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1. INTRODUCTION 
 
 
 The chapter provides an introduction to the work that will be presented in 

the thesis. First, it discusses the problem that is being addressed through this study. 
Afterwards we introduce the research questions that were formulated and 
emphasize their importance. The relevance of our work is also explained along with 
the main contributions that were brought. The last section of the chapter contains 

the outline for the rest of this thesis. 
 
 

1.1. Problem statement 
 
 Numerous studies have shown that testing is a vital part of the software 
development life cycle. In [1] Brooks proves that more than half of the effort 

required for developing complex software systems is spent on testing. The 
importance of testing is also emphasized in [2] where Sommerville explains the 
different types of development testing that can be performed and their benefits; the 
categories mentioned are unit testing, component testing, and system testing. For 

this study we will focus on unit testing in an object-oriented context as these tests 
are directly related to specific parts of the source code. The benefits of unit testing 

are discussed more in depth in [3], which describes how it should happen during 

each development stage in order to be efficient. 
 Closely related to the testing process is the testability aspect of software 
systems. In [4] testability is defined as “the degree to which a system or component 

facilitates the establishment of test criteria and performance of tests to determine 
whether those criteria have been met.” According to ISO 9126-1 [5] testability is 
“the capability of the software product to enable modified software to be validated”. 
Other publications (such as [6]) define testability in terms of the effort required for 

testing. This software quality aspect has proven difficult to quantify. Most of the 
articles that address software testability assess it during the design and analysis 
phase, they do not evaluate it based on already implemented code. Very few studies 

have investigated metrics that can be utilized to determine the testability of a 
production class. To the best of our knowledge, [7] is the first article that tries to 
study this matter; it shows that there is a correlation between production code 

metrics (such as Lines of Code, FANOUT, and Response for Class) and test case 
metrics (such as Lines of Code for Test Class and Number of Test Cases). Similar 
ideas are presented by Zhou et al. in [8], who demonstrate a connection between 
testability and structural metrics. However, none of the publications that we have 

encountered thus far have tried to assess the testability of a production class based 
on its corresponding tests. We argue that the quantity and quality of the unit tests 
that cover a particular class are good indicators of how difficult it is to test the 

respective class. For example, if a production class is addressed by fewer tests 
compared to other similar classes, then this might suggest that it is more difficult to 
test. 

 Two other software quality aspects that are also related to testing are 
change- and defect-proneness. Change-proneness is a characteristic of software 
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artifacts that represents their susceptibility to modifications; the changes may have 
various causes, including: 1) new requirements, 2) fixing problems in the code, and 
3) ripple effects. There are several publications that address the negative 
consequences of having high change-proneness. For example, in [9] the authors 

prove that a lot of maintenance needs to be performed on change-prone classes as 
a system evolves. Change-proneness has also been associated with technical debt, 
as demonstrated in [10]. The lack of applying patterns and the presence of anti-

patterns have been shown to make a production class change-prone [11]. 
 Another common problem in complex software projects is that they are 
susceptible to errors [12]. These errors occur because of the high defect-proneness 
of the system’s production classes. There are studies (such as [13], [14], or [15]) 

that try to assess error-proneness based on software metrics. However, [16] has 
proven that metrics alone are insufficient to predict defect-prone classes as systems 
evolve. We argue that the presence of certain design flaws in the production code 

could make the respective classes more susceptible to faults. 
 Little research has been done thus far on specific problems in the production 
code that have a negative effect on the 3 quality aspects discussed above. In terms 

of testability, [17] presents 4 categories of design flaws that make a system difficult 
to test. The ones that appear to have the highest impact are those related to class 
dependencies, namely global state (and singletons) and instantiations that occur in 
constructors or methods. Design flaws have also been shown to impact change- / 

defect-proneness. Reference [18] tries to compile a list of flaws that make a class 
susceptible to change. As mentioned by the authors, this list is by no means 
complete; further investigation is needed on design flaws that impact change-

proneness. Problems in the production code have also been used to predict whether 

or not a class will change in the future [19]. Therefore, it is even more important to 
determine other design flaws that make a class more likely to be modified. 

Error-proneness is another quality aspect that has received a significant 
amount of attention in recent years. However, just as for the previous 2 aspects 
(testability and change-proneness), the impact of design flaws on this quality aspect 
has not been thoroughly investigated. While there are some studies that look into 

this (such as [20] or [21]), most of them focus on software metrics rather than on 
specific problems in the code. In [22] the authors study 5 flaws and establish that 
there is a correlation (although not very significant) between 4 of them and defect-

proneness. Reference [23] presents a literature review of design flaws that may 
cause software bugs. The 18 studies included in this review only cover around 30 
design flaws; this further proves that there are many other flaws that still need to 

be investigated. 
 With the exception of [17], none of the other publications consider design 
flaws related to the usage of the static keyword. We named this kind of instances 
static constructs and will refer to them this way throughout the rest of the thesis. 

These constructs have already been proven to have a detrimental effect on several 
other quality aspects, including maintainability [25], understandability [26], and 
security [27]. For example, [28] presents the most common cases in which the 

static keyword is used in the code and gives a number of reasons why it has a 
negative effect on maintainability. As mentioned before, Hevery showed that 
mutable global state and static methods have an impact on class testability. 

However, the effects of other types of static constructs (e.g., constants or static 
initialization blocks) have not been studied. We have already proven that 1) mutable 
global state (static non-final attributes and stateful singletons) negatively affects 
defect-proneness [29] and that 2) singletons and certain types of static methods 
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make the classes that utilize them more difficult to test [30]. Up until now, we 
analysed these aspects in isolation; in this thesis we plan to investigate every 
category of static constructs both in terms of presence / usage and regarding their 
impact on the 3 quality aspects. 

Based on the above, there is a clear need within the scientific community to 
study the different types of static constructs present in the production code. While 
some may prove harmless to the software quality aspects that we are addressing, 

there will surely be categories that have a negative impact on testability or change- 
/ defect-proneness. For example, we expect constants to have little or no influence; 
on the other hand, stateful singletons should be detrimental to all 3 quality aspects. 
In order to fully understand how these static constructs are used, we do not think 

that it is sufficient to examine only the latest version of a system. Valuable insight 
might be obtained by studying multiple versions throughout a project’s history. 
Therefore, we plan to extract and leverage historical data to further refine this 

analysis. After we gain a thorough understanding on this matter, we want to study 
the impact of each type of static construct on the quality aspects mentioned above. 
By doing this, we will be able to pinpoint the ones that cause problems and provide 

appropriate recommendations on which static constructs should be avoided. 
 
 
 

1.2. Research questions 
 

In this study we try to understand 1) how static constructs are used in 
complex projects and 2) whether or not they have a negative effect on several 

software quality aspects. By static constructs we are referring to a broad category of 
entities that use the static keyword. They can be very simple, such as static 
attributes (non-final and constant) and methods, or more complex (e.g., singletons 

or utility classes); therefore, an initial categorization is required. Afterwards, we 
want to study their presence / usage both for the latest version of a system and for 
multiple versions throughout its lifespan. This is done in order to observe if the 

usage patterns have changed over the years. As an example, Singleton was initially 
considered a creational design pattern; however, experience has proven that it is 
rather an anti-pattern. Thus, we expect such instances to appear less frequently in 
the final version analysed compared to previous ones. If static construct instances 

are actually used less, then we need to understand the reasoning behind such a 
decision. The main cause would be that static constructs are detrimental to software 
quality aspects. Some of the aspects, such as maintainability or understandability, 

have already been investigated. We will focus on the ones that have not been 
addressed thus far, namely: 1) testability, 2) change-proneness, and 3) defect-
proneness. For each of these aspects we want to define models that can be used to 

quantify them. Only after we are able to evaluate a quality aspect for a specific part 
of the production code can we establish if the parts that contain / utilize static 
constructs are more problematic than the rest of the code. We plan to analyse the 
impact of each category of constructs on the 3 quality aspects of interest. This will 

allow us to specify which types of instances are the most detrimental to a particular 
aspect. We expect some of the static constructs (e.g., constants) to not have any 
negative effect on software quality. On the other hand, there might be others (e.g., 

singletons) which do not impact a quality aspect directly, but rather the production 
classes that use them are affected. This is also something that we will be 
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considering in our analyses. All of the above have led us to the following research 
questions: 

• RQ1. Are static constructs used in complex software systems? 

• RQ2. How have static constructs evolved throughout the lifespan of a 
project? 

• RQ3. Do static constructs have a negative impact on software quality 
aspects? 

With the first question we are trying to establish whether or not static 

constructs are present in the production code. The following 2 research questions 
would not make sense if static construct instances do not appear or are barely used. 
However, we want to distinguish between different types of static constructs. We do 
not believe that instances of different types are utilized in the same way, therefore 

we need to categorize them first. The categorization is done based on 1) the size of 
the construct (e.g., entire classes such as singletons or utility classes vs. a single 
static method within a class) and 2) whether they represent / access state or not 

(e.g., static non-final attributes vs. constants). After dividing them into categories, 
each type will be studied in isolation for the latest version of a system. Some quality 
aspects might not be directly affected by the presence of static constructs. For 

example, the singletons themselves are easy to test, but the production classes that 
utilize them are significantly harder due to the setup required to configure the 
appropriate singleton state. Thus, the client classes for each instance also need to 
be considered in the analysis. 

The second research question addresses the evolution of static constructs. 
We want to determine how instances of each type have evolved throughout a 

project’s history. More specifically, we are interested in observing if more instances 

of static constructs are present / utilized currently compared to the early stages of 
development. We consider that if static constructs appear less frequently nowadays 
then this is a clear indication of the fact that they are detrimental to different 

software quality aspects. Just as for the previous research question, we will also be 
examining the client classes for each instance. If the number of clients starts to 
decrease while the system is continuing to grow, then this would further confirm 
that static constructs are harmful. 

Finally, the last research question is directly related to the 3 software quality 
aspects that we are addressing in this thesis. It can be split into 3 sub-questions; 
one of them would be: “Do static constructs have a negative impact on class 

testability?”. Therefore, we will investigate the effect of each type of static construct 
on the 3 quality aspects: 1) testability, 2) change-proneness, and 3) defect-
proneness. In order to be able to do this, we must first quantify these aspects for 

specific parts of the production code. Models and procedures that can aid us in this 
regard will be proposed. For the classes of interest, the assessments will be 
performed in relation to other classes which are similar to them (in terms of size 
and complexity). As an example, we will be capable of establishing if the classes 

that utilize singletons are more prone to error compared to other classes. By 
demonstrating that the usage of static constructs is detrimental to one or more of 
the quality aspects investigated, we will raise awareness regarding the types that 

are the most problematic. 
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1.3. Relevance 
 

From a research perspective, it is important to gain insight into the way in 
which static constructs are used and how they evolved. This allows for a better 
understanding of software development practices. Additionally, the proposed 

approach could be employed to study these aspects for other design flaws, such as 
God Class or Shotgun Surgery. It would be interesting to see if these flaws evolved 
differently compared to the static construct instances. After obtaining a good 

understanding on static construct usage, we also want to investigate their effect on 
3 software quality aspects. 

The aspects considered in this study, testability and change- / defect-

proneness, are closely related to the testing process and may affect it. The main 
goal is to determine which types of static constructs have a large negative impact 
on the quality aspects studied. By understanding this, we will be able to provide a 
series of recommendations on which static constructs can continue to be used 

during development (e.g., constants) and which should be avoided (possibly at all 
cost). However, the knowledge obtained will not be limited to these aspects. For 
example, when assessing testability, we want to determine particular smells that 

exist in the tests covering the classes with static constructs and their clients. By 
doing this, we can find correlations between certain test smells and the static 
constructs that cause them to appear. For example, we expect the General Fixture 

smell to occur more frequently in test classes that cover singleton clients. For 
change- and defect-proneness we also want to understand the exact modifications 
that were performed on the classes with / that utilize static constructs. It might be 
the case that only some specific types of changes occurred and it would be very 

useful to find out which. The effects of static constructs on other software quality 
aspects can be studied in a similar way; the appropriate models have to be defined 
and then the impact of each type of construct can be studied independently. 

 By investigating all the aspects mentioned above, we will bring a number of 
contributions: 

• A general methodology that can be followed to detect specific design flaws 

in the production code, study how they evolved, and assess their impact on 
a series of software quality aspects. This methodology consists of several 
steps: 1) defining the detection strategies for all the instances of the flaw 
(possibly categorizing them first); 2) going through the version history of a 

system to understand their evolution; 3) defining the models for quantifying 
each quality aspect; 4) comparing the parts of the code in which the design 
flaw instances are present with other similar classes with regard to each of 

the analysed aspects. Significant data will be obtained after each step, but 
only by implementing all of them can we examine the entire process. We 
will highlight the applicability of the proposed approach with different types 

of static constructs as the flaws of interest. Three quality aspects are going 
to be studied: 1) class testability, 2) change-proneness, and 3) defect-
proneness. Each category of instances shall be investigated independently in 
terms of presence, evolution and impact. Afterwards, we will make some 

general observations regarding static constructs as a whole. 
• A model for assessing the testability of production classes based on their 

corresponding unit tests. The test suite is analysed both from a quantitative 

and from a qualitative perspective. We rely on coverage data to evaluate 
quantity, namely line coverage and number of unit tests which address that 

part of the production code. For quality we detect smells in the 
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corresponding tests and establish whether or not they are more frequent in 
the classes that cover static constructs and their clients. The 2 assessments 
are combined into a score that represents the testability of a certain class. 
By comparing this score to that of similar classes, we can specify if a class 

with / that uses static constructs is less / more difficult to test. 
• A method to 1) determine the modifications that were performed during a 

commit and 2) categorize commits as bug-fixes. The first part is needed to 

establish whether or not the classes with static constructs and their clients 
1) were modified more frequently and 2) more changes were performed on 
them per commit; if this is the case, we can consider them more change-
prone compared to other classes. For defect-proneness we investigate the 

same aspects, but only the commits that were identified as bug-fixes are 
included in the analysis. 

• A tool that can be utilized to detect design flaws, study their evolution and 

quantify their impact on the 3 quality aspects discussed above (testability, 
change- and defect-proneness). This tool needs to be as modular as 
possible; there will be different types of modules for each of the steps from 

the proposed approach. For example, there are going to be several modules 
in which we define the detection strategies for every category of static 
constructs. Another module shall be responsible for retrieving the historical 
data necessary for studying evolution. Finally, the tool will have a group of 

modules for assessing each of the software quality aspects. The 
aforementioned modules can be combined to form the required analysis. 
The tool should also be highly extendable, new modules with detection 

strategies or models for other software quality aspects should be added 

without too much effort. 
• An empirical study in which we use this tool for different categories of static 

constructs. First, we must define the appropriate detection strategy for each 
type (e.g., stateful / stateless singletons). Then we can analyse their 
presence / usage both for the latest version of a system and for monthly 
commits. Finally, we shall use the proposed models / procedures to 

determine whether or not instances of a certain type have a negative impact 
on the quality aspects investigated. Through this empirical study we will 
obtain a good understanding of 1) how static constructs are utilized, 2) the 

way in which they have evolved, and 3) their effect on the 3 software 
quality aspects. Some interesting observations are going to be made; they 
will be discussed in depth in the chapters that follow. 

 

 

We have set several objectives that must be accomplished in order to 
provide the contributions presented above. The main objectives of this thesis are: 

• O1. Studying the state of the art for the topics of interest: design flaw 
detection (with an emphasis on static constructs) and evolution, models for 
quantifying software quality aspects, and design flaws that have an impact 

on the aspects we are investigating. 

• O2. Categorizing the static constructs and defining detection strategies 
through which instances of each type can be identified. Additionally, 
analysing the presence and usage of these instances both for the latest 

version of a project and throughout its entire lifespan. 
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• O3. Developing procedures through which the quality aspects considered, 
class testability, change- and defect-proneness, can be evaluated. Also 
establishing whether or not the static constructs from each category have an 
effect on them. 

 

 
 

1.4. Outline 
 

 In this section we explain how the rest of the thesis is structured. The 
following chapter discusses related work from fellow researchers. It contains 4 
sections that cover: 1) different approaches for identifying design flaws; 2) 

methodologies for analysing the evolution of specific parts of the production code; 
3) ways of assessing software testability and change- / defect-proneness; 4) design 
flaws that have been proven to have a negative impact on these quality aspects. We 
end this chapter with a section that thoroughly discusses the differences between 

our work and the other publications with regard to: 1) design flaw detection; 2) 
studying software evolution (with an emphasis on the design flaws of interest, 
namely static constructs); 3) quantifying testability and change- / defect-proneness; 

4) tools for investigating one or more of the previous aspects. 
 In Chapter 3 we detail the proposed approach. First, we explain how static 
constructs were categorized and present the detection strategy for each type. Then 

we describe the process through which we study the evolution of static constructs. 
The following sections discuss the model for quantifying class testability and the 

methods for assessing change- / defect-proneness. We conclude the chapter by 
providing implementation details for the entire data collection process and 

presenting the tool that was developed. 
 Chapter 4 explains how the empirical study was conducted. It starts by 
discussing the main goal of the study, the formulated hypotheses, and the 

independent and dependent variables for each hypothesis. Afterwards, we present 
the criteria based on which we selected the systems included in the study. Finally, 
we describe in detail each of the 4 analyses that were performed, namely: 1) static 

constructs presence / usage; 2) evolution of each static construct type; 3) impact 
on class testability; 4) impact on change- / defect-proneness. 
 Chapter 5 presents the results that were obtained for each of these 
analyses. It only includes raw results; their interpretation is provided in the 

following chapter. In Chapter 6 we revisit each research question and discuss the 
implications of the results. We also mention a series of threats that might impact 
the validity of the empirical study and explain how we tried to mitigate them. 

 The final chapter of the thesis contains conclusions and future work 
directions. We begin by reiterating the contributions provided through this thesis. 
Then we summarize what has been done and discuss the main results in connection 

with the research questions. In the following section we reflect on our work and 
explain what could have been done better. We end the thesis with 6 future work 
directions that are being considered at this moment, namely: 1) improving the 
empirical study; 2) analysing other design flaws; 3) enhancing the testability model; 

4) refining the process for identifying bug-fix commits; 5) studying everything at a 
lower level of granularity; 6) proposing refactoring solutions for static constructs 
and test smells. 
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In summary, this chapter discusses: 

1. The problem that is being addressed in the thesis; it includes: 

• The importance of testing and the software quality aspects related to 

this process; 

• The motivation behind choosing static constructs as the design flaws 
of interest; 

• A short overview of how we plan to tackle the problem. 

2. The research questions that were formulated: 

• RQ1. Are static constructs used in complex software systems? 

• RQ2. How have static constructs evolved throughout the lifespan of a 
project? 

• Do static constructs have a negative impact on software quality 
aspects? 

3. The relevance of our work along with the main contributions: 

• A methodology for studying design flaws, their evolution, and the 
impact they have on software quality; 

• A model for evaluating class testability based on the quantity and the 
quality of its corresponding unit tests; 

• A process for determining the fine-grained source code changes 

performed during a commit and establishing whether or not the 
respective commit is a bug-fix; 

• A tool that incorporates all of these aspects; 

• An empirical study through which we answer the proposed research 
questions. 

4. How the rest of the thesis is structured: 

• Chapter 2 contains a comprehensive literature review of the articles 
that address topics which are similar to ours; 

• Chapter 3 describes the approach proposed in order to study the 

aspects of interest; 

• Chapter 4 presents the empirical study that was conducted; 

• Chapter 5 highlights the obtained results; 

• Chapter 6 provides an interpretation of the results in relation to the 
research questions along with potential threats to validity that might 
influence them; 

• Chapter 7 has the conclusions and future work directions. 
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2. RELATED WORK 
 

 
As explained in Chapter 1, we need a thorough understanding of what has 

already been done in terms of design flaw detection and evolution, models for 
quantifying software quality aspects, and flaws that affect these aspects. Towards 

this end, we surveyed the literature in order to identify similar work from fellow 
researchers; the rest of this chapter is structured as follows: i) Section 1 discusses 
detection strategies and tool support for identifying design flaws; ii) Section 2 

explains how the evolution of different parts of the source code has been studied 
thus far; iii) Section 3 describes procedures that have been utilized to evaluate the 
software quality aspects of interest; iv) Section 4 covers design flaws the negatively 

impact the aforementioned quality aspects. 
 
 

2.1. Design flaw and test smell detection 

 

2.1.1. Detection strategies and tool support 
 

Identifying design flaws is a key activity when trying to achieve the goal 

specified in the previous chapter. In [31] Brown et al. introduce anti-patterns and 

discuss ways in which they can be detected. The authors define an anti-pattern as 
“a commonly occurring solution to a problem that generates decidedly negative 
consequences”. They group them in three categories: software development anti-

patterns, software architecture anti-patterns and software project management 
anti-patterns. This study will focus on anti-patterns from the first category, as we 
will analyze the production code of software systems. For each of the anti-patterns 

mentioned the authors explain the problem, list the symptoms by which it can be 
identified and discuss its consequences. This publication can serve as a guideline for 
understanding a specific anti-pattern and provide a basis for developing the 
detection techniques necessary for identifying it. 

 In [32] Marinescu presents a metrics-based approach for detecting design 
problems and describes concrete techniques that can be used to detect two well-
known design flaws, God Class and Data Class. The approach consists of four steps: 

i) a quantitative analysis of the design-flaw used to define a detection strategy, ii) 
metrics selection used to express the detection strategy as a combination of 
metrics, iii) detection of suspects used to obtain a list of code fragments that might 

be affected by the design flaw, and iv) examination of suspects used to decide 
whether or not those fragments are actually affected by the flaw. Based on the 
proposed approach the author defines detection techniques for the two flaws. An 
industrial case study was conducted in order to prove that the detection techniques 

can successfully identify the God Class and Data Class design flaws. 
 The work is continued in [33] which provides a more in depth analysis on 
design flaw detection based on metrics. The approach is validated through more 

than ten detection strategies and adequate tool support is provided. The 
ProDetection toolkit is introduced which supports code inspections based on the 
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detection strategies defined. The process consists of three steps: i) creating a meta-
model of the software system, ii) running the detection strategies in order to obtain 
a list of suspect design entities, and iii) manually verifying the results. The 
usefulness of the toolkit is demonstrated through an industrial case-study which also 

highlights the accuracy of the detection strategies that were defined. 
 Reference [34] also introduces a tool (HIST) that can identify five design 
defects and provides an analysis on when they appear throughout the lifespan of a 

system. Besides structural information, this tool also leverages co-changes 
extracted from versioning systems to detect the following flaws: Divergent Change, 
Shotgun Surgery, Parallel Inheritance, Blob and Feature Envy. For each of the 
smells a historical detector is defined using a combination of association rule 

discovery and by analyzing the set of classes/methods that are co-changed. Two 
empirical studies were conducted in order to evaluate HIST. The first assesses its 
recall (between 58% and 100%) and precision (between 72% and 86%) on twenty 

open-source Java projects. The second study involved twelve developers of four 
open-source systems who concluded that more than 75% of the problems identified 
by HIST are actual design flaws. 

 In [35] Kessentini et al. go deeper than simply detecting design flaws, they 
also enable the refactoring of the analyzed code in order to remove them. The 
proposed approach utilizes Genetic Programming to automatically generate rules for 
detecting design flaws. Afterwards, a Genetic Algorithm is used to generate 

refactoring solutions that can be applied to remove the flaws that were identified. 
The approach is validated using six open-source software systems. The results show 
that more than 76% of the design flaws were successfully detected and the 

correction solutions proposed were able to remove 74% of them. 

 Besides detection strategies [36] also proposes a rigorous process (based on 
precision and recall) that can be used to validate the strategies. The main 

contributions of the article are: i) a method that can be utilized to define the steps 
required to detect design flaws (DECOR), ii) a detection technique that instantiates 
this method (DETEX), and iii) an empirical validation of the detection technique. 
DETEX can be used to identify four design smells (Blob, Functional Decomposition, 

Spaghetti Code and Swiss Army Knife) and their underlying code smells. It was 
validated on eleven open source systems and showed precision of over 60% and 
100% recall. The complexity of the obtained detection algorithms and the 

computation times required are also discussed, both of which look reasonable. 
 In [37] Wegrzynowicz and Krzysztof present an approach for building test 
suites for detectors of design patterns. The usefulness of the approach is proven by 

creating a test suite containing a set of implementation variants for the singleton 
pattern. Afterwards, three pattern detectors were evaluated (in terms of accuracy) 
using this test suite and it was shown that each of them had their limitations in 
detecting all the variants correctly. A similar approach could be used to validate 

design flaw detectors. 
 

2.1.2. Test smells 

 
 The presence of design flaws in the production code might indicate that 
there are also problems in the test code. These problems are generally referred to 

as test smells, they represent deviations from the guidelines that were proposed to 
aid developers in creating good test suites. Reference [38] is one of the first papers 
to introduce test smells and proposes solutions for detecting two of them, General 
Fixture and Eager Test. The authors present the characteristics of a good test based 
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on the core principles of unit testing. Then they discuss the structural deficiencies 
that cause test smells to appear (in terms of test concepts and their characteristics). 
Based on this a set of metrics is defined that can be used to identify the two test 
smells mentioned above. An initial validation of the detection strategies is done 

using manual inspection and code review. In [39] Bavote et al. present two 
empirical studies on test smells. The first analyzes the distribution of smells within 
the test base. The study includes eighteen systems (two industrial and sixteen open 

source) and shows that test smells are widely spread throughout these systems (in 
82% of the test classes). The second study investigates their impact on program 
comprehension during maintenance and testing and proves that there is indeed a 
negative impact. 

The authors went more in depth in [40] which proves that test smells are 
harmful and occur frequently in software systems. Similar to the previous paper, 
two empirical studies were conducted. The first proves that code smells are present 

in both open source and industrial systems with 86% of unit tests having at least 
one test smell present. The second study shows that test smells have a negative 
impact on maintenance and program comprehension. Its main finding was that 

comprehension is 30% higher if test smells are not present. 
In [41] Jianping et al. present an empirical study on the relationship 

between test smells and production class features. The study investigates whether 
the complexity properties of a class can be used to predict test smells in its 

corresponding unit tests. It was conducted using five open source systems and 
found that Cyclomatic Complexity (CC) and Weighted Methods per Class (WMC) are 
indicators of the presence of test smells, predominantly Eager Test and Duplicated 

Code. Other production class features were also considered; the Lack of Cohesion of 

Methods (LCOM) also correlated with the two test smells while the Depth of the 
Inheritance Tree (DIT) did not. 

Reference [42] is a PhD thesis that addresses software testability and the 
quality of testing in object-oriented software systems. It contains several important 
findings including the fact that there is a correlation between certain code smells 
and test smells. The study also shows that unit tests are not distributed in line with 

the system’s dynamic coupling. Many of the tightly coupled classes do not have 
associated unit tests, while the loosely coupled ones have at least one direct unit 
test. Furthermore, the results highlighted that there is a correlation between class 

testability and dynamic complexity. A larger number of unit tests is required to 
address classes that are executed more frequently within the code. 
 

 
 

2.2. Software evolution 

 
 Historical data have already been used to improve design flaw detection 

[43]. We also utilized this kind of information to study the co-evolution between 
production and test code [44]. We did this in order to obtain a better understanding 
of the way in which tests evolve as a result of changes in the production classes. An 

association rule mining technique was used to uncover 6 fine-grained co-evolution 
patterns. We also established that the testing effort that is put into a project does 
have an impact on the observed patterns. 
 The lifespan of code smells is studied in [45]; the authors investigate the 

behavior of the developers with regard to the removal of code smells and anti-
patterns. Their results indicate that software engineers are aware of the presence of 
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these flaws, but are not too concerned about their impact on quality. This 
observation is further supported by [46], which found that code smell removal with 
refactoring tools is often avoided during maintenance. 
 One of the first attempts to study the evolution of a particular design flaw 

(God Class) is presented in [47]. The histories of 2 open-source projects are 
analyzed in order to establish how God Classes appeared, their prevalence, and 
whether or not they are still part of the system or were removed during its 

evolution. The authors also manage to distinguish between the God Classes that 
were created by accident and those that are so by design.  
 The evolution of design smells along with their impact on the change 
behavior of software systems is evaluated in [48]. The proposed analysis identifies 

“good” and “bad” phases in the evolution of a system, which correspond to 
decreases / increases in the number of components that contain smells. It also 
proves that the respective classes have a higher change frequency. However, only 2 

flaws, God Class and Shotgun Surgery, are considered and the study includes just 2 
open-source systems. Five other smells, Blob Class, Class Data Should be Private, 
Complex Class, Functional Decomposition, and Spaghetti Code, are studied in a 

similar manner in [49]. The paper is aimed at understanding when and why the 
code starts to smell bad, but (just like the previous study) only addresses a limited 
number of smells from a small number of systems. 
 We will strive to obtain an analysis as thorough as the one presented in 

[50], but with a lot more design flaws and systems. Tools that could assist us in this 
regard have started to emerge. As mentioned before, [34] introduces HIST which 
can identify 5 design defects and provides an analysis on when they appear during 

the lifespan of a system. Another example would be Coming [51], a tool that can be 

utilized to mine instances of change patterns. 
 

 
 

2.3. Evaluating software quality aspects 

 
2.3.1. Assessing software testability 

 
Considering that our research addresses improving the testability of object-

oriented systems, there is a need to develop a model by which this aspect can be 

quantified. In [52] Mouchawrab et al. describe one of the first attempts to measure 
the testability of software systems. The proposed framework does not start from the 
source code but from the UML diagrams that model the system. The authors also 
introduce a set of attributes that can have an impact on testability; they group them 

in three categories: i) Object Constraint Language Expression Complexity, ii) Use 
Case Model and System Interface Complexity, and iii) Interactions Between 
Inherited and Overridden Features. Measurement procedures are provided for each 

of the attributes. The authors also discuss ways in which these measurements can 
be interpreted in order to assess the testability of the system. 
 Reference [53] is the first publication to investigate code metrics that can be 

utilized to quantify testability. Five Java systems (one open source and four 
industrial) were analyzed using the GQM/MEDEA framework. It was found that there 
is a correlation between production code metrics (such as Lines of Code, FANOUT 
and Response for Class) and test case metrics (such as Lines of Code for Test Class 

and Number of Test Cases). 
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 Similar ideas are presented by Zhou et al. in [54], who show that there is 
indeed a correlation between testability and software structure metrics. The main 
findings of this empirical study are that: i) metrics related to size, complexity and 
coupling have a higher impact on the testability of a software system compared to 

other production code metrics (related to cohesion or inheritance), but ii) metrics 
alone cannot predict the effort required for unit testing a class. The study also 
demonstrated that it is better to apply partial least square regression (PLSR) than 

multiple linear regression (MLR) when trying to correlate metrics with unit 
testability. 

Reference [55] contains a survey on models that can be used to determine 
the testability of an object-oriented software system. For each of the analyzed 

models the authors discuss the method used to assess testability along with the 
achievements of the model and its main issues. They conclude that “there is no 
single superior model”, thus a testability model should be chosen based on the 

particularities of the analysis you are trying to conduct. All of the surveyed models 
try to assess testability during the design and analysis phase, they do not address 
already implemented code. 

 
2.3.2. Assessing change- / defect-proneness 

 
 Just as for testability, the first studies that address change-proneness try to 

evaluate this software quality aspect based on the design of a system. For example, 
[56] proposes a method for calculating the behavioral dependency measure (BDM), 
a metric that can be utilized to predict change-proneness. The work is continued in 

[57], where the authors present a case study in which they evaluate the usefulness 

of this metric using a multi-version open source project called JFlex. 
 There are several articles that investigate the capability of object-oriented 

metrics to predict change-proneness. However, most of them only take into account 
a small amount of OO metrics or study a limited number of systems. In [58] the 
authors analyze 102 Java projects and assess the effect of 62 metrics. Their results 
show that size metrics have the highest ability of predicting whether or not a class is 

susceptible to modifications. For the coupling and cohesion metrics the capacity is 
lower, while inheritance metrics cannot be used to distinguish between classes that 
are change-prone and those which are not. 

 Other studied use machine learning techniques to predict change-prone 
classes. The effectiveness of such approaches is evaluated in [59] and compared to 
that of statistical techniques. The article proves that both types of methods can be 

used to evaluate this software quality aspect. It also highlights a series of OO 
metrics that are more suitable in this regard. 
 Reference [60] investigates the relationship between design patterns / 
meta-pattern roles and change-proneness. The authors also study the effect of the 

size of the classes on this software quality aspect. Their results show that the latter 
has a much larger impact on change-proneness compared to the patters and meta-
pattern roles. 

Object-oriented metrics have also been used to assess software defect-
proneness. For example, the effects of size on this software quality aspect have 
been investigated in [61]. Cox proportional hazards modeling with recurrent events 

is utilized for the assessment; however, only 1 project (Mozilla) is used in the 
evaluation. 

A considerably more complex model for evaluating defect-proneness is 
proposed in [62]. It includes 3 types of bad design indicators, including several code 
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smells, high method dependency, and large file size. The study shows that each of 
these types has a negative effect on defect-proneness and that these effects are 
relatively independent of one another. This is an important observation considering 
that we plan to investigate the impact of a specific category of design flaws (static 

constructs) on this software quality aspect. 
There are few publications that try to leverage historical data for defect 

prediction. As an example, in [63] Moser et al. categorize Java classes as defective 

or defect-free based on two sets of metrics, product related and process related; 
they prove that the metrics from the second category are more efficient for 
predicting errors. This observation is further supported by [64]; it shows that code 
metrics do not change that much from one version to another, thus leading to the 

stagnation of the defect-proneness prediction models. 
 
 

 

2.4. Design flaws that affect software quality 

 
2.4.1. Testability 

 

 Design flaws have an impact on various aspects of software systems 
including understandability [65] or maintainability [33]. Our study complements 
existing ones and focuses on their impact on testability and change- / defect-

proneness. In [66] Hevery presents several design flaws that make software 
systems difficult to test. They are grouped into four categories: Constructor does 
Real Work, Digging into Collaborators, Brittle Global State and Singletons, and Class 

Does Too Much. For each of these categories the author discusses the reasons why 
they have a negative impact on testability, a series of warning signs and ways in 
which they can be fixed. Additionally, concrete examples are provided that allow for 
a better understanding of the underlying problems along with possible refactoring 

solutions. 
 Reference [67] describes a tool that was developed based on the concepts 
introduced in [66]. The tool can be used to analyze software systems and generate 

a testability report. This report contains information regarding the design flaws that 
affect a system’s classes along with scores that quantify each flaw’s impact on the 
testability of a certain class. Besides the testability evaluation the tool also provides 

concrete refactoring solutions that can improve the overall testability of a system. 
 In [68] Sabane et al. investigate the effects of anti-patterns on the cost of 
class unit testing and propose a number of refactorings that can reduce this cost. 
The indicator of testing cost considered was the number of test cases that satisfy 

the minimal data member usage matrix (MdMUM) criterion. A study was conducted 
using four open source systems which showed that classes that contain design flaws 
require a higher number of unit tests compared to other classes that are not 

affected by flaws. It also highlighted that the testing cost can be significantly 
reduced by refactoring the classes to remove the design flaws. An additional finding 
was that certain flaws (such as Blob, Anti-Singleton or Complex Classes) have a 

higher impact on this cost compared to others (such as Method Chain or Lazy 
Classes). 
 Reference [69] introduces the concept of testability anti-patterns and 
discusses two configurations of an object-oriented design that have a negative 

impact on its testability. These anti-patterns appear when “potentially concurrent 
client/supplier relationships between the same classes along different paths exist in 
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a system”. The paper also discusses testability issues that might arise when 
applying certain design patterns. Based on this the testability grid was created 
which can serve as a guideline on the risk of applying a certain pattern. The authors 
also defined a series of testability constraints that can help minimize this risk. 

 Design flaws are not the only factors that have an impact on the testability 
of software systems. In [70] Tahir et al. present an empirical study on the degree of 
association between runtime properties and class-level testability of object-oriented 

systems. Similar to our work testability is evaluated at the unit test level; two 
measurements are used to characterize it, size (test lines of code) and intended 
design (number of test cases). The results prove that there is a correlation between 
Dynamic Coupling and Key Classes and the testability of a class. Some of the 

Dynamic Coupling metrics utilized (such as Export Coupling) had a stronger 
correlation with the two testability measurements than others (such as Import 
Coupling). 

 Other properties of software systems can make them difficult to test. 
Reference [71] introduces the concept of test-critical dependencies and proposes an 
approach that can be used to identify them. They are “dependencies within a 

system that are critical to test complexity” therefore should have an impact on 
testability. The main findings were that a small number of dependencies have a high 
impact on the testability of a system and that conventional coupling metrics cannot 
be used to identify them. 

 
 2.4.2. Change- / defect-proneness 
 

 The impact of several design flaws on software defects is discussed in [72]. 

The flaws considered are: Brain Methods, Feature Envy, Intensive Coupling, 
Dispersed Coupling, and Shotgun Surgery. The results showed that although the 

flaws do correlate with software defects, it was impossible to determine which ones 
are the most harmful. They also proved that an increase in the number of design 
flaws makes a system more susceptible to errors. 
 Reference [73] assesses technical debt based on the flaws present in a 

particular version of a system. A framework is proposed and its effectiveness is 
proven by analysing the evolution of technical debt symptoms and uncovering past 
refactoring actions. This study shows that these refactoring actions are not always 

organized and coherent, not even when experienced developers are involved. 
 A study on the effects of anti-patterns on change- and fault-proneness is 
presented in [74]. However, there are several key differences between this research 

and what we are going to do: 1) from the 13 anti-patterns investigated only one is 
overlapping with our work, namely stateful Singleton; 2) only major releases are 
considered for the studied systems, while we will adopt a more fine-grained 
approach (analyse all the commits); 3) the methods for quantifying change- / 

defect-proneness are different in terms of versioning system, metrics, and 
categorization (e.g., bug-fix commits). 
 Similar observations can be made with regard to [75]. While this study is 

more elaborate than the previous one, it does not consider the category of flaws 
that we will focus on (static constructs) or the ones we are planning to address in 
the future (e.g., object instantiations in constructors / methods or Law of Demeter 

violations). Furthermore, we want to investigate a large variety of quality aspects, 
not just the ones related to maintainability. 
 There are also publications which suggest that design flaws have a very 
limited effect on certain software quality attributes or no impact at all. One such 
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example would be [76] in which the authors conclude that the effect of smells on 
the overall maintainability of a system is relatively minor. Reference [77] also 
establishes that the impact of the 12 design smells that were investigated on 
maintenance effort is small. Similarly, [78] proves that even though some smells do 

have an effect on fault-proneness this effect is quite limited. All of these aspects are 
worth investigating for other design flaws that have not been considered until now 
(such as testability). 

 
2.4.3. Class dependencies 
 
By studying the design flaws that make object-oriented systems difficult to 

test or more change- / error-prone, it was found that those related to class 
dependencies have one of the biggest negative impacts [79]. This includes global 
state (and singletons) and instantiations that occur in constructors or methods, so 

we have decided to investigate these flaws in greater depth. 
In [80] Hevery explains why static methods have a negative impact on the 

testability of software systems. He states that the main problem with this type of 

methods is the fact that they represent procedural code which is difficult to test. 
Unit testing assumes that a part of the application can be instantiated in isolation. 
During instantiation a series of dependencies are put together using mock objects in 
order to replace the real dependencies, thereby enabling that part of the code to be 

tested. This is impossible for procedural programming because there are no objects 
involved, the methods and the data are separate from one another. 

Reference [81] presents the most common cases in which the static 

keyword is used in the code and gives a number of reasons why it has a negative 

impact on several aspects of object-oriented systems including maintainability and 
testability. The cases mentioned are: i) worker methods (used for different kinds of 

processing tasks), ii) factory methods (used to return preconfigured instances of a 
class), iii) singleton methods (used to limit the number of instantiations to a single 
global instance), and iv) global variables (used to store various configurations). The 
reasons why this static code causes problems are violations of the main principles of 

object-oriented programming (such as encapsulation), encouraging tight coupling 
between the system’s classes and hindering unit testing. 

