

Cyber Physical System
Applications Verification and

Validation

Teză destinată obţinerii

titlului ştiinţific de doctor inginer
la

Universitatea “Politehnica” din Timişoara
în domeniul CALCULATOARE ŞI TEHNOLOGIA

INFORMAŢIEI
de către

Ing. Mădălin Gavrilescu

Conducător ştiinţific: prof.dr.ing. Ionel Jian

Referenţi ştiinţifici: prof.dr.ing. Dumitru Burdescu

 prof.dr.mat. Alexandru Cicortaş

 prof.dr.ing. Ştefan Holban

Ziua susţinerii tezei: 29.11.2013

BUPT

Seriile Teze de doctorat ale UPT sunt:
1. Automatică 9. Inginerie Mecanică
2. Chimie 10. Ştiinţa Calculatoarelor
3. Energetică 11. Ştiinţa şi Ingineria Materialelor

4. Ingineria Chimică 12. Ingineria sistemelor
5. Inginerie Civilă 13. Inginerie energetică
6. Inginerie Electrică 14. Calculatoare şi tehnologia informaţiei
7. Inginerie Electronică şi Telecomunicaţii 15. Ingineria materialelor
8. Inginerie Industrială

Universitatea „Politehnica” din Timişoara a iniţiat seriile de mai sus în scopul
diseminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul
şcolii doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006,
tezele de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2013

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea

ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de
autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea

Universităţii „Politehnica” din Timişoara. Toate încălcările acestor drepturi vor fi
penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,
tel. 0256 403823, fax. 0256 403221

e-mail: editura@edipol.upt.ro

BUPT

To my brother, Cătălin.
You represent so much for me!

.

Acknowledgement

This thesis is the result of my efforts over the last few years in the field of
Cyber Physical System simulation. I would like to take this opportunity to express
my gratitude to all those that supported me during this time.

I would like to thank my scientific research coordinators, Prof. Dr. Ionel Jian
and Assoc. Prof. Dr. Dan Pescaru for their help during these years, for their advices
and guidance, which have been of great use. I would also like to thank Assoc. Prof.

Dr. Alex Doboli for his support in the first year of my research.
Special thanks go to my friend and PhD colleague, Gabriela Măgureanu, who

has worked with me in all these years. Thank you for your commitment, for
encouraging me when I needed it and also for putting up with all my moods. I
appreciate you staying by my side for this entire period. In the end, it was all worth
it.

A grateful thought goes to my friend Mădălina, who encouraged me to start

the wonderful and important journey of academic research. I hope she enjoys the
result.

I feel the words are not enough to detail how much I would like to thank my
family, who was there for me regardless of how difficult I proved to be at times, for

all their love and for supporting me in this pursuit. Thanks from my heart go to my
brother Cătălin, my sister-in-law Anca, my mother and my father. This thesis would

not have been possible without all of you.
Not lastly, I would like to thank my girlfriend Cristina, whose support and

patience during the final stages of this PhD are appreciated.

Timişoara, Mădălin GAVRILESCU
November 29-th, 2013

BUPT

Gavrilescu, Mădălin

Cyber Physical System Applications Verification and

Validation

Teze de doctorat ale UPT, Seria X, Nr. YY, Editura Politehnica,

200Z, 111 pagini, 36 figuri, 5 tabele.

ISSN:
ISSN-L:

ISBN:

Cuvinte cheie: sisteme cyber fizice, modele de simulare bazate

pe dispizitive PSoC, verificare formala, arhitectura orientata pe

modele

Rezumat,

Teza de doctorat prezintă un proces complet de testare si

validare pentru aplicatii ale sistemelor cyber fizice. O astfel de

abordare vine in sprijinul dezvoltatorilor de aplicaţii pentru astfel

de sisteme.

Lucrarea demonstrează utilitatea unei astfel de abordări la

nivel de validare prin studii de caz ce discută aplicații ale

sistemelor cyber fizice din diverse domenii de activitate, cu nivel

diferit de dificultate la nivel de cerințe de aplicație si de diferite

dimensiuni.

……………………………………………………………….....................................

……………………………………………………………….....................................

……………………………………………………………….....................................

……………………………………………………………….....................................

……………………………………………………….........................

BUPT

Table of Contents

Acknowledgement ... 3

Table of Contents ... 5

Abstract ... 8

List of Abbreviations .. 9

List of Figures .. 10

List of Tables ... 12

Chapter 1. Introduction .. 13

1.1 The Research Theme ... 13

1.2 Thesis Objectives .. 14

1.3 The Proposed Approach .. 14

1.4 Thesis Organization ... 15

Chapter 2. State of the Art .. 17

2.1 CPS Overview ... 17

2.1.1 CPS Modeling and Design .. 17

2.1.2 Visual Modeling of CPSs... 19

A. The MDA Approach in CPS Applications ... 20

B. Goal-Oriented Approach in CPS Applications 23

C. UML Profiles for CPS Applications ... 26

2.1.3 Summary .. 29

2.2 Simulation Frameworks for CPS Applications 30

2.2.1 Simulation Environments for Sensor Networks –Overview.............. 31

2.2.2 OMNeT++ Simulation Environment ... 34

2.2.3 Simulation Frameworks Based on OMNeT++ 36

2.2.4 Summary .. 38

2.3 CPS Verification Methodologies ... 40

2.3.1 Z Language ... 41

2.3.2 Prototype Verification System .. 42

2.3.3 Summary .. 43

Chapter 3. Simulation Models for PSoC Based CPS Applications 44

BUPT

6 Table of Contents

3.1 Interconnection of PSoC Devices with the Same Clock Frequency 45

3.2 Interconnection of PSoC devices with Different Clock Frequencies 46

3.3 Simulating Devices Having Different Phase Shift (Clock Offset) 48

3.4 Speeding Up Simulation Models .. 53

3.5 Experimental Results ... 55

3.6 Summary ... 60

Chapter 4. Validation of Static Properties in UML Model Specifications for

CPS Applications .. 61

4.1 Z Specifications of CPS UML Models ... 61

4.2 PVS Specifications of CPS UML Models ... 64

4.3 Case Studies ... 66

4.3.1 Z Specification: Case Study of Adaptive Unsharper Image Filter 67

4.3.2 Z Specification: Case Study of a Sensing Node Model 69

4.3.3 PVS Specification: Case Study of a WSN Monitoring Application 72

4.4 Verification of CPS UML Specifications .. 76

4.4.1 Verification of Z Specification for Adaptive Unsharper Image Filter .. 76

4.4.2 Verification of Z Specification for the Sensing Node Model 76

4.4.3 Verification using PVS Tools of a Wireless Network Area Model 78

4.5 Summary ... 80

Chapter 5. Handling Event-Driven Scenarios in CPS Applications
Simulation 81

5.1 Event-Driven Model Specification... 81

5.2 Event-Oriented Programming Model .. 84

5.3 Experimental Results ... 87

5.4 Summary ... 89

Chapter 6. Error Handling in CPS Applications Implemented using Goal-
Oriented Approach ... 90

6.1 The Proposed Methodology ... 90

6.2 Case Study: An Aircraft Fuel Management System............................... 92

6.2.1 Handling Application Specific Special Cases 96

6.2.2 Handling CPS Equipment Failures ... 97

6.3 Summary ... 98

Chapter 7. Conclusions, Contributions, Publications and Perspectives ... 99

7.1 Conclusions .. 99

BUPT

Table of Contents 7

7.2 Contributions .. 100

7.3 Publications .. 101

7.3.1 Article Published in ISI Journal ... 101

7.3.2 Articles Published in ISI Proceedings ... 101

7.3.3 Articles Published in IEEE Proceedings 101

7.3.4 Articles Published in BDI Journals ... 102

7.3.5 Articles Presented in POSDRU Workshops 102

7.4 Future Research Perspectives ... 103

References ... 104

BUPT

Abstract

Cyber physical systems (CPS) applications can be found in the last few years
in various domains of activity and the interest given to this type of systems is
growing worldwide. CPSs are massively distributed heterogeneous systems, linked
through wired or wireless connections. They are characterized by both

computational and physical processes and have an increasing economic and social
potential. Using CPSs for designing and implementing applications in different
domains of activity is a rather new approach for applications of sensor networks.

Therefore, there are no general accepted solutions for the issues which can appear
in the different stages of implementation.

The efforts of the research team produced an efficient, intuitive and easy to
use high-level programming methodology for CPS applications. The implementation
is based on Model Driven Architecture (MDA) approach, which provides a high-level
perspective of specifying and deploying CPS applications. The innovation of this
methodology is the goal-oriented perspective in specifying applications objectives

and constraints. The research had two directions. The first research theme was the
design of the CPS applications, starting from the requirements and using the defined
UML artifacts. The second theme was testing and verification of the CPS
applications. The goal was to validate the models before deployment on physical
network. The second direction has constituted the research theme for the author of
this thesis.

This thesis presents as novelty the complexity of the testing and validation
process, the thorough verifications posed on both static and dynamic aspects in a

CPS network, starting from component level and going until network level, the focus
being on errors identification as well as errors handling mechanisms.

The author of this thesis used rigorous specification for identifying the lack
of requirements in static properties of CPS applications, in units, nodes and network
communication capabilities. The author also developed simulation models, which

help reflect the possible dynamic aspects in the CPS networks. The testing and
verification of the units used in the CPS application have formed the clock cycle level
tests, integrating the units led to node level tests while the entire application’s
verification implied workflow tests, at network level. The author of this thesis has
considered also the particular cases which can appear during a CPS network
lifecycle, which are not seen as errors but require an appropriate handling.

Validation is a very important phase in developing the programming model

for CPS applications. A tested and verified CPS network can be deployed on the
physical environment with the certainty that the specifications errors and a large
part of the behavioral errors have been already removed. This leads to the
increased credibility for the programming methodology.

BUPT

List of Abbreviations

API Application Programming Interface

CIM Computation Independent Model

CLV Cross Left Valve

CPS Cyber Physical System

CRV Cross Right Valve

DM Decision Module

DMA Decision Module Area

DMP Decision Module Perimeter

DMZ Decision Module Zone

FSM Finite State Machine

CG Center of Gravity

LP Linear Programming

NED Network Description

NIC Network Interface Cards

OCL Object Constraints Language

OMNeT++ Objective Modular Network Testbed in C++

OOP Object Oriented Programming

PIM Platform Independent Model

PSoC Programmable System-on-Chip

PSM Platform Specific Model

PVS Prototype Verification System

UML Unified Modeling Language

TCC Type Correctness Conditions

BUPT

List of Figures

Figure 1 System DMs model [2] .. 24

Figure 2 First level Node (Deployment) stereotypes [2] 27

Figure 3 First level inheritance of the stereotypes composing the defined software

profile [2] .. 28

Figure 4 Node model for simulating PSoC devices with the same clock frequency .. 45

Figure 5 Node model for simulating PSoC devices with different clock frequencies . 47

Figure 6 The scheduling scheme for different clock frequencies [26] 47

Figure 7 Simulation start-up with nodes having different phase shift [27] 48

Figure 8 Node model for simulating PSoC devices with different phase shifts 50

Figure 9 The scheduling scheme for nodes having different clock frequencies and

different phase shifts [27] .. 52

Figure 10 Platform model for simulating CPS networks 55

Figure 11 Simulation of a grid CPS architecture in OMNeT++ 56

Figure 12 Simulation time for different CPSs [26] ... 56

Figure 13 Simulation time for CPS with 81 PSoCs using different clock frequencies

[26] .. 57

Figure 14 CPS simulation efficiency with and without different phase shifts [27] ... 58

Figure 15 Results for simulating three message exchanges between nodes located in

the corners of a CPS [27] .. 59

Figure 16 (a) Partial Z specification of the UNSHARP_IM module type; (b) Partial Z

specification of the set of instances for UNSHARP_IM module type 68

Figure 17 Partial Z specification of doFilter operation ... 69

Figure 18 UML model for hardware configuration of a sensing node 70

Figure 19 OCL Constraints for Can_HWST stereotype .. 70

Figure 20 (a) Z specification of the SENSINGNODE_WIRED node; (b) Z specification

of the set of instances; (c) Z specification for a particular sensing node type 71

BUPT

List of Figures 11

Figure 21 Z specification for relationship between sensing nodes and traffic light

nodes .. 72

Figure 22 UML deployment for sensing node [84] ... 73

Figure 23 UML model for distributed gas monitoring topology 74

Figure 24 PVS Theories for CompoundNode, PerimeterDM, ZoneDM and AreaDM

stereotypes .. 75

Figure 25 PVS Theories for Perimeter, Zone and Area stereotypes [84]................ 75

Figure 26 (a) Z specification of ModifySensingUnit operation; (b) Z language

statements for sensing node model; (c) Z language statements for sensing node

model; (d) Z language evaluation of sensing node theorem 77

Figure 27 (a) PVS Theory for dma model; (b) PVS Theory for a tiny radio model... 79

Figure 28 Corrected PVS method for validating the dma model [84] 80

Figure 29 XML specification model for known devices and their possible internal

states [93] ... 82

Figure 30 XML specification model for the transition list of a particular internal state

[93] .. 82

Figure 31 XML specification model for the possible events and their particular

timestamps of an internal defined state [93] .. 83

Figure 32 XML specification model for the possible events to be triggered in case of

a recognized event or timeout occurrence of an internal defined state [93] 83

Figure 33 GenericTaskManager implementation in pseudocode [93] 84

Figure 34 Pseudocode implementation for the event-driven programming model [93]

 .. 85

Figure 35 Logical tailoring in Fuel Management and Center of Gravity Management

CPS subsystems of a typical military aircraft top-level fuel system [20] 92

Figure 36 Tailoring the Left Tanks Zone illustrating the physical fuel debits and

directions flowing through internal pipes and valves [20] 94

BUPT

List of Tables

Table 1 Summary of recent programming models for CPSs 19

Table 2 Semantic correspondence between OMNeT++ NED language and SystemC

[16] .. 35

Table 3 Simulation environments for sensor networks 40

Table 4 Simulation of distributed networks having devices running at the same clock

frequency with and without the speed-up model support. The values are expressed

in terms of OMNeT++ virtual clock cycles [28] ... 60

Table 5 Evaluation of lines of code based on the node model required for designing a

traffic management application, with and without communication schema in place 88

BUPT

Chapter 1. Introduction

1.1 The Research Theme

Cyber physical systems (CPSs), as presented by Lee in [1], are massively

distributed heterogeneous embedded systems, linked through wired and/or wireless

connections. They integrate computational and physical processes, sensors,
actuators and decision modules. Applications of CPSs have a great economic and
social potential and can be found in various fields of activity. However, designing
and developing networks composed of a large number of nodes is far from being an
easy task due the challenges that programming massively distributed structures
implies.

The current research aims to provide an efficient, intuitive and easy to use
high-level programming model-based methodology for deploying CPS applications.
The developer of such applications is not required to have deep knowledge of low-
level programming skills; therefore the effort tends to be reduced on design and
implementation level.

The first part of this research, Visual modeling of Cyber Physical Systems,
has been presented by my research team colleague, Gabriela Magureanu, in [2].

The developed methodology is based on Object Management Group (OMG)
Model Driven Architecture (MDA) approach [3]. It supports the design of various
computational models and allows customization based on the application

requirements. The novelty resides in the way the application requirements are
specified, in a goal-oriented manner. The design approach addresses both hardware
and software aspects of a CPS application and is based on Unified Modeling
Language (UML) [4]. UML profiles allow specific type definitions for families of

applications and are used for tailoring UML to application specific requirements [5].
MDA approach provides a high-level perspective of specifying and deploying

CPS applications. It offers the possibility to design Platform Independent Models
(PIMs) that can be translated into several Platform Specific Models (PSMs) [3].
Using MDA approach allows generating both simulation and application code. The
simulation part for validating such applications represents an important step in the

deployment process. The amount of generated code in the total code written for an
application and also its precision depend on the accuracy and complexity of the
transformation rules used.

The research of the author of this thesis aims to validate the UML models
defined for the CPS applications. This implies testing and verification of the PIM for a
specific CPS network. PIM validation includes verification at both hardware and
software level, therefore both static and dynamic properties of the system. The tests

are at unit level (clock cycle level tests), at node level and at network level

(workflow tests).
PIM validation implies that the programming methodology is a functional

solution and a CPS application deployed in the physical environment will have no
errors on requirement level and a reduced number of errors regarding behavior.

BUPT

14 Introduction - 1

1.2 Thesis Objectives

This thesis intends to accomplish the following:
• From a theoretical point of view, to define a methodology for testing and

verifying CPS applications, at each level for the CPS design, for both static and
dynamic aspects

• To determine a rigorous specification of the static properties defined
for units, nodes and network communication capabilities

• To define simulation models for CPS applications, where the nodes are

composed of PSoC devices and also optimization methodologies, for
dynamic tests

• Clock cycle level tests: testing and verification of the units used in CPS
applications

• Node level tests: Units integration and collaboration inside CPS nodes
• Network level: workflow tests and CPS application validation

• To define a handling manner of event-driven scenarios in simulating
CPS applications: an event-driven simulation model and an event-
driven programming model

• To define a methodology for handling special cases that can appear
during a CPS application lifecycle and also equipment failures

• From a practical point of view, to apply the validation techniques to CPS

applications, in order to demonstrate the correctness and completeness of the
testing and validation process

• The CPS network are composed of sensors, actuators, communications
units and decision nodes

• The CPS network size can vary up to a large number of nodes
• The CPS applications belong to different activity domains and can have

various degrees of difficulty.

1.3 The Proposed Approach

A very important phase in the definition of the design and programming

model for CPS application is the validation, which must be performed on the UML
models corresponding to hardware and software specifications. This implies PIM
validation before deployment on a PSM, the final objective being deployment on
physical network without errors regarding CPS topology and with a reduced number

of errors regarding application’s behavior. The author of this thesis has developed
methodologies to validate both UML models for both the hardware and software
specifications of the CPS applications. Additionally, he defined handling manners for
the special situations which can appear during the lifecycle of the CPS application,

which are not errors, but also for equipment failure.
The UML models corresponding to the hardware representation of the CPS

application, the network topology, can be verified by a rigorous specification at unit,

node and network level. The opportunity of using this approach for validation of

BUPT

1.4 - Thesis Organization 15

static properties in CPS UML models is demonstrated considering some relevant case

studies presented in literature. Structural models of CPS applications represent
static information in a system design.

The UML models corresponding to the software representation of the CPS
application, the network behavior, can be tested and verified in a simulation
environment. To improve simulation duration and accuracy, simulation models for
CPS networks composed of Programmable System-on-Chip (PSoC) devices are

defined. They can be applied in case of different type of PSoC devices: devices
running at the same clock frequency or different clock frequencies or devices having
different clock offset. Also, a defined speed-up mechanism can be used for these
simulation models, depending on the application’s requirements.

Another part of the testing and validation process is constituted by the

definition of the handling approach for of event-driven scenarios in simulating CPS
applications. The author of this thesis proposes both an event-driven simulation

model and an event-driven programming model to be customized starting from the
application’s specifications. This approach is suitable for a large range of CPS
applications.

The author of this thesis also discusses particular situations which can
appear during the lifecycle of a CPS application, regardless of the requirements. He
uses specific case studies and scenarios to exemplify the handling methodology.

Starting from the specifications for a CPS application, one can use the

methodology based on MDA approach and goal-oriented description of the
application objectives to design and prepare the deployment to the physical
network. While composing the UML models to describe the hardware and software
specification for the CPS application plays an important role, it is of high importance
to be able to validate the defined UML models. Following the testing and validation
process defined by the author of this thesis, testing and verifying both network

topology and network behavior ensures that the CPS design is correct and complete
and the application behaves as expected. This implies that once the CPS application

is validated to be deployed in the physical environment, it will have no errors
regarding hardware requirements at unit, node or network level and it will behave
as required and simulated.

1.4 Thesis Organization

The rest of the chapters in this thesis are organized as follows.

Chapter 2 reviews the visual modeling of CPSs, as summarized by
Magureanu in [2], which includes an overview of this type of systems, the MDA
approach used in the visual programming model for CPS applications developed
inside the research team, the UML profiles and the goal-oriented approach in
specifying CPS applications requirements and behavior. The same chapter includes
an overview of the simulation frameworks described by literature for testing and
verifying CPS applications. The last subchapter discussed modeling and validation

approaches, starting from a rigorous specification of the requirements, the behavior

and the objectives of CPS applications.
Chapter 3 presents the simulation models for CPS applications constructed

on PSoC devices, developed by the author of this thesis using OMNeT++ simulation

BUPT

16 Introduction - 1

framework. The simulation models are intended for different types of PSoC devices,

which cover a large number of CPS topologies.
Chapter 4 presents specification and validation of static aspects regarding

CPS applications which are described by UML models. The rigorous specification is
exemplified in three different case studies, which underline several steps of the
validation process.

Chapter 5 focuses on testing and verification of dynamic, behavioral aspects

of CPS applications. The author of this thesis presents the handling manner of
event-driven scenarios in simulating CPS applications. He discusses the specification
of an event-driven simulation model and also an event-driven programming model
used in the validation process.

Chapter 6 presents several situations which can appear during a CPS

applications lifecycle, either application special cases or equipment failure and the
approach to handle them using linear programming equations at specification level.

Chapter 7 concludes the thesis, presents the contributions, the publications

where the author of the thesis is coauthor and presents future work perspectives.

BUPT

Chapter 2. State of the Art

2.1 CPS Overview

CPSs integrate computation and physical processes and during this thesis

are considered to be composed mainly of sensors, actuators, communication and

control devices based on PSoC chips. The connections in CPS networks are made
wired or wireless. Controlling such CPS networks by communication and command is
a continuous challenge for researchers all over to world, in search of developing
efficient technology for CPS.

2.1.1 CPS Modeling and Design

For embedded systems, the requirements for reliability and predictability

were always higher than in the case of general-purpose computers because
customers do not expect their car or TV to need a reboot [1]. The physical world is
far from being predictable, therefore CPS networks must be characterized by
robustness, as adaptation to unexpected environment conditions and system
failures. As Lee stated in [1], in a CPS, the components at each layer of abstraction
must be characterized by predictability and reliability, if this is a technologically

feasible case. If this is not the case, the higher level of abstraction must

compensate with robustness.
The organization into logical layers for the CPS network is the basic idea of

the goal-oriented design and programming model intended for CPS applications,
developed inside the research team. The main objective is to offer the designer of a
CPS application the possibility to simply specify the requirements at the highest
logical level, which is the network level. It is in care of the logic implemented in the
decision nodes to translate the commands to the next logical level, until the physical

nodes are also programmed.
Over the last years, a large number of applications have used CPSs for

implementing the corresponding networks. Several examples of fields of activity for
such systems are: intelligent traffic management, infrastructure management,
critical infrastructure monitoring, healthcare, aerospace, energy consumption
optimization in vehicles and buildings [6]. CPSs are characterized by sensing and

actuation devices which are cheap, small and can therefore be deployed in a large
number. This aspect makes CPSs suitable in applications where a high degree of
precision is required. This is ensured by the large quantity of information that can

be gathered from nodes. Malfunction of local nodes or even subsystems must not
affect the entire CPS; therefore, this system must have a high degree of reliability.
Large size networks are difficult to control as related problems are tackled together
and not separately [7]. The control procedures in a CPS must understand and react

BUPT

18 State of the Art - 2

accordingly to quality failures caused by the application requirements. The required

adjustments are far from being trivial, as the network contains a large number of
parameters.

A suitable approach in controlling CPS networks is by logically layering the
devices that compose such systems. Decisions at lower computational levels are
influenced by decisions at higher computational levels and vice versa. The lower
logical level, corresponding to the physical level, mainly addresses local constraints.

The decisions at higher logical levels influence larger areas and at such level, the
parameters for a certain model change much slower. At lower logical levels, the
decisions can be taken using reactive models. At higher levels Task Graphs or
Markov Decision Processes can be considered.

CPS design and programming is a rather new topic for researchers

worldwide, by comparing it to subjects like sensor networks and embedded systems.
Literature presents several attempts that are worth considering when proposing a

new approach.
Lee discusses in [8] the open points in challenges in CPS design and

presents the CPS aspect as rather an intersection than a reunion of cyber and
physical issues [9]. His research and articles have been used as the starting point
for several programming models for CPSs.

In [10], Tabuada discusses a decoupling within certain limitations of the
physical characteristics of CPSs and the part that is available to the end user. He

introduces notions on the topological abstractions of the physical devices, such as
the notion of locality, with different meanings in the physical environment and for
the CPS network based on sensors and actuators. Also, he discusses in-network
computation, the information gathered from sensors and the commands to actuators
to be managed within the network. The concepts presented in Tabuada’s proposal
are very similar to vision about CPS modeling inside the research team to which the

author of this thesis belongs to. The separation into computational layers and the
handling at the level of decision nodes, inside the CPS network, are similar aspects.

In [11], Gupta focuses on defining a programming support for location and
time information in CPS applications. He presents the importance of a semantic
support to use the physical location information and the validation of application’s
models against spatial and timing requirements.

In [12], Derler et al. discuss CPS modeling from perspectives of

heterogeneity, concurrency and sensitivity to timing. The authors consider as CPS
example a part of an aircraft vehicle, the fuel management system, for which they
propose several solutions. The authors use the Ptolemy project, as described in
[13], for the fuel system modeling and for simulating the flow of fuel between tanks.

In [14], Saeedloei and Gupta argue that the hybrid automata is a possible
solution for specifying, designing and analyzing several types of systems, in
particular CPSs. They model hybrid automata using logic programming with several

extensions. The authors use the proposed framework for several CPS network
examples, as the generalized railroad crossing problem and the reactor temperature
control systems. The logical programming approach can be considered to have good
evolving perspectives, as the authors have already presented the results in several
related papers.

In [15], Liu discusses the adaptation of unified object model and classical

programming techniques to CPS programming. Already defined software
engineering technologies and tools, including UML, can be put together to CPS
design. The strong points of Object Oriented Programming (OOP), encapsulation,

BUPT

2.1 - CPS Overview 19

code reuse or customization can have a great impact in CPS design and

programming.

CPS Proposal Year of first
publication

Summary

CPS support for
location and time

2006 The author underlines the importance of
location and time information in CPS semantics
[11].

CPS position paper 2006 Decoupling into levels of abstraction.
Decision management – taken inside network

[10].

CPS position papers 2008 Defining CPS [1], challenges in CPS design.
Used as starting point for many CPS
researches.

Heterogeneity,
concurrency and
sensitivity to timing
perspectives

2010 Ptolemy project is used as a solution for
design, modeling and simulation of the CPS
application [13].

Approach with hybrid
automata

2011 The model hybrid automata is modeled using
logic programming [14]. The approach is

applied to several CPS networks.

OOP concepts
extended for CPSs

2011 OOP defined concepts are applied in design
and simulation of CPS applications [15].

Table 1 Summary of recent programming models for CPSs

2.1.2 Visual Modeling of CPSs

This subchapter entirely presents the state of the art in the research
conducted by my team colleague Gabriela Magureanu and presented in her thesis
called Visual modeling of Cyber Physical Systems [2]. It also represents a starting
point of this thesis.

Fast implementing complete and robust applications of CPSs require an
intuitive, easy to use and competitive design and programming model. The user of

such a programming methodology can use already defined components, by
specifying the components his network requires and the relationships between these
components. The user does not have to take into consideration hardware
requirements and limitations, as those are encapsulated in the components logic, as
stated by Magureanu in [2]. The components are handled by the developers for the
library of components. The user programs the CPS network, by simply specifying the
goals of the application, the system logic being able to implement the desired goals.

