
 

 

 

CONTRIBUTIONS TO THE 
DEVELOPMENT AND 

STANDARDIZATION OF THE 
SEMANTIC WEB 

 

 

 
Ph.D. ThePh.D. aimed at the obtention of 

the   Scientific Title of Doctor Engineer 
at 

Politehnica University of Timişoara 
in the domain  

Computer Science and Information Technology 
by 
 
 

Zamfira Constantin-Andrei 
 
 

 
 

 
Scientific Supervisor:  prof.univ.dr.ing. Horia Ciocarlie 

 

Referents:   1. prof. univ. emerit dr. ing. Victor-
Valeriu PATRICIU, Academia de Tehnică Militară București 

2. prof. univ. emerit dr. Viorel NEGRU, Univ. de Vest Timișoara 

3. prof. univ. dr. ing. Mircea POPA, Univ. Politehnica Timișoara 

 

 
Sustenation date:  25 March 2022 

BUPT



 

 

 

BUPT



 

 

Series „Phd Theses” in UPT are: 

1. Automation         9. Mechanical Engineering 

2. Chemistry        10. Computer Science 
3. Energetics        11. Materials Engineering 
4. Civil Engineering       12. Systems Engineering 
5. Chemical Engineering                13. Energetics 
6. Electrical Engineering      14. Information Technology 
7. Electronics and Telecommunications         15. Materials Engineering 
8. Industrial Engineering      16. Engineering and Management 

 
 
 
Politehnica University of Timişoara initiated the above series in the scope of 
disseminating the knowledge and results of the research enterprise inside the 
university’s Doctoral School. These series contain, according to H.B.Ex.S Nr. 14 / 
14.07.2006, the Ph.D. theses defended inside the university starting with October 

2006. 
 
 
 
 

Copyright © Editura Politehnica – Timişoara, 2013 

 
 

 

 
This publication is subject to provisions of the copyright law. The multiplication of 
this publication, either complete or partially, translation, printing, illustrations reuse, 
expose, broadcasting, reproduction on film, or in any other format is allowed only in 

compliance with the provisions of the romanian law for copyright and usage 
permissions obtained in writing from the Politehnica University of Timisoara. 
Breaching any of these rights will be punished according to the romanian law for 
copyright. 
 
 
 

 
 
 

Romania, 300159 Timisoara, Bd. Republicii 9, 

Tel./fax 0256 403823 
e-mail: editura@edipol.upt.ro 

 
 
 
 
 
 
 

BUPT



 

 

Foreword 
 
 

 
 This thesis was elaborated during the course of my activities within the 
Department of Computer Science and Information Technology of the Politehnica 
University of Timişoara.  
 Special thanks deserve the supervisor, prof.univ.dr. Horia Ciocârlie, that 

understood and sustained me in many aspects during the entire cycle of my Ph.D. 

studies, without the help of which I wouldn’t be here today to defend this thesis.  
 Same manner consideration (or even bigger) deserve the Department of   
International Relations of UPT which offered me the privilege, through the Erasmus 
exchange program, to visit and live in one of the most beautiful places in the most 
beautiful European country, France, such as the Atlantic ocean (Bretagne) and the 
Mediterranean sea (Cote d’Azur), and to have the honor to study in ones of the best 
universities out there and some great academic environments.  

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
Timişoara, Martie 2022                   Zamfira Constantin-Andrei 

BUPT



 

 

For the Department of International Relations of UPT, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Zamfira, Constantin-Andrei 

Contributions to the Development and Standardization of Semantic Web 

UPT Phd Theses, Series X, Nr. YY, Editura Politehnica 2022, 200 pages, 39 figures, 17 

tables. 

 

Abstract,  
”Semantic Web” is the name of the third generation from the evolution of the World 

Wide Web. The first generation was static in nature and laid the foundation on static pages 
and content delivery while the second was dynamic with emphasize on the online 
communities and social interactions. The Semantic Web have as main objective the 

automation of processes that exist on the Classic Web, allowing machines to execute tasks 
that currently can be made only by humans, such are those of finding, analyzing, 
processing, combining and/or sharing of information.  

Semantic markups are annotations of Web pages with data about their content that 
can be understood by the agents on the Web. In order to ensure that different agents have 
a common understanding of the terms ontologies are used in which are defined the terms 
and their relations from a domain application , thus establishing a common terminology 

among agents. In the context of the Semantic Web ontologies play an important role in  
the sustaining of automated processes (intelligent agents)  accessing the information.  
Particularly, they are used to provide structured vocabularies that describe terms and 

relations between them, allowing agents to interpret them correcly and unambiguously. 
Due to the fact that the Semantic Web is in the infancy of its evolution, there is currently a 
great need for those vocabularies with semantically structured data that describe the 

significance of web resources, as well as intelligent agents capable to execute the desired 
operations onto the resources, the most important being those of reasoning. 

In the first part of this thesis I set out to begin with an introduction to the  domain 
of discussion, the  Semantic Web (chapter 1), followed by a chapter 2 in which I have 
made a series of discussions, debates, analyses about the foundation stone of the Semantic 
Web:ontologies, and their representations using logical formalisms, especially  Description 
Logics and First Order Logics.  In Chapter 3 I created a reasoning system for the logical 

knowledge bases that, besides the usual types of knowledges also contained another one 
called ’negative constraints’, stated in the form of some restrictions on the data from the 
base. This is the first of its kind system in the literature that realize intensive computations 
of rules unification on the set of facts with the final goal to find out all the implicit 
knowledge from the explicitly stated ones, process that in logics is known as ’saturation’. 

Part II focuses on the application of Semantic Web technologies into a domain of a 

great importance for our lives, that is cybersecurity. After a preliminary introduction into 

the domain that was provided in Chapter 4 , it follows a chapter of discussions and 
analyses regarding the way are utilized the techniques from Artificial Intelligence and 
Semantic Web in the construction of intrusion detection systems in order to enhance their 
performance. Chapters 6 and 7 are the contributions of this second part in the domain in 
cause. The former proposes an ontology of cybersecurity that is intended as a large model, 
inside which are defined terms of the domain as well as their relations and their natural 

language explanations. The ontology is used by a firewall to detect the nature of the 
occurred situations. Chapter 7 proposes an intrusion detection system in networks of 
computers  that relies on technologies presented throughout this thesis  to enhance the 
detection performance and lower the error rate.  

The thesis ends with a chapter in which are drawn the final conclusions upon the 
work  presented, emphasizing the contributions brought to the domain compared to the 
state of the art from literature, as well as the future directions of my research. 

 
 

BUPT



 

 

TABLE OF CONTENTS 
 
Notations, shorthands, acronyms………………………………………………………………………….. ..8 
List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11 
List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 
 
1. What is the Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

1.1.  Classic Web vs. Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . .14 
1.1.1.  The World Wide Web . . . . . . . . . . . . . . . . . . . . . . . . .  14 
1.1.2.  The Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . .   17 

1.2. Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22 
1.3. Current State of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25 
1.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 

 

2. Logics as Support for the Semantic Web . . . . . . . . . . . . . . . . . . . . . . .  33 
2.1. Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

2.1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 
2.1.2. Ontology Languages . . . . . . . . . . . . . . . . . . . . . . . . . .   35 

2.2. Description Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   37 
2.2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   37 

2.2.2. History and Evolution . . . . . . . . . . . . . . . . . . . . . . . . . .  38 
2.2.3. DL Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 
2.2.4. Syntaxes and Semantics . . . . . . . . . . . . . . . . . . . . . . . . 42 
2.2.5. Relationships with Other Logics . . . . . . . . . . . . . . . . . . . 44 
2.2.6. Most Common DL Languages . . . . . . . . . . . . . . . . . . . .  47 

2.2.7. Application Domains . . . . . . . . . . . . . . . . . . . . . . . . . .  50 
2.3. Inference and Reasoning Tasks in DL KBs . . . . . . . . . . . . . . . . . . .  56 

2.3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   56 
2.3.2. Inference Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59     
2.3.3. Reasoning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 62 

2.3.3.1. Structural Subsumption Algorithms . . . . . . . . .  63 
2.3.3.2. Tableaux Algorithms . . . . . . . . . . . . . . . . . . . . 69 
2.3.3.3. Automata-based Algorithms . . . . . . . . . . . . . .  77 

2.4. Some Results of Complexity of Reasoning . . . . . . . . . . . . . . . . . . .78 

2.4.1. Consistency of ALC  ABoxes . . . . . . . . . . . . . . . . . . . . . 79 

2.4.2. Adding General TBoxes . . . . . . . . . . . . . . . . . . . . . . . .  81 
2.4.3. The Effect of Other Constructors . . . . . . . . . . . . . . . . . .  82 
2.4.4. A List of Complexity Results of Reasoning in Some DLs . .  83 

2.5. State of Art of the Researches. . . . . . . . . . . . . . . . . . . . . . . . . . . 84 
2.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87 

. 

3. Reasoner System to Obtain Saturation of Knowledge Bases . . . . . . . .  89 
3.1. Logical Knowledge Bases: General Notions . . . . . . . . . . . . . . . . . . 89 
3.2. State of the Research  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 
3.3. Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 

3.3.1. Object-Oriented Structure . . . . . . . . . . . . . . . . . . . . . .  94 
3.3.2. Derivation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . .  96  

3.4. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 
3.5. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 
3.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

BUPT



 

 

4. Intrusion Detection and Prevention Systems . . . . . . . . . . . . . . . . . . . 102 
4.1. Introduction to Computer Security . . . . . . . . . . . . . . . . . . . . . . . .102 

4.1.1. Signature-based Detection . . . . . . . . . . . . . . . . . . . . . . 107 
4.1.2. Anomaly-based Detection . . . . . . . . . . . . . . . . . . . . . . .107 
4.1.3. State Protocol Analysis . . . . . . . . . . . . . . . . . . . . . . . . .108 

4.2. Architectures and Components . . . . . . . . . . . . . . . . . . . . . . . . . . 110 
4.3. Security Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113 

4.3.1. Information Collecting . . . . . . . . . . . . . . . . . . . . . . . . . 113 
4.3.2. Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

4.3.3. Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 

4.3.4. Prevention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 
4.4. Network IDPS Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 

4.4.1. Components and Architectures . . . . . . . . . . . . . . . . . . .115 
4.4.2. Security Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 120 
4.4.3. Management Capabilities . . . . . . . . . . . . . . . . . . . . . . .126 

4.5. Conclusions . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 

. 
5. Artificial Intelligence and Semantic Web Technologies Used in Ciber-
security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 

5.1. Artificial Intelligence in Intrusion Detection . . . . . . . . . . . . . . . . . .133 
5.1.1. Evolutionary Algorithms . . . . . . . . . . . . . . . . . . . . . . . .135 
5.1.2. Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 

5.1.3. Clusters Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136 
5.1.4. Artificial Neural Networks . . . . . . . . . . . . . . . . . . . . . . .137 
5.1.5. Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 

5.1.6. Industrial and Research Scale AI-based Systems . . . . . . 140 
5.2. Semantic Web in Intrusion Detection . . . . . . . . . . . . . . . . . . . . .. 142 
5.3. State of the Researches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 143 
5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 

. 
6. Ontology for Cybersecurity in Computer Networks . . . . . . . . . . . . . .   146 

6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 
6.2. State of Researches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 
6.3. Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151 
6.4. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 
6.5. Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 

6.6. Tests and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
6.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 

. 
7. Intrusion Detection System based on Artificial Intelligence and Semantic 
Web Technologies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 

7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 

7.2. State of Researches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 
7.3. Proposed Distributed  IDS . . . . . . . . . . . . . . . . . . . . . . . . . . . .  163 
7.4. Ontology for Attacks Signatures . . . . . . . . . . . . . . . . . . . . . . . .  164 
7.5. Clustering Detection Algorithm . . . . . . . . . . . . . . . . . . . . . . . . .  166 
7.6. Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  167 

 7.6.1. Scalability Evaluation  . . . . . . . . . . . . . . . . . . . . . . . . . 168 
 7.6.2. Detection Capacity Evaluation  . . . . . . . . . . . . . . . . . . . 170 

7.7. Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

BUPT



 

 

8. Conclusions and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 
 8.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 

 8.2. Future Directions of the Research . . . . . . . . . . . . . . . . . . . . . . . . 176 
 
APPENDIX 

 
Appendix A . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180 
A.1 Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180  
Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 

B.1       Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 

 
 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUPT



 

 

 

 

BUPT



 

 

Notations,  Shorthands,  Acronyms 

 
Part I – The Semantic Web and Description Languages 

 
W3C  =  World Wide Web Consortium 
WWW  =  World Wide Web 
SW  =  Web Semantic 
CERN  = Conseil Europeen pour Recherche Nucleaire  
HTTP  =  Hypertext Transfer Protocol 

HTTPS  =  Hypertext Transfer Protocol (Secured version) 
HTML  =  Hypertext Markup Language 
XML  =  Extensible Markup Language 
URI   = Uniform Resource Identifier 
URL  =  Uniform Resource Locator 
URN  = Uniform Resource Name 

IRI = Internationalized Resource Identifier (i.e. a generalization of 
 URIs to allow the use of Unicode characters) 

IRL = Internet Resource Locator (described in RFC 1736, conveys 
 location and access information for resources) 

UNC = Uniform Naming Convention (a syntax used by Microsoft to 
 describe the location of network resources, ) 

DARPA   =  Defense Advanced Research Projects Agency 

DAML  =  DARPA Agent Markup Language 
IETF   =  Internet Engineering Task Force 

RFC  =  Request for Comments 
IANA  = Internet Assigned Numbers Authority 
IPv6  = Internet Protocol (version 6) 
DNS  = Domain Name System 
FOL  =  First Order Logic 

ML  =  Modal Logic 
RDF  =  Resource Description Framework 
RDFS  =  RDF Schema 
RDFa  = Resource Description Framework in Attributes 
RDFS(FA) = RDFS with Fixed metamodeling Architecture 
OIL  =  Ontology Inference Layer 

SPARQL = Simple Protocol for Access RDF Query Language 
RIF  = Rule Interchange Format 
SWRL  = Semantic Web Rule Language 
TURTLE  = Terse RDF Triple Language 
N3  = N-triples 

KMS  = Knowledge Management Systems 
SW  = Servicii Web 

OWL  =  Web Ontology Language 
SOAP  = Simple Object Access Protocol 
WSDL  = Web Service Description Language 
UDDI  = Universal Description, Discovery and Integration 
B2B, B2C = Business-to-Business, Business-to-Consumer 
P2P  = Peer-to-Peer 
OGP  = Open Graph Protocol 

FOAF  = Friend-of-a-Friend

BUPT



 

 

SIOC  = Semantically Interlinked Online Communities 
R2RML  = Relational to RDF Markup Language, limbaj pentru 

 a descrie asocierile dintre datele relationale si RDF 
D2RQ  = Relational Data to RDF Query 
R2D  = RDF to Database 
P2R = Prolog to RDF, a tool that allows access to Prolog knowledge           

..........bases 
SPASQL = SPARQL Support for MySQL 
GRDDL   = Gleaning Resource Descriptions from Dialects of Language 

CWM  = Closed World Machine 

KR  = Knowledge Representation 
DL  = Description Logics 

AL  = Attributive Language, a language that offers atomic, 

.....................universal, bottom, negation, intersection, value restrictions, 

.....................limited existential restrictions 

ALC  = Attributive Language with Complements (concept negations) 

L(G)  = a G-combinable language, where L is a DL and G a group of 

.....................conformed datatypes 

S  = language ALC extended with axioms of  transitive roles 

(ALCR+) 

SI  = language S extended with roles inverses 

SH  = language S extended with roles hierarchies 

SHf  = language SH extended with functional roles axioms 

SHI  = language SH extended with roles inverses 

SHQ  = language SH extended with qualified number restrictions 

SHIO  = language SH extended with roles inverses and nominals 

SHIQ  = language SHI extended with qualified number restrictions 

SHIN  = limbajul SHI extended with unqualified number restrictions 

SHOQ  = language SH extended with nominals and number 

.....................restrictions 

SHOIQ  = language SHOI extended with qualified number restrictions 

SHOIN  = language  SHOI extended with unqualified number 

.....................restrictions 

SHOIN(D) = language SHOIN extended with a universal concrete 

.....................domain 

SROIQ  = language S extended with nominals (O), qualified number 

 restrictions (Q), roles inverses (I), roles inclusion axioms and disjunction (R) 
 

 

Part II -  Intrusion Detection Systems 

 
NIST  = National Institute of Standards and Technology 
IDS  = Intrusion Detection System 
IPS  = Intrusion Prevention System 
VLAN  = Virtual Local Area Network 
VPN  = Virtual Private Network 
IoT  = Internet of Things 

NBA  = Network Behaviour Analysis 
NIDS  = Network Intrusion Detection System 

BUPT



 

 

A-NIDS  = Anomaly-based Network Intrusion Detection System 
HIDS  = Host Intrusion Detection System 

SPA  = Stateful Protocol Analysis 
SSL  = Secure Socket Layer 
SSH  = Secure Shell 
TCP  = Transport Control Protocol 
IP  = Internet Protocol 
TelNet  = Teletype Network 
NIC  = Network Interface Card 

NTP   = Network Time Protocol 

UDP  = User Datagram Protocol 
ICMP  = Internet Control Message Protocol 
IGMP  = Internet Group Management Protocol 
DMZ  = Demilitarized Zone 
(D)DoS  = (Distributed) Denial of Service 
VoIP  = Voice over IP 

DHCP  = Dynamic Host Configuration Protocol 
IMAP   = Internet Message Access Protocol 
IRC   = Internet Relay Chat 
NFS  = Netwook File System 
POP  = Post Office Protocol 
Rlogin/Rsh = Remote Login/Shell  

SMTP  = Simple Mail Transfer Protocol 
SNMP   = Simple Network Management Protocol 
TFTP   = Trivial File Transfer Protocol 

SYN/TCP = Synchronize packet in TCP communication 
MAEC  = Malware Attribute and Enumeration Characterization 
CAPEC  =  Common Attack Pattern Enumeration and Classification 
SCAP  = Security Content Automation Protocol 

OVAL  = Open Vulnerability and Assessment Language 
CPE  = Common Platform Enumeration 
CCE  = Common Configuration Enumeration 
CVE  = Common Vulnerabilities and Exposures 
 
 
 

  
 
 
 
 

 

 
 
 
 
 
 
 

 
 

BUPT



 

 

List of Figures 

 
 
 

1.1.  Client-Server Type Computing Architecture     15  

1.2.  Semantic Web Stack of Technologies       17  

1.3.  Architecture Levels Mapped at Technologies     19  

1.4.  An RDF Graph        20  

2.1.  Arhitecture of a DL Sistem        41 

2.2.  A Definitorial TBox FL0 and the Corresponding Automaton   65  

2.3.  Unveilling  of a Model in a Tree      77 

3.1.  UML Class Diagram of the Reasoner System     95 

3.2.  UML Activity Diagram of the Reasoner System     97 

4.1.  Arhitecture of an IDPS and Components Location    111 

4.2.  Sensors Placements into a IDPS-Protected Network    112 

4.3.  Example of a Network IDPS Arhitecture with Inline Sensors   117 

4.4.  Example of  a Network IDPS Architecture with Passive Senzori    119 

5.1.  The Main Branches of the AI Domain      134 

5.2.  Location of GA Module inside IDPS      135 

5.3.  Clustering and Outliers in Attacks Detection     137 

5.4.  Using ANNs in Attacks Detection      138 

5.5.  Data Mining in Attacks Detection      139 

6.1.  Top Level of the Ontology and its Classes     150 

6.2.  Class owl:Target extended with all its subclasses     150 

6.3.  Process of Developing the Ontologies in OntologyDevelopment101  152 

6.4.  Ontology Usage by the Firewall       156 

7.1.  Concept Scheme of the Proposed IDS      164 

7.2.  Ontology for attack signatures       165 

7.3.  Bandwidth Usage, Analysis Latency and Response Time of each IDS  169 

7.4.  FP and DR of each IDS        170 

 

 
 

 
 

BUPT



 

 

List of Tables 
 
 
 
 
1.1.  Characteristics of  Classic vs Semantic Web     30  

1.2.  Comparison Between Models of  Classic and Semantic Web   30  

2.1.  Sintax and Semantics of the Constructors of Language S    38 

2.2.  Main DL Languages from Literature      49 

2.3.  DAML+OIL Constructors and DL Equivalent Syntax    51 

2.4.  OWL Language Constructors       52 

2.5.  OWL Language Axioms       52 

2.6.  OWL2 Class, Property and Individuals Axioms     54 

2.7.  Ontology Languages and Corresponding DL Formalisms    56 

2.8.  Completion Rules for Inclusion in εL with resp. to General Tboxes    68 

2.9.  Transformation Rules of the Satisfiability Algorithm    70 

3.1.  Algorithm Tests (vers.1)       99 

3.2.  Algorithm Tests (vers.2)       100 

5.1.  A List of  Comercial ANIDS and the AI Techniques Employed   140 

5.2.  ANIDS Research Systems       141 

6.1.  Comparison of the Proposed System with  Other Security Solutions  157 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUPT



 

 

 

 
Page intended left blank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUPT



14 What is the Semantic Web?  -  1 

 

 
1. WHAT IS THE SEMANTIC WEB? 

 

 
In this chapter will be made an introduction to the principal domain of this 

research, which is the last generation of the World Wide Web recently occurred, 
called the ”Semantic Web”. Will be made a foreword about the Internet and the 
most important service that runs on top of it, the World Wide Web, showing its 

functionality based on its architecture and the generations of evolution through 

which it went starting from its inception.   
The section dedicated to the Semantic Web will be given the definition of the 

concept and made a discussion regarding its design goals, as they have been stated 
by its creator himself, sir Timothy Berners-Lee, and will be done a series of analyses 
regarding how the project will change for better the processes on the Classical Web. 
After this introduction into the domain in cause will be discussed and analyzed the 
architecture with its stack of technologies and standards created until now, as well 

as the open problems with which it confronts and which led to the impossibility of 
standardization of certain layers. The chapter will end with a discussion about the 
domains of industry where these newly developed technologies find the most 
applications.  
 
 

 

1.1. Classic Web vs. Semantic Web 
 


1.1.1. What Is the World Wide Web? 

 
The Internet saw a major evolution throughout its history, and today it can be 

said that it looks more like a collection of applications than one of interconnected 
resources. It is a known fact that resources accessed over the Internet are not a 
collection of passive multimedia elements anymore, such as text, images, audio, 
video, etc., but coagulated into well-defined applications and services that rival even 

the desktop-class ones. Even though they are visually similar, Web applications 
differ in the way they handle user input, requests, access to data, concurrency, 
inter-applications communications, etc.    

Many people use the terms” Internet” and ”Web” interchangeably; it should be 
clear though that they are not synonymous. The internet is a global system of 

interconnected networks that communicate between them with the TCP/IP suite of 
protocols. Some of the most important services that run over the Internet are: 

electronic mail, phone dialing (VoIP), file transfer and sharing, real-time 
communications, TV and radio transmissions, peer-to-peer networks (P2P), mobile 
applications, etc.; the Web is ”yet-another” service that runs into it, altogether with 
the ones enumerated above.   

The World Wide Web (abr. WWW, or, simply, Web), was invented at the 
beginning of ’90 by the English scholar Tim Berners-Lee. He proposed the use of 

hypertext as a method for linking and accessing information over the Internet, like a 
Web with nodes. It is a system of interlinked hypertext documents, called Web  

BUPT



15 Classic Web vs. Semantic Web  -  1.1 

 

pages that consist of multimedia content (text, images, video) that can be accessed 
and visualized using a Web browser. It operates based on a client-server 

architecture type where documents are stored onto a Web server and are accessed 
and rendered by a Web browser through their resource identifiers (URI, URL, URN). 
This scenario is shown in fig.1. 

The day of 6 August 1991 is considered the debut of the Web as a publicly 
available service over the Internet. It was executed on a NeXT computer at the 
European Center of Nuclear Research (CERN), in Geneva, Switzerland. On 30 April 
1993 CERN announced that WWW is a freely available service for everyone [36].  

The three technologies that lie at the heart of the Web are:  
 a system of unique global identification for the resources: Uniform 

Resource Name (URN), Uniform Resource Identification (URI), Uniform 

Resource Locator (URL) 

 publishing language Hypertext Markup Language (HTML) 

 communication protocol Hypertext Transfer Protocol (HTTP) 

In the space of Internet and the Web, there are two main actors: clients and 
servers. A Web client is generally a browser, like Internet Explorer, Mozilla Firefox, 
Safari, Opera. A Web server is an application that receives and serves clients’ 

requests based on the HTTP protocol (generally Web pages). The logical link 
between the 2 main actors is done using resource identifiers, which have been 
earlier enumerated. A URI allows the unique identification of a resource on the 
Internet. The application-level ISO/OSI on top of which are created the applications 
is HTTP, altogether with its secured version HTTPS [40]  

 
Fig. 1.1: The Client-Server type of architecture  

 

 
The following scenario shows what happens between the moment of entering a 

URL into the browser’s address bar and the rendering of the response Web page into 
the browser, as it was discussed in [36]. 

a) the  Web browser translates the name of the server from the URL 

address into an IP address using a DNS 

 

BUPT



16 What is the Semantic Web?  -  1 

 

 
b) the browser asks for the resource by sending an HTTP Request message 

over the Internet to the computer located at that address 

c) Request service from a TCP port number that is well known for the 

service HTTP for the destination host to be able to distinguish an HTTP 

request from another network protocol that he may be able to serve. 

HTTP in general uses port no.80.  

d) the machine that receives the HTTP request forwards it to the Web 

server that listens for requests at port 80 

e) if the server can fulfill the request then it sends an HTTP response 

message to the browser that indicates success and the page requested 

embedded within the message’s body 

f) the Web browser parses the HTML document from the response, 

interprets the markup code to render the text 

g) if the page contains URIs of other resources (images, scripts) the 

browser will make additional HTTP requests to the server for each of 

these resources 

h) after it receives its content the browser progressively renders the Web 

page by the way it is specified inside the HTML document 

The fundamental property of the World Wide Web is its universality: a hypertext 
link is capable to relate ”anything” to ”anything”. The Web technologies are not 
capable to make difference between a raw sketch and sheer performance, 

commercial and academic information, or among various cultures, languages, or 
environments. Information varies in way too many aspects, such as that being 
created for consumption by humans or by machines. The former category enters TV 
shows, printed books, magazines, while the latter the software programs, 

databases, sensor outputs, etc. Until the present day, the World Wide Web was 
developed as an environment for humans and contains little information that can be 
automatically processed. The next generation, Web 3.0, known also as the 
”Semantic Web” purposes to deal with this job [81]. 

Since its inception and until now the Web went through 3 generations of 
evolution. The first implementation was Web 1.0, which was characterized by static 
pages and content delivery, lacking any elements of user interaction and content 

sharing. The second generation, Web 2.0, focused on the possibility for humans to 
collaborate and share information online. Unlike the previous generation, this one 
was dynamic in the sense that serves clients’ applications and provides open 
communication with an emphasis on online communities and social interactions. The 

Semantic Web is the generation that is currently in use today and a larger 
discussion will be made in the next section. For extra particularities regarding 

evolution and generations of WWW, I invite the reader to see the paper in [64] 
where he talks also about a fourth-generation that is seen as a Web of ultra-
intelligence, electronic agents, and symbiotic and pervasive calculus. This 
generation is yet to emerge.  

Next, I will offer the readers other introductory resources and materials on the 
domain. Maybe the most important of them is the book of its inventor, ”Weaving the 
Web” [41] in which the WWW is described broadly. Other papers with introductory 

purposes are written also by its author and have an equally high value are those in  

BUPT



17 Classic Web vs. Semantic Web  -  1.1 

 

 
[36], [37], [38], [39], [132]. Others that talk about the constituent technologies, 

such as URI, HTTP, HTML, client-server architecture I invite the reader to see the 
works in [153], [177], [178].  
 

 

1.1.2. What is the Semantic Web? 
 

The Semantic Web is a term that was introduced at the beginning of the 2000s 
by no one else than the inventor of the World Wide Web and the founder of the 

consortium that deals with its development, W3C, the English scholar Tim Berners 
Lee. The main goal of this project is to drive the automation of processes from the 
classical Web, allowing machines to perform tasks that currently can be made only 
by humans, such as those related to finding, interpreting, analyzing, processing, 
combining, sharing information. That is not a separate entity from the classic Web 

but an extension of it, destined to add data and metadata to documents to extend 
them to data that has a semantic structure. This form of an extension to structured 
data allows the Web to be processed both automatically by machines and manually 
by humans. Is used as a synonym for the third generation of WWW, namely Web 
3.0 [43], [64].  
 

 
Fig.1.2:  Semantic Web’s stack of technologies 

 
Figures 2 and 3 are shown the architecture with the component levels, as well 

as the technologies and standards that have been created for each level.  
In the introductory article from the Scientific American magazine [42] his 

inventor narrated the ideas behind the project. He made use of examples to show 
the expected capabilities of the Semantic Web. He pictured it as an environment 
where tasks created by humans are conducted intelligently by Web agents that act 
in a manner that is similar to human cognitive processes. It is stated there that the 
personal Web agent of a patient obtains data about his prescribed medicines from 
the doctor’s agent even before he even gives him directly, searches the Web to 

create a list with the pharmacies that have those drugs in store and keeps only 
those that are in his insurance plan and are located on

BUPT



18 What is the Semantic Web ?  -  1 

 

 
a radius lower than 20 miles from his house and that has feedback of at least 

„Good” at their profile on the service trust sites. The agent then tried to find 
matches among the available meeting times from the providers’ agents and the 
patient’s working schedule and presented him with this plan. This scenario seems 
taken from the Hollywood movies that present humanity in the next centuries in 
which the world is dominated by intelligent robots and AI technology that is human-
alike.  

The concept of ”Semantic Network” was introduced at the beginning of the ’60s 

by the scientists Alan Collins, Ross Quillian, and Elizabeth Lofthus resembling a way 

to represent semantically structured knowledge. Extends the concept of a network 
of Web pages interconnected by links that can be read by humans by inserting 
metadata about pages that can be interpreted by machines, allowing thus the 
automated agents to access the Web more intelligently and to perform various 
users’ tasks. Many of the technologies proposed by W3C existed before being laid 
under the umbrella of the Semantic Web that has been used in various contexts, 

especially those that deal with information about a limited and well-defined domain 
and the necessity of data distribution is a common fact, such as the domain of 
scientific research. Other technologies with similar purposes had been created, such 
as microformats [178]. 

The main goal of the Semantic Web is to drive further the evolution of the 
classic Web by allowing users to find, combine, share information much more 

efficiently. Humans are capable to use the Web for tasks such as translating a word 
between 2 languages, buying a book, searching for the lowest price for a DVD. 
Computers cannot realize all of these tasks because Web pages are created for 

humans to read them, and not machines. The Semantic Web is a vision of 
information that can be automatically interpreted by machines, thus computers can 
do the labor for finding, combining and processing information on the Web. The 
Semantic Web, as it was originally envisioned by its creator, is a system that allows 

computers to understand and respond to users’ requests based on their significance. 
This ’understanding’ requires the sources of information to be semantically 
structured. Is considered an integrator between distinct contents, applications, and 
systems with applications in multiple domains [177]. 

The fundamental technologies of its architecture, as it is shown in fig.2, are 
RDF, OWL, and SPARQL. The first two represent the formats in which data on the 
Semantic Web are published, and also play the role of some ontology languages in 

which ontologies are constructed. The third is the standard interrogation language 
for data on the Semantic Web. The layers for which had not yet been created 
standard technologies are: Unifying Logic, Trust, and Proof. This is due to the 
existing problems that we confront and that lay under the umbrella of those three 
domains, the most important of these are vastness, imprecision, inconsistency, 

deceit, as had been confirmed by the sources from Wikipedia [230].  

Next, I will be making an overview of the three fundamental Semantic Web 
technologies that I stated earlier. 

BUPT



19 Classic Web vs. Semantic Web  -  1.1 

 

 

 
 

Fig.1.3: Architecture layers mapped to technologies 

 
a) Uniform Resource Identifier (URI) 

For identification of things on the Web, identifiers are used. Because a uniform 

system of identifiers is being used and because every identified thing is considered 
to be a resource, these are called Uniform Resource Identifiers (URI). A URI can be 
attributed to anything, and anything that has a URI is said to exist on the Web. 
They represent the fundamental notion of the Web.   

 
A well-known form of URIs is the URLs (Uniform Resource Locator). Unlike URIs, 

a URL both identifies and locates. Because the WWW is too huge to be controlled by 

a unique organization, URIs are decentralized, i.e. nobody oversees who makes 
them or how are used. If some of the schemes (like HTTP) depend on centralized 
systems (such as DNS), others (like Freenet) are completely decentralized, i.e. it is 
not needed anybody’s permission to create one. URIs can be created for things that 
we do not owe. Their syntax is controlled by IETF which published RFC2396 as a 
general specification for URIs [40]. W3C keeps a list of all URI schemes.  

  

Even though this flexibility makes out of the URIs a powerful technology, brings 
all together with it also a series of troubles. Because anybody can 

BUPT



20 What is the Semantic Web?  -  1 

 

 
create a URI will come to multiple URIs representing the same thing. Moreover, 

there is no means to see if two URIs refer to the same resource. This way we would 
not be able to certainly tell what exactly means a certain URI. The ability to tell 
things about URIs is among the greatest characteristics of the Semantic Web. The 
Semantic Web is built over syntaxes that use URIs to represent data, usually in 
structures of triples, that is multiple triples of URI data that are stored in databases 
or interchanged on the Web making use of a set of syntaxes especially for that, 
called RDF syntaxes.  

 

b) Resource Description Framework (RDF) 

RDF is the first of the 3 fundamental technologies of the Semantic Web, 
together with OWL and SPARQL. Particularly, RDF is the universal model for data on 
the Semantic Web, that is all data of its technologies are being represented in RDF 
format, including the schemes that describe them, RDF Schema. RDF format is not 

similar to the tabular model from relational databases nor like XML trees; it is a 
directed graph with labeled edges. We can think of RDF as a set of nodes that are 
interconnected by edges, both wearing labels.  
 

 
Fig.1.4: An example of an RDF graph 

In an RDF graph can exist three types of nodes [177]:  
 resources: a resource is anything about which something can be said, we 

can see it as a pair (resource, value); in the visual representation resources 

are indicated by ovals  

 literals: here is with the sense of value; in the example, from fig.1.4 the 

resource is http://www.cambridgesemantics.org/people/Rob, and the value 

of the property foaf: name is the string of chars “Rob Gonzalez”. In visual 

representation, literals are denoted by rectangles.  

 void: a void node is a resource without a URI 

BUPT

http://www.cambridgesemantics.org/people/Rob


21 Classic Web vs. Semantic Web  -  1.1 

 

 
In RDF resources and edges are URIs, literals are strings. 

The most important formats for RDF data serialization are the following [177]:  
 RDF/XML: XML style serialization of RDF, is the standard format for  

exchanging data on the Semantic Web 

 Notation3: designed with the purpose of readability by humans and easiness 

of parsing 

 N-Triples: a format  simpler than Notation3 

 Turtle (Terse RDF Triple Language) 

 RDFa  

 

c) Web Ontology Language (OWL) 

OWL is the recommendation proposed by W3C in 2004 as a language for the 
representation of ontologies on the Semantic Web. It has been designed especially 
for the possibility to represent information about categories of objects and the 
relations among them (the type of knowledge that is usually known by the name of 
ontology), and also to be able to represent information about singleton objects (the 

type of information known as data) [15],[43].  
Over its developing process had existed influences from multiple domains, such 

as representation languages (Description Logics, Frame Systems, Semantic 
Networks), and nonetheless RDF.  Because it constitutes an effort from W3C from 
the development of the Semantic Web it should have fit into its stack of protocols 
and standards, altogether with XML, HTTP, RDF. Also, it should have kept as much 

as possible compatibility with other existing ontology languages, like SHOE, OIL, 

DAM+OIL. The many influences that wielded upon it led to the appearance of a 
number of problems, such are those related to its syntax, semantics, expressiveness 
and computational power, the tractability of reasoning, etc. The stalemates didn’t 
come from each source in isolation but their combination and the constraints 
imposed on the language. The solution was found by the staff that dealt with its 
development that solves all the above-stated issues, which is the creation of 3 

distinct profiles each fit for solving a certain set of those problems [112]:  
 OWL-DL: created for the applications where the decidable inference of the 

reasoning problems and a friendly syntax are considered to be best suited 

 OWL Lite: created for the applications where an even simpler syntax and an 

even more tractable inference 

 OWL Full: created for the applications that need a great expressivity power 

and compatibility with other ontology languages (RDF, RDFS); it is 

completely expressive, a fact that makes it undecidable 

A larger discussion around the main ontology languages of the Semantic Web,  OWL 
and OWL2, will be made in Chapter 2, where I will talk about ontologies as the 
fundamental component of the functionality of the Semantic Web and the main 
representation languages will be presented.      

BUPT



22 What is the Semantic Web ?  -  1 

 

 
Since this research’s scope is not to provide an exhaustive description of the  

Semantic Web and its technologies, I will give the reader a few references to 
resources from literature where he can find multiple knowledge from the domain. I 
will begin with a few books that have been written by its authors, Berners-Lee and 
colleagues: [43], [81],  as well as others written by other authors but of the same 
undoubtedly value: [15].  Among the papers with a review content about the 
domain, I mention firstly the ones of its creators [42], [44], [183]; some of the 
other authors read by me in the creation of this thesis are those in [16], [177], 

[178], [109], [64], [101]. Many others can be found in the references section at the 

end of the current document. 
The next section will present the principal application domains of the 

technologies of the Semantic Web, as it was found by the author in the domain 
literature read for the creation of the current thesis.  

