UNIVERSITATEA "POLITEHNICA" DIN TIMIȘOARA FACULTATEA DE MECANICĂ

MORFOLOGIA ȘI PROPRIETĂȚILE STRATURILOR DIN PULBERI METALICE DEPUSE PRIN SUDARE ÎN PLASMĂ

Teză de doctorat

BIBLIOTECA CENTRALĂ UNIVERSITATEA "POLITEHNICA" TIMIȘOARA

Conducător științific: Prof.dr.ing. Ion Mitelea Autor Ing Richard Molnar

e presentario de la consecutiva UNIVERSITATEA "POLITEREROA" TIMISOAR BIBLIO BOAR CHATIBAL No volum 628 008

Timişoara 2000 UNIVERSITATEA "POLITEHNICA" DIN TIMIȘOARA FACULTATEA DE MECANICĂ

MORFOLOGIA ȘI PROPRIETĂȚILE STRATURILOR DIN PULBERI METALICE DEPUSE PRIN SUDARE ÎN PLASMĂ

CAPITOLUL 1. ABORDAREA SISTEMICĂ A TEHNICII STRATURILOR SUBȚIRI

1.1. Introducere

Dezvoltarea tehnologică și industrială a ultimilor 50 de ani a impus dezvoltarea de noi materiale, cu proprietăți de exploatare care să satisfacă condiții de exploatare deosebit de variate - solicitări mecanice statice și dinamice în condiții de coroziune și temperatură ridicată, medii corozive etc. Deoarece nu toate materialele masive (omogene din punct de vedere macro- și microscopic) pot să satisfacă asemenea condiții de solicitare extreme, iar în cazul în care pot au prețuri de cost deosebit de ridicate, s-a impus dezvoltarea unor noi familii de materiale care să asigure prețuri de cost competitive din punct de vedere economic, având mase inerțiale reduse și proprietăți de exploatare similare sau apropiate organelor de mașini realizate din materiale masive. Acestea au o structură compusă, unele dintre ele fiind denumite materiale compozite.

În familia materialelor compozite, cele cu straturi funcționale sunt proiectate pentru a satisface condițiile de solicitare mecanică ale organului de mașină pe care îl alcătuiesc în condițiile satisfacerii solicitărilor cu caracter special ale interfeței lor cu mediul ambiant.

Acesta este motivul pentru care studierea și explicitarea problemelor ridicate de numeroasele familii de compozite în soluție cu straturi funcționale este de un interes cert pentru lumea științifică și inginerească pe plan mondial.

Pentru eficientizarea studiului sistemelor compozite cu straturi, abordarea sistemică este un element indispensabil, dat fiind numărul deosebit de ridicat de parametri care trebuie luați în considerare într-o analiză clară, ordonată a procedeelor, materialelor, fenomenelor de natură metalurgică și a interdependențelor ce există între acestea.

De aceea, prezentul capitol al tezei de doctorat își propune să prezinte și abordeze principalele procedee de realizare a sistemelor compozite de tip strat - substrat într-o manieră organică, în ideea reflectării principalelor interdependențe ce există între materialul substratului, al stratului și procedeul de realizare al materialului (sistemului) compozit.

1.2. Conceptul de material compozit

Elementele prezente în alcătuirea structurilor și organelor de mașini sunt supuse unor solicitări volumice de tip static sau dinamic de tipul tensiunilor mecanice, respectiv la solicitări de suprafață de natură mecanică sau chimică.

Sistemele mecanice pot suporta - din cauze foarte diferite - solicitări mecanice, termice, sau chimice extreme, care să aibă ca și consecință suprasolicitarea mecanică prin deformări inadmisibile a anumitor componente ale sistemului, dar marea majoritate a defectărilor se datorează efectelor solicitărilor de suprafață de tipul uzării, frecării și coroziunii de diferite feluri. Uzarea, frecarea și coroziunea duc la alterări locale sau generale ale unor elemente funcțional critice de proiectare cum sunt secțiunea eficientă de preluare a sarcinilor de exploatare, inducerea unor concentratori de tensiune sau modificarea unor proprietăți de suprafață care favorizează apariția altor mecanisme de degradare, foarte agresive.

Solicitările exterioare se suprapun acestora foarte des, influențându-se reciproc și ducând în consecință la apariția unor stări de solicitare mecano-termo-chimice deosebit de complexe, ce au ca rezultat apariția simultană a mai multe tipuri de defecte.

În timp ce preluarea solicitărilor mecanice se soluționează prin dimensionarea mecanică folosind materiale cu proprietăți mecanice adecvate dar cu costuri relativ reduse, proprietățile de suprafață se pot asigura în majoritatea cazurilor uneori prin utilizarea unor materiale scumpe, care să satisfacă condițiile de exploatare ale produsului (componentei) în mediul de lucru pe întreaga durată de viață normată, fără scăderea capacității portante sau a funcționalității sale.

Utilizarea materialelor care să permită atât preluarea solicitărilor mecanice cât și a solicitărilor superficiale duce la ridicarea prețurilor de cost. Tehnologia straturilor de suprafață este soluția care permite realizarea în condiții de cost favorabile a unor sisteme compuse sau compozite care utilizează materiale cu costuri relativ reduse - substrat - (rezistență mecanică, tenacitate) acoperite cu materiale valoroase ce satisfac funcțiunile de protecție - strat. Tehnologiile de acoperire admit premise ideale (grosime de strat, compactitate, aderență, funcționalitate) precum și posibilități nelimitate de acoperire a materialelor substrat cu materiale funcționale valoroase.

Combinația a cel puțin două materiale cu proprietăți diferite realizate în tehnologia straturilor de suprafață duce la formarea materialelor compuse. Spre deosebire de acestea, materialele compozite sunt amestecuri de două sau mai multe componente ale căror proprietăți acționează sinergic și se completează reciproc rezultând materiale cu proprietăți superioare celor specifice fiecărei componente în parte.

În această familie intră materiale cu proprietăți bine definite, care satisfac diferite familii de proprietăți funcționale bine definite, formând un sistem închegat. Figura 1.1 prezintă elementele care alcătuiesc sistemul material compozit.

Forma acestora (particule, fibre, plăci) este - alături de natura materialelor matricei și armăturii - definitorie pentru proprietățile de exploatare. Ele determină

- izotropia sau anizotropia proprietăților mecanice
- izotropia sau anizotropia proprietăților termice
- izotropia sau anizotropia proprietăților electrice ale materialului
- rezistența la șocuri termice și mecanice

• alte proprietăți fizice care determină proprietățile de exploatare [2].

Cu toate că există multe tipuri de materiale compozite, ele se bazează pe un număr redus de soluții de principiu. Figura 1.2 indică principalele soluții tehnice de realizare a materialelor compozite (familii de materiale compozite) funcție de modul de fabricație al materialului precum și unele aplicații industriale tipice ale acestora.

Figura 1.1. Elemente, legături și determinări în sistemele compozite

Pe lângă aspectul structural (macroscopic), în conceperea, dezvoltarea și exploatarea unui material compozit trebuie luați în considerare și alți factori, de natură chimică (metalurgică).

Din familia materialelor compozite, cele realizate în tehnica straturilor de suprafață cu strat compus formează un caz aparte. Tehnologiile de acoperire își au, în cadrul familiilor de tehnologii de acoperire, propriul loc bine determinat.

Figura 1.2. Structura sistemelor compozite

Elementul determinant al modului în care sistemul compozit matrice - armătură preia solicitările de tip mecanic ale mediului de lucru este determinat și de natura, dimensiunile și diluția elementelor de ranforsare. Limitele superioare ale solicitărilor de suprafață sunt determinate atât de proprietățile mecanice ale matricei și ranforsării, de gradul de dispersie al ranforsării în matrice și calitatea interfeței matrice - ranforsare, cât și de eventualele fenomene metalurgice ce au loc pe interfață.

1.2.1. Materialele compozite armate cu fibre și particule

Materiale compozite armate cu fibre. Principii de calcul.

Compozitele armate cu fibre se caracterizează prin preluarea tensiunilor mecanice prin tensiunile de pe interfața matrice armătură și au ca fundament ideea că atât deformarea matricei cât și a fibrelor este egală cu cea a materialului compozit (indice m - matrice, indice f - fibre):

$$\boldsymbol{\varepsilon}_{c} = \boldsymbol{\varepsilon}_{m} = \boldsymbol{\varepsilon}_{f} \tag{1.1}$$

motiv pentru care sarcina se poate considera a fi distribuită proporțional cu fracția volumică a matricei, respectiv a armăturii:

$$\sigma_c = \sigma_m * V_m + \sigma_f * V_f \tag{1.2}$$

Deformarea compozitelor se desfășoară după una din următoarele modele:

- Matricea și fibrele se deformează elastic
- Matricea se deformează plastic iar fibrele se deformează elastic
- Matricea și fibrele se deformează plastic

Cazul deformării fibrelor în domeniul plastic iar al matricei în domeniul elastic nu se regăsește în practica industrială curentă. În cazul deformării elastice a fibrelor și a matricei efectul de durificare este dependent de fracțiunea fazelor dure și se manifestă la o proporție minimă a acestora:

$$V_{\min} = \frac{\sigma_{Bm} - \sigma_m}{\sigma_{Bf} - \sigma_m}$$
(1.3)

căreia îi corespunde o modificare a modulului de elasticitate (relația (4)) și a rezistenței mecanice (relația (5))

$$E_c = E_f * V_f + E_m * V_m \tag{1.4}$$

$$\sigma_B = \sigma_{Bf} * V_f + \sigma_m * V_m \tag{1.5}$$

Materialele de formare a matricei sunt în marea majoritate a cazurilor de natură metalică iar armătura de tip ceramic (fibre lungi. whiskers sau particule de diferite dimensiuni). După cum este de remarcat din punctul de vedere al preluării solicitărilor mecanice, sistemele folosind straturi superficiale nu sunt materiale compozite propriuzise în ceea ce privește modul de preluare al solicitările mecanice din exploatare.

Se recurge în general la acoperirea substratului cu un al doilea material care aderă puternic la acesta și îi oferă proprietățile de suprafață dorite. Există un mare număr de procedee și metode pentru realizarea acoperirilor, care se pot clasifica după diferite criterii. Cele mai uzuale sunt:

- depunerea din fază gazoasă (condensare, reacție),
- depunerea din fază lichidă (imersare, pulverizare, depunere electrolitică, sudare)
- depunerea din stare solidă (laminare, placare prin explozie).

In practica industrială se utilizează trei metode de modificare a suprafeței materialului substratului:

• aplicarea unui strat pe suprafața substratului;

- modificarea compoziției chimice a suprafeței substratului pe o adâncime convenabilă
- modificarea structurii suprafeței fără schimbarea compoziției chimice.

Modul de aplicare al stratului funcțional determină în mod radical proprietățile sale de exploatare. Metoda utilizată condiționează:

- structura și porozitatea stratului care limitează utilizarea compozitului în medii corozive și
- aderența stratului care condiționează comportarea compozitului la solicitări de muchie, oboseală de contact și termică, respectiv forfecare a interfeței strat substrat.

Prezența unor mecanisme difuzionale între matrice și armătură accentuează sau atenuează principalele caracteristici funcționale ale straturilor. Mecanismele difuzionale accentuează proprietăți funcționale ca aderența și rezistența la șoc termic, pe când formarea compușilor chimici (in general faze dure) pe interfața matrice - elemente de ranforsare duce la scăderea proprietăților de exploatare urmărite.

Straturile superficiale reprezintă trecerea de la compozite la corpurile masive; cu toate acestea, pe baza definiției acceptate, conform căreia un material compozit este un sistem unitar format din cel puțin două materiale cu proprietăți diferite, nu sunt materiale compozite din punctul de vedere al preluării solicitărilor mecanice volumice din exploatare, au o comportare tipică compozitelor în ceea ce privește preluare solicitărilor superficiale.

Sistemele strat funcțional - substrat nu sunt materiale compozite în adevăratul sens al cuvântului. Ele preiau din conceptul de material compozit ideea transferului unei solicitări a sistemului (în general mecanică) către substrat, în timp ce solicitările superficiale (rezistența la oxidare, uzare, coroziune etc.) revin stratului funcțional. Stratul funcțional din sistemele "compozite" de tip strat - substrat are capacitatea de a satisface cele mai variate condiții de exploatare:

- protecție anticorozivă
- protecție antiuzură în tot spectrul de temperaturi
- proprietăți speciale (optice, biologice sau supraconductoare)

Varietatea mare a aplicațiilor industriale face ca natura materialelor și a procedeelor de realizare a straturilor funcționale să fie foarte mare.

Spre deosebire de sistemele compozite cu straturi superficiale, care au ca funcționalitate accentuarea unei proprietăți de suprafață, celelalte trei sisteme (figura 1.2) sunt utilizate pentru preluarea tensiunilor mecanice în condiții specifice sau extreme de exploatare. Materialele compozite clasice (ranforsate cu particule, cu fibre și compozitele stratificate) sunt destinate ridicării proprietăților mecanice în mod anizotrop sau izotrop.

Compozitele ranforsate cu particule permit prin diferitele sisteme de ranforsare particule foarte mici sau particule mari - obținerea unor proprietăți de rezistență mecanică deosebit de ridicate. Mecanismul de accentuare a rezistenței mecanice diferă în funcție de dimensiunile fazei dure:

- ranforsare cu particule mici: limitarea drumului liber mediu al dislocațiilor în material și creșterea densității de dislocații pe limitele fazelor durificatoare.
- ranforsare cu particule mari: solicitările mecanice sunt preluate în majoritatea cazurilor de către materialele de ranforsare (faze dure carburi metalice, oxizi ceramici) iar matricea metalică asigură coerența, stabilitatea și integritatea sistemului compozit.

Compozitele de tip strat funcțional care realizează structura de material compozit cu matrice metalică armat cu faze dure în strat sunt un caz foarte frecvent în practica industrială. Aceasta este soluția ideală în realizarea straturilor antiuzură prin sudare, atât cu scop de fabricație cât și cu scop de reparații în aplicațiile cu solicitări ce au și componente de tipul uzării abrazive.

1.3. Elementele componente ale sistemului

Complexitatea fenomenelor ce au loc la realizarea (sinteza) structurilor compuse cu straturi, precum și complexitatea comportamentului lor în condiții de solicitare complexe (solicitări de natură mecanică, chimică sau termică) impune abordarea materialelor de acest tip de o manieră sistemică. Această abordare trebuie să aibă în vedere toate elementele ce alcătuiesc structurile compuse, legăturile dintre ele, precum și modul în care procedeul de realizare (fabricare) al stratului afectează proprietățile funcționale ale acestuia.

Stratul subțire abordat într-o manieră sistemică este constituit din elementele definitorii ale sistemului:

- strat;
- substrat;
- procedeu de acoperire;
- proprietățile materialului stratului;
- interdependențele ce leagă elementele de mai sus și care definesc proprietățile de exploatare (funcționale) ale stratului.

Figura 1.3 descrie structura de sistem a structurilor compuse realizate cu straturi subțiri și legăturile dintre ele, care definesc proprietățile sistemului compus [1].

Elementele sale "material substrat" și "material strat" sunt definite de proprietățile mecanice și termofizice, în timp ce pentru definirea proprietăților funcționale ale stratului va trebui avut în vedere procedeul de acoperire și fenomenele metalurgice ce au loc între materialul stratului și substratului.

Materialul de bază (substratul) determină proprietățile de strat prin două familii de elemente: proprietățile termofizice fundamentale ale materialului și geometria corpului (produsului) căruia îi este destinat stratul funcțional.

Proprietățile mecanice ale substratului sunt definitorii pentru alegerea sau respingerea unui procedeu de realizare a straturilor funcționale. Procedeele de acoperire utilizate nu trebuie ca prin aportul lor termic să ducă la o scădere periculoasă a proprietăților mecanice (limita de curgere Rp0,2) ale substratului, reducere determinată de modificările stării de tratament termomecanic în care se regăsește acesta.

Figura 1.3. Structura de sistem a straturilor subțiri

Depunerea unor materiale cu temperatură de topire foarte ridicată (carburi, oxizi ceramici) pe un substrat cu temperatură de topire moderată în condițiile unei incompatibilități metalurgice avansate creează probleme deosebite la procedeele cu formare de topituri. Soluția ideală pentru aceste aplicații sunt procedeele care evită topirea substratului, cum sunt pulverizarea termică, procedeele CVD, PVD sau galvanice.

Asemănător modificării (scăderii) unor proprietăților mecanice ale sistemului cu structură compusă datorate solicitării termice a substratului (tratamente termochimice,

CVD, PVD, sudare, pulverizare termică), alte procedee de acoperire pot duce la fragilizări ale substratului datorate absorbției de hidrogen.

1.3.1. Proprietăți termofizice ale materialului substratului:

a. Temperatura de topire:

Temperatura de topire a substratului afectează procedeul și parametrii depunerii. Cum majoritatea procedeelor de acoperire utilizează metode termice, proprietățile termice ale substratului (conductivitatea/difuzivitatea termică, temperatura de topire) sunt elementele ce permit sau nu utilizarea unui sau altui procedeu de încărcare.

Temperatura de topire a substratului trebuie asociată conductivității termice acestuia, iar cei doi parametri vor determina gradul de topire și nivelul diluției (amestecului) și implicit proprietățile stratului la procedeele cu topirea substratului. Procedeele utilizate vor trebui să limiteze prin aportul energetic (diluție) gradul de modificare al proprietăților funcționale ale stratului funcțional. Conductivitatea termică, electrică și coeficientul de dilatare al materialului substratului limitează utilizarea unor materiale și procedee de acoperire.

Coeficientul de dilatare, atât al materialului de bază cât și al celui funcțional, este elementul care - alături de temperatura de depunere a stratului funcțional - determină starea de tensiuni în depunere. Tensiunile termice reziduale de pe interfața strat-substrat sunt, alături de fisuri, cele care determină capacitatea de preluare a sarcinilor din exploatare. Ele sunt proporționale atât cu intervalul de temperaturi pe care stratul și substratul îl parcurg la răcire, cât și cu diferența coeficienților de dilatare dintre cele două materiale. Tensiunile de interfață sunt de forfecare, iar valorile pot ajunge la limita de forfecare a acesteia. Reducerea tensiunilor termice de interfață se face prin:

- preîncălzirea substratului
- modificarea unor parametri tehnologici de regim
- asigurarea răcirii lente

b. Conductivitatea termică:

La procedeele de acoperire care nu impun preîncălzirea substratului la temperatura de regim a procedeului de acoperire, conductivitatea termică a substratului controlează viteza de răcire a stratului. Modificările vitezei de răcire a stratului în timpul și după acoperire afectează drastic microstructura acestuia, cu efecte imediate asupra unor proprietăți de exploatare ale acestora.

c. Conductivitatea electrică:

Conductivitatea electrică este proprietatea de material care permite sau nu utilizarea unor procedee de acoperire care necesită conductivitatea electrică a substratului (sudare, variante ale PVD). Depunerea pe materiale izolatoare electric este posibilă doar prin procedee de tipul CVD, variante ale PVD și pulverizare termică. Conductivitatea electrică echivalentă determinată pe baza conductivităților electrice ale componentelor

ce alcătuiesc sistemul cu structură compusă poate caracteriza sistemul din punct de vedere compozițional.

1.3.2. Geometria componentei de acoperit

Geometria componentei de acoperit completează în sens pozitiv sau negativ efectul coeficienților de dilatare, al conductivității termice al materialului de bază și stratului. Elemente geometrice ca muchii, racorduri și orificii sunt determinante pentru capacitatea unui sistem compozit de tip strat-substrat de a prelua solicitările mediului în care sistemul este exploatat.

1.4. Materiale pentru substrat și strat

Orice material, metalic sau nemetalic cu caracteristici funcționale utile este potențial adecvat realizării funcțiunilor stratului, respectiv substratului. Acestea se aleg dependent de condițiile mecanice (substratul) de exploatare ale sistemului (strat - substrat) și derivă din dimensionare prin calcule de rezistență, respectiv din condițiile de expunere a interfeței sistem - mediu la agenții agresivi ai mediului de lucru - chimici, mecanici etc. - stratul.

Natura materialului stratului sau substratului este aleasă de proiectant și are în vedere caietul de sarcini al produsului care se execută. Materialul substratului are rolul asigurării proprietăților mecanice ale sistemului strat-substrat în exploatarea produsului.

1.4.1. Materiale pentru formarea substratului

Cu toate că aparent alegerea substratului este facilă (un număr ridicat de materiale poate satisface un set bine definit de condiții de exploatare specifice), selecția materialului se face dependent de condițiile volumice de exploatare ale produsului: temperatură de lucru, condiții mecanice de solicitare (oboseală, fluaj, șocuri etc.).

Elementul de pornire în proiectarea unui organ de mașină cu straturi funcționale este alegerea materialului de substrat care - în condițiile utilizării procedeelor de realizare a straturilor funcționale disponibile compatibile cu acesta - asigură prețuri de cost minime de materiale și manoperă, suplimentar satisfacerii condițiilor de proiectare respectiv a neafectării sale de către procedeul de acoperire.

De aceea, independent de condițiile de exploatare, substratul este în marea majoritate a cazurilor un oțel carbon sau slab aliat, cu sensibilitate redusă la fenomene generate de factorii ce afectează sistemul în ansamblu (solicitări mecanice, degradare termică, fluaj, oboseală etc.).

Familia materialelor substrat este foarte vastă, incluzând practic toate materialele inginerești. Alegerea materialului de bază este limitată de principiul procedeului de

realizare a stratului funcțional, conductivitatea electrică, stabilitatea termică, rezistența la oxidare sau coroziune în mediul în care se exploatează stratul funcțional etc.

Un alt element de mare importanță care trebuie avut în vedere la alegerea substratului este compatibilitatea sa chimică și/sau metalurgică cu substratul în condițiile de exploatare ale produsului, care simplifică tehnologia de realizare a stratului funcțional.

Materialele utilizate efectiv la asigurarea funcțiunilor substratului se aleg dependent de celelalte condiții de exploatare ale compozitului, grosimea stratului precum și solicitările complementare celei principale.

Principalele familii de materiale de formare a straturilor funcționale utilizate în practica curentă pe familii de aplicații sunt:

- mase plastice, caracterizate de:
 - vâscozitate foarte ridicată
 - componente exploatate la temperatura ambiantă (componente reflectorizante pentru radiație în domeniul vizual sau RF);
 - elemente puțin solicitate;
 - stabilitatea termică redusă \rightarrow număr redus de procedee de acoperire
 - procedee fără solicitări termice semnificative.
 - stratul funcțional este depus prin procedee chimice (precipitare) sau termice (pulverizare termică, implantare ionică).

Principala aplicație se regăsește în designul industrial, asigurarea unor proprietăți optice speciale, și este în continuă creștere datorită numărului mare de avantaje pe care masele plastice și compozitele plastice le au: masă specifică redusă, proprietăți mecanice ușor de controlat prin procesul tehnologic de fabricație, rezistență la un număr ridicat de agenți corozivi, proprietăți de tenacitate excelente la temperaturi reduse.

- materiale metalice formează substratul în marea masă de aplicații industriale a straturilor funcționale.
 - aliaje cu baza fier (oțeluri);
 - straturi funcționale aparținând tuturor familiilor de materiale;
 - Proprietățile de exploatare ale substraturilor acoperă o plajă deosebit de largă de proprietăți fizico-chimice,
 - temperaturi din domeniul criogenic (-196 °C) până la temperaturi apropiate de temperatura de topire a aliajelor (1000 °C)
 - medii agresive de la oxidante la acide şi bazice, mai mult sau mai puțin corozive.

Principalele aliaje metalice au baza Fe, Ni, Cu și Co, celelalte materiale metalice de importanță industrială fiind utilizate numai sub formă de aliaje, cum sunt Ti, Co, Ta etc. Materialele substrat sunt în general aliaje caracterizate prin aptitudinea denumită *sudabilitate* (capacitatea de a prelua șocuri termice și suporta modificări microstructurale locale fără degradarea ireversibilă a proprietăților de exploatare).

Aliajele fierului:

Reprezintă principala clasă de materiale inginerești de formare a substraturilor în practica industrială. Între acestea, cu toate că se pot regăsi toate familiile de aliaje, oțelurile carbon și slab aliate reprezintă - prin preponderența evidentă în comparație cu celelalte aliaje - categoriile predominante. Prin proprietățile lor mecanice și de suprafață relativ scăzute oțelurile carbon reprezintă substratul a peste 95% din materialele acoperite cu straturi funcționale prin procedee termice.

Oțelurile carbon sunt principalele materiale inginerești utilizate în practica industrială fiind caracterizate de următoarele elemente:

- elementul principal de aliere este carbonul
- elemente tehnologice siliciu și mangan.
- - proprietățile mecanice au valori reduse și medii, dependente de proporția masică de carbon:

$$R_m = 700 * C + 260 \tag{1.6}$$

• se utilizează în aplicații în care nu se impun alte proprietăți speciale (stabilitatea termică și mecanică la cald (peste 500 °C), asigurarea tenacității la temperaturi reduse etc.)

Oțelurile slab aliate au ca elemente de aliere Mn, Si, Cr, Ni, V, W, Nb, Ti (suma proporției elementelor de aliere sub 5%). Adaosul de elemente de aliere urmărește accentuarea unor efecte specifice pe care elementele de aliere menționate îl au asupra anumitor proprietăți de exploatare:

- stabilitatea la temperaturi ridicate (Cr, Mo, V, W, Ti);
- tenacitatea la temperaturi reduse (Ni);
- rezistența la uzare (Cr, W, V, Ti, Nb)
- rezistența la coroziune atmosferică (Cu) etc.

Efectul elementelor de aliere este complex și este determinat de modificarea punctelor de transformare alotropică, schimbarea vitezelor critice de călire și modificarea mecanismelor de transformare în stare solidă.

Fazele dure prezente în aceste oțeluri care le conferă caracteristici de exploatare distincte sunt soluții solide cu precipitări de carburi din cele două categorii:

- tipul I M_3C , $M_{23}C_6$, M_7C_3 , M_6C ;
- tipul II MC și M_2C .

În timp ce carburile din grupa I au o rețea cristalină complexă și sunt relativ ușor solubile în austenită, carburile din grupa II au o stabilitate termică ridicată determinată de rețeaua cristalină simplă. Principalele oțeluri slab aliate utilizate ca substrat în realizarea sistemelor cu straturi funcționale sunt oțelurile de granulație fină de înaltă rezistență și oțelurile termorezistente

Oțelurile înalt aliate au ca principale elemente de aliere Cr și Ni, mai rar V. Structura lor microcristalină, proprietățile mecanice și funcționale sunt afectate în principal de conținutul de crom și nichel, care deplasează puternic punctele de transformare polimorfă ale oțelurilor, care devin monofazice sau bifazice și suferă sau nu transformări în stare solidă. De aceea, studiul acestor oțeluri se face în baza diagramelor Schäffler și DeLong - figura 1.4 și figura 1.5.

Valorile cromului echivalent Cr_e și nichelului echivalent Ni_e iau în considerare efectele austenitizante, respectiv feritizante ale elementelor de aliere prezente în compoziția chimică a acestor aliaje după cum urmează:

$$Cre = Cr + Mo + 1,5 Si + 0,5 Nb$$
 (1.7)

$$Nie = Ni + 0.5 Mn + 30 C + 0.5 Co + (30-X) N$$
(1.8)

În care X ia valori diferite în funcție de conținutul de crom

Cr_c=%Cr+1,5%Si+%Mo+0,5%(Ta+Nb)+2%Ti+%W+%V+%Al

Figura 1.4 - Diagrama Schäffler 20 18 A 0 12 16 Nie 14 A-F A-N A-N-F 18 22 24 10 26 16 20 $\rightarrow Cr_e$

Figura 1.5 - Diagrama DeLong

Proprietățile oțelurilor înalt aliate variază într-o plajă largă, acoperind domeniul de temperaturi de la -196 °C până la 1050 °C, în medii acide și bazice de la temperatura de ambiantă până la cea de fierbere și până la rezistență la solicitări mecanice deosebite de tipul uzării și fluajului, a oxidării la cald.

Aliajele nichelului:

sunt aliaje din sistemul NiCr (Inconel, Incolloy: ~14% Cr), NiCu (Monel: 27 - 32% Cu) și NiMo (Hastelloy: 16 - 32% Mo), cunoscute îndeosebi prin denumirile lor comerciale. Principalele mărci de aliaje cu baza Ni sunt prezentate în tabelul 1.1.

Aliaj	Simbolizare	Compoziția chimică, %							
		Ni	Cr	Fe	Mo	Nb	Al	Ti	Cu
Ni 99,8		>99,8							
Inconel 600	NiCr15Fe	>72,0	14-17	6-10					
Inconel 625	Ni Cr22 Mo9 Nb	61	22		9	4			
Incoloy 800	X10 NiCrFe 32 20	30-35	19-23	rest			0.15-0.60	0.15-0.60	
Monel 1400	Ni 3Cu 30Fe	>63							28-34
Nimonic 75	Ni Cr20 Ti	rest	18-21				0.2		
Incoloy 825	Ni Cr21 Mo	38-40	19.5-23.5	rest	2.5-3.5		0.6-1.2		1.5-3
Hastelloy B	Ni Mo30	>62		4-7	26-30				
Hastelloy C	Ni Mol6Cr	>52	21-18	4-7	15-18		W 3-5		

Tabelul 1.1. Principalele aliaje de nichel de utilizare industrială

Aliajele de tipul Inconel au o stabilitate termică deosebit de ridicată la temperaturi ridicate, determinate de precipitările fine de faze intermetalice cu stabilitate ridicată, cum sunt θ (NiAl) și β (NiAl₂) și Ni₃(Al, Ti). Proprietățile de rezistență la coroziune ale tuturor acestor aliaje sunt deosebit de bune la temperaturi din domeniul ambiant până la 300 °C.

Cu toate că proprietățile acestor materiale le-ar face adecvate utilizării ca straturi funcționale, principalele aplicații ca substrat vizează realizarea paletelor turbinelor de gaze (palete stator și rotor) acoperite cu straturi funcționale de tip ceramic.

Cuprul și aliajele sale:

Cuprul și aliajele sale sunt mai puțin utilizate ca materiale substrat. Singurele aplicații vizează lucrările de reparații (compensarea uzurii) ale componentelor din aliaje ale Cu (alame, bronzuri) utilizate la realizarea lagărelor. Principalele materiale utilizate sunt identice cu cele ce satisfac proprietățile funcționale ale stratului: bronzuri și alame.

Materialele ceramice:

Materialele ceramice sunt rar utilizate pentru substraturi în tehnica straturilor subțiri la dimensiuni macroscopice. Rezervele în utilizare sunt legate de lipsa de conductivitate

į

electrică și capacitatea redusă de a suporta un șoc termic de tipul celui ce apare la procedeele "clasice" de acoperire. Principalele aplicații "macro" ale straturilor funcționale pe substrat ceramic sunt fie de tip optic, fie straturi conducătoare electric. Ceramicele de tipul SiO₂, TiO₂, ZnS, CaF₂, MgF₂, Sb₂S₃, Al₂O₃, BeO precum și amestecuri ale lor sunt utilizate pentru confecționarea de substraturi în tehnica circuitelor integrate (semiconductoare).

1.4.2. Materialele de formare a stratului

Materialele de formare a stratului au un rol primordial în obținerea proprietăților acestuia prin realizarea unor acoperiri de grosime minimă (criteriu economic).

Se pot defini 3 familii de criterii în alegerea unui material funcțional:

- Criterii economice: materialul funcțional trebuie să aibă un cost minim în condițiile satisfacerii minimale a tuturor condițiilor funcționale;
- Criterii tehnice și tehnologice: firma care execută stratul funcțional trebuie să dispună de posibilitățile tehnice de realizare a stratului funcțional la parametri optimi iar personalul operator să aibă calificarea minimă necesară;
- Criterii de material: fenomenele ce au loc pe interfața material substrat strat nu trebuie să ducă la formarea unor compuși care să altereze capacitatea de exploatare a sistemului compus (capacitate portantă a substratului, proprietăți funcționale strat).

Accentul pe transferarea proprietăților materialului stratului pe substrat este cu atât mai ridicat cu cât proprietățile obtenabile sunt mai ridicate, indiferent de compatibilitatea chimică sau metalurgică a materialului compus strat - substrat.

Familia materialelor de formare a straturilor este foarte vastă și alegerea acestora este determinată de condițiile concrete de exploatare a sistemului și economice și mai puțin de aspecte de compatibilitate chimică sau metalurgică cu substratul, care trebuie soluționate prin metode tehnologice specifice procedeului de realizare al stratului funcțional.

Alegerea materialului stratului va trebui să aibă în vedere toate condițiile concrete de funcționare ale sistemului compozit, inclusiv cele care au servit la alegerea materialului substratului. O atenție deosebită trebuie acordată acelor factori de mediu (solicitări) excepționali pe care substratul are capacitatea de a-i prelua dar care pot afecta funcționalitatea stratului. Sub aspect metalurgic, adecvanța unui procedeu pentru realizarea unui strat funcțional este foarte discutabilă, fiind determinată și de factorii economici. Principalele elemente care se vor avea în vedere sunt:

- modificarea proprietăților de exploatare ale substratului sub efectul tehnologiei de acoperire;
- posibilitatea formării de faze nedorite (dure, fragile etc) pe interfața strat-substrat
- posibilitatea apariției unor defecte de legătură pe interfața strat-substrat respectiv în strat

Figura 1.6. prezintă unele familii de materiale utilizate frecvent la realizarea straturilor funcționale.

Figura 1.6. Clase de materiale utilizate la realizarea straturilor funcționale

Materiale metalice.

Materialele metalice sunt clasa de materiale cu cea mai largă reprezentare în realizarea straturilor funcționale satisfăcând cele mai variate condiții funcționale de exploatare, din care cele mai importante sunt creșterea rezistenței la coroziune, creșterea rezistenței la uzare respectiv la oxidare la cald, până la proprietăți optice și biologice speciale:

a. Creșterea rezistenței la coroziune.

Alegerea materialului destinat creșterii rezistenței la coroziune este dependentă de următoarele condiții suplimentare de exploatare:

- natura mediului de lucru în care este exploatat sistemul;
- temperatura de lucru precum și modul și intervalul de variație al ei;
- fenomene de uzare suplimentare condițiilor de bază;
- șocuri mecanice și termice;

b. Creșterea rezistenței la uzare

Alegerea materialului destinat reducerii uzării va trebui să aibă în vedere în primul rând tipul solicitării dominante de tip uzură (fretaj, abrazivă la viteze reduse, abrazivă la viteze ridicate în fluide, cavitație etc.) care determină într-o primă aproximație clasa materialului funcțional ce se va utiliza în realizarea funcției protectoare.

Suplimentar tipului mecanismului de uzură, la alegerea materialului functional vor fi avute în vedere celelalte condiții de exploatare cu caracter agravant cum sunt:

- natura (agresivitatea chimică) mediului de lucru;
- viteza de aplicare a solicitărilor mecanice și prezența șocurilor termice; •
- temperatura și intervalul de variație a temperaturii de lucru;

Alegerea materialelor functionale metalice utilizate în aplicațiile industriale curente se face:

- folosind materialele si procedeele disponibile
- care asigură prețuri de cost minime •
- în condițiile încadrării stricte în termenele de livrare. •
- într-o aplicație specifică, prețul de cost al materialului și garanțiile care trebuie oferite produsului sunt cele care determină materialul și procedeul de realizare a stratului functional
- se vor avea în vedere conditiile dominante de solicitare ale interfetei componentă -• mediu de lucru (decelarea factorilor agresivi de mediu dominanți și secundari)

Deoarece solicitările determinate de conditiile de utilizare se suprapun foarte frecvent, este dificilă realizarea unei clasificări a principalelor familii de materiale metalice utilizate în scopuri funcționale în clase de materiale funcționale ca rezistente la coroziune, la oxidare sau uzură. Uzual, materialele cu proprietăți anticoroziune satisfac unele solicitări de tipul uzurii, în timp ce afirmația își pierde valabilitatea în sens invers. Principalele materiale metalice utilizate în realizarea straturilor funcționale fac parte din trei familii de aliaje, având ca principale elemente (formatoare ale aliajului) fierul, nichelul si cobaltul.

Aliaje cu bază de fier.

Aliajele cu bază de fier sunt utilizate atât în aplicații anticoroziune, cât și în aplicații antiuzură. Principalele aliaje cu baza de fier utilizate în practica industrială sunt:

a. Aliaje anticoroziune cu baza fier

Aliajele martensitice sunt aliaje FeCr - cu un conținut de Cr în intervalul $12 \div 18\%$ și un conținut de C variabil în intervalul $0.06 \div 0.6\%$. Aliajele din această familie sunt denumite generic "martensitice" sau "ferito-martensitice" datorită aspectului lor microstructural de tip martensitic. Alti constituenti microstructurali sunt bainita, respectiv ferită în proporții reduse, dependente de proporția de crom și carbon. Creșterea proporției de C la peste 0,2% duce la solidificarea primară cu formare de carburi complexe de tipul (FeCr)C și precipitarea suplimentară de carburi la răcirea în stare solidă.

Principalele caracteristici ale acestor aliaje sunt:

• rezistență ridicată la coroziune atmosferică, în apă dulce și marină; ____ HE

BUPT

628.008

Jermin v. Aleria

Allowing Comments

. . .

- rezistență ridicată la coroziune în baze diluate până la temperatura de fierbere;
- rezistență ridicată la coroziune în acizi organici și anorganici diluați și în diferite alimente;
- revenirea în intervalul 400-600 °C duce la precipitarea fină de carburi, care se reflectă în sărăcirea în crom a matricei metalice și implicit, duce la scăderea rezistenței la coroziune a aliajelor;
- aliajele martensitice nu sunt sensibile la coroziune intercristalină;
- creșterea proporției de Cr până la 30% în condițiile menținerii unei proporții reduse de carbon are ca efect stabilizarea unei microstructuri de tip parțial sau integral feritic în tot domeniul de temperaturi
- > aliajele FeCr și FeCrNi denumite uzual "inoxidabile" (uzual Cr > 18%)- au excelente proprietăți de rezistență la coroziune într-o varietate mare de medii agresive. Deoarece efectul protector anticoroziv al acestor materiale este datorat formării unei pelicule compacte și aderente de oxid de crom, rezistența este asigurată doar în medii ce conțin oxigen liber (aerate, acizi oxidanți etc.). Suplimentar aliajelor martensitice, această categorie de aliaje cuprinde 3 familii distincte în ceea ce privește aspectul microstructural: aliaje austenitice (soluție aliată în Fe_γ), feritice (soluție solidă aliată în Fe_α) respectiv ferito-austenitice. Fiecare din aceste aliaje are caracteristici distincte de prelucrabilitate și de exploatare, care le delimitează domeniul de utilizare.

Aliajele austenitice: reprezintă categoria aliajelor de vârf ale fierului în ceea ce privește proprietățile de exploatare. Ele se caracterizează printr-o plasticitate și tenacitate deosebită la temperaturi din domeniul criogenic (peste 1 K) până la temperaturi deosebit de ridicate (1373 K), o rezistență deosebită la coroziune, o comportare bună la sudare, determinate de structura austenitică (γ).

Compoziția chimică uzuală a acestor familii de materiale relevă:

- conținut redus de carbon (sub 0,1%)
- conținut 12 ÷ 25% Cr
- conținut 8 ÷ 30% Ni
- adaosul de molibden mărește rezistența la coroziune a aliajelor în acid sulfuric, cloruri și acizi organici.

Principalele caracteristici de exploatare ale aliajelor FeCrNi sunt:

- rezistență la coroziune ridicată în numeroase medii corozive industriale:
 - soluții acide ale acizilor halogenați și organici
 - rezistență ridicată la coroziune în baze
 - rezistență ridicată la coroziune în săruri
- rezistența la coroziune este deosebit de scăzută în soluțiile care conțin sulf, datorită formării cu Ni din soluția solidă a compusului Ni₃S, care reduce semnificativ tenacitatea materialului și duce la coroziunea accelerată a aliajului.

Aliajele feritice au ca principal element de aliere cromul, iar Ni este un element adițional, care mărește tenacitatea aliajului. Caracteristic, oțelurile feritice au o fragilitate ridicată în starea de livrare, motiv care limitează utilizările lor la procedee de acoperire prin placare sub strat de flux cu electrod bandă, mai rar sub formă de sârmă în mediu de gaze protectoare.

Rezistența la coroziune a acestora este relativ bună în medii cum sunt:

- acidul azotic concentrat (90%) la rece până la 10% la temperatura de fierbere;
- soluții alcaline;
- acizi organici diluați și reci;
- produse alimentare.

Alierea suplimentară cu molibden mărește rezistența la coroziune a acestor oțeluri.

Aliajele "duplex" și "superduplex" au o proporție γ/δ subunitară ce tinde la unitate. Aliajele de bază, inițiale, au avut o compoziție de tip 28% Cr și 6% Ni, cu proporția exactă de ferită δ reglată prin adaosul de elemente alfagene și gamagene. Elementul caracteristic al acestor familii de aliaje este conținutul ridicat de N, care completează efectul gamagen al nichelului și echilibrează proprietățile de exploatare ale materialului.

Cu toate că aceste aliaje au o prelucrabilitate relativ scăzută la cald, rezistența lor la coroziune, în special cea intercristalină, a făcut ca utilizarea acestor aliaje să cunoască o răspândire crescândă, cu toate că există anumite probleme la sudarea lor.

Aliaje antiuzură cu bază de fier.

Creșterea proporției de C în aliajele FeCr cu un conținut de Cr de peste 5% (dar de maximum 18% în general) duce inevitabil la formarea unei structuri bainitice sau martensitice, cu precipitări intense de carburi de Cr ce conferă aliajelor o duritate ridicată și o rezistență sporită la abraziune. Aceste aliaje formează palierul inferior al aliajelor fierului utilizate frecvent în protecția antiuzură a organelor de mașină expuse uzurii fără șocuri.

Aliajele cu un conținut de peste 0,2% C au o rezistență medie și ridicată la uzare abrazivă, în condițiile unei rezistențe medii/scăzute la șocuri mecanice până la temperaturi de ordinul a 600 °C, respectiv proprietăți de rezistență mecanică ridicate asociate unei plasticități și tenacități medii și reduse. Limita superioară a conținutului de C poate depăși în cazuri particulare valoare de 2,5%, dar creșterea proporției de C scade rezistență la coroziune a aliajelor din această familie. Aliajele dure din familia FeCrC au o rezistență la uzare abrazivă la viteze reduse care crește cu proporția de C și Cr, dar diminuează rezistența la coroziune.

Principalele faze prezente în aceste aliaje sunt carburile complexe de tipul M_3C , M_7C_3 și $M_{23}C_7$, cu un raport Fe/Cr/W dependent de compoziția chimică a aliajului.

Figura 1.5 prezintă principalele faze formate în sistemele FeCrC, în timp ce figura 1.6 indică fazele prezente în sistemele FeCrWC.

Figura 1.5. Structura la temperatura ambiantă a aliajelor Fe-Cr-C

Figura 1.6. Structura la temperatura ambiantă a aliajelor Fe-Cr-W-C

Elementele suplimentare de aliere Ni, Mo, Cu, V, W, Nb sunt destinate potențării unor caracteristici particulare de exploatare. Dintre acestea, cea mai importantă este rezistența la uzare la temperaturi ridicate, reglată prin adaosul de elemente de aliere ca W, Mo, V, Nb, care au ca efect formarea de carburi fine, termostabile, făcând ca materialul să se comporte foarte bine în condiții de abraziune la temperaturi ridicate, în timp ce adaosul de Ni mărește tenacitatea materialelor antiuzură realizate.

De aceea, aliajele dure cu bază de Fe sunt utilizate în mod uzual până la temperaturi ce nu depășesc 400 °C. Pierderea de duritate se accentuează la temperaturi de peste 300 °C,

fiind cauzată de începutul coalescenței carburilor și mai apoi a trecerii acestora în soluție (la temperaturi peste 650 °C).

Aliaje cu bază de nichel

Există două clase importante de aliaje ale nichelului, caracterizate de domeniul de solicitări superficiale căruia i se adresează: aliaje anticoroziune și aliaje antiuzură. Date fiind unele particularități ale aliajelor de nichel, aliajele antiuzură cu baza Ni au în unele cazuri și excelente proprietăți de rezistență la coroziune și oxidare, la temperaturi de la cea a mediului ambiant până la peste 600 °C.

Aliajele cu baza nichel anticoroziune fac parte din două familii de aliaje, ce poartă frecvent nume generice provenind din denumirea comercială a acestora:

- INCONEL - aliaje din familia Ni + 33% Cu și cele derivate din acestea.

- MONEL - aliaje din familia Ni Cu Cr

În ciuda prețului ridicat, aceste familii de materiale sunt utilizate relativ frecvent și se depun pe substrat prin metode termice de tipul sudării sau pulverizării termice. Procedeele de acoperire care se utilizează la depunerea straturilor funcționale din materiale cu baza nichel vor trebui să asigure evitarea sau limitarea modificării compoziției chimice a materialului funcțional, pentru evitarea oricărei alterări a proprietăților funcționale ale acestora.

O familie aparte de aliaje cu baza nichel este aceea destinată turbinelor de gaze, care sunt aliaje complexe din familia MCrAlY, în care M este de regulă nichelul (M=Ni, Co, Fe). Cu toate că M poate fi oricare din elementele Ni, Co sau Fe, datorită proprietăților deosebite, cele mai frecvent utilizate aliaje din această clasă sunt NiCrALY.

Asemănător aliajelor de tip NiAl, aliajele NiCrAlY au o aderență deosebită la depunerea prin pulverizare termică pe orice tip de substrat, care este completată de o excelentă rezistență la oxidare la temperatură ridicată, determinată de formarea unei pelicule extrem de compacte și stabile de oxid de crom și aluminiu, a căror proporție variază cu temperatura; adaosul de yttriu are un efect complex, în care predomină creșterea aderenței stratului protector de Cr_2O_3 și Al_2O_3 printr-un mecanism complex:

- formarea unui strat subțire de Y₂O₃ sau YAlO₃ pe interfața strat de oxid substrat;
- creșterea plasticității interfeței oxid substrat, ancorarea mai bună a stratului protector de oxid prin creșterea înspre substrat a grăunților de oxid de Ytriu;
- asigurarea protecției substratului în cazurile în care stratul protector cedează și expune materialul substratului agenților corozivi din mediul de lucru.

Domeniul de utilizare al acestei familii de aliaje acoperă protecția la oxidare la temperaturi ridicate (max. 1200 °C) în medii conținând gaze de ardere, compuși ai sulfului și particule fine cu efect abraziv, în domeniul motoarelor termice de aviație.

Aliajele antiuzură cu bază de nichel fac parte din familia NiCrB, având ca elemente suplimentare de aliere Si și W, pentru accentuarea anumitor proprietăți de exploatare.

Proporția de Cr variază uzual în intervalul $5 \div 17\%$ iar cea de bor în intervalul $2 \div 4\%$, având, împreună cu siliciul, un efect pronunțat în reducerea temperaturii de topire. Siliciul formează o soluție solidă de substituție în rețeaua nichelului la concentrații de până la 7,5% - figura 1.7 și 1.8.

