618.174 G 102

MINISTERUL INVÄŢĂMÂNTULUI UNIVERSITATEA "POLITEHNICA" DIN TIMIȘOARA

Ing. Valeria Văcărescu

CONTRIBUTII LA ELABORAREA UNEI METODOLOGII UNITARE PENTRU INCERCAREA PERFORMANTELOR ROBOTILOR INDUSTRIALI SI A SISTEMELOR DE FABRICATIE FLEXIBILA ROBOTIZATE

TEZA DE DOCTORAT

CONDUCATOR STIINȚIFIC Prof.dr.ing. Kovacs Francisc

BIBLIOTECA CENTRALĂ UNIVERSITATEA "POLITENSICA" TIMIȘCARA

> TIMIŞOARA -1996-

CUPRINS

CAP. 1	INTRODUCERE	3
	roboti industriali	ſ
	1.7 Aspecte ale corelatiei structura mecanică performante	5
	ale roboților industriali	19
CAP. 2	STADIUL ACTUAL AL CERCETÀRILOR ÎN Domeniul încercării roboților Industriali, și a sistemelor	
	DE FABRICAȚIE FLEXIBILĂ ROBOTIZATE	27
	2.1. Clasificarea parametrilor ce caracterizează performanțele	
	roboților industriali	27
	2.1.1. Clasificare după H. J.Warnecke	28
	2.1.2. Clasificare conform normei VDI 2861 [S7]	29
	2.1.3. Clasificare conform normei franceze	
	E61-103, elaborată de AFNOR [S3]	33
	2.1.4. Clasificare conform ISO 9283: 1990 E: Roboti	
	industriali - Criterii de performanță și	
	metode de încercare corespunzătoare [S2]	3.5
	2.2. Definirea principalilor parametri ce	
	caracterizează performanțele roboților industriali	35
	2.2.1. Caracteristici de poziție	36
	2.2.2. Caracteristici de traiectorie	50
	2.2.3. Timpul de deplasare minim	57
	2.2.4. Complianta statică	57
	2.3. Situarea efectorului terminal al robotului.	
	Abateri de situare	58
	2.3.1. Exactitatea de situare statică și dinamică	61
	2.3.2. Repetabilitatea de situare statică și dinamică	64
	2.4 Procedee de încercare a robotilor industriali	65
	2.4.1. Generalități, Recomandări privind	•••
	efectuarea încercărilor	65
	2.4.2. Definirea pozitiilor si traiectoriilor de	
	încercare în spatiul de lucru al robotului	
	industrial	68
	743 Clasificarea metodelelor de măsurare a	00
	exactității si/sau repetabilității de situare	
	la roboti industriali	71
	744 Exigente impuse proceselor de másurare	74
	7.4.5 Exemple de metode-test utilizate	, 4
	nentru determinarea performantelor	
	robojilor industriali	74
САРЗ	CONTRIBUTE LA ELABORAREA UNOR METODE SI	
C / 4 T 1.0	ALGORITMI DE CALCUL A EXACTITĂȚII ȘI	
	REPETABILITĂȚII DE SITUARE A ROBOȚILOR	
	INDUSTRIALI	83

	3.1. 3.2.	Considerații generale Metode locale de determinare a exactității și	83
		repetabilității de situare la roboți industriali 3.2.1. Metodă și algoritm de calcul pentru determinarea exactității și repetabilității de poziționare, utilizând un corp de probă	83
		sferă calibrată 3.2.2. Metodă și algoritm de calcul pentru determinarea repetabilității de situare	84
		la roboți industriali,utilizând distribuția 3×2×1 3.2.3. Metodă și algoritm de calcul pentru determinarea exactității și repetabilității de situare la roboți industriali utilizând	86
	3 7	distributia 3×3×3	93
	5,5.	evectității și renetabilității de situare la	
		roboti industriali	104
		3.3.1 Metodă și algoritm de calcul utilizând doi	104
		teodoliti nentru determinarea exactității și	
		renetabilității de situare la roboți industriali	
		(metoda prin intersectii)	104
		3.3.2. Metodă și algoritm de calcul pentru	
		determinarea exactității de situare a roboților	
		industriali, utilizand un telemetru laser	115
	3.4.	Concluzii	121
CAP. 4	APL	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA	
CAP. 4	APL: Rob	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA Oților	122
CAP. 4	APL: ROB 4.1.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare	122 122
CAP. 4	APL: ROB 4.1. 4.2.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori	122 122 125
CAP. 4	APL: ROB 4.1. 4.2. 4.3.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice	122 122 125 126
CAP. 4	APL: ROB 4.1. 4.2. 4.3. 4.4.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor	122 122 125 126 127
CAP. 4	APL: ROB 4.1. 4.2. 4.3. 4.4.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului	122 122 125 126 127
CAP. 4	APL: ROB 4.1. 4.2. 4.3. 4.4.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale	122 122 125 126 127
CAP. 4	APL: ROB 4.1. 4.2. 4.3. 4.4.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD)	122 122 125 126 127 130
CAP. 4	APL: ROB 4.1. 4.2. 4.3. 4.4.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD) 4.4.2. Modelarea erorilor de situare a efectorului	122 122 125 126 127 130
CAP. 4	APL: ROB 4.1. 4.2. 4.3. 4.4.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD) 4.4.2. Modelarea erorilor de situare a efectorului terminal considerând și erorile negeometrice	122 125 126 127 130
CAP. 4	APL: ROB 4.1. 4.2. 4.3. 4.4.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD) 4.4.2. Modelarea erorilor de situare a efectorului terminal considerând și erorile negeometrice generate de jocurile în cuple	122 122 125 126 127 130
CAP. 4	APL: ROB 4.1. 4.2. 4.3. 4.4.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD) 4.4.2. Modelarea erorilor de situare a efectorului terminal considerând și erorile negeometrice generate de jocurile în cuple Concluzii	122 125 126 127 130 132 135
CAP. 4 CAP.5	APL: ROB 4.1. 4.2. 4.3. 4.4. 4.5. APL: SIST	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD) 4.4.2. Modelarea erorilor de situare a efectorului terminal considerând și erorile negeometrice generate de jocurile în cuple Concluzii ICAREA PROBLEMEI DE SITUARE ÎN CAZUL EMELOR DE FABRICȚIE FLEXIBILĂ	122 125 126 127 130 132 135
CAP. 4 CAP.5	APL: ROB 4.1. 4.2. 4.3. 4.4. 4.5. 4.5. APL: SIST ROB	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD) 4.4.2. Modelarea erorilor de situare a efectorului terminal considerând și erorile negeometrice generate de jocurile în cuple Concluzii ICAREA PROBLEMEI DE SITUARE ÎN CAZUL EMELOR DE FABRICȚIE FLEXIBILĂ OTIZATE	122 125 126 127 130 132 135
CAP. 4 CAP.5	APL: ROB 4.1. 4.2. 4.3. 4.4. 4.5. APL: SIST ROB	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OTILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD) 4.4.2. Modelarea erorilor de situare a efectorului terminal considerând și erorile negeometrice generate de jocurile în cuple Concluzii ICAREA PROBLEMEI DE SITUARE ÎN CAZUL EMELOR DE FABRICȚIE FLEXIBILĂ OTIZATE	122 125 126 127 130 132 135
CAP. 4 CAP.5	APL: ROB 4.1. 4.2. 4.3. 4.4. 4.5. 4.5. APL: SIST ROB 5.1. 5.2	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD) 4.4.2. Modelarea erorilor de situare a efectorului terminal considerând și erorile negeometrice generate de jocurile în cuple Concluzii ICAREA PROBLEMEI DE SITUARE ÎN CAZUL EMELOR DE FABRICȚIE FLEXIBILĂ OTIZATE Considerații generale Problema de situare (pozitionare și orientere)	122 125 126 127 130 132 135 137
CAP. 4 CAP.5	APL: ROB 4.1. 4.2. 4.3. 4.4. 4.5. APL: SIST ROB 5.1. 5.2.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD) 4.4.2. Modelarea erorilor de situare a efectorului terminal considerând și erorile negeometrice generate de jocurile în cuple Concluzii ICAREA PROBLEMEI DE SITUARE ÎN CAZUL EMELOR DE FABRICȚIE FLEXIBILĂ OTIZATE Considerații generale Problema de situare (poziționare și orientare) în cazul componentelor unui sistem	122 125 126 127 130 132 135 137
CAP. 4 CAP.5	APL: ROB 4.1. 4.2. 4.3. 4.4. 4.5. APL: SIST ROB 5.1. 5.2.	ICAREA PROBLEMEI DE SITUARE LA CALIBRAREA OȚILOR Exprimarea problemei de calibrare Parametri geometrici de erori Erori negeometrice Modelarea diferențială a erorilor 4.4.1. Modelarea erorilor de situare a efectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD) 4.4.2. Modelarea erorilor de situare a efectorului terminal considerând și erorile negeometrice generate de jocurile în cuple Concluzii ICAREA PROBLEMEI DE SITUARE ÎN CAZUL EMELOR DE FABRICȚIE FLEXIBILĂ OTIZATE Considerații generale Problema de situare (poziționare și orientare) în cazul componentelor unui sistem flexibil robotizat	122 125 126 127 130 132 135 137 137

	5.2.	1. Determinarea erorilor de situare (poziționare	
		și orientare) în cazul unei celule de fabricație	
		flexibilă robotizată	139
	5.3. Stuc	liu de caz pentru celula de sudare cu robotul	
	CLC	DOS-ROMAT-76	164
	5.3.	1. Prezentare generală	164
	5.3.	2. Determinarea erorilor de situare ale	
		componentelor celulei de sudare	166
CAP.6	CONTRI	BUȚII LA ELABORAREA UNOR SOLUȚII	
	CONSTR	UCTIVE DE DISPOZITIVE ȘI STANDURI	
	PENTRU	MĀSURAREA EXACTITĀŢII ȘI	
	REPETAL	BILITĂȚII DE SITUARE LA ROBOȚII	
	INDUSTR	RIALI	172
	6.1. Disp	pozitive pentru măsurarea caracteristicilor de situare	
	dup	ă principiul metodelor locale	172
	6.1.	1. Cap de mäsurare tridimensional pentru	
		determinarea caracteristicilor de poziționare	
		și orientare după distribuția 2×2×2	172
	6.1.	2. Cap de măsurare tridimensional pentru	
		determinarea caracteristicilor de situare după	
		distributia 3×2×1 sau 3×3×3	175
	6.1.	3. Cap de măsurare 2D pentru determinarea	
		caracteristicilor de exactitate și repetabilitate	
		pe trajectorie	180
	6.2. Star	id de măsurare după principiul metodelor	
	"]a (distanță"	184
	6.2,	1. Stand pentru determinarea exactității	
		și repetabilității de situare la roboți	
		industriali utilizând un ansamblu	
		de 2 teodoliți	184
Cap.7	CERCET	ĂRI EXPERIMENTALE PRIVIND	
	PERFOR	MANȚELE DE SITUARE LA ROBOȚI	
	INDUSTR	RIALI ȘI SISTEME DE FABRICAȚIE	
	FLEXIBL	LĂ ROBOTIZATE	189
	7.1. Con	siderații generale	189
	7.2. Cali	ibrarea modelului geometric al robotului	189
	REN	MT 5	
	7.2.	1. Robotul industrial REMT 5 -	
		- prezentare generală	190
	7.2.	2. Stabilirea matricilor de transformare aferente	
		modelului geometric direct al robotului	
		KEMI D	192
	7.2.	.3. Modelul diferențial al erorilor de poziționare	196
	7.2.	4. Determinarea electiva a erorilor parametrilor	
		geometrici $\Delta \alpha_1, \Delta \theta_2, \Delta \alpha_2$, pentru robotul	100
	-	REMID \$1 corectarea aceastora	198
	7.	2. Uonciuzii	200

BUPT

	7.3.	Cercetări experimentale privind performanțele de situare ale robotului CLOOS-ROMAT 76	202
		7.3.1. Robotul CLOOS-ROMAT 76.	202
		712 Stand pentru determinarea performantelor de	202
		situare la roboti si sisteme de fabricatie	
		flexibilă robotizată, utilizând un ansamblu	
		de două tahimetre electronice tin REC-ELTA	207
		7.3.3. Program al cercetărilor experimentale	216
	7.4.	Cercetari experimentale privind performantele de	
		situare pentru componentele celulei de sudare	
		utilizand robotul CLOOS-ROMAT 76	229
		7.4.1. Celulă de sudare. Prezentare generală	229
		7.4.2. Program al cercetărilor experimentale	229
Сар. 8	CON ORI(SIDERAȚII FINALE ȘI CONTRIBUȚII GINALE. APLICAȚII ȘI PERSPECTIVE	236
	8.1.	Concluzii finale și perspective ale cercetării	
		în domeniu	236
	8.2.	Contribuții teoretice	237
	8.3.	Contribuții în domeniul aplicațiilor practice	
		și industriale	239
	8.4.	Contribuții în domeniul cercetării și încercărilor experimentale	240
	BIBI	LIOGRAFIE	243
	ANE	XA 1	
	ANE	XA 2	
	ANE	XA 3	
	ANE	XA 4	

Evaluarea caracteristicilor funcționale ale roboților industriali constituie unul dintre aspectele dezvoltării acestora.

Performanțele reale ale acestor mașini sunt încă insuficient cunoscute, întrucăt definirea criteriilor de performanță constituie preocupări relativ recente.

Normele internaționale elaborate actualmente nu au răspuns și nu răspund tuturor criteriilor în domeniu, la diverse institute de cercetări și universități de prestigiu, cu preocupări în această direcție, aflându-se în fază de experiment)diferite metode-test pentru determinarea performanțelor roboților industriali.

Utilizarea roboților în diferite tipuri de aplicații industriale, necesită un studiu de detaliu al ansamblului de performanțe ale acestora, în vederea implementării optime a acestor utilaje în aplicații specifice.

Teza de față se înscrie în aceste coordonate, propunându-și să reunească intr-un tot unitar ansamblul de metode privind aprecierea performanțelor roboților industriali și să completeze lacune existente.

Rezultatele obținute pot fi valorificate, amplificate și diversificate atât de viitorii cercetători în domeniu, cât și de fabricanții de roboți industriali.

Alegerea subiectului tezei de doctorat o datorez distinsului meu Dascăl și conducător științific, Prof.dr.ing. Kovacs Francisc, a cărui pasiune recunoscută pentru robotică îl determină să fie permanent la curent cu ultimele noutăți în domeniu.

Pentru înțelegerea și răbdarea cu care m-a sfătuit și m-a îndrumat pe parcursul elaborării tezei îi acord întreg respectul meu și aleasă considerație.

Imi exprim întreaga gratitudine pentru sprijinul pe care, cu înaltul nivel al competenței sale științifice, dl.Prof.dr.ing. Kovacs Francisc mi la acordat în cercetărife întreprinse în cadrul acestei lucrări.

Gândurile mele de mulțumire se îndreaptă, de asemenea, spre DI.Prof.dr.ing. Dan Perju, șeful Catedrei de Organe de Mașini și Mecanisme, care, cu o deosebită bunăvoință, mi-a fost întodeauna un bun sfătuitor, împărtășindu-mi din vasta sa experiență științifică.

De asemenea, doresc să adresez mulțumirile mele D-lor Profesori referenți științifici ai acestei lucrări, pentru bunăvoința și răbdarea de a o parcurge.

Gândurile mele de recunoștință se îndreaptă spre toți Dascălii mei care m-au-format ca specialist și mi-au călăuzit pașii în domeniul atât de captivant al tehnicii.

Ajunsă la finele acestei lucrări, care încheie un capitol important din viața mea, gândurile mele se îndreaptă spre cei care au fost zi de zi alături de mine cu gândul și cu sufletul, soțul meu și cele două fetițe, care au așteptat cu nerăbdare finalizarea acestei lucrări.

Ing. Valeria Vācārescu

CAPITOLUL 1

INTRODUCERE

1.1 Tendințe actuale și de perspectivă în construcția de roboți industriali

O societate industrializată avansată presupune o automatizare flexibilă a proceselor de producție, în care manipulatoarele și roboții industriali au un rol determinant. Având în vedere faptul că roboții industriali sunt flexibili și versatili, asigurând libertăți de mișcare similare cu cele ale membrului superior (braț mână) al omului, utilizarea lor asigură o serie de avantaje economice și sociale. Intre acestea pot fi menționate: creșterea productivității, umanizarea activității muncii în sectoare grele de producție, prevenirea accidentelor de muncă, creșterea calității produselor și recuperarea mai rapidă a investițiilor.

Avantajele robotizării au condus la creșterea rapidă, atât a numărului, cât și a i itipurilor de roboți industriali utilizați actualmente pe plan mondial.

Fenomenul este cert chiar dacă datele statistice publicate sunt uneori contradictorii, variațiile explicăndu-se prin aceea că nu există un consens în ceea ce privește conceptul de robot industrial și nici un sistem unitar de clasificare internațională a numeroaselor tipuri de roboți industriali existenți.

Piața mondială a roboților industriali, în dezvoltare rapidă, explică numărul mare de firme care se ocupă de producerea acestor utilaje și, în mod implicit, numărul mare de tipuri de roboți industriali în fabricație.

Cel mai intens se lucrează în domeniul construcției de roboți industriali în Japonia, S.U.A și țările vest-europene: Suedia, Germania, Franța, Italia, Anglia, etc.

Marile companii au început să plaseze comenzi imense pentru acești ..muncitori mecanici". Numai "General Motors" din S.U.A. a alocat în acest scop peste un miliard de dolari până în 1990, instalând mai mult de 14.000 de roboți noi [C7]. Intr-un studiu al Universității Carnegie Mellon, se afirmă că, 4+7% din activitățile fabricilor americane sunt asistate de roboți. Un studiu efectuat de Asociația Britanică de Robotică (B.R.A.), arată că Japonia ocupă primul loc între țările industrializate în privința producerii și utilizării roboților în industrie, situație confirmată și de Institutul American de Robotică (R.I.A.), care menționează că, excluzând chiar roboții cu manipulare simplă, baza de roboți folosiți de industria japoneză rămâne de trei ori și jumătate mai mare decât cea americană. Numai producția de roboți industriali a firmei "Motoman", în 1991 era de 500 roboți/săptămână, capacitatea instalată a firmei fiind de 1000 roboți/ săptămână.

După R.I.A. și B.R.A., numărul de roboți instalați în lume, la nivelul anului 1992, se prezintă ca în figura 1.1 [R9]. Diagrama pune în evidență evoluția implementării roboților industriali, începând cu anul 1983. Se remarcă o puternică tendință ascendentă, în special în Japonia, dar și în Europa.

In figura 1.2 [R5] se poate urmări, comparativ, repartiția roboților industriali instalați, raportați la 10.000 persoane ocupate în producție, în diferite țări, la nivelul anului 1992.

Pe domenii de aplicații industriale la nivelul anului 1992, utilizarea roboților în diferite țări se prezintă după cum urmează [R9]:

- în Japonia, după statisticile J.I.R.A. - histograma din fig.1.3:

ļ

- în Anglia, după statisticile B.R.A. - histograma din fig.1.4;

- în Franța, după statisticile I.F.R. - histograma din fig.1.5;

- in Italia, după statisticile S.I.R.I. - histograma din fig. 1.6,

- în Germania după statisticile IPA/VDMA, histograma din fig.1.7. Firma VOLKSWAGEN, spre exemplu, a instalat la uzinele Wolfsburg, cel mai mare atelier de vopsire robotizată din Europa, având patru linii echipate cu 80 de roboți de vopsire tip "FANUC", pentru autoturismul GOLF, lansat pe piață la sfârșitul anului 1991.

Se remarcă ponderea mare a aplicațiilor robotizate în domeniul montajului, sudurii și manipulărilor diverse ale pieselor.

O prezentare cronologică sintetică privind utilizarea roboților industriali în diverse aplicații, în Germania, este redată în figurile: 1.8, 1.9, 1.10 și 1.11.

Histogramele prezentate au fost intocmite pe baza statisticilor IPA/VDMA și se referă la principalele aplicații robotizate [R10].

Se remarcă o tendință ascendentă clară, ritmul fabricării și introducerii în diferite domenii ale roboților industriali accelerându-se în permanență.

In fig. 1.12 [R10], se prezintă distribuția procentuală, pe aplicații, a roboților instalați în Germania, la finele anului 1992.

Se remarcă, din nou ponderea aplicațiilor de sudură (continuă și în puncte), montaj și manipulări diverse.

Statistici mai recente [R11] ale IPA/VDMA evidențiază pentru Germania o ușoară recesiune după anii de vârf, 1990-1991, urmată de o tendință de redresare în cursul anului 1994 - fig.1.13.

Decalajul în raport cu Japonia se menține însă Astfel dacă la sfărșitul anului 1994 în Japonia existau, în medie 350 de roboți industriali la 10000 persoane ocupate în industrie, în Germania se regăseau doar 60 de roboți industriali la 10000 de persoane ocupate în industrie. Interesantă este comparația cu USA. Astfel, dacă în USA la finele anului 1994 existau aproximativ 58000 de roboți industriali în utilizare, în Germania doar, execeptând celelalte țări europene, se aflau în utilizare aproximativ 49000 de roboți industriali [R11].

Histograma din figura 1.14 redă distribuția numerică pe domenii de aplicații, a roboților industriali în Germania, în 1994, iar histograma din figura 1.15 pune în evidență evoluția, în diverse domenii, a numărului de roboți industriali instalați [R11].

Și într-un studiu al Comisiei Economice a O.N.U. pentru Europa și Federației Internționale de Robotică [F2], este pusă în evidență perioada de ușoară recesiune în domeniul roboților între anii 1990-1993, urmată de o evidentă tendință de redresare în 1994.

"World Industrial Robots 1995" prevede pentru 1995 că vânzările de roboți se vor ridica la 64.000 de unități, în comparație cu 53.000 unități în 1994, reflectând creșterea continuă a necesității în domeniu în Europa și U.S.A., dar și o redresare a cerințelor în Japonia. Alți doi ani de vânzări în masă sunt așteptați, prevăzându-se o

creștere medie cu 19% pe an până în 1998.

Populația mondială de roboți se estimeaza a crește cu mai mult de o treime în aceiași perioadă, de la 610.000 la sfârșitul lui 1994, la aproape 820.000 la sfârșitul lui 1998.

Mai mult de jumătate, 57% se estimează a fi în Japonia, cu toate că aceasta reprezintă o scădere față de procentul de 62% în 1994.

La nivelul anului 1994, populația de roboți a Japoniei era 470.000 de unități, în comparație cu 84.000 de roboți în U.S.A. (10% din stocul mondial), 75.000 în Germania (9%), 35.000 în Italia (4%), 19.000 în Franța și 14.000 în Marea Britanie.

Studiul notează că, în perioada de criză economică a anilor 1990-1993, care a determinat o reducere accentuată a numărului de persoane ocupate în industrie, are loc a creștere relativă a densității roboților, exprimată în număr de roboți la 10.000 de persoane angajate în producția industrială.

Superproducția industrială se așteaptă să vină de la o creștere accentuată a productivității incluzând folosirea intensivă a roboților, mai degrabă decât de la creșterea personalului din industrie.

Japonia cu aproape cu 350 de roboți la 10.000 de angajați în producția industrială conduce ușor în clasamentele curente. Suedia, cu peste 90 de roboți la

10.000 de angajați în producția industrială se află pe locul doi, în timp ce Marea Britanie, cu o densitate de 20 de roboți ocupă locul 7, după Italia. Germania, U.S.A. și Franța, fig.1.16.

diferente Aceste mari provia din faptul сă. majoritatea roboților unei țări este concentrată în producția de automobile. Astfel, industria de automobile a Japoniei folosește circa 815 roboți la 10.000 de muncitori comparativ cu 286 in Suedia, 167 în Franta, 127 în Marea Britanie.

Cu toate acestea se estimează că în Japonia, nu industria de automobile va înregistra principala tendință de creștere în utilizarea roboților, ci industria electronică, unde se estimează că vor lucra peste 50% din numărul de 29.760 roboți cumpărați în 1994.

In cele prezentate am evidențiat doar câteva dintre

realizările din acest domeniu, în diferite țări. Acestea s-au obținut pe baza unor preocupări specifice, de la țară la țară.

Astfel în unele țări (Japonia, Germania) au fost elaborate programe naționale de robotizare, în cadrul cărora au fost cuprinse o serie de întreprinderi cu preocupări apropiate, cărora li s-au acordat credite necesare.

U.S.A. ca și alte țări occidentale, sunt la rândul lor angajate în cursă "Crysler" are instalați 120 de roboți pentru sudarea în puncte, "General Motors" hotărâște să-și dubleze parcul de roboți ; "Volvo"-Suedia cumpără de pe piața americană 100 de roboți și face o comandă de alte 500 de unități ; "General Electric" lansează un vast program de robotizare ; "Westingshouse" decide investiții de multe milioane de dolari pentru instalarea de roboți ; "Lockhead" pune la punct un proiect de doi ani pentru utilizarea de roboți la asamblarea componentelor de avioane ; "Digital Equipment", "International Business Machines", "Texas Instruments" și o serie întreagă de alți producători americani, mai mari sau mai mici, se angajează masiv în producția de roboți. Creșterea producției de masă permite reducerea prețurilor, iar multiplicarea tipurilor de roboți și ridicarea performanțelor acestora, lărgește gama utilizării lor industriale.

Preocupat să creeze și întreprinderilor mici și mijlocii posibilitatea de a se integra procesului de robotizare. Ministerul Comerțului și Industriei a elaborat în Japonia un program guvernamental, care să permită acestora împrumutarea de roboți industriali pe care, în absența resurselor financiare, nu-i pot cumpăra

In toate țările, considerentele care militează pentru utilizarea roboților industriali sunt cele tehnico-economice și sociale. Desigur că primează avantajele economice, dar nu trebuie neglijate în nici un moment avantajele sociale generale și suplimentare. Figura 1.17 prezintă un tablou de ansamblu al acestor avantaje.

Urmărind datele statistice prezentate, se poate afirma că fenomenul extensiei fabricării și utilizării roboților este cert. Cu suficient temei, un specialist japonez exclama: "... explozia pieței roboților este abia la început; piața acestora va avea o dinamică similară celei pe care au avut-o în deceniile trecute piața tranzistoarelor sau a calculatoarelor ...".

Sunt pași care duc la cea de-a doua revoluție industrială, când omul va

transfera mașinii nu numai unele din capacitățile sale fizice, ca în timpul primei revoluții industriale, dar și o serie de atribute ale inteligenței sale.

Și la noi în țară au fost deschise perspective în domeniu, prin lansarea în anii 1980, a unui program național privind realizarea unui sistem de roboți industriali. Au fost angrenate în cercetare institutele de învățământ superior tehnic din București, lași, Cluj, Brașov, Craiova, Timișoara. Rezultatele acestei cercetări s-au materializat prin implementarea în producție a unor prototipuri de roboți.

Astfel, la Institutul Politehnic București s-a pus în funcțiune, în anul 1983, o celulă de fabricație flexibilă pentru frezat și amborat axe grele, deservită de robotul MERO-3B.

Colectivul de cercetare de la Institutul Politehnic din Cluj-Napoca a realizat roboții industriali REH-01, REH-02 și VIPAS.

La Institutul Politehnic lași s-a realizat robotul industrial ROBI-01, destinat alimentării preselor de brichetat deșeuri din tablă la I.M.A.I.A. Tecuci.

La Universitatea din Brașov s-a realizat un robot tip pistol, destinat deservirumașinilor unelte.

In Timișoara, la Institutul Politehnic, Colectivul multidisciplinar de cercetare proiectare roboți, în colaborare cu întreprinderea "Electromotor"- Timișoara, a proiectat și pus în funcțiune, în 1982, o celulă de fabricație flexibilă destinată prelucrării arborilor de motoare electrice, deservită de robotul REMT-1. Acesta este primul robot industrial românesc operațional în mediul industrial, motiv pentru care, colectivul care l-a proiectat și realizat a fost distins cu Premiul "Traian Vuia" al Academiei Române. Acestuia i-a urmat robotul REMT-2, utilizat, între altele, pentru manipulări în sectoarele de tratamente termice, REMT 2-S destinat automatizării operațiilor de sudare ale șasiului de vagoane la întreprinderea MEVA- Drobeta Turnu Severin și robotul REMT-3 destinat manipulării tubului cinescop la Intreprinderea de cinescoape București.

Tot din seria REMT au fost executate două exemplare ale robotului REMT-5, destinat industriei electrotehnice, precum și REMT 3-09 și REMT 3-10, amplasați în celulă flexibilă de deservire pentru prelucrări mecanice.

Tot prin colaborarea Institutului Politehnic cu Electromotor, s-a realizat "reciprocatorul" de vopsire a vagoanelor de marfã pentru întreprinderea MEVA Drobeta Turnu-Severin, distins cu Premiul I la faza județeană a concursului național "Cântarea României". In colaborare cu I.A.E.M. Timișoara a fost realizat robotul pneumatic RP-1, iar în colaborare cu Electrotimiș s-au proiectat și realizat:

- Microrobotul R-2,5;

- Microroboții cu acționare pneumatică MRP-12,5 și MAP-100;

- Microrobotul cu acționare electrică MAE-100;

- Robotul cu acționare hidraulică RH-1KN;

Lanţul cinematic de instruire a roboţilor de vopsire RIV.

Pentru Unio Satu-Mare s-a conceput o familie de roboți, din care s-a realizat RIE-50.

Pentru 1.M.U.M. Baia-Mare s-au conceput și realizat manipulatoarele sincrone MS-500, MS-200, MS-1000, primul fiind distins cu medalia de aur la TIB'1988'. Deasemenea s-a conceput și realizat robotul ROPOS 50, utilizat în aplicații de sudură.

După 1989, ca urmare a colaborării cu universități și întreprinderi din Europa de vest, în special prin programe TEMPUS a fost asigurat accesul la ultimele noutăți în domeniul roboticii, atât pe plan informațional cât și prin dotarea laboratorului de roboți din cadrul Universității Politehnice din Timișoara cu tehnologie de vârf, ceea ce permite o formare profesională de calitate atât pentru cadrele didactice cât și pentru studenții secției de roboți.

Creșterea populației de roboți în țara noastră, în perioada anilor '80, prin construcția de roboți autohtoni, precum și achiziționarea de roboți din import a condus la creșterea numărului de aplicații robotizate în multe întreprinderi din domeniul industriei constructoare de mașini.

Utilizarea acestor roboți în diferitele tipuri de aplicații industriale a necesitat un studiu de detaliu a ansamblului de performanțe ale acestora în vederea implementării optime a roboților existenți în aplicații specifice.

In acest sens se punea problema elaborării unor metodologii de încercare a roboților precum și a unei aparaturi de determinare a performanțelor acestora, mai ales că, la momentul respectiv, această problematică la nivel mondial se afla în studiu, exitând doar câteva norme, specifice unor tări, cu caracter de proiect [S7] și [S8].

Colectivul multidisciplinar de roboți industriali din cadrul Politehnicii timișorene, în cadrul Contractului cu IMMUM Baia Mare [C5], la care a colaborat și autoarea prezentei teze de doctorat, a elaborat un set de dispozitive și aparate pentru verificarea performanțelor funcționale ale roboților industriali din producția proprie a beneficiarului.

Lucrarea a fost perfecționată, completată și adăugită cu noi metode și aparate în cadrul contractului [C6], susținut de Ministerul Educației și Invățământului

Normele internaționale elaborate actualmente nu au răspuns și nu răspund tuturor cerințelor în domeniu, la diverse institute de cercetare și universități de prestigiu cu preocupări în această direcție, aflându-se în fază de experiment diferite metode-test pentru determinarea performanțelor roboților industriali.

Lucrarea de față își propune să reunească într-un tot unitar ansamblul de metode privind aprecierea performanțelor roboților și să completeze unele lacune existente.

O asemenea acțiune are o amploare deosebită, motiv pentru care prezenta teză de doctorat își propune să rezolve aspectele legate de cercetarea performanțelor de situare ale roboților, având în vedere faptul că aceste

Fig.1.18

BUPT

caracteristici de situare definese evasimajoritatea performantelor robotilor.

Se poate aprecia că se răspunde astfel unei problematici largi în această direcție de cercetare, autoarea propunând în cadrul tezei de doctorat metode moderne și performante pentru testarea performanțelor de situare la roboți și sisteme de fabricație flexibilă robotizate, aplicate concret în capitolul de cercetări experimentale.

Din cele expuse în acest paragraf se poate remarca faptul că aplicațiile industriale ale roboților au cuprins domenii de bază ale industriei.

In ultimii ani, există tendințe de utilizare a roboților în domenii colaterale, cum sunt prestările de servicii, și anume:

- agriculturā
- medicină
- mediu subacvatic
- medii radioactive
- spațiul cosmic, etc.

Figurile 1.18 și 1.19 [G2] prezintă câteva tendințe în acest sens. Se constată practic că există posibilități nelimitate de utilizare a roboților.

	'83 '86 '90 '93 200
Roboli pentru sortarea fructelor	Dezvoltare
	Aplicație practică
Roboți pentru găurire frezare și sudare pt. construcții subacvatice (platforme petroliere marine)	Dezvoltare
Roboți pentru exploatarea adâncurilor mărilor și oceanelor.	Aplicație practică
Roboți pentru montajul părților	Dezvoltare
componente din otel și fier beton ale tunelelor	Aplicație practică
Roboți pentru încărcare descărcare marfă	Dezvoltare
din vagoane de cale ferată, containere de pe vagoane, avioane etc.	Aplicație practică
Roboți pentru localizarea și inspectarea	Dezvoltare
diferitelor instalații de apă și gaz submersibille	Aplicație practică

1.2. Aspecte ale corelației structură mecanică performante ale robotilor industriali.

Este cunoscut faptul că dezvoltarea industriei de roboți s-a făcut de la particular la general. Primii roboți industriali au fost concepuți ca să asigure operații specifice unui anumit domeniu. Industria ultimilor ani are tendința de a crea roboți multifuncționali, care să poată fi utilizați în largi aplicații industriale, deși în paralel, producția roboților superspecializați continuă. De aici marea varietate de modele și variante de roboți industriali.

O analiză componistică a roboților industriali presupune stabilirea unor criterii de apreciere, pe baza cărora s-ar putea categorisi structurile mecanice ale roboților.

Această acțiune este deosebit de importantă, deoarece ea poate da o imagine clară asupra unor aspecte ale corelației structură mecanică-performanțe. Astfel de criterii pot fi:

- volumul spațiului de lucru
- forma spațiului de lucru
- 4 numărul gradelor de libertate ale dispozitivului de ghidare.
 - mărimea sarcinii vehiculate
 - tipul acționării
 - exactitatea de poziționare și orientare

- viteze liniare și unghiulare de deplasare la nivelul cuplelor cinematice, etc.

Se analizează spre exemplificare, trei cazuri: (1)-modele japoneze, (2)modele vândute pe piața U.S.A., incluzând mulți roboți europeni, dar excluzând modelele japoneze acoperite de prima categorie și (3)-combinația modelelor din primele două categorii. Studiul a urmărit un număr N de roboți, indicat pe fiecare figură [N1].

In figura 1.20 se poate urmări distribuția, în cele trei cazuri analizate, a frecvenței roboților funcție de mărimea spațiului de lucru. Din acest punct de vedere, aceștia sunt clasificați în: microroboți, roboți mici, roboți mijlocii și mari funcție de mărimea dimensiunii maxime în spațiul de lucru, notată cu x. Astfel, microboții au x < 1, roboții mici 1 < x < 2, roboții medii 2 < x < 5 și roboții mari x > 5, x fiind exprimat în metri. Se observă faptul că cea mai mare frecvență o au roboții medii și mici.

In figura 1.21 se poate urmări frecvența roboților funcție de structura brațului Intre modelele japoneze predomină structurile sferice și articulate verticale (48% și respectiv 40%), pe când pe piața U.S.A., modelele articulate verticale

(peste 50%) sunt predominante

In fig 1.22 se poate urmări o corelare a primelor două caracteristici. Se evidențiază ponderea diferitelor structuri mecanice în diferitele categorii de mărime ale roboților. Pentru roboții utilizați în S.U.A. se remarcă ponderea reprezentativă a structurilor de roboți articulați verticali pentru toate categoriile de mărime, pe când pentru modelele japoneze, la roboții mici predomină structurile sferice și la cei medii structurile articulate verticale

In ceea ce privește mărimea sarcinii manipulate, fig.1.23, se remarcă faptul că, pentru toate situațiile analizate, ponderea mare o au roboții care manipulează sarcini până la 20 kg. Se remarcă de asemenea plaja largă de sarcini vehiculate (de la 0-1000 kg).

In figura 1.24, se observă, pentru modelele japoneze, ponderea maximă a structurilor având în lanțul cinematic 4 și 5 grade de libertate, urmate, la mică distanță, de roboți dotați cu 6 grade de libertate. Modelele întâlnite pe piața americană au preponderent 5 și 6 grade de libertate, Se remarcă tendința spre construirea de roboți cu mobilități multiple și chiar redundanți, roboți dotați cu elemente de inteligență artificială.

In ceea ce privește caracteristica de repetabilitate de situare a roboților, se poate vedea în figura 1.25 că, atât pentru modelele japoneze cât și pentru cele de pe piața americană, ponderea cea mai mare o au roboții cu repetabilitate între (0,10-

BUPT

0.50)mm.

Interesantă este corelarea acestei caracteristici cu tipul acționării, fig 1.26. Se jobservă că roboții cu acționare electrică sunt cei mai preciși, urmați de cei cu acționare pneumatică. Roboții cu acționare hidraulică sunt mai puțin preciși.

In figurile 1.27÷1.31 [V9], se prezintă o imagine asupra caracteristicilor cinematice ale structurii mecanice din componența roboților industriali. Se urmărește astfel amplitudinea extensiei brațului robotului (fig.1.27), precum și limitele maxime ale cursei pe verticală (fig.1.28), vitezele liniare (fig.1.29) și unghiulare (fig.1.30).

In figura 1.31 se urmărește ponderea roboților funcție de exactitatea de poziționare (\pm mm). Se remarcă faptul că aproximativ 71.2% din totalul parcului de

roboți analizați asigură în funcționare o exactitate de poziționare de până la ±1mm.

Date mai recente [R5], atestă performanțe mult superioare celor arătate anterior. Spre exemplu, firma EPSON-Germania, are în producția anului 1992 roboți cu repetabilitatea de poziționare de $\pm(10-20)\mu$ m, la o sarcină de (2+8 kg).

Așadar, performanțele roboților industriali se află în strânsă corelație cu arhitectura acestora, respectiv structura mecanică a lanțului cinematic al robotului. Prin termenul "performanță", se înțelege, fie capacitatea robotului de a acoperi un spațiu de lucru impus ca formă și dimensiuni, fie realizarea unui exactități de poziționare a unui punct caracteristic, fie parcurgerea unei traiectorii date, etc.

Se propun în literatura de specialitate de către unii autori, o serie de coeficienți globali de calitate, pe baza cărora se fac aprecieri cu privire la performanțele roboților industriali [K2], [P3], [L2].

CAPITOLUL 2

STADIUL ACTUAL AL CERCETĂRILOR ÎN DOMENIUL ÎNCERCĂRII ROBOȚILOR INDUSTRIALI ȘI A SISTEMELOR DE FABRICAȚIE FLEXIBILĂ ROBOTIZATE

2.1. Clasificarea parametrilor ce caracterizează performanțele roboților industriali

Aplicațiile industriale ale roboților necesită executarea operațiilor cu o exactitate prescrisă. Aceasta înseamnă realizarea și menținerea în timp, întocmai, a tuturor mărimilor ce caracterizează operațiile respective în conformitate cu proiectul robotului și programul său de lucru.

Exactitatea manipulatoarelor și a roboților se apreciază prin intermediul erorilor, care pot fi geometrice, cinematice, dinamice și erori care se referă la corelarea mai multor mărimi.

Exactitatea manipulatorelor și a roboților industriali se poate aprecia prin metode statistice sau grafice. Pe lângă caracterizarea acestei noțiuni, la un moment dat al unui ciclu de funcționare a robotului industrial, pentru aplicații industriale, prezintă interes menținerea în decursul timpului de funcționare, a caracteristicii analizate, respectiv după repetarea ciclului de funcționare Acest aspect, repetabilitatea valorii prescrise a mărimii analizate, se apreciază, la rândul său, prin dimensiunea plajei de dispersie a erorilor mărimii respective.

In ceea ce privește o clasificare a parametrilor ce caracterizează performanțele roboților industriali, nu există un consens în literatura de specialitate. Diferențele, se pare că provin din faptul că diferitelor categorii de R.I. li se solicită anumite performanțe, funcție de aplicațiile concrete în care sunt implicați. În linii mari, parametri de bază sunt acceptați de majoritatea autorilor. Acești parametri sunt categorisiți funcție de diferite criterii. În continuare, se prezintă principalele puncte de vedere expuse în literatura de specialitate, legate de problema în discuție.

2.1.1. Clasificare după H.J. Warnecke

In lucrarea [W4] se propune o grupare a principalilor parametri de performanță a roboților industriali, după cum se vede în figura 2.1.

Mărimi geometrice	Mărimi cinematice	Mărimi dinamice	Mārimi termice
>Spațiul de lucru	>Timpul de lucru	>Forță de învățare '	>Temperatura componentelor
poziționare	>Viteză	>Forța de prehensare	>Temperatura agentului de
>Exactitatea traiectoriei	>Accelerație	>Moment	racire
Reproducerea	Francis	>Energie	
paşnor minimi	Priecvența	>Capacitate	
		Zgomot	

Se observă că erorile de poziționare, precum și cele ce caracterizează exactitatea pe traiectorie sunt incluse în categoria mărimilor geometrice. Mărimile de măsurat sunt grupate în cinci categorii, parametri ce caracterizează puterea și zgomotul constituind o categorie aparte.

In lucrarea [W2], autorul revine asupra acestei clasificări incluzând în categoria mărimilor dinamice și parametrii de putere (energie) și zgomot, clasificare mai rațională având în vedere faptul că, calculul dinamic se finalizează cu determinarea puterii de acționare a sistemului mecanic mobil respectiv (fig 2.2). De altfel o clasificare asemănătoare se întîlnește și în [V9] - figura 2.3.

2.1.2. Clasificarea conform normei VDI 2861 [S7]

Conform normei germane VDI Richtlinie 2861, sunt denumite ca "mărimi de referință specifice utilizate la roboții industriali", acele mărimi ce caracterizează principalele performanțe ale roboților industriali. Aceste mărimi se clasifică în patru categorii, conform figurii 2.4. și anume:

- mărimi geometrice
- mărimi de sarcină (încărcare)
- mărimi cinematice
- mărimi de precizie

Se observă că parametrii ce caracterizează precizia roboților industriali formează o categorie aparte, nefiind incluși nici în categoria mărimilor geometrice, nici în cea a mărimilor cinematice.

Mărimile de referință geometrice oferă informații asupra structurii robotului și legăturilor sale cu mediu (frontierele spațiului de lucru), asupra subdivizării generale a spațiului de lucru datorită legăturilor cinematice specifice robotului (subdivizarea spațiului de lucru), cât și asupra curselor posibile pe diferite axe ale

	Mărimi de referință geometrice	Mărimi de referintă de sarcină	Mărimi de referință cinematice	Mărimi de referintă de
				precizie
la roboți industriali	 Limitele (frontierele) spațiului de lucru Subdivizarea spațiului de lucru Dimensiunile spațiului de lucru 	 Sarcina nominală Sarcina utilă maximă Sarcina maximă Sarcina maximă Moment nominal Masă / moment de inerție nominal 	 Mărimi de referință de viteză Mărimi de referință de accelerație Perioada maximă de amortizare a P.C. Timpi pe cursă Ciclul temporal de lucru Amplitudini oscilații ale P.C. 	 Exactitatea şi repetabilitatea (poziţionarea şi orientarea PC) Exacţitatea şi repetabilitatea pe traiectorie Mărimi generale de precizie

robotului (dimensiunile spațiului de lucru). În figura 2.5 este prezentată o secțiune transversală prin spațiul de lucru al unui robot, cu evidențierea părților sale componente.

Mărimile de referință de sarcină evidențiază încărcarea statică și dinamică a robotului industrial. În figura 2.6. se prezintă încărcarea posibilă a robotului.

determinată de sarcina nominală și de forța de procesare (de lucru).

Mărimile de referință cinematice sunt în general dependente de timp. Importante sunt mărimile ce definesc viteze și accelerații. Figura 2.7 prezintă

dependența dintre variația vitezei la o poziție oarecare și deplasarea liniară, respectiv, unghiulară corespunzătoare.

Mărimile de referință de precizie sunt cele mai uzuale în tehnica de măsurare a roboților industriali. Ele se clasifică după cum urmează:

1) Exactitatea și repetabilitatea (poziționare și orientare)

 domeniul de împrăștiere al valorilor atinse (poziționare și orientare) - repetabilitatea poziției și a orientării;

- media valorilor atinse (poziționare-exactitatea poziției);
- media valorilor atinse (orientare-exactitatea de orientare).
- 2) Exactitatea și repetabilitatea (pe traiectorie);
- abaterea medie între traiectoriile atinse (exactitate);
- domeniul de împrăștiere al traiectoriilor atinse (repetabilitate);
- abaterea medie de orientare pe traiectorie (exactitate);
- domeniul de împrăștiere a orientării traiectoriei (repetabilitate);
- diferența (abaterea) medie a traiectoriei circulare (exactitate);
- abaterea medie de racordare (traiectorii perpendiculare);
- abaterea medie de oscilare (depășire) a traiectoriei.
- 3) Mărimi generale de precizie
- precizie medie de comandă;
- precizie medie de programare,
- eroarea medie de temperatură;
- pasul minim programabil.

Normativul VDI 2861, conform căruia s-a prezentat clasificarea anterioară, se constituie în anteproiect pentru norma ISO 9283 privind testarea performanțelor roboților industriali.

2.1.3. Clasificare conform normei franceze E 61-103 elaborată de AFNOR (L'Association Francaise de Normalisation) [S3]

Respectiva normă propusă de Franța este în concordanță cu anteproiectul de normă ISO/DP 9283. Ea clasifică și definește caracteristicile de performanță ale roboților încercând unificarea limbajului, în acest domeniu în scopul unei prezentări și comparații obiective a performanțelor roboților. 34

Conform acestei norme, caracteristicile de performanță ale roboților se clasifică în următoarele categorii (fig.2.8):

- caracteristici generale

- caracteristici de poziție
- caracteristici de traiectorie
- caracteristici de viteză pe traiectorie
- complianță statică

De remarcat faptul că noțiunile de "caracteristici statice" și "dinamice" sunt înlocuite prin "caracteristici de poziție" și "caracteristici de traiectorie".

2.1.4. Clasificare conform ISO 9283:1990(E): Roboți industriali-criterii de performanță și metode de încercare corespunzătoare[S2]

O primă reglementare internațională în domeniul încercării roboților industriali a fost adusă prin norma ISO 9283, editată în 15.12.1990, care are intenția de a elabora un limbaj unic în acest sens între utilizatorii și producătorii de roboți și sisteme robotizate. Ea definește caracteristicile de performanță cele mai importante, precum și recomandări privind testarea acestor performanțe.

Astfel, standardul internațional ISO 9283 consideră ca fiind semnificative pentru aprecierea "calităților" unui robot industrial, caracteristicile prezentate în fig.2.9.

Se observă că ISO 9283:90 reproduce în mare măsură clasificarea propusă prin norma franceză E 61-103 din septembie 1986 - anteproiect la prezentul standard, dar într-o formă mai sintetică.

Pe baza acestei reglementări ISO se definesc în cele ce urmează principalii parametri ce caracterizează performanțele roboților industriali.

2.2. Definirea principalilor parametri ce caracterizează performațele roboților industriali

Performanțele și metodele de încercare corespunzătoare se referă la condițiile normale de funcționare și caracteristicile nominale ce trebuie indicate de proiectantul robotului. Prin "condiții normale de funcționare" se înțeleg exigențe

relative la energia principală (electrică, hidraulică, pneumatică), la variațiile și perturbațiile de putere, la condițiile de mediu (temperatură, umiditate, câmp electromagnetic și electrostatic, poluare atmosferică, etc.) și limitele maxime de funcționare din punct de vedere al securității exploatării robotului Variațiile performanțelor pentru condiții diferite de cele normale de funcționare se pot indica la cererea beneficiarului.

2.2.1. Caracteristici de poziție

Caracteristicile de poziție permit determinarea diferențelor între poziția comandată și poziția atinsă, câi și fluctuațiile în jurul unei poziții comandate.

"Poziția comandată" este poziția reprodusă prin programare prin învățare, iar "poziția atinsă" este cea realizată de robot ca răspuns la poziția comandată (fig.2.10)

Criteriile de exactitate și repetabilitate vor fi specificate în raport cu un sistem de coordonate ale cărui axe sunt paralele cu axele sistemului de coordonate de bază (sistem de axe legat de baza robotului), (fig.2.11).

2.2.1.1. Exactitatea și repetabilitatea de situare.

I. Exactitatea de situare unidirecțională (AP)

Exactitatea de situare unidirecțională exprimă abaterea între o poziție comandată și centrul de greutate al pozițiilor atinse, când apropierea de poziția comandată se face urmând aceeași traiectorie.

Cuprinde două aspecte:

a) Exactitatea de poziționare unidirecțională - se exprimă prin diferența între poziția comandată a P.C. și centrul de greutate al mulțimii de poziții atinse în realitate, la repetarea de "n" ori a aceleași traiectorii (fig.2.12)

In figura 2.12, O_c este poziția comandată a punctului caracteristic, iar G este centrul de greutate (punctul mediu) obținut ca medie a coordonatelor punctelor atinse în realitate. $O_c xyz$ reprezintă sistemul de axe atașat poziției comandate (de exemplu vàrful sau centrul cubului - corp de probā), coordonatele lui O_c în sistemul de bază fiind: x_c, y_c, z_c (figura 2.12).

Exactitatea de poziționare unidirecțională se determină prin expresia-

$$AP = \sqrt{(\bar{x} - x_c)^2 + (\bar{y} - y_c)^2 + (\bar{z} - z_c)^2}$$
(2.1).

avànd∶

 $AP_x = \overline{x} - x_c$ $AP_y = \overline{y} - y_c$ $AP_z = \overline{z} - z_c$ (2.2),

unde:

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{n} x_{j}$$

$$\overline{y} = \frac{1}{n} \sum_{j=1}^{n} y_{j}$$

$$\overline{z} = \frac{1}{n} \sum_{j=1}^{n} z_{j}$$
(2.3).

 $\overline{x}, \overline{y}, \overline{z}$ - sunt coordonatele centrului de greutate G al mulțimii de puncte obținute după repetarea aceleeași poziții de "n" ori;

 x_c, y_c, z_c - sunt coordonatele poziției comandate;

 x_j, y_j, z_j - sunt coordonatele poziției "j" atinse.

b) Exactitatea de orientare unidirecțională - se exprimă ca diferență între orientarea unghiulară comandată şi valoarea medie a orientărilor unghiulare obținute în realitate, la repetarea de "n" ori a aceleaşi poziții, parcurgând aceeaşi traiectorie (figura 2.13)

Acest criteriu se referă la cele trei axe ale sistemului de referință [a, b, c]

Se calculează cu relațiile.

$$AP_{a} = (\overline{a} - a_{c})$$

$$AP_{b} = (\overline{b} - b_{c})$$

$$AP_{c} = (\overline{c} - c_{c})$$
(2.4),

cu:

$$\overline{a} = \frac{1}{n} \sum_{j=1}^{n} a_{j}$$

$$\overline{b} = \frac{1}{n} \sum_{j=1}^{n} b_{j}$$

$$\overline{c} = \frac{1}{n} \sum_{j=1}^{n} c_{j}$$
(2.5).

Valorile $\overline{a}, \overline{b}, \overline{c}$ sunt valorile medii ale orientărilor unghiulare, obținute pentru aceeași orientare comandată de "n" ori;

 a_c, b_c, c_c - sunt unghiurile sistemului de axe atașat poziției comandate, în raport cu sistemul ales,

 a_j, b_j, c_j - sunt unghiurile sistemului de axe atașat poziției de rang "j" atinsă în realitate, în raport cu sistemul ales.

2. Repetabilitatea de situare unidirecțională

Reflectă mărimea împrăștierii pozițiilor atinse de P.C. în jurul poziției comandate a acestuia, atât în ceea ce privește poziționarea P.C., cât și orientarea sistemului de axe atașat acestuia, la repetarea de "n" ori a comenzii de atingere a poziției comandate, parcurgând aceeași traiectorie. Se exprimă acceptând o distribuție standard pentru pozițiile aleatoare atinse de P.C.

Acest criteriu conține două aspecte:

 a) Repetabilitatea de poziționare unidirecțională - se exprimă prin valoarea RP a razei sferei având drept centru punctul mediu G al mulțimii de poziții atinse de P.C., la proba de exactitate de poziționare (fig.2.12). Se determină cu expresia:

$$RP = \bar{l} + 3 \cdot S_l \tag{2.6},$$

unde: \overline{I} - reprezintă media distanțelor I_i , ale punctelor individuale atinse de P.C., față de punctul mediu G al acestora;

 S_i - abaterea medie pătratică experimentală a acestor distanțe I_j ale punctelor individuale atinse de P.C., față de punctul mediu G, al acestora.

$$\bar{l} = \frac{1}{n} \sum_{j=1}^{n} l_{j}$$
(2.7),

unde:

 $l_{j} = \sqrt{(x_{j} - \bar{x})^{2} + (y_{j} - \bar{y})^{2} + (z_{j} - \bar{z})^{2}}$ (2.8),

cu $\bar{x}_i, \bar{y}_i, \bar{z}_i$ respectiv x_i, y_i, z_i definite in paragraful 2.2.4.1.

$$S = \sqrt{\frac{\sum_{j=1}^{n} (I_j - \bar{I})^2}{n-1}}$$
(2.9)

Acest criteriu poate fi calculat chiar dacă distanțele nu sunt normal distribuite.

b) Repetabilitatea de orientare uniditecțională - se exprimă prin întinderea variațiilor unghiulare $\pm 3 \cdot S_a, \pm 3 \cdot S_b, \pm 3 \cdot S_c$ în jurul valorilor $\overline{a}, \overline{b}, \overline{c}$.

 S_a, S_b, S_c sunt abaterile medii pătratice experimentale (abateri standard) alorientărilor unghiulare atinse, față de valorile medii $\overline{a}, \overline{b}, \overline{c}$ (fig.2.13). Se determină cu relațiile:

$$RP_{a} = \pm 3 \cdot S_{a} = \pm 3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (a_{j} - \bar{a})^{2}}{n-1}}$$

$$RP_{b} = \pm 3 \cdot S_{b} = \pm 3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (b_{j} - \bar{b})^{2}}{n-1}}$$

$$RP_{c} = \pm 3 \cdot S_{c} = \pm 3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (c_{j} - \bar{c})^{2}}{n-1}}$$
(2.10).

3. Variația exactității de situare multidirecțională (vAP)

Exprimă abaterea maximă între diferitele valori medii ale pozițiilor atinse (centrul de greutate ale mulțimiilor de poziții atinse) de P.C., obținute pentru aceeași poziție repetată de "n" ori, dar urmând trei direcții perpendiculare (fig.2.14) 42

Se exprimă prin:

a) Variația exactității de poziționare multidirecțională vAP - reprezintă distanța maximă între centrele de greutate ale mulțimilor de poziții atinse de P.C. la aceeași poziție comandată a P.C. după parcurgerea de "n" ori a trei trajectorii diferite (de obicei perpendiculare).

Se determină cu relația:

$$vAI^{j} = \max_{h,k=1}^{3} \sqrt{(\bar{x}_{h} - \bar{x}_{k})^{2} + (\bar{y}_{k} - \bar{y}_{k})^{2} + (\bar{z}_{k} - \bar{z}_{k})^{2}}$$
(2.11),

punctele $\overline{x}_{h(k)}$ $\overline{y}_{h(k)}$ $\overline{z}_{h(k)}$ fiind valorile medii ale multimilor de puncte obtinute la extremitatea traiectoriei h sau k(h, k = 1, 2, 3) repetată de "n" ori.

Vectorial, vAP se poate exprima astfel:

$$\nu AP = \max_{k,k=1}^{3} \left| \overline{A} \overline{P}_{k} - \overline{A} \overline{P}_{k} \right| \qquad (2.12),$$

unde: $\overline{AP}_{h}(\overline{AP}_{k})$ reprezintă vectorul de poziție al centrului de greutate $G_{h}(G_{k})$ al mulțimii punctelor atinse la extremitatea traiectoriei h(k), în raport cu poziția comandată $O_{C}(x_{C}, y_{C}, z_{C})$. Se calculează astfel:

$$\vec{A}\vec{P} = (\vec{x} - x_c) \cdot \vec{u} + (\vec{y} - y_c) \cdot \vec{v} + (\vec{z} - z_c) \cdot \vec{w}$$
(2.13),

cu $\vec{u}, \vec{v}, \vec{w}$ - versorii axelor sistemului de referință atașat poziției comandate O_C .

b) Variația exactității de orientare multidirecțională (vAPe, vAPb, vAPc)

Se exprimă ca fiind abaterea unghiulară maximă între valorile medii ale orientărilor unghiulare atinse, parcurgând de "n" ori traiectorii diferite (de obicei 3), pentru aceeașu orientare comandată (fig.2.15).

Se determină cu relațiile:

$$vAP_{a} = \max_{h=1}^{3} \left[\max_{\substack{k=1 \ k \neq 1}}^{3} (\bar{a}_{h} - \bar{a}_{k}) \right]$$

$$vAP_{b} = \max_{h=1}^{3} \left[\max_{\substack{k=1 \ k \neq 1}}^{3} (\bar{b}_{h} - \bar{b}_{k}) \right]$$

$$vAP_{c} = \max_{h=1}^{3} \left[\max_{\substack{k=1 \ k \neq 1}}^{3} (\bar{c}_{h} - \bar{c}_{k}) \right]$$

$$(2.14),$$

Cele trei traiectorii de apropiere a P.C. al robotului de poziția lui comandată, se acceptă de obicei paralele cu axele sistemului de referință de bază. Dacă acest lucru nu este posibil, atunci fabricantul de roboți trebuie să specifice cele trei traiectorii pentru încercare.

2.2.1.2. Exactitatea și repetabilitatea distanței

Acest parametru se aplică doar la roboții ce pot fi programați analitic.

Caracteristicile de exactitate și repetabilitate a distanței ce fac obiectul acestui paragraf, cuantifică abaterile distanței între punctele medii a două seturi de puncte atinse (distanța medie atinsă între două puncte) și orientării acesteia, în raport cu distanța între două poziții comandate analitic și orientarea acesteia, precum și fluctuația distanței și orientării respective, pentru o serie de mișcări repetate de "n" ori între cele două poziții.

Dacă caracteristicile exactității și repetabilității de poziție unidirecțională, definită în paragraful 2.2.1.1 au fost măsurate utilizând programarea analitică a fiecărei poziții este posibil a se calcula exactitatea și repetabilitatea distanței între fiecare două poziții comandate cu relațiile definite mai jos, dar în acest caz, rezultatele obținute pentru fiecare pereche de poziții succesive trebuiesc notate.

Dacă exactitatea și repetabilitatea de poziție unidirecțională (definită în paragraful 2.2.1.1), au fost determinate utilizând programarea prin învățare a fiecărei poziții, este suficient a face o testare simplă, în care exactitatea și repetabilitatea distanței se măsoară doar între două poziții, această testare fiind suficientă. În acest caz, exactitatea și repetabilitatea distanței poate fi măsurată comandând pozițiile una după alta, în două moduri:

a) comandànd ambele poziții prin programare analitică;

b) comandând o poziție prin învățare și programând distanța.

Trebuie specificată metoda utilizată.

Observație: În ambele cazuri, exactitatea și repetabilitatea distanței trebuiesc specificate în raport cu un sistem de coordonate ale cărui axe sunt paralele cu axele sistemului de coordonate de bază.

1. Exactitatea distanței (AD) exprimă diferența de poziționare și orientare între distanța comandată și valoarea medie a distanțelor atinse.

a) Exactitatea de poziționare a distanței

Fiind date pozițiile comandate P_{c1} și P_{c2} și pozițiile atinse P_{j1} și P_{j2} , la repetarea de "n" ori a distanței între P_{c1} și P_{c2} , exactitatea de poziționare a distanței se exprimă ca fiind diferența dintre distanța $D_c = |P_{c1} - P_{c2}|$ și valoarea medie a distanțelor $D_j = |P_{1j} - P_{2j}|$ (fig.2.16).

Aşadar:

 $AD = D_c - \overline{D} \tag{2.15},$

unde:

$$D_{c} = \left| P_{c1} - P_{c2} \right| = \sqrt{\left(x_{c1} - x_{c2} \right)^{2} + \left(y_{c1} - y_{c2} \right)^{2} + \left(z_{c1} - z_{c2} \right)^{2}}$$
(2.10),

$$\overline{D} = \frac{1}{n} \sum_{j=1}^{n} D_j \qquad (2.17),$$

ļ

$$D_{j} = \left| P_{1j} - P_{2j} \right| = \sqrt{(x_{1j} - x_{2j})^{2} + (y_{1j} - y_{2j})^{2} + (z_{1j} - z_{2j})^{2}}$$
(2.18),

cu: x_{c1} , y_{c1} , și z_{c1} - coordonatele lui P_{c1} , determinate pe calculatorul robotului;

 x_{c2}, y_{c2} și z_{c2} - coordonatele lui P_{c2} , determinate pe calculatorul robotului;

 x_{1j}, y_{1j} și z_{1j} - coordonatele lui P_{1j} , măsurate;

 x_{2j}, y_{2j} și z_{2j} - coordonatele lui P_{1j} , măsurate;

n - numărul de repetări ale distanței.

Exactitatea de poziționare a distanței poate fi exprimată pentru fiecare axă a sistemului de coordonate de bază, astfel:

$$AD_{x} = D_{ex} - \overline{D}_{x}$$

$$AD_{y} = D_{ey} - \overline{D}_{y}$$

$$AD_{z} = D_{ex} - \overline{D}_{z}$$
(2.19),

unde:

 $D_{cx} = |\mathbf{x}_{c1} - \mathbf{x}_{c2}|$ $D_{cy} = |\mathbf{y}_{c1} - \mathbf{y}_{c2}|$ $D_{cz} = |\mathbf{z}_{c1} - \mathbf{z}_{c2}|$ (2.20),

şi

$$\begin{split} \overline{D}_{x} &= \frac{1}{n} \sum_{j=1}^{n} D_{x_{j}} = \frac{1}{n} \sum_{j=1}^{n} \left| x_{1j} - x_{2j} \right| \\ \overline{D}_{y} &= \frac{1}{n} \sum_{j=1}^{n} D_{y_{j}} = \frac{1}{n} \sum_{j=1}^{n} \left| y_{1j} - y_{2j} \right| \\ \overline{D}_{z} &= \frac{1}{n} \sum_{j=1}^{n} D_{z_{j}} = \frac{1}{n} \sum_{j=1}^{n} \left| z_{1j} - z_{2j} \right| \end{split}$$

$$(2.21).$$

 b) Exactitatea de orientare a distanței - se determină de asemenea ca exactitatea de orientare a distanței fiecărei axe;

$$AD_{a} = D_{cq} - \overline{D}_{a}$$

$$AD_{b} = D_{cb} - \overline{D}_{b}$$

$$AD_{c} = D_{cc} - \overline{D}_{c}$$

$$(2.22),$$

unde:

$$D_{ca} = |a_{c1} - a_{c2}|$$

$$D_{cb} = |b_{c1} - b_{c2}|$$

$$D_{ce} = |c_{c1} - c_{c2}|$$
(2.23),

şi :

$$\overline{D}_{a} = \frac{1}{n} \sum_{j=1}^{n} D_{aj} = \frac{1}{n} \sum_{j=1}^{n} \left| a_{1j} - a_{2j} \right|$$

$$\overline{D}_{b} = \frac{1}{n} \sum_{j=1}^{n} D_{bj} = \frac{1}{n} \sum_{j=1}^{n} \left| b_{1j} - b_{2j} \right|$$

$$\overline{D}_{c} = \frac{1}{n} \sum_{j=1}^{n} D_{aj} = \frac{1}{n} \sum_{j=1}^{n} \left| c_{1j} - c_{2j} \right|$$
(2.24).

cu: a_{c1}, b_{c1} și c_{c1} - orientările în P_{c1} , prescrise de calculatorul robotului; a_{c2}, b_{c2} și c_{c2} - orientările în P_{c2} , prescrise de calculatorul robotului; a_{1j}, b_{1j} și c_{1j} - orientările în P_{1j} , măsurate; a_{2j}, b_{2j} și c_{2j} - orientările în P_{1j} , măsurate;

n - numărul de repetări.

2. Repetabilitatea distanței (RD) - se exprimă prin mărimea intervalului de imprăștiere a valorilor reale ale distanțelor efectiv realizate, pentru aceeași distanță

comandată, repetată de "n" ori, în aceeași direcție. Se acceptă o distribuție normală (standard).

Repetabilitatea distanței include:

a) Repetabilitatea de poziționare a distanței

Se exprimă prin relația:

$$RD = \pm 3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (D_j - \overline{D})^2}{n-1}}$$
(2.25)

Sau, pentru fiecare axă a sistemului de coordonate de bază:

$$RD_{x} = \pm 3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (D_{xj} - \overline{D}_{x})^{2}}{n-1}}$$

$$RD_{y} = \pm 3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (D_{yj} - \overline{D}_{y})^{2}}{n-1}}$$

$$RD_{z} = \pm 3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (D_{zj} - \overline{D}_{z})^{2}}{n-1}}$$

$$(2.26)$$

b) Repetabilitatea de orientare a distanței

Se exprimă pentru fiecare axă, cu relații de forma:

$$RD_{a} = \pm 3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (D_{aj} - \overline{D}_{a})^{2}}{n-1}}$$

$$RD_{b} = \pm 3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (D_{bj} - \overline{D}_{b})^{2}}{n-1}}$$

$$RD_{c} = \pm 3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (D_{aj} - \overline{D}_{c})^{2}}{n-1}}$$
(2.27).

2.2.1.3. Timpul de stabilizare a poziției

Timpul de stabilizare a poziției se definește ca fiind perioada de timp care se scurge între momentul în care robotul dă semnalul de poziție atinsă și momentul în care mișcarea oscilatorie amortizată sau mișcarea amortizată a interfeței mecanice se încadrează între anumite limite specificate de fabricant (fig.2.17).

In figura 2.17 sunt reprezentate două faze de apropiere diferite (cazul 1 pentru un sistem supraamortizat și cazul 2 pentru un sistem subamortizat).

Momentul t=0 corespunde semnalului de "poziție atinsă".

Incercarea se face pentru diferite încărcări și legi de mișcare. Pentru fiecare poziție, poziționarea și orientarea interfeței mecanice se raportează la momentul în care robotul dă semnalul de "poziție atinsă".

2.2.1.4. Depășirea poziției

Depășirea poziției se definește ca fiind devierea maximă între traiectoria de apropiere a P.C. și poziție atinsă, după ce robotul a dat semnalul de "poziție atinsă" (fig.2.17).

2.2.1.5. Deriva punctului caracteristic (devierea poziției P.C.)

Deriva punctului caracteristic este variația lentă a poziției P.C. într-un interval de timp specificat.

Această caracteristică se referă atât la exactitatea de poziționare și orientare, căt și la repetabilitatea de poziționare și orientare, și exprimă variația lentă a acestor caracteristici într-un interval de timp dat (fig.2.18).

Se disting astfel:

a) Deriva exactității de situare (poziționare și orientare) se poate calcula prin diferența exactității de poziție la momentul $t \in \theta$ și $t \in T$, prin relații de forma:

$$dAP = |AP_{r,0} - AP_{r,1}|$$
 (2.28),

pentru poziționare, și.

Ĵ.

$$dAP_{o} = \left| AP_{at+v} - AP_{ot-T} \right|$$

$$dAP_{b} = \int_{V}^{1} AP_{bt-v} - AP_{bt-T} \left|$$

$$dAP_{c} = \left| AP_{ct-v} - AP_{ct-T} \right|$$
(2.29),

pentru orientare

b) Deriva repetabilității de situare (poziționare și orientare) reprezintă variația acestei caracteristici într-un interval de timp [0, 7], dat și se exprimă prin

$$dRP = |RP_{t,0} - RP_{t,\tau}|$$
 (2.30),

pentru poziționare, și:

$$dRP_{a} = \left| RP_{a,t-n} - RP_{a,t-1} \right|$$

$$dRP_{b} = \left| RP_{b,t-n} - RP_{b,t-1} \right|$$

$$dRP_{c} = \left| RP_{c,t-n} - RP_{c,t-1} \right|$$

$$(2.31),$$

pentru orientare.

2.2.2. Caracteristici de traiectorie

Definițiile exactității și repetabilității traiectoriei sunt independente de forma traiectoriei comandate. În figurile 2.19 și 2.20 se prezintă două tipuri de traiectorii diferite.

2.2.2.1. Exactitatea de traiectorie (AT)

Exactitatea de traiectorie (AT) caracterizează capacitatea unui robot de-a face ca interfața sa mecanică să urmărească o traiectorie comandată, de "n" ori în același sens și "n" ori în sens opus.

Se exprimă print

a) Exactitatea de poziționare a traiectoriei (AT) - reprezintă valoarea maximă a distanței între o traiectorie comandată și linia centrelor de greutate (linia mediană) a mulțimii de traiectorii obținute în realitate (fig.2.19)

Dacă traiectoria comandată este definită ca axă Z, exactitatea de poziționare a traiectoriei se calculează astfel:

$$AT = \max_{i=1}^{m} \sqrt{(x_{ii} - \bar{x}_{ij})^2 + (y_{ii} - \bar{y}_{ij})^2}$$
(2.32).

respective

$$\begin{aligned} AT_x &= \max_{i=1}^{m} \left| (x_{c_i} - \overline{x}_i) \right| \\ AT_y &= \max_{i=1}^{m} \left| (y_{c_i} - \overline{y}_i) \right| \end{aligned}$$
(2.33),

unde:

$$\overline{x}_{i} = \frac{1}{n} \sum_{j=1}^{n} x_{ij}$$

$$\overline{y}_{i} = \frac{1}{n} \sum_{j=1}^{n} y_{ij}$$
(2.34)

 x_0 și y_0 - sunt coordonatele punctului traiectoriei comandate, corespunzătoare abscisei măsurate z_0

 x_{ij} și y_{ij} - sunt coordonatele punctului traiectoriei atinse, corespunzătoare punctului măsurat z_{ij} la o repetare de "j" ori.