 

1.2. Application Domains  

 

1.2.1. Knowledge Management Systems  

Knowledge Management Systems (KMS) describe techniques for representation, 
access, sharing, communication of knowledge through the collaboration and 
management of the knowledge as an organizations’ asset. The Semantic Web is 
important for the KMS because it has the capacity to automate the aggregation and 

analysis of information, which has as result in growth in the processing speed. Has 

been designed with the goal to provide the missing elements of the classical Web, 
the main are: structure, metadata, and relations in order to correlate data and offer 
relations and descriptions. Ontologies are the fundamental component for the 
realization of the full potential of the Semantic Web. These offer background 
information for describing data and makes explicit the context of information. 
Ontologies are shared descriptions and can be used for the annotation of certain 

data sources, such as Web pages, collections of documents, databases, etc. This 
makes possible the interoperability process between different data sources but 
doesn’t completely solve the integration problem because it is not possible for all the 
organizations on the Semantic Web to use a common terminology or ontology. It is 
most probable that will occur in different ontologies and, in order to allow 
interoperation mediation is necessary among these ontologies. Mediation is 
necessary in the semantic knowledge management process in order to realize the 

sharing of data among heterogeneous knowledge bases and, also to allow 
applications to reuse data from different bases. Another utility of the ontology 

mediation occurs in the Semantic Web services. Generally, it is not necessary that 
the client and the provider of a service to utilize the same terminology in their 
communication, and mediation is used especially to facilitate this goal. 

 

1.2.2. Business Process Management 

A business process that relies on automated information systems is known by 
the name E-Business. E-business software solutions allow the integration of 

processes of both inter- and intra-companies that are run over Web, Intenet, 
extranets etc. The application of Semantic Web technologies in the field of business

BUPT



23 Applicaion Domains  -  1.2 

 

process management has a significant role in the exchange of information between 
business groups for corporate purposes. It found itself a prominent role in the 

search for relevant data, information exchanges among agents, data filtering used 
at finding business sites, market trends analysis, integration and composition of 
complex systems, machine dialogs exchanges over different domains, multimedia 
collections, virtual community, flexibility and standardization of vocabularies, etc.  

 Information exchange among the business processes is a process that takes 
place by means of Web Services. These are software components having 
characteristics such as self-descriptiveness, self-contained, that expose their 

functionalities to consumers in order to provide interoperable machine-to-machine 

interactions. The specifications of the Web Services of an organization are exposed 
within public registers, such as a books catalog. The three main operations of a 
system of Web services are: registering, discovery and bounding.  In order to 
extract services as optimal as possible registers (WS deposits) use ontologies 
developed in standard languages, such as SOAP, WSDL, UDDI sau OWL. Ontologies 
represent the building blocks in the development of e-business applications.  

 

1.2.3. Electronic Commerce 

The Web changed radically the availability of online data and the volume of 
information exchanged electronically, revolutionizing the access to personal 
information and knowledge management from the large corpora. Also, it has started 
to change commercial relations between clients and providers. Around 1% of the 
total amount of B2C transactions from the USA are made electronically, that is a 
small portion though but the growth perspective is very probable due to the 

continuous growth of Internet users. Electronic commerce is a field with a huge 
economical impact. Internet electronic commerce offers a much higher level of 
flexibility and openness that will support the optimization of business relations. 
Instead of providing a single link to each provider, it connects him with a big 
number of potential clients. Bringing e-commerce to its full potential requires a 
peer-to-peer (P2P) method. Anyone should be able to trade and negotiate with 
anyone, but unfortunately, this type of architecture meets a big number of obstacles 

before becoming reality. Some of these hindrances are: mechanized support for 
finding and comparing providers and their offers, for the work with multiple and 
heterogeneous data formats, and the work with multiple and heterogeneous 
business logics. The Semantic Web hold technologies and services that have the 
potential to solve the key problems from e-commerce in an efficient manner. Thus, 
the use of Semantic Web technologies to bring e-commerce to its full potential is a 
promising activity. It is also the natural means to link Semantic Web technologies 

and Web services. The transformation of latters from the status of advertising to a 

functional technology requires solutions to the problems enumerated above. 
 

1.2.4. e-Science Knowledge Grids 

E-science is the use of electronic resources by scientists that work in teams for 
big-scale and distributed projects. Science at a large scale, as has been stated by 
the Human Genome Project, will be in a continuous growing mode done by 
collaborations that are distributed at a global level activated by means of the 
Internet that will require access to some very large collections of data, computing 

resources and visualization tools of high performance. Biology already advanced to 
big inter-

BUPT



24 What is the Semantic Web? -  1 

 

 
disciplinary teams distributed around the entire globe that works together on 

specific problems. Post-genomic experimentation and the data-intensive one expect 
to overwhelm the community with an avalanche of data that needs to be culled and 
organized. These data are often complex, generated by different environments, 
varying in quality, stored in multiple places, difficult to analyze, often fluctuating, 
and, mostly consisting of incomplete sets of data. Analysis methods for the 
processing of different types of data emerge and evolve constantly. The questions 
that we ask ourselves about data, and computational analyses are much more 

complicated: singleton or multiple species, the entire genome or a single gene, the 

entire metabolism, or a single biological process. The computing power necessary to 
model the metabolism path is huge, consequently, the traditional experimentation 
methods are augmented with ones “in silico”, i.e. prediction of genes and metabolic 
paths that these encode from the DNA of an organism. 

The Grid is a vision of some virtual organizations that means a distribution of 
resources that is flexible, secured, and coordinated. It is now seen as a platform for 

sustaining the above-mentioned operations at a global scale for data and 
computations-intensive applications. The major difference between the Grid and the 
classical Web consists of the big computing power, the large amount of data that 
can be processed, and the speed with which the data are transferred between the 
Grid’s nodes. The Grid will provide equally large storing facilities and data extraction 
from a variety of sources and will present the data in the same format without 

counting any source.  
 

1.2.5. Social Networks 

Social Networks have become an important part of modern society and lay a 
huge impact on personal, social, political, educational, professional, and business 
life. They mediate people from the whole world by means of the social networking 
websites, such as Facebook, Twitter, MySpace, LinkedIn, Orkut, etc. Allow sharing 
of information on Twitter, messaging on Yahoo Messenger, Google Talk, distribution 
of the content and ideas on blogs and forums, media uploading and downloading,  

folksonomies by means of wikis and podcasts, and many others. Socialization on 
networks attracted millions of users around the globe and became the most popular, 
convenient, and cheap method of communication. A multitude of such sites arises in 
business due to the opportunity of large profits generated by these in the whole 
world. A large number of projects have been initiated and various tools developed in 
the field. General-purpose search engines assimilate more and more the newly 
developed technologies of the Semantic Web. Tumbup is a new search engine 

connected to Facebook with the purpose of analyzing the activities of members,  

such as recommendations of places, products, etc. to produce more satisfying 
results. Other search engines, such as Wolfram Alpha, True Know, or Zoom are also 
connected to Intranet sites and corporate blogs. Facebook introduced Open Graph 
Protocol, a technology of the Web Semantic that allows third-party sites to interact 
with the ones for social networks. This new protocol integrates Web pages in the 
social graph and sustains and supports the interactions between the visited sites 

and the profile of a user on Facebook. The Semantic Web has been used by many 
researchers and a lot of projects won momentum in the recent period, some of the 
most prominent include Friend-of-a-Friend (FOAF), Semantically Interlinked Online 
Communities (SIOC). 

BUPT



25 Current State of Researches -  1.3 

 

Other domains that found applicability for the Semantic Web worth mentioning 
are biological information, medical and clinical data linking, manufacturing systems, 

constructions, transports, infrastructure. For additional material from this domain, I 
invite the reader to see a few works created for this purpose: [95],[155],[127], 
[80]. 

 

1.3. Current State of the Research 

It was needed many years in order to put together the pieces of the puzzle that 

constitute the Semantic Wen, such as the standardization of the universal data 
language RDF, creation of the ontology language OWL, standardization of SPARQL 
that adds interrogation capabilities to RDF data, and many others. With the 
languages and standards ’in place’, Semantic Web technologies started to be used. 
These technologies are popular, especially in domains such as research and life 
sciences, where they help researchers combine informa about different diseases and 

drugs that have different namings in different places around the globe.   
In this section will be presented one of the most important applications and 

tools that have been constructed to support the development of the  Semantic Web. 
These fall into the following categories: development environments, Web browsers, 
inference engines/reasoners, triple stores, transformers from the classical data 
models to semantic ones, search engines, etc. 

 
 

1.3.1 Development Environments 

Protégé is an open-source ontology editor and knowledge management 
system. Provides a graphical interface for the creation of ontologies, contains 
deductive classifiers for validating the models and inferring new knowledge based on 
the ontology analysis. Similar to Eclipse, it is a framework for which a lot of other 
projects create plugins. The application is written in Java programming language 
and relies massively on the Swing component in the construction of the graphical 

interface. Protege editor has been developed at Stanford University in California and 
was made available under the license of BSD2. The early versions of the tool had 
been developed in collaboration with the University of Manchester.   

(Apache) Jena is a framework that was developed in the Java programming 
language and is used for the creation of Semantic Web applications. Has initially 
been developed by researchers at HP Labs from Bristol, Great Britain in 2000. 

Provides an exhaustive set of Java libraries in order to support developers in 
creating RDF, RDFS, RDFa, OWL, or SPARQL code conforming to W3C 
recommendations. Includes a rule-based inference engine for reasoning onto the 

RDF or OWL ontologies and a variety of strategies for storing RDF triples in memory. 
Jena is similar to Sesame but unlike that one, it provides also support for the 
creation of OWL ontologies. The framework contains many intern reasoner systems, 
and also Pellet, an open-source OWL reasoner written in Java can be set for working 

with Jena.    
Sesame is an open-source framework for the interrogation and analysis of RDF 

data. Was created by the Dutch software company Aduna as part of the Semantic 
Web project ”On-To-Knowledge”. Contains the implementation of a triple store in 
memory and one on disk, altogether with 2 servlet packages that can be used to 
manage and provide access to stores from a server. The RIO package (RDF 
Input/Output) contains an API for the RDF parsers and writers from Java. The  

BUPT



27 Current State of Researches -  1.3 

 

parsers and writers for popular RDF serializations are distributed with the 
framework, and the users can extend their list by putting their parsers inside their 

Java applications’ Classpath. Supports two interrogation languages: SPARQL si 
SeRQL and has another component, Alibaba which is an API for the mapping of Java 
classes to ontologies, and vice-versa. This makes possible the use of ontologies 
directly in Java code.  

      
Ontotext: an ontology development environment written in Java at Stanford 

University, California. 

TopBraid Composer: an ontology development environment written in Java at 

Stanford University, California. 
 

1.3.2. Inference Engines (reasoners) 

FaCT++ is an enhanced version of FaCT and is implemented also in C++. Uses 
tableaux algorithms of the description logic SHIQ (D) in the reasoning process and 
relies on various strategies such as absorption, models combination, cycles 
elimination, synonym replacement, heuristics for ordering, and classification of 
taxonomies. Its main disadvantages are the limited user interface and reasoning 

services compared to other existing reasoners.   
Pellet uses reasoning in description logics SHIN and SHON, being implemented 

also in Java. The reasoning strategies implied are: Tbox partitioning, nominals 
support, absorption, semantic branching, slow unveiling, dependency-oriented 
jumps. Reasoning on data types, individuals, ABox queries optimization makes it 
very suitable for robust Semantic Web applications. Offers standard reasoning 

services for OWL ontologies including various optimization techniques such as 
nominals, conjunctive query answering, incremental reasoning.    

Racer is a reasoner implemented in functional language LISP with the goal to 
prove the tableaux calculus for SHIQ and makes use of multiple optimization 
techniques for enhancing the reasoning, like dependency-oriented backtracking, 
axioms transformation, models reunion, caching, etc.  

HermiT makes use of SHIQ(D) reasoning and is freely available for non-

commercial use. Takes at input the OWL file and makes different inference tasks 
such as consistency checking, subsumption identification between classes, 
computation of the partial order of classes from the OWL file, and others. Differs 
from other reasoners by the use of hyper-tableaux algorithms, which are much less 
deterministic than the normal tableaux ones.  

F-OWL is an inference engine for OWL data that relies on frame systems for the 
reasoning over ontologies task. Reads the OWL ontology from a URI, extracts the 

RDF triples, and converts them to a format that is conforming with the frames style, 

which is literally introduced into the engine. Makes use of ”flora” rules defined in the 
Flora-2 language to verify the ontology’s consistency and deduce hidden knowledge.   

Hoolet relies on First Order Predicate Logic (FOL). The ontology is translated 
into a collection of axioms and is sent to the FOL reasoner for the verification of 
consistency. It is then extended for processing rules by adding a parser for the RDF 
rules syntax. Relies on an OWL-DL reasoner with support for SWRL rules. Makes use 

of a primitive technique that is related to the ones for homogeneous translations. 
The reasoning support is given by the direct translation of the ontology to a 
collection of axioms that are communicated to the theorem prover Vampire for the 
checking of consistency. The used technique is not scalable and FOL is undecidable.  

 

BUPT



27 Current State of Researches -  1.3 

 

KAON2 is based on OWL DL and F-Logic and it is an infrastructure for the 
management of ontologies that are created in OWL DL, SWRL, or F-Logic. Supports 

answers at conjunctive queries, without non-distinctive variables. Is the successor 
of the KAON project, which was used as an extension at RDFS. The idea behind this 
implementation is to reduce the SHIQ knowledge based on declarative logical 
programs (Datalog) disjunctive with finite DL rules, reason on the hybrid logic by 
reusing optimization techniques from databases. It translates an ontology and a rule 
into an axiom by making use of a common logical language, which is why is 
considered to form part of the class of homogeneous transformation techniques. 

Currently cannot handle nominals, if an ontology contains a class owl:oneOf or a 

restriction owl:hasValue, which are actually other names for nominal concepts, then 
any task of reasoning will throw an exception. Also cannot deal with very large 
numbers found in cardinality formulae. Problems have been remarked also in an 
ontology that contains a maximum cardinality restriction out of two: the reasoner is 
not capable to answer queries on it.         

 

1.3.3. Triple Stores 

AllegroGraph is a closed-source triple store that was created for storing of RDF 

data, which is the standard format of linked data. Currently, it is being used in 
open-source, commercial projects and those of the Defense Department. It is also 
the component for data storing of the project TwitLogic,  which has as its main 
objective to bring Semantic Web technologies over the data on Twitter.  Has been 
developed to meet the W3C standards for RDF, so it is considered an RDF database. 
It’s a  reference implementation of the SPARQL protocol, a query language for linked 

data having the same purpose as SQL for relational databases. It was proposed by 
the Swiss company Franz Inc., which created also Allegro Common Lisp, an 
implementation of  Common Lisp, which is a dialect of the functional language Lisp. 
Its functionality is being provided in the languages Java, Python, Lisp, and other 
APIs. The first version of AllegroGraph has been made available at the end of the 
year 2004.  

Virtuoso Universal Server is a middleware hybrid engine and database that 

combines the functionality of a traditional RDBMS, Objectual-RDBMS, virtual 
database, file server, and web applications,  RDF, XML, simple text into a single 
heterogeneous system. Instead of having dedicated servers for each of the above 
functionality domains, Virtuoso is a universal server that has a unique multi-thread 
server process that implements multiple protocols. The software has been created 
by the company OpenLink Software, the open-source edition being known under the 
name  OpenLink Virtuoso. 

Mulgara is a triple store and a branch of the project Kowari. It is open-source, 

scalable, transaction resilient and their instances can be interrogated using 
languages such as iTQL and SPARQL. Does not use a relational database due to a 
large number of joins on tables from the relational systems when working with 
metadata. In exchange, this is a completely innovative database optimized for the 
management of metadata. Its models hold the metadata in the form of some 
sentences, subject-predicate-object, very like the triples from RDF data. Metadata 

can be imported and exported from Mulgara in RDF format or Notation3. 

BUPT



28 What is the Semantic Web?  -  1 

 

1.3.4.   Data Transformers 

One of the important categories of tools created in order to support the 
evolution of the Semantic Web is the ones for transforming (converting) from the 
classic data models to the semantic ones, such as would be relational data to RDF, 
XML to RDF, etc. Conversion of relational databases towards RDF triples stores that 
can be queried using the SPARQL language is known under the name RDB-to-RDF. 

In September 2012 W3C launched the recommendation R2RML as a standard 
language for describing the associations between the relational data and RDF, which 

represented a milestone in the evolution of the Semantic Web. R2RML encourages 
developers of RDB-to-RDF to conform with a standard mapping language. These 

tools are classified as R2RML or non-R2RML. 
One of the first researches that had been done in this domain was that of 

Teswanich et al. [190], which created a tool for the transformation of RDF 
documents and schema into relational databases. They affirmed that this association 
is good for avoiding the learning curves associated with the new tools and to benefit 

from the advantages of classic relational tools without losing the ones of the new 
Semantic Web technologies and standards. Their proposed tool is called RDF2RDB 
and does data replication, RDF triples data are put into a relational schema and 
requires information about schema definitions, information that are stored into 
ontologies. Problems related to their solution are especially those related to the 
large memory space consumed by the duplication of the RDF store and the need for 

synchronization of the changes between the 2 deposits. These problems had been 
addressed by the next generation of tools that had been created for this purpose. 

D2RQ is a platform for accessing data from relational databases in the form of 
virtual read-only RDF graphs without being needed to be replicated into an RDF 

store. Was proposed by Bizer et al. [46] in 2004 and consists of 3 major 
components:  

- D2RQ Mapping Language: a declarative language for describing the relations 

among the ontological and relational data models 

- D2RQ Engine: a plugin for the Semantic Web toolkits Jena and Sesame that 

uses mappings for rewriting the API calls into SQL queries for the relational 

model and transmits the results of these queries to the above layers 

- D2R Server: an HTTP server that is used for providing a view of the type 

LinkedData, one of type HTML for debugging, and a SPARQL endpoint on top 

of the database 

Using D2RQ, we can: interrogate a non-RDF database using the SPARQL 
language, access information from a non-RDF base using the APIs provided by Jena 

and Sesame, access the content of a database under the form of data linked across 

the Web, and does SPARQL interrogations onto the database. The supported 
databases include: Oracle, SQL Server, MySQL, PostgreSQL, HSQLDB, 
Interbase/Firebird. 

A tool that is very related to the one previously presented is R2D (RDF-to-
Database) which has been proposed by Ramanujam in [160]. This has as main goal 

to transform the RDF data at runtime into an equivalent normalized relational 
schema, acting as a bridge between the two models and making available the 
existing relational tools also for the RDF stores. In comparison to other tools with 
similar purposes, R2D held the capacity to process also RDF void nodes and 
containers. Void nodes are those that are neither URIs nor literals but are being 
used to 

BUPT



29 Current State of Researches  -  1.3 

 

 
associate a resource with a set of properties that represent some complex data. 

They are one of the main components of RDF graphs and the focus from the 
development of R2D has been put on their relationalization. Also enhanced were the 
translations between SQL to SPARQL interrogations that now have pattern matching 
and data aggregation techniques. 

(CWM) Closed World Machine is a software system for data processing of 
general-purpose for the Semantic Web. Has been created by the father of it, Tim 
Berners-Lee [216], [220] between the years 2000 and 2010. It is similar in 

purposes to what Sed and Awk are for simple text files, or XSLT is for XML. It is a 

semantic reasoner that uses the forward chaining technique that can be used for 
tasks such as interrogation, transformations, verifications, and filtering of 
information. The language at its foundation is RDF extended with rules and could 
use the RDF/XML or Notation3  serializations. It is capable to make the following 
operations:  

- pretty parsing and printing of RDF formats: XML, Notation3, N-triples 

- storing of triples into a deposit that is similar to a table 

- making inferences by using the forward chaining techniques  

- realization of other functions, such as string comparisons, resources 

extraction, all of them using a suite of extensible plugins 

GRDDL (Gleaning Resource Descriptions from Dialects of Languages) [219] is a 
tool for obtaining RDF data from XML documents, particularly XHTML pages. HTML 
pages creators can associate the documents with transformation algorithms, 

generally represented in XSLT, by using an <link> element in the header of the 

document. Alternatively, information required for obtaining the transformation can 
be stored in an associated metadata document or a names space. Clients that read 
the documents can follow links across the Web by making use of techniques 
described in the GRDDL specification to discover the corresponding transformations. 

Among other examples of tools from the category of mapping of data models 
worth mentioning: RDF123 [96], Triplify [17], SquirrelRDF, P2P, SPASQL, 
RelationalOWL, METAmorphose. 
 

1.3.4. Public Ontologies 

DBpedia is an effort to publish structured data extracted from Wikipedia. Data 
are being published in RDF format and put on the Web for use under the GNU Free 
Documentation license, thus allowing the automated agents to realize inferences 
and interrogations over the data  

FOAF (Friend-of-a-Friend) is a popular vocabulary on the Semantic Web that 

uses RDF to describe relations among people and environmental things. Allows 
intelligent agents to understand the many connections between people, them and 

their services, or with other things from their life. 

BUPT



30 What is the  Semantic Web?  -  1 

 

 
SIOC (Semantically Interlinked Online Communities) provides a 

vocabulary of terms and relations that model data spaces on the Web. Examples 
include: blogs, discussion forums, feeds subscriptions, etc. 

GoPubMed is a search engine based on knowledge of biomedical terms. Allow 
users to find information much more easily than other engines do. Gene Ontology 
and Medical Subject Headings serve as tables of content for structuring millions of 
articles from the database MedLine.   

NextBio is a database that consolidates large volumes of experimental data 

from domains such as life sciences, marked and connected through biomedical 

ontologies. Can be accessed through an inference engine having a graphical 
interface. Researchers can contribute with their solutions by introducing data inside 
the base which supports data about genes and proteins expressions and sequence-
oriented data, but it constantly extends to support others.  

Eagle-i is an open-source Semantic Web platform for the introduction and 
publishing of information about the resources that are used in biomedical research. 

Contains a component called SWEET (Semantic Web Entry and Editing Tool), an RDF 
database, a search engine. All the components are organized using an ontology to 
create interoperability with other platforms. The software, documentation, and other 
information are accessible from the Harward University of Medicine.   

Dublin Core 
 

Tables 1 and 2 make a survey with respect to the capabilities brought by the 
new  Semantic Web technologies, as they have been presented during the course of 
this chapter, and compares them with the ones of the traditional Web, as they have 

been stated in the literature read in conducting this research. The results are 
convincing enough, in my opinion. 

 

Characteristic  Semantic Web   Classic 
Web  

Universal representation of data RDF X 

Reusable data models RDF, OWL X 

Intrinsic distributed data models RDF, OWL X 

Standard interrogation languages SPARQL X 

Validation, classification, and 
processing of information 

Inference engines, 
reasoners, classifiers 

 
X 

Offer descriptions of content structures 
in the form of semantics 

metadata X 

Tasks automation based on machine-
readable semantics 

Deductive inference, 
reasoning 

X 

Industrial application domains lots few 
Table 1.1: New characteristics of  Semantic  vs. Classic Web 

 

Characteristic Model Databases XML RDF OWL 

Expressivity medium small medium large 

Accessibility small medium large large 

Flexibility small medium medium large 

Inference small small medium large 
Table 1.2: Comparisons among  Semantic and Classical Web models 

 

BUPT



31 Conclusions  -  1.4 

 

 

1.4. Conclusions 

This chapter represents the introduction of the current thesis, this is why it 
has more of a review scope, that is to introduce the reader to the domains 
approached by my research. I began with a section where I presented the World 
Wide Web, starting with its history, evolution through the 3 generations until the 
present day, architecture, and the three fundamental technologies.  

Then I moved forward and talked about the principal domain of my 

research, which is the Semantic Web. This is a term synonymous with the third 

generation of the Web, i.e. Web 3.0, having as its main purpose to conduct the 
evolution of the classical Web towards a Web of structured data that can be 
automatically processed by machines by annotating the resources with semantic 
contents. The three fundamental technologies of this Web are: URI, RDF, and OWL, 
each of these being discussed briefly in the chapter. There are also levels in the 

architecture which have not yet been created standards, like Unifying Logic, Trust, 
and Proof. This fact is due to the big number of problems that exist under the 
umbrella of these domains, problems that had been placed by experts into the 
broader field of uncertainty.  

In another section are presented the industrial domains in which the 
Semantic Web find most applications, among these I chose to discuss business 
process management, knowledge management systems, e-commerce, e-science 

grids, and social networks. The chapter concludes with another important section in 
which is discussed the current state of researc intoh the domain, in which are 
presented the most important developments that had been brought to sustain the 

growth of the Semantic Web project.  
As contributions to this chapter I can enumerate the reviews of the 2 

domains that are for interest of my research with the aim to give the reader a 
conceptual image of it, analyses and comparisons between the technologies of the 

classical Web and the ones of the new Semantic Web aiming to evidentiate the 
advantages of the latter, how are they expected to change things in this world and, 
nonetheless our lives. These analyzes are presented in the form of plain textual 
narrations and graphically with tables.   

 

 

 

 

 

 

 

 

 

 

 

 

 

BUPT



32 page  intended  left  blank  

 

 

 

 

 

 

 

 

 

 

BUPT



33 Ontologies  -  2.1 

 

 

 

2. LOGICS AS SUPPORT FOR THE  
 SEMANTIC WEB 

 

In this chapter, I will discuss the extremely important roles that logical 
knowledge representation formalisms have in supporting processes on the Semantic 

Web, especially those for the creation of ontology languages. Ontologies play a 
crucial role on the Semantic Web, being used especially to create descriptions of the 
meanings of resources, descriptions that are subsequently being used by automated 

agents in the realization of different tasks, such as inferences and reasoning over 
the knowledge.  It has been noticed by scientists a similarity between ontologies 
and logical knowledge representation systems, such are the Description Logics 
(DLs), which led to the design of ontology languages on top of them.   

.  
I will present the main ontology languages that have been created as 

technologies of the Semantic Web, then I will move forward and discuss the logical 

formalisms domain in which I will provide the reader with definitions, will make 
comparisons between the existing formalisms. Further on I will present a domain 
that has a bigger importance for the Semantic Web, that of Description Logics. Here 
it will be shown the most important languages proposed by the domain literature,  
make analyzes and comparisons between their capabilities of representation, then I 

will talk about the inference problems from a logical knowledge base and present 

the main categories of algorithms that had been constructed in literature for their 
solvation with a focus on the most important ones, the tableaux algorithms. The 
chapter concludes with a section in which will be stated a series of complexity 
results of reasoning in some DL languages together with their proof, as it has been 
proposed in the literature by the scholars of the DL domain.  

 
 

2.1. Ontologies 
 
2.1.1. Introduction 

 
“Ontology” is a term borrowed from philosophy, where it refers to the 

science that deals with describing the types of entities from the real world and the 
existing connections among them. In Computer Science, an ontology is an explicit 

specification of a conceptualization of a domain from the real world and has as 
purpose to offer a common shared vocabulary that contains the most important 
concepts of the domain together with their properties and constraints. Ontologies 
are being used for defining a common vocabulary of an application domain, 

vocabulary that can be shared, reused, exchanged in various heterogeneous 
systems, by humans, automated agents, etc. [109]. 

The Semantic Web has as its main purpose the creation of resources that 
can be understood by computers and whose information can be shared and 
processed both by automated tools and also humans. This distribution of 
information among 

BUPT



34 Logics as Support for the Semantic Web   -  2 

 

 
agents require some semantic markups, which are annotations of Web pages with 

information about their content that can be understood and interpreted by the 
agents on the Web.  To make ensure that different agents have a common 
understanding of terms ontologies are used in which are defined the terms and 
relations from a domain application, and that thus establishes a common 
terminology between agents. In the Semantic Web context, ontologies play a key 
role in sustaining the automated processes (intelligent agents) to access the 
information. Particularly, they are used to provide structured vocabularies that 

describe the terms and their relations, allowing agents to have a correct and non-

ambiguous interpretation of their meanings. For example, a Pizza ontology can hold 
information such as Mozarella and Gorgonzola are some specialties of cheese, that 
cheese is not meat, and that a vegetarian pizza is one whose toppings do not 
contain meat or fish. This information allows the term ”Pizza garnished with 
Mozarella and Gorgonzola” to be unambiguously interpreted as a specialization of 
the term ”Vegetarian Pizza”. Terms whose meanings are defined in ontologies can 

be used in semantic markups that describe the content and functionality of 
resources accessible over the Web [154].  

Reasoning is an important process in the quality insurance of ontologies. In 
the design phase, it is used for finding contradictions among concept definitions and 
deriving implicit relations. In integration and interoperability phases of ontologies is 
being used for the computation and testing of the concept hierarchy, while in 

deployment to determine the consistency of the facts set, infer new relations 
between individuals, etc. [111]. 

The use of ontologies requires a well-defined specification language and that 

is also compatible with the Web and existing tools. Its syntax should be both 
intuitive for humans and compatible with the existing Web standards and its 
semantics should be formally specified in order to be able to provide a shared 
understanding. Nevertheless must be taken into account the expressivity power, 

i.e. the language should be sufficiently expressive to offer sufficient details in the 
concept expressions and relations but not excessive so that it makes the reasoning 
an undecidable process (impossible, untractable). The creation of the RDF Schema 
language represented an early attempt at an ontology language. Due to the fact 
that the constructors offered for the creation of ontologies were some basic ones, 
more expressive languages have been proposed in the literature, like SHOE, 
DAML+OIL, OWL [112]. 

Ontologies are a technology for knowledge representation that is used 
especially in domains that require the storage of some large volumes of data and 
making inferences over them, such as deduction, consistency checking, query 
answering, etc. Some of the most important domains are: eScience, Medecin, 
Geography, Geology, Agriculture, Defence, and nevertheless the Semantic Web. Its 

applications are prevalent in life sciences, which had been used by the developers 

of large-scale ontologies, such as SNOMED [187], a clinical terms ontology that 
contains more than 400.000 concepts and 400 relations that is currently being used 
at Columbia Presbyterian Medical Center, or BioPAX (Biological Pathways Exchange) 
[145], GO (Gene Ontology) [192], MGED (Microarray and Gene Expressions Data 
Ontology) [144], as well as many others. For example, biologists use ontologies to 
annotate data of their genes sequencing experiments in order to make possible the 
answering to complex queries, such as: ”what DNA link products interact with 

insulin receptors?”. To be able to answer this question is needed a reasoner that 
not just identifies the individuals that are (possibly implicitly only) 

BUPT



35 Ontologies  -  2.1 

 

 
instances of the link products between DNA and insulin receivers but also identify 

what pairs of individuals are linked (possibly implicitly only) by the property 
interactsWith [112]. 

Other examples of ontologies applications are: 
- United Nations Food and Agricultural Organization (FAO): uses OWL in order 

to develop a wide range of ontologies from the domains of agriculture, 

fishing, etc. 

- Semantic Web for Earth and Environment Technologies (SWEET): are a 

series of ontologies that had been developed at the US National Aeronautics 

and Space Agency  (NASA), the laboratory of Jet Propulsion. These 

implement ontologies that describe space, the biosphere, the Sun, etc. It is 

currently being extended with a number of efforts about the sciences of 

space and earth and it was augmented in the GEON project in order to cover 

solid ground, and in the project, Virtual Solar-Terrestrial Observatory to 

contain more information about the atmosphere [162] 

- An ontology used by General Motors in a project to sustain activities of 

enhancing the quality of the processes from the assembly line in various 

production sites 

For introductory material into this domain, readers are referred to [109], [90], 
[91], [92], [98] where are related to the basic notions about the Semantic Web and 
its fundamental technology, ontologies. The ones interested in assimilating more 

advanced notions I invite to read a series of valuable works of some scholars in the 
domain, such as Horrocks [110], [111], [112], [114], Baader [25], [30]. They focus 

especially on the ontology languages that have been created for the Semantic Web, 
such as DAML+OIL and OWL, and put emphasis on their relationship with the 
Description Logic languages (DL) and how they had been developed on top of these.  
 

2.2.2. Ontology Languages 

Standard ontology languages of the Semantic Web that had been created by 
W3C are OWL (2004) and OWL2 (2009). Since these have briefly been described in 
chapter 1 I will not be recalling them again here but discuss others that had been 
created before them and influenced their design and development. For OWL and 

OWL2 I will offer a larger discussion in the next section where I will talk about the 
DL application domains, ontology languages being one of these.  

SHOE 

One of the first attempts at creating an ontology language for deployment on 
the Web was SHOE. This is a language that relies on the Frames Logic and has an 
XML syntax that allows it to be embedded into XML documents. Relies on URI 
references for names, an innovation that has subsequently been taken by other 

languages. Laid emphasis on the fact that ontologies will be tightly connected and 
subject to exchange.  Thus, SHOE included a number of directives that allow the 
importing of existing ontologies, local renaming of imported constants, and 
specification of information about versioning and compatibility among ontologies. 
This way of thought influenced the extra-logic vocabulary of OWL which was 
designed in order to partially deal with this sort of problems. SHOE had a lower  

BUPT



36 Logics as Support for the Semantic Web   -  2 

 

influence on the syntax and semantics of OWL due to the fact that did not rely on 
RDF and did not have formal semantics.  

DAML-ONT 
In 1999 was started the DAML program (DARPA Agent Markup Language) with 

the main goal being that to lay the ground for a future generation of”semantic” 
Web. As a first step, it has been decided that the adoption of a common ontology 
language will facilitate the semantic interoperability along various projects that 
constitute the program. RDFS, which already was proposed as a standard by W3C, 
has been seen as a starting point but it was not sufficiently expressive to meet 

DARPA’s needs. A new language has been created, called DAML-ONT that extended 

RDF with constructors from the Object-Oriented and Frames representation 
paradigms. It was tightly integrated with RDFS but, even though this was useful 
from the perspective of compatibility, it led to the rise of some serious problems in 
the design. Same as RDFS, DAML-ONT suffered from a semantically inadequate 
specification and it was soon found out that this could lead to disagreements related 
to the exact meaning of terms from an ontology. Moreover, the DAML-ONT 

properties restrictions, same as in RDFS, had a global scope more than a local one 
and, even if this was benefic for domains and properties restrictions of RDFS, the 
global cardinality restrictions, for example, are hard to understand or have doubtful 
usability.  

OIL 

Approximately in the same time with the development of the DAML-ONT 
language, a group of European researchers with objectives similar to the ones of 
DARPA proposed a new ontology language, OIL (Ontology Inference Layer). This 

was the first ontology language that tried to mix elements from Description Logics, 
frames languages, and Web standards (e.g. XML, RDF). A strong focus was put on 
the formal restrictions and was explicitly designed in order for its semantics to be 

specified by means of a translation to the DL SHIQ. The structure though was relied 
on the frames paradigm, using compound classes definitions in the style that has 
been presented in Section 1. OIL has both XML and RDF syntaxes, but, even though 
the RDF syntax has been designed in order to maintain compatibility with RDFS it 
was not concerned with precise details about the RDF semantics, that were not 
formally defined at that time.  

DAML+OIL 

It became obvious for the previous both groups that their objectives could have 
been best fulfilled by combining their efforts together, the result being the 
DAML+OIL language. The development of the language has been taken by a 
committee mostly comprised of members from the 2 teams and the institution Joint 

US-EU Ad Hoc Agent Markup Language Committee. The unified language has some 

formal semantics given by its own model theory in the DL style, instead of a 
translation to an equivalent DL. The DL-derived constructors of the OIL language 
had been inherited also by the new language, but the frames structures have been 
mostly banished in the favor of DL axioms that were easier to integrate with the 
RDF syntax. Influenced by DAML-ONT it is more strongly related to RDF but 

provided significance for those parts of RDF that were consistent with its syntax and 
with the DL-style model theoretics. This didn’t seem like a big problem due to the 
fact that RDF didn’t have at that time a proper formal specific significance and this 
was the cause for some serious problems when DAML+OIL was used as the 
foundation for the newer ontology language, OWL.

BUPT



37 Description Logics  -  2.2 

 

 

2.2. Description Logics 
2.2.1. Introduction 

 
Description Logics (DLs) are a family of logic-based knowledge 

representation formalisms that have been created in order to be able to represent 
and reason over the data from an application domain in a structured and easy-to-
understand manner. Rely on a family of common languages, called descriptions, 
that have a set of constructors for creating concept descriptions (classes) and roles 

(relations). These descriptions are used as axioms and assertions from the 
knowledge bases and could be reasoned by means of DL reasoners. On the other 
side, DLs are well equipped with logic-based formal semantics and differ from their 

predecessors, like Frames or Semantic Networks [25].  
As it has been already stated, good quality ontologies have vital importance 

for the Semantic Web, their construction, integration, and evolution depend greatly 
on the existence of some good semantics and powerful reasoning tools. As DLs 
have both of them, that makes them some ideal candidates for the ontology 
languages. This fact was known ever since 30 years ago but back then there 
existed a major discordance between the capabilities of one of the technologies and 

the requirements of the other. Due to research in DL over the last decades, this gap 
has become sufficiently narrow to be able to build stable bridges [110].  

Description Logics have distinctive logical properties. They put the focus on 
the decidability of important reasoning problems, like the satisfiability of the 
concept descriptions or knowledge base, providing decidable reasoning services, 
like the tableaux algorithms that are used to deduce implicit knowledge from the 

ones explicitly stated. Highly optimized reasoners, such as FaCT++, Racer, HermiT 
demonstrated that tableaux algorithms for very expressive DLs can lead to a good 
performance even when are being applied over large knowledge bases  [25].   

DLs are characterized by ttouctors provided in order to create complex 
concepts and roles descriptions out of the atomic ones.an  The basic language is 

AL (acronym for Attributive Language). This offers constructors just for conjunction 

(∩), value and existential restrictions ( ∀,∃). The other languages of the DL family 

are extensions of this one, each newly added constructor is being associated with a 

letter in the language’s name. For example ALC is AL extended with concept 

negations (C-complements), ALCR+ is ALC extended with transitive roles (R+). In 

modern DL languages, S is considered as a minimal language, being used as a 

shorthand for ALCR+ in the purpose of reducing name size. It was named so due to 

its relation with the propositional modal S(4) logic. The other languages of the 

family are obtained from this by the addition of new constructors in order to be able 

to represent new characteristics  [154].  
Most important of these constructors are: 

- H: role inclusion axioms (role hierarchies) 

- R: disjunction 

- O: nominals (singleton classes {x}) 

- I:  roles inverses 

- N: number restrictions (≤ 𝑛 𝑅, ≥ 𝑛 𝑅) 

- Q: qualified number restrictions (≤ 𝑛 𝑅. 𝐶, ≥ 𝑛 𝑅. 𝐶) 

- F: functional number restrictions 

BUPT



38 Logics as Support for the Semantic Web   -  2 

 

 

The most well known and largely used languages of the S family are: SI, 
SH, SHI, SHf, SHIQ, SHOQ, SHIN, SHOIN.  Table 1 shows the constructors of 

this family that are being used at the creation of concept descriptions.  
 