Figura 1.7. Sistemul ternar NiCrB

Figura 1.8. Sistemul ternar NiCrSi

Aliajele NiCrB și NiCrBSi au o structură de echilibru formată din boruri primare NiB ale nichelului și un eutectic metastabil Ni₃B - Ni(EA), cu temperatura de solidificare de aproximativ 100 °C sub cea a eutecticului Ni₃B - Ni. Principalele faze identificate de literatura consultată sunt:

- Ni₂B
- Ni₃B
- Ni₃Si

Ca o consecință a solidificării eutectice, temperatura de topire a aliajelor NiCrBSi este foarte redusă, în mod uzual în intervalul 960 °C \div 1200 °C.

Datorită dispersiei fine a borurilor primare (NiB) și a celor precipitate în stare solidă (Ni₃B, Cr₅B₃, Cr₂B, CrB), stabilitatea termică a durității aliajelor este în general ridicată, și este determinată în special de prezența Ni₃B și Cr₅B₃. Duritatea acestei familii de aliaje se situează în intervalul 15 \div 65 HRC, iar stabilitatea termică este ridicată. Uzual, duritatea aliajelor scade nesemnificativ până la temperatura de 400 °C, permițând exploatarea majorității depunerilor NiCrB și NiCrBSi până la temperaturi de peste 600 °C.

Aliajele NiCrBSi permit prelucrarea sub formă de pulberi și procesarea prin procedee de pulverizare termică, care permit adaosul facil de alte faze dure de dimensiuni mari, ce pot accentua unele aspecte ale rezistenței la uzare.

Aliajele cu bază de cobalt

Aliajele cu baza cobalt fac parte din aliajele Co-Cr-C, și își au originea în aliajele cunoscute sub numele comercial de STELLITE[®] (firma DELORO STELLITE).

Ceea ce este caracteristic acestei familii de aliaje este conținutul de elemente de aliere Cr, W și C. După cum se poate remarca din analiza suprafeței de topire din sistemul Co-Cr-W (figura 1.9), numai aliajele care au în structură o proporție ridicată de fază θ au un potențial de utilizare în procedee de tip sudare datorită temperaturii relativ reduse de solidificare.

Figura 1.9. Sistemul ternar Co - Cr - W

- Ni_5Si_2
 - borura ternară Ni₆Si₂B (hexagonală)

Similar aliajelor fierului, principalele elemente formatoare de faze dure sunt, alături de carbon, cromul și wolframul.

În timp ce proporția uzuală a Cr în aliaje se situează în jurul a 30% iar a C în intervalul 1 ÷ 2%, proporția de W este dependentă de utilizarea aliajului și variază într-un interval relativ larg. Alte elemente formatoare de carburi (în cazuri excepționale) sunt Mo și V, iar Si, Ni, Mn și Fe se găsesc sub formă de atomi de substituție în matricea aliajelor.

Structura metalografică a acestor aliaje este alcătuită dintr-o soluție solidă cu bază cobalt și din carburi complexe de tipul WC, M_7C_3 , $M_{23}C_6$, M_6C și faza χ (Chi), cu compoziția aproximativă $Cr_{25}Co_{25}W_8C_2$. - figura 1.10.

Figura 1.10. Structura aliajelor CoCrW la 600 °C, 1%C

Suplimentar proprietăților deosebite de rezistență la coroziune, aliajele STELLITE[®] și TRIBALLOY[®] se remarcă printr-o duritate și stabilitate termică ridicată a acesteia. Adaosul de Cr stabilizează faza ε a Co, în timp ce creșterea conținutului de W crește stabilitatea fazei α . Deoarece microstructura este determinantă în ceea ce privește valorile durității, procedeul de elaborare respectiv aplicare al aliajului afectează puternic (±8 HRC) duritatea depunerilor. În mod uzual, duritatea statică a depunerilor se situează în intervalul 38 - 66 HRC.

În ceea ce privește rezistența la coroziune, aliajele cu baza Co au o rezistență la coroziune în numeroase medii considerată ca excelentă:

- rezistența la temperatura ambiantă în acizii oxidanți (azotic, acetic, fosforic, cromic) este deosebit de bună și este determinată de formarea unui strat pasivizat, al cărui efect este accentuat de creșterea concentrației acidului;
- comportarea în acid clorhidric este asemănătoare oțelurilor inoxidabile;
- rezistența în acidul sulfuric concentrat este în general ridicată, dar unele aliaje suferă un fenomen de coroziune în lamă de cuțit;
- aliajele cobaltului nu sunt practic afectate de soluțiile de baze și săruri;

1.5. Fenomene metalurgice la procesele de acoperire.

Fenomenele metalurgice ce au loc la la procedeele de sudare fac ca proprietățile de exploatare ale stratului să fie afectate. Ele sunt determinate de procesele de diluție în stare topită și de transformările de fază în stare solidă care pot sau nu să fie bazate pe mecanisme difuzionale, fiind controlate ca amploare de caracteristicile tehnologice ale procedeului de realizare a stratului funcțional în discuție. Aceste fenomene duc la formarea de compuși chimici și intermetalici, la modificări alotropice sau de granulație care pot afecta uneori radical proprietățile de exploatare ale sistemului compozit format.

Principalul fenomen care trebuie avut în vedere la realizarea straturilor funcționale prin procedee de tip topire și solidificare este cel al diluției. Diluția se definește conform figurii 1.11 ca raportul dintre proporția de material de bază topit și volumul total al metalului topit:

Figura 1.11. Elemente de calcul a diluției

Diluția este unul din elementele care determină parametrii economici ai unui procedeu de realizare a straturilor funcționale prin procedee de tip sudare prin modificarea numărului de straturi necesar proprietăților funcționale ale materialului stratului în ultimul strat depus (sudat):

$$D = \frac{A_{mb}}{A_{mb} + A_d} \tag{1.9}$$

Pe lângă scăderea concentrației unor elemente sub valoarea critică minimă caracteristică aplicației căreia îi este destinat stratul, diluția poate aduce un aport de elemente detrimentale în strat (ex. C în depunerile austenitice anticoroziune). Formula diluției permite calcularea numărului minim de straturi care asigură concentrația minimă din fiecare element de aliere:

$$n = \left(\frac{C_{MD}^{0}}{C_{MD}^{0} - C_{MB}^{0}}\right)$$
(1.10)

Alături de diluție, principalul fenomen metalurgic care afectează funcționalitatea straturilor este formarea de constituenți fragili pe interfața strat-substrat. Principalul efect al acestui fenomen este scăderea tenacității interfeței precum și formarea unor constituenți și faze care accentuează tendințe de tipul coroziunii intercristaline în depunere. Tendința de formare a acestora se poate evalua pe baza analizei diagramelor de echilibru fazic, iar prevenirea formării lor se face prin aplicarea unor straturi intermediare (straturi tampon) care nu formează compuși duri cu nici unul din materialele sistemului și blochează difuzia elementelor fragilizante. În cazul în care asemenea materiale nu există, se recurge la formarea unor sisteme compuse multistrat care să evite formarea compușilor fragili pe interfețele sale.

CAPITOLUL 2. SELECȚIA MATERIALELOR ȘI A PROCEDEELOR DE ACOPERIRE

2.1. Analiza comparativă a procedeelor de realizare a straturilor funcționale

Mecanismul de selecție al procedeelor de realizare al straturilor funcționale este complex și are în vedere atât caracteristicile funcționale de obținut, cât și natura materialelor funcționale care se utilizează. Există mai multe seturi de criterii în selecția materialului adecvat. Ele sunt bazate pe proprietăți caracteristice și includ proprietăți fizice, mecanice, de prelucrabilitate, costuri și disponibilitate.

Principalele caracteristici de material avute în vedere la selecția unui material sunt:

- caracteristicile de rezistență la uzare și coroziune
- disponibilitate
- sudabilitate
- prelucrabilitate
- capacitate de durificare

Dintre toate caracteristicile tehnico-funcționale, proprietățile mecanice sunt cele care au preponderența cea mai redusă, cele mai importante fiind caracteristicile funcționale (rezistență la coroziune, la diferite forme de uzare), caracteristicile de prelucrabilitate (sudabilitate, prelucrabilitate prin așchiere, călibilitate) și disponibilitatea.

Rolul proprietăților mecanice și termofizice este determinant în selecția procedeului de acoperire și a parametrilor săi de lucru. Selecția unui proces sau a unui material pentru asigurarea rezistenței la uzare este o problemă complexă, probabil cea mai puțin studiată. Deoarece uzarea nu este o proprietate de material ci rezultatul efectului activității unui tribosistem, alegerea materialelor și/sau procedeelor pentru un tribosistem nou de către un tribolog este dificilă și se poate soluționa cu rezultate discutabile fără experiențe preliminare.

Tabelul 2.1 prezintă unele caracteristici ale principalelor procedee de acoperire prin procedee termice utilizate în tehnica realizării straturilor antiuzură.

Analiza are la bază chestionarea a aproximativ 100 întreprinderi românești cu activități în domeniul construcțiilor de mașini și construcții metalice și are la bază frecvența utilizării procedeelor de sudare în vederea realizării de straturi funcționale respectiv frecvenței utilizării pulverizării termice.

-

Procedeu	Principalele limitări	Adecvate pentru	Disponibi- litate
Procedee prin fuziu	ne		
SE	Rată redusă de depunere	Lucrări de mică amploare, în poziții	5
		dificile, varietate mare de consumabile	
MIG/MAG, sârmă plină sau tubulară	Nu toate materialele metalice sunt disponibile, numărul aliajelor	Procedeu flexibil, în continuă extindere	4
	disponibile este limitat		
WIG	Productivitate foarte redusă	Lucrări mici, reparații de scule, materiale	2
	· · · · · · · · · · · · · · · · · · ·		
SF	Număr limitat de aliaje, poziție orizontală, piese simple	Depuneri groase	2
SP	Număr redus de aliaje (pulberi sau	Lucrări de acoperire mecanizate	1
	sârme), echipamente scumpe	·	-
Oxi-gaz	Rată redusă de depunere	Lucrări de mică amploare cu aliaje ale	4
om Bub	·	cobaltului și nichelului, lucrări pe teren	•
Laser	Echipament scump, procedeu în dezvoltare	Lucrări cu caracter special	0
Fascicol electroni	Disponibilitate redusă a	Lucrări cu caracter special	1
	echipamentului, procedeu în dezvoltare		I
Baie zgură	Disponibilitate redusă a	Depuneri groase	1
-	echipamentului, numai pentru M.A. sub formă de sârme	1 0	
Brazare în cuptor	Disponibilitate a echipamentului, adecvat pentru un număr redus de	Montarea plăcuțelor de carburi	1
	consumabile		
Procedee fara fuziu	ne Dere-itete eeneniGestie ×		
Pulverizare cu flacără	Porozitale semnificativa	Depunen de peste 1 mm grosime cu aliaje metalice	4
Pulverizare cu arc	Numai pentru materiale sub formă de sârme	Depuneri de peste 1 mm grosime cu aliaje metalice	5
Pulverizarea cu iet	echipament scump, depuneri subtiri,	Ceramice, cermeturi, depuneri subtiri cu	2
de plasmă	sub 1 mm grosime	aliaje metalice	-
D-Gun	Un singur fumizor de echipament	Depuneri subțiri (sub 0,5 mm) ale materialelor ceramice, carburilor și aliaielor metalice	0
Jet Kote	Consumuri relativ ridicate de gaze	Depuneri de grosimi mai ridicate (0,25 ÷ 0,5 mm) din carburi metalice și pulberi înalt aliate	0

Tabelul 2.1 Caracteristici ale principalelor procedee de acoperire prin procedee termice

Criteriul disponibilității are la bază studiul pieței românești menționat anterior (efectuat în perioada octombrie 1996 – martie 1999) și care a cuprins și informații privind echipamentele în stare de funcționare în firmele în activitate. Procedeele de acoperire prin topire (sudare) clasice sunt disponibile în practic toate firmele care derulează lucrări de sudare. Consumabilele și echipamentele pentru aceste procedee sunt disponibile întro varietate mare pe piața românească pentru majoritatea procedeelor cu arc electric.

Placarea prin procedee cu topire în vederea creșterii rezistenței la uzare poate fi realizată în aproape toate atelierele de sudură, deoarece trecerea de la sudare la încărcare constă în simpla înlocuire a materialelor consumabile.

Pulverizarea termică este un procedeu în continuă extindere și este disponibilă în România în peste 70 de întreprinderi (la nivelul anului 1998), iar echipamentele disponibile au o mobilitate ridicată, fiind adecvate în marea majoritate a cazurilor lucrărilor pe teren. Consumabilele sunt și ele disponibile de la mai mulți furnizori. Tabelul 2.2 prezintă principalele materiale antiuzură disponibile pe piața românească pe tipuri de aplicații antiuzură.

Numeroase procedee pot garanta asigurarea unor rezultate comparabile folosind materiale asemănătoare. Alegerea procedeului adecvat este dependentă de disponibilitatea procedeului și gradul de pregătire al firmei ce execută lucrările de recondiționare. Legătura proces de uzare - material antiuzură - procedeu de acoperire este prezentată de tabelul 2.2. Imaginea se bazează pe experiența sursei [1].

Procedeu acoperire	Acoperiri	Fe/Cr	Ni/Cr/B	Oțeluri scule	Oțeluri manganoase	Aliajele cobaltului	Aliajele cuprului	Compozite	Ceramice
SE	х	Х	Х		х	Х	X	Х	
WIG			Х	х		Х	Х		
MIG/MAG	x	Х			X	X	Х		
Oxigaz			Х		Х	Х	Х	X	
APS			X			X	x		
D-Gun			X			Х	X		X
Pulv. flacără	x		X			Х	х		x

Tabelul 2.2 Legătura proces de uzare – material antiuzură

Mecanism uzare		Acoperiri cu:	Fe/Cr	Ni/Cr/B	Oțeluri scule	Oțeluri manganoase	Aliajele cobaltului	Aliajele cuprului	Compozite	Ceramice
Abraziune	Tens. reduse		Х	X	X		х		X	X
	Tens. ridicate		х		_				X	
	Perforare		Х			x			Х	
	Lustruire		Х	х	Х		Х		X	x
Eroziune	Particule solide		х		х					
	Cavitație						Х	X		
	Eroziune paste						X			
	Eroziune lichide						x			-
Adeziune	Adeziune		x	х	X		X			x
	Fretaj						х			X
	Oxidativă		х	X	х		х			X
Oboseală	Pitting			X	X		X			
	Impact		x		X		x			
	Punctiformă		X		X					
·										

Cu toate că în majoritatea problemelor de uzură nu există o legătură strictă între duritatea materialului antiuzură și rezistența sa, duritatea este unul din elementele definitorii în alegerea materialelor antiuzură și a procedeului de depunere.

Toate materialele și procedeele asigură durități mai ridicate decât materialele industriale uzuale cum sunt oțelurile carbon, de construcție sau slab aliate. Toate materialele care au la bază transformarea martensitică au durități comparabile, în timp ce dintre procedeele difuzionale, straturile cele mai dure sunt oferite de procedee termochimice ca nitrurarea și carbonitrurarea. Cele mai dure depuneri sunt realizate prin procedeul de cromare electrolitică. Principalele ceramice antiuzură utilizate în practica industrială sunt oxizii, nitrurile, carburile, borurile și compușii lor.

Carburile metalice utilizate pentru realizarea straturilor rezistente la uzare pentru scule așchietoare au o duritate de peste 2000 N/mm², de cel puțin două ori mai ridicată decât a materialelor metalice prelucrabile prin așchiere. Excepție sunt carburile depuse în vid, care au durități mai ridicate decât media. Procedeul prin care carburile metalice sunt aplicate pe suporții lor sunt lipirea tare (brazarea).

BUPT

Suplimentar caracteristicilor tehnice generale ale diferite procedee de realizare a straturilor funcționale, depuneri realizate cu o clasă bine definită de materiale folosind diferite procedee au proprietăți de exploatare diferite. În acest sens, depunerile antiuzură din bronzuri realizate folosind pulverizarea termică (jet de plasmă, D-Gun) au - datorită porozității inerente procedeului de depunere - caracteristici antiuzură superioare materialelor masive turnate sau laminate. De asemenea, unele din materialele antiuzură au în stare călită superficial rezistențe la uzare superioare acelorași materiale călite volumic.

2.1.1. Grosimea stratului

Grosimea stratului depus este primul din elementele care se iau în considerare la alegerea unui procedeu de acoperire. Este practic criteriul care stă la baza alegerii clasei de procedee de acoperire, și din care se vor selecta procedeele adecvate din punct de vedere tehnic și tehnologic. Figura 2.1 prezintă principalele procedee de realizare a straturilor funcționale prin adaos de material pe domenii de grosime realizate.

Figura 2.1. Grosimi de strat specifice la procedeele cu adaos de material

Cele mai mari grosimi de strat sunt realizate de procedeele de acoperire prin sudare. În cadrul procedeelor de sudare prin topire, încărcarea cu plasmă se încadrează în cele de grosime medie, cu o plajă relativ redusă de reglaj a grosimii de strat, comparabilă însă cu celelalte tipuri de procedee prin topire.

2.1.2. Costul procedeelor de acoperire

Costul procedeului este elementul determinant în selectarea unui procedeu oarecare. Cel mai important element este seria produselor pe care se execută acoperirea cu stratul dur. Cu toate că orice procedeu este adecvat realizării atât a seriilor mari, cât și a unicatelor, elementele legate de costurile de pregătire-încheiere și a dispozitivărilor speciale modifică drastic datele economice care stau la baza alegerii procedeelor. În cazul realizării unui singur produs, se poate apela la orice procedeu. Excepție fac produsele de dimensiuni ridicate, pentru care asigurarea condițiilor tehnologice optime impune uneori investiții nejustificate.

Realizarea acoperirilor de protecție devine deosebit de scumpă de la anumite gabarite în sus. Fiecare procedeu de acoperire are o dimensiune minimă de la care costurile acoperirii devin foarte ridicate. Tabelul 2.3 prezintă unele dimensiuni critice de la care economicitatea procedeelor menționate scade în mod critic.

În selecția procedeului adecvat trebuie avute în vedere pe lângă disponibilitățile tehnologice și elemente inerente dotării tehnice a executantului stratului de protecție. Instalațiile de tratament termic cu fascicul de electroni, al sistemelor CVD și PVD, duc la creșterea costului investiției și implicit al amortizărilor exponențial cu volumul camerei de lucru.

Procedee ca sudarea cu arc electric sau cu flacără, placarea selectivă și pulverizarea termică permit - în condiții tehnologice bine definite - realizarea de depuneri pe părți ale componentelor, independent de natura, gabaritul, geometria și masa lor.

Indicațiile prezentate în tabelul 2.3 ajută la evaluarea posibilității de realizare în condiții de eficiență economică a stratului funcțional dorit. Datele economice sunt schimbate radical în cazul în care este necesară tratarea (acoperirea) a mai multe componente simultan.

Unele procedee de acoperire permit acoperirea mai multor componente la un preț cvasiegal cu costul pentru o componentă. De aceea, dintre procedeele ce admit lucrul în șarje, cele difuzionale de tipul tratamentelor termochimice realizează prețuri de cost mai reduse deoarece realizarea stratului funcțional nu este dependentă de orientarea suprafeței de acoperit față de sursa de material funcțional (PVD, unele variante CVD).

Procedeu	Limitări dimensionale	Limitări de procedeu		
Sudarea cu arc	Nu	Se tratează o singură		
		componenta		
Sudarea oxigaz	Nu	Se tratează o singură		
		componentă		
Tratament cu fascicol de	Camera de vid trebuie să	Se tratează o singură		
electroni	depășească în gabarit	componentă		
	componenta de tratat			
Tratament cu laseri	Suprafețele de lucru depășesc	Una sau mai multe		
	rar 1 m ²	componente simultan		
Pulverizare cu arc, cu flacără	Nu	Se tratează o singură		
		componentă		
Pulverizare în jet de plasmă,	Mișcarea componentei sau a	Se tratează o singură		
D-Gun	pistoletului trebuie	componentă		
	mecanizată			
Călire de suprafață cu flacără	Nu	Se tratează o singură		
		componentă		
Călire de suprafață prin	Necesită aprox 1,25 kW/cm ²	Se tratează o singură		
inducție	suprafață precum și un	componentă		
	conductor profilat			
Tratamente difuzionale	Dimensiunea cuptorului	Procedeu cu şarje		
Straturi subțiri	Componentele trebuie să	Sarje		
	încapă în camera de vid a			
	instalației sau reactor			
Placare	Dimensiunile băii	O singură componentă		
		sau şarje		
Placare selectivă	Nu	Se tratează o singură		
		componentă		
Plăci antiuzură	Nu			
Cimenturi de reparare	Nu			

	T ' ' A Y' I' ' I
Tabelul 2.3. Considerații	dimensionale pentru diferite procedee

Toate celelalte procedee menționate în tabelul 2.3 realizează acoperirea unei singure componente pe ciclul de lucru. motiv pentru care costurile de manipulare vor fi mai ridicate, reprezentând o componentă importantă în structura costurilor depunerii.

Tabelul 2.4 prezintă comentarii privind elementele esențiale în structura costurilor care iau în considerare dimensiunea și volumul componentei.

n

Proceaeu	observații privilu costurne				
Încărcare prin sudare	SE: max. 2,5 kg/h	+ costuri de prelucrare			
	WIG: max. I kg/h	meeumeu			
	$MIG/MAG: 4 \div 10 \text{ kg/h}$				
	SF: max. 10 kg/h				
	SP: max. 4 kg/h				
	Oxigaz: max. 0,9 kg/h				
Pulverizare cu flacără	max. 1 kg/h + costuri prelucrare				
Pulverizare cu arc	max. 2 kg/h + costuri prelucrare				
Pulverizare cu jet de plasmă	$3 \div 18 \/cm^2/mm gros.$				
Durificarea selectivă	Costul dispozitivărilor + costul oțelului de scule + manopera/componentă. Călirea prin inducție este mai rapidă decât cea cu flacără				
Tratamente difuzionale	tamente difuzionale Funcție de cantitate, prețuri între 0.5 ± 4.5 \$/kg				
PVD, placare ionică	VD, placare ionică Depunerile TiN sunt relativ ieftine, dar depuneri cu alte materiale pot avea costuri ridicate				
Placare	Costurile depind de manopera pentru mascare, aranjarea în baie, suprafața de placat				

Tabelul 2.4. Costurile diferitelor procedee de realizare a straturilor superficiale Observatii privind costurile

Costurile la pulverizarea termică se calculează asemănător celor de la procedeele prin sudare. În acest sens, figura 2.2 prezintă costuri estimative pentru diferite procedee de acoperire, respectiv figura 2.3 prezintă costuri aproximative ale principalelor materiale pentru acoperiri dure.

Placarea nu are aproape niciodată costuri la fel de reduse ca și procedeele difuzionale, iar componenta dominantă a costurilor este manopera pentru dispozitivări, protejare și examinare. Costurile cu energia electrică pot fi adăugate costurilor manoperei ca și costuri suplimentare, mărind tarifele orare la valori superioare atelierelor de prelucrare mecanică.

Placarea selectivă impune costuri mult mai ridicate decât placarea electrolitică a întregilor componente, impuse de protejarea suprafețelor care nu vor fi acoperite.

O mare importanță în structura costurilor o are gradul de automatizare al procedeului de realizare al stratului funcțional. Cu toate că un grad de automatizare ridicat al procedeului indică o productivitate ridicată, utilizarea acestor procedee este justificată fie de execuția unor serii mari sau producții de masă, fie de realizarea unor serii scurte de depuneri de o calitate deosebită, care justifică costurile ridicate ale amortizării instalatiilor.

Acesta este și cazul procedeului PTA, care face obiectul prezentei teze de doctorat, al cărui grad ridicat de mecanizare impune fie realizarea unor serii mari de produse, fie realizarea unor depuneri utilizând materiale de calitate excepțională în condiții de

control extrem de precis a diluției și caracteristicilor stratului funcțional

Figura 2.2 Costul relativ al procedeului de acoperire, bazat pe rata de depunere

Procedeele ce realizează prețuri de cost ridicate sunt cele ce utilizează surse concentrate de energie (fascicol de electroni, laser, pulverizare cu jet de plasmă), care necesită sisteme speciale de manipulare sau incinte ce asigură atmosfere controlate sau vacuum.

Procedeele industriale uzuale (sudarea sub strat de flux, sudarea manuală cu electrozi înveliți, sudarea MAG și oxi-gaz) a căror destinație este sudarea pot realiza prețuri de cost foarte reduse în comparație cu procedeele destinate realizării straturilor funcționale. Cu toate că prețurile de cost realizate sunt aparent reduse, valoarea ridicată a diluției majorității acestor procedee respectiv productivitatea redusă fac ca costul final al operației de realizare a stratului funcțional (inclusiv eventualele prelucrări ulterioare) să fie comparabil, dacă nu apropiat de cel realizat cu procedee specializate.

Figura 2.3. Costul relativ al diferitelor materiale

Este evident faptul că materialele uzuale, care realizează marea majoritate a lucrărilor de fabricație sau reparații cu straturi funcționale în construcția de mașini fac parte din categoria materialelor cu prețuri de cost relativ reduse, spre deosebire de materialele ce se adresează domeniilor sensibile în ceea ce privește stabilitatea termică și structurală a materialului stratului funcțional.

2.1.3. Tendința spre generare de distorsiuni

Unul din motivele care face ca sudarea să fie frecvent înlocuită de procedee alternative, mai scumpe, este tendința de deformare a corpurilor a căror suprafață a suportat depunerea unui strat de sudură.

Nu toate procedeele alternative oferă posibilitatea evitării distorsiunilor termice. O concepție eronată a potențialilor utilizatori este aceea că orice procedeu termic de realizare a unui strat funcțional duce la apariția distorsiunilor. Deformațiile apar la încălzirea componentelor, dar nu apar datorită dilatării volumice a materialului ci tensiunilor termice reziduale determinate de încălzire, deformațiilor plastice datorate

încălzirii și răcirii neuniforme, susținerii neuniforme și/sau blocării deformării libere la încălzire și modificărilor de volum induse de transformările alotropice ce au loc în material pe durata tratamentului termic. Deoarece realizarea ciclurilor de încălzire - răcire în condiții ideale este imposibilă, în practica industrială se recurge la minimizarea deformațiilor prin măsuri tehnologice.

O măsură elementară este minimizarea încălzirii volumice sau a încălzirii minime a porțiunii componentei care nu trebuie încălzite.

Figura 2.4 prezintă temperaturile maxime ale suprafeței și efectele de deformare care apar la diferite tipuri de tratament termic. Indicarea zonelor cu și fără deformații este adecvată descrierii aliajelor fierului. Temperatura de lucru în procedeul de acoperire va trebui comparată cu temperatura de relaxare a tensiunilor. În măsura în care temperatura de lucru este situată sub această temperatură, probabilitatea apariției deformațiilor este redusă. Un alt element de importanță este cel al inducerii unor modificări volumice în materialul suprafeței.

Figura 2.4. Solicitări termice și distorsiuni la procedeele de acoperire

ordinul procentelor, Modificări similare au loc la călirea de suprafață, indiferent de varianta tehnologică adoptată. Procedeele de depunere prin sudare produc distorsiuni mai ridicate datorită contracției ridicate a materialului depunerii.

Prima etapă în alegerea unui strat funcțional sau a unui tratament termic superficial, inclusiv placare prin sudare, este luarea deciziei privind beneficiile pe care le poate aduce realizarea organului de mașină prin durificarea suprafeței sau a execuției componentei dintr-un corp masiv cu proprietăți bune antiuzură.

Alegerea soluției are la bază mai multe opțiuni. Pornind de la ideea că organul de mașină trebuie protejat de una sau mai multe forme de uzare, materialele utilizate pot aparține uneia din următoarele grupe:

- Materiale care pot rezista unor forme de uzare în starea rezultată în urma prelucrării
- Materiale care trebuie tratate termic pentru îmbunătățirea rezistenței la uzare
- Materiale care trebuie tratate superficial în vederea accentuării proprietăților de rezistență la uzare.

Figura 2.5 prezintă unele familii de materiale care sunt cuprinse în primele două categorii, în timp de figura 2.6 cuprinde principalele procedee de creștere a rezistenței la uzare. Încadrarea materialului în categoria corectă (alegerea materialului) este opțiunea proiectantului, pe baza profilului trasat pentru materialul destinat organului de mașină.

Figura 2.5. Spectrul materialelor rezistente la uzare

Pentru facilitarea alegerii soluției optime, se poate recurge la utilizarea unui set de întrebări care ghidează proiectantul spre alegerea unui anumit material sau procedeu:

- Componenta este alcătuită dintr-un aliaj feros sau neferos?
- Componenta este de înaltă rezistență?
- Poate componenta tolera procese termice de sudare sau tratamente termice la temperatură ridicată?
- Care este uzura admisibilă în exploatare

Răspunsul la prima întrebare elucidează familiile de materiale care pot face subiectul unui tratament termic de durificare superficială. Unele procedee de suprafață nu se pretează la durificarea anumitor familii de materiale. Se pot cita ca exemple aluminiul, magneziul titanul și aliajele zincului, care nu se pretează la procedee de durificare superficială prin topire. Durificarea volumică a acestor aliaje nu este o soluție convenabilă pentru cazul solicitărilor de uzură. Unele aliaje ale titanului, nichelului și cuprului pot fi durificate prin precipitare până la durități de ordinul a 40 HRC, dar această duritate nu este încă relevantă în ceea ce privește creșterea rezistenței la majoritatea formelor de uzare. De aceea, singura metodă convenabilă tehnologic pentru creșterea rezistenței la uzare a acestor aliaje este tratamentul termic și/sau termochimic de suprafață.

În ceea ce privește rezistența mecanică impusă, este necesară o cuantificare cât mai exactă a acesteia, în sensul: 60 sau 600 MPa?

Dacă rezistența mecanică, tenacitatea și rigiditatea impun un material feros, durificarea volumică devine o soluție potențială în creșterea rezistenței la uzare a materialului. Oțelurile călibile și fontele pot deveni materiale antiuzură excelente prin durificare volumică, dar sculele se pot confecționa numai din oțeluri de scule sau carburi metalice.

Dacă condițiile de rezistență mecanică nu dictează utilizarea de materiale durificate în volum, se poate opta pentru placare și variantele sale.

În alegerea unei variante oarecare de durificare superficială prin procese de tipul acoperirii, trebuie avută în vedere compatibilitatea metalurgică a materialului stratului și a substratului. Tabelul 2.5 prezintă unele aspecte privind compatibilitatea materialelor cu principalele procedee de durificare superficială.

BUPT

Substrat	Procedee de durificare prin topire aplicabile	Alte procedee aplicabile
Aliajele Al.	Nu există ¹	Anodizare, placare electrolitică
		Straturi PVD, pulverizare termică
Aliajele Cu	Sudare cu arc și oxi- gaz.	Placare, PVD, CVD, placare ionică, pulverizare termică
Oțeluri cu	Toate procedeele	Procese prin difuzie, acoperiri cu
% C redus		straturi subțiri, placări, pulverizare termică
Oțeluri aliate	Toate, dar cu probleme	Durificare selectivă, placare, acoperiri
(durificabile)	de sudabilitate	cu straturi subțiri, nitrurare, durificari cu energie ridicată
Fonte	Sudabilitate redusă cu	Durificare selectivă, placare,
	arc. Sudare oxi-gaz: cu vergele	pulverizare termica
Oțeluri inoxidabile	Sudabilitate redusă cu	Durificare selectivă, placare, straturi
martensitice	arc. Sudare oxi-gaz: cu vergele	subțiri, nitrurare, pulverizare termică
Oțeluri inoxidabile austenitice	Toate	Nitrurare, straturi subțiri, placare, pulverizare termică
Aliajele	Nu există	Anodizare, PVD, pulverizare termică
magneziului		
Aliajele nichelului	Toate	Straturi subțiri, placare, pulverizare termică
Aliajele titanului	Nu există	Anodizare, straturi subțiri, pulverizare termică
Aliajele zincului	Nu există	Placare, pulverizare termică
Oțeluri de scule	Nu există	Straturi subțiri, placare, pulverizare termică

Tabelul 2.5. Compatibilitatea diferitelor procedee de durificare superficială cu unele familii importante de aliaje

A treia întrebare în alegerea soluției optime, dacă componenta poate tolera tratamente termice la temperaturi ridicate sau sudura are ca scop determinarea susceptibilității la distorsiuni. La multe componente industriale, problema distorsiunilor induse de solicitările termice care sunt consecința tratamentului căruia i-a fost supusă piesa este motivul major pentru care se evită procedeele de acoperire dură. Încărcarea prin sudare are un potențial ridicat de a induce deformații la aproape orice grosime a secțiunii dacă

¹ Încercări recente (1998) au confirmat posibilitatea încărcării prin sudare cu aliaje antiuzură cu baza Al ranforsate cu faze dure (carburi) a componentelor din Al, folosind procedeul PTA în curent alternativ cu formă de undă dreptunghiulară și frecvența de aprox. 200 Hz

lungimea cordonului sudat, grosimea depunerii sau suprafața acoperită sunt comparabile cu gabaritul componentei pe care se aplică.

Geometriile susceptibile a suferi deformații în urma proceselor de sudare sunt cele cu secțiuni subțiri, respectiv cele cu lungime mare. Aceste componente sunt similare - în principiu cu cele ce ridică probleme de deformații la călirea volumică.

Procedeele de încărcare dură și tratamentele termice volumice sau de suprafață sunt o alternativă care va fi avută în vedere doar în măsura în care deformațiile induse nu afectează comportarea în exploatare a organului de mașină căruia i se adresează.

De asemenea, straturile funcționale care admit uzuri de ordinul μm vor fi realizate din materiale cu proprietăți spectaculoase antiuzură, în timp ce materiale (organele de mașină) ce suportă uzuri ridicate (de ordinul mm) pot fi realizate din aliaje de înaltă rezistență sau prin aplicarea de straturi prin procedee de încărcare prin sudare.

Concluzie: Înainte de a porni la selecția unui procedeu de tratament al suprafeței este necesară justificarea avantajelor pe care o modificare superficială le poate avea vis-a-vis de tratamentele termice volumice sau alternativa utilizării materialului în stare prelucrată.

2.2. Depuneri electrolitice

Caracteristicile principale ale straturilor depuse electrolitic sunt acelea că se pot depune pe o varietate mare de substraturi iar temperatura substratului rămâne redusă. Majoritatea depunerilor electrolitice se realizează la temperatura ambiantă, iar în unele cazuri particulare la temperaturi sub cea de fierbere a apei.

Depunerile se pot realiza atât pe oțeluri de scule, numeroase materiale neferoase, cât și pe unele mase plastice, indiferent de considerente de ordinul solubilității în stare solidă, așa cum există în numeroase cazuri la încărcarea prin sudare. Principalele materiale acoperite prin depunere electrolitică sunt:

- oțelurile de scule
- oțelurile carbon
- aliaje cu baza nichel

- oțelurile slab și mediu aliate
- oțelurile inoxidabile
- aliaje cu baza cupru
- aliaje ale zincului

Anodizarea este procedeul care permite realizarea straturilor antiuzură pe materiale de tipul aluminiului, magneziului și titanului. Cele mai uzual depuse materiale metalice sunt cromul, nichelul, precum și metalele cu efecte lubrifiante ca argintul și aur. Nu există limite tehnice în ceea ce privește grosimea stratului, dar grosimile uzuale se situează în intervalul $2 \div 250 \,\mu\text{m}$.

Avantajul temperaturii reduse de lucru face ca aceste procedee să fie în numeroase cazuri singurele variante în realizarea straturilor antiuzură pe produse prelucrate la cotele finale și care nu admit deformații mecanice de amploarea celor induse de procedeele prin topire a suprafeței sau difuzionale la temperatură ridicată.

Straturile placate se utilizează des la recondiționarea locală a componentelor uzate, în

• fonte

primul rând datorită lipsei deformațiilor. Componentele supuse recondiționării se prelucrează la dimensiunile finale, deoarece nu există rezerve de prelucrare pentru preluarea distorsiunilor. Straturile placate produc foarte rar deformații și se pot depune exclusiv pe suprafețele (zonele) uzate. Suplimentar celorlalte procedee, depunerea electrolitică are avantaje certe în sensul realizării de depuneri în interiorul orificiilor și deschiderilor mici, care sunt dificil a fi realizate prin alte procedee de acoperire. Orice suprafață ce vine în contact cu electroliții va fi acoperită cu materialul depus. Soluțiile (electroliții) pot fi pompate prin orificii pentru a placa suprafețe cum sunt cele interioare ale schimbătoarelor de căldură. Placarea selectivă se poate utiliza pentru acoperirea locală a componentelor de dimensiuni prea mari pentru a fi introduse în cuvele de electroliză sau care impun o mascare prea complexă, pentru placarea in situ. În concluzie, placarea poate fi utilizată pentru realizarea straturilor protectoare la uzare de grosime medie a componentelor cu geometrie problematică pentru alte procedee. Acestea pot fi suprafețele mari, componentele sensibile la distorsiuni precum și golurile ce nu pot fi acoperite cu procedeele clasice.

Principalul material anti-abraziune utilizat este cromul, fiind mai dur decât multe alte materiale clasice cum sunt cele cu baza nichel. De asemenea, prezintă o rezistență ridicată la coroziune și poate prelua solicitări de eroziune în medii oxidante. Cu toate acestea, aceste depuneri au rezistența redusă la coroziune datorită prezenței inevitabile a fisurilor care pot penetra stratul protector până la substrat. De asemenea, straturile electrolitice nu se vor putea utiliza în condițiile prezenței unor fenomene tip oboseală superficială cum sunt contactul punctiform.

2.3. Tratamente difuzionale

Cele mai populare procedee difuzionale de mărire a rezistenței la uzare a materialelor metalice sunt carburarea, nitrocarburarea și nitrurarea. Borurarea este o alternativă ideală în numeroase cazuri care poate duce la obținerea de proprietăți unice de exploatare, dar disponibilitatea redusă a procedeului limitează extinderea sa. De aceea, procedeele difuzionale utilizate pe scară industrială sunt cele care difuzează carbonul, azotul sau ambele. Cementarea și călirea este una din cele mai economice căi de obținere a unor suprafețe rezistente la uzare pe oțeluri carbon. Îmbogățirea se poate face pe mai multe căi: împachetare, în gaze, în vid sau altele). Straturile cementate pot ajunge la durități de peste 60 HRC cu grosimi de 1,5 mm.

Procedeele au două limitări:

- Călirea cu fluide (apă, ulei) poate duce la deformări ale componentelor
- Există limitări determinate de natura substratului.

Deformările sunt generate de fenomenele de transformare de fază tipice oțelurilor încălzite la temperaturi peste cea de austenitizare Carbonitrurarea are un domeniu asemănător de aplicabilitate și de limitări. Cu toate acestea, deoarece unele tratamente de carbonitrurare se pot efectua la temperaturi mai reduse, deformațiile induse de tratamentul termic de călire sunt mai reduse.

Nitrurarea impune utilizarea unor substraturi speciale. Se poate aplica numai pe oțeluri aliate, iar în condiții speciale și pe oțeluri înalt aliate. Marele avantaj al nitrurării este temperatura redusă a tratamentului termic (480 - 590 °C), nefiind necesară o călire în apă. Al doilea avantaj al nitrurării este acela al obținerii unor durități de ordinul a 60 - 70 HRC, cu o pătrundere a stratului durificat de până la 0,60 mm. Dezavantajul major al nitrurării este legat de limitările dimensionale. Nitrurarea trebuie efectuată în cuptoare etanșe sau în vid.

Suprafețele nitrurare sunt deosebit de rezistente la uzarea metal pe metal și au o rezistență bună la uzare abrazivă.

2.4. Durificarea selectivă

Călirea cu flacără și prin inducție se limitează la o anumită categorie de aliaje cum sunt oțelurile carbon și slab aliate cu conținut mediu de carbon, unele fonte și oțeluri de scule slab aliate.

Nu există limitări dimensionale, dat fiind faptul că numai partea de durificat este expusă sistemului de încălzire. Localizarea zonei încălzite este principalul avantaj care face ca deformațiile să fie reduse.

Duritatea stratului este comparabilă cu cea a materialului substratului în stare durificată, dar se situează în domeniul inferior al durităților obtenabile.

Suprafețele durificate prin călire cu flacără sau prin inducție sunt utilizate pentru un mare număr de tribosisteme de tipul contactului metal-metal ca roțile dințate, came, role, ştifturi, bolțuri etc.

Călirea cu flacără este utilizată atunci când este necesară obținerea unor grosimi ridicate de strat. Echipamentul necesar este deosebit de simplu, fiind accesibil majorității întreprinderilor. Controlul procesului este relativ delicat, motiv pentru care lucrările delicate sunt derulate numai de către firme specializate. Cu toate că procedeul poate fi adaptat la producția de serie, el este utilizat în general pentru serii scurte sau unicate.

Călirea prin inducție este mai adecvată realizării produselor de serie, permițând controlul mult mai exact al grosimii și geometriei suprafeței călite.

Suprafețele călite cu flacără sunt adecvate cazurilor dificile cum sunt roțile dințate, camele, echipamentul de manipulare al minereurilor, în general unde este necesar un miez moale acoperit de o suprafață rezistentă la uzare. Călire prin inducție este utilizată pentru componentele de dimensiuni reduse, cu grosime redusă a stratului călit în condițiile producției de masă.

2.5. Straturi subțiri depuse prin procedeele CVD, PVD

Primele materiale disponibile pentru realizarea straturilor dure subțiri au fost TiN, TiC și Al_{2O_3} , produse de firme specializate în fabricația sculelor

Aplicarea unui strat de TiN pe un substrat din oțel rapid sau carburi metalice mărește semnificativ durata de viață și disponibilitatea sculei.

Duritatea stratului este variabilă în intervalul 1000 ± 1000 HV. Depunerile provin fie dintr-o țintă de TiN, fie se obțin în urma reacției Ti pe parcursul zborului liber cu mediul

de lucru.

Proprietățile stratului depind în mod evident de modul de obținere al stratului; trebuie ținut seama de faptul că temperatura de încălzire a substratului variază în intervalul $300 \,^{\circ}C \div 800 \,^{\circ}C$, iar procedeul are în vedere evitarea modificării proprietăților de exploatare ale substratului în urma tratamentului de acoperire. Va trebui avută în vedere (acoperirile cu straturi tip TiN) modificarea rugozității substratului în urma tratamentului de strat mai mari de 1 µm, rugozitatea suprafeței se poate mări de la 0,1 µm (luciu oglindă) la valori de peste 5 µm și duce la apariția de noduli pe suprafață, care au un comportament deosebit de abraziv față de suprafețele conjugate moi.

Grosimea uzuală a straturilor dure se situează în intervalul $2 \div 3 \mu m$. Efectele benefice se regăsesc în domeniul uzării abrazive și al frecării metal pe metal. Eficiența utilizării straturilor de TiN este documentată în cazul sculelor așchietoare, ducând la mărirea de mai multe ori a duratei de viață. Cu toate că stratul protector se elimină rapid de pe muchia așchietoare, suprafețele de așezare și de degajare rămân protejate de stratul antiuzură. Efectul aparent este cel al evitării formării punctelor de microsudură dintre așchiile de metal și suprafețele așchietoare.

În general, straturile subțiri sunt competitive cu cele metalice depuse prin metode electrolitice de tipul cromărilor sau nichelărilor dure. Deoarece TiN este mai dură decât cromul dur depus prin metode electrochimice, în aplicațiile în care duritatea este determinantă va depăși straturile depuse prin procedee clasice.

2.6. Tratamente de suprafață cu energie concentrată

Prin tratamente superficiale cu surse concentrate de energie se înțeleg toate acele tratamente la care densitatea de energie a sursei termice depăşește 5 kJ/cm². Procedeele principale din această categorie sunt călirea laser și cu fascicol de electroni, respectiv implantarea ionică. Cu toate că efectul este identic din punctul de vedere al mecanismului cu călirea cu flacără sau prin inducție, grosimea de strat este mai redusă, uzual în intervalul 50 μ m \pm 0,75 mm. Suprafața se "acoperă" prin baleierea sursei de energie concentrată sau prin deplasarea piesei.

Materialele cărora li se adresează aceste procedee sunt similare celor utilizate la călirea cu flacără. Deformațiile sunt mai reduse decât la procedeul cu flacără datorită aportului energetic mai redus, iar geometria suprafeței durificate și adâncimea ei sunt mai precis controlabile.

Placarea cu laser sau cu fascicol de electroni sunt procedee dezvoltate pe baza soluțiilor încărcării WIG sau PTA. Pulberile sunt aduse printr-o tubulatură de transport pulberi în fascicolul laser unde se topesc și sunt transferate - în general gravitațional - pe suprafața de încărcat.

Straturile metalice pulverizate termic pot fi retopite folosind un laser, dar utilizarea industrială a acestui procedeu este încă în dezvoltare

Topirea suprafeței în vederea obținerii unor suprafețe amorfe și implantarea ionică au o aplicabilitate similară straturilor subțiri. Ele se utilizează cu succes în unele tribosisteme, dar aceste procese nu au ajuns la nivelul la care să fie recomandate de către proiectanți. Grosimile de strat se situează în mod normal în intervalul $0,1 \pm 1$ µm, fiind

recomandate sistemelor tribologice care admit uzură zero.

2.7. Utilizarea placării

Placarea (încărcarea) se utilizează la protejarea suprafețelor care admit modificări geometrice semnificative prin uzare. Procedeele de încărcare produc acoperiri pe suprafața substraturilor, efectul neacționând în profunzimea materialului acestuia în maniera tratamentelor termice superficiale. Procedeele de acoperire precum pulverizarea în jet de plasmă sau celelalte procedee de pulverizare termică permit obținerea celor mai subțiri straturi dure, având grosimi de peste 8 µm. Cu toate că există posibilitatea obținerii de straturi subțiri, grosimea minimă utilizată în practica industrială este de peste 75 µm. Încărcarea nu are limitări superioare, unele procedee prin topire admițând grosimi de strat de până la 75 - mm (șnecuri generate prin sudare). De aceea, încărcarea este procedeul care permite realizarea în cele mai bune condiții a straturilor de grosime ridicată. Adecvanța procedeelor este deosebită la recondiționarea componentelor uzate prin procese abrazive deoarece poate obține aproape orice tip de acoperire pe aproape orice substrat.

Procedeele prin fuziune se pot utiliza numai pe substraturi sudabile (capacitate de umectare, solubilitate în stare solidă, structură cristalină apropiată), iar pulverizarea termică se poate aplica pentru aproape orice material de strat pe aproape toate substraturile metalice, și nemetalice.

Datorită varietății deosebit de mari de materiale consumabile disponibile, este posibilă combaterea oricărui tip de uzare întâlnit în practica industrială. Se va găsi întotdeauna un aliaj care să satisfacă condițiile de exploatare dintr-un anumit tribosistem.

Fontele albe cu conținut ridicat de crom și carbon sunt materiale cu proprietăți bine documentate de rezistență la abraziune; aliajele cu baza cobalt sunt excelente în uzarea metal pe metal de tipul alunecării și au o rezistență ridicată în procesele erozive care includ și mecanisme corosive. Oțelurile austenitice manganoase sunt larg utilizate pentru aplicații care conțin mecanisme de tipul oboselii superficiale.

