1000 MPa.;

- o rețea de conducte, cu distribuitoare și supape, capabilă să reziste la presiuni înalte și să asigure distribuirea și controlul lichidului sub presiune; G_{2}

17

- un tablou de comandă și control, dotat cu aparatură de măsură a presiunii și control a deformațiilor tubului.

Din punct de vedere al deformațiilor longitudinale ale țevii instalațiile hidrostatice pot fi construite pe două principii:

- fară deformație longitudinală (axială) a țevii (instalații cu capete deschise);

- cu deformații longitudinale (axiale) a țevii (instalație cu capete închise).

În fig. 13 se prezintă organizarea de principiu a unei instalații hidrostatice, ce lucrează fără tracțiunea axială a țevii de autofretat (*cu capete deschise*). Instalația crează aceeași presiune de autofretaj pe toată lungimea semifabricatului, fără a ține seama de grosimea pereților tubului.

În principiu, instalația se compune din: grupul hidraulic de înaltă presiune (8), compus din pompe și multiplicatoare de presiune; panoul de comandă (9); semifabricatul supus autofretării (5); elementul de etanșare (4) și (15) a celor două capete ale semifabricatului; tijele (13) pentru preluarea deformațiilor axiale, tija (6) pentru reducerea cantității de lichid - fixată mecanic în axa teoretică a semifabricatului prin legăturile mecanice (7) de pistoanele mobile (16)(20).

Dispozitivele de etanșare (4) și (15) sunt prevăzute cu pistoanele mobile (16) (20), ce apasă pe garniturile (15) (4). Deformațiile exterioare ale semifabricatului (5) sunt măsurate de ceasurile comparatoare (17); iar presiunea de autofretare se controlează cu manometrele (19).

La început, până se amorsează instalația, presiunea va fi mică, aerul fiind evacuat prin apăsarea supapei de sens (18), după care se crește, treptat, presiunea la valoarea presiunii de autofretaj calculată. Etanșarea capetelor semifabricatului se realizează prin acțiunea presiunii interioare, asupra pistonașelor (16) (20), care la rândul lor, presează garniturile (15) (4), deformându-le.

Se observă că un capăt al dispozitivului de etanșare (3) este fixat mecanic, printr-o îmbinare demontabilă cu filet, de capătul semifabricatului (5), iar la celălalt capăt sistemul de etanșare (14) asigură preluarea deformațiilor axiale, de tijele (13). Prin urmare, tubul de autofretat nu este supus la tensiuni și deformații axiale ($\sigma_z = 0$, $\varepsilon_z = 0$).

S-a constat că uneori tuburile autofretate cu tije (13) se curbează, datorită deformării axiale diferite a acestor tije.

În fig. 14 se prezintă organizarea de principiu a unei instalații hidrostatice de autofretare cu tijă interioară de alimentare, care elimină posibilitatea curbării tubului autofretat. Grupul hidraulic de înaltă presiune (1), transmite lichidul la presiunea de autofretare prin panoul de comandă (2) la tija de alimentare și etanșare (4). Aerisirea se realizează prin supapa de sens (7). Semifabricatul (6) supus autofretării, este fixat de dispozitivul (5). Presiunea se controlează prin manometrele (9).

18

Fig.13 Organizarea de principiu a unei instalații de autofretare hidrostatică, fără deformări axiale a țevii

Fig.14 Organizarea de principiu a unei instalații hidrostatice fără deformatii axiale a țevii

Principiul autofretării hidrostatice cu deformația axială a țevii (instalație cu capete închise), se prezintă în fig. 15.

Pe extremitățile semifabricatului de autofretat se filetează manșoanele din oțel M_1 și M_2 .

Lichidul sub presiune introdus prin orificiul (O), apasă asupra capetelor pistoanelor P_1 și P_2 , care presează inelele de etanșare e_1 și e_2 pe inelele de reazem a_1 și a_2 , transmițând efortul manșoanelor. Pentru a asigura în bune condiții poziția garniturilor și etanșarea, se transmite mai întâi lichid la o presiune mai joasă și independentă de presiunea de autofretaj, prin orificiile O_1 și O_2 (independent de cel transmis prin orificiul O) în spațiile t_1 și t_2 cuprinse între manșoanele M_1 și R_1 , respectiv M_2 și R_2 .

Manșoanele R_1 și R_2 sunt solidar legate cu pistoanele p_1 , respectiv p_2 .

Lichidul transmis în spațiile t_1 și t_2 , la o presiune relativ joasă, realizează o apăsare longitudinală pe manșoanele R_1 și R_2 în sensul de îndepărtare a acestora, din care cauză prin intermediul pistoanelor p_1 și p_2 , inelele de plastic e_1 și e_2 sunt supuse la o compresiune suplimentară ce asigură etanșarea la presiunea de autofretaj din semifabricatul (5), utilizat pentru obținerea țevii autofretate (8).

În scopul de a putea folosi instalația pentru toată gama de semifabricate supuse autofretării (într-o anumită limită dimensională), se utilizează bucșele intermediare f_1 , f_2 , respectiv r_1 , și r_2 .

Instalația generatoare de presiune cuprinde o pompă (3) acționată de motorul electric (1) comandat de la panoul (2). Pompa (3) produce lichid la joasă presiune (40 - 50MPa) și o transmite spre amplificatorul de presiune (4), care ridică presiunea primită de la o pompă până la presiunea de autofretaj (cca 1500 MPa). În S.U.A. presiunea din amplificator trece mai întâi printr-un acumulator, iar de aici la semifabricatul supus autofretării. Se obține astfel o stabilitate mai mare a presiunii de autofretaj. Robinetul (9) cu două căi permite, într-o primă fază umplerea rapidă cu lichid a interiorului semifabricatului la o presiune joasă, iar în faza a doua asigură trecerea lichidului prin amplificatorul de presiune (4). Tija (6) are rolul de-a micșora cantitatea de lichid din interiorul semifabricatului. Pentru măsurarea presiunii se utilizează un aparat special (7).

Printre avantajele procedeului de autofretare hidrostatică, se semnalează:

- posibilitatea autofretării țevilor cu profilul interior variabil, cu porțiuni cilindrice și conice;
- realizarea cu precizie a presiunilor de autofretare dorite;

Fig.15 Organizarea de principiu a unei instalatii de autofretare hidrostatică cu deformarea axială a țevii

٢

- prelucrarea interiorului țevii înainte de autofretare nu necesită precizie prea mare și nici rugozități foarte mici;

- posiblitatea autofretării diferențiate, pe porțiuni, în funcție de grosimea peretelui țevii

Principalul dezavantaj îl constituie realizarea instalației de înaltă presiune și a etanșărilor.

Procedeul de autofretare mecanică, a apărut după cel de-al doilea război mondial și se practică în S.U.A. și Israel.

La acest procedeu deformarea elasto-plastică a țevii se realizează ca urmare a trecerii prin canalul țevii a unui dorn, sau seturi de dornuri, cu diametrul mai mare decât diametrul interior al semifabricatului țevii (fig. 16).

Fig. 16 Principiul autofretării mecanice

Dacă la procedeul hidrostatic procesul era controlat prin presiunea de autofretaj, de data aceasta autofretarea este condiționată de strângerea dintre semifabricatul țevii și dorn. Pentru realizarea deplasării dornului este necesară o forță care să învingă forțele de frecare dintre dorn și suprafața interioară a semifabricatului supus autofretării. Relația cu care se determină forța necesară pentru înaintarea dornului este:

$$\mathbf{F} = \pi \mathbf{D}_{\mathbf{d}} \cdot \mathbf{I} \cdot \mathbf{\mu} \cdot \mathbf{p},$$

în care μ - este coeficientul de frecare de alunecare

p - este presiunea de contact, echivalentă cu presiunea de autofretaj necesară.

Pentru reducerea forței rezistente, prin micșorarea coeficientului de frecare de alunecare, se utilizează lubrifianți speciali.

Realizarea unei autofretării optime prin acest procedeu implică o precizie înaltă a prelucrării canalului interior al țevii.

Principalele avantaje ale procedeului mecanic de autofretare sunt legate de simplitatea instalației și îmbunătățirea calității stratului superficial al interiorului semifabricatului, ca urmare a tasării materialului și a anulării eventualelor microfisuri.

Ca dezavantaje se pot enumera următoarele:

- necesitatea dezvoltării unei forțe foarte mari pentru deplasarea dornului;

- precizia dimensională înaltă a semifabricatului tubului înainte de aplicarea procedeului;

- imposibilitatea autofretării suprafețelor de formă profilată a interiorului țevii,

- instalația ocupă un spațiu foarte mare având lungimea de cel puțin două ori lungimea maximă a semifabricatului de autofretat.

Procedeul balistic de autofretare, a apărut în ultima vreme și constă în realizarea presiunii interne, necesară obținerii stării de deformație elasto-plastică, prin detonarea unei încărcături explozive liniare convenabil dimensionate plasate în axul semifabricatului supus procedeului de autofretare (fig. 17). [49]

Semifabricatul (1) supus autofretării are fixate în interiorul său încărcătura explozivă liniară (7) în mediul de lucru (9), prin intermediul discului suport (4), fixate prin inelul (5) cu manșonul (2). Discul de închidere (6) este fixat în manșonul (3) cu inelul de fixare (10). Detonarea se produce prin intermediul capsei electrice (8).

Fig. 17 Autofretarea balistică cu încărcătură explozivă liniară

O altă variantă a autofretării balistice, constă dintr-o tragere specială de suprapresiune, cu țeava ce urmează să se autofreteze, a unei încărcături de azvârlire dimensionată de așa manieră încât să se realizeze presiunea de autofretare a cărei valoare să fie mai mare decât presiunea maximă de serviciu a țevii (fig. 18).

Cantitatea de pulbere (3) masa propulsată Țproiectil (7), dopuri de etanșare (4) și (6)ț și separat cantitatea de lichid (5) se determină din calculul de balistică interioară, în așa fel încât să se obțină legea de variație dorită a presiunii de autofretaj în țeavă (1).Țeava este montată pe tun, etanșarea gazelor fiind realizată prin închizătorul (2).

Fig. 18 Autofretarea balistică prin tragere

Nici la autofretarea balistică nu se poate realiza înainte profilul interiorului canalului țevii la final.

CAPITOLUL 2

OBIECTIVELE CERCETĂRII ȘI METODE DE LUCRU

Obiectivul cercetării îl constitue studiul teoretic și experimental al procesului de autofretare a tuburilor cu pereți groși, având ca rezultat final stabilirea parametrilor tehnologici a procesului industrial de autofretare mecanică a țevilor de artilerie.

Ca objective derivate a rezultat necesitatea .

- studiului reducerii forțelor de autofretare și evitarea gripării sculei în timpul procesului industrial;
- stabilirea echipamentului de lucru;
- stabilirii caracteristicilor mecanice ale oțelului OHN₃MFA, în speță determinarea modulului de elasticitate longitudinal în domeniul plastic;
- stabilirea regimurilor de așchiere pentru semifabricatul autofretat.

In schema din fig. 2.1 sunt prezentate direcțiile de cercetare care au fost abordate.

Strategia cercetării experimentale cuprinde următoarele etape :

- etapa preliminară de simulare experimentală a autofretării pe prese hidraulice utilizând ca scule dorn şi bilă, urmărindu-se
 - evoluția procesului
 - nivelele de solicitare
 - condișii tehnice
 - analiza comparativă dorn bilă
- etapa experimentală de autofretare pe tronsoane (capeți) de țevi utilizând instalația industrială, umărindu se :
 - evoluția procesului și comportarea instalației
 - definirea principalilor parametrii de lucru
 - stabilirea soluției definitive pentru tipul de sculă ce se va utiliza în producție
 - stabilirea unor programe de autofretare preliminare pentru diferite calibre
- 🖌 etapa experimentală uzinală de autofretare a țevilor de diferite calibre, urmărindu-se
 - coportarea instalației și evoluția procesului
 - stabilirea parametrilor autofretării
 - stabilirea unei metode de evaluare și validare a procesului de autofretare.

Fig. 2.1

CAPITOLUL 3

STUDIUL TEORETIC AL STARII DE TENSIUNE ȘI DEFORMAȚII LA ȚEVI CU PEREȚI GROȘI AUTOFRETATE. STABILIREA MODELULUI MATEMATIC AL SOLICITARILOR ELASTO - PLASTICE.

3.1. ASPECTUL TEORETIC PRIVIND CALCULUL ȚEVILOR DE ARTILERIE (TUBURI CU PEREȚI GROȘI) IN DOMENIUL ELASTIC.

Pentru înțelegerea calculului țevilor de artilerie autofretate, care presupune solicitari în domeniul elasto-plastic, este necesar să se analizeze tubul cu pereți groși în domeniul elastic. În acest sens, se va analiza tubul cu pereți groși supuși la presiune interioară uniform distribuită, urmând a stabili relațiile de calcul pentru determinarea starii de tensiune și de deformații ca o consecința a solicitarii [4][8][13][35][85][86][116]

3.1.1. STAREA PLANĂ.

Dacă dintr-un tub cu pereți groși (țeavă de artilerie), solicitat la presiune interioară **p** uniform distribuită în lungul tubului, se izolează un element de volum (fig.2.1.), de grosime egală cu unitatea ($\Delta z = 1$) și se analizează, inițial, starea plană a tensiunilor (considerând tensiunea longitudinală $\sigma_z = 0$), asupra sa vor acționa, din motive de simetrie, numai tensiunile unitare normale. Sa notat cu

• σφ

Se admite că materialul tubului satisface legea lui Hooke.

. -

Poziția unui punct oarecare din secțiune se definește în coordonate polare, adică prin raza polară \mathbf{r} și prin unghiul acestuia φ față de orizontală. (fig.2.1). [13] [35] [116]

Se consideră un element ABCD, detașat din tub prin două plane care fac unghiul $d\phi$ și doi cilindri de rază **r** și **r**+**dr**.

Sub acțiunea presiunii **p**, tubul se deformează, păstrându-și forma simetrică. Astfel, elementul considerat se deplasează numai radial și se deformează rămânând însă tot simetric (fig.3.2.).

Notăm cu u deplasarea radială a elementului, măsurată în dreptul laturii AB. Latura CD se deplasează radial cu o cantitate întucâtva diferită, anume u+du, elementul deformându-se pe direcția radială. Pentru ca elementul considerat să se mențină și după deformație în contact cu elementele învecinate, este necesar să se producă deformații pe direcția circumferențială, adică prependicular pe raza tubului. [13] [35] [116].

Ca urmare, lungimea laturii AB variază cu cantitatea :

 $(r+u) d\phi - r d\phi = u d\phi$

Rezultă că expresiile lungirii specifice radiale ε_r și a celei circumferențiale ε_{ϕ} vor fi

$$\mathcal{E}_{r} = \frac{(dr + u + du - u) - dr}{dr} = \frac{du}{dr}$$
$$\mathcal{E}_{\varphi} = \frac{(r + u)d\varphi - r\,d\varphi}{r\,d\varphi} = \frac{u}{r}$$
(3.1)

Lungirilor specifice le corespund tensiuni normale orientate radial și circumferențial. Pe fețele elementului considerat nu pot exista tensiuni tangențiale, care ar fi însoțite de lunecări, deci de deformații nesimetrice, în timp ce elementul se deformează în mod simetric. Prin urmare, direcția radială și circumferențială constituie direcții principale de solicitare

In baza legii lui Hooke generalizată, se pot scrie relațiile :

. -

$$\sigma_{r} = \frac{E}{1 - V^{2}} (\varepsilon_{r} + V\varepsilon_{\varphi})$$

$$\sigma_{\varphi} = \frac{E}{1 - V^{2}} (\varepsilon_{\varphi} + V\varepsilon_{r})$$

$$\sigma_{r} = \frac{E}{1 - V^{2}} (\frac{du}{dr} + V\frac{u}{r})$$

$$\sigma_{\varphi} = \frac{E}{1 - V^{2}} (\frac{u}{r} + V\frac{du}{dr})$$
(3.2)

Tubul fiind în repaus, forțele elementare de pe fețele elementului sunt în echilibru

$$(\boldsymbol{\sigma}_{r} + d\boldsymbol{\sigma}_{r})(r + dr) - \boldsymbol{\sigma}_{r} r d\phi - 2\boldsymbol{\sigma}_{\varphi} dr \sin \frac{d\phi}{2} = 0$$

Neglijând infiniții mici de ordin superior și aproximând sinusul cu unghiul în radiani, rezultă o ecuație diferențială cu două necunoscute σ_r și σ_{ϕ} :

$$\frac{\mathrm{d}}{\mathrm{d}\mathbf{r}}(\mathbf{r}\;\boldsymbol{\nabla}_{\mathbf{r}}) - \boldsymbol{\nabla}_{\varphi} = 0 \tag{3.3}$$

Inlocuind expresiile tensiunilor date de relațiile (3.2) se obține ecuația diferențială cu o singură necunoscută **u** :

$$\frac{d^{2}u}{dr^{2}} + \frac{1}{r}\frac{du}{dr} - \frac{u}{r^{2}} = 0$$
(3.4)

Pentru integrare, ecuația se scrie astfel

$$\frac{d}{dr}\left(\frac{du}{dr}\right) + \frac{d}{dr}\left(\frac{u}{r}\right) = 0$$

$$\frac{d}{dr}\left[\frac{1}{r}\frac{d}{dr}(ur)\right] = 0$$
(3.5)

Prin integrare rezultă :

u = Ar +
$$\frac{B}{r}$$
 (2.6)
iar $\mathcal{E}_{\varphi} = \frac{u}{r} = A + \frac{B}{r^2}$ $\mathcal{E}_r = \frac{du}{dr} = A - \frac{B}{r^2}$

Deci, expresia tensiunilor va fi

$$\sigma_{r} = \frac{E}{1 - v^{2}} \Big[A(1 + v) - \frac{B}{r^{2}} (1 - v) \Big]$$

$$\sigma_{\varphi} = \frac{E}{1 - v^{2}} \Big[A(1 + v) + \frac{B}{r^{2}} (1 - v) \Big]$$
(3.7)

Suma tensiunilor principale σ_r și $~\sigma_\phi$ este o marime constantă, ce nu depinde de poziția punctului :

$$\sigma_{\rm r} + \sigma_{\varphi} = \frac{2EA}{1 - \nu} = \text{const.}$$
(3.8)

Rezultă că lungirea specifică pe direcția axei longitudinale :

$$\varepsilon_z = -\frac{v}{E} (\boldsymbol{\sigma}_r + \boldsymbol{\sigma}_{\varphi}) = \text{const.}$$

Adică, fiecare punct al secțiunii transversale se deplasează axial cu aceeași cantitate, ceea ce arată aplicabilitatea ipotezei secțiunilor plane și în acest caz. Deci, tubul poate fi privit ca un ansamblu de inele alaturate și identic solicitate.

Se determină constantele A și B punând condițiile de limită : pentru:

$$r = \frac{D_1}{2} \qquad \sigma_r = -p$$
$$r = \frac{D_2}{2} \qquad \sigma_r = 0$$

se obține

$$A = \frac{1 - v}{E} \frac{p(\frac{D_1}{2})^2}{(\frac{D_2}{2})^2 - (\frac{D_1}{2})^2}$$
$$B = \frac{1 + v}{E} \frac{p(\frac{D_1}{2})^2(\frac{D_2}{2})^2}{(\frac{D_2}{2})^2 - (\frac{D_1}{2})^2}$$

Prin înlocuire în relația (3.7) se obțin expresiile tensiunilor unitare :

$$\sigma_{r,\varphi} = \frac{p(\frac{D_1}{2})^2}{(\frac{D_2}{2})^2 - (\frac{D_1}{2})^2} \left[1 \mp \frac{(\frac{D_2}{2})^2}{r^2}\right]$$
(3.9)

Rezultă că tensiunile radiale și circumferențiale (σ_r respectiv σ_{ϕ}) variază după o hiperbolă de gradul al treilea, cu raza **r**, iar suma lor este un invariant

Pentru reprezentare grafică înlocuim pe r cu razele interioare, respectiv exterioare, ale tubului

$$r = \frac{D_{1}}{2} \qquad \sigma_{r_{1}} = -p$$

$$\sigma_{\varphi_{1}} = \frac{p\left[\left(\frac{D_{1}}{2}\right)^{2} + \left(\frac{D_{2}}{2}\right)^{2}\right]}{\left(\frac{D_{2}}{2}\right)^{2} - \left(\frac{D_{1}}{2}\right)^{2}}$$

$$r = \frac{D_{2}}{2} \qquad \sigma_{re} = 0$$

$$\sigma_{\varphi_{e}} = \frac{2p\left(\frac{D_{1}}{2}\right)^{2}}{\left(\frac{D_{2}}{2}\right)^{2} - \left(\frac{D_{1}}{2}\right)^{2}}$$

Dacă $D_2=2 D_1$, atunci :

. -

$$\sigma_{\varphi i} = \frac{5}{3}p$$
$$\sigma_{\varphi e} = \frac{2}{3}p$$

Deci, tensiunea cea mai mare este cea circumferențială de la interiorul tubului (fig.3.3)

Facem urmatoarea notație $k = D_2/D_1$ și înlocuind pe r = D/2 (D₁<D<D₂), în relația 3.9, se obține

$$\sigma_{r,\phi} = \frac{p}{k^2 - 1} (1 \mp \frac{D_2^2}{D^2})$$
(3.10)
Inlocuind în relația (3.6) constantele A și B, se obține deplasarea u

$$u = \frac{1 - v}{E} \frac{p(\frac{D_1}{2})^2}{(\frac{D_2}{2})^2 - (\frac{D_1}{2})^2} r + \frac{1 + v}{rE} \frac{p(\frac{D_1}{2})^2(\frac{D_2}{2})^2}{(\frac{D_2}{2})^2 - (\frac{D_1}{2})^2}$$
$$u = \frac{p(\frac{D_1}{2})^2}{E[(\frac{D_2}{2})^2 - (\frac{D_1}{2})^2]} [(1 - v)r + \frac{(1 + v)(\frac{D_2}{2})^2}{r}]$$
(3.11)

$$u = \frac{p}{2ED(k^2 - 1)} \left[(1 - V)D^2 + (1 + V)D_2^2 \right]$$
(3.12)

Ca urmare, deformațiile specifice vor fi :

- -

$$\varepsilon_{\mathbf{r},\varphi} = \frac{p\left(\frac{D_1}{2}\right)^2}{E\left[\left(\frac{D_2}{2}\right)^2 - \left(\frac{D_1}{2}\right)^2\right]} \left[\left(1-\nu\right) \mp \frac{\left(1+\nu\right)\left(\frac{D_2}{2}\right)^2}{\mathbf{r}^2}\right]$$
(3.13)

$$\varepsilon_{\mathbf{r},\varphi} = \frac{\mathbf{p}}{\mathbf{E}\left(\mathbf{k}^2 - \mathbf{1}\right)} \left[\left(\mathbf{1} - \nu\right) \mp \frac{(\mathbf{1} + \nu)\mathbf{D}_2^2}{\mathbf{D}^2} \right]$$
(3.14)

3.1.2. STAREA SPAŢIALĂ

. -

Funcție de procedeul de creare a presiunii interioare și de etanșare (când este cazul) a capetelor tubului cu pereți groși, modul de calcul a tensiunilor longitudinale și ca urmare a deformațiilor specifice, este diferit [13] [35] [116] Astfel:

- pentru un tub cu capete deschise, tensiunile longitudinale sunt nule $(\sigma_z)_d = 0$;

- pentru un tub cu capete închise, tensiunea longitudinală se calculează cu relația

$$(\boldsymbol{\sigma}_{z})_{i} = \frac{p\left(\frac{D_{1}}{2}\right)^{2}}{\left(\frac{D_{2}}{2}\right)^{2} - \left(\frac{D_{1}}{2}\right)^{2}}$$

$$(\boldsymbol{\sigma}_{z})_{i} = \frac{p}{k^{2} - 1}$$
(3.15)

- pentru un tub cu capete fixe ($\varepsilon_z = 0$), tensiunea longitudianlă se determină cu relația:

$$(\boldsymbol{\sigma}_{z})_{j} = \frac{2\nu p \left(\frac{D_{1}}{2}\right)^{2}}{\left(\frac{D_{2}}{2}\right)^{2} - \left(\frac{D_{1}}{2}\right)^{2}}$$
$$(\boldsymbol{\sigma}_{z})_{j} = \frac{2\nu p}{k^{2} - 1}$$
(3.16)

De menționat că tensiunile radiale și circumferențiale sunt independente de condițiile capetelor tubului, iar tensiunea longitudinală este întotdeauna, ca valoare, cuprinsă între tensiunea circumferențială și cea radială, și de regulă diferența ca valoare între tensiunile longitudinale calculate cu relațiile (3.15) și (3.16) este nesemnificativă, cu excepția cazului când sunt fluctuații de presiune.

Deci, în pereții tubului supus la presiune interioară, pot apare următoarele tensiuni:

 σ_r - tensiune radială - de compresiune - având valoarea maximă la interiorul tubului;

 σ_{φ} - tensiune circumferențială - de întindere - având valoarea cea mai mare dintre tensiuni și valoarea maximă pe fața interioară a tubului;

 σ_z - tensiune longitudinală - de întindere.

Pentru calculul deformațiilor specifice se pleacă de la relațiile generale ale stării spațiale de deformație:

$$\mathcal{E}_{\varphi} = \frac{u}{r} = \frac{1}{E} \left[\boldsymbol{\sigma}_{\varphi} - v(\boldsymbol{\sigma}_{r} + \boldsymbol{\sigma}_{z}) \right]$$
$$\mathcal{E}_{r} = \frac{du}{dr} = \frac{1}{E} \left[\boldsymbol{\sigma}_{r} - v(\boldsymbol{\sigma}_{\varphi} + \boldsymbol{\sigma}_{z}) \right]$$
$$\mathcal{E}_{z} = \frac{1}{E} \left[\boldsymbol{\sigma}_{z} - v(\boldsymbol{\sigma}_{\varphi} + \boldsymbol{\sigma}_{r}) \right]$$
(3.17)

Inlocuind pe σ_{φ} , σ_{r} se obțin relațiile:

$$\mathcal{E}_{\varphi} = \frac{1}{E} \frac{p}{k^{2} - 1} \left[(1 - \nu) + (1 + \nu) \frac{D_{2}^{2}}{D^{2}} \right] - \frac{\nu \sigma_{z}}{E}$$

$$\mathcal{E}_{r} = \frac{1}{E} \frac{p}{k^{2} - 1} \left[(1 - \nu) - (1 + \nu) \frac{D_{2}^{2}}{D^{2}} \right] - \frac{\nu \sigma_{z}}{E}$$

$$\mathcal{E}_{r,\varphi} = \frac{p}{E(k^{2} - 1)} \left[(1 - \nu) \mp (1 + \nu) \frac{D_{2}^{2}}{D^{2}} \right] - \frac{\nu \sigma_{z}}{E}$$

$$\mathcal{E}_{z} = \frac{1}{E} \left(\sigma_{z} - \nu \frac{2p}{k^{2} - 1} \right)$$
(19)

Pentru
$$v = \frac{1}{3}$$
 se obține:

. •

$$\varepsilon_{r,\varphi} = \frac{2p}{3E(k^2 - 1)} \left[1 \mp 2 \frac{D_2^2}{D^2} \right] - \frac{\sigma_z}{3E} \qquad (3.20)$$
$$\varepsilon_z = \frac{1}{E} \left[\sigma_z - \frac{2p}{3(k^2 - 2)} \right] \qquad (3.21)$$

Pentru
$$v = \frac{1}{2}$$
, se obține:

$$\varepsilon_{r,\varphi} = \frac{p}{2E(k^2 - 1)} \left(1 \mp 3 \frac{D_2^2}{D^2} \right) - \frac{\sigma_z}{2E}$$
(3.22)
$$\varepsilon_z = \frac{1}{E} \left(\sigma_z - \frac{p}{k^2 - 1} \right)$$
(3.23)

Pentru diferitele procedee de realizare a presiunii interioare și de etanșare a capetelor tuburilor, deformațiile se vor calcula - în domeniul elastic - funcție de valoarea tensiunii longitudinale σ_z , astfel:

a) pentru tuburi cu capete deschise $(\sigma_z)_d = 0$

$$\mathcal{E}_{r,\varphi} = \frac{p}{E(k^2 - 1)} \left[(1 - \nu) \mp (1 + \nu) \frac{D_2^2}{D^2} \right]$$
(3.24)
$$\mathcal{E}_z = -\frac{2\nu p}{E(k^2 - 1)}$$
(3.25)

Dacă v = 1/3

- .-

$$\mathcal{E}_{r,\varphi} = \frac{2p}{3E(k^2 - 1)} \left(1 \mp 2 \frac{D_2^2}{D^2} \right)$$
(3.26)

$$\mathcal{E}_{z} = -\frac{2p}{3E(k^{2}-1)}$$
(3.27)

Dacă v = 1/2

$$\mathcal{E}_{r,\varphi} = \frac{p}{2E(k^2 - 1)} \left(1 \mp 3 \frac{D_2^2}{D^2} \right)$$
(3.28)

$$\mathcal{E}_{z} = -\frac{p}{E(k^2 - 1)} \tag{3.29}$$

b) pentru tuburi cu capete închise $(\sigma_z)_i = \frac{p}{k^2 - 1}$, (conform relației 3.15)

$$\mathcal{E}_{r,\varphi} = \frac{p}{E(k^2 - 1)} \left[(1 - 2\nu) \mp (1 + \nu) \frac{D_2^2}{D^2} \right]$$
(3.30)

$$\mathcal{E}_{z} = \frac{p}{E(k^{2}-1)}(1-2\nu)$$
(3.31)

Dacă v = 1/3

$$\varepsilon_{r,\varphi} = \frac{2p}{3E(k^{2}-1)} \left[\frac{1}{2} \mp 2 \frac{D_{2}^{2}}{D^{2}} \right]$$
(3.32)
$$\varepsilon_{z} = \frac{p}{3E(k^{2}-1)}$$
(3.33)

Dacă
$$v = \frac{1}{2}$$

$$\mathcal{E}_{r,\varphi} = \frac{p}{2E(\kappa^{2}-1)} \left(1 \mp 3 \frac{D_{2}^{2}}{D^{2}}\right)$$

$$\mathcal{E}_{z} = 0 \qquad (3.34)$$

c) pentru tuburi cu capete fixe $(\sigma_z)_f = \frac{2p}{3(k^2 - 1)}$, (conform relației 3.16).

$$\mathcal{E}_{r,\varphi} = \frac{p}{E(k^{2}-1)} \left[\left(1 - \frac{5}{3}v\right) \mp (1+v) \frac{D_{2}^{2}}{D^{2}} \right]$$
(3.35)

$$\mathcal{E}_{z} = \frac{p}{E(k^{2}-1)} \left(\frac{2}{3} - 2\nu\right)$$
(3.36)

Dacă v = 1/3

$$\mathcal{E}_{r,\varphi} = \frac{2p}{3E(k^2 - 1)} \left(\frac{2}{3} \mp 2\frac{D_2^2}{D^2}\right)$$
$$\mathcal{E}_z = 0 \tag{3.37}$$

Dacă
$$v = \frac{1}{2}$$

 $\mathcal{E}_{r,\varphi} = \frac{p}{2E(k^2 - 1)} \left(\frac{1}{3} \mp 3\frac{D_2^2}{D^2}\right)$ (3.38)
 $\mathcal{E}_z = -\frac{p}{3E(k^2 - 1)}$ (3.39)

In tabelul 3.1. se prezintă în sinteză relațiile de calcul a deformațiilor specifice în domeniul elastic pentru cele trei tipuri de tuburi cu pereți groși.

RELAȚII DE CALCUL A DEFORMAȚIILOR SPECIFICE ÎN DOMENIUL ELASTIC

Tub cu	$\mathcal{E}_{\mathrm{r},\varphi}$				σ _z		
capete	V	V=1/3	$\mathcal{V} = \frac{1}{2}$	V	V=1/3	$\mathcal{V} = \frac{1}{2}$	
Deschise	$\frac{p}{E\left(k^2-l\right)}$	$\frac{2p}{3E(k^2-1)}$	$\frac{p}{2E(k^2-1)}$	$-\frac{2\nu p}{E\left(k^2-l\right)}$	$-\frac{2p}{3E(k^2-1)}$	$-\frac{p}{E(k^2-l)}$	0
	$\left[(1-\nu)\mp(1+\nu)\frac{D_2^2}{D^2} \right]$	$\left(1\mp 2\frac{D_2^2}{D^2}\right)$	$\begin{pmatrix} D^{2} \\ I \mp 3 \frac{D^{2}}{D^{2}} \end{pmatrix}$				
Închise	$\frac{p}{E\left(k^2-l\right)}$	$\frac{2p}{3E\left(k^2-l\right)}$	$\frac{p}{2E\left(k^2-l\right)}.$	$\frac{p}{E\left(k^2-l\right)}\left(1-2\nu\right)$	$\frac{p}{3E(k^2-l)}$	0	$\frac{p}{k^2 - 1}$
	$\left[(1-2\nu)\mp(1+\nu)\frac{D_2^2}{D^2} \right]$	$\left(\frac{1}{2} \overline{+} 2 \frac{D_2^2}{D^2}\right)$	$\begin{pmatrix} D & 2 \\ 1 \mp 3 - 2 \\ D^2 \end{pmatrix}$				
Fixe	$\frac{p}{E\left(k^2-l\right)}$	$\frac{2p}{3E(k^2-l)}$	$\frac{p}{2E\left(k^2-l\right)}$	$\frac{p}{E\left(k^2-l\right)}\left(\frac{2}{3}-2\nu\right)$	0	$-\frac{p}{3E(k^2-l)}$	$\frac{2p}{3(k^2-1)}$
	$\left[\left(1-\frac{5}{3}\nu\right)\mp\left(1+\nu\right)\frac{D_2^2}{D^2}\right]$	$\begin{pmatrix} 2 & D_2^2 \\ 3 & 2 & 2 \\ 3 & D^2 \end{pmatrix}$	$\left(\frac{1}{3} + 3 + \frac{D_2^2}{D^2}\right)$				

TABELUL 3.1

Tensiunile radiale și circumferențiale, în domeniul elastic, se vor calcula indiferent de "condițiile de capete" ale tubului cu relațiile (3.10):

$$\boldsymbol{\sigma}_{\mathbf{r},\varphi} = \frac{\mathbf{p}}{\mathbf{k}^2 - 1} \left(\mathbf{1} \mp \frac{\mathbf{D}_2^2}{\mathbf{D}^2} \right)$$

Distribuția tensiunilor în peretele tubului cu pereți groși, s-a prezentat în fig. 3.4

- pentru

. -

$$D = D_1$$

$$\sigma_r = -p$$

$$\sigma_{\varphi} = \frac{k^2 + 1}{k^2 - 1}p$$
(3.40)

- pentru $D = D_2$ $\sigma_r = 0$ $\sigma_{\varphi} = \frac{2}{k^2 - 1}p$ (3.41)

Variația tensiunii circumferențiale σ_{φ} funcție de grosimile diferite ale peretelui tubului, s-a reprezentat în fig.32.5.

Din diagrama reprezentată în fig. 2.5 se deduce că pe măsură ce crește raportul diametrelor k, distribuția tensiunilor circumferențiale devine mai uniformă în peretele tubului. Se observă că pentru valori mari ale lui k, tensiunea σ_{φ} scade brusc încă de la o adâncime mică (măsurată de la interior spre exterior) a grosimii tubului, iar apoi se menține aproape constantă.

În concluzie, nu are sens mărirea exagerată a grosimii peretelui tubului și ca urmare, în practică se limitează grosimea relativă $k_{max} = 3$ pentru țevile de artilerie.

3.2. TEORII DE REZISTENȚĂ POSIBIL DE UTILIZAT IN CALCULUL ȚEVILOR DE ARTILERIE SOLICITATE IN DOMENIUL ELASTIC

Teoriile de rezistență (numite și teorii ale stării limită) au menirea de a stabili anumite relații care există între tensiunile unitare spre a se atinge una sau alta dintre cele patru mărimi caracteristice ale stării limită. În esență, ele vor da expresiile tensiunilor unitare echivalente $\sigma_{ech.}$, care fac posibilă compararea stării complexe de solicitare cu cea de întindere simplă. [13] [35] [116].

Teoriile de rezistență mai uzuale folosite în calculul țevilor de artilerie (tuburi cu pereți groși) sunt următoarele [85][86]:

- teoria deformației specifice maxime;
- teoria efortului unitar tangențial maxim;
- teoria energie de deformație modificatoare de formă (Huber Hencky Mises).

