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Foreword 

 
 This PhD thesis was elaborated during my activity in the Faculty of 
Automation and Computer Science at “Politehnica” University of Timișoara. 
 This thesis was elaborated during my activity carried on as part of the 
doctoral program entitled “Self-Adaptive” Cache Memories. It presents the starting 
point for the research activity, its directions and obtained results. Reliability is the 
most important part in computer systems these days. A branch of reliability is fault 
tolerance. Fault tolerance techniques deal with errors and ensure the correct 
functioning of any computer systems. 
 This thesis presents the basic characteristics of cache memories that will be 
used. Also it introduces the notions and definitions that are used in reliability. The 
introductory notions end with the methods and techniques used for memory testing. 
A review of previous research that has been done in the field of memory and cache 
memory fault tolerance techniques in the last few years is also presented before 
introducing the original concepts and techniques that together form this thesis. The 
original contributions of this thesis consist of: a new method for increasing the fault 
tolerance and reliability of cache memories, a new mathematical model that can 
predict the position of faults in any memory system, and an improved method of a 
variation of the triple modular redundancy technique is also presented. All of these 
results are accompanied with a series of experiments and results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Timişoara, December 2012                  Liviu Agnola 
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1 Introduction 

Ever since digital systems were created there were problems in making sure 
that the systems are working correctly, i.e. the results offered by the machines are 
accurate and correct. 

With ever growing computing power and memory size this issue has become 
of great importance. Given the fact that in the last years memory size and speed 
were increased considerably and also the memory in a computing system accounts 
for somewhere about 50% of the power that the system uses, and taking into 
account Moore’s law (the number of transistors that can be placed inexpensively on 
an integrated circuit doubles approximately every two years) it is imperative that 
the memory works correctly and without faults. 

The doctoral program addresses the domain of Computer Science, with 
emphasis on Computer Hardware Design and Built-In Self-Test/Repair. In the last 
few decades the main focus in computer systems has shifted from performance 
towards reliability, yield and robustness. As memory systems continue to decrease 
in size and increase in capacity, the probability of hard, permanent faults increases, 
especially in SRAM cells [1]. Due to this fact the usual method of using spare rows 
or columns, for preventing hard faults can become obsolete [1] [2]. The hard or 
permanent errors can appear due to process variation [1] [3] and aging [4]. 

Since in the last few years the memory sizes have increased considerably, 
also the possibility of errors both during fabrication and normal functioning time has 
increased. This has directed the main manufacturers of memory chips to use fault 
tolerant techniques in order to counteract the effects or errors. The most common 
technique is the use of spare rows and columns that replace the faulty memory 
locations [5]. 

The techniques for error detection and correction, such as parity bits or 
error correction codes only support a limited number of errors that can be detected. 
For example the use of a parity bit can detect an odd number of errors. The ratio of 
parity bits to the number of bits is usually 1:8 [5]. 

Because in very large systems the probability of complete failures as well as 
the probability of multiple failures can become significant, the main companies that 
manage these large systems have introduced new solutions. For example IBM has 
introduced Chipkill to treat this issue, this technology is also used by SUN and 
Google Clusters, Intel uses a similar technology called SDDC [5]. These technologies 
even though are different in name they are very similar in process: they distribute 
the information stored in the Error Correcting Codes throughout the memory chip 
such that if the chip fails, the information in the chip can be recreated using these 
Error Correcting Codes in a different memory chip in the large system [5]. 

The research in the field of memory reliability and fault tolerance has 
become very important and has even found a place in the 2012 edition of one of the 
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most important books in the field of Computer Architecture [5]. This provides more 
than enough motivation to justify new research direction in the field of memory 
testing and fault tolerance for memory systems. 

My work focuses on improving the reliability and yield of set associative 
cache memories. In order to address this issue first we will need to present the 
basics of cache memories, memory testing, built-in self-test solutions and graceful 
degradation solutions. 

The first original contribution of this thesis is to propose a new method that 
can be implemented on any set associative cache memory and that provides an 
increase in reliability, yield and functioning time of the memory chip. All of these 
benefits will be at only a small cost in performance, due to the fact that it is a case 
of graceful degradation [6] [7] [8]. The increase in reliability, yield and functioning 
time is achieved by removing from use any faulty cell that has been diagnosed as 
an incurring hard error [9]. The small cost in performance is achieved from the 
reorganization of the memory cell array. This is done both for maintaining a high 
reliability, yield and functioning time of the memory chip. Also it is done for 
maintaining a relatively high performance of the memory, by reducing the number 
of misses and increasing the number of cache hits. To this end, we will assume that 
the cache memory is equipped with a concurrent built in self-test mechanism 
capable of detecting the hard error that may appear during the use of the chip and 
also during the production stage [9]. 

The second original contribution of this thesis is a technique called 
Simplified Selective Fault Tolerance, which addresses and improves a state of the 
art technique called Selective Fault Tolerance [10] [11]. This technique relies on the 
triple modular redundancy technique that has been used for reliability improvement 
[12]. We will also show a case study of how to use this original technique in order to 
improve the reliability and yield, while on the other hand reducing the area and 
energy overhead. 

The third original contribution of this thesis is the use of probability theory 
in determining the most probable distribution of errors in any type of memory 
systems. This method of determining the most probable distribution of faults in any 
memory type is applied on the cache memories in conjunction with the first two 
original contribution of this thesis. 

The thesis is structured as follows: chapter 0 will provide the basic notions 
that will be used throughout this thesis. It will provide a description of the basic 
notions and concepts on faults and dependability, as presented in [13]; the basic 
notions and ideas behind cache memories, and provide the description of how they 
work, as presented in [14] and [15]; also this chapter will provide our readers with 
an introduction to memory testing, as described in one of the most important books 
in the field [16]. Chapter 3.2 will provide an introduction in the fields of built-in self-
testing for memories; this chapter will also provide an overview of the graceful 
degradation technique. Chapter 0 will provide an overview of the state of the art in 
graceful degradation techniques for cache memories. Chapter 5 will provide the 
basic description of our original method called Self Adaptive cache Memories (SAM) 
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which greatly improves the state of the art described in chapter 0 in terms of 
reliability. Chapter 6 describes an original method that applies probability theory in 
order to determine the most probable distribution of errors in a memory system. 
Chapter 7 will provide two original methods for improvement of the SAM method 
described in chapter 5, these improvements reduce the area and energy overhead, 
while increasing the performance of the original SAM method. Chapter 8 provides an 
original technique called Simplified Selective Fault Tolerance, which addresses and 
improves a state of the art technique called Selective Fault Tolerance. Chapter 9 will 
conclude this thesis and also will provide future research directions. 
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2 Memory Faults and Testing 

2.1 Basic notions and concepts on faults and dependability 

In this section we will start by giving some general definitions on faults, 
errors, failures; also the basic means for fault detection, correction and fault 
tolerance. 

2.1.1 Failures, Errors and Faults 

A system is an entity that is interacting with other entities, the other entities 
may be: humans, other entities, software, hardware, and the external world or 
physical world [13]. The function of a system is described by the functional 
specification, and it is what the system is intended to do in terms of functionality 
and performance [13]. The service that the system is delivering is its behavior as it 
is perceived by the user, where a user is another system, which receives the service 
provided by the first system.  

In order to be able to define faults, errors and failures we must first state 
what a correct service of a system is. A system is said to deliver a correct service 
when the service implements the system function. A failure or a system failure is an 
event that happens when the delivered service deviates from correct service [13]. A 
system fails in one of two cases: either the specification did not adequately describe 
the system function; or because it doesn’t comply with the functional specification 
[13]. A service failure is a transition from correct service to incorrect service [13]. A 
service outage is the period of delivering an incorrect service, a service restoration 
is the transition from incorrect service to a correct service [13]. 

When a system deviates from the correct service state the deviation is 
called an error. The hypothesized or adjudged cause of an error is called a fault 
[13]. A fault can be either external or internal of the system. An error is the part of 
the total state of the system that can lead to its subsequent service failure [13]. A 
fault is active when it causes an error; otherwise it is called dormant. Many errors 
don’t reach the system’s external state and cause a failure [13]. 

A degraded mode that still offers a subset of needed services to the user is 
when the functional specification of a system includes a set of several functions and 
the failure of one or more of the services implementing the functions may leave the 
system degraded [13]. The specification may identify several such modes, for 
example: limited service, slow service, emergency service, and others [13]. 

The manifestation and creation mechanism of faults, errors, and failures are 
depicted in Figure 2.1, these mechanism presented in Figure 2.1 enable the “chains 
of threads” to be completed, as illustrated in Figure 2.2. 
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Figure 2.1: Error propagation, from [13]. 

 

Figure 2.2: The fundamental chain of dependability and security threads, from [13]. 

Eight basic viewpoints classify all faults that may affect a system during its 
life, leading to elementary fault classes, as depicted in Figure 2.3. 

For a simpler representation we can group the combined fault classes, 
presented in Figure 2.4, into three groups [13]: 

- Interaction faults, that include all external faults 
- Physical faults that include all fault classes that affect hardware 
- Development faults that include all fault classes occurring during 

development 

2.1.2 Dependability and Security 

As presented in [13] there are two valid definitions of dependability, the 
first, and original definition of dependability is the ability of a system to deliver 
service that can justifiably be trusted. The other definition for dependability is the 
ability to avoid service failures that are more frequent and severe than is accepted. 
The latter definition is providing a criterion for making a decision if a system is 
dependable or not, while the first definition is stressing the importance of 
justification. 

According to [13] the dependability of a system is an integrating concept 
that includes the following attributes: 

- Availability 
- Reliability 
- Safety 
- Integrity 
- Maintainability 
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Figure 2.3: The elementary fault classes, from [13]. 

In the followings we will present the definition of security as illustrated in 
[13]. Security is a composite of the attributes of confidentiality, integrity, and 
availability, requiring the concurrent existence of: availability for authorized actions 
only; confidentiality; and integrity. In Figure 2.5 is summarized the relationship 
between security and dependability. 
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Figure 2.4: The classes of combined faults, from [13]. 

 

Figure 2.5: Dependability and security attributes, from [13]. 

The means to attain dependability and security are: fault prevention, i.e. a 
way to avoid the beginning or happening of faults; fault tolerance, i.e. a way to 
avoid, in presence of faults, the service’s failures; fault removal, i.e. a way to 
reduce the severity and number of faults; and fault forecasting, i.e. a way to 
approximate the current number, the future occurrence, and the likely 
consequences of faults. 

Before passing on to the next subsection we will present two more 
definitions of dependability as they appear in the ISO standards. The first one 
appears in [17]: the collective term used to describe the availability performance 
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and its influence factors: reliability performance, maintainability performance and 
maintenance support performance. The second definition is from [18]: the extent to 
which the system can be relied upon to perform exclusively and correctly the 
system task or tasks under defined operational and environmental conditions over a 
defined period of time, or at a given instance of time. The ISO definition, i.e. the 
first one, is focused mainly on availability [13]. Due to the unavoidable presence of 
faults, no system is totally available, safe, secure, or reliable [13]. 

2.1.3 Means to Achieve Dependability and Security 

From the means to achieve dependability and security listed in the previous 
subsection, in this section we will focus mainly only on fault tolerance and fault 
removal, the other two methods will be given only a short description. 

Fault prevention, as a way to avoid the beginning or happening of faults, is 
a part of general engineering [13], so it is mainly utilized by the manufactures in 
order to increase yield and causes of faults. The faults occurring in a system can be 
recorded by that system and used by the producer to eliminate the fault causes via 
process modification [19] [20]. 

Fault tolerance, which purpose is to avoid failures of the system, is 
implemented via error detection or correction and through system recovery [13] 
[21]. The techniques involved in fault tolerance are presented in Figure 2.6. 

The focus of this thesis will be on isolation of the faults and reconfiguration 
of the system afterward. Also for this we will need an error detection mechanism 
and to be more specific, a mechanism for concurrent fault detection, capable of 
detecting errors and even correcting some of them as they appear. We will also 
provide an option for diagnosis to be sent back to the manufacturer for future 
improvements to their products. 

Many approaches and schemes have been proposed over the decades for 
fault tolerance and for the many parts of fault tolerance. There exist a large number 
of synonymous for fault tolerance: self-repairing and self-healing are just two of 
them. Also in [22] the term recovery-orienting computing has been presented, this 
term defines a fault tolerant method for the goal of overall system dependability. 

The fault removal technique aims at reducing the number of faults and their 
severity. Hardware testing is mainly aimed at removing production faults [13]. An 
important part of fault removal is the fault removal during use. The fault removal 
during use aims at removing the faults without stopping the system for 
maintenance. Also this technique increases a system dependability and functioning 
time. This technique, along with fault tolerance is very useful when a proper 
maintenance of a system cannot be done, for example a deep space probe cannot 
be returned back to earth each time an error occurs, and so that system needs to 
have very efficient fault removal and fault prevention techniques in order to be able 
to function in an inaccessible, for maintenance, environment. 
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Figure 2.6: Fault tolerance techniques, from [13]. 

As a conclusion to this section Figure 2.7 shows a refined dependability and 
security tree, from the definitions and techniques presented in this section [13]. 

2.2 Cache memories 

Since our thesis describes a self-repair method for set associative cache 
memories, in this section we will provide a brief introduction that will contain the 
basics on cache memories. 

First of all we will start by presenting the memory hierarchy that is used in 
modern computers, Figure 2.8. In this hierarchy from top to bottom the storage 
devices get slower in speed, larger in capacity and cheaper in cost per byte. When 
computer system first started to develop only three levels of memory existed: CPU 
registers, DRAM or main memory, and the local hard disk [15]. Since the 1980’s 
when the speed of the CPU registers and the speed of the main memory were 
almost equal, the gap between these two elements of a computer system has 
increased constantly, see Figure 2.9. 
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Figure 2.7: A refined dependability and security tree, from [13]. 

Because of this gap in performance and speed between the main memory 
and CPU registers, in order to increase the performance of the whole computer 
system, producers had to introduce a new level in the memory hierarchy, an SRAM 
memory type, called cache level 1. This level 1 cache was able to increase 
performance but not for too long, because the gap, in speed, between this level and 
the main memory also started to increase. A new cache level was needed, the level 
2 cache. In the last few years producers needed again to introduce the so called 
level 3 cache memory, and probably in another three or four years we will see the 
level 4 and so on. 
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Figure 2.8: The memory hierarchy, from [15] 

 

Figure 2.9: The gap in performance between memory and CPU, from [14] 

So in order to conclude, a definition for cache memory: is a SRAM type 
memory placed between CPU registers and main memory (DRAM), it is superior in 
speed, compared to the main memory, but has a lower capacity. The cache memory 
contains copies of the locations in the main memory in order for the system to gain 
in speed and performance. So every byte that is processed by the CPU is passed 
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through the cache system, for this reason the dependability of the cache system 
becomes crucial. 

2.2.1 Cache memory organization 

Usually the level 1 cache is located on the same chip as the CPU, and can be 
accessed in one or two clock cycles. The cache level 2 is usually placed outside the 
CPU chip, and so it has greater access times, to the order of 10 clock cycles [15]. 
Figure 2.10 shows a typical structure for a computing system with a two level cache 
system. 

 

Figure 2.10: Typical structure for two level cache, from [15]. 

Now we will take a closer look at what is inside a cache memory. Before we 
start we must state the number of bits m that uniquely identifies every line of 
memory in that computer system. This m bits permit access to M=2! address lines 
or memory locations in the system. A cache memory for this system will have S=2! 
cache sets, within each of these sets there will be a number of E cache lines, each 
line will have a data block of B=2! bytes, t=m–(b+s) tag bits, that are used to 
uniquely identify the block stored in the cache line, and one valid bit that is used to 
indicate if the cache line either has or hasn’t significant information [15]. An 
example of such a cache memory is illustrated in Figure 2.11. 
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Figure 2.11: General organization of a cache memory, from [15]. 

Usually a cache memory’s organization and size can be characterized by 
these four parameters: S, E, B, and M. Figure 2.12 illustrates the organization of the 
address of such a cache memory with the parameters discussed above. 

 

Figure 2.12: Address organization of a cache memory, from [15]. 

A summary of the most usual cache memory parameters is presented in 
Figure 2.13. 

BUPT



2.2 – Cache memories     23 

 

 

Figure 2.13: Cache parameters, from [15]. 

This concludes the present subsection of our thesis; we will not go any 
further in detail, in presenting the organization of cache memories, for this we will 
refer the reader to [15] [14]. 

2.2.2 Set associative caches 

The most usual method to group cache memories is after E, the number of 
lines in each set of the cache memory. After this classification the cache memories 
are split into three major groups: direct mapped cache memories, where E=1; set 
associative cache memories, where E>1, and also S>1; and in the last group are 
fully associative cache memories where S=1, i.e. there is only one set and a 
location from the main memory can be mapped in any line without restriction. An 
example of the differences in mapping between the three groups of cache memories 
is depicted in Figure 2.14. 

We will start by providing the reader with a short description of direct 
mapped cache memories; our focus will mainly be on set associative cache 
memories, them being the object of this thesis. For a more detailed approach to 
direct mapped and fully associative cache memories the reader is referred to [15] 
[14]. 
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Figure 2.14: Mapping differences between groups of caches, from [14]. 

As stated before a direct mapped cache memory is a cache memory that 
only has one line per set, i.e. E=1. Such a memory is depicted in Figure 2.15. This 
type of cache memory is the simplest and easiest to understand [15]. 

 

Figure 2.15: Direct mapped cache, from [15]. 

Set associative cache memories are those caches for which E>1, and also 
S>1, i.e. there is more than one line in each set of the memory. This provides an 
advantage from the direct mapped caches because a location from the main 
memory can be mapped in more than one place in the cache. This is being 
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particularly useful when working with array that have two or more dimensions. In 
Figure 2.16 is presented a 2-way set associative cache memory. 

 

Figure 2.16: Organization of a 2-way set associative cache memory, from [15]. 

The access in a set associative cache memory is similar as in any other type 
of memory. First the set is selected as shown in Figure 2.17. After the set is 
selected the second task is to see if any line in that set matches the tag of the 
address requested by the CPU. If we have a line matching, which is also known as a 
cache hit, we proceed to the extraction of the word from the cache block. This is 
shown as an example in Figure 2.18. 

 

Figure 2.17: Set selection in a set associative cache memory, from [15]. 

We will conclude this subsection with an example of a set associative cache 
memory from the microprocessor Alpha 21264. This is a 2-way set associative 
cache that contain 64KB of data, with the block size of 64 bytes. The organization of 
this memory is presented in Figure 2.19. 

BUPT



26     Memory Faults and Testing – 2 

 

 

Figure 2.18: Line matching and set selection in a set associative cache memory, from [15]. 

 

Figure 2.19: The organization of the cache in Alpha 21264 microprocessor, from [14].
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3 Memory testing, Built-In Self-Tests, and 
Graceful Degradation 

3.1 Memory testing 

In this section we will provide our reader with the basics on functional 
models of memory chips, the errors that can appear in accordance with these 
models, and also some test methods that are used for memory testing. 