The programming methodology implies well-defined steps. The two defined
UML profiles cover hardware and software aspects at component, node and network

level. The UML profiles form the Computation Independent Model (CIM) in MDA
approach.

The UML profiles help defining the MDA Platform Independent Model (PIM).
This model contains two types of diagrams. UML deployment diagrams are

BUPT

20 State of the Art - 2

customized using stereotypes from the UML hardware profile and are used to

characterize the application topology, the types of nodes in the network and the
connections and communication between these nodes, according to the application
requirements for the hardware level. UML component diagrams describe network
behavior, at different logical levels. These logical levels were defined to ease the
understanding, designing and programming of the CPS network, as usually it
contains a large number of nodes. The physical level corresponds to the lowest

logical level. The network as a whole corresponds to the highest logical level.
Application goals from higher logical levels are translated into goals at lower logical
levels, while the goals at lower logical levels influence the ones from higher logical
levels.

Once the PIM is defined, it needs to be tested and verified for validation

before transforming it into a Platform Specific Model (PSM), characterized by user
specifications and application requirements. Validation can be achieved using

simulation models. Simulation as testing and verification methodology is
recommended before deployment on hardware devices. Some of the major
advantages of simulation are errors detection in early phases of development, as a
result of testing, the possibility to obtain partial and/or total validation before
deployment and obtaining a deterministic behavior for each component and node
and for the entire network. A PIM is later translated into a network deployable PSM
by using code specific transformations. The resulted code represents the final scope

of using MDA approach.

A. The MDA Approach in CPS Applications

The methodology for designing CPS applications starting from the

specifications is intended to be a visual one, based on UML models, in order to

provide an intuitive solution for the developers for CPS applications. Two
perspectives can be identified when discussing the MDA approach. The first one is

the users’ perspective, as they are able to use the artifacts already defined in the
specialized library. Depending on applications requirements, the defined
components can be used as they are or composed into more complex components,
with further customizations regarding communication and links between
components. The objectives for the CPS application are posed at the highest logical
level and are translated into goals for lower logical levels. The influence is
bidirectional between logical levels, as the accomplishment or the lack of

accomplishment influences goals at higher computational levels.
The UML models corresponding to the hardware part contain definitions for

the types of components, nodes, connections and the entire network topology, while
the UML models corresponding to the software part define behavior for each of the
hardware artifacts. The users can test and validate the UML models defined for both
hardware and software specifications of UML networks. There are several
methodologies for performing such testing. First, the models can be tested by

generating models in a simulation environment. This type of testing and validation is

discussed in more details in Chapter 4, with simulation models at low abstraction
level. Then, the correctness and completeness of the UML models can be checked by
verifying the Object Constraint Language (OCL) constraints defined and attached to
the corresponding stereotypes. Also, a rigorous specification of UML models using

BUPT

2.1 - CPS Overview 21

specification languages is a proper testing and validation method for static aspects

identified in CPS applications. Complete specification and validation is discussed in
greater details in Chapter 5.

When testing the UML models is proven unsuccessful, the user has the
possibility to correct the high-level UML specifications. After several such steps, the
specifications for the CPS applications will be validated. This allows the deployment
of the network in the physical environment, with the high degree of confidence of

the fact that hardware modeling errors and at least some behavioral errors have
been solved. Deployment process implies loading application code, generated after
UML models validation on the physical nodes.

The second perspective in which the MDA approach can be discussed is the
developers of components perspective. The developers define component with the

help of stereotypes defined in the two UML profiles for CPS applications. An UML
profile corresponding to the hardware specification has been introduced by

Magureanu et al. in [16] and is detailed in subchapter 2.1.2, C. The stereotypes
contain tagged values and OCL constraints, which allow expressing customizations
for several types of UML elements. The stereotypes help achieving a clear
separation of devices and grouping into families of hardware devices. The work in
[16] was continued by Magureanu et al. in [17], where customizations for wireless
communication between nodes in a CPS network have been defined.

The second defined UML profile inside the research team provides

stereotypes for software specification of CPS applications. This has been introduced
by Gavrilescu et al. in [18] and detailed in [19]. The stereotypes in the UML
software profile define the behavior for the hardware components and the goal-
oriented approach. The stereotypes define the logical levels the network is tailored
in and the connections of communication and control that each grouping has with
another grouping, from the same logical level or from the upper or the lower logical

level.
The defined MDA methodology covers different types of CPS applications

and has been tested on three types of applications: the management of traffic lights
in an intersection, the management of a gas distribution network and the fuel
system management from an aircraft vehicle ([16], [17], [18], [19] and [20]).

Studies have indicated that using UML defined stereotypes for expressing
the applications specifications help improving the overall understanding of the

models in question. Such a study is detailed by Kurniarz et al. in [5]. This is a
desired goal, as UML profiles usage helps in a better definition and understanding of
the internal configuration of each node which is part of the network and the network
as a whole.

The developers of the components define customizations for the possible
types of nodes, for the network topology and other hardware units based on UML
hardware profile. The developers also define behavior corresponding to each of

these artifacts, using the UML software profile. These customized components, both
at hardware and software level, are available for the users in order to define the
CPS applications. The library components and functionalities cover general
application requirements and constraints. Starting from the requirements, it is
possible to design applications for CPSs, using different types of components, nodes
and corresponding connections.

For a complex definition of the design methodology, a middleware to
recognize the types of components has been defined. The middleware is intended to
ensure the correct functionality for the hardware and software components of the
CPS network. The custom hardware and software requirements are established by

BUPT

22 State of the Art - 2

the user, while the middleware correlated with library functions, customized

according to the application’s goals and requirements, is able to handle them.
The developers of the predefined components for the CPS applications also

ensure the verification methodologies for the applications defined by the users. They
provide the tools to check the OCL constraints defined in the UML models. Once the
UML models are validated according to the used constraints, a code generator
ensures the translation of the UML models into simulation models. After the

application is validated in a simulation environment, the visual programming model
is able to generate executable code, which can be deployed on the physical network.

The goal-oriented method proposed by the research team is based on MDA
approach in the design of CPS applications. The steps which need to be
accomplished by the developers of predefined CPS components and by the users of

such components that define CPS applications can be mapped into the models
identified in the MDA approach. MDA is a rigorous approach, suitable for creating

specific models, in each development phase, for embedded applications, in general,
and CPS applications, in particular [21].

Each of the models defined in the MDA approach has certain particularities
and a well-defined role. In general, the CIM indicates a certain system in the
environment where it will evolve, without going into details about the specific
application implementation. In the MDA approach the research team has defined,
the CIM holds the defined UML profiles, the stereotypes, tagged values and

constraints. It is used to describe families of CPS applications. At hardware level,
the CIM defines the types of components, the types of nodes, the types of networks
connections. At software level, it defines the network variables, the internal node
strategies, the network boundaries and requirement abstractions. The profiles
defined by Magureanu et al. in [16], [17], [18] and [19] form the CIM in the
proposed MDA approach.

The PIM is defined by the user of the MDA methodology using the UML
stereotypes grouped in the CIM and the applications requirements. The UML models

which form the PIM indicate the network topology, the expression of the functional
and non-functional requirements, the types of nodes in the CPS network and the
associated behavior. The PIM objective is to bring together the desired hardware
and software functionalities, while handling them at an abstract level. The goal is to
not take into consideration the hardware limitations. These will be handled at the

PSM level, depending on the deployment environment. The PIM is composed of a
hierarchy of deployment diagrams, corresponding to the hardware artifacts, and one
of component diagrams, corresponding to the software artifacts. The diagrams are
constructed starting from the network interconnections, going until each node and
component is fully described, with respect to the applications requirements and the
logical levels defined. In this phase, the stub application can be compiled in the
design and programming level, at a static level, for detecting the lack of correlations

between the applications goals and network topology or between goals themselves.
 The static aspects in the PIM can be tested and validated in a rigorous

manner, as presented in the next chapter. Also, it can be tested and validated
through simulation models. This is a recommended verification methodology, before
deploying the PIM into a PSM.

The construction of a PSM, especially a deployment on a physical network,

without a proper verification of the PIM, is not recommended. The errors discovered
directly on the physical network lead to increased costs and can also slow down the
application. Repeatedly loading the application on the physical network, after the

BUPT

2.1 - CPS Overview 23

errors discovered in a certain step are fixed, is more time consuming than properly

testing the application at PIM level.
Designing CPSs for physical networks involves significant challenges, as

several limitations can appear. At the same time, testing through simulation must
be as realistic as possible for obtaining a high degree of confidence in the validation
results, before deployment in a physical environment.

CPSs can consist of distributed devices, each of them being characterized by

its own internal clock and being able to operate at a different clock frequency than
other devices. Although CPS components come with clear specifications, the main
issue in designing this type of systems for different applications resides in the
management of complex interconnections. These interconnections contain dynamic
aspects, which increases the difficulty of a complete design. Proposed techniques for

concurrent programming of massively distributed embedded systems raise the same
issue [22]. A recent solution for handling dynamic aspects of CPS is based on PSoC

devices [23].
PSoC devices integrate reconfigurable analog and digital circuits, all of them

managed by an embedded microcontroller. PSoC devices provide memory and
programming circuits. This kind of architecture provides great flexibility, with a
reduced number of components. A single PSoC device can integrate a large number
of peripherals, saving in this way board space and designing spent time. Also, such
a device provides low power consumption and reduces the overall cost for the

system. The reconfiguration capabilities allow to the designer of the system to
connect internal resources on the fly. This leads to using a small number of
components for each specific task [24]. PSoC devices support a wide range of
communication protocols.

Using PSoC technology for designing CPSs applications is helpful but does
not solve all the problems. Research still needs to be made regarding a correct

temporal semantic for all concurrent processes involved [25]. Synchronization
mechanisms must be implemented at communication level, in order to achieve

cooperation between devices. Some solutions regarding issues related to simulation
of PSoC based CPSs are given in [26], [27], [28] and [29] and are detailed in
Chapter 3.

B. Goal-Oriented Approach in CPS Applications

CPSs integrate computational and physical processes, are characterized by

command, communication and control capabilities and, at logical level, are tailored
into several subsystems. Each of these subsystems has assigned a specific task or
objective and acts in the overall system independent and unaware of the existence
of the other subsystems. This behavior determines one of the main issues in
designing CPS applications. While the subsystems pose different objectives over the
controlled devices, in certain cases even contradictory ones, all these must be
accomplished.

The goal-oriented approach proposed by Wang et al in [7] and continued by

Magureanu et al. in [30] handles the complexity of distributed applications in
general, and of CPS applications in particular, by expressing the goals and
constraints in a purely declarative way. Strategies define the algorithms required
for processing the application goals. These strategies are grouped in specialized,

BUPT

24 State of the Art - 2

predefined libraries. The basic aspects of strategies remain the same, independent

of the applications requirements, while the goals and constraints vary dynamically.
The descriptions for the goals do not include the interaction mechanisms between
distributed entities and the best interaction scheme is inferred on the fly, at
application run. Therefore, the logical tailoring proposed in the goal-oriented
approach in the research team is dynamically configurable.

The main entities in the goal-oriented approach were introduced in [7] and

are called Decision Modules (DMs). For each logical layer, in each subsystem of the
application, one dedicated DM node holds the defined application’s logic. The DMs
are composed of four main elements: inputs, outputs, goals and constraints. The
physical data gathered from sensors in the application constitutes the inputs. These
are a set of attributes, expressed in the form of equations and constraints

(invariants), which are designed using Linear Programming (LP). Specific examples
of using LP systems are presented in Chapter 6. The physical outputs generated by

the application, when solving the inputs for the system and to which constraints are
applied, form the DM outputs. The DM constrains are defined by the physical
capability of the used platform (embedded nodes and communication infrastructure
are included) and requirements of the application (such as timing constraints or
precision). The goals are mathematical expressions which involve inputs and outputs
and on which maximization or minimization functions must be applied.

The communication, command and controls between logical levels are

maintained using DM nodes. As the outputs of one DM are inputs of another DM
from the upper, the lower or the same logical level, the application’s DMs form a
hierarchical structure. At each logical level, different execution semantics are more
suitable to be employed. The lowest logical level, corresponding to the physical
level, is handled by reactive models like Finite State Machines (FSMs). At higher
logical levels, models with less flexibility but with a more predictable performance

are used. The execution models allow performing the transition from the behavior
at physical node level until the one at application level. Top-down and bottom-up

constraint transformations model the interactions between DMs at different logical
levels.

Figure 1 expresses graphically the connections between logical levels and

the corresponding goals defined for each of these levels. The physical node is

maintained at perimeter level.

Figure 1 System DMs model [2]

BUPT

2.1 - CPS Overview 25

A node can be contained in different subsystems at any given moment of

time. This determines that, at each node level, several independent objectives need
to be fulfilled.

In [20], Gavrilescu et al. have proposed a CPS network tailoring into several
logical levels, depending on applications goals. This tailoring is applied to each of
the subsystems that compose the CPS network. The goals logic is managed inside
DM nodes. These nodes ensure communication and control inside the grouping they

command and with the neighbor grouping, from the same, upper or lower logical
level.

The boundaries for each subsystem are specified at the highest
computational level. In goal-oriented terms, as defined in the research team, this
represents the Area level. The applications goals at this level are described in a

general accepted form. The goals at this level determined the ones at the lower
logical levels, presented next. The business logic at Area level is kept in a Decision

Module Area (DMA) node.
Zone is the next logical level and represents a subset boundary of the

physical nodes located inside the Area. At this level, the goals are specialization over
the internal managed devices of the inherited Area goals. At this level, the goals
become more specific. The goals logic is hold in a Decision Module Zone (DMZ)
node.

The computational level which corresponds to the physical level and brings

together local logically coupled hardware devices is the Perimeter level. It contains
sensors and actuators which act over the same environment “point”. The goals at
this level are clearly stated management aspects for the physical devices. The goals
implementation implies well-defined execution blocks, which describe the co-
working manner in particular cases. The business logic at Area level is kept in a
Decision Module Perimeter (DMP) node where the most specific implementation for

the objectives to be accomplished is provided.
In the defined goal-oriented methodology, the Perimeters are shared

between the subsystems, as they correspond to the physical level. This implies that
the goals of the subsystems are expressed as a goal union at Perimeter level, at any
moment of time. The result of interpreting the goals at each logical level is
represented by the set of commands which need to be achieved inside the grouping
level. The result at each grouping, for each logical level, starting with the Perimeter

level, obtained after executing the instructions, is made available to the upper
logical layers. Therefore, in each subsystem, the goals will be adjusted.

In the case of Zones, depending on the application requirements, a Zone
may be shared among subsystems. In such a case, the Zone’s goals are unified
similar to the case of Perimeters. In this situation the managed Perimeters implied
in fulfilling the goal are required to send the result only to this Zone. The Zone is
part of all the cyber-subsystems, therefore it constructs feedbacks to all the Areas

that contain the discussed Zone, to update their main objectives.
The current goal at subsystem level can be changed using two different

approaches, the starting point being either at Area or at Perimeter level. In the first
case, a DMA of a particular subsystem that monitors a set of sensors is involved,
while in the second case the DM node which is responsible with monitoring a
particular part of the environment triggers the modification.

For the first approach, when the goal change is triggered at Area level, all
involved Zones must be identified. The next step is translating the new Area level
goal into new specific goals for every DMZ. A similar procedure is used to translate
new goals at Perimeter levels, for the Perimeters involved. In case inside a logical

BUPT

26 State of the Art - 2

grouping, the goal fails to be accomplished, the DM node corresponding to that

grouping notifies the upper logical level. In such a case, the upper level assigns a
new goal to the lower level, if possible, or cancels all the other goals already
assigned to the other DMs in the same time with the one that failed to be fulfilled.

Regarding the second approach, each change in the sensed environment
causes the involved node to trigger an event. The reaction of the upper grouping
level can be to process the event without any other actions or to initiate a further

notification to the higher level. In case the upper logical level reacts by consuming
the received event without changing its internal goal, no feedback will be sent to the
triggering DM node.

In the situation an upper level modifies the current goal, the event handling
part impacts only the environment part managed by it. Modifications of goals at

upper logical levels trigger modifications in the lower logical level goals.

C. UML Profiles for CPS Applications

High level-modeling of PSoC based CPS applications, which includes static
and behavioral descriptions of distributed applications, can be achieved using UML
models. The UML models can be defined for both hardware and software elements in
embedded systems, in general, and CPS network, in particular. For the hardware
specification, which starts from the network topology and becomes more specific,
until node and component level, UML deployment diagrams are used. In case of
software specification, which assigns behavior to each hardware defined part, UML

component diagrams are of help.
To be able to customize the elements in each of these types of diagrams,

according to different requirements for nodes and networks in CPS applications,
Magureanu has defined in [16], [17], [18] and [19] two UML profiles.

C-1. UML Profile for Hardware Specification

The UML hardware profile contains stereotypes, tagged values and OCL

constrains which are used when customizing hardware components, which instances

are used in modeling the CPS application, at PIM level. Well defined stereotypes for
specifying hardware components help achieving a clear separation and grouping
between families of devices [16].

UML profile appliance is similar with the inheritance relationship, however
there are some particularities when discussing UML profiles. The instance-of
relationship is not transitive [31]. When a stereotype is applied to a certain element,

the tagged values defined by the stereotype are applicable only to that element and
not to instances of that element.

As mentioned earlier, UML deployment diagrams are used in modeling
hardware aspects in distributed applications. Instance specifications elements are

used in deployment diagrams and they can be customized using stereotypes that
extend metaclass Instance Specification. The nodes are customized using
stereotypes that extend metaclass Node (Deployment). The relation between the

Node (Deployment) stereotype applied to a node and Instance Specification

BUPT

2.1 - CPS Overview 27

stereotype applied to an instance of that node is given by an OCL constraint. This

constraint states that all instances must be customized using the corresponding
Instance Specification stereotype, to which the naming convention applies. The
Instance Specification stereotype will have _Instance suffix.

The stereotypes are grouped in several hierarchies, depending on their
usability. The first level hierarchy of stereotypes which extend the Node
(Deployment) metaclass is described visually in Figure 2.

Figure 2 First level Node (Deployment) stereotypes [2]

The stereotypes contained in the first hierarchy level are as follows:
• Node_PIM is a stereotype which extends Node (Deployment)

metaclass. It is an abstract stereotype and is the base for all stereotypes of Node
(Deployment) in the UML hardware profile.

• Network_PIM stereotype represents a customization for each
network, as main part of an application. The networks are either wired or wireless,
depending on the type of communications between nodes, as components of the

network.
• SimpleNode_PIM stereotype is used when customizing a unit in a

network which contains only attributes and ports. This stereotype is used for
grouping purposes, while more specialized stereotypes are used for customizing
simple units in a network.

• CompoundNode_PIM stereotype is used for customizing a node in a

network which also contains other units (except for attributes and ports), which can
be simple or compound units.

• ModuleInterface_PIM stereotype is used in case compound nodes
contain sub-modules that implement a certain interface, instead of being an
instance of a certain simple or compound unit. This stereotype is the base for a
hierarchy of possible module interfaces in the UML hardware profile.

• Cypress_PredefinedUnit_HWST, BaseUnit_HWST,

MIXIM_PredefinedUnit_HWST are first level abstract stereotypes for simple units.
• Bus_HWST stereotype customizes a hardware component which acts

as a regular data bus and eases communication between components in a
distributed wired network.

• PSOCUnit_HWST stereotype has as base stereotype the
SimpleNode_PIM stereotype. It defines the PSoC device contained by the hardware

node.

Other categories of stereotypes defined in the UML profile for hardware
specification are as follows: stereotypes for PSoC based CPSs, stereotypes for

BUPT

28 State of the Art - 2

wireless communications (developed using as starting point MiXiM project [32]),

stereotypes defined for interfaces and stereotypes defined for compound modules.
OCL constraints are defined for the overall UML hardware profile, but can be

applied to specific stereotypes. Constraints are identified in the UML profile using the
name of the stereotypes with an indexed suffix.

C-2. UML Profile for Software Specification

The UML software profile presented below allows customization of the

application behavior in accordance to the UML hardware profile, at network, node

and unit level ([18] and [19]).
UML component diagrams are used to express the software requirements for

distributed applications. A software component model is defined to correspond to
each designed hardware deployment model.

The defined software stereotypes are grouped into several sets and have as
base stereotype the Component_PIM stereotype, as shown in Figure 3. The

presented groups of stereotypes provide a solution for specifying and modeling the
software strategies defined for different types of units in CPS nodes and which are
available in an external library.

 For every stereotype presented above it is considered that at least one
basic software implementation already exists in the external library. The PIM-PSM
model identifies, binds and integrates all the customized software strategies and
provides a customized CPS application, in accordance to users’ requirements.

The first group is inherited from BaseUnit_SWST stereotypes and defines the
software stereotypes for the units corresponding to the hardware already defined in
the deployment diagrams. This group represents the first phase in customizing the
business logic for each hardware unit.

Figure 3 First level inheritance of the stereotypes composing the defined software profile [2]

The hierarchical group derived from the Message_Parser_SWST stereotype
is intended for the communication part in an application.

The stereotypes inherited from Handling_Strategy_SWST stereotypes deal
with the application business logic which has to be attached to the hardware unit.

BUPT

2.1 - CPS Overview 29

The PSoCStrategyManager_SWST type stereotypes are intended to maintain

the application software logic related to hardware PSoC units involved in the CPS
nodes construction. They can be seen as software containers and have the
constraint to host software artifacts inherited from the PSoCHandlingStrategy_SWST
and PSoCCommMapping_SWST stereotypes, respectively.

The hierarchical group which has as base the PSoCHandlingStrategy_SWST
stereotype holds the actual internal PSoC related business logic and offers the user

the opportunity of customizing it.
The inheritance from PSoCCommMapping_SWST stereotype manages the

message mapping and exchange between different hardware units managed by
PSoC. This stereotype hierarchy offers the possibility of defining the state machine
of the PSoC unit by taking into account all the possible actions the PSoC software

application may take based on specified internal and external event mappings.
Other groups of stereotypes defined in the UML software profile contain

stereotypes for software part definitions, stereotypes for message handling,
stereotypes for customizing the strategy handling inside components, stereotypes
specific for PSoC handling strategy and stereotypes related to communication.

Similar to OCL constraints defined for the UML hardware profile, the OCL
constraints defined for the entire UML software profile can be applied to specific
stereotypes. Constraints are identified in the UML software profile using the name of
the stereotypes with an indexed suffix.

2.1.3 Summary

Considering the great number of applications which use nowadays CPS

networks, an efficient, intuitive and easy to use design and programming model is
desired for CPS applications. It is desired that even users without advanced

knowledge about sensor networks design methodologies and low level programming
skills to be able to specify applications for CPSs, in a high level of abstraction. The

users can command, control and program CPS applications. At hardware level, they
specify the network topology, the nodes, components and connections. At software
level, they specify the goals, without taking into consideration the physical
limitations of the environment.

The users can customize the CPS applications according to the
requirements, by using predefined artifacts, grouped into two UML profiles, for
hardware and software specification of CPS applications, respectively.

The novelty presented by this approach allows raising the level of
abstraction at which applications must be handled by the users. This can be
accomplished at first by tailoring the CPS network at logical level and then by
specifying that application objectives only at the highest logical level. The
application middleware is responsible in translating the goals from higher logical
levels to lower logical levels, until their accomplishment at the physical level.

The methodology presented in this chapter uses MDA approach for CPS

applications design and is described in more detail in [20]. The MDA characteristic

models can be easily identified. The CIM groups the two UML profiles. These are
used to customize UML deployment and component diagrams, corresponding to the
network elements. The PIM static aspects are validated using rigorous specification,
while for the low level and dynamic aspects, simulation models are recommended.

BUPT

30 State of the Art - 2

The code resulted once the PIM is fully tested and validated is the final scope of

using MDA approach, as it reduces the total amount of code to be created when
programming a CPS application.

2.2 Simulation Frameworks for CPS Applications

In the MDA approach, simulation environments play an important role as

platforms for developing PSMs. The PSMs expressed using UML artifacts which
describe applications for CPSs must be tested and eventually validated. This is

possible for different platforms. An immediate approach would be deploying on a

physical network. Along with the advantages of testing the application in the
environment it will finally evolve in, there are also the disadvantages of directly
deploying the network in the physical environment, without previous tests. This
deployment is based exclusively on the code generated from UML models and is
proved to be more costly and time consuming than using a method for testing the
applications before deployment.

Testing applications for CPSs and tracking the execution steps after
deployment is a difficult task because of the great number of messages exchanged
between hardware devices. It is not very feasible to maintain and handle a detailed
logging in case of distributed devices. PSoC devices usually have a reduced
hardware display and offer us little information during testing. Additional hardware
debugging devices are necessary for detecting errors at runtime. These devices are
an expensive solution.

Simulation for applications for CPSs, for a proper testing and validation, is a
more suitable approach and a less expensive one than directly deployment on the
physical network. This is where simulation environments, their characteristics and
the models developed using specific simulators intervene.

The required time for validating an application and also the material effort is
reduced in case of simulation than in case of directly deploying the network on

physical environment. Loading the application on physical devices, correcting some
errors and then repeating the entire process is more time consuming than running
simulation software. Simulation before deployment increases the robustness of the
application, as it allows the user to detect bottlenecks before deploying the network.
A validated simulation process ensures a deterministic behavior for each hardware
node and for the entire network. Simulation before deployment also allows the
evaluation of the performances of the application, using relevant simulation cases

over CPS networks, being able to provide results even for large sized distributed
networks.

The concepts on the importance of testing and validation using simulation
can also be found in [26], [27], [28], [29] and [33]. These have constituted the
basis for developing the simulation models detailed in Chapter 3.

BUPT

2.2 - Simulation Frameworks for CPS Applications 31

2.2.1 Simulation Environments for Sensor Networks –
Overview

The simulation environments take into consideration, into the simulation

models they propose, several aspects regarding simulation of sensor networks and,
in particular, distributed networks. Some of the most known approaches will be
detailed next, underlining their characteristics, both the strong points and the
drawbacks. These characteristics, especially the weak points, are taken into
consideration when deciding for a suitable simulation environment for testing and

validating the MDA approach in designing applications of CPSs [33].

ATEMU [34] is a fine grained sensor network simulator, intended to bridge
the gap between sensor network simulations and sensor network deployments. The
authors adopt a hybrid strategy: the operation of individual sensor nodes is
emulated in an instruction by instruction manner, while the interactions between
nodes using wireless transmissions are simulated in a realistic manner. ATEMU has
the ability to perform extremely low-level emulation of the hardware for sensor
nodes. ATEMU uses a cycle-by-cycle implementation strategy for each node and

device, as part of the network. Loading and initialization the network, for each
component in the network is followed by modifications of the clock. The clock is
increased by one clock cycle every round to ensure that nodes, the internal devices
and the radio communication are accurately synchronized. Synchronization is a very
important issue as a great part of the microcontroller program’s execution is
dependent on the timing and behavior of the component devices. A strong point in
favor of using ATEMU is the fact that this tool has the ability to simulate a

heterogeneous sensor network. A major drawback for ATEMU simulator is the fact
that it cannot simulate the synchronization of two devices running at different clock

frequencies. This is exactly the case met when using CPSs composed on PSoC
devices. The accuracy of simulation and the emulation possibilities offered by
ATEMU ensure that in case on using actual hardware, the software will already have
undergone complex testing and debugging on an accurate platform. However, this

characteristic can only be used in case of devices running at the same clock
frequency.