٠٤

3.2.1. TEORIA DEFORMAȚIEI SPECIFICE MAXIME (TEORIA A II-A)

Starea limită se atinge atunci când alungirea maximă din tub atinge valoarea alungirii corespunzătoare stării limită de la solicitarea de întindere simplă. Luând ca stare limită valoarea limitei de elasticitate, se poate scrie:

$$\mathcal{E}_{\text{max}} = \frac{1}{2} \left[\left(\boldsymbol{\sigma}_1 - \nu \left(\boldsymbol{\sigma}_2 + \boldsymbol{\sigma}_3 \right) \right] = \frac{1}{E} \cdot \boldsymbol{\sigma}_e = \mathcal{E}_e$$

Deci

$$\sigma_{\rm ech.} = \sigma_1 - \nu (\sigma_2 + \sigma_3)$$

În cazul tubului cu perete gros, solicitat la o presiune interioară, alungirea maximă este dată de expresia deformației specifice circumferențiale ε_{φ} .

$$\mathcal{E}_{\max} = \mathcal{E}_{\varphi} = \frac{1}{E} \left[\left(\boldsymbol{\sigma}_{\varphi} - \boldsymbol{\nu} \left(\boldsymbol{\sigma}_{r} + \boldsymbol{\sigma}_{z} \right) \right] = \frac{\boldsymbol{\sigma}_{e}}{E}$$

Din relațiile prezentate în tab. 3.1 se observă că valoarea maximă a alungirii specifice apare în cazul tubului cu capete deschise $(\boldsymbol{\sigma}_z)_d = 0$

Înlocuind în relația (2.24) pe $D = D_1$, se obține:

$$\boldsymbol{\mathcal{E}}_{\max} = \boldsymbol{\mathcal{E}}_{\varphi} = \frac{p}{E} \left(\frac{k^2 + 1}{k^2 - 1} + \nu \right) = \frac{\boldsymbol{\sigma}_e}{E}$$
(3.42)

Pentru v = 1/3 se obține:

$$\mathcal{E}_{\varphi \max} = \frac{2p(2k^2+1)}{3E(k^2-1)} = \frac{\sigma_e}{E}$$
 (3.43)

Pentru v = 1/2 se obține:

$$\mathcal{E}_{\varphi \max} = \frac{p(3k^2 + 1)}{2E(k^2 - 1)} = \frac{\sigma_e}{E}$$
 (3.44)

În baza relației (3.40) se pot stabili relațiile de verificare și pentru dimensionare: - pentru verificare

$$p_{\max} \leq \frac{\sigma_e}{\frac{k^2 + 1}{k^2 - 1} + \nu}$$
 (3.45)

- pentru dimensionarea grosimii relative a peretelui $\left(K = \frac{D_2}{D_1}\right)$

$$k_{\min} = \sqrt{\frac{\sigma_c + p(1-\nu)}{\sigma_c - p(1+\nu)}}$$
(3.46)

Dacă v = 1/3 rel. (3.43) și (3.44) devine:

- pentru verificare

. -

$$p_{\max} \leq \frac{3\sigma_{e}(k^{2}-1)}{2k^{2}+1}$$
(3.47)

- pentru dimensionare

$$k_{\min} = \sqrt{\frac{3\boldsymbol{\sigma}_{e} + 2p}{3\boldsymbol{\sigma}_{e} - 4p}}$$
(3.48)

Dacă v = 1/2 rel. (3.45) și (3.46) devin:

- pentru verificare

$$p_{\max} \leq \frac{2\sigma_{e}(k^{2}-1)}{3k^{2}+1}$$
 (3.49)

- pentru dimensionare

$$k_{\min} = \sqrt{\frac{2\sigma_e + p}{2\sigma_e - 3p}}$$
(3.50)

Scriind relația 3.47 sub forma:

$$p_{\text{max.}} = \frac{3}{2} \sigma_{e} \frac{1 - \frac{1}{k^{2}}}{2 + \frac{1}{k^{2}}}$$

și presupunem că K tinde spre infinit, vom obține:

$$\frac{\lim p_{\max}}{k \to \infty} = \frac{\lim p_{\max}}{k \to \infty} \left(\frac{3}{2} \sigma_e \frac{1 - \frac{1}{k^2}}{2 + \frac{1}{k^2}} \right) = \frac{3}{4} \sigma_e \qquad (3.51)$$

Făcând același artificiu cu rel. (3.49) obținem:

$$\frac{\lim_{k \to \infty} p_{\max}}{k \to \infty} = \frac{\lim_{k \to \infty} \left(2\sigma_e \frac{1 - \frac{1}{k^2}}{3 + \frac{1}{k^2}} \right) = \frac{2}{3}\sigma_e \qquad (3.52)$$

Deci, considerând că tubul ar avea o grosime infinită, rezultă că presiunea maximă suportabilă nu poate depăși 75 % din limita elastică (σ_e) a materialului pentru a nu apare deformații remanente.

Ca urmare, țevi simple de artilerie cu grosimi prea mari de perete nu fac decât să crească greutatea tunului, făcându-l mai scump și mai puțin manevrabil.

În fig. 3.6 s-a reprezentat variația raportului p/σ_e funcție de grosimea relativă K a pereților tubului .

1.1	~ /	
H 10	- 4 h	k.
1 15.	2.0	,

Pentru trasarea diagramelelor s-au utilizat relațiile (3.51) și (3.52) sub forma:

$$\frac{p_{\max}}{\sigma_e} = \frac{3}{2} \cdot \frac{k^2 - 1}{2k^2 + 1} = \frac{3}{4}$$
(3.53)
$$\frac{p_{\max}}{\sigma_e} = 2 \cdot \frac{k^2 - 1}{3k^2 + 1} = \frac{2}{3}$$
(3.54)

și programul de reprezentare grafică Excel 5.0.

În practica de proiectare a tevilor de artilerie s-a admis ca grosime maximă a peretelului un calibru (R_2 - R_1 = D_1 calibrul tevii) ceea ce conduce la K = 3 și deci la o presiune maximă în camera de încărcare p_{max} = 0,63 σ_e .

3.2.2. TEORIA EFORTULUI UNITAR TANGENȚIAL MAXIM (CH. COULOMB)

Observându-se, la unele materiale, supuse la întindere sau compresiune, că fisurile apar pe secțiuni la 45° - unde τ (tensiune tangențială) este maximă - și nu pe secțiuni normele, s-a emis ipoteza că ruperea se datorează atingerii tensiunii tangențiale maxime. Deci, starea limită apare când tensiunea tangențială maximă atinge valoarea tensiunii tangențiale corespunzătoare stării limită de la întinderea simplă [13][35][116]

Luând ca stare limită pe σ_{e} , căreia îi corespunde o tensiune tangențială $T_{e} = \frac{\sigma_{e}}{2}$

se obține:

-

$$\tau_{\max} = \tau_3 = \frac{\sigma_1 - \sigma_2}{2}$$

unde, în cazul tubului cu perete gros solicitat de o presiune interioară p,

$$\sigma_{1} = \sigma_{\varphi}$$
$$\sigma_{2} = \sigma_{r} = -p$$

rezultă :

$$\boldsymbol{\sigma}_{e} = \boldsymbol{\sigma}_{\varphi} - \boldsymbol{\sigma}_{r}$$
$$\boldsymbol{\sigma}_{e} = \boldsymbol{\sigma}_{\varphi} + p \qquad (3.55)$$

Prin urmare, într-o țeavă de artilerie supusă la presiunea interioară p, suma $\sigma_{\varphi} + p$ este maximă la interior pentru $D = D_1$.

Din relația (3.10), rezultă:

$$\boldsymbol{\sigma}_{e} = \left(\boldsymbol{\sigma}_{\varphi} - \boldsymbol{\sigma}_{r}\right)_{\text{max.}} = \frac{2\frac{D_{2}^{2}p}{k^{2}-1}}{D^{2}}$$
$$\boldsymbol{\sigma}_{e} = \frac{2k^{2}}{k^{2}-1}p$$
$$\boldsymbol{\tau}_{\text{max}} = \frac{\boldsymbol{\sigma}_{e}}{2} = \frac{k^{2}}{k^{2}-1}p$$
(3.56)

Relația de verificare

$$p_{\max} = \sigma_e \frac{k^2 - 1}{2k^2}$$
(3.57)

Relația de dimensionare

$$k_{\min} = \sqrt{\frac{\sigma_e}{\sigma_e - 2p}}$$
(3.58)

Dacă în relația (3.57) facem pe $k \rightarrow \infty$

$$\lim_{k \to \infty} p_{\max} = \frac{\lim_{k \to \infty} \sigma_e \frac{1 - \frac{1}{k^2}}{2} = \frac{\sigma_e}{2}$$
(3.59)

rezultă că presiunea maximă ce o poate suporta tubul (în domeniul elastic) cu o grosime de perete infinită, are valoare $\sigma_e / 2$. Pentru un tub cu grosimea peretelului egală cu un calibru k = 3,

tensiunea maximă este 0,444 $\sigma_{\rm e}$, adică foarte aproape de presiunea limită (0,5 $\sigma_{\rm e}$).

Deci, îngroșarea pereților peste valoarea K = 3 nu face decât să mărească consumul de material și greutatea tunului.

3.2.3. TEORIA ENERGIEI DE DEFORMAȚIE MODIFICATOARE DE FORMĂ (HUBER - HENCKY - MISES)

Distrugerea corpului solid se produce prin modificarea formei acestuia și nu prin modificarea volumului. Conform acestei teorii, doar energia de deformație modificatoare de formă trebuie considerată drept cauză a distrugerii materialului [13][35][116]

Această teorie admite că distrugerea tubului solicitat, începe atunci când în dreptul unui punct al acestuia energia specifică de deformație modificatoare de formă U_{1f} devine egală cu cea corespunzătoare momentului apariției distrugerii epruvetei încercate la tracțiune simplă.

Energia specifică de deformație modificatoare de formă se calculează cu relația:

$$U_{1f} = \frac{1+\nu}{6E} \left[(\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2)^2 + (\boldsymbol{\sigma}_2 - \boldsymbol{\sigma}_3)^2 + (\boldsymbol{\sigma}_3 - \boldsymbol{\sigma}_1)^2 \right]$$
(3.60)

Pentru starea monoaxială $\sigma_1 = \sigma_2 = 0$, iar $\sigma_3 \neq 0$ ceea ce face să se obțină (la limite de elasticitate):

$$U_{1f} = \frac{1+v}{6E} 2\sigma_e^2$$

Criteriul stării limită va fi:

$$\frac{1+\nu}{6\mathrm{E}}\left[\left(\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right)^{2}+\left(\boldsymbol{\sigma}_{2}-\boldsymbol{\sigma}_{3}\right)^{2}+\left(\boldsymbol{\sigma}_{3}-\boldsymbol{\sigma}_{1}\right)^{2}\right]=\frac{1+\nu}{6\mathrm{E}}2\boldsymbol{\sigma}_{\mathrm{e}}^{2}$$

de unde rezultă:

$$\boldsymbol{\sigma}_{ccn} = \sqrt{\frac{1}{2} (\boldsymbol{\sigma}_1 - \boldsymbol{\sigma}_2)^2 + (\boldsymbol{\sigma}_2 - \boldsymbol{\sigma}_3)^2 + (\boldsymbol{\sigma}_3 - \boldsymbol{\sigma}_1)^2} \qquad (3.61)$$

Deoarece deformația axială în tub este foarte mică, ea se poate neglija:

$$\varepsilon_{z} = \frac{1}{E} \left[\boldsymbol{\sigma}_{z} - v \left(\boldsymbol{\sigma}_{\varphi} + \boldsymbol{\sigma}_{r} \right) \right] = 0$$

și pentru v=1/2, rezultă:

. -

$$\sigma_{z} = \frac{\sigma_{\varphi} + \sigma_{r}}{2}$$

pentru:

$$\sigma_1 = \sigma_{\varphi}, \quad \sigma_2 = \sigma_r \quad \text{si} \quad \sigma_z = \frac{\sigma_{\varphi} + \sigma_r}{2}$$

se obține

$$\sigma_{ech} = \frac{\sqrt{3}}{2} (\sigma_{\varphi} - \sigma_{r})$$

$$cum\sigma_{r} = -p$$

$$\sigma_{ech} = \frac{\sqrt{3}}{2} (\sigma_{\varphi} + p) \qquad (3.62)$$

Înlocuind pe σ_{φ} cu expresia sa, pe D = D₁ și k = D₂ / D₁, rezultă:

$$\boldsymbol{\sigma}_{echmax} = \frac{\sqrt{3}}{2} \cdot \frac{2k^2}{k^2 - 1} p \leq \boldsymbol{\sigma}_e \tag{3.63}$$

 $\sigma_{\rm ech\ max}$ apare pe stratul interior al tubului și poate fi înlocuit, la limită, cu $\sigma_{\rm e}$ sau cu $\sigma_{\rm c}$ (limită de curgere). Englezii utilizează în dimensionarea țevilor de tun $\sigma_{\rm c}$; aceștia admițând că țeava de tun se comportă bine și atunci când se atinge limita de curgere pe stratul interior, admițând chiar deformații plastice *specifice* foarte mici, de ordinul $3.10^{-4} \div 7.10^{-4}$ mm.

Relația (3.62) poate fi scrisă și sub forma:

$$\sigma_{\varphi} + p = \frac{2}{\sqrt{3}}\sigma_{ech} \qquad (3.64)$$

$$\sigma_{\varphi} + p = 1,15\sigma_{ech} \qquad (3.65)$$
sau $\sigma_{\varphi} + p = \beta\sigma_{ech} \qquad (3.65)$

În baza experimentelor făcute, englezii utilizează pentru calculul țevilor de artilerie valorile

$$\beta = 1,11$$
 pentru k \rangle 1,5
 $\beta = 0,22k + 0,73$ pentru k $\leq 1,5$

rezultă

$$(\boldsymbol{\sigma}_{ech})_{\max} = \frac{\boldsymbol{\sigma}_{\varphi} + p}{\beta} \leq \boldsymbol{\sigma}_{c}$$

$$(\boldsymbol{\sigma}_{ech})_{\max} = \frac{2k^{2}p}{\beta(k^{2}-1)} \leq \boldsymbol{\sigma}_{c} \qquad (3.66)$$

În baza teoriei lui Huber - Hencky - Mises putem utiliza două relații de calcul

- formula teoretică (rel. 3.63)

$$(\boldsymbol{\sigma}_{ech})_{max} = \sqrt{3} \cdot \frac{k^2 p}{(k^2 - 1)} \leq \boldsymbol{\sigma}_e$$

- formula practică (rel. 3.66)

$$(\sigma_{\rm ech})_{\rm max} = \frac{2k^2p}{\beta(k^2-1)} \leq \sigma_{\rm c}$$

unde

$$\beta = 1,11 pentruk \rangle 1,5$$

$$\beta = 0,22k \div 0,73 pentruk \le 1,5$$

Pentru verificare se pot utiliza relațiile:

$$p_{\max} \leq \frac{k^2 - 1}{\sqrt{3k^2}} \sigma_e \qquad (2.67)$$
$$p_{\max} \leq \beta \frac{k^2 - 1}{2k^2} \sigma_c \qquad (2.68)$$

Dacă în relația 3.67 facem pe k $\rightarrow \infty$ se obține $\frac{\lim_{k \to \infty} p_{\max}}{k \to \infty} = \frac{\lim_{k \to \infty} \frac{1 - \frac{1}{k^2}}{\sqrt{3}} \sigma_e = 0,57 \sigma_e$

Din relația 3.68 făcând pe k $\rightarrow \infty$

$$\frac{\lim_{k \to \infty} p_{\max}}{k \to \infty} \frac{\lim_{k \to \infty} \frac{1 - \frac{1}{k^2}}{2} \beta \sigma_c}{2} = 0.5 \beta \sigma_c$$

Pentru k = 3 prin înlocuire în relația 3.67, se obține: $p_{max} = 0.51 \sigma_e$

Pentru k = 3 și β = 1,11 prin înlocuire în relația 3 68, se obține p_{max} =0,493 σ_c .

Pentru dimensionare se pot utiliza relațiile:

$$k_{\min} = \sqrt{\frac{\sigma_e}{\sigma_e - \sqrt{3} p}} \qquad (3.69) \qquad k_{\min} = \sqrt{\frac{\beta \sigma_c}{\beta \sigma_c - 2 p}} \qquad (3.70)$$

Din experiența pe plan mondial, s-a constatat că cele mai utilizate teorii pentru calculul țevilor de artilerie sunt [4][62][76][85][86]

- teoria efortului unitar tangențial maxim (Ch. Coulomb);

- teoria energiei de deformație modificatoare de formă (Huber - Hencky - Mises). În tabelul 3 2 sunt prezentate relațiile finale pentru dimensionare și verificare.

RELAȚII DE DIMENSIONARE ȘI VERIFICARE ÎN DOMENIUL ELASTIC FUNCȚIE DE TEORIA DE REZISTENȚĂ UTILIZATĂ TABELUL 3.2

Teoria	σ _{ech.max.}	Dimensionare k _{min.}			Verificare p _{max.}			_{pinax.} ; k→∞	
		V	v=1/3	v=1/2	V	v=1/3	v=1/2	v=1/3	v= 1/2
Deformației specifice maxime (II)	$p\left(\frac{k^2+1}{k^2-1}+\nu\right)$	$\sqrt{\frac{\sigma_{\rm e} + {\rm p}(1-\nu)}{\sigma_{\rm e} - {\rm p}(1-\nu)}}$	$\sqrt{\frac{3\sigma_{\rm e}+2p}{3\sigma_{\rm e}-4p}}$	$\sqrt{\frac{2\sigma_{\rm e}+\rm p}{2\sigma_{\rm e}-3\rm p}}$	$\frac{\sigma_{\rm e}}{\frac{{\rm k}^2+1}{{\rm k}^2-1}+\mathcal{V}}$	$\frac{2}{3}\frac{\sigma_{\rm e}(k^2-1)}{2k^2+1}$	$\frac{2\sigma_{\rm c}\left(k^2-1\right)}{3k^2+1}$	0,75ơ °	0,6 6σe
Efort unitar tangențial maxim (III)	$\frac{2k^2p}{k^2-1}$	$\sqrt{\frac{\sigma_{\rm c}}{\sigma_{\rm c}-2\rm p}}$			$\sigma_{\rm e} \frac{{\rm k}^2 - 1}{2{\rm k}^2}$			0,5 σ.	
Energia de deformație modificatoare de formă (V)	$\frac{\sqrt{3k^2p}}{k^2 - 1} \operatorname{sau} \frac{2k^2p}{\beta(k^2 - 1)}$	$\sqrt{\frac{\sigma_{\rm e}}{\sigma_{\rm e} - \sqrt{3}p}} \sqrt{\frac{\beta \sigma_{\rm c}}{\beta \sigma_{\rm c} - 2p}}$			$\sigma_{c} \frac{k^{2} - 1}{\sqrt{3k^{2}}}$ $\sigma_{c} \frac{k^{2} - 1}{2k^{2}}\beta$			0,57 σ. 0,5 βσ.	
	$\beta = 1,11 k > 1,5$ $\beta = 0,22 \ k + 0,73$ $k \le 1,5$								

3.3. AUTOFRETAREA ȚEVILOR. CALCULUL ȚEVILOR DE ARTILERIE ÎN DOMENIUL ELASTO-PLASTIC

3.3.1. PRINCIPIUL AUTOFRETĂRII. CRITERII DE PLASTICITATE

Așa cum s-a precizat anterior, autofretarea tuburilor cu pereți groși, în speță a țevilor de artilerie, constă în atingerea limitei de curgere σ_c în tubul supus la o presiune interioară, în tot peretele său (autofretare totală) sau numai până la un diametru intermediar D_c cuprins între diametrul interior D₁ și cel exterior D₂ (autofretare parțială) [13][35][116]

La înlăturarea presiunii de autofretaj (pe care o vom nota în continuare cu p_F), zona interioară va rămâne cu deformații remanente în timp ce zona exterioară ($D_c - D_2$) tinde să revină complet la starea inițială, dar este împiedicată de zona interioară. Ca urmare, zona exterioară produce asupra zonei interioare tensiuni de compresiune. Tubul rezultat se numește tub autofretat.

Tubul autofretat se va comporta elastic dacă este supus unei presiuni interioare de serviciu $p \le p_{F^+}$

La aplicarea relațiilor de calcul pentru solicitările elasto-plastice ce au loc în tub, trebuie plecat de la schematizarea curbei carcateristice a materialului. Deci, prima încercare experimentală va fi trasarea curbei caracteristice la întindere a materialului tubului ce va fi supus autofretării.

Forma diagramei schematizate trebuie să fie asemănătoare cu forma diagramei caracteristice determinate experimental. Se disting două feluri de schematizări și anume:

- schematizări prin linii drepte;

- schematizări prin linii curbe continue.

Schematizarea prin linii drepte se utilizează, în special, la calculul în domeniul plastic al materialelor care în domeniul elastic satisfac legea lui Hooke. Pentru simplificarea calculelor se admite că limita de proporționalitate ar coincide cu limita de curgere a materialului Schematizarea printr-o curbă continuă se adoptă în cazul materialelor care nu ascultă de legea lui Hooke [13][35][116].

In fig. 3.7 sunt prezentate schematizări prin linii drepte.

Fig. 3. 7

Modul de schematizare în zona deformațiilor plastice depinde de forma diagramei reale și de mărimea porțiunii care trebuie schematizată în vederea calculelor.

În cazul materialelor elasto-plastice, curba carcateristică se schematizează prin două drepte, de ecuații (fig. 3.7.a):

$$\sigma = \varepsilon E, \text{ pentru } 0 < \varepsilon < \varepsilon_{c}$$

$$\sigma = \sigma_{c} + E_{p} (\varepsilon - \varepsilon_{c}), \text{ pentru } \varepsilon > \varepsilon_{c}$$

unde ε_c este lungirea specifică corespunzătoare limitei de curgere, iar $E_p = tg\beta_1$ modulul de plasticitate, egal cu panta dreptei adoptate, întocmai ca și modulul de elasticitate longitudinal $E = tg\beta_0$. Modulul de plasticitate are o valoare mult mai mică decât modulul de elasticitate

Cum $\sigma_c = E\varepsilon_c$, putem scrie:

. -

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_{c} \left(1 - \frac{E_{p}}{E} \right) + E_{p} \cdot \boldsymbol{\varepsilon}$$
(3.71)

Acest mod de schematizare se adoptă în cazul materialelor elasto-plastice, materiale care nu au o limită de curgere pronunțată sau au un palier scurt de curgere.

Dacă palierul de curgere are o lungime mare, atunci zona deformațiilor plastice se poate schematiza printr-o linie orizontală ($E_p = 0$) fig. 3.7 b, cu ecuația $\sigma = \sigma_c$.

Această schematizare contribuie la simplificarea calculelor și se dovedește a fi destul de exactă în cazul oțelurilor cu un conținut mic de carbon și al aluminiului. Ea se numește diagramă **tip Prandtl**. [13][35][116]

Se consideră că materialul nu se întărește după depășirea limitei de curgere și nu se limitează pentru calcule lungimea dreptei orizontale din diagramă.

Materialul care corespunde acestei schematizări se numește ideal elasto-plastic

Pentru stării liniare de tensiune s-a admis că deformațiile plastice apar atunci când tensiunea maximă devine egală cu tensiunea corespunzătoare limitei de curgere a materialului. În starea oarecare de solicitare, apariția deformațiilor plastice se determină cu ajutorul criteriilor sau condițiilor de plasticitate. Prin ele se pot stabili ce relații trebuie să existe între tensiuni, pentru ca în tubul cu pereți groși deformabil să apară o stare plastică de solicitare. Criteriile de plasticitate consituie o extindere la calculul de plasticitate a teoriilor de rezistență. Prima formulare a condiției de plasticitate a fost elaborată de Saint Venant pe baza experimentelor lui H.E. Tresca. Ea admite că apariția stării plastice se datorește creșterii **tensiunilor tangențiale maxime peste o anumită limită**. După această condiție de plasticitate ea se produce atunci când tensiunea tangențială maximă devine egală cu tensiunea tangențială maximă corespunzătoare apariției curgerii epruvetei solicitate la întindere simplă:

$$\mathcal{T}_{\max} = \frac{\sigma_c}{2} \tag{3.72}$$

Acest criteriu admite că în timpul procesului de plastificare, tensiunea tangențială maximă rămâne egală cu această valoare.

In cazul tubului cu pereți groși,

$$\sigma_{c} = \sigma_{\varphi} - \sigma_{r}$$

$$\tau_{max} = \frac{\sigma_{\varphi} - \sigma_{r}}{2} = \frac{\sigma_{c}}{2} \qquad (3.73)$$

La calculele de plasticitate se aplică și criteriul lui Huber - Hencky - Mises, conform căruia apariția deformațiilor plastice se datorește creșterii peste o anumită limită a **energiei de deformație modificatoare de formă.** Conform acestei condiții, starea plastică apare atunci când energia de deformație devine egală cu cea care produce apariția curgerii în starea limită de tensiune:

$$U_{1f} = \frac{1+\nu}{3E} \cdot \sigma_{c}^{2} \qquad (3.74)$$

$$\sigma_{ecn} = \frac{1}{\sqrt{2}} \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}} = \sigma_{c}$$

$$\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2} - \sigma_{1}\sigma_{2} - \sigma_{1}\sigma_{3} - \sigma_{2}\sigma_{3} = \sigma_{c}^{2} \qquad (3.75)$$

pentru $\sigma_1 = \sigma_{\varphi}; \quad \sigma_2 = \sigma_r; \quad \sigma_3 = \sigma_z = \frac{\sigma_{\varphi} + \sigma_r}{2}$

se obține:

$$\sigma_{\varphi} - \sigma_r = \frac{2}{\sqrt{3}} \cdot \sigma_c \qquad (3.76)$$
$$\tau_{\max} = \frac{\sigma_c}{\sqrt{3}} \qquad (3.77)$$

O altă constatare experimentală importantă este că deformația volumică specifică ε_v este numai elastică, chiar și în timpul deformațiilor plastice. Rezultă că deformația plastică se face la volum constant. Dacă se consideră deformația volumică specifică a unei bare solicitată la întindere ca fiind

$$\varepsilon_{v} = \varepsilon_{\varphi} + \varepsilon_{r} + \varepsilon_{z} = 3 \cdot \frac{1 - 2v}{E} \cdot \boldsymbol{\sigma}_{m} = 0 \qquad (3.78)$$

unde $\boldsymbol{\sigma}_{m} = \frac{\boldsymbol{\sigma}_{\varphi} + \boldsymbol{\sigma}_{r} + \boldsymbol{\sigma}_{z}}{3}$

rezultă că în timpul deformației plastice v = 0.5. Aceasta înseamnă ($\varepsilon_v = 0$) că materialul este incompresibil, deformația având loc la volum constant.

3.3.2. CALCULUL ȚEVILOR DE ARTILERIE AUTOFRETATE DUPĂ TEORIA TENSIUNILOR TANGENȚIALE MAXIME . CURBA CARACTERSITICĂ TIP PRANDTL

Pentru calcul se consideră tubul ca fiind compus din două tuburi [85][86][13][35] (fig. 3.8):

- un tub interior solicitat plastic la o presiune interioară p_F (de autofretaj) și la o presiune exterioară pc;

- un tub exterior solicitat elastic la o presiune interioară p.

Fig. 2.8

D₁ - diametrul interior al tubului supus autofretării.

D_c - diametrul intermediar ce separă zona plastică de cea elastică.

D₂ - diametrul exterior al tubului supus autofretării.

Pentru ambele tuburi este valabilă ecuația de echilibru specifică tuburilor cu pereți groși solicitați la presiune interioară și exterioară [13][35][116]

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_{\varphi}}{r} = 0$$
 (3.79)

iar, calculele se efectuează în baza teoriei tensiunilor tangențiale maxime (rel. 3.73).

$$\tau_{\max} = \frac{\sigma_{\varphi} - \sigma_{r}}{2} = \frac{\sigma_{c}}{2}$$

Deci, se poate scrie:

$$\mathrm{d}\sigma_{\mathrm{r}} = \frac{\sigma_{\mathrm{c}}}{\mathrm{r}}\mathrm{d}\mathrm{r}$$

Prin integrare se obține:

$$\sigma_r = \sigma_c \ln r + C \tag{3.80}$$

Pentru $r = R_c = \frac{D_c}{2}, \sigma_{r_c} = 0, rel.3.80$ se poate scrie : $\sigma_{r_c} = \sigma_c \ln R_c + C = 0, \text{unde} \sigma_{r_c}$ -este tensiunea radială la raza R_c

se obține constanta de integrare

$$C = \boldsymbol{\sigma}_{r_c} - \boldsymbol{\sigma}_c \ln R_c \tag{3.81}$$

Deci, expresia tensiunii radiale va fi:

$$\sigma_{r} = \sigma_{r_{c}} - \sigma_{c} \ln R_{c} + \sigma_{c} \cdot \ln r$$

$$\sigma_{r} = \sigma_{r_{c}} - \sigma_{c} \ln \frac{R_{c}}{r}$$
(3.82)

Înlocuind pe $\sigma_{r_c} = -p_c$ și rezultă

$$\sigma_r = -p_c - \sigma_c \ln \frac{R_c}{r}$$
(3.83)

Dar, în cazul teoriei tensiunilor tangențiale maxime:

$$\sigma_{\varphi} - \sigma_{\rm r} = \sigma_{\rm c}$$

rezultă expresia tensiunii circumferențiale:

$$\sigma_{\varphi} = \sigma_{c} - \sigma_{c} \ln \frac{R_{c}}{r} - p_{c}$$

$$\sigma_{\varphi} = \sigma_{c} \left(1 - \ln \frac{R_{c}}{r}\right) - p_{c} \qquad (3.84)$$

Pentru $r = \frac{D_1}{2} = R_1$, $\sigma_r = -p_F \hat{n}$ baza relației 3.83 se obține expresia presiunii de autofretaj:

$$p_F = p_c + \sigma_c \ln \frac{R_c}{r}$$
(385)

Pentru zona $D_c - D_2$, solicitată elastic la presiunea interioară p_c , în baza relațiilor 3.9 și a teoriei a III-a de rezistență, se obține relația presiunii pc:

$$p_{c} = \frac{D_{2}^{2} - D_{c}^{2}}{2D_{2}^{2}} \boldsymbol{\sigma}_{c}$$
(3.86)

3.3.2.1. TUB PARȚIAL AUTOFRETAT :

Ne folosim de următoarele notații:

. •

$$k = \frac{D_2}{D_1} \qquad a = \frac{D_c}{D_1} \qquad b = \frac{D_2}{D_c}$$

În baza relațiilor 32.85), 3.86) și a notațiilor de mai sus se poate scrie:

$$p_{F} = \sigma_{c} \ln a + \sigma_{c} \frac{D_{2}^{2} - D_{c}^{2}}{2D_{2}^{2}}$$

$$p_{F} = \sigma_{c} \ln a + \sigma_{c} \frac{\frac{D_{2}^{2}}{D_{c}^{2}} - \frac{D_{c}^{2}}{D_{c}^{2}}}{\frac{D_{2}^{2}}{D_{c}^{2}}}$$

$$p_{F} = \sigma_{c} \ln a + \sigma_{c} \frac{b^{2} - 1}{2b^{2}}$$
(3.87)

Relația 3.86 (expresia presiunii ce apare între zona plastică și cea elastică) poate fi scrisă funcție de "b", astfel:

$$p_{c} = \sigma_{c} \frac{b^{2} - 1}{2b^{2}}$$
(3.88)

Tensiunile în zona plastică a tubului $D_1 < D < D_c$ se calculează utilizând relațiile 3.83 și 3.84, astfel:

$$-pentrur = \frac{D}{2} = \frac{D_1}{2}$$

$$\sigma_{r_1} = -p_F \qquad (3.89)$$

$$\sigma_{\varphi_1} = \sigma_c - p_F \qquad (3.90)$$

$$-pentrur = \frac{D}{2} = \frac{D_c}{2}$$

$$\sigma_{rc} = -p_c \qquad (3.91)$$

$$\sigma_{\varphi_c} = \sigma_c - p_c \qquad (3.92)$$

Tensiunile în zona elastică a tubului $D_c < D < D_2$ se calculează:

$$-pentru r = \frac{D_c}{2} \qquad \boldsymbol{\sigma}_{rc} = -p_c \qquad \boldsymbol{\sigma}_{\varphi c} = \boldsymbol{\sigma}_c - p_c$$
$$-pentru = \frac{D_2}{2}, \hat{\mathbf{n}} \text{ bazarelației3.9} \qquad \boldsymbol{\sigma}_{r_2} = 0 \qquad \boldsymbol{\sigma}_{\varphi 2} = p_c \frac{2D_c^2}{D_2^2 - D_c^2}$$

$$\sigma_{\varphi_2} = p_c \frac{2}{b^2 - 1}$$
 (3.93)

Inlocuind presiunea pe cu expresia din relația (3.88), se obține:

$$\boldsymbol{\sigma}_{\varphi_2} = \frac{\boldsymbol{\sigma}_c}{b^2} = \left(\frac{D_c}{D_2}\right)^2 \boldsymbol{\sigma}_c \qquad (3.94)$$

La înlăturarea presiunii de autofretaj p_F (descărcarea tubului) în tub rămân tensiuni remanente $(\sigma_r)_{rem}$, $(\sigma_{\phi})_{rem}$, a căror valoare se determină prin însumarea tensiunilor de autofretare cu cele de descărcare. Se consideră că la descărcare tubul este solicitat elastic la o presiune interioară (- p_F). Ca urmare, tensiunile la descărcare $(\sigma_r)_d$, $(\sigma_{\phi})_d$ se vor calcula în baza relațiilor 3.40 și 3.41, având valorile:

- pentru
$$D = D_1$$

 $(\sigma_{r1})_d = p_F$
 $(\sigma_{\varphi 1})_d = -\frac{k^2 + 1}{k^2 - 1} p_F$
- pentru $D = D_2$
 $(\sigma_{r2})_d = 0$
 $(\sigma_{\varphi 2})_d = -\frac{2p}{k^2 - 1}$
unde $k = \frac{D_2}{D_1}$ este grosimea relativă a peretelui tubului

Ca urmare, tensiunile remanente vor fi:

$$(\boldsymbol{\sigma}_{r})_{rem} = \boldsymbol{\sigma}_{r} + (\boldsymbol{\sigma}_{r})_{d}$$

 $(\boldsymbol{\sigma}_{\varphi})_{rem} = \boldsymbol{\sigma}_{\varphi} + (\boldsymbol{\sigma}_{\varphi})_{d}$

Tubul autofretat va fi supus unei presiuni de serviciu p_s , tensiunile radiale $(\sigma_r)_s$ și $(\sigma_{\varphi})_s$ se vor calcula cu relațiile 3.40 și 3.41 pentru $p = p_s$.

Starea de tensiune a tubului autofretat se determină prin însumarea tensiunilor remanente $(\sigma_r)_{rem}$, $(\sigma_{\phi})_{rem}$ și a tensiunilor $(\sigma_r)_s$, respectiv $(\sigma_{\phi})_s$. Vom nota aceste tensiuni cu $(\sigma_r)_{ef}$ și $(\sigma_{\phi})_{ef}$ (ef = efectiv în sarcină).

În fig. 3.9 s-a reprezentat, în baza relațiilor stabilite, diagramelor de variație a acestor tensiuni pentru un tub autofretat. Valorile efective ale tensiunilor se vor calcula pentru fiecare model supus autofretării.

Fig. 3.9

3.3.2.2. TUB TOTAL AUTOFRETAT.

Din relațiile (3.83) și (3.84) pentru tubul autofretat se pot calcula tensiunile radiale și circumferențiale, astfel:

$$\boldsymbol{\sigma}_{r} = -\boldsymbol{\sigma}_{c} \ln \frac{D_{2}}{D} \tag{3.95}$$

$$\boldsymbol{\sigma}_{\varphi} = \boldsymbol{\sigma}_{c} \left(1 - \ln \frac{D_{2}}{D} \right)$$
(3.96)

Presiunea de autofretaj va avea expresia :

$$p_F = \boldsymbol{\sigma}_c \ln \frac{D_2}{D_1} \qquad \qquad p_F = \boldsymbol{\sigma}_c \ln k$$

Procedând similar ca în cazul tubului parțial autofretat, se pot trasa diagramele de variație a tensiunilor radiale și circumferențiale (σ_r , σ_{ϕ}) în baza relațiilor de calcul stabilite, conform fig 3.10 (k < 3)

Fig. 3.10

3.3.2.3. CALCULUL DEFORMAŢIILOR

Pentru verificarea și controlul autofretării de importanță deosebită este cunoașterea deformațiilor tubului sub presiunea de autofretaj p_F . Verificarea autofretării se poate face prin măsurarea creșterii diametrului interior al tubului ($\mathcal{E}D_2$).[85][86][13][35][116]

Putem scrie că:

. •

$$\varepsilon_{\varphi_2} = \frac{\sigma_{\varphi_2}}{E} = \frac{u_2}{T_2} = \frac{\Delta D_2}{D_2}$$
(3.98)

unde $\sigma_{\varphi 2}\,$ este tensiunea tangențială la diametrul exterior D $_2$ sub presiunea de autofretaj p_F

a) Tub parțial autofretat ($\sigma_z = 0$, tub cu capete deschise) Se consideră zona elastică ($D_c - D_2$) unde este conform rel. 3.94.

$$\sigma_{\varphi_2} = \frac{\sigma_c}{b^2} = \left(\frac{D_c}{D_2}\right)^2 \sigma_c$$

deformația va fi la diametrul exterior

$$\Delta D_2 = \varepsilon_{\varphi_2} D_2 = \left(\frac{D_c}{D_2}\right)^2 \frac{\boldsymbol{\sigma}_c}{E} D_2$$

iar creșterea diametrului exterior va fi:

$$\varepsilon_{\varphi_2} \cdot D_2 = \frac{D_c^2}{D_2} \cdot \frac{\sigma_c}{E}$$
(3.99)

b). Tub autofretat total (cazul $\sigma_z = 0$)

$$\boldsymbol{\sigma}_{\varphi_2} = \boldsymbol{\sigma}_c \, \boldsymbol{\varepsilon}_{\varphi_2} = \frac{\boldsymbol{\sigma}_{\varphi_2}}{E} = \frac{\boldsymbol{\sigma}_c}{E} \Delta D_2 = \boldsymbol{\varepsilon}_{\varphi_2} \cdot D_2 = D_2 \frac{\boldsymbol{\sigma}_c}{E} \tag{3.100}$$

3.3.3. CALCULUL ȚEVILOR DE ARTILERIE AUTOFRETATE DUPĂ TEORIA EFORTULUI TANGENȚIAL MAXIM

Calculul are la bază ipoteze și datele experimentale ale lui Malavel care admit că

a) deformațiile corpului depind numai de componentele tensiunilor în planul considerat (tensiuni circurmferențiale) și nu de cele normale;

b) tensiunile și deformațiile, atât cele elastice cât și cele plastice, preexistente în material nu alterează omogenitate și în mod sensibil modulul de elasticitate E și coeficientul lui Poisson sunt independente de tensiunile și deformațiile de moment;

c). în anumite limite de ecruisare se poate aplica principiul suprapunerii efectelor,

d) secțiunea dreaptă se păstrează și după ecruisaj;

Malavel indică în sprijinul acestor ipoteze următoarele experimente:

a). verificarea teoriei lui Coulomb pentru cilindrii supuși la presiuni interioare Experimentele arată că la cilindrii supuși la presiune interioară până la spargere, ruperea se face după un plan înclinat, aproximativ la 45⁰;

b). constatarea că dacă un cilindru înainte de autofretare se termină cu secțiune dreaptă, după autofretare își păstrează secțiunea dreaptă. Aceasta arată că deformația longitudinală (ε_z) este constantă în grosimea peretelului;

c). conservarea volumului corpurilor prin deformarea plastică;

d). tensiunea tangențială maximă este independentă de tensiunea longitudinală (σ_z), aceasta fiind cuprinsă între σ_{ϕ} și σ_r .

Curba caractersitică cu întărire a materialului este prezentată în fig 3.7

Conform teoriei, se atinge limita de curgere la diametrul exterior, atunci când deformația pe fibra exterioară sub presiunea de autofretaj atinge valoarea

$$\varepsilon_{\varphi^2} = \frac{\Delta D_2}{D_2} = \frac{5}{6} \cdot \frac{\boldsymbol{\sigma}_c}{E}$$
(3.101)

iar presiunea de autofretaj se calculează, după Malavel, cu relația:

$$p_{F}\left(1+\frac{5}{6}\cdot\frac{E_{p}}{E}\right) = \boldsymbol{\sigma}_{c}\cdot\ln k + \frac{5}{12}E_{p}\frac{\boldsymbol{\sigma}_{c}}{E}\left(k^{2}-1\right)$$
(3.102)

Deformația specifică la interiorul tubului se calculează:

$$\varepsilon_{\varphi 1} = \frac{\Delta D_1}{D_1} = \left(\frac{\Delta D_2}{D_2}\right) k^2 - \frac{1}{3} \cdot \frac{p_F}{E}$$

Creșterea diametrului interior sub presiunea de autofretaj va fi:

$$\Delta D_1 = \left(\frac{\Delta D_1}{D_1}\right) \cdot D_1$$

Diametrul interior sub presiunea de autofretaj limită va fi:

$$\mathbf{D}_{1} = \mathbf{D}_{1} + \Delta \mathbf{D}_{1}$$

.

