UNIVERSITATES TEHNICS THEISDORD

FACULTATEA DE CHIMIE INDUSTRIALA

Inginer ANTONIU I. HIPP

Contributii la constructia reactoarelor catalitice . Aplicatii la sinteza metanolului si a alcoolilor superiori din gaze de sinteza .

> BIBLIOTECA CENTRALĂ UNIVERSITATEA "POLITEHNICA" TIMIȘOARA

Conducator stiintific : Prof. dr. ing. Z. Gropsianu

BUPT

Prefata

Materialul prezentat in aceasta lucrare reprezinta experienta mea in exploatarea diverselor instalatii de fabricarea metanolului de sinteza , in cataliza eterogena in constructia si exploatarea reactoarelor catalitice , experienta dobindita in cei 32 de ani de activitate in C.C. VICTORIA actualmente VIROMET S.A.

Conceptul noului reactor izoterm-radial este materializarea unei idei care va permite imbunatatirea performantelor instalatiilor actuale de metanol si a fost confirmata experimental pe o instalatie pilot productiva ce a fost exploatata in paralel cu instalatiile productive intre anii 1986-1989.

Vreau sa multumesc pe aceasta cale conducerii societatii comerciale VIROMET S.A. si colaboratorilor pentru sprijinul acordat, cit si firmei UHDE Gmbh din Dortmund Germania pentru aprecierea lucrarilor efectuate si colaborarii in continuare la industrializarea reactorului izoterm-radial.

Multumesc pe aceasta cale D-ului prof.dr.ing. Zeno Gropsianu de la Universitatea Tehnica Timisoara pentru indrumarea si sprijinul teoretic de inalta competenta acordat pe toata perioada experimentarii si elaborarii prezentei lucrari .

Doresc sa-mi exprim deosebita recunostinta D-lor Prof. Dr. ing. Romulus Talea si Prof. Dr. ing. Dezideriu Kohn pentru lecturarea tezei, corecturilor si sugestiilor valoroase efectuate cu aceasta ocazie.

Multumesc in mod expres d-lui ing. Ovidiu Stoica pentru ajutorul acordat la elaborarea programelor de calcul pentru simularea performantelor instalatiilor de metanol cit si la tiparirea prezentului manuscris.

١

In final doresc sa aduc cele mai calde multumiri sotiei mele ing. ELENA HIPP, colaboratoare directa la punerea in opera a pilotului productiv, coautoare a numeroase inventii si sustinatoare morala permanenta in efortul depus pentru realizarea prezentei lucrari.

VICTORIA , Februarie 1992

ing. A. HIPP

i

(=R

CAPITOLUL

INTRODUCERE

I

<u>Introducere</u>

Dupa amoniac , metanolul este produsul care se fabrica in asemenea cantitati din gaz de sinteza . Ĉapacitatile mondiale instalate de la inceputul anului 1985 au fost de 21.000.000 tone . In 1988 se produceau 19.000.000 tone metanol . Rata de crestere anuala a productiei de metanol este de circa 10% . Curba de crestere a productiei de metanol din 1965 pina 1992 se vede in figura 1. In anii 1980 industria de fabricare a metanolului a suferit schimbari structurale , companii care consumau cantitati mari de metanol au inceput sa-l produca singure din materii prime accesibile (in special industrializate cu energie ieftina) . De aceea numarul de tari instalatii care produc metanol exclusiv pentru vinzare a crescut dramatic . Dupa criza energetica din anii 1970 prospectarile mari pentru gasirea titeiului au dus la descoperirea unei mari cantitati de gaz metan in regiuni ca America de Sud , Asia si Marea Caraibilor determinind aceste tari sa devina interesate in vinzarea de metanol catre tarile industrializate .

fig. nr. 1) Productie mondiala de metanol (Pentru 1989 - 1992 estimarea s-a bazat pe utilizarea a)

80 % din capacitatile existente [116], [117]

In comparatie cu transportul metanului lichefiat ca materie prima pentru sinteza amoniacului , fabricarea metanolului este de obicei solutia cea mai economica pentru vinzarea acestor gaze . Tehnologia de producere а metanolului este relativ simpla iar transportul si depozitarea lui nu necesita tehnologii sofisticate . Pe baza acestor consideratii alte 14 instalatii noi bazate pe gaz metan s-au construit pentru export de metanol intre anii 1974-1985[1]

pag.

1

Cea mai mare instalatie de metanol intr-o singura linie este pusa in functiune in 1988 la Punta de Arenas (CHILE) [2] la o capacitate de 750.000 to/an. Corespunzator au fost oprite instalatii vechi de metanol in SUA, JAPONIA, GERMANIA. Dezvoltarea capacitatilor pe zone geografice este ilustrata in figura 2.

fig. nr. 2) Distributia mondiala de capacitati productie metanol

Un rol deosebit de mare il joaca conceptia si constructia coloanelor de sinteza, in special la aceste capacitati care depasesc 2000 to/an. Coloana de sinteza, ca reactor catalitic in faza heterogena este aparatul care determina indicatorii tehnicoeconomici pentru faza de sinteza a metanolului contribuind in mare masura la stabilirea consumului total pentru fabricarea metanolului. De aceea prezenta lucrare si-a propus elaborarea unui reactor de sinteza cu caracteristici superioare celor existente pe piata mondiala atit ca productivitate si randament de transformare a oxizilor de carbon la o trecere cit si cu o minima pierdere de energie (presiune) imbunatatind astfel performantele energetice ale buclei de sinteza.

Partea I-a constituita din capitolele 1-5 cuprinde partea teoretica necesara cunosterii procesului de sinteza metanolului cit si simularii si calculului reactoarelor de sinteza.

Partea II-a constituie contributia personala la conceptia , constructia si experimentarea in pilot productiv a noului reactor izoterm cu flux radial cit si posibilele lui aplicatii la sinteza metanolului si a amestecurilor $C_1 - C_5$.

pag. 2

Istoric si aspecte economice

*

<u>&2.1 Istoric</u>

Metanolul a fost obtinut pentru prima data in 1661 de Sir Robert Boyle prin rectificarea gudronului brut rezultat la distilarea lemnului . Justin von Liebig (1803-1873) si I.B.A. Dumas (1800-1884) in mod independent au determinat compozitia metanolului , iar in 1835 s-a introdus termenul de "metil" . Din 1830 pina in 1923 spirtul de lemn , cum se mai numea , a ramas sursa principala de metanol . In anul 1913 A. Mitasch si colaboratorii sai de la BASF au produs compusi organici oxigenati inclusiv metanol din CO si H_2 in prezenta catalizatorului de Fe₂O₃, in lucrarile lor de elaborare a catalizatorului de sinteza a amoniacului .

In jurul anului 1920 M. Pier si colaboratorii sai au elaborat catalizatorul de ZnO Cr_2O_3 rezistent la sulf , iar la sfirsitul anului 1923 in uzinele LEUNA de la BASF s-a dezvoltat primul procedeu industrial de sinteza metanolului. Acest procedeu ce se realiza la presiuni ridicate (25-35MPa) si 320-450 grd.Celsius a dictat productia industriala a metanolului mai bine de 40 ani . La sfirsitul anilor 60 ICI pune la punct sinteza metanolului dintr-un gaz lipsit de sulf si cu mult CO_2 care reactiona pe un catalizator foarte reactiv pe baza de cupru . Acesta si multe alte procedee la presiune joasa s-au caracterizat prin conditii de reactie foarte blinde (5-10MPa ; 200-300 grd.Celsius). Acum metanolul se produce numai prin procedee mult mai economice dezvoltate din acest procedeu ICI de sinteza metanolului la joasa presiune .

<u>&2.2 Aspecte economice</u>

Costurile producerii metanolului depind de mai multi factori din care cel mai important cu influenta directa este pretul materiei prime, apoi costul investitiei si costurile introduse de logistica si infrastructura.

Gazul natural , nafta,pacura , carbunele si lignitul pot fi fiecare utilizate ca materie prima pentru fabricarea metanolului . La instalatiile de metanol pe baza de pacura si in mai mare masura la cele pe baza de carbune principalele costuri cad in sarcina costurilor de amortisment al capitalului . De aceea in mod curent , fiindca prevaleaza pretul scazut al energiei , instalatiile care au costuri fixe ridicate devin neeconomice sau economice numai in conditii speciale.

In prezent balanta intre investitie minima si costuri de exploatare minime sint net in favoarea instalatiilor de metanol pe baza de gaz metan. Toate marile instalatii ce se afla in proiectare utilizeaza gaz metan, iar acele instalatii care utilizau nafta au fost transformate ulterior. Mai putin de 2.000.000 to/an (circa 9.5%) din cele circa 21.000.000 to/an au materia prima alta decit gazul metan.

CAPITOLUL

.

Bazele teoretice ale sintezei alcoolilor

<u>&3.1 Termodinamica reactiilor de</u> <u>sinteza metanolului si a alcoolilor</u> <u>superiori din gaz de sinteza</u>

Formarea metanolului din gaz de sinteza poate fi descrisa de urmatoarele reactii de echilibru :

CO	+ 5H ⁵	~~~ сн _з он	∆ H 300° 1	к ⁼ -90.77	Kj/mol	(1)
со ⁵	+ 3H ⁵	CH ₃ 0H + H ₂	2 ⁰ △ H _{300°}	к ⁼ -49.16	Kj/mol	(2)

Entalpia de reactie s-a determinat din entalpiile standard ale reactantilor si produselor de reactie [3]. Ambele reactii fiind exoterme si acompaniate de contractie de volum , de aceea formarea metanolului este favorizata de cresterea presiunii si descresterea temperaturii , conversia maxima fiind determinata de compozitia la echilibru . In completare la cele doua reactii cu formare de metanol trebuie sa se tina seama si de reactia endoterma dintre CO₂ si H₂ (ec.3 - reactia reversa a gazului de apa):

$$CO_2 + H_2 = CO + H_2O$$
 $\triangle H_{300^{\circ}K} = 41.21 \text{ Kj/mol}$ (3)

Pentru simplificare, ecuatiile (1) si (3) pot fi discutate ca reactii independente ce determina compozitia amestecului de reactie. Atunci conversia CO₂-ului la metanol dupa ecuatia (2) este rezultatul unirii reactiilor (1) si (3), iar constanta de echilibru K_2 poate fi descrisa ca $K_2 = K_1 \times K_3$. Daca se tine cont de comportarea neideala a gazelor ,

constantele de echilibru se determina astfel :

$$K_{1} = \begin{bmatrix} \frac{f_{01_{3}0H}}{f_{00} \times f_{H_{2}}^{2}} \end{bmatrix} = \begin{bmatrix} \frac{\zeta_{01_{3}0H}}{\zeta_{00} \times \zeta_{H_{2}}^{2}} \end{bmatrix} \times \begin{bmatrix} \frac{P_{01_{3}0H}}{P_{00} \times P_{H_{2}}^{2}} \end{bmatrix} = K_{\zeta 1} \times K_{p1}$$
(4)
$$K_{3} = \begin{bmatrix} \frac{f_{00} \times f_{H_{2}0}}{f_{00_{2}} \times f_{H_{2}}} \end{bmatrix} = \begin{bmatrix} \frac{\zeta_{00} \times \zeta_{H_{2}0}}{\zeta_{00_{2}} \times \zeta_{H_{2}}} \end{bmatrix} \times \begin{bmatrix} \frac{P_{00} \times P_{H_{2}0}}{P_{00_{2}} \times P_{H_{2}}} \end{bmatrix} = K_{\zeta 3} \times K_{p3}$$
(5)

unde f_i sint fugacitati ; ζ_i coeficienti de fugacitate si p_i presiunile partiale ale componentilor "i" .

Pentru calculul lui K_1 si K_3 functie de temperatura sint o serie de publicatii [4] ÷ [12] a caror rezultate difera evident [13]. Expresii binomiale pentru ec.(6) [7] sint date de CHEREDNICHENKO si BISSET pentru ec.(7)[12] astfel :

$$K_{1} = 9.740 \times 10^{-5} \times \exp\left[21.225 + \frac{9143.6}{T} - 7.492 \times \ln T + 4.076 \times 10^{-3} \times T - 7.101 \times 10^{-8} \times T^{2}\right]$$
(6)

$$K_{3} = \exp\left[13.148 - \frac{5639.5}{T} - 1.077 \times \ln T - 5.44 \times 10^{-4} \times T\right] + 1.125 \times 10^{-7} \times T^{2} + \frac{49170}{T^{2}} \qquad (7)$$

I. Kyaer de firma TOPSOE A.S. in [14] da un program de calcul pe computer pentru dependenta functie de temperatura a echilibrelor de reactie plecind de la coeficientii stochiometrici ale reactiei, entalpiile de formare ale componentilor si produselor de reactie cit si energia libera de formare a componentilor. Polinomul care descrie dependenta constantelor de echilibru functie de temperatura este de forma:

 $K[T] = \exp(SB[0] \times \ln T + SB[1] / T + SB[2] + T \times (SB[3] + T \times (SB[4] + T \times SB[5])))$

Coeficientii de fugacitate , asumind solubilitatea ideala pentru componentii puri , pot fi calculati prin expresii polinomiale $[14] \div [17]$ sau pot fi calculati din diagramele ridicate de NEWTON [18] , respectiv din tabelele publicate in acceasi lucrare .

Conversiile oxidului si bioxidului de carbon la echilibru sint aratate din tabela nr. 1 din [8]. Ca gaz de plecare s-alluat un gaz de sinteza obtinut din reformarea cu abur a gazului metan de urmatoarea compozitie : CO = 15% ; CO₂ = 8% ; H₂ = 74% si CH₄ = 3% . S-au folosit ec.(6) si (7) pentru stabilirea dependentei de temperatura si coeficientii de fugacitate ; s-au determinat in concordanta cu ecuatia Soave - Redlich - Kwong . Semnul negativ pentru conversia monoxidului de carbon la temperaturi inalte denota formarea monoxidului prin retroconversie dupa ec.(3) [19]

TABELA nr. 1: Dependenta de temperatura si presiune a conversieila echilibru a oxidului si bioxidului de carbon [8]

Temperatura	Ca	nversia CO ^H		Conversia CO2				
°c	5 MPa	10 HPa	30 MPa	5 MPa	¹⁰ MPa	30 MPa		
200	96.3	99.0	99.9	28.6	ສາ	99.5		
250	73 D	90.6	99.0	14 A	451	92 A		
300	25A	60 7	92.8	14.1	22.3	71.6		
350	-2.3	167	71.9	9.8	23.1	50.0		
400	-12.8	-7.3	34.1	27 7	29.3	41_0		

BUPT

*) Semnul negativ denota formarea CO-ului prin ecuatia (3)[19] :

$$CO^{2} + H^{5} = CO + H^{5}O$$

Catalizatorii comerciali existenti de Cu-ZnO-Al $_2O_3$ pentru sinteza la joasa presiune permit obtinerea produsului dorit cu mare selectivitate , de obicei peste 99% raportat la CO_x adaugat .

Impuritatile care insotesc formarea metanolului sint :

1) Formarea de alcooli superiori pe catalizatorii cu urme de metale alcaline [22] ÷ [24] conform reactiei :

$$nC0 + 2nH_2 = C_nH_{2n+1} - 0H + (n-1)H_20$$

2) Formarea parafinelor si hidrocarburilor prin cataliza cu urme de fier , cobalt si nichel conform procesului Fischer-Tropsch [23],[25],[26] are loc dupa urmatoarele ecuatii :

 $\begin{array}{rcl} \text{C0} &+ & 3\text{H}_2 &=& \text{CH}_4 &+ & \text{H}_2 \text{O} \\ \text{C0}_2 &+ & 4\text{H}_2 &=& & \text{CH}_4 &+ & 2\text{H}_2 \text{O} \\ \text{nC0} &+ & (2\text{n}-1)\text{H}_2 &=& & \text{C}_{\text{n}} \text{H}_{2\text{n}+2} &+ \text{nH}_2 \text{O} \end{array}$

3) Formarea esterilor conform reactiei [24],[26],[27] :

$$(CH_2^{0)}_{adsor} + (R-CHO)_{ads} \longrightarrow CH_3^{COOR}$$

4) Formarea dimetileterului [26],[28] are loc conform reactiei :

$$H_2^{0}$$
 H_2^{0} $H_3^{-0-CH_3}$ H_2^{0}

5) Formarea cetonelor [29] conform :

$$R-CH_2-CH_2-OH \implies R-CH_2-CHO + H_2$$

 $2R-CH_2-CHO \implies R-CH_2-CO-CH-RCH_3 + O_{ads}$

Formarea principalelor coproduse din gaz de sinteza, prin hidrogenarea oxizilor de carbon, in particular speciile C⁺______ sint favorizate termodinamic fata de formarea metanolului [30]. In tabelul numarul 2, [30] sint redate entalpiile libere de reactie in intervalul 300-600 grd.K si se constata ca la temperaturi mai joase sint posibile toate reactiile de hidrogenare a oxidului de carbon dar la temperaturi peste 583 grd.K alcoolii nu se mai pot forma prin aceste reactii. Entalpia libera de formarea metanolului la peste 410 grd.K devine pozitiva.

Reactia	Temperatura grd. Kelvin							
	300	400	500	600				
$CO + 2H_2 = CH_3OH$	-26,4	-3,35	20,7	45,2				
$2C0 + 4H_2 = C_2H_5OH + H_2O$		-74,6	-27,1	21,2				
3CD + 6H ₂ = CH ₃ H ₇ DH + 2H ₂ D		-137,9	-66,63	33,2				
4CO + 8H ₂ > C ₄ H ₉ OH + 3H ₂ O		-193,3	-102,5	-3,95				
2C0 -→ C0 ₂ + C	-119,6	-101,8	-83,8	-65,7				
со + н ₂ о> со ₂ + н ₂	-28,38	-24,24	-20,23	-7,36				
со + зн ₂ -→ сн ₄ + н ₂ о	-141,8	-119,6	-96,3	-72,4				
2=רו 2 [_] רו + ח2ר -→ C _H H + ח2רו 2=רו 2	-114,0	-81,0	-46,5	-11,18				
n=3	-214,26	-154,28	-96,39	-10,15				
4=רו	-292,35	-212,93	-130,79	-11,41				
H2D + (2:רו2 → H)H2 + 00 רו ברו + 10 ברו2 + 10 ברו	-214,9	-169,4	-122,2	-73,8				
	-296,45	-255,11	-185,28	-86,36				
n=4	-381,13	-293,02	-232,32	-100,19				

<u>Tabelul 2[30]</u>: Entalpii libere de reactie la hidrogenarea oxidului de carbon (Kj/mol)

Calculind [30] concentratiile la echilibru prin minimalizarea entalpiei libere de formare functie de temperatura , presiune,raport H₂/CO si ajunge la urmatoarele çoncluzii :

Pe intervalele de temperaturi., presiuni si rapoarte H_2/CO studiate este posibila din punct de vedere termodinamic formarea tuturor claselor de compusi : alcani , alchene si alcooli dar exista domenii recomandate pentru fiecare clasa in parte . Deoarece metanolul este produsul principal , formarea impuritatilor se poate controla mai bine cinetic decit termodinamic .[13]

In afara compozitiei catalizatorului si compozitiei gazului de alimentare , timpul de contact cu catalizatorul [24] , ca si temperatura [25], [26] determina cresterea produselor secundare . Pentru obtinerea directa din gaz de sinteza a amestecurilor de alcooli C_1 + C_8 , asa zisul metanol carburant care se foloseste ca adaus antidetonant la benzinele auto se folosesc parametrii putin modificati fata de sinteza metanolului si anume : temperaturi de 270+320 grd.C , presiuni de 10+16 MPa , raportul H₂/CO \simeq 1 iar catalizatorii pe baza de cupru contin adaosuri de alcooli (K₂O , Na₂O) sau COO . [31]-[36] si chiar fara adaosuri ca in procedeul OCTAMIXT al firmei LURGI [34] , [32] .

<u>&3.2 Cinetica reactiilor de sinteza</u> <u>metanolului</u>

Formarea metanolului este o reactie tipica de cataliza eterogena ce poate fi descrisa prin mecanismul de absorbtie (Langmnir-Hinshelwood sau Eley-Rideal) . Natura centrilor activi in catalizatorul de cupru-zincoxid-alumina utilizat in conditii industriale a fost mult discutata in literatura de specialitate . La sinteza de joasa presiune centrii activi o constituie solutia de ioni Cu(I) in faza de ZnO [21] . Pe de alta parte s-a putut evidentia ca si Cu(O) catalizeaza formarea metanolului.

Compozitia gazului de alimentare (in mod particular continutul de CO_2 si H_2O) joaca un rol important in determinarea activitatii si selectivitatii catalizatorului in sinteza metanolului . Cercetarile au aratat ca exista mai multe cai pentru formarea metanolului din CO sau din CO_2 si ca sint necesare pentru aceasta diferite centre active in catalizatori [20],[37]-[40].

Conform lui [41] , alumina exista sub forma amorfa evidentiata prin raze X . Functia aluminei in catalizatorul de Cu-ZnO-Al_2O_3 este urmatoarea :

1) Previne sinterizarea particulelor fine de cupru prin formare de spinel de zinc.

2) Stabilizarea sistemului de inalta dispersie Cu-ZnO.

3) Formarea defectelor de retea prin incorporarea granulelor aluminei in reteaua cuprului [20],[41] .

Care efect predomina in sinteza metanolului inca nu este clarificat . Totusi alumina are o functie importanta ca promotor de structura in catalizatorul de Cu-ZnO prin cresterea stabilitatii mecanice si mentinerea pe timp indelungat a activitatii catalitice .

Cercetarile cinetice recente au demonstrat rolul CO2-ului in sinteza metanolului , ceea ce a constituit o problema de mare controversa in anii 1980 [13],[20],[42]÷[44] . Pina la inceputul anilor 1980 mecanismul de reactie considerat s-a bazat in exclusivitate pe hidrogenarea CO-ului la metanol conform reactiei (1) [45]÷[49].

Cresterea randamentului prin adaugare de CO_2 s-a atribuit echilibrului invers a gazului de apa conform ec.(3). In plus CO_2 -ului i s-a atribuit rolul de mentinere a starii de oxidare a centrilor activi in catalizator [21].

Dimpotriva, Kagan si al.[50] a propus ca metanolul se formeaza numai dupa ecuatia (2) din CO₂. Experimente recente cu atomi de reactanti marcati au aratat ca ambele moduri de formare (ec.(1) si ec.(2)) sint posibile [51],[52]. Rezultate similare au fost obtinute si de alte studii [53]+[55]. Totusi, dupa [52], formarea prin CO2 predomina in sinteza metanolului la scara industriala.

Aproape in unanimitate calculele de dimensionare cinetica a reactoarelor de sinteza ale firmelor LURGI , UHDE , BASF , ICI , MITSUBISHI dupa anul 1988 au la baza un model cinetic cu trei ecuatii de viteza de reactie (dupa ec.(1),(2) si (3)).

Conform [57],[58] dupa firma MITSUBISHI JAPONIA , vitezele de reactie pentru cele trei reactii sint :

$$r_{1} = k_{1} \times (f_{00} \times f_{H_{2}}^{\alpha_{1}})^{\alpha_{2}} \times [1 - (f_{0H_{3}0H} / K_{f_{1}} \times f_{00} \times f_{H_{2}}^{2})^{\beta}] / (1 + K_{00_{2}} \times f_{00_{2}} + K_{H_{2}0} \times f_{H_{2}0}) (8)$$

$$r_{1} = k_{1} \times f_{1} \times (1 - f_{1} \times f_{1} - (f_{0H_{3}0H} / K_{f_{1}} \times f_{00} \times f_{H_{2}}^{2})^{\beta}] / (1 + K_{00_{2}} \times f_{00_{2}} + K_{H_{2}0} \times f_{H_{2}0}) (8)$$

$$r_{2} = k_{2} \times f_{H_{2}} \times (1 - f_{0} \times f_{H_{2}0} / K_{f_{2}} \times f_{0_{2}} \times f_{H_{2}})$$
(9)

$$r_{3} = k_{3} \times f_{co_{2}} \times (1 - f_{cH_{3}cH} \times f_{H_{2}0} / K_{f_{3}} \times f_{co_{2}} \times f_{H_{2}}^{3}) / (1 + K_{H_{2}0} \times f_{H_{2}0})$$
(10)

unde :

 $\alpha_1 = 2.5$; $\alpha_2 = 0.35$; $\beta = 0.8$

 $k_1 = 1.03 \times 10^7 \times exp(-16.6 \times 10^3 / RT)$ (11)

$$k_3 = 2.33 \times 10^7 \times exp(-15.0 \times 10^3 / RT)$$
 (13)

 $K_{cc} = 1.86 \times 10^{-9} \times exp(18.1 \times 10^{-3}/RT)$ (14)

$$K_{\text{Ho}} = 1.06 \times 10^{-7} \times \exp(16.7 \times 10^{-3} / \text{RT})$$
 (15)

Ecuatiile au fost verificate cu foarte bune rezultate pe reactorul pilot de sinteza izoterm al firmei MITSUBISHI [59] . Lista simbolurilor :

r_i - viteza de reactie (i=1...3)(moli/litri/ora)

k_i- constanta de viteza (i=1...3)

 f_j - fugacitatea componentului j (atm)

 K_{fi} - constanta de echilibru pentru reactiile (1)...(3)

 $K_{j}\text{-}$ constanta de echilibru pentru absorbtie a componentului j (j=C02 , H2O)

 $\alpha_1, \alpha_2, \beta$ - exponenti in vitezele de reactie

<u>&3.3 Catalizatori utilizati la sinteza metanolului</u> <u>si alcoolilor superiori din gaz de sinteza</u>

3.3.1) Catalizatori pentru sinteza la inalta presiune

Prima productie industriala a metanolului din gaz de sinteza care necesita presiune ridicata folosea un sistem catalitic format din ZnO si Cr_2O_3 . Acest catalizator ce se utiliza la 250-350 MPa si 300-400 °C era foarte stabil fata de compusii de sulf si clor aflati in gazul de sinteza [19],[44],[59],[60]. Acest procedeu a fost abandonat in anii 1980, o discutie detailata a catalizatorului de sinteza metanolului la presiune ridicata se face in [59].

<u>3.3.2) Catalizatori pentru sinteza la joasa presiune</u>

Cu mult inainte de a realiza ICI in anii 1960 sinteza industriala la joasa presiune a metanolului a fost cunoscut efectul catalizatorului de cupru ca fiind mai activ si selectiv ca cel de Cr-Zn. Catalizatorii de CuO-ZnO si utilizarea lor la fabricarea metanolului a fost descrisa de BASF in anii 1920 [61],[62] . Acesti catalizatori au fost folositi la 15 MPa si 300°C . Folosirea lor industriala a fost impiedicata , totusi , de serioase dezavantaje : impuritatile sub forma de H₂S si cloruri care dezactivau rapid catalizatorul . Mai nou sistemele cătalitice ce contin cupru au devenit cele mai utilizate pentru producerea industriala a metanolului . Intre 1925 si 1955 publicatiile [59],[63],[64] analizeaza folosirea acestor catalizatori . Investigatiile pentru catalizatorii de metanol continua si astazi [43]. Catalizatorii utilizati in mod curent la sinteza de joasa a metanolului pe baza de CuO si ZnO cu unul sau mai multi aditivi de stabilizare sint indicati in tabelul numarul 3 [141]. Al₂O₃ , Cr_2O_3 sau amestecuri cu alumina sint recomandate pentru acest scop [66],[67] .

<u>Tabelul</u> nr.	3 [141] :	Catalizatori	tipici	pentru	sinteza	metanolului	la
		joasa presiu	ine.				

Producator	Componenti	% atomice	Bibliografie
I. F. P.	Cu Zn Al	25-80 10-50 4-25	[68]
Sud - Chemie	Cu Zn Al	65-75 18-23 8-12	[69]
Shell	Cu Zn pamint - rare	71 24 5	[70]
I. C. I.	Cu Zn Al	61 30 9	[71]
BASF	Cu Zn Al	65-75 20-30 5-10	[72]
Du Pont	Cu Zn Al	50 19 31	[73]
United Catalysts	Cu Zn Al	62 21 17	[73]
Н. Торзое	Cu Zn Al	37 15 48	[73]

pag. 10

Acesti catalizatori sint in mod normal utilizati 2-5 ani. Unii factori pot reduce drastic activitatea catalizatorilor scurtindu-le viata . O descriere detailata a otravirii si dezactivarii catalizatorilor este redata in [13],[37],[75] , si alte impuritati din gaz ca compusi siliconici , Ni(CO)₄ ; Fe(CO)₅ pot conduce la deteriorarea catalizatorilor [75] . Catalizatorul se poate dezactiva si termic prin supraincalzire ca urmare a unei recirculari defectuoase , control incorect al temperaturii , supraincarcare in faza de pornire . Atunci se formeaza spinell de cupru ca si molachitul rozaliu la care s-a observat scaderea centrilor activi [13],[21],[76] .

In ultimul timp s-au incercat un numar de catalizatori de tip $Cu-ZnO-Al_2O_3$ dopati cu bor , mangan , ceriu , crom , vanadiu , magneziu si alte elemente [77]-[87]. In literatura recenta se amintesc trei tipuri de catalizatori de baza : catalizator de Cu-Raney , aliaje de cupru cu thoriu sau oxizi de paminturi rare si metale pretioase pe suport [88]+[93]. Numai aliajul de cupru s-a gasit ca are o activitate mai mare decit catalizatorul conventional $Cu^2ZnO-Al_2O_3$ [94]. Pina acum in instalatiile industriale s-au folosit numai catalizatori $CuO-ZnO-Al_2O_3$. Acest catalizator are activitate ridicata , selectivitate buna , stabilitate in timp si costuri de productie rezonabila.

<u>3.3.3) Catalizatori utilizati la fabricarea amestecurilor de alcooli C₁-C₈.</u> [79],[31]-[36]

Fabricarea alcoolilor C_1 - C_8 prin sinteza directa din CO si H₂ a fost stabilita in anii 1980 de catre firmele LURGI , UHDE-UCC , SNAM-PROGETTI , I.F.P. , etc. In tabelul numarul 4 sint indicati catalizatorii utilizati , conditiile de reactie si concentratia alcoolilor superiori din amestec .

Tabelul nr. 4:

	Catalizator	CON	$C_2^+ - OH$		
		T°C	P MPa	H ₂ /CO	ົ(%)
Snam – Progetti	Сл29-270-К2	380-420	12 - 25	2 - 3	20 - 30
Snam - Progetti	Cuo-2no-A1_0K_0	300	10	1	20 - 30
IFP	Cuo-coo-K_p	270-320	6 - 10	1,5	35 - 45
Lurgi	Cub-2no-Al_0	270-320	8 - 10	1	47
псс	F Tropsch cu MDO ₃	310	12,5	1,13	70

Procedeul inca nu este aplicat pe scara industriala pina in prezent , catalizatorii sint testati pe instalatii pilot productive pentru a se stabili longevitatea lor . In cadrul colaborarii intre ICPAO-MEDIAS si CC VICTORIA au fost elaborati catalizatori pentru sinteza alcoolilor superiori din gaz de sinteza pe baza de CuO-ZnO-Al₂O₃ si promotati cu MoO₃ si K₂O [154] . Acestia au fost testati la ICPAO-MEDIAS si pe pilotul productiv de la VICTORIA in anii 1986-1987.

<u>&34 Transferul de caldura in straturi</u> <u>fixe de catalizator</u>

<u>34.1) Date de literatura despre constantele de transfer de caldura</u> [109]

<u>34.1.a) Metode de corelare</u>

Coeficientii de transfer de caldura si conductivitatea termica necesare pentru calcularea si simularea reactoarelor catalitice dupa metodele cunoscute sint functie de debitul de gaz, propietatile fizice ale gazelor (densitate,capacitate calorica,viscozitate) si functie de caracteristicile geometrice ale stratului catalitic (marimea particulei, forma, diametrul, lungimea patului, fractia de gol, etc.).

Conductivitatea termica a catalizatorului insasi este in mod uzual fara importanta . In cele mai multe cazuri corelatia intre ele se face prin intermediul numerelor adimensionale si a principiului similitudinii dat de Klinkenberg si Mooy (1948).

<u>Numarul Reynolds</u> - masoara raportul intre fortele de inertie si cele de viscozitate ale fluidului . In cazul curgerii prin tuburi subtiri fara catalizator :

$$N_{Re} = \frac{D_{t} \times G}{\mu}$$
(16)

G - viteza masica (Kg/m²×s) D_t- diametrul tubului (m) μ - viscozitate (Kg/m×s)

Pentru curgerea prin sau in jurul tuburilor si prin catalizator relatia (16) se modifica prin inlocuirea lui D_t cu D_p obtinindu-se :

$$N_{Re}^{\prime} = \frac{D_{P} \times G}{\mu}$$
(17)

 D_p - diametrul sferei ce are acelasi volum cu particula catalitica Pentru numarul Re se mai utilizeaza si expresiile :

$$N_{Re}^{\prime} = \frac{a_{P} \times G}{\mu}$$
(18)

$$N_{Re}' = \frac{G}{\mu \times a_{v}}$$
(19)

$$N_{Re}^{\prime} = \frac{6 \times G}{\mu \times a_{v} \times \Psi}$$
(20)

in care :

- a_{D} suprafata unei particule de catalizator (m²);
- a_v raportul suprafata pe unitatea de volum catalizator (1/m) ;
- Ψ factorul de forma pentru particule nesferice .

<u>Numarul Nusselt</u> masoara raportul dintre caldura transferata prin convectie si cea transferata prin conductie . In corelatie cu coeficientul partial de transfer de caldura α in mod uzual se poate scrie relatia :

$$N_{Nu} = \frac{\alpha \times D_{t}}{\lambda_{g}}$$
(21)

in care :

 λ_{g} - conductivitatea termica a gazului in conditiile stagnante

(W/mK) In multe cazuri N_{Nu} modificat contine D_p in loc de D_t .

<u>Numarul Stanton</u> pentru coeficientul general de transfer de caldura este :

$$N_{St} = \frac{\alpha}{G \times c_p}$$
(22)

in care :

c_D - caldura specifica a gazului (J/KgK).

Numarul Stanton masoara raportul dintre caldura transferata si cea transportata .

<u>Numarul Prandtl</u> determina propietatile intrinsece ale gazului independent de conditiile de transport :

$$N_{Pr} = \frac{c_{P} x_{\mu}}{\lambda_{g}}$$
(23)

Pe de alta parte :

 $N_{Nu} = N_{St} \times N_{Pr} \times N_{Re} = N_{St} \times N_{Pr} \times N_{Re} \times (\frac{D_t}{D_p})$ (24)

<u>Numarul Péclet</u> Numarul modificat Péclet se utilizeaza pentru determinarea conductivitatii termice efective :

$$N'_{Pe} = \frac{D_{p} \times G \times c_{p}}{\lambda_{r}}$$
(25)

unde :

 $\lambda_{\mathbf{p}}$ - conductivitatea termica datorata radiatiei termice in directia fluxului (W/mK) .

Aceeasi valoare in corelatie cu ceficientul de difuziune prin turbulenta devine :

$$N'_{Pe} = \frac{D_{p} \times G}{\rho \times D_{ed}}$$
(26)

BUPT

<u>34.1.b) Coeficientul partial de transfer de caldura (a)</u>

In tabelul numarul 5 sint indicate date de literatura de specialitate despre coeficientul de transfer de caldura (a) pentru transferul de la stratul catalitic la peretele tubului sau mediului inconjurator . Majoritatea datelor din tabelul numarul 5 se bazeaza pe experimentari cu schimbatoare de caldura , cu umplutura , α fiind calculat din diferentele de temperatura conform relatiei [109] :

$$t = t_0 + (t(0) - t_0) \times e^{-\lambda \times x}$$
 (27)

- t temperatura catalizatorului (°C)
- t_n- temperatura gazului de racire sau mediului de transfer caldura(°C)
- t(O)-tn -temperatura gazului preincalzit inainte de patul catalitic (°C) x - distanta axiala (m)
- 4x α -- constanta de racire (1/m) Dt×G×c

Constanta de racire λ se mai poate exprima prin formula generala :

$$\lambda = \frac{\text{Suprafata racire}}{\text{Volum catalizator}} \times \text{N}_{\text{St}}$$
(28)

Dupa Wilson (1946) la experimentarile pentru anhidrida ftalica s-a folosit relatia : αλ

$$\tau(f(1) - f(0)) = \lambda \propto \int_{-\infty}^{+\infty} (t - t_0) dx$$
 (29)

 τ - cresterea adiabata de temperatura (°C)

$$\tau = \frac{\gamma_{B} \times H \times F_{0}}{\gamma_{A} \times G \times c_{p}}$$
 (30) pentru : A = B

unde :

 v_{A} - numar de moli in sistemul A

- $V_{\mathbf{R}}$ numar de moli in sistemul B
- H caldura de reactie (W/gr.mol)

 F_0 - debit de alimentare (gr×mol/m²×h)

f - conversie fractionata .