Constructor Syntax Semantics 

universal (top) T ∆I 

nothing (bottom) ⊥ φ 

concept name  CN CN⊆∆I 

general negation ¬C ∆I\CI 

conjunction C∩D CI∩DI 

disjunction C∪D CI∪DI 

existential restriction ∃R.C { x∈ ∆I|∃y.(x,y) ∈RI^y∈CI} 

value restriction  ∀R.C { x∈ ∆I|∃y.(x,y) ∈RI→y∈CI} 

Table 2.1: Syntax and semantics of the constructors of DL S 
 

 Lețs take a look at how to create a complex concept from a set of atomic 

concepts and roles by making use of the constructors of that language.  

Let Plant ∈C be a concept ame, and eat, partOf  two roles. Then ∀eat.(Plant∪
∃partOf.Plant) is a concept in accord with the syntax that is shown in Table 1.  

 

2.2.2. History and Evolution 

 
The history of Description Logics started with the attempt to formalize the 

Semantic Networks, which, in their turn represented some attempts of offering a 
sort of labeled graphs-based natural representation. A major problem with Semantic 

Networks was that there did not exist any formal meaning for the graphs, a fact that 
leads to conflicts regarding what complex graphs actually mean when were removed 
from a system that provided data modeling facilities. Another early influence on 
Description Logics had the Frame Systems that shared many of the Semantic 
Networks traits but they grouped related information into a frame.   

KL-ONE was a knowledge representation system that shared many of the traits 

of Semantic Networks and Frame Systems. Not long after its creation had been 

attempts to provide full-fledged formal semantics to KL-ONE. Together with these 
formal semantics KL-ONE can be seen as the first proto DL.  [50]. 

In the rest of this section I will make a brief presentation regarding the history 
of Description Logics.  
 

BUPT



39 Description Logics  -  2.2 

 

 
Research in DL can be partitioned into 4 phases, as it was stated by [25]: 

Phase 0 (1965-1980) 
This is the pre-DL phase in which had been introduced the Semantic Networks 

and Frame Systems as specialized techniques for representation of knowledge in a 
structured manner, which later were criticized due to the lack of any kind of formal 
semantics. A method for the solvation of these problems represented the Structural 
Inheritance Networks that were proposed by Brachman, which have been 
implemented into KL-ONE, the first DL system. 

Phase 1 (1980-1990) 
This phase was especially concerned with systems implementation: KL-ONE, K-

REP, KRYPTON, BACK, LOOM. These systems relied on the so-called structural 
subsumption algorithms, that firstly normalized the concept descriptions then 
recursively compare the syntactic structure of these descriptions. These algorithms 
are usually efficient in polynomial time but have the drawback that they are 
complete only for small expressive DLs, thus for the more expressive ones cannot 

detect all inclusion and instance relations. During this phase had been created the 
first logical considerents of the semantics of formalisms that made possible formal 
investigations in the complexity of reasoning for DLs. For example, in [50] was 
shown that the smallest additions to the expressiveness of the representation 
formalism can lead to the intractability of the inclusion problem. Schmidt-Schauβ 
[173] showed that inclusion in the language from the basis of KL-ONE is 

undecidable, and Nebel [146] that the use of a Tbox formalism that allows for 
introduction of abbreviations for complex descriptions makes subsumption 
undecidable if the DL allows for conjunction and value restriction constructors (these 

have been supported by all DL systems at that time).  As a reaction to these 
negative complexity results the developers of the CLASSIC system, the first 
industrial-scale DL system, have carefully restricted the expressivity power of the 
system.  

Phase 2 (1990-1995) 

Began with the introduction of a new algorithmic paradigm for DL, that is the 
so-called tableaux algorithms. These algorithms work over the DLs that are 
propositionally closed, that is those which contain all boolean operators, and are 
complete also for the most expressive languages of the family. In order to decide 
the consistency of a knowledge base, a tableaux algorithm creates a model of it by 
structurally decomposing the concept descriptions, this way infers new constraints 

on the model’s elements. The algorithm terminates either when all attempts to build 
a model failed with obvious contradictions or ends with a canonical model. As in 
propositionally closed DLs the subsumption and instance checking can be reduced to 

consistency, this means a consistency checking algorithm is able to resolve all the 
reasoning tasks stated above. Among the first systems that employed these 
algorithms were Kris and Crack which proved that optimized implementations of 

these algorithms led to a good behavior of the system even if the worst case 
complexities of the corresponding reasoning problems are no longer polynomials. 
This phase has known also a profound analysis of the complexity of reasoning in 
various DLs and the important observation that DLs are strongly related to Modal 
Logic.  

 

BUPT



40 Logics as Support for the Semantic Web   -  2 

 

 
Phase 3 (1995-2000) 

This phase is characterized by the development of the inference procedures for 
very expressive DLs, either being relied on the tableaux method or on a translation 
into Modal Logic. Highly optimized systems, like FaCT, Racer, DLP  proved that 
tableaux algorithms for very expressive DLs led to an acceptable system behavior in 
practice even when processing large knowledge bases. In this phase the relationship 
with Modal Logic and decidable fragments of FOL has been thoroughly studied and 
its applications in the databases domain have been investigated, such as schema 

reasoning, query optimization etc.  

Currently, we are in phase number 4 where the results of previous phases are 
being used to develop industrial-scale DL systems that employ very expressive DLs, 
having applications into the Semantic Web and knowledge representation and 
integration in domains such as medicine and bioinformatics. In the academy, the 
interest in less expressive DLs grew with the purpose of creating tools that are able 
to process very large knowledge bases (both terminological and assertional).  

 

2.2.3. DL Knowledge Bases 

A DL knowledge base contains two types of information [154]: 
- intensional (TBox, RBox): general knowledge about the application domain 

- extensional (ABox): knowledge about a specific situation of the world 

 

a) TBox 

A TBox (terminological) is a finite set of statements of the form C⊆D (concept 

inclusion), C ≡D (concept equivalence). Statements from the TBox are known under 

the name of terminological axioms. 
A TBox is general if it has a finite set of concept axioms and it allows cycles and 

general concept inclusions (GCI).  
 
Example:  

WildAnimal ≡Anumal ∩ ¬∃owner.T      

Mammal ∩ ∃body-part.Hunch ≡ Camel ∪Dromedary 

 
A TBox is inextensible if contains only primitive concept definitions, the 

concepts’ names occur at most once on the left-hand side, and do not contain cyclic 
definitions or GCIs. 

 Example: 

Elephant ≡ Mammal ∩ ∃body-part.Trunk     

Mammal ≡ Elephant ∪ Lion ∪ Zebra 

Reasoning in the presence of a TBox is much more difficult than without it, 
especially if the definitions contain cycles. A terminological cycle is a recursive 
concept inclusion, or one or many mutual recursive inclusions.  

Example:  

Person ⊆ ∀hasParent.Person      

 Person ⊆ ∃hasParent.Mother, Mother ⊆ ∃hasChild.Person 

BUPT



41 Description Logics  -  2.2 

 

 

 
Fig.2.1: Architecture of a DL system 

 
 

b) Rbox 

Let L  be a descriptive language, RN,SN∈ R roles names, R1,R2∈Rdsc(L) two L-

roles. A RBox (roles) is a finite set of propositions of the form: 

- Func(RN), or RN∈F, where F⊆R is a functional role set  

- Tranz(SN), or SN∈R+, where R+⊆R is a set of transitive roles 

- R1⊆R2 (roles inclusion), R1≡R2 (roles equivalence) 

The statements from RBox are called role axioms. The types of axioms that can 
occur into a Rbox depend on the expressivity of that language. The languages that 

offer roles axioms are the ones of the S family, starting from the most primitive one, 

S, which, as has been stated in the previous section is ALC extended with transitive 

role axioms. Similarly to constructors, each role axiom is associated with a letter in 

the name of the DL (e.g. F  for functional roles, R+ for transitive roles, H  for roles 

inclusions). We can extend the S language with role inclusion axioms and obtain the 

language SH, which in its turn can be extended to SHf  by including functional roles 

axioms. An interesting fact is that certain restrictions exist between the three types 

of axioms, in that the set of functional roles (f) must be distinctive from the 

transitives one (R+), this is due to the fact that it is still an open problem whether or 

not DLs that employ both functional and transitive roles are decidable.  

 

BUPT



42 Logics as Support for the Semantic Web   -  2 

 

c) Abox 

Let L be a descriptive language, a,b∈I individual names, C∈ Cdsc(L) a L-

concept, R∈ Rdsc(L) a L-role. An ABox (assertional)  is a finite set of propositions of 

the form:  

- a:C – concept assertions 

- (a,b):R  - role assertions 

An ABox describes a certain situation of the world with respect to some 

individuals, of an application domain in terms of concepts and roles. The statements 
from ABoxes are called assertions (individuals axioms). For example:  

grass1:Plant,  stone1: Earth, Ganesh, Bokhara:Elephant  

 (Ganesh,grass1):eat, (Bokhaexisteat 

There exists two important assumptions about ABoxes. The first is called  

“Unique Name Assumption” (UNA), which says that if a,b∈ I are two distinct 

individuals then their interpretations with respect to I are also distinct (denoted aI 

≠bI).  Without UNA it should be stated a different assertion in order to assign that a 

and b are two distinct individuals.  

The second one is called ”Open World Assumption” (OWA), which states it cannot be 
assumed that all knowledge from the base are complete. This fact is intrinsic in that 
an ABox (or, more generally, a knowledge base) can have many models, only a few 
of the aspects lay under the constraints of assertions. For example, role assertion 

(Ian, Jeff):hasPhdStudent states that Ian has a Ph.D. student, Jeff in all its models, 
in some of these Jeff is the only Ph.D. student of Ian while in others Ian can have 

also other PhDs [154].  
 
 

2.2.4. Syntaxes and Semantics 

 
a) Syntaxes 
All DL family languages have the same syntax, which is represented by concept 

and role names, concepts and role constructors, composite expressions, etc. In this 
section, I will try to make a brief description of them.  
Unlike FOL,  DL names (of concepts, roles, individuals, etc.) do not contain variables 
[25].  
The atomic types signature is: 
- concept names (classes): A, B (the equivalent of unary predicated from FOL) 

- role names (relations, properties): r, s (the equivalent of binary predicates from 

FOL) 

- individuals: Anna, John, Italy (the equivalent of constants from FOL) 

Concepts operators:  

- booleans: negation (¬), conjunction (∩), disjunction (∪) 

- a restricted form of quantifiers: existential (∃), value (∀) 

- numericals: (≤ 𝑖𝑡, ≥, >, =) 

 

BUPT



43 Description Logics -  2.2 

 

Role operators: 
- selection (.) 

- composition (o) 

Special  concepts: 

- T (top, thing, general), used as shorthand for A∪ ¬A 

- ⊥ (bottom, nothing, inconsistent), used as shorthand for A∩ ¬A 

In what follows I will show some examples of constructing complex concepts 

and roles expressions from atomic ones by making use of the language 
constructors. Also, I will specify the equivalent formulas from FOL syntax.  

Examples of schema axioms:  

- Rich⊆ ¬Poor (concept subsumption) 

- Cat ∩ ∃sits-on.Mat ⊆ Happy (concept intersection) 

- BlackCat ≡ Cat ∩ ∃has-color.Black (concept equivalence) 

- sits-on ⊆ touches (role inclusion) 

- Trans(part-of) (transitivity) 

These are equivalent to the following FOL statements: 

- ∀x.(Rich(x) → ¬Poor(x)) 

- ∀x.(Cat(x)Λ∃y.sits-on(x,y)ΛMat(y)→Happy(x)) 

- ∀x.(BlackCat(x) ↔ Cat(x)Λ∃𝑦.(has-color(x,y)ΛBlack(y))) 

- ∀x,y.(sits-on(x,y) → touches(x,y)) 

- ∀x,y,z.(sits-on(x,y)Λsits-on(y,z) → sits-on(x,z)) 

Examples of data axioms (facts) from FOL: 

- concepts: BlackCat(Felix), Mat(Mat1) 

- roles: sits-on(Felix,Mat1) 

 

b) Semantics 

Description Logics have model theoretic semantics defined in terms of 

interpretations. An interpretation I is formed from a domain ∆I and a function .I, 

where the domain is a set of objects and the function relates each individual name 

a∈ I to an element aI∈ ∆I, each concept name CN to a subset CI∈ ∆I and each role  

name RN∈R to a binary relation RNI⊆ ∆I × ∆I [154]. 

The interpretation function can be extended to concept expressions in the 

obvious way. 

(C∪D)I = CI∪DI 

(C∩D)I = CI∩DI 

(¬C)I = ∆I\CI 

{x}I ={xI} 

BUPT



44 Logics as Support for the Semantic Web   -  2 

 

 

(∃R.C)I = {x| ∃y.(x,y) ∈RI Λ y∈CI} 

(∀R.C)I = {x| ∃y.(x,y) ∈RI → y∈CI} 

(≤n R)I = {x| #{y|(x,y) ∈RI}≤n} 

(≥ n R)I = {x| #{y|(x,y) ∈RI}≥n} 

I will present below an example of how to create an interpretation I=(∆I, .I) of a 

given concept: ∀eat.(Plant ∪ ∃partOf.Plant).  

Domain is given by the set of individuals and roles: 

∆I = {Ganesh, Bokhara, Balavan, grass1, stone1},  

The interpretation function is defined as following: 

PlantI = {grass1} 

eat1 = {(Ganesh,grass1), (Bokhara,stone1)} 

 partOfI = Φ 

Thus we have the following interpretations:  

 (∃partOf.Plant)I = Φ 

 (Plant ∪ ∃partOf.Plant)I = {grass1} 

 (∀eat.(Plant ∪ ∃partOf.Plant))I = {Ganesh, Bokhara, grass1, stone1} 

c) Semantics of Knowledge Bases 

An interpretation I satisfies (models) a TBox axiom A (denoted I |= A) [154]: 

 I |= C⊆D iff CI⊆DI,   I |= C≡ D iff CI≡DI 

 I |= R⊆S iff RI⊆SI,   I |= R≡D iff RI≡DI 

 I |= R+⊆S iff (RI)+⊆SI 

I satisfies a TBox T (denoted I |=T) if satisfies any axiom of it.  

An interpretation I satisfies (models) an ABox axiom A (denoted I |= A): 

 I |= x:C iff xI∈CI,  I |= (x,y):R iff (xI,yI) ∈RI.  

I satisfies an ABox A (denoted I |= A) if it satisfies any axiom from it. 

I satisfies a knowledge base K (denoted I |= K) if satisfies both its T and  A.  

 

2.2.4. Relationships with Other Logics 

 In this section I will talk about the relations that exist between DL and other 
logical formalisms, namely Predicatives and Modals. I will consider that the reader is 
familiar with these formalisms; but for those that are not I recommend some 
introductory materials in the domain, such are those of Stanford [237], [238]. In 

this section I will discuss and analyze the relationship between the primitive DL ALC 

together with certain extensions of it with these logics. For readers willing for a 

BUPT



45 Description Logics  -  2.2 

 

deeper analysis of these logics is recommended the work [47] as well as chapter 4 
of Baader’s vast book [28]. 

 
 

a) DLs and Predicate Logic 
 

 Most of DL languages are being seen as fragments of First Order Predicates 
Logic (First Order Logic - FOL), even though there exist ones that contain operators 
(like transitive roles closure or fixpoints) that require Second-Order Logic. The main 

reason for using DLs instead of general FOL at knowledge representation is that the 

majority of DLs are decidable fragments of FOL [25], which means there exist 
efficient procedures for deciding the main inference problems about which I will talk 
largely in section 3 of the current chapter where will be presented the reasoning 
services and techniques from DL knowledge bases.  
 If concept names are seen as unary relations and role names as binary ones, 

we can define two translation functions πx şi πy that inductively map ALC concepts 

to first-order formulas with one free variable, x or y.  
𝜋𝑥(𝐴) = 𝐴(𝑥) ...........................................................𝜋𝑦(𝐴) = 𝐴(𝑦)  

𝜋𝑥(𝐶 ∩ 𝐷) = 𝜋𝑥(𝐶) Λ  𝜋𝑥(𝐷).......................................𝜋𝑦(𝐶 ∩ 𝐷) = 𝜋𝑦(𝐶) Λ  𝜋𝑦(𝐷) 

𝜋𝑥(𝐶 ∪ 𝐷) = 𝜋𝑥(𝐶)  ∨ 𝜋𝑥(𝐷)...................................... 𝜋𝑦(𝐶 ∪ 𝐷) = 𝜋𝑦(𝐶)  ∨ 𝜋𝑦(𝐷) 

𝜋𝑥(∃𝑟. 𝐶) =  ∃𝑦. 𝑟(𝑥, 𝑦) Λ 𝜋𝑦(𝐶)  ................................𝜋𝑦(∃𝑟. 𝐶) =  ∃𝑥. 𝑟(𝑦, 𝑥) Λ 𝜋𝑥(𝐶)  

𝜋𝑥(∀𝑟. 𝐶) =  ∀𝑦. 𝑟(𝑥, 𝑦)  →  𝜋𝑦(𝐶).................................... 𝜋𝑦(∀𝑟. 𝐶) =  ∀𝑥. 𝑟(𝑦, 𝑥)  →  𝜋𝑥(𝐶) 

 This being said, a TBox T and an ABox A can be translated the following way, 
where ψ[x/a] denotes the formula obtained from ψ by replacing each occurrence of 
x by a: 

 𝜋(𝑇) =  ⋀ ∀𝑥. (𝜋𝑥(𝐶))  →𝐶⊆𝐷∈𝑇  𝜋𝑥(𝐷))  

 𝜋(𝐴) =  ⋀ 𝜋𝑥(𝐶)𝑎:𝐶∈𝐴 [𝑥/𝑎] Λ ⋀ 𝑟(𝑎, 𝑏)(𝑎,𝑏):𝑟∈𝐴    

As it can be easily observed, this translation preserves the semantics: we can see 
the DL interpretations the same as the ones from FOL and vice-versa, and it can be 
easily shown that the translation preserves the models. The direct consequence of 

this fact is that reasoning in DL is equivalent to the inference from FOL. 
 

Theorem 1. Let (T,A) be an ALC knowledge base, C and D ALC concepts (possibily 

complex) and a an individual name. Then: 
-  (T,A) consistent if π(T) Λ π(A) consistent 

-  (T,A) |= C⊆D if (π(T) Λ π(A)) → (π({C⊆D})) valid 

-  (T,A) |= a:C  if   (π(T) Λ π(A)) → (π({a:C})) valid 

This translation not only provides an alternate manner for defining the semantics of 

ALC but at the same time tells us that all the inference problems for ALC  

knowledge bases are decidable. Actually, the translation of a knowledge base uses 
only the variables x and y, and thus yields a formula in the two variables fragment 
of  FOL, which is known to be decidable in exponential non-deterministic time 
(NExpTime) [28]. Alternatively, we can rely on the fact that this translation uses 
quantification only in a restricted form, so yields a formula into the guarded 

BUPT



46 Logics as Support for the Semantic Web   -  2 

 

 
fragment which is known to be decidable in exponential deterministic time 

(ExpTime). So, the exploration of the relation between DL and FOL gives us even 

“free” complexity upper bounds. For ALC though (and many other DLs) the upper 

bounds obtained this way are not necessarily the optimal ones, fact that justifies the 
development of the dedicated reasoning procedures for DLs. 
 The translation of more expressive DLs may be direct or more difficult, 
depending on the additional constructors. Role inverses may be easily captured in 
both guarded and two-variable fragments by simply interchanging variables. For 

example: 

  𝜋𝑥(∃𝑅−. 𝐶) =  ∃𝑦. 𝑅(𝑦, 𝑥) Λ 𝜋𝑦(𝐶).  

Number restrictions may be captured using equalities or number quantifiers. It is a 
known fact that the two variables fragment with numbers quantifiers is decidable in 
exponential non-deterministic time. Transitive roles instead can’t be expressed with 
the help of only two variables, while the three variables fragment is known to be 

undecidable. The guarded fragment, when constrained to the so-called ’action’ 
guarded fragment can still be able to capture a variety of characteristics, like 
number restrictions, role inverses, fixpoints and still be decidable in exponential 
deterministic time [28]. 
 

b) DLs and Modal Logic 
 

 Description Logics have a strong relation to the Modals, even though they 

have been individually created. This similarity has been discovered relatively late, 

but since then it has been successfully exploited in order to transfer decidability and 

complexity results as well as reasoning techniques. Is not hard to notice that ALC 

concepts can be considered as syntactic variants of the multi-modal logic K 

formulas: the Kripke structures can be seen as DL interpretations (and vice-versa). 

We can see thus concept names as propositional variables and role names as modal 

parameters, and I’ll do this correspondence by means of the rewriting operator ↔, 

that allows ALC concepts to be translated into modal formulas (and vice-versa).  

 ALC concept  Modal  Formula K  

    A   ↔ a, for a concept A and propozit. variable a  

C∩D  ↔ C ∧ D       

 C∪D  ↔ C ∨ D    

 ¬C  ↔ ¬C       

 ∀r.C  ↔ [r]C       

 ∃r.C  ↔ (r)C 

Let’s denote by �̇� the modal formula obtained after rewriting of the ALC concept C. 

The translation of the DL knowledge bases is a more complex problem. A 

TBox T is satisfied only inside those structures where, for each C⊆D , ¬�̇� ∨ Ḋ 

globally preserves (i.e. in any world of our Kripke structure, or equivalently, in any 

element of our interpretation domain). We can express this by means of the 

universal modality, which is a special modal parameter U which is interpreted as 

BUPT



47 Description Logics -  2.2. 

 

total relation in all Kripke structures. Before moving forward to ABoxes, I will define 

the properties of the correspondence by now[25].  

Theorem 2. Let T be an ALC Tbox; E, F two (possibly complex) ALC concepts. 

Then:  

i) F is satisfiable w.r.t. T if �̇� ∧  ⋀  [𝑈](¬�̇� ∨ �̇�)C⊆D∈T  satisfiable 

ii) T |= E⊆F if  ⋀  [𝑈](¬�̇� ∨ �̇�)C⊆D∈T ∧  �̇� ∧ ¬�̇� este unsatisfiable 

 Similar with TBoxes, neither ABoxes don’t have a direct correspondence in 

Modal Logic, but they can be seen as a special case of a modal constructor, which is 

nominals. These are special propositional variables that exist in exactly one world, 

and are the foundational elements of Hybrid Logic and they come with a special 

modality, the @ operator, that allows to refer to the only world inside which the 

nominal takes place. For example, @aψ takes place if in the world in which a holds 

ψ holds as well.Thus, an ABox assertion of the form a:C is equivalent to the modal 

formula @a �̇�, while the assertion (a,b):r corresponds to @a(r)b. In the latter 

formulae, we can see that nominals can be both parameters of the @ operator, like 

a, and propositional variables, like b. Worth mentioning that the use of individual 

names inside Aboxes corresponds to formulas in which nominals are being used in a 

more restrained fashion. Some DLs, like SHOIN or SROIQ, allow for more general 

use of nominals, which is indicated by the letter O in  DL’s name [28]. 

 As it is the case with FOL, some DL constructors have correspondents in 

Modal Logic while others don’t. Number restrictions correspond to gradual 

modalities, which have known a limited attention until the moment the connection 

with DLs was found. In certain variants of Propositional Dynamic Logic (PDL), a 

modal logic for reasoning with programs, we find deterministic programs which 

correspond to unqualified number restrictions ≤ 1𝑅. T. Similarly we find inverse 

programs which correspond to role inverses, and regular program expressions, that 

are equivalent to the roles constructed with transitive-reflexive closure, union, and 

composition [28]. 

2.2.5. Most Common DL Languages 

As I have previously stated, Description Logics are a logic-based family of 

formalisms used for representation of the knowledge of an application domain  and 

that have model theoretic semantics. They are used especially in applications that 

requires the storing of knowledge and performing various reasoning operations on 

them. Rely on a family of common languages, called descriptors, which have a set 

of constructors for creating descriptions of concepts (classes) and roles 

(proprieties). These descriptions are used in axioms and assertions of knowledge 

bases and can be reasoned by special DL systems. 

Let’s take an example of a concept called: “A man married to a professor and 

having at least 5 children all doctors”. This can be expressed in DL by the following 

concept:

BUPT



48 Logics as Support for the Semantic Web   -  2 

 

𝐻𝑢𝑚𝑎𝑛 ∩ ¬𝐹𝑒𝑚𝑎𝑙𝑒 ∩ ∃𝑚𝑎𝑟𝑟𝑖𝑒𝑑. 𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟 ∩ (> 5 ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑) ∩

(∀ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑. 𝑆𝑡𝑢𝑑𝑒𝑛𝑡)  

This description contains the conjunction (∩) and negaţie (¬) boolean 

operators, as well as others such as: 

- existential restriction (∃𝑅. 𝐶) 

- value restriction (∀𝑅. 𝐶) 

- number restriction (> n R) 

The main role that descriptive languages have is that of describing the entities 

from the application domain (concepts, roles, constraints). As it can be thought, a 

concept wants to represent a class of objects that share some common 

characteristics while a role is a relationship that links an object to another object or 

to a data value. A descriptive language is constituted from an alphabet of names of 

concepts, roles, individuals, and a set of constructors for each of these[25].  

Table 1 presents some of the most common DL languages that have been 

created in the domain literature by renowned scholars, like Baader, Horrocks, 

Donini, et al. In the works read by me during my Ph.D. studies. 

Name Explanation 

AL a DL that has concepts: atomic, universal,  bottom, negation, intersection, 

value restriction, limited existential restriction 

ALC AL extended with total concept negation (C) 

S ALC extended with transitive role axioms (R+ ) 

SI S extended with inverse roles (I) 

SH S extended with role hierarchies (H) 

SHI SH extended with role inverses (I) 

SHF SH extended functional role axioms (F) 

SHQ SH extended with qualified number restrictions (Q) 

SHIQ SHQ extended with role inverses (I) 

SHIF SHI extended with functional role axioms (F) 

SHOIN SHI extended with nominals (O) and number restrictions (N) 

SROIQ S extended with nominals (O), qualified number restrictions (Q), role 

inverses (I), role inclusion axioms and disjunction  (R) 

BUPT



49 Description Logics  -  2.2 

 

 

Table 2.2: Main DL languages existing in literature 

Next, I will try to make a series of discussions and analyses around those 

languages with respect to their characteristics, what can be expressed (described) 

with their constructors, inherent growth in complexity due to the addition of the new 

constructors, and many other interesting facts. I’ll begin the discussion with the 

most basic of them, the DL ALC.  

The DL ALC  (acr. Attributive Language with concept Complements) has been 

proposed by the scholars Schmidt-Schaus and Smolka in year 1991 [174], there 

where has been created also a scheme for the names of the languages: starting 

from a primitive DL, the addition of a constructor is indicated by a letter in the name 

of the DL; for example, ALC is obtained from AL by adding the complement 

operator (¬) and ALE by adding existential restrictions (∃𝑅. 𝐶).  

Particularly, ALC has been extended with several characteristics that have a 

large impact in the creation of ontology languages, such are the qualified number 

restrictions, role inverses, transitive roles, subroles, concrete domains, nominals.  

With number restrictions is possible to specify the number of relations of a certain 

type in which individuals can participate. For example, we may want to state that a 

person may be married with at most one individual, or to extend the definition of 

the previous concept HappyMan in order to state that it has between 2 and 4 

children: 

𝑃𝑒𝑟𝑠𝑜𝑛 ⊆ ≤ 1 married  

𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑛 ⊆  Human ∩ ¬Female ∩ ∃married. Doctor ∩ ∀hasChild. (Doctor ∪

Professor) ∩ ≥ 2 hasChild ∩ ≤ 4 ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑  

By means of qualified number restrictions can be additionally specified the types of 

individuals that are being counted by that restriction. For example, we can further 

extend the definition of HappyMan in order to say that it has at least 2 children that 

are doctors:  

𝐻𝑎𝑝𝑝𝑦𝑀𝑎𝑛 ⊆  Human ∩ ¬Female ∩ ∃married. Doctor ∩ ∀hasChild. (Doctor ∪ Professor)

∩ (≥ 2 hasChild. Doctor) ∩ ≤ 4 ℎ𝑎𝑠𝐶ℎ𝑖𝑙𝑑   

Using inverses of roles, transitive roles and subroles we can, besides hasChild, also 

use its inverse, hasParent, to say that has Ancestor is transitive and that hasParent 

is a subrole of hasAncestor.  

Concrete domains integrate DLs with concrete sets, such are these of real numbers, 

integers, strings, or with concrete predicates defined on sets, like number 

comparisons (≤), constants (≤ 7), strings (isPrefixOf) etc. Unfortunately, in their 

unrestricted form, concrete domains can have dramatic effects on the decidability of 

reasoning in DL. Due to that, in practice, it is being used a restricted form of these, 

called data types. 

BUPT



50 Logics as Support for the Semantic Web   -  2 

 

 

The nominal constructor allows the use of individuals inside concept descriptions. If 

a is an individual name then it is called “nominal”, which is interpreted as the 

singleton set.  

The one-of constructor extends nominals to a finite set of individuals and can be 

specified with the disjunction: 

 {a1,a2,…an}={a1}∩{a2}….∩{an} 

Nominals can have dramatic effects over the complexity of reasoning. 

The letter “S” is used for the abbreviation of ALC extended with transitive role 

axioms (R+) in order not to perplex too much the language names when new 

features are being added. Its name comes from the modal logic S4, which is in a 

certain manner related to DLs [154]. 

2.2.6. Application Domains 

DLs have applications in a vast array of domains, such as that of databases 

(schema design, data integration with schema, answering to queries), 

communications equipment configurations, software systems for information and 

documentation etc [28].  

Maybe the most important application, and one that is in trend with the current 

research, is the one on the Semantic Web for creation and development of ontology 

languages. As I have already stated in previous sections, high-quality ontologies  

play a crucial role on the Semantic Web, and their construction, integration, 

evolution depends on the availability of some good semantics and powerful 

reasoning tools. Since DLs have both, this makes them ideal candidates for the 

realization of ontology languages. This fact was known for 30 from now, but back 

then existed a major dissonance between the capabilities of one and the 

requirements of the other[110]. Due to the research from the last decade in the DL 

domain this gap has become sufficiently narrow in order to allow to construct stable 

bridges. This association allows to exploit of more than 20 years of research in DLs, 

such as decidability and complexity of the important reasoning problems 

(satisfiability, inclusion) and to use existing reasoner systems, such as FaCT++, 

Pellet, Racer, HermiT to provide reasoning services for the applications. An ontology 

could be seen as corresponding to a DL knowledge base, consisting of sets of 

concepts, roles, and individuals. Also similar to DL, ontology classes can be simple 

names or expressions constructed from the atomic classes and properties using a 

set of constructors provided by that language. 

BUPT



51 Description Logics  -  2.2 

 

Constructor DAML Sintaxa DL Exemplu 

intersectionOf C1∩…∩Cn Teen∩Girl 

unionOf C1∪…∪Cn Professor∪Doctor 

complementOf ¬C ¬Positive 

oneOf {x1,…xn} {Tom, Anne} 

allValuesFrom ∀P.C ∀hasColor.White 

someValuesFrom ∃r.C ∃hasColor.Blue 

hasValue ∃r.{x} ∃oneOf.{Christians} 

minCardinality ≥ n r.C ≥2 hasMark.Good  

maxCardinality ≤ n r.C ≤1 hasMark.Insufficient  

inverseOf r- hasChild- 

Table 2.3: DAML+OIL Constructors and equivalent DL syntax 

Every ontology language relies on a description logic. For example SHIQ 

extended with concrete domains corresponds to the ontology language DAML+OIL. 

SHIQ is an expressive DL that, unlike others that are focused especially on concept 

constructors, it allows also to create complex roles [111]. Table 1 shows the 

DAML+OIL set of constructors together with the equivalent DL syntax.  

OWL language has at its foundation also Description Logics. OWL Lite is based 

on the DL SHIF extended with nominals and concrete domains, SHIF(D). OWL DL, 

as even its name suggests, relies on a descriptive logic, namely SHOIN(D). The 

third version is OWL Full, which doesn’t have correspondent any logic since it’s 

undecidable due to its big power of expressivity and contains “paradoxical” features. 

If the sets of mathematical constructors of OWL DL and Full are practically the 

same, the latter doesn’t impose restrictions on the actual use of these constructors, 

such as allowance of deterministic closure, unsatisfiability of global restrictions 

through axioms (proprieties hierarchies, extensions of simple object proprieties), the 

definition of classes that are in the same manner properties and have themselves as 

instances, etc. [112].  Next, I will try to make a broader talk about the OWL 

language and cover also its second, more recent version, OWL2.  

a) OWL 

OWL is the standard language for developing ontologies on the Semantic Web 

that has been created by the W3C’s WOW Group and whose semantics can be 

defined by means of a translation to an expressive DL, this being one of the 

objectives of its design. This association allows OWL to take advantage of the rese 

in DL made during the last decades, such are those about decidability and 

complexity of the key inference problems, the existing DL reasoner systems 

(FaCT++, Pellet, Racer) in order toarch provide reasoning services to the 

applications.   

BUPT



52 Logics as Support for the Semantic Web   -  2 

 

An OWL ontology is seen as corresponding to a TBox from DL together with a 

roles hierarchy, that describes the application domain in terms of classes (coresp. 

concepts) and properties (coresp. roles). An ontology consists from a set of axioms 

that assert certain things, for example inclusion relations between classes and 

properties. Similarly as into a standard DL, OWL classes can be simple names or 

expressions built from atomic ones using a large array of constructors. The set of 

constructors supported by OWL together with the equivalent DL syntax is presented 

in Table 2, while in Table 3 is shown the set of axioms supported by OWL.  

OWL Constructor DL Syntax Example 

intersectionOf C1∩…∩Cn Human∩Male 

unionOf C1∪…∪Cn Doctor∪Lawyer 

complementOf ¬C ¬Male 

oneOf {x1}∪…∪{xn} {John}∪{Mary} 

allValuesFrom ∀P.C ∀hasChild.Doctor 

someValuesFrom ∃r.C ∃hasChild.Lawyer 

hasValue ∃r.{x} ∃cityOf.{France} 

inverseOf r- hasChild- 

minCardinality (≥ n) (≥1 hasChild ) 

maxCardinality (≤ n) (≤1 hasParent ) 

Table 2.4: OWL language constructors 

OWL Axiom DL Syntax Example 

subClassOf C1⊆ C2 Human⊆ Animal∩Biped 

equivalentClass C1≡C2 Man≡Human∩Male 

subPropertyOf P1⊆ P2 hasDaughter ⊆ hasChild 

equivalentProperty P1≡P2 cost ≡price 

disjointWith C1⊆ ¬ C2 Male ⊆ ¬ Female 

sameAs {x1}≡{x2} {President_Bush}≡{G_Bush} 

differentFrom {x1}⊆ ¬{x2} {john}⊆ ¬{peter} 

TransitiveProperty P transitive role has Ancestor is transitive role 

FunctionalProperty T ⊆ (≤ 1 𝑃) T ⊆ (≤ 1 ℎ𝑎𝑠𝑀𝑜𝑡ℎ𝑒𝑟) 

SymmetricProperty P ≡ P- isSiblingOf ≡ isSiblingOf- 

Table 2.5: OWL language axioms 

 

 

BUPT



53 Description Logics  -  2.2 

 

The complete XML serialization of OWL is not shown because it is very prolix. It 

is easy to see that, except for individuals and data types, the OWL constructors and 

axioms can be translated to SHIQ. As I have stated in the previous section, OWL 

Lite is equivalent to SHIN(D)  while OWL DL to SHOIN(D). 

OWL ontology language has not been designed in a void; a big number of 

influences existed on it, some of them imposed by the WOW Group of W3C. Since it 

is also an effort from the development activity of the Semantic Web, it should have 

fit into its stack of languages, together with XML and RDF. Since there already 

existed a few general-purpose ontology languages on the traditional Web, OWL 

must have kept as much as possible compatibility with those ones, including SHOE, 

OIL and DAML+OIL. One of the biggest influences that laid marks on the 

development of OWL came from its predecessor, DAML+OIL, from the Description 

Logics, the Frames paradigm and, nevertheless from RDF. Particularly the formal 

specification of the language was influenced by DLs, the shallow structure by 

Frames paradigm, while the RDF/XML interchangeable syntax by the forward 

compatibility with the RDF language. 

Despite its inherent success, the OWL language could not satisfy the 

requirements of all users. After intense talks among users, theorists and 

implementers it was decided to be addressed some of these problems by means of 

an incremental revision of the language, called OWL 1.1. The initial scope of this 

new version was to exploit recent research works from DL in order to address some 

of the expressivity limitations of this one. As the design of the new version made 

progresses, it has been decided to address also the performance requirements by 

exploiting research in smaller DLs that have desired computational properties [114].  

b) OWL2 

Because OWL relies intensively on Description Logics, OWL2 too shares many of 

the typical characteristics of DLs.  In particular, it describes the domain in terms of 

individuals, classes (DL concepts), property (DL roles), data types and values (DL 

concrete domains). Individual names (ex. “John”) refers to elements of the domain, 

concepts (e.g. ’university’) describe individual sets sharing some common traits, 

roles (e.g. ’studiesAt’) describe relations between pairs of individuals, data types 

(ex. ’integer’) describe sets of data values. Class descriptions can be formed of all 

the previously stated elements by making use of a variety of constructors.  