Creșterea diametrului exterior sub presiunea de autofretaj va fi:

$$\Delta D_2 = \left(\frac{\Delta D_2}{D_2}\right) \cdot D_2$$

Diametrul exterior la un autofretaj total va fi:

. •

$$D_2 = D_2 + \Delta D_2$$

După Malavel, deformația interioară a tubului, după înlăturarea presiunii de autofretaj, se calculează cu relația:

$$\left(\frac{\overline{\Delta D_1}}{D_1}\right) = \left(\frac{\Delta D_1}{D_1}\right) - \frac{1}{3} \cdot \frac{4k^2 + 1}{k^2 - 1} \cdot \frac{p_F}{E}$$
(3.104)

Creșterea diametrului interior după înlăturarea presiunii p_F va fi

$$\overline{\Delta D_1} = \left(\frac{\overline{\Delta D_1}}{D_1}\right) D_1$$

iar diametrul interior

$$\mathbf{D}_1'' = \mathbf{D}_1 + \overline{\Delta \mathbf{D}_1}$$

Pentru deformația exterioară a tubului, după înlăturarea presiunii de autofretaj total, Malavel a stabilit relația de calcul:

$$\frac{\overline{\Delta D_2}}{D_2} = \left(\frac{\Delta D_2}{D_2}\right) - \frac{5}{6} \cdot \frac{2p_F}{(k^2 - 1)E}$$
(3.105)

Creșterea diametrului exterior va fi:

$$\overline{\Delta D_2} = \left(\frac{\overline{\Delta D_2}}{D_2}\right) D_2$$

iar diametrul exterior devine:

$$D_2' = \overline{\Delta D_2} \cdot D_2$$

Pentru calculul tensiunilor, în cazul autofretajului total, Malavel a stabilit următoarele relații:

$$\sigma_{\varphi 1} = \sigma_c + E_p \cdot \frac{\overline{\Delta D_1}}{D_1} - p_F \qquad (3.106)$$

$$\sigma_{r1} = -p_F$$

$$\sigma_{\varphi 2} = \sigma_c + \frac{2(p_F - \sigma_c \ln K)}{K^2 - 1} \qquad (3.107)$$

$$\sigma_{r2} = 0$$

Tensiunile remanente introduse în tubul autofretat, se obțin prin însumarea tensiunilor sub presiunea de autofretaj cu tensiunile create în tubul elastic solicitat la o presiune de descărcare $(-p_F)$.

Tensiunile datorate presiunii de descărcare, tubul fiind considerat în domeniul elastic, se calculează cu relația:

$$\left(\sigma_{\varphi 1}\right)_{d} = -\frac{K^{2}+1}{K^{2}-1} \cdot p_{F}$$
 $d = descă rcare$
 $\left(\sigma_{r1}\right)_{d} = p_{F}$

$$\left(\sigma_{\varphi_2} \right)_d = -\frac{2p_F}{k^2 - 1}$$

$$\left(\sigma_{\Gamma_2} \right)_d = 0$$

$$(3.108)$$

Ca urmare, tensiunile remanente vor fi:

$$(\sigma_{\varphi_1})_{\text{rem}} = \sigma_{\varphi_1} + (\sigma_{\varphi_1})_d$$
$$(\sigma_{r_1})_{\text{rem}} = \sigma_{r_1} + (\sigma_{r_1})_d$$
$$(\sigma_{\varphi_2})_{\text{rem}} = \sigma_{\varphi_2} + (\sigma_{\varphi_2})_d$$
$$(\sigma_{r_2})_{\text{rem}} = \sigma_{r_2} + (\sigma_{r_2})_d$$

Presiunea de autofretaj, în cazul autofretajului parțial, se obține din relația:

$$(p_F - p_c)\left(1 + \frac{5}{6} \cdot \frac{E_p}{E}\right) = \sigma_c \cdot \ln a + \frac{E_p}{2}\left(\frac{\Delta D_c}{D_c}\right)\left(a^2 - l\right)$$

unde

p_c - presiunea la diametrul "D_c" ce se calculează cu relația (3.88):

$$p_{c} = \sigma_{c} \frac{b^{2} - 1}{2b^{2}}$$

S-au făcut aceleași notații ca la pct. 3.3.2.2.

. -

$$k = \frac{D_2}{D_1}; a = \frac{D_c}{D_1}; b = \frac{D_2}{D_c}$$
$$\left(\frac{\Delta D_c}{D_c}\right) = \frac{1}{E} \left(\frac{5}{6}\sigma_c - \frac{p_c}{3}\right)$$
(3.110)

Pentru deformații Malavel a stabilit relațiile:

$$\frac{\Delta D_1}{D_1} = \left(\frac{\Delta D_c}{D_c}\right) \cdot a^2 + \frac{p_c a^2 - p_F}{3E} \qquad (3.111)$$

Creșterea diametrului interior al tubului în timpul autofretării va fi:

$$\Delta D_1 = \left(\frac{\Delta D_1}{D_1}\right) D_1$$

iar diametrul interior:

$$\mathbf{D'}_1 = \mathbf{D}_1 + \frac{\Delta \mathbf{D}_1}{\mathbf{D}_1}$$

Deformațiile diametrului exterior D_2 a tubului se calculează în baza relațiilor:

$$\frac{\Delta D_2}{D_2} = \frac{1}{b^2} \left[\left(\frac{\Delta D_c}{D_2} \right) + \frac{1}{3} \cdot \frac{p_c}{E} \right]$$
(3.112)
unde $\frac{\Delta D_c}{D_c}$ seobți necurelația 2.110
 $\Delta D_2 = \left(\frac{\Delta D_2}{D_2} \right) D_2$
 $D_2 = D_2 + \Delta D_2$

Deformațiile după înlăturarea presiunii de autofretaj, se calculează după Malavel cu relațiile:

$$\frac{\overline{\Delta D_1}}{D_1} = \left(\frac{\Delta D_1}{D_1}\right) - \frac{(4a^2 + 1)p_F - 5a^2 p_c}{3(a^2 - 1)E}$$
(3.113)
$$\overline{\Delta D_1} = \left(\frac{\overline{\Delta D_1}}{D_1}\right) D_1$$

$$\frac{D_1^{"}}{D_2} = D_1 + \overline{\Delta D_1}$$
(3.114)
$$\overline{\Delta D_2} = \left(\frac{\overline{\Delta D_2}}{D_2}\right) D_2$$

$$D_2^{"} = D_2 + \overline{\Delta D_2}$$

Tensiunile se determină în baza următoarelor relații stabilite de Malavel

- -

$$\sigma_{\varphi 1} = \frac{\sigma_c \left(1 + \frac{11}{12} \cdot \frac{E_p}{E} a^2\right)}{1 + \frac{11}{12} \cdot \frac{E_p}{E}} - p_F \qquad (3.115)$$

$$\sigma_{\Gamma 1} = -p_F$$

$$\sigma_{\varphi c} = \sigma_c - p_c; \sigma_{\Gamma c} = -p_c$$

$$\sigma_{\Gamma 2} = 0$$

$$\sigma_{\varphi 2} = p_c \cdot \frac{2D_c^2}{D_2^2 - D_c^2} sau \sigma_{\varphi 2} = \frac{2p_c}{b^2 - 1}$$

Tensiunile remanente se obțin prin însumarea tensiunilor din timpul autofretării cu cele din timpul descărcării tubului cu presiunea $(-p_F)$.

În timpul descărcării, tubul se consideră elastic, iar tensiunile se calculează cu relațiile:

$$\left(\sigma_{\varphi_1} \right)_{d} = -\frac{K^2 + 1}{K^2 - 1} \cdot p_F$$

$$\left(\sigma_{r_1} \right)_{d} = p_F$$

$$\left(\sigma_{\varphi_2} \right)_{d} = -\frac{2p_F}{k^2 - 1}$$

$$\left(\sigma_{r_2} \right)_{d} = 0$$

$$\left(\sigma_{\varphi_c} \right)_{d} = -\frac{b^2 + 1}{k^2 - 1} p_F$$

$$\left(\sigma_{\varphi_c} \right)_{d} = \frac{b^2 - 1}{k^2 - 1} p_F$$

$$(3.116)$$

62

3.3.4. CALCULUL ȚEVILOR DE ARTILERIE AUTOFRETATE DUPĂ TEORIA ENERGIEI DE DEFORMAȚIE MODIFICATOARE DE FORMĂ (HUBER - HENCKY -**MISES). CURBA TIP PRANDTL**

Se fac următoarele ipoteze[13][35][116]:

a). materialul tubului este incompresibil, deci $\varepsilon = 0$

$$\varepsilon_{v} = \varepsilon_{\varphi} + \varepsilon_{r} + \varepsilon_{z} = 3 \cdot \frac{1 - 2v}{E} \cdot \frac{\sigma_{\varphi} + \sigma_{r} + \sigma_{z}}{3} = 0$$

Dacă se aplică această ipoteză la întinderea simplă, rezultă v = 0.5

- b) materialul este ideal elasto-plastic (cursa tip Prandtl),
- c) se admite condiția de plasticitate Huber Hencky Mises:

$$\sigma_{\rm ech} = \frac{1}{\sqrt{2}} \sqrt{\left(\sigma_{\varphi} - \sigma_{\rm r}\right)^2 + \left(\sigma_{\rm r} - \sigma_{\rm z}\right)^2 + \left(\sigma_{\rm z} - \sigma_{\varphi}\right)^2} = \sigma_{\rm c}$$

d) tubul este solicitat numai de presiunea interioară de autofretaj $p_{\rm F}$. Cunoscând că:

$$\varepsilon_{z} = \frac{\sigma_{z}}{E} = \frac{\nu(\sigma_{\varphi} + \sigma_{r})}{E}$$
pentru $\varepsilon_{z} = 0$ siv = 0,5 rezultă : $\sigma_{z} = \frac{\sigma_{\varphi} + \sigma_{r}}{2}$
care î nlocuit î n relațialui σ_{ech} seobține :
$$\sigma_{ech} = \frac{\sqrt{3}}{2} (\sigma_{\varphi} - \sigma_{r}) = \sigma_{c}$$

$$deci\sigma_{\varphi} - \sigma_{r} = \frac{2}{\sqrt{3}} \sigma_{c} \qquad (3.117)$$

(3.117)

În zona elastic $D_c \le r \le D_2$ putem scrie relația:

$$\sigma_{\varphi} - \sigma_{r} = \frac{2}{3}E(\varepsilon_{\varphi} - \varepsilon_{r}) \qquad (3.118)$$

$$\text{und} \varepsilon_{\varphi} = \frac{C}{r^{2}}$$

$$\varepsilon_{r} = -\frac{C}{r^{2}}$$

$$deci$$

$$\sigma_{\varphi} - \sigma_{r} = \frac{4EC}{3r^{2}} \qquad (3.119)$$

La r = Dc/2 relatia (3.117) și (3.119) trebuie să fie identice.

$$\frac{2}{\sqrt{3}}\sigma_c = \frac{4EC}{3\left(\frac{Dc}{2}\right)^2}$$

$$C = \frac{\sqrt{3}\sigma_c \left(\frac{Dc}{2}\right)^2}{2E}$$
(3.120)

În ambele zone este valabilă ecuația diferențială de echilibru pentru tuburi cu pereți groși solicitați la presiunea $p_{F_{i}}$

$$\frac{d\sigma_r}{dr} + \frac{\sigma_r - \sigma_{\varphi}}{r} = 0$$

$$\sigma_r = C_1 + \int_{R_1}^r \frac{\sigma_{\varphi} - \sigma_r}{r} dr$$
 (3.121)
darpentrur = $\frac{D_1}{2}; \sigma_r = -p_F$
 $r = \frac{D_2}{2}; \sigma_r = 0$

Rezultă : $C_1 = -p_F$, iar

$$\sigma_r = -p_F + \int_{R_1}^r \frac{\sigma_{\varphi} - \sigma_r}{r} dr \qquad (3.122)$$

Înlocuind a doua condiție limită se obține:

$$p_F = \int_{R_1}^{R_2} \frac{\sigma_{\varphi} - \sigma_r}{r} dr \qquad (3.123)$$

Integrarea relației se face pe cele două zone plastice cu condiția (3.117) și elastică cu condiția (3.119):

$$p_{F} = \frac{2\sigma_{c}}{\sqrt{3}} \int_{R_{1}}^{R_{c}} \frac{dr}{r} + \frac{4EC}{3} \int_{R_{c}}^{R_{2}} \frac{dr}{r^{2}}$$
$$p_{F} = \frac{2\sigma_{c}}{\sqrt{3}} \ln \frac{R_{c}}{R_{1}} - \frac{2EC}{3} \left(\frac{1}{R_{2}^{2}} - \frac{1}{R_{c}^{2}} \right)$$

Utilizăm notațiile făcute K = D_2/D_1 , a = D_c/D_1 , b = D_2/D_c și înlocuim pe C cu valoarea din relația (3.120), expresia presiunii de autofretaj va fi:

$$p_F = \frac{\sigma_c}{\sqrt{3}} \left(1 - \frac{a^2}{K^2} + 2\ln a \right)$$
 (3.124)

Presiunea de autofretaj pentru care întregul tub este autofretat se obține pentru a = k

$$p_F = \frac{2}{\sqrt{3}}\sigma_c \ln k \tag{3.125}$$

Notând cu
$$\beta = \frac{2}{\sqrt{3}}$$
 se poate scrie:
 $p_F = \beta \sigma_c \ln k$ (3.126)

În zona plastică $R_1 \le r \le R_c$, tensiunea radială se obține din relația (3.122) și (3.124), făcând notația $\rho = r / R_1$

$$\sigma_r = \frac{\sigma_c}{\sqrt{3}} \left(\frac{a^2}{k^2} - 1 + 2\ln\frac{\rho}{a} \right)$$
(3.127)

similar

$$\sigma_{\varphi} = \frac{\sigma_c}{\sqrt{3}} \left(\frac{a^2}{k^2} + 1 + 2\ln\frac{\rho}{a} \right)$$
(3.128)

$$\sigma_z = \frac{\sigma_c}{\sqrt{3}} \left(\frac{a^2}{k^2} + 2\ln\frac{\rho}{a} \right)$$
(3.129)

Pentru zona elastică $R_c \le r \le R_2$, tensiunea radială se obține din relația (3.122), care se desparte într-un termen reprezentând integrarea pe zona plastică, de la R_1 la R_c și al doilea, pe zona elastică, de la R_c până la raza curentă r:

$$\sigma_{\mathbf{r}} = -\mathbf{p}_{\mathbf{F}} + \frac{2\sigma_{\mathbf{c}}}{\sqrt{3}} \int_{\mathbf{R}_{1}}^{\mathbf{R}_{\mathbf{c}}} \frac{d\mathbf{r}}{\mathbf{r}} + \frac{4\mathrm{EC}}{3} \int_{\mathbf{R}_{\mathbf{c}}}^{\mathbf{r}} \frac{d\mathbf{r}}{\mathbf{r}^{2}}$$
$$\sigma_{\mathbf{r}} = -\mathbf{p}_{\mathbf{F}} + \frac{2\sigma_{\mathbf{c}}}{\sqrt{3}} \ln \mathbf{a} - \frac{2\mathrm{EC}}{3} \left(\frac{1}{\mathbf{r}^{2}} - \frac{1}{\mathbf{R}_{\mathbf{c}}^{2}}\right)$$

Înlocuind pe p_F cu expresia din relația 3.124, pe C cu relația 3.120 și ținând cont de notațiile făcute se obține pentru zona elastică:

$$\sigma_{r} = \frac{\sigma_{c} a^{2}}{\sqrt{3}} \left(\frac{1}{k^{2}} - \frac{1}{\rho^{2}} \right)$$
(3.130)

Din relația (3.119) se obține tensiunea circumferențială pentru zona elastică:

$$\sigma_{\varphi} = \frac{\sigma_{c}a^{2}}{\sqrt{3}} \left(\frac{1}{k^{2}} + \frac{1}{\rho^{2}} \right)$$
(3.131)

Deci, în zona elastică se poate scrie relația:

$$\sigma_{r,\varphi} = \frac{\sigma_c a^2}{\sqrt{3}} \left(\frac{1}{k^2} \mp \frac{1}{\rho^2} \right)$$
(3.132)

Tensiunea axială în zona elastică se calculează cu relația:

$$\sigma_{z} = \frac{\sigma_{\varphi} + \sigma_{r}}{2}$$

$$\sigma_{z} = \frac{\sigma_{c}a^{2}}{k^{2}\sqrt{3}}$$
(3.133)

Pentru **tubul complet autofretat** presiunea de autofretaj se calculează cu relația 3.126 $p_F = \beta \sigma_c \ln k; \quad k = D_2 / D_1$

Tensiunile radiale în perete vor fi, în baza relației (3.128), pentru a = k și $\rho / a = \frac{D_2}{2}$

$$\sigma_r = -\beta \sigma_c \ln \frac{D_2}{D} \tag{3.134}$$

Tensiunile circumferențiale se obțin în baza relației (3.117) și (3.134):

$$\sigma_{\varphi} = \beta \sigma_c \left(1 - \ln \frac{D_2}{D} \right) \tag{3.135}$$

Tensiunea axială va fi:

$$\sigma_{z} = \frac{\beta \sigma_{c} \left[1 - \ln \frac{D_{2}}{D} + \ln \frac{D_{2}}{D} \right]}{2}$$

$$\sigma_{z} = \beta \frac{\sigma_{c}}{2}; \text{pentru} \beta = \frac{2}{\sqrt{3}}$$

$$\sigma_{z} = \frac{\sigma_{c}}{\sqrt{3}} \qquad (3.136)$$

Calculul deformațiilor se va efectua pentru cazul tubului autofretat cu capete deschise $(\sigma_z = 0)$.

Alungirile principale sunt:

$$\varepsilon_{\rm r} = \frac{{\rm d} {\rm u}}{{\rm d} {\rm r}}; \quad \varepsilon_{\varphi} = \frac{{\rm u}}{{\rm r}}; \quad \varepsilon_{\rm z} = 0$$

Materialul fiind considerat incompresibil $\varepsilon_v = 0$, rezultă ecuația:

$$\frac{du}{dr} + \frac{u}{r} = 0 \quad \text{cusoluiția} \quad u = \frac{C}{r}$$
$$\text{dec} \quad i\varepsilon_{\varphi} = \frac{C}{r^2} \quad (3.137)$$

$$\varepsilon_{\rm r} = -\frac{\rm C}{\rm r^2}$$

66

Înlocuind pe C cu expresia din relația (3.120), se obține:

$$\varepsilon_{\varphi} = \frac{\sqrt{3}\sigma_{c}}{2E} \cdot \frac{R_{c}^{2}}{r^{2}}$$

$$\varepsilon_{r} = -\frac{\sqrt{3}\sigma_{c}}{2E} \cdot \frac{R_{c}^{2}}{r^{2}}$$

$$\varepsilon_{\varphi,r} = \pm \frac{\sqrt{3}\sigma_{c}}{2E} \cdot \frac{R_{c}^{2}}{r^{2}}$$
(3.138)

Pentru r = $D_2/2$ și $R_c = D_c/2$, se obține:

-_ -

$$\varepsilon_{\varphi_2} = \frac{\sqrt{3}\sigma_c}{2E} \cdot \frac{D_c^2}{D_2^2} = \frac{\sqrt{3}\sigma_c}{2E} \cdot \frac{\frac{D_c^2}{D_1^2}}{\frac{D_c^2}{D_1^2}}$$

$$\varepsilon_{\varphi_2} = \frac{\sqrt{3}\sigma_c}{2E} \cdot \frac{a^2}{k^2}$$
(3.139)

Pentru tub complet autofretat a = k

$$\varepsilon_{\varphi_{2}} = \frac{\sqrt{3}\sigma_{c}}{2E} \qquad (3.140)$$

Creșterea diametrului va fi :
$$\Delta D_{2} = \varepsilon_{\varphi_{2}} \cdot D_{2} = \frac{\sqrt{3}\sigma_{c}}{2E} D_{2}$$

Pentrur = $D_{1}/2$ și $R_{c} = D_{c}/2$ din relația 2.138, se obține :
$$\varepsilon_{\varphi_{1}} = \frac{\sqrt{3}\sigma_{c}}{2E} \cdot \frac{D_{c}^{2}}{D_{1}^{2}} = \frac{\sqrt{3}\sigma_{c}}{2E} a^{2}$$

$$\varepsilon_{\varphi_{1}} = \frac{\sqrt{3}\sigma_{c}}{2E} a^{2} \qquad (3.141)$$

Pentru tub complet autofretat $D_c = D_2$:

$$\varepsilon_{\varphi_1} = \frac{\sqrt{3}\sigma_c}{2E}k^2 \qquad (3.142)$$
$$\Delta D_1 = \varepsilon_{\varphi_1} \cdot D_1 = \frac{\sqrt{3}\sigma_c k^2}{2E}D_1$$
3.3.5. CALCULUL ȚEVILOR DE ARTILERIE AUTOFRETATE DUPĂ TEORIA ENERGIEI DE DEFORMAȚIE MODIFICATOARE DE FORMĂ (HUBER-HENCKY-MISES). CURBA CU ÎNTĂRIRE

În [116] pag. 814 sunt prezentate relațiile de calcul pentru tensiunile ce apar în tubul gros solicitat la o presiune interioară și una exterioară, în baza teoriei a V -a (HUBER-HENCKY-MISES) și curba caracteristică cu întărire. Pentru cazul studiat $\mathbf{p}_e = \mathbf{0}$ și ținând cont de notațiile făcute până în prezent, relațiile de calcul vor fi prezentate în continuare.

Presiunea la care apar deformații plastice este dată de relația:

$$p_{F \, \rm lim} = \frac{\sigma_c}{\sqrt{3}} \cdot \frac{k^2 - 1}{k^2} \tag{3.143}$$

Relația de calcul a presiunii ce desparte zona plastică de cea elastică este:

$$p_{c} = \frac{\sigma_{c}}{\sqrt{3}} \left[\left(1 - \lambda - \frac{R_{l}^{2}}{R_{2}^{2}} \right) \frac{R_{c}^{2}}{R_{1}^{2}} + \lambda + 2\lambda \ln \frac{R_{c}}{R_{l}} \right]$$
(3.144)
unde $\lambda = 1 - \frac{E_{p}}{E}$ coefficient de consolidare

În baza relațiilor făcute: $k = D_2/D_1$; $a = D_c/D_1$ și a unor artificii matematice, relația mai poate fi scrisă:

$$p_{c} = \frac{\sigma_{c}}{\sqrt{3}} \left[\frac{k^{2} (1-\lambda) - 1}{k^{2}} a^{2} + \lambda + 2\lambda \ln a \right]$$
(3.145)

Tensiunile se calculează cu relațiile următoare:

În domeniul plastic $R_1 \le r \le R_c$:

$$\sigma_{\varphi} = -p_F + \frac{\sigma_c}{\sqrt{3}} \left[2\lambda + \left(1 - \lambda\right) \left(a^2 + \frac{R_c^2}{r^2}\right) + 2\lambda \ln \frac{r}{R_1} \right]$$
(3.146)

$$\sigma_r = -p_F + \frac{\sigma_c}{\sqrt{3}} \left[\left(1 - \lambda\right) \left(a^2 - \frac{R_c^2}{r^2}\right) + 2\lambda \ln \frac{r}{R_1} \right]$$
(3.147)

$$\sigma_{z} = -p_{F} + \frac{\sigma_{c}}{\sqrt{3}} \left[\lambda + (1 - \lambda)a^{2} + 2\lambda \ln \frac{r}{R_{1}} \right]$$
pentru $\varepsilon_{z} = 0$
(3.148)

În domeniul elastic $R_1 \le r \le R_2$:

$$\sigma_{\varphi} = -p_{F} + \frac{\sigma_{c}}{\sqrt{3}} \left[a^{2} + \frac{R_{c}^{2}}{r^{2}} - \lambda (a^{2} - 1) + 2\lambda \ln a \right]$$

$$\sigma_{r} = -p_{F} + \frac{\sigma_{c}}{\sqrt{3}} \left[a^{2} - \frac{R_{c}^{2}}{r^{2}} - \lambda (a^{2} - 1) + 2\lambda \ln a \right]$$

$$\sigma_{z} = -p_{F} + \frac{\sigma_{c}}{\sqrt{3}} \left[a^{2} - \lambda (a^{2} - 1) + 2\lambda \ln a \right]$$
(3.151)

Deplasarea radială este:

$$u = \frac{\sqrt{3}}{2} \cdot \frac{R_c^2}{r} \cdot \frac{\sigma_c}{E} \qquad (3.152) \qquad \text{iar } \varepsilon_{\varphi_1} = \frac{u}{r}$$
$$\varepsilon_{\varphi_1} = \frac{\sqrt{3}}{2} \cdot \frac{R_c^2}{r^2} \cdot \frac{\sigma_c}{E} \qquad (3.153)$$

Pentru **autofretajul total**, relațiile de calcul a tensiunilor vor fi $(p_F \text{ are expressia din relația 3.143})$ pentru a = kși $R_c = R_2$:

$$\sigma_{\varphi} = -p_F + \frac{\sigma_c}{\sqrt{3}} \left[2\lambda + \left(1 - \lambda\right) \left(k^2 + \frac{R_2^2}{r^2}\right) + 2\lambda \ln \frac{r}{R_1} \right]$$
(3.154)

$$\sigma_{r} = -p_{F} + \frac{\sigma_{c}}{\sqrt{3}} \left[(1-\lambda)k^{2} - \frac{R_{2}^{2}}{r^{2}} + 2\lambda \ln \frac{r}{R_{1}} \right]$$

$$\sigma_{z} = -p_{F} + \frac{\sigma_{c}}{\sqrt{3}} \left[\lambda + (1-\lambda)k^{2} + 2\lambda \ln \frac{r}{R_{1}} \right]$$

$$(3.156)$$

Deplasarea radială devine:

$$u = \frac{\sqrt{3}}{2} \cdot \frac{R_2^2}{r} \cdot \frac{\sigma_c}{E}$$
(3.157)

$$\operatorname{iar} \varepsilon_{\varphi_1} = \frac{u}{r}$$

$$\varepsilon_{\varphi_1} = \frac{\sqrt{3}}{2} \cdot \frac{R_2^2}{r^2} \cdot \frac{\sigma_c}{E}$$
(3.158)

CAPITOLUL 4

ANALIZA CARACTERISTICILOR MECANICE ȘI DE DEFORMABILITATE LA SOLICITĂRI STATICE ȘI DINAMICE PENTRU OȚELUL OFN_3MFA în stare de semifabricat pentru autofretare.

4.1 CONSIDERAȚII GENERALE

Pentru studiul caracteristicilor mecanice în condițiile unor solicitări statice și dinamice sa pornit de la un semifabricat brut forjat din oțel OHN3MFA, culeu 12134-92, livrat de furnizor la Uzina Mecanică Reșița, cu certificatul de calitate nr. 75154/28 06 1995, pentru care la recepție s-a întocmit buletinul de analiză chimică nr. 75/27 07 1995. În urma operațiilor de strunjire exterioară, găurirea adâncă Ø 80 mm s-au debitat trei bucșe (denumite în continuare semifabricat bramă) având culeele (inscripționarea pentru bramă trasabilitate = identificare) nr. 12134-92-1, 12134-92-2 și 12134-92-3. Pentru un studiu mai documentat a caracteristicilor mecanice a acestui oțel, tratamentul termic de revenire s-a efectuat la temperaturi diferite obținându-se duritățile menționate mai jos

Nr. crt.	Semifabricat	Culeu	Temperatura [°] C	Duri	tatea
				HB	HRC
1.	Bramă 1	12134-92-1	620	286	30
2.	Bramă 2	12134-92-2	580	340	37
3.	Bramă 3	12134-92-3	600	311	34

Din fiecare semifabricat baramă s-au executat epruvete pentru încercări statice și dinamice, care au fost inscripționate după cum urmează: primul indice precizând numărul de ordine al bramei, al doilea indice numărul șaibei, al treilea indice tipul epruvetei și al patrulea indice s-a referit la numărul de ordine al epruvetei din grupul prevăzut pentru fiecare încercare. Dimensiunile celor trei brame (tip bucșă) supuse tratamentului termic de călire-revenire au fost D = 250 mm, d = 80 mm și L = 800 - 820 mm.

Modul de trasare, debitare și inscripționare al șaibelor din care s-au debitat epruvetele prevăzute pentru încercări sunt indicate în figurile 4.1. și 4.2.

Fig.4.1

Fig.4.2

Încercările statice și dinamice s-au efectuat în cursul anului 1997 în baza unui contract de cercetare nr. 304/22.05.1997, realizat de Universitatea Politehnica din Timișoara în beneficiul Uzinei Mecanice Reșița. În acest scop, s-a utilizat atât baza materială a Facultății de Mecanică cât și cea a unor colaboratori: Universitatea de Vest din Timișoara - Catedra de Fizică și I.S.I.M Timișoara, astfel încât se poate aprecia că setul de experimente realizate este de maximă relevanță privind posibilitățile existente la ora actuală pe plan național.

4.2 ÎNCERCĂRILE LA TRACȚIUNE STATICĂ

Încercarea la tracțiune este, după cum se știe, una dintre cele mai utilizate încercări statice, deoarece oferă posibilitatea determinării unei serii de caracteristici de rezistență și plasticitate în condițiile solicitării unui material până la epuizarea capacității de deformare

Incercările s-au efectuat conform STAS 200 care stabilește elementele și condițiile tehnice pentru executarea încercării la tracțiune a metalelor în scopul determinăriicaracteristicilor mecanice uzuale.

În fig. 4.3. este indicată epruveta folosită la încercări și care s-a încadrat în categoria epruvetelor proporționale lungi cu factorul dimensional n = 10. Încercările s-au efectuat pe o mașină tip WPM de 100 KN la care deformațiile s-au măsurat cu ajutorul unui extensometru AMSLER (fig. 4.4,).

Fig.4.3

Alungirea epruvetei s-a stabilit pe baza mediei indicațiilor a două comparatoare. Întrucât după depășirea limitei de curgere, deformațiile capătă valori foarte mari și extensometrele se demontează pentru a urmări aspectul curbei caracteristice, în special după depășirea limitei de curgere, pe parcursul fiecărei încercări, până la rupere s-a înregistrat și deplasarea bacului mobil. Pe baza bacului mobil al mașinii și a forței aplicate până la rupere s-au trasat diagramele caracteristice F - Δ l.

Fig.4.4

In figurile 4.5, și 4.6 sunt indicate asemenea diagrame caracteristice corespunzătoare epruvetelor: 1-14-1-2 (brama 1, șaiba 14, încercarea de tracțiune, epruveta 2); 2-14-1-3 ; 2-13-1-5 și 3-12-1-2.

Fig.4.5

Fig.4.6

Din aceste diagrame s-a evidențiat pe lângă forța de curgere, forța maximă, forța ultimă și faptul că după depășirea limitei la curgere pentru toate bramele, curba caracteristică are un caracter aproximativ liniar. Aceasta indică faptul că pentru calculul în domeniul plastic se poate accepta cu suficientă precizie schematizarea cu întărire (Ep = const.) specifice materialelor elasto-plastice. (fig. 3.7.a).

Principalele caracteristici mecanice s-au determinat însă pe baza curbelor caracteristice $\sigma - \varepsilon$ ridicate pentru fiecare set de câte șase epruvete corespunzătoare fiecărei din cele 3 brame

În figurile 4.7, 4.8, și 4.9 sunt indicate curbele carcateristice σ - ε pentru brama 1, șaibele 14, 12 și 13, corespunzător epruvetelor 1, 2, 3, 4, 5 și 6.

În fig. 4.10, 4.11 și 4.12 sunt indicate aceleași curbe caracteristice σ - ϵ pentru semifabricatul bramă 2, șaibele: 12, 13 și 14.

Fig.4.12

În fig. 4.13, 4.14 și 4.15 sunt indicate în mod analog curbele caracteristice σ - ϵ pentru semifabricatul bramă 3, șaibele 12, 14 și 13.

În baza acestor curbe caracteristice σ - ε s-au determinat: limita de curgere R_{p 0,2}, modulul de elasticitate longitudinal E, limita de proporționalitate convențională σ_{110} , precum și modulul de elasticitate E_p (definit de raportul $\Delta\sigma/\Delta\varepsilon$ pentru porțiunea curbei caracteristice după depășirea limitei de curgere).

Pe lângă acestea s-au mai calculat: rezistența la rupere R_m (pe baza forței maxime obținute la încercări), alungirea la rupere A_{10} [%] și gâtuirea la rupere Z [%]. Valorile acestor caracteristici mecanice și de deformabilitate, pentru fiecare semifabricat bramă - respectiv epruvetă, sunt indicate în tabelul 4.1.

În tabelele 4.2 sunt indicate pe lângă valorile medii și următorii parametrii statistici a caracteristicilor mecanice și de deformabilitate: abaterea medie pătratică corectată S_{n-1} , coeficientul de variație C_v și amplititudinea împrăștierii, pentru brama 1.

Concluzii :

. -

- Caracteristicile mecanice (limita de curgere $R_{p0,2}$, rezistență la rupere R_m și limita de proporționalitate σ_{110}) cele mai ridicate s-au obținut pentru semifabricatul bramă 2 și cele mai scăzute pentru semifabricatul bramă 1 (în corelare cu duritățile determinate după tratamentul termic secundar);

- Caracteristicile de deformabilitate (alungirea la rupere A_{10} și gâtuirea la rupere Z) cele mai ridicate s-au obținut pentru semifabricatul bramă 1;

-Traseul incert și în general nereproductibil al curbei carcateristice după depășirea limitei de curgere face ca modulul de plasticitate să aibă împrăștieri mari.