Pentru convertoare TVA de sinteza amoniacului nu sint publicate date . Pentru determinarea lui α se procedeaza astfel :

$$\frac{1}{\alpha} = \frac{1}{\alpha} + \frac{1}{\alpha} + \frac{1}{\alpha} + \frac{D_0}{2 \times k_t} \times \ln \frac{D_0}{D_i} + FF \qquad (31)$$

unde :

a_c - coeficientul partial de transfer termic bazat pe diferenta

medie de temperatura a catalizatorului si temperatura peretelui exterior al tubului de racire (W/mpK) .

 $\alpha_{i,0}$ - coeficientul de transfer de la gazul de racire la peretele interior al tubului de racire (W/mpK).

- ${\rm D}_i$ si ${\rm D}_t$ -diametrul interior respectiv exterior al tubului de racire (m) .
- k_t conductivitate termica a materialului tubului (W/mpK).
- FF foulning factor factor de rezistenta prin murdarire
 (mpK/W).

Dupa Leva , Weintranb , Grunmer si Clark (1948)[125] s-a gasit pentru sintea amoniacului :

$$\alpha_{c} = 7.78 \times G \times c_{p} \times e^{-\frac{\mathbf{A}_{c} \times \mu_{p}}{\mathbf{A}_{t}}} \times \left[\frac{\mathbf{D}_{p}}{\mathbf{D}_{t}}\right] \times \left[\frac{\mathbf{D}_{p} \times G}{\mu}\right]^{-0.3}$$
(32)

....

 $D_t' = \sqrt{\frac{4}{\pi}} \times "$ Cooling area " - diametru echivalent (m)

Pentru $h_{i,0}$ in tuburile de racire la amestecuri $3H_2$: $1N_2$ Colburn , Drew , Wartington (1947)[164] au gasit :

$$\alpha_{i,0} = 0.0327 \times G \times c_p \times \left[\frac{D_i}{D_0}\right] \times \left[\frac{D_i \times G}{\mu}\right]^{-0.2}$$
(33)

In principiu este posibil sa se calculeze α_c pentru reactoare TVA din λ_r si din coeficientul de film la perete α_w . Totusi α_w nu este disponibil pentru toate convertoarele . Exemple de calcul a diferentelor radiale de temperatura la curgere axiala sint date de Wirth (1953)[165] folosind λ_r si α_w .

34.1.c) Conductivitatea termica efectiva

Tabelul numarul 6 contine date de literatura de specialitate referitoare la conductivitatea termica efectiva in directie radiala, cind curgerea este axiala. In toate relatiile date primul termen constant reprezinta conductivitatea stratului catalitic in situatie stationara. Argo si Smith (1953)[111] si Smith (1956)[112] descriu o procedura de calcul a lui $\lambda_{\rm r}$ care este format din patru termeni ce se insumeaza si tin cont de : turbulenta , radiatie , difuziune si contact intre particule . Dintre acestea turbulenta este valoarea cea mai mare , celelalte pot fi neglijate practic.

34.1.d) Coeficientul de film la perete

In tabelul numarul 6 sint date relatii de calcul pentru α_w in straturi cu umplutura . Multe discutii asupra acestuia au fost intre Hanratty (1954) , Maeda (1952) si Quintru si Storrow (1956) . Evident mult mai multe date experimentale sint necesare pentru gasirea unor expresii sigure .

BUPT

	Metode de	I¥		PAR	TICU	LE	TUB	URI	(***		
	Masurare	sau R*	Gazul	Hate rial	Forma	Dp	D _t , nm	L,n	Dp,Dt	N _{Re} ,etc	Observatii
[119]	Schinbator de caldura cu strat fix	I R	Aer,gaz 182%CH ₄	Sticla otel alumina aluminiu	sfere cilind.	5-25	50-150		(a)	30-1000	U se refera la tenp. in axul tubului .
[120]	- 11 -	I	Aer	Sticla otel cataliz	sfere	1-6	25	0,3-1,2	(P)		
[121]	- 11 -	Ι	Aer	portelan zinc	sfere granule	5-25	35-80	0,5-1,2	(c)	G (kg/n ² h) 4500 1a 45000	Functia f se da in lu - crare si este maxim 0,04 pentru p $\frac{p}{D_t}$ =0,15
[122]	- 11 -	I	Aer	Sticla otel	sfere	3-4	50	0,3	(4)	400 la 3500	Factor de corectie ptr. umpluturi metalice .
[123]	- 11 -	I	Aer C02	Sticla portelan	sfere	3-13	15-52	0,3-0,9	(e)	50-3500	
[124]	- 11 -	Ι	Aer	Sticla netal	sfere cilind. granule	2-25	21-52	0,3-0,9	(0)	100 la 4500	Factor de corectie ptr. unpluturi netalice .
[125]	- 11 -	R	Aer CO2	Sticla portelan	sfere	3-15	21-52	0,3-0,9	G	150 la 3000	
[126]	- 11 -	I	Aer	Sticla portelan metal	sfere inele cilind.	4-18	15-52	0,3-0,9	(g)	150 la 3000	Corectie pentru valori mari ^D p ^{/D} t
[127]	- 11 -	R	Aer	cataliz	cilind.	3-10	25-100	0,1-0,4	ക	100-600	
[128]	- 11 -	R	Aer		granule inele sei	3-25	52-104		(##)	30-900	
[129]	- 11 -	I	Aer H ₂	Sticla plumb	sfere cilind. granule	3-10	30-50	0,2-0,3	Û	40-4000	Kr,O este conditernica a stratului cu gaze oprite
[130]	Anhidra ftalica	R	Aer	cataliz cuart	granule	1,7-2	38	0,4-0,7	(j)	G 3000 1a 12000	ll este la axul tubului

(a) $\frac{C}{G^{*}c_{p}} = 0.76^{*}e^{-0.225^{*}a_{v}*D_{t}} \left[\frac{G}{\mu * a_{v}}\right]^{-0.42}$

Þ

ł

$$\frac{\alpha * \mathbf{D}_{t}}{\lambda_{g}} = \mathbf{0}_{1}\mathbf{3}\mathbf{4}^{*} \left[\frac{\mathbf{D}_{p}}{\mathbf{D}_{t}}\right]^{-1,13} \left[\frac{\mathbf{L}}{\mathbf{D}_{t}}\right]^{-0,3} \left[\frac{\mathbf{D}_{p}*G}{\mu}\right]^{-1,27}; \qquad \frac{\mathbf{D}_{t}*G}{\mu} (1600)$$

$$\frac{cz^{*}}{\lambda_{g}} = 15 * \left[\frac{b_{p}}{b_{t}}\right]^{-0.3} * \left[\frac{L}{b_{t}}\right]^{-1.82} * \left[\frac{b_{p}^{*}}{\mu}\right]^{n}; 1600 < \frac{b_{p}^{*}}{\mu} < 3500 ; n = 0.55 * \left[\frac{L}{b_{t}}\right]^{0.165}$$

(c)
$$\alpha = f\left[\frac{\mathbf{b}_p}{\mathbf{b}_t}\right] \mathbf{F} \mathbf{G}^{0,83}$$

(d) — Grafic dat in lucrare

(i)
$$\frac{\alpha * \mathbf{D}_{t}}{\lambda_{g}} = 5.783* \frac{\mathbf{k}_{\mathbf{p},0}}{\lambda_{g}} + 0.085* \left[\frac{\mathbf{D}_{p}}{\mathbf{D}_{t}}\right]^{-0.5} * \left[\frac{\mathbf{D}_{p}}{\mathbf{D}_{t}}\right]^{-0.5} * \left[\frac{\mathbf{D}_{p}}{\mathbf{D}_{t}}\right]^{-0.5} + 0.066* \left[\frac{\mathbf{D}_{t}}{\mathbf{D}_{t}}\right]^{-1} \left[\frac{\mathbf{D}_{p}*G}{\mu}\right]^{-1} = \frac{1}{2} \left[\frac{\mathbf{D}_{p}*G}{\mu}\right]^{-1} = \frac{1}$$

(j) $a^{-1} = 0.00123 + 0.54 \pm c^{-0.83}$

<u>Tabelul nr.6)</u> Date pentru conductibilitatea termica efectiva, λ_r (W/mK) si coeficientul de transfer la perete α_w (W/mpK) in straturi de catalizatori.

	Netode de	I¥		PAR	TICU	TICULE		URI	(##)	Domoniu	
ALITORI	Masurare	sau R*	Gazul	Hate- rial	Forma	D _p MM	D _t	L,M	Dp,Dt	N _{Re} etc	Observatii
[131]	Tengradiala si profilul concentraliei	R	Aer	Sticla portelan netal etc,	sfere cilind. granule inele	3-19	100	1	(a)	G-1000 kg/m ² h	
[132]	11	I	N ₂ CO ₂ H ₂	Sticla cataliz	sfe re granule	2-10	100	0,2-0,4	ው	viteza ga 2500 la 7200 w/h	Aparatura speciala ptr. viteze nici .
[133]	Profil radial de temperat.	R	Aer	alunina	cilind.	3	50	0,05-0,2	(c)	30-100	
[134]	11	I R	Aer 82%CH4	Sticla alunina aluniniu	sfere cilind.	5-25	50-100		ക	20-500	
[135]	- 11 -	I	Aer	celita	cilind.	3-12	127	up la 1	(e)	G 850 la 6000	
[127]	- 11 -	R	Aer	cataliz.	cilind.	3-10	25-100	0,1-0,4	G	0-30 30-100 100-100	Vezi Hatta si Maeda (1948 a.b.1949) Maeda(1950) si Maeda si Kawazoe(1953) ,
(136)	11	I	Aer	Sticla	Sfere	4,4	41	0,75	(g)	30-1100 51 G 500 la 17000	
(137)	(***)	R	Aer CO ₂ H ₂	Sticla cataliz portelan nisip	sfere tablete inele	0,4-10	65	0,3	ው	10 la 3500 150 la 4000	Pentru inele vezi lucra- rea .
£138Q ; £139D	(7111)	R I	Aer	celita	sfere cilind.	2-12	35-95	0,16-0,32	Ü	100 la 3000	Prima lucrare da o for- mula putin diferita ptr. racire.
[122]	11	Ι	Aer	Sticla otel	sfere	3-4	50	0,3	(****)	400 la 3500	
£129J	- 11	I	Aer,H ₂	Sticla plumb	sfere cilind. granule	3-10	30-50	0,2-0,3	Φ	10 la 1000	Fara corectie ptr. h
C140]	Difuziune de masa		(Apa)	Sticla plunb alunina etc.	sfere cilind. granule	1-8	50		GO	5-2400	Difuzia albastrului de metil in apa .
•) I - incalz	re	L	HE) FOR	ula din	literatur	2		**	H) Schi	batoare	de caldura cu umplutura
R - racire	•	1	H##) Schi	inbatoare	de cald	iura cu	umpiutura 	***	TT) Vezi	grafic	am sucrare sara corectie
			CU (o singura	temper	at. Padi	619 6		peni	rung.	

(a)
$$N_{pe} = 2.4 \div 6.3$$

(b) Grafic in lucrare
(c) $\frac{\lambda_{p}}{\lambda_{g}} = 5.0 + 0.061 * \left[\frac{D_{p}^{*}G}{\mu}\right]$
(d) $\frac{\lambda_{p}}{\lambda_{g}} = 10.0 + 0.267 * \left[\frac{G}{\mu^{1*}a_{v}}\right]$
(d) $\frac{\lambda_{p}}{\lambda_{g}} = 10.0 + 0.267 * \left[\frac{G}{\mu^{1*}a_{v}}\right]$
(e) $\lambda_{p} = 0.27 * \left[\frac{G}{\mu^{1*}a_{v}}\right]^{0.47}$
(f) $\frac{\lambda_{p}}{\lambda_{g}} = 5.5 + 0.05 * \left[\frac{D_{p}^{*}G}{\mu}\right]$
 $\frac{\lambda_{p}}{\lambda_{g}} = 1.72 * \left[\frac{D_{p}^{*}G}{\mu}\right]^{0.41}; \frac{\lambda_{p}}{\lambda_{g}} = 0.209 * \left[\frac{D_{p}^{*}G}{\mu}\right]^{0.87}$

(g)
$$\lambda_{\mathbf{p}} = 0.36 \pm 0.00162 \pm \left[\frac{\mathbf{p}_{\mathbf{p}} \pm \mathbf{G}}{\mu}\right]; \frac{\mathbf{p} \pm \mathbf{g}}{\mathcal{C}_{\mathbf{w}}} = 0.04 \pm \mathbf{G}$$

(h) $\frac{\lambda_{\mathbf{p}}}{\lambda_{\mathbf{g}}} = 10.5 \pm 0.076 \pm \mathbf{N}_{\mathbf{p}\mathbf{r}} \pm \left[\frac{4 \pm \mathbf{G}}{\mu \pm \mathbf{a}_{\mathbf{v}}}\right]$
 $\frac{\mathcal{C}_{\mathbf{w}} \pm \mathbf{p}_{\mathbf{p}}}{\lambda_{\mathbf{g}}} = 0.155 \pm \mathbf{N}_{\mathbf{p}\mathbf{r}}^{1/3} \pm \left[\frac{4 \pm \mathbf{G}}{\mu \pm \mathbf{a}_{\mathbf{v}}}\right]^{0.75}$
(i) $\frac{\lambda_{\mathbf{p}}}{\lambda_{\mathbf{g}}} = 1.23 \pm \left[\frac{\mathbf{G} \pm \sqrt{\mathbf{a}_{\mathbf{p}}}}{\mu}\right]^{0.43}; \text{ fara corectie pt.}$
(j) $\frac{\lambda_{\mathbf{p}}}{\lambda_{\mathbf{g}}} = \frac{\lambda_{\mathbf{p}} \mathbf{0}}{\lambda_{\mathbf{g}}} \pm 0.10 \pm (\mathbf{a}_{\mathbf{p}} \pm \mathbf{D}_{\mathbf{t}})^{0.5} \pm \left[\frac{\mathbf{G}}{\mu \pm \mathbf{a}_{\mathbf{v}}}\right]^{0.69}$
(k) Graficul in lucrare ptr. $\mathbf{N}_{\mathbf{p}\mathbf{e}}$ si $\mathbf{N}_{\mathbf{R}\mathbf{e}}$

Tabelul nr.7) Date despre coeficientul de transfer caldura solid-gaz $\alpha(W/mpK)$ sau $\alpha_v(W/mcK)$ in paturi catalitice

	Hetola Ja	T#		PAF	TICU	LE	TUB	URI	(##)	<u> </u>	
AUTORI	Masurare	sâu R*	Gazul	Mate- rial	Forma	Dp	D _t , ma	L,n	Porwul: Dp.Dt (n)	N _{Re} ,etc	Observatii
[142]	Transf. de caldura nestational	R	Aer Gaze arse	Fier Carbune	granule	4-70	150-230	0,5-1	(a)	G 2300 1a 9200	· · · · · · · · · · · · · · · · · · ·
[143]	- 11 -	R	Aer	Pietre granit	granule	8-34	cca 300 supraf.	0,9	(b)	G 300 la 1600	
[144]	- 11 -	R	Aer	Sticla otel plumb	sfere	1,6-6,4	50-200	0,09-0,34	(c)	G 2670 la 5340	Corectat astfel ^{Cl} u=0,152¥(G/D _p)
[145] [146]	- 11 -	R	Aer	otel samota cupru	sfere cilind. granule	2,7		0,01-0,25	(1)	viteza gaz(n/s) 0,7-2	
[147]	variatie ciclica		Aer	Sticla	sfere	3,6		0,05	(e)	100 la 1000	
[148]	- 11 -		Aer	Pietris	inele raschig	5-17	350		(f)	130 la 2000	A variaza de la 0,59 la 0,713 , vezi Glasser 1938.
[149]	uscare		Aer	celita poroasa	sfere cilind.	2-19			(g)	350 la 4000	
[150]	- 11 -		Aer	celita poroasa	cilind.	2 -19			(h)	50-350	
[151]	- 11 -		Aer	Kissler- gur poros	inele raschig sei Berl	6-50			(g)	100 la 2000 70-3000	
[152]	Incalzire dielectrica		Aer	plastic	sfere	0,1-0,7	38		(i)	H8	
[153]	Descompu - nerea H ₂ 0 ₂		vapori de H20 si H505	cataliz	sfere	5	47-75	0,024	(j)	15-160	

##) Formule de literatura

#) I - inclazire

R - racire

(c) Grafic in lucrare

(d) Grafic cu :

$$\frac{\alpha \mathbf{x}_{\mathbf{p}}}{\lambda_{\mathbf{g}}} = 0.24 \mathbf{x} \left[\frac{\mathbf{p}_{\mathbf{p}} \mathbf{x}_{\mathbf{G}}}{\mu} \right]^{0.83}$$

(e) Grafic in lucrare

(j) Grafic in lucrare

(i)
$$\dot{J}_{h} = 0.992 \# \left[\frac{D_{p} \# G}{\mu} \right]^{-0.3}$$

(34)

BU

(i)
$$j_{h} = 1,148 * \left[\frac{G^{*} \sqrt{a_{p}}}{\mu} \right]^{-0,41}$$
; $j_{h} = 0,920 * \left[\frac{G^{*} \sqrt{a_{p}}}{\mu} \right]^{-0,34}$

(f) $\frac{C_{\lambda} \neq \mathbf{D}_{\mathbf{p}}}{\lambda_{\alpha}} = A^{\alpha} \left[\frac{\mathbf{D}_{\mathbf{p}} \neq \mathbf{G}}{\mu} \right]^{U_{\lambda} \in \mathbf{I}}$

(g) $\dot{J}_{h} = \frac{\alpha}{G^{\pm}c_{p}} \pm N_{Pr}^{2/3} = 1.064 \pm \left[\frac{D_{p} + G}{\mu}\right]^{-0.41}$

(b) $j_h = \frac{C_b}{C_{\pi n}} = \frac{N_{P_n}^{2/3}}{1.96\pi} = 1.96\pi \left[\frac{p_p + G}{\mu} \right]^{-10.51}$

<u>34.1 e)Coeficientul de transfer caldura solid-gaz (a)</u>

In tabelul nr. 7 sint redate datele existente pentru coeficientul de transfer caldura in straturi cu umplutura . Unele valori sint raportate la suprafata $\alpha(W/mp*K)$, iar altele la volum $\alpha_v(W/mc*K)$. In majoritatea cazurilor α este determinat din experimentari in regim nestationar de transfer de caldura in straturi cu umplutura . Numai cinci autori au efectuat experimentari pentru determinarea lui α in regim stationar, dintre acestia amintim pe Dyakonov si Semenov (1955).

<u>34.2 Calculul transferului de caldura din straturi cu catalizatori</u> <u>dupa Schmith [111],[112] si Kjaer [14]</u>

Pentru proiectarea sau simularea performantelor in exploatarea reactoarelor catalitice cu strat fix de catalizator , pe linga cunoasterea termodinamicii si a cineticii de reactie trebuie sa se cunoasca si legile transferului termic pentru a putea prelua caldura de reactie in cazurile reactiilor exoterme sau a o ceda in cazul reactiilor endoterme . Acest transfer de caldura trebuie efectuat insusi in stratul de catalizator pentru a realiza un regim de lucru cit mai izoterm , optimizind astfel performantele catalizatorilor functie de termodinamica si cinetica de reactie .

De aceea proiectarea reactoarelor catalitice implica rezolvarea concomitenta a ecuatiei diferentiale de bilant de masa prin cinetica de reactie si ecuatia diferentiala de bilant termic prin termodinamica si transfer de caldura. Dupa W.Hasber, M.Roth, H.Cremer [166] modelarea matematica a unui reactor tubular de tip LURGI cu catalizator in tuburi inconjurate de apa in fierbere se face conform ecuatiilor:

 $U_0 \frac{dc_i}{dz} = -\beta_{j} \sum_{i,j} V_{i,j} \cdot P_{eff,j}$

 $\rho_{\text{gaz}} \cdot U_0 \frac{d \mathbf{h}}{d \mathbf{z}} = -\beta_5 \sum_j V_{1,j} \cdot \mathbf{r}_{\text{eff}} \cdot \Delta \mathbf{H}_j^R - 2 \cdot \frac{\mathbf{K}_0}{\mathbf{r}_{\text{rotev}}} \cdot (\mathbf{I} - \mathbf{I}_k)$ (35)

in care : U_n - viteza la teava goala (m/sec) C_i = n_i / v n; - flux molar (kmol/sec) v - flux volumic (m^3/sec) $A_{\rm s}$ - densitate de umplere catalizator (kg/m³) $u_{i,i}$ - coeficient stochiometric $r_{
m effi}$ - viteza de reactie efectiva pentru reactia nr. j (kmol/kq×h) ρ_{gaz} densitate gaz (kg/m³) h - entalpie specifica (kJ/kg) ΔH_i^{R} - entalpie de reactie molara (MJ/kmol) K_{W} - coeficient de transfer caldura catalizator/apa (W/m^{2} x°K) r_{moteu} raza tevii (mm) I - temperatura gaz (°K) ι - temperatura apa (°K) In timp ce relatiile de transfer de caldura , in absenta

In timp ce relative de transfer de caldura , in absenta particulelor de catalizator , sint relativ simple devenind din legile lui NEWTON convectie , legea lui FOURIER pentru conductie si STEFAN-BOLZMANN pentru radiatie , in prezenta particulelor de catalizator transferul de caldura este mai complex continind si conductie si radiatie si convectie.

Datele de literatura de specialitate , desi multe , sint si contradictorii si studiaza in special transferul de caldura de la catalizatorul aflat in tevi subtiri la peretele tubului aflat la temperatura constanta cum e cazul la sinteza anhidridei ftalice , maleice , etc. In acest caz (vezi fig.nr.3) reactantii circula axial de sus in jos prin tuburile umplute cu catalizator cedind caldura prin peretii tuburilor catre lichidul de racire. In acest caz profilul axial si radial se vede in figura 3b) si 3a).

in care :

A - tub din otel ;

B - stratul de catalizator din tub ;

C si D - strat de material inert ;

E - lichid la temperatura constanta t_{Π} .

Caldura transferata prin peretele tevii va fi atunci data de ecuatia :

 $Q = K \times S \times (TCAT - TMED)$ sau $Q = K \times S \times (t - t_{\Pi})$ (16)

in care :

Q - caldura transferata (W/h);

S - suprafata laterala a unui metru de teava (m^2) ;

TCAT - temperatura medie catalizator pe sectiunea transversala a tubului (°C) ;

TMED - temperatura mediului din jurul tubului (°C);

K - coeficient total de transfer de caldura intre gazul ce circula prin stratul catalitic si mediul de racire in reactiile exoterme sau mediul de incalzire si reactiile endoterme ($W/mp \times K$).

In figura nr. 3 se vede ca profilul transversal de temperatura prin stratul de catalizator consta din doua parti : una sub forma parabolica in interiorul catalizatorului cu punctul maxim in axa tevii si o cadere brusca la stratul de catalizator de linga peretele tubului Curba din interiorul tubului este controlata de asa numita conductivitate termica efectiva a stratului de catalizator (Keff)iar caderea la perete este in legatura cu coeficientul de transfer prin filmul la peretele tevii (α_c) [14],[109] . Deci pentru a obtine coeficientul partial de transfer de caldura de la patul catalitic la peretele interior al tevii (Hcat) se procedeaza conform relatiei :

$$\frac{1}{\alpha_{c}} = \frac{1}{\alpha_{c}} + \frac{DEQ}{8\times\lambda_{eff}} + F.F.$$
 (36)

unde :

Hcat - coeficient partial de transfer caldura (W/mp%K)

F.F. - fouling factor - factor de murdarire $(mp \times K/W)$

Coeficientul total de transfer de caldura K intre gazul ce reactioneaza si mediul de racire conform [110] se calculeaza cu relatia:

$$K = \frac{1}{\frac{1}{\Lambda_{H_20}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_c}}$$
(37)

in care :

 Δ_{H_20} - coeficient partial de transfer de la peretele exterior al tevii la mediul de racire (W/mp×K);

 λ - conductivitatea termica a peretelui tevii (W/m×K);

δ - grosimea peretilor tevii (m);

 α_c - coeficientul partial de transfer caldura din stratul catalitic la peretele interior al tevii de racire (W/mpXK).

<u>34.2.a) Calculul conductivitatii termice efective (λ_{eff})</u>

Calculul conductivitatii termice efective (λ_{eff} - W / m×K) a stratului fix de catalizator se face dupa metoda lui I.M. Smith descrisa in lucrarile [111],[112] . Dupa aceasta metoda $\lambda_{ ext{eff}}$ se determina prin insumarea a patru termeni : $\lambda eff = \lambda turb + \lambda_{mol} + \lambda_{rad} + \lambda_{ser}$ (38)unde : λ turb – este partea pentru turbulenta a conductivitatii si reprezinta principala parte a lui λ_{eff} ; λ_{mol} – este partea moleculara care uzual se neglijeaza ; λ_{rad} - este asa numitul termen pentru radiatie a lui λ_{eff} ; λ_{ser} - este asa numitul termen pentru serie a lui λ_{eff} . 5**e** determina indirect prin utilizarea numarului λturb adimesional Peclet sub forma : $N_{Pe} = \frac{Dcat \times G \times C_P}{\lambda_{turb}}$ (39)in care : Dcat - este diametrul echivalent al particulei de catalizator definit ca diametrul sferei cu acelasi volum (m); - viteza masica a gazului ce trece prin stratul de G catalizator ; – caldura specifica pe baza masica pentru gazul ce Ср traverseaza patul catalitic (J/kg×K). $G = \frac{FLOW \times MW}{AREA}$ (40) unde : FLOW - debitul de gaz (kg×mol/h); MW - greutatea moleculara medie (kg/kg*mol); AREA - $\overline{sectiunea}$ transversala (m²). $C_{P} = C_{P}/MW$ (41) rezulta : $\lambda_{\text{turb}} = F_1 \times \frac{\text{Dcat} \times G \times Cp}{N_{\text{D}}}$ (42)unde : F1 - factor de corectie experimental determinat. Formula de determinare a lui Npe se ia dupa Singer and Wilhelm [113]: $N_{P_{e}} = (20.9 \times (\ln(N_{R_{e}}) + 10.0 \times Y - 7.82)^{2} + 116) \times Y + 7.4$ (43) in care Y este raportul intre diametrul echivalent al particulei de diametrul echivalent al tubului din stratul de catalizator 5i catalizator : $Y = \frac{Dcat}{DEQ}$ (44)

BUPT

pag. 22

Daca este un singur tub DEQ este egal cu diametrul interior al tubului . Altfel el se calculeaza ca fiind de patru ori sectiunea transversala efectiva impartita prin perimetrul udat .

Numarul Reynolds se calculeaza astfel :

$$N_{Re}$$
 = (G × Dcat) / MY (45)

unde :

MY - viscozitatea gazului (kg/m×s).

$$Kmol = \lambda \times VOID$$
(46)

unde :

VOID - fractie de gol in patul catalitic ;

 λ – conductivitatea termica a gazului (W/m×K) . Pentru partea de radiatie [111] :

 $\lambda_{rad} = F_2 \times 19,84 \times 10^{-8} \times EMIS/(2-EMIS) \times Dcat \times TK^3 \times VOID$ (47) unde :

EMIS - factorul de emisivitate al catalizatorului (EMIS=1 pentru corpul negru) ;

TK – temperatura absoluta a suprafetei catalizatorului (°K) De obicei aceasta temperatura se ia egala cu temperatura in valoare absoluta a gazului.

 λ_{ser} dupa acceasi publicatie [111] este transferul intre particulele de catalizator prin conductie , convectie si radiatie :

$$\lambda_{ser} = \lambda_{part} \times (1-VOID) \times \frac{0.5 \times Hsurf \times Dcat + \lambda_{rad} / VOID + \lambda_{cont}}{0.5 \times Hsurf \times Dcat + \lambda_{part}}$$
(48)

in care :

 λ_{part} - conductivitatea termica a materialului catalitic

(W/m×K) $\lambda_{\rm cont}$ - contributia contactului dintre particule din $\lambda_{\rm eff}$ si se calculeaza astfel :

$$\lambda_{cont} = exp(-3,66 + 0,01997 \times \lambda_{part} / VOID)$$
 (49)

Hsurf - se calculeaza dupa formula data de [117] si [118] :

 $Hsurf = F_{3} \times A \times G \times C_{p} \times N_{Pr}^{-2/3} \times N_{Re}^{B} ; A,B = f(N_{Re})$ (50) $N_{Re} = 350 \div 4000 \qquad A = 1,064 \qquad B = -0,41$ $N_{Re} = 50 \div 350 \qquad A = 1,96 \qquad B = -0,51$ $N_{Pr} = C_{p} \times MY / \lambda_{g}$ (51)

unde :

 $\lambda_{\mathbf{q}}$ - conductivitatea gazului (W/m×K).

 λ_{eff} este in general util la paturile catalitice fixe cu diametre mari unde apare un gradient termic radial insemnat si diferenta de temperatura intre axa patului catalitic si peretele inconjurator devine importanta .

pag. 24 34.2.b) Calculul coeficientului partial de transfer in filmul de la perete Hwc a_ a_ α_m $\alpha_{c} = \alpha_{cr} + \alpha_{cc}$ (W/mp×K) (52)

unde :

a, - partea de radiatie a filmului la peretele tevii ;

$$\alpha_{cr} = F_4 \times 2,48 \times 10^{-8} \times EMIS/(2-EMIS) \times (TK+TWA)^3$$
 (53)
TWA - temperatura absoluta a peretelui (°K);

TWA = TW + 273.16

an – este partea de convectie a filmului la perete :

$$a_{\infty} = F_5 \times 0.155 \times G \times C_P \times N_{Pr}^{-2/3} \times N_{Re}^{-0.25}$$
 (54)

<u>34.2.c) Calculul coeficientului de transfer la peretele tevii din partea</u> <u>mediului de racire</u> a₁

Cum de cele mai multe ori , si in special la reactoarele de sinteza metanolului , mediul de racire este apa in fierbere in recirculatie naturala (termosifon) .

 $\alpha_{\rm H,0}$ se calculeaza astfel :

Pentru apa in fierbere in regim de bule si recirculatie naturala la presiuni intre 0,2 si 100 ata [110] se dau relatiile :

$$\alpha_{H_20} = \frac{3.4 * p^{0.18}}{1 - 0.0045 * p} = \frac{2/3}{1 - 0.0045 * p}$$
(W/mp×K) (55)

sau

 $\alpha_{H_20} = \frac{b^3 * \lambda^3}{\gamma * \tau * T_{\text{fierb}}} * \Delta \tau^2 \qquad (W/mp * K)$ (56)iar b = 0,075#[1+10#(բ/բ_)^{-2/3}] in care : P - presiunea aburului (ata) $\Delta t = t_p - t_e$ (°C)

q - incarcarea termica specifica (W/mp)

Cum presiunea aburului ce se formeaza la sinteza metanolului variaza intre 30 si 50 bari si \triangle t - ul intre 10 si 15 °C valoarea lui $\alpha_{\rm H,0}$ este de 20 - 35 ori mai mare ca $\alpha_{\rm cat}$, coeficientul de transfer pë partea gazului ce reactioneaza cu catalizatorul.

CAPITOLUL 4

Reactoare de sinteza

Reactorul de sinteza este utilajul conducator in procesul de sinteza metanolului iar principalele procedee de sinteza difera prin constructia lui . Indicatorii tehnico-economici ai procedeelor sint in mare masura determinati de regimul de functionare a reactorului de sinteza si din acest punct de vedere multitudinea de reactoare existente se pot clasifica in doua :

1. Reactoare cu regim adiabatic de functionare , a carui tip reprezentativ este reactorul QUENCHE I.C.I.

2. Reactoare cu regim de functionare cvasiizoterm, care sint reprezentate de reactorul tubular LURGI.

In productia mondiala actuala de metanol cca. 60% sint reactoare de tip I.C.I. si 40% sint reactoare de tip LURGI. Reactoarele de tip QUENCHE - I.C.I. s-au construit pina in prezent pina la capacitati de 2500 to/zi pe cind cele izoterme de tip LURGI pina la maximum 1800 to/zi pe o unitate. De aceea la alegerea reactorului de sinteza pe linga indicatorii tehnico-economici trebuie sa se tina seama si de dificultatile constructive , costul investitiei si capacitatea realizabila pe aparat.

<u>&4.1 Reactoare de sinteza cu</u> <u>functionare adiabata</u>

Prima generatie de reactoare cu functionare adiabata o reprezinta reactorul de sinteza de tip I.C.I. cu "quenche" rece realizat pentru prima data de firma Imperral Chemicals Industries - ANGLIA la Billingham in 1966-1967. Acest tip de reactor de sinteza este utilizat si la noi in tara la cele doua fabrici de metanol de 200.000 to/an la VIROMET- VICTORIA si DOLJCHIM - CRAIOVA.

In figura nr.4 este ilustrata o sectiune printr-un reactor de tip I.C.I. compus dintr-o manta cilindrica verticala, rezistenta la presiune si temperatura de lucru in care se gaseste un singur strat de catalizator strabatut la intervale egale sau inegale de o retea de distributie de gaz rece, menite sa amestece gazul cald ce coboara de sus in jos prin stratul de catalizator cu gaz rece astfel ca maximele de temperatura din strat sa nu depaseasca temperatura admisibila a catalizatorului de cupru. Acest amestec se executa in dispozitive cu sectiune rombica asezate in sectiune orizontala si acoperite cu o placa de protectie pentru a nu permite patrunderea catalizatorului in distribuitor (vezi figura nr.5). In acest fel in lungul stratului de catalizator se creaza un profil de temperatura cu aspect de fierastrau(vezi figura nr.6).

Catalizatorul este asezat pe un strat de bile ceramice inerte. Umplerea si golirea catalizatorului este simpla. Temperatura in stratul de catalizator variaza intre 210 si 280 °C, la catalizatori noi intre 220 si 250 °C iar catalizatori vechi (uzati) intre 250 si 275 °C. Avantajele acestui tip de reactor constau in simplitatea constructiva si posibilitatea construirii lui pina la capacitati de 3000 to/zi [96], iar ca dezavantaje principale enumeram :

- randament de conversie la o trecere mic ;

– necesita grad de recirculatie mare (6–10) pentru a asigura stabilitatea in functionare ;

- caldura de reactie nu poate fi recuperata decit partial prin "quenche" cald si recuperare in afara reactorului sub forma de abur cu presiune intre 4 si 8 bari [97] .

In contrast cu reactorul adiabat I.C.I cu "quenche", au aparut alte reactoare adiabate in care caldura de reactie se recupereaza prin schimb de caldura in exteriorul stratului catalitic. Firma Haldor Topsoe din DANEMARCA intre 1973 si 1975 lanseaza reactorul adiabat cu curgere radiala inseriind doua sau trei reactoare prevazute cu racire indirecta intermediar [99],[106],[107].

In figura nr.7 este ilustrat un reactor de sinteza radial adiabat de tip Topsoe iar in figura nr.8 este ilustrata curba de functionare a trei reactoare radiale de tip Topsoe AS. Si acest procedeu se preteaza pentru constructii de instalatii pina la 3000 - 5000 to/zi intr-o singura linie de fabricatie.

Firma Kellogg (SUA) pune in functiune in anul 1988 in America de Sud (CHILE) la Punta de Arenas o instalatie de 2500 to/zi metanol folosind reactoare sferice cu flux axial inseriate. Instalatia cuprinde patru reactoare sferice (din patru straturi de catalizator) iar intre ele sint schimbatoare de caldura indirecte pentru racirea gazului la iesirea din fiecare strat cu valorificarea caldurii de reactie pentru preincalzirea apei de alimentare cazan de inalta presiune.

fig. nr. 8) Curba de lucru a trei reactoare radiale TOPSOE S.A.

BUPT

AMMONIA-CASALE S.A. a realizat un reactor de sinteza mixt (radial si axial) cu functionare adiabata (vezi figura nr.9) si cu "quenche" . El a fost initial elaborat pentru amoniac si inlatura dezavantajul reactoarelor cu flux radial pur prin inlaturarea etansarii la partea superioara a cutiei catalitice . Acest reactor a scazut consumul de energie pentru recirculare cu 25% Ca perfectionare ulterioara acestui а reactor este inlocuirea "quenche"-ului cu racirea indirecta exterioara a coloanei de sinteza sau chiar cu schimbatoare de caldura introduse axial intre straturile de catalizator [108] .