Reference [82] introduces the concept of “Class-Oriented Programming” and 

explains the main issues with this paradigm. It refers to classes that have only static 
attributes and methods and are never instantiated. The article discusses problems 
caused by such classes and concludes that without objects and their interaction it is 

impossible to build complex software systems. Similar ideas are presented in [83], 
an article that mentions the only two situations in which using the static keyword 
does not cause problems, global constants and constructor-like static functions 
(used to replace overloaded constructors which might become ambiguous). In all 

the other cases having static members might cause problems because it is unclear 
in which class they should actually be placed. In general, static methods tend not to 
use the attributes of the classes in which they reside, thereby leading to violations 

of the Single Responsibility Principle (SRP). Other reasons mentioned for why static 
methods should not be used are the fact that they cannot be called polymorphically, 
they increase the complexity of a software systems and they are difficult to test 

(especially when new instances of other classes are created within them). 
In [84] Feathers proposes a rule that should be followed to make the code 

easier to test: “Never hide a Test Unfriendly Feature within a Test Unfriendly 
Construct”. The Test Unfriendly Constructs (TUCs) mentioned include static 
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methods, static initialization expressions and static initialization blocks while the 
Test Unfriendly Features (TUFs) are lengthy computations, accesses to side effecting 
APIs and database/file system/network accesses. The author also advocates using 
Test-Driven Development as a means to ensure testability. 

The authors of [85] discuss both the benefits and the drawbacks of the Java 
instantiation mechanism. The benefits mentioned are a clear and comprehensible 
syntax, the ability to chain constructors in class hierarchies and the fact that correct 

initialization can be enforced on the class’s clients. However, there are also two 
drawbacks, namely that it is not polymorphic and that it allocates memory from the 
heap. These do not occur in all of the cases, memory is not allocated when the 
constructor is called using super and calling constructors through reflection is 

polymorphic. In the context of testability the second drawback causes major 
difficulties. Using new to instantiate a specific class in a constructor or method 
creates a dependency to the concrete type of the class that is being instantiated 

(because new is non-polymorphic). However, this can be solved through 
Dependency Injection. The usefulness of DI is also discussed in [86], where Hevery 
provides a concrete example that highlights why dependency injection is better that 

object instantiation. 
Reference [87] contains two chapters in which Feathers discusses how to 

deal with global mutable state and object creation in constructors when trying to 
refactor legacy code. In terms of instantiations in constructors the author specifies 

adding an additional parameter (instead of the instantiation) as the recommended 
solution. Overloaded constructors can be used so that not all of the clients are 
forced to pass the additional argument. Feathers also proposes several solutions 

that can be applied when testing global state. For singletons a static setter could be 

added to the class and the constructor can be changed to protected. Afterwards the 
singleton can be subclassed, an object of the subclass created and passed to the 

setter. For static attributes making them non-static and passing them as parameters 
is considered a better practice than accessing them as global variables. All the 
refactorings mentioned above make the legacy code easier to test thereby providing 
a solid basis when trying to restructure it. 

Feather’s book also introduces the concept of seam. The author defines it as 
“a place where you can alter behavior in your program without editing in that 
place”. The usefulness of seams is highlighted when trying to break dependencies in 

order to test legacy code. The types of seams differ from one programming 
language to another; Feathers provides examples of processing seams, link seams 
and object seams. Considering that in our investigations we will be utilizing systems 

developed in an object-oriented programming language (Java) only the last two 
categories of seams are of interest. Java does not have a build stage before 
compilation therefore processing seams cannot be leveraged. Each seam has an 
enabling point which is “a place where you can make the decision to use one 

behavior or another”. For link seams the author provides an example where 
classpath is used as the enabling point that switches between different 
implementations of a class that is included in the class under test. Calling a method 

on an object that is received as a parameter by the method in which the call is 
made was the basic example given for object seams. In this case the enabling point 
is the parameter as its type can be controlled through the argument that is given to 

the method during unit testing. The author specifies that object seams are the best 
choice when trying to get portions of code under test in object-oriented languages. 
The other types of seams are not as explicit as object seams and can make the tests 
that depend on them more difficult to maintain. 
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In [88] Gil et al. introduce a catalog of micro-patterns that can be identified 
in the source code of Java systems. The authors argue that more than 75% of a 
system’s code is written based on these micro-patterns. The patterns are divided 
into eight main categories, three of which address static members (attributes or 

methods): Degenerate Behavior, Degenerate State and Controlled Creation. In 
terms of actual micro-patterns the ones of interest are: Stateless (a class with only 
static final fields), Common State (a class with only static fields), Restricted Creation 

(a class with no public constructors and at least one static fields of the same type as 
the class) and Cobol Like (a class with a single static method and with no instance 
members). Finally, the authors hint at nano-patterns which are patterns of methods 
and state that a combination of micro- and nano-patterns can be used to 

decompose an entire system. 
Reference [89] illustrates how Java developers implement and test 

singletons. Several aspects were taken into account including multithreading, 

classloaders and serialization. However, the problems that singletons introduce in 
the context of testability persist. Singletons represent a global and static way of 
obtaining an instance of a class which makes mocking impossible. Similar ideas are 

expressed in [90] which discusses the main issues with singletons and possible ways 
in which they can be removed. The author states that singletons are dangerous 
because they make debugging and unit testing difficult. The main problems 
mentioned are that they create dependencies which are hidden within the code 

(cannot be detected by examining the interfaces of classes or methods) and other 
classes are tightly coupled with the singleton instance (thus polymorphism cannot 
be used). These problems could be alleviated using dependency injection, possibly 

through DI frameworks like Spring or Guice. The main takeaway from the article is 

that object creation should be separated from business logic and singletons are 
preventing this. 

 
 
 

 
 
 
 

 
 
 

 

 

In summary, this chapter discusses: 

1. Different types of approaches that have been proposed to identify design 
flaws. 

2. Methodologies for studying the evolution of certain parts of the source 
code. 

3. Models for quantifying the software quality aspects of interest, namely 

class testability, change- and defect-proneness. 

4. Design flaws that were shown to have a negative effect on these quality 
aspects. 
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3. APPROACH 
 
 
 The chapter discusses the approach that was adopted in order to study 1) 
how static constructs are used (both in the latest version of a system and for 

previous iterations) and 2) their effects on several software quality aspects. First, 
we explain how we categorize the static constructs and propose detection strategies 
for each type. Next, we describe the process through which we study the evolution 

of the different types of static constructs and the production classes that utilize 
them. The methods used for 1) assessing the testability of a particular class and 2) 
identifying change- / error-prone classes are thoroughly discussed in the following 2 

sections. We end this chapter by providing concrete implementation details for the 
entire data collection process; for each decision that needed to be taken we try to 
explain the reasoning behind it. 
 

 

3.1. Categorizing and detecting static constructs 
 
 As discussed in Chapter 1, we do not believe that all static constructs are 

detrimental to the software quality aspects investigated. For example, constants 
should not have a negative effect on the testability of 1) the production classes in 
which they are declared or of 2) the classes that utilize them (if any). Because they 

are final, only 1 unit test is needed to determine if the value stored in them is 
correct. On the other hand, we do think that other static constructs (such as stateful 
singletons) have a high impact on this quality aspect. While they themselves might 

not be that difficult to test, the production classes that utilize them may be tested 
less because of the setup required to configure the appropriate singleton state. 

In order to establish which types of static constructs influence the quality 
aspects studied we must first categorize them. Considering the varied granularities 

of the constructs in which the static keyword is used (entire classes for singletons 
vs. small parts of a class for constants or static methods), we decided to perform a 
multilevel categorization. At class level we distinguish between 3 types of static 

constructs: 1) singletons (both stateful and stateless), 2) utility classes, and 3) 
classes that contain only smaller instances. The detection strategies for the first 2 
types are as follows: 

 
 

• for singletons 3 conditions have to be met for the general form: 

1. there are no public constructors within the class; 

2. the class has a private static attribute (the ”singleton instance”) and a 

public static accessor method that performs lazy instantiation on this 

attribute and returns it; 

3. the aforementioned method is the only way in which the respective 

attribute can be accessed. 
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• for utility classes there are also 3 conditions: 

1. there are no constructors within the class; 

2. the class only has static final attributes (constants); 

3. all the public methods from the respective class are static. 

 
Figure 3.1. Overview of static construct categories 

 
 For singletons the strategy was further refined so that it can detect several 

variations of the pattern, namely the ones discussed in [91]. Therefore, besides the 
general, Lazy Instantiation variant, we are also able to identify 7 other forms: Eager 

Instantiation, Replaceable Instance, Subclassed Singleton, Delegated Construction, 
Different Placeholder, Different Access Point, and Limiton. By doing this we expect 
to increase the number of detectable instances, thereby improving the quality of the 

analysis. An additional condition is required to distinguish between stateful and 
stateless singletons. For the stateless ones we need to check that the respective 
class has only constants as attributes. 

 The classes that contain static constructs but are not singletons or utility 
classes are categorised based on the types of the instances present. Those that 
have static methods are divided into 2 categories: a) the static methods utilize / 
modify the class’s attributes and b) the static methods only operate on the received 

parameters. For these 2 types of instances the detection strategies are: 

1. the method is static; 

2. it is not part of a singleton or a utility class; 

3a. it uses at least 1 non-final attribute from the class in which it is located; 
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      3b. it uses only the parameters that are received and static final attributes from 
the class. 
 Finally, there are 3 more types of static constructs included in the 
categorization. The first 2 are related to attributes, namely static non-final ones and 

constants. They are easily detectible by going through all the attributes of a class 
and determining those that are declared static; in order to be categorized as 
constants they also need to be final. The last type of constructs are static 

initialization blocks, chunks of code enclosed in braces that are preceded by the 
static keyword. They are identified by determining the static instances from a class 
that are neither attributes nor methods. An overview of all the categories of static 
constructs is depicted in Figure 3.1. 

 
 
 

3.2. Studying evolution 
 

We rely on Git to obtain the data necessary for studying how static 
constructs and their clients have evolved throughout the lifespan of a system. 

GitHub was chosen because it provides access to numerous repositories for a wide 
variety of software projects. For each of the analysed systems sampling is 
performed on their commits with a frequency of 1 commit per month. We consider 

this time frame appropriate because although it is possible that static constructs 
were added and subsequently deleted in a single month, we do not think that such 
rapid changes are meaningful for our analysis. Afterwards, we compute the 
differences between each commit and the one that was selected for the previous 

month. We do this for every category of static constructs; these differences include: 
the total number of instances per category, the number of client classes for each 
instance, and the average number of clients for the entire project. Additional data 

related to each static construct and all of its clients from the respective commit are 
also recorded along with other useful information (e.g., a class being marked as 
Deprecated). These data are then used in our analysis on the evolution of different 

categories of static constructs. 
 
 
 

3.3. Quantifying class testability 
 

Unlike previous studies that address this software quality aspect, we 
evaluate the testability of a production class based on the quantity and the quality 

of its corresponding unit tests. We rely on code coverage data to determine 
quantity, while for quality we check for certain smells that might appear in the test 
classes. Coverage information was considered because the lack of code coverage for 

a specific class in comparison to other similar classes would indicate that the 
respective class is more difficult to test. We look at 2 aspects when evaluating 
quantity: 1) the line coverage obtained for a production class, and 2) the 

percentage of methods from the class that are addressed by unit tests. Although the 
first aspect would already be a good indicator of how thoroughly a class is tested, 
we also investigate the second aspect in order to avoid situations in which a limited 
number of large production methods are adequately covered by tests while all the 

remaining ones (of a smaller size) are completely disregarded. The coverage data 
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are collected using JaCoCo [92] as it can be utilized on both Maven and Gradle 
projects and provides a detailed report which also includes some class / method 
complexity measurements. 

Test smells are problems in the unit tests that might negatively affect the 

quality of test suites, thus also having an impact on the production code that is 
being addressed. Reference [93] defines them as “deviations from the guidelines 
that were proposed to aid developers in creating good test suites”. The presence of 

certain smells in the tests that cover classes which have / use static constructs can 
indicate that they are indeed harmful to testability. Let us consider singletons as an 
example. The Eager Test smell may appear because several production methods 
that utilize a singleton are called in the same unit test in order to avoid recreating 

the specific state needed for the singleton in multiple tests. In the same vein, the 
General Fixture test smell might be present in the setup method of a test class due 
to the fact that the state of a singleton is configured in the respective method even 

though it is only required in some of the unit tests. Both of the above are examples 
in which using singletons in the production code determines bad practices in the test 
classes. 

In terms of test smell detection, they are identified through tsDetect [94]. 

The tool takes as input a CSV file containing all the test classes of a system along 

with the production classes they are covering. As output it generates a CSV file that 

indicates which of the 19 smells are present in each test class. An overview of the 

test smells that are detected is provided in Table 3.1. Even though some of the 

smells are quite general (e.g., Empty Test), most of them represent real problems 

in the test code that may be correlated with a class's lack of testability. Simply 

determining whether or not a specific smell is present in a test class is insufficient 

for a thorough analysis on unit test quality. Therefore, the tool was extended so that 

it can identify which (and how many) smells are present in a particular test. 

When assessing the testability of a production class we do not compare it to 

all the other classes in the system, but rather with similar classes in terms of size 

and complexity. It would not make sense to compare the testability of a large, 

complex class (which by its nature is difficult to test) with that of a small, trivial 

one. To compute similarity, we rely on Patrools [95] to extract size metrics (such as 

lines of code or number of methods) while for complexity we also integrate the 

scores provided by JaCoCo. Now that we have determined groups of production 

classes which can be considered similar, we need a suitable method for comparing 

the classes that are part of a group. It would be difficult to reason in terms of 

individual values (e.g., line coverage or total number of smells present in the 

corresponding test classes); thus, an aggregated metric is much more appropriate. 

To aid us in this endeavour we introduced the testability score. This complex 

metric combines both the quantitative and the qualitative aspects of the 

corresponding test code and represents the difficulty of testing a certain class. If a 

production class has a higher testability score than another, then the latter is harder 

to test. In order to compute this score, the aspects of interest are assessed 

independently. As discussed before, for test code quantity we consider 1) line 

coverage and 2) percentage of production methods addressed by unit tests, while 

for quality we look at 1) percentage of unit tests in which smells are present and 2) 

number of different types of smells that appear in a test class. For each of these 4 

aspects, a score between 0 and 5 is assigned based on a set of threshold values; 

the thresholds for each aspect are summarized in Figure 3.2. For example, the 
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corresponding score for line coverage is: 0 if less than 10% of the code is addressed 

by unit tests; 1 for coverage between 10% and 25%; 2 for coverage between 25% 

and 50%; 3 for coverage between 50% and 75%; 4 for coverage between 75% and 

90%; 5 if more than 90% of the code is covered by tests. 

 

Table 3.1. Test smells identified by tsDetect 
Test smell Acronym Description 

Assertion 

Roulette 

AR test method has multiple non-documented assertions 

Conditional Test 

Logic 

CTL test method has one or more control statements 

Constructor 

Initialization 

CI test class has a constructor declaration 

Default Test DT test class has default behaviour (auto-generated by 

various development environments) 

Duplicate Assert DA test method has more than one assertion with the same 

parameters 

Eager Test EaT test method has multiple calls to more than one production 

method 

Empty Test EmT test method does not have a single executable statement 

Exception 

Handling 

EH test method has at least one throw statement or catch 

clause 

General Fixture GF not all the attributes instantiated in the setup method of a 

test class are utilized in every unit test 

Ignored Test IT test method or the entire test class has an @Ignore 

annotation 

Lazy Test LT multiple unit tests from a test class call the same 

production method 

Magic Number 

Test 

MNT test method has one or more assertions with a numeric 

literal as an argument 

Mystery Guest MG test method has object instances of file or database classes 

Redundant Print RP test method calls one or more write methods from the 

System class 

Redundant 

Assertion 

RA test method has an assertion in which the expected and 

actual parameters are the same 

Resource 

Optimism 

RO test method makes an optimistic assumption that an 

external resource (e.g., a file) is available 

Sensitive Equality SE test method calls the toString() method in one or more of 

its assertions 

Sleepy Test ST test method calls the Thread.sleep() method 

Unknown Test UT test method does not have a single assertion or 

@Test(expected) annotation parameter 

 

The scores for the 2 aspects from each category (quantity / quality) are 

aggregated through a mean value; thus, we compute 2 new scores, one for quantity 

and another for quality. These 2 values are aggregated once again using the same 

procedure, thereby obtaining the final score for testability. As an example, we have 

a production class for which we calculated the following metrics: 1) 57.5% line 

coverage, 2) 46.5% of its methods are addressed by unit tests, 3) 23% of the tests 

have at least 1 smell, 4) 4 different types of test smells were encountered. The 

corresponding individual scores are 3, 2, 4, and 2, respectively. Therefore, the 

quantitative score for this class is 2.5 while the qualitative one is 3. As a result, the 

testability score for the class is 2.75. If a similar class has an overall score of 4, it 
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means that the class is easier to test than the one which was analysed. Both the 

individual scores and the aggregated ones can provide insight into how difficult it is 

to test a particular class. By determining in which of the investigated aspects the 

production classes suffer more, we could suggest certain improvements to the 

testing process. 

 
Figure 3.2. Thresholds for the quantitative and qualitative aspects 

 

 
 

3.4. Identifying change- / error-prone classes 
 

 In order to detect the classes that are more susceptible to changes / errors 
we have to rely again on a system’s version history. The key difference when 
evaluating these 2 quality aspects is that for error-proneness we only consider the 

commits that correspond to bug-fixes. Therefore, determining whether or not errors 
were resolved in a particular commit is the first step in the entire process. Besides 
the information extracted from the commit message, we also need access to the Jira 
instance for the respective project to retrieve a list of issue keys corresponding to 

bugs. The following steps can be followed to establish if a commit is a bug-fix: 

1) we check whether or not the commit message contains a Jira issue key; 

2a) if it does, we test the key against the list that was computed earlier; 

3a) if the list contains the key, we mark the commit as a bug-fix; 

3b) otherwise the commit is disregarded as it is related to other 

development tasks (e.g., adding a new feature); 

2b) if the commit message does not include an issue key, we check for 

specific keywords (such as bug, error, or fix) within the message; 
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4a) if at least 1 keyword is present along with a production class / method 

name, the commit is considered a bug-fix; 

 4b) otherwise it is ignored in the following analysis; 

 As shown above, both the commit message and the information extracted 

from the associated Jira issue tracker are used to categorize commits as bug-fixes. 
First, the commit message is parsed in order to determine if it contains 1 or more  
 

 

 
Figure 3.3. Categorizing commits as bug-fixes 

 
issue keys. If this is the case, we check if the respective key corresponds to a bug 

based on the list of bugs that was computed earlier. The commits with such keys 
are considered bug-fixes; the others are disregarded because the issue keys 
correspond to other development tasks, including but not limited to: improvements, 

new features, auxiliary tasks, and testing. If there is no Jira issue key in the commit 
message, we check for variations of particular keywords such as bug, error, or fix; 
in case we find such a keyword, we also look for class / method names. If a class 
name is encounter, we consider that the respective production class was fixed in 

that commit. For method names we go through the list of classes that were modified 
in that commit (computed while assessing change-proneness) and determine the 
class that contains the methods of interest. If a commit does not have any Jira issue 

keys or specific keywords then it does not represent a bug-fix; therefore, it is not 

included in our analysis on defect-proneness. 

 After we identify all the commits in which bugs were repaired, we start our 
evaluation of the impact of static constructs on change- and defect-proneness. First, 
we iterate over the commits and determine what was changed between 2 

consecutive versions. The basic features provided by Git dif were considered 
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insufficient for a thorough analysis, therefore we use a specialized tool called 
ChangeDistiller [96] to extract fine-grained source code changes. The categories of 
changes that can be identified along with the specific modifications from each 
category are summarized in Table 3.2. We included all types of changes in our 

study, even those related to comments and documentation. These were not 
disregarded because, although they do not represent significant modifications (such 
as adding new features or fixing bugs), they do ease the understandability of the 

respective parts of the code. A class might be less susceptible to change due to the 
fact that its functionalities are understood properly. 
 Once all the fine-grained changes have been extracted, we can begin our 
assessment on class change- / defect-proneness. The analyses are similar, but in 

the one related to defect-proneness we only consider the commits that were 
categorized as bug-fixes. For each type of static constructs (and their clients), we 
want to establish 2 things: 1) if the classes that contain them are modified more 

frequently compared to other similar classes, and 2) whether or not more changes 
are performed on them per commit. The first aspect is important because if that is 
the case, then the respective classes can be considered more change-prone (or 

error-prone if only the bug-fix commits are studied). The second aspect 
complements the first one; for example, there might be situations in which a 
production class was modified in a smaller number of commits, but the amount of 
changes that were performed in each commit is significant. Such a class should be 

categorized as having a higher change-proneness than one that was modified in 
more commits but only 1 or 2 changes occurred per commit. Both aspects will be 
taken into account during the evaluation; in the particular case in which the values 

obtained for them when comparing 2 classes are contradictory, we will lean towards 

the one for which the difference is greater. As an example, if one class was modified 
in 30 commits with an average of 2.3 changes per commit while another was 

changed in 10 commits and the corresponding average is 2.6, then the first class is 
considered more change-prone. 
 

Table 3.2 Categories of changes retrieved by ChangeDistiller 

Change category Change Acronym 

ADDED_CLASS ADDITIONAL_CLASS AC 

REMOVED_CLASS REMOVED_CLASS RC 

CLASS_DECLARATION CLASS_RENAMING CR 

PARENT_CLASS_CHANGE PCC 

PARENT_CLASS_DELETE PCD 

PARENT_CLASS_INSERT PCI 

PARENT_INTERFACE_CHANGE PIC 

PARENT_INTERFACE_DELETE PID 

PARENT_INTERFACE_INSERT PII 

REMOVED_FUNCTIONALITY RF 

ADDITIONAL_FUNCTIONALITY AF 

METHOD_DECLARATION RETURN_TYPE_CHANGE RTC 

RETURN_TYPE_DELETE RTD 

RETURN_TYPE_INSERT RTI 

METHOD_RENAMING MR 

PARAMETER_DELETE PD 

PARAMETER_INSERT PI 

PARAMETER_ORDERING_CHANGE POC 
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PARAMETER_RENAMING PR 

PARAMETER_TYPE_CHANGE PTC 

ATTRIBUTE_DECLARATION ATTRIBUTE_RENAMING AR 

ATTRIBUTE_TYPE_CHANGE ATC 

ADDING_ATTRIBUTE_MODIFIABILITY AAM 

REMOVING_ATTRIBUTE_MODIFIABILITY RAM 

ADDITIONAL_OBJECT_STATE AOS 

REMOVED_OBJECT_STATE ROS 

BODY_STATEMENTS STATEMENT_DELETE SD 

STATEMENT_INSERT SI 

STATEMENT_ORDERING_CHANGE SOC 

STATEMENT_PARENT_CHANGE SPC 

STATEMENT_UPDATE SU 

BODY_CONDITIONS CONDITION_EXPRESSION_CHANGE CEC 

ALTERNATIVE_PART_DELETE APD 

ALTERNATIVE_PART_INSERT API 

COMMENTS COMMENT_DELETE CD 

COMMENT_INSERT CI 

COMMENT_MOVE CM 

COMMENT_UPDATE CU 

DOCUMENTATION DOC_DELETE DD 

 DOC_INSERT DI 

 DOC_UPDATE DU 

OTHERS UNCLASSIFIED_CHANGE UC 

 DECREASING_ACCESSIBILITY_CHANGE DAC 

 INCREASING_ACCESSIBILITY_CHANGE IAC 

 ADDING_CLASS_DERIVABILITY ACD 

 ADDING_METHOD_OVERRIDABILITY AMO 

 REMOVING_CLASS_DERIVABILITY RCD 

 REMOVING_METHOD_OVERRIDABILITY RMO 

 
 

 

3.5. Implementation 
 

The process utilized to collect the necessary data is summarized in Figure 

3.4 and consists of 3 steps. First we address the presence / usage and the evolution 
of static constructs (and their clients), as shown in Figure 3.4(a). An Eclipse plugin 
called Patrools [95] was 1) used to extract data related to a system's class structure 
and 2) extended by us with the proposed detection rules and other measurements 

that were needed. As an example, for singletons we added a rule that checks if a 
class does not have any public constructors. Once all the detection strategies have 
been implemented, the analysis on static construct presence / usage can be 

conducted. For the latest version of a system we determine the number of instances 
of each type (as per the categorization from Section 3.1). In terms of static 
construct usage, we identify the client classes of an instance based on the FAN-IN of 

the production class that contains it. 
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Figure 3.4. Implementation of the data collection process 
 
We also integrated the jGit API into Patrools and utilized it to retrieve the 

source code of a system from the corresponding Git repository. We iterate over the 
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commits starting from the initial one and select the last commit of each month as 
the version of interest. We run the detection strategies described in Section 3.1 in 
order to identify instances of static constructs together with all the classes that use 
them and compare the results with those obtained for the commit of interest from 

the previous month. By doing this, we are able to determine 1) which static 
constructs were added / removed since the previously studied commit and 2) how 
many production classes are currently using a particular instance. Other useful 

information, such as classes being marked as Deprecated, are also recorded and 
considered in our analysis. 

Figure 3.4(b) depicts the process through which the testability of a class is 
assessed in relation to other similar classes. For the latest version of a project we 

first build the entire codebase using either Maven or Gradle (depending on how the 
system is structured). Then JaCoCo is utilized to collect code coverage data, 
including line and branch coverage, along with an assessment of class / method 

complexity. The plugin generates a coverage report that is parsed using the jDom 
API in order to extract the values of interest. Besides coverage information, we have 
also included test smell data in our quantification of class testability. Patrools is used 

to determine all the production classes that are covered by a test class based on the 
latter's FAN-OUT. A CSV file is created which contains these associations; the file is 
then provided as input to tsDetect [94]. The tool verifies which of the smells are 
present in each test class and generates another CSV file with the results that is 

parsed using OpenCSV. We extended tsDetect so that it reports the smells per unit 
test, not for an entire test class; this allows for a more thorough analysis on the 
quality of the unit tests. 

Patrools is also utilized to calculate size and complexity measurements for a 

system's production classes. This is done in order to find classes that are similar to 
those with the static construct instances and their clients. Similarity is computed 

using both the complexity scores provided by JaCoCo and the Patrools 
measurements mentioned before. Two classes that are identified as similar can then 
be compared based on their corresponding testability scores. These values are 
obtained by aggregating the 1) code coverage and 2) test quality measurements 

described above. 
Finally, Figure 3.4(c) illustrates how change- and defect-proneness can be 

evaluated. First, we establish a HTTP connection to the Jira server for the respective 

system using the Java HttpURLConnection class. Afterwards, subsequent GET 
requests are performed until all the information related to the issues is collected. 
The data is retrieved in JSON format and parsed using the JSON.simple library. 

Once this is complete, we rely again on the jGit API to fetch the system’s source 
code from the Git repository and iterate over its commits. For each commit we apply 
text processing techniques on the commit message to extract the information 
necessary for establishing whether or not it is a bug-fix. 

We also compute the differences between each commit and the one before it 
in order to determine the classes that were modified. As discussed in the previous 
section, a simple Git diff would not have been enough for a thorough analysis, 

therefore we use ChangeDistiller to obtain fine-grained source code changes. With 
this tool we are able to gather data related to the production classes that suffered 
modifications, the entities that were altered, and the changes that were performed. 

After collecting all the information, we can assess if static constructs and their 
clients were changed more frequently during normal / bug-fix commits and 
determine the specific types of the modifications that occurred. 
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In summary, this chapter discusses: 

1. The categorization of static constructs and the detection strategies for 
each of the following categories:  

• singletons (both stateful and stateless), general form along with 
several variations of the pattern; 

• utility classes; 

• static methods that access state / only operate on parameters; 

• static non-final attributes and constants; 

• static initialization blocks. 

2. The process for studying the evolution of different types of static 

constructs which includes: 

• the total number of instances from a category; 

• the number of client classes for each instance; 

• additional information (e.g., an instance being marked as 
Deprecated). 

3. The model for evaluating class testability; more specifically, the testability 
score which is an aggregate of: 

• a quantitative score based on line coverage and the percentage of 
methods that are covered by unit tests; 

• a qualitative score based on the percentage of tests that contain 

smells and the number of different types of smells present in a test 
class. 

4. The method of assessing change- / error-proneness which entails: 

• establishing whether or not a commit is a bug-fix; 

• extracting fine-grained source code changes for all the commits of a 
system; 

• determining if the classes that have static constructs were modified 

more frequently during normal / bug-fix commits and whether or not 
more changes were performed on them per commit. 

5. The implementation of the entire data collection process. 
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4. DESIGN OF THE EMPIRICAL STUDY 
 
 

This chapter explains how we designed the empirical study that was 
conducted. We start by discussing the main goal of the study and the hypotheses 
that were formulated. Then we describe the independent and dependent variables 
considered, together with the procedures through which they were measured. The 

criteria based on which we selected the systems included in the study are also 
covered. Finally, the last section of this chapter presents all the analyses that were 
conducted as part of the empirical study. 

 
 

4.1. Main goal 
 

 As explained in Chapter 1, the goal of this thesis is to provide a better 

understanding of static constructs, their evolution, and the software quality aspects 
on which they have a negative impact. In order to achieve it, we formulated 3 
research questions: 

• RQ1. Are static constructs used in complex software systems? 

• RQ2. How have static constructs evolved throughout the lifespan of a 

project? 

• RQ3. Do static constructs have a negative impact on software quality 

aspects? 

 The main objective of the empirical study is to obtain answers to these 
research questions. To do this, we analyse each of these aspects in isolation. First, 
we investigate what types of static constructs are present in complex software 

systems and whether or not they are utilized by other production classes. Then we 
study the evolution of each category of static constructs throughout the lifespan of a 
system. The effects of using these constructs on several software quality aspects 
are also considered. By performing these analyses, we will understand which types 

of static constructs are problematic and should be avoided, thereby aiding 
developers in creating better systems. 
 

 
 

4.2. Formulated hypotheses 
 

 As discussed in Section 1.2, we made several assumptions with regard to 
static constructs, their evolution, and the effects they cause on various software 
quality aspects. The first major assumption was that instances of such constructs 

are present in the production code and there are other classes that utilize them. If 
this assumption does not hold, then there is no reason to proceed with our study. 
The second assumption addresses the evolution of static constructs; we want to 
determine if the number of instances increases as a system grows in size. If this is 

not the case, then we could consider it a first sign that some static constructs are 
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dangerous and the developers have already become aware of the potential problems 
they cause. Finally, the third assumption is that static constructs have a negative 
impact on the 3 quality aspects we are investigating. While we do not expect all 
types of static constructs to be detrimental, we are confident that at least some of 

them are (e.g., stateful singletons). 
 In order to establish whether or not these assumptions are true, we 
formulated a series of hypotheses corresponding to each of them. For every 

hypothesis we provide a null and an alternative variant; we want to determine which 
of the variants holds true. 
 

Hypothesis 1 

• Null hypothesis (H1null): Static constructs rarely appear in complex 
software systems. 

• Alternative hypothesis (H1alt): Static constructs are present in the 
production code and there are other classes that utilize them. 

Hypothesis 2 

• Null hypothesis (H2null): Static constructs are being used less in later 
iterations of a project compared to the initial versions. 

• Alternative hypothesis (H2alt): The number of static constructs increases 
as a system grows in size. 

Hypothesis 3 

• Null hypothesis (H3null): Static constructs do not have a negative impact 
on software quality. 

• Alternative hypothesis (H3alt): There are some types of static constructs 
that negatively affect the software quality aspects that were investigated. 

 

 The first hypothesis covers RQ1, while the second one addresses RQ2. The 

last hypothesis was refined for each quality aspect of interest. As an example, for 
testability the null variant would be “Static constructs do not have a negative impact 
on class testability”, while the alternative one is “There are some types of static 

constructs that negatively affect the testability of the production classes in which 
they are present / that utilize them”. Establishing which of the variants is true for 
each of these hypotheses represents the main focus of the empirical study. The 
following sections describe the experiments that were performed in order to validate 

these hypotheses. 
 
 

 

4.3. Independent and dependent variables 
 

We determined the independent and dependent variables for each of the 

hypotheses and developed methods for measuring them. Table 4.1 provides an 
overview of these variables along with their measurement procedures. Most of the 
procedures have already been discussed in the chapter regarding the approach; 

those that were not are explained in the subsections covering their corresponding 
hypothesis. 
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Table 4.1: Independent and dependent variables per hypothesis 
Hypothesis Independent 

Variables 
Procedure Dependent 

Variables 
Procedure 

H1 System 
characteristics 

Subsection 4.3.1 Types of static 
constructs present 
/ utilized 

Section 3.1 

H2 System size and 
complexity 

Section 3.2 Number of static 
construct instances 
/ client classes 

Section 3.2 

H3 Static construct 
presence / usage 

Section 3.1 Impact on the 3 
software quality 
aspects 

Sections 3.3 and 
3.4 

 

 4.3.1. Hypothesis 1 
 For the first hypothesis, the independent variables are the specific 
characteristics of a software system. We want to determine if they have an impact 

on the dependent variables, namely the types of static constructs that appear / are 
utilized by other classes in the production code. We expect different categories of 
static constructs to be encountered more frequently depending on the particular 
characteristics of a project. For example, libraries should have more utility classes 

compared to other types of systems. 
 The static construct instances are categorized based on the procedure 
discussed in Section 3.1. Both the instances and their client classes are identified 

through the detection strategies introduced in the respective section. The procedure 
computes the number of instances / clients from each category for the latest version 
of a project. We are keen to observe which categories appear / are utilized more 

depending on a system’s characteristics. Besides the general characteristics, such as 

size and complexity, there are several others that will be investigated (e.g., key 
functionalities). As an example, considering their nature, we expect libraries to have 
considerably more static methods than other types of projects. 

 

 4.3.2. Hypothesis 2 
 The second hypothesis addresses the evolution of static constructs and their 
usage. It tries to establish whether or not more static constructs are introduced as a 
system grows in size and becomes more complex. While additional instances should 

appear as new classes are created for the respective project, this might not 
necessarily be the case; if some types of static constructs have been proven harmful 
to one or more software quality aspects, then the developers might refrain 
themselves from using them in the future. Therefore, of particular interest are 

instances 1) for which the number of client classes has decreased or 2) that were 
completely removed from the production code. 
 The independent variables for this hypothesis are the metrics related to size 

and complexity for a particular version of the project. While the general trend is that 
more classes are added and the existing ones become increasingly more complex as 
a system evolves, there might be some versions (e.g., refactorings) in which the 

number of classes / methods or their complexity decreases. We want to see what 
happens with the number of instances of static constructs and the classes that 
utilize them especially when such situations occur. Also, we will try to go beyond 
just the numbers and understand the reasons why a static construct was removed 

or lost a considerable amount of clients. The measurement procedures for both the 
dependent and the independent variables were discussed extensively in Section 3.2. 
 

 

BUPT



   44 

 4.3.3. Hypothesis 3 
 For the final hypothesis, the independent variables are the different 
categories of static construct instances and their client classes. We want to establish 

whether or not they have a negative impact on the 3 software quality aspects that 
are investigated, namely class testability, change-proneness, and defect-proneness. 
While some types (such as constants) should not make testing more difficult, there 

are others (e.g., stateful singletons or static non-final attributes) that might be 
extremely harmful. We will investigate every category of static constructs in 
isolation for each quality aspect. 
 As previously mentioned, the process for categorizing and detecting the 

instances (and their clients) is described in Section 3.1. Sections 3.3 and 3.4 contain 
the methods through which we quantify the 3 quality aspects. Class testability is 
evaluated both from a qualitative and a quantitative perspective; this assessment 

enables us to obtain a testability score for each production class. Change- and 
defect-proneness are determined in a similar manner, the only difference being that 
for the latter only bug-fix commits are taken into account (not the entire commit 

history). A class is considered change- / error-prone if it was modified more 
frequently throughout its existence and more changes were performed on it 
compared to other similar production classes. 
  

 
 

4.4. System selection 
 

When choosing the systems for the empirical study we took into account a 

number of criteria, including the ones discussed by Pinto et al. in [97]. The projects 
needed to be: 

• relevant in terms of size and complexity (especially the production code). 
We tried to avoid trivial systems as they do not represent appropriate 
examples. Therefore, we selected projects that have a large number of 

classes / methods and complex hierarchies. The smallest system 
(Digester) has roughly 200 classes, while others have up to 2000 (e.g., 
Tomcat). 

• available through Git and have a substantial number of versions. 

Considering that we are studying the evolution of different types of static 
constructs, the systems need to have a corresponding Git repository that 
contains their commit history. We selected projects with a large amount 

of commits; the number of versions ranges from 800 (jHotDraw) to more 
than 23000 (Tomcat). Additionally, all the systems are still in active 
maintenance; there are no projects that have not received an update in 

more than several months. 
• extensively covered by unit tests (both line and branch coverage were 

considered). Class testability is one of the three software quality aspects 
investigated in our study. We evaluate it based on the quantity and the 

quality of the associated unit tests; thus it would not make sense to 
include projects that do not have an appropriate test suite. The only 
exception is jHotDraw, a system which is not tested properly; we decided 

to include this project because it is used as reference in [91], an article 
which addresses the different variations of the Singleton anti-pattern (that 
we are also detecting). Besides this project, the ratio between the number 
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of lines of test and production code for the rest of the systems is at least 
0.5. 

• associated with a Jira issue tracker. To study defect-proneness we need to 
identify the commits in which bugs were fixed. As explained in Section 

3.4, if the commit message contains a Jira key, then we rely on the 
corresponding issue tracker to determine whether or not the respective 
key is related to a bug. Therefore, the selected projects should have a Jira 

instance with all the issues that were created during development 
available for analysis. 

 
Table 4.2 Overview of the selected systems 

System # 
Versions 

First version Last version Test / 
code 
ratio 

# 
Classes 

# 
Methods 

# 
Tests 

Release 
date 

# 
Classes 

# 
Methods 

# 
Tests 

Release 
date 

BCEL 1704 359 2897 0 29/09/2001 432 3749 383 19/04/2021 0.99 

Commons 
Collections 

3567 6 113 64 14/03/2001 525 4451 3523 19/04/2021 1.44 

Commons 
Lang 

6330 14 199 294 19/06/2002 318 3599 4567 19/04/2021 1.76 

Commons 
Math 

6622 4 85 22 12/04/2003 820 5800 5471 13/04/2021 0.69 

Digester 2187 14 176 9 22/04/2001 188 927 768 19/04/2021 0.70 

Geode 10173 4992 56289 29812 29/03/2015 4528 55799 24775 20/04/2021 0.52 

jHotDraw 804 1 6 0 12/09/2000 291 2713 200 22/05/2020 0.05 

Pig 3696 177 932 177 29/09/2007 1756 11870 5706 15/10/2020 0.59 

Spring 
Core 

22423 167 1059 608 21/09/2008 646 4827 4124 21/04/2021 0.54 

Tomcat 23127 1024 10771 0 27/02/2006 2126 21180 6637 20/04/2021 0.53 

Wicket 21060 188 1068 502 01/09/2004 1235 8094 5217 21/04/2021 0.56 

 
 Based on the above criteria, we selected 11 projects to be included in the 
empirical study. We tried to choose systems that differ in terms of 1) size and 

complexity, 2) development practices, and 3) testing effort, while still meeting the 
criteria. Table 4.2 presents an overview of the main characteristics of the chosen 
projects; it shows the number of versions studied (column 2), metrics gathered for 
the first version of a system and the last release considered (columns 3-10), and 

the test / production code ratio for the latest version (column 11). A visual 
representation of the collected metrics is provided in Figures 4.1-4.3. Geode was not 
included in these visualizations because of its considerably higher values compared 

to the other projects, which would make the rest of the data more difficult to 
interpret. 
 The initial version considered is the first commit in which actual code was 

present (not just configuration files and documentation). Besides the initial and final 
versions of a project, we also included intermediate ones when trying to illustrate 
how the 11 systems have grown in terms of number of classes, methods, and unit 
tests. These intermediate versions are the last commits of each year for the entire 

lifespan of a project. A general observation would be that the number of classes / 
methods increased considerably in the first years of development, and then they 
remained constant or even decreased (e.g., Commons Math) once a system reached 

maturity. This is an important consideration that should be kept in mind when 
studying the evolution of static constructs. The number of unit tests follows a similar 
evolutionary pattern (especially for the systems that are extensively tested). 

