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Chapter 1 

Introduction 

1.1 Background 

In the first half of this century telephone and telegraph were the main commu-
nication medium for the transmission of human voice. The technical progress 
in communication technologies and microelectronics during the last decades and 
years led to an increasing significance of radio based mobile communications. 
Wireless telephones guarantee a high degree of liberty and comfort, a new lifestyle 
at an achievable price. People can be contacted by telephone wherever they are 
within the service area of the cellular networks on air. Thus, in 1980 the first 
standardized mobile terrestrial system called NMT (Nordic Mobile Telephone) 
was introduced [Walke 98]. It was followed in 1985 by AMPS (Advanced Mobile 
Phone System) in USA, C450 (Cellular) in Germany and TACS (Total Access 
Communication System) in the UK. Cellular networks can be deployed wherever 
the installation of cables in the fixed-line telephone network is uneconomic or 
impossible. 
The main limiting factor of analog wireless systems is the available frequency 
spectrum. Better spectral efficiency can be achieved by digitizing the speech 
signal and applying modern digital techniques such as modulation, coding and 
equalization. In this way a bandwidth efficient transmission is possible, better 
immunity to radio disturbances and less susceptibility to noise than in the case of 
analog modulated signals. Digitally sampled speech and data signals can be fur-
ther processed and stored before transmission. This enables the use of different 
multiplex procedures such as TDM (Time Division Multiplex), FDM (Frequency 
Division Multiplex) or CDM (Code Division Multiplex) which guarantee a higher 
number of subscribers that can be serviced. 
Since the introduction of GSM (Global System for Mobile Communications) in 
1990, an extraordinary increase in digital cellular telephone users has been regis-
tered and the trend is still continuing. The worldwide acceptance of the digital 
technology is reflected in the Compound Annual Growth Rate (CAGR). 

1 
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8 CHAPTER 1. INTRODUCTION 

In the year 2001 (Figiire 1.1.a), over 75 % of the market will be using dig-
ital technology, dual mode analog/digital units will remain a unique, expensive 
appendage in the Americas [GSM Data 98]. By 2002 or 2003, analog systems 
will dissapear as Generation 3 technology {UMTS\ IMT-200(P) will be rapidly 
deployed. 

Region 
CAGR 

1997 - 2001 

USA 14.97 % 
Canada 19.31 % 

South America 46.40 % 
The Americas 22.20 % 

Western Europe 19.19 % 
Efistern Europe 41.18 % 

Russia 63.46 % 
Subtotal Europe 21.54 % 
Japan 31.65 % 
Rest of the World 55.46 % 

Worldwide Total 33.58 % 

Table 1.1: Worldwide wireless subscriber growth 

Table 1.1 [GSM Data 98] presents the worldwide subscriber forecast by ge-
ography as it has been reported by Cahners In-Stat Group in January 1998, all 
1997 subscriber figures being based on the first half performance in 1997 and 
then extrapolated for the balance of the year. It can be observed that Eastern 
Europe, Russia and the rest of the world are expected to exhibit excellent growth 
rates. 
Aniongst the mobile communications technologies GSM has proven itself as the 
most popular [GSM MoU 98a], having more than 100 million customers world-
wide. GSM growth had outstripped even the most incautious speculations. 
Starting its activity as a purely Pan-European cellular telecommunication stan-
dard^ GSM is now considered to be the de facto global cellular standard It 
provides almost complete coverage in Western Europe and growing coverage in 
Eastern Europe, Asia and the Americas. Roaming is widespread and allows cel-
lular subscribers to use their services in any GSM service area in the world in 

' UMTS: Universal Tclccommiinications System 
-IMT-2000: International Mobile Telecommunications at 2 000 MHz 
•^Accorcling to the IntcmaHonal StandardizaUon OrgamzaUon (ISO) a standard is a tech-

nical spec.fKat.on or other document available to the public, d r L n up in c o o p e r ^ t i ^ and 
consensus or general approval of all interests affected bv it based on thl .Lc r ^ . J , 
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1.1. BACKGROUND 3 

which their network provider has a roaming agreement. It can be considered that 
subscribers can virtually go to any country in Europe and some in Asia as well 
and be assured that their GSM phone will work both for voice and data. For 
travellers to North America dual-band phones are available which permit the use 
of both GSM and PCS technology. 

Some statistics published by the GSM MoU Association are presented in Fig-
ure 1.1. The MoU (Memorandum of Understanding, Annex B) includes members 
operating GSM networks at 900 MHz (GSM 900) and at the higher 1,800 MHz 
(DCS 1800) and 1,900 MHz frequency (PCS). 
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1 3 0 0 

1 2 0 0 

w 100 
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MemberCountries/Areas 

d. Distribution of GSM in the world 

Figure 1.1: GSM statistics 

Figure 1.1.1) pr(;sents the growth of tho GSM customer base since 1992. It 
can be obs(»rv(îd that tho rnimb(»r is increasing continuously. The number of GSM 
networks and countries with GSM on air since 1992 till 1998 is represented in 
Figure 1.1.c. At the present a mean vahie of approximately 3 network providers 
per country is considered. 

The worldwide distribution of GSM at the end of 1998 is presented in Fig-
ure 1.1.d. GSM is available in 44 % of the world's total cellular niarket, Ger-
rnany having the largest riuinber of GSM us(ts. Mamuisimniii D2 Privat is the 
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4 CHAPTER 1. INTRODUCTION 

worldwide biggest GSM iietwork with more than 5 million users. In Germany 
the number of new siibscribers is growing monthly by approximately 500,000 
[connect 98]. In October 1998 the number of cellular telephone connections has 
raised up to approximately 12 millions, the most of them being in the GSM sys-
tem operating at 900 and 1,800 MHz. The forecast for Germany is a number of 
20,000,000 subscribers in the year 2000. 

1.2 Scope of This Thesis 
Many telephone subscribers use a mobile telephone handset while driving. This 
jeopardizes driving safety and there are many countries where handsfree opera-
tion in car telephones is not only desirable but also mandatory. The goal of a 
handsfree systeni is to permit a full-duplex communication with aii the comfort 
specific to conversaţional speech such as easiness to speak, to listen and to in-
terrupt the reniote user, with no restriction on normal gestures and movements. 
Naturalness and a satisfactory quality of transmitted speech is as important as a 
minimal, not disturbing acoustic background. 

The car handsfree e(iuii)nient incorporates a microphone and a loudspeaker 
installed in the car cabin, the mobile terminal being inserted in a cradle. Thus the 
driver's hands are frec» to operate the car. The installation of the loudspeaker and 
microphone inside thv vehicle gives arise to acoustic echo problems, because of 
the reflections from the car interior. The signal picked up by the microphone will 
therefore consist of an undesired combination of multiple reflections and back-
ground noise [Pauler 98]. Two types of impairments will come up when using a 
car handsfree system, namely the coupling from the loudspeaker to the micro-
phone and the high ambient noise level due to different background sources such 
as wind, tyre, engine or fan noise. These problems seriously affect the quality of 
the transmission and degrade speech quality. 

Digital comnnmication systems, such as the cellular GSM (Annex B), offer 
better listening quality than the analog communication networks because of their 
better inmuinity to radio disturbances. This better speech quality is achieved at 
the expense of an increase in transmission times caused by the digital signal 
Processing techniques. The long delays inherent to the GSM system make the 
acoustic echo problem in handsfree situations much worse than in other lower 
delay systems. The subscriber on the other end will always hear a disturbing 
unacceptable echo. unless echo cancellation is performed in the handsfree equiD-
ment. ^ ^ 

In luuulsfree mobile applications, where the acoustic echo is mixed with high 
background noise, it is recommended to use a combined system of acoustic echo 

BUPT



L2. SCOPE OF THIS THESIS 5 

cancellation (AEC) and noise reduction (NR). For a correct elimination of acous-
tic echo and background noise the combined system must have efficient per-
formances in terms of iniţial convergence, tracking of the echo path variations, 
speech enhancement in noisy environment and double-talk situation. The con-
siderable delay introduced by the GSM system will stress any bad or insufficient 
performance. 

The main focus of this thesis lies in the investigation of algorithms used in 
acoustic echo compensation and noise reduction. These two topics are challeng-
ing applications of adaptive filtering in telecommunications. A combined system 
consisting of an acoustic echo canceller and a noise reduction system suitable for 
handsfree systems in the GSM network is presented. The proposed system works 
entirely in the time domain, thus no supplimentary time delay is introduced ex-
cept the inherent processing time. The correct operation of echo cancellation and 
noise reduction is enabled by the use of voice activity and double-talk detection 
algorithms. The algorithms forming the combined system are designed to be im-
plemented in a digital signal processor (DSP). 

An introduction to the echo problem, both line and acoustical echo, and the 
theoretical background of adaptation algorithms are presented in Chapter 2. The 
advantages and disadvantages of these algorithms when used in speech processing 
are also discussed in this chapter. 

An overview of the existing speech enhancement algorithms is presented in 
Chapter 3. The specific noise problem in a vehicle interior is discussed and the 
goals of speech enhancement in mobile communications are viewed. The pre-
sented speech enhancement algorithms consider the "one microphone approach" 
as well as the adaptive noise cancellation by multiple microphones. Both fre-
quency and time domain algorithms are discussed. 

When designing echo cancellation and speech enhancement algorithms the 
digital model of the vehicle interior must be known. The definition of such a 
model will be the main task in Chapter 4 as well as the specification of the GSM 
requirements for acoustic echo cancellation and noise reduction. In Chapter 5 
the structure of the proposed combined system and the most important objective 
assessment methods employed during the development phase of speech processing 
algorithms are presented. 

In Chapter 6 the adaptation algorithm for the combined system is introduced 
and treated. Different environmental conditions and implementations are consid-
ered, the fullband as well as the subband approach. For the fullband performance 
in noisy near-end environment a new stepsize control algorithm is proposed. As 
the acoustic echo cancellation and the noise reduction using one microphone can-
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6 CHAPTER 1. INTRODUCTION 

not be properly executed without any speech detection algorithms, this topic will 
be accessed in Chapter 7. A iiew voice activity detection algorithm is proposed 
which will update its adaptive energy threshold depending on its current decision. 
The combined systein will be completed in Chapter 8 by the presentation of the 
proposed "one microphone approach" noise reduction system, implemented in 
the time domain. 
A siimmary of the work will be given in Chapter 9. 
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Chapter 2 

Acoustic Echo Cancellation 

2.1 Basics of Echo Cancellation 
Echocs are defiiied as being the sound waves reflected from walls, floors or other 
objects that are arriving short time after the direct sound. If a reflected sound 
arrives a very short tirne after the direct sound, it is perceived as reverberation 
[Sondhi & Kellermann 92]. The desirable amount of this spectral distorsion is 
application specific: thus, it is the special concern of architects of concert halls, 
but in the same time it is of no deşire in offices. As long as the delay of the 
reflections does not exceed 40 ms [Taylor 94] the echo is not disturbing. 
In telecommunications echoes can be generated electrically and acoustically as 
well. Electrical or line echoes are derived from the electrical signal transmit-
ted on the line. Acoustical echoes arise in loudspeaker-room-microphone systems 
(LRMS) where the handsfree operation is desirable, e.g. in offices, teleconferenc-
ing systems or cars. 
The extent of echo annoyance [Goldenberg & Bisson 95] depends on two factors: 

• the background noise level, i.e. the circuit noise and/or ambient noise. In 
a highly noisy environment the echo can merely be perceived, in this case 
the noise is much more disturbing than the echo. 

• the echo delay with respect to the original signal. If the delay is short, it 
is masked by the original signal, but with increasing delay the subscriber 
can hear a hollow effect. If the propagation delay reaches several tens of 
milliseconds, the echo is clearly detached from the original speech and leads 
to a seriously disturbed conversation. 

2.1.1 Line Echoes 
The main origin of line echoes is the impedance mismatch at the devices that 
connect the two wire customer's loop to the four wire circuits. These converters 
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8 CHAPTER 2. ACOUSTIC ECHO CANCELLATION 

are known as hxjbrids or hybrid transformers. 

Li 

L-i 

Figure 2.1: Line echo 

The hybrid showii in Fignre 2.1 is a network bridge, which allows the signals 
from subscriber A to go along path Li to subscriber B and from subscriber B via 
path L-j baek to A. The signal from A must be prevented from getting back to 
A along path L-j. The same stands for signals coming from subscriber B, which 
nnist be hindered from returning along path L\. Because there is no possibility 
of exactly balancing the impedance of the customer's loop, the echo at the hybrid 
cannot be eliminated completely. 
A remedy to this problem are the echo suppressors with voice-operated switches 
and adaptive line echo cancellers. 
The echo suppressor makes its decision based on the level of two speech signals. 
If the return signal is low in level, it is considered to be only echo and the return 
path is opened. Alternatively, when the level in the return path is high, this sig-
nal is considered to be an interruption, the other subscriber trying to break into 
the conversation. These suppressors work well on circuits with a roundtrip-delay 
of up to 100 ms. 
With long roundtrip-delays, as in telephone communications via satellite, echo 
suppressors fail to work correctly. In this case, adaptive echo cancellers are'used, 
which subtract a synthetically generated echo from the return signal. This syn-
thetic signal is generated by passing the speech signal through a filter whose 
impulse response matches the echo path (Figure 2.2). 

The adaptive echo cancellation can be considered as being a system iden-
tification problem [Stearns & David 93]: the unknown echo path has to be mod-
elled by a filter. Because of the changing echo path this filter has to be made 
adaptive thus being able to track slow variations of the characteristics of the sub-
scriber s loop. After a fast iniţial convergence, the tracking mode can be slowed 
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2.1. BASICS OF ECHO CANCELLATION 

Li 

L-i 

adaptive hybrid 
filter B 

subscriber B 

Figure 2.2: Adaptive line echo canceller 

down, as the line echo path is assumed to change very slowly. 
Concerning the circuit and background noise, the levels are generally low and do 
not cause any problerns in the line echo cancellation system. 

2.1.2 Acoustic Echoes 

A fundamental problem of convenţional handsfree equipment is the coupling from 
the louspeaker to the microphone. The acoustic feedback exists due to the di-
rect propagation from the loudspeaker to the microphone and the indirect sound 
spreading of the reflections from surrounding objects in the room. The mi-
crophone is located some significant distance from the speaker's mouth and in 
the sound field of the loudspeaker of the handsfree system [Naylor et al. 94], 
[Taylor 94]. These coupling effects feed back the far-end speech into the micro-
phone, so that the far-end subscriber will hear himself after a network-dependent 
delay time. This very annoying effect is called acoustic echo. In many cases this 
feedback can also lead to instabilities which result in howling. 
Solving properly the acoustic echo control problem is crucial for the design of 
audio terminals for telecommunications operating in handsfree mode, such as 
handsfree telephone sets, teleconference systems and videoconferencing devices. 
Adaptive echo cancellers, which construct a replica of the actual acoustic echo 
path by means of an adaptive filtering method, are recognized as the best solu-
tion to the acoustic echo problem [Gilloire 95]. 

Acoustic echoes are usually much more delayed than line echoes. Therefore 
the computaţional and memory requirements are much higher for acoustic echo 
cancellers than for line echo cancellers [Weiss et al. 91]. The acoustic echo path is 
usually several times longer and it may change rapidly, at any time, due to moving 
persons in the room, opening windows or doors, temperature changes, etc. Thus, 
the acoustic echo canceller has to compensate longer impulse responses and it 
also has to converge faster than the line echo canceller [Sondhi & Kellermann 92]. 
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10 CHAPTER 2. ACOUSTIC ECHO CANCELLATION 

Acoustic echo cancellatiori is a system identification problem dealing with long, 
rionstationary impulse rcsponses and high nonstationary noise at the observable 
output. 

Figiirc 2.3: Adaptive acoustic echo canceller 

The acoustic echo canceller reproduces the acoustic room impulse response, 
i.e. the transmission characteristics between the loudspeaker and the micro-
phone. It creates a synthetic echo signal which eliminates the room echo by 
subtraction (Figure 2.3). The performance of the echo canceller depends on the 
adaptation algorithm and the length of the adaptive filter. The filter coefficients 
must constantly be updated since the echo path is changing even by the small-
est movements of people in the room. For a transversal finite impulse response 
(FIR) filter^ the number of coefficients L is dependent on the reverberation time 
ŷv of the room and the sampling frequency f s of the digital system. The more 

coefficients the filter has, the longer are the echoes that can be estimated and 
compensated: 

L = t r , - f s (2.1) 
If the FIR-filter has to achieve an attenuation of 60 dB it needs to be as long as 
the reverberation time^. 
The reverberation time of a room is given [Frenzel 92] by the following formula: 

24 Vin 10 , , 
= f^l (2.2) 

where \ ' represents the volume of the considered room in m^ c is the sound speed 
in m/s and ă is called the absorption coefficient 

(2.3) 

rriergy 

'Soc soctioii 4.1. 
•^Evrry room can be characterized by its reverberation time, defined as the time the sound 

V needs to derrea.se by 60 dB after switching off the sound event [Armbruster et al. 91]. 
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2.1. BASICS OF ECHO CANCELLATION 11 

Si are the surface areas in m^ with different absorption. Table 2.1 includes 
some absorption coefficients at a frequency of 1 kHz [Ansahl 98], [Kuttruff 91], 
[Schneider 94], [Siemens AG 97]. 

Material a 
Glass 0,02 

PVC, Rubber on floor 0,02 
Steel 0,03 

Plywood, 3 mm thickness 0,09 
Suede carpet 0,20 

Plastic (Polyurethan) 0,70 
Person on upholstered chair 0,87 

Table 2.1: Acoustic absorption coefficients a of some materials 

The reverberation time also depends on temperature changes in the room. 
The sound speed in equation (2.2) is temperature-dependent [Kuttruff 91]: 

c = (331.4 + 0.6 d) 

where d represents the room temperature in °C. 

(2.4) 

The degree of absorption also depends on the surface structure of the ab-
sorbent material. Thus, porous materials usually absorb high frequencies much 
better than low frequencies. Likewise, high frequencies are less absorbed by os-
cillating, vibrating surfaces [Siemens AG 97]. 

Taking into account the above statements, one can differenciate between 
acoustic echo cancellers for two different application situations: an office en-
vironment when performing an audioconference or a vehicle interior when using 
the handsfree function of a mobile phone. Offices are much larger than cars, 
therefore the length of the impulse response of an office is often hundreds of 
milliseconds, while in a vehicle the environment is almost ideal with respect to 
reverberation time. The small internai volume and the upholstery of the interior 
lead to reverberation times of less than 60 ms. This corresponds to an FIR-filter 
length of 480 coefficients, when sampling with 8,000 Hz. 
In a car environment a second impairment exists, namely the omnipresent back-
ground noise. The perceived effect of this additive noise is listening fatigue and a 
reduction in speech intelligibility. Acoustic echo cancellers usually have difficulty 
in processing the echo in high background noise. 
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12 CHAPTER 2. ACOUSTIC ECHO CANCELLATION 

2.2 Adaptat ion Algorit hms 
An adaptive algorithiii is tlie equation or the set of equations used to adjust the 
transfer function of the adaptive system. The elements of a basic adaptive system 
are shown in Figure 2.4. 
x[n] and //[n] are the input and output signals of the adaptive system and y[n] 

y ^i] 

adaptive y[n] 
4 

system • \ e -

Figure 2.4: Elements of the basic adaptive system 

is the desired response. The characteristics of the adaptive system change, or 
adapt, according to signal conditions, so that the error signal e[n] should be min-
imal. A(lai)tive signal i)rocessing is dealing with time-varying digital systems, n 
denotes a certain tinie instant. 

An adaptive filter is a selfdesigning device [Haykin 96], in that it relies on a 
recurşive algorithm, which niakes it possible for the filter to perform satisfactorily 
in an environment where complete knowledge of the relevant signal characteris-
tics is not available. The algorithm starts from some predetermined set of iniţial 
conditions and, in a stationary environment, it converges to the desired signal. 
In a nonstationary environment, the algorithm offers a tracking capability, which 
means that it can track time variations in the statistics of the input data, pro-
vided that the variations are sufficiently slow. 

If the adaptive filter is to be an accurate model of the unknown system, two 
conditions must be satisfied [Stearns k David 93]: 

• the input signal :r[7?,] must contain enough information to excite all modes 
of the system. For off-line system Identification white noise is a viable 
solution, but for real-time applications, the selection of the input signal is 
important. 

• the adaptive system must be of sufficient complexity, i.e. high enough in 
order, to match the degrees of freedom of the unknown system. If an FIR 
model is used to identify an IIR system, typically a very high order system 
is required. If the model order is overspecified, the adaptive process may 
converge more slowly. 
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2.2. ADAPTATION ALGORITHMS 13 

The operation of a linear adaptive filtering algorithm involves two basic pro-
cesses: 

• a filtering process designed to produce an output in response to a sequence 
of input data 

• an adaptation process, the purpose of which is to provide a mechanism for 
the adaptive control of a set of parameters used in the filtering process 

These two processes work interactively with each other. 

2.2.1 Principie of Orthogonality 

The mathematical solution to the problem of minimizing the estimation error e[n] 
leads to the derivation of a very important theorem, namely the the principie of 
orthogonality. The following filtering problem will be considered: the filter input 
is denoted by the time series x[0], x[l], x[2],... and the impulse response of the 
filter is denoted by /io, /^i, /i2, • • Both time series are assumed to have infinite 
duration. The output of the device at discrete time n is defined by the linear 
convolution sum: 

oo 
2/W = E - n = o, 1, 2 , . . . (2.5) 

k=0 

The purpose of the filter is to produce an estimate of the desired response denoted 
by y[n]. The estimation of y[n] is accompanied by an error e[n], defined by the 
difference 

e[n] = y[n] - y[n]. (2.6) 

In the Ensemble Sense 

Assuming that the filter input and the desired output are wide-sense stationary 
stochastic processes, the mean-square value of the estimation error e[n] will be 
chosen for the optimization of the filter design. The cost function^ will thus be 

J = E[\e[n]\'] (2.7) 

where E denotes the statistical expectation operator. 
Applying the gradient operator V to the cost function J, with respect to the 
/c-th filter coefficient, and setting the gradient vector V^J to zero will lead to 
the specification of the operating conditions for which J attains a minimum value. 

^A cost function provides a quantitative measure for assessing the quality of performance. 
The cost function is a scalar. 
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14 CHAPTER 2. ACOUSTIC ECHO CANCELLATION 

Denoting by e^fn] the special value of the estimation error that results when the 
filter operates at its optimum coiidition, it can be written 

E[x[n - k]eo[n]] = O = 0 ,1 ,2 , . . . (2.8) 

Equatioii (2.8) states the principie of orthogonality: 
The iiecessary and sufficient coiidition for the cost function J to attain its mini-
mum value is that the corresponding value of the estimation error eo[n] is orthog-
onal to each input sample that enters into the estimation of the desired response 
at time ii [Haykin 96]. 

Substituting (2.5) and (2.G) in (2.8), expanding and rearranging the terms 
will lead to 

f ; KrE[x[n - k]x[n - z]] = E[x[n - k]y[n]] /c = 0,1, 2 , . . . (2.9) 
1=0 

where the two expectations represent the following: 

• E[x[n - k]x[7i - /]] is the autocorrelation function of the filter input for a 
lag of L - k defined as 

r[i - A;] = E[x[n - k]x[n - i]] (2.10) 

• E[x[n — A:]/y[7i]] is the crosscorrelation function between the filter input and 
the desired response for a lag of -/c defined as 

p[-k] = E[x[n-k]y[ri]] (2.11) 

Using (2.10) and (2.11) in (2.9) an infinitely large system of equations will be 
found, the so-called the Wiener-Hopf equations 

oo 
Y,l'oir[i-k]=p[-k] fc = 0 , l , 2 , . . . (2.12) 
1=0 

Tlio system (2.12) defines the optimum filter coefficients in terms of two corre-
lation functions: the autocorrelation function of the filter input and the cross-
correlation function between the filter input and the desired response. 

Considering the special case of the linear transversal filter of length L in 
Figure 2.5 the Wiener-Hopf equations (2.12) reduce to a system of L simultaneous 
ociuations: 

L-\ 

5 - k] = p[-k] A: = 0,1, 2 , . . . , L - 1 (2.13) 
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Figure 2.5: Transversal filter 

where hoo, hoi,h„2,.. . , K l are the optimum values of the tap weights of the filter. 
The Wiener-Hopf equations provide the mathematical basis of the class of linear 
optimum discrete-time filters also known as Wiener filters. 
The Wiener-Hopf equations can also be written in compact matrix form: 

Rho = p (2.14) 

where R represents the {L x L) correlation matrix of the tap inputs 
x[n\,x[n -\],...,x[n- L + 1]: 

with 

R = £[x[n]x^[n]] 

x[n] = [x[n],x[n - ... ,x[n - L + 1]]^ 

or in expanded form 

R = 

r[0] 
r[l] 

r[l] 
r[0] 

[r[L-l] r[L-2] 

r[L-l] 
r{L-2] 

r[0] 

(2.15) 

(2.16) 

(2.17) 

Correspondingly, p represents the {Lxl) crosscorrelation vector hetween the tap 
inputs of the filter and the desired response ij[n]\ 

p = E[^[n]y[n]] 

or in expanded form 
p = b [ o ] , p [ - i ] . . . . , p [ i - i r 

The [Lxl) optimum tap-weight vector ho of the transversal filter is 

ho = [hoo, hol,..hoL-i]^ 

(2.18) 

(2.19) 

(2.20) 

BUPT



16 CHAPTER 2. ACOUSTIC ECHO CANCELLATION 

Assuming R'^ exists, i.e. R is iionsingular, Eq. (2.14) may be solved for the 
optimum tap-weiglit vector: 

ho = R - ' p (2-21) 

Equation (2.21) states that the optimum tap-weight vector ho is uniquely 
defined by the product of the inverse of the correlation matrix R and the cross-
correlation p between the tap input vector x[n] and the desired response y[n]. 

Based on Time Average 

There are no assumptions made on the statistics of the input of the transversal 
filter. To optimize the filter design, the sum of error squares will be chosen. The 
cost function will thus be 

/»,-,)= E \e[n]\' (2.22) 

where n^ and n^ define the index limits at which the error minimization occurs. 
This suni may also be viewed as an error energy [Haykin 96]. For the minimiza-
tion, the tap weights of the transversal filter /iq,/ii, • • •,/^l-i ^ire held constant 
during the interval iii < ii < n-j. To make sure that all the L tap inputs of 
the transversal filter have nonzero values the limits n\ — L and n2 = N will be 
chosen. 
Applying the gradicnt operator V to the cost function <f, with respect to the k-th 
filter coefficient, and setting the gradient vector Vk^ to zero will lead to the 
specification of the operating conditions for which S attains a minimum value. 
Denoting by ^„^„J/?,] the special value of the estimation error that results when 
the transversal filter is optimized, it can be written as 

N 

- k]e„,,n[n] = 0 A: = 0,1,...,L-1 (2.23) 
71= L 

Equation (2.23) is the mathematical description of the temporal version of the 
principie of ortliogonality: 
The minimum error time series e,nin[n] is orthogonal to the time series x[n - k] 
applied to tap k of a transversal filter of length L for A: = 0 , 1 , . . . , L - 1 when 
the filter is operating in its least-square condition [Haykin 96]. 

The filter resulting from the minimization is called a linear least-squares filter. 
Proceeding in a similar way to the derivation of the Wiener-Hopf equations, the 
systcm of the normal equations of a linear least-squares filter will be 

/.-l ^ 
^ îl, k] = z[-k] Â: = 0,1, 2 , . . . , L - 1 (2.24) 
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2.2. ADAPTATION ALGORITHMS 17 

where ht are the special values of the tap-weights for an optimized transversal 
filter. k] and z[—k] have the following meanings: 

• (t>[t,k] represents the time averaged autocorrelation function (over i) of the 
tap inputs of the transversal filter in Figure 2.5 

N 

(l)[t, k] = Y, x[i - k]x[i -t] 0<[t,k]<L-l (2.25) 
i=L 

• z[-k] represents the time averaged crosscorrelation (also over i) between 
the tap inputs and the desired response 

N 

[-A:] = 5]x[Z-A:]2/[Z] O </C < L - 1 
i=L 

(2.26) 

The normal equations for linear least squares filters can also be written in com-
pact matrix form\ 

^ h = z (2.27) 

where ^ represents the (L x L) time averaged correlation matrix of the tap inputs 
x[n],x[n — 1], . . . , x[n — L + 1] 

[ 0[O,O] 0[L-1,O] 

1] (t>[l,L-l] ••• 1 , L - 1] _ 

(2.28) 

Correspondingly, z represents the {Lxl) time averaged crosscorrelation vector 
between the tap inputs of the filter and the desired response y[n]\ 

z = [z[0],z[-l],...,2[l-Lr (2-29) 
The (Lxl) tap-weight vector of least squares filter h of the transversal filter is 

h=[ / io , / i i , . . . , / zL- i r (2.30) 

Assuming exists, i.e. ^ is nonsingular, Eq. (2.27) may be solved for the 
tap-weight vector of the least-squares filter: 

(2.31) 

This last equation is fundamental to the recursive formulations of the linear 
least-squares filter. Equation (2.31) states that the tap-weight vector of the 
least-squares filter h is uniquely defined by the product of the inverse of the time 

BUPT



18 CHAPTER 2. ACOUSTIC ECHO CANCELLATION 

averaged correlatioii matrix ^ and the time averaged crosscorrelation z between 
the tap input vector x[n] and the desired response y[n]. 