<u>&4.2 Reactoare de sinteza cu regim de</u> <u>lucru cvasiizoterm</u>

Acest tip de reactoare care in prezent cuprind circa 30% din piata mondiala a metanolului au fost introduse in anul 1970 de firma LURGI – GERMANIA prin reactorul tubular inspirat de procedeul Fischer - Tropsch de sinteza benzinelor [101] . Catalizatorul este amplasat in tuburi racite cu un contracurent realizat printr-un termosifon de apa in fierbere , temperatura fiind reglata prin reglarea presiunii aburului generat (vezi figura nr.10) . Curba de functionare a catalizatorului in reactorul LURGI este ilustrata in figura nr.11 . Dupa cum se vede in figura nr.11 temperatura de iesire a fluxului gazos din teava reactorului este foarte apropiata de temperatura mediului de racire ceea ce permite o deplasare favorabila a echilibrului si deci o crestere substantiala , dublare , a conversiei oxizilor de carbon la o trecere, deci o scadere aproape la fel de mare a raportului de recirculare . Operarea unui astfel de reactor , in comparatie cu reactorul "quenche" I.C.I. , este mult mai usoara . Pornirea sau repornirea dupa intreruperi de fabricatie dureaza de putin in comparatie cu circa 10 ori mai reactorul I.C.I. Productivitatile realizate cu reactoare LURGI sint de aproximativ 1Kg metanol/litru catalizator ora , concentratia metanolului la iesirea din reactor variaza intre 5,8 si 7,5% functie de tipul gazului de sinteza si presiunea de lucru.

Toate acestea au ca efect un consum de gaz natural cu 6-7% 'mai mic decit la procedeul I.C.I. in aceleasi conditii de functionare. Aburul generat direct de reactorul LURGI reprezinta 24 Gj/t×ora sau 1 tona abur / 1 tona metanol. Eficienta termica a buclei de sinteza metanolului la reactorul LURGI exprimata ca raportul dintre entalpia de formare a metanolului produs si a gazului de sinteza este de 75%, iar daca se tine cont si de aburul produs, gazul de purja pentru combustie ea se ridica la 95%.

Ca replica la reactorul izoterm tubular LURGI, apare in anii 1970 superconvertorul firmei MITSUBISHI-JAPONIA ca reactor izoterm cu catalizatorul in spatiul inelar in partea a doua a tubului de racire (vezi figura nr. 12)[104],[105]. Tubul interior realizeaza schimbul de caldura intre reactantii ce se preincalzesc si gazele ce reactioneaza in catalizator si tubul exterior inconjurat cu apa in fierbere, care la fel preia caldura de reactie. Deci caldura de reactie este folosita si la preincalzire reactanti si la generare abur. Fluxul este tot axial si schimbul de caldura in contracurent, ca la reactorul LURGI, cu alte cuvinte schimbatoarele de caldura gaz-gaz s-au introdus in reactor.

Acest tip de reactor initial a fost proiectat sa lucreze la 150 bari dar in final el a fost operat satisfacator la 100 bari. Acest aranjament tubular de fapt determina o subracire a catalizatorului, obtinind o apropiere mai buna fata de echilibru la temperaturi de circa 200°C ceea ce realizeaza concentratii de metanol la iesirea din reactor de pina la 14% (vezi figura nr. 13). Dar acest lucru, ca efect nefavorabil, a determinat necesitatea lungirii tevilor la 20m, ceea ce determina o constructie costisitoare si dificila a reactorului. Un alt dezavantaj fata de sistemul LURGI este umplerea si golirea mai greoaie a catalizatorului aflat in spatiul inelar dintre cele doua tuburi.

Un efect similar cu superconvertorul MITSUBISHI il obtine LURGI prin perfectionarea reactorului sau tubular intrducind la circa 80cm de placa inferioara tubulara, in spatiul intertubular, o placa despartitoare obtinind astfel o zona de subracire a partii inferioare a catalizatorului (vezi figura nr. 14) cu urmatoarele consecinte [167]:

– cresterea procentajului de metanol la iesirea din catalizator , deci omai buna apropiere de echilibru ;

- posibilitatea de a obtine abur cu presiune mai ridicata (50-60bari) mai eficient din punct de vedere energetic .

Cautind sa elimine dezavantajele reactoarelor LURGI si MITSUBISHI, adica o relativ ridicata pierdere de presiune in special la capacitati mari si cu intentia realizarii unor reactoare de capacitati peste 2500 t/zi, fima TOYO ENGINEERING CO - JAPONIA si MITSUI TOATSY CHEMICAL ofera reactorul radial cu racire indirecta si generare abur (vezi figura nr. 15) [103],[168]. Se pare ca in prezent se construieste si se ofera de TEC impreuna cu ICI un astfel de reactor.

Din punct de vedere mecanic realizarea acestui reactor este foarte dificila si necesita utilizarea de compensatoare de dilatatie la iesirea aburului din reactor cit si la intrarea conductelor de alimentatre cu apa a cazanului . La fel mentinerea distantei intre tevile si ecranele fierbatoare este dificila.

O solutie constructiva foarte interesanta realizata tehnic de firma LINDE-GERMANIA, care poseda o mare experienta industriala in schimbatoarele de caldura cu serpentine introduse in vase cilindrice cu umpluturi , o reprezinta reactorul de sinteza metanolului cu serpentine infasurate intre doua colectoare sferice , inferioara si superioara , si cu circulatie axiala a gazului de reactie [169],[170]. Procedeul mai prevede si o variere longitudinala a pasului intre serpentine la cinetica de reactie (vezi figura nr. 16). Doua astel de reactoare functioneaza pina in prezent , unul in SUA , unde a inlocuit un reactor ICI , si unul la BASF unde sintetizeaza metanol din gaze reziduale obtinute de la procesul de fabricatie acetilena . Capacitatea

acestui reactor este de 720 to/zi si poate functiona pina la o incarcare de 160 % .

Firma I.C.I. la nivelul anului 1990 ofera un procedeu imbunatatit la baza caruia sta un reactor izoterm tubular, cu flux axial, in care catalizatorul se afla in exteriorul tuburilor. Schimbul de caldura este de tip gaz-gaz ca la reactoarele de amoniac TEC, NEC sau Ammonia Casale. Caldura de reactie se recupereaza in exteriorul reactorului din fluxul efluentului (vezi figura nr.17) [171],[172]. La fel la nivelul anului 1990 firma I.C.I. ofera si un reactor izoterm generator de abur cu circulatie transversala. Acest tip de reactor se bazeaza tot pe principiul schimbului de caldura in curent incrucisat (vezi figura nr.18). La realizarea acestui reactor I.C.I. conlucreaza cu firma Toyo-Engineering.

CAPITOLUL

Analiza comparativa a principalelor procedee si a indicatorilor tehnico economici de proces la sinteza metanolului Metanolul este produs in mod curent pe scara industriala prin conversia catalitica a gazului de sinteza . Procesul se clasifica dupa presiunea practicata in faza de sinteza astfel :

1.	Procese	de	inalta	presiune	25	la	30	MPa	;
2.	Procese	de	medie	presiune	10	la	25	MPa	;
3.	Procese	de	joasa	presiune	05	la	10	MPa	

In prezent pe plan mondial se practica aproape in exclusivitate procesul de sinteza la joasa presiune . Acesta prezinta avantajul unor investitii si costuri de productie joase , o operabilitate usoara si mare flexibilitate in alegerea marimii instalatiilor .

Procesul industrial al sintezei metanolului cuprinde trei verigi principale :

1. Producerea gazului de sinteza ;

- 2. Sinteza metanolului ;
- 3. Distilarea metanolului brut .

<u>&5.1 Producerea gazului de sinteza</u>

Ca materii prime pentru producerea gazului de sinteza pot fi utilizate toate materialele ce contin carbon ca : carbune , cocs , gaz natural , benzine sau fractii obtinute din titei (nafta,pacura, motorina, gazolina,etc.) . Pretul lor in cele mai multe cazuri determina alegerea lor ca materii prime . Se mai tine cont de disponibilitatea pe termen lung , consumuri energetice si aspecte ecologice .

In general se foloseste gazul natural ca materie prima pentru sinteza metanolului . Mai sint unele procese ce genereaza gaze reziduale cu o compozitie asemanatoare celei necesare sintezei metanolului (de exemplu : fabricarea acetilenei) si care pot fi folosite pentru sinteza metanolului . Gazul de sinteza se caracterizeaza prin numarul stochiometric S :

$$S = \frac{[H_2] - [CO_2]}{[CO] + [CO_2]}$$

unde concentratiile sint exprimate in procente volumice. Numarul S optim este 2 sau cit mai apropiat de 2. Obtinerea gazului de sinteza din gaz natural se face prin procedeul de reformare cu abur "Steam reforming" sau prin oxidare partiala.

In reformer , gazul natural este reformat in prezenta de abur sau abur si CO_2 conform reactiilor : (vezi figura nr.19)

fig. 19)Procesul de producere a gazelor de sinteza

Catalizatorul este oxid de nichel depus pe alumina, care este amplasat in tuburi de otel inalt aliat ce se afla intr-un focar fiind incalzite in exterior prin arderea unei parti din gazul natural deoarece reactia este puternic endoterma . (vezi Ullmann's Encyclopedia of Industrial Chemistry A12 pg. 186-196 ; 287-289).

La oxidarea partiala , cracarea are loc fara catalizator , caldura de reactie este generata prin oxidarea directa a unei parti din materia prima cu oxigen . (vezi Ullmann's A12 pg. 206-213) .

Exista si procedee care inseriaza reformarea primara cu o reformare secundara (oxidare partiala) asa cum se practica si la sinteza amoniacului , cu deosebirea ca in reformarea secundara se utilizeaza oxigen in loc de aer . O varianta recenta cu consumuri energetice reduse cracheaza circa 50% de gaz metan prin reformare iar cealalta jumatate in amestec cu efluentul de la reformer este apoi cracata cu oxigen intr-un reformer de oxidare partiala [95].

Cea mai recenta realizare ce se va industrializa abia la m(jlocul anului 1992 este CAR (Combined Autothermal Reforming) al firmei UHDE- GERMANIA, care realizeaza intr-un singur utilaj cracarea partiala si reformarea cu abur, fiind din punct de vedere al efortului de investitie cea mai economica solutie [173],[174].

Hidrocarburile grele (spre exemplu : gazul petrolier lichefiat , gazul rezidual de rafinarie si nafta) sint si ele utilizate la producerea gazului de sinteza prin "Steam reforming" (vezi Ullmann's A12 pg. 187-188). Titeiul , pacura , asfaltul pot fi si ele transformate in gaz de sinteza , dar mult mai greu (vezi Ullmann's A12 pg. 204-205). Continutul lor de sulf este foarte ridicat si trebuie mai intii purificate . Gazul de sinteza contine oxizi de carbon in exces si ca atare mai intii trebuie supus conversiei CO la CO₂ si la spalarea partiala a CO₂-ului din gaz .

Carbunele poate fi convertit in gaz de sinteza cu abur si oxigen printr-o varietate mare de procedee la diferite presiuni (0,5 -8 MPa) [175] . Gazul de sinteza trebuie desulfurizat si supus conversiei

pag. 44 pentru a obtine cifra stochiometrica necesara sintezei metanolului . &5.2 Sinteza metanolului Reactiile principale de sinteza conform ecuatiilor (1) la (3) au fost discutate la capitolul 3-Termodinamica reactiilor de sinteza metanolului . La o singura trecere peste catalizatorul de sinteza conversia poate fi realizata pina la circa 50% deoarece termodinamic echilibrul este atins . De aceea dupa condensarea metanolului si a apei formate gazul de sinteza ramas neconvertit este reciclat la reactorul de sinteza . 0 schema simplificata pentru sinteza metanolului se vede in figura numarul 20 . Legenda : a - Reactor b - Schimbator de caldura c - Condensator . Abur d - Separator e - Compresor de reciclare a f - Compresor de gaz proaspat Apa e b Gaz proaspat Reciclare gaz

fig.nr.20) Sinteza metanolului

Gaz de purja

Gazul de sinteza proaspat este comprimat la presiunea de 5-10 MPa cu ajutorul compresorului centrifugal multietajat (f) . Gazul adaugat inaintea recirculatorului (e) . Un 'nereactionat este schimbator de caldura (b) transfera energia de la gazul fierbinte ce iese din reactor la gazul ce intra in reactorul de sinteza (a) . Formarea exoterma de metanol are loc la temperaturi de 200-300 °C . Caldura de reactie poate fi preluata in una sau mai multe trepte . Amestecul reactionat este apoi racit in (c) dupa ce trece prin (b) ; caldura de condensare a metanolului poate fi apoi utilizata in alta parte a procesului . Metanolul brut este separat din gaz in separatorul (d) si expandat inainte de a fi distilat . Gazul din

_{∋⊷} CH_AOH

separator este dirijat spre recirculator (e) . Inainte de recirculator este extrasa purja care are o compozitie functie de nivelul de gaze inerte continute in gazul proaspat si de numarul stochiometric S .

Gazul de purja este utilizat pentru combustie la reformare. Daca este nevoie de hidrogen pentru ajustarea cifrei S el poate fi extras din purja pe diverse cai (spre exemplu prin P.S.A.).

Diversele procese industriale difera numai prin constructia reactorului de sinteza asa cum s-a aratat in &4.1 si &4.2. Cele doua procedee de baza ce predomina in proportia de 60% respectiv 30% din piata mondiala sint procedeul I.C.I. (vezi figura nr.21) si respectiv procedeul LURGI (vezi figura nr.22).

BUPT

trepte . Intii toti componentii cu punct de fierbere mai mic decit cel al metanolului sint eliminate cu capul de distilare (fractia usoara) . Metanolul pur este atunci distilat in una sau mai multe coloane de distilare (vezi figura nr.21 si nr.22) . Daca coloanele lucreaza la presiuni diferite , caldura de condensare a vaporilor unei coloane la presiune ridicata poate servi la incalzirea unei coloane ce lucreaza la presiune joasa .

<u>&54 Analiza comparativa a indicatorilor</u> <u>tehnico-economici a diverselor procese tehnologi</u> <u>ce de fabricarea metanolului .</u>

Indicatorii tehnico-economici prin consumurile specifice ne permit sa realizam compararea eficientei totale a procedeului, ele fiind produsul randamentelor la cele trei verigi de baza ale fabricatiei metanolului : cracarea, sinteza si distilarea. Deoarece consumurile principale (hidrocarbura, energie) pot fi transformate toate in T.C.C. (tone combustibil conventional) ele pot fi aditionate ajungind la o cifra mica ce exprima eficienta energetica a intregului procedeu.

Pentru transformari s-au folosit urmatoarele relatii :

1 T.C.C = 7 \times 106 kcal = 7 Gcal Gaz metan : 1,15 TCC/1000 m³ CH4 = 8,05 Gcal Energie electrica : 0,380 TCC/Mwh Apa racire : 0,095 TCC/1000 m³ apa Abur joasa presiune : 0,142857 TCC/Gcal

 $G_{J} \times 0,239 = 1$ Gcal

54.1) Procedee ale firmei UHDE-GERMANIA pe baza de gaz metan

Diferentierea consumurilor specifice se datoreaza procedeului de preparare gaz - sinteza .

	Varianta modului de preparare a gazului de sinteza 🕺												
inuicatorui	1	2	3	4	5								
Raport abur/CH4	2,4 - 3,0		1,5	1,75	1,5								
Presiune (bari)	50	20	40	40	40								
Temperat. (°C)	860 - 880	860 - 880	780 - 1050	1000	985								
Abur produs (bari)	100	100	60 - 65	60 - 65									
S=[H2] - [CO2] [CO] + [CO2]	2,95	2,1	2,02	1,98	1,77								
Consum 02 (mol/mol*°C)			0,445	0,45	0,584								
Consum CO2 nmc/to		1,76											

					pag. 48
(continuare)					
	1	5	3	4	5
Consumuri spe -					·····
cifice :					
CH ₄ total (<u>GCal</u>) to	7,88	7,37	7,00	7,10	
Export energie	0,14	0,36			
CH ₄ net (<u>Gcal</u>) to	7,74	7,01	7,00	7,10	
Energie electrica (Kw/tona)	0,00	0,00	0,00	0,00	
Apa racire (<u>mc</u>)	80	80	95	100	
Apa demi (<u>mc</u>)	2	1,50	0,50	0,50	
Total Tcc / tona	1,1133	1,00912	1,0090	1,02382	
Investitie milioane DM	260	270	275	aprox. 240	

2 - reformare CH_4 : H_20 : CO_2

3 - reformare combinata

4 - CAR

5 - reformare autoterma

54.2) Procedee ale firmei LURGI - GERMANIA

Metanol din gaz metan :

Indicatorul	Varianta	modului de c	racare a gazul	lui metan		
	1	2	3	4		
Consumuri spe - cifice : CH ₄ : Gj/tona Gcal/tona Nmc/tona : CO ₂ : Nmc/tona	314 7,504 885	29,3 7,00 826 127	29,3 7,00 826	32,6 7,791 919,5		
Energie electrica Kw/tona	0,00	50	20	20		
Apa de racire mc/tona	50	45	120	120		
Total consum energetic (Tcc/to)	1,0767	1,0237	1,0190	1,132		

x) 1 - reformer CH4: H20

2 - reformer CH4: H20: CO2

3 - cracare combinata

4 - cracare autoterma

Evident din punct de vedere energetic procedeul cu cracare combinata este cel mai bun .

54.3) Metanol din alte materii prime

Indicatorul	Materia prima								
	NaftaC/H=5,5	Pacura	Carbune						
Consum materie									
prima proces Gj / tona	21,26	36,8	40,7						
Consum materie prima combustie Gj / tona	8,67								
Energie electrica Kw / tona	0,00	130	0,00						
Apa racire mc / tona	48	75	100						
Total consum energetic Tcc / tona	0,96313	1,250	1,3123						

Cea mai recenta instalatie pusa in functiune in 1988 cu o capacitate de 2500 tone/zi in CHILE (CapeHorn Plant) si proiectata de firma M.W.Kellogg (SUA), pe baza de gaz metan, reformare cu abur, sinteza cu patru reactoare sferice adiabate inseriate si cu racire intermediara realizeaza un consum specific de metan:

CH4 = 26 MMBTU / ST = 7,2638 Gcal = 857 mc / tona metanol

La nivelul anului 1990 toate firmele traditionale constructoare de fabrici de metanol ofereau procedee cu consum total de hidrocarbura de 7,0 Gcal/tona = 1,0 Tcc / tona = 826 Nmc/tona CH4. Dar verificate industrial sint numai procedeele firmei LURGI la capacitati de pina la 1200 tone/zi.

In prezent se cauta solutii pentru reactoare de sinteza care sa poata fi construite intr-o singura linie pina la capacitati de 5000 tone/zi.

Partea II-a cuprinde contributia personala la conceptia , constructia si experimentarea la scara pilot productiv a unui reactor de sinteza metanolului cu flux radial si regim izoterm de lucru . Acest tip de reactor constituie baza modernizarii procedeului existent de fabricarea metanolului , la noi in tara si este in prezent in faza de constructie industriala si aplicare la societatea comerciala VIROMET S. A. - VICTORIA .

Prin realizarea acestui tip de reactor am urmarit realizarea unui utilaj care sa se preteze atit la constructii foarte mari intr-o linie de fabricatie depasind reactorul izoterm LURGI cit si la posibilitatea folosirii sale inseriate datorita diferentei $\triangle p$ -ului mic pe care-l prezinta . Datorita fluxului radial si a regimului de lucru izoterm reactorul poate fi folosit atit individual cit mai ales inseriat adaptindu-se cel mai bine la termodinamica si cinetica de reactie , dind posibilitatea ca in functie de aplicatie sa fie utilizat atit la o singura trecere cit si in bucla de sinteza in regim de recirculatie .

pag. 50

CAPITOLUL

Descrierea reactorului si a instalatiei pilot de sinteza metanolului

<u>&6.1 Caracteristicile mecanice ale reactorului</u> <u>izoterm - radial la scara pilot de la</u> <u>VIROMET</u> SA. [155],[157]

Reactorul izoterm-radial beneficiaza de un transfer termic superior reactoarelor axiale, datorita schimbului de caldura in curent incrucisat, fluxul gazos fiind dirijat radial si perpendicular pe tevile de racire care in cazul reactorului din pilotul productiv sint sub forma de baionete, mediul de racire intrind prin teava centrala vertical in jos si iese prin spatiul inelar de jos in sus (vezi figura nr.23).

Catalizatorul de sinteza se afla intre tevile de racire in spatiul intratubular si delimitat de doua suprafete perforate , una exterioara ce inconjoara tot fascicolul tubular si pe lateral si pe partea inferioara , unde este prevazuta cu doi pantaloni obturati la capat pentru golirea catalizatorului si o suprafata interioara centrala pe axa reactorului care constituie ori intrarea , ori iesirea gazelor . Concentric mantaua cu exterioara perforata este mantaua de rezistenta a reactorului terminata in partea inferioara cu un fund eliptic bombat prvazut cu cele doua stuturi de golire a catalizatorului asezate la 180° una de alta si central cu stutul de evacuare a gazelor reactionate . Mantaua de rezistenta mai are pe lateral , circa la jumatatea inaltimii , tot la 180° defazate doua stuturi pentru intrarea amestecului de reactie. In dreptul stuturilor se afla cite o placa de distributie astfel ca sa realizeze o distributie cit mai uniforma a amestecului de reactie pe mantaua perforata ce constituie cutia catalitica . In acest fel se realizeaza pe toata suprafata laterala a catalizatorului un flux radial uniform . In partea inferioara a cutiei catalitice, practic prin fundul cutiei catalitice deasemenea perforat, se creaza un flux axial-radial caci teava centrala de evacuare a amestecului reactionat nu este gaurita pina jos , in vederea evitarii unui by-pass inferior si crearii unui strat de catalizator cu o rezistenta relativ egala cu cea pur radiala . In partea superioara coloana de sinteza se termina cu o placa tubulara in care sint mandrinate si sudate tecile tevilor baioneta de racire si teava centrala , de umplere cu catalizator , si de crearea unui flux gazos axial care sa determine folosirea integrala a catalizatorului in partea superioara a reactorului . Teava centrala de colectare a amestecului reactionat porneste de sub orificiul central de umplere dar perforatia ei incepe mai jos la fel ca la partea inferioara creind o inchidere hidraulica si un flux mixt axial-radial . Aceasta are si avantajul ca nu este necesara o umplere uniforma cu catalizator ceea ce este si foarte dificil printre tevile reactorului . Placa tubulara mai are pe

circumferinta ei laterala sase guri de umplere distribuite uniform pentru a asigura o umplere cu catalizator cit mai uniforma .

Deasupra placii tubulare , sub forma unui dom cilindric vertical se afla cele doua colectoare-distribuitoare , tur-retur , ale termosifonului cu tevi baioneta . Acest dom este despartit in doua printr-o placa distribuitoare in care sint fixate cu presetupe demontabile tevile baioneta (interioare) prin care intra apa racita si separata din tamburul separator abur , in fiecare teaca de baioneta si se intoarce prin fierbere si termosifon in spatiul inferior al domului de unde prin doua tevi urcatoare , emulsia apa-abur se reintoarce in tambur pentru separarea aburului . Spatiul inferior (apa-abur) este impartit in doua pentru a dirija

Spatiul inferior (apa-abur) este impartit in doua pentru a dirija mai bine cele doua termosifoane si a nu se perturba intre ele . Modul de lucru al ansamblului reactor-tambur separator abur este aratat in figura nr.24 . Dupa cum se vede in tevile de apa-abur urcatoare sint introduse cite-o injectie de abur pentru pornirea termosifonului . Aceasta este necesara mai ales la pornirea instalatiei pentru incalzire , reducerea catalizatorului sau mentinerea calda a coloanei pe timpul opririi reactorului .

Distributia tevilor baioneta in placa tubulara s-a facut prin sistemul hexagonal care asigura o densitate uniforma de distributie a tevilor si obliga fluxul gazos sa foloseasca in intregime suprafata de transfer de caldura, nepermitind pe raza crearea unor canale in care gazul sa nu intilneasca o teava de racire.

Pentru studierea conversiei si transferului termic in coloana de sinteza, in locul uneia din tevile de racire s-a introdus de jos in sus o teaca perforata ce contine concentric un termoelement cu doua puncte de masura pe inaltimea reactorului, facind posibila luarea concomitent de probe pentru analiza din gazul ce traverseaza radial coloana si masurarea temperaturii lui la circa 1/3 si 2/3 din inaltimea stratului de catalizator. Caracteristicile mecanico-constructive ale coloanei izoterm-radiale pilot sint redate in tabelul nr.8 de mai jos, 5.1.1. si 6.1.2:

<u>Tabelul nr.8)</u> Caracteristici tehnice ale coloanei de sinteza izoterma-radiala.

Recipient num Anul fabricati	In tevi	Intre tevi	
Presiunea	Maxim admisibila de lucru	40	50
daN/cm2	De calcul	40	60
(kgf/cm2)	De incercare hidraulica	64	95
	De incercare la etanseitate	64	95
Temperatura	Maxima admisibila de lucru	230	320
(°C)	Minima admisibila de lucru		210
	De calcul	250	350

BUPT

pag. 55 <u>6.1.1.) Materiale de constructie ale coloanei de sinteza izoterm-radiala</u> Teava de racire (baioneta)...... 15 Mog Placa tubulara.....13 Cr Mo 44 Tabla perforata (cutia catalitica).....V2A <u>6.1.2.) Dimensiunile constructive ale coloanei de sinteza izoterm-radiala</u> Cutia catalitica – diametru exterior(D_e).....0,700 m - diametru interior(D_il.....0,06 m buc - teaca[- diametru exterior.....0,048 m (tip baioneta) - diametru interior.....0,042 m - diametru interior.....0.019 m – lungime in catalizator......1,85 m Distanta radiala a termoelementului fata de axa reactorului (1165 m

Pasul intre tevile de racire0,065 m
Puntita intre tevile de racire0,017 m
Sectiunea transversala a cutiei catalitice
Sectiunea transversala a tuburilor de racire (83buc+1)
si teaca termoelement0,1519 m ²
Volum catalizator (V_k)
Suprafata laterala a sectiunii de intrare catalizator
(cutia catalitica) $4,039 \text{ m}^2$
Suprafata laterala a sectiunii de trecere in hexagonul (H ₂)
unde se afla termoelementul (SLM)
Suprafata laterala a tubului central , colector de iesire0,3462 m ²
Suprafata de schimb de caldura a fascicolului de tevi
de racire tip baioneta (S)
Raport S/V _k
Raport S/V_k^n - Zona I = 23,955/0,34736
Raport S/V_k - Zona II ^{**} 11,235/0,08313
Lungimea stratului de catalizator pe raza
$\mathbf{\nabla}$

** - Zona II-a este volumul cuprins intre hexagonul (H₃) si colectorul de evacuare central (vezi figura nr.25).

1

<u>&62 Descrierea instalatiei pilot de sinteza</u> <u>metanolului si a alcoolilor superiori din gaz de</u> sinteza

Constructia instalatiei pilot productiv a fost facilitata de existenta utilajelor disponibile si adaptabile de la fostele instalatii de sinteza metanolului la inlta presiune I si II si a fost grefata pe scheletul existent al sinteza Metanol II (Ammonia Casale). Instalatiile de sinteza Metanol I si II au fost oprite in anii 1977 respectiv 1985 datorita consumului specific foarte ridicat de energie. Prin constructia acestui pilot s-au putut verifica urmatoarele:

a) Stabilitatea termica , productivitatea si operabilitatea noii coloane de sinteza izoterma cu flux radial de circulatie .

b) Comportarea coloanei de sinteza la diferite compozitii ale gazului de sinteza pentru care s-au ales urmatoarele posibilitati de functionare :

b.1) Cu gaz de sinteza obtinut pe instalatia de preparare gaz sinteza Metanol II ce consta dintr-o cracare autoterma cu CH_4 : O_2 : H_2O sau CH_4 : O_2 : H_2O : CO_2 urmat de o spalare partiala sau totala cu K_2CO_3 sol 30% pentru corectarea cifrei stochiometrice (S=2,0+2,2). Acest gaz putea fi folosit in regim de sinteza la o singura trecere cind gazul rezidual era dirijat la Metanol III unde se amesteca cu cel rezultat de la cracare Metanol III si era folosit la sinteza proprie sau in regim de recirculatie cu pompa de recirculatie de la Metanol II care in acest fel avea dublul rol de compresor si recirculator.

b.2) Cu gaz de la Metanol IV care si el putea proveni fie de la refularea lui C-201 fiind gaz pompat, fie din refularea lui C-202 fiind gaz amestec pompat si recirculat, fie din aspiratia lui C-202 si fiind gaz de purja de la Metanol IV.

Functie de modul cum era obtinut acest gaz de sinteza la Metanol IV, adica prin cracare CH4 : H2O sau CH4 : H2O : CO2 compozitiile gazelor proaspat, amestec si recirculat erau foarte diferite.

In tabelul nr.9 sint redati parametrii instalatiilor de cracare Metanol II si IV si compozitiile gazelor de sinteza rezultate .

b.3) Prin amestecul celor doua gaze se puteau obtine practic orice compozitie de gaz practicat in sinteza metanolului .

c) Cu acest montaj s-a putut urmari comportarea catalizatorilor de sinteza metanolului nemodificati si modificati la obtinerea amestecurilor C_1 - C_6 din gaz de sinteza .

In figura nr.26 este aratata o schema de principiu a instalatiei pilot grefata pa scheletul instalatiei de sinteza Metanol II . In aceasta schema numai coloana de sinteza (5) construita conform brevetelor 82119 si 96011 , tamburul recuperator de abur (6) si preincalzitorul suplimentar (4) erau utilaje noi . Schimbatoru! de

Nr.	Instalatii	Parametrii de cracare						Compozitie gaz uscat				Compozitie gaz spalat					:			
crt.	de metanol	Tenp.	Pres.	Rap	ort r	reacta	nti	CO	C02	H ₂	CH4	N2	S *)	CO	CO2	H2	CH4	N ₂	S ¥)	Observatii
		സ	(bari)	CH4	H ₂ 0	°2	co ²	\sim	<u>ري</u>	(X)	(%)	(%)		(%)	(%)	(%)	(%)	(%)		**)
1.	Metanol 2	950	21	1	1,909	0,61		20,3	11,54	67,64	0,5		1,75	21,27	7,33	70,85	0,325		2,22	(a)
2.	Netanol 2	950	21	1	1,6	0,67	0,42	21,76	16,6	57,4	0,7	0,2	1,06	29,34	2,03	67,52	0,73	0,38	2,07	(հ)
3,	Metanol 4 gaz proaspat	820	16,5	1	3,84			12,06	9,94	74,51	2,91	0,50	2,935							(c)
	gaz amestec	820	16,5	1	3,84			5,87	5,23	60,28	7,34	1,28	6,76							(c)
	gaz recirculat	820	16,5	1	3,84	_		4,86	4,46	B1,22	8,07	1,39	B,23							(c)
4.	Metanol 4 gaz proaspat	820	16,5	1	4,2	_	0,178	12,89	12,62	71,14	3,050	0,37	2,30					_		ക
	gaz amestec	820	16,5	1	4,2		0,178	8,65	972	71,82	9,15	D, 60	3,378							(d)
	gaz recirculat	820	16,5	1	4,2		0,178	8,06	9,31	71,91	10,01	0,7	B,60							(d)
	 *) - numar stochiometric S **) - (a) - cu spalare partiala si fara recirculare CO2 (b) - cu spalare totala si recirculare CO2 la cracare (c) - functionare fara CO2 la cracare (d) - functionare cu CO2 la cracare 																			

caldura gaz-gaz (3) l-am folosit din sinteza Metanol I , iar toate celelalte utilaje le-am folosit din sinteza Metanol II .

Pentru ca procesul sa poata fi cit mai bine condus si sa se poata culege toti parametrii necesari procedeul a fost dotat cu un mare grad de automatizare . Aparatura de masura , control si automatizare cu care este dotat pilotul este urmatoarea : <u>Masurare debite</u>:

FR-1 – debit gaz intrare in coloana de sinteza refulat de compresorul de recirculatie (1) de la Metanol II.

 $FR\mathchar`-2$ - debitul de gaz rezidual dupa separarea metanolului brut format .

FR-3 - debitul de abur produs de coloana de sinteza

FR-4 - debit gaz provenit de la Metanol IV

Q1 – contor metanol brut de la (3) V415 spre V417 sau distilare Metanol III.

Masurare si reglare presiune:

PIC-1 - reglare presiune in bucla de sinteza

PIC-2 - reglare presiune abur produs in reactorul de sinteza

PIC-4/1 - reglare presiune in V415

PIC-4/15 - reglare presiune in V417

Masurare si reglare nivele:

LIC-1 - reglare nivel in separatorul de metanol (8)

LIC-2 - reglare nivel in tamburul separator abur

LIC-4/4 - reglare nivel in V415 (9)

Masurare compozitii:

A1 - stut prelevare analiza gaz intrare coloana de sinteza

A2 - stut prelevare analiza gaz rezidual dupa separatorul de metanol

A3 - stut prelevare analiza gaz (mijloc catalizator (pct.2,3))

A4 - stut prelevare analiza metanol brut.

Analizor de hidrogen pentru reducerea catalizatorului de sinteza (cu doua scale 0-2% H₂ si 0-20% H₂) tip "catarometru" . <u>Masurare temperaturi:</u>

TR-1 – temperatura intrare gaz coloana de sinteza

TR-2 - temperatura mijloc catalizator sus

TR-3 - temperatura mijloc catalizator jos

TR-4 - temperatura iesire coloana de sinteza

TR-5 - temperatura dupa condensator metanol

TR-6 - temperatura pe refulare compresor gaz sinteza (1)

TI-1÷12 - temperaturi pe mantaua exterioara a coloanei de sinteza

riangle p-1 – cadere presiune pe coloana de sinteza.

Analizele de gaze si metanol brut se efectuau cromatografic in laboratoarele instalatiilor Metanol III si IV. Gazele de intrare coloana si gaz rezidual se colectau in baloane de cauciuc concomitent cu prelevarea unui cilindru gradat de metanol brut. Analizele se faceau de doua ori pe schimb si parametrii se notau din ora in ora. Nu se lua analiza gaz iesire din coloana deoarece acesta contine vapori de metanol si apa care prin condensare eronau analizele. Si la prelevarea analizei la mijloc catalizator sinteza se condensa produsul si se preleva numai gazul rezidual. Compozitia gazului la iesire din coloana de sinteza se obtinea numai prin simulare pe calculator cu nivelarea erorilor prin aplicarea metodei celor mai mici patrate :

(58)

 $Q = \sum_{i=1}^{J} \operatorname{Pre} \left[\frac{X_{Mj} - X_{Cj}}{X_{Mj}} \right]^{2} \longrightarrow \min_{i=1}^{J}$

in care :

Pre - precizia de masurare ;

 X_{Mj} - valoare masurata ;

 X_{Cj}^{-3} - valoare calculata .

Temperatura de echilibru se calculeaza ca medie a celor patru masuratori :

$$T_{EC} = \frac{TR1 + TR2 + TR3 + TR4}{4}$$
(59)

Presiunea se citea la PIC-1.

Debitul de alimentare a reactorului de sinteza se citeste de la FR-1 sau FR-4 .

Debitele erau supuse corectiei pentru presiune , temperatura si densitate conform formulei :

$$Q_{r} = a \times F \times \sqrt{\frac{T_{c} \times P_{r} \times \gamma_{c}}{T_{r} \times P_{c} \times \gamma_{r}}}$$
(60)

in care :

a - indicatia aparatului (%); F - factorul aparatului; T_C - temperatura de calcul (°C); T_r - temperatura reala (°C); P_C - presiunea de calcul (bari); P_r - presiunea reala (bari); γ_{e} - greutatea specifica a amestecului gazos de calcul(kg/Nmc) γ_{r} - greutatea specifica a amestecului existent (kg/Nmc). $\gamma_{r} = \sum_{i=1}^{i} x_{i} \approx M_{i}$ x_{i} - fractia molara a componentului i;

 M_i - masa moleculara a componentului i .

<u>&6.3 Modul de operare a instalatiei pilot de</u> <u>sinteza alcoolilor</u>

6.3.1) Incarcarea catalizatorului de sinteza

Incarcarea catalizatorului de sinteza se efectueaza prin cele sase orificii de incarcare dispuse echidistant pe perimetrul liber al placii tubulare superioare si prin orificiul central care strabate prin colectorul de apa-abur (stuturile (3) figura nr.23). Pe aceste orificii se aseaza o pilnie si apoi se goleste catalizatorul sitat din galeata direct in pilnie . Inaltimea de umplere se verifica cu o vergea , astfel , ca sa fie peste mantaua perforata exterioara .