TOSSIM [35] is presented as a simulator for TinyOS [36] wireless sensor
networks. Therefore, the primary goal stated for this simulator is to provide a high
fidelity simulation of TinyOS applications. The simulator is focused on simulating
TinyOS and its execution, rather than simulating the actual physical world. A strong
point in favor of TOSSIM is that it can capture network fidelity in case of large size

networks, scaling to thousands of nodes, and a wide range of network interactions.
TOSSIM has proven his functionality when the authors discovered several bugs in
the older and more widely used TinyOS. These discovered bugs also come in favor
of simulation before deployment in the physical environment for sensor networks.
TOSSIM can be used to understand the causes of different behaviors in the real
world, but it does not capture the entire behavior, therefore is not suitable for

absolute evaluations. As a comparison, ATEMU is 30 times slower than TOSSIM.

Avrora [37] a cycle-accurate instruction level sensor network simulator
which scales to networks of up to 10,000 nodes and performs as much as 20 times
faster than previous simulators with equivalent accuracy, handling as many as 25

BUPT

32 State of the Art - 2

nodes in real-time. This simulator is intended for the AVR microcontroller and for

nodes of sensor networks built on the AVR microcontroller. The authors show how
an event queue can enable efficient instruction-level simulation of microcontroller
programs and allow the hidden parallelism in fine grained sensor network
simulations to be extracted. Avrora scales better than ATEMU and approaches the
performance of TOSSIM simulator and preserves cycle accuracy. ATEMU and
TOSSIM are implemented in C programming language. Avrora uses Java as

implementation programming language, which helps improving flexibility and
portability. ATEMU and Avrora have strong points in favor of using them as
simulators for the distributed networks in question. These simulators have language
and operating system independence by simulating machine code, unlike TOSSIM
which can simulate only TinyOS programs. As a weak point for Avrora, its simulation

possibilities are limited to simulating a network of nodes, running the actual
microcontroller programs and running accurate simulations of the devices and radio

communication. This simulator cannot be used for running software simulations.
In search for the simulator environment suitable for testing and validating

the high level UML models created MDA approach, there have been considered
aspects of friendly interfaces and intuitive usage for the tools. The simulation
environments presented above do not provide such a rich user interface which
would be helpful to the user in defining the simulation model.

Ns-2 [38] is a discrete event simulator, well-known in academic research.

This simulator has facilities for describing network topology, network protocols,
routing algorithms and generation of communication traffic. It also allows the
incorporation of protocols (TCP), routing algorithms and traffic generations defined
by users, over wired and wireless networks. However, Ns-2 has some major
disadvantages that make him unsuitable for testing and validating through
simulation the applications for CPS networks. Ns-2 is intended to be an object-

oriented simulator. This characteristic is sometimes a drawback as it introduces
unnecessary dependencies between modules. These interdependencies make the

incorporation of new protocol models very difficult.
Other simulator environments, such as C++SIM [39], JavaSim [40] and

GloMoSim [41] made attempts in addressing the problems raised by Ns-2 and left
unsolved. JavaSim and C++SIM are similar tools, both providing discrete event
process-based simulation. C++SIM is a programming tool for simulation of discrete

processes. It is an extension of C language obtained by including SIMULA-like
possibilities using C macros and functions. The user writes the program in the C
language and calls the library functions and macros. With JavaSim, the researchers
have tried to build a component-based architecture. The penalty in case of using
Java as the implementation programming language was the increase for simulation
time.

GloMoSim has been intended for extensibility and composability. The

researchers were interested in parallel simulation of wireless networks. GloMoSim
was designed as a set of library modules, each simulating a specific wireless
communication protocol from the protocol stack. This simulation tool was
implemented on computers that had both shared and distributed memory and can
consider different protocols for the simulation models. A strong point in favor of
GloMoSim is the visually configuration of the network, and intuitively selecting the

synchronization algorithms. This simulation environment is at most comparable with
Ns-2 in terms of design and extensibility.

TSync [42] is a lightweight bidirectional time synchronization service for
wireless sensor networks. TSync’s service offers a push mechanism for accurate and

BUPT

2.2 - Simulation Frameworks for CPS Applications 33

low overhead global time synchronization and a pull mechanism for on-demand

synchronization by individual sensor nodes. Both mechanisms can be flexibly
parameterized in order to meet the time synchronization terms for specific
applications. The performance for TSync is improved by multi-channel
enhancements. The communication protocol takes into consideration the message
propagation delay and the local clock offset. This service can be adapted to wireless
sensor networks that do not support multiple channels. The drawback is given by

the decrease of accuracy due to increased packed collision.
Sinalgo [43] is a simulation framework for testing and validating network

algorithms, which focuses on the verification of network algorithms and abstracts
the underlying layers. The prototypes for the network are described in Java, which
implies an increased speed compared to using hardware specific languages. Sinalgo

was also intended for easy extensibility, for which it offers a set of extension point.
Sinalgo network simulator was used in testing a completely distributed time

synchronization protocol. This protocol was able to take into consideration the clock
screw and the clock offset. Simulations were made for obtaining a correct view on
how the algorithm performs on large scale networks. Such large scale networks are
more difficult to implement physical, therefore simulation is the first required step.
The results of this study were detailed in paper [44]. For simulating sensor nodes,
the hardware clock of node was modeled in software. The simulation tests were
performed using random clock drift values for nodes, at network start-up. It was

considered that all nodes start at the same time. Such a situation is an unrealistic
assumption for physical network composed of different devices, where delays at
start-up are on regular basis. The simulation tests were run to indicate the neighbor
simulation error, in absence of the details for the simulation model. The studies
conducted to the conclusion that the synchronization errors between neighbors are
increasing with the size of the network.

SystemC [45] is a commonly used solution for simulating applications for
embedded systems. SystemC is a system level modeling language which allows

simulation at different levels of abstraction. Several approaches involving SystemC
at simulation level were already presented in [46], [47], [48] and [49]. However,
SystemC presents also some disadvantages related to embedded distributed
systems. Paper [50] presents some of them. SystemC was designed for single host
simulation. All threads are created in the same simulation process assigned by the

operating system. This means that the created simulation threads run concurrently
with the other threads in the system, such as operating system threads or threads
for other applications. The priority of the thread created for simulation determines
synchronization and communication between modules. Therefore synchronization
and communication depend directly in the processor’s speed. This implies a major
drawback for using SystemC in simulation distributed embedded systems: the
duration of the simulation cannot be estimated. At most, an improvement can be

made regarding the duration of the simulation. This can be eventually controlled by
increasing the priority of the simulation thread but this implies another
programming effort. Some speed-up solutions were proposed, like multicore
machines and ones using geographically distributed systems [50], [51]. Although
the improvement proposed works well, the lack of performance in case of simulated
distributed applications on single thread simulation kernel is more obvious in case

simulated applications become more complex. Another drawback of SystemC, as
presented in [52], is that it does not offer support for upper layers, including
network communication. The major drawback for SystemC that imposed the search

BUPT

34 State of the Art - 2

for another simulation environment was the lack of support offered by SystemC for

simulating distributed applications.
Cypress Semiconductor Corporation products [53] are a solution when

considering simulation environments, because of the variety of devices offered.
Cypress is a leading high-tech company which designs and produces also PSoC
devices. The interfacing between functionality of PSoC devices and user-deployed
applications is maintained through a component based middleware layer. This

interfacing is based on several Application Programming Interfaces (APIs). These
APIs offer control for different internal PSoC hardware components like: clock units,
power supply management, interrupts, cache memories, pins for connection of
external hardware modules to the device, internal access registers, flash an EEPROM
memories management, watchdog timers, system boot loader and system startup.

 PSoC Creator IDE is intended to offer a fully functional hardware-software
co-design development environment for the PSoC devices in case of embedded

systems applications. This IDE gives the users the possibility to construct more
complex devices by connecting to the main PSoC device a wide range of analog and
digital configurable external components. A main feature for PSoC Creator is that it
offers support for loading the users’ applications on the physical PSoC device.
Components binding and mapping from simulation to physical node is also provided.
This IDE covers instruction level and clock accurate simulation for the defined node.
PSoC Creator provides also an intuitive interface.

PSoC Creator provides accurate node level simulation in case of PSoC nodes,
even more complex ones, composed of multiple analog and digital components.
However, this is not the case for networks composed of distributed devices. PSoC
Creator does not offer simulation features for applications using distributed
embedded systems, at network level.

A complex and useful survey regarding the mechanisms required for clock

synchronization is presented in [54]. The authors perform a rich classification of
clock synchronization mechanisms. Each category has associated a representative

communication protocol. However, the authors cannot propose a simulation
platform able to support simulation for all existing clock synchronization protocols.
Simulation models that took into consideration the clock phase shift between nodes
were mostly designed for simulating a particular communication protocol rather than
a general proposed model.

2.2.2 OMNeT++ Simulation Environment

The author of this thesis has chosen OMNeT++ as a simulation environment

and the reasons that led to this decision are detailed next. OMNeT++ [55] is an

object-oriented modular discrete event network simulation framework, which allows
network simulation on a large scale. At the same time, the OMNeT++ simulator
overcomes some of the issues that make SystemC unsuitable for simulating
distributed embedded applications. OMNeT++ allows embedding simulations into
larger applications and offers support for parallel simulation, by using the

characteristics of modularity and extensibility. A strong point in favor of OMNeT++ it
the fact that it handles each event in sequence and maintains its own virtual clock,

independent of the processor’s clock [56]. This was not the case with SystemC.
Simulation time results are obtained in terms of virtual OMNeT++ clock, at

BUPT

2.2 - Simulation Frameworks for CPS Applications 35

successive runs. The virtual system clock is updated only at the end of all tasks

associated to the events to be handled at the current system time. This property
allows the elimination of the problems related to real-time synchronization
constraints, for complex systems simulations.

OMNeT++ also facilitates the development for models of the applications
and analysis of the obtained results. Visualizing and debugging the simulation
models is helpful in both specifying the applications and also reducing debugging

time. Communication between modules of the application is made through
messages. OMNeT++ provides a library for multithreading applications and also
provides support for scheduling, sending and receiving messages.

Studies have shown that simulations performed using OMNeT++ are
executed at least an order of magnitude faster than the ones performed using Ns-2

[57]. At the same time, OMNeT++ makes more efficient use of the available
memory.

Unlike SystemC, OMNeT++ does not offer support for instruction level
simulation. There have been made some attempts to unify the benefits of SystemC
and OMNeT++ simulators [52]. However, a conclusion that can be drawn is that
developers must choose the simulation environment according to the specifications
and behavior for the applications in question. Considering applications of CPSs
constructed on PSoC devices, which need to be simulated before deployment,
OMNeT++ simulator is a more suited solution.

As a characteristic of OMNeT++, this environment allows separation of
simulation into two major aspects: model topology and model behavior. Network
Description (NED) files are used to illustrate the network topology and the internal
configuration of the components for the different types of nodes in the network.
C++ files capture the behavior for the network and for the components in the
network.

Table 2 presents some similarities between the NED language and the
SystemC language. The hardware semantics presented indicate that both languages

are appropriate in specifying the components and the interconnections at network
level. OMNeT++ ensures an intuitive visualization of the simulated models of
applications and also of the interconnections between nodes in the simulated
network.

Type of unit OMNeT++ NED SystemC

Module simple, module, network sc_module

Gate in, out, inout sc_in, sc_out, sc_inout

Signal signal sc_signal

 Table 2 Semantic correspondence between OMNeT++ NED language and SystemC
[16]

The NED language [55] is used in OMNeT++ simulation environment to

describe the network topology and the hardware configuration for the components

in the network. Several features of the NED language make it suitable for describing
massively distributed applications. The NED structures are hierarchically built:
complex modules can be composed of simple modules, therefore acting as
compound modules. The NED language is component-based: simple and compound

modules are reusable which allows component libraries. Modules and channels can
be sub-classed in NED files. Derived modules and channels can add parameters and
gates, in case of simple components. In case of compound components, derived

modules and channels can add sub-modules and connections. The NED language

BUPT

36 State of the Art - 2

has defined a Java-like package structure. Channels and modules can be defined as

inner types, when used locally, to reduce namespace pollution. Module of channel
types, parameters, gates and sub-modules can be enriched by metadata
annotations.

Channels are similar to modules. At the same time, predefined channels
cover a wide range of the specifications for the requirements of the applications.
Channels encapsulate behavior and parameters which are associated with the

connections.
Simple and compound modules contain parameters and gates. Compound

modules also contain sub-modules and connections between the sub-modules.
Parameters can be used on hardware specification for the network topology and for
the components of the network. Also, parameters can be used on software

specification, to supply input for the C++ code that implements the behavior for
modules and channels.

The connection points between modules are the gates. NED language
defines three types of gates: input, output and input-output gates. Each module
contains specifications for connecting the sub-modules between them and with the
container module.

The characteristics of OMNeT++ environment made it a suitable choice for
testing and validation of the goal-oriented model based on MDA.

2.2.3 Simulation Frameworks Based on OMNeT++

OMNeT++ can be used in simulating different types of network, in a generic

manner. For solving specific problems, the researchers have created several
simulation frameworks based on OMNeT++.

Mobility Framework [58] is a framework for OMNeT++ able to support

simulations of mobile networks. This framework has three main components. It
provides a set of independent modules that implement node mobility, dynamic
connection management and a wireless channel model. It includes a library of
standard modules for common protocols. It suggests design guidelines for
simulation models of wireless devices. However, more sophisticated mobility

architecture modules are required in order to reflect real geographical/topological
settings and also more complex channel models.

Another particular implementation using OMNeT++ is Castalia framework
[59]. This framework was intended for simulations of wireless sensor networks. The
Castalia framework contains specific mechanisms such as wireless channel
modeling, used for the estimation of the average path loss between two nodes in
the network. Characteristic for Castalia is the time variability regarding radio

transmission. Realistic channel modeling is not met in case of large size networks;
however, mobility can be handled efficiently, depending on the cell size.

OverSim [60] is a flexible overlay network simulation framework based on
OMNeT++. OverSim facilitates the implementation of new overlay protocols.
OverSim includes several structured and unstructured peer-to-peer protocols and

provides several functions such as overlay message handling, visualization and a
generic lookup mechanism. The implementations for these protocols can be used for

both simulation and real networks. With OverSim, applications using networks with

BUPT

2.2 - Simulation Frameworks for CPS Applications 37

100,000 nodes can be simulated in a reasonable amount of time. OverSim also

provides an efficient event scheduler and strong interface support.
MiXiM [32] is an OMNeT++ based modeling framework created for mobile

and fixed wireless networks. MiXiM provides detailed models of radio wave
propagation, interference estimation, radio transceiver power consumption and
wireless MAC protocols. MiXiM project is suitable as communication model for
wireless sensor networks. In MiXiM, a network contains parameters and sub-

modules. The sub-modules are described in separate NED files. The parameters for
the entire network are grouped in an omnetpp.ini file, which contains also the
parameters for the simple and compound modules. This method allows a global view
for all parameters for a network and contained nodes, customized by the user.

A base network contains as parameters information about the coordinates of

the area the nodes are in (expressed in meters) and the total number of hosts in the
network. The network contains as sub-module a ConnectionManager which is a

central module that coordinates the connections between all nodes and handles
dynamic gate creation. ConnectionManager periodically communicates with the
mobility module and ChannelAccess. The network contains as sub-module a
BaseWorldUtility module which provides utility methods and information used by the
entire network as well as simulation wide black board functionality.

A BaseNode is a compound module which contains parameters, gates, sub-
modules and connections. The basic node contains a BaseUtility module which is a

basic utility module for a host. It mainly provides blackboard like information
exchange between the other modules of a host. The basic node implements
IBaseMobility, which is an interface for mobility modules, IBaseApplLayer, which is
an interface for application layer modules, IBaseNetwLayer, which is an interface for
network layer modules. The basic node contains a BaseNic module which
implements a CSMA network interface card using the CSMAMacLayer module.

The node describes the connections between components: the network
interface cards (NIC) layer component, the network layer component, the

application layer component and the exterior of the node. BaseNic is the network
interface card module, which contains gates, sub-modules and connections. BaseNic
module contains an instance of a simple module which implements the CSMA MAC
protocol and an instance of a simple module, PhyLayer, which knows how to initiate
the Deciders and Analogue Models from the modules directory. The information

presented here is only a short description of the MiXiM modules and facilities. More
details about MiXiM are available online.

The INET framework [61] is an open-source communication networks
simulation package for the OMNeT++ simulation environment. This framework
contains models for several wired and wireless networking protocols.

While MiXiM is focused on providing very detailed models of wireless
network interface cards, it does not provide very sophisticated upper layers like

network layers or application layers. These upper layers are exactly the ones
addressed by the INET framework. These characteristics led to developing Mixnet
[62], which means combining the strong points of MiXiM and INET into using the
wireless NICs from MiXiM together with the upper network stack from INET.

BUPT

http://www.omnetpp.org/

38 State of the Art - 2

2.2.4 Summary

The table presents briefly the strong and weak points identified for the

studied simulation environments.

Project
name

Year of
first

publicati
on

Strong points Weak points

Ns-2 1989 It is a well-known
simulator, widely used in
academic research.

It is an object-oriented
designed simulator, which
introduces sometimes
unnecessary interdependency
between modules. The
extension with new protocol
models is very difficult.

C++Sim 1990 It is a discrete event
process-based simulation
similar to SIMULA's
simulation class and
libraries.

JavaSim 1997 It tries to build a
component-oriented
architecture.

The penalty paid for using
Java implementation
language is the increase of
simulation time.

GloMoSim 1998 It is focused on parallel

simulation.

It is not superior to Ns-2 in

terms of design and
extensibility.

OMNeT++ 1999 It provides support for
sensing, scheduling and
receiving messages. It

handles each event in
sequence and maintains its
own virtual system clock. It
ensures accurate
traceability and focusing on
the behavior of each
device. It provides a library

for multithreading
applications.

It does not offer support for
instruction level simulation,
as SystemC does.

SystemC 1999 It is a system level
modeling language. It
allows simulation at

different levels of
abstraction. It is widely
used for simulating
embedded systems

The threads are created in the
same simulations process
assigned by the operating

system. Synchronization and
communication between
modules depends on the
thread’s priority and depends

BUPT

2.2 - Simulation Frameworks for CPS Applications 39

applications. directly on the processor’s
speed. This implies that the
duration of the simulation
cannot be estimated and
controlled. On sole-thread
simulation kernel the lack of

performance is aggravated
when the simulated
applications gain complexity.

TOSSIM 2003 It provides a high fidelity
simulation of TinyOS
applications.

It does not capture the
causes of behavior in the real
world and should not be used

for absolute simulations.

ATEMU 2004 The internal devices for
nodes in the network and
the radio communication
are correctly synchronized.

It cannot simulate
synchronization of two
devices that operate at
different clock frequencies.

INET 2004 It contains models for
several wired and wireless
networking protocols.

It does not provide support
for complex communication
layers.

TSync 2004 It is a lightweight
bidirectional time

synchronization service for
wireless sensor networks.
The communication
protocol takes care about
message propagation delay
and the local clock offset.

The design requires mutual
trust between all nodes and

therefore is vulnerable to
malicious nodes.

Avrora 2005 It simulates a network of

nodes, runs the actual
microcontroller programs,
and runs accurate
simulations of the devices
and the radio

communication.

It cannot be used for running

simulation models of the
software.

Cypress
PSoC Creator

2005 The IDE is intended to offer
a fully functional hardware-
software co-design
development environment

for the PSoC devices in
embedded system
applications. It coves
instruction level and clock
accurate simulation of the
defined node.

It does not offer simulation
features at network level for
the distributed embedded
applications.

Castalia 2006 It contains dedicated

mechanisms for simulation
of wireless sensor
networks.

The implementation of path

loss is completely left as
responsibility of the
developer.

Mobility 2007 The core framework The lack of more complex

BUPT

40 State of the Art - 2

Framework implements the support for
node mobility, dynamic
connection management
and a wireless channel
model. It provides basic
modules that can be

derived in order to
implement own modules.

mobility architecture modules
to reflect topological settings
and more complex channel
modules.

OverSim 2007 It is based on OMNeT++. It
provides a generic lookup
mechanism for structured
peer-to-peer networks and

an RPC interface.

There is currently no support
to import models of topology
generators.

Sinalgo 2007 It is used for simulating a
completely distributed time
synchronization protocol,
able to take care for the

clock screw and clock
offset.

Simulations were performed
considering that all nodes
start at the same time. This is
an unrealistic assumption for

physical network composed of
different devices.

MiXiM 2008 It provides detailed models
of wireless network
interface cards.

It does not provide support
for complex upper layers.

Mixnet 2010 It uses: MiXiM NICs
together with INET's IP
stack; INET application
layers; MiXiM's mobility
modules; INET's non-

wireless NICs; both
blackboard modules.

It cannot use INET’s wireless
related modules. Information
cannot be exchanged
between the blackboard
modules of MiXiM and INET.

Table 3 Simulation environments for sensor networks

2.3 CPS Verification Methodologies

Modeling is a key aspect of a good design for both embedded and

distributed systems. As CPSs can be seen as embedded distributed systems, various

modeling techniques were proposed.
Object-oriented modeling is wide spread in software design and it could be

successfully adapted to CPS structural design. The main issue in this case regards
the informal nature of most object-oriented models. A solution to this problem was
presented in details by D. B. Aredo et al. in [63] and by R. France et al. in [64].
According to them, there are three approaches to define object-oriented modeling
notations: supplemental, object-oriented extended notations and methods

integration. In supplemental approach, rigorous constructs replace parts of the

model expressed in informal object-oriented notations. In the object-oriented
extended notation, existing notations are extended by object-oriented mechanisms,
therefore becoming more compatible with object-oriented notations. The advantage
of using such approach is given by the fact that rigorous systems are obtained. The

BUPT

2.3 - CPS Verification Methodologies 41

methods integration approach is a more suitable solution that makes informal

object-oriented modeling concepts more precise by integrating them with proper
specification techniques. This approach is the most commonly used in the
standardization of object-oriented modeling notations. Therefore it is appropriate for
analysis tools development, since the first two concepts force the user to be in
contact with a great amount of complex mathematical artifacts. In this case, the
designers can directly manipulate graphical artifacts in the object-oriented models

and they do not require strong rigorous background.
A deep analysis was presented in [65]. It provided a complex view on the

verification tools and methods that can be used for UML based development
systems. Additionally, the authors investigated the different levels of system design
in which a certain method is more appropriate.

In OCL, the expressions can be undefined. The available OMG
documentation ([66]) does not specify how the OCL checker tools should deal with

the undefined queries from the expressions (Hamie et al. in [67]). In most of the
cases, the OCL tools denote nothing in the model verification process.

2.3.1 Z Language

Significant research on specifying UML models proposes Z language for

system specification. Z is a specification language based on standard mathematical
notation [68]. An empirical study regarding the requirements specifications for an
information system can be found in [69]. Both natural description in UML and the

corresponding description using Z language are discussed for a particular system.
The author has formulated correspondence rules between modeling elements in UML
and Z language. He concludes that expressing the system requirements in both
rigorous and informal way leads to building a robust documentation regarding what

is expected from the system.
The Z language maintains a clear distinction between logical operators and

expressions. The logical expressions are not treated as expressions within the
language, therefore their truth values are unknown if they involve undefined
expressions.

A hybrid solution by merging both advantages of OCL and Z languages was
described by Roe et al. in [70]. It provided a mapping from an integrated model of
UML model and OCL specifications into a Z specification. A similar mapping is used
in Chapter 5 to translate the OCL constraints of the used stereotypes from the UML

designed models.
Reference [71] presents a meta-modular framework created on two levels

using both UML and Z language. At the meta-level, the modular semantic
interpretation of UML diagrams is expressed using templates and generics. At the
instantiation level, the UML models are translated into Z specifications by
instantiating the semantic interpretations of the corresponding meta-level.

A complex approach was discussed in [72]. It was based on a tool called

RoZ, which helped automatically transforming the UML class diagrams and specific

annotations to Z specifications. The tool allows the generation of specifications for
elementary operations on classes and the generation of proof obligations to validate
operation guards. It allows automatic generation of Z schemas for the UML class,

BUPT

42 State of the Art - 2

object and deployment diagrams along with the elementary operations. The author

of this thesis has used RoZ tool as support for developing specifications.
The research in this direction was continued and presented in three new

references ([73], [74] and [75]). In [73], the authors were focus on rigorous and
informal specifications and the role of the RoZ tool, while in [74] a method for
validating UML models was introduced. To achieve this goal, they have proposed
translation of the UML models into Z and Lustre ([76]) specifications. This approach

allows the user of a theorem prover and a test generator to validate the initial
models. The research was further developed in [75], where authors showed how
annotated class diagrams can be adapted to support animation. To validate Z
theorems, several tools were proposed in literature. The Z/EVES theorem prover,
proposed by Saaltink in [77] is used in the described study.

In [78], it is proposed a specification of the primary UML constructs used to
build class structures based on Z language. Here, a Z state schema represents the

static aspect of a class. The attributes and object identifiers of class instances are
represented by state variables. Class invariants are specified in the predicate part of
a Z schema. Starting from the Z specification of the UML class constructs, the
author of this thesis has developed similar rules for specifying the constructs of UML
state machine and deployment diagrams.

Along with the classification of approaches for object-oriented modeling
concepts, in [64] the authors have defined the abstract syntax of a subset of the

UML static model notation. They have also defined an appropriate semantic domain
for its components. A meaning function completes the previously defined syntax.
The Z notation is then used for analyzing the UML models.

2.3.2 Prototype Verification System

As an alternative to Z language, many researchers have used PVS ([79]) in
order to define and analyze UML models. PVS consists in a specification language, a

type checker, a model checker and a theorem prover. The PVS language has the
ability to directly support reasoning about a large number of traces. According to D.
B. Aredo et al., this is a strong reason to use PVS tools for specify of the UML class
structure [63]. The authors have defined a general approach and then the
specification for UML interfaces, classes, associations, generalizations and
aggregations. The author of this thesis has extended the specification of UML class
diagrams to other types of diagrams used in CPS applications design. These

diagrams were translated in both Z and PVS specifications.
Another work that explores opportunity of using the PVS tools for checking

the correctness and completeness of UML models is presented in [80]. Here, the
author proposes semantic definition for UML statecharts using the PVS specification
language. The author has developed a general framework for translating UML
statecharts diagrams into PVS specifications. The advantage of using such
translation resides in the capability to produce precise and analyzable specifications

and to use the rigorous reasoning provided by the PVS tools.

In [81], the author presents semantics of UML sequence diagrams using PVS
language as an underlying semantic foundation. The basic concepts of sequence
diagrams must be specified at first: events, messages, objects and traces of events.

BUPT

2.3 - CPS Verification Methodologies 43

Next, the semantics of the sequence diagrams are modeled by a PVS theory that

composes the constituents.
Papers [63], [80] and [81] are part of a larger project that has defined

semantics of UML models in PVS, for UML classes, statecharts, sequence and state
machines diagrams.

An interesting research is presented in [82]. The authors translate Java
classes into high order, classical logic of PVS tools. PVS language is used as back-

end to the Logic of Object-Oriented Programming (LOOP) tool. This tool provides a
logical semantics for JAVA. Some elementary properties in JAVA programs can
therefore be proved using PVS tools.