Lista aplicațiilor este extrem de lungă, și pentru fiecare problemă există o soluție în varianta încărcării dure. De asemenea, orice atelier de sudură are dotarea minimală derulării activităților de încărcare dură. Pulverizarea termică este și ea suficient de răspândită, iar procedeele sofisticate (pulverizarea în jet de plasmă, D-Gun, Jet-Knote) sunt disponibile în firme specializate.

Există mai mulți factori care limitează aplicabilitatea încărcării prin sudare:

- nu este adecvată încărcării prin sudare la produse în serie;

- produsele necesită prelucrări mecanice după depunere;

- încărcarea poate să provoace distorsiuni semnificative.

Acoperirile dure se pot efectua și pe serii mai mari de produse, de ordinul sutelor sau miilor de bucăți, dacă sunt suficient de mici pentru a fi prelucrate mai multe într-o singură "şarjă", simultan. Pulverizarea termică este un exemplu în acest sens, putându-se acoperi un număr relativ ridicat de componente dintr-o singură prindere în sistemul de manipulare. Componentele unicate sunt prelucrate uzual în sisteme automate de manipulare și acoperite unul câte unul, mărind costurile acoperirii.

Cea mai mare problemă ridicată de procedeele de acoperire termică sunt cele legate de deformațiile induse de contracția cusăturii sudate (depunerii). Contracția nu poate fi

evitată, dar poate fi redusă prin metode tehnologice și eliminată prin prelucrare mecanică.

Straturile pulverizate termic sunt adesea utilizate în stare depusă, fără prelucrări mecanice. Un exemplu în acest sens este cel al depunerilor cu destinația protecție la uzare, a căror rugozitate nu are nici o consecință asupra funcționalității sistemului. Pentru tribosistemele în care calitatea suprafeței afectează durata de viață a sistemului tribologic, suprafețele vor trebui prelucrate mecanic.

În mod uzual, pulverizarea termică nu încălzește substratul la temperaturi de peste 150 °C. Această temperatură nu induce în mod uzual deformații, dar va trebui avut în vedere efectul potențial deformant al operației de sablare premergătoare pulverizării prin inducerea de tensiuni de compresiune în straturile de suprafață. În măsura în care evitarea deformațiilor este impusă, sablarea trebuie să fie mai "moale" sau se va recurge la utilizarea unor straturi de aderență în locul unei sablări agresive.

Încărcarea dură este de aceea adecvată numai acelor tribocomponente care pot admite modificări semnificative ale geometriei suprafeței. Procedeul se adresează majorității materialelor de acoperire, existând câteva sute de materiale potențial utilizabile. Procedeul este adecvat componentelor care nu necesită serii lungi și pentru elemente care se pot utiliza în stare sudată. În acest caz, elementul determinant este scăderea costurilor de fabricație prin evitarea prelucrărilor finale.

2.8. Metodologia selecției materialelor

Pe piața mondială există peste 60.000 de materiale metalice disponibile cu o varietate mare de proprietăți, sute de familii de polimeri precum și peste 20 de familii de materiale ceramice inginerești. Numărul compozitelor este practic nelimitat, iar numărul de procedee de realizare a straturilor funcționale este de asemenea mare. Multe din acestea se pot utiliza la realizarea straturilor funcționale cu proprietăți antiuzură bine controlate. Problema alegerii materialului și procedeului de acoperire revine inginerului proiectant, și are la bază experiența și cunoștințele tehnice pe care acesta le stăpânește.

Fiecare proiectant are propriul repertoar de materiale "bune" și "necorespunzătoare" din punct de vedere funcțional pentru fiecare aplicație. Puși în situația alegerii unui material funcțional, proiectantul alege pe baza experienței unul din materialele considerate "bune". Cu toate că materialul selectat poate da rezultate bune, alte materiale selectate de către proiectanți specializați în materiale funcționale pot da rezultate cu un ordin de mărime mai ridicate. De aceea, selecția unui material impune o abordare sistematică care să traseze profilul materialului funcțional necesar pentru aplicația dată și care să aibă în vedere proprietățile, costul și disponibilitatea materialului.

Cel mai adecvat material este acela ale cărui proprietăți, costuri și disponibilitate satisfac profilul impus de proiectant.

2.8.1. Stabilirea profilului materialului

Stabilirea profilului materialului este prima etapă și cea determinantă în mecanismul alegerii procedeului de realizare a stratului funcțional.

Principalele etape în alegerea profilului materialului sunt prezentate în figura 2.7. Algoritmul trebuie să răspundă la unele întrebări cum sunt:

- care este rolul funcțional al componentei de acoperit?;
- trebuie să transmită un moment de torsiune?
- trebuie să susțină o altă componentă?
- este componentă a unui tribosistem?
- care este durabilitatea impusă?
- care sunt localizările și consecințele uzurii?
- cât de importantă este stabilitatea de durată?

Răspunsurile la aceste întrebări, bazate pe algoritmul prezentat în figura 2.8 permit schițarea profilului materialului care poate să confirme adecvanța sau inadecvanța unui material pentru satisfacerea profilului de solicitări al organului de mașină supus acoperirii cu straturi funcționale.

Toți factorii determinați pe baza diagramei 1 reprezintă "cerințe". Următoarea etapă este aceea a "convertirii" acestor "cerințe" în proprietăți cuantificabile de material

Figura 2.7 poate fi utilizată ca o listă pentru verificarea proprietăților care pot fi de importanță pentru o anumită aplicație. Proprietățile fizice, chimice și mecanice sunt evidente, însă. pentru unele aplicații compoziția poate fi determinantă în alegerea materialului. Un exemplu reprezentativ este cel al cobaltului: deoarece poate deveni radioactiv sub efectul bombardamentului neutronic, materialele utilizate în tehnica nucleară nu trebuie să conțină cobalt, datorită formării de izotopi radioactivi

Majoritatea organelor de mașină necesită satisfacerea unor proprietăți mecanice bine definite, iar determinarea proprietăților mecanice relevante ale materialelor în exploatarea elementului și a limitelor minime și maxime ale lor este responsabilitatea inginerului proiectant.

Ultima clasă de proprietăți listate în figura 2.8 nu conține proprietățile determinante în majoritatea cazurilor. Scopul introducerii acestei clasificări este menținerea în vedere a faptului că unele caracteristici ca precizia geometrică a execuției componentei trebuie avută în vedere. Modificările de geometrie induse de tratamentele suprafețelor funcționale pot fi foarte diferite, funcție de procedeu. Dacă un organ de mașină poate tolera (de exemplu) o creștere a unei cote cu 1 μ m, nu va fi posibilă aplicarea unui număr ridicat de straturi funcționale. Majoritatea variantelor de durificare superficială se autoelimină dacă nu se admit modificări geometrice ale suprafețelor.

Figura 2.7. Etape în procesul de selecție al materialelor / procedeelor

Chimice	Fizice	Mecanice	Dimensionale
Compoziție Structură	Electrice Termice	Rezistență Limita de curgere Rezistența	Stabilitate Textura suprafeței
Faze Rezistență în	Magnetice	mecanică	loieranțe
mediul ambiant Energie superficială Sudabilitate Izotropie	Acustice	Modul elasticitate Tenacitate Energie de rupere Tenacitate la rupere Duritate Tensiunea de forfecare Rezistența la compresiune Rezistența la oboseală Adeziunea	
		Rezistența la uzare Abraziune Eroziune Uzare adezivă Oboseala suprafeței	

Proprietăți de material

Figura 2.8. Listă de control pentru clarificarea fenomenelor din exploatare

Tabelul 2.6 prezintă o corelație aproximativă a destinației în exploatare a componentei și a proprietății (caracteristicii) suprafeței componentei.

Caracteristică a suprafetei
;
Duritate superficială
Microstructură adecvată
Rezistență la șoc
Tenacitate la rupere
Rezistență la coroziune atmosferică
Limită de curgere peste 700 Mpa
Modul de elasticitate peste 210 GPA
Bioactivitate, porozitate controlată, bioinerție

Tabelul 2.6. Corelații proprietăți-caracteristici ale suprafețelor funcționale

Lingue and the pr	
Electer	!
B. Notree of	· • •.

Law-

Această listă de cerințe de material indică o primă caracteristică de material pe care materialul selectat trebuie să o satisfacă. Doar un număr redus de materiale satisface condiția de modul de elasticitate ridicat, cum sunt oțelurile, aliajele cu baza nichel, aliajele cu baza cobalt, uraniul, unele ceramice și compozitele ranforsate cu fibre de bor.

A doua etapă în procesul de selecție este stabilirea constrângerilor de natură economică a componentei proiectate. Cel mai important element economic este mărimea seriei de fabricație, care are un efect profund asupra alegerii materialului. Atunci când este necesară realizarea unui singur produs (unicat) sau a unei serii scurte, utilizarea unui material scump poate fi justificată. Seriile mari impun utilizarea unor materiale cu prelucrabilitate mai ridicată, care permit obținerea unor produse cu calitate satisfăcătoare în condițiile dotărilor existente. Suplimentar costurilor va trebui avută în vedere durata preconizată de viață. Dacă garanțiile oferite sunt deosebite, paleta materialelor utilizabile se restrânge semnificativ, reducând importanța criteriilor economice care stau la baza alegerii materialului. Garanțiile oferite vor impune materiale și tratamente speciale ale suprafeței care se vor reflecta în costul fabricației.

Ultimul criteriu de selecție - disponibilitatea - se referă la timpul necesar livrării materialului selectat de către furnizorul acestuia. Acesta este un factor peste care se poate trece cu uşurință, dar poate fi uneori mai important decât proprietățile mecanice ale materialului. Există constrângeri legate de temenele de execuție ale produselor. Dacă materialul selectat necesită derularea unor procese tehnologice speciale la furnizor, termenele de livrare pot crește excesiv. Dacă produsul are un singur furnizor pe piață, riscul provocat de evenimente deosebite care afectează procesul de producție al furnizorului este ridicat și trebuie și el avut în vedere.

Pe baza elementelor prezentate se poate trasa un profil al materialului, care se poate compara din acest moment cu materialele aflate în baza de cunoștințe (mental, prospecte, manuale) a proiectantului. Profilul de proprietăți poate fi satisfăcut de către mai multe materiale cu mai multe variante de straturi funcționale realizate folosind procedee de acoperire. Alegerea variantei optime este opțiunea proiectantului și se bazează pe experiența pe care o are.

2.8.2. Identificarea mecanismului de uzare

Dacă profilul materialului indică apartenența organului de mașină examinat la un tribosistem, este necesară identificarea mecanismului de uzare predominant. Deoarece nu este posibilă evaluarea exprimentală a formei de uzare încă din faza de proiectare, mecanismul dominant și cele secundare trebuie anticipate de către proiectant pe baza informațiilor pe care le are despre tribosistemul în dezvoltare. Principalele forme de uzare care trebuie avute în vedere sunt abraziunea, eroziunea, procesele de natură adezivă și procesele de tip oboseală superficială.

Odată identificată familia mecanismelor de uzare, este necesară particularizarea acestuia unuia din cele peste 15 forme de uzare cunoscute în momentul de față. Tabelul 2.7 prezintă unele informații preliminare care ajută identificarea modului de uzare funcție de domeniul de utilizare al organului de mașină în discuție.

Mod de uzare	Domeniu potențial de manifestare
Abraziune	
Tensiuni reduse	Utilaj agricol, vehicularea minereurilor
Tensiuni ridicate	Utilaje de sfărâmare
Găurire	Manipularea minereurilor, sortarea mineralelor
Lustruire	Manipularea solidelor cu inserții de minerale
Eroziune	
Particule solide	Echipamente de sablare
Presiune de fluide	Coturi de tubulatură
Cavitație	Pompe, amestecătoare, echipamente ultrasonice
Eroziune cu noroi	Utilaj foraj petrolier, pompe, îmbunătățirea minereurilor
Adeziune	
Fretaj	Organe de mașină fixe una față de alta
Uzare adezivă	Roți dințate, came, ghidaje, bucșe
Roadere	Supape, suprafețe de alunecare, bucșe
Apucare	Sisteme cu alunecare uscată
Uzare oxidativă	Sisteme cu alunecare cu aliaje dure
Oboseală superficială	
Pitting	Dinți de roți dințate, lăgăruiri ale laminoarelor
Exfoliere	Componente tratate superficial
Impact	Ciocane, scule de nituire
Deformări locale	Suprasarcini statice, lăgăruiri ale componentelor
	laminoarelor

Tabelul 2.7. Moduri de uzare și domeniul potențial de manifestare

În măsura în care modul de uzare într-un anumit tribosistem nu este clar pentru proiectant, se pot face unele observații care să-l ghideze pe acesta privind fenomenele ce au loc în tribosisteme uzuale:

- Când două metale alunecă unul pe celălalt și este foarte probabil ca ele să nu fie lubrifiate prin metode hidrodinamice va avea loc o frecare metal pe metal. Dacă sarcinile sunt ridicate și de tip punctiform sau liniar pot apărea fenomene de uzare adezivă. Dacă ambele metale au durități de peste 50 HRC iar solicitările sunt moderate, pot apărea fenomene de uzare oxidativă.
- În sistemele ceramică-metal se va uza componenta metalică printr-un mecanism ce combină abraziunea de către corpul ceramic și uzarea oxidativă de către resturile de oxizi rămase în urma uzării prin frecare relativă
- Polimerii cu aditivi anorganici vor provoca în majoritatea cazurilor fenomene de uzare abrazivă la solicitări reduse pe suprafețele metalice.
- Echipamentele ce manipulează substanțe anorganice dure vor fi întotdeauna subiectul unei forme de uzare abrazivă.
- Uzarea prin lustruire apare la majoritatea componentelor care ghidează alte organe de maşină din alcătuirea echipamentului.
- Cavitația este un mecanism potențial de uzare în majoritatea echipamentelor de

transport și amestec a fluidelor. Dacă lichidele conțin și particule anorganice în suspensie, modul potențial de uzare este hidroabraziunea.

- Uzarea prin fretare este aproape inevitabilă în sistemele cu șuruburi care sunt supuse solicitărilor alternante de amplitudine redusă.
- "lustruirea" este un mod potențial de uzare în majoritatea echipamentelor cu fibre și în echipamente în care apar alunecări intermitente, nelubrifiate, la viteze reduse și în prezența forțelor normale pe suprafață.
- Uzarea adezivă în forma cea mai gravă apare cel mai frecvent în sistemele nelubrifiate metal metal în care unul sau ambele materiale este moale.
- Oboseala suprafeței sub forma pitingului sau a exfolierilor este foarte probabilă în sistemele în care apar solicitări de tipul contactului hertzian.

Se pot face și alte observații cu caracter general privind tipurile de uzare ce pot apărea într-un tribosistem, într-un mod asemănător celor de mai sus, cu un caracter general. Principalul punct care trebuie avut în vedere este acela că profilul determinat al materialului trebuie să satisfacă cerințele privind forma de uzare anticipată.

2.9. Algoritm de selecție a tehnicilor de depunere a straturilor subțiri

Alegerea unui procedeu de realizare a unui strat funcțional este un proces decizional complex, care trebuie să aibă în vedere pe lângă factorii de natură științifică și elemente de natură economică.

Disponibilitatea noilor procedee tehnologice cu dotările tehnice pe care le impun, disponibilitatea spre schimbare a societății, capacitatea de a accepta schimbări tehnologice majore sunt elemente subiective aparent simple cu rol major când tehnologiile curente nu mai satisfac cerințele pieței tradiționale de desfacere. Alături de caracteristicile ce pot fi obținute prin procedeele disponibile în cadrul firmei sau in cercul de relații economice ale sale, elementul determinant este raportul calitate/preț care suplimentare caracteristicilor tehnice permit sau elimină utilizarea unor procedee dealtfel bine stăpânite. Un exemplu în acest sens este cel al straturilor subțiri realizate prin metode difuzionale, la care suprapunerea proprietăților de exploatare obținute este evidentă și pune în dilemă tehnologul unei întreprinderi cu dotări deosebite.

Figura 2.8 prezintă domeniile de grosime de strat și duritate realizate prin diferite procedee, în timp de figura 2.9 ilustrează principalele tratamente termochimice în ceea ce privește spectrul de durități obtenabile.

				Gro	simea stratu	ului, μm			
	5	10	25	50	100	200	400	800	1200
Cementare									
Pachet								· · ·	
Gaz									
Lichide									
Vid	-				, , , , , , , , , , , , , , , , , , ,			······································	
Nitrurare									
Gaz									
Săruri	gan N Kati n								
Ionică								9 ()	
Carbonitrurare									
În gaze						4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	iler Alerander		
Cianizare									
Nitrocarburare									

Figura 2.8. Domenii de grosime de strat realizate prin diferite procedee

1000	1000			Duritatea HV									
	1200	1400	1600	1800	2000								
				Borura	re								
			7 197 948 14		2 M								
				Carburi de t	itan								
					t								
-													

Duritatea HV

Figura 2.9. Spectre de duritate pentru diferite procedee de realizare a straturilor subțiri

Suprapunerile spectrelor de grosimi și de durități sunt evidente și numeroase aplicații pot fi soluționate prin mai multe procedee, utilizând mai multe tipuri de materiale și constituenți. De aceea, activitatea de selecție se complică suplimentar și va trebui să aibă în vedere elemente suplimentare, cum sunt tenacitatea impusă substratului, efectul temperaturii de realizare a stratului funcțional asupra substratului și altele.

Cu totul diferit stau lucrurile atunci când seriile sunt scurte sau se execută unicate. În acest caz, în majoritatea cazurilor "drumul cunoscut este cel mai scurt".

În mod evident, elementul ce stă la baza alegerii unui material sau a unei familii de materiale este rolul său funcțional. Cele 8 proprietăți funcționale esențiale sunt cele menționate în capitolul 1:

- rezistența la uzare
- rezistența la coroziune
- rezistența la oxidare la temperaturi reduse
- rezistența la coroziune și oxidare în gaze fierbinți
- izolații termice
- proprietăți electrice
- proprietăți optice
- proprietăți de compatibilitate biologică

Fiecare din obiectivele funcționale menționate mai sus pot fi atinse prin mai multe procedee, respectiv fiecare procedeu de acoperire permite atingerea mai multor obiective funcționale.

Grila 1 permite într-o primă aproximație selecționarea / excluderea procedeelor care permit sau nu obținerea unei familii de obiective (caracteristici) funcționale.

În mod evident, relația procedeu - proprietate funcțională este nedeterminată, motiv pentru care nu este suficientă alegerii procedeului de acoperire. În completarea ei vin relațiile dintre procedeul de acoperire și celelalte elemente caracteristice ale stratului funcțional - grosime de strat, materialul substratului, materialul stratului etc.

		Uzare	Coroziune	Oxidare	Coroz. gaze fierbinți	Izolator termic	Propr electrice	Propr. optice	Biocompatibilitate
		1	2	3	4	5	6	7	8
Sudare	0	x	x	X	x				
Placare	1	x	X						
Pulverizare	2	x	X	X	X	Х	X		х
Chimic	3		x				Х	X	
Electrochimic	4	x	x					X	
Termochimic	5	X		Х	X				
PVD	6	X							
CVD	7	X						x	

Grila 1. Relația procedeu - proprietate funcțională.

Grila 2 prezintă relația procedeu de realizare a stratului - grosime de strat pentru aceleași procedee și are în vedere cerințele impuse de proiectant având în vedere durata de viață estimată a produsului, natura mediului de lucru și condițiile concrete de exploatare.

		s < 50 µm	50µm <s<1mm< th=""><th>s>1 mm</th></s<1mm<>	s>1 mm
Sudare	0			x
Placare	1			x
Pulverizare	2	X	х	X
Chimic	3	X	X	
Electrochimic	4	Х	Х	
Termochimic	5	X		
PVD	6	X		
CVD	7	X		

Grila 2. Relația grosime a stratului - procedeu

În mod evident, procedeul de acoperire va trebui să țină seama în principal de natura materialului și substratului, care limitează sau nu permite utilizarea anumitor procedee.

Grila 3 prezintă relația procedeu de încărcare - caracteristici fizico - chimice ale substratului, în timp ce grila 4 prezintă relația procedeu de încărcare - caracteristici fizico - chimice ale materialului stratului.

		Cond. electric	Izolator electric	Termostabil	Termodergadabil	Inflamabil
Sudare	0	X		x?		
Placare	1	X		x?		
Pulverizare	2	X	x	X	х	x
Chimic	3	X	х	X	X	X
Electrochimic	4	X		x?		
Termochimic	5	X	X	X		
PVD	6	X	X	X	X	x?
CVD	7	X	x	X		X

Grila 3. Relația procedeu - caracteristici ale substratului

Grila 4. Relația procedeu de acoperire - caracteristici ale materialului stratului

		Cond. electric	Izolator electric	Termostabil	Termodegradabil	Consistență moale"	Consistență "fermă"
Sudare	0	X		x?		•	x?
Placare	1	x		x ?			x?
Pulverizare	2	X	Х	Х	X	х	x?
Chimic	3	X	X	X	x	x	x?
Electrochimic	4	X		x?			x?
Termochimic	5	X	X	X			x?
PVD	6	X	X	X	X	X	x?
CVD	7	х	X	x			x?

Suplimentar caracteristicilor materialului stratului și substratului, natura acestora intervine ca element restrictiv suplimentar în alegerea procedeului de acoperire. Grilele 5 și 6 prezintă aceste limitări pe familii de materiale inginerești, respectiv pe clase de materiale. Este evident că procedeele ce impun prezența materialului substratului sau a stratului în circuitul electric care reprezintă sursa termică a procedeului elimină în mod automat unele din procedeele de realizare a straturilor funcționale, în timp ce prezența materialelor termodegradabile sau a ceramicelor este un factor limitator al temperaturilor maxime de proces, respectiv al gradienților de temperatură care pot să apară pe parcursul procesului de realizare a stratului funcțional.

		Metalic	Ceramic	Material organic termostabil	Material organic termodegradabil	Compuși intermetalici
Sudare	0	x?				
Placare	1	x ?				
Pulverizare	2	X	Х	Х	Х	Х
Chimic	3	X	X	х		x
Electrochimic	4	х	X	Х		-
Termochimic	5	x?	X	х	Х	
PVD	6	X	X	х	х	Х
CVD	7	x ?	X	Х	Х	x

Grila 5. Clasa materialului substratului

		Metalic	Nemetalic	Metaloid	Faze dure (M)	Faze dure (NM)	Cermeturi	Plastice
Sudare	0	X						
Placare	1	X						
Pulverizare	2	X	х	X	Х	X	х	X
Chimic	3	X	x	X		Х		
Electrochimic	4	X	X	X		X		
Termochimic	5		x	X	X			
PVD	6	X	X	X	X	X	X	
CVD	7	X	X	X	X	X	x	X

Grila 6. Clasa materialului stratului

Ca rezultat al unei analize efectuate în acest sens, se poate decela o grupă de procedee care permit obținerea unei grupe de proprietăți funcționale.

Analiza poate merge mai departe, prin particularizarea (detalierea mai avansată) familiilor de procedee de sudare, respectiv materiale.

Un asemenea exemplu este prezentat în grila 7, care detaliază procedeele de sudare și materialele care pot fi rezultat al unui procedeu de încărcare. Materialul substratului este întotdeauna metalic, conducător electric, cu temperatura de topire medie și ridicată (peste 1000 °C în majoritatea cazurilor).

		Oțel carbon	Aliaje dure martensitice	Oțel înalt aliat martensitic	Oțel înalt aliat ledeburitic	Oțel Cr - Ni anticoroziune	Aliaje ale Ni, superaliaje	Cermeturi	aliaje NiCrBSi, NiCrB
SE	1	x	x	х	x	x	х		
SF	2	x		х	X	X			
MIG	3	x	X	х	х	x	x		
MAG	4	x	x	X	х	X			
EB	5	x		X	X	x			
WIG	6	x	x	X	X	X	x	X	
Oxigaz	7	x	x	х		x		х	Х
РТА	8	x	x	х	X	X	х	x	х

Grila 7. Relația procedeu de sudare - clasă de aliaje metalice

În mod asemănător, se poate realiza o corelare între varianta procedeului de acoperire prin pulverizare termică și familia de materiale depuse.

Grilele prezentate se pot utiliza în vederea realizării unui program pentru selecția preliminară a procedeului de acoperire utilizabil la realizarea unei familii de proprietăți funcționale.

Coloana 9 a grilei 1 cuprinde o numerotare a procedeelor care permite pentru fiecare familie de proprietăți funcționale (grila 1) codificarea binară a procedeelor utilizabile.

De exemplu, pentru realizarea unor straturi rezistente la coroziune în gaze fierbinți (coloana 4), se pot utiliza sudarea, pulverizarea termică, procedee termochimice, cărora le corespunde numărul binar 10100100.

Prin analiza tuturor celorlalte elemente (grosime de strat, caracteristici strat și substrat, material strat și substrat) se obțin o serie de numere cu exprimare binară, a căror intersecție (operator "și") permite reducerea la minimum a procedeelor care satisfac toate condițiile impuse. Un asemenea mod de lucru facil de automatizat simplifică activitățile de selecție și permite orientarea rapidă a proiectanților și tehnologilor.

Pentru exemplificare, se propune următoarea aplicație:

Realizarea unor straturi rezistente la uzare pe substrat metalic stabil termic cu grosimea în intervalul $0.5 \div 1 \text{ mm}$, fără pretenții privind stabilitatea termică a stratului, cu conținut de faze dure.

Pe baza grilelor se poate completa tabelul 2.10.

	Sudare	Placare	Pulverizare termică	Chimic	lectrochimic	Termochimic	PVD	CVD
Proprietăți antiuzură	1	1	1	0	1	1	1	1
Substrat metalic	0	0	1	1	1	0	0	0
Gros 0,5 ÷ 1 mm	1	1	1	1	1	1	1	1
Stabilitate termică substrat	1	1	1	1	1	1	1	1
Strat cu conținut de faze dure nemetalice	0	0	1	1	1	0	1	1
Rezultat	0	0	1	0	1	0	0	0

Tabelul 2.10. Rezultatul analizei pentru selecția procedeului

În consecință, familiile de procedee care asigură realizarea obiectivelor funcționale menționate sunt pulverizarea termică și procedeele electrochimice. Analiza poate intra în profunzime, pentru ca pornind de la elemente mult mai concrete legate de condițiile de exploatare și detaliind posibilitățile și limitele fiecărui procedeu să se poată opta pentru variante tehnologice și clase de materiale.

CAPITOLUL 3. PROCEDEUL PTA. FACTORII CARE DEFINESC CALITATEA DEPUNERILOR

3.1. Încărcarea prin sudare în plasmă cu pulberi

Încărcarea în plasmă cu pulberi (PTA - **P**lasma **T**ransferred **A**rc) este unul din cele mai performante procedee de sudare în mediu de gaze protectoare, având un avantaj deosebit în domeniul încărcărilor dure și antiuzură: diluția foarte redusă și controlul precis al acesteia. Acest fapt face ca procedeul să cunoască o răspândire crescândă în țările Pieței Comune în domeniul realizării straturilor antiuzură și anticorosiune, pentru componente de gabarite foarte variate. Deosebirea esențială dintre pulverizarea cu jet de plasmă și încărcarea cu arc de plasmă este aceea că spre deosebire de pulverizarea termică, unde mecanismul aderenței stratului pe substrat are la bază agățarea mecanică și uneori fenomene difuzionale, la procedeul PTA apare o îmbinare intimă, cu caracter metalurgic între MB și MA.

3.1.1. Principiul procedeului

Încărcarea în plasmă cu pulberi este un procedeu de încărcare de sudare în mediu de gaze protectoare arc cu arc transferat la care materialul de adaos este pulverulent. Figura 3.1 prezintă schematic structura unui sistem de încărcare cu plasmă și pulberi /1/.

Din reprezentarea din figura 3.1 s-a renunțat la reprezentarea pupitrului de comandă al procesului, care realizează funcțiunile de temporizare ce asigură buna funcționare a sistemului.

În timp ce gazul plasmagen are rolul asigurării unei atmosferei inerte în care arcul de plasmă transferat arde stabil, la un potențial redus al gazului, gazul de transport asigură o atmosferă protectoare care asigură deplasarea pe pat fluidizat pulberilor din dozatorul de pulberi spre generatorul de încărcare, asigurând o atmosferă cu potențial ușor reducător până la intrarea pulberilor în arcul transferat.

Instalația de răcire asigură stabilitatea termică a instalației răcind electrodul de wolfram și duza de constrângere a arcului de plasmă. Dimensionarea sistemului de răcire este de mare importanță, dat fiind bilanțul termic al arcului de plasmă, din a cărui putere activă circa 30% se disipă pe duza de constrângere a arcului.

Figura 3.1 - Schema simplificată a instalație de încărcare în plasmă cu pulberi

Funcționarea instalației trebuie să respecte o succesiune bine definită în ceea ce privește gazele plasmagen și de transport, respectiv curentul de sudare și mișcările tehnologice care definesc parametrii geometrici ai depunerii: lățimea și frecvența pendulării, respectiv viteza de sudare.

Figura 3.2 prezintă ciclograma de funcționare a unei asemenea instalații de încărcare:

Succesiunea alimentării cu gaz plasmagen și de transport, asigurarea pendulării și pornirea transportului de pulbere realizează îndeplinirea condițiilor care duc la obținerea unor rezultate stabile și repetabile:

- Asigurarea unei durate ridicate de viață a electrodului prin spălarea avansată cu argon înaintea amorsării și la răcire până în domeniul de temperaturi de sub 250 °C, la care se evită oxidarea electrodului;
- Evitarea realizării unei pătrunderi accentuate pe punctul de amorsare prin pendularea arcului transferat fără adaos de pulberi (material de adaos);
- Asigurarea aderenței depunerii prin realizarea în punctul de pornire al depunerii a unei temperaturi suficiente a materialului de bază (topirea suprafeței substratului pe întreaga lățime a depunerii);
- Închiderea craterului final prin pendularea băii metalice după oprirea dozării de pulberi;
- Evitarea formării fisurilor de crater prin reducerea vitezei de răcire a băii metalice;
- Protejarea băii metalice până la temperatura la care materialul depunerii nu mai este afectat de contaminarea atmosferică.

Figura 3.2 - Ciclogramă la sudarea prin procedeul de încărcare cu plasmă și pulberi

În mod uzual, toți parametrii prezentați în ciclograma din figura 3.2 sunt reglabili independent, atât ca valoare cât și ca momentul activării sau dezactivării funcțiunilor. Arcul pilot corespunde aproximativ ca durată de ardere curgerii gazului plasmagen și se situează ca valoare la aproximativ 5 - 10% din valoarea curentului de sudare.

3.1.2. Sursa termică a procesului de sudare

Procedeul de încărcare în arc de plasmă transferat cu pulberi utilizează două surse termice (arce electrice) reglabile în general independent, alimentate de la două surse de putere independente, dintre care una realizează funcția de stabilizare a arcului electric (*arcul pilot*) iar cealaltă (*arcul transferat*) realizează funcția de sursă termică la sudare.

Arcul pilot

Arcul pilot este descărcarea electrică cvasipermanentă ce arde între electrodul nefuzibil de wolfram și duza de cupru perforată, răcită de apă.

Arcul pilot este amorsat de o descărcare de înaltă tensiune care realizează ionizarea în incinta internă a generatorului de încărcare (atmosfera: argon), moment în care se aplică o tensiune de curent continuu care duce la amorsarea unei descărcări electrice staționare, reprezentând arcul pilot. Menținerea arcului pilot este stimulată și de emisia

. .

termoelectrică a vârfului electrodului de wolfram prin efect Joule, respectiv de ușoara radioactivitate a materialului electrodului (în mod uzual, WT 20 - wolfram cu adaos de 2,0% oxid de thoriu).

Densitatea de curent de electroni este dependentă de temperatură și natura materialului din care este confecționat electrodul conform ecuația lui Richardson:

$$j_k = A_R * T^4 * e^{\frac{V_{ak}}{kT}}$$
(3.1)

în care A_r - constanta Richardson iar U_{ak} - energia de extragere

Prin reglajul corespunzător al parametrilor se formează în duza de constrângere a generatorului un arc difuz, care staționează pe peretele interior al duzei de plasmă. Condițiile de formare și stabilizare a arcului pilot sunt asigurate de o valoare ridicată a raportului I_p/v_p .

Cu toate că intensitatea arcului pilot este în mod uzual de max. 10% din valoarea curentului de sudare, valorile uzuale ale curentului în arcul pilot sunt în intervalul $10 \div 100$ A cu tensiuni ale arcului cuprinse în intervalul $10 \div 15$ V, iar puterea arcului pilot nu depășește în mod uzual 1,5 kW din considerente de limitare a puterii disipate de sistemul de răcire.

Randamentul termic al arcului pilot nu depăşeşte 30%, restul pierzându-se prin circuitul de răcire al generatorului pe pata anodică și catodică, respectiv prin radiație prin orificiul duzei și convecție prin gazul plasmagen, în afara duzei de constrângere a arcului.

Funcțiile arcului pilot în funcționarea generatorului de plasmă de încărcare sunt:

- amorsarea arcului electric transferat la tensiuni reduse de mers în gol ale sursei principale prin formarea unui jet de plasmă ionizat între electrodul de wolfram şi substrat;
- arderea stabilă a arcului transferat în condițiile variației sensibile a lungimii distanței generator-substrat și deplasării generatorului transversal pe sensul de deplasare;
- asigură condițiile de preîncălzire a pulberilor, reducând necesarul de putere al arcului transferat pentru topirea acestora. Acest fapt se reflectă în reducerea diluției depunerilor.

b. Arcul transferat

Arcul transferat (de plasmă) este sursa termică principală la procedeul PTA. El este alimentat de o sursă de curent continuu cu caracteristică puternic căzătoare (panta peste 10V/A) și arde între electrodul nefuzibil de wolfram și substrat. Arcul de plasmă asigură transferul de căldură de la arcul electric la materialul de adaos - pulbere și realizează topirea controlată a substratului. Transferul de căldură între arcul de plasmă și pulberi are loc prin radiația arcului și respectiv convecție în jetul de gaz ionizat pe care îl parcurg pulberile.

Transferul termic prin radiație termică între pulbere și plasmă depinde de:

• capacitatea de absorbție a căldurii de către pulbere, funcție de modul de elaborare, starea suprafeței și compoziția sa chimică;

- conductivitatea termică a gazului plasmagen;
- entalpia gazului plasmagen;
- natura gazului plasmagen.

Gradul de topire al pulberii depinde de proprietățile termofizice ale materialului acesteia și gazului plasmagen, respectiv de timpul de staționare al pulberilor în arcul de plasmă. Căldura preluată de pulberi este determinată prin relația:

$$Q_p = \alpha_t * T * t \tag{3.2}$$

în care: α_t - coeficientul de transfer de căldură, T - temperatura arcului, t - timpul de staționare în arc și face abstracție de temperatura pulberilor, nesemnificativă în raport cu temperatura arcului transferat.

Temperatura maximă atinsă de pulberi și timpul de staționare în arc se reglează prin parametrii de proces, respectiv valoarea curentului în arcul transferat, debitele de gaz plasmagen și de transport, respectiv prin distanța generator - substrat.

3.1.3. Soluții constructive pentru generatoarele de încărcare

Deoarece soluțiile constructive ale generatoarelor de încărcare cu plasmă și pulberi fac în mod uzual obiectul brevetării, soluțiile constructive utilizate de furnizorii de echipamente conțin elemente constructive caracteristice fiecărei firme. Cu toate acestea, se utilizează în practica industrială curentă două modalități de introducere a pulberii în arcul de plasmă, care determină denumirea soluției constructive adoptate.

La generatoarele cu introducere internă a pulberii, gazul plasmagen (plasma) ce curge cu viteze relativ ridicate prin duza generatorului (până la 100 m/s) absoarbe pulberea antrenată de către gazul de transport cu viteze reduse (max. 10 m/s) printr-un efect de injector și o transportă pe materialul de bază sub efectul turbulenței și vâscozității cinematice a plasmei (figura 3.3).

Se obține un grad ridicat de utilizare al pulberii dacă:

- pulberea se introduce cât de sus posibil în generatorul de plasmă; se exploatează efectul termic al arcului pilot, iar durata de staționare a pulberilor în arc va fi maximă;
- generatorul asigură distribuția uniformă pe circumferință a pulberilor, sub un unghi de incidență cât mai ridicat față de axa coloanei de plasmă,
- plasma arcului transferat curge pe cât posibil turbulent;
- geometria internă a duzei permite injecția radială cu o componentă tangențială a vitezei la coloana arcului.
- Lungimea liberă a arcului de plasmă este cât mai mare.

Generatoarele cu injecție internă au - datorită celor menționate mai sus - avantajul realizării unui grad ridicat de topire al pulberii. Acesta este dependent atât de construcția

generatorului de încărcare (turbulența plasmei, durata de staționare a pulberilor în arc, puterea arcului pilot și transferat, natura gazelor utilizate), dar și de capacitatea pulberilor de a absorbi căldura arcului (reflectivitate la radiația infraroșie, rugozitatea suprafeței particulelor de pulbere, granulație, conductivitate termică etc.).

Pag. 65

Figura 3.3. Generator cu introducere internă a pulberii

Comparativ cu sistemele cu introducere internă a pulberii, sistemele cu introducere externă a pulberilor - figura 3.4 - prezintă o serie de avantaje și dezavantaje, determinate de condițiile concrete de exploatare și de injecție a pulberilor în arcul transferat, respectiv evitarea parcurgerii duzei de constrângere de către pulberi:

- diluție redusă determinată de transferul termic mai redus între arcul pilot și transferat și pulberile metalice;
- rată de depunere ridicată la o putere egală a arcului transferat;
- risc scăzut de deteriorare a duzei generatorului prin aderențe ale pulberilor topite;
- pierderi ridicate de pulbere (până la 30%) datorită temperaturii mai reduse a pulberilor și respectiv devierii jetului de pulberi de către gazul plasmagen rece ce înconjoară arcul transferat. Pierderile cresc odată cu lărgirea intervalului granulometric al pulberilor pe seama "suflării" particulelor de dimensiuni reduse;
- control dificil al depunerii în sensul limitării topirii substratului, deci al diluției;
- riscul formării de incluziuni de pulberi netopite (putere prea redusă a arcului transferat, debit de pulbere prea ridicat pentru puterea arcului și lungimea liberă, pulberi cu interval granulometric ridicat sau dezechilibrat);
- suprafață rugoasă a depunerilor realizate.

Figura 3.4. Generator de încărcare cu introducere externă a pulberii

Cu toate că utilizarea generatoarelor cu introducere externă a pulberilor prezintă numeroase dezavantaje, ele sunt singurele care fac față ratelor de depunere ridicate pe care le solicită varianta HPTA și care permite atingerea unor parametri extremi: rată de depunere de 16 kg/h la un curent de încărcare de 600 A.

Realizarea încărcării utilizând rate medii de depunere admite atât utilizarea generatoarelor cu introducere internă cât și externă a pulberilor, în timp ce aplicațiile de finețe (MPTA) sau critice în ceea ce privește incluziunile de pulberi netopite utilizează în mod exclusiv sisteme cu injecție internă a pulberilor.

3.2. Influența unor parametri tehnologici asupra calității depunerilor realizate în plasmă cu arc transferat

3.2.1. Introducere.

Procedeul de încărcare cu plasmă și pulberi, este prin numărul ridicat de parametri de proces, un procedeu de sudare care necesită numeroase experimente pentru stabilirea regimurilor optime. Deoarece la fiecare procedeu de încărcare prin sudare se urmărește obținerea unei compoziții chimice bine definite dintr-un număr minim de treceri (straturi), cunoașterea efectului fiecărui parametru tehnologic de regim asupra principalei mărimi geometrice care afectează compoziția chimică și structurală a stratului depus - diluția - este de o deosebită importanță. Asemenea, efectul parametrilor de regim asupra durității matricei metalice la realizarea compozitelor cu matrice metalică prin sudare este de mare importanță în prognoza rezistenței la uzare a

depunerilor realizate în medii abrazive cu și fără șocuri.

În întâmpinarea experimentatorului vin metode matematice statistice care permit simplificarea programelor de cercetare derulate și reducerea numărului de încercări.

Dintre acestea, metoda factorială este cea care permite diminuarea semnificativă a numărului de încercări experimentale prin determinarea unor parametri primari și eliminarea parametrilor secundari de influență, respectiv prin stabilirea sensului gradientului funcției obiectiv și reprogramarea experimentului într-un alt punct al spațiului factorilor de influență situat pe gradientul pozitiv al funcției obiectiv.

Materialele utilizate în programul experimental sunt cele care fac obiectul prezentei teze de doctorat.

Aliajul formator de matrice este un aliaj FeCrNi – tabelul 3.1, în timp ca material de ranforsare al matricei metalice s-a utilizat carbură de wolfram – tabelul 3.2. Proprietățile de exploatare ale pulberilor menționate sunt prezentate în anexa 1 – Materiale utilizate în programul experimental.

Compoziția chimică pe șarjă:						
Analiza chimică	Rezultatele măsurătorilor					
С	2,27	%				
Si	1,06	%				
В	<0,01	%				
Fe	Rest	%				
Cr	24,42	%				
Ni	10,97	%				
Co	0,03	%				
Mo	0,62	%				
Mn	0,31	%				
S	0,016	%				
Р	0,010	%				
Ν	0,042	%				
O _{tot}	0,008	%				
Duritate MD	380 - 400	HV5				

Tabelul 3.1. Pulbere P 40, producător Höganäs AB, Suedia Granulație: Compoziția chimică pe șarjă:

Tabelul 3.2. Pulberea WSC, producător WOKA GmbH, Germania Granulație: 63 – 180 μm Compoziția chimică pe şarjă:

Analiza chimică	Rezultatele măsurătorilor				
С	3,93	%			
Fe	0,20	%			
W	Rest	%			
impurități	0,25	%			

Din punct de vedere compozițional, aliajul P 40 este un oțel înalt aliat CrNi, care, datorită conținutului ridicat de carbon este de așteptat să aibă un aspect ledeburitic, caracterizat de precipitări intense de carburi primare într-o matrice metalică cu precipitări secundare de faze dure. Atomizarea pulberilor s-a efectuat cu apă, fapt ce

face ca pulberea să prezintă urme de oxigen, dar are avantajul unei forme pronunțat sferice a particulelor.

În ceea ce privește carbura de wolfram folosită în programul experimental, elaborarea este realizată prin topire și sfărâmare, fapt ce face ca forma particulelor să fie neregulată iar transportul pulberii să fie dificil.

3.2.2. Efectul variației curentului de sudare asupra pătrunderii, eficienței și morfologiei depunerii.

Deoarece s-a constatat experimental că eficiența depunerii (grad de utilizare al pulberilor, pierderi de pulbere) depinde în condiții identice de debit de pulbere și gaz plasmagen de valoarea intensității curentului de sudare, s-a procedat la realizarea unui set de depuneri cu varierea curentului de sudare și menținerea constantă a celorlalți parametri de regim, în vederea identificării compromisului optim eficiență maximă de utilizare a pulberilor - pătrundere minimă a depunerii. Eficiența utilizării pulberilor a fost evaluată prin prisma supraînălțării realizate a depunerii realizate.

În acest scop, pe o placă de probă din OL 37 cu grosimea de 16 mm s-a realizat o depunere continuă, menținând toți parametrii constanți, mai puțin valoarea curentului de sudare. Materialul de adaos a fost un amestec P 40 + 40% WSC (tabelul 3.1.).

Gazul plasmagen utilizat a fost argonul, iar ca gaz de transport și protecție s-a utilizat un amestec Ar + 6,5% H₂.

Tabelul 3.3. redă valorile parametrilor de regim utilizați la realizarea încercării privind eficiența de utilizare a pulberilor metalice.

Nr. experim.	Q _{tr}	Q _{prot}	Q _{pl}	I _{pl}	I _p	Q _{pulb}	v _s	H _{gen}
	l/min	l/min	I/min	A	A	cm ³ /min	cm/min	mm
1	6	13	5	120 - 180	10	18	10	12

Tabelul 3.3. Încercare de eficiență a utilizării pulberilor. Parametrii de regim utilizați.

Figura 3.5. prezintă o suită de imagini macroscopice ale secțiunii longitudinale realizate pe axa longitudinală a depunerii realizate.

Creșterea curentului de sudare se regăsește în creșterea dimensiunilor băii metalice și confirmă fenomenul de segregare la baza topiturilor a carburilor de wolfram odată cu creșterea duratei de viață a băii metalice.

Fenomenul este cel mai vizibil în porțiunea cu valoare maximă a curentului, respectiv în regiunile cu grad ridicat de utilizare al pulberilor.

Pe de altă parte, creșterea curentului de sudare (modificat în experimentul derulat de la 120 la 180 A) a dus la manifestarea unor efecte aparent contradictorii, dar indisolubil legate de relația dintre puterea arcului transferat și geometria, respectiv eficiența de utilizare a pulberilor:

• pătrunderea (interfața substrat - depunere coboară sub nivelul suprafeței substratului cu creșterea curentului de sudare);

Pag. 69

Nu trebuie însă neglijat efectul de accentuare al segregărilor menționat anterior. De aceea, tehnologia optimă este cea care realizează cea mai ridicată eficiență de utilizare a pulberilor în condițiile evitării fenomenelor de segregare și topire a carburilor.

Figura 3.5. Efectul curentului de sudare asupra geometriei depunerilor, 12,5 x

După cum se prezintă în figura 3.5, variația curentului de sudare se regăsește în modificări morfologice semnificative ale depunerilor realizate. Ele se reflectă în:

- segregarea fazelor dure provenind din amestecul de pulberi la baza băii metalice;
- durificarea matricei și tendința ei de fisurare determinată de creșterea proporției de carbon din topitură, rezultat al topirii fazelor dure în condițiile neadecvării parametrilor de regim;
- apariția de fisuri închise și mai apoi deschise.

Ca rezultat al acestor fenomene, apare un fenomen de sărăcire a straturilor superioare în faze dure care conduce la apariția unui gradient nefavorabil de proprietăți de exploatare ale straturilor realizate.

În comparație cu aspectul microstructural al depunerilor realizate cu aliajul P 40 fără adaosuri de faze dure - figura 3.6 a și b, adaosul de faze dure duce la apariția de modificări morfologice semnificative.

Fgura 3.6.b. Aliaj P 40, x250, FeCl₃, 250x

Se remarcă aspectul dendritic al depunerilor, constituit din dendrite de faze dure cu precipitare primară (așa cum se va releva mai târziu) înglobate într-o matrice fină, cu origine probabil eutectică.

Figurile 3.7, 3.8 și 3.9 prezintă imagini la aceeași mărire ale secțiunii depunerilor, realizate în zona superioară, mediană și respectiv inferioară a depunerilor.

Apariția segregațiilor este evidențiată de

- lipsa fazelor dure netopite în porțiunea superioară a secțiunii realizate;
- aglomerările de faze dure în secțiunea mediană;
- prezența fazelor dure precipitate din topitură în proporție foarte ridicată în toate secțiunile;
- Apariția de faze noi, cu aspect poligonal în volumul matricei depunerii;
- Dezvoltarea unui strat epitaxial pronunțat pe limitele fazelor dure netopite care cresc perpendicular pe fazele dure;
- Dezvoltarea unui strat epitaxial pe interfața substrat depunere.

