
INFERENCE OF SAFE APPROXIMATE
MODELS FOR SYSTEM

COMPOSITION

Teză destinată obţinerii
titlului ştiintific de doctor inginer

la
Universitatea "Politehnica" din Timişoara

în domeniul CALCULATOARE ŞI TEHNOLOGIA
INFORMAŢIEI

de către

Casandra Holotescu

Conducător ştiinţific: Prof. univ. Dr. Ing. Horia Ciocârlie
Referenţi ştiinţifici: Prof. univ. Dr. Dana Petcu

Prof. univ. Dr. Ing. Mircea Petrescu
Prof. univ. Dr. Ing. Vladimir-Ioan Creţu

Ziua susţinerii tezei: 26.04.2013

BUPT

2

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 7. Inginerie Electronică şi Telecomunicaţii
2. Chimie 8. Inginerie Industrială
3. Energetică 9. Inginerie Mecanică
4. Ingineria Chimică 10. Ştiinţa Calculatoarelor
5. Inginerie Civilă 11. Ştiinţa şi Ingineria Materialelor
6. Inginerie Electrică

Universitatea "Politehnica" din Timişoara a iniţiat seriile de mai sus în scopul dis-
eminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul
şcolii doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr.14/14.07.2006,
tezele de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright c©Editura Politehnica – Timişoara, 2013

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea
ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice
altă formă este permisă numai cu respectarea prevederilor Legii române a dreptu-
lui de autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea
Universităţii "Politehnica" din Timişoara. Toate încălcările acestor drepturi vor
fi penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,
tel. 0256 403823, fax. 0256 403221

e-mail: editura@edipol.upt.ro

BUPT

Acknowledgements

I would like to thank my advisor, Prof. Horia Ciocârlie, for all the support he
has shown me all these years, for all his good advice and encouragement, and
for all his wisdom.

My gratitude goes to Prof. Dana Petcu, Prof. Mircea Petrescu and Prof.
Vladimir-Ioan Creţu for promptly accepting to be the members of my Ph.D.
examination commitee, and to Prof. Vasile-Stoicu Tivadar for accepting to
chair the examination. As the head of Institute eAustria, Prof. Dana Petcu has
also offered me material support during my Ph.D., and I thank her.

I am very grateful to Marius Minea, who has taken a lot of time to review my
papers and my dissertation, and whose constructive criticism has made me a
decent researcher and a better, braver, more logical and more rational (although
not entirely) human being. Many thanks go to Prof. Ioan Jurca and Ioana Sora,
who have also reviewed this dissertation and provided me with valuable feedback
and advices.

I would also want to thank my colleague Mihai Balint, who has been the best
"academic brother" one could hope for, and also a source of good cheer and
valuable research experience. It probably wasn’t easy working in the same office
with the emotional storm that I am, but Mihai proved endless patience and
empathy. Similar qualities have also shown Cristina Marinescu, Dan Cosma,
Alexandru Gyori, Petru Mihancea and Petre Mierlutiu, and similar feelings of
gratitude go towards them as well. It was so fun having you guys around, and
thank you for all the teaching and research experience you’ve been kind enough
to share with me. Gossip was highly appreciated as well.

Special thanks go to my whole family, who has shown me unconditional love and
support through my darkest times. I would have probably been lost to my doubts
and fears without their faith and warmth, so I’m truly happy that they have

BUPT

4

somehow managed to stand by me all these strange, challenging years.

And, most of all, I would like to thank God for throwing me on such an exciting
ride and for giving me enough strength and stamina to last through it.

This dissertation has been partially supported by the strategic grant POSDRU
6/1.5/S/13, (2008) of the Ministry of Labour, Family and Social Protection,
Romania, co-financed by the European Social Fund – Investing in People, by
the European FP7-ICT-2007-1 project 216471, AVANTSSAR: Automated Val-
idation of Trust and Security of Service-oriented Architectures and by the Eu-
ropean FP7-ICT-2009-5 project no. 257876 SPaCIoS: "Secure Provision and
Consumption in the Internet of Services".

Holotescu, Casandra

Inference of Safe Approximate Models for System Composition

Teze de doctorat ale UPT, Seria 14, Nr.15, Editura Politehnica, 2013, 237
pagini, 176 figuri, 14 tabele.

Keywords: components, model learning, controllability, adaptation

Abstract,

The scope of this thesis is in the field of software engineering and formal
methods. A core issue in component-based software engineering is how to
rigorously build a system from off-the-shelf software components. This is done
by automatic component adaptation and composition, which need behavioural
models of all components. We have developed an approximate model inference
technique for black box asynchronous software components. In contrast to exist-
ing techniques that assume only controllable behaviour, our method addresses the
challenges raised by uncontrollable events, which cannot be enabled or disabled
at will. The models inferred are safe with respect to black box controllability, i.e.
they can be reliably used to control the real components.

BUPT

Contents

1 Introduction 9
1.1 Background and Motivation 9
1.2 Main Contributions . 11

1.2.1 Goal . 11
1.2.2 Centralized Behaviour Exploration 12
1.2.3 Distributed Behaviour Exploration 12
1.2.4 Cycle-Oriented Optimization 12
1.2.5 Model Building . 13
1.2.6 Tool Support: BASYL 13

2 Preliminaries 15
2.1 Component Based Software Engineering 15
2.2 Model-Based Adaptation . 20
2.3 Finite State Machines . 23
2.4 Model Learning . 26

2.4.1 The L* algorithm . 26
2.5 Control of Discrete Event Systems 30

3 Related Work 35
3.1 Black Box Model Checking 35
3.2 Black Box Model Learning – Angluin-Based Methods 36
3.3 Model Learning and Controller Synthesis 37
3.4 Non-Angluin Model Inference 38
3.5 Testing Asynchronous Black Boxes 39
3.6 Verification-Driven Execution 40

4 Safe Model Inference 41
4.1 Overview . 41
4.2 Assumptions . 46

BUPT

6 CONTENTS

4.2.1 Component Models 46
4.2.2 Trace Trees . 51

4.3 Centralized Behaviour Exploration 53
4.3.1 Centralized Exploration Algorithm 59

4.4 Model Building . 62
4.4.1 Vertex Compatibility 63
4.4.2 Building an Approximate Model 66
4.4.3 Building a Precise Model 72
4.4.4 Model building algorithms 75

4.5 Distributed Behaviour Exploration 81
4.5.1 Motivation . 81
4.5.2 Method overview . 81
4.5.3 Local Exploration Strategy 84
4.5.4 Distributed Exploration Algorithm 88

4.6 Exploration Optimization . 93
4.6.1 The Issue of Cycle Identification 93
4.6.2 Cycle-Oriented Behaviour Exploration 95

4.7 Adaptor synthesis . 97
4.8 Proofs . 99

4.8.1 State reachability . 99
4.8.2 Permissiveness . 100
4.8.3 Safety . 101
4.8.4 Termination . 103

4.9 Complexity Limitations. Discussion 104
4.9.1 Asynchronous Angluin 104
4.9.2 BASYL . 105
4.9.3 Discussion . 107

5 Experimental Results 109
5.1 Tool Support: BASYL . 109
5.2 Case Study: The Single Sign On Protocol 113

5.2.1 Individual Exploration 117
5.2.2 Centralized Exploration 130
5.2.3 Distributed Exploration 140

5.3 Case Study: A Product Data Management System 148
5.3.1 Individual Exploration 153
5.3.2 Centralized Exploration 170
5.3.3 Distributed Exploration 186

5.4 Case Study: Domotics . 198

BUPT

CONTENTS 7

5.5 Learning Large Individual Components 212
5.6 Case Study: The Session Initiation Protocol (SIP) 213

6 Conclusions 221
6.1 Summary of Contributions . 221
6.2 Limitations . 223
6.3 Future Work . 224

A Publications 225

B List of Abbreviations 227

BUPT

8 CONTENTS

BUPT

Chapter 1

Introduction

1.1 Background and Motivation

Component based software engineering has emerged as a promising trend both
in today’s academic and industrial landscape. Its main benefit lies in reducing
the actual length of the software development process: instead of designing,
developing, testing and integrating several software modules, a desired system
is composed out of reusable, off-the-shelf components. This makes for a faster
and more flexible way of creating software systems.

However, integrating third party components can be a difficult and error prone
task. If we want to build good software, we have to use well-tested, reliable
components, and we have to make sure they interoperate correctly. In most
cases, composing off the shelf components is far from straightforward and several
mismatches appear at functional, behavioural, signature and quality of service
levels [9]. In order to address this very frequent issue, specific adaptors have to
be built, and, since building these adaptors by hand is usually a hard and tedious
task, tools and techniques for automating system composition are needed.

In the area of behavioural adaptation, important advances have been made in
the last two decades. Since the seminal work of Yellin and Strom [84], formal
specifications of component behaviour have been used to obtain adaptors able to
ensure correct interoperability at behavioural level. Such an adaptor is a specific
component-in-the-middle that coordinates the interactions in the system for the
purpose of achieving the desired functionality.

BUPT

10 CHAPTER 1. INTRODUCTION

While early approaches, such as [72], were aiming for deadlock-free component
interaction, later solutions such as [5] or [23] provide fully automated, tool-based
adaptor generation, and the resulting adaptors also coordinate the system with
the goal of satisfying desired temporal logic properties. Both desired proper-
ties and component behaviour are modelled by means of the same formalism,
be it finite state machines, Büchi automata or labeled transition systems, and
the composition is considered successful when the adapted system behaviour is
simulated by the specified goal.

Behavioural system adaptation can also be easily reduced to a control prob-
lem [67], if we see the adaptor as a controller over the system plant, enabling
transitions by message forwarding and disabling them, whenever necessary, by
message consumption.

However, formally specified component behaviour is, unfortunately, still far from
becoming a mainstream industrial practice. Therefore, situations when incom-
pletely specified, black box components have to be correctly assembled to create
a larger system are not at all uncommon. As none of the classic adaptor synthe-
sis solutions can be applied, building a correct and reliable system under these
circumstances is a challenging task.

So, how can the problem of correct software composition can be addressed under
these circumstances? One solution is to first learn the models of the black box
components by using an existing regular inference algorithm, such as L* [4].
However, learning a complete model for a component is hard, and implies a large
amount of expensive queries applied to the black box component. Therefore, it is
only feasible to infer approximate models of the black box components involved,
under some assumptions, like knowing an upper bound for the model state size,
etc. [44, 64]. This works fine for components that are completely controllable
from outside, but what happens if we have to integrate components that also
have uncontrollable events, i.e. events that cannot be enabled or disabled by an
external agent?

Assume we have black box components that send and receive messages asyn-
chronously. Also assume that for these components the message send events
are uncontrollable, i.e. it is impossible to directly force the occurrence of a send
event by some external action. If we want to integrate them into a system
that would comply to a certain temporal property, we need to know everything
about their uncontrollable behaviour, so that the system adaptor would be able
to properly react to any uncontrollable event occurring in the system. However,
since learning a complete model of the component can be infeasible, we have to

BUPT

1.2. MAIN CONTRIBUTIONS 11

be able to build an overapproximation of the uncontrollable behaviour from any
limited set of executions.

Therefore, the research questions asked are the following:

• How should learned models approximate the real behaviour of the black
box component so that the adaptor to be generated for these models can
enforce a safe behaviour on the real system ?

• How can we learn such safe approximate models for components whose
event set contains both controllable and uncontrollable events?

• How can we control and explore the behaviour of such components in
an efficient way, assuming the desired system would have to comply to a
certain temporal property?

1.2 Main Contributions

1.2.1 Goal

The goal of our work is learning behavioural models for black box software com-
ponents whose alphabet contains both controllable and uncontrollable events.
The model inference is specifically done for compositional purposes. The learned
models are to be used to compose a system under a specified safety property.
Composition takes place by generating a controller for the system, that will use
the controllable events in the models to disable any execution that violates the
desired property. Therefore, the models obtained have to be reliable, i.e. to
contain only observed controllable transitions, that can actually be enabled at
runtime, and, also, to contain all the uncontrollable transitions in the real com-
ponent’s behaviour. Also, the learned models do not need to contain all the
behaviour of the black box component, but only the subset of this behaviour
that is relevant to the specified system property.

Thus, the goal and the main contribution of this thesis is developing an active,
online model learning method specifically adapted to black box components that
exhibit uncontrollable behaviour. The models learned are safe approximations of
the real black box behaviour, i.e. overapproximations of its uncontrollable be-
haviour and underapproximations of its controllable behaviour, thus the system
can be safely composed by generating a controller to enforce the desired specifi-

BUPT

12 CHAPTER 1. INTRODUCTION

cation. For this purpose, we have developed two runtime behaviour exploration
techniques and a model building method that have all been implemented in the
BASYL (Black box ASYnchronous Learning) tool.

1.2.2 Centralized Behaviour Exploration

The centralized behaviour exploration method actively explores the global be-
haviour of the system. The runtime behaviour is observed at a global level, so all
components in the desired system are executed together. However, the model
of each black box component is inferred individually, using projections of the
global execution traces on each component’s alphabet of events.

Considering the desired temporal property, we delegate the task of coordinating
the system to a proactive component-in-the-middle, a proactive adaptor. This
adaptor monitors the components in the system and controls their interactions,
by intercepting sent messages and forwarding or consuming them. Thus, the
system is forced to only execute the behaviour needed to be learned, that is
the behaviour relevant to the desired property. This runtime behaviour explo-
ration process ends when either all relevant traces of bounded length have been
explored, or when a certain cost limit has been reached.

1.2.3 Distributed Behaviour Exploration

The distributed behaviour exploration method relies on a localization of the
behaviour exploration process in order to better fit the natural structure of
distributed systems.

For each component in the system a local instance of a proactive adaptor is
created, and the behaviour of each black box component is explored locally,
together with the models of other components in the system. This allows for a
parallelization of the model inference process, since in this case the components
are executed and monitored independently from each other.

1.2.4 Cycle-Oriented Optimization

Both centralized and distributed behaviour exploration methods can be opti-
mized to prioritize the runtime exploration of cyclic scenarios over any other

BUPT

1.2. MAIN CONTRIBUTIONS 13

relevant behaviour. The aim of this prioritization is to achieve an early cycle
identification in the learned models.

This is important, as many execution scenarios are either cyclical, or part of
larger loops. The relevant cycles of the specification automaton, i.e. the cycles
involved in specified usage scenarios, are projected on the alphabet of each black
box component. Then, at runtime, the execution is specifically and repeatedly
steered towards these loops. Identifying these cycles is necessary for the resulting
composed system to allow the execution of cyclic scenarios.

1.2.5 Model Building

The model building phase takes place after the runtime behaviour exploration
process ends, and it makes use of all observations gathered so far. These obser-
vations include both positive and negative sample traces, i.e. sequences of events
determined as included, respectively not included in the behavioural language of
the component under learning.

Most importantly, no matter when the behaviour exploration stops, the model
building algorithm always results in a safe approximation of the real black box
behaviour, that is the controllable behaviour of the component is always un-
derapproximated by the built model, while the uncontrollable behaviour of the
component is overapproximated. This allows for the approximate model to be
reliably used for adaptor synthesis.

Precise models can also be obtained, when the black box behaviour is completely
explored to a certain predefined depth.

1.2.6 Tool Support: BASYL

In order to empirically validate our approach, we have provided tool support for
the theoretical solutions we have elaborated.

We have implemented our behaviour exploration and model building techniques
in the BASYL tool, which is entirely written in Java. BASYL works at a high
abstraction level, therefore it needs specific drivers for each technology used by
real software components.

BUPT

14 CHAPTER 1. INTRODUCTION

The learning techniques presented in this work have been tested, using BASYL,
on a number of case studies from both model inference and component based
software engineering literature. The results of the set of performed experiments
have shown the validity of our thesis: BASYL can learn safe approximate models
for components with uncontrollable behaviour.

BUPT

Chapter 2

Preliminaries

2.1 Component Based Software Engineering

The concept of component was first introduced in 1968 by McIlroy [62], in a
time when software reuse was limited to ad-hoc reuse of subroutines. By analogy
with mechanical or hardware components, the vision of software components
described in [62] was to have standard catalogs of mass produced, flexible and
largely reusable routines from which the programmer to be able to choose the
most suitable options for his project, given catalog descriptions based on various
parameters (cost, performance, etc.).

Later on, this vision was enriched by the fast development of the object-oriented
paradigm initiated by Kristen Nygaard and Ole-Johan Dahl, and further devel-
oped by Bertrand Meyer. Thus, reusable software modules became more than
the resulting product of structural system decomposition: they became loosely
coupled, highly cohesive conceptual units [63]. Under the strong influence of
object-oriented technology, one of the first definitions of software components
was given by Booch in [19]:

A reusable software component is a logically cohesive, loosely cou-
pled module that denotes a single abstraction.

The seminal work of Szyperski [77] further developed this concept, and the initial
definition of a software component evolved to a richer view, with a strong accent
on reusability. The loosely coupled perspective was thus taken further, towards
a possible independence of development and deployment for various components

BUPT

16 CHAPTER 2. PRELIMINARIES

of the same system, as defined in [77]:

A software component is a unit of composition with contractually
specified interfaces and context dependencies only. A software com-
ponent can be deployed independently and is subject to composition
by third parties.

In [46, 39], the authors identify more types of reusable components that may
appear in a component-based software project: commercial off-the-shelf compo-
nents, which are independently deployable, in-house built reusable modules and
libraries, with a rather limited degree of independence and reusability, and legacy
modules (which can and have to be integrated into newer systems). What usu-
ally distinguishes the off-the-shelf components from software modules is their
extended reusability and replaceability. Their implementation is usually hidden
from the customers, and they are delivered as black boxes with documented
interfaces, which only interact through their interfaces, without exposing their
inner state [75]. Further on, based on their designated purpose, off-the-shelf
components are also classified in individual, standalone reusable components
and composite building blocks, which are specifically developed as building parts
and conform to certain composition standards [39].

Composing new systems out of reusable, off-the-shelf components is clearly a
more than promising direction in both current software engineering research and
practice. As pointed out by Sommerville in [75] software reuse not only accel-
erates the development process, while reducing its risks, but also increases the
dependability of the resulting product – as an already tried and tested compo-
nent is definitely more reliable to use than a freshly developed one. Even more,
as off-the-self components exhibit a coarser granularity, and tend to provide a
lot of functionality, reusing them can lead to further important cuts to both
development costs and time [75].

Increased development efficiency, safer and more reliable systems, great compo-
nent versatility and reusability, all these would be easily achievable if software
components would be as standard as lego pieces. It would make the process
of building correct software as simple as building lego houses. Unfortunately,
practical realities are much harsher and utterly complex. Thus, even though the
future of software engineering lies in composability and reusability, there is often
the case for the lego pieces to fit badly or not at all.

It is important to note that in a component-based paradigm the software de-
velopment process is not only shorter than normally, but also more complex,

BUPT

2.1. COMPONENT BASED SOFTWARE ENGINEERING 17

although it might actually appear simpler at a superficial look. First of all
there are not one, but two different development processes, that translate to
two different, overlapping software life-cycles: the component life-cycle, and the
product life-cycle [27, 28]. In the system development process, the phases of
unit design, development and testing are replaced by new, specific phases: com-
ponent selection (from a preexistent component pool), adaptation and specific
component verification and testing (in isolation, in an assembly, after deploy-
ment in the system, etc.). Also, in the component life-cycle the need to allow for
wide reusability affects all the development process phases, from requirements
elicitation and component design, to testing and maintenance. Further more,
components have to be individually found, evaluated, and sometimes updated
and/or replaced [27, 28].

Let us add to this inherent complexity and parallelism in the software develop-
ment process another generally observed fact. Due to independent, third-party
development of components, mismatches that appear between the assembled
parts will usually prove difficult to solve, as difficult as these building blocks
are new or barely familiar to the developer. Therefore, one of the main chal-
lenges in component-based deployment of systems is how to preserve the gain
in efficiency and productivity offered by the use of existing software component,
without compromising it to endless fixing of mismatching problems.

As early as 1995, Garlan et al. were discussing the difficulties encountered while
building a new application out of already existing parts [40]. The incompatibili-
ties encountered resulted in two years of hard work to solve. The development
process was slow due to the fact that the component dependencies and interac-
tions were many and quite hard to understand. Hard challenges were raised by
the different assumptions the original developers of the components had made re-
garding infrastructure, the control and the data model, the interaction protocols
and the exchanged data, etc. All these have led to severe mismatchings.

To eliminate at least partially this kind of problems some common conventions
for off-the-shelf components are needed. Not only it was much better for the
reused components to be regarded as merely black boxes by their reuser, as earlier
stated, but also certain information about their inner structure, requirements,
etc. needed to be available for better understanding. Harrold et al is proposing
in [45] a technique to make reusable components easier to test and analyze
by third parties. In order to facilitate these software engineering “musts” it
is indicated that the component provider should not only support a great deal
of testing of his components as context-independently as possible, but should

BUPT

18 CHAPTER 2. PRELIMINARIES

also deliver with his components relevant summary information, represented in
a standard notation, about the component. This information should include
static or dynamic slices of the component code, a list of exceptions raised and
their raising conditions, different functional constraints, dataflow information,
etc. All these for the purpose that the component user would be able to better
understand, integrate, analyze, test and debug his application.

Other common conventions started to emerge for the reusable building blocks.
Due to the importance of having some uniform architectural view on the building
blocks, that would allow both ease of assembly and replacement, such common
conventions have finally coagulated as component models. This lead to a new
definition of a reusable software component when regarded as a building block,
definition given by Bachmann et al. in [38]:

A component is:

• an opaque implementation of functionality

• subject to third-party composition

• conformant with a component model

Although somehow narrowing the scope of software components, the criterion
of conformance to a component model is aimed to bringing uniformity and stan-
dardization in the development process. Component models impose architectural
constraints on building blocks, by describing standard ways of interacting in a
component-based system [38].

One of the first steps towards standard component models was the invention of
the reusable middleware, standardized first by the Object Management Group
(OMG) as a means to support a uniform interaction of various distributed ob-
jects over the network [80]. Thus, Common Object Request Broker Architecture
(CORBA) standard was established, together with the OMG IDL interface spec-
ification language. Then, Sun went beyond the concept of middleware, creating
a reusable application framework with the introduction of Enterprise Java Beans
(EJB) component model, specifically adapted for business applications and which
became widely adopted in industry [13, 47]. This also led to the CORBA stan-
dard being enriched by the CORBA Component Model (CCM), which was a more
general application framework than EJB, being language-independent, but failed
to achieve the same success as EJB [47]. Microsoft developed its own standard,
called Component Object Model (COM), with its later versions COM+ and Dis-
tributed Object Model (DCOM), aiming to allow that way for the development

BUPT

2.1. COMPONENT BASED SOFTWARE ENGINEERING 19

of large scale component-based applications [37].

However, obtained reliable composite systems out of preexistent building blocks
asked for richer, more complex component models and better frameworks. Such
models had to allow for well-specified contracts, for a formal description of
the component behaviour, for the expression of non-functional properties, etc.
so that powerful tools for the verification and validation of composite systems
could be developed. Under this purpose, several component models using rich
formalisms and being able to express various component and architecture prop-
erties have been developed in academis. Such are Fractal [20] and SOFA [21]
that describe composite architectures in a hierarchical way, allow for the for-
mally specifying the behaviour of both primitive and composed components, and
use off-the-shelf model checking tools for verification. The Java/A component
model integrates architectural and behavioural description by embedding specific
information in the actual implementation, to avoid architectural erosion [8]. A
formal model based on timed infinite streams, the Focus/Autofocus component
model is well suited for reactive systems, and its aim is to provided a top-down
guided development, by successive refinements, from given requirements to im-
plementation [49]. The rCOS component model uses a relational calculus for an
object-oriented analysis of the component based system, which can be described
at various levels of abstraction [56], while the CoIn model captures the behaviour
of the components in the system by means of component-interaction automata,
and composition correctness is then verified by the DiVinE model checker [10].
The increased interest in formally enriched component models has lead to a
component modeling challenge, employing a common, complex real-world case
study for a uniform evaluation of many emerging approaches [3]. However, none
of the mentioned formal component models are widely adopted in industry, as
they (and their associated tools) still represent ongoing research.

Beyond common conventions and modeling perspectives, for an off-the-shelf
component to be reused in a new system one must note that adaptation is re-
quired to reconcile the different, imperfectly matching interfaces [75]. In order
for the adaptation to be possible, knowledge of the component inner dynamics
needs to be available. Modern approaches to component adaptation, as sur-
veyed in [22] and in [73] regard components as grey-boxes, where the knowledge
needed for adaptation describes mainly the component behaviour and interaction
protocols and is encoded by means of Finite State Machines, Labeled Transi-
tion Systems, Petri Nets, process algebra, etc., which facilitate formal reasoning
about their behaviour in the context of the desired system. The general aim is
to obtain an automated component adaptation within the new system.

BUPT

20 CHAPTER 2. PRELIMINARIES

2.2 Model-Based Adaptation

The component-based approach in software engineering is set on reusing already
existing components in order to build new systems. Assembling these compo-
nents into an application, or reassembling them in an attempt to add new fea-
tures to the system is not trivial. Important issues raised by this paradigm relate
to frequent component incompatibility. Forcing them to match the new schema
may require a lot of development effort and can eventually end up with obtaining
a fragile, badly integrated system.

Therefore, a lot of effort has been put into automatically adapting component
behaviour to one another and also to the system’s requirements. As the im-
plementation details components are bound to remain hidden, the adaptation
process has to happen in a non-intrusive ways.

There are currently three main approach typeses in component adaptation: par-
ticular, generative and restrictive [23]. Particular approaches refer to practical
ad-hoc solutions which are not subject to generalisation. Generative approaches
build mediators to rearrange communication protocols in order to obtain a good
match. Also, restrictive solutions adapt component behaviour by excluding that
part of it that would lead to integration problems. As the last two solutions are
complementary, a hybrid approach, that would use a combination of generated
adapters and pruning of mismatching behaviour has also appeared [23].

In 1997, Yellin and Strom have set the foundation for automatic model-based
adaptation of reusable component behaviour [84]. They found a generative
solution to the issue of incompatible component integration and this solution was
to build and use adaptors. An adaptor was formally defined as a software entity
which could enable correct interoperability of components with mismatching
behaviour. They used finite state machines for modeling component interactions
and defining compatibility relations among them. This allowed them to generate
the needed adaptors in a semi-automated way [84].

Based on Yellin and Storm’s work, Reussner and Schimdt have developed a
rather ad-hoc than generative approach [71], using finite state machines (FSMs)
to formally describe component behaviour. They assume that component con-
figurations, with provided and required interfaces are also already known when
composing a system. The terms of ken and gate are introduced to describe sys-
tem architecture. A ken is a self-contained component, encompassing a cluster
of internal objects, while a gate is an interface object, through which data or

BUPT

2.2. MODEL-BASED ADAPTATION 21

control is transfered to or from kens. The gates are further divided into required
and provided gates, where both required and provided behaviour is described
by FSMs. Using a a design-by-contract view, the compatibility between two
kens can be reduced to the compatibility between their required and provided
gates. Several frequent component interaction and mismatch patterns are con-
sidered and specific adaptor-generating methods are developed for each such
pattern [71].

This pattern-based method for adapting component and ensuring interoperabil-
ity is later extended by Reussner with more restrictive aspects [68, 69]. The
concept of parameterized contracts, as a generalisation of component interoper-
ability checks is introduced. Partial compatibility between components becomes
possible, and a component provided or required interface can be restricted in
the adaptation process, so that the component can adapt to a large range of
environments. A component will provide less functionality, if not all its required
functionality is provided by the environment; also a component will require less
functionality if not all its provided functionality is used by its clients. This
significantly enhances the degree of component reusability [68, 69].

An interesting hybrid generative-restrictive approach is the one proposed in 2008
by C. Canal, P. Poizat and G. Salaun [23]. While sharing some similarities
with the Reussner et al. method, Canal et al. offer a more general solution,
adapted to complex scenario situations and have a well developed formal notation
for specifying the adaptation contracts. The component behaviour is modeled
using Labeled Transitions Systems (LTS), and, to better express communication
protocols, labels used are vectors. Two adaptation algorithms are proposed. The
first one performs a restrictive adaptation, using an extension of the synchronous
product, synchronous vector product, which is computed between the adaptation
contract LTS vector and the set of LTS vectors corresponding to the system
components. Out of the result LTS, all paths leading to deadlock situations are
eliminated. The second algorithm uses Petri Nets to allow for the reordering of
messages passed between components. For this purpose, a Petri net is generated
for every component protocol, starting from its LTS vectors. The adaptation
contract is, in this case, also issued in the form of Petri nets. [23].

An interesting generative solution is the one of Brogi et al., which uses a formal
specification method known as synchronous π–calculus based on representing
components through roles or patterns. An adapter specification would be de-
scribed by a mapping establishing some rules that describe relations between the
actions and the data of involved components. This specification is refined by

BUPT

22 CHAPTER 2. PRELIMINARIES

an adaptor generating algorithm and a concrete implementation of the adaptor
is obtained. Same mapping may later be used to formally verify whether the
generated adaptor is correct [17, 18].

A notable restrictive approach is developed by Inverardi and Tivoli [6, 5, 78].
Their work is based on a specific architecture, containing specific coordinator
components, also known as connectors, and component behaviour is modeled
as LTS. A coordinator is generated for a set of components and a desired co-
ordination policy, which expresses the set of allowed behaviours in the system,
by computing a synchronous product between participating LTS and by remov-
ing the paths to deadlock. Also, a two step method is offered for enhancing
existing communication protocols and adding new features, by applying several
local modifications on the coordinator components and generating some wrap-
ping “glue code” [6]. For the case of distributed software components, a special
distributed solution allows for localized adaptation, by first obtaining a central-
ized coordinator, then deriving local behavioural filters from its projections on
the local component domains, and keeping only a small central coordinator to
avoid system deadlocks [5, 78].

Another restrictive, very influential solution belongs to de Alfaro and Henzinger
who propose an optimistic definition of compatibility: two components are com-
patible if there exists an environment in which they interoperate adequately.
They present a light-weighted formalism that captures also the temporal as-
pect of component interfaces. This is achieved by using an automata-based
language, interface automata, to capture input assumptions about the invok-
ing order of component methods, and also output guarantees of the order in
which the component is invoking external methods. He obtains component be-
havioural adaptation using a game theory-inspired alternating approach, under
the assumption that one interface refines, and thus is compatible with another
if it has weaker input assumptions and stronger output guarantees [31].

Presented approaches generally consider synchronous and/or completely con-
trollable components. However, asynchronous components, which interact by
sending and receiving messages, can be only partially controllabler, since it’s
possible that a message send event cannot be forced from outside. In this
case, correct composition becomes a control problem [67, 7], where the control-
lable events are the message receive events, while message sending events are
considered uncontrollable from an external point of view. In this case, an adap-
tor/coordinator for the desired system is obtained from a generated controller,
which restricts system behaviour to the behaviour allowed by a desired property,

BUPT

2.3. FINITE STATE MACHINES 23

thus this approach can too be consired restrictive [67, 7].

Due to the increasing practical interest in reusing and recomposing existing
software components, automated software adaptation and composition by adap-
tor/coordinator generation has received a lot of attention. However, all formal
adaptation techniques require a formal specification of component behaviour.
If formal behavioural specifications are an important part of some of the most
recent component models from academia [3], providing them is still far from
being common industrial practice. Thus, when building a system, it if often
the case of having to integrate partially specified components. To be able to
automatically compose such a system, in a provably correct way, one has to first
extract the necessary knowledge on component behaviour, in a formal way. This
is done by model learning.

2.3 Finite State Machines

A Finite State Machine (FSM) is a mathematical model used to describe systems
that can be in one of a finite number of states at a time. The system can pass
from one state to another when relevant events occur, and this is considered a
transition. The relevant events that trigger such transition form the alphabet
of the finite state machine. In the beginning, the system is in a state known as
the initial state. When the system has executed a sequence of transitions that
represents a meaningful execution scenario, the system reaches an accepting
state, also known as a final state. A finite state machine can have one or
several accepting states.

A finite state machine is deterministic, when from each state no more than one
transition on the same event can be taken, and is nondeterministic when, from
at least one state, more than one transition can be taken on the same event. An
example of a deterministic finite state machine can be seen in figure 2.1.

Formally, a finite state machine can be defined as a quintuple:

M = 〈Q, q0, Qf ,Σ, δ〉

where:

• Q is the set of states

• q0 is the initial state

BUPT

24 CHAPTER 2. PRELIMINARIES

!cid

reqid?
!cid

(a)

Figure 2.1: A deterministic finite state machine.

• Qf is the set of final states

• Σ is the alphabet of events

• δ is the partial transition function and is defined as δ : Q × Σ → Q
for deterministic finite state machines, or as δ : Q × Σ → P(Q) for
nondeterministic finite state machines

If, for a deterministic finite state machine, the function δ is defined for state
q ∈ Q and event σ ∈ Σ, we denote this by ∃δ(q, σ).

A deterministic finite state machine is also known under the name of determin-
istic finite automaton (DFA).

Considering the set of events Σ, a word is a finite string of events in Σ. The set of
all finite strings composed from events in Σ is denoted as Σ∗. Let δ∗ : Σ∗ → Q be
the extension of the partial transition function δ to words in Σ: δ∗(σ) = δ(q0, σ),
and δ∗(wσ) = δ(δ∗(w), σ), where w ∈ Σ∗.

If a word w in Σ∗ triggers a sequence of transitions that takes the automaton,
step by step, from the initial state to an accepting state: δ∗(w) ∈ Qf , we say
that the word w is accepted by the automaton.

A subset of the string set Σ∗ is a language. A language L ⊆ Σ∗ is a regular
language if a deterministic finite automaton A = 〈Q, q0, Qf ,Σ, δ〉 exists, so
that A will accept all the strings in L and only them L = L(A), where L(A) =
{w ∈ Σ∗|δ∗(w) ∈ Qf}. For a language L can exist more automata Ai, so that
L = L(Ai). However, there exists an automaton Aj, L = L(Aj), so that Aj
has the minimum set of states from all automata accepting L.

Let us consider two automata A1 and A2. We say they are synchronized when

BUPT

2.3. FINITE STATE MACHINES 25

both automata take a transition on a common event at the same time. Then,
their synchronous product is the automaton A1‖A2 = 〈Q12, q012, Qf12,Σ12, δ〉,
where Q12 = Q1 ×Q2, the initial state is q012 = (q01, q02), the set of accepting
states is Qf12 = Qf1 ×Qf2, the event set is Σ12 = Σ1 ∪ Σ2 and the transition
function δ : (Q12)× (Σ12)→ Q12 is defined as following:

• δ((q1, q2), σ) = (q′1, q′2) if δ1(q1, σ) = q′1 and δ2(q2, σ) = q′2

• δ((q1, q2), σ) = (q′1, q2) if δ1(q1, σ) = q′1 and !∃δ2(q2, σ)

• δ((q1, q2), σ) = (q1, q
′
2) if δ2(q2, σ) = q′2 and !∃δ1(q1, σ)

When only one of the automata takes a transition on a common event, i.e.
the automata do no synchronize, their composed language is given by the asyn-
chronous product. The asynchronous product of two automata A1 and A2 is the
automaton A1×A2 = 〈Q12, q012, Qf12,Σ12, δ〉. The state set is Q12 = Q1×Q2,
with the initial state (q01, q02) and the set of accepting states Qf12 = Qf1×Qf2.
The event set is Σ12 = Σ1 ∪ Σ2. The transition function for the asynchronous
product is defined as:

• δ((q1, q2), σ) = (q′1, q2) if σ ∈ Σ1 and δ1(q1, σ) = q′1

• δ((q1, q2), σ) = (q1, q
′
2) if σ ∈ Σ2 and δ2(q2, σ) = q′2

As more specialized types of finite state machines, we will further introduce
Mealy machines, interface automata and input/output automata.

A Mealy machine is a finite state machine with input/output events. It is
formally described by a 7-tuple 〈Q, q0,Σ,Λ, Qf , δ, η〉, where while Σ is the set
of input events, Λ is the set of outputs, and a transition in the automaton both
consumes and input event and produces an output event. Thus, a transition
is both defined by the transition function δ : Q × Σ → Q, and by the output
function η : Q×Σ→ Λ, which associates a pair of a state and an input symbol
to an output symbol.

An interface automaton is a finite state machine designed to describe commu-
nicating systems, having disjoint sets of input and output events. It is described
by a tuple 〈Q, q0,Σ,Λ, Qf , δ〉, where Σ is the set of input events, Λ is the set of
output events, and the transition function is defined as δ : Q×(Σ∪Λ)→ Q, thus
a transition in the interface automaton can be triggered from the current state
by either an input, or an output event. Finally, an input/output automaton is
an interface automaton in which each input event is enabled in any state.

Let us now further consider the notion of determinism. Conceptually, a system

BUPT

26 CHAPTER 2. PRELIMINARIES

is deterministic when for each string of input events it consumes, it produces a
unique string of output events. This is also known as behaviour determinism. A
deterministic finite automaton, as well as a deterministic Mealy machine are be-
haviour deterministic, since their next transition and/or output event is uniquely
determined by the input event provided. However, for finite state machines that
have both input and output events, such as input automata, the issue is more
complex.

An interface automaton is input deterministic if only one transition on an input
event can exist from any state q ∈ Q, so (δ(q, σ) = q1)∧ (δ(q, σ) = q2)→ q1 =
q2, where σ ∈ Σ. An interface automaton is output deterministic if for each
output event, no more than one transition can occur from a state q, therefore
(δ(q, λ) = q1) ∧ (δ(q, λ) = q2) → q1 = q2, for λ ∈ Λ. Also, an interface
automaton is output determined if no more than one transition on an output
event can occur from a current state, thus: (δ(q, λ1) = q1)∧ (δ(q, λ2) = q2)→
q1 = q2 ∧ λ1 = λ2. An I/O automaton is behaviour deterministic if it is both
input deterministic and output determined.

2.4 Model Learning

Learning an unknown language, also known as the regular inference problem,
means finding the deterministic finite automaton that describes that regular
language. Various methods have been developed to address this problem, some
of them based on passive learning, i.e. learning from a set of available observed
traces, which represent either only positive samples, or both positive and nega-
tive samples, and some of them considering active learning, where the samples
are obtained at runtime, by querying, whenever more knowledge is necessary.
The best known active learning technique is the L* algorithm, also known as
the Angluin algorithm, developed by Angluin [4] for deterministic finite-state
automata and many black box model inference methods are based on it.

2.4.1 The L* algorithm

Introduction

As introduced in [4], the L* algorithm learns a deterministic finite state automa-
ton under the following assumptions:

BUPT

2.4. MODEL LEARNING 27

• the alphabet Σ of the automaton is known

• a bound n on the number of states of the automaton is also known

• the machine can be reset anytime to its initial state

The algorithm learns a model by repeatedly asking queries, and by constructing
an automaton based on the resulting observations. Two types of queries can
be asked: membership queries, that consist in asking whether a given string
s ∈ Σ∗ is accepted by the unknown automaton, and equivalence queries, which
are asked once a conjecture automaton has been obtained. Membership queries
are iteratively asked. The answers to the membership queries are considered
observations, and are used to generate a conjecture automaton when certain
criteria are met. For equivalence queries, the algorithm assumes the existence
of an oracle, which knows the real automaton to be learned. The oracle answers
an equivalence query either by confirming the equivalence of the learned and
real automata, or, if the learned automaton is not equivalent to the real one, by
providing a counterexample trace, that either is accepted by the real automaton
and rejected by the conjecture, or is accepted by the conjecture and rejected by
the target [4]. In practice, however, such an oracle does not exist, and therefore
it is emulated by an often large set of membership queries.

Learning a regular language

As described in [4] the learning takes place in the following way. An observa-
tion table is permanently maintained, recording the answers to the membership
queries. Let S and E be two sets of strings in Σ∗, where S is a prefix-closed set,
and E a suffix-closed set of strings. The observation table O is a two-dimensional
array, with rows labeled by the elements in S ∪ SΣ, and the columns labeled
by elements in E. A string s ∈ S represents the shortest prefix to access a
state, while a string e ∈ E represents a differentiating suffix. The strings s in
string set S, and the strings e in string set E are obtained from the membership
queries, with s always being a prefix and e a suffix of a same query. An entry in
the observation table, O[s, e], is 1 if se is accepted by the unknown automaton,
and 0 otherwise. In the beginning, both S and E only contain the empty string
ε, thus the learning starts with the hypothesis of the trivial automaton.

Two rows in the observation table, corresponding to strings s and t are considered
equivalent if for all e ∈ E, the entries O[s, e] = O[t, e]. The observation table
is considered closed if for each t ∈ SΣ there is an s ∈ S, so their corresponding

BUPT

28 CHAPTER 2. PRELIMINARIES

rows are equivalent. Also, the observation table is considered consistent if for
each strings s and t in S, whose rows in the observation table are equivalent,
for all σ ∈ Σ, the strings sσ and tσ have equivalent rows in the table. While
the observation table is not both closed and consistent, membership queries are
asked. First, the observation table is filled in the following way. For each string
s ∈ S ∪ SΣ and e ∈ E, a membership query for se is issued, and the result of
the query is recorded in the corresponding observation table entry [4].

If, after the table is filled, it is not closed, then the trace t ∈ SΣ for which
no equivalent s ∈ S exists is moved to S, and a new set of queries te is
asked for all e ∈ E, to fill the added row in the table. If the observation
table is not consistent, then equivalent strings s and t in S, for which sσ an
tσ are not equivalent, are found, and string σe is added to E, thus becoming
a differentiating prefix. Then, a new set of queries is asked to fill the added
column for all rows in the table [4].

When an observation table is both closed and consistent, a conjecture automaton
can be built from it.

The conjecture automaton is constructed in the following way. The strings in s
are the access prefixes, as they represent the shortest prefix by which a state can
be accessed, thus each prefix in S can be associated to a state of the conjecture
automaton. The strings in S∪SΣ are used to construct the transition function,
so that for each state corresponding to a string in S, a transition on an event
σ ∈ Σ exists. The obtained conjecture automaton is minimal [4].

Then, an equivalence query is asked to the oracle, in order to determine whether
the conjecture automaton is equivalent to the unknown one. If this is true,
the oracle answers affirmatively. Otherwise, it provides a counterexample. If a
counterexample is provided, the observation table is extended by adding all the
prefixes of the counterexamples to S. The newly added rows in the table are
then filled by asking new membership queries. Afterwards, the table is checked
for, and eventually made closed and consistent, and a new conjecture automaton
is obtained. The learning process ends when the equivalence query returns true,
and thus the hypothesis model is confirmed [4].

Several optimisations have been proposed for counterexample processing, such
as [70], [61], [74], in order to reduce the number of new membership queries. The
method of Rivest and Shapire analyzes counterexamples separately and only adds
one counterexample suffix to the set of distinguishing sequences E, while still
adding all counterexample prefixes to S [70] – this helps in saving membership

BUPT

2.4. MODEL LEARNING 29

queries, but the resulting conjecture automata might not be minimal anymore.
Maler and Pnueli process the counterexample by adding all its suffixes to set
E [61], while Shahbaz removes from the counterexample its longest prefix in
S ∪ SΣ – its longest already tried prefix – and only adds all suffixes of the
remaining sequence to E [74].

Another kind of optimisation, aiming to reduce the number of membership
queries, was developed by Kearns and Vazirani. They split the observation
table into subtables by using a discrimination tree. The counterexample suffixes
are only added locally, to one subtable. This results in important savings on the
side of membership queries, but might also lead to an increase in the number of
necessary equivalence queries [58].

Equivalence queries

In practice, the oracle that answers equivalence queries does not exist, it is purely
a hypothetical construction that allows for an elegant description of the L* al-
gorithm. Therefore, when learning black box components, an equivalence query
has to be approximated by an exhaustive set of membership queries. If no max-
imum state assumption would have been made on the unknown automaton, an
equivalence query would have been undecidable. However, with the automaton
size bounded by a maximum value m, an equivalence query can simply consist
of an exhaustive testing of the learned language via membership queries.

A more efficient solution, however, is using an algorithm for conformance testing,
such as the one developed by Vasilevskii and Chow [79, 26]. By using confor-
mance testing, instead of having an equivalence query that is exponential in the
maximum size of the unknown system, an equivalence query exponential only
in the difference between the size of the learned automaton and its maximum
bound is obtained. Further on, the equivalence query generation technique de-
scribed by Howar et al. in [55], also known as the “evolving hypothesis” is able
to find counterexamples fast when they exist, thus highly reducing the number
of membership queries asked for answering one equivalence query.

BUPT

30 CHAPTER 2. PRELIMINARIES

2.5 Control of Discrete Event Systems

As defined in [67], a Discrete Event System (DES) is a dynamic system whose
evolution is determined by the occurrence of events from a certain event set.
If we associate the discrete events from the event set of a specific DES to the
distinct symbols of a finite set Σ, we can then refer to Σ as the alphabet for
that DES. The symbols in Σ will further be known as event labels.

Then, the behaviour of the discrete event system can be formally described by
a language over Σ. As shown in [81], and using the authors’ terminology, this
language can be conveniently expressed as a generator:

G = 〈Q,Σ, δ, q0, Qm〉

where Q is the countable state set, δ : Q × Σ → Q is the partial transition
function, state q0 ∈ Q is the initial state of the DES, and the set of states Qm ⊆
Q is the subset of marked states. Marked states can somehow be associated to
acceptance states, which they semantically resemble, although a clear distinction
is made between the language of G and the marked language of G, a sublanguage
of the first. Assume that ε ∈ Σ, where ε is the empty event.

Let Σ∗ be the set of all possible sequences s over Σ, and let δ∗ : Q× Σ∗ → Q
be the extension of δ over Σ∗, so that δ∗(q, σ) = δ(q, σ) and δ∗(q, σ.s) =
δ(δ(q, σ), s), where σ ∈ Σ.

The language L(G) consisting of a subset of event sequences in Σ∗ so that
δ∗(q0, s) is defined for all sequences s ∈ L(G) represents the closed behaviour
of G. Also, the subset of sequences s ∈ L(G) for which δ∗(q0, s) ∈ Qm represent
the marked behaviour of G, noted by Lm(G) [81].

A state q ∈ Q is considered reachable if a string s ∈ L(G) exists such that
δ∗(q0, s) = q, and the generator G is reachable if all its states q ∈ Q are
reachable. Also, a state q is considered coreachable if a string s ∈ Σ∗ exists so
that δ∗(q, s) ∈ Qm, that is if a marked state can be reached from q, and G is
coreachable if all its states q ∈ Q are coreachable. If every reachable state of G
is coreachable, then G is nonblocking, thus every string s in L(G) is a prefix of
a string in Lm(G), L(G) = Lm(G), where Lm(G) is the prefix-closure of the
language Lm(G). If a generator G is both reachable and coreachable, then the
generator G is trim [81].

BUPT

2.5. CONTROL OF DISCRETE EVENT SYSTEMS 31

Further on, we shall define the synchronous product of two languages L1 ⊆ Σ1
∗

and L2 ⊆ Σ2
∗ corresponding to two different discrete event systems DES1 and

DES2. Let us assume Σ1 ∩ Σ2 6= ∅. Also, the reunion of the two event sets is
Σ1 ∪ Σ2 = Σ.

Let us have a function Pi : Σ∗ → Σi
∗, defined as following:

• Pi(ε) = ε

• Pi(σ) =
{
ε, σ 6∈ Σi

σ, σ ∈ Σi

• Pi(s.σ) = Pi(s).Pi(σ), ∀s ∈ Σ∗, σ ∈ Σ

The authors define Pi as the natural projection of sequence set Σ∗ onto Σi
∗ [67].

The inverse of Pi, P−1
i : Pwr(Σi

∗)→ Pwr(Σ∗), where Pwr(M) is the powerset
of set M , is then defined as:

P−1
i (H) = {s ∈ Σ∗|Pi(s) ∈ H}, ∀H ∈ Σi

∗

For languages L1 ⊆ Σ1
∗ and L2 ⊆ Σ2

∗, the synchronous product L1‖L2 is:

L1‖L2 = P−1
1 (L1) ∩ P−1

2 (L2)

Thus, for two generators G1 and G2, the synchronous product of their lan-
guages is a generator G so that Lm(G) = Lm(G1)‖Lm(G2), and L(G) =
L(G1)‖L(G2).

According to [67], the events that determine the evolution of the discrete event
system are of two kinds:

• controllable events: events that can be enabled or disabled by an agent
external to the DES; transitions on controllable events are taken only if
that controllable event is enabled, otherwise the event doesn’t occur and
the transition cannot be taken

• uncontrollable events: events that cannot be enabled or disabled by an
external agent, they occur independently of external control, and transi-
tions labeled by such events are taken based on inner, nondeterministic
decisions of the DES

Thus, the alphabet Σ contains both symbols that label controllable events, and
symbols that label uncontrollable events: Σ = Σc + Σu.

BUPT

32 CHAPTER 2. PRELIMINARIES

A control pattern is a subset of the controllable events, together with all the
uncontrollable events of the discrete event system. Let the set of all control
patterns be Γ = {γ ∈ Pwr(Σ)|γ ⊇ Σu}.

Then, a supervisory control for the generator G is any map V : L(G) → Γ,
and V/G represents the generator G under the supervision of V . The language
L(V/G) ⊆ L(G) is the closed behaviour of V/G, where:

• ε ∈ L(V/G)

• s ∈ L(V/G) ∧ σ ∈ V (s) ∧ s.σ ∈ L(G) implies s.σ ∈ L(V/G)

• no other strings belong to L(V/G)

Also, the marked behaviour of V/G is Lm(V/G) = L(V/G) ∩ Lm(G). If
Lm(V/G) = L(V/G), i.e. if the language described by V/G is equivalent to
the prefix-closure of its marked language, then V is nonblocking for G. For a
languageM ⊆ Lm(G), a marking nonblocking supervisory control for (M,G)
is a supervisory control for which Lm(V/G) = L(V/G) ∩M [81].

A language K ⊆ Σ∗ is controllable with respect to G iff

KΣu ∩ L(G) ⊆ K

This means that the occurence of any uncontrollable events after a prefix of a
sequence in K leads to a trace that, if in L(G), is still a prefix of a sequence in
K. Thus, if K describes a desired behaviour, the occurence of uncontrollable
events cannot lead to erroneous executions that are also in L(G).

Then, according to [81], if K ⊆ Lm(G) and K 6= ∅, then a marking nonblocking
supervisory control V for (K,G) such that Lm(V/G) = K exists if and only if
K is controllable with respect to G [81].

This marking nonblocking supervisory control can be implemented by an au-
tomaton S such that K = Lm(S) ∩ Lm(G) and K = L(S) ∩ L(G). In this
case, S is a supervisor for G. This means that after a sequence s ∈ K, a
controllable event σ is only enabled if sσ ∈ L(S), so that only sequences in K
are obtained, no matter what uncontrollable events get to occur. A nonblock-
ing supervisor ensures that, if new events keep occuring, a sequence in K will
eventually be obtained.

Let S ′ be a generator such that L(S ′) ∈ Σ. Then, S ′ is a proper supervisor
for G iff Lm(S ′) is controllable with respect to G, S ′ is trim and Lm(S ′) and
Lm(G) are nonconflicting, i.e. Lm(S ′) ∩ Lm(G) = Lm(S ′)∩Lm(G) [81].

BUPT

2.5. CONTROL OF DISCRETE EVENT SYSTEMS 33

Let there be a language E ⊆ Σ∗. Then, the set of all sublanguages of E that
are controllable with respect to G is C(E) = {K ⊆ E| K is controllable with
respect to G }. In [81] it is proved that C(E) always contains a unique supremal
element, which is denoted by supC(E).

So, let us assume the language E ⊆ Σ∗ as an upper bound on an admissible
marked behaviour, i.e. the specification language, with the property that E =
Lm(E), where E is the generator corresponding to E.

We want to obtain a minimally restrictive proper supervisor S for G such as
Lm(S/G) ⊆ E. Since it is minimally restrictive, S should allow for as much
behaviour as possible, thus it is exactly the generator for the unique supremal
controllable sublanguage of E ∩Lm(G). This supervisor can then be computed
as a trim generator for the language K = supC(E ∩ Lm(G)) by using the
following fixpoint procedure.

Assume the operator Ω : Pwr(Σ∗) → Pwr(Σ∗) where Ω(Z) = E ∩ Lm(G) ∩
sup{T ⊆ Σ∗|T = T , TΣu ∩ L(G) ⊆ Z}. Thus, for a language Z, Ω returns a
language that contains only those traces in E∩Lm(G) that belong to the largest
prefix-closed language T whose extension by any uncontrollable event, is in the
prefix-closure of Z if it also is in L(G). This leads to traces which, if suffixed by
some uncontrollable event, lead to some new traces not in Z, being eliminated
from Ω(Z), where Ω(Z) is also a sublanguage of language E ∩ Lm(G).

