

VISUAL MODELING
OF CYBER PHYSICAL SYSTEMS

Teză destinată obţinerii
titlului ştiinţific de doctor inginer

la
Universitatea “Politehnica” din Timişoara

în domeniul CALCULATOARE ŞI TEHNOLOGIA
INFORMAŢIEI

de către

Ing. Gabriela Măgureanu

Conducător ştiinţific: prof.dr.ing. Ionel Jian
Referenţi ştiinţifici: prof.dr.ing. Dumitru Burdescu

 prof.dr.mat. Alexandru Cicortaş
 prof.dr.ing. Ştefan Holban

Ziua susţinerii tezei: 28.01.2013

BUPT

2 Table of Contents

Seriile Teze de doctorat ale UPT sunt:
1. Automatică 9. Inginerie Mecanică
2. Chimie 10. Ştiinţa Calculatoarelor
3. Energetică 11. Ştiinţa şi Ingineria Materialelor
4. Ingineria Chimică 12. Ingineria sistemelor
5. Inginerie Civilă 13. Inginerie energetică
6. Inginerie Electrică 14. Calculatoare şi tehnologia informaţiei
7. Inginerie Electronică şi Telecomunicaţii 15. Ingineria materialelor
8. Inginerie Industrială

Universitatea „Politehnica” din Timişoara a iniţiat seriile de mai sus în scopul
diseminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul
şcolii doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006,
tezele de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2013

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea
ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de
autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea
Universităţii „Politehnica” din Timişoara. Toate încălcările acestor drepturi vor fi
penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,
tel. 0256 403823, fax. 0256 403221

e-mail: editura@edipol.upt.ro

BUPT

Table of Contents 3

 To Daria – Children are the future.

Acknowledgement

This thesis is the result of my efforts over the last few years in the field of

Cyber Physical System modeling. I would like to take this opportunity to express my
gratitude to all those that supported me during this time.

Firstly, I would like to thank my scientific research coordinators, Prof. Dr. Ionel
Jian and Assoc. Prof. Dr. Dan Pescaru, for their help during these years, for their
advices and guidance, which have been of great use.

Secondly, I would also like to thank Assoc. Prof. Dr. Alex Doboli for his support,
especially in the first years of my research.

Thirdly, special thanks go to my PhD colleague, Madalin Gavrilescu, who has
worked by my side in all these years, even before he started his own PhD studies. I
wish him the best of luck in finalizing his thesis.

Lastly, I would like to thank my family, who was there for me regardless of
how difficult I proved to be at times. Special thanks go to my husband Milorad, my
mother, my sister Alina and my brother-in-law Adi. This thesis was possible also
because of you.

BUPT

4 Table of Contents

Măgureanu, Gabriela

VISUAL MODELING OF CYBER PHYSICAL SYSTEMS

Teze de doctorat ale UPT, Seria 14, Nr. 13, Editura Politehnica,
2013, 118 pagini, 43 figuri, 9 tabele.

ISSN: 2069-8216
ISSN-L: 2069-8216
ISBN: 978-606-554-612-7

Cuvinte cheie: Cyber Physical Systems, UM profiles, Model Driven
Architecture approach, Goal-oriented approach

Rezumat: The PhD thesis presents a visual modeling
methodology for modeling Cyber Physical Systems. Such an
approach is useful for designers of Cyber Physical System
applications. The presented methodology uses a goal-oriented
approach for the specifications of applications of Cyber Physical
Systems and Model Driven Architecture approach, at design level.

The thesis proves the utility of such an approach at design level
by case studies which discuss applications for Cyber Physical
Systems from different domains of activity, with different
difficulty degree at specifications level and with different sizes.

BUPT

Table of Contents 5

Table of Contents

Abstract ... 8

Acknowledgement ... 3

Table of Contents ... 5

List of Abbreviations .. 9

List of Figures ...10

List of Tables ..12

Chapter 1. Introduction ...13

1.1 The Research Theme ..13

1.2 Thesis Objectives ...14

1.3 The Proposed Approach ...14

1.4 Thesis Organization ...15

Chapter 2. State of the Art ...16

2.1 Massively Distributed Embedded Systems, Sensor Networks, Cyber
Physical Systems ...16

2.2 Programming Models for Sensor Networks and Cyber Physical
Systems...18

2.2.1 Programming Models for Sensor Networks18

2.2.2 Programming Models for Cyber Physical Systems24

2.2.3 Goal-Oriented Programming Models25

2.2.4 Summary ..28

2.3 Visual Modeling of Distributed Systems29

2.3.1 Modeling based on UML Profiles ..29

2.3.2 Existing Approaches in Cyber Physical System Design32

2.3.3 Summary ..36

2.4 Model Driven Architecture Approach ..36

2.4.1 Models and Transformations ...37

2.4.2 Using Model Driven Architecture in Embedded Systems38

2.4.3 Benefits and Drawbacks ..39

2.4.4 Summary ..39

Chapter 3. Goal-Oriented Approach for Cyber Physical Systems41

3.1 Theoretical Approach ...41

BUPT

6 Table of Contents
3.2 Practical Example ..44

3.2.1 Goal-Oriented Control Model ...44

3.2.2 UML Support for Distributed Optimizations48

3.3 Summary ...54

Chapter 4. MDA Approach for Cyber Physical System Design56

Chapter 5. UML Profiles for Cyber Physical System Applications60

5.1 UML Profile for Hardware Specification ..60

5.1.1 First Level Stereotypes ...61

5.1.2 Simple Modules Stereotypes ...62

5.1.3 Stereotypes for PSoC based Cyber Physical Systems63

5.1.4 Stereotypes for MiXiM ...70

5.1.5 Module Interfaces Stereotypes ..71

5.1.6 Compound Modules Stereotypes..72

5.1.7 OCL Constraints ..73

5.2 UML Profile for Software Specification ...75

5.2.1 First Level Stereotypes ...75

5.2.2 Software Part Definition Stereotypes76

5.2.3 Message Handling Stereotypes ..77

5.2.4 Handling Strategy related Stereotypes77

5.2.5 PSoC Handling Strategy related Stereotypes78

5.2.6 Communication related Stereotypes79

5.2.7 OCL Constraints ..80

5.3 Summary ...81

Chapter 6. Approach Validation using Case Studies82

6.1 Management for a Gas Distribution Network82

6.1.1 Network Settings at Area Level ...83

6.1.2 Configuration at Each Logical Level85

6.1.3 Goal Design at Perimeter Level ...86

6.1.4 Summary ..88

6.2 Management for a Traffic Light Network88

6.2.1 Cyber Physical System Networks using Wired Connections89

6.2.2 Cyber Physical System Networks using Wireless Connections92

6.2.3 Summary ..96

BUPT

Table of Contents 7
6.3 An Aircraft Fuel Management System ...97

6.3.1 Cyber Physical System Network Tailoring in Logical Levels ...97

6.3.2 Constructing PIM Models at Zone Level99

6.3.3 Summary .. 102

6.4 Model Validation Through Simulation ... 102

Chapter 7. Conclusions and Future Work .. 105

7.1 Conclusions ... 105

7.2 Contributions ... 105

7.3 Publications ... 107

7.4 Future Research Perspectives .. 108

References .. 109

BUPT

8 Table of Contents

Motto:

“Lives of great men all remind us
We can make our lives sublime,
And, departing, leave behind us
Footprints on the sands of time”

A Psalm of Life - Henry Wadsworth Longfellow

Abstract

Cyber Physical Systems (CPSs) are massively distributed heterogeneous

systems, which can be linked using wired or wireless connections. They integrate
computation and physical processes and have a great economic and social potential.
Regarding physical devices, such systems are mainly composed of sensors,
actuators, communication units and decision nodes. At logical level, CPSs are
tailored into several subsystems. Each subsystem aims to fulfill a specific objective.
One of the main issues in developing CPS applications resides in asynchronous
intercommunication between the subsystems and the influence of the exchanged
information over the controlled devices. Using models in CPS design is intensively
investigated nowadays.

The methodology introduced in this thesis is based on OMG Model Driven
Architecture (MDA) approach. It supports the design of various computational
models and allows customization based on the application requirements. Here, the
design approach addresses both hardware and software aspects of a CPS
application. As originated in MDA, it is based on Unified Modeling Language (UML).
UML is characterized by an intuitive graphical approach for embedded systems
design, making it easy for end-users to specify the requirements and constraints for
the applications. UML profiles allow specific type definitions for families of
applications. This thesis presents two defined UML profiles, one for hardware and
one for software specification for CPS applications. The profiles are used for tailoring
UML to application specific requirements. The profiles compose the Computational
Independent Model (CIM) part of the presented MDA approach, by defining specific
hardware requirements and behavioral constraints.

A CPS application consists in fulfilling a set of independent objectives. Each
objective is assigned to a heterogeneous subsystem. In such a subsystem, the
devices are logically coupled and they collaborate to meet the specific goal.
Therefore, in the presented approach, the entire network is tailored into goal-
oriented interconnected devices. The resulting models constitute the Platform
Independent Model (PIM) of the system and contain the application’s specifications.
Using code specific transformations, a PIM can be later translated into a network
deployable Platform Specific Model (PSM). The resulted code represents the final
scope of using MDA approach.

BUPT

Table of Contents 9

List of Abbreviations

CCSL Clock Constraint Specification Language
CIM Computation Independent Model
CPS Cyber Physical System
DM Decision Module
DMA Decision Module Area
DMP Decision Module Perimeter
DMZ Decision Module Zone
DRN Declarative Resource Naming
DTM Distributed Token Machine
EDA Electronic Design Automation
EJB Enterprise Java Beans
FSM Finite State Machine
GMF Graphical Modeling Framework
LP Linear Programming
MARTE Modeling and Analysis of Real-Time and Embedded Systems
MDA Model Driven Architecture
MDP Markov Decision Processes
MiXiM Mixed Simulator
MOF Meta-Object Facility
OMG Object Management Group
OMNeT++ Objective Modular Network Testbed in C++
PC Personal Computer
PIM Platform Independent Model
PSM Platform Specific Model
PSoC Programmable System-on-Chip
SoC System on Chip
SP Spatial Programming
SysML System Modeling Language
TML Token Machine Language
UML Unified Modeling Language
WNES Wireless Network of Embedded Systems
WSN Wireless Sensor Network

BUPT

10 Table of Contents

List of Figures

Figure 1 System DMs model ..42

Figure 2 Overview of distributed traffic management [77]46

Figure 3 Distributed control optimization [77] ..46

Figure 4 Reference clock description in UML [77] ..51

Figure 5 UML sequence diagram for traffic signal [77]52

Figure 6 Data flow-graph level services inside zone [77]53

Figure 7 UML statechart for zone scenario optimization [77]54

Figure 8 First level Node (Deployment) stereotypes ..61

Figure 9 Simple nodes stereotypes ...63

Figure 10 Stereotypes group for PSoC based CPSs ..64

Figure 11 Analog stereotypes ...66

Figure 12 Communication stereotypes ...67

Figure 13 Digital stereotypes ...68

Figure 14 Display stereotypes ..69

Figure 15 System stereotypes ..70

Figure 16 MiXiM units stereotypes ..71

Figure 17 Modules interfaces stereotypes ..72

Figure 18 Compound modules stereotypes ...73

Figure 19 First level inheritance of the stereotypes composing the defined software
profile ..75

Figure 20 Stereotypes used for mapping the software part to a specific hardware
unit ...76

Figure 21 Inheritance of stereotypes used for handling the communication aspects77

Figure 22 Stereotypes hierarchy for fetching the business logic at hardware unit
level ..78

Figure 23 Stereotypes hierarchy for fetching the management of connected
hardware devices at PSoC unit level ...78

Figure 24 Unit and node intra-communication stereotypes79

Figure 25 Gas pipes representation [75] ..84

BUPT

List of Figures 11

Figure 26 (a) Area model; (b) Zone-1 model ..85

Figure 27 PIM of a gas node containing sensing and actuation units87

Figure 28 Detail of the environment for the case studies89

Figure 29 UML representation for intersection traffic management network90

Figure 30 UML components for sensing nodes ..91

Figure 31 UML components for traffic light nodes ..91

Figure 32 UML compound sensing node ...91

Figure 33 UML compound traffic light node ..92

Figure 34 UML compound MiXiM like sensing node ..93

Figure 35 UML compound MiXiM like decision node ..94

Figure 36 UML compound MiXiM like traffic light node ..94

Figure 37 PIM for wireless sensing node ..95

Figure 38 Business logic specification for the PSoC unit of decision module node ...96

Figure 39 Typical military aircraft top-level fuel system [97]97

Figure 40 Logical tailoring in flow and CG subsystems for the fuel system [76]98

Figure 41 Tailoring of the Left Tanks Zone [76] ..99

Figure 42 PIM hardware model of DM LTZ node [76] 100

Figure 43 PIM software model of DM LTZ node [76] .. 101

BUPT

12 Table of Contents

List of Tables

Table 1 Evaluation of programming models for sensor networks23

Table 2 Evaluation of programming models for CPSs ...25

Table 3 Goal-oriented programming approaches ...28

Table 4 UML in embedded systems design ...32

Table 5 CPSs – List of ongoing projects ...36

Table 6 MDA in embedded systems...40

Table 7 Summary of distributed control services [77] ..50

Table 8 Constraints in UML hardware profile ...74

Table 9 Constraints in UML software profile ..80

BUPT

1.1 The Research Theme

Chapter 1. Introduction

1.1 The Research Theme

Cyber Physical Systems (CPSs) are, as presented by Lee in [1], integration of

computation and physical processes. They are massively distributed embedded
systems, which can be linked through wired or wireless connections. At physical
level, CPSs are composed of sensors, actuators, communication units and decision
modules. At logical level, CPSs are tailored into several subsystems, where each
subsystem aims to fulfill a specific objective.

In [1], Lee identifies the main challenges related to CPS applications. As
expected, there are no general accepted solutions for all types of applications,
although several problems regarding CPSs are already resolved. One of the main
issues in developing CPS applications resides in asynchronous intercommunication
between the subsystems and the influence of the exchanged information over the
controlled devices.

Applications of CPSs can be found in various activity domains like: high
confidence medical devices and systems, habitat monitoring, assisted living,
aerospace, critical infrastructure monitoring, intelligent traffic management, energy
consumption optimization for vehicles or buildings, distributed robotics, defense
systems [1]. Such a large variety of application fields and the large number of
actual applications developed, which are highly used and useful in practice, indicate
that attention was given in efficient and, at the same time, optimal design and
programming of CPSs.

Although it is a rather new area of research, CPSs domain is of interest for
many researchers worldwide. Using models in CPS design is intensively investigated
nowadays [2]. There are several proposed approaches in handling CPS applications,
which are also discussed in this thesis.

 The methodology presented in this thesis is based on Object Management
Group (OMG) Model Driven Architecture (MDA) approach [3]. It supports the design
of various computational models and allows customization based on the application
requirements. The novelty resides in the way the application requirements are
specified, in a goal-oriented manner. The design approach addresses both hardware
and software aspects of a CPS application and is based on Unified Modeling
Language (UML) [4]. UML profiles allow specific type definitions for families of
applications. UML profiles are used for tailoring UML to application specific
requirements [5]. The main steps of the approach in this thesis are presented in
chapter 1.3 and are detailed starting with chapter 3.

BUPT

14 Introduction - 1

1.2 Thesis Objectives

This thesis intends to accomplish the following:
• From a theoretical point of view, to define a methodology for designing and

programming CPS applications
• To define two UML profiles, one for hardware specification and one

for software specification, further used to customize CPS applications and to map
them as MDA Computational Independent Model (CIM)

• To define the goal-oriented tailoring the CPS network into several
logical levels and the approach in specifying CPS applications requirements

• To compose MDA Platform Independent Model (PIM) in a visual
manner, starting from CIM, at both hardware and software levels

• To identify PIM validation methodologies and possible
transformations to PSMs

• From a practical point of view, to apply the MDA proposed approach to

different types of CPS applications, in order to demonstrate that
• The MDA presented approach is suitable for CPSs composed of

sensors, actuators, communications units and decision nodes
• The CPS network size can vary up to a large number of nodes
• The CPS applications that can be modeled in this manner belong to

different activity domains and can be of various degrees of difficulty.

1.3 The Proposed Approach

Considering the multiple types of applications which use CPSs, an intuitive and

easy to use design and programming model is required. Using already defined
components, the user of such a programming methodology is able to design the
network at structure level, by specifying the selected components and the
relationships between them, without considering the hardware requirements and
limitations. These are handled by the developer of the different types of predefined
components. Also, the user has the possibility to simply specify the goals for the
corresponding application, the created system having in care the actual
implementation of the desired goals.

Such a programming methodology involves some well-defined steps. A UML
profile which covers the basic hardware aspects for describing the structure of the
different types of nodes, the connections between them, their customization and
limitations is defined. Another UML profile groups the stereotypes which define the
network behavior, in correlation with the hardware structure. These UML profiles are
used to define the library of components that help users when constructing their
CPS network, based on application requirements. The UML profiles form the CIM in
MDA approach.

The UML profiles are used as starting point to define the MDA PIM. The PIM is
defined using two types of diagrams. UML deployment diagrams are used to express
the application topology, the types of nodes and the connections between them, as

BUPT

1.4 - Thesis Organization 15

the CPS application requirements at hardware level. UML component diagrams are
used to express the network behavior, at different logical levels. At the lowest
logical level it is established the behavior at the actual device level. At the highest
logical level, the CPS application behavior is established, considering the network as
a whole. The UML software stereotypes define the reflection of the goals from higher
logical levels to lower logical levels and the implications to higher logical levels
generated by goals at lower logical levels.

The next step implies testing and verifying the PIM, before the transformation
to a Platform Specific Model (PSM), depending on application requirements and user
specifications. This can be achieved through simulation. Simulation of embedded
system applications at node and network level is desirable before deployment on
hardware devices. Simulation has major advantages, such as: errors detection in
development phases as a result of testing, validation before deployment, the
obtaining of a deterministic behavior for each node in the network, and also for the
entire network.

Using code specific transformations, a PIM is later translated into a network
deployable PSM. The resulted code represents the final scope of using MDA
approach.

1.4 Thesis Organization

The rest of the chapters in this thesis are organized as follows.
Chapter 2 reviews main research directions regarding programming models for

sensor networks and CPSs, visual modeling of distributed systems and MDA
approaches.

Chapter 3 presents the goal-oriented approach in CPS design and defines the
tailoring into several logical levels for CPS networks.

Chapter 4 presents the proposed MDA approach in CPS design with emphasis
on the CIM and PIM models and the models transformations.

Chapter 5 describes the UML artifacts defined for customizing CPS applications.
The two subchapters describe the UML hardware and software defined profiles,
respectively.

Chapter 6 presents the main ideas regarding model validation. Simulation is a
useful validation method; specific case studies using the MDA presented approach
are discussed in greater details. The applications are taken from different domains
of activity and have different degrees of difficulty regarding specifications.

Chapter 7 concludes the thesis, presents the contributions, the publications
where the author of the thesis is coauthor and present future work perspectives.

BUPT

Chapter 2. State of the Art

Chapter 2. State of the Art

2.1 Massively Distributed Embedded Systems, Sensor
Networks, Cyber Physical Systems

The term of embedded systems was initially used to describe microprocessor-

based systems that combine hardware and software processes, to control a
particular function or a group of functions, as presented by Nessett in [6].
Embedded systems have predefined functionalities which are programmable by the
user. However, the user cannot change the functionality of an embedded system by
adding or replacing software, as in a regular personal computer (PC). Some of the
advantages of using such systems are the improvement of mechanical performance
or the replacement for analog circuits and discrete logic-based circuits. Applications
of embedded systems were successfully designed over the years in many fields of
activity. However, the major drawback of these systems is that most of them are
“black boxes” to the outside, unable to link to other systems and share their
computing abilities.

Massively distributed embedded systems group a large number of tiny, single-
chip devices, equipped with sensors, actuators and communications units [7]. These
systems are seen as a suitable solution for many modern applications. This has
become feasible due to the low price and dimensions for sensing and electronic
devices, which allowed connecting of a large number of nodes for a single
application network. The challenges reside in solving the issues that appear for
different sub-systems during the network life cycle, while maintaining the system
robustness. Usually, these networks are deployed in a dynamic environment, where
they permanently have to adapt. Also, due to the small size requirements for the
nodes, the systems must handle the constraint resources.

In this thesis, the author is focused on CPS design, the challenges and
methodologies of modeling a realistic CPS application, starting from application
requirements and predefined, customized components. CPSs have evolved from
massively distributed heterogeneous embedded systems over the last years and
have an increased impact in various domains of activity. Applications of sensor
networks and in particular of CPSs can be found nowadays in multiple fields like:
intelligent traffic management, healthcare, aerospace, infrastructure management,
energy consumption optimization in vehicles and buildings, critical infrastructure
monitoring, habitat monitoring.

 CPSs are integrations of computation and physical processes [1], composed
mainly of sensors, actuators, communication and control devices. CPS nodes can be
linked in networks through wired or wireless connections. Controlling such CPS
networks is in a continuous evolution and major investments are made in the entire
world to develop an efficient technology for CPSs. As sensors are an important part
in CPSs, the author has considered that studying programming models for sensor
networks can provide valuable ideas and examples for determining a suitable

BUPT

2.1 Massively Distributed Embedded Systems, Sensor Networks, Cyber Physical Systems 17
solution in modeling CPS applications. Some relevant programming models for
sensor networks are discussed in the next subchapter.

Several summits [8] and research groups [9], [10] are interested in
determining the major challenges imposed by CPSs and possible solutions. The
research directions for CPSs can be summarized, as stated by Lee in [10]:

- Time must be considered in programming languages: physical time must be
taken into consideration when designing reliable CPSs. Even if tasks are correctly
completed in a CPS, the timing requirements for the entire network may not
necessarily be met [1].

- Reconsideration of the operating system/programming language split: the
way the operating systems are abstracted and isolate the programming language by
the hardware must be rethought in case of CPSs. TinyOS/nesC [11] are a promising
start as the programming language abstraction in nesC supports the design of thin
wrappers around hardware.

- Reconsideration of the hardware/software split: the abstractions used for
hardware differ from the ones used for software and a common “language” must be
found, as CPSs integrate hardware with physical processes and software.

- Memory hierarchy with predictability: memory hierarchy techniques are
important when considering scalability for CPSs networks. The software performance
is increased at the expense of predictability. Solutions must be found in order to
reduce the drawback of time predictability.

- Memory management with predictability: automatic memory management
improves the productivity for the programmer and the software’s general reliability,
but again, the time predictability cannot be specified.

- Predictable, controllable deep pipelines: existing techniques for deep
pipelines deliver high performance, but the time predictability problem still occurs.

- Predictable, controllable, understandable concurrency: CPSs are intrinsically
concurrent and the existing solutions for concurrent programming (threads) make
the program nondeterministic and the code unreliable.

- Concurrent components: physical components are qualitatively different
from the object oriented software components; therefore standard abstractions are
not suitable for CPSs.

- Networks with timing: the existing TCP/IP networking techniques cannot
determine the important time predictability for a CPSs network; therefore other
networking techniques must be considered.

- Computational dynamic system theory: the system theory must combine the
existing independent purely physical with the purely computational theory.

The research results are encouraging for each of the research areas previously
discussed. However, it cannot be stated that CPS design is no longer a challenge.

For embedded systems, the requirements for reliability and predictability were
always higher than in the case of general-purpose computers because customers do
not expect their car or TV to need a reboot [1]. The physical world is not
predictable, therefore CPSs must be robust under unexpected conditions and be able
to adapt to system failures. The principle to be followed, as stated by Lee in [1], is
that components at each of the layers of abstraction defined for CPSs must be made
predictable and reliable if this is to be technologically feasible case. If not, the
higher level of abstraction must compensate with robustness.

This tailoring into several logical layers constitutes the basic idea of the goal-
oriented programming model for CPSs presented in this thesis. The objective is to
offer to the designer of a CPS application the possibility to specify the requirements

BUPT

18 State of the Art - 2
at network level and the translation of commands to physical nodes to be controlled
by this high level of abstraction.

The increased interest in CPSs over the last years is due to the large number of
applications where they can be of interest, in multiple fields such as: intelligent
traffic management, healthcare, aerospace, infrastructure management, energy
consumption optimization in vehicles and buildings, critical infrastructure monitoring
[12]. Also, the fact that the sensing and actuation devices are cheap and small and
can therefore be deployed in a large number, made CPSs suitable for applications
that require a high precision degree, ensured here by large amounts of information
gathered from nodes. CPSs must have a high degree of reliability, as the
malfunction of local nodes or even subsystems should not affect the entire system.
Such a large system is hard to control as related problems are tackled together and
not separately [13]. The control procedures in a CPS must understand and react to
quality failures given by the specifications in an application. The necessary
adjustments are not trivial, due to the large number of parameters existing over the
network.

One approach in controlling the applications using CPSs is given by logically
layering the devices that compose such systems. Decisions at lower computational
levels are separated from, but influenced by, decisions at higher computational
levels and vice versa. The lower logical levels are tackled with the physical level and
mainly address local constraints. The decisions at higher logical levels refer to larger
areas, where the parameters for a certain model change much slower. At lower
logical levels, the decisions can be taken using reactive models, while at higher
levels Task Graphs or Markov Decision Processes can be considered.

2.2 Programming Models for Sensor Networks and Cyber
Physical Systems

2.2.1 Programming Models for Sensor Networks

Sensor networks come with an increased potential in various fields of activity.

The difficulty in programming such networks is given by operating with unreliable
communication, nodes and constrained resources [14]. Different programming
models were proposed in literature to overcome such programming difficulties, each
of them addressing only specific problems.

 In [14], Sugihara and Gupta propose a taxonomy for the existing
programming models, taking into consideration specific requirements for sensor
network applications like energy-efficiency, scalability, failure-resilience and
collaboration. Energy-efficiency is common for the wireless sensor network
applications, as nodes must function with the same batteries for a large period of
time. Bandwidth-efficient programs are desired, as applications may contain
hundreds of nodes. Applications are intended to remain functional even when facing
unreliable communications, nodes or other failures. Collaboration is a challenging
requirement as the way information is gathered and distributed in the network is not
standard.

The complexity of sensor nodes is both a hardware and software problem that
requires a solution. Regarding software, programming levels can be placed at thre

BUPT

2.2 - Programming Models for Sensor Networks and Cyber Physical Systems 19
conceptual levels: node, group and network level. A few programming models,
relevant to the author’s research, are detailed in the next pages.

At node-level, programming models can be operating systems or virtual
machines/middleware. This approach in sensor programming is suitable when
speaking of small scale networks, because the software load necessary for the
operating systems increases the costs in case of larger scale networks. Also, using
specific operating systems for sensor networks can be a disadvantage, as programs
written in nesC [15], for example, are not widely known. End-users can have
difficulties when using such programming languages for specifying the applications.
Node-level programming models are not suitable for the presented goal-oriented
model, as it is intended for massively distributed embedded systems and CPSs.
Such networks would have high costs and reduced energy efficiency, if implemented
using node-level approaches.

Neighborhood-based group programming languages are efficient as they
support aggregation at group level through data sharing. Definitions and operations
are also made on groups. As the size of the network increases, the software
overload also increases leading to slow and inefficient programming for applications.
The size of the network is a very important parameter that needs to be taken into
consideration for developing a suitable programming model.

The research approach regarding visual and goal-oriented programming of
sensor networks is specified as a network-level programming model. Several
programming models for sensor networks, operating at network level, were
considered when initiating the presented approach. These are further grouped into:
database and macroprogramming language. Macroprogramming language is useful
in describing global behavior and resource naming for a system.

In [16], Heinzelman et al. present MiLAN, as a middleware designed to take

into consideration the properties of the network itself. It consists of an abstraction
layer that allows network-specific plugins to convert MiLAN commands to protocol-
specific commands, passed through the usual network protocol stack.

This middleware contains two important parts: one that makes the connection
to the possible sensor networks and another one that contains specific application
programming interface. MiLAN takes into consideration the application needs and
can use only sensors that fit a particular application.