The tinie averaged correhition matrix ^ can be approximated [Haykin 96] as 

^[n] ~ ^ n large (2.32) 
1 — A 

and in a corresponding way, the inverse matrix may be expressed as 

^-'[n] ~ (1 - n large (2.33) 

where R"^ is the inverse of the ensemble-averaged correlation matrix R and A is 
a positive constant close to, but less than, 1. 

Eqnation (2.31) is the least-squares counterpart to the solution of the matrix 
forni of the Wiener-Hopf equations (2.21). 

2.2.2 Least Mean Squares (LMS) 
The requirement of an adaptive transversal filter is to modify the tap-weight vec-
tor h in the direction of the optinuim tap-weight vector ho, i.e. to satisfy, after 
adaption, the Wiener-Hopf equations (2.14). 
The LMS adaptation method is defined [DeGroat et al. 97] by the following re-
curşi v relation: 

h[« + 1] = h[n] + i /i (Ah[n]) (2.34) 

where h[7?, + 1] represents the updated tap-weight vector at time instant n + 1, // 
is a positive real-valued constant and Ah, the adjustment vector is given by 

Ah[n] = -VnJ[n]. (2.35) 

V/iJ represents the gradient vector with respect to h[n] at time instant n, the 
factor ^ is used merely for the purpose of cancelling a factor 2 from the gradient 
vector formula. 
As exact nieasurements of the gradient vector are not possible, the gradient vector 
must be estimated from the available data. The stochastic gradient algorithm 
replaces the expected valuc of the mean squared error by its instantaneous value 
[Sondhi k Kellermann 92]. Thus, the stochastic gradient version of Eq. (2.7) will 
be 

J[n] = e[n]2 (2.36) 
For the LMS algorithm being a representative of the stochastic gradient algo-
rithms, the estimated adjustment vector Ah[n] can be derived [Vaseghi 96] as 
follows: 

-V,../[«] = 

= -V;,(?/[n] - h[n]'^x[n])2 
= 2x[,t](?y[n] - h[nfx[n]) 
= 2x[7t]e[n] (2.37) 
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where V/̂  J represents the instantaneous estimate of the gradient vector. After 
substituting (2.37) in the recursive relation (2.34) the LMS adaptation equation 
is found: 

h[n + 1] = h[n] + ^x[n]e[n]. (2.38) 

This result may be written in the form of three basic relations [Haykin 96]: 

1. filter output: 
y[n] = h[nfx[n] (2.39) 

2. estimation error: 
e[n] = y[n] - y[n] (2.40) 

3. tap-weight adaptation: 

h[n + 1] = h[n] + /ix[n]e[n] (2.41) 

Convergence Rate 

The convergence behaviour of the LMS algorithm depends on two major factors: 

• the stepsize parameter ji 

• the eigenvalues of the correlation matrix R of the tap-input vector x[n]. 

For the LMS algorithm to be convergent in the mean square, it is neccesarry that 
the stepsize parameter /i satisfies the condition [Widrow et al. 75] 

O < /i < (2.42) 
^max 

where \max is the largest eigenvalue of the correlation matrix R. As Xmax is 
generally not available, but knowing that 

A^ax < tr [R] (2.43) 

where tr[R] denotes the trace of the matrix R, the condition (2.42) may be 
reformulated as 

(2.44) 

Because the correlation matrix R is Toeplitz, with all of the elements on its main 
diagonal equal to r[0] it can be written 

tr[R] = L t [ 0 ] 

= j : E [ \ x [ n - k ] \ ' ] (2.45) 
k=o 

= tap-input power 
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This means that the condition of Eq. (2.42) can be expressed as 

O < /X < (2.46) tap-input power 

The misadjustment M, a dimensionless quantity providing a measure of how 
close the LMS algorithm (after completed adaptation) is to the optimum in the 
mean-squared error sense, can be aproximated [Haykin 96] as follows: 

M = (2.47) 

= ^ • (tap-input power) 

The sinaller M , the closer the adaptive filtering operation of the LMS algorithm 
is to optimaHty. 
The mean convergeiice rate, or exponenţial convergence time constant Tk along 
the A:th eigenvector \k of the correlation matrix R, can be approximated as 
[Widrow k Stearns 85] 

Tk ~ (2.48) 

It can be seen that the convergence rate is a function of both the stepsize and 
the spread of eigenvahies Xmax/Kiin of the correlation matrix R. The smaller 
the slower the adaptation. For a large condition number"^ the convergence time 
niay be quite slow. 
Defining an average eigenvalue for R 

1 ^ 
Aa. = (2.49) 

and an average time constant Ta^ 

2/iA„ (2.50) 

the rolatioii tliat cxists betweeii the misadjustment M and the average time 
constant r„„ can bo written as 

^ ^ fi L Aa„ 
2 

(2.51) ^ I nil 
From this fornnila it can be observed that 

(oiKlition niiinber of a Herinitian matrix is defined as the ratio of its largest eigenvalue 
to its sniallost, cigonvahio 
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• the misadjustment M increases linearly with the number of taps L for a 
fixed Tav 

• the misadjustment M is directly proporţional to the parameter /i, whereas 
the average time constant Tav is inversely proporţional to /j,. 

Therefore, selecting the value of the stepsize parameter fi involves a trade-off 
between the rate of convergence and the accuracy of the adaptive filtering. When 
H is assigned a small value, the misadjustment after adaptation is small but the 
adaptation is slow. On the other hand, choosing a large /i, the adaptation is 
relatively fast, but at the expense of an increase of Ai. 

Tracking Capability 

The LMS algorithm is model-independent and therefore has good tracking perfor-
mance in a nonstationary environment, provided the statistical variations of the 
input data are sufficiently slowly varying with respect to the convergence rate of 
the algorithm. 
The LMS algorithm continuously tracks the minimum point of the error perfor-
mance surface^. 

Computaţional Load 

Due to its simplicity, the LMS algorithm requires a number of computations (mul-
tiplies/adds) per time update proporţional to the number of adjustable weights L 
in the algorithm. The LMS algorithm needs only 2L operations per time update 
[Marple 87]. 

Normalized Least Mean Square (NLMS) 

The adjustment vector Ah[n] applied to the tap-weight vector h[n] at iteration 
2 + 1 is directly proporţional to the input vector x[n], which means that for large 
input values the error signal will have great influence on the filter coefficient 
update. This effect is known as gradient noise amplification. To overcome this 
difficulty in the adaptation process, the correction applied to the tap-weight 
vector h[n] at iteration z + 1 will be normalized with respect to the squared 
Euclidean norm of the tap-input vector 

^The dependence of the mean-squared error on the unknown tap weights is referred to as 
the error-performance surface. The tap weights corresponding to the minimum point of this 
surface define the optimum Wiener solution [Haykin 96]. 
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The adaptation constant fi for the NLMS is thus dimensionless, whereas the 
adaptation constant fi has the dimensions of inverse power 

Considering this statenient, the NLMS algorithm can be viewed as an LMS al-
gorithm with a time-varying stepsize parameter. 
For convergence in the mean square, the NLMS adaptation constant fi must 
satisfv the condition 

O < A < 2 (2.54) 

The NLMS algorithm exhibits a faster convergence rate than that of the standard 
LMS algorithm for both correlated and imcorrelated input data [Haykin 96]. By 
overcoming the difficulty of gradient noise amplification, the NLMS algorithm 
introduces a problem of its own, namely numerical difficulties for very small 
input signal because of the division by a very small value for the squared norm 

2.2.3 Recursive Least Squares (RLS) 
Based on the method of least squares, the least-squares (LS) algorithm and its 
recursive version and the sample-by-sample recursive least-squares (RLS) algo-
rithm can be determined. 

The LS algorithm is a block processing algorithm. An optimum estimate of the 
tap-weight vector h[n] is derived from a block of data. This estimate is assumed 
to be valid until the next block of data is processed to give a new estimate of h[n] 
[Sondhi Sz Kellermann 92]. The mean drawbacks of block processing algorithms 
are the delay they introduce and their lower tracking capability in nonstationary 
environnients [Vaseghi 96]. 

An alternative to the LS algorithm is the RLS algorithm, in which an optimal 
estimate of h[?î] is obtained recursively at every time instant. In the recursive 
implementation of the least squares method, the adaptation starts with known 
iniţial conditions and the information contained in the new data samples is used 
to update the old estimate [Haykin 96]. At every time instant, the estimated 
tap-weight vector niinimizes the following cost function 

= (2.55) 
1=1 

witli A"-' l)(-iiiR tlic exponenţial weightmg factor or forgetting factor A is a 
po-sitivo constant in ti.e rango O < A < 1. By the use of the forgetting it can be 
onsurod. that <lata in ti.o distant ,,ast do not affcct the current estimate. The 
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"forgetting" of remote data is important when the filter operates in nonstationary 
environment. The inverse of 1 - A can be considered as the memory of the 
algorithm. 8[n] is depending on the variable length n of data. 
Based on the normal equations, the optimum value of the tap-weight vector h[n], 
for which the cost function of Eq. (2.55) attains its minimum is 

h[n] = (2.56) 

= (2.57) 

where [Haykin 96] 

and 

= (2.58) 
i=l 

Isolating the term corresponding to z = n from the summation in Eq. (2.57), 
it may be written 

^[n] = A ^[n - 1] + x[n] (2.59) 

where ^ [n — 1] is the value of the correlation matrix at time n—l and the matrix 
product x[n]x'^[n] is the update term in the recursive operation. 
Similarly, the crosscorrelation vector z[n] between the tap inputs and the desired 
response is 

z[n] = Az[n - 1] + yi[n]y[n]. (2.60) 

For computing the least-square estimate h the inverse of the correlation matrix 
^[n] is needed. Using the matrix inversion lemma or Woodbury's identity known 
from matrix algebra, a recursive implementation for the inverse of the correlation 
matrix ^[n] can be obtained. 
The matrix inversion lemma states that, if there is given a matrix A defined as 

A = + (2.61) 

then its inverse can be determined by using the following equation: 

A"^ = B - BC(D + (2.62) 

where A and B are two positive-definite (L x L) matrices, D is also a positive-
definite matrix of dimension (Â  x N) and C is a (L x Â ) matrix [Vaseghi 96]. 

Assuming that is positive-definite and therefore nonsingular, the follow-
ing identifications can be considered: 

A = ^[n] (2.63) 
B = A $ [ n - 1 ] (2.64) 
C = x[n] (2.65) 
D = 1 (2.66) 
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Substituting Eqs. (2.63 - 2.66) in Eq. (2.62) leads to the following recursive 
equation for the inverse of the correlation matrix: 

^ Mn = A ^ ki - 1 ; , , T-r 1 ^ ir 71—TI 

Defining the variables P[n] and k[n] as 

P[n] = (2.68) 

and 
_ A - ^ P [ n - l ] x [ n ] 

l + A - i x ^ [ n ] P [ n - l ] x [ n ] ' 
(2.69) 

equation (2.67) may be rewritten 

P[n] - A-^ P[n - 1] - A-i k[n] P[n - 1] (2.70) 

Equation (2.70) is known as the Riccati equation for the RLS algorithm. P[n] is 
referred to as the inverse correlation matrix and k[n] as the gain vector. The time 
update for the tap-weight vector h is derived from the normal equation (2.27) 
using the definitions for k[n] and P[n], the recursive update operation for z[n] 
and the Riccati equation (2.70). Defining the a priori estimation error ^[n]^ by 

^[n] = y[n]-h[n-\fx[n] (2.71) 

the recursive update equation for the tap-weight vector can be written as: 

h[n] = h[n - 1] + k[n] e N (2.72) 

For the RLS to be applicable, the start value of the inverse correlation matrix 
P[0] must assure the nonsingularity of the correlation matrix Therefore 
^[0] will be set to 

= (2.73) 

where I is the (L x L) identity matrix and S is a, small positive constant, with 
recommended value 6 O.Ola^, where cr^ is the variance of a data sample x[n] 
[Haykin 96]. For the iniţial value of the tap-weight vector usually 

h[0] = O (2.74) 

will be taken, with O being the (L x 1) nuli vector. 
The RLS algorithm may be summarized as follows [Vaseghi 96]: 

Input signals: x[7i], 77(71] 

^Thv a priori estimation e.rror is different from the a posteriori estimation errore\n] defined 
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Tap-weights: h[n] 
Initialization: 

^[0] = SI (2.75) 
h[0] = O (2.76) 

Computation for each instant of time n = 1 ,2 , . . . 

1. filter gain vector: 

A - ' P [ n - l ] x [ n ] 

2. estimation error: 
?[n] = j / [ n ] - h [ n - l f x [ n ] (2.78) 

3. tap-weight adaptation: 

h[n] = h[n - 1] + k[n] f [n] (2.79) 

4. inverse correlation matrix update: 

P[n] = A"̂  P[n - 1] - A"̂  k[n] x'̂ [n] F[n - 1] (2.80) 

Convergence Rate 

The RLS algorithm converges exponentially and uniformly, regardless of the 
eigenvalue spread, i.e. the condition number of the ensemble-averaged correla-
tion matrix R of the input signal x[n]. After a change in the input, convergence 
depends only on the weighting factor A [Marple 87]. 

The ensemble-averaged learning curve of the RLS algorithm converges in 
about 2L iterations [Haykin 96], where L is the number of taps in the transver-
sal filter. This means, that the RLS algorithm converges an order of magnitude 
faster than the LMS algorithm. 
In high noise, or where the condition number is low, this improvement in the rate 
of convergence is not achieved. In this case the LMS and RLS algorithms have 
comparable convergence rates. 

Tracking Capability 

In a nonstationary environment when the RLS algorithm has to track the sta-
tistical variations of the input data, the performance of the algorithm depends 
very much on the mismatch between the considered mathematical model and the 
physical process which generates the input data. 
To enhance the tracking capability of the RLS algorithm, i.e. to minimize the 
mismatch, every supplementary knowledge of the input data generating process 
should be considered in the model definition. 
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Computaţional Load 

Due to the inatrix iipdates in Eqs. (2.69) and (2.70) the RLS algorithm requires 
a number of coniputations (niultiplies/adds) per time update proporţional to L^, 
where L is the number of adjustable weights in the algorithm. Compared to the 
computaţional load of the LMS of 2L this is an extremely high computaţional 
effort. 
Therefore fast RLS algorithms have been developed, that reduce the compu-
taţional power froni L'^ to SL operations per time update. This reduction in 
complexity is achieved by considering the redundancy in the Toeplitz structure 
of the input data matrix and by exploiting this redundancy through the use of an 
additional backward linear prediction. A drawback of the fast RLS algorithm is 
its poor long-term numerical stability. The fast RLS is accurate only for short- to 
medium-length data [Marple 87). When implemented in fixed point arithmetic, 
the unpredictable round-off errors accumulate until they destroy the proper op-
eration of the algorithm. In [Schiitze k Ren 92] a detailed comparison of eight 
known fast recursive least squares algorithms is presented and the different nu-
merical sensitivity of the algorithms is demonstrated. 
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Chapter 3 

Speech Enhancement 

One of the main problems with mobile handsfree operation in a car is the high 
background noise level which degrades the system perfomance. 
Conversaţional speech has an average of 60 dB Sound Pressure Level (SPL) and 
in a vehicle it is subject to a variety of corruption processes, such as other acous-
tic sources with spectral content overlapping that of speech, convolution with 
time-varying transfer function paths or modulation due to reflection from vi-
brating surfaces [Campbell 93]. At higher cruising speeds or during hard ac-
celerations, the background noise level is often around 70 dB or even higher 
[Hăkkinen k Văănănen 93]. In such cases, the speech signal to background noise 
ratio at the microphone is very low or even negative. Usually the speech is still 
intelligible, but the amount of background noise is annoying to the far-end lis-
tener. 

In a car, the noise model can be considered as a combination of several in-
dependent noise sources [Lockwood et al. 91] caused by engine and tyres with 
mostly low frequency components and aerodynamic turbulences with a broader 
spectrum. In the telephone audio frequency band there are no clearly dom-
inant noise sources, the noise field is diffuse. The experiments reported in 
[Goubran et al. 90] indicate, that low frequency noise signals are highly corre-
lated and that the correlation decreases with increasing frequency until it van-
ishes for frequencies higher than about 2 kHz. It was also found that there is a 
significant correlation between the acoustic noise in the area facing the driver's 
seat and the noise in other locations of the car. 

The graphs in Figure 3.1 and 3.2 show time and frequency domain representa-
tions of noise recorded in vehicles. 

Speech enhancement algorithms may improve speech perception by improv-
ing speech quality, increasing the intelligibility and/or reducing listener fatigue 
[Munday 88]. Noise reduction is primarily intended to achieve an increase in 
intelligibility and a reduced listener fatigue. Subjectively, the quality of the en-

27 
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Figure 3.1: Car noise, high way, in the tiirie doiiiaiii 

hancocl noar-eiid audio signal dopends both on the attenuation and sound of the 
background noise. Ideally, the sound of the background noise should not change 
by the attenuation. If changes occur, they should not make the residual noise 
sound like liunian voice or nnisical tones, or anything disturbing. The noise at-
tenuation or renioval niay also distort the speech, which the user will not tolerate, 
if it is clearly noticeable. A knovvn person's voice should not sound odd, heard 
through the noise att(Miuation system. Thus, the main objective when designing 
speech enhancenient systeins is to inaxiniize noise reduction, while keeping the 
introduced distorsions at an acceptable, not annoying level. The naturalness of 
the residual noise is also very important. 

In [O'Shaughnessy 89], speech enhancenient niethods are considered to fit 
into three general classes. each with its ovvn advantages and lirnitations: 

• subtraction of interfering sounds 

• suppression of nonharnionic frequencies 

• resynthesis using vocoders 

If an interfering noise can also be captured separately from the desired speech, 
the latter is usually enhanced by subtracting out the former. Noise subtraction 
usually reciuires a second inicrophone. which is placed closer to the noise source 
than the priniary niicrophone recording the desired speech. This second recording 
provides tlu^ noise rc^ference. which may be subtracted from the primary record-
ing after processing. If only a single recording is available, analysis during speech 
pauses can furnish an estimate of the noise. 
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Frequency [kHz] 

Figure 3.2: Car noise from Figure 3.1 in the spectrogram representation 

The harmonic enhancement method attempts to identify the fundamental 
frequency Fq of either the desired speech or an interfering source. If the desired 
sound is the strongest component in the signal, its frequencies can be identified 
and other frequencies may then be suppressed. If an interfering sound is the 
strongest, then its frequencies can be identified and suppressed, considering that 
the remaining frequencies presumably contain the desired speech. 

The resynthesis using vocoders cleans speech signals by parametric estimation 
and speech resynthesis. Speech synthesizers generate noise-free speech from para-
metric representations of either vocal tract model or previously analyzed speech. 
Standard methods such as linear predictive coding do not replicate the spectral 
envelope precisely, but usually preserve enough information to yield good output 
speech. Such synthesis often has a mechanical sound quality, but is free of in-
terference and quite intelligible, presuming the parameters represent the original 
speech accurately. 

When classifying the speech enhancement methods considering the number 
of microphones used, there are 

• systems with a single microphone 

• systems with two or more microphones. 

Speech enhancement systems with a single microphone have the advantage of us-
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ing simple standard recording equipinent, but which cari cancel only stationary 
iioise and which roquire a positive SNR [Van Compernolle 92] of the input signal. 
For these systems a speech/noise or Voice ActiviUj Detector (VAD) is indispens-
able, but the segnientation process at low SNR is very difficult and the detector 
can conceivably take the wrong decision. 
Another drawback is that the noise estimated during speech pauses is not re-
estimated during speech, since the method assumes that noise during speech 
pauses is representative of noise during periods of speech. Thus, rapidly varying 
noise can cause problems. 
The "one niicrophone approach" gives much less enhancement than the two mi-
crophone niethod, because it employs an average spectral model of the noise and 
is able to identify only the spectral distribution of noise energy, not its time vari-
at ion. 
Systems with two or more microphones need more hardware and some knowledge 
about the place of the desired source, but permit cancellation of also nonstation-
ary or very strong interfering noise. 

The speech enhancement can be implemented either in the time domain or in 
the frequency domain. As hunian understanding is much better in the spectral 
domain than in the time domain [Van Compernolle 92] and because of the short-
time stationarity of si)eech, modifications to the signal are best performed in the 
spectral domain. Due to i)sychoacoustic properties of the ear, the noisy phase 
may be used for transforming the signal back into the time domain. Phase is 
unimi)ortant in speech enhancement as long as local signal-to-noise ratios are at 
least about 6 dB [Vary 85]. 

3.1 Single Microphone Noise Suppression 
In applications where only the noisy signal is available, the random noise cannot 
be cancelled out, but using the statistics of the noise, it is possible to reduce the 
average effects of the noise on the signal spectrum [Vaseghi 96]. The effect of 
additive noise on the magnitude spectrum of a signal consists in an increase of 
the mean and of the variance of the spectrum. 
The increase in the mean of the noisy signal spectrum can be reduced by sub-
tracting an estimate of the mean of the noise spectrum. 
The increase in variance of the noisy signal spectrum, due to the random fluctua-
tions of the noise, cannot be cancelled out. The noise variations can be reduced by 
averaging the noisy signal frequency components, but this will lead to a reduction 
in the time resolution of the nonstationary spectral events. As time resolution 
plays a very imi)ortant part in both quality and intelligibility of audio signals, 
the averaging process should reflect a compromise between these two conflicting 
recjuirements. 
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Considering the noise being additive and stationary, the model of the noisy signal 
in the time domain is given by 

ij[n\ = x[n]n[n] (3.1) 

where y[n], x[n] and n[n] are the noisy signal, the original signal and the additive 
noise respectively, and n is the discrete time index. 
In the frequency domain the model will be 

Y[k]=X[k]-hN[k] (3.2) 

with Y[k], X[k] and N[k] representing the Fourier transforms of the noisy signal, 
the original signal and the noise respectively, or, in other words, the short-time 
spectra associated with the windowed signals y[n], x[n\ and n[n]. k denotes the 
frequency bin number. 

Investigations on several different single input processing techniques, per-
formed in the frequency domain are presented in [Curtis & Niederjohn 78]. An 
important conclusion of this study is that any weighting function used on the fre-
quency magnitude spectrum must be reiaţively smooth between adjacent spectral 
lines to avoid the introduction of distorsions. Placing limits of 0.6 to 1.66 on the 
permissible change between successive points in the processed noisy speech spec-
trum leads to satisfaying results. 
Another important issue when processing noisy speech in the frequency domain 
is the choice of the length and type of the windowing function applied to the time 
domain noisy signal before the Fourier transform. 
The duration of the windowed speech segment must be short enough, so that 
speech can be considered stationary. On the other hand, the random varia-
tions in amplitude of the noise component increase as the segment duration is 
shortened. These variations from frame to frame and from bin to bin are con-
siderable even though the mean noise spectrum may be stationary and smooth 
[Xydeas et al. 88]. 
Windowing the noisy speech signal in time domain with a rectangular function 
can distort the signal in an unacceptable way. This is because the transformed 
window is a sine function with high sidelobes and its convolution with the Fourier 
transform of the noisy signal generates relatively large erroneous spectral lines 
in the neighbourhood of the true components [Munday 88]. This effect is called 
frequency leakage and leads to a severe limitation of the dynamic range of the 
true components. If windowing functions with superior leakage performance are 
used, then the disadvantage of reduced spectral resolution must be overcome. 
This can be equalized by overlapping the time domain blocks before applying the 
Fourier transform. The equalization procedure is completed after inverse trans-
formation, when the overlap-add operation is performed. This procedure leads 
to an increased processing burden, since each time domain sample is used twice. 
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Thus, a compromise must be fouiid in the choice of the windowing function be-
tween frequency leakage and spectral resolution. 

3.1.1 Spectral Subtraction 
Because of its ease of implementation and relatively good performance, spectral 
subtraction is one of the most widely employed speech enhancement techniques. 
In spectral subtraction the incoming signal x[n] is buffered and divided into seg-
ments of N samples length. In order to alleviate the effects of the discontinuities 
at the endpoints, each segment is windowed. The windowed segments are then 
transformed, via Discrete Founer Transform (DFT) to N spectral samples. The 
window length is chosen to be about as long as an average speech segment, i.e. 
20 - 30 ms. 
The approach is based on subtracting the magnitude or power spectrum of a 
noise-only record, or an average of records, from that of a noisy speech record 
[Lim k Oppenheim 79]. The result is combined with the phase of the original 
noisy speech and inverse transformed to get the enhanced signal. Some resid-
ual noise is generated, because no accurate noise information is available. Due 
to changes in the noise spectrum, negative values can occur after subtraction 
which may be set to zero or some small value. The resulting noise spectrum then 
contains randomly appearing spectral lines which generate short tone bursts re-
sulting in the disturbing artifact known as musical noise. 

The equation describing the spectral subtraction is [Berouti et al. 79] 

= (3-3) 

where | X[k] l'' is an estimate of the original signal spectrum and | l'' is the 
time averaged noise spectrum. Depending on the value of b there can be defined 

• the magnitude spectral subtraction, îoi b = 1 [Boli 79] 

• the power spectral subtraction, for 6 = 2. 

Thus, spectral subtraction may be performed in the magnitude or power spectral 
domains. The difference between the two implementations is rather small, but 
according to [Berouti et al. 79], the spectral subtraction with b = 2 was found to 
yield better output quality, in general. 
The subtraction parameter a > 1 in Eq. (3.3) controls the amount of noise sub-
tracted from the noisy signal. For o; = 1 a full subtraction, for a > 1 an oversub-
traction are performed. 

The most difficult task in spectral subtraction is the extraction of a good 
noise power spectrum estimate out of the noisy speech signal. This is done in a 
two-step process [Berouti et al. 79]: 
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Figure 3.3: Block diagram of spectral subtraction algorithm 

1. averaging short-time power spectra over frames that are supposed to contain 
only noise. The time-averaged noise spectrum can be expressed as follows: 

1 M-l 
imi' =i7 E i^^a^ir 

^^^ i=0 
(3.4) 

where represents the spectrum of the z-th noise frame, and it is 
assumed that there are M frames in a noise-only period. M is variable 
from one noise period to the next. 

2. the noise spectrum can be estimated at each frequency bin by a first order 
digital lowpass filter with a suitable time constant: 

(3.5) 

where i refers to the frame number and p is the lowpass filter coefficient, 
typically set between 0.8 and 0.95 [Vaseghi 96]. 

To be sure that a given frame contains no speech, an adequate noise/speech 
discriminator must be used. The simplest approach to noise detection is to com-
pare the signal frame energy to a threshold. This threshold should be adaptive, 
because background noise level changes with time. The detector's decision should 
be conservative, in that it is less harmful to classify noise as speech then the other 
way round. 

As already mentioned, spectral subtraction may produce negative estimates 
of the magnitude or power spectrum. This is more probable as the signal-to-
noise ratio (SNR) decreases. In order to reduce the spectral excursions, the 
post-processing block of Figure 3.3 performs a mapping function T[-] of the form: 

if \X[k]\'' > /5\N[k]\» 
(3.6) 

. / n [I Af[A;] P] otherwise 

In its simplest form the noise-dependent function will be [Berouti et al. 79]: 

f n [| iV[A;] If-] = /3| l"- = noise floor (3.7) 
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where O < < 1 is called the spectral floor parameter. 
Overestimation of the iioise and application of a non-zero threshold level allows 
some manipulatioii of the musical noise. Doing this will trade the disturbing 
distorsions for a soinewhat less annoying noise. 
After performing the spectral domain modifications, the magnitude spectrum 
estimate \X[k] \ is combined with the phase of the noisy signal and transformed 
back into the time domain via an Inverse Discrete Fourier Transform (IDFT). 