Similar with a DL knowledge base, an OWL2 ontology consists of a set of axioms 

(facts) that describe the application domain. For example, to assert that Absolvent 

is a subclassOf Student, that John isA student, or that John hasAge 18. Finally, also 

just like a descriptive logic, OWL2 can be seen as a fragment of FOL and it was 

given some formal semantics based on the first-order model theory, even though it 

could be well given by a translation to DL, or even FOL.  [114].  

BUPT



54 Logics as Support for the Semantic Web   -  2 

 

 

Manchester Syntax  DL Syntax 

Class: A subClassOf: C 
Class: A equivalentTo: C 
EquivalentClasses: C1,…Cn 
DisjointClasses: C1,…Cn 

Class: A disjointUnionOf: C1,..Cn 

A⊆ C 

A≡C 

Ci≡Ci+1, 1≤i<n 

Ci⊆ ¬Cj, 1≤i<j≤n 

A≡C1∪…∪Cn 

 

ObjectProperty: P subPropertyOf: R 

ObjectProperty: P equivalentTo: R 
EquivalentProperties: R1,…Rn 
DisjointProperties: R1,…Rn 
ObjectProperty: P inverseOf: R 
ObjectProperty: P domain: C 
ObjectProperty: P range: C 
ObjectProperty: P characteristics: Functional 

ObjectProperty: P characteristics: InverseFunctional 
ObjectProperty: P characteristics: Reflexive 
ObjectProperty: P characteristics: Ireflexive 
ObjectProperty: P characteristics: Symmetric 
ObjectProperty: P characteristics: Assymetric 
ObjectProperty: P characteristics: Transitive 

P ⊆ R 

A≡C 

Ri≡Ri+1, 1≤i<n 

Ri⊆ ¬Rj, 1≤i<j≤n 

P≡R- 

∃𝑃. 𝑇 ⊆ C 

T ⊆ ∀𝑃. 𝐶 

T ⊆ ≤ 1 𝑃 

T ⊆ ≤ 1 𝑃- 

T ⊆  ∃𝑃. 𝑠𝑒𝑙𝑓 

∃𝑃. 𝑠𝑒𝑙𝑓 ⊆ ⊥ 

P≡P- 

P°P⊆P 

 

SameIndividual: i1,…in  
DifferentIndividuals: i1,…in 
Individual: i Types: C 
Individual: i1 Facts: P i2 
Individual: i1 Facts: not P i2 

Individual: i1 Facts: T v 
Individual: i Facts: not T v 

ii = ii+1, 1≤i<n 

ii≠ij, 1≤i<j≤n 

i:C 
(i1,i2):P 

i1: (¬∃P. {i2}) 

(i,v):T 

i: (¬∃P. {v}) 
Table 2.6: Classes, properties and individual axioms of OWL2 

Because OWL is an ontology language for the Semantic Web, it exhibits some 

particularities other than the majority of description logics and makes certain things 

differently than these. These distinctive elements start with the names used in 

OWL2, which are IRIs and that are the basis for the names on the Semantic Web. 

Because IRIs tend to be too large, the syntax of OWL2 offers facilities for 

shorthands for names, relatively similar to Qnames from SPARQL. OWL2 heavily 

relies on the facilities for datatypes found in XML Schema, like floating-point 

numbers in place of mathematical types common in most of DLs. The set of 

supported data types and facets (constraints) are defined in the OWL2 datatype 

mapping. 

 

BUPT



55 Description Logics  -  2.2 

 

OWL2 has many syntaxes. The standard syntax of the Semantic Web, RDF/XML, 

is the only one that all OWL2 implementations must support [35]. Because the 

RDF/XML syntax though is a very prolix and hard to read other syntaxes has been 

created for OWL2, including an XML one for the integration with XML tools, a 

functional style one that is being used for precision and in formal documents 

(http://www.w3.org/TR/owl2-syntax/), and an easily-readable one created in the 

purpose of presentation at humans, called the Manchester syntax 

(http://www.w3.org/TR/owl2-manchester-syntax/). As I previously affirmed, OWL2 

has at its basis the description logic SROIQ(D) and provides a large variety of 

operators for the construction of the more complex classes and properties 

expression. One part of these constructors are presented in Table 6, the Manchester 

syntax together with the equivalent DL one. 

Similarly with Description Logics, OWL2 has first-order model theoretic 

semantics, called Directs Semantics  (http://www.w3.org/TR/owl2-direct-

semantics/). These semantics are basically equivalent to the translation of the 

ontology into a SROIQ(D) knowledge base and then apply the standard DL 

semantics. These model theoretic semantics represent the last free will of the 

significance of OWL2 constructors. Generally it suffices to understand the informal 

significance as it was described earlier and as in the OWL2 used guides, such as the 

Primer (http://www.w3.org/TR/owl2-primer/).  

In order for OWL2 to remain decidable it is necessary to impose some global 

restrictions over the structures of ontologies. These restrictions correspond with the 

ones that are being used in the same purpose at the definition of SROIQ(D) 

knowledge bases. They are called global because depend on the ontology as an 

entire unity, and not just of one singleton expression or axiom. For example, some 

of the restrictions regard the properties hierarchy which depends on the set of 

property axioms that occur in the imports closure of the ontology. I will recall here a 

few of the most important global restrictions  [114]:  

- simple properties distinguishing: a property is simple if its existence  

doesn’t depend on any other one 

- the structure of properties chains is generally restricted  in order to 

satisfy an acyclicity condition that is necessary in order to ensure the 

decidability of the language 

- restrictions imposed on the datatypes axioms and values ranges;  

particularly must satisfy the uniqueness and aciclicity conditions  

- the use of anonymous individuals inside axioms is constrained 

- IRIs used for naming entities and ontologies in OWL2 must not be from 

the reserved vocabulary (used by language itself). 

 

 

BUPT

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-primer/


56 Logics as Support for the Semantic Web   -  2 

 

 

Ontology language DL language 

OIL SHIQ –translated semantics 
Frames Paradigm 

DAML+OIL SHIQ(D) 

 
OWL 
 

OWL Lite SHIF(D) 

OWL DL SHOIN(D) 

OWL Full -  (undecidable) 

 
OWL2 

OWL2 EL εL++ 

OWL2 QL DL Lite 

OWL2 RL DLP 

Table 2.7: Ontology languages and corresponding DL formalisms 

 

2.3. Inference and Reasoning Tasks in DL Knowledge Bases 
 
2.3.1. Introduction 

 
In this section I will continue my investigation into Description Logics, this 

time the focus will be put on the inference problems from the DL knowledge bases, 
the reasoning services created in order to solve them (in the form of decision 
procedures), and the practical reasoner systems that implement these techniques 

inside them. I will talk then the complexity results of these problems as they are for 

a few particular DLs, as they have been found by the scientists in the domain, like 
Baader, Horrocks, Calvanese, Sattler, etc. Also will be made a series of analyzes and 
comparisons regarding how the addition of new constructors to a language influence 
the complexity of reasoning (growth in expressivity) starting with the most basic DL, 

ALC. Will be shown what combinations of constructors are most ‘harmless’ (don’t 

change the complexity of reasoning), and which generate real ’explosions’ in 
complexity. Will presented the results for the important DLs and enumerated the 

other ones, and references in literature will be provided where further information 
related to the domain could be found. A state-of-art with the most recent research 
in DL inference and reasoning will be made in which will be presented some of the 
most important articles read for the creation of my research.  

The most primitive form of inference on the concepts expressions is 
subsumption, generally stated in the form C⊆D. Subsumption determination is the 

problem of verifying if the concept denoted by D (subsumer) is considered more 

general than the one denoted with C (subsumed). In other words, subsumption 
tests if the first concept always represents a subset of the second concept. For 
example, we may be interested in knowing whether Woman⊆Mother. In order to 

verify this type of relationship must be taken into account the relations defined 
inside the terminology. As will be explained during the following sections, under 
corresponding restrictions we can embed this sort of knowledge directly into the 
concept expressions, thus making subsumption over concept expressions the 

standard inference task in DL.  

BUPT



57 Inference and Reasoning Tasks in DL Knowledge Bases -  2.3 

 

 
Another form of typical inference over the concept expressions is satisfiability, which 

is the problem of testing whether a concept expression does not denote the void 
concept. Actually, concept satisfiability is a particular case of subsumption in which 
the subsumer is the void concept, which means that a concept is not satisfiable.  

Even though the meaning of concepts has been already specified using 
some logical semantics, the creation of DL decision procedures has been influenced 
for a long time by the Semantic Networks, where concepts were seen as nodes and 
roles as links in the graph. Subsumption between concept expressions was 

recognized as the key inference task, and the fundamental idea of the subsumption 

algorithms from the early stages was to transform two input concepts into labeled 
graphs and to verify if one can be contained by the other. This method is called the 
structural comparison and the relationship between the concepts being compared 
structural subsumption. A careful analysis of the structural subsumption algorithms 
yielded that they are safe but not always complete in terms of logical semantics: 
anytime they yield the answer “Yes” the answer is the correct one, but when yield 

“No” the answer can be incorrect. In conclusion, structural subsumption is generally 
weaker than the logical one [28].  

The need for complete subsumption algorithms has been motivated by the 
fact that for the usage of knowledge representation systems it is often needed to 
have a guarantee that the system did not fail in the verification of subsumption. Due 
to this cause new algorithms have been developed that do not use a network-style 

of representation anymore, and these can be shown to be complete. These 
algorithms have been developed by specializing the settings for deductive reasoning 
to the DL subsets of First-Order Logic (FOL), as it was made for the Tableaux 

calculus by Schmidt-Schauβ and Smolka [174] in 1991, and also for further 
specialized methods.  

In the work “Tractability of Subsumption in Frame-based Description 
Languages” by Brachman&Levesque [49] from 1984 it was affirmed that there 

exists a compromise between the power of expressivity of a language and the 
difficulty of reasoning over the representations created using it. In other words, as 
the language is more expressive the reasoning is much harder to achieve. They 

showed an example of this compromise by making an analysis of FL- (Frame 

Language), which contains concept intersection, value restrictions and a simple form 
of existential quantification. They proved that for such a language the subsumption 
problem can be solved in polynomial time, and the addition of a constructor for role 

restrictions makes subsumption a coNP-hard problem (the extended language has 

been called FL). This paper introduced at least 2 new ideas: 

i) the efficiency of reasoning over the knowledge structures can be 

studied using the tools of the computational complexity theory 

ii) different combinations of constructors could lead to languages 

with different computational properties 

An immediate consequence of the previous observations is that we can 

formally and methodically study this compromise between the power of expressivity 
of the language and the complexity of reasoning, which is at its turn defined in 
terms of the allowed constructors. After the initial paper, a number of results of this 
compromise for concept languages have been yielded, and these results allow us to 
make a pretty clear picture of complexity of reasoning for a wide array of concept 
languages. Moreover, the problem of finding the optimal compromise, that is the 

BUPT



58 Logics as Support for the Semantic Web   -  2 

 

most expressive extensions of  FL- with resp. to a set of constructors that still keeps 

subsumption in polynomial time has been extensively studied by Buchheit&Donini 
[57]. 

Some of the assumptions that lie at the basis of this research line are those 
to use the complexity in its worst case as a measure of the efficiency of reasoning in 
DL, or, more generally, into the representation formalisms. Such an assumption has 
been thus criticized as not characterizing correctly the performance of systems or 
take into consideration more general case behaviors. If this observation suggests 
that computational complexity alone can not be sufficient for addressing most of the 

performance problems, research into the computational complexity of DLs definitely 

led to a deeper understanding of the problems that arise in the implementation of 
the reasoner systems. Next will be presented some of the contributions brought to 
this area. 

Foremost, the study of computational complexity of reasoning in Description 
Logics led to a clearer understanding of the properties of language constructors 
together with their interaction. This fact doesn’t yield value just from a theoretical 

point of view but also gives insights to the creator of deduction procedures with 
indications regarding the constructors of that language and their combinations which 
are hard to work with, as well as the methods to solve them.  

Secondly, the complexity results have been obtained by means of a general 
technique for the satisfiability checking into concept languages, that relies on a form 
of tableaux calculus [174]. This technique proved itself extremely useful for 
studying both the correctness and complexity of algorithms. More precisely, it 

provides a parametrical algorithmic framework with respect to the language 
constructors. The algorithms for the concept satisfiability and subsumption obtained 

this way also led directly to the practical implementation by application of a series of 
intelligent control strategies and optimization techniques. The most recent 
knowledge representation systems for DLs adopt the tableaux calculus, as it is 
stated by [114]. 

Thirdly, the analysis of pathological cases from this framework led to the 
discovery of incompletenesses in the algorithms that had been developed for the 
systems being implemented. This thing proved to be useful in defining the test sets 
for checking the implementations. For example, comparisons of the implemented 
systems largely benefited from the results of complexity analysis.   

After the compromise between the expressivity and tractability of reasoning 
has been sufficiently analyzed and the applicability range of the inference 

techniques has been experimented with, it existed a change of focus in the 
theoretical research of reasoning in DL. Interest grew in relating DLs to the 
modeling languages that were being used in databases management. Besides these, 
the discovery of relations with expressive Modal Logics stimulated the study of so-

called ”very expressive” DLs. These languages, besides the fact that contain very 
general mechanisms for concepts definition (e.g. cyclic definitions), provide also a 
rich set of constructors to form complex concepts and roles expressions. For such 

languages, the power of expressivity is big enough that the new challenge became 
the enrich of the language while in the same time keeping the decidability of 
reasoning. Worth mentioning fact that this new direction in theoretical research was 
accompanied by a modification in the implementation of KR systems that relied on 
very expressive DLs.  
 

BUPT



59 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

 
In sub-section two I will try to make a short presentation of the reasoning 

techniques for very expressive DLs [25].  
 

2.3.2. Inference Tasks 

Inference tasks from DL knowledge bases lay into two main categories:  
a) standard 

b) non-standard 

In continuation of this sub-section I will try to discuss about each category in 
part and to provide references in the literature where more insights can be found. 

 
A) Standard Tasks 

Description Logics have distinguished logical properties. They put emphasis on 

the decidability of the key reasoning problems, like satisfiability and subsumption of 
concepts or the knowledge base, provide reasoning solutions that are decidable, 
such are the tableaux algorithms that deduce implicit knowledge from the explicitly 
stated ones. Highly optimized DL reasoners, such as FaCT++, Pellet, HermiT, Racer 
proved that the tableaux algorithms for highly expressive DLs lead to a good 
performance even over large knowledge bases. Reasoning over a knowledge base is 
the process of deducing implicit knowledge from the ones that are explicitly stated.   

Inference problems can be divided into two categories:  
a) general: represents the checking of the truth value of a sentence 

b) complex: are built from the general ones 

Let L be a Description Logic, K a knowledge base, C and D two concepts, and a an 

individual.  
General inference problems, as it was affirmed by [154], are the following: 

1) Satisfiability of the knowledge base:  

- K is satisfiable if it has a model (is non-contradictory) 

2) Concept satisfiability:  

- a concept C is satisfiable w.r.t. K if there exists a model I of it s.t. CI≠ϕ 

3) Concept subsumption:  

- C⊆D w.r.t. K (written K |= C⊆D) if in any model I of K we have CI⊆DI 

(all instances of C are also instances of D) 

4) Concept equivalence:  

- C≡D w.r.t. K (written K |= C≡D) if they include themselves one 

another w.r.t. K (K |= C⊆D si K |= D⊆C) 

5) Instance checking:  

- an individual a is an instance of a concept C w.r.t. K (written K |= a:C) 

if in any model I of K we have aI∈CI (is an element of the  

interpretation of C) 

 

BUPT



60 Logics as Support for the Semantic Web  -  2 

 

 

- two individuals (a,b) are an instance of a role r  w.r.t. K (written K |= 

(a,b):r) if in any model I of K holds (aI,bI)∈rI (is an element of the  

interpretation of r) 

In the case of a DL that provides all boolean operators (such as ALC), all 

the above-stated problems are resoluble to the satisfiability of the knowledge base 
[170]. For example:  

(𝑇, 𝐴) | = 𝑎: 𝐶 𝑖𝑓𝑓 (𝑇, 𝐴 ∪ {𝑎: ¬𝐶}) is inconsistent.   

These problems can be transformed into reasoning w.r.t. a TBox T, that 

means reasoning w.r.t. knowledge base (T, ϕ). This is known under the name of 

terminological reasoning. An important property of DLs says that reasoning with 
TBox is not influenced by ABox, which means that satisfiability w.r.t. (T,A) coincides 
with satisfiability w.r.t. T with condition that A is consistent (has a model) [111]. 
Complex inference problems are: classification, realization and extraction [154]. 
Classification is the problem of putting a new concept in the corresponding place 

into a hierarchy of concepts. This is done by verification of inclusion between every 
single concept of the hierarchy and the new concept. 
Extraction (i.e. query answering) is the problem of finding a set of individuals that 
are instances of a certain concept description (possibly complex). 
Realization is the process when, given a knowledge base (T,A), we want to check 
the consistency of A w.r.t. T and then compute the most specific concepts that 
instantiate a certain individual i.  

In order to provide a reasonable and predictive behavior of the DL system 
these inference problems should be at least decidable and preferably of low 

complexity. For that, the expressive power of the DL must be limited in a benefic 
manner, but also not too restricted so the important notions of the domain to not 
being possible to be captured. This compromise between the power of expressivity 
and the complexity of reasoning has been one of the major problems in DL 

research. The investigations include both theoretical research, which represents 
determining of the complexity in the most unfavorable case of the reasoning 
problems, but also practical, i.e. developing systems and techniques for the 
optimization and empirical evaluation of the behaviors when are being applied to 
real-world tests and applications. If an application requires an expressive power 
greater than one that could be provided by a decidable DL then that DL is being 
introduced into an application program or other KR formalism instead of using an 

undecidable DL [25]. 
B) Non-Standard Tasks 
 
Non-standard inference tasks could serve a variety of purposes, among 

which worth mention support in the construction and maintenance of knowledge 
bases, or getting insights about the knowledge represented within them. Among the 
most well-known non-standard inference tasks in DL worth mentioning: computing 

of the least common subsumer and the most specific concept, unifying/matching, 
concept rewriting [28]. Below I will try to make a brief presentation of what each of 
them means. 

Least common subsumer (LCS) of a set of concepts is the minimal concept  
that includes all of them.  

BUPT



61 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

The minimality condition implies that it exists no other to include all concepts from 
the set and to be less general (subsumed) than the LCS. The notion was studied for 

the first time by Cohen [65] and has subsequently been used for several tasks: 
inductive learning from examples for concept descriptions, vivification of knowledge 
bases (as a means to represent disjunction inside languages that don’t allow it) as 
well as in the bottom-up construction of DL knowledge bases (starting from the 
concept instances). The notion of LCS is tightly connected to the one of most 
specific concept (MCS) of an individual, i.e. the simplest concept description for 
which the individual is an instance given the assertions from the knowledge base. 

The minimality condition is explained in the same way as for LCS. More generally, 

an MSC of a set of assertions of individuals can be defined as the LCS of the MSC 
associated to each individual. Based on the MSC calculus of a set of individuals 
assertions we can incrementally build a knowledge base [26]. Worth mentioning the 
fact that the techniques created for computing LCS and MSC rely on the compact 
representation of concept expressions, which are built either by using the structural 
subsumption method or by defining of a correct normal form. 

 Another tool to support the construction and maintenance of DL knowledge 
bases that go beyond the DL standard inference services is concept unification. This 
task, as it is stated in [29], is an operation that can be seen as the process of 
loosening the equivalence between two concept expressions. More precisely, two 
concept expressions are unified if it can be found a substitution of variables inside 
concept expressions such that the result is two equivalent concepts. Intuition is 

that, in order to be able to find possible overlappings among concept definitions we 
can treat certain concept names as variables and discover by means of unification 
that two concepts, possibly independently defined by the different knowledge 

designers, are actually equivalent. Consequently, the knowledge base can be 
simplified by introduction of a unique definition for the unified concepts.  
 As usually, matching is defined as a special case of unification where 
variables occur in only one of the two concept expressions. In addition, in the DL 

framework we can define unification and matching based on subsumption, instead of 
equivalence [28]. In a similar fashion as with the other non-standard inferences, the 
calculus of unification and matching uses some sort of special representations for 
expressions of concepts and it has been proved to be decidable for small DLs.  
Finally there was an extensive work laid over the problem of concept rewriting. 
Given a concept represented into a source language, concept rewriting means to 
find a concept, possibly represented into another target language, that is related to 

the initial concept by equivalence, subsumption, or any other relation. To be able to 
represent rewriting must be provided a set of constraints between the concepts 
from the source language as well as the target. Rewriting can be applied to the 
translation of concepts from a knowledge base into another or the reformulation of 
concepts during the process of construction and maintenance of the logical base. 

Besides, concept rewriting has been addressed in the context of queries rewriting by 

using views, in databases management, and recently in the framework of 
information integration. Within this environment can be applied techniques for 
concept rewriting in order to automatically generate the queries that allow a system 
to gather information from a set of sources. Given an initial specification of the 
interrogation according to a global common language and a set of constraints that 
express the relation between the global schema and the individual information 
sources, the problem that arises is to find out the interrogations that will be placed 

to the local sources, that offer answers (possibly approximated) at the original 
interrogation [60].

BUPT



62 Logics as Support for the Semantic Web  -  2 

 

 

2.3.3. Reasoning Algorithms 

In this section will be discussed the reasoning techniques for the problems 
that had been presented in the previous section. 

The precondition for obtaining some efficient reasoning algorithms is to be decision 
procedures [197], i.e.:  

- safe: every positive answer is correct 

- complete: every negative answer is correct 

- terminate: always is provided an answer 

These techniques are implemented into practical reasoning systems, for 
example FaCT, FaCT++, Pellet, Racer, HermiT, KAON2, Hoolet, OWLim etc. There 
are two main techniques to create a reasoning algorithm: to reuse existing 
algorithms from FOL or to create new ones for DL [25]. 

The first method, since the main part of DLs are contained within the two 
variables fragment of FOL, we can reduce the DL problems to others known of 

inference (e.g. L2, C2). The cost is that the complexity of decision procedures 

obtained this way is greater than normally. 
For the second method, in the beginning have been employed the so-called 

structural subsumption algorithms. These algorithms compare the syntactical 
structure of concepts in order to solve the inclusion problem. The disadvantage is 

that they are efficient only for primitive DLs, like AL, ALC, and are not complete for 

those that contain total negation and disjunction, such are the ones from S family.  

For these languages, that have a greater expressiveness, the most efficient have 

been proven to be the tableaux algorithms [25]. 

Reasoning in the εL family, which lies at the basis of the profile with the 

same name as the ontology language OWL2 (i.e. OWL2 EL), is realized by means of 
the completion algorithms, or consequence-oriented. OWL2 RL relies on the rule-
based algorithms and OWL2 QL query rewriting techniques in order to create robust 
decision procedures. These 3 algorithms are efficient especially on less expressive 
logics, such are those of the corresponding DL profiles [114]. 

Low complexity decision procedures could be obtained by exploiting the 
connection between DL and Propositional Modal Logic. Schild [171] was the first one 

to remark that the language ALC is a syntactic variant of the multi-modal 

propositional logic K and that its extension with transitive closure of roles 
corresponds to the Propozitional Dynamic Logic (PDL) [28]. In particular, few of the 
algorithms used with Modal Logic for deciding the satisfiability are very similar to 
the tableaux algorithms created for DLs. This link between DLs and Modal Logic has 

been exploited to transfer decidability results from the latter to DLs. Instead of 
using tableaux algorithms decidability of certain Modal Logics (and thus the 
corresponding DL) can be proved by establishing the finite model property of the  
logic, that is to show that a concept/formula is satisfiable if it is so in a finite 
interpretation or by applying the tree automata.  

In the previous section I stated that all the main inference problems can be 
reduced to the consistency of ABoxes provided that DL has conjunction and negation 

constructors. Descriptive languages of almost all the early systems as well as few of 
today’s did not offer negation. For such DLs concept subsumption can be computed 
in general by means of the structural subsumption algorithms, which are algorithms 
that compare the syntactic structure of concept descriptions (possibly normalized). 

BUPT



63 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

Even though are in general very efficient, the disadvantage is that they are 
complete only for rather simple languages, with small power of expressiveness. In 

particular, DLs with full negation and disjunction cannot be dealt with by these 
algorithms. For such languages the so-called tableaux algorithms proved to be the 
most efficient. Into the field of Description Logics the first tableaux-based algorithm 
has been created by Schmidt-Schauβ & Smolka in 1991 [174] for deciding the 

satisfiability of ALC concepts. Starting then this technique has been used to obtain 

safe and complete satisfiability algorithms for a large variety of DLs derived from 

ALC. For example, Hollunder, Baader, Donini & Sattler showed for languages with 

number restrictions, for transitive closure of roles, transitive roles, concrete domains 

(such as numbers). In addition has been extended to the consistency problem for  
ABoxes and TBoxes that allow for sets of inclusion axioms together with many other 
features [57], [22]. Into a separate section I will present the way a tableaux 

algorithm works for deciding the satisfiability of ALCN concepts, then I will show 

how this can be extended to an algorithm for consistency of ABoxes, and finally I 
will explain how we can take into account also general subsumption axioms.  

Instead of creating new algorithms for reasoning in DL, we can try to reduce 

the problem to one of known inference from the logiccs. For example, decidability of 

the  inference problem for ALC, as well as in many other DLs can be obtained as a 

consequence of the known decidability results from the two-ariable fragment of FOL. 

The L2 language consists of all FOL formulae that can be built using symbols for 

predicates and constants (apart from function ones) using just variables x and y. 

Decidability in L2 has been proven in [141]. It is easy to see that, by correcty 

reusing the variables names, any ALC concept description can be translated into an 

L2 formula with one free variable [47]. A direct translation of the concept description 

∀𝑅. (∃𝑅. 𝐴) results the formulae ∀𝑦. (𝑅(𝑥, 𝑦) → (∃𝑧. (𝑅(𝑦, 𝑧)^𝐴(𝑧)))). Because sub-

formula ∃𝑧. (𝑅(𝑦, 𝑧)^𝐴(𝑧))) does not contain the x variable, it can be reused: 

renaming of the link variable z with x determines the equivalent formula: 

∀𝑦. (𝑅(𝑥, 𝑦) → (∃𝑥. (𝑅(𝑦, 𝑥)^𝐴(𝑥)))), which it is easy to see that uses only two 

variables. This relation between ALC and L2 shows that any extension of ALC with 

constructors that can be expressed by means of only two variables yields a  
decidable DL. Number restrictions and role compositions are examples of 

constructors that cannot be expressed in L2. Number restrictions thus can still be 

expressed in C2, which is the extension of L2 by counting quantifiers, which has been 

shown to be decidable [89], [152]. Must mention thus that the complexity of 

decision procedures obtained this way is in general greater than normally. For 

example, satisfiability in L2 is a NExpTime-complete problem, while satisfiability of 

ALC concepts is only PSpace [28].  

 

A) Structural Subsumption Algorithms 

As I have previously stated during this chapter, early DL systems relied on 
the so-called structural subsumption algorithms. These algorithms work in two 

phases: first the concept descriptions that are being tested for subsumption are 
normalized, then the syntactical structures of the normal forms are compared.  
 

BUPT



64 Logics as  Support for the Semantic Web  -  2 

 

 
The advantage was that they were able to decide subsumption in polynomial time. 

Some of the first complexity results for DLs showed that these algorithms were not 
polynomials, and moreover, not even decision procedures. For example, almost all 
of the early systems relied on unveiling of the concept definitions, fact that can 
cause an exponenţial explosion in the size of the concepts. The coNP-hardness 
result of Nebel [146] for subsumption with respect to definitorial TBoxes showed 
that this explosion cannot be avoided in presence of constructors for conjunction 
and values restrictions. Besides this, the early structural subsumption algorithms 

were not complete, that is they were not capable to detect all valid subsumption 

relations. These negative results, cumulated with the invention of tableaux 
algorithms for expressive DLs, which showed a good behavior in practice, have been 
the main reason for which the structural techniques (and altogether the search for 
DLs with polynomial subsumption problems) have been banished at the end of ’90. 
More recent research on the complexity of reasoning in DLs featuring existential 
restrictions (instead of ones for value) led to a partial rehabilitation of the technique 

[27], [54].  
When it is tried to find a DL with a polynomial subsumption problem it is 

certain that not all Boolean operations are allowed since in this case will be inherited 
NP-hardness from Propositional Logic. Also, it should be noted the fact that we 
cannot dispense of the conjunction since we should be capable to affirm that more 
than one property must hold when we define a concept. Finally, if we want to call 

the logic a DL will also be needed a constructor for roles. The following 2 languages 
are minimal DL candidates [28]:  

- FL0: has as concept constructors conjunction, value restrictions (∀𝑟. 𝐶) and 

universal concept (T) 

- εL: has concept constructors conjunction, existential restrictions (∃𝑟. 𝐶) and 

universal concept (T) 

In the rest of this sub-section I will try to realize a study about the problem 
of subsumption in these two minimal DLs. Even though subsumption without a TBox 

was proved to be polynomial in both cases, εL showed a safer behavior for the 
complexity of subsumption in presence of TBoxes.  

 

i. Subsumption in FL0 

In this sub-section I will show the ideas behind this technique for the 

primitive DL FL0, which features the conjunction and values restrictions operators, 

then I will show how the concept bottom (⊥), atomic negation (¬𝐴) and number 

restrictions (≤ 𝑛 𝑅, ≥ 𝑛 𝑅) are being handled. Obviously, FL0 and its extension with 

the bottom concept and atomic negation are sub-languages of AL, while the 

addition of number restrictions to the resulted language yields the DL ALN.  

Foremost will be considered the case of concept subsumption without a 
TBox. There are two methods for creating a structural subsumption algorithm in this 

case that relies on different normal forms. One uses the equivalence ∀𝑟. (𝐶 ∩ 𝐷) ≡
∀𝑟. 𝐶 ∩ ∀𝑟. 𝐷 as a rewriting rule from left to right or vice-versa. Here I will consider 

left-to-right, but all the early structural subsumption algorithms relied on normal 
forms obtained by rewriting in the opposite direction.  

 

BUPT



65 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

 

By using the rewrite rule ∀𝑟. (𝐶 ∩ 𝐷) → ∀𝑟. 𝐶 ∩ ∀𝑟. 𝐷 together with the 

associativity, comutativity and idempotence of ∩ constructor any FL0 concept can 

be transformed into an equivalent one which is a conjunction of concepts of the 

form ∀𝑟1. 𝐴, … 𝑟𝑚. 𝐴, for m role names r1,…rm (𝑚 ≥ 0) and a concept name A.  

Abbreviate ∀𝑟1. … ∀𝑟𝑚 . 𝐴 with ∀𝑟1. … 𝑟𝑚 . 𝐴, where  r1,…rm is considered a word over the 

alphabet of role names. In addition, instead of ∀𝑤1. 𝐴 ∩ … ∩ ∀𝑤𝑙. 𝐴 we will write 

∀𝐿. 𝐴, where  𝐿 ≔ {𝑤1, … 𝑤𝑙} is a finite set of words over Σ. Term  ∀𝜙. 𝐴 is considered 

the equivalent of universal concept, which means that it can be added to a 

conjunction without affecting the meaning of concept. By means of these 

abbreviations, any pair of FL0 concepts, C and D, containing the concept names 

A1,…Ak can be written as following: 

𝐶 ≡ ∀𝑈1. 𝐴1 ∩ … ∩ ∀𝑈𝑘 . 𝐴𝑘 , si 𝐷 ≡ ∀𝑉1. 𝐴1 ∩ … ∩ ∀𝑉𝑘. 𝐴𝑘 

, where  Ui,Vi are finite sets of words over the alphabet of role names. This normal 

form provides us the following characterization of subsumption of FL0 concepts, as 

it was affirmed in [28]: 

𝐶 ⊆ 𝐷  iff  𝑈𝑖 ⊇ 𝑉𝑖, 𝑓𝑜𝑟 𝑎𝑛𝑦  𝑖, 1 ≤ 𝑖 ≤ 𝑘. 
As the dimension of normal form is polynomial in the size of original concepts 

and subsumption tests  𝑈𝑖 ⊇ 𝑉𝑖 can also be performed in polynomial time, this yields 

a decision procedure in polynomial time for subsumption in FL0.  

This characterization of subsumption by means of that for finite sets of words 
can be extended to definitorial Tboxes as follows: a TBox T can be translated into a 

finite automaton of words AT  whose states are concept names from T  and 

transitions are inducted by value restrictions from T. In figure 2 is presented an 

example of such automaton. A definition of this translation can be found in [22], 
where it is considered the more general case of cyclic TBox. In the case of 
definitorial TBoxes, which are by definition acyclic, the resulted automata are also 

acyclic.  

 
Fig.2.2: A FL0 definitorial TBox and the corresponding automaton 

 

Let’s call a concept name a defined concept in a definitorial Tbox if it occurs on 
the left-hand side of a concept definition, and a primitive concept otherwise. For a 
defined concept A and a primitive one T the language LAT(A,P) is the set of all paths 

of labeling the words of AT from A to P. Languages  LAT(A,P) represent all values 
restrictions that must be satisfied by instances of the concept A. With this intuition 

in mind it should not surprise us that subsumption w.r.t. FL0 definitorial TBoxes 

could be characterized in terms of that of languages accepted by acyclic automata 
[28]. 
 
 

BUPT



66 Logics as Support for the Semantic Web  -  2 

 

 

Next is a characterization of subsumption in FL0 w.r.t.  definitorial TBoxes:  

𝐴 ⊆T 𝐵 iff  𝐿𝐴𝑇(𝐴, 𝑃) ⊇ LT(𝐵, 𝑃),   
for all primitive concepts P. In example from fig. 2 we have: 

 𝐿𝐴𝑇(𝐴, 𝑃) = {𝑟, 𝑠𝑟, 𝑟𝑠𝑟} ⊇ {sr} = 𝐿𝐴𝑇(𝐵, 𝑃), so  𝐴 ⊆T 𝐵 but 𝐵 ⊄T 𝐴. 

 
How the subsumption problem for languages accepted by the finite acyclic 

automata is coNP-complete [86], this reduction shows that the problem of 

subsumption in FL0 w.r.t definitorial TBoxes is coNP. As it was stated by [146], this 

reduction works also in the opposite direction, which yields the inferior matching 

boundary. In the presence of general TBoxes subsumption problem in FL0 becomes 

same complicated as for ALC, that is ExpTime-hard [27].  

Din cele de mai sus putem construi următoarea teoremă. 
 

Theorem 7: Subsumption in FL0 is polynomial without TBoxes, coNP-complete 

w.r.t. definitorial TBoxes and ExpTime-complete with general TBoxes.  
 

 If we extend FL0 by constructors that are able to express unsatisfiable 

concepts then must, on one side, to change the definition of the normal form, while 
on the other, the structural comparison of the normal forms must take into account 
the fact that an unsatisfiable concept is being subsumed by any other concept. The 

simplest DL in which this thing happens is FL⊥ , that is the extension of FL0 by the 

concept bottom [28].  

An FL⊥ concept description is in normal form if it has the following form: 

 𝐴1 ∩ … 𝐴𝑚 ∩ ∀𝑅1. 𝐶1 ∩ … ∀𝑅𝑛. 𝐶𝑛 

, where A1,…Am are distinct concept names (others than  ⊥), R1,…Rn are distinct role 

names and C1,…Cn are FL⊥ concept descriptions in normal form. This kind of normal 

form can be easily computed, basically it is calculated only the FL0 normal form of 

the description (where ⊥ is treated as an ordinary concept) :  

𝐵1 ∩ … 𝐵𝑘 ∩ ∀𝑅1. 𝐷1 ∩ … ∀𝑅𝑛. 𝐷𝑛.  

If any of the Bi terms is the bottom concept then the entire description is replaced 
with the concept ⊥, otherwise same procedure is applied recursively for Dj terms. 

For example, the FL0 normal form of the concept description: ∀𝑅. ∀𝑅. 𝐵 ∩ 𝐴 ∩

∀𝑅. (𝐴 ∩ ∀𝑅. ⊥) is 𝐴 ∩ ∀𝑅. (𝐴 ∩ ∀𝑅. (𝐵 ∩⊥)), from which results the FL⊥ normal form: 

𝐴 ∩ ∀𝑅. (𝐴 ∩ ∀𝑅. ⊥)). 
The structural subsumption algorithm for FL⊥ works in the same way as for 

FL0, with the only difference that  ⊥ is subsumed by any other concept description. 

For example: 

 ∀𝑅. ∀𝑅. 𝐵 ∩ 𝐴 ∩ ∀𝑅. (𝐴 ∩ ∀𝑅. ⊥) ⊆ ∀𝑅. ∀𝑅. 𝐴 ∩ 𝐴 ∩ ∀𝑅. 𝐴  

because the recursive comparisons of their normal forms L⊥: 

 𝐴 ∩ ∀𝑅. (𝐴 ∩ ∀𝑅. ⊥) and 𝐴 ∩ ∀𝑅. (𝐴 ∩ ∀𝑅. A)  
finally leads to the comparison of A with the bottom concept.  

The extension of FL⊥ with atomic negation (i.e. negation that is applied only 

to concept names) can be treated in a similar fashion. During the process of 

computing the normal form, the negated concept names are being handled the 
same way as the normal ones. But if a name and its negation occur on the same 
level as the normal form then the ⊥ concept will be added, which can be dealt with 

in the way it was previously shown.  

BUPT



67 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

 

For example, ∀𝑅. ¬𝐴 ∩ 𝐴 ∩ ∀𝑅. (𝐴 ∩ ∀𝑅. 𝐵) is foremost transformed into 𝐴 ∩ ∀𝑅. (𝐴 ∩
¬𝐴 ∩ ∀𝑅. 𝐵), then 𝐴 ∩ ∀𝑅. (⊥∩ 𝐴 ∩ ¬𝐴 ∩ ∀𝑅. 𝐵), and finally 𝐴 ∩ ∀𝑅. ⊥. Structural 

comparison of the normal forms treats negated concepts in the same way as  
normal ones.  