Regarding macroprogramming languages, Semantic Streams is a

representative example. In [17], Whitehouse et al. propose a framework that allows
users to pose declarative queries for the interpretation of data gathered from
sensors. The users can also place constraints. Multiple, independent users can query
the network simultaneously, whereas the system allows sharing resources and
solving conflicts between applications.

The framework is based on a semantic services programming model. A service
is a process that infers semantic information about the surrounding world and
incorporates it into an event stream. Each service has certain inputs and outputs.
The framework was built in such a manner that it allows services to be composed
and therefore to create new applications.

Newton and Welsh describe in [18] the design for Regiment, another

macroprogramming language for sensor networks. The Regiment compiler
transforms a macroprogram into an efficient program based on a token machine.
The language is a purely functional one. The authors consider that sensor networks

BUPT

20 State of the Art - 2
should be programmed at global level, while allowing the compiler to automatically
generate behaviors for the nodes from a high-level specification of the global
behavior of the network.

A program in Regiment can be best visualized as a dataflow graph; the
compiler generates code for such graph by directly translating each edge into some
number of token handlers. A standardized interface ensures that every distributed
value produces at least a formation token handler and a membership token handler.

In [18], the authors state that the functional programming language is
essential for capturing data parallelism and enabling the compiler to make informed
decisions about the scheduling and placement of computation in the sensor network.

Newton et al. propose in [19] an intermediate language for sensor networks –
Token Machine Language (TML). It is based on a simple abstract machine model,
called Distributed Token Machines (DTMs). DTMs provide a model based on tokens.
Communication is provided via typed messages containing a small payload (token
messages). Tokens are associated with token handlers that execute when receiving
a token message. TML is also used with Regiment. Each token also has a private
memory (a fixed-size piece of state), accessible by the token handler.

A sensor node consists of a heap storing local token objects, a scheduler that
processes the incoming messages and a collection of handler actions computable by
the node. Token handlers can use some operations to access the token store and
the scheduling mechanism. The language used in TML for handlers is a subset of the
C syntax plus the DTM interface.

The DTM model permits returning subroutines. This can happen with the help
of returning handler-calls built on top of core TML by using a continuation passing
style transformation. An important example for applications of TML involves
gradients (general purpose mechanisms for breadth-first exploration from a source
node).

Gummadi et al. present Kairos in [20], which is a programming model that

provides abstractions for expressing the global behavior in distributed computations,
part of a single program. Kairos offers a set of extensions to a programming
language, in the article, Python. It provides three abstractions:

- The node abstraction: programmers manipulate nodes and lists of nodes,
while Kairos provides the data types and operators needed

- The list of one-hop neighbors of a node: a Kairos program is usually
specified in terms of operations on the neighbor list for a node; therefore this is a
normal abstraction for sensor network programming

- Remote data access: the ability to read the values of variables at named
nodes. For the programmer this means variable@node notation.

The implementation of the Kairos extensions was made on Python, mostly
because the authors were familiar with the internals. They claim that Kairos is
language independent. The Kairos preprocessor uses Python extensibility interfaces
and the runtime is implemented in C.

Kairos is easy to run on programmer side, as he only has to provide a program
that contains distributed calculations. Taking into consideration the comparisons in
[20], Kairos works well for distributed networks, compared to classical algorithms.
Regiment and Kairos are suitable examples of describing global behavior in sensor
networks.

Spatial Programming (SP), presented by Borcea et al. in [21], is a space-aware

programming model, suitable for outdoor distributed embedded systems. The main

BUPT

2.2 - Programming Models for Sensor Networks and Cyber Physical Systems 21
idea is to offer network-transparent, fine-grained access to data and services from
embedded systems. The programmers will be able to use the data provided by
sensor nodes as if they would be simply using program variables.

The abstraction defined by SP contains Space Regions which are virtual
representations of physical space and Spatial References – {space: tag} pairs,
where space is a Space Region and tag is a name of a property or a service provided
by the system. Programmers can use indexes to refer distinct systems. The spatial
references are consistent during program execution.

A timeout mechanism is implemented, in case the node is no longer located in
the space it is searched for. The timeout value can be specified. If the programmer
has knowledge about certain node mobility, it can still access it through space
casting. New space regions can be defined using the intersection and reunion
operators. Also, the creation and removing of network resources is possible (similar
to creating files).

Spatial Programming can be used when a high degree of transparency is
desired for the programmer. He will query the data present in the nodes of the
network as if he would use program variables. This can happen due to the
introduced abstraction (the analogy with virtual memory and physical memory for
traditional programming models).

The authors present in [22] Declarative Resource Naming (DRN), an
abstraction that allows the description of desired resources by their run-time
properties. The resources are bound to variables and the networking is transparent
to the programmers.

A Wireless Network of Embedded Systems (WNES) is considered a single
abstract machine and resource access can appear as simple variables access. For
binding resources and variables, the programmer can specify the desired property
for the target resource. Usually, a resource variable matches more resources. Each
resource from the set can be accessed individually by using iterators (sequential
access) or there can be parallel access, which can reduce energy consumption in the
system (for example, while not taking into consideration resources that are lower
that a desired max value at a moment).

Dynamic resource binding allows the programmers not to concern themselves
with matching the resources variables to the resources of interest. This is enforced
by the semantic regarding resource access; to prevent overhead and excessive
energy consumption, programmers can relax the semantic of constraints.

Static binding is necessary if the program needs to access a resource that does
not match the description anymore. A single resource or a set of resources can be
retained for future use. By default, DRN uses dynamic binding.

SP and DRN are representative examples for the resource naming that should
view the network as a single entity.

Ni et al. introduce in [23] SpatialViews, as a high-level programming language

for ad-hoc networks. A spatial view is a collection of virtual nodes (programming
abstractions for physical nodes). A virtual node is characterized by its location, time
and services provided. In a virtual node, a program has access to the services the
corresponding physical node provides (it hosts an object that implements a certain
interface, corresponding to a certain service). A space can be an object of class
Space or of a derived class of class Space. A space granularity for a class view
denotes the spatial density of the virtual network.

BUPT

22 State of the Art - 2
In a defined spatial view, an iterator discovers the virtual nodes, gets access to

the services they provide and performs the migration of the program execution
between nodes. During iteration, unique nodes are visited. The program will migrate
between virtual nodes using different techniques for choosing the next node. Infinite
iteration can be performed, but it is not desirable. After all nodes have been visited,
the results return to the node where the iteration was started.

Every variable for a SpatialViews program is a program variable or a service
variable. The service variables support the access to services, do not migrate, are
stored in the node space and can be created using the register operator. Program
variables migrate from one node to the other, are stored in the program space and
are created using the new operator. If a program variable does not match to one of
the categories (local, container or reduction), a compile-time error can occur.

The current implementation of the SpatialViews includes a compiler, virtual
machine, runtime library and debugging/visualization environment. The compiler
extends javac from Sun. The low-level migration is provided by the SmartMessages
system. At a higher-level, the compiler generates code, so that the migration
appears transparent.

Aguiar et al. present in [24] a programming model for optimizing the energy

consumption in heterogeneous WSN (wireless sensor network). The ability of sensor
nodes to collect different phenomena is what makes the network heterogeneous. For
developing the model, some aspects must be taken into consideration: the rate of
variation for each measured phenomenon, for choosing the best sampling rate; the
number of active nodes at a certain moment: too many nodes would result in higher
energy consumption, too few could jeopardize the collection and transmission of
data; bottlenecks for sensors that are part of too many transmitting processes and
that can break.

The model was tested on homogenous and heterogeneous WSNs and the
results show energy consumption reduction for the second network type. The
demand points were placed in a grid, as well as the sensor nodes. The results
became more obvious when the number of time intervals got larger. Tests were
made considering one sink and also four sink nodes.

The main idea of the model is that by turning off a set of sensors at a certain
time interval, the total energy consumption can be reduced and at the same time
the routing of the network is still viable (the network is not partitioned).

Each of the proposed programming models is a relevant solution for the types

of applications it intends to model. However, there is no general solution is solving
each type of sensors network based application. As in this thesis the author aims to
propose a high-level methodology for the design of CPS applications based on
sensors and actuators, the network level programming models for sensor networks
were analyzed in greater detail. From those ones, also summarized in the following
table, the basic idea from Semantic Streams solution is relevant for the proposed
approach. Declarative programming is more intuitive for users than low level
programming for user, so application requirements can be declared at a high logical
level. The approach presented by Heinzelman et al. in [16] is the starting point for
the designed middleware, so that the current approach offers support for translating
the goals stated at the highest computational level into goals to be established at
lower computational levels and finally into commands to the physical nodes. The
focus on the network being transparent for the programmer, defined in DRN [22], is

BUPT

2.2 - Programming Models for Sensor Networks and Cyber Physical Systems 23
identifiable in the approach presented in this thesis as the user of the CPS is
required to specify at design general application objectives.

Programming model Strong points Weak points
Milan [16] Takes into consideration

the application needs.
Can use only sensors that fit
a particular application.

Semantic Streams
[17]

Declarative programming
is more intuitive for
regular users than low-
level, distributed
programming;
The system can be queried
by multiple users, with
multiple tasks;
The user can specify
desired QoS.

The query processor cannot
reason about runtime;
The language does not
support quantifiers and
scoping.

Regiment [18] Facilitate in-network
processing by fold/map
interface.

Applications with highly
dynamic behavior are more
difficult to encode;
Is not designed to support
rapid, repeated, short-lived
queries;
Explicit control of low level
hardware features cannot be
encoded.

Kairos [20] Easy to use;
Good results for
distributed networks.

Authors wrongly claim Kairos
is language independent.

Spatial Programming
[21]

Offers a high degree of
transparency for the
programmer;
Code migration uses Smart
Messages;
A timeout mechanism is
implemented.

No information about
SMWrapper.

DRN [22] The networking is
transparent to the
programmer;
In-network processing.

No information about testing
or implementation.

Spatial Views [23] User-specified quality of
results;
Dynamic binding.

The unit measurements are
not specified;
The lack of security or
privacy in applications;
Loop based compiler
optimizations are
investigated.

Table 1 Evaluation of programming models for sensor networks

BUPT

24 State of the Art - 2

2.2.2 Programming Models for Cyber Physical Systems

CPS design and programming is a relatively new topic in worldwide research, in

comparison to subjects like sensor networks and embedded systems. However,
there are several attempts that are worth considering when proposing a new
approach in CPS design.

CPSs have been introduced as heterogeneous systems, which can be used in
several types of applications, in [1]. Also, the author presents the open points in
challenges in CPS design [10] and presents the CPS aspect as rather an intersection
than a reunion of cyber and physical issues [25]. E. Lee’s research and articles have
been the starting point for many articles that discuss programming models for CPSs.

In [26], Tabuada argues for a decoupling, within certain limits, between the
physical characteristics of CPSs and the part that is available to the end user. He
presents some notions on the topological abstractions of the physical devices, like
the notion of locality, with different meanings in the physical environment and for
the CPS network based on sensors and actuators. He also argues for in-network
computation, where information gathered from sensors and the commands to
actuators are managed within the network. The concepts in Tabuada’s proposal are
very similar to the author of this thesis vision about CPS modeling. The separation
into computational layers and the handling at the level of decision nodes, inside the
CPS network, are aspects discussed in the present paper.

Gupta focuses in [27] on defining a programming support for location and time
information, in CPS applications. He argues for the importance of a semantic
support to use the physical location information and the validation of application’s
models against spatial and timing requirements.

Derler et al. discuss in [28] CPS modeling from the heterogeneity, concurrency
and sensitivity to timing perspectives. They take as CPS example a part of an
aircraft vehicle, the fuel management system and propose several solutions. The
authors use the Ptolemy project [29] for the fuel system modeling and also for
simulating fuel flow between tanks.

Saeedloei and Gupta consider in [30] the hybrid automata as a possible
solution for specifying, designing and analyzing several types of systems, including
CPSs. They model hybrid automata using logic programming, with several
extensions. They use the proposed framework on CPS examples, as the generalized
railroad crossing problem and the reactor temperature control systems. This logical
programming approach has good evolving perspectives, as the authors have
progressed on their research and presented the results in several related papers.

In [31], Liu proposes the adaptation of unified object model and classical
programming techniques to CPS programming. Indeed, already defined software
engineering technologies and tools, including UML, can be put together to CPS
design. Also, the strong points of Object Oriented Programming (OOP),
encapsulation, code reuse or customization can have a great impact in CPS
programming.

A summary of the programming models for CPS applications studied is

presented in the following table. In this thesis, the author uses as one of the case
studies a similar portion of an aircraft, the fuel management system [28], in order
to illustrate the goal-oriented specifications. The fuel management system is a

BUPT

2.2 - Programming Models for Sensor Networks and Cyber Physical Systems 25
representative CPS, as it combines several subsystems, each with other tasks to
fulfill. At the same time, this system is very difficult to design and the goal of using
it is not to show that one can create an aircraft system from scratch. The objective
of using it as a case study for this thesis is to show that the defined separation into
logical layers can be used in case of difficult to manage systems, and not only in
case of massively distributed systems.

Also, ideas like tailoring into computational levels or decisions taken inside the
network, after gathering sensor information (as Tabuada proposes in [26]) are main
concept in the goal-oriented approach presented in this thesis and are detailed in
chapter 3. Similar to Liu’s proposal in [31], the defined approach uses UML, as a
classic and accepted solution in modeling distributed systems.

CPS Approach Starting Year Summary

CPS position paper 2006 Decoupling into levels of
abstraction [26];
Decision management - inside
network.

CPS support for
location and time

2006 The author argues for the
importance of location and time
information in CPS semantics [27].

CPS position papers 2008 Defining CPS [1];
Defining challenges in CPS design;
Starting point for many CPS
researches.

Heterogeneity,
concurrency and
sensitivity to timing
perspectives

2010 Uses the fuel management system
from an aircraft vehicle as CPS
example [28];
Uses Ptolemy project as a solution
for design, modeling and simulation
of the CPS application.

Hybrid automata
approach

2011 Model hybrid automata is modeled
using logic programming [30];
Apply the approach on several CPS
examples.

OOP concepts in CPSs 2011 Using OOP defined concept in
design and simulation of CPS
applications [31]

Table 2 Evaluation of programming models for CPSs

2.2.3 Goal-Oriented Programming Models

Goal-oriented programming allows raising the level of abstraction when

specifying the requirements for an application. As this specification is a very
important step in designing the application flow, interest has been shown in
providing methods for posing the goals and constraints in a formalized way.

An early attempt to define goal-oriented programming is described in [32]. The
author proposes an alternative to threads in dealing with events for distributed

BUPT

26 State of the Art - 2
applications. He has shown that, by designing and implementing programs top-down
and defining goals and dependencies between them, it is possible to obtain better
performance than by using threads. The goals can be specified in Prolog. The
completion of a goal is considered an event. This model for goal-oriented
programming is different from the presented approach, as in [32] goals must be
specified along with the actions necessary to accomplish the goal (the steps that
need to be taken). In the discussed approach, the goals are set at a specific logical
level and determine the goals at lower and upper logical levels. However, the
performances obtained by van Renesse in [32] are important to keep in mind.

KAOS [33] is a goal-driven framework for systems that facilitates, after a
preliminary identification of goals, identification of future goals, requirements and
actions for the systems. In [33], the authors detail the implementation of a UML
profile for specification of KAOS. Although this profile is oriented for KAOS
framework and its needs, it is a strong point for the current research.

Navarro et al. propose in [34] a Goals Model included in ATRIUM, which is a
methodology for concurrent definition for Software Architecture and Requirements.
What is especially relevant for the goal-oriented model discussed in this paper is the
UML profile developed to tailor this Goals Model with respect to the semantics. This
UML profile has been a relevant example in defining the proposed CPS UML profile,
with respect to functional and non-functional requirements applications are defined
by.

At first glance, the approach stated by a group of researchers from MIT in [35]
seems promising, but it appears to have been left unfinished. In the proposed
system semantics, goals are formalized as language constructs and the values
stated in them lead to an automatic construction of a component-based system.
Regarding semantics, goals are similar to regular procedure calls, containing a name
and parameters. However, there is no code associated with these goals. The system
searches for the techniques that can solve the posed goals. Each of these
techniques specifies a pattern that needs to be matched to considered goals, and
eventually subgoals that need to be accomplished, and code to be run in case the
tree of subgoals is satisfied, in order for the high level goals to be satisfied. This
type of semantic is similar to Prolog.

The tree for the goals persists as long as a goal is active in order to record the
choices that were made. If new requirements are posed, the considered path in the
tree may not be the correct one anymore. In this case, the goal tree is reevaluated
and alternative choices can be made in real time [35].

The similarity with the goal-oriented approach proposed by the author lies in
the way goals are considered as requirements for the application and are purely
declarative. This approach was initiated in [13]. The goals are purely declarative
statements, customized for each application. They do not describe the steps to
accomplish for achieving the goal. Another layer, the middle one, between
application layer and hardware or simulation layer, implements the basic algorithms
that will solve the expected goals. The goals and the constraints are customized for
each application, but the algorithms remain basically the same, and independent
from a specific application.

 The applications do not present explicit interactions between entities, like the
network structure. The basic routines introduced before are parameterized and the
parameters are computed in an automated way, depending on the goals of the
applications.

The main entities of this goal-oriented approach are the Decision Modules
(DMs) [13]. They contain four main parts:

BUPT

2.2 - Programming Models for Sensor Networks and Cyber Physical Systems 27
- Inputs: the physical data acquired for applications, in this case through

sensors;
- Outputs: characterized by a set of attributes, they are the outputs of the

applications;
- Goals: have to be maximized or minimized, depending on the requirements

for the applications; they are mathematically expressed, such as in integer linear
programming, using inputs, outputs and functions from middleware;

- Constraints: represent the physical capabilities and limitations of the
platform on which the application is executed.

Decision modules are organized in hierarchical structures to handle the
complexity of distributed applications, similar to the one used to group nodes inside
a network. In fact, to each instance on a computational level corresponds a certain
DM that handles the logic of the application. Therefore the DMs are grouped at low
logical levels into Finite State Machines and at higher logical levels into less flexible
models, like Data Flow Graph or Markov Decision Processes.

The ideas presented by Saif et al. in [35] were used to implement the “Just
Play” framework [36]. This framework was proposed as a method to reduce the
amount of configuration activities users must do in order to configure the possible
applications for the consumer-level electronic devices. The framework consists of
two layers, one that captures and satisfies user tasks and another one that tries to
satisfy tasks when having as inputs several devices. The two layers are low coupled,
as they are intended to evolve separately. As stated in [35], goals must be satisfied
by techniques, without being bound to a particular technique until runtime. The
goals and the techniques form a tree, and the planning means a heuristic search
from the root of the tree to the leaves for the techniques that best satisfy each goal
[36].

An interesting approach in representing the requirements of an application is
detailed in [37]. De Sousa and de Castro propose a framework based on the
separation of concern principle in order to improve the reusability, maintainability
and comprehensibility of the specifications for the requirements in a system. It is
important to analyze beyond the functional requirements of an application,
especially in a case like the presented goal-oriented programming model. The target
for functional requirements is to capture the intended functionality and for the non-
functional requirements to impose restrictions on the system. The latter are more
difficult to specify, yet this can be achieved through an optimal application of the
separation of concern principle. The authors prove their theory through a relevant
example for an Internet Banking System.

The approach presented by Kim et al. in [38] deals with the notion of facts and
goals in networked CPSs. The authors provide a flexible reasoning framework to
support goal requests when interacting with the environment and actions for
achieving the goals.

The following table summarizes some of the most important approaches in the
last years for goal-oriented programming. Considering all the studied goal-oriented
methodologies, the one detailed in this thesis uses as starting point the concepts
initiated in [13]. The application nodes are tailored into several logical levels, in
each subsystem that acts in the CPS network. Application goals are stated at the
higher logical level and the user does not deal with low level programming aspects.

BUPT

28 State of the Art - 2

Goal-Oriented Programming
Approach

Starting Year

Summary

KAOS Framework

1991

The KAOS approach: Goal-driven
requirements engineering [33].

ATRIUM Methodology

2003

A methodology for concurrent
definition for Software Architecture
and Requirements [34].

“Just Play” Framework

2006

A method to reduce the amount of
configuration activities users must
do in order to configure the
possible applications for the
consumer-level electronic devices
[36].

Declarative goals 2009 Applications goals are purely
declarative. The logic for the entire
application is maintained in
decision nodes [13].

An approach for networked
CPSs.

2011 A distributed logic approach for
networked CPS, with support for
distributed goals and facts.

Table 3 Goal-oriented programming approaches

2.2.4 Summary

The goal-oriented model the author presents is similar to Region Streams and

Semantic Streams. It allows aggregation of the data streams, same as Region
Streams does, and is based on tasks which are periodically executed when input
data exists. In this case, the algorithms selected from specialized libraries are
dynamically receiving parameters in order to be periodically executed on the
system. Semantic Streams approach is more suitable in applications where the
network can be seen as a large database. The target applications for the
programming model are deployed on networks with several sensor and actuator
nodes and, at data pools, the decision nodes must manage the large quantity of
data gathered from these nodes. Therefore, the concepts already defined for
Semantic Streams can be used here.

The goals for an application must be specified as detailed as possible and by
taking into consideration several aspects, such as the classification in functional and
non-functional requirements for them. It is quite difficult to naturally specify all
goals involved in an application, especially the non-functional ones; therefore the
use of a separation of concern principle is desired. UML profiles allow a detailed
specification of several aspects in the development life cycle of an application,
including the requirements. Taking also into consideration the already defined UML

BUPT

2.3 - Visual Modeling of Distributed Systems 29
profiles in the literature for embedded systems, the author of the thesis has
proposed two UML profiles for customizing CPS applications, further detailed in
chapter 5.

2.3 Visual Modeling of Distributed Systems

2.3.1 Modeling based on UML Profiles

Visual modeling for applications with applicability in various domains, a well-

written documentation and use cases to facilitate the use of applications, came as a
natural request with the growing complexity of software products. Through the
usage of a model, designers of applications can ensure the correctness and
completeness for business functionality and the end-user’s requests [4]. The model
is checked to ensure robustness, security, stability and extensibility. All these can be
accomplished before actual code is written, leading to reduced number of errors at
the beginning of the implementation. A proper modeling and a complex and detailed
documentation can be the key of an easy extension of the overall project, in case of
future requirements.

UML is used in computer engineering as general-purpose modeling language.
UML is standardized by OMG, which is also the creator of this language. UML can be
used in various steps for the software development life cycle. Another strong point
in using UML is the fact that, when combined with MDA, it allows code generation.
The amount of generated code in the total code written for an application and its
precision depends on the accuracy and complexity of the transformation rules.

UML allows a high level of abstraction for specifications of applications. The
level of abstraction can be increased by hiding details in the models or decreased,
when focusing on the main aspects of the system [4]. UML allows the switching of
perspectives starting from a simple element for the scheme, going to the entire
environment where the application is executed, making possible visualization of
connections between elements or even connections between related applications.

In UML, structure diagrams are used to describe the architecture of the system,
while the behavior diagrams express the required functionality for the system which
is modeled, the flow of data and control. A particularly interesting type of diagrams
is the profile diagram. Such diagrams allow definitions for custom stereotypes, their
“attributes” named tagged values and constraints, applicable to each stereotype.
These customizations are grouped in an UML profile, which is a structure that can be
applied to several elements in other UML diagrams. This application transfers the
customizations to elements in the diagrams.

According to OMG, the organization that standardizes UML artifacts, including
profiles, A UML profile is a specification that has one or more of the following
characteristics [4]:

- Identifies a subset of the UML metamodel;
- Specifies “well-formedness rules” (constraints written in OCL), along with the

ones specified by the identified subset of the UML metamodel;
- Specifies “standard elements” (standard instances of UML stereotypes,

tagged values or constraints), along with the ones specified by the identified subset
of the UML metamodel;

BUPT

30 State of the Art - 2
- Specifies semantics, in natural language, with the ones specified by the

identified subset of the UML metamodel;
- Specifies common model elements, expressed in terms of the profile.
There are some already defined UML profiles that can be applied to embedded

systems applications and were useful in defining the UML profiles detailed in chapter
5: one hardware profile for network topology and hardware components and one
software profile for goal-oriented behavior.

SysML (System Modeling Language) is a general-purpose modeling language,
designed to support specification, analysis and validation for complex systems,
which include hardware, software, information, personnel, procedures, facilities and
equipments [39]. SysML provides graphical representations, with a semantic
foundation, for modeling system requirements, behavior, structure and parametric,
used to be integrated with other engineering analysis models. SysML is an extension
for UML and adds elements to the models not entirely supported by regular UML.
When a user model applies the SysML profile, only the UML metaclasses referenced
by SysML are available to the user of that model. This is ensured by the semantics
of the UML profiles. If the profile is not strictly applied, the UML metaclasses that
were not explicitly referenced can also be available.

MARTE (Modeling and Analysis of Real-Time and Embedded Systems) is a
profile that supports specification, design, and stages for verification and validation
and also MDA development for real-time embedded systems [40]. Concepts
introduced by this profile help modeling hardware and software relevant aspects of
real-time embedded systems. Several extensions of MARTE profile allow
performance analysis and modeling platform specific services. MARTE offers support
for real time and embedded systems, starting from specifications, going to the
detailed design and model-based analysis. MARTE profile provides several benefits
such as a common way for modeling hardware and software aspects of real time
embedded systems, with the benefit of improving communication between
developers. MARTE enables interoperability between development tools used for
specification, design, development, analysis, verification and code generation.
MARTE guides the models that can be used in predictions for properties of real time
and embedded systems, considering both hardware and software features. There
are two important aspects: one to model the features of real-time and embedded
systems and another to annotate application models, as to support analysis of
system properties. MARTE profile is intended as a foundation for applying
transformations from UML models to different analysis models.

SoC (System on Chip) [41] profile has as target SoC applications based on
SystemC [42]. SoC are the chips that integrate computational and communication
components. The components can be digital, analogue or mixed-signal. SoC profile
provides some representation capabilities: hierarchical representation of the
fundamental elements of SoC (modules and channels); roles of modules;
information transferred between modules using only one type of diagrams. Most
diagrams used for SoC are internal structure diagrams, extended by the profile [4].
In the absence of a SoC module, the diagrams have to be described by using the
description of the class constructor function with sequence diagrams. This method of
representation fails in explicitly describing the role for a module, which is
fundamental information when analyzing SoC. This profile does not require the use
of a specific language; SystemC is used only for exemplification. The goal lies in
reusing UML as much as possible, and to define the profile as a minimal extension
for modeling SoC designs.

BUPT

2.3 - Visual Modeling of Distributed Systems 31
There are several environments that allow application visual modeling using

UML diagrams. Some environments, like Papyrus [43], offer support for different
UML elements like: Package, Class, Component, Property, Primitive Type, Template
Signature, Stereotype, Import Metaclass, Comment and Constraint. These UML
elements can be used to form different UML models. Also, Papyrus UML offers
support for UML profiles definitions and UML profiles application in UML models
described using Papyrus. A strong point for Papyrus is that it has already integrated
an OCL verifier, which can be used for syntactic verification of the constraints for the
models, written in OCL language. However, a semantic verifier for the OCL
constraints had to be developed, in order to validate the logical statements the OCL
constraints brought in the model. Along with this semantic verifier, a syntactic
verifier was developed. This syntactic verifier can currently check only some OCL
reserved words, the ones used in the OCL constraints written for the UML profiles,
but it can be easily extended to support other particular OCL terms. As the syntactic
verifier contains only the terms used already in OCL constraints, there is no need to
overload the system with the entire OCL syntax. A weak point for Papyrus is the
absence of support regarding UML deployment diagrams, which are very important
in designing and modeling the hardware specifications for applications for
distributed embedded systems.