Amplititudinile împrăștierii au fost :

-	bramă	1	E _{pmax.} - E _{pmin.}	=	640 MP _a
-	bramă	2	E _{pmax.} - E _{pmin.}	=	1920 MP _a
-	bramă	3	Epmax Epmin.	=	1920 MP _a

TABELUL 4.1 CARACTERISTICILE MECANICE ȘI DE DEFORMABILITATE LA TRACȚIUNE STATICĂ

Nr.	<u>,</u>	R _m	$R_{p0,2}$	σ_{110}	E	Informativ	A ₁₀	Z	
crt.	SIMBOL	$[MP_{a}]$	[MP _a]	[MP _a]	[MP _a]	E _p	[%]	[%]	Observații
						[MP _a]		L	
1	1.14.1.1	863,85	741	701	$2,176 \cdot 10^5$	2304	10,5	56,11	
2	1.14.1.2	895,7	782	728	$2.02 \cdot 10^5$	2432	10,12	53,6	
3	1.12.1.3	893,7	771,2	744	$2.16 \cdot 10^5$	2176	8,9	56,11	
4	1.12.1.4	876	768	720	$2.048 \cdot 10^5$	2560	12	58	
5	1.13.1.5	828	760	692	$2,048 \cdot 10^5$	2080	3,75	14,43	Defecte în secțiunea de
									rupere
6	1.13.1.6	912	788	740	1,93·10 ⁵	1920	13	54	
Mec	lie semifabricat	8782	768,4	720,8	2,063·10 ⁵	2245,33	10,9	55,56	
	Brama 1								
7	2.12.1.1	1015.13	924	828	$2,036 \cdot 10^5$	3072	7,25	46,68	
8	2.12.1.2	1074,84	984	880	$2,057 \cdot 10^5$	2048	7,65	50,12	
9	2.14.1.3	1027	944	836	$2.06 \cdot 10^{5}$	1920	7,37	46,53	
10	2.14.1.4	1037	932	844	$2,02 \cdot 10^5$	3840	9	42	
11	2.13.1.5	1074,84	984	900	$2,16 \cdot 10^{5}$	2816	7,62	50,12	
12	2.13.1.6	1023	933,6	860	$2,08 \cdot 10^5$	3456	8.25	50,4	
Med	lie semifabricat	1042	950,3	858	2,07·10 ⁵	2858,7	7,86	47,64	
	Brama 2								
13	3.12.1.1	931,5	836	776	$2.12 \cdot 10^5$	2304	9,75	46,87	
14	3.12.1.2	931,5	824	736	$2,05 \cdot 10^5$	4096	9,25	48,34	
15	3.14.1.3	935,5	832	776	$2,16 \cdot 10^5$	2176	8,75	41,86	
16	3.14.1.4	961	840	788	$2,095 \cdot 10^5$	2304	11	49	
17	3.13.1.5	939.5	840	780	$2,08 \cdot 10^5$	2688	8,5	42.8	
18	3.13.1.6	927,5	824	772	$2,08 \cdot 10^5$	2688	8	47,44	
Mee	die semifabricat	937,8	832,7	771,3	2,0975·10 ⁵	2709	9,2	46,05	
	Brama 3				l				

•

 $\overline{R}_{m} = 878,2MP_{a}; \quad \overline{R}_{P^{0,2}} = 768,4MP_{a}; \quad \overline{\sigma}_{110} = 720,8; \quad \overline{E} = 2,063 \cdot 10^{5}$ Semifabricat Brama 1

Nr. crt.	SIMBOL	R _m [MP _a]	$\frac{\overline{\left(R_{m}-\overline{R}_{m}\right)}}{\left[MP_{n}\right]}$	$\left(\mathbf{R}_{m}-\overline{\mathbf{R}}_{m}\right)^{2}$	R _{p0,2} [MP.]	$\frac{\left(\mathbf{R}_{p0,2} - \overline{\mathbf{R}}_{p0,2}\right)}{\left[\mathbf{MP}_{p}\right]}$	$\left(\mathbf{R}_{p0,2}-\overline{\mathbf{R}}_{p0,2}\right)^2$	σ ₁₁₀ [MP,]	(σ ₁₁₀ σ ₁₁₀) [NIP,]	$\left(\sigma_{110}-\overline{\sigma}_{110}\right)^2$	E [MP,]	$\left(\mathbf{E} - \mathbf{\widetilde{E}}\right)$ [MP,]	$(E - \overline{E})^2$
			,										
1	1-14-1-1	863,85	-14,35	205,922	741	-27,4	750,76	701	-19,8	392,04	$2,176 \cdot 10^5$	$0.113 \cdot 10^5$	0,01277·10 ¹⁰
2	1-14-1-2	895,7	17,5	306,25	782	13,6	184,96	728	7,2	51,84	$2,02 \cdot 10^5$	$-0,043 \cdot 10^5$	$1,849 \cdot 10^{-3} \cdot 10^{10}$
3	1-12-1-3	893,7	15,5	240,25	771,2	2,6	6,76	744	23,2	538,24	$2,16\cdot10^{5}$	$0,097 \cdot 10^{5}$	9,409·10 ⁻³ ·10 ¹⁰
4	1-12-1-4	876	-2,2	4,84	768	-0,4	0,16	720	-0,8	0,64	$2,048 \cdot 10^{5}$	$-0,015 \cdot 10^5$	$2,25 \cdot 10^{-4} \cdot 10^{10}$
5	1-13-1-5	828	-50,2	2520,4	760	-8,4	70,56	692	-28,8	892,44	$2,048 \cdot 10^{5}$	$-0.015 \cdot 10^5$	$2.25 \cdot 10^{-4} \cdot 10^{10}$
6	1-13-1-6	912	33,8	1142,44	788	19,6	384,16	740	19,2	368,64	$1,93 \cdot 10^{5}$	$-0,133 \cdot 10^{5}$	$0,017689 \cdot 10^{10}$
	$\sum_{i=1}^{i=6} \left(R_m - \overline{R}_m \right)$	$)^2 = 4420,10$			$\sum_{i=1}^{i=6} \left(R_{p0,2} \right)$	$(-\bar{R}_{p0,2})^2 = 1397,2$	36	$\sum_{i=1}^{i=6} (\sigma_{110} -$	$(\bar{\sigma}_{110})^2$ 2243,84		$\frac{\sum_{i=1}^{1-6} (E - \overline{E})^2}{\sum_{i=1}^{2} (E - \overline{E})^2} = 0$	0,042167 · 10 ¹⁰	
	$\sum_{n=1}^{\infty} \left(\frac{R_{m} - R_{m}}{n - R_{m}} \right)^{2} = 4420,10$ $S_{n} = \sqrt{\frac{\left(\frac{R_{m} - \overline{R}_{m}}{n - 1} \right)^{2}}{n - 1}} = 29,732$					$\frac{1}{(n-1)^2} = \frac{1}{(n-1)^2} = 16,71$	7	$S_n = \sqrt{\frac{(\sigma_{11})}{(\sigma_{12})}}$	$\frac{10^{-\overline{\sigma}}}{10^{-1}} = 21,184$	i -	$S_n = \sqrt{\frac{\Sigma \left(E - \tilde{E}\right)^2}{n-1}}$	~ 0,09183.10*	
	$c_v = \frac{S_{n-1}}{R_m} = \frac{29,732}{878,2} = 0.0338$					$=\frac{16,717}{768,4}=0,0338$		$c_v = \frac{21,184}{720,8}$	=0,0294		$c_v = \frac{0.09183 \cdot 10^5}{2.063 \cdot 10^5}$	-0,0445	
	R _{mmax} R	- 912 m _{inin} .	828 = 84 MP _a		R _{p0,2} max.	- R _{p0,2} min 78	8 - 741 - 47 MP _a	σ ₁₁₀ max	- σ ₁₁₀ = 744 min	692 = 52 MP _a	E E max min	≈ 2,176 · 10 ¹ 1,	93 · 10 0,246 · 10 MP

•

TABELUL 4. 2/2

$\overline{E}_p = 2245,33MP_a, \overline{A}_{10} = 10,9\%, \overline{Z} = 56,56\%, Semifabricat Bramal$

Nr.	SIMBOL	E _p	$\left(E_{p} - \overline{E}_{p} \right)$	$\left(E_{p}-\overline{E}_{P}\right)^{2}$	*	$\left(A_{10} - \overline{A}_{10}\right)$	$\left(A_{10} \overline{A}_{10}\right)^2$	*	(z ž)	$\left(\overline{Z - \overline{Z}}\right)^2$	Observații
crt.		[MP _a]	[MP,]		A ₁₀	[°ő]			[%]		
					TÎt						
1	1-14-1-1	2304	58,67	3442,169	10,5	-0,4	0,16	56,11	-0,45	0,2025	
2	1-14-1-2	2432	186,67	34845,689	10,12	-0,78	0,6084	53,6	-2,26	8,7616	
3	1-12-1-3	2176	-69,33	4806,65	8,9	-2	4	56,11	-0,45	0,2025	
4	1-12-1-4	2560	314,67	99017,209	12	1,1	1,21	58	1,44	2,0736	
5	1-13-1-5	2080	-165,33	27334,009	3,75*	-	-	14,43*	_	-	Defecte în secțiunea de rupere
6	1-13-1-6	1920	-325,33	105839,67	13	2,1	4,41	54	-2,56	6,5536	
	$\sum_{i=1}^{i=6} \left(E_{p} - \overline{E}_{p} \right)$	2 = 275285,33			$\sum_{i=1}^{i=5} (A_{10})$	$-\bar{A}_{10}\Big)^2 = 10,3884$	•	$\sum_{i=1}^{i=5} (z)$	Z) ² = 17,7938		
	$S_n = \sqrt{\frac{\Sigma(E_p - \bar{H})}{n-1}}$	$\left(\frac{E_{p}}{1}\right)^{2}$ = 234,64			$S_n = \sqrt{\frac{\Sigma(n-1)}{\Sigma(n-1)}}$	$\left(\frac{\overline{A_{10}}-\overline{A}_{10}}{n-1}\right)^2 = 1.61$	I	$S_n = \sqrt{-1}$	$\frac{\Sigma\left(\overline{Z} \overline{Z} \right)^2}{n-1} = 2,10^{\circ}$	9	
	$c_{V} = \frac{234,64}{2245,33} = ($	0,104			$c_v = \frac{S_{n-1}}{A_{10}}$	$\frac{1}{10,9} = \frac{1,611}{10,9} = 0,147$		$c_v = \frac{2}{56}$	$\frac{109}{0,56} = 0,0373$		
	$E_{p_{max}} = E_{p}$	= 2560 -	$1920 = 64 \text{MP}_{a}$		A ₁₀ max	$-A_{10_{min}} = 13$	-8,91 = 4,1%	Z max.	Z - 58 min	53,6 = 4,4%	

^{*}În calculul statistic nu a fost inclusă epruveta 1-13-1-5 care a prezentat defecte în scțiunea de rupere.

`,

4.3 ÎNCERCĂRI LA TRACȚIUNE DINAMICĂ

Încercările la tracțiune dinamică s-au efectuat pe un ciocan Charpy prevăzut cu patru înălțimi de cădere ale ciocanului pendul pentru care energiile potențiale sunt : 750 J, 530 J, 284 J și 126 J. Corespunzător acestor energii potențiale, viteza ciocanului în momentul impactului este: 5,77 m/sec., 4,72 m/sec., 3,34 m/sec. și 2,11 m/sec. Ciocanul a fost adaptat special pentru încercările la tracțiune dinamică (fig. 4.16 și fig. 4.17).

Fig.4.17

Schema epruvetei folosite la încercări este indicată în fig. 4.18, iar o fotografie a acestora în fig. 4.19. Epruvetele au avut pe lângă cele două capete de prindere și o porțiune centrală calibrată pe care au fost marcate repere pentru măsurarea deformațiilor. Porțiunea calibrată a avut trasate șase segmente cu lungimea de 5 mm.

Măsurarea deformațiilor între aceste repere, după ruperea epruvetelor, a permis stabilirea lungimii pe care epruveta a suferit deformații și calculul volumului de material deformat plastic. Pe acestă bază, s-a putut calcula o caracteristică de material, denumită energie specifică de deformație la rupere W_s și care a fost definită ca raportul dintre energia la rupere W_d , obținută la ruperea epruvetei și volumul de material deformat plastic. Evident că această mărime are un caracter informativ întrucât repartiția deformațiilor nu este uniformă pe porțiunea calibrată, iar în urma ruperii o parte din energia W_d este folosită și pentru deformarea capetelor probei.

În afară de energia totală la rupere W_d și energia specifică la rupere W_s s-au mai calculat și alungirea la rupere A [%], corespunzătoare unei lungimi inițiale $L_0 \cong 16$ mm și gâtuirea la rupere Z [%] Pentru fiecare bramă au fost încercate câte 24 epruvete, grupate în seturi de câte patru, pentru șase șaibe corespunzătoare bramei respective. Fiecare din cele patru epruvete specifice unei șaibe au fost încercate la câte una din cele patru viteze de impact indicate anterior

În tabelul 4.3 sunt date pentru fiecare epruvetă încercată: dimensiunile inițiale (diametrul d_{01} , d_{02} ; lungimea luată în studiu L_0 , aria A_0), precum și dimensiunile finale (ultime) (d_{u1} , d_{u2} , lungimea L_u , aria A_u).

Pentru fiecare epruvetă ruptă, respectiv pentru fiecare viteză de impact, sunt date: energia la rupere W_d , energia specifică la rupere W_s , alungirea la rupere A [%] și gâtuirea la rupere Z [%]. În același tabel sunt prezentate și valorile medii: \overline{W}_d , \overline{W}_s specifice bramei 1 pentru fiecare dintre cele patru viteze de impact. Cele patru caracteristici: W_d , W_s , A și Z corespunzătoare bramei 1 au fost prelucrate statistic pentru fiecare dintre cele patru viteze - tabelele 4.4, 4.5, 4.6 și 4.7.

În mod analog, s-au determinat aceleași date pentru brama 2 și brama 3

Pentru ușurința urmăriri rezultatelor în tabelul 4.8 sunt indicate la aceeași viteză valorile medii obținute pentru cele patru caracteristici, corespunzător fiecărei brame.

În fig. 4.20, 4.21, 4.22, s-a reprezentat variația \overline{W}_S în funcție de viteza de impact v pentru fiecare bramă. La reprezentarea lui \overline{W}_S pentru brama 2 nu au fost incluse valorile lui W_s obținute la încercarea unor epruvete care au depășit cu mult valorile medii specifice bramei respective.

<u>Concluzii</u> :

_ -

- Schimbarea tratamentului termic a modificat oarecum modul de variație a lui W_d , respectiv W_s în funcție de v.

Astfel la brama 1 apare inițial o micșorare a lui \overline{W}_S corespunzător vitezei impactului de 3,34 m/sec., urmată de o creștere la viteza v = 4,72 m/sec. După depășirea acestei viteze \overline{W}_S manifestă o tendință clară de micșorare pe măsură ce viteza crește la 5,77 m/sec. O situație analoagă apare și la brama 2 când se neglijează valorile extreme ale lui W_d obținute pentru unele epruvete.

_ -

În condițiile semifabricatului bramă 3, apare o situație diferită, în sensul că inițial apare o creștere a lui \overline{W}_{s} corespunzător vitezei de 3,34 m/sec., urmată de o scădere continuă a acestuia, pe măsură ce viteza de impact crește spre valoarea de 5,77 m/sec.;

- La semifabricatul bramă 2, la un număr de cinci epruvete, corespunzător șaibelor 8, 9 și 10, energiile de rupere W_d au depășit cu mult valorile medii obținute la aceeași viteză de impact, deși alungirile la rupere A [%] și gâtuirile la rupere s-au încadrat în limite specifice bramei 2. Una dintre epruvete (2-9-2-8) la încercarea cu viteza de impact de 2,11 m/sec., corespunzător energiei potențiale de 126 j - nu s-a rupt.

REZULTATELE ÎNCERCĂRILOR LA TRACȚIUNE DINAMICĂ

Semifabricat Brama 1

Nr. crt.	SIMBOL	dօւ [ուտ]	d ₀₂ [mm]	d _o [nm]	.A., [mm ²]	V [m ɪn ³]		W [-	Va J]			V [J/n	√s บา1 ³]		d _{u1} [mm]	d _{u2} [n1m]	d _u [mm]	A _u [mm²]	Lo [mm]	ես [nim]	A [ºo]	Z [%0]
							v ₀ = 5.7 m/s	v₀ = 4,2 m⁄s	v ₀ = 3,4 m/s	v ₀ = 2,1 m/s	v ₀ = 5,7 m/s	v ₀ = 4,72 m/s	v ₀ == 3,4 m/s	v ₀ = 2,11 m/s								
1	1-7-2-1	5,1	5,1	5.1	20,418	381,81	57				0,1493				3,5	3,4	3,45	9,343	15,8	18,5	17,08	54
2	1-7-2-2	5,0	5,0	5,0	19,625	366,987		76				0,207			3,5	3,5	3,5	9.616	15,7	19,2	22,19	51
3	1-7-2-3	5,1	5,1	5,1	20,418	381,81			72				0,1885		3,3	3,3	3,3	8,549	16,3	19,7	20,86	58
4	1-7-2-4	5.0	5,0	5,0	19,625	366,987				81				0,2207	3,3	3,3	3,3	8,549	16,1	19,3	19,87	56,4
5	1-6-2-5	5,0	5,0	5.0	19,625	366,987	55				0,158				3,4	3,4	3,4	9,075	15,5	18,7	17,11	53,7 5
6	1-6-2-6	5,1	5,1	5,1	20,418	381,81		75				0,2179			3,4	3,3	3,35	8,809	15,2	19,6	28,95	56,8 6
7	1-6-2-7	4,9	4,9	4,9	18,847	352,44			69				0,2014		3,5	3,5	3,5	9.616	15,9	18.9	18,86	48,9 8
8	1-6-2-8	5,0	5,0	5,0	19,625	366,987				84				0,1961 9	3,6	3,5	3,55	9,893	15.9	18,6	16,98	49,5 6
9	1-5-2- 9	5,0	5,0	5,0	19,625	366,987	58				0,158				3,5	3,5	3,5	9,616	15,9	18,9	18,86	52
10	1-5-2-10	5.0	5,0	5,0	19,625	366,987		80				0,2179			3,5	3,5	3,5	9,616	15,5	18,5	19,35	51
11	1-5-2-11	4.9	4,9	4,9	18,847	352,44			71				0,2014		3,3	3,3	3,3	8,549	15,5	18,8	21,3	54,6
12	1-5-2-12	5.0	5,0	5,0	19,625	366,987				72				0,1961 9	3,5	3,5	3,5	9,616	15,3	18,5	20,91	51
13	1-10-2-13	5,0	5,0	5.0	19,625	366,987	58				0,158				3,4	3,4	3,4	9.075	15,9	19.6	23,27	53.7
14	1-10-2-14	5,0	5,0	5,0	19,625	366,987		80				0,2179			3,5	3,5	3,5	9,616	15.9	19,1	20,125	52
15	1-10-2-15	5,0	5,0	5,0	19,625	366,987			91				0,2479		3,4	3,4	3,4	9.075	15,7	19,7	25.477	53,7
16	1-10-2-16	5.0	5,0	5.0	19.625	366,987				86				0,2343	3,5	3,4	3,45	9,343	15.7	18.7	19,108	52.4
17	1-4-2-17	5.0	5,0	5.0	19,625	366,987	56				0,1526				3,6	3,5	3,55	9,893	15,3	18.5	20,915	49.6
18	1-4-2-18	5,0	5,0	5.0	19,625	366.987		85				0.2316			3,4	3,4	3,4	9.075	15,6	19.5	25	53.7
19	1-4-2-19	5.0	5,0	5.0	19.625	366.987			70				0.1907		3.4	3,3	3.35	8.809	15.7	19,3	22.93	55

20	1-4-2-20	5,0	5.0	5.0	19,625	366,987				82				0,2234	3,3	3.3	3,3	8,549	15.4	19,3	25,32	56.4
21	1-3-2-21	5,0	5,0	5.0	19.625	366,987	53				0,1444				3,5	3,5	3,5	9,616	15,5	19,1	23,22	49,4
22	1-3-2-22	5,0	5.0	5.0	19.625	366.987		75				0,2043 6			3,5	3,4	3,45	9.343	15,7	18,9	20,38	52.4
23	1-3-2-23	5,0	5.0	5,0	19,625	366.987			66				0.1798		3.4	3,4	3.4	9,075	15,2	18,3	20,39	53,7
24	1-3-2-24	5,0	5,0	5,0	19,625	366,987				76				0,2071	3,5	3,5	3,5	9.616	15,7	19	21,02	51
	Valori medii Brama 1							78.5	73,1	80,1	0,152	0.2125	0,200	0.2184								,

 $v_0 = 2,11 \text{ m/sec.}; \quad \overline{W_d} = 80,166 \text{ J}; \quad \overline{W_s} = 0,21843 \text{ J/mm}^3; \quad \overline{A} = 20,53\%; \quad \overline{Z} = 52,8\%$ Semifabricat Brama 1

Nr. crt.	SIMBOL	W _{di} [J]	$\left(\mathbf{W}_{\mathbf{d}} - \overline{\mathbf{W}}_{\mathbf{d}} \right)$ $\begin{bmatrix} \mathbf{J} \end{bmatrix}$	$\left(W_{ds}-\overline{W}_{d}\right)^{2}$	W _n [J / mm ³]	$\left(\mathbf{W}_{\mathbf{r}\mathbf{i}} = \widetilde{\mathbf{W}_{\mathbf{r}}} \right)$ $\left[\mathbf{J} \neq \mathbf{mm}^{2} \right]$	$\left(\mathbf{W}_{ii} - \widetilde{\mathbf{W}}_{i}\right)^{2}$	A _i [%]	(A _i - Ā) [%]	$\left(A_{i}-\overline{A}\right)^{2}$	Z, [º%]	(Z, Z) [°6]	$\left(Z_i+Z\right)^i$
1	2- 7-2- 4	81	0,834	0,6955	0,2207	0,00227	$5,12 \cdot 10^{6}$	19,87	-0,66	0,4356	56,4	3,6	12.96
2	2- 6-2- 8	84	3,834	14,699	0,2289	0,01047	$1,0962 \cdot 10^4$	16.98	-3,55	12,602	49,56	-3,24	10.4976
3	2- 5-2-12	72	-8,166	66,683	0,19619	-0,02224	4,946 ·10 ⁴	20,91	0,38	0,1444	51	-1.8	3.24
4	2-10-2-16	86	5,834	34,035	0,2343	0,01587	$2,518 \cdot 10^{4}$	19,108	-1,422	2,02208	52,4	-0,4	0.16
5	2- 4-2-20	82	1,834	3,3635	0,2234	0,00497	2,47·10 ⁵	25.32	4,79	22,9441	56,44	3.64	13.2496
6	2- 3-2-24	76	-4,166	17,355	0,2071	-0,01133	1,283.104	21,02	0,49	0,2401	51	-1,8	3,24
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				i=6 5 i=1	$\left(\frac{1}{si}-\overline{W}_{s}\right)^{2} = 1.014$	10 ⁻³	1(<u>5</u> 1=1	$(A_1 A_1)^2 = 38,38$	83 - 10	Ε	$\frac{6}{2(z_1-z)^2}$ 43,34	72
	Abaterea medic pátratică corectată $S_{n-1} = \sqrt{\frac{\left(\frac{W_{di} - \overline{W}d}{n-1}\right)^2}{n-1}} = 5,23$				^S n-1 ⁼	$\sqrt{\frac{\left(W_{si} W_s\right)^2}{n-1}} = 0.01$	424	s _n .	$-1^{\frac{1}{2}}\sqrt{\frac{\left(A_{1}-\tilde{A}\right)^{2}}{n-1}}=2.7$	7	s,	$\frac{1}{n+1} = \sqrt{\frac{\left(Z_1 - Z\right)^2}{n+1}} = 2.5$	44
C	Coefficientul de variație $c_v = \frac{S_{n-1}}{\overline{W}_d} = 0.0655$				$c_v = \frac{S_v}{v}$	$\frac{1-1}{v_s} = 0,065$		^c v	$\frac{2,77}{20,53}$ 0,134		۲. ۲	2,944 52,8 0.0557	
Į į	Coeficientul de variație $c_v = \frac{S_{n-1}}{W_d} = 0,0655$ Amplitudinea î mpră știerii W_d_{max} , $W_d_{min} = 14 J$				W _s ma:	- W _s = 0,03 c min	811 J / mm ³	A	A = 8,. nax min	34 %	Z	Z 6,889 max min	o

T

 $v_0 = 3,34 \text{ m/sec.}; \quad \overline{W_d} = 73,166 \text{ J}; \quad \overline{W_s} = 0,20068 \text{ J/mm}^3; \quad \overline{A} = 21,64\%; \quad \overline{Z} = 54,02\%$ Semifabricat Brama 1

- - -

Nr. crt.	SIMBOL	W _{di} [J]	$ \begin{pmatrix} W_{\mathbf{d}} & \overline{W_{\mathbf{d}}} \end{pmatrix} $ [J]	$\left(W_{ds} - \overline{W}_{d} \right)^2$	₩ _a [J / mm³]	(W _n ₩,) [J / mm ³]	(W _{si} - Ŵ,) ²	A, [ºo]	$egin{pmatrix} (\mathbf{A}_i = \widetilde{\mathbf{A}}) & & \ & \ & \ & \ & \ & \ & \ & \ & \ $	$\left(\Lambda_{i}-\overline{\Lambda}\right)^{2}$	۲. [°n]	(Z, Ž) [°∘]	$(Z_i - \widetilde{Z})^2$
1	1- 7-2- 3	72	-1,166	1,359	0,1885	-0,01218	1,4835.10-4	20,86	-0,78	0,6084	58	3,98	15,8404
2	1- 6-2- 7	69	-4,166	17,355	0,19577	-0,00491	2,41·10 ⁻⁵	18,86	-2,79	7,7284	48,98	-5,04	25,4016
3	1- 5-2-11	71	-2,166	4,69155	0,2014	0,00072	5,18·10 ⁻⁷	21,3	-0,34	0,1156	54,6	1,58	0,3364
4	1-10-2-15	91	17,834	318,0515	0,2479	0,04722	$2.2297 \cdot 10^{-3}$	25,477	3,837	14,7226	53,76	-0,26	0.0676
5	1- 4-2-19	70	-3,166	10,0235	0,1907	-0,00998	9,96·10 ⁻⁵	22,93	1,29	1,6641	55	0,98	0.9604
6	1- 3-2-23	66	-7,166	51,351	0,1798	-0,02088	4,3597·10 ⁻⁴	20,39	-1,25	1,5625	53,76	-0.26	0,0676
	$\int_{1}^{1} \frac{1}{2} \int_{0}^{1} $	02,831		$ \frac{i=6}{\sum_{i=1}^{n}} (v) $	$W_{s1} - \overline{W}_{s} \Big)^2 = 2,938$	10 ⁻³	i6 Σ i≂1	$(A_i - A)^2 = 26,401$	6 · 10 ³	1= ; i	$\frac{1}{26} \left(Z_i \ \bar{Z} \right)^2 = 42.67$	24	
	$S_{n-1} = \sqrt{\frac{\left(W_{di} - W_{d}\right)^{2}}{n-1}} = 8,976$					$\sqrt{\frac{\left(W_{si}-\overline{W}_{s}}\right)^{2}}{n-1}}=0.02$	2424	s _{n-}	$\sqrt{\frac{(A_i - A_i)^2}{n-1}} = 2,2$	98	s	$n = 1^{-1} \sqrt{\frac{(Z_1 - \overline{Z})^2}{n-1}} - 2,$	92
	$e_v = \frac{S_{n-1}}{\overline{W}_d} \approx 0.12$					$\frac{02424}{20068}$ =0,12		°v [÷]	$\frac{2,298}{21,64}$ =0,106		c.	$v = \frac{2.92}{54.02} = 0.054$	
	^{Wd} ma	25 J		W _s ma	$-W_{smin} = 0,06$	81 J / mm ³	A n	A 6,0 nax min	517%	Z	Z Z 9,02 max. min.	° °	

1

 $v_0 = 4,72 \text{ m/sec.}$; $\overline{W_d} = 78,5 \text{ J/mm}^3$; $\overline{W_s} = 0,2125 \text{ J/mm}^3$; $\overline{A} = 22,849\%$; $\overline{Z} = 52,837\%$ Semifabricat Brama 1

Nr. crt.	SIMBOL	W _{di} [J]	$ \begin{bmatrix} \left(W_{d_i} - \overline{W_d} \right) \\ \begin{bmatrix} J \end{bmatrix} $	$\left(W_{di} - \overline{W}_{d}\right)^2$	W _e i [J / mm³]	(W _n ₩ _e) [J / mm³]	$\left(\mathbf{W}_{n}-\mathbf{\widetilde{W}}_{n}\right)^{2}$	A _i [ºő]	$egin{pmatrix} egin{pmatrix} egi$	$\left(A_{1}-\overline{A}\right)^{2}$	Z, [ºø]	(Z, Ž) [°°]	$\left(Z_i - \widetilde{Z}\right)^2$
1	1- 7-2- 2	76	-2,5	6,25	0,207	$-5,5\cdot10^{-3}$	3,025.10-5	22,29	0,559	0,31248	51	1.837	3,375
2	1- 6-2- 6	75	-3,5	12,25	0,19643	-0,01607	2.5824·10 ⁻⁴	28,95	6,101	37,222	56,86	4,023	16,1845
3	1- 5-2-10	80	1,5	2,25	0,2179	5,4·10 ⁻³	2,916·10 ⁻⁵	19,35	-3,499	12,243	51	-1.837	3.375
4	1-10-2-14	80	1,5	2,25	0,2179	5,4·10 ⁻³	2,916·10 ⁻⁵	20,125	-2,724	7,4201	52	-0.837	0,7005
5	1- 4-2-18	85	6,5	42,25	0,2316	0,0191	3.648·10 ⁻⁴	25	2,151	4,627	53,76	0,923	0,852
6	1- 3-2-22	75	-3,5	12,25	0,20436	$-8,14 \cdot 10^{-3}$	6,626·10 ⁻⁵	20,38	-2,469	6,096	52,4	-0,437	0,191
	$\sum_{i=1}^{i=6} (W_{di} -$	\overline{W}_{d}) ² = 77,5			$\sum_{i=1}^{i=6} (W_{si} - \overline{W}_{s})$	$(x)^2 = 7,776 \cdot 10^{-4}$		$\sum_{i=1}^{i=6} (A_i)$	$(\bar{A})^2 = 67,92$) - 6 <u>2</u> 1-1	$(z_1, z_1)^2 = 24,678$	
	$S_{n-1} = \sqrt{\frac{(W_{di} \cdot \overline{W}_{d})^2}{n-1}} = 3.937$					$\frac{1}{n-1} - \overline{W}_s \Big)^2 = -0,0124$		^S n··1 ⁻ ∖	$\left(\frac{A_1 - A}{n-1}\right)^2 = 3,686$		S _n	$-1^{-1} \sqrt{\binom{(Z_1 - Z)^2}{n - 1}} 2.22$	21
	$c_{\rm V} = \frac{3,937}{78,5}$	= 0,050			$c_v = \frac{0,0124}{0,2125}$	0,050		$c_{v} = \frac{3}{22}$	586 		°v ³	2,221 52,837 0,042	
	W _d max.	- W _{d min} = 85	- 75 = 10 J		W _s max	smin. = 0,2316 - 0	0,19643 = 0,03517	A max	- A 28,95 min	- 19,35 = 9,6	Z п	Z 56.86 nax min	51 5,86

1

 $v_0 = 5,77 \text{ m/sec.}; \quad \overline{W_d} = 56,166 \text{ J}; \quad \overline{W_s} = 0,125 \text{ J/mm}^3; \quad \overline{A} = 18,987\%; \quad \overline{Z} = 52,095\%$ Semifabricat Brama 1

-

Nr. crt.	SIMBOL	W _{di} [J]	$\left(\mathbf{W}_{di} - \overline{\mathbf{W}_{d}} \right)$ [J]	$\left(W_{di} - \overline{W}_{d} \right)^2$	W _n [J / mm³]	$ \begin{pmatrix} W_{si} - \overline{W_{t}} \\ J / mm^{3} \end{pmatrix} $	$\left(W_{si}-\widetilde{W}_{s}\right)^{2}$	A, [ºø]	(A, →Ã) [°∘]	$\left(A_{i}-\overline{A}\right)^{2}$	Z; [°ő]	(Z, - Z) [°°]	$(Z, Z)^2$
1	1- 7-2- 1	57	1,0148	1,0299	0,1493	-2,7·10 ⁻³	7,29.10*	17,08	-1,187	1,4089	54	1,905	3,629
2	1- 6-2- 5	55	-1,166	1,3595	0,1498	$-2,2\cdot10^{-3}$	4,84.10.6	17,11	-1,877	3,523	53.75	1,655	2.739
3	1- 5-2- 9	58	1,834	3,3635	0,158	6·10 ⁻³	3,6.10 ⁻⁵	18,86	-0,127	0,016129	52	-0,095	9.025·10 ⁻³
4	1-10-2-13	58	1,834	3,3635	0,158	$6 \cdot 10^{-3}$	3,6.10.5	23,27	4,283	18,344	53.75	1.655	2,739
5	1- 4-2-17	56	-0,166	0,0275	0,1526	6·10 ⁻⁴	3,6.10.7	18,5	-0,487	0,23717	49,6	-2,495	6,225
6	1- 3-2-21	53	-3,166	10,0235	0,1444	-7,6·10 ⁻³	5 ,77 0-10 ⁻⁵	19,1	0,113	0,01277	49,47	-2,625	6.891
	$\sum_{i=1}^{i=6} (W_{di} - $	74		$ \frac{1=6}{\sum_{i=1}^{\infty} (W_{si} - \overline{W}_{si} $	$(\overline{V_s})^2 = 1.42 \cdot 10^{-4}$		$\sum_{i=1}^{i=6} (A_i)$	$\left(\overline{A}\right)^2$ 23,542 $\left(\overline{A}_1, \overline{A}_2\right)^2$		1 - Σ 1 -	$\frac{6}{2(z_1-z)^2} = 22.22$	2	
	$S_{n-1} = \sqrt{\frac{(W_{di} - \overline{W}_d)^2}{n-1}} = 1,958$				$S_{n-1} = \sqrt{2}$	$\frac{s_1}{n-1} = 0,00532$	9	^S n−1 ⁼ √	$\frac{1}{n-1} = 2,17$		s,	$n-1=\sqrt{\frac{1}{n-1}}$ 2	10
	$c_v = \frac{1.958}{56,166} = 0,0349$					29 =0,0 34 9		$c_v = \frac{2.1}{18.9}$	$\frac{7}{87} = 0,1143$		c,	$\frac{2,10}{52,015}$ 0.042	
	W _d max.	W _{d mm.} = 58	8 53 5 J		W _s - max.	W _s = 0,158 -	0,1444 0,0136	A max	A 23,27	17,08 = 6,19			

•

Nr.	V ()	Brama				
crt.	[m/sec.]					
		1	80,166	0,21843	20,53	52,8
1	2,11	2	79,8 ^(*)	0,2172 ^(*)	18,992	47,55
		3	74,33	0,2058	19,675	50,66
		1	73,166			
2	3,34	2	(**)	(**)		
			80 (105,33)	0,2138 (0,2835)	20,4	48,36
		3	80,33	0,21341	23,94	53,34
		1	78,5	0,2125	22,849	52,837
3	4,72	2	(***)	(***)		
			80,25 (118,5)	0,2164 (0,318)	20,83	50,45
		3	72,33	0,193	22,5	51,89
		1	56,166	0,152	18,987	52,095
4	5,77	2	(****)	(****)		
			55,25 (98,83)	0,149 (0,265)	21,5	48,785
		3	58	0,15456	21,8	53,96

- (*) Nu s-a luat în considerare epruveta 2-9-2-8 care nu s-a rupt la viteza v = 2,11 m/sec. corespunzător energiei maxime de 126 J.
- (**) Valorile din paranteză includ şi energia consumată pentru ruperea epruvetei
 2-9-2-7 care a depăşit cu mult celelalte valori specifice semifabricatului
 Brama 2 la v = 3,34 m/sec.
- (***) Valorile din paranteză includ şi energiile consumate pentru ruperea epruvetelor : 2-9-2-6 şi 2-10-2-10 care au depăşit cu mult energiile de rupere specifice semifabricatului Brama 2 la v = 4,72 m/sec.
- (****) Valorile din paranteză includ și energiile consumate pentru ruperea epruvetelor : 2-10-2-9 și 2-8-2-13 care au depășit cu mult energiile de rupere specifice semifabricatului Brama 2 la v = 5,77 m/sec.

4.4. ÎNCERCĂRILE LA ÎNCOVOIERE PRIN ȘOC

Aceste încercări s-au efectuat atât pe epruvete Charpy U - conform prescripțiilor STAS 1400 - cât și pe epruvete Charpy V - conform prescripțiilor STAS 7511.

În fig. 4.23 este indicată forma și dimensiunile epruvetelor cu crestătură U și V. Încercările s-au efectuat pe un ciocan Charpy, având o energie potențială inițială $W_0 = 300$ j.

Fig.4.23

În tabelul 4.9 sunt indicate rezultatele obținute la încercările de încovoiere prin șoc a epruvetelor Charpy U. Pe baza energiei consumate pentru rupere W, s-a calculat reziliența notată cu KCU 300/2/10, ca raportul dintre energia consumată la rupere W și aria secțiunii inițiale $S_0 = b x h$. În același tabel s-au indicat și valorile contracției transversale T date de relația :

$$T = \frac{b - b_1}{b} \cdot 100\%$$

Rezultatele încercărilor la încovoiere prin șoc pe epruvete cu crestătură în V sunt date în tabelul 4.10.

Caracteristica mecanică de încovoiere prin șoc pe epruvete cu crestătură în V, KV, este reprezentată chiar de energia consumată pentru rupere W. În același tabel s-au dat și valorile contracției transversale pentru aceste epruvete.

Concluzie :

- Valorile cele mai ridicate de reziliență KCU s-au obținut pentru brama 1, respectiv brama 3, iar cele mai reduse pentru brama 2;

- În concordonață cu valorile rezilienței s-au plasat și caracteristicile mecanice KV la încovoiere prin șoc a epruvetelor cu crestătură în V;

- Bramele 1 și 3 care au prezentat pentru KCU și KV cele mai ridicate valori au și o capacitate de deformare plastică ridicată, fapt ce se reflectă prin valori mai ridicate ale lui T în comparație cu brama 2.

Aspecte ale secțiunilor de rupere ale epruvetelor Charpy U și Charpy V pentru fiecare dintre cele trei brame - sunt indicate în fig. 4.24 și 4.25.

REZULTATELE ÎNCERCĂRILOR LA ÎNCOVOIERE PRIN ȘOC PE
EPRUVETE CU CRESTĂTURA ÎN "U"

Nr.		b	h	W	b ₁	KCU _{300 2 10}	$\mathbf{b} - \mathbf{b}_{1} + \mathbf{b}_{2}$
crt.	SIMBOL	[mm]	[mm]	[1]	[mm]	[J/cm ²]	$\mathbf{I} = \frac{1}{\mathbf{b}} \cdot 100\%$
1	1-7-34-14	10	8	78	9,6	97,5	4
2	1-7-34-15	10	8	87	9,4	109	6
3	1-8-34-17	10	8	85	9,8	106	2
4	1-8-34-19	10	8	82	9,7	102,5	3
5	1-8-34-20	10	8	77	9,6	96	4
	Medie Brama 1					KCU = 102	T = 3,8 %
6	2-7-34-10	10	8	66	9,8	82,5	2
7	2-5-34- 2	10	8	67	9,7	83,75	3
8	2-5-34- 3	10	8	61	9,7	76	3
9	2-6-34- 7	10	8	69	9,7	86	3
10	2-6-34- 8	10	8	59	9,6	73,75	4
	Medie Brama 2					KCU = 80,4	$\overline{T} = 3 \%$
11	3-5-34-2	10	8	80	9,6	100	4
12	3-8-34- 7	10	8	79	9,7	98,75	3
13	3-3-34-10	10	8	85	9,8	106,25	2
14	3-5-34-4	10	8	88	9,6	110	4
15	3-8-34- 5	10	8	75	9,7	93,75	3
	Medie Brama 3					KCU =101,75	T = 3,2 %

Nr. crt.	SIMBOL	b [mm]	h [mm]	W [J]	b1 [mm]	KV [J]	$T = \frac{b - b_1}{b} \cdot 100\%$
1	1-3-34-1	10	8	69	9.6	69	4
2	1-4-34-7	10	8	70	9,6	70	4
3	1-3-34-3	10	8	71	9,8	71	2
4	1-5-34-9	10	8	68	9,6	68	4
5	1-4-34-8	10	8	72	9,7	72	3
	Medie Brama 1			70		$\overline{\mathrm{KV}}$ = 70	T = 3,4 %
6	2-10-34-14	10	8	41	9,8	41	2
7	2-10-34-15	10	8	41	9,8	41	2
8	2-12-34-17	10	8	49	9,6	49	4
9	2-12-34-18	10	8	46	9,7	46	3
10	2-10-34-13	10	8	44	9,8	44	2
	Medie Brama 2			44,2		KV = 44,2	\overline{T} = 2,6 %
11	3-7-34-13	10	8	63	9,7	63	3
12	3-7-34-15	10	8	62	9,7	62	3
13	3-4-34-19	10	8	64	9,7	64	3
14	3-3-34-11	10	8	66	9,6	66	4
15	3-4-34-18	10	8	63	9,7	63	3
	Medie Brama 3			63,6		<u>KV</u> =63,6	T = 3,2 %

REZULTATELE ÎNCERCĂRILOR LA ÎNCOVOIERE PRIN ȘOC PE EPRUVETE CU CRESTĂTURA ÎN "V"

a) Brama 1	b) Brama 2	c) Brama 3
1-7-34-14	2-7-34-10	3-8-34-7
W=78J	W=66J	W=79J

Fig.4.25

4.5. CERCETĂRI DE DEFORMABILITATE PLASTICĂ ȘI UNELE ASPECTE PRIVIND EVOLUȚIA DURITĂȚII

Cercetările privind capacitatea de deformare plastică a celor trei brame s-au efectuat utilizând epruvete paralelipipedice cu dimensiunile (18 x 20 x 18) mm. Epruvetele au fost supuse unor solicitări de compresiune astfel încât tensiunile să atingă limita de curgere, respectiv tensiunile să depăşească limita de curgere de 2,6 ori. Paralel cu aceste încercări s-a efectuat și un studiu privind evoluția durității Vickers pentru fiecare semifabicat. Duritatea Vickers s-a determinat pe baza STAS 492 măsurând diagonala urmei la o încercare cu forța F = 294,2 N (30 Kgf)

În tabelul 4.11 sunt indicate: semifabricatele bramă luate în studiu, forțele aplicate, tensiunile, duritățile Vickers (HV) măsurate în opt puncte de pe suprafața de apăsare ale probelor, valoarea medie a durității, precum și scurtarea specifică și umflarea transversală la încărcarea pentru care tensiunea a fost de 2,6 σ_c .