If we consider the language ALN , the additional presence of number 

restrictions leads to a new type of clash. On one side, similarly as in the case of 

atomic negation, number restrictions may clash one to another (e.g. ≥ 2 𝑅, ≤ 1 𝑅). 

On the other side, at-least ≥ 𝑛 𝑅 restrictions, for 𝑛 ≥ 1, are conflicting with value 

restrictions ∀𝑅. ⊥ that forbid role succesors. When the normal form is being 

calculated we can again treat number restrictions as concept names then deal with 
the new conflicts by introduction of ⊥ and use it for normalization, as it has been 

previously shown. During the process of structural comparison of the normal forms 
must also be considered the inherent subsumption relations between the number 

restrictions (ex. ≥ 𝑛 𝑅 ⊆ ≥ 𝑚 𝑅 𝑑𝑎𝑐𝑎 𝑛 ≥ 𝑚). A broader presentation of a structural 

subsumption algorithm that works on a data structure of graph type for a language 

derived from ALN  is made in [47]. 

 

ii. Subsumption in εL 

In contrast with the negative complexity results of subsumption with respect to 

FL0 TBoxes, subsumption in  εL remains polynomial even in the presence of general 

TBoxes, as it was stated in [54]. The polynomial-time subsumption algorithm for εL  

that will be discussed below classifies a TBox T, that is calculated simultaneously all 

subsumpiton relations among the concepts from T. The algorithm works in 4 steps: 
a) TBox normalization 

b) translation of the obtained TBox into a graph 

c) completes the graph using the completion rules 

d) read subsumption relations from the normalized graph 

A general εL Tbox is normalized if contains only CGIs of the form: 

𝐴1 ∩ 𝐴2 ⊆ B, A ⊆ ∃r. B, sau ∃r. A ⊆ B,  

, where  A, A1, A2, B are concept names or universal (top) concept. A given Tbox 
can be transformed into a normalized one by application of the normalization rules. 
Instead of describing these rules into the general case I will illustrate them here  by 
an example in which I will underline the CGIs that need further rewrites: 

∃𝑟. 𝐴 ∩ ∃𝑟. ∃𝑠. 𝐴 ⊆ A ∩ B  →   ∃𝑟. 𝐴 ⊆ B1, B1 ∩ ∃r. ∃s. A ⊆ A ∩ B, 
𝐵1 ∩ ∃𝑟. ∃𝑠. 𝐴 ⊆ A ∩ B  →   ∃𝑟. ∃𝑠. 𝐴 ⊆ B2, B1 ∩ B2 ⊆ A ∩ B, 

∃𝑟. ∃𝑠. 𝐴 ⊆ B2  →   ∃s. A ⊆ B3, ∃r. B3 ⊆ B2, 

𝐵1 ∩ 𝐵2 ⊆ A ∩ B → B1 ∩ B2 ⊆ A, B1 ∩ B2 ⊆ B. 
For example, in the first normalization phase I will introduce the abbreviation B1 for 

the description ∃r. A. It can be said that B1 needs to be made equivalent to ∃r. A, 

that is add the CGI 𝐵1 ⊆ ∃r. A. It can be shown that adding just ∃𝑟. 𝐴 ⊆ 𝐵1 it is 

enough  to obtain a TBox that is subsuming equivalent, that is a TBox that induces 
the same relations between concept names that occur in the original. All 
normalization rules preserve the equivalence in this sense and if one uses an 
according strategy, which generally delays the application of the rule last applied in 
my example, then the normal form can be calculated in linear time.  

BUPT



68 Logics as Support for the  Semantic Web  -  2 

 

 
In the next step the classification graph is being constructed:  GT=(V, VxV, S,R), in 

which: 
- V is the set of concept names that occur in the normalized TBox T (incl. the 

universal concept) 

- S labels nodes with sets of concept names 

- R labels edges with sets of role names 

It can be shown that the sets of labels satisfy the invariants: 

- 𝐵 ∈ 𝑆(𝐴) implies A ⊆T B , i.e. S(A) contain just the subsumers of A with 

resp. to T 

- 𝑟 ∈ 𝑅(𝐴, 𝐵) implies A ⊆T ∃r. B, i.e. R(A,B) contain only roles r such that 

∃r. B includes A with resp. to T 

Initially set S(A):={A,T} for all nodes  𝐴 ∈ 𝑉, and R(A,B):= ϕ for all edges (𝐴, 𝐵) ∈
𝑉𝑥𝑉. Evidently the above invariants are satisfied by these initial sets of labels.  

 

(R1)    𝐴1 ∩ 𝐴2 ⊆ B ∈ T and A1, A2 ∈. S(A)  then add B to S(A) 

(R2)    𝐴1 ⊆ ∃r. B ∈ T and A1 ∈ S(A) then add r to R(A,B) 

(R3)    ∃𝑟. 𝐵1 ⊆ A1 ∈ T and B1 ∈ S(B), r ∈ R(A, B) then add A1 to S(A) 

Table 2.8: Completion rules for subsumption in εL w.r.t.  general TBoxes 
 

Labels of the nodes and edges are extended by application of the rules in 

Table 1, where we assume that a rule is applicable only if it extends a set of labels. 

It is easy to see that these rules preserve the above stated invariants. For example, 

let’s consider the most complicated rule, (R3). Obviously, ∃𝑟. 𝐵1 ⊆ A1 ∈ T implies 

∃𝑟. 𝐵1 ⊆T A1 and the assumption that invariants are satisfied before the application 

of the rule yields 𝐵 ⊆T B1 and 𝐴 ⊆T ∃r. B. The subsumption relation 𝐵 ⊆T B1, at its 

turn implies  ∃r. B ⊆T ∃r. B1. After applying the transitivity of the subsumption 

relation  ⊆T  obtain: 𝐴 ⊆T A1 [28]. 

The fact that subsumption in εL w.r.t. general TBoxes can be decided in 

polynomial time is an immediate consequence of the statements: 
a) Rules applications ends after a number of polynomial steps 

b) If no rule is applicable anymore then 𝐴 ⊆T B if 𝐵 ∈ 𝑆(𝐴) 

In what concerns the first statement should be noticed that the number of nodes is 
linear while the one of edges quadratic in the size of T. In addition, the dimension of 

the labels sets is bounded by the number of concepts and roles names and each 
application of a rule extends at least one label. Regarding the equivalapplicationthe 
second statement, the direction “if” follows from the fact that the invariants 
preserve under the rules aplication. In order to prove the “only-if” track let’s assume 

that  𝐵 ∉ 𝑆(𝐴), then the following interpretation is I, a model of T in which 𝐴 ∈ 𝐴𝐼 

but 𝐴 ∉ 𝐴𝐼: 

- 𝛥𝐼 ≔ 𝑉 

- 𝑟𝐼 ≔ {(𝐴′, 𝐵′)|𝑟 ∈ 𝑅(𝐴′, 𝐵′)}, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑜𝑙𝑒𝑠 

- 𝐵′𝐼
≔ {(𝐴′|𝐵′ ∈ 𝑆(𝐴′))| }, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑜𝑛𝑐𝑒𝑝𝑡𝑠 𝐴′

BUPT



69 Inference and Reasoning Tasks in DL Knowledge Bases  -  2.3 

 

 
More insights about this could be found in literature in [54],[27]. 

 

Theorem 8: Subsumption in εL is polynomial with resp. to general TBoxes. 

In [27] this result is extended to εL++, which is an extension of  εL with 

nominals, universal concept, a restricted form of concrete domains and a form of 
role-value mappings. In addition, also here it is shown that all other constructor 

additions to εL make subsumption w.r.t. general TBoxes a problem ExpTime-

complete. 

Worth mentioning the fact that these results do not present interest only 

from a theoretical perspective. In fact, large bio-medical ontologies, such as Genes 

Ontology [192] or SNOMED [187] can be represenated in εL, and a first 

implementation of the subsumption algorithm for εL presented earlier acts very 

good over the large knowledge bases. 
For larger DLs structural subsumption algorithms generally are not 

complete. Particularly, they cannot handle disjunctions, complete negations and 
complete existential restrictions. For languages that include such features the 

Tableaux technique for the construction of subsumption algorithms proved to be the 
most efficient [25]. 
 

B) Tableaux Algorithms 

Instead of directly testing the subsumption of concept descriptions these 
algorithms use negation in order to reduce subsumption to satisfiability of concepts 

[28], and that is:  

  𝐶 ⊆ D  iff  C ∩ ¬D unsatisfiable 

Let A,B two concept names, R a role name. Let’s assume that we want to know 

whether (∃𝑅. 𝐴) ∩ (∃𝑅. 𝐵) is subsumed by ∃𝑅. (𝐴 ∩ 𝐵). This means that we must 

verify the description: 

 𝐶 = (∃𝑅. 𝐴) ∩ (∃𝑅. 𝐵) ∩ ¬(∃𝑅. (𝐴 ∩ 𝐵)) 
for unsatisfiability. Foremost we push all negation signs as far as possible inside the 
description using the DeMorgan rules and the ones for quantifiers. As result is 
obtained the description: 

 𝐶0 = (∃𝑅. 𝐴) ∩ (∃𝑅. 𝐵) ∩ ∀𝑅. (¬𝐴 ∪ ¬𝐵)) 
which is in normal negated form, i.e. negation occurs only in front of concept 

names. Then I will try to construct a finite interpretation I i.e. 𝐶0
𝐼 ≠ 𝜙. This means 

that there must be an individual in ΔI that is an element of 𝐶0
𝐼. The algorithm 

generates such an individual, say b, and imposes restriction 𝑏 ∈ 𝐶0
𝐼. Since C0 is a 

conjunction of three concept descriptions this means that b must satisfy three 

constraints: 𝑏 ∈ (∃𝑅. 𝐴)𝐼 , 𝑏 ∈ (∃𝑅. 𝐵)𝐼 , 𝑎𝑛𝑑 𝑏 ∈ (∀𝑅. (¬𝐴 ∪ ¬𝐵))
𝐼
. From the first one 

we can deduce that there must exist an individual c such that (𝑏, 𝑐) ∈ 𝑅𝐼𝑎𝑛𝑑 𝑐 ∈ 𝐴𝐼. 

Analogously, 𝑏 ∈ (∃𝑅. 𝐵)𝐼 implies the existence of an individual d ,  (𝑏, 𝑑) ∈
𝑅𝐼  𝑎𝑛𝑑 𝑑 ∈ 𝐵𝐼. In this situation we must not assume that c=d because this would 

impose too many constraints on the newly introduced individuals in order to satisfy 
the existential restrictions of b.  
 
 

 

BUPT



70 Logics as Support for the Semantic Web  -  2 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.9: Transformation rules of the satisfiability algorithm 

 
Since: 

- for any existenţial restriction the algorithm introduces a new individual as a 

role filler (r-filler) and this individual must satisfy the constraints expressed 

by that restriction. Since b must satisfy also the value restriction ∀𝑅. (¬𝐴 ∪

¬𝐵), and c,d had been introduced as r-fillers of b, we obtain the additional 

constraints: 𝑐 ∈ (¬𝐴 ∪ ¬𝐵)𝐼 𝑎𝑛𝑑 𝑑 ∈ (¬𝐴 ∪ ¬𝐵)𝐼.  

and: 

- the algorithm uses value restrictions in interaction with role relations in order 

to impose new constraints on the individuals. Now 𝑐 ∈ (¬𝐴 ∪ ¬𝐵)𝐼 means 

that 𝑐 ∈ (¬𝐴)𝐼 𝑜𝑟 𝑐 ∈ (¬𝐵)𝐼, and must choose one of these variants. If choose 

𝑐 ∈ (¬𝐴)𝐼 , this will be in contradiction with the other one, 𝑐 ∈ (𝐴)𝐼, which 

means that this path of the search lead to a clash. Thus we must choose 𝑐 ∈

(¬𝐵)𝐼. Analogously must choose 𝑑 ∈ (¬𝐴)𝐼 in order to satisfy constraint 𝑑 ∈

(¬𝐴 ∪ ¬𝐵)𝐼 without creating a clash with 𝑑 ∈ (𝐵)𝐼.  

thus: 

- for disjunctive constraints the algorithm tests both alternatives in successive 

attempts; it backtracks if is being arrived to a contradiction, i.e. if the same 

individual satisfies restrictions that are in obvious conflict 

In my example all constraints have been satisfied without arriving to an obvious 

clash. This means that concept C0 is satisfiable, and thus   (∃𝑅. 𝐴) ∩ (∃𝑅. 𝐵) is not 

subsumed by ∃𝑅. (𝐴 ∩ 𝐵). The algorithm generated an interpretation I following this 

process:  
 

∩ −𝑹𝒖𝒍𝒆:  if A contains (𝐶1 ∩ 𝐶2)(𝑥) but not both C1(x) and C2(x)  

 then 𝐴′ = 𝐴 ∪ {𝐶1(𝑥), 𝐶2(𝑥)} 
∪ −𝑹𝒖𝒍𝒆:  if A contains (𝐶1 ∪ 𝐶2)(𝑥) but neither C1(x) nor C2(x)  

 then 𝐴′ = 𝐴 ∪ {𝐶1(𝑥)},  𝐴′′ = 𝐴 ∪ {𝐶2(𝑥)} 
∃ − 𝑹𝒖𝒍𝒆: if A contains (∃𝑅. 𝐶)(𝑥) but there is no individual z s.t. C(z) and R(x,z) are in A 

 then 𝐴′ = 𝐴 ∪ {𝐶(𝑦), 𝑅(𝑥, 𝑦)}, with y an individual name not in A 

∀ − 𝑹𝒖𝒍𝒆: if A contains (∀𝑅. 𝐶)(𝑥)  and 𝑅(𝑥, 𝑦) but not 𝐶(𝑦)  
 then  𝐴′ = 𝐴 ∪ {𝐶(𝑦)} 
≥ −𝑹𝒖𝒍𝒆: if A contains (≥ 𝑛 𝑅)(𝑥) and doesn’t exist individuals z1,…zn s.t. 𝑅(𝑥, 𝑧𝑖) and 𝑧𝑖 ≠̇ 𝑧𝑗 in A 

then 𝐴′ = 𝐴 ∪ {𝑅(𝑥, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑛} ∪ {𝑦𝑖 ≠̇ 𝑦𝑗 , 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}, where y1,…yn are individual names 

not in A 

≤ −𝑹𝒖𝒍𝒆: if A contains individuals y1,…yn+1 s.t. (≤ 𝑛 𝑅)(𝑥) 𝑎𝑛𝑑 𝑅(𝑥, 𝑦1), … 𝑅(𝑥, 𝑦𝑛+1) are in A but 𝑦𝑖 ≠̇ 𝑦𝑗 

not in A , for  𝑖 ≠ 𝑗  
then for any pair yi,yj , with  𝑖 > 𝑗, 𝑎𝑛𝑑 𝑦𝑖 ≠ 𝑦𝑗 not in A , ABox Aij = [yi/yj]A is obtained from A 

by replacing each occurrence of yi cu yj 

 

BUPT



71 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

 
ΔI = {b,c,d}; RI={(b,c),(b,d)}; AI={c} si BI  ={d}.  

For this interpretation 𝑏 ∈ 𝐶0
𝐼, which means that 𝑏 ∈ ((∃𝑅. 𝐴) ∩ (∃𝑅. 𝐵))𝐼 but 

𝑏 ∉ (∃𝑅. (𝐴 ∩ 𝐵))
𝐼
 

In the second example I will add a number restriction to the first concept 

from the above example, i.e. is wanted to know whether (∃𝑅. 𝐴) ∩ (∃𝑅. 𝐵) ∩≤ 1𝑅 

subsumed by  ∃𝑅. (𝐴 ∩ 𝐵). Intuitively, the answer should be YES since  ≤ 1𝑅 from 

the first concept insures that A’s r-filler coincides with B’s , thus exists an r-filler in 

𝐴 ∩ 𝐵. 

The Tableaux algorithm for satisfiability proceeds as stated above with the only 

difference that there is in plus the constraint 𝑏 ∈ (≤ 1 𝑅)𝐼. In order to satisfy  this 

constraint the two r-fillers of b, i.e. c and d must be identified one with another.  
So, if an at-most number restriction is violated then the algorithm should identify 

different role fillers. 
In the example, the individual c=d must belong to both AI and BI , that, 

cumulated with 𝑐 = 𝑑 ∈ (¬𝐴 ∪ ¬𝐵)𝐼 leads to a clash. Thus the search for a counter-

example for the subsumption fails and the algorithm deduces that (∃𝑅. 𝐴) ∩ (∃𝑅. 𝐵) ∩
≤ 1 𝑅 ⊆ ∃R. (A ∩ B). 

Before starting to describe the algorithm more formally there must be 
introduced a  corresponding data structure in which it should be able to represent 
the following type of constraint: “a belongs to interpretation of C”, or “b is an R-filler 
of a”. The original paper of Schmidt-Schauβ & Smolka [174], as well as many other 
works about tableaux algorithms for DLs introduce the notion of ‘system of 

constraints’  in this purpose. But if we look closer at the types of constraints that 
need to be expressed we observe that they can be represented as ABox assertions.  

As we saw in the second example above, the presence of ‘at-most’ number 
restrictions may lead to identification of different individual names. Due to that we 
will not impose the unique name assumption (UNA) over the ABoxes considered by 
the algorithm. In exchange will be allowed explicit inequality assertions of the form: 

𝑥 ≠̇ 𝑦 for individual names x,y, with the semantics that an interpretation I satisfies 

𝑥 ≠̇ 𝑦 if 𝑥𝐼 ≠ 𝑦𝐼. These assumptions are supposed to be symmetrical, i.e. saying that  

𝑥 ≠̇ 𝑦 belongs to an ABox A is identical to  𝑦 ≠̇ 𝑥 belongs to A. 

Let Co be an ALCN  concept in normal negated form. In order to test its 

satisfiability the algorithm starts with the ABoxl A0= {C0(x0)} and applies the  

transformation rules over the ABox until no one could ever be applied. If the  
complete ABox obtained this way does not contain any obvious contradiction (clash) 

then A0 is consistent and the concept C0 is satisfiable, in the other case it is 

unsatisfiable [28].  

The transformation rules that deal with disjunction and ‘at-most’ type of 

restrictions are non-deterministic, in sense that a given ABox is transformed into  
finitely many new Aboxes such that the original one is consistent if at least one of 
the new Aboxes are consistent. Due to this will be considered finite sets of ABoxes 

S={A1,…Ak} instead of singleton ones. This type of set is consistent if it exists an i, 

1 ≤ 𝑖 ≤ 𝑘 such that Ai is consistent.  

A transformation rule, as it is shown in table 9, is applied to a finite set of 

ABoxes, S as following: gets an element A from S and replaces it with an ABox A’ , 

two ABoxes A’ and A”, or with a finite number of ABoxes, Aij [28].

BUPT



72 Logics as Support for the Semantic Web  -  2 

 

 
The following proposition is an immediate consequence of the definition of 

transformation rules.  

Proposition 1 (Safety): Let’s assume that S’ is obtained from the finite set of 

ABoxes S by application of a transformation rule. Then S is consistent if S’ is.  

The second important property of the transformation rules is that the 
process always terminates. 

Proposition 2 (Termination): Let C0 be an ALCN  concept description in normal 

negated form. There cannot exist an infinite sequence of rules applications: 

 {{𝐶0(𝑥0)}} → 𝑆1 → 𝑆2 → ⋯ ..  

In what follows I will try to present a short demonstration of this theorem, as it has 
been made in [28]  

Lema 1: Let A be an ABox contained in Si, for an 𝑖 ≥ 1.  

 For any individual 𝑥 ≠ 𝑥0 of A there exists a unique sequence R1,…Rl , with 

𝑙 ≥ 1 , of role names and a unique sequence x1,…xl-1 of individual names s.t. 

{R1(x0,x1), R2(x1,x2),…Rl(xl-1,x)} ⊆ A. In this case we say that ‘x occurs on 

level l in A’.  

 if (𝑥) ∈ 𝐴 , for an individual x from level l, then the maximal depth of roles 

of C (that is the maximal nesting of roles constructor) is bounded by the 

maximal roles depth of C0 - l. As such, the level of any individual from A is 

bounded by the maximal roles depth of C0.   

 

 if 𝐶(𝑥) ∈ 𝐴 then C is a sub-description of C0. In consequence, the number of  

different concept assertions over x is bounded by the size of C0.  

 

 the number of different role succesors of x in A (i.e. individuals y such that 

𝑅(𝑥, 𝑦) ∈ 𝐴, for a role name R) is bounded by the sum of numbers that occur 

in the ‘at-least’ restrictions from C0 + the number of existential restrictions 

from C0. 

Starting from {{C0(x0)}} is obtained, after a finite number of rules applications, 

a set of ABoxes �̂� in which no more rules could be applied. An ABox A is complete if 

no transformation rules can be applied onto it. The consistency of a set of complete 

Aboxes could be decided by looking for clashes. An ABox A contains a clash if one of 

the following situations take place: 

i) {⊥ (x)} ⊆ A, for an individual x  

ii) {A(x), ¬A(x)} ⊆ A, for an individual x and a concept A  

iii) {(≤ 𝑛 𝑅)(𝑥)} ∪ {𝑅(𝑥, 𝑦𝑖), 1 ≤ 𝑖 ≤ 𝑛 + 1} ∪ {𝑦𝑖 ≠̇ 𝑦𝑗|1 ≤ 𝑖 < 𝑗 ≤ 𝑛 + 1} ⊆ 𝐴, 

for individuals x,y1,…yn+1, a non-negative integer n and a role R  

Obviously, an ABox that contain a clash is not consistent, which means that if all 

Aboxes from �̂� contain a clash then �̂� is inconsistent, thus, from the safety Lema (1) 

we have also that {C0(x0)} is inconsistent, consequently C0 is unsatisfiable.  

BUPT



73 Inference and Reasoning Tasks in DL Knowledge Bases  -  2.3 

 

 

But if only one of the complete ABoxes from �̂� is clash-free though, then �̂� is 

consistent. By rule safety this implies the consistency of {C0(x0)} and thus the 

satisfiability of C0. 
 

Proposition 4 (Completeness): Any complete and clash-free ABox A has a 

model. 

This fact can be proved by defining the canonical interpretation IA induced by A:  

i) domain 𝛥𝐼𝐴  of  IA consists of all individuals from A 

ii) for all atomic concepts C we define 𝐶𝐼𝐴 = {𝑥|𝐶(𝑥) ∈ 𝐴} 

iii) for all atomic roles R we define 𝑅𝐼𝐴 = {(𝑥, 𝑦)|𝑅(𝑥, 𝑦) ∈ 𝐴} 

By definition, IA satisfies all roles assertions from A. By induction on the 

structure of concept descriptions it is easy to show that it satisfies also the concept 

assertions. The inequality assertions are satisfied since  𝑥 ≠̇ 𝑦 ∈ 𝐴 hold only if x,y 

are different individuals. 
The statements made in Lema 1 imply that the canonical interpretation has the 
shape of a tree whose depth is linearly bounded by the size of the concept C0 and 

the branching factor by the sum of numbers that occur in C0‘s at-least restrictions + 

the number of existential restrictions from C0. In conclusion, ALCN  holds the finite 

tree model property, i.e. any satisfiable concept C0 it is so in a finite interpretation I 
which has the shape of a tree rooted in C0. 
To sum up, we have seen during this last sub-section that transformation rules 

reduce ALCN concepts satisfiability that are in normal negated form to the 

consistency of a finite set of complete ABoxes. In addition, the consistency of the 

set can be decided by looking for obvious contradictions.  
 

i. Complexity Considerations 

The Tableaux algorithm for ALCN concept satisfiability presented earlier may 

be needing exponential execution time and space. Actually, the size of the canonical 
interpretation that is constructed by the algorithm may be exponential in that of the 
concept descriptions. For example, let’s consider the below Cn concepts inductively 
defined as: 

 𝐶1 =  ∃𝑅. 𝐴 ∩ ∃𝑅. 𝐵 

 . . . .  

 𝐶1 =  ∃𝑅. 𝐴 ∩ ∃𝑅. 𝐵 ∩ ∀𝑅. 𝐶𝑛 

Evidently, the size of Cn grows linearly with n. Given the input description 
Cn, the earlier satisfiability algorithm generates a complete and clash-free ABox  

whose canonical model is a binary tree of depth n, so it contains 2n+1 -1 individuals.   
Not lastly, this algorithm can be modified such that to be needing only 

polynomial space, the main reason is that different branches of the tree model 
generated by the algorithm may be investigated separately. How the NP-space class 
dovetails with P-space, as it was stated in [168], it is sufficient to describe a non-
deterministic algorithm using only polynomial space, that is for each non-
deterministic rule we may simply assume that the algorithm picks the right 
alternative.  
 

BUPT



74 Logics as Support  for the Semantic Web  -  2 

 

 
Basically, the modified algorithm works as follows [28]:  

i) starts with {C0(x0)} 

ii) applies  →∪ and →∩ rules as much as possible and checks clashes of the 

form: 𝐴(𝑥0), ¬𝐴(𝑥0), ⊥ (x0) 

iii) generates all direct successors of x0 using the rules → ∃ and →≥ 

iv) generates the necessary identifications of these successors using the 

rule →≤  and verifies clashes caused by at-most restrictions 

v) iteratively handles the successors in this manner  

Since after identification the remained successors can be separately dealt with, the 
algorithm must store a single path of the tree model that will be generated together 
with the direct successors of individuals from this path and information regarding 

which of these successors are to be investigated next. We already know that the 
length of the path is linear with the size of the input concept C0, so the only obstacle 
in the road to a Pspace algorithm is that the number of an individual’s direct 
successors on the path also depends on the numbers found in at-least restrictions. 
If assume that these numbers will be written in the base 1 representation (where 
the size of the representation coincides with the number actually represented), this 
thing would not be a problem anymore. For bases larger than 1 though (e.g. 

numbers in decimal notation), the number being represented could be exponential 
in the size of the representation. For example, the representation of 10n-1 requires 
10 digits in decimal, so we are unable to introduce all successors required by at-
least restrictions only in polynomial space with the size of concept descriptions if 

numbers from the description are written in decimal notation.  
It proves though that the big majority of successors required by at-least 

restrictions are not necessary at all. If an individual x obtains at least one R-

successor following the application of → ∃ rule, then the →≥ rule must not be 

applied to x for the role R’; otherwise we can simply introduce an R-successor 

representatively. In order to detect inconsistencies due to number restrictions 

conflicts we must add a new type of clash: {(≤ 𝑅)(𝑥), (≥ 𝑚 𝑅)(𝑥)} ⊆ A for non-

negative integers n<m. The canonical interpretation obtained by the modified 

algorithm must not satisfy the at-least restrictions of C0. It can be though easily 
modified to an interpretation that can do that by duplicating the R-successors, more 
precisely the entire sub-tree that starts from them [28].  

Lemma 2: Satisfiability of ALCN  concept descriptions is PSpace-complete. 

The above theorem states that the problem is in PSpace. The hardness result comes 

from the fact that satisfiability is PSpace-hard for the super-language ALC, which 

can be proved by a reduction from the validity of Quantified Boolean Formulae[174]. 

Since satisfiability and subsumption of ALCN concepts may be reduced one to 

another in linear time this thing shows that ALCN concept subsumption is PSpace-

complete. 
 

ii. An extension to the consistency problem for ABoxes 

The tableaux algorithm for satisfiability of ALCN concepts presented in 

section a) can be extended to one that decides ALCN  Aboxes consistency. Let A 

be an ALCN ABox such that all its concepts are in normal negated form.  

BUPT



75 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

 

To test the consistency of the ABox foremost we add inequality assertions 𝑎 ≠̇ 𝑏 for 

each pair of distinct individuals a,b that occur in A. Let’s call A0 the ABox obtained 

in this way. The consistency algorithm applies the transformation rules shown in 

table 9 over the singleton set {A0}.  

Safety and completion of the rules set can be demonstrated as previously. 

Unfortunately, the algorithm is not required to terminate only in case when a 
specific strategy is imposed onto the order of rules application. For example, 
consider the ABox: 

 𝐴0 = {𝑅(𝑎, 𝑎), (∃𝑅. 𝐴)(𝑎), (≤ 1 𝑅)(𝑎), (∀𝑅. ∃𝑅. 𝐴)(𝑎)} 
By applying the rule → ∃ to a we can introduce a new R-successor x of a: 

 𝐴1 = 𝐴0 ∪ {𝑅(𝑎, 𝑥), 𝐴(𝑥)} 

Rule → ∀ adds the assertion (∃𝑅. 𝐴)(𝑥), which at its turn triggers the application of 

the rule → ∃ to x, obtaining the ABox: 

 𝐴2 = 𝐴1 ∪ {∃𝑅. 𝐴(𝑥), 𝑅(𝑥, 𝑦), 𝐴(𝑦)} 
Since a has two R-successors in A2 , the rule  →≤ is applicable to a. Replacing each 

occurrence of x with a we obtain the ABox:  

 𝐴3 = 𝐴0 ∪ {𝐴(𝑎), 𝑅(𝑎, 𝑦), 𝐴(𝑦)}. 
Except for the individual names and assertion A(a), the ABox A3 is identical to 

A1. Due to this reason, we can continue as above in order to obtain an infinite chain 

of rule applications. Termination can still be regained by putting the condition that 

the generative rules (i.e. →≥, → ∃) are applied if none of the others is. In the earlier 

example, this strategy would prevent application of the rule → ∃ to x in the ABox 

𝐴1 ∪ {(∃𝑅. 𝐴)(𝑥)} because rule →≤ is also applicable. After application of rule →≤ , 

rule → ∃ is not applicable anymore due to the fact that a already has un R-successor 

that belongs to A.  

Using a similar idea it can be reduced the consistency problem for ALCN  

ABoxes to ALCN  concept satisfiability [103]. Fundamentally, this reduction works 

in the following manner: in a preprocessing step the transformation rules are 
applied  only on ’old’ individuals (i.e. ones presented in the original ABox), then it 
can look for roles assertions, i.e. for every individual of the preprocessed ABox the 

algorithm is applied to the conjunction of its concept assertions [103]. 
 
iii. Extension to general inclusion axioms  

In the previous three sub-sections I considered the satisfiability problem for 
concept descriptions and that of consistency for ABoxes without any base TBox. 
Actually, for acyclic Tboxes, definitions can be extended in a simple fashion. The 

extension is no longer possible if general subsumption axioms of the form C ⊆ D are 

allowed, where C and D are concept descriptions (possibly complex). Instead of 

considering a finite number of such axioms C1 ⊆ D1, … Cn ⊆ Dn , it is sufficient to 

consider only one: T ⊆ Ĉ, where 

�̂� = (¬𝐶1 ∪ 𝐷1) ∩ … (¬𝐶𝑛 ∪ 𝐷𝑛)  

The axiom T ⊆ Ĉ says that any individual must belong to the concept Ĉ. The  

tableaux algorithm presented earlier can be modified in order to take into account 

this axiom: all individuals, both the original ones and the ones generated by the →≥ 

and → ∃ rules are being asserted as pertaining to Ĉ. This modification may lead to 

the non-termination of the algorithm though. For example, let’s see what happens if 

BUPT



76 Logics as Support for the Semantic Web -  2 

 

the algoritmul is applied for checking the consistency of the ABox: 

A0={𝐴(𝑥0), (∃𝑅. 𝐴)(𝑥0)} w.r.t. the axiom T ⊆ ∃R. A.   

The algorithm generates an infinite sequence of ABoxes A1,A2,…  and 

individuals x1,x2, … such that: 

 Ai+1 = 𝐴𝑖 ∪ {𝑅(𝑥𝑖 , 𝑥𝑖+1), 𝐴(𝑥𝑖+1), (∃𝑅. 𝐴)(𝑥𝑖+1)}. 
How all individuals xi get the same concept assertions as x0, we may make 

the statement that the algorithm came into a cycle. Termination can be regained by 
trying to detect these cyclic computations then attempt blocking the application of 

the generative rules: application of the rules →≥ and → ∃ over an individual x is 

blocked by an individual y from an ABox A if: 

 {𝐷|𝐷(𝑥) ∈ 𝐴} ⊆  {𝐷′|𝐷′(𝑦) ∈ 𝐴}.  
The base idea behind the blocking technique is that the individual being 

blocked x may use the role successors of y instead of generating new ones[28]. For 
example, instead of generating a new  R-successor for x1 from the previous example 

we can simpler use the R-successor of x0. This leads to an interpretation I in which: 

 𝛥𝐼 = {𝑥0, 𝑥1}, 𝐴𝐼 = 𝛥𝐼 , 𝑅𝐼 = {(𝑥0𝑥1), (𝑥1, 𝑥1)}.  
Evidently, I is a model of A0 and of the axiom T ⊆ ∃R. A.  

In order to avoid cyclic blocking (of x by y and vice-versa), consider an 
enumeration of individual names and state that an individual x may be blocked only 
by individuals y that are in front of it in the enumeration. This fact, together with 
other technical assumptions makes sure that an algorithm that uses this technique 

is safe and complete, as well as terminates [57], [22]. Thus, consistency of ALCN  
Aboxes with resp. to general subsumption axioms is decidable.  

It should be noticed the fact that now the algorithm is not in PSpace anymore 

because it can generate role paths of exponential length before blocking arise. 

Actually, even for the simple DL ALC , satisfiability with resp. to a single general 

subsumption axiom is known to be ExpTime-hard [172].  
The tableaux algorithm presented above is one NExpTime-complete. Using the 

translation technique mentioned at the beginning of this section can be shown that 

ALCN  ABoxes and GCIs can be translated into PDL for which satisfiability may be 

decided in exponential time. A tableaux algorithm for ALC with GCIs has been 

talked about broadly in [72].  

 
iv. Extension to other language constructors  

Tableaux technique for the construction of algorithms for concept satisfiability 
and Aboxes consistency may also be used for languages with other constructors (for 
concepts or roles). Fundamentally, each newly added constructor requires a new 
transformation rule, and this can be generally obtained by simply considering the 

semantics of that constructor. Safety property of this kind of rule is generally easy 
to prove; it is harder to do so with completion and termination since must be taken 
into account also the interactions between rules. As I have previously stated, 
termination, in some cases cannot be gained unless the rules application process is 
restrained by a certain strategy. This kind of strategy though may be imposed only 
if it is insured that it does not corrupt completion [28]. 

 

 
 

BUPT



77 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

 
C) Automata-based Algorithms 

There exist different instances of the automata-based technique that differs with 
respect to the DL on which they are being used as well as the type of automaton 
employed. These techniques have in common the following ideas [25]:  

- show that the DL in cause holds the tree model property 

- make a translation from the pair C,T (with C a concept and T a TBox) into a 

tree automata AC,T suct that it accepts tree models of C w.r.t.  T 

- applies the emptiness test for the automata model used at AC,T in order to 

see if C has a tree model w.r.t. cu T 

Complexity of the satisfiability algorithm obtained this way depends on that of 

translation and of the emptiness test, which, at its turn depends on the type of 
automata used.  

A type of non-deterministic automata that works on infinite trees of fixed arity is 
the looping tree automata [201]. In this case, translation is exponential but the 
emptiness test is polynomial in the size of the exponential automaton obtained after 
translation. Thus, the entire algorithm runs in exponential deterministic time 
(ExpTime-complete). Can also be used an alternative tree automata, where there is 

possible a polynomial translation but the emptiness test is exponential [143].  

 
Fig.2.3: Unveiling of a model into a tree 

 

BUPT



78 Logics as Support for the Semantic Web   -  2 

 

 

Another type are the amorph tree automata [45] that, instead of fixed arity 
trees can contain arbitrary branching. This fact simplifies translation but uses a 

more complicated automata model. For very expressive DLs (such are those that 
allow for transitive closures of roles), the looping tree automata introduced above is 
not sufficient because are required also some acceptance conditions (Buchi) that 
allow the occurrence of infinitely many states in any of the paths.  

 Tree model property of a language means that for every concept C that is 

satisfiable w.r.t. a TBox T, it has a model in shape of a tree [25]. TheALC holds this 

property. One way to show this is to apply the tableaux algorithm for ALC over the 

knowledge base (T,a:C) and to give up of blocking, then the execution of the 
algorithm generates the tree model. Another method is to use the technique called 
’unveiling’ in which an arbitrary model of C with resp. to T is developed into a 
bissimilar interpretation having the shape of a tree. This fact proves that 

satisfiability in ALC  w.r.t. general Tboxes can be decided using the automata-based 

technique. Figure 3 shows an example of unveiling. The graph on the right side is an 
interpretation I: nodes are elements of ΔI, nodes labels express to which concept 

name belongs while the labeled edges express the roles relations. For example: a∈ 

ΔI belongs to AI, has an r-successor on b and s-successor on c. I is a model of the 

concept A w.r.t. the Tbox T={A⊆∃r.B, B⊆∃r.A, A⊆∃r.B, A∪B⊆∃s.T}. 

The graph from the right side represents a portion of the unveiled model in which 
the start node is a. The unveiled corresponding interpretation I is a model of T and 

satisfies a∈AI. 

Given a looping tree automata A, the emptiness test decides if the accepted 
language is empty: L(A)=ϕ. The problem can be solved in multiple ways, by making 

use of top-down and bottom-up techniques, that lead to some polynomial non-
determinişti and deterministic algorithms, respectively. A broader discussion about 
automata-based techniques can be found in [28]. 

 

2.3.4. Some Results of the Complexity of Reasoning 

In this section will be presented some complexity results for the problems of 

inference that had been discussed in section 2 for some DL languages, culled and 
selected from the domain literature in the realization of the current thesis. Among 
the scientists that investigated the complexity of reasoning in various DLs by 
attempting different combinations of constructors worth mentioning: Franz Baader, 
Ian Horrocks, Ulrike Sattler, Francesco Donini, Diego Calvanese, John Brachman, 
H.Levesque and many others, and in section 4 that will incheia this chapter I will 
discuss some of their masterpiece works.  