Reducing Processing Distorsions 

The main problem in spectral subtraction [Lockwood et al. 91] is the presence of 
musical tones, introduced both by the analysis based on the short-time spectral 
representation of the signals involved and the nonstationarity of the noise. As no 
reevaluation during speech periods is done for the noise estimate computed dur-
ing speech pauses, this estimate will be no longer valid if the noise varies rapidly. 
The dominant distorsion is mainly due to the nonlinear mapping of the negative 
or small valued spectral estiniates. Analyzing the characteristics of audio signals 
such as speech or nuisic, significant differences between the authentic audio sig-
nals and the annoying nnisical noise may be observed [Vaseghi 96]. Musical notes 
tend to be short lived, random isolated bursts of narrow band signals with rela-
tively small amplitudes. These differences may be used to identify and remove 
the musical tones. A well-known technique consists in examining the frequency 
components in time. If a frequency component has a duration shorter than a 
preselected time window, an amplitude smaller than a threshold, then it is con-
sidered to be a distorsion and removed. 

The distorsions due to the variations of the noise spectrum can be reduced 
by lowpass-filtering the magnitude spectrum of the noisy speech at each fre-
quency bin. As every averaging process has the undesirable effect of smearing 
and obscuring the time variations of the signal spectrum, a compromise has to 
be found between the conflicting requirements of reducing the noise variance and 
of retaining the time resolution of the nonstationary signal. 

Nonlinear Spectral Subtraction 

Another approach to the reduction of musical tones associated with the spectral 
subtraction method is to use in Eq. (3.3) a signal-to-noise ratio (SNR)-dependent 
subtraction factor a. It has been observed that at low SNR, when the signal 
may be considered as lost in noise, oversubtraction (of > 1) followed by a non-
linear implementation of the subtraction process can produce improved results 
[Lockwood k Boudy 92]. 
The nonlinear variant of spectral subtraction can thus be expressed by the fol-
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lowing equation: 

\m\' = \ Y[k] - a{SNR[k]) I N[k] (3.8) 

where a{SNR[k]) represents the SNR-dependent subtraction factor. 
There are known several forms of the SNR-dependent subtraction factor discussed 
in the literature, the most important being the following: 

• the subtraction factor depends on the mean and the variance of 
the estimated noise 

+ (3.9) 
N[k] 

In this case, the amount oversubtracted is the standard deviation of the 
noise [Vaseghi 96]. 

the method presented in [Lockwood & Boudy 92], which considers the term 

= (3.10) 

as a function of the maximum value of noise spectrum over M frames and 
the signal-to-noise ratio: 

where 7 is a design parameter. 
is a nonlinear function weighting the subtraction process according to 

the signal to noise ratio of a specific frequency bin. For decreasing SNR, the 
output of the nonlinear estimator approaches mSiXoverMframes{ \ ^[k] 
while in high SNR environment it approaches zero. 
For oversubtraction, $(•) is limited to 

W W < max (INl/c]!'), 57V/?[/c], W W ) < 3 \overM frames / 

(3.12) 
Any arbitrary function, implementing the idea of applying a minimum sub-
traction factor in high SNR regions and subtracting more noise in regions 
with low SNR, can be chosen as (!>(•). 
The spectral floor, an important factor that will prevcnt the subtraction 
result of becoming negative, will be implemented as follows: 

f ixim' if i ^ w r > flimi' 
(3.13) 

fl\N[k]\'' otherwise 

A typical value for /î is 0.1. 
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3.1.2 Wiener Filtering 
This approach to speech eiihaiicemeiit is based on the use of Wiener filter, which, 
when dealing with stochastic wide-sense stationary signals, provides a least mean 
square error (LMSE) estimate of the desired signal. In this sense, the degraded 
speech is used to obtain a filter which is then applied either in the time do-
main or in the frequency domain to get an estimate of the undegraded speech 
[Lim & Oppenheim 79]. 
The estimate .Y[A:] of the short-time spectrum of the original speech will take the 
form X[k] = W[k]Y[k] (3.14) 

where W[k], the noncausal Wiener filter is approximated with the adaptive 
Wiener filter with the frequency response 

- ^[I^^WI^] (3.15) 

Making use of a short-time estimate of the measurement power spectrum and a 
long-term estimate of the noise spectrum [Van Compernolle 92], E[\X[k] p] can 
be estimated. The frequency response can then be rewritten as 

- — E m m 

Comparing the Wiener filter to the spectral subtraction filter defined as 

_ i n f c l l " - IMfclI" .3 17S 

it can be seen, that the Wiener filter is based on the ensemble average spectra of 
the signal and noise, while the spectral subtraction filter uses the instantaneous 
spectra of the noisy signal and the time-averaged spectra of the noise. For an 
ergodic process the spectral subtraction filter approaches the Wiener filter. 
As in practice the signals are nonstationary, the averaging nature of the mean 
square error criterion is not well suited. High coefficient update rates generate 
musical noise artifacts, while low rates result in perceived convolutional distortion 
of the speech [Campbell 93]. 
Starting from Eq. (3.15) it can be stated that for additive noise the Wiener filter 
attenuates each frequency component in proportion to an estimate of the signal 
to noise ratio 5Â 7?[A:] 

- SNR[k] + 1 
This means that for a noise-free signal (high SNR) the attenuation is small or 
inexistent, i.e. \V[k] ^ 1, and for an extremely noisy signal W[k] will tend to zero. 
Hence, for additive white noise, the Wiener filter response will approximately 
follow the signal spectrum [Vaseghi 96]. 
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3.1.3 Spectral Scaling 

Spectral scaling consists in applying a non-linear transfer function to each com-
ponent of the short-time spectrum of the noisy speech in order to reduce the con-
tribution of those spectral components likely to be noise dominated [Munday 88]. 
The use of a suitably positioned threshold on the spectral magnitudes permits 
the cancellation of additive noise. This thresholding is equivalent to applying a 
non-linear input-output transfer characteristic, which passes all spectral compo-
nents above the specified value and attenuates those below the specified threshold 
value. 

V[n] windowing FFT weighting IFFT overlap x[n] 
overlap FFT 

function 
IFFT 

add 

Figure 3.4: Block diagram of spectral scaling algorithm 

The noisy speech signal is segmented into consecutive frames which may also 
be overlapped, and then a Fast Fourier Transform (FFT) is performed on each 
frame. Each of the spectral lines (bins) of the short-term spectrum of the noisy 
signal is modified according to a particular weighting law, with the aim of atten-
uating the energy of the noise while preserving the desired speech signal. Signal 
reconstruction in the time domain is performed by computing an inverse FFT on 
the processed spectrum (Figure 3.4). 

The modification to the spectral lines is dependent on the magnitude of the 
frequency bin and on the noise magnitude at that frequency, estimated from the 
noisy input signal during periods when no speech activity is detected. In other 
words, the attenuation depends on the signal to noise ratio of the respective 
frequency bin. 
A large attenuation of noise can be achieved by employing a non-linear weighting 
function. It will leave magnitude samples unchanged that are large compared to 
the noise estimate and will heavily attenuate small samples which are considered 
to be mainly due to the noise. The weighting function will show two regions, 
a non-linear and a linear region. The non-linear region introduces a smoothly 
changing attenuation, the lower the magnitude of the frequency bin, the greater 
the degree of attenuation. The linear region is applied to the larger magnitude 
samples. 
A significant noise reduction can only be achieved at the expence of a quality 
deterioration of the speech signal: the better the noise elimination, the more 
distorted the reconstructed speech. A balance must be found between noise 
reduction and speech distorsion, so that the intelligibility of speech is maximized. 
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In [Crozier et al. 93] tlie followiiig weighting function is presented: 

{ x \ m \ y (3-19) 

where | X[k] |, | ŷ [A:] | and | N[k] | are the short-term magnitude spectra of the 
enhanced speech, tlie noisy speech and the estimated noise respectively. 7 is 
defined as 

o if 

The scaling factor x specifies how hirge an input magnitude must be before it 
is left unchanged by the weighting function. The larger x the better the noise 
reduction, but the more distorted the speech signal will be. 
The exponenţial constant k. controls the degree of attenuation of frequency bins 
vvith a magnitude less than x I- 7 varies linearly from O to k,. 

It has been shown [Xydeas et al. 88] that, when applying spectral scaling to 
the different frequency bins, it is useful to also consider the spectra of adjacent 
frames. This can considerably reduce the variation of those bins which are mostly 
due to the background noise, thus allowing a better attenuation of noise energy 
for a given level of speech distorsion. 

3.1.4 Linear Prediction 
The basic idea behind linear prediction is that a sample x[n] of the signal x[i], with 
i = 1, 2 , . . . , Â  can be forecasted at time n using a linearly weighted combination 
of P past samples x[n — l], x[n — 2],..., x[n — P] as 

p 
'^'H = Y . ^ k x [ n - k ] (3.21) 

k=i 

where n is the discrete time index, x[n] is the prediction of x[n] and a^ are the 
prediction coefficients. The difference between the actual sample x[n] and the 
l)redicted sample x[i}] is called the residual or prediction error e[n] and is given 
by 

p 
= x[n] -Y^ak x[n - k] (3.22) 

A:=l 

By minimizing the sum of the squared error signals over a finite interval, a unique 
set of predictor coefficients can be determined [Rabiner & Schafer 78]. 

Linear prediction is very closely related to the basic speech production model. 
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Figure 3.5: Block diagram of simplified model for speech production 

Corresponding to this model (Figure 3.5), speech can be considered as the output 
of a linear, time-varying system excited by either quasi-periodic pulses during pe-
riods of voiced speech, or random noise during unvoiced speech. Linear prediction 
provides a robust method for estimating the parameters that characterize the lin-
ear, time-varying system. Once the predictor coefficients have been determined, 
the vocal tract system has been uniquely identified, so that it can be modelled 
as an all-pole linear system with the transfer function [Lim & Oppenheim 78]: 

H[z] = 
[/[z] 

1 - E akz-^ 
k=i 

(3.23) 

with G being the gain parameter and a^ the coefficients of the digital filter. 
These parameters are slowly varying with time. 
For a sufficient high order of P, the all-pole model provides a good representation 
for almost aii the sounds of speech, nasals and fricatives included, which according 
to acoustic theory wouid require both zeros and poles in the transfer function of 
the vocal tract. 
Thus, the speech waveform s[n] is assumed to satisfy a difference equation of the 
form 

p 
s[n] = ^ afc s[n - /c] -h G u[n] (3.24) 

k=i 

where u[n] is the input excitation of the system. 
The all-pole predictor model (3.23) transforms an uncorrelated excitation signal, 
n[n], into a correlated signal s[n] [Vaseghi 96]. 
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The inverse linear predictor, as the name implies, transforms a correlated signal 
x[n\ back into an uncorrelated signal e[n] 

e n = x\n\ - x\n\. (3.25) 

The inverse filter, also known as the prediction error filter, is an all-zero, finite 
impulse response filter with the following transfer function: 

= 1 - j ^ a ^ z - ' (3.26) 
k=\ 

The linear prediction filter H[z] and the inverse filter ^[z] are thus related as 
follows: 

The inverse filter of an all-pole filter, being an all-zero filter with the zeros 
sitnated at the same angular frequencies as the poles of the all-pole filter, has the 
effect of flattening the spectrum of the input signal. It is therefore also known 
as a spectral whitening or decorrelation filter. 
The basic problem of linear prediction analysis is to define a set of prediction 
coefficients (ik directly froni the speech signal in order to get a good estimate 
of the speech properties. The predictor coefficients will minimize the mean-
squared prediction error over short segments of speech for which stationarity can 
be assumed [Rabiner k. Schafer 78]. The equations thereby obtained are 

f : a, .S'[n - z] .[n - A:] = .[n - z] s[n] (3.28) 

for i = 1, 2 , . . . , P. The range of summation is a finite interval that depends on 
the method used in solving this set of P equations in P unknowns. 
Defining 

cl^[i,k] = Y,s[n-z]s[n-k] (3.29) 
n 

equation (3.28) can be written more compactly as 
p 

^ afc 0[z, k] = 0[z, 0] z = 1, 2 , . . . , P (3.30) 
k=\ 

The most imi)ortant procedures for solving the linear prediction analysis Eqs. (3.30) 
are 

• the Cholesky decomposition for the covariance method 

• Durbin's recursive solution for the autocorrelation method 
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• Burg's procedure for the lattice method. 

In [Rowden & Hali 91] and [Rabiner k Schafer 78] comparisons between the pro-
cedures of solving the linear prediction analysis equations are presented. Compu-
taţional considerations, numerical and physical stability of the solutions are also 
compared. Each method has its own advantages and limitations. 
Despite the benefit of not requiring a window function, the covariance method is 
not used much in speech analysis. The reason is the unstable filter configurations 
that can be produced under certain circumstances. 
The autocorrelation method requires a longer data frame because of windowing 
and overlapping, but it produces stable filters. This is, however, at a cost of some 
loss of clarity of the speech due to the windowing process. 
The lattice method produces stable, clear speech, but is computationally expen-
sive. 
For quasi-stationary signals, such as voiced speech, two types of correlations can 
be considered which allow a more accurate prediction. These are 

the short-term prediction, which uses the correlation of each sample x[n] 
with the P immediate past samples x[n - 1] , . . . , x[n - P] 

• the long-term prediction, which is the correlation of a sample x[n] with e.g. 
2 Q + 1 similar samples x[n - T + Q] , . . . , x[n - T - Q] a pitch period T 
away [Vaseghi 96]. The long-term correlation may be modelled by a pitch 
predictor defined as 

Q 
E P k x [ n - T - k ] (3.31) 

k=-Q 

where pk are the coefficients of a long-term predictor of order 2 Q + 1. The 
pitch period T can be obtained from the correlation function of x[n], it is the 
first nonzero time lag where the correlation function attains a maximum. 

Combining the short-term and long-term predictors into a single model, x[n] can 
be written as 

P Q 
x[n]= + E PA::r[n- /c-T] + £[n] (3.32) 

k=\ k=-Q 

short-term prediction long-term prediction 

with £[n] representing the prediction error of the long term filter. In this model, 
each sample is expressed as a linear combination of P immediate past samples 
and 2 Q -h 1 samples a pitch period away. 

Linear prediction is mostly used in speech coding, but it can also provide 
some means of enhancing speech corrupted by additive noise. 
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For a noisy signal, linear prediction analysis models the combined spectra of the 
signal and the noise. The estimated coefficients can be used in the restoration of 
a signal observed in additive noise. 
An illustration of an iterative implementation of a signal restoration system based 
on a linear prediction model of speech [Vaseghi 96] is presented in Figure 3.6. ^ 
The iteration process starts with the estimation of the predictor parameters ăk 

Figure 3.6: Signal restoration system based on a linear prediction model of speech 

from the noisy speech. For determining the gain G of the linear prediction model, 
Parseval's theorem^ is used 

. N-\ 

- y 
1 - E 

k=\ 

n=0 
(3.33) 

where ă^^i are the coefficient estimates at iteration i and E^ is the estimate of 
noise energy determined during periods when no speech is present in the noisy 
signal. Having the prediction coefficients and the gain of the linear prediction 
model, an estimate of the power spectrum of the speech model PxiXi[f] at fre-
quency bin / can be calculated. 
The estimation of the noise power spectrum can be performed during periods 
when no speech is present. Having the estimates of the power spectrum of speech 
and the estimate of the noise power spectrum, the Wiener filter frequency re-
sponse can be calculated: 

\ m = 
Px^xAf] + 

(3.34) 

'Parseval's thcorcin allows to equate the total power or energy of a signal in the time and 
froqiiency domains [Lynn & Fuerst 89]. 
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where i is the iteration step and / represents the frequency bin number. 
The magnitude spectrum of the estimated noise-free signal will then be 

X^^l[f] = W^[f]Y[f] (3.35) 

Combining Xi+i with the phase of the noisy signal, the time domain signal for 
iteration step i will be restored. This procedure will be repeated until conver-
gence, or for a specified number of iterations. 

Linear prediction analysis also may be applied to noisy signals in combina-
tion with other speech enhancement techniques, e.g. for reducing the musical 
noise after spectral shaping [Crozier et al. 93]. Most of the energy in a segment 
of voiced speech is contained within the formants. Musical tones in these re-
gions will be masked out by the high energy speech harmonics, so the majority 
of disturbing musical noise will be in the regions between the formants. The 
described enhancement method uses a weighting function derived from the es-
timated formant distribution given by the linear prediction spectrum of speech. 
This weighting function is used to further attenuate spectral regions with low 
speech energy. For sentences corrupted by high ambient noise (SNR of O dB), the 
proposed algorithm cannot reduce the musical tones because the linear prediction 
approximation becomes inaccurate. 

Another approach to the enhancement of a noise degraded signal by using 
linear prediction is described in [Richardson & Gowdy 96]. The output of the 
proposed enhancement system is a linear combination of the actual speech in-
put and a synthesized speech signal. The latter is generated using the Linear 
prediction coefficients (LPC) and an estimate of the excitation from the current 
speech. The algorithm improves speech quality by emphasizing the speech signal 
rather than removing the unwanted noise. The most difficult problem is the 
definition of an excitation filter which reconstructs the higher harmonics of the 
glottal excitation for voiced phonemes^. 

3.2 Multimicrophone Noise Cancellation 

3.2.1 Adaptive Noise Cancellation 
The method of adaptive noise cancellation [Widrow et al. 75] makes use of a pri-
mary input containing the corrupted speech signal and one or more auxiliary or 
reference inputs containing only noise [Goubran et al. 90], correlated in some way 
with the noise from the primary input. The reference input is adaptively filtered 
and subtracted from the primary signal to obtain the signal estimate. When 

^See Annex A. 

BUPT



44 CHAPTER 3. SPEECH ENHANCEMENT 

suitable input signals are available the method allows enhancement of speech de-
graded by additive noise or interference. The principie advantage of this method 
are its adaptive capability, its low output noise and its low signal distorsion. 
The operating principie is shown in Figure 3.7. 

xH + 7ii[n] 

/ 
7.2 [n] ^ adaptive n i H 

filter 

"Z eM 

Figure 3.7: Principie of adaptive noise cancellation 

The signal x[n] corrupted by the additive noise ni[n], uncorrelated with the 
signal, is picked up by the primary microphone. The reference microphone re-
ceives a noise n-zlri] correlated with the noise ni[n], but uncorrelated with the 
signal. The noise ii-zlii] is then adaptively filtered to produce an output fii[n\ 
which, subtracted from the primary input, will minimize the power of the output 
signal. In [Widrow et al. 75] it has been shown that minimizing the output power 
causes the output signal x[n] = x[ri] + ni[n] - hi[n] to be perfectly noise-free. 
The adaptive filtering of the reference signal is necessary because of the possible 
delay between the arrival of the interference at the two microphones. The second 
reason is that the two microphones may pick up different versions of the noise, 
e.g. the noise at the primary input may be subject to echoes and/or spectrally 
variable attenuation [O'Shaughnessy 89]. 
The adaptive filter usually is a FIR filter of an order depending on the distance 
between the two microphones. Because of its simplicity, the LMS algorithm is the 
most widely used adaptive algorithm. The filter coefficients are updated to min-
imize the least-mean-square of the error signal e[n]. For positive SNRs, the adap-
tation constant // of the LMS algorithm should be chosen [Van Compernolle 92] 
such that 

//, < (3.36) 

L is the number of taps of the FIR filter, P̂ +̂ri, and Pn2 are the power of the 
noisy primary signal and the power of the reference input, respectively. In this 
case the stability and convergence of the adaptation algorithm are guaranteed. 
Adaptive noise cancellation does not result in significant SNR improvements in 
mobile systems because of the difficulty of satisfying simultaneously two fun-
damental assumptions [Liberti et al. 91]. The first requirement is that speech 
should be detected only by the primary microphone. Therefore the quality 
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of the noise reference is the most important issue in adaptive noise cancella-
tion. Any speech detected by the reference microphone will be filtered and sub-
tracted from the primary signal, thus reducing speech quality. Signal leakage 
into the noise reference leads to unacceptable distorsions in the filtered signal. 
In [Widrow k Stearns 85] it has been shown that for the case of speech captured 
by the reference microphone, the signal-to-noise density ratio^ at the output of 
the adaptive noise canceller, SNRout[z], is given by 

Here, SNRref[z] represents the ratio of the power spectra of the speech signal 
and the noise at the reference microphone. This means that the signal-to-noise 
density ratio at the output is the reciprocal, at all frequencies, of the reference 
input signal-to-noise density ratio. The process described by Eq. (3.37) is called 
power inversion. 
Hence an almost signal-free noise reference is a must. The second requirement 
is that acoustic noise measured by the reference has to be very highly correlated 
to the noise from the primary input. The measure of noise cancellation tp{uj) 
depends on the coherence function 7(0;) between the primary and reference signals 
[Goulding k Bird 90]: 

= T h ^ O F 

In [Dai Degan & Prati 88] a car environment is considered and the possibility of 
obtaining a suitable reference signal is investigated. Due to the spectral coher-
ence of the noise in a car interior, a distance of less than 5 cm between the two 
microphones has to be chosen. This distance will permit a cancellation of at least 
90% of the noise energy. However, with microphones placed at such a distance it 
is impossible to prevent the speech from entering both microphones. 
On the other hand, if the two microphones are positioned at a distance greater 
than 50 cm, noise reduction will be performed only at very low frequencies (en-
gine noise). In [Goubran et al. 90] it is found that the optimum location of the 
secondary microphone in a car depends very much on the driving conditions. 
Therefore the use of a parallel adaptive filter structure with more than one refer-
ence microphones is recommmended. It is possible to select different secondary 
microphones for every driving condition or to form the error signal as a combi-
nation of the error signals from the secondary microphones placed in different 
locations. 

^The signal-to-noise density ratio is defined as the ratio of signal power density to noise 
power density and is a function of frequency [Widrow & Stearns 85]. 
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3.2.2 Adaptive Beamforming 
Speech beamforming caii be applied when multiple noisy measurements are avail-
able. Considering the characteristics of speech and the special operation condi-
tions, algorithms developed for beamforming in radar or sonar processing were 
tuned for speech applications [Van Compernolle 92]. 

The simplest beamformer is the sum and delay beamformer (Figure 3.8). The 

parallel to the line 
of the microphone array 

Figure 3.8: Delay and sum beamformer 

operating principie is the following: an array of M microphones provides a set 
of M noisy signals which are delayed and summed to produce a useful output 
[Ferrara & Widrow 81]. It is assumed that the signal components are correlated 
from channel to channel and that the noises are mutually uncorrelated and also 
uncorrelated with the signals. Considering that the angle 6 of the speech signal 
incident on the array is known, the array may be steered or heamformed to the 
source by appropriately delaying the input signals from the other microphones. 
The delay time depends on the distance dmic between the microphones and the 
angle Q [Silverman 87]. 
Thus, adding the noisy signals yields an array output having a signal-to-noise 
ratio much improved over that of a single channel. 
The delay and sum beamformer is very robust, errors in the estimate of delay 
times reduce the gain in SNR but cause only little distorsions. The great disad-
vantage of this beamformer is that the SNR-gain is limited and slowly increases 
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with the number of microphones used. To obtain a gain of A dB over the single 
sensor method a number of M = sensors is needed [Campbell 93]. In other 
words, a number of M microphones will give a theoretical maximum SNR-gain of 
A = lOlogioM dB. In reality this gain will be smaller because of the background 
noise and the reverberation. Thus very large microphone arrays with huge hard-
ware costs have to be designed. 

An alternative to the delay and sum beamformer are the adaptive beamform-
ers, which can be effective with a small number of microphones (in general 2 or 4) 
but require much higher computaţional investments. 
The constrained adaptive beamformer takes advantage of potential correlation in 
the noise sources and thereby permits additional noise suppression by postpro-
cessing in the form of an adaptive noise canceller. In the two-channel version of 
the Griffiths-Jim beamformer"^, an additional difference signal between the two 
inputs is computed, which is later used as noise reference in the noise canceller 
[Van Compernolle 92]. If phase alignment between both channels is perfect, the 
difference signal is an ideal noise reference. The assumption of a speech-free noise 
is not realistic because of the ever present reverberation and delay measurement 
error. In this case, speech will be present in the difference signal and the adap-
tive noise canceller will suppress speech as well. A speech detector which halts 
adaptation during periods with speech could minimize this problem. 
For speech applications, the two channel adaptive beamformer has extensively 
been studied in the literature. 
In [Faucon et al. 89] and [Faucon & Tazi Mezalek 90] two methods of noise re-
duction are presented which are based upon the assumption that speech signals 
as well as noises in the two observations are strongly correlated. Both structures 
consist of two stages: 

• in the first stage a transfer function between the speech signals (first 
method) or the noises (second method) is identified. The learning of the 
transfer functions is done in absence of the noise or the signal, respectively. 
These transfer functions are then assumed to be stationary. 

• the second stage performs the noise cancellation. 

Due to the weak coherence between the noises, which depends on the distance 
between the microphones [Le Bouquin & Faucon 90] and also on their location 
and nature, the Identification method of the noise transfer function was consid-
ered to be inefficient. 

'^The Griffiths-Jim beamformer is a special case of the more general Frost beamformer 
[Widrow & Stearns 85] 
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The (magnitude squared) coherence function, a frequency domain measure of 
correlation between two signals yx[n] and 2/2W 

2/1N = xi[n] + ni[n] 
y2[n] = X2[n] + n2[n] 

with n representing the discrete time index, is defined as follows: 

lyiyi [^1 7y2y2[^. 

(3.39) 

(3.40) 

where k represents the frequency bin, Tt/iy^l^l. lyivA^] ^nd nfrj,y,[k] represent the 
cross power densities and the power spectral densities of the signals yi [n] and 7/2 [n], 
respectively. The coherence function attains its maximum of 1 when the two sig-
nals are correlated, it is zero for uncorrelated signals. In practicai situations the 
coherence function will vary between these two limits and determines, for each 
frequency, the percentage of signal energy coming from correlated sources. 
The coherence function is observed to give important information in distinguish-
ing useful signal from disturbing noise [Le Bouquin & Faucon 90], thus allowing 
a distinction between speech and noise. In a car environment, the coherence 
between the speech signal is almost 1, over all frequencies, while the coherence 
between noises decreases with the frequency and the distance between the two 
microphones [Dai Degan & Prati 88]. A method of speech enhancement which 
filters one observation yi using the coherence function elevated to a power 6 is 
presented in [Le Bouquin & Faucon 92] and [Le Bouquin-Jeannes et al. 94]. The 
block diagram of the algorithm is presented in Figure 3.9. 

yi[n] 
windowing DFT 

Y^k] 

2/2 [n] 
windowing DFT 

^yiy weighting 
function 

\ IDFT 
ii[n] 

IDFT 

Uk] 

Figure 3.9: Speech enhancement using the coherence function 

The coherence function has the task of turning off uncorrelated signals and 
passing through correlated signals. For this, two thresholds Smin and Smax are 
considered: 

• if > ^rnax, spccch is considered to be predominant which must be 
passed 
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• if Cy^yJ/c] < Smin, it is assumed that only disturbing noises are present, 
which must be eliminated 

• if Smin < C'yiyJ/c] < Smax, it is assumed that both signal and noise are 
present and therefore one observation e.g. yi[n] will be weighted by a 
function of Cy^y l̂k] 

The following equations describe the algorithm: 

x,[k] = 

[kY Fi [k] if Sm.n < Cy,y, [fc] < 

Yi[k] if Cy,yM>Smax (3.41) 

Smin 

The parameter 6 allows a more selective filtering, an increased value of S leads 
to a rigid filtering. 
After finding Xi[k], the useful speech signal Xi[n] will be deduced. 
The drawback of this system is the restrictive hypothesis that the noises must 
be decorrelated, otherwise the recognition system won't give good results. Some-
times some slight musical tones can be heard in the enhanced signal. 