Considering the desired language K from above, K = supC(E ∩Lm(G)), K is
the largest fixpoint of Ω, and it can be computed by iterative approximations.
If K0 = E ∩ Lm(G) and Kj+1 = Ω(Kj), then K = lim Kj for j → ∞,
and this limit is reached after a finite number of steps [81]. Thus, the desired
supervisor S that enforces E over G in a minimally restrictive way is obtained
as the generator for language K = supC(E ∩ Lm(G)) computed by the largest
fixpoint procedure.

BUPT

34 CHAPTER 2. PRELIMINARIES

BUPT

Chapter 3

Related Work

3.1 Black Box Model Checking

A classical reference in the area of property-wise model learning for verification
is the black box checking technique developed by Peled et al. for programs with
missing or inaccurate models [33], using the Angluin algorithm [4] for model
inference. The hypothesis model is proposed, verified, and compared to the
real behaviour using black box testing. Found differences are used to generate
a new hypothesis model, while counterexamples obtained from model checking
are confirmed or invalidated by testing. The aim of the technique is to obtain
a confirmed counterexample for the desired temporal property. In contrast to
our approach, their model only has controllable input events, so all considered
execution traces are completely controllable. The learning stops once the con-
firmed counterexample is obtained, without going all the way towards a complete
model. This has inspired our run-time behaviour exploration technique, that also
focuses on behaviour relevant to a desired property. However, the models we
learn are meant for composition purposes, so, although traces violating the spec-
ification might be observed, the learning continues within some pre-established
cost limits or until obtaining a precise model.

Xie and Dang propose in [82] a technique for CTL model checking of systems
containing an unspecified component. Their algorithm gives a sufficient and
necessary condition for the unspecified component as a witness graph, in order
to ensure that the system will satisfy the desired property. Test sequences are
generated using the witness graph. While also using jointly verification and

BUPT

36 CHAPTER 3. RELATED WORK

black box testing, our approach is focused on inferring an approximated model
of the unknown component, such that this model can be appropriately used for
system composition. Also, our technique deals with the more complex issue of
controllability when exploring the system, and it is also flexible in the number
of unspecified components it can address.

3.2 Black Box Model Learning – Angluin-Based
Methods

While being the first to adapt the Angluin algorithm to Mealy machines, Niese
also introduces in [64] the idea of using specific query filters (like for prefix-closed
languages, or for partial order reduction), that highly improves the efficiency of
the learning process using the Angluin algorithm for input-enabled components,
by significantly reducing the number of queries. Since the languages we learn
are also prefix-closed, our online inference algorithm indirectly uses a form of the
prefix-closed language filter, by removing from the model the shortest prefix of
a negative sample, however, our approach performs a step-by-step, depth-first
exploration of the black box behaviour, thus it will always start with a shortest
prefix to which confirmed events are iteratively appended.

The regular inference method of Berg et al. [11, 14] uses an adaptation of the
Angluin algorithm [4], thus assuming the possibility of querying for trace mem-
bership and model equivalence. This approach can also deal with infinite state
and even infinite alphabet components, by making use of symbolic representation
and predicate abstraction techniques.

Apart from the work of Berg, another noteworthy learning approach derived from
the Angluin’s L* algorithm is RALT, the work of Shahbaz [74], which can infer
parametrized Mealy machines by adding invariant learning to regular inference,
and studies a component behaviour first in isolation and then while in interaction
with the rest of the system. Other automata learning tools are LearnLib [65],
which also learns Mealy machines, and Libalf [16], which learns deterministic
and even nondeterministic automata – both are algorithm libraries, containing
various optimizations and extensions of the classic Angluin algorithm. However,
none of these approaches deals with the issue of uncontrollable events, which
would make membership and equivalence queries difficult, as a specific query
might require a large number of repeated tries to be answered.

BUPT

3.3. MODEL LEARNING AND CONTROLLER SYNTHESIS 37

Important advances towards addressing model inference for component with
asynchronous messaging are done by Aarts and Vaandrager [2], which use a
transducer to translate between I/O automata and Mealy machines, which are
then learned using LearnLib. However, the I/O automata they address are still
input-determined and do not exhibit any uncontrollable behaviour, having at
most one output transition per state. Another common point to our method is
that they learn models under a “learning purpose”, which significantly reduces
the number of necessary queries. Their technique is applied to case studies such
as the biometric passport [1] or the Session Initiation Protocol (SIP).

The L* based approach of Bollig et al. [15] for learning residual nondeterministic
finite state automata is considering nondeterminism in the model, however, the
alphabet taken into account only has input events, thus nondeterminism, in this
case, appears merely as a solution to obtain smaller inferred models.

El-Fakih et al. [34] have developed an adaptation of the Angluin algorithm in
order to learn observable, nondeterministic Mealy machines. As Mealy machines
are considered, the queries appear to be of two types: input and output queries.
They acknowledge the need to repeatedly apply an output query in the context
of nondeterminism, but the degree of nondeterminism (i.e., the average number
of nondeterministic transitions from a state) they consider is very limited, being
close to 1, where 1 corresponds to a deterministic machine. Thus, the impact
of the nondeterminism on the overall cost of the model inference process is
manageable, which would not be the case if the component had a larger number
of nondeterministic transitions. Our algorithm does not place such restrictions
on the degree of output-nondeterminism of a learned finite state machine, the
number of uncontrollable transitions from one state can be as high as the number
of uncontrollable events in the alphabet.

3.3 Model Learning and Controller Synthesis

Another closely related work, combining model learning and controller synthesis,
is the approach of Hiraishi [48], that learns a supervisor for the system when
the system specification, i.e., the desired property, is considered unknown, while
the behavioural models for the components in the plant are provided. In this
case, the membership and the equivalence queries are answered to by the system
designer.

The white-box model inference method described in [42] by Păsăreanu et al.,

BUPT

38 CHAPTER 3. RELATED WORK

also combines model learning and controller synthesis. This work relies on envi-
ronmental assumption generation when verifying a software component against
a property. Their approach is based on the work of de Alfaro and Henzinger [31]
stating that two components are compatible if there exists an environment that
enables them to correctly work together. This divide-and-conquer technique
analyzes components separately to obtain for each the weakest environment
needed for the property to hold. By building a system controller, our approach
also creates such an environment. However, while in [42] the analyzed com-
ponent is well specified, our approach specifically addresses systems with black
box components, whose behaviour and controllability must be understood before
building an adaptor.

3.4 Non-Angluin Model Inference

Recent advances on dynamic model mining underline the critical significance of
this domain. The GK-tail algorithm developed by Lorenzoli et al. [60] focuses
on extracting extended finite state machines from execution traces – it is thus a
passive learning algorithm. GK-tail uses inferred invariants and positive execution
samples to extract EFSMs In contrast, our approach learns the model using both
positive and negative samples, while always obtaining a safe approximation of the
real component behaviour. Also, our samples are not random, but are generated
using a property-driven strategy, thus our learned models are obtained specifically
aiming towards a composition goal. Currently, our approach does not consider
inferring guard conditions over the values of specific data parameters, but we
consider this as a powerful and interesting direction for future work.

In [76], Suman et al. describe an active learning method to extract state models
for black box components under the form of finite state machines with guard
conditions. It considers that a state is defined by the method invocations it
accepts, and it discovers potential new states by invoking all active methods
from the current state. These potential states can be merged or confirmed, ex-
isting cycles can be detected within a certain bound, etc. Somehow similar, the
work of Dallmeier et al. in [29] relies on test case generation to systematically
extend the execution space and thus obtain a better behavioural model by dy-
namic specification mining. The execution space is extended by adding/removing
method calls from the current state, and thus enriching an existing test suite.
Also, in [41], Ghezzi et al. present the SPY approach, which infers behavioural
models of black box components that embody data abstractions. All these tech-

BUPT

3.5. TESTING ASYNCHRONOUS BLACK BOXES 39

niques are designed to work with synchronous method calls, while our approach
addresses asynchronous message exchange, with uncontrollable send messages,
which is more difficult as it involves the issue of uncontrollable events. Also, as
already mentioned, our technique is composition-oriented, thus the component
behaviour is explored not necessarily exhaustively, but only considering behaviour
relevant to both the desired property and the feasible interactions with the other
components in the system.

In the domain of conversational web services, we found the work of Bertolino
et al. [12] on behaviour protocol synthesis, and Cavallaro et al. [24] on service
adaptation to be related to ours. While [12] describes a technique that uses
the WSDL interface to extract possible operation dependencies between the
I/O data, and then validates these dependencies through testing, thus obtaining
the behavioural web service protocol, the work in [24] takes this technique fur-
ther, and develops a method for synthesizing web service adaptors starting from
WSDL descriptions, which enables a correct interoperation when an old service
is replaced by an equivalent, new one. However, the web services in [12, 24] are
stateless, while our approach addresses stateful black box components. Thus,
while their work starts from a data-dependency perspective, ours explores the
language of the component and its controllability, while regarding data from
a higher level of abstraction, as passed and received messages. Therefore, we
consider the two approaches complementary.

3.5 Testing Asynchronous Black Boxes

In the area of testing black box components, Grabe et al. [43] develop a consis-
tent and interesting technique for testing asynchronous black box components
with uncontrollable send events, by using an executable interface specification.
Their method addresses the difference between interacting under component
control or under environment control, by describing the component behaviour
in an assumption-commitment style using a rich formal notation. This work is
closely related to ours, as we also test asynchronous black boxes – any run-
time query is nevertheless a test – , and we also use a variant of an executable
specification when we synchronize the property automaton with monitored com-
ponents. However, their method doesn’t infer a model for the tested black box
component.

The problem of testing asynchronous black boxes for conformance is also ad-

BUPT

40 CHAPTER 3. RELATED WORK

dressed by Kaschner in [57], where stateful black box services with asynchronously
sent messages that can overtake each other, using parallel communication chan-
nels, are considered. In order to appropriately react to uncontrollable send
events, test cases are synthesized as specific partner services starting from the
desired specification. This work does not infer any models for the tested ser-
vices, aiming only to discover situations of non-conformance to the specification.
However, considering parallel communication channels, and deducing the accep-
tance of a message indirectly are further developments that would also benefit
our method.

3.6 Verification-Driven Execution

The use of verification-driven execution also relates our method to smart play-
out [30], which is a lookahead technique that employs model checking to execute
and analyze Live Sequence Charts. The play-out technique is mainly used to
actually execute specifications from a GUI, during the software design process.
Both approaches use verification-driven execution to improve knowledge, but,
while we infer existing, unknown behaviour, smart play-out experiments with
execution scenarios to find the best design options.

CrystalBall [83] also makes use of model checking for lookahead analysis and
execution steering. Here, nodes in a distributed system run continuously a state
exploration algorithm on a recent snapshot of their neighbourhood with the aim
of detecting future inconsistencies. When such inconsistencies are detercted, the
ongoing execution can be steered away from the predicted errors. However, Crys-
talBall addresses well-specified distributed systems. Also, while CrystalBall uses
execution steering in a defensive way, to protect itself from errors, our method
employs similar techniques aggressively, for runtime exploration of relevant black
box component behaviour.

An interesting white-box technique, that relies on a combination of symbolic
and concrete execution, and model inference is [25], by Cho et al. The MACE
approach builts an abstract model of the program as a finite state machine, and
uses this model further on to guide space state exploration. As new behaviour is
explored, the model is refined. This method is related to ours in that it combines
model inference and dynamic state space exploration, however it specifically
addresses white-box components.

BUPT

Chapter 4

Learning Safe Behavioural Models
for System Composition

4.1 Overview

Let us start from the assumption that we need to compose a system out of a set
of components, and that the system should comply to a certain specification.
For at least some of the needed components no behavioural model has been
provided.

The interactions in the system to be built are asynchronous, taking place as
sequences of message send/receive events, as it is the case in asynchronous
event-based architectures. By asynchronous interaction we understand the spe-
cific type of communication in which an entity can send a message and then
continue its execution, independently whether the message was received or not,
as opposed to synchronous interaction, where the execution of the sender is
blocked until the sent message is received. An additional assumption we make
is that, when the destination entity receives the sent message, it sends an ac-
knowledge message to the sender. Asynchronous communication is important,
especially in event-driven systems, as it prevents the component from uselessly
blocking in its execution.

Communication in the system happens by means of message queues or buffers, of
bounded capacity, that connect the entities in the system, i.e. the components,
among themselves. The messages do not overtake each other.

BUPT

42 CHAPTER 4. SAFE MODEL INFERENCE

It is assumed that the messages sent or received by a component belong to a
finite set of message types, which defines the event alphabet of the compo-
nent. Both send and receive events are assumed observable. From any state, a
component can have maximum one outgoing transition on a specific event, no
matter if that event is a message send or a message receive event. Thus, an
asynchronous component can be modelled as a finite state machine that is both
input deterministic, and output deterministic. However, a component can have
more than one send transition from a state, and the choice between sending
one message or another is taken internally, therefore the finite state machine
modelling the component’s behaviour is not output determined, and, thus, it’s
also not behavioural deterministic.

Each component can be reset anytime to its initial state.

We have already assumed that the system to be built must comply to a provided
specification, or composition goal. This composition goal is represented as a
temporal safety property given as a finite state machine over a set of send/receive
events. It describes all the interaction sequences to be allowed in the system.
Compliance is considered as language inclusion: the language of the system
must be included in the language of the specification.

To achieve the composition goal, i.e. the desired system conforming to it, we
must find a way to enforce this property on the set of interconnected, interacting
components. For this, the straightforward solution is to build an adaptor, i.e.
a component in the middle that properly coordinates the interactions in the
system towards satisfying the desired property. Further on, we will think of this
adaptor as a controller over the system plant, which restricts possible executions
to allowed interaction sequences.

In classic control theory [67], with respect to the alphabet of a component,
a distinction is made between controllable events, which can be enabled or
disabled from outside, and uncontrollable events, which cannot be forced from
the exterior and occur as nondeterministic outputs. The problem of synthesizing
a controller that enforces a certain property over a plant is solved by using the
controllable events of the plant to disable any event sequences that might violate
the specification. In our case, the controllable set of events is considered to be
the set of message receive events, since it can be decided from outside what
message to forward to the component, and when, while the set of message send
events is considered uncontrollable, since message sends are based on internal
decisions of the component and more than one message send event may occur
from the same component state.

BUPT

4.1. OVERVIEW 43

Normally, in order to build a controller over the system plant, formal behavioural
models, describing both controllable and uncontrollable behaviour, are needed
for all components. In the case of a plant consisting of a set of black box com-
ponents, controllable and uncontrollable behaviour cannot be precisely known.
However, it is important to observe that, if a controller can be synthesized using
an underapproximation of the real controllable behaviour and an overapproxi-
mation of the real uncontrollable behaviour of the plant, the plant can still be
controlled, although the resulting controller is likely to be more restrictive than
one built for a precise model.

We call such a model, which underapproximates controllable and overapproxi-
mates uncontrollable behaviour of the real black box, a safe approximation. The
underapproximation and overapproximation are defined as follows: if a control-
lable event appears after a prefix in a sequence accepted by the approximate
model, it will also appear, after the same prefix, in the precise model; respec-
tively, if an uncontrollable event appears after a prefix in the real model, it will
appear after the same prefix in the approximate model. Thus, the language of
the approximate model is controllable with respect to the real, unknown model
(as defined in section 2.5).

As at least some of the components to be used are black boxes, synthesizing a
controller for the system requires that their behavioural models are learned first.
As black box model learning can only use information obtained from runtime
observation, and as runtime exploration can be costly, in most cases only a
subset of the actual behaviour will have been explored. Thus, the inferred
model will actually approximate, to some degree, the actual behaviour of the
real component.

However, this approximation must satisfy certain requirements. More specifi-
cally, it is a safe approximation of the real behaviour that has to be inferred for
all the black box components in the system, so that an effective controller can
be obtained. Therefore, the actual problem is that, from a bounded number
of executions, a model has to be built that would underapproximate only the
controllable behaviour and overapproximate its uncontrollable one.

For such a model to be as useful as possible with respect to the mentioned control
problem, two conditions are important. First, the explored executions should
cover as many sequences of events as possible. Second, as there is no point
in learning behaviour that is actually prohibited by the specification, the event
sequences not allowed by the desired property are filtered out during learning.
Thus, the models learned are not only approximate, but also partial models of the

BUPT

44 CHAPTER 4. SAFE MODEL INFERENCE

real black box components, since only behaviour accepted by the specification
is covered. Therefore, we must generate executions that respect the temporal
specification, while covering as many event sequences as possible.

We aim to infer these models as finite state machines. To infer models for the
black box components in the system we need to determine and observe execution
sequences that explore the controllability of correct system behaviour. We say
we enable a controllable transition whenever we forward to the component the
message it needs to receive for the transition to be triggered.

To explore only certain execution sequences, the plant has to be controlled at
runtime, in order for each run to be steered towards paths accepted by the spec-
ification. Under this purpose, we place an intelligent, proactive adaptor among
the components, that will intercept all sent messages and control the system
by forwarding or consuming them, while monitoring the components to see if
they did accept earlier forwarded messages. In the same time, observed events
are used to synchronize the current execution with a path in the specification
automaton.

The information on explored sequences, both failed and successful, is kept in a
tree structure for each black box component in the system. Each node corre-
sponds to an observed prefix in the unknown language of the black box com-
ponent, and it contains links towards the next observed events. Each such link
leads towards a suffix sub-tree. There are three types of links: valid links, corre-
sponding to actually observed events, empty links, that do not lead towards any
suffix sub-tree, their purpose is to mark those events that failed to be enabled
after a certain prefix, and unexplored links, corresponding to yet unexplored
events.

The behaviour exploration takes place depth-first. We assume a maximum bound
m on the depth of the black box behavioural model, thus, any acyclic path in the
model is assumed to contain at most m transitions. The depth-first exploration
works with sequences of up to 2m events, in order to properly identify the cycles
in the model.

We conduct the runtime experiments in the following way. To start a new execu-
tion, all components in the system are reset, the sent messages are intercepted
by the proactive adaptor, and the specification automaton is advanced according
to the observed event trace. Then, suppose that, for a black box component,
the current prefix corresponds in its trace tree to a node that has more than
one unexplored link on message receive events, and that more than one of these

BUPT

4.1. OVERVIEW 45

messages are available, i.e. have already been sent by one of the other compo-
nents in the system. So, a set of yet unexplored controllable events exists for
the mentioned component, following the current prefix, and these events can be
enabled by the proactive adaptor.

The specification automaton describes a safety property. If, following the current
event sequence, a transition exists in the specification automaton on one of the
previously mentioned unexplored controllable events, then that transition will
be explored at runtime, as it conforms to the safety property. If several such
transitions exist, they will be explored in a random order. If the message is
forwarded to the component, but the component does not accept it, this is
marked by an empty link in corresponding the node from the component tree,
and another controllable event is enabled. Otherwise, the exploration continues
from the new prefix.

It is important to observe that, while through model checking all outgoing paths
can be simultaneously explored, a controlled execution can only explore one
path, and needs to be restarted for further exploration. Due to the existence of
uncontrollable events, returning to a previously observed prefix might be difficult,
requiring several attempts, thus a maximum of information should be obtained
out of each run. This is why we have favoured depth-first over breadth-first
exploration.

Whenever an execution violates the specification, or the maximum execution
trace length of 2m events is reached, the ongoing run is forced to end by resetting
all components in the system.

One detail omitted so far is that every node, in each tree structure associated
to each black box component, has a counter, that keeps track of the number of
times the node is reached, i.e. its corresponding prefix has been observed. The
components in the system are considered to have the following property, known
as bounded fairness [32]: if a component has reached a state for more than θ
times, where θ is the fairness bound, then every uncontrollable transition from
that state has been triggered at least once. Since the component is deterministic,
an observed sequence over the component alphabet cannot lead to more than one
state in a hypothetical real model of the component behaviour. Therefore, for
each node in the tree structure, when the counter associated to the node reaches
θ, the message send events that haven’t been observed can be considered not to
occur after that prefix, and their corresponding links become empty links.

A node in a tree associated to a black box component is considered completely

BUPT

46 CHAPTER 4. SAFE MODEL INFERENCE

explored when it has no missing links. The exploration process stops when, for
all black boxes in the system, in their corresponding trees, all the nodes at a
depth less than or equal to m+ 1 are completely explored. It also ends when a
previously established maximum number of executions is reached, if the former
termination condition hasn’t been met up to that point.

If the maximum number of executions was reached and there still are incom-
pletely explored nodes at depths smaller than m + 1, then all links from these
nodes, that correspond to unexplored message receive events, become empty
links. This is done since controllable behaviour can be underapproximated by
pruning out unobserved sequences.

After this last step, the model for the black box component is built from the trace
tree in the following way. First, each node becomes a state, and each valid link
a transition. Then, two completely explored states are considered equivalent
if they simulate each other on a depth of m, i.e. a sequence observed from
one state is either observed, or not tried from the other. Also, two states are
considered equivalent if their "parent" states are equivalent, and their incoming
transition is labeled by the same event – as they were initially nodes in a tree,
each state has only one incoming transition.

Based on this equivalence relation, each inferred model is minimized. We then
compose the system by building the adaptor as the controller over the system
plant.

4.2 Assumptions

We consider a system S to be composed out of a set C of asynchronous de-
terministic components, out of which n are black boxes. The asynchronous
components communicate by means of bounded buffers, i.e. input and output
ordered message queues.

4.2.1 Component Models

Each component Ci is associated to a model Mi, which describes its behaviour.
This model is described by a finite state machine, defined as a 5-tuple

Mi = 〈Qi, qi0, Q
i
f ,Σi, δi〉

BUPT

4.2. ASSUMPTIONS 47

• Qi is the state set

• qi0 ∈ Qi is the initial state

• Σi is the event set of Ci

• Σ = ⋃Σi is the event set of the system

• Qi
f = Qi is the set of accepting states

• δi : Qi × Σi → Qi is the partial transition function

req?

!rbad

!redirect id?

!ok
!badid

(a)

Figure 4.1: (a) Finite state machine with message send/receive events.

The component behaviour is modelled using a deterministic finite state machine
in the sense defined at section 2.3, i.e for every state and event there is at
least one successor state. Also, since all its states are accepting, Qi

f = Qi, the
language defined by the finite state machine is a prefix closed language. Taking
into account the types of automata described at section 2.3, this behavioural
model can also be seen as a Mealy machine that can have both empty inputs
and outputs, and can nondeterministically accept empty inputs. It can also
be regarded as an input and output deterministic, but not output determined
interface automaton.

An event σ in any of the component event sets Σi is either a message send:
msg!, or a receive: msg?. Let us denote by ∃δi(q, σ) the fact that function δi
is defined in state q, for event σ. We denote by Σi(q) the set of events σ for
which ∃δi(q, σ), with its two subsets Σi

?(q) – the subset of controllable events,
and Σi

!(q) – the subset of uncontrollable events.

Considering a string of events tk = σ0σ1..σk, and Σi
∗ the set of strings formed

from events in Σi, then the extension δi∗ of the partial transition function δi

to strings of events is the string transition function δi∗, also a partial transition
function, which is described below.

BUPT

48 CHAPTER 4. SAFE MODEL INFERENCE

δi∗ : Σi
∗ → Qi

δi∗(tk): δi∗(t0) = δi(q0, σ0) and

δi∗(tk) = δi(δi∗(tk−1), σk)

If a trace t ∈ Σi
∗ is observed at runtime, we denote this fact by obs(t). If an

event σ ∈ Σi is observed from a state q ∈ Qi, we denote this by obs′(σ, q).

We assume a bounded fairness [32], considering a threshold θ on the number
of state visits for a single state q of the model as a fairness bound. This means
that if a state q is reached for at least θ times, every uncontrollable event σ
enabled in q is observed at least once:

σ ∈ Σi
!(q) ∧ visits(q) ≥ θ −→ obs′(σ, q)

The components communicate in a peer-to-peer way, by means of bounded
buffers, which represent dedicated message channels. These are ordered mes-
sages queues, using a first-in-first-out (FIFO) processing technique. Thus, the
first message sent by a component will also be the first received by its peer.

A bounded message buffer of bound b that connects the output of a component
Ci to the input of a component Cj can be described by a finite state machine
Bij. Its alphabet ΣB will contain those send events in Σi that have a mirror,
i.e. a corresponding receive event in Σj, and these mirror receive events from
Σj. Thus, ΣB = ΣB

! ∪ ΣB
? , where

ΣB
! = {σ ∈ Σi

! | σ = msg!→ ∃σ′ ∈ Σj
? s.t. σ

′ = msg?}

ΣB
? = {σ ∈ Σj

? | σ = msg?→ ∃σ′ ∈ Σi
! s.t. σ

′ = msg!}

Each state q in QB is accepting and is characterized by a number of |ΣB
! |

counters, and each counter kσ is associated to an event σ ∈ ΣB
! , thus we have

q(kσ0 , kσ1 , ...). For each state q, the sum of all its counters kσ is at least 0 and
at most b, where b is the size of the buffer: ∑ kσ ≤ b. The initial state q0 has
all counters kσ on zero, which is denoted as q0(0, 0, .., 0).

Each transition on an event σ′ in ΣB
! from a state q leads towards a state q′ which

has all counters identical to the counters of q, except for kσ′ , which increases by
1. A transition on a message receive event σ′ ∈ ΣB

? from a state q only exists
if the counter corresponding to σ′′, the mirroring of σ′ has a value greater than

BUPT

4.2. ASSUMPTIONS 49

0, and leads towards a state q′ which has all counters identical to the counters
of q, except for kσ′′ , which increases by 1.

Then, the partial transition function δB of Bij is defined as following:

• δB(q(..., kσ′ , ...), σ′) = q′(..., kσ′ + 1, ...)
for q, q′ with 0 ≤ ∑ kσ < b and σ′ ∈ ΣB

!

• δB(q(..., kσ′′ , ...), σ′) = q′(..., kσ′′ − 1, ...)
for q, q′ with 0 < ∑

kσ ≤ b, σ′ ∈ ΣB
? , where σ′′ mirrors σ′ and kσ′′ > 0

Similar bounded buffers are used between a component Ci and any special
component-in-the-middle that has the purpose of coordinating the interactions
in the system, such as a proactive adaptor (used for learning), or an adaptor (a
controller component that uses message forwarding and consuming to enable, re-
spectively disable controllable events in the system). We assume that when such
components are present, they intermediate all interactions in the system, and
no pair of ordinary components is directly connected by message queues.

The desired system S must comply with a property Φ, also described by a finite
state machine.

Φ = 〈QΦ, qΦ
0 , Q

Φ
f ,ΣΦ, δΦ〉

• QΦ is the state set of the property automaton

• qΦ
0 ∈ QΦ is the initial state

• ΣΦ = Σ is the event set of the property, including all the events in the
system

• QΦ
f ⊆ QΦ is the set of accepting states

• δΦ : QΦ × Σ→ QΦ is the partial transition function

Φ is a safety property, describing the allowed sequences of events in the system.
One should note that, while the automata that specify component behaviour
have all their states as accepting, as they describe prefix-closed languages, things
are different for Φ. In the case of property automaton Φ, accepting states QΦ

f

may represent only a subset of the state set Qi
f ⊆ Qi, thus the language of Φ

is not necessarily prefix-closed. The event set of the system includes the event
set of the property automaton Φ: Σ ⊇ ΣΦ. The compliance relation considered
is language inclusion: all the sequences of events allowed in the system S must
be included in the language of Φ: S ⊆ L(Φ).

BUPT

50 CHAPTER 4. SAFE MODEL INFERENCE

Let us also assume that two special, auxiliary events ack! and rst? exist, such
that ∀i ≤ n − 1. ack!, rst? ∈ Σi. Event ack! confirms a successful receive: it
is emitted by component Ci when a message msg arrives in a state q of Ci in
which it can be accepted: δi(q,msg?) 6= ∅. Although event ack! is emitted
right after a message was accepted, its destination component receives it within
a maximum of µ microseconds, where µ is the bounded acknowledgement delay.
However, an asynchronous component does not wait for any acknowledgment
from its peers and its execution progresses independently of it. Event rst? forces
any of the components to return to its initial state, from any state q. These
assumptions are important for our learning algorithm, since event ack! makes
receive events externally observable and event rst? allows reset.

Suppose that we try to enable an event σ in component Ci, and Ci is in a
state q from which no outgoing transition on σ exists, so it does not accept the
forwarded message. Then, the forwarded message is ignored, no transition is
taken, and thus, component Ci does not change its state.

Furthermore, in order to ensure termination, we consider a bound m on the
maximum acyclic path in the model, for any component Ci. Usually, in model
learning, it is the maximum number of states that is bounded, however, while
in some extreme cases the maximum acyclic path equals the number of states
in the model, minus one, usually it is much smaller. Also, our algorithm needs
an upper bound for the size of the sample traces used in learning, but, unlike
most learning techniques, it does not need to know the maximum state size of
the target automaton.

In order to differentiate an unknown, learned model of a component from Mi,
the model of a known component, let us note the learned model of a black box
component with Ui. The learned model Ui will be an approximation of the real
behaviour of the component Ci, which we assume can be precisely described by
an unknown finite state machine Ri.

BUPT

4.2. ASSUMPTIONS 51

4.2.2 Trace Trees

During the learning process, the event traces observed to belong or not to the
language of a component Ci are kept in a trace tree, which is continuously
updated as runtime observations are made. Therefore, we will have a trace tree
Ti for every black box component Ci in the system.

A trace tree Ti is a structure modelled by a quadruple:

〈V i, vi0,Σi, ξi〉

• V i is the set of all vertices in the tree. It includes also the null vertex
{ε}, which is used to mark a dead end in a trace (when, for example, a
controllable event could not be enabled, etc.)

• vi0 is the initial vertex, the root of tree Ti
• Σi is the set of events associated to tree Ti, and it is the same as the set

of events of Ci
• ξi : V i × Σi → V i is the partial transition function

The transition function ξi defines the edges between vertices in the tree Ti. For
every event σ ∈ Σi, if the transition function is defined for a vertex v ∈ V i\{ε},
so that ∃ξi(v, σ) and ξi(v, σ) = v′, then no other vertex v′′ exists so that
ξi(v′′, σ) = v′. This encodes the essential tree property: each node has a
unique parent.

∀σ ∈ Σi. ∀v, v′, v′′ ∈ V i \ {ε}. (ξi(v, σ) = v′ ∧ ξi(v′′, σ) = v′)→ v = v′′

For the null vertex ε, the transition function ξi is undefined for all events in the
event set: ∀σ ∈ Σi. 6 ∃ξi(ε, σ).

Similarly to the case of the finite state machines used, we define the string
transition function ξi∗ as the extension to strings of events of the transition
function ξi. We consider a string of events tk = σ0σ1..σk.

ξi∗ : Σi
∗ → V i

ξi∗(tk): ξi∗(vi0) = ξi(vi0, σ0) and

ξi∗(tk) = ξi(ξi∗(tk−1), σk)

BUPT

52 CHAPTER 4. SAFE MODEL INFERENCE

One important property of the trace tree is that the restriction of the string
transition function ξi∗ to V i \ {ε} is an injection. Thus for every vertex v ∈
V i \ {ε} there is only one path in the tree from the root vertex vi0 to v, which
contains no cycles, since any tree is a directed acyclic graph.

∀v ∈ V i \ {ε}. ∀t, t′ ∈ Σi
∗. (ξi∗(t) = v ∧ ξi∗(t′) = v)→ t = t′

The trace t for which ξi∗(t) = v is called the access trace of vertex v, where v
is different from the null vertex, v 6= ε.

Consider a sequence of events t ∈ Σi
∗. We know that the trace tree Ti contains

the results of all runtime observations made on the behaviour of component Ci.
Then, if the string transition function ξi∗ is defined for t, i.e. ∃ξi∗(t), we consider
that the sequence of events t was successfully enforced at runtime on black box
component Ci, which we denote by positive(t). If trace t′′ ∈ Σi

∗ is a prefix of
the observed trace t, then t′′ is also observed: positive(t)→ positive(t ′).

If for the trace t ∈ Σi
∗ a prefix t′ of t exists, so that ξi∗(t′) = ε, this means that

trace t′ was tried at runtime on Ci, and the attempt failed, so t′ does not belong
to the language of the black box Ci. This is denoted by negative(t ′). Since t′
is a prefix of t, this means negative(t ′)→ negative(t).

If no prefix t′ so that negative(t ′) exists for trace t ∈ Σi
∗, but the string transition

function ξi∗ is undefined for t, then it means that string t has not been tried yet
on Ci, which is denoted by untried(t). So, a sequence that hasn’t been marked
neither as a negative, nor as a positive sample, is yet to be experimented with:
¬positive(t)∧¬negative(t)→ untried(t). Also, if untried trace t is a prefix of
another trace t′′ ∈ Σi

∗, then t′′ is also untried: untried(t)→ untried(t ′′)

Thus, the trace tree is used in retaining positive and negative samples obtained
during learning, while also keeping track of the paths yet to be explored. As
the model Ui to be learned exhibits a bounded fairness, it is also useful to keep
track of the number of times a certain prefix t′ is observed. Therefore, for each
vertex v ∈ V i \ {ε} a counter function is defined ν : v ∈ V i \ {ε} → N, which
associates the vertex v with the number of times ν(v) its access trace is observed
at runtime, during the learning process.

Let the depth of a trace tree Ti be the length of a maximum trace t ∈ Σi
∗,

so that the string transition function is defined for t, i.e. ∃ξi∗(t). The learning
experiments will be performed using traces in Σi

∗ of a length bounded to 2m,
where m is the maximum acyclic trace length assumed for component Ci. The
execution traces are bound to 2m because, first, up to depth m we can still

BUPT

4.3. CENTRALIZED BEHAVIOUR EXPLORATION 53

discover new states, and, second, we need to know all possible behaviour from
each state on a depth of m in order to determine state equivalence.

Thus, any trace tree Ti associated to a black box component Ci will have a
maximum depth of 2m.

4.3 Centralized Behaviour Exploration

For simplicity, and without loss of generality, we will further on consider the
case where all components Ci in the system are incompletely specified, i.e.
black boxes, and |C| = n.

The main characteristic of the centralized behaviour exploration process is that
all the components in the system are executed and controlled together, and the
execution traces enforced are only those that conform to the desired property
Φ. This happens independently of the number of black box components that
are in the system.

Enforcing event sequences that conform to the safety property Φ has the ad-
vantage of focusing the learning effort on the specific behaviour required in the
system to be composed. Thus, for a black box component Ci, the learned
model Ui will describe in many cases just part of the real behaviour, hypotheti-
cally modeled by Ri. Traces in Ri‖Φ will not be tried on Ci. Saving part of the
behaviour exploration effort is important, since the actual number of runtime
queries used is usually the most expensive part of model learning.

For model learning under a composition purpose it is important that the be-
haviour described by the learned Ui is useful for building the system. Most real
applications interact with their user in a loop, and not having to reset a compo-
nent or a system to its initial state too often is a valuable feature. Since we aim
to model a safe approximation of the real black box behaviour, an important
point is correctly identifying the cycles in the model. The important cycles in
a component’s behaviour are the ones that can also be found in the property
automaton. Since the learning process can be limited in time, or in the allowed
number of executions, the exploration process should focus on a faster identifi-
cation of the cycles in the property automaton in order to obtain a more useful
inferred model.

In figure 4.2 we can see the setup for the learning process. A proactive adaptor
is placed among the components in the system. Its purpose is to control all the

BUPT

54 CHAPTER 4. SAFE MODEL INFERENCE

(a) (b)

Figure 4.2: Learning Setup: 4.2(a) before: components interact unrestricted,
4.2(b) after: all interactions take place through the proactive adaptor.

interactions in the system, by intercepting all messages sent by the components
and by forwarding or consuming them in order to enable or, respectively, dis-
able message receive events in components. Thus, the proactive adaptor acts
like a system controller (see section 2.5), only that its decisions of forward-
ing/consuming messages or resetting the system are taken dynamically, based
on runtime observations. Also, the purpose of the proactive adaptor is to con-
tinuously explore new correct paths in the system, as opposed to only enforcing
correct behaviour, as it would be the case for a real controller. So, by prop-
erly coordinating the interactions in the system, new samples, both positive and
negative, are obtained for the black box components to be learned.

It is worth noting here that during the learning process, when the behaviour
of the components in the system is explored at runtime, the message buffers
that connect the proactive adaptor with the components contain a maximum
of one message at a time, as the proactive adaptor waits to see whether the
message it sent was accepted or not by the destination component. Also, a
message sent by a component is consumed by the proactive adaptor as soon
as it arrives. Therefore, the actual size of the buffers is less important for the
learning process.

BUPT

4.3. CENTRALIZED BEHAVIOUR EXPLORATION 55

Controlling a Current Execution

First, lets see how we would try to enforce correct sequences of events at runtime,
if we had precise behavioural models for all the n components in the system:
M0, M1, ..., Mn−1.

Let us denote by M× the asynchronous product of the models M× = M0 ×
M1 × ...×Mn−1, as defined in section 2.3. If q is a global state, we denote its
projections onMi as qi. We then consider a control point inM× as a global state
qcp for which at least one of the outgoing controllable event sets Σi

?(qicp) contains
2 or more receive events: |Σi

?(qicp)| ≥ 2. This basically means that in model Mi,
from local state qicp we can choose from at least two possible execution paths.
We call such a local state qicp an active projection of the control point qcp.

We say that an event σ is observed in our learning setting when either the proac-
tive adaptor intercepts a sent message, or when the proactive adaptor forwards
a message to a component and the message is successfully received.

During the exploration process, the following happens: whenever an event σ,
where σ ∈ Σ and σ ∈ ΣΦ is observed, a transition on σ from the current state
is taken both in the product machine M× and in the property automaton Φ.
The execution is thus matched with both the exploration of the product model
and of the specification. The two automata are both advanced by the same
observed event σ, concomitantly with the ongoing execution. If the product
M× is too large, we can avoid to actually compute it: assuming that σ ∈ Σi,
then a transition on σ from the current state is taken in Mi and the individual
component model is the one advanced together with Φ.

When the execution reaches a control point qcp in M×, with a local active
projection qicp, a receive event σ ∈ Σi

?(qicp) is enabled for execution if from the
current state of Φ a transition triggered by σ exists. Thus, its corresponding
message is forwarded to component Ci, so that the message receive event can
be triggered in the current run.

If, from a state q, an uncontrollable event σ′ occurs at runtime, for which no
transition triggered by σ′ exists in Φ from the current state, then we observe that
property Φ is violated at runtime, from state q in an uncontrollable way.

The execution is forced to end when either the property Φ has been violated, or
the current execution trace has reached a maximum number of steps.

BUPT

56 CHAPTER 4. SAFE MODEL INFERENCE

Black Box Exploration

Now, since no models Mi are available for the n components in the system,
the only reference we have to coordinate the learning executions is the property
automaton Φ. We use the trace trees Ti to establish priorities between different
sequences to be tried on, to store both positive and negative samples and to
define a termination condition for the learning process.

As mentioned in the previous section, each black box component Ci is associated
to a trace tree Ti. Let us assume the current execution trace is t, and that is
has led the property automaton Φ to a state q. Let t|i denote the projection of
trace t on the event set Σi, corresponding to component Ci.

Let us assume an event σ ∈ Σi occurs. In property automaton Φ, the transition
on Φ from the current state exists and is taken. Then, the current trace becomes
tσ, and, if the projection t|iσ is a new trace, it has to be marked as observed
in the tree Ti. Let v = ξi∗(t|i) be the vertex returned by the string transition
function of Ti. Since t|iσ hasn’t been observed before, ξi(v, σ) is still undefined.
Therefore, a new vertex v′ is added to V i, such that the transition function
ξi changes to ξi(v, σ) = v′, while ξi(v′, σ′) is undefined for all σ′ ∈ Σi. The
counter function for v′ becomes ν(v′) = 1, while remaining unchanged in rest.
Also, the remainder of the transition function ξi stays the same.

If, however, t|iσ is a trace already in Ti, and vertex v′ so that v′ = ξi∗(t|iσ)
already exists, then the only thing that changes is the counter function, since
trace t|iσ has been observed once more. Therefore, the result returned by the
counter function for vertex v′ increases with 1: νnew(v′) = νold(v′) + 1.

So far, we have only seen how to react to an occurring event. Let us see now how
the actual exploration takes place. As before, let us assume the current trace
is t, and that property Φ is in a current state q. Suppose q is a control point,
with an active local projection qi – if q has several such active projections, one
of them is randomly chosen. Suppose also that we have to choose between two
controllable events, σ and σ′, which are both in the event set Σi of component
Ci. We now have to decide which event to enable in Ci, between the two. We
have three possible cases:

• none of the traces t|iσ and t|iσ′ has been previously tried: untried(t|iσ)∧
untried(t|iσ′), so we randomly choose which event to enable

• only t|iσ) has been previously tried: (positive(t|iσ) ∨ negative(t|iσ)) ∧
untried(t|iσ′), so it is event σ′, the untried one, which is enabled

BUPT

4.3. CENTRALIZED BEHAVIOUR EXPLORATION 57

a?

!b

a?

!b

a?

a?

!b a?

a? !b

a?

!b

a?

!b a?

(a)

Figure 4.3: The trace tree during the exploration process

• both t|iσ and t|iσ′ have already been observed: positive(t|iσ)∧positive(t|iσ′);
we want to explore the behaviour they may lead to in an uniform way, so
we will choose the least beaten path: considering vertices v = ξi∗(t|iσ) and
v′ = ξi∗(t|iσ′), we will enable event σ if ν(v) ≤ ν(v′) and σ′ otherwise.

Let us now suppose we find ourselves in the first case, we try to enable event σ,
and component Ci does not accept the forwarded message. In this case, as as-
sumed, no transition has been taken and Ci hasn’t changed its state. Therefore,
we can continue from that point on by trying σ′, or other controllable events, if
available. As trace t|iσ could not be enforced on Ci, this will be marked in Ti
by modifying the transition function from vertex v = ξi∗(t|i), so that, for event
σ, it leads towards the empty vertex: ξi(v, σ) = ε. A trace tree with several ob-
served, several unexplored and several explored, but found infeasible traces can
be seen in figure 4.3, where the square-shaped nodes mark the empty vertices
in the tree, and the parameter m is set to 2.

A vertex v in a trace tree Ti is considered completely explored, which is denoted
by complete(v), if:

• the transition function ξi is defined for all the controllable events σ ∈ Σi:
∀σ ∈ Σi

?.∃v′ ∈ V i. s.t. ξi(v, σ) = v′

• the access trace t of vertex v has been observed for at least θ times, when
θ is the fairness bound: ν(v) ≥ θ.

A trace tree Ti is considered completely explored to depth p, which is denoted
as complete(Ti , p), if all traces t ∈ Σi

∗ of length smaller or equal to p, are either
stored or marked as infeasible in Ti, and all stored traces are access traces to

BUPT

58 CHAPTER 4. SAFE MODEL INFERENCE

completely explored vertices v ∈ V i \ {ε}:

∀t ∈ Σi
∗ s.t. |t| ≤ p ∧ ξi∗(t) = v ∧ complete(v)→ complete(Ti , p)

The behaviour of a black box component Ci is considered completely explored
when its associated trace tree Ti is complete to depthm+1: complete(Ti ,m + 1).

A current execution is forced to end when either the property Φ has been vio-
lated at runtime, or when each projection of the current execution trace on the
alphabet of a black box component has reached the maximum number of steps
2m: ∀i < n. |t|i| ≥ 2m.

The centralized behaviour exploration process ends when either a maximum al-
lowed number γ of executions has been reached, or all the black box components
in the system have been completely explored.

BUPT

4.3. CENTRALIZED BEHAVIOUR EXPLORATION 59

4.3.1 Centralized Exploration Algorithm

Below we give a pseudocode description of the behaviour exploration algorithm
for safety properties. The algorithm explores the behaviour globally, with respect
to all the components in the system.

Algorithm 1 : Behaviour exploration controllable step
1: procedure ctrlStep {control an execution step}
2: for all i = 0, n− 1 do
3: progress = false
4: v = nodeAfterTrace(Ti, ti) {current vertex in Ti}
5: toTry = availableMoves(v, i) ∩ correctMoves(qΦ,Φ)
6: repeat
7: leastTaken = {σ′ ∈ toTry |minim(ν(ξi∗(tiσ′)))}
8: σ = pickRandom(leastTaken)
9: enable(σ,Ci) {try message}
10: if acki then
11: advance(Φ, σ) {advance property}
12: putTrace(Ti, tiσ) {positive sample}
13: ti = tiσ {augment current trace}
14: counti = counti + 1 {count step}
15: progress = true {execution progress}
16: else
17: cutTrace(Ti, tiσ) {negative sample}
18: until progress {step ends if execution progress}
19:
20: procedure onReceive(σ) {message receive listener}
21: i = σ.source
22: msg = σ.message
23: store(msg) {store received message}
24: putTrace(Ti, tiσ) {positive sample}
25: ti = tiσ {augment current trace}
26: if advance(Φ, σ) then
27: counti = counti + 1 {count step}
28: progress = true {execution progress}
29: else
30: stopCurrentExecution = true {violated property}

BUPT

60 CHAPTER 4. SAFE MODEL INFERENCE

Algorithm 2 : Exploring behaviour at runtime
1: {termination condition}
2: def completelyExplored(Ti) = ∀v ∈ V i. depth(v) ≤ m+ 1→ ν(q) ≥ θ
3: {execution end condition}
4: def maxTrace = (∀i = 0, n− 1. counti ≥ maxExLength)
5:
6: procedure execution(maxExLength) {control an execution}
7: stopCurrentExecution = false
8: for all i = 0, n− 1 do
9: reset Ci
10: counti = 0
11: repeat
12: progress = false
13: ctrlStep
14: until ¬progress ∨ stopCurrentExecution ∨ maxTrace
15:
16: {behaviour exploration main}
17: for all i = 0, n− 1 do
18: initialize(Ti)
19: execNr = 0
20: maxExLength = 2m
21: repeat
22: execution(maxExLength)
23: execNr = execNr + 1
24: until (execNr ≥ maxExecNr) ∨ (∀i ≤ n− 1. completelyExplored(Ti))

BUPT

4.3. CENTRALIZED BEHAVIOUR EXPLORATION 61

Procedure ctrlStep describes one step of the exploration process. For each
component i, the set toTry of controllable events is determined as the intersec-
tion of the set of available moves with the set of correct ones. First, function
correctMoves returns all controllable events that can be enabled from the cur-
rent state qΦ in the property model. Out of these receive events, we only try
to enable the ones for which we have an available message to forward, i.e. the
needed message has already been received and stored by the proactive adaptor.
This event set is returned by function availableMoves. Then, a controllable
event σ to be enabled is chosen. Each time, the chosen event σ is the one that
has been enabled the fewest times so far (possibly never), after trace ti, from
all controllable events available. If several such controllable events σ exist, the
enabled event is picked randomly from this subset.

If the enabled message receive event σ has been acknowledged, operation advance
synchronously advances the property model on a transition triggered by σ. Event
σ is concatenated to the current execution trace, the number of execution steps
performed by component Ci is incremented and progress is marked. The ob-
served trace tiσ is kept as a positive sample in the trace tree Ti, by means of
operation putTrace. Otherwise, trace tiσ is marked as infeasible in the trace
tree Ti, by means of operation cutTrace.

Procedure onReceive is a handler procedure, listening for asynchronously in-
coming messages. It is performed each time a message sent by a component
is intercepted by the proactive adaptor. First, the sent message is stored by
the proactive adaptor for possible later use – by operation store. Then, uncon-
trollable event σ is appended to trace ti, putTrace adds observed trace tiσ as
a positive sample in the trace tree Ti. If the property model can accept the
observed send event σ, the number of execution steps performed by component
Ci is incremented and progress is marked. If not, then we have reached an un-
controllable erroneous transition, and therefore the current execution will end.
There is no need to further explore this path, if a controller will be successfully
generated for the system, then it will disable all paths that violate Φ.

The course of one exploratory execution is described in procedure execution. In
the beginning, all components are reset, and each execution step counter is set
to 0. Then, for each step to be taken in the execution, the progress variable is set
to false, after which a controllable exploration step is taken through procedure
ctrlStep. Incoming messages are received in an asynchronous manner, handled
and stored. The execution stops when either a number of 2m steps has been
taken by each black box component in part, or property Φ has been violated

BUPT

62 CHAPTER 4. SAFE MODEL INFERENCE

(condition maxTrace), or when there is no progress in the current iteration
(which means deadlock).

The exploration process finishes when either the trace tree Ti is complete to
depth m+ 1, expressed by completelyExplored(Ti) or a maximum number of
executions, maxExecNr has been reached. The first case might not be feasible
in practice.

4.4 Model Building

In this section, we will present the way a model is built once the exploration
process stops. As earlier stated, our goal is to obtain a safe approximation
of the real behaviour for all black box components in the system. Assuming a
hypothetical precise model Ri for black box component Ci, a safe approximation
of Ri is a model Ui that both underapproximates the controllable behaviour in
Ri and overapproximates the uncontrollable behaviour.

Model Ui for black box component Ci will be built using the trace tree Ti
associated to Ci. As Ti stores all positive and marks as such all negative sample
traces tried during behaviour exploration, model Ui could, in a first instance, be
built directly from tree Ti and minimized afterwards.

However, this would lead to losing a part of the information available in the
tree structure Ti, such as the number of times a certain path t was observed
at runtime, or whether after trace t event σ is unexplored, or found as not
defining a valid transition. Therefore, trace tree Ti is first subject to a series of
preprocessing that will be described later on, and only afterwards is model Ui
built from Ti.

Directly building Ui from Ti would nevertheless lead to a very large, acyclic
model Ui, which would remain acyclic even after it is minimized. Therefore, a
very important precondition to building Ui is establishing which vertices in Ti
actually correspond to the same state in the model.

BUPT

4.4. MODEL BUILDING 63

4.4.1 Vertex Compatibility

Bounded Bisimulation

Consider two vertices v and v′ in the trace tree Ti, so that v, v′ ∈ V i \ {ε}.
We say that v bisimulates v′, and denote v ∼ v′ if for each σ ∈ Σi for which
∃v′′ ∈ V i \ {ε}. ξi(v, σ) = v′′ another vertex v′′′ ∈ V i \ {ε} also exists so that
ξi(v′, σ) = v′′′, and, symmetrically, for each σ ∈ Σi for which ∃v′′′ ∈ V i \
{ε}. ξi(v′, σ) = v′′′, a vertex v′′ ∈ V i \ {ε} also exists so that ξi(v, σ) = v′′, and
the vertex v′′ also bisimulates v′′′. As the bisimulation relation is symmetrical,
reflexive, and transitive, it is an equivalence relation.

Further on, we consider bisimulation on a depth of k. If vertices v and v′

are bisimilar on a depth of 0, denoted v ∼0 v
′, they basically have outgoing

transitions on the same set of events. If, also for all σ ∈ Σi for which two
vertices v′′ and v′′′ exist so that ξi(v, σ) = v′′ and ξi(v′, σ) = v′′′, the two
vertices v′′ and v′′′ are bisimilar on a depth of 0, v′′ ∼0 v

′′′, then we say that
vertices v and v′ are bisimilar on a depth of 1, which we denote v ∼1 v

′. If
for all σ ∈ Σi for which two vertices v′′ and v′′′ exist so that ξi(v, σ) = v′′ and
ξi(v′, σ) = v′′′, vertices v′′ and v′′′ are also bisimilar on a depth of 1, then v and
v′ are bisimilar on a depth of 2, etc. So, if all successors of vertex v are bisimilar
on a depth of k − 1 with the corresponding successors of vertex v′, then v and
v′ are bisimilar on a depth of k, which we denote as v ∼k v′.

We are interested on bisimulation on a depth of m, where m is the already
introduced bound on an acyclic path. As both v and v′ are vertices in a de-
terministic tree structure, thus both representing a root of a subtree, iff they
are bisimilar on a depth of m, v ∼m v′, then their underlying subtrees describe
equivalent languages on traces of at most m events L(v) =m L(v′). As any
sequence of events of length greater than m contains at least one cycle, the two
vertices v and v′, bisimilar up to a depth of m, have the same language and
thus correspond to the same state q in model Ui. This means that each pair
of vertices v′′, v′′′ that belong to the subtree of v and, respectively v′ and have
identical access traces from v, respectively v′, also correspond to the same state
q′ in the model Ui, since Ui is deterministic.

BUPT

64 CHAPTER 4. SAFE MODEL INFERENCE

Language Compatibility

For each vertex v ∈ V i \ ε, let us consider two languages of event traces starting
from v L√(v) and Lv(v), where L√(v) is the language of observed traces t ∈ Σi

∗
from v, while Lv(v) is the language of potential traces from v, thus including
both observed and not yet tested traces t′ ∈ Σi

∗. Both L√(v) and Lv(v) are
regular languages and, furthermore, L√(v) ⊆ Lv(v).