I expect that the reader be familiar with the basic notions about the 

algorithms complexity, such as the time and space necessary for execution, classes 
of complexity (PSpace, ExpTime, NExpTime, coNP), what does it mean that a 
problem is undecidabile, the degree of membership and hardness of a class. For 
those who do not hold these basic knowledge are invited to see the book of 
Papadimitriou called  “Computational Complexity” in  [156] or other introductive 

materials into the computational complexity. 
The algorithm for consistency checks if a knowledge base consisting of a set 

of assertions and one of terminological axioms is non-contradictory. The algorithm 
for instances checks the relationship among individuals: an individual i is instance of 
a concept description C if it is always interpreted as an element of its interpretation. 

BUPT



79 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

In order to ensure a reasonable and predictible behaviour of a DL system 
the inference problems should be decidable and preferably of low complexity. Thus, 

the expressive power of a DL must be restricted in a balanced manner: if it is too 
small then the important notions of the domain could not be captured, while if is too 
big then makes reasoning an untractable process. The investigation of this tradeoff 
between expressivity and complexity of reasoning has been one of the most 
important problems of the research in DL. Thanks to the results of research in DL 
during the last decades this hole became sufficiently narrow in order to allow to 
construct stabile bridges [25].  

 

A) Consistency of ALC  ABoxes is PSpace-complete 

In the previous sections, we saw a tableaux algorithm that decides the 

consistency of ALC Aboxes with resp. to Tboxes. I will consider here firstly just 

ABoxes and I will explain how the algorithm can be implemented in polynomial 

space, that is I will show that the consistency of ALC Aboxes is a PSpace problem. 

Then I will show that it cannot be done better, so the problem is PSpace-hard. 
For these considerations, we must see how to measure the length of the input 

description. Given an ABox A, its size is the length required to write A, assuming 

that the length required for writing the names of concepts and roles is 1. 

The formal definition of the size of Aboxes is: 

|A| = ∑ (|𝐶| + 1) + ∑ 3(𝑎,𝑏):𝑟∈𝐴𝑎:𝐶∈𝐴  

|𝐴| = 1, 𝑤ℎ𝑒𝑟𝑒  𝐴 𝑎 𝑐𝑜𝑛𝑐𝑒𝑝𝑡 𝑛𝑎𝑚𝑒 

|¬𝐷| = |𝐷| + 1 

|𝐷1 ∩ 𝐷2| = |𝐷1 ∪ 𝐷2| = |𝐷1| + |𝐷2| + 1 

|∃𝑅. 𝐷| = |∀𝑅. 𝐷| = |𝐷| + 2 

In what follows let’s take a look at the tableaux algorithm. Firstly worth 

mentioning the fact that, in absence of a TBox, neither the  ≡ −𝑟𝑢𝑙𝑒 nor ⊆ −rule are 

not applicable anymore; then the fact that the tableaux algorithm constructs a 
completion forest in a monotone manner, i.e. all the expansion rules either add 
concepts to the nodes labels or new nodes to the forest, but they do not erase 
anything. The forest built this way consists of two parts: for each individual name 

from A  the forest contains a root node which will be called old node. The edges 

between old nodes come from the role assertions from A, and so they can occur 

without restrictions. Other nodes, such are the ones from the completion trees that 

are not roots are generated by the ∃ − 𝑟𝑢𝑙𝑒, and will be called new nodes. We’ll call 

the other rules “augmenting” because they only increase the labels of the existing 
nodes. Unlike the edges between old nodes, the ones between new nodes have a 
certain shape: each new node lays into a completion tree that is rooted into an old 

node.  

Let’s consider the nodes labels. Iniţially, for an old node xa, L(Xa) contains the 

concepts C from the assertions 𝑎: 𝐶 ∈A. Other concepts are added by means of the 

expansion rules, and we observe that these rules add only subconcepts of the  

concepts that occur in A. Because there are at most |A| those subconcepts, each 

node label could be stored in polynomial space in |A|. Moreover, for each concept D 

from the label of a new node x, its predecessor contains a larger concept. This way, 
the maximum size of concepts from the nodes’ labels decreases strictly alongside of 
a path constituted of new nodes, and thus the depth of each completion tree in the  

completion graph is bounded by: max{|C| | 𝑎: 𝐶 ∈A}. 

BUPT



80 Logics as Support for the Semantic Web -  2 

 

 
Finally it must be stated that the expansion rules can be applied in a random 

order: the proof for correctness of the algorithm does not rely on an order of 
application. Thus we may very well use the following order: foremost all the 
augmentation rules are being exhaustively applied to the old nodes. In the next step 
we will treat each old node in particular and build the tree rooted on it in a depth 
manner, that is, for an old node xa we will successively deal each existential 

restriction  ∃𝑟. 𝐶 ∈L(xa): 
- apply the ∃ − 𝑟𝑢𝑙𝑒 in order to generate an r-successor x0 with L(x0) = {C},  

- apply the ∀ − 𝑟𝑢𝑙𝑒  exhaustively at this r-successor of xa that can further add 

other concepts to L(x0),  and 

- apply recursively the same procedure to x0, i.e. apply exhaustively the  

augmentation rules then test each of the existential restrictions at turn  

As usual, the algorithm stops if encounters a clash, otherwise, if all existential 
restrictions of a new node have been handled then it can be erased, including its 
label and reuse the occupied space. By using this method we can investigate the 
complete tree rooted in the old node xa and holding a unique branch in memory at a 

given time. This branch is of a length that is linear in |A|, and can be thus stored 

with all its labels in size polynomial of |A|.  

Continuing with the investigation of all trees in this manner, the algorithm 

requires a space that is only polynomial in |A|. This approach is called the “tracing 

method” due to fact that it traces only the tree-shaped part of a completion tree 
[28].   

In order to show that it cannot be done better, I will prove that the ALC ABox 

consistency is PSpace-hard even in case of Aboxes that contain a single assertion 
{a:C}. Proof is made by a reduction of the QBF validity problem, which is known to 
be PSpace-hard. A QBF formula ϕ is of the form:  

 𝑄1𝑝1. 𝑄2𝑝2. … 𝑄𝑛𝑝𝑛. 𝜑, 

for 𝑄𝑖 ∈ {∀, ∃} and φ a boolean formula over p1,…pn. The validity of QBF is 

inductively defined as follows: 

- ∃𝑝. 𝜙 valid if ϕ[p/t] or ϕ[p/f] are valid 

- ∀𝑝. 𝜙 valid if ϕ[p/t] or ϕ[p/f] are valid 

For example, ∀𝑝. ∃𝑞. (𝑝 ∨ q) is valid and ∀𝑝. ∀𝑞. ∃𝑟((𝑝 ∨ r) → 𝑞)  is not valid. 

Since QBF validity is PSpace-hard, it is only left to prove that for a certain QBF  

ϕ we can construct in polynomial time an ALC concept Cϕ such that ϕ is valid only if 

{a:Cϕ} is consistent. As an immediate consequence, ALC Aboxes consistency and 

concepts satisfiability are PSpace-hard.  
The idea underlying the above reduction is to build a concept Cϕ such that any of 

its instances x0 is the root of a tree of depth n such that for every 1 ≤ 𝑖 ≤ 𝑛 we have 

the following relations: 

- if 𝑄𝑖 = ∃ then 𝑟 … 𝑟 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑜𝑟 (i-1 times) of x0 has an 𝑟 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑜𝑟 that can 

be either in 𝑝𝑖 or ¬𝑝𝑖  

 

BUPT



81 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

 

- if 𝑄𝑖 = ∀, each  𝑟 … 𝑟 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟 (i-1 times) of x0 has two 𝑟 − 𝑠𝑢𝑐𝑐𝑒𝑠𝑜𝑟𝑠, 

one in 𝑝𝑖 and other in ¬𝑝𝑖  

Up to this point, for a QBF 𝜙 = 𝑄1𝑝1. 𝑄2𝑝2 … 𝑄𝑛𝑝𝑛. 𝜑 we define Cϕ as the following, 

where �̂� is the DL equivalent of φ obtained by replacing the ∧ with ∩ and ∨ with ∪ 

in φ: 

  𝐶𝜙 ≔ 𝐿1 ∩ ∀𝑟. (𝐿2 ∩ ∀𝑟. (𝐿3 ∩ … ∀𝑟. (𝐿𝑛 ∩ �̂�)) … ),   

where:  

𝐿𝑖 ≔ 𝐷𝑖 ∩  {
∃𝑟. 𝑇 𝑖𝑓  𝑄𝑖 = ∃

∃𝑟. 𝑝𝑖 ∩ ∃𝑟. ¬𝑝𝑖  𝑖𝑓  𝑄𝑖 = ∀
 

𝐷𝑖 ≔ ⋂(𝑝𝑗 → ∀𝑟. 𝑝𝑗) ∩ (¬𝑝𝑗 → ∀𝑟. ¬𝑝𝑗)

𝑗<𝑖

 

By means of this definition we assure that if 𝑥0 ∈ 𝐶𝜙
𝐼  and exists a path 

(𝑥0, 𝑥1) ∈ 𝑟𝐼 , … (𝑥𝑖−1, 𝑥𝑖) ∈ 𝑟𝐼, then  𝑥𝑖 ∈ 𝐿𝑖
𝐼  and Li is responsible for the branching 

format discussed above. The Di concepts assure that if any of the xj is (or not) an 
instance of pj , for j<i, then so it is (not) xj+1. These observations, together with fact 

that xn is an instance of �̂� ensures that 𝜙 is valid if {a:Cϕ} consistent. 

 

Theorem 4: Satisfiability and subsumption of ALC concepts and their Aboxes 

consistency are PSpace-complete problems.  
 
B) Adding general TBoxes   

As is has been affirmed in one of the anterior sections, ALC concept 

satisfiability with resp. to general Tboxes can be decided in exponential time, i.e.   
this problem is ExpTime-complete. Again, it can be shown that it cannot be done 
better, so it is ExpTime-hard. Demonstration is though beyond the scope of the 
current chapter because requires the introduction of certain knowledge about 
“machinery of complexity theory”. A possible solution is by adaptation of the 
ExpTime-hardness proof of PDL from [82]. This proof uses a polynomial reduction of 
the word problem for polynomially bounded alternative Turing machines to the 

satisfiability of PDL formulas.  
When is translated into its equivalent DL, the formula for reduction of this proof 

has the form: 𝐶 ∩ ∀𝑟∗. 𝐷, where C,D are ALC concepts and r* is the transitive-

reflexive closure of r, i.e. this concept uses a constructor that does not exist in ALC. 

It is not hard to observe though that 𝐶 ∩ ∀𝑟∗. 𝐷 is satisfiable if C is so with resp. to 

the TBox {T ⊆ 𝐷}. This is the case because r is the only role that occurs in C and D. 

For readers who wish to learn more insights about the relation between Tboxes and 
PDL are invited to read the work in [87]. 

Worth mentioning also that, for definitorial ALC  Tboxes this explosion in 

complexity from PSpace to ExpTime-hard doesn’t take place. We will see next that 
there are DLs in which even the presence of definitorial Tboxes may lead to growth 

in complexity. 
 
 

BUPT



82 Logics as Support for the Semantic Web  -  2 

 

 
C) The effect of other constructors 

In section 2 was made a discussion around the extensions with different 

constructors of the primitive  DL ALC. In this section, I will discuss about the 

influence that these constructors have on the complexity of reasoning.  
Generally, number restrictions are harmless; with a single exception, even the 

qualified ones may be added to a DL without increasing its complexity of reasoning. 

For example, ALCQ concept satisfiability is still PSpace, while the consistency of 

general ALCQ knowledge bases is ExpTime-hard [88]. 

Transitive roles are the most harmless; all DLs between ALC and ALCQIO can 

be extended with transitive roles without being affected their computational 
complexity. A dangerous interaction is that with roles hierarchies: concepts 

satisfiability of ALC extended with transitive roles and roles hierarchies is ExpTime-

hard, while concept satisfiability of ALC extended with only one of these features is 

Pspace-complete [28]. This inherent growth in complexity is due to the fact that 

these 2 characteristics are used for Tbox internalization: given a TBox T and an ALC 
concept,  E, that contains the role names r1,…rn, we have that E is satisfiable w.r.t  T 

if the following concept: 

∃𝑟. 𝐸 ∩ ∀𝑟. ⋂ (¬𝐶 ∪ 𝐷)

𝐶⊆𝐷∈𝑇

 

is satisfiable w.r.t.  {r1 ⊆r, rn⊆r}, where r is a new transitive role. The first conjunct 

assures that the extension of E is non-empty, while the second that any element 

from a model satisfies any GCI from T. So, in ALC extended with transitive roles 

and role hierarchies we can reduce the reasoning polynomially with resp. to a TBox 
to that pure with concepts, so the pure concept reasoning is ExpTime-hard. In the 
additional presence of number restrictions there is the need to have a special 
concern not to use super-roles of transitive roles inside number restrictions because 

this leads to undecidability [28]. As consequence, expressive DLs ,like SHIQ allow  

the use in number restrictions only of simple roles. 
Nominals and role inverses are also in majority of cases innocuous: concept 

satisfiability in ALCOQ and ALCI extended with transitive roles are PSpace, but 

concept satisfiability in ALCIO is ExpTime-hard. This growth in complexity is again 

caused by the fact that by means of role inverses and nominals can be internalized 
Tboxes. Intuitively, we use a nominal as a “spy point”, that is an individual which 
has all elements from a model as t-successors, and we use role inverses to assure 
the behavior of this spy point. More exactly, a concept E is satisfiable w.r.t. a TBox T 

if the following concept is satisfiable:    

𝑜 ∩ (∃𝑡. 𝐸) ∩ (∀𝑡. ⋂ ∀𝑟. ∃𝑡−. 𝑜𝑟∈𝑅 ) ∩ ∀𝑡. ⋂ (¬𝐶 ∪ 𝐷)𝐶⊆𝐷∈𝑇 , 

where o is a nominal, R is the set of roles r that occur in T or E and their inverses r-, 

and t is a role that is not found in R. The third conjunct assures that o ‘sees’ all 
elements from a connected model, i.e. x0 is an instance of the above concept in a 

connected model I and there exists an element 𝑦 ∈ 𝛥𝐼, then (𝑥0, 𝑦) ∈ 𝑡𝐼.  

In the end worth mentioning the fact that nominals, role inverses and number 
restrictions altogether have a dramatic influence over the complexity: satisfiability 

of ALCOIQ concepts is NExpTime-hard [194], while satisfiability of ALCIO, ALCIQ,, 

ALCOQ concepts is ExpTime-hard (with resp. to Tboxes) [27].

BUPT



83 Inference and Reasning Tasks in DL Knowledge Bases  -  2.3 

 

 
For results of complexity in other DLs created by the scholars of the domain 

together with their proofs, I think the best material that should be consulted is 
Baader’s book intuitively called ”Description Logics Handbook” [28], especially 
chapter 3 which is dedicated exclusively to the field of DL complexity of reasoning  
(but also others that treat the domain). Readers who seek introductory materials 
are invited to browse Ian Horrocks’ courses in the references section about 
reasoning in DL [104],[105],[106].  

 

D) A List with Results of Complexity of Reasoning in DL 

A plethora of Description Logics had been created until present day in literature 
by scientists, each having a specific name. Although suggestive, these names do not 
offer too much insight about what constructors that language holds. This makes the 

big majority of the results of complexity of reasoning hard to understand by the 
non-expert users. In order to clear things about what constructors exist in each 
language here I will use 2 lists: first one shows the concept constructors and second 

one of roles. For example, the pair of lists (∩, ∃𝑅, ∀𝑅. 𝐶)(∩, °) says that the language  

has as concept constructors: conjunction (∩), unqualified existential quantification 

(∃𝑅), universal role quantification (∀𝑅. 𝐶), and for role constructors: conjunction (∩) 

and composition (°). To many combinations of concept constructors have been 

given names that now are generally being used. For example, the above list of 

concept constructors is being known in the literature as being the DL FL-. Here I will 

use a syntax proposed in [27] and write FL-(∩, °), which means FL- augmented with 

role conjunctions and compositions, in order to make it recognized for the domain 
researchers. 

Appendix A presents a catalog with a series of results to the tasks of 
satisfiability and subsumption for some of the main DLs that had been culled from 
the works in literature read for the realization of this thesis. Satisfiability and 
subsumption refers to problems with simple concept expressions. When these 
problems are considered with resp. to a set of axioms I will explicitly state this fact. 
Moreover, when constructors of a DL allow the reduction of concept subsumption 

(C⊆D) to satisfiability (𝐶 ∩ ¬𝐷) will be stated just satisfiability. In this list I tried to  

use symbols of DL constructors as much as possible; for some I used abbreviations, 

such as: unqualified number restrictions (≥ 𝑛 𝑅, ≤ 𝑛 𝑅) are denoted with <>
𝑅, qualified number restrictions (≥ 𝑛 𝑅. 𝐶, ≤ 𝑛 𝑅. 𝐶) with <>R.C. If a constructor is 

allowed only for names (either concepts or roles) will be applied for the word 𝑛𝑎𝑚𝑒.  

 
 

 

BUPT



84 Logics as Support for the  Semantic Web    -  2 

 

 

2.4. State-of-Art of the Researches 

Because the current chapter is intended as a review aiming to offer the 
reader insight from the application domain, the vast majority of materials read in 
conducting the current research is mostly theoretic. These materials (resources) 

include books, faculty courses, PowerPoint slides on the Internet etc. A presentation 
of the most important is done in the continuation of this section.  

The most rightful work with which I will start this presentation is the book of 

Baader et al. from year 2003, called “Description Logics Handbook: Theory, Practice, 
Applications” [28]. This is an exhaustive work that spans over many chapters in 
order to create a comprehensive guide for the domain of Description Logics. It is 
divided into 3 main parts. The first one presents introductory aspects from the 

domain, the second shows implementations of some  DLs into concrete systems, 
while the last deals with the application domains where DLs are most frequently 
being used. For my thesis I studied mainly the first 3 chapters where the main 
reasoning tasks of DL knowledge bases are discusses and the techniques used for 
their solvation (decision procedures), the complexity of these algorithms for some 

members of DL family (AL, EL, FL0  augmented with various ‘flavors’).  

Another valuable paper is that of Baader, Buchheit and Hollunder [24], that 

represents the 23rd chapter of the book “Handbook of Automated Reasoning” [165]. 
Its goal is to offer a complete presentation of the results of reasoning in presence of 
Tboxes for very expressive DLs (i.e. those that contain all concept constructors, 
inverses of roles and number restrictions). Presents the reasoning problems for 

unrestricted models from PDL, techniques of reasoning and results for the finite DL 
models. It is also being taken a look over the boundary between decidability and 

undecidability in very expressive DLs. 
Also one of the most notable works from this domain read for the creation of 

the current thesis is that of Jeff Pan, that was his doctorate thesis titled “Description 
Logics: Reasoning Support for the Semantic Web” [154]. This book starts from the 
basic notions, such as general aspects of the Semantic Web, ontologies and 
Description Logics languages, and with each chapter advances towards more and 
more complex notions, such as reasoning tasks and services, complexity of the 

reasoning algorithms, optimization techniques for assuring the decidabilităţii. Its 
contributions are two decidable extensions of the OWL ontology language in order to 
support customized data types and predicates, that is OWL-E and OWL-Eu. Also 
proposes a framework for reasoning that supports a wide array of decidabile DLs 
that provide customized datatypes and predicates.  

Another pioneer in this domain, English scholar Ian Horrocks, delighted us 

with some valuable works here too. One of the largest that tries to present the DLs 

domain even from their birth and until present time is [25], which is actually the 
third chapter of the book “Handbook of Knowledge Representation”. Starting with 
their definition and history, then continuing with the relation with other logical 
formalisms (Modal, Predicative) and a separate section dedicated to the basic DL 

ALC  in which discuss its syntax, semantics and main inference problems: 

consistency, satisfiability, equivalence and subsumption. Also in a separate section 
is talked about the main technique for solving these problems: the tableaux 

algorithms, while in other are mentioned others: the structural algorithms and those 
automata-based. At the end are presented a series of complexity results for the 
above problems solved by using the tableaux technique.  

BUPT



85 State-of-Art of the Researches  -  2.4 

 

The same author in [110], [111], [112] presents the role of DLs as 
languages for the development of ontologies that can be used on the Semantic Web. 

Firstly is made an introduction into the domain then is explained the reason for 
which they are fit as ontologiy languages, especially due to their well-defined 
semantics and the existing reasoner tools. Separate sections are dedicated to 

particular DL languages, such as ALC, SHIQ, are discussed syntaxes, semantics,  

reasoning tasks etc.  
Also a comprehensive work coming from the same authors that provides 

advanced notions is found in [114], but this time is being discussed OWL. OWL is 

the standard ontology language of the Semantic Web that roots its characteristics 

from several representative languages, such as Descriptin Logics and Frames 

Paradigm, and also RDF, the foundation proposed by W3C for the Semantic Web. 

Presents its predecessors, languages that influenced its creation such as SHOE, 

DAML-ONT, OIL, DAML+OIL, the problems that were faced by the group who dealt 

with its development related to the syntax, semantics, computations, expressivity. 

(Dalwadi et al., 2012) make in [68] a study about Semantic Web 
technologies and discuss some of the inference engines that support reasoning over 
the OWL ontologies. Present the main techniques that are usually employed in the 
reasoning process, which are based on DL, on theorem provers from FOL, or on a 
combination between FOL and general logics, then provide examples of concrete 

reasoner systems from each category. Finally he makes a comparison of the major 
reasoners currently existing on the market, showing what algorithms each one relies 
on, what is the underlying logical formalism, as well as many other traits that were 
presented in tabular form. 

Turhan makes in [196] a guided tour of the DL domain, stating he did that 
in order not to make “yet another” review paper of the domain but to present 
resources, courses, documentation where the reader can find information about this 

domain. A particular section is dedicated to reasoning in DL, where he also presents 
materials from the literature.  

Readers willing to gain more advanced knowledge about reasoning and 
complexity results in a large array of Description Logics, undecidability, results 
borrowed from other related logics are invited to read chapters 1,2 and 3 of 
Baader’s handbook in [28]. Complexity results are presented under the form of 

proven theorems in order also to show the deduced results. At the end of chapter 3 
it is being produced a list with some complexity results for satisfiability and 
subsumption in a wide range of DLs, asides which is stated the name of the person 
who discovered that language and proved the result. Also the resources for faculty 
courses of Horrocks [107], [108], Baader [21] and few presentational slides of 
Horrocks in which explain how a tableaux algorithm works and introduces 

fundamental notions about inference and reasoning in DLs [105], [106]. Readers 

are advised also to look upon the Wikipedia sources about these domains, that is a 
trustful source of information that could be validated by the author(s) of this thesis 
himself. 

In  [197] Turhan  makes an introduction into the DL systems. Are presented 
the general notions of the domain, such as knowledge representation formalisms, 
the phases on which went through the researches in DL, general components of a 
DL knowledge base (intensional, extensional). Also are being presented the 

connections that DLs hold with other logical formalisms, like First Order Logic or 

BUPT



87 Conclusions  -  2.5 

 

Modal Logic, the reasoning services provided by DL systems (both 
terminological and assertional), what are the main characteristics of tableaux 

algorithms for reasoning, such as termination, complexity, and are given concrete 

examples on the basic language ALC.  

In (Braun, 2006) [56] it is proposed a new system for reasoning in DL called  

KAON2. Its main characteristics are that relies on non-tableaux techniques for the 

realization of inferences, techniques which are borrowed from the area of databases. 

As it is well known, DL systems can be related to relational databases in the sense 

that a TBox is equivalent to a schema and an ABox to the data from the recordings. 

The advantages of this new algorithm are that it relies on state-of-art techniques 

from the domain of database management, such as the optimization of query order, 

magic sets transformations, avoiding this way the drawbacks of tableaux solutions.  

2.5. Conclusions 

In this chapter I set out the approach of the role that logic, or, better said 

logical knowledge representation formalisms, to the development, standardization 

and evolution of the Semantic Web.  

History of logical paradigms for knowledge representation knew three 

important development phases: Semantic Networks, Frame Systems and 

Description Logics. The latter presents the advantage that has logic-based formal 

semantics, unlike its other two predecessors. The decision to build the ontology 

languages of the Semantic Web on top of the Description Logics paradigm was due 

to the fact that these provide some model-theoretic semantics that are well-defined 

in terms of interpretations and that it exists a variety of reasoning systems created 

in this respect.  

The chapter began with an introduction in ontologies, which are the main 

domains where DLs find applications, and what are the most important languages 

for their specification that have been created. I presented then the domain of 

Description Logics, showed a brief historical parcourse with the evolution phases 

through which they passed from their inception, syntaxes and semantics of the DL 

knowledge bases, and has been explained the reason for what they form some good 

candidates to the ontologies languages. Has been subsequently shown what are 

their relations with other logical representation formalisms, such as First Order 

Predicate Logic (FOL) or the Modal Logic. In case of the former, DLs are decidable 

fragments and are preferred in place of these to the knowledge representation task 

because they make reasoning process tractable, while in case of the latters DL 

concepts can be seen as propositional variables, roles as modal parameters and 

interpretations as Kripke structures.  

Had been subsequently presented DL languages that have been proposed by 

now in the domain literature, especially those of the major scholars of the domain  

(Baader, Horrocks, Donini etc). Had been presented in the form of a table the most 

important languages of the S family then had been made a series of studies, 

discussions, analyses about what type of knowledge can be described by their 

means (concepts and roles constructors) and what new characteristics must be 

added to a language in order to create another one, starting discussion with the 

BUPT



87 Conclusions  -  2.5 

 

most of all, AL and towards the most complicated ones (e.g. SROIQ). A separate 

section has been dedicated to the DL’s domains of applications, the most important, 

as it is well known, the ontology languages of the Semantic Web. Were discussed 

the two major ontology languages created by now, OWL and OWL2,  were specified 

inside tables the DL languages that represent each one’s basis in what concerns the 

syntax and semantics for constructors of concepts and roles, axioms etc. in order to 

enhance the reader’s understanding about the relations between the two 

formalisms.   

Inference tasks from the DL knowledge bases have been described in the 

next section, there were also explained the reasoning services created for their 

solvation and the concrete reasoning systems that implement such techniques. Had 

been presented and analyzed some complexity results of those problems in the case 

of some particular DLs, as they had been demonstrated in the domain literature by 

the scholars. Were made analyzes and comparisons about the way how the addition 

of new features (concepts and roles constructors) influence the complexity of 

reasoning in that language starting from the most basic one, AL. Had been stated 

what combinations of constructors are the most harmless (do not change the 

reasoning complexity) and which are the ones that generate real “explosions” in 

complexity. Next followed the presentation of the reasoning algorithms (decision 

procedures) that are used for solving the inference tasks from DL bases, with a 

special emphasis on tableaux ones, that currently are the most widely used for 

determining the satisfiability and subsumption between DL concepts. The chapter 

concludes with a list of results for complexity in some of the most important DLs 

that were gathered by me from literature, and in the last section I made a state-of-

art with the most important works read for the creation of this chapter, and 

altogether are being provided to the reader references in literature where they can 

expand their knowledge about that certain domain that is discussed there.  

 

 

 

 

 

 

 

 

 

 

BUPT



88 page  intended  left  blank  

 

 

 

 

 

BUPT



89 Logical Knowledge Bases: Overview-  3.1 

 

 

 

3.  REASONER SYSTEM FOR LOGICAL 
KNOWLEDGE BASES SATURATION 

 
 
 

In this chapter I propose a reasoning system for a special type of knowledge 
bases that, besides the usual ones, i.e. facts and rules, also contains another one 

that represents some restrictions in respect to what kind of data can exist into the 
database. The proposed system applies repeatedly the set of rules on the set of 
facts in order to deduce the implicit ones while in the same time checks them with 
the constraints from the set before introducing into the database. This procedure is 
aimed to deduce all implicit knowledge from the initial set of facts. The chapter 
begins with an introductory section into the basic terminology of logical knowledge 

bases, especially the k-derivation and saturation procedures, in order to familiarize 
the reader with terms being used during the parcourse of the chapter in which will 
be described the functionality of the logical reasoning system. I created models of 
the proposed system in the form of UML class and activity diagrams that present the 
structure and functionality of it. The chapter will conclude with a series of 
comparations of the proposed derivation algorithm with others more primitive ones, 
in order to show its superiority especially in resp. to complexity and computation 

time. 
 
 

3.1. Logical Knowledge Bases: General Notions 
 

In this section I will try to introduce the reader into the theoretical notions 

about the logical knowledge representation formalisms. I will lead my focus on what 
logical knowledge bases are, what are their main components and roles, what 
operations we can do upon them etc.   

I will consider here the existential positive syntactic fragment of First-Order 

Logic, that is FOL(∃,Λ), which is consisted of formulas created using only the 

quantifiers (∃, ∀) and the connectors implication (→) and conjunction (Λ)  (thus no 

disjunction and negation). A special type of constant is used to denote falsity in 
formulas, called “bottom” concept, and has the symbol (⊥).  

A Vocabulary is an entity consisting of three disjoint sets:  

Voc = (C, V, P)        (1) 
where C is a finite set of constants, V an infinite set of variables and P a finite set of 

predicate. A function ar:P→N  associates a natural number to any predicate p∈P 

which states its arity. A term over Voc is a constant t∈C, or a variable t∈V. An 

atomic formula (or simply atom) on Voc is of the form: 
 p(t1,…tn)        (2) 

where p∈P, ar(p)=n, si t1,…tn are terms from Voc. Here I will use the convention of 

using capital letters for constants names and small letters for variables.

BUPT



90 Reasoner System for Logical Knowledge Bases Saturation -  3 

 

 
A basic atom is one that does not have any variables (only constants). A  

conjunction of atoms is called conjunct, while one of basic atoms is called basic 
conjunct. A variable from a formula is called free if it does not lie in the scope of any 
quantifier. A formula is closed if it does not have any free variables (also called 
proposition). 

A method to represent knowledge about the real world is to grasp facts. This 
is seen as the most basic form of knowledge. A fact can be represented by a basic 
atom because this one is used too to denote primitive forms of information. For 

example, the chunk of information “John teaches Tom” is primitive (atomic). To be 

able to represent incomplete knowledge existentially quantified variables are being 
used within facts, and not just constants, as it was affirmed by [1]. To give a more 
formal definition: “a fact over Voc is the transitive closure of a conjunction of 
atoms”. For example: “Professor  John teaches a student whose name he does not 
knows” can be represented by the FOL formula: 

 ∃x(Professor(John) Λ Student(x) Λ Teaches(John,x))   (3) 

Another form of knowledge representation are rules. Rules had been 
extensively applied in the knowledge representation systems and in those expert. 
These are general formulae that have variables and unknown individuals, being 
known also under the name existential rules. These are logical formulae that allow 
the inferring of new facts from the ones existent, considered an ontological layer 
that imposes the expressivity of the knowledge base by encoding the so-called 

intensional knowledge. To give a more formal definition: an existential rule is a 
closed formula of the form: 

 R = ∀�⃗�((∀�⃗�B) → (∃𝑧H))      (4) 

where B and H are called the body and head, respectively, of the rule and are 

conjunctions of atoms, with vars(B) = �⃗� ∪ �⃗� and vars(H)= 𝑧 ∪ �⃗�. I used here the 

notation with  terms(F) and vars(F) in order to denote the set of terms and  

variables, respectively, from a a fact F; I noted by �⃗�  a shorthand of a sequence of 

variables (x1,x2,…xn), duplicates excluded, which makes a fact to be regarded as a  

set of atoms. Variables 𝑧 are called the existential variables of the rule [1].  

Existential rules had been proposed in order to solve the limitations of Horn clauses  
(found especially in logic programming) by allowing more than one atom in rules’ 
head, as it can be observed also in the above definition, in order to represent 
existential variables and the possibility to have unrestricted arity of predicates. It 
can be easily thought that this power of expressivity comes in the same time with 

the reduction of decidability, some problems from the existential rules framework 
are undecidable (such is determination). A vast array of existential rules classes that 
ensure decidability while in the same time keeping expressivity had been proposed 

in literature (to be seen [31]). To be able to represent knowledge about the real 
world we must take into account also the negative ones, which are those that 
dictate how things should not be. Existential rules do not contain negation, which 
makes it hard to represent this type of knowledge. The notion of negative 

constraints is the logical counterpart of integrity check constraints from the 
relational databases in order to forbid certain values for inputs and preserve data 
semantics. Their definition is like this: a negative constraint is a rule of the form:  

 R = ∀�⃗�(B → ⊥)        (5) 

BUPT



91 Logical Knowledge Bases: Overview-  3.1 

 

which signifies a rule with no head, only body (head is the ”bottom” concept). The 
negative constraints have an important role for the logical knowledge bases, serving 

as logical devices for detecting inconsistencies in the factual part. Triggering of a 
negative constraint is interpreted as presence of some inconsistency in the 
knowledge base[1]. An example of negative constraint: 

 N=retiredFrom(x,y) Λ worksAt(x,y) →⊥     (6) 

which says that it is impossible for a person to be retired from an institution while in 
the same time to work there.  

After the 3 main formalisms for knowledge representation have been 
presented, now I can provide the reader the definition of what a knowledge base is, 
as it was given in [1]. A knowledge base (abr. KB) over a vocabulary Voc is a triple 

K = (F, R, N) constituted from a finite set of facts, rules and negative constraints. 

Generally, what we must do when we have a set of facts supplemented with 
one of rules and negative constraints is to use rules in order to deduce implicit 
knowledge from facts while in the same time to be careful not to violate any of the 

stated negative constraints. The result of this procedure is a set of facts that 
extends the initial one. In classical logic this procedure is known as the Modus-
Ponens inference principle, while in Datalog is referred as the Elementary Production 
Principle [61]. In order for this to work rule’s body must match with some facts from 

the set F, in other words, there is a substitution of variables that makes the body of 
the rule R resemble with some facts from F. Before moving on to the last definitions 
of the section, those for rules applications, derivation sequence and saturation, it is 

necessary to give some others: substitution and homomorphism.  

Given a set of variables V and one of terms T, a substitution σ of V with T 
(written σ:V→T) is an association from V to T. Given a fact F, σ(F) denotes the fact 

obtained from F by replacing each occurrence of x∈V∩vars(F) with σ(x). A 

homomorphism from a fact F to another one F’ is a substitution σ of vars(F) with 
terms(F’) such that σ(F)⊆F’ [1]. 

A rule R=B →H is applicable to a fact F if exists a homomorphism σ from B 

to F. The application of the rule with resp. to σ produces a new fact α(F,R, σ) = F ∪ 

σsafe(H), where σsafe denotes the safe substitution that replaces the existential 
variables with others safe ones. α(F,R, σ) is called the immediate derivation of F. 

The new (unintroduced) variables are used in order to avoid attribution of variables 
that are already in use to the new facts, which would cause a problem when rules 
are reapplied on the new facts.  

Rules can be applied in a certain order, for example it is possible that a rule R2 not 
be applicable to any fact from the initial set but to become so only following 
application of other rules. This gives birth to some processes called derivation 
sequence and R-derivation. In what follows I will try to give the formal definition of 
those terms. 

 

BUPT



92 Reasoner System for Logical Knowledge Bases Saturation -  3 

 

Let F be a fact and R a set of rules. A fact F’ is called the R-derivation of  F if exists 

a finite sequence (F0,F1,…Fn) called derivation sequence in which F0=F, Fn=F’ and for 

any 0≤i<n exists a rule Ri∈R  that is applicable to Fi and Fi+1 is his immediate 

derivation. These, together with other notions can be found in [31].   

When having an initial set of facts F and one of rules R we are interested in 

unveiling all implicit knowledge from the facts by using rules. This process is called 
saturation procedure that uses a breadth-first search scheme and forward chaining. 

We start with a derivation sequence in which F0 is F and at each step is produced a 

new fact Fi from the current one Fi-1 by computing all homomorphisms from the  
bodies of all rules to Fi-1 then is made the corresponding rule application. The fact Fk 

obtained after the kth  step is called the k-saturation of F. Next I will give the formal 

definition of the process, as it was related in [31].  

Let F be a fact and R a set of rules. Π(R, F) is the set of homomorphisms from the 

bodies of all rules to F.  

 Π(R, F) = {(R,σ)| R∈R and σ  homomorphism from body(R) to F} (7) 

The direct saturation of an arbitrary fact F with R is defined as follows: 

 ClR(F) = ⋃ σsafe(head(R))(𝑅,σ)∈Π(R,F)      (8) 

K-saturation of F with R is denoted with 𝐶𝑙𝑅
𝑘(𝐹) and is inductively computed as: 

 ClR0(F)=F and for i>0 , ClRi(F)=ClR(ClRi-1(F))    (9) 

Denote with 𝐶𝑙𝑅
∞(𝐹) = ⋃ ClR

k (F)𝑘∈𝑁  , where 𝐶𝑙𝑅
∞(𝐹) is possibly infinite (i.e. derivation 

could possibly never terminate). 

The saturation procedure is being known in the database community under the 
name of ”naive chase” [59],[4] and it has been used especially in the database 
repairs domain that do not respect certain functional dependencies. Other types of 
chases that had been mentioned in literature are core and skolem, these differing 
only by the way in which they treat existential variables and redundancy [69],[137].  

Since this is the main objective of this chapter, to create a system that 

realizes the saturation of a logical knowledge base, next I will provide an example of 
how this process works in order for the reader to make a better idea regarding the  
scope and mode of operation of the proposed system. 

Consider the following knowledge base K = (F, R, N):  

 F : {p(A), q(B), s(B)} 

 R : {p(x) →r(x,y), p(x)Λs(y) →p(y), q(x) →r(x,y), r(x,y) →t(x)} 

 N : ϕ. 