Figura 3.7: Depunere P 40 + 40% WSC, x250, porțiune superioară, Murakami

Figura 3.8. Depunere P 40 + 40% WSC, x250, secțiune mediană, Murakami

Figura 3.9. Depunere P 40 + 40% WSC, x250, secțiune inferioară, Murakami

Ca rezultat al neadecvării parametrilor de regim tipului de material de adaos, suplimentar fenomenelor de segregare, topirea fazelor dure datorată regimului de sudare se regăsește în fragilizarea și fisurarea închisă, mai apoi deschisă a depunerilor Figurile 3.10 și 3.11 prezintă aceste fenomene la diferite măriri.

Figura 3.10: Fisură în depunere, x250, Murakami

Figura 3.11. Fisură în depunere, x500, Murakami

După cum reiese din figurile 3.10 și 3.11, fisurile își au originea pe limitele fazelor dure prezente în depunere, în stratul epitaxial de faze dure crescute pe parcursul procesului de solidificare și se propagă în majoritatea cazurilor de-a lungului axei centrale a carburilor primare cu aspect dendritic din fază dură în fază dură.

De aceea, limitarea proporției carburilor topite și cunoașterea limitei maxime până la care adaosul de faze dure nu afectează comportarea la sudare este un obiectiv deosebit de important în controlul fisurării depunerilor realizate folosind aliaje cu baza fier și adaosuri de faze dure.

3.3. Efectul parametrilor de regim asupra diluției depunerilor. Programarea factorială a experimentului

3.3.1. Planificarea factorială a experimentului cu 8 factori de influență

Principiul metodei factoriale constă în decelarea factorilor de importanță primară și secundară în relație cu funcția obiectiv urmărită. Relațiile de normalizare utilizate în simplificarea calculelor dezvoltate din media aritmetică a limitelor de variație ale factorului de influență urmărit vor fi:

$$\delta_i = \frac{\mathbf{x}_{\max i} - \mathbf{x}_{\min i}}{2} \tag{3.3}$$

Pag. 74

și sunt date de expresiile:

$$p_{i,sup} = \frac{x_{maxi} - \delta_i}{\delta_i}$$
(3.4)

$$p_{i,sup} = \frac{\delta_i - x_{\min i}}{\delta_i}$$
(3.5)

Numărul de experimente (încercări) care explicitează în totalitate influența parametrilor este egal cu 2^k , unde k - numărul de factori de influență. Pentru 3 factori de influență, experimentul complet va avea $2^3 = 8$ încercări și se va derula (conform normalizării) corespunzător tabelului 3.4.

Încercarea nr.	0	1	2	12	3	13	23	123
1	+	-	-	+	-	+	+	-
2	+	+	-	-	-	-	+	+
3	+	-	+	-	-	+	-	+
4	+	+	+	+	-	-	-	-
5	+	-	-	+	+	-	_	+
6	+	+	-	-	+	+	-	-
7	+	-	+	-	+	-	+	_
8	+	+	+	+	+	+	+	+

Tabelul 3.4. Programul experimentului complet, 3 parametri

Factorii de tip "12" descriu efecte combinate ale mai multor parametri. În practica curentă, în majoritatea cazurilor efectele interdependente sunt însă rare, iar efectul lor este redus sau neglijabil. Această constatare permite înlocuirea interdependențelor de parametri cu alți parametri primari de investigat cu efect mai mare asupra funcției obiectiv, înlocuire ce reduce semnificativ numărul de încercări experimentale. Această procedură se numește program factorial parțial.

Efectul factorilor de influentă asupra funcției obiectiv (parametrilor regimului de sudare asupra diluției) se determină în aceste condiții cu relația:

$$Efect = \frac{\sum Z_{i,j}}{\frac{n}{2}}$$
(3.6)

în care Z_{i,j} - valoarea funcției obiectiv (diluția) determinată pentru variația parametrului "i" la experimentul "j".

3.3.2. Planificarea experimentului factorial

În acest mod, s-a putut realiza un experiment care să indice dependența diluției procedeului PTA ca funcție liniară a 8 parametri - tabelul 3.5 - prin eliminarea efectelor

combinate ale factorilor de influență, acceptate ca fiind nesemnificative în comparație cu efectele directe.

Valoarea diluției a fost determinată pe imagini macrografice prin planimetrie. S-au ridicat probleme deosebite la evaluarea diluțiilor reduse, unde precizia metodei este redusă.

Nr. experim.	Q _{tr}	Qprot	Q _{pl}	I _{pl}	I _p	\mathbf{Q}_{pulb}	Vs	H _{gen}	Diluția
	l/min	l/min	l/min	Α	A	cm ³ /min	cm/min	Mm	%
1	6	13	6	160	10	18	10	12	30
2	6	13	6	120	5	10	7	12	47
3	6	13	4	160	10	10	7	8	33
4	6	13	4	120	5	18	10	8	2
5	6	10	6	160	5	18	7	8	26
6	6	10	6	120	10	10	10	8	55
7	6	10	4	160	5	10	10	12	40
8	6	10	4	120	10	18	7	12	2
9	4	13	6	160	5	10	10	8	58
10	4	13	6	120	10	18	7	8	28
11	4	13	4	160	5	18	7	12	18
12	4	13	4	120	10	10	10	12	34
13	4	10	6	160	10	10	7	12	48
14	4	10	6	120	5	18	10	12	46
15	4	10	4	160	10	18	10	8	23
16	4	10	4	120	5	10	7	8	27

Tabelul 3.5. Planificarea experimentului factorial parțial și valori ale diluției.

Încercările au fost efectuate pe instalația IPP 315 dezvoltată la ISIM Timișoara și au avut ca scop decelarea caracteristicilor de lucru ale generatorului în varianta cu introducere internă a pulberii.

3.3.3. Rezultate experimentale

Analiza factorială a efectului parametrilor de regim asupra diluției depunerilor

Efectul celor opt factori de influență asupra funcției obiectiv diluție se determină pe baza relației (3.6).

Pe baza acestei relații, s-au determinat parametrii ecuației de regresie ce descrie dependența funcției obiectiv "**Diluție**" în mod liniar față de parametrii indicați în tabelul 3.5. Tabelul 3.6 indică valoarea parametrilor de regresie astfel determinați.

Parametru	Valoare coef. Regresie	Parametru	Valoare coef. Regresie
Debit gaz plasmagen Q _{pl}	20	Curent pilot I _{pil}	-1,25
Vitaze de sudare V _s	7,25	Debit gaz protecție Q _{prot}	-2,25
Curent sudare Is	4,5	Debit gaz transport Q _{tr}	-6
Înălțimea generatorului H _{gen}	1,75	Debit pulbere Q _{pulb}	-21

Tabelul 3.6. Valori ale parametrilor de regresie determinați.

Pe baza valorilor calculate, figura 3.12 a - h prezintă efectul diferiților parametri de sudare asupra diluției depunerilor.

Figura 3.12.b. Efectul debitului de gaz plasmagen

Figura 3.12: Efectul principalilor parametri de regim asupra diluției depunerilor

Sunt de remarcat principalii factori de influență ai diluției depunerii - debitul de gaz plasmagen, curentul prin arcul transferat, debitul de pulbere și viteza de sudare, care sunt determinanți în exploatarea avantajelor procedeului PTA. Efectul acestor principali parametri este prezentat de valoarea coeficientului de regresie prezentat în tabelul 3.5, care este o măsură a efectului liniarizat al parametrului de regim examinat asupra funcției obiectiv – aici diluția.

3.4. Domenii clasice și noi de utilizare a procedeului PTA

Procedeul PTA se individualizează printre celelalte prin diluția redusă a procedeului respectiv gradul ridicat de mecanizare al procedeului. Tabelul 3.7 indică comparativ, valorile diluției și ratei de depunere a diferite procedee de încărcare prin sudare, provenind din diferite surse.

Procedeu de încărcare	Rata depunerii	Diluția
	[kg/h]	[%]
SE	20 ÷ 35	1 ÷ 6
SF	30 ÷ 40	2 ÷ 10
ELECTROD-BANDĂ	5 ÷ 20	$4 \div 20$

Tabelul 3.7. Valori ale diluției pentru diferite procedee de sudare

Procedeu de încărcare	Rata depunerii	Diluția		
	[kg/h]	[%]		
WIG	2 ÷ 20	0,5 ÷ 3		
MIG	10 ÷ 30	2 ÷ 6		
MAG	20 ÷ 40	5 ÷ 25		
PLASMA-MIG	5 ÷ 20	3 ÷ 20		
МРТА	3 ÷ 10	0,5 ÷ 2		
РТА	3 ÷ 10	2 ÷ 10		
НРТА	3 ÷ 10	4 ÷ 18		

Diluția procedeului PTA are valori reduse către medii $(3 \div 18\%)$ iar rata de depunere a procedeului, care variază în limite largi $(0,5 \div 16 \text{ kg/h})$, înglobează trei variante de aplicare industrială a procedeului: MPTA (**M**icro-**PTA**), PTA, HPTA (**H**igh deposition **PTA**), a căror dezvoltare a fost stimulată de aplicații concrete: încărcarea antiuzură a scaunelor de supape și placarea interioară a tubulaturii de diametru redus (MPTA), încărcarea antiuzură și anticorosiune a armăturilor industriale (PTA).

Valoarea ratei de depunere și a diluției procedeului îl face interesant pentru realizarea de straturi antiuzură pe suprafețe mici și medii. O variantă nouă, dezvoltată odată cu sursele de mare putere cu invertor este HPTA, care realizează rate ale depunerii de până la 18 kg/h destinate încărcării antiuzură a elementelor grele din alcătuirea utilajelor miniere și siderurgice.

Principalele aplicații industriale ale procedeului sunt din următoarele domenii:

- Construcțiilor de utilaj chimic (inele și plăci de etanșare, suprafețe de alunecare, ștuțuri de intrare-ieșire, cilindri de vaporizare;
- Industria sintezei și prelucrării maselor plastice (șnecuri de extrudare, pistoane de presare);
- Construcții de mașini (șnecuri, dinți de escavator, valțuri, mori cu ciocane, supape de Otto de toate gabaritele și diesel navale, jgheaburi de transport clincher, pereți de separare în industria cimentului).

Introducerea, promovarea și menținerea procedeului în aplicațiile industriale este legată de cerințele ridicate din fabricație privind calitatea stratului, care sunt dificil de realizat prin alte procedee clasice (WIG, oxi-gaz, MIG) sau productivitate ridicată asigurată în condițiile mecanizării / automatizării complete.

Avantajele procedeului PTA, comparativ cu alte procedee consacrate de încărcare sunt:

- Mecanizarea completă a procedeului;
- Obținerea unor straturi uniforme de 1 ÷ 5 mm grosime dintr-o trecere;
- Posibilitatea obținerii unor diluții reduse deci un număr redus de straturi până la obținerea proprietăților finale de exploatare ale stratului;
- Realizarea unor rate de depunere relativ ridicate;
- Capacitatea de utilizare a unor materiale ce nu pot fi trase sub formă de sârme; realizarea pulberilor este mai convenabilă economic decât obținerea vergelelor din aliaje dure prin extrudare;

- Reducerea necesarului de prelucrare prin realizarea unei geometrii apropiate de cea finală;
- Capacitatea realizării unei compoziții chimice și calități constante de strat pe întreaga lungime a depunerii.

Printre dezavantajele procedeului PTA se pot enumera următoarele ca fiind cele mai importante:

- Mecanizarea totală face ca procedeul să fie rentabil doar la serii mijlocii și mari de produse sau componente cu forme simple;
- Echipamentele au prețuri de cost mari în comparație cu echipamentele clasice de sudare cu arc (SE, MIG/MAG);
- Materialele clasice, care se pot trage și sub formă de sârme au, datorită procedeului de atomizare, un preț de cost ridicat, ceea ce face procedeul utilizabil în condiții de economicitate doar la depunerea materialelor speciale;

O aplicație de ultimă oră este sudarea prin procedeul PTA a materialelor valoroase, cum sunt aliajele din familiile INCONEL, INCOLLOY, HASTELLOY etc. Procedeul, dezvoltat de firma CLOOS (Germania) realizează productivități deosebit de ridicate în comparație cu procedeul clasic la sudarea acestor materiale (WIG) în condiții de calitate deosebite.

3.5. Discuții

Mecanismele decelate de influență a calității depunerilor au la bază fenomene metalurgice și sunt controlate de parametrii tehnologici. Principalul parametru calitativ al depunerii care determină calitatea depunerii din punctul de vedere al compoziției chimice și proprietăților de exploatare materialelor depuse este diluția realizată pe parcursul procesului de sudare. De aceea, factorii care controlează creșterea și scăderea diluției trebuie cunoscuți și controlați cu strictețe.

3.5.1. Creșterea diluției.

Factorii care cresc diluția procedeului sunt în ordine descrescătoare debitul de gaz plasmagen, viteza de sudare, curentul de sudare, distanța generator - piesă. Efectul lor poate fi explicat prin:

- **Debitul de gaz plasmagen**: Creșterea debitului de gaz plasmagen are ca efect creșterea temperaturii plasmei termice și a rigidității arcului transferat. Ca o consecință, se manifestă următoarele efecte:
 - arcul transferat pătrunde prin baia metalică până la nivelul substratului (materialului de bază);
 - transferul de căldură către pulberi este mai ridicat;
- Viteza de sudare: Creșterea vitezei de sudare se reflectă în contactul direct dintre arcul transferat și substrat. În consecință, efectul de topire al acestuia este accentuat datorită transferului de căldură direct, și nu numai prin conducție prin baia metalică;

- **Curentul de sudare**: Creșterea curentului de sudare mărește temperatura arcului de plasmă transferat. Ridicarea temperaturii arcului se reflectă în:
 - mărirea cantității de căldură transferată pulberilor deci încălzirea băii metalice;

- creșterea debitului de gaz prin ajutaj ce se reflectă în rigiditatea arcului transferat.

• **Distanța generator - piesă**: creșterea distanței generator piesă mărește timpul de staționare al pulberii în arcul transferat, ridicând aportul de căldură în baia metalică și în consecință, temperatura acesteia.

3.5.2. Scăderea diluției:

Parametrii ce duc la scăderea diluției sunt. în ordinea crescătoare a intensității efectului, intensitatea curentului arcului pilot, debitul gazului de protecție, debitul gazului de transport, debitul de pulbere. Efectul acestor parametri asupra diluției se explică prin:

- **Debitul gazului de protecție**: creșterea gazului de protecție se reflectă într-o spălare mai eficientă a băii metalice de către amestecul Ar + H₂, care manifestă un efect de răcire a acesteia;
- **Debitul gazului de transport**: Deoarece în soluția constructivă adoptată, gazul plasmagen trece parțial prin duza de plasmă, se presupune că efectul se manifestă în scăderea timpului de staționare al pulberilor în arcul de plasmă și scăderea cuplajului lor termic cu acesta. Ca consecință, încălzirea pulberilor de către arcul transferat va fi mai puțin intensă, iar baia metalică rezultată mai rece;
- **Debitul de pulbere** este parametru cu cea mai spectaculoasă influență asupra diluției. Diluția este controlată prin răcirea băii metalice atunci când în condiții de regim tehnologic date se recurge la creșterea debitului de gaz plasmagen.

3.6. Concluzii:

- a) Principalii factori de influență ai diluției la procedeul PTA sunt debitul de pulbere, debitul de gaz de transport, debitul de gaz plasmagen, curentul de sudare şi viteza de sudare;
- b) Efectul debitului gazului de protecție, al intensității curentului arcului pilot şi distanței generator - substrat este nesemnificativ;
- c) Parametrii cu efect pozitiv asupra diluției sunt debitul de pulbere și debitul de gaz de transport;
- d) Parametrii cu efect negativ asupra diluției sunt debitul de gaz plasmagen, curentul în arcul transferat și viteza de sudare;
- e) Pentru fiecare material dur destinat încărcării este necesară particularizarea experimentului, pentru evaluarea efectului diluției asupra durității depunerii.

CAPITOLUL 4. EXAMINAREA MICROSTRUCTURALĂ A DEPUNERILOR REALIZATE FOLOSIND AMESTECURI DE PULBERI

Cercetarea microstructurii depunerilor realizate folosind diverse amestecuri de pulberi, toate având adaosuri de carbură de wolfram, s-a făcut prin microscopie optică urmărindu-se aspectele morfologice ale fazelor și constituenților determinate de regimul de sudare, fenomenele de segregare și eventualele defecte prezente în depuneri, vizibile atât la scară macro, cât și microscopică.

Analiza microstructurală a vizat fazele formate ca efect al ciclului termic la sudare în urma depunerii unor amestecuri având ca elemente formatoare de matrice pulberile P 40 (tabelul 3.1), W 1.4115 (tabelul 4.1) și 316 Lc (tabelul 4.2), în adaos cu pulberi grobe de carbură de wolfram WSC (tabelul 3.2), respectiv amestecuri echivalente volumic de carbură de wolfram și de titan TiC.

Examinarea prin microscopie optică a fost efectuată utilizând fie tehnica contrastului interferențial în lumină polarizată pe straturi de ZnSe depuse în vid înaintat pe suprafețele de examinat, fie metode clasice, cu reactivi uzuali (MURAKAMI, FeCl₃).

4.1. Depuneri realizate cu aliaj formator de matrice P 40

Aliajul P 40 corespunzător compoziției sale chimice - tabelul 3.1 – are o structură formată din carburi primare într-o masă ledeburitică, alcătuită din austenită și carburi ale elementelor de aliere de tip (FeCr)_xC_y. Anexa 1 prezintă caracteristici fizice și de exploatare ale pulberii P 40.

Ca urmare a acestui fapt, este de așteptat ca adaosul de carburi - tabelul 3.2. - să accentueze fenomenele de precipitare a fazelor dure și să ducă la creșterea durității matricei metalice. Proprietățile fizice și de exploatare ale pulberii de carbură de wolfram utilizată în programul experimental derulat sunt prezentate în anexa 1.

Figura 4.1 prezintă aspectul microscopic al unei depuneri realizate cu aliajul P 40 (regimuri conf. Anexei 2), în condiții uzuale de sudare. Structura microscopică este tipică de turnare cu dendritele primare de faze dure înglobate intr-o matrice de eutectic fin.

Acest aspect microstructural corespunde celui care a fost de așteptat pe baza compoziției chimice a aliajului, respectiv a proporției ridicate de carbon.

Figura 4.1. Aliajul P 40. Microstructură, x200, FeCl₃

Mecanismul de precipitare a fazelor dure este influențat de viteza de încălzire folosită la sudare, de temperatura de vârf atinsă și de viteza de răcire, respectiv valoarea gradului de subrăcire.

Deoarece adaosul de faze dure induce modificări microstructurale radicale, s-a procedat la examinarea în detaliu a aspectelor microstructurale induse de fazele dure topite pe parcursul procesului de sudare.

4.1.1. Amestecul P 40 + 25% WSC

Volumul redus al carburilor în adaosul de pulberi și în consecință în masa metalică este la prima vedere deosebit de favorabil din punct de vedere tehnologic: nu apar probleme de antrenare al amestecului de pulberi (datorat formei carburilor rezultate din procesul de elaborare - sfărâmare mecanică), respectiv nu există un risc evident de fragilizare excesivă a matricei prin îmbogățirea în carburi.

Cu toate acestea, dată fiind proporția redusă de carburi în volumul aliajului formator de matrice, realizarea unor depuneri cu proporții reduse de faze dure creează dificultăți în obținerea depunerilor omogene din punctul de vedere al distribuției fazelor dure pe grosimea secțiunii depunerilor.

De aceea, pe parcursul programului experimental a fost necesară reducerea ușoară a valorii aportului termic al arcului transferat pentru reducerea la minim a fenomenelor de segregare.

Figurile 4.2.a și 4.2.b ilustrează fenomenul de segregare menționat. Parametrii de regim utilizați sunt cei prezentați în anexa 2.

Așa cum se poate remarca din figura 4.2.a., tendința de segregare (sedimentare) este evidentă cu toate că s-au luat măsuri deosebite de optimizare a parametrilor tehnologici. Segregarea poate fi evitată prin optimizarea parametrilor regimului de sudare.

Întrucât densitatea de faze dure nu este suficientă "autosusținerii mecanice" a acestora, din punct de vedere tehnologic, este necesară scurtarea la minim a duratei de viață a băii metalice, care să nu permită pierderea "omogenității" topiturii realizate în arcul transferat.

Se evită astfel riscul de întrerupere a continuității matricei metalice prin contactul fazelor dure precipitate sau crescute epitaxial pe limitele fazelor dure netopite. Orice lipsă de continuitate a matricei metalice este un concentrator de tensiune puternic, cu efecte negative asupra rezistenței la solicitările din exploatare, dintre care una din cele dominante este oboseala de contact.

Cu toate că reducerea aportului energetic al arcului transferat îmbunătățește distribuția carburilor pe secțiune, nu s-a reușit realizarea unor distribuții omogene în orice secțiune a acesteia.

Figura 4.2.a. x25, Murakami

Figura 4.2.b. x25, Murakami.

Examinarea microstructurală efectuată pe probe sudate cu amestecul P 40 + 25% WSC utilizând tehnica microscopiei optice cu contrastare prin interferență la valori mai mari ale măririi a relevat schimbări semnificative ale aspectului matricei metalice determinate de adaosul și topirea parțială a carburilor în depunere.

Precipitările primare de carburi își păstrează aspectul dendritic, așa cum a fost relevat la examinarea depunerilor realizate cu pulberea P 40, însă își extind proporția pornind fie prin creștere epitaxială de pe limitele fazelor dure netopite, fie prin precipitare din volumul băii de metal topit.

Cu toate că compoziția matricei metalice a depunerii este cel puțin aparent omogenă din punct de vedere chimic, se remarcă diferențe din punct de vedere microstructural al precipitărilor primare și epitaxiale (pe limitele carburilor netopite) de faze dure.

După cum se remarcă din figura 4.3.a și 4.3.b., gradul de finisare al carburilor precipitate primar (dendrite) este mai avansat în zonele adiacente substratului, unde viteza de răcire a topiturii este mai ridicată, decât în zona adiacentă suprafeței depunerii, unde durata de viață a topiturii este mai ridicată sau solidificarea are loc pe un strat depus la pendularea anterioară încă cald, iar viteza de răcire mai redusă atât în fază lichidă cât și solidă.

Ca rezultat, densitatea fazelor dure precipitate este mai ridicată în apropierea substratului decât în straturile superioare ale depunerii.

Totuși, nu se remarcă o orientare preferențială a dendritelor în volumul depunerii. Unul din motivele care fac ca orientarea acestora să fie variată este numărul relativ ridicat de centre de cristalizare distribuiți relativ uniform în volumul topiturii, dar și deplasarea continuă a băii metalice care are ca efect agitarea ei continuă și schimbarea permanentă a direcției și sensului gradientului de temperatură.

În timp ce în zona superioară a depunerilor în matricea metalică se remarcă câmpuri de culoare închisă cu structură fină (eutectic) cu o extindere relativ mare, porțiunile de eutectic în zonele inferioare ale depunerii sunt mult mai reduse, ca urmare a timpului

mai scurt de solidificare – figura 4.4.a și 4.4.b. Se remarcă o extindere mai ridicată a zonelor de culoare deschisă, probabil un constituent de tipul austenitei aliate.

Se remarcă de asemenea prezența stratului epitaxial (probabil carburi) dezvoltat pe fazele dure netopite care se presupun a fi din familia $(FeCrW)_xC_y$. Se remarcă extinderea zonei de faze crescute pe limitele fazelor dure netopite, care este mai mare în porțiunea superioară a depunerii comparativ cu regiunea inferioară, ca rezultat al duratei mai mari de viață a topiturii în zona superioară și timpului de creștere disponibil semnificativ mai ridicat.

Figura 4.3.a. x200, ZnSe, porțiunea superioară a depunerii.

Figura 4.3.b. x200, ZnSe, porțiunea inferioară a depunerii

Cu toate că durata de viață a băii în porțiunea superioară a depunerii este mai ridicată

decât în zonele inferioare, nu se remarcă schimbări în aspectul (forma geometrică) fazelor dure. Se poate concluziona că topirea particulelor de carburi are loc numai în arcul transferat, în timp ce fenomenele de trecere în soluție a fazelor dure în baia metalică sunt nesemnificative ca pondere.

Figura 4.4.a. x500, ZnSe.

Figura 4.4.b. x500, ZnSe.

Deoarece comportarea la sudare a amestecului P 40 + 25% WSC este corespunzătoare (nu apar fisuri, pori, probleme de antrenare și curgere a pulberilor, dificultăți de umectare a substratului), pe baza încercărilor de sudare se concluzionează că pulberea P 40 are resurse pentru preluarea unor adaosuri de peste 25% carbură de wolfram.

4.1.2. Amestecul P 40 + 40% WSC

Asemănător probelor realizate cu amestecuri P 40 + 25% WSC, depunerile realizate cu o proporție de 40% (procente masice) carbură de wolfram au o comportare excelentă la sudare, fără probleme în ceea ce privește tendința la fisurare, formarea porilor, antrenarea și curgerea pulberilor sau umectarea substratului. Pierderile de pulberi sunt reduse, formarea băii este stabilă iar formarea stratului este uniformă, obținându-se o depunere cu o suprafață excelentă.

Spre deosebire însă de depunerile de realizate cu amestecuri P 40 + 25% WSC, la depunerile realizate cu amestecurile P 40 + 40% WSC aspectul suprafeței depunerilor este dependent de sistemul de introducere al pulberilor.

În timp ce depunerile realizate cu generatoare cu introducere internă a pulberii au o suprafață compactă, lucioasă, caracteristică depunerilor cu pulberi metalice fără adaosuri de faze dure, depunerile realizate cu generatoare cu introducere externă au o suprafață pronunțat rugoasă, cu aderențe evidente de faze dure netopite, probabil determinate de "suflarea" fazelor dure din jetul de pulberi ca urmare a comportamentului lor aerodinamic nefavorabil.

Asemănător depunerilor realizate cu adaosuri de 25% masice WSC, tendința de segregare a fazelor dure este prezentă și se manifestă sub două forme distincte – figura 4.4.a și 4.4.b.:

- Segregarea la baza băii metalice pe interfața cu substratul rezultat al unei băi de dimensiuni mari, cu durată de viață excesivă;
- Segregarea pe planuri paralele cu frontul de cristalizare la baza băii metalice băi de sudare de dimensiuni medii, figura 4.4.a.

Figura 4.4.a. x25, Murakami

Figura 4.4.b. x25, Murakami.

În timp ce depunerile de tipul celor prezentate în figura 4.4.a duc la formarea unor straturi cu gradient al rezistenței la uzare și risc ridicat de fisurare într-un plan paralel cu interfața strat – substrat prin solicitări de oboseală de contact, depunerile de tipul celor din figura 4.4.b au o rezistență la uzare relativ constantă pe grosimea secțiunii, iar riscul de degradare al stratului prin fisurare și exfoliere locală este diminuat de continuitatea matricei metalice în spațiile interparticulare.

Realizarea depunerilor omogene în sensul clasic al materialelor compozite elaborate prin metode clasice rămâne însă dificilă la această proporție de faze dure.

În ceea ce privește aspectul microscopic al depunerilor, se pot remarca următoarele elemente (figura 4.5.a, b și c, figura 4.6.a și b):

Asemănător depunerilor realizate cu amestecuri conținând 25% WSC, gradul de dispersie al carburilor precipitate primar este mai avansat în zonele adiacente substratului în comparație cu zona superioară sau mediană a depunerii, iar extinderea zonelor de creștere epitaxială a fazelor dure complexe pe limita carburilor netopite este mai mare decât la depunerile cu 25% WSC. Motivul este proporția mai ridicată de carbon din topitură, provenind din fazele dure amestecate primar și topite în arcul transferat, care cresc pe germenii de cristalizare reprezentați de fazele dure netopite.

Figura 4.5.a. x200, ZnSe, porțiune superioară

Figura 4.5.b. x200, ZnSe, porțiune mediană

Figura 4.5.c. x200, ZnSe, porțiune inferioară

Fenomenul finisării fazelor dure precipitate este vizibil la analiza comparativă a imaginilor corespunzând porțiunii superioare și mediane a depunerii.

Densitatea de faze dure precipitate în porțiunea inferioară a depunerii este însă mai redusă decât în porțiunile mediană și superioară. Cauza acestui fenomen poate fi viteza ridicată de solidificare, care nu permite precipitarea fazelor dure din în topitură. De asemenea, porțiunea superioară a secțiunii prezintă faze dure de dimensiuni mai ridicate dar mai puțin disperse, având ca motivație probabilă fenomene identice celor care au loc la depunerea amestecurilor cu adaosuri de 25% WSC.

Figura 4.6.a. x500, ZnSe.

Figura 4.6.b. x500, ZnSe.

În comparație cu depunerile realizate cu amestecul P 40 + 25% WSC, pentru o aceeași regiune a depunerii, gradul de dispersie al fazelor dure este mai ridicat. Pentru amestecul cu 40% WSC motivația este de natură strict metalurgică și se presupune a fi determinată de creșterea numărului centrelor de cristalizare existenți în volumul depunerii.

Proporția zonală relativ ridicată a fazelor dure face ca în zonele de aglomerare a acestora să înceapă formarea de punți de legătură între carburile netopite – figura 4.7.

Figura 4.7. x1000, ZnSe

Punțile de legătură dintre fazele dure relevate de figura 4.7 sunt porțiuni cu caracteristici mecanice apropiate de ale fazelor dure, respectiv fragilitate ridicată (potențiale amorse de fisură) și reduc tenacitatea și rezistența la oboseală a stratului, regăsindu-se în scăderea caracteristicilor de exploatare ale straturilor dure realizate. Aceste regiuni s-au dovedit pe parcursul programului experimental derulat a fi principalele amorse de dezagregare a straturilor depuse.

Examinarea prin microscopie optică la mărire ridicată relevă elementele constitutive ale matricei metalice a depunerii:

- Faze dure, cu precipitare primară (culoare roșie);
- Soluție solidă γ aliată (culoare maro deschis);
- Eutectic cu dispersie fină.

În ceea ce privește aspectul macroscopic al depunerilor realizate, s-au pus în evidență următoarele concluzii de ordin structural și tehnologic:

- Este posibilă realizarea unor depuneri cvasi-omogene în ceea ce privește distribuția fazelor dure pe grosimea depunerii;
- Gradul de finisare al fazelor dure precipitate din soluție crește pentru depunerile cu 40% WSC
- Extinderea zonei de creștere epitaxială a carburilor din soluție este mai mare la aliajele cu 40% WSC în comparație cu depunerile realizate cu 25% WSC
- În depunere încep să apară, în zonele cu aglomerații de carburi, puncte de contact între carburile netopite adiacente, care întrerup continuitatea matricei metalice și se regăsesc în scăderea proprietăților de exploatare ale depunerilor.

Toate acestea indică faptul că din punct de vedere metalurgic și tehnologic aliajul P 40 are capacitatea de a prelua în amestec cantități de peste 40% faze dure de tipul carburilor de wolfram topite și sfărâmate. De aceea, s-a procedat la examinarea comportării la adaosuri în proporții mărite de faze dure la 55%, respectiv 65%.

4.1.3. Amestecul P 40 + 55% WSC

Depunerile realizate cu o proporție de 55% (procente masice) carbură de wolfram au o comportare puțin mai dificilă la sudare în comparație cu amestecurile testate anterior. Încep să se manifeste primele semne ale fenomenelor de fisurare la sudare și formare a porilor, care se manifestă la puteri ridicate ale arcului electric, comparabile cu cele realizate la sudarea amestecurilor P 40 + 25% WSC. Formarea băii este încă stabilă iar formarea stratului este relativ uniformă, dar cu o supraînălțare mai redusă, determinată de modul de reglaj al debitului de pulbere și derulare a experimentului (debit de pulbere constant).

Asemănător depunerilor realizate cu 40% WSC, tendința de segregare a fazelor dure este prezentă și se manifestă sub două forme distincte – figura 4.8.a și 4.8.b.:

 Segregarea la baza băii metalice – rezultat al unei băi de dimensiuni mai mari, cu durată de viață excesivă;

• Segregarea pe plane paralele cu frontul de cristalizare – băi de sudare mari.

Figura 4.8.a. x25, Murakami

Figura 4.8.b. x25, Murakami.

În timp ce cazul "a" duce la formarea - ca și la depunerile prezentate anterior - a unor depuneri cu gradient al rezistenței la uzare și risc ridicat de fisurare într-un plan paralel cu interfața strat – substrat, varianta "b" are o rezistență la uzare relativ uniformă pe grosimea secțiunii, dar riscul de degradare al stratului prin fisurare și exfoliere locală este accentuat.

Deoarece densitatea fazelor dure este deja ridicată, începe manifestarea unui fenomen

de autosusținere a fazelor care fac ca în condițiile optimizării parametrilor de regim să se obțină depuneri omogene - figura 4.8.a.

În ceea ce privește aspectul microscopic al depunerilor, se pot remarca următoarele (figura 4.9.a - c, figura 4.10. a și b):

Figura 4.9.a. x200, ZnSe.

Figura 4.9.b. x200, ZnSe.

Figura 4.9.c. x200, ZnSe.

Asemănător depunerilor realizate cu amestecuri conținând 40% WSC, gradul de dispersie al carburilor precipitate primar este mai avansat în zonele adiacente substratului și scade odată cu avansarea pe grosimea depunerii. Extinderea zonelor de creștere a fazelor dure complexe pe limita carburilor netopite este mai redusă decât la depunerile cu 40% WSC, fiind comparabilă cu cea realizată la depunerile cu 25% WSC. Motivul este proporția mai redusă de carbon din topitură provenind din fazele dure amestecate primar topite în arcul transferat, care este determinată de necesitatea reducerii energiei arcului electric pentru a evita problemele de sudabilitate menționate anterior: tendință spre fisurare, formare dificilă a stratului.

Figura 4.10.a. x500, ZnSe.

Figura 4.10.b. x500, ZnSe.

În comparație cu depunerile realizate cu amestecul P 40 + 25% WSC și respectiv 40% WSC, pentru o aceeași regiune a depunerii, gradul de dispersie al fazelor dure precipitate este mai ridicat. Pentru amestecul cu 55% WSC motivația este de natură strict metalurgică și se presupune a fi determinată de creșterea numărului centrelor de cristalizare existențe în volumul depunerii.

În zonele de aglomerare a fazelor dure încep să se formeze cu o frecvență crescândă punți de legătură între carburile netopite.

Grosimea stratului de faze dure crescute epitaxial pe limitele carburilor netopite este

semnificativ mai mare decât la depunerile realizate cu adaosuri de 25 sau 40% WSC. Se poate concluziona că, dat fiind faptul că depunerile nu fisurează la adaosuri de 55% WSC, aliajul P 40 are capacitatea de a prelua proporții mărite de carburi.

4.1.4. Amestecul P 40 + 65% WSC

Cu toate că la depunerea amestecurilor de pulberi precedente nu s-au remarcat probleme de antrenare a pulberilor, la sudarea amestecurilor cu 65% proporții masice de carburi începe manifestarea efectului carburilor de wolfram asupra curgerii amestecului de pulberi, care se comportă asemănător unei pulberi fără conținut de particule sferice. Curgerea este dificilă, iar antrenarea pulberilor pe tubulatura de aducțiune la generatorul de încărcare este intermitentă. Ca efect, depunerile vor avea fie un aspect deosebit de rugos al suprafeței - figura 4.12.a, fie vor conține pori induși de zborul fazelor dure care perturbă perdeaua protectoare de gaz sau duc la fenomene necontrolabile de fierbere a băii metalice - figura 4.12.b.

Figura 4.12.a - Depuneri cu suprafața rugoasă

Figura 4.12.b – Depuneri cu pori deschiși

Toate acestea au făcut ca depunerile realizate cu un adaos de 65% WSC să se efectueze în condiții deosebit de îngrijite în ceea ce privește regimurile tehnologice utilizate.

Proporția ridicată de carburi și curgerea dificilă a amestecului de pulberi fac ca în volumul amestecului mecanic să existe aglomerări de carburi. De aceea, depunerile prezintă aglomerări locale de particule dure chiar și în condițiile evitării fenomenelor de segregare.

Proporția ridicată de carbură accentuează tendința de segregare a fazelor dure și de fisurare a depunerilor. De aceea, s-a recurs la scăderea suplimentară a puterii arcului transferat. Ca rezultat, pierderile de pulbere cresc semnificativ și se regăsesc în aspectul rugos al depunerii - figura 4.12.a. Pierderile ridicate de pulberi datorate puterii reduse a arcului transferat coroborate cu densitatea aparentă mult mărită a amestecului de pulberi fac ca supraînălțarea depunerilor realizate să scadă sensibil comparativ cu depunerile realizate folosind amestecuri cu 25, 40 și 55% WSC.

Figura 4.13 a și b. prezintă aspecte macrostructurale ale depunerilor realizate cu adaosuri de 65% (masice) carbură de wolfram.

Figura 4.13.a. x25, Murakami

Figura 4.13.b. x25, Murakami.

Chiar și la depunerile aparent omogene realizate cu amestecurile conținând 65% WSC, fenomenele de segregare locală nu pot fi evitate, fapt evidențiat de figura 4.13.b. Fenomenul de autosusținere al fazelor dure remarcat la depunerile cu adaos de 55% WSC continuă să se manifeste la o intensitate mărită și permite obținerea de depuneri cu un grad ridicat de omogenitate al distribuției fazelor dure pe secțiunea depunerii.

În ceea ce privește aspectele microstructurale, se remarcă accentuarea la nivel microscopic al aglomerării fazelor dure – figura 4.14, scăderea intensității precipitărilor fazelor dure din topitură – figura 4.15 a și b precum și reducerii domeniului de creștere epitaxială a fazelor dure pe limitele carburilor netopite – figura 4.16. a și b.

Figura 4.14. Aglomerări locale ale fazelor dure în volumul matricei, x50 ZnSe

Figura 4.15.a. x200, ZnSe

Figura 4.15.b. x200, ZnSe

Figura 4.16 a. x500, ZnSe

Figura 4.16 b. x500, ZnSe

Aceste fenomene sunt rezultatul scăderii puterii arcului electric, ce se regăsește în scăderea gradului de topire al fazelor dure introduse pe calea amestecului mecanic.

În consecință, fazele dure prezente vor proveni în mare parte din aliajul formator de matrice.

Așa cum se poate observa din imaginile din figura 4.15, dimensiunea fazelor dure precipitate din topitura metalică este mai redusă decât la depunerea aliajelor cu proporții mai reduse de faze dure. Motivația este aceea a puterii reduse a arcului electric transferat și în consecință, o viteză ridicată de solidificare a topiturii, fără precipitarea extensivă a fazelor dure.

4.2. Depuneri cu aliaj formator de matrice cod W 1.4115

Pentru a evalua efectul materialului matricei asupra comportării la încercările de uzare, s-au realizat probe de sudare, examinări microstructurale și încercări de uzare abrazivă asupra unor depuneri realizate utilizând aliaje formatoare ferito-martensitice.

Tabelele 4.1. prezintă compoziția chimică a pulberilor ferito-martensitice menționate mai sus. Proprietățile de exploatare ale aliajului W 1.4115 sunt prezentate în anexa 1

Depunerile realizate s-au derulat utilizând amestecuri cu un conținut de până la 55% carbură de wolfram WSC.

Ca urmare a proporției crescute de carbon în depunere în urma îmbogățirii în carbon, este de așteptat modificarea structurii de la una ferito-martensitică la una austenitică sau ledeburitică.

Tabelul 4.5. Pulbere W 1.4115, producător Höganäs AB. Suedia

Compoziția chimică pe șarjă:				
Analiza chimică	Rezultatele măsurătorilor			
С	0,20	%		
Si	0,46	%		
В	<0,01	%		
Fe	Rest	%		
Cr	16,91	%		
Ni	0,76	%		
Мо	1,13	%		
Mn	0,62	%		
S	0,003	%		
Р	0,018	%		
O _{tot}	0,043	%		

Granulație: 53 – 200 μm

Datorită conținutului redus de carbon în aliajul formator de matrice, este de asemenea de așteptat o tendință mai redusă la fisurare a depunerilor.

4.2.1. Depuneri realizate cu amestecul W 4.115 + 25% WSC

Spre deosebire de depunerile realizate cu amestecul P 40 + 25% WSC, volumul redus al carburilor în masa metalică nu creează dificultăți în obținerea depunerilor omogene din punctul de vedere al distribuției fazelor dure pe grosimea secțiunii depunerilor.

Figurile 4.17.a și b ilustrează acest fenomen, cu depuneri realizate cu regimuri extreme în ceea ce privește durata de viață a băii metalice.

Așa cum se poate remarca din figura 4.17.a., tendința de segregare (sedimentare) nu este atât de evidentă ca la depunerile cu aliaj formator de matrice P 40, motiv pentru care optimizarea regimului de sudare nu este critică din punctul de vedere al segregării fazelor dure.

Figura 4.17. b. x25, Murakami.

Examinarea microstructurală efectuată prin microscopie optică cu contrastare prin interferență a relevat schimbări ale aspectului matricei metalice determinate de adaosul de carburi.

Precipitările primare de carburi își păstrează aspectul dendritic, așa cum a fost relevat la examinarea depunerilor realizate cu pulberea P 40.

Cu toate că compoziția matricei metalice a depunerii este omogenă din punct de vedere chimic, se remarcă diferențe din punct de vedere microstructural al precipitărilor primare și epitaxiale (pe limitele carburilor netopite) de faze dure.

4.2.2. Depuneri realizate cu amestecul W 4.115 + 40% WSC

Spre deosebire însă de depunerile cu adaosuri de 25% WSC, depunerile cu 40 respectiv 55% WSC prezintă tendințe de segregare ale fazelor dure. De aceea, s-au derulat probe în vederea optimizării regimurilor și evitarea segregării, într-un mod asemănător depunerilor realizate cu pulberea formatoare de matrice P 40.

Figurile 2.18 a și b, prezintă aspecte macrostructurale ale depunerilor realizate cu amestecuri cu baza W 1.4115 și adaosuri de 40% WSC

Figura 4.18. a. x25, Murakami

Figura 4.18. b. x25, Murakami.

Aspectul matricei depunerilor prezintă suplimentar carburilor netopite și segregații de faze dure, cu aspect dendritic, înglobate într-o matrice eutectică fină.

În ciuda prezenței segregațiilor, intensitatea fenomenului de precipitare a fazelor dure primare nu este atât de evidentă ca la depunerile realizate cu aliajul P 40. Cauza acestui fenomen este probabil proporția mult mai redusă a carbonului în aliajul W 1.4115, care, în ciuda solubilității mai reduse a carbonului în aliajele ferito-martensitice decât în aliajele austenitice, permite un nivel mai redus al precipitărilor comparativ cu aliajul P 40, care depășește nivelul saturației în carbon.

Figura 4.19 prezintă aspectul microscopic la mărire redusă a unei depuneri realizate cu un amestec W 1.4115 + 40% WSC în porțiunea inferioară a depunerii.

Figura 4.19. x50, ZnSe

Asemănător depunerilor realizate cu proporții asemănătoare de carburi cu aliajul P 40, asigurarea omogenității locale a depunerii este relativ dificilă. Se pot remarca aglomerări locale, care au potențialul devenirii de centre de fisurare sub efectul solicitărilor de oboseală de contact ce apar în exploatare

Figurile 4.20 a și b prezintă aspecte ale depunerii în zona mediană și inferioară a depunerii. Așa cum s-a observat la depunerile realizate cu aliajul P 40, gradul de finisare al fazelor dure precipitate din topitură este mai avansat în porțiunea inferioară a depunerilor. De asemenea, extinderea stratului epitaxial de carburi este mai mare în zona mediană a depunerii.

Figura 4.20.a. x200, ZnSe.

Figura 4.20.b. x200, ZnSe.

În timp ce în zona superioară a depunerilor în matricea metalică se remarcă câmpuri de culoare închisă (eutectic) cu o extindere relativ mică, porțiunile de eutectic în zonele inferioare ale depunerii sunt mai extinse, dar cu un grad de finisare mai avansat.

Figura 4.21 prezintă suplimentar aspecte ale matricei metalice vizibile la mărire mare. Se remarcă aspectul eutectic al matricei, ce înglobează componente de culoare deschisă, respectiv închisă.

Figura 4.21. x500, ZnSe.

Datorită creșterii proporției fazelor dure precipitate direct pe fazele dure netopite, extinderea zonelor fără precipitări directe este mai mare, iar ponderea zonelor cu aspect eutectic (roșu deschis) este mai extinsă pe seama reducerii regiunilor cu precipitate de fază (probabil) γ . Figura 4.22 ilustrează acest fenomen pentru o depunere realizată cu amestecul W 4.115 + 40% WSC.

Figura 4.22. x1000, ZnSe.

4.2.3. Depuneri realizate cu amestecul W 4.115 + 55% WSC

Spre deosebire de depunerile realizate cu aliajul formator de matrice P 40, depunerile realizate cu un adaos de 55% WSC în matrice formată de aliajul W 1.4115 nu prezintă tendințe evidente de segregare a fazelor dure, stabilirea parametrilor de regim fiind relativ facilă din acest punct de vedere.

Figurile 2.23 a și b prezintă în acest sens aspecte macrostructurale ale depunerilor realizate cu amestecuri cu baza W 1.4115 și adaosuri de 55% WSC, relevând o omogenitate relativ ridicată a distribuției fazelor dure în volumul depunerii.

Încă de pe parcursul procesului de realizare al depunerilor s-a putut remarca o vâscozitate ridicată a topiturii (depunerii), care se presupune a fi cauza tendinței reduse de segregare a fazelor dure.

Asemănător depunerilor anterioare, pe plan microstructural se observă diferențe semnificative în ceea ce privește aspectul matricei între zonele superioară, mediană și inferioară. Figura 4.23 a, b, 4.24 a și b respectiv 4.25 a și b prezintă aspectul microstructural în zonele menționate ale depunerilor realizate.

Figura 4.22.a. x25, Murakami

Figura 4.22.b. x25, Murakami.

Este de remarcat orientarea mult mai clară a fazelor solidificate în apropierea substratului decât în cazul depunerilor realizate folosind aliajul formator de matrice P 40, în timp ce în zona mediană și superioară gradul de "dezorientare" al fazelor precipitate crește evident. Fazele precipitate în porțiunea superioară au un grad evident mai ridicat de dezvoltare decât în porțiunea mediană a depunerii.

Este vizibilă de asemenea dimensiunea mult mai mare a fazelor crescute din topitură având ca germene de cristalizare fazele dure netopite pe parcursul procesului de sudare. Motivația acestui fenomen poate fi încă o dată proporția redusă de carbon în topitură (baia metalică), fenomen care suprimă aproape integral precipitarea directă din soluție.

Figura 4.23.a. x200, ZnSe.

Figura 4.23.b. x200, ZnSe.

Figura 4.24.a. Porțiunea inferioară, x200, ZnSe.

Figura 4.24.b. Porțiunea inferioară x500, ZnSe.