However, there are several cases in which no unit tests were present in the initial 
version; they were added in subsequent commits. 
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Figure 4.1. Evolution of the number of classes for each project 

 

 
Figure 4.2. Evolution of the number of methods for each project 
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Figure 4.3. Evolution of the number of unit tests for each project 

 
 

 

4.5. Analyses conducted 
 
 We begin the empirical study with a preliminary analysis of the selected 

systems; this allows for a better understanding of 1) a system’s size and structure, 
2) its history, and 3) the quantity and quality of the testing that was performed on 
its latest version. The following 3 analyses are directly related to the research 

questions that were formulated. The first one addresses the static construct 
instances present in the production code, their types and the other classes that 
utilize them (their clients). In the second analysis we study how instances from each 
category have evolved throughout a project’s lifespan. Finally, the last analysis 

evaluates the impact of each type of static constructs on the 3 software quality 
aspects considered. 
 

4.5.1. Preliminary analysis 
This analysis goes beyond the initial measurements that were performed on 

the selected systems (which were presented in the previous section). Besides the 

number of classes and methods, we are also interested in the overall complexity of 
a system and the class hierarchy. Several other characteristics (such as key 
functionalities) are also recorded. All this information is extremely important 

considering that for the first hypothesis the independent variables are the specific 
characteristics of a project. 

With regard to evolution, in addition to the number of versions we also want 

to determine 1) the average number of classes that were modified during a commit 
and 2) the average number of fine-grained source code changes that were 
performed. This allows us to have an idea of the general patterns by which a system 
evolves. It can serve as a basis for studying if classes that have / utilize static 
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constructs evolve differently, a topic which will be addressed in a following analysis. 
During this preliminary analysis we also establish which of the commits are bug-
fixes (by following the procedure from Section 3.4). 

Last but not least, we evaluate the overall quantity and quality of the unit 

tests for the latest version of a project. For quantity we first perform code coverage 
measurements; however, we also want to calculate the percentage of production 
methods that are addressed by at least 1 test. In terms of quality, we are keen to 

observe 1) which types of smells are present in the test code (based on the 
categorization from Section 3.3) and 2) the average number of smells per test class. 
These metrics will allow for an initial assessment of the testing that was performed 
for the respective system. 

 

4.5.2. Static construct presence / usage 
As mentioned above, the main analysis is split into 3 parts. First we study 

the latest version of a system in order to establish 1) if static constructs are present 

and 2) how they are utilized. Besides the number of instances, we are also 
interested in their types (as categorized in Section 3.1). Each category of constructs 
is analysed in great detail. As an example, for singletons we distinguish between 
stateful and stateless ones; moreover, the analysis is further refined so that all the 

singleton variations discussed in [91] are considered. 
In terms of usage, we want to go beyond the number of client classes and 

understand if they are localized in several packages or spread throughout the source 

code. We compare the results with those obtained for similar classes, thus allowing 
us to determine if certain types of static constructs are used differently. As 
discussed in Chapter 3, no relevant results would have been obtained if we 

compared the usage of a large class which contains several static constructs to that 
of a trivial class. 
 

4.5.3. Evolution of static constructs 
Regarding the evolution of the instances from each category, we analyse 

monthly commits to establish whether or not such instances / classes that utilize 

them were added / removed within this timeframe. We are keen to observe if the 
number of static constructs increased as a system grew in size. Similar to the 
previous analysis, the instances from each category are studied separately. Special 
attention is dedicated to cases in which an instance was deleted or marked as 

Deprecated because we want to understand the reasons behind such a decision. 
The number of client classes is also examined for each instance from its 

creation up to the latest version considered (or until it was removed) and compared 

to that of similar classes. We are very interested in cases in which the number of 
clients suddenly dropped and want to see what happened with the respective static 
construct in previous commits. In our analysis on evolution we use graphs to display 

how each category of instances / their clients have evolved for every system 
included in the study. By doing this we are able to visualize the entire process and 
uncover certain patterns that might appear. 

 

4.5.4. Impact on software quality aspects 
In the last analysis we are looking for correlations between the usage of 

static constructs and lower values for the 3 software quality aspects that are 
investigated. Each category of static constructs is studied in isolation, thereby 
allowing us to determine which types have the highest negative effect on the 

respective quality aspects. For example, to study the impact of singletons (both 
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stateless and stateful) on class testability, we compare the testability score of 
classes that have / utilize such instances with the scores obtained for other similar 
classes. More specifically, we want to establish if the latter are 1) covered more 
thoroughly by unit tests and 2) the tests are of a better quality (in terms of test 

smells). As explained in Section 3.3, the testing effort is quantified based on line 
coverage and the percentage of production methods that are addressed by tests. 
For the test code quality, we look at the percentage of unit tests that contain smells 

and the different categories of smells present in a test class. The process is 
repeated for all the other categories of static constructs, thus obtaining a better 
understanding of the impact of each type on testability. 

The effect on the other 2 quality aspects is investigated in a similar manner. 

Both for change- and defect-proneness we try to determine if the classes that 
contain / utilize different types of static constructs 1) are modified more frequently 
and 2) more changes are performed on them compared to other production classes. 

The only difference between the 2 quality aspects is that for error-proneness we 
only consider the commits that were categorized as bug-fixes (as explained in 
Section 3.4). This is done for each category of static constructs, thus enabling us to 

pinpoint which types are the most detrimental. Some types may have a negative 
impact on only 1 or 2 of the aspects, while others might affect all 3. The latter are 
the most problematic and should be avoided at all cost. 
 

 
 
 

 

 
 

 

In summary, this chapter discusses: 

1. The main goal of this thesis, namely to answer the 3 research questions 
that address:  

• static constructs presence / usage; 

• the evolution of different types of static constructs; 

• their impact on 3 software quality aspects: testability, change-

proneness, and defect-proneness. 

2. The hypotheses that were formulated; for each research question there 
are 2 hypotheses, a null version and an alternative one. 

3. The independent and dependent variables for each hypothesis along with 
their corresponding measurement procedures. 

4. The system selection process with an emphasis on the criteria based on 
which the projects were chosen: 

• relevancy in terms of size and complexity; 

• availability on Git and a considerable amount of versions; 

• appropriate coverage through unit testing; 

• availability of a corresponding Jira issue tracker. 

5. The analyses that were conducted as part of the empirical study: 

• a preliminary analysis on the size and structure of the systems, their 

history, and the effort that was put into testing them; 

• an analysis on the presence / usage of different types of static 
constructs; 

• an analysis on the evolution of each of the respective types; 

• 3 analyses on the impact of static constructs on the quality aspects 
investigated. 
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5. RESULTS 
 
 

5.1. Static constructs identified 
 

 First we studied the different types of static constructs that appear in the latest version of a 
project. Besides the number of instances, we also wanted to determine how they are utilized and 
whether or not their clients are localized or spread throughout the system. For attributes we only 
computed the average number of methods that access them from other production classes; because the 
values were so low (there are very few such methods), we decided not to calculate the average number 
of packages from which the attributes are accessed as those values would have been even lower. Also, 
the initialization blocks are a special kind of static constructs, they do not have any clients nor are there 
other constructs that can be considered similar to them; therefore, for this category we only calculated 
the total number of instances. Finally, for static methods we considered the other methods that invoke 
them as clients (rather than the classes that contain the respective methods); the classes from which 
they are called were utilized afterwards to study the client spread (instead of packages which were used 
for singletons / utility classes). 
 

 5.1.1. BCEL 

 
Table 5.1.1: Static constructs BCEL 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 20 0.05 - 0.1401 - 

Constants 694 0.2983 - 

Singletons Stateful 1 65 4 9.3310 2.0886 

Stateless 2 1 1 

Static 
methods 

Utility classes 11 35 2.4545 8.7530 2.0831 

Access state 13 5.1538 2.1538 18.0181 6.1455 

Operate on 
parameters 

119 4.2941 1.5126 

Static init blocks 5 - - - - 

 
 There are 1706 attributes in BCEL, 714 (41.85%) of which are static; most of them are 
constants, only 20 being non-final (1.17%). The constants seem to be used by more classes compared to 
other non-static attributes (average number of clients of 0.2983 vs. 0.1401), while the non-final ones are 
not (only 0.05). 
 From the 432 classes found in the latest version of the system, 3 (0.69%) singletons were 
identified. The first one, Type, is stateful; however, the 2 non-final attributes are marked as Deprecated 
and the developers specify that they should be final. The other 2 singletons, DOUBLE_Upper and 
LONG_Upper, extend the aforementioned class, therefore they were categorized as Subclassed 
Singletons. The number of clients / packages for the stateful singleton are significantly higher than the 
averages for the stateless variants or the other production classes, but the results might be skewed due 
to the fact that this class has several Deprecated attributes and a lot of methods still use them. 
 There are 11 utility classes (2.55%) that contain a total of 107 methods. Although they have 
considerably more clients (an average of 35) compared to other classes (8.7530), the package 
distribution for the client classes is very similar (2.4545 vs. 2.0831). The system has 3749 methods in 
total, but only 132 (3.52%) are static methods that are not part of singletons or utility classes. From them 
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13 (0.35%) access their class’s state, while 119 (3.17%) only operate on parameters. Both types of 
methods have fewer clients compared to other methods and their usage is more localized; on average, 
they are used by roughly 5 methods from 1-2 other classes, while for their non-static counterparts these 
values are much higher (over 18 methods from more than 6 classes). 
 Finally, there are 5 classes that contain 1 static initialization blocks each: Utility, ConstantUtf8, 
InstructionConst, Class2HTML, and InstructionFinder. 
 

 5.1.2. Commons Collections 

 
Table 5.1.2: Static constructs Commons Collections 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 0 - - 0.3044 - 

Constants 260 0.0731 - 

Singletons Stateful 0 - - 1.0519 0.7058 

Stateless 5 0.8 0.6 

Static 
methods 

Utility classes 31 3.4194 1.3226 0.9008 0.668 

Access state 1 2 1 15.1232 9.7912 

Operate on 
parameters 

198 2.5909 1.5404 

Static init blocks 0 - - - - 

 
 There are 871 attributes in the latest version studied, 260 (29.85%) of which are static. All the 
static attributes are constants, no static non-final ones were encountered. They have, on average, a 
lower number of client classes compared to the attributes that are not static (0.0731 vs. 0.3044). 
 Five of the 525 classes analysed are singletons; they are all stateless and their average number 
of clients is slightly lower than that of similar classes (0.8 vs. 1.0519). This observation also holds true for 
the average number of packages from which they are utilized (0.6 vs. 0.7058). In terms of actual types, 
they are all Eager Instantiations. 
 There are 4451 methods in the system’s production classes. With regard to utility classes, 31 
such instances containing 512 methods (11.5%) were found. They have a much higher average number of 
clients than classes which are similar to them in terms of size and complexity (3.4194 vs. 0.9008). 
Furthermore, they are utilized from more packages (1.3226 vs. 0.668). This suggests that such classes are 
a key part of Commons Collections, a project which is structured as a library. 
 There are only 199 static methods (4.47%) that are not part of singletons or utility classes. One 
of them accesses its class’s state, while the other 198 (4.45%) only operate on parameters. These 
methods are called, on average, by roughly 2 other methods from 1-2 classes; these values are 
significantly lower than for non-static methods (15.1232 methods and 9.7912 classes). 
 No static initialization blocks were found in the version of Collections that was analysed. 
  

 5.1.3. Commons Lang 

 
For Commons Lang, which is also structured as a library, there are numerous static attributes and 
methods. From the 862 attributes present in the system’s classes 526 of them are static, which is over 
61%. Most of the static attributes represent constants and are generally used only in the class in which 
they are declared, therefore the average number of clients is very low (0.0913). It is surprising that the 
corresponding value for non-static attributes is even lower (0.0774), however the difference is not 
significant. Only 1 of the static attributes is non-final, defaultStyle from the ToStringBuilder class, which 
has 0 clients. In terms of packages from which the attributes are utilized, it is difficult to make a 
distinction between the different types of attributes due to the small number of client classes. 
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Table 5.1.3: Static constructs Commons Lang 
Category Total # 

instances 
Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 1 0 - 0.0774 - 

Constants 525 0.0913 - 

Singletons Stateful 0 - - 1.4227 0.7828 

Stateless 1 0 0 

Static 
methods 

Utility classes 51 2.6471 1.4847 1.1835 0.6448 

Access state 3 1.3333 0.6667 3.0867 1.6488 

Operate on 
parameters 

204 1.049 0.5931 

Static init blocks 15 - - - - 

 
 In terms of singletons, only 1 instance was identified. ObjectToStringComparator is a stateless 
singleton of type Eager Instantiation; there are no production classes in the latest version of Commons 
Lang that utilize it. 
 Similarly to attributes, 1702 out of the 3599 methods are static (47.29%). There are 51 utility 
classes which contain a total of 1495 methods (41.54%). They have, on average, more clients (2.6471 vs. 
1.1835) from more packages (1.4847 vs. 0.6448) compared to other production classes. The rest of the 
static methods are divided into 2 categories, the ones that access their class’s state (3) and those that 
only operate on parameters (204). It can be observed that these types of static methods have, on 
average, a lower number of client methods compared to other non-static methods and are utilized from 
fewer classes (around 0.6 for both types vs. 1.6488). 
 Finally, there are 15 static initialization blocks in 11 production classes. Most of the classes 
contain 1 such instance, but there are 2 which contain more (ClassUtils and FieldUtils with 4 and 2 
instances, respectively). 
  

 5.1.4. Commons Math 

 
Table 5.1.4: Static constructs Commons Math 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 12 0 0 0.1141 - 

Constants 632 0.0934 - 

Singletons Stateful 0 - - 3.9048 1.3443 

Stateless 1 1 1 

Static 
methods 

Utility classes 25 17.72 4.4 3.4667 1.2478 

Access state 10 5.9 3.2 27.9794 6.8239 

Operate on 
parameters 

181 4.453 1.8287 

Static init blocks 12 - - - - 

 
 There are 644 static attributes (30.31%) from a total of 2125; only 12 (0.56%) are non-final 
while the other 632 (29.74%) are constants. The non-final ones are only used in the class in which they 
are declared; the constants are rarely utilized in other production classes, the average number of clients 
is comparable to that of the non-static attributes (0.0934 vs. 0.1141).  
 Only 1 singleton was detected in the latest version of the system, Decimal64Field. It is of type 
Lazy Instantiation and has a single client (Decimal64). From the 820 production classes in the project 25 
are utility classes (3.05%), much fewer than the previous 2 libraries. They contain a total of 414 static 
methods and are used, on average, by 17.72 classes, which is significantly higher than the average 
number of clients for other classes (3.4667). In terms of localization, the clients are also more spread out 
throughout the project. From the total of 5800 methods, 10 (0.17%) are static and access their class’s 
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state while 181 (3.12%) operate only on parameters. These categories of methods have a smaller 
number of clients (on average 5.9 and 4.453, respectively) compared to other non-static methods 
(27.9794). Correspondingly, the average number of classes from which they are utilized is also lower. 
 There are 12 static initialization blocks in the system’s production classes. Only 1 class contains 
more than 1 initialization block, FashMath which has 3 such instances. 
  

 5.1.5. Digester 

 
Table 5.1.5: Static constructs Digester 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 0 - - 0.0311 - 

Constants 36 0 - 

Singletons Stateful 0 - - - - 

Stateless 0 - - 

Static 
methods 

Utility classes 2 1.5 1 2.6882 1.3011 

Access state 0 - - 4.1058 1.9593 

Operate on 
parameters 

7 2 2 

Static init blocks 0 - - - - 

 
 For the smallest system that was analysed, several types of static constructs are missing. From 
the 325 attributes found in the latest version of Digester, only 36 are static (which is roughly 10%). All of 
them are constants, there are no static non-final attributes. The constants do not have any clients, they 
are utilized only in the classes that declare them. The average number of classes from which the non-
static attributes are used is also very low, thus suggesting that the developers have a strict policy of not 
accessing attributes from other classes directly. 
 No singletons were identified for this system, which only has 188 classes. There are however 2 
utility classes (1.06%), AnnotationsUtils and LogUtils, that have a total of 8 static methods. They have less 
clients (1.5 vs. 2.6882) compared to other production classes and are utilized from fewer packages (1 vs. 
1.3011). Out of 927 methods, there are no static methods that access their class’s state and only 7 static 
methods that operate on parameters (0.76%). Their average number of clients is considerably lower than 
for non-static methods (2 vs. 4.2355), but the average number of classes from which they are called is 
roughly the same (2 vs. 1.9593). Just like for singletons, there are no production classes that contain 
static initialization blocks. 
  

 5.1.6. Geode 

 
Table 5.1.6: Static constructs Geode 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 308 0.3019 - 0.2832 - 

Constants 8030 0.2391 - 

Singletons Stateful 17 7.2611 2.2906 6.8429 2.2489 

Stateless 64 2.5601 0.8804 

Static 
methods 

Utility classes 243 8.5144 2.4198 8.8869 2.9502 

Access state 184 18.8587 10.0271 39.9615 17.3232 

Operate on 
parameters 

1804 20.5937 12.0061 

Static init blocks 107 - - - - 
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 There are 22176 attributes in total in Geode’s production classes, 8338 (over 37.5%) of which 
are static. From the static ones, 8030 (96.31%) of them are constants while the remaining 308 are static 
non-final. There is no significant difference between the average number of clients for the static non-
final attributes (0.3019) compared to constants (0.2391). The values obtained are also similar to the one 
for the non-static attributes (0.2832). 
 From a total of 4992 production classes, 81 are singletons (1.62%); 17 of them are stateful and 
64 stateless. Subclassed Singleton appears to be the predominant type as 51 singletons are children of 
BaseCommand and 4 are of InternalFunction. The rest of the singletons are either Lazy Instantiations or 
Eager Instantiations, the sole exception being HexThreadIdPatternConverter which is a Limiton. Unlike 
the other systems, Geode has 3 singletons that are marked as Deprecated in its latest version. In terms of 
usage, the average number of clients / packages from which stateful singletons are utilized is comparable 
to that of similar classes (7.2611 vs. 6.8429 and 2.2906 vs. 2.2489, respectively). However, the 
corresponding value for the stateless variants are considerably lower (2.5601 for clients and 0.8804 for 
packages). 
  The version studied only has 243 utility classes (5.37%) that contain a total of 1391 static 
methods. Both their average number of clients and the average number of packages from which they are 
used are resemble the ones obtained for similar classes (8.5144 vs. 8.8869 and 2.4198 vs. 2.9502, 
respectively); this show that for Geode the usage patterns for utility classes are no different to those of 
other production classes. Out of a total of 55671 methods, only 3379 are static for this system. From 
these 184 access their class’s state (0.33%) while 1804 solely operate on parameters (3.24%). Both types 
are invoked by a comparable number of other methods (18.8587 and 20.5937); these averages are lower 
than the one obtained for the non-static methods (39.9615). Consequently, the average number of 
classes from which they are called is also smaller (10.0271 and 12.0061 vs. 17.3232). 
 Only 107 static initialization blocks were found in the system’s production classes. Most of the 
classes have 1 such instance, but there are some that have more; the ones with more than 2 static 
initialization blocks are: NativeCallsJNAImpl (5), LinuxNativeCalls (4), and FreeListManager (3). 
  

 5.1.7. jHotDraw 

 
Table 5.1.7: Static constructs jHotDraw 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 25 0.04 - 0.1992 - 

Constants 369 0.0705 - 

Singletons Stateful 0 - - 4.11 1.3093 

Stateless 1 3 2 

Static 
methods 

Utility classes 4 6.75 2.25 4.0694 1.2986 

Access state 6 0.8333 0.8333 9.8773 4.5476 

Operate on 
parameters 

39 2.9231 2.8462 

Static init blocks 2 - - - - 

 
 From the 866 attributes present in the latest version of jHotDraw, 394 are static (which is 
roughly 45.5%). Only 25 of them are non-final (2.89%), while the other 369 are constants (42.61%). Both 
types of static attributes have less clients than their non-static counterparts, but all the averages are very 
low. 
 In terms of singletons, only 1 stateless instance was found (FigureLayerComparator) which is of 
the Eager Instantiation type. It has 3 clients that are localized in 2 nested packages; other similar 
production classes have, on average, more clients (4.11), but they are generally from the same package.  

Out of the 292 production classes 4 (1.37%) are utility classes: ResizeHandleKey, AttributeKeys, 
TransformHandleKit, and PaletteUtilities. They contain a total of 45 static methods, have more clients 
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than other production classes (6.75 vs. 4.0694), and these clients are more spread out through the code 
(2.25 vs. 1.2986 packages on average). There are 2719 methods in the version analysed, but only 45 
(1.66%) of them are static and not part of singletons or utility classes. Six (0.22%) access state, while the 
other 39 (1.43%) only operate on their parameters. These static methods have fewer clients than their 
non-static counterparts (especially the ones from the first category) and their utilization is more localized 
(0.8333 classes the former and 2.8462 the latter vs. 4.5476 for non-static methods). 
 There are only 2 classes that contain 1 static initialization block each, DefaultDrawingView and 
AttributeKeys. 
 

 5.1.8. Pig 

 
Table 5.1.8: Static constructs Pig 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 245 0.151 - 0.3133 - 

Constants 1101 0.3406 - 

Singletons Stateful 14 13.9286 4.9286 6.435 2.8546 

Stateless 4 37.5 10.75 

Static 
methods 

Utility classes 75 11.2667 4.2133 6.356 2.5172 

Access state 86 26.4651 13.4186 42.4463 15.8513 

Operate on 
parameters 

451 9.6186 3.8315 

Static init blocks 34 - - - - 

 
 The system’s production classes have 4423 attributes, out of which 1346 (30.43%) are static. 
From these 1101 are constants (24.84%) while the remaining 245 are static non-final (5.55%). The 
average number of clients for the attributes that are non-final is lower (0.151) than the corresponding 
values for constants (0.341) or non-static attributes (0.3133) which are comparable. 

From the 1756 classes in the latest version studied, 18 of them are singletons (1.03%). Unlike 
what was observed thus far, Pig is a project in which most of the singletons (14) are stateful. The stateful 
singletons have more than double (13.9286) the number of clients when compared to the average 
obtained for similar classes (6.435). However, the most surprising finding would be the average number 
of clients for the 4 stateless singletons (37.5); this is mainly due to 1 class, TupleFactory, having a large 
amount of clients (128). The number of packages from which singletons are utilized is also considerably 
higher (4.9286 for stateful and 10.75 for stateless singletons vs. 2.8546 for similar classes). 

There are 75 utility classes (4.27%) containing 520 static methods. They have, on average, 
11.2667 clients which is almost double than the corresponding value for similar classes (6.356). 
Furthermore, the average number of packages from which utility classes are called is also higher (4.2133 
vs. 2.5172). From the 9050 methods found, only 86 (0.95%) are static ones that access state while 451 
(4.98%) are static and solely operate on their parameters. They also have fewer clients, 26.4651 for the 
first category and 9.6186 for the latter, thus suggesting that they are not called as frequently in projects 
such as Pig. 

Finally, there are 34 static initialization blocks in 31 of the system’s classes. Most of the classes 
contain 1 such block, but there are 3 classes that contain 2, TezJobSplitWriter, JrubyScriptEngine and 
Main. 
  

 5.1.9. Spring Core 
 

Roughly a third (621) of the project’s 1911 attributes are static. Most of them (611) are 
constants, while the remaining 10 are static non-final. The average number of clients for the non-final 
attributes is lower (0.3) than the values obtained for constants (0.5827) and non-static ones (0.6). 
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Table 5.1.9: Static constructs Spring Core 
Category Total # 

instances 
Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 10 0.3 - 0.6 - 

Constants 611 0.5827 - 

Singletons Stateful 0 - - 3.3239 1.0845 

Stateless 5 2 0.8 

Static 
methods 

Utility classes 63 7.5397 2.1111 2.9177 0.9811 

Access state 13 3.6923 2.2308 5.2999 2.7307 

Operate on 
parameters 

236 3.6017 2.0593 

Static init blocks 27 - - - - 

 
 Five classes (0.77%) were categorized as singletons from the system’s 646 classes. All the 
singletons are of type Eager Instantiation and have on average 2 clients, which is lower than the average 
number of clients for other similar classes (3.3239). The average number of packages from which they 
are accessed is also slightly lower (0.8 vs. 1.0845). 
 There are 63 utility classes which is almost 10% of the Spring Core’s production classes. They 
contain 768 static methods and have considerably more clients (7.5397 on average) than the rest of the 
classes (2.9177); their clients are also more spread out, they are part of 2 or more packages while the 
ones for similar classes are either in the same package or in 1 more. There are 4827 methods in total for 
the latest version of the project, but only 13 (0.27%) access state and 236 (4.89%) operate on 
parameters. They have a lower number of clients (3.6923 and 3.6017, respectively) compared to the non-
static methods (5.2999); the average number of packages from which the static methods are called is 
also smaller, albeit not by much (2.2308 and 2.0593 vs. 2.7307). 
 The latest version of Spring Core studied contains 27 static initialization blocks. There are only 2 
production classes with more than 1 such block, ReflectUtils and ReflectionUtils (both with 2). 
 

 5.1.10. Tomcat 

 
Table 5.1.10: Static constructs Tomcat 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 134 0.1119 - 0.1344 - 

Constants 3106 0.1806 - 

Singletons Stateful 8 1.5 0.625 1.5724 0.6555 

Stateless 5 3.2 1.4 

Static 
methods 

Utility classes 149 0.8322 0.4966 1.2004 0.5105 

Access state 46 3.1304 1.8478 5.7686 2.689 

Operate on 
parameters 

420 3.669 1.1024 

Static init blocks 99 - - - - 

 
 From a total of 9652 attributes there are 134 static non-final ones (1.39%) and 3106 constants 
(32.18%). The average number of clients is very small for both types (0.1119 for the former and 0.1806 
for the latter); they are comparable to the value obtained for the non-static attributes (0.1344). 
 There are 13 singletons (0.61%) from the system’s 2126 production classes, 8 of which are 
stateful; Tomcat in only the second project for which there are more stateful variants than stateless 
ones. There is little difference between the average number of clients / packages for stateful singletons 
and other classes that are similar to them in terms of size and complexity (1.5 / 0.625 vs. 1.5724 / 
0.6555). For stateless singletons the corresponding value are significantly higher (3.2 for clients and 1.4 
for packages). 
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 The number of utility classes is also quite low; there are only 149 instances (around 7%). They 
are utilized less compared to singletons or similar classes; the average number of clients is 0.8322, while 
for packages it is 0.4966. Similar observations can be made with regard to other static methods; there 
are only 46 that access state and 420 which solely operate on parameters. All of these values are low 
considering the size of Tomcat. The average number of methods that invoke these instances is also lower 
than the one obtained for non-static methods (3.1304 and 3.669 vs. 5.7686); furthermore, they are 
called from fewer classes (1.8478 and 1.1024 vs. 2.689). 
 Finally, there are 99 instances of static initialization blocks in 95 of Tomcat’s production classes; 
there are 4 classes that contain 2 such instances. 
  

 5.1.11. Wicket 

  
Table 5.1.11: Static constructs Wicket 

Category Total # 
instances 

Avg. # 
clients 

Avg. # 
packages 

Avg. # clients 
similar type 

Avg. # pack. 
similar type 

Static 
attributes 

Non-final 35 0.0857 - 0.1059 - 

Constants 1192 0.0998 - 

Singletons Stateful 0 - - 3.8 1.8973 

Stateless 8 4 2.125 

Static 
methods 

Utility classes 31 3.6774 2.6452 3.8032 1.8851 

Access state 6 49.1667 25.1667 15.1127 7.4537 

Operate on 
parameters 

209 22.8995 24.5694 

Static init blocks 3 - - - - 

 
 There are 3011 attributes in all of Wicket’s classes, 1227 of which are static (roughly 40%); 35 
of the static ones are non-final, while the vast majority are constants. The average number of clients is 
very similar for all 3 types of attributes (static non-final, constants, and non-static); it can be observed 
that they are rarely utilized in other production classes. 
 From the 1423 classes present in the latest version of the project, 9 were categorized as 
singletons (0.63%). All the singletons are stateless and of type Eager Instantiation. One of the instances, 
EmailAddressPatternValidator, is marked as Deprecated in the version studied. In terms of client classes, 
there seems to be very little difference between the average number of clients / packages from which 
stateful singletons are utilized compared to other production classes (4 vs. 3.8 / 2.125 vs. 1.8973). 
 There are 31 utility classes (2.18%) that contain a total of 172 static methods. The observation 
that was made with regard to the average number of clients / packages for singletons also applies for 
utility classes, although their usage is a little bit more spread out (2.6452 vs. 1.8851 packages). Out of the 
9162 methods found, only 6 are static and access state (0.07%) while 209 (2.28%) solely operate on 
parameters. Both types are called by more methods (49.1667 and 22.8995 vs. 15.1127) than their non-
static counterparts; the methods that invoke them are also part of more classes (roughly 25 in both cases 
compared to 7.4537). 
 Only 3 classes have static initialization blocks, WicketTagIdentifier (2 such instances), TagUtils, 
and JavaSerializer (both with 1 instance). 
 
 
 

5.2. Evolution of static constructs 
 

Next, we studied the evolution of different types of static constructs. We did not focus solely 
on the number of instances present in a specific version of the system; we also wanted to establish the 
reasoning behind the addition / removal of certain instances or their clients. Furthermore, for the class-
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level constructs (singletons and utility classes) we also analysed their usage throughout the lifespan of 
the project. It would have been much more difficult to study this aspect for the more fine-grained static 
constructs (e.g., static non-final attributes or initialization blocks) due to the reasons discussed in the 
previous section. For each case we created a graph that depicts the total number of instances / the 
percentage of production classes that utilize instances of that type (y-axis) over time (x-axis). We try to 
explain why certain situations occur, such as a large decrease of the instances of interest or a class 
loosing most of its clients. 

 

 5.2.1. BCEL 

  

 
Figure 5.2.1.1: Evolution of static non-final attributes for BCEL 

 
 There are very few static non-final attributes compared to constants or non-static ones. We 
found 25 such instances in the initial version studied. Then this number increased to 33 in May 2003 and 
remained constant for roughly 6 years even though other types of attributes were being added. From 
there on it started to decrease with one exception; between May 2013 and August 2015 the number of 
static non-final attributes increased from 23 to 29, remained constant for about 1 year, and then 
dropped to 25. Finally, there are only 20 instances in the latest version that was analysed. 
 

 
Figure 5.2.1.2: Evolution of constants for BCEL 
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 In the first version of BCEL 514 (54.68%) of the 940 attributes were constants. Up until 
September 2015 both the number of constants and the total number of attributes increased constantly; 
at that moment there were 1138 constants (over 70%) out of 1618 attributes. From there on the number 
of attributes continued to grow while the number of constants dropped to 648. Then it slowly increased; 
in the latest version of BCEL there are 694 such attributes (40.75%) from a total of 1703. 

Four singletons were found in the very first versions of BCEL. Two of them, LONG_Upper and 
DOUBLE_Upper, are stateless and of type Subclassed Singleton while the others (Type and 
BranchHandle) are stateful. With the exception of BranchHandle they were part of the project for its 
entire existence. In August 2002 another stateless singleton was introduced, InstructionComparator; it 
was of type Eager Instantiation and remained in the system until August 2015. A series of interesting 
events occurred in the respective time period; for example, BranchHandle became a stateless singleton 
and remained in that form until June 2016 when state was added to it again. Finally, in February 2019 
BranchHandle was removed along with its superclass. 
  

 
Figure 5.2.1.3: Evolution of singleton usage for BCEL 

 
 The usage of stateful singletons is high due to the fact that Type (a class with 61 clients) was 
implemented as a loose variation of the pattern. Initially, the percentage of production classes that 
utilize singletons was around 30%; then it started to slowly decrease until reaching 26.04% in 2018. 
During that time one of the singletons (BrachHandle) was removed, thereby causing the percentage to 
drop to 14.8%. At the end of the development process a number of production classes were removed; 
this caused a slight increase in stateful singleton usage (to 15.05%). The percentages for the usage of 
stateless singletons are very low compared to their stateful counterparts. Between 2002 and 2015 they 
were roughly around 0.75%. The value increased to 1.67% when BranchHandle became stateless and 
dropped all the way to 0.23% when state was added back to it. 
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Figure 5.2.1.4: Evolution of utility classes for BCEL 

 
 The initial version of the project contained 6 utility classes. The number of instances remained 
the same until August 2015 when it grew to 9; then it increased again to 10 in May 2016 and to 11 in July 
2019. It can be observed that the number of utility classes does not grow constantly as the system 
increases in size. In terms of usage, while there were only 6 utility classes the percentage of production 
classes that utilized them was constant (between 10% and 11%). When new instances were added this 
percentage spiked to 64.82% because one of them (Constants) had 259 clients (from a total of 415 
classes). Then the usage increased by a small margin to 66.2% for the latest version studied. 
 

 
Figure 5.2.1.5: Evolution of utility class usage for BCEL 
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Figure 5.2.1.6: Evolution of static methods for BCEL 

 
 There were 12 static methods that access state (0.43%) and 63 that only operate on 
parameters (2.23) out of a total of 2822 methods. The number of methods from the first category 
increased slightly in the first years of development until reaching a maximum of 20 in June 2006. It 
remained constant for almost 4 years, then it dropped to 11 in May 2010. From there on, the number of 
instances fluctuated; there are 13 static methods that access state (0.35%) in the latest version of the 
system. On the other have, the amount of static methods that solely operate on parameters increased 
constantly throughout the years. There were 87 such instances in 2003, 101 in 2010, and 113 in 2018. A 
maximum value of 119 (3.27%) was reached in April 2020; no such methods were added ever since, but 
their percentage decreased to 3.17%. 
 

 
Figure 5.2.1.7: Evolution of static initialization blocks for BCEL 
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 There were 4 static initialization blocks in the first version of BCEL that was studies. However, a 
class that contained such an instance (Repository) was removed in June 2002. Another instance was 
added in May 2013 as part of the ConstantUtf8 class. Finally, the fifth and last static initialization block 
was created in August 2015 in Class2HTML; the number of instances has remained constant ever since. 
 
 

 5.2.2. Commons Collections 

 
There were 1 static non-final attribute and 1 constant in the initial version of the project which 

contained a total of 35 attributes. The number of static non-final attributes grew in the first year of 
development until reaching 7 in February 2002. From there it dropped to 3 (even though the number of 
attributes was continuously growing) and remained constant until June 2018. All 3 instance were 
removed the following month; there are no static non-final attributes in the latest version of Commons 
Collections that was studied. 
 

 
Figure 5.2.2.1: Evolution of constants for Commons Collections 

  
 Just like the total number of attributes, the number of constants increased rapidly in the first 2 
years of development. At the end of 2003 there were 204 constants (20.54%) from the existing 993 
attributes (the peak value in terms of number of attributes). Since then, the number of constants 
increased slowly until reaching the maximum value of 265 in August 2012. From there on this number 
fluctuated as some minor refactorings occurred within the system. It can be observed that the evolutions 
of the number of constants and the total number of attributes are very similar. Finally, the latest version 
of the system has 260 constants (29.85%) out of the 871 attributes present. 
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Figure 5.2.2.2: Evolution of singletons for Commons Collections 

 
 There were no singletons in the earlier versions of Commons Collections. In July 2012 7 such 
instances were created, all corresponding to different types of key analyzers (e.g., StringKeyAnalyzer, 
ByteKeyAnalyzer, or IntegerKeyAnalyzer). They were all stateless and from the Eager Instantiation 
category. However, most of them were part of the system for less than 1 year; in June 2013 
StringKeyAnalyzer was the only singleton left. From there on the number of singletons started to 
increase; DefaultEquator was added in November 2013, PropertiesFactory and SortedPropertiesFactory 
in June 2019 and NoValuesIterator in February 2020. Similar to before, all the singletons were stateless 
and of type Eager Instantiation; this shows that the developers refrained themselves from creating 
stateful singletons. 
 

 
Figure 5.2.2.3: Evolution of singleton usage for Commons Collections 

 
The usage of singletons throughout the project’s lifespan is very low, less than 1% of the 

production classes utilize such instances. Oddly enough, no client classes were found when the first 7 
singletons were added. Three clients were encountered in 2013, 1 for StringKeyAnalyzer and 2 for 
DefaultEquator, making the usage 0.72%. Since then the percentage started to decrease as no new 
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clients appeared and the system was still growing in size. The only increase occurred in 2020 when the 
last singleton (NoValuesIterator) was created. 
 

 
Figure 5.2.2.4: Evolution of utility classes for Commons Collections 

 
 The number of utility classes increased rapidly in the first 3 years of development; there were 3 
instances in 2001, 8 in 2002, and 27 at the end of 2003. From there on this number remained rather 
constant between 2003 and 2019. The least amount of instances (22) were found between September 
2009 and June 2012. In the last 2 years of development, the number of utility classes reached a peak 
value of 31. 
 

 
Figure 5.2.2.5: Evolution of utility class usage for Commons Collections 

 
The usage of utility classes also increased in the earlier stages of development to around 8% 

between 2002 and 2004. Then we can observe a slight decrease followed by a spike to over 10% in 2009. 
Afterwards the usage remained constant at around 10% for almost 10 years; during this period 4 
instances were added along with their client classes, but the project was also growing in size. Finally, in 
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the last 2 years the usage increased to over 12% during a time when the number of instances reached its 
highest value (31). 

 

 
Figure 5.2.2.6: Evolution of static methods for Commons Collections 

 
In the first version of Collection there were no static methods that access state and only 1 that 

solely operates on parameters. The number of instances from the first category is very low throughout 
the lifespan of the project. There were 2 instances between 2002-2003 and 1 between 2004-2008. No 
static methods that access state were found afterwards, until April 2013 when 1 such methods was 
added; it remained part of the system ever since. In terms of static methods that only operate on 
parameters, their number increased considerably in the first 3 years of development; there were 164 
instances (4.78%) in June 2004. From there on, this number fluctuated until June 2015 when it reached a 
value of 181 (4.99%). It continued to increase in the last years of development; there are 198 static 
methods that solely operate on parameters in the latest version studied. 
 Very few static initialization blocks were found for Commons Collections throughout the 
project’s history. One such instance was encountered in the very first commits; it was located in the 
BeanMap class and remained part of the system until the respective class was remove in September 
2009. In May 2003 another static initialization block was used in the FunctorException class, which was 
deleted in May 2010. No initialization blocks were added ever since. 
 