 

BUPT



93 State of the Researches  -  3.2 

 

The derivation procedure, as it has been stated in the definition, represents a  
breadth-first search with forward chaining that works by matching each rule over 

the set of facts and after each iteration the set of newly produced facts is added to 
the ititial one, and the process restarts with the next iteration. In our case we have: 

step1 -  𝐶𝑙𝑅
0(F) = F 

step2 -  𝐶𝑙𝑅
1(F) = F ∪ {r(A,y1), p(B), r(B,y2)}, by applying R1 with σ1 = {(x,A)}, 

R2 with σ2 ={(x,A), (y,B)}, R3 with σ3 ={(x,B)} 

step3 -  𝐶𝑙𝑅
2(F) = ClR1(F) ∪ {t(A)}, by applying R4 with σ4 = {(x,A),(y,y1)}, R4 

with σ5 = {(x,B), (y,y2)}. 

step4 -   no more facts are being produced from rules applications, so the 
process ends after 3 steps. 

 

3.2. State of the Research 
The system that is proposed in this chapter is a private one, being specially 

created for the needs of an institution from France in which I worked together with 

other staff members from there; this is Universite de La Rochelle. Everything that is 
being presented in this chapter represents original work, the ideas, solutions and 
creations of the thesis’ author. The most important resource read in creation of the 
system was the PhD thesis of one of my colleagues from La Rochelle, [1], which is 
from the domain of knowledge representation and reasoning, argumentation 
frameworks, dialectical explanations. Another resource worthy of mention is the 

book of Dung [74] which discusses the abstract argumentation frameworks and was 

used in [1] to instantiate such a framework with arguments stored in a knowledge 
base and using a logical language for representation, Datalog+. Poggi [159] 
discusses about ontology-based data access inside the logical knowledge bases. 
Croitoru et al. [66] proposed a theorem of representations between the preferred 
/stable extensions and the data repairs of Lembo [131], which is crucial for 
exploiting the explanatory power of argumentations in order to explain the accept of 

interrogations under the semantics of Consistent Query Argumentations (CQA). 
The most related domain in literature to which I can compare my work done 

here are the business rule engines (Business Rule Management - BRM) from object-
oriented languages (I will consider here Java). Business rules are being used inside 
Java applications with the aim to separate the business logic from the source code, 
a fact that facilitates application development and maintenance. The most important 
frameworks for business rule management from the Java programming language 

that have been created until present are: Drools [218], OpenL Tablets, EasyRules, 
RuleBook [218], JRules [221], etc. Readers who wish to find out more about these 

are forwarded towards the references section where are specified the links to their 
documentation. The main architectural components of such systems are: the 
memory (facts and rules base), Unifier (algorithm), Agenda. The typical usage of 
such a system inside an OO application is to trigger rules over the set of facts when 

certain conditions are fulfilled. For example, set discount to the prices of winter 
clothes in the first day of the Spring, set a discount to objects whose type is that of 
precious metal or stone, etc. Thus, as it can be seen, these engines are being used 
for making light logical operations into an application.  

BUPT



94 Reasoner System for Logical Knowledge Bases Saturation -  3 

 

 
It can be guessed that using none of these frameworks it is not possible to 

achieve the purpose of my system, that is to obtain the saturation of a logical 
knowledge base by repeatedly making derivations. That is why I conceived the 
proposed system for the realization of intensive logical tasks, and was designed 
from scratch in the OO environment for this purpose.  
The contributions of the proposed  system compared to the frameworks of rules 
described above are: 

- knowledge base, in its raw logical form (i.e. sets of facts, rules and 

restrictions) are being represented in FOL syntax FOL (First Order Logic), 

thus it can be understood by anyone that is familiar with this syntax 

- grows the expressiveness of the classes of knowledge; for example could be 

expressed quantifiers for variables from within the facts and rules, a fact 

which can be useful in certain situations 

- addition of a new class of knowledge, the negative constraints, which 

impose some additional restrictions onto the knowledge base in order to 

keep its consistency. Thus, after new facts has been produced following 

rules applications, before adding them to the memory are being checked 

with the set of constraints in order to see if they clash with anyone, and if 

affirmatively then the base rises an anomaly 

- uses optimization techniques, such as forward chaining and the Backtracking 

algorithm for finding all the possible solutions into an iterative, ordered and 

progressive manner, a thing that simplifies the computations especially 

when we are dealt with very large knowledge bases (as will be shown in the 

experiments section). 

3.3. Design  
 For being capable to process it and apply the derivation algorithm over it 
must find a way to represent the logical knowledge base as an object-oriented 
structure. In the rest of this section I will describe my found design methodology for 

solving the initial problem. 

 
3.3.1. Objectual Structure 

Each type of logical knowledge (atom, fact, rule, constraint) is being 
represented in the OO environment by a class that defines a set of specific 
attributes and corresponding methods.  

An atom (predicate) which, as I stated in the introduction section, has the 
form: P(t1,t2,…tn) , has been represented in  OO environment by a class named 
Atom that has 2 attributes: a string that contains its name and a collection of string 
values that store its values. It have been provided 3 constructors (2 parameterized 

and one for copy), getter and setter methods for each attribute and two Print 
methods in order to represent the atom at the console in its familiar form for the 
reader: name followed by a list of values between parenthesis separated by comma.  

A fact, as it was affirmed in its definition from section 1, is the existential 
closure of a conjunction of atoms. This has been represented in the OO environment  
by a class called Fact that has as instance variables a collection of Atom objects and, 

BUPT



95 Design  -  3.3 

 

similarly with the Atom class, defines 2 constructors and 2 methods for pretty-
printing the fact in its usual form.  

A rule was represented by a class Rule which has as instances 2 objects of 
type Fact: one represents the body (premise) and the other the head 
(consequence).  

A negative constraint is a rule that has no head, so this was specified by a 
class that has as instance variable only one object of type Fact, which represents its 
body.  

This structure of the system as has been described above is presented in 

fig.2, that is the UML class diagram of the system.  

The logical knowledge base is stored in external files, one for each type in 
particular  (fact, rule, constraint) and is being represented in raw FOL syntax. The 
main operations performed by my reasoning system are as follows: 
- read the external files with data from the base, creates instance objects for each 
record from the base in which puts its data and creates collections in which puts all 
created objects  

- applies the derivation algorithm over the base in objectual form (collections of 
objects) in order to deduce all implicit knowledge from the explicit ones; the process  
repeats in a recursive fashion until saturation is achieved (of the knowledge base) 
- after the set of new (saturated) facts has been computed it is translated to FOL 
formulas and appended to file with the iniţial set of facts 
The process is shown in fig.2, which is the UML activity diagram of the system. 

 

 
Fig.3.1: UML class diagram of the reasoner 

BUPT



96 Reasoner System for Logical Knowledge Bases Saturation -  3 

 

3.3.2. Derivation Algorithm 

The algorithm that relies at the basis of the proposed inference engine for 

producing new facts is specified by the next pseudocode. 

Algorithm R-derivation: 

Inputs: facts set, rules set, constraint set 

Outputs: deduced set of facts 

Variables: Dictionary[] (stores the variables of a rule together with their values 

found during the process of matching the facts) 

Begin 

while (new facts are produced by rules applications) 

     begin  

1. Take each rule from the set and tries to find a set of facts that matches her 

2. Take each conjunct from the rule’s body and try to find a fact from the set that 
matches it – a process in 3 steps 

2.1. Verify if the conjunct has the same name with the fact  

2.2. Verify if the conjunct has the same arity with the fact  

2.3.Verify in Dictionary[] if the atom has variables that were assigned (this is in 
case in matching of previous conjuncts); if yes then check if their values are 
identical with the corresponding ones from the fact 

3. If all previous 3 conditions have been fulfilled then the fact matched the 
conjunct, so substitute the conjunct’s variables in Dictionary[] with the values 
corresponding from the fact 

4. If there was a conjunct in the current rule that was not unified by any fact from 
the set then stop searching for other conjuncts since the current rule cannot be  
matched 

5. If all conjuncts of the rule have been matched by some facts from the set then 
rule has been matched, thus the fact in the rule’s head  is computed based on 
the values of variables stored into Dictionary (i.e. rule’s substitution) 

6. Validate the new fact with the set of constraints in order to see if clashes with 
someone  

7. If the fact is valid then add it to the set of produced facts, otherwise is being 
discarded 

     END.

BUPT



97 Implementation  -  3.4 

 

 

Fig.3.2: UML activity diagram of the reasoner 

 

3.4. Implementation 

In this section I will give details regarding the implementation of the 
proposed reasoner system.  
For the implementation I chose an object-oriented programming language, Java, 
due to its numerous pros it offers, such as scalability, reliability, portability on 

different machines.  
After the representation of the knowledge base under the form of an 

objectual structure it is possible to make the desired computations. In this case, the 
aim of the system is to deduce new information from the explicitly represented ones 

by applying the rules over the set of facts until is achieved saturation. Here I will try 
to detail and explain the logic behind the proposed derivation algorithm.  

In the most simple case, that is when a fact is constituted from a single 

atom and the rule’s head and body are also basic atoms, the rule matches the fact if 
its body has same name and arity with the fact. 
Example: 

F=Professor(John),  R=Professor(x) ->Persan(x) 
In this case it is obvious that the rule matches with the fact since both conditions 
are fulfilled: the body has same name and arity with the fact. After the application, 

a new fact is produced: Person(John). 
 

BUPT



98 Reasoner System for Logical Knowledge Bases Saturation -  3 

 

 
In practice though, facts and rules are not that simple, in fact they are  

conjunctions of atoms with arity bigger than 1. Let’s take another example: 
F1=Professor(John), F2=TeachesAt(John,Stanford), 

R=Professor(x)ΛTeachesAt(x,y) -> University(y) 
 

First conjunct of the rule matches the fact F1 and the second conjunct the fact F2 on 
both conditions (name and arity). Also should be remarked a correspondence 
between the variables names: x is the variable of the first conjunct and is also the  

first variable of the second conjunct, which means that the values of the facts that 

match the conjuncts must be correlated too in this manner. This is the third 
condition that should be fulfilled in order to ensure a correct match of rules. For 
example, if the second fact would have been: F2=TeachesAt(Mary,Stanford) then  
the rule would not have been matched anymore by the facts due to this condition. 

In order to implement this third condition into my algorithm I used a data 
structure of type Dictionary that keeps data in the form of (key-value) pairs. This 

contains the set of variables (distinct) of the rule together with the values found 
during the process of conjuncts matching over the set of facts. When passing on to 
the next conjunct of the rule for finding a matching fact for it , first thing that the 
algorithm does is to lookup into the Dictionary all its component variables in order 
to check if there are ones that have assigned values (that means they are variables 
also found in previous conjuncts) and if affirmative then will be replaced with their 

corresponding values. After a conjunct has been matched by a fact following all 
three conditions then to the variables of the conjunct are assigned the 
corresponding values from the fact and are written in the Dictionary. As it can be 

noticed, the Dictionary plays the role of rule’s substitution (see sect.1 for definition). 

In the implementation of the proposed system had been considered two cases that 
lead to two different implementation strategies but that have different computation 
complexities: 

a) facts from the knowledge base are basic atoms 
b) facts from the knowledge base are in the general form (conjuncts of atoms).  

For the first case has been created the following strategy: in order to find a 
match for a rule (i.e. a subset of facts) their conjuncts are sequentially considered 
and for each of them is looked up into the set of facts for one that matched the 
conjunct after all the 3 conditions stated above (name, arity, variables). If all 
conjuncts of the rule have been analyzed and matched by some facts then the rule 

is considered to have been matched so the fact from the head is calculated by 
replacing its variables with their corresponding values found during the matching 
process. This way a new fact is being produced. 

As it can be thought, this problem of matching a rule on a set of facts 
doesn’t have only one solution but many, i.e. there are multiple subsets of facts that 
match the body of a rule and in order to produce new facts. Due to this reason, in 

order to compute all the possible solutions of the problem my derivation algorithm 
relies on an algorithm which is very popular in this type of problems, which is  
Backtracking. One of the most renowned problems that requires the application of 
Backtracking algorithm is the “Chess Queens Problem”. This problem requires 
finding of all possible layouts of N queens on a chessboard of NxN squares such as 
not to attack each other.

BUPT



99 Experiments and Results  -  3.5 

 

 

The current problem, as can be seen, is very related to the queens problem because 

implies searching through N sets (better said, N times through same set) of 
elements that needs to fulfill 3 conditions for being possible to be introduced in the 
final solution and the result is a vector with the N elements found. After a solution 
has been found the searching does not stop but moves a position backwards and 
looks into the rest of elements for another fact that may match the conjunct. It 
stops when the counter variable k of the algorithm’s main while loop reaches value  
-1, which means that all possibilities had been iterared and all solutions found. 

For the second case, the strategy is somehow reversed. Now we cannot 
iterate through the conjuncts of a rule in order to find a fact for each one that 
matches it because facts are also atoms conjuncts. In this case we iterate through 
the set of facts and lookup into the conjuncts array of the rule to see if there exists 
a subset that matches the fact over the above 3 conditions. The process halts after 
all rule’s conjuncts had been matched, so a solution has been found and the fact 
from the head is subsequently deduced. This strategy also relies on the 

Backtracking algorithm, so as the former, but now the space of possible solutions 
and the result vector are interchanged. 

3.5. Experiments and Results 

The proposed derivation system (both versions) has been tested on three 
types of knowledge bases: small, medium and large. The small one is units order 
(<10 elements in each set), the medium is tens order and the latter has hundreds 

order.  

My optimized solution has been compared with the most basic one in terms of 
operations made and computation times. This basic solution works by making 
combinations of subsets of facts of length k  (where k is the number of rule’s atomic 
conjuncts) from the entire set of facts until when finds all subsets of facts that 
match the rule on all 3 conditions. The results of the experiments are presented in 2 
tables, one for each version of the algorithm. 

The tests have been realized on a Toshiba Satellite computer running at inside an 
Intel Core 2 i3 of 2.15GHz, 3GB DDR3 and 300GB hard-disk space on which was 
installed a 32 byte Windows 7 OS. Worth saying that the obtained computation 
results may vary with multiple factors, such as the OS type, CPU architecture, I/O 
access time, and many other elements. 

 

 
Solution 

Knowledge Base Type 

Small 
NrOps       Time(ms) 

Medium 
NrOps        Time(ms) 

Large 
NrOps      Time(ms) 

Our 15840 10 2556000 690 444072000 3940 

Basic 41050 30 4558099 950 1880432151 7950 

Table 3.1: Experimental results (vers. 1) 
 
 
 
 

BUPT



100 Reasoner System for Logical Knowledge Bases Saturation - 3 

 

 
 
Solution 
 

Knowledge Base Type 

Small 
Nr.Op          Time(ms) 

Medium 
Nr.Op        Time(ms) 

Large 
NrOps.   Time(ms) 

Our  17200 11 3507890 790 990548203 6200 

Basic  51200 39 5007990 990 3077900330 10890 

Table 3.2: Experimental results (vers. 2) 

 

3.6. Conclusions 

In this chapter was proposed an object-oriented reasoning system that is used 
in the scope of obtaining the saturation of any type of logical knowledge base.  

A logical knowledge base is a triple (F,R,N) composed from a set of facts, rules 
and negative constraints. The main goal was to implement a derivation algorithm 

(reasoning system) that works by successively applying the set of rules over the 
factual part of the base in order to deduce new knowledge from the ones explicitly 
stated while in the same time taking care not to violate any negative constraint 
stated in the set N. This thing is known in the classical logic as the Modus-Ponens 
inference. The process continues upon achieving saturation of the knowledge base, 
i.e. new facts cannot be produced by application of rules over the factual part.  

The concrete implementation of the algorithm was realized into the object-
oriented language Java. The knowledge base is constituted from collections of 
objects instance of classes. The algorithm takes as input the knowledge base sets 
(F,R,N) and produces as output a new (saturated) set of facts. The algorithm relies 

on Backtracking technique in order to find all possible solutions to the problem (all 
sets of facts that match a rule’s conjuncts) and it is a breadth-first search with 
forward chaining. Experiments with the system have been performed over three 

types of knowledge bases that vary in the size (order) of the sets: small (unit), 
medium (tens), big(hundreds). Had been provided the computation times of the 
algorithm in each of the cases. The proposed optimized solution has been compared 
with another primitive one that works by searching all combinations of facts that 
match a rule. The results comparisons are shown in tabular form for each type of 
logical KB. 

The chapter presented also a state-of-art from the domain of logical reasoning 

systems, being discussed the frameworks from the Java language that were created 
in this purpose, such are JRules, Drools, RuleBook, but I explained that none of 
these systems is not capable to perform the task of my proposed system, which is 
the production of saturation of a knowledge base. Due to that I designed my system 
from scratch in this purpose, starting with OO data structure, the algorithm for 

matching rules on facts and the representation of the knowledge in the syntax of 

First-Order Logic (FOL). Another reason for which I cannot compare my work here 
with others is that the proposed system has been specifically created for the needs 
of an institution from France where I worked during the course of an Erasmus stage 
near the universityțs staff there, so all this work represent our own ideas, solutions, 
contributions. 

The project of the implemented system can be downloaded from my Drive 
account at address: https://drive.google.com/open?id=1QzbIogncFL-b-

zymGP2JhtXtQN9ZQwDT .  

 

BUPT

https://drive.google.com/open?id=1QzbIogncFL-b-zymGP2JhtXtQN9ZQwDT
https://drive.google.com/open?id=1QzbIogncFL-b-zymGP2JhtXtQN9ZQwDT


101 page  intended  left  blank   

 
BUPT



102 Intrusion Detection and Prevention Systems  -  4 

 

 

 

 

 

4. INTRUSION DETECTION AND PREVENTION  
SYSTEMS 

 
 

 
This chapter constitutes the start of the second part of this thesis in which 

will be discussed the use of Semantic Web technologies in the construction of 

cyberdefence systems. In this chapter I will conduct a study in the fields of 
cybersecurity and systems for detection and prevention of computer attacks in order 
to present the reader some of the most important aspects, like elementary notions, 
domains where they find most applications, phases of evolution, detection 
methodologies, typical architectures and security capabilities. The discussion will 
subsequently follow with a class of IDPSs that will later be used during this thesis, 
that are those for networks, and everything that was presented until then about 

IDPSs generally speaking will be particularized for this case, such as architectures 
and components, security capabilities, management capabilities, and many others. 
Chapter’s contributions are the models in the form of diagrams and figures that had 
been created in Adobe Photoshop 3.0, and that present graphically the notions that 
are detailed in text, such as IDPS architectures with their main components, IDPS 

components deployment inside a security infrastructure for the networks of an 
organization, etc.  

 
 

4.1. Introduction to Computers Security 
 

Computers Security (also known under the names of Cybersecurity, IT Security) 
is the science that deals with protection of computer systems for not being theft or 
created damages at various of their architectural levels: hardware, software and/or 
data within, as well as perturbation or unauthorized use of their services. Include 
control of physical access to hardware, protection against attacks that derive from 
the network access, bad use by the operators deliberately or accidentally. This area 

of science knew evergrowing importance due to the fact that it relies on the Internet 
services and computer networks of the society (e.g. WiFi, Bluetooth) and also due to 
the growth in popularity of smart devices, like mobile phones, television, devices 

from Internet of Things etc. [138]. 
Computer Security is a science of critical importance in almost every industry 

that relies on computing equipment. Today most electronic devices (PCs, laptops, 
mobile phones) have in their implementation software called firewalls, but these do 

not make them 100% secure against attacks. There are many methods by which a 
computing system can be attacked: network-based, files download from 
unauthorized sites, connecting to unauthorized WiFi networks, resource 
consumption, electromagnetic radiation etc. These may be protected by using some 
very reliable hardware and software components. Having some strong internal 
interactions of proprieties, software complexity may stop the security errors and 
software fails. 

BUPT



103 Introduction to Computer Security -  4.1 

 

 
The most important industrial domains that need protection against cyber-

attacks, as it was stated by sources from Wikipedia are [221]:  
1) Financial/Banking systems: Web sites and applications that store 

information about credit cards, bank accounts or brokering represent the 

most prominent targets for attackers caused by the huge and fast 

gaining potential (money transfer, shopping, information selling etc). 

2) Aviation: aeronautics industry is constituted by a multitude of complex 

systems that present all high vulnerabilities to attacks. A blackout at the 

airport may cause damages, radio transmissions on which the aircraft 

relies on may be jammed, and the radio signals control over seas and 

oceans is hard to support because surveillance goes only 200km 

offshore.  

3) Automotive: if it is being gained unauthorized access to the network of 

the car’s control zone many things can happen. Computerized timing of 

the engines, road control, brakes anti-locking, doors locks, airbags, 

driver assistance systems makes those damages possible, and in case of 

automated pilot cars these damages could climb even higher. 

Automotive information security doesn’t concern only the production but 

also discovery, measuring and packing the vulnerabilities. 

4) Industrial equipment: many of the industrial equipment functionalities 

and utilities are being controlled remotely by the computers, such as the 

communication coordination, power grid, opening and closing of the 

valves from the water and gas pipes. These machines can be hacked by 

means of the local radio communications or the Internet. 

5) Internet of Things and the physical vulnerabilities: Internet of Things 

(IoT) represents the network of real world (physical) objects embedded 

with electronic equipment, sensors, software and network connectivity 

to the network that allows them to be controlled from distance and 

exchange data between them [182]. Even though it offers possibilities to 

the integration of real world into the computing systems, it also provides 

opportunities to the attackers. Cyberattacks are very likely to become 

an increasing threat. In this idea, if a door’s lock is connected to the 

Internet and can be controlled by means of the mobile phone, then an 

infractor can burglar the house only if he steals that phone. People are 

prone to lose more than their credit cards in a world controlled by IoT 

devices [79]. 

 According to the security guide provided by NIST [169], intrusion detection is 
the process of monitoring the events that arise into a single system or network of 
computers and their analysis in order to observe possible signs of incidents, such as 
violations or threats to the security policies, to the acceptable uses or to the 

standard security practices. Incidents can be of multiple types, like malware 
(worms, spies), gaining unauthorized access to systems, authorized users that 
erroneously use their privileges or that try to obtain other unauthorized ones.   

BUPT



104 Intrusion Detection and Prevention Systems  -  4.1 

 

 
Even though the big part of the incidents have a malicious nature, there exists 

other benign ones, such would be the case when a person misspells from the 
keyboard the address of a system and accidentally tries to connect to that host 
without holding authorization.  

An Intrusion Detection System (IDS) is a software that automates the intrusion 
detection processs. An Intrusion Prevention System (IPS) is a software that holds all 
capabilities of an IDS and besides are added the attempts to try stop the incidents 
that are being detected [169].  

In this chapter I will make an introduction, as broad as short as possible, onto 

the IDS and IPS systems. For abbreviation reasons, from now on in this thesis I will 
use the term ”IDPS” in order to refer to both technologies.  
 Due to the increasing dependency on the information systems and the 
prevalence and potential impact of intrusions on these, IDPSs have become a 
necessary addon for the security infrastructures in every organization. IDPSs are 
especially focused on incidents identification, like is, for example, when an attacker 

succeeded in compromising a system by exploiting one of its vulnerabilities. The 
IDPS then reports the incident to the security administrator that will rapidly initiate 
the response actions for the incident in order to minimize the damages that were 
produced. Also the IDPS can log information that can support the persons who deal 
with handling of the incident. Many IDPSs can be configured to recognize violations 
of security policies. For example, some systems may be configured with settings 

similar to those of the firewalls rules, allowing them to identify traffics from 
networks that violate the policies of security and acceptable use of organizations. 
Other IDPSs may monitorize file transfer and identify those that seem suspect, such 

as it would be the copying of a large database onto the machine of a user. Many 
IPDSs can also identify reconnaissance, which precedes the imminence of an attack. 
For example, some tools of attacks and forms of malware (especially worms) make 
reconnaissance activities (such as ports and hosts scan) in order to identify the 

targets of subsequent attacks. An IDPS must be capable to block reconnaissance 
and notify security administrators for making concrete actions, such as changing 
other security controls in order to prevent similar incidents. Since reconnaissance is 
something common on the Internet, detection is often performed within internal 
protected networks [169].  

Other than the ones presented above, other uses of IDPSs found by the 
organizations are: 

 identification of problems from security policies: an IDPS can provide a 

certain degree of control of the quality for the implementation of 

security policies, such is the duplication of firewalls’ rules sets and 

alerting the administrator about observing the network traffic that 

should have been blocked by the firewall but wasn’t due to a 

configuration error  

 documentation of existing threats of the organizations: IDPSs log 

information about the detected situations. Understanding of frequency 

and characteristics of the attacks against the resources of an 

organization is an important thing for the identification of corresponding 

security measures for the protection of resources. Information can also 

be used to educate the management regarding the threats with which 

the organization deals 

BUPT



105 Introduction to Computer Security -  4.1 

 

 
 blocking the individuals from violating the security policies: if individuals 

are aware that their actions are being monitored by the IDPS 

technologies for possible violations of security policies then they would 

not commit such crimes due to the risk of being caught 

 some IDPSs are capable to modify their de security profiles when a new 

threat is being detected. For example, an IDPS may be capable to 

gather multiple details about a particular session after some malicious 

activity has been detected within that session. It may also modify 

settings about the moment when some alerts are fired or what priorities 

must be assigned to subsequent alerts after a certain threat has been 

detected. 

IPS technologies differ from ones of IDS by one big characteristic: they are 
capable to respond to a threat by trying to stop it from the attempt to succeed. Use 
several response techniques, such as [169]: 

 stopping the attack: this can be done in one of the following ways: 

termination of network connexion or of user session used by the attacker, 

blocking the access from attacker’s account to the target, such as the IP 

addresses or other attributes of the attacker 

 changing the security environment: the IPS is capable to change the 

configuration of other security controls in the attempt to block the attack. 

Among the most well-known examples for this task are: reconfiguration of a 

network device (e.g. switch, router, firewall) to block the attacker’s access, 

changing the host firewall of a target in order to block all subsequent 

attacks. Some IPSs may even apply patches on a host if the IPSs detects 

that the host has vulnerabilities 

 modifying the content of the attack: some IPS technologies may delete or 

replace malicious parts of an attack in order to make him benign. A classical 

example is when an IPS deletes an infected file that is being attached to an 

email then allows the email to reach its destination. A more complex 

example is an IPS that acts as a proxy and normalizes the incoming 

requests, which means that the proxy repatches the content of the requests 

and removes the information from headers. This may lead to certain attacks 

being removed as part of the normalization process.  

 Another characteristic that is common to IDPS technologies is that these cannot 
provide a 100% accurate detection. The situation when an IDPS erroneously 
classifies a normal activity as being malicious is called a false positive. When the 

IDPS does not identify a malicious activity is called a false negative. It is not 
possible to eliminate all false positives and negatives, in the majority of cases the 
decrease of ones has the effect of increasing the others. Many organizations choose 
to shrink the rate of false negatives at the expense of the growth of positive ones, a 
fact which translates in that many malicious activities are identified but are required 
multiple analysis tools in order to differentiate false positives from the real malicious 

events. The process of changing the configuration of an IDPS with the goal to 
improve detection accuracy is called tuning [169].

BUPT



106 Intrusion Detection and Prevention Systems  -  4 

 

 
The great part of IDPS technologies contains additional characteristics that 

compensate the use of evasion techniques. Evasion means the changing of the 
format or times of malicious activities such that their appearance changes but the 
effect stays the same. Hackers use evasion techniques for preventing the IDPS  
technologies to detect their attacks. For example, a hacker encodes text characters 
in a certain way, knowing the fact that the target understands the encoding and 
hopes that any monitoring IDPS doesn’t. Many IDPS technologies can prevent the 
common evasion techniques by replicating the special processing that is being made 

by the targets. If the IDPS can see the activity in the same way as the target does 

then the evasion would not succeed in hiding the attacks [169]. 
Domain literature states that IDSs went through multiple phases of evolution 

until the present day [214], those being: 
- attacks signatures 

- attacks taxonomies 

- attacks ontologies 

The first types of IDSs relied on attacks signatures, which are some syntactic 
representations of them. This technique is not a very efficient one for multiple 
reasons, such would be the signatures have a generic nature, relies on some 
languages that are specific to some particular domains and depend on some specific 

environments and systems. Due to these causes, they lack extensibility and are not 
well fitted for communication in heterogeneous environments. Attack signatures 
contain vague semantic information and lack a solid base for any formal logic, the 
smallest variation in business logic invalidates them. 

The second phase of IDS evolution is represented by the use of taxonomies. As 
central components in IDS’s functionality, taxonomies have the goal to characterize 
and classify information of attacks, and a language for describing the instances of 

concepts [202]. 
The current phase in the evolution represents the use of Semantic Web 

technologies, such as ontologies, distributed agents, data mining, rules etc. 
Cybersecurity systems that are created by means of ontological technologies 
represent a new line of defense that are able to detect sophisticated attacks and 
even 0-Day (previously unseen) due to their abilities to capture the context of 

information and filter them by certain criteria. Various generic security controls, 
such are signature-based firewalls, intrusion detection and prevention systems, 
cryptography devices have been proposed, but their efficacy against Web threats is 
restricted due to the great rigidity they have. For obtaining efficient mitigation and 
blocking of the attacks the system should understand the context of information 
that it processes and filter the contents based on their effects on the target 

application. For these reasons security frameworks that rely on ontologies are used 

in this kind of situations [163]. 
An ontology is an explicit specification of the conceptualization of an application 

domain that captures its context (the interpretation of words from a specific 
domain). Ontological models are flexible in defining the concepts to the level of 
detail that is desired, easily extendible and provide inference capabilities in order to 
allow making reasoning over the instances of data. Artificial Intelligence and 
Semantics fields rely on formal ontologies for the sharing and reusing of knowledge 

among different software entities [199]. 
 
 

BUPT



107 Introduction to Computer Security -  4.1 

 

 
The most important classes of detection methodologies that are being used in 

IDPS technologies, as it has been stated by the NIST guide in [169], are:  
i. signature-based detection  
ii. anomaly-based detection  
iii. stateful protocol analysis 

Most IDPSs make use in their implementation of multiple methodologies, either 
individual or combined, in order to provide a wider range and more accurate 
detection.  

In the rest of this section each of these methodologies will be taken and briefly 

presented their characteristics.  
 

4.1.1. Signature-based Detection 

A signature is a pattern that corresponds to a known attack. Detection based on 
signatures is the process of comparing the signatures against observed events in 
order to identify possible signs of incidents. Examples of signatures are: a Telnet 
attempt with username ‘root’ (which is a violation of a security policy), an email 
with subject “Free pictures” and a file in attachment with the name ‘freepics.exe’ 

which are the characteristics of a known form of malware, a record from the log of 
an operating system having the status code 645 which says that the audit of that 
host has been deactivated. 

Signature-based detection is very efficient at detecting attacks that are already 
known, but it is practically useless in case of those before unseen, the ‘disguised’ 
ones by means of evasion techniques, and many variants of the known ones. For 

example, if an attacker modified the malware from the previous example to use a 
file named  ‘freepics2.exe’ then the signature would not recognize it anymore [163]. 

This is the most simple detection method since it does not do anything than 
compare the current activity unit, like a package or a record from a log, with a list of 
signatures relying mainly on string comparison operations. Signature-based 
detection techniques have small understanding about the application and network 
protocols and can not keep track or understand the state of complex 

communications. For example, they cannot pair a request with the corresponding 
answer, such as to know whether a request to a Web server for a certain page  
generated a response with status 403, which means that the server refused to fulfill 
it. They also are not capable to remember the previous requests when working on 
the current ones. These limitations prevent the signature methods to detect attacks 
that span multiple events if none of them does not contain a clear indication 
regarding an attack.  

 

4.1.2. Anomaly-based  Detection 
Anomaly-based detection is the process of comparing the definitions of activities 

that are considered normal against observed events in order to observe significant 
deviations. An IDPS that uses this type of detection holds profiles that represent 
normal behaviors of some things like users, hosts, network connexions or 

applications. Profiles are being built by monitoring the characteristics of activities 
that are considered normal over a certain period of time. For example, the profile 
for a network may indicate that Web activities contain in average 13% bandwidth at 
the boundary with Internet during the main working hours. The IDPS uses then 
statistical methods to compare the activity currently being observed with the 
thresholds found for the profile, such would be to detect when the Web activity 

BUPT



108 Intrusion Detection and Prevention Systems  -  4 

 

 
consumes much more bandwidth than normal and to alert the security administrator 

about the anomaly. These profiles may be created for multiple attributes of the 
behaviors, such as the number of emails sent by a user, the number of failed login 
attempts to a host, the degree of processor usage on a host in a certain period of 
time.  
 The main benefit of this technique is that it can be very efficient for 
detecting attacks unknown until then. For example, let’s assume that a computer 
infects with a new type of virus. This virus consumes the resources of the computer, 

sends many emails, initiates numerous network connexions and does other things 

that are very much deviated from the profiles established on that computer.  
An initial profile is created over a period of time (days, weeks) which is named   

‘training period’. Anomaly-based detection profiles may be static or dynamic in 
nature. Once it has been created, a static profile remains unchanged only if the 
IPDS is given a command to generate another one. A dynamic profile is being 
constantly adjusted as events are being observed. Because systems and networks 

change regularly over time, corresponding measures of normal behavior also 
changes. A static profile will possibly become inaccurate and is needed to be 
periodically regenerated. Dynamic profiles do not exhibit this problem but are prone 
to evasion techniques. For example, an attacker can occasionally realize small 
malicious activities, then increase their frequency. If the rate of change is 
sufficiently small the IDPS may think that the malicious activity is just a normal 

behavior and include it in the profiles. Malicious activities can also be observed by 
the IDPS during the creation of the initial profiles [169]. Inadvertently including of 
malicious activities as part of a profile is one of the common problems of IDPSs that 

rely on this technique. In some cases administrators can modify the profiles in order 
to exclude activities which are known to be malicious. Another problem with 
regarding the construction of profiles is that, in some situations it can be very 
difficult to be made accurately due to the complex nature of required computations. 

For example, if a particular maintenance activity that perform large files transfers 
occurs only once per month may not be observed during the training period. When 
maintenance occurs it will be considered a deviation from the profile and will be  
triggered an alert. Anomaly-based IDPS products often exhibit many false positives 
due to the benign activities that deviate from the profiles, especially in diversified or 
dynamic environments. Another major problem of the anomaly techniques is that is 
being often difficult for analysis to find out why a certain alert has been triggered 

and to validate that an alert is benign and not a false positive due to the complexity 
of computations and number of events that may have been caused that alert.  
 

4.1.3. State Protocol Analysis 
State Protocol Analysis (SPA) is the process of comparing the predetermined 

profiles of the general accepted definitions of benign protocol activities for each 
protocol state against observed events. In contrast to anomaly-based detection, 
which uses profiles that are specific for hosts or networks, SPA uses universal 
profiles created by providers which specify how (and how not) the protocols must be 
used. The term “state” from its name composition means that the IDPS is capable to 
understand and trace the state of the protocols for network, transport and 
application that contain a notion about state. For example, when a user starts a FTP 

session, this initially is in the unauthentified state. Unauthentified users must be 
capable to do little staff in that state, such would be the visualization of help 
information or creating user names and passwords. An important part related to the 

BUPT



109 Introduction to Computer Security -  4.1 

 

 
understanding of state is pairing the requests with responses such that when a 

FTP authentication attempt occurs, the IDPS can determine if it is successful by 
looking after the state code in the response. After the user is successfully 
authentified, the session is in authentication state and users can do multiple 
commands. Realization of these commands while being in the ’unauthentified’ state 
would have been considered suspicious, but in ‘authentified’ state is considered 
benign [169]. 

Stateful protocol analysis may identify unexpected command sequences, such as 

repeatedly performing the same command, or initiation of a command without 

making another one on which it relies. Another state tracing characteristic of the 
SPA is that, for protocols that perform authentication, IDPS can keep trace of the 
authentifier used for each session and records the one used for suspicious activities. 
This is useful when an incident is being investigated. Some IDPSs can also use the 
authentifier’s information in order to define activities that are variously accepted by 
mutiple classes of users or for some specific ones.  

The protocol analysis performed by the SPA methods usually includes checks of 
the reasonableness of individual commands, such is the minimum and maximum 
length of arguments. If a command usually has as an argument a user name and 
these have a maximum length of 20 characters then an argument with length 1000 
characters is suspicious. If the large argument contains binary data then it is being 
even more suspect. SPA methods rely on models that are generally based on well-

defined protocol standards of software providers or organizations of standards (e.g. 
Internet Engineering Task Force [IETF], Request for Comments [RFC]). The protocol 
models generally take into consideration variations from each implementation of the 

protocol. Many standards are not exhaustively complete in explaining the details of  
protocols, fact that causes variations among implementations. Also, a big number of 
providers either violate the standards or add some particular features, some of them 
can change the standards’ traits. For particular protocols, complete details about 

protocols often are not available, thing that makes difficult for IDPS technologies to 
realize a comprehensive and accurate analysis. Because protocols are being 
reviewed and suppliers change their implementations, the IDPS protocols models 
should be updated in order to reflect these changes [169].  

The main drawback of SPA models is that they are resource intensive due to the 
complexity of analysis and overuse required in state tracing for multiple 
simultaneous sessions. Another big problem is that these methods can not detect 

attacks that do not violate the characteristics of the behaviors generally accepted by 
protocols, such is the realization of a big number of benign activities in a short 
period of time that could cause a denial of service (DoS). Another still one is that 
the model of protocol that is being used by an IDPS may contrast with the way 
protocol is implemented in particular versions of applications or operating systems, 

or how different implementations of clients and servers of the protocol interact. 

 
 

BUPT



110 Intrusion Detection and Prevention Systems  -  4 

 

 

4.2. Components and Architectures for IDPSs 

In this section I will make an overview of IDPS technologies that are found in 
almost any type of IDPS products. Additional information specific for each type of  

product will be provided in the next 4 sections. In this section is made a high-level 
discussion of the general architectures of IDPS systems together with their 
components, are being presented security capabilities, such as methodologies they 
use at identification of malicious activities. Also, in the end of the section will be 
recalled some notions about management capabilities of the technologies. 