Another environment which was taken into consideration when choosing the
most suitable UML modeling environment was UML2 Tools [44]. UML2 Tools is a set
of Graphical Modeling Framework (GMF) - based editors for viewing and editing UML
models. It is focused on automatic generation of editors for all UML diagram types.
UML2 Tools offers support for creating several type of UML diagrams like: activity
diagram, class diagram, component diagram, composite structure diagram,
sequence diagram, state machine diagram and use case diagram. Also, UML2 Tools
allows the creation of profile definition diagrams, used in UML models. The weak
point of UML2 Tools, important in modeling hardware specifications for applications
of embedded systems, is the fact that deployment diagrams are not complete.
Instance specification and component elements are missing, which leads to
incompletely defined deployment diagrams, with lack of accuracy.

Smart Development Environment for Eclipse (SDE for Eclipse) [45] was the
choice for UML modeling of applications for distributed embedded systems. SDE for
Eclipse provides a unified development platform to the Java developer, enabling him
to capture requirements, design software, design database, generate code,
implement software and generate reports. SDE offers support for defining UML
profiles and also detailed deployment diagrams.

The table below summarizes some of the studied UML profiles, used for

customizing several types of applications, some of them standardized by OMG. In
general, these profiles have been defined for real time embedded systems or for
system-on-chip devices. However, as CPSs are composed of sensors, actuators and
communication devices, the customizations related to applications follow the same
principles. The two defined UML profiles try to customize the hardware part and the
software behavior, respectively. As in the SoC profile [41], stereotypes are required
for customizing the hardware sensor and actuator units and devices. The intention is
to avoid the user having low level programming skills, which is for example required
when modeling applications using MARTE [40].

BUPT

32 State of the Art - 2

Approach Starting
Year

Summary

Model using SDL 2002 A system design flow for real-time and
embedded systems, using the formal
strengths of the system specification and
design language (SDL) [46].

UML SystemC
Profile

2002 A design flow for SystemC language, starting
from UML model [47].

SysML 2003 SysML is an extension of the UML2.0 for
modeling of system engineering applications
[39].

HASoC 2003 A design methodology for the lifecycle
modeling of embedded systems, which are,
not exclusively, SoC implementations [48].

Play-Engine Tool 2003 Play-Engine Tool is an approach that
supports UML-based development for
embedded systems using formal techniques,
timing annotations and formal semantics
[49].

MARTE Profile 2006 UML Profile for Modeling and Analysis of Real-
Time and Embedded Systems [40].

SoC Profile 2006 An UML profile for integration of components
of a computing or communication system in a
single chip [41].

Holistic System
Modeling

2008 A holistic system modeling and refinement of
intern-connected micro-electronic systems in
a platform-based approach [50].

Methodology using
xUML and MDA

2009 A system-level design methodology using
Executable-UML and MDA concepts [51].

MoPCoM
methodology

2010 An UML/MDA for designing high quality real-
time embedded systems. VHDL code is
automatically generated using MDA
techniques [52].

Table 4 UML in embedded systems design

2.3.2 Existing Approaches in Cyber Physical System Design

A complex model was proposed in [47] and detailed in [53] by Riccobene et al.

These papers represent years of research in improving the system-on-chip and
embedded system design, by unifying the capabilities of UML and SystemC/C to
operate at system level. Similarly to the goal-oriented approach described in the
next chapter, the authors use MDA for reducing abstract and coarse-grained PIMs to
concrete and fine-grained PSMs. UML profiles are the starting points for both
researches, as they help defining PIMs in the form of UML models for the types of
nodes in a network and for the entire network topology.

Similarly to the goal-oriented approach proposed in this thesis, the authors
define in [53] a design methodology and development flow for the hardware part,

BUPT

2.3 - Visual Modeling of Distributed Systems 33
by defining a SystemC related UML profile, for different levels of abstraction. The
hardware UML profile describes stereotypes for SystemC components. Separately, a
multithread C UML profile for modeling software applications is defined. The
software UML profile relates to the hardware UML profile and acts as business logic
descriptor for the elements introduced in the hardware section. This approach is
similar to the one described in this paper in the general steps taken by the
methods: specifications using UML profiles and MDA approach. However, here the
author has concluded that SystemC is not the most appropriate programming
language for the types of applications to which the new programming model is
intended.

System modeling at higher levels of abstraction is supported by both
approaches. Also, the authors introduce, for the software section described in [53],
support for mutex locks, semaphores and threads mechanisms. A bidirectional
transformation between the hardware and the software perspectives, in order to
ease the mapping process has been developed. Consequently, a prototype tool was
initiated for hardware-software co-design to eliminate the necessity of creating two
different validation contexts.

The actual UML artifacts used to express the connections at hardware level and
the logic at software level are: class diagrams, composite structure diagrams, object
diagrams and state machine diagrams. However, although authors give detailed
explanations for the design flow, they leave out the OCL constraints which complete
stereotypes definitions. OCL constrains are of high importance in an UML model, as
they allow the verification of the defined model in accordance to the used
stereotypes. This verification can be made using an OCL general validation tool
already defined or by defining a specific validation tool that parses only a part of the
OCL language, directly involved in defining OCL constraints in a UML profile.

Transformations from UML models to SystemC have been considered in other
papers as well. For example, Andersson and Host propose in [54] an automatic code
generation method related to hardware interconnections, based on mapping rules
between UML hardware profile and SystemC hardware descriptors. The UML
hardware profile defined in [54] is similar to the one defined in [53]. The
contribution for the authors is represented by the automation of the hardware
interconnection specifications, in order to minimize the design effort. However, the
initiative for hardware-software co-design in [53] already covers such aspects.

In [55], Nguyen et al. describe the communication infrastructure and timing
features of SystemC using high-level UML modeling. As in the previous two
described papers, communication primitives from SystemC, like interfaces and
channels, were stereotyped. Clock sensitivity and timing constraints were also
considered. Class diagrams and state diagrams were used to capture the internal
behavior of embedded modules. The programming methodology the authors report
allows describing executable platforms at UML level and also translation of
applications described in UML to SystemC level. However, a major drawback of the
proposal in [55] is the fact that the user must manually define a top level class for
instantiating objects of already defined types. This has the effect of constraining the
user behavior when specifying an application. Another drawback is that the model
allows only one level of nesting in state diagrams.

The models presented above have in common the specification of hardware
configurations for the types of nodes in a network and the communication between
nodes in UML profiles. The software approach relates to another UML profile. The
validation for the UML artifacts is made using automatic code generation for
SystemC simulator. Although SystemC is a system level modeling language and

BUPT

34 State of the Art - 2
allows simulation at different levels of abstraction, it was not the author’s choice
regarding validation of the „proof of concept” stated in the UML profile defined for
hardware and software specification of applications using CPSs. The arguments that
make SystemC not to be the perfect candidate for simulating applications for large
distributed embedded systems are detailed in [56].

In [57], the authors propose an UML 2.0 profile for embedded system design.
This UML profile defines stereotypes and design rules for application, platform and
mapping. The profile classifies application and platform components, at the same
time enabling their parameterization. The application is seen as a set of active
classes with an internal behavior, UML modeled. The platform is seen as a
component library with a parameterized presentation in UML 2.0 for each library
component. This approach of parameterized component library is similar to the
presented design methodology, where a middleware which recognizes the types of
components used is required to be developed. The middleware ensures the correct
functionality of the goals described by the users. Library functions are also made
available, in order to help defining custom applications. The library functions ensure
general application type specific requirements and constraints. The custom specific
application goals and constraints are inserted by the user, and the middleware
correlated with the specific application library is able to handle them.

When designing CPS applications, one of the main problems resides in complex
interconnections management, although each component has clear specifications.
The dynamic aspects of these components interconnections make the handling even
more difficult. A recent solution in handling dynamic aspects of CPS subsystem and
component is based on using Programmable System-on-Chip (PSoC) devices [58].

CPSs can be composed of PSoC devices, which integrate reconfigurable analog
and digital circuits and memory. These devices are managed by an embedded
microcontroller [59]. Although CPS design seems simpler using dedicated devices
like PSoCs, the problem resides here in synchronizing PSoC devices for a
homogenous functionality. At communication level, synchronization mechanisms are
required in order to achieve cooperation between components in a CPS. More details
about simulation models for CPSs, optimization methods and how the clock
synchronization problem can be solved are discussed in subchapter 6.4, which
summarizes the efforts made by the author, together with the research team,
regarding CPS validation using simulation.

Developing suitable CPS modeling techniques represents a continuous

challenge for researchers worldwide. Here are summarized some of the recent
projects and approaches. The National Science Foundation (NSF) periodically
organizes the CPS program through which it offers funding for research groups that
consider CPS approaches. The considerable number of proposed projects states the
growing interest in CPS challenges. Lee’s studies ([1], [10]) define the main issues
in CPS design that need to be addressed in a realist programming methodology.
Projects like Ptolemy [29] propose a solution from design until simulation for CPS
applications, using specific simulation tools. In this thesis, the objective is to keep
the modeling independent of the specific deployment platform which will be used.

The main idea in the approach presented in this paper is to define a way to
raise the level of abstraction in CPS applications. The user will deal with application
requirements at the highest logical level and these goals will be translated into
commands at lower logical levels, until the physical layer.

BUPT

2.3 - Visual Modeling of Distributed Systems 35

University/Research
Group

Project Name Starting
Year

Summary

MathWorks Simulink
language

1984 Simulink is an environment
for multidomain simulation
and Model-Based Design for
dynamic and embedded
systems [60].

Electronic Design
Automation
Consortium

EDA 1989 Electronic Design
Automation is a category of
software tools for designing
electronic systems such as
printed circuit boards and
integrated circuits [61].

TTTech
Computertechnik AG
(Vienna University of
Technology)

TTP 1994 Time-Triggered Protocol
(TTP) is an open and
modular control system
platform technology that
supports the design of
upgradeable, reusable and
easy-to-integrate systems
[62].

UC Berkeley Giotto 2001 The Giotto system is a
programming methodology
for embedded control
systems that can run on
possibly distributed devices
[63].
The Giotto system aims at
hard real-time applications
with periodic behavior.

UC Berkeley
EECS Department

Ptolemy
Project

2003 The Ptolemy project studies
modeling, simulation, and
design of concurrent, real-
time, embedded systems
[29].
The focus is on assembly of
concurrent components.

IBM T.J. Watson
Research Center

The Metronome 2003 A family of techniques that
delivers bounded pause time
garbage collections [64].

Vanderbilt University C2WT 2006 Modeling and simulation
environment for Command
and Control systems
(Command and Control Wind
Tunnel - C2WT) [65].

Vanderbilt University MURI Project 2007 Frameworks and Tools for
High-Confidence Design of
Adaptive, Distributed

BUPT

36 State of the Art - 2
Embedded Control Systems
MURI Project – on High-
Confidence Design for
Distributed Embedded
Systems [66].

Carnegie Mellon
University

PhyNet The project intends to
develop methods to monitor
and ensure the robustness
of Physical Networks, in the
presence of contingencies
[67].
This project is funded under
NSF's Cyber-Physical
Systems program.

Table 5 CPSs – List of ongoing projects

2.3.3 Summary

UML has the capability to unify the specifications of the applications with the

design of the hardware and software parts of systems. This supports lightweight
modeling, especially meant for early stages in design. Specification using UML allows
a better understanding of the model and raises the level of abstraction the
programmer must use. The PIM established for applications consists of deployment
and component diagrams.

Studying the approaches in CPS design presented over the last years allows
defining the open points and challenges in using such CPSs in different applications.
Also, the various research directions are valuable, as they help identifying the
possible solutions to the defined problems. In this paper, the author is focused on
defining a design methodology, when starting from the application’s specifications.
The goal is to be able to define the general requirements at a high level of
abstraction and these to be translated to lower logical levels by the methodology.

2.4 Model Driven Architecture Approach

The increasing complexity of software over the years has determined the need

for a higher level of abstraction. As before, models are used to reduce the gap
between vision and implementation for a product. The goals are to detect the
occurred errors and the missing parts in the early stages of the design and to
conduct the implementation [68]. MDA is a software design approach in the form of
a set of standards intending to conduct to a “model-based, standards-driven, and
tool-supported” [69] handling of applications development. MDA was proposed in
2001 by OMG, a consortium focused on model-based standards.

There are several reasons for which MDA was chosen by the author of this
thesis as a modeling approach for CPS applications. First, the MDA models allow a
structural approach in application design. The possible customizations for the
applications are grouped at CIM level.

BUPT

2.4 - Model Driven Architecture Approach 37
These are used at PIM level, when constructing the application models. The

transformations from PIM to PSMs allow automatic code generation and this is the
final scope of using MDA.

2.4.1 Models and Transformations

The main concepts for the MDA are the models on which this architecture is

based. These models are: the Computation Independent Model (CIM), the Platform
Independent Model (PIM), the Platform Specific Model (PSM) and the Platform
Model.

The CIM shows a certain system in the environment where it will evolve,
without giving any details about the specific implementation. This model is realized
by a business analyst that understands well the requirements for the class of
applications and the business process [68]. UML is used as a modeling technique
and the final product of CIM contains only basic class modeling and some behavioral
modeling, in terms of use cases. The requirements are modeled in a more strict way
than the previous business model. The functional requirements have to be
expressed in a clear and unambiguous way. Therefore, a better knowledge of the
UML artifacts and the design by contract is expected.

The PIM is a more detailed view of the system and contains more details but
from a platform independent point of view [70]. Although this model contains
information about behavior and business functionality, it does not inform about
specific implementation details or platform. The previous model only states the
goals the system must achieve. PIM is focused on how to achieve these targets. PIM
is independent of information formatting technologies, possible programming
languages to use, distributed middleware and messaging middleware [68]. A PIM
usually consists of a class diagram and behavioral information. There can be a thin
separation line between the PIM and the following model, the PSM, because the PIM
can already contain some language specific concepts. As example, one can speak of
multiple inheritances or the type of collections to use [68]. In the future, as more of
the exemplified concepts will be placed in the underlying architectures, the PIM will
become more abstract than today.

The PSM is a view of the system from specific platform point of view. The PSM
contains the specifications described by the PIM but containing the details related to
the concrete platform in use. The PSM should contain enough details as to allow
code generation [70]. A modality to construct a PSM is to annotate the
corresponding PIM with the technical details specific for the target platform. Another
modality for obtaining a PSM is to use a generator, aimed to generate PSMs from
PIM. If the PIM is based on a virtual machine, the regular transformations from PIM
to PSM are no longer necessary.

The Platform Model contains the necessary technical information regarding a
specific platform and the services it can provide. These concepts provided by this
model are used in the PSM.

The final step in using MDA is the code generation from the PSM. The code
generation should be as automated as possible, so modifications in previous step
will not need human intervention for code. Transformation can be applied to the
source of the code, the PSM, in order to obtain an optimal code.

The transformation between models can be done by mapping, which provides
specifications for the transformations of a PIM to a PSM. There are different types of
mapping. An example is the Model type mapping which defines how models built

BUPT

38 State of the Art - 2
using the types defined in the PIM language can become types defined in the PSM
language. A concrete example is metamodel mapping, where the types of model
elements both in PIM and PSM are specified as Meta-Object Facility (MOF)
metamodels. The mapping contains the rules and algorithms to produce the
previous explained transformations. Another type of mapping is defined as Model
Instance Mapping. The elements in the PIM that need to be transformed for the PSM
are marked at first and then the rules of transformation to a PSM are applied to the
marked elements. If a combination of the types of mapping is used, a more robust
and detailed PSM can be created, as more information will be available.

The Record of transformation contains information about the creation of every
PSM element from a source PIM element. This gives the ability to “round-trip around
models” [70]. Sometimes the PSM can act as a PIM and will be refined into a more
detailed PSM that will allow relevant code generation. At other times, the PIM can be
directly translated into code if the source PIM contains enough information.

2.4.2 Using Model Driven Architecture in Embedded Systems

MDA approach, its definition, use, benefits and drawbacks have been over the

past years subjects for workshops and conferences. An example of such a workshop,
the discussed topics and drawn conclusions is presented in [69]. Some of the
conclusions gathered during discussions were as follows. MDA is more an approach
for software, than only a set of standards. The MDA tools existing today allow the
generation of code from the posed models. Nonetheless, nonfunctional semantics
such as security, performance, and reliability are not currently modeled or reasoned
about. The strength of a software lies not only in the generated code, but also in the
characteristics for such code, which goes “beyond generating infrastructure and
code “skeleton”” [69].

One example of reliability support following the MDA principles is given in [71].
Rodrigues et al. propose a bottom-up model, followed by a relevant example for EJB
applications to express reliability for MDA constructs. The steps to ensure reliability
at PSM level can be summarized as follows: design of a reliability profile in case of
specific application of interest; mapping between the specific domain already
obtained and a platform-independent domain, resulting in a preliminary PIM;
choosing a component model related to the application domain, in order to achieve
a PSM to PIM model, with respect to the PIM reliability profile; automation of such
mapping; providing future models for real-life case studies. The described model
can be used mainly if the users are aware of the reliability mechanism supported by
different platforms used in the application domains. This allows describing a suitable
profile, in terms of reliability.

In [72], Fong presents a project for a bank that supports a variety of services
and transactions. The goal of the project was to streamline and integrate the
transactional messaging system with other systems (database storage, messaging
system, legacy applications). MDA was the chosen approach for design and
development. The author presents detailed steps for the PIM and the construction of
the various PSMs and also some samples of generated code.

MDA can be used to “zoom in/out” different levels of abstraction for a system.
A PIM can be “zoomed in” to find a corresponding PSM, while a specific model can
be “zoomed out” to check the higher level of abstraction. Mos and Murphy use in
[73] such an approach for MDA, for performance modeling and prediction of a

BUPT

2.4 - Model Driven Architecture Approach 39
framework that extracts performance information and automatically creates
performance models written in UML.

In [74], Deelstra et al. relate MDA to a configurable software product family
and observe some benefits to such an approach: for application engineering, binding
time and selection mechanism is postponed to a further level of abstraction and the
domain concepts, product family assets and the transformation technique run
independently.

Reference [3] is a very useful example that shows in details mapping rules
from PIM to a specified platform, in this case CORBA, which is also characterized by
a profile. The PIM is characterized by a profile for Component-Object based
Software Architecture, which contains components and connectors. The authors
guide us step by step into transformation from PIM to PSM, using graphical and
coding explanations.

2.4.3 Benefits and Drawbacks

The important benefits that result in using MDA show that, although being a

relatively young approach, it has a clear future in software design. At first, the
platform independency, resulted from PIM, and domain specificity, resulted from
PSM are to be mentioned. The same PIM can be used to generate different PSMs,
using different transformation rules. Therefore, the time, costs and complexity are
reduced. MDA allows moving from one vendor to another without considering the
application from scratch. The productivity as benefit must be mentioned, as in MDA
the developers focus on UML diagrams that allow keeping the code up to date.
Following the presented standards, one of the implemented goals for MDA was a
proper documentation. This is a very useful part in keeping track of the state the
application can be found, the various changes that have been made and allows the
evaluation of software, in search for weak points. Consistency is ensured by the fact
that complying with the OMG’s standards, the transformations are bidirectional.

MDA works well for business and data centric-applications, but for domains that
require a large vendor support or a lot of tailoring, it did not prove its usefulness
[69]. Also, MDA requires some more attributes like: the possibility to generate code
for a great variety of platforms, the possibility of debugging at model level,
therefore avoiding error propagation at the next abstraction level, an easier
integration with the tools for analysis and validation. All of these would increase the
role MDA has in software life cycle [69].

2.4.4 Summary

The CPS application design approach proposed in this thesis is based on a goal-

oriented approach in conjunction with MDA methodology. It is based on a set of
models which constitute the PIM and cover both hardware and software aspects in
CPS applications. The PIM contains deployment and component diagrams,
respectively. These models are further transformed into PSMs, which allows
automatic code generation. Code generation is one of the main reasons for using
MDA, as it reduces the effort to produce valid code, creates correctly, completely
and consistently header files and offers a great support for model and document
maintenance.

BUPT

40 State of the Art - 2
The UML defined profiles for hardware and software specification of CPS

applications are the equivalent of the CIM in MDA approach. The UML profiles
contain stereotypes that define the goal-oriented approach, more specifically the
tailoring into logical layers and the handling of the application objectives at each of
these levels.

The PIM is established using the defined UML profiles, the network topology
defined by the programmer of the network, the expressed goals and constraints.
The PIM correlates all the desired functionalities and deals with them at an abstract
level, without taking into consideration the hardware limitations induced by the
physical components of the network.

The PSM evaluates the defined PIM against the physical requirements and
limitations of the specified hardware to be used. At this level of MDA, PSM is able to
show the impact of physical hardware over PIM. Also, error cases are defined and
signaled accordingly.

The following table summarizes some of the recent approaches in using MDA
for embedded systems. The case studies presented in these approaches indicate
that MDA is a suitable approach for designing and validating embedded and
distributed systems.

Approach Starting

Year
 Summary

MDA to design SoCs
embedded systems

2003 A construction of metamodels based on
MDA to support a co-design
methodology.

An RTES metamodel 2005 A simulation-based method for the
development of real time embedded
systems, using MDA and separation of
concerns (introducing communication,
application and connection layer).

ModTransf 2005 ModTransf is an MDA Transformation
engine that allows the application of MDA
in the context of Intensive Signal
Processing (ISP).

UML/MOF meta-
modeling
infrastructure

2006 A meta-data repository implementation,
automatically providing an API suitable
to the manipulation of the UML meta-
models and models and to the
implementation of design tools for
embedded systems.

“On-the-fly” modeling
of Musical Real Time
Applications

2009 The method is based on the use of the
Executable and Translatable UML
approach (xtUML), with focus on
modifying user PIM on-the-fly.

MDA for Embedded
Devices

2010 Software design and code generation for
a low-cost mobile phone.

Table 6 MDA in embedded systems

BUPT

3.1 Theoretical Approach

Chapter 3. Goal-Oriented Approach for Cyber
Physical Systems

This chapter presents a goal-oriented approach regarding specification of

requirements in CPS applications. The objective is to raise the level of abstraction in
applications specifications and to ease the work for a designer of CPS applications.
He is not required to have low level programming skills, as the set-up of the
application is made at a high level of abstraction. For this to be possible, the CPS
network is tailored into several levels of abstraction, which will be explained in the
theoretical part of this chapter.

3.1 Theoretical Approach

CPSs integrate computational and physical processes and at logical level are

tailored into several subsystems. Each of these subsystems aims to fulfill a specific
task or objective and behaves unaware of the existence of the other subsystems.
This characteristic determines one of the main issues in developing realistic CPS
applications. The subsystems pose different objectives, even contradictory ones,
over the controlled devices and these must be accomplished.

The goal-oriented approach proposed by Wang et al in [13] and continued by
Magureanu et al. in [77] tries to handle the complexity of distributed applications,
and in particular of CPS applications, by expressing the goals and constraints in a
purely declarative way. There are no algorithmic or procedural constructs to define
the steps to be taken for achieving the stated application goal.

 The algorithms required for goals processing are named strategies and are
selected from specialized, predefined libraries. These basic algorithms remain the
same, independent of the applications, while the goals and constraints can change
dynamically. Goals descriptions do not explicitly include the interaction mechanisms
between distributed entities. The best interaction scheme is inferred automatically,
based on the goals and constraints. This is the reason why also the logical tailoring
is dynamically configurable.

Decision Modules (DMs), as introduced in [13], are the main entities in this
goal-oriented approach, as they hold the entire logic for each layer, in each
subsystem of the application. The DMs are composed of inputs, outputs, actual
goals and constraints. The inputs are constituted from the physical data acquired for
the applications, mainly from sensors. Inputs are a set of attributes, in the form of
equations and constraints (invariants), composed using linear programming (LP).
Specific examples of using LP systems are presented in chapter 6. The DM outputs
are the physical outputs generated by the application, by solving the inputs system,
to which constraints are applied. The DM constrains are the physical capability of the
used platform (embedded nodes and communication infrastructure are included)
and requirements of the application (like timing constraints or precision). The goals

BUPT

42 Goal-Oriented Approach for Cyber Physical Systems - 3
are mathematical expressions, involving inputs and outputs and need to be
maximized or minimized.

The communication between levels of abstractions is maintained through DMs.
Therefore, the DMs can produce a hierarchical structure, as the outputs of one DM
become inputs to another DM. At each logical level, different execution semantics
can be employed. At the lowest computational level, similar to the physical level of
the controlled devices, reactive models like Finite State Machines (FSMs) are more
suitable. At higher logical levels, less flexible models, but with a more predictable
performance are used. These models offer a transition from the behavior at the
embedded node level to the application level. Top-down and bottom-up constraint
transformations are used to model the interactions between DMs at different logical
levels. The top-down mechanism imposes constraints for the lower logical levels, so
that the goals of the higher levels are met. The bottom-up mechanism identifies
accordingly when the goals set by upper levels cannot be satisfied at lower levels.

Figure 1 presents graphically the connections between logical levels and the
goals defined for each of these levels. The physical node is maintained at perimeter
level.

Figure 1 System DMs model

Considering the heterogeneous aspect of a CPS network, a node can be part of

different subsystems at any given moment of time. Therefore, at each node level,
several independent objectives have to be fulfilled.

In [76], the author of this thesis has proposed a system tailoring into several
logical levels based on user goals. Furthermore, this tailoring applies to each
subsystem of the CPS application. The goal management logic is handled within DM
nodes. They are responsible for controlling the nodes within the logical grouping.
Also, they ensure communication with DMs from upper and lower computational
levels, as already stated.

At the highest level, each subsystem boundaries are specified. In goal-oriented
terms, this represents the Area level and the objective is described in a general
accepted form. At this level, the goal of the Area deals with the lower levels of
abstraction, presented next. The entire business logic of the Area model is kept in a
particular Decision Module Area (DMA) node.

The next logical level, named Zone, represents a subset boundary of the
physical devices located inside the Area. The goal is managed as a specialization of
the inherited Area goal over the internal managed devices. It adds more specific
requirements regarding the implementation of the objective.

BUPT

3.1 - Theoretical Approach 43
The implementation of the goal is hold in a Decision Module Zone (DMZ) node.

The lowest computational level brings together local logically coupled hardware
devices, like sensors and actuators, acting over the same environment “point”. This
represents the Perimeter level and consists of clearly stated management aspects
for the physical devices. The objective implementation consists in well-defined
execution blocks, describing the co-working manner in particularly identified cases.
This logic is comprised in a Decision Module Perimeter (DMP) node and represents
the most detailed implementation of the objective which needs to be fulfilled.

In this modeling methodology for CPS applications, a primary constraint related
to logical tailoring is that the Perimeters are shared between the subsystems. The
goals of the subsystems are expressed as a goal union at Perimeter level at every
given moment of time. The result is represented by the set of commands that need
to be achieved by the grouping level. The feedback obtained after executing the
instructions at Perimeter level is communicated to upper logical layers, so that each
subsystem will adjust its goals.

In case of Zones, the application requirements may determine a Zone to be
shared among subsystems. In this case, the Zone’s goals are unified as described in
case of Perimeters. However, in this situation the managed Perimeters implied in
fulfilling the goal are required to send the feedback only to this Zone. As the Zone is
part of all the cyber-subsystems, it constructs feedbacks to all the Areas that
contain the Zone in question, to update their main objectives.

Changing the current goal at subsystem level can be achieved using two
different approaches. The first case implies a DMA of a particular subsystem that
monitors a set of sensors. In the second case a DM node is responsible with
monitoring a particular part of the environment.

For the first approach, the set of sensors is managed by other subsystems of
the CPS containing the Area. Therefore, changing the goal requires identification of
all involved Zones. Then, the Area level goal has to be translated into new specific
goals for every DMZ. Each Zone operates on the Perimeters selected for satisfying
the DMZ goal related to specific Perimeter goals. The DM node notifies the upper
level in case it fails to fulfill the assigned goal. In that case, the upper level assigns
a new goal to the lower level or cancels all the goals already assigned to the other
DMs.

Each change in the sensed environment causes the node to trigger an event.
The upper grouping level can react to it by processing the event without any other
actions or by initiating a new notification to the higher level. If the upper level
decides to consume the received event without changing its internal goal, no
feedback will be sent to the triggering DM node.