Traiectoria se aproximează prin m puncte de precizie.

b) Exactitatea de orientare a traiectoriei - reprezintă diferența maximă între orientarea unghiulară comandată și media orientărilor unghiulare obținute, sau altfel spus:

Exactitatea de orientare a traiectoriei (cu referire la cele trei axe ataşate P.C., AT_a , AT_b , AT_c) este definită ca fiind abaterea maximă de la unghiurile comandate în lungul traiectoriei

Se exprimă prin:

$$AT_{a} = \max_{i=1}^{m} |a_{ci} - \overline{a}_{i}|$$

$$AT_{b} = \max_{i=1}^{m} |b_{ci} - \overline{b}_{i}|$$

$$AT_{c} = \max_{i=1}^{m} |c_{ci} - \overline{c}_{i}|$$
(2.35),

unde:

$$\overline{a}_{i} = \frac{1}{n} \sum_{j=1}^{n} a_{ij}$$

$$\overline{b}_{i} = \frac{1}{n} \sum_{j=1}^{n} b_{ij}$$

$$\overline{c}_{i} = \frac{1}{n} \sum_{j=1}^{n} c_{ij}$$
(2.36).

 a_{ei}, b_{ei} și c_{ei} - fiind unghiurile comandate ale sistemului de axe atașat P.C. în raport cu axele sistemului de bază, corespunzătoare abscisei măsurate z_i ;

 a_y, b_y și c_y - fiind unghiurile obținute (reale) pentru poziția z_i , la repetarea acesteia de "j" ori.

In cele de mai sus, s-a definit exactitatea traiectoriei ca o mărime depinzând de distanță, de poziție. Acest aspect se referă la ceea ce se denumește în subcapitolul următor "exactitatea statică a traiectoriei" sau "precizia statică".

Exactitatea traiectoriei se poate exprima și funcție de timp. În cazul când există fluctuații semnificative ale vitezei în lungul traiectoriei, măsurările făcute în funcție de timp trebuie raportate la aceeași puncte ale traiectorie comandate în cursul diferitelor cicluri. Este ceea ce în subcapitolul următor se denumește "exactitatea dinamică a traiectoriei" sau "precizia dinamică".

Incercările pe traiectorie trebuiesc efectuate în ambele sensuri.

2.2.2.2. Repetabilitatea traiectoriei (RP)

Repetabilitatea traiectoriei (RP) se exprimă prin mărimea domeniului de împrăștiere a traiectoriilor reale, pentru aceeași traiectorie comandată, repetată de ...n ori.

Pentru o traiectorie dată, repetată de "n" ori în același sens, repetabilitatea traiectoriei se exprimă prin:

a) Repetabilitatea de poziționare a traiectoriei se exprimă prin valoarea maximă a lui RT, reprezentând raza cercului obținut prin secționarea domeniului de împrăștiere a traiectoriilor cu un plan perpendicular pe aza Oz, la cota $z=z_1$. Acest cerc, de rază RT, are centrul situat pe linia centrelor de greutate.

Dacă traiectoria comandată este axa z, repetabilitatea traiectoriei se determină cu relația:

$$RT = \max_{i=1}^{\infty} \left[\tilde{l}_i + 3 \cdot S_{l_i} \right]$$
(2.37),

unde

$$\bar{I}_{i} = \frac{1}{n} \sum_{j=1}^{n} I_{ij}$$
(2.38).

$$S_{I_0} = \sqrt{\frac{\sum (I_y - \bar{I}_z)^2}{n - 1}}$$
(2.39).

$$I_{y} = \sqrt{(x_{y} - \bar{x}_{y})^{2} + (y_{y} - \bar{y}_{y})^{2}}$$
(2.40).

cu $\bar{x}_i, \bar{y}_i, x_y, y_y$ definite la exactitatea de poziționare a traiectoriei.

 b) Repetabilitatea de orientare a traiectoriei se exprimă prin valoarea maximă a domeniului de împrăștiere a unghiurilor de orientare reale în jurul valorii medii, pentru diferite poziții z_i.

Aşadart

$$RT_{a} = \max_{i=1}^{m} \left[3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (a_{ij} - \overline{a}_{i})^{2}}{n-1}} \right]$$
(2.41)

$$RT_{b} = \max_{i=1}^{m} \left[3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (b_{ij} - \overline{b}_{i})^{2}}{n-1}} \right]$$
(2.42)

$$RT_{c} = \max_{i=1}^{m} \left[3 \cdot \sqrt{\frac{\sum_{j=1}^{n} (c_{ij} - \overline{c}_{i})^{2}}{n-1}} \right]$$
(2.43),

BUPT

unde $a_n, b_n, c_n, \bar{a}_r, \bar{b}_r, \bar{c}_r$ au fost definite la exactitatea de orientare a traiectorier.

2.2.2.3. Eroarea de racordare a două traiectorii perpendiculare (deviația Corner)

Erorile de racordare (depășirea CO și rotunjirea CR) reprezintă abaterile dintre traiectoria comandată și traiectoria parcursă, când traiectoria comandată este constituită din două linii perpendiculare (fig.2.21).

a) Eroarea de rotunjire (CR) este definită ca fiind distanța minimă între punctul de vârf, de coordonate (x_e, y_e, z_e) în figura 2.21 și traiectoria atinsă (reală). Pentru a "j"-a traiectorie, se exprimă astfel:

$$CR_{j} = \min_{i=1}^{m} \sqrt{(x_{i} - x_{e})^{2} + (y_{i} - y_{e})^{2}}$$
(2.44),

unde: m este numărul de puncte măsurate în lungul traiectoriei reale (pe porțiunea de racordare);

 x_e, y_e, z_e - coordonatele punctului de vârf (de intersecție a celor două traiectorii perpendiculare);

 x_i, y_i, z_i - coordonatele punctului măsurat "i" de pe traiectoria reală atinsă.

b) Eroarea de depășire (CO) este definită ca fiind abaterea maximă de la traiectoria comandată, după ce robotul pornește pe cea de-a doua traiectorie, cu viteză programată pe traiectorie

Dacă cea de-a doua traiectorie este definită ca axa z și prima traiectorie comandată este după direcția y, în sensul de deplasare specificat în figura 2.21, eroarea de depăștre CO se definește astfel:

$$CO = \max_{i=1}^{m} \sqrt{(x_i - x_{ii})^2 + (y_i - y_{ii})^2}$$
(2.45).

când:

 x_{a}, y_{a} - sunt coordonatele punctului de pe traiectoria comandată, corespunzătoare poziției z_{a} ;

 $x_{i+}y_i$ - sunt coordonatele punctului de pe traiectoria reală, atins corespunzătoare poziției z_{i+} .

Relația (2.45) este valabilă doar pentru $(y_i - y_{ci})$ pozitiv. În caz contrar nu există eroare de depășire.

Pentru acest test, traiectoria trebuie să fie comandată prin programare ca o traiectorie continuă.

Atât eroarea de rotunjire, cât și cea de depășire pot fi calculate măsurâr abaterea de la punctul de vârf și fiecare traiectorie reală. Poziția vârfului se determină în cursul învățării (programarea prin învățare) sau prin programarea ânalitică.

Atât eroarea de rotunjire, cât și cea de depășire pot fi calculate ca o medie aritmetică a tuturor erorilor de rotunjire sau de depășire, înregistrate în cursul ciclurilor de măsurători.

c) Lungimea de stabilizare a traiectoriei (SPL) este definită ca distanța intre punctul de vârf și punctul din lungul celei de-a doua traiectorii comandate, corespunzător căruia exactitatea și repetabilitatea robotului se încadrează în toleranțele admise. Se calculează cu:

$$SPL = z_e - z_g \tag{2.46},$$

unde: z, este coordonata "z" a vârfului;

 z_g este coordonata "z" a punctului corespunzător căruia caracteristicile de traiectorie ale robotului se încadrează în toleranțele specificate.

2.2.2.4. Caracteristici de viteză pe traiectorie

Se disting trei asemenea caracteristici (fig.2.22):

- exactitatea vitezei pe traiectorie (AU);
- repetabilitatea vitezei pe traiectorie (RV);
- fluctuația vitezei pe traiectorie (FV).

a) Exactitatea vitezei pe traiectorie (AV) - se definește ca fiind diferența dintre viteza comandată și valoarea medie a vitezelor atinse, la repetarea de "n" ori a traiectoriei și se exprimă ca un procent din viteza comandată.

Se calculează cu relația:

$$AV = \frac{v - v_c}{v_c} \cdot 100 \quad \%$$
 (2.47),

unde:

$$\bar{v} = \frac{1}{n} \sum_{j=1}^{n} \bar{v}_{j}$$
(2.48),

$$\bar{v}_{\mu} = \frac{1}{m} \sum_{i=1}^{m} v_{\mu}$$
 (2.49),

cu: v_c - viteza comandată;

 v_{μ} - viteza atinsă pentru a "i"- a măsurătoare și al "j"-lea ciclu;

m - numărul de măsurători în lungul traiectoriei.

In cazul în care există variații semnificative ale vitezei în lungul traiectoriei. măsurătorile făcute în funcție de timp trebuie să fie raportate la același punct al traiectoriei comandate în cursul diferitelor cicluri.

b) Repetabilitatea vitezei pe traiectorie (RV) este definită ca fiind mărimea intervalului de împrăștiere a vitezelor reale atinse, pentru aceeași viteză comandată, la încercări repetate de "n" ori.

Se exprimă în procente din viteza comandată:

$$RV = \pm \left(\frac{3 \cdot S_{\nu}}{v_{c}} \cdot 100\right) - \%$$
 (2.50),

unde:

$$S_{v} = \sqrt{\frac{\sum_{j=1}^{n} (\bar{v}_{j} - \bar{v})^{2}}{n-1}}$$
(2.51),

cu v_{e}, \overline{v} și \overline{v}_{e} definite mai sus.

c) Fluctuația vitezei pe traiectorie (FV) este abaterea maximă a vitezei instantanee în timpul unei încercări cu o viteză comandată constantă.

$$FV = \max_{j=1}^{n} \left[\max_{i=1}^{n} (v_{ij}) - \min_{i=1}^{n} (v_{ij}) \right]$$
(2.52),

unde v_{μ} a fost definit anterior.

2.2.3. Timpul de deplasare minim

Timpul minim de deplasare a efectorului terminal al unui robot este timpul scurs între două stări staționare, pentru parcurgerea unei distanțe sau a unui unghi prescris, în comanda punct cu punct. Timpul de stabilizare a robotului pe poziția atinsă, definită în paragraful 2.2.1 este inclus în timpul de deplasare minimal total.

2.2.4. Complianța statică

Complianța statică este deplasarea pe unitate de sarcină aplicată. Sarcina trebuie aplicată și deplasarea măsurată la intefața mecanică.

Complianța statică se specifică în [mm/N] și se raportează la sistemul de coordonate de bază.

După cum se observă din prezentarea normativului ISO 9283:1990, majoritatea caracteristicilor de performanță ale roboților industriali se referă la aspectul de situare a efectorului terminal (E.T.) al robotului. Prin urmare, un studiu detaliat al caracteristicilor de situare (poziționare și orientare) rezolvă în mare parte problematica determinării performanțelor roboților industriali, motiv pentru care, în continuare, se aduc precizări suplimentare cu privire la acest aspect.

2.3. Situarea efectorului terminal al robotului. Abateri de situare

Intr-o primă aproximare, elementele constituente ale unui robot și cele cu care conlucrează, sunt corpuri solide în mișcare sau nu, unele în raport cu altele. Una dintre principalele sarcini ale roboticii, constă în modificarea stării acestui univers.

In cazul general, starea fiecărui obiect este definită printr-un mare număr de variabile: poziție, orientare, viteze, formă, culoare, stare a suprafeței, masă etc. Evidențierea și calculul acestor variabile de stare sunt indispensabile pentru determinarea evoluției unui robot în mediul său Printre aceste variabile, câteva intervin în toate problemele de manipulare și asambiare de piese; acestea sunt cele care permit reprezentarea situării instantanee a unui solid (poziționare și orientare) și evoluția acestei stări. Estimarea și măsurarea performanțelor unui robot ce efectuează o anumită sarcină în spațiul său de lucru include, în primul rând, stabilirea unei relații între situarea reală a efectorului terminal, E.T., al robotului și cea dorită.

Considerând un reper de referință R_0 (legat de baza robotului sau de univers) situarea E.T. al robotului în raport cu R_0 este determinată prin poziția și orientarea unui reper R cu originea în P.C. (fig.2.23).

Din punct de vedere geometric, un robot ideal este cel pentru care reperul Rlegat de efectorul său terminal se confundă cu reperul R_d , legat de mediul său, care specifică situarea dorită. Această situare dorită este definită prin programarea robotului, fie prin învățare, fie într-un limbaj specific. Situarea reperului R_d în raport cu un reper de referință R_d poate fi descrisă, în fiecare moment, prin una sau mai multe deplasări în spațuul tridimensional. Reperul R_d , la rândul său, poate fi fixat de:

- "baza" robotului ;

- un solid fix în mediul exterior al robotului ;

- un solid mobil în mediul exterior al robotului.

In primul caz, referința este "internă", fiind legată de unul dintre elementele robotului. În al doilea caz, referința este "externă", legată de exemplu de un dispozitiv cu care conlucrează robotul (ex: cazul unei caroserii de mașină sudată de roboți).

Din punctul de vedere al exactității, interesează abaterile între R și R_d în câteva situări geometrice particulare pe parcursul mișcării R.I. (cazul programării "punct cu punct"), sau de manieră continuă pe întreg parcursul evoluției situării R_d (tazul programării "pe traiectorie").

In sfârșit, în unele situații este absolut necesar să se țină seama de parametrul "timp", t, interesând abaterile de situare între R(t) și $R_d(t)$, la un moment dat, t, sau pe parcursul evoluției lui t.

Estimarea și măsurarea acestor abateri, sunt necesare în următoarele situații:

a) - proiectarea unui robot și evaluarea performanțelor sale - proiectantul de roboți poate estima exactitatea unui robot din faza de proiectare precum și influența diferiților parametri constructivi, prin calcule și simulare pe calculator. Imperfecțiunile robotului sunt simulate după principiile geometriei, mecanicii etc: abateri geometrice de construcție, jocuri mecanice, frecări, elasticitatea elementelor, deformații termice, erori de comandă etc.

b) - comanda automată - sistemul de comandă automată al R.I. trebuie să asigure, în ceea ce privește abaterile între R și R_d , reducerea, cât mai mult posibil, a acestora. Aceasta trebuie să aibă loc de manieră adaptivă, date fiind variațiile

imprevizibile ale condițiilor impuse robotului, poziție, orientare și masa obiectului manipulat, spre exemplu.

c) - programarea robotului - Limbajele de programare ale roboților nu țin seama de imperfecțiunile inerente fiecărui robot. Rezultă astfel o mișcare reală a E.T. care diferă de mișcarea programată, abaterile necesitând a fi compensate, ceea ce necesită evaluarea abaterilor situării dorite R_d a E.T., în timpul funcționării robotului și eventual și a altor parametri: viteze, sarcini, accelerații etc

Reperul R, legat de E T. al robotului este specificat prin originea P și trei versori: $\overline{e_1}$, $\overline{e_2}$, $\overline{e_3}$. Situarea dorită, R_d , este specificată prin originea reperului R_d , punctul P_d , și trei versori $\overline{e_{d1}}$, $\overline{e_{d2}}$ și $\overline{e_{d3}}$.(fig.2.24).

Se consideră că abaterea de situare este descrisă prin doi vectori Primul vector exprimă abaterea de poziție :

$$\overline{\partial P} = \overline{P}_d - \overline{P} \tag{2.53},$$

Al doilea vector exprimă abaterea de orientare :

$$\overline{\delta\varphi} = \overline{N} \cdot d\varphi \tag{2.54},$$

unde φ este un unghi definit astfel încât o rotație de amplitudine d φ în jurul versorului \overline{N} al unei direcții să aducă reperul R să aibă axele paralele cu cele ale reperului R_d . Această rotație, $\overline{\delta \varphi}$, se poate exprima în mai multe moduri (unghiurile Euler, Rodriques-Hamilton, Tait-Bryan, cosinuși directori etc). In general, vectorii ce descriu abaterea de situare, $\overline{\delta P}$ și $\overline{\delta \phi}$ sunt exprimați într-un reper R_{θ} , legat de robot sau legat de hală (mediu, univers).

2.3.1. Exactitatea de situare statică și dinamică

O definire riguroasă a exactității de poziționare și orientare la nivelul terminalului robotului sau la nivelul interfeței mecanice a acestuia este dificil de realizat. Aceasta, deoarece vectorii $\overline{\delta P}$ și $\overline{\delta \phi}$ ce descriu abaterile de situare instantanee sunt dependenți nu numai de un număr mare de parametri legați de robot (defecte geometrice, elasticități), de condițiile de lucru (temperatură, sarcină transportată) sau de vitezele instantanee corespondente, ci și de sarcina pe care o are de efectuat robotul (sudare, montaj, manipulare etc), astfel încât modul de exprimare a exactității unui robot trebuie a fi considerat în contextul aplicației particulare în care acesta este implicat.

In aprecierea exactității de situare a unui robot trebuie avute în vedere douž aspecte :

- static - exactitatea de situare statică;

- dinamic - exactitatea de situare dinamică.

1. Exactitatea de situare statică

Caracterizează aptitudinea R.I. de a poziționa și orienta triedrul atașat interfeței mecanice în conformitate cu poziția și orientarea programate. Abordarea

punctului programat se face repetând fie aceeași traiectorie, fie traiectorii diferite (fig.2.25).

Exactitatea de situare se exprimă astfel:

$$\overline{\delta P} = \frac{1}{N} \sum_{i=1}^{N} \overline{\delta P_i}$$

$$\overline{\delta \varphi} = \frac{1}{N} \sum_{i=1}^{N} \overline{\delta \varphi_i}$$
(2.55),

 $\overline{\delta P}$ exprimand abaterea de poziție și $\delta \phi$ abaterea de orientare.

In relația (2.55), R_d reprezintă situarea dorită și R - media situărilor efectiv realizate.

In cazul în care constructorul de roboți operează cu mai multe situări dorite: $(R_d)_1$ (cu i=1,2,3,...,N'), atunci exactitatea de poziționare se poate exprima printr-un indice de performanță global, spre exemplu :

$$\overline{\delta P} = \max_{l=1}^{N} \left| \overline{\delta P_l} \right|$$
(2.56),

sau printr-o relație de forma (2.55)

$$\overline{\delta \mathbf{P}} = \frac{1}{N'} \sum_{i=1}^{N'} \overline{\delta \mathbf{P}_i}$$
(2.57).

Relații de tip (2.56) și (2.57) se pot stabili și pentru exactitatea de orientare:

$$\overline{\delta\varphi} = \max_{i=1}^{N} \left| \overline{\delta\varphi_i} \right|$$
(2.58),

sau:

$$\overline{\delta \phi} = \frac{1}{N'} \sum_{i=1}^{N'} \overline{\overline{\delta \phi_i}}$$
(2.59).

Dacă relațiile de tipul (2.55)÷(2.59) se exprimă sub formă scalară, ele se pot utiliza în vederea unei calibrări a roboților, respectiv minimizarea erorilor de tip $\overline{\delta P}$, $\overline{\delta \varphi}$.

2. Exactitatea dinamică

Caracterizează aptitudinea unui robot de a impune punctului său caracteristic P.C., respectiv reperului R, să urmărească o traiectorie programată. Acest parametru este deci funcție de poziția considerată și de viteză. Altfel spus, este vorba de o performanță geometrică, funcțională a torsorului $|\delta \overline{P}, \delta \overline{\phi}|$ depinzând însă de evoluția în timp a reperului dorit, deci $R_{J}(t)$.

Cu aceste precizări, măsurarea indicelui de performanță "dinamic", respectiv se poate efectua cu una dintre metodele generale, utilizate în statică. Măsurătorile se efectuează în lungul unor traiectorii test tipice. Aceste traiectorii sunt locurile geometrice ale lui R_d , iar traiectoriile efectiv urmărite sunt locurile geometrice ale lui R. Traiectoriile test cele mai simple sunt linii continue ale spațiului $[\vec{P}, \vec{\varphi}]$ al situărilor posibile. Natura acestor linii și legile lor de parcurs, $R_d(t)$, sunt dependente de tipul aplicației în care este inclus robotul. Spre exemplu :

- pentru un robot de sudură prin puncte sau pentru un robot de manipulare, traiectoriile - test sunt linii frânte (constituite în general din segmente de dreaptă sau alte curbe în spațiul $|\overline{P}, \overline{\phi}|$. Aceste linii sunt închise sau nu și constrângerile privind vitezele $|\overline{P}_{e}, \overline{\Omega}_{d}|$ sunt impuse la plecare, la sosire și în câteva puncte intermediare (viteze nule, de exemplu). Dependența globală a performanței de exactitate în relație cu viteza impusă pentru executarea unei anumite operații, se poate exprima ca o funcție de timpul de ciclu dorit. Acest parametru, timp. L măsoară intervalul de timp între situarea inițială și situarea finală a reperului R_{d} ;

- pentru un robot de vopsire sau de sudare în linie, traiectoria dorită, în regim permanent, este în general o linie geometrică de continuitate ridicată: sinusoidă, elice, spirală etc, putând constitui elemente de traiectorie test.

Fig.2.26. ilustrează acest concept de "exactitate dinamică".

Așadar, exactitatea dinamică nu poate fi definită printr-un criteriu pur geometric, ea fiind o funcție de abaterile în lungul traiectoriei, deci de mișcarea pe traiectorie. Existența acestei abateri, eroare dinamică, determină apariția unui "trenaj" între poziția dorită $P_d(t)$ și cea efectiv realizată P(t) pe traiectorie (fig 2.26.b).

Deci, luând în considerare parametrul timp, indicele de performanță dinamică în lungul unei traiectorii test se determină la plecare (situare inițială $R(\theta)$), la sosire în poziția finală (situare finală R(T)), dar și în lungul traiectoriei impuse $R_d(t)$.

La fel ca și în cazul exactității statice, rezultatele unui test de exactitate dinamică se apreciază statistic, prin valori medii și dispersii. Este tocmai ceea ce impune normativul ISO 9283:90 - "Manipulating industrial robots - Performance criteria and related test methods", în ceea ce privește caracteristicile de poziție și caracteristicile de traiectorie.

Pentru teste tip bine definite, performanțele dinamice sunt condiționate de parametrii testului: mărimea eșantionului, viteze de translație sau de rotație utilizate pentru încercări.

Exactitatea statică și dinamică sunt factori esențiali ce condiționează, în primul rând, utilizarea programării roboților în limbaje evoluate, sintactice și/sau grafice.

De asemenea, pentru toate tipurile de programare, dar mai ales pentru programarea prin învățare, un alt factor de calitate important este repetabilitatea măsură a fidelității cu care, pe parcursul unor operații repetate, robotul reproduce o poziție sau o mișcare impusă prin învățare sau programare analitică.

2.3.2. Repetabilitatea de situare statică și dinamică

Este caracterizată prin mărimea abaterilor între pozițiile și orientările triedrului efectiv atins, R, pe parcursul mai multor cicluri identice. Acest parametru de performanță se referă atât la una sau mai multe poziții din spațiul de lucru al R.I.

(repetabilitatea de situare statică - fig.2.27), cât și la una sau mai multe traiectorii test (repetabilitatea dinamică - fig.2.28).

In cele expuse anterior s-a subliniat de mai multe ori faptul că performanțele roboților - cu referire în special la exactitate și repetabilitate de situare - sunt funcție de aplicațiile în care sunt implicați aceștia. Diferitele aplicații impun constrângeri asupra geometriei robotului, volumului spațiului de lucru, sarcinii utile, accelerațiilor etc. Pe de altă parte, soluțiile tehnologice utilizate în construcția roboților (materiale alese pentru elementele structurii mecanice, toleranțe de asamblare, tipul motoarelor de acționare, a transmisiilor etc), precum și criterii economice impun dependența performanțelor roboților de aplicațiile în care sunt utilizați.

Procesele robotizate realizează performanțe deosebite în situația în care se asigură o compatibilitate maximă între procesul propriu-zis și calitățile robotului implementat. O optimizare a acestui proces trebuie să aibă în vedere o analiză a tuturor factorilor implicați în realizarea unui ansamblu proces de lucru - robot, urmărindu-se unele aspecte specifice, cum sunt:

- analiza caracteristicilor de lucru;
- analiza metodelor de lucru;
- desemnarea spațiului de lucru;
- măsurarea performanțelor;
- integrarea ergonomică om robot.

2.4. Procedee de încercare a roboților industriali

2.4.1 Generalități. Recomandări privind efectuarea încercărilor

Măsurarea abaterilor de situare constituie una dintre componentele evaluării performanțelor roboților industriali.

Un robot poate fi considerat ca fiind "un generator de situare", un "generator de miscare", un "generator de forță".

Dacă se analizează multitudinea de caracteristici de performanță ce se cer a fi analizate unui robot industrial (tabelul 2 1), se constată că, cvasimajoritatea acestora (exactitatea și repetabilitatea de situare, exactitatea de situare multidirectională, exactitatea și repetabilitatea distanței, deriva exactității de poziție, exactitatea și repetabilitatea tralectoriei, eroare de racordare) se reduce, în ultimă instanță, la aspecte de situare (poziționare și orientare). Ca urmare, un studiu aprofundat asupra caracteristicilor de situare ale R.I., rezolvă o multitudine de aspecte legate de caracterizarea performanțelor acestora, motiv pentru care, în continuare se pune accent pe problema de situare (poziționare și orientare).

Așadar în cele ce urmează, se vor lua în considerare doar performanțele geometrice, adică aspectele de "generator de situare" al robotului.

Pentru ca măsurătorile să fie semnificative, este necesar să se efectueze un număr mare de testări implicând situații diverse. Mai mult, cum performanțele depind de caracteristicile efectorului terminal cuplat la brațul robotului (inclusiv sarcina manipulată, dacă este cazul) este de dorit ca testările să se efectueze pentru mai multe condiții de încărcare.

De asemenea, performanțele vizând precizia roboților sunt influențate de alte numeroase condiții de funcționare: temperatura ambiantă, temperatura și natura fluidului la motoarele hidraulice, tensiunea de alimentare etc. Pentru a ține seama de toți acești parametri, se recomandă efectuarea măsurătorilor în regim permanent stabil, determinat cu traductoare și senzori de temperatură, presiune, tensiune etc, de precizie ridicată. Este de dorit ca această stare de regim stabil să fie cât mai aproapiată de starea de utilizare în condiții normale a robotului considerat.

Una dintre principalele dificultăți în caracterizarea performanțelor roboților industriali este exprimarea acelor caracteristici dependente de:

- sarcina aplicată interfeței mecanice a robotului;

de viteza programată pe fiecare axă a robotului;

- de localizarea poziției de încercare în spațiul de lucru al robotului;

- de traiectoria de apropiere de poziția de încercare în cazul măsurării caracteristicilor de situare;

- de localizarea în spațiul de lucru al robotului a traiectoriei de încercare în cazul măsurării caracteristicilor de traiectorie.

Este de asemenea necesar de stabilit un compromis între pertinența informației cercetate și efortul obținerii acesteia, respectiv între numărul de încercări și costul acestora. Spre exemplu, pentru a determina repetabilitatea de situare a unui robot, care este o caracteristică foarte importantă, se poate efectua un număr mare de încercări în diferite poziții ale spațiului de lucru, dar costul obținerii

66

acestor informații poate fi foarte ridicat.

Așadar, având în vedere aspectul economic un robot nu poate fi încercat în toate configurațiile posibile, ci trebuie găsit un compromis în alegerea acestora

In acest sens, normativul ISO 9283:90, stipulează un ansamblu de încercări reprezentative aplicațiilor cele mai curente ale roboților industiali. Numărul de încercări propuse ia în considerare aspectul economic privind costul acestor încercări.

Cu privite la mărimea sarcinii aplicate interfeței mecanice, se recomandă ca toate încercările să se realizeze la 100% din condițiile de încărcare nominală (masă, centru de greutate, moment de inerție), respectând eventualele recomandări ale constructorului de roboți.

Pentru caracterizarea roboților a căror performanțe depind de încărcare, încercări complementare facultative se pot efectua și pentru mase reprezentând 50% din cea corespunzătoare sarcinii nominale (tabelul 2.1).

Sarcína	100% din sarcina	50% din sarcina
Caracteristica utilizată	nomínală	nominală
de încercat	(x-oblig.)	(0-facult.)
Exactitate și repet. de situare	x	0
Exact. de situare multidirecțională	x	0
Exact, și repetabilitatea distanței	x	
Timp de stabilizare a poziției	x	0
Depășirea poziției	x	0
Deriva exactit. de poziție	x	
Exact. și repetab. traiectoriei	x	0
Eroare de racordare	x	
Exact și repetab, vitezei pe traiect.	x	0
Fluctuația vitezei pe traiectorie	x	0
Timp de deplasare minimal	x	0
Complianța statică		x

Tabelul 2.1

Referitor la vitezele de încercare, caracteristicile de situare vor fi testate la viteza maximă ce poate fi atinsă între pozițiile specificate, adică 100% din viteza nominală. Incercări suplimentare pot fi efectuate și la viteze reprezentând 50% sau 20% / 10% din viteza nominală (tabelul 2.2). Pentru caracteristicile de trajectorie
încercările vor fi efectuate la 100%, 50% și 10% din viteza nominală pe traiectorie (tabelul 2.3). Robotul trebuie să atingă viteza nominală la mai puțin de 50% din lungimea traiectoriei.

Viteză Caract. de încercat	100% din viteza nominală (x-oblig.)	20% sau 10% din viteza nom. (0-facult.)		
Exact. și repet. de situare	x	0		
Exact. de situare multidirectionalā	x	0		
Exact, și repetabilit, distanței	x	0		
Timp de stabilizare a poziției	x	0		
Depășirea poziției	x	0		
Deriva exactității de poziționare	x	-		
Timp de deplasare minimal	x	0		

Tabelul 2.2

Tabelul 2.3

viteză pe caract. traiect. de încercat	100% din viteza (x-oblig)	50% din viteza (x-oblig)	10% din viteza nominală (x-oblig)		
Exact. și repetab.					
traiectoriei	x	x	x		
Eroare de racordare	x	x	x		
Exactitatea și repetabilit.					
vitezer pe traiectorie	X	x	X		
Fluctuația vitezei					
pe traiectorie	x	x	x		

2.4.2. Definirea pozițiilor și traiectoriilor de încercare în spațiul de lucru al robotului industrial

Alegerea pozițiilor de încercare și a traiectoriilor de încercare constituie o dificultate reală întrucât morfologia robotului are o influență importantă asupra performanțelor. Se au în vedere următoarele considerente:

- număr de poziții suficient de reprezentativ pentru volumul de lucru și zona în care se efectuează aplicațiile, dar nu prea ridicat. Se recomandă nu mai mult de cinci poziții pentru testarea caracteristicilor de poziție;

 găsirea unor modalități de definire a pozițiilor de încercare convenabile tuturor structurilor morfologice de roboți.

Se adoptă principiul de a repartiza cele cinci poziții de încercare pe un plan situat în interiorul unui cub înscris în spațiul de lucru, în zona cea mai utilizată a acestuia. Cu ajutorul acestui cub imaginar se pot defini și traiectoriile de încercare

Pentru cazul roboților care au deplasarea în lungul unei axe neglijabilă în raport cu celelalte, cubul fictiv poate fi înlocuit cu un paralelipiped fictiv. Spre exemplu, în cazul unui robot SCARA, cursa în lungul ultimei axe verticale este în general mică, astfel încât se recomandă utilizarea unui paralelipiped.

2.4.2.1. Poziționarea cubului în spațiul de lucru

Cubul trebuie să fie ales în porțiunea de spațiu de lucru cea mai susceptibilă a fi utilizată în aplicația robotizată. Cubul trebuie să aibă cel mai mare volum posibil.

muchiile sale fiind paralele cu axele sistemului de coordonate de bază. Se notează centrul cubului cu P_1 , ia: colțurile sale cu C_1 , C_2 ,... C_8 (fig 2.29).

Patru plane pot fi utilizate pentru definirea pozițiilor de încercare: -varianta 1: $C_1-C_2-C_7-C_8$ -varianta 2: $C_2-C_3-C_8-C_5$ -varianta 3: $C_3-C_4-C_5-C_6$ -varianta 4: $C_4-C_1-C_6-C_7$

2.4.2.2. Definirea pozițiilor de încercare pentru măsurarea caracteristicilor de poziție

Cele 5 poziții de încercare se află poziționate pe diagonalele planului ales Poziția P₁ este situată la intersecția diagonalelor (centrul cubului). Pozițiile P₂...P₅ sunt situate la o distanță de vârfurile cubului egală cu (10 ± 2) % din lungimea diagonalei (fig.2.30). Se recomandă în normativul ISO 9283:90 utilizarea pozițiilor indicate în tabelul 2.4.

Tabelul 2.4.

Poziții	Pl	P2	P3	P4	P5
Caract. de încercat					
Exact și repet, de sit, unidirecținală	x	x	x	x	x
Var. exact de situare multidirecțională	x	x	-	x	
Exact. și repet. distanței	_	x	-	x	-
Timp de stabilizare a poziției	x	x	x	x	x
Depășirea poziției	x	x	x	x	x
Deriva caracteristicilor de poziție	x	-	- ·	-	-

2.4.2.3. Localizarea traiectoriilor de încercare

Traiectoriile de încercare utilizate pentru măsurarea caracteristicilor de traiectorie vor fi situate într-unul din cele patru plane definite în fig.2.31. Pentru roboți cu 6 axe, se recomandă utilizarea planului 1. In timpul efectuării măsurătorilor pe traiectorie, centrul interfeței mecanice se va situa în centrul planului ales, iar orientarea sa va rămâne constantă în raport cu acest plan.

70

a)Traiectorie liniară

Pentru traiectoriile liniare, se alege una din diagonalele planului, lungimea traiectoriei fiind egală cu 80% din lungimea diagonalei (ex: P_2-P_4 în fig.2.30).

b)Traiectorie circulară

Se testează două traiectorii – cerc diferite: un cerc mare, cel mai mare posibil de înscris în planul ales, având diametrul cel puțin egal cu 80% din lungimea laturii cubului cu centrul în P_1 : un cerc mic, cu centrul în P_1 și de diametru egal cu 10% din diametrul cercului mare, sau egal cu 20 mm.

¹ c)Traiectorie rectangulară

Trece prin punctele P_1 , P_2 , P_3 și P_4 și este utilizată pentru evaluarea erorilor de racordare (depășiri și rotunjiri), astfel încât traiectoria comandată este alcătuită din două drepte perpendiculare.

2.4.3. Clasificarea metodelor de măsurare a exactității și/ /sau repetabilității de situare la roboți industriali

2.4.3.1. Criterii generale pentru alegerea unei aparaturi de încercare

Măsurarea caracteristicilor roboților ridică o mulțime de probleme specifice:

- metoda de măsurare trebuie să permită obținerea poziționării și orientării interfeței mecanice a robotului, ceea ce înseamnă 3 coordonate (x,y,z) și 3 unghiuri $(\lambda, \phi, \theta$ sau a,b,c); este preferabil să se utilizeze metode fără contact, pentru a nu introduce eforturi asupra roboților;

- incertitudinea de măsurare trebuie să fie compatibilă cu caracterisicile robotului; se admite ca incertitudinea de măsurare să fie. $i \le \pm \frac{RP}{4}$, RP fiind repetabilitatea de situare;

 instrumentele alese trebuie să permită măsurarea caracteristicilor într-un interval de timp scurt, deci să fie rapide.

2.4.3.2. Clasificarea metodelor de măsurare

In clasificarea metodelor de măsurare trebuie luate în considerare următoarele aspecte:

a) Măsurările pot fi absolute sau relative. În primul caz se determină situarea într-un reper unic, de referință R_{θ} . În al doilea caz se determină situările E.T. al R.I., sau abaterile de situare, în mai multe repere, ale căror situări, în raport cu R_{θ} sunt cunoscute. Se menționează faptul că R_{θ} reprezintă reperul de referință legat de baza robotului sau de mediu;

b) Măsurările absolute pot fi făcute "prin comparare" sau direct. În primul caz, un generator de situare "etalon" (mașină de măsurat tridimensională sau "robot de măsurare") este utilizat. Terminalul acestui etalon este deplasat în conformitate cu E T al R.I., asfel încât să se permită, printr-un algoritm de calcul adecvat, determinarea situării acestuia din urmă;

c) Măsurările se pot face cu contact sau fără contaci între terminalul robotului și mijlocul de măsurare. În primul caz se utilizează captori de tip palpatoare sau microîntrerupătoare. În al doilea caz, se pot utiliza diverse metode: inerțiale – măsurarea poziției și orientării cu accelerometre amplasate pe E T., unde acustice, fascicul laser, senzori de proximitate etc.

 d) Aparatura de măsurare poate fi: complet "îmbarcată" pe terminalul robotului analizat, complet legată de mediu sau repartizată pe ambele subansamble (emitător-receptor).

In cele ce urmează, se încearcă o clasificare a acestor metode, ținând seama de considerațiile anterioare luând în considerare două criterii:

1)-caracteristicile măsurate,

2)-principiul de măsurare.

Caracteristicile măsurate pot fi grupate în două categorii:

a) caracteristici de poziție (situare);

b) caracteristici de traiectorie.

După principiul de măsurare se pot distinge două grupe:

a) - metode locale - se caracterizează prin aceea că determinarea caracteristicilor de situare și/sau de traiectorie se realizează prin măsurarea unor distanțe mici (cățiva mm.) între un corp de probă (sferă calibrată sau cub calibrat) și un terminal de măsurare (cap de măsurare). Cele două componente ale aparaturii de măsurare se amplasează, unul peste interfața mecanică a R.I., celălalt într-o poziție bine determinată în spațiul de lucru al R.I.;

b) - metode "la distanță"- se caracterizează prin aceea că dispozitivul (aparatura) de măsurare se amplasează la distanță de E.T. al R.I. (câțiva metri) și, prin urmare, algoritmii de calcul aferenți acestor metode se bazează pe calcule de triangulație.

In figura 2.32, se prezintă o clasificare sintetică a acestor metode.

2.4.4. Exigențe impuse procedeelor de măsurare

Indiferent de tipul metodei adoptate, se impune rezolvarea câtorva aspecte:

- materializarea referințelor (de tip R_0, R_d, R);

- utilizarea unor mijloace informatice (calculatoare) performante pentru prelucrarea informațiilor;

- utilizarea unor captori de inaltă calitate: precizie, liniaritate etc.

In fine, metodele de măsurare însăși nu trebuie să introducă erori semnificative: spre exemplu, determinarea unui plan prin coordonatele a trei puncte nu este corectă dacă punctele sunt aliniate.

De asemenea, aparatura utilizată nu trebuie să perturbe funcționarea robotului, exercitând asupra lui forțe necontrolate sau incomodându-i mișcările în spațiul de lucru.

2.4.5. Exemple de metode -test utilizate pentru determinarea performanțelor roboților industriali.

In cele ce urmează se prezintă câteva metode de testare a performanțelor roboților industriali, puse la punct sau aflate în fază de experimentare la diverse întreprinderi sau institute de cercetare cu preocupări în acest sens.

2.4.5.1. Metode-test locale

1. Sistem de măsurare a caracteristicilor de situare dezvoltat de L.N.E (Laboratoire Nationale d'essais) Franța

a) Principiul de măsurare. Intrumentația de măsurare este constituită dintr-un lot de cuburi (calibrate), trei sau cinci, de exemplu, fiecare cub este montat pe un suport cu 6 grade de libertate (3 rotații și 3 translații) permițând poziționarea și orientarea cubului în spațiul de lucru al robotului. Suportul este prevăzut cu un sistem de blocare a cubului în poziția dorită.

Un terminal de măsurare (cap de măsurare) este fixat pe interfața mecanică a R I. Acest terminal este constituit dintr-un triedru echipat cu trei captori (senzori) de proximitate pe fiecare dintre cele trei fețe ale sale. Robotul este programat să poziționeze și să orienteze, la capătul fiecărei traiectorii, terminalul de măsurare pe fiecare cub. Două faze distincte sunt necesare pentru efectuarea unei măsurători de situare a unui robot:

- învățarea poziției comandate și măsurarea prin terminal (punere la zero);

 lansarea robotului în poziția comandată și măsurarea prin terminal a abaterilor față de poziția "zero" (identificarea poziției efectiv atinse).

Determinarea distanțelor între terminal și fețele fiecărui cub permite determinarea situării efective a terminalului în raport cu poziția comandată, servind ca referință Controlul repetabilității, exactității multidirecționale, unidirecționale, timpului de stabilizare a R. I., urmând această metodă, nu necesită cunoașterea poziției și orientării fiecărui cub de manieră absolută (fig. 2.33).

b) Terminalul de măsurare (cap de măsurare)

Este un triedru constituit din 3 plăci, asamblate perpendicular între ele, pentru a forma un "contracub". Se recomandă confecționarea triedrului dintr-un material ușor (Al). Pe una dintre plăci este fixat un dispozitiv de cuplare la robot. Fiecare măsurătoare permite determinarea ecuațiilor a trei plane. Spre exemplu, având coordonatele a trei puncte din fiecare plan, se pot scrie ecuațiile celor 3 plane, prin intersectarea celor trei plane se definesc coordonatele unui punct (punctul caracteristic, P.C al robotului), rezolvându-se aspectul privitor la pôziționare.

Ecuațiile celor trei plane permit cunoașterea, de asemenea a cosinușilor directori ai celor trei normale, care exprimă orientarea terminalului.

Alegerea numărului de captori (9, după alți autori 6), este determinată de următoarele considerente:

- algoritmul de calcul cel mai simplu,

soluția utilizând 9 captori

Fig.2.34

nu necesită introducerea ipotezei de perpendicularitate a fețelor cubului

Acesta este o interfață având 14 intrări și 14 ieșiri (14 canale): 9 pentru captori de deplasare și 5 auxiliare pentru măsurarea simultană a altor mărimi (temperatură, forțe etc), precum și un calculator pentru prelucrarea automată a daielor conform algoritmului acceptat (fig 2.34).

2. Sisteme de māsurare utilizānd un "robot de măsurare" dezvoltat de I.P.A (Institute für Produktions Technik Automatisierung-Stuttgart)

Se utilizează pentru determinarea caracteristicilor de poziționare și orientare. Robotul este echipat cu un cub calibrat (corp de probă), uzinat cu precizie ridicată

(fig 2.35). "Robotul de măsurare" este o mașină de măsurat în coordonate, dotată cu un cap de măsurare echipat cu senzori fără contact (inductivi). Acest terminal de măsurare este montat printr-o articulație cardanică, cu posibi- ' litate de blocare în poziția dorită, putând fi orientat de manieră foarte precisă. Metoda utilizată este absolută, prin comparare, fără contact. Avantajele non-contactului sunt evidente:

 pentru măsurarea exactității statice, este posibilă explorarea rapidă a unui mare număr de situări, prin deplasarea terminalului robotului și cel al mașinii de măsurat în coordonate;

- pentru măsurarea repetabilității statice în fiecare situație examinată, situarea "robotului de măsurare" neputând fi modificată, se asigură o marjă de siguranță în vederea cvitării coliziunii între capul de măsurare și cub.

3. Sistem de măsurare a caracteristicilor de traiectorie, dezvoltat de L.N.E-Franța

Se utilizează pentru măsurarea:

exactității și repetabilității traiectoriei;

- exactității și repetabilității vitezei pe traiectorie;
- fluctuației vitezei pe traiectorie. (fig.2.36).

Principiul a) de măsurare robotul este echipat сu uπ terminal de măsurare sub forma unui diedru echipat cu 5 captori de deplasare, fără contact (3 pe o față a diedrului, 2 pe cealaltă față); se comandă robotul să urmārcască o traiectorie ideală (dorită, locul geometric al

reperului R_d), materializată printr-o riglă sau un inel circular. Măsurarea distanțelor între robot și traiectoria materializată permit evaluarea diferitelor caracteristici.

b) Realizarea instrumentației; se utilizează de obicei senzori capacitivi, cu rezoluție ridicată ($0.5-20 \mu m$). Un senzor optic permite declanșarea citirii la trecerea terminalului de măsurare purtat de robot în dreptul reperelor gravate pe riglă. Echipamentul de achiziționare și prelucrare de date este identic celui folosit la caracteristicile de situare.

Metodă de măsurare a caracteristicilor de traiectorie, utilizând o platformă electro-dinamometrică.

Este propusă de L'Unité de Recherche de Biomécanique de l'I.N.S.E.R.M. (Institut National de la Santé et la Recherche Médicale), prin extrapolarea referințelor biologice celor ale roboților.

Sistemul de măsurare constă dintr-o platformă dinamometrică plană, care măsoară în fiecare moment, coordonatele punctului de aplicație a forței exercitate de un robot deplasând pe suprafața sa, extremitatea sferică a unei tije, (fig. 2.37).

Traiectoria plană parcursă poate fi oarecare, materializată prin desenarea unei linii. Platforma, a cărei suprafață utilă ocupă un pătrat cu latura de 0.4 m, este alcătuită dintr-o placă rigidă așezată pe patru captori de forță complianți speciali, utilizând curenți Foucault.

Metoda utilizată are inconvenientul limitării vitezei de deplasare a palpatorului (sub 1.2 m/s), în vederea evitării apariției vibraților platformei, datorită frecării. De asemenea asigurarea orizontalității platformei poate constitui un inconvenient.

2.4.5.2. Metode-test "la distanță"

1. Sistem de măsurare cu baleiaj laser (în dezvoltare la Universitatea Surrey)

Se utilizează pentru determinarea caracteristicilor de situare.

Sistemul de măsurare (fig 2.38) se bazează pe utilizarea unei metode de triangulație optică a fascicolului laser. Sistemul comportă două substații de măsurare S, amplasate în interiorul volumului spațiului de lucru al robotului. Fiecare dintre cele două substații S emite un fascicol laser, care urmărește o țintă C, fixată pe interfața mecanică a robotului; cunoașterea unghiurilor fascicolului laser în cele

două referințe legate de fiecare dintre cele două substații permite calcularea poziției țintei fixate pe robot.

Fiecare dintre. cele douā substatii (fig.2.38.b) comportă un fascicol laser și un colimator Reflexia fascicolului laser este provocată de două oglinzi rotative. Μ, având axele perpendiculare.

Fascicolul astfel orientat este emis de substațiile S,

apoi reflectat de ținta C, fixată pe interfața mecanică a robotului. Diferite dispozitive țintă pot fi utilizate, cu condiția ca fascicolul laser să fie reemis în aceeași direcție ca și fascicolul incident (colț de cub, dispozitiv ochi de pisică). Fascicolul retur parcurge același drum optic ca și fascicolul incident. Cu ajutorul unui cub separator, A (prismă), el este apoi trimis spre un dispozitiv de înregistrare, E. Indicațiile acestuia sunt folosite ca semnale de eroare pentru poziționarea oglinzilor astfel încât să permită fascicolului laser să urmărească oglinda mobilă.

Măsurarea unghiurilor de rotație a celor două oglinzi permit, prints-un algoritm adecvat, determinarea situării țintei C, într-un sistem de referință legat de una din cele două substații.

2. Sistem de măsurare cu interferometrie laser, dezvoltat de N.B.S (National Bureau of Standards) Marea Britanie

Se utilizează pentru determinarea caracteristicilor de situare Sistemul de măsurare se bazează pe un dispozitiv de măsurare în coordonate

sferice. Cunoasterea directiei fascicolului laser (definit prin două unghiuri θ și φ) și a distanței între dispozitivul de măsurare și terminalul robotului. distantă māsuratā orin. interferometrie laser, permite determinarea poziției interfeței mecanice a R.1. în spațiul de Un lucru. sistem tintā orientabil. fixat robot pe

permite determinarea poziției interfeței mecanice a acestuia (fig.2.39).

3. Sistem de măsurare cu traductori cu fir, dezvoltat la societatea"Peugeot-SA"

Sistemul de măsurare (fig.2.40.) este alcătuit din trei captori (traductori) potențiometrici cu fir. Fiecare din acești captori este alcătuit dintr-un tambur pe care se înfășoară un fir, legat de interfața mecanică a robotului. Un potențiometru cuplat la un tambur emite un semnal proporțional cu lungimea firului derulat. Firul se poate reînfășura printr-un sistem cu arc. Cele trei semnale ale celor trei potențiometre permit determinarea lungimilor L_1 , L_2 și L_3 până la interfața mecanică, prin intersecția acestora determinându-se poziția interfeței mecanice. Acest sistem permite doar măsurători privind poziționarea interfeței mecanice a R.1., nu și orientarea acestuia.

4. Dispozitiv Robot_Check (Societatea Selspine-Suedia)

Acest dispozitiv (fig.2.41.) utilizează lumina emisă de diode electroluminiscente, funcționând în infraroșu, fixat pe robot. Lumina emisă de o diodă este văzută ca un punct de două camere, echipate cu câte un detector optoelectronic; acesta din urmă, emite două semnale proporționale cu coordonatele x și y ale punctului de impact a fascicolului pe suprafața plană a detectorului. Având cele două cupluri de coordonate x_1, y_1 și x_2, y_2 provenind de la cele două camere, este posibil (ca în tehnica de fotogrametrie clasică) prin calcule trigonometrice, să se determine coordonatele diodei într-un sistem de referință legat de una din cele două camere. Sistemul permite atât determinarea caracteristicilor de situare cât și de traiectorie.

5. Metodă folosind fotogrametria stroboscopică (L.N.E-Franța)

Fotogrametria este o metodă de tip triangulație optică, ce permite determinarea poziției unui punct în spațiul tridimensional. Sistemul de măsurare este utilizat pentru evaluarea caracteristicilor de traiectorie ale roboților industriali (fig.2.42) și se bazează pe iluminarea stroboscopică a unei ținte reflectorizante C, fixată pe un cub purtat de robot. Punctul luminos este vizat cu două camere de luat vederi Este astfel posibilă determinarea pozițiilor unei succesiuni de puncte în spațiu (imagini succesive ale țintei mobile). Analiza acestor puncte permite calcularea traiectoriei mobilului.

Măsurătorile fiind efectuate prin puncte discrete, precizia depinde de calitatea imaginii acestor puncte, motiv pentru care este necesară ținta reflectorizantă.

In cele prezentate mai sus, au fost trecute în revistă, succint căteva din preocupările în domeniu în diferite țări.

Capitolele următoare prezintă preocupările autorului desigur, sub coordonarea conducătorului tezei în cea ce privește elaborarea unor metodologii și conceperea unor dispozitive pentru determinarea caracteristicilor de situare ale roboților industriali.

CAPITOLUL 3

CONTRIBUȚII LA ELABORAREA UNOR METODE ȘI ALGORITMI DE CALCUL A EXACTITĂȚII ȘI REPETABILITĂȚII DE SITUARE A ROBOȚILOR INDUSTRIALI

3.1. Considerații generale

Evaluarea caracteristicilor funcționale ale roboților industriali, constituie unul dintre aspectele dezvoltării acestora. Performanțele reale ale acestor mașini sunt încă insuficient cunoscute, întrucât definirea criteriilor de performanță constituie preocupări relativ recente. Analizând aplicațiile în care sunt implicați roboții industriali se constată că acestea se pot în general clasifica în două categorii.

In prima categorie robotul este utilizat pentru a poziționa un obiect sau o sculă în spațiul său de lucru; aceasta corespunde unor aplicații numeroase: sudură prin puncte, asamblare, manipulare, paletizare, montare de componente electronice, etc.

In a doua categorie robotul este utilizat pentru deplasarea programată și continuă a unui obiect sau sculă. În această categorie intră aplicațiile de sudură continuă, debavurare de piese, vopsire, etc.

Aceste două categorii de utilizare a roboților industriali determină două familii de caracteristici considerate fundamentale pentru aprecierea performanțelor roboților: caracteristici de poziționare și caracteristici de urmărire a traiectoriei.

Caracteristicile de poziționare sunt exprimate, în general, prin exactitatea și repetabilitatea de situare (poziționare și orientare).

Modalitățile de determinare a acestora diferă funcție de tipul metodei utilizate.

3.2. Metode locale de determinare a exactității și repetabilității de situare la roboții industriali

Sunt cele denumite în mod curent "metode clasice" și ele presupun determinarea abaterilor de situare (poziționare și orientare) prin măsurarea unor distanțe mici (câțiva mm), cu sau fără contact, între: - un corp de probă (fixat de obicei în efectorul terminal al robotului, dar nu neapărat necesar), care poate fi o sferă calibrată (pentru caracteristici de poziționare) sau un cub calibrat (pentru caracteristici de poziționare și orientare);

- un cap de măsurare (terminal de măsurare), amplasat în puncte determinate din spațiul de lucru al robotului.

Metodele de măsurare diferă funcție de algoritmul de calcul utilizat.

3.2.1. Metodă și algoritm de calcul pentru determinarea exactității și repetabilității de poziționare, utilizând corp de probă sferă calibrată

Această metodă permite doar determinarea exactității și repetabilității de poziționare, nu și de orientare.

Corpul de probă (sferă calibrată) prins în efectorul terminal al robotului conlucrează cu un cap de măsurare amplasat într-un punct determinat al spațiului de lucru al robotului (fig.3.1). Capul de măsurare este echipat cu trei instrumente de măsurare a distanțelor (comparatoare, traductoare de poziție) având axele concurente și perpendiculare două câte două (fig.3.2)

Centrul sferei calibrate materializează punctul caracteristic, P.C., al robotului.

Pentru determinarea exactității de poziționare, se procedează astfel (fig.3.3):

- se consideră sistemul de referință Pxyz, legat de capul de măsurare. În poziția lor de zero, suprafețele de contact plane ale palpatoarelor se găsesc la distanțele h_x , h_y și h_z de planele de referință ale sistemului Pxyz.

Se aduce capul de măsurare în poziția cu care suprafețele plane de contact să fie în poziția lor de zero, tangente la corpul de probă sferic cu centrul în poziția programată, P_{iv} . Coordonatele punctului P_{iv} în raport cu sistemul de referință solidar cu capul de măsurare, vor fi:

$$\begin{cases} \boldsymbol{x}_{P_{yy}} = \boldsymbol{h}_{x} + R \\ \boldsymbol{y}_{P_{yy}} = \boldsymbol{h}_{y} + R \\ \boldsymbol{z}_{P_{yy}} = \boldsymbol{h}_{y} + R \end{cases}$$
(3.1),

R fiind raza corpului de probă sferic. Se stabilește, în modul arătat mai sus, poziția de zero a ansamblului corp de probă-cap de măsurare.

Se comandă robotul să revină în poziția programată, P_{i0} , a P.C. In realitate din cauza multiplelor erori sistematice și aleatoare, robotul nu va poziționa corpul de probă sferic cu centrul în P_{i0} , ci în vecinătatea acestuia într-o poziție efectivă P_{i1} Indicațiile palpatoarelor instrumentelor de măsură ce ating corpul de probă sferic în poziția efectivă vor fi: $\pm \Delta x$, $\pm \Delta y$, $\pm \Delta z$. Cu acestea, coordonatele poziției efective ale P.C. vor fi:

$$\begin{cases} \mathbf{x}_{P_{i}} = \mathbf{h}_{x} + R \pm \Delta \mathbf{x} = \mathbf{x}_{P_{i0}} \pm \Delta \mathbf{x} \\ \mathbf{y}_{P_{i}} = \mathbf{h}_{y} + R \pm \Delta \mathbf{y} = \mathbf{y}_{P_{i0}} \pm \Delta \mathbf{y} \\ \mathbf{z}_{P_{i}} = \mathbf{h}_{z} + R \pm \Delta \mathbf{z} = \mathbf{z}_{P_{i0}} \pm \Delta \mathbf{z} \end{cases}$$
(3.2).

BUPT

In consecință, vectorul erorii de poziție a P.C., în raport cu sistemul Pxyz, legat de capul de măsurare (CM), va fi:

$${}^{CM}\Delta \bar{p} = {}^{CM} (\Delta p_x \ \Delta p_y \ \Delta p_z)^T = (\Delta x \ \Delta y \ \Delta z \ 1)^T$$
(3.3).

In raport cu sistemul de referință de bază, R, legat de elementul fix al robotului, vectorul erorii de poziție va fi:

$${}^{R}\Delta \overline{p} = {}^{R} \underline{T}_{CM} \cdot {}^{CM} \Delta \overline{p} = {}^{R} \overline{T}_{CM} \cdot (\Delta x \ \Delta y \ \Delta z \ 1)^{7}$$
(3.4)

în care ${}^{R}\underline{T}_{CM}$, reprezintă matricea de trecere de la sistemul Pxyz, legat de capul de măsurare (CM), la sistemul de referință R, legat de baza robotului.

In vederea determinării repetabilității de poziționare, după punerea "la zero" a sistemului cap de măsurare - corp de probă, în poziția comandată, P_m , se comandă repetarea de "n" ori a operației de poziționare a corpului de probă în poziția P_m , măsurându-se de fiecare dată abaterile de poziționare.

Atât în cazul exactității cât și a repetabilității de poziționare, rezultatele obținute se prelucrează statistic, în conformitate cu prevederile ISO 9283:90, estimându-se valoarea acestora.

3.2.2. Metodă și algoritm de calcul pentru determinarea exactității și repetabilității de situare la roboți industriali, utilizând distribuția 3×2×1

ln acest scop se utilizează un corp de probă paralelipipedic (cub sau nu) calibrat (fig.3.4).

Trei muchii perpendiculare două câte două, materializează axele sistemului de referință legat de corpul de probă, punctul lor de intersecție fiind $P_i \equiv P.C.$ Corpul

BUPT

de probă prismatic conlucrează cu un cap de măsurare având șase instrumente de măsură, amplasate în configurația din fig.3.5. Capul de măsurare este prezentat în fig.3.6.

Determinarea erorii de situare, utilizând distribuția 3×2×1, se face după metodologia descrisă în continuare. Se consideră sistemul de referință Pxyz legat de capul de măsurare.

In poziția lor "de zero", punctele de intersecție ale extremităților palpatoarelor, respectiv axelor, vor fi la distanțele h_x , h_y și h_z de planele de referință ale sistemului Pxyz. În ipoteza că, în poziția "de zero", toate extremitățile palpatoarelor se găsesc pe suprafața corpului de probă, coordonatele acestora, în

raport cu sistemul Pxyz, vor fi:

$$\begin{cases} x_{M_{10}} = h_{x} \\ y_{M_{10}} = y_{1} \\ z_{M_{10}} = z_{1} \end{cases} \begin{cases} x_{M_{20}} = x_{2} \\ y_{M_{20}} = h_{y_{2}} \\ z_{M_{20}} = z_{2} \end{cases} \begin{cases} x_{M_{30}} = x_{3} \\ y_{M_{30}} = h_{y_{4}} \\ z_{M_{40}} = x_{4} \\ z_{M_{40}} = h_{z_{4}} \end{cases} \begin{cases} x_{M_{50}} = x_{5} \\ y_{M_{50}} = y_{5} \\ z_{M_{50}} = h_{z_{5}} \end{cases} \begin{cases} x_{M_{50}} = x_{6} \\ y_{M_{50}} = y_{6} \\ z_{M_{40}} = h_{z_{6}} \end{cases}$$
(3.5).

Este posibil ca:

dar nu absolut necesar.

Pentru simplificarea relațiilor, să considerăm în continuare că sunt îndeplinite condițiile (3.6). În această situație, coordonatele punctului caracteristic $P_{i0} = P.C.$, atașat corpului de probă prismatic, în poziția "de zero", în sistemul Pxyz, vor fi:

$$\begin{cases} x_{P_{i0}} = h_{x} \\ y_{P_{i0}} = h_{y} \\ z_{P_{i0}} = h_{z} \end{cases}$$
(3.7).

După inițializarea sistemului corp de probă - cap de măsură, se comandă poziționarea robotului în poziția programată P_{i0} . În realitate, robotul va deplasa corpul de probă cu P.C. în vecinătatea lui P_{i0} , adică într-o poziție efectivă, $P_i(x_i, y_i, z_i)$ în sistemul Pxyz. Deplasările palpatoarelor instrumentelor de măsură, pentru a atinge corpul de probă, vor fi: $\pm \Delta x_i$, $\pm \Delta y_i$ și $\pm \Delta z_i$, față de poziția "de zero".

Coordonatele punctelor de palpare M_i , i = 1,2,3,...,6, de pe corpul de probã, vor fi:

$$\begin{cases} x_{M_1} = h_x \pm \Delta x_1 \\ y_{M_1} = y_1 \\ z_{M_1} = z_1 \end{cases} \begin{cases} x_{M_2} = x_2 \\ y_{M_2} = h_y \pm \Delta y_2 \\ z_{M_2} = z_2 \end{cases} \begin{cases} x_{M_3} = x_3 \\ y_{M_3} = h_y \pm \Delta y_3 \\ z_{M_3} = z_3 \end{cases}$$
$$\begin{cases} x_{M_4} = x_4 \\ y_{M_4} = y_4 \\ z_{M_4} = h_z \pm \Delta z_4 \end{cases} \begin{cases} x_{M_5} = x_5 \\ y_{M_5} = y_5 \\ z_{M_5} = h_z \pm \Delta z_5 \end{cases} \begin{cases} x_{M_4} = x_6 \\ y_{M_5} = y_6 \\ z_{M_6} = h_z \pm \Delta z_6 \end{cases} (3.8).$$

Cu ajutorul coordonatelor punctelor de palpare, date de relația (3.8), se pot scrie ecuațiile planelor ce materializează cele trei fețe adiacente ale corpului de probă, în poziția lui efectivă. Astfel, planul $P_i x_i y_i$, determinat de cele trei puncte de palpare M₄, M₅, M₆, va avea ecuația:

$$A_{456} \cdot x + B_{456} \cdot y + C_{456} \cdot z + 1 = 0$$
(3.9),

unde coeficienții ecuației vor fi:

$$A_{456} = \frac{-\begin{vmatrix} 1 & y_{M_4} & z_{M_4} \\ 1 & y_{M_5} & z_{M_5} \\ 1 & y_{M_4} & z_{M_4} \end{vmatrix}}{D_{456}} \qquad B_{456} = \frac{-\begin{vmatrix} x_{M_4} & 1 & z_{M_5} \\ x_{M_5} & 1 & z_{M_5} \\ z_{M_6} & 1 & z_{M_6} \end{vmatrix}}{D_{456}} \qquad C_{456} = \frac{-\begin{vmatrix} x_{M_5} & y_{M_5} & 1 \\ x_{M_5} & y_{M_5} & 1 \\ z_{M_6} & y_{M_6} & 1 \end{vmatrix}}{D_{456}} \qquad D_{456} \qquad (3.10).$$

Ecuația planului $P_i x_i z_i$, care trece prin punctele M₂ și M₃, este:

$$A_{23} \cdot x + B_{23} \cdot y + C_{23} \cdot z + 1 = 0$$
 (3.11),

Acest plan este perpendicular pe planul $P_i x_i y_i$, deci:

$$A_{23} \cdot A_{456} + B_{23} \cdot B_{456} + C_{23} \cdot C_{456} = 0$$
 (3.12).

De unde, coeficienții ecuației (3.11), vor fi:

$$A_{23} = \frac{\begin{vmatrix} \mathbf{i} & y_{M_{2}} & z_{M_{2}} \\ \mathbf{i} & y_{M_{3}} & z_{M_{3}} \\ \mathbf{0} & B_{436} & C_{456} \end{vmatrix}}{D_{23}} \qquad B_{23} = \frac{\begin{vmatrix} x_{M_{2}} & \mathbf{i} & z_{M_{2}} \\ x_{M_{3}} & \mathbf{i} & z_{M_{3}} \\ A_{456} & \mathbf{0} & C_{456} \end{vmatrix}}{D_{23}} \qquad C_{23} = \frac{\begin{vmatrix} x_{M_{2}} & y_{M_{2}} & \mathbf{i} \\ x_{M_{3}} & y_{M_{3}} & \mathbf{i} \\ A_{456} & B_{456} & C_{456} \end{vmatrix}}{D_{23}} \qquad (3.13).$$

Ecuația planului $P_i y_i z_i$, care trece prin punctul M₁, va fi:

$$A_{1} \cdot x + B_{1} \cdot y + C_{1} \cdot z + 1 = 0 \qquad (3.14),$$

Acest plan, este perpendicular atât pe planul $P_1x_iy_i$ (determinat de punctele M_4 , M_5 , M_6), cât și pe planul $P_1x_iz_i$ (determinat de punctele M_2 și M_3), deci:

$$A_1 \cdot A_{456} + B_1 \cdot B_{456} + C_1 \cdot C_{456} = 0 \qquad (3.15).$$

$$A_1 \cdot A_{23} + B_1 \cdot B_{23} + C_1 \cdot C_{23} = 0 \tag{3.16},$$

Cu acestea:

$$A_{1} = \frac{\begin{vmatrix} 1 & y_{M_{1}} & z_{M_{1}} \\ 0 & B_{456} & C_{456} \\ 0 & B_{23} & C_{23} \end{vmatrix}}{D_{1}} \qquad B_{1} = \frac{\begin{vmatrix} x_{M_{1}} & 1 & z_{M_{1}} \\ A_{456} & 0 & C_{456} \\ A_{23} & 0 & C_{23} \end{vmatrix}}{D_{1}} \qquad C_{1} = \frac{\begin{vmatrix} x_{M_{1}} & y_{M_{1}} & 1 \\ A_{456} & B_{456} & 0 \\ A_{23} & B_{23} & 0 \end{vmatrix}}{D_{1}}$$

BUPT

$$D_{1} = \begin{vmatrix} x_{M_{1}} & y_{M_{1}} & z_{M_{2}} \\ A_{456} & B_{456} & C_{456} \\ A_{23} & B_{23} & C_{23} \end{vmatrix}$$
(3.17).

Punctul P_r , care reprezintă poziția efectivă a punctului caracteristic P.C., al R.I., se află la intersecția celor trei plane, definite de relațiile (3.9), (3.12), (3.14):

$$A_{456} \cdot x_{t} + B_{456} \cdot y_{t} + C_{456} \cdot z_{1} + 1 = 0$$

$$A_{23} \cdot x_{t} + B_{23} \cdot y_{t} + C_{23} \cdot z_{1} + 1 = 0$$

$$A_{1} \cdot x_{t} + B_{1} \cdot y_{t} + C_{1} \cdot z_{1} + 1 = 0$$
(3.18).

Soluționând sistemul (3.18), se obțin coordonatele punctului P_i în sistemul de referință solidar cu capul de măsurare:

$$x_{i} = \frac{\begin{vmatrix} 1 & B_{456} & C_{456} \\ 1 & B_{23} & C_{23} \\ 1 & B_{1} & C_{1} \end{vmatrix}}{D_{i}} \qquad y_{i} = \frac{\begin{vmatrix} A_{456} & 1 & C_{456} \\ A_{23} & 1 & C_{23} \\ A_{1} & 1 & C_{1} \end{vmatrix}}{D_{i}} \qquad z_{i} = \frac{\begin{vmatrix} A_{456} & B_{456} & 1 \\ A_{23} & B_{23} & 1 \\ A_{1} & B_{1} & 1 \end{vmatrix}}{D_{i}}$$
$$z_{i} = \frac{\begin{vmatrix} A_{456} & B_{456} & 1 \\ A_{23} & B_{23} & 1 \\ A_{1} & B_{1} & 1 \end{vmatrix}}{D_{i}} \qquad (3.19).$$

Astfel, eroarea de poziție a punctului caracteristic va fi:

$$\Delta \overline{p} = \overline{p}_{i} - \overline{p}_{i0} \tag{3.20}$$

în care: \overline{p}_{i} - vectorul de poziție al P C. în poziția efectivă, P_{i} , iar \overline{p}_{i0} - vectorul de poziție al P.C. în poziția inițială, comandată, P_{i0} . Deci (ținând seama de (3.7)):

$$\Delta p = (x_i - h_x y_i - h_y z_i - h_z 1)^T$$
(3.21).

Așadar, relația (3.21) exprimă eroarea de poziționare a P.C. pentru poziția efectivă "i" a acestuia.

Dacă încercarea se repetă de "n" ori (i=1,2,3,...,n), parcurgând aceeași traiectorie, conform ISO 9283:90, se poate exprima exactitatea de poziționare unidirecțională:

$$AP = \sqrt{(\bar{x} - x_{i0})^2 + (\bar{y} - y_{i0})^2 + (\bar{z} - z_{i0})^2}$$
(3.22).

în care:

$$AP_{x} = \overline{x} - x_{i0}$$

$$AP_{y} = \overline{y} - y_{i0}$$

$$AP_{z} = \overline{z} - z_{i0}$$
(3.23).

cu:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_{i}$$

$$\overline{z} = \frac{1}{n} \sum_{i=1}^{n} z_{i}$$
(3.24).

unde: x_i , y_i , z_i reprezintă coordonatele punctului P_i efectiv atins, i=1,2,3,...,n;

 x_{i0}, y_{i0}, z_{i0} reprezintă coordonatele punctului comandat P_{i0} .

In ceea ce privește orientarea corpului de probă se ia în considerare faptul că versorul $\overline{n_i}$ este versorul normal pe planul $P_i y_i z_i$, iar, în raport cu sistemul de referință Pxyz, solidar cu capul de măsurare, el va avea expresia:

$$\overline{n_{i}} = (n_{uc} n_{iv} n_{c} 1)^{T}$$
(3.25).