Vertices v and v′ in the vertex set V i \ {ε} are considered compatible, denoted
as v 'o v′, if the potential language of v′ includes the observed language of v,
and reciprocally L√(v) ⊆ Lv(v′) and L√(v′) ⊆ Lv(v). Thus, no trace observed
from vertex v (i.e., following the access trace of v) is missing from the potential
language of vertex v′, and, reciprocally, no trace observed from v′ was dismissed
as a potential trace from v. This means the two vertices, v and v′, could actually
correspond to one and the same state q in the hypothetical precise model Ri of
component Ci.

If this is true, then language L(q), the event trace language of state q in
hypothetical model Ri, is included between languages L√(v′) ∪ L√(v) and
Lv(v) ∩ Lv(v′). In this case, both the reunion of observed languages, and
the intersection of potential languages converge to L(q) as more positive and
negative samples, prefixed by the access trace of either v or v′, are added to
trace tree Ti.

The presented compatibility relation is commutative, so if v 'o v′ is true, then
v′ 'o v is also true. As compatible vertices are assumed to correspond to the
same state q in Ri, the relation of compatibility must be an equivalence relation,
and thus, also transitive.

However, the compatibility relation, as introduced so far, is not transitive and
cannot be used as an equivalence relation between the vertices in V i \ {ε}.
Still, trace tree Ti can be adequately preprocessed so that relation 'o becomes
transitive, and can be used as an equivalence relation over V i \ {ε}. After the
preprocessing of Ti, the relation of compatibility between two vertices of Ti is
reduced to a relation of bisimulation on a depth of m.

We present two variants of preprocessing the trace tree Ti: the one presented in
section 4.4.2 is to be used when building an approximate model, while the one
given in section 4.4.3, together with the consistency check at section 4.4.3, is
used when we aim to build a complete model. The former transformation cuts
Lv(v) down to a sublanguage of L√(v)(Σi

!)∗ for all vertices v ∈ V i\{ε}, while in

BUPT

4.4. MODEL BUILDING 65

a?

!b

c?

a?

!b

a? a?

!b

c?

a?

a?

!b

(a)

Figure 4.4: Two compatible vertices.

the latter case, the learning process continues and the traces in Lv(v)\L√(v) are
systematically tried at runtime, becoming either positive, or negative samples,
until Lv(v) = L√(v).

After trace tree Ti is preprocessed, two vertices v, v′ in the vertex set V i \ {ε}
are in a relation of language compatibility, v 'o v′ if one of the following two
conditions holds:

• vertices v and v′ bisimulate each other up to depth m: v ∼m v′

• if t is the access trace of v in tree Ti, so that ξi∗(t) = v, and t′ the access
trace of v′, so ξi∗(t) = v, t and t′ have a common suffix w, so that t = uw
and t′ = u′w, where u, u′, w ∈ Σi

∗, and if prefixes u and u′ are access
traces for two vertices v′′, respectively v′′′, then v′′ ∼m v′′′ implies v 'o v′.

In both cases, the compatibility relation between two vertices v and v′ is reduced
to a relation of bisimulation on a depth ofm between v and v′, v ∼m v′, which is
an equivalence relation. Thus, after the preprocessing is applied, in trace tree Ti,
for vertices v, v′, v′′ ∈ V i \ {ε}, if v 'o v′ and v′ 'o v′′, then also v 'o v′′.

The set of vertices V i \ {ε} of trace tree Ti can be partitioned, using a transi-
tive vertex compatibility relation, into mutually exclusive subsets of compatible
states. These compatibility partitions can be used later on to build the automa-
ton Ui for black box component Ci.

Figure 4.4 presents an example of two compatible vertices in a trace tree, for
which the parameter m is set to value 2. For simplicity, the empty vertices in
the tree are not shown.

BUPT

66 CHAPTER 4. SAFE MODEL INFERENCE

4.4.2 Building an Approximate Model

In order to build a safe approximate model Ui for component Ci using trace
tree Ti, as stated earlier, we have to actually build, based only on the available
information in Ti, an overapproximation of the real uncontrollable behaviour of
Ci, and an underapproximation of its real controllable behaviour.

For this purpose, before partitioning the vertices in V i \ {ε} in compatibility
partitions and actually building Ui, we will have to preprocess some of the infor-
mation trace tree Ti. This preprocessing will be described below.

For the preprocessing and model building phase, we introduce a special vertex ζ,
the unknown-future vertex. If the empty vertex ε signified the observed fact that
no transition on an event was possible, the unknown-future vertex constant ζ is
always the target of one or more potential uncontrollable transitions, and signi-
fies an unknown, possibly uncontrollable further development. No controllable
events are further allowed from ζ, as the behaviour exploration process did not
reach traces with this prefix. As ζ marks insufficient exploration, its presence,
especially at small depths, makes part of component behaviour unusable in the
composed system. Thus, using the vertex ζ is only a solution in the limit when
there are too many traces to explore.

Pruning and Adding Behaviour

When the exploration process ends due to reaching the maximum number γ
of allowed executions, thus leaving the black box component Ci incompletely
explored, three final actions are applied on the associated trace tree Ti:

1. transitions on unexplored controllable events are removed from Ti – for
every controllable event σ ∈ Σi, and for every vertex v ∈ V i \ {ε},
if ξi(v, σ) is undefined, then ξi(v, σ) becomes the empty vertex: ∀v ∈
V i \ {ε}.∀σ ∈ Σi

?. 6 ∃ξi(v, σ)→ ξ′i(v, σ) = ε.

2. if a prefix in the trace tree was observed for a number of times that exceeds
the fairness bound θ, all unobserved uncontrollable transitions are removed
from its end vertex – for every uncontrollable event σ ∈ Σi, and for every
vertex v ∈ V i \ {ε}, if ξi(v, σ) is undefined, and the counter function
ν(v) ≥ θ, then ξi(v, σ) becomes the empty vertex: ∀v ∈ V i \ {ε}.∀σ ∈
Σi

! . 6 ∃ξi(v, σ) ∧ ν(v) ≥ θ → ξ′i(v, σ) = ε.

BUPT

4.4. MODEL BUILDING 67

3. if a prefix in the trace tree was observed for less times than the established
fairness bound, all unobserved uncontrollable transitions are added to its
end vertex – for every uncontrollable event σ ∈ Σi, and for every vertex
v ∈ V i \ {ζ}, if ξi(v, σ) is undefined, and the counter function ν(v) < θ,
then ξi(v, σ) becomes the unknown-future vertex: ∀v ∈ V i \ {ε}.∀σ ∈
Σi

! . 6 ∃ξi(v, σ) ∧ ν(v) < θ → ξ′i(v, σ) = ζ.

Figure 4.5 presents the effects of pruning and adding behaviour to a trace tree, in
a case when the parameter m is set to 2. The empty vertex is represented by the
white rectangular-shaped nodes, while the unknown-future vertex is represented
by the dark rectangular nodes. In figure 4.5(a) we can see the trace tree as it
resulted from the exploration process, before any preprocessing being applied,
then in figure 4.5(b), the unobserved controllable behaviour has been pruned
out from the trace tree. Finally, in figure 4.5(c), we can see the trace tree after
all infeasible uncontrollable behaviour has been pruned out, and all still feasible
uncontrollable transitions have been added as transitions to the unknown-future
vertex.

The reason for action 1 is that keeping infeasible controllable transitions in
a model used to generate a controller for the system might lead to unsafe
behaviour later on, in the composed system, since the adaptor/controller could
try to enable an infeasible transition, fail, and thus block.

Action 2 is based on the fairness assumption made on the component, which we
use to prune out infeasible uncontrollable events, i.e. the uncontrollable events
that didn’t occurred within the fairness bound. In model Ui, if an uncontrollable
event σ hasn’t occurred from state q, after the service has been in state q for
more than θ times, with visits(q) ≥ θ, then we conclude that σ never actually
occurs from q, and the transition on σ from q can be removed.

Action 3 treats the case when a state q in the model Ui has been visited for
less than θ times. Since the fairness bound hasn’t been reached, from state
q all uncontrollable transitions are still possible, and none of them can be cut
out. Furthermore, we cannot predict the further development of event traces
after one of these unobserved controllable events would occur. Therefore, un-
der the goal of overapproximating uncontrollable behaviour in the model, the
only assumption we can make is the most pessimistic one, that any of these
hypothetical transitions would lead the execution into a state from which all
uncontrollable events can occur, all triggering self-cycle transitions back to the
same state. Therefore, all unobserved uncontrollable transitions are added to

BUPT

68 CHAPTER 4. SAFE MODEL INFERENCE

a?

!b

a?

!b

a?

a?

!b a?

a? !b

a?

!b

a?

!b a?

(a)

a?

!b

a?

!b

a?

a?

!b a?

a? !b

a?

!b

a?

!b

a?

a?

(b)

a?

!b

a?

!b

!b

a?

a?

!b

a?

!b

!b

a?
!b

a?

!b

a?

a?

!b
a?

!b

(c)

Figure 4.5: Pruning and adding behaviour to the trace tree: 4.5(a) – the trace
tree before preprocessing, 4.5(b) – trace tree after action 1, 4.5(c) – trace tree
after actions 2 and 3.

BUPT

4.4. MODEL BUILDING 69

the model, from the incompletely explored state to a special state with self-loops
on all uncontrollable events and no controllable outgoing transitions.

Thus, each learned model is characterized by an overapproximation of the real
uncontrollable behaviour and an underapproximation of the controllable one,
which allows for a reliable adaptor synthesis – if an an adaptor can be obtained
starting from these models, it will also work on the real system.

Choosing the Fairness Bound

A problem that would arise in this context would be how to properly choose
the fairness bound θ when learning a black box component Ci. A well chosen
fairness bound should be permissive enough to overapproximate the real fairness
bound of the system, and thus let all uncontrollable events feasible from a state
q occur at some point from q, without leading to a premature cut out of some
unobserved uncontrollable events. Also, such a fairness bound should also be
tight enough to actually be useful in pruning out infeasible uncontrollable events,
since a fairness bound θ that is too loose would only lead to a final model that
is actually impossible to control.

To properly identify such a bound θ for black box Ci, we have turned to a classic
probability theory problem: the coupon collector’s problem [66]. Basically, the
coupon collector’s problems resides in the following. Given N different coupons,
equally likely, which are being collected with replacement, and a collector willing
to obtain them all, how many times X does the collector have to draw a coupon,
with replacement, before having drawn each coupon at least once?

As shown in the literature, the estimated number of trials noted as E [X], is
asymptotically converging, when n→∞, to

E [X] = nlnn+ γ′n+O(1)

where γ′ ≈ 0.5772156649 is the Euler – Mascheroni constant.

For simplicity, this can be further expressed as:

E [X] = nlnn+O(n)

Let us assume the number of uncontrollable events in the event set Σi corre-
sponding to black box component Ci is |Σi

! | = ni! . We take into account the

BUPT

70 CHAPTER 4. SAFE MODEL INFERENCE

fact that from a same state q we can have both controllable and uncontrollable
events, and thus, we assume that only in half of the times state q is reached an
uncontrollable event occurs. Thus, using the result above, we set the fairness
bound θi for component Ci to:

θi = 2ni!lnni!

If, for convenience, we want to use only one fairness bound θ for the whole
system, instead of a θi for each component, then we will choose the maximum
θi as the global fairness bound θ. Thus, θ = max(θ0, θ1, .., θn−1), which means
θ = 2n!lnn!, where n! = max(n0

! , n
1
! , .., n

n−1
!) is the maximum number of

uncontrollable events. Therefore, the chosen global fairness bound θ is:

θ = 2n!lnn!

Building the Model

The model Ui is built from the trace tree Ti in the following way. First, after the
behaviour exploration process stops, the unobserved controllable and infeasible
uncontrollable traces are pruned out from the trace tree, as showed above. Then,
starting with the root vertex vi0 of trace tree Ti, and continuing with vertices at
depth 1, then at depth 2, etc. and finishing with vertices at depthm, each vertex
is checked for compatibility with the rest of the vertices in the model. During
this phase, compatibility-based partitioning takes place, and thus, based on the
relation of compatibility between vertices, the vertex set Vi \{ε, ζ} is partitioned
into a set of compatibility partitions P'(Vi\{ε, ζ}) = {P0, P1, ..., Pnp−1}, which
we also denote by P i

'.

From the number np of partitions in P i
' we then obtain the total number of states

of model Ui, which is np+ 1, because of adding qζ , the state that corresponds
to unknown-future vertex ζ.

Then, we start building the approximate model Ui for black box component
Ci. The set of states Qi is Qi = {q0, q1, ..., qnp−1} ∪ {qζ}, where each state
qj corresponds to a compatibility partition Pj in partition set P i

'. We denote
the correspondence between a state qj in Ui, and its associated partition Pj as
qj � Pj. The initial state q0 of model Ui is implicitly associated to partition P0,
by which we specifically denote the partition that includes the root vertex v0 of
trace tree Ti, thus q0 � P0 and v0 ∈ P0.

BUPT

4.4. MODEL BUILDING 71

a?

!b

c?

a?

!b

a? a?

!b

c?

a?

a?

!b

(a)

a?

!b

c?

a?

a?
!b

(b)

Figure 4.6: Two compatible states in the trace tree – figure 4.6(a), lead to one
state in the built model – figure 4.6(b).

BUPT

72 CHAPTER 4. SAFE MODEL INFERENCE

req?
!redirect

!rbad

id?
!badid
!ok

req?

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

(a)

Figure 4.7: Model with transitions towards an unknown-future state.

By a breadth-first traversal of trace tree Ti, the transition function δi of model
Ui, defined as δi : Qi×Σi → Qi is built. This happens as follows. Let v be the
currently analyzed vertex in Ti, where v is in partition P , and q is the state in Qi

associated to P , q � P . For each event σ ∈ Σi, such as ξi(v, σ) ∈ V i\{ε}∪{ζ},
let vertex v′ = ξi(v, σ). Then, we have two possible cases:

• v′ 6= ζ: if v′ is a regular vertex, then let q′ be its corresponding state in
Qi so that q′ � P ′ and v′ ∈ P ′; the transition function δi of model Ui
then becomes δ′i(q, σ) = q′.

• v′ = ζ: if v′ is the unknown-future vertex, then the transition function
δi of model Ui will be enriched with a transition on σ to unknown-future
state qζ , thus becoming δ′i(q, σ) = qζ .

In figure 4.6 we can see how two compatible traces in a trace tree (figure 4.6(a)),
end up as the same state in the built model, and how this actually creates a
cycle in the built model(figure 4.6(b)).

The unknown-future state qζ is defined as having self-loops on all uncontrol-
lable events σ ∈ Σi

! , and no outgoing controllable transitions, thus ∀σ ∈
Σi

! . δ
i(qζ , σ) = qζ and ∀σ ∈ Σi

?. 6 ∃δi(qζ , σ).

An example of a built model that contains an unknown future state cand be
seen in figure 4.7.

4.4.3 Building a Precise Model

In this section, we will present the algorithm for building a precise model for a
black box component Ci. We assume that the behaviour of component Ci has

BUPT

4.4. MODEL BUILDING 73

been completely explored up to depth m+ 1, and, thus, in the trace tree Ti, all
vertices v ∈ Vi \ {ε} are completely explored, complete(v), iff their access trace
t ∈ Σi

∗ s.t. ξi∗(t) = v has m+ 1 or less events: |t| ≤ m+ 1.

Also, we assume that the maximum number of executions γ hasn’t been reached,
and that, if necessary, the behaviour of the component Ci can be further explored
by resuming the exploration with new traces.

Pruning Infeasible Behaviour

Since trace tree Ti is complete up to the depth of m+ 1, complete(Ti , p), this
means all traces t ∈ Σi

∗ of length |t| ≤ m + 1, for which the string transition
function returns a valid vertex ξi∗(t) ∈ V i \ {ε}, have been observed for at
least θ times. Thus, for all completely explored vertices v, since ν(v) ≥ θ, the
unobserved uncontrollable events are considered as infeasible and cut out.

Similarly to action 2 described in subsection 4.4.2, for every uncontrollable event
σ ∈ Σi, and for every vertex v ∈ V i\{ε}, if ξi(v, σ) is undefined, and the counter
function ν(v) ≥ θ, then ξi(v, σ) becomes the empty vertex: ∀v ∈ V i \{ε}.∀σ ∈
Σi

! . 6 ∃ξi(v, σ) ∧ ν(v) ≥ θ → ξ′i(v, σ) = ε.

However, it is only the infeasible uncontrollable behaviour that is pruned out.
Unobserved and untried controllable behaviour is not removed from the trace
tree in this case, but it will be further explored.

Control Consistency Check

After pruning out the infeasible uncontrollable behaviour from trace tree Ti, the
next phase requires that each vertex is checked for compatibility with the rest
of the vertices in the model, and then compatibility-based partitioning of the
vertex set V i takes place.

Then, the set of compatibility partitions P'(V i \ {ε}) = {P0, P1, ..., Pnp−1}
results, also denoted as P i

'. Consider a partition Pj ∈ P i
', containing a finite

number of vertices nv, thus Pj = {vj0 , vj1 , ..., vjnv}. Although the vertices vjk
have no unexplored transitions, they might not be completely explored up to the
depth of m.

If state qj will correspond to partition Pj in model U i, qj � Pj, its language L(qj)
will include all the languages of all vertices vjk ,

⋃L(vjk) in the partition. Thus,

BUPT

74 CHAPTER 4. SAFE MODEL INFERENCE

we need to make sure that the vertices can be indeed treated as equivalent.

For simplicity, let us assume we have two vertices, v′ and v′′ in the same compat-
ibility partition Pj. We also assume that a certain trace t belongs to language
L(v′), but not to language L(v′′), t ∈ L(v′) ∧ t 6∈ L(v′′). Let us also assume
t = uσw, where u,w ∈ Σi

∗ and σ ∈ Σi, so that u ∈ L(v′′), but uσ 6∈ L(v′′).
We call such a trace uσ a potentially separating sequence.

Then, if trace t′′ is the access trace for vertex v′′, δi∗(t′′) = v′′, then the black
box Ci has to be tested for trace t′′uσ, the separating test sequence, which
is formed by concatenating the potentially separating sequence to the access
trace of v′′, in order to decide whether vertices v′ and v′′ can be considered
equivalent. If event σ cannot be enabled after trace t′′u, then it means that
vertices v′ and v′′ are no longer compatible, and therefore they don’t belong in
the same compatibility partition Pj. This requires a splitting of partition Pj into
two partitions P ′j and P ′′j , by determining for each vertex v in Pj whether it is
compatible with vertex v′ or with v′′.

However, since such situations might appear for several vertices in V i\{ε}, which
would further complicate a partition splitting solution, the chosen solution is
different. Once all potentially separating sequences have been tried at runtime,
we simply redo the equivalence partitioning for all vertices in trace tree Ti.

Thus, in any compatibility partition Pj, for all pairs of vertices v′, v′′, for which a
potentially separating sequence exists for one vertex, a separating test sequence
can be easily derived for the other and tried at runtime. When all potentially
separating sequences have been tried, the equivalence partitioning is redone.
If new potentially separating sequences are then found for the new partitions,
they are again tested, etc. This consistency enforcing phase continues until no
potentially separating sequence is found for any pair of vertices in any partition
Pj of the vertex set V i.

If the maximum number of executions is reached before the consistency testing
ends, then the trace tree is preprocessed using the metod in section 4.4.2, the
compatibility partitions are recomputed and the model is built using the algo-
rithm for building an approximate model, as shown in subsection 4.4.2, .

Building the Model

The precise model Ui is built from the complete trace tree Ti as follows. After
the behaviour exploration is complete to depth m + 1, infeasible controllable

BUPT

4.4. MODEL BUILDING 75

traces are pruned out from the trace tree, as showed above. Then, starting with
the root vertex vi0 of trace tree Ti, and continuing with vertices at depths from
1 to m, each vertex is checked for language-based compatibility with the rest of
the vertices in the model.

Thus, language-based compatibility partitioning takes place over the vertex set
Vi \ {ε}, obtaining the set of compatibility partitions P'(Vi \ {ε}), or P i

'.

The precise model Ui for black box component Ci is built as following. The set
of states Qi is Qi = {q0, q1, ..., qnp−1}, where each state qj corresponds to a
compatibility partition Pj in partition set P i

', qj � Pj. This means that model
Ui will have np states. The initial state q0 of model Ui is implicitly associated
to partition P0, the partition including the root vertex v0 of trace tree Ti, thus
q0 � P0 and v0 ∈ P0.

By a breadth-first traversal of trace tree Ti, the transition function δi of model
Ui, defined as δi : Qi×Σi → Qi is built. This happens as follows. Let v be the
currently analyzed vertex in Ti, where v is in partition P , and q is the state in
Qi associated to P , q � P . For each event σ ∈ Σi, such as ξi(v, σ) ∈ V i \ {ε},
let vertex v′ = ξi(v, σ). Then, if v′ is a regular vertex, then let q′ be its
corresponding state in Qi so that q′ � P ′ and v′ ∈ P ′; the transition function
δi of model Ui then becomes δ′i(q, σ) = q′.

4.4.4 Model building algorithms

In the following, we present the algorithms for both approximate and precise
model building, in a concise pseudocode form.

Approximate model building algorithm

The algorithm for building an approximate model is presented below. As previ-
ously stated, in the approxBuild procedure, the trace tree Ti is first preprocessed
by pruning out all behaviour found as infeasible (procedure pruneInfeasible),
and by adding to it all uncontrollable behaviour that is still feasible (proce-
dure addFeasible). Then, based on the compatibility relations defined at sec-
tion 4.4.1, the vertices in the vertex set V i, associated to the trace tree Ti, are
partitioned into compatibility sets. Using the partition set Pi as a reference for
the state set Qi, procedure build then builds approximate model Ui.

BUPT

76 CHAPTER 4. SAFE MODEL INFERENCE

Algorithm 3 : Approx. model building
1: procedure approxBuild(Ui, Ti)
2: pruneInfeasible(Ti)
3: addFeasible(Ti)
4: Pi =partition(Ti)
5: build(Ui, Ti, Pi)

The mentioned procedures are then described more in detail. Predicate infea-
sible defines when an unobserved event σ is considered infeasible from a vertex
v in trace tree Ti: if either it is a controllable event, or an uncontrollable event
and the trace access of vertex v has been observed for more than θ times, where
θ is the fairness bound.

Predicate compatible describes the condition for two vertices v and v′ to be
compatible in trace tree Ti.

Procedure pruneInfeasible, based on the evaluation of the infeasibility condi-
tion, cuts out an unobserved event σ from a certain vertex v by adding a link
from v, on σ, towards the empty vertex ε. It does so for all pairs (v, σ) of events
in the event set Σi and vertices v ∈ V i for which predicate infeasible(v, σ)
evaluates to true.

Somehow similar, procedure addFeasible, adds to trace tree Ti links towards
the unknown-future vertex ζ for all unobserved uncontrollable events that are
still considered feasible from a vertex v, where v has been reached, at runtime,
for less than θ times.

The vertex partitioning function, partition, works as follows. Initially, each par-
tition in the partition set contains only one vertex, so we have as many partitions
as vertices are in V i at a depth of at most m. Then, all pairs of vertices v and
v′ in V i, at a depth less than, or equal to m, are checked for compatibility as
according to the described predicate compatible(v, v′). If two different vertices
are found compatible, their corresponding compatibility partitions are merged.
In the end, the final partition set is returned.

BUPT

4.4. MODEL BUILDING 77

Algorithm 4 : Auxiliary procedures
1: def infeasible(v, σ) = 6 ∃ξi(v, σ) ∧ (σ ∈ Σi

? ∨ (σ ∈ Σi
! ∧ ν(v) ≥ θ))

2: def compatible(v, v′) = (L√(v) ⊆ L∼(v′)) ∧ (L√(v′) ⊆ L∼(v))
3:
4: procedure pruneInfeasible(Ti)
5: for all v ∈ V i do
6: for all σ ∈ Σi do
7: if infeasible(v, σ) then
8: ξi(v, σ) = ε
9:
10: procedure addFeasible(Ti)
11: for all v ∈ V i do
12: for all σ ∈ Σi

! do
13: if 6 ∃ξi(v, σ) ∧ ν(v) < θ then
14: ξi(v, σ) = ζ
15:
16: function partition(Ti)
17: Pi = ∅
18: for all v ∈ V i ∧ depth(v) ≤ m do
19: P = {v}
20: Pi = Pi ∪ {P}
21:
22: for all v ∈ V i do
23: for all v′ ∈ V i.v′ 6= v do
24: if compatible(v, v′) ∧ (depth(v) ≤ m) ∧ (depth(v′) ≤ m) then
25: P = matchV ertexToPart(v, Pi)
26: P ′ = matchV ertexToPart(v′, Pi)
27: mergePartitions(P, P ′)
28: return Pi

BUPT

78 CHAPTER 4. SAFE MODEL INFERENCE

Algorithm 5 : Build model from trace tree
1: procedure build (Ui, Ti, Pi)
2: initialize(Ui)
3: Qi = partToStates(Pi)
4: recursiveBuild(v0, 0, i)
5:
6: procedure recursiveBuild(v, depth, i)
7: P = matchV ertexToPart(v, Pi)
8: q = matchStateToPartition(P)
9: if depth ≤ m then
10: V = v.childNodes
11: for all v′ ∈ V do
12: σ = v.eventTo(v′)
13: P ′ = matchV ertexToPart(v′, Pi)
14: q′ = matchStateToPartition(P)
15: trans = makeTransition(q, σ, q′)
16: Ui.addTransition(trans)
17: recursiveBuild(v′, depth+ 1, i)

Finally, by means of procedure build, the model Ui is being constructed for
component Ci using the trace tree Ti and the computed partition set Pi. Each
vertex partition in the partition set Pi corresponds to a state in the state set Qi

of model Ui.

The trace tree Ti is traversed recursively by procedure recursiveBuild, and from
each vertex v ∈ V i, if a valid link on an event σ exists, leading to a non-empty
vertex v′ ∈ V i∪{ζ}, a transition in Ui is created as follows. Partitions P and P ′
in partition set Pi, for which v ∈ P and v′ ∈ P ′, are identified and so are their
corresponding states q, q′ ∈ Qi. If v′ is vertex ζ, then q′ is the unknown-future
state qζ . Then, a transition on event σ from q to q′ is created in Ui.

Further on, the building procedure continues recursively if v′ ∈ V i, using v′ as
the new start vertex in the recursive call. The maximum depth up to which a
vertex v is recursively explored by the recursiveBuild procedure is m.

BUPT

4.4. MODEL BUILDING 79

Precise model building algorithm

The algorithm for building a precise model for black box component Ci, using
trace tree Ti, is described below. When a precise model is being built, we assume
that the maximum number of executions hasn’t yet been reached, and so the
black box Ci can still be explored, if necessary.

Algorithm 6 : Auxiliary procedures
1: procedure pruneInfeasUnctrl(Ti)
2: for all v ∈ V i do
3: for all σ ∈ Σi

! do
4: if 6 ∃ξi(v, σ) ∧ ν(v) ≥ θ then
5: ξi(v, σ) = ε
6:
7: procedure consistCheck(Ti, Pi)
8: for all P ∈ Pi do
9: for all v ∈ P do
10: for all v′ ∈ P s.t. v 6= v′ do
11: L = L√(v) \ L√(v′)
12: L′ = L√(v′) \ L√(v)
13: if ∃t ∈ L.t = uσw ∧ u ∈ L√(v′) ∧ σ ∈ Σi

? then
14: s = accessTrace(v′)
15: mismatch = mismatch ∨ ¬test(st, Ci)
16: if ∃t ∈ L′.t = uσw ∧ u ∈ L√(v) ∧ σ ∈ Σi

? then
17: s = accessTrace(v)
18: mismatch = mismatch ∨ ¬test(st, Ci)

Algorithm 7 : Precise model building
1: procedure preciseBuild(Ui, Ti)
2: repeat
3: mismatch = false
4: pruneInfeasUnctrl(Ti)
5: Pi =partition(Ti)
6: consistCheck(Ti, Pi)
7: until ¬mismatch
8: build(Ui, Ti, Pi)

BUPT

80 CHAPTER 4. SAFE MODEL INFERENCE

First, the trace tree Ti is preprocessed in a slightly different way that when build-
ing approximate models. Thus, only infeasible uncontrollable events are pruned
out, by procedure pruneInfeasUnctrl, since it is assumed that the controllable
events have been exhaustively explored up to depth m+ 1.

Then, the vertex set is partitioned by the partition function, and the result-
ing partition set is then checked for consistency by procedure consistCheck,
which may lead to some further testing on black box component Ci if any dif-
ferentiating sequences are found between any two vertices of the same partition
(marked by a value of true for variable mismatch). The procedures pruneIn-
feasUnctrl, partition and consistCheck are repeatedly invoked in this order,
until no new differentiating sequence is found. Only after this phase is com-
pleted, the behavioural model Ui is built for black box Ci by means of the build
procedure.

The partition procedure and the build procedure are similar to the ones used
by the approximate model building algorithm, previously presented, so we don’t
provide further details here with respect to them.

An important role is played by the consistency check procedure consistCheck.
Its role is to verify that all compatible vertices are actually equivalent – since we
aim to obtain a precis model, and so, if a controllable trace can be produced
from a vertex v, this trace can also be obtained from all vertices in the same
compatibility partition.

Therefore, each time that for a pair of vertices v, v′ from the same compatibility
partition P , an observed trace t is found that only belongs to the observed
language L of one of the two vertices, say v, then t has to be also tried from v′.
To do this, the access trace s of v′ is obtained with operation accessTrace, and
the differentiating trace t is concatenated to it. The resulting sequence is used
to test black box Ci, as test(st, Ci). If the test is successful, then no action is
taken. Otherwise, the two vertices v and v′ have been proven as non-equivalent,
and repartitioning of vertex set V i is needed.

To save effort, this repartitioning is only performed after all vertices in partition P
have be analyzed and had their possible incompatibilities tested, and it is done
separately, in the main loop of algorithm 7, after a new pruning of infeasible
uncontrollable transitions.

BUPT

4.5. DISTRIBUTED BEHAVIOUR EXPLORATION 81

4.5 Distributed Behaviour Exploration

4.5.1 Motivation

Exploring the component behaviour in a centralized manner, with all compo-
nents being executed together, is expensive. For a system with n black box
components that is explored at execution in a centralized way, the total length
of a maximum execution trace often exceeds 2mn. A longer execution trace
involves more input events, i.e. forwarding more messages to the component,
and each such input event can have a non-negligible cost. However, if the be-
haviour exploration is localized for each black box component in the system,
the execution traces used for local learning contain at most 2m events, and,
moreover, the n instances of the model inference process work in parallel, thus
resulting in a more efficient learning.

When remote components are considered, inferring models locally corresponds
best to the natural structure of the distributed system. Further on, there are
system specifications which can be met in a decentralized way, by building only
local, instead of centralized controllers. For such systems, this approach is best
suitable, since local model learning leads straightforwardly to adaptor genera-
tion, without the need of knowing behavioural models for remote components.
However, in our approach, only the model learning phase is local so far, and the
controller obtained for the system is still centralized.

4.5.2 Method overview

Let us assume that for each remote component we have a local proactive adaptor,
that monitors and controls only the behaviour of its corresponding component.
This local proactive adaptor intercepts the messages sent by the component
and it broadcasts them over the network. The messages are broadcast in a non-
redundant way, i.e., the local adaptor won’t broadcast the same message twice,
unless it’s necessary. The sent messages are received by other local adaptors,
which can store them and forward them locally, whenever needed to explore the
behaviour of their corresponding local component.

Assume that all n components in the system S are remote components, and each
has its own, local proactive adaptor that observes and controls the component
locally. This results in n local adaptors LMi , i = 0, n− 1. Each local adaptor

BUPT

82 CHAPTER 4. SAFE MODEL INFERENCE

(a) (b)

(c)

Figure 4.8: Learning Setup: 4.8(a) before: components interact unrestricted,
4.8(b) centralized: all interactions take place through the proactive adaptor in
the middle. 4.8(c) localized: each component has its own proactive adaptor,
and interacts with it locally.

BUPT

4.5. DISTRIBUTED BEHAVIOUR EXPLORATION 83

LMi monitors only the local component Ci, and communicates with the other
adaptors by resending the messages sent by Ci and receiving messages sent by
the other components Cj, j 6= i. Also, as soon as component Ci sends a message
msg, adaptor LMi intercepts it and will broadcast it to all adaptors LMj , j 6=
i, whose associated components Ci have the corresponding controllable event
σ = msg? in their alphabet σ ∈ Σi.

The behaviour exploration is performed by the local adaptor on the monitored
and controlled component similarly to the centralized case when all other com-
ponents would be known. This means that the local intelligent adaptor knows
the desired property for the system, and a precise or most general model for each
of the other components, that are remote from its point of view. We define a
most general model for a component Ci as a model that has only one state,
and has self-loop transitions from that state on all events σ ∈ Σi. Thus, the
language described by a most general model is Σi

∗.

The local black box component Ci is associated, as described in section 4.3, to
a trace tree Ti, that contains all runtime observations regarding the monitored
and controlled behaviour of Ci.

The current state of all remote component models and of the system specifi-
cation automaton is continuously updated during runtime, in order to match
the current execution. The trace tree associated with the local black box com-
ponent is augmented with new information each time new runtime behaviour
is observed, i.e. new execution traces are tried, becoming positive or negative
samples, the number of times an access trace is observed reaches the fairness
threshold θ, thus making unobserved uncontrollable events infeasible from its
associated vertex, etc.

Only behaviour relevant to the desired property is explored, and this happens by
means of verification-driven execution for the local black box component, and
by means of a depth-first search in the models of the remote components. In
order to enable controllable, i.e. receive transitions in the local component the
proactive adaptor forwards one or another of the messages received from remote
adaptors. These are actual messages sent at some point during their separate,
individual exploration process by the remote components. Based on how the
real local component reacts to the forwarded messages, the sequence formed as
the current execution trace suffixed by the enabled receive event is classified as
a positive or negative sample, and marked as such in the local trace tree.

Probably the most important difference between the centralized and the dis-

BUPT

84 CHAPTER 4. SAFE MODEL INFERENCE

tributed approach resides in the way components interact during the exploration
process: if in the centralized approach the real components are explored to-
gether, in the distributed case each component is explored individually, together
with only the models corresponding to the other components. These models can
be precise, if the remote component is well-specified, or are assumed as most
general, when the remote component is also a black box. Thus, even if the
remote black box component has its model inferred in the meanwhile, the local
exploration process has no access to the remotely acquired information, using a
most general model instead.

Therefore, while allowing for parallelism in the exploration process, the dis-
tributed method has the disadvantage that the local component might be ex-
plored against execution scenarios that are actually infeasible for the real system,
and thus useless for the composition goal. This can happen because most per-
missive, general models are used for remote black boxes, and exploring these
models by a bounded depth-first search can result in simulated system interac-
tions that would never occur between the real components.

4.5.3 Local Exploration Strategy

The behaviour of each component Ci is locally controlled by a proactive adaptor
LMi. Each such adaptor intercepts the messages sent by the component Ci,
and forwards it messages that were previously emitted by the other components
in the system plant. The adaptors communicate among themselves in the sense
that messages sent by Ci and locally intercepted by its adaptor are forwarded
to the rest of the adaptors LMj, j 6= i.

Let us first assume that we are not dealing with black boxes, that all component
models are known, and denoted asMi. We also denote byM× the asynchronous
product of all component modelsM× = M0×M1× ...×Mn−1. If component Ci

is the local component, then its context Ei is represented by the asynchronous
product Ei = M0 × ... ×Mi−1 ×Mi+1 × ... ×Mn−1, together with the safety
property Φ. Then, we can decompose the product between the plant and the
safety property as the asynchronous product between the safe context behaviour
and the safe component behaviour: M×‖Φ = (Ei‖Φ)× (Mi‖Φ).

In our learning setting, however, we have at least one black box component,
whose model is inferred. Still, the decomposition presented above holds and will
be used in the local model learning solution we present in this section.

BUPT

4.5. DISTRIBUTED BEHAVIOUR EXPLORATION 85

Controlling a Current Execution

In order to describe the process by which a current execution is controlled, we
first assume the case of a component whose model has been provided. However,
in the actual learning setting, this component is a black box and the execution
is controlled with the purpose of exploring its behaviour and learn a model of
this behaviour.

So, let us assume Mi is a known model of a component Ci, which is locally
monitored and controlled by LMi. During an execution the exploration of model
Mi is always matched with the actual execution of locally monitored component
Ci. Also, each model Mj, where j 6= i, describes the behaviour of a remote
component Cj , which is beyond the control of the local proactive adaptor. Thus,
for every remote component Cj only its model Mj can be explored, and this
happens by means of a bounded depth-first search.

Suppose that, while monitoring component Ci, from a state q in Mi an un-
controllable event σ occurs at runtime, i.e. a message sent by the component
Ci is intercepted by the local adaptor LMi. Then, if a transition triggered by
σ exists in the property automaton Φ, from its current state qΦ, automaton
Φ is advanced by that transition, and its new current state becomes δ(qΦ, σ).
Otherwise, if no such transition exists, the property Φ is violated at runtime and
the current execution stops.

As defined in section 4.3, a control point in a modelMi is a state qcp for which the
controllable event set Σi

?(qcp) contains 2 or more receive events: |Σi
?(qcp)| ≥ 2.

This means that in such a state qcp we can choose from at least two possible
execution paths for component Ci.

When the execution reaches a control point qcp, a receive event σ ∈ Σi
?(qcp)

is enabled for execution if from the current state of Φ a transition on σ exists.
The receive event σ is enabled by forwarding its associated expected message to
component Ci. If no such message is available, then modelMi and specification
automaton Φ cannot be advanced, as the current run does not progress.

In this case, the modelled safe environment Ei‖Φ is explored by a bounded
depth-first search phase, that tries to advance property automaton Φ to a state
from which a different set of controllable transitions are allowed in Mi. Then,
we can forward to Ci other messages than we were previously allowed to. If still
no progress is made, then we have reached a deadlock and the current execution
must be reset.

BUPT

86 CHAPTER 4. SAFE MODEL INFERENCE

The execution is forced to end by resetting Ci when either the property Φ is
violated by the local component, or deadlock has been detected or when the
execution trace has reached its maximum allowed length.

Local Black Box Exploration

However, no model Mi is available for the local black box component. Thus,
similarly to section 4.3 we use the property automaton Φ to generate test se-
quences, and we use a trace tree structure Ti, defined at section 4.2.2 to establish
priorities between different sequences, to store positive and negative samples and
to define a termination condition for the learning process.

As in the centralized case, the black box component Ci is associated to a trace
tree Ti. Let us assume the current execution trace is t, and that it has led the
property automaton Φ to a state q. Let t|i be the projection of trace t on the
event set Σi, corresponding to component Ci.

Assume an event σ ∈ Σi occurs and that in property automaton Φ, the transition
on σ from the current state exists and is taken. Then, the proactive adaptor LMi

intercepts the sent message and broadcasts it to the other proactive adaptors in
the learning setting LMj, j 6= i.

After this, the current execution trace becomes tσ. If the projection trace t|iσ
has never been tried at runtime before, it has to be marked as observed in the
tree Ti. Let v = ξi∗(t|i) be the vertex returned by the string transition function
of Ti. If t|iσ hasn’t been observed before, ξi(v, σ) is still undefined. Therefore, a
new vertex v′ has to be added to V i, so that the transition function ξi changes to
ξi(v, σ) = v′, while ξi(v′, σ′) will be undefined for the moment, for all σ′ ∈ Σi.
In rest, the transition function ξi stays the same. Also, the counter function for
v′ becomes ν(v′) = 1, while remaining unchanged in rest.

If, however, t|iσ is a trace already in Ti, and vertex v′ so that v′ = ξi∗(t|iσ)
already exists, then the only thing that changes is the counter function, since
trace t|iσ has been observed once more. Therefore, the result returned by the
counter function for vertex v′ increases with 1: νnew(v′) = νold(v′) + 1.

Let us now assume the current execution trace is t, and that property automaton
Φ is in a current state q, which is also a control point. Also assume that from
q, in Φ, we can choose between controllable events σ and σ′, which are both in
the event set Σi, of component Ci. We now have to decide which of the two

BUPT

4.5. DISTRIBUTED BEHAVIOUR EXPLORATION 87

events to enable in Ci, and in doing so we have three possible cases, as earlier
mentioned in section 4.3:

• none of the traces t|iσ and t|iσ′ has been previously tried: untried(t|iσ)∧
untried(t|iσ′), so we randomly choose which event to enable

• only the local projection trace t|iσ has been previously tried: (positive(t|iσ)∨
negative(t|iσ)) ∧ untried(t|iσ′), so it is event σ′ which is enabled, as we
want to cover as much unexplored behaviour as possible, and in a breadth-
first manner

• both t|iσ and t|iσ′ have already been observed: positive(t|iσ)∧positive(t|iσ′);
we want to explore the behaviour they may lead to in an uniform way, so
we will choose the least beaten path: considering vertices v = ξi∗(t|iσ) and
v′ = ξi∗(t|iσ′), we will enable event σ if ν(v) ≤ ν(v′) and σ′ otherwise.

Let us suppose we find ourselves in the first case, we try to enable event σ, and
component Ci does not accept the forwarded message. We assume that, in this
case, no transition has been taken and Ci hasn’t changed its state. Therefore,
we can continue from that point on by trying to enable event σ′, or other such
controllable events, if their corresponding messages are available. As trace t|iσ
could not be enforced on Ci, this will be marked in Ti by modifying the transition
function from vertex v = ξi∗(t|i), so that, for event σ, it leads towards the empty
vertex: ξi(v, σ) = ε.

If from a control point q in Φ none of the forwarded messages are accepted,
or there are no more such messages available, then local component Ci and
specification automaton Φ cannot be controllably advanced together.

Then, as earlier mentioned, we try to avoid this situation by simulating interac-
tions in the context Ei. The modelled safe environment Ei‖Φ is explored by a
bounded depth-first search phase, that tries to advance property automaton Φ
to some future state from which a different set of controllable events are allowed
for local component Ci. If such a future state is found in the safe context, we
can forward to Ci other messages than we were previously allowed to, and thus
determine a progress in the current execution. If still none of these messages are
available for forwarding, or accepted by the local component, and if also within
a time bound χ no message is sent by Ci, then we have reached a deadlock and
the current run stops.

Assume now that from the current state q of property Φ no transition exists on a
controllable event σ′′, which is also in the event set of Ci, σ′′ ∈ Σi. This means

BUPT

88 CHAPTER 4. SAFE MODEL INFERENCE

that, after any trace t′ with the same projection t|i on Σi as t, we will never
try event σ′′, so it doesn’t matter if Ci can accept t|iσ′′ or not, and testing
this would be useless. Therefore, we can mark trace t|iσ′′ as failed in Ti, or
negative(t|iσ′′) and modify the transition function in the same way as if we had
tried t|iσ′′ unsuccessfully: ξi(ξi∗(t|i), σ′′) = ε.

The local behaviour exploration process ends for the black box component Ci

when either the maximum number γ of executions has been reached, or all the
behaviour of Ci that conforms to Φ has been completely explored at runtime up
to depth m+ 1, i.e. its associated trace tree Ti is complete to depth m+ 1, as
defined in section 4.3.

Finally, an adaptor for the system is computed by using the classic result of
Ramadge and Wonham [67] for controller synthesis in order to obtain a controller
for the system plant, and then deriving the adaptor from this controller.

4.5.4 Distributed Exploration Algorithm

Below we give the algorithm for the distributed behaviour exploration process.
Basically, localizing the inference process represents a specialization of the orig-
inal algorithm presented at section 4.3. When the learning process is local,
instead of global, only one black box component is considered and interacted
with, while the interaction with the other components is simulated by a bounded
model checking phase performed on their models.

In order for the local proactive adaptor to interact with, and control the black
box component by message forwarding, a set of available messages is considered.
This set of messages contains the messages received by the local adaptor from
the rest of the local adaptors, that explore the behaviour of the other compo-
nents in the system. So, basically, the messages used locally by the proactive
adaptor, to enable controllable transitions in its corresponding component, are
messages sent by the other remote components, intercepted by their local proac-
tive adaptors, and the forwarded .

The localStep procedure describes a local behaviour exploration step. The local
adaptor selects those available messages that could trigger correct transitions.
By correct transitions we understand transitions that conform to the desired
temporal property Φ.

BUPT

4.5. DISTRIBUTED BEHAVIOUR EXPLORATION 89

Algorithm 8 : Local controllable step
1: procedure localStep(Ci) {control local step}
2: v = nodeAfterTrace(Ti, ti) {current vertex in Ti}
3: toTry = availableMoves(v, i) ∩ correctMoves(qΦ,Φ)
4: progress = false
5: repeat
6: leastTaken = {σ′ ∈ toTry |minim(ν(ξi∗(tiσ′)))}
7: σ = pickRandom(leastTaken)
8: enable(σ,Ci) {try message}
9: if acki then
10: advance(Φ, σ) {advance property}
11: putTrace(Ti, tσ) {positive sample}
12: ti = tiσ
13: progress = true
14: else
15: cutTrace(Ti, tiσ) {negative sample}
16: until progress

The local proactive adaptor tries to forward one of these messages to Ci and
observes how the component Ci reacts. If the message is accepted (acki), the the
property automaton is advanced (by advance), the receive event is concatenated
to the current execution trace and progress is marked. The current execution
trace is then kept as a positive sample in the trace tree (by putTrace). However,
if the message is not accepted, the potential trace is marked as a negative sample
(by cutTrace), and another available message is forwarded, etc., until we have
tried on all the messages selected in the toTry set.

However, the black box component is not explored in isolation, but within the
context represented by the other components and their behaviour. Since the
behaviour exploration is local, the context is here simulated by bounded model
checking steps taken on the component models. Procedure localStepWith-
SimulatedMoves describes how local steps taken at runtime by the real black
box component are integrated with simulated steps on the other component
models. It is invoked when a simple local step could not be performed. In this
case, we try to advance the property together with the remote component mod-
els, to see whether from its next state the property will allow us to forward other
messages to the local black box. Before each such step, we store the current
state of the system, by saveGlobalState. Then, we choose one of the possible

BUPT

90 CHAPTER 4. SAFE MODEL INFERENCE

Algorithm 9 : Exploring real and simulated behaviour together
1: procedure localStepWithSimulatedMoves(depth) {explore models}
2: if depth > maxDepth then
3: return
4:
5: for all j = 0, n− 1 do
6: toTry = (availableMsg(j) ∪ sentMsgBy(j)) ∩ correctMoves(Uj,Φ)
7: for all σ = msg? ∈ Σi

?(q) ∧ msg ∈ toTry do
8: saveGlobalState
9: advanceSynch(Uj,Φ, σ) {advance property and model}
10: localStep(Ci)
11: if progress then
12: return
13: else
14: localStepWithSimulatedMoves(depth+ 1)
15: if progress then
16: return
17: else
18: restoreSavedGlobalState

next steps to be taken by a local model Uj of a remote component Cj, and we ad-
vance Uj and the property automaton Φ together by advanceSynch(Uj,Φ, σ).
After this, we try again to advance the black box, by invoking localStep. If
we succeed, the procedure returns. Otherwise we perform a recursive call and
continue the simulated execution trace until we either succeed to advance the
black box, of we have reached the maximum path depth. If the recursive call
returns and no progress was made, the previous global state is restored, and we
then try to continue by advancing the next model.

Procedure remoteReceive describes how incoming messages from other com-
ponents are received (asynchronously, in an event-based way) and also stored, if
they are needed to explore the local component.

Incoming messages from the local component are asynchronously intercepted by
procedure localReceive – almost similar to the onReceive procedure described
at subsection 4.3.1. The intercepted message is stored for later use – by oper-
ation store. Then, uncontrollable event σ is appended to trace ti, putTrace
adds observed trace tiσ as a positive sample in the trace tree Ti. If the the prop-
erty model can accept the observed send event σ progress is marked and the

BUPT

4.5. DISTRIBUTED BEHAVIOUR EXPLORATION 91

Algorithm 10 Handling asynchronous receives
1: procedure remoteReceive(σ, i) {remote message receive listener}
2: msg = σ.message
3: if σ ∈ Σi then
4: store(msg)
5:
6: procedure localReceive(σ, i) {local message receive listener}
7: msg = σ.message
8: store(msg)
9: putTrace(Ti, tσ) {positive sample}
10: ti = tiσ
11: if advance(Φ, σ) then
12: progress = true
13: else
14: stopCurrentExecution = true
15: broadcast(msg)

exploration continues. If not, then we have reached an uncontrollable erroneous
transition, and therefore the current execution will end. Received messages are
forwarded, by operation broadcast, to the other remote proactive adaptors in
the system.

Procedure execution describes how a local execution for behaviour exploration
takes place. The local component is assumed to be component Ci. In the be-
ginning, Ci is reset to its initial state, together with the property automaton
and all the models. Then, the following actions are repeated until either the
property is violated at runtime by means of an uncontrollable event or the max-
imum number of execution steps is reached. An attempt to advance the local
component is made by invoking first the localStep procedure. If it fails, local-
StepWithSimulatedMoves is invoked. When no progress is made whatsoever,
the execution stops.

Finally, the behaviour exploration main for local exploration goes as follows.
The local trace tree Ti is initialized. The models for the components are either
precise, if known, or are assumed to be most general otherwise. Then, the
execution procedure is repeatedly invoked, until either the trace tree Ti is
completely explored up to depth m+ 1, or the maximum number of executions
is reached and the learning process stops.

BUPT

92 CHAPTER 4. SAFE MODEL INFERENCE

Algorithm 11 Local controllable execution
1: procedure execution {control an execution}
2: reset Ci
3: reset Φ
4: for all j = 0, n− 1 do
5: reset Uj
6:
7: count = 0
8: repeat
9: progress = false
10: localStep(Ci)
11: if not(progress) then
12: localStepWithSimulatedMoves(0)
13: else
14: count = count+ 1
15: until ¬progress ∨ stopCurrentExecution)
16:
17: {behaviour exploration main}
18: initialize(Ti)
19: execNr = 0
20: maxExLength = 2m
21: repeat
22: execution(maxExLength)
23: execNr = execNr + 1
24: until (execNr ≥ maxExecNr) ∨ (∀i ≤ n− 1. completelyExplored(Ti))

BUPT

4.6. EXPLORATION OPTIMIZATION 93

4.6 Exploration Optimization

4.6.1 The Issue of Cycle Identification

If the maximum allowed number of executions γ of is reached before having all
black box components in the system completely explored, the resulting mod-
els will represent a less precise approximation. We have already mentioned the
importance of identifying in the unknown component behaviour cycles that rep-
resent projections, on the component event set, of the cycles in the specification
automaton: it makes these cyclic scenarios usable as specified in the composed
system. Otherwise, if a cyclic scenario is not identified as such, resetting the sys-
tem, although undesirable, cannot be avoided when the user aims at repeating
the same scenario several times.

Therefore, when learning behavioural models for the black boxes in the system,
exploring the cycles in the specification automaton should be prioritized over the
rest of all possible behaviours.

Further on, we shall see how this prioritization takes place. Let us denote the
simple cycles in the specification Φ by sc0, sc1, etc., and let scj|i be the cycle
resulted from the projection of scj on the event set Σi. For a cycle scj in Φ to
also exist in the system plant, it is necessary for all its projection cycles scj|i to be
found in the behaviour of their corresponding black box components Ci.

Let us now assume that for every component Ci we unroll the projection cycles
scj|i of the cycles in the specification automaton Φ, and we unroll each of these
cycles, separately, as many times as needed to obtain the shortest possible trace
of at least 2m events. We denote the trace of at least 2m events, obtained
from unrolling projection cycle scj|i as tc

j
i . Also, since a loop can usually be

unrolled in more than one way, depending on the starting point, we denote a
trace containing only one unrolling of projection cycle scj|i as c

j
|i[q], where q is

the state in Φ starting from which the cycle is unrolled. In order to obtain trace
tcji , the cycle is unrolled, before projection, from its entry state qs0 in Φ that is
closest to the initial state q0 of Φ.

One special situation is the case when two or more cycles of the specification
automaton Φ have a join point, i.e. a common state qjp. Establishing whether
the system can pass from one cycle to another during execution is important,
since it can ensure alternating various usage scenarios during the same execution,
without the need of resetting the system.