 

 5.2.3. Commons Lang 

  
 The number of stat non-final attributes increased rapidly in the first year of development from 
2 to 23 instances. Afterwards, this number started to decrease with some fluctuations; for example, it 
went from 12 in July 2003 to 18 in September 2007 and back to 12 again in August 2011. From there on 
the number continued to decrease until April 2017 when it reached a minimum value of 1. The respective 
attribute, defaultStyle, is still part of the system. 
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Figure 5.2.3.1: Evolution of constants for Commons Lang 

 
 The image shows that the number of constants evolves similarly to the total number of 
attributes. Both values grew constantly from year to year, the only exception being February 2008 when 
the constants dropped from 327 instances to 302 while the total number of attributes decreased from 
549 to 515; during this refactoring the number of classes also went from 139 to 127. Since then the 2 
values co-evolved gracefully; in the latest version studied there are 530 constants (over 60%) from a total 
of 875 attributes.   
 The only singletons found for Commons Lang, ObjectToStringComparator, was created in 
January 2020 and is still part of the system. It is a stateless singleton of type Eager Instantiation which 
does not have any clients in the latest version of the project; however, it did have 1 client when it was 
first added. 
  

 
Figure 5.2.3.2: Evolution of utility classes for Commons Lang 

 
 There were 7 utility classes in the initial release of the system. Their number rose fast in the 
first year of development; 27 instances were found in a version from April 2003. Then it remained 
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relatively constant the following 4 years. Afterwards, the number of utility classes increased continuously 
over the lifespan of the project. A maximum of 51 instances is encountered in the latest version of Lang 
that was studied. 
 

 
Figure 5.2.3.3: Evolution of utility class usage for Commons Lang 

 
 Utility class usage increased in the first years of development from 13.33% in the first version 
to 30.89% in January 2010. From there on this value fluctuates as both utility classes and other 
production classes are being created. In May 2018 a peak usage of 35.77% was reached; since then this 
value has started to decrease. The utility class usage for the latest version analysed is 24.84%. 
 

 
Figure 5.2.3.4: Evolution of static methods for Commons Lang 

 
 There were no static methods that were not part of utility classes in the initial version of 
Commons Math. The number of static methods that access state increased slightly in the first years of 
development until reaching a maximum of 17 (1.3%) in September 2007. From there on, it decreased to 
5 (0.42%) instances in March 2009 and remained relatively constant ever since. There are 3 static 
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methods that access state (0.08%) in the last version of the system. On the other hand, for static 
methods that solely operate on parameters the amount of instances grew constantly over the years. 
There are nonetheless 2 exceptions, 2011 when this value decreased from 127 to 112 and 2015 when it 
went from 166 to 141. The maximum was reached in the last year of development; 204 (5.67%) such 
methods were found in the latest version studied. 
 

 
Figure 5.2.3.5: Evolution of static initialization blocks for Commons Lang 

 
 The number of initialization blocks increased rapidly in the project’s first years of development. 
For example, there are 2 such constructs in January 2003, 5 in April, 7 in August, and 9 in December 
2003. Then it continued to grow along with the system until reaching the maximum of 16 in May 2008. 
From there on it started to fluctuate even though the system was still growing in size. The number of 
instances decreased to 8 in February 2010 and then it started to increase again to 15 in March 2017; it 
remained constant ever since. 
 

 5.2.4. Commons Math 
 

 
Figure 5.2.4.1: Evolution of static non-final attributes for Commons Math 
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 There are no static non-final attributes in the initial version of Math. The number of instances 
increased slowly in the first 2 years of development until reaching 16 in June 2005. In February 2007 new 
functionalities were added to the project and the number of static non-final attributes increased almost 
4 times to 61 such instances. Most of these attributes were part of the system for less than 1 year, in 
January 2008 only 20 were still present. From there on this number fluctuated until November 2015 
when is dropped to 11. Only 1 more instance was created ever since, there are 12 in the latest version 
studied. 

 

 
Figure 5.2.4.2: Evolution of constants for Commons Math 

 
In the first version of Commons Math there were 13 constants (17.33%) from a total of 75 

attributes. The number of instances increased over time until December 2014 when 988 constants 
(33.34%) were found out of 2963 attributes. Then there was a small decline followed by an increase, 
thereby obtaining a maximum of 993 instances in December 2016. From there on, both the number of 
constants and the total number of attributes decreased over time; there are 632 instances (under 30%) 
from 2125 attributes in the last version analysed. 

The first singleton, DummyStepHandler, was created in February 2007; it was stateless, of type 
Lazy Instantiation, and had 2 clients (RungeKuttaIntegrator and AdaptiveStepsizeIntegrator). This 
instance was part of the project for 2 and a half years until it was removed in September 2009. The only 
other instance to ever be created, Decimal64Field, was introduced in March 2012 and is still present in 
the latest version studied. It is also stateless but of type Eager Instantiation and had only 1 client 
throughout its existence (Decimal64). Singleton usage generally peaked when an instance was created 
and slowly decreased as new classes were added to the project. For example, when DummyStepHandler 
was added it was 0.9%, then it dropped to 0 for the last commits in which the singleton was present 
(because it did not have any clients anymore). Similarly, the usage was 0.14% at Decimal64Field’s 
creation and 0.12% for the latest commit. 
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Figure 5.2.4.3: Evolution of utility classes for Commons Math 

 
 The number of utility classes was rather constant in the first 6 years of development, then it 
rapidly increased from 9 to 38 in the following years. The amount of instances that were added was 
significantly higher than the number of production classes that were created. For example, 5 new utility 
classes appeared between 2012 and 2013 and 7 between 2013 and 2014; during these periods around 
100 production classes were developed, a number which is comparable to the ones obtained for the 
previous 1 year intervals (in which little to no utility classes were added). From 2016 onward the number 
of instances started to decrease until it reached a value of 25 for the latest version studied. This is in 
concordance with the refactorings that occurred in these later years of development which caused the 
total number of production classes to also decrease. 
 

 
Figure 5.2.4.4: Evolution of utility class usage for Commons Math 

 
 The usage of utility classes for Commons Math is much higher compared to the other systems 
that were studied. Even at the beginning of the development process between 10% and 17.5% of the 
production classes utilized at least 1 utility class (even though there were only 6-9 instances). Since 2010 
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when the number of instances started to increase considerably, the percentage of client classes is much 
higher (over 30%). It continued to grow until reaching a maximum of 38.37% in February 2016; from 
there on it decreased by a small margin, but it was still around 34% to 36%. It proves once again that this 
type of classes are very important in projects such as Commons Math (that are structured as libraries). 
 

 
Figure 5.2.4.5: Evolution of static methods for Commons Math 

 
 The first static methods that access state (4 instances) were created in February 2007. Since 
then the amount of instances grew to a maximum of 36 (0.75%) in May 2011. It immediately dropped to 
4 and started to increase once again. There were 14 such methods in February 2013 and 17 (0.23%) in 
April 2014. This number remained constant for roughly 3 years and began to decrease afterwards. There 
are 10 static methods that access state (0.17%) in the final version of Commons Math that was analysed. 
For static methods that solely operate on parameters the situation is quite different. The number of 
instances increased from 1 in the initial version of the project until reaching a maximum of 291 in 
December 2014. From there on it started to decrease, albeit with some fluctuations; there are 181 static 
methods that only operate on parameters (3.12%) in the latest version of the system. 
 

 
Figure 5.2.4.6: Evolution of static initialization blocks for Commons Math 
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 Unlike what was observed thus far for this system, there were very few instances of static 
initialization blocks in the first 8 years of development although the project was growing rapidly. The 
number of instances spiked from 3 in 2010 to 10 in 2011 and to 15 in 2012. From there on it remained 
rather constant until 2016 when it reached the peak value of 19. Since then the system has undergone a 
series of refactorings, thereby reducing the amount of production classes from 1011 (January 2016) to 
820 (January 2021). Unsurprisingly, the number of static initialization blocks also decreased from 19 to 
12. 
 
 

 5.2.5. Digester 

  

 
Figure 5.2.5.1: Evolution of static attributes for Digester 

 
There was only 1 static non-final attribute in the initial version of the system, factory from the 

Digester class, which was removed in August 2002. Afterwards, the number of instances started to 
increase as more classes were being added until reaching a maximum value of 21 April 2004. This value 
remained constant until March 2011 when a major refactoring occurred in which all the static non-final 
attributes either were made final or removed. No new instances were added ever since. 

The evolution of the number of constants is similar to that of the total number of attributes. 
There was 1 instance in the first version of Digester out of 67 attributes. Then this number started to 
increase with minor fluctuations until reaching 21 in August 2010. As mentioned before, a refactoring 
took place in the following months in which some of the static non-final attributes became constants, 
thus obtaining the peak value of 36 in December 2011. Since then this value remained constant as no 
attributes were added / removed afterwards. 

Throughout the entire lifespan of the project only 1 stateless singleton was created, 
RuleSetCache. It appeared in August 2010 and was part of the system in that form for a couple of 
commits. It initially had 1 client from a total of 152 classes for the respective commit. In the commit that 
was studied from September 2010 it was observed that the instance was refactored into a final class; no 
singletons were created from there on.  
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Figure 5.2.5.2: Evolution of utility classes for Digester 

 

 
Figure 5.2.5.3: Evolution of utility class usage for Digester 

 
 The first utility class, DigesterLoader, was added to the system in December 2001. Since then, 
the number of instances grew constantly until reaching a maximum of 6 in August 2010. In May 2011 a 
series of refactorings occurred in which 4 of the utility classes were modified / removed, thereby causing 
the amount of instances to drop to 2; only AnnotationUtils and LogUtils remained and are still part of the 
project. Similar to the number of utility classes, their usage increased as more instances were added. 
While DigesterLoader did not have any clients initially, the percentage of production classes that utilized 
such instances increased over time until reaching 6.1% in January 2004. Afterwards, even though another 
utility class was created, the percentage decreased because significantly more classes were developed 
(from 97 to 152). From that point on the usage continued to drop as no new instances appeared (4 were 
even modified / removed) while production classes were still being created; thus, the usage finally 
stabilized at 1.6% from 2015 onward. 
 There were very few static methods which were not part of utility classes throughout the 
lifespan of Digester. Only 2 static methods that access state (0.35%) were encountered; they appeared 
between November 2003 and March 2004. For static methods that only operate on parameters, their 
number increased from 1 (0.57%) in the initial version of the system to 7 (0.77%) in 2011; it remained 
constant ever since. 
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 Only 1 static initialization block was found in the entire history of Digester. It was added to the 
ParserFeatureSetterFactory class in January 2004 and remained part of the project until March 2011. As 
mentioned before, we did not study the clients for this type of static constructs as they are supposed to 
be used only for initialization purposes. 
  

 5.2.6. Geode 

  

 
Figure 5.2.6.1: Evolution of static non-final attributes for Geode 

 
 In the first version of Geode that is available on GitHub we found 632 static non-final 
attributes, which is roughly 2.5% of the total number of attributes. The number of instances increased to 
650 at the beginning of 2016, but then it began to decrease. Between July 2018 and January 2019 this 
value dropped from 611 (2.19%) to 343 (1.41%). The number of static non-final attributes continued to 
decrease the following year to 309 instances in January 2020. It remained almost the same ever since; 
there are 308 (1.39%) such attributes in the latest version of Geode. 
 

 
Figure 5.2.6.2: Evolution of constants for Geode 
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 The graphs for the number of constants and the total number of attributes are very similar. 
Initially, there were 13954 constants (53.18%) from 26241 attributes. The number of instances increased 
in the first year of development to 14583 (50.68%), then it slowly decreased to 7899 (36.03%) in January 
2020. From there on it grew by a very small amount; there are 8030 static non-final attributes (36.21%) 
out of a total of 22176. 
 

 
Figure 5.2.6.3: Evolution of singletons for Geode 

 
 The total number of singletons decreases as Geode evolves. There were 25 stateful instances 
and 100 stateless ones in the first version available on GitHub. For stateful singletons this number 
continuously decreased until January 2021 when there were only 16 instances. Another stateful singleton 
was added in February 2021, thus taking the number of instances to 17 for the latest version analysed. 
Similar observations can be made with regard to stateless singletons. However, there are cases in which 
the number increased; for example, 3 stateless singletons were created between July 2016 and January 
2017 increasing the number of instances from 95 to 98. Over the years they continued to get removed; 
there are 64 stateless singletons in the last version of Geode. 
 

 
Figure 5.2.6.4: Evolution of singleton usage for Geode 
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 In terms of singleton usage, the trend is also towards a decrease. For stateful singletons the 
percentage dropped from 6.98% for the first version to 4.89% for the latest version, while for the 
stateless ones the values are 4.18% and 2.76%, respectively. Throughout the system’s lifespan there are 
cases in which this percentage increased (e.g., when a new instance was created or when a bunch of 
production classes that are not singleton clients were removed), but in general singleton usage is 
continuously decreasing. As an example, the percentage for the stateful variants increased from 4.31% to 
5.14% between July 2018 and January 2019 even though the number of instances remained constant 
(20); a series of refactoring occurred during that period during which almost 200 production classes were 
removed. 
 

 
Figure 5.2.6.5: Evolution of utility classes for Geode 

 
 In the first version analysed there were 275 utility classes. This number increased in the 
following 6 months to 288 instances in July 2015. Then it remained relatively constant for almost 4 years; 
there were 286 utility classes in January 2019. From there on this value started to decrease, more 
abruptly at first (from 286 to 242 in less than 1 year) and slowly afterwards. In the latest version of 
Geode there are 241 utility classes. 
 

 
Figure 5.2.6.5: Evolution of utility class usage for Geode 
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The usage of utility classes fluctuates between 25% and 32% throughout the project’s lifetime. 
It was 29.35% for the initial version studied; then it slowly increased until reaching a maximum value of 
32.11% at the beginning of 2018. Utility class usage remained almost the same the following 2 years. 
Similar to the number of instances, the usage dropped to 26.27% at the end of 2019. It suffered only 
minor changes ever since; for the last version investigated the usage is 25.91%. 
 

 
Figure 5.2.6.7: Evolution of static methods for Geode 

 
 There were 333 static methods that access state (0.67%) and 1892 that only operate on 
parameters (3.79%) in the first version available. For the former, the number of instances increased to 
354 in August 2015, then it slowly decreased over the years; there are 184 (0.33%) such methods in the 
last version studied. For the second category of static methods, their amount fluctuated throughout the 
lifespan of Geode. The maximum of 2095 was reached in June 2015. In the latest version of the system 
there are 1804 (3.24%) such methods. A thing to note is that the total number of methods decreased by 
roughly 4000 from the initial version to the last one analysed. 
 

 
Figure 5.2.6.8: Evolution of static initialization blocks for Geode 
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 Unlike the number of production classes which increases constantly and only drops when 
certain refactorings occur, for static initialization blocks we can observe a continuous decrease from the 
first version of the project available on GitHub to the last version studied.  There were 171 instances at 
the beginning and 109 in January 2020. Since then this number has remained relatively constant; 107 
static initialization blocks were encountered in the latest version of Geode. 
 

 5.2.7. jHotDraw 

 

 
Figure 5.2.7.1: Evolution of static attributes for jHotDraw 

 
 There were 13 static non-final attributes (3.55%) and 75 constants (20.49%) in the first version 
of the project which had 366 attributes in total. In the first 6 years of development these numbers 
increased steadily; in 2006 we found 72 non-final ones (9.64%) and 109 constants (14.59%) from a total 
of 747 attributes, thus showing that more instances from the first category were added. The values 
spiked in 2007 and continued to increase rapidly until 2015 when 546 static non-final attributes (11.18%) 
and 1660 constants (33.99%) were present. Since then, the number of attributes suffered only minor 
modifications until the beginning of 2020 when they dropped to 19 for non-final attributes (2.21%) and 
369 for constants (42.91%) out of a total of 860. 
 

 
Figure 5.2.7.2: Evolution of singletons for jHotDraw 
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 There is 1 stateful singleton in the initial version of the project, Clipboard, and no stateless 
ones. A second stateful singleton was added in August 2002; both instances were part of the system until 
2006 when they were removed during a series of refactorings in which a stateless singleton 
(FigureLayerComparator) was also added. In the following 5 years 3 stateful singletons, 
PaletteLookAndFeel (April 2008), PaletteLabelUI (May 2008) and ActivityManager (September 2011), and 
1 stateless one, PaletteButtonUI (April 2008), were added to jHotDraw. They were all part of the project 
until March 2020 when all but FigureLayerComparator were deleted. 
 

 
Figure 5.2.7.3: Evolution of singleton usage for jHotDraw 

 
 The usage of the 2 types of singletons varies depending on the number of instances present. 
For the stateful ones it spiked to 10.88% when the second instance was added; then it remained 
relatively constant for 4 years and dropped to 0 when both instances were removed. From there on 
stateful singleton usage started to increase again as 3 new instances were created subsequently. Finally, 
in the last year of development the usage became 0 once more because the 3 stateful singletons were 
deleted from the system. The usage of stateless singletons was 0 until the first instance was created in 
November 2006. Afterwards, it increased again once the second instance was added and slowly 
decreases over the years as no new instances were created while the number of production classes 
continued to rise. An interesting situation appeared in the final year of development when 1 of the 
stateless singletons was removed, but the usage increased from 0.61% to 1.03%; this is due to the fact 
that a considerable number of production classes were deleted during that period. 
 

 
Figure 5.2.7.4: Evolution of utility classes for jHotDraw 
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 There were 3 utility classes in the initial version of jHotDraw. The number of instances 
increased to 30 between 2002 and 2003, but in 2006 a series of refactorings occurred and this value 
dropped to 20. Afterwards it continued to increase, thereby reaching a maximum of 39 in May 2009. The 
number of utility classes remained relatively constant between 2009 and 2014; in 2015 a major 
refactoring in which almost 400 production classes were removed caused a large decrease in utility 
classes (from 39 instances to 11). Then no major changes were performed on the system until March 
2020 when another refactoring made the number of instances drop to only 3. 
 

 
Figure 5.2.7.5: Evolution of utility class usage for jHotDraw 

 
 Although the number of utility classes increased during the first years of development, utility 
class usage continually decreased from 14.69% in the first version to 7.35% in September 2003. Then it 
started to increase until reaching 15.81% in October 2007, around the time when the maximum number 
of instances was obtained. From there on the usage slowly decreased over the years; in the latest version 
studied a usage of 8.59% was reached, which is close to the overall minimum. 
 

 
Figure 5.2.7.6: Evolution of static methods for jHotDraw 
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 The cases for the other 2 types of static methods are very similar, but the values are a bit 
higher for those that solely operate on parameters. There were 11 static methods that access state 
(0.79%) and 20 from the latter category (1.44%) out of a total of 1392 methods. In both cases the 
number of instances increased over the years until reaching a maximum in the same year (2015). There 
were 185 (1.53%) instances from the first category and 250 (2.08%) from the second. The values 
remained constant for several years, then they dropped heavily; there are 6 static methods that access 
state (0.22%) and 39 to only operate on parameters (1.43%) in the final version of jHotDraw. 
 

 
Figure 5.2.7.7: Evolution of static initialization blocks for jHotDraw 

 
 There were no static initialization blocks in the initial version of jHotDraw. The first instance 
was added to the TextAreaFigure class in April 2002. Since then, the number of static initialization blocks 
continued to increase until reaching a maximum of 23 in November 2010. It remained constant for 
several years until a major refactoring occurred in February 2015 and the amount of instances dropped 
to 8. An important observation is that the number of production classes also decreased during this 
refactoring from 1043 to 663. The project is rarely modified from there on, thus no static initialization 
blocks are added / removed ever since. 
 

 5.2.8. Pig 

  

 
Figure 5.2.8.1: Evolution of static attributes for Pig 
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 The number of instances for static non-final attributes, constants, and non-static attributes all 
increased constantly from the initial version of Pig to 2017. For example, there were 32 static non-final 
attributes (8.06%) and 64 constants (16.12%) in the first version studied from a total of 397 attributes. 
These numbers increased considerably in the first year of development; in 2008 there were 149 static 
non-final attributes (13.24%) and 219 constants (19.47%) out of 1125 attributes. The increase was less 
pronounced in the following years and these values remained almost the same in the final 3 years of 
development. For the last version analysed there are 269 static non-final attributes (roughly 6%) and 
1101 constants (almost 25%) from the total 4480 attributes. It can be observed that the percentage of 
instances increases considerably throughout the project’s lifespan for constants while for static non-final 
attributes it slightly decreases. 
  

 
Figure 5.2.8.2: Evolution of singletons for Pig 

 
 There were 2 stateful singletons, BagFactory and PerformanceTimerFactory, and 0 stateless 
ones in the first version of Pig. The number of stateful instances increases over the years; there were 6 
stateful singletons in 2010, 11 in 2014, and 14 in 2017. The only exception occurred in March 2011 when 
UDFContext was removed. In the last 3 years of development no new stateful singletons were created; 
14 instances were found in the latest version studied. The first stateless singleton, TupleFactory, was 
added in June 2008. Since then 3 new stateless instances were created: DownloadResolver (November 
2015), SparkShims (July 2017), and NonWritableTuple (August 2017); they have been part of the system 
ever since. 
 

 
Figure 5.2.8.3: Evolution of singleton usage for Pig 
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 In the initial version of the project stateful singleton usage was 5.65%. It quickly increased as 
new instances were created to a maximum of 14.75% in December 2009; then it decreased to 9.61% in 
2011. From there on the value fluctuated by increasing when stateful singletons / singleton clients were 
added and decreasing when other types of production classes were created. For the last version 
investigated stateful singleton usage is 9.28%. In terms of stateless singletons, their usage is 9.09% when 
the first version was developed. Afterwards it started to slowly decrease as more production classes that 
were not stateless singleton clients were added to Pig; a minimum of 6.45% was reached in April 2016. In 
the last years of development stateless singleton usage increased by a small margin as 2 new instances 
appeared; for the latest version analysed it is 7.06%. 
 

 
Figure 5.2.8.4: Evolution of utility classes for Pig 

 
 There were 5 utility classes in the first version of Pig. The number of instances increases 
throughout Pig’s lifespan. At the beginning of the development cycle this increase was higher; 20 utility 
classes were found in 2008, 37 in 2010, and 62 in 2014. In the following years the rate of increase was 
considerably lower; a maximum of 72 utility classes was reached in October 2018. No instances were 
created ever since. 
 

 
Figure 5.2.8.5: Evolution of utility class usage for Pig 
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 In terms of usage, in increased rapidly in the first year of development from 7.91% to a peak 
value of 38.63%. From there one it started to slowly decrease even though new utility classes were being 
created. This is because the number of production classes was also rising and the classes that were 
added were not clients of utility classes. In the last 7 years utility class usage was around 30%; for the 
latest version of Pig the exact value is 29.16%. 
 

 
Figure 5.2.8.6: Evolution of static initialization blocks for Pig 

 
The number of static initialization blocks increased constantly from October 2007 to September 

2014 when 28 such instances were present in the production code. In October 2014 a major refactoring 
occurred and even though the number of classes only increased by 3, the amount of static initialization 
blocks went from 28 to 37 (almost 25% increase). The maximum was reached in October 2015 (39 
instances), then it suddenly dropped to 30 the following month although the number of production 
classes continued to increase. From there it grew again until October 2018 (34 instances) and remained 
constant ever since. 
 

 5.2.9. Spring Core 

  

 
Figure 5.2.9.1: Evolution of static non-final attributes for Spring Core 
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 There are no static non-final attributes in the first version of Spring Core. The number of 
instances started to increase slowly in the first 2 years of development, then it spiked to 30 in August 
2010. The maximum value was reached in November 2012 when 34 such instances appeared. From there 
on this number first fluctuated and then it dropped to 6 in November 2017 even though the total 
number of attributes continued to increase. Since then the number of static non-final attributes 
remained fairly constant; there are 10 such instances in the latest version investigated. 
 

 
Figure 5.2.9.2: Evolution of constants for Spring Core 

 
 Unlike the static non-final attributes, both the number of constants and the total number of 
attributes increase constantly as the system evolves. In the first years of development constants were 
continuously being added. The number of instances spiked between 2012 and 2013 (from 153 to 373) as 
a considerable amount of functionality was added during that time period. Then it continued to increase, 
just like the total number of attributes. There are 611 constants (31.97%) from a total of 1911 attributes 
in the last version analysed. 

The first 2 singletons to be added to this system, OrderComparator and 
StaticLabeledEnumResolver, were stateless and of type Eager Instantiation. They were introduced in 
February 2009 and are still part of the project. The next singletons, ComparableComparator and 
AnnotationAwareOrderComparator, were created in August 2012 and November 2012, respectively. 
They had the same characteristics as the aforementioned OrderComparator; the first had the same 
superclass as OrderComparator while the second directly extended it. StaticLabeledEnumResolver was 
removed in April 2013. Two more stateless singletons of type Eager Instantiation were added in 2014, 
SpringNamingPolicy and DefaultOrderProviderComparator. The latter was not part of the system for 
long; it was removed during a refactoring in September 2014. Finally, in May 2020 
ResourcePropertiesPersister was added to Spring Core; it is the fifth stateless singleton of type Eager 
Instantiation that was identified in the latest version of the project (which was studied in the previous 
Section). 
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Figure 5.2.9.3: Evolution of singleton usage for Spring Core 

 
 For stateful singletons the usage was 2.49% in July 2013 when the first instance was created. 
Then it continued to rise as more clients of the respective class were added to the project. The highest 
usage (6.51%) occurred 1 month after the second instance appeared; for the final version investigated 
stateful singleton usage is 6.35%. In terms of stateless singletons, it started at 1.57% when the first 2 
instances were created. Then it fluctuates between 1% and 2%; even though 3 more instances were 
added, very few of the production classes that were created subsequently are clients of the existing 
stateless singletons. For the latest version of Spring Core the usage is 1.39%. 
 

 
Figure 5.2.9.4: Evolution of utility classes for Spring Core 

 
 There were 32 utility classes in the initial version that was studied. The number of instances 
increases almost linearly until reaching 63 for the latest version of Spring. During the entire period there 
were only minor fluctuations, the most notable one being between 2015 and 2016. On a closer 
inspection it was observed that a major refactoring occurred during that time which caused the total 
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number of production classes to drop from 4745 to 4085. Utility classes have continued to be added 
after that event, thereby obtaining a maximum of 63 instances in March 2019. 
  

 
Figure 5.2.9.5: Evolution of utility class usage for Spring Core 

 
The usage of utility classes is high throughout the project’s history (roughly between 39% and 

46%). However, we can observe that it was a bit higher towards the beginning of the development 
process. It started at over 43% and reached the peak value of 46.27% in September 2010. Then it 
decreased by a few percentages to a minimum of 39.03% in Match 2014. From there on it fluctuated for 
several years until finally stabilizing at around 41% in 2019. 
 

 
Figure 5.2.9.6: Evolution of static methods for Spring Core 

BUPT



   88 

 There were no static methods that access state and 6 which solely operate on parameters 
(0.43%) in the first version of Spring Core that contained code. Only 4 instances from the first category 
were created until 2013. From there on, their amount started to slowly increase until reaching a 
maximum of 17 in March 2019. In the last version studied there are 13 (0.27%) such methods. For static 
methods that only operate on parameters, the number of instances increased more heavily (except in 
2012 when a major refactoring occurred) until reaching the value of 236 in September 2018.  It remained 
almost the same ever since; there are also 236 static methods of this kind (4.89%) in the latest version 
analysed. 
 

 
Figure 5.2.9.7: Evolution of static initialization blocks for Spring Core 

 
 The number of static initialization blocks grew quite constantly in the first half of the 
development period from 7 instances in October 2008 to 28 in December 2015. From there on the 
amount of initialization blocks remains more or less the same until the final version investigated (April 
2021, 27 instances). However, during these last years of development, only a relatively small number of 
production classes were added; there were 4745 in January 2016 and now there are 4827 classes. 
 

 5.2.10. Tomcat 

 

 
Figure 5.2.10.1: Evolution of static non-final attributes for Tomcat 
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 There were 424 instances of static non-final attributes in the first version analysed. First, this 
number increased to a maximum of 520 in October 2008, then it dropped to 229 in November 2009 even 
though the number of constants and the total number of attributes were growing. The number of 
instances continued to decrease over the years and remained fairly constant in the last 4 years of 
development; there are 134 static non-final attributes in the latest version of Tomcat. 
 

 
Figure 5.2.10.2: Evolution of constants for Tomcat 

 
 Just as the total number of attributes, the number of constants increases slowly as Tomcat 
evolves. There were 1591 instances (28.14%) from a total of 5653 attributes in the first version of the 
project. In the last version that was analysed there are 3106 constants (32.18%) out of 9652 attributes. 
The percentages are very similar throughout the entire lifespan of the system. 
 

 
Figure 5.2.10.3: Evolution of singletons for Tomcat 
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 Throughout Tomcat’s lifespan there are very few singletons considering the size of the system. 
In the initial version of the project there were 5 stateful singletons and a stateless one. The number of 
stateful instances fluctuated in the first 6 years of development; 4 were found in October 2012 and then 
the amount increased to 8 in May 2014. From there on 1 instance was removed in September 2015 while 
another was added in April 2019; the number of stateful singletons has not changed ever since. 
 

 
Figure 5.2.10.4: Evolution of singleton usage for Tomcat 

 
 The usage of both types of singletons is also low for this project (less than 2.5%). For the 
stateful ones it was 2.47% initially and then it continuously decreased until reaching a minimum of 0.76% 
in January 2013 (when there were only 4 such instances). Since then it began to slowly increase over the 
years as new stateful singletons / clients were created; for the latest version of Tomcat stateful singleton 
usage is 1.44%. For the stateless variants it is the other way around; usage was very low at first and grew 
over the years, although not by a significant amount. In the first version of the system this value was 
0.38%. It remained relatively constant in the first 4 years of development and then spiked to 1.32% in 
December 2011. The only decrease occurred between 2013 and 2015 when a minimum of 0.15% was 
reached. Stateless singleton usage increased in the final years of development. A peak value of 2.45% 
was obtained in December 2020; not much has changed since. 
 

 
Figure 5.2.10.5: Evolution of utility classes for Tomcat 
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 There were 75 utility classes in the first version of Tomcat. The number of instances constantly 
increases throughout the system’s lifespan. The only exceptions occurred between 2007-2008 and 2010-
2011 when this number decreased from 86 to 84 and from 95 to 92, respectively. Since then the value 
only increased; there are 149 utility classes in the latest version investigated. 
 

 
Figure 5.2.10.6: Evolution of utility class usage for Tomcat 

 
 For the initial version of the project utility class usage was 17.01%. In the following 3 years this 
value decreased to 15.46% as instances were added / removed while the number of production classes 
was always growing. A similar situation can be observed between 2011 and 2014; although instances 
were created, many more production classes that were not clients of utility classes were added to the 
system. From there on the usage grew constantly in connection with the number of utility classes that 
were created; it is 21.35% in the last version of Tomcat that was analysed. 
 

 
Figure 5.2.10.7: Evolution of static methods for Tomcat 
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 There were 60 static methods that access state (1.85%) and 134 which only operate on 
parameters (4.13%) out of a total of 3246 methods. The number of instances for the former decreased 
until halfway through the development period; 18 such instances appeared in a version from March 
2013. From there on, the value slowly increased; there are 46 methods that access state (0.22%) in the 
latest version of Tomcat. For the static methods from the second category, the corresponding value saw 
a small increase followed by a decrease until reaching a minimum of 100 (2.75%) instances in November 
2009. Since then the number of static methods that solely operate on parameters increased 
continuously; a maximum of 434 was found in December 2020. In the last version of the project there 
are 420 (1.98%) such instances. 
 

 
Figure 5.2.10.8: Evolution of static initialization blocks for Tomcat 

 
 With the exception of 2009, static initialization blocks were constantly being added to Tomcat 
until October 2018. The number of instances was 49 in the first version that was studied and peaked at 
110. During this period roughly 100 production classes were created per year, some of which contained 
initialization blocks. From 2018 onward the number of instances started to slowly decrease; there are 99 
in the latest version which was investigated. However, the number of production classes is also smaller 
(2126 vs. 2160 in 2019). 
 

 5.2.11. Wicket 

 

 
Figure 5.2.11.1: Evolution of static non-final attributes for Wicket 
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The number of static non-final attributes increased in the first 4 years of development from 33 
until reaching a maximum value of 50 in October 2009. Afterwards, it dropped to 27 in November 2012 
and remained fairly constant ever since; from July 2017 onward there are 22 static non-final attributes in 
Wicket’s classes. 

 

 
Figure 5.2.11.2: Evolution of constants for Wicket 

 
The evolution of the number of constants looks very similar to that of the total number of 

attributes. The amount of instances increased in the first years of development until reaching a 
maximum of 1204 in December 2008. Then a series of refactorings occurred which caused both the 
number of constants and the total number of attributes to decrease significantly (from 1163 to 793 and 
from 2789 to 2032, respectively). Since then both values have increased steadily over the years; there 
are 1036 constants (almost 40%) from a total of 2617 attributes. 
 

 
Figure 5.2.11.3: Evolution of singletons for Wicket 
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There is 1 stateful singleton, Result, and 11 stateless ones in the first version of Wicket in which 
the code was added. The stateful singleton was removed in July 2014 and no instances of this type have 
been created ever since. In the following 3 years 2 new instances were added and 1 was removed. In 
March 2010 the number of stateless singletons drops to 6 and then it spikes to a maximum of 13 in 
November 2011. From there on the number of instances remained relatively constant the following 5 
years. Afterwards it started to decrease with one exception, the addition of 
PageViewCSSResourceReference and WicketCoreCSSResourceReference in January 2020. There are 8 
stateless singletons in the latest version studied. 
 

 
Figure 5.2.11.4: Evolution of singleton usage for Wicket 

 
 The usage of stateful singletons is very low as only 1 such instance appeared throughout 
Wicket’s lifetime. It started at 0.27% and slowly grew to 0.44% right before the respective singleton was 
removed. For stateless singletons the usage was 5.48% for the first version and it increased to a 
maximum of 5.86% in October 2007. From there on it began to decrease, more abruptly at first and 
slowly since 2011. This is due to the fact that the number of stateless singletons decreased, numerous 
other production classes were created, and they were not singleton clients. For the latest version of 
Wicket stateless singleton usage is only 0.65%. 
 

 
Figure 5.2.11.5: Evolution of utility classes for Wicket 
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 It can be observed that the number of utility classes fluctuates throughout the project’s 
lifespan. In the first years of development it doubled from 14 in 2005 to 28 in 2009. Then the amount of 
instances dropped to 14 again in 2010; the system was completely refactored during that time period 
with more than 200 production classes getting removed. From there on it started to slowly increase, thus 
reaching a peak value of 32 instances in March 2016. Oddly enough, the number of utility classes 
decreased once again in the next year even though the number of production classes remained roughly 
the same. Since then it stays almost constant (around 25 instances) until the last version analysed. 
 

 
Figure 5.2.11.6: Evolution of utility class usage for Wicket 

 
 For the beginning of the development process the usage of utility classes follows the same 
pattern as the number of instances. However, the drop that occurred in 2010 was significantly steeper; 
the usage went from the peak value of 16.72% to 5.7% in less than 1 year. Then it fluctuated around 6-
8% for the rest of the time period. In the latest version that was studied the usage of utility classes is 
6.23%. 
 

 
Figure 5.2.11.7: Evolution of static methods for Wicket 
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 The number of static methods that access state increased in the first 2 years of development 
until reaching a maximum of 24 (0.33%) in 2008. From there on, it decreased continuously throughout 
the lifespan of Wicket; there are only 6 (0.07%) such instances in the latest version studied. The amount 
of static methods that solely operate on parameters also increased at first; a maximum value of 269 
(3.18%) was encountered in October 2009. Then this value dropped to 87 (1.44%) the following year and 
started to increase afterwards. There are 209 (2.28%) static methods of this kind in the last version of 
Wicket. 
 

 
Figure 5.2.11.8: Evolution of static initialization blocks for Wicket 

 
 No static initialization blocks were found for Wicket until 2012 when 2 such instances were 
added as part of the XMLTokener and TagUtils classes. In May 2013 another initialization block appeared 
in WicketTagIdentifier; a second instance was added to the aforementioned class in November 2015. 
Approximately 1 year later XMLTokener was removed from the system. Finally, in December 2020 
another class that contained a static initialization block, JavaSerializer, was created. 

 
 

 

5.3. Impact on class testability 
 

As explained in the previous chapter, we rely on testability scores to compare the classes that 
contain static constructs to other classes which are similar to them in terms of size and complexity. We 
do this for each category of static constructs; the comparison is performed both from a quantitative and 
a qualitative perspective. 
 

 5.3.1. BCEL 
 

BCEL is a project that appears to be average in terms of the quantity and quality of its unit 
tests. However, the classes that contain static non-final attributes have a lower overall testability 
compared to other similar classes (2.25 vs. 2.5565). They are covered by fewer unit tests (average 
quantitative score of 2.4667 vs. 2.871) and the tests are of a lesser quality (average qualitative score of 
2.0333 vs. 2.2419). Constants on the other hand are much more thoroughly tested (2.9483 vs. 2.5233), 
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but the qualitative score is again lower (2.3631 vs. 2.4685); nevertheless, the overall testability score of 
the classes that have this kind of static constructs is higher (2.6552 vs. 2.4959) than for similar classes. 
 

Table 5.3.1: Testability of classes with static constructs vs. similar classes for BCEL 
Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Static 
attributes 

Non-final 2.4667 2.0333 2.25 2.871 2.2419 2.5565 

Constants 2.9483 2.3621 2.6552 2.5233 2.4685 2.4959 

Singletons Stateful 3.5 2 2.75 3.5143 2.1429 2.8281 

Stateless 0 - - 2.9167 2.1538 2.5353 

Static 
methods 

Utility classes 3.1818 2.3636 2.7727 3.2353 2.1618 2.6986 

Access state 2.5 2.125 2.3125 2.2874 2.2986 2.293 

Operate on 
parameters 

2.5294 2.4118 2.4706 2.3151 2.3288 2.322 

Static init blocks 2.9 2.3 2.6 2.7407 2.1176 2.4292 

  
 One stateful singleton (Type) and 2 stateless ones (LONG_Upper and DOUBLE_Upper) were 
found in the latest version of BCEL studied. The testability of the stateful one is comparable to that of 
similar classes (2.75 vs. 2.8281). Both its quantitative and its qualitative score are on par with the average 
scores obtained for the classes that were categorized as similar to it. Surprisingly, the stateless singletons 
are not addressed by any unit tests (code coverage of 0%), therefore it was impossible to compute a 
qualitative score and correspondingly an overall testability score. It will be interesting to see how the 
singletons from the following systems rate in terms of testability. 
 The utility classes also have average quantitative and qualitive scores that are comparable to 
the ones of similar classes (3.1818 vs. 3.2353 and 2.3636 vs. 2.1618, respectively); therefore, the overall 
testability scores are very similar (2.7727 vs. 2.6986). For the rest of the production classes that contain 
static methods we found that the testability of the ones with methods that access state is comparable to 
that of similar classes, while for the ones with methods that only operate on parameters it is 
considerably higher. The latter have higher quantitative (2.5294 vs. 2.3151) and qualitative (2.4118 vs. 
2.3288) scores when compared to similar classes. For the former only the score related to quantity is 
greater (2.5 vs. 2.2874) while the qualitative one is smaller (2.125 vs. 2.2986). 
 The 5 classes that contain a static initialization block are actually better in terms of testability 
when compared to other similar classes. Both the average quantitative score (2.9 vs. 2.7407) and the 
average qualitative one (2.3 vs. 2.1176) are higher, thus the overall testability score is also greater (2.6 
vs. 2.4292). 
 

 5.3.2. Commons Collections 

 
Table 5.3.2: Testability of classes with static constructs vs. similar classes for Commons Collections 

Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Static 
attributes 

Non-final - - - - - - 

Constants 4.5673 1.5385 3.0529 4.7692 1.6254 3.1923 

Singletons Stateful - - - - - - 

Stateless 4.575 1.675 3.125 4.5897 1.547 3.0683 

Static 
methods 

Utility classes 4.5 1.5 3 4.6019 1.5534 3.0777 

Access state 4 2 3 4.6264 1.5287 3.0776 

Operate on 
parameters 

4.7467 1.4133 3.08 4.5534 1.6311 3.0922 

Static init blocks 4.5 2 3.25 4.5897 1.547 3.0684 
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The latest version of Commons Collections does not have any mutable global state instances 
(stateful singletons and static non-final attributes). There is no significant difference between the 
average testability score of the classes that contain constants and the corresponding value for other 
similar classes (3.0529 vs. 3.1923); however, the latter seem to be tested a bit more (average 
quantitative score of 4.7692 vs. 4.5673) and with better unit tests (average qualitative score of 1.6254 vs. 
1.5385). 