în care:

$$n_{tx} = \frac{A_{1}}{\sqrt{A_{1}^{2} + B_{1}^{2} + C_{1}^{2}}}$$

$$n_{ty} = \frac{B_{1}}{\sqrt{A_{1}^{2} + B_{1}^{2} + C_{1}^{2}}}$$

$$n_{tz} = \frac{C_{1}}{\sqrt{A_{1}^{2} + B_{1}^{2} + C_{1}^{2}}}$$
(3.26).

Analog, $\overline{o_i}$ este versorul normal pe planul $P_i x_i z_i$, în raport cu sistemul Pxyz, el va avea expresia:

$$\overline{o_r} = (o_x \ o_y \ o_x \ 1)^{T}$$
(3.27).

cu:

$$o_{\alpha} = \frac{A_{23}}{\sqrt{A_{23}^2 + B_{23}^2 + C_{23}^2}}$$

$$o_{0} = \frac{B_{23}}{\sqrt{A_{23}^2 + B_{23}^2 + C_{23}^2}}$$

$$o_{c} = \frac{C_{23}}{\sqrt{A_{23}^2 + B_{23}^2 + C_{23}^2}}$$
(3.28).

BUPT

Versorul $\overline{a_i}$, normal pe planul $P_i x_i y_i$, în raport cu Pxyz, va avea expresia:

$$\overline{a_{\mu}} = (a_{\mu} a_{\mu} a_{\mu} 1)^{T}$$
(3.29).

unde:

$$a_{x} = \frac{A_{456}}{\sqrt{A_{456}^2 + B_{456}^2 + C_{456}^2}}$$

$$a_{y} = \frac{B_{456}}{\sqrt{A_{456}^2 + B_{456}^2 + C_{456}^2}}$$

$$a_{z} = \frac{C_{456}}{\sqrt{A_{456}^2 + B_{456}^2 + C_{456}^2}}$$
(3.30).

Repetând comanda de aducere a robotului cu P.C. în P_{i0} , de "n" ori (i=1,2,3,..,n", se poate exprima exactitatea de orientare a corpului de probă, astfel:

- pentru axa "n":

$$AP_{n_{1}} = \overline{n}_{z} - n_{z_{0}} \qquad AP_{n_{1}} = \overline{n}_{y} - n_{y_{0}} \qquad AP_{n_{1}} = \overline{n}_{z} - n_{z_{0}} \qquad (3.31)$$

cu:

$$\overline{n_x} = \frac{1}{n} \sum_{i=1}^n n_{ix}$$

$$\overline{n_y} = \frac{1}{n} \sum_{i=1}^n n_{iy}$$

$$\overline{n_z} = \frac{1}{n} \sum_{i=1}^n n_{ix}$$
(3.32).

unde: $\overline{n_x}$, $\overline{n_y}$, $\overline{n_z}$ sunt valorile medii ale orientărilor unghiulare ale axei "n", obținute pentru aceeași poziție comandată, repetată de i=1,2,...,n ori;

 n_{x_0} , n_{y_0} , n_{z_0} - sunt valorile orientărilor comandate ale axei "n"; n_{u} , n_{y} , n_{u} - orientările axei "n" pentru poziția de rang "i", atinsă efectiv. - pentru axa "o":

$$AP_{o_1} = o_x - o_{x_0} \qquad AP_{o_1} = o_y - o_{y_0} \qquad AP_{o_1} = o_z - o_{z_0} \qquad (3.33).$$

cu :

$$\overline{o_x} = \frac{1}{n} \sum_{i=1}^n o_{i0}$$

$$\overline{o_x} = \frac{1}{n} \sum_{i=1}^n o_{i0}$$

$$\overline{o_z} = \frac{1}{n} \sum_{i=1}^n o_{i2}$$
(3.34)

iar pentru axa "a":

$$AP_{a_{x}} = \overline{a}_{x} - a_{x_{0}} \qquad AP_{a_{y}} = \overline{a}_{y} - a_{y_{0}} \qquad AP_{a_{y}} = \overline{a}_{y} - a_{z_{0}} \qquad (3.35).$$

сu

$$\overline{a_x} = \frac{1}{n} \sum_{i=1}^n a_x$$

$$\overline{a_y} = \frac{1}{n} \sum_{i=1}^n a_y$$

$$\overline{a_z} = \frac{1}{n} \sum_{i=1}^n a_x$$
(3.36)

Matricial, exactitatea de situare (poziționare și orientare) a corpului de probă, în raport cu sistemul Pxyz, legat de capul de măsurare, se poate exprima astfel:

$${}^{CM}\underline{AP}_{cP} = \begin{vmatrix} AP_{ax} & AP_{ax} & AP_{ax} & AP_{x} \\ AP_{ay} & AP_{ay} & AP_{ay} & AP_{y} \\ AP_{az} & AP_{az} & AP_{z} & AP_{z} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(3.37).

Matricea exactității de situare (poziționare și orientare) a corpului de probă, CP, în raport cu un sistem de referință legat de robot, R, se poate scrie printr-o transformare $\frac{\kappa}{T_{CM}}$, astfel:

$${}^{B}\underline{AP}_{CP} = {}^{k}\underline{T}_{CM} \cdot {}^{CM}\underline{AP}_{CP}$$
(3.38).

în care. ${}^{R}\underline{T}_{CM}$ reprezintă matricea de transformare de la sistemul de referință legat de capul de măsurare la sistemul de referință legat de baza robotului.

3.2.3. Metodă și algoritm de calcul pentru determinarea exactității și repetabilității de situare la roboți industriali, utilizând distribuția 3×3×3

Metoda utilizează un corp de probă - cub calibrat, care conlucrează cu un cap de măsurare având nouă instrumente de măsură (traductoare), amplasate câte trei pe fiecare față a capului de măsurare (fig.3.7).

In același mod, ca în distribuția 3+2+1, în distribuția 3+3+3 se pot scrie

pentru fața 1 a cubului în poziția efectiv atinsă (plan determinat de punctele de palpare P_1 , P_2 și P_3);

$$\begin{cases} X_4 = X_4 \\ Y_4 = h_y \pm \Delta Y_4 \\ Z_4 = Z_4 \end{cases} \begin{cases} X_5 = X_5 \\ Y_5 - h_y \pm \Delta Y_5 \\ Z_5 = Z_5 \end{cases} \begin{cases} X_6 = X_6 \\ Y_6 = h_y \pm \Delta Y_6 \\ Z_6 = Z_6 \end{cases} (3.40),$$

pentru fața 2 a cubului în poziția efectiv atinsă (plan determinat de punctele de palpare P_4 , P_5 și P_6);

$$\begin{cases} X_{7} = X_{7} & X_{8} = X_{8} \\ Y_{7} = Y_{7} & Y_{8} = Y_{8} \\ Z_{7} = h_{s} \pm \Delta Z_{7} & Z_{8} = h_{s} \pm \Delta Z_{8} \end{cases} \begin{cases} X_{9} = X_{9} \\ Y_{9} = Y_{9} \\ Z_{9} = h_{s} \pm \Delta Z_{9} \end{cases} (3.41),$$

pentru fața 3 a cubului în poziția efectiv atinsă (plan determinat de punctele de palpare P_2 , P_k și P_4).

Cunoscând coordonatele punctelor P_i (i=1,2,...,9) în sistemul XOYZ legat de capul de măsurare, se poate determina situarea corpului de probă (cub calibrat) în acest sistem de referință.

1. Exactitatea de poziționare

Se consideră drept punct caracteristic (P.C.) al corpului de probă, vârful P_0 al cubului (fig.3.8).

In poziția inițială, axele sistemului de referință P_0xyz , legat de cub, sunt paralele cu axele sistemului de referință OXYZ ale capului de măsurare. În această poziție are loc inițializarea traductoarelor. Ca atare, coordonatele vârfului cubului ($P_0=P_0C_0$), în această poziție inițială, vor fi:

$$\begin{cases} X_{v} = h_{x} \\ Y_{v} = h_{y} \\ Z_{v} = h_{z} \end{cases}$$
(3.42).

Se comandă poziționarea robotului în P.C. stabilit mai sus. In realitate, robotul va deplasa corpul de probă cu P.C. într-o poziție efectivă $P_{ue} \neq P_0$.

Să determinăm coordonatele acestui punct efectiv atins, P_{te} .

Având determinate coordonatele celor nouă puncte P_i , se pot defini ecuațiile planelor celor trei fețe ale cubului în poziția lor efectivă.

Astfel, ecuația planului feței 1, definit de punctele P_1 , P_2 și P_3 , în raport cu sistemul OXYZ, va fi:

$$A_{123} \cdot X + B_{123} \cdot Y + C_{123} \cdot Z + 1 = 0 \tag{3.43}$$

în care:

$$A_{123} = \frac{\begin{vmatrix} 1 & Y_1 & Z_1 \\ 1 & Y_2 & Z_2 \\ 1 & Y_3 & Z_3 \end{vmatrix}}{D_{123}} \qquad B_{123} = \frac{\begin{vmatrix} X_1 & 1 & Z_1 \\ X_2 & 1 & Z_2 \\ X_3 & 1 & Z_3 \end{vmatrix}}{D_{123}} \qquad C_{123} = \frac{\begin{vmatrix} X_1 & Y_1 & 1 \\ X_2 & Y_2 & 1 \\ X_3 & Y_3 & 1 \end{vmatrix}}{D_{123}} \qquad D_{123} \qquad (3.44).$$

Ecuația planului feței 2, definit de punctele P_4 , P_5 și P_6 , în raport cu sistemul OXYZ, va fi:

$$A_{456} \cdot X + B_{456} \cdot Y + C_{456} \cdot Z + 1 = 0 \tag{3.45}$$

în care

$$A_{456} = \frac{-\begin{vmatrix} 1 & Y_4 & Z_4 \\ 1 & Y_5 & Z_5 \\ 1 & Y_6 & Z_6 \end{vmatrix}}{D_{456}} \qquad B_{456} = \frac{-\begin{vmatrix} X_4 & 1 & Z_4 \\ X_5 & 1 & Z_5 \\ X_6 & 1 & Z_6 \end{vmatrix}}{D_{456}} \qquad C_{456} = \frac{-\begin{vmatrix} X_4 & Y_4 & 1 \\ X_5 & Y_5 & 1 \\ X_6 & Y_6 & 1 \end{vmatrix}}{D_{456}}$$

$$D_{456} = \begin{vmatrix} X_4 & Y_4 & Z_4 \\ X_5 & Y_5 & Z_5 \\ X_6 & Y_6 & Z_6 \end{vmatrix}$$

$$(3.46).$$

Ecuația planului feței 3, definit de punctele P_7 , P_8 și P_9 , în raport cu sistemul OXYZ, va fi:

$$A_{789} \cdot X + B_{789} \cdot Y + C_{789} \cdot Z + 1 = 0 \tag{3.47}$$

în care:

$$A_{789} = \frac{-\begin{vmatrix} 1 & Y_7 & Z_7 \\ 1 & Y_8 & Z_8 \\ 1 & Y_9 & Z_9 \end{vmatrix}}{D_{789}} \qquad B_{789} = \frac{-\begin{vmatrix} X_7 & 1 & Z_7 \\ X_8 & 1 & Z_8 \\ X_9 & 1 & Z_9 \end{vmatrix}}{D_{789}} \qquad C_{789} = \frac{-\begin{vmatrix} X_7 & Y_7 & 1 \\ X_8 & Y_8 & 1 \\ X_9 & Y_9 & 1 \end{vmatrix}}{D_{789}} \\D_{789} = \begin{vmatrix} X_7 & Y_7 & Z_7 \\ X_8 & Y_8 & Z_8 \\ X_9 & Y_9 & Z_9 \end{vmatrix}} \qquad (3.48).$$

BUPT

Punctul P_{ve} se găsește la intersecția celor trei plane, deci coordonatele lui, $X_{P_{w}}$, $Y_{P_{w}}$, $Z_{P_{w}}$ trebuie să satisfacă simultan ecuațiile: (3.43), (3.45), (3.47). Așadar:

$$\begin{cases} A_{123} \cdot X + B_{123} \cdot Y + C_{123} \cdot Z + 1 = 0 \\ A_{456} \cdot X + B_{456} \cdot Y + C_{456} \cdot Z + 1 = 0 \\ A_{789} \cdot X + B_{789} \cdot Y + C_{789} \cdot Z + 1 = 0 \end{cases}$$
(3.49).

Soluționând sistemul (3.49), se obțin coordonatele punctului P_{0e} - poziția efectiv atinsă de P C.:

$$X_{P_{0e}} = \frac{\begin{vmatrix} 1 & B_{123} & C_{123} \\ -1 & B_{456} & C_{456} \\ 1 & B_{780} & C_{789} \end{vmatrix}}{D_{0e}} \qquad Y_{P_{0e}} = \frac{-\begin{vmatrix} A_{123} & 1 & C_{123} \\ A_{456} & 1 & C_{456} \\ A_{789} & 1 & C_{789} \end{vmatrix}}{D_{0e}} \qquad Z_{P_{0e}} = \frac{-\begin{vmatrix} A_{123} & B_{123} & 1 \\ A_{456} & B_{456} \\ A_{789} & D_{0e} \end{vmatrix}}{D_{0e}} \qquad Z_{P_{0e}} = \frac{-\begin{vmatrix} A_{123} & B_{123} & 1 \\ A_{456} & B_{456} \\ A_{789} & B_{789} \\ D_{0e} \end{vmatrix}} \qquad (3.50).$$

Deci, matricea de poziționare, va fi:

$${}^{CM}\underline{T}_{CP} = \left| X_{P_{br}} - Y_{P_{br}} - Z_{P_{br}} - \mathbf{I} \right|^{T}$$
(3.51).

Eroarea de poziționare a P.C., fig.3.9, va fi:

$$\overline{\Delta p} = \overline{p_{0_{\mathrm{F}}}} - \overline{p_{0}} \qquad (3.52),$$

în_icare:

- p_{0r} este vectorul de poziție al P.C., în poziția efectivă, P_{0r} , în sistemul OXYZ, legat de capul de măsurare;

- $\overline{p_0}$ este vectorul de poziție al P.C., în poziția inițială, P_0 , în sistemul OXYZ.

Matricea erorii de poziționare, va fi:

$$\overline{\Delta p} = \left| \Delta p_x \ \Delta p_y \ \Delta p_z \ 1 \right|^T (3.53)$$

în care:

$$\Delta p_x = X_{P_{0x}} - X_0$$

$$\Delta p_y = Y_{P_{0x}} - Y_0$$

$$\Delta p_z = Z_{P_{0x}} - Z_0$$

(3.54).

Repetând de "n" ori comanda de revenire a E.T. al robotului, purtând cubul de probă, în aceeași poziție P_0 a P.C., urmărind aceeași traiectorie, se obțin "n" poziții efective, P_{Mel} (i=1,2,...,n). Conform ISO 9283:90, se poate determina exactitatea de poziționare cu expresia:

$$AP = \sqrt{(\vec{X}_{P_{or}} - X_{P_{o}})^{2} + (\vec{Y}_{P_{or}} - Y_{P_{o}})^{2} + (\vec{Z}_{P_{or}} - Z_{P_{o}})^{2}}$$
(3.55)

$$AP_{x} = \overline{X}_{P_{0x}} - X_{P_{0}}$$

$$AP_{y} = \overline{Y}_{P_{0x}} - Y_{P_{0}}$$

$$AP_{z} = \overline{Z}_{P_{0x}} - Z_{U}$$
(3.56)

unde.

cu:

$$\overline{X}_{P_{0r}} = \frac{1}{n} \sum_{i=1}^{n} X_{P_{0r_i}}$$

$$\overline{Y}_{P_{0r}} = \frac{1}{n} \sum_{i=1}^{n} Y_{P_{0r_i}}$$

$$\overline{Z}_{P_{0r}} = \frac{1}{n} \sum_{i=1}^{n} Z_{P_{0r_i}}$$
(3.57)

Deci, exactitatea de poziționare a cubului de probă în raport cu capul de măsurare se poate exprima printr-o matrice de forma:

$$\frac{AP_{cP}}{AP_{cP}} = \begin{vmatrix} AP_{x} & AP_{y} & AP_{z} \end{vmatrix}^{T}$$
(3.58).

2. Exactitatea de orientare

Cunoscând coordonatele celor nouă puncte P_i , se pot defini vectorii, de exemplu $\overline{p_1}$, $\overline{p_2}$, $\overline{p_3}$ ce poziționează punctele P_1 , P_2 , P_3 , ce definesc planul efectiv al feței i a cubului, în raport cu sistemul de axe OXYZ (fig.3-10), astfel:

$$\overline{p_1} = \begin{vmatrix} X_{P_1} \\ Y_{P_1} \\ Z_{P_1} \\ 1 \end{vmatrix} \qquad \overline{p_2} = \begin{vmatrix} X_{P_2} \\ Y_{P_2} \\ Z_{P_2} \\ 1 \end{vmatrix} \qquad \overline{p_3} = \begin{vmatrix} X_{P_3} \\ Y_{P_1} \\ Z_{P_3} \\ 1 \end{vmatrix}$$
(3.59).

Orientarea feței 1 se poate determina calculând versorul normalei $\overline{n_1}$ la

această față.

Vectorii $\overline{p_2p_1}$ și $\overline{p_2p_3}$, conținuți în planul feței 1, se pot determina astfel:

$$\frac{\overline{p_2 p_1}}{\overline{p_2 p_3}} = \frac{\overline{p_1} - \overline{p_2}}{\overline{p_3} - \overline{p_2}}$$
(3.60).

respectiv.

$$\overline{p_2 p_1} = (X_{p_1} - X_{p_2}) \cdot \overline{i} + (Y_{p_1} - Y_{p_2}) \cdot \overline{j} + (Z_{p_1} - Z_{p_2}) \cdot \overline{k}$$
(3.61),
$$\overline{p_2 p_3} = (X_{p_1} - X_{p_2}) \cdot \overline{i} + (Y_{p_1} - Y_{p_2}) \cdot \overline{j} + (Z_{p_1} - Z_{p_2}) \cdot \overline{k}$$

unde \tilde{i} , \tilde{j} , \bar{k} sunt versorii axelor OXYZ.

Vectorul normalei la planul feței 1, se obține efectuând produsul vectorial:

 $\overline{N_{\perp}} =$

$$\overline{N_1} = \overline{p_2 p_3} \times \overline{p_2 p_1} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ X_{P_1} - X_{P_2} & Y_{P_1} - Y_{P_2} & Z_{P_1} - Z_{P_2} \\ X_{P_1} - X_{P_2} & Y_{P_1} - Y_{P_2} & Z_{P_1} - Z_{P_2} \end{vmatrix}$$
(3.62)

$$\begin{aligned} \overline{p_2 p_3} \times \overline{p_2 p_1} &= [(Y_{p_1} - Y_{p_1})(Z_{p_1} - Z_{p_2}) - (Z_{p_1} - Z_{p_2})(Y_{p_1} - Y_{p_2})] \cdot \hat{i} + \\ &+ [(X_{p_1} - X_{p_1})(Z_{p_2} - Z_{p_2}) - (X_{p_2} - X_{p_2})(Z_{p_1} - Z_{p_2})] \cdot \tilde{j} + (3.63), \\ &+ [(X_{p_1} - X_{p_2})(Y_{p_1} - Y_{p_2}) - (X_{p_1} - X_{p_2})(Y_{p_2} - Y_{p_2})] \cdot \bar{k} \end{aligned}$$

Pentru simplificarea modalităților de exprimare a produsului vectorial $\overline{p_2 p_3} \times \overline{p_2 p_1}$, se vor adopta următoarele notații:

$$C_{1} = (Y_{P_{1}} - Y_{P_{2}})(Z_{P_{1}} - Z_{P_{2}}) - (Z_{P_{1}} - Z_{P_{2}})(Y_{P_{1}} - Y_{P_{2}})$$

$$C_{2} = (X_{P_{1}} - X_{P_{2}})(Z_{P_{2}} - Z_{P_{2}}) - (X_{P_{1}} - X_{P_{2}})(Z_{P_{1}} - Z_{P_{2}})$$

$$C_{3} = (X_{P_{1}} - X_{P_{2}})(Y_{P_{1}} - Y_{P_{2}}) - (X_{P_{1}} - X_{P_{2}})(Y_{P_{1}} - Y_{P_{2}})$$
(3.64).

Se poate scrie:

$$\overline{p_2 p_3} \times \overline{p_2 p_1} = C_1 \overline{i} + C_2 \overline{j} + C_3 \overline{k}$$
(3.65).

Versorul $\overline{n_i}$ al normalei la fata l a cubului, se scrie:

$$\frac{1}{n_1} = \frac{C_1 \tilde{i} + C_2 \tilde{j} + C_3 \tilde{k}}{D_1}$$
(3.66).

BUPT

unde:

$$D_1 = \sqrt{C_1^2 + C_2^2 + C_3^2}$$
(3.67)

Analog, pentru fața 2 a cubului, definită de punctele P_4, P_5, P_6 , se poate scrie:

$$\frac{\overline{p_5 p_4}}{\overline{p_5 p_6}} = \frac{\overline{p_4} - \overline{p_5}}{\overline{p_5}}$$
(3.68).

respectiv:

$$\overline{p_{5}p_{4}} = (X_{P_{4}} - X_{P_{5}}) \cdot \overline{i} + (Y_{P_{4}} - Y_{P_{5}}) \cdot \overline{j} + (Z_{P_{4}} - Z_{P_{5}}) \cdot \overline{k}$$

$$\overline{p_{5}p_{6}} = (X_{P_{4}} - X_{P_{5}}) \cdot \overline{i} + (Y_{P_{4}} - Y_{P_{5}}) \cdot \overline{j} + (Z_{P_{4}} - Z_{P_{5}}) \cdot \overline{k}$$
(3.69),

Produsul vectorial al celor doi vectori, care reprezintă vectorul normalei la planul feței 2, va fr:

$$\overline{N_2} = \overline{p_s p_6} \times \overline{p_s p_4} = \begin{vmatrix} \hat{i} & \hat{j} & \bar{k} \\ X_{P_6} - X_{P_6} & Y_{P_6} - Y_{P_7} & Z_{P_6} - Z_{P_5} \\ X_{P_6} - X_{P_7} & Y_{P_6} - Y_{P_7} & Z_{P_6} - Z_{P_7} \end{vmatrix}$$
(3.70)

Notând:

$$C_{4} = (Y_{P_{6}} - Y_{P_{5}})(Z_{P_{4}} - Z_{P_{5}}) - (Z_{P_{6}} - Z_{P_{5}})(Y_{P_{4}} - Y_{P_{5}})$$

$$C_{5} = (X_{P_{4}} - X_{P_{5}})(Z_{P_{6}} - Z_{P_{5}}) - (X_{P_{6}} - X_{P_{5}})(Z_{P_{6}} - Z_{P_{5}})$$

$$C_{6} = (X_{P_{6}} - X_{P_{5}})(Y_{P_{4}} - Y_{P_{5}}) - (X_{P_{4}} - X_{P_{5}})(Y_{P_{6}} - Y_{P_{5}})$$
(3.71).

Se poate scrie:

$$\overline{p_5 p_6} \times \overline{p_5 p_4} = C_4 \overline{i} + C_5 \overline{j} + C_6 \overline{k}$$
(3.72).

Versorul $\overline{n_2}$ al normalei la fața 2 a cubului, va fi:

$$\overline{n_2} = \frac{C_4 \overline{i} + C_5 \overline{j} + C_6 \overline{k}}{D_2}$$
(3.73)

unde

$$D_2 = \sqrt{C_4^2 + C_5^2 + C_6^2} \tag{3.74}$$

Pentru fața 3 a cubului, definită de punctele P_7 , P_8 , P_9 , se poate scrie:

$$\frac{\overline{p_{\theta}p_{\eta}}}{\overline{p_{\theta}p_{\theta}}} = \frac{\overline{p_{\eta}}}{\overline{p_{\theta}}} - \frac{\overline{p_{\theta}}}{\overline{p_{\theta}}}$$
(3.75)

respectiv:

$$\overline{p_{\theta}p_{\tau}} = (X_{p_{\tau}} - X_{p_{\theta}}) \cdot \overline{i} + (Y_{p_{\tau}} - Y_{p_{\theta}}) \cdot \overline{j} + (Z_{p_{\tau}} - Z_{p_{\theta}}) \cdot \overline{k}$$

$$\overline{p_{\theta}p_{\theta}} = (X_{p_{\theta}} - X_{p_{\theta}}) \cdot \overline{i} + (Y_{p_{\theta}} - Y_{p_{\theta}}) \cdot \overline{j} + (Z_{p_{\theta}} - Z_{p_{\theta}}) \cdot \overline{k}$$
(3.76).

BUPT

Vectorul normalei la planul feței 3 a cubului va fi produsul vectorial:

$$\overline{N_{3}} = \overline{p_{R}p_{2}} \times \overline{p_{R}p_{7}} = \begin{vmatrix} \overline{i} & \overline{j} & \overline{k} \\ X_{P_{R}} - X_{P_{R}} & Y_{P_{R}} - Y_{P_{R}} & Z_{P_{2}} - Z_{P_{R}} \\ X_{P_{2}} - X_{P_{R}} & Y_{P_{2}} - Y_{P_{R}} & Z_{P_{2}} - Z_{P_{R}} \end{vmatrix}$$
(3.77).

Notând:

$$C_{\gamma} = (Y_{p_{k}} - Y_{p_{k}})(Z_{p_{k}} - Z_{p_{k}}) - (Z_{p_{k}} - Z_{p_{k}})(Y_{p_{k}} - Y_{p_{k}})$$

$$C_{\kappa} = (X_{p_{k}} - X_{p_{k}})(Z_{p_{k}} - Z_{p_{k}}) - (X_{p_{k}} - X_{p_{k}})(Z_{p_{k}} - Z_{p_{k}})$$

$$C_{\kappa} = (X_{p_{k}} - X_{p_{k}})(Y_{p_{k}} - Y_{p_{k}}) - (X_{p_{k}} - X_{p_{k}})(Y_{p_{k}} - Y_{p_{k}})$$
(3.78)

Se poate scrie-

$$\overline{p_{k}p_{w}} \times \overline{p_{k}p_{v}} = C_{\tau}\overline{i} + C_{k}\overline{j} + C_{\phi}\overline{k}$$
(3.79).

Versorul $\overline{n_3}$ al normalei la fața 3 a cubului se scrie:

$$\overline{n_3} = \frac{C_{\gamma}\overline{i} + C_{\gamma}\overline{j} + C_{\gamma}\overline{k}}{D_3}$$
(3.80),

în'care:

$$D_3 = \sqrt{C_2^2 + C_8^2 + C_9^2}$$
 (3.81).

Având determinați $\overline{n_1}$, $\overline{n_2}$ și $\overline{n_3}$ - versorii normali independenți la cele trei fețe ale cubului, ei vor determina orientarea acestuia în raport cu sistemul de referință OXYZ, legat de capul de măsurare.

Aşadar:

$$\overline{n_{1}} = \frac{C_{1}}{D_{1}}\overline{i} + \frac{C_{2}}{D_{1}}\overline{j} + \frac{C_{3}}{D_{1}}\overline{k}$$

$$\overline{n_{2}} = \frac{C_{4}}{D_{2}}\overline{i} + \frac{C_{5}}{D_{2}}\overline{j} + \frac{C_{6}}{D_{2}}\overline{k}$$

$$\overline{n_{3}} = \frac{C_{7}}{D_{3}}\overline{i} + \frac{C_{8}}{D_{3}}\overline{j} + \frac{C_{9}}{D_{3}}\overline{k}$$
(3.82).

Matricea de orientare va fi deci:

$${}^{CM} \underline{T}_{0} = \left| \begin{array}{c} \underline{C}_{1} & \underline{C}_{2} & \underline{C}_{3} \\ \hline D_{1} & \overline{D}_{1} & D_{1} \\ \hline C_{4} & \underline{C}_{5} & \underline{C}_{6} \\ \hline D_{2} & D_{2} & D_{2} \\ \hline C_{2} & \underline{C}_{6} & \underline{C}_{9} \\ \hline D_{3} & \overline{D}_{3} & \overline{D}_{3} \end{array} \right|$$
(3.83).

Așadar, exactitatea de orientare a corpului de probă (cub) în raport cu referința OXYZ, legată de capul de măsurare se exprimă astfel:

- pentru axa "n₁":

$$AP_{n_{11}} = \frac{C_1}{D_1} - \frac{C_1}{D_1}$$

$$AP_{n_{22}} = \frac{\overline{C_2}}{D_1} - \frac{C_2}{D_1}$$

$$AP_{n_{22}} = \frac{\overline{C_3}}{D_1} - \frac{C_3}{D_1}$$
(3.84).

cu:

$$\frac{\overline{C_1}}{D_1} = \frac{1}{n} \sum_{i=1}^n \left(\frac{C_1}{D_1} \right)_i$$

$$\frac{\overline{C_2}}{D_1} = \frac{1}{n} \sum_{i=1}^n \left(\frac{C_2}{D_2} \right)_i$$

$$\frac{\overline{C_3}}{D_1} = \frac{1}{n} \sum_{i=1}^n \left(\frac{C_3}{D_1} \right)_i$$
(3.85),

unde: $-\frac{\overline{C_1}}{D_1}$, $\frac{\overline{C_2}}{D_1}$, $\frac{\overline{C_3}}{D_1}$ - sunt valorile medii ale orientărilor unghiulare ale axei "n₁", obținute pentru aceeași poziție comandată, repetată de i=1,2,...,n ori;

 $-\frac{C_1}{D_1}, \frac{C_2}{D_1}, \frac{C_3}{D_1} - \text{sunt valorile orientărilor comandate ale axei "n";} \\-\left(\frac{C_1}{D_1}\right), \left(\frac{C_2}{D_1}\right), \left(\frac{C_3}{D_1}\right) - \text{sunt orientările axei "n₁" pentru poziția de rangul$

"i", atinsā efectiv;

- pentru axa "n2":

$$AP_{n_{2x}} = \frac{\overline{C_4}}{D_2} - \frac{C_4}{D_2}$$

$$AP_{n_{2y}} = \frac{\overline{C_5}}{D_2} - \frac{C_5}{D_2}$$

$$AP_{n_{2x}} = \frac{\overline{C_6}}{D_2} - \frac{C_6}{D_2}$$
(3.86),

cu:

$$\frac{\overline{C_4}}{D_2} = \frac{1}{n} \sum_{i=1}^n \left(\frac{C_4}{D_2} \right)_i$$

$$\frac{\overline{C_6}}{D_2} = \frac{1}{n} \sum_{i=1}^n \left(\frac{C_5}{D_2} \right)_i$$

$$\frac{\overline{C_6}}{D_2} = \frac{1}{n} \sum_{i=1}^n \left(\frac{C_6}{D_2} \right)_i$$
(3.87),

ias pentru axa "n3":

$$AP_{n_{12}} = \frac{C_{1}}{D_{3}} - \frac{C_{2}}{D_{3}}$$

$$AP_{n_{12}} = \frac{\overline{C_{8}}}{D_{3}} - \frac{C_{8}}{D_{3}}$$

$$AP_{n_{12}} = \frac{\overline{C_{9}}}{D_{3}} - \frac{C_{9}}{D_{3}}$$
(3.88),

CUC

$$\frac{\overline{C_{\gamma}}}{D_{\gamma}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{C_{\gamma}}{D_{\gamma}} \right)_{i}$$

$$\frac{\overline{C_{\kappa}}}{D_{\gamma}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{C_{\kappa}}{D_{\gamma}} \right)_{i}$$

$$\frac{\overline{C_{9}}}{D_{\gamma}} = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{C_{\kappa}}{D_{\gamma}} \right)_{i}$$
(3.89).

Situarea (poziționarea + orientarea) corpului de probă în raport cu reperul OXYZ, se exprimă printr-o matrice de forma:

$${}^{CM} \underline{T}_{\underline{S}|CP} = \begin{vmatrix} \underline{C}_1 & \underline{C}_2 & \underline{C}_3 & X_{P_{0e}} \\ \underline{D}_1 & \underline{D}_1 & \underline{D}_1 & X_{P_{0e}} \\ \underline{C}_4 & \underline{C}_5 & \underline{C}_6 & X_{P_{0e}} \\ \underline{D}_2 & \underline{D}_2 & \underline{D}_2 & X_{P_{0e}} \\ \underline{C}_7 & \underline{C}_8 & \underline{C}_9 & X_{P_{0e}} \\ \underline{0} & 0 & 0 & 1 \end{vmatrix}$$
(3.90).

iar exactitatea de situare (poziționare + orientare), printr-o matrice de forma:

$${}^{CM}\underline{AP}_{CP} = \begin{vmatrix} AP_{n_1} & AP_{n_2} & AP_{n_3} & AP_x \\ AP_{n_2} & AP_{n_3} & AP_{n_2} & AP_y \\ AP_{n_3} & AP_{n_3} & AP_{n_3} & AP_z \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(3.91).

Matricea exactității de situare (poziționare și orientare) a corpului de probă, CP, în raport cu un sistem de referință legat de robot, R, se poate scrie printr-o transformare ${}^{R}\underline{T}_{CM}$, astfel:

$$\frac{AP_{CP}}{AP_{CP}} = \frac{kT_{CM}}{T_{CM}} \frac{AP_{CP}}{AP_{CP}}$$
(3.92).
3.3 Metode "la distanță" pentru determinarea exactității și repetabilității de situare la roboții industriali

Se caracterizează prin aceea că aparatura de măsurare se amplasează la distanță de E.T. al R.I. (câțiva metri) și deci, algoritmii de calcul utilizați se bazează în general pe calcule de triangulație.

3.3.1. Metodă și algoritm de calcul utilizând doi teodoliți pentru determinarea exactității și repetabilității de situare la roboți industriali (metoda prin intersecții)

In paragraful 3.2, s-a arătat că metodele locale presupun existența unui sistem de măsurare format dintr-un corp de probă (fixat în E.T. al R.I.) și cap (terminal) de măsurare (situat în spațiul de lucru al R.I.). Amplasarea capului de măsurare este o problemă, având în vedere aplicația concretă în care este implicat robotul industrial. In plus, existența capului de măsurare constituie ea însăși o sursă de erori.

Metoda propusă, elimină acest cap de măsurare clasic, pentru măsurători utilizându-se doar corpul de probă - cub calibrat - prins în E.T. al R.I. și măsurându-se cu ajutorul a doi teodoliți - distanțele unor puncte de pe muchiile acestuia în raport cu un sistem de referință.

1. Considerații geometrice

Dacă se urmărește fig. 3.11, se poate constata că, amplasând în punctele T_1 și T_2 ale planului xOy, două dispozitive optice de măsurare, cu ajutorul lor pot fi înregistrate lungimile segmentelor $\overline{T_1N_H}$ și $\overline{T_2N_H}$, sau direct unghiurile α_H și respectiv β_H , prin vizarea simultană a punctului N_H din plan.

Punctele T_2 și T_2 pot fi reperate cu precizie în planul xOy, tot prin sisteme optice și, prin urmare, distanța s dintre ele. În acest caz, se pot scrie relațiile:

$$\frac{s}{\sin\gamma} = \frac{s_2}{\sin\alpha_H} = \frac{s_1}{\sin\beta_H}$$
(3.93),

$$\gamma = 180^{\circ} - (\alpha_H + \beta_H) \tag{3.94}.$$

Deci:

$$s_1 = s \frac{\sin \beta_H}{\sin r} \qquad \qquad s_2 = s \frac{\sin \alpha_H}{\sin r} \qquad (3.95).$$

Dar:

$$tg\delta = \frac{y_{T_2} - y_{T_1}}{x_{T_2} - x_{T_1}} \qquad tg\delta = -ctg\mu \qquad (3.96)$$

$$x_N = x_{\tau_1} + s_1 \cdot \sin \varepsilon$$
$$y_N = y_{\tau_1} + s_1 \cdot \cos \varepsilon$$

(3.97)

(3.98). Repetând rationamentul pentru cazul unui punct N situat īп spațiul $O_{v}x_{v}y_{v}z_{v}$ (fig.3.12), pot objine se lungimile segmen- $\overline{T_1N}$, $\overline{T_2N}$, telor $\overline{T_2N_H}$ $\overline{T_1N_H}$, \$İ respectiv unghiurile $\alpha_H, \beta_H, \alpha_V, \beta_V.$

In aceste condiții, se pot determina coordonatele punctului N, cu urmātoarele relații:

$$x_{x} = x_{\tau_{1}} + s \cdot \frac{\sin \beta_{H}}{\sin \gamma} \sin \varepsilon$$

$$y_{x} = y_{\tau_{1}} + s \cdot \frac{\sin \beta_{H}}{\sin \gamma} \cos \varepsilon$$

$$z_{x} = z_{\tau_{1}} + s \cdot \frac{\sin \beta_{H}}{\sin \gamma} tg \alpha_{r}$$

$$z_{\tau_{1}} = z_{\tau_{2}} - z_{x} = z_{\tau_{1}} + s_{1} \cdot tg \alpha_{r}$$
(3.99)

In consecință, se poate spune că, așa cum s-au determinat coordonatele unui punct în spațiu (prin vizare cu doi teodoliți) se pot determina coordonatele a 4 puncte în spațiu. Dacă aceste puncte sunt chiar 4 colțuri ale unui corp de probă (fig.3.13), de formă cubică, atunci se poate obține poziția, respectiv orientarea acestuia în spațiul de lucru, în raport cu un sistem de axe legat de unul dintre teodoliți (T_t de ex.).

Metoda prezentată se poate utiliza și în cazul metodelor "locale" pentru determinarea situării capului de măsurare în spațiul de lucru al robotului. Dacă se admite, în locul cubului de probă, capul de măsurare tridimensional (3D), amplasat în spațiul de lucru al robotului și se admit 4 puncte pe acesta : un punct fiind vîrful triedrului și altele trei la distanțe egale fată de vîrf, pe cele trei muchii concurente în vîrf și perpendiculare între ele, cele prezentate mai sus servesc și pentru determinarea situării capului de măsură în raport cu sistemul de axe legat de teodolitul T_1 (legat de hală) în cazul metodelor locale (subcapitolul 3.2).

Pentru a determina situarea capului de măsură în raport cu elementul fix al robotului, este necesar să se materializeze sistemul de referință legat de baza robotului, a cărui situare, apoi, în raport cu referința legată de teodolitul T_1 , se poate determina tot prin vizarea a patru puncte (originea sistemului și câte un punct de pe fiecare axă).

Ceea ce este dificil de realizat este materializarea originii sistemului de axe atașat bazei robotului, precum și a axei Z.

Această operațiune nu este însă necesară în majoritatea situațiilor practice, concrete, având în vedere faptul că situarea componentelor unei celule de fabricație flexibilă robotizată și implicit a robotului implicat în aplicație, se exprimă în raport cu un sistem de referință exterior acesteia, legat de hală [K3], acestei cerințe răspunzându-i excelent principiul de măsurare a caracteristicilor de situare prin metode "la distanță".

In cazul calibrării unui robot apare însă necesitatea materializării sistemului de referință legat de baza robotului. Pentru structuri concrete de roboți, acceptând o marjă de eroare, se poate realiza această operațiune.

Revenind la problematica abordată, s-au stabilit deci coordonatele a patru puncte (patru vârfuri) ale cubului calibrat - corp de probă - prin vizarea lor simultană cu doi teodoliți (metoda "intersecției înainte"). În cele ce urmează, pe baza acestor coordonate, se determină exactitatea și repetabilitatea de situare.

2. Matrici de transformare

Punctele N₁ (O_{CP}), N₂, N₅ și N₄ pun în evidență sistemul de referință legat de corpul de probă $O_{CP}x_{CP}y_{CP}z_{CP}$. Situarea acestui sistem de referință în raport cu sistemul de referință $O_{a}x_{a}y_{a}z_{a}$ pune în evidență situarea corpului de probă în raport cu sistemul amintit. Referința $O_{a}x_{a}y_{a}z_{a}$ este un sistem de referiță fix, legat de unul dintre teodoliți (de hală), amplasați în exteriorul spațiului de lucru al robotului.

Sistemul de referință legat de corpul de probă, $O_{CP}x_{CP}y_{CP}z_{CP}$ se poate considera că, inițial a corespuns cu sistemul de referință $O_{v}x_{v}y_{v}z_{v}$, căruia i s-a aplicat o transformare geometrică (TR), compusă dintr-o rotație R și o translație, T (fig3.14).

Deci.

$$O_{o}x_{o}y_{o}z_{o} + \stackrel{*}{\longrightarrow} O_{o}x_{CP}'y_{CP}'z_{CP}' + \stackrel{\tau}{\longrightarrow} O_{CP}x_{CP}y_{CP}'z_{CP}'$$
(3.100).

Transformarea de rotație este definită de matricea de rotație [R], care este o matrice ortogonală cu termenii compuși din cosinușii directori ai axelor sistemului de referință $O_{CP} \mathbf{x}_{CP} \mathbf{y}_{CP} \mathbf{z}_{CP}$.

Transformarea de translație este definită de vectorul de poziție $\overline{t_{cr}}$.

Aşadar, matricea de transformare între $O_{CP} \mathbf{x}_{CP} \mathbf{y}_{CP} \mathbf{z}_{CP}$ și $O_o \mathbf{x}_o \mathbf{y}_o \mathbf{z}_o$, are forma:

$${}^{o}\underline{\mathcal{IR}}_{CP} = \begin{vmatrix} n_{x} & o_{x} & a_{x} & x_{CP} \\ n_{y} & o_{y} & a_{y} & y_{CP} \\ n_{z} & o_{z} & a_{z} & z_{CP} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(3.101),

unde:

$$n_{x} = \frac{x_{N_{x}} - x_{CP}}{l} \qquad n_{y} = \frac{y_{N_{y}} - y_{CP}}{l} \qquad n_{z} = \frac{z_{N_{y}} - z_{CP}}{l}$$

$$\sigma_{x} = \frac{x_{N_{x}} - x_{CP}}{l} \qquad \sigma_{y} = \frac{y_{N_{x}} - y_{CP}}{l} \qquad \sigma_{z} = \frac{z_{N_{y}} - z_{CP}}{l} \qquad (3.102),$$

$$\sigma_{x} = \frac{x_{N_{z}} - x_{CP}}{l} \qquad \sigma_{y} = \frac{y_{N_{z}} - y_{CP}}{l} \qquad \sigma_{z} = \frac{z_{N_{y}} - z_{CP}}{l}$$

l - fiind latura cubului, iar $O_{CP} \equiv N_1 - (x_{CP} \equiv x_{N_1}, y_{CP} \equiv y_{N_1}, z_{CP} \equiv z_{N_1})$.

3. Matricea erorilor

In procesul în care se propune să se atingă punctul țintă O'_{CP} (ideal, comandat, dorit), datorită erorilor lanțului cinematic al robotului, acest lucru nu se poate realiza. Din acest motiv, în locul țintei ideale (O'_{CP}) robotul atinge o țintă reală (O'_{CP}) (fig.3.15 și fig. 3.16). Transformările necesare pentru a aduce poziția reală în cea ideală și a o raporta la $O_{\alpha}x_{\alpha}y_{\alpha=\alpha}$, sunt exprimate prin:

Prin indicele "i" s-a marcat sistemul de referință corespunzător unei poziții ideale, iar prin indicele "r" sistemul de referință corespunzător poziției reale

In schema prezentată anterior se observă faptul că, transformările dintr-un sistem de referință într-altul au omis etapa legată de sistemul de referință al robotului. Aceasta se rezolvă printr-o transformare corespunzătoare.

Cele două transformări, respectiv $T^{(E)}$ de translație, respectiv $R^{(E)}$ de rotație sau, cu alte cuvinte, transformarea $TR^{(E)}$, se poate exprima matricial sub forma:

$${}^{\prime} \underline{IR}_{r}^{(E)} = \begin{vmatrix} n_{x}^{E} & o_{x}^{E} & a_{z}^{E} & x_{CP}^{E} \\ n_{y}^{E} & o_{y}^{E} & a_{y}^{E} & y_{CP}^{E} \\ n_{z}^{E} & o_{z}^{E} & a_{z}^{E} & z_{CP}^{E} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(3.104),

Această matrice exprimă incapacitatea robotului de a situa corpul de probă (C.P.) în poziția comandată, sau cu alte cuvinte de eroarea de situare a acestuia.

Termenii acestei matrici sunt de forma:

$$n_{q}^{E} = \frac{(q_{N_{y}}^{L} - q_{N_{y}}^{r}) - (q_{CP}^{r} - q_{CP}^{r})}{I}$$

$$o_{q}^{E} = \frac{(q_{N_{y}}^{L} - q_{N_{y}}^{r}) - (q_{CP}^{r} - q_{CP}^{r})}{I}$$

$$a_{q}^{E} = \frac{(q_{N_{y}}^{L} - q_{N_{y}}^{r}) - (q_{CP}^{r} - q_{CP}^{r})}{I}$$

$$q_{CP}^{E} = q_{CP}^{r} - q_{CP}^{r}, \text{ cu } q = x, y, z$$
(3.105).

4. Exactitatea și repetabilitatea de poziționare

a) Exactitatea de poziționare (AP) - se exprimă ca fiind distanța dintre poziția ideală (comandată) a P.C. și centrul de greutate al mulțimii de poziții atinse în realitate, la un număr "n" de deplasări ale robotului. În fig.3.17 O_i reprezintă poziția ideală a P.C., iar O_i^{α} - este punctul centru de greutate al tuturor punctelor atinse în realitate.

Practic, punctul O_r^a reprezintă centrul de greutate al învelişului sferic, ce cuprinde totalitatea punctelor atinse în realitate de P.C.

Coordonatelor punctului O_c^{σ} vor fi:

$$q_r^{\sigma} = \frac{1}{n} \sum_{i=1}^n q_r^i$$
 $q = x, y, z$ (3.106).

Deci, exactitatea de poziționare se exprimă prin mărimea vectorului $\overline{O_r^{\sigma}O_1}$

(fig.3.17).

$$AP = \overline{O_r^G O_r} = \sqrt{(x_r^G - x_r)^2 + (y_r^G - y_r)^2 + (z_r^G - z_r)^2}$$
(3.107),

respectiv, pe axe:

$$4P_q = (\overline{O_r^G O_r})_q = q_r^G - q, \qquad q = x, y, z \qquad (3.108),$$

cu: x_r^G , y_r^G , z_r^G coordonatele punctului O_r^G și

 x_i, y_i, z_i coordonatele punctului O_i (ideal, comandat).

Tinând seama de aceste relații și urmărind fig.3.17, se poate scrie matrice. exactității de poziționare:

$$AP = (x_{CP}^{E} \ y_{CP}^{E} \ z_{CP}^{E} \ 1)^{T}$$
(3.109),

cu următoarea structură a termenilor-

$$q_{CP}^{E} = q_{CP}' - \frac{1}{n} \sum_{j=1}^{n} q_{CP(j)}' \qquad q = x, y, z \qquad (3.110).$$

b) Repetabilitatea de poziționare (RP) este egală ca mărime cu raza sferei al cărei centru este centrul de greutate al mulțimii punctelor atinse și care cuprinde deci, ca un înveliş sferic, toate aceste puncte (fig.3.17).

Expresia lui RP va fi:

$$RP = \overline{L} + 3S_L \tag{3.111},$$

cu:

$$\overline{L} = \frac{1}{n} \sum_{j=1}^{n} L_j$$
 (3.112),

Ş1 :

$$L_{j} = \sqrt{(x_{r}^{j} - x_{r}^{G})^{2} + (y_{r}^{j} - y_{r}^{G})^{2} + (z_{r}^{j} - z_{r}^{G})^{2}}$$
(3.113),

$$S_{L} = \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} (L_{j} - \overline{L})^{2}}$$
(3.114),

Relația (3.111) se poate deci scrie:

$$RP = \frac{1}{n} \sum_{j=1}^{n} L_j + 3 \cdot \sqrt{\frac{1}{n-1} \sum_{j=1}^{n} (L_j - \frac{1}{n} \sum_{j=1}^{n} L_j)^2}$$
(3.115)

5. Exactitatea și repetabilitatea de orientare

Se exprimă prin diferența între valorile medii ale unghiurilor formate de direcțiile axelor sistemului de referință atașat pozițiilor reale realizate de corpul de probă și direcțiile axelor sistemului de referință atașat poziției comandate (ideale),

în raport cu un sistem de referință de bază, $O_0 x_n y_0 z_0$.

Desigur că, în timpul măsurătorilor, valorile maxime, minime și medii ale unghiurilor direcțiilor axelor sistemelor de referință raportate la poziția ideală, se ating pentru diferite poziții ale P.C. (fig.3.18). Practic, se poate spune că exactitatea de orientare este o mărime teoretică ce definește un grup de măsurători. Unghiurile λ_s , θ_s , ρ_s nu vor atinge valorile medii λ_s^m , θ_s^m , ρ_s^m în același moment, deci în același punct al spațiului delimitat de sfera de rază $r_s(RP)$. Ca atare va apare un pachet de valori unghiulare ce vor defini cele trei poziții ale corpului de probă în raport cu poziția ideală.

cestea sunt: λ_1^m , θ_1 , ρ_1 λ_2 , θ_2^m , ρ_2 λ_3 , θ_3 , ρ_3^m

Valorile unghiurilor respective se obțin cu relațiile:

$$\lambda_{1}^{m} = \frac{1}{n} \sum_{j=1}^{n} \lambda_{j} \qquad \theta_{2}^{m} = \frac{1}{n} \sum_{j=1}^{n} \theta_{j} \qquad \rho_{3}^{m} = \frac{1}{n} \sum_{j=1}^{n} \rho_{j} \qquad (3.116).$$

Se consideră trei drepte concurente în punctul O_r^{σ} paralele cu direcțiile axelor sistemelor de referință, corespunzător valorilor medii ale unghiurilor din relația (3.116).

Prin urmare, exactitatea de orientare se va exprima prin ansamblul de unghiuri având următoarele valori:

$$(AP_a)_s = a_s = \lambda_s - \lambda_s$$

$$(AP_b)_s = b_s = \theta_s - \theta_s \qquad s = 1,2,3$$

$$(AP_b)_s = c_s = \rho_s - \rho_s$$

$$(3.117)_s$$

Valorile λ_s (s=1), θ_s (s=2), ρ_s (s=3) sunt valorile medii ale acestor unghiuri exprimate cu relația (3.116), adică: $\lambda_s = \lambda_1^m$, $\theta_s = \theta_2^m$, $\rho_s = \rho_3^m$.

Repetabilitatea de orientare este reprezentată, conform ISO 9283.90 de abaterea standard într-o distribuție normală.

Ea este dată de relațiile:

$$(RP_{a})_{s} = \pm 3(s_{a})_{s} = \pm 3\sqrt{\frac{\sum_{j=1}^{n} (\lambda_{j} - \lambda_{s})^{2}}{n-1}}$$

$$(RP_{b})_{s} = \pm 3(s_{b})_{s} = \pm 3\sqrt{\frac{\sum_{j=1}^{n} (\theta_{j} - \theta_{s})^{2}}{n-1}}$$

$$(3.118)$$

$$(RP_{c})_{s} = \pm 3(s_{c})_{s} = \pm 3\sqrt{\frac{\sum_{j=1}^{n} (\rho_{j} - \rho_{s})^{2}}{n-1}}$$

cu s=1,2,3.

6. Expresia matricei exactității de situare

Este de forma:

$${}^{E} \underline{TR}_{r}^{E} = \begin{vmatrix} n_{x}^{E} & o_{x}^{E} & a_{x}^{E} & x_{CP}^{E} \\ n_{y}^{E} & o_{y}^{E} & a_{y}^{E} & y_{CP}^{E} \\ n_{z}^{E} & o_{z}^{E} & a_{z}^{E} & z_{CP}^{E} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(3.119).

Tinând cont de cele prezentate anterior, termenii matricei (3.119) se exprimă astfel:

$$n_{x}^{E} = \frac{1}{I} \left[\left(x_{N_{y}}^{i} - \frac{1}{n} \sum_{j=1}^{n} x_{N_{y(j)}}^{r} \right) - \left(x_{CP}^{i} - \frac{1}{n} \sum_{j=1}^{n} x_{CP_{i(j)}}^{r} \right) \right]$$

$$n_{y}^{E} = \frac{1}{I} \left[\left(y_{N_{y}}^{i} - y_{N_{y(j)}}^{r} \right) - \left(y_{CP}^{i} - y_{CP_{i(j)}}^{r} \right) \right]$$

$$n_{z}^{E} = \frac{1}{I} \left[\left(z_{N_{y}}^{i} - z_{N_{y(j)}}^{r} \right) - \left(z_{CP}^{i} - z_{CP_{i(j)}}^{r} \right) \right]$$
(3.120).

$$o_{x}^{E} = \frac{1}{I} \Big[(x_{N_{4}}^{i} - x_{N_{3(2)}}^{r}) - (x_{CP}^{i} - x_{CP_{(2)}}^{r}) \Big]$$

$$o_{y}^{E} = \frac{1}{I} \Big[(y_{N_{4}}^{i} - \frac{1}{n} \sum_{j=1}^{n} y_{N_{4(j)}}^{r}) - (y_{CP}^{i} - \frac{1}{n} \sum_{j=1}^{n} y_{CP_{(j)}}^{r}) \Big]$$

$$o_{z}^{E} = \frac{1}{I} \Big[(z_{N_{4}}^{i} - z_{N_{4(2)}}^{r}) - (z_{CP}^{i} - z_{CP_{(2)}}^{r}) \Big]$$

$$a_{x}^{E} = \frac{1}{I} \Big[(x_{N_{2}}^{i} - x_{N_{2(3)}}^{r}) - (x_{CP}^{i} - x_{CP_{(3)}}^{r}) \Big]$$

$$a_{y}^{E} = \frac{1}{I} \Big[(y_{N_{2}}^{i} - y_{N_{2(3)}}^{r}) - (y_{CP}^{i} - y_{CP_{(3)}}^{r}) \Big]$$

$$a_{z}^{E} = \frac{1}{I} \Big[(z_{N_{2}}^{i} - \frac{1}{n} \sum_{j=1}^{n} z_{N_{2(j)}}^{r}) - (z_{CP}^{i} - \frac{1}{n} \sum_{j=1}^{n} z_{CP_{(j)}}^{r}) \Big]$$

Termenii (3.120) ai matricei exactității de orientare, împreună cu termenii dați de relațiile (3.109) și (3.110) aferenți matricei exactității de poziționare, introduși în (3.119), conduc la expresia finală a matricei exactității de situare.

7. Repetabilitatea de situare

Relația (3.113) poate fi scrisă, în contextul celor tratate, astfel:

$$L_{j} = \sqrt{(x_{CP}^{j} - \sum_{j=1}^{n} x_{CP}^{j})^{2} + (y_{CP}^{j} - \sum_{j=1}^{n} y_{CP}^{j})^{2} + (z_{CP}^{j} - \sum_{j=1}^{n} z_{CP}^{j})^{2}}$$
(3.121),

unde x_{CP}^{j} , y_{CP}^{j} , z_{CP}^{j} reprezintă coordonatele originii sistemului de referință legat de corpul de probă, pentru cele "j" măsurători.

Cu relația (3.121), înglobată în relațiile (3.111), (3.112), (3.114) și (3.115), precum și cu relațiile (3.118), se poate aprecia repetabilitatea de situare a corpului de probă în raport cu $O_0 x_0 y_0 z_0$.

Relațiile deduse în prezentul algoritm completează lacune ale normativului ISO 9283:90, descriind totodată un limbaj matematic unitar pentru determinarea exactității și repetabilității de situare, putând fi utilizate în procesul de prelucrare a datelor experimentale.

3.3.2 Metodă și algoritm de calcul pentru determinarea exactității de de situare a roboților industriali, utilizând un telemetru laser

Face parte din categoria metodelor de măsurare "la distanță", fără contact, fără cap de măsurare, eliminând astfel dezavantajele impuse de prezența acestuia.

1. Principiul metodei

Corpul de probă (cub calibrat), are montate pe trei fețe ale sale adiacente, câte trei oglinzi plane. Un telemetru laser TL, trimite succesiv câte un fascicol laser FL; pe fiecare oglindă i (i=1,2,3), reflectat în punctul de incidență M_i. Fascicolul reflectat FR; va forma pe ecranul E; fix, spotul luminos M_i. Teodolitul T; reperează punctul M'_i, măsurând unghiurile α'_k și α'_V . La rândul său, telemetrul laser măsoară distanța I_i , dintre originea sa optică O_L și punctul M_i (fig. 3.19).

Cu ajutorul datelor măsurate, se calculează coordonatele punctelor M_i și M_i față de un sistem de referință fix. Punctele O_L, M_i, M['], definesc un plan, în care se găsește bisectoarea unghiului O_LM_iM[']_i, normală pe suprafața oglinzii plane "i". Normala are versorul $\overline{\nu}_i$. Écuația planului "1" se obține cunoscând faptul că el trece

prin M_i și este perpendicular pe versorul $\overline{v_i}$. Intersecția celor trei plane "i" (i=1.2,3) este originea sistemului de coordonate legat de corpul de probă, iar versorii $\overline{v_i}$ sunt versorii axelor sistemului de coordonate respectiv.

Intr-o altă variantă, se iluminează pe rând, cu fascicol laser, șase puncte aflate pe cele trei oglinzi plane, fixate pe suprafețele corpului de probă, de exemplu în distribuția $3 \times 2 \times 1$. Cunoscând distanța l_i a punctului M_i față de punctul O_1 și unghiurile α_{H_i} și α_{V_i} , ale direcției de vizare a punctului M_i , se pot calcula coordonatele acestui punct.

Cunoscând coordonatele celor șase puncte de pe suprafața corpului de probă, se poate determina matricea de situare a acestuia.

2. Algoritm de calcul

Fie originea O_0 a sistemului de coordonate fix, iar axele O_0x_0 , O_0y_0 și O_0z_0 intersecțiile planelor ectanelor (E₁),(E₂) și (E₃) - fig.3.19. Centrele optice O_L și O_T ale temetrului laser, respectiv teodolitului, au coordonatele în raport cu sistemul de referință $O_0x_0y_0z_0$, x_L, y_L, z_L respectiv x_T, y_T, z_T.

Coordonatele punctului M_i vor fi, în raport cu sistemul de referință cu originea în punctul O_L :

$$O_{L_{\mathbf{x}_{H_{t}}}} = I_{t} \cdot \cos \alpha_{t} \sin \alpha_{H}$$

$$O_{L_{\mathbf{x}_{H_{t}}}} = I_{t} \cdot \cos \alpha_{t} \cos \alpha_{H}$$

$$O_{L_{\mathbf{x}_{H_{t}}}} = I_{t} \cdot \sin \alpha_{t}$$
(3.122).

Pentru calculul coordonatelor punctului M_i în raport cu sistemul de referință cu originea O_T , se determină pentru început, distanța între punctele O_T și M_{i0} .

$$l_{o_{\rm P}M_{\rm in}} = x_{\rm T} \cdot \frac{l}{\sin \alpha_{\rm H}^{*}}$$
(3.123).

Aşadar :

ļ

$$O_{T_{\mathcal{P}M_0}} = I_{O_{\mathcal{P}}M_0'} \cdot \cos \alpha_H' = x_T \cdot ctg\alpha_H' \qquad (3.124),$$

$$O_{T_{\mathbf{r}_{Min}}} = l_{O_{\mathbf{r}}M'_{in}} \cdot lg \alpha_{\mathbf{r}}' = x_{T} \cdot \frac{lg \alpha_{\mathbf{r}}'}{\sin \alpha_{\mathbf{r}}'}$$
(3.125).

In consecință coordonatele punctului M'_{i0} vor fi, în sistemul de referință cu originea în O_T :

118

$$O_{T_{r_{M_0}}} = -x_T$$

$$O_{T_{r_{M_0}}} = x_T \cdot c_I g \alpha'_H$$

$$O_{T_{r_{M_0}}} = x_T \cdot \frac{I g \alpha'_H}{\sin \alpha'_H}$$
(3.126).

In sistemul de referință cu originea O_0 , aceste coordonate vor fi :

$$O_{0x_{M_{t}}} = I_{t} \cdot \cos \alpha_{t} \cdot \sin \alpha_{tt} - x_{t}$$

$$O_{0y_{M_{t}}} = I_{t} \cdot \cos \alpha_{t} \cdot \cos \alpha_{t} - y_{t}$$

$$O_{0y_{M_{t}}} = I_{t} \cdot \sin \alpha_{t'} - z_{t}$$
(3.127).

respectiv :

$$O_{0_{I_{M_{r}}}} = 0$$

$$O_{0_{T_{M_{r}}}} = x_{T} \cdot ctg\alpha'_{\mu} - y_{T}$$

$$O_{0_{T_{M_{r}}}} = x_{T} \cdot \frac{tg\alpha'_{\mu}}{\sin\alpha'_{H}} - z_{T}$$
(3.128).

Planul (P), care conține punctele O_L , M_i , M'_i , are ecuația (în raport cu sistemul de referință $O_0 x_0 y_0 z_0$):

$$A_{p} \cdot x + B_{p} \cdot y + C_{p} \cdot z + D_{p} = 0 \qquad (3.129),$$

unde:

$$A_{p} = -\begin{vmatrix} 1 & y_{L} & z_{L} \\ 1 & y_{M_{i}} & z_{M_{i}} \\ 1 & y_{M_{i}} & z_{M_{i}} \end{vmatrix} \qquad B_{p} = -\begin{vmatrix} x_{L} & 1 & z_{L} \\ x_{M_{i}} & 1 & z_{M_{i}} \\ x_{M_{i}} & 1 & z_{M_{i}} \end{vmatrix}$$
$$C_{p} = -\begin{vmatrix} x_{L} & y_{L} & 1 \\ x_{M_{i}} & y_{M_{i}} & 1 \\ x_{M_{i}} & y_{M_{i}} & 1 \end{vmatrix} \qquad D_{p} = \begin{vmatrix} x_{L} & y_{L} & z_{L} \\ x_{M_{i}} & y_{M_{i}} & z_{M_{i}} \\ x_{M_{i}} & y_{M_{i}} & z_{M_{i}} \end{vmatrix} \qquad (3.130).$$

Dreapta $\overline{O_L M_i}$, are ecuația :

$$\frac{x - x_{M_i}}{x_L - x_{M_i}} = \frac{y - y_{M_i}}{y_L - y_{M_i}} = \frac{z - z_{M_i}}{z_L - z_{M_i}}$$
(3.131),

iar dreapta $\overline{M_{i}M_{i}}$ are ecuația :

$$\frac{x - x_{M_i}}{x_{M_i} - x_{M_i}} = \frac{y - y_{M_i}}{y_{M_i} - y_{M_i}} = \frac{z - z_{M_i}}{z_{M_i} - z_{M_i}}$$
(3.132),

ambele în raport cu $O_0 x_0 y_0 z_0$.

Planul (P_B) - loc geometric al dreptelor care fac unghium egale cu O_LM_i și $M_iM_i^i$, are ecuația :

$$A_{g} \cdot \boldsymbol{x} + B_{g} \cdot \boldsymbol{y} + C_{p} \cdot \boldsymbol{z} + D_{g} = 0 \qquad (3.133),$$

in raport cu Ooxoyozo, cu :

$$A_{B} = x_{L} - x_{M_{1}^{\prime}} \qquad B_{B} = y_{L} - y_{M_{1}^{\prime}} \qquad C_{B} = z_{L} - z_{M_{1}^{\prime}} D_{B} = (x_{L} - x_{M_{1}^{\prime}}) \cdot x_{M_{1}} + (y_{L} - y_{M_{1}^{\prime}}) \cdot y_{M_{1}} + (z_{L} - z_{M_{1}^{\prime}}) \cdot z_{M_{1}}$$
(3.134),

Bisectoarea M_i , a triunghiului $\Delta O_i M_i M_i$ se găsește la intersecția planelor (P) și (P_B), având ecuația :

$$\frac{x - x_{M_i}}{v_{\mu}} = \frac{y - y_{M_i}}{v_{\mu}} = \frac{z - z_{M_i}}{v_{\mu}}$$
(3.135),

unde:

este versorul bisectoarei unghiului M₁₁ în același timp și normala la suprafața (i) a corpului de probă în poziția considerată.

Ecuația bisectoarei din vârful Mi, sub formă canonică, se poate scrie:

 $\mathbf{v}_{i} = \left| \mathbf{v}_{i} \ \mathbf{v}_{i} \ \mathbf{v}_{j} \right|^{T}$

$$\frac{|x - x_{M_i}|}{|B_p - C_p|} = \frac{|y - y_{M_i}|}{|C_p - A_p|} = \frac{|z - z_{M_i}|}{|A_p - B_p|}$$
(3.137),
$$\frac{|z - z_{M_i}|}{|A_p - B_p|} = \frac{|z - z_{M_i}|}{|A_p - B_p|}$$
(3.137),

Comparând relațiile (3.137) și (3.135), componentele versorului $\overline{v_i}$, vor fi:

$$v_{\mu} = \begin{vmatrix} B_{p} & C_{p} \\ B_{B} & C_{B} \end{vmatrix} \qquad v_{\mu} = \begin{vmatrix} C_{p} & A_{p} \\ C_{B} & A_{B} \end{vmatrix} \qquad v_{\mu} = \begin{vmatrix} A_{p} & B_{p} \\ A_{B} & B_{B} \end{vmatrix}$$
(3.138),

3. Matricea de situare

Aşadar, bisectoarea unghiului M_i , care este în același timp normala la suprafața "i" a corpului de probă (cub calibrat), are versorul $\overline{\nu_i}$ definit prin relația (3.136), respectiv (3.138).

Deci:

$$\underline{v_{1}} = \left| v_{1x} \ v_{1y} \ v_{1z} \right|^{T}
\underline{v_{2}} = \left| v_{2x} \ v_{2y} \ v_{2z} \right|^{T}
\underline{v_{3}} = \left| \dot{v}_{3x} \ v_{3y} \ v_{3z} \right|^{T}
(3.139),$$

reprezintă versorii normalelor la cele 3 fețe ale cubului, în punctele $M_1(x_{M1}y_{M1}z_{M1})$, $M_2(x_{M2}y_{M2}z_{M2})$, $M_3(x_{M3}y_{M3}z_{M3})$, determinate conform algoritmului de calcul prezentat în paragraful anterior. Cei trei versori definesc orientarea corpului de

(3.136),

probă.

Ecuația planului P_i , fața "i" a cubului care admite normala de versor $\overline{v_i}$ și trece prin punctul $M_i(x_iy_iz_i)$, va fi:

$$v_{\alpha} \cdot (x - x_{M_{i}}) + v_{\eta} \cdot (y - y_{M_{i}}) + v_{\alpha} \cdot (z - z_{M_{i}}) = 0$$
(3.140),

respectiv

ctiv
$$v_{x} \cdot x + v_{y} \cdot y + v_{x} \cdot z - (v_{x} \cdot x_{M_{i}} + v_{y} \cdot y_{M_{i}} + v_{x} \cdot z_{M_{i}}) = 0$$
 (3.141),
Pentru cele trei fețe ale cubului, materializate prin trei plane P_i (i=1,2,3), se

pot scrie trei ecuații (3.141):

$$v_{1x} \cdot x + v_{1y} \cdot y + v_{1z} \cdot z - (v_{1x} \cdot x_{M_1} + v_{1y} \cdot y_{M_1} + v_{1z} \cdot z_{M_1}) = 0$$

$$v_{2x} \cdot x + v_{2y} \cdot y + v_{2z} \cdot z - (v_{2x} \cdot x_{M_2} + v_{2y} \cdot y_{M_2} + v_{2z} \cdot z_{M_2}) = 0$$

$$v_{3x} \cdot x + v_{3y} \cdot y + v_{3z} \cdot z - (v_{3x} \cdot x_{M_1} + v_{3y} \cdot y_{M_2} + v_{3z} \cdot z_{M_1}) = 0$$

$$(3.142),$$

Punctul P_0 (varful cubului) avand coordonatele $x_{P0}y_{P0}z_{P0}$ in raport cu $O_0 x_0 y_0 z_0$, se află la intersecția celor trei plane P_i (i=1,2,3), definite de relația (3.142). Aşadar :

$$\mathbf{v}_{1x} \cdot \mathbf{x}_{P_0} + \mathbf{v}_{1y} \cdot \mathbf{y}_{P_0} + \mathbf{v}_{1z} \cdot \mathbf{z}_{P_0} - (\mathbf{v}_{1x} \cdot \mathbf{x}_{M_1} + \mathbf{v}_{1y} \cdot \mathbf{y}_{M_1} + \mathbf{v}_{1z} \cdot \mathbf{z}_{M_1}) = 0$$

$$\mathbf{v}_{2x} \cdot \mathbf{x}_{P_0} + \mathbf{v}_{2y} \cdot \mathbf{y}_{P_0} + \mathbf{v}_{2z} \cdot \mathbf{z}_{P_0} - (\mathbf{v}_{2x} \cdot \mathbf{x}_{M_2} + \mathbf{v}_{2y} \cdot \mathbf{y}_{M_2} + \mathbf{v}_{2z} \cdot \mathbf{z}_{M_2}) = 0$$

$$\mathbf{v}_{3x} \cdot \mathbf{x}_{P_0} + \mathbf{v}_{3y} \cdot \mathbf{y}_{P_0} + \mathbf{v}_{3z} \cdot \mathbf{z}_{P_0} - (\mathbf{v}_{3x} \cdot \mathbf{x}_{M_3} + \mathbf{v}_{3y} \cdot \mathbf{y}_{M_1} + \mathbf{v}_{3z} \cdot \mathbf{z}_{M_3}) = 0$$

$$(3.143),$$

Soluționând sistemul (3.143) se obțin coordonatele punctului Po, în raport cu sistemul Ooxoyozo:

$$D_{i} = \begin{vmatrix} v_{1x} & v_{1y} & v_{1z} \\ v_{2x} & v_{2y} & v_{2z} \\ v_{1x} & v_{3y} & v_{3z} \end{vmatrix}$$
(3.145)

Tinând seama de relațiile (3.136), (3.138), (3.139), (3.144) și (3.145) se poate scrie matricea de situare a corpului de probă în sistemul de referință $O_0x_0y_0z_0$

$$O_{0} \underline{T}_{CP} = \begin{vmatrix} v_{1x} & v_{1y} & v_{1z} & x_{P_{0}} \\ v_{2x} & v_{3y} & v_{2z} & y_{P_{0}} \\ v_{3x} & v_{3y} & v_{3z} & x_{P_{0}} \\ \vdots & 0 & 0 & 0 & 1 \end{vmatrix}$$
(3.146).