Cercetările experimentale au dovedit că pe măsura creșterii forței de compresiune, duritatea Vickers, măsurată pe fețele de apăsare, scade, lucru care nu poate fi explicat decât pe baza *"dispersării"* materialului care își pierde gradul de *"comprimare"*. În fig. 4.26 sunt indicate formele epruvetelor după încercările la compresiune în condițiile în care tensiunile au fost egale cu $2,6 \sigma_{c med}$.

a) Brama 1

b) Brama 2

c) Brama 3

 $1-1-7-2 F_{max} = 719222 N$ 2-1-7-3 $F_{max} = 889480 N$ 3-1-7-3 $F_{max} = 779407 N$

Fig.4.26

Pentru a urmări capacitatea de deformare plastică (curgere plastică) în zonele cu concentratori de tensiune s-au efectuat și încercări la compresiune pe epruvete Charpy V Încercările pe asemenea epruvete au evidențiat că forțele cresc până în momentul când munchiile crestăturii în V se apropie una de cealaltă, după care forțele scad ca urmare a pierderii stabilității probei. Forțele maxime corespunzătoare celor trei brame au fost:

- brama 1 (epruveta 1-4-34-6) $F_{max} = 89000 \text{ N};$
- brama 2 (epruveta 2-7-34-12) $F_{max} = 105000 N_{\odot}$
- brama 3 (epruveta 3-3-34-12) $F_{max} = 93500 \text{ N}$.

În fig. 4.27 sunt indicate modul în care s-au deformat aceste epruvete. De remarcat că în zona concentratorului nu au apărut fisuri.

a) Brama 1 1-4-34-2 F_{max}=89000 N

b) Brama 2 2-7-34-12 F_{max}=105000 N

c) Brama 3 3-3-34-12 F_{max}=93500 N

Fig.4.27

r	VICKERS								
Nr.	SIMBOL	F	σ	Diagonala	Duritate	Valoare	Scurtarea	Umflarea	
crt.		[[N]	[MP.]	urmei	HV	medie	specifică	transversală	
		[[]		[mm]		HV		μ([0/.]	
		1		linni		11 V	- 2 [/0]	Ψ[/٥]	
				0,373	400				
				0.372	402				
				0,371	404				
		0	0	0.374	398	100			
		0	0	0,375	396	+00	-	-	
				0.372	402				
				0.373	400				
		•		0.374	398				
				0.302	307				
				0,392	392				
				0.392	302				
				0,391	364				
1.	1.1.7.2.	328320	912	0,390	366	363.5	-	-	
				0,391	364				
				0.392	362				
				0,389	368				
				0,393	360				
				0,400	348				
				0,400	348				
				0.400	348				
			1997 7	0 399	319				
		719222	$=2.6\sigma$	0.398	351	348,6	30,55	45.20	
			2,00 cmea.	0,100	318	1			
				0,400	3 10	-			
				0.399	249	4			
				0,400	340				
				0,371	404				
				0,372	402	-			
				0,375	396				
		0	0	0,374	398	400	_	_	
		Ŭ	U U	0,373	400	400			
				0,371	404				
				0,372	402				
				0,375	396				
				0 386	373		_	-	
				0 385	375	-			
2.	2.1.7.3.			0 387	371				
				0.386	272	4			
		386640	1074	0,300	277	373.5			
				0.285	275	-			
				0,385	3/3	4			
				0,387	371				
				0,386	373				
				0,392	362				
		000400	2470,78=	0,394	358	250	2 7 7	66 11	
		007400	$2,6\sigma_{cined}$	0,393	360	עכנ	57.7	00,41	
				0.396	355				
				0,394	358				
			2470 70	0.392	362				
2.	2.1.7.3.	889480	2470,78= $2,6\sigma_{cmed}$	0.394	358	1			
				0.393	360				

TABELUL 4.11 ÎNCERCĂRI LA COMPRESIUNE ȘI STUDII PRIVIND EVOLUȚIA DURITĂȚII VICKERS

-

			0 0	0.378	389		-	
		0		0,376	393			
				0,379	387	389		
				0,378	389			-
				0,378	389			
				0,380	385			
				0.375	396			
				0,380	385			
			961	0,386	373			
	3.1.7.3.			0,386	373		-	
		345960		0,387	371	372		-
,				0,386	373			
3.				0,385	375			
				0,387	371			
				0,388	370			
				0,387	371			
			2165.02 =2,6 σ_{cmed}	0,407	336	333	36	
				0,409	333			61.92
		779407		0,412	328			
				0,410	331			
				0,409	333			
l				0,409	333			
				0,407	336			
				0,407	336			

-

4.6. CERCETĂRI PRIVIND DURABILITATEA LA ȘOCURI REPETATE.

Studiul materialului a cuprins și o analiză a durabilității la impacturi multiple, problemă intens studiată la ora actuală. Cercetările s-au efectuat pe o mașină Amsler adoptată special pentru încercări repetate folosind epruvete tip Charpy (fig. 4.28).

Fig.4.28

Încercările la șocuri repetate pentru cele trei brame s-au făcut utilizând epruvete Charpy V corespunzător celor patru nivele de solicitare ($W_0 = 2 j$; 1,6j; 1,25 j și 0,8 j). Epruvetele Charpy simplu rezemate au fost supuse unor șocuri repetate aplicate pe partea opusă crestăturii până la ruperea acestora (fig. 4.29).

Folosind ca parametrii energia unui șoc W_0 și numărul de șocuri până la rupere s-au trasat curbele de durabilitate la șocuri repetate pentru epruvetele Charpy V corespunzător celor trei brame.

În fig. 4.30 sunt indicate curbele de durabilitate pentru cele trei brame, precum și ecuația dreptei de regresie.

Fig.4.30

<u>Concluzii</u>:

Se observă o schimbare a comportării celor trei semifabricate bramă, corespunzător energiei unui impact de aprox. 1,6 j. Dacă până la această energie durabilitatea cea mai ridicată, la șocuri multiple o are brama 1, după deplasarea acestei energii durabilitatea cea mai ridicată o are brama 2, care are și caractersiticile mecanice cele mai ridicate. Deci, pentru energii mari ale șocului unitar, durabilitatea cea mai ridicată la impacturi multiple o are semifabricatul bramă 1, care a avut și tenacitatea la rupere dinamică cea mai ridicată.

În fig. 4.31, 4.32 și 4.33 sunt indicate comparativ aspectele secțiunilor de rupere ale epruvetelor Charpy V, corespunzător celor trei brame pentru unele energii ale șocului unitar. Se remarcă prezența celor două zone și anume zona de oboseală cu aspect lucios a cărei extindere depinde de energia șocului unitar și zona de rupere finală cu aspect fibros grăunțos.

c) Brama 1

 $W_0 = 1, 2J,$

N=15100şocuri

- a) Brama 1 W₀=2J ; N=1839 şocuri
- b) Brama 1 W₀=1,6J, N=4960şocuri

a) Brama 2 W₀=2J; N=1190

b) Brama 2 W₀=1,6J; N=5430

c) Brama 2 W₀=1,2J; N=21300

Fig.4.32

a) Brama 3 W₀=2J; N=1480 b) Brama 3 W₀=1,6J; N=4860 c) Brama 3 W₀=1,2J; N=17200

Fig.4.33

4.7. DETERMINAREA TENACITĂȚII LA RUPERE

Valoarea critică a factorului de intensitate s-a obținut prin încercări pe epruvete de tip Chevron, figura 4.34. S-a efectuat determinarea tenacității la rupere pe epruvete Chevron, deoarece această metodă prezintă câteva avantaje notabile față de metoda K_{IC} de determinare a tenacității la rupere. Dintre acestea cele mai importante sunt respectarea stării plane de deformație pe epruvete de dimensiuni mult mai mici față de metoda K_{IC} , datorită formei epruvetei; aceste epruvete nu necesită o prefisurare prin oboseală; cost redus față de metoda K_{IC} , o bună repetabilitate și o precizie ridicată, evidențiată prin abaterea medie pătratică, care este mult mai mică decât la metoda K_{IC} .

Folosire epruvetelor Chevron asigură respectarea condițiilor stării plane de deformație, datorităăă formei epruvetei, care asigură și menținerea fisurii în planul de rupere, ce conține crestătura.

Încercarea s-a realizat pe o mașină de încercat la tracțiune adaptată pentru încercările de Mecanica ruperii. Schița încercării este prezentată în figura 4.35. Forța s-a măsurat prin intermediul unui traductor de forță (doză tensometrică), iar deplasarea de deschidere a orificiului epruvetei, am măsurat-o cu ajutorul unui traductor de deplasare inductiv.

Fig. 4.34

Fig.4.35

O vedere de ansamblu a mașinii este indicată în figura 4.36. Sarcina s-a aplicat lent, continuu, progresiv și fără șocuri.

În figura 4.37 este indicată diagrama forță - deplasare ($F-\Delta$), înregistrată până la rupere. pentru epruveta 2-2-5-1.

Tenacitatea la rupere pe epruvete Chevron, K_{Iv} s-a determinat cu relația :

$$K_{Iv} = A \frac{F_{\text{max}}}{B^{3/2}} \qquad MPa \ m^{1/2}$$

unde A-coef. Funcție de tipul epruvetei A=22 pentru epruveta dreptunghiulară folosită F_{max} -forța max. din înregistrarea forță- deplasare; B- grosimea epruvetei

Iar în figura 4.38 este prezentat modul de rupere al unor epruvete debitate din cele trei semifabricate bramă.

S-a determinat experimental tenacitatea la rupere K_{IV} pe 8 epruvete din fiecare bramă.

Rezultatele obținute la temparatura de 21° C, pentru brama 1, sunt prezentate în tabelele 4.12a, iar prelucrarea statistică a acestor rezultate este dată în tabelele 4.12b.

Fig. 4.38

Concluzii :

 $\sum_{i=1}^{8} (K_{i})$

C

Analiza experimentală a dovedit că tenacitatea la rupere K_{IV} , determinată pe epruvete Chevron, cea mai ridicată o are brama1, în timp ce semifabricatele 2 și 3 au avut valori aproximativ egale.

La toate epruvetele inițierea fisurii s-a produs la vârful crestăturii ,iar ruperea a rămas în planul crestăturii.

Forța maximă Tenacitatea la rupere Tenacitatea la rupere Nr. Lățime $\frac{K_{IV}}{[MPa m^{1/2}]}$ SIMBOL b medie F_{max.} crt. [mm] [kN] Kıv [Mpa m^{1/2-} 1 - 2 - 5 - 1 25 53,3 296,65 1 2 1-2-5-2 25 52,8 293,86 3 1 - 2 - 5 - 3 25 51,8 288,30 25 288,65 4 1 - 2 - 5 - 4 52,1 289,97 25 294,42 5 1-2-5-5 52,9 25 284,96 6 1 - 2 - 5 - 6 51,2 1 - 2 - 5 - 7 25 294,98 7 53,0 1 - 2 - 5 - 8 47,8 25 266,04 8

TABELUL 4.12a

TABELUL 4.12b

Nr. crt.	SIMBOL	[MPa m ^{1/2}]	$\begin{bmatrix} K_{IV} - \overline{K}_{IV} \\ [MPa m^{1/2}] \end{bmatrix}$	$(K_{IV} - \overline{K}_{IV})^2$
1	1 - 2 - 5 - 1	296,65	8,00	64,00
2	1 - 2 - 5 - 2	293,86	5,21	27,14
3	1 - 2 - 5 - 3	288,30	-0,35	0,12
4	1 - 2 - 5 - 4	289,97	1,32	1,74
5	1 - 2 - 5 - 5	294,42	5,77	33,29
6	1 - 2 - 5 - 6	284,96	-3,69	13,62
7	1 - 2 - 5 - 7	294,98	6,33	40,07
8	1-2-5-8	266.04	-22.61	511.21

$$(K_{IV} - \overline{K_{IV}})^2 = 691,19$$
 $S_{n-1} = \sqrt{\frac{\sum_{i=1}^8 (K_{IV,i} - \overline{K_{IV}})^2}{n-1}} = 9,94$

$$c_v = \frac{S_{n-1}}{K_{IV}} = 0,034$$
 $K_{IV \max} - K_{IV \min} = 296,65 - 266,04 = 30,61$

CAPITOLUL 5

INSTALAȚIA INDUSTRIALĂ DE AUTOFRETARE

5.1. DOMENIU DE APLICARE.

Instalația este destinată în principal autofretării țevilor de armament calibru 70 - 200 mm, supuse la presiuni interne de serviciu între 320 - 650 Mpa.

Procedeul de autofretare asigură rezistența țevilor la asemenea presiuni, fiind indispesabilă în construcția gurilor de foc de artilerie de tip NATO cum ar fi :

- > Obuzier cal. 155 mm cu presiunea de serviciu de 350 Mpa;
- Tunul de pe tanc cal. 120 mm cu țeava lisă la care presiunea de serviciu este de 620 Mpa;
- > Tunul antitanc cal.105 mm cu presiunea de serviciu în țeavă de 450 Mpa.

O țeavă neautofretată supusă prin trageri la asemenea presiuni va prezenta deformații plastice la interior(decalibrare), deoarece efortul echivalent pe straturile interioare ale țevii depășește limita de curgere a materialului. Pentru prvenirea acestui fenomen țeava trebuie autofretată.

Fenomenul de autofretare constă în suprasolicitarea țevilor în stare de semifabricat la presiuni interne mai mari decât presiunile de serviciu, astfel încât să se producă în pereții țevii tensiuni echivalente care depășind limita de curgere conduc la deformații remanente. Procedeul de autofretare mecanic cu dorn, constă în trecerea forțată la rece a unui dorn prin semifabricat, dorn care are dimensiunile mai mari decât diametrul interior al semifabricatului. Supraânălțarea dornului rezultă din calcul funcție de gradul de autofretaj necesar.

5.2. CONSTRUCȚIA INSTALAȚIEI

Instalația de autofretare cu dorn a fost proiectată de I.C.D.E.M. București și executată în U.M.Reșita . iar schema de principiu este prezentată în fig. 5.1.

Conform fig. 5.1, instalația se compune dintr-un motor (1) de curent continuu de 270 kw achiziționat de la Electroputere Craiova, ce se cuplează prin intermediul cuplajului (2) cu reductorul în două trepte (3) cod 2H-B-1030-40-0 Neptun Câmpina). Acesta la rândul lui se cuplează cu instalația propriu-zisă (6) prin intermediul cuplajului (4).

Instalația propriu-zisă (6), se compune dintr-un batiu format din doi pereți verticali (5) și (7), uniți între ei prin șase bare cilindrice. Pe peretele (5), se montează reductorul instalației compus din pinionul (\mathbb{Z}_1) și roțile dințate (\mathbb{Z}_2), situate pe arborii cu filet trapezoidal (9) ce se sprijină în pereții verticali al batiului, prin intermediul unor rulmenți radiali axiali.

Sania mobilă (8) prevăzută cu piulițe cu filet trapezoidal, se mișcă pe șuruburile (9). De ea se prinde tija împingătoare (10), ce va împinge dornul de autofretare (13)

În peretele vertical (7) se prinde capătul țevii de autofretat (14) cu dispozitivul de prindere (12), țeava sprijinindu-se și pe dispozitivul reglabil (15).

Motorul de curent continuu este comandat de echipamentul de comandă și control EASP-70 (16), fabricat de către ACTEL SA Buc., ce conține aparate pentru măsurarea turației, tensiunii, curentului, momentului, etc.).

Pentru asigurarea intervenției rapide asupra motorului, este prevăzut panoul de comandă de la distanță (17), situat lângă țeava de autofretat, ce este dotat cu aceleași aparate de control ca și echipamentul EASP-70 (16).

5.3. FUNCȚIONAREA INSTALAȚIEI

Autofretarea constă în trecerea forțată a dornului (13) prin interiorul țevii de autofretat

Dornul are diametrul mai mare decât interiorul țevii de autofretat (14), calculat pentru un anumit grad de autofretare.

Înaintea autofretării, țeava de autofretat (14) se fosfatează la interior, se încălzește la 60 70°C, se unge cu vaselină în amestec cu ulei siliconic, pentru micșorarea frecării și evitarea gripajului dornului la trecerea prin interiorul șevii la autofretare.

Mișcarea de rotație a motorului (1) (n=965 rot/min) se transmite prin cuplajul (2) la reductorul (3), care reduce turația cu raportul i=40. Din reductorul (3), mișcarea se transmite prin cuplajul (4), la pinionul (Z1) al reductorului de intrare în instalație. Pinionul (Z1), angrenează cu roțile dințate (Z2) și transmite mișcarea la șuruburile cu filet trapezoidal (9).

Prin rotirea șuruburilor, se deplasează sania mobilă (8) spre peretele din față (7) al instalației, odată cu ea se deplasează și tija împingătoare (10), care împinge dornul de autofretare (13), forțând-ul să treacă prin interiorul țevii de autofretat (14).

Pentru asigurarea rezistenței la flambaj a tijei împingătoare (10), aceasta este ghidată suplimentar cu suporții mobili Tija împingătoare, pe măsură ce dornul avansează în țeava de autofretat, se ghidează pe interiorul acesteia.

La trecerea forțată a dornului prin țeava de autofretat , se produc deformații plastice remanente în țeavă, ce se măsoară după autofretare (creșteri ale diametrului interior și exterior).

Deformațiile sunt stabilite prin calcul și sunt proporționale cu gradul de autofretare

Mărimea forței de împingere este proporțională cu supraînălțarea dornului față de interiorul țevii, grosimea pereților țevii și cu limita de curgere a materialului țevii de autofretat.
5.4. CARACTERISTICILE TEHNICE ALE INSTALAȚIEI

-

- tipul instalației de autofretare - modul de lucru	mecanic cu dorn, orizontal;
- puterea motorului	270 Kw,
- viteza de împingere a dornului	variabilă 300 600
	mm/min ,
- forța maximă admisă la împingerea dornului	500 tf;
- forța nominală de lucru la împingere pentru țevi cal. 155 mm	200 300 tf;
- domeniu de aplicare	țevi de calibru 70 200
	mm,
- lungimea maximă a țevii ce poate fi autofretată:	
- fără prelungitor (cursă maximă sanie)	7500 mm;
- cu prelungitor	8200 mm;
- dimensiunile instalației	
- lungime	22.000 mm;
- lățime	3720 mm;
- înălțime	1940 mm;
- masa instalației	aprox. 45 tf;

5.5. POSIBILE APLICAȚII ÎN ȚARĂ

Instalația de autofretare mecanică cu dorn, asigură autofretarea țevilor gurilor de foc de artilerie compatibile NATO, care au presiuni în țeavă foarte mari (340 650Mpa). Autofretarea este procedeul prin care se asigură rezistența țevilor ce au presiunile de serviciu de ordinul celor de mai sus.

Astfel, instalația de autofretare permite:

- construcția țevilor obuzierelor calibru 155 mm, cu lungimile țevilor de 39, 45, 52 calibre, din dotarea NATO,
- modernizarea obuzierelor cal. 152 mm din dotare, prin conversie la cal. 155 mm NATO (înlocuirea țevilor cu cele cal. 155 mm);
- permite construcția țevilor altor calibre NATO, cum ar fi: calibrul 120 mm și calibrul 105 mm,
- permite construcția tuburilor cu pereți groși supuși la presiuni mari (cilindrii hidraulici, etc.) din industria civilă;
- prin înlocuirea dornului de autofretare cu o bilă, se poate realiza ecruisarea superficială (pe 1 ... 3 mm) a interiorului unor cilindrii hidraulici, etc.

CAPITOLUL 6

METODE DE CERCETARE EXPERIMENTALĂ ȘI DE SIMULARE A PROCESULUI DE AUTOFRETARE 6.1 EXPERIMENTAREA AUTOFRETĂRII MECANICE CU BILĂ ȘI CU DORN

Determinarea principalilor parametrii care influențează procesul de autofretare, s-a efectuat în baza mai multor programe de experimentare, utilizând ștanduri de probă – montate pe prese hidraulice, cât și în condiții industriale – utilizând instalația de autofretare executată în Uzina Mecanică Reșița.

6.1.1 Prima încercare de autofretare s-a efectuat în cadrul secției Câlnicel a U.C.M.Reșița, pe presa de 500 tf.

Încercarea s-a efectuat în baza schemei din fig.6.1, utilizând ca material de probă capete de țevi de artilerie (cal. 152 și material OHN₃MFA, $\sigma_c = 1100 \div 1150$ MPa) și procedeul de *autofretare cu dorn* a căror dimensiuni sunt prezentate în fig.6.2 și tabelul 6.1.:

- 3 dorn pentru autofretare;
- 4 piston;
- 5 placă de fixare

Materialul dornurilor a fost RUL 1 cu duritatea exterioară 62 HRC

								Г	abelul 6.1
Nr. crt.	Proba	Buc.	D ₁ [mm]	D ₂ [mm]	K	d [mm]	L [mm]	1 [mm]	S [mm]
1.	1	1	150.17	334.9	2.23	151.95	449.9	157	1.78
2.	2	1	159.3	334,8	2.22	152.46	449.7	157.1	2.16
3.	3	1	150,14	334.9	2.23	152.95	449.5	157.2	2.81
4.	4	1	150	334.9	2.23	153.45	600	157.3	3.45

Probele au fost fosfatate și s-a utilizat pentru lubrefierea suprafețelor fretate un amestec de vaselină obișnuită cu vaselină siliconică

S-au determinat următorii parametrii (nu s-a putut măsura sub sarcină deformația elastică radială, datorită erorilor de fixare a ceasurilor comparator):

				Tabelui 0.2								
PARAMETRUL	NUMĂRUL PROBEI											
	1	Z	3	4								
δ ₁ [mm]	0,33	0,55	0,76	0,98								
δ ₂ [mm]	0,06	0,1	0,15	0,2								
δ_{d} [mm]	- 0,45	- 0,46	- 0,65	- 0.85								
$\delta_L [mm]$	0,1	0	0	0,2								
δ_l [mm]	0,4	0,4	0,6	0,85								
F _{max.} [KN]	2748	2997	3247	3997								
V [m/min.]	0,4	0,4	0,4	0,4								
d _f [mm]	151,5	152	152,3	152,6								

Determinarea forței s-a făcut prin citirea presiunii indicate de manometrul presei, iar a vitezei prin măsurarea timpului de autofretare (presa a avut acționare hidraulică continuă).

Autofretarea s-a efectuat în ordinea numerotării probelor.

S-a observat că deplasarea dornurilor prin tub a avut loc cu intermetențe – deplasări de cca 20 – 40 mm, urmate de pauze scurte – ca urmare a apariției fenomenului de alunecare "Stick - Slip" Din acest motiv presiunea indicată de manometrul presei, a variat între o valoare minimă necesară alunecării (100 barr) efective a dornului și un vârf de presiune înaintate de scoaterea din repaus în cea de alunecare (160 barr).

Verificând calitatea suprafețelor interioare ale tuburilor autofretate, s-a constatat că nu a apărut fenomenul de gripaj, tasare sau smulgere de material. Deci, stratul de fosfați și vaselina siliconică asigură o ungere suficient de bună.

CONSTATĂRI :

- S-a verificat experimental, în România, pentru prima dată pe un oțel de țevi de artilerie procedeul tehnologic de autofretare mecanică;
- Materialul suspus autofretării a avut o limită de curgere peste limita normală impusă (dar admisa în execuția) țevilor de artilerie (870 – 920 MPa), în scopul de a stabili valoarea forței maxime de autofretare la limită, care conform datelor experimental este sub 400 tf;
- Dimensiunile inițiale ale tuburilor şi dornurilor au fost calculate conform teoriilor de rezistență pentru a crea o presiune de autofretare totală de cca 920 Mpa, estimând că dornurile nu vor suferi deformații remanente. În mod normal presiunea maximă ce poate fi realizată, în prezent, de încărcătura de azvârlire într-o teavă de artilerie este de cca 600 MPa;
- Experimentul efectuat nu a verificat calculul teoretic deoarece nu s-a reușit realizarea unui tratament termic în masă a dornurilor. Ca urmare, se impune a se alege o nouă

T I I I A

variantă constructivă pentru dorn (execuție din două sau mai multe bucăți prin fretare) sau alte materiale (fig. 6.3);

- Deformațiile remanente ale interiorului tuburilor autofretate, deși mai mici decât cele calculate, datorită comprimării mari a dornurilor, confirmă realizarea autofretării, în sensul că s-a depăşii limita de curgere σ_c în pereții tuburilor;
- Deformațiile longitudinale remanente ale tuburilor sunt foarte mici, ceea ce verifică relațiile din literatura de specialitate;
- Coeficientul de frecare calculat, în baza datelor experimentale, a fost destul de redus $(\mu = 0.081)$, ca urmare a fosfatării și a ungerii realizate;
- Rugozitatea interiorului tuburilor autofretate cu dorn se îmbunătățește.

CONCLUZII :

- Deoarece diametrul interior al tuburilor, realizat după autofretare, a fost constant, putem presupune că dornurile s-au deformat încă din faza inițială a începerii procesului de autofretare în aceste conditii relațiile de calcul a deformațiilor remanente(T III și T V) sunt cele mai apropiate de experimentul autofretării oțelului pentru țevi de artilerie, dar necesită determinarea cu rigurozitate a următorilor parametrii:
 - deformația remanentă a dornului (sau împiedicarea ei în scopul reutilizării dornului la alte autofretări);
 - deformația elastică a dornului;
 - valorile pentru σ_{c} , E,E_P.
- ▶ Fosfatarea tudurilor micşorează forțele necesare autofretării.

După aceste prime încercări, **au rezultat o serie întreagă de necunoscute**, care se impun a fi clarificate pentru autofretarea pe cale industrială a tevilor de artilerie.

*

A. Date referitoare la semifabricatul supus autofretării:

- precizia de prelucrare a interiorului țevii și a diametrului exterior, înaintea autofretării;

- rugozitatea suprafeței interioare a țevii;
- mărimea adausurilor de prelucrare a semifabricatului țevii după autofretare, atât la interior cât și la exterior;
- tratamentele termochimice a suprafeței interiore a semifabricatului înaintea autofretării;
- semifabricatul se autofretează pe toată lungimea sau numai în zona presiunilor maxime;
- care este gradul de autofretare (X %) necesar;
- stabilitatea în timp a dimensiunilor semifabricatului autofretat

B. Date referitoare la scula folosită:

- care procedeu este mai tehnologic (cu dorn sau cu bilă);
- materialul utilizat pentru sculă;
- construcția (din mai multe bucăți fretate pentru dorn) și dimensiunile (geometria) sculei;
- urmărirea modificării rugozității sculei(uzura),
- numărul de autofretări la care rezistă scula

C. Date despre regimul tehnologic de lucru la procesul de autofretare

- viteza de împingere a dornului;
- numărul de treceri la un semifabricat;
- dacă se poate relua procesul de autofretare la oprirea accidentală a sculei în interiorul țevii;
- dacă relațiile teoretice pentru calculul tuburilor cu pereți groși sunt verificate experimental pe baza deformațiilor obținute la autofretarea țevilor de artilerie;
- influența caracteristicilor mecanice ale semifabricatului asupra parametrilor autofretării;
- influența fosfatării și lubrefierii interiorului țevii;
- dacă fenomenul de alunecare "Stick Stip" apare la autofretare pe instalația industrială, unde acționarea este mecanică nu hidraulică;
- detensionarea termică a semifabricatului autofretat (pentru stabilizarea tensiunilor interne) conduce la modificarea dimensională a acestuia sau nu;
- care sunt parametrii tehnologici stabili în timp care pot confirma autofretarea țevii

Ca urmare, s-a stabilit necesitatea întocmirii unui program managerial pentru testarea și stăpânirea procesului de autofretare:

a). Încercări experimentale în condiții de laborator:

- \sim stabilirea caracteristicilor mecanice (σ_c , E,E_P) a oțelului OHN₃MFA;
- realizarea autofreatării pe eşantioane (din capete de țeavă), utilizând prese hidraulice și procedeul de autofretare mecanică cu dorn sau bilă.

b). Încercări industriale:

 trecerea, cu sprijinul MCT, la realizarea instalației de autofretare proiectată de I.C.D.E.M. Bucureşti. Adaptarea proiectului la condițiile tehnologice ale executantului și la experiența obținută în urma încercărilor de laborator;

- proiectarea, realizarea şi amplasarea judicioasă a unei instalații de fosfatare a țevilor de artilerie. Stabilirea tehnologiei de fosfatare;
- > experimentarea autofretării țevilor pe instalația industrială;
- > urmărirea stabilității în timp a dimensiunilor țevii autofretate;
- aplicarea unui tratament termic de detensionare (stabilizare a tensiunilor interne) a țevii autofretate și stabilirea dacă au loc modificări dimensionale ulterioare;
- dacă autofretarea conduce la modificări substanțiale a regimurilor tehnologice pentru operațiile de prelucrare finală a țevii (lărgire, alezare, ghintuire, strunjire);
- analiza datelor experimentale și în baza acestora stabilirea unui program de calcul pentru realizarea și confirmarea autofretării în baza teoriilor de rezistență existente pentru calculul tuburilor cu pereți groși.

6.1.2 ÎNCERCĂRI EXPERIMENTALE DE LABORATOR

Potrivit estimărilor inițiale s-a preconizat realizarea în principal a studiului experimental a procesului de autofretare pe probe (eșantioane) prelevate din capete de țeavă în laboratoarele Universității "Politehnica" Timișoara Facultatea de Mecanică pe prese tip RM și PACH 200, echipate corespunzător pentru măsurarea și evaluarea principalilor parametrii de proces. Lungimea probelor a fost determinată de dimensiunile dispozitivelor de presare executate și cursa preselor.

Determinarea principalilor parametrii care influențează procesul de autofretare, s-a făcut pe probe de calibru 85 mm (pentru care s-au găsit în fabricație la S.C. "Rulmentul" Brașov, bile de rulment) din oțel OHN₃MFA și oțel 33 M_0C_r 11, a căror dimensiuni sunt prezentate în tabelul 6.3., iar în fig. 6.4. și fig.6.5 sunt prezentate mostre de probe și scule utilizate.

Programul de încercări s-a efectuat conform tabelului 6.4.

Tabelul 6.3

Proba nr.	Bucăți	Material	D ₂ [mm]	D 1[mm]	S _t [mm]	Scula
1	10	OHN ₃ MFA	200	84.5	0.5	Bila 1 + dorn 1
2	10	OHN ₃ MFA	200	84	1	Bila 1 + dorn 1
3	8	OHN ₃ MFA	290	83	2	Bila 2
10/1	5	33M _o C _r 11	150	84.75	0.25	Bila 1
10/2	5	33M _o C _r 11	150	84.5	0.5	Bila 1
10/3	5	33M _o C _r 11	150	84	1	Bila 1

Fig. 6.5

OHN ₃ MHA												
Proba nr.	Supraînălțare S _t [mm]	Scula folosită	Încălzire probă									
<u>1-1</u> <u>1-2</u>			-									
1-3		bila l										
1-4	0 5		60°C									
1-5	0.5		60°C									
1-6												
1-7		dorn 1	-									
1-9		domi	60° C									
1-10			60°C									
2-1	* *********											
2-2			-									
2-3		bila l										
2-4			60 [°] C									
2-5	1		$60^{\circ}\mathrm{C}$									
2-6												
2-7			-									
2-8		dorn 1	0 -									
2-9			<u>60°C</u>									
2-10			60°C									
3-1												
3-2												
3-3	2	1.1.0										
<u> </u>	2	bila 2	-									
<u> </u>												
<u>3-0</u>												
3-/												
3-8												

Tabelul 6	.4
-----------	----

33M _o C _r 11										
Proba nr	Supraînălțare S _t [mm]	Scula folosită								
10/1-1 10/1-2 10/1-3 10/1-4 10/1-5	0.25									
10/2-1 10/2-2 10/2-3 10/2-4 10/2-5	0.5	bila l								
10/3-1 10/3-2 10/3-3 10/3-4 10/3-5	1									

Diametrul sculelor:

Bila 1:	d = 84.98 mm
Bila 2:	d = 84.98 mm
Dorn 1:	d = 84.92 mm
St	- supraînălțarea teoretică

Pentru aceste încercări de autofretare s-au constituit două montaje experimentale:

- pe presa hidraulică RM cu acționare automată, posibilitate de programare a forței de presare până la 1000 KN, înregistrare a adâncimii de pătrundere și a deformațiilor radiale exterioare sub sarcină (schema din fig.6.6);
- pe presa hidraulică PACH 200 cu acționare prin cric hidraulic care permite încercări până la 2000 KN, înregistrarea adâncimii de pătrundere și a deformațiilor radiale exterioare sub sarcină (schema din fig. 6.7) Toate încercările de autofretare cu dorn s-au efectuat pe această presă.

Fig. 6.7

Schema operației tehnologice de autofretare este redată în fig. 6.8 unde s-au asigurat următoarele condiții de experimentare:

Fig. 6.8

- **F** forța axială de autofretare
- d diametrul bilei, respectiv al dornului
- D_1 diametrul interior inițial al tubului
- D_2 diametrul exterior inițial al tubului
- S supraînălțare
- δ_1 deformație remanentă a interiorului tubului
- δ_2 deformație remanentă a exteriorului tubului
- δ_{1e} deformație circumferențială elastică a interiorului tubului
- δ_{2e} deformație circumferențială elastică a exteriorului tubului

- Probele au fost fosfatate şi s-a utilizat o lubrefiere a suprafețelor fretate folosind un amestec de vaselină obișnuită cu vaselină siliconică. O parte din probe au fost încălzite în cuptor la 70^oC, transportate (învelite) în laboratoarele de încercări, apreciind că autofretarea s-a efectuat la cca 60^oC;
- S-au efectuat încercări de autofretare pe 43 de probe (8 buc. încălzite), din care 15 probe din oțel 33MoCr11;
- La fiecare încercare s-a procedat la centrarea prealabilă a elementelor dispozitivului de autofretare (poanson + bilă/dorn + placă suport + dinamometru elastic), prin apăsare inițială la o valoare de circa 3 KN, iar după autocentrarea elementelor sistemului s-a poziționat la zero comparatorul pentru deformațiile elastice radiale exterioare şi rigla pentru adâncimea de pătrundere.

Rezultatele experimentale centralizate sunt prezentate în tabelul 6.5.

Timpul mediu al unei încercări a fost de 1,5 - 3,5 minute pe presa tip RM, iar viteza de lucru a avut evoluții progresive de la 0 la valori maxime, care au mers în unele cazuri până la 0,7 mm/sec.

Timpul mediu al unei încercări pe presa tip PACH 200 a fost de 25 min., ceea ce corespunde unei viteze de pătrundere de circa 1 mm/sec.

Interpretarea rezultatelor

Sistematizarea rezultatelor redate în tabelele 6.5. și 6.6, au pus în evidență următorii parametrii semnificativi ai procesului de autofretare simulat pe probe din capete de țeavă de artilerie, în condiții de laborator:

- forța axială de presare;
- deformația radială remanentă;
- viteza de pătrundere a bilei/dornului.

a) Forța axială de presare

Se constată o evoluție progresivă a creșterii forței către o valoare maximă care se atinge în momentul cuprinderii totale a diametrului (d) al bilei sau dornului, apoi forța se menține constantă pe un palier până în zona de ieșire din tub când forța scade semnificativ fig. 6.9: La aceleași supraînălțări reale (S) aceeași temperatură a probei și aceeași grosime relativă (K) a pereților tubului, forța de presare cu dorn este mai mare cu 100% la supraînălțări mici S_t = 0,5 mm și 58% - la supraînălțări de 1 mm(fig.6.10).

- Autofretarea cu probele având temperatura de cca 60[°]C, în momentul începerii procesului de autofretare, determină diminuarea forței axiale, după cum urmează (fig. 6 10).
 - autofretare cu bilă forța scade cu cca 25% la $S_t = 0.5$ mm și 205 la $S_t = 1$ mm,
 - autofretare cu dorn forța scade cu cca 56,3% la $S_t = 0,5$ mm și 25,4 \hat{I} la $S_t = 1$ mm

Se pare că ipoteza condițiilor mai bune la lubrefiere în urma încălzirii probei conduce la scăderea forței axială de autofretare. Din graficul fig. 6.10, se constată chiar forțe mai mici pentru autofretarea cu dorn, când proba este încălzită decât pentru autofretarea cu bile la temperatura camerei.

• Autofretarea probelor din material 33MoCr11 (presate cu bilă) conduce la forțe mai mici de autofretare la aceleași supraînălțări. Trebuie însă remarcat că și grosimea relativă a tuburilor a fost mai mică decât a tuburilor din OHN₃MFA

b) Deformația radială remanentă

S-a constatat următoarele (tabelul 6.5.):

- toate tuburile au suferit deformații remanente ale diametrului interior între 8,78% și 63,44% din supraînălțarea reală (S) și între 3,81 %și 35,70 % din grosimea relativă K (grafic fig. 6.11,6.12, 6.13).
- atât la dornuri cât și la bile nu s-a pus în evidență deformații exterioare remanente Deci, execuția dornului din două bucăți, prin fretare, asigură o rigiditate mult mărită a acestuia și se pare că elimină deformațiile remanente. Dornul poate fi refolosit.

		K	$\frac{\delta_1}{K} \cdot 100$	$\frac{S}{K} \cdot 100$	$\frac{\delta_1}{S} \cdot 100$	S	$rac{\delta_1}{ru}$	t [ºC]
	V,	2,36	3,81	19,91	19,14 Î	0,47	0,090	20
	311	2,36	4,06	20,33	20 Î	0.48	0.096	60
	—	2,3	18,22	41,01	44,44	0,972	0.432	20
A		2.37	20,42	41,35	49,38	0,98	0,484	60
1F.		3,49	35,70	56,27	63,44	1,964	1.964	20
N ₅ NH								
0	DORN	К	$\frac{\delta_1}{K} \cdot 100$	$\frac{S}{K} \cdot 100$	$\frac{\delta_1}{S} \cdot 100$	S	$\delta_{_{ m I}}$	t [ºC]
		2.36	1,52	17,37	8,78	0,410	0,036	20
			1,86	17,54	10,62	0,414	0.044	60
		2 27	11,22	38,39	29,30	0,91	0.266	20
		2.57	11,13	37,97	29,33	0,90	0.264	60
doCr11	Y	K	$\frac{\delta_1}{K} \cdot 100$	$\frac{S}{K} \cdot 100$	$\frac{\delta_1}{S} \cdot 100$	S	δ_1	
33N		1,76	1,02	11,02	9,27	0.194	0,018	
		1,77	5.08	24,97	20.36	0,442	0.09	
		1.78	26,40	52,35	50,43	0,932	0.47	

Tabelul 6.5

	Materialul probelor																									
	33MoCr11									OHN ₃ MFA																
									L			Scu	la folo	sită									<u> </u>			
				Bilă		d		8 mm					Dorn		d	= 84.9	2 mm					Bilă		d :	= 84,98	3 nun
ð _l [mm]	ð2[mm]	(σ _{2e} /D ₂).10 ⁻⁴	ð ₂ , [mm]	F _{max} [KN]	K	S[mm]	S _t [mm]	T[⁰ C]	ð _l [mm]	ð₂[mm]	$(\delta_{2e}/D_2).10^{-4}$	ỗ₂, [mm]	F _{max} .[KN]	K	S	S _t [mm]	T[⁰ C]	δ _l [mm]	ð2[mm]	$(\delta_{2e}/D_2).10^{-4}$	Š₂¢ [mm]	F _{max} [KN]	K	S[mm]	S _t [nım]	T[⁰ C]
0,018		6	0.09	60	1,76	0,194	0,25		0,036		9,3	0,186	355	2.	0,410	0,	20	0,090		6,5	0,13	174	2,	74,0	0	20
0,09		13,3	0,20	140	1.77	0,442	0,5	20	0,044		4,3	0,086	155	36	0,414	50	60	0,096		ري ح	0.07	131	36	84,0	ίλι I	60
0.47		24	0,36	275	1,78	0,932	H		0,266		22.8	0,456	614	2.	0,91		20	0,432		16,3	0.326	392	2,	0,972		20
	1 60 37 0.90 0.27 0.27 0.264 0.264									60	0,484		19	0,38	316	37	0.98	-	60							
											4 <u></u>	••••••			L	<u></u>		1.246		34.3	0.996	876	3.49	1.964	2	20

.