The problem of musical tones at low input signal-to-noise ratio also appears 
in the two microphones noise reduction algorithm from [Martin & Vary 94]. The 
main source of these musical tones is considered to be the residual correlation 
at low frequencies. These artefacts can be avoided if the noise reduction sys-
tem processes only frequency components that lie above a minimum normalized 
frequency 

^mzn = (3.42) 
"mm ^s 

where dmic is the microphone distance, c the speed of sound and Fs stands for 
the sampling frequency. Knowing that 

fi = ^ (3.43) 

means a frequency fmin of 850 Hz for a microphone distance of 40 cm. This 
constraint requires either a large microphone distance, which is not realizable, 
or the use of highpass filtering. The frequencies below the cutoff frequency of 
the highpass filter must be processed by some other noise reduction method or 
simply bypassed, without any processing. 
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Chapter 4 

Digital Replica of the 
Loudspeaker-Room-Microphone-
System 

Wheri designing acoustic echo cancellers and noise rediiction systems for the mo-
bile environment, certain specific considerations have to be taken into account. 
The vehicle interior, the operating conditions and the GSM requirements must 
be well known. 
The Loudspeaker-Room-Microphone-Sijstem (LRMS) will be approximated by an 
adaptive filter because of the time-variant nature of the vehicle interior. The 
acoustic echo compensator must work adaptively, which means that it has to 
track any modifications of the LRMS by itself and as rapidly as possible. Its 
task is the estimation of the echo signal y[n] ~ y[n] by generating the copy of the 
LRMS, filtering the loudspeaker signal with this replica and then subtracting the 
estimated echo from the microphone input signal. 
Considering the small internai volume and the attenuation produced by the up-
holstery and the passengers, the length of the echo path in cars is between 30 ms 
[Goulding k Bird 90] and 60 ms [Armbruster et al. 91]. These values can be 
confirmed by the measurement of the impulse response in a middle size car (Opel 
Vectra limousine) performed during the development phase of the combined sys-
tem presented in this thesis. Figure 4.1 shows the impulse response measured in 
a car^ With the sampling rate being 8,000 Hz, the 256 coefficients correspond 
to an impulse response length of 32 ms. The details of the filter specification 
involved in this procedure depend on two choices that have to be made: 

• the filter type 

• the type of statistical criterion used for the optimization 

^The measurement procedure is described in Annex F. 
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100 150 200 
Samples 

300 

Figure 4.1: Impulse response measured in a car 

4.1 Choice of the Filter Structure 
The choice of a structure for the filtering process has a profound effect on the 
operation of the algorithm as a whole. The decision for a nonrecursive or a re-
cursive filter design vvill be dictated by practicai considerations. 
The output of a nonrecursive digital filter depends on the current and one or 
more previous input samples. Such a filter implements the convolution sum di-
rectiv, and the coefficients are simply equal to successive terms in its impulse 
response. Since the number of coefficients must be finite, a nonrecursive filter is 
also referred to as FIR (finite impulse response) filter. 
As the transfer function of the FIR filter is specified in terms of z-plane zeros 
only, there is no danger that inaccuracies in the coefficients may lead to insta-
bility. Thus, the nonrecursive filter is inherently stable. Because of its finite 
impulse response, the FIR can be made symmetrical in form, which leads to an 
ideal linear phase characteristic, equivalent to a pure time delay of all frequency 
components passing through the filter. There is no phase distortion. 

The output of a recursive digital filter depends on one or more previous output 
values, as well as on inputs, i.e. it involves both feedforward and feedback. In 
most cases a recursive filter has an infinite impulse response (IIR). Although the 
impulse response decays towards zero, it theoretically continues forever. Assum-
ing the filter is causal, this means that the impulse response cannot be symmetri-
cal in form. Therefore the filter cannot display a pure linear phase characteristic. 
From the DSP point of view, the great advantage of the IIR filters is their com-
putaţional economy. In average, a particular specified filter characteristic can be 
obtained with less than an 8-th of the number of filter coefficients [v.Zitzewitz 89] 
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compared to its nonrecursive filter realization. However, there are two potential 
disadvantages of an IIR filter design: 

• because of the feedback paths in the filter design, a recursive filter may 
become unstable with the result that it may oscillate 

• recursive designs cannot generally provide the linear phase responses achieved 
by nonrecursive filters 

The stability problem in IIR filters, e.g. in lattice filters, is manageable in 
both theoretical and practicai terms, but when the filter is required to be adap-
tive additional problems have to be overcome. For this reason, in the majority 
of applications requiring the use of adaptivity FIR filters are preferred over IIR 
filters, even though the latter are less demanding in computaţional requirements. 
Owing to its versatility and ease of implementation, the FIR filter in its transver-

Figure 4.2: Adaptive transversal filter 

sal structure juts out as an essential signal processing structure in a wide variety 
of applications. 
The transversal filter, also referred to as a tapped delay line filter, consists of 
three basic elements, as depicted in Figure 4.2: 

• unit-delay element, 

• multiplier, hk with A: = 0 ,1 , . . . , ! / — 1 

• adder 

The number of delay elements L used in the filter determines the finite duration 
of its impulse response and is referred to as the filter order. 
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The delay elements are each identified by the unit delay operator z 'K In par-
ticular, when operates on the input x[n], the resulting output is X[TI - 1]. 
The role of each multiplier in the filter is to multiply the tap input to which it is 
connected by a filter coefficient called tap weight. Thus, a multiplier connected 
to the k-th tap input x[n - k] produces hk x[n - k], where hk is the respective 
tap weight and A: = 0 ,1 , . . . , L - 1. 
The role of the adders in the filter structure is to sum the individual multiplier 
outputs and produce an overall filter output. 
For the transversal filter in Figure 4.2, the filter output is given by 

y[n] = ^h,x[n-k] (4.1) 

Equation (4.1) is called a finite convolution sum in the sense that it convolves 
the finite duration impulse of the filter, hk, with the filter input x[n] to produce 
the filter output y[n]. The transversal filter is linear, i.e. the output is a linear 
function of the input samples and operates in discrete time, which enables the 
filter to be implemented using digital hardware/software. 

The requirement for an adaptive transversal filter is to make the estimation 
error e[n] defined as the difference between the desired response y[n] and the 
filter output y[n] as small as possible, in some statistical sense. To achieve 
this, the filter coefficients will be made time-variant, Iik[n] denoting the value of 
coefficient h^ at time instant n. 

4.2 Choice of the Optimization Criterion 
The choice of a statistical criterion for optimizing the filter design is influenced by 
mathematical tractability. Basically there are two distinct approaches to the de-
velopment of linear adaptive filtering algorithms, depending on the cost function 
they minimize: 

• the stochastic gradient approach, which minimizes the mean-square error, 
i.e. the mean-square value of the difference between the desired response 
and the actual filter output 

• the least squares estimation, which minimizes the smn of error squares, 
where the error is defined as the difference between the desired response 
and the actual filter output 

As a result of the discussions about the preferred filter structure from the 
previous section, the tapped delay line or transversal filter will be used as the 
structural basis for implementing the linear adaptive filter. 
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For the case of stationary inputs, the cost function for the stochastic gradient 
approach is defined as the mean squared error, i.e. the mean square value of the 
difference between the desired response and the transversal filter output: 

J[n] = E[\e[n]\^] (4.2) 

This cost function is a second order function of the tap weights in the transversal 
filter. The dependence of the mean squared error on the unknown tap weights 
may be viewed in the form of a multidimensional paraboloid with a uniquely 
defined bottom. This paraboloid is referred to as the error performance surface. 
The tap weights corresponding to the minimum point of the surface define the 
optimum Wiener solution. 
The recursive algorithm for updating the tap weights of the adaptive transversal 
filter is known as the least mean square (LMS) algorithm, the essence of which 
may be described as follows: 

f update value^ 
of tap-weight 

vector 

old value 
of tap-weight 

\ vector 
+ 

f learning- \ 
rate 

yparameter/ 

' tap- ^ 
input 
vector/ 

^error-\ 
^signaiy 

where the error signal is defined as the difference between some desired response 
and the actual response of the transversal filter produced by the tap input vector. 

The most important member of the family of stochastic gradient algorithms 
is the LMS algorithm. The LMS algorithm is simple and yet capable of achiev-
ing satisfactory performance under the right conditions. Its major limitations 
are the slow rate of convergence and its sensitivity to variations in the condition 
number of the correlation matrix of the input signal, thus making it not suitable 
for speech applications. 
In a nonstationary environment, the orientation of the error-performance surface 
varies continuously with time. In this case, the LMS algorithm has the additional 
task of continually tracking the bottom of the error-performance surface. This is 
possible, provided that the input data vary slowly compared to the learning rate 
of the LMS algorithm. 

The second approach to the development of linear adaptive filtering algo-
rithms is based on the method of least squares. According to this method, a cost 
function is minimized that is defined as the sum of error squares, where the error 
or residual is itself defined as the difference between some desired response and 
the actual filter output 

J[n] = E [ f : \ e m (4.3) 
i=ii 

ii and Z2 define the index limits at which the minimization occurs. The recursive 
algorithm for updating the tap weights of the adaptive transversal filter is known 
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as the RLS algorithm, its derivation relying on the matrix inversion lemma. An 
important feature of the RLS is its much better convergence rate compared to 
that of the simple LMS algorithm. The limitations of the RLS algorithm include 
lack of numerica] stability and an increased computaţional complexity. Aiming 
at the reduction of computaţional effort, the fast RLS algorithms were developed. 

Within the context of this thesis, several of the fast RLS algorithms in the 
direct linear transversal form were implemented and their behaviour was stud-
ied. It was found that the numerical stability of these algorithms was a serious 
problem, most of them getting unstable after just a few minutes. Reinitializa-
tion with certain fixed values led to a reduction in convergence speed. The 
algorithms considered were the Fast Kalman (FK) algorithm, the Stabilized Fast 
Kalrnan (SFK), the Covanance Fast Kalrnan (CFK), the Fast Transversal Fil-
ter (FTF), Stabilized Fast Transversal Filter (SFTF) and the Corrected Fast 
Transversal Filter (CTFT). A general description of these algorithms can be 
found in [Schiitze & Ren 92]. Deviations from the exact RLS algorithms and 
numerical instabilities due to unpredictable round-off errors are the main dis-
advantages of the fast RLS algorithms. Because of these and the additional 
stabilizing efforts that would have been necessary, it was decided not to use RLS 
algorithms in the acoustic echo cancellation. 

Comparing the tracking behaviour of linear adaptive filters it can be stated 
that the stochastic gradient algorithms, such as the LMS algorithm, exhibit good 
tracking behaviour. This is due to the fact that they are model independent. 
In contrast, RLS algorithms are model dependent and therefore their tracking 
behaviour niay be inferior to that of a member of the stochastic gradient family. 

Relating to the realities of the acoustic echo compensation application, the 
choice has to be made in accordance with an optimum of computaţional cost, 
performance and robustness. These criteria inevitably lead to the decision of 
using a stochastic gradient algorithm. 

4.3 Requirements for GSM Handsfree 
Special conditions concerning the GSM system requirements are not to be ne-
glected in the design procedure. The most important requirement in the GSM 
acoustic echo cancellation and noise reduction task is the processing time. The 
span of time including the round trip delaif and the processing time of the hands-
free stages shall not exceed 143.9 ms + 39 ms, i.e. the acoustic cancellation and 
noise reduction functions have to be performed in no more than 39 ms. 

•̂ Tho romul trip dolay represents the suin of mobile station speech delay in uplink and 
downlink directions and shall not exceed 143.9 ms [GSM Rec. 03.50 96]. 
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The GSM recommendations^ specify performance characteristics and values, 
which acoustic echo cancellers must comply with, and methods to verify these 
performances. The most important characteristics are 

• the convergence time, describing the convergence behaviour of the acous-
tic echo canceller which should be at least 1 s for an Echo Return Loss 
Enhancement (ERLE)"^ of at least 20 dB 

• the Terminal Coupling Loss (TCL), defined as the overall attenuation of 
the echo resulting from the the acoustic coupling of the terminal combined 
with the effect of the echo canceller [GTR SMG 97]. The TCL is the sum 
of the coupling loss between loudspeaker and microphone and the ERLE, 
which measures the intrinsic efficiency of the acoustic echo canceller. The 
TCL for the handsfree mobile station [GSM Rec. 03.50 96] shall be 40 dB 
at the nominal setting of the volume control in quiet background conditions 
and at least 33 dB at the maximum user selectable volume. 

Automobiles both create and operate in a noisy environment. Handsfree tele-
phones thus suffer from intrusive noise due to wind, fan or car engine. The noise 
field may appear diffuse or, due to the superposition of radiation from discrete 
sources, moving and statistically nonstationary. The speech/noise ratio in car 
environments can be as low as O dB, which means that the performance claim for 
noise reduction systems is extremely high. 

In [GTR SMG 97] some values are given for the reduction of background noise 
in cars. Thus, an attenuation of 25 dB seems to be necessary to obtain good or 
excellent quality level in idle situation, with turned off engine. At a driving 
speed of 90 km/h, 15 dB of attenuation ensures a satisfactory quality level and a 
minimum of 12 dB at 130 km/h is desirable to assure an acceptable quality level. 

4.4 Conclusions 
The exact knowledge of the environmental conditions in which GSM car handsfree 
systems operate is crucial in the development of combined acoustic echo cancel-
lation and noise reduction systems. As the acoustic echo canceller has the task 
of suppressing the echo generated by the loudspeaker-room-microphone system, 
first a digital replica of the LRMS must be defined. Because of the time-variant 
nature of the vehicle interior, the LRMS will be approximated by an adaptive 
filter. 

^According to the International Standardization Organization (ISO) a reconnnendation is a 
binding document which contains legislative, regulatory or administrative riiles and which is 
adopted and published by an authority legally veşted with the necessary power [Walke 98]. 

"^The definition of the ERLE is given in Chapter 5, section 5.3.1 
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Weighing the advantages and disadvantages of recursive and nonrecursive filters, 
the tranversal FIR filter in the linear direct form was proposed to be used because 
of its robustness and ease of implementation. IIR filters are much more difficult 
to handle, especially when the filter inherent feedback has to be combined with 
the adaptation process. 

The second decision that had to be made in this Chapter was that concerning 
the adaptation algorithm. Because of the problem of numerical instability and 
increased computaţional load, the RLS approach will not be further pursued. 
Therefore it was suggested to perform a stochastic gradient algorithm which is 
numerically robust under well defined conditions for the convergence factor It 
is also computationally less demanding than its competitor from the least-squares 
algorithms. 

Based on this replica of the LRMS consisting of transversal FIR filter and 
stochastic gradient algorithm, an estimate of the room impulse response will be 
provided by the AEC system and the acoustic echo can be compensated by sub-
tracting this adaptive estimate from the microphone signal. 

Considering the GSM requirements on the handsfree system, the most im-
portant is the time constraint of 39 ms. This interval is specified by the GSM 
recommendations as being the worst case acceptable for processing delays asso-
ciated with acoustic echo cancellation and noise reduction. 
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Chapter 5 

Combined System of Acoustic 
Echo Cancellation and Noise 
Reduction 

The goal of a combined system is to merge an acoustic echo canceller and a noise 
reduction system in a symbiosis in order to get a near-end speech signal with 
minimum distorsions and low levels of acoustic echo and background noise. 

In the mono-channel approach the observation y[n] received on the micro-
phone is composed of 

• a near-end speech signal s[n] to be transmitted 

• an echo e[n] due to the signal x[n] emitted by the loudspeaker 

• and a background noise signal n[n]. 

5[n], n[n] and e[n] are additive and uncorrelated so that it can be written: 

y[n] = 5[n] + e[n] + n[n] (5.1) 

The signal x[n] coming from the loudspeaker is correlated with the echo e[n] and 
is used as reference input for the acoustic echo canceller (AEC). 
The objective is to find an optimal structure in the sense of a minimal mean-
square error by combining acoustic echo cancellation and noise reduction. Thus 
a good estimate s[n] of the near-end speech 5[n] is obtained. In the ideal case the 
near-end speech would be transmitted without any distortions and attenuations, 
while any acoustic echo and background noise would be suppressed. 

A combined system of echo cancellation and noise reduction was first pre-
sented in [Yasukawa 92]. This system is a cascaded structure of two adaptive 
filters, the first one performing a noise reduction using a noise reference while 
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the second one operates as an acoustic echo canceller. The noise reduction filter 
is cascaded with the lovver of the two bands of the AEC. The adaptation algo-
rithm used for updating the filter coefficients of both filters is the normalized 
LMS. 
As the system tends to become unstable if the filters are adapted simultaneously, 
a speech detector is used to control the adaptation. Thus, the noise reduction 
filter coefficients are updated only during the absence of near-end and far-end 
talk. The AEC coefficients are adapted when only the far-end speaker is ac-
tive. During the AEC adaptation the noise reduction filter coefficients remain 
unchanged. 

5.1 Combined System Structura 
Considering speech as short-time stationary processes, the determination of the 
optimal filter in the sense of minimum mean-square error [Ayad & Faucon 95], 
[Le Bouquin-Jeannes et al. 96] leads to: 

= n T j ^ ' TM (yw - ^ m ] (5.2) 

where S[k], X[k] and Y[k] represent the spectra of the signals s[n], x[n] and ?/[n], 
respectively. 7,,[A:], T/ml̂ :] and are the power spectral densities of 5[n], n[n] 
and x[n]. 7xy represents the cross spectral density between the observations x[n] 
and y[n]. 
This equation shows [Ayad et al. 96], that there are two steps involved in the 
optimal structure presented above: 

1. the echo is estimated by applying a filtering on the reference x[n\ with the 
transfer function given by 

(5.3) 

and then subtracting the filter output from the microphone observation. 
Thus, the term in brackets in Eq. (5.2) is the part of acoustic echo cancel-
lation. For an ideal echo canceller, near-end speech and noise are transmit-
ted with no change and the echo canceller output would be echo-free, i.e. 
s[n] + n[n]. 

2. the noise is reduced by a Wiener filter with the following gain function: 

lss[k]/{yss[k]^Jnn[k]) (5.4) 

5.1.1 Acoustic Echo Cancellation Preceding Noise Reduc-
tion 

As just stated, the optimal structure is composed of two cascaded optimal filters, 
where the first one performs the acoustic echo cancellation and the second one is 
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a noise reduction system. The output of the AEC, ideally 5[n] + n[n], is subjected 
to Wiener filtering. This structure will be called AEC+NR and is represented in 
Figure 5.1. 

In this structure the identification operation of the AEC system is disturbed 

Figure 5.1: AEC + NR structure 

by the omnipresent background noise and the near-end speech in double-talk sit-
uation. In [Guelou et al. 96] it is shown that the performance of the AEC+NR 
structure depends very much on the intrinsic behaviour of the implemented adap-
tation algorithm. An adaptation algorithm with improved robustness to noise and 
double-talk will perform much better than the generally used NLMS algorithm, 
known for its lack of robustness to noise. 

As the near-end signal may be distorted at the output of the AEC, it was 
proposed [Ayad & Faucon 95], [Le Bouquin-Jeannes et al. 96] to take the input 
signal for the noise reduction system from the microphone input y[n] and not 
from the output of the acoustic echo canceller. In this new structure, presented 
in Figure 5.2, the NR filter and the AEC system are estimated simultaneously. 
It was found that the distorsion brought by the NR system to near-end speech 

signal during double-talk periods is lower in the modified structure. However, in 
single-talk mode the standard AEC+NR structure yields a greater reduction in 
noise and echo. Thus a double-talk detector could help to optimize the perfor-
mance in both modes. 

5.1.2 Noise Reduction Preceding Acoustic Echo Cancel-
lation 

To reduce the noise influence on the AEC system, the NR system can be placed 
in front of the AEC, the elimination of the undesired background noise being 
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Figure 5.2: Modified AEC + NR structure 

performed before the adaptation process of the AEC. This structure will be called 
NR + AEC and is presented in Figure 5.3. 

\ 

NR filter f NR filter 
t 

NR analysis 

- O 

Figure 5.3: NR + AEC structure 

The echo estimate in the NR+AEC structure is closer to the original echo 
[Ayad et al. 96], but the noise reduction operation also distorts the echo signal. 
The noise reduction system introduces a time-varying filter into the acoustic echo 
path. These distorsions can disturb the identification process [Guelou et al. 96]. 
The performance of this basic structure may be enhanced by introducing a copy 
of the noise reduction filter in the identification branch (Figure 5.4). This will 
reduce the non-linear distorsions [Martin Vary 94]. However, because of the 
time-variant behaviour of the filter, the adaptation process of the AEC has to 
be executed each tinie the coefficients of the noise reduction filter change. This 
recomputation is increasing the complexity. 
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Figure 5.4: Modified NR + AEC structure 

The limitations of combined systems are summarized in the so-called speech 
enhancement trilemma [Martin et al. 96]. The trilemma requires a compromise 
between the echo and noise reduction, the introduced distorsion of the near-end 
speech signal and the complexity of the overall system. Adding more microphones 
or more compensator coefficients will improve the echo compensation and noise 
reduction at the price of an increased complexity. On the other hand, keeping the 
complexity constant, a trade-off must be found between echo and noise reduction 
and the near-end speech distorsions. 

5.2 The Proposed Combined System 
After the analysis, implementation and test of the hitherto presented algorithms, 
a new system is proposed which works exclusively in the time domain. Because 
of the restrictions considering the implementational cost in a GSM mobile ter-
minal, the intention was to use simple algorithms with reduced complexity. The 
noise reduction is considered in the approach using one microphone, the reference 
noise estimate being delivered by a voice activity detection algorithm. The great 
advantage of an entirely time domain implementation is the absence of delay, 
except for the processing time. 
The combined system of acoustic echo cancellation and noise reduction consists 
of the following elements: 

• an acoustic echo canceller based on the Affine Projection Algorithm (APA) 
and a transversal filter 

a far-end voice activity detector 
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• a double-talk detector 

• a near-end voice activity detector 

• a noise reduction system also based on the APA and a transversal filter 

The block diagram of the proposed AEC-NR system is presented in Figure 5.5. 
A/D and D/A conversion blocks are considered to be included in the represen-
tation of the microphone and loudspeaker. The positioning of AEC+NR within 
the GSM communication chain is shown in Annex B, Figure B.2. 
The main elements of the handsfree system are the acoustic echo canceller and 

/ 
\ VAD 

acoustic 
echo 

cancellation 

stepsize 
control 

( transmit NR 
system 

( NR 
system 

double talk 
detector 

VAD - O 

Figure 5.5: The proposed combined system 

the noise reduction system, which have to perform the task of eliminating the 
far-end speaker's echo and reducing the environmental noise inside the car cabin. 
The proposed algorithms will be presented in detail in sections 6.1 and 8.1. The 
system is completed by the use of speech detectors on the far-end and near-end 
signal which will be discussed in Chapter 7. 
The role of the far-end VAD is that of detecting the presence of speech on the 
receive path. If speech is present, it will be emitted by the loudspeaker into 
the car interior, several times reflected and then picked up by the microphone. 
The disturbing acoustic echo can be eliminated by the adaptation and filtering 
processes of the acoustic echo canceller. In the absence of speech on the receive 
path, no adaptation and filtering is necessary. Therefore, when no far-end speech 
activity is detected, the operation of the AEC will be stopped. 
In the presence of a reference signal on the far-end side, the decision on adapta-
tion is handed over to the double-talk detector (DTD). If the DTD supplies the 
information that there is no double-talk, the AEC performs normally, adapting 
the coefficients of the transversal filter. If speech is considered to be present 
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at the near-end, the coefficients' adaptation process is stopped, yet filtering still 
continues. This is equivalent to setting the adaptation coefficient ^ to zero, while 
the AEC continues to perform. Thus the last estimated echo will be subtracted 
from the microphone input signal, but the adaptation will proceed no longer. 

For a more noise robust operation of the AEC algorithm, a near-end noise 
dependent stepsize control is additionally implemented. This control presented 
in section 6.4, varies the value of /i depending on the ratio between the loud-
speaker signal power and the estimated noise power. In high background noise 
the adaptation coefficient will be close to zero, thus slowing down the adaptation 
process. 
The near-end VAD is used to estimate the noise background, which is necessary 
for the stepsize control algorithm and the following noise reduction system. This 
noise information can be obtained during pauses in the speech flow, and will be 
continuously updated during these speech-free periods. 

The combined system will be implemented on a DSP. Considering the block 
diagram of a GSM handy, the AEC+NR system will be running on the DSP unit 
of the GSM chipset, as presented in Annex C, Figure C.l. It will be positioned 
between the transmit path (before of the speech encoder) and the receive path 
(after the speech decoder) as shown in Figure B.2. 
Another possibility of implementation consists in placing the AEC-hNR function 
entirely into an independent supplimentary DSP housed in an extra handsfree 
module. In this case the echo- and noise-free speech samples will be connected to 
the input of the GSM handy and no further processing will be necessary in the 
GSM chipset. The advantage of this placement is the possiblity of implementing 
more powerful algorithms, but at the expense of additional hardware costs caused 
by the supplimentary DSP. 
In the approach of this thesis, the first case will be considered with its subsequent 
consequences of less computaţional power and memory. The problem is that cost 
is a very important factor for mobile telephone manufacturers. 

5.3 Objective Performance Evaluation 
During the development of acoustic echo cancellers and noise reduction systems, 
it is very important to assess the system's performance under different operating 
conditions or with different configurations. These evaluations can be performed 
by subjective listening tests and objective quality measures. As the subjective 
tests are extremely time and resource consuming and not always reproducible, 
the objective measures are preferred during the development phase of a speech 
processing algorithm. 
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The ideal objective quality measure would need to assess all the levels of 
human speech processing [Quackenbush et al. 88], i.e. psychoacoustics, acoustic-
phonetics, morphology, prosodics, syntax, semantics, linguistics and pragmatics. 
Such an objective measure which considers all the above mentioned items cannot 
be applied in practice. Generally, only comparisons between the original and the 
distorted signals will be done, over short intervals of 10 to 30 ms duration where 
the speech characteristics do not change considerably. 
The objective measure must be easy to perform on the enhanced signal, it must 
be highly correlated to the results obtained by listening tests and it must be se-
lected to suit the specific application [Gustafsson et al. 96]. In some applications 
the maximum possible intelligibility is desired, while for other applications the 
minimization of listener fatigue is the main objective, i.e. the enhancement of 
the naturalness and pleasantness of speech. 

The evaluation of the acoustic echo cancellation and noise reduction can 
be performed with real conversaţional speech or with test signals, defined in 
[ITU-T P.501 96] and presented in Annex D. Since the test signals are standard-
ized, the reproducibility of results is guaranteed. 

5.3.1 Acoustic Echo Cancellation 

The performance of an echo canceller can be given in terms of its dynamic and 
steady-state properties. The dynamic performance is described by the the rate 
of iniţial convergence, while the steady-state performance is given by the misad-
justment of the adaptive filter after convergence. 

Considering an acoustic echo compensator as shown in Figure 5.6 several ob-
jective measures for evaluating the effectiveness of the compensation algorithms 
can be defined. Here, L represents the filter length, h[n] a set of time- vary-
ing filter coefficients and h describes a time discrete weighting function of the 
loudspeaker-room-microphone-system. n is used to indicate the discrete time in-
stant (n = 0,1,2, . . . ) . 

The steady-state performance can be objectively assessed by using the follow-
ing measures: 
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Figure 5.6: Time discrete structure of an acoustic echo canceller 

• relative error parameter norm {P[n]) [Schiitze 89]: 

= 20 log ^ ^ ^ ^ 

= 10 log 
( h - h [ n ] n h - h M ) 

h^h (5.5) 
L-l 

= 10 log 
E hi 

k=0 

where n represents the time instant. This distance measure describes the 
degree to which the echo canceller of order L corresponds to the impulse re-
sponse h of the loudspeaker-room-microphonesystem [Heitkămper & Walker 93]. 
It presents the following attributes: 

- the iniţial value is always O dB because at the beginning h[0] is O 
- P[n] < O means less residual echo than in the uncompensated case 
- P[n] > O means a deterioration, i.e. more residual echo is present than 

in the uncompensated case 
- for n ^ oo, P[n] should ideally tend to - o o dB 

Echo Return Loss Enhancement (ERLE) 
The ERLE gives a measure of the misadjustment of the adaptive filter. 
It is defined by the logarithmic expression of the ratio between the power 
of the desired signal ij[n] and the power of the difference signal e[n] after 
compensation. The better the acoustic echo cancellation the larger the 
ERLE. Depending on the interval for which the power calculation takes 
place, the following two types of ERLE can be defined: 
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- sliding window ERLE (ERLE,,,,,) 

7l = k-X = (5.6) 
E r.H' 

whwc X rcprcscMits thv constant longth of a sliding window t^^ X -T, 
with T standing for t\\v- sanipling period. Considering a sanripling 
i\vx\nviu'y of 8,()()() Hz, for whito noise A will hc- set to 800, which 
(•orr(^si)()n(ls to a window lengtli of 100 nis. Wlicn doaling with rion-
stationary spcMH'h signals, a window length of 1 sccond will be cho-
s(Mi, IxH-ause of th(̂  prononncod ERLE variations during short spcech 
pans(\s which cannot hc confirnicd by snbjcctivc listcning. Taking a 
larg(M- window l(»ts ihc. ERLE convcrgo to tho snbjcctivc irnpression of 
thc (H'ho attcMination. 

- segmentai ERLE {ERLE,,,^ 

ERLE.,,,,, = 10 log (5.7) 
E ^ ('vnl 

w'hvTv A; (A; = O, 1,2,. . .) rcprcscnts a s(»gnicnt of Icngtli M. Thc powcr 
calcnlation nupiircd by thv. ERLE is pcrfornicd ovcr short scgments of 
s|)(M'ch, nsnally of 20 nis dnration. 