Figura 4.25.a. x200, ZnSe.

Figura 4.25.b. x500, ZnSe.

Modificările structurale sunt asemănătoare depunerilor cu aliajul P 40, însă este de remarcat o schimbare radicală de natură metalurgică. Caracterul ferito-martensitic al depunerii se schimbă, devenind de tip ledeburitic, având ca fază constitutivă austenita (Fe_{γ}) aliată. Această schimbare este relevată și de comportamentul magnetic al depunerii, care devine paramagnetic.

Concluzii

- este posibilă realizarea de depuneri folosind aliaje ferito-martensitice cu adaosuri de faze dure de tipul carburilor de wolfram;
- riscul de segregare al depunerilor este mai redus decât în cazul depunerilor realizate folosind pulberea matrice P 40
- tendința de fisurare a depunerilor este redusă
- are loc o schimbare morfologică care face ca depunerile să prezinte caracter (aspect microscopic) ledeburitic.

4.3. Depuneri cu aliaj formator de matrice P 40 și adaos de WSC și TiC

Programul experimental derulat a avut în vedere înlocuirea parțială a WSC cu o carbură cu stabilitate termică mai ridicată, pentru a evidenția rolul fazelor topite asupra comportamentului depunerilor din punctul de vedere al sudabilității.

În acest sens, s-a recurs la înlocuirea parțială a WSC prin carbura TiC, obținută sub formă aglomerată prin sinterizare. Pentru derularea experimentului s-a procedat la înlocuirea unei proporții volumice de WSC egală cu diferența dintre două cantități succesive de fază dură.

S-au derulat experimente utilizând două amestecuri de pulberi:

- P 40 + 40% WSC+ 12,2% TiC (echivalent amestec P 40 + 55% WSC);
- P 40+ 55% WSC + 15,4% TiC (echivalent amestec P 40 + 55% WSC).

Încă de la primele încercări, s-au putut consemna următoarele observații:

- Probleme legate de curgerea dificilă a pulberilor, determinată de rugozitatea superficială ridicată a carburilor de wolfram și titan
- tendință ridicată de fisurare a depunerilor realizate după plane paralele cu substratul;
- pierderi ridicate de pulbere la realizarea depunerilor. Cauza acestei observații pare să fie comportarea aerodinamică diferită a pulberilor TiC, care prin natura procesului tehnologic de elaborare (sinterizare) datorită rugozității ridicate au un diametru aerodinamic mult mai ridicat decât carburile de wolfram.

4.3.1. Depuneri realizate cu amestecul P 40 + 40% WSC + 12,4% TiC

Cu toate că curgerea pulberilor a ridicat de la început probleme la realizarea depunerilor, tendința de fisurare a depunerilor s-a manifestat doar la regimuri extreme de depunere, la valori ridicate ale intensității curentului arcului transferat, la care se manifestă fenomene de topire avansată a fazelor dure.

De aceea, realizarea depunerilor a fost posibilă fără dificultăți majore în condițiile creșterii ușoare a debitului de transport al pulberii și limitării puterii arcului transferat.

Cu toate că nivelul pierderilor de pulberi este relativ ridicat (pulberile TiC sinterizate au suprafața foarte rugoasă și sunt ușor antrenate de curenții de gaz), depunerea realizată prezintă un grad deosebit de ridicat de omogenitate, mult superior depunerilor realizate fără adaosul de carbură TiC. Figura 2.26 a, b și c prezintă aspecte structurale ale depunerilor realizate, la diferite măriri prin microscopie optică.

Figura 2.26.b. x200, Murakami

Figura 2.26.c. x200, Murakami

Se remarcă distribuția omogenă a unor precipitate fine, în întregul volum al matricei, pe toată grosimea depunerilor realizate. Se poate presupune de aceea că precipitatele fine de carburi precum și densitatea redusă a TiC fac ca fenomenul de segregare al WSC să piardă din intensitate iar depunerile să cunoască gradul de omogenitate structurală prezentat de figura 2.26.

Analiza prin contract de fază a permis decelarea deosebirilor dintre fazele dure netopite funcție de proveniența acestora (WSC, TiC)

Figura 2.27 prezintă la o mărire redusă o imagine macro realizată prin contrastare prin interferență (ZnSe)

Figura 2.27. x50, ZnSe

Examinarea permite decelarea fazelor de tip WSC (particule de culoare închisă) și TiC (culoare deschisă), respectiv a fazelor precipitate din topitură și a componentelor matricei metalice.

Figura 2.28 a și b, respectiv 2.29 a și b prezintă aspecte ale microstructurii așa cum se regăsesc la nivel median și la suprafața depunerii.

Figura 2.28.a., x200, ZnSe, porțiune mediană

Figura 2.28.b., x500, ZnSe, porțiune mediană

BENISHAT O

Figura 2.29.a., x200, ZnSe, suprafața depunerii

Figura 2.29.b., x500, ZnSe, suprafața depunerii

În timp ce fazele dure netopite provenind din WSC își păstrează structura dendritică rezultată din procesul de elaborare și se prezintă ca "grăunți" cu "ace" de diverse culori, particulele netopite de pulbere TiC nu arată structură internă dar prezintă elementele caracteristice aglomerării prin sinterizare ca goluri și formă apropiată de cea sferică.

Se poate remarca însă comportarea diferită a aliajului în porțiunea mediană respectiv superioară a depunerii prin prezența în partea mediană a precipitărilor fine de carburi (presupuse a fi TiC) și care nu se regăsesc în porțiunea inferioară.

Figura 2.30 prezintă aspectul matricei depunerilor realizate.

Figura 2.30. x1000, ZnSe

Se poate remarca absența fazelor crescute epitaxial pe limitele fazelor dure de tip TiC, spre deosebire de particulele netopite de WSC, la care fenomenul se manifestă conform așteptărilor. Cauza probabilă este lipsa de soluții solide pe care TiC le formează cu componentele amestecului supus procesului de sudare, respectiv stabilității termice ridicate a TiC, care precipită din topitură înaintea tuturor celorlalte faze.

4.3.2. Depuneri realizate cu amestecul P 40 + 55% WSC + 15,2% TiC

Depunerea amestecurilor P 40 + 55% WSC + 15,2% TiC a ridicat probleme deosebite de antrenare a pulberilor și a impus măsuri tehnologice deosebite de evitare a fisurării straturilor depuse. Dată fiind densitatea volumică deosebit de ridicată a fazelor dure, straturile depuse sunt foarte susceptibile la fisurare. Nu s-a reușit realizarea unor depuneri total lipsite de defecte de tipul fisurării paralele cu planul interfeței strat – substrat.

Figura 2.31 a, b și c prezintă unele aspecte macroscopice și indică sursa fenomenelor de fisurare: apariția de puncte de contact între fazele dure din depunere.

Aglomerările de culoare albă din depunere sunt particule netopite de pulbere P 40 și sunt rezultatul măsurilor tehnologice de reducere a puterii arcului transferat, luate pentru evitarea fisurării depunerilor. Fisurile parcurg linii de aglomerare a fazelor dure, interceptând în unele cazuri și limitele fazelor granulelor de pulbere P 40 rămase netopite – figura 2.31.c.

Se remarcă de asemenea grosimea redusă a stratului, rezultat al creșterii semnificative a pierderilor de pulbere datorită puterii reduse a arcului transferat din cadrul experimentului și utilizării unui sistem cu introducere externă a pulberilor.

Aspectele microscopice ale depunerilor realizate sunt relevate în figura 2.32 a și b, respectiv 2.33 a și b, așa cum se regăsesc în porțiunea superioară și inferioară a depunerilor.

Figura 2.31.b. x200, Murakami

Analiza imaginilor de microstructură permite relevarea unor elemente caracteristice asemănătoare depunerilor realizate fără adaosuri de TiC, după cum urmează:

• intensitatea precipitării fazelor fine (TiC?) este mai intensă în porțiunea superioară a depunerilor;

- extinderea zonelor de precipitare primară a carburilor din topitură este mai mare în regiunea superioară a depunerilor
- extinderea zonelor eutectice în regiunea inferioară este mai mare decât în porțiunea superioară

Figura 2.31 c. x50, ZnSe

Figura 2.32.a. x200, ZnSe

Figura 2.32 b. x500, ZnSe

Figura 2.33.a. x200, ZnSe

Figura 2.33.b. x500, ZnSe

4.4. Concluzii:

- este posibilă realizarea de depuneri folosind amestecuri de faze dure într-o matrice austenitică cu conținut de carbon
- adaosul de faze dure cu stabilitate ridicată și densitate redusă (în acest caz TiC) limitează fenomenele de segregare a fazelor dure cu densitate ridicată (aici WC) prin apariția unor fenomene de susținere a WSC prin creșterea densității de particule;
- creșterea densității particulelor de faze dure limitează puterea arcului transferat, fapt ce se poate reflecta în apariția de faze dure sau particule de pulbere metalică netopite în volumul depunerii;
- creșterea densității particulelor de faze dure mărește probabilitatea formării punților de carburi, cu efecte negative asupra sudabilității (aici capacitatea de a fi depuse prin sudare) amestecurilor, indiferent de regimul tehnologic.

CAPITOLUL 5. ANALIZA SCLEROMETRICĂ A DEPUNERILOR COMPOZITE REALIZATE PRIN PROCEDEUL PTA

5.1. Introducere

Alegerea unui material antiuzură destinat sistemelor tribologice cu mecanisme de uzare fără șocuri este relativ facilă și are în marea majoritate a cazurilor la bază duritatea ridicată a materialului metalic de rezistență coroborată cu prezența unor faze dure cu grad avansat de precipitare.

Aplicațiile care coroborează șocurile cu uzarea abrazivă severă, așa cum sunt sistemele tribologice prezente în echipamentul minier și terasier, impun realizarea unor matrici metalice tenace care înglobează faze dure cu capacitate ridicată de preluare a presiunilor de contact ce apar în exploatare. Deoarece duritatea aliajelor cu baza fier este în majoritatea cazurilor strâns corelată și proporțională cu proporția de faze dure, cunoașterea intensității topirii fazelor dure (carburi) introduse în amestecul de pulberi și corelarea lor cu duritatea matricei metalice este de mare importanță.

Pentru evidențierea gradului de topire al fazelor dure și corelarea acesteia cu duritatea matricei s-au efectuat măsurători privind proporția fazelor topite din volumul introdus în amestecul de pulberi, precum și măsurători ale durității cu microsarcini, respectiv măsurători ale durității suprafeței depunerilor. S-au utilizat metodele HV 0,5, HV 5 respectiv HV 30.

În programul experimental privind evaluarea gradului de topire al fazelor dure, pornind de la ipoteza general acceptată că proporția volumică a unei faze este egală cu proporția de suprafață într-o secțiune oarecare, s-au efectuat determinări pe un sistem computerizat de analiză a imaginii.

5.2. Încercări privind proporția fazelor dure topite la sudare și efectul lor asupra durității matricei metalice

Încercările privind proporția fazelor dure topite la sudare și efectul lor asupra durității matricei metalice reprezintă un estimator al comportării în exploatare a materialului compozit depus prin sudare și oferă informații privind modificările induse microdurității matricei.

Examinările au urmărit măsurarea durității, deoarece încercări anterioare efectuate de diferite colective de cercetare ale Universității Tehnice din Aachen, Germania (RWTH Aachen) au arătat o tendință evidentă de fragilizare a matricei la îmbogățirea acesteia în carbon.

Încercările de sudare s-au realizat pe o instalație Hättiger (Germania) dotată cu un generator de încărcare de 350 A cu introducere internă a pulberii.

Măsurătorile privind proporția fazelor dure topite la sudare s-au efectuat pe un sistem de analiză a imaginii de tip IBAS 2000 (sistem de operare CPM), aflat în dotarea RWTH Aachen, Germania.

Pentru contrastare în vederea analizei de imagine s-au utilizat probele atacate metalografic cu reactivul MURAKAMI la o mărire de 25x. Măsurătorile privind proporția de carburi au fost efectuate pentru depunerile realizate cu amestecuri având baza pulberile P 40 respectiv W 1.4115, conținând diferite proporții de faze dure. Tabelul 5.1 prezintă rezultatele măsurătorilor efectuate prin analiza imaginii.

Amestec	Nr. măs.	Val. min.	Val. max.	Media	Medie calcul	σ	Dif. abs. % supr.	Dif. rel. %
P 40 + 25% WSC	13	7,72	19,22	14,23	13,07	3,22	1,16	8,91
P 40 + 40% WSC	10	19,31	28,74	23,64	23,11	2,75	0,53	2,29
P 40 + 55% WSC	16	24,89	45,96	39,88	35,53	6,16	4,35	12,25
P 40 + 65% WSC	13	36,88	53,12	47,12	45,57	4,32	1,55	3,39
W 1.4115 + 25% WSC	20	8,55	21,78	16,19	13,07	3,44	3,12	23,92
W 1.4115 + 40% WSC	16	14,45	29,25	23,11	20,03	4,35	3,08	13,33
W 1.4115 + 55% WSC	15	26,84	44,59	36,45	35,53	4,65	0,92	2,60

Tabelul 5.1. Rezultate privind analiza proporției fazelor dure

În evaluarea proporției calculate a fracției volumice a fazelor dure s-a pornit de la valoarea densității fiecărui component al amestecului și a proporției masice în amestecul de pulberi pe baza relației:

$$f_{\nu} = \frac{\rho_1}{\rho_2 \left(\frac{1 - f_m}{f_m}\right) + \rho_1}$$
(5.1)

$$Dif.rel = \frac{Dif.abs.\% \sup r.}{Media_calcul} \times 100$$
(5.2)

în care: ρ_1 – densitatea pulberilor cu baza fier, $\rho_1=7,8$ g/cm³, ρ_2 – densitatea pulberilor WSC, $\rho_2=17,3$ g/cm³, f_m – fracția masică a carburilor de wolfram, $f_m \in \{25\%, 40\%, 55\%, 65\%\}$.

Elementele statistice prezentate în tabelul 5.1 au la bază histogramele de frecvență obținute prin programul de măsurători pe baza analizei imaginii derulate în cadrul programului experimental - figurile 5.1a - d și 5.2.a - c.

Figura 5.1.a - Histograme de frecvență, amestec P40 + 25% WSC

Figura 5.1.b - Histograme de frecvență, amestec P40 + 40% WSC

Figura 5.1.c - Histograme de frecvență, amestec P40 + 55% WSC

Pag.128

Figura 5.1.d - Histograme de frecvență, amestec P40 + 65% WSC

Figura 5.2.a - Histograme de frecvență, amestec W 1.4115 + 25% WSC

Figura 5.2.b - Histograme de frecvență, amestec W 1.4115 + 40% WSC

Figura 5.2.c - Histograme de frecvență, amestec W 1.4115 + 55% WSC

După cum se poate observa din analiza datelor prezentate în tabelul 5.1, diferența exprimată în procente de suprafață dintre valorile măsurate și cele calculate este relativ mică și are valori pozitive. Valorile măsurate pot fi însă afectate de erori de măsurare provenind din atacul reactivului Murakami al fazelor dure precipitate provenind din topitură, care măresc artificial proporția fazelor măsurate.

Se poate remarca diferența relativă deosebit de redusă realizată la proporțiile ridicate de faze dure. Această observație are la bază probabil necesitatea reducerii puterii arcului transferat în scopul evitării fisurării depunerilor la proporții ridicate de faze dure, fisurare determinată de fragilizarea matricei metalice prin îmbogățirea în carbon.

Corespunzător acestor rezultate, s-au efectuat măsurători de microduritate asupra matricei, respectiv a fazei metalice din volumul matricei (soluție solidă γ) și a amestecului eutectic care formează matricea metalică. Măsurătorile au fost efectuate cu microsarcini (0,5 gr) folosind un sistem automat din dotarea RWTH Aachen. Tabelul 5.2 redă rezultatele obținute pentru fiecare din componentele decelate după cum urmează:

Punct măsurare	Duritatea	HV 0,5
Amestec pulberi	Soluție solidă	Eutectic
P 40 + 25% WSC	688	,25
P 40 + 40% WSC	609,33	742,25
P 40 + 55% WSC	683,66	853,25
P 40 + 65% WSC	609,50	858,75
W 1.4115 + 25% WSC	694	,00
W 1.4115 + 40% WSC	825	778,2
W 1.4115 + 55% WSC	634,8	684,8
316 Lc + 25% WSC	387	,88

Tabelul 5.2. Măsurători de microduritate ale matricei depunerilor

Punct măsurare	Duritatea HV 0,5		
Amestec pulberi	Soluție solidă	Eutectic	
316 Lc + 40% WSC	337	,44	
316 Lc + 55% WSC	574	1,5	

Rezultatele obținute permit evidențierea efectului adaosului de carburi asupra microdurității matricei metalice, care este o măsură a comportamentului în exploatare al compozitului realizat. Topirea fazelor dure (WSC) trebuie să se regăsească în durificarea depunerilor realizate, respectiv în îmbogățirea în carbon a componentei metalice a matricei și creșterea durității eutecticului ce formează matricea metalică.

5.2.1. Amestecuri cu baze P 40

Din analiza datelor prezentate în tabelul 5.1, reprezentate grafic în figura 5.3 se poate decela o tendință de creștere a durității soluției solide prezente în matricea metalică (componente deschise la culoare, figura 4.7) în funcție de gradul de topire al fazelor dure introduse în amestecul de pulberi P 40 + WSC.

În figura 5.4 s-a reprezentat în mod asemănător dependența dintre proporția fazelor dure topite și durificarea eutecticului din alcătuirea matricei metalice.

Figura 5.3 - Relația proporție faze dure topite - duritatea soluției solide, P 40 + WSC

Figura 5.4 - Relația proporție faze dure topite - duritatea eutecticului, P 40 +WSC

Tendința variației durității eutecticului este pozitivă și cunoaște la o primă aproximație același mod de variație ca și duritatea soluției solide. Motivația acestei forme de variație a dependenței se presupune a fi adaptarea parametrilor de regim proporției de carburi din amestec.

Figura 5.5 prezintă în mod sintetic cele două seturi de măsurători, care indică o tendință antagonistă: în timp ce duritatea eutecticului crește cu proporția de faze dure, duritatea soluției solide este cvasiconstantă și are o ușoară tendință decrescătoare.

Figura 5.5. Variația microdurității componentelor matricei metalice cu proporția de carburi, stare sudată, P 40

Cu toate că duritatea soluției solide crește - așa cum s-a observat anterior cu proporția fazelor dure topite, creșterea proporției de carburi în amestecul de pulberi nu realizează în mod automat o creștere a durității eutecticului și soluției solide. După cum s-a

menționat, motivația acestui fenomen este posibilă a fi adaptarea parametrilor regimului termic la proporția de carburi.

5.2.2. Depuneri realizate folosind aliaje din clasa W 1.4115 și ANSI 316 Lc.

În ceea ce privește depunerile realizate folosind aliaje din clasa W 1.4115, figurile 5.6 și 5.7 ilustrează variația durității soluției solide și a eutecticului cu proporția de faze dure topite în procesul de încărcare.

Figura 5.6 - Relația proporție faze dure topite-duritatea soluției solide, W 1.4115+WSC

Figura 5.7 - Relația proporție faze dure topite - duritatea eutecticului, W 1.4115+WSC

În timp ce duritatea soluției solide crește continuu cu proporția de faze dure topite pe parcursul procesului de încărcare, nu se poate decela o relație evidentă între proporția fazelor dure topite și duritatea eutecticului.

Alura caracteristică a variației durității soluției solide cu proporția de carburi este aceeași pentru intervalul 25 - 55% WSC atât pentru depunerile realizate folosind aliaj formator de matrice P 40, cât și W 4.4115. Această observație indică faptul că duritatea aparentă a matricei este determinată în primul rând de volumul fazelor dure prezente în matrice provenind din topirea carburilor.

Cu toate că tendința evoluției durității manifestată de pulberea P 40 la îmbogățirea în carbon este evident pozitivă - figura 5.3, 5.4, ea nu este atât de evidentă ca variația durității soluției solide observată la depunerile realizate cu amestecurile având la bază pulberea W 1.4115 - figura 5.6 - unde dependența are un caracter cvasiliniar.

În ceea ce privește duritatea medie a matricei metalice, care integrează duritatea soluției solide și a fazelor dure precipitate primar prin interceptarea lor de către penetratorul aparatului Vickers, s-a procedat și la măsurători de duritate macro, utilizând sarcini de 0,5 și 1 kg.

În acest sens, s-au evaluat atât pulberea P 40, cât și pulberea W 1.4115 și respectiv un aliaj ANSI 316 Lc (X2CrNiMo 19.12). În acest sens, figura 5.8 prezintă valorile măsurate ale microdurității matricei metalice ale depunerilor realizate cu proporții de faze dure variind în intervalul 25% - 55% - aliajul W 1.4115 și ANSI 316 Lc.

Figura 5.8. Variația microdurității cu proporția de carburi, stare sudată

Se remarcă faptul că nu se poate decela o dependență evidentă între proporția fazelor dure și duritatea matricei metalice. Singurul element care indică o dependență evidentă de proporția de carburi este duritatea eutecticului. Această dependență este determinată de creșterea proporției de faze dure prezente în depunere sub efectul scăderii puterii arcului și probabil de "alunecare" a compoziției eutecticului spre temperaturi mai reduse și proporții mai ridicate de carburi. De asemenea, în vederea realizării unor analize privind rezistența la uzare s-au efectuat măsurători asupra durității suprafeței depunerilor realizate. Tabelul 5.3 și figura 5.9 prezintă rezultatele măsurătorilor efectuate.

560

720

Aliaj matrice		e dure	re		
	0	25%	40%	55%	65%
P 40	400	680	780	840	850

Tabelul 5.3 Duritatea suprafetei, amestecuri cu baza P.40 si W.1.4115

480

450

W 1.4115

Figura 5.9. Relația proporție faze dure - duritatea suprafeței

Duritatea suprafeței depunerilor realizate cu aliajul formator de matrice P 40 crește continuu cu proporția de carbură de wolfram. Se remarcă totuși o tendință asimptotică de limitare a creșterii durității HV 30 a suprafetei depunerilor la peste 40% WSC.

Cu toate că duritatea depunerilor realizate cu depunerea având ca bază aliajul W 1.4115 pleacă de la valori mai ridicate ale durității, evoluția durității suprafetei depunerilor este corespunzătoare celei a matricei și este probabil determinată de modificările structurale care apar ca rezultat al îmbogățirii matricei în carbon.

5.3. Stabilitatea la "revenire" a straturilor dure depuse prin sudare în plasmă din compozitul otel inoxidabil - carburi de wolfram.

Stabilitatea termică a materialelor compozite cu matrice metalică armate cu faze dure de tipul carburilor metalice este un element de importanță majoră în predicția comportamentului acestor materiale în condițiile exploatării la temperatură ridicată.

Materialele compozite armate cu carburi sunt susceptibile, la exploatarea la temperaturi ridicate, atât datorită stabilității termice ridicate a carburii de wolfram, cât și datorită modului de durificare a matricei - la mecanisme de modificare structurală prin precipitare fină din soluție cât și prin faze dure netopite la sudare, cu efect fragilizant.

Încercările prezentate în programul experimental derulat au urmărit evaluarea comportamentului la sensibilizarea termică (tratament termic efectuat în condițiile unor parametri de tratament de tipul revenirii) a unor depuneri realizate cu procedeul PTA prezentat anterior, folosind ca material de adaos amestecul aliaj metalic cu baza fier P 40 cu adaos de carbură de wolfram (carbură topită și sfărâmată mecanic) prezentată anterior.

Utilizând materialele menționate, s-a realizat un set de depuneri utilizând regimuri optimizate cu proporții de fază dură variind în intervalul $5 \div 60$ WSC (5, 10, 15, 20, 30, 40, 60% WSC). Dintre acestea, depunerile cu proporții de carbură de wolfram de 15, 40 și 60% au fost sensibilizate la temperaturi în intervalul 500 ÷ 900 °C, cu durate ale tratamentului de 1, 5 și 10 ore.

Depunerile obținute (atât în stare sudată cât și revenită) au fost examinate în ceea ce privește duritatea matricei metalice a depunerii (cea mai susceptibilă la modificări sclerometrice semnificative) cât și în ceea ce privește unele aspecte microstructurale.

Importanța durității matricei este relevată de principalul mecanism de uzare al depunerilor realizate folosind faze dure în amestec cu materiale matrice: dezagregarea fazelor dure prin uzarea și extragerea matricei.

Programul experimental a urmărit efectuarea de măsurători sclerometrice și analiza microstructurală, efectuată prin microscopie optică. Ca agent de contrastare s-a utilizat reactivul MURAKAMI la temperatura camerei.

5.3.1. Examinări sclerometrice

Măsurătorile de duritate au urmărit două obiective: determinarea efectului proporției adaosului de carburi și regimului tehnologic de sudare asupra microdurității matricei metalice, respectiv a efectului tratamentului termic de revenire asupra durității matricei.

Variația microdurității matricei pe depunerile în stare sudată corespunzător unei proporții de carburi variabile în intervalul $5 \div 60\%$ este prezentată în figura 5.10. Variația microdurității matricei este monotonă în intervalul $5 \div 15$, respectiv $20 \div 50\%$ WSC. Ea este determinată - în condițiile menținerii parametrilor de regim la valori constante - de creșterea proporției căldurii preluate de către fazele dure prin proporția mai ridicată în amestec, ce se reflectă într-o dizolvare mai avansată a acestora.

Figura 5.10 Variația microdurității matricei cu proporția de carburi, stare sudată.

Diagrama din figura 5.10 prezintă două salturi (scăderi) evidente.

În timp ce primul salt de duritate (între 15 și 20% WSC) este dificil de explicat cu argumente de natură tehnologică, apariția saltului de duritate ce apare la proporții ridicate de carburi (peste 50%) este determinată de necesitatea reducerii puterii arcului transferat în vederea reducerii și eliminării fenomenelor de fisurare, care are ca și consecință scăderea proporției carburilor topite și reducându-se în consecință proporția de carbon în matrice.

Examinarea microscopică (capitolul 4) a relevat o legătură directă între aspectul microscopic și proporția de carburi introduse în amestec. Este de remarcat creșterea atât a proporției carburilor precipitate în volumul matricei metalice, cât și a extinderii zonei de creștere epitaxială a carburilor din soluție pe limitele particulelor de carburi introduse în amestec și rămase netopite la sudare.

Stabilitatea la revenire a depunerilor s-a evaluat pe baza unui set de tratamente termice de sensibilizare derulate la parametrii prezentați în tabelul 5.4. S-au urmărit două elemente: variația durității matricei, determinată de difuzia elementelor durificatoare dinspre fazele durificatoare și carburile primare și eutectice, precum și modificările microstructurale induse de tratamentul termic de revenire.

Duritatea s-a analizat în funcție de valoarea parametrului de revenire, calculat cu relația clasică:

$$P=T^*(20+\log t)$$
 (5.3)

în care T - temperatura absolută la care s-a efectuat tratamentul termic, iar t - durata tratamentului termic de sensibilizare în ore.

Figura 5.11 prezintă modul de variația al durității în funcție de valoarea parametrului de revenire pentru proporții masice de 25, 40 și 60% carbură de wolfram.

Temperatura	Timp de	Parametrul de revenire	Duritatea matricei HV5		i HV5
de revenire	ICvenine	de revenire	Propor	tia de carb	uri, %
°C	h		25	40	60
	1	15 640	353	891	880
500	5	16 000	369	792	838
	10	16 323	679	892	907
	1	17 460	569	777	766
600	5	18 070	637	821	930
	10	18 333	562	898	946
	1	19 460	612	916	925
700	5	20 140	633	732	989
	10	20 433	601	638	826
	1	21 460	557	765	880
800	5	22 220	791	805	809
	10	22 533	610	894	794
	1	23 460	564	666	836
900	5	24 280	552	780	874
	10	24 633	511	552	707

Tabelul 5.4. Valori ale durității funcție de parametrii tratamentului termic de revenire.

Din reprezentarea grafică a datelor centralizate în tabelul 5.4 - figura 5.11 - nu se poate releva o dependență liniară clară a durității matricei metalice funcție de valoarea parametrului de revenire pentru nici una din proporțiile de carburi.

Spre deosebire însă de variația durității cu parametrul de revenire, se poate afirma că duritatea matricei metalice (în sensul interceptat de penetratorul Vickers - amestec eutectic de carburi complexe și soluție solidă γ) crește continuu cu creșterea proporției de carburi în amestecul de pulberi, indiferent de valoarea parametrului de revenire. Motivația acestei observații poate fi aceea că proporția de eutectic (alcătuit din carburi și o soluție solidă) în matrice crește cu proporția de carbon dizolvată, respectiv cu proporția de carburi topite provenind din carburile introduse în amestec.

Figura 5.11. Variația microdurității depunerii funcție de valoarea parametrului de revenire

După cum este relevat și de figurile 5.12, 5.13 și 5.14 care reprezintă variația microdurității matricei funcție de proporția de carburi pentru parametri de revenire aleși aleator, gradientul creșterii durității matricei metalice scade (în general) la creșterea proporției de carburi. Principala cauză este probabil legată de creșterea proporției de carbon în matrice la valori ridicate ale proporției de carbură (40, 60%) până în apropierea valorii de saturație încă din momentul sudării, fapt care se reflectă în diferența redusă de duritate.

Proportia de faze dure, %

Figura 5.12. t=1h, 500 °C

Figura 5.14. t=10h, 800 °C

În vederea exprimării analitice a dependenței durității matricei de proporția de carburi și condițiile de revenire s-a încercat evaluarea suprafeței de răspuns sub forma unei funcții polinomiale de grad 3, cu luarea în considerare a efectelor combinate ale variabilelor considerate independente (proporție de carburi, temperatura de sensibilizare, timpul de sensibilizare (figura 5.15)

Nu s-a reuşit determinarea unei funcții de răspuns cu grad maxim 3 care să aproximeze cu o confidență de peste 75% suprafața de răspuns. Creșterea gradului funcției de regresie nu mărește semnificativ confidența regresiei. Creșterea gradului ecuației de regresie de la 2 la 3 duce la o creștere a confidenței r^2 cu 2%, iar creșterea în continuare mărește confidența regresiei cu sub 1%.

Figura 5.15. Suprafața de răspuns duritate = f(P, %WSC)

Se pot remarca caracteristici generale care descriu fenomenele metalurgice ce au loc:

- tendința de creștere a durității matricei depunerilor cu creșterea proporției de carburi, pentru majoritatea valorilor parametrului de revenire
- nu există o comportare caracteristică la variația valorii parametrului de revenire

5.4. Analiza factorială a efectului principalilor parametri tehnologici de regim asupra durității depunerilor

Deoarece numărul de factori tehnologici de influență care controlează calitatea depunerilor realizate prin procedeul PTA este deosebit de ridicat iar efectele complexe, programul experimental vizând evaluarea efectului parametrilor de material (proporția de faze dure) și de regim asupra durității depunerilor s-a recurs, în vederea simplificării experimentului, la experimentul factorial redus.

5.4.1. Programarea experimentului

În practica curentă, efectele interdependente ale parametrilor de sudare sunt rare, iar efectul lor este redus sau neglijabil. Această constatare permite înlocuirea interdependențelor de parametri cu alți parametri primari de investigat, înlocuire ce reduce semnificativ numărul de încercări.

În acest mod, s-a putut realiza un experiment care să indice dependența durității straturilor depuse prin procedeul PTA ca funcție liniară a mai multor parametri fundamentali în derularea proceselor și fenomenelor ce au loc la încărcarea prin sudare prin procedeul PTA - tabelul 5.5. Parametrii tehnologici au fost modificați în limitele uzuale ale echipamentului pe care s-a derulat majoritatea experimentelor de încărcare prin sudare - instalația IPP 350, dezvoltată la ISIM Timișoara.

Valoarea durității a fost determinată prin măsurători sclerometrice. S-au ridicat probleme deosebite la depunerile cu proporții ridicate de carburi, unde grosimea depunerii și precizia metodei sunt reduse.

Tabelul	5.5.	Planificarea	experimentului	factorial	parțial	şi	valori	determinate	ale
durității.			-						

Nr. experim.	Continut WC, %	I _{pl} A	Q _{pl} I/h	v _s cm/min	Q _{pulb} cm ³ /min	Durit. matrice HV 0.2	Durit. supraf. HV 30
1	25	180	130	6	18	449,0	593,3
2	25	160	130	8,5	10	435,0	672,3
3	25	180	105	6	10	477,5	570,2
4	25	160	105	8,5	18	440,7	646,3
5	65	160	105	6	18	721,4	716,3
6	65	160	130	6	10	619,0	992,0
7	65	180	130	8,5	10	771,0	913,0
8	65	180	105	8,5	18	935,0	1060,8

5.4.2. Rezultate

Pe baza ecuației (3.6) s-au pus în evidență o serie de influențe ale parametrilor regimului de sudare asupra mecanismului de durificare a straturilor.

Astfel, s-au determinat parametrii ecuației de regresie ce descrie în mod liniar dependența funcției obiectiv "microduritate a matricei" în funcție de parametrii de proces și material independenți avuți în vedere la derularea experimentului factorial și indicați în tabelul 5.5. Tabelul 5.6 indică valorile acestor parametri de regresie.

Parametru	Valoare coef. Regresie, duritatea matricei	Valoare coef. regresie, duritatea depunerii		
Proporția de carburi	6,55	4,73		
Curent sudare Is	5,21	1,38		
Debit gaz plasmagen	-161,9	-276,25		
Viteza de sudare V _s	0,05	64,17		

Tabelul 5.6: Valori ale parametrilor de regresie determinați.
Parametru	Valoare coef. Regresie, duritatea matricei	Valoare coef. regresie, duritatea depunerii
Debit pulbere Q _{pulb}	-48,95	-30,72
Termen liber	64,18	603,19

Pe baza acestor valori, în figurile 5.16 a - h se prezintă efectul proporției de carburi asupra microdurității depunerilor așa cum este el determinat de valoarea coeficienților de regresie.

Matrice

Figura 5.16.a Efectul proporției de carburi,

.

Figura 5.16.c. Efectul vitezei de sudare

Figura 5.16.c. Efectul debitului gazului plasmagen

Figura 5.16.d. Efectul debitului de pulbere

Matrice

Figura 5.16.e. Efecte globale ale factorilor de influență

Așa cum o prezintă diagramele din figura 5.16 a \div e, factorul principal de influență asupra microdurității matricei metalice și durității suprafeței depunerii este proporția de carburi în amestecul de pulberi.

Cu toate acestea, în ceea ce privește microduritatea matricei efectul proporției de faze dure este cu aproximativ 250% mai mare decât efectul următorului parametru, curentul de sudare I_s , în timp ce ceilalți factori de influență semnificativi (Q_{pl} , Q_{pulb}) au o valoare apropiată în modul.

În ceea ce privește duritatea suprafeței depunerilor, diferența dintre primii trei factori de influență: proporția fazelor dure, curentul de sudare și debitul de gaz plasmagen nu este excesivă.

Este de remarcat prezența debitului de gaz de transport în rândul factorilor de influență principali ai microdurității matricei și durității suprafeței depunerilor. Cauza acestui efect este efectuarea probelor de sudare pe o instalație utilizând un generator cu introducere internă a pulberii, la care are loc pe de o parte însumarea valorii debitului gazului de transport cu debitul gazului plasmagen (cele două gaze parcurg împreună parțial orificiul duzei) cât și prezenței hidrogenului în gazul de transport, care are ca efect îmbunătățirea transferului termic dintre arcul de plasmă transferat și pulberi prin recombinarea atomilor de hidrogen cu formarea moleculei H_2 .

Din analiza rezultatelor prezentate în tabelul 5.6 se poate observa că semnul efectului principalilor parametri se păstrează la analiza micro- și macrodurității, însă intensitatea efectului se schimbă radical.

Suprafața

Astfel, viteza de sudare este parametrul cu al doilea efect pozitiv asupra durității suprafeței depunerii, fenomen motivat de scăderea duratei de viață a topiturii și limitarea segregării fazelor dure pe grosimea depunerii.

Cu toate că creșterea debitului de gaz plasmagen și de transport au ca efect creșterea puterii arcului, ele au un efect de descreștere a valorilor măsurate ale depunerii. De aceea, efectul cu sens negativ al gazelor tehnologice este dificil de explicat.

În ceea ce privește valorile curentului de sudare, creșterea valorii acestuia se reflectă în extinderea volumului plasmei termice parcurse de pulberi și ridicarea temperaturii acesteia (temperatura arcului de plasmă variază după o lege de tipul $T=k*I_s^4$), fenomen reflectat de o topire mai avansată a fazelor dure introduse în arcul transferat.

5.4.3. Discuții privind relația parametru tehnologic - duritate a matricei:

Creșterea durității

- **Proporția de carburi:** este elementul cu cel mai pronunțat efect pozitiv și are ca bază atât îmbogățirea în carbon a matricei metalice și creșterea proporției de faze precipitate din soluție și topitură (duritatea matricei), cât și mărirea densității fazelor dure de pe suprafața depunerii datorate creșterii densității (particule pe unitatea de suprafață) fazelor dure, ce se regăsește în creșterea probabilității (frecvenței) de interceptare a acestora de către penetratorul durimetrului
- **Curentul de sudare:** mărește atât duritatea matricei metalice cât și a amestecului depus, ca efect al creșterii duratei de viață a topiturii metalice, care se regăsește în creșterea gradului de topire al fazelor dure introduse în amestecul de pulberi și deci durificarea semnificativă a matricei
- Viteza de sudare: creșterea vitezei de sudare scade gradul de segregare al amestecului de faze dure făcând ca duritatea medie a depunerii la suprafață să scadă la o valoare calculabilă teoretic ca medie ponderată a durității matricei și fazelor dure

Scăderea durității

- **Debitul de pulbere:** creșterea debitului de pulbere în condițiile neadaptării condițiilor termice ale regimului de sudare duce în mod inevitabil la răcirea topiturii și în consecință, la scăderea intensității topirii fazelor dure prezente în amestecul de pulberi;
- Debitul de gaz plasmagen: creșterea debitului gazului plasmagen are ca efect imediat creșterea temperaturii arcului transferat. Cu toate acestea, deoarece sistemul utilizat a fost cu introducere internă a pulberilor, timpul de staționare al pulberilor în arcul transferat cunoaște o scădere semnificativă. fapt ce are ca urmare un grad de topire al fazelor dure mai redus, respectiv o duritate mai scăzută a matricei depunerilor;
- Debitul de gaz de transport: Deoarece generatorul testat a fost de tipul cu introducere internă a pulberii, pe parcursul comun al gazului plasmagen și de transport debitul celor două gaze se însumează; de aceea, creșterea debitului gazului

de transport are ca efect imediat scăderea timpului de staționare al pulberilor în arc și duce la un grad de topire al fazelor dure mai redus, respectiv o duritate mai scăzută a matricei depunerilor.

5.5. Concluzii:

- a. Duritatea soluției solide și a eutecticului la depunerile realizate cu pulberea P 40 și W 1.4115 în adaos cu faze dure de tipul carburii de wolfram topite și sfărâmate crește cu proporția de faze dure în amestecul de pulberi topite pe parcursul procesului de sudare;
- b. Duritatea suprafeței depunerilor (HV 30) crește cu proporția fazelor dure introduse în amestecul de pulberi;
- c. Independent de aliajul formator de matrice cu baza fier, la creșterea proporției de carbură apare un fenomen de creștere cvasi-continuă a microdurității matricei metalice
- d. Indiferent de valoarea parametrului de revenire la sensibilizarea depunerilor realizate cu aliajul formator de matrice P 40, duritatea matricei metalice crește cu proporția de faze dure în amestecul de pulberi;
- e. Principalii factori de influență ai durității la procedeul PTA sunt proporția de carburi, curentul de sudare, debitul de pulbere și debitul de gaz plasmagen;
- f. Efectul vitezei de sudare este puțin semnificativ;
- g. Parametrii cu efect pozitiv asupra durității sunt curentul de sudare și proporția de carburi;
- h. Parametrii cu efect negativ asupra durității sunt debitul de gaz plasmagen și debitul de pulbere;
- i. Pentru fiecare material dur destinat încărcării este necesară particularizarea experimentului, pentru evaluarea efectului diluției asupra durității depunerii.

CAPITOLUL 6. INVESTIGAȚII ASUPRA STRUCTURII FINE A DEPUNERILOR

6.1. Introducere

Deoarece atât în cursul procesului de sudare cât și în timpul exploatării de durată la temperaturi ridicate în microstructura stratului depus apar faze noi, care pot influența proprietățile acestuia, s-a recurs la derularea unor investigații prin difracție RX și la microsonda electronică pe depuneri realizate folosind aliajul formator de matrice P 40 și adaos de carbură de wolfram. Programul experimental a avut în vedere depuneri realizate folosind amestecul P 40 + 40% WSC atât în stare sudată cât și în stare de sensibilizare prin tratament termic ("revenire").

După cum s-a concluzionat în capitolul 2, principalele faze ce apar în afara domeniilor de solubilitate nelimitată a elementelor, sunt atât carburile "clasice" de tip MC, M_3C , M_7C_3 , $M_{12}C$ (fără domeniu de omogenitate) și $M_{23}C_7$, dar și carburi mai puțin obișnuite cum este cea instabilă formată în sistemul Fe-W-C de tip M_4C , cu compoziția chimică (FeW₃)C. Prezența carburilor de tip M_6C cu compoziția Fe₂W₄C este însă o controversă, fiind contestată de alți autori.

Diagrama W-Cr-C prezintă în secțiunea realizată în planul WC-Cr₃C₂ o carbură tetragonală complexă, determinată de dizolvarea carburii de wolfram în carburile Cr_3C_2 și Cr_7C_3 prin mecanisme substituționale, în timp ce WC nu are capacitatea de a dizolva carburi de crom.

Identificarea fazelor prezente necesită utilizarea unor metode de precizie. În acest sens, s-a recurs la evaluarea efectului sudării asupra compoziției depunerii folosind într-o primă etapă difracția RX, pentru ca mai apoi, datorită lipsei de precizie în interpretarea maximelor de difracție cu abateri de la maximele corespunzătoare unor faze cu compoziție standard, să se recurgă la analiza compozițională folosind microsonda electronică.

6.2. Examinarea prin difracție RX a depunerilor realizate

Programul de examinări prin difracție RX a depunerilor realizate a fost prima etapă a analizei structurale realizate pe depuneri în stare sudată, cu scopul decelării fazelor noi ce se formează în depunerile realizate. Pentru evidențierea mai bună a fenomenelor ce au loc s-a realizat analiza comparativă a depunerilor realizate cu măsurători de difracție RX realizate pe pulberile de plecare, respectiv pulberea metalică P 40 și carbura de wolfram denumită generic WSC.

Pentru a se estima efectul proporției adaosului de carburi asupra unor aspecte microstructurale, s-au efectuat depuneri cu regimuri care au fost optimizate experimental. Depunerile s-au realizat cu 40% carbură de wolfram în matricea formată

de aliajul ledeburitic P40. Pentru fiecare amestec de pulberi parametrii au fost optimizați experimental în vederea obținerii unei distribuții uniforme a carburilor pe secțiunea depunerii și realizării unei diluții minime.

Depunerile au fost examinate în ceea ce privește diluția, macro- și microduritatea, și natura constituenților structurali prin difracție RX pe diferite nivele ale depunerii (distanța linie de fuziune – linie de măsurare).

6.3. Rezultate experimentale privind difracția RX

Pentru a avea o măsură a structurii fazice a materialelor de pornire în realizarea depunerilor și a putea evalua corect natura fazelor formate în urma procesului de încărcare prin sudare, s-a procedat la realizarea unor măsurători de difracție prin radiație RX pe pulberile de plecare în realizarea încercărilor.

Încercările au fost executate cu pulberile în starea de livrare, fără a fi supuse nici unui tratament termic.

Figurile 6.1 și 6.2 prezintă spectrele de difracție realizate pe pulberile P 40 și WSC supuse depunerii înregistrate utilizând radiația α a Co. Tensiunea de accelerare cu care s-a înregistrat spectrul a avut valoarea de 80 kV, la o viteză de 1°/min.

Tabelul 6.1 relevă principalele faze care au fost decelate în urma analizei spectrului de difracție.

	WC	W ₂ C	Feγ	Cr ₂₃ C ₆
WSC	X	x	-	-
P 40	-	-	x	x

Tabelul 6.1. Faze decelate prin difracție RX pe pulberea inițială.

În încercările ulterioare derulate în cadrul programului experimental s-a vizat determinarea morfologiei stratului prin difracție RX pe o secțiune transversală a depunerilor realizate cu un amestec P40 + 40% WC, realizate în condiții optimizate de regim tehnologic.

Microstructura depunerilor este alcătuită din fazele dure netopite introduse în amestecul de pulberi, matricea metalică - un eutectic format din austenită aliată și carburi metalice, respectiv carburi complexe precipitate în stare lichidă formate de carbura metalică topită la transferul carburilor prin arcul electric. Acestea sunt distribuite atât uniform în volumul matricei, cât și pe limitele carburilor rămase netopite la sudare, care au rol de centru de cristalizare.

Figura 6.1. Spectru de difracție, pulberea P 40

Figura 6.2. Spectru de difracție, pulberea WSC

Figurile 6.3, 6.4 și 6.5 prezintă spectre de difracție determinate în diferite planuri al depunerilor realizate utilizând parametri de regim optimizați experimental.

Figura 6.3. Spectru de difracție, secțiune inferioară

-

Figura 6.4. Spectru de difracție, secțiune mediană

Figura 6.5. Spectru de difracție, secțiune superioară

Spre deosebire de fazele prezente în depunerea realizată cu aliajul formator de matrice P 40, în toate depunerile realizate cu amestecuri de pulberi și examinate la diferite nivele ale secțiunii stratului se remarcă apariția de faze noi.

Principalele faze prezente în depunere, așa cum sunt relevate de interpretarea spectrelor de difracție provin din aliajul de formare al matricei și sunt de tipul carburilor elementelor de formare a matricei (Cr_7C_3 , $Cr_{23}C_7$), respectiv faze noi identificate ca o fază comună Fe₃W₃C și altele neidentificate.

S-au identificate plane cristalografice corespunzătoare feritei, respectiv maxime neidentificate, provenind probabil de la faze complexe, precipitate ca urmare a fenomenelor metalurgice ce au loc la depunere.

Cu toate că poziția maximelor de difracție corespunde celor două tipuri de carbură indicate, există ușoare abateri ale peak-urilor care ne fac să afirmăm că aceste carburi au caracter complex. Noii constituenți structurali formați sunt carburi complexe de tip M_7C_3 respectiv $M_{23}C_6$ rezultate din precipitarea carburilor dizolvate de wolfram sub formă complexă. Singura fază complexă identificată în mod explicit este faza M6C având compoziția Fe₃W₃C.

Este necesară însă identificarea fazelor ce se regăsesc (suprapun) cu anumite caracteristici ale feritei (Fe_{α}), respectiv a maximelor neidentificate în secțiunea depunerii, pentru a verifica atât natura lor, cât și modul lor de distribuție (în volum sau pe limitele carburilor rămase netopite) în secțiunea transversală a depunerii.