When an upper level modifies the current goal, the event handling part has
impact only on the environment part managed by it. The change of the goal at
upper level induces change of lower level goals.

The actual usage of the CPS tailoring at logical level will be detailed in a case
study for a fuel management system in an aircraft vehicle, in chapter 6.3. This
example is not part of the current chapter, as further notions of MDA approach and
defined UML Profiles will be introduced in chapters 4 and 5, respectively.

The practical example chosen for this goal-oriented related chapter presents
goal optimizations for distributed control in traffic management applications.

BUPT

44 Goal-Oriented Approach for Cyber Physical Systems - 3

3.2 Practical Example

The results presented in this subchapter are included in [77] (Magureanu et

al.). The author of this thesis discusses here the main services for the supporting
architecture in case of optimizing the goals for distributed control applications.

3.2.1 Goal-Oriented Control Model

The objectives for CPS applications can be stated mathematically as local or

global constraints that need to be solved, so that the global cost function to be
minimized or maximized.

This global cost function defines the main objectives for an application. The
case study considered here is the one of intelligent distributed traffic management
(Figure 2). The studies regarding traffic management were started in [78]. The first
ideas referring to traffic management were already stated in [13]. Here, the
described artifacts refer more to control procedures at different logical levels and
their UML and MARTE representation.

The goals for the traffic management applications can be expressed as
constraints. Expression (1) states that the total number of vehicles passing through
the exit points of intersections is to be maximized. The set of exit points Sexit
includes the locations of the modeled area at which vehicles can leave the area.
Functions Ni(t) express the number of vehicles over time passing through point i.

dttN
exitSi

i)(max ∑ ∫
∈

∞

 (1)

Expression (2) defines a global timing constraint, available for all vehicles. The

overall travel time of a vehicle through the area (until exiting at point i from Sexit)
must be less than the maximum travel time TMax. The Acti indicates the set of
activities that a vehicle must perform to reach exit point i. In this case study, the
activities indicate the road portions (i.e. number of blocks) that the car must travel
to the exit point. Time Tk,v is the time that vehicle v needs to cover the road portion
k (Figure 2(b)).

Max
Actk

vkSiVehv
TT

i
exit

≤∑
∈∈∀∈∀ ,,

max (2)

Expression (3) defines the overall precision of the control procedure. It

indicates that the difference between the outcomes (e.g., the number Ni of passing
vehicles) computed based on estimated and real traffic parameters must be less
than boundε .

BUPT

3.2 - Practical Example 45

ε≤−∑ ∫
∈

Δ
exitSi

T

optim
i

real
i tNtN)()((3)

Expression (4) illustrates a local constraint, which requires that the waiting

time for vehicle v at a certain traffic light ts must be less than a defined maximum
value TLocal. Other local constraints, such as the maximum lengths of the queues at
the traffic lights, can also be considered.

Local
waiting
tsvtsVehv

TT ≤
∀∈∀ ,,

max (4)

The constraints formulated in the previous equations are continuously solved,

which implies continuously optimized decision making by the distributed control
environment. This can become a difficult task for large-scale, distributed
applications. Therefore, the optimization problem can be approximated by
introducing a hierarchy of logical levels and the previous equations are expressed at
these different logical levels. The detailed physical levels hold local interaction and
the more abstract levels hold broad physical areas. This determines a good
compromise between the frequency of updating the equations and the physical
environment on which the data is collected.

For the constraints (1)–(4) to be solved by the control model, some
approximations are introduced for time range and functions descriptions. Equation
(1) is a cost function that considers infinite time range because the traffic
management system is always on. However, this expression is difficult to implement
as predictions about the future behavior have a limited accuracy. The mathematical
form of the functions in (1) for the number of transited vehicles must be identical at
runtime, as traffic conditions are dynamic. The identified function approximations
differ depending on the number of parameters of the expressions, the mathematical
expressions of the functions and the control variables, deciding when a new
approximation is needed.

The global constraints, as expression (2) must also be approximated. The
approximation for global constrains refer to constrain decomposition and to
interactions. The amount of time required to achieve a global task, as for example
to traverse a zone, depends on the structure of the road and the time needed to
traverse each portion. The decomposition can be arbitrary, as some portions of the
road are not defined based on physical properties (such as roads crossings or
blocks), but are selected based on the required control precision (expression (3)).

 In expressions (2) and (4), the time to travel for a car depends not only on
the attributes of the individual car, but also on the interactions with other cars on
the same road and with cars along intersecting lanes. As an example, a car can be
slowed down by the slower cars and must wait at traffic light signals, as long as
traffic lights on orthogonal paths have green light.

The constraints, expressed as equations, must be solved at different logical
levels. The higher computational level is an area, corresponding to an entire region
to be managed. The area contains zones (Figure 2 (a)) and the traffic flow inside
each zone is defined by different scenarios with well-defined attributes (such as
speed, inter-car distance). As in Figure 2 (b), each zone includes several traffic
lights (ITU1 and ITU2). The control algorithm of a traffic light, as shown in Figure 2
(c), represents the lowest, physical level in the defined abstraction hierarchy.

BUPT

46 Goal-Oriented Approach for Cyber Physical Systems - 3

Figure 2 Overview of distributed traffic management [77]

Figure 3 presents the approximations for equations (1)-(4), on the hierarchy of

abstractions.

Figure 3 Distributed control optimization [77]

At the highest logical level, the area level, the infinite time range in equation

(1) is approximated as a finite horizon T for which the optimal decision parameters
are computed. Using the upper feedback loop in Figure 3, the value T of the time
horizon is dynamically adjusted based on the dynamics of the traffic model
parameters.

dttNdttN
exitexit Si T

i
Si

i)()(∑ ∫∑ ∫
∈∈

∞

≈ (5)

Solving the model equations for the area level determines having different

traffic scenarios at each of the composing zones.
For example, rate ri,j defines the fraction of time for zone i to have scenario j.

As each scenario is characterized by different attributes values (for example,
different number of vehicles exiting an exit point i), this step approximates the
integral over time T of functions Ni(t) (in expression (1)) as a sum of integrals

BUPT

3.2 - Practical Example 47

defined over the constant vehicle flows corresponding to the scenarios. veh
jiflow , is

the number of vehicles that pass per unit of time for scenario j:

veh
jiji

jT
i flowrTdttN ,,)(×= ∑∫ (6)

The distributed control environment computes the differences between the

estimated and the real traffic flow parameters (for example, parameters veh
jiflow ,). If

the computed difference exceeds the acceptable limit of the precision constraint (3),
a feedback is given to the upper level to suggest that the model equations must be
re-solved for different flow parameters and time horizon T.

Equation (6) assumes the simpler situation, in which the scenarios of a zone
are independent of each other. A more complex case is characterized by a causal
dependency between the scenarios, such as reaching scenario j is possible from a
scenario k with a probability of pj,k. For example, reaching the fast moving traffic
scenario is possible only after going through the traffic at average speed scenario.
In this case, the behavior of the scenarios for zone i can be modeled as a Markovian
Decision Process described by the following equations:

0,,,, =−∑ ki
k

jkjiji rprp (7)

1, =∑ ji
j
r (8)

1, =∑ kj
k
p (9)

0,0 ,, ≥≥ jikj rp (10)

In equation (6), the veh
jiflow , parameters are estimated as follows. A scenario

of a zone i results from aggregating multiple traffic sub-flows along different paths
of the same zone. A path is a pair of points, the first is a point through which
vehicles enter the zone and the second is a point through which vehicles leave the
zone. In this case,

∑ ×=
k

kjki
veh
ji Isubpathflowflow ,,, _ (11)

where flow_subpath expresses the amount contributed to scenario j of zone i

by the zone’s entry point k.
Figure 2 (d) presents two sub-flows, subpath1 and subpath2, which form

together a scenario described by the flow attribute. In the case the sub-flow does
not interact with other sub-flows then parameter Ik equals one. The other possible
scenario is when the sub-flows interact with each other, for example as by sharing

BUPT

48 Goal-Oriented Approach for Cyber Physical Systems - 3
the same road infrastructure (intersections) or correlations with other vehicles (like
the speed constraints due to the slower cars). In this situation the parameter Ik
reflects the flow due to the interactions. The distributed control environment
approximates parameters Ik as shown in Figure 3.

Parameters jkisubpathflow ,,_ and Ik are estimated as follows. Each zone i

can be decomposed into road portions k based on the position of the traffic signals
(Figure 2 (b)). Each road portion is characterized by a set of parameters, such as

the travel time veh
kit , of a vehicle along the portion. The travel time veh

kit , depends on the

interaction with other vehicles and other flows. These interactions are approximated
as follows in equation (12).

∑∑ +=
t

waiting
tki

s

travel
ski

veh
ki ttt ,,,,, (12)

- travel
skit ,, is the time required to a vehicle to travel the portion s of the zone i.

- waiting
tkit ,, is the time a vehicle has to wait at intersection t because of vehicles

moving in the alternative direction.

As already stated in [13], the two time values travel
skit ,, and waiting

tkit ,, can be

estimated by performing a separate scheduling procedure for each zone, where the
procedure assumes different possible situations for the queues of vehicles waiting at

a traffic light. Then, parameters jkisubpathflow ,,_ can be estimated using veht .

Parameters Ik characterize the extra delay between veht and the same travel time, in

case no interactions exist.
Figure 2 (d) presents the data flow graph defining the sequencing of the

activities shown for the first intersection presented in Figure 2 (b). The two parallel
sequences correspond to the two perpendicular roads crossing each other at the first

intersection. The two waiting times waitingT2 and waitingT4 of vehicles moving along
the two directions depend on the parameters of the traffic light FSM controller (for
example time ΔTx for state Red and time ΔTy for state Green in Figure 2 (c).
Therefore, optimizing the sequencing of the data flow graph activities to maximize
the traffic volume defines the FSM parameters of the traffic light.

3.2.2 UML Support for Distributed Optimizations

The services for distributed control are summarized in Table 7. They are

detailed for each logical level, starting with the physical level, in relation to
abstractions from the same or upper levels. The four rows represent the four
levels of the abstraction hierarchy: (a) at the physical level, FSM-based control for
traffic signals, (b) at the zone level, activity sequencing using data flow graph
scheduling, (c) at the zone scenario level, using Markov Decision Processes, and (d)
at the area level using relations similar to (1)-(4). The three columns present the
services required for a level to interact with entities at the same and lower levels, at
the upper levels and to perform model approximation for distributed optimization.

BUPT

3.2 - Practical Example 49

Level From Same or

Lower Levels
To Upper Levels Used for

Approximation
Intersection
traffic signal
(ITU) (FSM,
reactive)

(1) Identify traffic
signals in a zone
(2) Set traffic signal
period, split
(3) Set traffic signal
substates
(4) Set timing for
each direction
(5) Set local
constraints (e.g.
(4))

(1) Send #
vehicles in each
direction
(2) Send
distribution +
outliers of travel
time
(3) Send
distribution +
outliers of interval
distances
(4) Send change in
parameter
distribution
(5) Send
information to
identify activities

(1) Communicate
with traffic signals of
the same ITU
(2) Difference
between expected
and real # of
vehicles passing by
the traffic signal
(3) Modify activities
in a zone

Flow
optimization
inside zone
(Data flow
graph)

(1) Set activities
and their
sequencing
(2) Set situations
for each activity
(3) Set parameters
of different
situations
(4) Set expected
queue lengths for
situations
(5) Set time ratios
for competing
activities
(6) Set number of
expected cars
entering the zone
(7) Set local
constraints (e.g.
(4))

(1) Send # of
vehicles entering
zone
(2) Send # of
vehicles exiting
zone
(3) Send queue
lengths at traffic
signals
(4) Send waiting
time at traffic
signals
(5) Send waiting
time due to slow
cars

(1) Modify
description of
activities
(2) Modify situations
for activities
(3) Modify
parameters for
situations
(4) Difference
between expected
and real # of
vehicles passing
through the zone

Zone scenario
optimization
(Markov
Decision
Processes)

(1) Set the
scenarios for zone
(2) Set scenario
parameters

(veh
jiflow ,)

(3) Set transition
problems between
scenarios (pi,k)

(1) Send scenario
rates ri,j of zone

(1) Difference
between expected
and measured flow

parameters veh
jiflow ,

(2) Difference
between expected
and measured flow
rates ri,j
(3) Communicate
between ZTCUs of

BUPT

50 Goal-Oriented Approach for Cyber Physical Systems - 3
the same area

Area control
optimization
(linear)

(1) Set time horizon
value T (equation 1)
(2) Set exit points
in set Sexit
(3) Set descriptions
of functions for # of
vehicles Ni(t)
(4) Identify the
zones of an area
(5) Communicate
the related
constraints, e.g.
from expression (2)
to zones

- (1) Adjust time
horizon using
received parameters
(2) Adjust functions
Ni
 (3) Send the
allocated
approximation error
to zones

Table 7 Summary of distributed control services [77]

The services at the physical level include identifying the traffic signals that are

defined in a zone, setting the parameters of a traffic signal controller (FSM) and
setting local constraints. Examples of parameters for a FSM are period, split time,
time range of states. A local constraint is related to the maximum time a vehicle
should wait at the traffic signal. The services for interaction with the upper level
(data flow graphs at the zone level) include transmitting the parameters required for
setting-up and solving the scheduling algorithm or activity sequencing, for example
statistical descriptions of the traffic in each direction, travel time, number of
vehicles. Another type of services includes those for model approximation, such as
monitoring the differences between the expected and real traffic parameters in the
vicinity of the traffic signal, like the number of vehicles, travel time distributions.

The services for the FSMs in case of traffic signals can be described using UML
diagrams, stereotyped with artifacts corresponding to MARTE profile. To specify the
functionality of a traffic light, the author of this thesis considers only a simplified
part from the intersection in Figure 2(b), composed of 4 traffic lights (ITU). The
traffic lights are considered to function all in the same way, in couples, the one in
the Nord (N) region with the one in the South (S) region, the one in the West (W)
region with the one in the East (E) region of the intersection.

For each logical level, there is a part for interpreting the goals arrived from an
upper computational level and transforming them into local goals and another part
that handles the execution of the commands at that level of abstraction. The
execution at ITU’s level is reduced to proper coordination of traffic light states.

Each traffic light works following the same scheme from the FSM, the order of
the states is known and the passing to the next state happens after a determined
period of time, which is variable in the state. It can be considered that the duration
of Yellow state is fixed and well-known.

MARTE::TimeLibrary contains the description of an IdealClock, a class
stereotyped with ClockType and an instance idealClk of such “ideal” clock. Starting
from these artifacts, chronometric clocks can be defined. To simulate the passing of
time, a reference clock is required. This is ChronometricClock and is defined using
MARTE stereotype ClockType. The attributes in the stereotype have specific values
for the application, as can be seen in Figure 4.

BUPT

3.2 - Practical Example 51
The resolution is the minimum interval between two values. The offset is the

temporal shift at the first instance. isLogical defines the existence of a logical or
chronometric clock. unitType is of type TimeUnitKind. The time units can be
continuous or discrete.

Figure 4 Reference clock description in UML [77]

The constraints between clocks are defined using Clock Constraint Specification

Language (CCSL). There are two constraints for the chronometric clocks against the
ideal instance. Other constrains can be expressed relative against another clock
using offset parameter offValue.

A model in MARTE that contains clocks makes possible the association of time
intervals to behaviors in an UML model. Therefore, the UML behaviors including
sequence diagrams can be stereotyped using timedProcessing. The main result in
this association is that is offers the possibility to the designer of the applications to
express temporal characteristics and constraints in behaviors. In MARTE, these
constraints are timedValueSpecification, which represents a duration in which the
behavior must execute.

The behavior of a traffic signal is better described as an UML sequence
diagram, as shown in Figure 5.

BUPT

52 Goal-Oriented Approach for Cyber Physical Systems - 3

Figure 5 UML sequence diagram for traffic signal [77]

BUPT

3.2 - Practical Example 53
This diagram is stereotyped using timeProcessing and the attributes specific to

this stereotype are expressed as follows.
- clock attribute defines the reference clock for measuring the time intervals

and events, like c1 for traffic lights in the N and S and c2 for traffic light in W and E
- start attribute defines the event that triggers execution
- stop attribute defines the event when ending execution.
Every state instance (for Red, Green and Yellow states) is stereotyped using

timedDurationConstraint. For each state instance, the attributes for the specified
stereotype will be defined:

For instance RedState:
<<timedDurationConstraint>> {period = 0.01, deadline = redValue on c1}

For instance GreenState:
<<timedDurationConstraint>> {period = 0.01, deadline = greenValue on c1}

For instance YellowState:
<<timedDurationConstraint>>{period = 0.01, deadline = yellowValue on c1}

The attributes for timedDurationConstraint can be expressed as above for
traffic lights in N and S, for example. In case of traffic lights in W and E, the
deadline depends on c2. The time spent in a certain state is indicated in the
sequence diagram by Timeout(values) function.

Figure 6 presents the data flow graph for flow optimization inside a zone. This
corresponds to the second row in Table 7. Inside a zone, information acquired at the
traffic signal level (ITUs in Figure 2 (b)) is used to set-up the parameters of the
nodes in the data flow graphs, for example the execution and waiting times of the
nodes. Information about the number of vehicles entering the zone, through In1,
In2, and In3 is used in the analysis to estimate the expected queue lengths at the
traffic signals. The results for this flow graph are the timing parameters for the
traffic light inside the specified zone, like the time length of Red, Yellow and Green
states.

Figure 6 Data flow-graph level services inside zone [77]

BUPT

54 Goal-Oriented Approach for Cyber Physical Systems - 3

Figure 7 illustrates the UML statechart for the services which correspond to the
third row in Table 7 regarding zone scenario optimization using Markov Decision
Processes (MDP). The description is based on the method presented by Jansen et al.
in [79]. For simplicity, the shown MDP is for a zone with traffic moving along two,
single-lane directions, for example N-S and W-E directions. There are several
possible scenarios: fast-moving traffic in both directions, average-speed traffic and
slow moving traffic, including when traffic is stopped. The transition probabilities
between MDP states represent predictions on “switching” between the corresponding
scenarios. The probabilities, for example PN fast, PN slow, are computed based on
the information collected at the FSM and flow optimization levels (in first two rows in
Table 7), for example, waiting time at traffic signal, number of cars entering zone,
and number of cars exiting zone.

Figure 7 UML statechart for zone scenario optimization [77]

3.3 Summary

The increased interest in CPS applications determines the need for a design

methodology, in which the user’s effort to be minimal. The goal-oriented approach
of handling the application’s requirements and goals by using the tailoring into
several logical levels, along with MDA approach, allows an efficient, intuitive and
easy to use design methodology in CPS applications.

BUPT

3.3 – Summary 55
A CPS application consists in fulfilling a set of independent objectives. Each

objective is assigned to a heterogeneous subsystem. These subsystems are
characterized by the fact that the devices are logically coupled and they collaborate
to meet the specific goal. Therefore, in the presented thesis, the entire network is
tailored into goal-oriented interconnected devices. The resulting models constitute
the PIM of the system and hold the application’s specifications. From this step, more
details about the MDA approach considered here are required. They will be given in
chapter 4.

Based on the proposed tailoring into computational levels, the practical
example in this chapter discusses the main services of the architecture for real-time
optimization of the goals of distributed CPS applications. The case study considered
is of a large-scale traffic management. UML/MARTE descriptions are presented for
some of the main services, at each hierarchical level. The services address an
optimization problem that includes both global (at higher levels of abstraction) and
local constraints (at physical level) with some parameters being collected in real-
time over distributed, physical areas. For scalability, the distributed control scheme
implements a hierarchical approximation scheme. Decisions at the physical level are
local and decisions at higher levels refer to larger geographical areas, where the
model parameters change slower. The proposed services are based on a well-
defined, mathematical model for control optimization. This is useful in dependable
control, as the performance of decision making can be reasoned out based on the
model.

BUPT

56 MDA Approach for Cyber Physical System Design - 4

Chapter 4. MDA Approach for Cyber Physical
System Design

The methodology presented in this thesis is a visual one in order to help the

users in easier and more intuitively defining their applications, with a minimal effort.
When discussing the users’ perspective, they are able to use different types of

already defined UML components for CPS networks. These components can be used
by simply customizing them depending on application needs, or can be composed
into more complex components, taking into consideration communication and links
between components, limitations and requirements. The components and
connections between them form the hardware specifications for an application. For
the software specifications, the users specify the behavioral requirements for the
applications, in form of goals for the highest logical level in the system. Goals at
higher logical levels are translated into goals at lower logical levels. These lower
computational levels have also an important role in specifying the software behavior
of the application, as their fulfillment or lack of accomplish influences goals at higher
computational levels.

The users can test and validate their defined UML models for hardware and
software management for a CPS network. The UML models related to hardware are
defined for the types of nodes in the network and for entire network topology and
customized for the requirements of the applications. The UML models related to
software represent the high-level software specifications, in form of goals for the
applications. These models are tested by generating specifications for a simulation
environment regarding hardware and software configuration of the network. The
correctness and completeness of the UML models defined by the user is inspected
by checking the OCL constraints previously defined and attached to UML models,
through used stereotypes. In case of success, the users test their applications in a
simulation environment that allows them to verify the defined network and goals for
the applications. In case testing and validation is proven unsuccessful, the users
must return to the high-level UML specifications and correct them. After several
steps from UML modeling to testing in simulation environment, if necessary, the
specifications for the applications are validated. Then, the users can deploy the
network in a physical environment, having the certainty that hardware modeling
errors and at least some behavioral errors have been already resolved.

This means that the visual design and programming model are able to generate
simulation code for validation of the desired applications. Hardware validation
implies network topology, the nodes contained in the network and the
communication between them. Software validation implies the goals for the
application, the requirements and limitations translated from UML high-level
modeling. After the validation of the application in simulation environment, the
approach allows generating efficient business-logical code, which is loaded on the
physical nodes. The physical network is able to collaborate with the generated code
and is acting as close as possible to the desired behavior. The generated code
considers the hardware limitations of the physical components which define the
network.

BUPT

4 - MDA Approach for Cyber Physical System Design 57
The specific application library helps the visual design and programming model

in generating the necessary drivers for the hardware components of the network.
When discussing from the developers of components perspective, for high-level

UML modeling, some UML profiles are first defined. An UML profile for defining the
hardware for CPS network components is developed. This profile is detailed in
chapter 5.1 and has been introduced by Magureanu et al. in [80]. The UML
hardware profile allows defining particular standard elements based on stereotypes.
A set of stereotypes defines node specific requirements like localization or type of
communication. These defined stereotypes contain specific tagged values and OCL
constraints, for expressing the customizations required for the further stereotyped
UML elements. Well defined stereotypes for specifying the hardware components of
a network help achieving a clear separation of devices and grouping into families of
hardware devices. The work in [80] was continued by Magureanu et al. in [81], with
defining customizations for wireless communication between nodes in a CPS
network.

Another UML profile is defined for software specification of CPS applications.
This has been introduced by Gavrilescu et al. in [82] and detailed in [83]. It
contains a set of stereotypes which define the goal-oriented approach, by specifying
logical levels to which the node belongs to, the reflection of the goals from higher
levels to lower logical levels, and the extension of the goals from the lower logical
levels in a collection of goals derived from the higher logical levels.

The UML goals definitions consider the customized expression for each goal and
should cover any goal that is possibly to occur. UML goals definitions are handled in
a common manner by the visual design and programming model. The design
methodology handles requirements for several types of CPS applications and has
been tested on three types of applications: management of traffic systems in
intersections, management of gas distribution systems and fuel management in a
portion of an aircraft vehicle, the fuel system.

Studies have indicated that using UML defined stereotypes for specifying
different requirements for applications help improving the overall understanding of
the models in question. Such a study is detailed by Kurniarz et al. in [5].

Using the defined UML hardware profile, it is possible to start a distributed
embedded application design with clear specifications regarding network topology,
the types of nodes participating in its construction and the hardware units involved
in specifications for the families of nodes used. It is the task of the developers of the
components to define customization for the possible types of nodes, for the network
topology and other hardware units based on UML hardware profile. These
customized components are placed in a library that can be accessed by the users in
order to define their applications.

In order to achieve this design methodology, a middleware which recognizes
the types of components used is required. The middleware ensures the correct
functionality of the hardware components of the network and the software
components, in the form of goals to be completed by the users. The library functions
are available to the users, in order to help defining custom CPS applications. The
library functions ensure general application requirements and constraints. The
custom specific hardware requirements and application goals and constraints are
inserted by the users, and the middleware correlated with the specific application
library functions is able to handle them.

Also, the developers of the predefined components for the CPS applications
should ensure the verification of the users defined applications in a simulated
environment.

BUPT

58 MDA Approach for Cyber Physical System Design - 4
They provide the tools for checking the OCL constraints for the UML user

defined models. After validation of the UML models, a code generator ensures the
generation of specifications for hardware and software requirements in the
simulation environment. After validating the simulated application, the visual design
and programming model is able to generate executable code, which can be deployed
on the hardware network.

The goal-oriented method proposed by the author of this thesis uses MDA
approach for the design of CPS applications. The steps required to be accomplished
by the developers of the components and the users which define the applications
can be translated into the models described by the MDA approach. MDA has been
chosen as it is a rigorous approach, that allows creating specific models for each
development phase for embedded distributed applications in general, and CPS
applications in particular. The CIM holds the UML defined profiles, which are used to
customize the PIM defined for hardware and software specifications. Also, the PIM
can be tested and validated, by verifying it in a formalized manner and by
simulating the models and correcting the encountered errors.

Each of the models that characterize the MDA approach has well-defined
objectives. The CIM is specified in the visual programming model. It indicates a
certain system in the environment where it will evolve, without giving any details
about the specific implementation. In the present thesis, the CIM is used to
describe a particular family of CPS applications. It defines types of nodes, network
variables, internal node strategies, the network boundaries and requirement
abstractions. The author of this thesis has defined two UML profiles (in [80], [81],
[82] and [83]), one for hardware and interconnection constraints and the other for
software specification and internal business logic. These profiles are used to design
CPS application CIM.

The PIM is defined using the defined UML profiles, indicating the network
topology defined by the user, the expression of the functional and non-functional
requirements, the types of nodes required by the user and their behavior. The
objective of PIMs is to correlate all the desired hardware and software functionalities
and to deal with them at an abstract level, without taking into consideration the
hardware limitations inducted by the actual physical components. The PIM makes
use of deployment diagrams, component diagrams and CIM to correlate all required
hardware and software functionalities. It is based on a hierarchy of diagrams,
starting from the network interconnections between all nodes and continuing with
tailoring based on application goals. Each grouping level has attached its own
deployment diagram containing lower grouping levels, as deployment nodes. These
diagrams depict also internal constituents of all system nodes as customized
components and relationships between them. Component diagrams define behavior
of system nodes. They are attached to deployment diagrams. A node internal
behavior and strategies is specified using component stereotypes. They enable
mapping of external customized goals to internally recognized format. Then
predefined external events are assigned to nodes.

At this time, the stub application defined by the user is able to be compiled by
the visual design and programming model at a static level, in order to detect the
lack of correlations between goals and network topology, or between goals
themselves, expressed by OCL constraints.

The PIM can be tested and validated before deployment into a physical
network, on a PSM. A possible and recommended validation methodology is testing
in a simulated environment.

BUPT

4 - MDA Approach for Cyber Physical System Design 59
Using directly a physical network as PSM implies some risks because

undetected errors before deployment may lead to the increase of costs for the
application and also may slow down the application. It is more time consuming to
repeatedly load the application on physical network after correcting some errors
than is solving the errors and then loading the application on physical devices. Error
cases should be defined and signaled accordingly.