3.1.1 Functional RAM chip models and faults 

We will first present the functional model for a RAM memory with all of the 
main components, Figure 3.1 illustrates this. 

 

Figure 3.1: DRAM memory model, from [16]. 

Since we will be working with cache memories that are SRAM memory 
types, from the DRAM memory model we will exclude the refresh logic, since the 
SRAM is non-volatile. Figure 3.2 shows a memory model for a SRAM type of 
memory. 

Some of the functional faults that can appear in a RAM memory are 
illustrated in Table 3.1, the list is not complete. Note that we refer to a cell as an 
entity that stores data, and to a line as an entity that is used to transmit data from 
one entity to another. 

BUPT



28     Memory testing, Built-In Self-Tests, and Graceful Degradation – 3 

 

As can be seen from Table 3.1, the list not being complete, the number of 
functional faults is very large. Given the large number of functional faults and the 
fact in order to test for each individual group of faults can be very expensive and 
very time consuming we can start grouping some of the elements of the memory as 
shown in Figure 3.3. As can be seen in Figure 3.3 the address latch, column 
decoder, row decoder and the connections between them are grouped in the 
address decoder, the memory cell array remains unchanged and the read/write logic 
has the following elements: write driver, sense amplifiers, data register and the 
connections between them. 

The reduced functional model from Figure 3.3 generated the following types 
of errors: stuck-at faults, transition faults, coupling faults and neighborhood pattern 
sensitive faults. Table 3.2 presents the reduced functional faults. As can be seen in 
this table the number of potential types of faults is reduced considerably, leaving 
only four categories of faults, that include all the other types of faults. This is a clear 
advantage, because with a smaller number of functional faults it is easier, cheaper 
and faster to test the memory chips. 

 

Figure 3.2: SRAM memory model, from [16]. 

Table 3.1: RAM functional faults, from [16]. 

 Functional Fault 
a Cell stuck 
b Driver stuck 
c Read/write line stuck 
d Chip-select line stuck 
e Data line stuck 
f Open circuit in data line 
g Short circuit between data lines 
h Crosstalk between data lines 
i Address line stuck 

BUPT



3.1 – Memory testing     29 

 

j Open in address line 
k Shorts between address lines 
l Open decoder 
m Wrong address access 
n Multiple simultaneous address access 
o Cell can be set to 0 but not to 1 (or vice versa) 
p Pattern sensitive cell interaction 

 

Figure 3.3: Reduced functional model, from [16]. 

Table 3.2: Reduced functional faults, from [16]. 

1.   SAF Stuck-At Fault 
2.   TF Transition Fault 
3a. CF Coupling Fault 
3b. NPSF Neighborhood Pattern Sensitive Faults 

 
We can furthermore group the type of faults from Table 3.2 into three 

categories: faults involving one cell, faults involving two cells, and faults involving n 
cells. The classification is as follows [16]: 

• Faults involving one cell: 
o Stuck-At Faults (SAF) 
o Transition Faults (TF) 

• Faults involving two cells: 
o Coupling Faults (CF) 

• Faults involving n cells: 
o The n cells are allowed to be located anywhere in the 

memory. These are the n-coupling, bridging and the state 
coupling faults 

o The n cells are clustered together in a physical 
neighborhood. These are the Neighborhood Pattern Sensitive 
Faults (NPSF) 

Table 3.3 describes the standard notations used when describing faults and 
types of faults as presented in [16]. 
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This concludes this subsection of our thesis. In the following subsection we 
will provide the reader with a short description of each category of the reduced 
functional faults.  

 

Table 3.3: Standard fault notations, from [16]. 

0 denotes that the cell is in a logical state 0 
1 denotes that the cell is in a logical state 1 
x denotes that the cell is in a logical state 𝑥, where 

𝑥 ∈ {0,1} 
↑  denotes a write 0 operation to a cell containing 1 
↓  denotes a write 0 operation to a cell containing 1 
↕  denotes a write 𝑥 operation to a cell containing an x 
→  denotes a write 0 operation to a cell containing an 0 
→  denotes a write 1 operation to a cell containing an 1 
⇒  denotes a write x operation to a cell containing an x 
∀  denotes any operation; ∀∈ {↑, ↓, ↕,→,⇒} 
<...> denotes a particular fault; “...” describes the fault 
<I/F> denotes a fault in a single cell 

        I describes the condition for sensitizing the fault: 
I∈ {↑, ↓, ↕,→,⇒}  
        F describes the value of the faulty cell: F∈ {0,1, ↑, ↓
, ↕} 

<I1, I2, …, In-1; 
In/F> 

denotes a fault involving n cells 
        I1,…, In-1 describes condition on the n-1 cells to 
sensitize the fault in cell n 
        In describes the condition for the fault to be 
sensitized in cell n. It may be empty (In=[]) in which 
case In/F=[]/F can be written as F 

 

3.1.2 Reduced functional faults 

Stuck-At Faults 
 
The most common definition of a stuck-at fault is: the logic value of a stuck-

at line or cell has always the same logic value, either 0 (SA0 faults) or 1 (SA1 
faults) [16]. The notation for a SA0 fault is  < ∀/0 >; and for a SA1 fault  < ∀/1 >. A 
test that can detect and locate all stuck-at faults in a memory chip has to read a 0 
and a 1 from each memory cell [16]. 

Figure 3.4a shows a state diagram for a healthy memory cell. In Figure 3.4b 
and Figure 3.4c are shown the state diagram for SA0 and SA1, respectively. A cell 
has the logic value 0 in state 0 (S0), and the value 1 in the state S1. 
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Figure 3.4: State diagram for SAF, from [16]. 

Transition Faults 
 
The definition of transition faults is: A cell or line which fails to undergo a 

0 → 1 transition when it is written is said to contain an up transition fault; similarly, 
a down transition fault is the impossibility of making a 1 → 0 transition [16]. The 
notation for the up TF, as shown in [16] is  <↑/0 >, and for the down TF  <↓/1 >. 

The transition faults are a special case of stuck-at faults, in order for a 
better understanding of this we will provide the reader with a short example [16]. 

 
Example 
 
Figure 3.5 shows a Set/Reset (S/R) flip-flop with the Reset stuck-at 0. In 

this situation the fault may be classified as a  <↑/1 > fault because the S/R flip-flop 
will fail to make a 1→ 0 transition. 

 
Figure 3.5: A flip-flop as a model for a transition fault, adapted from [16]. 

Transition faults cannot be treated as SAx faults because other faults, such 
as coupling faults, may bring the cell back into state  𝑥. So in order to test for 
transition faults we have to use a slightly more complex algorithm. A test that has 
to detect and locate al TFs, should satisfy the following requirements, according with 
[16]: Each cell must undergo a ↑ transition (state of the cell goes form 0 to 1), and 
a ↓ transition (state of the cell goes from 1 to 0), and be read after each transition 
before undergoing any further transitions. 

The state diagram of a memory with a <↑/0 > transition fault is illustrated in 
Figure 3.6. The notations are the same as for the stuck-at faults. 
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Figure 3.6: State diagram for TF, from [16]. 

 
Coupling Faults 
 
Coupling faults are grouped according to these assumptions: 
1. A read operation will not cause an error. 
2. A non-transition write operation will not cause a fault. 
3. A transition write operation may cause a fault. 
The coupling faults that involve two cells, and that is used in [16] [23] [24] 

[25], has a definition as follows: a write operation which generates a ↑ or a ↓ 
transition in one cell changes the contents of a second cell. 

The coupling fault that involves two cells is a special case of the more 
general case k-coupling fault that involves k cells and is defined as follows: is the 
same as the two coupling fault, but in addition the transition is only performed when 
the other k-2 cells are in a certain state [24]. If there is no restriction on the 
placement of the k cells the k-coupling fault is very complicated to test for [26]. 

The two coupling faults can be grouped in two types: inversion coupling 
faults and idempotent coupling faults, which will be briefly discussed. Special cases 
of coupling faults are state coupling faults and bridging faults, for detailed 
perspective these types of coupling faults we refer our reader to [16]. 

The inversion coupling faults (CFin) has the following definition: a ↓ (or ↑) 
transition in one cell inverts the contents of a second cell [16]. 

A test that detects all CFins must satisfy the following: “for all cells which 
are coupled cells, each cell should be read after a series of possible CFins may have 
occurred (by writing into the coupling cells), with the condition that the number of 
transitions in the coupled cell is odd (i.e. the CFins do not mask each other)” [16]. 

The idempotent coupling faults (CFid) has the following definition: A ↓ (or ↑) 
transition in one cell forces the contents of a second cell to a certain value, 0 or 1 
[16]. 

A test that detects all CFids must satisfy the following: “for all cells which 
are coupled cells, each cell should be read after a series of possible CFids may have 
occurred (by writing into the coupling cells), in such, a way that the sensitized CFids 
do not mask each other” [16]. 

As a conclusion to the state coupling faults Figure 3.7 illustrates the state 
diagram of two good cells (a), the state diagram of a <↑; ↕> CFin (b); and the state 
diagram of a <↑; 1 > CFid (c). 
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Neighborhood Pattern Sensitive Faults 
 
The neighborhood pattern sensitive fault is a special case of the k-coupling 

fault, in the sense that the k-1 cells, beside the base cell are in the immediate 
vicinity of the base cell. In Figure 3.8 the NPSF terminology, as presented and used 
in [16], is depicted. There are three cases of NPSF: ANPSF (Active Neighborhood 
Pattern Sensitive Faults), PNPSF (Passive Neighborhood Pattern Sensitive Faults), 
and SNPSF (Static Neighborhood Pattern Sensitive Faults). In the following we will 
present a short description of each of these types of NPSF along with a testing 
requirement for each one, again for a more ample description we refer our readers 
to [16]. 

 

Figure 3.7: State diagrams involving two cells, from [16]. 

 

 

Figure 3.8: NPSF terminology, from [16]. 

In ANPSF due to a change in the deleted neighborhood pattern the base cell 
changes its contents. The change in the deleted neighborhood is a transition while 
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the rest of the deleted neighborhood cells and the base cells have a certain pattern. 
In order to detect and locate ANPSFs a test must satisfy the following requirement: 
“each base cell must be read in state 0 and in state 1, for all possible changes in the 
deleted neighborhood pattern” [16]. 

In PNPSF due to a certain neighborhood pattern the content of the base cell 
cannot be changed. In order to detect and locate PNPSFs a test must satisfy the 
following requirement: “each base cell must be written and read in state 0 and in 
state 1, for all permutations of the deleted neighborhood pattern” [16]. 

In SNPSF a state of the deleted neighborhood pattern forces the content of 
the base cell to a certain value. In order to detect and locate SNPSFs a test must 
satisfy the following requirement: “each base cell must be read in state 0 and in 
state 1, for all permutations of the deleted neighborhood pattern” [16]. 

With this we conclude the present subsection dedicated to describing the 
most important possible types of faults. The next and last subsection of this chapter 
is dedicated to describe some traditional tests and some march tests along with 
their test times. 

3.1.3 Traditional and March Tests 

In this subsection of our thesis we provide our reader with a brief 
description of the traditional test: zero-one, checkerboard, GALPAT and Walking 
1/0, sliding diagonal, and butterfly. Also we will provide a short description of the 
march test MATS and MATS+, concluding this subsection with a comparison 
between the traditional tests and a couple of march tests. Table 3.4 summarizes the 
notation used throughout this subsection. 

 
 

Table 3.4: Notation and abbreviations used in memory testing 

B The number of bits (cells) in a memory word, thus the width of the memory 
N  The number of address bits; the number of addresses will thus be 2N 
n The total number of bits (cells) in the memory, which equals B∙2N 
k The size of the neighborhood 
A An address 
C A cell 
M A set of cells, words or addresses 
r A read (operation) 
w A write (operation) 

 
Zero-One 
 
This is the simplest test for a memory chip. It consists of writing 1s and 0s 

in the memory cell array. The algorithm consists of four steps, see Figure 3.9. This 
algorithm is also known as MSCAN (Memory Scan) [16] [27]. 
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Figure 3.9: Zero-One test algorithm, from [16]. 

This test detects all SAF, and also it detects some TF, and some CF. The test 
has a length of  4 ∙ 2!, and it is of order O(n) [16]. 

 
Checkerboard 
 
For this test we first need to split the memory in two groups: group 1 and 

group 2, in a checkerboard pattern, as shown in Figure 3.10. Figure 3.11 presents 
the algorithm of the checkerboard test. The fault coverage is similar with the zero-
one test, and also the number of operations is the same as the zero-one test, giving 
the checkerboard test an order of O(n) [16]. 

 

Figure 3.10: Cell numbering for checkerboard algorithm, from [16]. 

 

Figure 3.11: Checkerboard algorithm, from [16]. 

 
GALPAT and Walking 1/0 
 
These two tests are similar, that is why we present them together. First the 

memory is filled with 1s (or 0s), except for one cell, called the base cell that has the 
opposite value. For both these tests the base cell covers the whole memory. The 
difference between these two tests appears when the base cell is read: in GALPAT 
the base cell is read after each cell is read, while in Walking 1/0 the base cell is read 
only once after all the other cells have been read. This is depicted in Figure 3.12. 
The fault coverage for both these test, according with [16] is: all SAF, TF, CF are 
detected and located. Note that the tests are performed twice once with a 0 
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background and the second time with a 1 background. The order of both these test 
is O(n2) [16] [28]. 

 

Figure 3.12: Read actions for GALPAT and Walking 1/0, from [16]. 

 
Sliding Diagonal 
 
The sliding diagonal has been developed as a shorter alternative to GALPAT, 

so instead of a single base cell as in GALPAT the sliding diagonal test uses an entire 
diagonal of base cells, making it faster but less efficient. Figure 3.13 shows the read 
actions for the sliding diagonal test. As stated before the fault coverage is smaller 
than the GALPAT: some CF are detected and located, but not all of them; also this 
test detects and locates all SAF and TF. Due to the fact that sliding diagonal uses an 
entire diagonal instead of a single base cell the time order of this test is reduced to 
O(n3/2) [16]. 

 

Figure 3.13: Read actions for sliding diagonal, from [16]. 

 
Butterfly 
 
The butterfly test has been designed in order to reduce even more the test 

time of the GALPAT test, but with the purpose to only find SAF [16]. We will not go 
in detail with this algorithm, providing only a very short description of the reading of 
the cells. From GALPAT, only the reading of the cells differs, in that only the 
neighboring cells with the base cell are read. So the algorithm can detect and locate 
all SAF. The test order of the butterfly is O(nlogn) [16]. 

Before moving on to MATS and MATS+ test we will make a short 
observation regarding all of the march type tests. These tests are called march test 
because they “march” throughout the memory. A march element as described in 
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[16] is “a finite sequence of the operations applied to every cell in the memory 
before proceeding to the next cell”. The order of the addresses can either be 
increasing (⇑), decreasing (⇓), or unimportant (⇕). An example of a march element 
can be ⇓(w1,r1), that means that in every cell of the memory starting with the 
highest address and deceasing is first written a 1 and immediately is read a 1. 

 
MATS 
 
The MATS test or Modified Algorithm Test Sequence is the shortest march 

test [16], it detects all SAF. This test requires a number of 4n operations, having 
the test time order O(n). The basic scheme of the MATS test is illustrated in Figure 
3.14. 

 

Figure 3.14: MATS test scheme, from [16]. 

Looking at the MATS in comparison with Zero-One or Checkerboard, which 
have the exact same number of operations performed on the memory cell array we 
can see a net superiority of the MATS test in the fault coverage [16]. 

 
MATS+ 
 
MATS+ is a special version of the MATS test, used when the technology of 

the memory chip is unknown [16] [29]. This test uses 5n operations, so has an 
order of O(n). The fault coverage is the same as the MATS test. The scheme of the 
algorithm is depicted in Figure 3.15. 

 

Figure 3.15: MATS+ test scheme, from [16]. 

We will conclude this section with a summary of the tests described in this 
section alongside with some other march tests described in [16]. This summary is 
presented in Table 3.5. As can be observed from Table 3.5 the test times for even a 
small memory chip can be very high. Also in order to be able to apply these tests 
there are necessary special equipment outside the memory chip, these test 
equipment are very expensive because they are usually used only in one generation 
of chips, needing change after each technological improvement. Also in the last 
years the size of the memory has increased considerably without a corresponding 
increase in speed, this making the tests lengthy and sometimes even obsolete. Due 
to these facts and many other disadvantages the producers have started exploring 
alternatives to the old testing methods, these alternatives have developed in a 
general method called Built-In Self-Test that is integrated on the memory chip and 
permits the test of the chip, only by adding some extra pins, without the special 
equipment, or with some equipment that permit the production cost to be reduced. 
The Built-In Self-Test methods along with others of similar type will be presented in 
the next chapter. 
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Table 3.5: Comparison of memory test algorithms, from [16]. 

Algorithm 
Fault Coverage Test Time 

AF SAF TF CF Others Order 1Mb 
Zero–One – L  – –     n 0.42s 

Checkerboard – L  – – Refresh    n 0.52s 
Walking 1/0 L L  L L Sense amplif. rec.    n2 2.5day 

GALPAT L L  L L Write recovery    n3 5.1day 
GLAROW LS L  L L Write recovery    n 𝑛 7.2day 
GLACOL LS L  L L Write recovery    n 𝑛 7.2day 

Sliding Diag. LS L  L –     n 𝑛 10s 

Butterfly – L  – –     2n 3.6m 

MATS DS D        n 0.42s 
MATS+ D D  – –     n 0.52s 

Marching1/0 D D  D –     n 1.5s 
MATS++ D D  D –     n 0.63s 
March X D D  D D Unlinked CFins    n 0.63s 
March C- D D  D D Unlinked CFins    n 1.0s 
March A D D  D D Unlinked CFs    n 1.6s 
March Y D D  D D Linked TFs    n 0.85s 
March B D D  D D Linked CFs    n 1.8s 

L=Locate    LS=Locate Some   D=Detect     DS=Detect Some 
 

3.2 Built-In Self-Testing and Graceful Degradation 

Throughout the remainder of this chapter we will discuss the various 
methods used for Built-In Self-Test (BIST) for memory testing. Also we will provide 
a description of a method called graceful degradation, which, as its name suggests, 
allows the memory to continue functioning even after faults appear. 

3.2.1 Memory Built-In Self-Test 

We will start this section with a basic description of what BIST means and 
what it implies, and we will continue with a more detailed presentation of BIST 
methods used for memory testing. 

 
Introduction to BIST 
 

In the digital world everything eventually breaks down and stops functioning 
correctly. The most important thing to know is when to trust the result that a digital 
device provides to be correct and when not. The methods described in the previous 
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section, though useful, are not practical because they need special equipment in 
order to be able to test a device. In order to eliminate this inconvenient the industry 
has provided a solution called Built-In Self-Test, which adds extra logic needed for 
the test sequence on the chip of the circuit under test (CUT). The first digital 
systems to have a BIST were two Hewlett-Packard digital voltmeters, as described 
in [30]. The development cost and time increased by 1%, also there was a 1% 
increase in part costs, but the total costs dropped by 5% because the modularity of 
the system was no longer needed. Frohwerk describes in [31] a method for 
determining the correctness of a circuit by analyzing a signature. A signature is a 
statistical property of a circuit. In order to build BISTs for integrated circuits he 
applied the work of Peterson and Weldon [32] and Golomb [33] on error correcting 
codes and shift registers [34]. 