A prototype tool that analyzes the syntax and semantics of OCL constraints
from an UML model was presented in [83]. Translating the elements of the UML

model, including the OCL constraints, into PVS specification language follows this
analysis. The prototype tool defines semantics for UML and OCL and enables the

verification of models. It solves also the translation of three-valued logic from OCL
into two-valued logic in PVS. This research is useful as the author of this thesis uses
OCL constrains for modeling the behavior and restrictions of CPSs.

Based on these considerations, the Z language was chosen to specify the
CPS UML models. There are two important reasons for this choice. First, the Z
language is based on rigorous mathematical constructs. The second reason is the
similarity between Z and OCL, since OCL is integrated into UML models.

Additionally, PVS tools are used for methods integration as shown in
Chapter 5. From PVS the type checker and the theorem prover were found very
useful. As analyzing a single example does not offer enough information for defining
general guiding rules for rigorous specification, the case studies will be discussed in
Chapter 5.

2.3.3 Summary

CPS UML design can be improved with the help of OCL constraints; however
the models cannot be verified for correctness and completeness. Specification for
UML models can be made with rigorous constructs, specified in different languages.
The objective is to verify the system before deployment.

 Z has the advantages of providing a rigorous mathematical specification.
There are no general accepted tools to verify Z specifications, therefore Z language
is used to specify examples of reduced complexity.

PVS is considered an alternative to the lack of verification tools for Z. The
advantages of PVS specifications are visible in case of large-scale CPS models. In
this perspective, Z involves a strong mathematical background, PVS being closer to
programming languages and object-oriented design.

BUPT

Chapter 3. Simulation Models for PSoC Based
CPS Applications

The author presents in this chapter an extension over the OMNeT++

framework in form of simulation models for CPS applications. The author considers
in this thesis CPSs which consist of different distributed PSoC devices, each of them

being characterized by its own internal clock. Therefore, CPSs can contain different

interconnected PSoC devices operating at different clock frequencies. In order to
achieve cooperation between devices, synchronization mechanisms are required to
be implemented at communication level. Testing applications written for CPSs is not
an easy task. Tracking the execution after deployment is very difficult because the
large number of messages exchanged between devices cannot be followed with

accuracy. The screen provided by PSoC devices for displaying debugging purpose is
limited, therefore it is straightforward that a detailed logging is not possible. Usings
external debugging devices is an expensive solution. Moreover, it is not always
feasible due to systems dimension.

A more suitable and less expensive solution is deploying and testing the
application over a simulator. Relevant simulations are indicated to be performed
before deploying the application, for debugging and also for performance evaluation.

To achieve these goals, the simulation must be as realistic as possible and therefore
to capture the correct system behavior.

An accurate simulation of the middleware layer is essential, to achieve a
realistic simulation of each PSoC device [27]. Each system function implemented by
the middleware requires a number of clock cycles. These clock cycles are executed

by the middleware and cannot be interrupted from the application. Therefore, the
clock cycles spent by middleware for processing each system function called by the

application must be considered by the simulation models. A self-message
mechanism can be used in OMNeT++ to simulate the time spent for performing a
system function call in a PSoC node [26]. The author of this thesis makes a clear
distinction between PSoC devices running at the same and at different clock
frequencies. The next subchapters analyze these two possible cases.

The nodes cannot be powered up all at the same time in a distributed

network [27]. This leads to different random phase shift values on each node. This
is an important aspect for time aware distributed networks. The clock offset of each
node increases the arrival time of the sent message on a multi-hop transmission.
Phase shift may also lead to the loss of messages on a node. The results have low
accuracy if the simulation describes only ideal conditions, in absence of phase shift
support. A real simulation must consider all these aspects before starting the
development. It allows phase shift aware simulation of distributed applications. The

third subchapter concentrates on these issues and proposes a proper simulation
model that covers these aspects.

The fourth subchapter introduces a speed-up mechanism for the presented
models.

BUPT

3.1 - Interconnection of PSoC devices with the Same Clock Frequencies 45

3.1 Interconnection of PSoC Devices with the Same
Clock Frequency

The case study consists of a CPS composed of PSoC devices running at the

same clock frequency [26]. At a certain moment of time, PSoC devices can have
different values of their internal clocks. A possible scenario implies starting all PSoCs
sequentially. The simulation model considers the internal clock value of each device

and updates it accordingly. As shown in Figure 4, the clock and the scheduling
module are implemented separately from the Application module. The consistency of
the ticking mechanism can be ensured as long as the clock frequency of each PSoC
device is the same as the frequency of simulation's virtual time. The Internal Clock
module simulates the implementation of a physical clock unit from a PSoC device. At

the initialization, the initial clock value can be expressed for each PSoC. To initiate a
correct run, an internal tick event is scheduled during initialization step. At

simulation's start, the internal clock of each node is synchronized with the system's
virtual clock.

 Figure 4 Node model for simulating PSoC devices with the same clock frequency

The Adapter module is the interface with the OMNeT++ simulator. It

receives all the events that have the node as destination. This module provides a
clear distinction between the receivers of the event and it parses the events
accordingly. The Adapter module is responsible for adjusting the node's time to
OMNeT++'s virtual time. It also sends and schedules the events. Scheduling an
event implies determining the virtual OMNeT++ time. For determining the
OMNeT++ time, the Adapter identifies the difference between the current hardware

time and the desired hardware time. A mechanism for cancelling already scheduled
events is also available.

The ticking mechanism functions as follows. At simulator's runtime, the
Adapter receives the internal tick event scheduled in an initialization step. It is then

BUPT

46 Simulation Models for PSoC Based CPS Applications - 3

forwarded to the Internal Clock module. This module increases its internal clock

value and schedules the next tick event. Next, the Internal Clock announces the
Application about clock value change and, if necessary, the Application will read the
node's hardware clock value.

3.2 Interconnection of PSoC devices with Different Clock
Frequencies

The simulation model in case of different clock frequencies raises more

complex issues [26]. Clock cycle level synchronization for different devices can be

achieved using the greatest common divisor of the corresponding clock values. The
initial assumption is that the virtual clock frequency has the same value as the
greatest common divisor. This implies that for every PSoC device, a fixed number of

virtual clock iterations must be consumed in order to increase its internal clock
value. The sampledValue constant value is calculated for each PSoC node as the
result of dividing its internal clock frequency to the greatest common divisor,
calculated previously. System virtual clock frequency must be set to the greatest
common divisor value, in order to achieve synchronization at clock cycle level for a
CPS containing PSoC devices at different clock frequencies.

Figure 5 describes the node model for simulating PSoC devices that use
different clock frequencies. The Virtual Time Sampler module is a major
improvement for this scheme compared to the one presented in Figure 4. This
module implements the connection between the Adapter and the Internal Clock of a
PSoC device.

At system initialization, the Virtual Time Sampler module is responsible with
the storage of the greatest common divisor. Also, the Virtual Time Sampler takes in

charge the mechanism for scheduling internal clock ticks. The Adapter module

announces the Sampler module that the virtual system time was already increased.
The increase of the internal clock is performed every time the Virtual Time Sampler
module receives a number of ticks equal to the constant value stored at
initialization. When the tick occurs, it announces the Internal Clock module. The
Internal Clock increases its value and announces the Application module.

In case an event must be scheduled, the scheduling mechanism must

consider the internal clock time and the sampledValue constant for computing the
simulation clock time. The formula used by the Adapter module for computation of
resulting virtual clock time is presented in (1):

xHWxHWv kclkclk __ = (1)

The vclk represents the difference between current virtual system time

and the future virtual system time, the
xHWclk _ represents the difference between

current internal clock time and the future internal clock time with respect to that

node, whereas xHWk _ represents its calculated sampledValue.

The rescheduling mechanism uses (1) when computing the necessary future
simulation time. The Application module does the computation of the next value for
internal clock time by evaluating the required execution time of the current system
function call.

BUPT

3.2 - Interconnection of PSoC devices with Different Clock Frequencies 47

Figure 5 Node model for simulating PSoC devices with different clock frequencies

For exemplification, a possible rescheduling example that involves two

nodes is detailed next. A correct illustration implies using numerical values. The
internal clock frequency of the first node is set to 70 MHz and the frequency for the

second one is set to 30 MHz. The greatest common divisor is set to 10 MHz.

Figure 6 captures the moment when the first node schedules an event for
the second node, at its next internal clock time. The Nt represents the timeline of
the system virtual clock having the frequency set to 10 MHz. The N1 is the timeline
for the node having the internal clock frequency set to 70 MHz. The N2 is the
timeline for the node having the internal clock frequency set to 30 MHz.

Figure 6 The scheduling scheme for different clock frequencies [26]

In Figure 6 there can be seen that node Nt receives the event at current

virtual system time increased with 7 ticks. This is the result of applying formula (1).

At the moment when node N2 receives the message, it is busy for 1 internal clock

BUPT

48 Simulation Models for PSoC Based CPS Applications - 3

cycle. Therefore, it will reschedule the message for 3 internal clock ticks after

receiving the message. Finally, node Nt will handle the message after 9 clock ticks of
virtual system clock.

3.3 Simulating Devices Having Different Phase Shift
(Clock Offset)

In simulation models for CPS networks, higher time accuracy requires taking

into consideration the part of the time period of each node, already passed before
powering up the entire network.

There is a possibility that at the end of start-up, some nodes in the network
can have a delay greater than the clock cycles of those nodes. This implies that at
end of start-up, some nodes might have their internal clock value set to a number

greater than zero. Such nodes can be in the middle of their next clock cycle.
This situation is presented in Figure 7. It shows three different nodes (N1,

N2 and N3), each of them having their own internal frequency. The vertical line
marked with t0 is considered the network's end of start-up. At t0, the internal clock
time of each node N1, N2 and N3 is already ticking in the middle of the first cycle
named T1, T2, and T3, respectively. The passing time for each node at network's

time t0 is considered as being Diff1, Diff2, and Diff3. In order to achieve the increase
of their internal clock by plus one, the remaining time for each node after t0 is
considered to be t1, t2 and t3, respectively [27].

Figure 7 Simulation start-up with nodes having different phase shift [27]

Node N1 has the highest frequency from all the three nodes. It could already achieve

a full period, before Diff1, but for clarity this is not shown in Figure 7.

Mathematical correlations performed before describing the simulation model

try to offer a solution to the already described situation. The problem is raised by
the exact determination of the duration of simulation time period, in order to
correlate it correctly with the period passed for each node. The greatest common
divisor, computed through equation (2), is used for solving this.

),...,,,,...,,gcd(2121 nn tttDiffDiffDiff , (2)

The function gcd computes the greatest common divisor of the terms from

parenthesis. The set nDiffDiffDiff ,...,, 21 expresses the part of the period already

passed for each node at the end of the network's start-up. The set nttt ,...,, 21

represents the required part of the period to pass for each node from the end of the

BUPT

3.3 - Simulating Devices Having Different Phase Shift (Clock Offset) 49

network’s start-up, in order to increase the internal clock value of that node with

one [27].
The greatest common divisor will represent the value of the period of

OMNeT++ virtual time. The usage of greatest common divisor ensures a correct
update of the internal clock of a node, exactly on its rising edge. The demonstration,
as stated in [27], is presented below.

gcd
..1,..1, =

== nxxDiffnxx mDiff (3)

gcd
..1,..1, =

== nxxtnxx mt (4)

In (3), the nxxDiff ..1, = represents the part of the period already passed for

node x at the end of the network's start-up. The
nxxDiffm

..1, =
represents the number

with which the greatest common divisor must be multiplied in order to achieve, for

node x, the value nxxDiff ..1, = . The nxxt ..1, = represents the part of the period required

to pass for node x from the end of the network's start-up, in order to increase the

internal clock value of that node with one. The
nxxt

m
..1, =

represents the number with

which the greatest common divisor must be multiplied to achieve the value of

nxxt ..1, = , for node x.

The period nxxT ..1, = represents the period of node x required by the internal

clock frequency of the node and is computed using (5).

nxxnxxnxx DifftT ..1,..1,..1, === += (5)

Replacing the terms in (5) with (3) and (4), equation (6) will be obtained.

gcd)(
..1,..1,..1, +=

=== nxxnxx tDiffnxx mmT (6)

Equation (6) states that the greatest common divisor already determined for
all the nodes using (2) can be multiplied by a number for each node from the
network in such manner that the exact value of the period of that node can be
achieved [27].

The multiplier is obtained from (6) and it is presented below in (7).

nxxnxx tDiffnxx mmm
..1,..1,..1, ==

+== (7)

The
nxxt

m
..1, =

represents the number used to achieve the value of the period

nxxT ..1, = for the node x, by multiplying with the greatest common divisor.

In terms of simulation, if using (2) in determining the greatest common
divisor, (6) and (7) represent a guarantee that a correct update of the internal clock
time of nodes will be performed.

The model for simulating the distributed devices running at different
frequency and having different phase shift is presented in Figure 8 and detailed in

[27].

The Shift Manager module implements the connection between the Adapter
and the Internal Clock of such device. This module is responsible with the storage of
the greatest common divisor.

BUPT

50 Simulation Models for PSoC Based CPS Applications - 3

 Figure 8 Node model for simulating PSoC devices with different phase shifts

At system's start-up, the constant values
nxxDiffm

..1, =
and

nxxt
m

..1, =
 are stored

for each node. They represent the number of ticks already received from

simulation's virtual clock at simulation's run-up, respectively the number of ticks
necessary for Shift Manager module in order to notify the Internal Clock module to
increase its internal clock value.

They are called shiftThreshold and sampledThreshold of the node x. An
internal variable called sampledValue is used to count the number of ticks already

received from the virtual clock of OMNeT++' simulator. The sampledValue is
initialized with the constant value shiftThreshold.

At the end of initialization, the Shift Manager module calls
scheduleNextTick() method. This implies that the Adapter module constructs an
internal self-message and schedules it, by using the OMNeT++'s scheduling
mechanism, to take place at the next OMNeT++'s virtual time. The existence of the

scheduled self-message ensures that the Shift Manager module will be notified by
the Adapter module about the increase of the simulator's virtual time.

Every time the OMNeT++ simulator increases its internal value, it will
announce the Adapter module. The Adapter module makes a clear separation
between notifications received from the simulator regarding the increase of its
virtual clock time and external messages, which are triggered by other nodes.

The Adapter module notifies the Shift Manager module about the increase of

the virtual simulator's clock value. The Shift Manager module will update the
sampledValue by increasing it. Then, it will schedule a self-message for another
notification about the increase of virtual clock time, by calling again the

BUPT

3.3 - Simulating Devices Having Different Phase Shift (Clock Offset) 51

scheduleNextTick() method. Next, it will check the sampledValue against the

constant values shiftThreshold and sampledThreshold. If the value of shiftThreshold
is achieved, the Shift Manager will update an internal flag (shiftFlag), in order to
notify that the sampledThreshold value was already achieved and will reset the
sampledValue. The shiftFlag is used also for debugging purpose, to know the
situation in which the sampledValue is found at a given moment of time. If the value
of sampledThreshold is achieved, it will notify the Internal Clock module to increase

the stored internal clock value. After the call to the Internal Clock module's method,
the Shift Manager will clear the shiftFlag and will reset the variable sampledValue
[27].

Each time the Internal Clock module receives a command for increasing the
stored Internal Clock value, it will update the Internal Clock value. Then it will

announce the Application module about this modification.
Sending, scheduling, rescheduling and aborting a message is done in the

same way as described in case of model for interconnecting distributed devices
running at different clock frequencies [98]. The difference comes from the fact that
the sampled value returned to Adapter module is calculated based on the value of
sampledValue variable and based on the shiftFlag.

When an event must be scheduled, the scheduling mechanism must take
into consideration the internal clock time, sampledThreshold and shiftThreshold
values for computing the simulation clock time. The Application module computes

the next value for internal clock time, by evaluating the necessary execution time of
the current system function call and forwards the request to Adapter module. The
Adapter module requests the values of sampledThreshold and shiftThreshold from
Shift Manager module.

The formula used by the Adapter module for computation of the resulting
virtual clock time in case of scheduling of a message is presented in (8).

xHWv mclkclk
x
= (8)

The vclk represents the resulting difference between current virtual

system time and the future virtual system time. The
xHWclk represents the

difference between current internal clock time and the future internal clock time for

node x. The xm is the number with which the greatest common divisor must be

multiplied to achieve the value of xT , for node x, calculated using (7).

In case of requests arrived from the application for scheduling a message, it
is considered that the schedules are possible only at the times at which the shiftFlag
and the sampledValue of that node become zero, which means on the "rising edge"
of the new internal clock value. A message cannot be scheduled inside a period of
that node.

The formula used by the Adapter module for computation the resulting
virtual clock time in case of rescheduling a message is presented in (9).

1+−= xxv sTclk (9)

The xT represents the period of node x. The xs is the current sampled value

calculated by the formula (10).

xDiffxxx mshiftFlaguesampledVals += (10)

BUPT

52 Simulation Models for PSoC Based CPS Applications - 3

The xuesampledVal represents the number of ticks of OMNeT++ virtual

clock received by the node x, after the last update of the node's x internal clock.

The xshiftFlag represents the flag set on node x if the sampledValue has already

achieved the constant value shiftThreshold of that node. Here, the
xDiffm

represents the constant value shiftThreshold in the node x.
The rescheduling mechanism uses (9) when computing the required future

simulation time. Such a mechanism is required as there is a common situation in
which a node receives an external message in the middle of the current period. It is

necessary to reschedule for that node the already received message at the
beginning of the next period.

The below example, which involves 3 nodes, will better clarify the
scheduling and rescheduling mechanisms performed by the described model [27].

The internal clock frequency of the first node is set to 40 MHz, the frequency
of the second node is set to 80 MHz and the frequency for the third one is set to 50

MHz. At simulation' start-up, it is considered that half of period for the first node,
5/8 of period for the second node and 3/5 of period for the third node have already
passed. The remaining time in order to complete the period is as follows: half period
for the first node, 3/8 of period for the second node and 2/5 of period of the third
node. Therefore, the greatest common divisor is set to 10 MHz.

Figure 9 presents three distinct situations in which two nodes communicate.

Figure 9 The scheduling scheme for nodes having different clock frequencies and different
phase shifts [27]

When node’s N1 first update of its internal clock occurs, the node N1 tries to

send a message to node N3. The Adapter module of node N3 receives the message

and verifies the shiftFlag and the sampledValue from Shift Manager module. As node
N3 has already updated its internal clock value, the shiftFlag and the sampledValue
are found set to zero. This allows the Adapter module to notify the Application
module of node N3 about the new message arriving. The Application module of node
N3 is not processing anything for the moment, therefore starts processing the
arrived message.

After first internal clock update, the node N2 decides to send an external

message to node N3. The Adapter module of node N3 receives the message and
verifies the shiftFlag and the sampledValue from Shift Manager module. Although

the shiftFlag is set to zero, the sampledValue is not equal to zero, and the Adapter
module decides to reschedule the message in such manner that it will arrive at the
time when a new internal clock update will be performed on node N3. After applying
equation (10), the Adapter module of node N3 decides to reschedule the message

BUPT

3.4 - Speeding Up Simulation Models 53

after the last three parts of the remaining period and to receive the message exactly

at the time when a new internal clock update takes place.
At node's N1 second update of its internal clock, the node N1 tries to

schedule a new message to node N3, after one internal clock cycle. When the
internal clock cycle of node N1 is updated again, OMNeT++ sends the message to
node N3. The Adapter module of node N3 receives the message and verifies the
shiftFlag and the sampledValue from Shift Manager module.

Although the shiftFlag is set to zero, the sampledValue is not equal to zero
and the Adapter module decides to reschedule the message in such manner that it
will arrive at the time when a new internal clock update will be performed on node
N3. After applying equation (10), the Adapter module of N3 decides to reschedule
the message after the last two parts of the remaining period and to receive the

message exactly at the time when a new internal clock update takes place.

3.4 Speeding Up Simulation Models

All three previous models present situations in which there were included
also simulations of system function calls. These functions are made available
through middleware implementation to the simulated application. A system function
call requires uninterrupted execution and lasts a specific number of clocks. The
duration of each system function is known before deploying the application and can
be simulated using one of the three models presented above [28].

One requirement for using one of the three presented models is to

implement also the simulation of the middleware, eventually separated from the
simulation of the deployed application, on Application module side. This separation
is to be performed by the developer of the simulation. To perform a realistic
simulation of a CPS network, it is required for the developer to know the lasting

time of each system function. The simulation of a system function requires no other
activity to be performed on the node, as long as a system function is simulated

[28].
This requirement may lead to situations in which, at a given moment of

time, all the nodes are blocked in simulating middleware, as presented in Figure 9.
In the presented situation, no node will generate any event. Each node must
simulate the time required by the middleware for processing the called system
function. In Figure 9, it can be seen that during the middle period shown in
OMNeT++ timeline, the nodes N1, N2 and N3 have already scheduled events and

wait for time to pass. The nodes will remain in idle state for the entire middle
period. After several tests on different applications, it was observed that the
presented situation is met very frequent.

A speed-up simulation time mechanism can be implemented as, in the
presented case, the models must simulate only the time passing in each node. A
mechanism which is able to speed-up the simulation in typical situations such as the
one presented above has the major advantage of reducing the real time of

simulation spent on the workstation on which the simulation runs [28].

For achieving this, it is necessary first to remove the correlation between
the OMNeT++ simulation time and the absolute time of the network. In all three
models, the Adapter module must not be connected through an intermediate
module to OMNeT++ simulator, and not directly.

BUPT

54 Simulation Models for PSoC Based CPS Applications - 3

This new module should be controlled directly by the virtual time increase of

the OMNeT++'s simulation. The module should be capable to translate correctly an
OMNeT++ virtual time increase into network time increase, based on the minimal
network time required to pass for simulating the middleware for a node. In order to
perform a correct translation, the instance of this module should be the same for all
the nodes. Therefore, the new introduced module will be named next as Platform
module.

In a simulation implemented in such manner, four different timing notions
will be distinguished, each of them being managed by its dedicated unit [28]:

• Workstation real time, managed by the operating system on which the
simulation runs

• OMNeT++ virtual simulation time, managed by the OMNeT++ simulator

• Network time, managed by the Platform module
• Internal clock time of node, managed by the Internal Clock module of

each node.
A clear separation is therefore performed in terms of timing. This will speed-

up and increase the control of the simulation.
The interface with Platform module requires implementation of a new

function on Adapter side, called increaseNetworkTimeTo(), and the call of new
functions implemented on Platform module. The architectural view of a platform
model is presented in Figure 10.

At simulation's start-up, for each node to be notified about the increase of
the network time triggered by the Platform module, it must register itself as
network time increase listener. The registration of each node can be done using
setTickListener() method of the Platform module interface. At the time a node
decides not to be updated anymore about the network time increase, it can call
unsetTickListener() method in order to announce the Platform module about its

request.
In order to simulate a system function call, a node can call the

scheduleMsg() method. This method has the role to notify the Platform module that
a node requires an amount of time to pass in order to perform a specific task. Until
then, the node it will be idle. The Platform module will create a priorities queue and
will order the node's request in the queue by the requested network time. The
requested time must be translated by each node , before calling scheduleMsg()

function, from its internal clock requested time into requested network time. This
can be done internally by the Adapter module of each node, by applying the formula
corresponding to its model. The Platform is notified when OMNeT++ simulation time
increases. It takes the first request from the queue and notifies all the nodes about
the increase of network time with a value equal to the requested network time
found in the first position in the queue. By acting like this, all the nodes update their
internal time values at the same time, in a controlled manner. The Platform sends

the scheduled message to the node which initiated the request, after finishing the
update of the Internal Clock module of each node from the network. It removes it
from the queue and schedules to be notified about the next OMNeT++ virtual time
increase.

BUPT

3.5 - Experimental Results 55

Figure 10 Platform model for simulating CPS networks

If a node decides to cancel a scheduled task at a given moment, it can call

the abortSend() message and the Platform module will remove it from its internal
queue. If a node decides to modify an already requested time at a given moment, it
calls the reschedule() method. The Platform module will search for the request in
queue and will update it with the new requested network time. When a node decides
to send a message to another node, it will call the send() method from OMNeT++
simulator. The message will be sent to that node to be later processed [28].

3.5 Experimental Results

In this subchapter, the author of this thesis considers several sets of tests,
all of them involving a grid based architecture for CPS networks [26]. In such a
network, each node composes its own message. Then, it sends it in the network at
simulation's start-up. The simulation is finalized when each node receives the
messages sent from all other nodes in the network. This network used for simulation
consists of 9, 25, 49 and 81 PSoC devices, respectively. A layout example of the
simulation with 9 PSoC devices can be seen in Figure 11. The physical CPS network

has the size and configuration of the one presented in the figure. It consists of 9
Cypress PSoC CY3210 devices linked by wireless connections.

For the first set of tests, the network has been simulated using PSoC devices
set to the same clock frequencies. Each node has the architecture similar to the one
presented in Figure 4. The network configurations have been further kept, but the
nodes were implemented using architecture similar to the one in Figure 5. The CPS

network has contained four types of nodes. Each one had a different clock frequency

set at 10 MHz, 20 MHz, 30 MHz and 40 MHz, respectively. Therefore, the greatest
common divisor was computed at 10 MHz. For a node with its internal clock
frequency set to 10 MHz, one virtual clock cycle should be passed in order to tick

BUPT

56 Simulation Models for PSoC Based CPS Applications - 3

one time. In case of a node with the clock frequency set to 20 MHz, 30 MHz or 40

MHz, two, three or four virtual clock cycles should be passed, respectively, to be
able to simulate their frequencies [26].

Figure 11 Simulation of a grid CPS architecture in OMNeT++

Figure 12 presents the simulation times obtained in case of CPS networks

consisting of 9, 25, 49 and 81 PSoC device, respectively [26].

Figure 12 Simulation time for different CPSs [26]

BUPT

3.5 - Experimental Results 57

The results obtained when the PSoC devices have the same clock frequency

are represented in the thick line. The results obtained when the PSoC devices were
set to four different clock frequencies are represented in the thin grey line. For a
CPS with PSoC devices set at the same frequency, the simulation time increases
proportionally with the size of the network.

The explanation for this is that the simulation ends when each node receives
all the messages sent by the other nodes from the network. The size of the network

increase determines the increase of the number of messages expected on each
node. A similar situation was obtained when the CPS consisting of PSoC devices with
different clock frequencies was simulated. However, comparing the results in the
last two described tests, there can be seen that the time is significantly greater in
case of simulating different clock frequencies. The explanation for this is that in a

PSoC device that runs at a different clock frequency then the virtual clock frequency
of the simulator, its clock frequency must be also simulated. This is a time

consuming process.
The goal for the second set of tests was to determine how the number of

different PSoC clock frequencies influences the simulation time necessary for a CPS
consisting of 81 PSoC devices. First, the CPS network is set to contain PSoC devices
with only two possible frequencies. One frequency was set to 10 MHz and the other
one was set to 20 MHz. The next three tests were performed on the same CPS
network that contains PSoC devices with internal clock frequency chosen from a set

of 4, 6 or 8 possible frequencies. The frequencies were obtained using uniform 10
MHz increments.

Figure 13 shows the simulation time results obtained for a CPS with its
network dimension set to 81 nodes. The clock frequency of each PSoC device was
set to one of 2, 4, 6 and 8 different clock frequencies. As expected, if the number of
possible clock frequencies a PSoC device may have is increased, the simulation time

will increase exponentially. However, for the PSoC devices, a CPS network does not
usually contain more than four possible clock frequencies [26].