Designing CPSs for physical networks involves significant challenges. At the
same time, simulation must be as realistic as possible in order to obtain best results
from simulating a network before deployment in a physical environment. CPSs can
consist of distributed devices, each of them having its own internal clock and being
able to operate at a different clock frequency than another device. Although there
are clear specifications for each component of CPSs, the main issue in designing this
type of systems resides in the management of complex interconnections. Dynamic
aspects for the interconnections increase the difficulty of the stated problem.
Proposed techniques for concurrent programming of massively distributed
embedded systems raise the same problem [84]. A recent solution for handling
dynamic aspects of CPS is based on Programmable System-on-Chip (PSoC) devices
[58].

PSoC devices integrate reconfigurable analog and digital circuits, all of them
managed by an embedded microcontroller. PSoC devices provide memory and
programming circuits. This kind of architecture provides great flexibility, with a
reduced number of components. A single PSoC device can integrate a large number
of peripherals, saving in this way board space and designing spent time. Also, such
a device provides low power consumption and reduces the overall cost for the
system. The reconfiguration capabilities allow to the designer of the system to
connect internal resources on the fly, and this leads to using a small number of
components for each specific task [59]. PSoC devices support a wide range of
communication protocols.

Using PSoC technology for designing CPSs applications does not solve all the
problems. There are still open issues regarding a correct temporal semantic for all
concurrent processes involved [85]. Synchronization mechanisms must be
implemented at communication level, in order to achieve cooperation between
devices. Some solutions regarding issues related to simulation of PSoC based CPSs
are given in [86], [87], [88] and [89] and are detailed in chapter 6.

BUPT

60 UML Profiles for Cyber Physical System Applications - 5

Chapter 5. UML Profiles for Cyber Physical
System Applications

UML approach allows high level-modeling of PSoC based CPS applications. It

allows static and behavioral descriptions of distributed applications. The UML models
allow the user to define several hardware and software parts for embedded system
applications. Each hardware component has assigned a specific behavior based on
the application specifications. The hardware specifications for the network topology
and components, along with the behavior of the components in an application are
later used as input for simulation and, after testing and validation, as input for
application deployment. Simulation on a simulation environment and deployment of
the network on physical devices are considered PSMs, which can be obtained from
the same PIM of network topology, network components and network behavior,
from high logical levels to low logical levels.

 Using UML modeling, the user can define the structure of a network, first as a
black box of hardware components, connected through each other, depending on
the established connection paths, and then at a lower computational level, each
type of node in the network, with its internal components, connected for being able
to exchange messages. The UML models for hardware description consist of UML
predefined hardware components. For these customized components, the author of
this thesis has defined an UML hardware profile. This is detailed in subchapter 5.1.
The components behavior at lower logical levels and the network behavior at the
highest logical level compose the UML software profile. The stereotypes for software
description correspond to the ones for hardware description. The UML software
profile is detailed in subchapter 5.2.

Studies have shown that using defined stereotypes in UML specifications and
customizing the models with stereotypes help improving the overall understanding
of the UML models in question [5]. This is a desired goal, as it helps in a better
definition and understanding of the internal configuration of each node which is part
of the network and the network as a whole.

5.1 UML Profile for Hardware Specification

The stereotypes defined in this UML hardware profile, along with the tagged

values and the OCL constraints, are used in defining the hardware components,
which instances are actually used in modeling the application. Well defined
stereotypes for specifying hardware components help achieving a clear separation
and grouping between families of devices.

Although UML profile appliance is similar with the inheritance relationship,
there are some important specific features when using UML profiles. The instance-of
relationship is not transitive [92]. This means that when a stereotype is applied to a
certain element, the tagged values are applicable only to that element and not to

BUPT

5.1 - UML Profile for Hardware Specification 61
instances of that element. Here, for the hardware specification of a network,
deployment diagrams are required and therefore stereotypes which extend
metaclass Node (Deployment) are used. The tagged values corresponding for all
nodes stereotyped with a specific stereotype are defined in the stereotype of
metaclass Node (Deployment), and have the same value, independent of the
instances created. At the same time, if it is necessary for a tagged value to have
different values on instances, this tagged value must be defined in a stereotype
which extends metaclass Instance Specification. The OCL constraints required here
imply that when a node is stereotyped with a certain stereotype of metaclass Node
(Deployment), each instance of that node must be stereotyped with the
corresponding stereotype of metaclass Instance Specification. The correspondence is
made using naming convention. For example for a stereotype ADC_HWST of
metaclass Node (Deployment), the corresponding stereotype for metaclass Instance
Specification is ADC_HWST_Instance. In this way, the node will have some specific
characteristics, general for all instances, given by the stereotype of Node
(Deployment) and each instance will be able to customize other characteristics,
given by the stereotype of metaclass Instance Specification.

5.1.1 First Level Stereotypes

For high-level hardware configuration of nodes in a network and for the entire

network, it is necessary to use deployment diagrams to specify the hardware
requirements for the components of an application. Instance specifications of nodes
are used in deployment diagrams and they can be customized using stereotypes
that extend metaclass Instance Specification. The nodes are customized using
stereotypes that extend metaclass Node (Deployment). The connection between the
Node (Deployment) stereotype applied to a node, and Instance Specification
stereotype applied to an instance of that node is given by an OCL constraint on the
stereotype for the node, which specifies that all instances must be customized using
the corresponding Instance Specification stereotype, to which the naming
convention applies. The Instance Specification stereotype will have _Instance suffix.

The first level hierarchy of stereotypes which extend the Node (Deployment)
metaclass is described visually in Figure 8.

Figure 8 First level Node (Deployment) stereotypes

• Node_PIM is a stereotype which extends Node (Deployment) metaclass. It is

an abstract stereotype, base for all stereotypes of Node (Deployment) in the UML
hardware profile.

• Network_PIM stereotype is the customization for each network, as part of an
application. The networks can contain wired or wireless connections, depending on
the type of communications between nodes, as components of the network.

BUPT

62 UML Profiles for Cyber Physical System Applications - 5
• SimpleNode_PIM stereotype is used for customizing a unit in a network

which contains only attributes and ports. This stereotype is mainly used for grouping
purposes, more specialized stereotype being used for customizing simple units in a
network.

• CompoundNode_PIM stereotype is used for customizing a node in a network
which also contains other units, which can be simple or compound units.

• ModuleInterface_PIM stereotype is used in case compound nodes contain
sub modules that implement a certain interface, instead of being an instance of a
certain simple or compound unit. This stereotype is the base for a hierarchy of
possible module interfaces in the UML hardware profile.

5.1.2 Simple Modules Stereotypes

Cypress_PredefinedUnit_HWST, BaseUnit_HWST, MIXIM_PredefinedUnit_HWST

are first level abstract stereotypes for simple units.
• Bus_HWST stereotype customizes a hardware component which facilitates

communication between components in a distributed wired network, acting as a
regular data bus.

• PSOCUnit_HWST stereotype is a relevant stereotype derived from
SimpleNode_PIM stereotype. It defines the PSoC device contained by the hardware
node.

Most distributed embedded systems are composed of nodes which contain
communication, sensing, actuation and decision units. This is the reason stereotypes
like SensingUnit_HWST, ActuationUnit_HWST or DMUnit_HWST were created, as
shown in Figure 9. As for communication in embedded systems networks, this can
be wired or wireless. Wired communication is described by stereotypes grouped in
Communication_HWST stereotype, derived from Cypress_PredefinedUnit_HWST
[93]. Wireless communication uses stereotypes created using as model the MiXiM
project for wireless sensor networks [94].

The base units for nodes in a network can require an internal clock or not. This
is the reason for layering the stereotypes, depending on the internal clock, for
example using BaseUnitWithInternalClock_HWST stereotype. Actuation units do not
require an internal clock, therefore ActuationUnit_HWST stereotype is not derived
from stereotype BaseUnitWithInternalClock_HWST. Decision units, sensing units and
PSoC units require an internal clock, therefore the corresponding stereotypes
generalize BaseUnitWithInternalClock_HWST stereotype. At the same time, some
units can be found in different states, while other units execute tasks. Therefore the
layering into components customized with BaseStateOrientedUnit_HWST and
BaseTaskOrientedUnit_HWST stereotypes is required. Goal oriented units are
derived from task oriented units. Corresponding stereotypes are also in a
generalization relationship. In case of goal-oriented applications, the PSoC unit
requires a customization, realized with GoalOriented_PSoCUnit_HWST stereotype.

BUPT

5.1 - UML Profile for Hardware Specification 63

Figure 9 Simple nodes stereotypes

5.1.3 Stereotypes for PSoC based Cyber Physical Systems

PSoC devices integrate reconfigurable analog and digital circuits, all of them

managed by an embedded microcontroller. PSoC devices contain also memory and
programming circuits and support a wide range of communication protocols. Such
architecture provides great flexibility, with a reduced number of components. A
single PSoC device can integrate a large number of peripherals, saving in this way
board space and time spent on designing the system. PSoC devices are
characterized by low power consumption. The overall costs for the system are
reduced. The reconfiguration capabilities allow to the designer of the system to
connect internal resources on the fly. This leads to usage of a reduced number of
components for each specific task. The reduced number of components, the low
power consumption and the reconfiguration capabilities in PSoC devices make them
suitable for being used as CPS devices. The main challenge in designing PSoC based
CPS applications resides in fulfilling a complex interconnection management.

PSoC Creator is an IDE provided by Cypress Semiconductor Corporation [93],
suitable for developing PSoC based applications. PSoC Creator offers support for
loading the user application into device and therefore it helps creating a PSM
starting from the PIM based on UML stereotypes. It is also possible to describe the
applications using only PSoC Creator and then loading them on the device, but by
using MDA, it is possible to specify only a set of PIMs in UML high-level modeling
from which several PSMs can be created: one for OMNeT++ simulation environment
and another one for deployment on physical network, with the facilities offered by
PSoC Creator. Therefore, for performing a realistic simulation and for a precise
mapping between PIMs constructed using UML modeling and PSoC Creator IDE, all
hardware configuration possibilities that can be realized on PSoC Creator side must
be possible also in UML models. This is the reason for defining stereotypes for all

BUPT

64 UML Profiles for Cyber Physical System Applications - 5
analog and digital predefined devices on PSoC Creator side. These stereotypes have
a common base stereotype named Cypress_PredefinedUnit_HWST, which is derived
from SimpleNode_PIM stereotype. Cypress_PredefinedUnit_HWST stereotype was
defined for a better hierarchical view regarding the types of stereotypes contained
by UML hardware profile.

Each PSoC Creator predefined component unit is expressed in UML models as a
simple node and requires gates for interconnecting with other elements in the
models. Each hardware component has associated a detailed technical data sheet,
which expresses the component’s functionality and its terminals, therefore the gates
do not have to be described in detail by the UML defined stereotypes. A naming
convention for these can is used. The naming convention is constructed from the
terminal name with a Gate_HWST suffix attached, as a result having stereotypes:
InputGate_HWST, OutputGate_HWST and InOutGate_HWST.

There are some most relevant groups of stereotypes for the most frequently
used hardware components in distributed network design, available in PSoC Creator
and in UML hardware profile. The hierarchy for these groups of stereotypes is
presented more explicitly in Figure 10. Most stereotypes are abstract and cannot be
directly applied to UML models for hardware components because their role is to
represent the groups of stereotypes with similar functionalities. The information
regarding features for hardware components and their descriptions are taken from
PSoC Creator Component Data Sheets documents.

Figure 10 Stereotypes group for PSoC based CPSs

Analog_HWST is an abstract stereotype indicating that the stereotypes that use

this stereotype as base stereotype customize analog hardware components. The
derived stereotypes from Analog_HWST stereotype are: Amplifier_HWST,
Mutex_HWST, ADC_HWST, DAC_HWST, Comparator_HWST, Mixer_HWST.

CapSense_HWST stereotype defines a group of hardware devices able to
measure the capacitance for applications, such as touch-sensing buttons, sliders and
proximity detectors.

There are two hardware elements for capacitive sensing documented in PSoC
Creator: CapSense and CapSense CSD. CapSense component supports different
combinations of independent and slider capacitive sensors; supports parallel and
serial scanning configurations; offers guided slot and terminal assignments using
the CapSense Configure dialog. Capacitive sensing systems can be used in
applications in place of conventional buttons, switches and other controls, even
exposed to hard weather conditions. As for the types of applications in question,
here can be included ATMs, outdoor equipment, automotive systems, public access

BUPT

5.1 - UML Profile for Hardware Specification 65
systems, portable devices (cell phones and PDAs), and kitchen and bathroom home
appliances. CapSense CSD supports combinations of buttons, sliders, touch pads
and proximity capacitive sensors, defined by the user. Capacitive sensing provides
an efficient capacitance measurement for different types of applications.

• Communication_HWST abstract stereotype represents the units responsible
with communication on different buses and protocols. The derived stereotypes from
Communication_HWST stereotype are: CAN_HWST, I2C_HWST, I2S_HWST,
SPI_HWST, UART_HWST and USBFS_HWST.

• Digital_HWST abstract stereotype defines a group representative for
hardware components acting as logic devices, registers of functions. The derived
stereotypes from Digital_HWST stereotype are: Logic_HWST, Register_HWST and
Function_HWST.

• Display_HWST abstract stereotype represents the group of display modules.
The derived stereotypes from Display_HWST stereotype are: CharacterLCD_HWST,
GraphicLCD_HWST and SegmentLCD_HWST.

• System_HWST abstract stereotype groups other system digital components
stereotyped with: BusConvertor_HWST, Clock_HWST, Temperature_HWST,
DMA_HWST, EEPROM_HWST, RealTimeClock_HWST, SleepTimer_HWST, Synchroni-
zationBlock_HWST and OverClock_HWST.

As a general observation regarding the method stereotypes for Cypress

hardware components were defined: the constraints associated with these
stereotypes express mainly the hardware requirements for the stereotyped
components. In case for all components from a certain sub-group of some main
abstract group, a port is mandatory, this will appear as an OCL constraint,
associated with the corresponding stereotype. In case a port is optional for
components from certain sub-groups, a tagged value with prefix bool_define_ will
be defined for the corresponding stereotype. This tagged value is transformed into a
parameter on a PIM, for example to validate it on OMNeT++ simulator. In case the
parameter changes the default false Boolean value given to the corresponding
tagged value in the UML PIM, then the stereotyped hardware component must
define a port with a specific name and functionality. This is also expressed through
an OCL constraint. The constraints, both their natural expressions and the OCL
expressions, are grouped in a table later in this chapter.

For a sub-group represented by a stereotype, there can be more possible
components, defined in PSoC Creator, for example ADC_HWST stereotype can be
used for customizing two different analog components: Delta Sigma Analog to
Digital Convertor or ADC Successive Aproximation Register. A tagged value
ADC_HWST_Type is used to indicate which of these two possible components is
referred. An OCL constraint is defined for this purpose and it helps defining a
restriction for the exact type of components that can be customized using
ADC_HWST stereotype.

The stereotypes derived from Analog_HWST stereotype are presented visually

in Figure 11.
• Amplifier_HWST stereotype is mapped to the amplifier hardware units.

There are four different types of amplifiers described in PSoC Creator documents:
Inverting Programmable Gain Amplifier (PGA_Inv), Operational Amplifier (Opamp),
Programmable Gain Amplifier (PGA) and Trans-Impedance Amplifier (TIA). Which
one of these components is used in the hardware description for PSoC based
applications is specified by string_Amplifier_HWST_Type tagged value from

BUPT

66 UML Profiles for Cyber Physical System Applications - 5
Amplifier_HWST_Instance stereotype. The specification for the actual component
used from the amplifiers’ group is helpful for the software description on the PSM.
The Amplifier_HWST stereotype defines only a mandatory output port, Vout, and no
optional ports.

• Mutex_HWST stereotype describes different multiplexer units, which can be
constructed in PSoC Creator. The multiplexers described in PSoC Creator documents
are Analog Hardware Multiplexer (AMuxHw), Analog Multiplexer (AMux), Analog
Multiplexer Sequencer (AMuxSeq) and Virtual Mux. There are no optional ports for
Mutex_HWST stereotype. The mandatory input port named inputs is specified using
an OCL constraint.

• ADC_HWST stereotype customizes the components providing analog to
digital conversion. There are two hardware elements for analog to digital conversion
documented in PSoC Creator: Delta Sigma Analog to Digital Convertor (ADC_DelSig)
and ADC Successive Aproximation Register (ADC_SAR). The optional ports for this
group of components are: minusInput, soc and aclk. In case it is required for these
ports to be activated, this must be specified in the UML PIM of the node customized
with ADC_HWST stereotype by setting the values of the Boolean variables
bool_define_minusInuputPort, bool_define_socPort and bool_define_aclkPort,
respectively, to true.

• DAC_HWST stereotype customizes different types of digital to analog
convertors, described in PSoC Creator: 8-Bit Current Digital to Analog Converter
(IDAC8) and 8-Bit Voltage Digital to Analog Converter (VDAC8). The optional input
ports are strobe and data, specified in the UML PIM for the node customized with
DAC_HWST stereotype by setting to true the Boolean values for the variables
bool_define_strobePort or bool_define_dataPort, respectively. There are no
mandatory ports defined by DAC_HWST stereotype.

• Comparator_HWST stereotype is used for specifying comparator hardware
units. This stereotype uses OCL constraints to define the mandatory ports:
PositiveInput and NegativeInput as input gates and ComparatorOut as output gate.
The optional input port is clock, with the corresponding bool_define_clockPort value.

• Mixer_HWST stereotype customizes mixer hardware units which are
components that can be used for frequency conversion of an input signal with a
sampling clock obtained from a fixed Local Oscillator. The mandatory ports defined
by Mixer_HWST stereotype using OCL constraints are Fin, LO si Vref, as input ports
and Fout as output port.

Figure 11 Analog stereotypes

BUPT

5.1 - UML Profile for Hardware Specification 67
The stereotypes derived from Communication_HWST stereotype are presented

visually in Figure 12. The naming convention for the defined stereotypes allows an
easy recognition for the customized buses and protocols, as described in PSoC
Creator documents.

Figure 12 Communication stereotypes

• CAN_HWST stereotype is used for integrating Controller Area Network (CAN)

devices which implement a standard communication protocol for motion oriented
machines controlled networks (CANOpen) and factory automation applications
(DeviceNet). CAN_HWST stereotype defines a mandatory input port rx and a
mandatory output port tx using OCL constraints. The optional output port tx_en is
specified using the bool_define_tx_enPort Boolean variable.

• I2C_HWST stereotype is used for configuring I2C hardware components
which support I2C slave, master and multi-master configurations. The differentiation
is made using I2C_HWST_Type tagged value, defined in I2C_HWST_Instance
stereotype. The I2C hardware components implement the industry standard I2C
Bus, compatible with other third-party devices. sda and scl are the mandatory ports
defined in I2C_HWST stereotype, which can have role of both input and output
gates.

• I2S_HWST stereotype helps constructing the Integrated Inter-IC Sound Bus
(I2S) serial bus standard interface, used for interconnecting digital devices. The
I2S_HWST stereotype defines two mandatory output ports, sck si ws, and a large
number of optional ports. For the optional ports, the corresponding bool_define_
prefixed tagged values are visible in Figure 12.

• SPI_HWST stereotype is used for customizing the Serial Peripheral Interface
(SPI) components, similar to the ones described in the PSoC Creator document.
The SPI components can be master or slave. The reset input port is defined as

BUPT

68 UML Profiles for Cyber Physical System Applications - 5
mandatory in the SPI_HWST stereotype. The input-output optional port is sdat, with
the corresponding bool_define_ prefixed variable.

• UART_HWST stereotype describes the Universal Asynchronous Receiver
Transmitter (UART) hardware unit which provides asynchronous communications.
The UART component can be configured for Full Duplex, Half Duplex, Rx only or Tx
only version. This explains the large number of optional ports in the UART_HWST
stereotype, for which, the attached bool_define_ prefixed tagged values are visible
in Figure 12.

• USBFS_HWST stereotype is used in the definition of a Full Speed USB
(USBFS) component, which provides a USB full speed compliant device framework.
The USBFS_HWST stereotype provides an optional output port, named sof.

The stereotypes derived from Digital_HWST stereotype are presented visually
in Figure 13.

Figure 13 Digital stereotypes

• Logic_HWST stereotype is used for devices that cover binary logic

operations like: logic high '1', logic low '0', and, or, nand, nor, not, xor, xnor, virtual
multiplexer, de-multiplexer, lookup table, multiplexer, three state buffer and digital
value keeper. The exact type for the device is expressed by Logic_HWST_Type
tagged value, defined in Logic_HWST_Instance stereotype.

• Register_HWST stereotype is used for customizing hardware components
like control or status registers. The exact type for the device is expressed by
Register_HWST_Type tagged value, defined in Register_HWST_Instance stereotype.
The stereotype defines an optional input port, named clock.

• Function_HWST stereotype is used for tagging a hardware device which
provides one of the following functions: counting for events, cyclic redundancy
check from a given serial bit stream, pseudo random bit stream generation based on
internal linear feedback shift register, pseudo random sequence generation based on
linear feedback shift register, pulse width modulator for generating single or
continuous control signals, data shift in and out of a parallel register or interval
timing between hardware events [80]. All devices which implement these functions
are already defined in PSoC Creator tool. The exact type for the device is expressed
by Function_HWST_Type tagged value, defined in Function_HWST_Instance
stereotype. The stereotype defines optional input ports, named clock and reset.

The stereotypes derived from Display_HWST stereotype are presented visually

in Figure 14 and define different display configurations predefined in PSoC Creator
tool.

BUPT

5.1 - UML Profile for Hardware Specification 69

Figure 14 Display stereotypes

• CharacterLCD_HWST stereotype is used for customizing a component similar

to the one created in PSoC Creator which can create user defined custom characters
and horizontal and vertical bar graphs. The mandatory port is named LCD_Port; the
description is available in PSoC Creator documents.

• GraphicLCD_HWST stereotype is used for customizing different types of
graphic LCD display devices, detailed in PSoC Creator: Graphic LCD Interface
(GraphicLCDIntf), Graphic LCD Controller (GraphicLCDCtrl). The Graphic LCD
Interface (GraphicLCDIntf) component provides the interface to a graphic LCD
controller and driver device. The Graphic LCD Controller (GraphicLCDCtrl)
component provides the interface to an LCD panel that has an LCD driver, but not
an LCD controller. clock, di_lsb and do_lsb are mandatory ports, more detailed
described in technical data sheets, while di_msb and do_msb are optional ports,
their presence on the stereotyped component being established by the value of the
Boolean tagged value GraphicLCD_HWST_Type.

• SegmentLCD_HWST stereotype is used for customizing different types of
segment LCD display devices, detailed in PSoC Creator: Segment LCD (LCD_Seg)
and Static Segment LCD (LCD_SegStat). The type of the component is given by the
value of the SegmentLCD_HWST_Type variable.

The stereotypes derived from System_HWST stereotype are presented in

Figure 15. They are representative for bus convertor, clock, temperature, DMA,
EEPROM, real time clock, sleep timer, signals synchronization and over clock
component units, respectively.

• BoostConvertor_HWST stereotype is used for describing a hardware
component which provides the ability to configure and control the PSoC boost
converter hardware block.

• Clock_HWST stereotype is used for describing a hardware component which
provides two main features: it provide the means to create local clocks and it
provides the means to connect designs to system and design-wide clocks. This
stereotype defines a mandatory port named clock and an optional port named
digitalDomain.

• Temperature_HWST stereotype is used for describing a hardware
component which provides an API to acquire the temperature of the die.

• DMA_HWST stereotype helps customizing a hardware component which
allows data transfer to and from memory, components and registers. The
DMA_HWST stereotype defines one mandatory output port and two optional input
ports.

BUPT

70 UML Profiles for Cyber Physical System Applications - 5
• EEPROM_HWST stereotype is used for describing a hardware component

which provides and API to write a row of data to the EEPROM.
• RealTimeClock_HWST stereotype is used for describing a hardware

component which provides accurate time and data information for the system.
• SleepTimer_HWST stereotype is used for describing a hardware component

which can be used to wake the device from Alternate Active and Sleep modes at a
configurable interval. It can be configured to issue an interrupt at a configurable
interval; therefore the SleepTimer_HWST stereotype defines a mandatory output
port, named interrupt.

• SynchronizationBlock_HWST stereotype is used for describing a hardware
component which resynchronizes a set of input signals to the rising edge of the
clock signal. Two mandatory input gates and a mandatory output gate are identified.

• UDBClock_HWST stereotype is used for describing a hardware component
which supports precise control over clocking behavior. The stereotype defines two
mandatory input gates and a mandatory output gate.

Figure 15 System stereotypes

5.1.4 Stereotypes for MiXiM

For UML high-level describing of applications that use wireless communication

between components, MiXiM project [94] was used as example. MiXiM is an
OMNeT++ modeling framework created for mobile and fixed wireless networks, such
as wireless sensor networks. It offers different models of wireless communication. In
this thesis, the author defines stereotypes for supporting wireless communication in
CPS networks, based on the MiXiM models. The defined stereotypes are grouped in
Figure 16.

• MIXIM_PredefinedUnit_HWST abstract stereotype is used for grouping the
stereotypes used for customizing the components similar to the one in MiXiM
project.

• BaseLayer_HWST stereotype is a generalization for BaseMacLayer_HWST
and BaseNetwLayer_HWST stereotypes, used for customizing component units for
basic nodes.

BUPT

5.1 - UML Profile for Hardware Specification 71
• ConnectionManager_HWST stereotype is used for describing the module that

coordinates the connections between nodes and handles dynamic gate creation.
• BaseWorldUtility_HWST stereotype customizes a module which provides

utility methods and information used by the entire network, as well as simulation
wide black board functionality.

• BaseBattery_HWST stereotype is used for customizing the battery module
for a node.

• BaseMobility_HWST stereotype is used for customizing the mobility module
for a node. This module handles the physical localization for the node.

• BlackBoard_HWST stereotype is used for customizing the module that
provides black board like information exchange between the other modules of a
host.

Figure 16 MiXiM units stereotypes

• Connections_MIXIM_PIM stereotype provides the customizations for the
connections for a module of a node to the upper layers, the lower layers of with the
exterior of the node.

5.1.5 Module Interfaces Stereotypes

The stereotypes defined for this group are shown in Figure 17.
• ModuleInterface_PIM stereotype is used in case compound nodes contain

sub modules that implement a certain interface, instead of being an instance of a
certain simple or compound unit. At the same time, simple modules can implement
an interface, instead of extending other modules.

• INic_HWST stereotype is used for customizing an interface for network
interface card.

• IBaseMobility_HWST stereotype is used for customizing an interface which is
implemented by modules responsible with mobility in a node.

• IBaseCommunicationUnit_HWST stereotype is used for customizing the
interface that must be implemented by communication units in a network.

BUPT

72 UML Profiles for Cyber Physical System Applications - 5
• IBaseNetwLayer_HWST stereotype is used for customizing an interface for

network layer modules.
• IBaseApplLayer_HWST stereotype is used for customizing an interface for

application layer modules.
• IBasePSoCLayer_HWST stereotype is used for customizing an interface used

for the PSoC layer for an application.
• IBaseGoalOriented_PSoCLayer_HWST stereotype is used for customizing an

interface used for the PSoC layer for goal-oriented applications.

Figure 17 Modules interfaces stereotypes

As expressed in Figure 17, the stereotypes for interfaces must contain also the

possible connections for modules which implement these interfaces, expressed by
the following stereotypes: RadioDirectSendConnection_MIXIM,
LowerToUpperConnections_MIXIM, UpperToLowerConnections_MIXIM.

5.1.6 Compound Modules Stereotypes

The hierarchy for compound modules stereotypes is visually expressed in

Figure 18. The compound nodes are differentiated based on the communication
modality, using stereotypes for customization like: WiredCompoundNode_HWST or
WirelessCompoundNode_HWST. At the same time, compound nodes with wireless
communication can be classified depending on the requirements of the applications
into goal-oriented and task-oriented. The corresponding stereotypes are:
GoalOrientedWirelessCompound_HWST and Node_HWST
TaskOrientedWirelessCompoundNode_HWST, respectively.

The stereotypes for the required connections for communication with other
modules in a node and with the exterior of the node are also exemplified in the
figure.