Thv (h^scribcd stcady-statc parani(H,(us can bc cvahiatcd both during singlc talk 
and doublc-talk pcriods. 

Thc dynaniic pcuforniancc» of thc aconstic (Hiho canccllcr can bc objcctivcly 
asscsscd by using t\\v following nuuisurcs [Naylor ct al. 94]: 

• iniţial convergence time ) 
(l(^fin(ul as th(̂  ţinu» n(Hul(Hl by thc aconstic ccho c.ornpcnsator to attain the 
nuvin av(uag(^ valu(̂  ERLE,,,, an segmentai ERLE calculated ovcr the 
wh()l(̂  signal 

• the time to attain 10 dB of segmentai ERLE {T,c\{)dii) 

W I k m i stationary signals ar(» nscul, the a(lai)tivc filtcr will initially converge until 
it, attains its nuvin niisadjnstnHMit and tluMi hold this value constant. As the 
statistics of sjxhh'Ii are nonstationary, the a(lai)tive ccho canccllcr will bc contin-
nously tracking t\\v varying ccho path, thns no siich definite convergence to the 
st(»a(lv-state can Ix» ()bs(M V(Hl. 
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5.3.2 Noise Reduction 
Speech enhancement systems usually consist of an adaptive filter in the signal 
path. As the phase of noisy signals is difficult to estimate, these filters are de-
signed to modify only the amplitude spectrum and not the phase of the disturbed 
signal. Therefore, complete noise reduction is not possible and most noise reduc-
tion systems are distorting the speech signal more or less [Gustafsson et al. 96]. 
To estimate the improvement achieved by a speech enhancement system, the 
objective measures are calculated at the input and at the output of the noise 
reduction block. x[n] represents the clean speech signal at time instant n, while 
Xd[n] is considered to be the noisy signal at the input or the enhanced noisy signal 
at the output of the speech enhancement system. 
The most commonly used objective measures for assessing the performance of a 
noise reduction system are: 

• segmentai Signal-to-Noise Ratio improvement (SNRseg) 
The classical SNR gives some indication of the quality of stationary systems 
[Quackenbush et al. 88] and is measured as 

SNR = 10 log,o ^ (5.8) 
En - x,i[n\y 

As speech signals are nonstationary, the classical SNR is obviously not 
adequate for estimating speech quality. If the measurement described in 
Eq. (5.8) is taken over short segments of speech and then summed over all 
segments in that waveform, the result is a very good estimation of speech 
quality and is called segmentai SNR. The segments where stationarity can 
be assumed are typically chosen to be 15 to 20 ms. The use of this seg-
mentation permits an equal weighting of both loud and soft portions of the 
utterance. The same noise level may have different effect on the output 
signal, depending on the instantaneous input signal level. 
The segmentai SNR is expressed as 

N-l iM+M-l / 

with M representing the segment length and N the number of segments in 
the speech signal. 
The segmentai SNR must be combined with a speech detector. Only the 
SNRs of the segments containing speech will be included in the sum in 
Eq. (5.9). Otherwise, any speech pause will give rise to a large negative 
signal-to-noise ratio which could appreciably bias the overall measure of 
the segmentai SNR. 
It is important that the system is of linear phase, otherwise the segmentai 
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SNR will not correspond to the perceived results. Any phase distorsion 
may reduce the SNRseg significantly [Gustafsson et al. 96]. 
The gain G [Faucon & Le Bouquin-Jeannes 95] of a noise reduction sys-
tem is obtained by subtracting the input segmentai SNR from the output 
segmentai SNR: 

G = SNRseg..,,., - SNRseg.^,., (5-10) 

• LPC spectrum matching measures 
Speech enhancement algorithms can be also evaluated in the spectral do-
main. These measures are very sensitive to any changes in the spectral 
shape of the analyzed speech segment. The LPC based measures be-
tween the clean and the noisy/enhanced speech have been found to be very 
effective [Ahmed 89]. The better the spectrum matching between the clean 
and the processed speech signal, the better is the enhancement algorithm 
and the smaller the value of the spectral distance measure. 
For this type of measures, the clean and the noisy/enhanced speech wave-
forms are usually divided into analysis frames of 15 to 30 ms duration and 
a linear prediction analysis is done for each frame. The distance measure 
is computed from the results of the analysis. 

Cepstral Distance 
A cepstrum^ computed from the predictor coefficients provides an estimate 
of the smoothed speech spectrum. 
According to [Quackenbush et al. 88], it can be written: 

= (5.11) 
k=l 

where A[z] is the LPC model and c[k] are the cepstral coefficients which 
can be computed from the predictor coefficients recursively: 

71-1 

n c [ n ] - n a [ n ] = X^(n-/c)c[n-A:]a[A;] for n = 1 ,2 ,3 , . . . (5.12) 

with a[0] = 1 and a[k] = O ioT k > p. n represents the time index. In 
Eq. (5.12) a[k] are the predictor coefficients and p is the order of the LPC 
model. 

^Thc cepstrum or spectral function of a speech signal is defined as the Fourier Transform 
applied to the logaritlim of the Fourier Transform of the speech signal [Rowden 91]. The 
cepstrum is made up of a set of discrete cepstral coefficients, which are the output set of the 
final Fourier Transform process. 
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The cepstral distance, based on the cepstral coefficients is presented in 
[Le Bouquin et al. 93]: 

2p 
dcep = J2(4n]-Cd[n]) ' ' (5.13) 

71=1 
with c[n] and Q[n] representing the cepstral coefficients corresponding to 
the speech signals x[n] and Xd[n] respectively. 

Log Likelihood Ratio 
The log likelihood ratio or Itakura distance is based on the dissimilarity 
between all-pole models of the clean speech signal and the distorted speech. 
It is assumed that over intervals of 15 to 30 ms speech can be represented 
by a p-th order all-pole model. 
The log likelihood ratio compares two windowed speech signals, x[n] and 
Xd[n\ and can be defined as [Quackenbush et al. 88]: 

= (5.14) 

where a is the LPC coefficient vector (1 , -a [ l ] , - a [2 ] , . . . , - a [p ] ) for the 
original speech x[n] and â / the LPC coefficient vector for the distorted 
speech Xd[n]. R is the autocorrelation matrix for x[n] with its elements 
defined as: 

N-k 

r[k]= x[n]x[n-k] for /c = 0,1, 2 , . . . (5.15) 
n=l 

where N is the length of the frame used in the LPC analysis. 

Itakura-Saito Distorsion Measure 
Considering two spectral rnodels (j/A{z) and ad/Ad{z) corresponding to the 
clean and distorted speech signals, respectively, the Itakura-Saito measure 
can be defined as follows [Gray & Markel 76]: 

d. = (5.16) 

with .2 

A{z) is the inverse of the all-pole filter that models the spectral envelope 
of the sequence x[n] and is defined as 

= (5.18) 
i=l 
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The Itakura-Saito measure appears in a number of different formulations, 
which are mathematically related under certain assumptions. 
In [Gray & Markel 76] and [Le Bouquin et al. 93] the Itakura-Saito distor-
sion measure is defined as follows : 

, + (5.19) 
aj a a^ 

where 
( ^ ^ a j R a r f , a = (5.20) 

a and a^ being the LPC coefficient vector for the original speech and the 
distorted speech, respectively. 
R is the ((p-h 1) X 1)) input sample autocorrelation symmetric Toeplitz 
matrix, whose first row consists of (p + 1) autocorrelation values r[k] with 
A: = 0,1, 2 , . . . The gain terms of the models are denoted by a and a^, 
respectively. 

Taking into account that the perceptual frequency resolution is decreas-
ing with increasing frequency, a frequency-weighted Itakura-Saito measure 
[Chu k Messerschmitt 82] can be defined as 

rf,, = (e^'W - V(0) - l ) I W{e^O) p ^ (5.21) 

where the non-negative factor | weights low frequencies more heav-
ily than high frequencies. Thus, the frequency weighted spectral estimation 
improves the accuracy of psychoacoustic representation of speech. 

• noise reduction factor (R) 
Considering the case when noise and speech are known separately and the 
noisy signal is obtained by addition of the two signals, the noise reduction 
processing can be applied only to the noise. Thus the noise reduction 
performance of the algorithm [Le Bouquin et al. 93] can be measured. The 
filtered noise signal will be denoted by n/[n]. 
The segmentai noise reduction factor R will be computed as follows: 

iM + M-l 
N-\ E n[nf 

(5-22) 
^ - o E nf[nY 

n=iM 

where N is the number of segments of length M. 

• distorsion measure (D) 
Making the same assumption as in the noise reduction factor computation. 
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the noise reduction procedure will be applied only to the clean signal x[ri]. 
The distorted part ef[n] may be written as 

Sf[n] = Xf[Ti]-x[n]. (5.23) 

Similarly to the noise reduction factor, the segmentai distorsion D can be 
computed as follows [Faucon & Le Bouquin-Jeannes 95]: 

iM+M-l 

1 N-i E eM 
(5.24) 

'=0 E x[n]2 
n=iM 

5.4 Signals Used in the Experimental Part 
During the experiments different speech and noise signals were used. The noise-
free files included the following texts spoken by a male and a female speaker, 
respectively. 
The male speaker's text is the following: "In the course of a December tour in 
Yorkshire, I rode for a long distance in one of the public coaches on the day be-
fore Christmas." It is stored in a data file having a length of 65,536 16-bit words. 
sampled with 8 kHz, i.e. the duration of the file is approximately 8.2 seconds. 
The woman speaks the following text: "The simplest method is to mix the 
medicine with butter or some other grease and smear it on the nose of the animal 
from time to time; naturally, it will lick the grease off and in this way will swallow 
the medicine." This is a sentence of 12.3 seconds duration which, when sampled 
at 8 kHz, corresponds to a stored data file of 98,304 16-bit words. 
The noisy files were constructed by adding noise to the clean speech signals. The 
car noises used in these experiments were recorded in driving cars: 

• an Opel Astra 7 Caravan, with a driving speed of about 90 - 120 km/h on 
a normal road, with closed windows and the fan turned off. The record 
is approximately 11.4 seconds long. Its length is 91,058 16-bit words at a 
sampling frequency of 8 kHz. 

• a BMW 540, moving at 90 - 120 km/h on a normal road, the windows were 
closed, the weather was rainy and the fan was turned off. The data file 
has a length of 134,0158 16-bit words. Sampling at 8 kHz. this means a 
duration of the data file of approximately 16.8 seconds. 

These noise signals were available from the CSDC2 Speech Database created by 
the Institute of Phonetics and Speech Communications of the Umversity of Mu-
nich. 
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White noise and the standardized the test signals were available from the CD-
ROM being part of [ITU-T P.501 96]. 

When generating the noisy files, the duration of all files was truncated to that 
of the shortest sample file, i.e. to 8.2 seconds. The weighted noise file was added 
so as to obtain noisy files of different SNRs (-10 dB, O dB and +10 dB). 
For generating the echo signal, necessary for measuring the acoustic echo cancel-
lation performance, the speech signals from the data files were convolved with 
the impulse response measured in a car (see Figure 4.1) and attenuated by 20 dB. 

Additionally, there were used true loudspeaker and microphone signals re-
corded in a car. The loudspeaker was located at the right of the navigator's 
feet, while the microphone's position was at the driver's left, on the A-pillar of 
the car. The speech signals were fed into the loudspeaker, and the echo signal 
was picked up by the microphone. Different driving conditions were simulated 
by feeding simultaneously the four car loudspeakers, placed in the doors, with 
earlier recorded car noise. 
The double talk situation was also simulated. Therefore, an additional speech 
signal was emitted from a position on the driver's seat which would correspond 
to a near-end speaker's mouth location. 

5.5 Conclusions 
Acoustic echo compensation and noise reduction are two distinct functions ap-
plied in the field of handsfree operation. These separately working systems can 
be merged into a single combined system. The optimal structure in the sense of 
minimum mean-square error is given by the acoustic echo canceller preceding the 
noise reduction system. 
Knowing this, a new combined system is proposed having its elements working 
entirely in the time domain. This has been considered because of the time con-
straint of 39 ms of processing time for both acoustic echo compensation and noise 
reduction imposed by the GSM specifications. A noise reduction system in the 
frequency domain, as it is usually considered, would need a Fourier Transform 
implementation. This would require already 32 ms of processing time, when the 
transform is performed over 256 samples. A noise reduction algorithm in the 
time domain operating on a sample-by-sample basis would be computationally 
less demanding and would save processing time. 

For a more noise robust operation of the handsfree system, a near-end noise 
dependent stepsize control, a far-end and a near-end VAD, and a DTD will com-
plete the combined system. The detailed description of the main elements of this 
system will be presented and discussed in the following chapters. 
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This Chapter ends with the presentation of some objective assessment proce-
dures of AEC and NR performance and of the signals used in the experimental 
part of this thesis. As subjective Ustening test are very time and resource con-
suming and generally not reproducible, the use of objective measures is very 
important in the development phase of a combined system. The use of standard-
ized test signals, as those presented in Annex D, has the advantage of supplying 
reproducible results. 
The most important objective measures as well as the presented test signals will 
be used in the assessment of the new algorithms developed and presented in 
Chapters 6, 7 and 8. 
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Chapter 6 

Adaptation in the Combined 
System 

On the basis of the decision macle in section 4.2 of Chapter 4, considering the 
optimization criterion for the filter design, a stochastic gradient algorithm will 
be used in the proposed combined system of acoustic echo cancellation and noise 
reduction. Thus, the cost function which will be minimized is the mean square 
value of the estimation error. 

The block diagram of an adaptive filter is shown in Figure 6.1. The output of 
the unknown system to the input signal x[n] will be y[n], also called the desired 
signal. 

Figure 6.1: Block diagram of an adaptive filter 

Assuming that the unknown system can be modelled by an FIR filter of length 
L with coefficients 

the adaptation system has to estimate the unknown system by an FIR filter with 
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coefficients 

Hn] = [h , [n]J i , [n l . . . J iL[n]r . (6-2) 

n denotes the discrete time index. 
For a sample-by-sample adaptation, the estimation filter or coefficient vector 

h[n] is adjusted at every sample instance so as to make the estimation output y[n] 
close to the unknown system's output ij[n], i.e. a minimum for the estimation 
error e[n]. This is done by adding an adjustment vector Ah[n] 

h[n + l] = h[n] + /i[n]Ah[n]. (6.3) 

/i[n] is a time-variant scaling factor called stepsize, which controls the convergence 
speed and the amount of residual error. 

From the variety of recursive algorithms, developed in the literature for the 
operation of linear adaptive filters, the selection of the preferred algorithm was 
determined by considering the rate of convergence, misadjustment, tracking be-
haviour, robustness and computaţional requirements. The decision fell upon the 
affine projection algorithm, an algorithm rediscovered a few years ago and im-
plemented in its fast version, which makes it computationally less demanding 
compared to its original exact form. 

6.1 Affine Projection Algorithm (APA) 
The affine projection algorithm, first presented in [Ozeki & Umeda 84], was de-
veloped as a result of the efforts of overcoming the limitations of the classical 
NLMS for speech signals. The APA has properties that combine the advan-
tages of the NLMS and the RLS algorithms. The NLMS algorithm is known 
for its low computaţional complexity. However, its convergence is slow and its 
tracking capability is poor for speech input. The RLS algorithm, on the other 
hand, has the same convergence for both coloured and white input signal, but its 
large computaţional load is a drawback. The affine projection algorithm has less 
computaţional complexity than the RLS algorithm, but much faster convergence 
than the NLMS algorithm for speech input signal. It actually was proposed as 
a generalization of the NLMS algorithm and is based on a multiple dimension 
projection per tap update [Gilloire 95]. 

The adjustment vector Ah[n] of the filter coefficients has to satisfy p equa-
tions: 

y,4n] = X > ] (h[nl + Ah[n]) (6.4) 

or equivalently 

X ^ n ] Ah[nl = y,[n] - h[n] = e ^ H (6.5) 
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where the projection order p is much smaller than the filter length L. 
Xp[n] is a (L X p) matrix whose columns represent the p past input vectors of 
length L: 

Xp[n] = [xL[n], X L [ n - l ] , . . . X L [ n - p + l ] ] . (6.6) 

ep[n] and yp[n] are vectors with the p past elements representing the error vector 
and the desired signal vector respectively. 
From Eq. (6.5) Ah[n] can be uniquely determined: 

Ah[n] = XM (xJ[n]Xp[n])" e^fn] 

Using the covariance matrix 

R,[n]=Xj[n]Xp[n] 

a decorrelation FIR filter vector gj,[n] can be defined 

gp[n]=R-'[n]ep[n] 

(6.7) 

(6.8) 

(6.9) 

This vector filters the row vectors of Xp[n] in order to synthesize the adjustment 
vector Ah[n]. Thus, it can be written 

Ah[n]=Xp[n]gp[n] 

The block diagram of the APA is presented in Figure 6.2. 

(6.10) 

Figure 6.2: Block diagram of the convenţional APA 

Thus, the APA may be summarized as follows: 
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1. filter output: 

2. estimation error: 

yp[n] = Xj[n]h[n] (6.11) 

ep[n]=yp[n] -y , [n] (6.12) 

3. tap-weight adaptation: 

h[n + 1] = h[n] + /iXp[n] (X^[n] Xp[n] e,[n] (6.13) 

O < < 2 being the stepsize that controls the amount of adjustment. 
For the special case of p = 1 the above equations denote the NLMS algorithm 
and for p = L they represent the RLS algorithm. Thus, the projection algorithm 
falls between the NLMS and the RLS algorithm. 

The data matrix Xp[n] is a Hankel matrix, which has the property that all the 
elements along any cross diagonal are identical, i.e. a[ij] = a[i-\-j-n-l] with n 
denoting the number of columns of the matrix [Marple 87]. Hankel matrices can 
be related to Toeplitz matrices, so that the efficient inversion methods based on 
the Levinson algorithm can be applied^ As the product of two Hankel matrices 
is no longer Hankel, the simplified inversion method no longer applies to the term 
Xp [n] Xp[n]. This product of matrices can be inverted using the set of techniques 
known as singular value decomposition or SVD (Annex E). 

With a speech input signal, the covariance matrix Xp [n] Xp[n] may be ill 
conditioned^, which results in large residual errors. To overcome this problem a 
regularization of the algorithm is performed: 

h[n 4- 1] = h[n] + //Xp[n] (X^[n] Xp[n] + ep[n] (6.14) 

where (5 <C 1 is the regularization parameter and Ip is the (p x p) identity matrix. 
By adding a small positive number to the diagonal of the covariance matrix, the 
term X^[n] Xp[n\-\-SIp will have 6 as its smallest eigenvalue, even as Xp[n] 
has eigenvalues close to zero. This yields a better conditioned inverse [Gilloire 95], 
provided that 6 is large enough. It was found [Oh et al. 97] that the choice of the 
regularization parameter is very important in fixed-point implementation of the 
algorithm. In the regularization dominant case, when the covariance matrix is 
near zeros, after inversion the reciprocal value of S will determine the maximum 

^The Levinson algorithm is a recursive method of solving an L-th order symmetric Toeplitz 
system of equations: 

A x = b 

where A is both symmetric and Toeplitz, and x and b are vectors [Stearns Sz David 93]. 
-A correlation matrix R is ill conditioned if the ratio of the largest eigenvalue to the smallest 

eigenvalue of R is large [Haykin 96). 
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values which can be represented in fixed-point. Thus, the larger (5, the less 
problems in the fixed-point implementation. Also, a too large value will degrade 
the performance, so that a compromise must be found. 

Computaţ ional Load 

The main cause of the computaţional burden of the APA is the inversion of the 
covariance matrix The total computaţional complexity of the affine pro-
jection algorithm is about (p+l )L-f O(p^) [Kaneda et al. 95], where O(-) denotes 
"order of" [Haykin 96]. Because of this complexity, the APA in its original form 
has been considered to be impractical. 
To overcome this problem fast versions of the APA (FAP) were considered, which 
intend to reduce the computaţional requirements. There are several methods 
such as the recursive updating of the pre-filtering vector gp[n], the update of 
an approximation filter instead of the estimation filter h[n] [Tanaka et al. 95b] 
or the approximation of the covariance matrix Rp[n] for the inversion operation 
[Oh et al. 97]. This last approach forces a Toeplitz structure on the covariance 
matrix considering that for p L the following holds: 

fv[n] fv[n - . . . ^ Trin - p + 1] 

Thus, the correlation matrix 

(6.15) 

R p = 

^ o N 
h[n-l] 
r2[n-2] 

ri[n] 
ro[n - 1] 
h[n-2] 

r p _ i [ n ] 
fp-2[n-l] 
Vp-An - 2] (6.16) 

_ rp_i[n - p1] f j , . -2[n-p+l] • • • h[n- P + 1 ] . 

can be approximated as: 

ro[n] 

n N 
r2[ri] 

r i [ n ] 

^ o N • • 
fi[n] •• 

• V i N ' 

• ^v-M (6.17) 

r o M 

which is a Toeplitz matrix. r^[n] represents the estimate of the autocorrelation 
at lag r and at time instant n, based on the last L input samples 

L-l 

z=0 

(6.18) 

The inversion of Rp can be done efficiently. The updates for f\[n] will be per-
formed recursively by adding a new element corresponding to time instant n and 
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subtracting the element corresponding to time instant n - L + 1. 
The fast version of the APA reduces the complexity of the convenţional APA 
from (p + l)L -h 0{p^) to 2L + 20p, where L represents the length of the estima-
tion filter and p is the projection order. Thus it can be concluded, that the key 
features of fast affine projection algorithms include low complexity and memory 
requirements like the LMS and fast convergence for speech as input signal to the 
adaptation system like the RLS [Gay k Tavathia 95]. In Table 6.1 a comparison 
of the computaţional complexities of different adaptation algorithms is presented 
[Tanaka et al. 95a], [Haykin 96]. 

Adaptive algorithm Complexity 

NLMS 2L 

RLS 2L2 + SL 
Fast RLS SL 

Convenţional APA ( p + l ) L + 0(p3) 
Fast APA 2L + 20p 

Table 6.1: Comparison of computaţional complexity 

The performance of the affine projection algorithm can be determined best 
by applying a white noise input signal which contains enough information for 
exciting all modes of the system. Thus, the convergence behaviour of the algo-
rithm can be emphasized by using a white noise input signal because the ERLE 
(defined in Chapter 5, section 5.3.1) shows no fluctuations such as with normal 
speech input. Speech signals are characterized by sections of speech and pauses 
which, in the temporal course of the ERLE appear like increasing and decreasing 
segments. In Figure 6.3 the ERLE curves for a white noise input signal are pre-

1.50 

Figure 6.3: APA with white noise signal as input signal 
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sented. Different projection orders of the APA lead to different convergence time 
and, as expected, the higher the projection order, the faster the algorithm con-
verges to the steady state. Furthermore it is apparent that the GSM convergence 
time requirement of 1 s for an ERLE of at least 20 dB are completely fullfilled. 

Figure 6.4: APA with speech input signal in noise-free environment 

The affine projection algorithm, relying on a projection of the input signal 
vector, is much better suited for speech input signals than the widely used NLMS 
algorithm because of the decorrelation it performs on the input signal. 
When estimating the performance of the APA, the objective measures presented 
in subsection 5.3.1 will be applied. The experiments carried out in this work start 
from the assumption that the length of the impulse response in a middle size car 
is usually around 30 ms. Applying a sampling rate of 8,000 Hz the transversal 
filter length has to be set to 256 coefficients for taking into account the whole 
length of the impulse response. The APA of projection order 1, 4, 8 and 12 were 
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tested on different speech input signals in a noise-free near-end environment. The 
test signals were those presented in section 5.4. 

Some experimental results are shown in Figure 6.4. They have been obtained 
by using the APA in its fast version, with the approximation of the covariance 
matrix by a Toeplitz structure as mentioned earlier in this section. 
From Figure 6.4 it can be seen that in noiseless environments the convergence 
speed as well as the ERLE are increasing with increasing projection order of the 
APA. Thus, the NLMS, i.e. the first projection order of the APA, is the slow-
est from the convergence time point of view, while the APA of order 12 is the 
fastest. The best overall ERLE performance is obtained by the APA of dimension 
12. However, after a certain interval of time, the performance of the APA of or-
der 8 gets close to that of APA of dimension 12. The greatest difference between 
dimension 8 and 12 of the APA is notable during the first few seconds, when the 
ERLE performance of the dimension 12 APA is considerably better becaiise of 
its shorter convergence time. 

The microphone input signal of the AEC will additionally always be presented 
when the ERLE performance is discussed, because the temporal course of the 
performance measure is close related to this signal. Short speech pauses in the 
loudspeaker signal emitted into the car interior will lead to a falling tendency of 
the ERLE, because of the increasing error signal of the AEC during thesc periods. 
The special case of echo compensation in noisy environment will be considered 
later in this chapter in section 6.3. 

6.2 APA in Subbands 
The performance of the APA was also considered in the subband realization of 
the acoustic echo canceller. Subband adaptive filtering has the potential ad-
vantage of reducing computaţional complexity and improving convergence speed 
[Gilloire 95], [Gilloire & Vetterli 92]. The complexity reduction can be substan-
ţial as it is roughly proporţional to the number of subbands. However, the use 
of nonideal critically sampled FIR multirate filterbanks leads to aliasing in the 
subbands which disturbs convergence and deteriorates the AEC performance. 

A two channel filterbank consists of signal decomposition by highpass and 
lowpass half-band filters combined with a downsampling process. The data are 
reconstructed by upsampling and filtering as shown in Figure 6.5. 
Aliasing cancellation at the synthesis bank output is achieved by using Quadra-
ture Mirror Filters (QMF) with [Fliege 93] 

Ho[z] = H[z] 
H,[z] = Ho[-z] (6.19) 
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Ho[z] Ho[z] 

HiU] 

12 adaptation 

adaptatîon 

t 2 — Go[--I 

r 2 

Figure 6.5: Two chaimel filter bank 

GoH = 2Ho[z\ 

G , [ z ] = - 2 H , [ z ] (6.20) 

where H[z] is a suitable lowpass filter protou-pe and H[-z] the corresponding 
highpass filter. Under these conditions, the transfer function becomes allpass 
irrespective of the t>-pe and design methodology- of the HQ[Z] and Hi[z\ half-band 
fUters. 

In Figure 6.6 the anal\-sis and s\-nthesis stages in poh-phase stnicture are de-

12 Hoolz] 12 Hoolz] 

12 frl 12 

GooW — t 2 GooW — t 2 

Goi[z] t 2 Goi[z] t 2 

Figure 6.6: Analysis and s>Tithesis stages of a QMF FIR filter bank in pol\-phase 
stnicture 

picted. In the linear-phase FIR implementation of the polyphase stnicture. the 
half-band filter was designed by the standard Parks-McClellan method. the filter 
coefficients were taken from [Crochiere k Rabiner 83]. FIR filters lead to a sig-
nal delay depending on the number of filter coefficients used. However, the most 
disturbing effect for the AEC is the aliasing caused by flat filter slopes. To elim-
inate aliasing, a bandstop filter between the subbands was used. 

Signal splitting in more than two subbands can be achieved by the tree stnic-
ture [Vaidyanathan 93]. In Figure 6.7 the stnicture of an acoustic echo canceller 
in four subbands is presented, A standing for the analysis and S for the synthesis 
stages. 

The APA performance in subbands was tested in a noise-free near-end en-
vironment on different speech input signal emitted by both male and female 
speakers. The average results of the mean ERLE values for different numbers of 
subbands and different orders of the affine projection algorithm are summarized 
in Table 6.2. It can be observed that for each APA dimension the ERLE^ ân 
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xH 
\ 

2/n a 

e[n] 

Figure 6.7: Subband AEC structure 

gets higher with an increasing niimber of subbands. This is due to the additional 
decorrelation introduced by the filter bank. 

However, if the performance in a certain filter bank structure is considered 
depending on the APA projection order, it can be observed that starting with 
a number of 8 subbands, the ERLE performance does not follow the increasing 
dimension of the affine projection algorithm. On the contrary, the mean ERLE 
even decreases for the APA of dimension 8 and 12. This is obviously a result of 
the decorrelation introduced by the filter bank combined with the decorrelation 
of the APA. 

Regarding the projection order of the APA, it can be seen that the largest im-
provement of the ERLE is achieved when considering the transition from NLMS 
to APA of dimension 4. This is true for any subband implementation, the full-
band to the 16 subbands approach. The increase in computaţional complexity 
for higher orders of the affine projection algorithm is not justified by any notable 
enhancement of the ERLE-gain. 