A digital system is diagnosed and tested during its lifetime on countless 
occasions. The tests and diagnosis must be quick and they need to have a very high 
fault coverage [34]. A way to ensure these restrictions is to specify a test as one of 
the system functions, so it becomes a self-test [34]. Many of the digital systems 
designed at AT&T around 1987 had self-tests, usually implemented in the software 
[34] [35]. Although this approach provided flexibility and its fault coverage and 
diagnosis weren’t as high as expected [34]. This led to the building of the self-test 
function into the hardware [36] [37]. The earlier in the design stage the testing is 
considered the more efficient it is and the more the cost is reduced, this is because 
of the reduced number of prototypes and re-fabrications that are needed. 

In the last few years due to the large integration the need for testing is 
greater than ever, that is why the great majority of the manufacturers, if not all of 
them, use BIST methods on a very large scale. The BIST solutions for testing can be 
applied to any digital system, but due to the fact that in our thesis we only discuss 
memory testing we will stop with this general introduction of BIST here, refereeing 
the reader for a more detailed description to [16] [34] [38]. 

 
Memory Built-In Self-Test 
 

Random Access Memories (RAM) memories are perhaps the hardest 
elements in digital systems to test; this is because memory testing requires delivery 
of a huge amount of pattern stimuli to the memory. Also it requires the readout of 
an enormous amount of information [34].With the memory Design for Testability 
(DFT) the most time consuming part is implemented on-chip, and it reduces the 
order of test time by a magnitude order [16]. The area overhead for memory DFT 
for a 4Mb DRAM is 1% [39]. The area overhead for memory BIST can be expected 
at around 2% [34]. 

The most important difference between memory BIST and memory DFT is 
that the memory BIST is completely self-contained, which means that all the 
functions required for the BIST are contained in the chip such that the test can be 
performed autonomously [16]. For DFT parts of a test are implemented on chip, 
these are the ones that provide the largest reduction in test time. So this way the 
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inner loops of a test algorithm can be executed by the DFT on the chip, while the 
other parts of the algorithm are executed, by externally providing certain control 
and test data and/or observing certain response data [16]. This is why the test 
times are in favor of the BIST when compared to DFT [39]. 

The most important advantages of BIST are: the test time, which is 
minimized (i.e. it is from 2 to 3 orders of magnitude faster than the conventional 
tests [16]); and the test is completely contained on the memory chip. The 
disadvantages of the BIST are: the area overhead is larger than DFT, usually with a 
factor of 2 [16]; it is only capable of implementing the tests for which it was 
designed. 

The types of memory BIST are: 
• Concurrent BIST 
• Non-Concurrent BIST 
• Transparent Testing 

The concurrent BIST is a memory test mechanism where the memory can 
be tested concurrently with the normal system operation. This means that faults 
occurring during normal use of the memory can be detected, and depending on the 
complexity of the test even be corrected. For this type of BIST usually a form of 
information redundancy is used in the form of a parity bit or an error correcting 
code (ECC), which also increase the area overhead due to the extra information that 
has to be stored. The advantages for the concurrent BIST are that all faults, within 
the restrictions of the method used, are detected and/or corrected. This means that 
all permanent and transient faults are detected and/or corrected when they appear. 

The disadvantages for the concurrent BIST are: the large area overhead 
needed, the performance penalty because of the constant need of checking the ECC, 
also the number and type of faults that can be corrected is limited, and so even if 
we have a complex concurrent BIST we cannot guarantee that the memory will be 
completely fault free. Note that the 100% certainty that the memory is fault free 
cannot be achieved by any kind of test. 

The non-concurrent BIST is a memory test mechanism that requires 
interruption of the normal system function in order to perform the testing. The 
original memory contents are lost. The advantages of this kind of BIST are: 
maximum freedom in the data pattern used, more complex fault models can be 
detected. The disadvantages of the non-concurrent BIST are: the faults not covered 
by the BIST algorithm are not detected; the transient faults that occur between 
BIST periods are not detected, so only the permanent faults can be detected by this 
kind of BIST. 

Transparent testing is a memory test mechanism that requires interruption 
of the normal system function for testing. The original memory contents are 
preserved in the memory after the testing is finished. Due to the fact that this is a 
particular method of non-concurrent BIST the advantages and disadvantages of the 
non-concurrent BIST also apply. 
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3.2.2 Graceful Degradation 

The graceful degradation technique deals with hard/permanent faults, and it 
is an alternative to reconfiguration. In reconfiguration the defective component is 
replaced by a spare one, if this one is available. In graceful degradation the 
defective component is just switched off and never used again, thus maintaining the 
reliability at the cost of performance [38]. The provision of spare units that remain 
unused in the reconfiguration technique is called backup sparing. For graceful 
degradation the backup units either do not exist or they are used to provide an 
increase in performance [38]. 

The graceful degradation is a special part of fault tolerance techniques, 
because all other techniques have one thing in common: they have redundant units 
that are used for replacement, error detection or error correction. The graceful 
degradation technique does not make use of redundant units, in the sense that 
either these units are used to increase performance, or they do not exist at all [38]. 

There are two comparable but different aspects to graceful degradation. For 
the first one the design of the system is such that it will provide the possibility of 
continued operation at the cost of a degraded performance. This will result in a 
slower working system, but even a slower system is preferred to a non-working 
system. The second case of graceful degradation is when extra resources are added 
in the design of the system, such that even in the circumstance of errors appearing 
the system will be able to provide a minimum performance level with a high 
probability. The system will start by providing a higher performance if no errors are 
detected, and this performance will start to degrade, but still be above a certain 
minimum threshold. 

The choice between the two aspects of graceful degradation depends on the 
application that needs to run on a certain system. For example the first aspect of 
graceful degradation may be used in a non-performance critical system; an example 
of such a system is a personal computer. The second aspect of graceful degradation 
is used for performance critical systems; an example of such a system is a space 
satellite, or an aircraft controller [38]. 

The way the graceful degradation technique is used in industry is through 
software. This is because of the reduced cost of this solution and the fact that it is 
easy to modify. As a shortcoming for this approach is the extra performance cost 
that is introduced in this manner. For example in the VAX-11/780, which has a 2-
way set associative memory, if errors are detected in one way then that way is 
disabled leaving the cache memory as a direct map cache. This is not very efficient, 
since in the eliminated way there are still locations that function correctly that could 
be used. Also the Univac 1100/60 has the ability to not use portions of the cache 
[38]. These are examples of machines that make use of the first aspect of graceful 
degradation. 

For the second aspect of graceful degradation an example can be found in 
the multiprocessor system Pluribus [40], that was designed for the ARPANET [38]. 
This multiprocessor system has an extra processor that provide an increase in 
throughput and also allows the system to maintain a minimum performance 
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requirement if one of the processors fails. Some other examples can be found in the 
SIFT, Stratus and Tandem computers [38]. 

There are cases where a system cannot be classified in one or the other 
instances of graceful degradation. Examples of such are the multiprocessor 
systems: Cm* and C.mmp [41] [42]. This is because both of these systems make 
use of both aspects of the graceful degradation technique [38]. 

The first thing that designers have to keep in mind when designing systems 
that use the graceful degradation technique is that there is not a standard way of 
evaluating the system. This is because the evaluation will depend on the application 
that is served by that system. The metric that evaluates the system will consist of 
both performance and reliability aspects and the weight of each of these aspects will 
vary from application to application [38]. Also one has to keep in mind that the 
performance will vary in time, depending on the number of errors encountered and 
the location of those errors. 

3.2.3 Conclusions 

Throughout this thesis we will make use of the first aspect of the graceful 
degradation technique. We will use this in providing an efficient mechanism for set 
associative cache memories that will allow taking out of use of each location at a 
time, instead of a whole set. By doing this we will ensure that the performance of 
the system is maintained as much as possible, while providing an increase in 
reliability and speed of the whole system. 

This technique that we have developed is called SAM (Self Adaptive cache 
Memories), and will also make use of a BIST that resides inside the cache memory 
capable of detecting errors as they appear. By doing this we will provide a reliability 
increase in the cache memory, while maintaining a stable performance. The method 
that we have developed can also be changed and applied to any type of memory, 
such that the reliability gain and also the performance degradation rate are 
maintained.
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4 State of the art in reliability techniques for 
cache memories 

 
In this chapter we will present an overview of the state of the art work on 

cache memory reliability and its importance and relevance to the computing world. 

4.1 Adaptive Cache Design to Enable Reliable Low-Voltage 
Operation 

In this paper the authors propose an adaptive cache design, which 
addresses the operating system. The operating system is thus allowed to optimize 
for energy efficiency or performance while maintaining the reliability of the cache 
memory [43]. 

The basic goal is to tolerate both persistent (hard) and non-persistent (soft) 
failures at low voltages, by enabling a special cache design. This design exploits 
both power-reliability tradeoff and power-performance tradeoff. The solution 
proposed by the authors makes use of error correcting codes (ECC) in order to 
tolerate both hard and soft faults at low voltages; this solution is called multi-bit 
segmented ECC (MS-ECC). The basic idea for doing this is to use some ways in each 
cache set in order to store error-correcting codes for the other ways in that set, 
during the low-voltage operation time. In this way the remaining ways have an 
increase in reliability against high failure rates. Depending on the Vccmin and the 
desired reliability the number of ways used for storing ECC can be adaptively 
selected by the operating system, thus making this method very flexible. This 
number has to be carefully selected because the cache will decrease its capacity 
with every way that is taken out of normal use, and chosen for storing ECC [43]. 

In order to reduce the complexity of error correcting the authors make use 
of the Orthogonal Latin Square Codes (OLSC) that were proposed in [44]. By using 
more check bits the OLSC can encode and decode faster than traditional ECC. Also 
OLSC can be used to adaptively correct a varying number of errors, because it uses 
modular error correction hardware. To further simplify the ECC implementation, the 
authors use the MS-ECC in order to divide a cache line into segments and use these 
segments for finer granularity. By making use of this finer granularity the errors 
that appear can be corrected with lower latency and complexity [43]. 

The main contributions that were brought by the authors are: the yield loss 
and lifetime reliability are both quantified from the perspective of persistent and 
non-persistent faults. The new fault tolerant mechanism that was discussed in the 
previous paragraph is another contribution; this mechanism allows for multi-bit 
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error correction for cache tags and small cache line segments. They also analyze the 
trade-off between maintaining the cache capacity high or using it for fault tolerance 
techniques, this is done via the Operating System, by allowing this Operating 
System to actively adapt the cache for fault tolerance, low voltage and high 
performance. The most important results in terms of number obtained by the 
authors is the operation of a cache memory at 520 mV, with minimal latency and 
high reliability, by using half of the cache’s capacity for fault tolerance [43]. 

The main downfall of the method presented in this paper is that it takes 
from use cache lines, in order to maintain the reliability of the chip, while decreasing 
the supply voltage. By doing this, even though, the reliability is maintained the 
performance will be decreased, because the number of misses in the cache will 
increase. This number increases because the capacity of the cache is reduced; in 
some cases it can be even reduced to half of its original size. 

4.2 Reliability-driven ECC Allocation for Multiple Bit Error Resilience 
in Processor Cache 

In this paper the authors propose a reliability-driven ECC allocation scheme 
that matches the relative vulnerability of a memory block with ECC protection. The 
memory block is determined using post-fabrication characterization. In order to 
reduce the number of check bits, the authors make use of shortened Bose-
Chaudhuri-Hocquenghem (BCH) cyclic code with zero padding. Also in order to 
reduce the impact on energy, performance and are, the authors propose an efficient 
circuit/architecture-level optimizations of the ECC encoding and decoding logic [45]. 

The authors address the problem of runtime errors. So far this problem has 
been addressed by using either parity bits or Hamming codes which can detect 
double errors and correct single errors (SECDED). But these techniques are 
becoming less effective due to technology scaling and the increase of MBUs 
(multiple-bit upsets). Also the overhead added by these techniques increases when 
all cells are treated equally, for the most pessimistic case. Because of the process 
variations of inter and intra-die, different sections of a memory cell array can move 
to various process corners [46]. This in turn will have an impact on the distribution 
of the vulnerability of cells. This means that different cells will have different 
vulnerabilities because of their spatial position. An example of this is depicted in 
Figure 4.1 where the typical block size varies from 1 to 8 KB. These are the reasons 
why the authors try to account for this distribution of vulnerability and try to 
allocate the ECC according with this distribution [45]. 

The effectiveness of a multi-bit error tolerance scheme depends on the ECC 
choice. To address this issue the authors make use of shortened BCH cyclic codes 
with zero padding for variable ECC protection [47]. In order to increase the 
performance and reduce energy consumption the correction logic is invoked only 
when the decoding logic detects an error. Another contribution is the effective 
sharing of hardware resources used for encoding and decoding. 
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Figure 4.1: Due to intra and inter-die variations blocks of a cache can move to different 
reliability corners. The cache is k-way set associative. The errors can appear from either 

contiguous or random failures, from [45]. 

In order to summarize the contributions of this paper we can say that: the 
authors presented an efficient variable ECC scheme that uses the distribution of 
memory block reliability. Also they have chosen appropriate ECC techniques in order 
to minimize area and energy consumption, while at the same time increasing 
performance. This technique can tolerate both random and contiguous errors [45]. 

This paper provides a technique for adaptively tolerating errors in the 
processor cache, by analyzing the distribution of vulnerability and allocating ECC 
accordingly. What it doesn’t account for is the fact that the vulnerability also has a 
ware and tare component, which in time may change the distribution of the 
vulnerabilities, and thus making the cache memory susceptible to incurring errors. 

4.3 Process Variation-Aware Adaptive Cache Architecture and 
Management 

The authors of this paper are trying to solve the problem of the current 
design methodologies, which are tuned for the worst-case scenario, and which are 
becoming extremely pessimistic from a performance standpoint. The use of the 
worst-case scenario might not be a viable solution in the future, because of 
technology scaling, which in terms implies an increase in overhead, both area and 
energy. The contributions of this paper aim at solving this very problem. First, the 
authors propose an adaptive cache management policy, based on non-uniform 
cache access. And second, it proposes a latency compensation approach in order to 
change the access latency of some cache lines. The results presented show that by 
applying these methods the authors can recover a significant amount of the 
performance loss [48]. 
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Even though the read, write and hold failures are very important, the most 
frequent type of failure in a cache is the access timing failure [49] [50]. So in order 
to avoid these types of failure the worst-case scenario technique has been in use. 
This technique prolongs the access time in order to avoid these failures. But beside 
this technique there are at least two others: adapting the execution to variable 
access latencies; and modifying the latency of selected cache locations, in order to 
increase performance, but this is done at the expense of aging and/or increase 
energy consumption. The authors approach these last two methods in order to 
increase performance, and maintain the reliability of the cache memory [46]. 

This paper makes the following contributions: exploiting variable access 
latency; selective latency compensation; and experimental evaluation. We will 
discuss briefly each of these contributions and present our reader with some results. 
The exploitation of variable access latency makes use of both address prediction and 
the March tests. It tries to access a low latency cache location as early as possible, 
by issuing instructions that depend on load. The selective latency compensation is a 
mechanism that trades power consumption and reliability for reduced latency, but 
this can lead to increase aging and important power consumption. The experimental 
evaluations in this paper are made using the SPEC 2000 benchmarks. These 
techniques can be implemented for both manufacturing defects and variations that 
degrade over time, making this a case of graceful degradation. It can also be 
implemented for L2 caches and TLB (Translation Lookaside Buffer). The 
performance recovery obtained from the experiments is shown to be over 60% 
[48]. 

One aspect that is not treated in this paper is the time degradation. This 
time degradation can lead to a decrease of the reliability of the cache memory. Also 
by applying the method described in this paper could lead to a rapid aging of the 
cache memory. 

4.4 Replication Cache: A Small Fully Associative Cache to Improve 
Data Cache Reliability 

In order to avoid the costly solution of N modular redundancy, the authors 
of this paper propose the use of a small fully associative cache memory, that 
replicates every write in the L1 cache. This solution is used for protection against 
soft errors. The impact of the newly introduced cache memory is quite small on 
performance, and because of data locality it can be proven to be a very efficient 
solution for soft errors [51]. 

The newly introduced cache memory is called replication cache; Figure 4.2 
depicts the place of the newly introduced replication cache (R-cache) [51]. 
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Figure 4.2: Replication cache, that protects the L1 data cache, from [51]. 

The experiments conducted throughout this paper show that the area 
overhead introduced by the replication cache is smaller than an N modular 
redundancy solution. Also it is proven in this paper that this solution can protect up 
to 97% of the entries. This is done by the data replication that this replication cache 
provides [51]. 

Even though the solution provided in this paper might protect a significant 
number of entries, it introduces a notable, though smaller than N modular 
redundancy, area overhead. Beside this shortcoming if an error is detected then the 
mechanism would not know which data is corrupted, which will introduce a 
performance penalty. Also, by not having a third module, like the triple modular 
redundancy technique, there might be cases when a faulty entry can pass through 
this mechanism. 

4.5 On the Characterization and Optimization of On-Chip Cache 
Reliability 

In this paper a new framework is proposed for characterization and for 
conducting comprehensive studies on the reliability behavior of cache memories. 
This is useful for providing insight into cache vulnerability to soft errors, and also 
producers and architects can use it in order to improve the reliability of the cache 
memory. The authors aim at developing a new lifetime model, for both data and tag 
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arrays, which are located not only in data caches, but also in instruction caches 
[52]. 

Throughout this paper a comprehensive number of scenarios are analyzed 
and based on the results obtained from simulations the new schemes, for tracking 
and avoiding the soft errors, are developed. The authors define a number of 
metrics, like the temporal vulnerability factor, and with the help of these metrics 
they define different vulnerabilities of the cache memory. Beside this, the authors 
also propose a number of schemes that aim at reducing the vulnerabilities 
discovered. For example the clean cache line invalidation scheme that was 
developed aims at reducing the time when clean cache lines stay in the vulnerable 
read-read phase [52]. 

Even though this paper provides a very comprehensive study of the errors in 
the cache memory, and proposes a number of schemes that can address these 
errors; the hard errors that can appear throughout the lifetime of a cache memory 
are not discussed in any way. These hard errors can appear due to aging, process 
variation, or a number of other causes. 

 
 
In the field of graceful degradation techniques a few ideas made themselves 

notable. Among these, the most important regarding SRAM memories and cache 
memories was presented in 2005 in an article called: “A Process-Tolerant Cache 
Architecture for Improved Yield in Nanoscale Technologies” [1]. In this article the 
authors describe a new graceful degradation method that is applied to cache 
memories, in order to improve their yield. In the following we will provide an ample 
description of the method presented in their article alongside with our comments, 
observations and remarks, providing our reader with a full overview of both the 
advantages and downfalls of the discussed method. 