Pentru identificarea modificărilor ce apar în urma procesului de sudare, s-a recurs la analiza comparativă a difractogramelor fazelor realizate în depunerile primare, pulberile P 40 și respectiv WSC, într-o analiză comparativă cu depunerile realizate cu amestecurile de pulberi.

6.4. Examinări folosind microsonda electronică

Microsonda electronică este un mijloc modern de investigație folosit în metalografie pentru analize calitative și cantitative ale structurii fine și compoziției chimice.

Pentru decelarea fazelor prezente în depunerile realizate s-a recurs la realizarea unui set de depuneri realizate folosind aliajul P 40 (tabelul 3.1) cu un adaos de 40% (procente masice) carbură de wolfram (tabelul 3.2). Unele dintre depunerile realizate au fost sensibilizate prin tratament termic la temperaturi în intervalul 500 \div 900 °C, cu durate de 1, 5 și 10 ore, în timp ce un set de probe s-a analizat în stare sudată (vezi capitolul 5).

Depunerile obținute (atât în stare sudată cât și sensibilizată) au fost examinate la microsonda electronică atât în ceea ce morfologia matricei și fazelor matricei depunerilor (capitolul 3) cât și în ceea privește structura compozițională a fazelor prezente în depunerile aflate în stare sudată și sensibilizată. Menționez că această parte experimentală a fost condusă pe o microsondă electronică cu 4 spectrometre de raze X existentă în dotarea Universității Tehnice (RWTH) din Aachen.

6.5. Rezultate experimentale folosind microsonda electronică

Examinările efectuate la microsonda electronică au urmărit două obiective: determinarea naturii compoziției fazelor dure prezente în depuneri, respectiv a mecanismului de formare a fazelor dure. Pentru fiecare din faze s-a efectuat un set de 10

măsurători, care s-au prelucrat statistic. S-au luat în considerare numai măsurătorile cu o confidență de peste 95%.

Tabelul 6.2 prezintă valorile medii rezultate la analiza chimică atomică folosind microsonda electronică pe diferite faze prezente în microstructura probelor depuse și netratate termic, indicând faza pe care au fost efectuate măsurătorile (proba 17 - P40 + 40% WC, netratat), iar tabelul 6.3 - valorile medii la analiza chimică atomică pe diferite faze prezente în microstructura probelor depuse și tratate termic (proba 1770 - P40+40% WC, 700 °C/10h/aer).

Se indică și tipul fazelor presupuse a fi fost examinate, pe baza primelor observații privind compoziția chimică exprimată în procente atomice de masă sau a aspectului microscopic (poligonal, dendrite etc.).

Pe baza proporțiilor atomice prezentate în tabelele 6.2 și 6.3 s-a calculat raportul dintre suma proporțiilor atomice a principalelor elemente carburigene (Fe, Cr, W) și proporția atomică a carbonului în punctele care s-a făcut măsurătoarea, în vederea determinării prin calcul a tipului de carbură examinat.

Anexa 3 - Măsurătorile cantitative folosind microsonda electronică indică valorile individuale măsurate pentru fiecare punct examinat pe suprafața probelor.

Tabelele 6.4 și 6.5 prezintă aceste valori precum și tipurile de carbură identificate pe baza raportului metal/carbon folosind această metodă.

Capitolui 6. Investigații asupra structurii fine a depunerilor 1.

Pag.128

Ì

i

Tal	xelul 6.2. Examinări compoziționale, probe nesensibilizate										
	Nr. proba	c	S	ïŻ	Fe	Mn	C	Mo	M	Si	Total
-	Carburi poligonale pe limita celor de W, pct. 1-5	17,23	0,107	5,228	30,561	0,196	11,66	0,594	31,04	3,374	066'66
(1)	Carburi W deschise la culoare (W ₂ C ³)	34,20	0,136	0,059	0,487	0,019	0,016	0,097	64,66	0,245	99,920
3	Carburí W închise la culoare (WC?)	53.31	0,123	0,004	0,194	0,001	0,037	0,045	46,207	0,074	100,001
4	Matrice, interfața dendritelor (alb/închis la culoare), pct 16-32	5,126	0,011	10,030	68,837	0,417	10,873	0,094	2,147	2,464	100,001
5	Interfața dendritelor (alb/închis la culoare)	5,471	0,019	7,306	73,267	0,405	9,219	0,079	2,208	1,988	99,960
¢	Pct. 33-42, faze albe mici în matrice (M ₆ C?)	15.985	0,091	6,661	39.096	0,242	12,789	0,702	22,163	3,450	100,140
	Pct. 87-90. faze gri-deschis mici în matricea închisă, (M7C1?)	31,281	0,077	4,273	32,683	0,441	20,193	0,645	18,801	2,729	100,001
J											

Tabelul 6.3 Examinari communitionale probe sensibilizate 700 °C 10 h

			•		6						
	Nr. proba	د	2	Z	re	uW	כ	0W	3	ろ	I OLAI
•••••	Fig. 808/811 faze mici, închise în matrice, pct. 94-96	28,362	0,021	5,052	32,776	0.366	31,267	0,256	0,634	1.266	100,000
• • • • • • • • • • • • • • • • • • •	Carburi W mari, mijloc deschise la culoare (W ₂ C?), pct. 43-51	34,167	0,181	0,132	0,559	0,018	0.175	0,066	64,249	0,122	99,669
. .	Carburi W închise la culoare (WC?), pct. 52-60	53.258	0,109	0.021	0,237	0.027	0.055	0,063	45.883	0.059	99,711
7	Carburi pe limită (M6C?), pct. 61-69	16.425	0,100	6,451	28,663	0.192	15,461	0.861	27,479	4,368	100,000
	Matrice. dendrite albe. limite, pct. 70-78	3.243	0,012	14.576	62,164	0,465	14,090	0,121	1,847	3,492	100,010
9	Faze mici. albe în matrice (MaC?), pct. 79-84	15,160	0,165	7,340	42,602	0,450	20,945	0,736	9.209	3,393	100,000

Nr. crt.	C	Fe	Cr	W	Total metal	Raport Me/C
	%	%	%	%	%	
1	15,985	39,096	12,789	22,163	74,048	4,632
2	17,231	30,562	11,660	31,040	73,265	4,269
3	31,281	32,683	20,193	18,801	71,677	2,290
4	34,203	0,487	0,016	64,660	65,163	1,904
5	53,312	0,194	0,037	46,207	42,260	0,868
6	5,471	73,267	9,219	2,208	84,694	15,480
7	5,126	68,837	10,873	2,147	81,857	15,968

Tabelul 6.4. Compoziții calculate ale fazelor dure, probe nesensibilizate

Tabelul 6.5. Compoziții calculate ale fazelor dure, probe sensibilizate, 700 °C, 10 h

Nr. crt.	С	Fe	Cr	W	Total metal	Raport Me/C
	%	%	%	%	%	
1	15,160	42,602	20,945	9,209	72,757	4,937
2	16,425	28,663	15,461	27,479	71,602	4,369
3	28,362	32,776	31,267	0,634	64,677	2,328
4	34,167	0,559	0,175	64,249	64,984	1,902
5	53,258	0,237	0,055	45,883	46,174	0,867
6	3,243	62,164	14,090	1,847	78,101	24,738

Pe baza valorilor prezentate în tabelele 6.4 și 6.5 pentru raportul metal/carbon (ipoteza în care se consideră ca elemente carburigene doar fier, crom și wolfram), în tabelele 6.6 și 6.7 se prezintă compozițiile chimice calculate ale carburilor formate pe baza proporțiilor atomice. S-au luat în considerare măsurătorile cu raportul Me/C < 12, prag considerat de autori ca limită superioară pentru formarea de carburi în sistemul cuaternar Fe-Cr-W-C.

Nr. crt.	Raport Me/C	Tip carbură aproximat	Compoziția calculată
1.1	4,269	M ₄ C	$(Fe_{1,666}Cr_{0,634}W_{1,692})C$
1.2	4,632	M ₄ C	$(Fe_{2,112}Cr_{0,691}W_{1,197})C$
1.3	2,148	M ₇ C ₃	$(Fe_{3,192}Cr_{1.973}W_{1.835})C_3$
1.4	1,905	M ₂ C	$(Fe_{0,015}W_{1,985})C$
1.5	0,871	MC	$(Fe_{0.015}W_{0.985})C$

Tabelul 6.6. Tipul carburilor formate, probe nesensibilizate.

Tabelul 6.7. Tipul carburilor formate, probe sensibilizate, 700 °C, 10 h.

Nr. crt.	Raport Me/C	Tip carbură aproximat	Compoziția calculată
2.1	4,937	M ₆ C	$(Fe_{3,513}Cr_{1.728}W_{0.759})C$
2.2	4,369	M ₄ C	$(Fe_{1.085}Cr_{1.893}W_{1.021})C$

Nr. crt.	Raport Me/C	Tip carbură aproximat	Compoziția calculată
2.3	2,328	M ₇ C ₃	$(Fe_{3.548}Cr_{3.383}W_{0.069})C_3$
2.4	1,902	M ₂ C	$(Fe_{0.017}Cr_{0.005}W_{1.978})C$
2.5	0,867	МС	$(Fe_{0.005}Cr_{0.001}W_{1.994})C$

Abaterea de la compoziția calculată a compoziției chimice a carburilor este în majoritatea cazurilor în limita a 15% (mai puțin cazul cu nr. 2.1, tab. 6.7), iar raportul Me/C indică în majoritatea cazurilor cu precizie relativ ridicată tipul de carbură.

Singurele ambiguități pot apărea la interpretarea unor rapoarte Me/C în intervalul 2 - 2,33, care pot caracteriza atât carbura M₂C, cât și carbura M₇C₃. Cu toate că carbura M₄C este mai apropiată funcțional, s-a preferat interpretarea raportului Me/C=4,9 (nr. 2.1. tab 6.7) sub forma unei carburi de tip M₆C.

La o analiză a compoziției fazelor prezente înaintea și după tratamentul termic de revenire, se pot constata următoarele:

- Este probabilă creșterea prin tratamentul termic de sensibilizare a limitei superioare de solubilitate a carbonului în matricea metalică;
- Carburile complexe precipitate pe limitele carburilor de wolfram netopite (1.2) au în stare sudată o proporție redusă de Cr comparativ cu cele identificate în probele tratate termic (2.2), constatându-se o creștere a proporției de Cr de peste 20% pe seama celorlalte două elemente carburigene (Fe, W). Creșterea raportului Me/C în stare sensibilizată poate indica începutul transformării fazei instabile M₄C într-o fază mai stabilă termodinamic de tip M₆C;
- Carburile complexe instabile precipitate în stare sudată de tip M₄C se stabilizează în unele cazuri la o formă mai stabilă de tipul M₆C (1.1, tabelul 6.6 în comparație cu 2.3, tabelul 6.7). Se remarcă creșterea semnificativă a proporției Cr în carbură de la 17% la 47% a componentei metalice;
- Carbura M₇C₃ se transformă în urma tratamentului de sensibilizare în carbura M₆C, prin creșterea proporției cromului în carbură.

Suplimentar examinărilor efectuate la microsonda electronică care au relevat elemente legate de compoziția chimică a depunerilor, aspectele microstructurale care evidențiază modificările apărute în urma tratamentului termic de sensibilizare sunt de un interes ridicat.

Unele din fazele examinate în tabelele 6.2 și 6.3 se regăsesc ca repere în imaginile de microscopie electronică prin baleiaj obținute pe parcursul efectuării examinărilor compoziționale.

Figurile 6.6. a - f prezintă aspecte microstructurale ale depunerilor realizate pe probe P 40 + 40% WSC în stare sudată (nesensibilizată) la diferite măriri și poziții pe secțiunea depunerilor.

Fig. 6.6.b, x100, nesensibilizat - matrice metalică

Fig. 6.6.c, x300, nesensibilizat – matrice

Fig. 6.6.d, x300, nesensibilizat – segregații carburi

Fig. 6.6.e, x1000, nesensibilizat - matrice metalică

Fig. 6.6.f, x1000, nesensibilizat – limite de faze dure, segregații

După cum se poate remarca, matricea depunerilor prezintă în urma procesului de sudare faze dure având atât aspect dendritic pronunțat cât și aspect poligonal.

Cum aspectul dendritic al fazelor precipitate în volumul matricei s-a regăsit și în depunerile realizate cu pulberea P 40 fără adaos de carburi, este de așteptat doar o ușoară modificare compozițională acestora.

Fazele dure poligonale sunt însă faze noi, ce se formează în urma procesului de sudare. De aceea, este de așteptat ca acestea să fie carburi complexe de tip (Fe, Cr, W)_xC_y, probabil cu o structură compozițională instabilă, care să fie stabilizate de tratamentele termice de sensibilizare.

Figura 6.7.b, x300, Sensibilizat 700 °C, 10 h

E E

Figura 6.7.c, x500, Sensibilizat 700 °C, 10 h

Figura 6.7.d, x1000, Sensibilizat 700 °C, 10 h

Figura 6.7.e, x1000, Sensibilizat 700 °C, 10 h

Figura 6.7.f, x1000, Sensibilizat 700 °C, 10 h

Prin analiza imaginilor din figurile 6.6 și 6.7 se remarcă modificări morfologice substanțiale în ceea ce privește aspectul fazelor dure prezente în stare precipitată în soluție, dar și a celor crescute epitaxial pe limitele fazelor dure netopite după cum urmează:

- Finisarea (scăderea dimensiunilor dendritelor) fazelor dure precipitate în matricea depunerilor figura 6.7.e comparativ cu figura 6.6.e.;
- Lărgirea zonei de creștere epitaxială a fazelor dure pe fazele netopite pe seama fenomenelor difuzionale ce au loc pe parcursul tratamentului de sensibilizare;

• Creșterea proporției fazelor cu aspect poligonal precipitate în volumul depunerii;

6.6. CONCLUZII

- În cazul depunerilor compozite armate cu faze dure nu există o corelație strict liniară între duritatea matricei și proporția de carburi introdusă în amestec
- La un timp de sensibilizare constant, microduritatea matricei crește proporțional cu proporția de carbură metalică;
- Punerea în soluție a carburilor începe la temperatura de 800 °C, la timpi de sensibilizare de peste 5 ore;
- Efectul sensibilizării asupra microdurității matricei depunerilor armate cu faze dure este complex și nu poate fi evaluat printr-o funcție liniară sau de tip polinomial
- Carburile precipitate pe limitele carburilor netopite sunt de tip M_4C ;
- Carburile precipitate din matricea metalică sunt de tip M₄C
- Carburile formate prin precipitare conțin o proporție redusă de crom;
- Proporția de Cr crește întotdeauna în carburile precipitate la tratamentul termic de sensibilizare;
- La tratamentul termic au loc fenomene de transformare a carburilor precipitate din matrice la forme mai stabile de la tipul M_4C la M_6C ;
- Tratamentul termic de sensibilizare induce modificări substanțiale în ceea ce privește aspectul microstructural al depunerilor realizate.

CAPITOLUL 7 - REZISTENTA LA UZARE ABRAZIVĂ A DEPUNERILOR REALIZATE

7.1. Introducere

Aliajul P40 are o microstructură alcătuită din dendrite de soluție solidă de austenită aliată, carburi precipitate primar și eutectic (austenită + carburi) având o duritate în stare sudată de aproximativ 450 HV 5. Natura austenitică a componentei metalice este aceea care, în ciuda conținutului ridicat de carbon (2,27%) face ca duritatea materialului să fie relativ redusă.

Deoarece caracteristica "rezistență la uzare" este un parametru relativ și este determinată de caracteristicile concrete ale procedeului de examinare al acestei calități de material, încercările de rezistență la uzare au fost efectuate comparativ, raportat la alte familii de materiale consacrate în astfel de aplicații respectiv prin raportarea la alte materiale noi susceptibile la întreg spectrul de valori avute la dispoziție de către autori.

7.2. Mecanismul uzării abrazive a compozitelor armate cu faze dure. Aparatura experimentală

Întrucât mediile abrazive comportă prezența unor materiale cu duritate și fragilitate ridicată, materialele care preiau aceste solicitări trebuie să conțină componente cu duritate ridicate - comparabilă sau mai ridicată ca a elementelor mediului abraziv. Deoarece materialele cu duritate ridicată sunt întotdeauna deosebit de fragile, realizarea unor materiale care să reziste mecanismului uzării abrazive impun în mod organic prezența fazelor dure încastrate într-o matrice ductilă, lucru determinat de natura mecanismului de uzare.

Condiția ca un material compozit cu matrice metalică să poată prelua eficient solicitările abrazive ale mediului de lucru sunt determinate de raportul D_p/D_f - figura 7.1.

Condiția necesară satisfacerii condiției funcționale "rezistență la uzare abrazivă" este o valoare semnificativ supraunitară a raportului D_p/D_f . Valori egale cu unitatea sau subunitare au ca efect erodarea matricei - care în mod caracteristic este moale și ductilă - de către fazele dure și dezagregarea fazelor dure încastrate în matrice.

De aceea, pentru fiecare mediu abraziv în parte (granulația și duritatea fazelor dure) există o valoare minimă a proporției de faze dure existente în volumul matricei care asigură rolul funcțional al stratului depus prin sudare.

Figura 7.1. Elemente caracteristice în mecanismul uzării abrazive cu trei corpuri

Pentru realizarea analizei comparative, s-au utilizat următoarele clase de materiale (aliaje metalice) pentru realizarea matricei metalice a depunerilor

- P 40;
- 316 Lc (X2 CrNiMo 19.2 W. nr. 1.4431);
- W 1.4115 (X2 Cr 170);
- W 4.1740 (0,3% C, 7,3% Cr, 3,5% Si, 2,5% Fe, rest Ni)

toate cu granulații cuprinse în intervalul 63 - 210 µm.

Deoarece caracteristicile termofizice ale depunerilor realizate variază cu natura pulberilor ce sunt supuse depunerii, pentru fiecare amestec de pulberi parametrii de sudare au fost optimizați experimental în vederea obținerii unei distribuții uniforme a carburilor pe secțiune în condițiile atingerii unei diluții minim posibile.

Având în vedere că rezistența la uzare este un parametru determinat de condițiile concrete de exploatare (abraziune), depunerile au fost examinate conform normei americane ASTM G 65 - 85 utilizând metoda "RUBBER WHEEL" (figura 7.2) în condiții standard pentru acest tip de încercare:

- Viteza periferică: 4,5 m/s;
- Sarcină: 150 N;
- Parcursul de uzare: 3000 m;
- Mediu abraziv: 2 kg nisip cuarțos cu granulația 0,45-0,65 mm.

Metoda Rubber Wheel realizează simularea unui sistem tribologic cu trei componente și este o încercare tipică de uzare abrazivă uscată fără șocuri mecanice, caracterizând comportarea materialelor în medii uscate necorosive la uzare prin alunecare cu particule dure cu muchii ascuțite.

Figura 7.2. Metoda "Rubber Wheel" conf. ASTM G 65 - 85

Date fiind particularitățile depunerilor compozite realizate, apar o serie de particularități de material:

- Mecanice: legate de diferențele de densitate dintre materialul matricei metalice și al fazei dure care generează tendințe de segregare a fazelor dure;
- Metalurgice: determinate de comportarea la îmbogățirea în elemente durificatoare a aliajului formator de matrice și durificarea matricei;
- De exploatare: matricea metalică are duritatea mult diferită de duritatea elementelor de preluare a solicitărilor mecanice abrazive ale mediului.

Ca urmare este de așteptat ca adaosul de carburi în materiale saturate în carbon (P 40) să aibă efecte semnificativ diferite de adaosul de carburi în aliaje cu conținut redus de carbon (316 Lc) sau care vor suferi transformări de fază substanțiale (W 1.4115) prin îmbogățirea matricei metalice cu elemente austenitizante.

Pentru a permite realizarea unor depuneri omogene, cu un gradient minim al proprietăților, este necesară satisfacerea condiției minime de apropiere a densităților specifice ale materialelor supuse depunerii.

În condițiile prezente în cadrul experimentelor derulate, diferența este semnificativă și va avea ca efect o tendință accentuată de segregare a fazelor cu densitate ridicată (aici fazele dure WSC) reflectată în scăderea proporției acestora în porțiunea superioară a depunerii și creșterea densității lor în volumul inferior al depunerii.

Deoarece contactul cu fazele dure abrazive din mediu este preluat de fazele dure din amestecul de pulberi, respectiv din depunere, gradul de expunere al matricei metalice (cu o rezistență la abraziune redusă) este mai mare, având ca consecință creșterea pierderii de masă prin abraziune.

Diametrul mediu al fazelor dure, calculat pe baza distribuției granulometrice (tabelul 7.1) este de 114,7 μ m (abatere standard: 17,338, mediana: 115,5) și permite calcularea distanței medii dintre fazele dure pe suprafață în următoarele condiții simplificatoare:

- Particulele aflate pe suprafața depunerii pătrund în grosimea materialului pe o proporție de 50% din diametru;
- Particulele de pe suprafața depunerii au diametrul egal cu diametrul mediu al fazelor dure;
- Fazele dure sunt uniform distribuite pe suprafață..

Deoarece mecanismul predominant de degradare este uzarea matricei și dezagregarea fazelor dure ca efect al pierderii continuității matricei metalice, corelarea densității de particule pe suprafață cu granulația mediului abraziv este deosebit de importantă. Tabelul 7.1. prezintă distribuția granulometrică a particulelor uzate pentru ranforsarea matricei metalice.

Tabelul 7 1	Distributia	granulometrică a	fazelor	lure
Tabelui 7.1.	Distribuția	granulometrica a	azeloi c	Juie

Fracțiunea	Proporția
μm	%
>210	
180-210	5,8
150-180	14,8
125-150	18,1
106-125	27,5
71-106	28,4
63-71	5,4
<63	_

Tabelul 7.2 prezintă valoarea distanței dintre particulele dure pe suprafața depunerii în funcție de fracția volumică a depunerilor, în condițiile satisfacerii condițiilor simplificatoare de mai sus.

Cum granulația medie a materialului abraziv utilizat este de 550 μ m, este de așteptat ca acestea să nu erodeze matricea metalică (distanța intergranulară a fazelor dure în intervalul 59,77 – 95,47 μ m), iar modificările de rezistență la uzare să fie determinate de modificările durității, respectiv a calității matricei metalice.

Tabelul 7.2. Distanța dintre particule

Proporție volumică %	Distanța dintre particule µm					
25	95,47					
40	84,44					
55	70,80					
65	59,77					

7.3. Rezultate experimentale

Diferențele de densitate dintre materialul matricei și cel al fazelor durificatoare conduc - în condițiile nerespectării unor condiții tehnologice bine definite - la fenomene intense de segregare a fazelor dure în cursul solidificării băii metalice. O baie de sudare de dimensiuni ridicate va permite sedimentarea fazelor dure de tipul carburii de W (ρ ~17,4 kg/dm³) într-o matrice metalică uzuală (ρ ~8 kg/dm³), lăsând la suprafață un strat sărăcit în faze dure.

În consecință stratul de suprafață al depunerii va avea o rezistență mult redusă la uzare, afectând comportarea în exploatare a produsului căruia îi este destinat. Prin experiment au fost optimizate regimurile tehnologice astfel încât să se asigure o distribuție uniformă a carburilor nedizolvate și precipitate pe secțiunea transversală a straturilor. În tabelul 7.3 se prezintă valorile optime ale parametrilor tehnologici care permit îndeplinirea dezideratelor menționate anterior pentru pulberea P 40.

Amestec	Q _{nl}	Q _{tr}		I _a	I _o	Ua	V _s	mo	Н	fp	b _p	E ₁
	l/min	l/min	l/min	A	A	V	cm/min	g/min	mm	mm	mm	
P40+25% WC	4	5,0	8	150	30	32	9	60	9	32	23	4.800
P40+40% WC	3,5	4,0	8	140	30	32	9	60	9	32	23	4.480
P40+55% WC	3,5	3,5	8	120	30	32	9	60	9	32	23	3.840
P40+65% WC	3,5	3,0	8	90	30	32	9	60	9	32	23	2.880

Tabelul 7.3. Regimuri tehnologice optimizate.

Observații: Q_{pl} - debit de gaz plasmagen; Q_{tr} - debit da gaz de transport; Q_{prot} - debit de gaz de protecție; I_a - curent în arcul transferat; I_p - curent în arcul pilot; v_s - viteza de sudare; m_p - debit masic de pulbere; H - distanța generator - piesă; f_p - frecvența pendulării; b_p - lățimea pendulării; E_l - energia liniară.

Examinările micrografice anterioare realizate asupra secțiunilor transversale ale îmbinărilor sudate cu proporție variabilă de carburi au atestat următoarele observații:

- Dificultatea obținerii unor depuneri omogene din punctul de vedere al distribuției carburilor nedizolvate crește cu proporția de carburi în amestecul de pulberi;
- Fenomenele de stratificare și segregare se accentuează la creșterea proporției de carburi;
- "Duritatea" regimului scade odată cu creșterea proporției de carburi din amestec;
- Proporția de carburi afectează geometria depunerii în condițiile menținerii unui debit constant de pulbere; densitatea aparentă a amestecului crește cu proporția de carburi, scăzând volumul de metal (material) depus la debit masic de pulbere constant.
- Diluția nu este afectată de proporția de carburi

Ca o consecință a modificărilor microstructurale determinate de condițiile de regim optime pentru fiecare proporție de carburi în parte, apar schimbări semnificative de natură sclerometrică. Figura 7.3 indică modul de variație al durității suprafeței depunerii, iar figura 7.4 sintetizează variația microdurității matricei metalice cu proporția de carburi în comparație cu alte aliaje testate.

Figura 7.3. Dependența durității matricei de proporția masică de carburi pentru diferite aliaje testate

Indiferent de tipul aliajului cu baza fier formator de matrice, se poate remarca o creștere cvasi-continuă a durității matricei metalice odată cu creșterea proporției de carburi sub efectul intensificării fenomenelor de precipitare fină a fazelor dure în volumul matricei metalice și îmbogățirii continue a matricei în carbon.

Spre deosebire de aliajele cu baza fier, aliajul cu baza nichel testat nu prezintă fenomene de durificare a matricei datorate îmbogățirii în carbon. Fenomenul este datorat insolubilității carbonului în aliajele cu baza nichel și explică stabilitatea durității cu creșterea proporției de carbon în volumul depunerii.

Creșterea microdurității matricei aliajelor cu baza fier încetează în general la adaosuri de carbură de peste 55%. Motivația acestei observații poate fi aceea că matricea metalică atinge limita solubilității în carbon, limită de la care carbonul apare exclusiv sub formă de precipitări.

Cauza acestui fenomen este probabil topirea mai accentuată a carburilor la creșterea proporției de carburi în amestecul mecanic, ce are ca efect creșterea volumului de căldură preluat de acestea. Creșterea microdurității matricei este aproximativ egală și mai redusă la aliajele 316 Lc și W 1.4115 (340 și 350 HV 0,1) în comparație cu aliajul P 40 (475 HV 0,1) datorată probabil atingerii mai rapide a limitei de solubilitate a carbonului în austenită și extinderii rapide a precipitărilor fine, secundare de carburi în volumul matricei.

Acest fapt are ca și consecință - așa cum apare la niveluri prea ridicate ale conținutului de carburi - posibilitatea întreruperii continuității matricei metalice cu formarea de fisuri închise, care reduc semnificativ rezistența la oboseala de contact a depunerilor realizate. Creșterea durității macro- a depunerii cu proporția de carburi, respectiv a capacității de a prelua solicitările de contact cu mediul abraziv prin fazele dure încastrate în matrice duc în mod direct la o mărire a rezistenței la uzare abrazivă.

Rezultatele încercărilor de uzare abrazivă efectuate conform metodei de testare indicate anterior sunt prezentate în figura 7.4., în comparație cu un aliaj clasic antiuzură cu baza Ni, cunoscut ca insensibil la durificarea prin îmbogățirea cu carbon, respectiv în figura 7.5. în comparație cu alte aliaje cu baza fier (de tip 316 Lc).

Figura 7.4 Dependența pierderii de masă funcție de proporția masică de carburi

După cum se poate remarca din figura 7.4., scăderea pierderii de masă este mult mai "radicală" la adaosul de faze dure în aliajul formator de matrice cu baza fier decât în cel cu baza nichel, la care rezistența la uzare – așa cum este definită în cadrul încercării "rubber wheel" este cvasi-liniară. Mecanismul ce stă la baza acestui fenomen este acela al durificării rapide a matricei aliajelor cu baza fier prin adaosul de carburi, ce se reflectă în creșterea rapidă a rezistenței la uzare prin întărirea legăturii dintre fazele dure ce preiau solicitarea de uzare. Spre deosebire de aliajele cu baza fier, aliajele cu baza nichel nu suferă fenomene de durificare a matricei, întreaga cantitate de carbon dizolvată regăsindu-se sub formă de carburi precipitate. De aceea, variația durității are o alură semnificativ diferită (și apropiată de cea liniară) de cea caracteristică aliajelor formatoare de matrice cu baza fier.

După cum se poate remarca, comportarea la uzare la adaosul de carburi este asemănătoare, independent de compoziția chimică sau structurală a depunerilor realizate, respectiv a proporției de carbon în materialul (aliajul) formator de matrice.

Acesta este un indiciu evident al faptului că independent de compoziția materialului matrice (austenită – 316 Lc, ledeburită – P 40, ferită + martensită – W 1.4115) fenomenele ce au loc la adaosul de carburi sunt identice și declanșează mecanisme asemănătoare la nivel microstructural. Acestea se regăsesc în caracteristici macroscopice ca duritatea suprafeței, a matricei respectiv rezistența la uzare a depunerii realizate

Figura 7.5. Dependența pierderii de masă funcție de proporția masică de carburi diferite aliaje

Comportarea la uzare este și ea dependentă de parametrii de regim prin două mecanisme: durificarea matricei metalice datorate dizolvării particulelor de faze dure, precum și apariția fenomenelor de segregare la baza băii metalice a fazelor dure netopite, care creează un gradient nefavorabil al proprietăților de exploatare. Figura 7.6 prezintă dependența rezistenței la uzare ca funcție de duritatea suprafeței depunerii, în timp de figura 7.7. prezintă dependența durității soluției solide din alcătuirea matricei depunerilor realizate folosind aliajul formator de matrice P 40.

Figura 7.6. Dependența pierderii de masă de duritatea suprafeței

Figura 7.7. Dependența pierderii de masă de duritatea soluției solide

Figura 7.8. prezintă dependența pierderilor de masă ca funcție a durității medii a matricei depunerii.

Figura 7.8. Dependența pierderii de masă de duritatea medie a matricei

După cum este de remarcat, efectul durității suprafeței și al matricei sunt comparabile în ceea ce privește efectul asupra pierderii de volum la uzare abrazivă într-un sistem tribologic de tipul celui testat, respectiv pentru materialele testate, pierderea de masă prin procesul de uzare abrazivă scade monoton la creșterea durității.

Nu aceeași afirmație se poate face în ceea ce privește duritatea soluției solide. Creșterea durității soluției solide nu are ca efect creșterea rezistenței la uzare abrazivă conform mecanismului testat.

De aceea, elementele ce pot caracteriza depunerile realizate din punct de vedere tribologic sunt fie duritatea suprafeței HV 30, fie microduritatea medie a matricei metalice ca element ce integrează duritatea soluției solide, a eutecticului și a fazelor dure precipitate primar.

7.4. Concluzii:

- Cu creșterea proporției de carburi depuse în strat are loc o diminuare a fenomenelor de precipitare din fază lichidă sau solidă, fie ca urmare a scăderii duratei de viață a băii metalice fie ca urmare a micșorării timpului de răcire în intre 800 și 500 °C;
- În aliajele cu baza nichel are loc o precipitare a unor carburi complexe conținând wolfram care preiau integral carbonul rezultat din topirea carburilor, iar matricea nu suferă în urma îmbogățirii în carbon;
- Rezistența la uzare crește rapid cu creșterea adaosului de carbură de wolfram la aliajele cu baza fier datorită efectului de durificare rapidă a matricei prin îmbogățirea în carbon și nu datorită creșterii densității fazelor dure pe interfața depunere mediu abraziv;
- Creșterea rezistenței la uzare a aliajelor cu baza nichel este cvasi-proporțională cu adaosul de carburi;
- Rezistența la uzare abrazivă în sisteme tribologice cu trei componente de tipul celor simulate prin încercarea ASTM G 65 a aliajului P 40 este superioară celorlalte aliaje testate, dar tenacitatea depunerilor este mai redusă;
- Se poate constata scăderea pierderilor volumice este bruscă la adaosuri reduse de carbură de wolfram. Cauza pare să fie solubilitatea redusă a carbonului în austenită, fapt ce duce la precipitarea rapidă de faze dure și creșterea în consecință a rezistenței la uzare a depunerilor;
- Pierderea de masă la încercarea de uzare abrazivă scade monoton la creșterea durității suprafeței și durității medii a matricei metalice a depunerilor realizate cu aliajul P 40, în timp ce relația cu duritatea soluției solide nu este evidentă.

CONTRIBUȚII PERSONALE

Contribuțiile personale ale autorului privesc atât elemente teoretice legate de abordarea sistemică a tehnologiei straturilor subțiri, în particular acoperirea cu arc de plasmă transferat cu pulberi (PTA), cât și elemente legate de factorii ce afectează calitatea depunerilor și proprietățile microstructurale și structura fină a unor depuneri compozite cu matrice metalică armate cu faze dure după cum urmează:

Aspecte de ordin funcțional și asigurare a calității depunerilor:

- Dezvoltarea unui algoritm de selecție al procedeelor de realizare al straturilor funcționale pe baze criteriale, pe baza caracteristicilor esențiale ale materialelor de formare a substratului și stratului, efectului termic al procedeelor de acoperire și interacțiunea elementelor care formează sistemul compozit. Algoritmul menționat pornește de la caracteristici funcționale ale principalelor familii de materiale utilizate în practica industrială curentă, de la relațiile cunoscute dintre natura materialului funcțional și proprietățile de exploatare esențiale pe care le asigură acesta, respectiv caracteristici tehnologice esențiale ale procedeelor de acoperire;
- Decelarea şi evaluarea principalului factor care controlează calitatea procedeului diluția - şi evaluarea principalilor factori tehnologici asupra evoluției diluției prin utilizarea metodei factoriale reduse, respectiv factorii cu efect pozitiv (debit de pulbere, debit de gaz de transport) şi negativ (debitul de gaz plasmagen, curentul în arcul transferat şi viteza de sudare). Cunoașterea factorilor de influență primari permite inginerului coordonator al sudării să deceleze rapid cauzele scăderii caracteristicilor compoziționale (modificări datorate diluției) ale straturilor funcționale depuse şi să corecteze cu promptitudine erorile apărute, în scopul reducerii costurilor prin reducerea la minim a cantității de material funcțional necesare realizării stratului funcțional;
- Decelarea factorilor ce duc la fenomenele de segregare a fazelor dure și derularea unor experimente în sensul optimizării parametrilor de regim pentru diferite proporții de faze dure în amestecurile de pulberi. Cunoașterea și controlarea factorilor care guvernează mecanismele de segregare a fazelor dure permite stabilirea rapidă a parametrilor care asigură o depunere omogenă, respectiv eliminarea eficientă a cauzelor segregațiilor;
- Este posibilă realizarea de depuneri folosind aliaje ferito-martensitice cu adaosuri de faze dure de tipul carburilor de wolfram. Comportarea la sudare în condițiile adaosului de carbon (rezultat din topirea fazelor dure) a aliajelor ferito-martensitice este excelentă;
- S-au determinat capacitățile diferitelor aliaje formatoare de matrice de a prelua faze dure în amestec. S-a stabilit că aliajele de tip ferito-martensitic au, comparativ cu aliajele crom – nichel cu baza de fier studiate, o capacitate de preluare mai ridicată a carbonului rezultat din topirea fazelor dure, dar nu se ridică la nivelul aliajelor cu baza nichel utilizate în mod tradițional în aceste aplicații;
Aspecte de ordin microstructural:

- Limita maximă a adaosului de WSC în aliajul ledeburitic P 40 este de aproximativ 65% masice; depășirea limitei maxime creează probleme legate de antrenarea amestecului de pulberi, întreruperea continuității matricei metalice în depunerea realizată, tendința de fierbere a băii metalice, precum și pierderi ridicate de pulberi determinate de comportarea aerodinamică a amestecului de pulberi;
- Adaosul de faze dure induce modificări morfologice legate de densitatea și dimensiunile precipitărilor prezente în depunere și precum și extinderea regiunilor cu soluție solidă și eutectic. Cauza acestui fenomen este creșterea proporției de carbon în matricea depunerii, care depășește proporția de carbon prezentă în aliajul matrice inițial și intensifică formarea fazelor și constituenților cu proporție de carbon ridicată;
- Riscul de segregare (sedimentare a fazelor dure) al depunerilor este mai redus la utilizarea aliajelor fero-martensitice decât în cazul depunerilor realizate folosind pulberea matrice ledeburitică P 40 și este coroborată cu o tendința de fisurare a depunerilor mai redusă;
- La realizarea depunerilor folosind aliaje ferito-martensitice are loc o schimbare morfologică care face ca depunerile având ca bază aliaje ferito-martensitice să prezinte un caracter (aspect microscopic) ledeburitic. Modificarea de aspect este pusă pe seama îmbogățirii matricei în carbon, cu un pronunțat efect austenitizant;
- Este posibilă realizarea de depuneri folosind amestecuri a diferite faze dure într-o matrice ledeburitică cu conținut ridicat de carbon. Realizarea unui amestec de faze dure cu densitate mult diferită (aici, TiC densitate redusă și WC densitate ridicată) limitează fenomenele de segregare a fazelor dure cu densitate ridicată (WC+W₂C) prin apariția unor fenomene de susținere a WSC prin creșterea densității de particule. Densitatea de particule a fost mărită suplimentar de precipitarea primară foarte fină a carburilor de TiC, cu o stabilitate termică ridicată;
- Creșterea proporției particulelor de faze dure în amestecul de pulberi limitează puterea arcului transferat pe considerentul evitării îmbogățirii excesive a matricei în carbon, fapt ce se poate reflecta la extrem în apariția de faze dure sau particule de pulbere metalică netopite în volumul depunerii;
- Creșterea densității particulelor de faze dure mărește probabilitatea formării punților de carburi, cu efecte negative asupra sudabilității amestecurilor (aici capacitatea de a fi depuse prin sudare) și caracteristicilor de exploatare ale depunerilor, indiferent de regimul tehnologic. Realizarea de punți între fazele dure creează condițiile apariției de zone cu fragilitate ridicată, cu rezistență scăzută la oboseală;

Aspecte de ordin sclerometric

- Duritatea soluției solide și a eutecticului la depunerile realizate cu pulberea P 40 și W 1.4115 în adaos cu faze dure de tipul carburii de wolfram topite și sfărâmate crește cu proporția de faze dure în amestecul de pulberi topite pe parcursul procesului de sudare;
- Duritatea suprafeței depunerilor (HV 30) crește cu proporția fazelor dure introduse în amestecul de pulberi dar nu există o corelație strict liniară între duritatea matricei și proporția de carburi introdusă în amestec;
- Independent de aliajul formator de matrice cu baza fier, la creșterea proporției de carbură apare un fenomen de creștere cvasi-continuă a microdurității matricei

.

metalice datorat creșterii intensității precipitărilor de faze dure atât sub formă primară, cât și secundară sau în eutectic;

- Indiferent de valoarea parametrului de revenire la sensilibizarea depunerilor realizate cu aliajul formator de matrice P 40, duritatea matricei metalice crește cu proporția de faze dure în amestecul de pulberi la un timp de sensibilizare constant, iar microduritatea matricei crește proporțional cu proporția de carbură metalică;
- Principalii factori de influență ai macrodurității depunerilor realizate prin procedeul PTA sunt proporția de carburi, curentul de sudare, debitul de pulbere și debitul de gaz plasmagen;
- Efectul vitezei de sudare este puțin semnificativ deoarece gradul de topire al fazelor dure este determinat în mod primordial de puterea arcului (topirea carburilor pe parcursul zborului liber în arcul transferat) și nu de durata de viață a băii metalice, afectată de viteza de sudare;
- Parametrii cu efect pozitiv asupra durității sunt curentul de sudare și proporția de carburi. Efectul menționat are ca și cauză creșterea puterii arcului transferat, respectiv creșterea cantității de căldură preluate în condiții identice de putere a arcului de către fazele dure, ce se regăsește într-o topire mai avansată a acestora;
- Parametrii cu efect negativ asupra durității sunt debitul de gaz plasmagen și debitul de pulbere și sunt determinați de înrăutățirea condițiilor de transfer termic dintre arcul transferat și amestecul de pulberi;

Aspecte privind structura fină a depunerilor

- Principalele faze dure ce se regăsesc în volumul matricei metalice sunt soluția solidă Fe_{γ}, precum și carburi complexe de tipul MC, M₂C, M₄C, M₂₃C₆ și M₆C. Formarea lor este determinată de condițiile de răcire în procesul de sudare și se află în afară de echilibru
- Punerea în soluție a carburilor începe la temperatura de 800 °C, la timpi de sensibilizare de peste 5 ore. Fenomenele de punere în soluție se regăsesc în modificarea aspectului microstructural al secțiunii depunerilor;
- Efectul tratamentului termic de sensibilizare asupra microdurității matricei depunerilor armate cu faze dure este foarte complex și nu poate fi evaluat printr-o funcție matematică de tip liniar sau polinomial;
- Carburile precipitate primar din topitură (baia metalică) și dezvoltate epitaxial pe limitele carburilor netopite sunt de tip M_4C și au o proporție ridicată de wolfram;
- Carburile precipitate secundar din matricea metalică sunt carburi complexe cu stabilitate termică redusă ale elementelor carburigene prezente în topitură de tip M_4C ;
- Carburile formate prin precipitare primară nu conțin sau conțin o proporție redusă de crom;
- Efectul tratamentului de sensibilizare se regăsește în modificarea proporției elementelor carburigene în compoziția fazelor precipitate examinate și se bazează pe mecanismele difuzionale activate de tratamentul temic.
- În urma tratamentului termic de sensibilizare, toate fazele dure examinate au conținut diferite proporții de crom. Valorile înregistrate au fost mai ridicate decâte cele

înregistrate la probele în stare sudate, iar cromul și-a făcut apariția în fazele dure care în stare sudată nu conțin acest element;

- La tratamentul termic au loc fenomene de transformare a carburilor instabile termodinamic precipitate din matrice de tipul M_4C la forme mai stabile de tipul M_6C ;
- Suplimentar modificărilor morfologice, tratamentul termic de sensibilizare induce modificări substanțiale în ceea ce privește aspectul microstructural al depunerilor realizate.

Aspecte privind rezistența la uzare abrazivă a depunerilor

- Creșterea proporției de carburi depuse în strat duce la diminuarea fenomenelor de precipitare din fază lichidă sau solidă și este determinată de necesitatea scăderii puterii arcului de plasmă transferat ca urmare a scăderii duratei de viață a băii metalice fie ca urmare a micșorării timpului de răcire între 800 și 500 °C;
- În aliajele cu baza nichel are loc o precipitare a unor carburi complexe conținând wolfram care preiau integral carbonul rezultat din topirea carburilor, iar matricea nu suferă fenomene de durificare în urma îmbogățirii în carbon. Cauza fenomenului menționat este solubilitatea deosebit de redusă a carbonului în aliajele nichelului, precum și absența unor mecanisme de formare a carburilor de către componenta de formare a matricei metalice nichelul;
- La aliajele cu baza fier, rezistența la uzare abrazivă cu trei corpuri crește rapid cu creșterea adaosului de carbură de wolfram pe seama efectului pronunțat de durificare rapidă a matricei metalice prin creșterea intensității precipitării primare și secundare de carburi complexe pe seama îmbogățirii în carbon, și mai apoi, la proporții ridicate de faze dure în amestec datorită creșterii densității fazelor dure pe interfața depunere – mediu abraziv;
- Creșterea rezistenței la uzare a aliajelor cu baza nichel este cvasi-proporțională cu adaosul de carburi și este determinată de creșterea durității suprafeței acestora (interfața depunere mediu abraziv) și nu de durificarea matricei metalice prin creșterea extinderii zonelor cu aspect eutectic;
- Rezistența la uzare abrazivă (pierderea de masă) în sisteme tribologice cu trei componente de tipul celor simulate prin încercarea ASTM G 65 a aliajului P 40 este superioară celorlalte aliaje cu baza de fier testate, dar tenacitatea depunerilor este mai redusă și este determinată probabil de gradul deosebit de ridicat de extindere al precipitărilor de faze dure în volumul matricei metalice;
- Scăderea pierderilor volumice este bruscă la adaosuri reduse de carbură de wolfram datorită solubilității reduse a carbonului în austenită, ceea ce duce la precipitarea rapidă de faze dure (carburi complexe) și creșterea rezistenței la uzare a depunerilor prin durificarea matricei metalice a depunerii;
- Pierderea de masă la încercarea de uzare abrazivă scade monoton la creșterea durității suprafeței și durității medii a matricei metalice a depunerilor realizate cu aliajul P 40, în timp ce relația cu duritatea soluției solide nu este evidentă.