BUPT

5.1 - UML Profile for Hardware Specification 73

Figure 18 Compound modules stereotypes

5.1.7 OCL Constraints

OCL constraints are defined for the overall UML hardware profile, but can be

applied to specific stereotypes. Constraints are identified in the UML profile using the
name of the stereotypes with an indexed suffix. There are a large number of OCL
constraints specific for the UML profile but only a few types of constraints. This
thesis presents the main types of OCL constraints, with examples.

The next table presents constraints, written both in natural language and OCL,
for a better understanding. Also there is specified the stereotype to which the OCL
constraint is applied.

Constraints similar to first constraint from the table are applicable to
Node_PIM, Gate_PIM, Instance_PIM, Connections_MIXIM_PIM and state that the
stereotyped element should not be named as the stereotype.

Constraints similar to the second constraint in the table are applicable to
stereotypes that impose definitions of mandatory ports on the stereotyped element.

The third constraint is defined for stereotypes where the stereotyped element
contains an optional port. Depending on the value of the Boolean tagged value,
prefixed with bool_define, the port must be defined on the customized element or
not.

BUPT

74 UML Profiles for Cyber Physical System Applications - 5
If some tagged values and constraints must be established for each instance of

an element, separately, the stereotype that customizes the element must contain an
OCL constraint similar to the fourth one in the table.

The instance name is obtained using naming convention rules and contains
_Instance as suffix. The fifth constraint specifies which value some tagged value
should have. Any other value is considered false in the stereotype context. The sixth
constraint is applicable to elements and refers to the instances of those elements.

The seventh constraint imposes that a certain component to be stereotyped
with the Cypress like stereotype, which defines the OCL constraint.

Stereotype

name
Constraint in natural

language
Constraint in OCL

Node_PIM Stereotyped node name
should not be identical
to stereotype base name

let stereotypeBaseName: String =
self.name.substring(1, length(self.name)
- 5) in
if length(self.base_Node.name) =
length(sterotypeBaseName)
then let nodeBaseName: String =
self.base_Node.name.substring(1,
length(stereotypeBaseName)) in
nodeBaseName <> stereotypeBaseName
else self.base_Node.name <>
stereotypeBaseName endif

DMUnit_H
WST

Each stereotyped node
must define a port
named dataIn,
stereotyped with
InputGate_HWST

self.base_Node.ownedPort -> exists(a |
a.name='dataIn' and
a.oclIsTypeOf(InputGate_HWST))

Comparato
r_HWST

Each stereotyped node
can define a port named
clock, stereotyped with
InputGate_HWST

if self.bool_define_clockPort = 'true' then
self.base_Node.ownedPort -> exists(a |
a.name= 'clock' and
a.oclIsTypeOf(InputGate_HWST)) else
true endif

DAC_HWS
T

Each instance must be
stereotyped with
DAC_HWST_Instance

self.base_Node.allInstances() -> forAll(o
| o.oclIsTypeOf(DAC_HWST_Instance))

CharacterL
CD_HWST_
Instance

The tagged value
int_LCD_PortMultiplicity
must have value 7

self.int_LCD_PortMultiplicity = 7

BaseObject
_HWST

Each stereotyped
instance must contain a
reference to a
IBaseMobility_HWST
stereotype

self.base_Node.allInstances() -> forAll(o
| o.allInstances() -> exists (i |
i.oclIsTypeOf(IBaseMobility_HWST))

SPI_HWST Each instance must have
an element named
SPI_HWST_Type , with
value SPI_Master or
SPI_Slave

self.base_Node.allInstances() -> forAll(i
-> exists (type = i.ownedElement ->
type.name='SPI_HWST_Type' and
(type.value='SPI_Master' or
type.value='SPI_Slave')))

Table 8 Constraints in UML hardware profile

BUPT

5.2 - UML Profile for Software Specification 75

5.2 UML Profile for Software Specification

The hardware UML profile introduced in the previous subchapter allows

designing a distributed embedded application, with clear specifications regarding the
network topology, the types of nodes participating in its construction and the
hardware units involved in the specifications for the families of nodes used.
Deployment diagrams are used for the hardware representation of distributed
embedded systems.

The UML software profile presented below allows customization of the
application behavior at network, node and unit level.

5.2.1 First Level Stereotypes

The component diagrams are used to express the software requirements for

distributed applications. A resulting software component model must correspond to
each designed hardware deployment model.

The defined software stereotypes are grouped into several sets, all being
inherited from Component_PIM stereotype, as shown in Figure 19. The presented
groups of stereotypes aim to offer a solution for specifying and modeling the
software strategies available in an external library for the different types of units in
CPS nodes.

Figure 19 First level inheritance of the stereotypes composing the defined software profile

Therefore, for every stereotype presented above it is considered that at least

one basic software implementation already exists in the external library. The PIM-
PSM model translator has to identify, bind and integrate all the customized software
strategies and to provide a functional CPS application, customized based on the
user’s need.

The first group inherited from BaseUnit_SWST defines the software stereotypes
for the units corresponding to the hardware already defined in the deployment
diagrams. This group represents the first step for customizing the business logic for
each hardware unit.

The hierarchy derived from the Message_Parser_SWST stereotype deals with
the application communication part, whereas the Handling_Strategy_SWST inherited

BUPT

76 UML Profiles for Cyber Physical System Applications - 5
stereotypes deal with the application business logic which has to be attached to the
hardware unit.

The PSoCStrategyManager_SWST type stereotypes are meant for keeping the
application software logic related to hardware PSoC units involved in the CPS nodes
construction. They act as software containers and have the constraint to host
software artifacts inherited from the PSoCHandlingStrategy_SWST and
PSoCCommMapping_SWST stereotypes, respectively.

The inheritance of the PSoCHandlingStrategy_SWST keeps the actual internal
PSoC related business logic and offers the user the opportunity of customizing it,
whereas, the PSoCCommMapping_SWST stereotype inheritance deals with the
message mapping and exchange between different hardware units managed by
PSoC. The latter stereotype hierarchy offers in other words the possibility of defining
the state machine of the PSoC unit by taking into account all the possible actions
the PSoC software application may take based on specified internal and external
event mappings.

5.2.2 Software Part Definition Stereotypes

This group of stereotypes is presented in Figure 20 and it offers a mapping

between the hardware and the software which needs to be attached to it.
The PSoCUnit_SWST stereotype defines the software part of a PSoC hardware

unit of a node. SensingUnit_SWST defines the software part of an internal hardware
unit, responsible for sensing. Similar to these, there are also other several units like
ActuationUnit_SWST, CANUnit_SWST, and so on. The DMUnit_SWST is related to
DM hardware units from a node which is able to collect data from other nodes, to
analyze it based on its current goal and to send reconfiguration commands to
external nodes in a goal-oriented approach. The main constraint for this set of
stereotypes is that each stereotype must have defined the ports similar to their
complementary hardware units. Therefore, the deployment model corresponding to
the hardware part has to be specified as tagged value.

Each of these stereotypes must have declared internal components stereotyped
with specific inheritances from MessageParser_SWST and with
HandlingStrategy_SWST, respectively. The stereotyped internal artifacts must have
a link relationship.

Figure 20 Stereotypes used for mapping the software part to a specific hardware unit

BUPT

5.2 - UML Profile for Software Specification 77

5.2.3 Message Handling Stereotypes

The stereotypes inherited from MessageParser_SWST define the

communication software management part. These stereotypes are connected to the
communication hardware unit of the node and are responsible for handling the
received commands and data and also for sending information through the unit
ports designated for other nodes. Figure 21 shows the defined stereotypes.

Figure 21 Inheritance of stereotypes used for handling the communication aspects

For wireless communication, the message handler part must be stereotyped

with WirelessPSoCMessageParser_SWST. Using this stereotype, the communication
hardware component is able to detect the sender and destination node, respectively.

As an internal communication constraint, they must be in a one-to-one
association with a component stereotyped with HandlingStrategy_SWST. It uses
internal collaboration interfaces for communication with the linked handling strategy
artifact. Therefore, when receiving a message, the message handling part is able to
send the port name, the message and the node identifier to the handling strategy
component. The linked handling strategy artifact uses the same contract for sending
a message to one of its managed units, or to send it externally.

5.2.4 Handling Strategy related Stereotypes

Figure 22 lists the inheritance of HandlingStrategy_SWST. The listed

stereotypes specify the concrete commands handling and the internal chosen
strategy which has to be attached to a hardware unit.

The stereotype HandlingStateOrientedStrategy_SWST defines hardware units
able to change their internal state based on commands received from external units.
HandlingStrategyWithInternalClock_SWST stereotypes units provide the ability to
change their current state based on internal or external clock management.

The customized components stereotyped with SensingStrategy_SWST,
DMStrategy_SWST and ActuationStrategy_SWST specify the basic internal behavior
of their corresponding hardware units. They are managed by the PSoC software
constructs, connected to them. The resulted PIM diagrams of these units are used in
customizing the simulation PSM part and the selected strategies mapped from a
third party library. It is considered that the physical units contain the required
internal drivers and therefore they are able to run the compiled application resulting
by integrating the selected strategies.

The PSoC devices represent programmable circuits, able to interconnect and
manage physical units. Therefore, the software components stereotyped with
PSoCStrategyManager_SWST and GO_PSoCStrategyManager_SWST, respectively,
must have internally declared software constructs stereotyped with

BUPT

78 UML Profiles for Cyber Physical System Applications - 5
PSoCHandlingStrategy_SWST and with PSoCCommMapping_SWST, being in a
different collaboration relationships.

Figure 22 Stereotypes hierarchy for fetching the business logic at hardware unit level

5.2.5 PSoC Handling Strategy related Stereotypes

In case of simple units connected to a PSoC device, the handling strategy

component processes the message. In case of PSoC units, the message is forwarded
by the software component manager to one of the internal handling components.

The manager components act as software artifact containers. Therefore, the
actual handlings are ensured by their internal software defined components,
customized using stereotypes presented in Figure 23.

For each hardware unit connected to the PSoC device, a corresponding internal
handling strategy is established. This handling strategy can be chosen from various
domain-specific predefined strategies. Each stereotype defined in Figure 23
specifies an internal behavioral model of PSoC unit for managing the attached
device. The tagged values defined by these stereotypes allow the customization of
the selected predefined software components. The constraints are related to port
interconnectivity issues between PSoC and the managed unit. The developer
specifies the connected ports to that unit using the tagged values provided by the
stereotypes.

Figure 23 Stereotypes hierarchy for fetching the management of connected hardware

devices at PSoC unit level

BUPT

5.2 - UML Profile for Software Specification 79

5.2.6 Communication related Stereotypes

For communication between units residing inside of a physical node, and also

between nodes, a new set of stereotypes inherited from PSoCCommMapping_SWST
is added in the UML software profile, as listed in Figure 24.

These stereotypes have as tagged values the union of possible internal
software states and the commands the units recognize, acting as possible triggering
events. The inheritance for this kind of stereotypes follows the inheritance of
possible internal strategies for the customized device.

The developer defines different application dependent message formats which
he intends the device to use during the communication with other units and nodes.
Each already defined message format has to be bound to a precondition matching
criteria. The list of the tagged values of the stereotype act as possible matching
preconditions for triggering the message are listed in. Thus, every time the internal
software state changes, internal watchdog timeout occurs or event is received, the
software implementation of the stereotype checks its list of preconditions to find out
if there is any message to be sent.

Each communication mapping component must have also specified the
corresponding output gate. In case of wireless communication, it is also required to
set as tagged value the destination node identifier. In this case, the destination gate
is not required, since the external communication ports of the unit are mapped
internally in the model component used by the manager component for sending
messages.

In case of communication with multiple internal units, a component
stereotyped with an inheritance of PSoCCommMapping_SWST must be specified for
each unit. Therefore, the internal strategy is found in a one-to-many relationship
with its related communication mapping components.

To ensure proper communication, the message sent from a unit has to be
recognized based on its format by the message receiving unit either as being a
precondition for one of its internal PSoCCommMapping_SWST stereotyped artifacts,
or as being an action request for one of its HandlingStrategy_SWST stereotyped
artifact. Thus, intra-node communications schemas like request-feedback, request-
act, send-forward and send broadcast are possible and easy to design.

Figure 24 Unit and node intra-communication stereotypes

BUPT

80 UML Profiles for Cyber Physical System Applications - 5

5.2.7 OCL Constraints

Similar to OCL constraints for the UML hardware profile, the OCL constraints

presented in this subchapter are defined for the overall UML software profile, but
can be applied to specific stereotypes. Constraints are identified in the UML software
profile using the name of the stereotypes with an indexed suffix.

Stereotype Constraint in natural language

SensingStrategy_SWST Each component must have instantiated
the tagged value called controlIn with
the name of a port contained by the
parent component and of type
InputGate_HWST

SensingStrategy_SWST Each component must have a link to a
component stereotyped with
SensingMessageParser_SWST

DM_CommunicationInterface_SWST Each class must declare a method having
the following signature void
setEquation(string eq)

PSoC_CommunicationInterface_SWST Each class must declare a method having
the following signature boolean
isResponsibleForHandlingPort(string port,
index portIndex = 0)

DM_PSoCInternalStrategy_SWST Each component must have instantiated
the tagged value called controlIn with
the name of a port contained by the
grandparent component and of type
InputGate_HWST

DM_PSoCInternalStrategy_SWST Each component must have instantiated
the tagged value called dataOut with the
name of a port contained by the
grandparent component and of type
OutputGate_HWST

Predefined_PSoC_ModelStrategy_SWST Each component must publish a class
stereotyped with
SendOutInterface_SWST stereotype

Predefined_WirelessPSoC_ModelStrategy
_SWST

Each component must have instantiated
the tagged value called controlIn with
the name of a port contained by the
grandparent component and of type
InputGate_HWST

PSoCCommunicationMapping_SWST

Each component must have a link to a
component stereotyped with
PSoCInternalHandlingStrategy_SWST

PSoCCommunicationMapping_SWST The parent must be stereotyped with
PSoCStrategy_SWST

Table 9 Constraints in UML software profile

BUPT

5.3 – Summary 81
The previous table presents constraints written in natural language, for a better

understanding, along with the stereotypes to which the OCL constraints are applied.
There is a large number of OCL constraints specific for the UML profile but only a
few types of constraints. Each next two constraints are related to: handling
strategies, interfaces, PSoC internal strategies, model strategies and communication
mapping, respectively.

5.3 Summary

UML modeling allows a high level of abstraction in designing applications. At

the same time, it provides a facile switching of perspective between simple elements
and the entire network.

This is very useful, as the user can describe the specifications and the
requirements for the distributed applications at different logical levels. The model
can describe first the network as a black-box of nodes, then going into details for
each node.

UML profiles help customizing different UML models. The current chapter
presents two defined UML profiles, one for hardware specification and one for
software specification of the components of the nodes and of the entire network.

The stereotypes, tagged values and OCL constraints defined in the UML profiles
are used in customizing the hardware and software components, which instances
are actually used in modeling the application. The stereotypes are hierarchically
built and help achieving a clear separation and grouping into families of devices.

The UML hardware profile helps defining the network topology, the hardware
components and connections between nodes while the UML software profile defines
possible behaviors corresponding to each hardware component.

BUPT

82 Approach Validation using Case Studies - 6

Chapter 6. Approach Validation using Case
Studies

This chapter discusses the validation of the presented methodology, based on

goal-oriented specifications and MDA approach in CPS applications.
The first subchapters discuss the case studies considered by the author of this

thesis in order to demonstrate the utility of the UML hardware and software profiles
defined for CPS design. Also, the presented case studies contribute to validation of
the MDA approach considered in CPS design, for applications where specifications or
requirements are represented in a goal-oriented manner. In each of these
examples, one can distinguish the use of UML artifacts, both for hardware and
software customization in CPS applications, and the correlation between
specification at hardware and software level, respectively. The usage of the defined
stereotypes allows creating the PIM for each specific application, which contains UML
models of different parts of the CPS application, depending on the requirements.

The case studies presented in this chapter have been discussed in the context
of the MDA approach for goal-oriented CPS application design and programming in
several articles. These articles have been published into several international ISI
and IEEE conferences, between September 2010 and Ianuary 2012.

The management for a gas distribution network has been introduced in [75],
with a discussion on goals interdependency and hardware customization and has
been continued in [82] with a presentation of a software model for a gas node.

The traffic light management system has been discussed in [80] from a
perspective of wired connections between nodes in the CPS network and [81] and
[95], considering wireless communication between the nodes of the network.

The example with the aircraft fuel management system is part of paper [76].
The next subchapter presents briefly the efforts made by the research team the

author of this thesis is member of in constructing simulating models for PIM in CPS
applications.

6.1 Management for a Gas Distribution Network

The first case study considered in this thesis is a monitoring system for an

urban gas distribution network. The main goal of such an application is to secure the
perimeters by interrupting the gas flooding through some pipes, in case of a
possible gas leak situation. Along with the security goal, another main requirement
is to affect the end users as little as possible when the gas flow is interrupted in a
certain point. Therefore, a smart control must be implemented over the network. To
support the requirements, the gas network is composed of a collection of pipes,
meters, street and house valves, thus a good candidate for a CPS network. The
implementation must be extendable to larger networks, cheap and efficient. The

BUPT

6.1 - Management for a Gas Distribution Network 83
network for the gas distribution being wide spread, it will be divided into areas and
the solution will be implemented for each of those areas.

The solution provided here follows some steps and uses goal-oriented approach
in application goal handling and MDA approach. First of all, the settings at area level
are provided and the application is tailored in a goal-oriented manner. The objective
is to handle the application requirements in a homogenous way. Then, the
application is configured at each logical level, constructing the PIM. In the end, an
example of a goal handling at perimeter level is given.

6.1.1 Network Settings at Area Level

In the design of the application, it is considered that a gas leak can occur in

any point of the gas distribution network. The dangerous zone must be isolated and
closed, in order to prevent a possible explosion. At the same time, the zone must be
as reduced as possible, so that end users will not to be unnecessarily affected. The
area is divided into zones characterized by homogenous pipe architecture. Special
separations inside zones, revealing a greater possible danger, are called perimeters.
When a gas leak occurs in one of the established zones, detected by the sensors,
the valves corresponding to the zone are closed, to secure the zone. The valves
corresponding to other zones, not related to the point of the gas leak are not
affected and therefore, not closed. Figure 25 shows a representation of gas pipes for
the network, with details only for the north and the south zone, for image clarity.

A complex building can have many points of gas consumption. When a gas leak
appears, it is necessary to shut down the gas flow for the entire building, without
affecting gas distribution for buildings in the neighborhood. This separation is
achieved by implementing distinct regions at the building level. The new abstract
level is called a perimeter. The network is also divided into zones with the purpose
of improving the communication speed and to avoid the possible bottlenecks at
stressed zones. This is also a way to reduce the energy consumption with
communications and to increase the network lifetime, if some nodes are battery
operated.

Once the network is divided into areas, zones and perimeters, goals are
established at each separation level, to reflect the requirements of the application.
For the considered case of the gas distribution network, the area level goal is to
minimize the time for perimeter isolation, by closing the corresponding valves, and
the time of reporting the event at the central distribution point. Another goal for the
area refers to determining the optimal point for storing information about the event,
in order to later determine the source and remedy the situation by human
intervention [75].

The goal at each zone level is to maintain the maximum gas consumption
below a certain value. A value greater than the one considered as threshold can lead
to a gas leak event. Setting up specific goals for perimeters and zones is necessary
due to different risk characteristics for these regions. Considering the topology for
the zones, the goals are established accordingly.

In the example considered (Figure 25), the maximum admitted gas level for
Zone-3 is below the one for Zone-2. This is due to the fact that Zone-3 covers a
part of the street that includes several houses.

BUPT

84 Approach Validation using Case Studies - 6
All these houses have a surrounding perimeter between them and the sidewalk.

The potential false alarms are reduced if the goal takes into consideration this
specific situation. Zone-2 mainly contains houses close to the sidewalk. To avoid
false event localization, Zone-2 requires a closer monitoring than Zone-3. Zone-2
also contains a gas refueling station. Considering the greater danger involving such
a facility, it is required to set a more complex goal for this zone.

Figure 25 Gas pipes representation [75]

This is the first reason to consider a nested zone (Zone-1) inside Zone-2, which

contains inside the gas refueling station. This gas refueling station is placed inside a
perimeter and inside a zone, to make a clear distinction between possible leaks
inside buildings and outside them and the different measures to be taken.

An additional goal for each zone is the minimization of the closing time for the
corresponding valves in the case of overpassing the maximum allowed gas level.
Concurrently, the goal is to ensure the minimization of the affected distribution
points. In case of an event, the area decision module is notified. The gas refueling
station is enclosed in a house perimeter and in a nested zone, in order to minimize
the number of affected nearby neighbors. This allows closing only its corresponding
valves when an event occurs.

The perimeter goal is to maintain the gas level below an established maximum
value and to prevent any gas leak. As soon as this value is exceeded, the perimeter
handler must minimize the time for closing the appropriate gas valves and announce
the upper level. Another reason for designing the gas refueling station inside a
perimeter is to clearly distinguish between gas leaks inside the building and gas
leaks in the proximity, with potentially higher explosion danger. This distinction is
covered by event type and helps on the decision of closing a certain grouping of
valves. Thus, for the event of a gas leak outside the building, the goal is to minimize
the time for signaling to the DM of the Zone-1, which will take decision for shutdown
all the Zone-1 valves. This is done without effectively closing the gas refueling
station valves. Indeed, those valves are responsible for handling a gas leak in the
P11 perimeter [75].

BUPT

6.1 - Management for a Gas Distribution Network 85

6.1.2 Configuration at Each Logical Level

The next step in the network configuration is to determine the components of

logical levels and the models that construct the application PIM. The deployment of
a CPS wireless linked network is considered, in order to monitor the area. The
network is composed of a series of nodes with different functionalities, connected
also with gas meters already installed on the gas pipes.

In the deployment diagrams in Figure 26 can be seen that each logical level
contains a DM. The DMs implement the goals at the corresponding level. DMs
represent the interface with the neighbor logical levels and they handle the events
fired inside the abstraction zone. Figure 26 shows this architecture and uses
denominations for each DM according to the addressed logical level. In the first part
of the figure, the DMZx corresponds to the x zone level. A unique DMA is responsible
for at the area level. The DMPxy represents the DM for the each xy perimeter level,
where x is the zone index and y the index of the perimeter. An example can be seen
in Figure 26 (b). DMs represent the interface between their corresponding logical
level and the one immediately above or below. Therefore, communication to the
outside of the event detected at a node level is ensured via the DM associated to the
logical level that contains the respective node.

Actuation units, described by the corresponding stereotypes, are added to each
zone, in order to control the house and junction valves (v1, v2, v3 in Figure 26 (b)).
The action of opening or closing the valves is commanded by the DMs.
Complementary wireless sensing units (s1 in Figure 26 (b)) are placed on the streets
and inside the buildings to measure the gas level at certain periods of time.

The results of their measurements are interpreted by the DMs according to the
goals of the corresponding logical level. The first task was to model the topology of
the network using deployment diagrams. Such diagrams are presented in Figure 26
(a) and (b). The next task is discussed in the next subchapter.

(a) (b)

Figure 26 (a) Area model; (b) Zone-1 model

Article [82] continues the work started by the author of this thesis in [75] and

extends the case study of the gas system management with software customization
artifacts, defined in the UML software profile. Figure 27 represents the PIM for a gas
node, which inspects a physical perimeter and if the gas value in that perimeter
reaches a maximum specified threshold value, it has to secure the gas pipe and to
announce the managing DM node.

BUPT

86 Approach Validation using Case Studies - 6
When receiving a sensed value greater than the maximum allowed one, the

SensingHandlingStrategy component requests the SensingToActuationUnitComm
component for retrieval of the mapped message. The message ev_closeValve is
returned and it is referring to the actuation unit connected to the same PSoC device.
This message requires no formatting and therefore it is sent to PSoCHandlingModel
component. This component detects that this is a message referring to
ActuationHandlingStrategy component, which is responsible for managing the
connected actuation unit.

The ActuationHandlingStrategy component has internally mapped as control
gate the port of PSoCUnitDMNode_MessageParser component, called leftControlOut.
It requests in turn to PSoCHandlingModel component to send the same command
using the leftControlOut port. The PSoCHandlingModel component forwards the
requested message along with the sending parameters to
HandlingStrategyManagerPSoCUnitGasNode component, which forwards the request
to PSoCUnitDMNode_MessageParser component. This one sends the message using
its requested port. The message is then forwarded to the upperControlActOut port
to the input command port of the actuation unit.

6.1.3 Goal Design at Perimeter Level

The goals at each logical level can be considered in the form of constrained
optimization equations. For solving the equation system, integer linear programming
is used. As an example, the author of this thesis considers a Goal for a perimeter.
This is the minimization of the number of pipe segments that need to be closed in
case of a gas leak.

The goal can be expressed as a system of linear functions that need to be
minimized. The system expresses the problem constraints using variables to
designate the pipe segments covered by sensors and corresponding valves [75].

The goal is implemented by a minimization function (13).

∑ ∑∑
= ==

+++=
2

1 1
,,2

1

1
2,11211 ...),...,(
m

i

m

i
invnvi

m

i
inv

nv

svsvsvvvvG (13)

‘
The associated goal constraint is denoted by (14), expressing the requirement

for the set of cut-off pipe segments to include affected segments that belong to the
set of pipe segments affected by a gas leak.

AFmkis
kvk

ik ⊇=
=
∪

1,
, },1,{ (14)

 The variables are of type integer and take values in {0,1}. The meanings of

the notations for the equations are expressed as follows:
- S = {s1, s2, … snp} – the set of pipe segments belonging to considered
perimeter
- np – the number of pipes covered by the perimeter
- V = { v1({s1,1, s1,2, …s1,m1}), v2({s2,1, s2,2, …s2,m2}), … vnv({snv,1, snv,2,
…snv,mnv}) } – the set of valves that control the perimeter

BUPT

6.1 - Management for a Gas Distribution Network 87
- sk,j ∈ S
- {sk,1, sk,2, …sk,mk} – the set of pipe segments controlled by the valve vk
- np – the number of available valves
- AF = {sa1, sa2, … san} – the set of pipe segment affected by the gas leak

Figure 27 PIM of a gas node containing sensing and actuation units

A similar set of functions is designed for each perimeter belonging to

application area. These functions are string attributes for nodes customized by the
UML artifacts. The functions are injected into the generated code. The system’s
middleware layer has an interpreter designed to dynamically solve the considered
functions through linear programming algorithms [75].

BUPT

88 Approach Validation using Case Studies - 6

6.1.4 Summary

The approach of CPSs design presented in subchapter 6.1 leads to an efficient

development of a gas distribution controlling application that ensures a minimal
disruption in the network in case of gas leaks.

After the configuration is completed, creating similar UML models to the ones
already presented and applying linear programming to goals, code can be
automatically generated for a PSM. In the example it is considered a gas distribution
application over a PSoC based CPS network. The generator produces C code adapted
to the PSoC compiler. Analyzing the code, one can observe that more than 34% of
code lines are automatically generated from the UML description of the model. The
remaining lines have to be written manually according to application specifications.
One advantage in using generated code resides in the fact that all header files are
correctly, completely and consistently generated from UML diagrams, while the
effort to produce valid code is reduced. The other important benefit is the ease of
model and documentation maintenance.

6.2 Management for a Traffic Light Network

The examples presented in this subchapter are two case studies for system

design of an intersection traffic management. Figure 28 presents a view for an
intersection in Timisoara, where the proposed traffic management can be applied.
The actual intersection is zoomed in the picture and the places where the traffic light
nodes can be found are evidenced with red marks. The goal of the application is to
optimize the traffic through the intersection, by giving a higher priority to one or
another direction in traffic.

For simplicity, it is considered that the traffic lights are commanded in pairs,
following N-S or E-W directions. A higher priority for a traffic direction is given by
increased green color duration for the traffic lights that control the direction. At the
same time, the green time duration estimation is carefully planned in order to avoid
traffic bottlenecks on one direction, which is considered to have a lower priority. The
decision for which direction to have a higher priority is taken a priori considering
general traffic flow characteristics in that area or are taken dynamically, considering
the information provided by video cameras installed on sensors related to each
traffic light.