4.6 Description of a Process-Tolerant Cache Architecture Method 

The method described in “A Process-Tolerant Cache Architecture for 
Improved Yield in Nanoscale Technologies”, will be referred from hereon as PTCA 
(Process-Tolerant Cache Architecture). The PTCA method is used to improve the 
cache memories yield; the results are quite remarkable, from a basic 33% yield, by 
applying the PTCA the yield will increase up to 94% [1]. But only having a direct 
intervention in the cache’s memory architecture structure, in order to provide 
replacements for faulty cache cells, can do this. 

The fault distribution for a cache memory is depicted in Figure 4.3. This is 
used by the authors in order to design their method and also for showing their 
results after the implementation of their methods. 
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Figure 4.3: Fault statistics of a 64-K cache, from [1]. 

The basic idea behind PTCA is to replace a faulty cache cell with a healthy 
neighbor cell, e.g. if there are 8 cells in a column and one of them becomes faulty it 
will be replaced by one of the remaining seven cells in that column. When all cells in 
a row become faulty the entire memory becomes faulty. The results and 
architecture presented for PTCA relate to a 64 kB direct mapped cache memory, as 
in Figure 4.4: 

 

Figure 4.4: Block diagram of a 64-K cache macro, from [1]. 

The proposed architecture is depicted in Figure 4.5. In Figure 4.5 the BIST 
used can be any BIST that can recognize a given number of faulty bits in a cell [53] 
[54]. The Config Storage is used in order to maintain the configuration of the faulty 
cache cells on the hard drive, even when the processor is turned off, and then 
reload that configuration on the next booting of the system. The Configurator 
configures the way that the faulty cells will be mapped in their row and gives 
information to the tester if the chip is faulty or not. 

The convention is to store multiple cache blocks in the same row and access 
them simultaneously by the use of a word line [55]. So when a cache cell that is 
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healthy is accessed nothing happens besides the normal cache access, but if a faulty 
cell is accessed then the Column Multiplexer forces the cell that will be accessed to 
be the healthy cell that replaces the faulty one. An example of this is presented in 
Figure 4.6. 

With this type of remapping there can appear a few problems: if for 
example two cache cells in the same row have the same tag, one of them is faulty 
(cell “one”), and is replaced by the other one (cell “two”); then a problem appears if 
we are looking at this set of instructions: 

STORE D “one” 
LOAD “two” Register 

The problem is that since both cells have the same tag, then cell “one” will 
be stored at the location of cell “two”, then the processor will deal with a cache hit 
instead of a cache miss, due to the fact that they have the same tag, see Figure 4.7 
(a). In order to deal with this problem the authors have proposed to include the 
column address bits into the tag bits, which will increase the size of the tag, see 
Figure 4.7 (b). After applying these modifications to the mapping, then the problem 
discussed, will be resolved as depicted in Figure 4.7 (c). 

 

Figure 4.5: Architecture of a 64-K process-tolerant cache, from [1]. 
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Figure 4.6: Resizing the cache, from [1]. 

 

 

Figure 4.7: Resizing of cache based on the fault location. (a) Mapping problem. (b) Extending 
tag bits. (c) Resolving the mapping problem, from [1]. 

The fault tolerance of the PTCA method is proportional with the number of 
columns in a row, so the more columns the higher the fault tolerance will become. 
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In order to implement the Config Storage the authors have proposed two methods: 
1) content addressable memory (CAM) implementation 
2) one-bit implementation (OBI) 

These two implementations are presented in Figure 4.8. 
For the CAM implementation the fault locations (index bits) will be stored 

into a CAM [56]. The size of the CAM will depend on the total number of faults that 
need to be tolerated. A 100-entry CAM is depicted in Figure 4.8 (a). 
The OBI adds one bit per cache block, which tells the Controller if that block is faulty 
or not. An example of the OBI is depicted in Figure 4.8 (b). 

Table 4.1 shows a comparison in terms of energy and performance between 
the CAM implementation and the OBI. While in Table 4.2 is presented how a four 
block per row cache is evolving when encountering four errors in the same row. 

 

Figure 4.8: Config Storage. (a) CAM, an example to store 100 faults, (b) OBI, from [1]. 

In Figure 4.9 there are presented some probabilistic results that show the 
improvements resulted from the use of the PTCA method. Figure 4.9 (a) compares 
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the PTCA with ECC (error correcting codes) and redundancy, Figure 4.9 (b) depicts 
the behavior when the OBI is used, Figure 4.9 (c) presents the PTCA with a 
redundancy used in the cache memory, while Figure 4.9 (d) depicts the ECC method 
with a redundancy option. 

Table 4.1: Comparison of Energy and Performance between different Config Storage, from [1]. 

 

Table 4.2: Column address selection based on fault location, from [1]. 

 

4.7 Results of the Process-Tolerant Cache Architecture Method 

In Figure 4.9 there are presented some probabilistic results that show the 
improvements resulted from the use of the PTCA method. Figure 4.9 (a) compares 
the PTCA with ECC (error correcting codes) and redundancy, Figure 4.9 (b) depicts 
the behavior when the OBI is used, Figure 4.9 (c) presents the PTCA with a 
redundancy used in the cache memory, while Figure 4.9 (d) depicts the ECC method 
with a redundancy option. 

BUPT



54     State of the art in reliability techniques for cache memories – 4 

 

 

Figure 4.9: Probability of salvaging a chip versus fault probability for a 64-K cache. (a) 
Proposed architecture, ECC, and redundancy. (b) Proposed architecture with redundancy in 

OBI. (c) Proposed architecture with redundancy in cache. (d) ECC with redundancy, from [1]. 

In Figure 4.10 (a) the results in terms of yield are presented when OBI is 
used, while Figure 4.10 (b) depicts a comparison between the PTCA architecture 
implemented with OBI and redundancy, compared to the ECC method and the 
simple redundancy method in terms of yield. 

Figure 4.11 shows the number of chips that can be saved after 
implementing the PTCA method, compared to the initial statistics of the faults of a 
cache memory. 
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Figure 4.10: Effective yield improvement. (a) Using proposed architecture along with 
redundancy to OBI. (b) Using different schemes with redundancy to cache. Plot 1: Redundancy 
to cache. Plot 2: ECC along with redundancy to cache. Plot 3: Proposed architecture along with 

redundancy to cache and OBI (r = 3), from [1]. 

 

Figure 4.11: Number of chips saved by proposed architecture and ECC with optimum 
redundancy versus number of faulty cells for a 64-K cache, from [1]. 

4.8 Conclusions and discussion 

As a conclusion to the article discussed we can say that even though it 
presents a number of improvements to the yield of cache memory chips, it also 
presents a set of disadvantages. The first and most important one is that in order to 
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implement the PTCA method the manufacturer has to modify the reading and 
writing process of the cache memory in order to accommodate the changes that 
come with PTCA. A second disadvantage is that the yield improvement is dependent 
on the number of cache blocks that are accommodated within a row. But the most 
important downfall, in our opinion, is that the PTCA method does not address a very 
important issue, that is, usually errors appear in patterns (e.g. Neighborhood 
Pattern Sensitive Faults), and so it is more probable that a neighboring cell of a 
faulty cell to become faulty than any other. So the method by which a faulty cell is 
replaced with a neighboring healthy cell might, in time, not to be very efficient. 

In order to address these downfalls of PTCA, and not only, we will propose a 
method called Self Adaptive cache Memories, or SAM, this will be presented in the 
following chapter. 
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5 Self-Adaptive cache Memories 

In this chapter we discuss an original graceful degradation method applied 
to k-way set associative cache memories. The method is called “Self Adaptive cache 
Memories” (SAM); it works by removing the faulty locations from use, while 
reorganizing the memory to maintain a high performance. For the proposed 
contribution, the analysis provided herein reveals a significant reliability increase for 
the cache memory, while the entailed overhead remains small in comparison with 
the attained goals. 

5.1 Introduction 

As memory systems continue to decrease in size, the probability of hard, 
permanent faults increases especially in SRAM cells [1]. Due to this fact the usual 
method, using spare rows/columns, for preventing hard faults can become obsolete 
[1] [6].  The hard errors can appear due to process variation [1] [4], aging [2], or 
other. 

We propose a new method called SAM (Self Adaptive cache Memories), 
which is used to disable from use the faulty cells that have been diagnosed as 
incurring hard errors. To this end, we will assume that the cache memory has a 
concurrent built in self-test (BIST) capable of detecting the errors that may occur. 
Being a case of graceful degradation, this method will have a loss in performance 
because the size of the cache memory is decreasing [7] [8] [3]. The research 
presented herein aims at reducing that loss to a minimum by remapping some 
memory locations, and by the fact that the memory will be continuously adapting to 
new faulty locations. 

5.1.1 L-Zone 

First we need an extra bit for each memory cell; we will call this bit an ‘L’ 
bit. This bit allows us to separate the faulty cells from the non-faulty cells: if the L-
bit of a cell is ‘1’ it means that the cell is faulty and if the L-bit is ‘0’ it means that 
the cell is working correctly. All of the L-bits form the so-called L-Zone. 

For a simpler representation of the memory, we will separately present the 
L-Zone from the memory cell array. Taking a k-way set associative cache memory 
with n locations in each set; we consider having 5 faulty cells – represented by 
shaded cells in Figure 5.1 (a). Figure 5.1 (b) represents the corresponding L-Zone of 
the memory cell array. 

The L-Zone is filled with zeros when the entire memory works correctly. 
When a hard error that cannot be corrected appears in a memory cell, the cell’s 
corresponding L-bit becomes 1. An error is dealt with in the following way: if the 
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concurrent BIST detects an error which it cannot correct, then the error type (hard 
or soft) will subsequently be determined; this can be done as simple as another 
read/write from/to the same cell. If it was a soft error, then at the next access at 
the cell address, the error has a very high probability of disappearing. If it 
disappears, it means that we don’t have a hard error, so the memory can resume its 
normal functions. If at the next access the error persists, this means that we have 
to deal with a hard error and that particular memory cell can’t be used any longer 
without possible data corruption. This is the point where the actual SAM method is 
taking over. If the BIST logic of the memory chip has a non-concurrent testing 
option and if the system in which the cache memory is working in allows it to be 
shut down for a period of time, than the non-concurrent BIST can be used as the 
next two (optional) steps of the algorithm: they consist of shutting down the 
memory for some time, so a non-concurrent test can determine the type of error 
that has been found and can generate a report to be processed by the CPU; this 
feature can be used by the manufacturer to make future improvements to the 
product. The algorithm described in this paragraph can be seen in Figure 5.2. The 
final step is to make the cell’s corresponding L-bit ‘1’. This step triggers the 
following operations: 

• Checking if more than one location in a cache set is faulty. A cache set 
represents all of the cache locations in which a main memory location can 
be mapped (see section 5.1.2). 

• Taking the preemptive measures in order to assure that no more than 
one location per set will be faulty (section 5.2.1). 

• If there is no way that we can avoid more than one faulty location per 
set, then we have to decrease the set associativity of the cache. See 
section 5.2.2 for details. 

• In 5.2.3 we’ll propose a method of reorganizing the memory in order to 
eliminate from use the faulty locations 

 

Figure 5.1:  SAM description. (a) Memory cell array; (b) L-Zone; (c) MTO column and counter, 
from [9]. 
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Figure 5.2: Algorithm for handling errors. 

5.1.2 “More Than One” column 

If we have only a faulty cell in a set, which means that the set associativity 
of that set is reduced by one, is a situation that needs no further operations. But we 
will encounter a problem if in some sets all the cache lines work correctly while in 
other sets we face two or more faulty cache lines. A method for avoiding this 
situation will be discussed in section 5.2. In this section we will provide MTO (More 
Than One) column, as an instrument for preventing the problems listed above, 
which consists of one extra bit for each set of the cache memory, the so called MTO-
bit. 

Besides this column we need a counter to keep track of the numbers of 1s in 
the MTO column with the maxvalue=n, where n is the number of sets, n=(number 
of locations in cache)/k with the cache being k-way set associative. This counter will 
hold the number of encountered faults. We could use another method: a cascade of 
AND gates from the MTO column which will indicate if all MTO-bits are ‘1’; this can 
reduce the logic of the circuit, but it has a downfall: the exact number of faults that 
had occurred will be unknown, see Figure 5.1 (c). 

The MTO-bit of a set becomes ‘1’ when an error is found on that set, and it 
stays ‘1’ until all of the MTO-bits are ‘1’ and an error is discovered, then the whole 
MTO column will be reset to ‘0’. The MTO column along with the hard error signal 
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will generate the following behavior: if the MTO-bit is ‘0’ then it becomes ‘1’; else if 
the MTO-bit is ‘1’ and we don’t have an overflow from the counter, the MTO will 
generate a signal called L-Zone_output which will indicate that we have more than 
one error in a line, and we need to perform a remapping of the newly discovered 
hard error, see Figure 5.3. The last case is when the MTO-bit is ‘1’ and we have an 
overflow from the counter, this means that we need to reduce the set associativity 
of the cache memory. The algorithm is depicted in Figure 5.3. 

5.2 Modifications of the Set Associativity 

5.2.1 Maintaining the set associativity 

Maintaining the set associativity in a continuously degrading memory is a 
difficult task even if we can eliminate the faulty cells from use, because if – for 
instance – an entire line is eliminated the memory, it will work slowly or it won’t 
work at all. 

If we take the scenario described above, depending on the write policies we 
can have a very slow working system in case of a look-aside policy, and a faulty 
system in case of a look-through policy. In order to avoid such a case we 
implemented a replacement policy; see the algorithm in Figure 5.3. 

 

 

Figure 5.3: SAM algorithm, from [9]. 

We will focus in this section on the “modify_address_to_first_not_0_in 
MTO_column” instruction for this we will use an example. Considering the situation 
from Figure 5.4 (a) and we have a new uncorrectable error in line two set two. The 
memory contents will look like in Figure 5.4 (b), which will decrease the set 
associativity of line two with two while we still have lines with an intact set 
associativity; this is unacceptable. Therefore we search for the first line with the 
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MTO-bit ‘0’, in this case this is line one, and we’ll need to “switch” the faulty cell 
with a healthy cell from the same line, in which case the transformation of the 
memory will look like Figure 5.4 (c). 

The “modify_address_to_first_not_0_in_MTO_column” instruction does the 
followings: it searches for the first ‘0’ in the MTO column (it is found because the 
counter hasn’t reached an overflow), and it makes a “switch” between the last 
available memory location in that line with the faulty location. Note: the actual 
memory doesn’t switch the locations physically, so the memory still looks like Figure 
5.4 (b) for the considered example. It is a virtual switch because the faulty location 
cannot actually be replaced with the healthy location, but instead all of the 
operations on the faulty cell will be performed on the healthy cell. Section 5.2.3 
explains the way to implement the switch. 

5.2.2 Reducing the set associativity 

If we encounter a number of m faulty locations, where m is a multiple of the 
number of sets, n (i.e. m=n∙l, l∈{1, ... ,k}, where k is the number of cache lines per 
set), in order to maintain a stable performance we are obliged to reduce the set 
associativity of the cache memory. This varies from cache memory to cache 
memory, mainly depending on the replacement policy that is being used. In this 
chapter we will only discuss the reducing of set associativity for cache memories 
that use LRU (Last Recently Used) as replacement policy. A similar method can be 
used for FIFO (First In First Out) replacement policy, due to their similar 
implementation. Note that LRU is the preferred mechanism for the replacement 
policy. 

One of the implementations of the LRU algorithm is depicted in Figure 5.5 
(a). The main idea is to maintain a list of cache set indices sorted from LRU to MRU 
(Most Recently Used) [57]. When a cache set is accessed its set index s is presented 
to the list, and that index is rotated to the MRU position at the end. 

 

Figure 5.4: SAM remapping. (a) initial memory; (b) unacceptable error distribution;  

(c) acceptable error distribution, from [9]. 

 
For using the SAM method it is more convenient to reduce the set 

associativity of each line, instead of just waiting until we encounter n errors. The 
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reduction will be performed by moving the faulty cell address in the LRU index, and 
after that, the LRU-1 will become the LRU column, as in Figure 5.5 (b). This means 
that we will eliminate from use one line in that set. By performing this operation we 
will ensure that the faulty location will be placed in the LRU column, which will never 
be accessed again, ensuring this way that the faulty cache line will never be 
accessed. 

5.2.3 Reorganizing the memory 

One final step that we have to discuss is the “switching” of the locations. 
The proposed method is somehow similar to the TLB (Translation Lookaside Buffer), 
meaning that we have a table with two columns: within the first we have the 
address of the faulty location, whereas within the second one we have an address of 
a healthy location. This location is taken from the first set in the memory cell array 
with the MTO-bit equal to ‘0’.  

See Figure 5.6, which is a simple example of cache memory with faulty 
locations. In this example the actual switching doesn’t occur until the memory 
location (2,4) is accessed; then its L-bit being ‘1’ and the address being found in the 
table, the location (4,4) is used instead. 

 

Figure 5.5: (a) LRU algorithm (b) reducing the set associativity, from [9]. 

5.3 Overhead 

Giving the fact that the SAM method eliminates faulty memory cells from 
use, it is no reason to worry about encountering any other faulty locations besides 
the ones already eliminated. Our main concern is to find the most efficient size for 
the switching table. To this end, we need to take into consideration the overhead 
that the table is generating and the number of faults that need to be tolerated. 
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Figure 5.6: Switching table, from [9]. 

In order to find the most efficient size of the switching table we resort to 
some probabilistic calculations. It is necessary to find the most probable distribution 
of the errors in the memory, after a number of l errors already occurred. We will 
consider that a new faulty location can appear anywhere in the memory with the 
same probability. In order to do that we will “split” the memory in two parts: one 
that contains faulty sets, and the other part that contains only healthy cells. An 
example of this is given in Figure 5.7. 

If we have a memory like the one in Figure 5.7, after l errors the possible 
locations in the faulty lines becomes: possibleF=x∙k−l while the one in the healthy 
locations: possibleH=(n−x)∙k, in order to be in the most probable case scenario, 
after n errors, the two have to be equal: possibleH=possibleF which implies that: 

 𝑥 =
𝑛 𝑘 + 1
2 ∙ 𝑘

 (5.1) 

 

 

Figure 5.7: Faulty/healthy cells memory organization, from [9]. 

Example. Consider a L2 cache, 2MB 8-way associative, with 256B block 
size, as described in [6]. We will calculate the overhead for this memory, for the 
most probable case scenario, as discussed above. The number of bits in the 
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switching table will be log2(1024∙8)=13, thus making the size of a row in the 
switching table equal to 2∙13=26 bits. This number will be multiplied by the number 
of locations necessary in the switching table. We will calculate the overhead 
necessary in order to reduce the cache from an 8-way set associativity to a direct 
mapping. There are 448+439+427+410+384+342+256=2706 locations necessary 
in the switching table, thus making its size 2706∙26=70356 bits, see Table 5.1. 
These bits are added to the ones from the MTO and L-Zone: n(k+1)=9216 bits, 
resulting in 79572 overhead bits. This will result in an overhead of 0.474% without 
taking into consideration the valid bit and the tag bits used by any standard cache 
memory, see Figure 5.8. 

Table 5.1: Numbers of locations required in the switching table, from [9]. 