As a conclusion to the results of Table 6.2 for a noise-free environment on the 
near-end side, it can be suggested to limit the projection order of the adapta-
tion algorithm to 4. For this APA dimension, every increase in the number of 
subbands of the filter bank is reflected in a better ERLE performance. Higher or-
ders of the affine projection algorithm do not present a steadily increasing ERLE 
performance with an increasing number of subbands. Thus, for the 16 subbands 
realization of the filter bank, the ERLE results are decreasing for increasing pro-
jection orders of the APA. 

In Figure 6.8 the temporal course of the ERLE for a speech input signal ap-
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Dimension Number of ERLEmean 
of APA Subbands [dB] 

1 1 + 14.54 
1 4 +20.83 
1 8 +32.40 
1 16 +43.12 

4 1 + 18.39 
4 4 +26.57 
4 8 +37.52 
4 16 +46.23 

8 1 +22.46 
8 4 +29.34 
8 8 +38.76 
8 16 +45.09 

12 1 +22.81 
12 4 +30.09 
12 8 +38.00 
12 16 +43.04 

Table 6.2: ERLEmean for a noise-free near-end environment 

plied to an affine projection algorithm of dimension 4 is presented. It can be seen 
that the performance of the ERLE and the convergence time are getting better 
with increasing number of subbands in the filter bank. 

Figure 6.9 shows a comparison between the temporal course of the ERLE for 
the projection order 1 (NLMS) and 12 of the adaptation algorithm, in different 
subband structure implementations (fullband, 4 subbands, 8 subbands and 16 sub-
bands). It can be observed that for the filter bank with 16 subbands there is 
almost no difference in ERLE performance when comparing the results for the 
NLMS and the APA of order 12. The ERLE performance difference increases 
with a decreasing number of subbands. Thus, in the fullband and 4 subbands 
realization the most notable enhancement in the performance of the APA with 
dimension 12, compared to that of the NLMS, is registered. It is also worth 
mentioning that the ERLE curves get flatter when more subbands are used, this 
being a result of the decorrelation of the speech input signal performed by the 
filter bank. 

In [Ansahl et al. 98] it is found that the use of IIR half-band filters and 
biquadratic notch filters is to be preferred to the FIR implementation of the 
filterbank with antialiasing bandstop filters. The ERLE performance is nearly 
the same, the advantages lie in the reduction of computaţional complexity and 
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Figure 6.8: Subband APA 4 performance for speech signal in noise-free environ-
ment 

the sharp frequency separation of the IIR filters. 

6.3 APA in Noisy Environment 
In the following an original derivation of the influence of a noisy near-end envi-
ronment on the performance of the affine projection algorithm will be presented 
[Kremmer & Ansahl 98]. Assuming the presence of noise at the near-end, the 
desired signal will be 

y ; W = y p W + np[n] (6.21) 

where np[n] represents the noise vector containing the past p noise samples. The 
noisy desired signal yp[n] leads to an estimation error ep[n] which will also be 
noise-dependent 

e;w = y'M - yp[n] (6.22) 
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Figure 6.9: Comparison of subband APA performance in noise-free environment 

Substituting Eq. (6.21) in Eq. (6.22), the error estimate in noisy environment will 
represent the sum of the error estimate in noise-free environment and the noisy 
near-end signal: 

e'pln] = ep[n] + np[n] (6.23) 

Starting with the tap-weight adaptation equation (6.13) and considering Eq. (6.23j, 
the tap-update equation for a noisy near-end environment will change to 

f6.24) 

Eq. (6.24) shows the tap-weight adaptation and its dependency on the near-end 
noise signal. It can be seen that the disturbing effect of the near-end noi.se will 
be reinforced with higher projection orders of the APA. 
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Figure 6.10: Fullband APA performance with speech input signal, noisy environ-
ment of SNR = - 1 0 dB 

6.3.1 In the Fullband 
As a consequence of Eq. (6.24), when noise is present at the microphone input 
an inversion of the ERLE results obtained with clean echo signals has to be ex-
pected, namely the lower the projection order of the algorithm the better the 
anticipated ERLE. According to Eq. (6.24), the higher the projection order the 
longer the APA will stay under the influence of a noise event, because in its data 
matrix more past input vectors are considered and compared to the noisy desired 
signal vector. Thus it can be assumed to get a better ERLE result for the NLMS 
than for an APA of higher dimension. 

The theoretical conclusions from Eq. (6.24) can be confirmed by the inves-
tigations rnade on noisy near-end signals. The APA was considered in different 
projection orders, and different noisy environments were examined. The result-
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Figure 6.11: Fullband APA performance with speech input signal, noisy environ-
ment of SNR = O dB 

ing ERLE curves for near-end noisy environments of SNR of - 1 0 dB and O dB 
are presented in Figures 6.10 and 6.11. In both, the overall better performance 
of the NLMS can be viewed. At the beginning, an iniţial period can be recog-
nized, where the convergence performance of the APA in dimension 12 is better 
than that of the other dimensions of the affine projection algorithm. The noisier 
the near-end environment the faster the NLMS will get to its best performance. 
Thus, the ERLE curve corresponding to the NLMS algorithm will achieve its 
greatest enhancement much faster in the noisy environment of - 1 0 dB than in 
that of O dB, compared to the other dimensions of the APA. 

The average results of the ERLE^ean values for different speech input signals 
in different numbers of subbands and for different orders of the affine projection 
algorithm are summarized in Table 6.3. For the implementation in the fullband, 
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in noisy near-end environment of different SNRs, it can be observed that the 
ERLE performance decreases with increasing dimension of the APA. This shows 
the correspondence between experimental results and the conclusion from the 
theoretical derivation of section 6.3. 

6.3.2 In Subbands 
In this section the performance of the affine projection algorithm in the sub-
band implementation will be investigated in noisy near-end environments. This 
study has also been presented in [Kremmer k Ansahl 98]. The results obtained 
in this investigation are presented in Table 6.3. It can be observed that with 
increasing number of subbands the ERLE performance is being enhanced. The 
decomposition of the loudspeaker speech input and of the noisy microphone signal 
combined with the adaptation performed in the subbands, leads to an increase of 
ERLE performance with increasing number of subbands. The special case of full-
band implementation, as presented in the previous section, is excluded from this 
statement. When analyzing these results, it can be observed that for each APA 
dimension the mean ERLE value raises with increasing number of subbands, as 
in the case of noise-free near-end environment. 

Number Dimension ERLEmean ERLEmean E R L E m e a n 

of of [dB] [dB] [dB] 

Subbands APA SNR = - 1 0 dB S N R = O d B SNR = +10 dB 

1 1 - 9.39 - 2.67 + 6.24 

1 4 -10 .32 - 3.60 + 5.30 

1 8 -11 .44 - 4.72 + 4.18 

1 12 -12 .81 - 6.09 + 2.82 

4 1 - 6.42 + 0.25 + 8.60 

4 4 + 4.07 + 10.66 + 18.56 

4 8 + 5.24 + 11.88 +20.12 

4 12 + 4.01 + 10.68 + 19.18 

8 1 - 0.51 + 6.22 + 15.05 

8 4 + 11.57 + 18.24 +26.78 

8 8 + 10.62 + 17.32 +26.01 

8 12 +10.22 + 16.91 +25.59 

16 1 + 5.95 + 12.66 +21.53 

16 4 + 14.90 +21.61 +30.40 

16 8 + 13.86 +20.57 +29.37 

16 12 + 13.92 +20.61 +29.34 

Table 6.3: ERLEmean in different subband structures and for different noise con-
ditions 
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Figure 6.12: ERLEmean performance in subbands for different APA dimensions 
in noisy environments of - 1 0 dB, O dB and +10 dB 

If the ERLEmean performance in a specific filter bank structure is considered, 
it can be observed that the falling tendency of the mean ERLE value, also noticed 
in the noise-free near-end environment investigations presented in Table 6.2, al-
ready starts in the 4 subbands approach. However, this holds only for APA of 
projection dimension 12. In the 4 subbands implementation an continuous mean 
ERLE enhancement can be confirmed only for the projection orders 1, 4 and 8. 

Starting from a number of 8 subbands, the ERLE does not increase any more 
for the APA of dimension orders 8 and 12, on the contrary, it decreases. This is 
obviously a result of the interaction of the decorrelations introduced both by the 
filter bank and the affine projection algorithm. 

Regarding the preferred dimension of the APA, it can be seen that the most 
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Figure 6.13: Subband APA 4 performance for speech signal in noisy environment 
(SNR = - 1 0 dB) 

pronounced refinement on the echo compensation task is registered at the tran-
sition from the adaptation with NLMS to the APA of order 4. just as in the 
noise-free case. This is true for any subband implementation, from the fullband 
to the 16 subbands approach. 

As a conclusion to the subband approach results of Table 6.3 for a noisy near-
end environment, the suggestion from the noise-free discussion can be validated. 
Thus, the higher the filter bank order the better are the results for an APA of 
dimension 4, both in noisy and in noise-free near-end environments. Because 
there is plenty of Information contained in Table 6.3, it is helpful to visualize the 
results in a more accessible way in Figure 6.12. The three diagrams show the 
dependency of the mean ERLE on the number of subbands in the filter bank for 
the noisy environments of -10, O and 10 dB. 
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Figure 6.14: Comparison of subband APA performance in noisy environment 
(SNR = - 1 0 dB) 

In Figure 6.13 the ERLE teniporal course for a speech input signal applied to an 
affine projection algorithm of dimension 4 is presented in a noisy environment 
of about - 1 0 dB. It is obvious that the performance of the ERLE is increasing 
with the number of the subbands in the filter bank. Furthermore, a flattening of 
the ERLE curves for higher filter bank orders can be observed. 

Figure 6.14 shows the temporal course of the ERLE for the projection order 
1 and 12 of the adaptation algorithm in different subband structures (fullband, 
4 subbands, 8 subbands and 16 subbands) for a noisy near-end environment 
of about - 1 0 dB. A general enhancement can be registered for each subband 
realization. Thus, unlike the noise-free case (Figure 6.9), the filter bank with 
16 subbands still shows a performance enhancement when comparing the ERLE 
curves of the NLMS and the APA of dimension 12. 
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It is also worth mentioning that the ERLE curves get flatter when higher orders of 
the affine projection algorithm and more subbands are used, being a result of the 
decorrelation of the speech input signal performed by the adaptation algorithm 
and the filter bank. 

6.4 Stepsize Control of the APA in Noisy Envi-
ronment 

To make the acoustic echo cancellation algorithm noise robust, a stepsize con-
trol was developed which varies the adaptation coefficient value depending on 
the ratio of the loudspeaker signal power to the estimated near-end noise power. 
The algorithm, the test results and the resulting conclusions are also presented 
in [Kremmer 98]. The algorithm takes into account the nonstationarities of the 
input signal as well as the noise at the near-end. 
In [Meana et al. 94] and [Hirano & Sugiyama 95] it was shown for the NLMS 
algorithm that the noise influence at the near-end becomes very important for 
small input signal power and that the NLMS algorithm cannot update its filter 
coefficients correctly any more. It is advisable to select a small adaptation 
coefficient when operating in liigh background noise, but at the same time, the 
adaptation should converge rapidly to the true echo path, which implies the use 
of a large stepsize. 

The proposed adaptation algorithm can be described as follows: 

/̂ W = p .-1 (6.25) 

where represents the variable stepsize for frame i and ^o is the constant 
stepsize. Px[i] and Pn[i] represent the average power of the loudspeaker signal 
and the near-end noise power for frame z, respectively. The near-end noise power 
will be estimated by a VAD and updated during periods of speech-free frames. 
a is a weighting factor. The stepsize will be updated on frame basis, once every 
15 to 30 ms. During these segments, the speech and noise power will be averaged. 

After a series of computer simulations with different near-end noise and loud-
speaker signals, optimal values for /io and a were found. Good results were 
obtained when //q was varied from 0.5 to 0.9. For the weighting factor a a loga-

pU] 
rithmic dependency on the ratio -^pr was experienced. Thus, for different power 

ratios different weighting factors will be taken. In the implemented version, this 
dependency was approximated by 5 different values for a. 

BUPT



6.4. STEPSIZE CONTROL OF THE APA IN NOISY ENVIRONMENT 97 

Noise level AERLEmean AERLEn^ean AERLEn^ean AERLEniean Noise 
[dB] [dB] [dB] [dB] [dB] type 

NLMS APA 4 APA 8 APA 12 
- 1 0 16.98 11.55 7.12 5.64 car noise 

0 11.00 6.20 3.23 2.34 car noise 
+ 10 5.24 1.43 0.22 0.13 car noise 
- 1 0 8.34 3.52 2.19 1.69 white noise 

0 5.17 1.42 0.66 0.48 white noise 
+ 10 2.66 0.52 0.28 0.20 white noise 

Table 6.4: Enhancement of ERLE^ean using a variable stepsize 

The ERLEmean enhancement is defined as being the difference between the 
mean ERLE value achieved by using the stepsize control and the mean ERLE 
value without using the stepsize control function. Table 6.4 summarizes the 
results of the ERLEmean enhancement in different noisy environments. Different 
SNRs and noise types are considered. Analyzing the results, it can be observed 
that the improvement of the mean ERLE performance depends on: 

• the projection order of the affine projection algorithm, the best enhance-
ment being achieved by the NLMS, the smallest by the APA with projection 
order 12 

• the signal-to-noise ratio at the near-end, the best results being obtained in 
an noisy environment of about - 1 0 dB 

• the nature of the background noise, better results were obtained for car 
noise than for white noise. 

The temporal course of the ERLE for two different noise conditions and dimen-
sions of the APA are presented in Figures 6.15 and 6.16. The sliding window 
ERLE curves for the NLMS algorithm in a noisy environment of about - 1 0 dB 
with and without the proposed stepsize control function is presented in Fig-
ure 6.15. Considering the stepsize variation curve, it can be observed that the 
change of the variable stepsize value fi[î\ towards lower values always occurs when 
the clean loudspeaker signal has small values and therefore the noise influence 
at the near-end becomes very large. A reduction of the stepsize means a slower 
convergence of the adaptation algorithm. Consequently, the adaptation will not 
go into the wrong direction for small loudspeaker input values for adverse noise 
conditions at the near-end. 
Thus, the stepsize control function leads to a much better adaptation compared 
to the fix-valued stepsize approach. 
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Figure 6.15: NLMS with stepsize control in noisy environment (SNR = —10 dB) 

As already stated when analyzing the results of Table 6.4, the improvement of 
the ERLE gets smaller for better noise conditions at the near-end and for higher 
orders of the adaptation algorithm. This can be viewed in Figure 6.16 which 
presents the case of an affine projection algorithm with dimension 8 in a noisy 
environment of about O dB SNR. Here the segments of variable stepsize value are 
less and shorter in duration than in the case presented in Figure 6.15 for a noisier 
near-end environment. 

6.5 Conclusions 
Based upon the decision made in Chapter 4 considering the optimization criterion 
for the filter design of the acoustic echo canceller, the affine projection algorithm 
(APA) was chosen to be applied in the proposed combined system. 
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2 3 4 
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Figure 6.16: APA 8 with stepsize control in noisy environment (SNR = O dB) 

The APA has properties that combine the advantages of the NLMS and the 
RLS algorithms. The affine projection algorithm has less computaţional com-
plexity than the RLS algorithm, but much faster convergence than the NLMS 
algorithm for a speech input signal. It actually was intended to be a generaliza-
tion of the NLMS algorithm and it is based on a multiple dimension projection 
per tap update. The computaţional burden of the original affine projection al-
gorithm is determined by a matrix inversion that has to be performed. The fast 
affine projection algorithm has reduced computaţional requirements because of 
the recursive updating it makes use of. 

The performance of the APA has been investigated in the fullband and sub-
bands approach. The filter bank implementation seemed to be worth examining 
because of the complexity reduction it promises. Thus, it is known that subband 
adaptive filtering, besides convergence improvements, also has the potential ad-
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vantage of a computaţional reduction roughly proporţional to the number of 
subbands. After a short presentation of filter bank theory, the APA performance 
was tested in the fullband, in 4, 8 and 16 subbands. 
When a subband implementation of the AEC is intended, on the basis of the 
achieved results, it can be suggested to Urnit the dimension of the affine projec-
tion algorithm to 4 for a noise-free near-end environment. For the APA of dimen-
sion 4 every increase of the number of subbands in the filter bank is reflected in a 
better ERLE performance. Higher dimensions of the affine projection algorithm 
lead to worse results for higher filter bank orders compared to the performance 
of the adaptation with projection order 4. 

Acoustic echo cancellation usually has to perform in noisy environments. 
Therefore an original derivation of the influence of a noisy near-end environ-
ment on the performance of the affine projection algorithm has been presented 
and the theoretical results have been confirmed by experimental results. Thus, 
it can be stated that the disturbing effect of a noisy environment is strengthened 
with increasing projection order of the APA. This can be explained in the follow-
ing way: the higher the projection order the longer the APA will stay under the 
influence of a noise event, because in its data matrix more past input vectors are 
considered and compared to the noisy desired signal vector. Thus it is expected 
and confirmed that better ERLE results are obtained for the NLMS than for an 
APA of higher dimension. 
However, if the performance in certain filter bank structures is considered, it can 
be observed that starting with a number of 8 subbands, the ERLE performance 
does not follow the increasing dimension of the affine projection algorithm. On 
the contrary, the mean ERLE even decreases for the APA of dimension 8 and 12. 

The ERLE performance in the subband structure in noisy near-end environ-
ments has been investigated and also presented in [Kremmer & Ansahl 98]. It 
has been found that as in the case of noise-free near-end environment, for each 
APA dimension the mean ERLE raises with increasing number of subbands. If 
the ERLE performance in a specific filter bank structure is considered, it can be 
observed that the falling tendency of the mean ERLE value, also noticed in the 
noise-free near-end environment investigations, already starts in the 4 subbands 
approach. However, this holds only for the APA of dimension 12. In the 4 sub-
bands implementation a steady enhancement of the ERLEmcan can be confirmed 
only for the projection orders 1, 4 and 8. 
Starting from a filter bank with 8 subbands, the ERLE does not increase any 
more for APA dimensions 8 and 12, on the contrary, it decreases. This is ob-
viously a result of the interaction of the decorrelations introduced both by the 
filter bank and the affine projection algorithm. 

For the fullband approach in noisy environment, a new stepsize control al-
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gorithm has been proposed, implemented and tested. The algorithm varies the 
usually fixed adaptation coefficient fi in accordance to the ratio of the loud-
speaker signal power and the estimated noise power at the microphone input. 
The algorithm, also presented in [Kremmer 98], shows best ERLE improvements 
for the NLMS in very noisy environment. An increase in the APA dimension and 
better noise conditions at the near-end lead to smaller ERLE improvements. 

Summarizing the results for the subband approach in noiseless and noisy near-
end environments, it can be suggested to choose an affine projection algorithm 
of dimension 4. The higher the selected filter order the better the ERLE and 
convergence performance. Dimension orders of the affine projection algorithm 
greater than 4 do not justify the increase in computaţional complexity. 

For the fullband approach in noise-free environment the APA of projection 
order 8 can be recommended, higher orders of the affine projection algorithm do 
not justify the increase in computaţional complexity. When operating in adverse 
near-end conditions the use of NLMS combined with an adaptive stepsize control 
function is advisable. Thus, as a comprimise, working in both noisefree and noisy 
environments, the APA of projection order 4 with adaptive stepsize control will 
be preferred. 
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Chapter 7 

Speech Detectors 

In acoustic echo cancellation as well as in noise reduction systems, there is need 
of an algorithm that has the ability to decide whether a signal segment contains 
speech or only noise. When no far-end speech is present the AEC has to stop 
its operation and in the case of speech enhancement the estimation of the back-
ground noise will be performed during speech pauses. 
It is known that approximately 20% of normal speech consists of pauses, which 
occur anywhere between spoken words and sentences [Armbruster et al. 91]. The 
process of distinguishing between speech and nonspeech sections in a speech sig-
nal is called voice activity detection. 
The function of a voice activity detector in noisy environment is to differentiate 
between speech superimposed on the background noise and speech-free noise. 
The performance of the algorithm is a function of both the noise level (SNR) 
and the structure of the noise (stationary, nonstationary, white or periodic) 
[El-Maleh k Kabal 97] and is characterized by the degree and severity of speech 
clipping and the percentage of speech activity^ it indicates. If the VAD fails to 
detect every speech event, speech quality will be degraded by clipping. 

The decision of the VAD should be "fail-safe", i.e. if the decision is in doubt, 
it should indicate "speech present", because it is more harmful to classify speech 
as noise as the other way round. Another requirement on the VAD algorithm is 
the possibility to self-adapt to the changing level of background noise, so that 
its relevant thresholds should be determined from measurements made directly 
on the processed input signal [Rabiner & Sambur 75]. To give reliable detection, 
the threshold must be sufficiently above the noise level, otherwise noise could be 
identified as speech, but not so far above as to miss low level parts of speech by 
interpreting them as noise. 

During recognition of speech segments, the VAD must present a fast attack 

^The percentage of speech activity is the percentage of time during which the VAD is active. 
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period, which means that the algorithm must identify precisely the beginning of 
an utterance. This is a difficult task especially when an utterance begins with 
weak, i.e. low energy fricatives ( / f / , / th / , /h / ) or weak plosive bursts ( /p / , / t / , 
/k / ) [Rabiner & Schafer 78]. At the end of an utterance the algorithm has to 
declare the first few frames of silence after a detected speech burst to still be 
speech. This procedure is called hangover and it minimizes the probability of 
missing low-energy unvoiced speech at the end of the utterance, such as final 
nasals, voiced fricatives (/v/), which become devoiced at the end of words or 
trailing off of vowel sounds. 

The VAD hangover period is very important in eliminating mid-burst clipping 
of low level speech [GSM Rec. 06.32 95]. There is a certain minimum duration a 
speech burst must exceed before it is prolonged by adding the hangover. Other-
wise, noise spikes, falsely detected as speech, could be extended. The hangover 
mechanism is not efficient in correcting isolated VAD errors, e.g. a 1 among a 
sequence of zeros or vice versa. Such errors can be corrected by accepting a delay 
of 2 or 3 frames in the VAD decision and monitor the decisions in neighbouring 
frames. If the VAD decision of the current frame is different from that of the 
close neighbours, the VAD flag of the current frame is changed to be similar to 
the decision of the neighbouring frames [El-Maleh & Kabal 97]. This procedure 
is repeated for every frame, to remove any isolated errors. 

7.1 Voice Activity Detection 
Accuracy, robustness to noise, simplicity, adaptation and real-time processing are 
some of the required features of a good VAD. 
The basic principie of a VAD is that it extracts some measured features or quan-
tities from the input signal and then compares these values with thresholds, 
usually extracted from speech-free periods [El-Maleh k Kabal 97]. The design 
of a VAD consists in selecting these features for the speech/noise decision, and 
the definition and update rules for the thresholds. If the measured values exceed 
the thresholds, voice activity is assumed. The VAD algorithm outputs a binary 
decision on a frame-by-frame basis, where a frame is usually 20-40 ms long. 

The most common features used in the detection process of speech in noise 

• short-time energy 

• zero Crossing rate 

• LPC coefficients. 
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More complex VADs use cepstral features, formant shape [Hoyt & Wechsler 94] 
or least-squares periodicity measures [Tucker 92] as decision features. Concave 
or convex formant patterns could be observed in speech but not in noise. Thus, 
analyzing the formant shape could give Information about the presence of speech 
in noise. 

The simplest approach to speech detection is an energy detector, which com-
pares the short-term energy of the input signal to its long-term energy or to a 
predefined energy threshold. An energy based algorithm which makes use of 
two thresholds is presented in [Harrison et al. 86]: the lower threshold is set to 
1.2 times the estimated background noise energy and the upper to 1.5 times the 
noise energy. The beginning point of speech is chosen as the point when the sig-
nal energy last crosses the lower threshold, before it crosses the upper threshold. 
Correspondingly, the ending point of speech is considered to be the point when 
the signal energy first crosses the lower threshold after it has crossed the upper 
threshold. The algorithm is a sample-by-sample realization and thus computa-
tionally very demanding. 
The energy computation can be performed in the frequency domain as well 
[Pollak et al. 93]. In this case the algorithm works on signal segments rather 
than for each sample of the signal, the segment energy being calculated from the 
DFT coefficients of the considered signal segment. The algorithm is simple, but 
gives good results only for positive SNRs. 

Using adaptive thresholds which follow the changing level of estimated back-
ground noise, a certain iniţial estimate of the noise parameters must be con-
sidered. Usually the assumption is made that the first period of the input 
signal is speech-free. This period is appreciated to be in the range of 100 ms 
[Rabiner & Schafer 78] over 320 ms [ITU Rec. G.729] to even 1 second as it is 
considered to be necessary in [Harrison et al. 86]. 

Another possibility of detection in the frequency domain consists in spectra 
comparison, where low energy unvoiced sounds of high frequency and high energy 
voiced sounds of low frequency equally contribute to the result. This makes it 
easier to detect weaker high frequency sounds. A subband approach for empha-
sizing the contribution of the unvoiced signal is considered in [Yang 93]. The 
SNR factors in different subbands will be evaluated. Since the high frequency 
components of background noise are relatively small, the strong high frequency 
unvoiced sound can be detected. The voice detection criterion used in this ap-
proach is the mean of the SNR factors of the different subbands, which will be 
compared to a predetermined S N R threshold. The S N R r for the k-th subband, 
is defined as the maximum positive SNR out of the SNRs corresponding to the 
different frequency bins within the respective subband. In the calculation of the 
SNRk factors the continuously updated noise power estimate is taken into ac-
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count. 

Considering the background noise to be stationary over relatively long peri-
ods, the spectral characteristics of the noise will be similar from frame to frame. 
The presence of speech could thus be detected by looking for deviations from the 
spectral characteristics of the background noise [Freeman et al. 89]. 

The weak high frequency unvoiced sounds can also be taken into consideration 
by tracing the zero crossing rate of the noisy signal. Besides the energy compu-
tation, an additional simple measurement is performed, the so-called zero (level) 
crossing rate defined as the number of times succesive samples have different 
algebraic signs [Rabiner & Schafer 78]. The rate at which zero crossings occur is 
a simple estimate of spectral properties obtained in the time domain, based on 
the short-time average zero crossing rate. 
For a signal x[n] the zero crossing rate Z[n] is determined as follows: 

+ 00 
Z[n] = I si(jn{x[m]) - sign{x[Tn - 1]) | w[n - m] (7.1) 

m=-oo 

where 
r 1 if x[Tn] > O 

xlrn]) = si(jn(x[rn]) — (7.2) 
- l otherwise 

and ^ ^ 

v[m\ = 
if O < m < Â  - 1 

(7.3) 2N 

O otherwise 

Usually N is chosen to correspond to a window of 10 ms duration. Similarly to 
the energy computation, the zero crossing rate can also be computed at a reduced 
sampling rate, e.g. every 10 ms. 
The energy of voiced speech is concentrated below 3 kHz, whereas the unvoiced 
speech energy is concentrated at high frequencies. For unvoiced speech, the mean 
short time average zero crossing rate per 10 ms is about 30, for voiced speech it is 
about 5 [Rowden 91]. As unvoiced speech has generally low energy, the zero cross-
ing rate is a good measure for detecting unvoiced speech [Rabiner & Sambur 75] 
e.g. in noise. From a table containing a range of values for the energy and 
zero crossing rate for voiced speech, unvoiced speech and silence, presented in 
[Al-Hashemy & Taha 88], it can be concluded that in low energy regions the zero 
crossing rate is the decisive measurement for detecting speech. 

The linear prediction residual or linear prediction error is another common fea-
ture used in speech detection, furthermore, it can also be used in the classification 
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of speech as voiced or unvoiced. Feeding into the VAD the linear prediction resid-
ual instead of the input speech signal it was found that the accuracy of the VAD 
decision had been improved in almost all cases [El-Maleh k Kabal 97]. 

Different VAD algorithms have been standardized such as the one described 
in [ITU Rec. G.729]. Here a set of difference parameters concerning the full band 
energy, the low band energy, the zero-crossing rate and a spectral measure (line 
spectral frequencies derived from the linear prediction coefficients) is extracted. 
These parameters will be used for a multi-boundary iniţial decision in the space 
of the four difference measures. If none of the fourteen boundary decisions is 
true, the iniţial voice activity decision is set to 0. The final decision is obtained 
after smoothing, thus reflecting the long-term stationary nature of the speech sig-
nal. The set of differential parameters is obtained at each frame and represents 
a difference measure between the current frame parameters and the running av-
erages of the background noise characteristics. These averages are updated only 
in the presence of background noise using a first order Auto-Regressive (AR) 
scheme. Different AR coefficients are used for different parameters and different 
sets of coefficients arc considered when a large change of the background noise 
characteristics had been detected. Initialization of the running averages of the 
background noise is performed during the first 320 ms for which it is assumed 
that only noise is present. 