The video cameras record the number of cars that are waiting at the red color
of the corresponding traffic light. In the examples presented in the next paragraphs,
the decision for which direction to have a higher priority is taken considering
sensors information. Communication between nodes for sensors, traffic lights and a
decision module in a network can be made using wired or wireless connections. The
examples presented next consider both wired and wireless connections. For a better
understanding, the author of this thesis has created two separate examples,
considering the types of connections.

BUPT

6.2 - Management for a Traffic Light Network 89

Figure 28 Detail of the environment for the case studies

6.2.1 Cyber Physical System Networks using Wired
Connections

A simple management example is considered for an easier understanding and a

better focus on the steps that need to be taken for the construction of the PIM for
hardware that describes CPS network and components.

The system consists of four traffic light nodes, displayed as in Figure 29,
controlled by a decision node, which must compute optimal green color duration for
each traffic light node. For simplicity, the traffic light nodes are considered to be
working in pairs, and therefore, at a moment only two green color durations must
be computed, and not four. Each traffic light node is connected to a sensing node
and it commands the time when the sensing node starts counting the number of
cars waiting at the red color for that semaphore. The resulting values for the
sensing node are computed using image handling algorithms, using as inputs the
video cameras placed on the sensing nodes.

The sensed values are forwarded by the traffic light nodes to the decision node.
The latter interprets the received data and computes the next optimal green color
periods for N-S and E-W intersection directions, respectively. The decisions taken on
the decision node can favor a certain direction, considered having a higher priority
in traffic or can be influenced on the number of cars waiting at traffic lights red
color.

For designing such application at hardware level using UML high-level
modeling, it is necessary first a library of possible components, from which the user
chooses the most suitable components for his application. Using predefined

BUPT

90 Approach Validation using Case Studies - 6
components, the user can also create customized nodes, which are valid as long as
the hardware and software requirements for the nodes are completely satisfied.

Figure 29 UML representation for intersection traffic management network

At first, the developer of the library of available components uses the UML

defined profiles in order to create valid and complete components. The developer
must also satisfy the constraints stated by the UML stereotypes using to customize
different components. Examples of such component can be seen in Figure 30, as
UML defined components for sensing nodes and in Figure 31, as UML defined
components for traffic light nodes, respectively. These figures show the mapping of
the simple modules using connections.

The PSoCUnit, used in constructing sensing nodes and traffic light nodes,
respectively, is customized using PSOCUnit_HWST stereotype, which extends Node
(Deployment) metaclass. This stereotype imposes, using an OCL constraint, the fact
that all instances of a PSoCUnit must be stereotyped using
PSoCUnit_HWST_Instance stereotype. The PSoCUnit represents a PSoC device
which contains the user application code representing the business logic of the
corresponding nodes. The PSoCUnit exchanges data with the other two modules
using input output gates. These gates of the PSoC device represent the pins at
which the communication and sensing units are connected.

PSoCUnit_HWST_Instance stereotype defines tagged values like debug, used in
debugging purposes, a Boolean value specifying whether the node does or does not
have a wireless behavior, the header length and an integer information about the
host identity.

The communication unit can be CANUnit, customized using CAN_HWST
stereotype. There are several types of CAN units, expressed by Cypress like
stereotypes. The developer can specify customized components using each of those
communication modalities.

Sensing units and actuation units are specific components for different types of
nodes, in this case for sensing nodes and traffic light nodes, respectively. They are
customized using stereotype that follow a certain naming convention.

BUPT

6.2 - Management for a Traffic Light Network 91

Figure 30 UML components for sensing nodes

Some of the user defined nodes used in traffic management applications using

PSoC based CPSs are presented in Figure 32 and Figure 33. At the same time, the
connections between ports for each of the components of the composed nodes are
detailed in the figures. For example, the connection of the SensingNode_Wired
compound module, named inOutWithTrafficLightNode, is mapped to the internal
communication unit and participates in data exchange with a TrafficLightNode_Wired

Figure 31 UML components for traffic light nodes

Figure 32 UML compound sensing node

BUPT

92 Approach Validation using Case Studies - 6

Figure 33 UML compound traffic light node

After modeling the application at UML level and validating the OCL constraints

imposed on the components with OCL constraints, the PSM constituted by the
simulation model using OMNeT++ environment [96] is developed.

The hardware parser presented by Magureanu et al. in [80] enables
transformation from UML specifications into NED configuration files. However, at this
moment the user must manually specify the behavior for the simulation
components.

The reasoning for giving priority to this aspect, before the software
programming aspect, resides in increasing the overall efficiency of designing
process. It allows starting a distributed embedded application design with clear
specifications regarding the network topology, type of nodes involved in its
construction and hardware units participating in specification of the families of nodes
used.

As the requirements for the behavior of the network are not influenced by the
type of connections between nodes, the software specification for the traffic light
management system will be discussed in the case of wireless connections between
network nodes.

6.2.2 Cyber Physical System Networks using Wireless
Connections

Another example regarding intersection traffic management uses wireless

connections for communication between nodes in a distributed network. The
wireless communication model is inspired by MiXiM project [94], therefore the UML
defined stereotypes for the UML hardware profile follow the main ideas presented in
MiXiM.

The steps necessary to be taken in modeling an application for which nodes
communicate wirelessly are similar to the ones described in the previous
subchapter. The differences are made by some extra units required for nodes that
communicate without using wires.

The next three figures present the types of compound nodes that are necessary
to be modeled by the user in a distributed traffic application.

BUPT

6.2 - Management for a Traffic Light Network 93
All three types of nodes present some similarities. For example, communication

with the exterior of the node is made using a port named radioIn, stereotyped with
InputGate_HWST, which means this is an input port. All types of nodes contain a
mobility component which specifies the x, y and z coordinates of the node position
in geographical space. Also, the nodes contain a BaseArp component, which is a
module responsible with address resolution.

Each node contains a component responsible with the application part for that

node. In particular it must implement the required behavior for the type of node.
The communication for each node is ensured by a component which implements a
base wireless communication unit predefined interface.

Each of the presented types of nodes is composed of several units. Each of
these units is an instance of a predefined component, customized depending on
application needs. If it is required by OCL constraints that the instances of the
components also have to be stereotyped, on the UML representation for a certain
instance will appear both used stereotypes: the one extending Node (Deployment)
metaclass and the one extending Instance Specification metaclass. Such an example
is the sensingUnit, which is an instance of the defined VideoSensingUnit. The
stereotypes here are SensingUnit_HWST for Node (Deployment) and
SensingUnit_HWST_Instance for Instance Specification.

The software implementation part is detailed in [83]. The components’
collaboration at unit level is satisfied from the point of view of PIM development by
respecting the constraints of each stereotype used for defining the units, like
interconnectivity, type check and port connections. At node level, the software
components interconnectivity is satisfied by respecting the mapping between
hardware and software relationship.

Figure 34 UML compound MiXiM like sensing node

BUPT

94 Approach Validation using Case Studies - 6

Figure 35 UML compound MiXiM like decision node

Figure 36 UML compound MiXiM like traffic light node

The software handling is discussed related to communication aspects at

network level. At network level, the communication is ensured by adding internal
software components stereotyped with PSoCCommMapping_SWST inheritances. In
these components resides the contract for communicating, along with the
communication context. The context is satisfied by specifying the node identifier and
gate name, along with the list of messages that need to trigger external message

BUPT

6.2 - Management for a Traffic Light Network 95
formats. The external messages are constructed based on the specified custom
message concatenated with the parameters that need to be sent.

The handling components from a PSoC device are able to retain the unit’s
internal state along with the data received from the managed devices. This
information can be used to transmit messages to other external nodes which require
data regarding the managed unit.

Each time the internal state of the managed unit changes or the handling
component receives/sends a command from/to the managed component, the
handling strategy requests the bounded communication mapping components for
sending messages. The internal handling component receives the external message
format and the sending parameters. Then it constructs the message by adding the
requested information and it sends the message along with the parameters to the
PSoC model component, to manage the sending process.

 In Figure 37 the component named SensingToDMNodeCommunication is
customized for sending a message to the external node called dmNode, when
ev_receiveSensedValue message occurs. The message format is constructed by
adding the integer internal value named sensedValue to the ev_receiveXArgValue
string.

In Figure 38, it is presented the strategy manager of a DM node. The DM node
is managing a DM unit and it is able to communicate with four traffic light nodes.

Figure 37 PIM for wireless sensing node

BUPT

96 Approach Validation using Case Studies - 6

Figure 38 Business logic specification for the PSoC unit of decision module node

All the four mapped external messages are sent when the data is received from

the DM unit. Therefore, for constructing the messages, the strategy binds the
integer value of the x property to the trafficLightNode1 and 3, and the integer value
of the y property to the trafficLightNode2 and 4, respectively.

6.2.3 Summary

The examples presented in the previous subchapters are two case studies for

system design regarding traffic management in an intersection. The difference
between the examples resides in the type of communication between the nodes in
the network, which can be accomplished using wired or wireless connections. First,
the author of this thesis has presented the types of components required for a traffic
management application. These types of nodes differ for the two examples because
the communication method is different: in case of wired connections, the
communication components are customized using Cypress like stereotypes, while for
wireless connections, the communication components are customized using MiXiM
like stereotypes. These predefined components are used in creating the types of
nodes for the application in question: traffic light nodes, sensor nodes and a
decision node. Instances of these types of nodes are used in the actual network,
represented by a deployment diagram.

For the PIM for hardware specification to be valid, the OCL constraints
associated with the stereotypes used for customizing the components used in the
application design are checked. When the PIM is proved valid, it is used to generate
simulation specifications for OMNeT++ environment. These simulation
specifications are included in NED configuration files. While the hardware
configuration for components of the nodes and for the entire network is specified
starting with UML design and then generating OMNeT++ configuration files, the
used must manually specify the characteristics of the behavior of the simulation
components.

BUPT

6.3 - An Aircraft Fuel Management System 97

6.3 An Aircraft Fuel Management System

A modern aircraft consists of several monitoring and management systems,

responsible for various objectives regarding keeping the aircraft fully functional
during the flight.

The fuel system determines one of the most critical aspects in aircraft design.
An aircraft is typically equipped with several fuel tanks and a variety of valves,
pumps, probes, sensors and switches. The main purpose of the fuel system is to
reliably supply engines with fuel. Other important functions include fuel transfer,
based on the center of gravity (CG) at a given moment of time during the flight,
engine oil coolant, pressurization and vent or refueling systems. All these functions
work together to maintain overall balance and optimal performance of the aircraft
during the flight.

6.3.1 Cyber Physical System Network Tailoring in Logical
Levels

Given the great complexity of all these systems, this subchapter discusses two

critical functionalities: engine feed in the flow subsystem and fuel transfer in the CG
subsystem, with focus on illustrating the way they influence each other.

For a better understanding, in this subchapter is considered a typical aircraft
fuel system, as shown in Figure 39.

Figure 39 Typical military aircraft top-level fuel system [97]

The fuel is collected from the fuel tanks before being fed to the engines. The

FWD Fuel Group and the AFT Fuel Group collector tanks have the role of ensuring
the required fuel quantity for the engines. The fuel tanks are represented by the
conformal tanks, under wing tanks, and left and right wing tanks, respectively.

BUPT

98 Approach Validation using Case Studies - 6
The role of the booster pumps (B in Figure 39) inside collector tanks is to

provide a normal delivery pressure to the engines. Two booster pumps are available
for each collector tank, so that, in case one fails, the other one can take over the
fuel transfer.

Two transfer pumps (T in Figure 39) are available in each wing tank and in
each fuel group. From every pair, the second transfer pump acts as backup, in case
of a pump failure. These pumps ensure the pressure for the corresponding transfer
and are supposed to run period based.

 There are several shut-off valves associated with the fuel transfer, both for the
engine feed and CG functionalities. A shut-off valve is available to maintain the
desired fuel level between FWD and AFT fuel groups at the moment when the
airplane turns up or down. Other valves have the role to control the transfer from
the wing tanks to the collector tanks.

The two cross valves are used to establish the desired flow direction, both
during refueling and for fuel transfers from right to left or vice versa.

All tanks are equipped with specialized sensors for constantly measuring the
fuel level during flight operations. Maximum capacitance reached or critical fuel level
is properly signaled so that the system takes the most appropriate decisions over
the managed pumps and valves.

Based on the fuel system model presented in Figure 39, the flow and the CG
subsystems are tailored, at different logical levels in Figure 40. As both subsystems
act over the same physical devices, they are represented overlapped.
The flow subsystem contains statically configured logical groups, depending on the
requirements to be established. The perimeters usually contain a specific sensor
tank and the associated valve or group of valves (such as Under Wing Left
Perimeter, Conformal Left Perimeter and Aft Perimeter). The Cross Perimeter groups
the valves used for refueling and left - right transfer. The Refuel/Defuel Perimeter
controls the fuel feed to the engines and the fuel removal, in case of danger.

Figure 40 Logical tailoring in flow and CG subsystems for the fuel system [76]

BUPT

6.3 - An Aircraft Fuel Management System 99
Perimeters along with physical devices are grouped into zones. A meaningful

example is represented by the tanks clustered into the Left Tanks Zone. The zone’s
main task is to provide fuel to the Fuel Supply Zone, to be later used for feeding the
engines.

 The Fuel Area correlates the functionalities of all devices, perimeters and
zones mapped in the fuel system. The objectives are constructed at perimeter level
and are transferred up until reaching the area level. Next, the area level establishes
specific commands for the designated zones that will lead to accomplishing the goal.

In case of CG subsystem, here are presented only the differences with the flow
subsystem, as the tailoring at perimeter level is rather similar. Unlike the flow
subsystem, the CG subsystem contains logical zone groups which are dynamically
configurable. The zones configuration depends on the actual position of the aircraft.
In case of left or right turnings, the zones overlap with the ones in the flow
subsystem. In case of up or down movements, the zones are Upper and Lower
Zone, respectively, as shown with dotted line in Figure 40. Another difference
compared to the flow subsystem is that the objectives are established directly at
area level based on the aircraft position and the current capacity level from the
tanks.

The objectives are internally set as goals and translated into commands for the
lower grouping levels.

6.3.2 Constructing PIM Models at Zone Level

After tailoring the application, the next step represents PIM models

construction for every node type used in the CPS network. The DM node for LTZ is
detailed in Figure 41 and has associated the PIM model presented in Figure 42 and
Figure 43. The DM LTZ node synchronizes the received data gathered within its local
zone (LWZ) and perimeter (CLP) with the asynchronous goals requested by the
upper layers. The PIM models for sensing and actuation nodes are presented in [80]
and [81] (subchapter 6.2) and are adapted for these CPS application requirements.
They are not subject of this case study, as they are only slightly different than the
already presented models.

Figure 41 Tailoring of the Left Tanks Zone [76]

BUPT

100 Approach Validation using Case Studies - 6
Figure 42 uses deployment diagram to list the hardware interconnections

between the internal devices of the presented node. The hardware ports are marked
as deployment gates. Most of the hardware characteristics are imported directly
from the tagged values corresponding to the used stereotypes. The remaining
hardware specifications represent application dependent characteristics and are
specified as attributes of the deployment nodes. The hardware characteristics of the
devices are not detailed in Figure 42, as they are presented in [80] and [81] and
subchapter 6.2.

Figure 42 PIM hardware model of DM LTZ node [76]

The PIM software model completes the hardware model and consists of the

desired behavior attached to the node. Figure 43 illustrates the software models of
LTZ_NC_DMUnit and LTZ_DMUnit devices from Figure 42.

Both components have an associated strategy stereotyped with an inheritance
from HandlingStrategy_SWST. All stereotypes are considered having a default PSM
implementation, which can be configured by PIM. The DMHandlingStrategyManager
artifact contains the handling strategy for the LTZ_NC_DMUnit device.

It defines the communication link between the internal events related to the
managed device and the external ones.

The LTZ_CommLWZ and LTZ_CommCLP artifacts are responsible with
collecting the LWZ and CLP related fuel capacities, respectively. Also, they transfer
to their corresponding DM nodes the desired goals, as requested fuel capacities and
directions, illustrated in Figure 41. The LTZ_CommFuelArea and LTZ_CommCGArea
are responsible with maintaining the communication with the two subsystem upper
levels in which this zone operates. The goals sent by the areas DMs are transmitted
in asynchronous mode as desired fuel directions and capacities.

The goals received by DM LTZ from both subsystems are interpreted and
validated on demand, before calculating the optimal results. As goals from both
subsystems act over the same zone, the following constraints are considered. In
case the goals require different fuel directions over the same pipe, the desired
direction and capacity of the flow subsystem are considered as the current valid
goal. Otherwise, the resulting desired capacity is determined as the sum of the
desired capacities set by both subsystems and it is compared with the maximum
allowed capacity for that pipe.

Considering LTZ presented in Figure 41 the validated goal related to Engine
Supply Zone is stored in the desiredDebB and dirB variables. Also, the desiredDebCV
and dirCV variables contain the validated goal related to the Cross Perimeter.

The desired direction for each pipe is computed based on the equation (15).

{ }1,0,1,,;1 −∈⋅−+= CGFlowpipeCGFlowFlowpipe diranddirdirwheredirdirdirdir (15)

BUPT

6.3 - An Aircraft Fuel Management System 101
The fuel direction dir of a pipe is represented as:
• -1 in case the fuel is transferred outside the grouping level
• 1 when the fuel is added to the tanks managed by the grouping level
• 0 when there is no transfer for that pipe.

Figure 43 PIM software model of DM LTZ node [76]

LTZ_LinearPrograming_Strategy artifact represents the internal strategy used

by NC to manage a DM device, based on linear programming (LP) [98]. LP equations
express the DM goals and are used to find an optimal solution.

BUPT

102 Approach Validation using Case Studies - 6
The relationships between subsystems are expressed in terms of LP

constraints. All parameter characteristics, which need to be optimized (t and v in
(2)), are translated into LP equation. The LTZ_DMUnit is responsible for solving the
LP system.

As an example, in case of Left Tanks Zone, the resulting LP is shown below.

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

⋅+≥⋅+⋅+
⋅+≤⋅+⋅+

+=
+=

=
=∧−=

≤≤∧≤≤
⋅+⋅=⋅+⋅

CLPCLPLTZvtLTZ

CLPCLPLTZvtLTZ

CLPLWZLTZ

CLPLWZLTZ

BB

vt

VT

CVCVBBvt

currentDebdirCapvdirtdircurrentCap
currentDebdirCapvdirtdircurrentCap

CapCapCap
currentCapcurrentCapcurrentCap

desiredDebcurrentDeb
dirdir

DebvDebt
desiredDebdircurrentDebdirvdirtdir

min
max

maxmaxmax

11
max0max0

(16)

The abbreviations are as follows:
• dir represents the fuel flow direction through a pipe
• currentDeb represents the debit of a valve or pipe
• t and v represent the optimal resulted debits of the pipe connected to the

active transfer pump T and to the valve tank V
• currentCap, minCap and maxCap represent the capacity fuel values of a

tank.
Using model transformation, PIM and goals can be translated to specific PSM.

The simulation middleware introduced in [87] is under development. It is based on
the recognition of the types of components and provides basic functionality for
handling the goals and constraints described by the user.

6.3.3 Summary

The subchapter presents as case study the design of an aircraft fuel

management. The design methodology is based on MDA approach and the starting
point is the CIM composed of the defined UML profiles for hardware and software
specification of CPS applications. To simplify development, system behavior is
tailored using goal-oriented specifications. The user has the possibility to simply
specify the goals for the CPS application, the created system being responsible to
translate these goals to specific commands for the subsystems. The CPS application
goals are expressed as linear programming systems at every abstraction level,
similar to the example at zone level given in subchapter 6.3.2.

6.4 Model Validation Through Simulation

The PIM construction in an MDA approach can be followed directly by a

deployment to a PSM, on a physical network, as PSM is the final model to build.
However, it is recommended to take an intermediary step between PIM and PSM
which is PIM validation.

BUPT

6.4 - Model Validation Through Simulation 103
A suitable approach is performing PIM simulation and validation before the

deployment of the network in the physical environment, on hardware devices.
There are strong points for performing a simulation before a deployment for an

application. Testing applications written for CPSs and tracking the execution steps
after deployment is a difficult task due to the great number of messages exchanged
between hardware devices.

Maintaining a detailed logging in case of distributed devices is not very feasible.
At the same time, even if logging is no longer in question, the fact that PSoC
devices usually have a reduced hardware display, offers little information during
testing. Additional hardware, as debugging devices, external of the network
composed of physical nodes, is required for detecting errors at runtime. These
devices are also an expensive solution.

Testing and validating an application through simulation, before deploying it on
the physical network, is a more suitable approach and a less expensive one. Along
with the material costs reduced, the time necessary for validating an application is
reduced in case of simulation than in case of deploying. Loading the application on
physical devices after correcting some errors and then continuing with the
debugging is more time consuming than running simulation software. Simulation
before deployment increases the robustness of the application, as it allows the user
to detect bottlenecks before deploying the network. A validated simulation process
ensures a deterministic behavior for each hardware node and for the entire network.
Simulation before deployment also allows the evaluation of the performances of the
application, using relevant simulation cases over CPS networks.

The author of this thesis, together with the research team, has defined some
simulation models that are helpful in testing and validating CPS applications through
simulation. The simulation models are developed using OMNeT++ environment.
OMNeT++ simulator overcomes some of the issues that make SystemC unsuitable
for simulating distributed embedded applications. OMNeT++ is an object-oriented
modular discrete event network simulation framework [99], which allows network
simulation on a large scale. Being modular and customizable, it also allows
embedding simulations into larger applications and offers support for parallel
simulation. OMNeT++ handles each event in sequence and maintains its own virtual
clock, independent of the processor’s clock [96], which a step forward related to
SystemC. Therefore, simulation time results are obtained in terms of virtual
OMNeT++ clock, at successive runs. The virtual system clock is updated only at the
end of all tasks associated to the events to be handled at the current system time.
In case of complex systems simulations, this property allows the elimination of the
problems related to real-time synchronization constraints.

OMNeT++ also facilitates the development for applications’ models and
analysis of the obtained results. The facilities of visualizing and debugging the
simulation models are helpful in reducing debugging time. In OMNeT++,
communication between modules of the application is made through messages.
OMNeT++ provides support for scheduling, sending and receiving messages and
provides a library for multithreading applications.

Studies [100] have shown that simulations performed using OMNeT++ are
executed at least an order of magnitude faster than the ones performed using Ns-2
[101]. At the same time, OMNeT++ makes more efficient use of the available
memory.

The simulation models presented in [86], [87], [88] and [89] and developed in
OMNeT++ are independent of the type of communication. These models can be
used in simulating distributed applications, as they allow: simulation of

BUPT

104 Approach Validation using Case Studies - 6
interconnected PSoC devices running at the same clock frequency, simulation of
interconnected PSoC devices running at different clock frequencies, simulation of
devices that have different phase shifts. Also, in [88], a speed-up simulation
mechanism intended to improve physical time model simulation is proposed. All
these models support both wired and wireless types of communication and are
extended in [89].

Interconnection of distributed devices in these models is transparent related to
simulation framework and it is left for the developers of the applications to
implement. This capability allows for the models in question to be integrated in any
derived simulator from the OMNeT++ family.

 In [90], Gavrilescu et al. propose an XML-based event driven model
specification of the distributed network which allow the developer to describe
specific simulation scenarios for the distributed application. The authors also present
a reusable event oriented programming model for handling event-driven scenarios.
The programming model can be used on any event-driven simulation environment.
Also, the presented approach contributes to the reduction of the lines of code
required for implementing the distributed applications, with a variable percentage
which depends on the application goals.

Another testing methodology, except for running simulation scenarios, is given
by formally specifying PIM models and verifying the static and dynamic properties
for the UML models. A first attempt in this direction has been made in [91] and was
continued with a more detailed study in [102].

BUPT

7.1 Conclusions

Chapter 7. Conclusions and Future Work

7.1 Conclusions

An efficient, intuitive and easy to use design and programming model is desired

for CPS applications. It is required that even users without advanced knowledge
about sensor networks design methodologies to be able to specify applications of
CPSs, at a high level of abstraction. The users command and control such
applications by specifying the network topology and component nodes, at hardware
level, and by specifying the goals at software level, without taking into consideration
the actual limitations imposed by the physical environment.

The users can customize the CPS applications by using predefined artifacts,
grouped into two UML profiles, for hardware and software specification of CPS
applications, respectively. The customizations can apply at component level, node
and network level.

The novelty presented in this thesis allows raising the level of abstraction, first
by tailoring the CPS network at logical level and then by requiring that application
objectives to be specified only at the highest logical level. The application
middleware handles translating the goals at lower logical levels, until the physical
level and their accomplishment.

The methodology presented in this thesis uses MDA approach for CPS
applications design. The UML profiles for hardware and software specification
compose the MDA CIM and are used in defining the MDA PIM. The PIM is defined at
both hardware and software level by creating UML models using deployment and
component diagrams, respectively. The PIM is validated through simulation and,
using code transformations, is later translated into a network deployable PSM. The
resulted code represents the final scope of using MDA approach, as it reduces the
total amount of code the user must create when programming a CPS application.
The objective is to have a PIM as complete as possible and in accordance with the
requirements, along with corresponding transformation rules.

7.2 Contributions

The contributions of the author of this thesis regarding CPS design research

have been discussed in chapters 2-6. All these proposals regarding CPS applications
have been gathered into 15 articles, published in ISI and BDI journals, presented at
international ISI and IEEE conferences and published in the proceedings and
presented at theme specific workshops. The contributions with each article are
presented in subchapter 7.3.

BUPT

106 Conclusions and Future Work - 7
The main contributions in CPS design follow the initial research objectives,

described in the proposal for the theme of research, presented in September 2010.
These objectives have also been summarized in subchapter 1.3.

The main contributions of the author of this thesis regarding CPS design are:
• At theoretical level

• A comprehensive study and systematization of publication in CPS
design area, MDA approach and goal-oriented programming.

• The definition of a UML hardware profile for specification of CPS
applications. The stereotypes, along with the defined tagged values and OCL
constraints are tailored into several groups, depending on their functionality. The
profiles presentations are made both by presenting the stereotype hierarchies and
by describing the defined stereotypes. The UML hardware profile contains first level
stereotypes which map the root node of the other groups of stereotypes,
stereotypes for simple and compound modules, stereotypes for PSoC based CPSs,
stereotypes for wireless communication, stereotypes for module interfaces.

• The definition of a UML software profile for specification of CPS
applications. The stereotypes for software description, the tagged values and
associated OCL constraints, are also tailored into groups and express behavior
associated to hardware components, nodes and network, respectively. The UML
software profile contains first level stereotypes which are further base stereotypes in
the other groups, stereotypes for software part definition, stereotypes for message
handling, stereotypes for strategy handling, stereotypes for specific PSoC strategy
handling and stereotypes related to communication.

• The definition of a goal-oriented approach to be used in handling the
requirements of CPS applications. The approach implies tailoring the application at
logical level into several logical levels. Such an approach allows the user to pose the
application goals only at the highest computational level. It is the middleware task
to handle goals translation and accomplishment at lower logical levels.

• The definition of the models implied in the proposed MDA approach,
the CIM composed of the defined UML profiles, the PIM obtained starting from CIM
and CPS application requirements and the PSM obtained after the PIM is validated
and the transformations from one model to the next one.

• The identification of PIM validation methodologies, by using
simulation models, customized for CPS applications and the defined goal-oriented
approach.

• At practical level

• The proposed goal-oriented modeling of CPS applications using MDA
approach has been applied to several CPS applications from different domains of
activity.

• The methodology has been successfully applied to CPS networks of
variable size.

• The methodology has been successfully applied to CPS applications
with different degrees of difficulty regarding requirements.

• Limited code generation in OMNeT++ simulator related to network
infrastructure design, presented in the previous detailed case studies.