3.4. Concluzii

Așadar, în capitolul 3, se propun câteva metodologii de determinare a caracteristicilor de situare la roboți și componentele sistemelor de fabricație flexibilă robotizată, atât pentru cazul metodelor "locale" cât și pentru metodele "la distanță", precum și algoritmi de calcul corespunzători celor două categorii de metode.

Totodată se propune, în completare la normativele existente actualmente pe plan mondial, exprimarea matricială a exactității și repetabilității de situare, în concordanță cu limbajul matematic unitar utilizat în robotică.

CAPITOLUL 4

APLICAREA PROBLEMEI DE SITUARE LA CALIBRAREA ROBOȚILOR

4.1. Exprimarea problemei de calibrare

Un inalt nivel al exactității roboților poate fi citat ca cerință esențială în multe aplicații robotizate avansate. Fără modificări ale structurii mecanice, capacitatea de situare a roboților poate fi îmbunătățită cu succes prin diverse procedee de calibrare Luând în considerare doar aspectul de situare statică, exactitatea de situare a unui robot este afectată de:

 a) factori geometrici, cum sunt variațiile în lungimile elementelor și orientării articulațiilor;

b) factori negeometrici, cum sunt: elasticități ale elementelor și jocuri în cuple, complianțe, excenticități ale angrenajelor și bătăi ale acestora, modificări termice ale lungimilor elementelor;

 c) incertitudine în localizarea sistemului de coordonate de bază, față de sistemul de coordonate ale universului (legat de hală).

Se apreciază în literatura de specialitate, [R2], contribuția diferitelor surse la aceste erori, concluzionându-se că erorile datorate factorilor geometrici reprezintă aproximativ (90+95)% din erorile de situare la roboți și manipulatoare.

Variațiile geometriei robotului nu sunt generate doar de toleranțele de fabricare și asamblare, ci și de deplasările relative între baza robotului și universul de lucru, precum și între componenetele robotului, cauzate de vibrații inevitabile sau coliziuni în mediul său de lucru.

In modul de programare prin învățare a roboților, actualmente utilizat în general, caracteristica semnificativă este repetabilitatea robotului, caracteristică nesemnificativ influiențată de cauzele anterior arătate. Acest mod de programare este lent și costisitor. Din acest motiv se tinde spre înlocuirea acestei metode de

programare prin programarea analitică, "off-line", ceea ce înseamnă că robotul va fi comandat prin indicarea coordonatelor $(x, y, z, \lambda, \rho, \theta)$ ale poziției atinse, într-o referință aleasă de operator, de obicei referința halei (atelierului, universului).

In această situație o altă caracteristică devine importantă: exactitatea de situare (poziționare și orientare) absolută, definită de ISO 9283:90 Această caracteristică este mai dificil de determinat decât repetabilitatea, dată fiind dificultatea în definirea sistemului de referință.

Programarea off-line a procesului robotizat în sistemul CAD face posibilă proiectarea generală și a planului de amplasament a unei celule robotizate, precum și simularea sarcinilor robotului. În vederea realizării simulării este importantă introducerea unui program corect în sistemul de comandă al robotului pentru a îndeplini mișcările dorite.

Problema majoră este diferența dintre geometria nominală a robotului, determinată prin proiectare, în concordanță cu funcțiile robotului și geometria reală a aceluiași robot, afectat de toleranțele de prelucrare, erorile de montare în timpul asamblării robotului etc. Modelele geometrice nominale sunt în general simple. bazate pe câteva prezumții, cum ar fi paralelismul sau ortogonalitatea axelor cuplelor.

Diferențe între modelul geometric nominal și real apar de asemenea și din cauza unor erori negeometrice (elasticitatea articulațiilor, erori ale rapoartelor de transmitere, etc.).

Calibrarea unui robot constă în identificarea cu mare precizie a relațiilor geometrice dintre citirile traductoarelor din cuplele robotului și situarea efectorului terminal, E.T., al acestuia, exprimată prin coordonatele tridimensionale ale punctului caracteristic al efectorului terminal și orientarea sistemului de axe atașat acestuia, determinată printr-una dintre metodele "locale" sau la "la distanță" enunțate în capitolul 2 și capitolul 3 și apoi corectarea programului robotului funcție de diferențele identificate.

Așadar calibrarea geometrică a unui robot implică patru etape: modelarea funcțiilor robotului, măsurarea situării efectorului terminal și a poziției relative a elementelor cuplelor cinematice ale robotului, identificarea diferențelor dintre geometria nominală și reală a robotului și efectuarea corecțiilor necesare.

In general diferența dintre geometria nominală și reală a robotului se poate exprima prin transformări de coordonate în raport cu un sistem de referință de bază, ales în mod convenabil, $\Sigma_a(x_0, y_0, z_0)$.

Astfel, poziția și orientarea reală a unui obiect A, poate fi reprezentată, în raport cu un sistem de referință $\Sigma_{\sigma}(x_{0}, y_{0}, z_{0})$, printr-o relație de forma (fig.4.1):

$${}^{a}T_{a} = {}^{a}T_{a}, \quad (4,1).$$

In relația (4.1):

 ${}^{o}T_{a}$ - transformarea de coordonate de la sistemul de bazã, Σ_{o} la sistemul definind situarea reală, Σ_{a} ;

 ${}^{\nu}T_{\omega}$ - transformarea de coordonate de la sistemul de bază, Σ_{μ} la sistemul definind situarea nominală, Σ_{ω} ;

 ${}^{A}T_{A}$ - transformarea de coordonate de la sistemul definind situarea nominală, Σ_{A} , la sistemul definind situarea reală, Σ_{A} .

$${}^{0}T_{A} = \begin{bmatrix} {}^{0}R_{A} & {}^{0}P_{A} \\ 0 & 1 \end{bmatrix}; \qquad {}^{0}T_{A_{a}} = \begin{bmatrix} {}^{0}R_{A_{a}} & {}^{0}P_{A_{a}} \\ 0 & 1 \end{bmatrix}; \qquad {}^{A_{a}}T_{A} = \begin{bmatrix} {}^{A_{a}}R_{A} & {}^{A_{a}}P_{A} \\ 0 & 1 \end{bmatrix}$$
(4.2),

in care:

 ${}^{o}R_{a}$: matricea de rotație reală (3×3);

" p_{d} : vectorul de poziție reală (3×1);

 ${}^{n}R_{a_{a}}$ matricea de rotație nominală (3×3);

" p_{a_k} vectorul de poziție nominală (3×1);

 ${}^{d_{\theta}}R_{s}$ · matricea erorilor de rotație (3×3);

 ${}^{3_{4}}p_{3}$: vectorul erorn de poziție (3×1).

Din (4.1), rezultă că:

$${}^{\mathrm{o}}R_{\mathrm{d}} = {}^{\mathrm{o}}R_{\mathrm{d}} + {}^{\mathrm{d}_{\mathrm{d}}}R_{\mathrm{d}}$$
 (4.3),

$${}^{\prime} p_{,i} = {}^{\prime} p_{,i_{a}} - {}^{\prime} R_{,i_{a}} \cdot {}^{A_{a}} p_{,i}$$
(4.4).

4.2. Parametri geometrici de erori

Există în literatura de specialitate diferite modelări ale erorii de situare a unui robot Majoritatea autorilor utilizează în modelarea erorilor geometrice ale parametrilor de poziționare relativă între elementele robotului, parametri de tip Hartenberg-Denavit (θ_i , d_i , a_i , $\sin \alpha_i$). Se cunoaște însă faptul că, erorile geometrice mici ale acestor patru parametri pot conduce la variații semnificative ale parametrilor de situare. Spre exemplu, dacă axele a două cuple de rotație succesive sunt paralele, normala comună ce definește distanța a_i dintre cele două axe poate fi localizată arbitrar. Dacă cele două axe au o foarte mică abatere de la paralelism,

această distanță poate varia foarte mult ca mărime și poziție, funcție de localizarea ei. Din acest motiv se impune și un parametru extern și anume unghiul β_i , ce definește o rotație a sistemului (*i*) într-un nou sistem (*i*), în jurul axei ν_i . Acest unghi β_i , este determinat de neparalelismul axelor cuplelor de rotație succesive (fig.4.2).

In absența acestui unghi β_i , numit unghi twist, neparalelismul axelor trebuie compensat printr-o modificare artificială a lungimilor a_i și respectiv d_i , chiar dacă acești parametri au fost inițial corecți.

Acest unghi de rotație β_i este folosit doar pentru axele paralele ale cuplelor de rotație succesive. Pentru modelul geometric nominal, desigur, $\beta_i = 0$.

4.3. Erori negeometrice

Așa cum s-a arătat în paragraful anterior, parametri geometrici pot fi afectați de erori în valorile lor nominale (erori de execuție și montaj). Și alte surse de erori sunt însă prezente în structura robotului. Printre acestea, sursele de erori cu efecte semnificative asupra exactității robotului sunt: flexibilitatea cuplei (jocul în cuple), flexibilitatea elementelor de legătură, erori ale rapoartelor de transmitere, bătăi radiale și frontale ale roților dințate și efectul temperaturii. Conform datelor prezentate în literatură, flexibilitatea în cuple și a elementelor de legătură este responsabilă pentru (8÷10)% din eroarea de poziție și orientare a efectorului terminal al robotului. Flexibilitatea elementelor de legătură este decât jocurile în cuple. Erorile rapoartelor de transmitere sunt în general mici în raport cu cele studiate anterior.

Bătăile sunt, se pare, una din cele mai dificil de identificat surse de eroare. Contribuția lor la eroarea globală de situare este, din fericire, foarte mică (0,5÷1)%.

Efectul temperaturii determină dilatări ale structurii mecanice a robotului. Cunoscându-se materialele folosite pentru elementele de legătură ale robotului și coeficienții lor termici de dilatare, se pot determina erorile datorate variațiilor termice. Se estimează în literatură că, aceste erori reprezintă doar 0,1% din eroarea totală.

Din cele expuse mai sus, rezultă faptul că efectul erorilor negeometrice în valoarea erorii totale este destul de mic (sub 10%), și între acestea, ponderea cea mai mare o reprezintă erorile negeometrice datorate flexibilității în cuple (jocuri). Ca atare, în cele ce urmează, în estimarea erorilor efectorului terminal al robotului se iau în considerare doar efectele provocate de abaterile dimensionale ale elementelor, toleranțe de asamblare (erori geometrice) și jocurile în cuple (erori negeometrice).

4.4. Modelarea diferențială a erorilor

Modelul geometric permite determinarea vectorului de situare a efectorului terminal al robotului, ca o funcție de parametri geometrici Hartenberg-Denavit, sub forma generală următoare:

$$x = f(\theta, \alpha, a, d, \beta) \tag{4.5},$$

unde: $\theta, \alpha, a, d, \beta$ sunt vectori R^n , pentru cele *n* cuple ale robotului. Această relație între parametri geometrici este în general neliniară.

In ordinea identificării lor, modelul geometric se liniarizează în jurul unei estimări inițiale $\hat{\theta}, \hat{\alpha}, \hat{a}, \hat{d}, \hat{\beta}$ (parametri nominali) a parametrilor reali $\theta, \alpha, a, d, \beta$

Intrucăt două axe ale unor cuple de rotație succesive sunt presupuse inițial (în modelul geometric nominal) a fi paralele, se alege $\hat{\beta} = 0$, pentru fiecare element *i* al robotului.

Un model diferențial al erorilor se obține astfel:

$$\Delta x = J_{\theta} \cdot \Delta \theta + J_{\alpha} \cdot \Delta a + J_{\alpha} \cdot \Delta a + J_{d} \cdot \Delta d + J_{\beta} \cdot \Delta \beta$$
(4.6),

în care: $\Delta\theta$ este vectorul de eroare a unghiului θ_i (măsurat în cuplele de rotație cu traductoare incrementale de obicei). $\Delta\alpha, \Delta\alpha, \Delta\alpha, \Delta\beta$ sunt vectorii de eroare ai unghiului de torsiune α_i , lungimilor α_i , d_i și unghiului β_i (în cazul cuplelor de translație, d_i este măsurat cu traductoare), și:

$$J_{\theta} = \frac{\partial}{\partial \theta}; \qquad J_{\alpha} = \frac{\partial}{\partial \alpha}; \qquad J_{\alpha} = \frac{\partial}{\partial \alpha}; \qquad J_{\alpha} = \frac{\partial}{\partial \theta}; \qquad J_{\beta} = \frac{\partial}{\partial \beta} \qquad (4.7).$$

Fiecare dintre aceste matrici iacobiene este o matrice de sensibilitate a poziției și orientării efectorului terminal ținând seama de variația parametrilor geometrici tip Hartenberg-Denavit (coeficienți de ponderare). Aceste matrici sunt calculate utilizând valorile nominale ale parametrilor geometrici, $\hat{\theta}, \hat{\alpha}, \hat{a}, \hat{d}, \hat{\beta}$. In general, vectorul J_{θ_i} se poate sorie sub forma:

$$\{J_{\theta_{1}}\} = \left\{ \begin{bmatrix} {}^{0}R_{i-1} \\ {}^{0}R_{i-1} \end{bmatrix} - \left\{ \{{}^{1}z_{i-1}\} \times \{{}^{-1}P_{N}\} \right\} \right\}$$
(4.8),

unde "[]", "{}" şi "x" înseamnă. matrice, vector și produs vectorial; $\begin{bmatrix} a R_{i-1} \end{bmatrix}$ este matricea de rotație a sistemului de axe de coordonate (*i*-1) în raport cu sistemul de coordonate de bază (θ); $\{ {}^{i-1}P_N \}$ este vectorul de poziție al efectorului terminal în raport cu sistemul (*i*-1) și $\{ {}^{i}z_{i-1} \} = \{ 0 \ 0 \ 1 \}^T$ O expresie similară se poate utiliza pentru fiecare matrice jacobiană.

Modelul diferențial al erorilor, dat de relația (4.6), poate fi utilizat în următoarele situații:

a) - pentru o analiză "apriori"; cunoscând proprietățile statistice ale parametrilor geometrici (determinați funcție de toleranțele de prelucrare și montaj), se pot determina erorile de tip $\Delta \theta$, $\Delta \alpha$, Δa , Δd , $\Delta \beta$, precum și matricile J_{θ} , J_{α} , J_{α} , J_{α} , J_{β} utilizând valorile nominale ale parametrilor θ , α , a, d, β . Se determină astfel parametri statistici ai erorii de situare Δx a efectorului terminal, dată de relația (4.6), care caracterizează distribuția erorilor de situare ale efectorului terminal în întreg spațiul de lucru al robotului. Se poate stabili astfel zona din spațiul de lucru cu cele mai mici erori.

 b) - pentru calibrarea unui robot cu o amplasare prestabilită în cadrul aplicației robotizate.

In această situație, se determină prin măsurare cu un sistem oarecare (metode "locale" sau "la distanță") eroarea de situare a efectorului terminal, exprimată generic prin Δx în relația (4.6), se măsoară cu ajutorul unui TIRO deplasările de tip $\Delta \theta_i$ sau Δd_i în articulații și utilizând ca date de intrare în relația de tip (4.6), Δx , $\Delta \theta_i$ (sau Δd_i) precum și valorile nominale $\hat{\theta}, \hat{\alpha}, \hat{a}, \hat{d}, \hat{\beta}$ ale parametrilor geometrici Hartenberg-Denavit, se calculează erorile $\Delta \theta, \Delta \alpha, \Delta \alpha, \Delta d, \Delta \beta$, cu ajutorul cărora se determină parametri geometrici Hartenberg-Denavit reali, corectați, $\theta^*, \alpha^*, \alpha^*, \alpha^*, \beta^*$ prin relații de forma:

 $\theta^* = \hat{\theta} + \Delta \theta, \quad \alpha^* = \hat{\alpha} + \Delta \alpha, \quad a^* = \hat{a} + \Delta \alpha, \quad d^* = \hat{d} + \Delta d, \quad \beta^* = \hat{\beta} + \Delta \beta$ (4.9).

Calculul se face iterativ până la minimizarea erorilor în limitele dorite,

introducând în relația (4.6) noile valori estimate ale parametrilor geometrici de tip Hartenberg-Denavit, θ^* , α^* , α^* , β^*

Se face observația că, parametrul geometric suplimentar β_i poate fi utilizat sau nu în modelul geometric.

In cele ce urmează se analizează influența erorilor geometrice de tip Hartenberg-Denavit, precum și influența erorilor negeometrice generate de jocurilor din cuplele robotului, asupra erorilor de situare ale efectorului său terminal.

Se cunoaște faptul că, pentru a descrie forma și poziția relativă între cuplele adiacente ale unui robot, în metoda matricială, se atribuie câte un sistem de coordonate (xyz), fiecărui element *i* (fig 4.3).

In acest mod, definirea poziției relative a elementului *i* în raport cu elementul *i*-1 se face printr-o matrice de transformări omogene, ${}^{i+1}A_i^N$, definită astfel:

 $^{i-1}A_{i}^{N} = Transl(0,0,d_{i}) \cdot Rot(z,\theta_{i}) \cdot Transl(a_{i},0,0) \cdot Rot(x,\alpha_{i})$ (4.10),

în care d_i , θ_i , a_i , α_i sunt parametri geometrici de tip Hartenberg-Denavit nominali. Indicele superior N indică faptul că este vorba de o matrice de transformare nominală.

Intre parametri nominali enumerați, d_i și θ_i sunt variabili la cuplele de translație, respectiv de rotație.

In general, poziția și orientarea nominală a sistemului de referință atașat

elementului n^{n} al robotului, $(xyz)_{n}$, în raport cu sitsmul de referință de bază, $(xyz)_{0}$, se poate scrie ca un produs de matrici de forma (4-10)

$${}^{\circ}T_{n}^{N}=\prod_{i=1}^{n}A_{i}^{N}$$

$$(4 \ 11)$$

Se subliniază faptul că elementul n^n al robotului este efectorul terminal Relațiile (4.10) și (4.11) descriu o situație ideală (transformări nominale).

ln realitate, datorită erorilor generate de jocuri în cuple și erorilor dimensionale ale elementelor, poziția și orientarea reală a fiecărui element diferă față de cea nominală.

4.4.1. Modelarea erorilor de situare a cfectorului terminal generate de erorile geometrice ale parametrilor de tip Hartenberg-Denavit (HD)

Aşadar, în absența erorilor geometrice, matricea de transformare intre sistemele $\{n\}$ și $\{0\}$ este dată de relația (4.11) în care A_i^N reprezintă matricea nominală tip HD de transformare omogenă între reperele $\{i-1\}$ și $\{i\}$, având forma (pentru cuplele de rotație succesive, de exemplu):

$$A_{i}^{n} = \begin{bmatrix} c\theta_{i} - c\alpha_{i} \cdot s\theta_{i} & s\alpha_{i} \cdot s\theta_{i} & a_{i} \cdot c\theta_{i} \\ s\theta_{i} & c\alpha_{i} \cdot c\theta_{i} & -s\alpha_{i} \cdot c\theta_{i} & a_{i} \cdot s\theta_{i} \\ 0 & s\alpha_{i} & c\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4.12)

in care $s\theta_i$ și $c\theta_i$, respectiv $s\alpha_i$ și $c\alpha_i$ reprezintă: $\sin\theta_i$, $\cos\theta_i$, respectiv $\sin\alpha_i$, $\cos\alpha_i$.

Dacă se ia în considerare parametrul suplimentar β_i , matricea A_i^* , va fi de forma:

$$A_{i}^{n} = \begin{bmatrix} c\theta_{i} \cdot c\beta_{i} - s\theta_{i} \cdot s\alpha_{i} \cdot s\beta_{i} & -s\theta_{i} \cdot c\alpha_{i} & c\theta_{i} \cdot s\beta_{i} + s\theta_{i} \cdot s\alpha_{i} \cdot c\beta_{i} & \alpha_{i} \cdot c\theta_{i} \\ s\theta_{i} \cdot c\beta_{i} + c\theta_{i} \cdot s\alpha_{i} \cdot s\beta_{i} & c\theta_{i} \cdot c\alpha_{i} & s\theta_{i} \cdot s\beta_{i} - c\theta_{i} \cdot s\alpha_{i} \cdot c\beta_{i} & \alpha_{i} \cdot s\theta_{i} \\ -c\alpha_{i} \cdot s\beta_{i} & s\alpha_{i} & c\alpha_{i} \cdot c\beta_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4.13),

Datorită erorilor geometrice de tip HD, notate simbolic cu: $\Delta a_i, \Delta a_i, \Delta d_i, \Delta \theta_i$ (și eventual $\Delta \beta_i$), matricea (4.12), respectiv (4.13) înregistrează o variație elementară dA_i , denumită matricea diferențială de transformare între reperele $\{i-1\}$ și $\{i\}$, de forma:

$$dA_i = \delta A_i \cdot A_i^n \tag{4.14}.$$

unde δA_i este un operator diferențial ale cărui elemente sunt funcții de erorile geometrice Δa_i , Δa_i , Δd_i , $\Delta \theta_i$ (și eventual $\Delta \beta_i$).

Operatorul diferențial δA_j este definit prin matricea:

$$\delta A_{r} = \begin{bmatrix} R_{r}^{e} & P_{r}^{e} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -e_{w}^{e} & e_{w}^{e} & \delta_{w}^{e} \\ e_{w}^{e} & 0 & -e_{w}^{e} & \delta_{w}^{e} \\ -e_{w}^{e} & e_{w}^{e} & 0 & \delta_{w}^{e} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4.15),

în care:

$$P_{\tau}^{e} = \begin{bmatrix} \delta_{w}^{e} & \delta_{w}^{e} & \delta_{z}^{e} \end{bmatrix}^{T}$$

$$e_{e}^{e} = \begin{bmatrix} e_{w}^{e} & e_{w}^{e} & e_{z}^{e} \end{bmatrix}^{T}$$

$$(4.16),$$

cu:

$$e_{x}^{e} = c\theta_{t} \cdot \Delta \alpha_{t}$$

$$e_{y}^{e} = s\theta_{t} \cdot \Delta \alpha_{t}$$

$$e_{z}^{e} = \Delta \theta_{t}$$

$$\delta_{z}^{e} = c\theta_{t} \cdot \Delta \alpha_{t} - d_{t} \cdot s\theta_{t} \cdot \Delta \alpha_{t}$$

$$\delta_{w}^{e} = s\theta_{t} \cdot \Delta \alpha_{t} + d_{t} \cdot c\theta_{t} \cdot \Delta \alpha_{t}$$

$$\delta_{w}^{e} = s\theta_{t} \cdot \Delta \alpha_{t} + d_{t} \cdot c\theta_{t} \cdot \Delta \alpha_{t}$$

$$\delta_{w}^{e} = \Delta d_{t}$$
(4.17),

pentru cazul în care nu se ia în considerare β_i (relația (4.12)), și:

$$e_{\alpha}^{e} = c\theta_{i} \cdot \Delta\alpha_{i} - s\theta_{i} \cdot c\alpha_{i} \cdot \Delta\beta_{i}$$

$$e_{\beta}^{e} = s\theta_{i} \cdot \Delta\alpha_{i} + c\theta_{i} \cdot c\alpha_{i} \cdot \Delta\beta_{i}$$

$$e_{\alpha}^{e} = \Delta\theta_{i} + s\alpha_{i} \cdot \Delta\beta_{i}$$

$$\delta_{\alpha}^{e} = c\theta_{i} \cdot \Delta\alpha_{i} - d_{i} \cdot s\theta_{i} \cdot \Delta\alpha_{i} + (a_{i} \cdot s\theta_{i} \cdot s\alpha_{i} - d_{i} \cdot c\theta_{i} \cdot c\alpha_{i}) \cdot \Delta\beta_{i}$$

$$\delta_{\alpha}^{e} = s\theta_{i} \cdot \Delta\alpha_{i} + d_{i} \cdot c\theta_{i} \cdot \Delta\alpha_{i} - (a_{i} \cdot c\theta_{i} \cdot s\alpha_{i} + d_{i} \cdot s\theta_{i} \cdot c\alpha_{i}) \cdot \Delta\beta_{i}$$

$$\delta_{\alpha}^{e} = \Delta d_{i} + \alpha_{i} \cdot c\alpha_{i} \cdot \Delta\beta_{i}$$
(4.18)

pentru cazul în care se consideră și β (relația (4.13)).

Matricea diferențială a erorilor de situare a efectorului terminal, se exprimă prin relația:

$$\delta T = Transl(dx, dy, dz) \cdot Rot(x, d\lambda) \cdot Rot(y, d\rho) \cdot Rot(z, d\theta)$$
(4.19),

unde: dx, dy, dz - reprezintă componentele vectorului erorii de poziționare a efectorului terminal al robotului;

 $d\lambda$, $d\rho$, $d\theta$ - reprezintă componentele vectorului erorii de orientare a efectorului terminal al robotului.

Modelul diferențial de ordinul întâi (liniar) al erorilor se caracterizează prin ecuația matricială:

$$\delta T' = \begin{bmatrix} 0 & -\delta\theta & \delta\rho & dx \\ \delta\theta & 0 & -\delta\lambda & dy \\ -\delta\rho & \delta\lambda & 0 & dz \\ 0 & 0 & 0 & 1 \end{bmatrix} = \sum_{i=1}^{n} \delta A_{i}$$
(4.20)

In relația (4.20), membrul stâng al ecuației este cunoscut prin măsurarea erorilor de poziție și orientare ale efectorului terminal, E.T., al robotului cu un sistem de măsurare a situării efectorului terminal, iar în membrul drept al ecuației, se cunosc valorile θ_i și d_i afișate de TIRO din articulații. Cu aceste date de intrare, prin identificarea termenilor corespondenți ai matricilor în ecuația (4.20) se determină erorile parametrilor geometrici, $\Delta a_i, \Delta a_i, \Delta \theta_i$ (și eventual $\Delta \beta_i$).

Cu aceste valori se corectează modelul geometric al robotului, obținându-se o diminuare a erorilor de situare a efectorului terminal. Se obține matricea de transformare corectă:

$$A_i^C = A_i^N + dA_i \tag{4.21}.$$

în general se efectuează căteva iterații, până la obținerea preciziei dorite.

4.4.2. Modelarea erorilor de situare a efectorului terminal considerând și erorile negeometrice generate de jocurile în cuple

Eroarea de situare a efectorului terminal al robotului este determinată, pe lângă variația parametrilor geometrici și de imperfecțiunile de ghidare și mișcare în timpul mișcării relative între elementele cuplelor robotului. Aceste erori au o pondere mai mică decât erorile geometrice, în eroarea de situare a efectorului terminal, în jur de $(5 \div 10)$ % Ele pot fi descrise în general de trei componente de translație, $\Delta \mathbf{r}_i, \Delta y_i, \Delta z_i$ a unui punct de referință O_{ii} și trei componente de rotație, $\Delta \Gamma_i, \Delta \Psi_i, \Delta \Phi_i$, ale elementului *i* (fig.4.4 și fig.4.5), pentru cupla de translație, respectiv de rotație.

Matricea de erori A_i^E , care reprezintă efectul total, rezultând din aceste șase componente de erori generate de jocurile în cuple, va fi:

$$A_{i}^{E} = Transl(\Delta \mathbf{x}_{i}, \Delta \mathbf{y}_{i}, \Delta \mathbf{z}_{i}) \cdot Rot(\mathbf{x}, \Delta \Phi_{i}) \cdot Rot(\mathbf{y}, \Delta \Psi_{i}) \cdot Rot(\mathbf{z}, \Delta \Gamma_{i})$$
(4.22),

respectiv

$$A_{i}^{E} = \begin{bmatrix} 1 & -\Delta\Phi_{i} & \Delta\Psi_{i} & \Delta x_{i} \\ \Delta\Phi_{i} & 1 & -\Delta\Gamma_{i} & \Delta y_{i} \\ -\Delta\Psi_{i} & \Delta\Gamma_{i} & 1 & \Delta z_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4.23).

Pentru o cuplă ideală, matricea A_i^E devine matricea unitate.

Astfel, poziția și orientarea reală, corectă a sistemului de referință (xyz), în raport cu sistemul $(xyz)_{i+1}$ (fig.4.3), în prezența erorilor, atât geometrice cât și datorate jocurilor din cuple, este descrisă de matricea reală, corectă, A_i^c , care reprezintă efectele celor două categorii de erori:

 $A_i^{\mathcal{C}} = A_i^{\mathcal{E}} \cdot Transl(0, 0, d_1 + \Delta d_1) \cdot Rot(\boldsymbol{z}_i, \theta_i + \Delta \theta_i) \cdot Transl(\boldsymbol{a}_i + \Delta \boldsymbol{a}_i, 0, 0) \cdot Rot(\boldsymbol{x}_i, \boldsymbol{a}_i + \Delta \boldsymbol{a}_i) \quad (4.24),$

Pe de altă parte, matricea de transformare reală, corectă, A_i^C , între elemente adiacente ale robotului, poate fi exprimată ca sumă între matricea de transformare nominală, A_i^N , care nu include efectele erorilor și matricea de transformare diferențială dA_i , datorată prezenței erorilor:

$$A_{i}^{C} = A_{i}^{N} + dA_{i}$$
 (4.25).

Matricea diferențială de transformare este o funcție de zece erori componente ale elementului *i*, putând fi scrisă astfel:

$$dA_{i} = \frac{\partial A_{i}}{\partial d_{i}} \Delta d_{i} + \frac{\partial A_{i}}{\partial \theta_{i}} \Delta \theta_{i} + \frac{\partial A_{i}}{\partial a_{i}} \Delta \alpha_{i} + \frac{\partial A_{i}}{\partial \alpha_{i}} \Delta \alpha_{i}$$
$$+ \frac{\partial A_{i}}{\partial \Delta x_{i}} \Delta x_{i} + \frac{\partial A_{i}}{\partial \Delta y_{i}} \Delta y_{i} + \frac{\partial A_{i}}{\partial \Delta z_{i}} \Delta z_{i} +$$
$$+ \frac{\partial A_{i}}{\partial \Gamma_{i}} \Delta \Gamma_{i} + \frac{\partial A_{i}}{\partial \Delta \Psi_{i}} \Delta \Psi_{i} + \frac{\partial A_{i}}{\partial \Delta \Phi_{i}} \Delta \Phi_{i}$$
$$(4.26).$$

Derivatele parțiale sunt evaluate pentru parametri geometrici nominali. Definind:

$$\delta A_{i} = dA_{i} \cdot (A_{i}^{N})^{-1} \tag{4.27},$$

matricea diferențială de transformare datorată componentelor de erori geometrice și determinate de jocurile din cuple, între reperele $\{i-1\}$ și $\{i\}$, ecuația (4.25) se poate scrie astfel:

$$A_{i}^{C} = (I + \delta A_{i}) \cdot A_{i}^{N}$$

$$(4.28),$$

în care l este matricea unitate.

Matricea diferențială δA_i , este de forma:

$$\delta A_{i} = \begin{bmatrix} R_{i}^{\mu} & P_{i}^{\mu} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -e_{ii}^{\star} & e_{ij}^{\star} & \delta_{ik}^{\star} \\ e_{ii}^{\star} & 0 & -e_{ik}^{\star} & \delta_{ij}^{\star} \\ -e_{ij}^{\star} & e_{ik}^{\star} & 0 & \delta_{ik}^{\star} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4.29).

In rel (4.29):

$$P_{i}^{c} = \left[\delta_{ix}^{c} - \delta_{ix}^{c}\right]^{T} = m_{i1} \cdot \Delta \alpha_{i} + m_{i2} \cdot \Delta x_{1} + m_{i3} \cdot \Delta y_{i} + m_{i4} \cdot \Delta z_{i} + m_{i5} \cdot \Delta d_{i} + m_{i5} \cdot \Delta a_{i} - (4.30),$$
si

$$e_{w} = \left[e_{w}^{v} - e_{w}^{v} - e_{w}^{v}\right]^{T} = m_{i2} \cdot \Delta \Gamma_{i} + m_{i3} \cdot \Delta \Psi_{i} + m_{i4} \cdot \Delta \Phi_{i} + m_{i4} \cdot \Delta \theta_{i} + m_{i4} \cdot \Delta \alpha_{i} \qquad (4.31),$$

în care:

$$m_{r1} = \begin{bmatrix} -d_{r} \cdot s\theta_{r} & d_{r} \cdot c\theta_{r} & 0 \end{bmatrix}^{T}$$

$$m_{r2} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{T}$$

$$m_{r3} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^{T}$$

$$m_{r4} = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{T}$$

$$m_{r4} = \begin{bmatrix} c\theta_{r} & s\theta_{r} & 0 \end{bmatrix}^{T}$$
(4.32)

cu $s\theta_i$ și $c\theta_i$ reprezentând $\sin\theta_i$, $\cos\theta_i$.

Se observă așadar din relațiile (4.30), (4.31) și (4.32) că elementele matricu δA_i dată de relația (4.29) exprimă atât influiența parametrilor geometrici tip Hartenberg-Denavit, cât și a celor negeometrici (jocurile în cuple).

Având stabilită matricea δA_i în relația (4.29), în continuare se procedează analog cazului prezentat în paragraful 4.4.1, respectiv se determină erorile parametrilor geometrici și negeometrici prin identificarea termenilor corespondenți în relația (4.20), efectuându-se câteva iterații, până la obținerea preciziei dorite

Având în vedere faptul că măsurătorile poziției efectorului terminal, respectiv deplasărilor în cuple, se efectuează pentru mai multe puncte din spațiul de lucru al robotului, sistemul de ecuații obținut este, uneori supradeterminat, ceea ce conduce la obținerea unor soluții aproximative, prin utilizarea metodei celor mai mici pătrate.

4.5. Concluzií

In cele prezentate în capitolul de față s-a avut în vedere ameliorarea performanțelor de situare a efectorului terminal al unui robot industrial, prin calibrarea geometrică (îmbunătățirea modelului geometric). Desigur, un studiu mai complex al acestui aspect privitor la funcționarea unui robot presupune și o calibrare a modelului cinematic, dinamic, al sistemelor de acționare și control, aspecte care însă nu fac obiectul lucrării de față.

Punerea la punct a unei tehnici de măsurare a performanțelor unui robot, cu precădere a celor de situare, constitue însă o bază de date importantă pentru cercetătorii în domeniu, permițându-le aprofundarea cunoștințelor cu privire la modelarea comportamentului roboților.

CAPITOLUL 5

APLICAREA PROBLEMEI DE SITUARE ÎN CAZUL SISTEMELOR DE FABRICAȚIE FLEXIBILĂ ROBOTIZATE

5.1. Considerații generale

Problema realizării unor sisteme de fabricație flexibilă reprezintă aspectul cel mai actual, dar totodată și cel mai dificil al tendinței ce marchează evoluția tehnologică de ultimă oră, în toate ramurile industriale, cu procese discontinue de producție, trecerea la tehnologii flexibile, cu înalt nivel de automatizare.

Roboții industriali și manipulatoarele reprezintă elemente constitutive de bază ale sistemelor flexibile de fabricație datorită, în principal, propriei lor flexibilității, a calității lor de a efectua o mare varietate de mișcări de lucru. Se știe că la baza concepției roboților industriali stă posibilitatea de a compune orice mișcare de lucru, oricât de complicată, dintr-o succesiune de trei tipuri de funcțiuni elementare: "rotație", "translație" și "prehensare". Modelul cel mai general de robot industrial sau manipulator poate fi imaginat ca o combinație spațială de "module de rotație", "module de translație" și un "efector terminal", cu funcție de prehensare sau de sculă de lucru.

Includerea robotului în sistem poate presupune, pe lânga efectuarea sarcinilor specifice de manipulare sau procesare și preluarea altor funcțiuni, spre exemplu funcțiunea de transfer, nemaifiind necesar sistemul de transfer. De asemenea, echipamentul de comandă tipizat al robotului va putea îndeplini și funcțiunile de comandă ale sistemului, nemaifiind nevoie să se recurgă la echipament specific.

Așadar, aspectul de "utilaj tehnologic multifuncțional" al robotului pledează pentru extinderea tehnologiilor robotizate în toate domeniile tehnice și nu numai.

5.2. Problema de situare (poziționare și orientare) în cazul componentelor unui sistem Nexibil robotizat

Proceseie robotizate realizează performanțe bune în situația în care se asigură o compatibilitate maximă între procesul propriu-zis și calitățile robotului utilizat. O optimizare a acestui proces trebuie să aibă în vedere o analiză a factorilor implicați în realizarea ansamblului proces de lucru-robot, printre care, în mod special, analiza caracteristicilor de situare (poziționare și orientare) ale componentelor sistemului robotizat, în scopul determinării erorilor de situare relativă ale componentelor și minimizării acestor erori prin calibrarea componentelor sistemului, desigur, în limitele posibilităților sistemului de comandă al celulei flexibile.

Spre exemplu, accesibilitatea robotului este legată de capacitatea acestuia de a lucra în interiorul unor spații delimitate sau într-o ambianță cu un relief foarte variat. În aceste situații, este de multe ori necesar nu numai să se programeze poziția și orientarea efectorului terminal al robotului, ci și să se efectueze verificarea detaliată, în diverse puncte ale traiectoriei, a acestor caracteristici, în vederea evitării coliziunilor dintre părțile mobile ale robotului și obiectele din mediul ambiant.

De asemenea, în sistemele flexibile de montaj, în cazul procesului de cuplare piesă-contrapiesă, atât etapa de așezare cât și etapa de inserție a componentelor presupun obținerea unui nivel admisibil al forțelor de interacțiune, în vederea evitării deteriorării elementelor din lanțurile de acționare ale robotului și a gripajului pieselor asamblate, cu respectarea condițiilor geometrice impuse.

Calitativ, forțele de interacțiune nedorite apar ca efect al erorilor de poziție și, mai puțin, de viteză, în raport cu valorile de referință. Valorile forțelor de interacțiune cresc la mărirea erorilor de poziție, conform unei dependențe, în general neliniare, funcție de caracteristicile de rigiditate ale elementelor și soluțiile constructive de acționare mecanică. Situația este similară în cazul erorilor inerente de formă ale reperelor asamblate, înscrise în câmpurile de toleranțe prescrise.

Caracteristica de deformație elastică a structurii de manipulare, sub efectul forțelor de interacțiune care intervin la apariția erorilor de poziționare, în raport cu poziția teoretică, ideală, de referință, este denumită în mod curent "complianță".

Apare astfel ca necesară punerea în concordanță a complianței structurii

mecanice cu precizia robotului industrial, astfel încât forțele de interacțiune în procesele de cuplare să rămână într-un domeniu admisibil.

Dar, în procesul de lucru, robotul conlucrează cu subansamble mobile ale elementelor componente ale celulei de fabricație flexibilă robotizate, care, la rândul lor introduc erori de situare (poziționare și orientare).

Rezultă așadar necesitatea de a determina aceste erori de situare ale componentelor celulei și, desigur, ale robotului implicat în proces, în scopul minimizării acestora prin calibrarea componentelor și a robotului, în vederea asigurării concordanței amintite mai sus.

De asemenea, în cazul unei celule flexibile de preiucrări mecanice, erorile de situare (poziționare și orientare) ale robotului ce deservește celula, precum și a subansamblelor mobile ale componentelor acesteia, se reflectă, în ultimă instanță, asupra preciziei de prelucrare a piesei. Apare astfel necesitatea determinării caracteristicilor de situare ale componentelor celulei în scopul creșterii preciziei de prelucrare, prin introducerea corecțiilor necesare în programarea componentelor celulei.

5.2.1. Determinarea erorilor de situare (poziționare și orientare) în cazul unei celule de fabricație flexibilă robotizată.

Având în vedere considerentele expuse mai sus, în capitolul de față se încearcă punerea la punct a unei metodologii generale de stabilire a matricilor de erori de situare pentru componentele unei celule de fabricație flexibilă robotizată.

Se consideră, în acest scop, o celulă de prelucrări mecanice, deservită de un robot (fig.5.1), având următoarea configurație: robotul R, deservind mașina unealtă M, paleta P_1 , pe care se află depozitate piesele ce urmează a fi prelucrate (semifabricatele), paleta P_2 , pe care se depozitează piesele finite. Robotul R preia semifabricatul de pe paleta P_1 , îl depune în dispozitivul de lucru D, aflat pe masa, m, a mașinii M; are loc apoi prelucrarea semifabricatului, după care robotul R preia piesa din dispozitivul D și o transportă pe paleta de piese finite, P_2 .

Așadar, în timpul unui ciclu, robotul R deservește trei posturi de lucru;paleta P_1 , mașina - unealtă M și paleta P_2 . Ca urmare, efectorul său terminal se situează în trei poziții diferite, punctul caracteristic al său (P.C.) ocupând trei poziții diferite, P.C.; (i= 1,2,3,).

Pe parcursul unui ciclu de lucru, componentele mobile ale celulei (în situația de față robotul R), precum și subansamblele mobile ale unor componente (în cazul dat cele ale mașinii unelte M), își realizează deplasările cu anumite erori, cauzate de o multitudine de factori, erori care pot fi atât de natură sistematică, cât și de natură aleatorie, erori care influențează, în ultimă instanță, precizia de prelucrare a piesei. Cunoașterea mărimii acestor erori este absolut necesară în scopul minimizării lor prin introducerea corecțiilor necesare în modelul geometric al robotului și al mașinii-unelte, la programarea acestora, și realizarea, în acest mod, a compatibilității cu câmpul de toleranțe admis pentru piesa ce urmează a fi prelucrată.

Pentru exprimarea matematică a problemei, se admite un sistem de referință fix, atașat halei, $O_0 x_0 y_0 z_0$, precum și câte un sistem de referință atașat fiecărei componente a celulei și anume (fig.5.2):

 $-O_R, x_R, y_R, z_R$ - ataşat robotului R;

- $O_{P_1}, x_{P_2}, y_{P_3}, z_{P_3}$ - ataşat paletei P_1 ;

- O_m, x_m, y_m, z_m - atașat masei *m*, a mașinii-unealtă;

- O_D , x_D , y_D , z_D - ataşat dispozitivului de lucru D;

- O_M , x_M , y_M , z_M - ataşat capului de lucru al maşinii-unealtă;

- O_b , x_b , y_b , z_b - ataşat batiului maşinii-uncaltă;

- O_s, x_s, y_s, z_s - ataşat sculei;

! - $O_{P_1}, x_{P_2}, y_{P_1}, z_{P_1}$ - ataşat paletei P_2 .

Se menționează faptul că s-a admis această modalitate de exprimare, având în vedere recomandările privind proiectarea "layout"-ului unei celule de fabricație flexibilă robotizate, în cadrul căreia, determinarea situărilor relative ale elementelor componente ale celulei se face în raport cu un sistem de referință fix, legat de hală [K3].

Această modalitate de exprimare a situării, și implicit a erorilor de situare, se află în concordanță și cu metodologia de determinare a exactității și repetabilității de situare la roboți industriali, atât în contextul metodelor "locale", cât și a celor "la distanță".

Fig. 5.2 evidențiază alegerea sistemelor de referință, precum și ansamblul de transformari raportate la $O_0 x_0 y_0 z_0$.

5.2.1.1. Determinarea erorilor de situare în postul de lucru (1)

În postul de lucru 1, robotul R preia semifabricatul de pe paleta P_1 . Semifabricatul se află pe paletă în poziția definită de sistemul de axe $O_1x_1y_1z_1$ (fig.5.2 și fig.5.3), poziție în care robotul R trebuie să preia semifabricatul. În realitate însă punctul caracteristic al robotului nu atinge poziția ideală $O_1x_1y_1z_1$, ci poziția reală $O_{PC_1}x_{PC_1}y_{PC_2}z_{PC_1}$, deci apare o eroare de situare. Ansamblul de transformări în raport cu referința de bază $O_0x_0y_0z_0$ (fig.5.3) are loc după următoarea schemă:

în care∶

$${}^{0}T_{R} \cdot {}^{r_{1}}T_{1} = {}^{0}T_{1}$$
 (5.2),

$${}^{o}T_{R}{}^{R}T_{PC_{1}} = {}^{o}T_{PC_{1}}$$
(5.3),

⁶ T_1 - exprimând transformarea între referința $O_0 x_0 y_0 z_0$ și poziția ideală $O_1 x_1 y_1 z_1$ a semifabricatului pe paleta P_1 ;

 ${}^{0}T_{PC_{1}}$ - exprimand transformarea între referința $O_{0}x_{0}y_{0}z_{0}$ și poziția reală a P.C. al robotului, $O_{PC_{1}}x_{PC_{2}}y_{PC_{1}}z_{PC_{1}}$.

Se observă că:

$${}^{0}T_{PC_{1}} - {}^{0}T_{1} = {}^{PC_{1}}T_{1} \quad (E_{PC_{1}})$$
(5.4),

în care ${}^{pc_1}T_1$ - reprezintă transformarea între poziția ideală și cea reală a P.C. al robotului, transformare care exprimă incapacitatea robotului de a situa efectorul său terminal în poziția ideală, comandată, sau cu alte cuvinte eroarea de situare a robotului, definind exactitatea lui de situare.

Aceste transformări $P_{i}T_{i}$ îi corespunde așadar matricea erorilor de situare corespunzătoare postului de lucru 1, $E_{PC_{i}}$, care are următoarea formă:

$$\frac{E_{PC_1}}{\binom{PC_1}{PC_1}T_1} = \begin{vmatrix} n_{x_{PC_1}} - n_{x_1} & o_{x_{PC_1}} - o_{x_1} & a_{x_{PC_1}} - a_{x_1} & x_{PC_1} - x_1 \\ n_{y_{PC_1}} - n_{y_1} & o_{y_{PC_1}} - o_{y_1} & a_{y_{PC_1}} - a_{y_1} \\ n_{y_{PC_1}} - n_{y_1} & o_{y_{PC_1}} - o_{y_1} & a_{y_{PC_1}} - a_{y_1} \\ n_{y_{PC_1}} - n_{y_1} & o_{y_{PC_1}} - a_{y_1} & z_{PC_1} - z_1 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.5)

Particularizāri

a) Preluarea semifabricatului de pe paletă fixă (fig.5.3)

In acest caz, transformarea:

$${}^{0}T_{u} = {}^{0}T_{P_{u}} \cdot {}^{P_{u}}T_{1} = ct.$$
(5.6),

pentru o anumită poziție, *i*, a semifabricatului pe paletă. Fiecărei poziții, *i*, de pe paletă îi corespunde o matrice de erori, E_{PC_u} , de forma (5.5). Așadar, pentru postul de lucru 1, E_{PC_u} este variabilă. Cundașterea matricii erorilor de situare, E_{PC_u} este importantă, permițând reducerea acestor erori prin calibrarea robotului în postul (1) în limitele complianței admise a acestuia. Desigur, această operațiune este posibilă în postul (1) la valoarea E_{PC_u} .

b) Preluarea semifabricatului de pe un conveior, C_1 (fig.5.4)

În această situație, preluarea semifabricatului de către robot, de pe conveior se face în aceeași poziție, $O_1x_1y_1z_1$, poziție care însă este realizată de conveior cu o anumită eroare de indexare, E_{C_1} . Ansamblul de transformări, în această situație, se prezintă sub forma:

În schema de mai sus, s-a notat cu $O_{c_c} x_{c_b} y_{c_b} z_{c_b}$ poziția ideală (comandată) de

indexare a conveiorului și cu $O_{c_1} x_{c_2} y_{c_1} z_{c_1}$, poziția reală a conveiorului, poziție din care robotul preia semifabricatul.

Aşadar:

$${}^{\circ}T_{c_{0}} - {}^{\circ}T_{c_{1}} = {}^{c_{0}}T_{c_{1}}(E_{c_{1}})$$
(5.8),

transformarea $c_{*}T_{c_{1}}$ exprimând incapacitatea conveiorului de a se situa în poziția ideală, deci eroarea de situare a acestuia. Transformării $c_{*}T_{c_{1}}$ îi corespunde așadar, matricea erorilor de situare ale conveiorului, $E_{c_{1}}$, de forma:

$$\frac{E_{C_1}}{\binom{C_0}{T_{C_1}}} = \begin{vmatrix} n_{x_{c_1}} & o_{x_{c_0}} - o_{x_{c_1}} & a_{x_{c_0}} - a_{x_{c_1}} & x_{C_0} - x_{C_1} \\ n_{y_{c_0}} - n_{y_{c_1}} & o_{y_{c_0}} - o_{y_{c_1}} & a_{y_{c_0}} - a_{y_{c_1}} & y_{C_0} - y_{C_1} \\ n_{z_{c_0}} - n_{z_{c_1}} & o_{x_{c_0}} - o_{z_{c_1}} & a_{z_{c_0}} - a_{z_{c_1}} & z_{C_0} - z_{C_1} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.9).

Cunoașterea matricii E_{c_i} permite reducerea erorii de situare a conveiului, prin calibrarea acestuia, intervenind cu corecțiile necesare în comanda conveiorului.

În ceea ce privește matricea erorilor de situare $E_{P_{c_1}}$, se determină analog situației prezentate la cazul a), având forma dată de relația (5.5).

c) Preluarea semifabricatului de pe robocar, r

Problema se tratează analog cazului b). Preluarea semifabricatului de pe robocar se face în aceeași poziție, ideală, comandată, de situare a robocarului, $O_n x_n y_n z_n$, poziție realizată de robocar cu o anumită eroare, E_r , rezultată din faptul că el se situează într-o poziție reală, $O_n x_n y_n z_n$ diferită de poziția ideală, comandată $O_n x_n y_n z_n$ (fig.5.5).

Ansamblul de transformări puse în evidență în fig.5.5, se prezintă sub forma:

Deci, transformarea:

 ${}^{b}T_{r_{0}} - {}^{b}T_{r_{1}} = {}^{r_{0}}T_{r_{1}} (E_{r_{1}})$ (5.11),

exprimă incapacitatea robocarului de a se situa în poziția comandată, $O_{a_{1}}x_{a_{2}}y_{a_{3}}z_{a_{3}}$ deci eroarea de situare a acestuia, exprimată printr-o matrice de forma:

$$\frac{E_r}{(^{\prime}T_r)} = \begin{vmatrix} n_{x_n} - n_{x_n} & o_{x_n} - o_{x_n} & a_{x_n} - a_{x_n} & x_n - x_n \\ n_{y_n} - n_{y_n} & o_{y_n} - o_{y_n} & a_{y_n} - a_{y_n} & y_n - y_n \\ n_{z_n} - n_{z_n} & o_{z_n} - o_{z_n} & a_{z_n} - a_{z_n} & z_n - z_n \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.12)

Determinarea elementelor matricii E, permite reducerea erorii de situare a

robocarului, E_c , prin calibrarea acestuia, intervenind cu corecțiile necesare, în programul de comandă al robotului.

Matricea erorilor de situare E_{PC_1} se determina printr-o relație de forma (5.5) analog cazurilor a) și b)

5.2.1.2. Determinarea erorilor de situare în postul de lucru 2

In acest post de lucru, existența mai multor subansamble mobile ale mașinii unelte (masă, dispozitiv, cap mașină), generează mai multe categorii de erori de situare, specifice fiecărui subansamblu mobil la care se adaugă, desigur erorile de situare ale robotului, la depunerea piesei în dispozitiv, precum și la preluarea acesteia din dispozitiv. Evidențierea acestor categorii de erori face posibilă intervenția asupra diferitelor componente, în vederea diminuării acestor erori, care influențează în final eroarea de prelucrare a piesei

Apare așadar ca necesară micșorarea acestor erori în limita câmpului de toleranță admis pentru piesa respectivă.

1. Determinarea erorilor de situare a piesei in dispozitivul de lucru.

Pornind de la considerentul că robotul R așează piesa de prelucrat în dispozitivul de lucru D, care la rândul lui se află amplasat pe un subansamblu în mișcare, masa mașinii m, în această această secvență se pot decela trei tipuri de erori: erori de poziționare ale mesei mașinii, E_m , erori de fixare a piesei în dispozitiv, E_D și erori de situare de către robot a piesei în dispozitivul de lucru, E_{PC_n} , conform fig. 5.6.

Pentru a pune în evidență erorile de tip E_m și E_D , se acceptă un sistem de referință legat de batiul mașinii unelte, $O_b x_b y_b z_b$, sistem ce poziționează mașina în raport cu referința fixă a halei, $O_0 x_0 y_0 z_0$.

Ansamblul de transformāri evidențiate mai sus, are loc după următoarea schemă generală:

In batiul de transformări de mai sus, s-au acceptat următoarele notații: $O_{m_0} x_{m_0} y_{m_0} z_{m_0}$ - poziția comandată (ideală) a mesei mașinii;

 $O_{m_{1}}x_{m_{1}}y_{m_{2}}z_{m_{1}}$ - poziția reală (efectivă) a mesei mașinii;

 $O_{D_c} \mathbf{x}_{D_b} \mathbf{y}_{D_c} \mathbf{z}_{D_c}$ - poziția comandată a dispozitivului;

 $O_{D_i} x_{D_i} y_{D_i} z_{D_i}$ - poziția reală a dispozitivului, poziție în care robotul trebuie să depună piesa;

 $O_{PC_2} x_{PC_2} y_{PC_2} z_{PC_2}$ - poziția efectivă a P.C. al robotului (poziție efectivă în care robotul așează piesa în dispozitiv).

Să analizăm pe rând cele trei categorii de erori ce apar la această secvență de lucru.

a) Determinarea erorii de poziționare a mesei mașinii, E_m (fig.5.7)

Apare ca diferență între poziția comandată pentru poziționarea mesei, $O_m x_m y_m z_m$ și poziția reală, $O_m x_m y_m z_m$, conform transformării următoare:

Aceste erori sunt generate de imprecizii ale lanțului cinematic de acționare a mesei mașinii, de imprecizii ale sistemului de acționare, de erori în programarea mișcărilor mesei etc.

In lanțul de transformări (5.14), ${}^{n}T_{b} = ct$, respectiv ${}^{b}T_{m_{0}} = ct$. Dar ${}^{m_{0}}T_{m_{1}} = var$., deci și:

$${}^{b}T_{m_{0}} = {}^{b}T_{m_{0}} \cdot {}^{m_{0}}T_{m_{1}} = \text{var}.$$
(5.15),

Matricea erorilor de situare a mesei mașinii, sub forma ei generală, este dată de:

$$\frac{E_{m}}{\binom{m_{v}}{m_{m}}} \stackrel{=}{=} \frac{n_{x_{m}} - n_{x_{m}} - o_{x_{m}} - a_{x_{m}} - a_{x_{m}} - x_{m}}{n_{y_{m}} - n_{y_{m}} - o_{y_{m}} - o_{y_{m}} - a_{y_{m}} - y_{m}} - y_{m}} = \frac{1}{2} \frac{n_{y_{m}} - n_{y_{m}} - o_{y_{m}} - a_{y_{m}} - a_{y_{m}} - y_{m}}{n_{z_{m}} - n_{z_{m}} - n_{z_{m}} - a_{z_{m}} - a_{z_{m}} - z_{m}}} = \frac{1}{2} \frac{1$$

Determinarea elementelor matricii E_m permite reducerea erorilor de situare a mesei prin introducerea corecțiilor necesare în comanda lanțului

cinematic de acționare a mesei mașinii.

b) Determinarea erorii de fixare a dispozitivului, E_d (fig.5.8)

Apare ca diferență între poziția ideală a piesei în dispozitiv, $O_{D_0}x_{D_0}y_{D_0}z_{D_1}$ și poziția efectivă, reală, $O_{D_1}x_{D_1}y_{D_1}z_{D_1}$, evidențiată de următoarele transformări:

$$O_{a}x_{a}y_{b}z_{a} \xrightarrow{\circ_{T_{b}}} O_{b}x_{b}y_{b}z_{b} \xrightarrow{*_{T_{m_{0}}}} O_{m_{0}}x_{m_{0}}y_{m_{0}}z_{m_{0}} \xrightarrow{*_{T_{m_{0}}}} O_{m_{1}}x_{m_{1}}y_{m_{1}}z_{m_{1}} \rightarrow$$

Respectivele transformări sunt arătate în fig.5.8

Această categorie de erori este generată de imprecizii in execuția dispozitivului, în situarea acestuia pe masa mașinii unelte imprecizii în execuția și comanda sistemului de acționare automată a dispozitivului de lucru etc.

In langul de transformare (5.17) " $T_b = ct$, " $T_{m_b} = ct$, " $T_{m_b} = var$, " $T_{D_b} = var$. (in

raport cu $O_0 x_0 y_0 z_0$, dar constant în raport cu $O_m x_m y_m z_m$), $P_0 T_{D_0} = var_0$, deci și:

$$^{a_{i}}T_{D_{i}} = {}^{a_{i}}T_{D_{0}} \cdot {}^{D_{0}}T_{D_{i}} = var.$$
 (5.18).

Transformarea ${}^{D_u}T_{D_1}$ corespunde matricii erorilor de fixare a piesei în dispozitiv, E_d , exprimând incapacitatea dispozitivului de a situa piesa în poziția comandată, și are forma:

$$\frac{E_{d}}{\binom{p_{0}}{p_{0}}} = \begin{vmatrix} n_{x_{D_{0}}} - n_{x_{D_{0}}} & o_{x_{D_{0}}} - o_{x_{D_{1}}} & a_{x_{D_{0}}} - a_{x_{D_{1}}} & x_{D_{0}} - x_{D_{1}} \\ n_{y_{D_{1}}} - n_{y_{D_{1}}} & o_{y_{D_{0}}} - o_{y_{D_{1}}} & a_{y_{D_{0}}} - a_{y_{D_{1}}} & y_{D_{0}} - y_{D_{1}} \\ n_{z_{D_{0}}} - n_{z_{D_{1}}} & o_{z_{D_{1}}} - o_{z_{D_{1}}} & a_{z_{D_{0}}} - z_{D_{1}} \\ n_{z_{D_{0}}} - n_{z_{D_{1}}} & o_{z_{D_{0}}} - a_{z_{D_{1}}} & z_{D_{0}} - z_{D_{1}} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.19).

Eroarea E_d poate fi compensată prin acționarea asupra dispozitivului, fie asupra sistemului de acționare, fie prin introducerea corecțiilor corespunzătoare în secțiunea de program de comandă al celulei, aferent dispozitivului de lucru.

c) Determinarea erorii de situare a piesei de către robot în dispozitiv, E_{PC}, (fig.5.9)

Este determinată de imprecizia elementelor componente ale lanțului cinematic al mecanismului generator de traiectorie al robotului ce deservește mașina unealtă, precum și de o multitudine de alți factori, puși în evidență în capitolele anterioare.

Ansamblul de transformări ce pune în evidență această eroare este de forma:

$$\rightarrow \xrightarrow{\circ_{T_R}} O_R x_R y_R z_R \xrightarrow{\sim_{T_{R_2}}} O_{PC_1} x_{PC_2} y_{PC_1} z_{PC_2} - \cdots$$

Transformarea ${}^{PC_2}T_{D_1}$ corespunde matricii erorii de situare a piesei de către robot în dispozitiv, E_{PC_2} , exprimând incapacitatea robotului de a situa piesa în dispozitiv în poziția comandată $O_{D_1}x_{D_1}y_{D_1}z_{D_1}$ și are forma:

$$\frac{E_{PC_2}}{\binom{PC_2}{r_{D_1}}} = \begin{vmatrix} n_{x_{R_1}} - n_{x_{R_2}} & o_{y_{R_1}} - o_{x_{R_2}} & a_{x_{R_1}} - a_{x_{R_2}} & x_{D_1} - x_{PC_2} \\ n_{y_{R_1}} - n_{y_{R_2}} & o_{y_{D_1}} - o_{y_{R_2}} & a_{y_{R_1}} - a_{y_{R_2}} & y_{D_1} - y_{PC_2} \\ n_{z_{R_1}} - n_{z_{RC_2}} & o_{z_{R_1}} - o_{z_{R_2}} & a_{z_{R_1}} - a_{z_{R_2}} & z_{D_1} - z_{PC_2} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.21).

Eroarea E_{PC_2} poate fi compensată în două moduri:

- fie acționând asupra robotului (calibrarea robotului);

- fie acționând asupra mesei mașinii (E_m) și asupra dispozitivului (E_d) (calibrarea lanțului cinematic de poziționare a mesei și calibrarea dispozitivului).

Există posibilitatea ca această eroare E_{pc_2} să fie corectată eventual numai de către dispozitiv (compensată de E_d).

2) Determinarea erorii de situare a capului de lucru al mașinii unelte, E_{μ} (fig.5.10)

Această eroare apare ca diferență între poziția comandată (ideală) a capului mașinii în vederea prelucrării piesei fixate în dispozitivul de lucru, $O_{M_0}x_{M_0}y_{M_0}z_{M_0}$, și poziția reală (efectivă) $O_{M_1}x_{M_1}y_{M_1}z_{M_1}$, a acestuia .

Ansamblul de transformări care pune în evidența această eroare este:

Erorile de tip E_{kr} pot fi generate de imprecizii ale lanțului cinematic de acționare a capului mașinii, imprecizii ale sistemului de acționare a capului mașinii, imprecizii ale sistemului de comandă sau erori de programare ale mișcării capului mașinii etc. In lantul de transformari (5.22), " $T_b \approx ct$, " $T_{M_b} = ct$, " $M_b T_{M_b} = var$. Ca urmare și:

$$^{h}T_{M_{h}} = ^{h}T_{M_{h}} \cdot ^{M_{h}}T_{M_{h}} = \text{var.}$$
 (5.23).

Matricea de erori, E_{M} corespunzătoare transformării ${}^{M_0}T_{M_1}$ exprimând incapacitatea capului mașinii de a se situa (indexa) în poziția comandată $O_{M_0}x_{M_0}y_{M_0}z_{M_0}$, are forma:

$$\frac{E_{M}}{\binom{M_{0}}{T_{M_{1}}}} = \begin{vmatrix} n_{x_{M_{0}}} - n_{x_{M_{0}}} & \sigma_{x_{M_{0}}} - \sigma_{x_{M_{0}}} & a_{x_{M_{0}}} - a_{x_{M_{0}}} & x_{M_{0}} - x_{M_{1}} \\ n_{y_{M_{0}}} - n_{y_{M_{0}}} & \sigma_{y_{M_{0}}} - \sigma_{y_{M_{0}}} & a_{y_{M_{0}}} - a_{y_{M_{0}}} & y_{M_{0}} - y_{M_{1}} \\ n_{z_{M_{0}}} - n_{z_{M_{1}}} & \sigma_{z_{M_{0}}} - \sigma_{z_{M_{1}}} & a_{z_{M_{0}}} - a_{z_{M_{1}}} & z_{M_{0}} - z_{M_{1}} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.24).

Compensarea erorii definite de matricea E_M se poate realiza prin calibrarea lanțului cinematic de acționare a capului de lucru al mașinii unelte.

3. Determinarea erorii de fixare a sculei în capul mașinii, E_s (fig.5.11)

Eroarea E_s este determinată de diferența dintre poziția comandată a sculei, $O_{s_n}x_{s_n}y_{s_n}z_{s_n}$ și poziția reală, efectivă a sculei, $O_{s_n}x_{s_n}y_{s_n}z_{s_n}$ și este evidențiată de ansamblul de transformări:

Erorile de tip E_s sunt determinate de imprecizii de proiectare și execuție ale dispozitivului de fixare a sculei, de imprecizii de situare a dispozitivului, respectiv în capul mașinii și de imprecizii de fixare a sculei în dispozitiv, dar și de eroarea de indexare a capului de lucru al mașinii, E_M .

Transformării ^s T_{s_i} îi corespunde matricea erorii de fixare a sculei, E_s , de forma:

$$\frac{E_{s}}{\binom{s_{s_{1}}}{s_{1}} = \binom{n_{x_{3}}}{n_{y_{3}}} = \binom{n_{x_{3}}}{n_{y_{3}}} = \binom{n_{x_{3}}}{s_{1}} = \binom{n_{x_{3}}}{n_{y_{3}}} = \binom{n_{x_{3}}}{s_{2}} = \binom{n_{x_{3}}}{s_{3}} $

Matricea E_s poate fi, eventual, compensată prin acționare asupra dispozitivului de fixare a sculei în capul de lucru al mașinii sau intervenind asupra lui E_M .

4. Determinarea erorii de prelucrare a piesei fixate în dispozitiv, E_p (fig.5.12)

Această eroare este generată de diferența între poziția efectivă a piesei fixate în dispozitivul de lucru $O_{D_i} x_{D_i} y_{D_i} z_{D_i}$ și poziția efectivă a sculei, fixată în capul de lucru al mașinii, $O_{s_i} x_{s_i} y_{s_i} z_{s_i}$ și corespunde unei succesiuni de transformări, după cum urmează:

$$\begin{array}{c} \xrightarrow{k_{T}} O_{M_{0}} x_{M_{0}} y_{M_{0}} z_{M_{0}} & \xrightarrow{M_{0}} T_{M_{1}} - (E_{M})}{\downarrow} & \downarrow & \uparrow \\ \uparrow & \downarrow & \uparrow & \uparrow \\ \uparrow & \downarrow & \downarrow & \uparrow \\ O_{\alpha} x_{\alpha} y_{\alpha} z_{\alpha} & \xrightarrow{w_{T_{0}}} O_{k} x_{b} y_{b} z_{b} & \xrightarrow{k_{T_{M_{1}}}} O_{M_{1}} x_{M_{1}} y_{M_{1}} z_{M_{1}} & \xrightarrow{M_{1}} T_{S_{0}} \rightarrow O_{S_{1}} x_{S_{1}} y_{S_{1}} z_{S_{1}} & \uparrow \\ \downarrow & \downarrow & \downarrow & \downarrow & \uparrow \\ \downarrow & \downarrow & \downarrow & \uparrow \\ \downarrow & \downarrow & \downarrow & \uparrow \\ \downarrow & \downarrow & \xrightarrow{w_{T_{S_{0}}}} O_{S_{0}} x_{S_{0}} y_{S_{0}} z_{S_{0}} & \xrightarrow{s_{0}} T_{S_{0}} \rightarrow \\ \downarrow & \downarrow & \xrightarrow{w_{T_{S_{0}}}} O_{D_{0}} x_{D_{0}} y_{D_{0}} z_{D_{0}} & \xrightarrow{s_{0}} T_{S_{0}} \rightarrow \\ \downarrow & \downarrow & \uparrow & \uparrow \\ \downarrow & \xrightarrow{r_{T_{m}}} O_{m_{0}} x_{m_{0}} y_{m_{0}} z_{m_{0}} & \xrightarrow{m_{0}} T_{m_{0}} z_{D_{0}} & \uparrow \\ \downarrow & \xrightarrow{r_{T_{m}}} O_{R_{0}} x_{m_{0}} y_{m_{0}} z_{m_{0}} & \uparrow \\ \downarrow & \xrightarrow{r_{T_{m}}} O_{R_{0}} x_{m_{0}} y_{m_{0}} z_{m_{0}} & \xrightarrow{m_{0}} T_{R_{0}} & \uparrow \\ \downarrow & \xrightarrow{r_{T_{m}}} O_{R_{0}} x_{m_{0}} y_{m_{0}} z_{m_{0}} & \xrightarrow{m_{0}} \uparrow \\ \downarrow & \xrightarrow{r_{T_{m}}} O_{R_{0}} x_{R_{0}} y_{R_{0}} z_{R_{0}} & \xrightarrow{m_{0}} f_{R_{0}} z_{R_{0}} & \uparrow \\ \downarrow & \xrightarrow{r_{T_{m}}} O_{R_{0}} x_{R_{0}} y_{R_{0}} z_{R_{0}} & \xrightarrow{m_{0}} f_{R_{0}} z_{R_{0}} $

Așadar, eroarea de prelucrare E_p , este determinată de:

- eroarea de situare a mesei masinii, E_{σ} ;

- eroarea de fixare a piesei în dispozitiv, E_d ;

- eroarea de așezare a piesei de către robot în dispozitiv, E_{PC_1} :

- eroarea de situare a capului de lucru al mașinii, E_{M} ;

- eroarea de fixare a sculei în capul de lucru al mașinii, E_s .

Apare ca necesară micșorarea erorii E_p , în vederea încadrării ei în câmpul de toleranțe admis pentru piesa ce se prelucrează. Aceasta se realizează prin:

- calibrarea lanțului cinematic de poziționare a mesei mașinii (compensarea erorii E_{π});

- calibrarea dispozitivului (compensarea erorii E_d);

- calibrarea lanțului cinematic de acționare a capului de lucru al mașinii (compensarea erorii E_M);

-calibrarea robotului (compensarea erorii E_{PC_2})

-calibrarea dispozitivului de fixare a sculei în capul de lucru al mașinii (compensarea erorii E_s).

Matricea erorii de prelucrare, E_p , este de forma:

$$\frac{E_{p}}{\binom{D_{1}}{T_{S_{1}}}} = \begin{vmatrix} n_{x_{S_{1}}} & -n_{x_{S_{1}}} & -\sigma_{x_{S_{1}}} & a_{x_{D_{1}}} - a_{x_{S_{1}}} & x_{D_{1}} - x_{S_{1}} \\ n_{y_{D_{1}}} & -n_{y_{S_{1}}} & \sigma_{y_{D_{1}}} - \sigma_{y_{S_{1}}} & a_{y_{D_{1}}} - x_{S_{1}} \\ n_{z_{D_{1}}} - n_{z_{S_{1}}} & \sigma_{z_{D_{1}}} - \sigma_{z_{S_{1}}} & a_{z_{D_{1}}} - z_{S_{1}} \\ n_{z_{D_{1}}} - n_{z_{S_{1}}} & \sigma_{z_{D_{1}}} - \sigma_{z_{S_{1}}} & z_{D_{1}} - z_{S_{1}} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.28).

Prin procesul de calibrare aferent acestei secvențe, se urmărește obținerea compatibilității între ordinul de mărime al termenilor matricii (5.28) și câmpul de toleranțe al piesei ce se prelucrează.