Similar observations can be made for stateless singletons; the average overall testability of the 
5 instances is 3.125, while for similar classes it is 3.0683. The average quantitative scores are almost the 
same (4.575 vs. 4.5897), but for quality there is a small difference in favour of the first (1.675 vs. 1.547).  
 For utility classes the average quantitative and qualitative scores are also comparable to the 
ones obtained for similar classes (4.5 vs. 4.6019 and 1.5 vs. 1.5534, respectively). The latter are a bit 
higher, thereby causing the overall testability score to also be greater. With regard to the other classes 
that have static methods, their testability is close to that of similar classes. The classes that contain static 
methods which access state are covered by fewer tests (average quantitative score of 4 vs. 4.6264), but 
the tests are of a higher quality (qualitative score of 2 vs. 1.5287); therefore, their overall testability score 
is a bit lower than the one obtained for classes which are similar to them in terms of size and complexity 
(3 vs. 3.0776). For the other category however the score is almost the same as for similar classes (3.08 vs. 
3.0922); both the quantitative and the qualitative scores are close (4.7467 vs. 4.5534 and 1.4133 vs. 
1.6311, respectively). 

Finally, the only class that contains a static initialization block, FunctorException, has a higher 
testability score than the average obtained for the classes that are similar to it. While there is little 
difference between the quantitative score (4.5 vs. 4.5897), the one for quality is greater (2 vs. 1.547). 
 

 5.3.3. Commons Lang 

  
Table 5.3.3: Testability of classes with static constructs vs. similar classes for Commons Lang 

Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Static 
attributes 

Non-final 4.5 1 2.75 4.7414 1.1034 2.9224 

Constants 4.8247 1.0928 2.9588 4.3158 1.1579 2.7368 

Singletons Stateful - - - - - - 

Stateless 5 1.5 3.25 4.7391 1.0957 2.9174 

Static 
methods 

Utility classes 4.5714 1.1667 2.869 4.8378 1.0676 2.9527 

Access state 5 0.5 2.75 4.64 1.22 2.93 

Operate on 
parameters 

5 1 3 4.6637 1.1239 2.8938 

Static init blocks 4.7778 1.4444 3.1111 4.7383 1.0748 2.9065 

 
 An interesting observation can be made with regard to the testability of Lang’s classes. Most of 
them are adequately covered by unit tests (more than 75% line and method coverage), but the 
respective tests suffer in terms of quality (numerous test classes with a large amount of test smells). The 
only class that has a static non-final attribute, ToStringBuilder, has lower average scores both for 
quantity (4.5 vs. 4.7414) and quality (1 vs. 1.1034) compared to other classes that are similar to it; 
therefore, its overall testability score is also lower. On the other hand, classes that only contain constants 
do not appear to be tested less / with tests of a lower quality. In fact, the average score for quantity is 
actually higher (4.8247 vs. 4.3158), while the one for quality is roughly the same as the average obtained 
for similar classes (1.0928 vs. 1.1579). This causes the overall testability score to be higher (2.9588 vs. 
2.7368), albeit not by much. 
 In the latest version of Lang there are no stateful singletons and only 1 stateless one. The 
respective instance, ObjectToStringComparator, has a perfect score in terms of quantity; classes which 
are similar to it are also extensively covered by unit tests, the average quantitative score for them is 
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4.7391. In terms of quality, the singleton instance has a better score (1.5 vs. 1.0957) which makes its 
overall testability score considerably higher than the average one for similar classes (3.25 vs. 2.9174). 
 For utility classes their average testability score (2.869) is almost equal to the corresponding 
value for similar classes (2.9527). While they seem to be addressed by fewer tests (average quantitative 
score of 4.5714 vs. 4.8378), the corresponding test are of a better quality (average qualitative score of 
1.1667 vs. 1.0676). From the rest of the production classes that contain static methods, those with 
methods that access state have a lower testability compared to other similar classes, while for the ones 
with static methods that only operate on parameters the testability score is higher (3 vs. 2.8938). For the 
classes from the first category, the average quantitative score is greater (5 vs. 4.64) while the quality 
score is considerably lower (0.5 vs. 1.22); this causes their overall testability score to be lower as well 
(2.75 vs. 2.93), albeit not by much. Different observations can be made with regard to the classes that 
contain static methods that solely operate on parameters. Their average quantitative score is also higher 
(5 vs. 4.6637), but the qualitative score is close to that of similar classes (1 vs. 1.1239) which makes the 
overall testability score higher. 
 Finally, the classes with static initialization blocks have, on average, a higher testability score 
than other classes which are similar to them (3.1111 vs. 2.9065). The average scores are roughly the 
same for quantity (4.7778 vs. 4.7383), but for quality there seem to be fewer smells in their 
corresponding unit tests (1.4444 vs. 1.0748). 
 

 5.3.4. Commons Math 

  
Table 5.3.4: Testability of classes with static constructs vs. similar classes for Commons Math 

Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Static 
attributes 

Non-final 4.1667 0.3333 2.25 4.6129 0.4996 2.5563 

Constants 4.493 0.4406 2.4668 4.6066 0.4918 2.5492 

Singletons Stateful - - - - - - 

Stateless 4 0.5 2.25 4.413 0.4496 2.4313 

Static 
methods 

Utility classes 4.4444 0.5556 2.5 4.5167 0.4438 2.4802 

Access state 4.4375 0.75 2.5938 4.4841 0.7841 2.6341 

Operate on 
parameters 

4.2174 0.6304 2.4239 4.2294 0.4745 2.352 

Static init blocks 3.875 0.625 2.25 4.5219 0.4548 2.4883 

 
 For Math the average qualitative scores are very low both for classes with instances of static 
constructs and for the groups of similar classes. The biggest difference in terms of testability was 
observed for the classes that contain static non-final attributes, namely DfpField, DSCompiler, and 
GeneticAlgorithm. Their average quantitative score is 4.1667 (compared to 4.6129 for similar classes), 
while the one for quality is 0.3333 (vs. 0.4996); thus, there is a 0.3063 difference between their overall 
testability score and the corresponding value for the classes which are considered similar to them. This is 
the largest difference encountered from all the categories of static constructs, thereby suggesting that 
these types of instances have the highest impact on class testability. For constants the values obtained 
are quite similar (4.493 vs. 4.6066 for quantity and 0.4406 vs. 0.4918 for quality); there is little difference 
between the overall testability scores (2.4668 vs. 2.5492) for this kind of instances compared to other 
similar classes. 
 There is only 1 stateless singleton in the version studied, Decimal64Field. While its quantitative 
score is smaller than the average one obtained for classes which are similar to it (4 vs. 4.413), the 
quantity score is a bit higher (0.5 vs. 0.4496). This makes their overall testability scores comparable (2.25 
vs. 2.4313). For utility classes the respective scores are almost identical (2.5 vs. 2.4802); the average 
quantitative score is a bit lower (4.4444 vs. 4.5167), while the qualitative one is higher (0.5556 vs. 
0.4438). 
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 For the rest of the production classes that contain static methods, their overall testability score 
is comparable the one obtained for other classes. The ones with methods that access state have a slightly 
lower score (2.5938 vs. 2.6341), while for the classes with static methods that only operate on 
parameters the value is a bit higher (2.4239 vs. 2.352) than for similar classes. Those from the first 
category are tested less (4.4375 vs. 4.4841) and with tests of a lower quality (0.75 vs. 0.7841). For the 
latter only the qualitative score is larger (0.6304 vs. 0.4745), the quantitative one is roughly the same 
(4.2174 vs. 4.2294). 
 The overall testability of the 10 classes with static initialization blocks seems to be a bit lower 
than for other similar classes (2.25 vs. 2.4883). This is due to the fact that the average quantitative score 
is significantly lower (3.875 vs. 4.5219); on the other hand, the average qualitative score is higher (0.625 
vs. 4548). 
 

 5.3.5. Digester 

  
Table 5.3.5: Testability of classes with static constructs vs. similar classes for Digester 

Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Static 
attributes 

Non-final - - - - - - 

Constants 3.4583 3.375 3.4167 3.582 3.1214 3.3517 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility classes 4 3 3.5 3.6607 3.2105 3.4356 

Access state - - - - - - 

Operate on 
parameters 

3.6667 3.1667 3.4167 3.4776 3.3039 3.3908 

Static init blocks - - - - - - 

 
 As seen in the first section of this chapter, there are very few instances of static constructs in 
this system. However, the quantitative and qualitative scores are generally high for Digester (over 3.5 
and between 3-3.5, respectively). For the 24 classes with constants the overall testability score is almost 
the same as for similar classes (3.4167 vs. 3.3517). They are addressed by fewer unit tests (average 
quantitative score of 3.4583 vs. 3.582), but the tests are of a better quality (qualitative score of 3.375 vs. 
3.1214). 
 For the 2 utility classes the situation is the other way around. They have a higher average 
quantitative score (4 vs. 3.6607) and a lower qualitative score (3 vs. 3.2105); nevertheless the outcome is 
the same, their overall testability score is greater than that of similar classes (3.5 vs. 3.4356). 
Additionally, there are 6 production classes that contain static methods that solely operate on 
parameters. For them the situation is exactly the same as for utility classes; their average quantitative 
score is higher (3.6667 vs. 3.4776) and the one for quality is lower (3.1667 vs. 3.3039) than for similar 
classes. Finally, the overall testability scores are more or less the same (3.4167 vs. 3.3908). 
 

 5.3.6. Geode 

  
 The testability scores for Geode are very low, even the quantitative ones. Classes that contain 
static non-final attributes have a lower overall score (1.0373 vs. 1.1628) compared to other similar 
classes, while for the ones with constants the values are comparable (1.1339 vs. 1.0884). The former are 
covered by fewer unit tests (quantitative score of 1.2521 vs. 1.3492) and the respective tests are of a 
lower quality (qualitative score of 0.8224 vs. 0.9763). For the latter the quantity is almost the same 
(1.3084 vs. 1.2929), but the quality is better (0.9593 vs. 0.8893). 
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Table 5.3.6: Testability of classes with static constructs vs. similar classes for Geode 
Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Static 
attributes 

Non-final 1.2521 0.8224 1.0373 1.3492 0.9763 1.1628 

Constants 1.3084 0.9593 1.1339 1.2929 0.8839 1.0884 

Singletons Stateful 1.2308 0.9231 1.077 1.2882 0.9176 1.1029 

Stateless 1.7222 0.8889 1.3056 1.4831 0.9487 1.2159 

Static 
methods 

Utility classes 1.6599 0.9594 1.3097 1.2586 0.9122 1.0854 

Access state 1.0751 1.0491 1.0621 1.3332 0.807 1.0701 

Operate on 
parameters 

1.6201 0.8939 1.257 1.2655 0.9947 1.1301 

Static init blocks 1.8026 0.9211 1.3619 1.3759 1.0674 1.2217 

 
 Similar observations can be made with regard to the 2 types of singletons. The stateful ones 
have a lower quantitative score (1.2308 vs. 1.2882) and an almost identical qualitative score (0.9231 vs. 
0.9176) when compared to similar classes; therefore, their overall testability is also a bit lower (1.077 vs. 
1.1029). The stateless singletons are addressed by considerably more tests (1.7222 vs. 1.4831 for 
quantity) which are more or less the same in terms of quality (0.8889 vs. 0.9487). The overall testability 
score for these instances is higher (1.3056 vs. 1.2159) than the corresponding value for similar classes. 
 For utility classes both the quantitative and the qualitative scores are greater (1.6599 vs. 
1.2586 and 0.9594 vs. 0.9122, respectively). This makes their overall testability score significantly higher 
(1.3097 vs. 1.0854) than the one obtained for classes that are similar to them in terms of size and 
complexity. For the rest of the classes that contain static methods, we found that those with methods 
that access their state are just as testable as other similar classes, while the ones with static methods 
that solely operate on parameters have an even higher testability. For the ones from the first category 
the coverage is lower (1.0751 vs. 1.3332), but the quality of the tests is better (1.0491 vs. 0.807). It is the 
other way around for the classes from the second category; they have a much higher quantitative score 
(1.6201 vs. 1.2665) compared to similar classes, but the qualitative score is a bit smaller (0.8939 vs. 
0.9947). 
 Finally, the classes with static initialization blocks have a better overall testability score (1.3619 
vs. 1.2217) than other production classes. Their quantitative score (1.8026) is the highest one 
encountered for classes with static constructs, while their qualitative score is also good (0.9211). 
 

 5.3.7. jHotDraw 

  
 For jHotDraw it was impossible to investigate the impact of the different types of static 
constructs on class testability. As explained in Chapter 4, this system was included in the study due to the 
fact that it was used as reference in an article that discusses variations of the Singleton design pattern. 
However, the amount of testing performed on the latest version of the system is insufficient for a proper 
analysis on class testability; the test / production code ratio is 0.05 and there are only 200 unit test 
compared to 2713 production methods. Selecting this project for the empirical study was needed 
especially for the analysis on the evolution of singletons. As an example, we checked if the number of 
instances encountered at certain moments in time is in accordance with what is discussed in the article. 
The system will also be useful in our analyses on change- / defect-proneness that follow. 
 

 5.3.8. Pig 

  
With regard to static attributes, there is a big difference between the testability of the classes 

that contain non-final ones and those with constants. The overall testability score of the later is almost 
identical (1.7206 vs. 1.7) to that of similar classes; even the quantitative and qualitative scores are 
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roughly the same (2.5588 vs. 2.5333 and 0.8824 vs. 0.8667, respectively). In contrast, the classes with 
static non-final attributes are covered by fewer unit tests (average quantitative score of 2.0909 vs. 
2.4739) and the respective tests are of a poorer quality (qualitative score of 0.8182 vs 0.9211). 
 

Table 5.3.8: Testability of classes with static constructs vs. similar classes for Pig 
Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Static 
attributes 

Non-final 2.0909 0.8182 1.4546 2.4739 0.9211 1.6975 

Constants 2.5588 0.8824 1.7206 2.5333 0.8667 1.7 

Singletons Stateful 2.2857 0.8571 1.5714 2.5636 0.8916 1.7276 

Stateless 2.5 1 1.75 2.4889 0.8491 1.669 

Static 
methods 

Utility classes 2.4333 0.9167 1.675 2.3261 0.913 1.6196 

Access state 2.2727 0.9091 1.5909 2.5526 1.0263 1.7895 

Operate on 
parameters 

2.4375 0.9375 1.6875 2.2 0.9556 1.5778 

Static init blocks 2.3571 0.7857 1.5714 2.2708 0.9375 1.6042 

 
 The testability of singletons varies depending on the type of the instances. The 14 stateful ones 
are tested less thoroughly (average quantitative score of 2.2857 vs. 2.5636) compared to similar classes, 
but the quality of the unit tests is roughly the same (qualitative score of 0.8571 vs. 0.8916); all in all, the 
overall testability score is lower for this kind of singletons (1.5714 vs. 1.7276). For the 4 stateless ones 
both the values for quantity and quality are higher (2.5 vs. 2.4889 and 1 vs. 0.8491). This makes the 
overall testability score greater as well (1.75 vs. 1.669), but all 3 scores are very close. 
 For utility classes both averages are higher (2.4333 vs. 2.3261 for quantity and 0.9167 vs. 0.913 
for quality), although not by much; thus the overall testability score is also greater (1.675 vs. 1.6196). On 
the other hand, production classes that have static methods which access state are tested less (2.2727 
vs. 2.5526) and with unit tests that are worst in terms of quality (0.9091 vs. 1.0263). This suggests that 
they are less testable than classes that are similar to them in terms of size and complexity. For classes 
with static methods that only operate on parameters the situation resembles the one for utility classes. 
The difference between the average quantitative scores is slightly bigger (2.4375 vs. 2.2), but the 
qualitative score is more or less the same (0.9375 vs. 0.9556). In consequence, the overall testability 
score is a bit higher (1.6875 vs. 1.5778). 
 Classes with static initialization blocks have a similar testability as other production classes 
(overall score of 1.5714 vs. 1.6042). Both the quantitative and qualitative scores are comparable to those 
of similar classes (2.3571 vs. 2.2708 and 0.7857 vs. 0.9375, respectively).  
 

 5.3.9. Spring Core 

  
Table 5.3.9: Testability of classes with static constructs vs. similar classes for Spring Core 

Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Static 
attributes 

Non-final 3.3 3.05 3.175 3.9356 3.374 3.6548 

Constants 3.8293 3.2439 3.5366 3.8696 3.4348 3.6522 

Singletons Stateful - - - - - - 

Stateless 4.2 4 4.1 3.8239 3.5535 3.6887 

Static 
methods 

Utility classes 3.697 3.4242 3.5606 3.8761 3.2301 3.5531 

Access state 3.5769 3.3077 3.4423 3.9593 3.3667 3.663 

Operate on 
parameters 

4.3125 3.875 4.0938 3.7786 3.1985 3.4885 

Static init blocks 4 3.2 3.6 3.8235 3.2794 3.5515 
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There are 10 classes that contain static non-final attributes and their average testability is 
considerably lower than the corresponding value for similar classes (3.175 vs. 3.6548); this is by far the 
biggest difference encountered compared to the other types of static constructs. Both the average 
quantitative and qualitative scores are lower (3.3 vs. 3.9356 and 3.05 vs. 3.374, respectively) than the 
ones obtained for similar classes. On the other hand, for classes with constants these differences are 
much smaller (3.8293 vs. 3.8696 for quantity and 3.2439 vs. 3.4348 for quality). The average overall 
testability scores are comparable, 3.5366 for the classes that contain constants and 3.6522 for other 
classes that were categorized as similar to them. 
 There are no stateful singletons in the version of Spring Core that was investigated. 
Surprisingly, for the 5 stateless singletons found, their testability appears to be higher than that of similar 
classes both in terms of quantity (4.2 vs. 3.8239) and quality (4 vs. 3.5535). This causes the overall 
testability score to be significantly higher (4.1 vs. 3.6887), thereby suggesting that this kind of singletons 
are not more difficult to test. 
 For utility classes their testability is comparable to that of similar classes (3.5606 vs. 3.5531). 
Although they are covered by fewer unit tests (average quantitative score of 3.697 vs. 3.8761), these 
tests are of a better quality (average qualitative score of 3.4242 vs. 3.2301). The testability of the 
remaining production classes that contain static methods is different depending on the type of the 
methods. Those with static methods that access their state scored lower for both quantity and quality 
(3.5769 vs. 3.9593 and 3.3077 vs. 3.3667, respectively). For the ones with static methods that solely 
operate on parameters the corresponding values are substantially greater (4.3125 vs. 3.7786 and 3.875 
vs 3.1985) than for similar classes. This proves that the former are more difficult to test, while the latter 
are highly testable. 

Finally, for the 25 classes with static initialization blocks the situation is the opposite of the one 
encountered for utility classes. The quantitative score is higher (4 vs. 3.8235) and the qualitative one 
lower (3.2 vs. 3.2794), thus making the overall testability scores very similar (3.6 vs. 3.5515). 

 
5.3.11. Wicket 

  
Table 5.3.11: Testability of classes with static constructs vs. similar classes for Wicket 

Category Instances Similar classes 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Avg. Sc. 
Quant. 

Avg. Sc. 
Qual. 

Avg. Sc. 
Test. 

Static 
attributes 

Non-final 2.8667 2.0667 2.4667 2.9363 2.5247 2.7305 

Constants 2.9394 2.4061 2.6728 2.7556 2.6222 2.6889 

Singletons Stateful - - - - - - 

Stateless 2.875 2.625 2.75 2.7323 2.5743 2.6533 

Static 
methods 

Utility classes 3.1875 2.625 2.9063 2.8168 2.4059 2.6114 

Access state 2.875 2.375 2.625 3.1089 2.3932 2.7511 

Operate on 
parameters 

3.075 2.5 2.7875 2.7586 2.3809 2.5698 

Static init blocks 3.1 2.6 2.85 3.2105 2.5694 2.89 

 
 Wicket is a project in which the overall quantitative and qualitative scores are very similar, with 
a small difference in favour of the first. The classes that contain static non-final attributes seem to be 
tested a bit less (average quantitative score of 2.8667 vs. 2.9363) and with unit tests of a lower quality 
(average qualitative score of 2.0667 vs. 2.5247) compared to other similar classes; therefore, their overall 
testability score is significantly smaller (2.4667 vs. 2.7305). On the other hand, the score for classes with 
constants is almost identical to that of similar classes (2.6726 vs. 2.6889). Their average quantitative 
score is higher (2.9394 vs. 2.7556), while the qualitative score is lower (2.4061 vs. 2.6222). 
 There are no stateful singletons in the latest version of Wicket. For the 8 stateless ones both 
the average quantitative and qualitative scores are higher (2.875 vs. 2.7323 and 2.625 vs. 2.5743, 

BUPT



   104 

respectively), but not by a large margin; thus, the overall testability score is also greater (2.75 vs 2.6533) 
than for similar classes. 
 Utility classes actually have the highest testability score (2.9063) out of all the static constructs 
investigated. They are addressed by more tests (3.1875 vs. 2.8168) compared to classes that are similar 
to them in terms of size and complexity; the quality of the unit tests is also better (2.625 vs. 2.4059). For 
the other classes that contain static methods, we found that those with methods that access their state 
have a lower testability than other similar classes (2.625 vs. 2.7511), while for the ones with static 
methods that only operate on parameters the testability is considerably higher (2.7875 vs. 2.5698). For 
the former, although the quality of the tests is roughly the same (2.375 vs. 2.3932) as for similar classes, 
their quantity is much lower (2.875 vs. 3.1089). For the second category, the average scores for both 
quantity and quality are substantially higher (3.075 vs. 2.7686 and 2.5 vs. 2.3809, respectively). 
 Finally, for classes with static initialization blocks there does not appear to be any difference in 
terms of testability when compared to similar classes. The average quantitative score is slightly lower 
(3.1 vs. 3.2105), while the corresponding value for quality is a bit higher (2.6 vs. 2.5694). This causes the 
overall testability scores to be almost the same (2.85 vs. 2.89). 

 
 

 

5.4. Impact on change- / defect-proneness 
 
 The proposed procedures for quantifying change- and defect-proneness were explained in 
Chapter 3. They are used to determine whether or not the classes with different types of static 
constructs were modified more frequently / more fine-grained source code changes were performed on 
them. The only difference between them is that for error-proneness we only take into account the 
commits that were categorize as bug-fixes. The following table contains an overview of the bug-fix 
commits identified for each project. 
 

Table 5.4 Bug-fix commits identified 

System Total # 
Jira 
bugs 

# Commits 
containing 
issue keys 

# Commits with issue 
keys corresponding 
to bugs 

# Commits 
identified based 
on keywords 

Total # 
bug-fix 
commits 

BCEL 252 195 110 141 251 

Collections 362 485 175 373 548 

Commons Lang 707 1466 571 394 965 

Commons Math 728 2030 667 646 1313 

Digester 122 82 38 381 419 

Geode 4990 8877 4349 1075 5424 

jHotDraw - - - 76 76 

Pig 3109 3368 2094 150 2244 

Spring Core - - - 1903 1903 

Tomcat - - - 4696 4696 

Wicket 4163 6573 3727 3161 6888 

 
It can be observed that for 3 of the 11 systems we were not able to find a corresponding Jira 

issue tracker; therefore, for these projects we detected bug-fix commits solely based on keywords. Our 
evaluation of defect-proneness for the 3 systems might not be as accurate as for the others. In both 
assessments (change- and error-proneness) we compared the average number of changes performed on 
classes that have a certain type of static construct with the corresponding value for classes which are 
similar to them in terms of size and complexity. Furthermore, we also computed the average number of 
modifications per commit in order to determine if the instances of interest were altered in more commits 
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than the similar classes.  Finally, we were keen to observe which types of fine-grained source code 
changes occurred the most frequently and to establish whether or not the rankings are different for 
various categories of static constructs / similar classes. The acronyms correspond to the change types 
presented in Table 3.2. 

 

 5.4.1. BCEL 

  
Table 5.4.1.1: Change-proneness of classes with static constructs vs. similar classes for BCEL 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 200.0667 7.7333 24.8584 SD 
22.859 SU 
19.3269 SI 
7.1643 SPC 
3.4655 DU 

40.6875 3.1875 27.1689 SU 
11.5408 SI 
10.9397 SD 
7.0193 IAC 
5.57 SPC 

Constants 77.2459 5.9836 19.7646 SU 
12.9013 SD 
11.602 SI 
8.1474 IAC 
7.7499 RAT 

35.5031 2.8696 30.2747 SU 
13.5497 SI 
13.471 SD 
5.6858 SPC 
4.6186 IAC 

Singletons Stateful 85 2.931 23.5294 SU 
17.6471 RF 
12.9412 SI 
8.2353 SD 
4.7059 PTC 

46.8298 3.3665 26.4632 SU 
14.2875 SD 
11.8403 SI 
5.9142 IAC 
5.8528 SPC 

Stateless 8.5 1.3077 17.6471 SU 
11.7647 AAM 
11.7647 AOS 
11.7647 ROS 
11.7647 SD 

37.1312 3.378 26.4576 SU 
13.265 SD 
12.8418 SI 
6.9082 IAC 
4.8417 SPC 

Static 
methods 

Utility 
classes 

135.9 6.4 19.1317 SI 
17.0714 SU 
16.1884 SD 
8.1678 DU 
6.0338 SPC 

44.5442 3.2841 27.2164 SU 
13.0244 SD 
12.3262 SI 
6.2413 IAC 
5.82 SPC 

Access state 148.375 6.125 24.4082 SD 
23.2566 SU 
19.0019 SI 
7.4216 SPC 
3.4869 RF 

41.3593 3.1866 28.1215 SU 
12.5436 SI 
10.9173 SD 
7.0649 IAC 
5.5024 SPC 

Operate on 
parameters 

142.8824 5.6471 29.4772 SU 
16.056 SI 
13.7505 SD 
13.2977 SPC 
5.4755 CEC 

42.4727 3.2596 25.9762 SU 
12.3384 SI 
12.1875 SD 
6.7739 IAC 
4.6703 SPC 

Static init blocks 132.8 4.8 19.5783 SU 
16.8675 SD 
15.0602 SI 
6.9277 RMO 
6.4759 SPC 

45.7937 3.3466 26.7129 SU 
13.1254 SD 
12.7556 SI 
6.1236 IAC 
5.8117 SPC 

 
 The 15 production classes that have static non-final attributes are more change-prone 
compared to similar classes. The average number of modifications is roughly 5 times higher (200.0667 vs. 

BUPT



   106 

40.6875) while the number of changes per commit is less than 2.5 times higher (7.7333 vs. 3.1875). The 
top 3 change types are the same, but the following 2 and the percentages are very different. 
 Although there is a difference between the classes with constants and other similar classes in 
terms of average number of changes (77.2459 vs. 35.5031) and number of modifications per commit 
(5.9836 vs. 2.8696), this difference is not nearly as great as for the classes that contain static non-final 
attributes. Four of the top 5 change types are the same, albeit the percentages are fairly different. 
 The statefull singleton (Type) is more change-prone compared to the classes that were 
categorized as similar to it. It suffered 85 fine-grained modifications during 29 commits; for similar 
classes the average number of modifications is almost half (46.8298) and the number of changes per 
commit is a bit higher (3.3665 vs. 2.913). The corresponding values for the 2 stateless singletons are 
much lower; their average number of changes is 8.5 while the amount of modifications per commit is 
1.3077, thus indicating that they are less change-prone. Regarding the top 5 change types, only 
statement updates are deletions appear in all the ranking; the results might be inconclusive due to the 
very small number of instances (1 and 2, respectively). 
 The change-proneness of utility classes is much higher than for other similar classes. The 
average number of changes is triple (135.9 vs. 44.5442) and there are twice as many modifications per 
commit (6.4 vs. 3.2841).  The other production classes that contain static methods also appear to be 
more change-prone compared to similar classes. Both the ones with static methods that access state and 
those with methods that only operate on parameters have had, on average, a higher number of 
modifications performed on them (148.375 vs. 41.3593 and 142.8824 vs. 42.4727, respectively). The 
number of changes per commit is roughly double than for similar classes in both cases (6.125 vs. 3.1866 
and 5.6471 vs. 3.2586). Finally, 4 of the top 5 change types are the same, though their percentages and 
order are quite different. 
 Utility (448 changes) also contains a static initialization block along with 4 other classes; the 
average number of changes for these instances is considerably higher than for similar classes (132.8 vs. 
45.7937) and there are also more changes per commit (4.8 vs. 3.3466). However, they are not very 
different with regard to the types of changes that were performed; the top 3 changes types are the same 
and even the percentages are quite close. 
 

Table 5.4.1.2: Defect-proneness of classes with static constructs vs. similar classes for BCEL 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 52.2667 12.8 53.5714 SD 
13.648 SI 
8.9286 SU 
5.4847 SPC 
3.9541 CEC 

13.75 4.2012 20.4878 SD 
16.7627 SU 
15.2993 SI 
14.0133 DD 
5.9424 DU 

Constants 26.5278 8.1111 24.6388 SD 
22.7376 DD 
13.6122 SI 
7.3004 SU 
6.5399 SPC 

12.0559 4.1189 32.3666 SD 
20.4176 SI 
15.8353 SU 
5.6265 DU 
5.3364 RF 

Singletons Stateful 17 3.4 47.0588 RF 
17.6471 DAC 
11.7647 SU 
11.7647 AAM 
11.7647 IAC 

16.9775 4.9326 29.186 SD 
14.957 SI 
14.7584 SU 
10.4897 DD 
4.9301 DU 

Stateless 1 1 100 SU 17.6 4.8 32.5875 SD 
17.7281 DD 
9.4664 SI 
7.9174 DU 
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7.1715 SU 

Static 
methods 

Utility classes 39.6 9 22.2222 SI 
17.1717 SOC 
12.6262 SD 
12.1212 DU 
10.606 SPC 

16.3276 4.8046 30.1654 SD 
15.3819 SU 
14.3611 SI 
11.158 DD 
4.3999 DU 

Access state 71.5 4 54.5455 SD 
13.7004 SI 
8.1946 SU 
4.2254 SPC 
3.073 RF 

14.2013 4.5849 20.1949 SD 
17.0062 SU 
15.279 SI 
13.9061 DD 
6.023 DU 

Operate on 
parameters 

12.375 3.0625 20.7071 SU 
19.697 SD 
16.1616 SI 
7.0707 RF 
6.5657 SPC 

17.4294 5.1043 28.6727 SD 
14.7835 SI 
14.3259 SU 
11.1228 DD 
4.8222 DU 

Static init blocks 39 7.75 17.9487 SI 
12.8205 SD 
10.8974 SOC 
9.6154 SPC 
8.9744 SU 

16.4743 4.8571 29.8994 SD 
15.0538 SU 
14.7069 SI 
10.9955 DD 
4.8907 DU 

 
 All 15 production classes that contain static non-final attributes were modified during bug-fix 
commits. Same as for change-proneness, these classes are more error-prone compared to other similar 
classes; the average number of modifications is almost 4 times higher (52.2667 vs. 12.8) while the 
number of changes per commit is 3 times higher (12.8 vs. 4.2012). An interesting observation is that 
more than half of the changes performed on the classes with static non-final attributes are statement 
deletions; for the other classes this percentage is a bit over 20%. 
 Classes with constants are not as error-prone as they are change-prone. Although the average 
number of changes for such classes is more than double compared to other similar classes (26.5278 vs. 
12.0559), the amount of modifications per commit is also double (8.1111 vs. 4.1189); this implies that 
the number of bug-fix commits in which these classes were altered is roughly the same as for similar 
classes. The top 5 change types are quite different, both regarding the types and especially the 
percentages. 

The stateful singleton was modified in 5 bug-fix commits. The average number of changes is 
almost identical (17 vs 16.9775) to the one obtained for similar classes; however, there are fewer 
modifications per commit (3.4 vs. 4.9326), thereby implying that the singleton was altered more 
frequently. This is not the case for the 2 stateless singletons; each of them suffered only 1 fine-grained 
source code change (in separate bug-fix commits). The top 5 change types are also very different; for 
example, the 2 modifications performed on the stateless variants were statement updates. 

Five utility classes were modified during bug-fix commits and the average number of changes is 
higher than for similar classes (39.6 vs. 16.3276). However, the ratio is considerably smaller than the one 
obtained for change-proneness. The number of changes per commit is also greater (9 vs. 4.8046). There 
are significant differences between the top 5 change types for utility classes and other similar classes, 
both in terms of order and percentage-wise. Unlike for change-proneness, only the classes with static 
methods that access state have a higher error-proneness than similar classes; those with static methods 
that only operate on parameters do not. For the first category, the average number of changes is 5 times 
higher (71.5 vs. 14.2013) while the amount of modifications per commit is comparable (4 vs. 4.5849); this 
indicates that there are more bug-fix commits in which they were altered. This is not the case for classes 
with methods that solely operate on parameters; they actually appear to be less error-prone when 
compared to similar classes (12.375 vs. 17.4294 average number of modifications and 3.0625 vs. 5.1043 
number of changes per commit). In terms of top 5 change types, the 3 statement-level changes were the 
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most commonly occurring in both cases while the following 2 differ when compared to those of similar 
classes. 
 The situation for the classes with static initialization blocks is similar to that of utility classes. 
They suffered more changes on average (39 vs. 16.4743) and the number of modifications per commit is 
higher (7.75 vs. 4.8571). In terms of top change types, they are different than the ones encountered for 
similar classes; for example, less that 13% of the modifications are statement deletes for the classes that 
contain static initialization blocks, while for the other classes the corresponding value is roughly 30%. 
 

 5.4.2. Commons Collections 
 

Table 5.4.2.1: Change-proneness of classes with static constructs vs. similar classes for Commons 
Collections 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final - - - - - - 

Constants 87.7215 6.0823 19.1631 SU 
13.456 DU 
10.8658 SI 
9.8413 SD 
7.0851 PTC 

74.1667 6.9667 19.457 SU 
13.4232 DU 
11.0412 SI 
8.7341 SD 
6.8165 PTC 

Singletons Stateful - - - - - - 

Stateless 9 2.6667 51.8519 SU 
14.8148 DD 
7.4074 ROS 
3.7037 AF 
3.7037 ATC 

68.7517 5.9139 17.5522 SU 
14.7263 DU 
11.6602 SI 
10.541 SD 
5.7717 PTC 

Static 
methods 

Utility 
classes 

181.3181 6.4091 22.2361 DU 
17.1221 SU 
12.5094 SI 
8.6489 PTC 
7.8967 SD 

73.2124 6.4027 19.757 SU 
11.326 DU 
10.5403 SI 
9.8634 SD 
6.5999 PTC 

Access state 77 5.1333 19.2941 DU 
17.1765 SU 
16 SI 
7.2941 DD 
6.5882 API 

68.8007 5.9088 18.6251 SU 
12.5969 DU 
11.5541 SI 
10.6489 SD 
7.8795 PTC 

Operate on 
parameters 

55.6723 4.8655 19.4717 SU 
13.4038 DU 
9.2679 SI 
9.1623 SD 
7.7736 SPC 

76.1559 6.5323 17.1857 SU 
14.8581 DU 
12.757 SI 
9.7 SD 
6.2902 PTC 

Static init blocks 55 13.75 25.4545 SI 
18.1818 SD 
14.5455 AF 
7.2727 AF 
7.2727 AOS 

82.915 6.3765 19.2969 SU 
13.4717 DU 
10.8838 SI 
9.458 SD 
7.0166 PTC 

 
 There are no classes that contain static non-final attributes. For classes with constants, both 
the average number of changes (87.7215 vs. 74.1667) and the number of modifications per commit 
(6.0823 vs. 6.9667) are comparable to those of similar classes. Additionally, the order and percentages 
for the top 5 change types are nearly identical. 
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 The stateless singletons suffered, on average, 9 fine-grained changes; this value is much 
smaller than the corresponding one for similar classes (68.7517). The number of modifications per 
commit is less than half 2.6667 vs. 5.9139); therefore, the singletons were altered in much fewer 
commits. The changes performed on them are also very different compared to the top 5 change types for 
similar classes; however, statement updates were first in the rankings in both cases. 

The utility classes were modified more compared to other similar classes (average number of 
changes of 181.3181 vs. 73.2124). This is mainly due to 3 utility classes which suffered most of the 
modifications: CollectionUtils (900 changes), IteratorUtils (470), and MapUtils (545). However, the 
number of changes per commit are almost identical, thus showing that the utility classes are changed in 
more commits. Also, the top 5 change types are the same, although the percentages are very different; 
over 22% of the changes are doc updates for utility classes (compared to 11.326%), proving once again 
that they are a central part of systems which are structured as libraries. For the rest of the classes that 
contain static methods, it was found that those with methods that access state are a bit more change-
prone that similar classes while the ones with static methods that solely operate on parameters are 
actually less. The first have a higher average number of changes (77 vs. 68.8007) and roughly the same 
number of modifications per commit (5.1333 vs. 5.9088). On the other hand, for classes with static 
methods that only operate on parameters the average is substantially lower (55.6723 vs. 76.1559) than 
for similar classes and the number of modifications per commit is only slightly lower (4.8655 vs. 6.5323). 
With regard to the top 5 change types, classes with static methods that access state are one of the few 
cases in which a statement-level modification, statement deletes, does not appear in the list. This is not 
the case for those with static methods that only operate on parameters; for this category the ranking is 
very similar to the one obtained for similar classes (both in terms of order and percentages). 
 There is only one class that contains a static initialization block, FunctorException, on which 55 
changes were performed over 4 commits. Although the number of changes is lower compared to the 
average for the classes that are similar to it, but the number of modification per commit is higher (13.75 
vs. 6.3765). The types of changes and their percentages are very different, but the results might be 
skewed because there is only 1 instance of interest. 
 

Table 5.4.2.2: Defect-proneness of classes with static constructs vs. similar classes for Commons 
Collections 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final - - - - - - 

Constants 10.9034 3.8759 21.907 DU 
13.9558 SD 
12.6691 SU 
11.9762 SI 
7.0934 RF 

13.8906 3.875 28.9089 DU 
13.3858 SD 
10.7987 SU 
8.6614 SI 
7.9865 DD 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility classes 49.8235 5.2353 28.3353 DU 
12.0425 SU 
11.4522 PTC 
9.5632 SI 
8.0283 SD 

16.0052 3.7552 22.1608 DU 
15.4247 SD 
12.3007 SU 
11.6824 SI 
6.8012 RF 

Access state 21 5.25 29.3103 SI 
29.3103 DU 
10.3448 API 
10.3448 SU 
8.6207 CI 

15.9386 3.7632 25.1789 DU 
13.2361 SD 
11.1723 SU 
10.732 SI 
6.852 RF 

Operate on 11.6293 3.0603 28.9844 DU 20.0256 4.5299 23.0901 DU 
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parameters 13.7139 SD 
12.4537 SU 
11.8606 SI 
9.3403 RF 

12.6761 SD 
10.542 SI 
10.414 SU 
5.2924 RF 

Static init blocks - - - - - - 

 
As mentioned before, there are no production classes with static non-final attributes. For the 

ones that contain constants we observed that they are not more defect-prone than other similar classes. 
The average number of modifications are similar (10.9034 vs. 13.8906) and the number of changes per 
commit are almost identical (3.8759 vs. 3.875). The top 4 change types are the same, but the 
percentages do differ to some extent. 
 None of the changes performed on the stateless singletons occurred during bug-fix commits. 
Therefore, even though we were able to evaluate their change-proneness, the defect-proneness of the 
singletons could not be assessed. 