Fig. 6.13

Variația deformațiilor remanente ne indică următoarele:

- cresc procentual cu creșterea supraînălțării pentru același K (fig. 6.12);
- sunt mai mari la autofretare cu bilă, decât la cea cu dorn pentru aceeași parametrii inițiali ai autofretării (fig. 6.12, fig. 6.13);
- sunt mai mari procentual din K pentru oțelul 33MoCr11, datorită lui σ_c mai mic (fig. 6.11);
- la probele încălzite deformațiile remanente cresc nesemnificativ (cel mult 0,05 mm pentru St = 1mm) în cazul utilizării bilei și sunt aproximativ aceleași în cazul autofretării cu dorn (fig. 6.13).

Deformațiile radiale elastice exterioare, datorită dificultății în care au fost măsurate, nu constituie un parametru de analiză concludent, dar ne oferă informații asupra modului de desfășurare a fenomenului de autofretare. Se constată o creștere a acestor deformații odată cu creșterea supraînălțării.

Pentru a pune în evidență variația deformației radiale la cele două tipuri de materiale folosite la confecționarea probelor, dat fiind diametrul exterior diferit, s-a determinat o deformație radială relativă $(\delta_{2e}/D_2) \cdot 10^{-4}$. Se observă că în cazul probelor din33MoCr11 această deformație este mai mare cu 63,5% decât în cazul celor confecționate din OHN₃MFA.

Fig.6.14

c) Viteza de deformare

į.

În condițiile de încercare realizate, viteza este un parametru informativ. Se constată:

- o creștere rapidă la început pe o adâncime de pătrundere redusă asociată cu forțe axiale mici până când se realizează autoașezarea și centrarea sistemului, care se produce mai rapid la încercările cu bilă și mai încet la cele cu dorn;
- urmează o scădere ușoară a vitezei la o adâncime încă redusă când începe de fapt procesul proriu-zis de autofretare, pătrundere și creșterea forței;
- în continuare, viteza are o evoluție crescătoare, în parte determinată și de modul de comandă a presei de către operator (încercările pe presa RM);
- în faza finală a deformării, la ieșirea sculei, viteza crește și mai mult, ca urmare a scăderii rezistenței axiale la înaintare.

BUPT

6.1.3 ÎNCERCĂRI EXPERIMENTALE DE AUTOFRETARE PE INSTALAȚIA INDUSTRIALĂ I.A.F.D.

Datorită costurilor ridicate, studiul autofretării țevilor de artilerie pe instalația industrială s-a efectuat în două faze:

a) Faza I – s-a executat comparativ autofretarea unei probe din oțel OHN₃ MFA de lungime L = 280 mm, cu bilă și cu dorn pentru un calibru de 85 mm - în scopul verificării studiului efectuat la Facultatea de Mecanică din Timișoara. Probele au fost fosfatate în baie atât la interior cât și la exterior și au avut forma din fig.6.15 cu dimensiunile din tabelul 6.7 înaintea autofretării.

Fig. 6.15

Dornul a fost executat prin fretare din două bucăți conform fig. 6.2, din oțel RUL 1 cu duritatea inițială de 57,05 HRC).

BILA de rulmer	nt a avut duritatea	inițială de 795	HV (ap	rox. 63,2 HRC).
		•		, , ,

							Ta	belul 6.7
Scula	D 3(mm)	d (mm)	D ₂ (mm)	D ₁ (mm)	К	L (mm)	l (mm)	S (mm)
BILA	85,30	84,989	187,94	84,20	2,23	282	-	0,789
DORN	85,35	85,01	187,91	84,20	2,23	280,5		0,81

Pentru ungere s-a utilizat un amestec de vaselină RUL 100 (80%) cu ulei siliconic cu vâscozitatea 100.000 CStc (20%).

S-au determinat următorii parametrii după autofretare(tabelul 6.8):

Tabelul 6.8 Scula Vt m [mm] δ_1 [mm] $\delta_2 [mm]$ δ_d [mm] 0,22 0,14 - 0,006 0,4 **BILA** - 0,04 0,4 0,12 **DORN** 0,15

Duritatea după autofretare:

- a dornului 59,5 HRC - a bilei 800 HV (63,5 HRC)

Duritatea după autofretare a probelor a crescut în medie cu cca 3 HRC (ex. 42,58 HRC față de 39,46 HRC la autofretarea cu dorn).

Lungimea dornului și a probelor nu s-a modificat față de măsurătorile inițiale.

Se constată următoarele:

- duritatea după autofretare atât a sculei cât și a probei crescute cu cca 2-3 HRC;
- deformațiile remanente ale dornului sunt mai mari decât ale bilei;
- deformațiile remanente ale probelor autofretate cu bilă sunt mai mari decât ale probelor autofretate cu dorn;
- procesul de autofretare este continuu, fără zgomote și foarte lin;
- ieșirea sculei din probă se face fără șoc, foarte lin, putând fi susținută cu mâna. Ca urmare, nu există pericolul ieșirii bruște, deci nu sunt necesare măsuri de siguranță (captator pentru sculă).
- b) **Faza II** (de încercări pe semifabricate de lungimea țevilor de artilerie)– s-a executat autofretarea *unor semifabricate din oțel OHN₃MFA de lungime normală* (fig.6.17), după cum urmează:

Fig.6.17

b₁) Semifabricat de lungime L = 5270 mm, calibru 152 mm, autofretat cu dorn - executat prin fretare (fig. 6.3). După autofretare s-au reluat măsurătorile țevii după 4 luni de zile, apoi s-a introdus același dorn pentru o a doua autofretare.

Totodată, a fost încercată prima autofretare reală a unui semifabricat de țeavă de artilerie, al cărui diametru interior și exterior a avut dimensiuni diferite (respectiv zona I și zona II).

Semifabricatul inițial a avut forma din fig.6.18 și dimensiunile din tabelul 4.9

Fig.6.18

Tabelul 6.9

	ZON	NA I			ZON	A II	-
$D_2 I$	$D_I I$	K _I	SI	D ₂ II	$D_I I$	K ₁₁	SII
219,94	151,06	1,455	179,94	151,86	1,184	1,54	0,74

De remarcat că K < 2, datorită faptului că acest semifabricat s-a realizat dintr-o țeavă utilizată prin prelucrare interioară, având diametrul exterior d = 152,6 [mm], deci ,după teorie nu suntem în cazul tuburilor cu pereți groși.

Duritatea inițială a dornului 60HRC.

1

Măsurând semifabricatul autofretat imediat după autofretare (26.11.1998) și după cca 4 luni de zile (24.03.1999) s-au obținut următoarele deformații remanente(tabelul 6.10):

					Ta	Tabelul 6.10			
PARAMETRUI		ZONA I		ZONA II					
	După prima autofretare	După 4 luni	După a doua autofretare	După prima autofretare	După 4 luni	După a doua autofretare			
δ ₁ [mm]	0,80	0,79	0,01 [*] (0,80)	0,22	0,21	0,01 [*] (0,22)			
δ ₂ [mm]	0,66	0,65	0,01 [*] (0,66)	0,21	0,20	0,01 [*] (0,21)			

*Deformațiile remanente calculate sunt raportate la cotele avute de semifabricat înaintea celei de-a doua autofretare (deci, a celor rezultate în urma primei autofretări măsurate la 4 luni de odihnă).

Semifabricatul, înaintea primei autofretări, a fost fosfatat la interior conform tehnologiei stabilite (Cap.6.2).

Ungerea s-a realizat printr-un amestec de vaselină RUL 100 (80%) cu ulei siliconic cu vâscozitatea 100.00 CStc (20%).

În timpul autofretării s-au mai executat următoarele operații:

- varierea vitezei, din mers, în limita a 0,2 [m/min.] ÷ 0,7 [m/min.];
- oprirea înaintării dornului, scoaterea barei care împinge dornul și apoi reluarea procesului de autofretare. Duritatea dornului după autofretare 61 HRC (deci a crescut cu 1 HRC).

CONSTATĂRI:

Procesul de autofretare poate fi controlat tehnologic:

- se pot face opriri în sarcină cu reluarea, fără probleme, a procesului de autofretare;
- se poate scoate bara fără ca dornul să fie împins înapoi de forțele de strângere (datorate presiunii de autofretare) axiale din fața lui. Deci, s-a infirmat și această ipoteză că la scoaterea barei de împingere să existe posibilitatea ieşirii bruşte a dornului din țeavă pe la partea de intrare şi ca urmare nu există pericol de accidente de muncă;
- în timpul autofretării, în zona dornului, se simte o creștere de temperatură la suprafața exterioară a semifabricatului;
- procesul de autofretare este stabil în timp, semifabricatul autofretat păstrându-și dimensiunile inițiale și după cca 120 zile;
- după prima autofretare, dornul nu a suferit uzuri sau deformații remanente. Deci, dacă duritatea (pe adâncime) este de min. 60 HRC, nu se constată deformații remanente ale dornului;
- a doua autofretare nu a fost precedată de o nouă fosfatare a interiorului seniifabricatului. Ca urmare, au crescut forțele de autofretare (I = 230, lucru evidențiat de consumul de curent față de I = 175 A la prima autofretare) cu cca

24 %, dornul a prezentat urme de gripaj la ieșirea din țeavă, iar calitatea suprafeței interiorului țevii s-a înrăutățit vizibil cu ochiul liber (urme de gripaj);

- măsurându-se curbura țevii, înainte și după autofretare, s-a stabilit că autofretarea nu conduce la modificarea acesteia;
- după prima autofretare, rugozitatea interiorului țevii a scăzut de la Ra = 0,34 μ m la Ra = 0,27 μ m, iar a dornului a scăzut de la Ra = 0,54 μ m la Ra = 0,24 μ m.

b₂) Două semifabricate (culeu 11136-18 și 35171-1) având lungimea L =6840 mm, calibru 152 mm.

După autofretare, țevile au fost detensionate termic și prelucrate mecanic la interior.

Semifabricatele au avut forma din fig.6.18 și dimensiunile din tab.6.11 Au fost aduse la aceste dimensiuni prin prelucrarea prin așchiere interioară și exterioară a unor țevi de artilerie uzate.

152,3 mm

Tabelul 6.11

CULEU	D ₂ I (mm)	D ₁ I (mm)	K _I	SI (mm)	D ₂ II (mm)	D ₁ II (mm)	K ₁₁ (mm)	SII (mm)	D ₂ III (mm)	D ₁ III (mm)	K ₁₁₁ (mm)	SIII (mm)
11136-18	329,74	150,27	2,194	2,03	254,9	150,68	1,691	1,62	173,4	151,6	1,14	0,7
35171-1	329,9	150,22	2,196	2,28	254,85	150,7	1,691	1,8	173,05	151,5	1,14	1

Dornurile au fost executate din două bucăți prin fretare, având următoarele caracteristici inițiale:

d =

- pentru culeu 11136-18:

-	duritatea: Ra =	58HRC 0,43 μm
pentru culeu 35171-1:	d = duritatea: Ra =	152,5 mm 60HRC 0,80 μm

Autofretarea s-a executat pe instalația industrială IAFD a cărei machetă este prezentată în fig.6.16, iar unul din semifabricate supuse procesului de autofretare este prezentat în fig.6.17, fig.6.18.

Semifabricatele au fost fosfatate la interior pe instalația industrială (fig. 6.19) proiectată și executată la U.M.Reșița.

Autofretarea s-a executat imediat după fosfatare, semifabricatul fiind încă cald.

Fig.6.19

După autofretare au rezultat următorii parametri specifici(tabelul 6.12)

Tabelul 6.12

DADAMETDUI			C U I	LEU			
FARAMETRUL		11136-18			35171-1	Zona III 0,06 0,07	
	Zona I	Zona II	Zona III	Zona I	Zona II	Zona III	
δ ₁ [mm]	0,62	0,38	0,06	0,5	0,2	0,06	
δ ₂ [mm]	0,16	0,28	0,05	0,04	0,26	0,07	
δ _d [mm]		0,21		0,45			

Forța axială de autofretare nu a putut fi determinată riguros, deoarece instalația permite numai o evaluarea a acesteia prin citirea curentului consumat. Chiar dacă teoretic există posibilitatea adaptării unui sistem dinamometric, etalonarea acestuia la forțe atât de mari pentru moment este imposibilă. Astfel, la autofretarea semifabricatului culeu 11136-18 (unde S=2,3 mm) I=200A, iar la culeul 35171-1(S=2,5 mm) I=220A Cunoscînd că la puterea maximă motorul electric de acționare consumă 760 A, iar utilajul dezvoltă la acest consum o forță de împingere de 500tf, rezultă că forța maximă a fost de 150 tf în zona strîngerii maxime – ea variind în timpul procesului de autofretare.

Mărimea deformațiilor remanente diferă față de cele calculate deoarece dornurile au suferit deformații remanente (δ_d) , conform tab.6.12. Deformațiile remanente ale dornurilor au apărut datorită tratamentului termic necontrolat(s-a executat la U.C.M.R fără asistență tehnică, U.M.R. fiind în șomaj, neputînd să pornească T.T). **Deci, foarte mare importanță are tratamentul termic al dornurilor.**

După autofretare țevile au fost aspectate, costatîndu -se că nu există urme de gripaj.

Dornul 2 (pentru țeava culeu 35171-1) s-a fisurat atât radial cât și axial, tot datorită tratamentului termic necontrolat.

Rămâne în continuare ca problemă deschisă studiul dornului

6.2.STUDIUL ASUPRA PROCESULUI DE FOSFATARE A SEMIFABRICATELOR SUPUSE AUTOFRETĂRII

6.2.1 SCOP

Scopul acestui studiu l-a constituit stabilirea parametrilor optimi ai procesului de fosfatare. Prin parametrii optimi înțelegem temperatura soluției de fosfatare și timpul de menținere în baie pentru care se obține grosimea maximă a stratului de fosfați.

6.2.2 MOD DE LUCRU

Au fost utilizate epruvete confecționate din același material și având același grad de finisare ca al pieselor care vor fi fosfatate ulterior (OHN3MFA).

Epruvetele au fost trecute prin toate fazele procesului de fosfatare conform tehnologiei în vigoare în U.M.Reșița.

Verificarea masei stratului de fosfați s-a făcut prin diferența masei epruvetei înainte și după dizolvarea stratului de fosfați, conform STAS 10338-85, punctul 3.5, tabelul 4.

Verificarea aderenței stratului de fosfați s-a făcut conform STAS 10338-85, punctul 3.4. Toate epruvetele au corespuns la verificarea aderenței conform STAS 10338-85, punctul 3.4.

Toate epruvetele au corespuns la verificarea aderenței conform STAS 10338-85, punctul 3.4.

Influența temperaturii asupra masei stratului de fosfați este redată în figura 6.20. Timpul de menținere al epruvetelor în baia de fosfatare a fost de 30 minute.

Influența timpului de menținere în baia de fosfatare este redată în figura 6.21. Temperatura băii de fosfatare a fost de 60° C.

Fosfatarea s-a efectuat pe instalația proiectată și executată în U.M.Reșița pentru a permite executarea acestei acoperirii de suprafață la interiorul țevilor ce urmează a fi autofretate (fig.6.22).

124

Fig.6.22

Fazele fosfatării țevii de artilerie și parametrii băilor galvanice sunt redate în tabelul 6.13.

					TAB	ELUL 6.13
Nr. crt.	Denumirea fazei	Compoziția băii	Tempe- ratura soluției [^o C]	Durata de menținere [minute]	Numărul băii galvanice	Obs.
0	1	2	3	4	5	6
1.	DEGRESARE	 hidroxid de sodiu 10 - 70 g/l carbonat de sodiu 20 - 40 g/l fosfat trisodic 15 - 20 g/l silicat de sodiu 3 - 5 g/l 	80 – 90	10 – 20	1	
2.	SPĂLARE 1	- apă	50 - 85	5	2	
3.	DECAPARE	- acid clorhidric 100 ÷180 g/l	10 - 20	2 - 5	3	
4.	SPĂLARE 2	- apă	50 - 85	5	2	
5.	FOSFATARE	 fosfatol tip III 90 – 100 cm³ azotat de zinc 140 – 160 g/l aciditate liberă 5 – 10 puncte aciditate totală 70 puncte 	54 – 60	20 – 30	4	
6.	SPĂLARE 3	- apă	50 - 85	5	5	
7.	ULEIERE	- ulei tip U.P.7	10 - 20	-	-	Manual

Temperaturile pentru băile galvanice nr. 1, 2, 5 vor fi controlate cu ajutorul termometrelor amplasate în interiorul băilor. Temperatura pentru baia galvanică nr. 4 va fi controlată prin termocuplu și regulator electronic.

Constatări :

a) La un timp de menținere constant, masa stratului de fosfați crește, în intervalul $50 \div 60^{\circ}$ C după care scade prin mărirea temperaturii la 70° C.

Aceasta înseamnă că prin mărirea temperaturii peste 60⁰C apare o redizolvare a stratului de fosfat format anterior.

b) La o temperatură constantă (60° C) se obține o creștere a masei stratului de fosfați odată cu creșeterea timpului de menținere de la 15 minute la 30 minute după care se observă o scădere a masei.

Concluzie finală: pentru obținerea masei maxime a stratului de fosfați (ceea ce corespunde unei grosimi maxime a stratului de fosfați) se va lucra în următoarele condiții: temperatura 60° C și timp de menținere 30 minute.

6.3 PRELUCRAREA REZULTATELOR EXPERIMENTALE.

6.3.1 CONSIDERAȚII TEORETICE ȘI STABILIREA UNEI PROCEDURI DE EVALUARE ȘI VALIDARE A AUTOFRETĂRII.

Modelul matematic aplicat pentru calculele tehnologice au avut în vedere următoarele simplificări

- gradul de deformare a materialului nu se modifică în direcția perpendiculară pe axa longitudinală a țevii fiind proporțională în acest plan cu coeficientul k;
- ✤ materialul este omogen pe toată lungimea sa;
- legea de frecare este cea Coulombiană proporțională cu forța normală pe suprafața de frecare;
- materialul semifabricatului este izotrop;
- forța normală pe suprafața de contact dintre materialul în stare de deformare şi dorn este egală cu rezistența la deformare a materialului;
- direcția radială și circumferențială sunt direcții principale de deformare;
- efectul termic al deformării nu generează o încălzire suficientă pentru pornirea recristalizării materialului țevii sau a materialului dornului,
- o secțiune perpendiculară pe axă înaintea deformării va fi perpendiculară pe axă şi după autofretare.

In baza măsuratorilor făcute, în urma autofretării, a deformațiilor remanente suferite de probele utilizate și de diametrul exterior a sculelor folosite, s-a efectuat o comparare cu deformațiile calculate în baza teoriilor de rezistență posibil de utilizat în calculul autofretării tuburilor cu pereți groși, rezultând următoarele :

Teoriile : III Teoria tensiunilor tangențiale maxime

V Teoria energiei de deformație modificatoare de formă (Huber - Henchy -

Mises),

sunt cele mai aproape de realitate.Utilizarea lor necesită cunoașterea următorilor parametrii:

- ✓ caracteristicile mecanice ale oțelului țevii (σ_c =Sgmc,E,E_p);
- ✓ eformația remanentă realizată și deformația elastică calculată a sculei;
- \checkmark cunoașterea cu precizie a dimensiunilor țevii și a sculei (D_1, D_2, d) înaintea autofretării;
- ✓ valoarea raportului k≥2 pentru a ne situa în domeniul tuburilor cu pereți groși
- S-a reuşit stabilirea unor relații de calcul, a Teoriilor III şi V, care să verifice deformațiile remanete obținute experimental pentru tuburiile cu pereți groşi. În baza acestor relații am realizat un program de calcul în EXCEL, denumit în continuare AUTOFRET, care oferă posibilitatea de-a obține operativ valoarea:
 - ✓ deformațiilor remanente la care să ne așteptăm : dta1,dta2,dtad;
 - \checkmark diametrul teoretic care separă zona elastică de zona elastoplastică D_c ,
 - ✓ presiunea din această zonă de separare p_e;
 - ✓ gradul de autofretare și presiunea de autofretare: x,p_f,
 - ✓ diametrul dornului pentru obținerea gradului de autofretare: d;
 - ✓ deformațiile elastice circumferențiale specifice și cele remanente ale diametrelor D_1, D_2, d : Epsfil, Epsfil, Epsfil, Dtal, Dtal, Dtal

Programul de calcul AUTOFRET se utilizează astfel:

- Se introduc datele de intrare determinate :D₁,D₂,E,E_p,σ_c,β care sunt constante pentru fiecare semifabricat supus autofretării;
- Se modifică singura variabilă posibil de ales, gradul de autofretaj x %, astfel încât să fie mai mare decât 53% -recomandat de literatura de specialitate asigurându-se astfel un coeficient de siguranță pentru suprpresiunea (S_P=1,17*suprapresiunea pulberii de azvârlire) posibil de suportat de câtre țeavă mai mare de 1,3 (30%), rezultând diametrului sculei necesar autofretării (1,17 x 1,3 = 1,521);
- Se realizează procesul de autofretare în baza tehnologiei stabilite;
- Se măsoară diametrul exterior al sculei după autofretare şi se "caută prin modificarea , din aproape în aproape, a gradului de autofretare efectiv realizat care este cel ce are ca răspuns valoarea efectivă a acestei măsurători". Se obțin astfel valorile calulate ale deformațiilor remanente ale țevii autofretate care vor fi foarte apropiate de cele măsurate. Dacă apar diferențe mai mari, între deformațiilor remanente obținute la interiorului țevii după autofretare şi cele calculate, decât eroarea de măsurarea a "STELEI MOBIL= ±0,02mm", dar gradul de autofretare (x %) este mai mare de 53% (c=1,17*1,3=1,521) Țeava se considerâ autofretată rezistând în mod cert suprapresiunii dezvoltate de pulberea de azvârlire specifică. Pentru a fi mai riguroşi în calculele efectuate pentru valoarea deformațiilor remanent ale țevii, se introduc ca date de intrare valorile maxime şi minime obținute pentru E,E_p,σc,D1^{±0.02},D^{±0.02}

Programul de calcul AUTOFRET se verifică experimental, atunci și numai atunci, când k \geq 2. Deci, când suntem în cazul tuburilor cu pereți groși.

6.3.2 COMPARAREA DATELOR EXPERIMENTALE OBȚINUTE CU CELE CALCULATE CU PROGRAMUL AUTOFRET.

a) Incercarea experimentală la U.C.M.Reșița.

Dacă se ia în calcul diametrul cu care dornurile au ieșit din probele supuse autofretării putem afirma că programul AUTOFRET confirmă realizarea autofretării gradul de autofretare $x_{mediu} \ge 60\%$, deformațile remanente sunt foarte apropiate de cele calculate (tabelul 6.14 și ANEXA 1-4), iar diametrul dornului măsurat - după autofretare - este egal cu cel rezultat din calcul pentru gradul de autofretare obținut(prin program s-a modificat, din aproape în aproape, gradul de autofretare - pentru fiecare teorie de rezistență - până s-a obținut diametrul efectiv al dornului scos din țeava supusă autofretării).

Scula	Nr. probă	Teoria	d [mm]	$\delta_1 = dta_1$ [mm]	$\delta_2 = dta_2$ [mm]	X%	P _F [Mpa]	К
		T III	151,5	0,416	0,119	63,8	715,2	
R ^N	1	ΤV	151,5	0,369	0.103	69.5	850,68	2.23
0 0		Media	151,5	0,393	0,111	66,65	782.97	
		Experim.	151.5	0,33	0,06	-	-	1
	2	J. III	152,008	0,585	0,182	69.3	765.77	
		ТV	152,006	0,532	0,161	75	893.73	2.22
		Media	152,007	0,558	0,171	72,15	829,75	
		Experim.	152	0,55	0,1	-	-	
		T III	152,299	0,788	0,265	7,5	810,49	
		ТV	152,297	0,731	0,238	80,8	931.18	2.23
	3	Media	152,298	0,760	0.252	77.9	870.83	
		Experim.	152,3	0,760	0,15	-	_	
		T III	152,60	0,991	0,355	80.1	842.04	
	4	ТV	152,60	0,929	0,322	86	955.52	2.23
		Media	152,60	0,960	0.339	83,05	898.78	
		Experim.	152,60	0,98	0,2			

Tabelul 6.14

In ANEXELE 1.1-1.3 se observă modificările obținute prin utilizare programului AUTOFRET din EXCEL introducând alte date pentru D_1 , în limita erorii de măsurare de $\pm 0,02$ mm, respectiv o altă valoare posibil de realizat pentru limita de curgere (tratamentul termic secundar admițând această valoare pentru semifabricatul țevii). Variațiile deformațiilor circumferențiale remanente calculate și a gradului de autofretare ,în condițiile aceluiași diametru a dornului,sunt sensibil influențate de erorile de măsurare și de valorile limitei de curgere a materialului.

Deci, este foarte important a determina cât mai exact valoarea dimensiunilor semifabricatului și a caracteristicilor mecanice a materialului acestuia.

b) Incercări experimentale executate pe presele din laboratoarele U.P.Timișoara.

In Anexele 5 – 8 și tabelul 6.15 sunt prezentate comparativ rezultatele obținute experimental cu cele calculate cu programul **AUTOFRET.** S-au efectuat calcule numai pentru cele mai semnificative încercări Se observă că, atât în cazul autofretării cu bilă cât și cu dorn, gradul de autofretare x este peste 60%, iar presiunile de autofretaj sunt cu cca. 40% mai mari decât presiunea maximă posibil de realizat în prezent de pulberile de azvârlire cunoscute (p_{max} =600Mpa).

Deci, tuburile au fost autofretate.

Scula	Nr. probă	Teoria	d [mm]	δı=dtaı [mm]	δ_2 =dta ₂ [mm]	X%	P _F [MPa]	К
		TIII	84,98	0,343	0,096	66,5	777,45	
Bila	2.1	TV	84,97	0,313	0,084	71,7	906,06	2,38
$t=20^{\circ}C$		Media	84,975	0,328	0,090	69,1	841,76	
		Experim.	84,98	0,275	0,13	-	-	
		TIII	84,97	0,347	0,097	66,7	779,12	
Bila	2.5	TV	84,97	0,318	0,086	72	908,26	2,37
$t = 60^{\circ}C$		Media	84,97	0,333	0,092	69,35	843,69	
		Experim.	84,98	0,435	0,17	-	-	
		TIII	84,927	0,31	0,084	64,8	761,11	
Dorn	2.6	TV	84,919	0,28	0,074	70	891,62	2,37
$t=20^{\circ}c$		Media	84,92	0,29	0,079	67,4	826,37	
		Experim.	84,92	0,25	0,16	-	-	
		TIII	84,91	0,306	0,083	64,6	759,02	
Dorn	2.10	TV	84,96	0,299	0,080	71	899,76	2,37
$t = 60^{\circ}C$		Media	84,93	0,303	0,081	67,8	829,39	
		Experim.	84,92	0,277	0,17	-	-	

Tabelul 6.15

c) Incercări experimentale executate pe instalația industrială I.AF.D. la U.M.Reșița.

• Autofretarea capetelor de tevi.

In Anexa 9, 10 și tabelul 6.16 sunt prezentate comparativ rezultatele obținute experimental cu cele calculate cu programul AUTOFRET. Se observă că, atât în cazul autofretării cu bilă cât și cu dorn, gradul de autofretare este peste 60%, iar presiunile de autofretaj sunt cu cca. 40% mai mari decât presiunea maximă posibil de realizat în prezent de pulberile de azvârlire cunoscute (p_{max} =600Mpa). **Deci, tuburile au fost autofretate.**

Tabelul 6.16

	Scula	Nr. probă	Teoria	d [mm]	$\delta_1 = dta_1$ [mm]	δ ₂ =dta ₂ [mm]	X%	P _F [MPa]	К
Í			TIII	84.992	0.245	0,071	65.2	696.84	
	Bila	Capăt	ТV	84,980	0.213	0.060	70,5	821.09	2.23
		țeavă	Media	84,985	0,229	0,066	67.85	758.97	
			Experim.	84,98	0.22	0,14	-	-	
		Capăt	TIII	84.977	0.243	0,069	63,7	747,51	
	Dorn	țeavă	TV	84,964	0,209	0,058	69	885,45	2.23
			Media	84,97	0,226	0,063	66,35	816,48	
			Experim.	85,01	0,15	0,12	-	-	

• Autofretare tevilor de artilerie.

•

In Anexele 11–16 și tabelul 6 17 sunt prezentate comparativ rezultatele obținute experimental cu cele calculate cu programul AUTOFRET din EXCEL

Tabelul 6.17

Scula	Nr. probă	Teoria	d [mm]	$\delta_1 = dta_1$ [mm]	δ_2 =dta ₂ [mm]	X%	P _F [MPa]	К
		тш	152,595	0,424	0.285	98,1	414,84	
	A407	ΤV	152,605	0,107	0.068	127,5	465.29	1.45<2
		Media	152,60	0,266	0,177	112,8	440,06	(Anexa II)
		Experim.	152,6	0,8	0.66	-	-	
		T III	152,09	-0,025	-0,018	83,6	111,12	
	11136-18	ΤV	152,09	-0,075	-0,055	91,8	145,39	1,143<2
	Zona III	Media	152,09	-0,050	-0,037	87.7	128.26	(Anexa 14)
		Experim.	152,09	-0,06	0,05	-	-	
		ТШ	152,09	0,643	0,214	73	742,79	
	11136-18	ΤV	152,09	0,592	0,192	78,9	859,69	2.19
z	Zona I	Media	152,09	0,618	0,203	75,95	801,24	(Anexa 12)
DR		Experim.	152,09	0,62	0,16	-	-	
ă		T III	152,05	0,638	0,208	71,9	770,87	
	3517-1	ΤV	152,05	0,584	0,186	77.72	894,51	2.19
	Zona I	Media	152,05	0,611	0,197	74,81	832.69	(Anexa 15)
		Experim.	152,05	0,5	0,04	-	-	
		T III	152.09	0,416	0,209	85	528.72	
	11136-18	TV	152,09	0.352	0,172	92	695.04	1.69<2
	Zona II	Media	152,09	0,384	0,191	88,5	566.88	(Anexa 13)
		Experim.	152,09	0,38	0,28	•		
		T III	152,05	0,381	0,186	82,5	543,34	1.69<2
	3517-1	īV	152,05	0,320	0,153	89,7	628,05	Dorn
	Zona II	Media	152,05	0,350	0,169	86,1	585,70	fisurat
		Experim.	152,05	0,2	0,26	-	-	(Anexa 16)

Observații:

- Anexa 11,14 unde k ∠ 2 relațiile de calcul stabilite nu sunt verificate deoarece tubul nu este cu perete gros. Se confirmă teoria, că relațiile stabilite pentru calculul tuburilor cu pereți groși, indiferent de teoria de rezistență utilizată, sunt valabile numai dacă k ≥ 2.
- Anexa 12,15 unde k ≥2 se confirmă valabilitate programului. AUTOFRETdin EXCEL. Gradul de autofretare este mai mare de 60% iar presiunea de autofretare este cu cca. 60% mai mare decât presiunea de serviciu posibil de realizat în prezent de pulberile de azvârlire cunoscute
- Anexa 13,16 unde k=1,69 ne cofirmă faptul că autofretarea tuburilor cu pereți groși este realizată numai dacă pe lângă un grad de autofretare mai mare de 53% se obține și o presiune de autofretare (pf) mai mare decât suprapresiunea la care se verifică țeava Din datele prezentate se observă o necolerare între gradul de autofretaj și presiunea de autofretaj.

6.3.3 CONCLUZII ȘI EVALUĂRI.

- ✓ PROGRAMUL AUTOFRET. din EXCEL, stabilit în baza teoriilor de rezistență III și V pentru calculul tuburilor cu pereți groși supuși la presiuni interioare verifică datele experimentale obținute în urma încercărilor de autofretare, atât în condiții de laborator cât și în condiții industriale, dacă și numai dacă k ≥ 2.
- ✓ Teoria III ne conduce la deformații remanente mai mari cu presiuni de autofretare mai mici comparativ cu Teoria V care ne conduce la deformații remanente mai mici la pf mai mari Şi gradul de autofretare calculat x % cu cele două teorii este diferit, dar ambele confirmă că acesta este peste 60%.
- ✓ Autofretare este efectuată dacă gradul de autofretare este mai mare de 53% în zona presiunilor maxime (zona camerei de încărcare), iar presiunea de autofretaj este mai mare decât suprapresiunea de încercare a țevii finale.
- ✓ O importanță deosebită o are determinarea cu mare precizie a parametrilor de " intrare":D₁,D₂,E,E_p, σ_c care influențează, fiecare în parte, foarte mult valoarea parametrilor măsurabili ce confirmă operația de autofretare a tuburilor cu pereți groși.
- ✓ Se confirmă tehnologia aplicată de firma British Aerospace, verificată prin discuțiile tehnice ce le – am avut cu reprezentați ai acestei firme, cu ocazia vizitei la U.M.Reşița în aprilie 1999 : este suficentă autofrertarea numai în zona camerei de încărcare –zona presiunilor maxime.

Deci semifabricatul supus autofretării va avea la interior numai două diametre, cel de după zona camerei de încărcare(spre gura țevii) va avea diametrul minim ce ne așteptăm să –l obținem după autofretare în zona presiunilor de serviciu maxime (acest diametru va fi mai mare decât cel din zona camerei de încărcare, cu valoare minimă a deformației circumferențiale remanente –dtal –evaluată).

6.4. STUDIU ASUPRA STABILITĂȚII DIMENSIONALE A ȚEVII AUTOFRETATE IN TIMP ȘI LA TEMPERATURI CE POT APARE IN PROCESUL DE EXPLOATARE

Scopul acestui studiu experimental a constat în a verifica ce se întîmplă cu semifabricatul autofretat din punct de vedere dimensional și ca și rectilinitate dacă se aplică un tratament de dimensionare la o temperatură mai mare decât ceea posibil a apare în timpul tragerilor de luptă.

Ca urmare semifabricatele (culeu 11136-18 și 35171-1) autofretate au fost supuse unui tratament termic de detensionare joasă, la o temperatură mai mare decăt ceea ce poate apare în timpul tragerilor repetate (cca.430 °C) și mai mică decât temperatura minimă la care poate apare recristalizarea cu modificări structurale – dimensionale (t=0,4 $t_{topire}=0,3*1425=570^{\circ}C$), respectiv t=450°C timp de 4 ore.

În fig.6.23 se prezintă diagrama de tratament termic de detensionare utilizată. Tratamentul termic s-a efectuat în cuptoarele verticale din U.M.Reșița în decembrie 1999.

Fig.6.23

In urma măsurătorilor dimensionale a interiorului țevii și a curburii nu s-au constatat diferențe mai mari decât eroarea de măsurare a instrumentelor de măsurare utilizate în mod curent în procesul tehnologic (stea mobilă $\pm 0,02$ și verificator curbură 1 miime artileristică).

6.5. STUDIU PRIVIND INFLUENȚA STRATULUI AUTOFRETAT ASUPRA REGIMURILOR DE AȘCHIERE LA OPERAȚIILE DE PRELUCRAREA FINALĂ A ȚEVII DE TUN.

În mod curent (din datele furnizate de specialiștii români care au vizitat firme occidentale executante de armament de artilerie; din observațiile personale făcute cu ocazia unor vizite de acest gen, cât și din experiența de peste 25 de ani în execuția țevilor de artilerie) – adaosul de prelucrare pe rază la interior fiind de cca. 2,54 mm, iar la exterior de 2,5 mm/rază, după autofretare se execută următoarele operații tehnologice

- 🖌 La interiorul țevii
 - Lărgire prin împingere
 - Alezare interioară I
 - Alezare interioară II
 - Honuire I
 - Alezare cameră de încărcare
 - Honuire II (se execută după strunjirea exteriorului țevii)
 - Ghintuire
 - Honuire III
- La exteriorul ţevii
 - Strunjire de finisare

În urma prelucrării semifabricatelor autofretate ,culeu 11136 –1 și 35171-1, s-a stabilit cu certitudine că stratul autofretat nu influențează regimurile de așchiere utilizate în mod curent la țevile neautofretate. Excepția a constituit –o turația și avansul la strunjirea exterioară de finisare care (în baza experienței avute de la execuția țevilor fretate calibru 125mm, la care prin fretare s-au introdus tensiuni interne) au avut valori mai mici pentru a nu risca modificarea de formă (rectilinitatea) a țevii.

Cu această ocazie s-a mai constatat necesitatea lăsării unui adaos de prelucrare pentru ghidarea dornului de autofretare, pentru ca această zonă nu este autofretată, dar aici se prelucrează prin așchiere camera de încărcare. Acest adaos suplimentar, la capătul gros al țevii, se va înlătura după autofretre, iar apoi se trece la execuția camerei de încărcare prin alezare cu scule specifice utilizate curent în fabricația țevilor de artilerie.

6.6 STUDIUL MODELĂRII SOLIDE A PROCESULUI DE AUTOFRETARE ÎN CAZUL ȚEVILOR DE ARTILERIE

6.6.1 DISCRETIZAREA ȘI REALIZAREA MODELULUI CU ELEMENTE FINITE PENTRU ANSAMBLUL ȚEAVĂ-DORN

Metoda elementelor finite (MEF) s-a dezvoltat pornind de la metoda deplasărilor, metodă cunoscută din mecanica corpului deformabil. Ecuațiile teoriei elasticității sunt cunoscute și nu vor mai fi demonstrate. Ele vor fi utilizate în continuare într-o formă matricială

Ecuațiile teoriei elasticității se pot grupa în trei categorii:

- ecuații de echilibru;
- relații diferențiale între deplasări și deformații specifice;
- ecuații fizice, care leagă tensiunile de deformațiile specifice.