BUPT

94 CHAPTER 4. SAFE MODEL INFERENCE

Identifying such a join point requires more than individually identifying the cy-
cles. Assuming two cycles, sc0

|i and sc1
|i, the traces that have to be explored to

determine whether they have a join point are as follows. For simplicity, cj|i[qs0]
will be denoted as cj|i, and c

j
|i[qjp], the projected unrolling of the cycle scj|i from

the join point qjp, is marked as c′j|i . The junction trace between cj|i and c
′j
|i , a

subsequence of cj|i is denoted as jtji , and it represents the portion of the unrolling
trace of cycle scj|i that goes from state qs0 to state qjp. Such a junction trace
is important, as the execution always traverses this subsequence when passing
from the entry point of the cycle to the join point, from where another cycle
can be entered.

In order to identify a join point of the two projection cycles sc0
|i and sc1

|i, we have
to explore those traces that define first the two cycles, and then their connection,
the join point. Thus, the following traces need to be explored at runtime:

• traces tc0
i and tc1

i must be enabled at runtime in order to first explore the
two cycles sc0

|i and sc1
|i

• all traces of the form (c0
|i)kjt0i (c′1|i)k

′ , must be explored at runtime, which
implies exploring the repetition of c0

|i for k times, followed by the repetition

of c1
|i for k′ times. Here, k varies increasingly from 1 to 2m

|c0
|i|
, while k′

decreases from 2m
|c′1|i |

, to 1, so the resulting trace is the shortest possible of

this form that has a length of at least 2m events. The last condition can be
expressed as k|c0

|i|+ |jt0i |+k′|c′1|i | ≥ 2m, but (k−1)|c0
|i|+ |jt0i |+k′|c′1|i | <

2m and k|c0
|i| + |jt0i | + (k′ − 1)|c′1|i | < 2m – so if one of the cycles is

unrolled one less time, the length of the resulting trace is less than 2m.

• also, all traces of the form (c1
|i)k

′
jt1i (c′0|i)k have to be explored, which

means exploring the repetition of c1
|i for k′ times, and the repetition of c′0|i

for k times. Here it is k′ that varies increasingly from 1 to 2m
|c1
|i|
, while k

decreases from 2m
|c′0|i |

, to 1. The resulting trace is the shortest possible of

this form that has at least 2m events, so the following condition is satisfied:
k|c′0|i | + |jt1i | + k′|c1

|i| ≥ 2m, but (k − 1)|c′0|i | + |jt1i | + k′|c1
|i| < 2m and

k|c′0|i |+ |jt1i |+ (k′ − 1)|c1
|i| < 2m – just as in the previous case, unrolling

any of the cycles one less time makes the trace shorter than 2m.

BUPT

4.6. EXPLORATION OPTIMIZATION 95

Now, let us assume we have p cycles, that share the same join point – the
general case. In this case, we will take each pair of different cycle projections
scl|i and sch|i (where l 6= h and l, h = 0, p− 1) separately and treat them like
we did with cycle projections sc0

|i and sc1
|i presented above. Thus, for each such

pair of projection cycles scl|i and sch|i , the traces considered for exploration are
tcli, tchi and all traces of the form (cl|i)kjtli(c′h|i)k

′ and (ch|i)k
′
jthi (c′l|i)k, where k

and k′ are both varying from 1 to 2m
|c′l|i|

, respectively 2m
|c′h|i |

, in the same way as

described above.

4.6.2 Cycle-Oriented Behaviour Exploration

All event sequences considered necessary for cycle-based behaviour exploration
are kept in a dedicated trace tree TCi, one for each black box component Ci.
This implies all unrolled cycle traces tcji for component Ci, representing the un-
rolled projection cycles for all cycles in Φ, and also includes the particular unrolled
traces needed to properly identify those cycles that have a common join point.
Further on, we use the trace tree TCi to decide on which controllable event to
enable for black box component Ci, when guiding a current execution.

Let the transition function for TCi be denoted as κi : V Ci×Σi → V Ci, where
V Ci is the set of vertices for trace tree TCi. The extension of the transition
function to strings of events will then be denoted as κi∗ : Σi

∗ → V Ci.

Let us see now how the exploration process takes place when the exploration
process is optimized for cycle discovery. This means that its priority is to first
explore the cycles in the specification automaton Φ. As before, assume the
current execution trace is denoted by t, with t|i the projection of trace t on the
event set Σi, corresponding to component Ci.

Assume also that t|i, the projection on Σi of the current execution trace, exists
in the TCi as a prefix of an unrolled cycle projection tcji , and so κi∗(t|i) = v. This
means that we are currently exploring one of the relevant cycles of specification
Φ, as it is projected on the alphabet of component Ci. As we want the ongoing
execution to be meaningful for our purpose – identifying the relevant cycles – we
will choose to enable a controllable event that either keeps the execution on the
current cycle, or exploits a join point to switch to another relevant cycle.

Then, suppose that the transition function of TCi, κi(v, σ), is defined only for

BUPT

96 CHAPTER 4. SAFE MODEL INFERENCE

a?

!b

!b

c?

a?

a?

c?

!b

c?

!b

(a)

a?

!b

!b

!b

!b a?

c? a? !b

!b

c?

a? !b a?

a? !b c? a?

(b)

Figure 4.9: A safety property – 4.9(a), and the dedicated trace tree TC that
contains its relevant cycles – 4.9(b)

controllable event σ′ ∈ Σi. This means that the only way to keep the current
execution on a relevant cycle is to enable controllable event σ′. Then, σ′ will
be the next event enabled in component Ci, if possible, as continuing with t|iσ′
in Ci is the key to continue exploring the current projection cycle in Ci. If for
several controllable events σ′ ∈ Σi, the transition function κi(v, σ′) is defined,
this means that there are several possibilities to guide the current execution on a
relevant cycle. In this case, these events will be enabled on a least-explored first
basis. If, however, the set of controllable events, for which transition function
κi(v, σ′) is defined, is currently empty, then the current execution will continue
by enabling any controllable event allowed by Φ, as usually done during the
unoptimized behavioural exploration.

For example, assume we have one black box component, on which we want
to impose the desired safety property in figure 4.9(a). The relevant cycles in
the property automaton are kept in the tree in figure 4.9(b). Then, assume we
are during the exploration process of the black box component, and that the
current execution trace is b!c?. The controllable choices allowed by the property
automaton, at this point, are to enable either a? or c? for execution, and in
an unoptimized exploration process we would choose the event that has been
enabled the least so far. However, in the cycle-optimized exploration process,

BUPT

4.7. ADAPTOR SYNTHESIS 97

the chosen option is the one that allows us to explore a relevent cycle, so event
a?, the one that follows the prefix b!c? in the tree at figure 4.9(b), is the one to
be enabled.

The cycle-oriented exploration process continues for component Ci until for each
prefix trace tc′ ∈ TCi such that |tc′| ≤ m + 1, if trace tc′ is an access trace
for a vertex v′ in Ti, then vertex v′ is completely explored. This condition is
important, as it allows for distinct vertices with a difference in depth of at most
m to be merged into the same state (thus obtaining cycles) when building the
learned model.

∀tc′ ∈ TCi s.t. ξi∗(tc′) = v′ ∧ v′ ∈ V i \ ε→ complete(v′)

After the condition above is met for a component Ci, the behavioural exploration
of Ci will continue as described in the previous section, by uniformly exploring
all potential execution traces allowed by safety property Φ, until component Ci
is completely explored to depth m+ 1.

4.7 Adaptor synthesis

The final aim of the technique is to correctly compose the system S from the
components Ci, i ≤ n − 1. This takes place by computing a centralized adap-
tor for the system S. No matter of the learning setting used – centralized,
distributed, or even individual – the solution we have adopted for system com-
position relies on centralized adaptation, as it is a simple and general approach,
applying to all safety properties.

The centralized adaptor for the system is computed starting from a centralized
controller Ctrl that enforces the property Φ over the system plant. The con-
troller Ctrl is obtained using the elements of control theory described in section
2.5, and specifically the fixpoint procedure for controller synthesis.

Consider a learned model of a component Ci to be denoted by Ui. Also, let
U× be the asynchronous product of all the learned models: U× = U0 × U1 ×
... × Un−1. Thus, U× models the system plant, on which the specification
Φ is to be enforced. The computation of the controller, noted by Ctrl, for
the specification automaton Φ, relies on the classical result of Ramadge and
Wonham: Ctrl = supcon(U×,Φ), where supcon, described in [67], and also

BUPT

98 CHAPTER 4. SAFE MODEL INFERENCE

detailed in section 2.5, is the mentioned fixpoint procedure. All behaviours of the
plant U× that do not violate the safety property Φ are allowed by the computed
controller Ctrl.

Finally, adaptor A is obtained from the computed controller Ctrl by mirroring
its event set. This means that each transition in Ctrl triggered by a message
receive event σ = msg? will be triggered in A by its corresponding message
send event σ′ = msg!, and conversely, each transition triggered in Ctrl by a
message send event will become in A a transition on the corresponding message
receive event.

This mirroring is necessary due to the subtle difference between an adaptor and
a generic controller: the adaptor manifests its control on the system plant by
forwarding or consuming messages. Thus, an adaptor enables a controllable,
message receive event by forwarding the expected message, which triggers the
transition associated with that receive event in the receiving component. For-
warding specifically means that the adaptor has to send the expected message
to the component, so in the adaptor FSM, the transition to be taken will be
labeled by a message send event. Also, the adaptor has to react to any uncon-
trollable event in the plant, i.e. to any message send event, by receiving the
message sent by the component, so in the adaptor FSM, the transition to be
taken in this case will be labeled by a message receive event. By contrast, a
generic controller, as computed by the Supremica tool [59], has transitions on
exactly the same uncontrollable events that occur in the plant, and on the same
controllable events to be enabled in the plant. This happens because the generic
controller regards controllable and uncontrollable events not as message receive,
respectively message send events, but in a more general sense.

BUPT

4.8. PROOFS 99

4.8 Proofs

In this section, we prove several properties of our algorithm, and of the learned
models, properties that are vital for the validity of our approach.

We start by proving that the assumed bound m, the length of longest acyclic
path in the model, is a valid bound for path exploration.

Then, we prove that building the model from the trace tree associated with
the black box component is permissive with respect to the observed behaviour
of the black box. We also prove that the models learned by our algorithm are
safe approximations of the real component behaviour, and therefore the final
obtained adaptor is also safe for the real system.

Finally, we prove that, assuming we can run it for an unlimited time, the model
learning algorithm eventually reaches its termination condition.

4.8.1 State reachability

Theorem 1. In any finite state machine M , any state can be reached from the
initial state by a path of at most m transitions, where m is the length of the
longest acyclic path in the model.

∀q ∈ QM ,∃ ∈ ΣM
∗ . (δM∗ (t) = q)→ |t| ≤ m (4.1)

Proof. Assume that for a finite state machine M , a state q exists so that q
cannot be reached by a path of m transitions or less.

∃q ∈ QM ,∀t ∈ ΣM
∗ . (δM∗ (t) = q)→ |t| > m (4.2)

Case 1.1. Assume t s.t. δM∗ (t) = q contains no cycles.

Then, from 4.2:

t acyclic ∧ |t| > m → m is not the longest acyclic path → contradiction

Case 1.2. Assume t = ucpw, where c is a cycle in the model, while u and w
are acyclic sequences.

BUPT

100 CHAPTER 4. SAFE MODEL INFERENCE

Then δM∗ (t) = q → δM∗ (uw) = q, where sequence uw is acyclic.

|uw| ≤ m ∧ 4.2 → contradiction

|uw| > m→ same as case 1.1

Therefore, assumption 4.2 is false and any state in the model is reachable by a
trace of at most m transitions.

4.8.2 Permissiveness

Definition 1. A finite state machine M over a set of events Σ is permissive
with respect to a set ES of sequences over events in Σ, ES ⊆ Σ∗, when M
accepts all sequences in ES.
Theorem 2. The deterministic prefix-closed model U , built from trace tree T
by the model building algorithm, is permissive with respect to the set of observed
event sequences, i.e. accepts any observed sequence.

∀t ∈ Σ∗. positive(t)→ t ∈ L(U) (4.3)

Proof. Suppose 4.3 is false and the learned model is not permissive with respect
to the observed sequences. Then:

∃t ∈ Σ∗. positive(t) ∧ t 6∈ L(U) (4.4)

Without loss of generality, assume t = uw, with both u,w ∈ Σ∗, and u ∈ L(U).

Assume also that after sequence u, model U is in state q: q = δ∗(u).

Also, in trace tree T , sequence u is the access trace of a unique vertex v:
v = ξ∗(u).

(positive(t) ∧ t = uw)→ ξ∗(uw) ∈ V (4.5)

From 4.5 we have

(positive(t) ∧ t = uw)→ w ∈ L√(v) (4.6)

BUPT

4.8. PROOFS 101

Now, from q = δ∗(u) in built model U and v = ξ∗(u) in trace tree T , and due
to the fact that both structures U and T are deterministic, we have q � P ,
where P is a partition of vertex set V and v ∈ P .

Denoting L(U, q) as the language of state q in the built model U , 4.4 implies
that

∃t ∈ Σ∗. positive(t) ∧ t = uw ∧ q = δ∗(u) ∧ w 6∈ L(U, q) (4.7)

Assuming that, for states q, q′ ∈ Q and partitions P, P ′ over vertex set V we
have q � P and q′ � P , the model building algorithm ensures that

∀v ∈ P, ∀σ ∈ Σ. ξ(v, σ) = v′ ∧ v′ ∈ P ′ → δ(q, σ) = q′ (4.8)

By transitive closure, this means that for any state q ∈ Q, its language is the
reunion of observed languages for all vertices v in partition P , where q � P :

∀q ∈ Q. q � P → L(U, q) =
⋃
∀v∈P
L√(v) (4.9)

But from 4.6 and 4.7 we have that ∃w ∈ Σ∗ s.t. w ∈ L√(v) and w 6∈ L(U, q),
where q � P and v ∈ P . Therefore, contradiction with 4.9.

Thus, the built model U is permissive with respect to the set of all observed
event sequences.

4.8.3 Safety

Definition 2. A controller Ctrl that enforces a temporal property Φ over a
plant P is safe if all possible behaviours of controlled plant Ctrl‖P satisfy Φ:

L(Ctrl‖P) ⊆ L(Φ) (4.10)

Definition 3. An adaptor A is safe for a system S and a property Φ iff its
corresponding controller Ctrl is safe for the plant P represented by S, and the
temporal property Φ.
Theorem 3. Adaptor A, obtained for learned models Ui and property Φ, is safe.

BUPT

102 CHAPTER 4. SAFE MODEL INFERENCE

Proof. If precise models Ui were learned, the proof is trivial, so we only treat
below the case of learning approximate models Ui.

Suppose that adaptorA is not safe. Then, the controller Ctrl over plant P = U×
is also not safe. Thus:

∃t ∈ Σ∗. t ∈ L(Ctrl‖R×) ∧ t 6∈ L(Φ‖R×) −→ t ∈ L(R×) \ L(Φ) (4.11)

Ctrl = supcon(U×,Φ) −→ L(Ctrl||U×) ⊆ L(Φ) (4.12)

(4.11) ∧ (4.12) −→ t ∈ L(Ctrl‖(R× \ U×)) (4.13)

Let t = uσv, where u ∈ L(Ctrl||U×) is a correct prefix, σ is the error-inducing
event, i.e. the first event of an event suffix unspecified by Φ, and v represents
the rest of the trace. Let σ ∈ Σi. Then:

(4.13) ∧ u ∈ L(Ctrl||U×) −→ uσ 6∈ L(Ctrl‖U×) (4.14)

Case 3.1. Assume σ ∈ Σi
?.

But this means σ controllable. Then σ ∈ Σi
? ∧ uσ 6∈ L(Φ) → uσ 6∈ L(Ctrl) →

uσ 6∈ L(Ctrl‖R×) → contradiction.
Case 3.2. Assume σ ∈ Σi

! .

(4.14) −→ σ ∈ Σi
! ∧ u|iσ 6∈ L(Ui) (4.15)

Each state qj ∈ Qi corresponds to a finite set of vertices Pj = {vk0 , vk1 , ..., vkj
},

resulted from compatibility partitioning over the vertex set V i of trace tree Ti.

If σ 6∈ Σi(q), and q corresponds to the compatibility partition P , q � P this
means that:

σ 6∈ Σi(q) ∧ q � P → ∀v ∈ P. ξi(v, σ) = ε (4.16)

Thus, 4.16 implies that the transition on σ was incorrectly removed from each
and every vertex v ∈ P .

Then, from 4.16 we have ξi(v, σ) = ε,∀v ∈ P .

BUPT

4.8. PROOFS 103

Since δi∗(u|i) = q and q � P , there exists a vertex v′ ∈ P s.t. v′ = ξi∗(u|i).

∃v′ ∈ P, v′ = ξi∗(u|i) ∧ ξi(v′, σ) = ε (4.17)

Since Ci is fair by bound θ:

σ ∈ Σi
!(q) ∧ ν(ξi∗(u|i)) ≥ θ ∧ ¬obs(u|iσ) −→ ξi∗(u|iσ) = ε (4.18)

Also, from the model building phase:

σ ∈ Σi
!(q) ∧ ν(ξi∗(u|i)) < θ ∧ ¬obs(u|iσ) −→ ξi∗(u|iσ) = ζ (4.19)

Thus, from 4.17, 4.18 and 4.19, it results that

∃v′ ∈ P, v′ = ξi∗(u|i) ∧ ξi(v′, σ) = ε→ ν(v′) ≥ θ ∧ ¬obs(u|iσ)

But, if ν(u|i) ≥ θ ∧ ¬obs(u|iσ), then u|iσ was dismissed as infeasible based on
the fairness assumption.

Since u|iσ was observed at runtime, the fairness assumption is false → contra-
diction.

From Case 3.1 and Case 3.2, we have that the feasible partial trace u|iσ ∈ Σi
∗,

cannot be incorrectly cut out from trace tree Ti, and thus incorrectly left out
from learned model Ui. Therefore, the obtained system controller Ctrl is safe,
and, thus also adaptor A is safe.

4.8.4 Termination

Theorem 4. The learning process eventually terminates.

Proof. If a bounded number of executions is considered and approximate models
are learned, the proof is trivial.

Suppose we try to learn precise models. The learning ends when the trace tree
Ti is complete up to depth m + 1, which is achieved in at most θm+1 queries,
due to the fairness condition. The consistency check ends, worst case, when
trace tree Ti is complete up to depth 2m, in at most θ2m queries. Therefore,
the algorithm always terminates.

BUPT

104 CHAPTER 4. SAFE MODEL INFERENCE

4.9 Complexity Limitations. Discussion

4.9.1 Asynchronous Angluin

The total number of queries needed by the Angluin algorithm to learn a deter-
ministic finite automaton [4] is:

O(|Σ|ln2)

where:

• Σ is a set of input-enabled (and thus controllable) events

• n is the number of states of the minimum DFA

• l is the maximum length of a counterexample

To the membership queries above, one has to further add the potential cost of
equivalence queries needed. When learning the behaviour of a black box compo-
nent the ideal equivalence oracle assumed by the Angluin algorithm [4] doesn’t
exist. Instead, it is usually implemented by the Vasilevskii-Chow conformance
testing algorithm [79], which has a complexity of

O(l2n|Σ|n−l+1)

This leads to a learning complexity of

O(|Σ|ln2 + l2n|Σ|n−l+1)

Now, assume that the event set Σ contains both controllable and uncontrollable
events: Σ = Σ? ∪ Σ!, and that we have a fairness bound θ, as assumed above,
so that if a state q is reached for at least θ times, all uncontrollable events σ
that can occur from q were observed at least once.

If we want to try a membership query for a trace t, that contains η uncontrollable
events, we will have to query for t up to θη times. Since 0 ≤ η ≤ l, the maximum
number of queries needed to try a certain trace t becomes θl.

Therefore, the total number of membership queries needed by the Angluin al-
gorithm to learn a complete model for an asynchronous black box is:

BUPT

4.9. COMPLEXITY LIMITATIONS. DISCUSSION 105

O(|Σ|ln2θl + l2n|Σ|n−l+1θl)

It is interesting to notice here that repeatedly asking a specific membership query
can provide positive answers to other, possibly future queries. This can lead to
important savings when all observed queries are kept in memory, thus some
queries can be answered instantaneously. However, obtaining negative answers
to a future query is more complicated. The emphasis put on the number of
queries is justified by the fact that runtime queries are usually the most expensive
part of the learning process [55].

It is important to note here that, due to the fact that the Angluin algorithm
does not infer safe approximations of the real black box behaviour, the learned
model has to be complete before we can safely use it to compose a system. This
is not always feasible.

4.9.2 BASYL

Our usual exploration method is breadth-first, and, considering a most permissive
property, it needs at most |Σ?| attempts from the same vertex, in order to try
all controllable events. Let us introduce α and β so that:

α = min(θ2 , |Σ?|)

β = θ

2 + max(θ2 + |Σ?|)

Thus, β is the upper bound on the number of times a vertex v in the trace
tree has to be reached in order to be completely explored, and θ is the fairness
bound.

We explore the behaviour of the black box using execution traces of length 2m,
where m is the maximum length of an acyclic event sequence in the real model
of the black box.

Let us note by nt the number of traces needed by BASYL to obtain a precise
model. First, the trace tree will have to be completely explored up to depthm+1,
which will require at least αm+1 and at most βm+1 traces. Then, exploring also

BUPT

106 CHAPTER 4. SAFE MODEL INFERENCE

the found differentiating traces, as earlier described, can lead to a final upper
bound of traces needed to obtain a precise model equal to β2m.

We can also derive a lower bound on nt, assuming no differentiating traces were
found, as αm+1. Thus, in the end we have:

αm+1 ≤ nt ≤ β2m

Considering the number of events ne required by the learning process, the fol-
lowing bounds result:

mαm+1 ≤ ne ≤ 2mβ2m

Let us now consider the operations during the equivalence partitioning phase of
the model building process. Vertices of depth at most m+ 1 are examined and
compared each to each for the equivalence check. From each vertex, at most Σ
valid branches emerge, thus the total number of vertices on a depth less than,

or equal to m+ 1 is |Σ|
m+1 − 1
|Σ| − 1 .

Thus, the number of comparations performed is 1
2

(
|Σ|m+1 − 1
|Σ| − 1

)2

.

In the equivalence check phase, the traces from each vertex are considered on a
depth of at most m, this leading to a maximum of |Σ|m traces explored for one
vertex. Finally, this leads to a total number of operations of at most

1
2

(
|Σ|m+1 − 1
|Σ| − 1

)2

|Σ|m

Once the equivalence partitions are established, building the automaton requires
a traversal of the tree up to a depth of m, thus the final phase requires a number
of |Σ|m operations.

Therefore, the complexity of the model building process is

O(1
2

(
|Σ|m+1 − 1
|Σ| − 1

)2

|Σ|m+|Σ|m) = O(
(
|Σ|m+1 − 1
|Σ| − 1

)2

|Σ|m) = O(|Σ|3m)

BUPT

4.9. COMPLEXITY LIMITATIONS. DISCUSSION 107

4.9.3 Discussion

In the case of learning complete models, an upper bound on the number of
queries required to learn a partially controllable black box using the Angluin
algorithm is |Σ|ln2θl + l2n|Σ|n−l+1θl, while for BASYL is β2m. Assuming that
l = m, the two methods have similar complexities for n ≥ 2m – when the
maximum number of states considered is at least twice the assumed size of
the longest acyclic path in the model. Otherwise, if n < 2m, thus for "deep"
behavioural models, the considered adaptation of the Angluin algorithm is more
efficient.

If, however, because of a limited amount of available queries, the Angluin algo-
rithm fails to provide a confirmed conjecture, its latest model hypothesis might
not be a safe approximation. This is easily provable since, in the absence of
a successful equivalence query, an uncontrollable counterexample is an undis-
missable possibility. The BASYL approach, however, is specifically designed to
employ any available number of queries and to obtain a safe approximation of
the real black box behaviour.

When a safety property Φ is considered, the learning is further reduced to traces
allowed by Φ, so in this case the behavioural model learned is not the real model
R of the black box behaviour, but R‖Φ, its synchronous product with the safety
property. We did not, however, considered this case separately while discussing
the complexity of the learning process, since learning R‖Φ is similar to learning
R, with eventual speed-ups resulting from specific properties of R‖Φ.

BUPT

108 CHAPTER 4. SAFE MODEL INFERENCE

BUPT

Chapter 5

Experimental Results

5.1 Tool Support: BASYL

In order to validate the theoretical approach described in this work, we have
implemented our proactive model inference solution as the BASYL (Black-box
ASYnchronous Learning) prototype. All performed experiments were run on an
Acer Aspire 3820TG with a 2.26 GHz Intel Core i5 430M processor, a 4 GB
RAM memory and a 3 MB cache.

BASYL is entirely written in Java, under Java 2 Standard Edition 6.0, and was
tested under Linux, Fedora Core 16 distribution. It consists of a total of 149
classes and more than 26000 lines of code. It contains a monitoring component,
that observes the events occurring at runtime and advances the models accord-
ingly, a decision logic component that chooses the next controllable transition
to be enabled (with special extensions for cycle-oriented exploration and run-
time consistency check), specific learning coordinator components for both the
centralized and the distributed approach, implementations of the abstract data
structures described in this work (trace trees, finite state machines, etc.).

For each black box to be learned, an instance of the monitor is created, that in
turn creates an instance of the needed trace tree, and, if necessary, an instance of
the cycle trace tree. If the learning is centralized, one inference coordinator and
one decision logic component are instantiated for the whole process, otherwise,
if the learning is distributed, several coordinators and decision components are
created, one for each black box in the system. The results of the inference
process are provided as a list of finite state machine objects, that are printed to

BUPT

110 CHAPTER 5. EXPERIMENTAL RESULTS

file in the XML format used by Supremica [59].

In order to link the high abstraction level at which BASYL works to a concrete
technology, technology specific drivers are needed – for some of the case studies
presented below, we implemented such a test driver for JMS. However, for
simplicity, the results presented in this work only refer to experiments performed
on abstract simulations of real systems, without making an actual use of any
technology specific test drivers.

The basic abstractions used in the implementation of BASYL are:

• AbstractMessage, implemented by MockMessage, JMSMessage: an ob-
ject representing a message sent or received by a component; the mes-
sage is mainly characterized by its name and its index in the system’s
AbstractAlphabet.

• BehaviourModel, implemented by BasicFSM, the latter extended by
FiniteStateMachine and FSMProperty: the finite state machine used
to represent the behaviour of the component.

• TraceTree, implemented by SafeTraceTree and WildTraceTree: the
interface for the trace tree structure containing the runtime observation
traces. The WildTraceTree object is used to mark the mentioned "un-
known future" vertices in a SafeTraceTree object. A SafeTraceTree
entity can be used either to keep the positive and negative observed se-
quences, or as a cycle trace tree, to keep unrolled traces for cyclic scenarios
to be explored.

• AbstractCoordinator, implemented by JMSCoordinator and also by
JMSLocalCoordinator: the actual test driver interface, where entity
JMSCoordinator is the driver for the centralized learning setting, while
the entity JMSLocalCoordinator addresses the distributed one. How-
ever, for learning only simulations of real components, an entity of type
MockCoordinator is used, extended by MockDriver for learning a black
box in isolation, by MockCentralDriver for centralized inference and by
MockLocalDriver for the distributed learning process.

• Monitor, implemented by ConcreteMonitor and ConservativeMonitor:
the monitoring component. ConcreteMonitor monitors a black box, re-
acts when messages sent or received by the black box are intercepted,
respectively acknowledged, and keeps track of the current execution for
its associated black box. ConservativeMonitor does the same, but for

BUPT

5.1. TOOL SUPPORT: BASYL 111

well-specified components.

• ExploreGuide, extended by CycleGuide and ConsistChecker: the
component guiding a current execution for specific purposes. An entity of
type CycleGuide is used to steer the execution towards the exploration of
cyclic scenarios, while the ConsistChecker forces the consistency check
process needed when learning precise models.

During our experiments, when controllers were computed for the considered
systems, in order to ease the complexity burden on the controller generation
process, we have left the input/output buffers out, thus implicitly considering
the case of unbounded buffers. However, this only affects the size of the re-
sulting controller, and does not interfere with the main results – inferring safe
approximations for black box components with uncontrollable events.

When experimenting with the cycle-based exploration, as a scenario-oriented
optimization for model learning, we feed the tool the specified cycles. The
format we use to describe the interesting cycles, and their join points, is specified
and exemplified below.

<event><event>:<event><event>[join point index]<event>

<event>:[join point index]<event><event>

...

A specific send or receive event is described between angle brackets by the name
of its sent/received message, and an exclamation mark for sent messages, or a
question mark for received messages. The beginning of the cycle is specified by
a colon, and the string of events before the colon signify the access trace of the
cycle. If several cycles have one or more common join points, the indexes of
these join points are specified between square brackets.

The list of specified cycles for each explored black box is kept in a file with the
extension ".cyc". An example of such a cycle specification file, for the Media
Renderer component of the Domotics case study, is included below:

:[1]<pon?><ponok!>[2]<poff?><poffok!>

:[1]<pon?><ponok!>[2]<play?><playok!>[3]<poff?><poffok!>

BUPT

112 CHAPTER 5. EXPERIMENTAL RESULTS

:[1]<pon?><ponok!>[2]<play?><playok!>[3]<pause?><pauseok!>
<poff?><poffok!>

<pon?><ponok!>:[2]<play?><playok!>[3]<stop?><stopok!>

<pon?><ponok!>:[2]<play?><playok!>[3]<pause?><pauseok!><stop?>
<stopok!>

<pon?><ponok!><play?><playok!>:[3]<pause?><pauseok!><stop?>
<stopok!>

We can see that there are three join points between the specified cycles. The
first cycle has a first join point with the following two, right at its entrance.
After the first two events take place, it has a second join point, from which the
execution can switch into any of the following four cycles. The third join point
appears in the second cycle, and links together all cycles but the first.

For a better understanding of cycle specification, we also include its description
in the BNF form:

<cycle_list> ::= <cycle> <EOL> <cycle_list> | <cycle>

<cycle> ::= <access_event_list> ":" <cycle_event_list>

<access_event_list>::= <event> <access_event_list> | <event>

<cycle_event_list>::= <join_point> <cycle_event_list>
| <event> <cycle_event_list> | <event>

<event>::= "<" <message_name> "!" ">"
| "<" <message_name> "?" ">"

<join_point> ::= "[" <join_point_index> "]"

Most of the experiments performed focus on learning safe approximate models
of the black box components, which is the main contribution of this work. In
the case of components with uncontrollable events, learning a complete model is
much harder than in the case of perfectly controllable black boxes, and seldom
feasible in practice. Out of the case studies presented here, only for the one of
the Single Sign On protocol did precise model inference prove feasible, as the

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 113

involved components had small enough alphabets and fairness bounds, and also
their maximum acyclic traces were relatively short.

5.2 Case Study: The Single Sign On Protocol

In the following we introduce the case study of the Single Sign On protocol.
The Single Sign On protocol enables a user to gain access to a multitude of
independent, but related services, usually belonging to the same company, by
only logging in once, in the beginning. The version of Single Sign On we study
is the SAML Single Sign On (SSO) Service for Google Applications. [36]

The SAML SSO protocol considers three entities: an identity provider, a ser-
vice provider and a client. In order to gain access to the desired functionality,
the client first sends a request to the service provider. If the client is not au-
thenticated, the service provider redirects it towards an identity provider. The
client then authenticates via the identity provider, and then, using the identity
provided by the identity provider, returns to the service provider and reissues his
initial request. The service provider is then able to fulfill his request and grant
him access to the desired service.

For our experiments, we have built an abstract, asynchronous version of the
SAML SSO protocol.

The set of messages exchanged contains the following:

• req: the request message issued by the client to the service provider

• redirect: used by the service provider to redirect the client to the identity
provider

• reqid: used by the client to request the identity provider for authentication

• cid: contains the certificate provided by the identity provider to the client

• id: contains the certificate to be passed to the service provider

• rbad: issued by the service provider in reply to a malformed request

• badid: issued by the service provider in reply to a bad certificate

• ok: used to notify the client that his request was successfully fulfilled

BUPT

114 CHAPTER 5. EXPERIMENTAL RESULTS

!req

rbad?

redirect?
!reqid

cid?

!id

ok?

badid?

(a)

req?

!rbad

!redirect id?

!ok
!badid

(b)

!cid

reqid?
!cid

(c)

Figure 5.1: (a) SSO client real model, (b) SSO service provider real model, (c)
SSO identity provider real model

The SSO client component sends messages req, reqid, id, and receives messages
redirect, cid, rbad, badid and ok. The SSO service provider component sends
messages redirect, rbad, badid, while receiving req and id, and, finally, the SSO
identity provider receives reqid and sends cid. The real models of the SSO
entities can be seen in figure 5.1.

The temporal property we want to enforce on the SSO entities is shown in figure
5.2. The semantics of the desired policy is the following: “ the client has to
be able to get an identity certificate and use it to address the service provider,
and will either have his request accomplished, or his certificate rejected”. We
have considered all the entities taking part in the SSO protocol as black box
components, and attempted to learn their models.

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 115

!badid
!cid
!id
!ok
!rbad
rbad?
!req
!reqid

req?

!rbad

!badid
!cid
!req
!reqid

!redirect

!rbad

!cid
!id

!redirect
redirect?
!req
!reqid

reqid?

!badid
!rbad

!redirect
!req
!reqid

!cid

!rbad

!badid
cid?
!id

!redirect
!req
!reqid
reqid?

id?

ok?
!rbad

!cid
!id
id?
!ok
!req
!reqid
reqid?

!badid

!rbad
!req

badid?

reqid?
!cid
!id

!reqid

(a)

Figure 5.2: Property to be enforced on the SAML system

In our experiments, we have considered all three components in this case study
as black boxes. We have studied the learning process of all the SAML-SSO
entities in three situations. First, we learn each entity (the identity provider, the
service provider and the client) separately, without considering the safety prop-
erty. Then, we study the centralized learning process, employing the required
safety property in central execution coordination. In the end, we also experiment
with the distributed learning setting on this case study, making use again of the
safety property at figure 5.2.

The cycle specifications files for all the three components in this case study are
included below. They are the same to be used during centralized, distributed
and individual behaviour exploration.

The first cycle specification file included describes the expected cycles for the
SSO Identity Provider component. The two specified cycles describe the first
– the scenario in which after receiving an identity request, the identity provider
replies by repeatedly the provided identity, and the second – after the request,
the provider replies once, after which continues with processing another request,
and so on, and so forth.

<reqid?>:<cid!>

:<reqid?><cid!>

The second cycle specification file describes the expected cycles for the SSO
Service Provider component. The four cycles specified are as follows.

BUPT

116 CHAPTER 5. EXPERIMENTAL RESULTS

The first one describes that the service receives a request, redirects it towards
the identity provider, and then repeatedly receives identity messages, replying
with a "bad id" message until an appropriate identity message arrives. The
last three cycles all have a common join point in the beginning. Thus, the
service provider can repeatedly either receive a request, redirect it, receive a
good identity message and comply with the request, or refuse to comply with
the request if inappropriate, after receiving a good identity message, or refuse
to comply with the request in the first place, instead of redirecting it.

<req?><redirect!>:<id?><badid!>

:[1]<req?><redirect!><id?><ok!>

:[1]<req?><redirect!><id?><rbad!>

:[1]<req?><rbad!>

Finally, the third cycle specification file contains the expected cycles for the
SSO Client component. In the first one, after issuing a request message to the
service provider, and receiving its redirect message, the client repeatedly requests
an identity certificate from the identity provider, receives it, and sends it to the
service provider, while the service provider answers with an identity certificate
rejection message.

The last three cycles have a common join point in the beginning. The second
cycle goes as follows: the request is issued, the redirecting message received, the
identity certificate requested from the identity provider, received, and then sent
to the service provider, after which the message corresponding to the successful
fulfillment of the request is received. The third cycle is very similar, only that,
in the end, a message that signals a bad request is received from the service
provider. This message of refusal can, however, be received also before the
redirecting message, right after the client initially issues its request, as it is the
case for the fourth specified cycle.

<req!><redirect?>:<reqid!><cid?><id!><badid?>

:[1]<req!><redirect?><reqid!><cid?><id!><ok?>

:[1]<req!><redirect?><reqid!><cid?><id!><rbad?>

:[1]<req!><rbad?>

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 117

5.2.1 Individual Exploration

When learning each component in isolation, we have set the parameter m sepa-
rately for each component, instead of using a global value. Although the use of
safety property is not employed, the learning process for incomplete models is
studied both with its original, unaltered exploration method and with the cycle-
based optimization for behaviour exploration. In the latter case, however, in the
absence of the safety property, the cycles used in steering the exploration are
the ones used in the centralized and distributed exploration settings.

SSO Identity Provider

The experiments performed to learn in isolation the model of the SSO Identity
Provider have used the following values for the relevant parameters: m, the
size of longest acyclic trace, was set to m = 2, and θ, the fairness bound, was
computed as θ = 2.

The average number of executions needed to learn a complete model for the SSO
Identity Provider was found as 15.2, out of 10 different, independent learning
experiments, which employed the complete model learning algorithm.

In figure 5.3 we can see the results of the approximate model learning algorithm
after 5, 10 and 15 executions. It is important to note that for each of the
three situations the learning process has been restarted all-over, instead of being
resumed from a previous intermediate state for the latter two. This was necessary
because the trace tree needs to be preprocessed before equivalence partitioning
and actual model building, and this preprocessing makes it useless for further
learning, if the learning were to be resumed.

!cid
reqid?

!cid

(a)

!cid

reqid?

!cid

(b)

!cid

reqid?
!cid

(c)

Figure 5.3: Learned models for SSO service provider in: (a) 5 executions, (b)
10 executions (c) 15 executions.

BUPT

118 CHAPTER 5. EXPERIMENTAL RESULTS

The SSO Identity Provider is a trivial, and thus easy to learn component. After
5 executions, the model obtained in 5.3(a) shows that the transitions from the
initial state have been properly identified, but, since some of the vertices in the
equivalence partition corresponding to the second state are still insufficiently
explored, the second state has a self-loop on the one uncontrollable event in the
alphabet, signifying the unknown future. Also, the cycle on event cid! from the
initial state has not been identified.

After 10 executions, the cycle from the initial state on event cid! has been
successfully identified, as it can be seen in figure 5.3(b). However, the second
loop of the original model does not yet appear, and instead the second state still
has a self-loop on cid!, since some of its subsuming vertices in the trace tree are
still incompletely explored.

Finally, when learning stops after 15 executions, the model in figure 5.3(c)
is obtained, which is identical with the precise model. However, we do not
consider this model a precise one, due to the fact that its construction process
does not guarantee its precision. As the black box is better and better explored,
it is natural for the resulting models to converge, sometimes quite early, to a
model identical to the precise one. But no guarantees of precision actually exist
for these models, since the trace trees out of which they were obtained had
unobserved controllable transitions artificially cut out, and unobserved, but still
feasible, uncontrollable transitions artificially added.

Sometimes, the complete-like approximate model can be obtained by the learning
algorithm using less executions that would be needed to learn a complete model.
However, in other cases, the preprocessing of the trace tree that takes place
before approximate model building can actually delay convergence. This happens
because the pruned controllable transitions and added uncontrollable feasible
transitions, which only appear in the incomplete learning process, can interfere
with the equivalence partitioning.

SSO Identity Provider – cycle based optimization

In the case of the SSO Identity Provider, the cycle-based optimization does not
bring any actual improvement to the learning process. This is understandable
because of the trivialty of the model, which is very easily learned by BASYL.

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 119

!cid
reqid?

!cid

(a)

!cid

reqid?

!cid

(b)

!cid

reqid?
!cid

(c)

Figure 5.4: Learned models for SSO identity provider in: (a) 5 executions, (b)
10 executions, (c) 20 executions.

The models obtained can be seen in figure 5.4. They show a high similarity
with the models learned by the original breadth-first exploration process, so the
learning is little influenced in this case. And actually, the influence it has is
for the worse, since the result converges to the precise model only after 20
executions. This happens because cycle-based learning prioritizes the cycles in
the order in which they appear in the cycle specification file. Only after the
traces corresponding to the highest priority cycle are completely explored in the
trace tree, only then does the main focus switch to the next cycle in terms of
priority.

The cycles specification for the SSO Identity Provider has the cycle< reqid? >:<
cid! > as the highest priority one, followed by :< reqid? >< cid! >. This leads
to a slightly delayed discovery of the latter loop.

SSO Service Provider

When learning in isolation the model of the SSO Service Provider the values of
the relevant parameters were m = 4 for the size of longest acyclic trace, and
θ = 12, the value the fairness bound.

In order to learn a complete model of the SSO Service Provider the average
number of executions needed was 66.7, obtained from 10 different, precise model
learning experiments.

In figures 5.5 and 5.6, the learning process for the SSO Service Provider compo-
nent is detailed for several considered bounds on the number of allowed execu-
tions. We can see the model learned after 5 executions in figure 5.5(a), where

BUPT

120 CHAPTER 5. EXPERIMENTAL RESULTS

the poor exploration of the black box results in many transitions to the unknown-
future state (the state that has self-loops on all uncontrollable events). This is
normal: as the fairness bound θ is 12, not even the initial state gets completely
explored in 5 executions.

After 25 executions – figure 5.5(b) – it can be observed that several less deep
states have now reached the threshold of θ = 12 visits, having their infeasible
uncontrollable transitions now pruned out. The three deeper states, however, still
have their uncontrollable transitions towards the unknown-future state.

In figure 5.6(a) we can see an approximate model of the SSO Service Provider,
learned in 50 executions. The states are better individualized, more in-depth
controllable transitions got explored. However, there are still three uncontrollable
transitions towards the unknown-future state, and no cycle in the original model
has actually been identified.

req?

!badid
!ok
!rbad

!redirect

!rbad

!redirect
!badid
!ok

req?
!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

id?
!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

(a)

req?
!redirect

!rbad

id?
!badid
!ok

req?

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

(b)

Figure 5.5: Learned models for SSO service provider in: (a) 5 executions, (b)
25 executions.

Further on, in figure 5.6(b) we have the approximate model learned in 75 ex-
ecutions. One of the cycles in the original model appears, however it is only
partially correct (event rbad! after req? should have taken back into the initial
state). An interesting thing is that the number of uncontrollable transitions to
the unknown-future state is now slightly larger, even though the behaviour was
better explored, because the equivalence partitions corresponding to the FSM
states may contain vertices on a greater depth, vertices incompletely explored,
which still have a large number of feasible uncontrollable transitions. After 100

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 121

executions, in figure 5.6(b) we see a better defined model, where some of the un-
observed uncontrollable transitions were found infeasible and pruned out.

req?
!rbad

!redirect

req?
!redirect

!rbad

id?
!badid
!ok

!badid
!ok
!rbad

!redirect

(a)

req? req?

!badid
!ok
!rbad

!redirect!rbad

!redirect id?

!badid
!ok
!rbad

!redirect

!badid
!ok

!badid
!ok
!rbad

!redirect

(b)

req? req?

!badid
!ok
!rbad

!redirect!rbad

!redirect
id?

!badid
!ok

!badid
!ok
!rbad

!redirect

(c)

req?
!rbad

!redirect id?
!badid

!ok

!badid
!ok
!rbad

!redirect

(d)

req?

!rbad

!redirect id?

!ok
!badid

(e)

Figure 5.6: Learned models for SSO service provider in: (a) 50 executions, (b)
75 executions, (c) 100 executions, (d) 150 executions, (e) 200 executions

BUPT

122 CHAPTER 5. EXPERIMENTAL RESULTS

In figure 5.6(d), after 150 executions, the model obtained for the SSO Service
Provider has two correctly identified cycles of the original model, and only one
transitions to the unknown-future state, on event ok!, which should actually
have taken the execution back to the initial state. As it is the deepest cycle in
the model, this cycle was not yet identified, due to an insufficient exploration of
the black box behaviour. This latter loop is finally identified after 200 runs, in
figure 5.6(e), and the model converges to the original component model.

One should note that the complete model gets learned in 66.7, while the ap-
proximate model learning algorithm needs between 150 and 200 executions to
converge to a similar model. This happens because, when learning a model
completely we rely on the consistency-check phase to identify and test differen-
tiating traces between compatible vertices. If such differentiating traces are not
found, or are invalidated by testing, the vertices remain in the same equivalence
partition, resulting in the same model state. However, when learning approx-
imate models, because of the need to ensure a safe approximation by pruning
unobserved controllable transitions and adding unobserved, but feasible uncon-
trollable transitions, these artificially added and/or pruned transitions at depths
greater than m + 1 keep otherwise compatible vertices from ending up in the
same partition. This is why, in some cases, obtaining a precise-like approximate
model can be significantly slower than inferring a precise model.

SSO Service Provider – cycle-based optimization

In figures 5.7 and 5.8 we can see how the learning process for the SSO Service
Provider takes place when cycle-based optimization is used. The early results of
cycle-oriented learning, after a number of 5 and, respectively, 25 executions can
be observed as identical to the ones obtained at similar stages by the unoptimized
learning process (figure 5.7).

However, later on, the cycle-oriented learning seems to show visible improvement
over the original learning process. Thus, the models in figure 5.8 show a more
rapid convergence to the precise model, which is understandable since the cycles
defined in the cycle specification file are, as we can see below, definitory for
the SSO Service Provider Behaviour – with the exception of : [1] < req? ><
redirect! >< id? >< rbad! > which does not appear in the precise model.
This means that their early identification by a cycle-focused exploration is also
likely to steer an early convergence.

<req?><redirect!>:<id?><badid!>

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 123

req?

!badid
!ok
!rbad

!redirect

!redirect

!rbad
!badid
!ok

id?
!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

req?
!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

(a)

req?
!redirect

!rbad

id?
!badid
!ok

req?

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

(b)

Figure 5.7: Learned models for SSO service provider in: (a) 5 executions, (b)
25 executions.

:[1]<req?><redirect!><id?><ok!>

:[1]<req?><redirect!><id?><rbad!>

:[1]<req?><rbad!>

It takes less than 50 executions (as opposed to between 50 and 75 in the original
exploration case) for the learned model to reach the stage at figure 5.8(a), where
one of the original model cycles is, although imperfectly, identified.

After 75 runs, the model learned looks the same as after 50 runs, however,
after 100 executions (see figure 5.8(b)) another of the cycles in the original
models is approximately identified, due to a focused exploration of < req? ><
redirect! >:< id? >< badid! >, the highest priority cycle in the cycle specifica-
tion file. The cycle described as : [1] < req? >< redirect! >< id? >< ok! >,
present in the precise model is still not identified, mainly because the state tar-
geted by the transition on event ok! is still insufficiently explored, and hasn’t
yet been found as identical to the initial state. Also, an interesting thing to
observe is that the resulting model after 100 runs has more unobserved uncon-
trollable transitions still considered feasible than it is the case for the normal
learning process. This is a side-effect of cycle-oriented exploration, which is less
uniform than normal exploration and may delay completing the exploration of
some greater-depth vertices.

BUPT

124 CHAPTER 5. EXPERIMENTAL RESULTS

Finally, the learning converges to the precise-like model after at most 150 runs
(see figure 5.8(c)), as opposed to requiring between 150 and 200 runs as it
was the case for unoptimized exploration. So, in this case, the cycle-based
exploration leads to a faster convergence than normal exploration, but does so
by a relatively small margin.

req? req?

!badid
!ok
!rbad

!redirect!rbad

!redirect id?

!badid
!ok
!rbad

!redirect

!badid
!ok

!badid
!ok
!rbad

!redirect

(a)

req?
!rbad

!redirect

id?

id?
!badid
!ok
!rbad

!redirect

!badid

!ok
!badid
!ok
!rbad

!redirect

(b)

req?

!rbad

!redirect id?

!ok
!badid

(c)

Figure 5.8: Learned models for SSO service provider in: (a) 50 executions, (b)
100 executions, (c) 150 executions.

SSO Client

The model of the SSO Client component is the largest from this case study,
having the size of longest acyclic trace m = 6, however its alphabet has less
uncontrollable events than the alphabet of the SSO Service Provider and thus
the value of the fairness bound is relatively smaller here, being only θ = 8.

In order to learn a complete model of the SSO Client the average number of
executions needed was 62.5, obtained from 10 independently performed experi-
ments. This value is significantly low for a model of this size, and smaller than
the one required to learn the SSO Service Provider. This happens because the
SSO Client not only has a low fairness bound and an overall small alphabet, but
it is also deterministic in its behaviour: no more than one uncontrollable event
does fire from any of its state.

The results of the learning process can be seen in figures 5.9 and 5.10. After 5
executions, the behaviour of the SSO Client is little explored, and the number of

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 125

θ = 8 visits hasn’t been met for any of the model states, not even for the initial
one, as we can observe from all the uncontrollable transitions to the unknown-
future state (see figure 5.9(a)). After 10 executions, the fairness bound has
been met only for the initial state, as it can be seen from figure 5.9(b). In figure
5.9(c) we can see that, due to the fact of SSO Client has a deterministic and
relatively simple behaviour, a number of 25 executions has sufficed for vertices
at depths from 0 to 3 to be completely explored.

Further on, in figure 5.10(a), after 50 executions, the model obtained shows
a relatively deep exploration of the component behaviour, as no incompletely
explored states appear, however the exploration depth is yet insufficient for cycle
identification. After 75 executions, as it can be seen in figure 5.10(b), two of
the cycles in the precise model of the SSO Client have been identified.

As the number of runs continues to increase, vertices at greater depths are
found to be equivalent with more shallow ones. Such vertices then become part
of the same equivalence partition, but their outgoing transitions might lead to
vertices less explored, which end up in different equivalence partitions. As each
equivalence partition emerges as a state in model, this situation might end up in
nondeterminism, as it is the case for the automaton in figure 5.10(c), the result
of 150 learning executions, where we have two transitions on the same event
rbad? from the second state of the FSM. After 250 runs, the remaining cycle
of the original model has finally been identified (see figure 5.10(d)), but a case
of nondeterminism similar to the one above can be observed, as we have two
transitions on event req! from the initial state. Finally, after 500 executions, a
precise-like model is obtained (see figure 5.10(e)).

BUPT

126 CHAPTER 5. EXPERIMENTAL RESULTS

!req

!id
!reqid

!id
!req
!reqid

rbad?

redirect?

!reqid

!id
!req

!id
!req
!reqid

!id
!req
!reqid

!id
!reqid

!req

redirect?
!id
!req
!reqid

rbad?
!id

!reqid

!req !id
!req
!reqid

!id
!req

!reqid !id
!req
!reqid

cid? !req
!reqid

!id !id
!req
!reqid

(a)

!req

redirect?

rbad?

!reqid

!id
!req

!id
!req
!reqid

!id
!req
!reqid

!id
!req

!reqid

!id
!req
!reqid

cid? !req
!reqid

!id
!id
!req
!reqid

!id
!reqid

!req

redirect?
!id
!req
!reqid

rbad? !id
!reqid

!req !id
!req
!reqid

(b)

!req
rbad?

redirect?

!req

!id
!reqid

!id
!req
!reqid !id

!req
!reqid

!req

rbad?

redirect?

!id
!req

!reqid
!id
!req
!reqid

!reqid cid?
!id

(c)

Figure 5.9: Learned models for SSO client in: (a) 5 executions, (b) 10 execu-
tions, (c) 25 executions.

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 127

!req
rbad?

redirect?

!reqid
!req

redirect?

rbad?

!req!reqid cid? !id badid?

ok?

(a)

!req
rbad?

redirect?

cid?
!id

ok?
badid?

!req
!reqid

(b)

!req
rbad?

rbad?

redirect?
!req

!id

ok?
badid?

!reqid
cid?

(c)

!req

!req

rbad?

redirect?

!id

ok?

badid?
redirect? !reqid

cid?

(d)

!req

rbad?

redirect?
!id

ok?

badid?

!reqid
cid?

(e)

Figure 5.10: Learned models for SSO client in: (a) 50 executions, (b) 75 exe-
cutions, (c) 150 executions, (d) 250 executions, (e) 500 executions.

BUPT

128 CHAPTER 5. EXPERIMENTAL RESULTS

SSO Client – cycle-based optimization

The optimization of the learning process with an emphasis on cycle-identification
seems to prove beneficial in the case of learning the SSO Client component in
isolation. The results of the learning process can be seen in figures 5.11 and
5.12, while the specified cycles are given below (all but the third cycle actually
appear in the precise model).

<req!><redirect?>:<reqid!><cid?><id!><badid?>

:[1]<req!><redirect?><reqid!><cid?><id!><ok?>

:[1]<req!><redirect?><reqid!><cid?><id!><rbad?>

:[1]<req!><rbad?>

In this specific case, the early results of cycle-oriented learning already exhibit
some differences from unoptimized learning. Thus, the models at figures 5.11(a)
and 5.11(b), obtained after a number of 5 and, respectively, 10 executions have
a significantly smaller number of states – 7, than their correspondents at figures
5.9(a) and 5.9(b), resulted from the original learning algorithm, and which both
have 13 states. This happens because as the exploration was focused on the
specified cycles, their corresponding traces were observed more times, leading
to more completely explored vertices than by uniform exploration. This effect is
also visible in figure 5.11(c) which, although quite similar to the one in figure
5.9(c), has less transitions towards the unknown-future state.