For a mobile environment, the biggest difficulty lies in detecting low level 
speech in the presence of a range of different types of high background noise. 
When parts of the speech utterance are buried below the background noise, it 
is very hard to distinguish between speech and noise using only simple level de-
tection algorithms. Under these conditions, spectral characteristics of the input 
signal must also be taken into consideration. 

The GSM VAD [GSM Rec. 06.32 95] incorporates an inverse filter and an 
adaptive threshold which are updated during noise-only periods. As it is danger-
ous for the VAD to update the inverse filter autocorrelated predictor coefficients 
and the threshold on the basis of its own decision, a secondary VAD is used to 
provide the speech/noise decision for the update periods. The secondary VAD 
makes its decision based on the spectral distorsion between consecutive frames. If 
this distorsion is below a defined threshold for a sufficiently long period of time 
and if no pitch component is detected, it is assumed that no speech has been 
detected and the coefficients and the noise dependent threshold can be updated. 
The simplified block diagram of the algorithm is presented in Figure 7.1. If speech 
is present, the noise is attenuated by the inverse filter, leaving mostly deviations 
from the spectral characteristics of noise which are assumed to be speech. The 
energy of the filtered signal is compared to the noise dependent threshold. If 
the energy is greater than the threshold, speech has been detected. To eliminate 
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Figure 7.1: GSM voice activity detector block diagram 

mid-burst clipping of low level speech, a hangover period of five frames is added, 
presuming the speech burst is at least three frames long. 
The major weakness of the GSM VAD is found to be its assumption of the sta-
tionarity of background noise [El-Maleh k Kabal 97], which is not always true in 
mobile environments. Also, its performance deteriorates for SNR below 20 dB. 
Modifications to the algorithm improving the results of the VAD are presented 
in [Srinivasan & Gersho 93]. These modifications are concerning the lower fre-
quencies, where most of the mobile noise energy is present and the GSM VAD is 
not very effective. Therefore a multiband energy comparison is proposed, with 
the goal of increasing the sensitivity of the VAD at low frequencies. This scheme 
compares the energy levels in four different subbands to corresponding adaptive 
thresholds. If any one of these thresholds is exceeded, the presence of speech will 
be indicated. 

7.2 Double-Talk Detection 
Double-talk is defined to be the period of time when both the far-end and the 
near-end speakers are active. Diiring this situation the signal captured by the 
microphone consists of the near-end talk and the disturbing echo of the far-end 
speaker. In the acoustic echo cancellation topic, double-talk situations have to 
be detected in order to prevent misadjustment of the echo canceller. If the adap-
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tation process is not disabled when double-talk occurs, the filter diverges and the 
result are audible clicks and pops in the output speech. 

The simplest double-talk detector compares the signal level of the near-end 
speech to the reference far-end speech [Ganapathiraju & Picone 97]. If the far-
end signal level is much higher than the microphone signal, then there is no 
near-end activity and the acoustic echo canceller is allowed to filter and adapt as 
well. After detecting near-end speech, adaptation will be stopped. 

The short-time estimate of the error signal e[n] can be also used by itself 
for detecting double-talk [Kuo & Pan 93], [Kuo & Pan 94]. After finding the 
maximum Pmax and minimum P^in of the error function during a certain period 
of L samples, double-talk is detected when the error level satisfies the following 
conditions: 

Perror > {O.^Pmm + Prmn) (7.4) 
which means that double-talk has started and 

Perror < {O.bPmm " Pmin) (7.5) 

when double-talk ends. Pmm is defined as the difference between Pmax and Pmin-

Another simple measure for detecting double-talk is dealing with the ratio 
[Johnson et al. 90] defined in Eq. (7.6). If the condition 

.T2[n] 

is satisfied, it can be considered that double-talk is present. ^ is a small positive 
constant related to the allowable parameter estimation error. 

The correlation measure between the loudspeaker and the microphone signals 
is a good indication of the occurrence of double-talk. In [Heitkămper 94] and 
[Heitkămper 97] the short time estimates of the far-end signal x jn ] and of the 
error signal es[n] are computed using first order rccursive filters with different 
time constants depending on whether the corresponding signal is rising or falling. 
A small time constant for the rising signal allows a fast tracking of the beginning 
of speech sequences [Heitkămper & Walker 93]. 
The double-talk situation is characterized by an increase of the error signal above 
the estimated echo caused by the far-end speaker. Thus, the crosscorrelation 
Pxy[n,l] between the loudspeaker and the microphone signal is an indication 
whether the microphone signal is mainly caused by the far-end signal: 
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where N is chosen equivalently for 50 ms, l will be varied in the range of about 
10 ms, in order to include the expected delay of the direct sound wave of the 
system, i.e. the main delay of the echo signal due to the echo path. n represents 
the time instant. If this measure is tending to 1, only the far-end speaker is 
considered to be active and a coupling factor 

at time instant n can be calculated and updated, respectively . The product 
Cim[N] XS[TI] is an estimate of the error signal when no near-end activity is present. 
The coupling factor will be updated only in the absence of double-talk, i.e. when 
the estimated error signal originating from the loudspeaker is equal to or greater 
than the short-term average magnitude of the error signal. 
Thus the condition for detecting double-talk is the presence of far-end activity 
and a stronger error signal than the estimated echo originating from the loud-
speaker signal [Heitkămper 97]. 

Spectral measures such as the Itakura-Saito or the cepstral distance can also 
be used as double-talk detectors [Boudy et al. 95]. These measures compare the 
microphone signal composed of the near-end speech, the acoustic echo and the 
background noise, to the loudspeaker signal. A sudden increase in the measure 
implies the presence of double-talk or background noise. 

The double-talk situation can be detected in the frequency domain as well. 
The magnitude squared coherence (MSC) computed between the microphone and 
the loudspeaker signal is considered to be a useful measure in detecting double-
talk situations [Le Bouquin-Jeannes et al. 96], [Gănsler et al. 96]. Because of the 
difficulty of identifying the echo in the presence of noise, a noise reduction will 
be first performed on the microphone signal, and the coherence function will 
then be calculated between the filtered microphone signal and the loudspeaker 
signal. On each block k the MSC will be averaged over all the frequencies. It 
was experimentally found that a separate averaging of the numerator and the 
denominator of the MSC leads to a more significant measure: 

E Hj.uAîM" 
(7.9) 

Jl^lyjUiVjuXî^^] Ixxlf^k] 

where is the cross power spectral density (psd) between the filtered 
microphone signal yfut and the loudspeaker signal x, J/^ ^^d jxx[f,k] 
are the psd's of y/m and x. F represents the set of frequencies and k is the block 
index. If the noise is sufficiently reduced, this measure will be close to 1 for 
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exclusive far-end activity and will decrease in any other situation. 

The double-talk problem can also be considered from a different point of view. 
The detector presented in [Ye & Wu 91] does not actually detect the double-talk 
periods, but rather decides whether the adaptive filter has converged or not. 
The detector is based on the principie of orthogonality, which states that after 
convergence to the optimal solution the following equation is fulfilled: 

^[e[n] x[n]] = O (7.10) 

After convergence, the adaptation is halted in order to protect the adaptive filter 
from being disturbed by double-talk interference. If the adaptive filter has not 
converged yet or the echo path has changed, the adaptation will continue. To dis-
tinguish the echo path variations from double-talk situations, the average cross-
correlation between the loudspeaker signal x[n - i] and the error signal e[n] is 
calculated. The crosscorrelation coefficients are updated using an exponentially 
weighting recursive algorithm with an weighting factor 0.9 < A < 1. Whenever 
this average value exceeds a certain properly chosen threshold, the detector de-
cides that the acoustic echo canceller had not converged yet or that a change 
in the echo path had happened. The adaptation process will then continue. 
Otherwise, if the average crosscorrelation is less than the chosen threshold, the 
adaptation is halted, thus avoiding the possibility of disturbance in a double-talk 
situation. The detection threshold should be chosen just a little bit greater than 
the average crosscorrelation value in the steady state. A too big value will make 
the tracking of the echo path difficult. On the other hand, a too small value will 
increase the misadjustment during double-talk. 

7.3 Speech Detector with Variable Threshold 
The combined sytem of acoustic echo cancellation and noise reduction presented 
in Chapter 5 is also provided with two VADs, oue on the far-end, the other on the 
near-end side. The far-end VAD will control the acoustic echo canceller, while 
the near-end VAD's noise estimate output will be used in the stepsize control 
algorithm presented on page 96 and in the noise reduction algorithm described 
in Chapter 8. 
In accordance to the suggested simplicity and ease of implementation of the pro-
posed system, an energy based voice activity detection will be performcd. 

The new voice detection algorithm developed and tested in this dissertation 
makes use of an energy based adaptive threshold. 
After an iniţial period of 100 ms, when it is assumed that the speaker has not yet 
started to talk, an iniţial background noise estimate is computed. This estimate 
will be the starting-point for the definition of the adaptive threshold. The just 
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xlO' 

6 8 10 12 14 [s] 
Noise Estimate 

Figure 7.4: VAD results for a repeated sequence of speech signal (SNR = 20dB) 

The essence of the above described algorithm can be presented by the following 
C code lines: 

for (i=l; i<MaxFraineCount; i++) 
{ 

if (VAD.Decision == 0) 
{ 

NoiseEstimateCi] = NoiseEstimate[i-1] * Beta + 

(l-Beta) * CurrentFrameEnergy; 

AdaptTlireshCi] = NoiseEstimate [i] • k_on; 
} 
else 

AdaptThreshCi] = AdaptThresh[i-l] * k_off; 

} 
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where the variable NoiseEstimate[i] represents the estimated background noise 
energy for frame i, Beta is the lowpass filter coefficient, typically set to 0.9 and 
CurrentFrameEnergy represents the energy of the current frame. 

A very important issue in the voice activity detection topic is the possibility of 
accumulating errors during noise detection. In such cases, what seem to be very 
long speech pauses or continuous speech activity are very likely the result from 
failures in the detection. This happens when a too high or a too low threshold 
cannot be correctly updated so as to permit a proper function of the detection al-
gorithm. Therefore the algorithm proposed in this work was tested on a signal of 
double length consisting of two identical speech segments. The same decisions for 
both segments had to be expected. The results presented in Figure 7.4 confirm 
the expectations. 

The double-talk detector implemented in this work is based on the algorithm 
presented in [Johnson et al. 90] and doscribed by Eq. (7.6). Figure 7.5 presents 
the loudspeaker signal, the microphone signal (composed of the echo signal and 
a near-end speech signal) and the output of the double-talk detector. It can be 
observed that the DTD decision is set to one only during periods when near-end 
speech is present at the microphone input. Thus double-talk segments can be 
detected. During near-end periods of silence the DTD yields zero at its output. 
In this case the microphone input signal will be containing only the echo signal 
resulting from the emitted loudspeaker signal. 

As already mentioned in Chapter 5, when speech is present on the far-end 
side, this information being supplied by the far-end VAD, the actions performed 
by the AEC will be determined by the output of the DTD: 

• if no double-talk is detected, the AEC performs normally, filtering and 
adaptation of the transversal filter coefficients takes place 

• if double-talk is detected, the filter coefficient adaptation process is stopped, 
while filtering still continues. Thus the filter is prevented from divergence. 

The output of the DTD is irrelevant if there is no speech radiated by the loud-
speaker into the vehicle interior. 

7.4 Conclusions 
The function of voice activity and double-talk detectors is very important in 
acoustic echo cancellation as well as in noise reduction systems, where there is 
need of an algorithm that has the ability to decide whether a signal segment 
contains speech or only noise. Thus, the AEC has to stop its adaptation when 
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4 6 8 10 12 
Microphone Speech Signal 

6 8 10 12 14 
DTD Decision 

Figure 7.5: DTD results 

the VAD applied to the far-end signal decides that there is no speech present. In 
this situation the double-talk detector must control the filtering process of the 
AEC. If a near-end speaker is active, the microphone signal is no longer allowed 
to be filtered, otherwise the near-end speech will be distorted by the AEC. 
In the field of speech enhancement, the background noise characteristics can be 
learned during speech pauses. That is why VADs are also necessary in noise 
reduction systems, especially in those with only one microphone such as the new 
algorithm presented in Chapter 8. 
After presenting the most commonly used speech detectors, a new VAD has been 
proposed in this chapter. It uses an adaptive threshold which will be continuously 
updated, during speech pauses as well as during speech activity. Only the update 
procedure differs. 
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During speech pauses the estimated background noise will be updated and at 
the same time the adaptive threshold which is a factor {kon) times the estimated 
noise. When speech activity is detected, the adaptive threshold will be grad-
ually decreased by applying a factor koff < 1, but very close to 1, after every 
new "speech detected" decision of the VAD. This procedure leads to a slowly 
decreasing threshold thus prolonging the detected speech period. The reason for 
introducing this new updating rule during speech periods was to avoid the neces-
sity of hangover periods at the end of an utterance, which are meant to prevent 
the possible low-energy unvoiced sounds from being considered as noise. 
The new algorithm thus performs a reduction of computaţional complexity. 
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Chapter 8 

Noise Reduction System 

Speech enhancement methods, as presented in Chapter 3, can be classified ac-
cording to the number of microphones used and the domain of implementation, 
which can be either the time or the frequency domain. 

Single microphone systems have the advantage of using simple standard record-
ing equipment, but the algorithm is able to cancel only stationary noise. The 
method makes use of a speech/noise or voice activity detector. It assumes that 
the noise estimate calculated during speech pauses is vaHd during periods of 
speech as well. Rapidly varying noise can thus caiise problems. Systems with 
two or more microphones need more hardware and some knowledge aboiit the 
place of the desired source, but therefore permit cancellation of nonstationary or 
very strong interfering noise. As handsfree equipments are consumer products, 
the "one microphone approach" is preferred by the manufacturers. 

Speech enhancement algorithms can be implemented in the time domain or in 
the frequency domain. The decision for a time domain implementation had been 
taken in Chapter 5. Any transformation into the frequency domain is associated 
with a time delay needed for the processing of an FFT. The time limitation, 
given by the GSM requirements of no more than 39 ms of delay allowed for AEC 
and NR processing, leads to the challenging field of time domain noise reduction. 
When only one noisy observation is available, an effective and robust speech 
detector plays an important role in noise suppression systems. 

8.1 Noise Reduction Algorithm in the Time Do-
main 

In this thesis the "one microphone approach" and the time domain implemen-
tation are considered. The noise reduction system included in the proposed 
combined system is the first projection order of the APA, in the direct linear 
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transversal form with a filter length of 256. The implemented structure is shown 
in Figure 8.1. 

Figure 8.1: The proposed noise reduction system 

The estimated noise, delivered by a voice activity detector, is applied to the 
desired signal input of the algorithm, while the noisy signal is considered to be 
the reference input signal of the NLMS. The algorithm will adapt so as to output 
a filtered signal that is as close as possible to the desired noise estimate. The 
filtered signal will then be subtracted from the noisy input signal, thus supplying 
an enhanced signal at the noise reduction system's output. 

Time [s] Frequency [kHz] 

a. time domain b. spectrogram 

Figure 8.2: Clean speech signal 

As already mentioned, the quality of the estimated noise signal is decisive. The 
noise reduction stands or falls by the VAD estimated background noise. During 
experiments the noise signal was known (See section 5.4.), as it was the signal 
added to the clean speech in order to get the noisy speech signal. Considering 
the clean speech signal as represented in Figure 8.2 and the noisy signal from 
Figure 8.3, two possible results given by the proposed noise reduction system are 
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a. time domain b. spectrogram 

Figure 8.3: Noisy speech signal (SNR = - 1 0 dB) 

shown in Figures 8.4 and 8.5. 

2 3 4 
Timefs] 

a. time domain 
"•"i'̂ ® [s] - Frequency [kHz] 

b. spectrogram 

Figure 8.4: Noisy speech signal of Figure 8.3 enhanced by the proposed system 
with known noise reference 

Figure 8.4 represents the best case of speech enhancement achievable by the 
proposed noise reduction system, namely when using an ideal VAD for the back-
ground noise estimation. The ideal VAD can be approximated by applying the 
known noise signal to the algorithm instead of the estimated noise signal. It can 
be seen that the noise could be almost entirely removed without distorting the 
speech signal. The enhanced waveform is very close to that of the clean speech 
signal (Figure 8.2). A minimal remaining amount of noise can be observed only 
during the short speech-free segments. 
The speech enhancement performance when using a simple energy based VAD, 
as the one presented in section 7.3, is represented in Figure 8.5. An overall at-
tenuation of the noisy signal can be noticed. The noise reduction is minimal and 
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1 2 3 4 5 
Time (si 

a. time domain 

Time [s] ^ Frequency [kHz] 

b. spectrogram 

Figure 8.5: Noisy speech signal of Figure 8.3 enhanced by the proposed system 
with estimated noise reference 

obviously not acceptable for a noise reduction system in a noisy mobile environ-
ment. 

The Itakura-Saito distorsion measure, described in section 5.3.2 as an objec-
tive measure characterizing the similarity of two signals, can give more Informa-
tion about the quality of the enhancement procedure. The noisy speech signal of 
Figure 8.3 shows a mean Itakura-Saito distance to the clean signal of 2.2. The 
best possible enhancement made available by the proposed noise reduction sys-
tem will yield an Itakura-Saito distance of 0.9. 
When using the simple energy based VAD, the performance of the NR system 
will lead to a distorsion measure of 2.0. This is not a satisfying result for the 
proposed system. The reason lies in the insufficient noise estimation performance 
of the VAD algorithm. More complex detectors would certainly deliver better 
results. 

8.2 Comparison to Noise Reduction in the Fre-
quency Domain 

The frequency domain has also been considered. The linear and nonlinear spec-
tral subtraction as well as the spectral scaling have been implemented and tested. 
In the following the time and frequency domain results due to nonlinear spectral 
subtraction are presented and compared to the proposed time domain noise re-
duction system based on the APA of dimension one. 

Analyzing Figure 8.6, which represents the enhanced signal after nonlinear 
spectral subtraction and comparing it to Figure 8.2 it can be observed that in 
the time domain representation the waveform is partially completely changed. 
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Time [s] Frequency [kHz] 

a. time domain b. time and frequency domain 

Figure 8.6: Noisy speech signal of Figure 8.3 enhanced by Nonlinear Spectral 
Subtraction 

The background noise had been removed satisfactorily but to the detriment of 
speech distorsion. As to the frequency domain graph, not only the low frequency 
but also higher frequency components belonging to the speech signal have been 
partially removed. 
When listening to the enhanced signal it can be noticed that the background noise 
is almost totally removed, but there are some annoying musical tones present 
which cannot be ignored. The Itakura-Saito distance between the enhanced signal 
and the clean speech signal supplies a value of 3.2. This means a rather distorted 
signal after noise reduction. 
It is possible to find a compromise between the amount of noise being removed 
and the musical tones. Setting the noise floor to a higher value will leave more 
noise in the enhanced signal but the musical noise will be less disturbing. 

8.3 Conclusions 
When using handsfree operation in the noisy environment of a moving car, there 
is need of a speech enhancement system. The background noise from sources such 
as road, wind, fan or tyres leads to a reduction in conversaţional speech quality. 
Noise reduction systems intend to achieve an increase in intelligibility keeping 
the distorsions introduced by the enhancement algorithm at an acceptable, not 
annoying level. The naturalness of the residual noise is very important. Additive 
noise can be suppressed by capturing it separately from the desired speech and 
subtracting it from the noisy signal. This requires a second microphone for pro-
viding the noise reference. 
Because of the low cost restriction of handsfree equipment, only one microphone 
will be available, analysis during speech pauses will furnish the required noise esti-
mate. Single microphone speech enhancement systems make use of a speech/noise 
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or voice activity detector for estimating the background noise. This method leads 
to less enhancement than the two microphone system, since it assumes that noise 
during speech pauses is representative of noise during periods of speech. Thus, 
rapidly varying noise can cause problems. 
As mentioned in Chapter 3, due to the psychoacoustic properties of the human 
ear, modifications to the noisy signal are best performed in the spectral domain. 
As any transform into the frequency domain is connected to a time delay and 
because of the GSM restriction concerning digital processing delays, in this thesis 
the time domain implementation will be investigated. 

The proposed noise reduction system works in the time domain on a sample-
by-sample basis. The algorithm is based on the first order affine projection 
algorithm, i.e. the NLMS algorithm. The estimated noise, delivered by a voice 
activity detector, is applied to the desired signal input of the algorithm, while 
the noisy signal is considered to be the reference input signal of the NLMS. The 
algorithm will adapt so as to output a filtered signal that is as close as possible 
to the desired noise estimate. This signal will then be subtracted from the noisy 
input signal. 
The algorithm needs a very good estimate of the background noise in order to 
achieve acceptable results. A standard low complexity VAD is not sufficient, it 
must be a powerful algorithm. The experimental results with the known back-
ground noise lead to very good noise reduction performance, but when implement-
ing the simple energy based VAD the enhancement is minimal and unacceptable 
for a mobile environment. 

This leads to the conclusion that either a very sophisticated VAD must be 
available or the noise reduction has to be performed in the frequency domain 
where the human ear is not so sensitive to distorsions introduced by a nonideal 
noise estimate. 
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Chapter 9 

Summary 

The main goal of this thesis is the investigation of algorithms concerning acoiistic 
echo compensation and noise reduction and the realization of a combined system 
suitable for car handsfree appUcations in the GSM network. The system is com-
pleted by the use of voice activity and double-talk detection algorithms which are 
very important for the correct operation of echo cancellation and noise reduction. 
As the combined AEC and NR system will be running on a digital signal proces-
sor, the computaţional complexity of the proposed algorithms has to be reduced 
and the algorithms must be suited for fixed-point implementation. 

For a comfortable handsfree communication, the acoustic echo generated by 
the loudspeaker-room-microphone system has to be suppressed. The acoustic 
echo canceller provides an adaptive estimate of the room impulse, the echo com-
pensation is performed by subtracting this synthetically generated estimate from 
the microphone input signal. In a car environment a second impairment exists, 
namely the omnipresent background noise from sources such as road, wind, fan or 
tyres. The perceived effect of this additive noise is a reduction in speech quality. 
For a better speech intelligibility noise reduction is very important. 

The exact knowledge of the environmental conditions in which GSM car 
handsfree systems operate is crucial in the development of combined acoustic 
echo cancellation and noise reduction systems. As the acoustic echo canceller has 
the task of suppressing the echo generated by the loudspeaker-room-microphone 
system, first a digital replica of the LRMS must be defined {Chapter 4). Consid-
ering the peculiarities of the time-varying nature of the car cabin environment, 
the applicable algorithms have to be adaptive, which means that the adaptive 
filter has to be a selfdesigning device capable of tracking the echo path varia-
tions. The tranversal FIR filter in the linear direct form has been proposed to be 
used because of its robustness and ease of implementation. IIR filters, although 
computationally less demanding, are much more difficult to handle, especially 
when the filter inherent feedback has to be combined with the adaptation pro-
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cess. Concerning the adaptation algorithm, it has been suggested to perform a 
stochastic gradient algorithm which is numerically robust and computationally 
less demanding than the least-squares algorithms. 

The two separately working systems of AEC and NR can be merged into a 
single symbiotic system. A new combined system is proposed in Chapter 5 hav-
ing its elements working entirely in the time domain. This has been considered 
because of the time constraint of 39 ms of processing time for both acoustic echo 
compensation and noise reduction imposed by the GSM specifications. A noise 
reduction system in the frequency domain, as it is usually considered, would need 
a Fourier Transform implementation which, when the transform is performed over 
256 samples already requires 32 ms of processing time and also more computa-
ţional power than a time domain implementation. Another disadvantage of noise 
reduction performed in the frequency domain are the so-called musical tones that 
appear because of the assumption of short-time spectral stationarity of the noisy 
speech signals and the nonstationarity of the noise. As no reevaluation during 
speech periods is done for the noise estimate computed during speech pauses, 
this estimate will be no longer valid if the noise varies rapidly. A noise reduction 
algorithm in the time domain operating on a sample-by-sample basis would be 
computationally less demanding and would save processing time. 

After implementation and testing of many of the existing algorithms, it was 
found that the affine projection algorithm (APA) in its fast realization is well 
suited for the acoustic echo compensation task. For speech input signals it con-
verges faster than the well-known NLMS algorithm. The additional computation 
effort is reasonable. In Chapter 6 the adaptation procedure in the proposed com-
bined system is discussed. An AEC using the APA is proposed which additionally 
has been made more robust to near-end noise by designing a new stepsize control 
depending on the ratio between the loudspeaker signal power and the estimated 
background power. In high background noise the adaptation coefficient will be 
close to zero thus slowing down the adaptation process. The simulation results 
confirm this assumption. An improvement of the Echo Return Loss Enhance-
ment (ERLE) was achieved for every of the tested projection orders of the APA. 

The performance of the APA has been investigated in the fullband and sub-
bands approach as well. The filter bank implementation seemed to be worth 
examining because of the complexity reduction it promises. As a conclusion to 
the results obtained in noiseless and noisy near-end environments in the subband 
approach, it can be suggested to choose an affine projection algorithm of dimen-
sion 4, where the higher the filter order the better the ERLE and convergence 
performance. Higher dimensions of the affine projection algorithm do not justify 
the increase in computaţional complexity. 
For the fullband approach, which has been considered in this thesis, the affine 
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projection algorithm of order 4 combined with the new adaptive stepsize control 
can be recommended for both noiseless and noisy near-end environments. Higher 
orders of the adaptation algorithm do not justify the extra computaţional re-
quirements and do not offer better results. 

Another important issue in the handsfree topic is the reliable detection of 
the presence of speech. Therefore in Chapter 7 a reinforced attention had been 
paid to voice activity detectors (VAD) which have the task of preserving the 
echo compensation algorithm from adapting on a false signal and thereby dis-
torting the signal picked up by the microphone. Another important application 
of speech detectors is their importance in speech enhancement because of their 
ability to estimate the background noise during speech pauses. In accordance to 
the suggested simplicity and ease of implementation of the proposed system a 
new energy based variable threshold voice activity detector has been developed 
and tested. The update procedure of the adaptive threshold differs according to 
the current detected state of "speech" or "noise". This algorithm represents an 
improvement to the existing energy based algorithms in that is needs no extra 
hangover processing. 

As the combined system is supposed to perform entirely in the time domain, 
in Chapter 8 the noise reduction system has been designed on the basis of the first 
projection order of the APA. Testing it with known noise estimates showed a very 
good performance of noise reduction. But when embedded in the whole system 
and getting its noise reference from a simple, energy based VAD, the quality was 
found to be inadequate. Therefore it was concluded, that either a sophisticated 
VAD has to be used or the noise reduction must be performed in the frequency 
domain where the human ear is not so sensitive to distorsions introduced by a 
nonideal noise estimate. 

The following items are claimed to be original contributions of this thesis: 
• The approach of considering AEC and NR entirely processing in the time 

domain which points to a reduction of processing delay inherent to any 
frequency domain implementation {Chapter 5) 

• The treatment of the combined system as a whole including the design of 
voice activity detection in the context of GSM, which according to the stud-
ied literature until now has been considered as different topics {Chapter 5) 

• The theoretical derivation of the noise-dependency of the affine projection 
algorithm, which has been confirmed by investigations made in real noisy 
near-end environment (Eq. (6.24)) 

• The investigations made on the APA in noisy environments, which in this 
form have not yet been presented in the literature {Chapter 6) 

BUPT



128 CHAPTER 9. SUMMARY 

• The subband investigations made on the APA in noisy environment: for the 
filter bank approach there was proposed to use a subband implementation 
of a maximum APA dimension of 4 (section 6.3.2) 

• The new stepsize control algorithm proposed for the enhancement of the 
APA performance in noisy environments, which permits a good improve-
ment of the ERLE performance (Eq. (6.25) in section 6.4) 

• The new VAD algorithm with different variable thresholds depending on 
whether noise or speech had been detected, making the hangover procedure 
unnecessary {Chapter 7) 

• The conclusion that it is not possible to implement a noise reduction system 
with one microphone in the time domain using simple VAD algorithms. A 
very good noise estimate for the noise reduction system is a must in this 
case {Chapter 8) 

• In the decision process for an adaptive algorithm and a noise reduction 
system with the appropriate speech detectors, a vast bibliographic inves-
tigation has been made. This was finalized by setting up a data base 
containing the main information to the studied topics 

• For testing the algorithms under research, a library of special simulation 
blocks was made available, completing the existing general blocks of the 
test environment and permitting the future realistic investigation of the 
algorithms of interest 
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Appendix A 

Basics of Speech Signals 

The speech vvaveform is an acoustic sound pressiire wave that originates in the 
human speech production systern. The rnain cornponents of the speech system are 
the lungs, the trachea, the larynx, the pharyngeal cavity, tlie oral cavity and the 
nasal cavity. The pharyngeal and oral cavities are nsually gronped and rcîferred 
to as one unit, the so-called vocal tract. 
Two main methods by which speech sounds are produced [Waters 91] can be 
distinguished: 

• by voicing, when the vocal cords located in the larynx are vibrating at a 
constant frequency, thus generating the vowels 

• by the turbulent flow of air at sorne point of constriction in the vocal tract, 
which gives arise to unvoiced sounds like the consonants 

The vocal tract shape causes certain frequencies in the excitation to be ani])lified 
and attenuates other frequencies, thus a set of resonant frequenci(^s can be found. 
The locations of these resonances in the frequency doinain depend upon the shape 
and dimensions of the vocal tract. Since these frequencies form the overall spec-
trum, they are called formants. The fundamental frequency will referred to as 
FQ [Rabiner & Schafer 78]. Pitch is another terni that is often interchangeably 
used with the fundamental frequency. In principie, there are an infinite number 
of formants in a given sound, but in practice usually only 3-5 will be found in the 
Nyquist band after sampling [Deller et al. 93]. 