Figure 13 Simulation time for CPS with 81 PSoCs using different clock frequencies [26]

BUPT

58 Simulation Models for PSoC Based CPS Applications - 3

The next tests were based on simulating a simple grid-based CPS application

constructed of nodes responsible with periodical measurement and control of the
temperature for an environment [27]. The simulation has ended on a node when the
node has already ended the sensing task for the third time and there is no message
to be forwarded to other nodes or to target point.

The third set of tests has compared the phase shift model with the model for
simulating distributed devices running at different clock frequencies. The author of

this thesis has set for both models two families of distributed devices, each family
having the internal clock frequency set to 50 MHz and 100 MHz, respectively. Based
on the results from Figure 13, he has decided to use only two device families in
these tests. The network size was set to 9, 16, 25 and 49 nodes, respectively. The
greatest common divisor for the model for simulating nodes running at different

clock frequencies is computed to 0.01, and the internal multiplier used for
translating the tick period of each network clock equal to 2 for devices running at 50

MHz, respectively equal to 1 for devices running at 100 MHz [27].
In case of the phase shift model, the clock offset at network’s start-up was

considered having randomly one of the values 0.01 µsec or 0.005 µsec for each
node. In this case, the greatest common divisor is equal to 0.005, and the internal
multiplier used for translating the tick period of each network clock equal to 4 for
devices running at 50 MHz, and equal to 2 for devices running at 100 MHz,
respectively.

Figure 14 displays the simulation time requirements of the phase shift model
compared to the different clock frequencies model. The clock-offset value of each
node at the end of network’s start-up is additionally taken into consideration for
calculating the greatest common divisor. Decreasing the greatest common divisor
leads to the increase of the internal multiplier of each node. This leads to the
increase of the expected number of network periods to pass in order to update the

internal clock value. For both models can be observed that the simulation time
increases with the dimension of the network [27].

Figure 14 CPS simulation efficiency with and without different phase shifts [27]

Another simulation is on a simple grid-based application in which, the node
located at position (0,0) exchanges three consecutive messages with the node
located at the right-up corner of the network [27]. It is considered that the other

BUPT

3.5 - Experimental Results 59

nodes are in idle state and therefore not performing any particular task. This

simplification has been considered in order to exclude the influence of the results
with particular situations in which a node may be in. The application has run on
different CPS’s having the network dimension equal to 9, 16, 25 and 49 nodes,
respectively.

In the first set of tests, the CPS network consisted of two families of nodes
running at 50 MHz and 100 MHz. No clock offset was defined. In the second set of

tests the same families of nodes were considered. The nodes could then choose an
internal phase shift value of 0 µsec, 0.01 µsec, 0.005 µsec, 0.0025 µsec, or 0.00125
µsec.

The results presented in Figure 15 demonstrate that the time required for
the messages to arrive to nodes is increased in case of simulating the clock offset of

each node. The delay can easily increase to significant values if a node implied in
the construction of the communication channel is busy with a particular task. The

delay becomes very important in case of simulating time-constrained distributed
applications. These results show the importance of simulating the phase shift in a
distributed network, where there is no synchronization protocol between nodes [27].

Figure 15 Results for simulating three message exchanges between nodes located in the
corners of a CPS [27]

The next case considered is a CPS application which has run over a network
consisting of devices running at the same frequency and which have had the
network size set to 9, 16, 25 and 49 nodes, respectively.

Table 4 summarizes the results of this case study, compared to the speed-
up model implemented on the same networks. As expected, the time for simulating
the application decreases for the speed-up model and the difference grows
exponentially with the size of the network. The explanation for this is that the

BUPT

60 Simulation Models for PSoC Based CPS Applications - 3

speed-up model does not require the scheduling of the tick messages, but only the

useful ones.

Virtual simulation

time compared to

network size

9 nodes
16 nodes 25 nodes 49 nodes

Without speed-up

model 1038089 1804374 3261379 7481212

Using speed-up

model 4457 11194 25804 78242

Table 4 Simulation of distributed networks having devices running at the same clock frequency
with and without the speed-up model support. The values are expressed in terms of OMNeT++

virtual clock cycles [28]

3.6 Summary

The author of this thesis concludes that the presented models are suitable

for testing and validating with clock cycle level accuracy of dynamic aspects in
massively distributed embedded networks (the units, nodes and the entire network).
CPSs are representative for such networks.

The first model allows testing CPSs composed of PSoCs running at the same
clock frequency. This model allows considering also the simulation time spent for

each call of a middleware function to complete.
The second model allows testing CPSs composed of PSoCs running at

different clock frequencies. The penalty paid using the second model is the growth
of simulation time proportionally with the number of distinct clock frequencies.

The third model can be used for simulating CPS networks consisting of
distributed devices, which have different phase shifts at the end of the network’s
start-up. The test results show that the model is able to update the internal clock

value of each node correctly by considering the clock offset of each node. Moreover,
the scheduling and the rescheduling mechanisms of OMNeT++ simulator are
extended internally by this model to be able to consider correctly the time when the
message needs to be scheduled or to be received. The strong dependency of the
simulation time with the dimension of the network may lead to situations in which
the simulation time increases considerably. The advantage here is that the time

accuracy is maintained higher.
The speeding up model was possible due to separation of times into PSoC

node internal clock time, required overall network time and OMNeT++ simulation
time. This model overcomes the penalty introduced by the previous models. From
the comparison in Table 4 it can be observed that this model is suitable for networks

even larger than 49 nodes, as the simulation time is reduced.

BUPT

Chapter 4. Validation of Static Properties in
UML Model Specifications for CPS
Applications

UML consists of a set of general-purpose modeling elements [4]. It is widely

used for specification, visualization and documentation in various engineering fields.

The author of this thesis has investigated the opportunity of using complete
specification and verification as an efficient approach in case of static properties of

CPS applications, designed using UML models. This research is detailed in [84].
UML models can be customized by defining and using stereotypes, grouped

in UML profiles [85]. Stereotypes contain tagged values and constraints, which add
specific attributes and behavior to the customized UML elements. As already stated,
scientific studies [5] have demonstrated the expressiveness of UML profiles in
defining UML models. Strong points in favor of using UML are also the intuitive
graphical notations, the structuring mechanisms and the standardized methodology

the UML models use.
A major drawback of the UML notation is the lack of mathematical support.

As the UML does not provide a complete syntax, the semantics of UML models
cannot be fully defined and, therefore, verified and validated.

OCL [66] was introduced to describe rules and constraints applied to UML
models. OCL is a declarative language which aims to bridge the gap between the

ambiguity of natural language in which UML models are expressed and the difficulty
of mathematical constructs. However, since the semantics of OCL are not
mathematically defined, using OCL language for expressing UML models is still not

enough for rigorous reasoning [64].
Therefore, in case of considering exclusively the UML, the models cannot be

verified for correctness and completeness. Specification for UML models can be
expressed with the help of rigorous constructs, specified in different languages.

Several tools can use this rigorous specification for verifying the UML models. The
purpose is to prove before deployment that the system will function according to the
expected requirements [86].

4.1 Z Specifications of CPS UML Models

The growing complexity of software dedicated to massively distributed

embedded systems, as CPSs, requires new modeling and programming paradigms.
Visual modeling, relevant use cases and declarative programming are investigated

in various CPS research projects.

Accurate modeling helps system designers to ensure the correctness and
completeness of business functionality and of end-users requests [4]. Models are
useful in evaluation of system robustness, security, stability and extensibility before
actual code writing. This evaluation provides information used to reduce the number

BUPT

62 Validation of Static Properties in UML Model Specifications for CPS

Applications - 4

of errors from the beginning of the implementation. Proper modeling and detailed
system documentation can be the key of an easy extension of the overall project in

case of future requirements.
UML can be used in various steps of the system development lifecycle. At

the beginning it allows high-level specification of the system. Then the level of the
abstraction can be decreased when focusing on the main aspects of the system or
increased back by hiding details in the models [4]. Most UML tools allow switching
perspectives, from a simple element of the scheme to the entire environment where

the application is executed. They make possible visualization of connections
between elements or even connections between related applications. When
combined with MDA, UML is able to automatically generate code.

A major drawback for the verification of UML models is the lack of strong
mathematical support. Therefore, models must be translated in a specification using
a rigorous language. Validation tools take this specification and verify correctness
and completeness of the described system. The Z language has been chosen for

rigorous specification of the UML models for static description, defined in the PIM of
the CPS applications, especially due to its expressiveness and rigor.

The basic principles regarding rigorous specification of UML specific elements
using Z language are summarized next [68]. The focus is on UML deployment
diagrams, as these diagrams are commonly used for the hardware representation of
CPS applications, for units, nodes and network communication.

A schema is a data specification structure and the primary construct of the Z

language. A schema contains two parts. The former is a declaration part, which
contains the local variables and their types. The latter is a predicate part, which
contains predicate logic expressions used to define the relations and constraints
between these variables.

A type is an expression of a restricted kind. Z types can be basic, as given
set names or compound from simpler types. There are three categories of composite

types as Set, Cartesian product and Schema. This means that simpler schemas can
be used in constructing more complex schemas, just like regular variables of basic
types. Types are very important in Z as the type of expressions for a specification
can be automatically calculated to check if the types make sense.

Schemas can be used to model static and dynamic aspects of systems. They
are called state schemas and operation schemas, respectively.

In a state schema, the variables are defined in the declaration part, while

the constraints on the state are defined in the predicate part. These schemas can be
used to represent the hardware specifications for CPSs.

In an operation schema, the input and output variables represent the before
and after states. The relationships between these states are represented in the
predicate part. Operation schemas can be used to specify the behavior for CPSs.

Using Z, the UML deployment diagrams can be represented similar to class
diagrams. Therefore, the author of this thesis presents in parallel the similarities

between rigorous representation of class and deployment diagrams.
A first approach is presented in [72]. It is based on automatically translation

of annotated UML class diagrams in Z specifications. The authors implement a tool
called RoZ, which generates elementary operations and some proof obligations in

order to validate the model constraints. Considering the similarities between class
and deployment diagrams, the author of this thesis has considered that RoZ tool can

be extended in order to allow automatic translation of deployment diagrams into Z
specifications.

BUPT

4.1 - Z Specifications of CPS UML Models 63

According to [71], a class has two distinct meanings. A class intension

defines the properties common for all objects of a class, like attributes and
methods. A class extension defines the class through existing objects of that type.
The UML object diagrams used for the design of CPS applications can be treated as
class extensions. This implies that schemas for class extensions and object diagrams
will be created using the same rules.

Each class can be translated into a pair of schemas. First schema gives the

type for all elements of the class and corresponds to the class intension. Therefore,
it defines the general type of a class. The second schema describes the set of
existing instances of the class in the system. This is achieved through a variable
that records the finite set of all instances for the class. The schemas for class
intension and class extension can be specified manually or generated using RoZ

tool.
A deployment node in a deployment diagram can be considered similar to a

class from a class diagram. Both a node and a class are characterized by attributes
and operations. A class can have instances of other classes as attributes. Also, a
node can contain instances of other nodes as attributes.

Similarly, the schema corresponding to the node intension describes the
types for all elements of the node and the general type of the node. The schema for
the node extension describes the set of existing instances for the node. It includes a
variable that records the finite set of instances for the node in the system context.

The associations are defined in UML as structural relationships between
classes. In a deployment diagram, links can be used to describe communication
between nodes or inside a node. When specifying the design at hardware level for
particular CPSs, the links can describe the physical communication channels. One
link must be specified for communication between each two nodes or each two
components, therefore links are similar to one-to-one associations.

In Z language, each role of the association must be specified by a function.
Each function associates an instance or a set of instances from a class to an

instance or a set of instances from the corresponding class. The constraints specify
that an association binds existing instances of the classes as definitions of the
domain and range for each role. As these constraints involve the extensions for both
classes, the corresponding schemas are included as variables of the schema
describing the association. The final constraint states that both functions are linked

and they contain the same information.
The schema for representing a link in Z language differs from the one

representing an association. Each function associates an instance of a node to an
instance to a corresponding node. When generating Z specifications using RoZ,
composition is considered a special case for an association. The corresponding
schema follows the translation rules for the association, as described above.

 In [78], UML definitions are used to describe UML aggregation in Z

language. UML aggregation is a special type of association, which indicates a lifetime
dependency between the parts involved. There are two types of aggregation in UML,
physical and catalog aggregation. In a physical aggregation a part instance only
belongs to one aggregate instance, while in a catalog aggregation, there is no such
restriction.

In a Z schema for physical aggregation, some specific rules must be

considered. The variable part contains the set of instances that has been created in
the system and not yet destroyed. To express this, the predicate part must define
some conditions. First, two elements from a set of instances are instances of the
same class if they have at least a part common. Next, all parts of aggregate

BUPT

64 Validation of Static Properties in UML Model Specifications for CPS

Applications - 4

instances must come from the set of existing instances. All created instances of the
part classes must be part of the created aggregate instances. Moreover, the schema

must contain a predicate for expressing the uniqueness of object identifiers.
In case of a Z schema for catalog aggregation, the restriction is that created

instances of the part class must be part of created aggregate instances. Therefore,
the instances of part class can be part of one or more created aggregate instances.
The identifiers of the instances must also be unique.

In Z specifications, the superclass of a generalization structure is specified in

the same way as a regular class [78]. The subclasses are considered subspaces of
the superclass instance space. The Z state schemas for these subclasses contain
also a variable of the superclass type. Additional constraints must be stated for a

given hierarchy of classes. A Z state schema containing instances of both
superclasses and subclasses must clearly state that all already created instances of
the subclasses are also instances for the superclasses. As in case of aggregation,
the schema will contain a predicate for expressing the uniqueness for object

identifiers.

4.2 PVS Specifications of CPS UML Models

As discussed in the previous subchapter, the Z language is a common

solution for rigorous specifying UML models for different types of applications. Z
specifications can describe most object-oriented concepts. However, they must
explicitly capture the object-oriented semantics and the modeled concepts [71].
Using Z language implies a strong mathematical background when constructing

schemas. It is also limited in handling dynamic aspects for the systems. And, most
important, there are no generally accepted tools for proving Z statements.

An alternative to Z language in describing UML structures is PVS [79]. The
PVS tools have been developed for both description and verification of rigorous
specifications. This system consists of a specification language, a type checker, a
theorem prover and some other additional tools. The specification language can
directly support reasoning about infinite traces, which is helpful in the verification

process. The PVS theorem prover allows verification of the theorems defined along
with the theories for a certain system.

A PVS system specification consists of theories. Theories can contain defined
types, variables, constant declarations, definitions, axioms and theorems. A theory
can be parameterized and specific constraints can be defined on the parameters.

PVS tools are characterized by a well-defined type system. Along with basic

types, it includes type constructors like functions, sets and records. Also, complex
predicate subtypes and dependent types can be defined. The type checker
automatically verifies type correctness and generates, if necessary, proof
obligations. These proof obligations are called type correctness conditions (TCCs).
After the proof obligations are satisfied, the user has the certainty of correctness
and completeness of the defined types.

A main advantage in using PVS tools for specification and validation of CPS

UML models resides in expressivity and power of the specification language. Indeed,
this system is capable to easily express most of object-oriented statements. The

BUPT

4.2 - PVS Specifications of CPS UML Models 65

type checker and theorem prover ensure a step-by-step verification for the

components of the theories describing the applications.
As already stated, the UML deployment diagrams are the used constructs for

CPS representation at hardware level, in the described visual programming model.
In the context of rigorous representation, elements of deployment diagrams can be
represented similarly to the ones of class diagrams.

An UML class diagram is represented in PVS by a theory that contains

theories for all class elements, as discussed below. An interface can be represented
using a theory that contains a declaration of a record type [63]. The fields in the
record type are in this case the signatures for the externally visible operations in the
interface.

The signatures for the operations of a class are represented similarly to the

operations for an interface, using a PVS record type. The record type contains also
fields that are declarations of the attributes of the class. If a class is a subclass of

another class and/or it implements one or more interfaces, the record type defined
must include fields for the attributes and operations of all superclasses and/or for
the operations of all implemented interfaces. The record type for the theory
represents in this case a union between the record type for local attributes and
operations and the record type for imported attributes and operations. The types
defined in the superclasses and/or interfaces are accessed using the importing
mechanism. The same rules for representing a class can be applied to nodes in

deployment diagrams, as nodes are also characterized by attributes and operations.
The objects of the class, represented in UML by object diagrams, become in

PVS specification language instances of the record type of the theory.
In fact, all notions from UML class diagrams can be easily translated to PVS

specification language. UML template classes correspond directly to PVS
parameterized theories. Adding an axiom to the corresponding theory specifies an

UML abstract class if it states that the set of all instances for the abstract class is
empty.

In [63], the authors define a generic parameterized theory as template for
class diagram associations, generalizations and aggregations. This is an efficient
solution to represent class diagram elements, as it only requires a rigorous
definition for a single theory for all the elements.

In the context of a generic parameterized theory, the list of generic

parameters contains the classes whose instantiations are involved in the association.
It contains also the corresponding roles of the objects and the multiplicities as
subset of the natural numbers. To define the multiplicity, the theory should include
an axiom regarding the number of instances of one class that can be associated to a
corresponding class instance.

Resulting instantiated theory is a relation on a set of objects of the
corresponding classes. The direction of the association is given by the order of

objects in the instantiation. This generic parameterized theory for unidirectional
associations can be then modified to support bidirectional associations by replacing
the ordered pairs with corresponding records. The record fields are in this case the
classifier, the multiplicity and the role.

Links from deployment diagrams are represented through instantiation of
defined generic associations. The rule applied in this situation states that links are

one-to-one associations between nodes or components of a node, with multiplicity
equal to 1.

A naming conflict can occur during instantiation of generic template theories
when variables or types with the same identifiers are declared. An attempt to solve

BUPT

66 Validation of Static Properties in UML Model Specifications for CPS

Applications - 4

this problem is presented in [63]. Here, the authors use PVS theory abbreviation
mechanism. This mechanism relies on theory name prefixes added to relations that

specify associations.
Aggregation can be represented in PVS using the same generic template

theory described above in this subchapter. In this case instantiating the theory with
a whole class and a part class is required.

For generalization, the superclass is represented in PVS specification
language like any other class. However, there are differences in case of subclasses

as they are represented as theories that import the theories of the superclasses.
These subclasses theories define a record type that includes imported attributes and
operations, along with local defined ones.

In case of composite structure diagrams, the PVS representation follows the
same rules as in case of class diagrams. Similarities between classes and composite
structures go from variable declaration section to association between UML
elements.

OCL constraints can be easily represented and verified in PVS tools. They
are a common method to specify requirements and restrictions on stereotypes
defined in UML profiles. Since the UML profiles are important for the design of CPS
applications, this is another strong reason of using PVS for specification and
verification of CPS UML models.

OCL is characterized by three-valued logic. For representing this in PVS, it
has to be encoded into two-valued logic. Another aspect that should be considered

is the fact that OCL uses partial functions, while PVS tools allow only total functions.
The OCL formulas are translated directly into the PVS specification language.

However, some special cases have to be considered. They include partial functions,
OCL semantics and undefined values [83]. Partial functions can be translated to
total functions by restricting the partial functions to their domains. Therefore, the
domain for each of the partial functions must be specified. Recursive user-defined

OCL functions can be directly translated to PVS specification language if a ranking
function in the PVS output is specified. The problem in this case is that OCL does not
define such termination functions.

The OCL expansion using conjunctions or disjunctions of universal and
existential quantification can lead to possible infinite values. It can be considered as
an example the set of all existing instances for a class or a node. In this case, the
quantified expression must be translated with the return type true. This approach

eliminates the undefined return type from OCL.

4.3 Case Studies

The general guidelines described in the previous subchapters are applicable

to most CPS UML models. In this subchapter are considered some case studies
starting from several examples found in literature. For the first example, the author
of this thesis has used the Z language to specify the systems. For the last example,

the author has used PVS specification language. RoZ tool [72] has been used as

support for Z specification. As stated earlier, it allows automatically generation of Z
schemas for the UML class, object and deployment diagrams along with the
elementary operations.

BUPT

4.3 – Case Studies 67

4.3.1 Z Specification: Case Study of Adaptive Unsharper
Image Filter

The first case study is focused on identifying all required steps for rigorous

specification. The considered example is the Adaptive Unsharper Image Filter

system presented in [47]. This is a filter that enhances the contrast of an input color
image. To model this embedded system, defined UML profiles at both hardware and
software level are used. The first step in verifying the resulted model is to
investigate the possibility of translation of the stereotyped UML representation into a

specification in Z.
However, the intention for this case study is not to provide the complete Z

schema for the Adaptive Unsharper Image Filter application. Instead, the goal was

to determine and to detect the impact of the number of stereotypes used for
defining an application over the time necessary to validate that application using Z
language. Subchapter 4.4.1 analyzes these aspects and presents the conclusions for
this case study, focusing on verifying the physical context constraint in which the
image filtering operation has to be executed.

The rigorous specification flow starts with defining the Z types required by

the system configuration. Thus, the hierarchy of UML stereotypes must be
translated into Z language. The specification of a stereotype is similar to Z schema
for class intension. Stereotypes that are specialization of other stereotypes must
include the Z schema of the latter stereotypes in the variable part, as schema
invocation. As a result, pt_struct stereotype defined in [47] is a specialization of the
pt_module stereotype. Therefore, the Z schema for pt_module stereotype must be
defined first and then included in the variable part of the Z schema for pt_struct

stereotype.

Considering the example, types like SEM_T for logical semaphores,
IMAGE_TP for the image which needs to be processed, SPLIT_IM and UNION_IM for
splitting into red\green\blue colors and reconstructing the image, respectively, are
defined using Z schemas. These particular defined types are not described in detail
as the scope is here to identify the required steps for a specification of the
UNSHARP_IM module type.

In Figure 16 the Z specification of UNSHARP_IM module type of the Adaptive
Unsharper Image Filter example is illustrated. All defined modules are customized
using pt_struct stereotype. This implies that the Z schemas for all modules
intensions must contain the Z schema for the stereotype, as variable. In this case it
corresponds to pt_struct stereotype. To facilitate visibility, only variables that are
relevant for the presented flow were presented in Figure 16. Figure 16 (a) presents

the Z schema for the intension of the UNSHARP_IM module type. Figure 16 (b)
depicts a Z schema for the module type extension.

Each functionality provided by one of the system’s modules needs to be
described in its own corresponding Z schema. As an example, Figure 17 presents
the schema for doFilter operation provided by the UNSHARP_IM module type. The

first line in the variable part of doFilter schema indicates that the effects of this
operation are limited to modification of UNSHARP_IM module instances.

The below presented methodology must be applied to each new stereotype,
module and functionality involved in application specification as described already.

BUPT

68 Validation of Static Properties in UML Model Specifications for CPS

Applications - 4

Figure 16 (a) Partial Z specification of the UNSHARP_IM module type; (b) Partial Z

specification of the set of instances for UNSHARP_IM module type

BUPT

4.3 – Case Studies 69

Figure 17 Partial Z specification of doFilter operation

This represents in the end specifying the Z schema for the entire
application. The resulting application schema will contains references to all schemas
defined for stereotyped modules and nodes. It also contains references to all
relations defined between nodes.

4.3.2 Z Specification: Case Study of a Sensing Node Model

In the previous subchapter, the author of this thesis has presented rigorous

specification at stereotype level and introduced Z specification at the node level.
Here, he details Z specification at the node level in a CPS application. As case study
we consider the system presented in [16]. It describes a CPS for traffic

management in a regular urban intersection.
This application contains several types of nodes. A decision node computes

optimal green color duration for each traffic light node. The calculations are based
on the information provided by the sensor nodes. The sensor nodes from the

presented CPS gather information about the number of cars waiting at the red color
of the semaphores.

Each node specification is composed of hardware and software models. The
hardware model is customized using stereotypes of the UML profile detailed in [16].
The communication between the hardware units of a node is wired. The nodes also
communicate through wires.

Figure 18 presents the UML model of hardware configuration for the sensing

node used in this CPS.
The specification of the sensing node internal architecture is expressed using

a UML deployment diagram. The UML components are instances of deployment
nodes. These artifacts are customized with stereotypes, which hold constraints
related to different unit types used. The internal hardware connections and the
external connection with the corresponding traffic light node are also visible in this

figure.
The internal hardware structure of the sensing node is described following

the guiding rules for the representation of class diagrams, as described in
subchapter 4.1. In this case, the rules are applied to deployment diagrams.

BUPT

70 Validation of Static Properties in UML Model Specifications for CPS

Applications - 4

Figure 18 UML model for hardware configuration of a sensing node

A set of Z schemas is defined for each deployment node stereotype. Each
schema is named according to the stereotype name. The variable part of it contains
all tagged values defined by the stereotype. The predicate part contains the OCL
statements expressed using Z language.

Figure 19 presents the tagged values and OCL constraints of the Can_HWST
stereotype used in this case study.

Figure 19 OCL Constraints for Can_HWST stereotype

The Can_HWST stereotype defines the communication ports for the

component it customizes. As the focus in this example is on the Z specification at
sensing node level, this stereotype is considered being represented in its
corresponding Z schema. As presented in the previous subchapter, the Z schema of
the sensing node’s CAN unit contains the Can_HWST schema as a variable. This
variable indicates the corresponding stereotype. The Z specification prover tool will

later determine whether the stereotyped component is correctly customized with its
corresponding stereotype in terms of variables and constraints.

In Figure 20 (a), the variable part of the SENSINGNODE_WIRED schema

defines the sensing node type along with its internal hardware unit types. For each
of these components, a Z schema has to be also provided. Figure 20 (b) describes
the set of existing sensing nodes types inside of the network. Figure 20 (c)

illustrates a concrete instantiation for the node already presented in Figure 18.

BUPT

4.3 – Case Studies 71

Figure 20 (a) Z specification of the SENSINGNODE_WIRED node; (b) Z specification of the set
of instances; (c) Z specification for a particular sensing node type

As presented in Figure 20 (c), SensingNode_Wired is an instance of the

SensingNode type and expresses a concrete node used in the CPS network. It also

contains the actual instantiations for the internal node unit components. The
connections between these units are described using Z functions.

The links between nodes in the deployment diagram or between
components of a node are represented using functions defined for both roles of the
association. The constraints are meant to define the domain and range of these
functions. The constraints also define the fact that both functions are linked and
they refer to the same information. More details about possible types of connections

are provided in the paragraphs of subchapter 4.1 describing the UML relations
between two nodes in a deployment diagram.

In Figure 21, the author of this thesis presents the Z specification for the
bidirectional link between a sensing node and its corresponding traffic light node.

BUPT

72 Validation of Static Properties in UML Model Specifications for CPS

Applications - 4

Actual values for the domain and range of these functions are set in the
network specification. The network representation at physical level contains the

schemas of node intensions and node extensions for all nodes in the traffic network,
along with the links between nodes. These schemas are represented also as
functions.

In this case study, the focus is on specification and validation of the
application at the node level, therefore the network schema is not presented in
details. Based on presented specification steps for a CPS node, specification of the

network schema becomes intuitive.
Subchapter 4.4.2 covers the validation process of the elementary operations

generated using the RoZ tool [72]. The generated elementary operations along with

the evaluation are discussed there in more details.