The average number of changes in bug-fix commits is higher for utility classes compared to 
similar classes (49.8235 vs. 16.0052). However, the number of changes per commit is comparable 
(5.2353 vs. 3.7552), thus suggesting that the former were modified in more commits in which errors 
were repaired. Even though the top 5 change types are roughly the same, the percentages for them vary 
significantly; only 8% are statement deletes for utility classes while for the others this percentage is 
around 15.5%. For other classes that contain static methods the situation is similar to the one observed 
for change-proneness. Those with methods that access state have, on average, a higher number of 
modifications (21 vs. 15.9386); their number of changes per commit is also a bit higher (5.25 vs. 3.7632). 
On the other hand, classes with static methods that only operate on parameters have a lower defect-
proneness compared to similar classes; their average number of modifications is almost half (11.6293 vs. 
20.0256) and the number of changes per commit is lower (3.0603 vs. 4.5299). The top 5 change types are 
significantly different for the first category both order- and percentage-wise. For the latter category all 5 
modification types are exactly the same and the percentages are quite similar. 
 None of the 4 commits in which FunctorException (the only class that contains a static 
initialization block) was modified are bug fixes. 
 

 5.4.3. Commons Lang 

  
Table 5.4.3.1: Change-proneness of classes with static constructs vs. similar classes for Commons Lang 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 280 8.4848 28.5714 DU 
20 SI 
14.2857 SU 
12.1429 SD 
4.6429 RF 

203.6 5.9353 22.6395 SD 
20.9234 SI 
11.4007 SU 
10.4646 DU 
6.5786 RF 

Constants 84.5472 6.7925 22.5151 SI 
20.9535 SD 
11.4515 SU 
10.1452 DU 
6.8497 RF 

72.7692 4.5692 23.277 SI 
20.2114 SD 
13.5729 DU 
11.2474 SU 
4.7357 RF 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility 
classes 

516.7907 9.1628 24.1427 SI 
21.9332 SD 
11.1781 SU 
10.2871 DU 

98.9844 4.8672  
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6.6736 RF 

Access 
state 

545 11.8839 24.1305 SI 
21.9197 SD 
9.5444 SU 
7.6705 DU 
4.0847 SPC 

200.0118 5.8817 21.2101 SI 
20.5649 SD 
12.9313 SU 
11.4035 DU 
7.4034 RF 

Operate on 
parameters 

53.1842 4 21.3261 DU 
15.1905 SI 
14.6461 SD 
13.4587 SU 
5.5418 RF 

247.1504 6.5038 24.0751 SI 
21.2345 SD 
12.2987 SU 
9.951 DU 
6.6259 RF 

Static init blocks 328.25 9.125 22.8104 SI 
22.0107 SD 
13.1379 SU 
10.0533 DU 
4.9124 RF 

197.9509 5.7914 22.6027 SI 
20.7587 SD 
11.2843 SU 
10.6552 DU 
6.6975 RF 

 
The only class that contains static non-final attributes, ToStringBuilder, has suffered 280 fine-

grained source code changes over 33 commits. The number of modifications is higher than the average 
for similar classes (203.6) and there are more changes per commit (8.4848 vs. 5.9353). However, the top 
5 change types are on par with those of other classes, though the percentages are very different. 
 The change-proneness of classes with constants is comparable to that of similar classes. 
Although there are, on average, more fine-grained changes (84.5472 vs. 72.7692), they were performed 
in fewer commits as the number of modifications per commit is higher (6.7925 vs. 4.5692). The top 5 
change types are the same, even the order and the percentages are very similar. 

The only singleton present in the latest version of Commons Lang, ObjectToStringComparator, 
did not suffer any fine-grained source code changes throughout the project’s lifespan. Therefore, it is 
impossible to assess the impact of singletons on change- / defect-proneness for this system. 

There have been, on average, 5 times more changes performed on utility classes (516.7907 vs. 
98.9844) than on classes that are similar to them. This is due to a series of classes that are frequently 
modified, such as ArrayUtils (3224 changes), StringUtils (4866), or NumberUtils (2646). The number of 
changes per commit is also higher (9.1628 vs. 4.8672). Commons Lang is a system in which the 
discrepancy between the classes that contain other types of static methods is huge. The ones with 
methods that access state are more change-prone than classes which are similar to them in terms of size 
and complexity. The average number of modifications is almost triple (545 vs. 200.0118) while the 
number of changes per commit is double (11.8839 vs. 5.8817). On the other end of the spectrum are the 
classes with static methods that only operate on parameters. For this category the average number of 
changes is almost 5 times smaller (53.1842 vs. 2471504) than that of similar classes, but the number of 
modifications per commit is only a bit lower (4 vs. 6.5038). However, with regard to the top 5 change 
types, both cases are very similar. For the first category the top 4 changes are exactly the same while for 
the latter all 5 change types resemble the ones for similar classes (albeit in a different order). 

Similar to utility classes, both the average number of changes (328.25 vs. 197.9509) and the 
number of changes per commit (9.125 vs. 5.7914) are higher for the classes that contain static 
initialization blocks compared to other classes. Finally, the top 5 change types are the same in terms of 
order and even percentages. 

 
Table 5.4.3.2: Defect-proneness of classes with static constructs vs. similar classes for Commons Lang 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 141 14.1 32.6241 DU 
19.1489 SD 

85.5 7.8452 24.8677 SI 
22.7096 SD 
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14.1844 SI 
11.3475 SU 
4.2553 RF 

10.22 DU 
8.7162 SU 
5.0404 SPC 

Constants 26.7755 9.8571 24.0985 SD 
23.68 SI 
10.0129 DU 
8.7733 SU 
5.1513 SPC 

30.8611 5.2778 28.4428 SD 
16.2016 SI 
14.2214 DU 
8.7309 SU 
6.1206 APD 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility 
classes 

156.4483 9.8621 24.4655 SI 
22.9888 SD 
10.5356 DU 
10.0507 SU 
5.4882 CEC 

49.75 6.9107 27.6382 SD 
19.4185 SI 
10.8399 DU 
6.6762 SU 
5.6712 SPC 

Access state 100.5 12.5625 29.6389 SD 
20.8626 SI 
8.4754 DU 
6.0181 SU 
5.3661 SPC 

41.3768 7.9275 23.1751 SI 
22.9311 SD 
11.4656 DU 
9.7955 SU 
5.2543 CEC 

Operate on 
parameters 

55.8571 6.4286 21.4834 SD 
16.8798 DU 
16.3683 SI 
8.1841 SU 
7.9284 SPC 

88.8718 8.0513 24.9423 SD 
22.8938 SI 
10.3001 DU 
8.7998 SU 
4.8615 SPC 

Static init blocks 91.75 13.875 34.7411 SD 
23.5695 SI 
5.7221 SU 
5.3133 DU 
5.0409 SPC 

85.5714 7.2987 23.6455 SD 
22.4313 SI 
11.246 DU 
9.1069 SU 
5.0235 SPC 

  
There are 10 bug-fix commits in which the only class with static non-final attributes, 

ToStringBuilder, was modified. In total, 141 fine-grained changes were performed on it, a value that is 
higher than the average for similar classes (85.5). The amount of changes per commit is also roughly 
double (14.1 vs. 7.8452), but there are more modifications related to documentation (almost 33% are 
doc updates) than for the other classes. 

Just as for change-proneness, the defect-proneness of the classes that contain constants is not 
higher than that of similar classes. The average number of changes is comparable (26.7755 vs. 30.8611) 
and the number of modifications per commit is higher (9.8621 vs. 6.9107), thus indicating that they were 
altered in fewer bug-fix commits. The top 4 change types are the same and their percentages are also 
very similar. 

There have been, on average, more modification performed on utility classes compared to 
similar classes (156.4483 vs. 49.75), but the ratio is smaller than for change-proneness. The difference 
between the number of changes per commit is also lower (9.8621 vs. 6.9107). The top 5 change types 
differ, especially in terms of percentages; for example, even though statement updates are fourth in both 
rankings, the percentages are quite different (10.0507 vs. 6.6762). Similarly to what was discovered for 
change-proneness, the classes with static methods that access state are much more error-prone than 
other similar classes, while the ones with static methods that solely operate on parameters are not. The 
former have, on average, more than double the number of changes (100.5 vs. 41.3768) and slightly more 
modifications were performed on them per commit (12.5625 vs. 7.9275). For the latter there are fewer 
modifications overall (55.8571 vs. 88.8718) and the amount of changes per commit is similar (6.4286 vs. 
8.0513); this shows that they were altered in fewer commits. The top 4 types of changes are exactly the 
same in both cases and they resemble the ones for similar classes. 
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There is barely any difference between the average number of modifications for classes that 
contain static initialization blocks and other classes (91.75 vs. 85.5714). However, the number of changes 
per commit is higher for the first category (13.875 vs. 7.2987), therefore indicating that there are fewer 
bug-fix commits in which classes with initialization blocks were changed. The top 5 change types are the 
same, even the order is almost identical; there are however some differences percentage-wise. 
 

 5.4.4. Commons Math 

  
Table 5.4.4.1: Change-proneness of classes with static constructs vs. similar classes for Commons Math 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
top 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
top 5 change 
types 

Static 
attributes 

Non-final 129.3333 8 38.1443 SD 
13.4021 SI 
8.7629 CD 
7.732 SU 
5.9278 DU 

94.7475 6.0777 18.4892 SI 
18.4459 SD 
15.7329 SU 
11.4143 DU 
6.4468 RF 

Constants 40.0198 8.332 20.2512 SI 
19.9520 SD 
16.5194 SU 
11.3112 DU 
5.1489 RF 

65.0884 5.7569 16.4163 SD 
15.856 SI 
14.5197 SU 
11.6162 DU 
8.2209 RF 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility 
classes 

294.5 8.6154 20.7784 SD 
20.0862 SI 
12.8249 SU 
11.114 RF 
8.058 AF 

86.0612 6.7211 18.216 SD 
18.1804 SI 
16.0893 SU 
12.0307 DU 
5.713 RF 

Access state 174.6667 7.8057 21.6671 SD 
18.9324 SI 
18.2225 SU 
10.781 DU 
5.4694 SPC 

87.6378 6.5996 20.0087 SD 
19.3268 SI 
14.6409 SU 
12.6963 DU 
5.1956 RF 

Operate on 
parameters 

67.7 7.6333 18.2568 SI 
18.0282 DU 
16.776 SD 
13.8839 SU 
6.0326 RF 

82.6587 6.5326 21.982 SD 
19.6539 SI 
15.3065 SU 
10.0118 DU 
4.9391 RF 

Static init blocks 534.6667 11.3333 23.1614 SD 
19.8266 SI 
15.1244 SU 
9.1478 DU 
6.6297 RF 

90.57 6.743 19.5801 SD 
19.2271 SI 
14.9962 SD 
13.2811 DU 
5.1405 RF 

 
 The 3 classes that have static non-final attributes appear to be more change-prone compared 
to other similar classes. More fine-grained changes were performed on them on average (129.3333 vs. 
94.7475) and the number of modifications per commit is higher (8 vs. 6.0777). The top 5 change types 
are also different; for example, over 38% of the changes are statement deletes while for similar classes 
this percentage is around 18.5%. 
 The classes that contain constants suffered less changes compared to other classes. The 
average number of modifications is lower (40.0198 vs. 65.0884) while the number of changes per 
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commits is higher (8.332 vs. 5.7569), thus indicating that they were altered in significantly fewer 
commits. The top 5 change types resemble the ones observed for other production classes. 
 No fine-grained source code changes were encountered for Decimal64Field, the only singleton 
found in the last version of Commons Math. Because of this, we are not able to determine its effect on 
change- / defect-proneness. 
 Utility classes were changed more frequently compared to other classes that are similar to 
them in terms of size and complexity (average number of changes of 294.5 vs. 86.0612). This is mainly 
because certain instances are central to the system and have suffered numerous modifications 
throughout its lifetime; examples include ComplexUtils (1103 changes), MathUtils (1223), and FastMath 
(2329). However, the number of changes per commit is not so different (8.6154 vs. 6.7211), thereby 
suggesting that the utility classes were modified in many more commits. Similar to what was observed 
for the previous project, the classes with static methods that access state are more change-prone than 
other classes while the ones with static methods the only operate on parameters are not. For the first 
category the average number of changes is significantly higher (174.6667 vs. 87.6378) while the amount 
of modifications per commit is comparable (7.8057 vs. 6.5996). On the other hand, for classes with static 
methods that solely operate on parameters the averages are completely different (67.7 vs. 82.6587) and 
the number of changes per commit are similar (7.6333 vs. 6.5326). In both cases the top 4 change types 
are the same as for similar classes; for the latter even the fifth one, REMOVED_FUNCTIONALITY, concurs. 
 The classes that contain at least 1 static initialization block are also changed more compared to 
similar classes (an average of 534.6667 vs. 90.57 changes). The results might be skewed because there 
are only 6 instances and FastMath (with 2329 changes) is one of them. Furthermore, the average number 
of modifications per commit is also higher (11.3333 vs. 6.743). 
 

Table 5.4.4.2: Defect-proneness of classes with static constructs vs. similar classes for Commons Math 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 55.6667 6 14.2857 DAC 
10.3896 DU 
10.3896 SD 
9.0909 CD 
7.7922 AF 

46.3631 7.5706 18.144 SD 
17.2862 SI 
15.1666 SU 
13.5194 DU 
5.7869 RF 

Constants 29.8772 8.5848 22.0139 SI 
17.8826 SD 
16.3297 SU 
14.6303 DU 
4.2289 SPC 

33.9171 6.6188 16.5011 SD 
13.1292 SU 
11.5654 SI 
11.4514 DU 
8.9102 AF 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility 
classes 

101.5789 9.1053 27.3057 SD 
17.3057 SI 
12.1762 RF 
10.1036 SU 
5.544 SPC 

42.9006 7.4699 18.1844 SI 
15.8815 SD 
15.7972 SU 
14.6669 DU 
5.343 AF 

Access state 43.2 4.8 20.4216 SI 
19.3676 SD 
15.0198 SU 
11.1989 DU 
9.8814 AF 

42.1617 6.8271 20.5617 SD 
19.465 SI 
16.9594 DU 
12.4476 SU 
4.8239 SPC 

Operate on 
parameters 

48.4792 7.3333 36.055 DU 
15.6854 SI 
12.1186 SD 
11.0443 SU 

42.1026 6.6624 22.5944 SD 
20.4324 SI 
13.0532 SU 
11.7946 DU 
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5.0279 RF 5.5319 SPC 

Static init blocks 214.8 15 31.9367 SD 
18.2495 SI 
8.2886 CD 
8.1937 SU 
8.0074 SPC 

43.742 7.4493 18.077 SI 
16.2083 SD 
15.6186 SU 
14.2867 DU 
5.9042 RF 

 
 All 3 classes that contain static non-final attributes were modified during bug-fix commits and 
the average number of changes is higher than for classes which are similar to them in terms of size and 
complexity (55.6667 vs. 46.3631). However, the number of changes per commit is lower (6 vs. 7.5706), 
thus indicating that there are more commits in which they were fixed. The top 5 change types are very 
different compared to what was observed thus far; it is one of the few cases in which statement 
insertions and updates do not appear in this ranking. 
 There is no significant difference between the average number of changes for classes with 
constants and other similar classes (29.8772 vs. 33.9171). However, the number of modifications per 
commit is higher for the former (8.5848 vs. 6.6188), thereby suggesting that they were changed less 
frequently. Four of the top 5 change types are the same, albeit the order and the percentages are slightly 
different. 

Nineteen utility classes were modified during bug-fix commits. Even though the average 
number of changes for utility classes is higher than for similar classes (101.5789 vs. 42.9006), the 
difference is smaller compared to what was observed for change-proneness. Additionally, comparable 
values were obtained in terms of number of changes per commit (9.1053 vs. 7.4699). However, the top 5 
change types are different both in order and percentage-wise. The classes with static methods that 
access state are a bit more defect-prone compared to similar classes. The average number of 
modifications is higher (43.2 vs. 42.1617) while the amount of changes per commit is lower (4.8 vs. 
6.8271), thus suggesting that they were modified in more bug-fix commits. For the classes with static 
methods that only operate on parameters, even though the average is slightly higher (48.4792 vs. 
42.1026), the number of changes per commit is also higher (7.3333 vs. 6.6624); this indicates that the 
number of bug-fix commits in which they were changed is roughly the same. Similar to change-
proneness, the top 4 change types are the same, although the order and the percentages are quite 
different (especially for the latter category). 
 The observations that can be made with regard to the error-proneness of the classes that 
contain static initialization blocks are similar to the ones for utility classes. Although the difference 
between the average number of changes is very high (214.8 vs. 43.742), it is much lower than for change-
proneness. The number of modifications per commit is double for this kind of classes compared to 
similar classes (15 vs. 7.4493). This is mainly due to 1 class, FashMath, which suffered 929 changes over 
28 bug-fix commits. The percentages for the top 5 change types are also very different; for example, 
almost 32% of the changes are statement deletes for classes with static initialization blocks while for the 
other classes the percentage is just over 16%. 
 

 5.4.5. Digester 

  
Table 5.4.5.1: Change-proneness of classes with static constructs vs. similar classes for Digester 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final - - - - - - 

Constants 66.75 3.375 19.5521 SD 
16.8389 SU 
14.6856 DU 
13.4798 SI 

61.3654 3.7404 21.1376 SU 
18.5522 SI 
15.8258 SD 
10.0125 DU 
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7.5797 RF 5.0611 CEC 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility 
classes 

6 2.625 41.6667 SU 
16.6667 ROS 
16.6667 RF 
16.6667 IAC 
8.3333 DU 

68.9841 3.6905 19.9609 SU 
17.2227 SI 
16.8431 SD 
11.2632 DU 
5.6143 RF 

Access state - - - - - - 

Operate on 
parameters 

103.1667 4.3333 22.1325 SI 
20.0323 SD 
15.5089 SU 
8.7237 DU 
8.5622 RF 

66.2705 3.6393 20.334 SU 
16.8213 SI 
16.5739 SD 
12.4533 DU 
5.4051 RF 

Static init blocks - - - - - - 

 
There are no singletons or production classes with static non-final attributes / initialization 

blocks in the latest version of Digester. The change-proneness of the classes that contain constants is 
comparable to that of other classes; both the average number of changes (66.75 vs. 61.3654) and the 
number of modifications per commit (3.375 vs. 3.7404) are very similar. Four of the top 5 change types 
are the same, although the percentages are quite different. 

The 2 utility classes, AnnotationUtils and LogUtils, suffered only a small number of changes (9 
and 3, respectively) compared to other classes. The amount of modifications per commits is also lower 
(2.625 vs. 3.6905). In terms of change types, they are very different; two of the most common change 
types, statement insertions and deletions, were not performed on the aforementioned classes. There are 
no classes with static methods that access their state. Those with static methods that operate only on 
parameters are slightly more change-prone than classes that are similar to them in terms of size and 
complexity. They have, on average, a higher number of changes (103.1667 vs. 66.2705), but there are 
also more changes per commit (4.3333 vs. 3.6393). The top 5 modification types are the same as for 
similar classes, albeit the order and percentages do differ. 
 

Table 5.4.5.2: Defect-proneness of classes with static constructs vs. similar classes for Digester 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final - - - - - - 

Constants 12.3125 3.125 25.5539 SD 
21.5657 DU 
15.0665 SI 
11.226 SU 
4.579 RF 

18.0141 3.8451 27.5997 SI 
21.1102 SD 
18.1392 DU 
10.4769 SU 
3.8311 SPC 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility classes - - - - - - 

Access state - - - - - - 

Operate on 
parameters 

22.2 2.8 24.3243 DU 
20.7207 SI 
19.8198 SD 
9.9099 SU 
7.2072 RF 

22.5 3.7683 23.4146 SI 
22.8184 SD 
19.0244 DU 
10.7859 SU 
4.0108 SPC 

Static init blocks - - - - - - 
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There are no static non-final attributes in the production code. The classes with constants are 
not more error-prone compared to other similar classes; they were changed less in bug-fix commits 
(average number of modifications of 12.3125 vs. 18.0141) and the number of changes per commit are 
close (3.125 vs. 3.8451). The top 4 change types are the same, but their order and percentages are 
different.  

The changes performed on the 2 utility classes, AnnotationUtils and LogUtils, did not occur 
during bug-fix commits. No static methods that access state were found. The classes with static methods 
that only operate on parameters are not more error-prone that other similar classes. The average 
number of modifications is almost identical (22.2 vs. 22.5) and there are a comparable number of 
changes per commit (2.8 vs. 3.7683). The top 4 change types are also the same, the only differences are 
in terms of order and percentages. 
 

 5.4.6. Geode 

 
Table 5.4.6.1: Change-proneness of classes with static constructs vs. similar classes for Geode 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 847.1574 9.3333 20.383 SI 
19.7873 SD 
13.3518 SU 
8.1689 SPC 
5.0113 CEC 

252.2445 7.2836 16.1517 SD 
15.843 SI 
13.5458 SU 
5.098 DU 
4.7261 CEC 

Constants 112.4557 9.252 18.6819 SI 
18.2977 SD 
14.7422 SU 
6.0478 SPC 
5.7684 CEC 

148.7544 5.5167 11.7809 IAC 
11.4253 SI 
11.1711 SD 
10.1268 SU 
9.0795 DAC 

Singletons Stateful 431.2667 6.9333 30.3756 SU 
14.5308 SI 
11.1145 SD 
9.0122 DU 
5.3022 CEC 

279.5486 7.3865 17.78 SD 
17.4616 SI 
12.3458 SU 
5.1266 SPC 
4.7614 CEC 

Stateless 496.4808 3.6731 24.4606 SU 
16.1599 SPC 
12.1625 SI 
11.9417 SD 
10.6209 SOC 

275.5052 7.4701 15.9505 SI 
15.5954 SD 
15.0576 SU 
4.8966 DU 
4.8827 CEC 

Static 
methods 

Utility 
classes 

203.4145 4.6891 16.2867 SI 
16.0626 SD 
13.3014 ROS 
12.9448 AOS 
7.9116 SPC 

287.5462 7.6296 16.788 SI 
16.43 SD 
14.0658 SU 
4.9194 SPC 
4.8774 DU 

Access 
state 

964.7198 10.9066 21.1255 SI 
20.728 SD 
12.6103 SU 
9.3616 CEC 
6.3419 SPC 

221.1674 7.0777 15.1035 SI 
14.7718 SD 
13.8617 SU 
5.7841 DU 
4.8912 RF 

Operate on 
parameters 

413.2644 5.5076 20.0649 SU 
17.5532 SI 
17.2656 SD 
6.3178 SPC 
5.6353 PTC 

258.1554 7.7 16.5422 SI 
16.1757 SD 
11.7498 SU 
5.2278 DU 
4.9318 RF 

Static init blocks 1113.6667 15.7576 17.5016 SI 255.7004 7.1338 17.6605 SI 
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17.4145 SD 
12.1643 CEC 
10.5616 SU 
6.7236 SPC 

16.2767 SD 
12.9021 SU 
5.1585 DU 
4.8927 SPC 

 
 Classes with static non-final attributes appear to be more change-prone than other similar 
classes, while the ones that contain only constants are not. For the first category, the average number of 
changes is almost 3.5 time higher (847.1574 vs. 252.2445) while the amount of modifications per commit 
are comparable (9.3333 vs. 7.2836). On the other hand, the average for classes with constants is lower 
(112.4557 vs. 148.7544) and the number of changes per commit is almost double (9.252 vs. 5.5167); this 
indicates that they were modified in fewer commits. The top 5 change types are the same for both 
categories; only the statement-level ones appear in the rankings for similar classes. An interesting 
observation can be made with regard to the top modification for the classes that are similar in terms of 
size and complexity to the ones with constants; its type is INCREASE_ACCESSIBILITY_CHANGE and 
represents 11.78% of the total number of modifications that were performed. 
 Both types of singletons have a much higher change-proneness than similar classes. The 
average number of changes is greater (431.2667 vs. 279.5486 and 496.4808 vs. 275.5052, respectively) 
and the amount of changes per commit is lower (3.6731 vs. 7.4701 and 4.6891 vs 7.6296) compared to 
the other classes; this implies that they were modified in many more commits. With regard to the top 5 
change types, only the 3 most common ones (statement insertions, deletions, and updates) are present 
in all the rankings. 

The change-proneness of utility classes is comparable to that of other classes. Although less 
modifications were performed on them on average (203.4145 vs. 287.5462), the number of changes per 
commit is also lower (4.6891 vs. 7.6296); thus the amount of commits in which they were changed is 
more or less the same. In terms of top 5 change types, this is one of the few cases in which additional / 
removed object state modifications appear in the list (ranked third and fourth); because of this, only the 
first 2 change types resemble the ones for similar classes. 

The rest of the classes that contain static methods are also more change-prone than other 
similar classes, especially the ones with static methods that access state. These classes have, on average, 
almost 4.5 times more changes (964.7198 vs. 221.1674) while the amount of modifications per commit is 
comparable to that of similar classes (10.9066 vs. 7.0777). The classes with static methods that operate 
on parameters are also a bit more change-prone. When compared to other classes, more changes were 
performed on them (413.2644 vs. 258.1554) and the number of modification per commit is lower 
(5.5076 vs. 7.7); this shows that they were modified in more commits. In term of top 5 change types, the 
first 3 are the same both for the 2 categories of classes with static methods and for other classes that are 
similar to the instances in terms of size and complexity. 
 Finally, the classes with static initialization blocks suffered roughly 4 time more changes 
(1113.6667 vs. 255.7004) than similar classes and there are twice as many modifications per commit 
(15.7576 vs. 7.1338); this indicates that their change-proneness is higher. Four of the top 5 change types 
are the same, even the percentages are very similar. 
 

Table 5.4.6.2: Defect-proneness of classes with static constructs vs. similar classes for Geode 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 560.6947 9.8947 20.4408 SI 
19.932 SD 
12.462 SU 
8.7692 SPC 
5.266 CEC 

153.3238 9.6025 15.7888 SD 
15.6849 SI 
15.1362 SU 
5.2902 DU 
5.0906 AF 

Constants 130.416 13.2471 17.9384 SD 100.0837 4.6946 13.6287 SI 

BUPT



                                                119 

17.4154 SI 
15.8108 SU 
6.3485 SPC 
5.8649 CEC 

11.9873 SD 
11.1341 SU 
9.8444 DU 
8.0119 AF 

Singletons Stateful 247.0769 7.4615 29.67 SU 
15.0685 SI 
10.2117 SD 
9.5268 DU 
5.1059 CEC 

174.6582 9.6389 17.5633 SD 
17.5136 SI 
13.5224 SU 
6.5048 SPC 
5.0831 AF 

Stateless 276.551 3.6939 23.9244 SU 
16.8401 SPC 
12.191 SI 
11.1505 SD 
9.6229 SOC 

172.3137 9.7911 15.7411 SI 
15.6948 SD 
15.2579 SU 
6.2717 AF 
5.1622 CEC 

Static 
methods 

Utility 
classes 

171.1538 5.3615 16.2966 ROS 
16.0315 SI 
14.5888 SD 
12.809 AOS 
7.9506 SPC 

175.4005 9.9539 16.6446 SD 
16.5346 SI 
15.5172 SU 
5.3145 AF 
5.2864 SPC 

Access 
state 

495.6746 9.8462 22.2063 SD 
16.9621 SI 
13.5492 SU 
9.2648 CEC 
7.2986 SPC 

141.505 9.5995 16.3281 SI 
15.0945 SU 
14.3962 SD 
5.7665 DU 
5.2545 AF 

Operate on 
parameters 

231.519 5.1044 19.8619 SI 
18.8518 SU 
18.0071 SD 
6.2876 SPC 
5.801 PTC 

163.0041 10.6003 16.0341 SD 
15.4655 SI 
13.3967 SU 
5.8077 AF 
5.5012 DU 

Static init blocks 402.2453 14.8302 19.4148 SI 
14.807 SD 
10.6479 CEC 
10.1427 SU 
8.6918 SPC 

158.9849 9.4629 16.7274 SD 
16.1027 SI 
15.2946 SU 
5.2242 DU 
5.0403 SPC 

 
 The classes with static non-final attributes are more error-prone than other similar classes, 
while for the ones that contain constants defect-proneness is lower. For the former the average number 
of modifications is more than 3.5 times higher (560.6947 vs. 153.3238) and the amount of changes per 
commit is the same (9.8947 vs. 9.6025). For the second category, although there are slightly more 
changes (130.416 vs. 100.0837), the number of modifications per commit is roughly 3 times higher 
(13.2471 vs. 4.6946); therefore they were altered in fewer bug-fix commits. The top 5 modification types 
are the same in both cases, but only the first 3 (the statement-level ones) also appear in the rankings for 
similar classes. 
 Similar to what was observed for change-proneness, the singletons are also more error-prone. 
Both the stateful and the stateless ones have, on average, a higher number of changes (247.0769 vs. 
174.6582 and 276.551 vs. 172.3137, respectively) than other similar classes and the amount of 
modifications per commit is lower (7.4615 vs. 9.6389 and 3.6939 vs. 9.7911), thus proving that they were 
changed in fewer bug-fix commits. Three of the top 5 change types are the same, the statement-level 
ones, but even for them the percentages are higher for the singletons. 

The defect-proneness of utility classes is also similar to that of other classes. The average 
number of changes is almost the same (171.1538 vs. 175.4005), but the number of modifications per 
commit is smaller (5.3615 vs. 9.9539). The top 5 change types in bug-fix commits differ as well due to the 
additional / removed object state modifications that were performed on utility classes. 
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Just as for change-proneness, the other classes with static methods are more defect-prone 
than similar classes. For the ones with methods that access their state, the average number of 
modifications is more than 3.5 times higher (495.6746 vs. 141.505) while the number of changes per 
commit is almost the same (9.8462 vs. 9.5995). For the other category, classes with static methods that 
only operate on parameters, the error-proneness is not significantly higher than that of similar classes; 
there were, on average, more changes performed on them (231.519 vs. 163.0041) and the number of 
modifications per commit is lower (5.1044 vs. 10.6003). Finally, while the top 3 modification types are 
the same (statement-level changes), their order and percentages are different. 
 Although classes that contain static initialization blocks are more defect-prone compared to 
similar classes, their error-proneness is lower than their change-proneness. They suffered, on average, 
2.5 times more modifications (402.14.8302 vs. 158.9849), but more changes were performed on them 
per commit (14.8302 vs. 9.4629). In terms of top 5 change types, 4 of them are the same, albeit the order 
and percentages are significantly different. 
 

 5.4.7. jHotDraw 

  
Table 5.4.7.1: Change-proneness of classes with static constructs vs. similar classes for jHotDraw 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 91.75 11.3445 23.4332 SD 
14.9864 SI 
11.7166 SU 
10.3542 RF 
5.4496 AF 

88.8229 6.92 21.288 SD 
16.4143 SU 
16.1698 SI 
7.5775 RF 
4.6999 SPC 

Constants 104.8304 6.5536 19.7513 SD 
16.387 SI 
15.3224 SU 
8.3042 RF 
5.5106 SPC 

62.2388 7.791 25.8034 SD 
15.3477 SU 
11.7266 SI 
9.4964 RF 
7.0983 DU 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility classes - - - - - - 

Access state 78 8.6667 21.7949 AF 
20.5128 SI 
12.8205 RF 
10.2564 SU 
8.9744 SD 

88.9494 7.0112 21.3983 SD 
15.354 SU 
15.1393 SI 
8.596 RF 
5.6528 SPC 

Operate on 
parameters 

34.1667 5.4306 24.878 SD 
18.5366 SI 
12.1951 SU 
11.2195 DU 
10.7317 RF 

90.7861 7.0867 22.2912 SD 
14.3699 SU 
14.1216 SI 
8.5891 RF 
6.6221 SPC 

Static init blocks 539 10.7105 26.6234 SD 
20.0371 SI 
18.2746 SU 
7.9777 SPC 
3.8961 CEC 

83.8023 6.9831 20.9533 SD 
15.1149 SU 
14.8116 SI 
9.0137 RF 
5.8181 DU 

 
 Surprisingly, the classes that contain static non-final attributes are not more change-prone than 
other similar classes. The average number of modifications is a bit higher (91.75 vs. 88.8229), but so is 
the amount of changes per commit (11.3445 vs. 6.92). Unlike for the previous systems, for jHotDraw the 
classes with constants have a higher change-proneness than other similar classes. Their average number 
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of changes is greater (104.8304 vs. 62.2388) and there are fewer modifications per commit (6.5536 vs. 
7.791). 
 No stateful singletons were found in the latest version of the project. Additionally, the only 
stateless singleton (FigureLayerComparator) did not suffer any fine-grained changes throughout its 
existence. Neither did any of the 4 utility classes. Only 1 class that contains static methods that access 
state was altered (AbstractDrawing with 78 changes in 9 commits); this class is a bit less change-prone 
compared to the classes that were categorized as similar to it.  The 6 classes with static methods that 
solely operate on parameters have a much lower change-proneness. Their average number of 
modifications is almost 3 times smaller (34.1667 vs. 90.7861) while the number of changes per commit is 
comparable (5.4306 vs. 7.0867). 
 Two classes with static initialization blocks were modified, DefaultDrawingView (949 changes in 
61 commits) and AttributeKeys (129 changes in 22 commits). It can be observed that the number of 
modifications is very high, thus showing that they are more change-prone than the other classes. 
 

Table 5.4.7.2: Defect-proneness of classes with static constructs vs. similar classes for jHotDraw 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 29 22.5 32.7586 SI 
29.3103 SD 
17.2414 SU 
3.4483 PD 
3.4483 SPC 

19.9195 9.4253 26.5626 SD 
17.1766 SI 
15.0415 SU 
7.7513 RF 
6.232 SPC 

Constants 24.0545 8.6727 25.0945 SD 
17.7627 SI 
15.5707 SU 
6.576 RF 
6.5004 SPC 

13.7647 11.4118 27.3504 SD 
21.1538 SI 
17.5214 SU 
6.8376 RF 
5.7692 DU 

Singletons Stateful - - - - - - 

Stateless - - - - - - 

Static 
methods 

Utility classes - - - - - - 

Access state 26 13 53.8462 SI 
11.5385 SD 
11.5385 SU 
7.6923 PD 
7.6923 RF 

20.0568 9.6818 25.8924 SD 
18.1303 SI 
16.1473 SU 
6.6289 RF 
6.2323 SPC 

Operate on 
parameters 

6 6 66.6667 SI 
16.6667 SD 
16.6667 SU 

20.2841 9.7614 25.7143 SD 
18.4874 SI 
16.0784 SU 
6.6667 RF 
6.1625 SPC 

Static init blocks 106.5 12.8555 27.6995 SD 
23.9437 SU 
10.7981 SI 
9.3897 SPC 
3.7559 DU 

18.1379 9.6552 25.4119 SD 
19.7085 SI 
15.019 SU 
7.2243 RF 
5.7034 SPC 

 
 Only 2 classes that contain static non-final attributes were changed during bug-fixing, 
AbstractDrawing (26 changes in 2 commits) and ColorIcon (32 changes in 1 commit). Though the average 
number of changes is higher (29 vs. 19.9195), so is the amount of modifications per commit (22.5 vs. 
9.4253); this indicates that they were altered in a comparable number of bug-fix commits. Same as for 
change-proneness, classes with constants are also more error-prone. They have, on average, a higher 
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number of changes (24.0545 vs. 13.7647) and the amount of changes per commit is lower (8.6727 vs. 
11.4118). 
 The only class with static methods that access state suffered 26 fine-grained changes over 2 
bug-fix commits; these values are comparable to the ones obtained for the classes that were considered 
similar to it. RelativeLocator is the only class with static methods that operate on parameters that was 
changed during bug-fixing. Only 6 modifications were performed on it in a single commit, much fewer 
than for similar classes. 
 Unsurprisingly, the 2 classes that contain static initialization blocks are also more error-prone. 
The average number of changes is almost 6 times higher (106.5 vs. 18.1379) while the amount of 
modifications per commit is slightly greater (12.8555 vs. 9.6552). 
 

 5.4.8. Pig 

  
Table 5.4.8.1: Change-proneness of classes with static constructs vs. similar classes for Pig 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 79.8333 9.6667 30.5047 SD 
21.5277 SI 
9.5911 SU 
6.9016 SPC 
4.728 RF 

40.975 6.3524 27.3827 SD 
18.8605 SI 
8.845 SU 
7.8542 SPC 
5.0469 RF 

Constants 44.4253 7.6851 28.84 SD 
19.0464 SI 
10.3782 SU 
7.5034 SPC 
5.3353 SOC 

23.017 6.1473 26.4 SD 
21.00092 SI 
8.0862 SU 
7.8892 SPC 
6.7446 RF 

Singletons Stateful 68.3 7.1 23.8653 SD 
13.7628 SI 
12.0059 SU 
8.0527 SPC 
8.0527 SOC 

46.7092 6.8646 29.3028 SD 
20.693 SI 
8.7296 SU 
6.5953 SPC 
4.9735 RF 

Stateless 4.3333 3.3333 30.7692 SD 
23.0769 RF 
15.3846 AF 
15.3846 SI 
7.6923 PID 

47.2314 6.8843 28.2041 SD 
20.5643 SI 
9.7838 SU 
6.6085 SPC 
4.9467 RF 

Static 
methods 

Utility classes 64.26 8.4 29.225 SD 
22.9381 SI 
9.2126 SU 
6.4737 SPC 
6.3803 RF 

55.5565 6.7381 28.0833 SD 
19.1701 SI 
9.8437 SU 
7.7349 SPC 
4.7997 RF 

Access state 81.8431 7.1961 34.6191 SD 
17.5371 SI 
9.2717 SU 
6.9957 RF 
5.2228 SPC 

44.1215 6.8407 27.2088 SD 
19.8772 SI 
10.8586 SU 
6.9754 SPC 
4.6371 RF 

Operate on 
parameters 

62.2911 6.9494 29.2278 SD 
19.5995 SI 
11.3153 SU 
8.9151 SPC 
4.2655 RF 

40.883 6.8571 26.8912 SD 
18.5512 SI 
10.3083 SU 
9.2033 SPC 
5.4688 RF 

Static init blocks 98 8.619 27.794 SD 
22.3518 SI 

45.2969 6.8063 28.2304 SD 
19.3618 SI 
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11.2245 SU 
9.8154 SPC 
6.3168 RF 

9.6757 SU 
7.4474 SPC 
5.1052 RF 

 
 The average number of changes for classes with static non-final attributes is almost double 
than for other similar classes (79.8333 vs. 40.975). The number of changes per commit is also higher 
(9.6667 vs. 6.3524) and the top 5 change types are identical (even the percentages are very close). 
 Surprisingly, similar observations can be made for classes that contain constants. The average 
number of modifications is once again double (44.4253 vs. 23.017), but the number of changes per 
commit is closer to the one obtained for other classes (7.6851 vs. 6.1473). The top 4 change types are the 
same and their percentages differ by a small margin. 

Ten of the 14 stateful singletons were altered throughout the history of Pig. They appear to be 
more change-prone compared to similar classes; the average number of changes is higher (68.3 vs. 
46.7092), while the amount of modifications per commit is roughly the same (7.1 vs. 6.8646). Similar to 
before, the top 4 change types are identical, albeit the percentages are significantly different. Three of 
the 4 stateless singleton have also suffered fine-grained changes. However, their corresponding 
measurements are much lower than for similar classes (4.3333 vs. 47.2314 and 3.3333 vs 6.8843, 
respectively) or their stateful counterparts. The top 5 change types are also very different than what was 
observed for the other static constructs; for example, it is the first time PARENT_INTERFACE_DELETE 
appeared in the rankings. 