When the vocal cords vibrate, harmonics are produced at nniltii)les of the 
fundametal frequency, the amplitude of the harmonics decreasing with incr(;as-
ing frequency. Such voiced speech has a spectruni with energy concentrated at 
discrete frequencies, i.e. the fundamental frequency FQ of the vocal folds and 
multiples of FQ, i.e harmonics. The average fundamental frec^uc^ncy for nu^n is 
somewhere between 50-250 Hz, for women it is in the range of 120-500 Hz. About 
one-third of speech is completely aperiodic (unvoiced), resulting from a randorn 
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excitation that resembles white noise, caused by air rapidly passing through a 
narrow constriction in the vocal tract. 

The spectral characteristics of speech are time-varying, since the speech pro-
duction system changes rapidly over time. Therefore speech will be divided into 
segments that possess similar acoustic properties over short periods of time. 
Due to the limitations of the organs for human speech production and the audi-
tory system, typical human speech communication is limited to a bandwidth of 
7-8 kHz. 

The smallest element of speech which indicates a difference in linguistic mean-
ing is called phonern. In fact the phonem really represents a class of sounds that 
convey the same meaning, because a phonem will have a variety of acoustic man-
ifestations in the course of flowing speech [Deller et al. 93]. A phonem is written 
between slashes, e.g. / f / in "free". The phonems can be classified into vowels, 
diphtongs, semi-vowels as /w/ or / r / , plosives like /b / , / d / , fricatives as / f / , / s / , 
affricates (/ tsh/ and /dzh/) and nasals /m/ , /ng/ . 

As a speaker utters a series phonemes, each of a brief duration averaging 
about 80 ms [Rabiner & Schafer 78], both FQ and vocal tract shape evolve in 
time, yielding a dynamic speech signal. For accurate modelling, speech analysis 
must be restricted to brief sections of the signal, during which the production 
source has approximately stationary characteristics. During a frame or window 
of about 10 to 30 ms, the vocal tract usually retains a relatively constant shape 
and the corresponding short-time speech spectrum is a good measure of the state 
of the sound source. Much of the time, speech is almost periodic and thus has an 
approximate line spectrum, primarily consisting of energy centered around har-
monics of Fq. 

The effect of the vocal cords and the vocal tract is to introduce a measure of 
correlation and predictability on the random, noise-like air flow from the lungs 
[Vaseghi 96]. A model for speech production is presented in Figure 3.5. Human 
speech production can be modeled as a filter (due to the vocal tract) acting on an 
excitation waveform [Rabiner k Schafer 78]. The input signal for the digital filter 
is produced either by an impulse train generator offering a harmonic rich repeti-
tive waveform or by a random noise generator. The digital filter, with the same 
characteristics as the vocal tract, will have its parameters varied corresponding 
to the modifications of the vocal tract. The filter is thus time-varying, the rate 
of variation being slow, with parameters updated every 5 to 25 ms. Either of the 
signal sources used in the speech model will produce a broadband spectrum of 
energy in the frequency domain. Frequency shaping [Waters 91] is provided by 
the filter characteristic which consists of a curve where the various resonances of 
the vocal tract appear as peaks. 
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Certam aspects of speech waveforms are more perceptually important than 
others. The auditory system is more sensitive to the presence of energy than to 
the absence of it and tends to ignore many aspects of phase. Thus, speech coding 
and enhancement algorithms concentrate on accurate preservation of peaks in 
the speech amplitude spectrum rather than on phase relationships or energy at 
weaker frequencies. Voiced speech with its high amplitude and concentration of 
energy at low frequency, is more perceptually important than unvoiced speech 
for preserving speech quality. Thus, most enhancement algorithms tend to con-
centrate on improving the periodic portions of speech [Rabiner k Schafer 78]. 

BUPT



132 APPENDIXA. BASICS OF SPEECH SIGNALS 

BUPT



Appendix B 

A Short Description of the GSM 
System 

The specifications of the Pan-European pubUc mobile communication system 
were released by the Groupe Speciale Mobile (GSM) of the Conference Europeenne 
des Administrations des Postes et des Telecommunications (CEPT) by the end 
of 1988. They cover various aspects of the system in 13 sets of recommendations 
[Steele 92]. The system was named after this Groupe Speciale Mobile Committee. 
The main governing body of GSM is the MoU- Memorandum of Understanding. 
The MoU's basic task is to establish internationally compatible GSM networks in 
member countries, and to provide a mechanism to allow for cooperation between 
operators in respect of commercial, operaţional and technical issues, e.g. inter-
naţional roaming, global marketing, harmonisation of tariff principles, definition 
of accounting and billing procedures, legal and regulatory matters, time scales 
for the procurement and deployment of systems [GSM MoU 98b]. 

The GSM system provides a wide range of services and facilities, both voice 
and data, that are compatible with those offered by the fixed Public Service Tele-
phone Networks (PSTN), Public Data Networks (PDN) and Integrated Services 
Digital Networks (ISDN). The great advantage of the GSM system is its com-
patibility of access for any mobile subscriber in any country that operates the 
system. The GSM operating countries provide possibilities for automatic roam-
ing, locating and updating of the mobile subscriber's status. 
The GSM system is a digital system operating in two paired bands, one band 
(890-915 MHz) for the uplink transmission from the mobile to the base station 
and another band, spaced at 45 MHz above it (935-960 MHz), for the down-
link transmission, where the base station transmits and the mobile terminal re-
ceives. The GSM frequency band is partitioned into 124 paired duplex channels 
with 200 kHz channel spacing in each band. The information is transmitted in 
271 kbit/s bursts. 
The most important general characteristics of the GSM system can be listed as 
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follows [Smolka 94]: 

• a narrow band transmission with Time Division Multiple Access (TDMA) 

• full digital speech and signalling transmission 

• constant envelope, continuous phase Gaussian Minimum Shift Keying 
(GMSK) modulation robust against signal fading and interference 

• speech transmission with a bit rate of 13 kbit/s in fullrate and 6.5 kbit/s 
in halfrate mode 

• data transmission at a rate of 2.4 to 9.6 kbit/s 

• up to 8 speech connections per carrier frequency, respectively up to 16 calls 
in halfrate operating mode 

• Voice Activity Detection and Discontinuous Transmission (VAD/DTX) 
which minimizes the battery consumption, as the mobile is transmitting 
only during active speech periods 

• Discontinuous Reception (DRX) which means that the mobile receiver is 
on only when paging blocks are expected to arrive (sleep mode) 

• frequency hopping for minimizing the interference from frequency selective 
fading 

• equalizer for compensating the multipath reception of excess path delays of 
up to 16 /IS 

The speech encoder takes its input as a 13 bit uniform PCM signal from 
the audio part of the mobile station where the signal is sampled at 8,000 sam-
ples/s or from the PSTN via an 8 bit/A-law to 13 bit uniform PCM conver-
sion. The encoded speech is then delivered to the channel encoder, specified in 
[GSM Rec. 05.03 95]. Using an A-law compander, the speech sample bit rate 
is 64 kbit/s. The speech coder reduces this bit rate to an average bit rate of 
13 kbit/s for the encoded bit stream. In the receive direction, the inverse opera-
tions are performed. 
In [GSM Rec. 06.10 95] the mapping between 20 ms blocks of 13 bit uniform 
PCM data to encoded blocks of 260 bits according to the so-called Regular Puise 
Excitation - Long Term Prediction (RPE-LTP) coding scheme and the inverse 
operation, from 260 bits to 160 reconstructed speech samples, are described in 
detail. The codec is specified down to the bit level, thus enabling the verification 
of the implementation by use of a set of test sequences. 

After adding extra bits for error recognition and correction, the bit rate for 
the speech channel to transmit will be 22.8 kbit/s, which corresponds to a block 
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of 456 bits/20 ms. Then interleaving, encryption, burst building and burst mul-
tiplexing is performed. The TDMA frame, made up of 8 timeslots of 156.25 bits, 
is input to the GMSK modulator at a bit-rate of approximately 271 kbits/s. In 
Figure B.l the main elements of the transmission systern are presented. 

64 kbit/s 13.0 kbit/s 22.8 kbit/s 271 kbit/s \ | / 
D / A speech channel equalizer 

converter decoder decoder demodulator receiver 

64 kbit/s 13.0 kbit/s 22.8 kbit/s 271 kbit/s \ y 

Figure B.l: The elements of the GSM communication system 

The combined system of acoustic echo compensation and noise reduction pro-
posed in this thesis will be positioned between the loudspeaker and the micro-
phone signal path, before the D/A and after the A/D converters, the functions 
being performed in the digital domain. 
Figure B.2 shows the positioning of the proposed combined system in the GSM 

speech 
decoder 

speech 
encoder 

1 I i2 D/A 

combined system 
of 

acoustic echo cancellation (AEC) 
and 

noise reduction (NR) 

3 A / D 
converter transmit 

A / D 
converter - a 

Figure B.2: Proposed combined system in the GSM communication system 

system. The elements of Figure B.l have been rearranged so that the integration 
of Figure 5.5 from page 64 can be easily observed. The AEC+NR system will 
be active only during handsfree operation mode. The microphone signal at the 
input of the speech encoder will be free of the acoustic echo due to the car inte-
rior reflections and the background noise will be reduced. In the handy mode, 
when the mobile is not placed in the cradle of the handsfree system, the refer-
ence points 1 and 2 respectively 3 and 4 will be connected directly, acoustic echo 
cancellation and noise reduction being bypassed. The speaker's mouth will be 
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much closer to the microphone input of the mobile phone than in the handsfree 
arrangement, and therefore no special processing concerning acoustic echo can-
cellation and background noise reduction will be necessary. 

The radio subsystem of the GSM system provides a certain number of logical 
channels which can be grouped into two categories: 

• traffic channels for carrying speech and data information 

• signalling channels. 

These logical channels are mapped onto physical channels, defined as a time-
slot, with a timeslot number from O to 7, in a sequence of TDMA frames. Each 
of the 124 paired carrier frequencies supports 8 physical channels mapped onto 
8 timeslots within a TDMA frame. A given physical channel always uses the 
same timeslot number in every TDMA frame, i.e. one timeslot every 4.615 ms. 
As the GSM system also specifies frequency hopping, the physical channel can 
be defined as being a sequence of radio frequency channels and timeslots. 

NSS 

other MSCs 

Figure B.3: GSM network architecture 

Considering Figure B.3, three different subsystems can be noticed within the 
GSM network: 

• the Mobile Station (MS) consisting of the Mobile Equipment (ME) and 
the Subscriber Identification Module (SIM) containing customer specific 
informations 
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the Base Station System (BSS) consisting of a Base Transceiver Station 
(BTS) with transmit, receive and signalling units and the Base Station 
Controller (BSC). The BSC manages the channel assignment and the han-
dover procedure between different cells. A BSC controls a number of BTSs. 
These BTSs will contact the MSs. 

the Network and Switching System (NSS) with the Mobile Switching Center 
(MSC). The MSC, a main element in the general architecture of the GSM 
network, coordinates call setup to and from a GSM user and provides the 
interface with externai networks [Spencer 98]. The MSC also handles mobil-
ity management, via Home and Visitor Location Registers (HLR and VLR) 
and subscriber management via the Equipment Identity Register (EIR) and 
the Authentication Control (AuC). 
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Appendix C 

A Brief Presentation of a GSM 
Handy 

In this Annex a concise presentation of the Siemens approach to a GSM chipset 
is given [Siemens AG 98]. This chipset meets all performance requirements set 
down in the GSM recommendations for speech and data. 
The Siemens HiGOLD is a complete chipset which covers all functions for a 
mobile terminal for GSM both for baseband and radio frequency. It is a continued 
development of the GOLD (GSM One-chip Logic Device) chipset. HiGOLD is 
the integration of microcontroller and digital signal processor in a single package 
which leads to a reduction of system cost, board space requirements and power 
consumption. The Siemens chipset is optimized for applications in very small 
GSM/PCN handhelds for fullrate, enhanced fullrate and halfrate services. 
The fullrate chipset comprises the following chips: 

• the HiGOLD chip consisting of a microcontroller part (HiGOLD-/iC) and 
a signal processing part (HiGOLD-SP) 

• the GSM Analog Interfacing Module (GAIM) which performs the voiceband 
and baseband A/D and D/A conversions and the Power Amplifier Control 
D/A conversion 

• the RF Quadrature Demodulator Circuit (RF Receiver) for GSM/PCNV 
PCS1900 

• the RF Quadrature Modulator Circuit (RF Transmitter) for GSM/PCN7 
PCS1900 

• the RF PLL Circuit 

For advanced firmware features such as halfrate codec or enhanced fullrate codec 
a coprocessor chip (GOLD-SX) can be used. 
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The integration of the HiGOLD chipset in a GSM handy is presented in 
Figure C.l. 

antenna 

A / D and D / A converters 

voice and channel coding 
(DSP) 

controller and interfaces 
{^iC) 

r 
Keypad 

Rx circuit 

PLL 

Tx circuit 
PA 

HiGOLD chipset 

SIMcard 

LCD Flash RAM 

Figure C.l: HiGOLD system integration 

The signal received from the antenna first passes a low noise amplifier, part 
of the RF demodulator. After externai filtering, the RF signal is downconverted 
to an Intermediate Frequency (IF) by a first mixer stage of the RF receiver. An 
externai Surface Acoustic Wave (SAW) filter performs a rough channel selection. 
The IF signal will be demodulated to baseband by a second mixer, after a previ-
ous digitally programmable gain-controlled amplification. 
The resulting differential baseband signal is fed to the receive path of the GAIM, 
where both components, I and Q, are converted independently from each other 
into the digital domain. 
Signal reconstruction and filtering of the digital baseband signal is performed in 
the signal processing part of the HiGOLD. A complex equalizer with soft-output 
recovers the original data stream. 
In the case of GSM fullrate operation, data processing is continued on the digital 
signal processing part of the HiGOLD (Figure C.2) with soft-decision channel 
decoding and speech decoding, including comfort noise generation during dis-
continuous reception. In the case of halfrate or enhanced fullrate operation, the 
corresponding soft-decision channel decoder is part of the HiGOLD whereas the 
speech decoder (including DRX) is part of the coprocessor circuit GOLD-SX. 
After voiceband interpolation on HiGOLD, the resulting data stream is digital-to-
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analog converted and amplified by a programmable gain stage in the voiceband 
Processing part of the GAIM. The output signal can be directly connected to a 
handset earpiece. 

In the opposite direction the GAIM will amplify the input signal from the 
microphone. The amplifier is gain programmable. After analog-to-digital con-
version the data stream is forwarded to the HiGOLD for voiceband decimation. In 
the case of GSM fullrate operation, data processing is continued with speech en-
coding including VAD and DTX. Channel encoding is followed by digital GMSK 
modulation. In the case of halfrate or enhanced fullrate operation, speech encod-
ing (including VAD and DTX) is performed on the coprocessor circuit. 
After modulation, the 10-bit I and Q baseband components are delivered to 
the baseband processing part of the GAIM where they are digital-to-analog con-
verted. The resulting analog differential baseband signal is fed to the input of the 
RF modulator circuit. Here a quadrature amplitude modulator (QAM) directly 
converts the baseband to radio frequency (900 MHz or 1,800 MHz respectively). 
Finally an RF power module amplifies the RF signal to the required power. The 
ramping of the power amplifier is controlled by the system interface functions of 
the HiGOLD. The control values according to the prescribed ramping curves are 
digital-to-analog converted by the GAIM and passed on to the power amplifier. 

From the digital signal processing point of view, the HiGOLD (Figure C.2) 
and the GAIM are the most important chips and will therefore be referred to in 
more detail. 

The microcontroller part of the HiGOLD contains a 16-bit microcontroller and 
a system interface block which comprises a series of GSM-specific interfaces and 
control functions such as system interface with RF synthesizer. Automatic Gain 
Control (AGC), Automatic Frequency Control (AFC) and Power Amplification 
(PA) control, chipcard interfacing, timing signal generation, clock generation. 
The digital signal processing part of the HiGOLD consists of two signal process-
ing cores each with 26 MIPS and all the program and data memory required for 
fullrate operation, halfrate channel encoding and decoding and cnhanced fullrate 
channel encoding and decoding for speech and data. 
The HiGOLD-SP contains a fullrate speech codec (RPE-LTP), a channel codec 
with soft-decision decoding (bit-by-bit) and a complex soft-output (Viterbi) equal-
izer, frequency correction burst handling, all as DSP firmware. Moroover, signal 
processing dedicated hardware performs 

• digital decimation for the received baseband signals 

• digital interpolation for the received voiceband signals and digital decima-
tion for the voiceband signals to be transmitted 
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ciphering 

voiceband 
DAC 

voiceband 
ADC 

SIMcard 

| H b p f K 

'r-|BPFV> 

speech k channel 
decoder — equalizer 

— BPF 
BPF —1 

baseband 
ADC 

speech & channel 
encoder — 

burst 
build GMSK 

— ^ baseband 
DAC 

system interface 

microcontroller 
RF components 

Al 
general purpose ports 

Figure C.2: HiGOLD block diagram 

• cipher sequence generation according to the A51 and A52 algorithms 

• burst generation, serial encryption and GMSK modulation 

Analog-to-digital and digital-to-analog conversion of baseband and voiceband 
signals is performed in the GAIM. Furthermore the digital-to-analog conversion 
of an RF power control signal will be performed on this chip. 

As to the GSM software, it is organized in GSM Layer 1, Protocol Stack 
(Layer 2 and 3) and the Man Machine Interface (MMI). Software updates can 
be performed by reloading the Flash. 
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Composite Source Signal 

The basic idea behind the Composite Source Signal (CSS) is to provide a test 
signal having both the typical characteristics of real speech and short duration for 
the measurement of short-term characteristics. The CSS yields good agreement 
with real speech when used for measurement of convergence characteristics of 
acoustic echo cancellers [Gilloire 94] and for simulation of double-talk periods. 
In Figure D.l the standardized composite source signal from [ITU-T P.501 96] is 
presented. 
The CSS is composed of three segments repeated sequentially: 

3000 

-3000 
50 100 150 200 250 300 350 

Time [ms] 

Figure D.l: Composite source signal 

a voiced signal of approximately 50 ms duration, used to activate speech de-
tectors. The voiced signal can be described by a sequence of 134 16-bit words. 
According to a sampling rate of 44.1 kHz, this sequence will be repeated 
16 times to achieve a duration of approximately 50 ms. 
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• a deterministic signal with broad spectrum of 200 ms duration, used for 
measuring short-term transfer functions. This signal has noise like features 
and is therefore called pseudo-noise signal. It is produced by specifying 
a complex spectrum with a constant magnitude and randomly changing 
phase. This spectrum will be inverse transformed by an Inverse Fast Fourier 
Transform producing the time signal. 

• a pause of 100 - 150 ms duration 

When using the CSS for measurements, the sequence of voiced sound, pseudo-
noise signal and pause can be cycled. This means that after the pause, the se-
quence of voiced sound is repeated. With this procedure sequences of any length 
can be produced. 

There also exist standardized bandlimited (between 200 Hz and 3.6 kHz) com-
posite source signals with speech-like power density spectrum, which can be used 
for the measurement of acoustic echo cancellers. Two sequences are defined, one 
for single talk and another for double-talk, their power density spectra being 
presented in Figure D.2 and Figure D.3. 

200 500 1000 2000 5000 
Frequency [Hz] 

Figure D.2: Power density spectrum of single talk signal 

Related to the single talk signal, the double-talk sequence has slightly different 
length of the voiced signal (approximately 75 ms) and the pause (approximately 
125 ms). The voiced signal for double-talk also presents a different pitch fre-
quency than the single talk voiced signal. Instead of the pseudo-noise of the 
single talk signal a white gaussian random noise signal is used. The total length 
of the double-talk signal is 400 ms. 
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00 200 500 1000 2000 
Frequency [Hz] 

5000 

Figure D.3: Power density spectrum of double-talk signal 

In this way a typical double-talk condition can be simulated, with the com-
posite source single talk signal used as the far-end speech and the composite 
source double-talk signal employed as near-end speech [ITU-T P.501 96]. The 
correlation between single talk and double-talk will be low. 
The double-talk condition with two signals applied simultaneously can be thus 
reproduced very realistically. 
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Singular Value Decomposition 

The Singular value decomposition or SVD is a very powerful set of techniques 
for dealing with cquations or rriatrices that are singular or very close to singular 
[Press et al. 92]. SVD methods are based on the following theorem of linear 
algebra: 
Any (M x N) matrix X with M > N can be written as the product of an (M x N) 
column-orthogonal matrix U, an {N x N) diagonal matrix W with positive and 
zero elements (the singular values), and the transpose of an (A'' x N) orthogonal 
matrix V. 

X = UWV'^ (E.l) 

The matrices U and V are each orthogonal in the sense that their columns are 
orthonormal, i.e. = U^ and U^U = I where I represents the identity 
matrix. Similar for V). X'^, the transpose of X can be written as 

x̂ ^̂  = VW'^U^VWU'^ (E.2) 

Now considering the product X^ X 

X'^x = VWU^ UWV'^ = VW'V''^ (E.3) 

the inverse of the matrix product will be 

(X'^X)-^ = (VW'V'' ')-^ = VW-'^V^' (E.4) 

The last step in Eq. (E.4) is possible because both V and W are square and 
only for square matrices ^ it can be written [Bronstein et al. 95]: = 

Thus, the computation of the adjustment vector in the convenţional affine pro-
jection algorithm 

Ah[^] =X,[A:] (x^[A:]Xp[^])"'ep[/c] (E.5) 
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can be simplified by inverting just one diagonal matrix [Ansahl 98]: 

X(X^X)-^ = U W V ^ V W - ^ V ^ = U W - ' V ^ (E.6) 

The SVD can also be carried out when M < N, in this case the singular values 
Wj for j = M + 1 , . . . , 7V will be all zero and the corresponding columns of U 
will also be zero. The decomposition (E.l) can always be done, no matter how 
singular the matrix X is. 
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Impulse Response Measurement 
in Cars 

The impulse response as the most fundamental physical descriptor in room acous-
tics is determined by studying the response of the system to a particular excita-
tion. AII the acoustical measures for evaluations of rooms can be derived from 
the impulse response. One of the most powerful methods involves the use of 
pseudo-random sequences as a source of excitation [Otshudi et al. 88]. A pseudo-
random sequence (PRS), also known as rnaxirnum-length sequence or rn-sequence, 
is a periodic binary sequence that has approximately flat spectrum which can 
be generated quite simply by a feedback arrangement of shift registers [Chu 90]. 
The most important properties of the pseudo-random sequence are: 

it is periodic with length n = — 1 where m is the number of stages used 
in the shift register arrangement 

• the periodic autocorrelation function [MacWilliams k Sloane 76] is given 
by 

1 for A: = O 

r[k] = ^ (F.l) 
for 1 < A: < n - 1 n 

The corresponding power spectrum is a line spectrum. For linear time 
invariant systems one period of the signal is sufficient and no averaging 
will be required [Chu 87]. 

• if a window of length m is slid along the pseudo-random sequence, each of 
the non-zero binary m-tuples will be seen exactly once. 

To construct a pseudo-random sequence of length n = 2'" - 1 a primitive poly-
nomial h{x) of degree m is needed. This polynomial specifies a feedback shift 
register consisting of m binary memory elements. At each time instant the con-
tents of the memory elements is shifted one place to the right and the elements 
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corresponding to the terms in h{x) are added modulo-2 and fed back into the 
left-hand element. In Figure F.l the feedback shift register corresponding to the 
primitive polynomial 

h{x) = x'-hx^l (F.2) 

is presented. The symbol 0 denotes a modulo-2 addition. The period of the 

+ 

Figure F.l: Feedback shift register example for Pseudo-random sequence gener-
ation 

primitive polynomial from Eq. (F.2) is n = 2"̂  - 1 = 15 and, if an iniţial state of 
1000 is considered the output sequence from the shift register will be: 

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1 
0 0 1 0 0 1 1 0 1 0 1 1 1 1 0 
0 1 0 0 1 1 0 1 0 1 1 1 1 0 0 
1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 
0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 
0 1 1 0 1 0 1 1 1 1 0 0 0 1 0 
1 1 0 1 0 1 1 1 1 0 0 0 1 0 0 
1 0 1 0 1 1 1 1 0 0 0 1 0 0 1 
0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 
1 0 1 1 1 1 0 0 0 1 0 0 1 1 0 
0 1 1 1 1 0 0 0 1 0 0 1 1 0 1 
1 1 1 1 0 0 0 1 0 0 1 1 0 1 0 
1 1 1 0 0 0 1 0 0 1 1 0 1 0 1 
1 1 0 0 0 1 0 0 1 1 0 1 0 1 1 
1 0 0 0 1 0 0 1 1 0 1 0 1 1 1 

The use of pseudo-random sequences in the impulse response determination of a 
room is based on the fact that the input-output crosscorrelation of a linear time-
invariant system under white noise excitation is proporţional to the system's 
impulse response [Chu 90]. Thus, the input signal S^{t) and the output signal 
Soit) are related through the crosscorrelation 

r 
h{T)^RUr) = j;fs,{t-T)So{t)dt (F.3) 
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for the signals represented in Figure F.2 

white noise I ^ 
—r 

Si{t) I \ 
Mt) O t 

Figure F.2: Impulse response measurement block diagram 

input PRN-sequence Si{t) 

4-

\f\M I A A / ' I A A x ' \f\j\j 

system output signal So(t) 

Figure F.3: Example of m-sequence input signal and a hypothetical output signal 

As the pseudo-random noise has a flat spectrum, it can be considered as white 
noise. For signal processing, the binary states of O and 1 of the m-sequence will 
be changed to +1 and - 1 . In Figure F.3 an example is shown of an m-sequence 
of length n = 7 as the input signal to the linear time-invariant system Si{t) 
and So[t) is considered a hypothetical output. If So{t) is sampled at the clock 
frequency of the pseudo-random sequence, Eq. (F.4) can be expressed in matrix 
form 

(F.4) h = i M So n 
where h is the impulse response vector of length n, M represents the (n x n) 
matrix containing the right circularly delayed version of the m-sequence and So 
represents the output signal vector of length n. 
As the elements of M are only +1 or - l , a fast computation of the product 

BUPT



152 APPENDIX F. IMPULSE RESPONSE MEASUREMENT IN CARS 

M So is possible by applying the techniques developed in Hadamard spectroscopy 
[Chu 87]. A Hadamard's matrix is a square matrix of dimension 2", consist-
ing of elements +1 and - l , whose rows or columns are rnutually orthogonal 
[Otshudi et al. 88]. The matrix M can be transformed into a Hadamard matrix 
by adding a row and a column of +1 and followed by a reordering of the rows 
and columns. The matrix multiplication will be performed in five steps [Chu 90]: 

• matrix M can be factored into two matrices: R (n x m) and C (m x n). 
R is obtained by choosing those columns of M such that the first m rows 
of R form a (m x m) unit matrix. C is contains the first m rows of M. 

• the row tags of R and the column tags of C are obtained according to the 
integer equivalence of their m-bit binary digits. 

• the columns of M will be reordered by using the tags of C while the rows 
will be reordered by using the tags of R. Furthermore a row and a column 
of +1 will be added to M, thus generating the Hadamard matrix H. 

• the elements of vector So will be reordered following the column tags of C 
and a zero element will be added as first element. 

the resulting vector h will have its first element omitted and the following 
elements will be reordered using the tags of R 

This technique is independent of any possibly existing background noise, be-
cause there is no correlation between the pseudo-random sequence and any other 
background noise [Chu 87]. 
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