ANEXA 1. MATERIALE UTILIZATE ÎN PROGRAMUL EXPERIMENTAL

1. Pulbere P 40

-

Producător: Höganäs AB, Suedia Granulație: 63 – 210 mm

Compoziția chimică pe şarjă:

Analiza chimică	Rezultatele mă	isurătorilor
С	2,27	%
Si	1,06	%
В	<0,01	%
Fe	Rest	%
Cr	24,42	%
Ni	10,97	%
Со	0,03	%
Мо	0,62	%
Mn	0,31	%
S	0,016	%
Р	0,010	%
Ν	0,042	%
O _{tot}	0,008	%
Proprietăți fizice		
Densitate aparentă	3.98	
Curgerea (Hall)	18 se	c/50 gr
Analiza granulometrică		U
+300	0,0	
+250	0,0	%
+208	1,7	%
180 - 208	16,7	%
150 - 180	20,0	%
125 – 150	18,0	%
106 - 125	9,7	%
71 – 106	27,2	%
63 – 71	6,0	%
53 – 63	0,7	%
45 - 53	0,0	%
36 – 45	0,0	%
20 - 36	0,0	%
- 20	0,0	%

2. Pulbere: W 1.4115

53 - 63

-53

-

4. I UIDEIC. W 1.4113	
Producător: Höganäs AB	B. Suedia
Granulație: 53 – 200 mm	1
Compoziția chimică pe ș	arjă:
Analiza chimică	Rezultatele măsurătorilor
С	0,20 %
Si	0,46 %
В	<0,01 %
Fe	Rest %
Cr	16,91 %
Ni	0,76 %
Мо	1,13 %
Mn	0,62 %
S	0,003 %
Р	0,018 %
O _{tot}	0,043 %
Proprietăți fizice	
Densitate aparentă	4,31
Curgerea (Hall)	14 sec/50 gr
Analiza granulometrică	-
+200	0,0 %
180 - 200	1,0 %
150 - 180	10,4 %
125 – 150	21,8 %
106 – 125	17,2 %
71 – 106	42,4 %
63 – 71	6,3 %

0,7 %

0,2 %

3. Pulberea WSC		
Producător: WOKA GmbH, Ger	nania	
Granulație: 63 – 180 mm		
Compoziția chimică pe șarjă:		
С	3,93	%
Fe	0,20	%
W	Rest	%
impurități	0,25	%
Dronwistăți fizico		
r roprietați fizice		
Densitate aparentă		7,71
Densitate aparentă Densitate aparentă compactată		7,71 9,09
Densitate aparentă Densitate aparentă compactată Curgerea (Hall)		7,71 9,09 9,84 sec/50 gr
Densitate aparentă Densitate aparentă compactată Curgerea (Hall) Distribuția granulometrică		7,71 9,09 9,84 sec/50 gr
Densitate aparentă Densitate aparentă compactată Curgerea (Hall) Distribuția granulometrică + 180	0,0	7,71 9,09 9,84 sec/50 gr
Densitate aparentă Densitate aparentă compactată Curgerea (Hall) Distribuția granulometrică + 180 + 160	0,0 0,10	7,71 9,09 9,84 sec/50 gr
Densitate aparentă Densitate aparentă compactată Curgerea (Hall) Distribuția granulometrică + 180 + 160 + 63	0,0 0,10 99,47	7,71 9,09 9,84 sec/50 gr % % %
Densitate aparentă Densitate aparentă compactată Curgerea (Hall) Distribuția granulometrică + 180 + 160 + 63 - 63	0,0 0,10 99,47 0,43	7,71 9,09 9,84 sec/50 gr % % % %

ANEXA 2. PARAMETRI DE REGIM LA ÎNCĂRCAREA PRIN SUDARE ÎN ARC DE PLASMĂ CU PULBERI Observații 1,2 3,4 3 2 \mathbf{c} 0 5 3 \sim 0 200 200 C^I ı ī ī ī ı i. ł ī ı ı ī ı ı ı ī ī. Altele gr/min du 65 <u>50</u> 50 50 50 <u>62</u> 62 cm/min 10,14 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 ٧S 6 6 6 66 min 32 32 32 32 29 35 35 35 35 35 $\frac{32}{32}$ 4 Pendulare mm 23 23 3333 $\mathbf{b}_{\mathbf{p}}$ 23 23 23 mm 10 10 202 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Η 27,5 27,5 \mathbf{U}_{a} 30 33333333333333 30 > 30 140 150 150 120 150 150 150 150 150 110 140 150 120 120 150 120 120 120 120 120 120 Arc I_{pl} 4 333333333333333 3030 40 40 40 40 8080 Lpil 40 40 V l/min 9 9 9 9 9 ∞ 9 9 9 9 9 9 9 9 9 9 9 9 ∞ ∞ ∞ V_{transp} l/min Gaze 9 9 9 9 \mathfrak{C} 9 9 4 9 9 9 9 9 4 4 9 4 4 \mathbf{c} 2 3 V_{plasma} l/min 2,5 3,5 2,5 2,5 2,5 2,5 2,5 3,5 2.5 3 4 ŝ 4 4 4 2 0|42 2 2 P 40+25%WSC P 40+40%WSC P 40+40%WSC P 40+40%WSC P 40+40%WSC P 40+40%WSC P 40+55%WSC P 40+65%WSC P 40+65%WSC P 40+65%WSC P 40+25%WSC P 40+25%WSC P 40+40%WSC P 40+40%WSC P 40+55% WSC P 40+55%WSC Proba P 40 P 40 P 40 P 40 P 40

1. Depuneri realizate pe generatoare cu introducere internă a pulberilor

Observații																					
	T _{pr}	\mathcal{D}_{\circ}	I	•	1	I	ł	I	I	I	I	I	1	I	I	I	T	I	I	1	ł
Altele	dm	gr/min	65	65	65	50	50	50	50	50	50	50	50	50	50	62	44,3	44,3	47	47	47
	VS	cm/min	7,8	7,8	7,8	7,8	10,14	7,8	7,8	10,14	7,8	7,8	7,8	10,14	7,8	6	6	8	6	6	11
	fp	min ⁻¹	32	32	32	32	39	33	32	39	33	33	32	39	33	32	32	32	32	32	32
endulare	b _p	mm	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
Ь	Н	mm	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
	U_a	۷	36	36	36	38	38	38	38	38	38	38	38	38	38						
Arc	Ipl	A	150	140	140	140	140	120	140	140	120	120	140	140	120	110	120	120	100	120	120
	Ipil	A	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
	V _{prot}	l/min	9	9	9	10	10	8	10	10	8	8	10	10	8	8	8	8	8	8	8
Gaze	Vtransp	l/min	∞	∞	8	9	9	9	9	9	9	9	9	9	9	2,5	2,5	2,5	2,5	2,5	2,5
	V _{plasma}	l/min	4	4	ω	ς	e	2,5	с С	n	2,5	4	С	3	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Proba			W 1.4115	W 1.4115	W 1.4115	W 1.4115+25%WSC	W 1.4115+25%WSC	W 1.4115+25%WSC	W 1.4115+40%WSC	W 1.4115+40%WSC	W 1.4115+40%WSC	W 1.4115+40%WSC	W 1.4115+55%WSC	W 1.4115+55%WSC	W 1.4115+55%WSC	Mix 1	Mix 1	Mix 1	Mix 2	Mix 2	Mix 2

Anexa 2. Parametri de regim la încărcarea prin sudare în arc de plasmă cu pulberi

Pag.186

	Observații			F	F, 5	F	F, 2, 5	F	F	F	ц	S	Ц	ц	F, 5	Ч	F, 2, 5	ĹĻ	Ц	S	щ	S	S, 2	S, 2	S, 3	S, 5	F, 5	S, 5
		T_{pr}	°C	1	1	I	1	-	1	-	I	I	1	ł	I	1	I	I	. 1	1	1	1		•	I	1	1	ı
	Altele	dm	gr/min	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	50	65	65	65	65	65
		NS	cm/min	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	7	9	9	9	8	8	6	6	6
		fp	min ⁻¹	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	26	28	28	19	19
	Pendulare	$\mathbf{b}_{\mathbf{p}}$	mm	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23
		Н	mm	10	10	10	10	14	14	14	14	10	10	10	10	10	10	14	14	14	14	14	8	8	12	12	10	10
berilor		Ua	Λ	34	36	34	34	38	35	34	34	32	32	32	32	34	32	32	30	30	30	29	29	28	29	27	27	27
rnă a pul	Arc	Ipl	A	160	220	240	180	250	250	250	250	300	300	250	250	250	240	240	240	160	160	190	190	210	220	220	220	220
ere exter		Ipil	Y	5	S	S	S	5	S	S	S	5	5	S	S	S	S	S	S	S	5	S	S	S	5	5	5	5
introduc		Vprot	l/min	8	∞	∞	∞	∞	8	8	8	8	8	∞	∞	∞	~	8	∞	∞	8	8	8	×	8	∞	8	8
toare cu	Gaze	Vtransp	l/min	S	S	9	9	9	9	S	4	4	4	4	4	4	9	9	9	9	5	S	S	9	9	4	4	9
be genera		V _{plasma}	l/min	9	9	5	5	9	9	9	9	9	9	9	9	9	9	4	4	4	4	S	S	4	4	n	4	4
2. Depuneri realizate t	Proba	_		P 40+25%WSC	P 40+40%WSC	P 40+40% WSC	P 40+40%WSC	P 40+40%WSC	P 40+40%WSC	W1.4115+40%WSC	W1.4115+40%WSC	W1.4115+40%WSC	W1.4115+40%WSC	W1.4115+40%WSC	P 40+55%WSC	P 40+55%WSC	P 40+55%WSC	W1.4115+55%WSC	W1.4115+55%WSC									

- ilo lhe)(. É Ç

Anexa 2. Parametri de regim la încărcarea prin sudare în arc de plasmă cu pulberi

.

ł

). |

	Gaze			Arc			Pendulare	0		Altele		Observații
V _{transp}		Vprot	I _{pil}	I _{pl}	U_a	Н	b_p	\mathbf{f}_{p}	NS	du	T _{pr}	
/min		l/min	A	A	V	mm	mm	min ⁻¹	cm/min	gr/min	°C	
4		~	5	220	27	10	23	22	7	65	1	F, 5
4		8	5	260	30	12	23	22	7	50	Ţ	S
9		8	5	230	30	12	23	22	5	50	-	S, 2
4	5 I I I I I I I I I I I I I I I I I I I	8	5	230	28	10	23	22	7	50	I	F, 6
4		8	5	260	28	10	23	22	8	50	I	S, 6

Topitură vâscoasă
Pătrundere exagerată
Baia metalică fierbe
Fisuri
Fisuri
Pierderi ridicate de pulbere
Porozitate

.

ANEXA 3 MĂSURĂTORI CANTITATIVE FOLOSIND MICROSONDA ELECTRONICĂ

Fază intermetalică pe limita carburii netopite, procente masice

nr, crt	C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total
1	2,322	0,042	3,608	18,501	0,122	6,547	0,791	65,701	1,108	98,750
2	2,313	0,047	4,134	19,656	0,103	8,577	0,663	62,145	1,296	98,939
3	2,174	0,042	3,644	19,624	0,104	6,997	0,698	64,881	1,072	99,236
4	2,612	0,033	2,822	20,146	0,178	5,574	0,380	66,123	0,887	98,755
5	2,355	0,032	3,286	19,276	0,106	6,885	0,746	66,025	1,041	99,752

Fază intermetalică pe limita carburii netopite, procente atomice

nr, crt	C	S	Ni	Fe	Mn	Cr	Mo	W	Si	Total
1	17,317	0,177	5,480	29,543	0,198	11,228	0,735	31,685	3,513	100,00
2	13,398	0,126	6,008	29,969	0,160	14,045	0.588	28,782	3,929	100,00
3	16,009	0,115	5,490	31,081	0,167	11,903	0,643	31,215	3,376	99,999
4	19,197	0,090	4,243	31,840	0,287	9,462	0,350	31,745	2,787	100,001
5	17,249	0,088	4,924	30,370	0,170	11,651	0,648	31,600	3,263	99,999

Fază dură pe limită, carbură poligonală gri, media a patru măsurători

	I	ζ	σ/	′K	% m	asice	% ato	omice
	media	ab, std,	media	abatere	media	abatere	media	abatere
C	0,3084	0,0110	1,18	0,05	2,239	0,081	16,743	0,644
S	0,0006	0,0001	7,78	0,46	0,041	0,006	0,113	0,016
Ni	0,0454	0,0040	2,75	0,10	3,669	0,352	5,474	0,441
Fe	0,2258	0,0055	1,32	0,05	19,264	0,537	30,241	0,654
Mn	0,0012	0,0001	4,90	0,08	0,109	0,009	0,174	0,017
Cr	0,0828	0,0100	2,28	0,13	7,252	0,904	12,207	1,257
Mo	0,0047	0,0003	5,22	0,13	0,725	0,056	0,663	0,062
W	0,5467	0,0191	1,00	0,00	64,688	1,762	30,866	1,415
Si	0,0108	0,0010	2,00	0,08	1,129	0,115	0,520	0,291
					99,169		99,999	

Mijlocul WSC, faza de nuanță deschisa, procente masice

	C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total
1	3,359	0,035	0,000	0,144	0,000	0,003	0,056	96,185	0,028	99,814
2	3,315	0,032	0,000	0,074	0,000	0,000	0,042	96,115	0,013	99,591
3	3,270	0,016	0,000	0,097	0,027	0,010	0,153	96,829	0,023	100,425
4	3,340	0,037	0,140	0,705	0,000	0,020	0,092	94,904	0,015	99,253
5	3,280	0,058	0,000	0,531	0,015	0,000	0,033	95,262	0,062	99,241

Mijlocul WSC, faza de nuanță deschisa, procente atomice

	C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total
1	34,603	0,134	0,000	0,318	0,000	0,008	0,072	64,743	0,122	100,000
2	34,416	0,123	0,000	0,166	0,000	0,000	0,054	65,184	0,057	100,000
3	33,850	0,061	0,000	0,215	0,061	0,024	0,198	65,489	0,102	100,000
4	34,232	0,140	0,293	1,555	0,000	0,049	0,198	63,546	0,067	100,000
5	33,803	0,003	0,000	1,180	0,031	0,000	0,043	64,336	0,076	100,000

Media a cinci măsurători

	H	ζ	σ/	Ϋ́K	% m	asice	% ato	mice
	media	ab, std,	media	abatere	media	abatere	media	abatere
С	0,4304	0,0051	1,00	0,00	3,313	0,038	34,202	0,323
S	0,0005	0,0002	8,04	0,38	0,036	0,015	0,136	0,058
Ni	0,0004	0,0009	6,18	0,22	0,028	0,063	0,059	0,131
Fe	0,0040	0,0037	6,44	1,24	0,310	0,289	0,687	0,638
Mn	0,0001	0,0001	5,14	0,11	0,008	0,012	0,0149	0,028
Cr	0,0001	0,0001	11,86	0,45	0,007	0,009	0,016	0,021
Mo	0,0005	0,0003	9,32	0,15	0,075	0,049	0,097	0,063
W	0,9438	0,0109	0,90	0,00	95,860	0,772	64,660	0,761
Si	0,0003	0,0002	6,96	0,61	0,028	0,020	0,125	0,088
					99,665		100,000	

_

Mijlocul WSC, faza de nuanță închisă, procente masice

	C	S	Ni	Fe	Mn	Cr	Mo	W	Si	Total
1	6,745	0,034	0,000	0,014	0,000	0,049	0,042	92,705	0,022	99,615
2	7,069	0,062	0,000	0,152	0,002	0,000	0,053	92,256	0,015	99,609
3	6,966	0,033	0,014	0,020	0,000	0,045	0,000	91,613	0,024	98,715
4	7,239	0,057	0,000	0,257	0,000	0,010	0,039	92,400	0,031	100,033
5	6,834	0.030	0,000	0,152	0,000	0.000	0,103	93,302	0.021	100,442

Mijlocul WSC, faza de nuanță închisă, procente atomice

	C	S	Ni	Fe	Mn	Cr	Mo	W	Si	Total
1	55,534	0,098	0,000	0,024	0,000	0,088	0,088	47,144	0,073	100,002
2	53,695	0,176	0,000	0,249	0,004	0,004	0,000	45,779	0,047	100,000
3	53,618	0,096	0,022	0,033	0,000	0,000	0,080	46,070	0,080	99,999
4	54,132	0,160	0,000	0,414	0,000	0,000	0,018	45,140	0,100	100,000
5	52,591	0,085	0,000	0,252	0,000	0,000	0,000	46,904	0,069	100,000

	ŀ	ζ	σ/	/K	% m	asice	% ato	mice
	media	ab, std,	media	abatere	media	abatere	media	abatere
С	0,9265	0,0267	0,80	0,00	6,971	0,193	53,314	0,714
S	0,0006	0,0002	7,90	0,43	0,043	0,015	0,123	0,042
Ni	0,0000	0,0001	6,48	0,28	0,003	0,006	0,004	0,010
Fe	0,0015	0,0013	7,30	0,57	0,119	0,103	0,194	0,166
Mn	0,0000	0,0000	5,48	0,19	0,000	0,001	0,001	0,002
Cr	0,0002	0,0003	11,34	0,48	0,021	0,024	0,037	0,043
Mo	0,0003	0,0002	10,04	0,48	0,047	0,037	0,045	0,036
W	0,8993	0,0081	0,90	0,00	92,455	0,619	46,207	0,822
Si	0,0002	0,0001	7,50	0,20	0,023	0,006	0,074	0,019
					99,683		100,000	

Matrice, respectiv dendrite deschise și închise la culoare, procente masice

C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total	Obs,
1,036	0,007	8,503	74,188	0,387	9,391	0,055	7,154	1,074	101,795	
1,165	0,025	8,041	73,275	0,332	8,481	0,133	7,014	1,014	99,480	ي م ا
1,084	0,009	7,346	75,801	0,461	8,307	0,176	5,653	1,030	99,867	ona
1,135	0,009	8,174	71,382	0,407	8,706	0,156	9,005	0,972	99,946	tt s
1,171	0,012	7,272	74,092	0,406	7,512	0,087	8,336	0,975	99,803	
1,185	0,013	7,585	73,087	0,379	8,364	0,206	7,758	1,062	99,639	zona
1,519	0,002	7,464	74,334	0,438	9,751	0,137	6,202	0,979	100,826	tranz inf
0,951	0,005	14,233	65,571	0,435	11,382	0,211	5,567	1,420	99,775	
0,938	0,005	14,148	64,225	0,422	12,353	0,109	5,821	1,418	99,439	mijloc
0,788	0,008	14,391	62,820	0,396	12,151	0,238	6,450	1,664	98,906	dendrite
0,689	0,000	14,914	64,163	0,405	11,128	0.157	5,999	1,678	99,133	
0,943	0,010	13,,468	63,976	0,424	12,246	0,215	5,970	1,494	98,746	zona
0,876	0,000	13,157	63,426	0,405	11,701	0,123	7,023	1,583	98,294	tranz sup
0,935	0,000	13,231	63,868	0,400	11,490	0,181	7,081	1,545	98,731	lîngă
1,157	0,000	8,060	71,940	0,376	7,972	0,179	8,424	1,017	99,125	zona
1,146	0,010	7,558	72,611	0,425	7,514	0,156	9,686	0,961	100,056	tranz

Matrice, respectiv dendrite deschise și închise la culoare, procente atomice

C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total	Obs,
4,725	0,012	7,936	71,786	0,386	9,896	0,032	2,132	2,096	99,001	
5,415	0,043	7,645	73,234	0,337	9,104	0,077	2,130	2,016	100,001	
4,986	0,016	6,911	74,973	0,463	8,825	0,102	1,698	2,026	99,001	
5,332	0,015	7,856	72,124	0,418	9,448	0,092	2,764	1,952	99,001	
5,482	0,022	6,962	74,569	0,416	8,120	0,051	2,546	1,831	99,001	
5,519	0,022	7,230	73,242	0,386	9,003	0,120	2,362	2,115	99,999	
4,987	0,003	6,971	71,910	0,421	10,135	0,033	1,822	1,893	98,175	
4,385	0,008	13,425	65,022	0,438	12,123	0,122	1,677	2,800	100,000	
9,318	0,000	11,046	60,366	0,485	14,222	0,127	2,055	2,380	99,999	
4,343	0,008	13,405	63,969	0,427	13,215	0,063	1,761	2,808	99,999	
3,669	0,015	13,821	63,424	0,406	13,177	0,140	1,978	3,340	99,97	
3,231	0,000	14,305	64,701	0,415	12,053	0,092	1,838	3,365	100,000	
4,399	0,017	12,852	64,179	0,432	13,195	0,126	1,815	2,981	99,996	
4,143	0,000	12,726	64,493	0,418	12,799	0,073	2,169	3,200	100,021	
4,396	0,000	12,728	64,593	0,412	12,481	0,107	2,175	3,108	100,000	
5,453	0,000	7,775	72,951	0,388	8,683	0,106	2,595	2,050	100,001	
5,405	0,001	7,239	73,660	0,436	8,187	0,092	2,985	1,938	99,943	

r ct. 10-22, 51-52, matrice, zona de tranzitie pe substrat (lata calouri), analiza a 9 pu	Pct. 16-22, 31-32	, matrice, zona	de tranziție p	be substrat (f	fără carburi).	, analiza a 9	puncte
---	-------------------	-----------------	----------------	----------------	----------------	---------------	--------

	ŀ	ζ	σ/	'K	% ma	sice	% ato	mice
	media	ab. std,	media	abatere	media	abatere	media	abatere
C	0,1658	0,0197	1,48	0,07	1,178	0,136	5,462	0,579
S	0,0001	0,0001	10,11	0,39	0,009	0,008	0,015	0,013
Ni	0,0757	0,0043	2,27	0,05	7,778	0,427	7,387	0,425
Fe	0,7429	0,0116	0,90	0,00	73,412	1,354	73,275	1,010
Mn	0,0041	0,0004	4,26	0,09	0,401	0,038	0,407	0,037
Cr	0,0980	0,0087	2,12	0,10	8,444	0,763	9,045	0,694
Mo	0,0011	0,0004	8,42	0,26	0,143	0,047	0,083	0,028
W	0,0496	0,0087	2,34	0,18	7,692	1,313	2,337	0,429
Si	0,0073	0,0004	2,46	0,05	1,003	0,051	1,190	0,096
					100,060		100,000	

	ŀ	K	σ	′K	% m	asice	% ator	mice
	media	ab. std,	media	abatere	media	abatere	media	abatere
C	0.1194	0.0141	1.66	0.008	0.874	0.100	4.085	0.453
S	0.0001	0.0001	10.49	0.29	0.004	0.004	0.007	0.007
Ni	0.1354	0.0063	1.74	0.05	13.935	0.661	13.323	0.600
Fe	0.6476	0.0081	0.90	0.00	64.007	0.845	64.340	0.530
Mn	0.0087	0.0001	1.11	0.11	0.113	0.115	6.131	0.617
Cr	0.1337	0.0052	1.84	0.05	11.779	0.476	12.718	0.507
Mo	0.0013	0.0004	8.29	0.37	0.176	0.049	0.103	0.029
W	0.0400	0.0039	2.54	0.11	6.273	0.594	1.917	0.196
Si	0.0111	0.0008	2.01	0.09	1.543	0.106	3.086	0.233
					99.003		100.000	

Pct. 23, 25 – 30: matrice, dendrite albe: mijlocul și porțiunea superioară

Pct. 33 – 42, puncte albe, mici, în matrice, procente masice

C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total	Obs.
2.355	0.032	2.297	23.706	0.145	6.701	0.557	64.519	0.758	101.070	Zona
2.453	0.022	2.806	24.653	0.112	8.554	0.733	59.957	1.119	100.409	trecere
2.403	0.031	2.355	23.370	0.191	7.338	0.755	63.397	0.858	100.698	inf.
2.459	0.066	4.870	21.172	0.177	9.620	1.051	60.230	1.502	101.147	
2.392	0.052	4.106	26.104	0.171	8.504	1.427	55.691	1.373	99.820	mijloc
2.453	0.049	4.675	21.315	0.148	9.982	1.040	59.978	1.513	101.153	-
2.472	0.043	3.764	20.603	0.157	8.967	0.962	61.133	1.287	99.388	7
2.265	0.034	5.829	29.945	0.183	10.656	1.009	49.656	1.700	101.277	Zona
2.473	0.027	3.917	20.794	0.142	9.435	1.057	60.458	1.268	99.571	trece
2.512	0.043	4.741	26.517	0.206	10.078	1.215	53.711	1.606	100.629	sup.

Pct. 33 – 42, puncte albe, mici, în matrice, procente atomice

C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total
16.674	0.084	3.328	36.097	0.225	10.960	0.494	29.843	2.296	100.001
16.546	0.056	3.873	35.763	0.166	13.328	0.619	26.420	3.229	100.000
16.848	0.081	3.379	35.349	0.292	11.885	0.633	29.039	2.573	100.001
16.391	0.166	6.640	30.349	0.259	14.811	0.877	29.226	4.282	100.001
15.660	0.127	5.500	36.764	0.244	12.864	1.170	23.825	3.846	100.000
16.306	0.122	6.357	30.468	0.215	15.325	0.866	26.042	4.300	100.001
17.094	0.112	5.326	30.644	0.237	14.325	0.833	27.621	3.806	100.000
13.720	0.078	7.223	39.088	0.242	14.910	0.765	19.649	4.404	99.999
16.948	0.070	5.492	30.648	0.213	14.936	0.907	27.067	3.718	99.999
15.775	0.100	6.092	35.821	0.288	14.622	0.955	22.039	4.313	100.000

	ŀ	ζ	σ/	Ϋ́Κ	% ma	sice	% ato	mice
	media	ab. std,	media	abatere	media	abatere	media	abatere
С	0.3296	0.0093	1.12	0.04	2.424	0.072	16.196	0.988
S	0.0006	0.0002	8.00	0.25	0.040	0.013	0.100	0.033
Ni	0.0470	0.0132	2.82	0.36	3.936	1.163	5.321	1.371
Fe	0.2729	0.0318	1.26	0.05	23.818	3.050	34.080	3.220
Mn	0.0018	0.0003	4.86	0.12	0.163	0.028	0.238	0.036
Cr	0.1016	0.0135	2.09	0.15	8.984	1.244	13.797	1.478
Mo	0.0065	0.0017	4.80	0.51	0.981	0.250	0.815	0.191
W	0.4858	0.0468	1.01	0.03	58.873	4.545	25.777	3.132
Si	0.0121	0.0027	1.95	0.24	1.298	0.311	3.677	0.750
					100.516		100.000	

Pct. 43 – 51, puncte albe, W₂C în volumul WSC, procente masice

C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total	Obs.
3,354	0,061	0,000	0.235	0.000	0.188	0.017	95.607	0.034	99.426	Zona
3,364	0,059	0,000	0.188	0.000	0.010	0.059	95.244	0.024	98.948	trecere
3,267	0,012	0,000	0.266	0.047	0.035	0.000	95.419	0.022	99.068	inf.
3,297	0,040	0.199	1.609	0.011	0.284	0.006	94.580	0.053	100.079	
3,405	0,050	0.062	0.406	0.000	0.076	0.161	95.242	0.026	99.432	mijloc
3,355	0,062	0.045	0.215	0.000	0.121	0.110	95.985	0.030	99.253	
3,273	0,032	0.056	0.279	0.010	0.000	0.000	95.594	0.011	99.255	Zona
3,275	0,037	0.205	0.467	0.004	0.017	0.048	95.426	0.020	99.499	trece
3,275	0,061	0.000	0.000	0.000	0.010	0.065	96.517	0.028	99.956	sup.

Pct. 43 – 51, puncte albe, W_2C în volumul WSC, procente atomice

C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total
34.513	0.236	0.000	0.521	0.000	0.280	0.022	64.276	0.151	99.995
34.788	0.230	0.000	0.417	0.000	0.025	0.077	64.355	0.108	100.000
34.064	0.047	0.000	0.596	0.106	0.083	0.000	65.003	0.100	99.999
33.072	0.150	0.409	3.472	0.024	0.659	0.007	61.981	0.227	100.001
34.792	0.191	0.130	0.891	0.000	0.179	0.205	63.496	0.115	99.999
34.377	0.238	0.095	0.474	0.000	0.286	0.141	64.257	0.131	99.999
34.063	0.125	0.115	0.485	0.077	0.000	0.000	64.896	0.045	99.806
33.813	0.143	0.433	1.036	0.041	0.041	0.062	64.373	0.089	100.031
34.023	0.238	0.000	0.000	0.000	0.025	0.084	65.506	0.124	100.000

	ŀ	K	σ	′Κ	% ma	sice	% atomice	
	media	ab. std,	media	abatere	media	abatere	media	abatere
C	0.4313	0.0068	1.00	0.00	3.319	0.052	34.167	0.537
S	0.0006	0.0002	7.92	0.38	0.046	0.017	0.178	0.067
Ni	0.0009	0.0012	6.11	0.30	0.063	0.083	0.132	0.173
Fe	0.0052	0.0060	6.12	1.03	0.407	0.470	0.892	1.011
Mn	0.0001	0.0002	5.26	0.14	0.008	0.015	0.018	0.034
Cr	0.0009	0.0011	10.42	1.21	0.075	0.091	0.175	0.212
Mo	0.0003	0.0003	9.31	0.31	0.052	0.055	0.066	0.070
W	0.9389	0.0079	0.90	0.00	95.513	0.534	64.249	1.027
Si	0.0003	0.0001	7.12	0.45	0.028	0.012	0.122	0.049
					99.510		100.000	

Pct. 52 - 60, puncte albe, WC în volumul WSC, procente masice

C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total	Obs.
7,252	0.024	0.000	0.026	0.009	0.014	0.145	92.434	0.023	99.926	Zona
6,754	0.024	0.000	0.000	0.004	0.000	0.117	92.766	0.021	99.686	trecere
6,893	0.052	0.000	0.011	0.053	0.000	0.000	93.586	0.023	100.619	inf.
6,876	0.041	0.048	0.187	0.000	0.035	0.000	92.839	0.000	100.026	
7,043	0.040	0.000	0.287	0.032	0.025	0.109	92.911	0.012	100.455	mijloc
6,892	0.059	0.000	0.133	0.047	0.007	0.000	92.762	0.029	99.929]
7,085	0.020	0.000	0.279	0.003	0.119	0.095	92.430	0.017	100.048	Zona
6,878	0.049	0.001	0.165	0.000	0.070	0.089	93.433	0.021	100.706	trece
7,271	0.035	0.071	0.216	0.000	0.011	0.045	92.053	0.016	99.718	sup.

Pct. 52 - 60, puncte închise, WC în volumul WSC, procente atomice

C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total
54.372	0.067	0.000	0.041	0.015	0.024	0.136	45.273	0.071	99.999
52.571	0.070	0.000	0.000	0.006	0.000	0.114	47.170	0.069	100.000
52.816	0.149	0.000	0.019	0.085	0.000	0.000	46.851	0.077	100.001
52.833	0.117	0.076	0.310	0.000	0.062	0.000	46.602	0.000	100.000
53.273	0.112	0.000	0.467	0.053	0.043	0.103	45.910	0.035	100.000
52.904	0.171	0.000	0.220	0.079	0.012	0.000	46.519	0.095	100.000
53.520	0.056	0.000	0.453	0.004	0.208	0.090	45.614	0.055	100.000
52.614	0.141	0.001	0.271	0.000	0.124	0.086	46.694	0.070	100.001
54.368	0.098	0.109	0.346	0.000	0.018	0.042	44.967	0.051	100.001

Pct. 52 – 60, puncte închise,	WC în volumul WS	C, procente atomice
-------------------------------	------------------	---------------------

	ŀ	ζ	σ/	Ϋ́K	% ma	sice	% atomice	
	media	ab. std,	media	abatere	media	abatere	media	abatere
C	0.9299	0.0252	0.80	0.00	6.994	0.180	53.252	0.701
S	0.0005	0.0002	6.24	0.29	0.038	0.014	0.109	0.040
Ni	0.0002	0.0004	6.39	0.26	0.013	0.027	0.021	0.042
Fe	0.0018	0.0014	7.14	0.64	0.145	0.111	0.237	0.181
Mn	0.0002	0.0003	5.31	0.09	0.016	0.022	0.027	0.036
Cr	0.0004	0.0005	11.07	0.81	0.031	0.040	0.055	0.069
Mo	0.0004	0.0003	9.51	0.70	0.067	0.057	0.063	0.054
W	0.9037	0.0064	0.90	0.00	92.802	0.483	46.178	0.764
Si	0.0002	0.0001	7.69	0.25	0.018	0.008	0.059	0.027
					100.124		100.000	

C	S	Ni	Fe	Mn	Сг	Мо	W	Si	Total	Obs.
2.445	0.063	4.480	18.718	0.084	9.813	1.067	61.070	1.557	99.297	Zona
2.414	0.084	3.564	16.822	0.115	6.842	0.455	65.874	1.001	97.412	trecere
2.367	0.028	4.434	18.497	0.061	9.029	0.791	62.141	1.383	98.731	inf.
2.372	0.033	5.344	19.727	0.144	11.530	1.198	60.531	1.665	102.544	
2.349	0.051	4.743	19.015	0.108	10.673	1.176	58.577	1.664	98.356	mijloc
2.296	0.048	4.396	19.695	0.138	9.517	0.919	62.120	1.304	100.433	
2.380	0.047	4.916	19.531	0.135	11.221	1.019	59.421	1.571	100.241	Zona
2.522	0.051	5.716	24.445	0.248	11.230	1.212	56.477	1.941	103.842	trece
2.335	0.027	3.919	18.587	0.132	8.256	1.025	62.146	1.379	97.806	sup.

Pct. 61 – 69, carburi rotunde, procente masice

Pct. 61 - 69, carburi rotunde, procente atomice

С	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total
16.881	0.163	6.326	27.791	0.127	15.648	0.922	27.543	4.599	100.000
18.294	0.018	5.527	27.421	0.191	12.015	0.622	32.668	3.244	100.000
16.770	0.074	6.429	28.191	0.094	14.780	0.701	28.769	4.192	100.000
15.570	0.082	7.178	27.855	0.207	17.486	0.984	25.963	4.675	100.000
16.085	0.132	6.645	28.006	0.162	16.884	1.009	26.207	4.872	100.002
16.993	0.125	6.242	29.398	0.209	15.258	0.799	28.166	4.870	100.000
15.964	0.118	6.747	28.180	0.197	17.388	0.855	26.042	4.507	99.998
15.481	0.117	7.179	32.279	0.332	15.928	0.932	22.654	50.97	99.999
16.850	0.074	5.786	28.844	0.209	13.762	0.926	29.295	4.255	100.001

Pct. 61 – 69, carburi rotunde, procente atomice

	ŀ	ζ	σ	′K	% ma	sice	% atomice	
	media	ab. std,	media	abatere	media	abatere	media	abatere
C	0.0218	0.0092	1.14	0.05	2.237	0.067	16.425	0.880
S	0.0006	0.0003	8.13	0.56	0.039	0.017	0.100	0.043
Ni	0.0559	0.0072	2.57	0.13	4.612	0.665	6.451	0.563
Fe	0.2244	0.0212	1.36	0.07	19.449	2.073	28.663	1.479
Mn	0.0014	0.0006	4.93	0.17	0.129	0.052	0.192	0.066
Cr	0.1107	0.0170	1.99	0.15	9.792	1.562	15.461	1.780
Мо	0.0066	0.0013	4.66	0.41	1.007	0.190	0.861	0.131
W	0.5077	0.0282	1.00	0.00	60.940	2.684	27.479	2.775
Si	0.0141	0.0023	1.78	0.15	1.496	0.268	4.368	0.560
					99.851		100.000	

C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total	Obs.
0.582	0.004	15.696	62.114	0.438	13.031	0.178	5.982	1.730	99.755	Zona
0.810	0.006	15.772	62.729	0.443	13.017	0.224	5.820	1.776	100.617	trecere
0.751	0.014	15.166	62.609	0.437	13.716	0.240	5.741	1.729	100.403	inf.
0.825	0.004	15.210	68.115	0.431	12.601	0.215	5.622	1.730	99.753	
0.820	0.007	14.525	62.132	0.482	13.100	0.209	5.795	1.769	99.839	mijloc
0.505	0.008	15.454	62.580	0.467	13.183	0.204	5.600	1.912	99.913	
0.585	0.013	15.206	60.709	0.486	12.627	0.252	6.803	1.649	98.330	Zona
0.667	0.004	15.334	61.072	0.451	12.962	0.127	6.878	1.706	99.201	trece
0.707	0.000	15.285	61.383	0.471	13.614	0.193	6.331	1.777	99.761	sup.

Pct. 70 - 78, dendrite albe, procente masice

_

Pct. 70 - 78, dendrite albe, procente atomice

C	S	Ni	Fe	Mn	Cr	Mo	W	Si	Total
2.716	0.007	14.997	62.391	0.447	14.058	0.104	1.825	3.455	100.000
3.715	0.010	14.798	61.874	0.444	13.791	0.140	1.744	3.484	100.000
3.456	0.025	14.277	61.958	0.440	14.579	0.138	1.726	3.401	100.000
3.808	0.007	14.372	62.695	0.435	13.444	0.125	1.696	3.417	99.999
3.824	0.012	13.853	62.299	0.491	14.108	0.122	1.765	3.527	100.001
2.349	0.015	14.715	62.644	0.475	14.174	0.119	1.703	3.806	100.000
2.791	0.023	14.841	62.289	0.506	13.915	0.150	2.120	3.364	99.999
3.143	0.008	14.777	61.873	0.464	14.105	0.075	2.117	3.437	99.999
3.293	0.000	14.556	61.455	0.479	14.640	0.113	1.925	3.538	99.999

Pct. 70 - 78, dendrite albe, procente atomice

	ŀ	K	<u>م</u> /	'K	% ma	sice	% atomice		
	media	ab. std,	media	abatere	media	abatere	media	abatere	
C	0.0941	0.0161	1.81	0.11	0.695	0.118	3.233	0.527	
S	0.0001	0.0001	10.14	0.52	0.007	0.005	0.012	0.008	
Ni	0.1487	0.0036	1.70	0.00	15.294	0.361	14.576	0.355	
Fe	0.6275	0.0074	0.90	0.00	62.049	0.822	62.164	0.405	
Mn	0.0046	0.0002	4.11	0.06	0.456	0.021	0.465	0.025	
Cr	0.1478	0.0042	1.72	0.04	13.095	0.380	14.090	0.369	
Mo	0.0016	0.0003	7.74	0.25	0.207	0.039	0.121	0.022	
W	0.0386	0.0032	2.59	0.11	6.064	0.492	1.847	0.169	
Si	0.0126	0.0005	1.89	0.03	1.753	0.072	3.492	0.131	
					99.619		100.000		

Pct. 79 - 84, Faze mici de culoare albă în matrice

C	S	Ni	Fe	Mn	Cr	Mo	W	Si	Total
2,914	0.040	6.162	37.476	0.355	18.329	1.298	33.295	1.492	101.361
3,753	0.033	6.650	36.469	0.320	19.898	1.120	31.747	1.603	101.595
2,890	0.348	7.914	41.709	0.722	15.911	0.912	27.293	1.646	99.245
3,749	0.008	7.539	40.017	0.361	18.686	0.963	26.643	1.611	99.577
2,312	0.029	8.001	43.222	0.360	17.324	0.961	27.547	1.513	101.269
2.887	0.074	7.451	42.404	0.385	20.430	1.923	24.854	1.811	102.219

Pct. 70 – 78, dendrite albe, procente atomice

C	S	Ni	Fe	Mn	Cr	Мо	W	Si	Total
14.917	0.076	6.452	41.255	0.397	21.671	0.832	11.133	3.265	99.998
18.227	0.060	6.627	38.193	0.341	22.382	0.683	10.100	3.337	100.000
14.419	0.651	8.077	44.752	0.788	18.336	0.570	8.896	3.511	100.000
17.984	0.015	7.399	41.295	0.378	20.706	0.578	8.350	3.304	99.999
11.617	0.055	8.224	46.704	0.396	20.106	0.605	9.042	3.251	100.000
13.747	0.132	7.258	43.425	0.401	22.471	1.146	7.732	3.688	100.000

Pct. 79 - 84, Faze mici de culoare albă în matrice

	K		σ/	′K	% masice % atom		mice	
	media	ab. std,	media	abatere	media	abatere	media	abatere
C	0.4381	0.0825	1.07	0.05	3.084	0.564	15.610	2.563
S	0.0015	0.0021	7.62	1.85	0.098	0.129	0.165	0.241
Ni	0.0766	0.0070	2.25	0.08	7.287	0.730	7.339	0.725
Fe	0.4210	0.0270	1.05	0.05	40.216	2.744	42.602	3.004
Mn	0.0044	0.0016	4.18	0.41	0.417	0.151	0.450	0.167
Cr	0.2013	0.0175	1.50	0.06	18.430	1.661	20.945	1.580
Mo	0.0086	0.0028	4.25	0.50	1.197	0.383	0.736	0.224
W	0.2065	0.0267	1.28	0.08	28.563	3.244	9.209	1.228
Si	0.0131	0.0008	1.82	0.08	1.613	0.114	3.393	0.172
					100.894		99.999	

ANEXA 4. VALORI ALE MĂSURĂTORILOR DE DURITATE LA TESTELE DE STABILITATE LA REVENIRE A DEPUNERILOR REALIZATE.

Media calculată a durității depunerilor realizează media aritmetică a valorilor măsurate. Media corectată s-a calculat cu scopul evaluării durității matricei metalice prin eliminarea acelor valori ale durității care depășesc în mod aleator 950 HV 5, considerate a nu fi caracteristice depunerilor realizate și care se obțin în urma interceptării integrale sau parțiale a fazelor dure netopite.

Măsurători	de duritate	Media	Media	
Poziția punctului	Duritatea HV 5		corectată	
de măsurare		HV 5	HV5	
1200	460			
1340	460			
1480	460			
1620	460			
1740	460			
1890	460			
2010	429		t a	
2130	429	stra 462	stra 462	
2260	429			
2420	429			
2570	509			
2720	509			
2890	494			
3070	566			
3240	376			
3430	182			
3670	178			
3910	180	rat	rat	
4150	178	bst	bst	
4390	178	Su	Su	
4630	182]		
4860	182			

P 40 + 5% WC, netratat

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV5
500	516		
650	667		
800	667		
1000	667		
1170	667		
1320	689		
1490	689	}	
1640	689	rat 11	rat 41
1760	689	Stı 64	Stı 6∠
1880	644		
2000	549		
2150	549		
2300	549		
2450	549		
2600	549		
2725	927		
3075	487	ZI	
3325	201		
3600	187		
3875	183	rat	rat
4175	183	lbst	lbst
4450	183	Su	Su
4750	183		
5050	182		

<u>P 40 + 10% WC, netratat</u>

-

•

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
350	509		
480	532		
780	532		
860	509	-	
1100	509		
1350	516	at 55	at 55
1450	516	Stu 53	Stı 53
1600	524		
1800	524		
2000	593	-	
2100	593		
2250	566		
2460	277	ZIT	
2700	232		
2900	232		
3200	232	rat	rat
3480	227	bst	bst
3700	227	Su ^j	Su
3820	227]	
4100	227]	

<u>P 40+15% WC, 500 °C, 1h, aer</u>

-

•

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5]	corectată
suprafață		HV 5	HV 5
50	447		
300	593		
550	593		
650	604		
820	515		
1000	613	-	
1150	603		
1350	584	88 at	88 at
1450	566	Sti 56	Stı 56
1550	566		
1720	593		
1900	593		
2050	593	-	
2300	575		
2480	566		
2690	532		
2790	532		
2840	183	Zľ	
3010	188		
3400	188		
3700	187	rat	rat
4100	188	bst	bst
4250	187	Su	Su
4550	188]	
4700	188		

<u>P 40+15% WC, 500 °C, 5h, aer</u>

Distanța de la	Duritate HV5	Media	Media
suprafață			corectată
		HV5	HV 5
350	613		
550	613		
620	613		
800	644		
950	613		
1100	613		
1300	613		
1500	613	79	79
1700	739	Stu 67	Stu 67
1900	739		
2100	739		
2300	593		
2450	766		
2650	766		
2850	766		
3200	825		
3500	232		
3720	232		
4100	232	rat	rat
4400	234	bst	bst
4700	232] Su	Su
5020	232]	
5300	232]	

P 40+15% WC, 500 °C, 10h, aer

Correction and a second second

1

.

Măsurători	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
		<u> </u>	
390	766		
570	766		
690	810		
790	841		
890	825		
1040	766		
1190	677		
1290	677		
1390	689		т. Т.
1490	689	tra 559	tra 559
1620	633	S C	0, 0
1740	633		
1890	549		
2040	516		
2160	487		
2310	532		
2430	524		
2590	566		
2770	584		
3120	147	717	,
3330	77.9	Z11	
3510	161		
3730	175		
3950	175	rat	rat
4200	164	bst	bst
4450	164	Su	Su
4700	164		
5000	164		

P 40+15% WC, 600 °C, 1h, aer

Pag. 205

4

Măsurător	i de duritate	Media	Media	
Distanța de la	Duritate HV5		corectată	
suprafață		HV 5	HV 5	
450	781			
570	841			
720	689			
850	739			
980	739			
1130	810			
1220	713			
1340	613			
1450	593	1		
1550	558			
1700	516	rat [rat 37	
1820	516	Sti 63	Sti 63	
1940	532	-		
2090	532			
2220	532			
2350	540			
2480	540			
2610	532			
2770	532			
2900	584			
3050	781			
3170	795			
3290	241	717	•	
3490	232			
3670	212			
3870	214			
4020	214	irat	trat	
4270	212	lbst	lbst	
4490	212	Su	Su	
4720	212			
4900	212			

P 40+15% WC, 600 °C, 5h, aer

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
450	644		
550	644		
670	575		
780	575		
900	575		
1050	575		
1210	532		
1330	532		
1480	532	at 32	at 52
1630	532	Sti 56	Stu 56
1790	532		
1970	593		
2120	524		
2250	524		
2430	524		
2580	623		
2700	593		
2840	487		
2990	251	ZIT	
3230	188		
3450	188		
3680	188	rat	Irrat
3950	188	lbst	Jbsi
4230	188	Su	SU
4510	188		
4800	188		

P 40+15% WC, 600 °C, 10h, aer

Măsurător	i de duritate	Media	Media	
Distanța de la	Duritate HV5		corectată	
suprafață		HV 5	HV 5	
480	927			
600	644			
680	677			
780	677			
930	677			
1020	677			
1210	613			
1350	613			
1480	613	D1	rat 01	
1610	613	6(C	6(
1730	603			
1840	603			
1960	603			
2120	603			
2250	603			
2410	603			
2550	386			
2730	593			
2890	286	717	-	
3090	199			
3240	190			
3380	190			
3630	192	rat	rat	
3830	192	bst	ibst	
4080	4080 192		Su	
4330	192			
4600	192			

P 40+15% WC, 700 °C, 1h, aer

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5	HV 5	corectată
suprafață			HV 5
400	766		
520	766		
650	766		
770	766		
890	766		
920	655		
1170	766		
1290	613		÷
1380	613	itra 533	tra 533
1520	613		0, 0
1710	502		
1860	502		
1990	502		
2140	613		
2260	566		
2380	391		
2540	603		
2740	361	717	
2920	158		
3120	169		
3340	169		
3550	178	rat	rat
3760	178	lbst	lbst
3990	178	Su	Su
4250	178		
4500	178		

<u>P 40+15% WC, 700 °C, 5h, aer</u>

Măsurători de duritate		Media	Media
Distanța de la suprafață	Duritate HV5	HV 5	corectată HV 5
250	524		
330	532		
430	524		
580	593		
740	524		
920	593		
1120	593		Strat 557
1370	593	itra 557	
1500	593		
1700	593		
1900	593		
2100	593	-	
2400	473		
2620	593		
2770	447		
2990	169	ZIT	
3250	155.7		Substrat
3450	155.7		
3700	155.7	Substrat	
4000	155.7		
4300	155.7		
4500	155.7		
4750	155.7		

P 40+15% WC, 800°C, 1h, aer

Pag.	210	
- ~ E.		