The change-proneness for utility classes is comparable to that of similar classes. Though their 
average number of changes is higher (64.26 vs. 55.5565), the amount of modifications per commit is also 
greater (8.4 vs. 6.7381); this indicates that they were altered in roughly the same number of commits. 
The top 5 change types are also identical, even the percentages are almost the same. 
 The other classes that contain static methods are more change-prone compared to similar 
classes. Both the ones that have methods that access their state and those with static methods that only 
operate on parameters have suffered, on average, a higher number changes (81.8431 vs. 44.1215 and 
62.2911 vs. 40.883, respectively) and the number of modifications per commit are almost identical 
(7.1961 vs. 6.8407 and 6.9494 vs. 6.8571). Furthermore, the top 5 change types are also the same (even 
in terms of order); there are only small differences with regard to percentages. 
 Classes with static initialization blocks seem more change-prone that other which are similar to 
them. The average number of modifications is more than double (98 vs. 45.2969) and the number of 
changes per commit is only a bit higher (8.619 vs. 6.8063). Finally, the top 5 change types are again the 
same; this situation was encountered several time for different categories of static constructs. 
 

Table 5.4.8.2: Defect-proneness of classes with static constructs vs. similar classes for Pig 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 37.1744 8.6163 36.0963 SD 
14.0131 SI 
10.7914 SU 
8.508 SPC 
4.8796 SOC 

22.3587 5.6675 28.535 SD 
18.4851 SI 
10.0712 SU 
9.7525 SPC 
5.7049 CEC 

Constants 25.1836 6.3281 29.3105 SD 
17.9305 SI 
10.6251 SU 
9.3483 SPC 
5.8732 SOC 

14.3546 6.004 33.3056 SD 
15.9034 SI 
9.6586 SPC 
9.3256 SU 
7.6603 CEC 

Singletons Stateful 34.3333 8.4444 23.6246 SD 
11.9741 SPC 
11.6505 SU 

24.7008 6.1265 31.6235 SD 
16.5108 SI 
11.2187 SU 
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11.0032 SI 
11.0032 SOC 

8.3732 SPC 
5.3085 CEC  

Stateless 3.5 3.5 57.1429 SD 
28.5714 SI 
14.2857 APD 

24.9564 6.1782 30.4372 SD 
17.3451 SI 
11.2595 SU 
9.4422 SPC 
4.2607 CEC 

Static 
methods 

Utility classes 33.4651 6.7442 33.148 SD 
18.1376 SI 
11.1188 SU 
8.4781 SPC 
4.934 RF 

24.0754 6.1142 30.1047 SD 
17.25 SI 
10.1423 SU 
9.5605 SPC 
5.2994 CEC 

Access state 37.5 6.5 36.8696 SD 
12.9275 SI 
10.7826 SU 
6.6667 SOC 
6.4928 SPC 

23.6117 6.1345 29.435 SD 
18.0524 SI 
10.17 SU 
9.9035 SPC 
5.5214 CEC 

Operate on 
parameters 

14.4444 5.2698 27.8214 SD 
18.1786 SI 
11.25 SPC 
11 SU 
5.4286 CEC 

22.0946 6.295 31.2029 SD 
17.1152 SI 
10.0408 SU 
8.9195 SPC 
5.2803 SOC 

Static init blocks 41.3684 6.2632 32.4427 SD 
14.7583 SPC 
14.2494 SU 
14.1221 SI 
5.598 CEC 

24.2295 6.1639 30.3197 SD 
16.566 SI 
9.9882 SU 
9.0832 SPC 
6.2351 CEC 

 
 Just as for change-proneness, the average number of modifications in bug-fix commits is higher 
for classes that contain static non-final attributes than for similar classes (37.1744 vs. 22.3587). The 
number of changes per commit is also higher (8.6163 vs. 5.6675). Finally, the top 4 change types are the 
same and the percentages are not very different either. 
 Classes with constants also seem a bit more defect-prone compared to the other classes. Both 
the average number of changes (25.1836 vs. 14.3546) and the number of modifications per commit 
(6.3281 vs. 6.004) are higher. Four of the top 5 change types are the same, all of them being statement-
level changes, but the order and percentages are different. 
 With regard to singletons, 9 stateful and 2 stateless ones (SparkSims and DownloadResolver) 
were changed during bug-fixing activities. While the first appear to be a bit more error-prone compared 
to similar classes, those from the second category are not. The average number of modification and the 
number of changes per commit are higher for the former (34.3333 vs. 24.7008 and 8.4444 vs. 6.1265, 
respectively).  For the stateless variants the corresponding measurements are very low (3.5 for both 
values). It is also worth noting that only 3 types of changes have been encountered in the bug-fix 
commits for stateless singletons (out of a total of 7 changes). 
 The defect-proneness for utility classes is a bit higher than for similar classes. The average 
number of changes is greater (33.4651 vs. 24.0754), while the amount of modifications per commit are 
close (6.7442 vs. 6.1142). The top 4 change types are identical, even the percentages are more or less the 
same. 
 The classes that contain static methods that access state are also more defect-prone that other 
similar classes. The average number of modifications is higher (37.5 vs. 23.6117) while the number of 
changes per commit is very close (6.5 vs. 6.1345). On the other hand, even though they were proven to 
be change-prone, classes with static methods that only operate on parameters are not more error-prone 
when compared to similar classes. They suffered, on average, a smaller number of changes (14.4444 vs. 
22.0946) and the number of modifications per commit is also a bit lower (5.2698 vs. 6.295).  
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 The classes with static initialization blocks have a defect-proneness similar to that of utility 
classes. When compared to other production classes, they were modified more (average number of 
changes of 41.3684 vs. 24.2295) and the same amount of changes were performed on them per bug-fix 
commit (6.2632 vs. 6.1639). The top 5 modification types are the same, but the order and the 
percentages are significantly different. 
 

 5.4.9. Spring Core 

  
Table 5.4.9.1: Change-proneness of classes with static constructs vs. similar classes for Spring Core 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 713.5 8 23.8963 SI 
23.0904 SD 
14.7162 SU 
11.0021 MR 
7.288 ROS 

844.4419 8.1938 24.339 SD 
24.3234 SI 
16.2217 SU 
4.9283 DU 
4.0488 CD 

Constants 154.9277 12.9518 29.6425 SD 
29.6295 SI 
14.3143 SU 
4.3931 CD 
4.3245 CI 

419.3352 5.9832 16.9635 SU 
16.9129 SI 
16.9023 SD 
10.7339 DU 
6.5693 CEC 

Singletons Stateful - - - - - - 

Stateless 5070 809.9231 37.86  SI 
37.7515 SD 
5.9862 API 
5.9467 APD 
3.9645 CI 

12.5 8.1577 23.7108 SI 
23.7004 SD 
16.9455 SU 
6.0812 DU 
3.9999 CD 

Static 
methods 

Utility 
classes 

511.9348 7.7174 38.2946 SD 
38.2691 SI 
9.9537 SU 
3.0362 APD 
3.015 API 

912.8287 8.2917 23.7591 SD 
23.7565 SI 
15.8436 SU 
5.2569 DU 
4.4403 CD 

Access 
state 

5355.75 29.6984 26.5195 SD 
25.7715 SI 
11.1926 SU 
4.0533 RF 
3.9685 AF 

676.5976 6.7967 25.1528 SI 
24.9154 SD 
16.527 SU 
5.3514 DU 
4.4814 CEC 

Operate on 
parameters 

315.3158 6.7368 28.6763 SU 
25.0876 SI 
24.6703 SD 
4.4734 SPC 
4.2564 SOC 

883.6584 8.3045 26.3277 SD 
26.311 SI 
14.8396 SU 
5.9602 DU 
5.0083 CD 

Static init blocks 28.7647 6.3529 24.1309 SI 
16.7689 SD 
9.816 CEC 
9.6115 RF 
8.998 SU 

898.902 8.3184 25.3289 SD 
25.3075 SI 
15.229 SU 
4.8658 DU 
4.0031 CD 

 
 From the 4 classes that have static non-final attributes 1 stands out, ResourceDecoder, which 
suffered 2663 fine-grained source code changes during 411 commits. These classes have, on average, a 
smaller number of modifications (713.5 vs. 844.4419) while the number of changes per commit is almost 
identical to that of similar classes (8 vs. 8.1938); this suggests that their change-proneness is lower. The 
situation is even clearer for production classes that have constants. For them the average is almost 3 
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times lower (154.9277 vs. 419.3352) and the number of modifications per commit is twice as high 
(12.9518 vs. 5.9832); thus they were altered in much fewer commits. Only the first 3 of top 5 change 
types are similar, the last 2 are completely different. 
 There are no stateful singletons in the latest version of Spring Core that was studied. Only 2 of 
the 5 stateless ones have undergone fine-grained changes and the results obtained for them are at 
opposite ends of the spectrum. AnnotationAwareOrderComparator has suffered a record of 10139 
modifications over 411 commits, while ComparableComparator was changed only once. Because of this 
it is impossible to make a proper assessment with regard to the change-proneness of stateless singletons 
for this system. 
 The 46 utility classes have a lower change-proneness than classes which are similar to them in 
terms of size and complexity. The average number of changes is smaller (511.9348 vs. 912.8287) and the 
amount of modifications per commit is roughly the same (7.7174 vs. 8.2917). The top 3 change types are 
identical, but the following 2 (alternative part delete / insert) are not. Regarding the rest of the classes 
that contain static methods, 4 with methods that access state and 31 with static methods that solely 
operate on parameters have suffered fine-grained changes throughout Spring Core’s lifetime. The most 
noticeable one in terms of number of modifications is Frame (18219 changes over 435 commits). It is 
from the first category, which causes the average number of changes for these instances (5355.75) to be 
much higher than for similar classes (676.5976) or for classes with static methods that only operate on 
parameters (315.3158). This observation also holds true for the number of modifications per commit 
(29.6984 vs. 6.7967 and 6.7368, respectively). With regard to the top 5 change types, only the statement-
level ones appear in all 3 rankings. 

The 17 classes that contain static initialization blocks have a much lower change-proneness 
than other similar classes. The average number of modifications is very low (28.7647 vs. 898.902) and the 
amount of changes per commit is comparable to that of similar classes (6.3529 vs. 8.3184). From the top 
5 change types 3 appear in both lists, but the order and percentages are significantly different. 
 

Table 5.4.9.2: Defect-proneness of classes with static constructs vs. similar classes for Spring Core 
Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 286.5 14.5 47.1663 SD 
15.1129 SI 
13.4189 SU 
7.0637 CD 
2.8953 APD 

80.9423 5.75 25.7781 SD 
16.6073 SU 
10.5726 SI 
8.9808 DU 
6.795 CD 

Constants 72.75 12 36.0825 SI 
15.4639 SD 
10.6529 SU 
9.2784 AOS 
7.9038 MR 

166.561 9.061 41.2505 SD 
15.4604 SU 
12.2669 SI 
7.1167 CD 
3.756 DU 

Singletons Stateful - - - - - - 

Stateless 755 25.1667 56.6887 SD 
18.8079 SI 
10.3311 APD 
6.8874 CD 
3.4437 AF 

155.2235 9.0118 39.7984 SD 
15.2039 SU 
13.4531 SI 
6.988 DU 
3.8881 CD 

Static 
methods 

Utility 
classes 

122 9.7333 50.5464 SD 
26.776 SI 
8.6339 SU 
5.082 APD 
2.7869 SPC 

170.6901 9.0845 38.2277 SD 
14.2388 SU 
11.7749 SI 
8.004 CD 
4.101 DU 

Access 699.5 23.3734 42.2059 SD 138.8026 8.7763 40.2313 SD 
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state 11.1177 SI 
10.6471 SU 
6.9706 AF 
5.4412 CD 

16.4327 SU 
14.7407 SI 
6.4794 CD 
3.7918 DU 

Operate on 
parameters 

69.5 9.25 35.9712 SU 
27.3381 SI 
9.7122 SD 
9.3525 CD 
4.6763 RF 

166.7195 9.1951 42.343 SD 
13.9419 SU 
13.4665 SI 
5.9344 CD 
3.7671 DU 

Static init blocks 17.5714 8.4286 43.9024 SI 
22.7642 SD 
4.065 SOC 
4.065 DU 
3.252 SPC 

175.0127 9.2658 40.8723 SD 
14.48 SU 
13.4746 SI 
7.0302 CD 
3.7104 DU 

 
 Four classes with static non-final attributes were changed during bug-fix commits. The average 
number of changes is more than 3 time higher than for similar classes (286.5 vs. 80.9423). The number of 
modifications per commit is also greater (14.5 vs. 5.75). On the other hand, the classes that contain 
constants have low defect-proneness. Compared to other similar classes, their average number of 
modifications is less than half (72.75 vs. 166.561), but the number of changes per commit is higher (12 vs 
9.061); this indicates that they were altered in much fewer bug-fix commits. 
 There are no stateful singletons in the latest version of Spring Core. Only 1 stateless singleton 
was modified during bug-fix commits (AnnotationAwareOrderComparator); it suffered 755 fine-grained 
changes over 30 commits, much more compared to other similar classes. The 15 utility classes that were 
fixed during the project’s lifetime are less error-prone compared to the classes that were categorized as 
similar to them (in terms of size and complexity). The average number of changes is lower (122 vs. 
170.6901) and the amount of modifications per commit is comparable (9.7333 vs. 9.0845). 
 Two classes that have static methods that access state were changed while fixing defects, 
AnnotationWriter and Frame. Both their average number of modifications and the amount of changes 
per commit are very high (699.5 vs. 138.8026 and 23.3734 vs. 8.7763, respectively). For the classes that 
contain static methods that solely operate on parameters it is the other way around. They have, on 
average, a smaller number of changes (69.5 vs. 166.7195) and were modified in a comparable number of 
commits (9.25 vs. 9.1951). 
 Similar to before, the classes with static initialization blocks have a much lower error-
proneness. The average number of modifications is roughly 10 times smaller (17.5714 vs. 175.0127) and 
the number of changes per commits is close (8.4286 vs. 9.2658). 
 

 5.4.11. Wicket 

 
Table 5.4.11.1: Change-proneness of classes with static constructs vs. similar classes for Wicket 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 128.1818 4.0909 23.4994 SI 
18.0077 SD 
15.0702 SU 
7.9183 PTC 
5.8748 DU 

98.921 4.3267 16.7064 SI 
16.4268 SD 
14.8057 SU 
5.8749 RF 
5.517 DU 

Constants 35.5553 4.649 19.4783 SD 
19.1396 SI 
14.9545 SU 
5.4778 RF 

47.1797 3.793 16.352 SD 
15.9215 SI 
14.2077 SU 
7.8324 DU 
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5.0168 DU 7.435 RF 

Singletons Stateful - - - - - - 

Stateless 27.6667 4.3333 28.3133 SI 
24.0964 SD 
16.2651 SU 
6.6265 SPC 
3.6145 DU 

89.9639 4.3238 17.6846 SD 
17.4624 SI 
15.807 SU 
6.8635 RF 
5.5271 DU 

Static 
methods 

Utility 
classes 

92.7727 4.6818 22.44 SI 
17.4914 SD 
16.5605 SU 
6.8594 RF 
6.4674 DU 

98.625 4.3117 18.7423 SD 
18.3667 SI 
14.7522 SU 
5.8192 RF 
5.4859 DU 

Access state 107.6 3.9852 18.8687 SD 
15.6184 SU 
14.3943 SI 
7.5559 RF 
5.0654 DU 

97.0077 4.3364 19.6918 SD 
19.6399 SI 
13.7806 SU 
5.7929 RF 
5.5394 DU 

Operate on 
parameters 

105.2571 5.2286 20.3995 SD 
19.787 SU 
15.3884 SI 
5.4427 RF 
5.3591 DU 

86.4511 4.2156 18.1949 SI 
18.1278 SD 
15.7477 SU 
5.9774 RF 
4.5937 DU 

Static init blocks 80.6667 4.6667 25.2066 SD 
21.9008 SU 
7.438 SI 
5.3719 SPC 
4.9587 RF 

96.545 4.1213 18.4741 SD 
18.5278 SI 
14.5826 SU 
5.66 RF 
5.5248 DU 

 
The 11 classes that contain static non-final attributes are more change-prone than classes 

which are similar to them in terms of size and complexity. There are more changes on average (128.1818 
vs. 98.921) and the number of modifications per commit is roughly the same (4.0909 vs. 4.3267), thus 
indicating that they were altered in more commits. Four of the top 5 change types are identical, though 
the percentages are a bit different. 

One the other hand, the classes with constants are not changed more frequently compared to 
similar classes. The average number of modifications is lower (35.5553 vs. 47.1797) while the amount of 
changes per commit is higher (4.649 vs. 3.793), therefore the number of commits in which they suffered 
modifications is also lower. 
 There are no stateful singletons in the final version of Wicket. Six of the 8 stateless singletons 
have suffered fine-grained source code changes throughout the project’s lifespan. However, the average 
number of modifications is lower than for similar classes (27.6667 vs. 89.9639), while the number of 
changes per commit is almost the same (4.3333 vs. 4.3238); this would indicate that they are less 
change-prone. The top 5 change types also resemble the ones for similar classes; only the fourth in the 
rankings (STATEMENT_PARENT_CHANGE) is different. 

Both the average number of changes (92.7727 vs. 98.625) and the number of changes per 
commit (4.6818 vs. 4.3117) for utility classes are very similar to those of other production classes. 
Additionally, the top 5 change types are also the same with statement-level modifications occurring most 
frequently. For the other classes that contain static methods, the average number of changes is higher 
(107.6 vs. 97.0077 for those with methods that access state and 105.2571 vs. 86.4511 for those with 
static methods that solely operate on parameters). However, for the ones from the first category the 
number of changes per commit is lower (3.9852 vs. 4.3364) than for similar classes, while for the classes 
from the second category it is higher (5.2286 vs. 4.2156). This indicates that the former were modified in 
more commits compared to other similar classes; this is not the case for the latter for which the number 
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of commits is almost identical (roughly 20 commits). The top 5 change types are the same, just the order 
and percentages are slightly different. 

The 3 classes with static initialization blocks, TagUtils (27 changes), WicketTagIdentifier (74), 
and JavaSerializer (141), have suffered less changes compared to similar classes (80.6667 vs. 96.545 on 
average). However, the number of changes per commit is comparable (4.6667 vs. 4.1213). The top 5 
change types are also similar, but the percentages are quite different (e.g., 7.44% vs. 18.53% for 
statement inserts). 

 
Table 5.4.11.2: Defect-proneness of classes with static constructs vs. similar classes for Wicket 

Category Instances Similar classes 

Avg. # 
changes 

# Changes 
per 
commit 

% Occurrence 
to 5 change 
types 

Avg. # 
changes 

# Changes 
per commit 

% Occurrence 
to 5 change 
types 

Static 
attributes 

Non-final 55.4 3.9 28.7402 SD 
24.8031 SI 
12.9921 SU 
4.7244 RF 
4.3307 SPC 

38.7883 4.3777 22.643 SD 
19.745 SI 
13.8784 SU 
5.9654 SPC 
5.1562 RF 

Constants 21.2228 4.7636 23.252 SD 
20.1857 SI 
14.3607 SU 
5.7613 SPC 
4.8647 RF 

20.1762 3.6166 22.3164 SD 
17.7966 SI 
12.379 SU 
6.8053 SPC 
6.2917 RF 

Singletons Stateful - - - - - - 

Stateless 17.8 6.2 35.9551 SD 
31.4607 SI 
11.236 SPC 
3.3708 CEC 
3.3708 CD 

38.6751 4.3538 21.6594 SD 
20.7564 SI 
13.927 SU 
5.9227 SPC 
5.162 RF 

Static 
methods 

Utility classes 35.4091 4.7273 24.9037 SI 
22.8498 SD 
13.9923 SU 
7.3171 SPC 
7.1887 DU 

38.5911 4.3587 23.7001 SD 
18.6561 SI 
13.8619 SU 
5.8906 SPC 
5.144 RF 

Access state 76.5 4.7813 26.8489 SD 
19.1318 SI 
10.6109 SU 
6.1093 RF 
5.7879 SPC 

38.6907 4.387 21.5913 SD 
19.8248 SI 
14.9712 SU 
4.9494 RF 
4.1213 SPC 

Operate on 
parameters 

32.7368 3.8947 23.4263 SD 
20.512 SI 
14.2586 SU 
5.3654 SPC 
5.0908 RF 

33.968 4.318 23.4152 SD 
18.7127 SI 
13.8248 SU 
6.0822 SPC 
5.2285 RF 

Static init blocks 17 3 33.3333 SU 
21.5686 SD 
11.7647 SI 
7.8431 ROS 
5.8824 SPC 

38.6043 4.3777 21.7171 SD 
19.8239 SI 
14.8278 SU 
5.9448 SPC 
5.1528 RF 

 
Ten of the 11 classes with static non-final attributes were modified during bug-fix commits. 

Similar to change-proneness, they are more error-prone than other classes; the average number of 
changes is higher (55.4 vs. 38.7883) and there are approximately the same amount of changes per 
commit (3.9 vs. 4.3777). The top 5 change types are identical, but the order and percentages have small 
variations. 
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The classes that contain constants are not more error-prone when compared to similar classes. 
The average number of modifications is almost the same (21.2228 vs. 20.1762), but there is roughly 1 
change more per commit (4.7636 vs. 3.6166); this implies that there are fewer bug-fix commits in which 
such classes were modified. Just as before, the top 5 change types are the same, even the percentages 
are very similar. 

Five of the 8 stateless singletons were altered during bug-fix commits. The average number of 
changes is lower (17.8 vs. 38.6751) than for similar classes, but the amount of modifications per commit 
is higher (6.2 vs 4.3538); therefore, it is clear that they were modified in much fewer bug-fix commits. 
Another interesting observation is that statement updates were not performed on the stateless 
singletons during bug-fixing; the respective change type is not part of the ranking. 

Bug fixes have been performed on 22 of the 31 utility classes; nevertheless, the defect-
proneness for this kind of static constructs is exactly the same as for other similar classes. Both the 
average number of modifications (35.4091 vs. 38.5911) and the amount of changes per commit (4.7273 
vs. 4.3587) are very close. The top 4 change types are also extremely similar (even percentage-wise). 

Just as for change-proneness, the classes with static methods that access state are more error-
prone than other similar classes while the ones that contain methods that only operate on parameters 
are not. For the first category the average number of changes is double (76.5 vs. 38.6907) and the 
amount of modifications per commit is almost the same (4.7813 vs. 4.387). Classes from the second 
category have suffered the same number of changes (32.7368 vs. 33.968) and the number of 
modifications per commit is comparable (3.8947 vs. 4.318). With regard to top 5 change types even the 
order is identical and the percentages are very close. 

All the production classes with static initialization blocks were modified during bug-fix commits. 
However, the average number of changes performed is less the half (17 vs. 38.6043) while the amount of 
modifications per commits is only a bit less (3 vs. 4.3777); therefore, they were changed in fewer 
commits. Four of the top 5 change types are the same, but more statement updates have been done 
than for any other static constructs. 
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6. DISCUSSION 
 
 

6.1. Revisiting the research questions 
 

In the first section of this chapter we provide an interpretation of the results 
with regard to each research question. We look at the obtained results as a whole, 
thereby being able to draw meaningful conclusions. Below are our remarks per 

research question: 
 

RQ1. Are static constructs used in complex software systems? 

 For the first research question we begin by establishing if instances from 
each category are present in the production code of the studied systems. In Table 

6.1.1 we specify whether or not this is indeed the case per project; with 2 
checkmarks we are representing that a considerable amount of instances of the 
respective type were found. 

 

Table 6.1.1: Static construct presence 

System Static attributes Singletons Static methods Static init. 
blocks Non-final Constants Stateful Stateless Utility 

classes 
Access 
state 

Operate on 
parameters 

BCEL ✓ ✓✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Commons 
Collections 

 ✓✓  ✓ ✓✓ ✓ ✓  

Commons Lang ✓ ✓✓  ✓ ✓✓ ✓ ✓ ✓ 

Commons Math ✓ ✓✓  ✓ ✓ ✓ ✓ ✓ 

Digester  ✓✓   ✓  ✓  

Geode ✓ ✓✓ ✓ ✓ ✓✓ ✓ ✓ ✓ 

jHotDraw ✓ ✓✓  ✓ ✓ ✓ ✓ ✓ 

Pig ✓✓ ✓✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Spring Core ✓ ✓✓  ✓ ✓✓ ✓ ✓ ✓ 

Tomcat ✓ ✓✓ ✓ ✓ ✓✓ ✓ ✓ ✓ 

Wicket ✓ ✓✓  ✓ ✓ ✓ ✓ ✓ 

 

 All the projects contain static constructs, but not all categories of static 

constructs are present within a system. It can be observed that only 4 of the 11 
systems (BCEL, Geode, Pig, and Tomcat) have instances from all 8 categories. While 
the last 3 are the largest projects studied, BCEL is considerably smaller; 
nevertheless, the project contains only 1 stateful singleton, the type that causes 5 

of the other systems (except Commons Collections and Digester) not to appear in 
the previous list. 

 Static non-final attributes are encountered in 9 of the projects studied. 
Commons Collections and Digester are the only systems in which such instances are 

not present; they are 2 of the smallest projects in terms of size. There is also 1 
system, Pig, which contains a considerable amount of static non-final attributes; 

thus, 2 checkmarks have been put in the corresponding entry in the table. The other 
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type of static attributes, constants, are present all throughout the source code of 
the 11 projects that were analysed. 

 Ten of the projects contain at least 1 singleton. However, stateful instances 
are present only in the 4 systems enumerated above. On the other hand, stateless 
variants were found in all the projects except Digester (the smallest project 

studied). 

 Utility classes also appear in all the projects; the number of instances is 
substantial for 5 of them: Commons Collections, Commons Math, Geode, Spring 
Core, and Tomcat. Other types of static methods (that are not part of singletons or 

utility classes) have been encountered in all 11 systems. With the exception of 
Digester, static methods that access their class’s state are present in the rest of the 
projects. Static methods that only operate on parameters have been found 
throughout the code. However, the amount of instances for both types is very low 

compared to the number of non-static methods. 

 Finally, static initialization blocks are present in 9 of the systems, but the 
number of instances is again on the low side. 

  

Table 6.1.2: Percentage of instances per category 

System Static attributes Singletons Static methods Static init. 
blocks Non-final Constants Stateful Stateless Utility 

classes 
Access 
state 

Operate on 
parameters 

BCEL 2.3121 80.2312 0.1156 0.2312 1.2717 6.474 8.7861 0.578 

Commons 
Collections 

0 52.5253 0 1.0101 6.2626 0.202 40 0 

Commons Lang 0.125 65.625 0 0.125 6.375 0.375 25.5 1.875 

Commons Math 1.3746 72.394 0 0.1145 2.8637 1.1455 20.7331 1.3746 

Digester 0 80 0 0 4.4444 0 15.5556 0 

Geode 2.8633 74.6491 0.158 0.595 2.8539 1.7105 16.7705 0.9947 

jHotDraw 5.6054 82.7354 0 0.2242 0.8969 1.3453 8.7444 0.4484 

Pig 12.1891 54.7761 0.6965 0.199 3.7313 4.2786 22.4378 1.6915 

Spring Core 1.0363 63.3161 0 0.5181 6.5285 1.3472 24.456 2.7979 

Tomcat 3.3779 78.2959 0.2017 0.126 3.756 1.1596 10.5873 2.4956 

Wicket 2.3585 80.3235 0 0.5391 2.0889 0.4043 14.0836 0.2022 

 

 The table above shows the percentage of instances of a certain type from 
the total number of static constructs present within a system. Constants are by far 

the most common category; more than half of the static construct instances are 
constants for any of the projects. The lowest percentages are a bit above 50% 
(52.53% for Commons Collections and 54.78% for Pig), while the highest ones are 
over 80% (e.g., 80.32% for Wicket). 

 The second most common type of static constructs are static methods that 

only operate on parameters. This observation holds true for all the projects; 
nevertheless, the percentages differ considerably from one project to another; for 
BCEL and jHotDraw it is around 8.75%, while for Commons Collections the 

percentage is almost 5 times higher (40%). 

The percentages for utility classes are generally higher than for the 
remaining types of static constructs. Similar to the previous category, there are 
cases in which the corresponding values are lower, such as jHotDraw (0.9%) or 

BCEL (1.27%). 
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An interesting observation can be made with regard to static non-final 
attributes. There are 2 projects, jHotDraw and Pig, in which the percentages for this 
type of static constructs are considerably higher (5.61% and 12.19%, respectively) 
than for the previous category. Nonetheless, there are more cases where they are 

much lower, including Commons Collections, Commons Lang, Digester, or Spring 
Core (under 1%). 

Static methods that access state are next in this ranking; however, this is 
the case for only some of the systems, such as BCEL, Geode, jHotDraw, or Pig. 

There are also situations in which the percentage is 0 (Digester) or very small 
(0.202% for Commons Collections). 

There are more instances of static initialization blocks than singletons 
(regardless of their kind). The only projects that do not adhere to this rule are 
Commons Collections and Wicket. There is also Digester which does not have 

instances of any of these types. 

Finally, stateless singletons appear in 10 of the 11 systems while the 
stateful ones are present in only 4 of them. From these 4 projects, the percentages 
for the stateful variant are higher in 2 of them (Pig and Tomcat) and lower in the 

other 2 (BCEL and Geode). In terms of actual types, Eager Instantiation seems to be 
the predominant type followed closely by the general form (Lazy Instantiation). 
Other variations, such as Subclassed Singleton or Limiton, were rarely found in the 
studied systems; however, it is worth mentioning that in Geode (the project with 

the highest amount of instances) there are 2 hierarchies in which most of the 
classes are Subclassed Singletons. 

 

 

RQ2. How have static constructs evolved throughout the lifespan of a 
project? 

 For the second research question we analyse each category of static 

constructs separately in terms of evolution. We compare the percentage of instances 
of a particular type for the initial version of a project and the latest one studied. 
Additionally, the maximum value for this percentage along with the date in which it 
was reached are also recorded. These measurements allow us to determine whether 

or not the number of instances increased as a system grew in size or if they are 
utilized less nowadays. 

 

Table 6.1.3: Evolution of static attributes and singletons 

System Constants Static non-final attributes Stateful singletons Stateless singletons 

First Max. Last First Max. Last First Max. Last First Max. Last 

BCEL 2.66 3.43 
5/2003 

1.17 54.68 70.33 
9/2015 

40.75 0.56 0.56 
11/2001 

0.23 0.56 0.84 
9/2002 

0.46 

Commons 
Collections 

2.86 5.69 
2/2002 

0 2.86 34.24 
8/2012 

29.85 0 0 0 0 1.66 
5/2013 

0.95 

Commons 
Lang 

3.39 6.15 
5/2003 

0.001 64.41 67.08 
12/2009 

60.57 0 0 0 0 0.39 
2/2020 

0.31 

Commons 
Math 

0 9.17 
9/2007 

0.56 17.33 34.46 
1/2016 

29.74 0 0 0 0 0.45 
2/2007 

0.12 

Digester 1.49 9.91 
5/2004 

0 1.49 10.91 
11/2011 

10.91 0 0 0 0 0.66 
8/2010 

0 
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Geode 2.41 2.41 
4/2015 

1.39 53.18 53.18 
4/2015 

36.21 0.53 0.53 
5/2015 

0.44 2.09 2.12 
6/2015 

1.41 

jHotDraw 3.55 17.86 
5/2009 

2.21 20.49 42.91 
5/2020 

42.91 0.56 0.56 
9/2000 

0 0 0.34 
5/2020 

0.34 

Pig 8.06 13.24 
12/2008 

6 16.12 25.36 
11/2014 

24.58 1.13 1.32 
2/2008 

0.8 0 0.36 
3/2008 

0.23 

Spring Core 2.22 6.77 
8/2010 

0.52 41.78 41.78 
10/2007 

31.97 0 0.25 
7/2013 

0 1.05 1.15 
12/2013 

0.77 

Tomcat 7.5 7.5 
2/2006 

1.39 28.14 33.76 
11/2010 

32.18 0.48 0.48 
3/2006 

0.38 0.1 0.24 
12/2020 

0.24 

Wicket 1.37 1.79 
10/2009 

0.84 44.77 45.06 
12/2008 

39.59 0.09 0.09 
3/2007 

0 0.99 1.18 
1/2012 

0.65 

 

 For static non-final attributes we calculated the percentage of instances 
from the total number of attributes and the situation is straightforward. This 

percentage is higher in the first version of a project compared to the latest one. The 
only system that does not adhere to this rules is Commons Math, because there 
were no static non-final attributes in its initial version; however, the percentage for 
the last version is also very low (0.56%). Furthermore, the maximum values for this 

percentage were reached towards the beginning of the development process; the 
latest maximum was encountered in 2015 (but it corresponds the first version of 
Geode available). This indicates that the developers have become aware of the 

problems caused by static non-final attributes and started to utilize them less. 

 On the other hand, for constants no clear pattern could be observed. For 6 
of the systems the percentage of constants from all the attributes is higher in the 

latest version, while for the other 5 it is greater in the initial one. There are many 
cases in which the percentages are very close, for example Commons Lang, Pig, 

Tomcat, or Wicket. In general, it was observed that the number of instances 
increased proportionally to the total number of attributes. In terms of the maximum 
values, they were encountered around halfway through the development period in 

most cases. The only exception would be jHotDraw; for this system the peak 
percentage was found for the last version studied. 

 The percentage of singletons from the total number of production classes is 
very low throughout the lifespan of any system; thus, the idea that singletons are 

overused is not supported by the obtained results. For the stateful variant, there are 
4 projects in which there were no such instances throughout their entire existence 
and 3 with no singletons of this type in their latest version. Even for the other 4 
systems, the percentage of stateful singletons is extremely low (less than 1%). 

Additionally, the maximum values for this percentage were encountered at the 
beginning of the development process in all cases. Stateless singletons were utilized 
a bit more frequently. Although they appeared in the initial version of only 4 

projects, Digester is the sole system that does not have such instances in its final 
version. The percentages are again low, but they are a little higher than for stateful 
singletons. There are also situations in which the maximum was found towards the 

end of the development cycle, such as Commons Lang, jHotDraw, and Tomcat. This 
suggests that the developers are not as reluctant to create stateless singletons 
compared to their stateful counterparts. 
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Table 6.1.4: Evolution of utility classes, static methods, and initialization blocks 

System Utility classes Methods access state Methods only parameters Static init. blocks 

First Max. Last First Max. Last First Max. Last First Max. Last 

BCEL 1.67 2.55 
4/2021 

2.55 0.43 0.63 
6/2006 

0.35 2.23 3.31 
6/2019 

3.17 4 5  
8/2015 

5 

Commons 
Collection
s 

11.11 11.11 
5/2001 

5.9 0 0.28 
2/2002 

0.02 0.35 5.16 
9/2007 

4.45 1 2  
5/2013 

0 

Commons 
Lang 

42.86 42.86 
8/2002 

16.04 0 1.69 
2/2004 

0.08 0.29 5.7 
4/2020 

5.67 2 16  
5/2008 

15 

Commons 
Math 

5.71 10.53 
6/2003 

3.04 0 0.91 
11/2008 

0.17 0.27 3.86 
7/2016 

3.12 0 19  
3/2016 

12 

Digester 0 6.7 
1/2004 

1.06 0 0.35 
11/2003 

0 0.57 0.84 
8/2010 

0.76 0 1  
1/2004 

0 

Geode 5.79 5.79 
5/2015 

5.32 0.67 0.67 
4/2015 

0.33 3.79 3.79 
4/2015 

3.24 171 171  
4/2015 

107 

jHotDraw 1.69 5.01 
9/2003 

1.03 0.79 1.94 
1/2010 

0.22 1.44 3.94 
1/2003 

1.43 0 23  
11/2010 

8 

Pig 2.82 6.29 
4/2008 

4.1 0.79 0.96 
1/2018 

0.95 2.82 5.11 
1/2017 

4.98 0 39  
10/2015 

34 

Spring 
Core 

0 19.16 
10/2008 

9.75 0 0.44 
5/2018 

0.27 0.43 4.98 
9/2018 

4.89 7 28  
12/2015 

27 

Tomcat 7.13 7.41 
4/2006 

7.01 1.85 1.85 
3/2006 

0.22 4.13 4.13 
3/2006 

1.98 49 110 
10/2018 

99 

Wicket 1.53 2.64 
3/2016 

2.02 0.23 0.33 
3/2008 

0.07 2.69 3.18 
10/2009 

2.28 0 4  
11/2015 

4 

 

 For utility classes, if there were such instances in the first version of a 
system, then their percentage is higher than the corresponding value for the last 

version studied. This is true for 6 of the 9 projects in this situation; for all 3 
remaining ones, BCEL, Pig, and Wicket, the percentages for the initial and final 
versions are very close. Similar to before, the maximums appeared at the start of 

the development period. There are nonetheless exceptions, such as BCEL or Wicket. 
The fact that utility classes are used less in recent years is surprising especially for 
the projects that are structured as libraries (which rely heavily on such static 

constructs). 

 For static methods that access state, the situation is similar to the one 

described above. If the percentage is greater than 0 in the initial version, then it is 
also higher than the value obtained for the latest version. Pig is the only exception, 
but for this project the values are relatively constant throughout its entire existence. 

For the projects which had no instances of this type initially, the percentage 
increased considerably in the first few months of development and eventually 
became higher than that of the latest version. In general, the maximums were 

encountered at the very beginning of the development process, proving once again 
that there are some types of static constructs that are being used less and less. 

 The case for static methods that only operate on parameter is very different. 
For 7 of the projects the percentage of instances is higher in the latest version 
analysed, while for 3 of the remaining ones the values are close (e.g., for 

jHotDraw). This is especially true for some of the projects, such as Commons 
Collections or Commons Math, where the difference is substantial. Furthermore, the 
maximum values were reached towards the end of the development cycle for more 

than half of the systems. 
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For static initialization blocks we reason in terms of number of instances. We 
could have provided the percentage of production classes that contain such 
instances instead, but decided not to due to the fact that a class may have 2 or 
more static initialization blocks. It can be observed that for 8 of the 11 systems the 

number of instances is higher in the latest version compared to the initial one. For 
Commons Collections and Digester the amount of static initialization blocks is low 
throughout their entire lifespan. However, for Geode it dropped considerably even 

though the number of production classes only decreased from 4992 to 4528. 
Another observation would be that the maximum number of instances was generally 
encountered halfway through the development process. There is only 1 system, 
Tomcat, for which it was found towards the end (in late 2018). 

 

RQ3. Do static constructs have a negative impact on software quality 

aspects? 
 We evaluate the impact of each category of static constructs on the 3 
quality aspects considered. The types are studied independently in order to establish 

which of them are the most harmful with respect to a certain aspect. 
 

Table 6.1.5: Impact of static constructs on class testability 
System Static attributes Singletons Static methods Static init. 

blocks Non-final Constants Stateful Stateless Utility 
classes 

Access 
state 

Operate on 
parameters 

BCEL << > < - > ≈ >> >> 

Commons 
Collections 

- << - > ≈ ≈ ≈ - 

Commons Lang << > - >> < < > > 

Commons Math << < - < ≈ < > << 

Digester - > - - ≈ - ≈ - 

Geode << > ≈ > >> ≈ > > 

jHotDraw - - - - - - - - 

Pig << ≈ < > ≈ << > ≈ 

Spring Core << < - >> ≈ < >> ≈ 

Tomcat > >> ≈ ≈ > > ≈ < 

Wicket << ≈ - > >> < >> ≈ 

 
 In the above table we provide an overview of the testability of the classes 
that contain different types of static constructs when compared to similar classes. 

Two symbols (<< or >>) are used to indicate that both the quantitative and the 
qualitative scores are higher in favour of one or the other. Only 1 symbol (< or >) 
shows that although the 2 scores differ (one is greater while the other is lower), the 
overall testability score is still considerably higher either for the classes of interest 

or for the similar classes. 
 For the ones with static non-final attributes it is clear that they are less 
testable than the classes which are similar to them in terms of size and complexity. 

