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Abstract

In this paper we present a new example of Hamiltonian mechanical system
which is equivalent at classic level with the two systems presented in [9], but
not in quantum level with the two ones, and the way one can design a linear
controller for this mechanical system using the symmetrical optimum method.1

1 Introduction

In this paper we will introduce a new example of Hamiltonian mechanical systems
which is equivalent at classic level with the ones presented in [9], but not in quantum
level.

The novelty will be given by the fact that throw this new example we can make
a new connection between Kostant’s geometric quantization and the automatics
control. More specifically for this particular case of mechanical system we will design
a Proportional-Integrator controller based on the Symmetrical Optimum Method [5].

1Mathematical Subject Classification (2010): 53D50, 81S10
Keywords and phrases: quantization, Hamiltonian mechanical system, symmetrical optimum

method, linear controller.
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2 Kostant’s geometric quantization

Let M be a differential variety and (M,ω) a symplectic manifold.

Definition 2.1. ([6]) We will say that the symplectic manifold (M,ω) is quan-
tizable if there are

(i) a complex line bundle Lω := (L, p,M) over M ;

(ii) a Hermitian structure (·, ·) on Lω;

(iii) a connection ∇ω on Lω compatible with the Hermitian structure

such that [∇ω
X ,∇ω

Y ] = ∇ω
[X,Y ] +

1
ih
ω (X,Y ) , ∀X,Y ∈ XC (M) .

Definition 2.2. ([6]) The complex line bundle Lω is called quantum bundle.

Proposition 2.1. ([6]) If (M,ω) is a quantizable manifold, then the pair
(Hω, δω) defines a prequantization of (M,ω).

Definition 2.3. ([6]) A distribution D on M is an application which associate
at each point x ∈M a linear subspace Dx ⊂ TxM such that the next conditions can
be verified:

(i) k = dimDx, ∀x ∈M ;
(ii) ∀x0 ∈ M, ∃ Vx0 ∈ V(x0), ∃ X1, ..., Xn ∈ X (Vx0) linearly independent such

that Span ((X1)x , ..., (Xn)x) = Dx, ∀x ∈ Vx0 .

Definition 2.4. ([6]) The distribution D is integrable if for any x ∈ M, there
is a submanifold N of M such that:

(i) x ∈ N ;
(ii) dim N = k;
(iii) TyN = Dy, ∀y ∈ N.
Definition 2.5. ([6]) An integral distribution is called foliation. The maximal

submanifolds N ⊂M for which TxN = Dx are called the foliation leaves.
Let M/D be the space of the foliation leaves D. If there is a differentiable struc-

ture M/D such that the canonical projection π : M → M/D, be a surjective sub-
mersion, then D is called reducible foliation.
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Definition 2.6. ([6]) Let (M,ω) be a symplectic manifold of dimension 2n. A
real polarization on M is a foliation D on M such that D is maximal izotropic in
relation with ω, i.e. the next conditions are satisfied:

(i) ωx (Dx, Dx) = 0, ∀x ∈M ;
(ii) no ather subspace of TxM which contains Dx has the property (i), or in

other words Dx is maximal with the property (i) .
In particular, dimDx = n, ∀x ∈M. The polarization D is called reducible if the

foliation D is reducible.

Example 2.1. Let (M,ω) = (T ∗Q,ω = dθ) . Then it can be easily checked that
Dv and Dh are real polarizations, reductibles on M .

Proposition 2.2. ([6]) The pair (Hω
D, δ

ω
D) defines a prequantization of the quan-

tizable manifold (M,ω), ie the algebra (C∞ (M,D; R) , {·, ·}ω) satisfies the conditions
of the Dirac’s problem ([2]).

3 Ambiguities in Kostant’s geometric quantization

Starting from Puta and Hedrea’s idea [9], we will show that there are mechanical
Hamiltonian systems which are equivalent at classic level, i.e. their Hamiltonian
fields have the same integral curves (with a fixed initial condition), but they aren’t
equivalent at quantum level, i.e. the quantum operators corresponding to the energy
have different spectra. For the systems (3.1) and (3.2) given as follows the things
are made in detail in [9].

Let’s consider the Hamiltonian mechanical systems
(
T ∗R ' R2, ω = dp ∧ dq, H (p, q) = q

)
, (3.1)

(
T ∗R ' R2, ω′ =

eq

(eq + 1)2dp ∧ dq, H ′ (p, q) = 1− 1
eq + 1

)
, (3.2)

(
T ∗R ' R2, ω′′ =

eq − 2
e2q

dp ∧ dq, H ′′ (p, q) =
1− eq
e2q

)
. (3.3)

Proposition 3.1. The Hamiltonian mechanical systems (3.1), (3.2) and (3.3),
are equivalent at classic level.