5) Determinarea erorii de preluare a piesei din dispozitiv, de către robot, E_{PCC} , (fig.5.13)

După prelucrarea piesei în postul de lucru 2, aceasta este preluată de către robot și transportată pe paleta P_2 de piese finite. Preluarea piesei din dispozitiv se face cu o anumită eroare, E_{PC_1} , generată de diferența între poziția inițială, comandată, în care trebuie să ajungă P.C. al robotului, $O_{D_1}x_{D_1}y_{D_1}z_{D_1}$ și poziția reală atinsă de acesta, $O_{PC_1}x_{PC_2}y_{PC_2}z_{PC_3}$, (fig.5.13).

Lanțul de transformări care evidențiază acestă eroare, este de forma:

$$O_{\nu}x_{\rho}y_{\rho}z_{\rho} \xrightarrow{b_{T_{k}}} O_{b}x_{b}y_{b}z_{b} \xrightarrow{b_{T_{M_{1}}}} O_{M_{1}}x_{M_{1}}y_{M_{1}}z_{M_{1}} \xrightarrow{m_{T_{M_{1}}}} O_{\nu_{1}}x_{D_{1}}y_{D_{1}}z_{D_{1}} \leftarrow \downarrow \qquad \uparrow \qquad (5.29),$$

$$\xrightarrow{b_{T_{k}}} O_{R}x_{R}y_{R}z_{R} \xrightarrow{a_{T_{K_{2}}}} O_{PC_{2}}x_{PC_{2}}y_{PC_{2}}z_{PC_{2}} \xrightarrow{\kappa_{2}} \xrightarrow{\kappa_{2}} \xrightarrow{m_{2}} \xrightarrow{m_{2}} \xrightarrow{m_{2}}} \rightarrow (5.29),$$

Transformarea $PC_2^{*}T_{D_1}$ corespunde matricii erorii de preluare a piesei de către robot, E_{PC_2} , care are forma:

$$\frac{E_{PC_2}}{\binom{PC_2}{PC_2}} = \begin{vmatrix} n_{x_{P_1}} & o_{x_{P_2}} - o_{x_{P_1}} & a_{x_{PO_2}} - a_{x_{P_1}} & x_{PC_2} - x_{D_1} \\ n_{y_{PC_2}} - n_{y_{P_1}} & o_{y_{PC_2}} - o_{y_{P_1}} & a_{y_{PC_2}} - a_{y_{P_1}} & y_{PC_2} - y_{D_1} \\ n_{z_{PC_2}} - n_{z_{P_1}} & o_{z_{PC_2}} - o_{z_{P_1}} & a_{z_{PC_2}} - a_{z_{P_1}} & z_{PC_2} - z_{D_1} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.30).

Compensarea erorii E_{PC_1} se realizează prin calibrarea robotului (intervenind ... cu corecțiile respective în comanda robotului).

5.2.1.3. Determinarea erorilor de situare în postul de lucru 3, E_{PC_1} (fig.5.14)

In postul de lucru 3, robotul așează piesa finită pe paleta P_2 . Piesa trebuie așezată pe paletă în poziția comandată, ideală, $O_2 x_2 y_2 z_2$. In realitate însă, P.C. al robotului nu atinge poziția comandată $O_2 x_2 y_2 z_2$, ci o poziție reală, $O_{PC_1} x_{PC_2} y_{PC_3} z_{PC_4}$, deci apare o eroare de situare, la depunerea piesei finite pe paleta 2, E_{PC_4} .

Această eroare este descrisă de un ansamblu de transformări de forma:

$$O_{\rho}x_{\rho}y_{\rho}z_{\rho} \xrightarrow{P_{T_{R}}} O_{R}x_{R}y_{R}z_{R} \xrightarrow{P_{T_{R}}} O_{PC_{3}}x_{PC_{3}}y_{PC_{3}}z_{PC_{3}} \xrightarrow{PO_{T_{2}}(E_{R_{3}})} \rightarrow \downarrow \qquad (5.31),$$

$$\xrightarrow{P_{T_{R}}} O_{P_{2}}x_{P_{3}}y_{P_{2}}z_{P_{2}} \xrightarrow{P_{T_{3}}} O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \xrightarrow{PO_{T_{3}}(E_{R_{3}})} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \xrightarrow{PO_{T_{3}}(E_{R_{3}})} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \xrightarrow{PO_{T_{3}}(E_{R_{3}})} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \xrightarrow{PO_{T_{3}}(E_{R_{3}})} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \xrightarrow{PO_{T_{3}}(E_{R_{3}})} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \xrightarrow{PO_{T_{3}}(E_{R_{3}})} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}} \rightarrow O_{2}x_{2}y_{2}z_{2} \xleftarrow{PO_{T_{3}}}$$

" T_{P_2} - transformarea între referința $O_0 x_0 y_0 z_0$ și sistemul de referință $O_{P_1} x_{P_2} y_{P_2} z_{P_2}$, legat de paleta 2;

 ${}^{P_2}T_2$ - transformarea între sistemul $O_{P_2}x_{P_2}y_{P_2}z_{P_2}$ și poziția ideală a piesei pe paleta 2;

Transformarea ${}^{PC_1}T_2$ corespunde erorii de situare a piesei pe paleta 2, (E_{PC_1}) , care are următoarea formă:

$$\frac{E_{PC_3}}{\binom{PC_3}{r_2}} = \begin{vmatrix} n_{x_{2}} & n_{x_{2}} & -n_{x_{2}} & a_{x_{PC_3}} - a_{x_{2}} & x_{PC_3} - x_{2} \\ n_{y_{PC_3}} - n_{y_{2}} & 0_{y_{PC_3}} - 0_{y_{2}} & a_{y_{PC_3}} - a_{y_{2}} & y_{PC_3} - y_{2} \\ n_{z_{PC_3}} - n_{z_{2}} & 0_{z_{PC_3}} - a_{z_{2}} & a_{z_{PC_3}} - a_{z_{2}} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.32).

Eroarea E_{PC_k} poate fi compensată prin calibrarea robotului.

Concluzionand, cu privire la celula de fabricație flexibilă robotizată luată în studiu, se poate aprecia că, în cele trei posturi de lucru, precizia (de preluare a

semifabricatului, de prelucrare, respectiv de depozitare a piesei finite) este determinată de mai mulți factori, după cum urmează:

1. - în postul de lucru 1:

- a) exactitatea robotului
- b) exactitatea de indexare a conveiorului sau robocarului (dacă se utilizează un asemenea dispozitiv);

2. - în postul de lucru 2:

a) - exactitatea de situare a unei masini unelte;

- b) exactitatea de situare a piesei în dispozitiv,
- c) exactitatea de poziționare a capului de lucru al mașinii;
- d) exactitatea de fixare a sculei de prelucrat în capul mașinii;
- e) exactitatea robotului.

3. - în postul de lucru 3:

- a) exactitatea robotului;
- b) exactitatea de indexare a conveiorului sau robocarului (dacă piesa finită se depune pe un asemenea dispozitiv).

Determinând erorile de situare ale componentelor celulei în cele trei posturi de lucru, printr-una dintre metodele propuse (spre exemplu ansamblu de doi teodoliți), se pot compara și constata care dintre componente introduc cele mai mari erori, precum și dacă domeniile de erori sunt compatibile cu operațiile executate în cele trei posturi de lucru, în caz contrar intervenindu-se cu corecțiile necesare în programul de comandă al celulei (calibrarea componentelor celulei).

Cele prezentate in capitolul de față al tezei de doctorat, pot fi utilizate, concret, în următoarele situații:

1. La proiectarea "layout"-ului unei celule de fabricație flexibilă robotizată; prin investigarea erorilor de situare în diferite zone ale spațiului de lucru al robotului ce urmează a fi utilizat în aplicația robotizată respectivă, se pot estima zonele din spațiul de lucru afectate de erori minime. Pe baza unui asemenea studiu se poate realiza o amplasare optimă a elementelor componente ale celulei, în concordanță cu domeniile de erori ale robotului.

2. Pentru o configurație de celulă dată, cunoscând domeniile de erori de situare ale elementelor componente ale celulei se poate amplasa robotul într-o pozitie optimă, astfel încât să fie compatibil cu domeniile de erori ale componentelor.

3. Intr-o celulă de fabricație flexibilă robotizată dată, cunoscând erorile de situare ale componentelor celulei, precum și ale robotului în diferite posturi de lucru în care acționează, se poate realiza calibrarea componentelor și a robotului, pentru realizarea concordanței mai sus amintite, prin introducerea corecților corespunzătoare, în programul de comandă al celulei.

5.3 Studiul de caz pentru celula de sudare cu robotul CLOOS-ROMAT-76

5.3.1. Prezentare generală

Celula de sudare este integrată Laboratorului de roboți industriali, aparținând Catedrei de Organe de Mașini și Mecanisme a Universității "Politehnica" din Timișoara. Ea face parte dintr-un sistem flexibil robotizat deservit de șase roboți (fig.5.15):

- robot RH (R1);
- robot REMT 2 (R2);
- robot MINIMOVER (R3);
- robot REMT 5 (R4);
- robot ROMAT-76 (R5);
- robot REMT 2 (R6).

In cadrul celulei de sudare, robotul ROMAT-76 efectuează cordoane sudate, subansamblul ce urmează a fi sudat fiind amplasat pe masa de poziționare rotativă 3 MP2, acționată pneumatic, prevăzută cu două posturi de lucru DL5 și DL5', dispuse la 180°.

Aducerea subansamblului de sudat în zona de lucru este realizată de către robocarul AGV, dar alimentarea dispozitivului de lucru DL5 respectiv DL5' se face manual, robocarul neavând un sistem propriu de manipulare, iar robotul ROMAT-76 nu poate îndeplini funcția de manipulare, fiind prevăzut cu cap de sudare.

Ca urmare, în studiul respectivei celule se va analiza postul de lucru, având două componente¹ robotul ROMAT-76 și masa de poziționare MP2 cu dispozitivele DL5 și DL5¹.

5.3.2. Determinarea erorilor de situare ale componentelor celulei de sudare

In raport cu un sistem de referință exterior, $O_0 x_0 y_0 z_0$, aparținând universului (halei, atelierului) se poate studia situarea diferitelor componente ale celulei, atașând fiecăreia câte un sistem de axe (fig.5.16 și fig.5.17).

Sistemul de referință $O_0 x_0 y_0 z_0$ poate fi legat de unul dintre cei doi teodoliți dacă, pentru măsurarea caracteristicilor de situare ale elementelor celulei se utilizează ansamblul de doi teodoliți (metode "la distanță").

In figura 5.16 și 5.17, se utilizează următoarele notații:

- O₀x₀y₀z₀ - sistemul de referință atașat halei;

- $O_R x_R y_R z_R$ - sistemul de referință atașat bazei robotului;

- $O_M x_M y_M z_M$ - sistemul de referință atașat subansamblului fix al mesei de poziționare MP2;

- $O_{1,2}x_{1,2}y_{1,2}\overline{x}_{1,0}$ - sistemul de referință atașat piesei aflate în dispozitivul de lucru 1 (DL5), în pozitția ideală (comandată);

- $O_{11}x_{11}y_{12}x_{21}$ - sistemul de referință atașat piesei aflate în dispozitivul de lucru l (DL5), în poziția reală;

- $O_{20}x_{20}y_{20}z_{20}$ - sistemul de referință atașat piesei aflate în dispozitivul de lucru 2 (DL5^{*}), în poziția comandată;

- $O_{21}x_{21}y_{21}z_{21}$ - sistemul de referință atașat piesei aflate în dispozitivul de lucru 2 (DL5²), în poziția reală;

- $O_{m10}x_{m10}y_{m1}z_{m10}$ - sistemul de referință atașat subansamblului mobil al mesei de poziționare MP2, în poziția 1 de indexare (DL5), corespunzătoare situării ideale; - $O_{m11}x_{m11}y_{m11}z_{m11}$ - sistemul de referință atașat subansamblului mobil al mesei de

poziționare MP2, în poziția 1 de indexare (DL5), corespunzătoare situării reale,

- $O_{m20}x_{m20}y_{m20}x_{m20}$ - sistemul de referință atașat subansamblului mobil al mesei de poziționare MP2, în poziția 2 de indexare (DL5'), corespunzătoare situării ideale;

 $- O_{m21} x_{m21} v_{m21} v_{m21} v_{m21} -$ sistemul de referință atașat subansamblului mobil al mesei de poziționare MP2, în poziția 2 de indexare (DL5'), corespunzătoare situării reale:

- $O_{PC}x_{PC}y_{PC}z_{PC}$ - sistemul de referință atașat punctului caracteristic P.C. al robotului, definind situarea reală (situarea ideală a sistemului de referință atașat P.C. al

robotului coincide cu $O_{10}x_{10}y_{10}x_{10}$, pentru dispozitivul de lucru DL5, respectiv $O_{20}x_{20}y_{20}x_{20}$, pentru dispozitivul de lucru DL5^{*}).

Se menționează faptul că, pentru claritatea figurii , în fig.5.16, s-au reprezentat doar referințele reale.

1. Determinarea erorilor de indexare a mesei de poziționare MP2, în poziția 1, respectiv 2

Erorile de indexare a mesei de poziționare pot fi cauzate de imprecizii ale sistemului de acționare (variații ale presiunii agentului de lucru - aer comprimat), jocuri în cuple etc.

Eroarea de indexare a mesei (poziționare și orientare) apare ca diferență între poziția ideală, comandată pentru indexarea mesei, $O_{m10}x_{m10}y_{m10}z_{m10}$ în poziția l respectiv, $O_{m20}x_{m20}y_{m20}z_{m20}$ în poziția 2, și poziția reală în care se indexează masa, $O_{m11}x_{m11}y_{m11}z_{m11}$ în poziția 1, respectiv $O_{m21}x_{m21}y_{m21}z_{m21}$ în poziția 2 (fig. 5.18).

Ansamblul de transformări ce definesc această eroare în poziția 1 de indexare, are loc după următoarea schemă:

Ansamblul de transformări pentru poziția 2 de indexare este identic In lanțul de transformări (5 33) ${}^{0}T_{kl} = ct$, ${}^{kl}T_{m_{0}} = ct$, dar ${}^{kl}T_{m_{0}} = var$. Ca urmare și ${}^{m_{1}}T_{m_{0}} = var$. definind eroarea de indexare a mesei în poziția 1, respectiv 2 ($E_{m_{12}}$).

Matricea erorilor de indexare a mesei, sub forma ei generală, va fi:

$$\frac{E_{m_{1}}}{\binom{m_{1}}{m_{1}}} = \begin{vmatrix} n_{x_{m_{1}}} & 0_{x_{m_{2}}} - 0_{x_{m_{1}}} & a_{x_{m_{0}}} - a_{x_{m_{1}}} & x_{m_{10}} - x_{m_{11}} \\ n_{y_{m_{0}}} - n_{y_{m_{1}}} & 0_{y_{m_{0}}} - 0_{y_{m_{1}}} & a_{y_{m_{0}}} - a_{y_{m_{1}}} & y_{m_{0}} - y_{m_{1}} \\ n_{z_{m_{0}}} - n_{z_{m_{1}}} & 0_{z_{m_{0}}} - 0_{z_{m_{1}}} & a_{z_{m_{0}}} - a_{z_{m_{1}}} & z_{m_{10}} - z_{m_{1}} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.34).

și exprimă incapacitatea mesei de poziționare de a se situa în poziția ideală,

comandatā.

Diminuarea erorilor de tip E_{m_0} se poate realiza astfel:

 l) dacă erorile de indexare definite de relația (5.34) au valori semnificative, ele pot fi compensate prin acționare asupra poziționării piesei în dispozitiv (o compensare grosieră);

 2) dacă erorile de indexare definite de relația (5.34) au valori mai mici, ele pot fi compensate în două moduri:

a) prin intervenție asupra sistemului de acționare pneumatic al mesei;

b) prin intervenție în programul de comandă a robotului.

2) Determinarea erorii de situare a piesei în dispozitivul de lucru DL5, respectiv DL5'

Este determinată de imprecizii în prelucrarea pieselor subansamblului ce urmează a fi sudat (toleranțe de fabricare), de imprecizii în uzinarea dispozitivului, de erori ale mecanismului de acționare, de erori de așezare a pieselor în dispozitivul de lucru etc. Această eroare apare ca diferență între situarea ideală a subansamblului de sudat aflat în dispozitivul de lucru 1 sau 2 (DL5 sau DL5'), definită prin referința $O_{10}x_{10}y_{10}z_{10}$, respectiv $O_{20}x_{20}y_{20}z_{20}$ și situarea reală a respectivului subansamblu, situare afectată de erori, definită prin referința $O_{11}x_{11}y_{11}z_{11}$ pentru dispozitivul 1 (DL5) și $O_{21}x_{21}y_{21}z_{21}$ pentru dispozitivul 2 (DL5').

Transformarile ce definesc această eroare, spre exemplu pentru dispozitivul 1, sunt redate de schema (5.35), respectiv fig.5.19.

Problema se tratează în mod absolut similar și pentru dispozitivul 2.

Se observă faptul că eroarea de situare a piesei în dispozitivul de lucru, în poziția de lucru 1 sau 2 este influențată și de eroarea de indexare a mesei .

Matricea de erori este de forma-

$$\frac{E_{a_{1}}}{\binom{11}{T_{10}}} = \begin{vmatrix} n_{x_{11}} & n_{x_{12}} & -n_{x_{12}} & a_{x_{12}} & -a_{x_{12}} & x_{10} - x_{11} \\ n_{y_{10}} & -n_{y_{11}} & n_{y_{10}} - n_{y_{11}} & a_{y_{10}} - a_{y_{11}} & y_{12} - y_{11} \\ n_{z_{10}} & -n_{z_{11}} & n_{z_{10}} - n_{z_{11}} & a_{z_{10}} - a_{z_{10}} & z_{10} - z_{11} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(5.36).

Așadar, pentru celula de sudare dată, determinarea erorilor de situare ale robotului, respectiv ale mesei de poziționare și ale dispozițivului de lucru este utilă în scopul ameliorării preciziei cu care se execută operația de sudare în postul de lucru respectiv.

Având în vedere faptul că robotul ROMAT-76 utilizat în aplicația respectivă a fost calibrat la fabricare, având o precizie foarte bună, corespunzătoare aplicației în care este utilizat, rezultă că eventualele erori sunt generate de masa de poziționare și de dispozitivul de lucru. Rezultă că, pentru compensarea acestor erori se poate acționa:

1) fie asupra sistemului pneumatic de acționare a mesei de poziționare;

2) fie asupra dispozitivului de lucru DL5, respectiv DL5²;

3) fie în programul de comandă al robotului, introducând corecțiile necesare, generate de erorile mai sus amintite, această operație neavând însă semnificația unei calibrări a robotului, ci o calibrare a celulei în ansamblu.

CAPITOLUL 6

CONTRIBUȚII LA ELABORAREA UNOR SOLUȚII CONSTRUCTIVE DE DISPOZITIVE ȘI STANDURI PENTRU MĂSURAREA EXACTITĂȚII ȘI REPETABILITĂȚII DE SITUARE LA ROBOȚII INDUSTRIALI ȘI SISTEME DE FABRICAȚIE FLEXIBILĂ ROBOTIZATE

Evaluarea performanțelor roboților industriali constituie cu siguranță, într-un domeniu nou cum este robotica, un preambul indispensabil dezvoltării acestei tehnologii.

Pentru utilizatori, încercarea roboților industriali permite cunoașterea și aprecierea caracteristicilor acestora, simplificând relațiile client-furnizor. Pentru producătorii de roboți, încercarea acestora constituie o sursă de perfecționare tehnică, favorizând evoluția performanțelor lor.

La nivel comercial, prezentarea unor caracteristici ale roboților, stabilite cu claritate și fondate pe încercări constituie un element determinant în alegere, pentru cumpărătorii potențiali de roboți.

Ținând seama de motivația mai sus prezentată, în capitolul de față se încearcă punerea la punct a unei instrumentații de măsurare a caracteristicilor de situare a roboților industriali și sistemelor de fabricație flexibilă robotizate, pentru ambele categorii de metode enunțate în capitolul 3.

6.1. Dispozitive pentru măsurarea caracteristicilor de situare după principiul metodelor locale

6.1.1. Cap de măsurare tridimensional pentru determinarea caracteristicilor de poziționare și orientare după distribuția 2×2×2

Dispozitivul este constituit după principiul metodelor locale, utilizând ansamblul: cap de măsurare - corp de probă. Capul de măsurare materializează distribuția $2 \times 2 \times 2$ a punctelor de contact ale palpatoarelor traductoarelor, pe fețele corpului de probă - cub calibrat.

Așadar, sistemul de măsurare conceput poate fi utilizat atât pentru determinarea exactității și repetabilității de poziționare, cât și de orientare Metoda adoptată face parte din categoria metodelor cu contact, între instrumentele de măsură - traductoare inductive și corpul de probă - cub calibrat.

Dispozițivul propriu-zis se compune din patru brațe 1.2.3.4 (fig 6.1), care, prin rabatare și blocare la 90[°] materializează cele trei fețe ortogonale ce constituie triedrul dispozițivului de măsurare, 3D. Trei dintre aceste brațe 2.3.4 sunt rabatabile în jurul unor articulații 5, dispozițivul având posibilitatea de pliere, în vederea ambalării și transportului.

Pe fiecare braț 2, 3 și 4 se fixează câte două traductoare de poziție (inductive, tip Tl2BB, autohtone). Poziția traductoarelor, în vederea măsurării, se stabilește în faza de "punere la zero" în așa fel încât să fie la jumătatea domeniului de măsurare

Brațul 1 al dispozitivului, se fixează pe tija suport 8 cu ajutorul unui șurub special 9.

Intregul ansamblu se așează pe o placă de bază 10, blocându-se cu un șurub. Placa de bază este prevăzută cu șuruburile de reglare 12.

Dispozitivul prezentat poate fi folosit și pentru măsurători utilizând drept corp de probă - sferă calibrată. În acest scop, se demontează palpatorul propriu al traductorului și se înlocuiește cu un palpator cu suprafață plană de palpare 14. În acest caz nu sunt necesare decât trei palpatoare, câte unul pe fiecare braț; corpul de probă sferic nu permite decât determinarea exactității și repetabilității de poziționare.

Pentru efectuarea măsurătorilor se procedează în modul următor:

 se aduce efectorul terminal al robotului, care poartă corpul de probă - sfera sau cub, în poziția țintă;

- se poziționează dispozitivul 3D în raport cu corpul de probă și se inițializează traductoarele;

- se retrage efectorul terminal al robotului în poziția de start;

- se comandă revenirea lui de "n" ori în poziția țintă și se citesc abaterile. înregistrate de traductoare.

Rezultatele măsurătorilor se prelucrează conform unui algoritm de calcul adecvat.

6.1.2. Cap de măsurare tridimensional pentru determinarea caracteristicilor de situare după distribuția 3×2×1 sau 3×3×3.

6.1.2.1. Cap de măsurare tridimensional cu retragerea manuală a traductoarelor.

Terminalul de măsurare conceput face parte din categoria dispozitivelor folosite în metodele locale, "clasice", de determinare a caracteristicilor de situare ale roboților industriali, utilizând ansamblul cap de măsurare - corp de probă (sferă sau cub), "cu contact" între palpatoarele instrumentelor de măsură (traductoare inductive) și corpul de probă.

Descrierea dispozitivului impune caracterizarea modului în care se comportă capul tridimensional în cele două situații, și anume, atunci când în brațul robotului este montat un corp de probă sub formă de sferă, respectiv sub formă de cub.

In cazul în care corpul de probă este o sferă calibrată, pe dispozitivul 3D se montează trei traductoare inductive.

In cazul corpului de probă sub formă de cub, dispozitivul este prevăzut cu sase traductoare (fig.6.2), montate în formula $3 \times 2 \times 1$ sau $3 \times 3 \times 3$, sau $2 \times 2 \times 2$ pe fețele capului tridimensional, funcție de algoritmul de calcul adoptat.

Dispozitivul se compune din corpul de bază (1), un triedru ortogonal drept, uzinat cu precizie, având montate pe el cele 6 traductoare (2), două flanșe, una superioară (4) pentru fixarea și poziționarea traductoarelor și una inferioară (5), pentru poziționarea bucșelor (6) de ghidare a traductoarelor și de retragere a acestora, precum și nouă prezoane (7), câte 3 pe fiecare față a triedrului, pentru poziționarea celor două flanșe. Tijele traductoarelor sunt prevăzute cu niște prelungitoare (8) fiecare având câte un știft de fixare (9).

In momentul aducerii corpului de probă în dreptul capului tridimensional, cele 6 traductoare trebuie să fie retrase, pentru a evita eventuala coliziune între corpul de probă purtat în efectorul terminal al robotului și palpatoarele traductoarelor. Retragerea acestora se realizează manual, prin bucșele (6), prevăzute cu un canal de ghidare a știftului (9), montat pe tija traductorului. În situația în care tija traductorului este retrasă, știftul (9) se rotește la 90°, sprijinindu-se într-o degajare, prevăzută pe partea superioară a bucșei (6).

După aducerea corpului de probă în zona de acțiune a traductoarelor capului tridimensional, știftul de fixare este deblocat și alunecă în canalul bucșei. Astfel tija traductorului coboară, palpând corpul de proba.

Intreg dispozitivul se fixează pe un suport ce permite două translații și o rotație, prin intermediul unei flanșe. Pentru efectuarea măsurătorilor se procedează în modul următor :

a). - se aduce efectorul terminal al robotului, ce poartă corpul de probă (cub calibrat) în poziția "ȚINTĂ" (punct comandat);

b). - se poziționează dispozitivul în raport cu corpul de probă, fixându-se traductoarele (cu ajutorul șuruburilor (3)), astfel încât să fie la jumătatea cursei active;

c). - se inițializează traductoarele;

d). - se retrage efectorul terminal al robotului în poziția "START".

e). - se retrag traductoarele, în vederea evitării unei eventuale coliziuni;

f). - se aduce din nou efectorul terminal al robotului în poziția "ȚINTĂ" şi se citesc abaterile înregistrate de traductoare;

 g). - se repeta acțiunile a).....f) de "n" ori, apoi se prelucrează statistic rezultatele.

Soluția de dispozitiv prezentată permite determinarea exactității și repetabilității de situare a roboților industriali, utilizând mai multe metode și algoritmi de calcul: $3 \times 2 \times 1$; $3 \times 3 \times 3$; $2 \times 2 \times 2$.

Permite, de asemenea, automatizarea prelevării și prelucrării rezultatelor prin interfațarea sistemului terminal de măsură și utilizarea unui calculator.

6.1.2.2. Cap de măsurare tridimensional cu retragerea traductoarelor prin acționare electrică.

Dispozitivul proiectat permite determinarea caracteristicilor de situare la roboți, după principiul metodelor locale, utilizând sistemul corp de probă (cub calibrat) - cap de măsurare, "cu contact" între palpatoarele traductoarelor inductive montate în terminal și corpul de probă.

Dispozitivul permite utilizarea a 6 sau 9 traductoare montate în formula $3 \times 2 \times 1$, $3 \times 3 \times 3$ sau $2 \times 2 \times 2$, funcție de algoritmul de calcul acceptat.

Fig.6.3 (2/2)

-33

- 34 - 35

- 36 - 37 - 38

Ð

a

 \circledast

Se compune din triedrul de referință (poz.19), uzinat cu precizie (fig.6.3, planșa 1/2 și 2/2), având montate pe cele trei fețe ortogonale, traductoarele inductive (poz.10) în formula aleasă.

Pentru a evita eventuala coliziune între palpatoarele traductoarelor și corpul de probă aflat în efectorul terminal al robotului și adus în poziția comandată, dispozitivul permite retragerea tijelor (poz.17) palpatoarelor traductoarelor prin acționarea unui motor electric pas cu pas (poz.1) Arborele acestuia este cuplat la un șurub (poz 11) pe care se deplasează placa – piuliță (poz.16) comună celor trei traductoare montate pe o față, retrăgând astfel tijele traductoarelor. Translația plăcii este ghidată de tijele (poz.15), îar traductoarele sunt fixate pe placa intermediară (poz.13), cu ajutorul știfturilor filetate, (poz.14). Tijele (poz.17) ale traductoarelor sunt ghidate, la rândul lor, de bucșele de ghidare (poz.18), montate în plăcile triedrului.

Capul de măsurare are un dispozitiv propriu de poziționare ~ orientare, care permite trei rotații și trei translații (șase grade de liberate), facilitând astfel situarea capului de măsurare în raport cu corpul de probă, în vederea punerii "la zero" a sistemului de masură.

Pentru efectuarea măsurătorilor, se procedează în același mod ca și la dispozitivul descris în paragraful 6.1.2.2.

Sistemul de măsurare descris permite automatizarea prelevării și prelucrării rezultatelor prin interfațarea dispozitivului de măsurare 3D și utilizarea unui calculator.

6.1.3. Cap de măsurare 2D pentru determinarea caracteristicilor de exactitate și repetabilitate pe traiectorie

Dispozitivul de măsurare este conceput după principiul metodelor "locale", ..cu contact" între palpatoarele instrumentelor de măsură (traductoare), amplasate pe capul de măsurare și o riglă etalon.

Dispozitivul propriu-zis se compune dintr-un diedru (1), executat cu mare precizie (fig.6.4), pe cele două fețe ortogonale ale acestuia fiind montate traductoarele inductive (3), în formula 3×3 sau 3×2 , funcție de algoritmul de calcul adoptat

Prin intermediul flanșei (29), dispozitivul se fixează pe interfața mecanică a robotului, fiind purtat, pe traiectoria comandată, de către brațul acestuia.

Traiectoria ideală, comandată, este materializată de muchia unei rigle etalon cu secțiune pătrată (50×50) mm, amplasată în spațiul de lucru al robotului, într-o poziție cunoscută. Această traiectorie ideală este aproximată prin "n" puncte de precizie.

Robotul purtând dispozitivul de măsurare 2D, este comandat să urmărească această traiectorie ideală, aproximată prin cele "n" puncte de precizie, prin învățarea acestor "n" puncte țintă; muchia riglei etalon – traiectorie ideală materializează axa z a unui sistem de referință legat de aceasta. Așadar, cele "n" puncte de precizie sunt amplasate la diferite cote z, cunoscute.

După învățarea celor "n" puncte, robotul este comandat să urmărească traiectoria ideală, respectiv să atingă cele "n" puncte, de "m" ori într-un sens și de "m" ori în sens opus, efectuându-se măsurători în fiecare dintre cele "n" puncte memorate

Pentru a se evita o eventuală coliziune între capul de măsurare și rigla etalon la aducerea robotului în poziția de "start" pe traiectorie, dispozitivul 2D permite retragerea automată a tijelor palpatoarelor traductoarelor prin acționarea cu un motor pneumatic liniar (2). Tija acestuia este solidarizată cu placa mobilă (4), în care se află fixate cele trei traductoare, prin intermediul bucșelor elastice (8) și a știfturilor filetate (28).

Ghidarea în mișcarea de translație a ansamblului placă mobilă - traductoare se realizează pe tijele de ghidare (6).

Terminalul de măsurare este prevăzut cu un mecanism de orientare propriu, permițând trei rotații și două translații, care dă posibilitatea orientării terminalului în raport cu rigla etalon, în poziția de "start", în vederea punerii la "zero" a acestuia. În acest scop, în poziția de "start" pe traiectorie, capul de măsurare 2D se orientează de așa manieră încât palpatoarele traductoarelor să atingă cele două fețe ortogonale ale riglei etalon, traductoarele poziționându-se astfel încât să se afle aproximativ la jumătatea domeniului de măsurare. În această poziție are loc inițializarea traductoarelor, capul de măsurare fiind pregătit pentru urmărirea traiectoriei comandate, definită prin cele "n" puncte de precizie.

Măsurătorile vizând abaterile de la traiectoria ideală, se fac la oprirea

robotului purtând capul de măsurare în cele "n" puncte de precizie, în conformitate cu recomandările ISO 9283:90.

Principiul de măsurare este pus în evidență în fig.6.5.

Traductoarele se află montate pe capul de măsurare 2D la cotele: $h_{v_{\mu}}$, $h_{v_{\mu}}$, $h_{v_{\mu}}$ pentru fața 1 a capului, respectiv $h_{v_{\mu}}$, $h_{v_{\mu}}$, $h_{v_{\mu}}$ pentru fața 2 a capului 2D Pentru simplificarea algoritmului de calcul, se poate admite: $h_{v_{\mu}} - h_{v_{\mu}} = h_{v_{\mu}} = h_{v_{\mu}} = h_{v_{\mu}}$ și $h_{v_{\mu}} = h_{v_{\mu}} = h_{v_{\mu}}$

La oprirea capului de măsurare într-unul din punctele de precizie, se măsoară abaterile $\Delta h_{y_{p_i}}$, $\Delta h_{y_{p_i}}$, $\Delta h_{y_{p_i}}$, respectiv $\Delta h_{x_{Q_i}}$, $\Delta h_{x_{Q_i}}$, i=1, ..., n reprezentând numărul de puncte de precizie ale traiectoriei, în care se fac măsurătorile și j=1,...,m, reprezentând numărul de repetâri ale măsurătorilor.

Funcție de aceste abateri, cu ajutorul unui algoritm de calcul adecvat, se determină exactitatea și repetabilitatea traiectoriei, conform ISO 9283:90.

6.2 Stand de măsurare după principiul metodelor "la distanță"

6.2.1. Stand pentru determinarea exactității și repetabilității de situare la roboți industriali utilizând un ansamblu de 2 teodoliți.

Standul realizat materializează principiul măsurărilor "la distanță" ale caracteristicilor de situare ale roboților industriali. În acest mod se elimină din sistemul de măsurare capul de măsurare, determinarea situării corpului de probă cub calibrat - aflat în efectorul terminal al robotului industrial în raport cu un sistem de referință fix (legat de hală), realizându-se cu ajutorul a doi teodoliți (prin palpare optică).

Principiul geometric de bază este simplu : un punct M de pe corpul de probă (în cazul de față un cub calibrat) purtat de efectorul terminal al robotului, vizat de cei doi teodoliți T_1 și T_2 , se găsește la intersecția a două drepte de vizare (D_1) și (D_2) în spațiu (fig.6.6).

Fiecare teodolit materializează un triedru particular, definit astfel (fig.6.6):

- axa z . axa principală a teodolitului (verticală în general)

- axa y : intersecția planului orizontal - perependicular pe axa principală - și a planului vertical continând direcția "zero" a cercului de unghiuri orizontale (unghiuri alıdadă)

- axa x perpendiculară pe y în planul orizontal, pentru formarea unui triedru (x,y,z) direct ;

- originea sistemului de axe : centrul de rotație al lunetei teodolitului

Cu aceste notații se pot determina ecuațiile dreptelor de vizare în triedrul propriu $(T_1$ și $T_2)$.

Scriind transformările geometrice de trecere a celor două triedre particulare T_1 și T_2 în triedrul de referință de măsură R (care poate fi legat de hală sau de elementul fix al robotului), se pot determina ecuațiile acestor drepte (D_1) și (D_2) într-un sistem de coordonate unic și deci, coordonatele x,y, și z ale punctului M în acest sistem de coordonate.

In vederea determinării coordonatelor respective ale punctului M, se necesită parcurgerea a două faze .

 a) determinarea situării celor doi teodoliți în raport cu sistemul de referință de măsură (x,y,z), prealabilă măsurării propriu-zise a punctelor de pe corpul de probă.

Se stabilesc astfel transformārile geometrice de trecere spre sistemul de referință de măsură. Această fază va fi reluată ori de câte ori se modifică poziția teodoliților în raport cu corpul de probă. Se menționează faptul că sistemul de referință Oxyz, poate fi chiar sistemul de referință al unuia dintre cei doi teodoliți.

b) Măsurarea propriu-zisă a punctelor, constând în vizarea acestora cu câte j doi teodoliți cel puțin.

Această fază poate fi repetată de "n" ori, dacă baza de măsurare (poziția teodoliților) nu a fost modificată.

Standul este compus dintr-un bloc de doi teodoliți cu care se vizează un punct (sau 4 puncte) ale unui cub de măsurare, montat în efectorul terminal al robotului industrial (fig.6.7).

Teodolitul este un instrument de măsurare a unghiurilor, utilizat în topografie. Unghiul de rotire al teodolitului în plan oriozontal, α_{μ} , este indicat pe cercul alidadă, notat cu A, iar unghiul de rotire în plan vertical, α_{ν} , este indicat pe cercul înălțimilor, notat cu H.

Creșterea preciziei de determinare a coordonatelor punctelor vizate cu luneta teodolitului (1) (fig.6.7), față de sistemul de axe particular, ales solidar cu standul, necesită determinarea cât mai precisă a distanței dintre teodoliți. Pentru a determina cu o rezoluție cât mai mare unghiurile de rotație pe cercul alidadă (A), notat cu α_H și pe cercul înătțimilor (H), notat cu α_V se utilizează pentru fiecare un amplificator mecanic (2) și (4) și un traductor incremental de rotație tip TIRO (3) și (5), ca în fig.6.7

Semnalele de tip impuls date de TIRO sunt transmise către o interfață, care le convertește în sistem binar. Aceste semnale în sistem binar se pretează a fi prelucrate pe calculator.

O importanță deosebită pentru prelevarea corectă a datelor o reprezintă rigiditatea suportului pe care sunt montați teodoliții. În acest scop, aceștia sunt fixați suplimentar cu o bridă (6) de acest suport (cu posibilitatea de ghidare și indexare a teodoliților, precum și de măsurare a distanței dintre ei).

Pentru măsurători și cercetări experimentale, în cadrul prezentei teze de doctorat s-a utilizat un ansamblu de doi teodoliți electronici, cu prelevarea automată a datelor tip Zeiss REC ELTA. Modul de lucru și metodologia de măsurare se prezintă în detaliu în capitolul 7

Sistemul de prelevare a informațiilor

Vizarea unui punct cu un teodolit, se face, după cum s-a arătat anterior prin rotirea lunetei acestuia cu unghiurile α_H și α_V , după cercurile corespunzătoare. Astfel, determinarea abaterii Δh , conform fig.6.8, a unui punct curent față de un punct de referință ales, se va face cu relația:

$$\Delta h = L(Ig\alpha_c - Ig\alpha_c) \tag{6.1},$$

186

unde

L- abscisa object a lunetei, distanța între punctul vizat și centrul optic al lunetei α_c - unghiul de vizare curent α_i - unghiul de vizare inițial

Luneta fiind un sistem optic afocal, întrucât distanța

minimă de vizare este de 1 m, iar abaterea maximă admisă a unui robot performant este de 1 mm, aceasta face ca unghiul de rotire maxim pentru vizarea abaterii maxime (pt. $\alpha_i=0$), să fie 0⁰3'26,26". Dar blocul de teodoliți este indicat să fie amplasat în afara spațiului de lucru al robotului (deci la o distanță de vizare minimă aproximativ de 2m), situație în care, pentru aceeași abatere minimă, unghiul de rotire al teodolitului este de 0⁰1'43,13".

Cu aceste considerente, pentru a se obține abaterea poziției curente față de poziția prescrisă cu o precizie de lµm, este necesar să fie o valoare a diviziunii unghiului de rotație după cele două cercuri (alidadă și al înălțimilor) de l", motiv pentru care se necesită utilizarea amplificatorului mecanic și prelevarea electrică a semnalelor (unghiul de rotire) cu TIRO 1000 sau TIRO 500.

Miscarea de rotație, pentru a realiza această valoare a diviziunii, poate fi amplificată, pe cale mecanică utilizând un TRD amplificator, având 5-6 trepte cilindrice la care jocul de flanc să fie consumat unisens.

După amplasarea blocului de teodoliți și stabilirea distanței *d*, dintre aceștia (fig.6.9), fie prin vizare reciprocă, fie prin citire pe rigla gradată a suportului pe care sunt amplasați aceștia (mai puțin precis) se vizează punctele de pe cubul de probă aflat în efectorul terminal al robotului.

In acest scop fețele vizate ale cubului vor fi iluminate corespunzător și se va lipi hârtie albă sau reflectorizantă pe acestea pentru a se realiza un contrast cât mai bun între cub și decor. Cele patru puncte vizate sunt marcate cu cifre.

Vizarea cu luneta se face cu ajutorul unui reticul al cărui centru se suprapune cu punctul vizat, iar firele reticulare se vor suprapune cu muchiile ortogonale concurente în punctul vizat al cubului.

Se vizează fiecare dintre cele patru puncte de referință, se memorează și se

citese unghiurile $\alpha_{H_{\phi}}$, $\alpha_{V_{\phi}}$, i=1,2,3,4. Acestea exprimă situarea cubului de probă în poziția "de zero" (de referință).

Se comandă readucerea R.I. în poziția de referință de "n" ori, citindu-se de fiecare dată, pentru punctele P_i (i=1,2,3,4), cele două unghiuri (α_{H_i} , α_{V_i} , i=1,2,3,4) aceste exprimând pozițiile curente ale cubului de probă. Datele înregistrate sunt prelucrate conform algoritmului descris în paragraful 3.2.1.

Dispozitivele prezentate anterior se utilizează și în cadrul unor sisteme de fabricație flexibilă robotizate, ele permițând stabilirea situării (poziționării și orientării), elementelor componente ale unei celule de fabricație flexibilă robotizată, în raport cu robotul, spre exemplu. Cunoașterea acestor caracteristici de situare ale componentelor unei celule de fabricație este necesară pentru sincronizarea acestora, pentru corelarea pozițiilor și mișcărilor obiectului manipulat cu cele ale manipulatorului, mașinilor de lucru, dispozitivelor de transport, dispozitivelor și sculelor folosite în procesul tehnologic, precum și pentru calibrarea componentelor celulei în conformitate cu cele prezentate în capitolul 5 al tezei.

Se pot astfel calcula funcțiile de poziție corespunzătoare elementelor componente, ceea ce permite sinteza funcțiilor de comandă ale robotului inclus întrun proces tehnologic dat.

Capitolul 6 sintetizează, așadar, cercetările și realizările proprii ale autoarei tezei în direcția conceperii și realizării unor dispozitive și ștanduri de măsurare a caracteristicilor de situare ale roboților industriali și sistemelor flexibile de fabricație flexibile robotizate, în baza metodologiei propuse în capitolul 3 al tezei.

CAPITOLUL 7

CERCETĂRI EXPERIMENTALE PRIVIND PERFORMANȚELE DE SITUARE LA ROBOȚI INDUSTRIALI ȘI SISTEME DE FABRICAȚIE FLEXIBILĂ ROBOTIZATE

7.1. Considerații generale

Capitolul de față se constitue într-o validare a noțiunilor teoretice expuse în capitolele 3, 4 și 5, precum și a soluțiilor constructive de standuri de încercare, prezentate în capitolul 6.

In acest sens, capitolul 7 este structurat în trei subcapitole distincte:

- subcapitolul 7.2 - Calibrarea modelului geometric al robotului REMT 5 - ca aplicație la problemele teoretice prezentate în capitolul 4;

- subcapitolul 7.3 - Cercetări experimentale privind performanțele de situare ale robotului CLOOS-ROMAT 76 - ca o verificare practică a metodelor și algoritmilor de calcul prezentați în capitolul 3;

j - subcapitolul 7.4 - Cercetări experimentale privind performanțele de situare ale celulei de sudare cu robotul CLOOS-ROMAT 76 - ca aplicație la noțiunile teoretice originale prezentate în capitolul 5 al prezentei teze de doctorat.

7.2 Calibrarea modelului geometric al robotului REMT 5

In conformitate cu cele prezentate în capitolul 4, problema de situare (poziționare și orientare) poate fi aplicată, practic, pentru calibrarea unui robot inclus într-o aplicație dată, în scopul măriri preciziei acestuia, precizie influențată, predominant, de erorile dimensionale ale elementelor robotului.

Având în vedere faptul că erorile geometrice ale parametrilor dimensionali de tip Hartenberg-Denavit ai robotului au cea mai mare pondere (peste 90%) în eroarea totală a efectorului terminal, în continuare se va lua în considerare doar efectul acestor erori. Prin calibrarea geometrică a robotului REMT 5 se urmărește diminuarea erorilor de situare ale efectorului terminal al robotului, introducând în modelul geometric valorile corectate ale parametrilor geometrici de tip Hartenberg-Denavit.

. _____ _

BUPT

Procedura de calibrare cuprinde următoarele etape:

 a) - modelarea funcțiilor robotului, respectiv stabilirea matricelor aferente modelului geometric direct al robotului;

b) - determinarea, prin măsurători directe, utilizând una dintre metodele prezentate în capitolul 3, a erorilor de situare ale efectorului terminal al robotului;

c) - determinarea, prin măsurători directe (utilizând în general traductoare tip TIRO), a parametrilor geometrici de tip Hartenberg-Denavit, (HD), variabili în cupiele robotului (q;, respectiv di);

d) - utilizând ca date de intrare în modelul diferențial al erorilor (rel. 4.6), datele măsurate la punctele b) și c), precum și valorile nominale ale parametrilor HD, se determină erorile $\Delta \theta_i$: $\Delta \alpha_{i_i}$, Δa_i , Δd_i (și eventual $\Delta \beta_i$), care exprimă diferența între geometria reală și cea nominală a robotului;

e) - se corectează parametrii geometrici tip HD nominali cu valorile corecțiilor Dq_i , $\Delta \alpha_n$, Δa_n , Δd_i (și eventual $\Delta \beta_i$), determinându-se astfel parametrii corectați: θ^* , α^* , α^* , d^* (și eventual β^*), care se vor utiliza în continuare în modelul geometric al robotului, la programarea acestuia.

In general, se efectuează căteva iterații până la minimizarea erorilor efectorului terminal în limitele dorite.

7.2.1 Robotul industrial REMT 5 - prezentare generală

Robotul REMT 5 face parte din seria de roboți executați de S.C. "Electromotor" - S.A. din Timișoara.

Este un robot de transfer, destinat automatizării flexibile a unor procese tehnologice, deservirii mașinilor-unelte, montaj, etc., în special în domeniul industriei electrotehnice și electronice.

Dispozitivul de ghidare (fig. 7.1) al robotului REMT 5 este un lanț cinematic deschis, de tip RTTR, mecanismul generator de traiectorie având structura RTT, iar mecanismul de orientare având o singură rotație, R. Efectorul terminal, E.T., (dispozitiv de prehensiune), este prevăzut cu două bacuri a căror mișcare de

190

Tabelul 7.1

_ .. _ _ _

translație are cursa maximă de 5 mm, având posibilitate de manipulare a unor obiecte cu greutate maximă de 50 N.

Urmărind structura lanțului cinematic al mecanismului generator de traiectorie, se observă că robotul REMT 5 generează un spațiu de lucru cilindric (fig.7.1). Cursele maxime, precum și regimurile maxime ale vitezelor liniare și unghiulare pentru modulele componente sunt prezentate în tabelul 7.1.

Datorită traseelor de cabluri electrice de alimentare, precum și conducte pneumatice, spațiul de lucru util se restrânge cu un sector care se desfășoară pe 55° la axa spațiului de lucru cilindric.

Acționarea robotului REMT 5 este electrică, cu excepția dispozitivului de prehensiune, care este acționat pneumatic.

Se utilizează servomotoare electrice cu întrefier axial tip SRD 350. Sistemul de comandă al robotului este asigurat de un calculator tip ECAROM-881, completat cu echipamentele periferice necesare și interfață cu sistemul de acționare.

7.2.2 Stabilirea matricilor de transformare aferente modelului geometric direct al robotului REMT 5

Urmăridu-se schema cinematică a robotului REMT 5 (fig. 7.2), precum și forma generală a matricilor de transformare omogenă de tip Hartenberg-Denavit pentru cuple de rotație:

$$An_{R} = \begin{vmatrix} \cos\theta_{n} & -\sin\theta_{n}\cos\alpha_{n} & \sin\theta_{n}\sin\alpha_{n} & a_{n}\cos\theta_{n} \\ \sin\theta_{n} & \cos\theta_{n}\cos\alpha_{n} & -\cos\theta_{n}\sin\alpha_{n} & a_{n}\sin\theta_{n} \\ 0 & \sin\alpha_{n} & \cos\alpha_{n} & d_{n} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(7.1)

respectiv de translație:

$$An_{T} = \begin{vmatrix} \cos\theta_{n} & -\sin\theta_{n}\cos\alpha_{n} & \sin\theta_{n}\sin\alpha_{n} & 0\\ \sin\theta_{n} & \cos\theta_{n}\cos\alpha_{n} & -\cos\theta_{n}\sin\alpha_{n} & 0\\ 0 & \sin\alpha_{n} & \cos\alpha_{n} & d_{n}\\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(7.2)

se pot scrie matricile de transformare pentru modelul geometric direct al robotului REMT 5.Se adoptă, pentru simplificarea scrierii, următoarele notații:

BUPT

 $\cos \theta_n = c \theta_n$, $\sin \theta_n = s \theta_n$; $\cos \alpha_n = c \alpha_n$; $\sin \alpha_n = s \alpha_n$

192

Astfel, pentru cupla de rotație, A:

$$A_{1_R} = \begin{vmatrix} c\theta_1 & -s\theta_1 \cdot c\alpha_1 & s\theta_1 \cdot s\alpha_1 & a_1c\theta_1 \\ s\theta_1 & c\theta_1 \cdot c\alpha_1 & -c\theta_1 \cdot s\alpha_1 & a_1s\theta_1 \\ 0 & s\alpha_1 & c\alpha_1 & d_1 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(7.3)

į

Pentru cupla de translație, B:

$$A_{2T} = \begin{vmatrix} c\theta_{2} & -s\theta_{2} \cdot c\alpha_{2} & s\theta_{2} \cdot s\alpha_{2} & 0 \\ s\theta_{2} & c\theta_{2} \cdot c\alpha_{2} & -c\theta_{2} \cdot s\alpha_{2} & 0 \\ 0 & s\alpha_{2} & c\alpha_{2} & d_{2} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(7.4)

Tabel 7.2

Element	θ" ["]	α_n [°]	<i>a</i> , [mm]	
1	$\theta_1 = 0 \div 305$	0	0	0
2	+ 90	- 90	0	$d_2 = 0 \div 155,36$
3	+ 90	0	0	$d_3 = 0 \div 410.3$

Pentru cupla de translație, C:

$$A_{3}_{T} = \begin{vmatrix} c\theta_{3} & -s\theta_{3} \cdot c\alpha_{3} & s\theta_{3} \cdot s\alpha_{2} & 0 \\ s\theta_{3} & c\theta_{3} \cdot c\alpha_{3} & -c\theta_{3} \cdot s\alpha_{3} & 0 \\ 0 & s\alpha_{3} & c\alpha_{3} & d_{3} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(7.5)

Pentru cupla de rotație, D:

$$A_{4}_{R} = \begin{vmatrix} c\theta_{4} & -s\theta_{4} \cdot c\alpha_{4} & s\theta_{4} \cdot s\alpha_{4} & a_{4}c\theta_{4} \\ s\theta_{4} & c\theta_{4} \cdot c\alpha_{4} & -c\theta_{4} \cdot s\alpha_{4} & a_{4}s\theta_{4} \\ 0 & s\alpha_{4} & c\alpha_{4} & d_{4} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(7.6)

Matricea generală de transformare pentru mecanismul generator de traiectorie tip RTT, se determină prin înmulțirea matricelor (7.3), (7.4) și (7.5). Astfel matricea ${}^{\circ}T_{3}$ este de forma:

$${}^{\mathbf{o}}\mathbf{T}_{3} = A_{\mathbf{l}_{R}}A_{\mathbf{2}_{T}}A_{\mathbf{3}_{T}} = \begin{vmatrix} f_{11} & f_{12} & f_{13} & f_{14} \\ f_{21} & f_{22} & f_{23} & f_{24} \\ f_{31} & f_{32} & f_{33} & f_{34} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(7.7)

în care:

$$f_{11} = c\theta_1 c\theta_2 c\theta_3 + s\theta_1 c\alpha_1 s\theta_2 c\theta_3 + s\theta_1 c\theta_2 s\theta_3 + c\theta_1 c\alpha_1 s\theta_2 s\theta_3$$

$$f_{21} = s\theta_1 c\theta_2 c\theta_3 + c\theta_1 c\alpha_1 s\theta_2 c\theta_3 + s\theta_1 s\theta_2 c\alpha_2 s\theta_3 + c\theta_1 c\alpha_1 c\theta_2 c\alpha_2 s\theta_3 + c\theta_1 s\alpha_1 s\alpha_2 s\theta_3$$

$$f_{31} = s\alpha_1 s\theta_2 c\theta_3 + s\alpha_1 c\theta_2 c\alpha_2 s\theta_3 + c\alpha_1 s\alpha_2 s\theta_3$$

$$f_{12} = -c\theta_1 c\theta_2 s\theta_3 c\alpha_3 + s\theta_1 c\alpha_1 s\theta_2 s\theta_3 c\alpha_3 + c\theta_1 s\theta_2 c\alpha_2 c\theta_3 c\alpha_3 + s\theta_1 c\alpha_1 c\theta_2 \cdot s\alpha_2 c\theta_3 c\alpha_3 + s\theta_1 s\alpha_1 s\alpha_2 c\theta_3 c\alpha_3 + c\theta_1 s\theta_2 s\alpha_2 s\alpha_3 + s\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + s\theta_1 s\alpha_1 c\theta_2 c\alpha_2 s\alpha_3 + c\theta_1 s\theta_2 s\alpha_2 s\alpha_3 + s\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 s\theta_2 c\alpha_2 c\theta_3 c\alpha_3 + s\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + s\theta_1 s\alpha_1 c\theta_2 c\alpha_2 c\theta_3 c\alpha_3 - s\theta_1 s\theta_2 c\alpha_2 c\theta_3 c\alpha_3 + c\theta_1 c\alpha_2 c\alpha_2 c\theta_3 c\alpha_3 + c\theta_1 c\alpha_2 c\alpha_2 c\theta_3 c\alpha_3 + c\theta_1 c\alpha_2 c\alpha_2 c\theta_3 c\alpha_3 + c\theta_1 s\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 - c\theta_1 s\alpha_1 s\alpha_2 c\theta_3 c\alpha_3 + s\theta_1 s\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 s\alpha_2 c\theta_3 c\alpha_3 + s\theta_1 s\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 s\alpha_2 c\theta_3 c\alpha_3 + s\theta_1 s\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 s\alpha_2 c\theta_3 c\alpha_3 + s\theta_1 s\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 s\alpha_2 c\theta_3 c\alpha_3 + s\theta_1 s\theta_2 s\alpha_2 s\alpha_3 + c\theta_1 c\alpha_2 s\alpha_3 + c\theta_1 c\alpha_2 s\alpha_3 + c\theta_1 c\alpha_2 s\alpha_3 + c\theta_1 s\alpha_2 c\theta_3 c\alpha_3 + s\alpha_1 c\theta_2 s\alpha_2 c\theta_3 c\alpha_3 + c\alpha_1 s\alpha_2 c\theta_3 c\alpha_3 - s\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\alpha_1 c\alpha_2 s\alpha_3 + c\alpha_1 c\theta_2 s\alpha_3 + c\alpha_1 c\theta_2 s\alpha_2 c\theta_3 c\alpha_3 + c\alpha_1 c\theta_2 s\alpha_2 s\alpha_3 + c\alpha_1 c$$

$$f_{13} = c\theta_1 c\theta_2 s\theta_3 s\alpha_3 - s\theta_1 c\alpha_1 s\theta_2 s\theta_3 s\alpha_3 - c\theta_1 s\theta_2 c\alpha_2 c\theta_3 s\alpha_3 + s\theta_1 c\alpha_1 c\theta_2 s\alpha_2 c\theta_3 s\alpha_3 - s\theta_1 s\alpha_1 s\alpha_2 c\theta_3 s\alpha_3 + c\theta_1 s\theta_2 s\alpha_2 c\alpha_3 - s\theta_1 s\theta_1 c\alpha_2 c\alpha_3$$

$$f_{22} = s\theta_1 c\theta_2 s\theta_3 s\alpha_3 + c\theta_1 c\alpha_1 s\theta_2 s\theta_3 s\alpha_3 + s\theta_1 s\theta_2 c\alpha_2 c\theta_3 s\alpha_3 - c\theta_1 c\alpha_1 c\theta_2 c\alpha_2 c\theta_3 s\alpha_3 + c\theta_1 s\alpha_1 s\alpha_2 c\theta_3 s\alpha_3 + s\theta_1 s\theta_2 s\alpha_2 c\alpha_3 - c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 c\alpha_3 - c\theta_1 s\alpha_1 c\alpha_2 c\alpha_3$$

$$f_{33} = s\alpha_1 s\theta_2 s\theta_3 s\alpha_3 - s\alpha_1 c\theta_2 c\alpha_2 c\theta_3 s\alpha_3 - c\alpha_1 s\alpha_2 c\theta_3 s\alpha_3 - s\alpha_1 c\theta_2 s\alpha_2 c\alpha_3 - c\alpha_1 c\alpha_2 c\alpha_3$$

$$f_{14} = c\theta_1 s\theta_2 s\alpha_2 d_3 + s\theta_1 c\alpha_1 c\theta_2 s\alpha_2 d_3 + s\theta_1 s\alpha_1 c\alpha_2 d_3 - s\theta_1 s\alpha_1 d_2 + \alpha_1 c\theta_1$$

$$f_{24} = s\theta_1 s\theta_2 s\alpha_2 d_3 - c\theta_1 c\alpha_1 c\theta_2 s\alpha_2 d_3 - c\theta_1 s\alpha_1 c\alpha_2 d_3 - c\theta_1 s\alpha_1 d_2 - \alpha_1 s\theta_1$$

Se menționează faptul că, datele inițiale necesare calibrării robotului REMT 5 au fost preluate după [V 9] măsurătorile fiind efectuate după principiul metodelor "locale", utilizând un cap de măsurare 3D - corp de probă sferă calibrată.

Intrucât măsurătorile vizând poziționarea efectorului terminal au fost efectuate doar pentru mecanismul generator al traiectoriei tip RTT, modulul de orientare a fost blocat. Așadar $A_{4k} \equiv 0$. Prin urmare, matricea generală de transformare omogenă necesară modelării geometriei robotului REMT 5, este ${}^{O}T_{3}$, dată de relația (7.7).

j Modelul geometric direct exprimă situarea efectorului terminal al robotului în raport cu sistemul de referință atașat bazei robotului (elementul fix), printr-o corespondență de forma:

$$\begin{vmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} f_{11} & f_{12} & f_{13} & f_{14} \\ f_{21} & f_{22} & f_{23} & f_{24} \\ f_{31} & f_{32} & f_{33} & f_{34} \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(7.9)

Prin identificarea termenilor corespondenți din cele două matrici, se exprimă componentele versorilor $\overline{n}, \overline{o}, si \overline{a}$ (ce descriu orientarea efectorului terminal), respectiv vectorului de poziție \overline{p} (ce descrie poziționarea efectorului terminal), funcție de parametri geometrici Hartenberg-Denavit. Având în vedere faptul că datele inițiale prelevate după [V9] se referă doar la exactitatea de poziționare, nu și de orientare, în cele ce urmează se fac referiri la aspectul de poziționare al robotului REMT 5, respectiv reducerea, prin calibrare, a erorilor de poziționare ale acestuia.

7.2.3. Modelul diferențial al erorilor de poziționare

Prin identificarea termenilor corespondenți ce exprimă poziționarea, în cele două matrici din relația (7.9), se obține:

$$p_{s} = c\theta_{1}s\theta_{2}s\alpha_{2}d_{3} + s\theta_{1}c\alpha_{1}c\theta_{2}s\alpha_{2}d_{3} + s\theta_{1}s\alpha_{1}c\alpha_{2}d_{3} - s\theta_{1}s\alpha_{1}d_{2} + a_{1}c\theta_{1}$$

$$p_{y} = s\theta_{1}s\theta_{2}s\alpha_{2}d_{3} - c\theta_{1}c\alpha_{1}c\theta_{2}s\alpha_{2}d_{3} - c\theta_{1}s\alpha_{1}c\alpha_{2}d_{3} - c\theta_{1}s\alpha_{1}d_{2} + a_{1}s\theta_{1} \quad (7.10)$$

$$p_{z} = -s\alpha_{1}c\theta_{2}s\alpha_{2}d_{2} + c\alpha_{1}c\alpha_{2}d_{3} + c\alpha_{1}d_{2} + d_{1}$$

Se scrie modelul diferențial al erorilor de poziționare astfel:

$$\begin{aligned} \Delta_{\mathbf{x}} &= \left(\frac{\partial}{\partial \theta_{1}}\right) \Delta \theta_{1} + \left(\frac{\partial}{\partial \alpha_{1}}\right) \Delta \alpha_{1} + \left(\frac{\partial}{\partial \alpha_{1}}\right) \Delta a_{1} + \left(\frac{\partial}{\partial \theta_{2}}\right) \Delta \theta_{2} + \left(\frac{\partial}{\partial \alpha_{2}}\right) \Delta \alpha_{2} + \\ &+ \left(\frac{\partial}{\partial \alpha_{2}}\right) \Delta d_{2} + \left(\frac{\partial}{\partial \alpha_{3}}\right) \Delta d_{3} \end{aligned} \\ \Delta y &= \left(\frac{\partial}{\partial \theta_{1}}\right) \Delta \theta_{1} + \left(\frac{\partial}{\partial \alpha_{1}}\right) \Delta \alpha_{1} + \left(\frac{\partial}{\partial \alpha_{1}}\right) \Delta a_{1} + \left(\frac{\partial}{\partial \theta_{2}}\right) \Delta \theta_{2} + \left(\frac{\partial}{\partial \alpha_{2}}\right) \Delta \alpha_{2} + \\ &+ \left(\frac{\partial}{\partial d_{2}}\right) \Delta d_{2} + \left(\frac{\partial}{\partial d_{3}}\right) \Delta d_{3} \end{aligned}$$

$$\begin{aligned} \Delta z &= \left(\frac{\partial}{\partial \alpha_{1}}\right) \Delta \alpha_{1} + \left(\frac{\partial}{\partial d_{3}}\right) \Delta d_{1} + \left(\frac{\partial}{\partial \theta_{2}}\right) \Delta \theta_{2} + \left(\frac{\partial}{\partial \alpha_{2}}\right) \Delta \alpha_{2} + \left(\frac{\partial}{\partial d_{2}}\right) \Delta d_{2} + \\ &+ \left(\frac{\partial}{\partial d_{3}}\right) \Delta d_{3} \end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned} Az &= \left(\frac{\partial}{\partial \alpha_{1}}\right) \Delta \alpha_{1} + \left(\frac{\partial}{\partial d_{1}}\right) \Delta d_{1} + \left(\frac{\partial}{\partial \theta_{2}}\right) \Delta \theta_{2} + \left(\frac{\partial}{\partial \alpha_{2}}\right) \Delta \alpha_{2} + \left(\frac{\partial}{\partial d_{2}}\right) \Delta d_{2} + \\ &+ \left(\frac{\partial}{\partial d_{3}}\right) \Delta d_{3} \end{aligned}$$

respectiv prin derivare:

$$\Delta_{\mathbf{x}} = (-s\theta_{1}s\theta_{2}s\alpha_{2}d_{3} + c\theta_{1}c\alpha_{1}c\theta_{2}s\alpha_{3}d_{3} + c\theta_{1}s\alpha_{1}c\alpha_{2}d_{3} - c\theta_{1}s\alpha_{1}d_{2} - a_{1}s\theta_{1})\Delta\theta_{1} + + (-s\theta_{1}s\alpha_{1}c\theta_{2}s\alpha_{2}d_{3} + s\theta_{1}c\alpha_{1}c\alpha_{2}d_{3} - s\theta_{1}c\alpha_{1}d_{2})\Delta\alpha_{1} + c\theta_{1}\Delta\alpha_{1} + + (c\theta_{1}c\theta_{2}s\alpha_{2}d_{3} - s\theta_{1}c\alpha_{1}s\theta_{2}s\alpha_{2}d_{3})\Delta\theta_{2} + (c\theta_{1}s\theta_{2}c\alpha_{2}d_{3} + s\theta_{1}c\alpha_{1}c\theta_{2}c\alpha_{2}d_{3} - + s\theta_{1}s\alpha_{1}s\alpha_{2}d_{3})\Delta\alpha_{2} - s\theta_{1}s\alpha_{1}\Delta d_{2} + (c\theta_{1}s\theta_{2}s\alpha_{2} + s\theta_{1}c\alpha_{1}c\theta_{2}s\alpha_{2} + + s\theta_{1}s\alpha_{1}c\alpha_{3})\Delta d_{3}$$

BUPT

$$\begin{aligned} \Delta_{y} &= (c\theta_{1}s\theta_{2}s\alpha_{2}d_{3} + s\theta_{1}c\alpha_{1}c\theta_{2}s\alpha_{2}d_{3} + s\theta_{1}s\alpha_{1}c\alpha_{2}d_{3} - s\theta_{1}s\alpha_{1}d_{2} - a_{1}c\theta_{1})\Delta\theta_{1} \\ &= (c\theta_{1}s\alpha_{1}c\theta_{2}s\alpha_{2}d_{3} - c\theta_{1}c\alpha_{1}c\alpha_{2}d_{3} - c\theta_{1}c\alpha_{1}d_{2})\Delta\alpha_{1} - s\theta_{1}\Delta\alpha_{1} \\ &= (s\theta_{1}c\theta_{2}s\alpha_{2}d_{3} + c\theta_{1}c\alpha_{1}s\theta_{2}s\alpha_{2}d_{3})\Delta\theta_{2} - (s\theta_{1}s\theta_{3}c\alpha_{2}d_{3} - c\theta_{1}c\alpha_{1}c\theta_{2}c\alpha_{2}d_{3} - \\ &+ c\theta_{1}s\alpha_{1}s\alpha_{2}d_{3})\Delta\alpha_{2} - c\theta_{1}s\alpha_{1}\Delta d_{2} - (s\theta_{1}s\theta_{2}s\alpha_{2} - c\theta_{1}c\alpha_{1}c\theta_{2}s\alpha_{2} - \\ &- c\theta_{1}s\alpha_{1}c\alpha_{2})\Delta d_{3} \end{aligned}$$
(7.12)
$$\Delta_{z} = (-c\alpha_{1}s\theta_{2}s\alpha_{2}d_{2} - s\alpha_{1}c\alpha_{2}d_{3} - s\alpha_{1}d_{2} - d_{1})\Delta\alpha_{1} - \Delta d_{1} + (s\alpha_{1}s\theta_{2}s\alpha_{2}d_{2})\Delta\theta_{2} + \\ &+ (-s\alpha_{1}c\theta_{2}c\alpha_{2}d_{2} - c\alpha_{1}s\alpha_{2}d_{3})\Delta\alpha_{2} + (-s\alpha_{1}c\theta_{2}s\alpha_{2} - c\alpha_{1})\Delta d_{2} - c\alpha_{1}c\alpha_{2}\Delta d_{3} \end{aligned}$$

In relațiile (7.12) s-a notat: $\Delta p_x = \Delta x_i \ \Delta p_y = \Delta y \ si \ \Delta p_z = \Delta z_i$

Valorile nominale ale parametrilor geometrici tip Hartenberg Denavit ai robotului REMT 5 sunt redate în tabelul 7.2.

Inlocuind valorile nominale constante ale parametrilor geometrici Hartenberg Denavit în relațiile (7.12) se obține:

$$\Delta x = (s\theta_1 d_3) \Delta \theta_1 + (-s\theta_1 d_2) \Delta \alpha_1 + c\theta_1 \Delta \alpha_1 + (s\theta_1 d_3) \Delta \theta_2 + (-c\theta_1) \Delta d_3$$

$$\Delta y = (-c\theta_1 d_3) \Delta \theta_1 + (-c\theta_1 d_2) \Delta \alpha_1 + s\theta_1 \Delta \alpha_1 + (-c\theta_1 d_3) \Delta \theta_2 + (-s\theta_1) \Delta d_3 \qquad (7.13)$$

$$\Delta z = \Delta d_1 + d_3 \Delta \alpha_2 + \Delta d_2$$

Scriind rel (7.13) pentru o poziție oarecare din spațiul de lucru al robotului, se obține :

- $\Delta x, \Delta y, \Delta z$.- cunoscute (determinate prin măsurarea erorilor de poziție ale efectorului terminal);

- $\Delta \theta_1, \Delta d_2, \Delta d_3$ - cunoscute (determinate prin măsurarea cu traductoare de poziție);

- $\Delta \alpha_1$, $\Delta \alpha_1$, $\Delta \theta_2$, Δd_1 , $\Delta \alpha_2$ - necunoscute.

Se observă că sistemul (7.13) este nedeterminat. Această nedeterminare provine din faptul că s-au luat în considerare doar erorile de poziționare, nu și cele de orientare (datele prelevate după [V9] referindu-se doar la poziționare) Dacă s-ar fi luat în considerare ambele aspecte (poziționare și orientare) conform rel (7.9), s-ar fi obținut un sistem compatibil de 12 ecuații cu 12 necunoscute.

Prin urmare, se poate concluziona că, luarea în considerare doar a aspectului de poziționare permite o calibrare parțială, o compensare parțială a erorilor.

Spre exemplu, dacă în relația (7.13) se la în considerare doar efectul abaterilor pozițiilor relative ale axelor cuplelor robotului (abateri de la paralelism și perpendicularitate) în eroarea de poziționare a efectorului terminal, neglijând abaterile dimensionale ale elementelor ($\Delta \alpha_1 = 0$, $\Delta d_1 = 0$), se ridică nedeterminarea, necunoscute fiind doar $\Delta \alpha_1$, $\Delta \theta_2$ și $\Delta \alpha_2$.