<u>6.3.2) Reducerea catalizatorului de sinteza</u>

Pentru reducerea catalizatorului de sinteza , dupa ce s-a procedat la incarcarea catalizatorului , se presurizeaza instalatia la 5 bari cu azot pur $(0_2 \leq 2000 \text{ ppm})$ si se porneste pompa de recirculatie, care recircula azotul prin coloana de sinteza (5) , schimbatorul de caldura gaz-gaz (3) , condensatorul de metanol (7) , separatorul de metanol (8) inapoi la aspiratia pompei de recirculatie (1) , de unde prin separatorul (2) si schimbatorul de gaz-gaz (3) si preincalzitorul suplimentar (4) ajunge din nou la coloana de sinteza . Viteza volumetrica este bine sa fie cel putin 600 vol/vol catalizator. In preincalzitorul de pornire (4) se introduce abur de 30 de bari , iar in tamburul recuperator de abur (6) se introduce prin ventile abur de 30 bari pentru incalzirea apei si pornirea circulatiei apei (vezi figura nr.24) .

Viteza de incalzire a catalizatorului pina la 150 ÷ 160 °C este de 25 ÷ 30 °C/h . In acest timp, dupa ce temperatura in catalizator trece de 110 °C, apare in separator apa fizica ce o continea catalizatorul, apoi dupa ce temperatura a ajuns la 150 °C se introduce H2 in azot astfel incit concentratia la intrare in coloana sa fie [H2] \leq 1% deobicei 0,5 ÷ 0,7 %. Incepe reducerea oxidului de cupru din catalizator conform reactiei :

CuO + $H_2 \longrightarrow$ Cu + $H_2O \bigtriangleup H_{300^{\circ}K} = -86,6$ KJ /mol care este foarte exoterma , caldura de reactie este si ea preluata de apa din reactor .

Se cauta o viteza de crestere in continuare de la 160 ÷ 170 °C la 210 °C cu 2 ÷ 5 °C/h. Cresterea temperaturii se face prin ridicarea treptata a presiunii aburului in tambur, astfel ca sa fie un \triangle T de circa 10 ÷ 15 °C intre apa si gazul din coloana de sinteza. Daca temperatura tinde sa creasca brusc trebuie redusa cantitatea de H₂O ce se introduce in sistem si sa se scada presiunea aburului in tambur.

Odata cu reducerea CuO-lui , cu formare de apa , se formeaza si COp dupa reactia :

$$Cu0 + C0 \longrightarrow Cu + C0_2 \qquad \triangle H_{300} \times K_{300} \times K_{300}$$

Pentru ca CO₂-ul sa nu se acumuleze in bucla de sinteza $([CO_2] \le 15 \%)$ trebuie purjata o anume cantitate de gaz din circuit ea fiind inlocuita cu N₂ pur . Daca temperatura a urcat la 180 ÷ 190 °C si nu se mai degaja apa se trece la pasul 2 , temperatura se reduce la 175 °C si se ridica concentratia [H₂] + [CO₂] la 1,0 ÷ 1,5 %vol . Daca cresterea temperaturii tinde sa depaseasca 230 °C se reduce iar concentratia hidrogenului . De-a lungul acestui pas se reduce cea mai mare parte din catalizator . Tot timpul apa se masoara si se aduna iar cind incepe sa scada se trece la pasul 3 . Se creste temperatura in patul catalitic la 210 ÷ 220 °C . In acest pas se face asa zisa

post-reducere , cind se definitiveaza reducerea ultimelor particule de catalizator . Cind concentratia hidrogenului la intrare in reactor este egala cu cea de la iesire se trece la pasul 4 . In acest pas se desavirseste reducerea catalizatorului . Pentru aceasta concentratia $[H_2] + [CO_2]$ se creste pas cu pas pina la 15 ÷ 20 % . Se recomanda cresterea astfel :

de la 1,5 la 2,2 % intr-o ora ; 2,2 la 3,0 % --- 11 --- ; 3,0 la 4,5 % --- 11 --- ; 4,5 la 7,0 % --- 11 --- ;

realizind in continuare cite o crestere de 50 % intr-o ora . Concentratia finala de 15 \div 20 % se mentine 2 \div 3 ore .

<u>6.3.3) Punerea in functiune si reglarea instalatiei</u>

Pentru punerea in functiune temperatura in catalizator se reduce la 210 \div 220 °C din presiunea aburului pe tambur si se incepe adaugarea gazului proaspat si purjarea la cos a N₂-ului .

Cresterea presiunii in coloana de sinteza se face cu circa 10 bari/h . Concomitent cu cresterea presiunii incepe si cresterea gradientului de temperatura intre reactor si mijloc catalizator (pct.1 fata de 2 si 3) . La presiunea de peste 14 bari incepe separarea metanolului in separator . Cresterea presiunii se face din PIC-1 , iar limitarea temperaturii maxime la punctele TR-2 si TR-3 se face prin reglarea presiunii aburului in tambur cu PIC-2 . Temperatura aburului saturat , corespunzatoare presiunii este de obicei cu $10 \div 15$ °C sub temperatura medie din stratul catalitic . Odata reglate presiunea gazului de sinteza si a aburului produs , temperaturile se mentin nemodificate (vezi figura nr. 27) .

Comportarea coloanei de sinteza la oprirea si pornirea instalatiei se vede foarte bine in figura nr.28 . Din figura reiese faptul ca punctele 2 si 3 din mijlocul catalizatorului scad foarte putin si ramin constante la o valoare in functie de presiunea stabilita pe tamburul de abur . Pentru a se mentine peste 210 °C pe perioada opririi se deschid injectiile de abur incalzire, mentinindu-se presiunea in tambur la minim . Odata cu repornirea instalatiei (asa cum reiese din figura nr.28) temperaturile revin in jumatate de ora la valorile anterioare opririi, ceea ce dovedeste o stabilitate termica deosebita a coloanei de sinteza si o menajare maxima a catalizatorului, care este practic termostatat . In figura nr.29 se vede o viziune de ansamblu a instalatiei pilot grefata pe scheletul instalatiei Metanol II. In figura nr.30 se vede tabloul de comanda a instalatiei pilot de fabricarea metanolului de sinteza.

6.34) Metoda de analiza a produsilor de reactie

Pentru analiza metanolului brut respectiv a amestecurilor $\text{C}_1 \div \text{C}_6$ obtinuti in faza de sinteza se utilizeaza metoda gaz-cromatografica de analiza a produsului de sinteza dupa condensare si expandare la

BUPT

comanda a instalatiei pilot de fabricarea metanolului la joasa presiune presiunea atmosferica . Cu aceasta ocazie se mai pierd partial gazele dizolvate , ceva DME si MF.

<u>Aparatura</u>

- Cromatograf de analiza in faza gazoasa , tip CARLO-ERBA 2400T , prevazut cu termostat pentru coloanele cromatografice , cu detector de conductibilitate termica si cu potentiometru inregistrator .

- Coloana cromatografica confectionata din otel inox , cu diametrul interior de 5 mm si lungimea de 2.5 m (pentru analiza amestecului de alcooli $\rm C_1$ - $\rm C_4)$.

- Coloana cromatografica confectionata din otel inox , cu diametrul interior de 5 mm si lungimea de 2 m (pentru analiza alceolilor C_1, C_2, C_4-C_8).

- Microsifingi de 5 μ l.

<u>Reactivi și materiale</u>

- Umplutura coloanei pentru analiza amestecului de alcooli C1 - C4 constituita din PORAPAK Q de granulatie 80 - 100 mesh.(faza stationara).

– Umpiutura coloanei pentru analiza amestecului de alcooli C1,C2, C4 – C8 constituita din :

- a) faza stationara : CARBOWAX 20M (sau PEG 20M);
- b) suportul : CHROMOSORB W/AW cu granulatie 80-100mesh; Raportul de impregnare faza stationara/suport este de 15/85 .

- Gaz purtator : hidrogen cu concentratia de 99,9% .

- reactivi pentru uz cromatografic :

convi pomora az cremeteg.	
Metanoi	n – Butanol
Etanol	n – Pentanol
i - Propanol	i – Haxanol
n - Propanol	n – Hexanol
2 - Butanol	2 - Octanol
i - Butanol	n - Heptanol
tert - Butanol	i - Octancl
Alcool amilic secundar	n - Octanol
Alcool i- amilic	

- Solventi : clorura de metilen pentru PEG 20M.

- Aparat ROTAVAPOR - R (evaporator rotativ sub vid) pentru pregatirea umpluturilor cromatografice , produs de firma BUCHI -ELVETIA .

- Aparatura comuna : etuva termoreglabila , balanta analitica , pompa de vid , sticlarie .

<u>Conditii de lucru</u>

i i

a) La analiza amestecurilor de alcooli C $_1$ - C $_4$:

- = temperatura evaporatorului : 160°°C
- = temperatura de lucru a coloanelor : 140 °C
- = temperatura detectorului : 160 °C
- = curent de punte : 180 mA

= debitul gazului purtator (hidrogen) : 70 ml/min.

- = viteza de derulare a hirtiei la inregistrator :
 - 24 inch/h pentru alcoolii C1, C2
 - 12 inch/h pentru alcoolii C_3 , C_4
- = volumul probei injectate .

b) La analiza amestecurilor de alcooli $C_1, C_2, C_4 - C_8$:

- = temperatura evaporatorului : 200 °Č
- = temperatura de lucru a coloanelor : 175 °C
- = temperatura detectorului : 190 °C
- = curent de punte : 180 mA
- = debitul gazului purtator : 35 ml/min.
- = viteza de derulare a hirtiei la inregistrator :
 - 24 inch/h pentru alcoolii C₁, C₂, C₄, C₅ 6 inch/h pentru alcoolii C₆ - C₈

<u>Pregatirea pentru analiza si etalonarea coloanelor</u> <u>cromatografice</u>

Exploatarea cromatografului se face conform instructiunilor de exploatare ale aparatului , iar conditiile de lucru descrise mai sus pot fi corectate in functie de sensibilitatea aparatului .

Coloanele cu umplutura (cite doua pentru fiecare din tip de analiza) se stabilizeaza in curent de azot timp de 24 ore, gazul purtator avind un debit de 60 ml/min. Se stabileste selectivitatea coloanelor cromatografice si timpii de retentie pentru fiecare component din amestecurile sintetice preparate.

In tabelul numarul 10 sint trecuti componentii amestecului sintetic de alcooli C₁, C₂, C₄ - C₈ precum si timpii lor de retentie absoluti , iar in tabelul nr.11 sint trecuti componentii celuilalt amestec sintetic de alcooli C₁ - C₄.

Tabelul nr.10)

Nr. crt.	Componentul	timp retentie absolut
1.	Apa	56"
2.	Etanol	1'6"
3.	Metanol	1'13"
4.	2 – Butanol	1'40"
5.	i - Butanol	1'58"
16.	Alcool amilic sec.	5,8.,
7.	n – Butanol	5,51.,
8.	Alcool i - amilic	2'56"
9.	1 - Pentanol	3'25"
10.	i - Hexanol	4'21"
11.	n - Hexanol	5'8"
12.	2 - Octanol	6'42"
13.	n - Heptanol	?' 52''
14.	i - Octanol	9'8"
15	n – Octanol	12'18"

Tabelul nr.11)

Nr. crt.	Componentul	timp retentie absolut
1.	Ара	50"
2.	Metanol	1'7"
3.	Etanoi	5,30.
4.	i – Propanol	4'7"
5.	n - Propanol	5'25"
5.	tert - Butanol	6,58.
7.	2 - Butanol	9'28"

In figura nr.31) este redata cromatograma característica obtinuta la analiza amestecului sintetic de alcooli C₁,C₂,C₄ - C₈ , iar in figura nr.32) este redata cromatograma característica a amestecului

de alcooli $C_1 - C_4$.

<u>Calculul</u>

i

Calculul concentratiei componentilor din proba de metanol ce contine alcooli superiori se face cu metoda standardului extern (in cazul in care nu toti componentii probei sint separati pe coloana cromatografica), prin compararea datelor cromatografice obtinute pe proba de metanol cu un anumit continut de alcooli superiori, cu datele obtinute pe un amestec etalon cu concentratia cunoscuta si apropiata de concentratia probei de analizat. Astfel:

$$% C_{i} = \frac{1}{n \times \frac{n}{j=1}} \times (100 - a)$$
 (61)

unde :

i - marimea componentului necunoscut obtinut prin raportare la cromatograma etalon .

$$=\frac{\mathbf{i}_{st} \times \mathbf{A}_{i}}{\mathbf{A}_{i_{st}}}$$
(62)

unde :

i_{st} - concentratia procentuala a componentului i in amestecul sintetic standard ;

- A_{ist} aria picului componentului i din cromatograma amestecului sintetic standard (mm²);
- A_i aria picupui componentului i din cromatograma de analizat (mm^2) ;
- a continutul in apa al probei de analizat prin metoda KARL-FISCHER (%) .

In cazul cind toti componentii probei sint separati de coloana cromatografica pentru calculul concentratiei componentilor din proba se utilizeaza metoda normarii directe .

 $% C_{i} = \frac{i}{n \frac{n}{2}} + \frac{1}{2} + \frac{n}{2} + \frac{1}{2} + \frac{n}{2} + \frac{1}{2} + \frac{1}{2$

unde :

A,a - au aceleasi semnificatii ca mai sus .

Cromatogramele din figura 31 si 32 confirma eficacitatea buna de separare a celor doua umpluturi cromatografice . In analiza cantitativa gaz-cromatografica este obligatoriu introducerea precisa a probei precum si o calibrare riguroasa a detectorului , datorita dependentei raspunsului dat de detector de cantitatea componentului eluat cu faza mobila . Cu toate acestea , analizele gaz-cromatografice nu sint lipsite de mici erori , care se pot accepta avind in vedere conditiile practice cit si reproductibilitatea buna a metodei . Daca proba contine suspensii de parafina asa cum se obtine cind se lucreaza la concentratii [CO] ridicate si temperaturi mari , ea trebuie mai intii filtrata pentru a proteja umplutura gaz-cromatografica .

CAPITOLUL 7

Descrierea algoritmilor de calcul pentru simularea bilantului de materiale si termic la sinteza metanolului

Pentru evaluarea performantelor unui aparat complex cum este coloana de sinteza metanolului in flux radial este necesara folosirea unui instrument matematic de precizie pentru simularea, corectarea si evaluarea unor date care experimental nu pot fi masurate direct, iar evaluarea indirecta este afectata de asa de multe erori de masura astfel incit de cele mai multe ori exista sansa unei concluzii gresite.

O astfel de problema este de exemplu evaluarea debitului si compozitia fluxului de reactanti in sectiunea de trecere prin catalizator de unde se poate masura exact doar temperatura si compozitia gazelor permanente (CO, CO₂, H₂, CH₄, N₂) celelalte condensabile (H₂O, CH₃OH, DME) fiind eronate de erori prin condensare sau necesita aparatura de lucru foarte sofisticata care sa lucreze la presiuni si temperaturi ridicate de care nu dispunem.

Reconstituirea compozitiei la iesirea din stratul catalitic din produsul condensat si gazul rezidual este insotita de foarte multe erori , de aceea o foarte mare importanta o are posibilitatea simularii prin calcul a compozitiei la echilibru in catalizator sau la iesirea din stratul de catalizator , apoi dupa separarea fazelor se poate masura produsul condensat si gazul rezidual care in cazul unei masuratori corecte trebuie sa corespunda ca debit si compozitie cu cea rezultata prin calcul. Acest tip de calcul a permis compararea si corectarea datelor masurate la pilotare unde se masoara ca debit (Nmc/h) si compozitie (CO , CO₂ , H₂ , CH₄ , N₂) gazul la intrare in coloana de sinteza si se mai masoara doar metanolul brut rezultat (ca debit si compozitie) , gazul rezidual dupa separare ca debit si compozitie cit si debitul si presiunea aburului format prin valorificarea caldurii de reactie . Afara de aceasta s-au masurat presiunea gazului si temperatura la intrare in catalizator, in sectiunea H_3 (al treilea rind de tevi de racire) si la iesirea din catalizator fara sa se masoare in sectiunea H₃ si iesire din catalizator debitul si compozitia atit de necesare pentru calculul conversiei la o trecere si a bilantului termic pe utilaj . Dar aceste date pot fi gasite indirect prin calcul , folosind ca variabile independente debitul si compozitia la intrare in coloana de sinteza, temperaturile si presiunea in catalizator.

Pentru simularea factorului cinetic care tine cont de activitatea catalizatorului se impune un \triangle T (°C), apropierea fata de echilibru, ce se aplica reactiei principale:

 $CO + 2H_2 = CH_3OH$

care este o caracteristica proprie fiecarui tip de catalizator , avind o influenta directa asupra gradului de conversie a oxizilor de carbon si ca atare asupra bilantului de materiale .

<u>&7.1 Simularea matematica a bilantului de</u> <u>materiale si a compozitiei la echilibru pe</u> <u>baze termodinamice</u> [14],[176]

Considerind ca la temperatura si presiunea de iesire din stratul de catalizator amestecul de gaz si-a atins starea de echilibru cu un ΔT specific fiecarui catalizator se solicita fiind dat debitul si compozitia de intrare sa se calculeze debitul si compozitia la 'esire din stratul de catalizator. Pentru acest calcul se folosesc cele doua reactii independente (1) si (3)

$$CO + 2H_2 \xrightarrow{I+\Delta I} CH_3OH$$
 (1)
 $CO_2 + H_2 \xrightarrow{I} CO + H_2O$ (3)

Reactia (3) se considera ca atinge valoarea de echilibru in conditiile sintezei metanolului pe cind reactia (1) ramine la o departare fata de echilibru (ΔT) specific fiecarui catalizator si functie de timpul de folosire. Diferenta de temperatura (ΔT) la sfirsitul vietii catalizatorului "END OFF RUN" (EOR) are o valoare de circa trei ori mai mare ca la catalizatorul nou, deci

 $\triangle T = f(timp)$

Aceasta secventa de calcul se foloseste si la integrarea cu pasi finiti a straturilor de catalizator pentru ridicarea curbelor temperaturii si compozitiei gazului de-a lungul straturilor de catalizator.

Vom nota cu "IC" intrarea in catalizator debitul (Nmc/h sau Kmoli/h) iar compozitia va fi Y(i) (% volum molar) in care i=1...7 astfel :

pentru :

La iesire din strat la temperatura T (°C) si presiunea P (ata) vom avea un debit EC (Nmc/h sau Kmoli/h) si o compozitie Z(i) (% volum), aceasta daca transformarea are loc adiabatic. Considerind ca avem factorii de transformare F_1 si F_2 pentru cele doua reactii de sinteza metanolului respectiv de retroconversie a monoxidului de carbon, stochiometria reactiilor separate se poate scrie :

$$Z(1) = \frac{Y(1) - F_1 + F_2}{1 - 2 \times F_1}$$
(64)

$$Z(2) = \frac{Y(2) - F_2}{1 - 2 \times F_1}$$
(65)

$$Z(3) = \frac{Y(3) - 2 \times F_1 - F_2}{1 - 2 \times F_1}$$
(65)

$$Z(4) = \frac{Y(4)}{1 - 2 \times F_1}$$
(67)

$$Z(5) = \frac{Y(5)}{1 - 2 \times F_1}$$
(68)

$$Z(6) = \frac{Y(6) + F_2}{1 - 2 \times F_1}$$
(69)

$$Z(7) = \frac{Y(7) + F_1}{1 - 2 \times F_1}$$
(70)

 $EC = IC \times (1 - 2 \times F_1)$ (71)

$$\sum_{i=1}^{7} Z(i) = 1$$
(72)

in care : $F_1 = \frac{\text{moli transformati dupa ecuatia (1)}}{\text{total moli inainte de transformare}}$ $F_2 = \frac{\text{moli transformati dupa ecuatia (3)}}{\text{total moli inainte de transformare}}$

1 - 2 * F_1 = MEF - factorul de expansie molara .

Din bilantul de materiale rezulta rezolvarea celor doua ecuatii de echilibru chimic prin determinarea lui F_1 si F_2 (din sistemul de ecuatii de mai jos)

$$K_{p1} = \frac{\frac{Y(1) - F_{1} + F_{2}}{1 - 2 \times F_{1}}}{\left[\frac{Y(1) - F_{1} + F_{2}}{1 - 2 \times F_{1}}\right] \times \left[\frac{Y(3) - 2 \times F_{1} - F_{2}}{1 - 2 \times F_{1}}\right]^{2}}$$
(73)
$$K_{p2} = \frac{\left[\frac{Y(1) - F_{1} + F_{2}}{1 - 2 \times F_{1}}\right] \times \left[\frac{Y(6) + F_{2}}{1 - 2 \times F_{1}}\right]}{\left[\frac{Y(2) - F_{2}}{1 - 2 \times F_{1}}\right] \times \left[\frac{Y(3) - 2 \times F_{1} - F_{2}}{1 - 2 \times F_{1}}\right]}$$
(74)

Sistemul de ecuatii de mai sus fiind de ordin superior (neliniar) cu doua necunoscute (F_1 si F_2) poate fi rezolvat numai prin metoda Newton-Raphson prin derivare si rezolvarea Jacobianului format. Dar pentru ca solutia sa convearga trebuie gasita o valoare de pornire pentru F_1 si F_2 ceea ce este foarte dificil. Pornind de la observatia ca ecuatia (74) este de gradul II si poate fi rezolvata prin determinarea exacta a lui F_2 pentru un F_1 dat, acesta poate fi determinat iterativ prin metoda bisectoarei intre valorile limita pentru Z(7), limite ce pot fi stabilite suficient de largi astfel incit programul sa poata fi utilizat pentru compozitii foarte diferite ale reactantilor.

Daca se stabilesc valorile pentru Z(7)MIN si Z(7)MAX atunci :

7(7)MIN + 7(7)MAV

iar

$$Z(7) = \frac{Z(7) - Y(7)}{2}$$
(75)
$$F_1 = \frac{Z(7) - Y(7)}{1 + 2 \times Z(7)}$$
(76)

Aranjind ecuatia (74) conform ecuatiei algebrice de gradul II obtinem :

$$A = K_{p2} - 1$$
 (77)

$$B = K_{p2} \times (2 \times F_1 - Y(3) - Y(2)) - Y(6) - Y(1) + F_1$$
(78)

 $C = K_{p2} \times (Y(2) \times Y(3) - 2 \times F_1 \times Y(1)) + Y(6) \times (F_1 - Y(1))$ (79) si rezulta :

$$F_{2} = \frac{2 \times C}{\sqrt{B^{2} - 4 \times A \times C} - B}$$
(80)

Deci organigrama de calcul a compozitiei la echilibru la iesirea din straturile de catalizator este reprezentata in figura nr.33. In aceasta organigrama subrutinele DFFG calculeaza coeficientii de fugacitate pentru componentii ce intra in calculul constantelor de echilibru, pentru corectia abaterii fata de legea gazelor ideale, iar subrutina DKPJP calculeaza pe $K_{n(i)}$ functie de K(i)=f(T) si $K_{V}=f(P,T)$.

subrutina DKPJP calculeaza pe $K_{p(i)}$ functie de K(i)=f(T) si $K_y=f(P,T)$. Dupa cum se vede F_1 se obtine prin metoda bisectoarei si F_2 prin rezolvarea ecuatiei de gradul II , la urma fiind verificat echilibrul reactiei de formarea metanolului (K_{p1}) cu compozitia data . Daca aceasta se verifica cu precizia de $\pm 2 \times 10^{-5}$ fata de zero programul se opreste ; daca nu , dupa caz continua injumatatirea intervalului Z(7) - Z(7)MIN sau Z(7) - Z(7)MAX pina ce se obtine precizia impusa .

In conditiile de functionare adiabatica acest bilant de materiale se verifica si prin bilantul energetic si anume :

$$\frac{7}{1} \text{ IC } \approx \text{ Y(i) } \approx \text{ HF(i)}^{T_0} = \frac{7}{1} \text{ EC } \approx \text{ Z(i) } \approx \text{ HF(i)}^{T}$$

in care :

HF(i) – entalpiile de formare ale componentilor i ce se calculeaza prin polinoame de forma [14] :

 $HF(i) = (((a_4 XT + a_3) XT + a_2) XT + a_1) XT + a_0$

 T_0 - temperatura de intrare in stratul catalitic ;

T - temperatura de iesire din stratul catalitic [176] .

In cazul reactoarelor izoterme cu perete constant de transfer de caldura (baie de saruri , termosifon , etc.) , caldura de reactie transferata prin peretii tevilor de racire este :

$$Q = \sum_{i=1}^{7} EC \times Z(i) \times HF(i)^{T} - \sum_{i=1}^{7} IC \times Y(i) \times HF(i)^{T_{0}}$$

iar bilantul de energie poate fi scris astfel :

$$\sum_{i=1}^{7} \text{EC} \times Z(i) \times \text{HF}(i)^{T} - \sum_{i=1}^{7} \text{IC} \times Y(i) \times \text{HF}(i)^{T_{0}} = S \times K \times (T_{m} - T_{R})$$

unde :

S - suprafata de transfer (m²);

 K_m - coeficientul total de transfer de caldura, mediu (Kcal/m2×h×°C);

 T_R - temperatura lichidului de racire (°C) ; $T_0^{}$ - temperatura de intrare a gazului in catalizator (°C) ; $T_m^{}$ - temperatura gazului (medie) (°C) .

Acest mod de calcul al bilantului de materiale si termic pentru coloana de sinteza sta si la baza bilantului de materiale pentru intreaga bucla de sinteza metanolului respectiv la transformarea printr-o singura trecere prin coloana de sinteza pilot in regim de lucru izoterm cu flux radial.

<u>&7.2 Organigrama de calcul a bilantului de</u> materiale pentru intreaga bucla de sinteza metanolului [14],[176],[185]

Asa cum s-a mai aratat , datorita faptului ca valoarea conversiei la c trecere in sinteza metanolului este sub 50% , pentru realizarea unei conversii cit mai inaintate (90 - 97 %) este necesar sa se functioneze in regim de recirculatie a produselor netransformate , dupa ce intii se separa de faza gazoasa produsele condensabile adica metanolul si apa de reactie .

In acest fel rezulta o bucla de sinteza in care concentratia reactantilor [CO] si [CO2] scad de la gazul proaspat spre cel recirculat prin amestec si conversie . Calculul unei astfel de bucle de sinteza este o problema foarte dificila de tipul x = f(x) ce nu poate fi rezolvata decit cu ajutorul calculatoarelor prin metoda aproximarilor succesive , calculul repetitiv necesita de cele mai multe ori 90-120 de iteratii .

In figura nr.34 sint indicate pe scurt cele 7 noduri (puncte) de calcul al bilantului de materiale si a compozitiei fluxurilor in functie de urmatoarele variabile independente :

Pr - debitul de gaz proaspat (Nmc/h) ;

X(i) - compozitia gazului proaspat (%) ;

IC - debitul de gaz amestec intrare in coloana (Nmc/h) ; Punctul termodinamic de lucru al coloanei de sinteza :

 T_e - temperatura de echilibru si iesire din catalizator (°C);

 T_0 - temperatura intrare in catalizator (°C);

 ΔT - departarea fata de echilibru in ecuatia (1) (°C) ;

P - presiunea la iesire din catalizator (atm);

Punctul termodinamic de lucru al separatorului de metanol :

P - presiune (atm);

T - temperatura (°C);

V(6) - continutul de apa in gazul recirculat (%);

V(7) - continutul de metanol in gazul recirculat (%) .

Reactorul de sinteza poate fi adiabat de tip "QUENCHE" sau I.C.I. in care caz se mai indica T₁ a gazului rece pentru "QUENCHE" iar programul calculeaza cantitatea de gaz cald ce intra pe sus si gaz rece pentru "QUENCHE" sub forma de fractie din IC intrare coloana.

In cazul reactorului izoterm daca se da ΔT_1 intre $T_e - T_{apa}$ programul calculeaza presiunea aburului generat . Se mai da temperatura apa alimentare cazan , temperatura apa coboritoare pentru a se putea calcula cantitatea de abur generat , volumul de catalizator si suprafata de transfer de caldura.

Programul de calcul a buclei de sinteza contine modelele matematice pentru :

a. Amestecul gaz proaspat cu gaz recirculat .

b. Conversia la trecerea prin coloana de sinteza in functie de punctul termodinamic impus si departarea fata de echilibru(vezi &7.1) .

c. Separarea compusilor condensabili , metanol si apa , de gazele permanente (CO,CO_2,H_2,CH_4,N_2) in functie de punctul termodinamic al separatorului (temperatura si presiune) mentinind constante V(6) si V(7), continutul de apa si metanol in gazul rezidual.

d. Determina cantitatea de metanol brut ce se separa si cantitatea de gaz ce se purjeaza din bucla pentru a mentine constanta concentratia inertelor in bucla.

e. Productia de metanol pur obtinut in 24 ore cu un randament de distilare de 97% .

f. Debitul de abur generat si principalii indicatori ai sintezei :

 $S = ([H_{p}] - [CO_{p}]) / ([CO] + [CO_{p}])$ in gaz proaspat ;

Raport gaz purjat/gaz proaspat ;

Productivitate to metanol/mc catalizator ora ;

Tone abur/tone metanol ora ;

Raport de recirculatie ;

Coeficientul mediu de transfer termic

Caldura transformata in abur ;

Presiunea aburului .

In figura nr.35 se poate urmari organigrama programului de calcul a bilantului de materiale pentru bucla de sinteza .

<u>&7.3 Exemple de subrutine folosite in</u> <u>programele de simulare a coloanei pilot de</u> <u>sinteza metanolului</u>

Simularea sintezei metanolului a fost elaborata partial, mai intii, pe calculatorul FELIX C-32 inca din anii 1980-1981 creindu-se initial subrutinele de calcul a unor constante termodinamice (entalplii de formare a componentilor de reactie, numar stochiometric S, etc.).

Ulterior s-au realizat programele de simulare a bilantului de materiale in procesul de cracare, rezultatele astfel obtinute devenind date primare pentru simularea procesului de sinteza metanolului. Acest lucru s-a realizat in diferite limbaje de programare in functie de tehnica de calcul existenta in dotare (FELIX C-32, CORAL 4030, PC compatibil IBM AT):

- FORTRAN-IV

- FORTRAN-77

- TURBO-C++

Folosirea limbajului "C" in mediul de programare TURBO-C++ permite o flexibilitate in programare foarte mare in comparatie cu FORTRAN-IV/FORTRAN-77 , simularea facindu-se unitar limbajul abandonindu-se segmentarea programelor impusa de sistemele de operare anterioare (ASISRIS , RSX-11M , MIX) . Calculatorul PC AT-286 dotat cu un coprocesor matematic 80287 permite o viteza de calcul net superioara datorata in primul rind frecventei de tact CPU (8Mhz la 16 MHz in cazul procesorului 80286) cit si executarea la nivel hard a calculelor matemátice care pina la acest calculator erau emulate soft . Viteza de calcul se mareste de circa 2 ori in cazul folosirii coprocesorului matematic 80287 .

Toate aceste considerente au dus la o marire spectaculoasa a vitezei de rulare a programelor de simulare astfel incit o simulare pe un calculator anterior folosit dureaza circa 30 min fata de 30 sec pe microcalculatorul PC AT-286/287. Pe linga acestea o facilitate suplimentara este utilizarea terminalelor grafice de tip EGA-VGA pentru intelegerea comportarii dinamice a procesului de sinteza prin reprezentari grafice

In paginile 82,83,84 sint date spre exemplu citeva din subrutinele folosite in simularea procesului de sinteza metanolului , notatiile utilizate se regasesc in prezenta lucrare .

```
/* RUTINE CE EXECUTA DIFERITE CALCULATII REFERITOARE LA APA SI ABUR */
                                                                                                         pag. 82
#include <math.h>
double thoil(double p)
/#Rutina ce calculeaza temperatura de fierbere a apei
   functie de presiunea la care se afla aburul saturat.*/
ł
        double log(double);
        double p1;
                       /*presiunea PPSIA*/
        double t1:
                        /#temperatura in des.F#/
        double y:
        p1=14.696*p;
        if(p1 <= 450 )
                                   {
                y=log(10.*p1);
t1=((((((6.940156e-6*y-2.490178e-4)*y+3.865828e-3)*y-0.03132959)*y+0.3414474)*y+2.118207)*y+24.59259)*y+35.15789;
                                   3
        else
                y=log(p1);
                                   {
t1=(((((-0.7807381*y+26.69098)*y-363.4427)*y+2477.766)*y-8386.018)*y+11545.16;
                                    3
        return(5./9.*(t1-32.));
}
double psatrt(double t)
/# CALCULEAZA PRESIUNEA FUNCTIE DE TEMPERATURA ABURILOR SATURATI #/
{
        double x:
        x=374.11-t:
        if(t > 93.33)
return(218.167*exp(-2.302585*x/(t+273.16)*((1.170238e-08*x*x+5.86826e-3)*x+3.243781)/(2.187846e-3*x+1)));
        else
return(218.167*exp(-2.302585*x/(t+273.16)*(((5.56444e-11*x+7.515484e-9)*x*x+4.14113e-2)*x+3.345313)/
        (1.379448e-2*x+1)));
}
double hligd(double t)
/* CALCULEAZA ENTALPIA APEI LICHIDE FUNCTIE DE TEMPERATURA EI */
{
        double ti,hl;
        t1=1.8*t+32;
        if(t1 > 360)
                 h1=((((9,635032e-13*t1-7.361878e-10)*t1+4.855364e-7)*t1-1.1517e-4)*t1+1.068808)*t1-32.17911;
        else
                 h1=((((4.560246e-11*t1-1.031536e-7)*t1+9.41244e-5)*t1-4.275384e-2)*t1+10.67380)*t1-904.1171;
        return(h1/1.8);
 }
 double hsteam(double t,double p)
 /* CALCULEAZA ENTALPIA ABURILOR SATURATI FUNCTIE DE TEMPERATURA SI PRESIUNE */
 Ł
         double t1,t2,a,b,c,d,e,f,z,r;
         t2=t+273.16:
         t1=1./t2;
         b=186210.*t1*t1;
         a=2641.62*exp(b);
         c=a+(1,+2,+b);
         d=-152460.+t1+92.546:
         e=-126970.*t1*t1+0.21828;
         z=6.768e-3*pow(1000.*t1,24);
         r=3.635e-4-z;
         f=-a#t1+1.89;
         return(0.23399*(.101295*(p*(1.89-2.*t1*a*(1.+b))+
         .5*p*p*f*t1*t1*(f*(4.*d-82.546)-2.*d*t1*c)+
         .25+pow(t1+p,4)+2+pow(f,3)+(f+t2+(3.+e-.21828)-2.+e+c)+
         1./13.*pow(t1*p,13)*pow(fabs(f),12)*(-f+t2*(13.*r-24.*z)+13.*r+c)+=
         1.4720*t2+3.7783e-4#t2*t2+47.8365*log(t2)+1803.71));
 }
```

```
Winclude Smath.b?
                                                                    pag. 83
/*
Rutina pentru determinarea fugacitatilor
componentilor de reactie in sinteza metanolului
*/
double
        dffg(ttc,ppc,t,p)
double
        ttc:
                          /* temperatura critica */
double
                          /* presiuni critice
                                                  ¥/
        ppc:
              .
double
        t;
                          /* temperatura reactor */
double
                          /* presiume reactor
        p;
                                                  ¥/
£
         double t1[7]=(
                                  /* temperatura limita */
                                  /* t1[0] -- nefolosit */
                          0.00.
                          0.95.
                                  /* t1[1] */
                                  /* t1[2] */
                          1.1.
                                  /* t1[3] */
                          3.6,
                                  /* t1[4] */
                          5.0.
                          12.0,
                                  /* t1[5] */
                          16.0
                                  /* t1063 */
                        3:
                                  /* presiune limita
                                                          */
         double pl[7]={
                                  /* p1[0] -- nefolosit */
                          0.00,
                                  /* pl[1] */
                          0.2,
                          1.0,
                                  /* p1020 */
                          14.0,
                                  /* p1[3] */
                          20.1,
                                  /* p1E4] */
                          19.9,
                                  /* pl[5] */
                          60.1
                                   /* p1[6] */
                        Э;
         double
                 pfi;
                          /* coef. temperatura
                                                  ¥Ζ
         double tr:
         double pr;
                          /* coef. presiune
                                                  ¥/
                                  /* var. de lucru */.
                 p1,p2,p3,p4;
         double
                                  /* var. de lucru */
                 f1,f2,f3,f4;
         double
                                  /* var. de lucru */
         double a1,a2,a3,a4;
         double pq;
                  rt, rp, kit, kr, k;
         int
         pfi=tr=pr=p1=p2=p3=p4=f1=f2=f3=f4=a1=a2=a3=a4=pg=0.;
 /**/
                  =(t+273.16)/ttc;
         tr
                  =p/pp⊂;
         p٣
         p1=p2=p3=p4=0.;
                  (rt=1 ; rt <= 6 ; rt++)
         for
                          (tr < tl[rt]) goto e1;
                  if
         .
rt
                  =7;
                  (rp=1 ; rp <= 6 ; rp++)
         for
 e1:
                          (pr < plErp]) goto e2;</pre>
                  if.
                  ≈7;
         ٢p
          f1=f2=f3=f4=0.;
 e2:
                  ((rp == 4) &2 (rt >= 6) &2 (pr < 20.1)) rp=6;
          if
                  ((rt > 2) ; (rp > 2))
          if
                  goto et0;
                                        €.
          else
                  p1=(((((-105.4618*tr+195.3899)*tr-90.59319)*pr+
                  (95.70102*tr-180.4812)*tr+84.9556)*pr+
                   (+11.23818*tr+23.35077)*tr-12.51010)*pr+1.;
                   f1=1.0;
                   ((rt<2)))(rt>4)))(rp<2)))(rp>4)) goto et1;
          if
 et0:
                  (rt==4&&rp!=4) goto et1;
          a1=((((((-4.115197e-6*tr+3.810620e-5)*tr-1.260930e-4)*tr+
          if.
          1.756681e-4)*tr-2.1143e-3)*tr+7.110532e-3)*tr-1.012198e-2
          )*tr+5.091116e-3;
          a2=(((-4.442126e-3*tr+4.223624e-2)*tr-1.447365e-1)*tr+
          2.111751e-1)*tr-1.039215e-1;
          a3=(((3.721123e-2*br-3.600477e-1)*tr+1.262409)*tr-
          1.898953)*tr+1.033147;
```