Proof.
From the three mechanical system from the above immediately results that

XH = − ∂

∂p
, XH′ = − ∂

∂p
, XH′′ = − ∂

∂p
,
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i.e.

XH = XH′ = XH′′ ,

which means that the there Hamiltonian mechanical systems are equivalent at classic
level.

�

Proposition 3.2. The manifolds (T ∗R, ω) , (T ∗R, ω′) , (T ∗R, ω′′) are quantiz-
able.

Proof.
Because we have

ω = d (pdq) , ω′ = d

(
eq

(eq + 1)2

)
pdq, ω′′ = d

(
eq − 2
e2q

)
pdq,

results that (T ∗R, ω) , (T ∗R, ω′) , (T ∗R, ω′′) are quantizable.
�

From the above proposition results that:

Proposition 3.3. For the system (3.1) we obtain ([9])

Lω = (T ∗R× C, pr1, T
∗R) ,

Γ (Lω) = C∞ (T ∗R,C) ,

∇ω
X f = X (f)− i

h
(pdq) (X) f,

((x, z1) , (x, z2)) = z1z2.

Proposition 3.4. For the system (3.2) we obtain ([9])

Lω′
= (T ∗R× C, pr1, T

∗R) ,
Γ
(
Lω′
)

= C∞ (T ∗R,C) ,

∇ω′
X f = X (f)− i

h

[
eq

(eq + 1)2 pdq

]
(X) f,

((x, z1) , (x, z2))x = z1z2.

�

Proposition 3.5. For the system (3.3) we obtain

Lω′′
= (T ∗R× C, pr1, T

∗R) ,
Γ
(
Lω′′

)
= C∞ (T ∗R,C) ,

∇ω′′
X f = X (f)− i

h

[
eq − 2
e2q

pdq

]
(X) f,

((x, z1) , (x, z2))x = z1z2.
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�

Theorem 3.1: If we consider on T ∗R the vertical polarization Dv, then it is
obviously reducible so we can reach the conclusion that H, H ′ şi H ′′ are quantized,
but we also observe that

(δω
Dv)H = q,

(
δω′
Dv

)
H

= 1− 1
eq + 1

,
(
δω′′
Dv

)
H

=
1− eq
e2q

.

Then it results that

Spec (δω
Dv)H = R, Spec

(
δω′
Dv

)
H

= (0, 1) , Spec
(
δω′′
Dv

)
H

=
[
−1

4
,∞
)
.

Proof.
If the first spectrum is obvious, for the other two we make the justification and

for that we consider the functions

fω′ : R→ R, fω′ (x) = 1− 1
ex + 1

,

and
fω′′ : R→ R, fω′′ (x) =

1− ex
e2x

.

For the first function it results that

lim
x→−∞

fω′ (x) = 0, lim
x→∞

fω′ (x) = 1,

with
y = 0 and y = 1 horizontal asymptotes,

and

f ′ω′ (x) = − −1
(ex + 1)2 · ex

=
ex

(ex + 1)2 > 0, x ∈ R.

from where we have the following table:

Table 3.1.

−∞ +∞
f ′ω′ + + + + + + + +
fω′ 0 ↗ ↗ ↗ ↗ 1

′
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For the second function we have

lim
x→−∞

fω′′ (x) = +∞, lim
x→∞

fω′′ (x) = 0,

with
y = 0 horizontal asymptote to +∞

and
f ′ω′′ (x) =

ex − 2
e2x

,

which has a local minimum point because f ′ω′′ (ln 2) = 0 and more specific fω′′ (ln 2) =

−1
4

, from where we obtain the following table:

Table 3.2.

−∞ ln 2 +∞
f ′ω′′ − − − − 0 + + + +

fω′′ +∞ ↘ ↘ −1
4

↗ ↗ 0

�

Remark 3.1. Therefore we observe that the all the three mechanical systems
are not equivalent at quantum level.

�

4 Some important definitions in Automatic Control

Definition 4.1. ([8]) An automatic control system is a closed-loop control system
that can partially or totally remove the intervention of a human operator. It im-
plies the existence of two interconnected subsystems: the control system and the
controlled process.

The scheme of a closed loop control system with negative feedback is presented
in Figure 4.1.

Fig. 4.1. The closed loop control system scheme.