BUPT

7.3 – Publications 107

7.3 Publications

This subchapter presents the articles that were published during the PhD

research of the author of this thesis. The articles have been published during 2009-
2012 in several ISI conferences, IEEE international conferences and BDI journals.
Also three of them have been presented in workshops relevant to the research topic.
The papers are presented below in chronological order:

1. (ISI Proc.) - F. Naghiu, D. Pescaru, G. Magureanu, I. Jian, A. Doboli,

“Corrections of sensing errors in Video-based Traffic Surveillance”, in Proceedings of
the 5th International Symposium on Applied Computational Intelligence and
Informatics (SACI), Timisoara, Romania, ISBN 978-1-4244-4478-6, May 2009, pp.
217-224.

2. (IEEE Proc.) - M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli,

"A Simulation Framework for PSoC Based Cyber Physical Systems", in Proceedings
of the IEEE International Joint Conferences on Computational Cybernetics and
Technical Informatics ICCC-CONTI 2010, Timisoara, Romania, pp. 137 – 142, May
2010, doi: 10.1109/ICCCYB.2010.5491313.

3. (IEEE Proc.) - G. Magureanu, M. Gavrilescu, D. Pescaru, A. Doboli, ”

Towards UML Modeling of Cyber-Physical Systems: A Case Study for Gas
Distribution”, in Proceedings of the in 8th IEEE International Symposium on
Intelligent Systems and Informatics SISY 2010, Subotica, Serbia, pp. 471 – 476,
September 2010, doi: 10.1109/SISY.2010.5647314.

4. (IEEE Proc.) - M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli,
“Accurate Modeling of Physical Time in Asynchronous Embedded Sensing Networks”,
in Proceedings of the in 8th IEEE International Symposium on Intelligent Systems
and Informatics SISY 2010, Subotica, Serbia, pp. 477 – 482, September 2010, doi:
10.1109/SISY.2010.5647308.

5. (IEEE Proc.) - G. Magureanu, M. Gavrilescu, D. Pescaru, A. Doboli,
“UML Support for Optimizing the Goals of Distributed Control in Traffic Management
Applications”, in International Workshop on Robotic and Sensors Environments
ROSE 2010, Pheonix, Arizona, USA, pp.1 - 6 October 2010, doi:
10.1109/ROSE.2010.5675288.

6. (Workshop) - M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian,
“Optimization of Sensor Networks Physical Time Modeling in OMNeT++”, in
Workshop no. 1 “Cercetari doctorale in domeniul tehnic”, Craiova, Romania,
February 2011.

7. (BDI Journal) - M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli,
“Time Models for PSoC Based Cyber Physical Systems Simulation”, in Scientific
Bulletin of “Politehnica” University of Timisoara, Transactions on Automatic Control
and Computer Science BS-UPT TACCS, Volume 56 (70) No. 1, pp. 27-34, March
2011.

BUPT

108 Conclusions and Future Work - 7

8. (IEEE Proc.) - G. Măgureanu, M. Gavrilescu, I. Tal, A. Toma, D.
Pescaru, I. Jian, “Generating OMNeT++ Specifications from UML Models for PSoC
Distributed Applications”, in Proceedings of the 6th International Symposium on
Applied Computational Intelligence and Informatics SACI 2011, Timisoara, Romania,
pp. 85 – 90, May 2011, doi: 10.1109/SACI.2011.5872977.

9. (BDI Journal) - M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian,
“Handling Event-Driven Scenarios in CPS Application Simulations”, in Carpathian
Journal of Electronic and Computer Engineering, Volume 4, No. 1, ISSN 1844 –
9689, October 2011.

10. (Workshop) - G. Magureanu, “UML Profile for Wireless Networks
Based on Cyber Physical Systems”, in Workshop no. 2, “Interdisciplinaritatea si
Managementul Cercetarii”, Timisoara, Romania, November 2011.

11. (IEEE Proc.) - G. Magureanu, M. Gavrilescu, D. Pescaru, I. Jian,
”UML Profile for Cyber-Physical System Wireless Communication Specification”, in
Proceedings of the 7th International Symposium on Applied Computational
Intelligence and Informatics SACI 2011, Timisoara, Romania, pp. 383 – 388, May
2012, doi: 10.1109/SACI.2012.6250034.

12. (Workshop) - G. Magureanu, “Specification And Verification Of UML
Models For Cyber Physical Systems”, in Workshop no. 3, “Interdisciplinaritatea si
Managementul Cercetarii”, Oradea, Romania, June 2012.

13. (IEEE Proc.) - M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian,
“UML Software Models for Cyber Physical System Applications”, in the 20th
Telecommunications Forum (TELFOR), Belgrad, Serbia, November 2012.

14. (ISI Proc.) - M. Gavrilescu, G. Magureanu, D. Pescaru, “CPS Design
Using Model Driven Architecture Approach: Aircraft Fuel Management System Case
Study”, in 2012 Third International Conference on Theoretical and Mathematical
Foundations of Computer Science (ICTMF), Indonesia, in Lecture Notes in
Information Technology, ISSN 2070-1918, 2012.

15. (ISI Journal) - G. Magureanu, M. Gavrilescu, D. Pescaru, “Validation

of Static Properties in UML Models for Cyber Physical Systems”, Accepted for
publication in January 2013 for Journal of Zhejiang University Science C, Impact
factor = 0.308 (2011), ISSN 1869-1951.

7.4 Future Research Perspectives

Future work will be focused on developing a tool specific for CPS design, which

will be based on the presented MDA approach and will help defining the models
involved and the transformations between them. Also, future work will cover a full
implementation for a goal-oriented middleware intended for CPS networks
constructed on PSoC devices.

BUPT

References

References

[1] E. Lee, “Cyber Physical Systems: Design Challenges”, University of
California, Berkeley Technical Report No. UCB/EECS-2008-8, 2008.

[2] J. Jensen, D. Chang and E. Lee, “Model-Based Design Methodology for
Cyber-Physical Systems”, in Proceedings of the 1st IEEE Workshop on
Design, Modeling and Evaluation of Cyber-Physical Systems (CYPHY),
Istambul, Turkey, 2011.

[3] A. Alti, T. Khammaci and A. Smeda, “Integrating Software Architecture
Concepts into the MDA Platform with UML Profile”, Journal of Computer
Science 3 (10), 2007, pp. 793-802.

[4] Object Management Group Official Website – http://www.omg.org, 2012.

[5] L. Kuzniarz, M. Staron, and C. Wohlin “An empirical study on using
stereotypes to improve understanding of UML models”, in Proceedings of the
International Workshop on Program Comprehension, IEEE Computer
Society, 2004, pp. 14–23.

[6] D. Nessett, “Massively Distributed Systems: Design Issues and Challenges”,
in Proceedings of the USENIX Embedded Systems Workshop, Massachusetts,
USA, March 1999.

[7] S. Heath, “Embedded Systems Design”, publisher Butterworth-Heinemann,
ISBN 0-7506-3237-2, 1997.

[8] “Cyber-Physical Systems Summit”, Report, Missouri, USA, April 2008.

[9] P.Tabuada, “Cyber-Physical Systems: Position Paper”, in NSF Workshop on
Cyber-Physical Systems, 2006.

[10] E. Lee, “Cyber-Physical Systems – Are Computing Foundation Adequate?”,
Position Paper for NSF Workshop On Cyber-Physical Systems: Research
Motivation, Techniques and Roadmap, 2006.

[11] P. Levis et al., “TinyOS: An Operating System for Sensor Networks”, from
Book “Ambient Intelligence”, Publisher Springer Berlin Heidelberg, ISBN
978-3-540-27139-0, 2005.

[12] V. Subramanian, M. Gilberti, A. Doboli, “Online adaptation policy design for
grid sensor networks with reconfigurable embedded nodes”, in Proceedings
of Design, Automation & Test in Europe Conference and Exhibition (DATE),
Nice, 2009.

[13] M. Wang, V. Subramanian, A. Doboli, D. Curiac, D. Pescaru, C. Istin,
“Towards a Model and Specification for Visual Programming of Massively
Distributed Embedded Systems”, IFSA Sensors and Transducers Journal,
ISSN 1726-5479, Vol. 5, March 2009, pp. 69-85.

BUPT

110 References
[14] R. Sugihara, R. K. Gupta, “Programming Models for Sensor Networks: A

Survey”, in ACM Transactions on Sensor Networks (TOSN), March 2008.

[15] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, “The nesC
Language: A Holistic Approach to Networked Embedded Systems”, in
Proceedings of Programming Language Design and Implementation (PLDI),
San Diego, USA, June 2003.

[16] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, M. A. Perillo, “Middleware
to Support Sensor Network Applications”, in IEEE Network Journal, Vol. 18,
ISSN 0890-8044, Jan/Feb 2004.

[17] K. Whitehouse, F. Zhao, J. Liu, “Semantic Streams: A Framework for
Composable Semantic Interpretation of Sensor Data”, in Proceedings of the
3rd European Workshop on Wireless Sensor Networks (EWSN), Zurich,
Switzerland, February 2006, pp. 5–20.

[18] R. Newton, M. Welsh, “Region Streams: Functional Macroprogramming for
Sensor Networks”, in Proceedings of the 1st International Workshop
on Data Management for Sensor Networks (DMSN), Toronto, Canada,
August 2004.

[19] R. Newton, Arvind, M. Welsh, “Building up to Macroprogramming: An
Intermediate Language for Sensor Networks”, in Proceedings of the 4th
International Conference on Information Processing in Sensor Networks
(IPSN), Los Angeles, USA, April 2005.

[20] R. Gummadi, O. Gnawali, R. Godivan, “Macro-programming Wireless Sensor
Networks using Kairos”, in Proceedings of the 1st International Conference
on Distributed Computing in Sensor Systems (DCOSS), pp. 126-140,
California, USA, 2005.

[21] C. Borcea, C. Intanagonwiwat, P. Kang, U. Kremer, L. Iftode, “Spatial
Programming using Smart Messages: Design and Implementation”, in
Proceedings of the 24th IEEE International Conference on Distributed
Computing Systems (ICDCS), Tokyo, Japan, March 2004, pp. 690-699.

[22] C. Intanagonwiwat, R. Gupta, A. Vahdat, “Declarative Resource Naming for
Macroprogramming Wireless Networks of Embedded Systems”, Technical
Report CS2005-0827. University of California, San Diego, 2005.

[23] Y. Ni, U. Kremer, A. Stere, L. Iftode, “Programming Ad-hoc Networks of
Mobile and Resource-Constrained Devices”, in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), Chicago, USA, June 2005, pages 249–260.

[24] A. Aguiar, P. R. Pinheiro, A. L.V. Coelho, N. Nepumoceno, A. Neto, R.
Cunha, “Scalability Analysis of a Novel Integer Programming Model to Deal
with Energy Consumption in Heterogeneous Wireless Sensor Networks”, in
Communications in Computer and Information Science Journal, Vol. 14,
2008, pages 11-20.

[25] E. Lee, “CPS Foundations”, in Proceedings of the 47th Design Automation
Conference (DAC), ACM, June 2010, pp. 737-742.

[26] P. Tabuada, “Cyber-physical systems: Position paper”, in Proceedings of the
2006 National Science Foundation Workshop on Cyber-Physical Systems,
2006.

BUPT

References 111
[27] R. Gupta, “Programming Models and Methods for SpatioTemporal Actions

and Reasoning in Cyber-Physical Systems”, Position Paper, in Proceedings of
the 2006 National Science Foundation Workshop on Cyber-Physical Systems,
2006.

[28] P. Derler, E. Lee, A. Sangiovanni-Vincentelli, “Modeling Cyber-Physical
Systems”, in Proceedings of the IEEE (Special Issue on CPS), Vol. 100 (1),
January 2012, pp. 13-28.

[29] E. Lee, S. Tripakis, “Modal Models in Ptolemy”, in Proceedings of 3rd
International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools (EOOLT), October, 2010.

[30] N. Saeedloei, G. Gupta, “A logic-based modeling and verification of CPS”, in
ACM SIGBED Review – Work-in-Progress (WiP) Session of the 2nd
International Conference on Cyber Physical Systems, Vol. 8, Issue 2, June
2011, pp. 31-34.

[31] Y. Liu, “Toward a unified object model for cyber-physical systems”, in
Proceedings of the 2nd Workshop on Software Engineering for Sensor
Networks Applications (SESENA), 2011.

[32] R. van Renesse, “Goal-oriented programming, or composition using events,
or threads considered harmful”, in 8th ACM SIGOPS European Workshop,
Sintra, Portugal, September 1998.

[33] W. Heaven, A. Finkelstein, “A UML Profile to Support Requirements
Engineering with KAOS”, in IEEE Proceedings - Software, Vol. 151, 1,
February 2004, pp. 10-27.

[34] E. Navarro, P. Letelier, I. Ramos, “UML Visualization for an Aspect and Goal-
Oriented Approach”, in the 5th Aspect-Oriented Modeling Workshop (AOM),
collocated to UML 2004 Conference, Lisbon, Portugal, October 2004.

[35] U. Saif, H. Pham, J. Mazzola Paluska, J. Waterman, C. Terman, S. Ward, “A
Case for Goal-oriented Programming Semantics”, in System Support for
Ubiquitous Computing Workshop at the 5th Annual Conference on Ubiquitous
Computing, (UbiComp), 2003.

[36] J. Mazzola Paluska, H. Pham, U. Saif, C. Terman, S. Ward, “Reducing
Configuration Overhead with Goal-Oriented Programming”, in Proceedings of
the 4th annual IEEE International Conference on Pervasive Computing and
Communications Workshops, 2006.

[37] G. de Sousa, J. de Castro, “Towards a Goal-Oriented Requirements
Methodology Based on the Separation of Concerns Principle”, in Workshop
on Requirements Engineering (WER), Brasil, November 2003.

[38] M. Kim, M. Stehr, C. Talcott, “A distributed logic for networked cyber-
physical systems”, in Proceedings of the 4th IPM International Conference on
Fundamentals of Software Engineering (FSEN), Springer-Verlag, Berlin, pp.
190-205.

[39] M. Hause, F. Thom, “Building Bridges between Systems and Software with
SysML and UML”, in Proceedings of the 18th INCOSE International
Symposium, Utrecht, Nederland, June 2008.

BUPT

112 References
[40] L. Rioux, T. Saunier, S. Gerard, A. Radermacher, R. de Simone et al.,

“MARTE: A New Profile RFP for the Modeling and Analysis of Real-time
Embedded Systems”, in DAC 2005 Workshop UML for SoC Design (UML-
SoC), Anaheim, CA, USA, June 2005.

[41] G. Martin, W. Mueller, “UML for SoC Design”, Springer, 2005.

[42] T. Grötker, S. Liao, G. Martin, S. Swan, “System Design with SystemC”,
Springer, ISBN 1-4020-7072-1, 2002.

[43] Papyrus Tool– http://www.eclipse.org/modeling/mdt/papyrus/, 2012.

[44] UML2 Tools – http://wiki.eclipse.org/MDT-UML2Tools, 2012.

[45] Smart Development Environment – http://www.visual-paradigm.com/,
2012.

[46] I. Podnar, B. Mikac, A. Caric, “SDL based approach to software process
modeling”, in Lecture Notes in Computer Science, Volume 1780, 2000, pp.
190-202.

[47] E. Riccobene, P. Scandurra, A. Rosti, S. Bocchio, “A UML 2.0 Profile for
SystemC: Toward High-level SoC Design”, in Proceedings of the 5th ACM
International Conference on Embedded Software (EMSOFT), New York, USA,
2005.

[48] S. Abdelrahman, M. Badawy, “HASoC for developing a software system”, in
International Journal of Computer Science Issues, Vol. 8, Issue 6, No. 1,
November 2011.

[49] D. Harel and R. Marelly, "Specifying and Executing Behavioral
Requirements: The Play In/Play-Out Approach", in Software and System
Modeling (SoSyM), 2003, pp. 82-107.

[50] J. Zimmerman, O. Bringmann, J. Gerlach, F. Schaefer, U. Nageldinger,
“Holistic system modeling and refinement of intern-connected micro-
electronic systems”, in Proceedings of the Conference on Design,
Automation and Test in Europe IEEE, Los Alamitos, CA, 2008.

[51] MDA with Executable UML, http://www.kc.com/XUML/, 2012.

[52] A. Koudri, J. Champeau, J. Le Lann, V. Leilde, “MoPCoM Methodology: Focus
on Models of Computation”, in Lecture Notes in Computer Science, Vol.
6138, 2010, pp. 189-200.

[53] E. Riccobene, P. Scandurra, S. Bocchio, A. Rosti, L. Lavazza, L. Mantellini,
“SystemC/C-based model-driven design for embedded systems”, in ACM
Transactions on Embedded Computing Systems (TECS), Vol. 8, No. 4, 2009.

[54] P. Andersson, M. Host, “UML and SystemC - A Comparison and Mapping
Rules for Automatic Code Generation”, in Forum on Specification and Design
Languages (FDL), Barcelona, Spain, 2007.

[55] K.D. Nguyen, Z. Sun, P.S. Thiagarajan, ”Model-Driven SoC Design Via
Executable UML to SystemC”, in Proceedings of the IEEE International Real-
time Systems Symposium (RTSS), Lisbon, Portugal, 2004.

[56] K. Huang, I. Bacivarov, F. Hugelshofer, L. Thiele, "Scalably distributed
SystemC simulation for embedded applications", in Proceedings of the 3rd

BUPT

References 113
International Symposium on Industrial Embedded Systems (SIES),
Montpellier, France, 2008, pp.271-274.

[57] P. Kukkala, J. Riihimaki, M. Hannikainem, T. Hamalainen, K. Kronlof, “UML
2.0 profile for embedded system design”, in Proceedings of the Design,
Automation and Test in Europe, Vol. 2, 2005, pp. 710–715.

[58] V. Subramanian, A. Doboli, “PNet: A Grid type Sensor Network of
Reconfigurable Nodes,” in Proceedings of the IEEE International Conference
on Distributed Computing Systems Workshops, Montreal, 2009, pp.7-13.

[59] L. Wang, E. A. Johannessen, P. A. Hammond, Li Cui, S. W. J. Reid, J. M.
Cooper, and D. R. S. Cumming, “A Programmable Microsystem Using
System-on-Chip for Real-time Biotelemetry,” IEEE Transactions on
Biomedical Engineering, Vol. 52, No. 7, July 2005.

[60] Simulink, Simulation and Model-Based Design –
http://www.mathworks.com/products/simulink/, 2012.

[61] Electronic Design Automation Consortium, http://www.edac.org, 2012.

[62] TTTech Computertechnik AG, http://www.tttech.com/, 2012.

[63] T. A. Henzinger, C. M. Kirsch, M. A.A. Sanvido, W. Pree. “From control
models to real-time code using Giotto”, in IEEE Control Systems Magazine,
23(1):50-64, 2003.

[64] D. Bacon, P.Cheng, V. T. Rajan, “The Metronome: A Simpler Approach to
Garbage Collection in Real-Time Systems”, in Workshop on Java
Technologies for Real-Time and Embedded Systems (JTRES), OTM
Workshops, 2003.

[65] H. Neema, H. Nine, G. Hemingway, J. Sztipanovits, G. Karsai, “Rapid
Synthesis of Multi-Model Simulations for Computational Experiments in C2”,
in AFCEA-GMU Symposium, May 2009.

[66] J. Sztipanovits, “Frameworks and Tools for High-Confidence Design of
Adaptive, Distributed Embedded Control Systems: Project Overview”,
Presentation for Frameworks and Tools for High-Confidence Design of
Adaptive, Distributed Embedded Control Systems, December 2009.

[67] PhyNet Project, http://www.cmu.edu/silicon-valley/research/cps/index.html,
2012.

[68] J. Boydens, E. Steegmans, “Model Driven Architecture The next abstraction
level in programming”, in European Conferences on the Use of Modern
Information and Communication Technologies (ECUMICT), March 2004.

[69] G. A. Lewis, B. Craig Meyers, K. Wallnau, “Workshop on Model-Driven
Architecture and Program Generation”, Technical Note, Pittsburgh,
Pennsylvania, USA, June 2006.

[70] I. Sacevski, J. Veseli, “Introduction to Model Driven Architecture (MDA)”,
University of Salzburg, Seminar Paper, June 2007.

[71] G. Nunes Rodrigues, G. Roberts, W. Emmerich, J. Skene, “Reliability
Support for the Model Driven Architecture”, in Workshop on Software
Architecture for Dependable Systems (ICSE/WADS), Portland, USA, May
2003, pages 7-12.

BUPT

114 References
[72] C. K. Fong, “Successful Implementation of Model Driven Architecture”, White

paper, June 2007.

[73] A. Mos, J. Murphy, “Performance Management in Component-Oriented
Systems Using a Model Driven Architecture™ Approach”, in Proceedings of
the 6th International Enterprise Distributed Object Computing Conference
(EDOC), Lausanne, Switzerland, September 2002.

[74] S. Deelstra, M. Sinnema, J. van Gurp, J. Bosch, “Model Driven Architecture
as Approach to Manage Variability in Software Product Families”, in
Proceedings of the Workshop on Model Driven Architectures: Foundations
and Applications, Netherlands, June 2003.

[75] G. Magureanu, M. Gavrilescu, D. Pescaru, A. Doboli, “Towards UML Modeling
of Cyber-Physical Systems: A Case Study for Gas Distribution”, in
Proceedings of the 8th International Symposium on Intelligent Systems and
Informatics (SISY), Subotica, Serbia, November 2010, pp. 471–476.

[76] M. Gavrilescu, G. Magureanu, D. Pescaru, “CPS Design Using Model Driven
Architecture Approach: Aircraft Fuel Management System Case Study”, in
2012 Third International Conference on Theoretical and Mathematical
Foundations of Computer Science (ICTMF), Indonesia, in Lecture Notes in
Information Technology, ISSN 2070-1918, 2012.

[77] G. Magureanu, M. Gavrilescu, D. Pescaru, A. Doboli, “UML Support for
Optimizing the Goals of Distributed Control in Traffic Management
Applications”, in International Workshop on Robotic and Sensors
Environments (ROSE), Pheonix, Arizona, USA, October 2010.

[78] F. Naghiu, D. Pescaru, G. Magureanu, I. Jian, A. Doboli, “Corrections of
sensing errors in Video-based Traffic Surveillance”, in Proceedings of the 5th
International Symposium on Applied Computational Intelligence and
Informatics (SACI), Timisoara, Romania, ISBN 978-1-4244-4478-6, May
2009, pp. 217-224.

[79] D. Jansen et al., “A Probabilistic Extension of UML Statecharts”, in Formal
Techniques in Real-Time and Fault-Tolerant Systems, in Lecture Notes in
Computer Science, Vol. 2469, Springer, 2002, pp. 355-374.

[80] G. Magureanu, M. Gavrilescu, I. Tal, A. Toma, D. Pescaru, I. Jian,
“Generating OMNeT++ Specifications from UML Models for PSoC Distributed
Applications”, in Proceedings of the 6th IEEE International Symposium on
Applied Computational Intelligence and Informatics (SACI), Timisoara,
Romania, May 2011.

[81] G. Magureanu, M. Gavrilescu, D. Pescaru, I. Jian, ”UML Profile for Cyber-
Physical System Wireless Communication Specification”, in Proceedings of
the 7th International Symposium on Applied Computational Intelligence and
Informatics (SACI), Timisoara, Romania, May 2012, pp. 383 – 388, doi:
10.1109/SACI.2012.6250034.

[82] M. Gavrilescu, “UML Software Models for Cyber Physical System
Applications”, in Workshop no. 2, “Interdisciplinaritatea si managementul
cercetarii in studiile doctorale”, Oradea, Romania, June 2012.

[83] M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian, “UML Software Models for
Cyber Physical System Applications”, in the 20th Telecommunications Forum
(TELFOR), Belgrad, Serbia, November 2012.

BUPT

References 115
[84] N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Mazieres, F. Kaashoek,

“Multiprocessor support for event driven programs”, in Proceedings of the
USENIX Annual Technical Conference, San Antonio, TX, USA, June 2003, pp.
239-252.

[85] Y. Zhao, Jie Liu, and Edward A. Lee, “A Programming Model for Time-
Synchronized Distributed Real-Time Systems”, in Proceedings of the 13th
IEEE Real-Time and Embedded Technology and Application Symposium,
RTAS'07, WA, USA, April 2007, pp.259-268.

[86] M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli, “A Simulation
Framework for PSoC Based Cyber Physical Systems”, in IEEE ICCC-
CONTI’10, Timisoara, Romania, May 2010.

[87] M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli, “Accurate Modeling of
Physical Time in Asynchronous Embedded Sensing Networks”, in
Proceedings of the 8th International Symposium on Intelligent Systems and
Informatics SISY, Subotica, Serbia, September 2010, pp. 477–482.

[88] M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian, “Optimization of Sensor
Networks Physical Time Modeling in OMNeT++”, in CDDT Workshop,
Craiova, Romania, February 2011.

[89] M. Gavrilescu, G. Magureanu, D. Pescaru, A. Doboli, “Time Models for PSoC
Based Cyber Physical Systems Simulation”, in BS-UPT TACCS Volume 56
(70) No. 1, March 2011, pp. 27-34.

[90] M. Gavrilescu, G. Magureanu, D. Pescaru, I. Jian, “Handling Event-Driven
Scenarios in CPS Application Simulations”, in Carpathian Journal of
Electronic and Computer Engineering, Vol. 4, No. 1, ISSN 1844 – 9689,
October 2011.

[91] G. Magureanu, “Specification and Verification of UML Models for Cyber
Physical Systems”, in Workshop no. 3, “Interdisciplinaritatea si
Managementul Cercetarii”, Oradea, Romania, June 2012.

[92] C. Atkinson, T. Kuhne, B. Henderson-Sellers, “To Meta or not to Meta – That
is the Question”, in Journal of Object-Oriented Programming, Vol. 13, No. 8,
2000, pp. 32-35.

[93] Cypress Semiconductor Corporation – http://www.cypress.com, 2012.

[94] MIXIM Project – http://mixim.sourceforge.net/, 2012.

[95] G. Magureanu, “UML Profile for Wireless Networks Based on Cyber Physical
Systems”, in Workshop no. 2, “Interdisciplinaritatea si Managementul
Cercetarii”, Timisoara, Romania, November 2011.

[96] A. Varga, R. Hornig, “An overview of the OMNeT++ simulation
environment”, in Proceedings of the 1st Iinternational Conference on
Simulation Tools and Techniques for Communications, Networks and
Systems, Marseille, France, March 2008.

[97] I. Moir, A. Seabridge, “Aircraft Systems: Mechanical, Electrical and Avionics
Subsystems Integration”, 3rd Edition, AIAA Education Series, Wiley, 2008.

[98] J. Beasley, editor, “Advances in Linear and Integer Programming”, Oxford
Science, 1996.

BUPT

116 References
[99] http://www.omnetpp.org/doc/omnetpp41/manual/usman.html – OMNeT++

User Manual ver. 4.1, 2011.

[100] C. Mallanda, A. Suri, V. Kunchakarra, S. S. Iyengar, R. Kannan, A. Durresi,
and S. Sastry, “Simulating Wireless Sensor Networks with OMNeT++”,
Submitted for Publication to IEEE, 2005.

[101] Yi-Ran Sun, Shashi Kumar, and Axel Jantsch, “Simulation and Evaluation for
a Network on Chip Architecture Using Ns-2”, in Proceedings of the 20th IEEE
Norchip Conference, 2002.

[102] G. Magureanu, M. Gavrilescu, D. Pescaru, “Validation of Static Properties in
UML Models for Cyber Physical Systems”, Accepted for publication in January
2013 for Journal of Zhejiang University Science C, Impact factor = 0.308
(2011), ISSN 1869-1951.

This work was partially supported by the strategic grant

POSDRU/88/1.5/S/50783 Project ID50783 (2009), co-financed by the European
Social Fund – Investing in People, within the Sectoral Operational Programme
Human Resources Development 2007 - 2013.

BUPT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