However, as the cycle-based learning process continues, we can observe that
the models obtained after 50 and 75 executions, shown in figures 5.12(a), re-
spectively 5.12(b), are identical to the ones learned by uniform exploration from
figures 5.10(a), respectively 5.10(b). At this stage, in both cases, the vertices
at depths less than m are already completely explored and cycles are identi-
fied when vertices at depths m + 1 also get completely explored and found as
equivalent to their more shallow peers.

After 150 executions, the model in figure 5.12(c) is obtained which, with the
unoptimized learning algorithm was obtained in more than 150, less than 250
runs. The precise-like model of the SSO Client is learned after at most 250
executions (see figure 5.12(d)), while being converged to in more than 250 and
less than 500 executions in the unoptimized setting.

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 129

Therefore, the cycle-based learning algorithm tends to be more efficient in iden-
tifying the specified cycles in the model, which leads to a faster convergence to
the precise model if all, or most of the model cycles appear in the cycle specifi-
cation file. However, in this case, the margin of efficiency that the cycle-based
learning has over unoptimized learning is not large (as models obtained after 50
and 75 are identical, etc.), which is understandable as SSO Client is an easy to
learn component. We did not try to identify this margin exactly, as it would
have implied a significant number of additional experiments. Also, the result
obtained would have been very specific to the experiment at hand, and a gen-
eral such margin would have to consider many parameters such as the size of
the model, of its alphabet, its fairness bound, the degree of nondeterminism in
the model, the number of specified cycles, their depth, how do they cover the
model transitions, the order in which they are specified, etc.

!req

!id
!reqid

!id
!req
!reqid

redirect?

rbad?

!id
!req
!reqid

!id
!req

!reqid

cid?
!id
!req
!reqid

!id
!reqid

!req
!id

rbad?
redirect?
!req
!reqid

(a)

!req
redirect?

rbad?

!id
!req
!reqid

!id
!req

!reqid

cid?
!id
!req
!reqid

!id
!reqid

!req !id
rbad?

redirect?
!req
!reqid

(b)

!req
redirect?

rbad? !id
!req
!reqid

!reqid
cid? !id

!req rbad?
redirect?

(c)

Figure 5.11: Learned models for SSO client in: (a) 5 executions, (b) 10 execu-
tions, (c) 25 executions.

BUPT

130 CHAPTER 5. EXPERIMENTAL RESULTS

!req
redirect?

rbad?

!reqid!reqid cid? !id badid?
ok?

!req
redirect?

rbad?

!req

(a)

!req
rbad?

redirect?

cid?
!id

ok?
badid?

!req
!reqid

(b)

!req

!req

rbad?

redirect?

!id

ok?

badid?
redirect? !reqid

cid?

(c)

!req

rbad?

redirect?
!id

ok?

badid?

!reqid
cid?

(d)

Figure 5.12: Learned models for SSO client in: (a) 50 executions, (b) 75 exe-
cutions, (c) 150 executions, (d) 250 executions.

5.2.2 Centralized Exploration

The centralized exploration is the closest emulation of how the components
will work together in the system, with the difference that the proactive adaptor
controls all interactions in the learning executions, steering each time the ongoing
run towards one or another interesting execution scenario. To avoid exploring
behaviour actually irrelevant to the system we want to build, only the executions
that conform to the specified safety property (see figure 5.2) are explored.

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 131

The learning process that relies on centralized exploration has several specifics
that distinguish it both from learning components in isolation and from learning
based on distributed exploration.

First, there is only one global execution trace, from which the individual com-
ponent event traces to be used in learning are obtained by projection on each
specific component’s event set. An execution is normally stopped when it reaches
a maximum number of steps, but in the centralized setting an execution is only
stopped when each of its projection traces have reached or surpassed the maxi-
mum number of steps. This leads to significantly longer execution traces than
in the distributed setting. Also, the global traces end up having variable sizes.
This slows down the inference process.

Second, as the interactions are coordinated in a centralized way, it is difficult
to generate traces that would explore each component sufficiently well. Even
though the model of each component is built separately, from separate trace
trees, exploring the behaviour of these components together amounts to explor-
ing the global behaviour of the system, which is hard.

Third, as far as cycle-based exploration is concerned, it is important that the
cycles specified for each component that are projections of the same global
property cycle to appear in the same order, and thus have similar priorities,
since there is only one global execution being coordinated.

For the learning experiments performed on the Single Sign On case study we
have a global size for the longest acyclic path, which is m = 6, while the
fairness bounds are set independently for each component, thus θ = 2 for the
SSO Identity Provider, θ = 12 for the SSO Service Provider and θ = 8 for the
SSO Client. After each learning experiment, a controller has been computed
for the inferred models and the desired safety property. We have then verified
whether the obtained controller did work on the real system, i.e. on the plant
determined by the precise models of participating components. For controller
synthesis and verification we have used the Supremica tool [59].

Normal Exploration

In the following we will present the results of learning the models of the SSO
entities using the centralized exploration algorithm. Table 5.1 summarizes the
statistical data characterizing these results, i.e. the inferred models and the
generated system controllers. The data presented represents the number of

BUPT

132 CHAPTER 5. EXPERIMENTAL RESULTS

states and number of transitions of all automata.

It is important to note that, while the generated controllers are always already
minimized, this is not the case for the learned models. The models built by BASYL
are not always minimal, due to the safe approximation strategy, which forces the
pruning, etc. of the trace tree, and thus keeps equivalent, but incompletely
explored vertices from being in the same equivalence partition. Therefore, we
also minimize the learned models before controller generation and sometimes it
is only after this minimization that a model becomes precise-like. This is why in
table 5.1, as in all similar tables from this work, we present first the statistical
data of the unminimized model, then, on the following row, the data for the
minimal model.

Some of the models obtained during the centralized learning process, after at
most 1000 executions, can be seen in figures 5.13 – the SSO Identity Provider,
5.14 – the SSO Service Provider and 5.15 – the SSO Client.

From table 5.1 we can see that after 100 runs, the models obtained for the SSO
Service Provider, the SSO Identity Provider and the SSO Client are rather large,
even after minimization. Looking at the figures at 5.13(a), 5.14(a) and 5.15(a)
we can also see how these models look. The behaviour of the SSO Identity
Provider, as seen in figure 5.13(a), is quite well explored. It could look like one
of its important cycles has been identified, but it is actually the unknown-future
state that has a self-loop on the only uncontrollable event in the alphabet. The
model is far from converging to the precise-like automaton. This happens mainly
because the value of m has been globally set to 6, while its actual value is 2.
In the case of the SSO Service Provider, whose learned model can be seen in
figure 5.14(a), the behaviour of the component has been completely explored
for all visible states, except from the deepest two, however, no cycle has been
identified in the model. Here, the assumed value of m = 6 is also larger than
its actual one, of 4, which may also delay cycle identification. The SSO Client
is the best explored of all three, and two of its three cycles are already identified
(see figure 5.15(a)). But, due to the other two learned models, the obtained
controller, found as having 796 states and 2882 transitions, is pretty restrictive
on the real system, not allowing for repeating interaction scenarios.

After 250 executions, all models inferred seem significantly better explored and
one of them has already converged to the precise-like model, as it can be seen
from both 5.1 and figures 5.13(b), 5.14(b) and 5.14(b). The two cycles have
been identified for the SSO Identity Provider, although only one is precisely
identified, and the SSO Service Provider also has one identified loop – both

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 133

these components still have their deepest states incompletely explored. The
SSO Client has its third cycle identified, has converged to the precise-like model
and from table 5.1 it results that the learning will deliver the precise-like model
in all further experiments.. However, the obtained system controller, with 390
states and 1706 transitions only allows an unlimited number of repetitions to
the scenario that describes the rejection of a badly formulated request.

After 500 executions, as it can be seen in 5.13(c), the SSO Identity Provider
has already converged to a precise-like model with 2 states and 3 transitions
(when minimized) and from table 5.1 we can see that it will also converge to
the precise-like model in all further experiments. The SSO Service Provider in
figure 5.14(c) is quite close to converging, all its cycles have been identified and
only two of its states still have transitions to the unknown-future state. The
SSO Client component has previously converged. Thus, the computed controller
(having 245 states, 1137 transitions in table 5.1) allows us an actually complete
use of all the scenarios in the specification, which are allowed to repeat in any
order, for an unlimited number of times.

!cid

reqid?

reqid?

!cid

!cid
!cid

reqid?

!cid !cid
reqid?

!cid

!cid

reqid?!cid

(a)

!cid

reqid?

!cid

reqid?

!cid
reqid?

!cid

!cid
reqid?
!cid

(b)

!cid

reqid?
!cid

(c)

Figure 5.13: Learned models for SSO identity provider in: (a) 100 executions,
(b) 250 executions, (c) 500 executions.

BUPT

134 CHAPTER 5. EXPERIMENTAL RESULTS

req?
!redirect

!rbad

req? !rbad
!redirect

id?

!badid
!ok

!badid
!ok
!rbad

!redirectid? !ok
!badid

req?
!rbad

!redirect

(a)

req?

req?

!badid
!ok
!rbad

!redirect

req?
!rbad

!redirect

!rbad

!redirect

id?

!badid
!ok
!rbad

!redirect

!badid
!ok

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

id?

!badid
!ok
!rbad

!redirect

req?

id? !badid

!ok

!rbad
!redirect

(b)

req?

req?

!badid
!ok
!rbad

!redirect

!rbad

!redirect
id?

!badid
!ok
!rbad

!redirect

!ok !badid

!badid
!ok
!rbad

!redirect

(c)

req?

!rbad

!redirect id?

!ok
!badid

(d)

Figure 5.14: Learned models for SSO service provider in: (a) 100 executions,
(b) 250 executions, (c) 500 executions, (d) 1000 executions.

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 135

!req
rbad?

redirect?

!reqid
cid?

!id
badid? ok? !req

(a)

!req

rbad?

redirect?
!id

ok?

badid?

!reqid
cid?

(b)

Figure 5.15: Learned models for SSO client in: (a) 100 executions, (b) 250
executions.

Further on, when experimenting with a bound of 1000 executions, the SSO
Service Provider component also converges to its precise-like model, having
4 states and 6 transitions, as it can be seen from figure 5.14(d). The SSO
Identity Provider model and the SSO Client component, as earlier mentioned,
also converge. Thus, all models inferred are precise-like and the 276 states
and 1180 transition controller obtained for these models is identical to the one
obtained for the real models.

The average trace length encountered during the normal exploration process
was 46.6. This is significantly more than 3 × 2m = 36 – the ideal length
of an execution trace for 3 entities with m = 6, and is a relevant drawback:
runtime executions are considered expensive because the communication with
the component is expensive, so the need for longer execution traces naturally
reflects in higher learning costs.

BUPT

136 CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.1: Model inference results

nr. Cl. s. Cl. t. SP s. SP t. IDP s. IDP t. ctrl s. ctrl t.
100 10 13 16 25 34 45 796 2882

8 9 11 19 9 14
250 7 10 14 25 29 43 390 1706

6 8 13 37 6 10
500 6 8 10 22 23 38 245 1137

6 8 6 19 2 3
1 ×103 6 8 4 6 11 20 276 1180

6 8 4 6 2 3
1.5 ×103 6 8 4 6 8 13 276 1180

6 8 4 6 2 3
2 ×103 6 8 4 6 6 9 276 1180

6 8 4 6 2 3
2.5 ×103 6 8 4 6 5 7 276 1180

6 8 4 6 2 3
5 ×103 6 8 4 6 2 3 276 1180

6 8 4 6 2 3
1 ×104

..
1.5 ×104

..

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 137

Cycle-Based Exploration

The cycle-based optimization of the algorithm for model learning by centralized
optimizations does provide some improvement over the results in the previ-
ous section, as the models for the SSO Identity Provider and the SSO Service
Provider do improve and converge earlier to precise-like automata. The model
learning process for the SSO Client component results in results similar to the
ones obtained by unoptimized centralized exploration. The statistical results of
the model learning process are summarized in the table 5.2, while the models
obtained for the first 4 experiments registered in the table are present in figure
5.16 for the SSO Identity Provider, figure 5.17 for the SSO Service Provider,
and figure 5.18 for the SSO Client.

As mentioned, the model for the SSO Identity Provider does seem to converge
slightly faster than in the unoptimized setting, and we can see from figure 5.16(b)
that it has already converged to the precise-like model in no more than 250 runs.
The SSO Service Provider, although it converges to the precise-like model in no
more than 1000 runs, does obtain better intermediary results: a better explored,
cleaner model after 100 runs (see figure 5.17(a)), two identified cycles instead of
one after 250 runs (figure 5.17(b)), and more precisely identified cycles after 500
runs (figure 5.17(c)). Thus, for these two entities, the cycle-based optimization
shows noticeable improvements over the unoptimized algorithm.

The average trace length encountered during the cycle-based exploration process
was 47.46, only a little more than the average trace length of 46.6 observed for
normal centralized exploration. Since both average values have been obtained
by randomly choosing 30 sample trace lengths (from the log files corresponding
to the 100 runs experiment), we consider a margin of 0.86, representing no more
than 0.18% of their mean value, as irrelevant.

!cid

reqid?

!cid

reqid?
!cid

!cid

!cid
reqid?reqid?

!cid

!cid

reqid?

!cid

!cid

reqid?

!cid
reqid?

!cid

(a)

!cid

reqid?
!cid

(b)

Figure 5.16: Learned models for SSO identity provider in: (a) 100 executions,
(b) 250 executions.

BUPT

138 CHAPTER 5. EXPERIMENTAL RESULTS

req?
!rbad

!redirect

req?
!redirect

!rbad

id?
!badid
!ok

!badid
!ok
!rbad

!redirect
req?

!redirect

!rbad req? !rbad
!redirect

id?

!ok

!badid

(a)

req? req?

!badid
!ok
!rbad

!redirect
!rbad

!redirect !ok

!badid

!badid
!ok
!rbad

!redirectid?

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

id? !badid
!ok

(b)

req? req? !badid
!ok
!rbad

!redirect
!rbad !redirect !ok

!badid
id? !badid

!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

(c)

req?

!rbad

!redirect id?

!ok
!badid

(d)

Figure 5.17: Learned models for SSO service provider in: (a) 100 executions,
(b) 250 executions, (c) 500 executions, (d) 1000 executions.

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 139

!req
rbad?

redirect? !req

cid?
!id

ok?
badid?

!reqid

(a)

!req

rbad?

redirect?
!id

ok?

badid?

!reqid
cid?

(b)

Figure 5.18: Learned models for SSO client in: (a) 100 executions, (b) 250
executions.

Table 5.2: Model inference results

nr. Cl. s. Cl. t. SP s. SP t. IDP s. IDP t. ctrl s. ctrl t.
100 10 13 16 25 34 46 1252 4789

8 9 13 22 11 18
250 6 8 13 25 29 42 255 1163

6 8 8 26 2 3
500 6 8 8 16 21 35 245 1197

6 8 6 19 2 3
1 ×103 6 8 4 6 12 20 276 1180

6 8 4 6 2 3
1.5 ×103 6 8 4 6 9 15 276 1180

6 8 4 6 2 3
2 ×103 6 8 4 6 5 6 276 1180

6 8 4 6 2 3
2.5 ×103 6 8 4 6 6 11 276 1180

6 8 4 6 2 3
5 ×103 6 8 4 6 2 3 276 1180

6 8 4 6 2 3
1 ×104 6 8 4 6 2 3 276 1180

6 8 4 6 2 3
1.5 ×104

..

BUPT

140 CHAPTER 5. EXPERIMENTAL RESULTS

5.2.3 Distributed Exploration

The distributed exploration setting allows for parallelism in the model inference
process. Each component has a local proactive adaptor, which intercepts its
sent messages and coordinates the execution by forwarding messages to the
component, in order to enable its controllable transitions. Messages sent by a
component and intercepted by the proactive adaptor are broadcast to the rest
of the components in the system. The proactive adaptor also intercepts the
messages broadcast by the other, remote components.

To only explore behaviour relevant to the system we want to build, the execu-
tions that conform to the specified safety property (see figure 5.2) are exclusively
considered. Unlike the centralized case, which had all real components interact
together, in the distributed case the environment of the local component is only
simulated. The distributed exploration method thus explores the behaviour of
the local component by steering the execution at runtime towards interesting
scenarios, while the other components in the system are explored only in the
model, by a bounded depth-first search phase. When some of the other com-
ponents in the system are unknown, the models employed for them are most
general ones, i.e. they have only one state, with self-loop transitions for all
events in the alphabet.

The exploration process runs in parallel for all components in the system. The
drawback of longer execution traces is thus eliminated, since each component is
locally explored, so all execution traces will have a maximum size of 2m.

The distributed exploration, however, does not assume complete independence
between the parallel exploration processes, and this is what distinguishes it from
the learning in isolation setting. Only messages previously broadcast by a re-
mote component can be used by the proactive adaptor to enable controllable
transitions in the local component. Thus, convergence to precise-like models is
expected to be slower for distributed than for individual exploration.

Just as in the centralized exploration case, for the distributed learning experi-
ments performed on the Single Sign On case study we established a global value
for the longest acyclic path, which is m = 6. Again, the fairness bounds are set
independently for each component: θ = 2 for the SSO Identity Provider, θ = 12
for the SSO Service Provider and θ = 8 for the SSO Client. After each learning
experiment, a controller has been computed for the inferred models and the de-
sired safety property. Then, we have verified whether the controller obtained for
the learned, approximate models did indeed work on the real system, represented

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 141

by the asynchronous product of its components’ precise models. For controller
synthesis and verification we have used also here the Supremica tool [59].

Normal Exploration

The results of the learning process using the unoptimized distributed exploration
setting are presented in this section. Some of the models obtained by the infer-
ence process can be seen in figure 5.19 for the SSO Identity Provider component,
in figure 5.20 for the SSO Service Provider and in figure 5.21 for the SSO Client
component. In table 5.3 the statistical data for all the experiments performed
for unoptimized local model learning are summarized. From the first glance,
the results obtained are significantly similar to the ones obtained in the central-
ized learning setting, being also relatively close, but inferior in efficiency, to the
individual exploration setting.

After 100 executions, the models at figure 5.19(a), 5.20(a) and 5.21(a) are ob-
tained for the three components in the system. The SSO Identity Provider and
the SSO Service Provider still have their deepest states incompletely explored
and exhibiting transitions to the unknown-future state, while the SSO Client
already has two identified cycles. This happens because the exploration of first
two depends on messages sent by SSO Client, which is the component actually
initiating the conversation. The controller obtained has 957 states and 3561,
however it only allows for a single execution of each of the relevant scenar-
ios.

After 250 executions, the models for component SSO Identity Provider and
SSO Client have reached convergence to the precise-like automata, while the
model for SSO Service Provider has 2 out of its 3 cycles identified and has
4 of its deepest states exhibiting uncontrollable transitions to the unknown-
future state.– see table 5.3 and figures 5.19(b), 5.20(b), and 5.21(b). The
obtained controller, as it can be seen in table 5.3, has 145 states and 660,
allowing an unlimited executions of the scenarios in which a malformed request
is rejected, or a bad certificate is answered with a refusal messages by the
service provider, but only one execution of the scenario in which the request is
successfully answered.

After 500 executions, as we can see from table 5.3 and figure 5.20(c), the models
for component SSO Identity Provider and SSO Client have already converged
to the precise-like automata, while the model for SSO Service Provider has all
its 3 cycles identified, although one of them only approximately, and still has

BUPT

142 CHAPTER 5. EXPERIMENTAL RESULTS

two states exhibiting uncontrollable transitions to the unknown-future state.
This is understandable when taking into account that the SSO Service Provider
component has the largest fairness bound, 12, out of all three entities. Their
corresponding controller has 255 states and 1236 transitions, and allows for all
the relevant scenarios in the model to repeat unlimitedly.

!cid

reqid?

!cid

reqid?

!cid

reqid?

!cid
reqid?

!cid

!cid !cid

reqid?

!cid

reqid?

!cid

reqid?

!cid

!cid

(a)

!cid

reqid?
!cid

(b)

Figure 5.19: Learned models for SSO identity provider in: (a) 100 executions,
(b) 250 executions.

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 143

req?
!rbad

!redirect

req? !rbad
!redirect

!badid
!ok
!rbad

!redirectreq? !rbad
!redirect

id?id?
!ok

!badid

!badid
!ok

(a)

req? req?

!badid
!ok
!rbad

!redirect
!rbad

!redirect
!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

id?
!badid
!ok
!rbad

!redirect

req?

!badid !ok

!rbad
!redirect

(b)

req? req? !badid
!ok
!rbad

!redirect

!rbad !redirect
!ok

!badid

id?

id?

!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

(c)

req?

!rbad

!redirect id?

!ok
!badid

(d)

Figure 5.20: Learned models for SSO service provider in: (a) 100 executions,
(b) 250 executions, (c) 500 executions, (d) 1000 executions,

BUPT

144 CHAPTER 5. EXPERIMENTAL RESULTS

!req
rbad?

redirect? !req

cid?
!id

ok?
badid?

!reqid

(a)

!req

rbad?

redirect?
!id

ok?

badid?

!reqid
cid?

(b)

Figure 5.21: Learned models for SSO client in: (a) 100 executions, (b) 250
executions.

Table 5.3: Model inference results

nr. Cl. s. Cl. t. SP s. SP t. IDP s. IDP t. ctrl s. ctrl t.
100 10 13 16 25 34 46 957 3561

8 9 11 19 11 18
250 6 8 11 22 27 40 145 660

6 8 8 26 2 3
500 6 8 8 16 21 34 255 1236

6 8 7 20 2 3
1 ×103 6 8 4 6 10 18 276 1180

6 8 4 6 2 3
1.5 ×103 6 8 4 6 7 14 276 1180

6 8 4 6 2 3
2 ×103 6 8 4 6 6 10 276 1180

6 8 4 6 2 3
2.5 ×103 6 8 4 6 5 8 276 1180

6 8 4 6 2 3
5 ×103 6 8 4 6 2 3 276 1180

6 8 4 6 2 3
1 ×104 6 8 4 6 2 3 276 1180

6 8 4 6 2 3
1.5 ×104

..

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 145

Further on, after 1000 executions, all models obtained by distributed inference
have converged to precise-like models. The controller obtained in this case is the
ideal controller for the real system, and it has 276 states and 1180 transitions. As
it can be seen from table 5.3 and as expected, all further experiments also result
in a perfect convergence to the precise-like models for all components.

Cycle-Based Exploration

The improvements resulted from the cycle-based optimization of the learning
algorithm are quite negligible when comparing table 5.3 to table 5.4, where the
latter one presents the summarized results for the optimized learning setting. We
can see that the statistical data regarding obtained models is pretty much similar
in both cases, and the models are found to converge to precise-like automata
at similar milestones: after at most 250 executions for the SSO Client and the
SSO Identity Provider, and after 1000 executions for the SSO Service Provider,
the component with the highest fairness bound of this system.

The models resulted from the cycle-based learning in the distributed setting can
be seen in figure 5.22 for the SSO Identity Provider, in figure 5.23 for the SSO
Service Provider and in figure 5.24 for the SSO Client component. When not
reaching convergence, the results harboured by the experiments are quite similar
with the ones obtained by unoptimized learning. The only notable exception is
that, in figure 5.22(a), the model of the SSO Identity Provider is smaller and
already has, after at most 100 runs, one identified cycle from its initial state,
while its correspondent from the set of unoptimized learning experiments doesn’t
have any identified cycles.

!cid

reqid?

!cid !cid
reqid? !cid!cid

reqid?

!cid

reqid?

!cid

!cid

reqid?

(a)

!cid

reqid?
!cid

(b)

Figure 5.22: Learned models for SSO identity provider in: (a) 100 executions,
(b) 250 executions.

BUPT

146 CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.4: Model inference results

nr. Cl. s. Cl. t. SP s. SP t. IDP s. IDP t. ctrl s. ctrl t.
100 10 13 16 25 33 47 789 2920

8 9 11 19 8 13
250 7 10 13 25 28 41 145 660

6 8 8 26 2 3
500 6 8 8 16 19 35 245 1091

6 8 7 20 2 3
1 ×103 6 8 4 6 2 3 276 1180

6 8 4 6 2 3
1.5 ×103 6 8 4 6 7 11 276 1180

6 8 4 6 2 3
2 ×103 6 8 4 6 5 6 276 1180

6 8 4 6 2 3
2.5 ×103 6 8 4 6 5 7 276 1180

6 8 4 6 2 3
5 ×103 6 8 4 6 2 3 276 1180

6 8 4 6 2 3
1 ×104 6 8 4 6 2 3 276 1180

6 8 4 6 2 3
1.5 ×104

..

BUPT

5.2. CASE STUDY: THE SINGLE SIGN ON PROTOCOL 147

req?
!rbad

!redirect

req? !rbad
!redirect

id?

!badid
!ok

!badid
!ok
!rbad

!redirectreq? !rbad
!redirect

id?
!ok

!badid

(a)

req? req?

!badid
!ok
!rbad

!redirect
!rbad

!redirect
!badid
!ok
!rbad

!redirect

!badid
!ok
!rbad

!redirect

id?
!badid
!ok
!rbad

!redirect

req?

!badid !ok

!rbad
!redirect

(b)

req?

req?

!badid
!ok
!rbad

!redirect
!rbad

!redirect id?
id?

!badid
!ok
!rbad

!redirect

!ok

!badid

!badid
!ok
!rbad

!redirect

(c)

req?

!rbad

!redirect id?

!ok
!badid

(d)

Figure 5.23: Learned models for SSO service provider in: (a) 100 executions,
(b) 250 executions, (c) 500 executions, (d) 1000 executions,

BUPT

148 CHAPTER 5. EXPERIMENTAL RESULTS

!req
rbad?

redirect? !req

cid?
!id

ok?
badid?

!reqid

(a)

!req

rbad?

redirect?
!id

ok?

badid?

!reqid
cid?

(b)

Figure 5.24: Learned models for SSO client in: (a) 100 executions, (b) 250
executions.

5.3 Case Study: A Product Data Management
System

The Product Data Management System is one of the case studies presented
in [78]. We have built its abstract asynchronous version, as the initial case
study considered in [78] was synchronous. We have chosen the case study of
components ThinkTeam and CAD, and adapted it for our purposes, by using
only one CAD instance instead of two, and by rewriting the coordination policy
accordingly (see figure 5.25).

Think Team is a Product Data Management (PDM) platform, that provides its
users with features to manage documents, versions, data attributes, and rela-
tionships among documents, which is to be integrated with a CAD application.
Together, the two components will form a Product Data Management coopera-
tive system, that will allow for a better, more flexible management of all product
documentation.

The alphabet of the ThinkTeam and CAD components contains send and receive
events of the following messages:

• start: starts the integrated ThinkTeam component

• stop: stops the integrated ThinkTeam component

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 149

• afterinit: received by ThinkTeam when its partner is completely initialized

• ttready: sent by ThinkTeam when it is completely initialized

• checkin: locks a specified file into the centralized repository for writing
operations

• checkout: releases a previous lock on a specified file into the centralized
repository for writing operations

• get: gets a local copy of a file

• import: stores a local file into a centralized repository

• openfile: opens a specified file

• closefile: closes a specified file

• save: saves a specified file

• remove: removes a specified file from the centralized repository

• setvalue: sets or modifies the value of a certain attribute of a file in the
centralized repository

• setvalues: sets or modifies the values of all attributes for a file in the
centralized repository

• attributes: gets a local read-only copy of the attributes of a file in the
centralized repository

The Think Team component sends messages ttready, save, openfile and closefile
and receives the rest, while the CAD component sends start, stop, setvalue, set-
values, attributes, remove, get, import, afterinit, checkin, checkout and receives
the other messages.

It is important to note that component Think Team has the further relevant
scenarios of execution, which can be infinitely repeated in any order, from the
initial state:

• initialize: start?ttready!afterinit?

• read file attributes: attributes?openfile!closefile!

• read file: get?openfile!closefile!

• import file: import?openfile!save!closefile!

BUPT

150 CHAPTER 5. EXPERIMENTAL RESULTS

• lock file for writing: checkout?openfile!

• unlock file after writing: checkin?save!closefile!

• set a file attribute: setvalue?

• set all file attributes: setvalues?

• delete file: remove?

• shut down: stop?

In order to ensure the correctness and consistency of the information manage-
ment process, the resulting composed system must conform to a specific coordi-
nation policy (see figure 5.25(a)). The original policy said: “A document cannot
be removed if someone has checked it out. Moreover, the attributes cannot be
modified if someone is getting a copy of the entity as a reference model.” [78].
However, in order to make the property more specific, the rewritten coordination
policy in figure 5.25 expresses the correct sequences in which a file can either
be removed or edited: either directly from the initial state, or after a previous
read scenario has finished, or after the scenario for unlocking the file for writing
has been initiated.

For controller synthesis, the Supremica tool [59] was again used. We assumed
both ThinkTeam and CAD as incompletely specified, black box components.
The ThinkTeam alphabet contains 15 events, out of which 4 are uncontrollable,
while the alphabet of CAD has 11 uncontrollable events out of 15. The fairness
bound θ thus becomes θ = 12 for the Think Team component, and θ = 54 for
the CAD component. The bound on the longest acyclic path in the model is
m = 4 for both Think Team and CAD. Although the value of m is relatively
small, the larger alphabet and fairness bounds (especially in the case of the CAD
component) have made the inferrence of complete models prohibitively hard for
this case study, therefore we have only experimented with incomplete learning
techniques.

In the performed experiments, we have studied the learning process of both
Think Team and CAD entities in three situations. First, we learn each entity
individually, without considering the safety property. Then, we experiment with
the centralized learning process, using the required safety property. In the end,
we also experiment with the distributed learning setting on this case study,
making use again of the specified coordination policy.

The cycle specifications files for all the three components in this case study are

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 151

(a)

!remove
!setvalue
!setvalues
!stop !start

!import

!checkin

!checkout

!attributes
!get

ttready?

openfile?

save?

closefile?

!afterinit

openfile?

openfile?

(b)

remove?
setvalue?
setvalues?
stop?

checkin?

checkout?

attributes?
get?

start?

import?

!save

afterinit?

!openfile
!openfile

!ttready

!openfile

!closefile

(c)

Figure 5.25: Case study: 5.25(a) Property / Coordination policy, 5.25(b) CAD
simplified model, 5.25(c) Think Team real model

BUPT

152 CHAPTER 5. EXPERIMENTAL RESULTS

included below. They are the same to be used during centralized, distributed
and individual behaviour exploration.

The cycles specified for the optimized exploration of the Think Team component
can be seen below. All considered cycles have only one join point, at the entry
of each. Each such cycle contains one of the relevant execution scenarios of the
Think Team component, earlier described and detailed.

:[1]<checkin?><save!><closefile!>
:[1]<import?><openfile!><save!><closefile!>
:[1]<checkout?><openfile!>
:[1]<get?><openfile!><closefile!>
:[1]<attributes?><openfile!><closefile!>
:[1]<start?><ttready!><afterinit?>
:[1]<remove?>
:[1]<setvalues?>
:[1]<setvalue?>
:[1]<stop?>

Below, one can also see the specified cycles for the cycle-based exploration of
the CAD component. As the initial case study in [78] was synchronous and as
it only has two protagonists, it is natural that in its asynchronous version the
two participating components mirror each other, i.e. their behavioural model
is similar under the consideration that a message sent event in one component
becomes a (same) message receive event in the other. So, all relevant scenarios
of the CAD component actually mirror the relevant scenarios described for the
Think Team component. As the specified cycles for the CAD component also
represent all the relevant use scenarios of CAD, it is easy to notice that, in fact,
they perfectly mirror the cycles specified for the Think Team component.

:[1]<checkin!><save?><closefile?>
:[1]<import!><openfile?><save?><closefile?>
:[1]<checkout!><openfile?>
:[1]<get!><openfile?><closefile?>
:[1]<attributes!><openfile?><closefile?>
:[1]<start!><ttready?><afterinit!>
:[1]<remove!>
:[1]<setvalues!>
:[1]<setvalue!>
:[1]<stop!>

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 153

5.3.1 Individual Exploration

When studying the BASYL algorithm for model learning in an individual explo-
ration setting, no safety property is not employed to coordinate the execution.
In the performed experiments, the learning process for incomplete, approximate
models is studied both with its original, unaltered exploration method and with
the cycle-based optimization for behaviour exploration. In the latter case, the
cycles used tp stir the exploration are the same specified cycles for use in the
centralized and distributed exploration settings.

Think Team

When learning the model of the Think Team component separately, the following
values were set for the relevant learning parameters: m, the size of longest acyclic
trace in the model, was set to m = 4, and θ, the fairness bound for the black
box, was computed as θ = 12.

Figures 5.26(a) and 5.26(b) show the models of the Think Team behaviour
learned in a number of 500, respectively 1000 executions. In figure 5.26(a),
almost only the states on the first two levels appear to be completely explored,
while the rest still have uncontrollable transitions to the unknown-future state.
No cycle has been identified in the model. The model in figure 5.26(b), obtained
after 1000 executions, is somehow better explored than the previous one, as only
4 of its states still have uncontrollable transitions to the unknown-future state.
However, still no cycle is identified.

Further on, figure 5.27(a) shows us a model of Think Team learned in 1500
executions. The behaviour of the black box seems significantly better explored,
although transitions to the "wild" future state still exist. Also, one of the model
cycles has been identified. Then, in figure 5.27(b), after 15000, the model is
explored well enough for 5 cycles to be identified in the model, although not
from the initial state, as they should have been.

In figure 5.28(a), we can see a model of the Think Team component learned in
150000 executions. All the cycles from the precise model are present, although
some appear more than once, and others were not identified from the initial state,
as they originally are – this happens because it is easier for deeper states to be
identified as identical. One of the states in the model still has uncontrollable
transitions to the unknown-future state.

BUPT

154 CHAPTER 5. EXPERIMENTAL RESULTS

Finally, after 1500000 executions we obtain a precise-like model, that can be
seen in figure 5.28(b). It is worth mentioning here that precise-like models have
not been obtained neither for 250000, nor for 500000, and nor for 750000 runs,
although all these experiments have produced models that contained all the orig-
inal cycles and no longer had transitions to the unknown-future state. However,
several states in these models were yet to be identified as identical.

stop? remove? checkin?

checkout? attributes?
get? start?import?

setvalue? setvalues?

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalues?

setvalue?
stop?

attributes?
checkin?
checkout?

get?
import?
start?

stop? remove?
setvalue?setvalues?

!closefile
!openfile
!save

!ttready

!closefile
!openfile
remove?
!save

setvalue?
setvalues?
start?
stop?

!ttready

!save

!closefile

!openfile

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

!openfile

checkin?
!closefile
!openfile
remove?
!save

setvalue?
setvalues?
stop?

!ttready

!closefile

!ttready

afterinit?

!openfile

checkout?
!closefile
!openfile
remove?
!save

setvalue?
setvalues?
stop?

!ttready

!closefile
import?
!openfile
remove?
!save

setvalue?
setvalues?
stop?

!ttready

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalues?

setvalue?
stop?

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?
stop?

(a)

remove?
setvalue?
setvalues?
stop?

checkin?

checkout?

attributes?
get?

start?

import?

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?
stop?

!closefile
!openfile
!save

!ttready

!save

!closefile

!openfile

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

!openfile

attributes?
checkin?
checkout?
!closefile

get?
import?
!openfile
remove?
!save

setvalue?
setvalues?
start?
stop?

!ttready

!closefile

!ttready
afterinit?

!openfile

(b)

Figure 5.26: Learned models for component Think Team in: (a) 500 executions,
(b) 1000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 155

remove?
setvalue?
setvalues?
stop?

checkin?

checkout?

attributes?
get?

start?

import?

start?
checkout?

remove?
setvalue?
setvalues?
stop?

attributes?
get?

checkin?

import?

!save

!ttready

!closefile
!openfile
!save
!ttready

!save

!openfile
!save
!ttready

!closefile

!closefile

!closefile
!openfile
!save
!ttready

import?

!openfile

remove?
setvalue?
setvalues?
stop?

attributes?
checkout?

get?

checkin?

start?

import?

!openfile

!openfile !closefile

!openfile

import?

!ttready

afterinit?

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

!openfile

!save

!closefile

!save

!ttready

!openfile

(a)

remove?
setvalue?
setvalues?
stop?

checkout?

import?

checkin?attributes?
get?

start?

remove?
setvalue?
setvalues?
stop?

import?

checkin?

checkout?

attributes?
get?

start?

!closefile

!openfile
!save
!ttready

!closefile

import?

!closefile
!openfile
!save

!ttready

checkin?attributes?
get?

start?

!openfile

!save

checkout?import?

remove?
setvalue?
setvalues?
stop?

checkin?attributes?
get?

start?

!openfile

afterinit?

import?

checkin?attributes?
get?

start?

!ttready

remove?
setvalue?
setvalues?
stop?

checkin?
attributes?
checkout?

get?

start?

import?

!openfile

!closefile
!openfile
!save
!ttready

!save

!closefile
!openfile
!ttready

import?

!save

!openfile

!openfile

!ttready

(b)

Figure 5.27: Learned models for component Think Team in: (a) 1500 executions,
(b) 15 000 executions.

BUPT

156 CHAPTER 5. EXPERIMENTAL RESULTS

remove?
setvalue?
setvalues?
stop?

attributes?
get?

start?

import?

checkout?

checkin?

remove?
setvalue?
setvalues?
stop?

attributes?
get?

start?

import?

!closefile
!openfile
!save
!ttready

checkout?

checkin?

remove?
setvalue?
setvalues?
stop?

checkout?

attributes?
get?

start?

import?

checkin?

!openfile

!openfile

!ttready

!openfile!closefile
!openfile
!save

!ttready

!closefile

!openfile

afterinit?

!save

(a)

remove?
setvalue?
setvalues?
stop?

checkin?

checkout?

attributes?
get?

start?

import?

!save

afterinit?

!openfile
!openfile

!ttready

!openfile

!closefile

(b)

Figure 5.28: Learned models for component Think Team in: (a) 150 000 exe-
cutions, (b) 1500 000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 157

Think Team – cycle-based exploration

The CAD and Think Team case study is one where the benefits brought by
cycle-based exploration over the original, unoptimized exploration strategy are
highly visible. The relevant cycles are identified faster, the models obtained,
even when far from precise-like, have a smaller number of states, as the result
of a more focused exploration.

The specification of all the cycles considered relevant for the behaviour explo-
ration process is given again below.

:[1]<checkin?><save!><closefile!>
:[1]<import?><openfile!><save!><closefile!>
:[1]<checkout?><openfile!>
:[1]<get?><openfile!><closefile!>
:[1]<attributes?><openfile!><closefile!>
:[1]<start?><ttready!><afterinit?>
:[1]<remove?>
:[1]<setvalues?>
:[1]<setvalue?>
:[1]<stop?>

In figures 5.29(a) and 5.29(b) we can see models of the Think Team component
obtained after 500, respectively 1000 executions. Although none of the rele-
vant cycles have been identified yet, the models obtained have a smaller number
of states and less transitions to the unknown-future state than the models ob-
tained by unoptimized learning. The model at figure 5.30, obtained after 1500
executions, has still one identified cycle, similarly to its correspondent result-
ing from regular learning, but shows a greater number of completely explored
states, and at greater depths. At figure 5.31 we see a model obtained in 15000
executions, that still has only 5 identified cycles, like its correspondent from
unoptimized exploration, but also having more completely explored states at
significant depths.

However, after no more than 150000 executions, the cycle-based learning algo-
rithm returns a precise-like model as a result. It is important to emphasize here
that the Think Team component has a rather large alphabet, of 15 events, and
a fairness bound of 12. This makes it more difficult to explore it completely
than would be the case with simpler components. In order to have completely
explored states at depth 2, for example, an actual number of executions that

BUPT

158 CHAPTER 5. EXPERIMENTAL RESULTS

surpasses 122 = 144 is needed. At depth 3, we would need more than 123, etc.
What the cycle-oriented exploration actually does is to obtain more than θ visits
for deeper vertices on interesting paths in a faster way, due to acutely stressing
those paths by a focused exploration process.

checkin?

attributes?
get?

start?

import?

stop?

remove?
setvalue?
setvalues?

checkout?

!save
!openfile

!ttready

afterinit?

!openfile

checkin?
!closefile
!openfile
remove?
!save

setvalue?
setvalues?
stop?

!ttready

!closefile
!openfile
!save

!ttready

!closefile

remove?
setvalue?
setvalues?

attributes?
checkin?
checkout?

get?
import?
start?

stop?

checkin?
checkout?
!closefile
!openfile
remove?
!save

setvalue?
setvalues?
stop?

!ttready

remove?
setvalue?
setvalues?
stop? attributes?

checkin?
checkout?

get?
import?
start?

!openfile

(a)

checkin?

attributes?
get?

start?

import?

remove?
setvalue?
setvalues?
stop?

checkout?

!save

!openfile

!closefile
!openfile
!save
!ttready

!ttready afterinit?

!openfile

attributes?
checkin?
checkout?
!closefile

get?
import?
!openfile
remove?
!save

setvalue?
setvalues?
start?
stop?

!ttready

!closefile

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?
stop?

!openfile

(b)

Figure 5.29: Learned models for component Think Team in: (a) 500 executions,
(b) 1000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 159

attributes?
get? start?

import?

checkin?

remove?
setvalue?
setvalues?
stop?

checkout?

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

attributes?
checkin?
checkout?
!closefile

get?
import?
!openfile
remove?
!save

setvalue?
setvalues?
start?
stop?
!ttready

!openfile !ttready

afterinit?

remove?
setvalue?
setvalues?
stop?

!closefile
!openfile
!save
!ttready

checkin?checkout? attributes?
get?start?

import?

remove?
setvalue?
setvalues?
stop?

checkin?checkout? attributes?
get?start?

import?

!closefile
!openfile
!save
!ttready

!save

!save

!closefile
!openfile
!ttready

!save

!closefile
!openfile
!ttready

!save

!closefile

!closefile

!closefile

!openfile
!save
!ttready

!closefile

!openfile
!save
!ttready

!openfile

!openfile

!closefile
!save
!ttready

!openfile

!closefile
!save
!ttready

!openfile

!ttready

!closefile
!openfile
!save

!ttready

afterinit?

afterinit?

!closefile
!openfile
!save
!ttready

!openfile

!closefile
!save
!ttready

!openfile

!save

!closefile

remove?
setvalue?
setvalues?
stop?

checkin? checkout?attributes?
get? start? import?

!openfile

(a)

Figure 5.30: Learned model for component Think Team in: (a) 1500 runs.

BUPT

160 CHAPTER 5. EXPERIMENTAL RESULTS

attributes?
get?start?

import?

remove?
setvalue?
setvalues?
stop?

checkout?

checkin?

!closefile

!openfile
!save
!ttready

!closefile

!openfile

!openfile

!openfile

!ttready

!ttready

afterinit?

!closefile
!openfile
!save

!ttready

afterinit?

remove?
setvalue?
setvalues?
stop?

checkin?checkout?

attributes?
get?

start?

import?

!save

!save

!openfile

!openfile

!ttready

!openfile

checkout?

attributes?
get?start?

remove?
setvalue?
setvalues?
stop?

import?

checkin?

checkout?

attributes?
get? start?

remove?
setvalue?
setvalues?
stop?

checkin?

import?

!closefile
!openfile
!save
!ttready

checkout?

attributes?
get? start?

remove?
setvalue?
setvalues?
stop?

checkin?

import?

!closefile
!openfile
!save

!ttready

!openfile

!save

(a)

Figure 5.31: Learned model for component Think Team in: (a) 15 000 runs.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 161

remove?
setvalue?
setvalues?
stop?

start?

import?

checkout?

checkin?

attributes?
get?

!ttready

!openfile

!closefile

!openfile

afterinit?

!save

!openfile

(a)

Figure 5.32: Learned model for component Think Team in: (a) 150 000 runs.

CAD

In the case of the CAD component, the further value were attributed to the
relevant learning parametersm, the size of longest acyclic trace in the model, was
set to m = 4, and θ, the fairness bound, was computed as θ = 54. We have to
specifically observe that CAD has a significantly large number of uncontrollable
events in its alphabet: 11 out of 15. This not only leads to a high fairness
bound, but also makes the black box component CAD harder to control, and,
consequently, harder to learn.

In figures 5.33 and 5.34, we can see the models resulting from a lower set
bound on the maximum number of executions. Thus, in figure 5.33(a) we see
a model of CAD learned after 500 executions, in figure 5.33(b) we see a model
learned in 1000 executions, while the model in figure 5.34(a) has been learned
in no more than 5000 executions. While the first two models appear to offer
few identified paths, as a result of a poor exploration, the latter model shows
a better exploration of potential paths, and also a more clean model, since at
least the states on the first two levels are now completely explored. However,
many states have uncontrollable transitions to the unknown-future state, and
no cycle is yet identified.

Further on, we consider models obtained after a considerably larger number of
executions. In figure 5.35(a) we can see the result of a learning process that
uses 50000 runs. The model obtained is significantly larger, as much more
potential paths have been explored, however still no cycle has been identified

BUPT

162 CHAPTER 5. EXPERIMENTAL RESULTS

and there are still a large number of states which have uncontrollable transitions
to the unknown-future state. The model in figure 5.36(a) has been obtained
after 250000 learning executions. Finally, the states on the third level of depth
have been completely explored and 4 of the cycles in the original model have
been identified. The number of states with uncontrollable transitions to the
unknown-future state has decreased, but is still substantial.

After 500000 executions, the learned model at figure 5.37(a) has fewer incom-
pletely explored states, however the number of identified cycles remains 4. Fi-
nally, after 1500000 executions, the model at figure 5.37(b) is obtained, which
has all the original 10 cycles identified, and 5 of them are actually identified
from the initial state. This model still has a number of 5 states exhibiting un-
controllable transitions to the unknown-future state, however, this is normal, as
θ4 = 8503056, which highly surpasses our imposed limit of 1500000 runs.

!get

!setvalue
!setvalues

!checkout

!remove
!stop

!start

!import !attributes !checkin

openfile?

!afterinit
!remove
!setvalue
!setvalues
!stop

!checkin

!attributes
!checkout

!get
!import

!start

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

!remove
!setvalue
!setvalues
!stop

!checkin

!attributes
!checkout

!get
!import

!start

ttready?

!afterinit

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

closefile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout
closefile?

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

(a)

!attributes
!get

!remove
!setvalue
!setvalues
!stop

!checkout!checkin!start !import

openfile?

!remove
!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!start!checkin

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

closefile?

openfile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

!afterinit

openfile?

save?

(b)

Figure 5.33: Learned models for component CAD in: (a) 500 executions, (b)
1000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 163

!setvalue !setvalues

!attributes
!get !checkout!start

!stop

!remove !checkin

!import

!remove
!setvalue
!stop

!checkout
!get

!import
!start !setvalues!attributes !checkin

!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!start !remove!checkin

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

save?

openfile?

closefile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

openfile?

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

ttready?

!afterinit

!remove
!setvalue
!setvalues
!stop

!checkout
!get!start!attributes !checkin !import

!remove
!setvalues
!stop

!attributes
!checkout

!get
!import

!start

!setvalue!checkin

save?

openfile?

(a)

Figure 5.34: Learned models for component CAD in: (a) 5000 executions.

!checkout

!stop !remove

!checkin

!setvalue

!setvalues

!start!attributes
!get

!import

closefile?

!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!attributes

!import

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile? save?

openfile?

!attributes
!get

!import
!remove
!setvalue
!setvalues
!start
!stop

!checkin
!checkout

!afterinit

!remove

!attributes
!checkin
!get

!import
!setvalue
!setvalues
!stop

!checkout

!start

!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!remove

!import

openfile?

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import
!remove
!setvalues
!stop

!checkin
!checkout

!get
!import
!setvalue
!start

!attributes

!attributes
!get !checkin!remove

!stop

!setvalue !checkout!start

!setvalues

!import

openfile?

closefile?

!attributes
!get !checkin

!checkout

!start !remove !setvalues

!stop

!import

!setvalue

save?

!attributes
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!attributes
!get !checkin!checkout!start !remove!stop !setvalues!setvalue

!import

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?!setvalue
!setvalues

!attributes
!checkin
!checkout
!import
!remove
!stop

!get
!start

!attributes
!get !checkin

!checkout

!start !stop !remove!setvalue !setvalues

!import

!setvalue

!attributes
!checkout

!get
!import
!remove
!setvalues
!start
!stop

!checkin !setvalues

!attributes
!checkin
!checkout
!import
!remove
!setvalue
!start

!get !stop!setvalues
!stop

!attributes
!checkout
!remove
!setvalue
!start

!checkin
!get !import!remove

!setvalue

!attributes
!checkin
!get

!setvalues
!start
!stop

!checkout
!import !stop

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start

!import

!remove
!setvalue

!attributes
!get

!import
!setvalues
!stop

!checkin
!checkout

!start

!setvalue

!attributes
!checkout
!remove
!setvalues
!start
!stop

!checkin
!get !import

ttready?

!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout
!remove
!start

!get !import

!afterinit

!remove
!setvalues

!attributes
!checkout

!get
!import
!setvalue
!stop

!checkin

!start

openfile?

!setvalue

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalues
!start
!stop

!attributes
!checkin
!import
!remove
!setvalue
!setvalues
!stop

!checkout
!get
!start

openfile?

!remove

!attributes
!checkin
!get

!import
!setvalue
!setvalues
!start
!stop

!checkout

(a)

Figure 5.35: Learned models for component CAD in: (a) 50 000 executions.

BUPT

164 CHAPTER 5. EXPERIMENTAL RESULTS

!start

!remove!stop

!import!attributes
!get

!checkin

!checkout

!setvalue !setvalues

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!get

!import

!attributes
!checkin
!checkout
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

closefile?

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import

!start

!remove
!setvalue
!setvalues
!stop

!import!attributes
!get

!checkin

!checkout!start

!remove
!setvalue
!setvalues
!stop

!import!attributes
!get

!checkin

!checkout

openfile?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!start

!import!attributes
!get

!checkin

!checkout
!remove
!setvalue
!setvalues
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!start !import

!attributes
!get

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!checkin

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit

!start

!checkout

!import!attributes
!get

!checkin

!setvalue
!setvalues
!stop

!remove

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!start

!remove
!setvalue
!setvalues
!stop

!import!attributes
!get

!checkin

!checkout

openfile?

!checkin

!import

!attributes
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!start

!remove
!setvalue
!setvalues
!stop

!import!attributes
!get

!checkin

!checkout

openfile?openfile?

!checkin
!get

!import

!attributes
!checkout
!remove
!setvalue
!setvalues
!start
!stop

(a)

Figure 5.36: Learned models for component CAD in: (a) 250 000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 165

!checkout

!start

!checkin

!setvalues!remove

!attributes
!get

!stop!setvalue

!import

openfile?

!start

!checkin

!checkout
!remove
!setvalue
!setvalues
!stop

!attributes
!get

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

!setvalue

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalues
!stop

!import

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!remove

!attributes
!checkin
!checkout

!get
!start

!setvalue
!setvalues
!stop

!import

!remove
!setvalue

!attributes
!checkin
!checkout

!get
!start

!setvalues
!stop

!import

ttready?

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit

!start

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!checkin !attributes
!get!import

save?

openfile?!remove
!setvalues

!checkout

!start

!checkin

!setvalue !stop

!attributes
!get

!import

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes

!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import

!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!remove

!import

!checkin

!attributes
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

!remove
!stop

!start

!checkin

!checkout!setvalues

!attributes
!get

!setvalue

!import

closefile?

!remove !setvalue

!start

!checkin

!checkout !stop

!attributes
!get

!setvalues

!import

openfile?

!stop

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues

!import

!setvalue
!stop!setvalues

!start

!checkin

!checkout!remove

!attributes
!get

!import !setvalues

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!stop

!import

!setvalue!setvalues

!start

!checkin

!checkout!stop

!attributes
!get

!remove

!import

openfile?

(a)

!remove
!setvalue
!setvalues
!stop

!start

!checkout

!import !attributes
!get

!checkin

!remove
!setvalue
!setvalues
!stop

!start!checkout

!afterinit

!import !attributes
!get !checkin

!remove
!setvalue
!setvalues
!stop

!start

!checkout

!import !attributes
!get

!checkin

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit

closefile?

openfile?

openfile?

openfile?

save?

(b)

Figure 5.37: Learned models for component CAD in: (a) 500 000 executions,
(b) 1500 000 executions.