Figure 21 Z specification for relationship between sensing nodes and traffic light nodes

4.3.3 PVS Specification: Case Study of a WSN Monitoring
Application

To investigate problems in specification of wireless communication in a CPS

at network level, the author of this thesis has considered an application for a gas
distribution monitoring system. Various references present such kind of applications.
However, they consider different approaches in handling the monitoring issues. For
example, in [87] the authors present a type of pipeline leak detection and also a

localization method based on hierarchical model pattern. In this subchapter, the
author of this thesis discusses the case of a monitoring system application for an
urban gas distribution CPS network, introduced in [88].

A gas distribution system requires a large number of interconnected pipes.
Therefore, to manage such a large network a great amount of sensors is required,
along with local management nodes and valve actuators. Compared to a real gas
management application, the example presented here tries to minimize the usage of

BUPT

4.3 – Case Studies 73

nodes. The aim is to keep the network as simple as possible, for a better

understanding of how is it topologically structured. This allows revealing the benefit
of using PVS tools for evaluating such CPSs. The author of this thesis has chosen
PVS tools because it is easier to specify and verify complex networks using PVS
specification constructs, along with type checker and theorem prover.

The gas pipes network presented in [88] is modeled first using UML. One
particularity of this case study is the usage of wireless communication between

nodes. Wireless communication operating frequency is considered in ISM band.
Basically, a stereotype inserts its tagged values as mandatory attributes for the
customized node. As an example, the author presents the tagged values inserted by
CompoundNode_PIM stereotype. These tagged values are shown in Figure 22.

Figure 22 UML deployment for sensing node [84]

When deploying such nodes, it is necessary to specify the position (x, y, z),
transmission and reception parameters for the node. The application goal is to
control the gas flooding in case of pipe leaks. Due to the need of an efficient
monitoring, the network has been logically tailored into perimeters, zones and
areas. For expressing this tailoring at UML level, stereotypes definitions are required
for each modeling level. The OCL constraints for these stereotypes express their
meaning. Next, for better understanding, the author of this thesis presents these

OCL constraints in natural language.
A grouping stereotyped with Perimeter expresses a set of nodes containing a

single instance of a node customized with DM_PerimeterCompoundNode_HWST
stereotype. All the other nodes are instances of nodes customized with
CompoundNode_PIM stereotype.

The Zone stereotype expresses a set of nodes containing a single instance of

a stereotype named DM_ZoneCompoundNode_HWST whereas all other nodes are
stereotyped with Perimeter or are instances of CompoundNode_PIM stereotype.

The Area stereotype expresses a set of nodes containing a single instance of
a node customized with DM_AreaCompoundNode_HWST stereotype. All other
contained nodes are stereotyped with Zone or Perimeter or are instances of nodes
customized with CompoundNode_PIM stereotype.

BUPT

74 Validation of Static Properties in UML Model Specifications for CPS

Applications - 4

The communication between areas and zones, zones and perimeters and
perimeters and nodes is enssured using beacon approach [89]. In order to focus on

relevant aspects in our discussion, it is considered the simplified example of
unidirectional communication: areas communicate to zones, zones communicate to
perimeters, whereas perimeters communicate to sensors and valves. Figure 23
shows the UML model of this CPS. Similar to the approach presented in [63], the
author of this thesis has represented the stereotypes in PVS specification language.

Figure 23 UML model for distributed gas monitoring topology

Figure 24 depicts stereotypes used for defining the network physical nodes
as PVS theories. For each of these stereotypes the author of this thesis has defined
a record type, where the fields are declarations of tagged values. When necessary,
signatures of operations are also included in the record type. As in this case study it
is considered a specific scenario in which the definitions at area level are evaluated,
Figure 24 displays only the relevant tagged values for each stereotype.

The X, Y, Z types are subsets of integer values expressing the bounding box
of the network’s deployment area. Generally, in PVS the types defined in a theory
are available to other theories by the importing mechanism. The inherited tagged
values and operations are used along with local defined tagged values and
operations.

The author of this thesis proposes the same approach of importing types
and usage of attributes for defining stereotyped nodes. Thus, the theory describing

the stereotype is imported in the theory describing the node itself. This ensures

availability of the stereotype record type in the node theory.
Figure 25 presents stereotypes used for describing the tailoring of the

network as PVS theories. All of them are based on the previous specified theories.

BUPT

4.3 – Case Studies 75

Figure 24 PVS Theories for CompoundNode, PerimeterDM, ZoneDM and AreaDM stereotypes

Figure 25 PVS Theories for Perimeter, Zone and Area stereotypes [84]

In this subchapter, the author of this thesis has shown how PVS language

can be used to specify subsystem parts of CPS applications. The entire system can

be specified in the same manner. In subchapter 4.4.3 it is discussed how verification

BUPT

76 Validation of Static Properties in UML Model Specifications for CPS

Applications - 4

can help detecting lacks in initial specification. This task is accomplished with the
help of PVS type checker and theorem prover.The aim is to adjust UML models

before starting the development process.

4.4 Verification of CPS UML Specifications

The previous subchapter has detailed how CPS UML models can be

represented using Z and PVS specification languages. The aim is to use rigorous
specification for model verification. Through verification, one can check the

ambiguities, the correctness and the completeness of the UML models.

4.4.1 Verification of Z Specification for Adaptive Unsharper
Image Filter

Z is a well-defined language, displays a precise semantics and can be used

to represent object-oriented constructs. The validation of Z specifications implies

usage of a specialized proof tool.
The UML model and Z specification of the UNSHARP_IM module type from

the Adaptive Unsharper Image Filter [47] were presented in the subchapter 4.3.1.
The verification of Z descriptions should consider the constraints defined for

stereotypes used in customizing modules. To facilitate this procedure, constraints
are expressed similar to Z schemas for operations. Z schemas for customized
module types will be verified against these Z schemas for constraints. Proof

obligations are then generated from specification analysis. The process can be

automated using existing verification tools for Z specifications.
The duration of the verification process for Z specification is influenced by

the size of the specified constructs for the system. If each module and component is
customized using different stereotypes, the specification code size will increase
significantly. In the Adaptive Unsharper Image Filter case study, all modules are

customized using pt_struct stereotype, which allowed maintaining the size of the Z
specification at reasonable levels. This led to a better verification time, compared to
other applications of the same complexity and which require defining larger number
of schemas for their contained stereotypes.

4.4.2 Verification of Z Specification for the Sensing Node
Model

Each type of UML diagram construct can be manually transformed into

rigorous specifications using the set of rules described in subchapter 4.2. This
process can be optimized using dedicated tools. RoZ tool [72] generates a complete
Z specification from an annotated UML class diagram. This approach was presented
in detail in subchapter 4.2. RoZ tool can also generate specifications of elementary

BUPT

4.4 – Verification of CPS UML Specifications 77

operations over the UML elements and proof obligations. A common example of

such elementary operations deals with modification of class attributes. This is
significantly helpful in validation of the UML model constraints.

As deployment diagrams can be specified similarly to class diagrams,
modification operations can be generated for attributes of deployment nodes.
Following the same reasoning, modification operations can be also automatically
generated for attributes of composite structure diagrams.

As a method for determining the impact of defined operations over the UML
model constraints, the author of this thesis has used computation of corresponding
operations preconditions. This implies determining the conditions that must be
satisfied before the operations takes place. The aim is to preserve the constraints at
the end of the operations [90].

When considering the traffic management example from the previous
section, there are several operations that can be analyzed in the model.

Figure 26 (a) Z specification of ModifySensingUnit operation; (b) Z language statements for
sensing node model; (c) Z language statements for sensing node model; (d) Z language

evaluation of sensing node theorem

BUPT

78 Validation of Static Properties in UML Model Specifications for CPS

Applications - 4

For flexibility, the model ensures the possibility of modifying sensing unit
types at the sensing node level. Therefore, a sensing unit from another producer

could replace the unit included in the original design, which results in a new type of
the sensing node.

For simplicity, only ModifySensingUnit operation is discussed, which is
described by the Z operation schema from Figure 26 (a). The first line in the schema
delimitates the domain of the effect of this operation to objects of type
SENSINGNODE_WIRED. The predicates state that all attributes keep their initial

values except for the one representing the sensing unit. This attribute receives the
value of the newSensingUnit_SensingNode input parameter. The precondition for
this operation verifies the existence of values for the new types of sensing units.

Figure 26 (b) presents this precondition represented as Z specification.
Furthermore, the information can be used to describe a theorem used to

validate the precondition. This theorem is depicted in Figure 26 (c). This theorem is
generated using the RoZ tool.

To validate Z theorems, several tools were proposed in literature. The
author of this thesis uses in his work the Z-EVES theorem prover [77], similar to
authors of [72]. The commands required for proving the precondition for the
discussed operation demonstrate the validity of the defined precondition, as
presented in Figure 26 (d).

4.4.3 Verification using PVS Tools of a Wireless Network
Area Model

In case of UML models, rigorous specification is followed by verification, with

the support of PVS tools. The author of this thesis considers the example of the gas

distribution network presented in Figure 23. The system designer has already

defined for it the position of each node and the physical parameters described in
Figure 22. For a complete specification at the hardware level, the author of this
thesis considers also the OCL constraints from the definitions of perimeters, zones
and areas, along with the specific OCL constraints for nodes.

However, the constraints do not evaluate the ability of the dma, dmz1,
dmz2 and dmz3 nodes to communicate. There is no guarantee at this point that
nodes are in the communication range of each other and a valid route can be

established. To ensure this functionality, one needs to evaluate the values of the
parameters implicated in the construction of the transmitting-receiving signals in the
specific application context. The application context is the sum of all constraints of
nodes implied in communication. Depending on these values, a possible situation is
when dma node is able to communicate to dmz3, but the transmission cannot reach
dmz2 or when dmz3 node cannot receive of the signal correctly due the weak
antenna sensibility of dmz3. Robust verifications are required to avoid these cases

at design time, before the effective deployment of the CPS.
Signal transmission in wireless networks is influenced mainly by the signal

frequency, path loss, receiver sensitivity and noise. Path loss, known as attenuation,
is influenced by deployment configuration, distance between the transmitter and the
receiver, height and location of the antennas, obstacles and weather conditions

BUPT

4.4 – Verification of CPS UML Specifications 79

[91]. The power of the received signal is gained by multiplying the power of the

transmitted signal with every attenuation mapping.
In literature, several propagation models are used to estimate the radio

signal propagation distance. These models rely on information specific to a
considered scenario. One of main challenges is to collect sufficiently large data to
cover different situations in the scenario. For complete verification of the system,
one needs to consider a proper radio model in PVS theory. The appropriate radio

model is chosen based on the application’s specific operating environment, the
existing obstacles and the technology used to implement wireless communication
[91].

The author of this thesis starts his investigation with a simplified radio
model as described in [92] and presented in Figure 27 (a). This tiny radio model

does not take into consideration obstacles and other environment limitations. Figure
27 (b) details the theory used to evaluate the capability of the decision module of

the area to communicate with the zones included in its boundaries. Changes in radio
model to take into consideration obstacles have no direct influence on the already
specified PVS theory used for evaluating the area transmission.

Figure 27 (a) PVS Theory for dma model; (b) PVS Theory for a tiny radio model

Conditions for calculating the communication capacity are expressed in form

of PVS theorems. These become objectives to be verified using PVS theorem prover.

Type checking is a precondition for the evaluation of the theorems. It represents an
intermediary step between a completely specified theory and theorem proving. The

BUPT

80 Validation of Static Properties in UML Model Specifications for CPS

Applications - 4

PVS type checker searches for semantic errors, like ambiguous types or undeclared
variables in the theory.

In DMA_Theory, the receive function determines if an external node is in the
receiving range of the considered node. The decision is based on the receiver
sensitivity. In this specification, verification determines if the node with which dma
wants to communicate is in dma’s range, based on evaluation of receive function. In
this case, the evaluation of checkCommunicationWithAllNodes theorem fails.

An extended model is presented in Figure 28. It includes also the sensitivity

of the receiver in the theorem condition.

Figure 28 Corrected PVS method for validating the dma model [84]

The author of this thesis concludes that performing rigorous verification of

all theorems defined for CPS model ensures a proper validation of the assumptions
made in design. Initial decisions risk to remains incomplete without the help of PVS
theorem prover.

4.5 Summary

CPS applications are present nowadays in various fields of activity. High-

level UML modeling is a promising approach. A deficiency of UML informal language

used to express CPS models resides in lack of support for automatically verification
and validation. Although OCL offers expressiveness in UML design, it is not enough
for a proper validation. Rigorous specification of UML models is therefore required.

The author of this thesis has presented in this chapter a research on using Z
language and PVS tools to specify and verify CPS UML models. He uses Z as it
provides a rigorous mathematical specification. As there are no general accepted
tools to verify Z specifications, he uses Z to specify examples of reduced complexity.

To overcome the lack in complex verification tools, the author of this thesis
considers PVS as an alternative. PVS consists of a specification language, a type
checker, a theorem prover and additional tools. The author has demonstrated the
advantages of PVS in a more complex reasoning, involving specifications for large-
scale CPS models based on wireless communication. From this perspective, Z
involves a strong mathematical background, while PVS is more close to

programming languages and object-oriented design.

The author of this thesis concludes that CPS UML design can benefit from
using OCL constraints to improve model expressiveness but the correctness and
completeness of models require rigorous specification for automat verification and
validation.

BUPT

Chapter 5. Handling Event-Driven Scenarios
in CPS Applications Simulation

Event-driven simulators for distributed applications are preferred instead of

other types of simulators for several reasons [93]. These reasons are the

simulation time control facility in different points of the simulation process and the

possibility for elaborating specific simulation scenarios. The simulation time control
facility allows the developer to analyze the overall status of the distributed
application, at specific simulation time.

When using such simulators, simulation scenarios can be defined in a
consistent manner, having the same network behavior and results over several

runs. Re-running already defined simulation scenarios when the business logic
implementation changes, allows behavior comparisons and performance analysis on
the distributed applications.

However, there is no general format for specifying simulation scenarios for
distributed applications. The simulation scenarios are very application specific and,
based on the goals of the distributed application, can be specified using different
formats.

5.1 Event-Driven Model Specification

The observations of the author of this thesis regarding common situations in
which events are sent by a device determined the event-driven model specification.
The common situations behave similar, in patterns, for the time for sending or
changing the state on the corresponding device. The event-driven simulation of a
particular device is commonly developed as state machine pattern. Based on a
particular list of recognized events, the device can change its state, can start a

particular task or can send other events to other devices.
This first aspect is expressed in Figure 29, as an XML-based event-driven

model. The devices which communicate with each other are identified by their
name. In case of wireless communication, they are also identified by their network
address. Each device must specify a list of its internal possible states, in which that
device can be found.

For each state, a transition list to other states must be defined, along with

the list of recognized received events at which the device being in that state should
react to.

Figure 30 details the specification of the transition list. This list consists of
the possible conditions for entering a new particular state. These conditions for a

transition can be defined as a list of particular recognized received events or as a
maximum time the device can remain in the current state. Both these conditions

sets can be fulfilled. However, the first condition to occur will trigger the transition

BUPT

82 Handling Event-Driven Scenarios in CPS Applications Simulation - 5

to the next defined state. As from one state a device may get into several possible

other new states, for each possibility a transition must be defined.

Figure 29 XML specification model for known devices and their possible internal states [93]

Figure 30 XML specification model for the transition list of a particular

internal state [93]

Figure 31 presents and details the list of recognized events for which the

system can react by sending new constructed events to the other devices. The
recognized events can be of two types: external sent events from other devices or
internally scheduled events.

When the device is in a particular state, each event for this device contains

the following properties: the event type, which is specified by the name tag, the
input receiving gate through which the device gets the event, the index of the gate
used for a vector receiving gate, and, optionally, in case of wireless
interconnections, the device network address which has sent the event. The device
can react differently on two events with identical names and can make the
difference between them, based on the other receiving parameters.

In such a case, the reaction on the device side consists in a list of events

which need to be triggered. The user can define a delay by specifying the timeout
value, from the time when receiving an external event and the time for sending
events to other devices. By default, the timeout value is left empty and the device
will react immediately.

BUPT

5.1 – Event-Driven Model Specification 83

Figure 31 XML specification model for the possible events and their particular timestamps of an
internal defined state [93]

Discussing the eventsList tag, particular moments from the period when the
device is in that particular state can be defined using timestamp tag definition. If
the timestamp is set to zero, the list of external events required to be triggered
must be taken into consideration, at the moment when the device enters in that
particular state. If timestamp is set to minus one then, the device will trigger the
events found in the encompassing triggeredEventsList tag, by exiting that particular
state.

Figure 32 XML specification model for the possible events to be triggered in case of a
recognized event or timeout occurrence of an internal defined state [93]

BUPT

84 Handling Event-Driven Scenarios in CPS Applications Simulation - 5

The developer is allowed to define special moments for sending external

events. This can be done by setting the timestamp value equal to the period
necessary to pass from the moment when the device enters in that particular state.
The attributes required to define a list of external events to be triggered for the
previous described situations are detailed in Figure 32.

Each event must have a format. Here, the format is the message string
required to be sent, concatenated with formatting specifications for inserting

particular data into the message. The formatting specifications are similar to C/C++
input-output formatters (“%s” or “%d”). The output gate parameters must be
specified after constructing the event string required to be triggered. In case of
wireless communication, a list of destination addresses describing the devices which
will receive the events can be composed.

The discussed solution for describing the event-based specification
represents an effective manner for displaying the flow of the events and their

interactions. Based on the discussed descriptions, event-driven scenarios can be
deployed and updated very easily.

5.2 Event-Oriented Programming Model

An event-driven programming model must be defined, in order to complete

the event-driven specification. This programming model must be able to handle a
particular scenario designed by the developer. The event-driven programming
model must follow the state machine pattern. The reason for this requirement is

that most of the event-driven simulation applications are written as event reactive
applications, based on this pattern.

Figure 33 defines in pseudocode a states manager. Some actions need to be
taken, when changing the current state to a new one.

First, the manager calls the onExit() method on the old state, and allows it
to make modifications before exiting. Next, it changes the current state to the new

requested one. In order to perform particular initializations, the manager calls the
onEntry() method on the new already set state. Then, it calls the performAction()
method. This method is responsible with the state’s main job.

Figure 33 GenericTaskManager implementation in pseudocode [93]

BUPT

5.2 – Event-Oriented Programming Model 85

The pseudocode implementation, called GenericTask, of the proposed event-driven

programming model is presented in Figure 34. This model is the basic implementation of a
state. The code is structured based on the reusability and extendibility principles. The user is
responsible for extending this implementation to particular states for a device. This can be
done by adding customized implementation for the abstract methods defined in Figure 34.

While using these principles, the effort for elaborating particular application dependent devices
behaviors is reduced. The development models presented in [26] and [27] are based on the

same principles.

These models, used together with the presented event-driven programming
model, dramatically reduce the application specific code that needs to be written.

Figure 34 Pseudocode implementation for the event-driven programming model [93]

The author of this thesis details the possible implementations in a particular
state, for each abstract method defined in the basic state. performTask() method
has been already discussed. The handleExtInEv() and handleIntInEv() methods are
called each time an external incoming event or an internal scheduled event are
received, respectively.

By implementation, the user can create particular behavior responsible for

internal updates or modifications of contained variables. Also, the user is responsible
for retrieving a Boolean answer in case of correct detection of the event type. In
the constrExtOutEv() method, the developer must define specific implementations
for the event formats recognized by the state. The method must return the

formatted event text, which contains the message string concatenated with the
replacements for the format specifications.

BUPT

86 Handling Event-Driven Scenarios in CPS Applications Simulation - 5

Regarding the business logic implementation of GenericTask, when the

onEntry() method is called, the transition chain for this state is read and an internal
representation of it is stored, for future use, in a transition scheme.

As a next step, the programming model verifies if there is any timeout
defined and schedules it. Timeouts are the periods during which the device must
maintain the current state, along with timestamps defined by the developer for
triggering particular lists of external events. If defining a state timeout, the user

must not define a timestamp greater than the timeout already set, otherwise the
timeout will not be taken into consideration by the schedTimeout() method.

The code calls the triggerExtEvIfAny() method to verify if there is any
timestamp set to zero for a list of external events to be triggered. Such a situation
means that by entering in this new state, the developer wants to send the external

events list. By calling the same triggerExtEvIfAny() method, the onExit() method
checks if there is any timestamp set to minus one for an external event list.

The method triggerExtEvIfAny() is responsible for detecting the external
events list mapped to the event received as parameter from the constructed
transition scheme. The event parameter can fetch a timestamp or can be an internal
scheduled or external event received by that device. If finding any external events
list to be triggered, it sends those events through the specified gates and gate
indexes. The method uses the specified device destination addresses for each event
from list, if set.

The main method of the event-driven model is the handleEv() method. First,
it checks the type of the received event. This event can be an already scheduled
event, a timeout event, a timestamp event or an external received event. For an
already scheduled event, the method calls the customized implementation of the
method handleIntInEv(). If the received event is an external one, the method calls
the implementation of the method handleExtInEv() from the particular state

extension. If tge event if of type timeout or timestamp, no specific handling is
required at this step. Next, independent of the event type, the triggerExtEvIfAny()

method is called. After triggering any possible external events list, it calls
checkIfChangeToState() method to check if a change to another state is required to
be performed.

The next possible state verification is performed in the
checkIfChangeToState() method. First, the method verifies if the event is of external

or internal scheduled type. If the result is positive, the method checks if the
corresponding transition list of the current state contains the event. If a timeout
event type occurs, the state’s timeout tag is checked to see if a change to a new
state is required, based on the period finalization. In both cases, the method will
cancel any timeout events before starting the GenericTaskManager’s state change
method. If exiting the current state, the manager will handle the call of the onExit()
method of the current state.

The discussed event-driven programming model can be implemented in any

event-driven simulator. Once designed, this programming model can be reused in
other distributed applications.

BUPT

5.3 – Experimental Results 87

5.3 Experimental Results

The tests were focused on the reduction of the number of lines of code
required for simulating distributed applications. For simulation, the author of this
thesis has used the OMNeT++ framework. The experiments were focused on
reasonable-sized networks. Clear illustrations of the advantages in using this model
can be obtained with simpler experiments. The majority of the event-driven
specification attributes necessary for constructing the simulation scenario were

used. The other attributes can be deducted.

The first test consisted of simulating the management of a simple traffic
intersection constructed of four traffic light nodes. All nodes had the same type. This
implied that it was required to elaborate an event-driven simulation specification
consisting of a single device type. The implemented device type contained only
three states, corresponding to the colors of a real traffic light. The transitions were
similar to the ones for a real traffic light device. The simulated traffic lights changed

their colors based on timeout, as there was no necessity to communicate to each
other. Therefore, no external events list had to be constructed. The task in the
simulated application was to add specific color management behavior in the
inherited performAction() method. The other abstract methods were not extended,
as no particular behavior was required. Evaluated this simple case study indicated
an overall improvement of 45% by using the implementation of the presented
model, compared to the regular case in which writing of the entire simulation

application from scratch is required. Using also the first development model
presented in [26], the simulation model for PSoC devices functioning at the same
clock frequency, the improvement increased to 85% compared to the previous
already described approach.

Next, the author of this thesis has investigated a more complex case study,
simulating an interconnected set of traffic intersections. Each traffic light

intersection had the task to optimize its internal traffic lights based on the received
events from the adjacent intersections.

A traffic light intersection consisted of three types of compound devices,
each of the compound devices consisting of several internal hardware units. The
types of compound devices used in the construction of the simulation model for the
set of traffic intersections were as follows: the sensing node type, the traffic light
node type and the decision node type. Each intersection consisted of four traffic light

nodes.
 Each traffic light node had associated a sensing node for detecting the cars

waiting at red color of the semaphore and for transmitting the sensed data to a local
intersection management node. Internally, the sensing node type consisted of a
communication unit, a video-based sensing unit and a central processing unit.
Internally, the traffic light node type consisted of a communication unit, an
actuation unit and a central processing unit. The actuation unit was used for color

switch.

The compound device, named decision node, characterized each intersection
and was capable to analyze traffic data received from the sensing nodes located on
each of the four directions of the intersection. Based on the received data, the
decision node was able to refresh the timeouts of the traffic lights located in the

BUPT

88 Handling Event-Driven Scenarios in CPS Applications Simulation - 5

area. It was also able to communicate its decision to the other decision nodes

located in the adjacent intersections.
Internally, the decision node type consisted of a communication unit, a

decision unit and a central processing unit. The internal decision unit was used by
the decision node in computing the optimized traffic lights timeouts based on linear
programming equations. The used linear programming equations described the state
of the intersection, at a given moment of time in simulation.

In this example, the communication between the compound nodes was
considered wireless. Therefore, the type of the communication unit used in this
simulation consisted of a physical transmission layer, a MAC layer and a network
layer. The central processing unit was used as application layer.

Each unit was managed by its node’s application layer. Inside the compound

node, the communication between the units was based on wires. For a precise
synchronization, the application layers had to have the same internal state as their

controlled particular units.
The MIXIM platform ([94]) was used for simulating wireless communication.

Each sensing node expected a particular command to be triggered by the
corresponding traffic light located on its sensing direction. At the time when
displaying the red color, the traffic light node tried to start the sensing operation on
the proper sensing node.

Simulation
Configuration

Actuation node Sensing node Decision node

Without XML
communication

schema

Around 1000 lines of
code

Around 1400 lines of
code

Around 2200 lines
of code

With XML
communication
schema

Around 600 lines of
code

Around 1200 lines of
code

Around 2000 lines
of code

Table 5 Evaluation of lines of code based on the node model required for designing a traffic
management application, with and without communication schema in place

Table 5 shows the results obtained in terms of lines of code necessary to

develop the nodes needed for traffic management system. As it can be seen, for the
improvement for developing the node using the already discussed communication
XML schema is around 40%. Sensing node development shows also an improvement
of 14 %, whereas the decision node development implies a 10% improvement in
terms of written code lines.

As a consequence, the overall network simulation development results
shows a reduction of 20% of the development effort, compared to the usage of the
implementation of the presented model with the regular case in which the writing of
the entire simulation application from scratch is required. When using the model
presented in [27], a more accurate modeling of physical time, and the reduction
was calculated to 40% compared to the previous already described approach.

BUPT

5.4 – Summary 89

5.4 Summary

The author of this thesis presents in this chapter a static event-driven model
specification for CPSs distributed applications. The event-driven model is described
in XML format. The goal of this research is to allow the developer to describe specific
simulation scenarios for distributed applications.

The event-driven specification represents an effective manner for detailing
the flow of the events and their interactions. Clear state-to-events and state-to-

transition mappings improve understanding of the overall application architecture.

While the refactoring process is simplified, it allows the user to update the
constructed scenarios to future simulation changes.

Additionally to the event-driven specification, the author of this thesis has
presented an event oriented programming model for handling specific scenarios for
CPSs applications. The programming model is a generic one and can be
implemented in any event-driven simulation environment. Once the programming

model is designed, it can be reused in other distributed applications.
The presented approach contributes to the reduction in lines of code

required in implementing different types of distributed applications, with an average
of 20% and by up to 45%, by using the implementation of the presented model,
compared to the regular case where writing the entire simulation application from
scratch is required. This depends on the specific goals of the application which needs
to be simulated. The presented event-driven simulation model can be integrated

very well with the development models for simulating at clock level, presented in
[26] and [27].

These approaches reduce dramatically the application specific code which is
required to be written and they improve the overall effort of the development

process in simulating distributed applications, with an average of 40% and by up to
85% compared to the already described approach.