	a4=(((-1.13)	9014e-1	<pre>*tr+1.132726)*tr-4.12</pre>	23407)*tr+	pag. 84
	6.545502)*1	tr-3.85	4789;		
	p2=(((a1*p)	r+a20*p	r+a3)*pr+a4)*pr+1.;		
	t2=1.0;		······································	()) + + 0 -	
et1:	17 (() - 1- (() 2, 201	rt(42);; 7010- 6	(rt/85);;(rp<4);;(rp>t	6)) goto etz; (5701/0- 7)****** 750//5-	
	al=((-2.98)	/0100-5	***************************************	5.3/21690-/J*tr+1./306630 101/1153841 099190/	·
	a2=((3,297;	οσe−/*τ ε++∩_ ε	r~8.0986200~6/*tr+/ «+0 100145- 40×+	1914112~J/KUF-1.0331902-5 D 7070760184-47 590009-	1;
	a3=((-1.20;	5113e-3 60045	***************************************	2./3/3/68-3/*(FT/.Jav2268 200700a_7)*tv_4 /05/07a-	:-3; -7:
	= 34=((1.162) = 2=((/.18=)	6V80-4*	tr-3.000047e-3J*tr+2. 	.302/03e-2)*tr-4.403422e-	~
	f2-1 0.	rtaz/*F	гтазэхргтачэхргтг.;		
a+2•	is-1.0; if ((:	x+<6)!!	(rp≤6)) goto et3:		
evz.	$a_1 = (1 - 279)$	300e-12	*tr-2.788487e-10)*tr	+1.214658e-8)*tr-1.372981	le-7:
	a2=((-8.87)	3091e-1	1*tr+4.135719e-8)*tr	-2.037335e-6)*tr+2.432657	7e-5:
	a3=((8.919	383e-9	tr-1.301683e-6)*tr+9	.022308e-6)*tr-1.174239e-	-3;
	a4=((-1.19)	3715e-7	*tr+5.441834e-5)*tr-3	2.873379e-3)*tr+4.183955@	a-2;
	p4=(((a1*p	r+a2)*p	r+a3)*pr+a4)*pr+1.;		
	f4=1	•			
et3:	kit =r	t/2;			
	kr ≓r	t−kit*2	;		
	if ((rt!=rp	<pre>()(kr==1)) goto et4;</pre>		
	k=rt∕2;				
	switch(k)				
	ca	se 1:			
			2=0.5*((tr-0.95)/0.1	5+(pr-0.2)/0.8);	
			1=112;		
			reak;		
	ca	se 2:	9-0 5*((+x-3 5)/1 5+	(nr-14, 0)/6.	
			2=1 -f3+	(p) 11,000 bety	
			reak:		
	са	se 3:			
			4=0.5*((tr-12.0)/4.0	+(pr-20.0)/40:);	
			3=1f4:		
			meak;		
	de	efault:			
			printf("eroare DFFG k	NE (1,2,3)\n");	
			reak;		
			}		
et4:	pfi =∦	f1*p1+f	2*p2+f3*p3+f4*p4;		
	if ()	(pfi≥0.)&&(pf1<3.)) goto eto) ;	
	if(tr>3.5)) goto Nepoco	275 ; Na ka socio9976058/na	w(tr.2):	
	a1=0.0771:	1007469 9182968	27/tv+(0.3361322/0030/pc	$R_{e-2/now}(tr.3));$	
	a2=0.02356	5727902 51452¥n	-/tr)*nr/tr):		
	pri-expro	ar ar v	, u , an p , <i>t</i> , u , t ,		
ot6.	if(tr>12.)) noto	et7:		
200.	at=0.10758	3376300	5-(Ó.2545234921859/pc	sw(br,200;	
	a2=-0.178	1636150	55e-2/tr+(0.141272366	5047/pow(tr,3));	
	pfi≖exp((a1+a2×p	r/tr)*pr/tr);		
	goto e	t5;			
et7:	if(pr>=60	.) goto	et8;	- 7.	
	a1=(2.083)	33e-9*t	r-4.66667e-8)*tr+2.9e	977; 19905a-5:	
	a2=(-1.66	667e-7≉	tr+3.530950-60*0r-2.1 + 00709-40*+*+1 1f	13903e 3, 1143e-3:	
	a3=(9.077	382-6*1	Y-1.89/620-9/#UFTI.10 A. 0 1000006-4)¥tY+1.	.56693e-2:	
	a4=(-3.90	4/66-0;	01-091777006 40001 419	/	
	goto ety;	05201	*+*+4.73437e-9)*tr-5.	.24219e-8;	
et8:	<u>ヨナ</u> ニリージ・ロン コンー(1 フンク	14⊳-8¥3	r-8.32202e-7)*tr+9.20	3093e-6;	
	a2=(1,734 s3=(-7.51	488e-7	tr+3.4558e-5)*tr-3.3	9665e-4;	
	a4=(2.385)	ie-5*tr	1.33868e-3)*tr+2.1824	47e-2;	
et9:	 pg=(((a1#	pr+a2)	pr+a3)*pr+a4)*pr+1.;		
	pfi≔pg;	-			
et5:	return(pf	i);			
3					

CAPITOLUL 8

.

Analiza rezultatelor experimentale la diverse regimuri de functionare ale coloanei de sinteza Analiza diferitelor regimuri de functionare a coloanei de sinteza izoterma cu flux radial prezinta o importanta deosebita pentru evaluarea performantelor acestui utilaj nou in comparatie cu cele existente , in ceea ce priveste schimbul de caldura , stabilitatea termica si productivitatea utilajului . Analiza rezultatelor permite evaluarea adaptabilitatii utilajului la termodinamica si cinetica procesului de sinteza alcoolilor din gaz de sinteza oferind datele experimentale , absolut necesare , pentru proiectarea industriala a noului utilaj.

Asa cum s-a aratat in &34, datele privind transferul de caldura in stratul cu umplutura existente in literatura de specialitate sint destul de contradictorii si aplicatiile fiind in special la fluxuri axiale este necesara verificarea experimentala a transferului termic in conditii de lucru cit mai apropiate de cele industriale. Acest deziderat a fost indeplinit cu succes la pilotul productiv descris in capitolul nr.6 (vezi tabelul nr.12).

<u>&8.1 Functionare in regim de sinteza</u> <u>amestecurilor C₁ - C₆ din gaze de sinteza de</u> <u>la Metanol II</u>

Aceasta functionare a avut loc in anii 1986 - 1987 cind datorita dificultatilor pe linia asigurarii cu combustibili proveniti din titei , exista un mare interes pentru obtinerea amestecurilor $C_1 - C_6$, pentru ridicarea cifrelor octanice ale benzinelor , respectiv chiar inlocuirea benzinelor cu un astfel de amestec carburant . S-a ales drept materie prima gazul de sinteza provenit de la cracarea autoterma Metanol II cu concentratia maxima de CO si minima de CO₂. Cu toate ca acest gaz nu avea compozitia optima pentru sinteza amestecurilor $C_1 - C_6$ el a constituit totusi cel mai greu test pentru coloana de sinteza avind in vedere cresterea adiabata de temperatura maxima pe care o prezenta acest gaz fata de celelalte compozitii existente la instalatia Metanol IV cit si exotermicitatea foarte mare a reactilor de sinteza alcoolilor C_2^+ .

Cu ocazia acestor experimentari s-au verificat pe linga utilajul principal (coloana de sinteza) si posibilitatea realizarii acestor amestecuri pe catalizator de sinteza de tip CuO - Al_2O_3 - ZnO ([32],[33],[34]) respectiv pe catalizatori de metanol cu adaosuri de MoO₃ si K₂O [154]. In momentul de fata interesul fata de obtinerea acestor produse a scazut crescind cel pentru producerea MTBE-ului, mai usor

de produs si mai miscibil cu benzina .

Pentru sinteza amestecurilor de alcooli C_1 - C_8 asa cum indica literatura de specialitate ([32] - [36]) este necesar stabilirea unor parametrii mai diferiti fata de sinteza metanolului si anume :

- Gazul de sinteza sa aiba cifra stochiometrica S aproximativ egala cu 1 , fata de 2 la sinteza metanolului .

- Presiunea de lucru intre 50 - 100 bari (mai bine 80 - 120 bari).

- Temperatura de lucru intre 270 - 320 °C .

- Raportul [CO2]/[CO] < 0,0312 cu [CO2] < 1,5 % .

Reactia fiind foarte exoterma (mai exoterma decit sinteza obisnuita a metanolului de joasa presiune) de foarte mare importanta este modul de constructie al reactorului de sinteza, care trebuie sa prezinte stabilitate termica si sa poata prelua foarte eficient caldura de reactie. Continutul scazut al CO_2 -lui in gaz, necesar obtinerii unui continut de apa sub 1%, impune necesitatea spalarii CO_2 -lui din gazul recirculat si gazul proaspat [186].

Pentru a putea realiza un gaz de sinteza cit mai apropiat de aceste conditii s-a functionat cu gaz de sinteza obtinut de la cracarea autoterma Metanol II (CH4 : H20 : O2 : CO2) urmat de spalarea CO2-lui pina la 1 - 2 % cu solutie 30% de CO3K2. Pentru a nu fi necesara spalarea CO2-lui din gazul rezidual s-a functionat cu instalatia pilot la o singura trecere , gazul rezidual s-a dirijat la cracarea Metanol III unde prin amestec cu cel produs prin cracare (CH4 : H20) s-a utilizat in continuare la sinteza metanolului pe instalatia Metanol III . S-a mai verificat si posibilitatea maririi continutului de alcooli superiori si mai ales cresterea catenei prin omologare injectind metanol 3 - 10% in gazul de sinteza , inainte de intrare in coloana de sinteza [34].

Rezultatele experimentale cele mai reprezentative sint redate tabelar in tabelul nr.12 iar prelucrarea lor este redata in tabelul nr.13 si 14 unde sint redate valorile coeficientului total de transfer de caldura realizat cit si viteza de reactie si gradul de transformare a oxizilor de carbon la o trecere prin coloana de sinteza, ca parametrii de baza ai procesului de sinteza.

In tabelele nr.13 si 15 se vede clar ca stabilitatea termica si transferul de caldura la experimentarile 4,5,6 din 1987 sint mult mai bune ca la experimentarile 1,2,3 din 1986 . Aceasta imbunatatire a functionarii coloanei ce se traduce prin urmatoarele :

- ΔT_{max} mai mic ;

- ΔT_m mai mic;

- Abur recuperat de presiune mai mare;

- K_m coeficient de transfer de caldura mediu mai mare ;

s-a datorat imbunatatirii functionarii termosifonului prin inaltarea taburului recuperator de abur fata de coloana de sinteza. Presiunea aburului recuperat s-a putut creste de la 20 - 25 bari la circa 36 bari iartemperatura maxima in stratul catalitic nu a crescut cu mai mult de 39 - 40 °C fata de temperatura aburului saturat ce se obtine.

Aceasta diferenta de temperatura depinde pe linga de factorul de racire si de raportul de recirculare a termosifonului , care este bine sa fie 1 : 15 si probabil este si mai mica in cazul unei recirculatii fortate.

						,				
			DEBI	TE			PRES	IUNI	(bari)	-
Nr. crt.	Data	Intrare coloana Nmc/h	Gaz rezidual Nmc/h	Abur produs Kg⁄h	Metanol produs Kg/h	Presiune gaz col.	resiune Presiune az col. abur V415		Diferenta presiune MM H ₂ 0	Catalizator
		FR - 1	FR - 2	FR - 3		PIC - 1	PIC - 2	PIC - 4/1	PDI	
1.	09.05.86	2480	1660	400	360	40	20	15	2000	I.C.I S.I.I 5*5 MM
2.	15.05.86	3160	2100	420	380	38	20	15	2000	
3.	25.06.86	3700	3330	240	180	40	24	15	2200	Cat.Craiova 0.2%Na20
4.	2706.86	3608	3200	300	190	40	25	13	3000	
5.	2706.86	3507.8	2806	270	313	35.2	24	13	2000	
£.	28.06.96	3570	2885	330	307	33.6	28	13	2000	
2	29.06.86	3355	2710	330	288	33.6	28 ÷ 29	14	2000	Cat.Craiova 0.5%Na ₂ 0
8.	03.0786	3355	2795	300	250	33.6	30	14	2000	
9,	05.07.86	3006	2512	300	220,5	32	30	15	2000	
10.	29.09.87	2728	1803	300	412	37.6	33.5	15	2000	1
<u> </u>	30.09.87	2663	1807	215	382	40	36	15	2000	
12.	02.10.87	2948.8	2045.16	315	403	40	37	15	2500	
13.	06.10.87	1492	834	330	280	43	36	15	2450	
14.	06.10.87	2615.9	1807.4	330	360	40	35	15	2000	! [
15.	0710.87	2580	1750	300	370	40	35	15	2000	
16.	1210.87	1740	1046	345	309	38	33	15	1500	
17.	20.10.87	2173,5	1360	450	363	38	31	15	2000	1

*) - Valorile s-au obtinut prin colectare 24 - 48 ore si reprezinta valori medii .

(continuare)

Tabelul nr.12/2) Parametrii de functionare a instalatiei pilot in regim sinteza alcooli C $_1$ - C $_6$

			TE	MPER	ATURI	N	NIVELE			APA-ABUR (gr			
		MIJ	LOC		<u>*</u>)	}							4 [
Nr. crt.	Intrare cataliz.	Sus	Jos	Iesire cataliz	Temperat. medie cataliz.	Tenperat. separator V412	Refulare compresor	U 415	U 412	Tambur	Apa alim.	Abur sat,	Apa coboritoare tambur
0	TR - 1	IR - 2	TR - 3	TR - 4	grd.C	TR - 5	TR - 6	7.	7.	7.	grd.C	grd.C	TR - 10
1.	210	260	290	256	254	20	70	0	50	50	110	211,6	192
2.	259	243	290	240	245,5	19	71	4	40	28	110	211,6	195
3.	202	270	295	230	246,75	18	95	10	40	30	110	220,8	198
4.	205	280	280	230	248,75	20	111	40	40	30	110	220,8	198
5.	203	282	278	230	248	20	ш	40	40	28	110	222	200
6.	203	285	283	235	251,5	20	110	40	40	30	110	229	201
7.	200	290	284	206	252,5	21	100	40	40	28	110	229	202
8.	202	280	279	229	247,5	23	100	40	40	29	110	232,8	202
9.	201	282	275	228	246,5	28	100	40	40	28	110	232,8	202
10.	212	271	285	253	255,25	12	98	7	40	42	130	239	204
11.	210	278	290	258	259	12	100	8	40	28	130	243	210
12.	211	278	290	258	259	13	102	8	40	75	130	244,5	210
13.	211	273	287	251	255,5	13	112	37	40	58	130	241,5	208
14.	216	280	282	252	257,5	15	100	36	40	55	130	243	208
15.	215	279	292	249	256,25	13	100	64	3	50	130	243	208
16.	219	269	280	249	251,75	20	90	42	41	76	130	238	206
17	211	279	290	260	260	17	88	96	40	76	130	238	206

*) Valori medii calculate

(continuare)

Tabelul nr.12/3)	Parametrii de	functionare	a	instalatiei	pilot	in	regim
	sinteza alcooli	С ₁ – С _Б			1		5

		F	NAD	LIZ	A PR	ODUS	NLNI	DE R	EACTI	E	
Nr. crt.	Densitate la 20°C	со ₂	DME	н ₂ 0	сн _з он	с ₂ -он	i -C ₃ 0H	пС ₃ 0Н	2 -C ₄ OH	nC4 0H	C4 -0H
0	kg/l	7.	7.	7.	7.	7	Ζ.	7.	7,	Ż.	7.
1.	0,806	0,04	0,01	2,77	95,24	1,49		0,21	0,047		
2.	0,810	0,045	0,024	4,01	94,89	0,88	0,14		-		
З.	0,815	0,02	0,056	6.87	91,77	1,09	0,10	0,08			į
4.	0,808	0,03	0,063	4,55	94,66	0,637	ĺ	0,069	0,025		
5.	0,808	0,015	0,032	4,01	93,11	0,74		0,065	0,02		
6.	0,802	0,014	0,158	3,84	95,407	0,517		0,063			
7	0,805	0,01	0,226	4,26	93,80	1,62]	0,07			
8.	0,820	0,044	0,22	9,9	88,86	0,74	0,025	0,11	D,043	0,033	
9,	0,816	0,011	0,012	6,13	91,99	1,17	0,30	0,36			-
10.	0,810	0,028	0,074	7,18	91,86	0,68	0,080	0,030			Í
111.	0,806	0,02	0,068	4,30	94,42	0,58	0,058	0,03	0,2	0,042	
12	0,814	0,006	0,03	4,91	92,33	1,75	0,16	0,39	0,10		
13.	0,810	3,01	0,05	2,79	94,14	1,99	0,04	0,47	0,01	0,37	
14.	0,806	0,01	0,03	4,5	93,24	0,98	0,061	0,59	0,03	0,003	0,45
15.	0,810	0,029	0,02	4,1	87,98	1,06	0,07	6,15	0,3	0,01	0,53
16.	0,810	0,06	0,03	9,82	84,21	3,15	0,064	1,518	0,15	0,384	}
17	0,825	0,06	0,03	7,48	87,15	2,84	0,019	1,45	0,045	0,035	

(continuare)

I I	1			<u> </u>	NALI	<u>2 A G</u>	AZE			
		INTE	ARE CO	LOANA		<u> </u>	<u> </u>	NZ REZID	<u>ual</u>	
nr. crt.	CO	CO2	H2	СН4	NS	co	COS	H ₂	CH4	N ₂
	7.	7,	7.	7.	7.	7.	7.	7.	7.	7.
	31.21	1.68	65,35	0,6	1,16	27,64	4,20	65,8	0,9	1,73
2	28.17	0.41	68,63	1,09	1,7	21,97	2,21	69,73	1,76	1,32
3	26.04	178	69,63	1,72	0,83	23,60	3,05	70,7	1,86	0,79
4	27.17	3.62	66,67	1,62	0,90	26,21	4,40	66,54	1,68	1,17
5	26 56	4.82	65.9	1,98	1,24	25,17	5,89	67,07	1,98	1,24
6	28.33	2.47	65.99	2,49	0,72	27,28	3,36	65,51	2,3	1,55
7	2675	1.01	68.44	2,40	1,4	25,52	2,09	69,21	2,1	1,08
2	2574	394	66.70	1,99	1,63	24,71	5,07	66,72	2,42	1,08
q	25 57	1.41	69.33	1,59	2,1	123,16	2,04	69,56	1,63	3,61
10	12978	1.43	66.51	10,75	1,53	23,76	2,47	66,59	0,52	1,56
11	28.24	1.82	67.69	1,02	1,23	27,4	3,08	66,97	0,96	1,95
12	28.07	1.36	66.32	1,17	3,8	i 27,39	2,08	67,25	1,32	4.05
112	2756	2.08	68.35	0,99	1,02	25,50	3,05	67,23	1,06	3,16
i 1Δ	25.68	2.34	66.51	1,18	4,19	21,74	4,75	65,82	1,62	6,07
15	26 53	3.57	67.13	1,17	1,60	22,60	3,57	67,35	1.38	2,25
16	26.87	2.60	67.23	1,21	2,05	24,65	3,77	66,64	1,72	3,72
117	28.49	2,94	67,94	1,51	2,12	26,72	4,6	64,79	1,61	12,20

		in	lempo cata	eratu lizat	turi Itor			Diferenta temp. apa - gaz			Abur produs		Sarcina		Çoeficient		
Nr. crt	Data	TR 1	TR 2	TR 3	TR 4	T _M	Apa abur sat	A T MIN	∆ I MAX	<u>ک</u> T _N	Caldura transf. in abur	P	i	te: Ca	MICA ZAN	schi cald	l de mb de ura
		°C	-C	°C) * C) 'C	•C	.c	•c	.с	kcal/h	bari	<u>kcal</u> kg	<u>kcal</u> m-h	<u>W</u> M ²	<u>kcal</u> m-h°C	H H
1.	09.05.86	210	260	290	256	254	211,4	44,6	78,6	42,6	267520	20	668,8	7600	8837,2	178,4	207,44
2.	15.05.86	209	243	290	240	245, 5	211,4	34,1	78,6	34,1	280000	20	668,8	7970	9267,4	233,7	271,74
3.	2706.86	202	275	278	225	245	223	2	33	22	120420	25	669,6	3421	3977,9	155,5	180,81
4.	29.09.87	215	273	285	254	258, 5	242	12	43	14,75	201000	33,5	670	5710	6639,5	387,1	450,11
5.	05.10.87	213	275	288	255	257,5	243	12	45	14,75	200700	36	669,9	5710	6639,5	386,5	449,41
6.	06.10.87	216	280	282	252	258, 5	243	9	39	15,5	242178	36	669,9	6880	8000,0	443,5	516,04

<u>Tabelul nr.13)</u> Evaluarea coeficientului total de transfer termic

Tabelul nr.14) Evaluarea performantelor cinetice si de proces

Nr. crt	Data	P	I	Viteza volu - metri- ca	Timp de contact	Viteza de reactie	Rand de trans- tormare CO+CO ₂	Catalizator	÷	rodus	
		bari	τ	<u>Nhc</u> Nc cath	SEC.	kgC - C <u>1</u> MC h	Χ.		P	kg∕h	kg alur kg C1-C6
1.	09.05.86	40	254	5767,4	0,625	858,11	35,3	I.C.L 5L1	20	400	1,064
2.	15.05.86	38	245,5	7348,8	0,469	883,72	35,66	I.C.I. 51.1	20	420	1,105
3.	2706.86	40	245	8390,6	0,423	453,0	10,65	C.C.C. aiova 0,2%Na	25	300	1,54
4.	29.09.87	39	258,5	7516	0,47	911,6	34,34		35	300	1,574
5.	05.10.87	40	257,5	6290,7	0,572	755,0	24,69		36	300	0,925
6.	06.10.87	43	258,5	3469,7	1,037	700,0	47,15	ti	36	330	1,000

<u>Tablelul nr.15)</u> Evaluarea datelor de transfer termic

Nr. Crt	Data	T T Z T	۲ <mark>н</mark> ک	K _n Cceficient total de transfer mediu	Vitern Masica Medie *)	Nunarul lui Ragnolds	Const. de racire Medie **)	Cresterea adiabata de temperttura la o tracere ***)	Presiunea aburubui recuperat
		°C	•C	<u>kcal</u> m=h C	<u>kcal</u> m-h		M-:	C	bari
1.	09.05.86	78,6	42,6	178,4	1829,5	1325,5	17,327	561,5	20
2.	15.05.86	78,6	34,1	233,7	2323	1683,3	17,37	462,6	20
З.	27.06.36	33	22	155,5	3007	2178,6	9,2	153,71	25
4.	29.09.87	43	14,75	387,1	2000,8	1449,6	34,39	436,5	35
5.	05.10.87	45	14.75	386,5	2071,5	1500,8	33,16	421,6	36
6.	06.10.87	39	15,5	443,8	1027,3	744,3	76,79	1032,6	36

*) G = ((EC + IC)/2MH)/SL)

***)
$$\Delta T_{a,l} = \frac{\overline{2} IC*Y(1) - \overline{2} EC*Z(1)}{\frac{IC+EC}{2 + 22.4} * CP}$$

<u>&8.2) Functionarea in regim de sinteza</u> <u>metanolului cu compozitii diferite ale gazului</u> <u>de sinteza</u>

Aceste experimentari au inceput in 1988 tot cu gaz de sinteza de la Metanol II si au continuat apoi cu gaze provenite de la instalatia Metanol IV, amestec intrare in coloana de sinteza respectiv gaz de purja si aceste gaze prezentau o compozitie diferita de oxizii de carbon dupa cum functiona instalatia de preparare gaz de sinteza de la Metanol IV, cu sau fara CO2 de la Fagaras. Alimentarea cu CO2 in anii 1988-1989 era destul de aleatoare datorita deselor defectiuni aparute la compresorul de la Fagaras, cit si deselor defectiuni intervenite in instalatia Kellogg de fabricarea amoniacului de la Fagaras (vezi tabelul nr.9 capitolul nr.6).

In cele ce urmeaza voi analiza cele mai reprezentative situatii de functionare pe sinteza metanolului de joasa presiune folosind catalizator de sinteza metanolului tip 51.1 de la firma I.C.I. Anglia.

Inaintea acestor experimentari , instalatia pilot s-a complectat cu schimbatorul de caldura gaz-gaz pentru a asigura preincalzirea reactantilor inintea intrarii in coloana de sinteza la o temperatura de peste 210 °C. Pentru a ilustra mai bine avantajele nete ale folosirii unei coloane de sinteza cu functionare in regim izoterm , vom simula indicatorii instalatiei Metanol IV daca ar functiona cu reactor de sinteza izoterm cu flux radial si ii comparam cu indicatorii tehnico-economici ai instalatiei Metanol IV ce functioneaza cu reactor de sinteza in regim adiabat de lucru cu "QUENCHE" rece dupa licenta I.C.I. Anglia.

Dupa cum rezulta din tabelul nr.19 si calculatiile de bilant anexate , indicatorii tehnico-economici sint net in avantajul procedeului izoterm de lucru .

Dupa cum rezulta din tabelul nr.19 fata de reactorul adiabatic de tip "QUENCHE" , licenta I.C.I.- ANGLIA , reactorul izoterm-radial prezinta urmatoarele avantaje tehnico-economice :

1) Micsorarea consumului de energie la compresie cu 54 kw/to .

2) Micsorarea consumului de apa de racire cu 104 mc/to .

1

			0111	0010	moou	ioiaiai	•			
			DEBI	TE			PRES	IUNI	(bari)	
Nr. crt.	Data	Intrare coloana N n c/h	Gaz rezidual Nmc/h	Abur produs Kg∕h _{¥)}	Metanol produs Kg/h _{*)}	Presiune gaz col.	Presiune abur	Presiune V415	Diferenta presiune MM H ₂ 0	Catalizator
0		FR - 1	FR - 2	FR - 3		PIC - 1	PIC - 2	PIC - 4/1	PDI	
1.	25.05.85	1585	1176	100	120	32	20	13		I.C.I. 51.1
2.	26.05.88	1585	1152	150	140	32	17	13		
3.	31.05.88	1475	1200	170,6	114,5	32	24	13		1 }
4	b2.06.88	2461	1775	335	218,3	39	25	15		1 #
5.	1206.88	3069	2504	448,3	287	45	30	13,5		——-t I——-
6.	18.06.88	3169	2447,6	380,8	253,75	45	31	13,5		
7.	19.06.88	3453	2561,4	400,7	272,5	45	30	13,5	1	
8.	25.06.88	1165,7	969	87,6	65	48	30	14	Į	{ !
9.	28.09.88	1221,6	843,4	139,4	103,3	47	23	13		
10.	29.09.88	1119,8	727,15	111,5	79,5	47,5	28	14		
11	20.09.88	1061	785	93,5	67,9	47	29	14		
12.	20.04.89	872,4	323,6	51,9	42,5	44	28	14		
13.	23.04.89	893,52	422,13	42,1	39,1	44	28	14		! !
14.	25.04.89	914,55	309,54	54,6	46,6	44	28	14	L	

<u>Tabelul nr.16/D</u> Parametrii de functionare a instalatiei pilot in regim sinteza metanolului.

*) Valorile au fost obtinute prin calcul

(continuare)

<u>Tabelul nr.16/2)</u> Parametrii de functionare a instalatiei pilot in regim sinteza metanolului .

			TE	MPER	ATURI	(grd.C)		N	IVE	LE	APF	- A !	BUR (grd.C)
Nr.		MIJLOC		Tacing	Townorat	Tonwanat	Rafulana	u	u	Tanbur	: Ana	Abur	Apa
crt.	Intrare cataliz	Sus	Jos	cataliz.	medie separator cataliz. V412		compresor	415 412		, and the second	alim.	sat.	coboritoare tambur
0	TR - 1	TR - 2	TR - 3	TR - 4	grd.C	TR - 5	TR - 6	7.	7.	<u> </u>	grd.C	grd.C	TR - 10
T	1229	245	274	229	244,25	25	89	50	48	40	100	211,4	200
2	223	238	260	222	235,75	25	80	40	46	50	120	203,4	190
13	224	244	261	229	239,25	25	82	45	50	50	120	220,8	210
4	225	253	273	238	237,25	19	73	51	55	45	120	222,3	210
5	232	263	280	245	255	25	102	38	151	155	120	232,8	220
6	1225	260	275	243	250,75	25	111	46	48	65	120	234	220
7	1226	258	273	240	249,25	28	111	55	51	42	120	232,8	220
8	221	241	255	228	236,25	19	10	37	48	50	150	232,8	220
9	220	248	260	218	236,50	15	10	60	42	60	150	218,0	208
10	225	250	261	235	242,75	19	20	42	52	65	150	229	218
11.	225	249	262	234	212,50	19	20	150	48	53	150	230	219
12	227	248	258	234	241,75	20		52	45	55	150	229	210
13	231	248	258	232	242	20		48	42	151	120	229	010
14.	222	231	250	225	232	20	!	46	53	48	120	669	1617

' (continuare)

				SINU	eza :	meta	noiun	н.							
	· · · · · ·					AN	ALIZ	A GA	2 E	(7, 40)L.)				
.		GAZ SPA	LAT MET	ANCL II		1	INI	RARE C	OLOANA			GA?	Z REZIDU	AL	
Ċrt.	CO	CO2	H ₂	CH4	N ₂	co	002	H ₂	CH4	N ₂	CO	.002	H ₂	сн ₄	N ₂
0	7.	7.	7.	7.	7.	7.	7.	7.	7.	7.	7.	1	7.	7.	7.
1.	20,24	7,98	70,46	0,763	0,65	13,28	11,15	170,1	1,82	1,65	9,88	12,73	73,85	1,98	1,56
2.	18,3	8,29	71,35	1.0	0,68	11,61	12,15	73,55	2,06	0,63	8,91	13,97	73,25	2,37	1,6
3.	19,61	8,31	68,2	1,72	2,16	11,89	11,52	70,11	4,1	2,38	9,43	12,05	71,24	4,48	2,8
4.	19,08	8.18	69,14	19	17	13,29	11,46	69,67	2,75	2,83	11,04	12,24	70,58	3,17	2,97
5.	15.33	8.38	72.77	1.94	1,58	13,29	8,64	73,55	2,91	1,71	11,41	10,61	73,46	3,19	1,6
6.	13,35	9,96	72,52	2,25	192	11,52	11,53	71,96	5,04	1,95	10.02	12,25	71.10	3,57	3,15
7	14.07	9.36	71.13	2.42	3,05	10,93	10,93	71,86	3,64	2,65	9,91	11,26	71,66	4,19	2,97
8.	<u> </u>			<u> </u>	<u> </u>	4,63	4,09	82,62	8,13	0,42	2,59	3,5	83,53	9,53	0,45
9.	I	<u> </u>		<u> </u>	I	8,06	8,28	75,81	7,5	0,25	4,58	S,03	7672	8,75	1,92
10	<u> </u>	<u> </u>	!	¦	<u> </u>	731	691	76,89	7,24	1,59	4,26	6,56	79,56	7,84	1,98
1 II]			¦	i	6,39	6,07	78,54	8,6	0,6	4,18	6,56	78,33	10,8	0,12
12			1—	1	1	4,41	15,05	85,1	4,88	0,56	2,45	3,92	87,86	5,24	0,56
13		I—		j		3,74	4,70	87,07	5,13	0,36	2,43	3,76	37,36	6,5	0,40
14]		<u> </u>		<u> </u>	3,82	4,47	86,00	5,34	0,34	2,21	3,43	85,83	4,97	0,56

<u>Tabelul nr.16/3</u> Parametrii de functionare a instalatiei pilot in regim sinteza metanolului.

(continuare)

<u>Tabelul nr.16/4)</u> Parametrii de functionare a instalatiei pilot in regim sinteza metanolului .

	ANALIZA METANOLULUI BRUT-%G-								
Nr. crt. O	Densitate ky\l	H20	снзон	C2-C4	DME	Mē	C02		
<u> </u>	0,833	14,41	85,17	0,02	0,12	0,03	0,25		
2.	0,832	13,29	85,98	0,0085	0,40		0,32		
3.	0,835	15,8	83,97	0,032	0,191	0,017			
4.	0.830	16,52	83,01		0,34		0,125		
5.	0,838	14,68	85,095	0,185			0,142		
6.	0.844	21,10	78,60	0,032		0,017	0,018		
2	0.843	13,10	81,50	0,85		0,017	¦0,9175		
8.	0.845	15,55	84,39	0,07					
9	0.845	16,23	63,70	0,07					
t0.	0.825	16,20	83,69	10,08					
11.	0.326	15,87	84,06	0,97					
12	0.846	23,00	76,90	0,025	0,06	0,01			
13	0.849	24.50	75,40	0,03	0,08	0,01			
14.	0.852	25.00	74,852	0.033	0,10	0,015	·		

		Nr. crt	Data	Difer apa	enta gaz A T MAX	temp. A T _m	Caldura tr	•ansferata	Sarcin termic cazan	1a 2a	Coefic total o schimb caldur	ient de de K	
		0		- †⁺C	٠C) *C	kcal/h	kw/h	<u>kcal</u> n ² h	$\frac{H}{M^2}$	kcal m²h°C	$\frac{H}{M^{2}K}$	
		1. 2. 3. 4.	25.05.0 26.05.0 31.05.0 02.06.0	35 17,6 38 18,6 38 7,2 58 15,7	62,6 56,6 40,2 50,7	32,85 32,35 18,45 24,95	102334 114920 97489 192021	118,93 133,56 113,30 223,17	2907,2 3264,7 2769,5 5455,1	3380,4 3796,2 3220,3 6343,1	88,50 100,9 150,11 220,4	102,90 117,3 174,54 255,8	
		5. 6. 7 8. 9.	1206.8 18.06. 19.06.9 25.06.9 28.09.	8 12,2 88 9 38 7,2 88 -4,8 88 0	47,2 41 40,2 22,2 42	22.2 16,75 16,45 3,45 18,5	255744 216678 228628 49964 79449	297,23 251,83 265,72 58,07 92,33	7265,4 6155,0 6495,1 1419,4 2257	8448,1 7156,9 7552,4 1650,5 2624,5	327,2 367,5 394,8 411,4 822	380,46 427,32 459,06 478,37 141,86	
		10. 11. 12. 13.	29.09. 30.09. 20.04. 23.04.	88 6 89 4 89 5 89 3	39 32 29 29 29	13,75 12,5 12,75 13,00	63691 53318 29627 24056 31219	74,02 61,96 34,43 27,99 36,28	1809,4 1514,7 841,6 684,2 886,8	2103,9 <u>1°61,2</u> 978,7 795,6 1031_2	131,5 131,7 66,01 52,63 295,6	152,9 153,13 76,74 61,19 343,02	
		Ta	belu	<u>l nr.1</u>	<u>(6)</u>	Perfo	ormant	e cinet	tice ob	tinute	exper	imental.	
	Nr.	Punct	ulteri le lu	odinam cru	ic Vit	teza vo I	lumetrica I	Timp de	contact	Viteza de reactie V⊳	Ra trai (C	ndament de nsformare 0 + CO ₂)	
	Crt	Presi ba	ri	grd.C	NI	MC / M	^C cataliz ^{*h}	se	С.	kg*Me MCcat.*h		χ.	
	1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12	32 32 32 39 45 45 45 45 45 45 45 47 47,5 47 44		244,25 235,75 239,25 247,25 255 250,75 249,25 236,25 236,5 242,75 242,75 242,50 241,75	36 36 34 57 71 73 80 27 28 26 24 24	.86 .86 .25 .23 .37 .46,5 .30,23 .30,23 .340 .40 .40 .04,18 .67 .28,7		0,976 0,976 1,051 0,629 0,504 0,490 0,449 1,315 1,267 1,382 1,459 1,7745		279 325 256 507 668 590 634 151 241 185 158 99	24,34 28,85 26,05 27,81 32,98 27,26 28,29 51,53 40,39 39,36 40,97 42,63		
(%) Å) 60	13. 14.	44 44 +C0 ₂)		242,U 232,0	21	26,86	VR	1,692	V _R (kgi mn De	109 1 ₂ /m ³ catina	50,5	<u>fic= ⇒ pแก≏tubu</u>	
50	7	3	e ¥	¥		. /	* *	6	00 <u> </u>	ptim de f	functio le sinte	nare a coloane eza 74)	
' 40 ↓					w 00 ~	110	[. n	1.901					
301							<u>onditii op</u> W = Vn=	<u>time :</u> 5200 Ni 425 kg	mc ∕ mc¤h M _e ∕ mc¤h				
201 10		/	*/*		P=45÷48 bari I=255÷232 °C				$\frac{v_{\rm R}}{v_{\rm (C0+C0_2)}} = 34 \%$				
		<u>/</u>	2 3	3 4	 5	6	7 8] 9 1°	WC 1000	Mn ³ /n ³ cat	ሳት ን		

Tabelul nr.17) Evaluarea coeficientului total de transfer termic K din datele experimentale

.