Pe de altă parte, din punct de vedere al dificultăților de ordin matematic, problemele teoriei elasticității se împart în două categorii: problema unidimensională și problemele bi- sau tridimensionale.

În problema unidimensională, necunoscutele – care pot fi tensiuni sau deplasări – se pot exprima în funcție de o singură variabilă independentă. Exemple clasice ale acestei probleme sunt cazul calcului barelor sau discurilor în mișcare de rotație și a tuburilor cu pereți groși, care se reduc la probleme unidimensionale prin luarea în considerare a simetriei În acest caz, ecuațiile teoriei elasticității se sintetizează în ecuații diferențiale ordinare, cu soluții închise și relativ simple.

Dacă funcțiile necunoscute depind de două sau trei variabile independente, avem cazul problemelor bi- sau tridimensionale, în care sistemele de ecuații diferențiale cu derivate parțiale sunt dificil sau imposibil de rezolvat sub formă închisă.

Pentru problema unidimensională a calcului barelor se utilizează metoda deplasărilor, ea se bazează pe relațiile cunoscute din rezistența materialelor. În schimb, MEF rezolvă problemele descrise matematic de ecuații diferențiale cu derivate parțiale. Între problemele bi- și tridimensionale nu există diferențe calitative, pentru că ambele utilizează derivate parțiale, ci doar cantitative – care rezidă din două, respectiv trei variabile independente.

6.6.2 STARI DE TENSIUNI

Asupra unui element de volum izolat dintr-un corp supus unor solicitări pot acționa tensiuni pe diferite direcții, ca în figura 6.24.

Starea triaxială de tensiune este descrisă de şase componente independente, care se scriu sub forma:

$$\{\sigma\} = [\sigma_x \ \sigma_y \ \sigma_z \ \tau_{xy} \ \tau_{yz} \ \tau_{zx}]^T \qquad (6.1)$$

Alături de componentele prezentate în ecuația de mai sus, mai există trei componente tangențiale ce nu sunt independente, ele fiind legate prin relațiile de mai jos, conform dualității tensiunilor tangențiale:

$$\tau_{xy} = \tau_{yx}$$

$$\tau_{yz} = \tau_{zy} \qquad (6.2)$$

$$\tau_{zx} = \tau_{xz}$$

În starea biaxială de tensiune (plană) apar componentele tensiunilor într-un singur plan, ca în figura 6.24. Tensiunile din planul XY au trei componente independente:

$$\{\boldsymbol{\sigma}\} = [\boldsymbol{\sigma}_{x} \ \boldsymbol{\sigma}_{v} \ \boldsymbol{\tau}_{xv}]^{\mathrm{T}} \quad (6.3)$$

Starea uniaxială de tensiune are o singură componentă σ_x (sau σ_y ori σ_z). Pentru figura 6.24c avem:

 $\{\sigma\} = \{\sigma_x\}$ (6.4)

6.6.3 DEFORMATII SPECIFICE

Sub acțiunea componentelor tensiunii în toate direcțiile, elementul de volum din figura 6.24., se va deforma și va ajunge ca în figura 6.25. Prin proiectarea fețelor elementului deformat pe cele trei plane ortogonale ale sistemului de axe se poate realiza analiza deformației. Deplasarea punctului O care ajunge în O se definește prin componentele u, v și w ale vectorului.

 $\{\Delta\} = \{\Delta(x, y, z)\} = [u(x, y, z) \ v(x, y, z) \ w(x, y, z)]^{T}$ (6.5)

Cunoscând cele șase deformații specifice – trei axiale (ε_x , ε_y , ε_z) și trei unghiulare (γ_{xy} , γ_{yz} , γ_{zx}) – deformația elementului se poate defini complet. Ca și la starea de tensiune, descrierea deformației se poate face complet sau parțial:

Descrierea triaxială a deformației cuprinde toate cele șase componente de mai sus, reprezentate prin vectorul:

 $\{\boldsymbol{\varepsilon}\} = \begin{bmatrix} \boldsymbol{\varepsilon}_{x} & \boldsymbol{\varepsilon}_{y} & \boldsymbol{\varepsilon}_{z} & \boldsymbol{\gamma}_{xy} & \boldsymbol{\gamma}_{yz} & \boldsymbol{\gamma}_{zx} \end{bmatrix}^{T} \quad (6.6)$

Deformația biaxială este descrisă de către trei componente:

$$\{\varepsilon\} = [\varepsilon_x \ \varepsilon_y \ \gamma_{xy}]^1 \qquad (6.7)$$

Deformația uniaxială se reduce la precizarea componentei după o axă:

6.6.4 ECUATIILE TEORIEI ELASTICITATII

6.6.4.1 Ecuațiile de echilibru

Dacă tensiunile pe fețele negative sunt definite de componentele vectorului și se admit variații infinit de mici ale acestora ca în figura 6.25, ecuațiile de echilibru ale acestui element conduc la relațiile:

$$\begin{cases} \frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + X = 0\\ \frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + Y = 0\\ \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{zy}}{\partial y} + \frac{\partial \sigma_{z}}{\partial z} + Z = 0 \end{cases}$$
(6.8)

în care X,Y,Z reprezintă forțele volumice.

Aceste relații, care formează prima grupă de ecuații a teoriei elasticității reprezintă o problemă de mecaniă, ele nefiind legate de modul cum se deformează corpul

6.6.4.2 Relații între deplasări și deformații specifice

A doua categorie de ecuații reprezintă rezolvarea unei probleme de geometrie în care se exprimă deformațiile specifice în funcție de deplasările vârfului elementului. În cazul deformațiilor mici, acceptate de teoria elasticității, aceste relații sunt:

$$\begin{cases} \varepsilon_{x} = \frac{\partial u}{\partial x}, \gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \\ \varepsilon_{y} = \frac{\partial v}{\partial y}, \gamma_{yz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \\ \varepsilon_{z} = \frac{\partial w}{\partial z}, \gamma_{zx} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z} \end{cases}$$
(6.9)

6.6.4.3 Ecuațiile fizice (constitutive) ale unui corp liniar și izotrop

Legea lui Hooke generalizată descrie legătura dintre tensiuni și deformații specifice pentru un material cu comportare liniară și izotropă:

$$\begin{cases} \varepsilon_{x} = \frac{\sigma_{x} - \nu(\sigma_{y} + \sigma_{z})}{E}, \gamma_{xy} = \frac{\tau_{xy}}{G} \\ \varepsilon_{y} = \frac{\sigma_{y} - \nu(\sigma_{z} + \sigma_{x})}{E}, \gamma_{yz} = \frac{\tau_{yz}}{G} \\ \varepsilon_{z} = \frac{\sigma_{z} - \nu(\sigma_{x} + \sigma_{y})}{E}, \gamma_{zx} = \frac{\tau_{zx}}{G} \end{cases}$$
(6.10)

unde

E – modulul de elasticitare longitudinal;

G – modulul de elasticitate transversal,

v – coeficient de contracție transversală.

Între cele trei constante (E, G și v) numai două sunt independente pentru un material izotrop, deoarece între ele există relația:

$$G = \frac{E}{2(1+v)}$$
 (6.11)

Figura 6.25

6.6.4.4Căi de soluționare a problemelor teoriei elasticității

Cele trei categorii de ecuații ale teoriei elasticității reprezintă în cazul triaxial un sistem de 15 ecuații cu derivate parțiale, având ca necunoscute 15 funcții ce depind de x, y și z, astfel:

- 6 funcții reprezentând tensiuni;
- 3 funcții reprezentând deplasări;

• 6 funcții reprezentând componentele deformațiilor specifice.

Acest sistem de 15 ecuații nu are o soluție generală, deoarece pe de o parte ecuațiile au derivate parțiale, iar pe de altă parte trebuie să se verifice și condițiile la limită (pe conturul corpului) care pot fi:

- Condiții în tensiuni. Tensiunile date de funcțiile-soluție trebuie să fie egale cu sarcinile repartizate pe suprafața corpului sau, dacă acestea nu există, să fie nule
- Condiții în deplasări. Anumite puncte ale corpului sunt împiedicate să se deplaseze prin rezemare pe alte corpuri.

În majoritatea cazurilor condițiile sunt mixte, conținând atât tensiuni cât și deplasări. Rezolvarea unei probleme din teoria elasticității se poate face în diferite moduri, dar principalele metode de abordare sunt:

- *Metoda directă*. Cunoscând sistemul de forțe și condițiile de rezemare se caută determinarea celor 15 funcții menționate anterior, prin rezolvarea directă a sistemului de ecuații.
- *Metoda inversă*. Pentru deplasări date ale unor porțiuni ale corpului se determină deformațiile specifice și tensiunile. Prin calculul valorilor tensiunilor pe suprafața corpului se determină sarcinile ce au produs deplasările de la care s-a pornit.

Din punct de vedere matematic, metoda inversă este mai comodă deoarece, presupunând cunoscute deplasările, deformațiile specifice se determină prin derivare, se detremină apoi tensiunile și în final ecuațiile de echilibru se verifică din nou prin derivare. Metoda inversă este caracteristică metodei elementelor finite.

6.6.4.5 Modelarea semifabricatului țeavă și dorn cu Pro/ENGINEER

La început, MEF a reușit să rezolve probleme pluridimensionale ale teoriei elasticității, pe baza unei metodologii inspirată din metoda deplasărilor. Ulterior s-a dovedit că MEF poate fi aplicată cu succes și la problemele care impun soluționarea unor ecuații sau sisteme de ecuații cu derivate parțiale. Ideile principale, care se regăsesc în orice aplicație a MEF, indiferent de problema specifică abordată se prezintă în continuare:

- Discretizarea domeniului fizic D. Aceasta presupune împărțirea acestuia în elemente, care pot avea diferite forme, de exemplu în plan elementele pot fi: triunghiuri, dreptunghiuri, patrulatere oarecare, triungiuri cu laturi curbilinii etc. Discretizarea domeniului D (care poate fi un corp, o suprafață, o structură etc.) se face pentru a căuta o soluție a ecuațiilor nu pentru întreg domeniul, ci pentru fiecare element.
- Aproximarea funcției necunoscute prin ipoteze locale. Presupunând o ecuație diferențială cuprinzând derivate parțiale ale unei funcții necunoscute $\varphi(x, y, z)$, în loc să se caute forma exactă de variație a funcției, ea se înlocuiește printr-o variație aproximativă $\tilde{\varphi}(x, y, z)$, aleasă de către utilizator Deși această aproximație este diferită de forma exactă, ea este corespunzătoare ca și aproximație locală, referindu-se doar la elementul studiat.

În figurile următoare se prezintă modelarea în solid a semifabricatului țeavă și a dornului, utilizând Pro/ENGINEER^{**} S-a urmărit în special simplificarea modelelor, datorită simetriei geometrice a acestora, precum și tipului de solicitare, care este de asemenea simetrică.

Câteva figuri prezintă modelarea cu tipul de element "shell", iar în altele s-au utilizat elemente tetraedrice (solide).

În figurile 6.26 : 7.12 se prezintă analiza stării de tensiune și energia potențială echivalentă în dornul (modelat simplificat) cu ajutorul pachetului software ANSYS[®] versiunea 5.3. S-a realizat o discretizare de 240 de elemente și 78 de noduri.

. •

2

i F

6.6.5 MODELAREA ȘI ANALIZA CU ELEMENTE FINITE SUB MEDIUL MSC NASTRAN

Cu ocazia experimentărilor de laborator efectuate la U.P.Timișoara, Facultatea de mecanică, Catedra TCM, s-a încercat evaluarea stării de tensiune și de deformare utilizând un program educațional de software MSC Nastran 4w v 3.0 pentru Windows 95 limitat la cca. 150 –200 de noduri. S-a realizat un model solid de tip placă pentru proba Φ 150/ Φ 84,5/30 pentru un oțel OHN3MFA supus unei presiuni interioare de 0,6 R_e, în baza căruia să se realizeze discretizarea cu elemente de tip patrulater (quad) – iar pe zonele de trecere triunghiulare la o finețe maxim acceptată de modulul de rezolvare a matricei de rigiditate – și dezvoltarea prin extruderea elementelor plane a unui singur rand de elemente volumice cu aceleași proprietăți.Prin acest mod de realizare a modelului se poate obține un maximum de informații pentru un număr de 70 de elemente și 176 de noduri(fig.6.34) . In mod concret s-au obținut cca. 3 rânduri de elemente de discretizare.

În fig.6.35a, 6.35b se prezintă distribuția tensiunilor – după Von Mises – în funcție de deformația totală, respectiv sunt active modelul geometric, reprezentarea de contur și starea de deformare. În fig. 35a reprezentarea izometrică realizează distribuția spațială, iar în fig.6.35b se prezintă o vedere din față care sugerează mai bine stratul autofretat.

Creșterea gradului de deformare conduce la extindera grosimii stratului cu tensiuni peste limita de elasticitate așa cum rezultă din fig. 6.36.

Din analiza rezultatelor postprocesate se remarcă faptul că starea de tensionare superioară limitei de elasticitate se regăsește pe grosimea de cca. 15% - 25 % pentru o presiune de autofretaj corespunzătoare condițiilor limită de exploatare a țevii tunului A407 (p=400 Mpa). În măsura în care se crește presiunea de autofretare este evidentă extinderea zonei autofretate.

"Fericit cel care mai poate spera că va ieși vreodată din marea aceasta de erori! Ceea ce nu știm, tocmai aceasta ne-ar trebui, și de ce știm nu mai avem nevoie" (JW GOETHE - Faust)

CAPITOLUL 7

CONTRIBUȚII PERSONALE

Când m – am decis să abordez această temă nu știam aproape nimic despre tehnologia de autofretare Marea majoritate a tehnicienilor cu care am discutat considerau că ceea mai mare problemă tehnologică nu o constituie realizarea autofretării ci aschierea ulterioară a interiorului tevii datorită ecruisării materialului, respectiv - operația de ghintuire, care în acel moment se considera singura operație principală de prelucrarea prin aschiere. Foarte putini ingineri, specialisti în domeniul producției militare, aveau vagi cunoștinte practice în acest domeniu - eu fiind unul dintre aceștia. Tot timpul m-am întrebat de ce am abordat această temă, când, pentru a obtine titlul de doctor inginer, era mult mai simplă abordarea studiului executiei găurilor adânci, având în vedere experiența de peste 20 de ani în acest domeniu. Sunt foarte multumit că m - am decis să studiez această temă și cred că am avut mult mai mult de învătat decât pot să redau prin cuvinte în această lucrare. La ora actuală mă consider un inginer realizat din punct de vedere profesional, nu prin natura funcției pe care o dețin temporar, ci prin nivelul de cunoștințe teoretice și practice în domeniul execuției găurilor adânci și a creșterii capacității portante a tuburilor cu pereți groși prin aplicarea procedeului de autofretare mecanică. Acum credeți - mă că acest procedeu de creștere a capacității portante a tuburilor cu pereți groși mi se pare practic și deosebit de simplu din punct de vedere tehnologic:

În esență doresc să constatați că există această lucrare de primă necesitate, care ne spulberă îndoielile inițiale și face posibilă aplicarea tehnologiei de autofretare mecanică a țevilor de artilerie.

Ceea ce veți face cu această informație este numai decizia dumneavoastră. Eu nu câștig nimic, decât eventual invidie, ranchiună, critică și foarte puțină stimă. Mai mult vor spune unii că am obținut titlul de doctor inginer pentru că eram director general al U.M.Reșița Aceștia nu știu că această temă am abordat –o când nimeni, s - au apoape nimeni, nu credea că noi **românii** putem autofreta țevi de artilerie. Totuși au fost ingineri care au avut curajul să decidă investirea unor sume importante din bugetul statului român în această cercetare. Tot timpul voi rămâne recunoscător domnului secretar de stat al M.C.T. Dr.ing.Tănăsescu Florentin, care a aprobat demararea acestei cercetări.

Datorită costurilor foarte ridicate toate informațiile pe care le găsiți în această lucrare nu puteau fi obținute fără sprijinul material acordat de Ministerul Apărării Naționale și Ministerul Cercetării și Tehnologiei care au dorit ca România să nu fie dependentă de nimeni în domeniul execuției țevilor de artilerie.

Aportul meu de ordin managerial la asigurarea realizării prezentei lucrări consider că ar consta din următoarele activități :

în baza studiului teoretic privind autofretarea tuburilor cu pereți groși, a experienței tehnologice în execuția țevilor de artilerie și a cunoștințelor în domeniul Rezistenței materialelor (cadru didactic asociat la această disciplină din 1980 – U."Eftimie Murgu" Reșița) mi –am asumat în anul 1995, în calitate de director tehnic la U.M.R., responsabilitatea de-a realiza o instalație industrială de autofretare și de-a stabilii și controla procesul tehnologic al autofretării mecanice;

am condus şi coordonat :

- programul pentru o primă testare a posibilităților tehnologice de autofretare la U.M.R. și U.C.M.R.;

- programul de asimilare în fabricație a instalației industriale I.A.F.D., proiectată de inginer Petre Marin – I.C.D.E.M.București;

- programul de proiectare, execuție și amplasare a instalației de fosfatare a semifabricatelor ce urmează a fi autofretate, optând pentru varianta fosfatării pe orizontală,
- am propus sau am avizat modificări constructive la proiectul I.A.F.D.

Aportul meu în plan tehnico-științific la realizarea lucrării poate fi rezumat în următoarele :

- am întocmit şi realizat un program de cercetare teoretică şi experimentală a tehnologie de autofretare, stabilind procedura de testare, de culegere a datelor experimentale, de comparare cu calcule!e teoretice făcute şi interpretare a rezultatelor În final am reuşit, în baza teoriilor de rezistență, să întocmesc un Program de calcul(AUTOFRET) al parametrilor autofretării, în EXCEL, care verifică încercările experimentale făcute şi care este strict necesar în procesul industrial de autofretare;
- pentru prima dată în România am efectuat, cu sprijinul Universității POLITEHNICA Timişoara – Facultatea de mecanică, un studiu complet asupra caracteristicilor mecanice ale oțelului țevilor de artilerie OHN3MFA;

Contribuții personale la clarificarea fenomenului de autofretare a țevilor de artilerie pot fi sintetizate în felul următor :

Aspecte necunoscute care trebuiau clarificate	Răspunsurile obținute
<u>a)Date referitoare la semifabricatul supus autofretării</u> :	
 precizia de prelucrare a interiorului țevii și a diametrului exterior, înaintea autofretării; rugozitatea suprafeței interioare a țevii; mărimea adausurilor de prelucrare a semifabricatului țevii după autofretare, atât la interior cât și la exterior; 	 trebuie determinată cu mare rigurozitate valoarea D₁ și D₂; cât mai mică, R_z max. 1,6; cca. 2,5 mm/ rază, atât la interior cât și la exterior;
- tratamentele termochimice a suprafeței interiore a semifabricatului înaintea autofretării;	• fosfatare la 60 $^{\circ}$ -70 $^{\circ}$ C ;
 semifabricatul se autofretează pe toată lungimea sau numai în zona presiunilor maxime; 	 este suficientă autofretarea în zona camerei de încărcare ;
- care este gradul de autofretare (X %) necesar;	• minim 53%;
- stabilitatea în timp a dimensiunilor semifabricatului autofretat.	 este foarte bună, nu apar modificări esențiale nici după 12 luni;

<u>b)Date referitoare la scula folosită:</u>	
 care procedeu este mai tehnologic (cu dorn sau cu bilă); 	 cu dorn – scula este mai uşor de executat, iar deformația volumică a țevii este mai
- materialul utilizat pentru sculă;	 s-a utilizat numai RUL ; se impune a încerca si alte materiale
- construcția (din mai multe bucăți fretate pentru dorn) și dimensiunile (geometria)	 din două bucăți ,prin fretare – ar fi de studiat acest fretaj , geometria dornurilor a fost bine aleasă
- urmărirea modificării rugozității sculei(uzura);	 în general se îmbunătățește, dacă nu apar gripaje, s-au fisuri ale dornului ca urmare a unui T T necontrolat
- numărul de autofretări la care rezistă scula.	 trebuie cercetat în continuare pentru a da un răspuns documentat;
c)Date despre regimul tehnologic de lucru la procesul de autofretare:	
 viteza de împingere a dornului; numărul de treceri la un semifabricat; dacă se poate relua procesul de autofretare la oprirea accidentală a sculei în interiorul țevii; dacă relațiile teoretice pentru calculul tuburilor cu pereți groși sunt verificate experimental pe baza deformațiilor obținute la autofretarea țevilor de artilerie; influența caracteristicilor mecanice ale semifabricatului asupra parametrilor autofretării; influența fosfatării și lubrefierii interiorului tevii; 	 poate fi variabilă, între 0,2 - 1 m/min; o trecere; da, da, dacă k≥2; este foarte important a cunoaşte pentru fiecare semifabricat ce urmează a fi autofretat σ_c,E,E_p; micşorează esențial forță de împingere a dornului și evită griparea
- dacă fenomenul de alunecare "Stick - Stip" apare la autofretare pe instalația industrială, unde acționarea este mecanică nu hidraulică;	 Nu ;
- detensionarea termică a semifabricatului autofretat (pentru stabilizarea tensiunilor interne) conduce la modificarea dimensională a acestuia sau nu;	✤ nu ;
- care sunt parametrii tehnologici stabili în timp care pot confirma autofretarea țevii,	 deformația remanentă a interiorului țevii;
- dacă autofretarea conduce la modificări substanțiale a regimurilor tehnologice pentru operațiile de prelucrare finală a țevii (lărgire, alezare, ghintuire, strunjire).	✤ nu.

. -

- .-

•

	Data:	IV. ²	1995			
	Locul: Utilaj:	U.C.M Presa	Resita 500 tf			ANEXA1
	Procedeu:	De	orn			
	Teava culeu	PROBA1	Capeti	de teava		
	Rugozitat	e (microni)	INI O	tiai 50		
	Curbur	a (min.)	U,	55	0,20	
	Date de int	rare				1
	D1	D2	E	Ep	Sgmc	
	mm	mm	Mpa	Mpa	Mpa	
	150,17	334,9	207000	2860	1100	
	150,17	334,9	207000	2860	1100]
	k	X	а	Dc	b	beta
		%		mm		
TIII	2,230139	63,8	1,422829	213,6662	1,567398	
TV	2,230139	69.5	1,549947	232,7555	1,438849	1,11
media		66.65				
	рс	g	pf	f	е	
	Мра	mm	Мра	mm	mm	
TIII	326,1258	0,003903	715,2749	0,007813	0,001803	
ΤV	315,6132	0,00397	850,6805	0,008472	0,001949	
media	320,8695	0,003937	782,9777	0,008143	0,001876	
realizat						
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
тш	0,603667	1,173294	0,002773	0,416449	0,000356	0,119138
τv	0,652701	1,272285	0,002462	0,369711	0,00031	0,103799
media	0,628184	1,22279	0,002618	0,39308	0,000333	0,111468
realizat				0,33		0,06
	Dimension	are dorn				
	Epsfid	dtad	d			
		mm	mm			
TIII	-0,001728	0,259451	151,5003			

151,5034

151,5019

151,5

media realizat

τv

-0,002055 0,308567

0,284009

-0,001891

Tealiza

-

	Data:	IV . 1	1995				ANEXA 1.1
	Locul:	U.C.M	Resita			[]
	Utilaj:	Presa	1 500 tf				
	Procedeu:	De	nıc				
	Teava culeu	PROBA1	Capeti	de teava			
			ini	tial	autofretat		
	Rugozitate	e (microni)	О,	59	0,28		
	Curbur	a (min.)					
	Date de int	rare					
	D1	D2	E	Ер	Sgmc		
	mm	mm	Mpa	Мра	Мра		
	150,19	334,9	207000	2860	1100		
	150,19	334,9	207000	2860	1100		
	k	X	а	Dc	b	beta	
		%		mm			
TIII	2,229842	63,5	1,41595	212,6615	1,574803		
ΤV	2,229842	69,2	1,543051	231,7508	1,445087	1,11	
media		66,35					
	рс	g	pf	f	е		
	Мра	mm	Mpa	mm	mm		
TIII	328,2263	0,0039	711,9924	0,007732	0,001786		
ΤV	318,1535	0,003967	847,7763	0,008391	0,001932		
media	323,1899	0,003933	779,8844	0,008061	0,001859		
realizat							
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2	
	mm	mm	mm	mm	mm	mm	
TIII	0,598003	1,161257	0,002714	0,407577	0,000347	0,116067	
ΤV	0,647137	1,260245	0,002404	0,361073	0,000301	0,100949	
media	0,62257	1,210751	0,002559	0,384325	0,000324	0,108508	
realizat				0,33		0,06	
	Dimensiona	are dorn					
	Epsfid	dtad	d				
		mm	mm				
ТШ	-0,00172	0,258295	151,5005				
ΤV	-0,002048	0,307554	151,5038				
media	-0,001884	0,282925	151,5022				
realizat			151,5				

	Data:	IV.1	1995				ANEX
	Locul:	U.C.M	Resita				1
	Utilaj:	Presa	a 500 tf				
	Procedeu:	D	orn				
	Teava culeu	PROBA1	Capeti	de teava			
			ini	itial	autofretat		
	Rugozitat Curbur	e (microni) a (min.)	0,	.59	0,28		
	Date de int	rare	••••••••••••••••••••••••••••••••••••••	·	-	_	
	D1	D2	E	Ер	Sgmc		
	mm	mm	Мра	Мра	Мра	1	
	150,15	334,9	207000	2860	1100	1	
	150,15	334,9	207000	2860	1100		
	·····		r			T	1
	ĸ	X	a	DC	D	beta	
T 111	0.000400	%	4 40074	mm	4.500000		
	2,230436	<u> </u>	1,429/1	214,6/09	1,000002	1 1 1	
I V modio	2,230436	67.05	1,001305	234,43	1,420071	1,11	}
meula		07,00					
	рс	g	pf	f	е		
	Mpa	mm	Mpa	mm	mm		
TIII	324,0155	0,003907	718,5243	0,007895	0,00182		
TV	311,355	0,003977	855,3377	0,008607	0,001977		
media	317,6852	0,003942	786,931	0,008251	0,001898		
realizat			l	L	L	ł	
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2	1
	mm	mm	mm	mm	mm	mm	
ТШ	0.609358	1,185403	0,002833	0,425392	0,000365	0,122252	
τv	0,662026	1,292371	0,002558	0,384107	0,000324	0,108602	
media	0,635692	1,238887	0,002696	0,404749	0,000345	0,115427	
realizat				0,33		0,06	
	Dimension	are dorn					
	Epsfid	dtad	d				
		mm	mm				

TIII TV media realizat -0,001736 0,260595 151,5002

-0,001901 0,285405 151,5082

151,5163

151,5

-0,002066 0,310215

Data: IV.1995 Locul: U.C.M.Resita ANEXA1.3 Utilaj: Presa 500 tf Procedeu: Dorn Teava culeu PROBA1 Capeti de teava initial autofretat Rugozitate (microni) 0,59 0,28 Curbura (min.) Date de intrare **D**1 D2 Ε Ep Sgmc mm mm Mpa Mpa Mpa 150,17 334,9 207000 2860 950 150,17 334,9 207000 2860 950 k Dc b Х beta а % mm TIII 2,230139 67 1,494193 224,383 1,492537 TV 2,230139 72,5 1,616851 242,8025 1,37931 1,11 69,75 media f pf е рс g Mpa Мра mm mm mm 0,0075 0,001717 0,003403 644,8669 TIII 261,7725 756,7808 0,008018 TV 250,1142 0,003462 0,00183 255,9434 700,8238 0,007759 0,001773 0,003432 media realizat dta1 Epsfi2 dta2 Dta2 Dta1 Epsfi1 mm mm mm mm mm mm 0,574959 1,126297 0,002952 0,443254 0,000398 0,133167 TIII TV 0,612843 1,204078 0,00263 0,394962 0,000345 0,115675 0,000372 0,593901 1,165187 0,002791 0,419108 0,124421 media 0,33 0,06 realizat Dimensionare dorn

	Epsfid	dtad	d
		mm	mm
TIII	-0,001558	0,233912	151,5056
ΤV	-0,001828	0,274507	151,4945
media	-0,001693	0,254209	151,5001
realizat			151,5

BUPT

-

	Data: Locul: Utilaj: Procedeu:	IV.1 U.CM Presa Do	1995 Resita a 500tf orn			ANEXA2
	Teava culeu Rugozitato Curbur	Proba2 e (microni) a (min.)	Capeti o ini 0,	de teava tial 56	autofretat 0,29	
			F	En	Same	1
	mm	mm	Mna	Moa	Mna	
	150.3	334.8	207000	2860	1100	
	150.3	334.8	207000	2860	1100	
					1100	
	k	X	а	Dc	b	beta
		%		mm		
TIII	2,227545	69,3	1,543689	232,0164	1,443001	
ΤV	2,227545	75	1,670659	251,1	1,333333	1,11
media		72.15				
	рс	g	pf	f	е	
	Mpa	mm	Мра	mm	mm	
TIII	285,8631	0,003968	765,7771	0,009319	0,002127	
ΤV	267,0938	0,004041	893,7329	0,009967	0,002266	
media	276,4784	0,004004	829,755	0,009643	0,002196	
realizat						
		D			F (0)	
	Dta2	Dta1	Epsti1	dta1	Epsti2	dta2
-	mm	mm	mm		mm	mm
	0,712021	1,400/19	0,003895	0,585355	0,000544	0,182107
	0,758553	1,498042	0,003544	0,532643	0,000483	0,101565
media	0,735287	1,449381	0,003/19	0,008999	0,000513	0,1/1836
realizat				U,55		0,1

Dimensionare dorn

	Epsfid	dtad	d
		mm	mm
TIII	-0,00185	0,27801	152,0081
TV	-0,002159	0,324464	152,0062
medi a	-0,002004	0,301237	152,0071
realizat			152

-

	Data: Locul: Utilaj: Procedeu:	IV. U.C.M Presa Do	1995 I.Resita a 500tf orn			ANEXA3
	Teava culeu Rugozitat Curbur	PROBA3 e (microni) a (min.)	Capeti (ini 0,	de teava tial 59	autofretat 0,28	
	Date de int	rare				
	D1	D2	E	Ep	Sgmc]
	mm	mm	Мра	Мра	Мра	
	150,14	334,9	207000	2860	1100	
	150,14	334,9	207000	2860	1100	
						
	k	X	а	Dc	b	beta
		%		mm		
TIII	2,230585	75	1,672939	251,175	1,333333	
ΤV	2,230585	808	1,802313	270,5992	1,237624	1,11
media		77.9				
	рс	g	pf	f	е	
	Мра	mm	Мра	mm	mm	
TIII	240,625	0,004041	810,4974	0,011089	0,002491	
ΤV	211,9265	0,004121	931,1817	0,011742	0,002624	
media	226,2758	0,004081	870,8395	0,011415	0,002558	
realizat						
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
TIII	0,834216	1,664836	0,005254	0,788906	0,000792	0,265258
TV	0,878942	1,762972	0,004875	0,731907	0,000713	0,23885
media	0.856579	1.713904	0.005065	0.760407	0.000753	0.252054

0,76

0.15

medi

realizat

Dimensionare dorn

	Epsfid	dtad	d
		mm	mm
TIII	-0,001958	0,293933	152,2998
ΤV	-0,002249	0,3377	152,2972
media	-0,002103	0,315816	152,2985
realizat			152,3

Teoria V Teoria Huber Hencky Mises

-

	Data:	IV.1	1995			
	Locul:	U.C.M	Resita		ANEXA4	
	Utilaj:	Presa	a 500tf			
	Procedeu:	Do	orn			
			_			
	leava culeu	PROBA4	Capeti	de teava		
			ini	tial	autofretat	
	Rugozitat	e (microni)	0,	62	0,32	
	Curbur	a (min.)				
	Date de int	rare				
	D1	D2	E	Ep	Samc]
	mm	mm	Mpa	Мра	Mpa	
	150	334,9	207000	2860	1100	
	150	334,9	207000	2860	1100	
			•	<u> </u>		
	k	x	а	Dc	b	beta
		%		mm		
TIII	2,232667	80,1	1,788366	268,2549	1,248439	
ΤV	2,232667	86	1,920093	288,014	1,162791	1,11
media		83,05				
	рс	g	pf	f	е	
	Mpa	mm	Мра	mm	mm	
TIII	197,1195	0,004111	842,0492	0,012807	0,002841	
ΤV	158,9742	0,004198	955,5226	0,013459	0,002968	
media	178,0468	0,004154	898,7859	0,013133	0,002904	
realizat						
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
TIII	0,951527	1,92105	0,006608	0,991216	0,001062	0,355612
TV	0,993828	2,018922	0,006198	0,929652	0,000963	0,322606
media	0,972677	1,969986	0,006403	0,960434	0,001013	0,339109
realizat				0,98		0,2

Dimensionare dorn

	Epsfid	dtad	d
		mm	mm
TIII	-0,002034	0,30509	152,6072
ΤV	-0,002308	0,346204	152,6024
media	-0,002171	0,325647	152,6048
realizat			152,6

Teoria V Teoria Huber Hencky Mises

-

ANEXA 5

	Data: Locul: Utilaj: Procedeu:	X.1999 U.P.Timisoara Presa RM J: Bila ,T=20		99 soara RM Forta masurata kN =20 370		a kN
	Teava culeu: Rugozitate (microni) Curbura (min.)		Teava culeu: 2,1 initial Rugozitate (microni) 1,5 Curbura (min.)		autofretat 1	
	Date de int	rare				
	D1	D2	Е	Ep	Sgmc	
	mm	mm	Мра	Мра	Мра	
	84,01	199,95	207000	2860	1050	
	84,01	199,95	207000	2860	1050	
	k	x	а	Dc	b	beta
		%		mm		
TIII	2,380074	66,5	1,582749	132,9668	1,503759	
ΤV	2,380074	71,7	1,706513	143,3642	1,3947	1,11
media		69,1				
	DC	a	of	f	е	
	Mpa	mm	Мра	mm	mm	
TIII	292,8319	0.003756	777.4564	0.009337	0.001869	
TV	283,1646	0.003816	906.0685	0.009906	0.001979	
media	287,9983	0,003786	841,7625	0,009622	0.001924	
realizat			· · · · ·			
						I
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
TIII	0,373768	0,78442	0,004095	0,343995	0,000481	0,096113
ΤV	0,395633	0,832192	0,003727	0,313085	0,000425	0,08497
media	0,384701	0,808306	0,003911	0,32854	0,000453	0,090542
realizat	0,22			0,275		0,13
	Dimensiona	are dorn				
	Epsfid	dtad	d			
		mm	mm			
ТШ	-0,001878	0,157764	84,98065			
ΤV	-0,002189	0,183862	84,97141			

-0,002033 0,170813 84,97603

84,98

media realizat

-

Teoria V	Teoria Huber Hencky Mises	ANEXA 6
----------	---------------------------	---------

	Data: Locul: Utilaj: Procedeu:	X.1 U.P.Tii Pres Bila,	999 misoara a RM t=60	Forta masura 275		a k N
	Teava culeu: Rugozitate (microni) Curbura (min.)		2,5 initial 1,5		autofretat 0,9	
	Date de int	rare				
	D1	D2	E	Εp	Same	1
	mm	mm	Мра	Mpa	Mpa	
	84	199,9	207000	2860	1050	
	84	199,9	207000	2860	1050	
	······					,
	k	Х	а	Dc	b	beta
		%		mm		
TIII	2,379762	66,7	1,587301	133,3333	1,49925	
ΤV	2,379762	72	1,713429	143,928	1,388889	1,11
media		69,35				
						1
	pc	g	pf	1	е	
	Mpa	mm	Mpa	mm	mm	
TIII	291,4333	0,003758	779,1205	0,009396	0,001881	
ΤV	280,6524	0,00382	908,2699	0,009993	0,001995	
media	286,0428	0,003789	843,6952	0,009694	0,001938	
realizat						
		D . (E C	
	Dta2	Dta1	Epsti1	dta1	Epsti2	dta2
	mm	mm	mm	mm	mm	mm
TIII	0,375926	0,789226	0,004139	0,347712	0,000488	0,097457
ΤV	0,398813	0,839417	0,003792	0,318526	0,000434	0,08682
media	0,38737	0,814321	0,003966	0,333119	0,000461	0,092138
realizat	0,34			0,435		0,17

Dimensionare dorn

	Epsfid	dtad	d
		mm	mm
TIII	-0,001882	0,158082	84,97885
TV	-0,002194	0,184287	84,97366
media	-0,002038	0,171185	84,97626
realizat			84,98

-

Teava culeu: Rugozitate (micror Curbura (min.) Date de intrare D1 D2 mm mm 84,03 199,9* 84,03 199,9* 84,03 199,9* 84,03 199,9* K X % X 2,379031 64,8 TV 2,379031 64,8 TV 2,379031 70 media 67.4 Pc 9 Mpa mm 304,5504 0,00373 297,2025 0,00376 300,8765 0,00376 300,8765 0,00376 300,8765 0,00376 TIII Dta2 Dta1 mm TV 0,354832 0,74116 Q,366024 0,76534 0,366024 0,76534	5111,1-20	Fc	orta masurata 450	a kN			
Date de intrare D1 D2 mm mm 84,03 199,9 90,379031 64,8 70 media 70 9 97,2025 0,00373 90,3755 0,00376 91,22 141 7V 0,354832 91,24 0,34	ni)	2,6 initial 1,3					
D1 D2 mm mm 84,03 199,9' 84,03 199,9' 84,03 199,9' 84,03 199,9' 84,03 199,9' 84,03 199,9' 84,03 199,9' k x % 2,379031 64,8 2,379031 70 67.4 pc g Mpa mm TV 297,2025 0,00376 0,00376 300,8765 0,00376 realizat Dta2 Dta1 mm <mm< td=""> TIII 0,354832 0,366024 0,76534 0,366024 0,76534</mm<>				•			
mm mm mm 84,03 199,9 84,03 199,9 84,03 199,9 84,03 199,9 84,03 199,9 84,03 199,9 K X % % TIII 2,379031 64,8 % TV 2,379031 64,8 67.4 media 67.4 67.4 67.4 TV 297,2025 0,00373 9 media 300,8765 0,00373 9 media 300,8765 0,00376 9 TV 297,2025 0,00376 9 media 300,8765 0,00376 9 TU 0,354832 0,74116 9 TV 0,377217 0,78953 9 media 0,366024 0,76534 0	E	Ep	Sgmc	1			
84,03 199,9' 84,03 199,9' 84,03 199,9' 84,03 199,9' 84,03 199,9' 84,03 199,9' Redia % TV 2,379031 67.4 67.4 Pc g Mpa mm TV 297,2025 0,00376 0,00376 realizat Dta2 Dta1 mm TV 0,354832 0,366024 0,76534	Mpa	Mpa	Mpa				
84,03 199,9* k x % % TIII 2,379031 64,8 TV 2,379031 70 media 67.4 Pc g Mpa mm TIII 304,5504 0,00373 TV 297,2025 0,00376 media Dta2 Dta1 mm mm mm TIII 0,354832 0,74116 TV 0,377217 0,78953 media 0,366024 0,76534	1 207000	2860	1050				
k x 7111 2,379031 64,8 TV 2,379031 70 media 67.4 Pc g Mpa mm TV 297,2025 0,00373 media 300,8765 0,00376 realizat Dta2 Dta1 mm mm mm TIII 0,354832 0,74116 TV 0,366024 0,76534	1 207000	2860	1050				
k x % % TIII 2,379031 64,8 TV 2,379031 70 media 67.4 Pc g Mpa mm TV 297,2025 0,00373 realizat 0,354832 0,74116 TV 0,354832 0,74116 TV 0,366024 0,76534							
TIII 2,379031 64,8 TV 2,379031 70 media 67.4 Pc g Mpa mm TV 297,2025 0,00373 realizat 0,354832 0,74116 TV 0,354832 0,74116 TV 0,366024 0,76534	a		b	beta			
TIII 2,379031 64,8 TV 2,379031 70 media 67.4 Pc g Mpa mm TIII 304,5504 0,00373 TV 297,2025 0,00376 media 300,8765 0,00376 realizat		mm					
IV 2,379031 70 media 67.4 pc g Mpa mm TIII 304,5504 0,00373 TV 297,2025 0,00373 media 300,8765 0,00376 realizat	1,54161	2 129,5417	1,54321				
media 67.4 pc g Mpa mm TIII 304,5504 0,00373 TV 297,2025 0,00373 media 300,8765 0,00376 realizat	1,66532	2 139,937	1,428571	1,11			
pc g Mpa mm TIII 304,5504 0,00373 TV 297,2025 0,00373 media 300,8765 0,00376 realizat	67.4						
Mpa mm TIII 304,5504 0,00373 TV 297,2025 0,00373 media 300,8765 0,00376 realizat	pf	f	е				
TIII 304,5504 0,00373 TV 297,2025 0,00373 media 300,8765 0,00376 realizat	Mpa	mm	mm				
TV 297,2025 0,00379 media 300,8765 0,00379 realizat	37 761,119	4 0,00882	0,001775				
media 300,8765 0,00376 realizat	96 891,629	0,009396	0,001887				
Dta2 Dta1 mm mm TIII 0,354832 0,74116 TV 0,377217 0,78953 media 0,366024 0,76534	36 826,374	2 0,009108	0,001831				
Dta2 Dta1 mm mm TIII 0,354832 0,74116 TV 0,377217 0,78953 media 0,366024 0,76534 realizat 0.34 0.34							
Dta2 Dta1 mm mm TIII 0,354832 0,74116 TV 0,377217 0,78953 media 0,366024 0,76534 realizat 0.34 0.34							
mm mm TIII 0,354832 0,74116 TV 0,377217 0,78953 media 0,366024 0,76534 realizat 0.34 0.34	Epsfi1	dta1	Epsfi2	dta2			
TIII 0,354832 0,74116 TV 0,377217 0,78953 media 0,366024 0,76534 realizat 0.34	mm	mm	mm	mm			
TV 0,377217 0,78953 media 0,366024 0,76534 realizat 0.34	35 0,00369	9 0,310855	0,000424	0,084671			
media 0,366024 0,76534	31 0,00334	7 0,281217	0,000373	0,074545			
realizat 0.34	48 0,00352	3 0,296036	0,000398	0,079608			
		0,25		0,16			
Dimensionare dorn							

TIII TV media realizat

1			
		mm	mm
	-0,001838	0,154485	84,92754
	-0,002154	0,180975	84,91977
	-0,001996	0,16773	84,92365
			84,92

Teoria V Teoria Huber Hencky Mises

-

ANEXA 8

	Data: Locul: Utilaj: Procedeu:	X.1999 U.P.Timisoara Presa RM : Dorn ,t=60		Forta masurata k 350		a KN
	Teava culeu: Rugozitate (microni) Curbura (min.)		2,10 initial 1,4		autofretat 0,8	
	Date de intrare					
	D1	D2	E	Ep	Sgmc	
	mm	mm	Мра	Мра	Мра	
	84,03	199,88	207000	2860	1050	
	84,03	199,88	207000	2860	1050	
	·····				r	
	k	X	а	Dc	b	beta
—	0.07007.4	%	1.50000.4	mm	1.5.170.00	
TIII	2,378674	64,6	1,536624	129,1225	1,547988	
IV	2,378674	/1	1,688859	141,9148	1,408451	1,11
media		67,8				
		0	nf	f	6	
	Mpa	mm	Mna	mm	mm	
тш	305 9091	0.003734	759 0282	0.008759	0 001764	
TV	288 9857	0.003808	899 7695	0.009686	0.001941	
media	297 4474	0.003771	829 3988	0.009222	0 001852	
realizat		-,				
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
TIII	0,352592	0,735994	0,003652	0,306918	0,000417	0,083353
ΤV	0,387894	0,8139	0,003562	0,299312	0,000403	0,080487
media	0,370243	0,774947	0,003607	0,303115	0,00041	0,08192
realizat	0,22			0,277		0,17
	Dimensiona	are dorn				
	Epsfid	dtad	d			
		mm	mm			
тш	-0,001833	0,154061	84,91885			
ΤV	-0,002173	0,182627	84,96058			

media realizat

84,92

-0,002003 0,168344 84,93972

Data:	25.11.1998
Locul:	U.M.Resita
Utilaj:	I.A.F.D
Procedeu:	Bila

-

Teava culeu:	Capat de teava		
	initial	autofretat	
Rugozitate (microni)	1,4	0,93	
Curbura (min.)			