BUPT

Chapter 6. Error Handling in CPS Applications
Implemented using Goal-Oriented Approach

The command, communication and control aspects in CPSs are encapsulated

into dedicated hardware devices nodes, DM nodes, shared among the subsystems

which are acting over the same environment region. These physical nodes are able

to accomplish several parallel asynchronous requests which are posed in different
subsystems contexts.

The DM nodes must be robust, reliable and to provide error and failure
detection mechanisms. Therefore, this type of node must be dynamic reconfigurable
and capable to take the correct decisions, during a reasonable time frame.

In order to achieve these design constraints, a first research on the usage of
DM device management based on LP systems was made by the author of this thesis,
inside the research team, and presented in [88]. The case study was represented by
a CPS application for monitoring a gas distribution network. The LP equations can be
used to express the DM goals and can be evaluated for finding the optimal solution
[95].

Along with the computational aspect, an LP based approach can be used for

solving error detection and dynamical self-reconfigurable aspects within CPS
applications design and implementation. This is the topic of this chapter and was
also discussed in details in [96].

6.1 The Proposed Methodology

The DM nodes are characterized by computation and decisions capabilities at

each of these logical layers. Their behavior is similar to the one of beacon nodes,
they control the actions taken inside their managed network region.

A common situation met in a CPS application is when several tasks are
submitted asynchronously from different CPS subsystems and are targeting a
particular network region. The corresponding DM node for that region must have the
ability to compute the region’s task as being a sum of the incoming tasks from the
upper logical layers. Also, the region’s task must be determined by taking into
account the application specific constraints, with respect to the posed tasks. The
resulting region task is the optimal one, with respect to all the requests coming from

the upper logical layers. A suitable approach for finding the optimal solution resides
in using an LP system. A LP approach was already discussed in [20], with respect to
CPS dynamical control aspect, however without taking into consideration the error
handling aspect.

The Perimeters are the first logical tailoring level, which corresponds to the
physical nodes. Each Perimeter is managed by a corresponding DM.

The Zones are the next logical tailoring level of a CPS network, upper from
the Perimeters. They group inner zones, perimeters and physical nodes, all

BUPT

6.1 – The Proposed Methodology 91

managed by the corresponding DM. The LP system associated to the DM node of

each Zone must calculate the requests. These requests will be later used as input
values for solving the LP systems corresponding to every inner Zone and Perimeter.

If the LP system for an inner Zone or Perimeter fails to provide a valid
solution, the DM of the upper Zone must relax the constraints and adapt the LP
system accordingly.

The Area tailoring level represents the CPS subsystem as a whole and

consists of all the Zones, Perimeters and physical nodes involved in the CPS sub-
network composition. The goal at CPS subsystem level is translated into Area tasks.
Each new task is used as input in the LP system of the Area DM. The solutions are
then used as requirements sent to the controlled regions and physical nodes.

The LP system used at the Area level consists of constraints related only to

the CPS subsystem context whose requirements are described by the Area DM,
unlike the other LP systems already presented at the lower logical levels.

CPS network lifecycle encounters situations which bring parts of the CPS
network near to their limitations based on regular application functionality. These
situations represent application specific special cases which need to be handled
accordingly, and not network or application errors.

The scenarios corresponding to such situations illustrate the general case in
the inter-dependency context when an action taken in a CPS subsystem influences
the decisions already taken in the other CPS subsystems, by determining them to

reevaluate their current tasks. In the CPS application perspective, such a situation is
considered an exception which appears often in CPS networks. Subchapter 6.2.1
presents in detail such a special situation and the step by step handling
methodology.

Subchapter 6.2.2 discusses in details the node access failure for the main
artifacts of the CPS network and the way of handling such malfunctions.

After several unsuccessful call attempts to a node, the managing DM node
can detect a sensor or valve node access failure. The literature includes various

approaches for detecting a node access failure. However, the author of this thesis is
focused on handling at DM level such situations.

The approach involves first the dynamical removing of all the terms
corresponding to that sensor or valve and then updating the LP relations
accordingly, while starting from the LP system correlated to a specific DM.

The next step is the evaluation of the resulting LP relations and verification
of their correctness, meaning the definition completeness for a mathematical
relation. More specifically, it is analyzed if every relation still contains a valid left
and right hand side.

If there is found a relation containing an empty left or right hand side, but
containing terms on the other one, the approach carries on with identification of the
nodes feeding those terms. On the next step, the procedure identifies all the terms

used in the LP system and fed by those nodes and proceeds with removing all the
identified ones from the LP system.

Furthermore, the procedure investigates again the remaining relations and
continues with the already described removal and update parts in a loop manner.
The algorithm ends when there is no relation remaining in the LP system or the
remaining ones are all mathematically correct. If any of the removed terms belong

to an external DM located in the proximity of the current one, the same procedure
must be considered against the LP system used by that DM.

The reason behind this loop procedure is the fact that the remaining
relations from an LP system must be mathematically correct. Otherwise, these

BUPT

92 Error Handling in CPS Applications Implemented using Goal-Oriented

Approach - 6

relations cannot be kept in the LP system. Due to the risk that the remaining
relations do not describe the entire set of constraints related to a particular node

having one of its attributes ignored, the procedure cannot remove only the incorrect
detected relations. In such a case, the risk of introducing errors would persist.

6.2 Case Study: An Aircraft Fuel Management System

For a better understand of the topic, the author of this thesis uses the

design of an aircraft fuel management system, with focus on the handling aspects

with respect to the application specific special cases and node failures. This
application of managing the fuel transfer inside of an aircraft vehicle was introduced

in [97] and continued in [98]. Inside the research team, for this application, the first
approach from a CPS network perspective was made in [20].

This CPS application consists of two subsystems, the Center of Gravity (CG)
Management and Fuel Management for feeding the engines. Each of them has its
own objective, as the naming also suggests. The two subsystems share and act over
the same physical network nodes (fuel tanks, sensors, actuators and pipes).

For organizing the network, the hierarchical logical layering into Areas,
Zones and Perimeters, which can be shared between subsystems, can be applied, as
shown in Figure 35. The CG subsystem is characterized by dynamically
reconfigurable zones, organized based on the data received from a gravity sensor.

Figure 35 Logical tailoring in Fuel Management and Center of Gravity Management CPS
subsystems of a typical military aircraft top-level fuel system [20]

BUPT

6.2 – Case Study: An Aircraft Fuel Management System 93

In the given case of the aircraft fuel management study, the task of feeding

the engines has a higher priority compared to the one of computing the center of
gravity. Therefore, this prioritization schema is defined for every Perimeter
presented in Figure 35. Each Perimeter manages the internal tank and its
corresponding valve connected through a pipe. As a specific example, equation (11)
illustrates the LP system for the Conformal Left Perimeter.

In (11), currentDeb represents the debit transferred with respect to the

targeted subsystem or physical value. dir variable is the sense of the fuel flowing
through the valve and pipe. dir can take one of the following values:

• -1: the fuel is transferred outside the region
• 0: no transfer is performed
• 1: the fuel is transferred inside the region.













+
+



=+

−+=

CLPCLPCLPCLP

CLPCLPCLPCLP

CLPCLP

CLPCGCLPFuelCLP

CGCLPFuelCLPFuelCLPCLP

CapcurrentCapcurrentDebdir
CapcurrentCapcurrentDebdir

DebcurrentDeb

currentDebcurrentDebcurrentDeb

dirdirdirdir

min
max

max

1

__

 (11)

Considering the resulting LP solutions, the debit requested at Perimeter level

in the CG subsystem accepted and added to the actual fuel debit flow through the
managed pipe or valve or it can be declined.

The Cross Perimeter is a special case among the Perimeters presented in

Figure 35. This Perimeter is characterized by two internal valves, named Cross Left
Valve (CLV) and Cross Right Valve (CRV). Based on the Cross Perimeter level sense
and debit (dirCross and currentDebCross, respectively), these valves must synchronize
their senses and debits. The Cross Perimeter has no fuel storage functionality. The
related LP system is presented in (12) and reflects these particular requirements.










==

−+=



+=

CRVCLVCross

CGCrossFuelCrossFuelCrossCross

CrossCross

CGCrossFuelCrossCross

currentDebcurrentDebcurrentDeb

dirdirdirdir

DebcurrentDeb

currentDebcurrentDebcurrentDeb

__

1

max (12)

The parameters  1,0,1,, −CGFuelCross diranddirdir , as they represent the

sense of the fuel flowing through the valve and pipe, already presented.
The possible values for dirCross determine the sense values for the internal

managed valves, as shown in (13).

111
111

10

−==→=
=−=→−=

−==→=

CRVCLVCross

CRVCLVCross

CRVCLVCross

dirdirdir
dirdirdir

dirdirdir
 (13)

Figure 36 presents the Left Tanks Zone that manages the Left Wing Zone,
the Conformal Left Perimeter and their interconnected pipes. The CLV is the pipe
connection between the Left Tanks Zone and the Cross Perimeter. The LB acronym
represents the pipe connection with the Engine Supply Zone.

BUPT

94 Error Handling in CPS Applications Implemented using Goal-Oriented

Approach - 6

Figure 36 Tailoring the Left Tanks Zone illustrating the physical fuel debits and
directions flowing through internal pipes and valves [20]

The LP system used by DM LTZ to determine the request values like (t, dirt),

(v, dirv), (currentDebCLP, dirCLP) for the inner regions is presented in (14).













































+++
+++

+=
+=







=+

=+

=+

=+

=+

−+=

−+=

−+=

−+=

−+=

++=+

V

T

CLPCLP

LWZLWZ

LTZLTZ

CLPCLPLTZvtLTZ

CLPCLPLTZvtLTZ

CLPLWZLTZ

CLPLWZLTZ

vv

tt

CLPCLP

CLVCLV

LBLB

vCGvFuelv

tCGtFuelt

CLPCGCLPFuelCLP

CLVCGCLVFuelCLV

LBCGLBFuelLB

CGvFuelvFuelvv

CGtFueltFueltt

CGCLPFuelCLPFuelCLPCLP

CGCLVFuelCLVFuelCLVCLV

CGLBFuelLBFuelLBLB

CLPCLPCLVCLVLBLBvt

Debv
Debt

CapcurrentCap
CapcurrentCap
CapcurrentCap

currentDebdirCapvdirtdircurrentCap
currentDebdirCapvdirtdircurrentCap

CapCapCap
currentCapcurrentCapcurrentCap

DebcurrentDeb
DebcurrentDeb

DebcurrentDeb
DebcurrentDeb

DebcurrentDeb

currentDebcurrentDebcurrentDeb

currentDebcurrentDebcurrentDeb

currentDebcurrentDebcurrentDeb

currentDebcurrentDebcurrentDeb

currentDebcurrentDebcurrentDeb

dirdirdirdir

dirdirdirdir

dirdirdirdir

dirdirdirdir

dirdirdirdir

currentDebdircurrentDebdircurrentDebdirvdirtdir

max0
max0

max0
max0
max0

min
max

maxmaxmax

max
max

max
max

max

1

1

1

1

1

__

__

__

__

__

 (14)

where the fuel senses can take values as follows: }1;0{vdir ,

BUPT

6.2 – Case Study: An Aircraft Fuel Management System 95

}0;1{,,, __ −tLBCGLBFuelLB dirdirdirdir

}1;0;1{,,, __ −CLPCLVCGCLVFuelCLV dirdirdirdir

The LP system corresponding to the Right Tanks Zone can be constructed
using the LP presented in (14), by replacing the L (Left) variables with the
corresponding R (Right) variables.

In this case study, the LP related to the Fuel Area, with respect to the Fuel
Management subsystem, consists of context related relations and constraints, as
presented in (15). The relations refer to debits and sense for the fuel passing from
one region to another. The flowing is made using a shared pipe controlled by the DM

Fuel Area. At Area level, these relations ensure a proper adaptation to all the other
affected regions, when the fuel debit and sense are modified by one region.




















=

−=

=

−=

=

−=

=

−=

==

=

−=

REngineFuelAftB

REngineFuelAftB

LEngineFuelFwdB

LEngineFuelFwdB

FuelFwdSuplyFuelRB

FuelFwdSuplyFuelRB

FuelAftSuplyFuelLB

FuelAftSuplyFuelLB

FuelCRVFuelCrossFuelCLV

FuelCrossFuelCRV

FuelCrossFuelCLV

currentDebcurrentDeb

dirdir

currentDebcurrentDeb

dirdir

currentDebcurrentDeb

dirdir

currentDebcurrentDeb

dirdir

currentDebcurrentDebcurrentDeb

dirdir

dirdir

_

_

_

_

__

__

__

__

__

__

 (15)

Similar to Fuel Management subsystem, the CG subsystem expresses

relations between shared pipes. The CG subsystem also holds relations between
regions capacities for determining the fuel quantity available for being moved, from

one region to another based on its gravity sensor output. The gravity sensor value

determines the configuration of the regions which have to be taken into account. For
every possible configuration, a LP system is defined and activated at CG Area level.
Due to the paper size limitation, we present below the LP system corresponding to
the Right → Left fuel transfer for adapting the airplane center of gravity, when the
airplane is turning left (16):




















++=+

=

=

=

=

−=

=

−=

==

=

−=

fcrossTransfboostTranscurrentCapfboostTranscurrentCap

currentDebdirperiodfcrossTrans

currentDebdirperiodfboostTrans

currentDebdirperiodfboostTrans

currentDebcurrentDeb

dirdir

currentDebcurrentDeb

dirdir

currentDebcurrentDebcurrentDeb

dirdir

dirdir

RTZRTZLTZLTZ

CGCrossCGCross

CGFwdSuplyCGFwdSuplyRTZ

CGAftSuplyCGAftSuplyLTZ

CGFwdSuplyCGRB

CGFwdSuplyCGRB

CGAftSuplyCGLB

CGAftSuplyCGLB

CGCRVCGCrossCGCLV

CGCrossCGCRV

CGCrossCGCLV

__

__

__

__

__

__

__

__

__

*

 (16)

In (16), period represents the time frame and it is calculated along with the
debits based on the airplane left turning angle value. The fuel transfer senses are
determined based on the turning sense received also from the gravity sensor.

BUPT

96 Error Handling in CPS Applications Implemented using Goal-Oriented

Approach - 6

6.2.1 Handling Application Specific Special Cases

In this subchapter, the author of this thesis considers a scenario which

presents the situation when the minimum level of fuel is reached inside of a specific
fuel tank. The goal is to illustrate the manner of using LP systems presented in the
previous subchapter.

In the Fuel Management subsystem context, a fuel transfer is ongoing from
Left Tanks Zone to Engine Supply Zone. Considering (14), currentCapCLP and dirCLP

are set to 0 and the transfer is accomplished from the Left Wing Zone. At a certain
moment of time, the transfer to Engine Supply Zone is not allowed anymore due to

the minimum fuel level reached inside both fuel tanks managed by the Left Wing
Zone.

At this moment, the resulting solutions from (14) redirect the requested fuel
to be transferred from the Conformal Left Perimeter. This implies an internal request
to be sent to DM CLP in the context of the Fuel Management subsystem. The
request consists in desiredDebCLP_Fuel to be equal to the requested quantity and

dirCLP_Fuel=-1. DM CLP uses relations (11) to find a valid solution to the received
request. However, considering currentCapCLP close as value to minCapCLP, the last
relation from (11) fails. As a result, the request is denied by DM CLP.

DM CLP is unable to satisfy the addressed request, therefore DM LTZ
reconsiders its LP system in (14) and fails also to provide a valid solution. DM LTZ
sends to DM Fuel Area a request for it to provide the fuel quantity, using the CLV
pipe (currentDebCLV_Fuel is equal to the requested quantity and dirCLV_Fuel = 1).

DM Fuel Area uses relations (15) to determine the requests for the other
involved regions. In this case, based on the results obtained from solving (15), it

requests the Cross Perimeter to set the currentDebCross_Fuel to the requested value
and to set its internal valves according to dirCross_Fuel =1. The internal cross valves
are set accordingly, based on the solutions from (12) and (13).

The DM CP can encounter the case when the calculated currentDebCross from
its LP system presented in (12) is greater than its maxDebCross. Therefore, DM CP

cancels the asynchronous task set in the CG context (currentDebCross_CG = 0 and
dirCross_CG = 0). This allows DM CG Area to recalculate the solutions for equations
(6), leading to no valid solutions and fuel transfer cancelation for all the other
regions involved in the CG context.

At the same time, DM Fuel Area commands the Right Tanks Zone to provide
fuel (dirCRV_Fuel = -1 and currentDebCRV_Fuel set to the requested fuel level for the Left

Tanks Zone).
A similar subroutine flow schema applies to maximum level reached inside a

tank. In this situation, the fuel directions on all the pipes and valves considered are
inverted comparing to the already presented scenario.

BUPT

6.2 – Case Study: An Aircraft Fuel Management System 97

6.2.2 Handling CPS Equipment Failures

Using as example support the presented case study, the author of this thesis
discusses the node failure handling procedure in the situation when the sensor
located on the tank managed by DM CLP fails. The corresponding LP system for the
DM presented in (11) must to be updated by removing the currentCapCLP, minCapCLP
and maxCapCLP terms. The next step implies verification of the resulting relations. As
a result of the verification, the last two relations do not have any right hand side

terms anymore. Next, the procedure continues with removal of currentDebCLP, dirCLP,

currentDebCLP_Fuel, dirCLP_Fuel, currentDebCLP_CG and dirCLP_CG terms. Removing the
terms presented above leads to no relation being available for this LP system.

The next step is represented by DM LTZ announcing to update its internal LP
system (14), as a consequence of removal of the currentDebCLP and dirCLP terms
from the LP system of DM CLP. Therefore, the updated LP equations for DM LTZ are
presented in (17).

A DM node access failure can be detected if a DM located in the immediate
upper logical level performs calls and does not receive an answer after a certain
period of time.

Such detection has as result the disposal of the inner Perimeter or Zone and
the update of the upper logical level related LP system, by adding all the inner
relations to it. This implies transfer of the command, communication and control
over all the physical existing nodes located inside of the dismissed Perimeter or

Zone to the upper logical level DM.
































++
++

=
=

+=+


=+

−+=



=+

−+=

V

T

LWZLWZ

LTZLTZ

LTZvtLTZ

LTZvtLTZ

LWZLTZ

LWZLTZ

CLVCLVLBLBvt

CLVCLV

CLVCGCLVFuelCLV

CGCLVFuelCLVFuelCLVCLV

LBLB

LBCGLBFuelLB

CGLBFuelLBFuelLBLB

Debv
Debt

CapcurrentCap
CapcurrentCap

CapvdirtdircurrentCap
CapvdirtdircurrentCap

CapCap
currentCapcurrentCap

currentDebdircurrentDebdirvdirtdir
DebcurrentDeb

currentDebcurrentDebcurrentDeb

dirdirdirdir

DebcurrentDeb

currentDebcurrentDebcurrentDeb

dirdirdirdir

max0
max0

max0
max0

min
max

maxmax

max

1

max

1

__

__

 (17)

As a physical constraint, the physical nodes transferred have to be in the

communication range of the new DM which will be responsible to manage them.
Otherwise, a reorganization of the entire network logical levels is required, with

respect to the subsystem context not being able to fulfill this network
communication requirement.

In the presented case study, DM CLP failure leads to updating the LP related

to DM LTZ (14), by importing all the Conformal Left Perimeter related relations (11),

BUPT

98 Error Handling in CPS Applications Implemented using Goal-Oriented

Approach - 6

with respect to all the subsystems contexts in which DM CLP resided earlier.
Equation (18) presents the updated LP system in case of the Left Tanks Zone

region.
































+
+



=+

−+=








+++
+++

+=
+=

+=+


=+

−+=



=+

−+=

CLPCLPCLPCLP

CLPCLPCLPCLP

CLPCLP

CLPCGCLPFuelCLP

CGCLPFuelCLPFuelCLPCLP

V

T

CLPCLP

LWZLWZ

LTZLTZ

CLPCLPLTZvtLTZ

CLPCLPLTZvtLTZ

CLPLWZLTZ

CLPLWZLTZ

CLVCLVLBLBvt

CLVCLV

CLVCGCLVFuelCLV

CGCLVFuelCLVFuelCLVCLV

LBLB

LBCGLBFuelLB

CGLBFuelLBFuelLBLB

CapcurrentCapcurrentDebdir
CapcurrentCapcurrentDebdir

DebcurrentDeb

currentDebcurrentDebcurrentDeb

dirdirdirdir

Debv
Debt

CapcurrentCap
CapcurrentCap
CapcurrentCap

currentDebdirCapvdirtdircurrentCap
currentDebdirCapvdirtdircurrentCap

CapCapCap
currentCapcurrentCapcurrentCap

currentDebdircurrentDebdirvdirtdir
DebcurrentDeb

currentDebcurrentDebcurrentDeb

dirdirdirdir

DebcurrentDeb

currentDebcurrentDebcurrentDeb

dirdirdirdir

min
max

max

1

max0
max0

max0
max0
max0

min
max

maxmaxmax

max

1

max

1

__

__

__

 (18)

6.3 Summary

The author of this thesis discusses within this chapter a linear programming

based approach for CPS application dynamics, asynchronous tasks fulfillment,
application specific exceptions and nodes failure handlings. Beside regular behavior,
according to specifications, in a CPS application lifecycle various exceptional
situations can appear. The approach presented here allows the developer to deal
with these special cases, along with specifying, design, verification and validation of
CPS applications. The benefits for this approach have been showed with a case
study representative for CPS applications.

There are particular cases when linear programming is not able to retrieve
valid solutions. In such situations the LP system is considered as being too
restrictive. To overcome these situations, the author of this thesis considers
approximation of the valid solution based on changing the domain range of certain
variables, or by updating the control equation from the LP system that needs to be
optimized. Such an approach promises to be able to obtain the optimal solutions.

A possible drawback of this approach is the fact that all physical nodes

require to be static. As future work, the author of this thesis intends to develop a

dynamical LP system based mechanism, able to deal with mobile nodes. This
approach promises to provide a suitable solution in case of complex hybrid CPS
applications.

BUPT

Chapter 7. Conclusions, Contributions,
Publications and Perspectives

7.1 Conclusions

The methodology for specification, design and validation of CPS applications

developed by the research team the author of this thesis is part of is intended to
ease the work for designers of CPS networks. This visual methodology is based on

MDA approach and the specification is started from a high level of abstraction, the
CIM, goes to a more specific level, the PIM, and finally is implemented on the
physical network. The objectives for the CPS application are expressed in a goal-
oriented manner, while the entire network is tailored into logical layers. The
modeling of the CPS applications is done with the help of UML stereotypes, defined
for both hardware and software levels. The specification of the CPS application at
PIM level implies creation of the UML hardware and software models for network

topology and network behavior, respectively.
The main objective of this thesis was to be able to validate the models

before deployment on physical network. The novelty introduced by this thesis is the
rigorous and complex testing and validation process, the extended verifications
posed on both static and dynamic aspects in a CPS network, at component level,
node level and network level, the focus being on errors identification as well as

errors handling mechanisms.

The author of this thesis used rigorous specification for identifying the lack
of requirements in static properties of CPS applications, for units, nodes and at
network level. The author also developed simulation models, which allow a faster
and more accurate verification by simulation. The author has defined clock cycle
level tests, for units testing, node level tests and workflow tests, at network level.
The author of this thesis has defined a methodology to handle particular cases which

can appear during a CPS network lifecycle.
The testing and verification of the units used in the CPS application have

formed the clock cycle level tests, integrating the units led to node level tests while
the entire application’s verification implied workflow tests, at network level. The
author of this thesis has considered also the particular cases which can appear
during a CPS network lifecycle, which are not seen as errors but require an
appropriate handling.

Validation is a very important phase when developing any programming
model for CPS applications. For the case of the MDA approach discussed here, a
tested and verified CPS network can be deployed on the physical environment with
the certainty that the specifications errors and a large part of the behavioral errors

have been already removed. This leads to the increased credibility for the
programming methodology.

BUPT

100 Conclusions, Contributions, Publications and Perspectives - 7

7.2 Contributions

The contributions of the author of this thesis regarding CPS applications

validation research have been discussed in Chapters 2-6. All these proposals

regarding CPS applications have been gathered into 17 articles, published in ISI and
BDI journals, presented at international ISI and IEEE conferences and published in
the proceedings and presented at theme specific workshops. The contributions with
each article are presented in subchapter 7.3.

The main contributions in CPS applications validation follow the initial
research objectives, described in the proposal for the theme of research, presented

in September 2011. These objectives have also been summarized in subchapter 1.3.

The main contributions of the author of this thesis regarding CPS
applications validation are:

• At theoretical level
• A comprehensive study and systematization of publications in

simulation frameworks for sensor networks and modeling and validation of CPS

applications
• A methodology for testing and verifying CPS applications, at each

level for the CPS design, for both static and dynamic aspects
• A rigorous specification of the static properties defined for units,

nodes and network communication capabilities. Based on the full specification at
each of these levels, validation can be performed using already defined tools.

• The definition of simulation models for CPS applications composed of

PSoC devices. One or another of these simulation models can be applied, depending
on the types of PSoC devices used (PSoC devices running at the same clock
frequency, PSoC devices running at different clock frequencies or PSoC devices with
different clock shift).

• Validation approaches at each level of network components: testing

and verification of the units using in composing the nodes in the CPS applications

(clock cycle level tests), units integration and collaboration inside CPS networks
(node level tests) and workflow tests (network level tests).

• The definition of a handling methodology for event-driven scenarios
in simulating CPS applications. This methodology contains both an event-driven
simulation model and an event-driven programming model, used in testing the
dynamic aspects of the CPS application.

• The definition of a methodology for handling special cases which can

appear during the lifecycle of a CPS application, which are not seen as errors. Also,
a handling manner in case equipment failures for CPS networks has been defined.

• At practical level

• The verification methodology has been successfully applied to CPS
networks composed of sensors, actuators, communication units and decision nodes.

• The methodology has been successfully applied to CPS networks of

variable size.
• The methodology has been successfully applied to CPS applications

with different degrees of difficulty regarding requirements.

BUPT

7.3 – Publications 101

7.3 Publications

This subchapter presents the articles that were published during the PhD
research of the author of this thesis. The articles have been published during 2009-
2012 in several ISI conferences, IEEE international conferences, BDI journals and
POSDRU workshops. The papers are presented below in significance order.

7.3.1 Article Published in ISI Journal

1. G. Magureanu, M. Gavrilescu, D. Pescaru, “Validation of Static

Properties in UML Models for Cyber Physical Systems”, in Journal of Zhejiang
University Science C, Impact factor = 0.297 (2012), ISSN 1869-1951, doi:
10.1631/jzus.C1200263.

7.3.2 Articles Published in ISI Proceedings

1. D. Pescaru, C. Istin, F. Naghiu, M. Gavrilescu, D. Curiac, “Scalable

metric for coverage evaluation in video-based wireless sensor networks”, in
Proceedings of the 5th International Symposium on Applied Computational
Intelligence and Informatics (SACI), Timisoara, Romania, ISBN 978-1-4244-4478-6,

May 2009, pp. 323 - 328.

2. M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian, “UML Software

Models for Cyber Physical System Applications”, in the 20th Telecommunications
Forum (TELFOR), Belgrad, Serbia, November 2012.

3. (Pending indexing) - M. Gavrilescu, G. Magureanu, D. Pescaru, “CPS

Design Using Model Driven Architecture Approach: Aircraft Fuel Management
System Case Study”, in 2012 Third International Conference on Theoretical and
Mathematical Foundations of Computer Science (ICTMF), Indonesia, in Lecture
Notes in Information Technology, ISSN 2070-1918, 2012.