	INSTALATIA	METANOL IV
INDICATORUL	cu reactor izoterm si flux radial .	cu reactor adiabat I.C.I QUENCHE .
Debit gaz proaspat (Nmc/h)	101043	101043
Compozitia gazului proaspat :		
cõ x	12,06	12,06
	9,94	9,94
	/4,51 2 01	79,51 2 91
	0.28	0.28
$H_2 O \ddot{x}$	0,30	0,30
Debit gaz recirculat si	500000	718,742
proaspat (Nmc/h)	(69,6 %)	(100 %)
Grad de recirculare	3,948	6,113
Funct termodinamic de lucru :		F1.10
P (ata)	52	51,19
	255 14	18
Duaduatia naplizata ·		10
tona/zi CHoOH	609,77	606
tone/ora CH3OH	25,40	25,25
Cantitatea de gaz puriat		
(Nmc/h)	37294	36079
Gradul de conversie a (CO+CO2		22.47
- la o trecere (%)		8276
- totala $(%)$	8333 33	8984
	423	315,6
VR (KgMe/mc _{cat} *n)		
Consum energetic pt. compresie:	8500	9800
	334	388
Cantitatea de abur generat :		
– Pabur (bari)	30	
- Debit (kg/h)	21425	
- kgabur/kgCH30H	U,/8/	
Consum apa de racire la conden-	.	
sare produs :	470	3100
- mc/n - mc/toMe	18,5	122,7
Volum catalizator sinteza (mc)	60	80
Randament termic total pe buck	a	
Qmet + Qpurja + Qabur) 100 (1 N 80.80	76,02
Qgaz proaspat		
Compozitie metanol brut :		79
- сн _э он (%G)	80,89	22
- H ₂ 0 (%G)	13,11	<u> </u>

<u>Tabelul nr.13)</u> Compararea indicatorilor tehnico-economici

3) Cresterea randamentului termic al buclei de sinteza cu circa patru procente .

4) Cresterea randamentului de transformare a oxizilor de carbon cu circa doua procente .

5) Reducerea consumului de catalizator cu 25 %.

6) Producerea de 0,787 tone abur/tone metanol prin valorificarea caldurii de reactie .

Toate acestea facind procedeul izoterm net superior celui adiabatic. Singur costul reactorului izoterm este mai mare decit cel adiabatic dar pe total bucla de sinteza este compensat prin micsorarea tubulaturii de recirculatie si marimea schimbatoarelor de caldura si a recirculatorului.

Bilantul de materiale pentru bucla de sinteza cu reactor izoterm este simulata pe calculator (pagina nr.96). In continuare sint prezentate bilanturile de materiale ale coloanei pilot izoterm-radiale simulate pe calculator, date ce constituie baza de calcul a prezentului capitol.

ANALIZA STATISTICA A DATELOR CINETICE

Datele experimentale obtinute prin functionarea instalatiei pilot la diverse incarcari si cu compozitii diferite a gazului de sinteza a permis obtinerea unei dependente de forma :

$$V_{r}$$
 = Functie (P_{Co} , W)

care poate servi la dimensionarea reactoarelor de sinteza , respectiv la simularea performantelor diversilor catalizatori .

Prin regresie matematica de tip polinomiala de gradul doi s-a obtinut o relatie ce aproximeaza datele experimentale cu o deviatie de 4,3%, aproximatie considerata satisfacatoare. Polinomul este :

Of.Calcul VIROMET S.A. BILANT DE MATERIALE IN SINTEZA METANOLULUI LA JOASA PRESIUNE CU RECIRCULARE IN REGIN IZOTERM END OFF RUN Temp.iesire reactor = 255.00 grd.celsius Presiunea reactor = 51.90 ata Diferenta fata de echilibru = 17.80 grd.celsius KP1 = 8.38472e-04 KP2 = 1.43020e-02 Compozitia [%] CH4 N2 H20 CH30H TOTAL H2 C02 CO 9.940 74.510 2.910 0.280 0.300 0.000 100.000 INTRARE PR 12.060 6.695 79.902 6.909 0.660 0.109 0.399 100.000 INTRARE IC 5.326 7.467 0.713 1.819 4.478 100.000 5.537 76.574 IESIRE EC 3.413 0.755 0.050 0.500 100.000 7.921 5.874 81.268 RECIRCULAT 3.620 0.000 0.000 30.547 69.453 100.000 0.000 0.000 SEPARATE 0,000 7.921 0.756 0.060 0.500 100.000 5.874 81.268 3.620 PURJA Debite [NH3/H] CH30H TOTAL N2 H20 H2 CH4 CO C02 0.0 101049.0 282.9 303.1 INTRARE PR 12186.5 10044.3 75291.6 2940.5 INTRARE IC 26630.5 33477.4 399511.0 34542.9 3301.0 542.5 1994.8 500000.0 IESIRE EC 15786.3 25610.9 354201.9 34539.3 3298.5 8413.2 20713.1 462563.2 239.4 1994.8 398951.0 3018.0 RECIRCULAT 14444.0 23433.1 324219.4 31602.4 0.0 8151.6 18533.8 26685.4 0.0 0.0 0.0 SEPARATE 0.0 184.6 37294.0 2169.0 30009.7 2925.1 279.4 22.2 PURJA 1336.9 METANOL BRUT --- CH30H 80.89 % ---19.11 % ------- H20 PURJA / PROASPAT =0.3654348080 PROASPAT / PROD =3975.5321977398 =0.8242122720 CO2 / CO (H2-C02)/(C0+C02)=2.935000000 INTR.COL. / PROD =819.6378732388 EFICIENTA CARBON =84.2295384357 TEMPERATURA INTRARE = 225.0 TEMPERATURA APA = 150.0 TEMPERATURA ABUR SAT= 247.0 30.000 bari PRESIUNE ABUR = 31.411 % RANDAMENT/O TRECERE= =-21425.0 kg ABUR -0.787 to/to.h = IABUR =-11304320.584 kcal CALDURA COEFICIENT CALDURA = -314.009 Kcal/m2*h*grd.C 0.423 kg metanol/m3h INDICE PRODUCTIVITATE= 8333.333 Nac/ac+h Intr.col./Volum cat. = PRODUCTIA = 609.77 tone/zi NUMAR ITERATII PRIN METODA INJUMATATIRII : 40
```
1
                                                                     Of.Calcul
 VIROMET S.A.
                                                                     Data :25.05.88
         SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE
 Temperatura medie reactor = 244.25 grd.celsius
                   reactor = 33.64 ata
 Presiunea
 Diferenta fata de echilibru = 12.00 grd.celsius
 KP1 = 1.52166e+03
 KP2 = 1.14812e-02
 Compozitia E % 3
                                                 N2
                                                        H_{20}
                                                               CH30H
                                                                       TOTAL
                                         CH4
                        C02
                                 H2
                CO
                                                               0.000 100.000
                                                       0.000
                                       1.820
                                               1.650
 INTRARE IC
              13.280
                      11.150
                              72.100
                                                               6.750 100.000
                      11.744 67.423
                                               1.873
                                                       0.911
                                       2.066
 IESIRE EC
               9.234
                                                       5.299 94.701 100.000
                                        0.000
                                               0.000
               0.000
                       0.000
                               0.000
 SEPARATE
                                                              0.520 100.000
                                               2.004
                                                       0.600
                      12.566
                               72.220
                                        2.210
                9.880
 PURJA
            E NM3/H ]
 Debite
                                                                     снзон
                                                                              TÜTAL
                                                      N2
                                                              H20
                                            CH4
                         C02
                                   H_2
                C0
                                                                             1585.0
                                                              0.0
                                                                       0.0
                                                     26.2
                                            28.8
                210.5
                                 1142.8
                         176.7
  INTRARE IC
                                                                             1396.5
                                                                      94.3
                                                     26.2
                                                             12.7
                                  941.5
                                            28.8
                         164.0
                128.9
  IESIRE EC
                                                                      87.5
                                                                               92.4
                                                              4.9
                                                     0.0
                                            0.0
                                   0.0
                          0.0
  SEPARATE
                  0.0
                                                                             1304.1
                                                              7.8
                                                                       6.8
                                            28.8
                                                     26.1
                                  941.8
                         163.9
                128.8
  PURJA
  Temperatura intrare = 229.0 grd.Celsius
  Temperatura iesire = 229.0 grd.Celsius
                    = 150.0 grd.Celsius
  Temperatura apa
  Temperatura abur sat= 211.4 grd.Celsius
  (H2-C02)/(C0-C02) =2.4130167826
                    =0.8396084337
  (002/00 )
                    =0.8227843865
  Purja/proaspat
  Proaspat/productie=13211.9013870878
                           96.95 % ---
  METANOL BRUT --- CH30H
                            3.05 % ----
               ---- H2O
                         20.000 bari
                    =
  Fresiune abur
                         24.342 %
  Randament/otrecere=
                        186.733 kg
                    ---
  Abur
                           1.468 to/to.h
                    :=
  Tabur
                    = 102334.980 kcal
  Caldura
                           88.501 Keai/m2*h*grd.C
                      ...
  Coeficient caldura
                            0.279 kg met/m3h
  Indice productivitate=
                           3636.047 Nmc/mc*h
  Intr.col/Volum cat. =
                           2,33 %o/zi
 PRCLUCTIA =
```

| pag. 98

VIROMET S.A.

Of.Calcul Data :26.05.88

SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE

Temperatura medie reactor = 235.75 grd.celsius reactor = 33.64 ata Presiunea Diferenta fata de echilibru = 12.00 grd.celsius KP1 = 2.23200e-03KP2 = 9.87432e-03Compozitia [%] TOTAL CO2 H2 CH4 N2 H20 CH30H 03 0.000 0.000 100.000 11.610 12.150 73.550 2.060 / 0.630 INTRARE IC 7.946 100.000 0.730 1.281 2.387 12.800 68.065 IESIRE EC 6.790 8.910 91.090 100.000 0.000 0.000 0.000 0.000 0.000 SEPARATE 0.520 100.000 0.600 7.389 13.929 74.169 2.598 0.795 PURJA--E NM3/H] Debite H20 СНЗОН TOTAL N2 H2 CH4 C0 C02 0.0 1585.0 0.0 10 32.7 184.0 192.6 1165.8 INTRARE IC 1367.7 108.7 17.5 930.9 32.7 10 175.1 92.9 IESIRE EC 112.1 102.1 0.0 0.0 -10 0.0 0.0 0.0 SEPARATE 7.5 1255.5 10 6.5 32.6 174.9 931.2 92.8 PURJA ١ Temperatura intrare = 223.0 grd.Celsius Temperatura iesire = 222.0 grd.Celsius = 150.0 grd.Celsius Temperatura apa Temperatura abur sat= 203.4 grd.Celsius ł (H2-C02)/(C0-C02) =2.5841750842 =1.0465116279 (002/00 → =0.7921232695 Purja/proaspat Proaspat/productie=11314.5521682122 METANOL BRUT --- CH30H 94.78 % ---5.22 % ------- H2O 17.000 bari = Presiune abur 28.857 % Randament/otrecere= 215.476 kg = Abur 1.436 to/to.h = Iabur = 114920.498 kcal Caldura 100.921 Kcal/m2*h*grd.C Coeficient caldura = 0.326 kg met/m3h Indice productivitate= 3686.047 Nmc/mc*h Intr.col/Volum cat. = 3.36 to/zi PROBUCTIA=

pag. 99 ł Of.Calcul VIROMET S.A. Data :31.05.88 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 239.25 grd.celsius reactor = 33.64 ata Presiunea Diferenta fata de echilibru = 12.00 grd.celsius KP1 = 1.90358e - 03. KP2 = 1.05139e-02Compozitia [%] H20 CH30H TOTAL C02 Н2 CH4 N2 C0 2.380 0.000 0.000 100.000 11.890 12.520 69.110 4.100 INTRARE IC 6.987 100.000 7.732 13.102 63.626 2.713 1.167 4.673 IESIRE EC 8.577 91.423 100.000 0.000 0.000 0.000 0.000 0.000 SEPARATE 0.520 100.000 8.317 14.093 68.525 5.026 2.918 0.600 PURJA E NM3/H 3 Nebite N2 H20 CH30H TOTAL CH4 H2 C02 CO 0.0 1473.0 60.4 35.1 0.0 1018.0 175.1 184.4 INTRARE IC 90.3 1292.4 35.1 15.1 60.4 822.3 169.3 99.9 IESIRE EC 91.9 7.9 84.1 0.0 0.0 0.0 **0.0** 0.0 SEPARATE 6.2 1200.5 35.0 7.2 822.6 60.3 2 99.8 169.2 FURJA Temperatura intrare = 224.0 grd.Celsius Temperatura iesire = 228.0 grd.Celsius = 150.0 grd.Celsius Temperatura apa Temperatura abur sat= 220.8 grd.Celsius (H2-C02)/(C0-C02) =2.3592789840 =1.0529857023 (002/00)) =0.8149790672 Purja/proaspat Froaspat/productie=12778.0865038312 METANOL BRUT --- CH30H 94.99 % ---5.01 % ------- H20 24.000 bari = Presiune abur 25.113 % Randament/otrecere= 174.682 kg = Abur 1.414 to/to.h Ξ Iabur 96541.132 kcal = Caldura 148.653 Kcal/m2*h*grd.C = Coeficient caldura 0.268 kg met/m3h Indice productivitate= Intr.col/Volum cat. = / 3423.581 Nmc/mc*h PRODUCTIA = 2.77 to/zi

pag. 100 Ł VIROMET S.A. Of.Calcul Data :02,06.88 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 247.25 grd.celsius reactor = 40.78 ata Presiunea Diferenta fata de echilibru = 12.00 grd.celsius KP1 = 1.38870e-03KP2 = 1.22770e - 02Compozitia [%] H20 CH3GH TOTAL CH4 N2 C02 H2 CO 0.000 100.000 13.290 11.460 69.670 2.830 0.000 2.750 INTRARE IC 1.075 7.983 100.000 3.189 3.282 8.504 12.214 63.753 IESIRE EC 6.520 93.480 100.000 0.000 0.000 0.000 0.000 0.000 SEPARATE 0.600 0.520 100.000 3.464 3.565 9.238 13.268 69.346 PURJA T N037H J Debite H20 CH30H TOTAL N2 CH4 C02 H2 C0 2461.0 0.0 0.0 69.6 1714.6 67.7 282.0 327.1 INTRARE IC 169.4 2122.2 22.8 259.2 1352.9 67.7 69.6 180.5 IESIRE EC 170.4 159.3 0.0 0.0 0.0 11.1 0.0 SEPARATE 0.0 1951.8 10.1 67.6 69.6 11.7 1353.5 259.0 180.3 PURJA Temperatura intrare = 225.0 grd.Celsius Temperatura iesire = 238.0 grd.Celsius Temperatura apa = 150.0 grd.Celsius Temperatura abur sat= 222.5 grd.Celsius (H2-C02)/(C0-C02) =2.3519191919 =0.8623024831 (002/00) =0.7931029682 Purja/proasput Proaspat/productie=11267.9054598845 METANOL BRUT --- CH30H 96.22 % ---3.78 % ------- H2O 23.000 bari = Presiune abur 27.813 % Randament/otrecere= 355.961 kg Ξ Abur 1.521 to/be.b = Iabur = 192021.032 kcal. Caldura Coeficient caldura = 220.410 Kcal/m2*h*grd.C 0.503 kg met/m3h Indice productivitate= Intr.col/Volum cat. = 5723.256 Nmc/mc*h 5.24 to/zi PRODUCTIA = ٨

pag. 101 1 Of.Calcul VIROMET S.A. Data :17.06.88 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 255.00 grd.celsius reactor = 46.90 ata Presiunea Diferenta fata de echilibru = 12.00 grd.celsius KP1 = 1.03224e-03KP2 = 1.41749e - 02Compozitia [%] CH30H TOTAL H20 CH4 N2 C02 H2CO 0.000 100.000 0.000 8.640 73.550 2.810 1.710 13.290 INTRARE IC 0.940 8.456 100.000 3.285 1,999 9.161 68.136 TESTRE EC 8.022 4.668 95.332 100.000 0.000 0.000 0.000 0.000 SEPARATE 0.000 0.600 0.520 100.000 2.180 9.987 74.386 3.582 8,746 PURJA E NM3/H D Debite снзсн TOTAL H20 H_2 CH4 N2 C02 CO. 3069.0 0.0 86.2 52.5 0.0 2257.2 407.9 265.2 INTRARE IC 2625.0 222.0 86.2 52.5 24.7 240.5 1788.6 210.6 IESIRE EC 219.7 0.0 10.3 209.5 0.0 0.0 0.0 0.0 SEPARATE 14.4 12.5 2405.3 210.4 52.4 86.2 240.2 1789.2 PURJA Temperatura intrare = 232.0 grd.Celsius Temperatura iesire = 245.0 grd.Celsius = 150.0 grd.Celsius Temperatura apa Temperatura abur sat= 232.8 grd.Celsius (H2-C02)/(C0-C02) =2.9598723210 =0.6501128668 (002/00) =0.7837488961 Purja/proaspat Proaspat/productia=10683.3221011107 97.32 % ---METANOL BRUT --- CH30H 2.68 % -------- H20 30.000 bari = Presiune abur 32.931 % Randament/otrecere= 474.578 kg = Abur 1.542 to/to.h = Iabur = 255744.630 kcal Caldura Coeficient caldura = 327.274 Kcal/m2*h*grd.C 0.668 kg met/m3h Indice productivitate= 7137.209 Nmc/mc*h Intr.col/Volum cat. = PRODUCTIA = 6.89 to/21

ŝ

pag. 102 ł VIROMET S.A. Of.Calcul Data :18.06.88 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 250.75 grd.celsius Presiunea reactor = 46.90 ata Diferenta fata de echilibru = 17.00 grd.celsius KP1 = 9.99639e - 04KP2 = 1.31889e - 02Compozitia [%] CO C02 H2 CH4 N2 H20 СНЗОН TOTAL | INTRARE IC 11.520 11.530 69.960 5.040 1.950 0.000 0.000 100.000 IESIRE EC 7.387 11.788 64.240 5.765 2.230 1.400 7.189 100.000 0.000 SEPARATE 0.000 0.000 0.000 0.000 11.194 88.806 100.000 PURJA 7.984 12.739 69.517 6.230 2.410 0.600 0.520 100.000 Debite E NM3/H 3 CO. C02 H2 CH4 N2 H20 CH30H TOTAL INTRARE IC 363.9 364.2 2210.0 159.2 61.6 0.0 0.0 3159.0 IESIRE EC 204.0 325.6 1774.2 159.2 61.6 38.7 198.6 2761.9 SEPARATE 0.0 0.0 0.0 0.0 0.0 23.4 185.3 208.6 203.8 PURJA 325.3 1774.9 159.1 61.5 15.3 13.3 2553.2 Temperatura intrare = 225.0 grd.Celsius Temperatura iesire = 243.0 grd.Celsius = 150.0 grd.Celsius Temperatura apa Temperatura abur sat= 234.0 grd.Celsius (H2-C02)/(C0-C02) =2.6216919740 (CO2/CO) =1.0003680556 =0.8082425428 Purja/proaspat Proaspat/productie=12431.9287791518 METANOL BRUT --- CH30H 93.38 % ---6.62 % ------- H2D 31,000 bari Presiune abur = 27.269 % Randament/otrecere= 401.091 kg Abur = 1.473 to/to.h Iabur = Caldura = 216678.237 kcal = 307.500 Kcal/m2*h*grd.D Coeficient caldura Indice productivitate= 0.591 kg met/m3h 7346.512 Nmc/mc*h Intr.col/Volum cat. = 6.10 to/zi PROBUCTIA =

pag. 103 ł VIROMET S.A. Of.Calcul Data :19.06.88 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 249.25 grd.celsius reactor = 46.90 ata Presiunea Diferenta fata de echilibru = 17.00 ard.celsius KP1 = 1.06600e - 03KP2 = 1.28531e-02 Compozitia [%] CH4 N2 H20 CH30H TOTAL CO2 H2 CO 0.000 0.000 100.000 2.650 10.930 71.860 3.630 INTRARE IC 10.930 7.057 100.000 3.024 1.391 66.497 4.142 6.807 11.081 IESIRE EC 0.000 11.278 88.722 100.000 0.000 0.000 0.000 0.000 SEPARATE 0.520 100.000 0.600 11.958 71.844 4.470 3.263 7.345 PURJA r NM3/H J Debite H20 CH30H TOTAL Ν2 CH4 H2 C02 CO 0.0 3453.0 0,0 125.3 91.5 377.4 377.4 2481.3 INTRARE IC 3025.9 213.6 125.3 42.1 91.5 335.3 2012.1 206.0 IESIRE EC 224.3 199.0 25.3 0.0 0.0 0.0 0.0 0.0 SEPARATE 2801.6 16.8 14.6 125.2 91.4 2012.8 205.8 335.0 PURJA Temperatura intrare = 226.0 grd.Celsius Temperatura iesire = 240.0 grd.Celsius = 150.0 grd.Celsius Temperatura apa Temperatura abur sat= 232.8 grd.Celsius (H2-C02)/(C0-C02) =2.7872827081 =1.0000000000 (002/00) =0.8113596593 Purja/proaspat Proaspat/productie=12653.4934366904 93.33 % ---METANOL BRUT --- CH30H 6.67 % ------- H2O 30.000 bari = Fresiune abur 28.291 % Randament/otracere= 424.260 kg = Abur 1.451 to/to.h = Iabur = 228628.733 kcal Caldura Coeficient caldura = 394.841 Kcal/m2*h*grd.C 0.635 kg met/m3h Indice productivitate= 8030.233 Nmc/mc*h Intr.col/Volum cat. = 6.55 to/zi PRODUCTIA =

pag. 104 ł VIROMET S.A. Of.Calcul Data :25.06.88 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 236.25 grd.celsius Presiunea reactor = 49.96 ata Diferenta fata de echilibru = 17.00 grd.celsius KP1 = 1.93150e-03KP2 = 1.02431e-02Compozitia E %] C02 CO H2 CH4 N2 H20 СНЗОН TOTAL INTRARE IC 4.630 4.080 82.490 8.380 0.420 0.000 0.000 100.000 IESIRE EC 1.623 3.011 79.289 9.207 0.461 1.472 4.936 100.000 0.000 0.000 0.000 0.000 16.904 83.096 100.000 SEPARATE 0.000 PURJA 3.179 83.779 1.713 9.721 0.487 0.600 0.520 100.000 E N/53/H 3 Debite CO2 H_{2} CH4 N2 H20 CH3OH TOTAL C0 -INTRARE IC 54.4 48.0 969.8 98.5 4.9 0.0 0.0 1175.7 32.2 848.4 98.5 52.8 1070.1 IESIRE EC 17.4 4.9 15.8 SEPARATE 0.0 0.0 0.0 0.0 0.0 9.7 47.6 57.2 848.5 98.5 1012.3 PURJA 17.4 32.2 4.9 6.1 5.3 /Temperatura intrare = 221.0 grd.Celsius Temperatura iesire = 228.0 grd.Celsius Temperatura apa 🛒 = 150.0 grd.Celsius Temperatura abur sat= 232.8 grd.Celsius (H2-C02)/(C0-C02) =9.0172215844 (CO2/CO) =0.8812095032 Purja/proaspat =0.8614709401 Proaspat/productie=18027.5728757416 METANOL BRUT --- CH30H 89.73 % ---10.27 % --------- H2O 30.000 barr Presiune abur 51.581 % Ranuament/otrecere= 93.547 kg = Abur 1.339 to/to.n = Iabur 49564.406 Kcal Caldura = = 411.433 Kcal/m2*h*grd.C Coeficient caldura 0.152 kg met/m3h Indice productivitate= 2734.136 Nmc/mc*h Ingr.col/Volum cat. = 1.57 to/zi PROBUCTIA=

pag. 105 ł VIROMET S.A. Of.Calcul Data :28.09.88 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 206.50 grd.celsius 48.94 ata Fresiunea reactor = Diferenta: fata de echilibru = 17.00 grd.celsius KP1 = 1.39531e-03KP2 = 1.02766e-02'Compozitia [%] СНЗОН TOTAL 0.1 C02 H2 CH4 N2 H20 75.810 7.600 0.250 0.000 0.000 100.000 8.280 8.060 INTRARE IC 8.752 0.288 1.685 7.581 100.000 70.458 7.851 IESIRE EC 3.386 13.767 86.233 100.000 0.000 0.000 0.000 0.000 0.000 SEPARATE 0.520 100.000 0.313 0.600 8.547 76,805 9.528 PURJA 3.686 E NM3/H] Debite H20 N2 CH30H TOTAL CO2 H2CH4 CO 3.1 0.0 0.0 1221.6 101.1 926.1 92.8 98.5 INTRARE IC 80.4 1060.8 92.8 3.1 17.9 83.3 747.4 IESIRE EC 35.9 87.4 0.0 12.0 75.4 0.0 0.0 0.0 🛬 SEPARATE 0.0 973.4 3.1 5.8 5.1 92.7 35.9 83.2 747.6 PURJA Temperatura intrare = 220.0 grd.Celsius Temperatura iesire = 218.0 grd.Celsius = 150.0 grd.Celsius Temperatura apa Temperatura abur sat= 218.0 grd.Celsius (H2-C02)/(C0-C02) =4.1199510404 =1,0272952854 (002/00) =0.7363199705 Purja/proaspat Proaspat/productie=11821.4222413182 METANOL BRUT --- CH3OH 91.76 % ---8.24 % ------- 820 23.000 bari = Presiune abur 40.285 % Randament/otrecere= 153.450 kg = Abur 1.386 to/to.h == Iabur 79282.290 kcal = Caldura 121.748 Kcal/m2*h*grd.C Ξ Coeficient caldura 0.240 kg met/m3h Indice productivitate= 2840.930 Nmc/mc*h Intr.col/Volum cat. = PRODUCTIA = 2.48 to/zi

pag. 106 ł Of.Calcul VIROMET S.A. Data :29.09.88 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 242.75 grd.celsius 49.45 ata Fresiunea reactor = Diferenta: fata de echilibru = 17.00 grd.celsius KP1 = 1.44069e - 03KP2 = 1.15156e-02Compozitia E %] СНЗОН TOTAL H20 CH4 N2 0.3 C82 H20.000 100.000 6.970 76.890 7.240 1.590 0.000 7.310 INTRARE IC 6.334 100.000 1.791 1.524 6.329 72.438 8.157 3.426 IESIRE EC 0.000 14.165 85.835 100.000 0.000 0.000 0.000 0.000 SEPARATE 0.520 100.000 0.600 6.786 77.753 1.921 8.747 PURJA 3.674 Debite E NM3/H J CH30H TOTAL N2 H20 C02 H2 CH4 CO 17.8 0.0 0.0 1119.8 81.1 81.9 78.1 861.0 INTRARE IC 15.2 63.0 993.9 81.1 17.8 720.0 62.9 IESIRE EC 34.1 58.1 67.7 9.6 0.0 0.0 0.0 SEPARATE 0.0 0.0 926.2 5.6 4.8 17.8 81.0 34.0 62.8 720.1 PURJA Temperatura intrare = 225.0 grd.Celsius Temperatura iesire = 235.0 grd.Celsius : = 150.0 grd.Celsius Temperatura apa Temperatura abur sat= 229.0 grd.Celsius (H2-C02)/(C0-C02) =4.8963585434 =0.9534883721 (002/00) =0.8270786145 |Furja/proaspat Proaspat/productie=14044.7330677306 METANOL BRUT --- CH30H 91.51 % ------- Н2О 8.49 % ----23.000 bari Presiune abur = 39.369 % Randament/otrecere= 120.223 kg Hour = 1.407 to/to.h = Tabur 63691.714 kcal = 'Caldura 131.594 Kcal/m2*h*grd.C = Coeficient caldura 0.185 kg met/m3h Indice productivitate= 2604.186 Nmc/mc*h Intr.col/Volum cat. = 1 1.91 to/zi PROBUCTIA = t

pag. 107 ł VIROMET S.A. Of.Calcul Data :30.09.88 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 242.50 grd.celsius Presiunea reactor = 48.94 ata Diferenta¹ fata de echilibru = 17.00 grd.celsius KP1 = 1.45119e-03KP2 = 1.14556e-02Compozitia [%] CO CO2 H2 CH4 N2 H20 CH30H TOTAL · INTRARE IC 6.390 6.070 78.340 8.600 0.000 0.600 0.000 100.000 0.663 2.940 5.250 74.367 9.578 1.510 5.686 100.000 IESIRE EC 0.000 0.000 SEPARATE 0.000 0.000 0.000 15.408 84.592 100.000 0.600 5.590 79.250 10.198 0.711 3.131 0.520 100.000 PURJA E NM3/H J Debite H2 CH4 N2 H20 снзон TOTAL C02 CO 0.0 91.2 6.4 0.0 1061.0 64.4 831.2 INTRARE IC 67.8 952.7 91.2 54.2 708.5 6.4 14.4 IESIRE EC 28.0 50.0 58.5 49.5 SEPARATE 0.0 0.0 0.0 0.0 0.0 9.0 28.0 50.0 708.6 91.2 6.4 5.4 4.6 894.1 PURJA Temperatura intrare = 225.0 grd.Celsius Temperatura iesire = 234.0 grd.Celsius = 150.0 grd.Celsius Temperatura apa Temperatura abur sat= 231.0 grd.Celsius (H2-C02)/(C0-C02) =5.8162118780 =0.9499217527 (002/00) =0.8427143646 Purja/proaspat Proaspat/productie=15622.7401216959 METANOL BRUT --- CH3OH 90.71 % ---9.29 % ------ H2O 29.000 bari Presiune abur = Randament/otrecere= 40.976 % ŧ 100.390 kg = Abur 1.380 to/to.h = Iabur 53318.158 kcal ÷ Caldura Coeficient caldura = 131.715 Kcal/m2*h*grd.C 0.158 kg met/m3h Indice productivitate= Intr.col/Volum cat. = 2467.442 Nmc/mc*h PROBUCTIA = 1.63 to/zi

pag. 108 ł VIROMET S.A. Of.Calcul Data :20.04.89 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 241.75 ord.celsius Presiunea reactor = 45.88 ata Diferenta fata de echilibru = 17.00 grd.celsius KP1 = 1.46781e-03KP2 = 1.12496e-02Compozitia [%] 03 C02 H2 CH4 N2 H20 СНЗОН TOTAL INTRARE IC 4.410 5.050 85.100 4.880 0.560 0.000 0.000 100.000 2.107 3.796 82.096 5.308 0.609 1.697 4.387 100.000 IESIRE EC 0.000 0.000 0.000 22.449 77.551 100.000 0.000 SEPARATE 0.000 0.520 100.000 3.995 86.442 5.585 0.641 0.600 PURJA 2.217 Debite E NM3/H J C02 CH4 N2 H20 CH30H TOTAL CO H_2 38.5 44.1 742.4 42.6 4.9 0.0 0.0 872.4 INTRARE IC 4.9 658.4 42.6 13.6 35.2 802.0 30.4 IESIRE EC 16.9 31.2 40.3 . 0.0 0.0 0.0 0.0 9.0 0.0 SEPARATE 42.5 4.9 4.6 4.0 761.8 30.4 658.5 16.9 PURJA Temperatura intrare = 227.0 grd.Celsius Temperatura iesire = 234.0 grd.Celsius Temperatura apa = 150.0 grd.Celsius Temperatura abur sat= 229.0 grd.Celsius (H2-C02)/(C0-C02) =8.4619450317 =1.1451247166 (002/00) =0.8731856684 Purja/proaspat Proaspat/productie=20372.9394028539 METANOL BRUT --- CH30H 86.00 % ---14.00 % ------- H20 28.000 bari = Presiune abur 42.634 % Randament/otrecere= 55.207 kg = Abur 1.203 to/to.h = Iabur 29627.561 kcal = Caldura 66.015 Kcal/m2*h*grd.u Coeficient caldura = 0.10 kg met/m3h Indice productivitate= 2028,837 Nmc/mc*h Intr.col/Volum cat. = PROBUCTIA = 1.03 to/zi

						_			P	ag. 109
1										
VIROME	T S.A.								Of.Calcu Data :23	1
	SIMULA	AREA SINT	TEZEI ME	TANOLULU:	I LA JOA	SA PRES	SIUNE			
Temper Presiu Difere KP1 = KP2 =	atura me nea nta fat: 1.451630 1.129930	edie read read a de ech: 2-03 e-02	tor ≔ tor = ilibru =	242.00 g) 45.88 a1 17.00	rd.celsi ta grd.cel	us sius				
Compoz	utia []	X 1								
		CO	CO2	H2	CH4	N2	H20	СНЗОН	TOTAL	
INTRAS IESIRE SEPARA PURJA	E IC E EC NTE	3.740 1.832 0.000 1.920	4.700 3.305 0.000 3.465	86.070 83.194 0.000 87.231	5.130 5.538 0.000 5.806	0.360 0.389 0.000 0.407	0.000 1.769 25.599 0.600	0.000 3.975 74.401 0.520	100.000 100.000 100.000 100.000	
Debite	• C	имз/н з								
INTRAF IESIRE SEPARA PURJA	RE IC E EC NTE	CO 33.4 15.2 0.0 15.2	CO2 42.0 27.4 0.0 27.3	H2 769.0 683.6 0.0 688.6	CH 1 45. 45. 0. 45.	8 8 0 8	N2 3.2 3.2 0.0 3.2	H20 0.0 14.6 9.9 4.7	CH30H 0.0 32.9 28.8 4.1	TOTAL 893.5 827.7 38.7 789.0
Temper Tempe Tempe (H2-C((CO2/(Purja) Proas METAN(P:esi Randar Abur Labur Caldu Coefi: Indic Indic F R O	ratura i ratura a ratura a ratura a 22)/(CO- CC)) (proaspa bat/prod DL BRUT une abur neat/otr ra cient ca produc col/Volu D U C T	ntrare = esive = pa = bur sat= C02) =9. t =0. uctie=22 CH30 H20 = ecere= = = ldura tivitate m cat. I A =	231.0 0 232.0 0 150.0 0 223.0 0 25947867 25668449 88304057 524.6174 H 83.7 16.7 23.000 43.626 44.875 1.081 24082.7 = 52. = 0.95	rd.Celsik rd.Celsik rd.Celsik 730 920 790 4607141 78 % 9 bari 9 % 72 % 9 bari 9 % 72 % cal 628 Kcal 628 Kcal 628 Kcal 628 Kcal 629 kg m 77.907 Nm	us us us us et/m2h c/mc¥h	d.C				

pag. 110 ł VIROMET S.A. Of.Calcul Data :25.04.89 SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE Temperatura medie reactor = 232.00 grd.celsius reactor = 45.88 ata Presiunea Diferenta: fata de echilibru = 17.00 grd.celsius KP1 = 2.27659e - 03KP2 = 9.41694e - 03Compozitia [%] CO C02 H2 CH4 N2 H20 СНЗОН TOTAL INTRARE IC 3.820 4.470 86.000 5.340 0.370 0.000 0.000 100.000 IESIRE EC 1.386 3.092 82.934 5.828 0.404 1.786 4.569 100.000 SEPARATE 0.000 0.000 0.000 0.000 0.000 23.004 76.996 100.000 PURJA 1.463 3.263 87.578 6.150 0.426 0.600 0.520 100.000 E NM3/H J Debite CO C02 H2 CH4 N2 H20 CH3OH TOTAL INTRARE IC 34.9 40.9 786.5 48.8 3.4 0.0 914.5 0.0 48.8 IESIRE EC 11.6 25.9 694.9 3.4 38.3 837.9 15.0 SEPARATE 0.0 0.0 0.0 🛬 0.0 0.0 10.2 34.2 44.4 25.9 PURJA 11.6 695.0 48.8 3.4 4.8 4.1 793.6 Temperatura intrare = 222.0 grd.Celsius Temperatura iesire = 225.0 grd.Celsius = 150.0 grd.Celsius Temperatura apa Temperatura abur sat= 229.0 grd.Celsius (H2-C02)/(C0-C02) =9.8347406514 =1.1701570681 (002/00) Purja/proaspat =0.8677563634 Proaspat/productie=19521.0625592342 METANOL BRUT --- CH3OH 85.61 % ---14.39 % ------- H20 28.000 bari = Presiune abur 50.501 % Randament/otrecere= 58.168 kg Abur = = 1.159 to/to.h Iabur 31216.772 kcal Caldura = 295.613 Kcal/m2*h*grd.C = Coeficient caldura Indice productivitate= 0.109 kg met/m3h 2126.744 Nmc/mc*h Intr.col/Volum cat. = 1.12 to/zi PRODUCTIA =

<u>&8.3 Compararea coeficientului de transfer</u> <u>de caldura determinat experimental cu datele</u> <u>de literatura</u>

Asa cum s-a aratat in &34 datele de literatura de specialitate privind transferul termic in straturi cu umplutura (catalizatori) sint foarte contradictorii si s-au ocupat in special cu transferul de caldura in flux axial in care particulele au fost amplasate in tevi de diferite diametre (intre 25 si 100mm) iar particulele erau intre 2 si 25mm diametru . S-au stabilit relatii pentru determinarea coeficientului de transfer de la straturile de umplutura aflate in tevi sau intre tevi la peretele interior sau peretele exterior al tevii.