Cu această ipoteză, sistemul (7.13) devine:

$$\Delta x = (s\theta_1 d_3) \Delta \theta_1 + (-s\theta_1 d_2) \Delta \alpha_1 + (s\theta_1 d_3) \Delta \theta_2 + (-c\theta_1) \Delta d_3$$

$$\Delta y = (-c\theta_1 d_3) \Delta \theta_1 + (-c\theta_1 d_2) \Delta \alpha_1 + (-c\theta_1 d_3) \Delta \theta_2 + (-s\theta_1) \Delta d_3$$

$$\Delta z = d_3 \Delta \alpha_2 + \Delta d_2$$

(7.14)

7.2.4 Determinarea efectivă a erorilor parametrilor geometrici Δα1, Δθ2, Δα2 pentru robotul REMT 5 și corectarea acestora

Pentru verificarea algoritmului de calcul propus se efectuează calculeie pentru una din pozițiile testate, spre exemplu poz.5, tabelul 7.5 și tabelul 7.6 [V9]. Poziția 5 corespunde regimului de încercare:

 $c = 50 \% c_{max}$

$$S U = 50 \% S U_{max}$$

$$v = 50 \% v_{max}$$

Așadar valorile nominale ale parametrilor geometrici, utilizați ca date inițiale în rel. (7.14), sunt redate în tabelul 7.3.

Element	θ _n (°)	α _π [°]	a, [mm]	<i>d_n</i> [mm]
]	152,5	0	0	0
2	+ 90	- 90	0	77,68
3	+ 90	0	0	205,15

Tabel 7.3

Din tabelul 7.5 [V9] : $\Delta \theta_1 = -0.02^{\circ}$

	Δd_2	=-0,364 mm
	∆d₃	= - 0,52 mm
Din tabelul 7.6 [V9]:	Δ,	= + 0,700 mm
	Δy	= + 0,650 mm
	Δz	= - 0,660 mm

Cu aceste date inițiale, relațiile (7.14) devin:

$$-35,81 \ \Delta \alpha_1 = 94,574 \ \Delta \theta_2 = 1,189$$

$$68,9 \ \Delta \alpha_1 + 181,96 \ \Delta \theta_2 = 0,4655$$

$$205, 15 \ \Delta \alpha_2 = -0,296$$

(7.15)

Rezolvând sistemul (7.15) rezultă:

$$\Delta \theta_{2} = -0.43^{\circ}$$

$$\Delta \alpha_{1} = -0.755^{\circ}$$

$$\Delta \alpha_{2} = -0.082^{\circ}$$
(7.16)

Cu valorile definite în rel.(7.16) se corectează parametri geometrici θ_2 , α_3 , α_2 , determinându-se valorile corectate ale acestora:

$$\theta_2^* = \theta_{2n} + \Delta \theta_2 = 90.43^o$$

$$\alpha_1^* = \alpha_{1n} + \Delta \alpha_1 = -0.755^o$$

$$\alpha_2^* = \alpha_{2n} + \Delta \alpha_2 = -90.082^o$$
(7.17)

In tabelul 7.4 sunt redate valorile corectate prin calibrare ale parametrilor Hartenberg Denavit luați în considerare:

Element	<i>θ</i> * [°]	α* [°]	a*(mm)	<i>d*</i> (mm)
]	152,5	0,755	0	0
2	+ 90,43	- 90,082	0	77,68
3	+ 90	0	0	205,15

Tabel 7.4

Pentru a estima dacă prin procesul de calibrare s-a redus eroarea de poziționare a efectorului terminal al robotului se procedează astfel:

- se calculează valorile nominale ale coordonatelor punctului caracteristic al efectorului terminal $(p_{x_n}, p_{y_n}, p_{z_n})$ introducând în modelul geometric, rel (7.10), valorile nominale ale parametrilor geometrici Hartenberg Denavit, prezentați în tabelul 7.3. Se obtin .

$$p_{x_n} = 181,96 \text{ mm}$$

 $p_{y_n} = -94,574 \text{ mm}$ (7.18)
 $p_{z_n} = 77,68 \text{ mm}$

- față de aceste coordonate nominale, punctul caracteristic a fost atins cu erorile.

$$\Delta_x = + 0.700 mm$$

$$\Delta_y = + 0.650 mm$$

$$\Delta_z = -0.660 mm$$

(7.19)

măsurate la efectorul terminal;

- se calculează valorile corectate ale coordonatelor punctului caracteristic al efectorului terminal $(p_x^*, p_{y^*}^*, p_z^*)$, introducând în modelul geometric, rel (7.10), valorile corectate θ^* , α^* , a^* , d^* ale parametrilor Hartenberg Denavit din tabelul 7.4. Se obțin:

$$p_x^* = 182,263 \text{ mm}$$

 $p_y^* = -94,077 \text{ mm}$ (7.20)
 $p_z^* = 77,9032 \text{ mm}$

- se calculează erorile Δx_1 , Δy_1 , Δz_2 , în raport cu poziția nominală. Se obțin:

$$\Delta_{xI} = \pm 0,303 \ mm$$

$$\Delta_{yI} = \pm 0,79^{\circ} \ mm$$

$$\Delta_{zI} = -0,2232 \ mm$$
(7.21)

7.2.5. Concluzii

Prin studiul de caz mai sus prezentat s-a urmărit verificarea practică a metoder și algoritmului de calibrare propuse în capitolul 4, precum și punerea în evidență a necesității practice de a studia și elabora metodologii de determinare a performanțelor roboților industriali, îndeosebi a performanțelor de situare, ceea ce constituie obiectul prezentei teze de doctorat.

Se observă că, prin calibrarea modelului geometric, după prima iterație, erorile de poziționare ale efectorului terminal al robotului s-au redus cu 43% pentru p_x , cu 33,81 % pentru p_y și cu 76% pentru p_z .

Se pot efectua, desigur, mai multe iterații până la obținerea preciziei dorite.

In studiul prezentat s-a luat în considerare doar aspectul de poziționare, datele inițiale disponibile, [V9], referindu-se numai la acest aspect. Se menționează faptul că un studiu mai aprofundat ține seama și de erorile de orientare în calibrarea modeulului geometric.

Se mai menționează că, pentru studiu a fost acceptat robotul REMT 5, acesta nefiind calibrat la fabricare, spre deosebire de alți roboți aflați la dispoziție în Laboratorul de roboți industriali al Catedrei de Organe de Mașini și Mecanisme (spre exemplu, CLOOS-ROMAT 76).

Modelul geometric îmbunătățit, corectat, obținut prin folosirea parametrilor dimensionali corectați, θ*, α*, a* și d* poate fi implementat în unitatea de comandă a robotului, presupunând însă și utilizarea unui algoritm de calcul iterativ.

Dacă acest lucru nu este posibil a fi realizat, se adaptează sistemul de programare "off-line" al robotului, prin modificarea țintei, în așa fel încât efectorul terminal să se apropie cât mai mult de ținta dorită, în spațiul de lucru al robotului, este ceea ce se poate denumi "țintă falsă".

Dacă se notează ținta dorită cu X_d , ținta atinsă de efectorul terminal fără corecții cu $X_a \neq X_d$ și ținta modificată cu X_m , se poate scrie cu o bună aproximare: j

$$X_m = X_d + (X_d - X_n) = 2X_d - X_n = 2X_d - f_i [f_n^{-1}(X_d)]$$
(7.22)

Tinta modificată, X_m , este prezentată unității de control, care, prin modelul geometric invers, calculează:

$$q_m = f_n^{-1}(X_m) \tag{7.23}$$

q_m fiind coordonatele generalizate în cuplele cinematice ale robotului.

In acest algoritm este necesar să se utilizeze așadar 2 modele geometrice nominale inverse și un model geometric îmbunătățit direct.

In ceea ce privește robotul REMT 5 luat în studiu rezultatele măsurării performanțelor de situare atestă o precizie medie, motiv pentru care a fost utilizat pentru manipulări mai puțin exacte. Având însă în vedere condițiile de pionierat în domeniul roboticii precum și componentele tipizate la care a existat posibilitatea de accesare în momentul executării acestora, seria de roboți REMT 5 reprezintă o realizare notabilă a industriei românești.

Se poate concluziona însă, pe baza celor prezentate în subcapitolul de față că, prin calibrarea, chiar și numai a modelului său geometric, erorile de situare se reduc, ceea ce ar permite utilizarea robotului REMT 5 în aplicații de mai mare precizie (montaj de componente electronice, manipulări de piese cu precizie mai mare etc).

7.3. Cercetări experimentale privind performanțele de situare ale robotului CLOOS-ROMAT 76

7.3.1. Robotul CLOOS-ROMAT 76. Prezentare generală

Robotul CLOOS-ROMAT 76, l'ace parte din familia de roboți ROMAT ai firmei CLOOS, caracterizați prin aceea că au domenii de lucru flexibile, fiind destinați operațiilor de sudare și tăiere, prin procedee clasice sau prin procedee neconvenționale (cu laser, cu jet de apă, etc).

Roboții tip ROMAT (56, 66, 76, 76S, 106)se construiesc în două variante:

- pentru exploatare în poziție "așezat pe sol";

- pentru exploatare în poziție "suspendat".

Sunt roboți dotați cu sistem de programare universal și sistem de urmărire a rostului fiabil, controlat prin arc electric.

Robotul aflat în Laboratorul de roboți industriali al Universității "Politehnica" din Timișoara și utilizat în cercetările experimentale întreprinse în cadrul prezentei texe de doctorat este de tip ROMAT 76.

Dispozitivul de ghidare al robotului ROMAT 76 este un lanț cinematic deschis (fig. 7.3), având mecanismul generator de traiectorie tip RRR (axele 1, 2 și 3) și mecanismul de orientare cu trei rotații (axele 4, 5 și 6). Efectorul terminal al robotului este un cap de sudare cu electrod filiform.

Urmărind schema cinematică a mecanismului generator de traiectorie al robotului ROMAT 76 (fig. 7.4), se observă că acesta generează un spațiu de lucru sferic.

Caracteristicile tehnice sunt prezentate de asemenea în fig. 7.4.

Acționarea robotului ROMAT 76 este electrică cu motoare de curent continuu, iar pentru echilibrare se utilizează un motor pneumatic liniar Robotul CLOOS-ROMAT 76 este prevăzut cu sistem de avans automat adaptiv al electrodului filiform, precum și cu sistem de curățire automată a electrodului

Robotul este dotat cu un sistem de comandă în construcție modulară, având trei categorii de module:

- modul de sarcinā;

- modul de calcul (calculator);

- modul de servoreglare.

Aceste module sunt amplasate în dulapul de comandă tip ROTROL, prevăzut cu un sistem propriu de răcire cu aer, pentru a asigura o temperatură optimă în interiorul lui, evitându-se supraîncălzirea.

Programarea robotului poate fi realizată în două sisteme de referință

- sistem de coordonate -robot (coordonate articulare) -RC;

- sistem de coordonate carteziene -CC.

In sistemul RC, situarea punctului caracteristic, P.C., al efectorului terminal se exprimă în număr de impulsuri ale traductoarelor de poziție amplasate în

articulații. Aceste traductoare incrementale, la roboți ROMAT 56, 66, 76 și 76S sunt integrate unității motoare. În tabelui 7.5 este prezentată corespondența impuls/grad pentru cele 6 axe, la roboții din familia ROMAT.

Та	bel	7.5
_		

Axa	Romat 56	Romat 66/76/76S	Romat 106
	157,300	154,413	138,888
2	148,872	145,625	277,777
3	148,363	225,15)	185,185
4	180,513	102,988	138,888
5	175,210	126,061	83,332
6	109,203	99,737	62,496

Programarea în sistemul de coordonate carteziene, CC, se poate realiza în trei sisteme de coordonate diferite, funcție de necesitățile utilizatorului:

- sistemul de coordonate de bază (CC), legat de baza robotului;

- sistemul de coordonate al mecanismului de orientare;
- sistemul de coordonate al piesei, legat de piesa aflată în lucru.

Sistemul de coordonate de bază, (fig.7.5), este legat de baza robotului, originea lui aflându-se în punctul de intersecție al axei z al primei cuple de rotație (axa1) cu placa de bază. Axa z este axa 1, cu sensul pozitiv în sensul structurii mecanice (conform recomandărilor ISO).

Sistemul de coordonate al mecanismului de orientare este reprezentat în fig. 7.6.

Punctul caracteristic P.C., al robotului este varful sarmei de sudare (fig.7.7)

Cele trei sisteme de coordonate carteziene sunt numerotate, după cum urmează

1 - sistem de coordonate de baza;

2 - sistem de coordonate al mecanismului de orientare;

3 - sistem de coordonate al piesei.

206

Fig. 7.6

- · · · · · · - __

La programare se selectează unul dintre cele 3 sisteme Robotul își va realiza deplasările prin mișcări paralele cu axele x, y, z al sistemului de coordonate cartezian ales.

Pentru programul de încercări privind caracteristicile de situare ale robotului ROMAT 76 și ale celulei de sudare, s-a selectat sistemul de coordonate CC de bază (numărul 1), deplasările robotului în punctele comandate fiind raportate la acest sistem de coordonate.

7.3.2. Stand pentru determinarea performanțelor de situare la roboți și sisteme de fabricație flexibilă robotizată, utilizând un ansamblu de două tahimetre electronice tip REC-ELTA.

7.3.2.1. Tahimetru electronic tip REC-ELTA. Prezentare generală.

Aparatul este un instrument complex, produs al firmei Carl Zeiss, care permite atât măsurarea unghiurilor orizontale (H_2) și verticale (V), cât și măsurarea distanțelor prin telemetrare, îmbinând caracteristicile unui teodolit și ale unui telemetru. Caracteristicile majore ale aparatului REC ELTA, cu cap de măsurare ELTA și dispozitiv de înregistrare și calcul REC, sunt :

ELTA:

- citire electronică (incrementală) a unghiurilor orizontale (Hz) şi verticale (V);
- telemetru electro-optic în infraroșu, folosind metoda comparație fază;
- compensator pentru corectarea înclinării axei verticale;
- înregistrarea automată a temperaturii și presiunii atmosferice;
- generator de semnal acustic;
- panou cu trei taste pentru pornire-oprire aparat;
- display cu cristale lichide (LCD);

REC:

-24 taste cu funcții simple la REC, cod color al grupelor de taste, intrare alfa numerică, taste soft divers, cu funcții suplimentare;

- display grafic (240 × 38 pixels), cu patru linii cu câte 40 de caractere fiecare și cu spectru larg de vizualizare;

 interfață accesibilă cu utilizatorul, cu meniu și moduri interactive atribuție ecran/taste);

- selectare directă a părților importante de program, indiferent de nivelul curent al programului;

programe utilitare orientate pe tipuri de aplicații;

 memorie interschimbabilă MEM E (memorie nevolatilă, cu o capacitate de aprox. 2000 de înregistrări);

- interfață RS 232 C pentru date de intrare-ieșire.

Aparatul REC ELTA se compune deci din:

tahimetru electronic ELTA - cap de măsurare;

- REC E - unitate de comandă, calcul și înregistrare.

Este prezentat în fig.7.8 și are următoarele părți componente principale:

- display ELTA (6) - afişare măsurātori primare;

- display REC E (14) afișare valori măsurate și / sau calculate și informații utilitare, afișare grafice;

- panou de comandã ELTA (31) - pornire oprire instrument, cu trei butoane;

- panou de comandă REC (16)

- taste HARD: 24 taste cu funcții simple;

- taste SOFT: funcții accesate direct din programe;

- înregistrare:

- memorie MEME (9) interschimbabilă cu capacitate de stocare de aproximativ 2000 de înregistrari, nevolatilă pentru un an;

- conectare on-line prin interfață RS 232C (17);

- putere furnizată:

- baterii reîncărcabile NiCd de 4,8 V și 1,8 A, suficiente pentru

aproximativ 8 ore de funcționare;

- senzori (23);

māsurare automată a temperaturii şi presiunii aerului;

- generator de semnal acustic (15) - indicând funcțiile specificate;

Aparatul realizează compensarea automată a efectului înclinării axei sale verticale, atât la măsurarea unghiurilor orizontale H_2 , cât și verticale V, utilizând în acest scop un compensator cu lichid cu două axe.

Fiind dotat cu senzori de temperatură și presiune, tahimetrul REC-ELTA înregistrează automat abaterile de la valorile standard de temperatură și presiune, compensând automat efectul acestora la citirea unghiurilor H_z și V, respectiv distanțelor măsurate.

De asemenea, la măsurarea distanțelor se realizează compensarea automată a efectului razei de curbură a pământului.

Toate aceste compensări se efectuează prin activarea meniului inițial, prin intermediul tastelor SOFT.

Cu privire la precizia aparatului:

- la măsurarea unghiurilor, abaterea standard, după DIN 18723 este:

- pentru unghiurile Hz : 0,6" / 0,2 mgrds;

- pentru unghiurile V: 0,6" / 0,2 mgrds;

- la măsurarea distanțelor, abaterea standard este de 0,2 mm.

Se precizează că aparatul a fost utilizat în cadrul tezei pentru măsurarea unghiurilor H_z și V. Aparatul REC-ELTA are posibilitatea de a fi conectat la un calculator PC, pentru a asigura transferul de date inițiale și prelucrarea acestora în conformitate cu algoritmul de calcul adoptat.

De altfel, posibilitățile de conectare ale REC-ELTA sunt multiple, după cum se vede în fig. 7.9.

Se menționează faptul că, pentru măsurătorile efectuate la robotul CLOOS ROMAT 76, condițiile de lucru (în hală), au permis conectarea aparatului REC-
ELTA direct la un calculator PC, facilitând astfel preluarea datelor inițiale și prelucrarea acestora.

7.3.2.2. Stand și metodă pentru determinari experimentale ale performanțelor de situare

Standul utilizat materializează principiul metodelor "la distanță" pentru determinarea caracteristicilor de situare ale roboților industriali, prezentate în capitolul 3 al tezei de doctorat, eliminând din sistemul de măsurare capul de măsurare 3D.

In scopul efectuării măsurătorilor privind performanțele de situare, robotul CLOOS ROMAT 76 a fost dotat cu un corp de probă - cub calibrat, având latura de 50 mm (fig. 7.10)

Pentru a putea fi reperat cu ușurință în raport cu decorul, pe fețele cubului s-a lipit hârtie albă, reflectorizantă, iar cele patru vârfuri vizate ale cubului au fost marcate cu cifre după cum se poate vedea în detaliul prezentat în fig.7.11. ____

..

- - -----

Pentru măsurători s-au utilizat două tahimetre electronice REC-Elta, amplasate în raport cu robotul după cum se vede în fig. 7.12

. . . _

_. _._.

Prin interfața proprie fiecărui aparat, acestea au fost conectate la câte un calculator PC, în scopul prelevării automate a datelor de intrare pentru algoritmul de calcul utilizat la prelucrarea datelor experimentale.

Figura 7.13 prezintă în detaliu tahimetrul REC-ELTA utilizat.

Principiul de măsurare de bază este simplu: un punct de pe corpul de probă (în cazul de față un vârf al cubului calibrat), purtat de efectorul terminal al robotului, vizat de cele două aparate REC- ELTA, T_1 și T_2 , se află la intersecția a două drepte de vizare (fig. 7.12 și fig. 7.14).

Măsurând unghiurile celor două drepte de vizare în plan orizontal ($\alpha_H \equiv H_z$) și în plan vertical ($\alpha_V \equiv V$), cu ajutorul celor două tahimetre, după cum se observă în fig. 7.14, și apoi folosind din topografie metoda "intersecției înainte" (capitolul 3, subcapitolul 3.3.1), se determină coordonatele punctului vizat.

Se vizează pe rând, cele patru vârfuri ale cubului corp de probă, N1, N2, N3 și N4 și se determină coordonatele acestora în modul arătat mai sus. Aceste coordonate sunt exprimate în raport cu un sistem de axe legat de unul dintre tahimetre (fig. 7.14), respectiv T_1 , originea acestui sistem de axe fiind centrul optic al aparatului.

Intrucât pentru calculul coordonatelor punctelor vizate este necesară cunoașterea poziției centrului optic al celui de-al doilea aparat, aceasta s-a determinat prin vizare reciprocă între cele două aparate. S-au determinat astfel coordonatele centrului optic al tahimetrului nr.2, $T_2(0; 5,98592; 0,02721)$ în raport cu T_1 (fig.7.14). Se menționează faptul că aceste coordonate sunt exprimate în [m], unitate de măsură pentru distanțe selectată în meniul inițial al programului aparatului.

S-a creat, în acest mod, baza de măsurare, bază nemodificată pe tot parcursul determinărilor experimentale.

Pentru măsurătorile efectuate la robotul CLOOS-ROMAT 76, ținta este reprezentată de:

- cele 4 vârfuri marcate cu cifre ale cubului calibrat;

- vârful sârmei - electrod de sudare.

7.3.3. Program al cercetárilor experimentale

Prin programul de încercări experimentale conceput s-a urmărit verificarea practică, pentru situații concrete, a metodei și algoritmului de calcul a caracteristicilor de situare la roboți și sisteme de fabricație flexibilă robotizate propuse în capitolul 3 al tezei, subcapitolul 3.3.1.

7.3.3.1. Caracteristici testate

Au fost luate în studiu și supuse testării, următoarele caracteristici de situare ale robotului CLOOS-ROMAT 76:

exactitatea de poziționare unidirecțională;

- repetabilitatea de poziționare unidirecțională;
- 3. exactitatea de orientare unidirecțională;
- 4. repetabilitatea de orientare unidirecțională;
- 5. variația exactității de poziționare unidirecțională;
- 6. exactitatea de poziționare a distanței .

Toate încercările au fost făcute în conformitate cu recomandările ISO 9283:90 "Manipulating Industrial Robot- Performance Criteria and Related Test Methods".

Testările s-au făcut în condițiile atmosferice normale în care lucrează robotul (în hală), aparatele fiind dotate (după cum s-a specificat) cu senzori de temperatură și presiune, realizându-se automat corectarea parametrilor măsurați funcție de condițiile atmosferice sezizate. De asemenea, încercările s-au făcut în condiții de repaos în activitatea industrială (duminică) pentru a se evita influența vibrațiilor asupra măsurătorilor.

Cu privire la viteza de deplasare între pozițiile de încercare specificate, s-a optat, în conformitate cu LSO 9283: 90, pentru viteza maximă, respectiv 100% din viteza nominală.

BUPT

Cu privire la mărimea sarcinii aplicate interfeței mecanice, dacă se consideră drept sarcină nominală masa electrodului de sudură filiform împreună cu subansamblul prin intermediul căruia se montează pe interfața mecanică a robotului, iar cubul de probă împreună cu piesa intermediară cu care se montează pe acest subansamblu având o masă de 1,3 kg (fig. 7.11), se poate considera că încercările s-au efectuat la o încărcare depășind încărcarea nominală (aprox. 113%)

7.3.3.2. Derularea măsurătorilor

Măsurătorile vizând caracteristicile de exactitate și repetabilitate de situare (poziționare și orientare) s-au efectuat pentru un număr de cinci poziții de încercare (punctele P_1 , P_2 , P_3 , P_4 , P_5), amplasate în zona cea mai utilizată din spațiul de lucru al robotului, pe un plan situat în interiorul unui cub imaginar înscris în spațiul de lucru, conform ISO 9283 90. Amplasarea punctelor de încercare, în raport cu poziția de referință a robotului (poziția inițială) se poate observa în fig. 7-15. a) și b).

Punctele de încercare au fost memorate în calculatorul robotului prin învățare, după care s-a comandat robotul să revină în punctele învățate, în următoarea succesiune: $P_1 \rightarrow P_5 \rightarrow P_4 \rightarrow P_3 \rightarrow P_2 \rightarrow P_1$, efectuându-se 10 cicluri de măsurători (câte 10 măsurători pentru fiecare dintre cele 5 poziții testate) în fiecare poziție, au fost vizate cu cele 2 tahimetre patru vârfuri ale cubului de probă, N_1 , N_2 , N_3 , N_4 , (fig. 7.14), măsurându-se unghiurile $H_Z^1 = \alpha_H^1$ si $\Gamma^1 = \alpha_V^1$ respectiv $H_Z^2 = \alpha_H^2$ si $V^2 = \alpha_V^2$.

Unghiurile respective (800 de valori) sunt prezentate în așa numitul "carnet de teren", anexa 1.

Cu aceste valori de unghiuri H_z și V, prin metoda "intersecției înainte", s-au calculat coordonatele x, y, z, ale punctelor N_1 , N_2 , N_3 și N_3 vizate, acestea constituindu-se în date inițiale pentru algoritmul de calcul a exactității și repetabilității de situare (poziționare și orientare), (anexa 2).

In acest scop au fost utilizate cele două calculatoare PC la care au fost conectate, prin interfața proprie, cele două tahimetre.

Pentru determinarea caracteristicii de exactitate de poziționare a distanței. (AD), se utilizează măsurătorile aferente punctelor de încercare P_1 și P_3 .

Pentru determinarea caracteristicii de variație a exactității de poziționare multidirecțională (vAP) s-a efectuat un alt set de măsurători pentru o poziție comandată, apropierea de această poziție realizându-se pe trei traiectorii diferite, câte 10 repetări pentru fiecare traiectorie.

Se menționează faptul că a fost vizat doar vărful N_1 al cubului, întrucât a fost luat în considerare numai aspectul de poziționare. Datele inițiale (coordonatele punctelor) sunt prezentate în tabelul 7.6.

Se mai specifică faptul că toate încercările au fost efectuate deplasând robotul în poziția comandată prin acționarea simultană a tuturor cuplelor sale motoare pentru a cumula în eroarea efectorului terminal, efectul erorilor generate de toate mișcările robotului.

Nr.		Poziția 1			Paziția 2		Poziția 3		
crt	x	y	2	x	У	2	Ĩ	. y	z
1.	7,04939	1,82838	2,11029	7,04915	1,82821	2,11111	7,04968	1.82915	2,11055
2.	7,04945	1,82859	2,11002	7,04961	1.82832	2.11048	7,04965	1.82872	2.13038
3.	7,04942	1,82847	2,11021	7,04925	1,82805	2,11032	7,04928	1,82835	2,11025
4.	7,04931	1,82854	2,11015	7.04915	1.82779	2,11048	7,04939	1.82842	2,11062
5.	7.04928	1,82831	2.11049	7,04912	1,82835	2,11055	7,04958	1,82841	2.11041
6.	7,04935	1,82825	2,11019	7,04925	1,82868	2.11024	7,04991	1.82905	2.11059
7.	7,04926	1.82857	2.11035	7,04931	1.82848	2.11079	7,04948	1,82858	2,11078
8.	7,04948	1.82865	2,11048	7,04935	1.82865	2.11071	7.04915	1,82855	2,11045
9.	7,04924	1.82844	2,11045	7,04952	1,82871	2.11052	7.04955	1,82872	2,11062
10	7,04943	1,82839	2,11015	7,04935	1.62849	2,11055	7,04958	1,82861	2,11075

Tabel 7.6

7.3.3.3 Prelucrarea rezultatelor experimentale

Utilizând algoritmul prezentat în subcapitolul 3.3.1, cu ajutorul programului EXCEL, s-a efectuat prelucrarea rezultatelor experimentale, în vederea determinării caracteristicilor de situare testate. Pentru a facilita efectuarea calculelor matematice în EXCEL, relațiile de calcul aferente au fost sistematizate în tabelul 7.7.

Valori de calcul intermediare precum și valorile finale ale caracteristice de situare testate sunt prezentate în anexa 3 după cum urmează:

- POZIȚIONARE ROBOT - PUNCTUL PI, P2, P3, P4, P5: exactitate de poziționare repetabilitate de poziționare, exactitate de orientare, repetabilitate de orientare ;

- EXACTITATE DE POZIȚIONARE A DISTANȚEI - ROBOT;

VARIAȚIA EXACTITĂȚII DE POZIȚIONARE MULTIDIRECȚIONALĂ;

Se menționează faptul că , în algoritmul de calcul, datele inițiale (coordonatele x, y, z) sunt exprimate în [m] unitate de măsură pentru distanțe selectată în meniul inițial al aparatelor REC-ELTA utilizate pentru măsurători. Ca urmare, și parametri de poziționare calculați sunt exprimați în [m]. Parametri de orientare sunt exprimați în [°].

Analizând rezultatele obținute prin prelucrarea datelor experimentale, se pot formula câteva concluzii:

1. - algoritmul de calcul propus și utilizat la prelucrarea datelor experimentale permite determinarea componentelor exactității și repetabilității de situare (poziționare și orientare), în vederea exprimării acestora sub formă matricială, limbaj matematic unitar, utilizat în robotică. Acest aspect a fost luat în considerare în prezentarea valorilor calculate ale caracteristicilor de situare. Spre exemplu, exactitatea de poziționare în punctul P₁, AP₁, se poate exprima sub forma:

$$AP_{1} = \begin{vmatrix} AP_{nx} & AP_{ox} & AP_{ax} & AP_{x} \\ AP_{ny} & AP_{oy} & AP_{ay} & AP_{y} \\ AP_{nz} & AP_{oy} & AP_{az} & AP_{z} \\ 0 & 0 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 1,71E - 05 & 4,5E - 06 & 6,54E - 06 & 0,000277 \\ 9,94E - 06 & 4,08E - 06 & 5,6E - 06 & 0,000320 \\ 4E - 08 & -0,00018 & 7,65E - 06 & -7,5E - 05 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$
(7.24)

2.- algoritmul de calcul propus utilizează un limbaj matematic simplu și ușor accesibil, ceea ce permite folosirea unor programe de calcul matematic profesioniste, existente pe piață (EXCEL, MATHCAD etc). Nu se necesită așadar elaborarea unui soft special pentru utilizarea acestui algoritm; 3. - valorile parametrilor de situare obținute prin calcul confirmă atât corectitudinea algoritmului utilizat pentru prelucrarea datelor experimentale, cât și a metodei utilizate pentru efectuarea măsurătorilor;

4. - analizând valorile exactității și repetabilității de poziționare și orientare obținute prin calcul, se constată că se încadrează în valorile prescrise pentru robotul CLOOS-ROMAT 76 analizat;

5. - din analiza parametrilor exactității de situare calculați în cele 5 puncte din spațiul de lucru, alese în conformitate cu recomandările ISO 9283 90, se constată că aceștia prezintă valori minime în punctul P3 · AP = 0,188141 mm

 $AP_{a} = 0.0012002^{\circ}$ $AP_{b} = 0.0003057^{\circ}$ $AP_{c} = 0.0017056^{\circ}$

Se poate concluziona că această poziție este optimă pentru aplicații cu robotul respectiv, în zona spațiului de lucru analizată;

6. - prin compararea valorilor parametrilor de exactitate și repetabilitate de situare calculați în cele cinci puncte din spațiul de lucru, se constată că atât exactitatea cât și repetabilitatea de poziționare variază între pozițiile analizate în limita a $(0 \div 0,2)$ mm;

7. - distanța între două puncte din spațiul de lucru (P) și P3), prezintă o exactitate de poziționare de 0.18 mm;

 8 - la abordarea unui punct din spațiul de lucru din trei direcții diferite(trei traiectorii diferite), exactitatea de poziționare multidirecținală prezintă o variație de 0,4 mm;

9. - posibilitatea de prelevare automată a parametrilor măsurați și conectarea prin interfață proprie a aparatelor de măsură la un calculator tip PC performant, pe care este implementat în EXCEL algoritmul de calcul respectiv, permite derularea foarte rapidă atât a măsurătorilor propriu-zise cât și a prelucrării datelor experimentale, în vederea determinării parametrilor de situare ai unui robot

Tabel 7.7

Scop	Nr. crt.	Mărime	Simbol; Relație de calcul		
	1	Poziții comandate	x_{Nic} ; y_{Nic} ; z_{Nic} ; $i = 1 + 4$;		
	2	Poziții real atinse	$x_j : y_j : z_j : j = I \div I0$		
	3	Medie coord. x atinse	$\overline{\mathbf{x}} = \frac{1}{10} \sum_{j=1}^{10} \mathbf{x}_j$		
re (R); (C)	4	Medie coord. y atinse	$\overline{y} = \frac{1}{10} \sum_{j=1}^{10} y_j$		
de poziționa	5	Medie coord. z atinse	$\bar{z} = \frac{1}{10} \sum_{j=1}^{10} z_j$		
icti1ete	6	Comp. x a AP	$AP_{\mathbf{x}} = \bar{\mathbf{x}} - \mathbf{r}_{Nic}$		
E13	7	Comp. y a AP	$AP_{y} = \bar{y} - y_{Nic}$		
	8	Comp. z a AP	$AP_{z} = \overline{z} - z_{Nic}$		
	9	Exactitate poziționare	$AP = \left(AP_{x}^{2} + AP_{y}^{2} + AP_{z}^{2}\right)^{1/2}$		
(R)	10	Dist. punct atins - val. medie	$I_{j} = \left[\left(\mathbf{x}_{j} - \overline{\mathbf{x}} \right)^{2} + \left(y_{j} - \overline{y} \right)^{2} + \left(z_{j} - \overline{z} \right)^{2} \right]^{1/2}$		
: poziționare	11	Distanța medie	$\bar{I} = \frac{1}{10} \sum_{j=1}^{10} I_j$		
petabilitate de	12	Abatere med. pătratică	$S_{I} = \left[\frac{1}{9} \sum_{j=1}^{10} (I_{j} - \bar{I})^{2}\right]^{1/2}$		
ਸ਼	13	Repetab. de poziționare	$\mathbf{RP} = \overline{\mathbf{I}} + \mathbf{3S}_{1}$		
e (R), (C)	[4	Medie poz. atinse punct N ₃ (comp. x)	$a = \frac{1}{10} \sum_{j=1}^{10} x_{N_{3j}}; j = 1 + 10$		
0tientar.	15	Diferența pct.comandal-pct. med N_3 (comp. x)	$M_{xn} = \begin{bmatrix} x_{N_{3c}} - a \end{bmatrix}$		
Caectitate de	16	Medie poz. atinse pct. N ₁ (comp.x)	$b = \frac{1}{10} \sum_{j=1}^{10} x_{N_{1j}}; j = 1 \div 10$		

Nr. Scop Märime Simbol; Relație de calcul crt. $N_{xn} = \left[x_{N_{1n}} - b \right] \equiv N_{xn} \equiv N_{xn}$ 17 Dif. pct. comandat-pct. mediu N₃ (comp.x) $AP_{nx} = \frac{1}{50} \left[M_{xn} - N_{xn} \right]$ 18 Exact. de orientare (comp. nx) $c = \frac{1}{10} \sum_{j=1}^{10} y_{N_{3j}}; \quad j = 1 \div 10$ 19 Medie poz atinse pct. N₃ (comp. y) $M_{vn} = \begin{bmatrix} y_{N_{2c}} - c \end{bmatrix}$ 20 || Diferență pct. comandat - pct. mediu N_3 (comp y) 21 Medie poz. atinse pct. N₁ $d = \frac{1}{10} \sum_{i=1}^{10} y_{N_{1j}} : \quad j = 1 \div 10$ (comp. y) 9 22 Dif. pct. comandat- pct. mediu $N_{yn} = \left[y_{N_{1c}} - d \right] \equiv N_{yo} \equiv N_{ya}$ de orientare (R); N_1 (comp. y) $AP_{ny} = \frac{1}{50} \left[M_{yn} - N_{yn} \right]$ 23 Exact. de orientare (comp. ny) $l = \frac{1}{10} \sum_{i=1}^{10} z_{N_3 j} : \quad j = 1 \div 10$ 24 Medie poz. atinse pct. N₃ (comp. z) $M_{zn} = \left[z_{N_{3n}} - e\right]$ Exactitate Dif. pct. comandat - pct. mediu 25 N_3 (comp. z) $f = \frac{1}{10} \sum_{i=1}^{10} z_{N1j} : \quad j = 1 \div 10$ Med. poz. atinse pct. N₁ 26 (comp. z) Dif. pct. comandat - pct. mediu 27 $N_{zn} = \left[z_{N_{1c}} - f \right] \equiv N_{zo} \equiv N_{za}$ N_1 (comp z) $AP_{nz} = \frac{1}{50} \big[M_{zn} - N_{zn} \big]$ Ecxactitatea de orientare 28 (comp. nz) $AP_{n} = \left(AP_{nx}^{2} + AP_{ny}^{2} + AP_{nz}^{2}\right)^{1-2}$ Exactitatea de orientare 29 (comp. ft) Exactitatea de orientare ISO 30 $AP_{alSO} = 90^\circ - \arccos AP_n$ (axa a) $k = \frac{1}{10} \sum_{j=1}^{10} x_{N_{\frac{1}{2}j}} : j = 1 \div 10$ Medie poz. atinse pct. Ne 31 (comp. x)

Tabel 7.7 (continuare)

BUPT

Tabel 7.7 (continuare)

Scop	Nr. crt.	Mărime	Simbol; Relație de calcul
	32	Dif.pct. comandat-pct. mediu N ₄ (comp. x)	$M_{xo} = \begin{bmatrix} x_{N_{4c}} - k \end{bmatrix}$
	33	Exact. de orientare (comp. o _n)	$AP_{ox} = \frac{1}{50} \left[M_{xo} - N_{xo} \right]$
	34	Medie poz. atinse pct. N ₄ (comp. y)	$I = \frac{1}{10} \sum_{j=1}^{10} y_{N_{4j};j} = j = 1 + 10$
	35	Dif. pct. comandat- pct. mediu N₄ (comp. y)	$M_{yo} = \left[y_{N_{4c}} - l \right]$
	36	Exact. de orientare (comp.oy)	$AP_{oy} = \frac{1}{50} \Big[M_{yo} - N_{yo} \Big]$
(H); ((37 Medie poz. atinse pct. N ₄ (comp.z)		$m = \frac{1}{10} \sum_{j=1}^{10} z_{N_{4j}, j} = j_{\pm\pm10}$
rientare	 38 Dif. pct. comandat-pct. mediu N₄ (comp.z) 39 Exactitatea de orientare (comp. oz) 		$M_{zo} = \left[z_{N_{4c}} - m \right]$
le de o			$AP_{oz} = \frac{1}{50} \left[M_{zo} - N_{zo} \right]$
Exectite	40	Exactitatea de orientare (comp. o)	$AP_{o} = \left(AP_{ox}^{2} + AP_{oy}^{2} + AP_{oz}^{2}\right)^{1/2}$
	41	Exactitatea de orientare ISO (axa b)	$AP_{blSO} = 90^\circ - \arccos(AP_o)$
	42	Medie poz. atinse pct. N ₂ (comp. px)	$g = \frac{1}{10} \sum_{j=1}^{10} x_{N2j}; j = 1 \div 10$
	43	Dif. pct. comandat-pct. mediu N ₂ (comp. x)	$M_{\mathbf{x}\mathbf{z}} = \begin{bmatrix} z_{N_{2c}} - g \end{bmatrix}$
	44	Exactitatea de orientare (comp. ax)	$AP_{ax} = \frac{1}{50} \left[M_{xa} - N_{xa} \right]$
	45	Medie poz. atinse pct N ₂ (comp. y)	$h = \frac{1}{10} \sum_{j=1}^{10} y_{N_{2j}}; h = 1 \div 10$
	46	Dif. pct. comandat-pct mediu N ₂ (comp. y)	$M_{ya} = \left[y_{N_{2c}} - h \right]$

Scop	Nr. crt.	Mărime	Simbol; Relație de calcul
C)	47 Exactit. de orientare (comp. ay)		$AP_{ay} = \frac{1}{50} \left[M_{ya} - N_{ya} \right]$
ıre (R);	48	Medie poz. atinse pct N ₂ (comp. z)	$i = \frac{1}{10} \sum_{j=1}^{10} z_{N_{2j}}; j = 1 \div 10$
e uriente	49	Dif pct. comandat-pct. mediu N ₂ (comp. z)	$M_{20} = \left[z_{N_{2c}} - i\right]$
titate d	50	Exactitatea de orientare (comp. az)	$AP_{az} = \frac{1}{50} \left[M_{za} - N_{za} \right]$
Елас	51	Exactitatea de orientare (comp. a)	$AP_a = \left(AP_{ax}^2 + AP_{ay}^2 + AP_{az}^2\right)^{1/2}$
	52	Exactitatea de orientare ISO (axa c)	$AP_{cISO} = 90^\circ - \arccos(AP_a)$
	53	Dif. punct. atins-val. medie N ₃ (comp. px)	$A_j = \left(x_{N_{3j}} - a\right)$
	54	Dif. poz. atinsval. medie N. (comp. x)	$B_j = \left(\mathbf{x}_{N_{1j}} - b\right)$
<u>(</u> 2	55	Media diferențelor (comp. nx)	$S_1 = \sum_{j=1}^{10} (A_j - B_j)^2$
re (R);	56	Repetabilitate de orientare (comp. nx)	$RP_{nx} = \pm \sqrt{\frac{1}{50}S_1}$
orientar	57	Dif. pct. atins-val. medie N ₃ (comp. y) -	$C_j = \left(y_{N_{3j}} - c\right)$
le de	58	Dif. pct. atins-val. medie N ₁ (comp. y)	$D_j = \left(y_{N_{1j}} - d \right)$
petabilite	59	Media diferențelor (comp. ny)	$S_2 = \sum_{j=1}^{10} \left(C_j - D_j \right)^2$
ž	60	Repetabilitate de orientare (comp. ny)	$RP_{ny} = \pm \sqrt{\frac{1}{50}S_2}$
	61	Dif. pct. atins-val. medie N3 (comp. z)	$E_j = \left(z_{N_{3j}} - e\right)$

Tabel 7.7 (continuare)

Scop	Nr. crt.	Mărime	Simbol; Relație de calcul
	62	Dif. pct. atins-val. medie N ₁ (comp. z)	$F_{f} = \left(z_{N_{1j}} - f\right)$
:	63	Media diferențelor (comp. nz)	$S_3 = \sum_{j=1}^{10} (E_j - F_j)^2$
	64	Repetabilitate de orientare (comp. nz)	$RP_{nz} = \pm \sqrt{\frac{1}{50}S_3}$
	65	Repetabilitate de orientare (comp. n)	$RP_{n} = \left[RP_{nx}^{2} + RP2_{ny}^{2} + RP_{nz}^{2} \right]^{1/2}$
0 i	66	Repetabilitate de orientare ISO (axa a)	$RP_{a \mid SO} = 90^{\circ} - \arccos(RP_n)$
(R);	67	Dif. pct. atins-val. medie N₄ (comp. x)	$Gj = \left(\mathbf{x}_{N_{4j}} - k\right)$
orientare	68	Media diferențelor (comp. ox)	$S_4 = \sum_{j=1}^{10} \left(G_j - B_j \right)^2$
tate de c	69	Repetabilitatea de orientare (comp ox)	$RP_{ox} = \pm \sqrt{\frac{1}{50}S_4}$
spetahili	70	Dif. pct. atins-val medie N ₄ (comp. y)	$I_j = \left(y_{N_{4j}} - I\right)$
ž	71	Media diferențelor (comp oy)	$S_5 = \sum_{j=1}^{10} (I_j - D_j)^2$
	72	Repetabilitate de orientare (comp. oy)	$RP_{oy} = \pm \sqrt{\frac{1}{50}S_5}$
	73	Dif.pct. atins-val medie N ₄ (comp. z)	$K_j = \left(z_{N_{4j}} - m\right)$
	74	Media diferențelor (comp. oz)	$S_6 = \sum_{j=1}^{10} \left(K_j - F_j \right)^2$
	75	Repetabilitate de orientare (comp. oz)	$RP_{oz} = \pm \sqrt{\frac{1}{50}S_6}$
	76	Repetabilitate de orientare (comp. o)	$RP_{o} = \left[RP_{ox}^{2} + RP2_{oy}^{2} + RP_{oz}^{2} \right]^{1/2}$

226

Scop	Nr. crt.	Mărime	Simbol; Relație de calcul
	77	Repetabilitate de orientare ISO (axab)	$RP_{b ISO} = 90^{\circ} - \arccos \left(RP_{o} \right)$
	78	Dif. pct. atins-val medie N ₂ (comp. x)	$L_j = \left(x_{N_{2j}} - g\right)$
	79	Media diferențelor (comp. ax)	$S_7 = \sum_{j=1}^{10} (L_j - B_j)^2$
Ð	80	Repetabilitate de orientare (comp. ax)	$RP_{ax} = \pm \sqrt{\frac{1}{50}S_7}$
(¥)	81	Dif. pct. atins-val. medie N ₂ (comp_y)	$P_j = \left(y_{N_2 j} - h \right)$
rientare	82	Media diferențelor (comp. ay)	$S_{8} = \sum_{j=1}^{10} (P_j - D_j)^2$
late de o	83	Repetabilitate de orientare (comp ay)	$RP_{av} = \pm \sqrt{\frac{1}{50}S_8}$
ilidali	64	Dif. pct. atins-val medie N ₂ (comp. z)	$R_{j} = \left(z_{N_{2j}} - i\right)$
Repe	85	Media diferențelor (comp. az)	$S_9 = \sum_{j=1}^{10} (R_j - F_j)^2$
	86	Repetabilitate de orientare (comp. az)	$RP_{az} = \pm \sqrt{\frac{1}{50}S_9}$
	87	Repetabilitate de orientare (comp. a)	$RP_{a} = \left[RP_{ax}^{2} + RP_{ay}^{2} + RP_{az}^{2} \right]^{1/2}$
	88	Repetabilitate de orientare ISO (axa c)	$RP_{c \ ISO} = 90^{\circ} - \arccos \left(RP_{a} \right)$
re a	89	Poziții comandate	$\frac{(x_{N_{1c}}, y_{N_{1c}}, z_{N_{1c}})((x_{N_{3c}}, y_{N_{3c}}, z_{N_{3c}})}{(x_{N_{3c}}, y_{N_{3c}}, z_{N_{3c}})}$
rzițione ()	90	Poziții real atinse	$(x_{1j}, y_{1j}, z_{1j}); (x_{3j}, y_{3j}, z_{3j}); j = 1 \div 10$
ite de po Lanței ()	91	Distanța comandată (comp. x)	$D_{cr} = \left x_{c_{N_1}} - x_{c_{N_3}} \right $
Exactita dísi	92	Distanța comandată (comp. y)	$D_{cv} = \left y_{c_{N_1}} - y_{c_{N_3}} \right $

Tabel 7.7 (continuare)

Tabel 7.7	(continuare)
-----------	--------------

Scop	Nr. ert.	Mărime	Simbol; Relație de calcul		
	93	Distanța comandată (comp. z)	$D_{cz} = \left z_{c_{N_1}} - z_{c_{N_3}} \right $		
ci (K)	94	Distanța comandată	$D_{c} = \left(D_{cx}^{2} + D_{cy}^{2} + D_{cz}^{2}\right)^{1/2}$		
e a distanț	95	Distanță medie real atinsă (comp. x)	$\overline{D}_{\mathbf{x}} = \frac{1}{10} \sum_{j=1}^{10} \left \mathbf{x}_{1j} - \mathbf{x}_{3j} \right $		
pozilionar	96	Distanța medie real atinsă (comp. y)	$\overline{D}_{y} = \frac{1}{10} \sum_{j=1}^{10} \left y_{1j} - y_{3j} \right $		
iclitate de	97	Distanța medie. real atinsă (comp. z)	$\overline{D}_{z} = \frac{1}{10} \sum_{j=1}^{10} \left z_{1j} - z_{3j} \right $		
Era	98	Distanța medie atinsă	$\vec{D} = \left[D_x^2 + D_y^2 + D_z^2 \right]^{1/2}$		
	99	Exactitatea de poziționare a	$AP = D_c - \overline{D}$		
	100	Poziția comandată	$(\mathbf{x}_{N_{1c}}, \mathbf{y}_{N_{1c}}, \mathbf{z}_{N_{1c}})$		
*1ă (R	101	Poziții real atinse	$\left(\mathbf{x}_{kj}, \mathbf{y}_{kj}, \mathbf{z}_{kj}\right); j = 1 \pm 10 k = 1 \pm 3$		
tidirecțion	102	Coordonatele punctelor medii (comp. x)	$\overline{x}_{kj} = \frac{1}{10} \sum_{j=1}^{10} x_{kj}$		
ionare mul	103	Coordonatele punctelor medii (comp. y)	$\bar{y}_{kj} = \frac{1}{10} \sum_{j=1}^{10} y_{kj}$		
î de pozil	104	Coordonatele punctelor medii (comp. z)	$\bar{z}_{kj} = \frac{1}{10} \sum_{j=1}^{10} z_{kj}$		
saciilății	105	Distanța între poz. medii (pct. 1-2)	$D_1 = \left[\left(\bar{x}_1 - \bar{x}_2 \right)^2 + \left(\bar{y}_1 - \bar{y}_2 \right)^2 + \left(\bar{z}_1 - \bar{z}_2 \right)^2 \right]^{1/2}$		
eriația -	106	Distanța între poz. medii (pct. 1-3)	$D_2 = \left[\left(\bar{x}_1 - \bar{x}_3 \right)^2 + \left(\bar{y}_1 - \bar{y}_3 \right)^2 + \left(\bar{z}_1 - \bar{z}_3 \right)^2 \right]^{1/2}$		
	107	Distanța între poz. medii (pct. 2-3)	$D_{3} = \left[\left(\bar{x}_{2} - \bar{x}_{3} \right)^{2} + \left(\bar{y}_{2} - \bar{y}_{3} \right)^{2} + \left(\bar{z}_{2} - \bar{z}_{3} \right)^{2} \right]^{1/2}$		

BUPT

Nr. crt.	Mărime	Simbol; Relație de calcul
108	Variația exactității de poz. multidirectională	$vAP = max (D_1, D_2, D_3)$

Tabel 7.7 (continuare)

7.4. Cercetări experimentale privind performanțele de situare pentru componentele celulei de sudare utilizând robotul CLOOS-ROMAT 76.

7.4.1. Celula de sudare- prezentare generală

Celula de sudare cu robotul CLOOS-ROMAT 76 este amplasată în Laboratorul de roboți industriali ai Universității "Politebnica" din Timișoara Se compune din robotul respectiv și o masă de poziționare rotativă cu două poziții de tamponare opuse (fig.7.16) și este destinată efectuării de cordoane sudate unor subansamble diverse. Subansamblul de sudat se fixează pe masa de poziționare, fiind adus în zona de lucru de către un robocar.

O prezentare în detaliu a celulei este redată în subcapitolul 5.3.

7.4.2. Program al cercetărilor experimentale

Prin programul de încercări experimentale conceput s-a urmărit determinarea caracteristicilor de exactitate și repetabilitate de situare pentru unele componente ale celulei. Pentru robot aceste caracteristici au fost determinate în subcapitolul 7 3, astfel încât în subcapitolul de față se urmărește determinarea caracteristicilor de situare pentru masa de poziționare, în scopul stabilirii unor corelații între cele două componente, în vederea compensării erorilor din sistem.

Programul de încercări urmărește două aspecte:

1- determinarea caracteristicilor de situare ale mesei de poziționare,

2- determinarea simultană a caracteristicilor de poziționare pentru robot și masa de poziționare.

7.4.2.1. Derularea măsurătorilor

Ambele categorii de măsurători au fost efectuate în aceleași condiții de încercare ca și pentru robot, cu parametrii de viteză și sarcină neschimbați. S-a utilizat același corp de probă - cub calibrat, fixat în dispozitivul de lucru al mesei de poziționare după cum se observă în fig. 7.17

În vederea efectuării măsurătorilor propriu-zise s-au utilizat aceleași două tahimetre electronice REC-ELTA, amplasate în aceeași configurație în raport cu robotul și masa de poziționare, deci păstrând neschimbată baza de măsurare.

Măsurătorile s-au desfășurat în două etape:

1. Determinarea caracteristicilor de situare ale mesei de poziționare

În acest scop, cubul calibrat a fost fixat în dispozitivul de lucru al mesei (fig. 7.17), cele 4 vârfuri ale sale, notate cu cifre, N_1 , N_2 , N_3 , N_4 , fiind vizate simultan cu cele două aparate. S-au efectuat 10 măsurători, prin readucerea mesei în poziția inițială, comandată. Cu valorile unghiurilor H₂ și V măsurate de cele două aparate, analog subcapitolului 7.3, s-au determinat coordonatele x, y, z, ale celor 4 puncte vizate, N_4 , N_2 , N_3 , N_4 , prezentate în tabelul de date inițiale, tabelul 7.8.

2. Determinarea simultană a caracteristicilor de poziționare pentru robot și masa de poziționare

Pentru efectuarea acestei categorii de măsurători s-a procedat în modul următor: masa de poziționare având cubul calibrat fixat în dispozitivul de lucru, a fost adusă în poziția inițială (poziție comandată). Întrucât s-a considerat numai aspectul de poziționare, nu și cel de orientare, a fost vizat cu cele două tahimetre numai vârful N₁ al cubului, stabilindu-se astfel coordonatele x, y, z ale punctului N₁ comandat.

Nr.crt	T	у	z	ļ	Nr.crt	x	У	2
1.l	5,49878	1,76519	1,08785	\leftarrow N4 \rightarrow	6.1	5,49878	1,76718	1,08858
1.2	5,45255	1,76072	1,10759	N1	6.2	5,45224	1,76292	1,10769
1.3	5,44861	1,81082	1,10968	N2	6.3	5,44855	1,81235	1,10983
1.4	5,43312	1,76149	1,06173	N3	6.4	5,43302	1,76322	1,06211
2.1	5,49941	1,76377	11880,1	N4	7,1	5,49861	<u>1,76731</u>	1.08844
2.2	5.45289	1,75934	1,10755	NI	7.2	5,45222	1,76301	1.10793
2.3	5.44903	1,80884	1.10963	NŽ	7.3	5,44849	1,81315	1.11011
2.4	5,43361	1.75972	1.06172	N3	7.4	5,43284	1,76362	1.06240
3,1	5,50428	1,76791	1,08795	NJ	8.1	5.49851	1,76745	1,08878
3.2	5,45256	1,76179	1,10792	N1	8.2	5.45212	1.76302	1,10803
3.3	5,44863	1,81222	1,10985	N2	8.3	5,44853	1.81286	1.11019
3.4	<u>5.4</u> 3285	1,76256	1,06183	N3	8.4	5,43276	1,76384	1.06213
4.1	<u>5.49871</u>	1,76653	1.08875	N4	9.1	5,49871	1,76727	1,08868
4.2	5,45235	1,76231	1.10759	N1	9.2	5,45222	1,76304	1,10804
4,3	5,44863	1,81152	1,11011	N2	9.3	5.44865	1.81258	1.11032
4.4	5.44072	1,76545	1.06123	N3	9,4	5.43295	1.76384	1.06188
5,1	5,49892	1,76678	1.08866	- 84	10.1	5.49871	1,76767	1.08874
5.2	5.45231	1,76235	1,10769	N1	10.2	5,45249	1.76288	1,10804
5.3	5,44863	1.81211	1,11009	N2	10,3	5.44857	1.81289	1,11015
5.4	5,43286	1.76303	1.06185	N3	10.4	5,43311	1.76375	1,06203

Tabel 7.8

Tabel 7.9

		Robot	· · · · <u>· · ·</u> · · · ·	Masa poziționare		
Nr.crt.	I	N	<u>z</u>	X	y	z
1	5,45255	1.76072	1.10759	5,45255	1.76072	1,10759
2	5.45245	1.76065	1,10755	5.45289	1 75934	1,10755
3	5.45256	1.76071	1.10765	5,45256	5.45256	1.10792
4	5,45291	1,76079	1,10757	5,45235	1.76231	1.10759
5	5,45256	1,76080	1,10761	5,45231	1,76235	1.10769
6	5,45253	1.76075	1,10759	5,45224	1.76292	1,10769
7	<u>5.</u> 45248	1,76066	1,10762	5,45222	1,76301	1,10793
<u> </u>	5,45254	1,76071	1,10757	5.45212	1,76302	1,10803
9	5,45258	1,76075	1,10764	5.45222	1,76304	1,10804
10	5.45262	l.76067	1,10762	5,45249	1,76288	1.10804

În această poziție comandată a lui N_1 (cubul fiind menținut în această poziție) s-a adus robotul, prin învățare, manevrându-l cu cea mai mică viteză și cu multă atenție, astfel încât vârful sârmei electrod de sudare (punctul său caracteristic) să atingă vârful N_1 al cubului. S-a memorat această poziție în calculatorul robotului și s-a retras robotul în poziția de referință. Poziția memorată s-a considerat poziție comandată pentru robot. S-au efectuat 10 încercări prin aducerea alternativă a robotului , respectiv a mesei de poziționare în poziția comandată, vizându-se alternativ vârful sârmei electrod de sudare (P.C. al robotului), respectiv vârful N_1 al cubului aflat pe masa de poziționare.

Coordonatele x, y, z, ale pozițiilor atinse de P.C. al robotului (vârful sărmei), respectiv de vârful N_1 al cubului aflat pe masa de poziționare sunt redate în tabelul 7.9.

Această încercare s-a efectuat în scopul determinării exactității și repetabilității de poziționare a celor două componente ale celulei în același punct din spațiul de lucru al robotului, pentru o comparație pertinentă a caracteristicilor de poziționare ale robotului și mesei de poziționare.

7.4.2.2 Prelucrarea datelor experimentale

Prelucrarea datelor experimentale s-a efectuat utilizând același algoritm prezentat în subcapitolul 3.3.1, elaborat în conformitate cu recomandările ISO 9283 : 90. Pentru calcul a fost utilizat programul EXCEL, întocmai ca și la încercarea robotului CLOOS-ROMAT 76.

Valorile calculate ale caracteristicilor de situare testate, precum și valori de calcul intermediare sunt prezentate în anexa 4, structurate pe cele două categorii de măsurători.

1. Caracteristici de situare ale mesei de poziționare

Sunt denumite: POZIȚIONARE CELULĂ, EXACTITATE DE ORIENTARE CELULĂ, REPETABILITATE DE ORIENTARE CELULĂ.

Analizând rezultatele obținute prin prelucrarea datelor experimentale se pot formula câteva concluzii: 1. - în ceea ce priveşte aspectul de poziționare, se constată că masa se poziționează cu o eroare mult mai mare decât robotul. Aceasta se datorează faptului că poziționarea mesei se realizează prin tamponare la capăt de cursă și nu prin indexare. Astfel valoarea exactității de poziționare a mesei este de aproximativ 3 ori mai mare decât a robotului, iar valoarea repetabilității de poziționare de aproximativ 5 ori Aceste constatări vin să confirme ipotezele teoretice enunțate în capitolul 5, subcapitolul 5.3, cu privire la performanțele de poziționare a componentelor: robot, masă de poziționare, ale celulei de sudare studiate, având în vedere faptul că robotul ROMAT 76, utilizat în aplicație, a fost calibrat la fabricație;

2. - analizând valorile obținute pentru caracteristicile de orientare (exactitate și repetabilitate) ale mesei de poziționare, se constată că, acestea au valori comparabile cu cele ale robotului. Această constatare se explică prin aceea că masa de poziționare execută o singură mișcare (rotație după axa z), ca urmare orientarea mesei nu este afectată de erori mari. În consecință, în matricea erorii de situare a mesei, rel. (5.34), termenii referitori la orientare pot fi neglijați.

Determinarea simultană a caracteristicilor de poziționare robot-masă de poziționare

Sunt denumite: ROBOT CELULĂ - ÎNCERCĂRI SIMULTANE.

Analizând rezultatele obținute prin prelucrarea datelor experimentale vizând comportamentul, din punctul de vedere al poziției, al robotului și mesei de poziționare în același punct din spațiul de lucru, se pot formula următoarele concluzii:

l. - în zona mesei de poziționare, parametri de poziționare au valori mai mici decât în cele 5 puncte analizate la încercarea robotului (subcapitolul 7.3). Astfel AP
 = 0,05 mm şi RP = 0,4 mm.

Se poate deci concluziona că, în celulă, masa de poziționare a fost amplasată în zona de lucru optimă;

2. - prin compararea caracteristicilor de poziționare ale robotului și mesei în același punct din spațiul de lucru, se evidențiează clar diferențele privind precizia celor două componente. Astfel, pentru robot: AP = 0.05 mm și RP = 0.4 mm, iar pentru masa de poziționare: AP = 1.4 mm și RP = 3.2 mm. Prin urmare, componenta asupra căreia se necesită a se acționa în scopul îmbunătățirii preciziei de operare în această zonă a spațiului de lucru, este masa de poziționare. Dacă nu există posibilitatea de compensare a erorilor de poziționare ale mesei prin acțiune asupra sistemului său de comandă, respectiv asupra programului de comandă în celulă aferent mesei, se poate acționa asupra robotului, prin introducerea respectivelor compensări în programul robotului. Această operațiune nu semnifică însă o calibrare a robotului, ci o calibrare a celulei în ansamblu.

Se menționează faptul că rezultatele prelucrării tuturor datelor experimentale sunt prezentate valoric, potrivit recomandărilor ISO 9946: 1991: "Manipulating Industrial Robots - Presentation of Characteristics. S-a acceptat această modalitate de prezentare a caracteristicilor de situare întrucât cercetările experimentale întreprinse în cadrul tezei au urmărit verificarea practică a metodei de testare și algoritmului de calcul propus și nu studierea influenței diferiților factori asupra evoluției performanțelor robotului CLOOS - ROMAT 76.

CAPITOLUL 8

CONSIDERAȚII FINALE ȘI CONTRIBUȚII ORIGINALE. APLICAȚII ȘI PERSPECTIVE

8.1. Concluzii finale și perspective ale cercetării în domeniu.

După apariția primilor roboți industriali, un important efort a fost făcut de numeroase țări industrializate, pe de o parte în direcția elaborării unor normative privind terminologia utilizată în robotică și pe de altă parte în direcția conceperii unor metodologii de încercare a roboților și de punere la punct a aparaturii necesare. Utilitatea testării performanțelor roboților industriali, derivă din necesitatea stabilirii unui limbaj comun pentru constructorii și utilizatorii de roboți industriali, în scopul comparării, sub aspect calitativ și al eficienței economice, a acestora.

Deoarece caietele de sarcini și notițele tehnice ale constructorilor de roboți nu conțin întodeauna precizări asupra tuturor caracteristicilor necesare acestora, există, în lume, preocupări foarte recente cu privire la elaborarea unor metodologii și a unor normative în domeniu.

Lucrarea de față, prin tematica propusă, aduce o contribuție în acest sens.

Un studiu bibliografic aprofundat întreprins de autoare în domeniul preocupărilor recente, la nivel mondial, în ceea ce privește performanțele roboților industriali a condus la formularea unor direcții de cercetare în domeniu, direcții corespunzând tematicii tezei de doctorat și care au fost atinse în cadrul prezentei lucrări. S-au abordat astfel unele aspecte cum ar fi:

 definirea cu un plus de precizie a performanțelor de situare ale roboților și sistemelor de fabricație flexibilă robotizată;

definirea unor metodologii de încercare;

- elaborarea unor algoritmi de calcul corespunzători, simpli și ușor de exploatat practic;

- definirea unei instrumentații de măsură unitare pentru testarea performanțelor de situare la roboți și sisteme de fabricație fiexibilă robotizată (se specifică faptul că metodele-test prezentate în capitolul 2 sunt în stadiul de cercetare la diferite universități și instituții, în țări cu tradiție în domeniul construcției de roboți: Japonia, SUA, Suedia, Germania, Franța, Italia, Anglia)

Aceste preocupări au la bază experiența acumulată în cadrul Colectivului multidisciplinar de roboți industriali ai Politehnicii timișorene, în care a activat și autoarea. În calitate de membră a acestui colectiv, autoarea a participat la rezolvarea unor lucrări contractuale de cercetare-proiectare cu întreprinderi din țară, unele dintre acestea axate perfect pe tema prezentei teze de doctorat. [C5], [C6].

Se pot evidenția ca tendințe pentru viitoare încercări, unele direcții cum ar fi-

proceduri de încercare comparativă a diferitelor categorii de roboți;

- studierea și elaborarea unor metode de încercare și pentru alte categorii de performanțe: de traiectorie, de încărcare, etc;

- definirea unor proceduri de încercare specifice diferitelor aplicații robotizate, etc.

8.2. Contribuții teoretice

Principalele contribuții aduse de lucrarea de față în domeniul cercetării performanțelor roboților industriali și sistemelor de fabricație flexibilă robotizată se regăsesc, cu diferite ponderi, în fiecare capitol al lucrării și se prezintă sub formă sintetică în cele ce urmează:

Capitolul 1

 evidențierea unor preocupări mondiale recente privind construcția de roboți industriali și aplicații ale acestora;

- evidențierea aspectelor corelației structură-mecanică - performanțe ale roboților industriali;

Capitolul 2

- evidențierea principalelor caracteristici de performanță în vederea încercării roboților industriali, definirea, cu mai multă acuratețe, a caracteristicilor de performanță propuse
 de ISO 9283: 90;

- definirea, cu un plus de precizie, a caracteristicilor de situare (poziționare și orientare) ale roboților industriali;

- o sistematizare în clasificarea metodelor de încercare la roboții industriali.

Capitolul 3

- contribuții la dezvoltarea algoritmului de calcul a caracteristicilor de situare după metoda $3 \times 2 \times 1$, respectiv determinarea exactității de poziționare și orientare;

 elaborarea metodei de determinare a exactității și repetabilității de situare la roboți industriali, utilizând distribuția 3 × 3 × 3;

 elaborarea algoritmului de calcul a exactității de poziționare utilizând distribuția 3 × 3 × 3;

elaborarea algoritmului de calcul a exactității de orientare pentru distribuția
 3 × 3 × 3,

 elaborarea metodei de determinare a caracteristicilor de situare la roboți şi sisteme de fabricație flexibilă robotizată, utilizând doi teodoliți;

 elaborarea algoritmului de calcul a exactității şi repetabilității de poziționare pentru metoda de testare utilizând doi teodoliți;

 etaborarea algoritmului de calcul a exactității şi repetabilității de orientare pentru metoda de testare utilizând doi teodoliți;

- elaborarea metodei de determinare a caracteristicilor de situare la roboți utilizând un telemetru laser;

- elaborarea algoritmului de calcul pentru determinarea matricii de situare la roboți, pentru metoda de testare utilizând un telemetru laser;

Capitolul 4

- aplicarea metodologiei de determinare a performanțelor de situare a roboților industriali la calibrarea modelului geometric al acestora;

Capitolul 5

- aplicarea problemei de situare în cazul componentelor unui sistem flexibil robotizat; - identificarea erorilor de situare ale componentelor unei celule de fabricație flexibilă robotizată;

- exprimarea lanțului de transformări aferent fiecărei categorii de erori identificate;

- stabilirea matricilor de erori pentru fiecare componentă a sistemului;

- evidențierea efectului acestor erori în procesul tehnologic aferent celulei de fabricație flexibilă robotizată;

- stabilirea modalităților de compensare a efectului acestor erori prin calibrarea componentelor celulei sau a celulei în ansamblul ei;

- elaborarea unui studiu de caz pentru celula de sudare cu robotul CLOOS-ROMAT 76;

- formularea concluziilor privind posibilitățile de compensare a erorilor pentru celula de sudare cu robotul ROMAT 76;

Capitolul 7

- elaborarea modelului geometric direct generalizat pentru robotul REMT 5;

- stabilirea modelului diferențial al erorilor de poziționare pentru roboiul REMT 5;

- calibrarea parțială (luînd în considerare doar aspectul de poziționare) a modelului geometric al robotului industrial REMT 5;

8.3. Contribuții în domeniul aplicațiilor practice și industriale

Se evidențiază următoarele contribuții:

Capitolul 6

- proiectarea și realizarea unui cap de măsurare tridimensional pentru determinarea caracteristicilor de situare după distribuția 2×2×2 și elaborarea metodei de încercare corespunzătoare (contract [C5]),

- proiectarea și realizarea unui cap de măsurare tridimensional pentru determinarea caracteristicilor de situare după distribuția 3×2×1 sau 3×3×3 (executat cu ocazia elaborării proiectului de diplomă al primilor studenți francezi, sosiți în Catedra O.M.M. în acest scop, prin mobilitate TEMPUS JEP 3517, și utilizat apoi pentru lucrări în laboratorul de roboți); proiectarea unui cap de măsurare 3D cu retragerea traductoarelor prin acționare electrică;

- proiectarea unui cap de măsurare bidimensional (2D) pentru determinarea caracteristicilor de exactitate și repetabilitate pe traiectorie și elaborarea metodeitest corespunzătoare;

- conceperea unei platforme de măsurare (stand) a caracteristicilor de situare la roboți și sisteme de fabricație flexibilă robotizată, utilizând doi teodoliți optici (utilizată pentru lucrări în Laboratorul de roboți)

Capitolul 7

- conceperea unei platforme de măsurare (stand) a caracteristicilor de situare la roboți și sisteme de fabricație flexibilă robotizată, utilizând un ansamblu de două tahimetre electronice REC ELTA (utilizată pentru determinări experimentale în cadrul tezei).

In afara preocupărilor tezei, s-a proiectat și realizat un dispozitiv de fixare a piesei pe masa mașinii de frezat a celulei de prelucrări mecanice din Laboratorul de roboți industriali.