Date de intrare

_							
	D1	D2	E	Ep	Sgmc		
	mm	mm	Мра	Мра	Мра		
	84,23	187,94	207000	2860	1050		
	84,23	187,94	207000	2860	1050		

k	х	а	Dc	b	beta
	%		mm		
2,231272	65,2	1,454789	122,5369	1,533742	
2,231272	70,5	1,573046	132,4977	1,41844	1,11
<u> </u>	67,85				

τv media

TIII

TIII TV media

рс	g	pf	f	е
Мра	mm	Мра	mm	mm
301,8204	0,003741	696,8485	0,007824	0,001797
293,1087	0,003802	821,0967	0,00835	0,001914
297,4645	0,003771	758,9726	0,008087	0,001855

realizat

TIII ΤV media

Epsfi2 dta2 Dta2 Dta1 Epsfi1 dta1 mm mm mm mm mm mm 0,071788 0,337716 0,659019 0,002917 0,245671 0,000382 0,359659 0,703324 0,002538 0,213777 0,000324 0,060852 0,000353 0,348688 0,681172 0,002727 0,229724 0,06632 0,22 realizat 0,14

Dimensionare dorn

	Epsfid	dtad	d
		mm	mm
TIII	-0,001683	0,141777	84,99291
ΤV	-0,001983	0,167055	84,98005
media	-0,001833	0,154416	84,98648
realizat			84,983

ANEXA 10

Data:	25.11.1998
Locul:	U.M.Resita
Utilaj:	I.A.F.D
Procedeu:	Dorn

Теа

eava culeu:	Capat de teava	
	initial	autofretat
Rugozitate (microni)	1,5	1,1
Curbura (min.)		

Date de intrare

D1	D2	E	Ep	Sgmc
mm	mm	Мра	Мра	Мра
84,2	187,91	207000	2860	1150
84,2	187,91	207000	2860	1150

	k	х	а	Dc	b	beta
		%		mm		
тш	2,23171	63,7	1,421599	119,6987	1,569859	
TV	2,23171	69	1,53988	129,6579	1,449275	1,11
nedia	<u></u>	66,35				

media

TIII TV media

pf f рс g е Мра mm Мра mm mm 0,004079 747,5159 341,6828 0,008152 0,001879 334,3792 0,004145 885,45 0,008733 0,002009 338,031 0,004112 816,483 0,008443 0,001944

realizat

TIII TV media

Dta1 Epsfi1 dta1 Epsfi2 Dta2 dta2 mm mm mm mm mm mm 0,353 0,68644 0,002888 0,243179 0,000369 0,069411 0,37744 0,735299 0,002486 0,209313 0,00031 0,058302 0,36522 0,71087 0,002687 0,00034 0,063856 0,226246 0.12 0,15 realizat

Dimensionare dorn

	Epsfid	dtad	d
		mm	mm
TIII	-0,001806	0,152031	84,97759
TV	-0,002139	0,180084	84,96453
media	-0,001972	0,166058	84,97106
realizat			85,01

.

ANEXA 11

	Data: Locul: Utilaj: Procedeu:	26.11 U.M.F I.A. Do	.1998 Resita .F.D orn			
	Teava culeu	1:	Rebu	t A407		
			ini	tial	autofretat	
	Rugozitate	e (microni)	0,	34	0,27	
	Curbur	a (min.)	0	,5	0,5	
	Date de int	rare				
	D1	D2	E	Ер	Sgmc	
	mm	mm	Мра	Мра	Мра	
	151,06	219,94	207000	2860	1100	
	151,06	219,94	207000	2860	1100	
					P	•
	k	X	а	Dc	b	beta
		%		mm		
ТШ	1,455978	98,1	1,428314	215,7611	1,019368	
ΤV	1,455978	127,5	1,856372	280,4235	0,784314	1,383179
media		112,8				
	рс	g	pf	f	е	1
	Мра	mm	Мра	mm	mm	
TIII	20,70145	0,004395	414,8445	0,008366	0,004262	
ΤV	-475,9432	0,004982	465,291	0,010641	0,004955	
media	-227,6209	0,004689	440,0677	0,009504	0,004608	
realizat						
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
TIII	0,93731	1,263791	0,00281	0,424412	0,0013	0,285958
ΤV	1,089806	1,607481	0,000714	0,107872	0,000311	0,068295
media	1,013558	1,435636	0,001762	0,266142	0,000805	0,177126
realizat				0,8		0,66

Dimensionare dorn

	Epsfid	dtad	d
		mm	mm
TIII	-0,001002	0,151368	152,5968
ΤV	-0,001124	0,169775	152,6056
media	-0,001063	0,160572	152,6012
realizat			152,6

K mai mic de 2 TUBUL nu este cu perete gros RELATIILE NU SUNT VALABILE

-

ANEXA 12

	Data: Locul: Utilaj: Procedeu:	30.1 ² U.M. I.A Do	I.1999 Resita .F.D orn			
	Teava culeu	J :	11136-1	8 ZONA I		
	Rugozitat Curbur	e (microni) a (min.)	וחו 0 2	tial ,8 ,5	autofretat 0,68 1	
	Date de int	rare				
	D1	D2	Е	Ep	Sgmc	
	mm	mm	Мра	Mpa	Mpa	
	150,27	329,74	207000	2860	1050	
	150,27	329,74	207000	2860	1050	

	k	х	а	Dc	b	beta
		%		mm		
TIII	2,194317	73	1,601851	240,7102	1,369863	
ΤV	2,194317	78,9	1,731316	260,1649	1,267427	1,11
media		75.95				
	рс	g	pf	f	е	
	Mpa	mm	Мра	mm	mm	
TIII	245,2275	0,003832	742,7979	0,00965	0,002253	
TV	219,9759	0,003908	859,6977	0,010291	0,00239	
media	232,6017	0,00387	801,2478	0,009971	0,002321	1
realizat						
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
TIII	0,742771	1,450133	0,004282	0,643419	0,000649	0,214051
ΤV	0,788192	1,546457	0,003946	0,592991	0,000583	0,192089
media	0,765482	1,498295	0,004114	0,618205	0,000616	0,20307
realizat				0,62		0,16
	Dimensiona	are dorn				

TIII τv media realizat

	Epsfid	dtad	d
		mm	mm
	-0,001794	0,269614	152,0939
	-0,002077	0,312045	152,0974
!	-0,001935	0,29083	152,0957
			152,09

-

ANEXA 13

	Data:	30.11	l.1999 Recite			
		U.IVI.I	Resita			
	Utilaj:	I.A	.F.D			
	Procedeu:	D	orn			
	Teava culeu	1:	11136-18	B ZONA II		
			ini	tial	autofretat	
	Rugozitat	e (microni)	0	,8	0,68	
	Curbur	a (min.)	2	,5	1	
	Date de int	rara				
			E	En	Same)
	mm	mm	Mna	Mna	Mna	}
	150.68	254.9	207000	2860	1050	1
	150,68	254.9	207000	2860	1050	
	130,00	204,9	207000	2000	1030	1
	k	Y	a	Dc	Ь	heta
		%	u	mm		Deta
TIII	1,691664	85	1,437915	216 665	1 176471	
TV	1.691664	92	1.556331	234,508	1.086957	1.11
media		88.5			.,	
	рс	g	pf	f	е	
	Mpa	mm	Мра	mm	mm	
TIII	145,6875	0,003992	528,7262	0,007888	0,003054	
τv	89,5104	0,004097	605,0476	0,008433	0,003234	
media	117,599	0,004045	566,8869	0,008161	0,003144	
realizat						
						·
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
TIII	0,778476	1,18863	0,002767	0,416937	0,000822	0,209496
ΤV	0,824376	1,270717	0,002338	0,352286	0,000677	0,172602
media	0,801426	1,229674	0,002553	0,384612	0,00075	0,191049
realizat				0,,38		0,28
	Dimensiona	are dorn				

	Epsfid	dtad	d
		mm	mm
TIII	-0,001277	0,192436	152,0931
ΤV	-0,001461	0,220214	152,0828
media	-0,001369	0,206325	152,088
realizat			152,09

K sub 2

.

ANEXA 14

Data:	30.11.1999
Locul:	U.M.Resita
Utilaj:	I.AF.D
Procedeu:	Dorn

Teava culeu:	11136-18 ZONAIII	
	initial	autofretat
Rugozitate (microni)	0,8	0,68
Curbura (min.)	2,5	1

Date de intrare

рс

g

D1	D2	E	Ep	Sgmc
mm	mm	Мра	Мра	Мра
151,6	173,4	207000	2860	1050
151,6	173,4	207000	2860	1050

	k	x	a	Dc	b	beta
		%		mm		
ТШ	1,143799	83,6	0,956216	144,9624	1,196172	
TV	1,143799	91,8	1,050008	159,1812	1,089325	1,086609
nedia		87,7				

f

е

media

TIII TV media realizat

m rea

Mpa Mpa mm mm mm 158,0796 0,003972 111,1241 0,003686 0,002954 145,3965 89,72124 0,004094 0,004091 0,003287 123,9004 0,004033 128,2603 0,003888 0,003121

pf

	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
ГШ	0,512271	0,558807	-0,000171	-0,02592	-0,000109	-0,018945
TV	0,570007	0,620141	-0,000496	-0,075219	-0,00032	-0,055558
edia	0,541139	0,589474	-0,000334	-0,050569	-0,000215	-0,037251
alizat				0,06		0,05

Dimensionare dorn

TIII
TV
media
realizat

Epsfid	dtad	d
	mm	mm
-0,000268	0,040692	152,0922
-0,000351	0,053242	152,0917
-0,00031	0,046967	152,0919
		152,09

K muit sub 2
RELATIILE PENTRU
TUBURI CU PERETI
GROSI NU SUNT
VALABILE

-

ANEXA 15

	Data:	05.12	2.1999			
	Locul:	U.M.	Resita			
	Utilaj:	I.A	.F.D			
	Procedeu:	D	orn			
	Teava culeu	J:	35171-	1 70 N AI		
			ini	tial	autofretat	
	Rugozitat	e (microni)	0	27	0.68-2.22	
	Curbur		0,	1	0,00-2,22	
	Carba	α ()		•	1	
	Date de int	rare				
	D1	D2	E	Ep	Sgmc]
	mm	mm	Мра	Мра	Мра	
	150,22	329,9	207000	2860	1100	
	150,22	329,9	207000	2860	1100	
						•
	k	Х	а	Dc	b	beta
		%		mm		
TIII	2,196112	71,9	1,579005	237,1981	1,390821	
ΤV	2,196112	77,72	1,706819	256,3983	1,28667	1,11
media		74,81				
	рс	g	pf	f	е	
	Mpa	mm	Mpa	mm	mm	
TIII	265,6715	0,004001	770,8715	0,0098	0,002289	
ΤV	241,7337	0,004078	894,5183	0,010453	0,002431	
media	253,7026	0,004039	832,6949	0,010126	0,00236	
realizat						
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
TIII	0,755233	1,472103	0,004249	0,638338	0,000633	0,20899
ΤV	0,801923	1,570283	0,003891	0,584447	0,000565	0,186338
media	0,778578	1,521193	0,00407	0,611393	0,000599	0,197664
realizat				0,5		0.04
	Dimensiona	are dorn				
	Epsfid	dtad	d		DORN F	ISURAT
		mm	mm			
TIII	-0,001862	0,279711	152,0507			
ΤV	-0,002161	0,324576	152,0502			
			the second s			

ΤV media realizat

-0,002101	0,324576	152,0502
-0,002011	0,302144	152,0504
		152,05
······································		

TAS

-

ANEXA 16

	Data: Locul: Utilaj: Procedeu:	5.12 U.M.I I.A Do	2.199 Resita .F.D orn			
	Teava culeu	1:	35171-1	ZONA II		
			ini	tial	autofretat	
	Rugozitate	e (microni)	0	27	0.68-2.22	
	Curbur	a (min.)	Ξ,	1	1	
	Date de int	rare				
	D1	D2	E	Ep	Sgmc	
	mm	mm	Мра	Мра	Мра	
	150,7	254,85	207000	2860	1100	
	150,7	254,85	207000	2860	1100	
	k	X	а	Dc	b	beta
		%		mm		
TIII	1,691108	82,5	1,395164	210,2513	1,212121	
τv	1,691108	89,7	1,516924	228,6005	1,114827	1,11
media		86.1				
	рс	g	pf	f	е	
	Mpa	mm	Mpa	mm	mm	
TIII	175,6563	0,004145	543,3469	0,007745	0,003014	
ΤV	119,2862	0,004255	628,0581	0,008359	0,003224	
media	147,4712	0,0042	585,7025	0,008052	0,003119	
realizat						
	Dta2	Dta1	Epsfi1	dta1	Epsfi2	dta2
	mm	mm	mm	mm	mm	mm
TIII	0,768128	1,167132	0,002531	0,381475	0,00073	0,186101
ΤV	0,821581	1,259734	0,002126	0,320341	0,000601	0,153077
media	0,794855	1,213433	0,002329	0,350908	0,000665	0,169589
realizat				0,2		0,26
	Dimensiona	are dorn				
	Epsfid	dtad	d		DORN	FISURAT
		mm	mm		Ks	ub 2
TIII	-0,001312	0,197784	152,0508			

152,0515

152,0511 **152,05**

media realizat

τv

-0,001517 0,228619

-0,001415 0,213201

BIBLIOGRAFIE

1.	ADRIAN M., BADEA S.	Bazele proceselor de deformare plastică. Editura Tehnică București, 1983
2.	ALBU A., ş.a.	Bazele cercetării experimentale. I.P. Cluj- Napoca, 1984.
3.	AMARIEI N.	Contribuții la studiul și determinarea tensiunilor remanente. Teză de doctorat, Iași 1997.
4.	BAEV I.V.	Teoria și calculul gurilor de foc de artilerie. Editura Ministerului Apărării al URSS 1980.
5.	BALOGA O.	Tehnologia presării la rece. Editura I.I.S., Sibiu 1982.
6.	BĂLAN ȘT., PETCU V.	Calculul structurilor în domeniul plastic – Densități mecanice. Editura Academiei Române 1992.
7.	BIA C., ş.a.	Rezistența materialelor și teoria elasticității. Editura D.P. București 1983.
8.	BLUMENFELD M.	Introducere în metoda elementelor finite. Editura Tehnică București 1995.
9.	BLUMENFELD M., ş.a.	Metoda elementelor finite (Aplicații și programe introductive). Editura I.P. București 1992.
10.	BOLDICI N.	Artileria de câmp modernă. Editura Militară București 1992.
11.	BODIN C.	Curs de fizica explozivilor. Academia Militară București 1972.
12.	BOLEANȚU L., DOBRE I.	Aplicații ale mecanicii solidului deformabil
13.	BUZDUGAN GHE.	Rezistența materialelor. Editura Academiei București 1986.
14.	CALEA GHE., ş.a.	Tehnologia materialelor. U.P. București 1988.

15.	CAZIMIROVICI E	Teoria deformării plastice. Editura D.P
16.	CIOCĂRDIA C., ş.a.	București 1981. Tehnologia presării la rece. Editura D.P. București 1991.
17.	CIOMOCOŞ F.D., CIOMOCOŞ ŞT.	Teoria elasticității în probleme și aplicații. Editura Facla Timiș 1984.
18.	CIORBA I.	Aspecte privind rezultatele unor prime încercări experimentale de autofretare mecanică a unor tuburi cu pereți groși din OHN3MFA (art.). U.E.M. Reșița. Un sfert de veac de la fondarea învățământului superior la Reșița, Oct. 1996.
19.	CIORBA I.	Analiza prin fluorescență de raze X a compoziției chimice a oțelurilor. Lucrare de absolvire a cursului postuniversitar de utilizare a izotopilor radioactivi organizat de Comitetul de Stat pentru energie nucleară, Măgurele 1976 (art. 325/76).
20.	CIORBA I. ş.a.	Instalație de strângere, cu acționare hidraulică a garniturilor "Legăturii elastice" (frână, recuperator) de la produsele speciale din U.M.Reșița – M.Ap.N. București 1987. Inovație (379/87).
21.	CIORBA I. ş.a.	Dispozitiv și procedeu de alezat eboș interior la produsul A412 (alezare conică a camerei de încărcare a tunului cal. 130 mm). M.Ap.N. București, 1987. Inovație (411/87).
22.	CIORBA I., FÎRCEA I.	Cap de etanșare și centrare pentru mașini de găurit adânc S.I.G. (specifice gurilor de foc de artilerie). M.I.M.U.E.E. București, 1983. Inovație (172/83).
23.	CIORBA I., MĂNESCU T.	Dispozitive pentru ridicarea sarcinilor neechilibrate (art.). I.P.T.V. Timiş. Lucrări științifice și tehnice . Sesiune de comunicări, (ICDEM) Reșița, Mai 1983.
24.	CIORBA I., MĂNESCU T.	Dispozitiv special pentru rectificarea interioară a canalelor profilate pe mașina de mortezat (art.). I.P.T.V. Timiş (ICDEM), Mai 1983.
25.	CIORBA I., MĂNESCU T.	Aparat pentru măsurarea interioară a suprafețelor cilindrice lungi (STEA MOBILĂ) (art.) I.P.T.V. Timiş (ICDEM).

26.	CIORBA I., MĂNESCU T.	Rezistența materialelor, vol. I. Curs UEMR 1994.
27.	CIORBA I., MĂNESCU T.	Rezistența materialelor, vol. II. Curs UEMR 1994.
28.	CIORBA I., ş.a.	Instalație de gimnasticat pentru "Legătura elastică" (frână, recuperator) a produselor speciale din fabricația U.M.Reșița – M.Ap.N. București 1987. Inovație (342/87).
29.	COMAN L.	Tehnologii neconvenționale în deformarea plastică la rece. Editura Augusta Timișoara 1997.
30.	CONSTANTIN GHE. (GHEORGHIEŞ L., BERCEA M.), ş.a.	Influența tensiunilor interne asupra unor proprietăți fizico-mecanice ale metalelor Constructia de mașini 42 (1990) nr. 10-11-12.
31.	CONSTANTINESCU I., DĂNEŢ N.G.	Metode noi pentru calcule de rezistență. Editura Tehnică București 1989.
32.	CRAISE F., GONDRAN M.	Confrontation/Experience, Plan d'experience orthogonal reduit, a l'injection de termoplastiques. Dossoer Qualite societe INVOC 1997 pg. 51 – 56.
33.	CRUDU I. (GHEORGHIEŞ L., PANŢURU D., PALAGHIAN L.)	Evoluția tensiunilor de ordinul III în procesul de rodaj la tribosistemele de alunecare de antifricțiune. Al V-lea simposion național de tensiometrie cu participare internațională, Galați 1989 vol. III, pg. 61-66.
34.	DANCEA I.	Metode de optimizare. Editura Dacia Cluj-
35.	DEUTSCH I.	Rezistența materialelor. Editura D.P. București, 1979.
36.	DIACONESCU E.N.	Contribuții la calculul tensiunilor remanente în unele corpuri de revoluție pe baza măsurătorilor rontgenografice. Buletinul I.P. Iași TOMUL XIX (XXIII). Fasc. 3-4, pg. 53- 56.
37.	DOI O., UKAI T.	Measurement of Presidual Stress in a Cylinder by x-Ray under the Consideration of its Penetration Depth, Buletin of the ISME, vol. 26, N 211, 1983, pg. 12-15.
38.	DRĂGAN I., IANCU C.	Deformarea plastică cu viteză mare. Editura Tehnică București 1984.

39.	DRĂGAN I.	Tehnologia deformării palstice. Editura D.P. București 1982.
40.	DROZDOV N.F.	Rezistența gurilor de foc de artilerie și organizarea lor, I.D.T. 1956 (Trad. limba
41.	DUMITRU I., FAUR N.	"Rezistența materialelor" (Bazele teoretice în oboseala materialelor, mecanica ruperii, materiale composite și metode numerice). Curs U.P. Timișoara 1997.
42.	FAUR N., DUMITRU I.	Diferențe finite și elemente finite în Rezistența materialelor Editura Mirton Timișoara 1997.
43.	FÎRCEA I., CIORBA I.	Dispozitiv de frezat la 90 [°] adaptabil pe mașina de frezat portală (pentru frezarea locașului ghiarelor extractoare la țevile de artilerie). M.I.M.U.E.E. București, 1983. Inovație (173/83).
44.	FOX A.	Effect of Temperature on Stress Relaxation of Several Metallic Material, Residual Stress and Stress Relaxation. Editura E. Kula, V. Weiss, Plenum PressNew York and London, 1982, pg. 181-203.
45.	FRUNZĂ GHE.	Cercetări privind influența tensiunilor inițiale asupra oboselii de contact cu rostogolire. Teză de doctorat, Suceava 1996.
46.	GHEORGHIEŞ C., SCARPETE D.	Relații de interdependență între macro și micro tensiuni în cazul solicitării de tracțiune. Al V-lea Simposion Național de Tensometrie, Galați 1989, vol. III, pg. 73-78.
47.	GHIZDAVU V.	Prelucrarea metalelor cu puteri și viteze mari. Editura Tehnică București 1967.
48.	GHIZDAVU V.	Procedee neconvenționale de prelucrare a suprafețelor. Editura Academiei Militare București 1981.
49.	GHIZDAVU V., BALOGH P.	Contribuții la îmbunătățirea durabilității țevilor de tun prin autofretare dinamică (articol). Întâia sesiune de comunicări științifice a Academiei Trupelor de Uscat, Sibiu 1996.

50. GUZ A.N.

- 51. HAUSLER H., KONIG G., KOCKELMANN H.
- 52. HERTZBERG R.W.
- 53. HORBANIUC D., AMARIEI N., BĂRSĂNESCU P.D.
- 54. HORBANIUC D., BĂRSĂNESCU P.D. AMARIEI N., GOANȚĂ V.
- 55. HUMIȚĂ GHE., CIORBA I., NIȚĂ G., CIORBA Z.
- 56. HUMIȚĂ GHE., CIORBA I., NIȚĂ G., CIORBA Z.
- 57. Iliescu C.
- 58. ISIDORI C.
- 59. Iudin S.B., ş.a.
- 60. LĂZĂRESCU I., ȘTEȚIN C.E.
- 61. KECS W.
- 62. LARMAN K.E.

Non – Destructive Ultrasound Method of Determination of Biaxial Stresses. Proc. of the gth Int. Conferece on Experimental Mechanics. Aug. 1990 Copenhagen, Denmark, vol. III, pg. 1171-1179.

On the Accuracy of Determining the Variation with Depth of Residual Stresses by Means of the Hole – Drilling Method. Int. Conf. on Residual Stresses, Garmisch – Parten – Kirchen, Germaniy, 1986, vol. II DGM Oberursel 1987, pg. 257–264.

Deformation and Fracture Mechanics of Engineering Materials, Sohn Wiley – N.Y. 1976.

Studiul și determinarea tensiunilor remanente. Conferință I.P. "Traian Vuia" Timișoara, Oct. 1990.

Contribuții teoretice și experimentale la determinarea și studiul tensiunilor remanente. Construcția de mașini nr. 10, Oct. 1994, pg. 11 - 15.

Cilindru hidraulic telescopic cu dublă acțiune. OSIM București 1995. Inovație (Nr. brevet 109475 B1).

Cilindru cu acționare continuă. OSIM București, 1995 (Nr. brevet 110278 B1). Tehnologia presării la rece. Editura D.P. București 1984.

Curs de proiectarea gurilor de foc. Institutul de documentare tehnică, București 1956. Turnarea centrifugală. Editura Tehnică București 1973.

Toleranțe, ajustaje, calcul cu toleranțe, calibre. Editura Tehnică, București 1984. Elasticitate și vâscoelasticitate. Editura Tehnică București 1986.

Proiectarea și fabricarea armamentului de artilerie. Institutul de documentare tehnică, București 1949.

63.	LASCU SIMION N., TEODORESCU M.	Tendințe în dezvoltarea oțelurilor pentru deformare la rece. TCMM1 (1987) pg. 168 – 174.
64.	LORENZ P., POTERAȘU V., MIHALACHE N.	Methode der finiten elemente und der Randelemente Wiesbaden 1995.
65. 66.	MĂNESCU T., GHITIU A., CIORBA I. MIRIȚĂ E.	Rezistența materialelor în 300 de probleme rezolvate, I.P.T.V. Timișoara, 1991. Tensiunile remanente – factor de creștere a partanței roților dințate. Construcția de mașini, 1991, nr. 3, pg. 52 – 58.
67.	MOCANU D.R.	Analiza experimentală a tensiunilor. Editura Tehnică București 1977.
68.	MOTIŞAN M.	Calculul grinzilor inelare printr-o metodă de discretizare (art.). Simposionul: Analiza experimentală a tensiunilor în industria constructoare de maşini, Reşiţa, Mai 1988.
69.	MUSCĂ G.	Contribuții la îmbunătățirea tehnologiei de finisare prin deformare plastică la rece a danturii roților dințate. Teză de doctorat, Iași 1994.
70.	NANU A.	Tehnologia materialelor. Editura D.P. București 1983.
71.	NĂDĂŞAN ST.	Încercări și analize de metale. Editura Tehnică 1965.
72.	NĂSTĂSESCU V.	Metoda elementelor finite. Editura Academiei Tehnice Militare București 1995.
73.	NICHICI A., CICALĂ E., MEE R.	Prelucrarea datelor experimentale. Curs și aplicații. U.P. Timișoara 1996.
74.	OLSZAK W.	Teoria plasticității. Editura Tehnică București 1970.
75.	OPREA GHE., ȘTEFAN S.	Metode numerice în rezistența materialelor. Editura Academiei Militare București 1986.
76.	ORLOV B.V.	Construcția și proiectarea țevilor gurilor de foc de artilerie, Moscova 1976.
77.	PANĂ T.	Mecanica ruperii materialelor, București 1992.

	_	
78.	PARTON V.Z., MOROZOV E.M.	Elastic-plastic facture mechanics MIR Publishers Moscova 1978.
79.	PASCARIU I.	Elemente finite. Concepte. Aplicații. Editura Militară București 1985.
80.	PĂSĂRIN I.	Monografie a uzinelor de fie și a domeniilor din Reșița, U.D.R 1935.
81.	PISARENKO GHE.	Rezistența materialelor. Editura Lumina Chișinău 1993.
82.	PLUVINAGE G.	Mecanique elastoplastique de la repere, Editura Eyrolles Paris 1989.
83.	POMEY G., RABBE P.	Relation entre les caracteri stiques mecaniques, la forme des eprouvettes et l'endurance en flexion rotative d'aciers au carbone et au chrome-molybdene. Mem Sci. Met. LX VII no 3 1970 pg 151-164.
84.	PONOMAREV S.D., ş.a.	Calculul de rezistență în construcția de mașini. Editura Tehnică București 1960.
85.	POPA GHE.	Construcția și exploatarea gurilor de foc de
86.	POPESCU GHE.	artilerie. Academia Militară 1974. Proiectarea materialului de artilerie. Proiectarea țevilor și închizătoarelor. Editura Academiei Militare, București 1971.
87.	POSEA N.	Calculul dinamic al structurilor. Editura Tehnică, București 1991.
88.	POTERAŞU V., ş.a.	Metode numerice în elasticitate și plasticitate vol. I. Editura Academiei Române, București 1993.
89.	PRIDVORNIC M.	Tehnica deformării. Noi aplicații cu precizie sporită. IDPP 78 (1989).
90.	ROSINGER ŞT., ICLĂNZAN T.	Tehnologia presării la rece. I.P.T.V. Timiş 1990.
91.	ROTĂRESCU M.I.	Contribuții la studiul comportării plastice a unor oțeluri supuse deformării volumice rotative la rece (cu dispozitive de prelucrare cu bile). Teză de doctorat, Sibiu 1995.
92.	SCHIWINNING W.	Construcția și materialul țevilor pentru gurile de foc de artilerie. Institutul de documentare tehnică, București 1955.

93.	STANIUKOVICI K.P.	Fizica exploziei, Moscova 1975
94.	ŞERBAN V.	Aplicarea unui program original de elemente finite, la studiul tensiunilor remanente rezultând din fretajul la rece (art.). Simposionul: Analiza experimentală a tensiunilor în industria constructoare de maşini, Reşița, Mai 1988.
95.	ŞTEFĂNESCU D.	Transfer de căldură și masă Editura D.P.,
96.	TĂNASE Z., MARINESCU A.	București 1983. Armata română în al doilea război mondial. Lit. U.M.Reșița 1995.
97.	TEODORESCU M., CIOCĂRDIA C., ş.a.	Prelucrări prin deformare plastică la rece vol. I, II. Editura Tehnică București 1988.
98.	TEODORESCU P.P., ILLE V.	Teoria elasticității și introducere în mecanica solidelor deformabile vol. I, II. Editura Dacia Cluj-Napoca 1980.
99.	TRIPA P., FAUR N.	Metode teoretice și experimentale pentru determinarea stării de tensiune și deformație. Lito U.T. Timișoara 1994.
100.	TRIPŞA I., ş.a.	Retopirea și rafinarea oțelurilor. Editura Tehnică, București 1980.
101.	TUDOR A.	Contactul real al suprafețelor de frecare.
102.	VERMEŞAN G.	Tratamente termice, îndrumător. Editura Dacia, Cluj-Napoca 1987.
103.	VOINEA R.P., ş.a.	Introducere în mecanica solidelor cu aplicații în inginerie. Editura Academiei Române, București 1989.
104.	ZGURĂ GHE., CIOCÂRDIA C.	Prelucrarea metalelor prin deformare la rece. Editura Tehnică, București 1977.
105.	ZGURĂ GHE., TEODORESCU P.P.	Tehnologia presării la rec. Editura D.P., București 1980.
106.	***	AN SYS, User's Manual.
107.	***	Sinteză privind noutăți și tendințe în domeniul construcției de armament. Editura
108.	***	Academiei Militare, 1972. Caiet de sarcini pentru tunul A.T. cal. 100 mm, Md. 1977.

		-	
109.	* * *		
110.	***		Caiet de sarcini pentru semifabricate forjate pe dorn, din oțel mediu aliat, destinate fabricației de țevi pentru producția specială, 1987.
111.	***		GOST 5192 – 67 Caracteristicile mecanice ale oțelurilor pentru țevi de artilerie.
112.	***		GOST 4543 – 71. Oțeluri aliate pentru construcții, mărci și condiții tehnice.
113.	***		CS7 – 1983. Semifabricate forjate rotund din oțel OHN3MFA.
114.	***		CS1 – 1985. Semifabricate forjate rotund din oțel 42VMoCrNi32X.
115.	***		CS1 – T.P.S. Țevi fără sudură din oțel aliat utilizat la confecționarea pieselor pentru producția specială.
116.	***		Manualul inginerului mecanic, vol. II. Editura Tehnică, 1974, pg. 781 – 804, 814 – 820, 1027 – 1087.
117.	***	Statgraphics	Manual de prezentare.
118.			

CURRICULUM VITAE

Inginer CIORBA T. IOAN

născut :06.12.1950, sat Gruilung, com Lăzăreni, jud Bihor domiciliul : Reșița, str. Graz nr.2, sc.2, ap.7, jud Caraș-Severin

STUDII : Curs de management CODES (1999)
Curs postuniversitar (zi) în domeniul utilizări izotopilor radioactivi – Comitetul de Stat pentru Energie Nucleară, Centrul de Perfecționare și Specializare a Cadrelor în domeniul Nuclear București(04 10 1976 – 25.12.1976)
Inginer, absolvent al Universității POLITEHNICA Timișoara, Facultatea de Mecanică, secția Tehnologia Construcțiilor de Mașini, specializarea Mecanică Fină(1969 – 1974)
Elev școala generală, liceul - Liceul nr. 1 Reșița (1957 - 1969).

EXPERIENȚĂ:1979 - în prezentUzina Mecanică ReșițaDirector general (01.03.1996 - prezent)Director tehnic (1990 - 29.02.96).Inginer șef pregătirea fabricației (1988 - 1990).Şef atelier proiectare S.D.V.-uri și autoutilări (1981-1988).Inginer proiectant S.D.V.-uri și autoutilări (1979 - 1981).

1974 - 1979 : Ministerul de Interne, Ofițer inginer

 ACTIVITATEA DIDACTICĂ: 1980 - în prezent Universitatea "Eftimie Murgu" Reşița Cadru didactic asociat (plata cu ora,cumul) la disciplinele Roboți Industriali și Linii Flexibile – curs (1998 - prezent) Teoria Elasticității - curs (1994 - 1997) Proiectarea Dispozitivelor - proiect (1981 - în prezent) Rezistența Materialelor - curs (1983 - 1993), seminar (1980 - prezent) Proiectarea Sculelor Așchietoare - proiect (1983 - 1988)

REZULTATE DEOSEBITE : Doctorand din 10.07.1996 Brevet de invenție nr.109475 B1/28.02.95 Brevet de invenție nr.110278 B1/30.11.95 5 certificate de inovator (2 în 1983; 3 în 1987) Ca student - șef de grupă (1970 - 1973). Am fost desemnat, din partea absolvenților secției TCM,să predau "cheia simbol" a Facultății următoarei promoții de absolvenți.

SITUAȚIA FAMILIALĂ : Căsătorit, un copil (studentă anul V - medicină)