Verificind coeficientul de transfer termic , obtinut prin calcul conform relatiilor mai sus amintite , cu cel obtinut experimental rezulta clar ca aceste relatii nu pot fi aplicate trensferului termic in curent incrucisat la circulatie radiala deoarece dau valori ale coeficientului total de schimb de cladura si coeficientului partial de schimb de caldura in stratul de catalizator mult mai mici decit cele obtinute experimental . Relatiile cele mai apropiate de cele obtinute experimental sint cele calculate dupa J.Kjaer [14] , valori ce sint circa 50% din cele experimentale . Acest fapt este inca o dovada ca transferul termic incrucisat , ce se obtine in cazul circulatiei radiale, este de circa doua ori mai bun decit cel obtinut in cazul circulatiei axiale .

Pentru a ilustra mai bine cele afirmate vom analiza datele culese de pe instalatia pilot (in data de 19.06.1988) cu datele obtinute prin calcul dupa diversi autori si cu date de pilot publicate de J.Kjaer [109].

Data 19.06.1988

Debit intrare coloana	3453 Nmc/h
Debit and regidual	25614 Nmc/h
Debit yaz rezidual	45 hani
Presiunea gazului	
Presiunea aburului	30 bari
Temperatura medie in catalizator	249,25 °C
Temperatura aburului saturat	232,80 °C
Diferenta de temperatura medie	16,45 °C
Diferenta de competadara modera	35.2 mn
Supratata de schimb de caldard	
Volum de catalizator	
suprafata de schimb de caldura	81.86 1/m
volum de catalizator	01,00 1/ m
Calduna specifica masica	2,58 kcal/kg¤°K
	∩∩61497 ka∕a¤h
Viscozitate	
	~

Viteza masica	2594,8 kg/mp×h
NR _P	210,9
NPr	148
Caldura transferata	.228628 kcal/h(265,85Kwh)
Coef.de schimb caldura	
determinat experimental	395kcal/mp×h×°C(459,3W/mpK)

<u>a) Conform formulei data de LEWA, WEINTRAUB, GRUMMER, CLARK</u> (1948) [124] rezulta :

$$\alpha_{c} = 7,78 \times G \times c_{p} \times e^{-4,6 \left[\frac{D_{p}}{D_{t}}\right]} \times \left[\frac{D_{p}}{D_{t}}\right] \times R_{e} = 60,74 \text{ kcal/mp} \times h \times C$$
70.627 W/mpK

iar :

$$k = \frac{1}{\frac{1}{\alpha_{c}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_{1}}} = 59,94 \text{ kcal/mpxhx°C}$$

$$= \frac{1}{\alpha_{c}} + \frac{\delta}{\lambda} + \frac{1}{\alpha_{1}} = 69,69 \text{ W/mpK}$$

 α_1 = 8000 kcal/mp%h%°C pentru apa in fierbere , deci coeficientul de transfer obtinut prin calcul este de circa 6,5 ori mai mic .

b) Dupa MAEDA (1952) [127]:

$$\alpha = 4,9 \times \frac{\text{kg}}{D_{t}} \times e^{\frac{-22\left[\frac{D_{p}}{D_{t}}\right]} \times R_{e}} = 15,27 \text{ kcal/mp} \times h \times C}{17,75 \text{ W/mpK}}$$

iar

k = 17,69 W/mpK deci coeficientul de transfer obtinut prin calcul este de circa 26 ori mai mic.

c) QUINTON 51 STORVOW (1956) [136]

α_w = 0,04 × G = 103,8 kcal/mp×h×°C = 120,69 W/mpK

k = 119,76 W/mpK deci coeficientul de transfer obtinut prin calcul este de circa 3,8 ori mai mic.

<u>d) AEROV si UMNIK (1951,a,b) [137]</u> $a_w = 0,155 \times (kg/Dp) \times N_{Pr}^{1/3} \times N_{Re}^{0.75} = 204,63 \text{ kcal/mp} \times h \times C$ $k = 196,11 \text{ kcal/mp} \times h \times C = 228,03 \text{ W/mpK}$ deci de circa 1,96 ori mai mic. e) Conform lui J.KJAER [116] cap 7 firma Haldor Topsoe :

 $\alpha_w = 0.155 \times G \times cp \times N_{pr} \times N_{Re}^{-2/3} = 209.6 \text{ kcal/mp} \times h \times C = 243.72 \text{ W/mpK}$ k = 233.37 W/mpK deci de circa doua ori mai mic decit cel determinat experimental.

Tot in lucrarea lui Jorgen Kjaer [109] sint publicate in capitolele 9-11 date culese din instalatii pilot de fabricarea anhidridei ftalice si

a sintezei amoniacului la scara pilot si industriala pe convertoare de tip TVA, in toate acestea datele despre coeficientul de transfer de caldura in stratul de catalizator este dat pentru o circulatie tipic axiala prin si printr tevi si dupa cum se va vedea este mai mica cel obtinut in pilotul cu circulatie radiala. Tabelul nr.20) dupa [109]

Produsul	Aphidnida ftalias	A	
Carrie	Himuriua Itanca	Hmoniac	Hmoniac
Scara	pilot	pilot	industriala
Viteza spatiala	·	15000 1/h	9050 1/h
Viteza masica	598,6 kg/mp¤h	173,7 kg/mp×h	19457 kg/mp×h
Presiune	775 mmHg	315 ata	245 ata
Crestere adiab.	· · · · · · · · · · · · · · · · · · ·		
de temperatura	718,8 °C	896 °C	928 °C
supraf.racire			17.05.1/
volum cataliz.	206,33 1/m		17,25 1/m
Temperatura baii			
de saruri	420 °C		
Temperatura			
medie cataliz.	475 °C	450 °C	
Diametrul part.	0,0017 m		
Viscozitatea	0,126 kg/m¤h	0,0933 kg/m×h	0,0974 kg/m¤h
NRe	8,068		1028,6
Coeficient de			
transfer de cald.	107,2 kcal/mp¤h¤°C	174 kcal/mp¤h¤°C	472 kcal∕mp¤h¤°C
la perete	124,65 W/mpK	202,32 W/mpK	548,8 W/mpK
Conductivitate			
termica efectiva			
in stratul de	2,906 W/mpK	2,325 W/mpK	10,388 W/mpK
catalizator	2,50 kcal/mp×h×°C	2,0 kcal/mp¤h¤°C	8,934 kcal/mp×h×°C
Coeficientul de			
transfer de cald.			
din axul tubului	113,25 W/mpK	202,32 W/mpK	251-291 W/mpK
catalitic la perete	97,4 kcal/mp×4h×°C	174 kcal/mp¤h¤°C	216-250 kcal/mp×h×°C

Dupa cum rezulta din calculele efectuate mai sus si datele de pilot si industriale publicate de firma Topsoe S.A., transferul termic in flux incrucisat si cu circulatie radiala, determinat pe pilotul de la Victoria este mult mai bun ducind astfel la posibilitatea utilizarii unei suprafete de schimb mai mici decit la circulatia axiala, respectiv la ieftinirea constructiei reactoarelor de sinteza.

CRPITOLUL

Imbunatatiri energetice aduse buclei de sinteza metanolului prin utilizarea reactorului izoterm-radial

Criteriile de optimizarea sintezei metanolului constau in selectia buna a variabilelor procesului si anume :

a) Compozitia gazului de sinteza ;

b) Presiunea de sinteza sau raportul de presiune intre cracare si sinteza ;

c) Temperatura la care are loc sinteza ;

d) Viteza spatiala (incarcarea catalizatorului) ;

e) Raportul de recirculatie (gaz recirculat/gaz proaspat) ;

f) Diferenta de presiune pe bucla de sinteza ;

Pentru ca consumul de energie la sinteza sa fie minim compozitia gazului trebuie sa fie cit mai stochiometrica , S=2,02-2,04 iar cantitatea de CO2 sa fie de circa 3% in gazul proaspat ; in acest fel se obtine un consum minim de gaz de sinteza pe tona de metanol. Presiunea in sinteza cu cit este mai mare cu atit conversia CO-ului si CO2-lui este mai buna in schimb creste consumul de energie pentru compresie , de aceea se optimizeaza raportul de presiune intre cracare si sinteza.

Temperatura de sinteza optima pentru care se obtine un grad mare de conversie la o trecere si o viteza de reactie maxima este de circa 260 °C. La fel viteza spatiala cu cit este mai mare consumul de catalizator de sinteza se reduce, pretul este relativ scump (la nivelul anului 1991 era de 30-31 DM/litru catalizator).

Raportul de recirculatie determina gradul de conversie totala a CO-lui si CO_2 -lui , in schimb este si un mare consumator de energie de aceea este de dorit a fi cit mai redus .

Cum este o dependenta directa intre continutul de metanol la iesirea din reactorul de sinteza si gradul de recirculatie s-a gasit ca punct optim de functionare valoarea de 6% CH₃OH in gazul de la iesirea din coloana de sinteza pentru procedeele adiabate , cele exoterme putind fi exploatate pina la 10-12% CH₃OH .

Consumul de energie al recirculatiei pe linga debit este functie de diferenta de presiune pe recirculator, asa ca si acest factor intra in parametrii de optimizare.

Pentru ilustratrea acestor criterii vom face compararea energetica a consumurilor pentru sinteza in diferite variante de functionare si intre reactoare de sinteza in regim adiabat si izoterm de lucru :

VARIANTA A: Bucla de sinteza avind un reactor de sinteza adiabat de tip QUENCHE - I.C.I. cu grad de recirculare normal (6-7).

VARIANTA B: Acceasi bucla de sinteza cu grad de recirculatie mare (10-15).

VARIANTA C: Bucla de sinteza cu reactor izoterm- radial.

VARIANTA D: Bucla de sinteza cu doua reactoare izoterme inseriate.

VARIANTA E: Reactor izoterm pe gaz proaspat inseriat in bucla de sinteza cu un reactor izoterm.

Calculele de bilant de materiale si termodinamic sint anexate in paginile nr.117÷120 iar in tabelul nr.21 sint sistematizati principalii indicatori . Pentru a putea compara cu exactitate variantele intre ele s-a pornit la fiecare varianta de la acelasi debit de gaz proaspat (100000 Nmc/h) si aceeasi compozitie a gazului . Presiunea de sinteza s-a mentinut la aceeasi valoare variindu-se doar temperatura functie de regimul de lucru , izoterm sau adiabat al reactoarelor de sinteza.

<u>Tabelul nr.21)</u>

INDICATORUL	VARIANTA DE FUNCTIONARE					
	A	В	С	D	E	
Dehitul de gaz proaspat						
(Nmc/h)	100000	100000	100000	100000	100000	
Compozitia daz proaspat	100000	100000	100000	100000	100000	
	15478	15478	15479	15479	15479	
-02	10 841	10 841	10 841	10 941	10 841	
$-H_{2}$	70 112	70 112	70 112	70 112	70 112	
- CHA %	2 910	2 910	2 910	2 910	2 910	
$-N_{2}$	0.277	0.277	0.277	0,010 0,277	0.277	
- H ₂ 0 %	0.382	0.382	0.382	0.382	0.382	
Coloana de sinteza ne					izoterm-	
gaz proaspat ·					radial	
- P(ata)					50.9	
- T (°C)					258	
- Pabur (hari)					36,7	
- Debit abur(kg/h)					16666	
- Debit gaz rezidual					76592,5	
Debit metanol produs de						
gazul puriat (tone/zi)					238,87	
Volum catalizator (mc)					20	
I) Prima coloana de sinteza	adiabat	adiabat	izotern-radia l	izotern-radial	izotern-radial	
in bucla :	I.C.I.	LC.L	VIROMET	VIROMET	VIROMET	
- Debit intrare(<u>hmc</u>)	706000	1443581	650000	519332	745000	
- Presiune lucru(ata)	50,9	50,9	50,9	53	50,9	
- Temperatura (°C)	270	270	258	270	258	
- Presiune abur(bari)			36,7	42,6	36,7	
– Debit abur(kg/h)			26881	29563	13468	
- CH30H produs(to/zi)	695,3	808	780,5		570,5	
- Volum cataliz.(mc)	80	100	60	40	60	
II) A doua coloana de						
sinteza in bucla :	NU	NU NU	ии и	izotern-radial	NU	
- Debit intrare($\frac{Nmc}{b}$)				492238		
– Presiune lucru(ata)				49		
- Temperatura (°C)				240		
- Presiune abur(bari)				25		
- Debit abur(kg/h)						
- CH30H produs(to/zi)						
- Volum cataliz(mc)						
Gaz de purja(Nmc/h)	25238	13571	19006	18198	14803	
Prod.totala CH3OH (to/zi)	695,5	808	1 780,5		803,37 0 0020	
Prod.totala abur (to/tome)			0,826	ບ,ຍ໔ສ	0,8333	
Randament total de	04.00	00	00.57	01.04	95.37	
conversie (CO+CO ₂) %	84,28	30	1 20,03	31,04		
Consumul de apa de racire						
la condensare :			200	500	1000	
- mc/h	3000	6100			1000 1000	
– mc/tona	103,5	181,2	61,56	15,0	c3,00	

(continuare)					pag. 116
Tabelul nr.21)					
INDICATORUL		VARIANT	A DE FUN	TIONARE	
	A	В	C	D	E
Consumul de energie ptr compresie si recirculare: - kw/h - kw/tona	9450 326	12750 378	9129 280	8556 256,6	9600 284,8
Suma algebrica a consu- murilor energetice ra - portata la tona de me- tanol (Gcal/tona)	0,93597	1,1259	0,1808	0,071995	0,15156
Raportul fata de varianta energetica optima (%)	1300	1563,8	251,1	100	210,5

NOTA) Caracteristicile variantelor A si B se regasesc in literatura de specilitate

La evaluarea consumurilor nu s-a tinut cont si de energia electrica ce s-ar putea produce prin folosirea aburului produs de reactorul de sinteza la producere de energie electrica .

Dupa cum rezulta din tabelul nr. 21 (comparator al variantelor), din punct de vedere energetic consumul minim este cel al variantei D, la insumarea algebrica a consumurilor de apa de racire, energie compresie si cu semn negativ aburul produs . Pentru transformare s-au folosit ca unitate conventionala tona de combustibil conventinal Tcc astfel :

energie - 0,380 Tcc/Mwh apa racire - 0,095 Tcc/1000mc abur M.P. - 0,142857 Tcc/Gcal 1 Tcc - 7 Gcal = 29,28 GJ

Daca s-ar utiliza un gaz de sinteza cu continut redus de CO_2 , raportul $CO_2/CO=0,11$ asa cum rezulta la cracare combinata sau autoterma cu oxigen, raportul de recirculatie scade mult in varianta E si ar putea iesi ca varianta optima.

Din comparatia aleasa rezulta vizibil ca pentru cresterea capacitatii si reducerea costurilor, reactorul izoterm reprezinta varianta optima din punct de vedere energetic . Pe ansamblul instalatiei de metanol in criteriul de optim trebuie cuprinse si performantele cracarii si distilarii, precum si efortul de investitie.

Pentru retehnologizarea instalatiilor de metanol din ROMANIA care lucreaza dupa procedeul I.C.I. (varianta A) singura solutie ieftina este cuplarea in fata buclei de sinteza a unui reactor izoterm de sinteza pe gaz proaspat ca in varianta E. VIROMET S.A. Of.Calcul BILANT DE MATERIALE IN SINTEZA METANOLULUI LA JOASA PRESIUNE CU RECIRCULARE IN REGIM IZOTERM VARIANTA C END OFF RUN Temp.iesire reactor = 258.00 grd.celsius Presiunea reactor = 50.98 ata Diferenta fata de echilibru = 14.00 grd.celsius KF1 = 8.60786e - 04KF2 = 1.50162e-02Compozitia [%] CH30H 03 C02 H2 CH4 N2 H20 TOTAL INTRARE PR 15.478 10.841 70.112 2.910 0,277 0.382 0.000 100.000 INTRARE IC 6.576 8.565 69.814 13.244 1.251 0.110 0.440 100.000 7.702 1.350 1.659 65.886 14.290 4.428 100.000 IESIRE EC 4.685 RECIRCULAT 4.958 8.151 69.760 15.123 1.429 0.060 0.520 100.000 SEPARATE 0.000 0.000 0.000 0.000 0.000 28.928 71.072 100.000 PURJA 4.958 8,151 69.760 15.123 1.429 0.060 0.520 100.000 Debite E NM3/H J C02 H2 CH4 N2 H20 СНЗОН TOTAL 03 10841.0 70112.0 0.0 100000.0 2910.0 277.0 382.0 INTRARE PR 15478.0 55672.2 453789.8 86084.9 8134.4 712.0 2860.0 650000.0 INTRARE IC 42746.7 46396.2 396879.1 IESIRE EC 28220.6 86078.4 8131.7 9993.7 26673.4 602373.2 27268.7 44831.2 383677.8 83174.9 7857.4 330.0 2860.0 550000.0 RECIRCULAT 0.0 0.0 0.0 0.0 9652.3 23714.6 33366.9 0.0 SEPARATE 13258.7 2874.3 271.5 11.4 98.8 19006.3 1549.2 942.3 PURJA METANOL BRUT --- CH30H 81.37 % ------- H2O 18.63 % ---PURJA / FROASPAT =0.1900628659 PROASPAT / PROD =3074.7600322339 =0.7004134901 CO2 / CO (H2-C02)/(C0+C02)=2.2520232532 INTR.COL. / PROD =832.7475087300 EFICIENTA CARBON =90.5332822567 TEMPERATURA INTRARE = 225.0 TEMPERATURA APA = 150.0 TEMPERATURA ABUR SAT= 247.0 36.700 bari PRESIUNE ABUR E RANDAMENT/O TRECERE= 24.184 % =-24940.660 kg ABUR -0.716 to/to.h = IABUR =-14271599.897 kcal CALDURA COEFICIENT CALDURA = -288.315 Kcal/m2*h*grd.C 0.542 kg metanol/m3h INDICE PRODUCTIVITATE= 10833.333 Nmc/mc*h Intr.col./Volum cat. = PRODUCTIA = 780.55 tone/zi NUMAR ITERATII PRIN METODA INJUMATATIRII : 81

pag. 117

```
VIROMET S.A.
                                                           Of.Calcul
               BILANT DE NATERIALE IN SINTEZA METANOLULUI
                         LA JOASA PRESIUNE
               CU DOUA COLOANE DE TIP IZOTERM INSERIATE
                                                           VARIANTA D
END OFF RUN -coloanal; END OFF RUN -coloana2;
                   TEMPERATURA DE IESIRE DIN REACTOARE
          REACTOR1 = 270.00 grd.celsius; REACTOR2 = 240.00 grd.celsius
                         53.02 ata
Presiunea
                     =
                                                        50.98 ata
                                         :
                                                    =
                        DIFERENTA FATA DE ECHILIBRU
            REACTOR1 = 14.00 grd.celsius; REACTOR2 = 14.00 grd.celsius
Const. KP1
                     = 5.34885e-04
                                                    =1.88154e-03
                                       ;
Const. KP2
                     = 1.83124e-02
                                                    =1.09838e-02
                                         ;
Compoziția [ % ]
                               H2
                                                     H20
                                                            CH30H
               C0
                      C02
                                      CH4
                                               N2
INTRARE PR
             15.478 10.841 70.112
                                      2.910
                                              0.277
                                                     0.382
                                                             0.000
INTRARE IC1
            5.453
                      9.261 70.062 13.413
                                             1.269
                                                     0.123
                                                             0.419
                      7.883 66.537 14.146
IESIRE ECI
              4.903
                                              1.338
                                                     2.015
                                                             3.178
                      8.242 64.975 14.803
              2.815
                                              1.400
                                                     2.116
                                                             5.648
IESIRE EC2
RECIRCULAT
              3.033
                      8.880 70.050 15.949
                                              1.509
                                                     0.060
                                                             0.520
              0.000
                             0.000
                                     0.000
                                              0.000 28.515 71.485
SEPARATE
                      0.000
              3.033
                      8.880 70.050 15.949
                                             1.509
                                                     0.060
                                                             0.520
PURJA
Debite
           E NN3/H ]
              CO
                       CO2
                                 H2
                                         CH4
                                                  N2
                                                          H20
                                                                  CH30H
                                                                             TOTAL
INTRARE PR 15632.8 10949.4 70813.1
                                        2939.1
                                                  279.8
                                                          385.8
                                                                     0.0 101000.00
INTRARE IC1 28321.3 48096.4 363852.9 69657.4
                                                6591.6
                                                          636.0
                                                                  2175.3 519331.81
IESIRE ECI 24140.6 38815.1 327622.2 69652.3
                                                6589.4
                                                          9922.7 15646.7 492389.12
                                                          9957.3 26575.4 470531.64
IESIRE EC2 13246.5 38780.5 305730.2 69652.3
                                                6589.4
                                                6311.9
                                                          251.0
                                                                 2175.3 418331.81
                     37147.0 293039.8 66718.3
RECIRCULAT 12688.5
                                                          9695.4 24305.4 34000.87
                0.0
                         0.0
                                  0.0
                                           0.0
                                                  0.0
SEPARATE
                                                                    94.6 18198.96
                      1616.0 12748.3
                                       2902.5
                                                  274.6
                                                           10.9
PURJA
              552.0
METANOL BRUT --- CH30H
                       81.67 % ----
             --- H2O
                         18.33 1 ---
PURJA / PROASPAT =0,1801877428
PRDASPAT / PROD =3030.0132226962
                 =0.7004134901
CO2 / CO
(H2-C02)/(C0+C02)=2,2520232532
INTR.COL. / PROD =649.1675954071
FFICIENTA CARBON =91.8440627125
                                                                             COLOANA 2
                              COLDANA 1
TEMPERATURA INTRARE = 250.0 grd.C
                                                TEMPERATURA INTRARE = 225.0 grd.C
                                                TEMPERATURA IESIRE = 238.0 grd.C
TEMPERATURA IESIRE = 270.0 grd.C
                                                TENPERATURA APA
                                                                   = 150.0 \text{ grd.C}
                    = 150.0 grd.C
TENPERATURA APA
                                                TEMPERATURA ABUR SAT= 225.0 grd.C
TEMPERATURA ABUR SAT= 255.0 grd.C
                                                PRESIUNE ABUR
                                                                 =
                                                                      25.145 bari
PRESIUNE ABUR
                  =
                       42.648 bari
                                                RANDAMENT
                                                                      17,359
                       17,516
                                                                 =
RANDAMENT
                                                ABUR
                                                                 = 15935.987 kg
                  = 11703.000 \text{ kg}
ABUR
                                                IABUR
                                                                       0.446 to/to.h
                                                                 =
                         0.328 to/to.h
                  =
 IABUR
                  =-6604722.997 kcal
                                                CALDURA
                                                                 =-9085029.676 kcal
 CAL DURA
                                                CDEFICIENT CALDURA = 144.207
CDEFICIENT CALDURA = 157.255
                                                INDICE PRODUCTIVITATE=
                                                                          0.556 to met/m3h
 INDICE PRODUCTIVITATE=
                           0.833 to met/m3h
                                                INTR.COL./VOLUM CAT. =
                                                                         8206.485
 INTR.COL./VOLUM CAT. = 12983.295
PRODUCTIA = 800.00 tone/zi
```

VIROMET S.A. Of.Calcul SIMULAREA SINTEZEI METANOLULUI LA JOASA PRESIUNE VARIANTA E colona I-a Temperatura medie reactor = 258.00 grd.celsius reactor = Presiunea 50.98 ata Diferenta fata de echilibru = 14.00 grd.celsius KP1 = 8.60786e - 04KF2 = 1.50162e - 02Compozitia [%] CO C02 H2 CH4 N2 H20 СНЗОН TOTAL INTRARE IC 15.478 10.841 70.112 2.910 0.277 0.382 0.000 100.000 IESIRE EC 12.208 64.115 9.830 3.436 0.327 1.044 9.040 100.000 SEPARATE 0.000 0.000 0.000 0.000 0.000 10.358 89.642 100.000 PURJA 10.862 13.490 70.910 3.797 0.361 0.060 0.520 100.000 Debite C NM3/H J CO C02 H2 CH4 N2 H20 СНЗОН TOTAL INTRARE IC 10841.0 70112.0 2910.0 277.0 0.0 100000.0 15478.0 382.0 8324.8 10338.5 54298.0 2910.0 277.0 884.5 7655.7 84688.5 IESIRE EC 838.6 0.0 0.0 7257.4 0.0 0.0 8096.0 SEPARATE 0.0 276.8 54311.4 2908.2 46.0 398.3 76592.5 8319.7 10332.2 PURJA Temperatura intrare = 225.0 Temperatura iesire = 250.0 = 150.0 Temperatura apa Temperatura abur sat= 247.0 (H2-C02)/(C0-C02) =2.2520232532 =0.7004134901 (002/002) =0.7659253518 Furja/proaspat Froaspat/productie=10047.1487064315 93.90 % ---METANOL BRUT --- CH30H 6.10 % ------- H2O 36.700 bari Presiune abur = =29.1316723943 Eficienta carbon 29.088 % Randament/otrecere= = 16666.064 kg Abur 1.563 to/to.h Ξ Iabur = 9536692.072 kcal Caldura 577.981 Kcal/m2*h*grd.C = Coeficient caldura 0.498 kg met/m3h Indice productivitate= 5000.000 Nmc/mc*h Intr.col/Volum cat. = 238.87 to/zi PRODUCTIA =

pag. 120 Of.Calcul VIROMET S.A. BILANT DE MATERIALE IN SINTEZA METANOLULUI LA JOASA PRESIUNE CU RECIRCULARE IN REGIM IZOTERM VARIANTA E coloana II END OFF RUN Temp.iesire reactor = 258.00 grd.celsius Presiunea reactor = 50.98 ata Diferenta fata de echilibru = 14.00 grd.celsius KP1 = 8.60786e-04 KP2 = 1.50162e-02 Compozitia [%] CO C02 H2 CH4 N2 H20 снзон TOTAL 10.862 13.490 70.910 3.797 0.361 0.060 0.520 100.000 INTRARE PR 0.060 0.467 100.000 4.140 5.739 70.000 17.877 1.718 INTRARE IC 1.415 2.941 100.000 IESIRE EC 3.242 4.667 67.178 18.754 1.803 4.851 69.837 19.490 1.874 0.060 0.520 100.000 RECIRCULAT 3.369 SEPARATE 0.000 0.000 0.000 0.000 0.000 35.732 64.268 100.000 4.851 69.837 19.490 1.874 0.060 0.520 100.000 PURJA 3.369 E NM3/H J Debite CO CO2 H2 CH4 N2 H20 CH30H ΤΟΤΑΙ 398.3 76592.5 8319.5 10332.3 54311.7 2908.2 276.5 46.0 INTRARE PR 30839.5 42753.7 521502.7 133180.1 12801.2 447.0 3475.7 745000.0 INTRARE IC IESIRE EC 23024.1 33147.0 477084.5 133187.5 12805.0 10046.8 20885.5 710180.5 22520.1 32421.4 466792.7 130271.9 12524.7 401.0 3475.7 668407.5 RECIRCULAT 0.0 0.0 0.0 0.0 0.0 9636.9 17332.8 26969.7 SEPARATE 718.0 10338.1 2885.1 277.4 8.9 77.0 14803.3 498.8 PURJA 76.18 % ----METANOL BRUT --- CH30H --- H20 23.82 % ---PURJA / PROASPAT =0.1932733024 PROASPAT / PROD =3222.1431252129 CO2 / CO =1.2419443933 (H2-C02)/(C0+C02)=2.3579172142 INTR.COL. / PROD =1305.8810307165 EFICIENTA CARBON =93.4762677588 TEMPERATURA INTRARE = 225.0 = 150.0 TEMPERATURA APA TEMPERATURA ABUR SAT= 247.0 36.700 bari PRESIUNE ABUR = RANDAMENT/O TRECERE= 23.674 % =-13468.091 kg ABUR IABUR = -0.529 to/to.h =-7706741.002 kcal CALIURA COEFICIENT CALBURA = -155.692 Kcal/m2*h*grd.C INDICE PRODUCTIVITATE= 0.396 kg metanol/m3h Intr.col./Volum cat. = 12416.667 Nmc/mc*h PRODUCTIA = 570.50 tone/zi NUMAR ITERATII PRIN METODA INJUMATATIRII :145

CAPITOLUL 10

Materiale de constructie pentru bucla de sinteza metanolului

Materialele utilizate pentru aparatura din bucla de sinteza trebuie sa fie rezistenta la atacul hidrogenului si a oxidului de carbon in conditiile de reactie. Fierul este atacat deja la 150°C de oxidul de carbon cu formare de Fe(CO)5.

Cu cit este mai mare presiunea partiala a oxidului de carbon, cu atit mai mare este formarea de pentacarbonil de fier, astfel ca la inalta presiune s-a putut observa formarea de Fe(CO)5 chiar si la temperatura normala. Pe de alta parte la 350° C inceteaza formarea de Fe(CO)5, viteza lui de descompunere fiind mai mare.

La inalta presiune s-a incercat placarea schimbatoarelor de caldura si reactoarelor cu cupru aliat cu 1,5-2% Mn, pentru a evita atacul oxidului de carbon si a hidrogenului. Cuprul prezinta dezavantajul ca la expansie produce fisuri ; de aceea pentru presiuni partiale de CO de peste 30 bari s-au realizat oteluri ce sint rezistente fata de CO si H₂. Aceste oteluri cu Cr si adaosuri de molibden, wolfram si vanadiu, avind un continut redus de carbon. In tabelul nr. 22 se redau citeva marci rezistente la atacul CO -lui.

Tabelul nr. 22)

MARCA	C (%)	Si (½)	Mn (½)	Cr (٪)	Ni (%)	Mo (%)	Cu (½)	Ti (½)
NCT 3	0,09	2,4		25,2	20,1			
FF 30	0,15			30,2				
V2A E	0,09			18,1	8,75			
V4A	0,10			17,5	9,2	2,3		
VGA	0,10			17,9	8,9		2,4	
CF 87212	0,39	0,63	17,8	2,9				
V17 F	0,08			16,2				
V13 F	0,10			13,7		0.34		
V5 M	0,17			13,9	0,57	0,24		
N5	0,12			3,3		0,39		

La constructia instalatiilor de sinteza metanolului la joasa presiune datorita conditiilor de reactie mai blinde se pot utiliza oteluri mai putin aliate ca la inalta presiune (sint de ajuns oteluri cu circa 0,5% Mo). Totusi in zona condensarii trebuie introduse oteluri Cr/Ni deoarece otelurile carbon sint corodate de metanolul brut, care are ph=3-4. Si la sinteza metanolului la joasa presiune trebuie evitata formarea $Fe(CO)_5$ deoarece el favorizeaza depunerea de Fe pe catalizatorul de sinteza, cu cresterea formarii de parafine solide si lichide care produc infundari ale tevilor condensatoarelor in sinteza iar parafinele Cg-C₁₁ ajung in distilare pina in metanol pur, facind ca proba de miscibilitate cu apa sa nu corespunda ASTM-ului.

La reactoarele de sinteza la joasa presiune mantaua de presiune a reactorului poate fi confectionata si din W1.7335 (13CrMo44) dar pentru a ajunge le pereti mai subtiri si mai usor de prelucrat la diametre ale utilajelor de 4-6m se utilizeaza W1.6311 (20 MnMoNi45) avind urmatoarele compozitii chimice :

MARCA	\mathbf{C}	5i (⁄/)	Mn (½)	Cr (/)	Ni (%)	Mo (%)	Cu (%)	Ti (%)
W1.6311	0.17-0.23	<u>≪ 04</u>	114	0.035	0.03	≪ 0,5	0,45-0,6	0,4-0,8
W1.7335	0,08-0,18	0,1-0,35	04-1.0	0,035	0,03	07-1,1	0,4-0,6	<u> </u>

Deosebirea mare intre ele se poate constata din caracteristicile de rezistenta mecanica :

MATERIAL	Rezistenta la tractiune N/mm ²	0,2% din limita de alungire la 350 °C N/mm ²
W1.6311	580 - 730	338
W1.7335	430 - 580	175 - 215

Deosebirea este evidenta , in special la 350 °C (temperatura de calcul a aparatului) . Folosind W1.6311 grosimea mantalei se reduce la jumatate .

Tevile si sitele perforate care delimiteaza in interior si exterior cutia catalitica trebuie sa fie din oteluri inoxidabile fiind in contact direct cu catalizatorul si pentru a nu favoriza formarea parafinelor. Pentru tevile recuperatoare de caldura este bine sa se utilizeze otel inox de tip W14541 care nu este atacat de ionii ce pot ajunge accidental in apa de alimentare cazan, care produc coroziune in otelurile de tip V2A.

Sitele perforate se fac cel mai bine din otel inoxidabil refractar de tip W14541 de preferat fiind cele de tip Johnson cu osectiune libera de cel putin 25%.

Tubulatura exterioara , colectoarele si tamburul separator de abur pot fi realizate din otel tip 15 Mo3 sau 13 CrMo44 .

CRPITOLUL 11

CONCLUZII

Prezenta teza de doctorat intitulata : "Contributii la constructia reactoarelor catalitice. Aplicatii la sinteza metanolului si a alcoolilor superiori din gaze de sinteza", contine doua parti distincte :

- Prima formata din cinci capitole ;

- A doua parte din sapte capitole .

In prima parte a prezentei teze se prezinta o consistenta si sistematizata parte teoretica ce include stochiometria bine . termodinamica si cinetica reactiilor ce au loc la sinteza alcoolului metilic si a alcoolilor superiori cit si catalizatorii de sinteza cunoscuti si utilizati pe scara industriala pe plan mondial . In capitolul 4) se prezinta constructia reactoarelor de sinteza metanolului existente pe plan mondial in momentul de fata, iar in capitolul 5) se descriu principalele procese tehnologice existente pe plan mondial. inclusiv analiza comparativa indicatorilor а tehno-economici rezultat sintetic al eficientei energetice a utilajelor principale intre care reactoarele de sinteza sint utilajul conducator al buclelor de sinteza.

In partea a doua se ilustreaza contributia originala a autorului in conceptia, constructia si experimentarea la scara pilot productiva, cu o capacitate de 5 to/zi, a unui reactor de sinteza nou conceput si brevetat care va sta la baza modernizarii instalatiilor de metanol din tara si din strainatate. In capitolul 6) sint prezentate caracteristicile mecanice ale noului reactor folosit in pilot, s-a descris instalatia pilot utilizata si modul de operare a instalatiei pilot racordata direct pe instalatiile industriale Metanol II, III si IV de la VIROMET S.A. Acest tip de pilotare direct pe instalatii pilot productive este premierala noi in tara si utilizata cu succes de firme cu renume mondial ca : I.C.I., LURGI, MITSUBISHI, etc.