BUPT

166 CHAPTER 5. EXPERIMENTAL RESULTS

CAD – cycle-based exploration

As the CAD component has a large number of uncontrollable events in its al-
phabet, being thus hard to control, the influence the cycle-based optimized
exploration has on the learning process is significantly less than the one it had in
the case of the Think Team component. Steering a current execution towards
one scenario or another relies on the controllable events in the alphabet, which
are only in small percentage here.

The specified cycles for the CAD black box are given below.

:[1]<checkin!><save?><closefile?>
:[1]<import!><openfile?><save?><closefile?>
:[1]<checkout!><openfile?>
:[1]<get!><openfile?><closefile?>
:[1]<attributes!><openfile?><closefile?>
:[1]<start!><ttready?><afterinit!>
:[1]<remove!>
:[1]<setvalues!>
:[1]<setvalue!>
:[1]<stop!>

In figures 5.39(a), 5.38(b) and 5.38(c) we have the learned models for compo-
nent CAD after 500, 1000 and respectively 5000 executions. They are pretty
similar to the ones obtained for the unoptimized learning algorithm and have
same main characteristics: states at small depths are incompletely explored, no
cycles are identified, and the first two models are proof of poor exploration.

However, further on slight differences arise. In figure 5.39(a), the model obtained
after 50000 executions actually has one identified cycle, instead of none, as it
is the case with its correspondent in the unoptimized setting. Also, in figure
5.39(b), for the model learned in 250000 executions, the identified cycles are in
number of 5, instead of 4, as obtained with the regular learning algorithm.

After 500000 runs, the model in figure 5.40(a) is obtained, which still has 5
identified cycles, but shows significantly less states linked to the unknown-future
state. And, finally, after 1500000 learning executions, we obtain the model in
figure 5.40(b), which is highly similar to the one obtained by the unoptimized
algorithm. Thus, as CAD is far less controllable than Think Team, the effect of
the cycle-based optimization is only marginally visible here, and it appears only
where controllable choices exist.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 167

!import !get

!checkout !start

!remove
!setvalue

!setvalues
!stop

!attributes

!checkin

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout
closefile?

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!remove
!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!start!checkin

!remove
!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!start!checkin

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

openfile?

closefile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

(a)

!import !attributes
!get

!remove
!setvalue
!setvalues
!stop

!start!checkin!checkout

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

openfile?

closefile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!remove
!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!start!checkin

ttready?

!afterinit

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

save?

openfile?

(b)

!start!attributes
!get!remove!checkout

!stop

!checkin

!import

!setvalues

!setvalue

ttready?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

save?

openfile?

openfile?

closefile?

!remove
!setvalue
!setvalues
!stop

!start !get
!import

!checkin

!attributes

!checkout

!afterinit

openfile?

!setvalue

!attributes
!checkin
!get

!remove
!setvalues
!start
!stop

!checkout

!import !setvalue

!remove
!setvalues
!stop

!start !checkout
!import

!checkin

!attributes
!get

save?

openfile?

!setvalue
!setvalues

!remove
!stop

!start
!attributes

!get
!import

!checkin !checkout

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

openfile?!setvalues

!remove
!setvalue
!stop

!start
!checkout

!get
!import

!checkin

!attributes

(c)

Figure 5.38: Learned models for component CAD in: (a) 500 executions, (b)
1000 executions, (c) 5000 executions.

BUPT

168 CHAPTER 5. EXPERIMENTAL RESULTS

!checkin

!setvalue

!start

!setvalues

!checkout

!remove

!attributes
!get

!stop

!import

save?

closefile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start

!attributes!stop!import openfile?

!attributes
!get!setvalue !checkout!remove !checkin!setvalues !start

!import

!stop

!attributes
!checkin
!get

!import
!remove
!setvalues
!stop

!checkout
!start!setvalue

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!checkin
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkout

!get
save?

ttready?

!afterinit

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

!stop !attributes
!get

!setvalue

!checkout !checkin !start!remove

!import

!setvalues

openfile?

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues

!stop

!import

!attributes
!get

!stop

!checkout !checkin!remove !setvalue !setvalues !start

!import

!attributes
!checkin
!checkout

!get
!import
!setvalue
!setvalues
!start

!remove
!stop

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start

!stop!import

openfile?

!checkout
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkin
!get

ttready?

!afterinit

!attributes
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!checkin

!attributes
!get

!import
!remove
!setvalue
!setvalues
!start
!stop

!checkin
!checkout

!checkin
!checkout

!get
!import
!setvalue
!setvalues
!start
!stop

!attributes!remove

!attributes
!checkout

!get
!import
!start
!stop

!checkin
!remove
!setvalue
!setvalues

!attributes
!get!checkout !checkin !start !stop!setvalue !remove!setvalues

!import

!attributes
!checkin
!checkout
!setvalue
!start
!stop

!get!remove
!setvalues!import

openfile?

!attributes
!checkout

!get
!import
!setvalue
!setvalues
!start

!checkin!remove
!stop

!attributes
!checkin
!get

!import
!setvalue
!start
!stop

!checkout!remove
!setvalues

(a)

!checkout

!start

!checkin

!setvalue !stop

!import

!attributes
!get

!remove !setvalues

closefile?

!start

!checkin

!checkout
!remove
!setvalue
!setvalues
!stop

!import

!attributes
!get

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!checkout

!remove
!setvalue

!start

!checkin

!import

!attributes
!get

!setvalues!stop

!checkin

!attributes
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

!remove
!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!import

ttready?

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit

save?

!start

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!import !attributes
!get !checkin

!remove
!setvalue
!setvalues
!stop

!start

!checkin

!import

!attributes
!get

!checkout

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!remove
!setvalue
!setvalues
!stop

!start

!checkin

!import

!attributes
!get

!checkout

openfile?

openfile?

!remove
!setvalue
!setvalues
!stop

!start

!checkin

!import

!attributes
!get

!checkout

openfile?

!attributes
!get

!checkin
!checkout
!remove
!setvalue
!setvalues
!start
!stop

!import

openfile?

!attributes
!checkin

!checkout
!get

!remove
!setvalue
!setvalues
!start
!stop

!import!checkin
!get

!attributes
!checkout
!remove
!setvalue
!setvalues
!start
!stop

!import

openfile?

!start

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!stop

!import

!remove
!setvalue
!setvalues
!stop

!start

!checkin

!import

!attributes
!get

!checkout

openfile?

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

(b)

Figure 5.39: Learned models for component CAD in: (a) 50 000 executions, (b)
250 000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 169

!stop!setvalues!remove

!checkin

!import

!checkout

!setvalue

!attributes
!get!start

closefile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!checkin
!remove
!setvalue
!stop

!import

!checkout !setvalues

!attributes
!get!start

!afterinit

!checkin

!import

!checkout !setvalue
!stop !remove

!attributes
!get

!setvalues

!start

!checkin!setvalues

!import

!checkout

!attributes
!get

!remove!setvalue

!start

!stop

save?

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import openfile?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!checkin

!import

!checkout
!remove
!setvalue
!setvalues
!stop

!attributes
!get!start

!checkout

!remove
!setvalue
!setvalues
!stop

!checkin

!import !attributes
!get!start

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!checkin !attributes
!get!start

openfile?

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalues
!stop

!setvalue

!import

!checkin!setvalue
!setvalues

!import

!checkout!stop

!attributes
!get

!remove

!start

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue

!setvalues
!stop

!import

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues

!stop

!import

openfile?

!attributes
!checkin
!checkout

!get
!start

!setvalue
!setvalues
!stop

!remove

!import

!attributes
!checkin
!checkout

!get
!start

!setvalue
!stop

!remove
!setvalues

!import

ttready?

!attributes
!checkin
!checkout

!get
!start

!setvalue
!setvalues

!remove
!stop

!import

(a)

!remove
!setvalue
!setvalues
!stop

!checkout

!start !import !attributes
!get

!checkin

!remove
!setvalue
!setvalues
!stop

!checkout

!start !import !attributes
!get

!checkin

!remove
!setvalue
!setvalues
!stop

!checkout

!afterinit

!start !import!attributes
!get!checkin

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

openfile?

closefile?

ttready? openfile?

!afterinit

openfile?

save?

(b)

Figure 5.40: Learned models for component CAD in: (a) 500 000 executions,
(b) 1500 000 executions.

BUPT

170 CHAPTER 5. EXPERIMENTAL RESULTS

5.3.2 Centralized Exploration

In the following the model inference results obtained for the case study of Think
Team and CAD, using a centralized exploration setting, are presented. As this
case study considers a system with only two components, the global traces used
by the centralized learning process, while still longer than the sum of traces used
in the distributed learning setting, do not exhibit significantly greater lengths.
However, having longer execution traces is a characteristic of centralized learning
that does not depend on any specifics of the case study.

Learning experiments performed on the Product Data Management System case
study have used global size for the longest acyclic path m = 4. The fairness
bounds were again set independently for each component, thus θ = 12 for
the Think Team component and θ = 54 for the CAD component. After each
learning experiment, a controller has been computed for the inferred models and
the coordination policy. We have then verified whether the obtained controller
did work on the real system, i.e. on the plant determined by the precise models
of participating components. For controller synthesis and verification we have
used the Supremica tool [59].

Normal Exploration

Below we present the results of learning the models of the Think Team and CAD
components using the centralized exploration algorithm. Table 5.5 summarizes
the statistical data characterizing these results, i.e. the inferred models and
the generated system controllers. The data presented represents the number of
states and the number of transitions of both automata and the controller.

Some of the models obtained from the performed learning experiments can be
seen in figures 5.41 and 5.42 for the Think Team component, and in figures
5.43, 5.44 and 5.45 for the CAD component. After 500 and 1000 executions,
the models in figures 5.41(a), respectively 5.41(b) were obtained for Think Team,
while models in figures 5.43(a), respectively 5.43(b) were learned for CAD. As
no cycle is identified in any of these models, the generated controllers would
only allow an execution scenario to happen at most once.

In figure 5.41(c) we can see a model of Think Team, and in figure 5.43(c) one of
CAD, both learned in 10000 executions. Both models have the same identified
cycle, thus the computed controller with 324 states and 1982 allows the import

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 171

file scenario an unlimited number of repetitions, while all other scenarios can
repeat only once. This points to an advantage of the centralized exploration over
the distributed and isolated settings: an identified cycle is more likely to appear
in all participating components, since this implies that the scenario was explored
globally for a significant number of times. However, when fairness bounds differ,
cycle identification in the components with higher fairness bounds is clearly
delayed. This is the case with the results obtained after 25000 executions: the
model of the Think Team component can be seen in figure 5.42(a), while the
one of CAD appears in figure 5.44(a). While the learned model of Think Team
already has 5 identified cycles, the one for CAD has only one, so the obtained
controller for the system is no more permissive than the previous one.

After 100000 executions, the models obtained have both the same 5 identified
cycles (see figure 5.42(b) for Think Team and figure 5.44(b) for CAD), thus
their corresponding controller, having 419 states and 4000 transitions, will also
allow for these scenarios to repeat an unlimited number of times.

The models obtained in 500000 learning executions can be seen in figures 5.42(c)
(Think Team), and 5.44(c) (CAD). The learned model for Think Team has all
its cycles identified, 6 of them from the initial state, however the model obtained
for CAD has only 5 identified cycles, so only the scenarios associated with these
cycles will be allowed to repeat for an unlimited number of times by the computed
280 state and 2771 transition controller.

After 750000 learning executions, the model obtained for Think Team is similar
to the one at figure 5.42(c) however, the model of the CAD component, which
can be seen at figure 5.45(a), has a number of 7 identified cycles. Thus, the
resulting controller, which has 280 states and 3003 transitions will allow for 7
out of 10 execution scenarios to repeat for an unlimited number of times.

The average trace length encountered during the normal exploration process was
19.16, with 3.16 more than 16, the sum of the two maximum trace lengths. It is
worth mentioning here that the experiment using 1500000 executions has failed
due to an Out of Memory exception thrown by the Java Virtual Machine.

BUPT

172 CHAPTER 5. EXPERIMENTAL RESULTS

Table 5.5: Model inference results – normal exploration

nr. TT size TT tr. CAD size CAD tr. ctrl size ctrl tr.
500 177 772 163 1825 133 1886

21 109 11 126
1 ×103 255 1172 194 2027 129 1048

14 56 16 85
1.5 ×103 250 925 221 2324 129 1048

26 71 16 85
2.5 ×103 250 925 245 2588 129 1048

26 71 16 85
5 ×103 249 925 254 2547 193 1656

26 71 24 138
1 ×104 226 927 250 2150 324 1982

23 73 19 73
2.5 ×104 206 373 239 2148 331 2584

22 78 22 96
5 ×104 204 378 243 1767 571 5786

29 106 38 254
1 ×105 121 275 193 1024 419 4000

20 69 22 148
2.5 ×105 114 325 201 1027 200 1801

12 46 27 189
5 ×105 114 325 206 1024 280 2771

12 46 37 289
7.5 ×105 113 324 128 993 280 3003

12 46 37 329

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 173

start?

setvalue? setvalues?

checkin? attributes?
get?

remove?

import?

stop?

checkout?

!ttready

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
stop?

setvalues?

!closefile
!openfile
!save

!ttready

checkout?
!closefile
!openfile
!save

setvalue?
setvalues?
start?
stop?
!ttready

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?

stop?

!save

!closefile

!openfile

afterinit?

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?
stop?

!openfile

!save

!closefile

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?

stop?

checkout?
!closefile
import?
!openfile
!save

setvalue?
start?
stop?

!ttready

checkin?
checkout?
!closefile
!openfile
!save

setvalue?
start?
stop?

!ttready

!openfile

checkout?
!closefile

get?
!openfile
!save

setvalue?
start?
stop?
!ttready

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

(a)

start?

remove?
setvalue?
setvalues?
stop?

checkin?

attributes?
get?

import?

checkout?

!ttready

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?
stop?

!closefile
!openfile
!save

!ttready

attributes?
checkin?
checkout?
!closefile

get?
import?
!openfile
remove?
!save

setvalue?
setvalues?
start?
stop?

!ttready

!save

!closefile

!openfile

afterinit?
!closefile

!openfile

!openfile

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

(b)

start?

remove?
setvalue?
setvalues?
stop?

checkin?

attributes?
get?

checkout?

import?

!ttready

!openfile

!closefile
!openfile
!save
!ttready

checkout?

remove?
setvalue?
setvalues?
stop?

start?

checkin?

attributes?
get?

import?

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

!save

!save

!closefile

!closefile

!closefile
!openfile
!save
!ttready

start?

checkin?

attributes?
get?

import?

start?

checkin?

attributes?
get?

import?

!openfile

afterinit?

!ttready

!openfile

!closefile

!openfile

!save

!openfile

remove?
setvalue?
setvalues?
stop?

start?

checkout?

checkin?

attributes?
get?

import?

!openfile

(c)

Figure 5.41: Learned models for component Think Team in: (a) 500 executions,
(b) 1000 executions, (c) 10000 executions.

BUPT

174 CHAPTER 5. EXPERIMENTAL RESULTS

start?

remove?
setvalue?
setvalues?
stop?

import?

checkin?

attributes?
get?

checkout?

!ttready

!openfile

!openfile

import?

start?

checkout?

import?

remove?
setvalue?
setvalues?
stop?

checkin?

attributes?
get?

afterinit?

!closefile

!openfile
!save

!ttready

!closefile

!save

start?

import?

!closefile
!openfile
!save

!ttready

checkin?

attributes?
get?

!openfile

!closefile
!openfile
!save

!ttready

!save

!closefile
!openfile
!ttready

remove?
setvalue?
setvalues?
stop?

attributes?
checkout?

get?
checkin?

import?

start?

start?

import?

checkin?

attributes?
get?

!save

!ttready

!openfile!openfile
start?

checkout?

remove?
setvalue?
setvalues?
stop?

import?

checkin?

attributes?
get?

(a)

start?

import?

remove?
setvalue?
setvalues?
stop?

checkin? attributes?
get?

checkout?

!ttready

remove?
setvalue?
setvalues?
stop?

attributes?
checkout?

get?

import?

start? checkin?

!openfile

!openfile

!closefile
!openfile
!save
!ttready

start?

remove?
setvalue?
setvalues?
stop?

import?

!closefile
!openfile
!save

!ttready

checkin? attributes?
get?

checkout?

!openfile
!save
!ttready

!closefile

afterinit?

attributes?
get?

import?

start? checkin?

start?

remove?
setvalue?
setvalues?
stop?

import?

checkin? attributes?
get?

checkout?

!save

!save

!closefile

!openfile

!openfile

!ttready

!openfile

!save

(b)

remove?
setvalue?
setvalues?
stop?

start?

import?

checkout?

checkin?

attributes?
get?

remove?
setvalue?
setvalues?
stop?

start?

import?

checkout?

checkin?

attributes?
get?

remove?
setvalue?
setvalues?
stop?

start?

import?

!closefile
!openfile
!save
!ttready

checkout?

checkin?

attributes?
get?

!ttready

!openfile

!closefile
!openfile
!save
!ttready

!openfile

!openfile

afterinit?

!closefile

!save

!openfile

(c)

Figure 5.42: Learned models for component Think Team in: (a) 25 000 execu-
tions, (b) 100 000 executions, (c) 500 000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 175

!remove
!setvalues
!stop

!checkout !start

!setvalue !attributes
!get !checkin!import

!afterinit
!remove
!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!start !checkin

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

!remove
!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!start !checkin

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout
closefile?

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

(a)

!remove
!setvalue
!setvalues
!stop

!import !start !checkin !attributes
!get !checkout

!remove
!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!checkin !start

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

openfile?

save?

ttready?

!afterinit

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

closefile?

openfile?

openfile?

(b)

!remove
!setvalue
!setvalues
!stop

!attributes
!get

!checkout

!checkin

!start

!import

closefile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop!import

openfile?

openfile?
!remove
!setvalue
!setvalues
!stop

!attributes
!get

!checkout

!checkin

!start

!import

save?

ttready? !afterinit

openfile?

openfile?

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import

save?

ttready?
!afterinit

openfile?

(c)

Figure 5.43: Learned models for component CAD in: (a) 500 executions, (b)
1000 executions, (c) 10 000 executions.

BUPT

176 CHAPTER 5. EXPERIMENTAL RESULTS

!checkin

!start

!checkout

!attributes
!get

!remove
!setvalue
!setvalues
!stop

!import

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

ttready?

closefile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

openfile?

!afterinit

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

openfile?

!checkin

!checkout

!attributes
!get

!remove
!setvalue
!setvalues
!stop

!start

!import

closefile?

!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!attributes

!import

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!checkin

!attributes
!get

!remove
!setvalue
!setvalues
!stop

!start

!checkout

!import

ttready?
!afterinit

openfile?

openfile?

(a)

!remove
!setvalue
!setvalues
!stop

!import

!attributes
!get

!checkout

!checkin

!start

!import

!remove
!setvalue
!setvalues
!stop

!attributes
!get

!checkin

!start

!checkout

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

!checkout
!remove
!setvalue
!setvalues
!stop

!attributes
!get

!checkin

!start

!afterinit

closefile?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!attributes
!get !checkin !start

openfile?

openfile?

!checkout

!remove
!setvalue
!setvalues
!stop

!import

!attributes
!get

!checkin

!start

save?

ttready?

openfile?

(b)

!remove

!start

!import

!checkout

!stop

!checkin

!setvalues

!attributes
!get

!setvalue

!start

!import

!remove

!checkin

!checkout !setvalues

!setvalue !stop

!attributes
!get

ttready?

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!afterinit

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!start !import

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!checkin!attributes
!get

openfile?

!start

!checkout!remove
!stop

!import

!setvalues!setvalue

!checkin

!attributes
!get

closefile?

!start

!import

!checkout
!remove
!setvalue
!setvalues
!stop

!checkin

!attributes
!get

!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue

!import

!remove
!setvalue
!stop

!attributes
!checkin
!checkout

!get
!start

!setvalues

!import

!setvalue
!setvalues

!attributes
!checkin
!checkout

!get
!start

!remove
!stop

!import

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!start

!import

!stop !setvalues!setvalue!remove

!checkin

!checkout

!attributes
!get

!checkin

!import

!attributes
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!remove

!import

!remove
!setvalue

!attributes
!checkin
!checkout

!get
!start

!setvalues
!stop

!import

openfile?

!attributes

!import

!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!remove
!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!setvalue

!import

save?

openfile?

!remove
!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!import

!remove
!setvalue
!setvalues

!attributes
!checkin
!checkout

!get
!start

!stop

!import

!setvalue
!stop

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalues

!import

!start

!import

!setvalue!setvalues

!checkout

!checkin

!remove
!stop

!attributes
!get

openfile?

!setvalue

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalues
!stop

!import

!start

!import

!stop

!checkin

!checkout !remove

!setvalues

!attributes
!get

!setvalue

(c)

Figure 5.44: Learned models for component CAD in: (a) 25 000 executions, (b)
100 000 executions, (c) 500 000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 177

!stop !checkout

!import

!attributes
!get

!setvalue
!setvalues

!remove

!checkin

!start

!stop

!checkout

!afterinit

!import

!attributes
!get

!setvalue
!setvalues

!remove

!checkin

!start

!stop

!checkout

!import

!attributes
!get

!setvalue
!setvalues

!remove

!checkin

!start

!stop

!checkout

!import

!attributes
!get

!setvalue

!setvalues

!remove

!checkin

!start

!stop

!checkout

!import

!attributes
!get

!setvalue
!setvalues

!remove

!checkin

!start

!checkout

!import

!attributes
!get

!remove

!setvalue
!stop

!setvalues

!checkin

!start

!afterinit

!afterinit
!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

!remove
!setvalue
!setvalues
!stop

!afterinit
!checkout

!import

!attributes
!get

!checkin

!start

!remove
!setvalue
!setvalues
!stop

!checkout

!import

!attributes
!get

!checkin

!start

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!checkout

!afterinit
!remove
!setvalue
!setvalues
!stop

!import

!attributes
!get

!checkin

!start

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

openfile?

!remove
!setvalue
!setvalues
!stop

!checkout

!afterinit

!import

!attributes
!get

!checkin

!start

!afterinit
!checkin
!checkout
!remove
!setvalue
!setvalues
!stop

!import

!attributes
!get

!start

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!import

!attributes
!get

!checkin

!start

!remove
!stop!checkout

!afterinit

!import

!attributes
!get

!setvalue

!setvalues

!checkin

!start

!remove
!setvalues
!stop

!afterinit
!checkout
!setvalue

!import

!attributes
!get

!checkin

!start

!afterinit
!attributes
!checkout
!remove
!setvalue
!setvalues
!stop

!import

!get

!checkin

!start

!remove
!setvalue
!setvalues
!stop !afterinit

!checkout
!get

!import

!attributes

!checkin

!start

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!remove
!setvalue
!setvalues
!stop

!checkout

!import

!attributes
!get

!checkin

!start

!remove
!setvalue
!setvalues
!stop

!checkout

!import

!attributes
!get

!checkin

!start

closefile?

!remove
!setvalue
!setvalues
!stop

!checkout

!import

!attributes
!get

!checkin

!start

!remove
!stop

!checkout

!import

!attributes
!get

!setvalue

!setvalues

!checkin

!start

!remove
!stop

!checkout

!import

!attributes
!get

!setvalue

!setvalues

!checkin

!start

!remove
!setvalues
!stop

!checkout
!setvalue

!import

!attributes
!get

!checkin

!start

!remove
!setvalue
!setvalues
!stop

!checkout
!get

!import

!attributes

!checkin

!start

save?

ttready?

(a)

Figure 5.45: Learned models for component CAD in: (a) 750 000 executions.

BUPT

178 CHAPTER 5. EXPERIMENTAL RESULTS

Cycle-based Exploration

The cycle-based exploration interestingly improves the results of model learning
in the centralized exploration setting for this test case. The improvement is
asymmetrical, providing a substantial benefit, as expected, only for the highly
controllable component Think Team, while not being of much use on the sig-
nificantly harder to control CAD component.

Table 5.6 summarizes the cycle-based learning process by presenting relevant
statistical data about the results, i.e. the inferred models and the generated
system controllers. The data presented represents the number of states and the
number of transitions of both automata and the controller.

The results of the cycle-based learning algorithm are further on commented
from a qualitative point of view. After 500 and 1000 executions, the models
in figures 5.46(a), respectively 5.46(b) were obtained for Think Team, while
models in figures 5.50(a), respectively 5.50(b) were learned for CAD. Similarly
to the results obtained with unoptimized exploration, the models seem poorly
explored, no cycle is yet identified and the generated controllers would only allow
an execution scenario to happen at most once.

In figures 5.47(a) and 5.50(c) the models of Think Team, respectively CAD,
learned together in 10000 executions, can be seen. Just as their correspondents
from unoptimized learning, both models have the same identified cycle. The
controller obtained for this case has 533 states and 3428 and allows the import
file scenario to repeat for an unlimited number of times, while the other scenarios
can repeat only once. Again, just as in the unoptimized setting, after 25000 ex-
ecutions the model of the Think Team component already has 5 identified cycles
(see figure 5.47(b)), while the one of CAD has just one cycle (figure 5.51(a)).
The obtained controller for the system, having 463 states and 3297 transitions,
does not actually allow for more repeating scenarios that the controller obtained
for the previous case.

Similarly to the unoptimized case, after 100000 executions, the models obtained
have both the same 5 identified cycles (see figure 5.48(a) for Think Team and
figure 5.50(a) for CAD). Their corresponding controller has 485 states and 4774
transitions, and allows unlimited repetitions for the 5 scenarios, while the other
5 can only be executed a limited number of times.

The benefits of the cycle-based optimization become visible after 250000 execu-
tions, when the model learned for the Think Team component finally converges

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 179

to a precise-like model (see figure 5.49(a)). However, in the case of the CAD
component (see figure 5.52(a)), the model still has only 5 identified cycles. The
computed controller has 216 states and 1923 transitions.

Table 5.6: Model inference results – cycle-based exploration

nr. TT size TT tr. CAD size CAD tr. ctrl size ctrl tr.
500 120 543 170 1878 170 2080

13 59 13 126
1 ×103 66 295 196 2049 193 1580

11 45 16 85
1.5 ×103 40 141 222 2335 449 3596

31 124 16 85
2.5 ×103 49 190 242 2555 449 3596

31 124 16 85
5 ×103 49 193 254 2519 757 6000

31 124 27 141
1 ×104 27 88 250 2150 533 3488

31 124 19 73
2.5 ×104 22 57 249 2150 463 3297

24 82 21 84
5 ×104 21 53 245 1816 903 8879

24 82 41 275
1 ×105 20 52 193 1024 485 4774

24 82 22 148
2.5 ×105 11 36 196 1026 216 1923

8 17 29 200
5 ×105 11 36 205 1025 272 2746

8 17 36 288
7.5 ×105 11 36 133 1001 336 3682

8 17 43 391

After 750000 learning executions, the model of Think Team converges again, as
expected, to the precise-like model. The model of the CAD component, which
can be seen at figure 5.52(b), has a number of 5 identified cycles. Thus, the
resulting controller, which has 336 states and 3682 transitions will allow for 5 out
of 10 execution scenarios to repeat for an unlimited number of times. We notice
here that, due to the high percentage of uncontrollable events in its alphabet,

BUPT

180 CHAPTER 5. EXPERIMENTAL RESULTS

the learning of the CAD component did no show any improvement while being
subject to the cycle-based optimization.

The average trace length encountered during the normal exploration process was
18.46, with 2.46 more than 16, the sum of the two maximum trace lengths. It is
worth mentioning here that the experiment using 1500000 executions has failed
due to an Out of Memory exception thrown by the Java Virtual Machine.

setvalues?

checkout?attributes?
get?

remove?
setvalue?
stop?

import?

checkin?

start?

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
stop?

setvalues?

!closefile
!openfile
!save

!ttready

!openfile

!openfile

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?
stop?

!openfile

checkout?
!closefile
!openfile
!save

setvalue?
setvalues?
start?
stop?
!ttready

checkin?
checkout?
!closefile
!openfile
!save

setvalue?
start?
stop?
!ttready

!save

!closefile

!ttready

afterinit?

(a)

checkin?

import?

start? remove?
setvalue?
setvalues?
stop?

checkout?

attributes?
get?

!save

!openfile

attributes?
checkin?
checkout?
!closefile

get?
import?
!openfile
remove?
!save

setvalue?
setvalues?
start?
stop?

!ttready

!closefile
!openfile
!save

!ttready

!closefile

!ttready
afterinit?

remove?
setvalue?
setvalues?
stop? attributes?

checkin?
checkout?

get?
import?
start?

!openfile

!openfile

(b)

Figure 5.46: Learned models for component Think Team in: (a) 500 executions,
(b) 1000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 181

checkin?

import?

start?

remove?
setvalue?
setvalues?
stop?

checkout?attributes?
get?

!save

!save

!closefile
!openfile
!ttready

!save

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

attributes?
checkin?
checkout?
!closefile

get?
import?
!openfile
remove?
!save

setvalue?
setvalues?
start?
stop?

!ttready

remove?
setvalue?
setvalues?
stop?

!closefile
!openfile
!save

!ttready

start?checkout? checkin? attributes?
get?

import?

remove?
setvalue?
setvalues?
stop?

start?checkout? checkin? attributes?
get?

import?

!closefile
!openfile
!save
!ttready

!closefile
!openfile
!save

!ttready

!openfile

!openfile

!closefile
!save
!ttready

!save

!closefile
!openfile
!ttready

!save

!closefile

!closefile

!closefile

!openfile
!save
!ttready

!closefile

!openfile
!save

!ttready

!openfile

!closefile
!save

!ttready

!openfile

!openfile

!openfile

!closefile
!save
!ttready

!closefile

afterinit?

!closefile
!openfile
!save

!ttready

!ttready

afterinit?

remove?
setvalue?
setvalues?
stop?

checkout?checkin?attributes?
get?import? start?

!ttready

afterinit?

!openfile

!openfile

(a)

checkin?

attributes?
get?

import?

start?

remove?
setvalue?
setvalues?
stop?

checkout?

!closefile
!openfile
!save
!ttready

!closefile

!ttready

!ttready

!save

!save

!openfile

!openfile

start?

remove?
setvalue?
setvalues?
stop?

checkout?

checkin?

attributes?
get?

import?

!openfile

!openfile

!save

!openfile

!openfile!ttready

!closefile
!openfile
!save
!ttready

!closefile
!openfile
!save

!ttreadyafterinit?

start?

checkin?

attributes?
get?

remove?
setvalue?
setvalues?
stop?

checkout?

import?

!closefile
!openfile
!save
!ttready

afterinit?

checkin?

attributes?
get?

remove?
setvalue?
setvalues?
stop?

checkout?

import?

start?

start?

checkin?

attributes?
get?

remove?
setvalue?
setvalues?
stop?

checkout?

import?

!openfile

(b)

Figure 5.47: Learned models for component Think Team in: (a) 10 000 execu-
tions, (b) 25 000 executions.

BUPT

182 CHAPTER 5. EXPERIMENTAL RESULTS

start?checkin?attributes?
get?

import?

remove?
setvalue?
setvalues?
stop?

checkout?

!ttready

!ttready

!save

!save

!openfile
!save

!ttready

!closefile

!closefile

!openfile

!openfile

remove?
setvalue?
setvalues?
stop?

checkout? checkin?attributes?
get? import?start?

!openfile

!openfile

!save!openfile

!openfile

!closefile
!openfile
!save

!ttready

!closefile
!openfile
!save

!ttready

afterinit?

start?

checkin?

attributes?
get?

remove?
setvalue?
setvalues?
stop?

checkout?

import?

!closefile
!openfile
!save

!ttready

afterinit?

start?checkin?attributes?
get?

remove?
setvalue?
setvalues?
stop?

checkout?

import?

start?

checkin?

attributes?
get?

remove?
setvalue?
setvalues?
stop?

checkout?

import?

!openfile

!ttready

(a)

Figure 5.48: Learned model for component Think Team in: (a) 100 000 runs.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 183

remove?
setvalue?
setvalues?
stop?

start?

import?

checkout?

checkin?

attributes?
get?

!ttready

!openfile

afterinit?

!openfile

!closefile

!save

!openfile

(a)

Figure 5.49: Learned model for component Think Team in: (a) 250 000 runs.

!checkout

!import

!start

!checkin

!setvalue
!stop

!remove
!setvalues

!attributes
!get

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

save?

closefile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkout

!get
!import

!afterinit
!remove
!setvalue
!setvalues
!stop

!checkin!start

!attributes
!checkout

!get
!import

!remove
!setvalue
!setvalues
!stop

!checkin!start

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout
closefile?

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

(a)

!remove
!setvalue
!setvalues
!stop

!checkin!start!checkout !attributes
!get !import

!start

!remove
!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!checkin

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

save?

closefile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

openfile? openfile?

save?

(b)

!remove
!setvalue
!setvalues
!stop

!attributes
!get

!checkin

!start

!checkout

!import

!remove
!setvalue
!setvalues
!stop

!checkout

!checkin

!attributes
!get

!import

!start

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

save?

openfile?

save?
closefile?

ttready? !afterinit

openfile? !remove
!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!import

openfile?

openfile?

ttready? !afterinit

(c)

Figure 5.50: Learned models for component CAD in: (a) 500 executions, (b)
1000 executions, (c) 10 000 executions.

BUPT

184 CHAPTER 5. EXPERIMENTAL RESULTS

!remove
!setvalue
!setvalues
!stop

!checkin

!start

!import

!checkout

!attributes
!get

closefile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?ttready?

!attributes
!get

!start
!remove
!setvalue
!setvalues
!stop

!checkin

!import

!checkout

!afterinit

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

save?

ttready?

openfile?

!afterinit

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

openfile? !attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import

closefile?

openfile?

!attributes
!checkin
!checkout
!remove
!setvalue
!setvalues
!start
!stop

!get

!import

openfile?

(a)

!remove
!setvalue
!setvalues
!stop

!import

!checkin

!checkout

!start !attributes
!get

!remove
!setvalue
!setvalues
!stop

!import

!checkout

!checkin

!start !attributes
!get

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import

!checkout
!remove
!setvalue
!setvalues
!stop

!checkin

!start !attributes
!get

!remove
!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!import

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

closefile?

openfile?

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!import

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!checkin!start !attributes
!get

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit

openfile?

!checkout

!import

!remove
!setvalue
!setvalues
!stop

!checkin

!start !attributes
!get

ttready?

openfile?

(b)

Figure 5.51: Learned models for component CAD in: (a) 25 000 executions, (b)
100 000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 185

!start

!checkin

!import

!remove
!stop

!attributes
!get

!setvalue

!checkout

!setvalues

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!remove
!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!import

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

closefile?

!get
!start

!import

!attributes
!checkin
!checkout
!remove
!setvalue
!setvalues
!stop

save?

!start

!checkin

!import

!checkout
!remove
!setvalue
!setvalues
!stop

!attributes
!get

openfile?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!start !import

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!attributes
!get !checkin

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit

!start

!remove
!setvalue
!setvalues
!stop

!checkin

!import!attributes
!get

!checkout

openfile?

!start

!remove
!setvalue
!setvalues
!stop

!checkin

!import!attributes
!get

!checkout

openfile?

!get

!import

!attributes
!checkin
!checkout
!remove
!setvalue
!setvalues
!start
!stop

!attributes

!import

!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!start

!checkout

!stop

!checkin

!import!attributes
!get

!remove

!setvalue
!setvalues

openfile?

!start

!remove
!setvalue
!setvalues
!stop

!checkin

!import!attributes
!get

!checkout

openfile?

(a)

!setvalues

!remove

!checkout

!checkin

!attributes
!get

!start

!setvalue!stop

!import

!setvalues

!remove

!afterinit

!checkout

!checkin !attributes
!get

!setvalue

!start

!stop

!import

!setvalues

!remove

!checkout

!checkin

!attributes
!get

!setvalue

!start

!stop

!import

!setvalues

!remove

!checkout

!checkin !attributes
!get

!setvalue

!start

!stop

!import

!afterinit

!checkout!setvalue
!stop

!remove

!checkin !attributes
!get

!setvalues

!start!import

!checkout

!setvalue
!stop !remove

!checkin

!attributes
!get

!setvalues

!start

!import

!checkout!setvalue
!stop

!remove

!checkin !attributes
!get

!setvalues

!start

!import

!remove
!setvalue
!setvalues
!stop

!checkout

!checkin

!attributes
!get

!start

!import

!afterinit
!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

openfile?

!remove
!setvalue
!setvalues
!stop

!afterinit
!checkout

!checkin !attributes
!get !start!import

!remove
!setvalue
!setvalues
!stop

!checkout

!checkin !attributes
!get !start

!import

!remove
!setvalue
!setvalues
!stop

!afterinit
!checkout

!get

!checkin !attributes !start!import

!remove
!setvalue
!setvalues
!stop

!checkout
!get

!checkin !attributes !start

!import

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit

!checkout!remove
!setvalue

!stop

!checkin !attributes
!get !start

!setvalues

!import

!checkout!remove
!setvalue

!stop

!checkin !attributes
!get !start

!setvalues

!import

!afterinit
!attributes
!checkout
!remove
!setvalue
!setvalues
!stop

!checkin !get !start!import

!remove
!setvalue
!setvalues
!stop

!afterinit
!attributes
!checkin
!checkout

!get

!start!import

!afterinit
!checkout
!remove
!setvalue
!setvalues
!start
!stop

!checkin !attributes
!get!import

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!checkin !attributes
!get !start!import

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!remove
!setvalue
!setvalues
!stop

!afterinit
!checkout
!start

!checkin !attributes
!get!import

!setvalue
!setvalues
!stop

!afterinit
!checkout
!remove

!checkin !attributes
!get !start!import

!afterinit

!checkout
!remove
!setvalue
!setvalues

!checkin !attributes
!get !start

!stop

!import

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!checkout

!checkin

!attributes
!get

!setvalue!stop !remove
!setvalues

!start

!import

!remove
!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout

!get

!start

!import

closefile?

ttready?

!remove
!setvalue
!setvalues
!stop

!checkout
!start

!checkin !attributes
!get

!import

!afterinit

!setvalue
!setvalues
!stop

!checkout
!remove

!checkin !attributes
!get !start

!import

!checkout

!remove
!setvalue !stop

!checkin

!attributes
!get

!start

!setvalues

!import

!remove
!setvalue
!setvalues
!stop

!checkout

!checkin

!attributes
!get

!start

!import

!checkout
!remove
!setvalue
!setvalues

!checkin !attributes
!get !start

!stop

!import

!checkout

!remove
!setvalue
!setvalues

!checkin

!attributes
!get

!start

!stop

!import

openfile?

(b)

Figure 5.52: Learned models for component CAD in: (a) 250 000 executions,
(b) 750 000 executions.

BUPT

186 CHAPTER 5. EXPERIMENTAL RESULTS

5.3.3 Distributed Exploration

As the Product Data Management System case study is all about a system with
two components and a coordination policy, i.e. desired safety property, obser-
vations on the sets of performed experiments did not find significant differences
between the models resulted from learning in a centralized versus a distributed
exploration setting. The local exploration strategy still has, however, many rel-
evant advantages: it is better adapted to the natural structure of distributed
systems, it leads to shorter execution traces, and thus to a more efficient explo-
ration than by the centralized strategy, and it also allows for a parallelization of
the learning process.

Similarly to case of the centralized exploration setting, the experiments per-
formed on this case study have used global size for the longest acyclic path
m = 4. Also in this case, the fairness bounds were set independently for each
component, thus θ = 12 for the Think Team component and θ = 54 for the
CAD component. After each learning experiment, a controller has been com-
puted for the inferred models and the coordination policy. We have then verified
whether the obtained controller did work on the real system, i.e. on the plant
determined by the precise models of participating components. For controller
synthesis and verification we have used the Supremica tool [59].

Normal Exploration

The results for the unoptimized learning process are highly similar, as already
mentioned, to the ones obtained in the centralized exploration experiment set.
This is quite visible, for example, by comparing the summarized results from
table 5.7, that presents the statistical data of models obtained by inference
using the distributed exploration strategy, to the ones in table 5.5, that contains
their correspondents obtained by centralized exploration. Not only the data
regarding models obtained after the same number of executions is relatively
similar, but some of the rows in these two tables are actually identical (the ones
corresponding to 1000, 1500, 2500, 10000 and 100000 executions).

Some of the models learned in this set of experiments can be seen in figures
5.53 and 5.54 for the Think Team component, and in figures 5.55 and 5.56 for
the CAD component. As their characteristics are highly similar to the specifics
of the models already discussed in the centralized learning section, they won’t
be commented upon again here.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 187

In the distributed exploration setting we have succeeded in reaching the upper
bound on the number of allowed executions, 1500000, which ended up with
a Out of Memory Exception in the centralized setting. As it can be seen in
figure 5.54(d), the model learned for the Think Team component has finally
converged to the precise-like automaton, while the model learned for CAD,
visible in figure 5.56(d), although has not yet converged, has all its relevant
cycles identified.

Table 5.7: Model inference results – normal exploration

nr. TT size TT tr. CAD size CAD tr. ctrl size ctrl tr.
500 176 772 166 1824 131 1524

17 71 13 116
1 ×103 255 1172 203 2126 129 1048

14 56 16 85
1.5 ×103 250 925 221 2324 129 1048

26 71 16 85
2.5 ×103 250 925 247 2610 129 1048

26 71 16 85
5 ×103 246 926 253 2545 177 1522

27 74 22 127
1 ×104 226 927 250 2150 324 1982

23 73 19 73
2.5 ×104 208 375 242 2149 346 2786

22 78 23 106
5 ×104 202 375 245 1774 625 6330

27 96 39 264
1 ×105 121 275 207 1024 419 4000

20 69 22 148
2.5 ×105 114 325 198 1025 224 2020

12 46 30 210
5 ×105 114 325 205 1025 264 2577

12 46 35 269
7.5 ×105 114 325 127 977 232 2421

12 46 30 258
1.5 ×106 72 401 114 932 120 1063

8 17 16 109

BUPT

188 CHAPTER 5. EXPERIMENTAL RESULTS

!setvalues
!stop

!attributes
!get

!checkout !start

!checkin!remove
!setvalue !import

!attributes
!checkout

!get
!import

!remove
!setvalue
!setvalues
!stop

!start!checkin

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout
closefile?

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!attributes
!checkout

!get
!import

!afterinit
!remove
!setvalue
!setvalues
!stop

!start!checkin

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

openfile?

save?

(a)

remove?
setvalue?
setvalues?
stop?

checkout?

import?

attributes?
get?

start?

checkin?

!closefile
!closefile

!closefile
!openfile
!save
!ttready

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?
stop?

!openfile

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

!openfile

!openfile

attributes?
checkin?
checkout?
!closefile

get?
import?
!openfile
remove?
!save

setvalue?
setvalues?
start?
stop?

!ttready

!ttready afterinit?

!save

(b)

checkout? attributes?
get?

remove?
setvalue?
setvalues?
stop?

checkin? start?

import?!openfile

!openfile

!closefile
!openfile
!save
!ttready

!closefile
!openfile
!save
!ttready

checkin? attributes?
get?start?

import? checkin? attributes?
get?start?

import?

remove?
setvalue?
setvalues?
stop?

checkout?

checkin? attributes?
get?start?

import?

!closefile

!save

!save

!closefile

!closefile

remove?
setvalue?
setvalues?
stop?

checkout?

checkin? attributes?
get?start?

import?

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

!openfile

!openfile

!ttready

afterinit?

!save !openfile!ttready

!openfile

(c)

Figure 5.53: Learned models for component Think Team in: (a) 500 executions,
(b) 1000 executions, (c) 10 000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 189

remove?
setvalue?
setvalues?
stop?

import?

start?

checkout?

checkin? attributes?
get?

!closefile

!closefile

!openfile
!save
!ttready

!openfile

import?

!closefile
!openfile
!save

!ttready

start?

checkin? attributes?
get?

remove?
setvalue?
setvalues?
stop?

import?

checkout?

start?

checkin? attributes?
get?!save

afterinit?

import?

start?

checkin? attributes?
get?

remove?
setvalue?
setvalues?
stop?

attributes?
checkout?

get?
checkin?import?

start?

!openfile

!closefile
!openfile
!save

!ttready

!save

!closefile
!openfile
!ttready

!openfile

import?

!ttready

!ttready

!openfile

!save !openfile

checkout?import?

remove?
setvalue?
setvalues?
stop?

start?

checkin? attributes?
get?

(a)

checkout?

import?

checkin? attributes?
get?start?

remove?
setvalue?
setvalues?
stop?

!openfile

!openfile

!openfile

attributes?
get?

import?

start?checkin?

!openfile

remove?
setvalue?
setvalues?
stop?

attributes?
checkout?

get?

import?

start?checkin?

!closefile
!openfile
!save

!ttready

!openfile
!save
!ttready

!closefile

checkout?

import?

remove?
setvalue?
setvalues?
stop?

!closefile
!openfile
!save

!ttready

checkin? attributes?
get?start?

!closefile

!save

!save

!openfile

afterinit?

!ttready

!ttready

checkout?

import?

remove?
setvalue?
setvalues?
stop?

checkin? attributes?
get?start?

!save

(b)

remove?
setvalue?
setvalues?
stop?

start?

import?

attributes?
get?

checkout?

checkin?

remove?
setvalue?
setvalues?
stop?

start?

import?

checkout?

attributes?
get?

checkin?

remove?
setvalue?
setvalues?
stop?

start?

import?

!closefile
!openfile
!save

!ttready

attributes?
get?

checkout?

checkin?

!ttready

!openfile

!closefile
!openfile
!save
!ttready

afterinit?

!openfile

!closefile

!openfile

!openfile

!save

(c)

remove?
setvalue?
setvalues?
stop?

start?

checkout?

checkin?

attributes?
get?

import?

!ttready

!closefile

afterinit?

!openfile

!save

!openfile

!openfile

(d)

Figure 5.54: Learned models for component Think Team in: (a) 25 000 execu-
tions, (b) 100 000 executions, (c) 250 000 executions, (d) 1500 000 executions.

BUPT

190 CHAPTER 5. EXPERIMENTAL RESULTS

remove?
setvalue?
stop?

attributes?
get?

checkin?

import?

start?

checkout?

setvalues?

remove?
setvalue?
stop?

attributes?
checkin?
checkout?

get?
import?
start?

setvalues?

checkout?
!closefile
!openfile
!save

setvalue?
setvalues?
start?
stop?

!ttready

!closefile
!openfile
!save
!ttready

!openfile

!closefile

!save

!openfile !save

!closefile

!ttready afterinit?

!openfile

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

checkout?
!closefile
!openfile
remove?
!save

setvalue?
start?
stop?

!ttready

setvalue?
setvalues?
stop?

attributes?
checkin?
checkout?

get?
import?
start?

remove?

(a)

!attributes
!get!import

!remove
!setvalue
!setvalues
!stop

!checkout!start !checkin

openfile?openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

save?

!remove
!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!checkin!start closefile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

openfile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit

save?

(b)

!checkout

!remove
!setvalue
!setvalues
!stop

!checkin

!attributes
!get

!start

!import

openfile?

!remove
!setvalue
!setvalues
!stop

!start

!checkin

!attributes
!get

!checkout

!import

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

save?

!afterinit

openfile?

closefile?

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

openfile?

openfile?

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import

ttready?

openfile?

!afterinit

(c)

Figure 5.55: Learned models for component CAD in: (a) 500 executions, (b)
1000 executions, (c) 10 000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 191

!checkin

!remove
!setvalue
!setvalues
!stop

!attributes
!get !checkout !start

!import

save?

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!stop

!start !import

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready? ttready?

!afterinit

!attributes
!get!start

!remove
!setvalue
!setvalues
!stop

!checkin!checkout !import

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!get

!checkin
!checkout

!start

!remove
!setvalue
!setvalues
!stop

!import

closefile?

save?openfile?

openfile?

closefile?

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

openfile?

ttready?

!afterinit

!attributes
!checkout
!remove
!setvalue
!setvalues
!start
!stop

!get

!checkin

!import

openfile?

(a)

!checkout

!remove
!setvalue
!setvalues
!stop

!import

!start

!checkin

!attributes
!get

openfile?

!remove
!setvalue
!setvalues
!stop

!import

!start

!checkout

!checkin

!attributes
!get

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import

closefile?

!afterinit

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

ttready?

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import!start

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!checkin!attributes
!get

!checkout

!import

!start

!remove
!setvalue
!setvalues
!stop

!checkin

!attributes
!get

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import

!start

!checkout
!remove
!setvalue
!setvalues
!stop

!checkin

!attributes
!get

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

openfile?

save?

openfile?

(b)

!setvalue !remove
!stop

!import

!checkout

!attributes
!get

!checkin

!start

!setvalues

!remove
!setvalue
!setvalues
!stop

!import

!attributes
!get

!checkin

!checkout

!start

!remove
!setvalue
!setvalues
!stop

!import

!attributes
!get

!checkin

!checkout

!start

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import

openfile?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!checkout !import

!attributes
!get

!checkin

!remove

!start

!stop!setvalue !setvalues

closefile?

!import

!attributes
!get

!checkin

!checkout
!remove
!setvalue
!setvalues
!stop

!start

openfile?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import !attributes
!get

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!checkin !start

openfile? openfile?

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!checkin !import

!attributes
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!start !import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!stop

!checkin
!get !import

!attributes
!checkout
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!attributes !import

!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!remove
!setvalue
!setvalues
!stop

!import

!attributes
!get

!checkin

!start

!checkout

(c)

!remove
!setvalue
!setvalues
!stop

!checkout

!start

!checkin

!import!attributes
!get

!remove
!setvalue
!setvalues
!stop

!checkout

!start

!checkin

!import!attributes
!get

!remove
!setvalue
!setvalues
!stop

!checkout

!afterinit

!start !checkin !import!attributes
!get

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

openfile?

closefile?

ttready?

save?

!afterinit

openfile?

openfile?

(d)

Figure 5.56: Learned models for component CAD in: (a) 25 000 executions, (b)
100 000 executions, (c) 250 000 executions, (d) 1500 000 executions.

BUPT

192 CHAPTER 5. EXPERIMENTAL RESULTS

Cycle-based Exploration

In the case of the cycle-based optimization of the learning process, the observed
effects of the cycle-focused execution steering are relatively the same for the
distributed learning setting as for the centralized one.

As expected, the models resulted are highly similar, to the ones obtained in
the cycle-optimized version of the centralized exploration experiment set. This
can be well observed, for example, by comparing the summarized results from
table 5.8, that presents the statistical data of models obtained by a learning
process using the distributed exploration strategy, to the ones in table 5.6, that
contains their correspondents learned by centralized exploration. Not only the
data regarding models obtained after the same number of executions is relatively
similar, but some of the rows in these two tables are actually identical (the ones
corresponding to 1000, 1500, 10000 and 100000 executions).

Some of the models learned in this set of experiments can be seen in figures
5.57 and 5.58 for the Think Team component, and in figures 5.59 and 5.60 for
the CAD component. As their characteristics are highly similar to the specifics
of the models already discussed in the centralized learning section, they won’t
be commented upon again here.

We should however emphasize that the model of the Think Team component
does converge to a precise-like model after a number of 250000 executions in
the cycle-optimized version, instead of taking between 750000 and 1500000
executions to reach convergence, as it is the case with the unoptimized learning
algorithm in the distributed setting.

Also, in the experiments using the distributed exploration setting, we have
succeeded in reaching the upper bound on the number of allowed executions,
1500000, which ended up with a Out of Memory Exception in the centralized
setting. As it can be seen in figure 5.60(d), the model learned for CAD, although
has not yet reached convergence to a precise-like automaton, has all its relevant
cycles identified, 5 of which being found from its actual initial state. Since
the model learned for the Think Team component has already converged to a
precise-like model since the threshold of 250000 executions has been reached,
the resulting controller for the models learned in 1500000 executions will allows
for all relevant execution scenarios to occur for an unlimited number of times.
This almost-ideal computed controller is not only permissive on the real system,
but also relatively small in size, compared to some of the previously obtained
controllers, as it only has 120 states and 1063 transitions (see table 5.8).