7.3.3 Articles Published in IEEE Proceedings

1. M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli, "A Simulation

Framework for PSoC Based Cyber Physical Systems", in Proceedings of the IEEE
International Joint Conferences on Computational Cybernetics and Technical
Informatics ICCC-CONTI 2010, Timisoara, Romania, pp. 137 – 142, May 2010, doi:
10.1109/ICCCYB.2010.5491313.

2. G. Magureanu, M. Gavrilescu, D. Pescaru, A. Doboli, ” Towards UML
Modeling of Cyber-Physical Systems: A Case Study for Gas Distribution”, in
Proceedings of the in 8th IEEE International Symposium on Intelligent Systems and

BUPT

102 Conclusions, Contributions, Publications and Perspectives - 7

Informatics SISY 2010, Subotica, Serbia, pp. 471 – 476, September 2010, doi:

10.1109/SISY.2010.5647314.

3. M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli, “Accurate

Modeling of Physical Time in Asynchronous Embedded Sensing Networks”, in
Proceedings of the in 8th IEEE International Symposium on Intelligent Systems and
Informatics SISY 2010, Subotica, Serbia, pp. 477 – 482, September 2010, doi:

10.1109/SISY.2010.5647308.

4. G. Magureanu, M. Gavrilescu, D. Pescaru, A. Doboli, “UML Support

for Optimizing the Goals of Distributed Control in Traffic Management Applications”,
in International Workshop on Robotic and Sensors Environments ROSE 2010,

Pheonix, Arizona, USA, pp.1 - 6 October 2010, doi: 10.1109/ROSE.2010.5675288.

5. G. Magureanu, M. Gavrilescu, I. Tal, A. Toma, D. Pescaru, I. Jian,
“Generating OMNeT++ Specifications from UML Models for PSoC Distributed
Applications”, in Proceedings of the 6th International Symposium on Applied
Computational Intelligence and Informatics SACI 2011, Timisoara, Romania, pp. 85
– 90, May 2011, doi: 10.1109/SACI.2011.5872977.

6. G. Magureanu, M. Gavrilescu, D. Pescaru, I. Jian, ”UML Profile for

Cyber-Physical System Wireless Communication Specification”, in Proceedings of the
7th International Symposium on Applied Computational Intelligence and Informatics
SACI 2012, Timisoara, Romania, pp. 383 – 388, May 2012, doi:
10.1109/SACI.2012.6250034.

7. M. Gavrilescu, G. Magureanu, D. Pescaru, “Error Handling using

Linear Programming in CPS Applications: Aircraft Fuel Management System Case
Study”, in 9th International Conference on Computational Cybernetics ICCC 2013,

Tihany, Hungary, July 2013.

7.3.4 Articles Published in BDI Journals

1. M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli, “Time Models
for PSoC Based Cyber Physical Systems Simulation”, in Scientific Bulletin of
“Politehnica” University of Timisoara, Transactions on Automatic Control and
Computer Science BS-UPT TACCS, Volume 56 (70) No. 1, pp. 27-34, March 2011.

2. M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian, “Handling Event-

Driven Scenarios in CPS Application Simulations”, in Carpathian Journal of Electronic

and Computer Engineering, Volume 4, No. 1, ISSN 1844 – 9689, October 2011.

7.3.5 Articles Presented in POSDRU Workshops

1. M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian, “Optimization of
Sensor Networks Physical Time Modeling in OMNeT++”, in Workshop no. 1

“Cercetari doctorale in domeniul tehnic”, Craiova, Romania, February 2011.

BUPT

7.4 – Future Research Perspectives 103

2. M. Gavrilescu, “A Survey of Simulation Environments for

Applications of Massively Distributed Embedded Systems”, in Workshop nr. 1
“Interdisciplinaritatea si Managementul Cercetarii”, Timisoara, Romania, November
2011.

3. M. Gavrilescu, “UML Software Models for Cyber Physical System

Applications”, in Workshop no. 2, “Interdisciplinaritatea si Managementul Cercetarii

in Studiile Doctorale”, Oradea, Romania, June 2012.

4. M. Gavrilescu, “Towards Verification and Validation of Cyber Physical

System Applications”, in Workshop no. 3, “Interdisciplinaritatea si Managementul
Cercetarii”, Pitesti, Romania, May 2013.

7.4 Future Research Perspectives

Future work will be focuses on improving the testing and validation process

for CPS applications before deployment on the physical environment, to further
reduce the possible behavior errors which can appear. Future work will cover
investigation of the approach required so that rigorous specification and validation
to be used in verifying dynamic aspects in CPS application.

BUPT

References

[1] E. Lee, “Cyber Physical Systems: Design Challenges”, University of
California, Berkeley Technical Report No. UCB/EECS-2008-8, 2008.

[2] G. Magureanu, “Visual Modeling of Cyber Physical Systems”, Ed. Politehnica,

2013, Series 14, No. 13, ISSN 2069-8216.

[3] A. Alti, T. Khammaci and A. Smeda, “Integrating Software Architecture
Concepts into the MDA Platform with UML Profile”, Journal of Computer
Science 3 (10), 2007, pp. 793-802.

[4] Object Management Group - UML v. 2.3 Specifications.
http://www.omg.org/spec/UML/2.3/, 2013.

[5] L. Kuzniarz, M. Staron, C. Wohlin, “An empirical study on using stereotypes
to improve understanding of UML models”, in Proceedings of the

International Workshop on Program Comprehension, pp. 14-23,
doi:10.1109/WPC.2004.1311043.

[6] V. Subramanian, M. Gilberti, A. Doboli, “Online adaptation policy design for
grid sensor networks with reconfigurable embedded nodes”, in Proceedings
of Design, Automation & Test in Europe Conference and Exhibition (DATE),
Nice, 2009.

[7] M. Wang, V. Subramanian, A. Doboli, D. Curiac, D. Pescaru, C. Istin,

“Towards a Model and Specification for Visual Programming of Massively
Distributed Embedded Systems”, in IFSA Sensors and Transducers Journal,
ISSN 1726-5479, Vol. 5, March 2009, pp. 69-85.

[8] E. Lee, “Cyber-Physical Systems – Are Computing Foundation Adequate?”,
Position Paper for NSF Workshop On Cyber-Physical Systems: Research
Motivation, Techniques and Roadmap, 2006.

[9] E. Lee, “CPS Foundations”, in Proceedings of the 47th Design Automation
Conference (DAC), ACM, June 2010, pp. 737-742.

[10] P. Tabuada, “Cyber-physical systems: Position paper”, in Proceedings of the
2006 National Science Foundation Workshop on Cyber-Physical Systems,
2006.

[11] R. Gupta, “Programming Models and Methods for SpatioTemporal Actions
and Reasoning in Cyber-Physical Systems”, Position Paper, in Proceedings of

the 2006 National Science Foundation Workshop on Cyber-Physical Systems,
2006.

[12] P. Derler, E. Lee, A. Sangiovanni-Vincentelli, “Modeling Cyber-Physical
Systems”, in Proceedings of the IEEE (Special Issue on CPS), Vol. 100 (1),
January 2012, pp. 13-28.

BUPT

References 105

[13] E. Lee, S. Tripakis, “Modal Models in Ptolemy”, in Proceedings of 3rd
International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools (EOOLT), October, 2010.

[14] N. Saeedloei, G. Gupta, “A logic-based modeling and verification of CPS”, in
ACM SIGBED Review – Work-in-Progress (WiP) Session of the 2nd
International Conference on Cyber Physical Systems, Vol. 8, Issue 2, June
2011, pp. 31-34.

[15] Y. Liu, “Toward a unified object model for cyber-physical systems”, in
Proceedings of the 2nd Workshop on Software Engineering for Sensor
Networks Applications (SESENA), 2011.

[16] G. Magureanu, M. Gavrilescu, I. Tal, A. Toma, D. Pescaru, I. Jian,

“Generating OMNeT++ specifications from UML models for PSoC Distributed
Applications”, in Proceedings of the 6th IEEE International Symposium on
Applied Computational Intelligence and Informatics (SACI 2011), Timisoara,

Romania, May 2011, pp. 85-90, doi:10.1109/SACI. 2011.5872977.

[17] G. Magureanu, M. Gavrilescu, D. Pescaru, “UML profile for Cyber-Physical
System wireless communication specification”, in Proceedings of the 7th
International Symposium on Applied Computational Intelligence and
Informatics (SACI 2012), Timisoara, Romania, May 2012, pp. 383-388,
doi:10.1109/SACI.2012.6250034.

[18] M. Gavrilescu, “UML Software Models for Cyber Physical System
Applications”, in Workshop no. 2, “Interdisciplinaritatea si managementul
cercetarii in studiile doctorale”, Oradea, Romania, June 2012.

[19] M. Gavrilescu, G. Magureanu, D. Pescaru, “Towards UML software models
for Cyber Physical System applications”, in the 20th Telecommunications
Forum (TELFOR), Belgrad, Serbia, November 2012, pp. 1701-1704,
doi:10.1109/TELFOR.2012. 6419554.

[20] M. Gavrilescu, G. Magureanu, D. Pescaru, “CPS Design Using Model Driven
Architecture Approach: Aircraft Fuel Management System Case Study”, in

2012 Third International Conference on Theoretical and Mathematical
Foundations of Computer Science (ICTMF), Indonesia, in Lecture Notes in
Information Technology, ISSN 2070-1918, 2012.

[21] J. Boydens, E. Steegmans, “Model Driven Architecture The next abstraction
level in programming”, in European Conferences on the Use of Modern
Information and Communication Technologies (ECUMICT), March 2004.

[22] N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Mazieres, F. Kaashoek,
“Multiprocessor support for event driven programs”, in Proceedings of the
USENIX Annual Technical Conference, San Antonio, TX, USA, June 2003, pp.
239-252.

[23] V. Subramanian, A. Doboli, “PNet: A Grid type Sensor Network of
Reconfigurable Nodes,” in Proceedings of the IEEE International Conference
on Distributed Computing Systems Workshops, Montreal, 2009, pp.7-13.

[24] L. Wang, E. A. Johannessen, P. A. Hammond, Li Cui, S. W. J. Reid, J. M.
Cooper, and D. R. S. Cumming, “A Programmable Microsystem Using
System-on-Chip for Real-time Biotelemetry,” IEEE Transactions on

Biomedical Engineering, Vol. 52, No. 7, July 2005.

BUPT

106 References

[25] Y. Zhao, Jie Liu, and Edward A. Lee, “A Programming Model for Time-
Synchronized Distributed Real-Time Systems”, in Proceedings of the 13th
IEEE Real-Time and Embedded Technology and Application Symposium,
RTAS'07, WA, USA, April 2007, pp.259-268.

[26] M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli, “A Simulation
Framework for PSoC Based Cyber Physical Systems”, in IEEE ICCC-
CONTI’10, Timisoara, Romania, May 2010.

[27] M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli, “Accurate Modeling of
Physical Time in Asynchronous Embedded Sensing Networks”, in
Proceedings of the 8th International Symposium on Intelligent Systems and
Informatics SISY, Subotica, Serbia, September 2010, pp. 477–482.

[28] M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian, “Optimization of Sensor
Networks Physical Time Modeling in OMNeT++”, in CDDT Workshop,
Craiova, Romania, February 2011.

[29] M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli, “Time Models for PSoC
Based Cyber Physical Systems Simulation”, in Scientific Bulletin of

“Politehnica” University of Timisoara, Transactions on Automatic Control and
Computer Science BS-UPT TACCS, Volume 56 (70) No. 1, pp. 27-34, March
2011.

[30] G. Magureanu, M. Gavrilescu, D. Pescaru, A. Doboli, “UML Support for
Optimizing the Goals of Distributed Control in Traffic Management
Applications”, in International Workshop on Robotic and Sensors
Environments (ROSE), Pheonix, Arizona, USA, October 2010.

[31] C. Atkinson, T. Kuhne, B. Henderson-Sellers, “To Meta or not to Meta – That
is the Question”, in Journal of Object-Oriented Programming, Vol. 13, No. 8,
2000, pp. 32-35.

[32] MiXiM Project – http://mixim.sourceforge.net/, 2013.

[33] M. Gavrilescu, “A Survey of Simulation Environments for Applications of
Massively Distributed Embedded Systems”, in Workshop nr. 1
“Interdisciplinaritatea si Managementul Cercetarii”, Timisoara, Romania,
November 2011.

[34] J. Polley, D. Blazakis, J. McGee, D. Rusk, J. S. Baras, and M. Karir, “ATEMU:
A fine-grained sensor network simulator”, in Proceedings of SECON’04, First
IEEE Communications Society Conference on Sensor and Ad Hoc

Communications and Networks, 2004.

[35] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and scalable
simulation of entire TinyOS applications”, in Proceedings of SenSys’03, First
ACM Conference on Embedded Networked Sensor Systems, 2003.

[36] P. Levis, S. Madden, J. Polastre, R. Szewczyk, A. Woo, D. Gay, J. Hill, M.
Welsh, E. Brewer, D. Culler, “TinyOS: An operating system for sensor
networks“, in Ambient Intelligence, Springer-Verlag, 2004.

[37] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg, “Avrora: scalable sensor
network simulation with precise timing”, in Proceedings of the 4th
international symposium on Information processing in sensor networks, Los
Angeles, California, April 2005.

BUPT

References 107

[38] Yi-Ran Sun, Shashi Kumar, and Axel Jantsch, “Simulation and Evaluation for
a Network on Chip Architecture Using Ns-2”, in Proceedings of the 20th IEEE
Norchip Conference, 2002.

[39] C++SIM – http://www.c-sim.zcu.cz/, 2013.

[40] H.-Y. Tyan and J. C. Hou. “JavaSim: A component-based compositional
network simulation environment”, in Proceedings of Western Simulation
Multiconference, CNDS'01, 2001.

[41] Xiang Zeng , Rajive Bagrodia, and Mario Gerla, “GloMoSim: a library for
parallel simulation of large-scale wireless networks”, in Proceedings of the
Twelfth Workshop on Parallel and Distributed Simulation, Banff, Alberta,
Canada, May 1998.

[42] H. Dai and R. Han, “TSync: A Lightweight Bidirectional Time Synchronization
Service for Wireless Sensor Networks”, in ACM SIGMOBILE Mobile
Computing and Communications Review, Vol. 8, No. 1, Jan. 2004, pp. 125–
139.

[43] Distributed Computing Group, “Sinalgo, Simulator for Network Algorithms”,
http://dcg.ethz.ch/projects/sinalgo, 2007.

[44] P. Sommer, R. Wattenhofer, “Gradient Clock Synchronization in Wireless
Sensor Networks”, in the 8th ACM/IEEE IPSN’09, San Francisco, USA, April
2009.

[45] Open SystemC Initiative – http://www.systemc.org, 2013.

[46] E. Riccobene, P. Scandurra, A. Rosti, S. Bocchio, “A UML 2.0 Profile for
SystemC: Toward High-level SoC Design”, in Proceedings of the 5th ACM
International Conference on Embedded Software (EMSOFT), New York, USA,
2005.

[47] E. Riccobene, P. Scandurra, S. Bocchio, A. Rosti, L. Lavazza, L. Mantellini,
“SystemC/C-based model-driven design for embedded systems”, in ACM

Transactions on Embedded Computing Systems (TECS), Vol. 8, No. 4, 2009.

[48] P. Andersson, M. Host, “UML and SystemC - A Comparison and Mapping
Rules for Automatic Code Generation”, in Forum on Specification and Design
Languages (FDL), Barcelona, Spain, 2007.

[49] K.D. Nguyen, Z. Sun, P.S. Thiagarajan, ”Model-Driven SoC Design Via
Executable UML to SystemC”, in Proceedings of the IEEE International Real-
time Systems Symposium (RTSS’04), Lisbon, Portugal, 2004.

[50] Kai Huang, I. Bacivarov, F. Hugelshofer, L. Thiele, "Scalably distributed
SystemC simulation for embedded applications", in Proceedings of the 3rd
International Symposium on Industrial Embedded Systems (SIES),
Montpellier, France, 2008, pp.271-274.

[51] S. Meftali, A. Dziri, L. Charest, P. Marquet, J.-L. Dekeyser, “SOAP based
distributed simulation environment for System-on-Chip (SoC) design”, in
Forum on Specification and Design Languages, FDL’05, Lausanne,

Switzerland, December 2005.

[52] M. Damm, J. Moreno, J. Haase, C. Grimm, “Using transaction level modeling
techniques for wireless sensor network simulation”, in Proceedings of the

BUPT

108 References

Design, Automation and Test in Europe (DATE’10), Dresden, Germany,

2010.

[53] Cypress Semiconductor Corporation – http://www.cypress.com, 2013.

[54] I.-K Rhee, J Lee, J. Kim, E. Serpedin, Wu, Y.-C., “Clock Synchronization in
Wireless Sensor Networks: an Overview”, in Sensors, 2009, pp. 56-85.

[55] http://www.omnetpp.org/doc/omnetpp41/manual/usman.html – OMNeT++
User Manual ver. 4.1, 2013.

[56] A. Varga, R. Hornig, “An overview of the OMNeT++ simulation
environment”, in Proceedings of the 1st Iinternational Conference on

Simulation Tools and Techniques for Communications, Networks and

Systems, Marseille, France, March 2008.

[57] C. Mallanda, A. Suri, V. Kunchakarra, S. S. Iyengar, R. Kannan, A. Durresi,
and S. Sastry, “Simulating Wireless Sensor Networks with OMNeT++”,
Submitted for Publication to IEEE, 2005.

[58] Mobility Framework – http://mobility-fw.sourceforge.net/, 2013.

[59] D. Pediaditakis, Y. Tselishchev, A. Boulis, “Performance and Scalability
Evaluation of the Castalia Wireless Sensor Network Simulator”, in 3rd
International ICST Conference on Simulation Tools and Techniques,
SIMUTOOLS’2010, Malaga, Spain, 2010.

[60] I. Baumgart, B. Heep, S. Krause, “OverSim: A Flexible Overlay Network
Simulation Framework”, in IEEE Global Internet Symposium, Anchorage, AK,
May 2007, pp. 79-84.

[61] INET Framework – http://inet.omnetpp.org/, 2013.

[62] Mixnet Project – http://sourceforge.net/apps/trac/mixim/wiki/mixnet, 2013.

[63] D. B. Aredo, I. Traore, K. Stolen, “Towards formalization of UML class
structure in PVS”, Research Report 272, Department of Informatics,
University of Oslo, Norway, August 1999.

[64] R. France, A. Evans, K. Lano, B. Rumpe, “The UML as a formal modeling
notation”, in Computer Standard Interfaces, Vol. 19, 1998, pp. 325–334.

[65] A. Bhutto, D.M. Akbar Hussain, “Formal verification of UML profile”, in
Australian Journal of Basic and Applied Sciences, 5(6), 2011, pp. 1594–
1598.

[66] Object Management Group - Object Constraint Language Specifications.
http://www.omg.org/spec/OCL/2.0/, 2013.

[67] A. Hamie, F. Civello, J. Howse, S. Kent, R. Mitchell, “Reflections on the
object constraints language”, in Lecture Notes in Computer Science, No.
1618, pp. 137-145, doi:10.1007/978-3-540-48480-6_13.

[68] J. M. Spivey, “The Z notation: A reference manual”, 2nd edition, Prentice-
Hall International, Ltd. Hertfordshire, UK, 1992.

[69] L. Martins, “An Empirical Study Using Z and UML for the Requirements
Specification of an Information System”, in The Experimental Software
Engineering Latin American Workshop, Uberlândia, Brasil, October 2005,
Paper 1.

BUPT

References 109

[70] D. Roe, K. Broda, A. Russo, “Mapping UML models incorporating OCL
constraints into Object-Z”, Report No. 9/2003, Imperial College, London,
UK.

[71] N. Amalio, S. Stepney, F. Polack, “Modular UML semantics: Interpretations
in Z based on templates and generics”, presented at the Workshop on
Formal Aspects of Component Software, Pisa, Italy, September 2003.

[72] S. Dupuy, Y. Ledru, M. Chabre-Peccoud, “An overview of RoZ: A tool for
integrating UML and Z specifications”, in Proceedings of 12th Conference on
Advanced information System Engineering (CAiSE 2000), volume 1789 of
Lecture Notes in Computer Science, Stockholm, Sweden, June 2000, pp.
417–430, doi:10.1007/3-540- 45140-4_28.

[73] S. C. Dupuy, J. Freire, M. Chabre-Peccoud, Y. Ledru, “Formal and informal
specifications: a proposal for a coupling”, in Proceedings of 13th
International Conference on Software and Systems Engineering and their

Applications, Paris, France, December 2000.

[74] S. C. Dupuy, L. du Bousquet, “Validation of UML Models Thanks to Z and
Lustre”, in Proceedings of the International Symposium of Formal Methods
Europe: Formal Methods for Increasing Software Productivity, Berlin,
Germany, March 2001, Springer-Verlag LNCS 2021, London, UK, 2001, pp.
242-258.

[75] Y. Ledru, “Using Jaza to Animate RoZ Specifications of UML Class Diagrams”,
in Proceedings of the 30th Annual IEEE/NASA Software Engineering
Workshop, Washington DC, SUA, 2006, pp. 253-262.

[76] N. Halbwachs, F. Lagnier, C. Ratel, ”Programming and Verifying Real-Time
Systems by Means of Synchronous Data-Flow Programming Language
LUSTRE”, in IEEE Trans. Software Engineering, 1992, Vol. 8, pp. 785 – 793.

[77] M. Saaltink, “The Z/EVES system”, in Proceedings of the The Z Formal
Specification Notation: 10th International Conference of Z Users, London,
UK, April 1997, in Lecture Notes in Computer Science, Springer-Verlag,

1997, pp. 72–85, doi:10.1007/BFb0027284.

[78] M. Shroff, R.B. France, “Towards a formalization of UML class structures in
Z”, in the Proceedings of the 21st International Computer Software and

Applications Conference (COMPSAC ‘97), Washington DC, USA, August
1997, pp. 646–651, doi:10. 1109/CMPSAC.1997.625087.

[79] J. Crow, S. Owre, J. Rushby, N. Shankar, M. Srivas, “A tutorial introduction
to PVS”, in Workshop on Industrial Strength Formal Specification Techniques
(WIFT ‘95), Florida, SUA, April 1995.

[80] D. B. Aredo, “Formal semantics of UML statecharts in PVS”, in Proceedings
of the 7th World Multiconference on Systemics, Cybernetics and Informatics
(SCI 2003), Florida, USA, July 2003.

[81] D. B. Aredo, “A framework for semantics of UML sequence diagrams in PVS”,
in Journal of Universal Computer Science, Volume 8, 2002, pp. 674–698,

doi:10.3217/jucs-008-07.

[82] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, ”Reasoning about
Java Classes: preliminary report”, in Proceedings of Object-Oriented

BUPT

110 References

Programming Systems, Languages and Applications, Vancouver, BC,

Canada, October 1998, ACM, New York, New York, USA, 1998, pp. 329-340.

[83] M. Kyas, H. Fecher, F.S. de Boer, J. Jacob, J. Hooman, M. van der Zwaag, T.
Arons, H. Kugler, “Formalizing UML models and OCL constraints in PVS”, in
Proceedings of the Second Workshop on Semantic Foundations of
Engineering Design Languages (SFEDL 2004), Volume 115 of Electronic
Notes in Theoretical Computer Science, Elsevier 2004, pp. 39–47,
[doi:10.1016/j. entcs.2004.09.027].

[84] G. Magureanu, M. Gavrilescu, D. Pescaru, “Validation of Static Properties in
UML Models for Cyber Physical Systems”, In Journal of Zhejiang University
Science C, Impact factor = 0.297 (2012), ISSN 1869-1951, doi:

10.1631/jzus.C1200263.

[85] Object Management Group - UML Profile Specifications.
http://www.omg.org/technology/documents/profile_catalog.htm, 2013.

[86] A. Bondavalli, I. Majzik, I. Mura, “Automated Dependability Analysis of UML
Designs”, in Proceedings of Second IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, Saint-Malo, France, May
1999, pp.139-144.

[87] J. Wan, Y. Yu, Y. Wu, R. Feng, N. Yu, “Hierarchical Leak Detection and
Localization Method in Natural Gas Pipeline Monitoring Sensor Networks” in
Sensors journal, 2012, Vol. 12, pp. 189-214.

[88] G. Magureanu, M. Gavrilescu, D. Pescaru, A. Doboli,”Towards UML Modeling
of Cyber-Physical Systems: A Case Study for Gas Distribution”, in
Proceedings of the 8th IEEE International Symposium on Intelligent Systems
and Informatics, Subotica, Serbia, September 2010, pp. 471 – 476.

[89] C. Buratti, A. Conti, D. Dardari, R. Verdone, “An Overview on Wireless

Sensor Networks Technology and Evolution”, in Sensors journal, 2009, Vol.
9, pp. 6869-6896.

[90] Y. Ledru, “Identifying pre-conditions with the Z/EVES theorem prover”, in
Proceedings of the 13th IEEE International Conference on Automated
Software Engineering, Honolulu, HI , USA, October 1998, pp. 32 – 41.

[91] T. Stoyanova, F. Kerasiotis, A. Prayati, G. Papadopoulos, “A Practical RF
Propagation Model for Wireless Network Sensors”, in Proceedings of the
Third International Conference on Sensor Technologies and Applications,

Glyfada, Athens, August 2009, pp. 194 - 199.

[92] J. Rousselot, J.-D. Decotignie, “A High-Precision Ultra Wideband Impulse
Radio Physical Layer Model for Network Simulation”, in Proceedings of the
2nd International Conference on Simulation Tools and Techniques - 2nd
International Workshop on OMNeT++, March 2009, article no. 79.

[93] M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian, “Handling Event-Driven
Scenarios in CPS Application Simulations”, in Carpathian Journal of
Electronic and Computer Engineering, Vol. 4, No. 1, ISSN 1844 – 9689,

October 2011.

[94] A. Kopke, M. Swigulski, K. Wessel, D. Willkomm, P.T. Klein Haneveld, T.E.V.
Parker, O. W. Visser, H. S. Lichte, S. Valentin, “Simulating Wireless and

BUPT

References 111

Mobile Networks in OMNeT++. The MIXIM Vision”, in Proceedings of the 1st

International Workshop on OMNeT++, March 2008.

[95] J. Beasley, editor, “Advances in Linear and Integer Programming”, Oxford
Science, 1996.

[96] M. Gavrilescu, G. Magureanu, D. Pescaru, “Error Handling using Linear
Programming in CPS Applications: Aircraft Fuel Management System Case
Study”, in 9th International Conference on Computational Cybernetics ICCC
2013, Tihany, Hungary, July 2013.

[97] I. Moir and A. Seabridge, “Aircraft Systems: Mechanical, Electrical, and
Avionics Subsystems Integration”, 3rd Ed., AIAA Education Series, Wiley,
2008

[98] P. Derler, E. A. Lee, A. S. Vincentelli, “Addressing modeling challenges in
Cyber-Physical Systems”, Technical Report UCB/EECS-2011-17, EECS
Department, UC Berkeley, USA.

This work was partially supported by the strategic grant

POSDRU/107/1.5/S/77265 Project ID77265 (2010), co-financed by the European
Social Fund – Investing in People, within the Sectoral Operational Programme

Human Resources Development 2007 – 2013.

BUPT