 
Compared to the method described in [1], where if a whole row becomes 

faulty, the yield will be decreased, SAM can maintain a cache memory working even 
if a whole set becomes faulty; this is done by the use of the switching table. 

 

Figure 5.8: Overhead for each reduction of the set associativity, from [9]. 

5.4 Conclusions 

The main goal of this chapter was to establish the theoretical foundations of 
the SAM method. By applying the SAM BIST method to a cache memory we increase 
its reliability by eliminating the faulty cells from the memory. 
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In order to give a rough estimate of the reliability of the memory we make a 
set of assumptions: the faults appear independent within the memory, without 
correlation, we take into consideration only the memory cell array. The SAM method 
is applied in order to sustain the reduction of the set associativity until direct 
mapping. We can say that the memory will stop working correctly after a number of 
(k−1)∙n+1  faults. A fault in the memory appears with a p probability, so instead of 
a reliability R=1-p [58], we obtain a reliability R=1-p(k-1)∙n+1, which means that we 
obtain a much more reliable memory system. Considering that a fault appears every 
10 hours of continuous memory functioning, after introducing a concurrent BIST to 
the memory we increase that period to 100 hours. This can suffice to an application 
in which the reliability isn’t as important as the performance but, for an application 
where the importance of reliability is paramount, this doesn’t suffice. After 
introducing the SAM method to that memory system we can keep the memory 
functional not for 100 hours but for 100∙((k−1)∙n+1) hours (e.g. k=8, n=1024 
⇒100∙((k−1)∙n+1)=716900 hours, which means an improvement of 7169 times. 
This improvement is created at the cost of reducing the capacity of the memory. It 
is necessary to find a critical point at which the performance will decrease too much 
and the memory chip will need to be replaced. This critical point will differ from 
application to application. 

By introducing a BIST, which detects and corrects more errors, we can avoid 
wrongly eliminating some of the healthy cells in the memory; this can happen if 
another soft fault appears in the re-reading of the memory cell. Another way we can 
reintroduce some cells in the normal use is by the use of a non-concurrent BIST 
test, which determines if the cells in the L-Zone are truly faulty or have been 
eliminated by mistake. If any cells like this exist they can be taken out of the L-
Zone and re-possess their place in the memory, hence increasing the reliability and 
the performance of the system. 

The overhead introduced by the SAM method can be considered as small, 
given the reliability which it provides, as it is presented in section 5.3. Because we 
seldom need to reduce the performance of the cache memory to a direct mapping, 
the overhead can be approximated by the one obtained at k/2 set associativity for 
which the overhead in the example proposed is 0.32%. 

In short, the advantages brought by the SAM method greatly exceed the 
disadvantages and the shortcomings that were also identified in this chapter. 
Another perspective on the contribution is that by creating a few extra misses in the 
memory cache we obtain a huge increase of the reliability of the memory. 
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6 Applied Probability Theory for Fault Tolerant 
Memory Systems 

This chapter proposes to use probability theory, combined with physical 
designs and methods, with the purpose of accounting failures in the memory 
component of computer systems.  

We will discuss how and where the errors in the memory system appear. We 
will focus on applying probability theory to determine how a memory system is 
more probable to look after a number of l errors, and how do they distribute within 
the memory. We will conclude this chapter by showing some simulation results, that 
we have obtained using the equations and relations that will be provided. 

6.1 Method description 

An error in the storage component of the memory system can appear 
anywhere with almost the same probability. We will consider that all the errors in a 
memory can appear with the same probability anywhere, i.e. the errors are 
uniformly distributed. 

The most important part of the error distribution is to know whether we 
have faulty rows or not, and if we have faulty rows how many columns in those 
rows are actually faulty. This is very useful when manufacturers are designing fault-
tolerant techniques. With this aim we will “split” the memory into two parts: a part 
that contains faulty rows, and a part that only contains healthy rows. This is 
depicted in Figure 6.1. 

 
Figure 6.1: Partitioning of the memory into two parts: one that contains only faulty cells or 

locations, and the other where only healthy locations can be found. 
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In Figure 6.1 the following notations have been used: n is the number of 
rows; k is the number of columns; and x is the number of rows that contain faulty 
cells. If we take into account that l is the number of faulty cells in the memory we 
will obtain (6.1) , by equalizing the number of healthy cells in the two partitions of 
the memory. Note that, we changed x into x1 in order to simplify future notations. 
So x1 represents rows that have at least one faulty cell or column in them. 
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From (6.1) we can find out how many rows have faulty cells, but what if this 
isn’t enough? What if we need to find how many rows have two, or three faulty 
cells? In order to do that, we will rely on a similar equation and algorithm. First we 
determine x1 from Equation 1, this x1 will tell us how many rows have faulty cells. If 
l (the total number of errors) is greater than x1 than, we will continue using 
Equation 1 with a new setup. That is k will become k-1, l will become l-x1, and n will 
be x1. Equation (6.2) summarizes these changes. 
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In (6.2), x2 represents the number of rows with at least two faulty cells, x1 
represents the number of faulty cells with at least one faulty cell, the rest of the 
notations are the same with the ones in (6.1). We can extend (6.2) to a general 
case, in which we will determine the number of rows with at least r + 1 faulty cells, 
this is represented in (6.3). For a better understanding we also have illustrated the 
recursive problem used in Figure 6.2. 

 

xr+1 ⋅ (k − r)− (l − xi
i=1

r

∑ ) = (xr − xr+1) ⋅ (k − r)

xr+1 =
xr ⋅ (k − r)+ l − xi

i=1

r

∑
2 ⋅ (k − r)

 (6.3) 

In (6.3) xr represents the number of rows with at least r faulty cells, while 
xr+1 represents the number of rows with at least r + 1 errors. In Figure 6.2 the 
bolded lines separate the problems. The first problem is when we need to determine 
x1, the number of rows with at least one error. After solving this problem we move 
on to the next problem in which we need to find the number of rows that have two 
or more errors, this number is represented by x2. In order to do that, we have to 
take into account that the only rows that might contain errors are the x1 rows that 
we have determined so far, the rest of the rows in the memory being free of errors. 
In order to determine x2 we change the parameters in (6.1), to account for the 
changes in the new problem. Basically we now have a memory with x1 rows and k-1 
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columns, and the number of errors in this memory is l-x1, thus obtaining (6.2). For 
the general case, i.e. to determine the number of rows with at least r + 1 errors we 
have the following problem. We have a memory with xr rows, k-r columns, and the 
total number of errors left in this memory is l-x1-x2-…-xr, having these parameters 
and inserting them into (6.1) we obtain (6.3), which represents the general case. 

In the following we will provide two lemmas that will help identify the 
number of rows with an exact number of errors. This means that at any point in 
time and after an arbitrary number of errors we will know for example how many 
rows have exactly two faulty cells. 

 

Figure 6.2: Recursive partitioning of the problem, into smaller problems; in order to be able to 
determine the number of rows with at least r errors. 

Lemma 1 
In a memory with a number of n rows and a number of k columns, which 

has a number of l errors that are uniformly distributed throughout the memory, the 

number of rows, t1, with exactly 1 error is t 1=
1
4
⋅
n ⋅ k − l
k −1

. 

Proof 
The number of rows with exactly one error is the difference between the 

number of rows with at least one error x1 and the number of rows with at least two 
errors, x2. 
t1 = x1 − x2  

k
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1
4
⋅
nk − l
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Lemma 2 
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In a memory with a number of n rows and a number of k columns, which 
has a number of l errors that are uniformly distributed throughout the memory, the 

number of rows tr with exactly r errors is t r=
1
2
!

"
#
$

%
&
r+1

⋅
n ⋅ k − l
k − r

. 

Proof 
As in the previous Lemma the number tr with exactly r errors is the 

difference between the number of rows with at least r errors and the number of 
rows with at least r + 1 errors. 
tr = xr − xr+1  

⇒ xr+1 = xr − tr  
Substituting xr+1 into (6.3) we obtain: 

xr+1 ⋅ (k − r)− (l − xi
i=1

r

∑ ) = (xr − xr+1) ⋅ (k − r)  

(xr − tr ) ⋅ (k − r)− l − xi
i=1

r−1

∑ − xr
$

%
&

'

(
)= tr ⋅ (k − r)  

xr ⋅ (k − r)+ xr − xr − tk (k − r)− l − xi
i=1

r−1

∑
$

%
&

'

(
)+ xr = tr ⋅ (k − r)  

xr ⋅ (k − (r −1))− xr − tk (k − r)− l − xi
i=1

r−1

∑
$

%
&

'

(
)+ xr = tr ⋅ (k − r)  

(xr−1 − xr ) ⋅ (k − (r −1)) = 2 ⋅ tr ⋅ (k − r)  

tr−1 ⋅ (k − (r −1)) = 2 ⋅ tr ⋅ (k − r)  

tr−1
tr
= 2 ⋅ k − r

k − (r −1)
 

⇒
tr−1
tr
≅ 2⇒ tr ≅

1
2
⋅ tr−1  

Ignoring the last approximation we continue the proof. 

tr−1
tr
= 2 ⋅ k − r

k − r +1
 

tr =
1
2
⋅
k − r +1
k − r

⋅ tr−1  

tr−1 =
1
2
⋅
k − r + 2
k − r +1

⋅ tr−2  
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tr−2 =
1
2
⋅
k − r +3
k − r + 2

⋅ tr−3  

……………………  

t3 =
1
2
⋅
k − 2
k −3

⋅ t2  

t2 =
1
2
⋅
k −1
k − 2

⋅ t1  

By multiplying these equations we obtain: 

tr =
1
2
!

"
#
$

%
&
r−1

⋅
k −1
k − r

⋅ t1  

Substituting the result from the previous lemma into the last expression we obtain: 

tr =
1
2
!

"
#
$

%
&
r+1

⋅
k −1
k − r

⋅
nk − l
k −1

 

tr =
1
2
!

"
#
$

%
&
r+1

⋅
n ⋅ k − l
k − r

 

Observation 1 
Since the number of errors and locations in a memory is limited, we will 

reach a point where the number of faulty locations, or errors, will be exceeded by 

the sum of faulty rows, i.e. l < xi
i=1

r

∑ . This will mean that we already covered all the 

errors in the memory, and the maximum number of faulty columns in a row is r. 
Also when we encounter this case the last xr will be computed as follows: 

 xr = l − xi
i=1

r−1

∑  (6.4) 

Observation 2 
As we are dealing with a physical system (memory) we cannot have a 

fractional number of rows, but in some cases xi and ti can be fractional numbers. In 
order for this not to happen we will define xi

row and ti
row which will be defined as: 

]5.0[ += i
row
i xx  and ]5.0[ += i

row
i tt , where ][x  represents the greatest integer 

that is smaller or equal to x. 

6.2 Simulation results 

We have simulated the results presented in section 6.1, using as simulation 
environment Matlab. The results for a 2MB cache memory with the block size of 
256B, which has 1024 rows and 8 [9] columns are depicted in Table 6.1 and Table 
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6.2, also the memory after 2048 errors is depicted in Figure 6.3. Moreover the 
results for a memory with 1024 rows and 16 columns are depicted in Table 6.3 and 
Table 6.4, while Figure 6.4 illustrates how the memory will look after 5120 errors. 

 
 

Table 6.1: Simulation results for a memory with 1024 rows and 8 columns. 

  l=1024 l=2048 l=3072 l=4096 l=5120 l=6144 l=7168 
x1 576 640 704 768 832 896 960 
x2 320 421 521 622 722 823 923 
x3 128 293 414 537 658 780 902 
x4 0 216 350 485 620 755 889 
x5 0 168 310 453 596 739 881 
x6 0 136 284 432 580 728 876 
x7 0 112 264 416 568 720 872 
x8 0 62 225 383 544 703 865 

 

Table 6.2: Simulation results for a memory with 1024 rows and 8 columns. 

  l=1024 l=2048 l=3072 l=4096 l=5120 l=6144 l=7168 
t1 256 219 183 146 110 73 37 
t2 192 128 107 85 64 43 21 
t3 0 77 64 52 38 25 13 
t4 0 48 40 32 24 16 8 
t5 0 32 26 21 16 11 5 
t6 0 24 20 16 12 8 4 
t7 0 50 39 33 24 17 7 
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Figure 6.3: The most probable distribution of faults, in a 1024 rows by 8 columns, memory; 
after a number of 2048 errors. 

 

Table 6.3: Simulation results for a memory with 1024 rows and 16 columns. 

 l=1024 l=3072 l=5120 l=7168 l=9216 l=11264 l=13312 l=15360 
x1 544 608 672 736 800 864 928 992 
x2 288 386 484 582 681 779 877 975 
x3 151 267 384 500 617 733 849 966 
x4 41 203 330 456 582 708 834 961 
x5 0 169 300 432 563 695 826 958 
x6 0 150 284 419 553 688 822 957 
x7 0 139 275 412 548 684 820 956 
x8 0 133 270 408 545 682 819 956 
x9 0 130 268 405 543 680 818 955 
x10 0 128 266 404 542 679 818 955 
x11 0 127 265 403 541 679 817 955 
x12 0 127 265 403 541 679 817 955 
x13 0 127 265 403 541 679 817 955 
x14 0 127 265 402 540 679 817 955 
x15 0 126 264 402 540 679 817 955 
x16 0 125 263 401 539 677 816 954 

Table 6.4: Simulation results for a memory with 1024 rows and 16 columns. 

 l=1024 l=3072 l=5120 l=7168 l=9216 l=11264 l=13312 l=15360 
t1 256 222 188 154 119 85 51 17 
t2 137 119 100 82 64 46 28 9 
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t3 110 64 54 44 35 25 15 5 
t4 0 34 30 24 19 13 8 3 
t5 0 19 16 13 10 7 4 1 
t6 0 11 9 7 5 4 2 1 
t7 0 6 5 4 3 2 1 0 
t8 0 3 2 3 2 2 1 1 
t9 0 2 2 1 1 1 0 0 
t10 0 1 1 1 1 0 1 0 
t11 0 0 0 0 0 0 0 0 
t12 0 0 0 0 0 0 0 0 
t13 0 0 0 1 1 0 0 0 
t14 0 1 1 0 0 0 0 0 
t15 0 1 1 1 1 2 1 1 

 

 

Figure 6.4: The most probable distribution of faults, in a 1024 rows by 16 columns, memory; 
after a number of 5120 errors. 

6.3 Conclusions 

Throughout this chapter we have developed a new method for predicting the 
most probable case scenario for the distribution of faulty cells in a memory system. 
We have done this by relying on probability theory and by computing our results for 
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the most probable case scenario. By applying our method, producers and designers 
of memory chips can find the most probable distribution of faults and plan 
accordingly in order to counteract their effects of the correct functioning of the 
system. 

To the best of our knowledge a model for accurate prediction of the fault 
distribution in a memory cell array has not been developed, our original model being 
the first. 

The main advantage of this method is that at any point in time, and for a 
given number of faulty cells in a memory system, our algorithm can tell its user how 
many rows have an exact given number of errors in it. Also our model can be easily 
implemented in simulators and fault injection techniques in order to provide 
scalability and better accuracy of the results. 

The results presented in this chapter have been used throughout chapters 5, 
7, and 8, which demonstrated the applicability of the developed method. 
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7 Improving the Self Adaptive cache Memories 
Mechanism 

In this chapter we provide our readers with two ways of improving the 
performance and reducing the overhead of the self-adaptive cache memory 
mechanism. The first method introduces an extra bit for both the L-Zone and the 
MTO column, and even though it might seem counterintuitive by adding these extra 
bits we will both reduce the overhead and increase the performance. The second 
method that we will describe is one that reorganizes the switching table and keeps 
the records within the switching table to a minimum. The last section of this chapter 
will provide a merge between these two methods in order to achieve an even 
greater increase in performance and smaller overhead. 

 

7.1 Algorithm Description for Switching Bits 

A major disadvantage of using the switching table in SAM is that every time 
a faulty cell is accessed, a search in the switching table is performed, and that 
means a process that induces a significant time penalty. In this section we describe 
a method of further reducing the number of accesses in the switching table. We also 
present a snapshot before and after the switching bits are introduced in the cache 
memory [59]. 

7.1.1 Switching Bits 

In order to be able to reduce the number of accesses in the switching table, 
more information is required for the case when a faulty cell is accessed. For each 
line, besides the L-bit, we will add an extra bit called Switching Bit (SB); for each 
set, besides the MTO bit, we will add an extra bit called Set Switching Bit (SSB), as 
presented in Figure 7.1. These added bits encode, for each line and set, four 
functioning states, instead of the two that were acknowledged within SAM (faulty 
and healthy). Table 7.1 summarizes the four functioning states along with a short 
description. 

7.1.2 Before Introducing the Switching Bits 

In this subsection we present the algorithms used by SAM for accessing the 
memory. First, we will present the algorithm that is used in the case of no error 
being detected by the concurrent BIST (see Figure 7.2).  

If the L-bit of the cache line is 0 – meaning that the line is healthy – then 
the access is normal, i.e. SAM doesn’t insert any changes to the memory access. 
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But if the L-bit is 1 – meaning the cell is faulty – then a search is performed in the 
switching table. If the location is found in the switching table’s faulty part (that is 
the only place we are looking for it) then the location from the healthy part of the 
switching table will be used instead. If the location is not found in the switching 
table, this means that either the location is faulty or it is substituting a faulty 
location; either way we will have a miss in the cache memory and we will have to 
choose some other location from the same set instead. 

 

Figure 7.1: Cache memory, after introducing the switching bits 

Table 7.1: Description of Switching Bits 

 Bits 
value 

Description 

S
et

 S
ta

te
s 

MTO=0 
SSB=0 

Healthy set 

MTO=0 
SSB=1 

Switched set (healthy set that has to be used 
to maintain performance in a faulty set) 

MTO=1 
SSB=0 

Faulty set (at least one cell in that set is set 
is faulty) 

MTO=1 
SSB=1 

Set with a double switched cell 

Li
n

e 
S

ta
te

s 

LB=0 
SB=0 

Healthy cell 

LB=0 
SB=1 

Switched cell (faulty cell that has to be 
maintained functional) 

LB=1 
SB=0 

Faulty cell (it is usually the first faulty cell 
encountered when the MTO of the set is 0) 

LB=1 
SB=1 

Switched cell (healthy cell that has to replace 
a faulty cell from another set) 
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Now we will present the algorithm that is used if an error is encountered by 
the original SAM algorithm, this situation that can be seen in Figure 7.3. First we 
look at the L-bit: if it is 0, meaning that we are dealing with a healthy cell, then we 
take into consideration the values of the MTO-bit and the overhead used for the 
reduction of the set associativity, as described in [9]. If the value of the pair (MTO-
bit, overhead) is (0, 0) then the L-bit of the cache line becomes 1 and the MTO-bit 
of the set also becomes 1. If the pair (MTO-bit, overhead) is (0, 1) then the L-bit of 
the line becomes 1 and a reduction of the set associativity is performed. If the value 
of the pair (MTO-bit, overhead) is (1, 0) then the L-bit of the line becomes 1 and a 
new entry is added to the switching table, thus making this line available for future 
accesses. The last case is when the pair (MTO-bit, overhead) has the value (1, 1), 
which means that the L-bit becomes 1 and a reduction of the set associativity is 
performed.  