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 193

Table 5.8: Model inference results – cycle-based exploration

nr. TT size TT tr. CAD size CAD tr. ctrl size ctrl tr.
500 120 543 162 1745 222 2272

13 59 17 129
1 ×103 123 569 188 1961 193 1580

11 45 16 85
1.5 ×103 30 92 220 2313 449 3596

29 113 16 85
2.5 ×103 28 89 245 2588 417 3346

28 114 16 85
5 ×103 39 148 253 2548 673 5436

31 124 24 129
1 ×104 52 219 250 2150 533 3488

31 124 19 73
2.5 ×104 24 74 239 2148 485 3630

24 82 22 96
5 ×104 20 52 244 1855 771 7541

24 82 35 233
1 ×105 24 74 208 1024 485 4774

24 82 22 148
2.5 ×105 11 36 195 1027 208 1826

8 17 28 190
5 ×105 11 36 205 1024 264 2577

8 17 35 269
7.5 ×105 11 36 132 1002 256 2712

8 17 33 287
1.5 ×106 9 27 114 932 120 1063

8 17 16 109

BUPT

194 CHAPTER 5. EXPERIMENTAL RESULTS

remove?

setvalue?
setvalues?
stop?

checkout?

import?

checkin?

attributes?
get?

start?

attributes?
checkin?
checkout?

get?
import?
start?

setvalue?
setvalues?
stop?

remove?

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?
stop?

!closefile
!openfile
!save

!ttready!openfile

!openfile
!save

!closefile

checkout?
!closefile
!openfile
!save

setvalue?
setvalues?
start?
stop?

!ttready

checkout?
!closefile
!openfile
remove?
!save

setvalue?
start?
stop?
!ttready

!openfile

!ttready
afterinit?

(a)

import?

attributes?
get?

checkout?

remove?
setvalue?
setvalues?
stop?

start?

checkin?

!openfile

!closefile

!closefile
!openfile
!save

!ttready

!openfile

!openfile
attributes?
checkin?
checkout?
!closefile

get?
import?
!openfile
remove?
!save

setvalue?
setvalues?
start?
stop?

!ttready

attributes?
checkin?
checkout?

get?
import?
start?

remove?
setvalue?
setvalues?
stop?

!ttready afterinit?

!save

(b)

remove?
setvalue?
setvalues?
stop?

start?

import?

checkout?checkin?attributes?
get?

remove?
setvalue?
setvalues?
stop?

start?

checkout?

checkin?attributes?
get? import?

attributes?
checkin?
checkout?

get?
import?
remove?
setvalue?
setvalues?
start?
stop?

attributes?
checkin?
checkout?
!closefile

get?
import?
!openfile
remove?
!save

setvalue?
setvalues?
start?
stop?

!ttready

!closefile
!openfile
!save

!ttready

!ttready

afterinit?

remove?
setvalue?
setvalues?
stop?

!closefile
!openfile
!save

!ttready

start? checkout?checkin? attributes?
get?

import?

remove?
setvalue?
setvalues?
stop?

start? checkout?checkin? attributes?
get?

import?

!ttready

!closefile
!openfile
!save

!ttready

afterinit?

afterinit?

!closefile
!openfile
!save

!ttready

!openfile

!openfile

!closefile
!save

!ttready

!save

!closefile
!openfile
!ttready

!save

!closefile
!openfile
!ttready

!save

!save

!closefile

!closefile

!openfile
!save

!ttready

!openfile
!save

!ttready

!closefile

!closefile

!openfile

!closefile
!save

!ttready

!openfile

!openfile

!closefile
!save

!ttready

!openfile

!openfile

!save

!closefile

!openfile

(c)

Figure 5.57: Learned models for component Think Team in: (a) 500 executions,
(b) 1000 executions, (c) 10 000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 195

checkin? attributes?
get?

import?

checkout?

start?

remove?
setvalue?
setvalues?
stop?

!closefile

!closefile

!openfile
!save

!ttready

afterinit?

!closefile
!openfile
!save

!ttready

afterinit?

!openfile

start?checkout?

remove?
setvalue?
setvalues?
stop?

checkin?

attributes?
get?

import?

checkout?

remove?
setvalue?
setvalues?
stop?

checkin?

attributes?
get? start?

import?

!closefile
!openfile
!save

!ttready

checkout?

remove?
setvalue?
setvalues?
stop?

checkin?

attributes?
get? start?

import?

!save

!save

!openfile

!openfile !ttready

!ttready

!openfile

!save

!openfile

!openfile

!closefile
!openfile
!save
!ttready

!openfile

!ttready

checkout?

remove?
setvalue?
setvalues?
stop?

checkin? attributes?
get?

import?

start?

(a)

remove?
setvalue?
setvalues?
stop?

start?

import?

checkout?

checkin?

attributes?
get?

!ttready

!openfile

afterinit?

!openfile

!closefile

!save

!openfile

(b)

Figure 5.58: Learned models for component Think Team in: (a) 25 000 execu-
tions, (b) 250 000 executions.

BUPT

196 CHAPTER 5. EXPERIMENTAL RESULTS

!remove
!setvalue

!attributes !checkout

!setvalues
!stop

!import

!start

!checkin !get

!attributes
!checkout

!get
!import

!remove
!setvalue
!setvalues
!stop

!checkin !start

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

openfile?

closefile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!attributes
!checkout

!get
!import

!afterinit
!remove
!setvalue
!setvalues
!stop

!checkin !start

openfile?

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout
closefile?

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

(a)

!import !checkin

!remove
!setvalue
!setvalues
!stop

!checkout!attributes
!get!start

openfile? save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
openfile?
!remove
!setvalue
!setvalues
!start
!stop

closefile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
save?

!setvalue
!setvalues
!start
!stop

!remove
!setvalue
!setvalues
!stop

!attributes
!checkout

!get
!import

!start!checkin

openfile?

save?

openfile?ttready?

!afterinit

(b)

!remove
!setvalue
!setvalues
!stop

!attributes
!get

!checkin

!start

!import

!checkout

!checkout

!remove
!setvalue
!setvalues
!stop

!attributes
!get

!checkin

!start

!import

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

closefile?

save?

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

save?

ttready? !afterinit

ttready? !afterinit

openfile?

openfile?

!remove
!setvalue
!setvalues
!stop

!attributes
!checkin
!checkout

!get
!start

!import

(c)

Figure 5.59: Learned models for component CAD in: (a) 500 executions, (b)
1000 executions, (c) 10 000 executions.

BUPT

5.3. CASE STUDY: A PRODUCT DATA MANAGEMENT SYSTEM 197

!checkin

!remove
!setvalue
!setvalues
!stop

!start

!import

!attributes
!get!checkout

save?

closefile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!remove
!setvalue
!setvalues
!stop

!checkin!checkout !attributes
!get !import!start

save?

!afterinit

ttready?

!afterinit

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

!import

openfile?

closefile?

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!stop

!start !import

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?openfile?

openfile?

openfile?

openfile?

ttready?

!remove
!setvalue
!setvalues
!stop

!checkin

!checkout

!attributes
!get !import!start

(a)

!remove
!setvalue
!setvalues
!stop

!import

!checkout

!start

!checkin

!attributes
!get

!remove
!setvalue
!setvalues
!stop

!import

!start

!checkout

!checkin

!attributes
!get

!afterinit

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import

closefile?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

openfile?

!checkout

!import

!start

!remove
!setvalue
!setvalues
!stop

!checkin

!attributes
!get

!import

!start

!checkout
!remove
!setvalue
!setvalues
!stop

!checkin

!attributes
!get

ttready?

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import !start

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!checkin!attributes
!get

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

save?

openfile?

(b)

!setvalues

!checkin

!remove
!stop

!import

!checkout

!start!attributes
!get

!setvalue

!remove
!setvalue
!setvalues
!stop

!checkin

!import

!start

!checkout

!attributes
!get

closefile?

!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!checkin

!import

!checkout
!remove
!setvalue
!setvalues
!stop

!start!attributes
!get

!get!import

!attributes
!checkin
!checkout
!remove
!setvalue
!setvalues
!start
!stop

!attributes
!checkin
!checkout

!get
!start

!remove
!setvalue
!setvalues
!stop

!import

save?

!remove
!setvalue
!setvalues
!stop

!checkin

!import

!start

!checkout

!attributes
!get openfile?

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!import

!afterinit
!checkout
!remove
!setvalue
!setvalues
!stop

!start!checkin!attributes
!get

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!import

!attributes
!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

openfile?

ttready?

!afterinit

openfile?

!checkout

!remove
!setvalue

!checkin

!import

!setvalues
!stop

!start!attributes
!get

openfile?

!attributes!import

!checkin
!checkout

!get
!remove
!setvalue
!setvalues
!start
!stop

openfile?

openfile?

!remove
!setvalue
!setvalues
!stop

!checkin

!import

!start

!checkout

!attributes
!get

(c)

!remove
!setvalue
!setvalues
!stop

!checkin

!checkout

!start!import !attributes
!get

!remove
!setvalue
!setvalues
!stop

!checkout

!afterinit

!checkin !start!import!attributes
!get

!remove
!setvalue
!setvalues
!stop

!checkout

!checkin

!start!import !attributes
!get

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

save?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

ttready?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

!afterinit
!attributes
!checkin
!checkout

!get
!import
!remove
!setvalue
!setvalues
!start
!stop

openfile?

closefile?

save?

openfile?

ttready?

!afterinit

openfile?

openfile?

(d)

Figure 5.60: Learned models for component CAD in: (a) 25 000 executions, (b)
100 000 executions, (c) 250 000 executions, (d) 1500 000 executions.

BUPT

198 CHAPTER 5. EXPERIMENTAL RESULTS

5.4 Case Study: Domotics

Domotics is a system for home automation, that aims to provide smart home
services, such as light, climate or multimedia device control. This case study is
part of a much larger project ArchiteCture for Smart Environment (ACSE) at
Orange Labs, that contains several prototypes for building automation.

The Domotics Case Study has been experimented upon by Shahbaz in [74],
which inferred Mealy machine models for the participating devices. We rewrote
two of the device models as automata with send and receive events, and built
an asynchronous abstract version of these devices.

The devices considered for this case study are a Media Renderer, that mainly
deals with rendering Audio/Video content from the home network, and a Light
Control System, which controls the illumination of the building, by reducing or
increasing it at request.

The alphabet of the Media Renderer component is as follows:

• pon?: receiving this message turnes the Media Renderer on

• ponok!: sent when the Media Renderer has been successfully initialized

• poff?: receiving this message turnes the Media Renderer off

• poffok!: sent when the Media Renderer has been successfully turned off

• play?: requests the MR to play a specific Audio/Video file

• playok!: the play request has been acknowledged and is going to be fulfilled

• pause?: requests the MR to pause a specific Audio/Video file that is
currently playing

• pauseok!: the pause request has been acknowledged and is going to be
fulfilled

• stop?: requests the MR to stop a specific Audio/Video file that is currently
playing

• stopok!: the stop request has been acknowledged and is going to be
fulfilled

The alphabet of the Light Control System component is composed of the fol-
lowing events:

BUPT

5.4. CASE STUDY: DOMOTICS 199

• lon? : receiving the lon message turns the Light Control System on

• lonok!: message sent when the LCS has been successfully turned on

• loff?: turns the LCS off

• loffok!: message sent when the LCS has been successfully turned off

• dim?: commands reducing light intensity with one level

• bright?: commands increasing light intensity with one level

• dim1!: sent when light has been dimmed to level 1

• dim2!: sent when light has been dimmed to level 2

• dim3!: sent when light has been dimmed to level 3

• bright2!: sent when light intensity has been increased to level 2

• bright3!: sent when light intensity has been increased to level 3

• bright4!: sent when light intensity has been increased to level 4

In the original case study, the messages sent to and received from the two
main Domotics devices, the Media Renderer and the Light Control System, are
handled by a TV_ Ctrl device. However, since the Media Renderer and the
Light Control System do not share any common events, the TV_ Ctrl behaviour
is most general and no desired property is defined for the global system, we
have decided to split the responsibilities of the TV_ Ctrl device into two similar
devices: TCMR, that communicates to the Media Renderer, and TCLS, that
communicates to the Light Control System.

Thus, we have basically two separate subsystems, the Media Renderer and its
remote control, respectively the Light Control System and its remote control.
Further on, in our experiment, the MR and LCS components are regarded as
black boxes and their models are learned by BASYL. Since no temporal property
has been specified for any of the resulting systems, we consider it to be as most
general for both cases. Therefore, no controllers are needed in this situation,
the only thing we are interested in are the inferred models.

The figure 5.61(a) shows us the original model of component Media Renderer.
Similarly, the original model of the Light Control System can be seen in figure
5.62(a). The Media Renderer component has an alphabet of 10 events, out
of which 5 are controllable and 5 are uncontrollable, while the Light Control
System component has an alphabet of 12 events, from which only 4 events are

BUPT

200 CHAPTER 5. EXPERIMENTAL RESULTS

pause?
play?
poff?
stop?

pon?

!ponok

!playok

!stopok

!poffok

poff?

pause?
pon?
stop?

play?
!playok

stop?
play?
pon?

poff?

pause?

!poffok

!pauseok play?

pause?
pon? stop?

poff?

!stopok

!poffok

(a)

Figure 5.61: (a) MR original model

bright?
dim?
loff? lon?

!lonok

!dim1

!bright2

bright?

dim?
lon?

loff?

!loffok

!loffok

!loffok

!loffok loff?
bright?
lon?

dim?
!dim3

!bright4

loff?

bright?
lon?

dim?

!dim2

!bright3

dim?

loff?

bright?
lon?

(a)

Figure 5.62: (a) LCS original model

controllable and can be enabled at will by sending an expected message, while
the remaining 8 events are uncontrollable.

The relevant parameters for the two black box components considered were set
as following: m, the upper bound on the length of acyclic traces, is set to m = 8
for the Media Renderer component and to m = 10 for the Light Control System
component, and θ, the fairness bound, becomes θ = 18 for the Media Renderer,
and θ = 34 for the Light Control System.

The experiments performed for the Domotics case study use both the regular
learning algorithm for incomplete model learning and its optimized, cycle-based
version. The complete learning algorithm has not been experimented with, due
to the relatively large values of the acyclic trace boundm and high fairness values
θ of both the Media Renderer and the Light Control System black boxes. These
relatively high values of the relevant parameters would have seriously affected
the feasibility of complete learning experiments. For cycle-based exploration, as

BUPT

5.4. CASE STUDY: DOMOTICS 201

no desired property was specified, the important cyclic scenarios for each of the
two black boxes were manually derived from their precise models.

The specification of the cycles considered for component Media Renderer is
presented below. The cycles considered have three join points, from which the
execution can pass from one cycle to the other. The first scenario describes the
turning on and off of the Media Renderer, the second says that the component
can be turned on, made to play a current media file, and turned off, while the
third describes the component being turned on, made to play a file, then paused
and turned off. All these cycles are expected to occur from the initial state – the
first join point. The second join point appears after the access trace represented
by the component being turned on. From there, for an unlimited number of
times, a media file can be played and stopped, or played, paused and stopped.
Finally, the third join point is situated after an access trace represented by the
Media Renderer being turned on and made to play a media file, after which the
file can be paused and stopped for an unlimited number of times.

:[1]<pon?><ponok!>[2]<poff?><poffok!>

:[1]<pon?><ponok!>[2]<play?><playok!>[3]<poff?><poffok!>

:[1]<pon?><ponok!>[2]<play?><playok!>[3]<pause?><pauseok!>
<poff?><poffok!>

<pon?><ponok!>:[2]<play?><playok!>[3]<stop?><stopok!>

<pon?><ponok!>:[2]<play?><playok!>[3]<pause?><pauseok!>
<stop?><stopok!>

<pon?><ponok!><play?><playok!>:[3]<pause?><pauseok!>
<stop?><stopok!>

Below, the specified cycles for the Light Control System component are pre-
sented. The cycles considered for the more complex component of the Domotics
case study have 4 join points. From the initial state – the first join point, the
lights can be switched on and off, or can be switched on, dimmed once and
switched off, dimmed twice and switched off, or dimmed three times and then
switched off. The second join point arises after the lights are switched on: they
can be dimmed and then brightened back for an unlimited number of times.
The third join point has an access trace represented by turning the Light Con-
trol System on and dimming the lights – the lights can then be dimmed again

BUPT

202 CHAPTER 5. EXPERIMENTAL RESULTS

and brightened back for an unlimited number of times. And finally, the last join
point appears after an access traces describing the lights being switched on and
then dimmed twice – they can then be dimmed again and then brightened back
in the last considered loop of the cycle specification file.

:[1]<lon?><lonok!>[2]<loff?><loffok!>

<lon?><lonok!>:[2]<dim?><dim3!>[3]<bright?><bright4!>

<lon?><lonok!><dim?><dim3!>:[3]<dim?><dim2!>
[4]<bright?><bright3!>

<lon?><lonok!><dim?><dim3!><dim?><dim2!>:[4]<dim?><dim1!>
<bright?><bright2!>

:[1]<lon?><lonok!>[2]<dim?><dim3!>[3]<loff?><loffok!>

:[1]<lon?><lonok!>[2]<dim?><dim3!>[3]<dim?><dim2!>[4]<loff?>
<loffok!>

:[1]<lon?><lonok!>[2]<dim?><dim3!>[3]<dim?><dim2!>[4]<dim?>
<dim1!><loff?><loffok!>

Media Renderer – Normal Exploration

The summarized results of incomplete model inference for the Media Renderer
component, obtained using the normal exploration strategy, can be seen in table
5.9, in both unminimized and minimized form. The models obtained were too
large to be properly visualized.

From the original Media Renderer model (see figure 5.61(a)), we can see that
all 5 controllable events in the component’s alphabet can be enabled from any
state. This leads to a very dense execution trace tree, which is also hard to
partition and to build a model from, due to the relatively high values of the
relevant parameters: m = 8, and θ = 18. By comparison, the component SSO
Client from the Single Sign On case study has lower, but somehow comparable
parameter values, at m = 6 and θ = 12, however its execution trace tree is
remarkably sparse, which makes it easy to learn. But the resulting dense trace
tree obtained when learning the Media Renderer component brings the time
complexity of equivalence partitioning and model building close to its upper

BUPT

5.4. CASE STUDY: DOMOTICS 203

bound of |Σ|3m, which for |Σ| = 10 andm = 8 become rather difficult to handle.
To avoid having the equivalence partitioning phase take too much computing
time, the number of learning traces has been severely restricted, so that the
trace tree will be only partially filled.

Thus, as it can been seen in table 5.9, the number of learning executions used for
the Media Renderer cases study has been limited to 5000, which hardly allows
a complete exploration for vertices at depths larger than 3. This doesn’t leave
much room for cycle identification, however, in this case, the model learning
algorithm still allows us to discover some safe, usable paths in the behaviour of
the Media Renderer black box component.

Table 5.9: Model inference results – normal exploration

nr. MR size MR tr.
200 867 5027

255 1640
250 1020 5906

283 2089
500 1842 10591

310 2089
1 ×103 3056 17671

477 3407
1.5 ×103 6015 34362

560 3953
2 ×103 4033 23405

528 3962
2.5 ×103 5010 29268

561 4356
5 ×103 9155 52976

646 4917

Media Renderer – Cycle-Based Exploration

The cycle-based exploration offers an interesting improvement over the unopti-
mized exploration, as it focuses the relatively reduced number of available execu-
tions to several interesting usage scenarios. As a result, the obtained models are
significantly smaller than the ones learned by the normal exploration strategy,

BUPT

204 CHAPTER 5. EXPERIMENTAL RESULTS

as it can be observed from the statistical data presented in table 5.10, and by
comparing these model sizes to the ones in table 5.9.

The specification of interesting cycles is given again below.

:[1]<pon?><ponok!>[2]<poff?><poffok!>

:[1]<pon?><ponok!>[2]<play?><playok!>[3]<poff?><poffok!>

:[1]<pon?><ponok!>[2]<play?><playok!>[3]<pause?><pauseok!>
<poff?><poffok!>

<pon?><ponok!>:[2]<play?><playok!>[3]<stop?><stopok!>

<pon?><ponok!>:[2]<play?><playok!>[3]<pause?><pauseok!>
<stop?><stopok!>

<pon?><ponok!><play?><playok!>:[3]<pause?><pauseok!>
<stop?><stopok!>

Table 5.10: Model inference results – cycle-based exploration

nr. MR size MR tr.
200 505 2939

37 228
250 592 3447

36 226
500 380 2157

37 197
1 ×103 593 3408

36 203
1.5 ×103 755 4380

38 221
2 ×103 917 5352

37 218
2.5 ×103 244 1332

39 166
5 ×103 343 1919

41 183

BUPT

5.4. CASE STUDY: DOMOTICS 205

pon?
pause?
poff?
stop?

play?

!ponok

!pauseok
!playok
!poffok
!ponok
!stopok

poff?
pause?
pon?
stop?

play?

!pauseok

!playok
!poffok
!ponok
!stopok

pause?
!pauseok
play?
!playok
!poffok
!ponok
!stopok

!pauseok
!playok
!poffok
!ponok
!stopok

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?

!pauseok
!playok
!poffok
!ponok
!stopok

play?

!pauseok
!playok
!poffok
!ponok
!stopok

play?

!pauseok
play?
!playok
!poffok
!ponok
!stopok

!pauseok
!playok
!ponok
!stopok

!poffok

!pauseok
!playok
!poffok
!ponok
!stopok

pause?

play?

!pauseok
!poffok
!ponok
!stopok

!playok

!pauseok
!playok
!poffok
pon?
!ponok
!stopok

play?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?

!pauseok
!poffok
!ponok
!stopok

!playok

pause?
!pauseok
!playok
!poffok
!ponok
!stopok

play?

pause?
play?
poff?
stop?

pon?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?
poff?
stop?

pon?

!stopok

!pauseok
!playok
!poffok
!ponok

poff?play?
pause?
pon?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
poff?
stop?

play? pon?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?
stop?

!poffok

!pauseok
!playok
!ponok
!stopok

!pauseok
!playok
!ponok
!stopok

!poffok

!pauseok
!playok
!poffok
!stopok

!ponok

!pauseok
!playok
!ponok
!stopok

!poffok

!pauseok
!poffok
!ponok
!stopok

!playok

pause?

!pauseok
!playok
!poffok
!ponok
!stopok

play?
pon? stop?poff?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?
poff?
stop?

pon?

!pauseok
!playok
!poffok
!stopok

!ponok

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
pon?
stop?

play? poff?

!pauseok
play?
!playok
poff?
!poffok
!ponok
!stopok

!pauseok
!playok
!poffok
!stopok

!ponok

pause?
poff?
stop?

play?pon?

!ponok

!pauseok
!playok
!poffok
!stopok

(a)

pon?
pause?
poff?
stop?

play?

!ponok

pause?
pon?
stop?

poff?play?

pause?
play?
poff?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

!pauseok
play?
!playok
!poffok
!ponok
!stopok

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

play? poff?

!playok

!pauseok
!poffok
!ponok
!stopok

!poffok

!pauseok
!playok
!ponok
!stopok

!pauseok
!playok
!ponok
!stopok

!poffok

!pauseok
!playok
!poffok
!stopok

!ponok

play?

pause?
!pauseok
!playok
poff?
!poffok
!ponok
stop?
!stopok

pause?
play?
stop?

!pauseok
!playok
!poffok
pon?
!ponok
!stopok

!pauseok
!playok
!poffok
!ponok
!stopok

play?

play?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?
poff?
stop?

pon?

pon? play?
pause?
poff?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?
poff?
stop?

pon?

play?poff?
pause?
pon?
stop?

!playok

play?
pon?pause?stop? poff?

pon?

pause?
play?
poff?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?
poff?
stop?

!poffok

!poffok

!pauseok
!playok
!ponok
!stopok

!ponok

pause?
pon?
stop?

poff? play?

!pauseok
!poffok
!ponok
!stopok

!playok

!ponok

!pauseok
!playok
!poffok
!stopok

pause?
play?
poff?
stop?

pon?

!playok
!poffok
!ponok
!stopok

!pauseok

pause?
!pauseok
play?
!playok
poff?
!poffok
!ponok
stop?
!stopok

!pauseok
!playok
!poffok
!stopok

!ponok

!pauseok
!playok
!poffok
!ponok

!stopok

play?
pause?
poff?
stop?

pon?

!ponok

!pauseok
!playok
!ponok
!stopok

!poffok

(b)

Figure 5.63: Learned models for component Media Renderer in: (a) 250 execu-
tions, (b) 500 executions.

BUPT

206 CHAPTER 5. EXPERIMENTAL RESULTS

Some of the models obtained during the cycle-optimized learning of the Media
Renderer component are also presented. In figure 5.63(a) we can see the model
of the Media Renderer obatined in 250 learning executions, while figure 5.63(b)
present a model learned in 500 executions. Further on, in figure 5.64(a) we can
see a model of Media Renderer Learned in 2500 executions, while the model in
figure 5.64(b) has been learned in 5000 executions. Although only the relevant
scenarios described in the cycle specified have been explored, none of these cycles
has been identified within the maximum 5000 executions available. However,
the models obtained by focusing on the relevant scenarios are not only smaller
than their unoptimized correspondents, but also quite well explored for the low
number of executions employed. Thus, the model obtained after 250 executions
has well-explored states up to a depth of 4, the one learned in 500 executions has
a significant number of well-explored states also at depth 5, while the number
of outgoing uncontrollable transitions to the unknown-future state decreases
further more after 2500 and 5000 learning executions. The latter models have
completely explored states at depths up to 6 and 7.

pon?

pause?
poff?
stop?

play?

!ponok

poff? play?
pause?
pon?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
!pauseok
play?
!playok
poff?
!poffok
!ponok
stop?
!stopok

!pauseok
!playok
!poffok
!stopok

!ponok

!pauseok
play?
!playok
poff?
!poffok
!ponok
!stopok

pause?
stop?

!poffok

!pauseok
!playok
!poffok
!ponok
!stopok

play?

!pauseok
play?
!playok
!poffok
!ponok
!stopok

pon?

pause?
play?
poff?
stop?

pause?
play?
poff?
stop?

pon?

play?
pause?
poff?
stop?

pon?

pon?play?
pause?
poff?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?
poff?
stop?

pon?

play?

pause?
pon?
stop?

poff?

!playok

pause?

play?
pon?

stop?poff?

pause?
play?
poff?
stop?

pon?

!pauseok
!playok
!poffok
!stopok

!ponok

!ponok

play?

poff?

pause?
pon?
stop?

pon?

pause?
play?
poff?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?
poff?
stop?

!poffok

!pauseok

pause?
play?
poff?
pon?
stop?

!playok

pause?
poff?
stop?

play?
pon?

!stopok

pause?
play?
poff?
stop?

pon?

!poffok

!ponok

pause?
pon?
stop?

play?poff?

!pauseok
!poffok
!ponok
!stopok

!playok

!ponok

play?
pause?
poff?
stop?

pon?

!ponok

!pauseok
!playok
!ponok
!stopok

!poffok

(a)

pon?

pause?
poff?
stop?

play?

!ponok

poff?play?
pause?
pon?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
!pauseok
play?
!playok
poff?
!poffok
pon?
!ponok
stop?
!stopok

!pauseok
!playok
!poffok
!stopok

!ponok

!pauseok
play?
!playok
poff?
!poffok
!ponok
!stopok

pon?pause?
stop?

!poffok

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?

!pauseok
play?
!playok
!poffok
!ponok
!stopok

pon?

pause?
play?
poff?
stop?

pause?
!pauseok
play?
!playok
!poffok
!ponok
!stopok

pause?
play?
poff?
stop?

pon?

play?
pause?
poff?
stop?

pon?

pon? play?
pause?
poff?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?
poff?
stop?

pon?

play?

pause?
pon?
stop?

poff?

!pauseok
!playok
!poffok
!ponok
!stopok

play?

!playok

pause?

play?
pon?

stop? poff?

pause?
play?
poff?
stop?

pon?

!pauseok
!playok
!poffok
!stopok

!ponok

!ponok

play?

poff?

pause?
pon?
stop?

pon?

pause?
play?
poff?
stop?

!pauseok
!playok
!poffok
!ponok
!stopok

pause?
play?
stop?

poff? pon?

!poffok

!pauseok

pause?
play?
poff?
pon?
stop?

!playok

pause?
poff?
stop?

play?
pon?

!stopok

pause?
play?
poff?
stop?

pon?

!poffok

!ponok

pause?
pon?
stop?

play? poff?

!pauseok
!poffok
!ponok
!stopok

!playok

!ponok

play?
pause?
poff?
stop?

pon?

!ponok

!pauseok
!playok
!ponok
!stopok

!poffok

(b)

Figure 5.64: Learned models for component Media Renderer in: (a) 2500 exe-
cutions, (b) 5000 executions.

BUPT

5.4. CASE STUDY: DOMOTICS 207

Light Control System – Normal Exploration

The summarized results of incomplete model inference for the Light Control
System component, obtained using the normal exploration strategy, can be seen
in the below table 5.11, in both unminimized and minimized form. Like in the
case of the Media Renderer component, the models obtained were too large to
be properly visualized.

Similarly to the Media Renderer case study, by studying the original Light Control
System model (see figure 5.62(a)), we can see that all 4 controllable events in
the component’s alphabet can be enabled from any state. Further on, what
distinguishes the Light Control System component from the Media Renderer is
that it has a larger number of uncontrollable events, 8, and only 4 controllable
events, which would make it harder to control properly if it wouldn’t already be an
output deterministic component. It also has a significantly larger fairness bound,
θ = 34, and a larger bound on the longest acyclic path set at m = 10.

Table 5.11: Model inference results – normal exploration

nr. LCS size LCS tr.
200 1135 9920

367 3350
250 1386 12111

421 3865
500 2315 20286

604 5691
1 ×103 4163 36315

660 6491
1.5 ×103 5429 47573

878 8669
2 ×103 6496 56986

991 9793
2.5 ×103 7752 67484

1092 10392
5 ×103 12544 109565

1231 12493

Just like in the case of the Media Renderer, an exhaustive exploration ends
up producing a very dense execution trace tree, which is hard to partition into

BUPT

208 CHAPTER 5. EXPERIMENTAL RESULTS

equivalence classes, due to the relatively high values of the relevant parameters:
m = 10, and θ = 34. This resulting dense trace tree brings, also in this case,
the time complexity of the equivalence partitioning process close to its upper
bound of |Σ|3m, which for |Σ| = 12 and m = 10 become even more difficult
to handle than in the Media Renderer case study. Thus, also in the case of the
Light Control System component, to avoid having a very expensive equivalence
partitioning phase, the number of learning traces is again severely restricted, and
the trace tree is only partially filled.

Therefore, as it can been seen in table 5.11, the number of executions used
to learn the Light Control System component has been limited to 5000. This
limitation make the cycle identification ideal rather unreachable for this case
study. However, even in this situation, the incomplete model learning algorithm
still allows us to discover safe, usable paths in the otherwise unknown behaviour
of the Light Control System.

Light Control System – Cycle-Based Exploration

Similarly to the Media Renderer case study, the cycle-based exploration strategy
also offers here an interesting improvement over the unoptimized exploration.
Since the cycle-based strategy focuses the available executions upon the specified
usage scenarios, the algorithm ends up learning models significantly smaller than
the ones learned by the normal exploration strategy. This effect can be observed
from the summarized statistical data in table 5.12, and by comparing these
model sizes against the ones in table 5.11.

The specification of interesting cycles is presented below.

:[1]<lon?><lonok!>[2]<loff?><loffok!>

<lon?><lonok!>:[2]<dim?><dim3!>[3]<bright?><bright4!>

<lon?><lonok!><dim?><dim3!>:[3]<dim?><dim2!>
[4]<bright?><bright3!>

<lon?><lonok!><dim?><dim3!><dim?><dim2!>:[4]<dim?><dim1!>
<bright?><bright2!>

:[1]<lon?><lonok!>[2]<dim?><dim3!>[3]<loff?><loffok!>

BUPT

5.4. CASE STUDY: DOMOTICS 209

:[1]<lon?><lonok!>[2]<dim?><dim3!>[3]<dim?><dim2!>[4]<loff?>
<loffok!>

:[1]<lon?><lonok!>[2]<dim?><dim3!>[3]<dim?><dim2!>[4]<dim?>
<dim1!><loff?><loffok!>

Table 5.12: Model inference results – normal exploration

nr. LCS size LCS tr.
200 841 7429

59 524
250 1021 9025

58 515
500 1695 15012

62 558
1 ×103 1588 13903

70 584
1.5 ×103 1607 14098

68 576
2 ×103 2057 18106

73 623
2.5 ×103 785 6737

76 511
5 ×103 1207 10462

72 493

Some of the models obtained during the cycle-optimized learning are presented.
As a significant difference between the Light Control System and the Media
Renderer component, we have to mention that the Light Control System is
apparently less controllable than the Media Renderer, having 4, instead of 5
controllable events, and 8, instead of 5, uncontrollable events, the effect of the
cycle-based optimization strategy should be less visible here. Theoretically, it is
harder to force a current run towards a desired path when you have more un-
controllable events, however, as this particular black box is output deterministic,
the latter does not apply.

In figure 5.65(a) we can see the model of the Light Control System component
obtained in 250 learning executions, while figure 5.65(b) presents a model learned
in 500 executions. Further on, in figure 5.66(a) we can see a model of the Light

BUPT

210 CHAPTER 5. EXPERIMENTAL RESULTS

Control System learned in 2500 executions, while the model in figure 5.66(b)
has been learned in 5000 executions.

lon? bright? dim?
loff?

!lonok lon?
bright?
dim?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

bright?
dim?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

loff?bright?dim? lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

bright?
dim?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
lon?loff? dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
loff?
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright? loff? lon?dim?

!bright2
!bright3
!dim1
!dim2
!dim3
!loffok
!lonok

!bright4

bright?
dim?
loff?

lon?

loff? bright?dim? lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim3
!loffok
!lonok

!dim2

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?loff? dim?

!bright3

!bright2
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright? loff?dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?loff? dim?

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

loff? bright?
lon?dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright4

!bright2
!bright3
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
lon?dim?loff?

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

loff? dim?lon?bright?

!bright2
!bright3
!dim1
!dim2
!dim3
!loffok
!lonok

!bright4

!dim2

!bright2
!bright3
!bright4
!dim1
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
lon? loff?dim?

!dim1

!bright2
!bright3
!bright4
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
lon?
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

loff? bright?dim? lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

(a)

lon?bright? dim?
loff?

!lonoklon?bright?
loff? dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright4

!bright2
!bright3
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

loff?bright? dim?lon?

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

bright?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
lon? loff? dim?

bright?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

loff?

bright?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
loff?
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright? loff?lon? dim?

!bright2
!bright3
!dim1
!dim2
!dim3
!loffok
!lonok

!bright4

lon?bright? dim?
loff?

lon? loff?bright? dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim3
!loffok
!lonok

!dim2

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

lon?

loff?dim?

!bright2
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

!bright3

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
loff?
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

lon? bright? loff? dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

lon?bright? loff? dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

loff?bright?
lon? dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

lon? bright? dim?loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

loff?dim?lon? bright?

!bright2
!bright3
!dim1
!dim2
!dim3
!loffok
!lonok

!bright4

!bright2
!bright3
!bright4
!dim1
!dim3
!loffok
!lonok

!dim2

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
lon? loff?dim?

!bright2
!bright3
!bright4
!dim2
!dim3
!loffok
!lonok

!dim1

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
!loffok
lon?
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

(b)

Figure 5.65: Learned models for component Light Control System in: (a) 250
executions, (b) 500 executions.

BUPT

5.4. CASE STUDY: DOMOTICS 211

lon?

bright?

dim?
loff?

!lonok

lon? bright?
loff?dim?

bright?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
dim?
loff?
!loffok
!lonok

lon?

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
dim?
loff?
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
loff? dim?lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?loff?

lon?

dim?

!bright4

!bright2
!bright3
!dim1
!dim2
!dim3
!loffok
!lonok

loff?dim? bright?
lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
loff? dim?lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

!bright2
!bright3
!bright4
!dim2
!dim3
!loffok
!lonok

!dim1

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
dim?
loff?
!loffok
lon?
!lonok

!bright2
!bright3
!bright4
!dim1
!dim3
!loffok
!lonok

!dim2

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
dim?
loff?
!loffok
!lonok

lon?

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?loff?dim? lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?loff?dim?!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright? loff?dim? lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright? loff?

lon?

dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

bright?dim?
loff?

lon?

bright?

loff?dim?

lon?

bright?dim?
loff?lon?

bright?
dim?
loff?

lon?

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
loff?
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

bright?

loff?

dim? lon?

dim? bright?
lon?loff?

!loffok

!bright2
!bright3
!bright4
!dim1
!dim3
!loffok
!lonok

!dim2

!dim3

bright? loff?

dim?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright4

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?loff?

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!lonok

bright?
dim?
loff?

lon?

loff?

dim? bright?
lon?

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!loffok

!dim2

!lonok

dim? lon?bright? loff?

!bright2
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

!bright3

!dim3

dim? lon?bright? loff?

!bright4

!bright2
!bright3
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
lon?dim?loff?

!lonok

dim? bright? lon?loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

bright?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
lon?
!lonok

dim?

(a)

lon?

bright?

dim?
loff?

!lonok

lon?
bright?
dim?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
dim?
loff?
!loffok
!lonok

bright?
lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
!loffok
!lonok

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
dim?
loff?
!loffok
lon?
!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

lon? bright?dim?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
loff?

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?loff? lon?dim?

!bright2
!bright3
!dim1
!dim2
!dim3
!loffok
!lonok

!bright4

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

loff? bright?
lon?dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
lon?
!lonok

dim?
loff?bright?

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
loff?
!loffok
!lonok

!bright2
!bright3
!bright4
!dim2
!dim3
!loffok
!lonok

!dim1

!bright2
!bright3
!bright4
!dim1
!dim3
!loffok
!lonok

!dim2

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
dim?
loff?
!loffok
!lonok

lon?

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?loff? dim? lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

lon?bright? loff? dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
loff?
!loffok
!lonok

bright?

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

bright?
loff? dim?

lon?

bright?
lon?

loff?dim?

bright? dim?
loff?lon?

bright?
dim?
loff?

lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
bright?
!dim1
!dim2
!dim3
dim?
loff?
!loffok
!lonok

lon?

bright?
lon?

loff?

dim?

dim? lon?bright?loff?

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
lon?loff? dim?

!bright2
!bright3
!bright4
!dim1
!dim3
!loffok
!lonok

!dim2

bright?
dim?
loff?

lon?

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

bright? loff?

dim?

lon? !bright4

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!lonok

bright? dim?
loff?lon?

bright?
loff? dim?lon?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
lon?loff? dim?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

bright?

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!loffok

!dim2

!lonok

dim? lon? loff?bright?

!bright2
!bright4
!dim1
!dim2
!dim3
!loffok
!lonok

!bright3

!dim3

lon?dim?bright? loff?

!bright4

!bright2
!bright3
!dim1
!dim2
!dim3
!loffok
!lonok

bright?
lon? dim?loff?

!lonok

!bright2
!bright3
!bright4
!dim1
!dim2
!loffok
!lonok

!dim3

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!lonok

!loffok

!bright2
!bright3
!bright4
!dim1
!dim2
!dim3
!loffok
lon?
!lonok

bright?
dim?
loff?

(b)

Figure 5.66: Learned models for component Light Control System in: (a) 2500
executions, (b) 5000 executions.

BUPT

212 CHAPTER 5. EXPERIMENTAL RESULTS

Although the execution has been always steered towards the relevant scenarios
described in the cycle specification file, none of these desired loops has been
identified within the maximum 5000 executions available. However, the models
obtained by focusing on the relevant scenarios are significantly smaller than their
unoptimized correspondents, and also well explored considering the number of
executions employed. Thus, the model obtained after 250 executions has well-
explored states up to a depth of 3, the one learned in 500 executions already
has some well-explored states also at depth 4, while the number of outgoing
uncontrollable transitions to the unknown-future state decreases further more
after 2500 and 5000 learning executions. The model obtained in 2500 runs has
completely explored states at depths up to 6 and 7, while the one using 5000
learning executions already has such states at depths of 7 and even 8.

5.5 Learning Large Individual Components

Out of the existing model learning techniques, we consider the work of Aarts
and Vaandrager [1, 2] as being most related to ours, since they:

• also learn components that communicate asynchronously, although the
models only contain input-determined behaviour, i.e. a maximum of one
outgoing send transition is allowed from each state

• have also conducted experiments where they’ve only learned a partial be-
haviour of the components, that conformed to a certain "learning pur-
pose", which, in our case, can be the desired temporal property.

Being asynchronous, the case studies they’ve considered were easy to adapt to
our model, by only adding the assumption of inner nondeterminism with respect
to the transitions on send events.

In both case studies described in [1, 2] the behavioural models of the components
are learned in isolation, so the set of messages to be forwarded to the component
is supposed to be available to the inference engine. The controller obtained is
a local controller, that would ensure that the component behaviour conforms
to the desired property. The properties we have considered are the same to the
learning purposes described by Aarts and Vaandrager. It should be mentioned
here, however, that Aarts and Vaandrager only use the learning purpose to
restrict the model inference effort to a subset of interesting behaviour, and they
do not try to obtain a controller that would enforce that behaviour.

BUPT

5.6. CASE STUDY: THE SESSION INITIATION PROTOCOL (SIP) 213

Also, while Aarts and Vaandrager have conducted experiments on the real sys-
tems under test, our experiments have been performed, for simplicity, on abstract
simulations of those components. However, this aspect only has impact on the
actual time cost of a learning query, and does not influence the total number of
queries needed for model inference, or the length of a query.

5.6 Case Study: The Session Initiation Protocol
(SIP)

The Session Initiation Protocol (SIP) is an application layer protocol [35] that
is widely used for communication sessions such as voice and video calls over
Internet Protocol, etc. The case study considered models the behaviour of a
SIP server while communicating with a SIP client.

The server and the client communicate by exchanging messages, which are of
two types: Request and Response. Due to the fact that both Request and
Response messages can take different parameter values, the actual alphabet of
SIP is quite complex, having a large set of input symbols, which is reduced by
Aarts and Vaandrager in [2] by means of various abstraction techniques to a
relevant subset of only 16 events.

The abstract alphabet of a server implementing the SIP protocol, used in this
case study is the following:

• INVITE_ f?, INVITE_ l?: INVITE request messages are used to establish
a session between agents, and they can either be final (INVITE_ f) or
provisional (INVITE_ l)

• ACK_ f?, ACK_ l?: ACK request messages are used to confirm reliable
message exchanges between agents, and they can also be final (ACK_ f)
or provisional (ACK_ l)

• PRACK_ f?, PRACK_ l?: PRACK: Provisional Response Acknowledg-
ment request messages, used to acknowledge provisional responses

• timeout_ f!, timeout_ l!: response message sent by the server to notify a
final or provisional timeout

• 100_ f!, 100_ l!: 100 responses are used to let the client know that the
server is trying to fulfill its request

BUPT

214 CHAPTER 5. EXPERIMENTAL RESULTS

• 180_ f!: 180 responses mean that the destination user agent has received
the INVITE message

• 183_ f!: 183 responses are used to send extra information during a session
in progress

• 200_ f!: 200 response messages mean that the request was processed
successfully

• 486_ f!, 486_ l!: 486 responses are used to let the client know that the
server is busy

• 481_ l!: 481 responses are error messages meaning that the requested
action doesn’t exist

The real model of the Session Initiation Protocol, on which our simulated ex-
periments are based, can be seen in figure 5.67(a), while the learning purpose
automaton appears in figure 5.67(b). The learning purpose describes a behaviour
in which only final request messages are allowed from the initial state, and where
no two consecutive request messages are permitted. Further on, we have used
the learning purpose automaton as the desired property automaton, to guide the
behaviour exploration of the simulated black box component.

It is important to note here that, while the original model from [2] is input
determined, the models considered by BASYL are not, thus allowing for more that
one output transitions from the same state. This adds the issue of uncontrollable
send transitions, but, since this model is more general than input determined
I/O automata, behaviour that can be modelled by the latter can nevertheless be
learned using the former.

However, while learning a complete model for an input-determined I/O au-
tomata, whose behaviour is entirely controllable, can be achieved using a version
of the Angluin algorithm, doing the same in the presence of uncontrollability is
more expensive. But, in contrast to the work in [2, 1], the purpose of BASYL is
not inferring a complete model of the black box component/s under study, but
a controllable approximation, that would allow us to enforce the desired safety
property by generating a local controller.

Our of the 16 events of the SIP alphabet, only 6 are controllable, while the
other 10 are uncontrollable. This leads to quite a large fairness bound for the
SIP component: θ = 48. The other relevant parameter, the longest size of an
acyclic trace, is the largest of all considered case studies: m = 17. Thus, SIP is

BUPT

5.6. CASE STUDY: THE SESSION INITIATION PROTOCOL (SIP) 215

ACK_f?
PRACK_f? INVITE_f?

INVITE_f?

INVITE_l?

PRACK_f?PRACK_l? ACK_f? ACK_l?

!183_f

!timeout_f

!100_f

!100_l

!200_f

!481_l !timeout_f !timeout_l

!100_f

!100_l!timeout_f

!100_f

!timeout_l

INVITE_f?

INVITE_l?

PRACK_f?PRACK_l? ACK_f? ACK_l?

!486_f

INVITE_f?

INVITE_l?

PRACK_f?PRACK_l? ACK_f? ACK_l?

!486_l

INVITE_f?

INVITE_l?

ACK_f?
PRACK_f?

ACK_l?
PRACK_l?

!180_f

INVITE_f?

INVITE_l?

PRACK_f?PRACK_l? ACK_f? ACK_l?

INVITE_f?

INVITE_l?

ACK_f?
PRACK_f?

ACK_l?
PRACK_l?

!486_f

INVITE_f?

INVITE_l?

ACK_f?
PRACK_f?

ACK_l?
PRACK_l?

!486_l

INVITE_f?

INVITE_l?

ACK_f?
PRACK_f?

ACK_l?
PRACK_l?

(a)

ACK_f?
INVITE_f?
PRACK_f?
!timeout_f

!100_f
!100_l
!180_f
!180_l
!183_f
!183_l
!200_f
!200_l
!481_f
!481_l
!486_f
!486_l

!timeout_l

!100_f
!100_l
!180_f
!180_l
!183_f
!183_l
!200_f
!200_l
!481_f
!481_l
!486_f
!486_l

!timeout_f
!timeout_l

ACK_f?
ACK_l?

INVITE_f?
INVITE_l?
PRACK_f?
PRACK_l?

!100_f
!100_l
!180_f
!180_l
!183_f
!183_l
!200_f
!200_l
!481_f
!481_l
!486_f
!486_l

!timeout_f
!timeout_l

(b)

Figure 5.67: (a) Session Initiation Protocol real model, (b) learning purpose

BUPT

216 CHAPTER 5. EXPERIMENTAL RESULTS

a very deep component compared to the rest, and thus hard to explore and to
learn properly.

The learning experiments performed for the SIP component have only consid-
ered incomplete learning. Both the unoptimized exploration and the cycle-based
exploration strategies have been experimented with.

Below, we provide the specification of the cycles considered for cycle-based ex-
ploration experiments. As the SIP component is significantly large and contains
many relevant execution scenarios, with many loops and many join points of
these loops, for convenience we have only extracted a small subset of those
cycles to use in our experiments.

:[1]<ACK_f?><timeout_f!>

:[1]<PRACK_f?><timeout_f!>

<INVITE_f?><100_f!><ACK_f?>:[2]<timeout_f!>[6]<ACK_f?>

<INVITE_f?><100_f!><PRACK_l?>:[2]<481_l!>[6]<PRACK_l?>

<INVITE_f?><100_f!><INVITE_l?>:[4]<100_l!>[6]<INVITE_l?>

<INVITE_f?><100_f!><ACK_l?>:[5]<timeout_l!>[6]<ACK_l?>

<INVITE_f?><100_f!><PRACK_f?><200_f!><INVITE_l?>:[7]<100_l!>
<INVITE_l?>

Session Initiation Protocol – Normal Exploration

In the following, we present the results obtained in the learning process of the
SIP component, when the normal exploration strategy is used. Table 5.13 sum-
marizes the results of the incomplete model inference process. Both the learned
model and the generated controller are presented, and for the learned model
we present both the statistical data of the unminimized and of the minimized
model. The computed controller is given only in its reduced form.

As the SIP component is a large one, having a relatively large alphabet size, a
high fairness bound of θ = 48 and an also large acyclic bound m = 17, SIP is
not only hard to properly explore, but its equivalence partitioning is also hard,

BUPT

5.6. CASE STUDY: THE SESSION INITIATION PROTOCOL (SIP) 217

due mainly to its large value for m. Thus, as the time cost of processing a
nearly-full trace tree is prohibiting, we found it necessary, as in the Domotics
case study, to decide for a low limit on the number of executions allowed, which
then was set to 5000.

Table 5.13: Model inference results – normal exploration

nr. SIP size SIP tr. ctrl size ctrl tr.
200 2092 21756 1107 5605

1025 10710
250 2544 26472 1248 6364

1160 12139
500 4630 48124 1804 9348

1686 17667
1 ×103 8461 88105 10471 48330

2288 24329
1.5 ×103 11954 124382 14646 67181

2 ×103 15371 159872 18703 85466

2.5 ×103 18699 194628 22685 103376

5 ×103 33180 345338 39206 175933

The learned models, as it can be seen from table 5.13, are large, and they nat-
urally increase in size as more and more new paths are explored. They are too
large to be visualized and, starting with the results of the experiment employing
1500 executions, and further on, they are even too large to be minimized in a
reasonable amount of time, i.e. less than an hour. For visualization, minimiza-
tion and verification of the learned models, as for controller generation we have
used the Supremica tool [59].

Session Initiation Protocol – Cycle-Based Exploration

The results of the cycle-based exploration for the SIP case study can be seen
in table 5.14. As SIP is a large component in terms of the relevant parameters
considered, and the number of learning executions has been limited to 5000,

BUPT

218 CHAPTER 5. EXPERIMENTAL RESULTS

it is not expected from the resulting models to have already identified cycles.
The benefits of the cycle-oriented learning optimization can be seen, in this
case, in the significantly smaller size of the minimized form of the obtained
models. The first, and smallest of these models is presented in figure 5.68(a),
while its corresponding controller can be seen in figure 5.68(b). Similarly to
the unoptimized learning, the unminimized sizes of the learned models increases
with the number of employed explorations, until their minimization becomes too
expensive (starting with the 1500 executions bound).

Table 5.14: Model inference results – cycle-based exploration

nr. SIP size SIP tr. ctrl size ctrl tr.
200 2103 21760 166 913

135 1453
250 2567 26583 186 1044

155 1686
500 4625 47860 297 1735

254 2726
1 ×103 8395 87057 9778 44861

386 4253
1.5 ×103 12064 125014 13991 63902

2 ×103 15364 159150 17644 80167

2.5 ×103 18594 192763 21241 96152

5 ×103 33003 342176 36822 164009

The large size difference between the two sets of models is also due to the fact
that the specified cycles, used to guide the exploration, are only a small subset
of the set of cycles of SIP. Thus, the learning executions have only focused on
a small set of paths. These specified cycles are given again below.

:[1]<ACK_f?><timeout_f!>

:[1]<PRACK_f?><timeout_f!>

<INVITE_f?><100_f!><ACK_f?>:[2]<timeout_f!>[6]<ACK_f?>

BUPT

5.6. CASE STUDY: THE SESSION INITIATION PROTOCOL (SIP) 219

<INVITE_f?><100_f!><PRACK_l?>:[2]<481_l!>[6]<PRACK_l?>

<INVITE_f?><100_f!><INVITE_l?>:[4]<100_l!>[6]<INVITE_l?>

<INVITE_f?><100_f!><ACK_l?>:[5]<timeout_l!>[6]<ACK_l?>

<INVITE_f?><100_f!><PRACK_f?><200_f!><INVITE_l?>:[7]<100_l!>
<INVITE_l?>

ACK_f? PRACK_f? INVITE_f?

!timeout_f

!481_l
!100_f

!timeout_l
!486_l

!timeout_f
!180_f
!200_f
!183_f
!100_l
!486_f

ACK_f?

!486_f
!183_f

!timeout_f
!timeout_l
!481_l
!200_f
!486_l
!100_l
!180_f

!100_f

!486_f
!183_f

!timeout_f
!180_f
!200_f
!486_l
!100_l
!481_l
!100_f

!timeout_l

!100_f
!481_l

!timeout_l
!486_f
!183_f
!180_f
!200_f
!486_l
!100_l

!timeout_f

!183_f
!timeout_f
!486_f
!486_l
!100_l
!180_f
!200_f
!481_l
!100_f

!timeout_l

INVITE_f?

!481_l
!timeout_l
!183_f

!timeout_f
!486_f
!486_l
!100_l
!180_f
!200_f

!100_f

!180_f
!200_f
!486_l
!100_l
!183_f

!timeout_f
!timeout_l
!481_l
!100_f

!486_f

!timeout_l
!100_f
!481_l
!180_f
!200_f
!486_l
!100_l
!486_f
!183_f

!timeout_f

INVITE_f?

!486_l
!100_l
!180_f
!200_f
!183_f

!timeout_f
!486_f

!timeout_l
!481_l

!100_f

!timeout_l
!100_f
!481_l
!486_l
!100_l
!180_f
!200_f
!183_f

!timeout_f

!486_f

INVITE_f?