BUPT



Optimum method for controller tuning 29

where C - controller, P - process, r - reference signal, e - error, u - input signal, y -
output signal.

Definition 4.2. ([8]) A controller is a device that takes in the operational space
the error e (obtained as the difference between the input signal r and the output
signal y ) and gives as its output the input signal for the process P.

Definition 4.3. ([3]) A transfer function is a mathematical representation which
describes a relation between the input and the output of a system. For continuous
time system, the transfer function is a linear mapping of the Laplace transform of
the input to the Laplace transform of the output.

5 The Symmetrical Optimum Method (SO-m) utilized
in a case study

The symmetric optimum method was introduced by C. Kessler [5] and it is used
in many variants for controller tuning [[10], [4], [1]]. An extended version of the
SO-m method is presented in [7]. The basic idea consists in making into the transfer
function of the open loop system a second order pole in the origin which ensures
null tracking error in relation to the ramp entry variations.

A version of the method is applied in the situations when the process has a
integral component [10] Hp(s) = kp

s(1+sTΣ)(1+sT1)(1+sT2) .
Thanks to the double pole created in the origin the transfer function of the closed

system has the following form [10]:

Hr(s) =
krkpTrs+ krkp

s3TΣ + s2 + krkpTrs+ krkp
=

b1s+ b0
a3s3 + a2s2 + a1s+ a0

(5.1)

with
b0 = a0, b1 = a1, a0 = krkp, a1 = krkpTr, a2 = 1, a3 = TΣ.

In the pulse- module characteristic [10]:

|Hr(jω)| =
√

a2
0 + a2

1ω
2

a2
0 − (2a0a2 − a2

1)ω2 − (2a1a3 − a2
2)ω4 + a2

3ω
6

(5.2)

The setup of (5.2) allows suboptimal generalization of the method and the ex-
pression of the controller parameters can be determined. To a custom process a
certain type of controller is attached [5], [10].
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Case 1, for a process with the transfer function HP =
kp

s(1 + sTΣ)
a PI controller

with the transfer function Hr(s) can be designed:

Hr(s) =
kr

s
(1 + sTr), kr =

kR

Ti
=

1
8kpT 2

Σ

, Tr = 4TΣ (5.3)

Case 2, for a process with the transfer function HP =
kp

s(1 + sTΣ)(1 + sT1)
a

PID controller with the transfer function Hr(s) can be designed:

Hr(s) =
kr

s
(1 + sTr)(1 + sT

′
r), kr =

1
8kpT 2

Σ

, Tr = 4TΣ, T
′
r = T1, (5.4)

Case 3, for a process with the transfer functionHP =
kp

s(1 + sTΣ)(1 + sT1)(1 + sT2)
a PID2-T1 controller with the transfer function Hr(s) can be designed:

Hr(s) =
kr

s
(1 + sTr)

(1 + sT
′
r)

(1 + sT
′
f )

(1 + sTd)
(1 + sTf )

, kr =
1

8kpT 2
Σ

, Tr = 4TΣ, (5.5)

T
′
r = T1, Td = T2, Td/Tf ≈ 10.

In the following we want to show that for the third Hamiltonian mechanical
system one can design a linear controller using the symmetrical optimum method.

Proposition 5.1. The Laplace transform for the third Hamiltonian mechanical
system is

L
[

1− eq
e2q

]
=

1
s+ 2

− 1
s+ 1

= − 1
(s+ 1)(s+ 2)

This process fits in Case 1, so the controller designed on the symmetrical opti-
mum method is of type Proportional-Integrator (PI) and has the transfer function

Hr(s) =
kr

s
(1 + sTr) where kr = −0, 12 and Tr = 4.

After that we made a closed loop experiment in MATLAB/Simulink. A unitary
step was applied as input signal at t=1s. The system output is presented in Figure
5.1. The simulation results show that the process is stable in closed loop, which
means that the designed PI controller is a good one.
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Optimum method for controller tuning 31

Fig. 5.1. The output of the closed loop system.

From the above chapters it results that:

Theorem 5.1. The three Hamiltonian mechanical systems are equivalent at
classic level, but not at quantum level. Moreover it can be shown that for the
last one a linear controller can be designed based on Kessler’s symmetrical optimum
method. �

6 Conclusions

Alongside the first two systems which were described in [9] a third one was build.
This new system is equivalent at classic level with the first two, but all of them are
different at quantum level.

The most interesting part of the article is that we have shown that there are
Hamiltonian mechanical systems (whose manifolds are quantified) which can be
controlled by designing a controller based on the symmetrical optimum method.
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