 

Figure 7.2: Original SAM algorithm for an access of the cache memory, without any errors, 
from [59]. 

 

Figure 7.3: Original SAM algorithm for an access of the cache memory, when a hard error is 
encountered, from [59]. 

The second case is when the L-bit is already 1, which means that the cache 
line is already substituting a faulty cache line or it is a faulty cell. For this case we 
have to perform a search in the switching table within the faulty part. If the cache 
line is found then this means it is substituting a faulty line. In this case, depending 
on the value of the pair (MTO-bit, overhead), we have the following two cases. If 
the pair is (0, 0) or (1, 0) then a new entry is created in the switching table. If the 
pair (MTO-bit, overhead) is (0, 1) or (1, 1) then a new entry is created in the 
switching table, followed by a reduction of the set associativity, as described in [9]. 
The second case only appears if the cache line wasn’t found in the switching table’s 
faulty part, which means that the cell was already found as faulty (it was not a new 
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error) and, in order to access it, we have to use some other location from the same 
set instead. 

As a conclusion to this subsection we provide some notes on the 
disadvantages of this algorithm used by SAM. First, if an error isn’t found and a 
location is faulty then searches that aren’t necessary will be performed in the 
switching table, thus introducing time penalties. Second, there are a couple of new 
entries in the switching table that can be avoided, e.g. a new entry isn’t required 
always when (LB, MTO-bit, overhead) is (1, 1, 0); a more detailed explanation of 
this case will be presented in Section 7.1.5. Third, the searches in the switching 
table aren’t always required if an error is found and the LB is 1; in order to fix this 
drawback, by adding the so-called switching bits, we can know if that particular 
location is in the switching table or not. 

7.1.3 Algorithms after the Switching Bits 

In this subsection we present the algorithms described in Section 7.1.2 
which were modified to accommodate the newly added switching bits. The first one 
is the algorithm used when the concurrent BIST does not detect any error, as 
depicted in Figure 7.4. 

 

 

Figure 7.4: Modified SAM algorithm for an access of the cache memory, without any errors, 
from [59]. 

 

Figure 7.5: Modified SAM algorithm for an access of the cache memory, when a hard error is 
encountered, from [59]. 

In order for the algorithm to make a decision, it has to check the value of 
the (LB, SB) pair. If the value of this pair is (0, 0) the algorithm proceeds to the 
normal access of the memory location. If the (LB, SB) pair has the value of (0, 1), it 
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means that we are dealing with a switched cell, as it can be seen from Table 7.1, 
and therefore we have to perform a search in the switching table in order to find a 
healthy location to use instead. If the (LB, SB) pair has a value of (1, 0), this 
indicates a faulty cell that cannot be accessed (a situation that is also present within 
Table 7.1), and we have to use a healthy cell from the same set instead. If the (LB, 
SB) pair has the value of (1, 1), this also points to a switched cell (see Table 7.1), 
but in this case we also have to check the MTO-bit and the SSB. If at least one of 
these bits is 0 then we have to look for a new cell to be used in the same set; this 
means that the current cache line cannot be accessed. If both the MTO-bit and the 
SSB are 1 then we have to access the switching table for a new location to use 
instead of this one. This last case is quite rare and improbable because this means 
that the location used to replace a faulty cell becomes faulty itself, for example if 
the probability for a hard error is p then for this case the probability becomes 

𝑝! ∙ !!!
!∙!!!

, where k is the set associativity, r is the number of reductions 

of the set associativity, n number of sets, and l total number of hard errors. 
The second proposed algorithm is depicted in Figure 7.5 and presents the 

case when a hard/permanent error is encountered at an access. First we must state 
that regarding the (LB, SB) pair, there can be only two cases: (0, 0) and (1, 1). The 
other cases will not be treated the same, because in the case of (0, 1) it means that 
the cell is already faulty and it becomes redundant to find it as faulty for a second 
time; and the case of (1, 0) means that the cell is taken out of use, and therefore a 
new cell in the same set must be accessed instead. 

If both LB and SB are 0 we will have the possibilities created according to 
the (MTO-bit, SSB, overhead) triplet, as presented in Figure 7.5. If this triplet is (0, 
0, 0) or (1, 1, 0) then the L-bit of the cache line detected as faulty becomes 1. In 
the first case the MTO-bit becomes also 1, in the second case the MTO-bit is already 
1. If the triplet (MTO-bit, SSB, overhead) is (0, 0, 1) or (1, 1, 1) then the L-bit of 
the cell becomes 1 and a reduction of the set associativity is performed, as 
described in [9]. If the (MTO-bit, SSB, overhead) triplet is (0, 1, 0) then the SB of 
the cache line becomes 1 and a new entry to the switching table is added. If the 
value of the (MTO-bit, SSB, overhead) triplet is (0, 1, 1) then the L-bit becomes 1 
and a reduction of the set associativity is performed, as described in [9]. If the 
triplet (MTO-bit, SSB, overhead) is (1, 0, 0) then both SB and SSB become 1 and a 
new entry in the switching table is made. The last case is when the triplet (MTO-bit, 
SSB, overhead) is (1, 0, 1), therefore the L-bit becomes 1 and a reduction of the set 
associativity is performed [9]. 

The other case is when both SB and LB are 1. As in the previous cases, we 
have to act according to the value of the (MTO-bit, SSB, overhead) triplet. The 
cases of (MTO-bit, SSB, overhead) being (0, 0, 0), (0, 0, 1), (1, 0, 0) and (1, 0, 1) 
are not possible. This means that we are left with only four cases, which can be 
grouped in two parts. If the (MTO-bit, SSB, overhead) triplet is (0, 1, 0) or (1, 1, 0) 
then the MTO-bit becomes 1 and a new entry in the switching table is added. The 
last two cases are defined by the values of (1, 1, 1) or (0, 1, 1) for the (MTO-bit, 
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SSB, overhead) triplet; in this situation SB becomes 0, and the set associativity is 
reduced [9]. 

A description of each state that can be encountered in the SAM algorithm is 
provided in Table 7.2. While Table 7.3 depicts each state that can be encountered in 
the modified version of SAM alongside with a short description of each of this state. 
 

Table 7.2: Description of each state that can be encountered in the original SAM algorithm 

LB MTO overhead Description 
0 0 0 Healthy line in a healthy set, no reduction of the set 

associativity is required 
0 0 1 Impossible 
0 1 0 Healthy line in a set that contains faulty or switched 

lines, no reduction of the set associativity is required 
0 1 1 Healthy line in a set that contains faulty or switched 

lines, the reduction of the set associativity is required 
1 0 0 Impossible 
1 0 1 Impossible 
1 1 0 Faulty or switched line, no reduction of the set 

associativity is required 
1 1 1 Faulty or switched line, the reduction of the set 

associativity is required 
 

Table 7.3: Description of each state that can be encountered in the modified SAM algorithm 

LB SB MTO SSB overhead Description 
0 0 0 0 0 Healthy line in a healthy set, no reduction of 

the set associativity is required 
0 0 0 0 1 Impossible 
0 0 0 1 0 Healthy line in a switched set, i.e. there is at 

least one switched in that set 
0 0 0 1 1 Healthy line in a switched set, the reduction 

of the set associativity is required 
0 0 1 0 0 Healthy line in a faulty set, i.e. there is at 

least one faulty line in that set, no reduction 
of the set associativity is required 

0 0 1 0 1 Healthy line in a faulty set, the reduction of 
the set associativity is required 

0 0 1 1 0 Healthy line in a set with a double switched 
cell, no reduction of the set associativity is 
required 

0 0 1 1 1 Healthy line in a set with a double switched 
cell, the reduction of the set associativity is 
required 

0 1 0 0 0 Impossible 
0 1 0 0 1 Impossible 
0 1 0 1 0 Impossible 
0 1 0 1 1 Impossible 
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0 1 1 0 0 Switched line in a faulty set, no reduction of 
the set associativity is required, this line is 
faulty and replaced by a healthy one 

0 1 1 0 1 Switched line in a faulty set, the reduction of 
the set associativity is required, this line is 
faulty and replaced by a healthy one 

0 1 1 1 0 Switched line in a double switched set, no 
reduction of the set associativity is requires 

0 1 1 1 1 Switched line in a double switched set, the 
reduction of the set associativity is requires 

1 0 0 0 0 Impossible 
1 0 0 0 1 Impossible 
1 0 0 1 0 Impossible 
1 0 0 1 1 Impossible 
1 0 1 0 0 Faulty line in a faulty set, no reduction of the 

set associativity is requires 
1 0 1 0 1 Faulty line in a faulty set, the reduction of 

the set associativity is requires 
1 0 1 1 0 Faulty line in a double switched set, no 

reduction of the set associativity is requires 
1 0 1 1 1 Faulty line in a double switched set, the 

reduction of the set associativity is requires 
1 1 0 0 0 Impossible 
1 1 0 0 1 Impossible 
1 1 0 1 0 Switched line in a switched set, no reduction 

of the set associativity is required 
1 1 0 1 1 Switched line in a switched set, the 

reduction of the set associativity is required 
1 1 1 0 0 Impossible 
1 1 1 0 1 Impossible 
1 1 1 1 0 Switched line in a double switched set, no 

reduction of the set associativity is required 
1 1 1 1 1 Switched line in a double switched set, no 

reduction of the set associativity is required 
 

7.1.4 Advantages of Using Switching Bits 

This subsection presents the basic theoretical advantages and gains from 
the use of the switching bits. First of all, even though it seems a paradox, the 
introduction of the switching bits decrease the area overhead with over 35%, this is 
achieved by the modification of the algorithm presented throughout section 7.1. 
Another advantage is the huge increase in performance; this is also due to the 
modification of the algorithm by adding the switching bits. The increase in 
performance can be of over 75%. Also for the first n/2 hard error the probability of 
adding a new entry in the switching table decreases significantly from the previous 
version of SAM. 

Each of these improvements is endorsed by theoretical and simulation 
results that are presented in Sections 7.1.5 and 7.1.6. 
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7.1.5 Theoretical results 

We start with some important remarks. First, we note that the value of the 
L-bit before adding the switching bits is given by the logical OR between the L-bit 
after adding the switching bits and the switching bit, as in (7.1). Second, the value 
of the MTO-bit before the switching bits were added is also a logical OR between the 
MTO-bit after adding the switching bits and the set switching bit, see (7.2). 

 𝐿𝐵!"#$%   𝑂𝑅  𝑆𝐵   =   𝐿𝐵!"#$%" (7.1) 

 𝑀𝑇𝑂 − 𝑏𝑖𝑡!"#$%   𝑂𝑅  𝑆𝑆𝐵   =   𝑀𝑇𝑂 − 𝑏𝑖𝑡!"#$%" (7.2) 

Taking all these aspects into consideration, we will now analyze the number 
of entries added in the switching table, before and after the adding of the switching 
bits. Before adding the switching bits there were two cases to deal with when a new 
location was added in the switching table. As Table 7.4 summarizes, after the 
switching bits are added, the number of cases to deal with becomes four. 

Even though the number of cases where a new location is added to the 
switching table becomes bigger after adding the switching bits, according to the 
observations made at the start of this subsection, the number of entries in the 
switching table actually decreases. This is because case 1B, from Table 7.4, includes 
cases 1A and 2A, and case 2B, from Table 7.4, includes cases 3A and 4A. Table 7.5 
presents the cases for which, after adding the switching bits, a new entry in the 
switching table is not required. 

Because of the random distribution of errors in the memory cell array, one 
cannot determine the exact amount gained in terms of locations in the switching 
table. In order to provide an estimate we will resort to some probabilistic 
computations. Table 7.6 presents the probabilities of the SAM method situations 
without the switching bits, while Table 7.7 will present the probabilities of the SAM 
method after adding the switching bits. Note that, in order to save space, we have 
separated the probabilities in Table 7.6 and Table 7.7 into three parts, and – in 
order to get the overall probability – we just need to multiply the probabilities from 
the three parts. Throughout Table 7.6 and Table 7.7 the following notations have 
been used: n for the number of sets, k for the number of lines per set, l as the total 
number of errors, r as the number of reductions of the set associativity, x as the 
number of faulty lines since the last reduction of the set associativity, STtotal as the 
total number of entries in the switching table, and STi as the number of entries in 
the switching table since the last reduction of the set associativity. 

Table 7.4: Cases for new entries in the switching table, from [59]. 

 (LB, MTO-bit, overhead)  (LB, SB, MTO, SSB, ov.) 
1B (0, 1, 0) 1A (0, 0, 0, 1, 0) 
2B (1, x, x) 2A (0, 0, 1, 0, 0) 

3A (1, 1, 0, 1, 0) 
4A (1, 1, 1, 1, 0) 
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Table 7.5: Cases for new entries in switching table, from [59]. 

LB SB MTO-bit SSB ov. 
0 0 1 1 0 
1 0 0 0 x 
0 1 0 0 x 
1 1 0 0 x 
0 1 (0, 1, 1) (1, 0, 1) 1 
1 0 (0, 1, 1) (1, 0, 1) 1 
1 1 (0, 1, 1) (1, 0, 1) 1 
0 1 (0, 1, 1) (1, 0, 1) 0 
1 0 (0, 1, 1) (1, 0, 1) 0 
1 1 1 0 0 

 
The ratio between the probabilities of having an entry in the switching table 

before and after introducing the switching bits is given in (7.3. These equations are 
deducted from the changes that were made in the algorithm presented throughout 
the sections from 7.1.1 to 7.1.4. 

 𝑎𝑓𝑡𝑒𝑟
𝑏𝑒𝑓𝑜𝑟𝑒

=
𝑆𝑇! ∙ 𝑆𝑇!"!#$ + 𝑛𝑘 − 𝑙 − 𝑆𝑇!"!#$ 𝑙 − 𝑛𝑟 − 𝑆𝑇!

!

𝑛 ∙ 𝑘
𝑛𝑘 𝑙 − 𝑟𝑛

 
(7.3) 

The ratio between the accesses in the switching table before and after 
adding the switching bits is presented in (7.4. 

 

 
𝑎𝑓𝑡𝑒𝑟
𝑏𝑒𝑓𝑜𝑟𝑒

=
𝑆𝑇!"!#$

𝑙 + 𝑆𝑇!!"#$
∙ 1 +

𝑆𝑇!
!

𝑛! ∙ 𝑘
 (7.4) 

7.1.6 Simulation results 

The simulations results are based on the probabilistic computations 
presented in section IV.A and are applied to the same cache memory as in [9] and 
[6]. The cache memory is a 2MB, 8-way set associative, with the block size of 256B. 

The overhead added by the introduction of the switching bits is small for the 
above-described cache memory; the area overhead is of less than 1.2 KB, which 
means 0.05% of the total memory size. But even if we add these bits, the overall 
overhead decreases because of the reduction of the size required by the switching 
table. This happens because, due to this extra logic, some of the locations will not 
require a new entry in the switching table. The corresponding ratio is presented in 
(7.3. On the other hand, Figure 7.6 presents the comparative analysis of the 
probability of adding a new location in the Switching Table before and after the 
switching bits were added, which translates in overhead improvement. 

Even though the overhead gains are modest, the performance gains become 
quite notable, a reduction of the switching table accesses of over 75%. This 
happens because the access in the switching table will not be made every time an L-
bit has the value 1. The switching table will be accessed in two instances. The first 
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one, which is the most probable, is when the pair (LB, SB) has the value of (0, 1). 
The second case, and this has a very low weight with regards to the first case, if the 
quadruple (LB, SB, MTO-bit, SSB) has the value (1, 1, 1, 1), which means that we 
have to deal with a location that is switched more than once. 

Table 7.6: Probabilities for regular SAM 

LB probability MTO probability ov. prob 
0 𝑛 ∙ 𝑘 − 𝑙 − 𝑆𝑇!"!#$

𝑛 ∙ 𝑘
 0 𝑛 𝑟 + 1 − 𝑙

𝑛
 0 𝑛 − 1

𝑛
 

1 𝑙 + 𝑆𝑇!"!#$
𝑛 ∙ 𝑘

 1 𝑙 − 𝑛 ∙ 𝑟
𝑛

 1 1
𝑛
 

Table 7.7: Probabilities for SAM with switching bits 

LB SB probability MTO SSB probability ov prob 
0 0 𝑛 ∙ 𝑘 − 𝑙 − 𝑆𝑇!"!#$

𝑛 ∙ 𝑘
 0 0 𝑛 𝑟 + 1 − 𝑙

𝑛
  

0 
 
𝑛 − 1
𝑛

 0 1 𝑆𝑇!"!#$
𝑛 ∙ 𝑘

 0 1 𝑆𝑇!
𝑛
∙
𝑛 ∙ 𝑘 − 𝑆𝑇!
𝑛 ∙ 𝑘

 

1 0 𝑙 − 𝑆𝑇!"!#$
𝑛 ∙ 𝑘

 1 0 𝑥
𝑛
  

1 
 

1
𝑛
 1 1 𝑆𝑇!"!#$

𝑛 ∙ 𝑘
 1 1 𝑆𝑇!

𝑛
∙
𝑆𝑇!
𝑛 ∙ 𝑘

 

 
The gain in terms of performance is presented in Figure 7.7. In Figure 7.7 

the performance is plotted in terms of accesses in the switching table for the SAM 
method, with and without the switching bits. Figure 7.8 presents the gains both in 
terms of overhead and performance percentagewise. 

 

Figure 7.6: Probability for new entry in switching table, from [59]. 
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Figure 7.7: Probability for accessing the switching table, from [59]. 

 

Figure 7.8: Improvement from original SAM, from [59]. 

7.1.7 Conclusions 

The first goal of this first section of this chapter was to perform an analysis 
of the SAM method [9], in terms of overhead and performance. This analysis was 
performed throughout sections 7.1.1, 7.1.2, and 7.1.3. As a conclusion to our 
analysis, we have observed that the previous version of SAM has some 
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shortcomings, of which the main one was the large loss in performance (every time 
the L-bit is 1 an access in the switching table is required). 

The second goal of this first section of this chapter was to introduce the 
switching bits to the SAM mechanism in order to improve the performance cost of 
this method. We have succeeded to also improve the overhead added by the 
switching table, the overall area overhead actually decreasing with over 35%; this 
figure is supported by theoretical calculations and simulations, for more details see 
Sections 7.1.5 and 7.1.6 and Figure 7.6. The performance gains on the other hand 
are really significant. We have a mean of over 75% reduction in the number of 
accesses in the switching table, as it can be rendered by examining Figure 7.8 and 
Figure 7.7, and for some cases they can be completely eliminated, as seen from 
section 7.1.4. The cases for which the accesses are most probable to disappear are 
the first n/2 hard errors that appear in the cache memory, where n represents the 
number of sets in the cache memory. 