!481_l
!100_f

!timeout_l
!486_f
!183_f

!timeout_f
!180_f
!200_f
!486_l
!100_l

!100_f
!481_l
!486_l
!200_f
!180_f
!100_l

!timeout_f
!183_f

!timeout_l

!486_f

!183_f
!timeout_f
INVITE_f?
!486_f
!486_l
!100_l
!180_f
!200_f
!100_f
!481_l

!timeout_l

!180_f
!200_f
!486_l
!100_l
!486_f
!183_f

!timeout_l
!100_f
!481_l

!timeout_f

!486_l
!180_f
!200_f
!183_f

!timeout_f
!486_f

!timeout_l
!481_l
!100_f

!100_l

!timeout_l
!100_f
!481_l
!100_l
!180_f
!200_f
!183_f

!timeout_f
!486_f

!486_l

!200_f
!486_l
!100_l
!180_f
!481_l
!100_f

!timeout_l
!486_f
!183_f

!timeout_f

!486_f
!timeout_f
!183_f
!180_f
!100_l
!486_l
!200_f
!100_f

!timeout_l

!481_l

!timeout_l
!481_l
!100_f
!200_f
!486_l
!100_l
!180_f
!183_f

!timeout_f
!486_f

INVITE_f? PRACK_f?

!timeout_f
!486_l
!180_f
!100_f

!timeout_l
!486_f
!183_f
!200_f
!100_l
!481_l

INVITE_f?ACK_f? PRACK_f?

!timeout_l
!100_f
!481_l
!180_f
!486_l
!200_f
!486_f

!timeout_f
!183_f

!100_l

!100_f
!481_l

!timeout_l
!timeout_f
!183_f
!180_f
!100_l
!200_f
!486_f

INVITE_f?

!486_l

!100_l
!180_f
!200_f
!486_l
!481_l

!timeout_l
!183_f

!timeout_f
!486_f

!100_f

!timeout_l
!timeout_f
!486_f
!180_f
!100_l
!486_l
!200_f
!100_f
!481_l

INVITE_f?!183_f PRACK_f?

!486_l
!486_f
!100_l
!180_f

!timeout_l
!183_f

!timeout_f
!481_l
!100_f

!200_f

!timeout_f
!183_f

!timeout_l
!100_f
!481_l
!486_f
!486_l
!200_f
!100_l

!180_f

!100_f
!486_l
!180_f

!timeout_f
!481_l
!200_f
!100_l
!486_f
!183_f

!timeout_l

INVITE_f?

ACK_f?INVITE_l?

PRACK_f?

PRACK_l? ACK_l?

!180_f
!486_l
!486_f
!100_l

!timeout_l
!timeout_f
!183_f
!100_f
!481_l

!200_f

!481_l
!100_f
!183_f

!timeout_f
!timeout_l
!100_l
!486_f
!486_l
!200_f

!180_f

!486_l
!180_f
!183_f
!200_f
!486_f
!100_l
!100_f
!481_l

!timeout_l

!timeout_f

!100_f
!481_l
!200_f
!100_l
!486_l
!486_f

!timeout_f
!180_f
!183_f

!timeout_l

!timeout_l
!486_l
!486_f
!180_f
!183_f
!200_f
!100_l
!100_f
!481_l

!timeout_f

!200_f
!100_f
!481_l

!timeout_l
!486_l
!486_f

!timeout_f
!180_f
!183_f

!100_l

!timeout_l
!486_f
!180_f
!183_f

!timeout_f
!200_f
!100_l
!481_l
!100_f

!486_l

!183_f
!486_f

!timeout_l
!481_l
!100_f
!100_l
!180_f
!200_f
!486_l

!timeout_f

!100_f
!180_f
!486_l

!timeout_f
!481_l
!100_l
!200_f
!183_f
!486_f

!timeout_l

INVITE_f?PRACK_f?ACK_f?

!timeout_l
!481_l
!100_f
!100_l
!486_f
!200_f
!183_f

!timeout_f
!180_f
!486_l

ACK_f?

!200_f
!486_l
!100_l
!180_f
!481_l

!timeout_l
!486_f
!183_f

!timeout_f

!100_f

!timeout_l
!486_f
!200_f
!100_l
!481_l

!timeout_f
!486_l
!180_f
!100_f

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?!183_f

PRACK_l?

!180_f
!486_l
!100_f

!timeout_f
!100_l
!200_f
!481_l

!timeout_l
!183_f
!486_f

INVITE_f?

ACK_f?

PRACK_f?

!486_f
!100_l
!183_f
!200_f
!180_f
!486_l

!timeout_l
!100_f
!481_l

!timeout_f

!183_f
!486_f

!timeout_l
!180_f
!486_l
!100_f
!481_l
!100_l
!200_f

!timeout_f

!180_f
!100_f
!486_l

!timeout_f
!481_l
!100_l
!200_f
!183_f
!486_f

!timeout_l

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?

PRACK_l? ACK_l?

!timeout_l
!183_f
!481_l
!100_f
!180_f
!200_f
!486_f
!486_l
!100_l

!timeout_f

!100_f
!481_l

!timeout_f
!183_f

!timeout_l
!100_l
!486_l
!486_f
!200_f
!180_f

INVITE_f?

!486_l
!100_l
!486_f
!180_f
!200_f
!481_l
!183_f

!timeout_f
!timeout_l

!100_f

!100_f
!481_l

!timeout_l
!timeout_f
!486_f
!100_l
!486_l
!200_f
!180_f

!183_f

!timeout_l
!481_l
!100_f
!200_f
ACK_f?
!183_f
!100_l
!486_f
!486_l

!timeout_f
!180_f

!100_l
!200_f
!180_f
!481_l
!486_l

!timeout_l
!183_f

!timeout_f
!486_f

!100_f

!timeout_l
!timeout_f
!183_f
!200_f
!100_l
!486_l
!100_f
!481_l
!180_f

!486_f

!200_f
!100_l
!481_l
!486_l
!100_f
!180_f

!timeout_l
!486_f
!183_f

!timeout_f

INVITE_f?PRACK_f?

!100_f
!timeout_l
!183_f

!timeout_f
!486_f
!486_l
!100_l
!180_f
!200_f

!481_l

!183_f
!timeout_f
!486_f

!timeout_l
!180_f
!481_l
!486_l
!100_f
!100_l

!200_f

!486_l
!100_f
!481_l
!200_f
!100_l
!486_f

!timeout_f
!183_f

!timeout_l

!180_f

!486_f
!183_f

!timeout_f
!timeout_l
!481_l
!486_l
!100_f
!180_f
!200_f
!100_l

INVITE_f? PRACK_f?

!481_l
!100_f
!180_f
!486_l
!100_l
!486_f
!183_f

!timeout_f
!timeout_l

!200_f

!100_l
!timeout_f
!100_f
!486_l
!486_f
!183_f

!timeout_l
!481_l
!200_f

PRACK_f?
ACK_f?

INVITE_f? INVITE_l?

!180_f

!timeout_f

!481_l
!100_f
!200_f
!180_f
!486_f
!486_l
!100_l

!timeout_l
!183_f

!timeout_f

INVITE_f?

PRACK_f?

!481_l
!180_f
!200_f
!486_l
!100_l
!486_f
!183_f

!timeout_f
!timeout_l

!100_f

!486_l
!486_f
!100_l

!timeout_l
!timeout_f
!100_f
!481_l
!200_f
!180_f

!183_f

ACK_f? INVITE_f? PRACK_f?

!183_f
!486_f
!486_l
!180_f
!100_f
!100_l
!481_l
!200_f

!timeout_f

!timeout_l

!timeout_l
!183_f
!486_f
!486_l
!100_l
!200_f
!180_f
!481_l
!100_f

!timeout_f

!180_f
!100_f

!timeout_f
!100_l
!200_f
!481_l

!timeout_l
!183_f
!486_f
!486_l

INVITE_f? PRACK_f?
ACK_f?

!481_l
!180_f
!200_f
!486_l
!100_l
!486_f
!183_f

!timeout_f
!timeout_l

!100_f

!200_f
!180_f
!486_l
!486_f
!100_l
!183_f

!timeout_l
!timeout_f
!100_f

!481_l

!100_l
!486_l
!486_f

!timeout_f
!timeout_l
!100_f
!481_l
!180_f
!200_f

INVITE_f?

!183_f

!481_l
!timeout_l
!486_l
!180_f

!timeout_f
!183_f
!200_f
!486_f
!100_l

!100_f

PRACK_f?ACK_f? INVITE_f?

!100_l
!200_f

!timeout_f
!timeout_l
!481_l
!486_f
!180_f
!486_l
!100_f

PRACK_l? ACK_l?INVITE_f?

!183_f

PRACK_f? ACK_f?

INVITE_l?

!200_f
!100_f
!481_l
!183_f

!timeout_l
!100_l
!486_l
!180_f
!486_f

!timeout_f

!183_f
!timeout_l
!486_l
!486_f
!180_f
!200_f
!481_l

!timeout_f
!100_l
!100_f

ACK_f?

INVITE_f? PRACK_f?

ACK_l?

INVITE_l?

PRACK_l?

!timeout_l
!481_l
!100_l
!200_f

!timeout_f
!100_f
!486_f
!183_f
!180_f
!486_l

PRACK_f?INVITE_f?

ACK_f?

INVITE_l?

PRACK_l? ACK_l?

!200_f
!183_f
!100_l
!486_f
!486_l

!timeout_f
!180_f

!timeout_l
!481_l

!100_f

!200_f
!100_f
!481_l

!timeout_l
!183_f
!180_f
!486_f
!100_l
!486_l

!timeout_f

!timeout_l
!183_f
!486_f
!180_f
!486_l
!200_f
!481_l

!timeout_f
!100_l
!100_f

INVITE_f?PRACK_f?
ACK_f?

!200_f
!481_l

!timeout_f
!183_f

!timeout_l
!100_l
!486_l
!180_f
!486_f

!100_f

!timeout_f
!timeout_l
!486_l
!100_l
!180_f
!486_f
!200_f
!481_l
!100_f

!183_f

INVITE_f?PRACK_f?

!timeout_l
!100_f
!481_l
!183_f
!200_f
!100_l
!486_l
!180_f

!timeout_f

!486_f

INVITE_f?

!timeout_f
!183_f
!486_f
!100_l
!486_l
!200_f
!180_f
!481_l

!timeout_l

!100_f

!481_l
!timeout_l
!486_f
!486_l
!180_f
!100_f

!timeout_f
!100_l
!200_f

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?!183_f

!timeout_f
!200_f
!100_l
!100_f
!486_f
!183_f
!180_f
!486_l
!481_l

!timeout_l

INVITE_f?

ACK_f?INVITE_l?

PRACK_f?

!timeout_l
!100_f
!481_l
!486_l
!200_f
!180_f

!timeout_f
!183_f
!486_f

!100_l

!100_l
!180_f
!200_f
!183_f

!timeout_f
!486_f

!timeout_l
!481_l
!100_f

INVITE_f? PRACK_f?

!486_l

!timeout_l
!481_l
!180_f
!486_l
!486_f
!183_f
!100_f
!200_f
!100_l

!timeout_f

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?

!180_f
!200_f
!486_l
!100_l
!486_f
!183_f

!timeout_l
!481_l
!100_f

!timeout_f

!100_l
!486_l
!200_f
!180_f

!timeout_f
!183_f
!486_f

!timeout_l
!100_f

!481_l

!timeout_f
!200_f
!100_l
!100_f
!486_f
!183_f
!180_f
!486_l
!481_l

!timeout_l

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?

PRACK_l?

!100_f
!481_l

!timeout_l
!486_l
!180_f
!183_f
!200_f
!486_f
!100_l

!timeout_f

!timeout_l
!183_f
!100_f
!481_l
!200_f
!180_f
!486_f
!100_l
!486_l

!timeout_f

!200_f
!100_l

!timeout_f
!100_f
!180_f
!486_f
!486_l

!timeout_l
!183_f
!481_l

INVITE_f? PRACK_f?
ACK_f?

!timeout_f
!183_f

!timeout_l
!481_l
!200_f
!180_f
!100_l
!486_l
!486_f

!100_f

!180_f
!200_f
!486_l
!100_l
!486_f

!timeout_f
!timeout_l
!481_l
!100_f

!183_f

!100_f
!timeout_f
!100_l
!200_f
!481_l

!timeout_l
!183_f
!486_f
!486_l
!180_f

INVITE_f?PRACK_f?ACK_f?

!486_f
!486_l
!200_f
!180_f
!100_f
!481_l

!timeout_l
!timeout_f
!183_f

!100_l

!481_l
!100_f

!timeout_l
!183_f

!timeout_f
!486_f
!100_l
!180_f
!200_f

INVITE_f? PRACK_f?

!486_l

!486_l
!486_f
!180_f
!481_l
!183_f

!timeout_l
!100_l
!200_f
!100_f

!timeout_f

INVITE_f?

ACK_f?

PRACK_f?

!100_f

PRACK_f? ACK_f?

INVITE_l?

!183_fPRACK_l?ACK_l?INVITE_f?

!timeout_l
!183_f
!481_l
!200_f
!100_l

!timeout_f
!100_f
!180_f
!486_l
!486_f

ACK_f?

INVITE_l?

PRACK_l? ACK_l?

INVITE_f? PRACK_f?

!180_f
!200_f
!486_l
!100_l
!481_l
!100_f
!486_f
!183_f

!timeout_f

!timeout_l

!486_f
!100_l
!486_l
!180_f
!200_f
!481_l

!timeout_f
!183_f

!timeout_l

!100_f

!100_f
!timeout_f
!486_l
!180_f
!481_l
!183_f

!timeout_l
!100_l
!200_f

!486_f

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?

PRACK_l?

!486_f
!183_f
!180_f
!486_l
!100_f
!100_l
!200_f

!timeout_f
!timeout_l
!481_l

PRACK_f?INVITE_f?ACK_f?

!180_f
!200_f
!100_f

!timeout_l
!183_f

!timeout_f
!486_f
!486_l
!100_l

!481_l

!timeout_l
!183_f
!486_f
!486_l
!180_f
!100_f

!timeout_f
!100_l
!200_f
!481_l

ACK_f?

INVITE_f? PRACK_f? INVITE_l?

PRACK_l?

!183_f
!timeout_f
!486_l
!100_l
!486_f
!180_f
!200_f
!100_f
!481_l

!timeout_l

!486_f
!486_l
!100_l

!timeout_l
!183_f

!timeout_f
!481_l
!100_f
!180_f

!200_f

!200_f
!100_f
!481_l

!timeout_f
!183_f

!timeout_l
!100_l
!486_l
!486_f

INVITE_f?

!180_f

!183_f
!timeout_f
!timeout_l
!481_l
!180_f
!200_f
!100_l
!486_f
!486_l

!100_f

!timeout_l
!100_f
!481_l
!486_f
!100_l
!183_f
!200_f
!180_f
!486_l

!timeout_f

!180_f
!486_l

!timeout_f
!100_f
!200_f
!100_l

!timeout_l
!183_f
!481_l

ACK_f?

INVITE_f?

!486_f

PRACK_f? INVITE_l?

!183_f
!100_f
!486_f
!100_l
!486_l
!200_f
!180_f
!481_l

!timeout_l

!timeout_f

!481_l
!timeout_l
!183_f

!timeout_f
!486_f
!100_f
!486_l
!100_l
!180_f
!200_f

PRACK_f?

INVITE_f?

!200_f
!180_f
!486_l
!486_f
!183_f
!100_f

!timeout_l
!481_l

!timeout_f

!100_l

!100_f
!183_f

!timeout_l
!timeout_f
!481_l
!180_f
!200_f
!100_l
!486_f

!486_l

INVITE_f?

!200_f
!100_l

!timeout_f
!timeout_l
!481_l
!183_f
!486_f
!486_l
!180_f
!100_f

INVITE_f? PRACK_f?

ACK_f?

!486_l
!100_l
!486_f
!200_f
!180_f
!481_l
!100_f

!timeout_l
!183_f

!timeout_f

!486_l
!486_f

!timeout_f
!100_f
!180_f
!200_f
!100_l

!timeout_l
!183_f
!481_l

INVITE_f?PRACK_f? ACK_f?

!486_l
!100_l
!180_f
!200_f
!100_f
!481_l

!timeout_l
!183_f
!486_f

!timeout_f

!100_f
!200_f
!180_f
!183_f

!timeout_l
!100_l
!486_l
!486_f

!timeout_f

!481_l

!timeout_l
!100_f
!481_l
!183_f
!200_f
!486_f
!100_l
!486_l
!180_f

!timeout_f

!486_f
!183_f
!180_f
!100_f
!486_l
!481_l
!200_f
!100_l

!timeout_f

!timeout_l

!100_l
!200_f
!481_l
!180_f
!486_l

!timeout_l
!timeout_f
!486_f
!183_f

!100_f

!481_l
!timeout_l
!100_l
!200_f
!180_f
!100_f
!486_f

!timeout_f
!486_l

PRACK_l?INVITE_l? ACK_l?INVITE_f?

!183_f

PRACK_f? ACK_f?

!481_l
!100_f

!timeout_l
!timeout_f
!180_f
!486_l
!100_l
!486_f
!200_f
!183_f

INVITE_f?ACK_f?

!timeout_f

!180_f
!486_l
!486_f
!100_l
!183_f
!200_f
!100_f
!481_l

!timeout_l

!100_l
!timeout_f
!486_f
!183_f
!486_l

!timeout_l
!180_f
!100_f
!481_l

!200_f

!481_l
!100_f
!486_l

!timeout_l
!486_f
!183_f

!timeout_f
!100_l
!200_f

INVITE_f?

!180_f

!100_l
!200_f
!481_l

!timeout_l
!183_f
!100_f
!180_f
!486_l

!timeout_f
!486_f

INVITE_f?

ACK_f?
PRACK_f?

INVITE_l?

PRACK_l?

!200_f
!481_l
!100_f
!180_f
!486_l

!timeout_f
!486_f
!183_f

!timeout_l

!100_l

!486_f
!timeout_f
!183_f

!timeout_l
!100_l
!200_f
!100_f
!481_l
!180_f

!486_l

(a)

ACK_f?PRACK_f?INVITE_f?

ACK_f?

INVITE_f?

ACK_f?PRACK_f?

INVITE_f?

PRACK_f? ACK_f?

ACK_f?

INVITE_f?

ACK_f?

INVITE_f?

PRACK_f?

INVITE_f?

ACK_f?
PRACK_f?

PRACK_f?ACK_f?

INVITE_f?

INVITE_f?

ACK_f?
PRACK_f?

INVITE_f?

ACK_f?
PRACK_f?

PRACK_f?

INVITE_f?

ACK_f?

PRACK_f?

INVITE_f?

INVITE_f?

PRACK_f? ACK_f?

INVITE_f?

PRACK_f?ACK_f?

INVITE_f?

ACK_f?

timeout_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_f

timeout_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_f

180_l
183_l
200_l
481_f

100_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_f

180_l
183_l
200_l
481_f

100_f

timeout_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_f

180_l
183_l
200_l
481_f

100_f

timeout_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

ACK_f?

180_l
183_l
200_l
481_f

100_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

INVITE_f?

180_l
183_l
200_l
481_f

100_f

180_l
183_l
200_l
481_f

486_f

180_l
183_l
200_l
481_f

INVITE_f?

180_l
183_l
200_l
481_f

100_f

180_l
183_l
200_l
481_f

486_f

INVITE_f?

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

486_f

180_l
183_l
200_l
481_f

INVITE_f?

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_l

486_l

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

481_l

INVITE_f?

180_l
183_l
200_l
481_f

PRACK_f?

INVITE_f?

180_l
183_l
200_l
481_f

ACK_f?PRACK_f?

180_l
183_l
200_l
481_f

100_l

INVITE_f?

486_l

180_l
183_l
200_l
481_f

INVITE_f?

180_l
183_l
200_l
481_f

183_fPRACK_f?

180_l
183_l
200_l
481_f

200_f

180_f

180_l
183_l
200_l
481_f

INVITE_f?

ACK_f? INVITE_l?

PRACK_f?

180_l
183_l
200_l
481_f

PRACK_l?ACK_l?

180_l
183_l
200_l
481_f

200_f

180_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

timeout_f

timeout_l

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_l

486_l

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

timeout_f

INVITE_f?

180_l
183_l
200_l
481_f

PRACK_f? ACK_f?

180_l
183_l
200_l
481_f

ACK_f?

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?

180_l
183_l
200_l
481_f

183_f

PRACK_l?

INVITE_f?

ACK_f?

PRACK_f?

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

timeout_f

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?

180_l
183_l
200_l
481_f

PRACK_l?ACK_l?

180_l
183_l
200_l
481_f

timeout_f

INVITE_f?

180_l
183_l
200_l
481_f

183_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

ACK_f?

180_l
183_l
200_l
481_f

100_f

180_l
183_l
200_l
481_f

486_f

INVITE_f? PRACK_f?

180_l
183_l
200_l
481_f

481_l

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

200_f

180_l
183_l
200_l
481_f

180_f

INVITE_f? PRACK_f?

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

200_f

ACK_f?
PRACK_f?

INVITE_f? INVITE_l?

180_l
183_l
200_l
481_f

180_f

180_l
183_l
200_l
481_f

timeout_f

INVITE_f?

PRACK_f?

180_l
183_l
200_l
481_f

183_f

180_l
183_l
200_l
481_f

INVITE_f? ACK_f?

180_l
183_l
200_l
481_f

PRACK_f?

timeout_l

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

timeout_f

INVITE_f?

180_l
183_l
200_l
481_f

ACK_f?
PRACK_f?

481_l

180_l
183_l
200_l
481_f

INVITE_f?

183_f

180_l
183_l
200_l
481_f

INVITE_f? PRACK_f?

180_l
183_l
200_l
481_f

ACK_f?

PRACK_l?ACK_l? INVITE_f?

180_l
183_l
200_l
481_f

183_f

PRACK_f?ACK_f? INVITE_l?

180_l
183_l
200_l
481_f

timeout_f

ACK_f?

INVITE_f? PRACK_f?

ACK_l?

INVITE_l?

PRACK_l?

180_l
183_l
200_l
481_f

PRACK_f?

180_l
183_l
200_l
481_f

INVITE_f? ACK_f?INVITE_l? PRACK_l? ACK_l?

180_l
183_l
200_l
481_f

100_f

180_l
183_l
200_l
481_f

timeout_f

INVITE_f?

180_l
183_l
200_l
481_f

ACK_f?
PRACK_f?

183_f

INVITE_f? PRACK_f?

180_l
183_l
200_l
481_f

486_f

INVITE_f?

180_l
183_l
200_l
481_f

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?

180_l
183_l
200_l
481_f

183_f

INVITE_f?

ACK_f? INVITE_l?

PRACK_f?

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_l

INVITE_f? PRACK_f?

180_l
183_l
200_l
481_f

486_l

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

481_l

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?

PRACK_l?

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

timeout_f

INVITE_f?

180_l
183_l
200_l
481_f

ACK_f?
PRACK_f?

180_l
183_l
200_l
481_f

183_f

INVITE_f? PRACK_f? ACK_f?

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_l

INVITE_f? PRACK_f?

180_l
183_l
200_l
481_f

486_l

INVITE_f?

ACK_f?

PRACK_f?

180_l
183_l
200_l
481_f

PRACK_f?ACK_f? INVITE_l?

180_l
183_l
200_l
481_f

183_fPRACK_l?ACK_l? INVITE_f?

ACK_f?INVITE_l? PRACK_l?

180_l
183_l
200_l
481_f

ACK_l?INVITE_f?PRACK_f?

timeout_l

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_f

486_f

INVITE_f?

ACK_f?

PRACK_f? INVITE_l?

PRACK_l?

180_l
183_l
200_l
481_f

INVITE_f? PRACK_f?

180_l
183_l
200_l
481_f

ACK_f?

180_l
183_l
200_l
481_f

481_l

ACK_f?

INVITE_f? PRACK_f? INVITE_l?

PRACK_l?

180_l
183_l
200_l
481_f

timeout_l

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

200_f

INVITE_f?

180_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_f

180_l
183_l
200_l
481_f

timeout_f

ACK_f?

INVITE_f?

486_f

PRACK_f? INVITE_l?

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

timeout_f

INVITE_f? PRACK_f?

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_l

486_l

INVITE_f?

180_l
183_l
200_l
481_f

INVITE_f? PRACK_f?

180_l
183_l
200_l
481_f

ACK_f?

180_l
183_l
200_l
481_f

timeout_f

INVITE_f? PRACK_f?ACK_f?

180_l
183_l
200_l
481_f

timeout_f

180_l
183_l
200_l
481_f

481_l

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

timeout_f

timeout_l

180_l
183_l
200_l
481_f

PRACK_l? INVITE_l?ACK_l? INVITE_f?

183_f

PRACK_f?ACK_f?

180_l
183_l
200_l
481_f

INVITE_f?

180_l
183_l
200_l
481_f

ACK_f?

timeout_f

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

200_f

INVITE_f?

180_l
183_l
200_l
481_f

180_f

INVITE_f?

ACK_f?
PRACK_f?

INVITE_l?

PRACK_l?

180_l
183_l
200_l
481_f

180_l
183_l
200_l
481_f

100_l

486_l

180_l
183_l
200_l
481_f

(b)

Figure 5.68: (a) Session Initiation Protocol learned model after 200 executions,
(b) corresponding controller for the learning purpose property

BUPT

220 CHAPTER 5. EXPERIMENTAL RESULTS

BUPT

Chapter 6

Conclusions

In this dissertation we have introduced a novel model learning method that makes
it possible to automatically and reliably compose a system containing black box
components with uncontrollable events. Our technique infers safe behavioural
models, i.e. models that underapproximate real controllable behaviour and over-
approximate uncontrollable behaviour, for the black box components.

An inferred model can be precise, if the component has relatively low values for
its relevant parameters (alphabet size, fairness bound, maximum acyclic path)
and an exhaustive exploration of its behaviour within cost limits is possible. If,
however, the maximum number of allowed learning executions does not leave
room for a complete exploration of the black box, the inferred models are safe
approximations of the real component behaviour.

6.1 Summary of Contributions

The contributions of this work are in the field of formal methods and their
applications to component-based software engineering. More specifically, it ad-
dresses a problem in the subfield of regular inference: learning safe approximate
models for components with an alphabet that contains both controllable and
uncontrollable events.

The main contribution brought by this work is a method for learning safe ap-
proximate models of black box components with uncontrollable events. This is

BUPT

222 CHAPTER 6. CONCLUSIONS

done using a limited number of allowed executions. Learning such safe approx-
imations of real behaviour enables a safe composition for systems integrating
asynchronous black box components with uncontrollable send events.

We have formally proved the correctness of the elaborated theoretical solutions.
Also, in order to empirically validate our approach, we have developed specific
tool support and conducted different experiments. We have implemented the
developed learning techniques in the BASYL prototype and proved its usefulness
in a set of case studies from both component-based and service-based software
engineering literature.

Our main contribution, learning safe approximate models, has been realized by
means of the following, lower-level contributions of this work:

• a centralized behaviour exploration method [51, 52, 53]: the behaviour
of the system is globally explored in order to gather execution samples
relevant to the composition goal. As the model of each black box compo-
nent is inferred individually, the execution trace samples stored are actually
projections of the global traces on each component’s alphabet of events.
Both positive and negative samples are considered. The execution is con-
trolled by a proactive adaptor, which guides the current run towards the
satisfaction of the system specification. The exploration process aims to
cover as much as possible of the behaviour of each black box in part, but
only under the constraint that each system execution trace conforms to
the composition goal.

• a distributed behaviour exploration method [50, 54]: the behaviour of each
component in the system is explored locally, together with the models of
other components in the system, in order to allow for parallelism in the
model inference process. In this case, each local execution is independently
observed and controlled by a local proactive adaptor. Similarly to the
centralized method, only traces that conform to the system specification
are considered for exploration.

• a cycle-oriented optimization of the two behaviour exploration methods:
as most use cases of composed systems require the repeated invocation
of certain execution scenarios, we can make the most of a limited number
of executions by focusing on cycle identification. This basically means
that the exploration is prioritized for traces representing unrolled cycles.
The cycles explored are the ones that can be found in the system spec-
ification automaton. If the number of cycles thus specified is too large,

BUPT

6.2. LIMITATIONS 223

the exploration focuses on a few relevant ones, corresponding to cyclic
usage scenarios. This optimization results in an earlier cycle identifica-
tion, smaller learned models and faster convergence of inferred automata
to precise-like models.

• a model building method that makes use of all the runtime observations
gathered during the exploration process, observations concerning both pos-
itive and negative execution samples. The model obtained represents a
safe approximation of the real black box behaviour, that is the control-
lable behaviour of the component is underapproximated by the built model,
while the uncontrollable behaviour of the component is overapproximated.
This makes the inferred models of the black box components in the system
suitable to be used in synthesizing a system adaptor that would realize the
composition goal.

• the tool support called BASYL [53, 54], which we have developed and used
for an experimental validation of our approach. It contains an implemen-
tation for each of the learning techniques described in this dissertation.

6.2 Limitations

The main limitation of our approach is, as discussed, its high complexity. First,
learning a precise model for a black box component requires a high number of
executions, however, we can provide a safe approximate model for any prede-
termined number of runs. Second, the cost of inferring safe approximations is a
higher computational complexity as far as the model building process is consid-
ered, which can prove inadequate in certain cases. However, as usually the most
expensive part of model learning is the actual interaction of the learner with the
oracle [55], i.e. the black box, we consider the additional computational costs
of model building a necessary harm.

Another important limitation of our approach is that the assumption that asyn-
chronous black box components must acknowledge message receive events is a
potentially strong constraint, and so is the assumption of bounded fairness with
respect to the occurrence of uncontrollable events. However, for model learning
to be possible in the context of uncontrollable behaviour, some constraining as-
sumptions are needed. So far, both these assumptions are of vital importance
to our learning technique.

BUPT

224 CHAPTER 6. CONCLUSIONS

Currently, our method works with manually derived abstractions of real compo-
nents. Therefore, it needs an additional abstract-concrete mapping layer to be
able to interact with real black box components, that have larger, more com-
plex and possibly infinite alphabets. Such abstraction layers are developed for
example in the work of Aarts and Vaandrager [2, 1], however, in the context of
learning safe approximate models, the abstract alphabet obtained should also be
a safe approximation of the real alphabet.

6.3 Future Work

As future directions of development, BASYL would benefit from rigorous exten-
sions and optimizations that would address its limitations, improve its perfor-
mances and release it from some of its current constraints.

The following directions are considered:

• a more efficient, possibly parallelized, equivalence partitioning method, in
order to address the high complexity of the model building algorithm

• an adaptation of the behaviour exploration strategy to the case where
no message receive acknowledgment is possible; finding efficient ways of
deducing indirectly whether a forwarded message was accepted or rejected
by a component

• developing automatic techniques for deriving safe abstractions for large,
possibly infinite alphabets of events (for example, when messages with
integer, real or string parameters are considered)

• an adaptation of both the behaviour exploration process and the model
building algorithm to the case when the learning process starts from a
partial, incomplete, potentially incorrect, or in some other way unreliable
model; how would such an approach make use of the already existing
information to increase the efficiency of learning safe approximations?

In the context of the latter considered extension, it is worth mentioning that,
while our method does not depend on source code availability, it can be com-
bined with static component interface extraction, which is known to produce
overapproximated models, to provide more precise interfaces. Also, it can be
applied to improve the knowledge on maintenance components for which no
behavioural model has been provided, or provided models are outdated.

BUPT

Appendix A

Publications

• Casandra Holotescu, Local Model Learning for Asynchronous Services,
Proceedings of the 4th International Workshop on Principles of Engineer-
ing Service-Oriented Systems (PESOS 2012) – colocated with the 34th
International Conference on Software Engineering (ICSE 2012), June 2012,
Zurich, Switzerland [IEEE Xplore, INSPEC, ISI circuit] [54].

• Casandra Holotescu, Asynchronous Learning for Service Composition, 7th
International Workshop on Engineering Service-Oriented Applications (WE-
SOA 2011) – colocated with the 9th International Conference on Service
Oriented Computing (ICSOC 2011), December 2011, Paphos, Cyprus,
Lecture Notes in Computer Science, Springer-Verlag [ACM, DBLP, IN-
SPEC, ISI circuit] [53].

• Casandra Holotescu, Controlling the Unknown, Preproceedings of the
First International Conference on Verification of Object Oriented Systems
(FoVeOOS 2010), June 2010, Paris, France [51].
Cited by:

– Jose Antonio Martin, Antonio Brogi and Ernesto Pimentel, Learn-
ing from Failures: a Lightweight Approach to Run-Time Behavioural
Adaptation, Proceedings of the 8th International Symposium on For-
mal Aspects of Component Software (FACS 2011), Oslo, Norway,
Lecture Notes in Computer Science, Springer-Verlag, 2011

– Jose Antonio Martin, Secure Adaptation of Software Services, Ph.D.
Thesis, Universidad de Màlaga, 2012

BUPT

226 APPENDIX A. PUBLICATIONS

• Casandra Holotescu, Error-avoiding Adaptors for Black box Software Com-
ponents, Doctoral Symposium of the 25th ACM/IEEE International Con-
ference on Automated Software Engineering (ASE 2010), September 2010,
Antwerp, Belgium [ACM, DBLP] [52].

• Casandra Holotescu, Black Box Composition: a Dynamic Approach, 9th
International Workshop on Specification and Verification of Component
Based Systems (SAVCBS 2010) – colocated with the 18th International
Symposium on the Foundations of Software Engineering (FSE 2010),
November 2010, Santa Fe, New Mexico, United States of America [50].

BUPT

Appendix B

List of Abbreviations

ATL Alternate Time Logic

BASYL Black box Asynchronous Learning (Tool)

CAD Computer Aided Design

CBSE Component Based Software Engineering

FSM Finite State Machine

LCS Light Control System

LTL Linear Temporal Logic

LTS Labeled Transition System

MR Media Renderer

SIP Session Initiation Protocol

SSO Single Sign On (Protocol)

SSO Cl Single Sign On (Protocol) Client

SSO SP Single Sign On (Protocol) Service Provider

SSO IDP Single Sign On (Protocol) Identity Provider

TT ThinkTeam

BUPT

228 APPENDIX B. LIST OF ABBREVIATIONS

BUPT

Bibliography

[1] Fides Aarts, Julien Schmaltz, and Frits Vaandrager. Inference and abstrac-
tion of the biometric passport. In Proceedings of the 4th international
conference on Leveraging applications of formal methods, verification, and
validation - Volume Part I, ISoLA’10, pages 673–686, 2010.

[2] Fides Aarts and Frits Vaandrager. Learning i/o automata. In Proceedings
of the 21st international conference on Concurrency theory, CONCUR’10,
pages 71–85, 2010.

[3] Raffaela Mirandola Andreas Rausch, Ralf Reussner and František Plášil,
editors. The Common Component Modeling Example, volume LNCS 5153
of Lecture Notes in Computer Science. Springer Berlin/Heidelberg, 2008.

[4] Dana Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87 – 106, 1987.

[5] Marco Autili, Paola Inverardi, Alfredo Navarra, and Massimo Tivoli. Synthe-
sis: A tool for automatically assembling correct and distributed component-
based systems. In Proc. 29th Int’l. Conf. on Software Engineering, pages
784–787, 2007.

[6] Marco Autili, Paola Inverardi, and Massimo Tivoli. Automatic adaptor
synthesis for protocol transformation. In Proceedings of the First Interna-
tional Workshop on Coordination and Adaptation Techniques for Software
Entities, 2004.

[7] Philippe Balbiani, Fahima Cheikh, and Guillaume Feuillade. Algorithms
and complexity of automata synthesis by asynhcronous orchestration with
applications to web services composition. Electronic Notes in Theoretical
Computer Science, 229(3):3 – 18, 2009. Proceedings of the First Interaction
and Concurrency Experiences Workshop (ICE 2008).

BUPT

230 BIBLIOGRAPHY

[8] Hubert Baumeister, Florian Hacklinger, Rolf Hennicker, Alexander Knapp,
and Martin Wirsing. A component model for architectural programming.
Electronic Notes in Theoretical Computer Science, 160:75 – 96, 2006. Pro-
ceedings of the International Workshop on Formal Aspects of Component
Software (FACS 2005).

[9] Steffen Becker, Sven Overhage, and Ralf H. Reussner. Classifying soft-
ware component interoperability errors to support component adaption.
In Component-Based Software Engineering, 7th International Symposium,
CBSE 2004, pages 68–83. Springer, 2004.

[10] Nikola Beneš, Ivana Černá, and Filip Štefaňák. Factorization for
component-interaction automata. In Mária Bieliková, Gerhard Friedrich,
Georg Gottlob, Stefan Katzenbeisser, and Gyoergy Turán, editors, SOF-
SEM 2012: Theory and Practice of Computer Science, volume 7147 of
Lecture Notes in Computer Science, pages 554–565. Springer Berlin / Hei-
delberg, 2012.

[11] Therese Berg, Bengt Jonsson, and Harald Raffelt. Regular inference for
state machines using domains with equality tests. In JosÃľ Fiadeiro and
Paola Inverardi, editors, Fundamental Approaches to Software Engineer-
ing, volume 4961 of Lecture Notes in Computer Science, pages 317–331.
Springer Berlin / Heidelberg.

[12] Antonia Bertolino, Paola Inverardi, Patrizio Pelliccione, and Massimo
Tivoli. Automatic synthesis of behavior protocols for composable web-
services. In Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on
The foundations of software engineering, ESEC/FSE ’09, pages 141–150,
2009.

[13] David Blevins. Component-based software engineering. chapter Overview
of the Enterprise Java Beans Component Model, pages 589–606. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[14] Therese Bohlin, Bengt Jonsson, and Siavash Soleimanifard. Inferring com-
pact models of communication protocol entities. In Leveraging Applications
of Formal Methods, Verification, and Validation - 4th International Sym-
posium on Leveraging Applications, ISoLA 2010, Heraklion, Crete, Greece,
October 18-21, 2010, Proceedings, pages 658–672, 2010.

BUPT

BIBLIOGRAPHY 231

[15] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker.
Angluin-style learning of nfa. In Proceedings of the 21st international jont
conference on Artifical intelligence, IJCAI’09, pages 1004–1009, 2009.

[16] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel
Neider, and David R. Piegdon. Libalf: the automata learning framework.
In Proceedings of the 22nd international conference on Computer Aided
Verification, CAV’10, pages 360–364, 2010.

[17] Andrea Bracciali, Antonio Brogi, and Carlos Canal. Systematic component
adaptation,. Electronic Notes in Theoretical Computer Science, 66(4),
2002.

[18] Andrea Bracciali, Antonio Brogi, and Carlos Canal. A formal approach to
component adaptation. J. Syst. Softw., 74(1):45–54, 2005.

[19] Gready Brooch. Addison-Wesley, Washington, 1993.

[20] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Qu´ ema, and
Jean-Bernard Stefani. The fractal component model and its support in
java. Software: Practice and Experience, 36(11-12):1257–1284, 2006.

[21] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing ad-
vanced features in a hierarchical component model. In Proceedings of the
Fourth International Conference on Software Engineering Research, Man-
agement and Applications, SERA ’06, pages 40–48, Washington, DC, USA,
2006. IEEE Computer Society.

[22] Carlos Canal, Juan Manuel, and Murillo Pascal Poizat. Software adapta-
tion. In in L’objet, 12(1):9-31, 2006. Special Issue on Coordination and
Adaptation Techniques for Software Entities, pages 9–31.

[23] Carlos Canal, Pascal Poizat, and Gwen SalaÃĳn. Model-based adaptation
of behavioral mismatching components. IEEE Transactions on Software
Engineering, 34(4):546–563, 2008.

[24] Luca Cavallaro, Elisabetta Di Nitto, Patrizio Pelliccione, Matteo Pradella,
and Massimo Tivoli. Synthesizing adapters for conversational web-services
from their wsdl interface. In Proceedings of the 2010 ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS
’10, pages 104–113, 2010.

[25] Chia Yuan Cho, Domagoj Babić, Pongsin Poosankam, Kevin Zhijie Chen,
Edward XueJun Wu, and Dawn Song. MACE: Model-inference-Assisted

BUPT

232 BIBLIOGRAPHY

Concolic Exploration for Protocol and Vulnerability Discovery. In Proceed-
ings of the 20th USENIX Security Symposium, Aug 2011.

[26] T.S. Chow. Testing software design modelled by finite state machines. IEEE
Transactions on Software Engineering, pages 178–187, 1978.

[27] Ivica Crnkovic. Building Reliable Component-Based Software Systems.
Artech House, Inc., Norwood, MA, USA, 2002.

[28] Ivica Crnkovic, Michel Chaudron, and Stig Larsson. Component-based de-
velopment process and component lifecycle. In Proceedings of the Inter-
national Conference on Software Engineering Advances, ICSEA ’06, pages
44–, Washington, DC, USA, 2006. IEEE Computer Society.

[29] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and
Andreas Zeller. Generating test cases for specification mining. In Proceed-
ings of the 19th international symposium on Software testing and analysis,
ISSTA ’10, pages 85–96, 2010.

[30] Rami Marelly David Harel, Hillel Kugler and Amir Pnueli. Smart play-out.
OOPSLA ’03, October 2003. demo paper.

[31] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In
ESEC/FSE-9: Proceedings of the 8th European software engineering con-
ference held jointly with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 109–120, New York, NY, USA,
2001. ACM.

[32] Nachum Dershowitz, editor. Verification: Theory and Practice, Essays
Dedicated to Zohar Manna on the Occasion of His 64th Birthday, volume
2772 of Lecture Notes in Computer Science. Springer, 2003.

[33] M. Yannakakis Doron Peled, Moshe Y. Vardi. Black box checking. In In
FORTE/PSTV, pages 225–240. Kluwer, 1999.

[34] Khaled El-Fakih, Roland Groz, Muhammad Naeem Irfan, and Muzammil
Shahbaz. Learning finite state models of observable nondeterministic sys-
tems in a testing context. In 22nd IFIP International Conference on Testing
Software and Systems, pages 97–102, Natal, Brazil, 2010.

[35] J. Rosenberg et al. SIP: Session Initiation Protocol. Network Working
Group, June 2002.

BUPT

BIBLIOGRAPHY 233

[36] N. Ragouzis et al. Security Assertion Markup Language (SAML) V2.0
Technical Overview. OASIS Committee, March 2008.

[37] Tim Ewald. Component-based software engineering. chapter Overview of
COM+, pages 573–588. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2001.

[38] Charles Buhman Santiago Comella-Dorda Fred Long John Robert
Robert Seacord Felix Bachmann, Len Bass and Kurt Wallnau. Technical
concepts of component-based software engineering, 2nd edition. Technical
Report CMU/SEI-2000-TR-008, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, May 2000.

[39] Jerry Zayu Gao, Jacob Tsao, Ye Wu, and Taso H.-S. Jacob. Testing and
Quality Assurance for Component-Based Software. Artech House, Inc.,
Norwood, MA, USA, 2003.

[40] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch
or why it’s hard to build systems out of existing parts. In In Proceedings of
the 17th International Conference on Software Engineering, pages 179–185,
1995.

[41] Carlo Ghezzi, Andrea Mocci, and Mattia Monga. Synthesizing intensional
behavior models by graph transformation. In Proceedings of the 31st In-
ternational Conference on Software Engineering, ICSE ’09, pages 430–440,
Washington, DC, USA, 2009. IEEE Computer Society.

[42] Dimitra Giannakopoulou, Corina S. Păsăreanu, and Howard Barringer.
Component verification with automatically generated assumptions. Au-
tomated Software Engg., 12(3):297–320, 2005.

[43] Immo Grabe, Marcel Kyas, Martin Steffen, and Arild Torjusen. Exe-
cutable interface specifications for testing asynchronous creol components.
In Farhad Arbab and Marjan Sirjani, editors, Fundamentals of Software
Engineering, volume 5961 of Lecture Notes in Computer Science, pages
324–339. Springer Berlin / Heidelberg.

[44] Roland Groz, Keqin Li, Alexandre Petrenko, and Muzammil Shahbaz. Mod-
ular system verification by inference, testing and reachability analysis. In
Proceedings of the 20th IFIP TC 6/WG 6.1 international conference on
Testing of Software and Communicating Systems: 8th International Work-
shop, TestCom ’08 / FATES ’08, pages 216–233, 2008.

BUPT

234 BIBLIOGRAPHY

[45] Mary Jean Harrold, Donglin Liang, and Saurabh Sinha. An approach to
analyzing and testing component-based systems. In ICSE 99, May 1999.

[46] Wilhelm Hasselbring. Component-based software engineering. International
Journal of Software Engineering and Knowledge Engineering, 2002.

[47] Michi Henning. The rise and fall of corba. ACM Queue, 4(5):28–34, June
2006.

[48] Kunihiko Hiraishi. Synthesis of supervisors using learning algorithm of reg-
ularlanguages. Discrete Event Dynamic Systems, 11:211–234, July 2001.

[49] Florian Hoelzl and Martin Feilkas. Autofocus 3 - a scientific tool pro-
totype for model-based development of component-based, reactive, dis-
tributed systems. In Holger Giese, Gabor Karsai, Edward Lee, Bernhard
Rumpe, and Bernhard Schaetz, editors, Model-Based Engineering of Em-
bedded Real-Time Systems, volume 6100 of Lecture Notes in Computer
Science, pages 317–322. Springer Berlin / Heidelberg, 2011.

[50] Casandra Holotescu. Black-box composition: a dynamic approach. In 9th
International Workshop on Specification and Verification of Component
Based Systems, November 2010.

[51] Casandra Holotescu. Controlling the unknown. In Preproceedings of the
First International Conference on Verification of Object Oriented Software,
pages 283–297, June 2010. ISSN: 2190-4782.

[52] Casandra Holotescu. Error-avoiding adaptors for black-box software com-
ponents. In Proceedings of the 25th IEEE/ACM International Conference
on Automated Software Engineering, pages 487–492. ACM, 2010. Doctoral
Symposium.

[53] Casandra Holotescu. Asynchronous learning for service composition. In Pro-
ceedings of the 7th International Workshop on Engineering Service-Oriented
Applications (WESOA 2011), volume 7221 of Lecture Notes in Computer
Science, pages 76–88. Springer-Verlag Berlin Heidelberg, December 2011.
ISBN: 978-3-642-31874-0, 978-3-642-31875-7, ISSN: 0302-9743.

[54] Casandra Holotescu. Local model learning for asynchronous services. In
Proceedings of the 4th International Workshop on Principles of Engineering
Service-Oriented Systems (PESOS 2012), pages 925–931. IEEE press, June
2012. ISBN: 978-1-4673-1754-2, ISSN: 2156-7921.

BUPT

BIBLIOGRAPHY 235

[55] Falk Howar, Bernhard Steffen, and Maik Merten. From zulu to rers. In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications of
Formal Methods, Verification, and Validation, Lecture Notes in Computer
Science, pages 687–704. Springer Berlin / Heidelberg, 2010.

[56] He Jifeng, Xiaoshan Li, and Zhiming Liu. Component-based software en-
gineering. In Dang Van Hung and Martin Wirsing, editors, Theoretical
Aspects of Computing – ICTAC 2005, volume 3722 of Lecture Notes in
Computer Science, pages 70–95. Springer Berlin / Heidelberg, 2005.

[57] Kathrin Kaschner. Conformance testing for asynchronously communicat-
ing services. In Gerti Kappel, Zakaria Maamar, and Hamid R. Motahari-
Nezhad, editors, 9th International Conference on Service Oriented Comput-
ing, ICSOC 2011, December 5-8, 2011, Paphos, Cyprus, Proceedings, vol-
ume 7084 of Lecture Notes in Computer Science, pages 108–124. Springer-
Verlag, December 2011.

[58] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learn-
ing Theory. MIT Press, 1994.

[59] Hugo Flordal Robi Malik Knut AAkesson, Martin Fabian. Supremica âĂŞ an
integrated environment for verification, synthesis and simulation of discrete
event systems. In Ann Arbor, editor, Proceedings of 2006 Workshop of
Discrete Event Systems (WODES), Michigan, 2006.

[60] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Automatic genera-
tion of software behavioral models. In Proceedings of the 30th international
conference on Software engineering, ICSE ’08, pages 501–510, 2008.

[61] O. Maler and A. Pnueli. On the learnability of infinitary regular sets. In-
formation and Computation, 118(2):316 – 326, 1995.

[62] M. Douglas McIlroy. Mass-produced software components. In J. M. Buxton,
Peter Naur, and Brian Randell, editors, Software Engineering Concepts and
Techniques (1968 NATO Conference of Software Engineering), pages 88–
98. NATO Science Committee, oct 1968.

[63] Bertrand Meyer. Prentice Hall International Series in Computer Science,
New York: Prentice-Hall, 1988.

[64] Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD
thesis, University of Dortmund, 2003.

BUPT

236 BIBLIOGRAPHY

[65] Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria.
Learnlib: a framework for extrapolating behavioral models. Int. J. Softw.
Tools Technol. Transf., 11:393–407, October 2009.

[66] Prabhakar Raghavan Rajeev Motwani. Randomized algorithms, chapter
3.6. The Coupon Collector’s Problem, pages 57–63. Number MR1344451.
Cambridge University Press, Cambridge, 1995.

[67] P.J. Ramadge and W.M. Wonham. The control of discrete event systems.
Proc. of the IEEE, 77(1), January 1989.

[68] Ralf H. Reussner. Adapting Components and Predicting Architectural Prop-
erties with Parameterised Contracts. In Wolfgang Goerigk, editor, Tagungs-
band des Arbeitstreffens der GI Fachgruppen 2.1.4 und 2.1.9, Bad Honnef,
pages 33–43, 2001.

[69] Ralf H. Reussner. The Use of Parameterised Contracts for Architecting
Systems with Software Components. In Wolfgang Weck, Jan Bosch, and
Clemens Szyperski, editors, Proceedings of the Sixth International Work-
shop on Component-Oriented Programming (WCOP’01), June 2001.

[70] R. L. Rivest and R. E. Shapire. Inference of finite automata using homing
sequences. In Machine Learning: From Theory to Applications.

[71] Heinz W. Schmidt and Ralf H. Reussner. Automatic component adaptation
by concurrent state machine retrofitting. Technical report, Fakultat fur
Informatik, Universitat Karlsruhe, Am Fasanengarten 5, D-76128, 2000.

[72] Heinz W. Schmidt and Ralf H. Reussner. Generating adapters for concur-
rent component protocol synchronisation. In Proc. 5th IFIP Int’l. Conf.
on Formal Methods for Open Object-Based Distributed Systems, pages
213–229, 2002.

[73] R. Seguel, R. Eshuis, and P. Grefen. An overview on protocol adaptors
for service component integration. In WP265. Eindhoven University of
Technology, December 2008.

[74] Muzammil Shahbaz. Reverse Engineering Enhanced State Models of Black
Box Components to support Integration Testing. PhD thesis, Grenoble
Institute of Technology, 2008.

[75] Ian Sommerville. Software Engineering 8th edition. Addison Wesley, 2007.

BUPT

BIBLIOGRAPHY 237

[76] Rajiv Ranjan Suman, Rajib Mall, Srihari Sukumaran, and Manoranjan Sat-
pathy. Extracting state models for black-box software components. Journal
of Object Technology, 9(3):79–103, May 2010.

[77] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-
gramming. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2nd edition, 2002.

[78] Massimo Tivoli. An architectural approach to the automatic composition
and adaptation of software components. PhD thesis, Universita di L’Aquila,
2005.

[79] M.P. Vasilevskii. Failure diagnosis of automata. Kibernetika, pages 98–108,
1973.

[80] Nanbor Wang, Douglas C. Schmidt, and Carlos O’Ryan. Component-based
software engineering. chapter Overview of the CORBA component model,
pages 557–571. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

[81] W.M. Wonham. Supervisory control of discrete event systems. Systems
Control Group, Dept. of Electrical and Computer Engineering, University
of Toronto, 2009.

[82] Gaoyan Xie and Zhe Dang. Ctl model-checking for systems with unspecified
finite state components. In Proceedings of the 3rd workshop on specifica-
tion and verification of component-based systems (SAVCBS’04), affiliated
with ACM SIGSOFT 2004/FSE-12, pages pp. 32–38, 2004.

[83] Nikola; Kostic Dejan; Kuncak Viktor Yabandeh, Maysam; Knezevic. Crys-
talball: Predicting and preventing inconsistencies in deployed distributed
systems. In Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’09), April 2009.

[84] Daniel M. Yellin and Robert E. Strom. Protocol specifications and compo-
nent adaptors. ACM Trans. Program. Lang. Syst., 19(2):292–333, 1997.

BUPT