8.4. Contribuții în domeniul cercetării și încercarilor experimentale

Sunt cuprinse în capitolul 7 al tezei și se pot sintetiza astfel:

 elaborarea metodei de măsurare a caracteristicilor de situare la roboți și sisteme de fabricație flexibilă robotizată utilizând două tahimetre electronice tip REC ELTA;

- testarea, prin metoda de mai sus, pentru robotul CLOOS ROMAT 76, a următoarelor caracteristici:

- exactitate de poziționare unidirecțională;
- repetabilitate de poziționare unidirecțională;
- exactitate de orientare unidirecțională;
- repetabilitate de orientare unidirecțională;
- exactitate de poziționare a distanței;
- variația exactității de poziționare multidirecțională;

- variația exactității de poziționare multidirecțională;

- prelucrarea datelor experimentale utilizând algoritmul propus în subcapitolul 3.3.1 al tezei, cu ajutorul programului EXCEL, în vederea determinării valorilor caracteristicilor de situare testate;

- testarea, prin aceeași metodă, a caracteristicilor de situare pentru celula de sudare cu robotul CLOOS ROMAT 76;

- testarea comparativă a caracteristicilor de situare ale robotului și mesei de poziționare din celula de sudare;

- prelucrarea datelor experimentale utilizand același algoritm;

Incercările experimentale întreprinse în cadrul tezei evidențiază câteva concluzii și anume:

 1. - metoda de determinare a caracteristicilor de situare utilizând două tahimetre REC ELTA (sau doi teodoliți electronici) este validată de rezultatele testelor întreprinse;

2. - algoritmul de calcul corespunzător metodei, propus în teză este corect, fiind confirmat de rezultatele obținute prin prelucrarea datelor experimentale,

3, - algoritmul de calcul este simplu și ușor accesibil, ceea ce permite folosirea unor programe de calcul matematic profesioniste (EXCEL, MATHCAD etc), aflate la dispoziție pe piață;

4. - metoda și algoritmul de calcul propus permit exprimarea matricială a valorilor caracteristicilor de situare, în concordanță cu limbajul matematic unitar, utilizat în robotică;

5. - se evidențiază caracterul de generalizare a metodei și algoritmului de calcul propus, pentru orice element component al celulei (amplasarea cubului calibrat pe diferite componente sau subansamble mobile ale acestora nu constituie o problemă dificită) și nu numai;

 6. - metoda propusă este ușor aplicabilă în mediu industrial (aparatele de măsură sunt portabile), baza de măsurare fiind simplu de realizat;

7. - metoda de încercare propusă este rapidă, permițând efectuarea încercărilor în timp real. Acest lucru este posibil datorită modalității de prelevare automată a parametrilor măsurați și de prelucrare automată a datelor experimentale, aparatele având posibilitatea de cuplare, prin interfața proprie, la câte un calculator PC performant. Se poate deci concluziona că, în ceea ce privește măsurarea performanțelor roboților industriali, lucrarea de față a adus valoroase contribuții, evoluția față de sistemele de măsurare propuse în contractul [C5] fiind evidentă.

Punerea la punct a unor metodologii și standuri de determinare a performanțelor roboților industriali își găsește utilitatea practică atât pentru calibrarea unor roboți la fabricare și calibrarea componentelor sistemelor de fabricație flexibilă robotizată, cât și pentru măsurarea unor caracteristici de performanță, la achiziționarea unui robot de pe piață.

In acest sens, lucrarea de față constituie un început pentru punerea la punct a unui laborator autorizat de încercări pentru roboți și sisteme de fabricație flexibilă robotizată în țara noastră.

Nu se poate încheia această lucrare fără a se sublinia faptul că, dacă obiectivele propuse prin tematica tezei de doctorat au fost îndeplinite, aceasta s-a datorat formării autoarei ca specialist în domeniul roboticii în cadrul Colectivului de roboți industriali ai *Politehnicii* din Timișoara precum și perfecționării, prin stagiul de specializare în Franța, la I.U.T. Bethune, în cadrul mobilităților prin proiectul TEMPUS JEP 3517.

BIBLIOGRAFIE

A1	Andre, Guy:	Capteurs d'environnement en robotique. La perception des efforts.Techniques de l'Ingenieur, nr. 4/1991.			
[A2]	Antonescu, P.:	Sinteza manipulatoarelor, Universitatea "Politebnica" Bucuresti 1993			
[B1]	Berg, J.L.:	- Ein Meß-und Berechnungsversahren z Bestimmung und Verbesserung speziell Kenngrößen beliebiger Industrieroboter, Ph. Thesis, Universität der Bundeswehr, Hambur 1990.			
[C1]	Chen, W.Z.:	Position Control Experiments using vision, The International Journal of Robotics Research, nr 3/ 1994, Massachusetts Institute of Technology			
[C2]	Coiffet, P. :	Les Robots. Hermes Publishing, Paris, France, 1981			
[C3]	Craig, J.J:	Introduction to Robotics, Mecanics and Control, Stanfortd University, SUA, 1986			
[C4]	Crișan, I., ș.a.:	Sisteme flexibile de montaj cu roboți și manipulatoare, Editura tehnică, București, 1988.			
[C5]	***.	Contract nr. 6/10.01.1989 "Set de dispozitive și aparate pentru verificarea performanțelor funcționale ale roboților industriali din producția proprie a beneficiarului"- beneficiar 1 M M U M Baia Mare.			
[C6]	* * * <u>·</u>	Contract nr. 2281/46, faza 2/1992: "Cercetări fundamentale orientate și aplicative privind realizarea S.I. de fabricație integrate cu calculatorul. Sistem de măsurare a preciziei de situare a roboților din sistemele de fabricație integrate cu calculatorul", beneficiar Ministerul Educației și Învățământului			
[C7]	• • • • -	Culegeri de texte prelucrate - Roboți industriali. INID, București, 1987.			
[C8]	Ching-Cheng Wang:	Extrinsic Calibration of a Vision Senzor Mounted on a Robot - IEEE Transactions on Robotics and Automation, vol. 8, nr. 2, april. 1992			

[C9]	Courtois, M	Determination tridimensionalle a l'aide de deux theodolites. These de l'ÉSGT au CNAM d'Evry,
[C10]	***;	CLOOS-ROMAT ^R - Roboter mit flexiblen Arbeitsbereichen - Carl Cloos Sweisstechnic GmbH D 6342, Haigher, 1990.
[C11]	***:	CLOS-ROMAT 76 Service Manual.
[C12]	Cojocaru, G; Kovacs, Fr.	Roboți în acțiune Probleme ale sintezei sistemelor de fabricație flexibilă, Ed. Facla, Timișoara, 1986.
[C13]	Cojocaru G; Kovacs Fr	Roboți în acțiune. Sisteme flexibile și fabricația de serie, Ed. Facla, Timișoara, 1985.
[D1]	Decker, S:	Dynamisches, externes Roboterbahnmeßsystem, Ph.D. Thesis, Institute of Flexible Automation, Viena, 1990.
[D2]	Dielmann, H.:	Informationsverarbeitung in der Robotik, Spinger Lehrbuch, Berlin 1991.
[D3]	Drimer, D.s.a.	Roboți industriali și manipulatoare,Ed. Tehnică, București 1985
[D4]	Davidovici, A. :	Modelarea, simularea și comanda manipulatoarelor și a roboților industriali, Ed. Tehnică București 1986
[D5]	Dombre, E.:	Analyse des performances des robots manipulateurs flexibles et rendundans. Contribution a leur modelisation et a leur coommande, These de Doctorat, Montpellier, France 1981
F1]	Fohanno, T.:	Evaluation des performances mecanique des robots industriels. Etat de la Robotique en France, tome 2, Industrie, 1982
[F2]	***:	Financial Times, 27 sept. 1995
[F3]	Fariboz Behi ş.a.:	Parametric Indentification for Industrial Manipulators Using Experimental Modal Analysis, IEEE Transactions on Robotics and Automation, vol 7, nr.5, oct, 1991
[G1]	Gellman, M.:	Utilisation des theodolites en mecanique. Les sistemes de mesure par intersection (SMI) - Techniques de l'ingenieur, nr. 7/1991.
G2	Guilloteau, T.	Topometrie industrielle a courte distance, These de l'ENSAIS a Strasbourg, janv. 1988.

[G3]	Guittet, J.	La robotique medicale, Ed. Hermes, Paris, 1988
[G4]	Geo-Ry Tang ş.a.:	A Study of Three Robot Calibration Methods Based on Flat Surfaces, Mech.Mach.Theory, vol 29,nr. 2, 1994
[G5]	Gondran, M.:	Informatique et metrologie, Ed Castella, Paris, 1990
[G6]	Gafițanu, M. ș.a.:	Elemente finite și de frontieră ca aplicații la calculul organelor de mașini, Ed Tehnică, București, 1987
[G 7]	Gogu, Gr∷	Optimizarea modelării cuplelor și elementelor cinematice ale roboților industriali (partea I, II, III), Simpozion Prasic '94, Brașov 1994
[#1]	Hartemberg R.S., Denavit,	Kynematic Synthesis of linkages, Mc Graw-Hill, Book Company, New York, 1964
[H2]	Hanqi, Zhuang:	A Note on the Use of Identification Jacobians for Robot Calibration, The International Jurnal of Robotics-Research, nr 1, vol 14, febr 1995
[113]	Hanqi, Zhuang:	A Complete and Parametrically Continuous Kinematic Model for Robot Manipulators, IEEE Transactions on Robotics and Automation, vol 8, nr.4, aug. 1992
[H4]	Heginbotham, W.; Tewari, N.K.:	The Performance Testing of Positioning Sistems in Industrial Automation. The Industrial Robot. Nottingham, U.K., dec. 1975
(H5)	.Handra-Luca, V:	Funcții de transmitere în studiul mecanismelor. Ed Academiei, București, 1983
[H6]	Handra-Luca, V.ș.a.:	Determinarea abaterilor poziționale ale mecanismelor de prindere și centrare, Simpozion RI-MTM 1984, Timișoara
[11]	Ishii, M. ș.a.:	A New Approach to Improve Absolute Positioning Accuracy of Robot Manipulators, Jurnal of Robotic Sistems, 4 (1), 1987
[12]	Ispas, V.:	Aplicațiile cinematicii în construcția manipulatoarelor și roboților industriali, Ed Academiei Române, București, 1990
[13]	lspas, V ș a.	Roboți industriali, Ed. Dacia, Cluj Napoca, 1985

[14]	Iacob, Caius:	Matematici clasice și moderne (vol. 1,2,3),, Ed. Tehnică, București 1978
[]1]	Joonhong Lim; Dong H. Chyung:	Admissible Trayectory Determination for Two Cooperating Robot, Robotica, International Journal of Information, Education and Research in Robotics, vol. 6, pg. 107 ÷ 113, 1988
[J2]	Jubin, M.; Malosse, R.:	Cellules flexibles d'usinage -methodologie de conception, CETIM, Raport d'etude nr. 103-350, Centre Tehnique des industries mecaniques, 1987
[K1]	Kovacs,Fr.; Rădulescu, C.:	Roboți industriali, vol. I și II, Litografia Universității Tehnice Timișoara 1992.
[K2]	Kovacs, Fr.:	Manipulatoare, roboți și aplicațiile lor industriale, Editura Facla, Timișoara, 1982
[K3]	Kovacs, Fr., ş.a.:	Sisteme de fabricație flexibilă robotizată, Litografia Universității Tehnice, Timișoara, 1994.
[K4]	Kovacs,Fr.; Vácărescu, V.:	Metodă de măsurare a exactității de situare a R.I., folosind un telemetru laser, Al XI-lea Simpozion național R.IMTM 1992, vol 3, pg.1-7.
[K5]	Kovacs, Fr.; Văcărescu, V.;ș.a.:	Considerații asupra incertitudinii de poziționare a robotului REMT 5 (partea 1, 11), Simpozion național de R.I., Baia Mare, 1989
[K6]	Kovacs, Fr.; Gheorghiu, N; Văcărescu, V. ș.a.:	Program și metode pentru urmărirea și determinarea performanțelor R.I., Simpozion național de R.I., Baia Mare, 1989.
[K7]	Kovacs, Fr.; Văcărescu, I.N; Văcărescu, V.:	Considerații asupra matricilor de transformare în analiza pozițională a lanțurilor cinematice ale R.I., Simpozion internațional SYROM '89,București 1989.
(K8)	Kovacs, Fr.; Perju, D.; Vācārescu, V.;	Metodologie pentru încercarea funcțională a R.I., Simpozion MERO '91, București, 1991
[K9]	Kovacs, Fr.:	Contribuții la elaborarea unor metode unitare de sinteză a mecanismelor , Teză de doctorat,Inst Politehnic Timișoara, 1969
[K10]	Kees van den Doel; Dinesh, K. Pai:	Performance Measurement for Robot Manipulators. A Unified Approach-The International Jurnal of Robotics Researach, nr.1,

lacob, Caius: Matematici clasice și moderne (vol. 1,2,3),, Ed.

vol.1, Febr. 1996

- [L1] Laurgeau, C.: Capteurs d'environnement en robotique. La perception globale: capteurs de vision et capteurs telemetriques, Tehniques de l'Ingenieur, France, nr.4/1988
- [L2] Liegeois, A Analyse de performances et C.A.O., Tome 7, Hermes Publishing, France, 1984
- [L3] Liu, T.S.: A Reliability Approach to Evaluating Robot Accuracy-Performance, Mech.Mach Theory, vol. 29, nr.1/1993, Pergamon Press Ltd. Great Britain.
- [L4] Lovasz, E.Ch; Metodă optică de determinare a capacității de Văcărescu, V.; centrare a dispozitivelor de prehensiume, Analele Văcărescu, Universității Oradea, mai 1995 I.N.;
- [L5]LeungYingPerformance Analysis of Synchronous ProductionTat:Lines, IEEETransaction on Robotics andAutomation, vol.7, nr.1, febr. 1991
- [M1] Ming-Yih Lee, Kinematic/Kinetic Performance Analysis and s.a.: Synthesis Measures of Multi-DOF Mechanismes, Mech.Mach. Theory,vol.28, nr.5, 1993
- [M2]Masanobu,
Koga;Coordinated Motion Control of Robot Arms Based
on the Virtual Internal Model, IEEE Transactions
on Robotics and Automations, vol 3, nr 1, febr
1992.
- [M3] Morris, R. Vision-Based Automatic Theodolite for Robot Driels: Calibration, IEEE Transactions on Robotics and Automation, vol.7, nr.3, june 1991
- [M4] Masamitsu Integrated Design and Assembly Analysis of Okamura: Compliant Parts with Uncertainty Modeling and Control of Compliant and Rigid Motion Sistems, ASME, vol.31, 1991
- [M5]MuhamadPerformanceEvaluationofaClassofM-J.MirzaJ.MirzaEstimatorsforSurfaceParameterEstimationins.a.:Noisy RangeData, IEEETransactions on Roboticsand Automation, vol.9, nr.1, febr1993
- [M6] Micu, C ș.a.: Aparate și sisteme de măsurare în construcția de mașini, Ed. Tehnică, București 1980
- [M7] ***: Mică enciclopedie matematică, Ed. Tehnică, București, 1982
| [NI] | Nof, S.: | Handbook of Industrial Robotics, Krieger
Publishing Company, Malabar, Florida, 1992 |
|---------------|---|---|
| [N2] | Negrean, luliu: | Contribuții privind optimizarea parametrilor
cinematici și dinamici în vederea măririi preciziei
în funcționarea roboților, Teză de doctorat, Cluj
Napoca, Universitatea Tehnică, 1995 |
| [P1] | Padilla,P.: | Production mecanique. Fabrication generale,
Bordas, Paris, 1986 |
| [P2] | Paul, R.P.: | Robot Manipulators. Mathematics, Programming and Control Cambridge, The MIT Press, 1981. |
| [P3] | Prenninger,
J.P.: | Position and Orientation Measurement of
Industrial Robots using Laser Tracking Techniques
in 6 Degrees of Freedom. Ph.D. Thesis, Institute of
Flexible Automation, Viena, 1992. |
| [P 4] | Priel, M.: | Evaluation des performances des robots industriels, Techniques de l'Ingenieur, nr.4/1988. |
| [P5] | Priel, M.: | Caracteristiques, performances et choix, AFNOR,
Paris, 1990. |
| [P6] | Perju,D.;
Mateaş, M; ş.a.: | Propuneri pentru aprecierea globală a calității
performanțelor roboților industriali, București
SYROM '93. |
| [₽7] | Perju,D.;
Ciupală, V.
(Văcărescu,
V.);
Maniu, I | Determinarea preciziei geometrice a mecanismelor
generatoare de traiectorie, Simpozion PRASIC
'82, Braşov, 1982 |
| [P 8] | Perju, D; ş.a. | Criterii de performanță /indicatori de calitate
pentru roboți industriali, Simpozion MTM '92,
Timișoara, 1992 |
| [P 9] | Perju, D.;
Mateas, M. | Una posibile estructuration de los criterios de
marca de los robotes industriales, Sevilla, 1993 |
| [P10] | p:a.,
Psang Dain Liu
ş.a. : | Accuracy Analysis of Planar Linkages by the
Matrix Method, Mech.Mach. Theory, vol. 27,
nr.5, 1992 |
| [P11] | Popescu, P;
ş.a.: | Relații de analiză cinematică a mecanismului
robotului RRR-RRR, acționat de motoare de
curent continuu, Simposion RI-MTM, 1988 Cluj
Napoca |

[R1]	Ranky, P.G.:	Robot Modeling Control and Applications with Software, I.F.S. Publications, Ltd. U.K., Springer Verlag, 1985
[R2]	Renders, J.M.:	Kinematic Calibration and Geometrical Parametrer Identification for Robots, I.E.E.E. Transaction, on Robotics and Automation, vol.7, nr.6/1991.
[R3]	Rodde,G.;	Les systemes de production-modelisation et performances, Hermes Publishing, Paris, 1989
[R4]	***	"Roboter-Zeitschrift fur Automation, Heft 4, Landsberg, aug. 1998
[R5]	***	Europaischer ROBOTER-Markt 1992, Verlag moderne Industrie, Landsberg, Germany, 1992
[R6]	*** :	Roboter Zeitschrift für Automation, Heft 6, Landsberg, Germany, nov. 1991.
[R 7]	*** :	Robotersysteme-Journal of Autonoms Systems, Springer Verlag, Germany, vol.8, nr.3/1992
(R8)	*** :	Roboter-Zeitschrift für Automation, Landsberg, Germany, mai 1995.
[R 9]	*** <u>-</u>	Europaischer ROBOTER-Markt 1994, Verlag moderne Industrie, Landsberg, Germany, 1994
[R10]	***	Roboter-Portait einer Branche, Landsberg, Germany, 1993
[R11]	***	Roboter-Zeitschrift für Automation, Landsberg, Germany, mai, 1995
[R12]	*** :	Europaischer ROBOTER-Markt 1995, Markt 1995, Verlag moderne Industrie, Landsberg, Germany, febr. 1995
[R13]	Renders, Jean-Michel:	Kinematics Calibration an Geometrical Parameter Identification for Robots, IEEE Transactions on Robotics and Automation, vol 7, nr.6, 1991
[51]	Stețiu, C.E.:	Măsurări geometrice în construcția de mașini, Editura Științifică și Enciclopedică, București, 1988.
[\$2]	*** :	International Standard ISO 9283:1990. Manipulating Industrial Robots. Performances Criteria and Related Test Methodes

[\$3]	*** :	Normalisation francaise NFX-07-001/1986. Resultats de mesures, AFNOR, Paris.
[S4]	*** :	International Standard ISO/TR 8373/1990. Robots manipulateurs industriels-vocabulaire.
[85]	*** :	International Standard ISO 9946/1990 Manipulating Industrial Robots. Presentation of Characteristics.
[S6]	*** :	International Standard ISO 9787/1990. Manipulating industrial robots. Coordinate Systems and Motions.
[\$7]	*** :	V.D.IRichtlinie 2861/1987. Einsatzspezifische Kenngroßen von Industrierobotern. Prufung der Kenngroßen, Stuttgart.
[58]	*** :	Normalisation francaise E 61-103. Robots manipulateurs industriels. Performances, AFNOR, Paris, 1986.
[59]	Shen, Y.:	An Uncertainty Analysis Method for Coordinate Referencig in Manufacturing Sistems: Journal of Engineering for Industry, febr. 1995.
[S 10]	*** :	VDI-Z Bd 129(1987), nr.3-S.57-62- Positioniergenauigkeit von Industrierobotern, Geodadishe Methoden eroffnen Wege zu ihren Verbesserung.
[\$11]	*** :	VDI/VDE- Gesellschaft Meß-und Automatisierungstechnik-Industrieroboter Messen und Prufen, Bericht 14, 1987, Stuttgart
512	Snyder W E.:	Industrial Robots. Computer Interfacing and Control-Prentice/Hall International, Inc. Englewood Cliffs, New Jersey, 1985
[T1]	Ting-Yung Wen J	The Attitude Control Problem, IEEE Transactions
[V1]	Văcărescu, V.; Văcărescu, I.:	Analiza pozițională a dispozitivului de ghidare al robotului RSL-1, Simpozion național, PRASIC '90, vol.1, lucr.37, Brașov
{V2	Văcărescu, V.,ș.a.:	Considerații asupra exactității și repetabilității de situare la R.I. (partea I, II). Al VI-lea Simpozion internațional SYROM '93,pg.273-280, București

BUPT

[V3]	Văcărescu, V .; Văcărescu, 1. :	Exprimarea matricială a exactității de situare la R.I., Al XI-lea Simpozion național RI-MTM '92, pg.1-5, Timișoara
[V4]	Văcărescu, V.; Văcărescu, I.:	Cap de măsurare tridimensional pentru determinarea exactității și repetabilității de situare la R.I. Al XI-lea Simpozion național MTM-RI ' 92, lucr.22, vol.3, Timișoara
[V5]	Văcărescu, V .; Kovacs, Fr., ş.a.:	O nouă metodă de determinare a matricii erorii de situare la R.I. (partea l, II), Al XI-lea Simpozion național MTM-RI '92, vol.3, lucr.23, 24.
[V6]	Văcărescu, V.; Lovasz, E.; Văcărescu, I.:	Metodă și tehnică de determinare a exactității de situare pentru R.I. (partea 1, 11), Analele Universității Tehnice, Oradea, mai 1994
[V7]	Văcărescu, V.; Văcărescu, I.:	Model de calcul pentru determinarea exactității de poziționare și orientare după metoda 3× 3×3 (partea I,II), Al XII-lea Simpozion național MTM- R.I. '94, Timișoara
[V8]	Văcărescu, V.:	Fundamentarea teoretică și practică a parametrului de performanță-exactitate de situare a R.I., Analele Universității Tehnice Oradea, mai 1995
[V9]	Văcărescu, I.N.:	Sinteza structurală și dimensională optimală a mecanismelor generatoare de traiectorie din construcția roboților industriali, Teză de doctorat, Institutul Politehnic "Traian Vuia" Timișoara, 1989
[V10]	Văcărescu, V.:	Contribuții la studiul unui set unitar de aparate și dispozitive pentru încercarea roboților industriali și a sistemelor de fabricație flexibilă robotizate, Referat pentru doctorat nr.2, Universitatea "Politehnica" din Timișoara, 1996
[V11]	Văcărescu, V.∵	Stadiul actual al cercetărilor și realizărilor în domeniul încercării performanțelor roboților industriali și a sistemelor flexibile robotizate, Referat pentru doctorat nr.1, Universitatea "Politehnica" din Timișoara, 1993
[V12]	Văcărescu, I. N.; Văcărescu, V.:	Determinarea erorilor de poziționare la mecanismele generatoare de traiectorie, Simpozion național ROBOT '86, Brașov, 1986

[V13]	Văcărescu, I. N.; Văcărescu, V.:	Erori de poziționare absolute și relative la dispozitivul de ghidare, Sesiunea de comunicări științifice pentru lineret, U.M. Timișoara, 1988.
[V14]	Vācărescu, l. N.; Văcărescu, V.:	Analiza cinematică a robotului REMT-5, Al treilea Simpozion de roboți industriali, Cluj Napoca, 1988
[V15]	Vácărescu, l. N.; Văcărescu, V.:	Considerații asupra sintezei structurale a lanțurilor cinematice componente ale MGT, Simpozion internațional SYROM '89, București 1989
[V16]	Vācărescu, l. N.; Vācărescu, V.:	Cercetări experimentale privind unele caracteristici funcționale ale robotului REMT-5, Simpozion național ROBOT '89, Baia Mare, 1989
[V17]	Văcărescu, V.; Văcărescu, I.N. ș.a.:	Dispozitiv tridimensional (3D) pentru determinarea exactității și incertitudinii de poziționare și orientare la R.I., Simpozion național ROBOT '89, Baia Mare, 1989
[V18]	Văcărescu, l. N.; Văcărescu, V.:	Optimizarea traiectoriei și a legilor de mișcare a punctului caracteristic (partea I, II) Al XII-lea Simpozion Național de R.I., Timișoara, 1994
[V19]	Vukobratovic, M.∶	Accuracy of the Robot Positioning and Orientation Assessed via ith Manufacturing Tolerances, Mech Mach. Theory, nr.1, vol.30, 1995
[V20]	Vicent, R.	Topometrie spațiale a courte distance, Revue XYZ nr.11, Association Francaise de Topographie
[V21]	Vincze, M., Prenninger, J.P.:	A Laser Tracking System to Measure Position and Orientation of Robot and Effectors under Motion. The International Journal of Robotics Research, vol 13, nr.4/1994, Massachusetts Institute of Technology.
[V22]	Vukobratovic, M.:	Kinematics and Trajectory Sinthesis of Manipulation Robots, Springer Verlag, Berlin Heidelberg, Germany, 1986
[V23]	Vukobratovic, M.:	Real-Time Dinamics of Manipulation Robots, Spinger Verlag, Germany, 1985
[V24]	Vukobratovic, M.:	Non-Adaptive and Adaptive Control of Manipulation Robots, Springer Verlag, Germany, 1985

ķ

[W1]	Warnecke, H.J.; Schraft, R.D.:	Industrieroboter-Handbuch für Industrie und Wissenschaft, Springer Verlag, Berlin, 1990
[W2]	Warnecke, H.J.:	Resultats of the Examination of Industrial Robots on a Test Stuttgart, IPA- Stuttgart, 1989
[W3]	Warnecke, H.J.:	Entwiklungstendenzen in der Montage-IPA Stuttgart, 1988
[W4]	Warnecke, H.J.:	Industrieroboter, Band 4, Krausskopf-Verlag, GmbH Mainz 1979
[W 5]	Włoka, W.D.	Robotersysteme, Technische Grundlagen (vol.1,2,3), Springer Verlag, Berlin, 1992
[W6]	Wen Ting-Yung John:	The Attitude Control Problem, IEEE Transactions on Automatic Control, vol 36, nr.10, oct.1991
{ W 7]	Wloka, W.D.:	Robotersimulation, Springer Verlag, Germany, 1991
[W8]	Weijiang Zhao :	Senzorgefuhrte Industrieroboter zur Bahnverfolgung, Hauser Verlag. Germany, 1990

ANEXA 1

MÁSURĂTORI ROBOT ROMAT-76

____**__**________

L	PROIECT :Robot				
2	Aufur.Nr.:				
3	Beobachu:				
4	Reflektor:35				
5	Instr.Nr.: 196394				
ó	DATA 02.06.1996				
7	OPERATOR :				
8	INTR. VALORI	m	1.000000 th	1.5700 ih	1.5700
9	INTR. VALORI (T/P A	CTOM.) T_	23 P	1003 A	0.0000
10	100				
n	MASURARE/E-HZ-V				
12	101	V E	5. 98 59 Hz	0.0000 V1	90,7112
13	INTR. VALORI)11	1.000000 in	2.0000 ih	1.4800
14	INTR. VALORI (T/P A	$\Gamma TOM t = T_{\perp}$	23 P	1005 4	(1,1,6,6,8,)
iā	101				
16	MASURARE/E-HZ-V			. .	
17	100	V E	5.9829 Hz	200.0000 \1	99,17 0 2
18	MASURARE/HZ-V/				

POZITIA I.

201	10	Hz	16.5485 VI	97.6990
21	10	Ни	16.6795 VI	97.5815
101	17	Hz	16.8200 Å 1	97.2035
471	12	Hz	17.0735 M1	97,7520
492	13	Hz	16.5470 VI	97.7035
493	14	Hz	16.6815 VI	97,5860
141	15	Hz	16.8235 VI	97.2645
492	10	Hz	17.0735 VI	97.7520
100	17	Hz	16.5525 VI	97.6990
497	18	Hz	16.6800 VI	97,5850
198	19	Hz	16.8165 VI	97.2045
-199	20	Hz	17.0730 VI	97.7515
500	21	117	16.5480 V1	97,7025
501	<u>2</u> 2	Hz	10.6825 VI	97.5835
502	23	Hz	16.8200 VI	97,2030
503	24	Hz	17.0735 \ 1	97.7530
504	25	H2	16.5500 VI	97,7030
505	26	Hz	10.0805 VI	97.5855
506	27	H7	16.8205 VI	97.2035
507	28	Hz	17.0755 VI	97.7560
508	29	112 H7	16.5495 VI	97.6995
509	30	114		

510-31	Hz	16.6820 VI	97.5860
511 32	Hz	16.8205 VI	07 2030
512 33	Hz	17.0740 VI	97.7535
513-34	Hz	16.5470 V1	97,7005
514 35	нz	16.6 800 VI	97.5865
515.36	Hz	16.8210 VI	97.2055
516 37	Hz	17.0725 NI	27.7540
517 48	Hz	10.5475 VI	97.7035
518 19	Hz	16.6839 VI	97.5855
519 36	Hz	16.8230 3/1	97.2010
570-41	Hz	17.0745 X1	07 7575
50 47 501 47	Hz	10.5495 VI	97.7015
522 13	Hz		97.5860
224 (L) 572 (14	H ₂	16 8220 X1	97 2015
574 46	Hz	17.0740 V1	97 7530
024 40 505 44	H7	16.5500 VI	97 7015
525 40 for 18	112 147	16.6830 VI	97.5860
520 47	112 112	16 8225 XI	07 70m5
527 48	112	17 0745 11	07 7555
528 49	112	63 0567 11	00 1T 19
129 10	112 11-	67.3453 VI	80.7 %
130 11	ни Ц-	67 1021 11	88 5705
131 12		47 GMG V1	DG List
132 13	пz Ц-	65 0612 11	00.1708
133-14		67 3316 VI	80.7008
134-15		67 1066 VI	88 5700
135-16	n <i>t</i>	07.1900 01	00.1156
136 17	Г12 Цэ	65 0600 VI	00.1714
137 18	нz ц,	67 0310 XV	80.1719
138 19	112 113	67 1018 VI	88 5776
139-20	н./ И-	67 0404 31	00.1.160
140 21	112 111	65 0578 VI	90.4400
141 22	112 117	67 2324 VI	80 7208
142 23	112	67 187.1 VI	88 5820
143 24	112 117	67 0151 VI	00.110 ³
144 25	112	65 06.18 V1	00.1820
145 26	112 11-	67 2318 VI	89 7717
146 27	112	67 1028 VI	88 5708
147 28	117 117	67 0304 \1	00.1116
148 29	11Z	65 9587 11	90.1771
149 30	112 117	67 0341 VI	89 7190
150 31	112 11-	67 1016 VI	88 57.17
151 32	112 117	67 0418 V1	001110
152 33	112 11-	65 9568 1/1	90.1774
153 34	Ц. Ц.	67 2310 VI	89.7192
154 35	112 117	67 1940 \1	88.5804
155 36	[12 H 2	67.9417 VI	90.4466
156 37	Цэ Цэ	65.9530 V1	90.1778
157 38	Ц7	67.2352 VI	89.7230
158 39	1		

159-40	Hz	67.1910 Vi	88.5834
160-41	Hz	67.9418 NI	90.4456
161 42	Hz	65.9568 VI	90.1756
162 43	Hz	67.2326 MI	89.7192
163-44	ΙL	67.1960 V1	\$8,5\$36
104 42	Hz	67.9430 VI	90.4488
165-46	Hz	65.9586 VI	90.1746
166 47	Hz	67.2320 VI	89.7220
167 - 18	Hz	67.1942 VI	88.5840
168-49	Hz	67,9456 VI	90.4472

РОΖІТІА П.

529 200	Hz	17.J285 MI	97,5850
530 201	Hz	17.2715 VI	97,4595
531 202	Hz	17.4120 VT	97.0710
537 203	Hz	17.6730 V1	97.6375
533-204	Hz	17.1250 VI	97 5855
534 205	Hz	17.2705 VI	97,4600
545 700	Hz	17.4110 N1	97.0680
536-207	IIz	17.6750 V1	97.6365
517 208	Hz	17.1275 N1	97.5855
538 200	Hz	17.2715 N1	97.4615
530 200	Hz	17.4140 VI	97,0060
540 211	Hz	17.6740 V1	97.6360
541 212	Hz	17.1265 Vi	97.5830
547 213	Hz	17.2715 NT	97,4575
513 514	Hz	17.4130 VI	97.0730
544 215	H2	17.67.30 V1	97.6370
515 216	IL	17.1295 VI	97.5840
546 217	H7	17.2720 VI	97,4595
517 718	Hz	17.4130 VI	97.0680
548 219	Hz	17.6735 VI	97.6390
519 220	Hz	17.1290 VI	97.5835
550 221	Hz	17.2720 VI	97.4615
551 222	Hz	17.4100 VI	97,0660
557 773	Hz	17.6735 VI	97.6375
551 224	Hz	17.1275 VI	97.5855
551 225	Hz	17.2745 VI	97.4585
555 776	Hz	17.4130 VI	97,0710
556 007	Hz	17.6750 V1	97.6375
557 008	Hz	17.1250 VI	97.5855
552 000	Ήz	17.2745 VI	97.4590
JJ0 227 566 330	Hz	17.4120 V1	97.0685
220 - 221 220 - 221	Hz	17.6740 V1	97.6385
200 221	Hz	17.1315 VI	97.5825
501 252 5(2, 232	Hz	17.2715 VI	97.1595
202 223 5/2 224	Hz	17.4120 VI	97.0685
363 254			

Teză de doctorat

,			
564 235	Ηz	17.6745 N1	97.6380
565 236	Hz	17 1280 NA	97.5835
566-237	Hz	17.2720 V1	97.4595
567 238	Hz	17.4100 VI	97,0685
568 239	IIZ	17.6755 N1	97.6385
169-200	Hz	72,0466 VI	89.5498
170 201	Hz	73.4342 VI	\$9.0872
171 202	Hz	73,3348 N I	87.9034
172 203	Hz	74.0578 MI	39.8638
173 204	Hz	72.0510/V1	89,5468
174 205	Hz	73.4356 N1	89.0832
175 206	Hz	73.3314 MI	87.9016
176 207	Hz	74.0590 VI	89.8636
177 208	H∠	72.6472 N1	89.5444
178 209	Hz	73,1394 V1	89,0874
179 210	Hz	73.3332 VI	\$7.8978
180 211	Hz	74.0582 VI	K9.8040
181 212	Hz	/2.0462/V4	89.5474
182 213	Hz	73,4408 1	89.0902
183 214		73,3385 11	57. 5 730
184 215	Hz	74,0704 N1	89,8080
185 216	HZ	72,0310 - 54	09.01/1 07.005.
186 217	HZ	73,4350 81	87.0930 87.0711
187 218		72.2234 AL 71.6586 VI	80.8700 80.8700
188 219	HZ U2	74.0060 NT	80 5.156
189 220	172	73 (39% V1	20 NO 12
190 221	11Z 117	73,4261,3/1	87 9018
191 222	Hz	74.0628 VI	89.8668
192 223	Hz	72.0448 V1	89.5520
193 224	H7	73.4320 VI	87.0830
194 225	Hz	73.3330 VI	87.9014
195 226	Hz	74.0634 N1	\$9.8648
196 227	Hz	72,0500 VI	89.5444
197 228	Hz	73,4334 VI	89.0384
198 229	Hz	73,3304 N1	87.9026
199 230	Hz	74.0630 VI	89.8628
200 231	Hz	72.0482 NI	89.5424
201 232	Hz	73.4318 N1	89,0916
204 237	Hz	73.3290 NI	87.9016
203 234	Hz	74.0654 VI	89,8660
204 200 DOI: DOI: 006	Hz	72.0478 VI	89.5438
205 250	Hz	73,4342 V1	89.0884
200 207 207 238	<u>í Lz</u>	73.3336 V1	87.9020
207 230	Hz	74.0628 VI	\$9.8030
200 207			

5

POZIŢLA III.

_____**____**__**__**__

569	300	Hz	17.2600 V1	100.0700
570	301	Hz	17.3990 VI	99,9185
571	302	Hz	17.3385 VI	99.4975
572	303	Hz	17.8230 VI	99.9105
573	304	Hz	17.2605 VI	100.0680
574	305	Hz	17.3970 VI	99.9185
575	306	Hz	47.3405 VI	99,1965
576	307	Hz	17.8230/V1	<u>99,912</u> 0
577	308	Hz	17.2600 VI	100.0705
57 8	309	Hz	17.3995 V1	99.9175
579	310	Hz	17.3440 VI	00_10 <u>5</u> 0
580	311	Hz	17.8250 VI	99.9110
581	312	Hz	17.2565 V1	100.07.30
582	313	Hz	17.4005 V1	99.9185
583	314	Hz	17.3445 11	99,1955
584	315	Hz	17.8245 N I	99,9120
585	316	HZ	17.2575 NI 17.1666 NI	100.0720
586	317		17.4000 \1	920462 00.0075
587	318	HZ	17.3440 NT	00.0115
588	319	HZ 11-	17.022.7 N 2	92/2113
589	320	ПС Ца	17.2080/01	00 0105
590	321	пz u-	17.8480 × 1	00.3056
591	322	П2 Ца	17.3445 VI	00 0115
592	323	112 113	17 2605 33	100.0705
593	324	H2	17 3985 V1	09.4180
594	325	H	17.3455 VI	99,1940
595	326	Hz	17.8230 VI	99.9110
596	327	Hz	17.2580 V1	100.0700
597	328	Hz	17,3990 VI	99.9165
598	329	Hz	17.3430 MI	99, 1950
599	330	Hz	17.8240 VI	99,9125
600	331	Hz	17.2600 VI	100.0700
601	332	Hz	17.3995 VI	99.9180
602	333	Hz	17.3110 MI	99,1960
003	334 226	Hz	17.8245 VI	99.9115
004	55J 214	Hz	17.2605 VI	100.0715
605	220 22 7	Hz	17.4010 V1	99.9170
600	337 339	Hz	17.3435 V1	99.4915
- 007 - 609	300 220	Hz	17.8240 VI	99.9125
008	900 000	Hz	72.3972 VI	97.9342
209	ຸກມບ ຈຸດາ	1 Lz	73.7424 V1	97.3816
210	303 363	Hz	73.2420 VI	95.9638
211	302	Hz	74.2492 VI	97,4160
212	204	Hz	72.39 5 0 VI	97.9274
213				

214	305	IL	Z	73.7344	Vi	97.3790	
215	306	H	z	73,2496	V1	95,9588	
216	307	н	L	74.2620	VI	97.4138	
217	308	н	z	72.3984	$\mathbf{V}\mathbf{I}$	97.9288	
218	309	И	z	73.7334	V1	97.3786	
219	310	H.	7	73.2526	$\mathbf{V}1$	95,9570	
220	311	H	z	74.2580	VI –	97.4212	
221	312	H	Z	72.4002	V1	97.9282	
222	313	H	z	73,7304	V1	97.3802	
223	314	H	z	73,2424	VI –	95.9540	
224	315	н	2	74.2574	V1	97.4156	
225	316	I	z	72.3974	$\mathbf{V}1$	97.9378	
226	317	H	Z	73,7296	V]	07 1822	
<u>22</u> 7	318	H	L	73.2448	VI .	95.9578	
228	319	H	7	74.2582	V1	97.4146	
229	320	н	Z	72.3988	VI VI	97.9370	
230	321	H	7	73.7414	N1	97.3852	
231	322	H	Z	73.2420	N I 100	95.9530	
232	323	H	Z.	74.2032	N I - 1/1	97.4180	
233	324	11	z	7220072 33 33 43	NI NA	90.8892 10. 1. 1. 1	
23 H	325		2	72,7242	N 1	97.2722	
235	326	n v	2	70.2091	N 1 -	90.900A0	
236	327	ת נו	2	79.1077	N1	97.4104 07.0306	
237	328	и И	4	73.7321	NT -	67 38 W	
238	329	H H	L 7	73 2536	vi	05 0538	
239	330	וז א	7	71 1580	vi	97.4268	
240	331	н	7	73 3002	vi	07.9392	
241	332	Ĩ	,	73,7294	VI	97.3824	
242	333	 H	7	73.2424	NI -	95,9588	
24.4	334	H	7	74.2598	VI	97,4156	
244	333	H	Z	72.4010	V1	97.9382	
245	330	H	z	73,7398	V1	97.3846	
240	337	Н	z	73.2478	VI –	95.9530	
247	338	н	z	74.2582	VI –	97.4142	
_48	359						
	POZIŢIA IV.						

Teză de doctorat

7

==================

Hz	16.5855 VI	100.0705
Hz	16.7190 VI	00,0215
Hz	16.6725 VI	99.5120
Hz	17.1345 V1	99,9140
Hz	16.5935 VI	100.0705
Hz	16.7245 VI	99.9185
Ilz	16.6730 V1	99.5105
Hz	17.1340 VI	99.9155
Hz	16.5885 VI	100.0675
Hz	16.7175 V1	99.9215
	Hz Hz Hz Hz Hz Hz Hz Hz Hz	Hz16.5855V1Hz16.7190V1Hz16.6725V1Hz17.1345V1Hz16.5935V1Hz16.7245V1Ilz16.6730V1Hz17.1340V1Hz16.5885V1Hz16.7175V1

619	410	Hz	10.0080 VI	99.5100
620	411	Hz	17.1355 MI	00.0110
621	412	Hz	10.5855 VI	100.0700
622	413	Hz	16.7190 V1	99,9195
623	414	II.	16.6695 VI	99.5095
624	415	Hz	17.1345 V1	99.91.15
675	116	Hz	16 5820 VI	100.0675
676	117	112 117	16.3076 VI	09.9210
677	.118	112 H7	16.6730 XV	99 5085
678	410 410	H ₇	17 1385 VI	QQ Q135
670	170	HZ	16 5890 V1	100.0665
0-2 640	.121	1 <u>1</u> Hz	16.7230 3.1	00.0185
611	421	H7	16.6730 VI	99 5095
691 697	122	H ₂	17 BJ6 Vi	99 9166
422	424	112 H7	16 3885 11	100 0710
633	424	117	16 7220 X1	00 0105
625	425		10.720 VI	99 5095
030	420	LIZ M	17 1335 VE	00 01.10
030	427	114 117	16 5000 VT	100.0705
63/	428	112 [17	16 7776 VI	00.0705
638	429	Liz Lia		De stro
639	430	112 11-	10.007.5 11	00.0100
610	-131	П2 Ца	1.5010-31	100.0705
o41	432	пе 11-	16.7210 1/1	00.0100
642	133		10.7250 VI 16.8715 VI	00.5005
643	-434	FLZ	10.0713 NI	- 99.0090 - 00.0150
644	435	HZ	17,1300/371	100.0445
د ان	436	F12	10.3723 11	00 0105
646	437	HZ	16.7210 NT	00.5090
647	438		10.0720 VI	00.0165
648	439	HZ M-	46 2399 VI	02.70.00 02.0070
249	400		57 57 17 VI	07.1744
250	401		67 1200 31	06 10 11
251	402		68 2100 311	67 5111
252	403	nz 11-	66 3401 V1	08.0011
253	404	112	67 57J0 V1	07.1759
254	405		67 (1.18 V)	06 11 32
255	406	F12	52 2040 VI	07 51 10
256	407		66 3380 V1	07 0086
257	408		40.3360 NT	07.1760
258	409	112 172	67 1152 VI	06 1162
259	410	HZ V-	68 2006 111	90.1101 07 \$076
260	411	<u>nz</u>	66.2000 VI	08 0010
261	412	112 11-	67 5722 VI	07 1790
262	413	112 U-	67 1126 VI	Ú6 1124
263	414	<u>п</u> и.	68 2010 371	07 5006
264	415	ПИ Ц-	66 3360 VI	US (1177
265	416	rz U-	67 57.12 VI	07 4777
266	417	пі Ц.	67 1.12 VI	Q 6 1174
267	418	LT	07/1142 11	201114

268 419	Hz	68 2022 1	97 509n
269 420	Hz	66 3308 VI	98 (1032
270 421	Hz	67 5708 VI	07 17m
271 422	112 147	67 1120 VI	06 1169
272 423	772 TT 2	68 2058 VI	07.5100
273 424	11Z 11 z	66 22 20 VI	08 01 22
77.1 .125	117 117	67 570 (31)	90.012-
275 126	11/ 11-	47 113 51	27.4770
275 420	<u>n</u> 2	07.1130 V1	90.1134
276 427	Hz	68.2012 M1	97.5088
277 428	Hz	66.3332 V1	98.0022
278 429	Hz	67.5698 MI	97.4802
279-430	Hz	o7.1130 A.1	96.1170
280 431	Hz	68,2010 MI	97.5098
281 432	Hz	66.3362 VI	97,9980
282 433	Hz	67.5676 VI	97.4716
283 434	Hz	67.1168 VI	96.1148
284 435	Hz	68,2000 MI	97 ju)48
285 436	Hz	66.3352 NI	98,0064
286 437	Hz	07.5098 VI	97.4758
287 438	Ilz	67.1132 VI	96,1139
	Hz	68.2024 A I	97,5018
			•••••

POZITIA V.

500	Hz	16.9275 VI	99,00,90
501	Hz	17/0650/V1	08,8480
\$02	Hz	17.0150 VI	98.4330
502	Hz	17.4855 VI	98.8385
501	Нz	16.9270 VI	99.0075
505	Hz	17.0635 VI	98.8470
с,нс, ССС	Hz	17.0125 V1	98,4305
502	Hz	17.4850 VI	98.8405
507	Hz	16.9285 VI	99.0065
208	H2	17.0665 V1	98.8450
509	Hz	17.0160 V1	98.4325
510	Hz	17.4860 VI	98.8410
511	Hz	16 9770 X1	99,0070
512	H,	17.0665 X1	08.8465
513	H7	17.0000 V1	011110
514	112 112	17.J8J5 V1	02 2 105
515	H2	16 0205 3/1	00 (1()6()
516	ц Ц	17.0615 331	08 8.150
517	612 Filo	17.0045 V1	08.1110
518	117	17 1860 1/1	08 8 110
	112	11.4000 11	20.0410
519	U.	14 6365 VY	60 //0 I/r
519 520	Hz	16.9305 VI	99.0040 09.9460
519 520 521	Hz Hz	16.9305 VI 17.0655 VI	99.0040 98.8460
	500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518	500 Hz 501 H7 502 H2 503 H2 504 H2 505 H7 506 H2 507 H2 508 H2 509 H2 510 H2 511 H2 512 H2 513 H2 514 H2 515 H2 516 H2 517 H2 518 H2	500 H_2 16.9275 $V1$ 501 H_2 17.0650 $V1$ 502 H_2 17.0150 $V1$ 503 H_2 17.4855 $V1$ 504 H_2 17.4855 $V1$ 505 H_7 17.0635 $V1$ 506 H_2 17.0125 $V1$ 507 H_2 17.4850 $V1$ 508 H_2 17.0665 $V1$ 509 H_2 17.0665 $V1$ 510 H_2 17.0665 $V1$ 511 H_2 17.0665 $V1$ 512 H_2 17.0665 $V1$ 513 H_2 17.0665 $V1$ 514 H_2 17.0665 $V1$ 515 H_2 17.0665 $V1$ 516 H_2 17.0645 $V1$ 517 H_2 17.0645 $V1$ 518 H_2 17.4860 $V1$

672	523	Hz	i7.4655 VI	98,8430
673	524	Hz	16 9285 V1	99,00.15
674	525	Hz	17.0630 V1	98.8460
675	526	Hz	17.0105 M1	98.4305
676	527	ΗL	17.4865 VI	98.8435
677	528	H7	16.9260 VI	99,0090
678	529	Hz	17.0645 V1	98.8475
679	530	Hz	17.0175 N1	98.4.905
680	531	Hz	17.1860 VI	98,8135
681	532	Hz	(6.9260 VI	99,0065
682	533	Hz	17.0640 VI	98.8440
683	4	Hz	17.0165 VI	98.4300
681	535	Hz	17 1820 VI	98.8410
685	536	Hz	10.9295 V1	99.0065
686	537	H7	17.0645 NI	98,8460
687	5.18	Hz	17.0150 V1	98.4310
688	539	Hz	17 4865 VI	98.8435
280	500	Hz	69.4084 V1	94.3830
200	501	Hz	70.6840 V1	93.8105
201	507	ĬLz	70.2098 M1	92.4 PC
202	502	Hz	71.2000 VI	93,9232
201	504	Hz	69.3918 VI	91,3811
704	505	Hz	70.6908 VI	93.8140
205	506	H2	70.2102 VI	92,4544
22.7	507	Hz	71.2006 VI	93,9214
170 207	508	H7	69 407.1 VI	94 3876
702	500	Hz	70.6932 V1	93.8142
220	510	Hz	70.2144 VI	92,4574
277	510	ΙL	71.2670 VI	93.9204
300	512	Hz	69/4020/VT	94.3860
307		Hz	70.68 8 6 N1	93.8174
101	51.4	Hz	70.2030 V1	92.4514
201	515	Hz	71.2698 V1	93.9211
204	515	Hz	69.3964 VI	94.3854
306	517	Hz	70.6818 VI	93.8126
200	519	Нz	70.2156 VI	92.452o
200	510	Hz	71.2696 VI	03,0226
200	517	Hz	69.4000 VI	94.3822
310	520	H7	70.6820 N1	93.8108
210	523	Hz	70.2092 V1	92.4552
212	512	Hz	71.2710 V1	93,9240
212	571	Hz	69.3990 V1	94.3770
214	024 505	Hz	70.6850 VI	93.8114
214	576 576	IIz	70.2052 VI	92.4532
213	510	Hz	/1.2672 VI	93.9212
210	527 578	Hz	69.4026 VI	91.3816
217	520 520	Hz	70.6890 VI	93.8034
310	510	Hz	70.2104 V1	92,4540
212	521	Hz	/1,2084 VI	95,9242
<u>020</u>	J)1			

321	532	Hz	69.3976 VI	94,3844
322	533	Hz	70.6962 VI	93.8156
323	534	Hz	70.2188 VI	92.4520
324	535	Hz	71.2690 VI	91,9248
325	536	HL	69.3976 VI	94.3786
326	537	Hz	70.6896 V1	93,8118
327	538	Hz	70.2064 V1	92.4554
328	539	Hz	71,2640 VI	93.9232

POZIȚIA INIȚIALĂ

_____**__**_____**_**____**_**_

689	ούύ	Hz	10.0335 V1	95.3010
690	601	Hz	16.1560 VI	95.2660
<u>6</u> 91	602	Hz	16.1350 VI	94.8320
692	603	Hz	16.5805 VI	95.2505
<u>693</u>	ó04	Hz	16.8985 V1	94.8865
330	609	Hz	65.2050 VI	82,0694
331	601	Hz	66.5334 VI	81.8596
337	60?	Ηz	66.4684 VI	80.4718
333	603	Hz	67.2320 VI	82.1348
334	 où4	Hz	72.6890 VI	80.5028

ANEXA 2

	x		Z	}			Nr Crt	X	Y	Z
1.01	7 10524	1,88971	1,83582		N4		1.51	7,10525	1,00962	1,83588
1.02	7 05591	1,89223	1,84735		N1		1.52	7,05614	1,69255	1,84715
1.02	7 06912	1 91245	1,89199		N2		1.53	7,06903.	1,91253	1,89201
1.03	7,05453	1,93674	1.82844		N3		1.54	7,05393	1,93854	1,82867
	7 10/05	1 88945	1,83534	-	N4		1.61	7,10512	1,88954	1,83575
1,11	7,10483	1 89255	1.84727	-	N1	-	1.62	7.05611	1,89237	1,84713
1.12	7,05032	1 91283	1.89181		N2		1.63	7.06914	1,91256	1,98179
1.13	7,00320	1 93645	1.82844		N3		1.64	7,05372	1,93832	1,62823
1.14	7,0007.0	4 80022	1 83587		N4		1.71	7,10534	1,88961	1,83536
1.21	7,10544	1,03022	1 84735		N1		1.72	7,05622	1,89267	1,84725
1.22	7,05613	1 01 104	1 89173		N2		1.73	7,06945	1,91283	1,89225
1.23	7,06880	1 02845	1 82854		NЗ		1.74	7,05402	1,93866	1,82846
1.24	7,05394	1,930-0	1 83548		N4		1.81	7,10535	1,88985	1,83567
1.31	7,10513	1,88900	1 84745		N1		1.82	7,05653	1,89303	1,84 727
1.32	7,05636	1,89204	1 89203		N2		1.83	7,06915	1,91265	1,89211
1.33	7,06932	1,91257	1.82835		N3		1,84	7,05394	1,93854	1,82835
1.34	7,05376	1,93640	1,02000	-	NA		1.91	7,10523	1,88993	1,83565
1.41	7,10495	1,88981	1 84725		N1		1.92	7,05531	1,69277	1,84728
1.42	7,05604	1,89233	1,04725		N2		1 93	7,06924	1,91273	1.89225
1.43	7,06916	1,91257	1,09,90		N3		1.94	7,05373	1,93641	1,82804
1 44	7,05422	1,93886	1,82801							

POZITIA INITIALA					
Nr Crt. i	Xc	Ye	Zç	ſ	
0.21	6,87605	1,69599	1,84095		
0.22	6,82815	1,89959	1,85288		
0.23	6,84043	1,91909	1,89742		
0.24	6,82529	1,94521	1,83343		

N4
N1

N1 N2 N3

Nr Crt.	X	Υ	Z
2.01	6,87629	1,89609	1,84089
2.02	6,82771	1,89922	1,85268
2.03	0,04038	1,91883	1,89763
2.04	6,82532	1,94502	1,83351
2.11	6,87651	1,89601	1,84068
2.12	6,82807	1,69962	1,85313
2.13	6,84033	1,91908	1,09712
2.14	6,82539	1,94517	1,83347
2.21	6,87613	1,89559	1, 8 4058
2.22	6,82812	1,89958	1,85304
2.23	5,84038	1,91903	1,89742
2.24	6,62529	1,94512	1,63341
2.31	6,87649	1,89647	1,84105
2.32	6,82802	1,89933	1,85302
2.33	6,64043	1,91902	1,89742
2.34	6,82527	1,94513	1,83338
2.41	6,87643	1,89601	1,84089
2.42	6,82791	1,89932	1,85302
2.43	6,84011	1,91 6 67	1,89739
2.44	6,82542	1,94528	1,83339

Nr Cit,	X	<u>ү</u>	Z
2.51	6,87636	1,89608	1,84069
2.52	6,82789	1,89919	1,85302
2.53	8,84018	1,91892	1,89711
2.54	6,82553	1,94503	1,63346
2.61	6,87601	1,89553	1,84058
2.62	6,82778	1,69907	1,85293
2.63	6,84028	1,91679	1,89741
2.64	6,82559	1,94528	1,83362
2.71	8 ,8763 8	1,89604	1,84071
2.72	6,82769	1,89916	1,85267
2.73	6,84038	1,91919	1,89759
2.74	6,82545	1,94513	1,83368
2.81	6,87632	1,89576	1,84087
2.82	6,82759	1,89917	1,85316
2.83	6,84013	1,91904	1,89688
2.84	6.82504	1,94487	1,83352
2.91	6,87627	1,89613	1,84078
2.92	6,82769	1,89918	1,85301
2.93	6,84028	1,91911	1,09738
2.94	6,82548	1,94512	1,63329

Nr Crt.	×	Y	Z
3.51	6,87002	1,90958	1,5618
3.52	6,62268	1,91249	1,5791:
3,53	6,83969	1,91033	1,62601
3.54	6,82613	1,96258	1,58003
3.61	6,87009	1,90974	1,56219
3.62	6,62293	1,91239	1,57913
3.63	6,83954	1,91043	1,62616
3.64	6,83559	1,96237	1,57979
3,71	6,86987	1,90962	1,56192
3.72	6,82313	1,91273	1,57917
3.73	6,83958	1,91088	1,62629
3.74	6,82583	1,96274	1,57993
3.81	6,86957	1,90911	1,56150
3.62	6.82333	1,91278	1,57915
3.63	6,84002	1,91103	1,62633
3.84	5,82578	1.96272	1,57982
3.91	6,86978	1,90933	1,56166
3.92	6,82331	1,91279	1,57931
3.93	6,62987	1,91104	1.62654
3.94	6,82569	1,96235	1,57991

N4 N1 N2 N3

POZITIA INITIALA				
Nr Cit. Xe Ye Ze				
0.31	6,86959	1,90958	1,56187	
0.32	6,82302	1,91249	1,57931	
0.33	6,84018	1,91122	1,62628	
0.34	6,82569	1,96251	1,57978	

Nr Cit.	X	Y	Z
3.01	5,86987	1,90957	1,56189
3.02	6,82309	1,91249	1,57903
3.03	6,84001	1,91103	1,62629
3.04	6,82558	1,96261	1,57987
3.11	6,86959	1,90962	1,56193
3.12	6,82301	1,91251	1,57915
3.13	6,84016	1,91123	1,62637
3.14	6,82569	1,96247	1,57991
3.21	6,86958	1,90929	1,56193
3.22	6,82271	1,91248	1,57928
3.23	6,83941	1,91071	1,62627
3.24	6,82577	1,96258	1,57979
3.31	6,86988	1,90963	1,58193
3.32	6,82333	1,91271	1,57928
3.33	6,84002	1,91103	1,62631
3.34	6,82569	1,96258	1,57983
3.41	6,86983	1,90963	1,56188
3.42	6,82304	1,91279	1,57912
3,43	6,83978	1,91087	1,62619
3.44	6,82569	1,96259	1,57991

Nr Crt.	X	Y	Z
4.01	7,09017	1,89013	1,56187
4.02	7,04341	1,89349	1,57902
4.03	7,06072	1,89258	1,62604
4.04	7,04613	1,94357	1,57993
4.11	7,09066	1,89123	1,56187
4.12	7,04379	1,89425	1,57929
4.13	7,06102	1,69269	1,62618
4.14	7,04631	1,94357	1,57965
4.21	7,09047	1,89062	1,56222
4.22	7,04344	1,89334	1,57904
4.23	7,06061	1,89203	1,62631
4.24	7,04661	1,94375	1,58023
4,31	7,09023	1,89012	1,56187
4,32	7,04355	1,89353	1,57921
4.33	7,06076	1,89232	1,62633
4.34	7,04652	1,94366	1,57977
4.41	7,09063	1,89058	1,56224
4 42	7,04357	1,69378	1,57903
4,43	7,06103	1,89273	1,62639
4 44	7,04671	1,94425	1,57994

Nr CrL	x	Y	Z
4.51	7,09078	1,89069	1,56233
4.52	7,04381	1,89415	1.57927
4.53	7,06111	1,89272	1,62631
4.54	7,04624	1,94363	1,57963
4.61	7,09065	1,89056	1,56181
4.62	7,04382	1,89300	1,57 924
4.63	7,05091	1,69263	1,62629
4.64	7,04633	1,94351	1,57994
4.71	7,09085	1,89111,	1,56192
4.72	7,04382	1,89402	1,57931
4.73	7,06059	1,89203	1,62613
4.74	7,04662	1,94401	1,58015
4.81	7,09071	1,89089	1,56192
4.82	7,04403	1,89413	1,57927
4.83	7,06071	1,89251	1,62634
4.84	7,04665	1,94387	1,57975
4.91	7,09095	1,89113	1,56236
4.92	7,04382	1,69378	1,57915
4 93	7,06087	1,89257	1,62651
4.94	7,04651	1,94391	1,57963

		TIALA			
Nr Crt.	Xc	Yc	Zc		
0.41	7,09048	1,89058	1,56187		N4
0.42	7.04342	1,89388	1,57933		N1
0 43	7.06059	1,89263	1,62625		N2
0.44	7,04657	1,94352	1,57983		N3

Nr Cit.	X	Y	Z
5.51	6,97691	1,90051	1.66311
5,52	6,93032	1,90358	1,70032
5.53	6,94725	1,90215	1,74745
5.54	6,93655	1,95347	1,70092
5.61	6,97678	1,90026	1.68313
5.62	6,93004	1,90321	1,70028
5.63	6,94721	1,90182	1,74758
5.64	6,95366	1,95367	1,70089
5.71	6,97651	1,89979	1,68256
5.72	6,92991	1,90333	1,70009
5.73	6,94735	1,90262	1.74762
5.74	6,93282	1,95364	1,70089
5.81	6,97674	1,89994	1,69287
5.82	6,92958	1,90325	1.70048
5.83	6,94703	1,90235	1,7476в
5.84	6,93252	1,95301	1.70109
5.91	6,97688	1,90042	1.68293
5.92	6,92993	1,90335	1,70035
5.93	6,94741	1,90239	1,74763
5 94	6,93303	1,95378	1 70092
7			

Z

	POZITIA INI	TIALA		1	
Nr Crt.	Xc	Ye	Zc		
0.51	6,97687	1,90002	1,68285	←	N4
0.52	6,92981	1,90361	1,70036		N1
0 53	5,94713	1.90189	1,74745		N2
0.54	6,93282	1,95337	1,70111		N3

1			T
Nr Crt.	X	Y	JZ
5.01	6,97620	1,90002	1,68256
5.02	6 ,93012	1,90351	1,70009
5.03	6,94735	1,90229	1,74733
5 04	6,93261	1,95347	1,70135
5. Ť1	6,97691	1,90015	1,68272
5.12	6,92979	1,90324	1,70023
5.13	6,94711	1,90201	1,74765
5.14	6,93277	1,95347	1,70118
5.21	6,97694	1,90022	1,68295
5.22	6,92975	1,903659	1,70039
5.23	6,94725	1,90244	1,74741
5.24	6,93278	1,95355	1,70111
5.31	6,97664	1,90005	1,68284
5.32	6,93001	1,90355	1,70025
5.33	6,94728	1,90191	1,74723
5.34	6,93264	1,95344	1,70121
5.41	6,97701	1,90035	1,68285
5.42	6,93025	1,90342	1,700037
5.43	6,94702	1,90211	1,74751
5,44	6,93266	1,95358	1,70115

ANEXA 3

1

POZITIONARE ROBOT

PUNCTUL P1

3,2096E-06 1,4885E-08 2,073E-09 2,121E-10 9,507E-08 2,2716E-08 1,7325E-10 1,976E-08 1,824E-10 4,352E-10

	POZITIA IN	ITIALA		
Nr Crt.	Xç	Yc	Zc	
0.11	7,10525	1,68972	1,83583	+ N4
0.12	7,05593	1,89223	1,84735	N1
0,13	7,06912	1,91245	1,89196	N2
0.14	7,05453	1,93872	1,82843	N3

Li:	0,000443	0.0001418	0,0002183	0,000249267	0,00057858
	0,0001131	0,0002507	0,0001233	0.000277334	0.00024297
	L8=	0,000264	ŞL=	0.000145907	
SLJ:	5,972E-05	4,067E-05	1,518E-05	4.85421E-06	0.00010492
	5,024E-06	4,387E-06	4,6865-05	4,50139E-06	6,9 536E-06

	XB	YB	ZB			
[7,056207	1,89255	1, 84 7275			
	Арх	Ару	Apz	AP		
	0,000277	0,00032	-7,5E-05	0.00042983	*	
				RP		Exactitalea de pozitionare
				0,000701551	*	
						Repetabilitatea de pozitionare

Nr Crt.	X	Y	Z				Nr Crt.	<u>x</u>	Y	Z
1.01	7,10524	1,88971	1,63582	←	N4		1.51	7,10525	1.88982	1 83588
1.02	7,05591	1,89223	1,84735		N1		1.52	7,05614	1,89255	1 64715
1.03	7,06912	1,91245	1,89199		N2		1 53	7,06903	1,91253	1.89201
1.04	7,05453	1,93674	1,82844		N3		1 54	7,05393	1,93 0 54	1,82867
1.11	7,10495	1,88945	1,83534	.	N4	→	1 61	7,10512	1.88954	1,83575
1.12	7,05632	1,89255	1,84727		N1		1 62	7,05611	1,89237	1.84713
1 1 13	7,06926	1,91283	1,89181		N2		1.63	7,06914	1,91256	1 98179
1.14	7,05373	1,93845	1,82844		NЗ		1.64	7,05372	1,93632	1 82823
1.21	7,10544	1,69022	1,83587	←	N4		1 71	7,10534	1,88961	1,83536
1.22	7,05613	1,89236	1,64735		N1		1.72	7,05622	1,89267	1, 84725
1.23	7,06885	1,91194	1,89173		N2		1.73	7,06945	1,91283	1, 892 25
1.24	7,05394	1,93845	1,82854		N3		1.74	7.05402	1 93866	1 82846
1.31	7,10513	1,88966	1,83548	-	N4	→	1.81	7,10535	1.86985	1 83567
1.32	7.05636	1,89264	1,84745		N1		1 82	7,05653	1,69303	1,84727
1.33	7,06932	1,91257	1,89203		N2		1 83	7.06915	1 91265	1,89211
1.34	7.05376	1,93646	1,82835		N3		1.84	7,05394	1,93854	1 82835
1 41	7 10495	1.68961	1,83546	←	N4	>	1 91	7,10523	1,88993	1 83565
1 42	7 05604	1 69233	1,84725		N1		1.92	7,05631	1 89277	1.64728
1 43	7.06916	1,91257	1,89196		N2		1,93	7,05924	1,91273	1,89225
1 44	7.05422	1,93886	1,82801		NB		1 94	7,05373	1,93841	1,82804
1.44	••••••									

EXACTITATEA DE ORIENTARE

Mxn	0,000578	= APnx=	1.71E-05
Nxn	-0.00028		
MyN	0,000177	APny=	9.94E-06
Nyn	-0,00032		
Mzn	7,7E-05	APnz=	4E-08
Nzn	7,5E-05		

- APri=	1: S7E, 75	
APa C=	1 570 111	rad
APa ISO=	0.001102	grd

P1

Mxa	-5,2E-05	APax=	4.5E-06
Nxa	-0,00028		
Муа	-0,00012	APay=	4.08E-06
Nya	-0,00032		
Mza	-0,00903	APaz=	-0.00018
Nza	-2E-05	_	

APa=	074 .]
APc C=	-: storie]rad
APc ISO=	0.01015]grd

Мхо	5E-05	APox=	5.54E-06
Nxo	-0,00028	_	
Муо	-4E-05	APoy=	5,6E-06
Nyo	-0,00032]
Mzo	0,000202	APoz=	7.65E-06
Nzo	-0,00018		

APo=	1.55	
APb C=	1, 517, 165	rad
APb ISO=	2.0208	grđ

a	7,053952
b	7,056207
C	1,938543
d.	1,89255
e	1,828353
f	1,847275
g	7,069172
h	1,912566
	1,900993
<u> k</u>	7,1052
L	1,88976
m	1,635628

REPETABILITATEA DE ORIENTARE

Nr Crt	X	Y			Nr Crt.	X	Y	z
1.01	7,10524	1,85971	1,53582	• N4	1.51	7,10525	1.65982	1.63588
1.02	7,05591	1,89223	1,84735	N1	1.52	7,05614	1,89255	1,84715
1.03	7,06912	1.91245	1,59199	N2	1.53	7,06903	1.91253	1,89201
1.04	7,05453	1,93874	1,82844	N3	1.54	7,05393	1,93854	1.82867
1.11	7,10495	1,88945	1.83534	N4	1.51	7,10512	1.88954	1,83575
1.12	7,05632	1,89255	1,84727	N1	1.62	7.05611	1.89237	1.84713
1.13	7,06926	1,91283	1,89181	N2	1.63	7.06914	1.91256	1,98179
1.14	7,05373	1,93845	1,82844	N3	1.64	7,05372	1.93832	1,82823
1.21	7,10544	1,89022	1,83587	N4	1.71	7.10534	1.88961	1.83536
1.22	7,05613	1,89236	1,84735	N1	1.72	7,05622	1.69267	1,64725
1.23	7,06885	1,91194	1.89173	N2	1.73	7,06945	1.91283	1.89225
1.24	7,05394	1,93845	1.82854	N3	1.74	7,05402	1,93866	1,82846
1.31	7,10513	1,88966	1,83548	N4	1.81	7,10535	1,88985	1,83567
1.32	7,05636	1,89264	1,84745	N1	1.82	7,05653	1,89303	1,84727
1.33	7,06932	1,91257	1,89203	N2	1.63	7,06915	1.91255	1.89211
1.34	7,05376	1,93846	1,82835	N3	1.84	7.05394	1.93854	1,02835
1.41	7,10495	1,88981	1,83546	N4	1.91	7,10523	1.88993	1,83565
1.42	7,05604	1,89233	1,84725	N1	1.92	7,05631	1.89277	1.84728
1.43	7,06916	1,91257	1,89196	N2	1.93	7,06924	1.91273	1,89225
1.44	7,05422	1,93886	1,82801	N3	1.94	7,05373	1.93841	1.82804

ļ

1		XN	YN		ZN
	 4	7,1052		1.88976	1,835628
	1	7.056207		1.89255	1.847275
	 2	7.069172		1,912565	1,900993
	 3	7.053952		1,938543	1.828353

а	7,053952
b	7.056207
c	1,938543
d	1,89255
e	1,828353
f	1,847275
9	7,069172
h	1,912566
ī	1,900993
k –	7,1052
L	1,86976
m —	1,635628

<u></u> 51=	1.431E-06
S2=	1.066E-06
\$3=	4,684E-07
\$4=	4,678E-07
S5=	9,332E-07
S6=	5.214E-07
	3.451E-07
58=	5,712E-07
50 =	0,0125224

P1

A	8	C	D	E		F
<u>0,000578</u>	-0.000297	0.000197	-0,00032	8,	7E-05	7,5E-05
-0,000222	0,000113	-9,3E-05	0	8,	7E-05	-5E-06
1.2E-05	-7,7E-05	-9,3E-05	-0,00019	0,0	00187	7,5E-05
-0,000192	0.000153	-8.3E-05	9E-05	-	3E-06	0.000175
0,000268	-0,000167	0 ,000317,	-0.00022	-0,0	00343	-2,5E-05
2,2E-05	-6,7E-05	-0,00032	0	0,0	00317	-0,000125
-0,000232	-9,7E-05	-0,000223	-0,00018	-0.0	00123	-0,000145
6,8E-05	1,3E-05	0,000117	0,00012	0,0	00107	-2,5E-05
-1,2E-05	0,000323	-3E-06	0,00048	-	3E-06	-5E-06
-0.000222	0,000103	-0,000133	0,00022	-0,0	00313	5E-06

Ģ	l	ĸ	L	P	R
4E-05	-5Ė-05	0,000192	-5,2E-05	-0.000116	-0.009003
-0,00025	-0,00031	-0,000288	8,8E-05	0,000264	-0,009183
0,00024	0,00046	0,000242	-0,000322	-0,000626	-0,009263
-7E-05	-0,0001	-0,000148	0,000148	4E-06	-0.008963
-0.00025	5E-05	-0,000168	-1,2E- <u>05</u>	4E-06	-0.009033
5E-05	6E-05	0,000252	-0,000142	-3,6E-05	-0,008983
-8E-05	-0,00022	0,000122	-3.2E-05	-6E-06	0,080797
0,00014	-0,00015	-0,000268	0,000278	0.000264	-0,072953
0,00015	9E-05	4,2E-05	-2.2E-05	<u>8.4E-0</u> 5	-0.006883
3E-05	0,00017	2,2E-05	6,8E-05	0,000164	-0,008743

٢	RPnx=	0,000169	RPn=	0,00024354	
	RPny=	0,000146	RPa C =	1,57055279	rac
	RPnz=	9,68E-05	RPa ISO =	0.01395387	grd
	RPox=	9,67E-05	RPo=	0,00019608	
	RPoy=	0,000137	RP6 C=	1,57060024	rad
	RPoz=	0,000102	RPb ISO=	0.01123471	grđ
	RPax=	8.31E-05	RPa=	0,01582613	
	RPay=	0,000107	RPc C=	1,55496954	rad
	RPaz=	0.015826	RPc ISO=	0,90680827	grd
1		0,010020	*1 = -		-

POZITIONARE ROBOT

N4

N1 N2

N3

PUNCTUL P2

3,3771E-09 2,2568E-08 1,961E-08 6,685E-09 5,411E-09 2,7363E-08 1,4628E-09 7,316E-09 3,207E-08 5,407E-09

	POZITIA INITIALA					
	Zc	Yc	Xc	Nr Crt.		
←	1,84095	1,89599	6,87605	0.21		
	1,85288	1,89959	6,82815	0.22		
	1,89742	1.91909	6,84043	0.23		
	1,03343	1.94521	6,82529	0.24		

Li	0.0003257	0.0001173	0,0004076	0 0001 65927	0.00064113
	0,000433	0.0002293	0.0003531	8.84816E-05	0.00019403
	LB=	0,000268	SL=	0,000	120774
SLJ:	1,9372-05	5,008E-05	4.668E-05	2.72139E-05	2,452E-05
	5,516E-05	1,275E-05	2,851E-05	5,96958E-05	2,4512E-05

<u> </u>	В	YB	ZB				
	6.827847	1,899280	6 1,852968				
	Арх	Ару	Apz	AP			
	-0,0003	-0,0003	3 8,8E-05	0.00	0438 143	+	Exactitatea de pozitionare
				RP			
				6.0¢	0629842	.	Repetabilitatea de pozitionare

Nr Crt.	X	Y	Z		Nr Crt.	X	Y	Z
2.01	6,87629	1,89609	1,84089	- N4	2.51	6,87638	1.89608	1.64069
2.02	6,82771	1,89922	1,85268	N1	2.52	6.82789	1.89919	1.85302
2.03	6,84038	1,91863	1,69763	N2	2.53	6 84018	1.91892	1,89711
2.04	6,82532	1,94502	1,83351	N3	2 54	6,62553	1 94503	1 83348
2.11	6,87651	1,89501	1,84068	N4	2.61	6,87601	1,89553	1,64056
: 2.12	6,82607	1,89952	1,85313	N1	2.52	6.62776	1.89907	1,85293
j 2 13	6,84033	1,91908	1,89712	N2	2.63	6.84028	1,91879	1.89741
2.14	6,82539	1,94517	1,83347	N3	2.64	6,82559	1.94526	1,83362
2.21	6,67613	1,89559	1.84058	N4	2.71	6,87638	1,89604	1,84071
2.22	6,82812	1,89958	1,85304	N1	2 72	6,82769	1.89918	1,85267
2.23	6,84038	1,91903	1,69742	N2	2 73	6,84038[1,91919	1 69759
2.24	6,82529	1,94512	1,83341	N3	2 7 4	6.62545	1 94513	1 83368
2.31	6,87649	1,89647	1,84105	N4	2 81	6,87632	1,89578	1.84087
2.32	6,82802	1,89933	1,05302	N1	2 82	6.82759	1,89917	1.85316
2.33	6.84043	1,91902	1,69742	N2	2.83	6,84013	1 91904	1.89688
2.34	6,82527	1,94513	1,83338	N3	2 64	6.82504	1,94487	1 63352
2,41	6,87643	1,89601	1,84089	N4	2.91	6,87627	1.89613	1.84078
2.42	6,82791	1,89932	1,85302	N1	2.92	5,827 6 9	1.89918	1,85301
2.43	6,84011	1,91867	1,89739	N2	2 93	6.84028	1 91911	1,89738
2 44	6,82542	1,94528	1,83339	N3	2 94	6,82548	1,94512	1,83329

EXACTITATEA DE ORIENTARE

P2

Mxn	-8,8E-05	APax=	-7.8E-06
Nĸn	0.000303		
MyN	9,5E-05	APny=	-4,2E-06
Νул	0,000304		
Mzn	-4.5E-05	APnz=	8,6E-07
Nzn	-8 <u>.8</u> E-05		

APn=	日前1日-06	
APa=	1.570731	rad
APa ISO≃	0,000	grd

Мка	0,000142	APax=	-3.2E-06
Nxa	0,000303		
Mya	0,000122	APay=	-3.6E-06
Nya	0.000304		
Mza	8,5E-05	APaz=	1,68E-06
Nza	-8.9E-06		

APa=	5,25E-06	}
APc=	1 570751	rad
AP¢ ISO=	0.000283	grd

Mxo	-0,00027	APox=	-1,1E-05
Nxo	0,000303		
Myo	1,7E-05	APoy=	5,7E-06
Nyo	0,000304		
Mzo	0,000178	APoz=	3,66E-06
Nzo	-5,2E-06		

APo=	1,33E u5	
<u>A</u> Pb≠	1 570783	rad
APb ISO=	0.000105	grd

a	6.825378
b	6,827847
C	1,945115
d	1,899286
e	1,833475
<u> </u>	1,852968
(•g	6,840288
h	1,918968
	1,897335
k	6,876321
L	1,895973
m –	1,840772

.