7.2 Methods for Reducing the Switching Table 

This section proposes an analysis for the Self Adaptive cache Memory (SAM) 
mechanism, in the context of employing a set of improvements aimed at decreasing 
the size of SAM’s switching table. This objective is achieved by eliminating some of 
the switching table redundant/idle entries, which generate unnecessary performance 
degradation and unnecessary increase of the area overhead. We also present a 
comparative analysis for the SAM method with and without these improvements, in 
terms of overhead reduction and performance increase. The simulation results have 
shown that the number of entries in the switching table can be reduced with up to 
68%. Simulation also reveals that the time penalty can be reduced by over 80%. At 
the same time, we describe how SAM can also be used for yield improvement [60]. 

New entries in the switching table are created every time a remapping is 
necessary. In this context, the switching table is never searched for idle or 
redundant entries. This complicates the switching table and reduces its performance 
by increasing its access time. 

From here on, for a more suitable description we will refer to a cell’s address 
not by its physical location, but as a pair made of its set and line numbers. For 
example, the address of line 2 in set 0 will be given as (0, 2). We call an idle entry, 
a switching table entry that is never used and which only occupies space. We call a 
redundant entry, an entry that is not compulsory, and therefore consumes both 
time and space. For example, if location (1,0) is remapped to (3,1) and then 
location (3,1) is remapped to location (4,3), then (3,1) becomes redundant. If we 
have location (2,3) remapped to location (4,7), and afterwards location (2,3) 
becomes faulty, then location (2,3) is no longer necessary; this is the case of an idle 
location in the switching table.  

In this section, we will discuss three cases where the contents of the 
switching table are changed. There are other cases for which the reduction of the 
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switching table is possible, as the SAM method is developed right now, the ones 
presented here will produce the best results in terms of interventions over gains. 

Each of these three cases of switching table modifications will be 
accompanied by a description and an example of its use.  

a. First case: the healthy cell in the second column becomes faulty. This 
case produces redundant entries.  

b. The second case: reduction of the set associativity. This case produces 
idle entries.  

c. The third case: another location in the same set with the healthy cell 
becomes faulty. This produces redundant entries. 

Note that in all the examples provided throughout this section the cache 
lines depicted in dark grey are the ones that have been faulty before the 
modification of the switching table was necessary. On the other hand, those 
depicted in light grey are the last ones to become faulty and require the 
modifications in the switching table accordingly. 

7.2.1 First case 

For case a. from section 7.2 we have to search the switching table every 
time a new faulty cell appears in the memory, in order to see if it is located in the 
healthy part of the table. If this is not the case, applying the standard algorithm 
suffices. If it is found, instead of adding a new entry in the switching table, we can 
modify the existing entry and simply mark this cell as being faulty afterwards. This 
will lead to discarding a redundant entry from the switching table. An example of 
this case is illustrated in Figure 7.9, while the algorithm used in case a is depicted in 
Figure 7.10. 

 

 

Figure 7.9: First case example, from [60]. 
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7.2.2 Second case 

For case b., referring to the reduction of the set associativity of the cache 
memory, which is quite rare (once every n hard faults), we can look in the switching 
table and reorganize it by removing the newly formed idle locations, that will never 
be accessed again. In the following, we will present an example of the advantages 
brought by this reorganization of the switching table. To this end, we will need an 
extra counter to inform on how many reductions of the set associativity have been 
performed so far, including the current one. The algorithm required for reorganizing 
the switching table is depicted in Figure 7.12, together with a corresponding 
example, Figure 7.11. 

 

 

Figure 7.11: Second case example, from [60]. 

 

if (new fault at line j in set i) {  
        t= – 1; 
        for (l=0; l<Switching Table size; l++) { 
                if ((i,j) in Switching Table Healthy part) { 
                        t=l; 
                        exit loop; 
                } 
        if (t != – 1) 
                modify entry t’s healthy part from Switching Table to  
                a location in first set with MTO =0; 
} 

Figure 7.10: First case algorithm, from [60]. 
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7.2.3 Third case 

Case c., when a different location from the same set as the healthy cell 
becomes faulty is the simplest of the three. This is because when we encounter a 
faulty cell that needs a new entry in the switching table, we only have to look in the 
table to see if there is an entry in the healthy column part of the switching table 
that belongs to the same set with the currently detected faulty cell. If such an entry 
exists, we simply modify that entry with another one from a healthy set. The 
healthy set is chosen according to the principles stated in [9] as the first set that 
has the MTO-bit 0, where the line is the last one that is available in that set. An 
example of this case is depicted in Figure 7.13, along with the employed algorithm 
in Figure 7.14. 

 

 

Figure 7.13: Third case example, from [60]. 

 

if (overflow_counter_n) { 
        for (i=0; i<n; i++) { 
        counter = 0; 
                for (j=0; j<k; j++) 
                        if ((i,j) in Switching Table) counter ++; 
                if (counter <= counter_k)  
                        remove all entries in ST with i in the faulty column; 
                else  
                        remove k entries from the ST that have i in  
                        the faulty column 
        } 
} 

Figure 7.12: Second case algorithm, from [60]. 

BUPT



7.2 – Methods for Reducing the Switching Table     91 

 

 

7.2.4 Improvements 

Table 7.8 provides the number of locations in the switching table, 
determined probabilistically, as it was performed in [9]. In order to present the 
analysis results, we consider a L2-cache memory of 2MB capacity, 8-way set 
associative with the block size of 256B, same as the ones described in [9] and [6]. 

Note that case a. from section 7.2 refers only to a cell in a set, and case c. 
from section 7.2 refers to a set without a cell. From this, it becomes obvious that 
the proportion between their corresponding gains will be of degree k, where k is the 
set associativity left of the cache memory (i.e. the gain for case c. is k time more 
probable then the gain from the case a.). This discrepancy in gain holds true both in 
the number of switching table entries and in speed. 

Table 7.8: Results obtained using the described improvements, from [60]. 

k 8 7 6 5 4 3 2 
Number of faulty 

locations 
1024 2048 3072 4096 5120 6144 7168 

Locations needed in 
Switching Table before 

improvements 
448 997 1500 1941 2325 2667 2923 

Locations needed in 
Switching Table after 

improvements 
444 981 1423 1668 1667 1399 835 

Difference in number 
of locations 

4 16 77 273 658 1268 2088 

Reduction of time 
penalty [%] 

38.5 39 41.2 46.7 55.5 67.5 
 

82.3 
 

if (entry in Switching Table of line j in set i) {  
        counter=0; 
        ok=0; 
        t= – 1; 
        for (l=0; j<Switching Table size; l++) { 
                if (t == – 1) 
                        t=l; 
                counter++; 
        } 
        if ((counter – counter_k)>0) 
                modify entry t’s healthy part from Switching Table to  
                a location in first set with MTO =0; 
} 

Figure 7.14: Third case algorithm, from [60]. 
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Mean time penalty per 
access before 
improvements 

0.06τ 0.16τ 0.29τ 0.47τ 0.75τ 1.30τ 2.85τ 

Mean time penalty per 
access after 

improvements 
0.06τ 0.15τ 0.27τ 0.40τ 0.54τ 0.68τ 0.85τ 

 
 

7.2.5 Overhead Gains 

As presented in Section 7.2, in each of the three cases we can reduce the 
number of entries in the switching table. The first and third cases have the potential 
of reducing the switching table by one entry at a time. The second case has a 
superior potential of reducing the number of entries, as presented in this 
subsection. 

In order to be able to determine the overhead improvement, we will resort 
to probabilistic computations, using a method that is similar to that from [9]. To this 
end, we will look at the memory as being split in two parts: a part that contains sets 
with faulty cache lines and another part that contains only healthy sets. In order to 
simplify the computations, we consider that an error can occur anywhere in the 
memory with the same probability. We need this partitioning of the cache memory 
in order to determine the most probable distribution of the faults in the cache lines 
and sets. Therefore, in order to have the most probable distribution of faults, we 
need to have an equal or almost equal probability of fault occurrence within one of 
the two partitions. In that respect, the two partitions of the cache memory need to 
have the same number of healthy cells (or, at least, to differ with no more than 
one). 

After writing the equations, we obtain that after l errors in the cache 
memory we have x sets with faulty lines, as in (7.5. 

 𝑥   =   
𝑛  𝑘 + 𝑙
2  𝑘

 (7.5) 

In (7.5, n is the number of sets in the cache memory, k is the number of 
lines per set, or the set associativity and l is the number of errors encountered so 
far. An example of how the L2-cache memory, which was described above, is most 
probable to look after 2048=2n errors is illustrated in Figure 7.15. After applying 
(7.5 to this cache memory, we obtain the results depicted in Table 7.8. Figure 7.16 
illustrates a comparison in terms of overhead between the original SAM [9] and its 
improved version, which is described in this subsection.  
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Figure 7.15: Example of fault distribution, from [60]. 

7.2.6 Performance Gains 

The gain in performance will be obtained from the redundant cases (first 
and third), because the number of accesses in the switching table will be reduced, 
thus speeding-up the memory access. The gain from the second case can be 
translated into performance gain by achieving overall reduction of switching table 
size. This reduction of table size will translate into faster table access, thus reducing 
the time penalty of every switching table access, as presented in Table 7.8. Table 
7.8 contains the results obtained by simulations for the same fault distribution as in 
the previous subsection. In these computations, we take into consideration both the 
lost time due to the increased algorithm complexity, and the speed gain generated 
by the size reduction of the switching table. Without losing generality, for our 
evaluation purposes we consider that the reduction in access time is proportional 
with the size of switching table reduction. 

 Time_penaltybefore = 𝑎𝑛𝑘𝜏𝜉 (7.6) 

 

 Time_penaltyafter = 𝑎!𝑛𝑘𝜏!𝜉 (7.7) 

 
(7.6 shows the time penalty of the switching table before improving SAM, 

while (7.7 illustrates it afterwards. In these expressions 𝑎 and 𝑎’ are the number of 
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entries in the switching table before and after respectively, 𝑛 the number of sets, 𝑘 
the number of lines per set, 𝜏 and 𝜏′ are the access times of the switching table 
before and after the improvements respectively, and 𝜉 is the mean number of 
accesses in the cache memory between finding two consecutive faults. 

The difference in performance can be proven as being even bigger, because 
for simpler simulations we ignored some gains obtained from our improvements, 
like the size of the switching table at all times (i.e. we have only taken into 
consideration its final size). 

Table 7.8 presents the reduction of time penalties as percentages. It also 
shows that the time penalty reduction obtained by the modifications of the switching 
table is up to over 80%. Figure 7.17 illustrates the two time penalties; before and 
after our improvements; due to the reduction of the switching table size, the 
improvements can be observed even from the first errors. 

In Figure 7.18 we have summarized the improvements brought by our 
method percentage-wise, both in terms of overhead and performance. As it can be 
seen in Figure 7.18, the performance improvement varies from 37% to over 80%, 
while the improvement in the number of switching table required locations can 
reach a maximum of 68%. 

 

Figure 7.16: Overhead improvement, from [60]. 
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Figure 7.17: Performance improvement, from [60]. 

 

 

Figure 7.18: Improvements obtained, from [60]. 

7.2.7 Using SAM for Yield Improvement 

Another useful feature of the SAM method consists of improving the chip 
yield. In order to be able to use SAM for this purpose, the method can be 
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maintained as it is and can be run before the manufacturer delivers the chip, or it 
can be simplified by reducing the size of the switching table. We present an analysis 
for using a reduced version of SAM in order to deliver a better chip yield. 

Due to the fact that errors in a chip tend to cluster [61] a method for yield 
improvement like the one proposed in [1] for direct mapped caches is not very 
efficient. The method from [1] is also based on the principles of graceful 
degradation, and relies on the cache memory architecture in order to replace faulty 
cache blocks with their neighbors. The neighbors are selected as blocks that are 
physically located on the same row as the faulty block. Because of the fault 
clustering, there is a higher probability for the neighbors of a healthy block to 
become faulty themselves. The method proposed in [1] resembles SAM in that it 
also uses an extra bit (like SAM’s L-bit) for the identification of the faulty block. 

By using the switching table, SAM avoids relying on the neighbors of a faulty 
cache block, as it can be seen in chapter 5’s presentation. The only problem of the 
SAM method with respect to reliability is the use of the MTO-bit and the switching 
table, which are unprotected and thus susceptible to errors. A 4-way set associative, 
64kB cache memory, with a block size of 32 Bytes would be similar to the one 
described in [1], with the exception that it is a set associative cache memory. 
Moreover, although the memory from [1] uses direct mapping, it provides four 
blocks in a row in order to be used for remapping, thus resembling a set-associative 
organization. The SAM algorithm with a switching table capable of sustaining 1536 
faulty blocks (75% of the whole memory) introduces an overhead of 10062 bits, 
which represent less than 1.92% of the size of the cache memory. 

One potential disadvantage of using the SAM method is the vulnerability to 
errors of the L-bits, MTO-bits and Switching Table, because they have no 
redundancy support. This can be corrected by the use of even a triple modular 
redundancy for the vulnerable elements, with a total area overhead of under 6%, 
which will further improve their reliability. We will discuss this further in the next 
chapter. This disadvantage is not particular to SAM: every chip that has an 
integrated BIST with no self-testing capabilities has the same vulnerability. 

The advantages of using SAM for Yield improvement instead of that 
presented in [1] are: 

• Knowledge regarding the physical architecture is not required in order to 
implement the method 

• SAM can be applied to any physical implementation of a memory chip 
• SAM is able to deal with clustering faults 
• The worst-case scenario for SAM depends on the switching table size and 

can be avoided by increasing the size of the switching table. In a worst-
case scenario, the method described in [1] can fail after just 4 errors for 
the above-described memory 

As a comparative analysis between these two methods (SAM and [1]), in 
terms of yield improvement without taking into consideration the logic overhead, we 
can say, based on [9] and [1], that for a cache memory as the one described in 
section 7.2.4, the method described in [1] can sustain a maximum of about 800 
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faulty cache blocks with no added redundancy, while SAM can sustain a number of 
1536 faulty blocks (an almost double amount). The only potential drawback consists 
of introducing the switching table that is susceptible to errors. 

By reducing the number of switching locations, we can still maintain a high 
yield and decrease the area that is vulnerable to errors. For the memory described 
in section 7.2.5, as can be seen by inspecting Figure 7.16, if we limit the number of 
locations in the switching table to 1000 we can assure that even in the presence of 
2000 faulty blocks the cache is still functional. This is, of course, not the worst-case 
scenario, because we still have a probability that the faults that will appear 
afterwards can still be mapped; this way, the number of supported faulty blocks can 
be further increased. The number of faults is taken according to a uniform fault 
distribution within the memory, which usually provides a lower yield for a 
mathematical analysis [61]. 

7.2.8 Conclusions 

The main contribution of this section consists of introducing three methods 
for reducing the negative impact of the switching table for the Self Adaptive Cache 
Memory (SAM) method, in terms of overhead and performance. We change the 
switching table when encountering one of the following three cases: if the healthy 
cell in the second column becomes faulty, if there is a reduction of the set 
associativity, and if a faulty cell appears in the same set as a location from the 
second column of the switching table. 

The simulation results have shown that the number of entries can be 
reduced up to 68%, with an actual reduction of the switching table size of over 
37%. Accordingly, we have achieved an improvement in both the size and speed of 
the switching table. With regard to performance gains and reduction of time penalty 
introduced by the switching table, we have shown that we can reduce the time 
penalty with up to over 80% in comparison with the SAM version presented in [9]. 

The reliability improvement of SAM with these modifications of the switching 
table remains the same as in [9]. As described in [58] for a memory without SAM 
the cache system reliability is R=1–p, where p is the probability of a faulty block. 
Whereas if the SAM mechanism is added, the reliability becomes R=1-p(k-1)∙n+1 [9], 
where n is the number of sets in the cache memory, and k is the numbers of lines 
per set. 

Also we have shown that the application of SAM is not limited to the 
increase of reliability of a cache memory, it can also be used to increase the yield of 
the memory chips. 
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8 Simplified Selective Fault Tolerance 
Technique for Protection of Selected Inputs 

via Triple Modular Redundancy Systems 

In this chapter we will present a novel method for reducing the overhead of 
Triple Modular Redundancy technique by protecting selected inputs, also we will 
show how to apply this new method to the SAM technique described throughout 
chapters 5 and 7. 

We will start with a presentation of our own method, which is a modified 
version of the Selective Fault Tolerance method and achieves substantial area 
reduction over the state of the art. The simulation results show that we achieved an 
improvement of up to over 20% in terms of area and energy overhead, compared 
with the state of the art. Also compared to a classic TMR we obtain improvements of 
up to 65%, with a mean improvement of 25% in terms of area and energy 
reduction.  

8.1 Introduction 

A solution for the increase in hardware faults is the use of triple modular 
redundancy (TMR) techniques [62]. As the name suggests this technique for fault 
tolerance relies on three identical modules that are used at the same time and the 
result of the three modules is passed to a voter, which decides the correct result 
that will be passed on. Due to the fact that at each moment instead of one system 
we have three modules running we have an area and energy overhead that is more 
than 300%. 

As a consequence there has been a lot of research in order to reduce the area 
overhead and power consumption [63] [64] [65]. As a result of this research there 
emerged a technique that uses TMR in order to protect a reduced set of inputs, 
called Selective Fault Tolerance [10] [11]. Throughout this chapter we will provide 
the achieved improvements in terms of area and energy overhead compared to the 
state of the art. 

In this chapter we will also provide a practical use of our simplified selective 
fault tolerance method applied to set associative cache memories, along with the 
results in terms of reduction of the area and energy overhead. 

8.2 Triple Modular Redundancy 

The basic idea for Triple Modular Redundancy is illustrated in Figure 8.1. The 
three modules from Figure 8.1 (module 1, module 2, module 3) are identical, while 
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the role of the voter is to select the correct output of the circuit [12]. So if all three 
modules have the same output then the output of the circuit would be that output, 
and if two of then have the same output then the output of the circuit will be that 
output. We can conclude that the triple modular redundancy would fail only when 
two of the three modules will fail for the same inputs. 

 

Figure 8.1: Triple Modular Redundancy elements, from [66]. 

The reliability of a TMR system is expressed in Equation (8.1), where RM is 
the reliability of a module [12]. 

 R = R!! + 3R!!   (1 − R!) = 3R!! − 2R!!  (8.1) 

The overhead of the TMR system can be computed as in Equation (8.2) for 
area overhead and Equation (8.3) for energy overhead. 

 𝐴𝑟𝑒𝑎𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑  [%]   =   
𝑇𝑀𝑅!"#!

𝑀𝑜𝑑𝑢𝑙𝑒!"#!  
∙ 100 (8.2) 

 𝐸𝑛𝑒𝑟𝑔𝑦𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑  [%]   =   
𝑇𝑀𝑅!"!#$%

𝑀𝑜𝑑𝑢𝑙𝑒!"!#$%  
∙ 100 (8.3) 

It can be inferred from Equation (8.2) and Equation (8.3) that both area and 
energy overhead are 300%, without taking into consideration the voter and the 
links between the modules. These overheads are justified only if the reliability of 
that system is paramount. For everyday systems other techniques are used. In the 
next section we present such a technique that has as starting point TMR. 

8.3 Selective Fault Tolerance 

In this section we will provide a short description of the technique presented 
in [10] and [11], called Selective Fault Tolerance (SFT). 