Avantajul acestei pilotari este asigurat de acuratetea masuratorilor parametrilor de reactie, de o functionare continua de lunga durata si verificarea temeinica in conditii industriale a stabilitatii termice , operabilitatii , comportarii catalizatorilor si eficientei energetice a noului utilaj.

In capitolul 7) sint descrisi algoritmii decalcul pentru simularea sintezei metanolului utilizati la prelucrarea si nivelarea erorilor experimentale si analitice. In capitolul 8) se descriu rezultatele experimentale obtinute folosind gaze de sinteza cu compozitii foarte ce priveste concentratia oxizilor ceea de diferite in carbon. Concentratia oxidului de carbon a variat intre 3 si 30 % CO iar a bioxidului de carbon intre 1,5 si 14 CO2 ceea ce a determinat o mare variatie de viteze de reactie respectiv de sarcini termice care trebuiau preluate de reactorul de sinteza.

Avind la baza experimentarile efectuate din 1986-1989 pe instalatia pilot am conceput si simulat pe calculator (in capitolul 9)) cinci variante de procedee de sinteza metanolului urmarind analiza comparativa a procedeului I.C.I. cu reactor de sinteza adiabat cu procedeele de sinteza propuse si brevetate de autor ce au la baza reactorul izoterm radial nou conceput. Ca indicator de comparatie s-a folosit indicatorul sintetic obtinut prin insumarea algebrica a consumurilor si productiei de abur in bucla de sinteza.

In urma experimentarilor si simularilor efectuate a reiesit cu pregnanta avantajul solutiei originale alese pentru constructia

reactoarelor de sinteza si anume :

a) Combinarea fluxului radial al reactantilor cu schimbul de caldura in curent incrucisat a permis creerea unui reactor cu regim izoterm de lucru care prezinta avantaje nete fata de solutiile existente in special la crearea reactoarelor de mare capacitate.

b) Datorita stabilitatii termice deosebite verificata in pilot productiv pe cele mai diferite compozitii ale gazelor de sinteza reactorul poate fi utilizat la sinteza metanolului , a alcoolilor superiori cit si la obtinerea hidrocarburilor prin sinteza de tip Fischer - Tropsch utilizind catalizatori adecvati.

c) Datorita coeficientului ridicat de transfer termic obtinut de curentul incrucisat de peste 350 W/mp%h si dispunerea tevilor in catalizator se obtine un \triangle T foarte mic intre catalizator si mediul de racire aprox. 15°C la un raport S/V=75-80 1/m mai mic decit in reactoarele existente pe plan mondial, ceea ce il face mai economic ca reactoarele cu flux axial. (S/V este cca 70% fata de reactoarele cu tevi si circulatie axiala).

d) Totodata fluxul radial asigura realizarea unei pierderi de presiune la traversarea reactorului de numai o treime din cea existenta in reactoarele axiale (aprox. 0,5 bari la diametrul de 3m).

e) Pierderea mica de presiune asigura posibilitatea legarii mai multor aparate in serie si asigurarea unei conversii ridicate fara recirculare.

f) El poate fi folosit si ca reactor de gaz proaspat (Vorreaktor) ceea ce rezolva o problema mult disputata in literatura de specialitate .

g) Daca se asigura circulatia gazelor de la interior spre exterior se poate optimiza cinetica sintezei metanolului care debuteaza cu o viteza de reactie extrem de mare si descreste spre iesire din catalizator odata cu cresterea concentratiei metanolului, apei si a bioxidului de carbon.

Intrind central in sectiunea cea mai mica , deci cu viteza liniara maxima si timp de contact minim, viteza de reactie initiala excesiv de mare este frinata , iar pe masura parcurgerii drumului radial prin catalizatori spre exterior, viteza de reactie scade dar este ajutata de o viteza liniara mai mica si un timp de contact mai mare , fapt caruia i se datoreaza o apropiere maxima fata de starea de echilibru termodinamic si conversie maxima a oxizilor de carbon la o trecere . Aceasta optimizare a fluxului reactantilor cu cinetica de reactie permite obtinerea in sectiunea transversala a reactorului a unui profil de temperatura fara un maxim exagerat asa cum se intimpla la circulatia axiala si o mai buna valorificare a volumului de catalizator .

h) Folosirea a doua reactoare de sinteza inseriate cuprinse in aceeasi bucla de sinteza, prima care sa lucreze la temperaturi inalte si viteze de reactie mari si sa genereze abur intre 42-60 bari si cel

de al doilea care sa lucreze la temperaturi reduse si viteze de reactie mici generind abur de 18-25 bari, poate functiona cu recirculatii foarte mici si concentratii foarte ridicate de metanol (10-12%) la iesire din cea de a doua coloana.

Deoarece reactoarele izoterme radiale cu tevi tip baioneta sint limitate din punct de vedere constructiv la diametre pina la cca 2m, din cauza groisimii placii tubulare, care pe linga dificultatea mare de realizare face ca utilajul sa devina foarte scump, m-a determinat sa concep o alta forma constructiva care sa respecte fluxul radial in regimul izoterm de lucru si sa poata fi realizat la diametre pina la 5m si capacitati de peste 5000 to/zi.

i) Respectind acelasi principiu , flux radial al reactantilor si schimb de caldura in curent incrucisat , pastrind aceeasi geometrie si raport suprafata de schimb de caldura/volum catalizator , s-a conceput si brevetat [159] un reactor de sinteza cu tevile dispuse in serpentine concentrice in jurul colectorului central de intrare sau iesire a reactantilor . Acest reactor aratat in principiu in figura 37) sta la baza modernizarii instalatiei Metanol IV de la VIROMET S.A. si face obiectul unei colaborari cu firma UHDE-GERMANIA pentru realizarea in comun si vinzarea pe terte piete a acestui utilaj demonstrativ ce va fi realizat pentru prima data , industrial , in tara noastra in 1993.

Acest nou concept de reactor izoterm-radial mai are si avantajul ca tamburul separator de abur poate fi amplasat numai cu 2m mai sus ca reactorul de sinteza, fata de reactorul cu tevi baioneta unde pentru realizarea transferului , inaltimea minima fata de partea superioara a reactorului trebuie sa fie de 15m.

Acest reactor va fi inseriat pe circuitul de gaz proaspat in fata buclei de sinteza I.C.I. existente cu urmatoarele efecte tehnico-economice :

	oranonananananananananananananananananan	000000	INSTALATIE EXISTENTA	DUPA RETEHNOLOGIZARE
	CAPACITATEA	1000	590-636to/zi	800 to /zi
ç Ç	CONSUM SPECIFIC TOTAL CH4	000	1360 mc/to	1160 mc / to
60 E	EXPORT DE ABUR	8 8 8 8 8 8 8 8	25–30 to/h P=4,5 bari	55 to/zi din care : 12 to/ora - 36 bari 43 to/ora - 4,5 bari
¢ C	CONSUM SPECIFIC NET CH4 din care s-a scazut aburul in exces)	00000	1236 mc/to	955 mc/to
¢ ¢ ¢	CONSUM APA DE RACIRE	200	344 mc/to	270 mc/to
e e e e e e e e e e e e e e e e e e e	ENERGIA ELECTRICA KWH/TO	0.0.0	+11 KW/to	36 KW/to *)

X) Energia electrica debitata in sistem.

Aburul de medie presiune poate fi folosit dupa o supraincalzire la 400 °C la obtinerea de energie electrica, care face instalatia de metanol sa fie independenta de energia electrica din sistem si chiar sa devina furnizoare de enrgie pentru sistem.

j) Pentru reactii de exotermicitate extrem de mari ambele forme constructive atit cu tevi baioneta cit si cu serpentine concentrice pot fi exploatate cu circuit fortat de recirculare a apei, ceea ce favorizeaza si mai mult transferul de caldura si micsoreaza Δ T-ul intre catalizator si mediul de racire.

In tehnologia de sinteza a metanolului acest mod de exploatare se recomanda la folosirea reactorului de sinteza direct pe gaz proaspat in fata buclei de sinteza [162].

ing. HIPP ANTON

CAPITOLUL 12

Bibliografie

1

- Chem. Fact: Metanol 1989 , Chemicals Intelligence Service, London 1989 ;
- [2] Le Blanc , I.h.Rooner "Hydroc. Proc." Martie 1990 ;
- [3] Ac.R.Stull et al.Ianaf Thermodinamicals Tables,Zud ed,NSDRS-1971;
- [4] W.I.Thomas , S.Portlslay I.E.C. 50 (1958) 967 ;
- [5] R.H.Newton, Dodge.J.Dm.Chem.Soc. 56 (1934) 1287;
- [6] R.M.Ewell; I.E.C. 32, (1940) 149;
- [7] V.M.Cheredmichenko, P.D.Thesis, Korpora Institutul de Chimie Fizica, Moscova 1953;
- [8] T.Chang, R.W.Rousseau, P.K.Kilpartrik Ind. Eng.Chem. Process Des. Dev. 25 (1986) 477;
- [9] G.H.Graaf, P.I.I.M. Sijtsema, E.I. Stamhnis chem.Eng. Sci 41(1986) no 11, 2883;
- [10] W.Kotowski, Przem. Chem. 44 (1965) 66;
- [11] Kirk Othmer 15,398-415;
- [12] L.Bisset, Chem. Eng. (N.Y) 84 (1977) no 21,155;
- [13] G.C.Chinchen et al Appl.Catal. 36 (1988) 1-65;
- [14] J.Kjaer, Computer Methods in Gas Phase Thermodinamics 1972;
- [15] O.A.Hougen ,K.M.Watson ,R.A.Ragatz ,Chem.Process Principles part 2, New York 1959;
- [16] G.Soave ,Chem.Eng.Sci 27 (1972) 1197;
- [17] D.Y.Peng , D.B.Robinson , IEC Fundam. 15 (1976) 59;
- [18] R.H.Newton IEC 27, 302-306 (1935);
- [19] F.Marschner, F.W.Moeller, Appl.Ind.Catal. 2 (1983) 349-411;
- [20] K.Klier , Adv.Catal. 31 (1982) 243-313 ;
- [21] K.Klier , V.Chatikavany , R.G.Herman , G.W.Simmons J.Catal. 74 (1982) 373 ;
- [22] K.I.Smith , R.B.Andersen "I.Catal." 85 (1984) 428 ;
- [23] K.Klier S.Kaliagnine D.Mahay "Catalisis on the Energy Scene Studies in Surface Science and Catalisis vol 19, Elsevier Amsterdam 1984 pg. 439
- [24] B.Denise R.P.A. Sneeden, C.Hamon J.Mol.Catal. 17 (1982) 359;
- [25] R.Bardet , J.Thivalle-Catal. Y. Trambouze C1 Mol. Chem. 1 (1985) no.3 201 ;
- [26] E.Ramaroson, R.Kieffer, A.Kiennerman Appl.Catal. 4 (1985) 281;
- [27] B.Denise R.P.A. Sneeden, C1Mol Chem 1 (1985) 307;
- [28] E.R.A. Matulewicz Ph.D.Thesis University of Amsterdam 1984;
- [29] D.JElliot F.Pennella J.Catal. 119 (1989) 359;
- [30] Radu Vladea , L. Rusnac , T.Simandan , I.Ilie , Gr.Pop , Gavril Musca , Revista de Chimie 36 nr.3 (1985) 202-206 ;
- [31] Ph.Courty, D.Durand, I.C.Guibet "Revue de l'Institute Francaise du Petrol" nr.2 (1987) 243-253;
- [32] E.Supp "Hydroc.Process July" (1984) 34-c;
- [33] E.Supp, D.Konigbruge "Oil Gas European Magazine" 1 (1985) 31-34;
- [34] Cornelius Gerh (Lurgi) DE 34.03492 A1;
- [35] Rafael di Pietro (SNAM-Progetti) BvRSR 82969/4.5.1981;
- [36] Rafael di Pietro BvRSR 82284 / 4.05.1981;
- [37] I.C.I. Bart R.C.P.Sneeden Catal.Today 2 (1987) 1 -124;
- [38] G.C.Chinchen et al: ACS Symposium on Methanol and Synthetic Fuels Philadelphia August 1984 ;
- [39] M.Bowker et al. J.Catal. 109 (1988) 263;
- [40] M.A.Mc.Neil, C.J.Schack R.G.Rinker Appl.Catal. 50 (1989) 265;
- [41] D.Fischer et al. Proc.Int.Congr.Catal. 7 th 1980,1981, 341;
- [42] P.J.Denny D.A.Whan Catalysis (London) 2 (1978) no.3 46-86;
- [43] H.H.Kung Catal.Rev.Sci.Eng. 22 (1980) no.2 235;
- R.J.Hawkins R.J.Kane , W.E.Slinkard , J.L.Trumbley "Methanol" in [44] J.J.Ketta W.A.Cunningham (eds): Encyclopedia of Chemical Processing and Desing New-York 1988 pg. 418-483;
- D.Deluzarche R.Kieffer, D.Muth Tetrahedron Lett 38 (1977) 3357; [45]
- R.G. Hermann et al J.Catal. 56 (1979); [46]
- [47] G.Henrici-Olive , S.Olive J.Met.Catal. 17 (1982) 89 ;
- W.Seufert, G.Luft Chem.Ing.Tech. 57 (1985) 482; [48]
- R.M.Agny , C.G.Takondis Ind.Eng.Chem.Prod.Res.Dev. 24 (1985) 50 ; [49]
- Y.B.Kangan et al Dokl.Akad.Nauk SSSR 224 (1975) 1081 ; [50]
- G.Liu, D.Willcox, M.Garland, H.H.Kung J.Catal. 96 (1985) 251; [51]
- G.C.Chinchen et al Appl.Catal. 30 (1987) 333; [52]
- M.Bowker , H.Houghton , K.C.Wangh , J.Chem.Soc.Faraday Trans.1, [53] 77 (1981) 3023 ;
- V.D.Kuznetsov, F.S.Shub, M.I.Temkin, Kinet Katal. 25 (1984)nr.3 [54] 606 :
- G.H.Graaf, E.J.Stamhuis, A.Beenackers Chem.Eng.Sci. [55] 43 (1988) nr.12 3185;
- M.Takagawa si M.Kuwa ,AICHE Spring National Meeting New Orleans [56] April 6-10 (1986);
- M.Takagawa si M.Ohsugi "J.of Catal." 107 (1987) 161-172; [57]
- H.Makihara et al Mitshubishi Heavy Ind.Ltd.Tehnical Rev. vol.24 [58] nr.3 (1987) 214 ;
- G.Watta Catalysis vol 3 New York 1955 pg349 ff ; [59]
- BASF , DE441433 , 1923 (A.Mittasch , M.Pier , K.Winkler) ; [60]
- BASF , DE109495 , 1923 ; [61]
- BASF, GB237030, 1925; [62]
- C.Lormand Ind.Eng.Chem. 17 (1925) 430; [63]
- E.Blasiak , PL 340000 , 1947 ; [64]
- I.C.I. GB 1159035, 1965 (LGallagher, Y.H.Kiold); [65]
- Crit.Report.Appl.Chem. 13 (1985) 102; [66]
- Ph.Courty Ch.Marceilly Preparation of Catal. III Elsevier, [67] Amsterdam 1983 pg. 485 ff;
- IFP , EP 0152314 , 1987 (P.Courty et al) ; [68]
- Sud Chemie EP 0125689, 1987 (M.Schneider, K.Kochloef), [69] J.Ladebeck);
- Shell US 3709919 , 1973 (EF Magoon) ; [70]
- I.C.I. GB 1159035 , 1965 (J.Gallagher , Y.H.Kiold) ; [71]
- BASF , DE 2846614 , 1978 (F.J.Brocker et al) ; [72]
- R.H.Hoppener, E.B.M.Doesburg, J.J.F.Scholten, Appl. Catal. [73] 25 (1986) 109-194 ;
- P.Gherardi, O.Ruggeri, F.Trifiro, A.Vaccan Preparation of Catal. [74] III Elsevier Amsterdam 1983 pg. 723 ff;
- M.V.Twigg (ed) Catal. Handbook 2nd ed. Wolfe Publishing Ltd. [75] London 1989 pg. 441-468;
- S.Lee , A.Savant , K.Rodrigues Energy Fuels 3 (1989) 2-7 ; [76]
- Mitshubishi Gas Chemical, GB 2047556, 1980 (K.Asakawa, Y. [77] Yamamoto , S.Ebata , T.Wakamura) ;
- I.R.Porter (ICI) "Catalitic converter" BP 105614/16III68; [78]
- UHDE, UCC Sygmal Verfahren, Dr.Thiagarayan Febr. 1987; [79] ALL TITLES -
- Shell , GB 1371638 , 1974 (E.F.Magoon) ; [80]
- Institut Ciezkių Syntezy, GB 2025252 (W.Kotowski etidi) (**** [81] the service of services a

- [82] R.G.Herman , G.W.Simmons , K.Klier :New Horizons in Catalysis Studies in Surface Science and Catalysis vol.7 , Elsevier , Amsterdam 1981 pg. 475 ;
- [83] I.F.P. GB 2037176 (1980) (A.Sugier, P.Courty, E.Freund);
- [84] Shell, D.P. 2154074, 1972 (E.F.Magoon, L.H.Slaug);
- [85] P.G.Bondar et al US 4107089, 1978;
- [86] Metallaeselschaft GB 1287327, 1971 (R.Herbert, H.Liebgott);
- [87] Mitshubishi Gas Chemical, GB 2095233, 1982 (K.Asakawa);
- [88] W.L.Maosden , M.S.Wainwright , J.B.Friedrich , I.E.C.Prod.Res.Dev. 19 (1980) 551 ;
- [89] Unisearch GB 2066856 , 1981 (M.S.Wainwright , W.L.Marsden , J.B.Friedrich) ;
- [90] H.E.Curry-Hyde , D.Y.Young , M.S.Wainwright , Appl.Catal. 29 (1987) 31-41 ;
- [91] H.E.Curry-Hyde, M.S.Wainwright ,D.J.Young : Methane-Conversion Elsevier, Amsterdam (1988) 239;
- [92] W.G.Baglin , G.B.Atkinson , L.J.Wicks I.E.C.Prod.Res.Dev. 20 (1981) 87 ;
- [93] Y.E.France , W.E.Wallace Paper to the 12th Regional ACS Meeting Pittsburgh 1980 ;
- [94] J.B.Friedrich , M.S.Wainwright , D.J.Young , J.Catal.81 (1983) 14 ;
- [95] E.Supp Energy Prog. 5 (1985) nr.3 127;
- [96] U.Zardi , Hydrocarbon Process 61 (1982) nr.8 129 ;
- [97] A.Pinto, P.L.Rogerson, Chem.Eng.Prog. 73 (1977) nr.7 95;
- [98] L.R.Le Blanc , J.M.Rovner , H.Rees : Advanced Methanol Plant Design 1989 World Methanol Conference Houston Crocco Asociates 1989 ;
- [99] Hydrocarbon Process 62 (1983) no 11 111;
- [100] R.E.Smith , G.C.Humphreys , G.W.Griffiths , Hydrocarbon Process 63 (1984) nr.5 95 ;
- [101] E.Supp W.Hilsbein CEER Chem.Econ.Eng.Rev. 17 (1985) nr.5 18;
- [102] CEER Chem.Econ.Eng.Rev. 17 (1985) nr.5 23;
- [103] K.Ohsaki et al CEER Chem.Econ.Eng.Rev. 17 (1985) nr.5 31;
- [104] I.Takase, K.Niva CEER Chem.Ec.Eng.Rev. 17 (1985) nr.5 24;
- [105] Hydrocarbon Process 64 (1985) nr.11 146 ;
- [106] Stahl H.O. DE 3817303 A1/15.12.88;
- [107] Haldor Topsoe AS (1980) "Methanol from oil and coal ";
- [108] Umberto Zardi EP 0222009 A2/01.08.86;
- [109] J.Kjaer Measurement and Calculation of Temperature and Conversion in fixed bet catalitic reactor S - Haldor Topsoe Academisk Forlag - 1976 cap 1,2,6,8;
- [110] C.F.Pavlov; P.G.Romankov; A.A.Noskov " Procese si aparate in industria chimica" 1981;
- [111] Argo W.B., Smith IM. CEP 49, 443-451 (1953);
- [112] Smith I.M.Chem.Eng.Kinetics New York 1956;
- [113] Singer and Wilhelm (1950) CEP 46,343-307 (1950);
- [114] J.Kjaer Computer Methods in Solution of diferential equation 1972 Haldor Topsoe ;
- [115] J.Kjaer Computer Methods in Catalytic reactor calculation (1972) Haldor Topsoe, Vaedbak, Denmark;
- [116] J.Kjaer , Thermodinamic Calculations on an electronic digital computer . Academisk Forlag - Copenhagen (1963);
- [117] Gamsen, Thodos and Hougen Trans.Am.Inst.Chem.Eng. 39 1-35(1943);

- [118] Wilke C.R. and Hongen O.A. Trans.Am.Inst.Chem.Eng. 44,105-116 (1945);
- [119] Campbell I.M. Huntington R.L. Petrol Rafiner 31 nr.2 (1952) 123-131;
- [120] Chu Y.C. Storrow Y.A. Chem.Eng.Sci. 1 (1952) 230-237;
- [121] Colburn A.P.-IEC 23 (131) 910-913;
- [122] Kling G. Forsch Gebiete Ingineurw. 9 (1938) 28-34;
- [123] Leva M IEC 39 (1947) 857-862;
- [124] Leva M Grummer M IEC 40 (1948) 415-419;
- [125] Leva M Weintraub , M.Grummer , Clark EL IEC 40 (1948) 747-752;
- [126] Leva M IEC 39 (1947) 857-862;
- [127] Maeda S Tehnol.Repts.Tohoku Univ. 16 nr.2 (1952) 1-17;
- [128] Maeda S Kawazoe K , Chem.Eng. 17 (1953) 276-283 ;
- [129] Verschoor H , Schmit G , Appl.Sci.Res. A2 (1950) 97-119;
- [130] Tasker G.I.H. Trans.Inst.Chem.Eng.(London) 24,(1946)84-89;
- [131] Bakhurov V.G. , Boreskov G.K. , Zhur. Priklad.Khim.20(1947)721-738;
- [132] Brotz W. Chem.Ing.Techn. 23 (1951) 408-416;
- [133] Bunnell D.G. Irvin H.B., Olson R.W. Smith I.M. IEC 41(1949)1977-1981;
- [134] Campbell I.M.Huntington R.L. Petrol-Rafiner 31 nr.2 (1952)123-131;
- [135] Coberly C.A. Harschall W.R.Jr. CEP 47 (1951) 141 -150 ;
- [136] Quinton I.H. Storrow I.A. Chem.Eng.Sci. 5 (1956) 245-257 ;
- [137] Aerov M.E. Umnik N.N., Zhur.Tekh.Fiz. 21 (1951) 1345 1350 si 1364 - 1371;
- [138] Houngen I.O., Piret E.L. CEP 47 (1951) 295-303;
- [139] Molino D.F., Houngen I.O. CEP 48 (1952) 147-149;
- [140] Bernard R.A., Wilhelm R.H. CEP 46 (1950) 233-244;
- [141] Ullmann's Encyclopedie of Industrial Chemicals A16 pg470,1990;
- [142] Furnas C.C. IEC 22,(1930) 26-31 si 721-731 ; Trans.Am.Inst.Chem.Eng.24 (1930) 142-143 ;
- [143] Lof si Hawley R.W. IEC 40 (1948) 1061-1070 ;
- [144] Sanders si Ford H.; J.Iron Steal.Inst.(London) 141 (1940) 291-328;
- [145] Tsukanova O.A. si Shapatina E.A. Izvest.Akad. Nauk. SSSR Otdel. Tekh.Nauk.(1943) nr.7 62-72;
- [146] Clenkhanov Z.F. si Shapatina E.A. Izvest.Akad.Nauk.SSSR (1946) 505-514 ;
- [147] Daytue et al U.S.Atomic Energy Commision BMI-747 May 28(1952);
- [148] Glaser H., VAI-Beihaft Verfahrenstechnik (1938) 112 Chem.Eng. Techn. 27 (1955) 637 - 643;
- [149] Garnson B.W. Thodes G. Hougen O.A. Trans.Am.Inst.Chem.Eng. 39 (1943) 1-35 , 583-584 ;
- [150] Wilke C.R. si Hougen O.A. Trans.Am.Chem.Eng. 41 (1945) 445 ;
- [151] Taeker R.G. si Hougen O.A. CEP 45,188-193 (1949);
- [152] Eichorn si White R.R. CEP Symposin Series nr.4 48 (1952) 11-18;
- [153] Satterfield C.N. si Resnick H. CEP 50 (1954) 504-510;
- [154] Cotiga Maria , Ludwig Ursula , Fagarasanu Cornel , Wolf Dobriana, Hipp Antoniu "Catalizatori pentru producerea de metanol si alcooli superiori C1-C6" Bv.Ro-103656 si Ro-103657;
- [155] Hipp Antoniu Iosif, Craciun Dumitru, Traistaru Ion, Costea Leonida "Coloana de sinteza metanolului" Bv Ro-82119/28.01.1983;
- [156] Hipp Antoniu Iosif, Costea Leonida, Bobes Ioan, Serban Florin, "Procedeu de preparare a metanolului" Bv Ro-91088/08.07.1986;
- [157] Hipp Antoniu Iosif, Pacuraru I., Codrea A., Pria S. "Reactor pentru executarea unor reactii chimice catalitice exoterme " Bv Ro-96011 /27.05.1988;

- [158] Hipp Antoniu Iosif, Pacurar I., Costea L., Hipp E., Bobes I., Codrea A. "Procedeu de obtinere a aburului de inalta presiune si marirea conversiei la sinteza metanolului" BvRo-98529/26.04.89;
- [159] Hipp Antoniu Iosif, Pacurar I., Bianu V., Codrea A., Hipp E., Bobes I. "Reactor de sinteza metanolului" Bv Ro-102200/22.08.90;
- [160] Hipp Antoniu Iosif, Hipp Elena, Pacurar I ,Craciun V., Bobes I., Traistaru I., Stoica Ovidiu "Procedeu de obtinere a metanolului" Bv Ro-102380/29.11.1990;
- [161] Hipp Antoniu Iosif, Hipp Elena, Pacurar I ,Craciun V., Traistaru Stoica Ovidiu, Prodan I. "Procedeu de sinteza metanolului" Bv Ro-102732/31.01.1991;
- [162] Hipp Antoniu Iosif, Hipp Elena, Pacurar I ,Craciun V., Bobes I., Traistaru I., Stoica Ovidiu "Procedeu de sinteza metanolului" Bv Ro-102382/29.11.1990;
- [163] Dyakonov si Semenov G.A. Izvest.Akad.Nauk. SSSR Otde.Tekh.Nauk. nr.7 (1955) 109-118;
- [164] Colburn A.P. Drew T.B. Wortington H. IEC 39 (1947) 958-964 ;
- [165] Wirth G. Chem. Techn. nr.5 (1953) 173-178 , 253-260 ;
- [166] W.Hasberg , M.Roth , H.Cremer "Analise der Betriebsparameter der Niederdruck-Methanol Synthese" Erdol und Kohle 40(1987)27;
- [167] E.Supp (Lurgi) DP 3028646 A1/4.3.1982;
- [168] Kozo Ohsakyet al FB 2452964 Toyo-Ing. CO;
- [169] Ulrich Holdebrandt (Linde) Chem.Ing.Techn.3 (1988) pg.195-197 si Synthese Reaktoren mit Gewikelten Kuhlrohren ;
- [170] Lahne Ulrich , Dr.Peter Hesse (Linde) Ep 0035709/28.12.83;B0118/02;
- [171] Mansfield ,PEJ.Albott , M.R.Conduit "The ICI-LCM Methanol Process" Symposium Thaicat 90 Bangkok may 1990 ;
- [172] G.C.Chinchen, K.Mansfield, M.S.Spencer "Chem.Techn."Nov.1990 pg.692-699;
- [173] Methanol from natural gas UHDE Techn. 1992;
- [174] Engineering New nr.9 (1985) "Methanol Combined Reforming Techn.";
- [175] Ullmann's Encycolpedia of Industrial Chemistry vol A7 "Coal" pag.184-186, A12 pag.214-236;
- [176] I.Iarvan (Topsoe A.S.) "Design of a Methanol Plant in a Single Calculation Sequence" Danisch Chemical Engineers 18.04.1972;
- [177] Rodney I.Dry , Monash University Clayton Victoria , Australia IEC 27 (1988) 616-624 ;
- [178] E.Supp , Quinkler R.F. "Handbook of Synfuels Techn. Mayers R.A. Ed. Mc. Graw-Hill New York (1985) ;
- [179] Rogerson P.L. "Handbook of Synfuels Techn. New York (1985)";
- [180] Wade L.E. Gengelback R.B. Trumbley J.L. Hallambamer W.L. "Methanol" Kirk Ohmer Encycl. of Chem.Techn.ed.III "New York 1978;
- [181] H.Bakenmaier, P.Laurer, W.Schroder (BASF) "Elaborarea si utilizarea unui model matematic al sintezei metanolului " Berichte der Bunsengeselschaft fur Physikalische-chemie (1970) nr.2 pag. 150;
- [182] A.Collina, Buzzi-Feraris, M.Dente J.Chimique 103,14(1970) 1751;
- [183] J.M.Berty , J.P.Lenczyk , S.M.Sham AICHE Journal vol2 nr.6 1982 Nov 914 ;
- [184] M.J.Sham , R.E.Stillman IEC 12 (1970) 59 ;
- [185] Jorgen Kjaer "Chemical Engineering Computer Programs-Topsoe A.S." Ravnholm Denmark (1975) Akademisk Forlag;

[186] Octamixt - prospect al firmei LURGI pentru amestec C1-C8 ;

[187] E.Supp "How to Produce Methanol from coal" Springler-Verlag '89;

[188] Hipp Antoniu Iosif, Hipp Elena, Pacurar I., Craciun V., Bobes I, Traistaru I ,Stoica Ovidiu "Procedeu de obtinerea metanolului " Bv Ro-102381;

^[189] E.Supp "Handbook of Synfuels Techn.";

· · · · · · · · · · · · · · · · · · ·	pag. 133
<u> </u>	
🛛 Lista de simboluri utilizata	
<u>៴</u> ៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳៴៳	23
a _p – suprafata particulei de catalizator	- mp
av - raportul suprafata/volum catalizator	- 1/m
Cp - caldura specifica a gazului in ecuatia (22)	– J/KgK
D_{t}^{2} – diametrul echivalent ecuatiei (32)	- m
D_D - diametrul sferei ce are acelasi volum cu particula	- m
$\underline{D_i}$ - diametrul interior al tubului	– m
FF – factor de rezistenta la murdarire	- mpK/W
G - VICEZA MASICA	- Kg/mp¤s
f = conversie fractionata in ecuatia (30)	
f _i - fugacitatea componentei j in ecuatiile (8)-(10)	- atm
f_i – figacitatea componentei i in ecuatiile (4),(5)	- atm
ξ_i - coeficientul de fugacitate in ecuatiile (4),(5) al	
H _{cum} e- coeficientul de transfer de caldura de la suprafata	
particulei	– W/mpK
H - caldura de reactie in ecuatia (30)	- W/gr.mol
j _h - factor de transfer termic NSt(NPr)2/3	
K – constanta de echilibru termodinamic a reactiei i	- w/mpr
$K_{\{i\}}$ - constanta de echilibru exprimata prin fugacitati	
$K_{p(i)}$ – constanta de echilibru exprimata prin presiuni partiale	
a ecuatiei i	– bari
K_i - constanta de viteza a reactiel i în ecuatiile (11)-(15) K_i - constanta de echilibrii pentru ecuatiile (1) (2)	
K_{fi} - constanta de echilibru pentru absorbtia componentei i	
in ecuatile (8)-(10)	
MY – viscozitatea gazului in ecuatia (45)	– Kg/m¤s
N _{Re} - Numar adimensional Ke	
N_{Re} - Numar adimensional Nusselt	
N _{ST} – Numar adimensional Stanton	
Npe - Numar adimensional Peclet pentru curgere prin particule	
N _{Pr} – Numar adimensional Prandl	•• •
γ_{i} – viteza reactiei i din ecuatiile (8)–(10)	- W/m - mol/lwb
T – temperatura absoluta	- °K
T _K - temperatura apei in ecuatia (35)	- °K
T _{cat} – temperatura medie a catalizatorului in sectiune	01/
Transversala Transversala mediulut de racire	- ~K
S – suprafata laterala a unui metru de teava	- mp
VOID - fractie de gol a catalizatorului	r
α - coeficient partial de transfer a caldurii in ecuatia(21)	– W/mpK
μ – viscozitate dinamica	- Pa×s
	- w/mpr

Ψ	- factor de forma pentru particule nesferice
$\lambda_{\mathbf{r}}$	- conductivitate termica datorata radiatiei termice
•	in ecuatia (25)
ሥ እ	- constanta de racine in ecuatia (27) $= 1/m$
л т	- cresterea adiabata de temperatura in ecuatiile(29)-(30)- °C
ν_	- numar de moli in sisteme A , ecuatia (30)
ra ∦⊾	- numar de moli in sistemul B , ecuatia (30)
α C	- coeficient partial de transfer de caldura dinspre
L	catalizator, ecuatia (31) W/mpK
α _{iΩ}	- coeficient partial de transfer de caldura in tuburile
1,0	de racire , ecuatia (31) W/mpK
α _v	- coeficient de transfer de caldura raportat la volum W/mcK
λ •	- conductibilitate termica a peretelui tevii W/mK
9	- grosimea peretilor tevil
^ EFF	- Conductionitatea termica electiva a Stratului de catalizator - W/mK
2	- partea pentru turbulenta a lui $)$ - W/mK
	- partea moleculara a lui λ_{EFF}
- 1401 λ_m_3	- partea de radiatie a lui $\lambda_{\rm FFF}$
λ _{ser}	- termenul pentru serie a lui λ_{FFF}
λ_{par}	- conductibilitatea particulelor
λcont	- contributia contactului intre particule din λ_{EFF} W/mK

~

PARTEA I-a

CAP CAP	1. 2. 3	Introducere Istoric si aspecte economice Bazele teoretice ale sintezei alcoolilor	1 3
CHI	&3.1 &3.2 &3.3	Termodinamica reactiilor de sinteza metanolului si a alcoolilor superiori Cinetica reactiilor de sinteza metanolului Catalizatori utilizati la sinteza metanolului si a	4 8
	\$34	alcoolilor superiori din gaz de sinteza Transferul de caldura in straturi cu catalizatori	9 12
LAP	4. &4.1 _ &4.2	Reactoare de sinteza Reactoare cu functionare adiabata Reactoare cu functionare izoterma	25 31
CAP	5. &5.1 &5.2 &5.3	Analiza comparativa a principalelor procedee si u indicatorilor de proces la sinteza metanolului Producerea gazului de sinteza Sinteza metanolului Distilarea metanolului	42 44 46
	&54	Analiza comparativa a indicatorilor tehnico - economici a diverselor procese tehnologice de fabricarea metanolului	47

PARTEA II-a

CAP	6.	Constructia si experimentarea la scara pilot	50
	& 6.1	Caracteristicile mecanice ale reactorului izoterm	51
	86.2	Descrierea instalatiei nilot de sinteza metanolului	JI
	œ0.L	si alcoolilor superiori din gaz de sinteza	57
	&6. 3	Modul de operare a instalatiei pilot de sinteza alcoolilor si metoda de analiza a produsului de	
		reactie	60
CAP	7.	Descrierea algoritmilor de calcul pentru simularea	72
	87 1	Simularea matematica a bilantului de materiale si a	
	0(1.1	compozitiei la echilibru pe baze termodinamice	73
	\$7.2	Bilantul de materiale pe bucla de sinteza	
		metanolului , respectiv la`sinteza printr-o singura	
		trecere	77
	&7.3	Subrutine de calcul utilizate in programele de	01
	_	bilant de materiale si termic	<u>01</u>
CAP	8.	Analiza rezultatelor experimentale in ulverse	
	901	Functionanea in regim de sinteza a amestecurilor	
	&O.1	de alcooli C1 - C6 din gaz de sinteza de la	
		Metanol II	85
	& 8.2	Functionarea in regim de sinteza metanolului cu	
		compozitii diferite ale gazului de sinteza	9U
	&8. 3	Compararea coeficientului de transfer de caldura,	QC
		determinat experimental, cu uatele de interatura	30

pag.

CAP 9.	Imbunatatiri energetice aduse buclei de sinteza metanolului prin utilizarea reactorului izoterm-radial	114
CAP 10.	Materiale de constructie pentru bucla de sinteza metanolului	121
CAP 11.	Concluzii	123
CAP 12.	Bibliografie	127

ino

ino