From the 8 systems in which such instances appear, for 7 of them the difference is 
heavily in favour of the similar classes. There is only 1 exception, Tomcat, but even 
for this project the classes that contain static non-final attributes are only tested 

more (the unit tests are not of a better quality). It is worth mentioning that for 
some systems the results might be skewed due to the small number of classes that 
contain this kind of attributes (e.g., Commons Lang with 1 such instance). 
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 The situation is not as straightforward for the classes with constant. For the 
10 systems analysed in terms of testability we found that: in 5 of them the classes 
of interest have a higher overall testability score (especially in Tomcat), for 2 (Pig 
and Wicket) the scores are roughly the same, while for the other 3 the similar 

classes are more testable. There are numerous production classes that contain 
constants, therefore most of the remaining classes were included in the group of 
similar classes; this might cause the results to be more general than for the other 

categories of static constructs. 
 Only 4 systems have stateful singletons in their latest versions. For 2 of 
them the overall testability of the singletons is lower than that of similar classes, 
while for the other 2 the values are more or less the same. On the other hand, the 

stateless variants appear to be much more testable than their stateful counterparts. 
There are 8 projects in which instances of this type exist and for 6 of them their 
corresponding score is greater than for similar classes. In 2 of the cases, Commons 

Lang and Spring Core, both the quantitative and the qualitative scores are higher; 
however, the number of instances in these systems is quite low (1 and 5 stateless 
singletons, respectively). For Tomcat the testability scores are very similar, while for 

Commons Math (only 1 instance) they are in favour of the similar classes. 
 The observations for utility classes resemble the previous ones (for the 
stateless singletons), albeit the number of instances is much higher. There are 4 
systems in which the utility classes are more testable than other similar classes, 5 

where the overall testability scores are comparable, and only 1 (Commons Lang) 
that does not adhere to the rule. For 2 of the projects from the first category, Geode 
and Wicket, the difference is substantial in favour of the utility classes. 

 For the rest of the production classes that contain static methods, the cases 

for those with methods that access their state and for the ones with static methods 
that only operate on parameters seem to be the opposite of one another. There are 

5 out of 9 projects for which the classes with static methods that access state are 
less testable. From the remaining 4 only Tomcat is an actual exception, in the other 
3 (BCEL, Commons Collections, and Geode) the overall testability scores are very 
similar. For static methods that solely operate on parameters, the classes that 

contain them have a higher testability in 7 of the 10 cases; in 3 of them (BCEL, 
Spring Core, and Wicket) both scores are greater. For the remaining 3 systems, the 
overall testability scores for the classes on interest and the similar classes are 

comparable; there is no situation in which the testability is higher for the latter 
category. 
 Finally, the classes with static initialization blocks also appear to be a bit 

more testable. Instances of this type are present in 9 of the projects and the cases 
are as follows: for 4 of them (especially for BCEL) the classes of interest have a 
higher testability, in 3 the overall testability scores are roughly the same, while 2 of 
the systems represent exceptions. For Commons Math there are 12 instances of 

static initialization blocks and the classes that contain them have a much lower 
testability score compared to similar classes; this is mainly due to the large 
difference in terms of coverage, thereby causing their quantitative score to be 

significantly smaller. 
 

Table 6.1.6: Impact of static constructs on change-proneness 
System Static attributes Singletons Static methods Static init. 

blocks Non-final Constants Stateful Stateless Utility 
classes 

Access 
state 

Operate on 
parameters 

BCEL >> ≈ >> << >> >> >> >> 
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Commons 
Collections 

- ≈ - << >> ≈ < < 

Commons Lang ≈ ≈ - - >> > << > 

Commons Math ≈ < - - >> >> < >> 

Digester - ≈ - - << - > - 

Geode >> << >> >> ≈ >> >> >> 

jHotDraw ≈ > - - - < << >> 

Pig > > > << ≈ >> > >> 

Spring Core ≈ << - >> << >> << << 

Tomcat >> < > > < >> << ≈ 

Wicket > < - << ≈ ≈ ≈ ≈ 

 
 Table 6.1.6 presents the change-proneness of the classes with different 
types of static constructs in comparison to that of similar classes. The symbols are 
the same as for the previous table; however, in this case 2 symbols are used to 

represent that both the average number of changes and the number of commit in 
which the instances from a certain category were modified are higher / lower. 
 The classes that contain static methods that access state have the highest 

change-proneness when compared to other similar classes. There are 10 systems in 
which such instances appear and for 7 of them this is clearly the case. Even for 2 of 
the others, Commons Collections and Wicket, the change-proneness of these classes 

is comparable to that of similar classes; they are by no means less susceptible to 
modifications. The only exception is jHotDraw, but for this system only 1 such 
instance was encountered. In general, the difference between the average number 
of changes is substantial while the amount of modifications per commit in not. 

 For all 4 projects that have stateful singletons we found that the respective 

instances are more change-prone than the classes that were categorized as similar 
to them (in terms of size and complexity). Especially for 2 of the systems, BCEL and 

Geode, the average number of modifications is much higher while the number of 
changes per commit is lower; this implies that the stateful singletons were changed 
in many more commits. The latter (Geode) is the project with the most instances of 

this type out of all the systems investigated. 
 Another category that resembles the previous ones are classes with static 
non-final attributes; their change-proneness is also greater than that of similar 
classes. Nine of the 11 projects have such classes and the situation is as follows: for 

5 of them the respective classes are more susceptible to changes, while in 4 the 
change-proneness is comparable. 
 Classes that contain static initialization blocks are also more change-prone. 

Six of the 10 projects with such instances adhere to this rules, while for 2 of the 
others (Tomcat and Wicket) the values are very close. The exceptions are Commons 
Collections (only 1 instance) and Spring Core, a system which does have a 

significant number of classes with static initialization blocks (25); 17 of them have 
been modified throughout its history. 
 An interesting case is that of utility classes; it would seem that they are 
more prone to modifications in projects that are structured as libraries, while for the 

other systems it is the other way around. For the 3 Commons libraries and BCEL the 
utility classes have a higher change-proneness, which might indicate that a special 
emphasis is put on these classes in this kind of projects. 

 Statefull singletons are in a similar situation; there are 7 projects in which 
these singletons have suffered modifications throughout their lifespan. In 3 of them 
the average number of changes is considerably higher compared to similar classes, 

while for the other 4 this is not the case; there is no system for which the values are 
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close. It is also worth mentioning that projects with a small number of instances 
appear in both categories (e.g., Spring Core for the first category and Commons 
Collections for the latter). 
 Finally, the classes that contain constants / static methods that only operate 

on parameters are not more change-prone than other similar classes. Instances of 
both types are present in all of the 11 projects. For the former category there are: 5 
systems (especially Geode and Spring Core) in which the classes with constants are 

less change-prone than similar classes, 4 where the proneness is relatively the 
same, and 2 in which it is lower. For classes with static methods that solely operate 
on parameters the situation is more polarized: there is only 1 project in which the 
values are close, for 6 of the others the classes of interest have a lower change-

proneness, while for the remaining 4 systems they are more susceptible to 
modifications. 
 

Table 6.1.7: Impact of static constructs on defect-proneness 
System Static attributes Singletons Static methods Static init. 

blocks Non-final Constants Stateful Stateless Utility 
classes 

Access 
state 

Operate on 
parameters 

BCEL > > ≈ << > >> ≈ > 

Commons 
Collections 

- ≈ - - >> ≈ < - 

Commons Lang > < - - >> > < ≈ 

Commons Math ≈ ≈ - - >> > ≈ >> 

Digester - ≈ - - - - ≈ - 

Geode >> ≈ > >> ≈ >> > >> 

jHotDraw ≈ > - - - ≈ << >> 

Pig > > > << > > < > 

Spring Core >> << - >> < >> << << 

Tomcat > < > ≈ < >> < < 

Wicket > ≈ - << ≈ >> ≈ << 

 
 Out of all the classes with static constructs, the ones that contain static 

methods that access state are by far the most defect-prone. Instances of this type 
are present in 10 of the 11 systems and in 8 of the cases their error-proneness is 
higher than that of similar classes; for 5 of the projects the difference is substantial. 

There are only 2 systems in which the values are comparable, Commons Collections 
and jHotDraw, but even for them the average number of changes is greater in 
favour of the classes with this kind of static methods. 
 Classes that contain static non-final attributes are almost as defect-prone as 

the previous ones. This observation holds true for 7 (especially Geode and Spring 
Core) out of the 9 projects in which such instances appear. The only exceptions are 
Commons Math and jHotDraw; for them the average number of modifications in the 

classes of interest / similar classes are very close. 
 Stateful singletons are also more error-prone than other similar classes, but 
the difference is lower than for change-proneness. Three of the 4 systems adhere to 

this rule, while for BCEL the corresponding values are almost identical. Just as for 
change-proneness, the results for the stateless variant are inconclusive; for 2 of the 
projects the instances have a higher defect-proneness when compared to similar 
classes, for 3 of the remaining ones it is the other way around, while for Tomcat the 

average number of changes and the amount of modifications per commit are more 
or less the same. 
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 For utility classes the situation is as follows: in 5 of the projects the defect-
proneness is higher than that of similar classes, for 2 (Geode and Wicket) it is 
comparable, and in the last 2 systems (Spring Core and Tomcat) the instance of 
interest are less prone to error. This is quite different compared to what was 

observed for change-proneness; there the utility classes were more prone to 
modifications only in the systems that were structured as libraries. 
 Classes with static initialization blocks are in a similar situation. Instances 

were changed during bug-fix commits in 9 of the 11 projects and for 5 of the 
systems the respective classes are more defect-prone. For 3 of the largest projects, 
Spring Core, Tomcat, and Wicket, this is not the case, while for Commons Lang the 
ratio between the average number of modifications and the amount of changes per 

commit is close to the one obtained for similar classes. 
 Like for change-proneness, the classes that contain constants and static 
methods that solely operate on parameters also appear to be less error-prone. This 

is very clear for the latter category where there is only 1 exception, Geode. In 6 of 
the projects (especially Spring Core) the classes with this type of static methods 
have a lower defect-proneness than their similar counterparts, while for the other 4 

systems the computed values are comparable. Finally, for the classes with constants 
there are: 5 systems for which the values are close, 3 (Commons Lang, Spring 
Core, and Tomcat) where their error-proneness is lower, and 3 (BCEL, jHotDraw, 
and Pig) in which they are actually more susceptible to defects than other similar 

classes. 
 
 

 

6.2. Threats to validity 
 
 In this section we present the factors that could be considered threats to the 

validity of the empirical study and the obtained results. Additionally, we discuss the 
ways in which we tried to mitigate them. The factors are grouped into 3 categories: 
construction, internal, and external threats. This categorization is done based on the 

guidelines introduced by Perry et al. in [98]. The threats from the first category are 
related to the independent and dependent variables; more specifically, whether or 
not they model the formulated hypotheses accurately. The internal threats arise if 
the changes in the dependent variables cannot be attributed to changes in the 

independent ones. Finally, the threats from the third category address the results of 
the empirical study, namely if they are generalizable to other settings. For each 
category we have identified a series of threats: 

1. Construction threats 
These threats may appear due to problems in the code that was developed 
for collecting the data required in our analyses. To avoid such issues, the 

proposed approach was carefully tested using several small-scale systems 
created specifically for this purpose. For static construct presence / usage 
we added instances from each category in different combinations and 
checked that they are detected correctly. As an example, for singletons we 

manually recreated all the variations discussed in [91] while also studying 
jHotDraw with commits from the time of the article. Furthermore, we 
verified the number of clients for each instance to determine if they are 

calculated correctly along with their localization. In terms of evolution, we 
randomly chose commits from every system and checked that the number 

of instances / clients of each type are identified properly. For testability we 
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ensured that the quantitative and qualitative metrics are computed 
correctly; the coverage and test smell data was inspected to confirm that 1) 
the percentages of production methods addressed by tests / unit tests that 
contain smells and 2) the number of different types of smells from a test 

class are in order. We also corroborated that the corresponding scores are 
determined properly based on the proposed threshold values. Finally, for 
change- / defect-proneness we verified that the fine-grained source code 

changes were extracted correctly by manually comparing consecutive 
commits to establish what was modified. Additionally, we checked 1) that 
the lists of issue keys corresponding to bugs are correct and complete and 
2) that the bug-fix commits are identified accurately. 

2. Internal threats 
The main threats from this category are confounding factors, namely other 
variables that could mask an actual association or falsely prove an apparent 

association between the independent and dependent variables. It is difficult 
to identify all the factors that have an impact on these variables, but we will 
try to discuss as many as possible. For the first hypothesis, there might be 

other system characteristics that affect the presence / usage of different 
types of static constructs. Studying multiple combinations of characteristics 
can help alleviate this threat. With regard to the second hypothesis, there 
may be other factors that influence the evolution of static constructs. 

Though they are important, the size and complexity of the studied systems 
should not be the sole causes why instances / their clients were created or 
deleted. Finally, for the last hypothesis, the presence of certain types of 

static constructs might not be the only reason why a class suffers from lack 

of testability or has high change- / defect-proneness. This is especially true 
for the smaller constructs, such as constants or static methods that are not 

part of singletons / utility classes; their impact on the 3 software quality 
aspect should be lower than for the other categories. 

3. External threats 
• Only open-source projects: one of the biggest threats from this category is 

that the observations presented above might not be generalizable for other 
software systems. Up until this point, we did not have access to projects 
from industry, therefore all 11 systems that were included in the analysis 

are open-source. Different types of static constructs might appear more 
frequently in commercial projects and they could also be utilized in other 
ways. Furthermore, their evolutionary patterns may not resemble the ones 

that have been observed thus far. The way in which class testability is 
assessed (in relation to other similar classes) could be inappropriate if all 
the production classes are fully tested with unit tests of the highest quality. 
Finally, change- and fault-proneness might prove easier to quantify due to 

better development practices (e.g., more fine-grained commits or better 
commit messages). All in all, there is a clear need to study industrial 
projects; we are actively working on addressing this threat and expect to 

obtain access to at least 2 commercial systems in the near future. 
• Only object-oriented Java systems: another cause for concern may be that 

all the projects included in the empirical study were developed in Java by 

following an object-oriented approach. In terms of programming language, 
we are confident that the solution can be easily adapted to enable us to 
analyse systems created in other object-oriented languages (such as C# or 
C++). The code might need to be reimplemented in the respective 
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language, but the proposed approach should still apply. However, studying 
systems which are developed following other programming paradigms could 
prove more difficult. For example, class testability is investigated in an 
object-oriented context, by evaluating the quantity and quality of the 

associated unit tests. This may not be possible for projects created in 
imperative or functional programming languages because some of the 
concepts on which our approach is based might not exist. We need to 

experiment with other programming languages / paradigms before we can 
generalize the obtained results. 

• High granularity of study: the level at which everything is studied could also 
be considered a threat to validity; most of the analyses are performed at 

class level. Although there are situations in which an analysis is more fine-
grained (e.g., the extracted source code changes), in most cases we only 
look at classes as a whole. For example, we categorize a production class as 

a singleton client if at least 1 of its methods utilizes the singleton. Studying 
exactly which methods use it would have allowed for a better categorization, 
thereby obtaining more detailed results. Granularity may also impact the 

process through which we study the evolution of static constructs. In our 
approach we performed sampling on a system’s commits with a frequency of 
1 per month. The results could have been a bit different if all the commits 
were considered. As explained in Chapter 3, the probability that a static 

construct was added and immediately removed within that 1 month period is 
quite low. Nonetheless, we can extend the approach so that 1) the projects 
are studied at method level or 2) all the commits are analysed. 

• System selection process: the projects that were chosen for the empirical 

study could also represent an external threat. Even though they were 
selected based on a set of well-established criteria, there may be other 

systems with completely different characteristics that should have been 
included in the analysis. We tried to choose projects 1) of various sizes and 
complexities, 2) with unique development practices, and 3) varying testing 
efforts. However, systems created by following certain development 

methodologies might be worth considering. While the specific methodology 
may not influence all the software quality aspects, there could be some that 
are impacted. For example, we expect Test Driven Development to affect 

our assessment on class testability. The code coverage for projects 
developed following TDD should be significantly higher because the 
corresponding unit tests must be written before the production classes are 

implemented. On the other hand, this does not guarantee that the quality of 
the tests will be higher. In the same vein, the change- / defect-proneness of 
the production classes should be lower because the requirements are clearer 
and less bugs are introduced. The above are just suppositions, we need to 

analyse this kind of projects before any meaningful conclusions can be 
drawn. 
To conclude this subsection, we would like to reiterate that we selected 

systems with different characteristics, a considerable number of versions 
were analysed, and both the test suites and the change histories were 
appropriate. Although there are several ways in which the empirical study 

can be improved, we firmly believe that it represents a solid foundation for 
the research that will follow. We plan to address all the aforementioned 
external threats in the near future, as will be explained in the Future Work 
section. 
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In summary, this chapter discusses: 

1. The implications of the results with regard to each research question:  

• For RQ1 we found that: a) static constructs are present in all the 

systems studied; b) constants are by far the most common type 
followed by static methods and utility classes; static non-final 
attributes, initialization blocks, and singletons appear less often, 
especially in the smaller projects; c) the number of clients of static 

constructs (and their localization) are not much different than those 
of similar classes in most of the cases. 

• For RQ2 we saw that there are indeed several categories of static 

constructs for which fewer instances are added nowadays compared 
to earlier stages of development. 

• For RQ3 we established that: a) static non-final attributes, stateful 

singletons, and static methods that access state have the highest 
impact on class testability; b) all the categories of static constructs 
except constants and static methods that only operate on parameters 
affect change-proneness, albeit for utility classes and stateless 

singletons the results are contradictory for different types of systems; 
c) for defect-proneness their impact is not as significant as for 
change-proneness. 

2. The threats to the validity of the empirical study: 

• construction threats: problems in the code that was developed in 

order to a) detect static constructs, b) study the evolution of different 

types of instances and their clients, and c) quantify class testability, 
change- and defect-proneness. 

• internal threats: lack of / wrong correlation between the independent 
and dependent variables for each hypothesis. 

• external threats: lack of generalizability of the results because a) all 
the projects are open-source and implemented in Java, b) the 
granularity of the study is too high, c) the system selection process 

was inappropriate. 
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7. CONCLUSIONS 
 
 

 Developing software systems is a complex process which is comprised of 
several activities, including: design, implementation, testing, and deployment. 
Performing these activities can be difficult if a project does not possess some key 
quality features. For example, testing could be hindered because the system’s 

production classes lack testability. The implementation time might also increase due 
to the high change- / defect-proneness of the classes. These aspects need to be 
taken in to account especially in the context of evolution. As projects evolve, they 

still need to meet a series of quality requirements, such as: performance criteria 
(e.g., speed or accuracy), being easily maintainable and testable, or not being 
susceptible to change / defects. However, little research has been done thus far on 

what makes a system 1) difficult to test and 2) change- / 3) error-prone. Static 
constructs have already been shown to have a negative effect on understandability, 
maintainability, and efficiency, but there are other aspects that still need to be 
studied. We have been addressing this knowledge gap by conducting an empirical 

study which investigates the impact of static constructs on the quality aspects 
mentioned above. 

First, we categorized the static constructs and defined detection strategies 

through which instances of each type can be identified. Afterwards we studied these 
instances both for the latest version of a system and throughout its entire lifespan; 

this was done to determine how static constructs have evolved over time. Finally, 

we defined models that can be used to quantify the 3 quality aspects investigated. 
For a part of the production code that contains / utilizes static constructs we can 
determine if it is less testable or more change- / defect-prone compared to other 
similar classes. 

In this final chapter of the thesis we start by providing an overview of the 
main scientific contributions made through our work. Then we summarize the 
results that were obtained and discuss the conclusions that can be drawn from 

them. Next, we reflect on what we have accomplished and explain what could have 
been done better. We end the chapter with future work directions that we are 
currently pondering. 

 
 

7.1. Contributions 
 

 In this thesis we investigate static constructs, how they evolved and their 
effect on various software quality aspects. This was done in order to: 1) determine 
how they are currently utilized, 2) compare this to the way in which they were used 
throughout the lifespan of a system, 3) establish if they have a negative impact on 

testability or change- / defect-proneness. By doing this we bring the following 
contributions: 

1. A methodology for studying the evolution and the impact on 1) testability 

and 2) change- / 3) defect-proneness of any design flaw. Even though in the 
thesis we focus on static constructs, the proposed approach can be used to 
investigate other design flaws. The corresponding detection strategies need 

BUPT



                                                145 

to be defined, then the evolution and the effect on software quality may be 
studied in a similar manner. For example, the God Class design flaw can be 
detected as proposed in [33], by computing the corresponding metrics WMC 
(Weighted Method per Class), Tight Class Cohesion (TCC), and Access to 

Foreign Data (AFD) and comparing them to the threshold values. The results 
are combined into a detection strategy which can be utilized to identify 
instances of the God Class flaw. The presence of such instances can be 

analysed both for the latest version of a project and for its entire history. 
Finally, their impact on the software quality aspects can be established by 
making use of the proposed quantification models. As an example, we can 
determine if God Classes are changed more frequently during bug-fixing 

commits compared to the rest of the production classes. 
2. A model for quantifying the testability of a production class. Unlike other 

publications that address software testability, we evaluate this quality 

aspect based on the test code rather than the production code. We consider 
that a part of the system is tested less / with lower quality unit tests 
compared to other parts of the code because it is more difficult to test (has 

low testability). Therefore, testability was evaluated both from a 
quantitative and from a qualitative perspective. In terms of quantity, we 
relied on code coverage data; for quality we determined if particular smells 
are present in the associated unit tests. These 2 aspects were combined in 

order to compute a testability score for a specific part of the production 
code. 

3. A process for determining 1) what was changed during a commit and 2) 

whether or not that particular commit is a bug-fix. First and foremost, to 

evaluate change-proneness we needed to be able to establish the exact 
modifications that were made during a commit. For this we extract fine-

grained source code changes which specify: the entity that was modified 
(class, attribute, or method), the type of the change (e.g., conditional 
statement modification in method), and other details related to it (such as 
severity). We use these data to determine if a class that has / utilizes static 

constructs is more change-prone than other production classes. The entire 
change history of the studied class is analysed and compared to that of 
similar classes (in terms of size and complexity). Defect-proneness is 

evaluated in the same manner, but only the commits that were categorized 
as bug-fixes are taken into account. In order to determine if a commit is a 
bug-fix we rely on 2 types of information: 1) the one available in the commit 

message and 2) additional data collected from the corresponding Jira issue 
tracker. Based on this we are able to accurately categorize commits as bug-
fixes. 

4. A tool that incorporates all of these aspects. The aspects that were 

discussed above were integrated into DFAnalyser. This tool is an extension 
of Patrools [95] which could already compute some of the required metrics. 
We designed it to have a modular structure; several modules can be 

combined together in order to perform the required analysis. One of the 
modules contains the detections strategies for the design flaw that is being 
investigated (e.g., singletons). Another module is concerned with the 

software quality aspect for which we want to assess the impact of the design 
flaw. Finally, if we also want to study the evolution of the respective flaw, 
we have to add the appropriate module. The modules are highly 
configurable and can be easily extended; for example, a different quality 
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aspect could be investigated by creating a module with a suitable model for 
quantifying it. 

5. An empirical study through which we answer the proposed research 
questions. We began our research by formulating a series of questions that 

cover the major aspects that we wanted to understand with regards to static 
constructs. For each of the research questions we also prepared several 
hypotheses that we needed to test. To answer them we conducted an 

empirical study which includes 10 open-source software projects. In this 
study we investigate all the aspects discussed above, namely: static 
construct usage, evolution, impact on testability and change- / defect-
proneness. Each type of static construct was analysed in isolation; 

afterwards, some general conclusions have been drawn for static constructs 
as a whole. 

6. A better understanding of static constructs, their evolution, and the effect 

they have on various software quality aspects. First, we wanted to establish 
if static constructs (e.g., mutable global state) are present in the production 
classes of complex software projects and whether or not other classes utilize 

them. Then we were keen to observe how they are used nowadays, once a 
system has reached maturity, compared to earlier stages of development. 
Finally, we assessed the effect of static construct usage on quality aspects 
such as testability or change- / defect-proneness; we determined which 

types of static constructs have the biggest negative impact on the 
aforementioned quality aspects and discussed possible reasons why this is 
the case. 

 

 
 

7.2. Conclusions 
 

The proposed approach was successfully implemented and an empirical 
study which includes 10 open-source systems was conducted. Some interesting 

findings were obtained through this study. We are now capable of answering the 
research questions that were formulated: 

For RQ1, “Are static constructs used in complex software systems?”, we 
analysed the presence and usage of each type of static construct for the latest 

version of a project. The main finding is that instances of static constructs actually 
do appear in the code and are frequently utilized by other production classes. 
Classes with static non-final attributes, constants and static methods are present all 

throughout the source code, while singletons and static initialization blocks are 
used, but to a smaller extent. We make a distinction between stateful and stateless 
singletons; those from the latter category seem to appear more often. We also 

divided the static methods which are not part of singletons into 3 categories: 1) 
those from utility classes; 2) that utilize the attributes of their class; 3) which only 
operate on parameters. Based on the specific characteristics of a system, static 
methods from one category are used more compared to the others. For example, in 

a project which is structured as a library (Commons Math), the most common type 
of static methods are the ones that are part of utility classes. 

In terms of usage, the number of production classes that utilize such 

instances varies depending on the static construct’s type. As an example, there are 
more classes that use static methods (regardless of their category) than there are 

singleton clients. Unlike the other types, static non-final attributes, constants, and 
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static initialization blocks are generally utilized within the class in which they appear 
rather than from other production classes. 

For RQ2, “How have static constructs evolved throughout the lifespan of a 
project?”, we studied the evolution of each type of static construct in isolation for 

monthly versions of a system. In general, it was observed that most of the static 
constructs are utilized less once a project reaches maturity. The percentage of 
instances present from each category is usually higher in the initial versions of a 

system compared to the latest ones. Also, the maximum number of instances of a 
particular type was encountered more frequently towards the beginning of the 
development process. For example, there were more singletons in a version that is 
halfway during the development period than in the final version studied although 

the number of production classes is constantly growing. The only exceptions are 
constants and static methods which solely operate on parameters (to some extent); 
for these 2 categories the amount of instances increases continuously as a project 

grows in size. 
The situation is even more evident for static construct clients. There are 

numerous cases in which the number of clients for a particular instance remained 

constant (or even decreased) while the total number of production classes for the 
system was growing exponentially. Situations in which the classes with / that utilize 
static constructs were marked as Deprecated have also been encountered. Starting 
from that version, the number of client classes began to decrease until reaching 0 

(or until the respective class was removed). All of the above suggest that the 
developers have become aware of the problems associated with the usage of 
specific types of static constructs and started to utilize them less. 

For RQ3, “Do static constructs have a negative impact on software quality 

aspects?”, we investigated the effects of each category of static constructs on the 3 
quality aspects addressed by this study. For testability we found that some of the 

instances have a more detrimental effect compared to others. Stateful singletons 
and static non-final attributes appear to have the biggest impact on the testability of 
the production classes that utilize them. They represent mutable global state and 
their client classes are difficult to test due to the setup required for configuring the 

appropriate state. This causes the respective classes to have a lower testability 
score; they are tested less compared to other similar classes and the unit tests 
covering them are of a lower quality (have more test smells, such as General Fixture 

or Assertion Roulette). Similar observations can be made for some types of static 
methods. While the usage of static methods that modify state causes a production 
class to be tested less, for the ones that are part of utility classes or that only 

operate on parameters this is not the case. Constant do not have a negative impact 
on testability, neither in the classes in which they are declared nor in the 
corresponding client classes. Finally, the classes with static initialization blocks also 
seem a bit more testable, albeit for them it was difficult to evaluate this quality 

aspect due to the small number of instances present. 
The change- and defect-proneness aspects were studied together because 

the procedures for assessing them are quite similar. The major difference is that for 

the latter only the commits which were categorized as bug-fixes are considered. 
Mutable global state instances, namely stateful singletons and static non-final 
attributes, are also very detrimental to change-proneness (same as for testability). 

The classes that have such instances were modified more frequently during commits 
and the number of changes that occurred is higher than for the rest of the 
production classes. Besides the ones that solely operate on parameters, the other 
static methods appear to have a negative impact on change-proneness; however, 
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the effect is not as evident as for the mutable global state instances. Classes with 
static initialization blocks are in a similar situation. Finally, constants do not make 
the classes of which they are part of more change-prone; the average number of 
commits in which they were changed is comparable to that of similar classes. 

The most important observation in terms of defect-proneness is that the 
classes that contain / utilize certain types of static constructs are less error-prone 
than they are change-prone. For example, the ratio between the average number of 

bug-fix commits in which stateful singletons / similar classes were modified is lower 
than the corresponding measurement when all the commits are taken into account. 
This observation also holds true for classes that have static non-final attributes and 
static methods that modify state. For the other types of static methods, constants, 

and static initialization blocks the values are very close to the ones obtained for 
change-proneness. All of the above suggest that using certain types of static 
constructs does have a negative effect on the software quality aspects investigated; 

nonetheless, there are static constructs (such as constants or static methods that 
solely operate on parameters) that do not affect these aspects. 
 

 
 

7.3. Reflection 
 

No major issues were encountered while implementing the proposed 
approach. The detection strategies for the different types of static constructs were 
successfully defined by leveraging the metrics already computed by Patrools and 
adding the ones that were missing (e.g., class has only private constructors). For 

testability we were able to obtain 1) coverage information by using JaCoCo through 
Maven / Gradle plugins and 2) data related to test smells with TSDetect. The scripts 
necessary for running these tools were easily integrated into DFAnalyser. The 

correlation between specific parts of the production code and the corresponding unit 
tests was also established using Patrools. In order to assess change-proneness we 
managed to extract fine-grained source code changes for the production classes 

using ChangeDistiller. For defect-proneness we categorized commits as bug-fixes 
based on information extracted both from the commit message and from the 
associated Jira issue tracker. In general, the proposed procedures were 
straightforward and easy to implement. Nonetheless, we consider that the ones 

related to the testability score and the bug-fix categorization could be improved, as 
will be explained in the future work section that follows. 

Just like during implementation, the empirical study was conducted without 

any problems. The systems were selected based on a set of well-established 
criteria; we tried to choose systems that are different in terms of size and 
complexity, development practices, and testing effort. We did not encounter any 

issues while retrieving them from the corresponding Git repositories or when 
accessing the associated issue trackers. However, both while developing the 
approach and when conducting the study, we needed to make some decisions on 
how to proceed. Every time this had to be done, we provided the reasoning behind 

the decisions that were taken. As for any empirical study, there are ways in which it 
can be extended; we will analyse them in the next section. 
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7.4. Future work 
 

Even though we tried to reach closure, there are several ways in which the 
proposed approach and the conducted study could be improved. We will discuss 
them, in no particular order, in the current section. Although the list is not 

exhaustive, these are the directions on which we will be focusing in the foreseeable 
future. 

1. Extending the empirical study: as discussed in Section 6.2, there are 

several limitations to our study. We plan to address them by enhancing it in 
the following ways: 

• Additional Java systems: first of all, we want to add more Java projects to 

our analyses. Although we studied a considerable number of systems which 
were selected based on a set of well-established criteria, there may still be 
some particular projects worth including. An important limitation of the 
study is that all the analysed systems are open-source. We hope that in the 

future we will have access to commercial projects. They might differ from 
open-source ones in terms of: 1) amount and types of design flaws present; 
2) testing effort and quality of unit tests; 3) development practices. 

Studying such systems would ensure that our results are generalizable to 
any software project. 

• Other development technologies and programming paradigms: another 

limitation is that all the analysed projects are implemented in Java. We are 
already pondering the possibility of reimplementing the tool in order to 
support other object-oriented programming languages (namely, C# and 
C++). The proposed approach should still apply, but the coding might need 

to be done in a C-family language. It will be interesting to see if the 
observed patterns are still valid for this type of systems. 
In addition to the development technology, we also want to study projects 

created by following other programming paradigms. As discussed in the 
previous chapter, static constructs are used very differently in embedded 
systems. This is why we are keen to extend the study to both imperative 

and declarative paradigms, including: procedural, functional, and logic 
programming. We will focus on the way in which static constructs are 
utilized, but will also examine their impact on the 3 quality aspects of 
interest. 

• Different development methodologies: the methodologies play an important 
role in how a system is created. Different development practices have been 
observed for the chosen projects; however, none of the systems were 

created through Test-Driven Development. For TDD the test cases have to 
be written before the production code is implemented, thus the method 
through which we quantify testability might need to be adjusted accordingly. 

The latest agile development methodologies, such as extreme programming 
or lean development, will also be investigated. Doing this will add more 
credibility to the obtained results, thereby improving the quality of the 
study. 

2. Studying other design flaws:  
• God Class: this design flaw appears when a class “does too many things and 

knows too much” [99]. More specifically, this kind of instances perform most 

of the computations, delegate only minor responsibilities to a limited 
number of trivial classes, and utilize data from many other classes. The tool 

can be easily extended to detect God Classes because it can already 
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calculate the required metrics: 1) WMC (Weighted Method Count) to 
determine if a system’s intelligence is distributed horizontally and as 
uniformly as possible or concentrated in several large classes [100]; 2) TCC 
(Tight Class Cohesion) to find classes with low communicative behaviour; 3) 

ATFD (Access to Foreign Data) to identify the classes that directly access 
data from other classes. After computing the 3 metrics, we can compare the 
values to the thresholds proposed in [101] and combine them into a 

detection strategy for God Class instances. 
Due to their nature, we expect the God Classes to have a negative impact 
on software testability. Considering the large size of this type of classes, 
they are probably tested less compared to the rest of the production code. 

In the same vein, having too many responsibilities may cause smells to 
appear in their corresponding unit tests, thereby reducing the quality of the 
test code. The aforementioned problems could also affect the change- and 

defect-proneness of these classes. For example, more changes might be 
performed on God Classes during bug-fix commits compared to other similar 
classes. 

• Feature Envy: this is another design flaw that could have an impact on the 
software quality aspects investigated. It appears when a method from a 
production class “accesses the data of another object more than its own 
data” [99]. Similar to the previous design flaw, the detection strategy is 

based on 3 metrics, namely: 1) ATFD (Access to Foreign Data); 2) LAA 
(Locality of Attribute Accesses) to determine if the method utilizes more 
attributes from other classes than its own attributes; 3) FDP (Foreign Data 

Providers) to calculate the number of classes the attributes belong to. The 

threshold values and the way in which the metrics are combined are 
thoroughly explained in [101]. Because they rely on data from many other 

classes the set-up required for testing might cause them to be covered less 
or with unit tests of a lower quality (e.g., with lots of test smells). Classes 
with Feature Envious methods may also change more often due to the fact 
that they depend on numerous other classes. 

• Object instantiations in constructors / methods: instantiating objects instead 
of using Dependency Injection is a very common design problem. The issues 
that arise when doing this in constructors are discussed by Hevery in [17]; 

the most notable ones are: the violation of the Single Responsibility 
Principle, the difficulty in directly testing such constructors, and the fact that 
they cannot be subclasses or overridden for testing purposes. Most of the 

problems also appear when instantiating objects in production methods. We 
can extend the tool so that it can detect new statements within constructors 
/ methods. For this flaw we will mainly focus on the testability aspect as it is 
less likely to have an impact on change- / defect-proneness. 

• Law of Demeter violations: they occur when objects are received as 
parameters but never used directly; instead, their methods are called just to 
gain access to other objects. This design flaw should be detrimental to 

testability because multiple objects need to be configured in order to set-up 
the state properly. A class that contains such violations might also be 
change-prone since there are a lot of other classes on which it depends 

(that could be modified). The tool can easily detect Law of Demeter 
violations by querying the method call chain. 

3. Improving the way in which we compute the testability score: 
although we evaluate both the quantity and the quality of the corresponding 
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unit tests when assessing the testability of a specific part of the production 
code, we still consider that the process through which we obtain the 
testability score could be refined. Especially from a quantitative perspective, 
more metrics could be included in addition to line coverage and the amount 

of unit tests for each production method. The evaluation on unit test quality 
could also be improved by including more test smells in the analysis. 

4. Refining the process through which we identify bug-fix commits: we 

also want to perfect the method for categorizing commits as bug-fixes. Even 
though we leverage information extracted both from the commit message 
and from the corresponding issue tracker, there are still a lot of data 
available that can be utilized to improve this process. For example, the tool 

proposed in [102] could aid us in gathering additional information for 
refining the assessment. Furthermore, the commit history might also 
provide valuable data in this regard. 

5. Analysing everything at a lower level of granularity: at the moment, 
most of the analyses are performed at class level. For example, a class is 
categorized as a singleton client if it utilizes at least one of its methods. We 

would like to make the analysis more fine-grained, therefore we need to be 
able to pinpoint which singleton methods are used by each of the methods 
from the respective class. This also applies to other static constructs, such 
as utility classes or mutable static attributes. Analysing everything at a 

lower level of granularity would also be beneficial for the models through 
which we evaluate the software quality aspects. Studying these aspects at 
method level would allow for a much more precise assessment. For 

testability we could determine which production methods are covered by a 

particular unit test; this would be interesting considering that some of the 
tests have significantly more smells than others. The method by which we 

categorize a commit as a bug-fix might also benefit from this refinement; 
for example, we would be able to search for method names (instead of class 
names) in the commit message and trace them back to their corresponding 
classes. The benefits of a more fine-grained analysis were highlighted for 

the source code changes that were extracted; being able to determine 
exactly what was changed during a commit was very important when 
assessing change-proneness. 

6. Proposing repair techniques for both production and test code: the 
last research direction that we are considering is improving the code by 
refactoring the parts in which the problematic static constructs are present 

or by rewriting the unit tests so that the smells do not appear anymore. As 
an example, mutable global state instances could be eliminated by replacing 
the static non-final attributes with immutable ones while preserving the 
functionality. In the same vein, we could remove the General Fixture test 

smell by distributing the set-up logic to the appropriate unit tests; for 
example, only the tests that address a singleton client will configure the 
required singleton state, it will not be done in the set-up method of the test 

class. By performing these refactorings the quality of both the production 
and the test code will greatly improve. 

 

 
 
 
 

BUPT



   152 

 
 

 
 
 

 
 
 
 

 
 
 

 

 

In summary, this chapter discusses: 

1. The contributions brought through our work: 

• the methodology for studying the evolution and the impact on 
software quality of any design flaw; 

• the model for quantifying class testability; 

• the process for identifying bug-fix commits and determining the fine-
grained source code changes that occur between certain commits 

• a tool for investigating the aspects of interest; 

• an empirical study that answers the research questions for different 
types of static constructs; 

• a better understanding of static constructs, their evolution and the 
effect they have on 3 software quality aspects. 

2. The main findings with regard to each research question: 
• that static constructs are heavily present in the code and are 

frequently utilized by other production classes; 

• that they are used less once a project reaches maturity compared to 
the earlier stages of its development; 

• that certain types of static constructs, such as mutable global state 

instances (stateful singletons and static non-final attributes) or static 
methods that modify their class’s state, have a negative impact on 
the 3 quality aspects investigated. 

3. What was accomplished thus far and what could have been done better. 

4. Future work directions that we are currently considering: 
• improving the empirical study by adding more systems to it, including 

commercial ones and projects written in other languages / by 

following different programming paradigms; 
• investigating other design flaws such as God Class, Feature Envy, 

object instantiations in constructors / methods, or Law of Demeter 

violations; 
• refining the models through which we quantify the 3 quality aspects 

(e.g., adding more metrics to the testability score); 
• studying everything at a lower level of granularity; 

• suggesting repair techniques for the problematic parts of both 
production and test code. 
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