This method is a variation of the classic TMR, in which instead of protection all 
the inputs of a system it protects only a restricted set, provided by the designer of 
the system. This restricted set is called a critical set [10]. 

All the inputs in the critical set are protected by the TMR technique and have 
the same reliability as the TMR while the other inputs may or may not be protected 
by other techniques, we will consider throughout this chapter that the rest of the 
inputs will not be protected. 
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We will use the following notations: all the possible inputs are denoted by the 
set X, while the critical inputs are denoted by the set Xc. The relation between X and 
Xc is denoted in Equation (8.4). 

 X! ⊆ 𝑋 (8.4) 

If we have a combinational circuit S and we want to protect this circuit with 
selective fault tolerance, as described in [10], we will need the followings. First we 
will need a combinational circuit identical to S, we will refer to this circuit as S1, and 
after this we will need two smaller circuits s2 and s3. The s2 and s3 circuits are 
designed with these restrictions: for a critical input these circuits generate the same 
output as the S1 circuit, while for any other input at least one of the s2 and s3 has 
the same output as the S1 circuit [10]. The concept for this can be summarized in 
Equation (8.5) and Equation (8.6), from [10]. 

 𝑆 𝑥 = 𝑆! 𝑥 = 𝑠! 𝑥 = 𝑠! 𝑥 , 𝑖𝑓  𝑥 ∈ 𝑋! (8.5) 

 (𝑆!(𝑥) = 𝑠!(𝑥)) ∨ (𝑆!(𝑥) = 𝑠!(𝑥)), 𝑖𝑓  𝑥 ∉ 𝑋𝑐 (8.6) 

The inclusion of an input x in the critical set Xc can be determined by the 
use of a characteristic function 𝜒 [10], with this function being described in Equation 
(8.7). 

 𝜒(𝑥) = 1, 𝑖𝑓  𝑥 ∈ 𝑋!         𝑒𝑙𝑠𝑒  𝜒(𝑥) = 0 (8.7) 

Figure 8.2 shows the basic concept of selective fault tolerance as presented 
in [10], while Figure 8.3 shows the modified concept from [11], which takes into 
account the characteristic function in order to select the right output from the 
multiplexor. 

 

Figure 8.2: Selective Fault Tolerance with Input Detection, based on the Triple Modular 
Redundancy mechanism, from [66]. 
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Figure 8.3: Selective Fault Tolerance with Input Detection, based on the Triple Modular 
Redundancy mechanism, from [66]. 

8.4 Simplified Selective Fault Tolerance 

The method proposed in this chapter uses the Selective Fault Tolerance as a 
starting point. For a combinational circuit S with a set of inputs X we will protect a 
subset Xc of the input set X. In order to do that we will use three combinational 
circuits: the first one S1 that is identical with the combinational circuit that we want 
to protect, and the other two circuits will be c2 and c3. The c2 and c3 circuits are 
identical, and are the minimal combinational circuits that, for an input from Xc, have 
the same output as S1. Equations (8.8) and (8.9) describe these three circuits. 

 𝑆 𝑥 = 𝑆! 𝑥 = 𝑐! 𝑥 = 𝑐! 𝑥 , 𝑖𝑓  𝑥 ∈ 𝑋! (8.8) 

 (𝑐!(𝑥) = 𝑛𝑜𝑡  𝑐𝑎𝑟𝑒) ∧ (𝑐!(𝑥) = 𝑛𝑜𝑡  𝑐𝑎𝑟𝑒), 𝑖𝑓  𝑥 ∉ 𝑋𝑐 (8.9) 

Compared with state of the art method described in section 8.3, in order to 
save area and energy consumption, we use the minimal circuit from s2, and s3, and 
we multiplex its output with the output from S1. So we will use the minimal circuit 
between s2 and s3, and that circuit will be used as both c2 and c3. This allows us not 
to care what the output for the c2 and c3 circuits will be in the case of any other 
value of x which is not in Xc. Figure 8.4 illustrates our method. The module 𝜒 has 
the same functionality as the one described in section 8.3. 
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Figure 8.4: Simplified Selective Fault Tolerance, based on the Triple Modular Redundancy 
mechanism, from [66]. 

For the Simplified Selective Fault Tolerance technique we have two possible 
combinations: 

• when 𝑥 ∈ 𝑋!, it is the case when we have inputs protected by triple modular 
redundancy 

• when 𝑥 ∉ 𝑋!, it is the case when the output will not be protected 
For the first case, when the inputs are protected by TMR, the reliability of 

the system is the same as the reliability is for a system with TMR, see Equation 
(8.1). When the input arrives it is passed to the four modules: S1, c2, c3 and 𝜒. The 
outputs are computed for each of these modules as: for S1, c2, c3 the output is the 
output of the circuit (faulty or correct), while for the fourth module, 𝜒, the output is 
‘1’. The output of 𝜒 will trigger the two multiplexors to select as their output the 
result from the c2 and c3 modules. The output will be compared in the voter, the 
same way as for the TMR technique. 

For the second case, when the inputs are not protected by TMR, the 
reliability will be the same as for the state of the art method presented in section 
8.3, as R=RM. When the input arrives at the four modules the outputs are 
computed, but in this case the output for the 𝜒 module will be ‘0’. This will cause the 
multiplexors to select as their exit the output from circuit S1, while the voter will 
have three identical inputs, as the output from S1. 

8.5 Simulation Results and SAM Application 

In order for our results to be relevant, compared to the state of the art 
technique, we will use the same simulation environments as in [10] [11]. So we 
used the benchmark LGSynth91; also in order for implementation of our circuits we 
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used Verilog for description and Synopsis for synthesis. The results of the 
simulations are depicted in Table 8.1. 

Table 8.1: Benchmarks results (LGSynth91) 

Circuit xor5 TMR SFT 
Our 
Method 

Improv
ement 
from 
TMR 
[%] 

Improve
ment 
from 
SFT [%] 

Pins 
in 5 

  
out 1 

Number 
of 
protected 
inputs 
[%] 

0 

area 
[𝜇𝑚] 

387 129 129 66.66 0 

10 387 273 268 30.75 1.83 

20 387 315 304 21.45 3.5 

30 387 387 387 0 0 

40 387 385 374 3.36 2.85 

50 387 364 352 9.04 3.3 

60 387 387 387 0 0 

70 387 387 387 0 0 

80 387 387 387 0 0 

90 387 387 387 0 0 

100 387 387 387 0 0 

Circuit Z9sym TMR SFT 
Our 
Method 

Improv
ement 
from 
TMR 
[%] 

Improve
ment 
from 
SFT [%] 

Pins 
in 9 

  
out 1 

Number 
of 
protected 
inputs 
[%] 

0 

area 
[𝜇𝑚] 

1701 567 567 66.66 0 

10 1701 1034 1018 40.15 1.55 

20 1701 1176 1168 31.33 0.68 

30 1701 1291 1102 35.21 14.64 
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40 1701 1383 1286 24.4 7.01 

50 1701 1351 1346 20.9 0.37 

60 1701 1450 1432 15.81 1.24 

70 1701 1515 1378 18.99 9.04 

80 1701 1491 1338 21.34 10.26 

90 1701 1509 1366 19.69 9.48 

100 1701 1701 1701 0 0 

Circuit max46 TMR SFT 
Our 
Method 

Improv
ement 
from 
TMR 
[%] 

Improve
ment 
from 
SFT [%] 

Pins 
in 9 

  
out 1 

Number 
of 
protected 
inputs 
[%] 

0 

area 
[𝜇𝑚] 

3984 1328 1328 66.66 0 

10 3984 1695 1687 57.66 0.47 

20 3984 1980 1961 50.78 0.96 

30 3984 2311 2281 42.75 1.3 

40 3984 2644 2639 33.76 0.19 

50 3984 2725 2637 33.81 3.23 

60 3984 3193 3193 19.85 0 

70 3984 3545 3445 13.53 2.82 

80 3984 3570 3535 11.27 0.98 

90 3984 3835 3795 4.74 1.04 

100 3984 3984 3984 0 0 

Circuit t481 TMR SFT 
Our 
Method 

Improv
ement 
from 
TMR 
[%] 

Improve
ment 
from 
SFT [%] 

Pins 
in 16 

  
out 1 
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Number 
of 
protected 
inputs 
[%] 

0 

area 
[𝜇𝑚] 

3171 1057 1057 66.66 0 

10 3171 1647 1625 48.74 1.34 

20 3171 2065 1941 38.79 6 

30 3171 2508 2193 30.84 12.56 

40 3171 2389 2311 27.12 3.27 

50 3171 2463 2218 30.05 9.94 

60 3171 2481 1953 38.41 21.28 

70 3171 2467 1929 39.16 21.81 

80 3171 2846 2795 11.86 1.79 

90 3171 3041 3039 4.16 0.07 

100 3171 3171 3171 0 0 

Circuit parity TMR SFT 
Our 
Method 

Improv
ement 
from 
TMR 
[%] 

Improve
ment 
from 
SFT [%] 

Pins 
in 16 

  
out 1 

Number 
of 
protected 
inputs 
[%] 

0 

area 
[𝜇𝑚] 

35082 11694 11694 66.66 0 

10 35082 16932 16910 51.8 0.13 

20 35082 17768 17564 50 1.15 

30 35082 21209 21136 39.75 0.34 

40 35082 24030 23934 31.78 0.4 

50 35082 25041 24075 31.38 3.86 

60 35082 27782 27664 21.14 0.42 

70 35082 29608 29608 15.6 0 

80 35082 31639 31620 9.87 0.06 

90 35082 33602 33308 5.06 0.88 

100 35082 35082 35082 0 0 

 
Figure 8.5 and Figure 8.6 illustrate the reduction in area overhead, as 

follows: Figure 8.5 represents the comparison between our method and the TMR 
technique in terms of area overhead reduction, while Figure 8.6 represents the 
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comparison between our method and the state of the art method described in [10] 
[11], in terms of area overhead. 

 

Figure 8.5: Area overhead reduction of Simplified Selective Fault Tolerance, compared to TMR, 
from [66]. 

 

Figure 8.6: Area overhead reduction of Simplified Selective Fault Tolerance, compared to 
Selective Fault Tolerance, from [66]. 

The simulations have shown that we can achieve an improvement up to over 
20% compared with the state of the art SFT technique. These improvements are 
both in terms of area overhead and energy consumption. The energy consumption 
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can be furthermore improved by powering down the c2 and c3 modules while the 
inputs are not from the protected set, but this will lead to some small performance 
degradation, and it will not be discussed further. 

In the reminder of this chapter we will discuss how to apply this method in 
order to increase the reliability of the SAM method presented throughout chapters 5 
and 7. 

We remind our readers that the reliability of the SAM method as described 
in chapters 5 and 7 is very high compared to a standard memory. The reliability of 
SAM is shown in Equation (8.10), while the reliability of a standard memory is 
depicted in Equation (8.11). 

 𝑅!"# = 1 − 𝑝 !!! ∙!!! (8.10) 

 𝑅!"# = 1 − 𝑝 (8.11) 

In Equation (8.10) and Equation (8.11), p represents the probability of 
having a faulty cell; k represents the set associativity of the cache memory, i.e. the 
number of lines in a set, while n represents the number of sets in the cache 
memory. 

Equation (8.10), which refers to SAM reliability is actually only taking into 
account the memory cell array, without considering the Switching Table, which will 
lead to a decrease in reliability because is totally unprotected. The next section 
shows how to apply simplified selective fault tolerance to a memory that has a SAM 
mechanism, compared with a memory that has implemented a TMR mechanism for 
the whole memory. 

8.6 Appling Simplified Selective Fault Tolerance to SAM 

We will apply our simplified selective fault tolerance to a k-way set 
associative cache memory, with n sets that has a SAM mechanism. This simplified 
selective fault tolerance will be applied only for the Switching Table, and not for the 
whole memory as in classic TMR. In the following we will compute the new reliability 
of the SAM memory in Equation (8.12), and the reliability for the same cache 
memory with a TMR technique in Equation (8.13), while Equation (8.14) represents 
the comparison of the two reliabilities. 

 𝑅!"# =
1 − 𝑝 !!! ∙!!!   ∙ 𝑛𝑘 + 𝑅!" ∙ 𝑓 ∙ 𝑛𝑘

𝑛𝑘 1 + 𝑓
 (8.12) 

 𝑅!"# = 3𝑅!"#! − 2𝑅!"#!  (8.13) 

 
𝑅!"#
𝑅!"#

=
1

1 + 𝑓
  

1 − 𝑝 !!! !!!

1 − 3𝑝! + 2𝑝!
!!

+ 𝑓 > 1 (8.14) 

In Equations (8.12)-(8.14) p represents the probability of having a faulty 
cell; k represents the set associativity of the cache memory, while n represents the 
number of sets in the cache memory. In Equation (8.12) RST is the reliability for the 
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switching table, and it is equal to RTMR because is protected by the simplified 
selective fault tolerance technique, and f represents the overhead of the Switching 
Table. In our case we will consider f as the upper boundary of the overhead, which 
is 1%, so f=0.01. 

As it can be observed from Equations (8.12)-(8.14) the reliability for SAM 
with simplified selective fault tolerance is greater than the reliability of the TMR 
alone. We have performed a simulation varying p from 0.01 to 0.015 and compared 
the results for a 2MB 8-way set associative cache memory with a block size of 256B, 
as the one described in [9]. The results for reliability are simulated for both TMR 
and SAM with implemented simplified selective fault tolerance and is plotted in 
Figure 8.7 on a logarithmic scale for the x-axis; this is done in order to better 
observe the behavior of the two reliabilities. This simulation confirms the theoretical 
results presented from Equations (8.12) (8.13) and (8.14). 

 

Figure 8.7: Reliability comparison between TMR for a cache memory and SAM with simplified 
selective fault tolerance, from [66]. 

Equation (8.15) describes the computation of the total area of the SAM 
method and (8.16) describes computations needed in order to find the total area of 
the memory protected via TMR. 

 𝐴!"# = 𝐴!"# + 3 ∙ 𝐴!" = (1 + 3 ∙ 𝑓) ∙ 𝐴!"# (8.15) 

 𝐴!"# = 3𝐴!"#$%& (8.16) 

As can be seen from Equations (8.15) and (8.16) the reduction in terms of 
area overhead depends on f. For SAM f is under 1%. Therefore, when using the 
simplified selective fault tolerance, this leads to an improvement in area overhead of 
65.66% compared to a conventional TMR. All these while increasing the overall 
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reliability of the cache memory in comparison with TMR. At the same time, we note 
that, in digital design, the improvement in area overhead translates to a similar 
decrease in energy consumption. 

8.7 Conclusions 

Throughout this chapter we have presented an improvement for the state of 
the art method called Selective Fault Tolerance [10]. This method proposes the use 
of Triple Modular Redundancy technique only for a restricted set of inputs of a 
combinational circuit. Our method called Simplified Selective Fault Tolerance 
reduces the area overhead and energy consumption of the state of the art by up to 
over 20%. Also we have compared our method to Triple Modular Redundancy and 
have obtained an improvement in area and energy overhead of up to 65% in the 
best-case scenario, and have obtained a mean improvement in both area and 
energy compared to TMR of over 25%. 

In order to obtain these results we have used LGSynth91 benchmark, 
Verilog for description, and Synopsis for synthesis. At the same time we have shown 
that while reducing the area overhead we maintain the reliability the same as the 
state of the art method presented in section 8.3. 

In this chapter we have also shown how to use our method in conjuncture 
with the graceful degradation technique for cache memories, described in chapters 5 
and 7 in order to improve both reliability and decrease area overhead for set 
associative cache memories. These results have been proven both by theoretical 
approaches and by simulations. 

For our future work we intend to implement an efficient methodology for 
reducing the energy consumption of the simplified selective fault tolerance method 
by powering down the extra modules, while they are not in use. We want to perform 
simulation and compute the time penalty associated with this powering down of the 
module and analyze if this tradeoff between performance and energy consumption is 
feasible. 
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9 Conclusions and Future Work 

Throughout this thesis we have provided our readers with the basic notions 
of cache memories, faults, errors and failures, fault tolerance techniques, and 
memory specific tests and fault tolerant processes. We have also made a 
widespread analysis of the state of the art regarding fault tolerance techniques for 
cache memories, which was the field in which we brought our contributions. 

The original contribution of this thesis was presented throughout chapters 5, 
6, 7, and 8. We will outline here the major results and contributions of this thesis. 
First of all we have developed a new mechanism in order to improve the reliability of 
set associative cache memories. This new mechanism is called Self Adaptive cache 
Memories (SAM) and has as a starting point the graceful degradation technique. By 
adding SAM to a set associative cache memory, alongside with a build-in self-test 
(BIST), the cache memory can tolerate a large number of faults (both hard and soft 
errors). For example an 8 way set associative cache memory with a total number of 
8196 cache lines, can tolerate, by implementing SAM, up to 7168 faulty lines; these 
lines having been diagnosed as hard errors. In order to obtain these results the SAM 
mechanism makes use of a Switching Table, which is used for remapping the faulty 
locations in order to maintain performance and correctness of the cache memory.  

The second original contribution to the field of cache reliability of this thesis 
was creating a mechanism that can improve the performance of the original SAM 
method. This improvement is trifold: reduction of the area overhead, reduction of 
energy consumption, and increase in performance. We have proposed two methods 
that can be used one at a time, or combined, in order to obtain these 
improvements. The improvements are obtained, mainly through a more efficient 
management of the Switching Table. 

Since the only part that was left vulnerable to errors was the Switching 
Table, we have adapted and improved a technique that uses Triple Modular 
Redundancy to protect a critical set of inputs. So the third original contribution was 
to improve the state of the art for selective fault tolerance techniques, which use 
triple modular redundancy. Also we have applied the newly developed simplified 
selective fault tolerance technique to a cache memory that has the SAM mechanism. 
So instead of protecting the whole cache memory with a triple modular redundancy 
technique, which implied an overhead both in area and energy of over 300%, we 
have applied the simplified selective fault tolerance technique only to the Switching 
Table. The overhead thus obtained is around 1% instead of 300%; also because we 
used SAM the reliability of the cache memory was improved, compared to a cache 
memory that uses only triple modular redundancy. 

The third original contribution of this thesis was to adapt notions from 
probability theory and apply them in the field of memory testing. We have 
developed an original algorithm that can be applied to any type of memory (not only 
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cache memories). This algorithm provides the most probable distribution of errors 
inside a memory system after a number of errors. Of note: the number of errors can 
be chosen from zero to the total number of locations in the memory. 

All of these results have been published throughout the PhD program at 
various conferences [9] [59] [60] [66] [67]. 

For future work we plan to furthermore study the field of cache memory 
reliability. We will look at new ways to improve the already developed mechanisms 
and technique, and also we plan to develop some new methods and schemes that 
can improve even more the reliability of the cache memory. 

The reliability of the cache memory is of paramount importance. This is 
because in a computer system the memory hierarchy is responsible for more than 
50% of faults. Also every bit that is processed has to pass through the cache 
memory, and this is why the reliability of this cache memory is so important. 
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