N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4

N2 N3 N4 N1 N2 N3

Nr Crt.	X	Y	Z	
2.01	6,87629	1,89609	1,84089	
2.02	6,82771	1,89922	1,85268	+
2.03	6,84038	1,91683	1.89763	
2.04	6,82532	1,94502	1,83351	
2.11	6,87651	1,89601	1,84068	
2.12	6,62807	1,89962	1,85313	
2.13	6,84033	1,91908	1.89712	
2.14	5,82539	1,94517	1,83347	
2.21	6,87613	1,89559	1,84058	
2.22	6,82812	1,89956	1,85304	
2.23	6,84036	1,91903	1,69742	
2.24	6, 8 2529	1,94512	1,83341	
2.31	6,87649	1,89647	1.84105	
2.32	6,82802	1,89933	1,85302	
2.33	6,84043	1,91902	1,69742	
2.34	6,82527	1,94513	1,83338	
2.41	6,87643	1,89601	1.84089	
2.42	6,82791	1,89932	1,85302	
2.43	6,84011	1,91867	1,89739	
2.44	6,82542	1,94528	1,83339	

1	Nr Crt	X	Y	7
				<u> </u>
	2.51	6,87638	1,89608	1,64069
-	2.52	6,82789	1,89919	1,65302
	2.53	6,84018	1,91892	1,89711
	2.54	6.82553	1,94503	1,83348
	2.61	6,87601	1.89553	1,84058
	2.62	6,82778	1,89907	1,85293
	2.63	6,84028	1,91879	1,89741
	2.64	6,82559	1,94528	1,83362
	2.71	6,87638	1,89604	1,84071
	2.72	6,82769	1,69918	1,85267
	2.73	6,84038	1,91919	1, 6975 9
	2.74	6,82545	1,94513	1,83368
	2.81	6,87632	1,89578	1,84087
	2.82	6.82759	1,89917	1.85316
	2.83	6, 84 013	1.91904	1,89688
	2.84	6,82504	1,94487	1.83352
	2.91	6.87627	1.89613	1.84078
	2.92	6,62769	1,89918	1,85301
	2.93	6,84028	1,91911	1,89738
	2.94	6,82548	1,94512	1.83329

P2

_+				
Ľ		XN	YN	ZN
	4	6,876321	1,895973	1,840772
	1	6,827847	1,899286	1,852968
	2	6,840288	1,918968	1,897335
	Э	6,825378	1,945115	1,833475

6,825378
6,827847
1,945115
1,899286
1,833475
1,852968
6,840288
1,918968
1,897335
6,876321
1,895973
1.640772

[<u>\$1</u> =	4,76E-07
S2=	3,7E-07
<u> </u>	5.53E-07
S4=	4,13E-07
S6=	9,83E-07
56=	4.62E-07
\$7=	2,97E-07
S8=	4.27E-07
S9=	0,004065

A	B	C	D	E	F
-5,8E-05	-0,00014	-9,5E-05	-6,6E-05	3,5E-05	-0.000286
1,2E-05	0,000223	5.5E-05	0,000334	-5E-06	0.000162
-8.8E-05	0,000273	5Ē-06	0,000294	-6,5E-05	7.2E-05
-0,00011	0,000173	1,5E-05	4,4E-05	-9.5E-05	5.2E-05
4,2E-05	6,3E-05	0,000165	3,4E-05	-8.5E-05	5,2E-05
0,000152	4,3E-05	-6,6E-05	-9,6E-05	5E-06	5,2E-05
0,000212	-6,7E-0\$	0,000165	-0,00022	0,000145	-3,8E-05
7,2E-05	-0,00016	1,5E-05	-0,00011	0,000205	-0,000298
-0,00034	-0,00026	-0,00024	-0,00012	4,5E-05	0,000192
0,000102	-0.00016	5Ē-06	-0.00011	-0.000185	4.2E-05

G	1	K	L	P	R
-3,1E-05	0,000117	0,000118	9,2E-05	-0.000138	0,000295
0,000189	3,7E-05	-9,2E-05	4,2E-05	0.000112	-0,000215
-0,00019	-0,00038	-0,00019	9,2E-05	6.2E-05	8.5E-05
0.000169	0,000497	0.000278	0,000142	5,2E-05	0,5E-05
0,000109	3,7E-05	0,000118	-0,00018	-0,000298	5,5E-05
5,9E-05	0,000107	+8,2E-05	-0,00011	-4,8E-05	-0,000225
-0,00031	-0,00044	-0,00019	-8E-06	-0,000178	7,5E-05
5,9E-05	6,7E-05	-6,2E-05	9.2E-05	0,000222	-0,064045
-1E-06	-0.00019	9,8E-05	-0,00016	7.2E-05	0.000455
-5,1E-05	0,000157	8E-06	-8E-06	0,000142	4,5E-05

RPnx=	9,76E-05	RPn÷	D.000167294	
RPny=	8,6E-05	RPa C =	1,570629033	rad
RPnz=	0.000105	RPa ISO =	0.009565257	grd
RPox=	9,09E-05	RPo=	0,000192764	
RPoy=	0,00014	RPb_C=	1,570603563	rad
RPoz=	9,61E-05	RPb ISO=	0.01104454	grd
RPax=	7,71E-05	RPa=	0.00901709	
RPay=	9,24E-05	RPc C≃	1,561779115	rad
RPaz=	0,009016	RPc ISO=	0,516648193	grd

				POZITIONARE	ROBOT		PUNCTUL P	2
P		ALA		1				
Nr Crt.	Xc	Yc	Ze	4	4,8209E-09	1,8112E-09	1.483E-08	1,901E-09
0.31	6,86959	1,90958	1,56187	< N4	2,1401E-08	3,5331E-12	1.652E-08	6,614E-09
0.32	6,82302	1,91249	1,57931	l N1	3,1129E-09	5,1368-09		
0.33	6,84018	1,91122	1,62628	N2			LS	8.42E-08
0 34	6,82569	1,96251	1,57978	N3				
tic	0.0001951	0.0003991	0.0003863	0.000308116	0.00032031	l		
	0,0001182	0,0002626	0.000136	0,000163186	0.00033616			
1	 LB≂	0.000265	SL=	9.67256E-05				
L	2,314E-05	4,486E-05	4,06E-05	1.45347E-05	1,85986-05			
	4,876E-05	6,2665-07	4,284E-05	2,71096E-05	2,39895-05			
	ХВ	YB	ŻВ	i				
	6,823056	1,912616	1, 5791 75	7				
	Арх	Ару	Apz	AP	1			
	3,6E-05	0,000126	-0,00013	0.000198141				
				RP		Exactitatea (ie pozitiona	ire
				0,000554691				
				[Repetabilitat	iea de pozit	ionare
Nr. Crt	- x - 1			1	Nr Crt	x	Y I	Z
3.01	6 85987	1 90957	1.56169	N4 .	3.51	6,87002	1,90958	1,56188
1 02	6 82309	1 91249	1.57903	M1 →	3 52	6.82268	1,91249	1 57913
3.03	6 84001	1.91103	1,62629	N2	3.53	6,83969	1,91033	1,62601
3.04	6 82558	1 96261	1,57987	• N3	3 54	6,82613	1,96258	1,58003
3 11	6 86959	1 90962	1.56193	N4	3 6 1	6,87009	1,90974	1,56219
1 3.12	6 82301	1.91251	1,57915	N1	3 62	6,82293	1,91239	1,57913
3.12	5.84018	1.91123	1,62637	N2	3.63	6,83954	1,91043	1,62618
3.13	6 82569	1.95247	1,57991	N3	3 64	6,83559	1,96237	1,57979
2 21	6 86958	1 90929	1.56193	N4	3 7 1	6,86987	1,90962	1,56192
3.21	6 92271	1 91248	1,57928	N1	3.72	6,82313	1,91273	1,57917
3.22	6 83941	1 91071	1,62627	N2	3.73	6,83958	1 91088	1,62629
3.23	6 82577	1,96258	1,57979	N3	374	6,82583	1,96274	1,57993
0.27	0,02011	1 90963	1,56193	N4	3.81	6,86957	1,90911	1,56158
(3,31		1,00000					4.04070	4 57045

N1

N2

N3

N4

N1

N2

N3

1,57928

1,62631

1,57983

1,56186

1,57912

1,62619

1,57991

1,91271

1,91103

1,96258

1,90963

1,91279

1,91087

1,96259

6,82333

6,84002

6,82569

6,86983

6,82304

6,63976

6,82569

6,82333

6,84002

6,82578

6,86978

6,82331

6,02987

6,62569

3.82

3,83

3 84

3.91

3 92

3.93

3 94

1,91278

1,91103

1,96272

1,90933

1,91279

1,91104

1,96235

1,57915

1,62633

1,57982

1,56166

1,57931

1 62654

1,57991

3.32

3.33

3.34

3.41

3.42

3.43

3.44

10

EXACTITATEA DE ORIENTARE

P	3

Mxn	-0,00105	APnx=	-2.04E-05
Nxn	-3,6E-05		
MyN	-4,9E-05	APny=	1,54E-06
Nyn	-0,00013		
Mzn	-9,9E-05	APnz=	-4,68E-06
Nzn	0,000135		

APo=	2,6955,15	
APa=	1.570TF+4	rad
APa ISO=	<u>6 0012970</u>	grđ

Мка	0,00137	APax=	2.812E-05
Nxa	-3 <u>,</u> 6E-05		
Муа	0,000362	APay=	9,76E-06
Nya	0,00013		
Mza	2E-06	APaz=	4,59E-07
Nza	-2,1E-05		

APa=	50778-06	
APc=	1.670,686	rad
APc ISO=	e de racie	grd

E-06
E-06
E-07

	APo≈	5 336E-06	
	APb=	1 5 <u>707</u> 91	rad
[APb ISO=	0.0003057	bng

_	
a	6.826744
b	6,823056
C	1,962559
d	1,912616
e	1,579879
·	1,579175
9	6,83881
_h	1,910056
	1,626278
k	6,869808
	1,909512
m	1,561879

N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3

Nr Crt.	X	Y	Z	
3.01	6,86987	1,90957	1,56189	
3.02	6,82309	1,91249	1,57903	
3.03	6,84001	1,91103	1,62629	
3.04	6,82558	1,96261	1,57987	
3.11	6,66959	1,90962	1,56193	
3.12	6,82301	1,91251	1,57915	
3.13	6,84018	1,91123	1,62637	
3.14	6,82569	1,96247	1,57991	
3.21	6,86958	1,90929	1,56193	
3.22	6,82271	1,91248	1,57928	
3.23	6,83941	1,91071	1,62627	
3.24	6,82577	1,96258	1,57979	
3.31	6,86988	1,90963	1,56193	
3.32	6,82333	1,91271	1,57928	
3.33	6,84002	1,91103	1,62631	
3.34	6,82569	1,9625 8	1,57983	
3.41	6,86983	1,90963	1,56188	
3.42	6,82304	1,91279	1,57912	
3.43	6,83978	1,91087	1,62619	
3.44	6,82569	1,96259	1,57991	

Nr Crt	X	Y	Z
3.51	6,87002	1,90958	1.56188
3.52	6,82268	1,91249	1,57913
3.53	6,63969	1,91033	1.62601
3.54	6,82613	1,96258	1,58003
3.61	6,87009	1,90974	1,56219
3.62	6,62293	1,91239	1,57913
3.63	6,83954	1,91043	1,62618
3.64	6,83559	1,96237	1,57979
3,71	6,86987	1,90962	1,56192
3.72	6,82313	1,91273	1,57917
3.73	6,83958	1,91066	1.62629
3.74	6,82583	1,96274	1,57993
3.81	6,86957	1,90911	1,56158
3.82	6,82333	1,91278	1,57915
3.83	6,84002	1,91103	1.62633
3.84	6,82578	1,96272	1,57982
3.91	6.86978	1,90933	1,56166
3.92	6,62331	1,91279	1.57931
3.93	6,62987	1.91104	1,62654
3.94	6,82569	1,96235	1,57991

,	XN	YN	ZN
4	6,869808	1,90951	2 1,561679
1	6,823056	1,91261	6 1,579175
2	6,83881	1,91085	8 1.626278
3	6,826744	1,96255	9 1,579879

a	6.826744
b	6,823056
с	1.962559
d	1,912616
e	1,579879
f	1.579175
G	6,83881
h	1,910858
 	1,626278
k	6,869808
L	1,909512
m	1,561879

S1=	9.046E-05
S2=	2,346E-07
S3=	1,458E-07
\$4=	9, 406E -07
S5=	7,816E-07
\$6=	3,704E-07
S7=	9,431E-05
S8=	5,608E-07
S9=	0.0021497

P3

Α	B	C	D	E	F
-0,001164	3,4E-05	5,1E-05	-0,00013	-9E-06	-0.00014
-0,001054	-4,6E-05	-8,9E-05	~0,00011	3,1E-05	-2,5E-05
-0,000974	-0,00035	2,1E-05	-0.00014	-6,9E-05	0.000105
-0,001054	0,000274	2,1E-05	9.4E-05	-4,9E-05	0,000105
-0,001054	-1,6E-05	3,1E-05	0,000174	3,1E-05	-5,5E-05
-0.000614	-0,00038	-0,00013	-0,00013	0,000151	-4,5E-05
0,008846	-0,00013	-0,00019	-0.00023	-8,9E-05	-4.5E-05
-0.000914	7,4E-05	0.000161	0,000114	5,1E-05	-5E-06
-0,000964	0.000274	0,000161	0,000164	-5.9E-05	-2,5E-05
-0.001054	0,000254	-0,00021	0,000174	3,1E-05	0,000135

G	_ . _	1	ĸ	L	P	R
Γ	6,2E-05	5,8E-05	1.1E-05	0,0012	0,000172	1,2E-05
Γ	-0,000218	0,000108	5,1E-05	0,00137	0,000372	9,2E-05
Γ	-0,000228	-0,00022	5,1E-05	0,0006	-0,000148	-8E-06
ŀ	7,2E-05	0,000118	5,1E-05	0,00121	0,000172	3,2E-05
Γ	2,2E-05	0,000118	1E-06	0,00097	1,2E-05	-8,8E-05
-	0,000212	6,8E-05	1E-06	0,00088	-0,000528	-0,00027
	0,000282	0,000228	0,000311	0,00073	-0,000428	-9,8E-05
	6,2E-05	0,000108	4,1E-05	0,00077	2 <u>.2E-05</u>	-0,04637
	-0.000238	-0,0004	-0,0003	0,00121	0,000172	5.2E-05
	-2,8E-05	-0,00018	-0,00022	-0,00894	0,000182	0,000262

0,001345	RPn=	0,00134789							
6,85E-05	RPa C_=	1.56944844	rađ						
5,4E-05	RPa ISO =	0.07722836	bng						
0,000137	RPo=	0,00020458							
0,000125	RPb C=	1,57059175	rad						
8,61E-05	RPh ISO=	0,01172155	grđ						
0,001373	RPa=	0.00670004							
0,000106	RPc C=	1,56409623	rađ						
0,006557	RPc ISO=	0.38388707	p.d						
	0,001345 6,85E-05 5,4E-05 0,000137 0,000125 8,61E-05 0,001373 0,000106 0,006557	0,001345 RPn= 6,85E-05 RPa C = 5,4E-05 RPa ISO = 0,000137 RPo= 0,000125 RPb C= 8,61E-05 RPh ISO= 0,0001373 RPa= 0,000106 RPc C= 0,006557 RPc ISO=	0.001345 RPn= 0.00134789 6.85E-05 RPa C = 1.56944844 5.4E-05 RPa ISO = 0.07722836 0.000137 RPo = 0.00020458 0.000125 RPb C = 1.57059175 8.61E-05 RPh ISO = 0.01172155 0.001373 RPa = 0.00670004 0.000106 RPc C = 1.56409623 0.006557 RPc ISO = 0.38388707						
				POZITIONA	RE RO	вот		PUNCTUL	4
-----------	--------------------	-------------	-----------	-------------	------------	--------	--------------	---------------------------------------	-----------
[POZITIA INI		<u> </u>						
Nr Crt.	Xc	Yc	Zc		2,15138-08	4,4856	E-11 5.535E-	08 5,472E-11	1,221E-08
0.41	7,09048	1,89058	1,56187	← N4	1,0097E-08	4,0433	E-08 7,149E-	09 1,545E-08	4.221E-08
0.42	7,04342	1,89386	1,57933	N1					
0 43	7,06059	1,89263	1,62625	N2				LS	2.08E-07
0.44	7,04657	1,94352	1,57983	NB					
Ŀŀ	0.0004829	0.0003429	0.0005799	0 00343642	0.0004	4673			
 ,	0,0004367	0,0001352	0,0002517	0,000211967	0,00013	3081			
ĺ	LB=	0,000336	SL=	0.000152204					
SLJ:	4,669E-05	2,233E-06	8,12E-05	2,46578E-06	3,68291	E-05			
	3,3 49E-0 5	6,703E-05	2.818E-05	4,1426E-05	6.848	E-05			
	ХВ	ΥB	Z8						
Í	7,043706	1,893835	1,579183						
-	Арх	Ару	Apz	AP					
	0,000286	-4,5E-05	-0,00015	0.000	3247	_			
				RP			Exactitatea	de poziliona	ire
				0,000792	2856				_
			Į				Repetabilita	atea de pozit	ionare
					F	Vr Crt		ĭ v -∵ 1	
	A 7 00017	1 80012	1 66197		. F	4 51	7 09076	1 89069	1 56233
4.01	7,09017	1,09013	1,50107	4 N4 .	→	4 52	7 04381	1 89415	1 57927
4.02	7,04341	1,09349	1,57,502	N2	ŀ	4 53	7.06111	1.69272	1 62631
4.03	7,00072	1.04357	1 57993	N3	F	4.54	7 04624	1,94363	1 57963
4,04	7,04013	1,01007	1 56187	N4	F	4.61	7.09065	1.89056	1,56181
4.11	7,09000	1,09125	1 57929	N1	F	4 62	7.04382	1,69388	1,57924
4,12	7,04379	1,09425	1 62618	N2	ł	4.63	7,06091	1,89263	1 62629
×4.13	7,00102	1 94357	1.57965	N3	F	4.64	7,04633	1.94351	1.57994
	7,04031	1,00062	1 56222	N4	h h	4.71	7,09085	1 09111	1,56192
4.21	7,09047	1 89334	1 57904	N1		4.72	7,04382	1,89402	1 57931
4.22	7,04344	1 89203	1.62631	N2		4.73	7,06059	1 89203	1,52513
4.23	7,00001	1 94375	1,58023	N3		4.74	7,04662	1,94401	1 58015
4.24	7,00023	1.89012	1 56187	N4		4.81	7 09071	1,89089	1,56192
4.31	7,09023	1 89353	1.57921	N1	L L	4.82	7,04403	1,89413	1,57927
4.92	7 08076	1 89232	1,62633	N2		4 83	7,06071	1,69251	1,62634
4.33	7,00070	1 94366	1,57977	N3	F	4 84	7.04665	1,94387	1,57975
4.34		1.89058	1,56224	N4	Г	4,91	7,09095	1,89113	1 56235
4.41	7,05003	1.69378	1,57903	N1	ſ	4 92	7,04382	1,89378	1 57915
		1 0 3 3 1 4						• • • • • • • • • • • • • • • • • • •	
4.42	7,04357	1.89273	1,62639	N2		4.93	7,06087	1,89257	1.62651

EXACTITATEA DE ORIENTARE

Mxn	0,000107	APnx=	7,86E-06
Nxn _	-0,00029		
MyN	-0,00025	APny=	-6E-06
Nyn	4,5E-05		
Mzn	-3,2E-05	APnz=	-3.6E-06
Nzn	0,000147		

APn=	1.05E-05	
APa=	1 570788	rad
APa ISO=	000601	grd
		-

P4

Мха	-0,00024	APax=	8,6E-07
Nxa	-0,00029	_	
Mya	0,000149	APay=	2.08E-06
Nya	4,5E-05		
Mza	-3,3E-05	APaz=	-4.5E-07
Nza	-1E-05	_	

APa=	2.3E-06	
APc=	1.570794	rad
APc ISO=	0.000132	grd

Мко	-0,00013	APox=	3,12E-06
NKO	-0,00029		
Myo	-0,00013	APoy=	-3,4E-06
Nyo	4,5E-05		
Mzo	-0,00017	APoz=	-3,4E-08
Nzo	-2,3E-06		-

APo=	5 <u>7</u> 3E-06	1
APb=	1.570791	rad
APb ISO=	0.000325	grđ

	7,046463
b	7,043706
C	1,943773
d	1,893835
	1,579882
f	1,579183
g	7,060833
h	1,892481
· – T	1,62 628 3
k	7,09061
	1,890706
m	1,562041

י י REPETABILITATEA DE ORIENTARE

N4 Nt N2 N3 N4 N1 N2 **N**3 N4 N1 N2 N3 N4 N1 N2 N3 N4 **N1** N2 N3

Punctul P4

Nr Crt	X	Y	Z	
4.01	7,09017	1,89013	1,56187	
4.02	7,04341	1,89349	1,57902	
4.03	7,06072	1,89258	1.62604	
4.04	7,04613	1,94357	1,57993	
4.11	7,09066	1,89123	1,56187	
4.12	7.04379	1,89425	1,57929	
4.13	7,06102	1,89269	1,62618	
4.14	7,04631	1,94357	1,57965	
4.21	7,09047	1,69062	1,56222	
4.22	7,04344	1,89334	1,57904	
4.23	7,06061	1,89203	1,62631	
4.24	7,04661	1,94375	1,58023	
4.31	7,09023	1,89012	1,56187	
4.32	7,04355	1,89353	1,57921	
4.33	7,06076	1,89232	1,62633	
4.34	7,04652	1,94366	1,57977	
4.41	7,09063	1,89058	1,56224	
4.42	7,04357	1,89378	1,57903	
4.43	7,06103	1,89273	1,62639	
4.44	7,04671	1,94425	1,57994	

Nr Crt.	X	Ŷ	Z
4.51	7,09078	1.89069	1.56233
4.52	7.04381	1.89415	1.57927
4.53	7.06111	1,89272	1.62631
4.54	7.04624	1,94363	1.57963
4.61	7.09065	1.89056	1.56181
4.62	7.04382	1.89388	1.57924
4.63	7,06091	1.89263	1.62629
4.64	7,04633	1.94351	1,57994
4.71	7.09085	1.89111	1,56192
4.72	7,04382	1,89402	1,57931
4.73	7,06059	1.89203	1,62613
4.74	7,04662	1.94401	1.58015
4.81	7,09071	1,89089	1.56192
4.82	7.04403	1,89413	1.57927
4.83	7,06071	1,89251	1,62634
4.84	7,04665	1,94387	1.57975
4.91	7,09095	1,89113	1.56236
4.92	7,04382	1,89378	1,57915
4,93	7,06087	1,89257	1.62651
4.94	7,04651	1,94391	1.57963

1

<u> </u>	XN	YN	ZN
4	7,09061	1,890706	1,562041
<u> </u>	7.043706	1,893835	1,579183
2	7.060833	1,892481	1,626283
	7,046463	1,943773	1,579862

[a	7,046463
Ь	7,043706
c	1,943773
d	1,893835
ie –	1,579862
f	1,579183
	7,060833
h	1,892481
)	1,626283
k	7,09061
L	1,890706
m	1,562041

S1=	6.132E-07
\$2=	1,554E-06
S3=	6,911E-07
S4=	2.392E-07
S5=	7.523E-07
S6=	6,966E-07
S7=	5.282E-07
S6=	8.672E-07
S9=	0.0021686

A	8	Ç		E	F
-0,0003	-0,0003	-0.0002	-0,00034	6,8E-05	-0,000163
0,0002	8,4E-05	-0,0002	0,000415	-0.000212	0,000107
0,00015	-0,00027	-2,3E-05	-0,00049	0.000366	-0,000143
5,7E-05	-0,00016	-0,00011	-0.0003	-9.2E-05	2,7E-05
0,00025	-0,00014	0,000477	-\$,5E-05	7.8E-05	-0,000153
-0,0002	0,000104	-0,00034	0,000315	-0.000232	8.7E-05
0,0001	0,000114	-0,00026	4.5E-05	7,8E-05	5,7E-05
0,00016	0 ,000114	0,000237	0,000185	0,000288	0,000127
0,00019	0,000324	9,7E-05	0,000295	-0.000112	8,7E-05
4.7E-05	0,000114	0,000137	-5,5E-05	-0.000232	-3,3E-05

G	l	ĸ	L	P	R
-0,0004	-0,00058	-0.00017	-0,00011	9.9E-05	0.000243
5E-05	0,000524	-0,00017	0,000167	0.000209	-0,000103
-0,0001	-8,6E-05	0,000179	-0,00022	-0,000451	2,7E-05
-0.0004	-0,00059	-0,00017	-7,3E-05	-0,000161	4.7E-05
2E-05	-0,00013	0,000199	0,000197	0,000249	0,000107
0,00017	-1,6E-05	0.000289	0,000277	0,000239	2,7E-05
4E-05	-0,00015	-0,00023	7,7E-05	0,000149	7E-06
0,00024	0,000404	-0,00012	-0.00024	-0.000451	-0.046653
1E-04	0,000184	-0,00012	-0,00012	2,9E-05	5,7E-05
0,00034	0,000424	0,000319	3.7E-05	8,9E-05	0,000227

				-
RPnx=	0,000111	RPn=	0,00023909	l
RPny=	0,000176	RPa C =	1,57055723	rad
RPnz=	0,000118	RPa (SO =	0.01369907	grd
RPox=	6,92E-05	RPo-	0,00018374	ĺ
RPoy=	0,000123	RPb C=	1,57061258	luad
RPoz=	0,000118	RPh ISO=	0.01052775	grd
RPax=	0.000103	RPa=	0,00661814	ļ
RPav=	0,000132	RPc C=	1.56417814	rad
RPaz=	0,006616	RPc ISO=	0,379194)grd

ļ

				POZITIONARE F	ROBOT	L	PUNCTUL P	5
		TIALA						
Nr Crt.	Xe	Ye	Zc		1.0713E-09	1,4436E-08	7,229E-09	1,67E-08
0.51	6,97687	1,90002	1,68285	+ N4	7,0087E-10	3,7526E-09	7,202E-09	6.09E-09
0.52	6,92981	1,90361	1,70036	N1	4,1788E-08	2,3433E-08		
0.53	6,94713	1,90189	1,74745	N2		ព	Ls	5.72E-08
0.54	6,93282	1,95337	1,70111	N3		-		
LE	0,0002422	0.0003951	0,00036	0,000145708	0,00047936			
L L	<u>0,0002465</u>	0,0002137	0.0001907	7 071065-05	0,00012100			
EL P	1.0915-05	40055-05	2 834E-05	430782E-05	6 814F-05			
JLJ.	8.825E-06	2.042E-05	2,829€-05	2,60139E-06	5,1026E-05			
				-				
	XΘ	YB	28					
ſ	6,92997	1,90341	1,700252					
_	Арх	Ару	Apz	AP				
	8,00016	-0,0002	-0,00011	0,000276153	-			
				RP		Exactitatea d	le poziliona	re
				0,000514075				
						Repétabilital	ea de pozili	onare
			•					
	- .		_ _		Nr Crt.	- x		
Nr Crt.	X	Y	2		Nr Crt. 5.51	6.97691	Y 1.90051	Z 1,68311
Nr Crt.	X 6,97628	Y 1,90002	2 1,68258	→ N4 →	Nr Crt. 5.51 5.52	X 6.97691 6.93032	Y 1,90051 1,90358	Z 1.68311 1 70032
Nr Crt. 5.01 5.02	X 6,97626 6,93012 5,94735	Y 1,90002 1,90351 1,90229	Z 1,66258 1,70009 1,74733	← N4 ← • • • • • • • • • • • • • • • • • •	Nr Crt. 5.51 5.52 5.53	X 6.97691 6.93032 6.94725	Y 1.90051 1.90358 1.90215	Z 1.68311 1 70032 1,74745
Nr Crt. 5.01 5.02 5.03	X 6,97628 6,93012 6,94735 6,93281	Y 1,90002 1,90351 1,90229 1,95347	Z 1,68258 1,70009 1,74733 1,70135	← N4 ← • • • • • • • • • • • • • • • • • •	Nr Crt. 5.51 5.52 5.53 5.54	X 6.97691 6.93032 6.94725 6.93655	Y 1,90051 1,90358 1,90215 1,95347	Z 1.68311 1 70032 1.74745 1.70092
Nr Crt. 5.01 5.02 5.03 5.04	X 6,97626 6,93012 6,94735 6,93281 6,93281	Y 1,90002 1,90351 1,90229 1,95347 1,90015	Z 1,68258 1,70009 1,74733 1,70135 1,68272	← N4• N1• N2 N3 N4	Nr Crt. 5.51 5.52 5.53 \$.54 5.61	X 6.97691 6.93032 6.94725 6.93655 6.97678	Y 1,90051 1,90358 1,90215 1,95347 1,90026	Z 1.68311 1 70032 1.74745 1.70092 1.69313
Nr Crt. 5.01 5.02 5.03 5.04 1 5.11	X 6,97626 6,93012 6,94735 6,93281 6,97691 6,97691	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023	→ N4 → N1 → N2 N3 N4 N1	Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004	Y 1,90051 1,90358 1,90215 1,95347 1,90026 1,90321	Z 1.68311 1 70032 1.74745 1.70092 1.68313 1.70028
Nr Crt. 5.01 5.02 5.03 5.04 2 5.11 5.12 5.13	X 6.97626 6.93012 6.94735 6.93281 6.97691 6.92979 6.94711	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765	← N4 N1 N2 N3 N4 N1 N2	Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721	Y 1,90051 1,90358 1,90215 1,95347 1,90026 1,90321 1,90182	Z 1.6B311 1.70032 1.74745 1.70092 1.6B313 1.70028 1.74758
Nr Crt. 5.01 5.02 5.03 5.04 - 5.11 5.12 5.13 5.14	X 6,97626 6,93012 6,94735 6,93281 6,97691 6,92979 6,94711 6,93277	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118	→ N4 → N1 → N2 N3 N4 N1 N2 N1 N2 N1 N2 N3	Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366	Y 1,90051 1,90358 1,90215 1,95347 1,90026 1,90321 1,90182 1,95367	Z 1.68311 1.70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70089
Nr Crt. 5.01 5.02 5.03 5.04 1 5.11 5.12 5.13 5.14 5.21	X 6,97626 6,93012 6,94735 6,93281 6,97691 6,92979 6,94711 6,93277 6,97594	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347 1,90022	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118 1,68295	N4	Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.64 5.71	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 6.97651	Y 1,90051 1,90358 1,90215 1,95347 1,90026 1,90321 1,90182 1,95367 1,89979	Z 1.68311 1 70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70089 1.68258
Nr Crt. 5.01 5.02 5.03 5.04 1 5.11 5.12 5.13 5.14 5.21 5.22	X 6.97626 6.93012 6.94735 6.93281 6.97691 6.92979 6.94711 6.93277 6.97594 6.92975	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347 1,90022 1,903659	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118 1,68295 1,70039	→ N4 → N1 N2 N3 N4 N1 N2 N3 N4 N3 N4 N4 N1	Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.71 5.72	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 6.97651 6.92991	Y 1.90051 1.90358 1.90215 1.95347 1.90026 1.90321 1.90182 1.95367 1.89979 1.90333	Z 1.6B311 1.70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70069 1.68258 1.70009
Nr Crt. 5.01 5.02 5.03 5.04 5.11 5.12 5.13 5.14 5.21 5.22 5.23	X 6,97626 6,93012 6,94735 6,93281 6,97691 6,92979 6,94711 6,93277 6,97594 6,92975 6,94725	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347 1,90022 1,903659 1,90244	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118 1,68295 1,70039 1,74741		Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.71 5.72 5.73	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 6.97651 6.92991 6.94735	Y 1.90051 1.90358 1.90215 1.95347 1.90026 1.90321 1.90182 1.95367 1.89979 1.90333 1.90262	Z 1.68311 1.70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70089 1.68258 1.70089 1.68258 1.70009 1.74762
Nr Crt. 5.01 5.02 5.03 5.04 5.11 5.12 5.13 5.14 5.21 5.22 5.23 6.24	X 6,97626 6,93012 6,94735 6,93281 6,97691 6,92979 6,94711 6,93277 6,97594 6,97594 6,92975 6,94725 6,93278	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347 1,90022 1,903659 1,90244 1,95356	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118 1,68295 1,70039 1,74741 1,70111	N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N4 N1 N2 N3	Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.64 5.71 5.72 5.73 5.73	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 6.97651 6.92991 6.94735 6.93282	Y 1.90051 1.90358 1.90215 1.95347 1.90026 1.90321 1.90182 1.95367 1.89979 1.90333 1.90262 1.95364	Z 1.68311 1.70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70089 1.68258 1.70089 1.68258 1.70089 1.74762 1.70089
Nr Crt. 5.01 5.02 5.03 5.04 5.11 5.12 5.13 5.14 5.21 5.22 5.23 6.24 5.31	X 6.97626 6.93012 6.94735 6.93281 6.97691 6.92979 6.94711 6.93277 6.97594 6.92975 6.94725 6.94725 6.93278 6.93278 6.97664	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347 1,90022 1,903659 1,90244 1,95356 1,90005	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118 1,68295 1,70039 1,74741 1,70111 1,68264		Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.71 5.72 5.73 5.74 5.81	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 6.97651 6.92991 6.94735 6.93282 6.97674	Y 1.90051 1.90358 1.90215 1.95347 1.90026 1.90321 1.90182 1.95367 1.89979 1.90333 1.90262 1.95364 1.89994	Z 1.68311 1.70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70069 1.68258 1.70069 1.68258 1.70069 1.68258 1.70089 1.68287 1.60287
Nr Crt. 5.01 5.02 5.03 5.04 5.11 5.12 5.14 5.14 5.21 5.22 5.23 5.23 5.24 5.31 5.32	X 6,97626 6,93012 6,94735 6,93281 6,97691 6,92979 6,94711 6,93277 6,97594 6,92975 6,94725 6,94725 6,93278 6,97664 6,93001	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347 1,90022 1,903659 1,90244 1,95356 1,90005 1,90355	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118 1,68295 1,70039 1,74741 1,70111 1,68264 1,70025		Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.71 5.72 5.73 5.74 5.81 5.82	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 6.97651 6.92991 8.94735 6.93282 6.97674 6.92958	Y 1.90051 1.90358 1.90215 1.95347 1.90026 1.90321 1.90182 1.90182 1.95367 1.89979 1.90333 1.90262 1.95364 1.99364 1.99325	Z 1.68311 1.70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70089 1.68258 1.70089 1.68258 1.70089 1.68287 1.70089 1.68287 1.70048 1.70048
Nr Cn. 5.01 5.02 5.03 5.04 5.11 5.12 5.13 5.14 5.21 5.22 5.23 6.24 5.31 5.31 5.32 5.33	X 6,97626 6,93012 6,94735 6,93281 6,97691 6,92979 6,94711 6,93277 6,97594 6,97594 6,97594 6,94725 6,94725 6,93278 6,97664 6,93001 6,94728	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347 1,90022 1,903659 1,90355 1,9005 1,90355 1,90191	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118 1,68295 1,70039 1,74741 1,70111 1,68264 1,70025 1,74723		Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.63 5.64 5.71 5.72 5.73 5.73 5.74 5.81 5.82 5.83	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 6.97651 6.94735 6.92991 6.94735 6.93282 6.97674 6.92958 6.94703	Y 1,90051 1,90358 1,90215 1,95347 1,90026 1,90321 1,90182 1,90182 1,90385 1,90262 1,95364 1,90262 1,95364 1,90325 1,90235 1,90235	Z 1.68311 1.70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70089 1.68258 1.70089 1.68258 1.70089 1.68287 1.70089 1.66287 1.70048 1.74768 1.74768
Nr Crt. 5.01 5.02 5.03 5.04 1 5.11 5.12 5.13 5.14 5.21 5.22 5.23 6.24 5.31 5.32 5.33 5.34	X 6,97626 6,93012 6,94735 6,93281 6,97691 6,92979 6,94711 6,93277 6,97594 6,92975 6,94725 6,94725 6,93278 6,97664 6,93001 6,94728 6,93264	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347 1,90022 1,903659 1,90355 1,90355 1,90355 1,90191 1,95344	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118 1,68295 1,70039 1,74741 1,70111 1,68264 1,70025 1,74723 1,70121	N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3 N4 N1 N2 N3	Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.71 5.72 5.73 5.74 5.81 5.81 5.82 5.83 5.84	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 6.97651 6.92991 6.94735 6.93282 6.97674 6.92958 6.94703 6.93252	Y 1.90051 1.90358 1.90215 1.95347 1.90026 1.90321 1.90182 1.95367 1.89979 1.90333 1.90262 1.95364 1.89974 1.90325 1.90325 1.90325 1.90335 1.95301	Z 1.68311 1.70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70069 1.68258 1.70069 1.68258 1.70069 1.68258 1.70089 1.68287 1.70048 1.70048 1.74768 1.70109 1.60287
Nr Crt. 5.01 5.02 5.03 5.04 5.11 5.12 5.13 5.14 5.14 5.21 5.22 5.23 6.24 5.31 5.32 5.33 5.34 5.34	X 6.97626 6.93012 6.94735 6.93281 6.97691 6.92979 6.94711 6.93277 6.97594 6.92975 6.94725 6.94725 6.94725 6.93278 6.93001 6.94728 6.93001 6.94728 6.93264 6.93264 6.937701	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90324 1,90201 1,95347 1,90022 1,90355 1,90191 1,95344 1,90035	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70138 1,68295 1,70039 1,74741 1,70111 1,68264 1,70025 1,74723 1,70121 1,68285		Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.63 5.64 5.71 5.72 5.73 5.74 5.81 5.82 5.83 5.84 5.84 5.91	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 8.97651 6.92991 8.94735 6.92991 8.94735 6.93282 6.97674 6.92958 6.94703 6.93252 6.97688	Y 1.90051 1.90358 1.90215 1.95347 1.90026 1.90321 1.90182 1.90182 1.95367 1.89979 1.90333 1.90262 1.95364 1.89994 1.90325 1.90235 1.90235 1.90042 1.90042	Z 1.68311 1 70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70089 1.68258 1.70089 1.68258 1.70089 1.68287 1.70048 1.74768 1.70048 1.74768 1.70109 1.68293 1.7025
Nr Crt. 5.01 5.02 5.03 5.04 1 5.11 6.12 5.14 5.14 5.21 5.22 5.23 6.24 5.31 5.32 5.33 5.34 5.41 5.42	X 6,97626 6,93012 6,94735 6,93281 6,97691 6,92979 6,94711 6,93277 6,97594 6,97594 6,97595 6,94725 6,94725 6,93278 6,97664 6,93001 6,94728 6,93264 6,93264 6,93025	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347 1,90022 1,903659 1,903659 1,90355 1,9005 1,90355 1,90035 1,90344 1,90342	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118 1,68295 1,7039 1,74741 1,70111 1,68264 1,70025 1,74723 1,70121 1,68285 1,700037		Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.71 5.72 5.73 5.74 5.81 5.82 5.83 5.84 5.84 5.91 5.92	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 6.97651 6.92991 6.94735 6.93282 6.97674 6.92958 6.94703 6.93252 6.97688 6.92993 6.92993	Y 1.90051 1.90358 1.90215 1.95347 1.90026 1.90321 1.90182 1.90182 1.90385 1.90262 1.90333 1.90262 1.90335 1.90235 1.90235 1.90235 1.90235 1.90335 1.90335 1.90335	Z 1.68311 1 70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70089 1.68258 1.70089 1.68258 1.70089 1.68287 1.70089 1.68287 1.70048 1.74768 1.74768 1.70109 1.68293 1.70035 1.74763
Nr Crt. 5.01 5.02 5.03 5.04 5.11 5.12 5.13 5.14 5.14 5.22 5.23 6.24 5.31 5.32 5.33 5.34 5.34 5.41 5.42 5.43	X 6,97626 6,93012 6,94735 6,93291 6,97691 6,92979 6,94711 6,93277 6,97594 6,92975 6,94725 6,94725 6,94725 6,93278 6,97664 6,93001 6,94728 6,93264 6,97701 6,93025 6,94702	Y 1,90002 1,90351 1,90229 1,95347 1,90015 1,90324 1,90201 1,95347 1,90022 1,903659 1,90244 1,90355 1,9005 1,90355 1,9005 1,90355 1,90035 1,90342 1,90211	Z 1,68258 1,70009 1,74733 1,70135 1,68272 1,70023 1,74765 1,70118 1,68295 1,70039 1,74741 1,70025 1,74723 1,70025 1,70025 1,70025 1,700037 1,74751	N4 N1 N2 N3 N4 N1 N2	Nr Crt. 5.51 5.52 5.53 5.54 5.61 5.62 5.63 5.64 5.73 5.74 5.73 5.74 5.81 5.82 5.83 5.84 5.83 5.84 5.91 5.92 5.93	X 6.97691 6.93032 6.94725 6.93655 6.97678 6.93004 6.94721 6.95366 6.97651 6.95366 6.97651 6.94735 6.94735 6.93282 6.97674 6.92958 6.94703 6.93252 6.97688 6.92993 6.94741	Y 1.90051 1.90358 1.90215 1.95347 1.90026 1.90321 1.90182 1.95367 1.89979 1.90333 1.90262 1.95364 1.89994 1.90325 1.90235 1.90535 1.90535 1.90535 1.90535 1.90535 1.90535 1.90535 1.90535 1.90535 1.90535 1.90535 1.90535 1.90535 1.905555 1.905555 1.905555 1.905555555 1.90555555555555555555555555555555555555	Z 1.68311 1.70032 1.74745 1.70092 1.68313 1.70028 1.74758 1.70089 1.68258 1.70089 1.68258 1.70089 1.68287 1.70089 1.66287 1.70048 1.74768 1.70109 1.68293 1.70035 1.74763 1.70035 1.74763 1.70092

EXACTITATEA DE ORIENTARE

Mxn	-0,0024	APnx=	-4,5E-05
Nxn	- <u>0,0</u> 0016		
MyN	-0,00014	APny=	-6,8E-06
Nyn	0,0002		
Mzn	3,9E-05	APnz=	-1,4E-06
Nzn	0,000108		

APn≈	4.54E-05	
APa C=	1.570751	rad
APa ISO=	0,002602	grð

P5

Mxa	-9,6E-05	APax=	1.28E-06
Nxa	-0,00016		
Mya	-0,00032	APay=	1E-05
Nya	0,0002		
Mza	-5,9E-05	APaz=	-2,7E-07
Nza	-4,5E-05		

APa=	1.05E-05
APc C=	1.570786 rad
APc ISO=	brg 8000,0

Мло	0,00011	ΑΡοτ=	5,4E-06
Nxo	-0,00016		
Муо	-0,00015	APoy≠	-7E-06
Nyo	0,0002		
Mzo	-6E-06	APoz=	8,93E-08
Nzo	-1E-05		

I	APo=	8 86E-06	
	APb C≖	1. <u>57</u> 0787	rad
	APb ISO=	0,000508	grđ

a	6,935224
b	6,92997
C	1,953509
d	1,9034099
	1,701071
f	1,7002517
. 9	6,947226
<u> </u>	1,902209
	1,747509
k	6,97676
<u>ا</u>	1,900171
m 	1,682856

REPETABILITATEA DE ORIENTARE

P5

Nr Crt.	_X	Y	Z	
5.01	6,97628	1,90002	1,68258	← N4 _ →
5.02	6,93012	1,90351	1,70009	N1
5.03	6,94735	1,90229	1,74733	N2
5.04	6,93281	1,95347	1,70135	N3
5.11	6,97691	1,90015	1,68272	N4
5.12	6,92979	1,90324	1,70023	N1
5.13	6,94711	1,90201	1,74765	N2
5.14	6,93277	1,95347	1,70118	N3
5.21	6,97694	1,90022	1,68295	N4
5.22	6,92975	1,903659	1,70039	N1
5.23	6,94725	1,90244	1,74741	N2
5.24	6,93278	1,95356	1,70111	N3
5.31	6,97664	1,90005	1,68264	N4
5.32	6,93001	1,90355	1,70025	N1
5.33	6,94728	1,90191	1,74723	N2
5.34	6,93264	1,95344	1,70121	N3
5.41	6,97701	1.90035	1,68285	N4
5.42	6,93025	1,90342	1,700037	N1
5.43	6,94702	1,90211	1,74751	N2
5.44	6,93266	1,95358	1,70115	N3

Nr Crt.	X	Y	Z
5.51	6,97691	1,90051	1,68311
5.52	6,93032	1.90358	1.70032
5.53	6,94725	1.90215	1,74745
5.54	6.93655	1,95347	1,70092
5.61	6,97678	1,90026	1,60313
5.62	6,93004	1.90321	1,70828
5.63	6,94721	1,90182	1,74758
5.64	6,95366	1,95367	1.70089
5.71	6,97651	1,89979	1.6825B
5.72	6,92991	1,90333	1,70009
5.73	6,94735	1,90262	1,74762
5.74	6,93282	1.95364	1,70089
5.81	6,97674	1,89994	1,68287
5.82	6,92958	1,90325	1,70048
5.83	6,94703	1 <u>.9</u> 0235	1,74768
5.64	6,93252	1,95301	1,70109
5.91	6,97688	1.90042	1.68293
5.92	6,92993	1.90335	1.70035
5.93	6,94741	1.90239	1,74763
5.94	6,93303	1,95378	1,70092

	XN	YN	ZN
4	6.97676	1,900171	1,682856
1	6,92997	1,90341	1,700252
2	6.947226	1,902209	1,747509
3	6,935224	1,953509	1,701071

8	6,935224
b	6,92997
c	1,953509
d	1.90341
e	1,701071
f	1,700252
g	6,947226
h	1,902209
	1,747509
K	6,97676
L	1,900171
m –	1,682856

S1=	0.000385
S2=	5,27E-07
<u>53</u> ≠	5.25E-07
S4=	9,33E-07
S5=	5.25E-07
56 ≠	2,26E-07
S7=	5.36E-07
S8=	6.84E-07
59=	0,002156

Α	8	<u> </u>	D	E	F
-0.0024	0,00015	-3,9E-05	0,0001	0,000279	-0.0001617
-0,0025	-0,00018	-3,9E-05	-0,00017	0,000109	-2,17E-05
-0,0024	-0,00022	5,1E-05	0,000249	3,9E-05	0.0001383
-0,0026	4E-05	-6,9E-05	0,00014	0,000139	-1,7E-06
-0,0026	0,00028	7,1E-05	1,01E-05	7,9E-05	-0,0002147
0,0013	0,00035	0,0001	0,00017	-0,000151	6.83E-05
0,0184	7E-05	0,000161	-0.0002	-0.000181	2,83E-05
-0,0024	-6E-05	0,000131	-6E-05	-0,000181	-0.0001617
-0,0027	-0,00039	-0,0005	-0,00016	1.9E-05	0,0002283
0,0022	-4E-05	0,000271	-6E-05	-0.000151	9.83E-05

G		<u>k</u>	L	P	R
-0,0005	-0,00015	-0,00028	0,000124	8,1E-05	-0,000179
0,0001	-2,1E-05	-0,00014	-0,00012	-0.000199	0,000141
0,0002	4,9E-05	9,4E-05	2,4E-05	0,000231	-9,9E-05
-0,0001	-0,00012	-1,6E-05	5,4E-05	-0,000299	-0,000279
0,0002	0.000179	-6E-06	-0,00021	-9,9E-05	1E-06
0.0001	0,000339	0,000254	2,4E-05	-5,9E-05	-5,9E-05
2E-05	8,9E-05	0,000274	-1,6E-05	-0,000389	7.1E-05
-0,0003	-0,00038	-0,00026	0,000124	0,000411	-0.046589
-2E-05	-0,00023	1,4E-05	-0,0002	0,000141	0.000171
0,0001	0,000249	7,4E-05	0,000184	0.000181	0,000121

Γ	RPnx=	0.002776	RPn= 0.00278018	
I	RPny=	0,000103	RPa C = 1,56601615	rad
I	RPnz=	0.000103	RPa ISO = 0,15929256	grd
ľ	RPox=	0,000137	RPa= 0.00018356	
ļ	RPov=	0,000102	RPb C= 1,57061276	rad
١	RPoz=	6,73E-05	RPb ISO= 0,0105174	grd
ľ	RPax=	0,000104	RPa= 0,00656802	
I	RPav=	0,000117	RPc C= 1,56422826	rad
ł	RPaz=	0,006566	RPc ISO= 0,37632238	grđ
		-		

Exactitatea de pozitionare a distantei - robot

POZITIA COMANDATA					
Nr Crt	Xc	Ye	Zc		
0.12	7.05593	1.89223	1.84735	P1	
0.32	6.02302	1.91249	1,57931	P3	

P1						
Nr Crt.	X	Y	Z			
1.52	7.05614	1.09255	1.84715	N1		
1.62	7.05611	1.89237	1.84713	N1		
1.72	7.05622	1.69267	1.84725	N1		
1.82	7.05653	1.89303	1.84727	N1		
1.92	7.05631	1.89277	1.64728	N1		
1.02	7.05591	1.89223	1.84735	N1		
1.12	7.05632	1.89255	1.84727	N1		
1.22	7.05613	1.89236	1.84735	N1		
1.32	7.05636	1.69264	1.84745	N1		
1.42	7.05604	1.89233	1.64725	N1		

	P3						
Nr Crt.	X	Y	2				
3.02	6 82309	1.91249	1 57903				
3.12	6.82301	1.91251	1.57915				
3.22	6.82271	1 91248	1.57928				
3.32	6.82333	1.91271	1.57928				
3 42	6.82304	1.91279	1.57912				
3.52	5.82268	1.91249	1.57913				
3.62	6.82293	1.91239	1.57913				
3.72	5.82313	1.91273	1.57917				
3.82	6.82333	1.91278	1 57915				
3.92	6.82331	1.91279	1,57931				

Dax	Dcy	Doz _	DBx	DBy	DBz
0.23291	0.02026	0.26804	0.233178	0.020046	0.268066
Dc =	0.355673		DB =	0.355856	

AD= -0.00018

Variatia exactitatii de pozitionare multidirectionala - robe	ot
--	----

	POZITIA COMANDATA				
Nr	XN1c ZN1c				
Crt.			YN1c		
	1	7.0494	1.8284	2.11058	

		Poz 1			Poz 2			Poz3	
Nr Crt.	X	Y	Z	X	¥	Z	X	Ϋ́	Z
	7.04939	1.82838	2.11029	7.04915	1.82621	2 11111	7.04968	1.82915	2.11055
2	2 7.04945	1.82859	2.11002	7.04961	1.82832	2.11048	7.04965	1.02872	2 11038
1	3 7.04942	1,82847	2.11021	7.04925	1.82805	2 11032	7 04928	1 82835	2.11025
4	7.04931	1.82853	2.11015	7.04915	1.82779	2.11048	7 04939	1.82842	2.11062
	7.04928	1.82831	2.11049	7.04912	1.82835	2.11055	7.04958	1.82841	2.11041
6	5 7.04935	1.82825	2.11019	7.04925	1.82868	2.11024	7.04991	1.82905	2.11059
7	7.04926	1.82857	2.11035	7.04931	1.82848	2.11079	7.04948	1.82858	2.11076
	7.04948	1.82865	2.11048	7,04935	1.82865	2.11071	7.04915	1.82855	2 11045
9	7.04924	1.82844	2.11045	7.04952	1.82871	2.11052	7.04955	1 82872	2.11062
10	7 04943	1.82829	2.11015	7.04935	1.82849	2.11055	7.04958	1.82861	2.11075

	1	2	3
ХЬ	7.04936	7.04931	7.0495
Yb	1.82845	1.82837	1.8287
Zb	2.11028	2.11058	2.1105

VAP = 0.0004

Di	D2	D3 I
0.0003	0.00037	0.00036
0.0000	0.0000	

ANEXA 4

i

POZITIONARE CELULA

	POZITIA IN							
Nr Crt.	Xc	Yc	Zc		2.3124E-07	2.4409E-08	3,143E-07	4.644E-07
0.1	5,49868	1,76731	1,00866	₊ Ν4	3,5761E-06	4,1131E-09	1,34E-10	4,975E-07
0.2	5,45242	1,76302	1,10803	Nt	1,9 53 5E-10	3,1856E-08		
0.3	5,44861	1,81309	1,11031	N2			<u>15</u>	5.11E-06
04	5,44069	1,76362	1,06187	N3				
Li:	0,0014429	0,0008058	0,0004014	0,000280632	0,0009479			
	0.002853	0,0008979	0,0009504	0,000256528	0,0007835			
	LB≃	0,000962		0,000753673				
SLJ:	0,0001803	5,208E-05	0,0001869	0,000227151	4,6945£-06			
	0,0006304	2,138E-05	3,8592-06	0,000235119	5,9494E-05			
		_						
	XB	YB	<u>ZB</u>					
	5,452395	1,762138	1,107807					
	Арх	Αργ	Apz [<u>AP</u>				
	-2,5E-05	-0,00088	-0,00022	0.0009100	108			
				RP	_ `	Exactitatea	ie pozitiona	re
				0.0032230	04			
						Repetabilital	ea de poziti	onare
			•				_ _	<u> </u>
Nr Crt.	X	- Y	Z		Nr Crt.		Y 1	Z
-11	5,49878	1,76519	1,08765	← N4 .	→	5,49878	1,76718	1,08858
12	5,45255	1,76072	1,10759	N1	6.2	5,45224	1,76292	1,10769
1.3	5,44861	1,81082	1,10968	NZ	6.3	5,44855	1,81235	1,10983
1.4	5,43312	1,76149	1,06173	N3	6.4	5,43302	1,76322	1,06211
21	5 49941	1.76377	1,08811	N4	7.1	5,49861	1,76731	1.08844
$\frac{2}{22}$	5 45289	1.75934	1,10755	N1	7.2	5,45222	1,76301	1,10793
2.2	5 44903	1.80884	1,10963	N2	7.3	5,44849	1,01315	1,11011
2.5	5 43361	1,75972	1,06172	N3	74	5,43284	1,76352	1,0624
	5 50428	1 76791	1.08795	N4	8.1	5,49851	1,76745	1,08878
	5,50420	1 76179	1.10792	N1	8.2	5,45212,	1,76302	1,10803
3.2	5 440200	1 81222	1,10985	N2	83	5 44853	1,81286	1,11019
3.3	5 42285	1 76256	1.06163	N3	8.4	5,43276	1,76384	1,06213
3.4	5,40471	1.76653	1 08875	N4	91	5 4987 1	1,76727	1,08868
4.1	5,49671	1 76231	1 10759	N1	9 2	5,45222	1,76304	1,10804
4.2	0,45230	1 81152	1 11011	N2	9.3	5,44865	1,81258	1,11032
4.3	5,44003	1 76545	1 06123	N3	94	5,43295	1,76384	1,06188
<u>4.4</u>	5,440/2	1,10343	1 09966	N4	10.1	5,49871	1,76767	1,08874
5.1	5,49892	1,/00/8	1 10760	N1	10 2	5,45249	1,76288	1,10804
5.2	5,45231	1,76235	1,10709	N2	10.3	5,44857	1,81289	1,11015
5.3	5,44863	1,81211	1.05105	N3	10.4	5.43311	1 76375	1,06203
54	5,43286	1,76303	כסוסט,ו					

EXACTITATEA DE ORIENTARE

Mxn 0,006906 APnx= 0.000138 Nxn 2.5E-05 MyN 0,000568 APny= -6.3E-06 Nyn 0,000882 Mzn APnz≠ -2,1E-05 -4,9E-06 Nzn 🛛 0,000223

APn=	0.000138	1
APa C=	1.570658	rađ
APa ISO=	0,007898	grđ

Celula

Mxa	-2,2E-05	APax=	-9.4E-07
Nxa	2,5E-05		
Mya	0.001156	APay=	5.48E-06
Nya	0,000882		
Mza	0.000314	APaz=	9.04E-06
Nza	-0,00014		

APa=	1.06E-05	
APc C=	1 570786 ra	d
APc ISO=	0,000608 gr	d

Mxo	-0,00066	APox=	+1,4E-05
Nxo	2,5E-05		
Myo	0,000604	APoy≃	-5,6E-06
Nyo	0.000882		
Mzo	0.000206	APoz=	4.33E-06
Nzo	-1.1E-05		

APo=	1.54E-05	
AP5 C=	1.570781	rađ
APb ISO=	0.000885	grđ

a	5.433784
b	5,452395
C	1,763052
a	1,762138
e	1,061891
ff	1,107807
9	5. 448 632
h	1,811934
L	1,109996
k	5,499342
L	1,766706
	1.088454

Celula

Nr Crt.	X	Y	Z _	
1.1	5,49878	1,76519	1,08785	4
1.2	5,45255	1,76072	1,10759	
1.3	5,44861	1,81082	1,10968	
1.4	5,43312	1,76149	1,06173	
2.1	5,49941	1,76377	1,08811	
2.2	5,45289	1,75934	t_10755	
2.3	5,44903	1,80884	1,10963	
2.4	5,43361	1,75972	1,06172	
3.1	5,50428	1,76791	1,08795	
3.2	5,45256	1,76179	1.10792	
3.3	5,44863	1,81222	1,10985	
3.4	5,43285	1,76256	1,06183	
4.1	5,49871	1,76653	1,08875	
4.2	5,45235	1,76231	1,10759	
4.3	5,44863	1,81152	1,1 <u>101</u> 1	
4.4	5.44072	1,76545	1,06123	
5.1	5,49892	1,76678	1.08866	
5.2	5,45231	1,76235	1,10769	
5.3	5,44863	1,81211	1,11009	
5.4	5,43286	1,76303	1.06185	

		Nr Crt.	X	Y	Z
-	N4 🛶	6.1	5,49878	1,76718	1.08858
	N1	6.2	5,45224	1.76292	1,10769
	N2	6.3	5,44855	1,81235	1,10983
	N3	6.4	5,43302	1,76322	1,06211
	N4	7.1	5,49861	1,76731	1,08844
	N1	7.2	5.45222	1,76301	1,10793
	N2	7.3	5,44849	1,81315	1,11011
	N3	7.4	5,43284	1,76362	1.0624
	N4	8.1	5.49851	1,76745	1,08878
	N1	8.2	5.45212	1,76302	1,10803
	N2	8.3	5,44853	1.81286	1,11019
	N3	8.4	5,43276	1,76384	1.06213
	N4	9.1	5.49871	1,76727	1.08868
	N1	9.2	5.45222	1,76304	1,10804
	N2	9.3	5,44865	1.81258	1.11032
	N3	9.4	5.43295	1,76384	1,06188
	N4	10.1	5.49871	1.76767	1,08674
	Nt	10.2	5,45249	1.76288	1,10804
	N2	10.3)	5,44857	1.81289	1.11015
	N3	10.4	5.43311	1,76375	1.06203

	XN	YN	ZN
4	5,499342	1,766706	1,088454
<u> </u>	5,452395	1,762138	1,107807
<u> </u>	5 448632	1,811934	1,109996
	5 433784	1 763052	1,061891

а	5.433764
b	5.452395
ç	1,763052
d	1,762138
e	1.061891
f	1.107807
g	5.448632
ħ	1.811934
1	1.109996
k	5,499342
L	1,766706
m	1.088454

\$1=	5.43E-05
S2=	1.03E-05
S3=	5.74E-07
S4=	2.55E-05
S5=	2,93E-06
S6=	9.97E-07
S7=	1.76E-07
S₽=	1.29E-06
S9=	0.002322

-0.0007 0,00015	5 -0.00156	-0.00142		
1-0.00021 0.00040		0.00142	-0,000161	-0.0002
0,0002 0,00049	50.00333	-0,0028	-0,000171	-0.0003
-0.0009 0,00016	5 -0.00049	-0,00035	-6.1E-05	0,00011
0,0069 -4,5E-0	5 0.002390	0,000172	-0,000661	-0.0002
-0,0009 -8,5E-0	5 -2.2E-05	0,000212	-4,1E-05	-0,0001
-0,0008 -0,0001	5 -0.00142	0,000782	0,000219	-0,0001
-0.0009 -0.0001	7 0,000568	0,000872	0,000509	0,00012
-0.001 -0.0002	7 0.000788	0,000882	0,000239	0,00022
-0.0008 -0.0001	7 0,000788	0.000902	-1,1E-05	0,00023
-0,0007 9,5E-0	5 0.000698	0.000742	0.000139	0.00023

G		K	L	P	R
-0,0006	-0.00152	-0,0006	-2,2E-05	-0,001114	-0,0003
7E-05	-0.00294	-0,00034	0,000398	-0,003094	-0,0004
0.0049	0,001204	-0.0005	-2E-06	0,000286	-0.0001
-0.0006	-0,00018	0,000296	-2E-06	-0,000414	0,00011
-0,0004	7,4E-05	0,000206	-2E-06	0.000176	9,4E-05
-0.0006	0,000474	0,000126	-8,2Ē-05	0,000416	-0.0002
-0,0007	0,000604	-1,4E-05	-0,00014	0,001216	0,00011
-0.0008	0,000744	0,000326	-0,0001	0,000926	-0,048
-0,0006	0,000564	0,000226	1,8E-05	0,000646	0,00032
-0,0006	0,000964	0,000286	-6,2E-05	0,000956	0.00015

RPnx=	0,001042	RPn= 0,001141755	
RPny=	0,000454	RPa C = 1 <u>.</u> 56965 <u>4572</u> ra	d
RPnz=	0,000107	RPa ISO = 0,065417732 gn	d
RPox=	0,000714	RPo= 0,000766592	
RPoy=	0,000242	RPb C= 1,570029735 rad	d
RPoz=	0.000141	RPb ISO= 0.043922502 gn	d
RPax=	5.93E-05	RPa= 0,006817485	
RPav=	0,000161	RPc C= 1,563978786 rat	đ
RPaz=	0,006815	RPc ISO= 0.390616339 grt	ľ

ROBOT - CELULA INCERCARI SIMULTANE

POZITIA COMANDATA				
Nr Crt.		XN1c	YN1c	ZN1c
L .	1	5.45255	1.76072	1.10759

		Robot		Masa pozitiona	ire	
Nr Crt	X	Y -	z	X	Y	Z
1	5 45255	1.76072	1.10759	5.45255	1.76072	1 10759
2	5.45245	1.76065	1,10755	5.45289	1.75934	1.10755
3	5.45256	1.76071	1.10765	5.45256	1.76179	1.10792
4	5.45291	1.76079	1.10757	5 45235	1.76231	1.10759
5	5.45256	1.7608	1.10761	5.45231	1.76235	1.10769
6	5.45253	1.76075	1.10759	5.45224	1.76292	1,10769
7	5.45248	1,76056	1.10762	5.45222	1.76301	1.10793
9	5 45254	1.76071	1.10757	5,45212	1.76302	1.10803
9	5.45258	1.76075	1.10764	5.45222	1.76304	1.10804
10	5.45262	1.76067	1.10762	5.45249	1.76288	1,10804

	XB	YB	Z8
ROBOT	5.452578	1.76072	1.107601
MASA	5.452395	1.76214	1.107807

<u>A</u> P= _	3E-05 ROBOT
	0.0014 MASA

Арх	Ару	Apz	
2.8E-05	1E-06	1.1E-05	ROBOT
0.0002	0.001418	0.00022	MASA

Lì:	3E-05	0.000155	5.3E-05	0.000341	8.2E-05 ROBOT	
	5.7E-05	0.000117	5E-05	4.86E-05	5.9E-05	
						LB= 0.0001 R
Li:	0.00144	0.002853	0.0004	0.000281	0.00026 MASA	0.001 M
-	0.00081	0.000806	0.0009	0.00095	0.00095	
					<u> </u>	
	4,9E-09	3E-09	2.2E-09	5.77E-08	3.5E-10 ROBOT	
	1.9E-09	2.81E-10	2.5E-09	2.66E-09	9.9E-10	·
					7.6E-08	SL≂ 9E-05iR
	2.3E-07	3.57E-06	3.2E-07	4.67E-07	5E-07 MASA	0.0008 M
	2.5E-08	2.51E-08	4.4E-09	1.9E-10	2.7E-10	
					5.1E-06	

RP=	0.0004	ROBOT
	0.0032	MAŞA