•

Măsurători de duritate		Madia	Media
Distanța de la suprafață	Duritate HV5	HV 5	corectată HV 5
300	927		
700	927]	
920	927]	
1020	810]	
1120	781		
1220	781]	
1320	752] [16
1570	752	52	52
1770	752		
1970	752		
2170	752		
2380	927		
2600	473		
2850	766		
3050	148		
3250	148		
3570	148	rat	rat
3700	154	pst	bst
4050	148.2	Su	Su
4250	148.2		
4500	148.2		

P 40+15% WC, 800 oC, 5h, aer

●

Măsurători de duritate		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
100	509		
250	623		
350	603		
560	441		
800	391		
1000	509		
1250	540		
1300	509		
1500	652		
1700	603	rat 30	rat 53
1900	584	Stu 58	Sti 56
2100	584		
2300	584		
2450	891		
2550	524		
2650	524		
2850	644		
3050	644		
3250	644		
3430	603		
3650	180	ZI	
3850	159		
4200	159		
4600	159	rat	rat
5000	159	pst	bst
5250	159	Su	Su
5690	159		
5820	159		

P 40+15% WC, 900 °C, 1h, aer

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV5	HV 5
200	532		
400	494		1
580	509	-	
700	540	-	
900	540		
1050	549		
1220	701		
1370	593	at 52	at 12
1540	593	Stu 55	Stı 54
1740	584		
1900	584	_	
2100	532		
2250	584		
2420	532		
2570	473		
2700	494		
2900	239	ZI	ſ
3050	171		MB
3350	171		
3600	171		
3850	171		
4200	171		
4600	171		
4850	171	<u> </u>	

P 40+15% WC, 900 °C, 5h, aer

40+15% WC, 90	<u>v C, Iun, aer</u>	Madia	Madia
Distante de l	D'4 INC	Media	Media
Distanța de la	Duritate HV5		corectata
suprafață		ΗV 5	HV 5
450	473		
600	540		
850	540		
970	540		
1020	598		
1270	509		
1500	509	at	at 1
1650	494	Stu 51	Str 51
1850	460		
2000	460		
2200	454		
2400	460		
2500	644		
2680	473		
2900	188	ZIT	
3200	135.1		
3500	135.1		
3800	135.1	rat	rat
4100	135.1	bst	bst
4460	135.1	Su	Su
4700	135.1		
4950	135.1		

P 40+15% WC, 900 °C, 10h, aer

•

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV5	HV 5
1700	540		
1810	532		
1920	532		
2040	532		
2190	540		
2340	540		++ _
2470	540	ttra 500	ttra 540
2600	666		<i>S</i> 41
2720	927		
2830	927		
2930	480		
3080	524		
3230	524		
3380	212	ZI	
3630	180	bstrat	bstrat
3880	176		
4080	167		
4330	172		
4580	169	Su	Su
4880	165		
5180	165		

P 40 + 20% WC, netratat
<u>P 40 + 25% WC, 1</u>	netratat		
Măsurător	Măsurători de duritate		Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
1100	549		
1220	549		
1360	549		
1490	549		
1590	549		
1740	549		
1890	549		±
2040	575	tra 13.	Stra 562
2190	549	0.0	
2340	558		
2460	593		
2615	613		
2765	613		
2890	927		
2990	927		
3115	386		
3315	262	ZI	ſ
3515	203		
3815	178		
4015	182	_	
4315	195	rat	rat
4590	183	lbst	Subst
4790	176	Su	
5140	178		
5440	178		

P 40 + 25% WC, netratat

+ 30% WC, netratat					
Măsurător	i de duritate	Media	Media		
istanța de la	Duritate HV5		corectată		
suprafață		HV 5	HV 5		
3460	613				
3640	613				
3860	613				
4080	613				
4320	613				
4560	613				
4810	623				
5060	644				
5280	584				
5500	633				
5620	633				
5680	613	t 08	itrat 521		
5800	623	itra 34.(
5880	689	S 99	<i>N C</i>		
5995	603				
6075	603				
6210	603				
6310	644				
6400	644				
6500	795				
6610	986				
6710	986				
6830	927				

ZIT

Substrat

Substrat

P 40 + 30%

Distanța

P 40 + 40% WC, 1	netratat	1 ·····	
Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
		-	
1300	795	4	
1570	795		
1670	781		
1790	781		
1920	781		
2050	781		
2180	766		L L
2300	766	Stra 909	Stra 775
2420	766		
2530	766		
2650	766		
2770	766		
2870	1285		
3040	1285		
3160	1285		
3260	1379		
3370	313		
3480	203		-
3700	203		l
3940	203		
4170	187		
4310	185		
4580	185	rat	rat
4840	185	bsti	bsti
5090	185	Sul	Sul
5340	188	1	
5610	187		

P 40 + 40% WC, netratat

-

ø

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
50	927		
180	908		
330	908		
480	908		
630	908		
780	801		
910	874		
1010	874		
1160	891	±	±=
1340	891	ltro	391 391
1470	891	S S	s ~
1620	1049		
1800	927		
1950	1049		
2130	1049		
2350	927		
2690	891		
2860	810		
3020	927		
3170	232	ZIT	
3320	199		
3550	199	4	
3950	199	Irrat	trat
4200	199	ibst	lbst
4600	199	Su	Su
4850	199		
5100	199		

P 40+40% WC, 500 °C, 1h, aer

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
50	593		
230	593		
380	766		
490	781		
750	766		
900	908		
1020	781		
1200	739		
1370	825		t a
1520	825	792	tro 792
1680	795	S 'S	S I
1800	701		
2000	795]	
2200	857		
2350	927		
2520	927		
2700	810		
2850	966		
3050	701		
3300	232		ZIT
3550	201		
3850	201		
4100	199	rat	rat
4400	199	lbst	lbst
4770	199	Su	Su
5000	199		
5300	199		

<u>P 40+40% WC, 500 °C, 5h, aer</u>

Măsurător	i de duritate	Media	Media
Distanta de la	Duritate HV5		corectată
suprafată		HV 5	HV 5
100	781		
200	795		
400	927	-	
700	927	-	
850	927	-	
1000	874	-	
1200	927		
1350	927	1	
1500	927	-	
1670	908		
1900	927	4	
2000	927		
2150	927		
2300	927		at
2450	766	Str 89	Str 89
2700	927	-	
3000	810		
3300	908		
3500	927		
3600	927		
3750	908		
3900	766		
4000	927		
4150	766		
4350	927		
4450	927		
4550	927		
4700	927		
4850	280	ZN	
5100	232		
5250	232		
5550	232	rat	rrat
5800	232	lbst	lbst
6100	232	Su	Su
6300	232		
6550	232		

P 40+40% WC, 500 °C, 10h, aer

đ

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
150	732		
250	732		
350	732		
470	825		
570	927		
690	927		
790	739		
890	726		
970	752		
1120	739		
1230	701		
1390	666		
1440	739		L
1590	644	tra 788	tra 177
1710	752		S C
1810	752		
1960	752		
2060	752		
2140	825		
2260	766		
2340	726		
2440	927		
2570	960		
2670	841		
2750	841		
2850	1049		
3020	739		
3240	262	717	,
3420	204		
3610	177		
3820	188		
4020	188	l rat	rat
4220	188	psti	bsti
4400	188	Su	Su
4600	188		
4800	188		

P 40+40% WC, 600 °C, 1h, aer

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
700	927		
880	927		
980	966		
1110	1006		
1210	927		
1310	927		
1430	927		
1530	927		
1660	766		
1870	766		
2000	766	l at	o 0
2120	666	82 Str	Stı 89
2220	666		
2320	666		
2440	795		
2540	825		
2660	1145		
2750	666]	
2830	1379		
2930	1049		
3040	1049		
3160	841		
3340	396	ZIT	•
3540	180		
3770	180		
4050	159	rat	rat
4280	178	bst	bst
4560	178	Su	Su
4840	178		
5060	177		

P 40+40% WC, 600 °C, 5h, aer

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5	-	corectată
suprafață		HV 5	HV 5
600	927		
700	927		
820	927		
970	927		
1090	946		
1230	927		
1350	874		
1460	874		
1580	874		
1700	927	at 18	rat 25
1760	986	Sti 895	Sti 92
1890	766]	
2010	766		
2130	981		
2260	927		
2370	927		
2480	927		
2600	927		
2740	927		
2840	701		
2990	210	ZIT	
3200	183	_	
3410	183		
3660	183	rat	rat
3890	183	lbst	ibsi
4110	183	Su	Su
4300	183		
4510	183		

P 40+40% WC, 600 °C, 10h, aer

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
550	927		
680	927	- -	
800	927		
920	927		
1050	927		
1160	927		
1290	927		
1410	927		
1530	739		
1690	927		
1840	927		t .
1950	927) 941	itra 916
2070	891		
2200	927		
2340	927		
2490	927		
2640	927		
2760	927		
2860	927		
2960	927		
3180	1049		
3280	1145		
3440	1145		
3620	271	717	-
3820	206		
4100	178		
4380	171		
4650	171	trat	trat
4900	171	ibst	lbst
5200	171	St	St
5410	171		
5690	171		

P 40+40% WC, 700 °C, 1h, aer

	Măsurător	i de duritate	Media	Media
	Distanța de la	Duritate HV5		corectată
	suprafață		HV 5	HV 5
	450	795		
	570	795		
	700	739		
	800	677		
	890	795		
	1010	713	1	
	1140	713	1	
	1250	677	1	
	1370	781		
	1490	666	at .	5 at
Ī	1570	666	Stu 73	Str 73
	1690	666	1	
ĺ	1790	713		
	1890	713		
	1980	713		
ļ	2170	725		
	2300	725]	
	2430	725		
	2580	825		
	2690	825		
	2810	232	717	٦
ĺ	2910	232		
ĺ	3130	167		
Ì	3350	167		
ĺ	3610	167	rat	rat
	3820	168	bsti	bsti
	4100	167	Su	Su
	4260	167		
	4400	167		

P 40+40% WC, 700 °C, 5h, aer

		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
600	1225		
780	1225		
880	766		
1010	795	-	
1140	795		
1240	795		
1360	795		
1460	739		
1560	466		
1690	524		
1800	739		
1940	739		
2170	689		
2270	603		ti na
2420	502	stra 678	stra 538
2540	644		
2640	644		
2790	509		
2910	713		
3130	473	_	
3280	558		
3480	558		
3630	666		
3750	623	-	
3850	623		
3970	566		
4170	566		
4320	566		
4520	566		
4670	203		۲
4950	183		
5180	177		
5460	177	rat	rat
5660	177	lbs1	ıbst
5890	177	Su	Su
6100	177		
6410	177		

<u>P 40+40% WC, 700 °C, 10h, aer</u>

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
250	927		
650	1071		
770	1071		,
850	1253		
950	927		
1100	927		
1200	644		
1400	644		
1500	644		
1700	644		
1850	644		
1950	644		
2100	644		
2250	633	rat 33	rat)5
2450	927	Stu 859	Sti 8(
2654	927		
2850	927		
2950	927		
3050	927		
3150	927		
3350	927		
3650	927		
3800	766		
4000	1027		
4200	1145		
4300	1145		
4400	1095		
4600	1095		
4800	391	ZN	
4900	140		
5100	140		
5300	140	rat	rat
5700	140	pst	bst
6000	140	Su	Su
6230	140		
6490	140		

P 40+40% WC, 800 °C, 5h, aer

€

		Media	Media
Distanța de la	Duritate HV5]	corectată
suprafață		HV 5	HV 5
420	860		
650	412		
750	524		
950	447		
1200	447]	
1550	306	1	
1950	345		
2200	441		
2480	441		
2680	603	1	
2780	345		<u>.</u>
2930	841	tra 552	tra 506
3100	540		S 41
3320	874		
3420	509		
3600	509		
3720	714]	
3850	633		
4070	575		
4240	532		
4390	766		
4540	516	1	
4740	516		
4950	155.7	717	٦
5120	155.7		
5220	157		
5420	155.7]	
5620	157	rat	rat
5920	157	pst [bst
6000	157	Su	Su
6200	157		
6350	157		

<u>P 40+40% WC, 900 °C, 10h, aer</u>

•

<u>P 40 + 50% WC, i</u>	netratat		
Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
1100	841		
1200	891		
1320	874		
1440	891		
1560	891		
1660	874		
1780	927		
1900	927		
2000	841	-	L
2150	752	itra 907	tra 383
2300	927	S S	s ~
2400	1225		
2520	966		
2620	927	-	
2710	927		
2840	1006		
2940	927	-	
3060	701		
3160	927		
3280	232	ZIT	
3500	190		
3720	187		
3970	187	rat	rat
4220	203	bst	bst
4450	189	Su	Su
4700	187		
4950	187		

P 40 + 50% WC, netratat

Măsurător	i de duritate	Media	Media
Distanța de la	Duritate HV5	_	corectată
suprafață		HV 5	HV 5
500	841		
620	841		
730	766	-	
850	927		
970	841		
1090	739		
1200	766		
1350	1225		
1460	1120		
1560	1145		
1635	1171		
1710	1197	Q :+	·
1810	1120	itra 020	tra 842
1910	1049		0) ~~
2010	1197		
2110	1006		
2210	1145		
2330	1120		
2450	1197		
2560	1095		
2660	1072		
2790	1120		
2910	1095		
3010	927		
3150	927		
3350	232	717	•
3580	210		
3800	201	_	
4070	201		
4170	201	rat	rat
4370	201	lbst	lbst
4590	201	Su	Su
4800	201		
5020	206		

P 40 + 60% WC, netratat

·		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
190	927		
270	927		
400	946		
500	927		
620	739		
740	927		
840	927		
930	908		
1080	927		
1200	908		
1300	857		
1450	927		
1520	908		
1650	874		
1730	908	8 at	0 at
1820	1095	Str 88	Str 88
1980	927		
2080	927		
2180	927		
2280	927		
2380	927		
2600	908		
2800	874		
2960	509		
3060	927		
3160	908		
3300	908		
3570	908		
3950	908		
4000	509		
4500	232	ZI	۱ <u>ـــــ</u> م
4800	178		[
5100	178		
5310	178	at	at
5520	178	SS tr	str
5770	178	Sub	Sut
5900	178		
6110	178		

<u>P 40+60% WC, 500 °C, 1h, aer</u>

*

		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	<u>HV 5</u>
100	946		
180	927		
270	766		
360	927		
560	927		
700	946		
810	781		
900	810		
1090	927		
1220	927		
1370	781		
1550	726		
1700	726	rat 37	rat \$7
1850	689	Sti 83	Sti 83
2100	726		
2300	593		
2400	857		
2500	739		
2750	739		
3000	927		
3150	754		
3400	927		
3700	927		
3900	927		
4200	927		
4350	927		
4500	206		
4800	206		
4970	206	rat	rat
5120	208	bst	bst
5300	208	Su	Su
5600	208		
5820	208		

.

		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
200	927		
280	927		
380	927		
480	927		
680	927		
820	927		
1000	927		
1100	986	_	
1250	986		
1370	986		
1490	1027		
1570	927		
1660	927		
1800	927		
1920	781		
2020	927	28	rat 07
2300	927	92 St	St 9(
2420	841		
2620	1120		
2720	927		
2900	946		
3050	927		
3150	927		
3300	1095		
3400	927]	
3510	927		
3630	927		
3750	1072		
3950	946		
4100	927		
4220	874		
4350	810		
4560	532		
4860	280	ZII	۲
5020	232		
5270	192		
5570	187	rat	rat
5850	187	bst	bst
6050	187	Su	Su
6300	187		
6800	187]	

P 40+60% WC, 500 °C, 10h, aer

-

		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
520	1449		
690	1314		
830	1314		
980	1314	-	
1110	1006		
1280	1006		
1390	1449		
1540	1027		
1690	1027		
1840	1449	-	
1950	1027		
2050	1049	04	at 06
2130	927	Sti 11	Stı 76
2230	1449		
2300	1120		
2400	1145		
2500	1145		
2620	1072		
2700	927	-	
2800	927	-	
2920	946		
3150	927]	
3270	927		
3420	549		
3640	210		
3860	210		
4080	204		
4300	180		
4510	180		
4690	175	rat	rat
4840	175	bst	bst
5170	175	Su	Su
5390	172		
5610	175		

P 40+60% WC, 600 °C, 1h, aer

ø

		Media	Media
Distanța de la suprafață	Duritate HV5	HV 5	corectată HV 5
	-		
350	1253		
400	1314		
650	927	7	
770	927		
840	946		
910	1145		
1010	927	Tat 76	so at
1160	927	10 Sti	93 93
1310	1548		
1480	1095		
1610	1283		
1780	946		
1990	1049		
2110	927		
2360	927		
2610	204	ZI	[
2910	187		
3220	168		
3620	187	rat	rat
3970	187	bst	bst
4320	190	Su	Su
4620	190		
4920	190		

P 40+60% WC, 600 °C, 5h, aer

		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
500	946		
600	1049		
750	1049		
880	1049]	
1000	1049		
1150	1049		
1260	946		
1380	946		
1500	946	Q, H	tt i a
1620	946	ttra 020	itra 946
1720	946		
1850	1072		
1990	1072		
2090	1072]	
2170	1072		
2290	1072		
2370	1072		
2470	1072		
2590	1072		
2740	254	ZI	
2920	192		
3170	185	_	
3370	185	rat	rat
3570	187	lbst	lbst
3770	187	Su	Su
3920	187		
4200	187		

P 40+60% WC, 600 °C, 10h, aer

-

		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
550	927		
680	927		
800	927		
920	927		
1050	927		
1160	927		
1290	927]	
1410	927		
1530	927]	
1690	927		
1840	927)41	tra) 925
1950	927] 0, 0,	
2070	891		
2200	927		
2340	927		
2490	927		
2640	927		
2760	927		
2860	927		
2960	1049		
3180	1145		
3440	271	ZN	г
3620	206		
3820	178		
4100	171		
4380	178	rat	rat
4650	171	pst	bst
4900	171	Su	Su
5120	171		
5360	171		

P 40+60% WC, 700 °C, 1h, aer

_

•

ag.	238

		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
460	1253		
560	1253		
710	1253		
860	1253		
960	10095		
1180	1225		
1280	927		
1380	1072]	
1530	795	rat 13	39 tat
1780	927	Stu 15	98 Sti
1840	927]	
1940	927		
2070	927		
2220	927		
2370	927		
2500	927		
2650	927		
2830	689		
2960	189	– ZIT	
3190	188		
3440	178		
3690	178		
3960	178	rat	rat
4230	178	bst	pst
4430	178	Su	Su
4650	178		
4840	178		

P 40+60% WC, 700 °C, 5h, aer

	_	Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
700	927		
820	927		
930	927		
1220	825		
1320	644		
1490	927		
1610	841	11 11	at 6
1710	1171	8 Sti	Sti 82
1820	286		
2020	841		
2170	927		
2320	766		
2450	927		
2670	927		
3070	212	717	
3360	212	Ζ.1.1	
3640	171		
3890	171		
4210	171	rat	rat
4420	171	bst	bst
4650	171	Su	Su
4810	171		
4970	171		

P 40+60% WC, 700 °C, 10h, aer

D :		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
150	927		
300	891		
450	927		
530	927		
710	908		
860	966		
960	927		
1060	966		
1210	966		
1310	927		
1410	927		
1670	644		
1820	644	at 37	at 79
1970	644	Stı 88	Stı 87
2170	825		
2370	1072		
2470	927		
2600	986		
2700	927		
2800	986		
2920	454		
3120	986		
3250	927		
3450	927		
3700	927		
3850	927		
4100	210	Z	T
4450	175		
4700	175		
5000	175	rat	rat
5350	175	osti	Dsti
5750	175	Sul	Sul
6100	175		
6600	175		

P 40+60% WC, 800 °C, 1h, aer

•

<u>P 40+60% WC, 80</u>)0 °C, 5h, aer		
		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
300	927		
450	766		
650	473		
850	927		
1000	966		
1300	1072		
1500	1072		
1700	966		
2000	766		
2300	927	at 55	.at 19
2450	927	Sti 83	Stı 80
2550	891		
2700	681		
3000	549		
3100	810		
3280	927		
3600	644		
3700	725		
3800	841		
3900	841		
4200	161	ZIT	1
4500	137		
4700	139		
4950	137	rat	rat
5300	137	bst	bst
5800	137	Su	Su
6100	137		
6400	137		

P 40+60% WC, 800 °C, 5h, aer

•

		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
250	927		
410	927		
510	1253		
660	1073		
810	1253		
960	766		
1160	766		
1380	795		
1580	795		ti ee
1800	795	stra 861	itra 798
2250	689		
2310	795		
2360	795		
2710	644		
2930	795		
3180	795		
3500	795		
3820	766		
4070	927		
4470	293	ZM	[
4890	147.2		
5100	148.2		
5490	154.5	rat	rat
5890	154.5	pst	bst
6290	154.5	Su	Su
6690	154.5		
8790	154.5		

P 40+60% WC, 800 °C, 10h, aer

•

		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
150	927		
360	927		
520	986		
7000	986		
780	986]	
1000	1006		
1200	927		
1450	927		
1600	927		
1700	927		
1950	891		
2120	927		
2250	1027	S5	rat 14
2400	927	Sti 8	Stu 87
2650	726		
2850	927		
2950	927		
3200	966		
3330	986		
3480	795		
3630	623		
3720	613		
3840	825		
3940	739		
4040	739		
4140	841		
4340	229	717	
4660	175		
4900	155.7		
5150	155.7		
5400	155.7	rat	rat
5800	155.7	bst	bst
5980	155.7	Su	Su
6230	155.7		

P 40+60% WC, 900 °C, 5h, aer

.

_

		Media	Media
Distanța de la	Duritate HV5		corectată
suprafață		HV 5	HV 5
150	960		
250	927		
350	927		
450	857	~	
560	603		
700	401		
900	927		
1050	986		
1200	986		
1350	927		
1500	701		
1650	841]	L H
1800	447	stra 707	stra 557
2000	447		
2300	623		
2500	575		
2680	509		
2850	841		
3500	386		
3750	633		
3900	633		
4000	633		
4150	644		
4270	633		
4420	633		
4700	161		
4900	135.1		
5150	135.1		
5500	135.1	rat	rat
5900	135.1	pst	bst
6300	135.1	Su	Su
6700	135.1		
6900	135.1		

P 40+60% WC, 900 °C, 10h, aer

BIBLIOGRAFIE

- Ait-Mekideche, A. Plasma-Pulver-Aufrtagschweien verschleißfester Pseudolegierungs-systeme auf Cobalt-Chrom-Kohlenstoff-Basis, teză de doctorat, RWTH Aachen, 1989
- 2. Akin, O. Ein Beitrag zur Konstitution wolframmonocarbidreicher Gußwerkstoffe auf Eisen- und Kobaltbasis, Teză de doctorat, RWTH Aachen, 1976
- 3. Anghelea, N. ş.a. Sudarea în mediu de gaze protectoare, Editura tehnică, București, 1981
- 4. Balașiu, D. Tehnici de investigare a proceselor de deteriorare, Ed. Tehnică, București, 1990
- 5. Balekics, M. Tribologie, Lito I.P. Timişoara, 1988
- 6. Baron, T. ş.a. Calitate și fiabilitate, Ed. Tehnică, București, 1988
- Bica, I. Tăierea cu plasmă a metalelor, Seria "Aplicații ale fizicii plasmei", Tipografia MIRTON, Timişoara, 1994
- 8. Binchiciu, H. ş.a. Încărcarea prin sudare cu arcul electric, Ed. Tehnică, București, 1992
- Bouaifi, B. ş.a. Plasma-Pulver-Auftragschweissen zum Verschleißschutz abrasiv beanspruchter Bauteile mit Kantenbelastung, Schweissen und Schneiden 45 (1993), vol. 9
- 10. Carțiș, I. Gh. Tratamente termochimice, Ed. Facla, Timișoara, 1988
- 11. Constantinescu, G. Oțeluri inoxidabile și refractare. Domeniile de întrebuințare și utilizarea lor rațională, OID-MICM, 1092
- 12. Crane, F.A.A., Charles J.A. Selection and use of engineering materials, Butterworth and Co., 1989
- 13. Dehelean, D. Îmbinări sudate eterogene, SID 106, IOD ICM, București, 1991
- Dehelean, D., Lugscheider, E., Morkramer, U., Molnar, R. Îmbunătățirea rezistenşei la uzare abrazivă prin procedeul PTA folosind aliaje cu matricea fier armate cu carburi metalice, a 3-a conferință comună ASR – DVS "Dezvoltarea unor materiale noi şi prelucrarea lor prin sudare", 17 – 18 aprilie 1996, Bucureşti
- 15. Delamarian, C. Manualul pentru mentenanța și retehnologizarea instalațiilor termoenergetice și industriale, ed. Sudura, 1999
- 16. Dören, H., Wenicke, K. Einfluss der Schweissparameter beim Plasma-Pulver-Auftragschweissen mit Pulver. DVS – Berichte, Bd. 100, 1985
- Draugelates, U., Bouaifi, B. Neufertigung und Instandsetzung von Stranggußführunsrollen durch Plasma - Auftragschweissen, DVS Berichte 142 (1991)
- Draugelates, U. ş.a. Verbesserung der tribologischen, korrosiven und thermischen Eigenschaften von Schutzschichten durch Eillagerung von WSC und NbC, DVS Berichte 142 (1991)
- 19. Draugelates, U. ş.a. Internal cladding of small diameter pipes by plasma-powder weld surfacing, Thermische Spritzkonferenz, 1993
- 20. Draugelates, U. ş.a. Plasma-Zweipulver-Aufrtag-Schweissen mit Oxidkeramischen Pulverlegierungen, Mitteilung aus dem Institut für

Schweisstechnik und Trennende Fertigungsverfahren (ISAF), TU Clausthal, Goslar, 1993

- Draugelates, U., Bouaifi, B. Verbesserung der tribologischen, korrosiven und thermischen eigenschaften von Schutzschichten durch Einlagerung von WSC und NbC, DGM Tagung vom 17 – 19 Juni 1992
- Eichhorn, P. Plasmaspritzen von Keramikschichten, DVS Verlag, Düsseldorf, Dilthey, U. – Werkstoffe und Verfahrenstechnik beim Aufragschweissen im Behaelter- und Apparatenbau, Metallbetrieb nr. 11, 1974
- 23. Eschmauer, H. şi Lugscheider, E. Plasmaaufrtagschweissen mit hartstoff-Hartlegierung-verbundpulvern. DVS-Berichte, Bd. 91, 1981
- 24. Frey, H., Kienel, G Dünnschichttechnologie, VDI Verlag Düsseldorf, 1987
- 25. Gavruța, P. ş.a. Metode Numerice, Institutul Politehnic "Traian Vuia" Timișoara, 1990
- 26. Gâdea, S. Metalurgie fizică și studiul metalelor, vol I III, Ed. Didactică și Pedagogică, București
- 27. Geru, N. ş.a. Materiale metalice. Structură, proprietăți, utilizări. Ed. tehnică, București, 1985
- 28. Gheorghieş, C. Controlul structurii fine a metalelor cu radiații X, Ed. Tehnică, București, 1990
- 29. Gotzmann, J. Der Einflußder Korngröße auf den Strahlverschleiß von Keramiken, Ceramic Forum International, vol 69 (1992) nr. 9
- 30. Grosch, J. ş.a. Werkstoffauswahl im Maschinenbau, Expert Berlag 7032, Sindelfingen, 1986
- 31. Harris, B. Engineering Composite Materials, Institute of Metals, 1986, London
- 32. Hume-Rottery, W., Raynor, G.V The structure of metals and alloys, The Institute of Metals, London, 1962
- Hallen, H., Lugscheider, E. Plasma Transferred Arc Surfacing with High Deposition Rates, Proceedings of the 4th NTSC, 1991, Pittsburg
- Hallen, H., Lugscheider, E. Material Development of Rollers for continuous Casting, Proceedings of the International Spray Conference, 1992, Orlando, Florida
- 35. Hallen, H., Herrström, C. PTA Beschichtung mit Nickelaluminidpulvern, Thermische Spritzkonferenz, 1993
- 36. Herrström, C. ş.a. Factorial Analysis applied to the PTA process, DVS Berichte, Bd. 152, 1992
- 37. Herrström, C. ş.a. Factorial analysis applied to the PTA process, Thermische Spritzkonferenz, Düssekldorf, 1993
- 38. Kieffer, R., Benesovski, F. Hartstoffe, Springer-verlag, Wien, 1063
- Li, Z. Entwicklung von plasmaverendelten Multikomponentenpulver auf Hartstoffbasis f
 ür die Beschichtungstechnologie, Teză de doctorat, RWTH Aachen, 1989
- 40. Knotek, O. ş.a. Hartlegierungen zum Verschleißschutz, Verlag Stahleisen m.b.H. Düsseldorf, 1975
- Krauskopf, F., Amer, A. Carbidhaltige Nickel und Eisenlegierungspulvern zum Plasmaauftrahschweissenund Thermisches Spritzen, Thermische Spritzkonferenz, Düsseldorf, 1993

- 42. Lison, R. Untersuchung der Herstellmöglichkeiten und der Eigenschaften diffusionsgeschweißter Übergänge von den Iva, Va und Via Metallen auf einen austenitischen oder ferritischen rost- und säurebeständigen Stahl.
- Lugscheider, E., Mekidecke, A. Standzeiterhöhüng von Bauteilen durch Plasmaauftragschweißen mit Hartstoff-Hartlegierung-Verbundpulvern, Schweissen und Schneiden 42 (1990), vol.2
- 44. Lugscheider, E., Ait-Mekidecke, A. Gefüge von Plasma-Pulver-Autragschweissten Hartlegierung-Hartstoff-Verbundpulvern, DVS Berichte 142 (1991)
- 45. Lugscheider, E ş.a. High power plasma transferred arc surfacing an alternative for surfacing large machinery parts, Thermische Spritzkonferenz, 1993
- 46. Lugscheider, E. ş.a. PTA Beschichtungen mit Hartstoffzusätzen im Mikrometerbereich mittels Verbundpulverkonzept, Thermische Spritzkonferenz, 1993
- 47. Lugscheider, E. Beschichtungstechnik, Vorlesung für die Vertieferrichtung Werkstofftechnik, RWTH Aachen 1994
- 48. Lugscheider, E. ş.a. Verbesserung der Eigenschaften von Hertlegierungen durch auftraggeschweisste carbidische Vebundpulver, Schweissen und Schneiden 46 (1994), vol. 3
- 49. Lugscheider, E. Verschleiss- und korrosionsbestaendige Hartlegierungen auf Niund Co- Basis zum Plasmaaufrtagschweissen, DVS Berichte, Bd. 81, 1980
- Lugscheider, E., Morkramer, U., Dehelean, D., Molnar, R. Improving abrasive wear resistance of functional surfaces by Plasma Transferred Arc surfacing, Conferința "Realizări şi perspective în domeniul sudării şi încercării materialelor", 24 - 26 mai 1995, Timişoara
- 51. Lugscheider, E. ş.a. Pulverizarea termică Materiale noi şi prelucrarea acestora prin pulverizare. A 3-a Conferință Comună ASR-DVS "Dezvoltarea unor materiale noi şi prelucrarea lor prin sudare", 17 ÷ 18 Aprilie 1996, Bucureşti
- 52. Krauskopf, F., Amer, A. Carbide containing Ni- and Fe alloy powders for use in plasma transferred arc surfacing and thermal spraying Thermische Spritzkonferenz, 1993, Düsseldorf
- 53. Micloși, V. ș.a. Bazele proceselor de sudare, Ed. Didactică și pedagogică, București, 1982
- 54. Mihu, C. Metode numerice în algebra liniară, Ed. Tehnică, București, 1988
- 55. Million, K. Formgebendes schweiessen Schwerkomponenten in Amlagenbau, OERLIKON, 1986
- 56. Mitelea, I., Budău, V. Studiul metalelor îndreptar tehnic, Ed. Facla, Timișoara, 1987
- 57. Mitelea, I., Molnar, R. Efectul curentului de sudare asupra morfologiei stratului depus la încărcarea prin sudare cu plasmă și pulberi, Revista de Tratamente Termice, an III, nr.8-9, 1994
- 58. Mitelea, I., Molnar, R. Microstructure and properties of plasma powder transferred arc welded, tungsten carbide reinforced austenitic matrix layers, Lucrările Congresului Internațional de Știința și Ingineria Materialelor, Tom XLII (XLVI), Fasc. 1 – 2, 1996, Iași, România
- 59. Mitelea, I., Molnar, R. The Influence of Some Technological parameters on the PTA Welded Layers Dillution, Jubilee Conference 60 Years of Scientific Cooperation in Welding, 19 – 21 November 1997, Timişoara, Romania

- 60. Mitelea, I., Molnar, R. –Tehnica acoperirii în plasmă a suprafețelor rezistente la uzare abrazivă folosind compozite ranforsate cu pulberi, Analele Universității din Oradea, Fasc. Mecanică, 1997
- Mitelea, I., Molnar, R. Stability of the plasma transferred arc hardfaced, tungsten carbide reinforced iron base welded composites, Buletinul Ştiințific al Universității "Politehnica" din Timişoara, Seria Mecanică, Tom 43 (57), Fasc. 1, 1998, ISSN 1224 - 6077
- 62. Mitelea, I., Molnar, R. Microprobe analysis of plasma welded reinforced metal matrix composites, Buletinul Științific al Universității "Politehnica" din Timișoara, Seria Mecanică, Tom 43 (57), Fasc. 1, 1998, ISSN 1224 - 6077
- Mitelea, I., Molnar, R. Systematic approach of the thin layer technique on plasma powder surface welding of carbide reinforced stainless steels, Buletinul Ştiinţific al Universităţii "Politehnica" din Timişoara, Seria Mecanică, Tom 44 (58), Fasc. 1, 1999, ISSN 1224 - 6077
- 64. Mitelea, I., Molnar, R. Stabilitatea la revenire a depunerilor compozite cu matrice metalică, conferința jubiliară "ISIM 25 ani", mai 1997, Timișoara.
- 65. Mitelea, I., Molnar, R. The action of some technological parameters over the hardphase losses by melting on Plasma Transferred Arc (PTA) weld surfacing, in Buletinul Ştiințific al Universității "Politehnica" din Timişoara, Seria Mecanică, Tom 45 (59), Fasc. 1, 2000, ISSN 1224 – 6077, sub tipar.
- 66. Mitelea, I., Molnar, R. Researches regarding the correlation between the hardphases molten during welding and the hardening of the PTA weld surfaced metal matrix composites, in Buletinul Ştiințific al Universității "Politehnica" din Timişoara, Seria Mecanică, Tom 45 (59), Fasc. 1, 2000, ISSN 1224 – 6077, sub tipar.
- 67. Mitelea, I., Bogdan, R. Selecția și utilizarea materialelor inginerești, Editura Politehnica, 1998, Timișoara.
- 68. Mitelea, I., Budău, V. Materiale și tratamente termice pentru structuri sudate, Ed. de Vest, Timișoara, 1992
- 69. Mitelea, I. ş.a. Ştiinţa materialelor în construcţia de maşini, Editura Sudura, Timişoara, 1999
- Mitelea, I. ş.a. Materiale şi tehnologii în construcția de maşini, Lito IPT, Timişoara, 1990
- 71. Nacken, J.W. Untersuchung des Einflusses von artfremden Hartstoffen auf die Mikrostruktur und den Verschleiß von schweißtechnischen Beschichtungen auf Fe-C-r-C Basis
- 72. Nichici, Al. ş.a. Prelucrarea datelor experimentale, Lito IPT 1996
- Oniciu, L., Grünwald, E. Galvanotehnica, Ed. Ştiinţifică şi Enciclopedică, Bucureşti 1980
- 74. Panjin, Lu Anwendung der Mathematischen Statistik in der
 Plasmabeschichtungstechnologie, Teză de doctorat, RWTH Aachen, 1989

- 75. Pavelescu, D. ş.a. Tribologie, Ed. Didactică și Pedagogică, București, 1977
- 76. Pfeiffer, E., Zürn, H. Schweisstechnische Oberflächenbeschichtung Plasma-Pulver-Auftragschweissen im Vergleich mit anderen Verfahren, Deutscher Verlag für Schweisstechnik
- 77. Pomaska, H.U. MAG Schweissen, "Kein Buch mit sieben Siegeln", Linde AG, Germania, 1989
- Popescu, N. ş.a. Tratamente termice neconvenționale, Ed. Tehnică, Bucureşti, 1990
- 79. Popovits, D., Subu, T. Bimetale. Ed. Facla, Timişoara 1982
- Pumnea, C. ş.a. Tehnici speciale de analiză fizico chimică a materialelor metalice, Ed. Tehnică, Bucureşti, 1988
- 81. Rădoi, M. ş.a. Recondiționarea pieselor, Ed. Tehnică, București, 1986
- 82. Rădulescu, I. Recondiționarea componentelor uzate, Ed. Tehnică, București, 1989
- Reimann, H. Hertlegierungen auf Nickelbasis mit artfremden Hartstoffen, Schweissen & Schneiden vol. 45 (1993), vol 2
- Röthig, J. ş.a. Eisenhartstoffbeschichtungen mit metastabiler Eisen-Mangan Matrix, Schweissen und Schneiden, nr. 3/1998
- Ruge, J. Handbuch der Schweisstechnik, Springer verlag, Berlin New York, 1974
- 86. Sedricks, J. Corrosion of stainless steels. John Wiley & Sons, New York, 1967
- 87. Sedricks, J. Nickel and it's alloys, Pergamon Press, Londra, 1978
- 88. Spînulescu, I. Fizica straturilor subțiri și aplicațiile acestora, Ed. Științifică, 1975
- 89. STATGRAPH Documentație pentru utilizarea programului de calcul
- Stoian, L. ş.a. Tehnologia Materialelor, Ed. Didactică şi Pedagogică, Bucureşti, 1980
- 91. Subu, T. Încărcarea prin sudare şi metalizare pentru recondiționarea pieselor şi fabricarea de piese noi, OID-DICM, Bucureşti, 1992
- 92. Ştefănescu, F. ş.a. Materialele viitorului se fabrică azi. Materiale compozite. Ed. Didactică şi Pedagogică, Bucureşti, 1996
- 93. Tonoiu, I. ş.a. Evaluarea modificărilor structurale ce apar la materialele compozite cu matrice de aluminiu prin măsurarea conductivității electrice.

Conferința "Realizări și perspective în domeniul sudării și încercărilor de materiale, Timișoara, 24 - 26 Mai 1995

- 94. Truşculescu, M. materiale criogenice pentru construcții de maşini, OID-ICM, Bucureşti, 1986
- 95. Truşculescu, M., Ieremia, A. Oţeluri inoxidabile şi refractare, Ed. Facla Timişoara, 1983
- 96. Wollner, M. Beitrag zur Weiterentwicklung des Plasma-Pulver-Auftragschweissverfahrens zum beschichten kleiner bis mittler Werkstückgeometrien, Teză de doctorat, RWTH Aachen, 1989
- 97. Uetz, H. Verschleiß, 1992
- Vaş, A. ş.a. Aplicațiile industriale ale plasmei termice, Ed. Facla, Timişoara, 1979
- 99. Vuoristo, P. ş.a. Herstellung, Struktur und Verschleißeigenschaften von detonationsgespritzten WC- und Cr₃C₂ - haltigen Cermetschichten, Thermische Spritzkonferenz, 1993
- Vermeşan, G. ş.a. Introducere în ingineria suprafețelor, ed. Dacia, Cluj Napoca, 1999
- Wirtz, H. Das Verhalten der Staehle beim Schweissen, Deutsche Verlag für Schweisstechnik, Düsseldorf, 1973
- 102. * * * ASTM G 65 Conducting dry sand rubber wheel abrasion test
- 103. * * * Îmbinări sudate eterogene, Oficiul de Informare şi Documentare, Ministerul Industriei, Bucureşti, 1991
- 104. * * * Încercarea materialelor, Ed. Tehnică, București 1996
- 105. * * * Acoperiri metalice. Prescripții privind domeniile de utilizare a acoperirilor metalice, ICSITTCM, București, 1979
- 106. * * * AWS D14.3-77 Specification for Welding Earthmoving and Construction Equipment, American Welding Societz, Miami, Florida, 1977
- 107. * * * Elemente ale fizicii sudării prin topire, OID ICM, București, 1988
CUPRINS

Capitolul 1. Abordarea sistemică a tehnicii straturilor subțiri	1
1.1. Introducere	1
1.2. Conceptul de material compozit	2
1.2.1. Materialele compozite armate cu fibre și particule	
Materiale compozite armate cu fibre. Principii de calcul	3
1.3. Elementele componente ale sistemului	7
1.3.1. Proprietăți termofizice ale materialului:	9
a. Temperatura de topire a substratului:	9
b. Conductivitatea termică a substratului:	9
c. Conductivitatea electrică:	
1.3.2. Geometria componentei de acoperit	10
1.4. Materiale pentru substrat și strat	10
1.4.1. Materiale pentru formarea substratului	10
Aliajele fierului	12
Aliajele nichelului:	14
Cuprul și aliajele sale:	14
Materialele ceramice:	14
1.4.2. Materialele de formare a stratului	15
Materiale metalice	
a. Creșterea rezistenței la corosiune	16
b. Creșterea rezistenței la uzare	16
Aliaje cu bază de fier	17
a. Aliaje anticoroziune cu baza fier	17
b. Aliajele antiuzură cu baza fier	19
Aliaje cu baza nichel	
Aliajele cu baza cobalt	23
1.5. Fenomene metalurgice la procesele de acoperire.	
Canitalul 2 Selectia procedeelor de acoperire	27
2 1 Analiza comparativă a procedeelor de realizare a straturilor functionale	27
2.1.1. Grosimea stratului	
2.1.2. Costul procedeelor de acoperire	
2.1.3. Tendinta spre generare de distorsiuni	
2.2. Depunerile electrolitice	
2.3. Tratamente difuzionale	
2.4. Durificarea selectivă	
2.5. Straturi depuse subțiri (CVD, PVD)	
2.6. Tratamente superficiale cu energie concentrată	
2.7. Utilizarea placării	
2.8. Metodologia selecției materialelor	
2.8.1. Stabilirea profilului materialului	47
2.8.2. Identificarea mecanismului de uzare	51
2.9. Algoritm de selecție a tehnicilor de depunere a straturilor subțiri	53

Ĩ

5

-

Capitolul 3. Procedeul PTA. Factorii ce definesc calitatea depunerilor	60
3.1. Încărcarea prin sudare în plasmă cu pulberi	60
3.1.1. Principiul procedeului	60
3.1.2. Sursa termică a procesului de sudare	
a. Arcul pilot	62
b. Arcul transferat	63
3.1.3. Soluții constructive pentru generatoarele de încărcare	64
3.2. Influența unor parametri tehnologici asupra diluției depunerilor realizate	in plasmă
cu arc transferat	
3.2.1. Introducere.	67
3.2.2. Efectul variației curentului de sudare asupra pătrunderii, eficienței și	
morfologiei depunerii	68
3.3. Efectul parametrilor de regim asupra diluției depunerilor. Programarea fa	ctorială a
experimentului	73
3.3.1. Planificarea factorială a experimentului cu 8 factori de influență	73
3.3.2. Planificarea experimentului factorial	74
3.3.3. Rezultate experimentale	75
3.4. Domenii clasice și noi de utilizare a procedeului PTA	78
3.5. Discuții	80
3.5.1. Creșterea diluției.	80
3.5.2. Scăderea diluției:	
3.6. Concluzii:	
Capitolul 4. Examinarea microstructurală a depunerilor realizate folosind	
amestecuri de pulberi	
amestecuri de pulberi 4.1. Depuneri realizate cu aliaj formator de matrice P 40	82
amestecuri de pulberi 4.1. Depuneri realizate cu aliaj formator de matrice P 40 4.1.1. Amestecul P 40 + 25% WSC	82
amestecuri de pulberi	82
 amestecuri de pulberi	
 amestecuri de pulberi	82 83 83 88 93 98
 amestecuri de pulberi	82 83 83 88 93 93 98 103
 amestecuri de pulberi	82 83 83 93 98 103 104
 amestecuri de pulberi	82 83 83 88 93 93 98 103 104 104
 amestecuri de pulberi	82 83 83 93 93 98 103 104 106 111
 amestecuri de pulberi	82 83 83 88 93 98 103 104 104 106 111
 amestecuri de pulberi 4.1. Depuneri realizate cu aliaj formator de matrice P 40 4.1.1. Amestecul P 40 + 25% WSC 4.1.2. Amestecul P 40 + 40% WSC 4.1.3. Amestecul P 40 + 55% WSC 4.1.4. Amestecul P 40 + 65% WSC 4.2. Depuneri cu aliaj formator de matrice cod W 1.4115 4.2.1. Depuneri realizate cu amestecul W 4.115 + 25% WSC 4.2.2. Depuneri realizate cu amestecul W 4.115 + 40% WSC 4.2.3. Depuneri realizate cu amestecul W 4.115 + 55% WSC 4.3.1. Depuneri realizate cu amestecul W 4.115 + 55% WSC 4.3.1. Depuneri realizate cu amestecul W 4.115 + 40% WSC 4.3.1. Depuneri realizate cu amestecul W 4.115 + 40% WSC 	82 83 83 93 93 98 103 104 106 111 116 116
 amestecuri de pulberi	82 83 83 88 93 98 103 104 104 106 111 116 116 116 121
 amestecuri de pulberi	82 83 83 93 93 98 103 104 104 106 111 111 116 116 1116 121 125
 amestecuri de pulberi	82 83 83 93 93 98 103 104 104 106 111 111 116 116 111 121 125
 amestecuri de pulberi	82 83 83 93 93 98 103 104 104 104 104 111 116 116 116 111 121 125 126
 amestecuri de pulberi	82 83 83 93 93 98 103 104 104 106 111 116 116 111 121 125 126
 amestecuri de pulberi	82 83 83 93 93 98 103 104 104 104 104 111 116 116 111 121 125 125 126 ra
 amestecuri de pulberi	82 83 83 93 93 98 103 104 104 106 111 111 116 116 111 121 125 125 126 ra 126
 amestecuri de pulberi	82 83 83 83 93 93 98 103 104 104 104 104 104 104 104 111 111 116 116 111 121 125 125 126 ra 126 ra 130

.

-

$= 2 \cdot 0 \cdot 1 \cdot 1$	
5.3. Stabilitatea la "revenire" a straturilor dure depuse prin sudare in plasma din	124
compozitul otel inoxidabil - carburi de wolfram	134
5.3.1. Examinari scierometrice	155
5.4. Analiza factoriala a electurul principalitor parametri tennologici de regim	140
5 4 1 Drogramono experimentalui	140
5.4.1. Programarea experimentului	140
5.4.2. Rezultate	141
5.4.5. Discuții privind relația parametru tennologic - duritate a matricei:	140
Creșterea durității	. 140
5.5. Concluziii	140
5.5. Concluzii:	147
Capitolul 6. Investigatii asupra structurii fine a depunerilor	148
6.1. Introducere	148
6.2. Examinarea prin difractie RX a depunerilor realizate	148
6.3. Rezultate experimentale privind diffractia RX	149
6.4. Examinări folosind microsonda electronică	155
6.5. Rezultate experimentale folosind microsonda electronică	156
6.6. Concluzii	166
Capitolul 7 - Rezistenta la uzare abrazivă a depunerilor realizate	167
7.1. Introducere	167
7.2. Mecanismul uzării abrazive a compozitelor armate cu faze dure. Aparatura	
experimentală	167
7.3. Rezultate experimentale.	171
7.4. Concluzii:	176
	177
A superto de sudin fonctional el de seis supersonale	1//
Aspecte de ordin funcțional și de asigurarea cantații	1//
Aspecte de ordin microstructural	177
Aspecte de ordin scierometric	1/9
Aspecte priving structure line a depunction	180
Aspecte privind rezistența la uzare abraziva a depunerilor	180
Anexe	
Anexa I. Materiale utilizate în programul experimental	182
Anexa 2 Parametri de regim la încărcarea prin sudare în arc de plasmă	102
cu pulberi	185
Anexa 3. Măsurători cantitative folosind microsonda electronică	
Anevo 4. Volori alo măgurătorilor de duritate le testale de stabilitate le recordina	
Anexa 4. valori ale masuratornor de duritale la testele de stabilitate la revenire	100
	199
BIBLIOGRAFIE	245

-