The general architecture of an IDPS solution is constituted from the following 
basic components: 

1) Sensors (Agents): components for monitoring and analysis of activities. The 

term sensor is used in case of network IDPSs that utilize technologies of 

networks, wireless or network behavior analysis (as they will be presented 

in next sections). Term agent is used in the case of host IDPSs. 

2) Management server: a centralized device that receives information from 

sensors and manages them. Some management servers do analysis on the 

event information and can identify activities that individual sensors are not 

capable to. Matching event data from multiple sensors (such would be 

finding the events fired from the same IP address) is called correlation. 

Management servers are available under two forms: appliances and also as 

software. Some deployments of small IDPS do not use management servers 

at all. In large IDPS deployments may exist more than one management 

server, while in some cases may be organized on multiple levels. 

3) Database server: a database server is a warehouse for storing event 

information that has been recorded by sensors. Many IDPSs provide support 

for these components. 

4) Console: is the interface component of IDPS that allows the use also by 

normal users and administrators. Software for console is usually installed on 

desktop or laptop computers. Some consoles are being used only in 

administrative purposes, such is the configuration of sensors or applying 

software updates, while others strictly for monitoring and analysis. Others 

offer both types of capabilities. 

 
 

 
 

 
 

BUPT



111 Components and Architecturies for IDPSs  -  4.2 

 

 

 
Fig.4.1: Architecture of an IDPS and component placements 

 
 
IDPS components may be connected one to another by means of the networks 

of an organization or other network especially designed for security software 

management, called management network. If is being used this latter one, every 
sensor host has an additional network interface called management interface that 
connects to the management network. Also, each sensor host can not transmit any 
traffic between its management interface and any of its other network interfaces. As 
it can be seen in fig. 1 and 2, the most common placements for sensors are: 

- between the organization’s network and Extranet 

- inside the DMZ Firewall to identify possible attacks to the DMZ servers 

- between firewall and network to identify threats in case of firewall 

penetration 

- in the Remote access environment 

- between servers and users’ community in order to identify attacks from the 

inside  

- on the Intranet, FTP, or database environment 

 

BUPT



112 Intrusion Detection and Prevention Systems  -  4 

 

 

 
Fig.4.2: Sensors placement inside a network secured by IDPS 

 
The idea is to establish the organization’s network perimeter and identify all entry 
points. Once found, the IDPS sensors can be installed and must be configured in 
order to produce reports at the management console. Administrators will log to the 
console and will arrange the sensors, provide new signatures and review the logs. 

Management servers, database servers and consoles are attached only to the  
management network. This architectural style efficiently isolates the management 

network frm the ones for production. The pros of this fact are that they hide the 
existence and identity of IDPS from hackers, protecting it from the attacks, and also 
ensuring that the IDPS has sufficient bandwidth in order to properly work under 
critical conditions, such as in the case of attacks with worms or distributed DoS over 
the monitored networks. The disadvantages include additional costs required for 
purchasing the network equipment and the hardware, and inconveniences for the 
users and administrators of the IDPS to use separate machines for management and 

monitoring. 

If an IDPS is being deployed without a separate management network, another 
way to improve its security is to create a virtual one by means of a VLAN inside the 
standard networks. Use of a VLAN offers protection for IDPS communication but not 
as great as that provided by a separate management network. For example, a 
wrong configuration of a VLAN may lead to the exposure of IDPS’s private data. 

Another concern is that, under adverse working conditions, such as DDoS attacks or 
major malware incidents, network devices separated by the main networks and 
organization’s VLANs may become completely saturated, fact that will negatively 
impact over the performance and availability of the IDPS. 

BUPT



113 Security Capabilities -  4.3 

 

 

4.3. Security Capabilities 

The most important security capabilities of IDPS technologies are, as it was 
stated in the NIST guide [169]:  
- information gathering 

- logging 

- attacks detection  

- prevention 

 

4.3.1. Information Gathering 

Some IDPS technologies offer information gathering capabilities, such as 

collecting information from a host or network regarding the monitored activity (for 
ex., identification of hosts, operating systems and applications that are being used, 
identifying of general network traits). 
4.3.2. Logging 

IDPSs usually perform extensive logging activities of the data regarding the 
observed events. These data are being used to confirm the validity of alerts, 
investigate incidents or correlate events among IDPS and other logging sources. The 

fields of data commonly used by the IDPS include the date and time of the event, 
type of the event, importance rate (such as priority, severity, confidentiality, 
impact) and the prevention action that was (eventually) being taken. Some specific 

types of IDPSs log also other data fields, such are those for networks that perform 
packet captures, and the ones for hosts that record users’ IDs. IDPS technologies 
normally allow administrators to store logs locally and to send copies to centralized 

servers, such are software for information security and events management. In 
general, logs are being stored both local and central in order to support data 
integration and availability, such as, for example, an IDPS fail may allow attackers 
to corrupt its journals. Similarly, IDPSs should have synchronized clocks using the 
protocol Network Time Protocol (NTP) or by manual adjustments in order for the 
data in their logs to have correct time stamps.  

 

4.3.3. Detection 

IDPS technologies should offer a wide array of detection capabilities. Most of the 
products use a combination of the techniques, fact which helps to achieve a more 
accurate detection and a bigger flexibility for tuning and customization. The types of 

detected events and the detection accuracy greatly vary with the used IDPS 
technologies. The majority of IDPSs require small tuning and customization in order 
to improve their detection accuracy, usability and efficiency, such is setting the 

prevention actions to be realized only for certain particular alerts. Technologies vary 
greatly in regard to the tuning and customization capabilities. As stronger these 
capabilities for a product are as more the detection accuracy can be improved 
compared to the initial configuration. Organizations should pay much attention to 
the capabilităţile of tuning and customization of the IDPS technologies when 
evaluating products.  

Examples of these capabilities, as it was presented by the NIST guide [169], are:

BUPT



114 Intrusion Detection and Prevention Systems  -  4 

 

 
i) thresholds: a threshold is a value that establishes a boundary between 

what represents a normal and an abnormal behaviour. Generally, it 

specifies a maximum acceptable level, like x failed connection attempts 

in 60 sec, or x characters for the length of a file name. Thresholds are 

most often used in anomalies detection and SPA 

ii) white lists and black lists: a black (or ‘hot’) list is a list of discrete 

entities, like hosts, TCP and UDP ports, ICMP types and codes, users, 

applications, URLs, file names and extensions that were previously 

determined to be associated with malicious activities. These lists are 

generally used to allow IDPSs to recognize and block activities that are 

very likely to be malicious or to assign a greater priority to alerts that 

match with records stored in the black list. Some IDPSs generate 

dynamics black lists that are being used to temporarily block recently 

detected threats, such as activities from the attacker’s IP address. A 

white list contains discrete entities that are considered benign. These 

are generally used on a granular basis to reduce or ignore false positives 

that imply known benign activities from trusted sources. White lists and 

black lists are most often used in signatures detection and SPA  

iii) alert settings: the great part of IDPS technologies allows administrators 

to customize each alert. Examples of actions that are done for an alert 

are: its starting and stopping, setting of an implicit priority or severity 

level, specifying of what information should be recorded and what 

notification methods used (email, sms, pager), specifying of what 

prevention capabilities should be used. Some products halt the alerts if 

an attacker generates many of them in a short period of time, or also  

can temporarily ignore the entire subsequent traffic from the attacker; 

this is to prevent the IDPS for being overloaded with alerts 

iv) code visualization and editing: some IDPS technologies allow admins to 

see a portion or the complete detection code. This is in general limited 

to signatures, but some technologies allow to be seen also other parts, 

like the programs used for performing stateful protocol analysis. 

Visualization of code may help analysts to determine why certain alerts 

had been generated, to validate the alerts and identify false positives. 

The capability to edit the detection code and to write another is 

necessary for complete customization of certain types of detection 

capabilities. For example, a certain alert may be generated by a 

complex series of events that imply multiple modules of code. IDPS 

customization in order to understand the organization’s specific 

characteristics may not be possible without the apriori editing of code. 

Code editing is an operation that requires both programming and 

intrusion detection knowledge, and some IDPSs use proprietary 

languages which requires the programmer to learn it. Bugs that are 

introduced in code during the customization process may lead to the 

incorrect functioning of the IDPS or even to its failure, so administrators 

BUPT



115 Network IDPS Technologies  -  4.4 

 

v) should treat code customization as any modification of the production 

systems code.  

Administrators should review the tuning and customization operations 
periodically to ensure that they are still accordingly. For example, while lists and 

black lists must be regularly verified and all records validated in order to ensure that 
they are still necessary and correct. Thresholds and settings for alerts may require a 
periodic adjustment in order to compensate for changes from the environment and 
from threats. Edits made over the detection code may require replication when the 
product is being updated (e.g. put patches, upgraded). Administrators should also 

ensure that any products that gather references in the anomaly-based detection 
have the reference levels periodically redone depending on the needs in order to 

ensure an accurate detection. 
 

4.3.4. Prevention Capabilities 

Most IDPSs offer multiple prevention capabilities that vary with the technology. 
IDPSs usualy allow administrators to specify the configurations for the prevention 
capabilities of each type of alert. This includes prevention activation or deactivation, 
or the specification of which capability must be used. Some IDPS sensors have a  

learning or simulation mode that halts all prevention actions and, in exchange show 
when these would have been performed. This allows administrators to monitor and 
make fine-tune of the prevention capabilities before activating the prevention 
actions, which reduces the risk of blocking by mistake of benign activities. 

 

4.4. Network IDPS Technologies 

 
4.4.1. Components and Architectures 

 
 In this section I will make a discussion regarding IDPS technologies for 

networks. Firstly will be mentioned the main components of IDPS systems for 
networks and explain the architectures used for their deployment. Next are 
examined the security capabilities, such as methodologies for identifying unusual 
activities.  

A network IDPS monitors the traffic from networks for certain segments or 

devices, analyze the network, transport and application protocols in order to identify  
suspicious activities. For readers that are not familiarized with the notions of 
networking, such as would be the TCP/IP protocols stack, the ISO/OSI standards, 
are invited to read the articles of Ahlawat in [6], [7], [8] where are described briefly 
these elementary notions. 

 

A network IDPS consists of sensors, one or multiple management servers, 
multiple consoles and databases (optionally). A sensor for network IDPS monitors 
and analyzes network activities in one or multiple segments. Network interface 
cards (NIC) that will perform the monitoring are set in the promiscuous mode, i.e. 
they will accept all packets will see. Big majority of IDPS deployments use multiple 
sensors, those from the industrial domain have hundreds of sensors. Sensors are 
available on the market in two forms:  

BUPT



116 Intrusion Detection and Prevention Systems  -  4 

 

 
- devices: this class of sensors consists of a specialized hardware and its 

corresponding software. Hardware is optimized for use as a sensor, such are 

specialized NICs and their drivers for efficient capture of packets, or 

specialized processors and other hardware components that have a role in 

the process of analysis. One part, or we can say all the software of IDPS can 

be stored inside the firmware for an increased efficiency. Devices often rely 

on a customized operating system, hardened, on which administrators can 

not directly access 

- software: there exist sensors only in the form of software (no devices). 

Administrators install the software on hosts that meet certain specifications. 

Software sensors can include a personalized OS or can be installed on a 

generic one, same way as a normal application. Organizations should think 

about how to use management networks for the deployments of their 

network IDPSs anytime this fact is possible. If an IDPS is being deployed 

without a separate management network then organizations should consider 

if is necessary a VLAN or not for protecting the communications of the IDPS 

[169]. 

Besides the choice of the network components, administrators should choose 
also the location of sensors of the IDPS. Sensors can be deployed in two modes: 
inline or passive.  

An inline sensor is deployed such that the network traffic that it monitors will 

pass through it, in a way similar with the flow of traffic associated to a firewall. 
Some inline sensors are actualy firewall/IDPS hybrid devices, while others are 

simple IDPS. The main reason for IDPS sensors deployment in the inline mode is to 
allow them to block attacks by ceasing the network traffic. Inline sensors are usually 
placed in the places in which firewalls and other security devices of the network are, 
and that is generally at the borders between networks. 

 
 

 
 
 
 
 

BUPT



117 Network IDPS Technologies -  4.4 

 

 
 

  
Fig.4.3: Typical example of NIDPS architecture with inline sensors 

 

BUPT



118 Intrusion Detection and Prevention Systems  -  4 

 

 
Inline sensors that aren’t hybrid firewall/IDPS devices are often deployed on the 

more secured side of a network’s division in order to have less traffic to deal with. 
In fig.3 is shown such a deployment of sensors. Sensors are placed on the less 
secured parts of networks divisions in order to offer more protection and reduce the 
workload on the division device, such as a firewall.  

A passive sensor is deployed in order to monitor a copy of network traffic, 
nothing actually goes through him. Passive sensors are generally deployed to 
monitor key network locations (such as borders between networks) and the key 

segments, like the demilitarized zones (DMZs).  

Passive sensors can monitor the traffic through various methods: 
- spanning port: most of the switches rely on a spanning port, that is a port 

capable to see all the traffic of the network which passes through the switch. 

By connecting a sensor to a spanning port can allow this one the monitoring 

of traffic that enters and outs from many hosts. Even though this monitoring 

method is straightforward and cheap, trouble could still arise, such as when 

a switch is incorrectly configured the spanning port could not be capable to 

see all traffic, or that their usage is resource-intensive. By the way, many 

switches have only one spanning port and often it is needed to have multiple 

technologies, such as tools for network monitoring, forensic analysis, or 

other IDPS sensors to monitor the same traffic.  

- network taps: a network tap is a direct connection between a sensor and the 

network’s physical environment, such as wires, optical fiber, etc. The tap 

gives the sensor a copy of the entire traffic that has been worn onto that 

physical environment. The installation of a network tap generally implies a  

temporary blackout of the network and possible problems with the tap could 

prolong the downtime. In contrast to the spanning ports, network taps must 

be acquired as supplements for networks 

- balancer for IDPS load: a load balancer for the IDPS is a device that 

aggregates and directs the network traffic towards the monitoring systems, 

such are the IDPS sensors. Receives copies of the network traffic from the 

spanning ports and network taps and combines the traffic from multiple 

networks. Distributes then copies of the traffic to one or multiple listener 

devices, including IDPS sensors, relying for that on a set of rules created by 

the administrator. These rules tell the balancer what traffic to send at each 

type of device, such as would be to send all the traffic to many IDS sensors, 

divide the traffic dynamically among many IDPS sensors based on the 

volume, divide the traffic among multiple IDPS sensors based on the IP 

addresses, protocols or other traits. Dividing the traffic among multiple IDPS 

sensors could cause a reduction in detection accuracy if similar events or 

parts from a single event are seen by different sensors. For example, let’s 

assume that two sensors see different phases of the same attack; if each 

step is considered to be benign but the sum of steps overall is malign the 

attack could not be recognized. 

BUPT



119 Network IDPS Technologies   -  4.4 

 

 

 
Fig.4.4: An example of NIDPS with passive sensors 

 

Figure 4 shows an example of passive sensors that are connected to the 

network using balancers, network taps and spanning ports. 
As it was previously stated, techniques by which a sensor to prevent requires that 
the sensor to be deployed in the inline mode, and not passive. Because the passive 
techniques monitor copies of the real traffic, they do not offer any secured means 
for the sensor to stop the actual traffic from fulfilling its target. In some cases, a 
passive sensor may depose packets on the network in order to destroy a connection, 

but this type of methods are less efficient than those inline. Generally, organizations 
should deploy sensors inline if is willing that the system perform prevention, and 
passive if only detection is needed. 
 

BUPT



120 Intrusion Detection and Prevention Systems  -  4 

 

 

4.4.2. Security Capabilities 

 
As it was stated in an earlier section, IDPS technologies have a series of 

security capabilities, most important are: information gathering, logging, detection 
and prevention. 
In this section I will talk about these capabilities for the particular case of network 

IDPSs because, as I previously said, I focused my research especially on this class 
of systems, as it will show up in the next chapters.  
 

a) Information Gathering 

Some network IDPSs offer some information gathering capabilities, a thing 
which proves that they can cull data about hosts and activities in networks that 
involve these hosts. Some examples of such capabilities are stated below: 

- hosts identification: an IDPS sensor can build up a list of hosts on the 

organization’s network sorted by the IP addresses or MAC. This list can be 

used as a profile for identifying new hosts on the network 

- identifying the operation systems: an IDPS sensor may be capable to find 

out what operating systems the organization hosts use. For example, the 

sensor can track the ports in use on each host, a fact that can yield a certain 

SO (or family of them) (e.g. Windows, Unix, MacOS). Another method is to 

analyze the packets’ headers for certain unusual traits that are being 

displayed by a certain SO,  which is called ‘passive fingerprint’. The sensors 

can also identify versions of applications, a thing that can also yield the SO 

being used.  

- identifying of applications: for certain applications, IDPS sensors can identify 

their versions by keeping track of the ports that are in use and monitoring 

certain characteristics of the applications’ communication. For example, 

when a client establishes a connexion with a server, this can reveal to him 

what  version of the server software currently exists. Information about 

applications’ versions can be used to identify potentially vulnerable 

applications, or unauthorized usage of those.  

- identifying of network traits: some sensors of IDPSs gather general 

information about network traffic related to configuration of network devices 

and hosts. This type of information can be used for detecting changes in the 

configuration of networks.  

 

b) Logging 

Network IDPSs make intensive logging activities of the data about the observed 
events. These data can be used in order to confirm the validity of alerts, investigate 
incidents, correlate events among IDPSs and other logging sources. 

BUPT



121 Network IDPS Technologies  -  4.4 

 

 
The fields of data usually logged by network IDPSs are:  
- time stamps (gen. data and time) 

- sessions and connexions IDs  

- the type of alerts and events 

- classification (priority, severity, impact, confidentiality) 

- protocols of the levels of network, transport, application 

- source and destination ID addresses 

- TCP/UDP ports of the source and destination 

- ICMP types and codes 

- the number of bites transmitted on the connexion 

- the content data decoded  (e.g. applications’ requests and responses) 

- information regarding state (e.g. authentified users) 

- prevention actions realized (optionally) 

Most network IDPSs can perform packet captures. This is made after the 
occurrence of an alert, either to record subsequent activities in the connexion or 
record the entire connexion [169]. 

 
c) Detection 

Network IDPSs offer a large and various range of detection capabilities. The big 
majority of products use a combination of techniques that rely on signatures, 

anomalies and stateful protocol analysis in order to make a more in-depth analysis 
of common protocols. Detection methods are generally closely interrelated; for 
example, a stateful protocol analysis engine may process activities from requests 
and responses which are examined for anomalies and compared with the signatures 
of known malicious activities. Some products use same techniques, such as software 
for analysis of network behavior (Network Behaviour Analysis - NBA). 

Types of events that are most often detected by the sensors of network IDPSs 
are [169]: 

- Application-level reckoning (e.g. banner grabbing, buffers overflow, 

formatting strings, passwords stealing, malware send, etc): most of network 

IDPSs analyze tens of application-level protocols, the most common 

analyzed are: DHCP, DNS, Finger, FTP, HTTP, IMAP, IRC, NFS, POP, 

rlogin/rsh, RPC, SMTP, SNMP, Telnet, TFTP;  but same can be said for the 

those of databases, instant messaging, peer-to-peer file sharing software. 

- transport level reckoning (e.g. port scanning, abnormal fragmenting of 

packets, SYN floods): transport level protocols mostly frequently analyzed 

are TCP şi UDP 

 
 
 
 
 

BUPT



122 Intrusion Detection and Prevention Systems  -  4 

 

 
- network-level reckoning (e.g. fabricated IP addresses, illegal values of  IP 

headers): network-level protocols that are most frequently analyzed are 

IPv4, ICMP, IGMP; many products added support for IPv6. The level of 

analysis of IPv6 that network IDPSs can achieve varies among products. 

Some do not offer at all IPv6 support or alert administrators of the existence 

of IPv6 activity, others can make basic processing of IPv6 and tunneled IPv6 

traffic, like recording of the source and destination IP addresses, extraction 

of contents for an in-depth analysis. Some products can perform even 

complete analysis of IPv6 protocol, such as confirmation of IPv6 options 

validity, identification of abnormal use of the protocol. Organizations that 

have or will have in the near future need to monitor IPv6 activity should 

carefully assess the IPv6 analysis capabilities of their IDPS products.  

- unexpected application services (e.g. tunneled protocols, backdoor, hosts on 

which unauthorized applications execute): these are generally being 

detected using SPA methods that are capable to determine if the activity 

from a connexion is consistent wih the expected protocol, or by means of 

anomaly-based methods that can identify changes in the networks’ flows 

and open ports on the hosts.  

- violations of policies (e.g. accessing of inadequate websites, use of 

interdicted application protocols): certain types of security policies violations 

may be detected by IDPSs that allow administrators to state characteristics 

of activities must not be allowed, such are TCP/UDP port numbers, IP 

addresses, websites names, and other data that may be identified following 

the analysis of traffic from networks 

Some IDPSs may also monitor the initial negotiations effectuated when 

encrypted communications are established in order to identify client or server 
software that has known vulnerabilities or is being badly configured. This may 
include application-level protocols, like SSH or SSL, or virtual private networks, like 
IP Security (IPsec). 
Network IDPSs sensors can find out whether an attack if probable to succeed. For 
example, as it was already set, sensors may know what software versions the web 

servers are using. If an attacker launches an attack against a web server that is not 
vulnerable to it then the sensor will produce a low priority alert, and if the server is 
vulnerable then the sensor produces a high priority alert. IDPS sensors are usually 
configured to stop the attacks even if it is or not probable that those will succeed. 

IDPS may log activities with different levels of priority function of what would have 
been their result if would not have been blocked. 

I will make now a few clarifications regarding the accuracy of detecting the 

situations, same as it is stated in NIST guide from [169].  
Since a long time ago, network IDPSs had been associated with high rates 

of false positives and negatives. The majority of early technologies used mainly 
signature-based detection, which is known to be accurate only for simple and 
already known threats.  

BUPT



123 Network IDPS Technologies   -  4.4 

 

 
Recent technologies use a combination of methods in order to enhance detection 

accuracy and shrink the rates of false positives and negatives. Another problem 
regarding the accuracy of network IDPSs is that requires intensive tuning and 
customizations in order to take into consideration the characteristics of the observed 
environment. False positives and negatives can be reduced only due to the 
complexity of the monitored activities.  A single sensor often monitors traffic that 
contains hundreds or even thousands of hosts. The number and variety of operating 
systems and applications that are being used in the monitored network, and also 

their degree of changing can be very high, which makes almost impossible the task 

of a sensor to understand those things. Besides these, sensors must monitor the 
activities for many combinations of clients and servers. For example, an 
organization may use 10 types and versions of web servers that are being accessed 
by users by means of 50 different types and versions of web browsers. Each 
browser-server combination may have some uniques features of communication, 
such as, for example, commands sequences, response codes that may affect the 

accuracy of the analysis. Security controls between servers and clients which modify 
the activity of the network, such are firewalls and proxy servers may cause 
additional difficulties. 

In the most wanted scenario, the network IDPSs can interpret all the activity 
from the network in the same way terminals do. For example, different types of 
Web servers may interpret same request in multiple ways. Stateful protocol analysis 

tries to do this thing by copying the processing done by common types of clients 
and servers. This allows sensors to enhance their accuracy of detection. Many 
attackers use processing features that are specific to cliens and servers in their 

methods of attacks and evasions techniques, such are the processing of character 
encodings. Organizations should use network IDPSs that can compensate the use of 
common evasion techniques.   
 As it has been stated in the above section, network IDPSs need intensive 

operations of tuning and customization for enhancing the accuracy in detection. 
Examples of such capabilities are: thresholds for port scans and attempts of 
authentication inside applications, white lists and black lists with IP addresses of 
hosts, tuning for alerts. Certain products also provide code editing capabilities, 
which is generally limited to signatures but there are some cases when it allows 
access to programs, such are those for realization of SPA.  
Some network IDPSs may use information related to the organizations’ hosts for the 

enhancement of detection accuracy. For example, an IDPS may allow administrators 
to specify the IP addresses used by Web servers, mail servers, and other common 
types of hosts and state also the types of services provided by each host. This 
makes that the IDPS to be able to better prioritize alerts. For example, an alert for 
an Apache type of attack directed towards an Apache web server will have a priority 

higher than the same attack would be directed towards another type of server. 

Some IDPSs can import the results of vulnerabilities scans and use these to 
determine what attacks would succeed if not be blocked. This allows the IDPS to 
take better decisions regarding prevention actions and to more accurately prioritize 
the alerts. 

In the end of this section I will discuss about the limitations of detection 
technologies. 

Even though network IDPSs provide extensive detection capabilities, they 

hold also some significant problems most important being: encrypted network traffic

BUPT



125 Network IDPS Technologies – 4.4 

 

analysis, processing of large volumes of traffic data, endurance to attacks directed 
towards themselves.   

Network IDPSs cannot detect attacks from within the encrypted traffic, such 
are Virtual Private Networks (VPN) connections, HTTP over SSL (HTTPS/SSL), or 
SSH sessions. As it was said previously, some network IDPSs can perform encrypted 
connections settings analysis, which can detect if client’s or server’s software has  
certain vulnerabilities or is badly configured. To assure that is being made sufficient 
analysis over the contents of encrypted traffic, organizations must use IDPSs that  
are capable to analyze the contents before being encrypted. An example of this fact 

is placing the IDPS sensors to monitor the unencrypted traffic (e.g. traffic that 

entered into the organization through a VPN gateway and was decrypted) and with 
the help of a software for host IDPSs to monitor activities inside the source or 
destination hosts.  
 Network IDPSs may lack capability to make complete analyzes for intense 
traffics. Passive sensors for IDPS may skip packets, fact which can lead incidents to 
pass unnoticed, especially if SPA methods are employed. In the case of inline IDPS 

sensors, skipping packets from big loads leads to faults in the network availability. 
Delays in the processing of packets may lead to a latency extremely high. In order 
to avoid such problems organizations that use inline IDPS sensors should choose the 
ones that are able to recognize the situations of massive loads and only specific 
types of traffic must pass through the sensors without performing the complete 
analysis or to give up the low priority traffic to reduce the load. Many providers try 

to optimize their sensors in order to achieve better performances under heavy loads 
by taking measures as: availability of a specialized hardware (network cards with 
big bandwidth) and re-compiling of software components in order to embed settings 

and other customizations made by administrators. Even though sellers classify their 
sensors after the capabilities of maximum bandwidth, the actual capacity of any 
product depends on many factors, the most important are: 

- network, transport- and application-level protocols being in use and the 

depth of analysis that is being made for each protocol. Sellers often classify 

their products based on their ability to make a reasonable analysis of a ‘mix’ 

of protocols. The level of analysis that an organization wishes to achieve and 

the mix of its protocols may significantly differ from the test environment 

- lifetime of connexions: a sensor can have fewer overload for a long term 

connection than for many short term consecutive connections  

- number of simultaneous connections: sensors are limited to as many 

connections for which can be traceable 

IDPS sensors are susceptible to various forms of attacks. Attackers may 

generate some unusually large volumes of traffic, likewise the distributed denial of 
service (DDoS), and anomalous activities, for example, unusual fragmented packets 

in the attempt to exhaust a sensor’s resources or cause its failure. Another attack 
technique, called blinding, generates traffic in networks with the goal to cause many 
IDPS alerts. Usually, the traffic is specially created in order to take advantage of the 
typical configurations of the IDPS sensor. In many cases, blinding traffic is not 
directed towards any target, but the hacker executes the real attack separately, 
simultaneously with the blinding one. The attacker’s goal is that the blinding traffic 

to cause any failure of the IDPS or generate such many alerts so that the ones for 
the real attack not be taken into account anymore. Many IDPS sensors are able to 
recognize common tools of DDoS and blinding, altogether with their techniques. 

BUPT



125 Network IDPS Technologies – 4.4 

 

They alert administrators about the attack then ignore the rest of activities in order 
to reduce their load. Organizations must choose products that offer functionalities 

that make them resilient to failures of attacks.  
 
d) Prevention 

Next, I will discuss the prevention capabilities of IDPS sensors grouped by their 
type, as it has been narrated in the security guidelines provided by NIST. 

Passive sensors: 
- ending of the current TCP session: a passive sensor tries to terminate a TCP 

session by sending reset packets at both endpoints (a process known under 

the name cropping). The sensor does this thing in order to make each side 

appear that the other one tries to close the connection. The purpose is that 

one of the sides closes the connection before the attack succeeds. One 

drawback of this technique is that the reset packets are not acknowledged 

on time because the attack traffic must be monitored and analyzed, the 

attack is detected and the packets sent over the network to the endpoints. 

Also, since this technique is applicable only at TCP protocol, it cannot be 

used for attacks carried in other packets, like UDP or ICMP. The session 

cropping technique is not very spread because other newer capabilities were 

created and proved to be more efficient  

Inline sensors: 
- inline firewalling: the majority of inline sensors provide firewalling 

capabilities  that can be used in order to reject or discard activities that are 

considered suspicious in the network 

- shrink of the bandwidth use: if a protocol is used un-accordingly, such as for 

performing DoS attacks, malware distribution, peer-to-peer file sharing, 

some inline IDPS sensors can limit the capacity of bandwidth the protocol 

will use. This prevents the malware activity to negatively impact the 

consumption of bandwidth for other resources. 

- modifying the malicious contents: as it was shown a few sections ago, some 

inline IDPS sensors may clean portions from packets, which means that the 

malicious content is being replaced with a benign one and the newly 

obtained packet is sent to the destination. A sensor that acts as a proxy can 

perform automated normalization of the entire traffic, such would be re-

packaging loads of the applications. This has as effect on curing some 

attacks from the packages headers even if the IDPS did not detected them. 

Some sensors may also empty the infected attachments of emails and other 

portions of content from the network traffic.

BUPT



126 Intrusion Detection and Prevention Systems  -  4 

 

Both passive and inline: 
- reconfiguration of other network security devices: many IDPS sensors may 

teach the network security devices, like firewalls, routers or switches to 

auto-configure in order to block certain traffics or re-route them. This can be 

useful in situations like keeping the attacker outside of the network or 

quarantining of a host that has been infected, e.g. moving it into a 

quarantine VLAN. This prevention technique is useful only for network traffic 

that can be distinguished by means of the characteristics of packets headers 

that are recognized by the network security devices, like IP addresses and 

port numbers  

- execution of a third-party program: some IDPS sensors may execute an 

administrator program when a certain malicious activity is being detected. 

This may trigger any prevention activity specified by the administrator, such 

as reconfiguration of other security devices in order to block the malicious 

activity. Third-party programs are most frequently used when the IDPS  

supports the prevention actions specified by the administrator 

The most part of IDPS sensors allow administrators to specify the configuration 
of prevention capabilities for each type of alert. This usually include activation or 
deactivation of prevention and specification of what capabilities to use. Some  IDPS 

sensors have a learning or simulation mode embedded within that halts all 
prevention actions and, instead shows when such an action would have been made. 
This allows administrators to monitor and tune the configuration of prevention 

capabilities before activating them, which reduces the risk of erroneously blocking 
benign activities.  
 

4.4.3. Management Capabilities 

The main management activities of IDPSs are:  
- implementation  

- operation  
- maintenance 

 
a) Implementation 

Once a network IDPS product has been selected, administrators must design an 
architecture, perform testing the components, secure the components and, in last 
phase deploy it. First step from the implementation of an IDPS represents the 

design of its architecture, whose considerations include: 
a) the place where sensors must be placed 

b) how safe the solution must be and what measures must be used in order to 

fulfill this goal, such would be to have many sensors to monitor the same 

activity in case one would fail or use multiple management servers such that 

to be able to use a backup server in case the main will fail 

 

BUPT



127 Network IDPS Technologies -  4.4 

 

 
c) where the other components of the IDPSs will be located, like management 

servers, database servers, consoles and how many units of each will be 

enough for achieving the goals of usability, redundancy and load balancing 

d) with what ohter systems the IDPS is to communicate: 

o ones it provides data, such as software for information security and 

event management, centralized logging servers, mail servers, 

paging systems 

o ones it sends prevention answers, such as firewalls, routers, 

switches 

o ones that manage the IDPS’s components, like management 

software of networks or patches 

e) whether it will be used or not a separated management network, and if yes 

then which will be its architecture, and if not then how the communications 

of IDPS components will be protected on the network 

f) what other security controls and technologies must be changed in order to 

accommodate IDPS’s deployment, like changing the firewalls’ sets of rules  

Organizations must think foremost to implement the components within a testing 
environment, and not a production one in order to avoid the probability that the 
occurred problems to create harm to the production networks. When components 
are deployed inside production networks, organizations should firstly activate only 
few sensors with prevention capabilities disabled. A new deployment normally 

generates a big number of false alerts until optimal tuning is reached, activation of 
multiple agents at once may overload the management servers and consoles, 
hardening administrators’ work of tuning and customization. Many false positives 
are probable to be the same over sensors, thus it is useful to identify those positives 
either during the testing process or deployment of first sensors in order for them to 
be addressed before the general deployment of the IDPS. A phased deployment of 

the sensors is also useful in identifying the scalability problems [169]. 
The endeavor of implementation of an IDPS may require short periods of 

blackouts of systems’ and networks’ functionality for the installation of components. 
As it was previously affirmed, deployment inside a test environment can be 
particularly useful for discovering of the implementation problems in order for these 
to be solved correspondingly at deployment in production environment phase.  
Device-type components of IDPSs are generally easy to deploy. Administrators must 

provide sources of power, connect cables in the networks,  start the devices and 
make general configurations (e.g. assign names to sensors, activate products by 

licenses etc.). Another task of administrators is to make updates to software and 
signatures in order to assure the actuality of IDPS’s software.  

Software-type components of the IDPS usually require more time for 
deployment operations than the hardware ones. Organizations foremost should 
acquire the necessary hardware, which could mean buying network cards of large 

bandwidth and ensuring that hardware is sufficiently sound for the IDPS; then 
administrators should install the operating systems that are compatible with the 
IDPS’s software and to secure as much as possible the hosts. The operation of hosts 
consolidation includes updating the OSs, services and applications of the IDPS.  
Administrators also must realize IDPS software’s configurations, as it is done for the 
hardware components. 

BUPT



128 Intrusion Detection and Prevention Systems  -  4 

 

 
After component deployment must be configured the detection and prevention 

capabilities depending on the type of IDPS deployed. Without the realization of 
these configurations the IDPS can not detect only a low range of attacks. 

Another basic activity in the implementation of IDPSs represents its own 
component security. This is a task of significant importance due to fact that IDPSs 
are at their turn the targets of the attackers. If an attacker manages to compromise 
an IDPS, this one becomes useless in the detection of future attacks on the hosts 
from the network which it was designed to protect. Moreover, IDPSs hold sensitive 

information, such as hosts configurations and known vulnerabilities that can be 

employed for the development of the attacks. Administrators must also perform 
certain activities in order to ensure that IDPS’s components are protected 
accordingly: 

- to create separate accounts for each IDPS user and assign the required 

privileges  

- to configure firewalls, routers and other packet filtering devices in order to 

limit the direct access to the IDPS’s components  

- to ensure that all management communications of the IDPS are secured 

accordingly, either through physical or logical separations (management 

networks or VLANs, respectively), either by encrypting the communications. 

If the latter technique is employed then it must be performed by using FIPS-

approved algorithms. Many products encrypt their communications by using 

the TLS protocol. For products that don’t provide enough protection through 

encryption, organizations must use a virtual private network (VPN) or an 

encrypted tunneling method for the securitization of traffic  

Some organizations also use strong authentication for the remote access to the 

IDPS’s components, such as the two-factors one, that offer an additional level of 
protection.  

 
b) Operation and Maintenance 

Almost all IDPS products are created for being operated and maintained through 
a graphical user interface (GUI), called console. The Console allows admins to 
configure and update the sensors and management servers and to monitor their 

states (e.g. blackouts, packets failures, etc). Administrators also can manage users’ 
accounts, personalize reports, and many other operations using the console. The 
functions that simple users of the IDPS can perform from the console include 
monitoring and analysis of the IDPS data, generation of the reports. The big 

majority of IDPS allow administrators to create accounts for each type of admin and 
simple user and to provide only the required privileges for each one’s role. Console 
does these things by means of different menus and options based on the 

authenticated account’s role. Some products also provide finer controls of the access 
such as specification for which sensor a user can monitor the data or administrators 
can change configurations. This thing allows a large IDPS deployment to be divided 
into multiple logical units.  

BUPT



129 Network IDPS Technologies  -  4.4 

 

 
Some IDPS products have also command-line interfaces (CLI). Unlike GUIs, that 

are generally used for the remote control of the sensors and management servers, 
CLIs are normally used in a local management. Sometimes a CLI may be used 
remotely by means of an encrypted connection that is done through a secured shell 
or other methods. Consoles are much more usable than the command lines, which 
provide only a portion of functionalities of those ones. 

Most majority of IDPS consoles have multiple capabilities for aiding users in 
their daily tasks. For example, they have „digging” capabilities, i.e. when a user 

analyzes an alert, details and information are organized on layers. This allows users 

to see information about multiple alerts simultaneously and show additional 
information about events of interest as needed. Some of the products allow users to 
see information from large ranges, such as packet captures (both on raw form and 
processed by means of a protocol analyzer), related alerts, as well as 
documentation about alerts. Usually, as much data the IDPS records, as easy it is 
for analysts to find the cause of incidents. Some consoles also offer event response 

capabilities, such would be transforming an alert into an incident case and offering 
workflow mechanisms that allow users to document additional information about the 
alert and to route to other users for a thorough review. 

Other stuff offered are also various functions for reporting. For example, users 
and admins can use the console for running certain reports at some established 
periods of time and send by email the reports to the corresponding users or hosts. 

Many consoles also allow users to generate reports when it is necessary and to 
customize them. If an IDPS stores its logs into a database or file with an easily 
parsable format, queries or database scripts may be used in order to generate 

customized reports, especially if the console does not offer such functionalities.  
Administrators must realize IDPS maintenance in a continuous manner, process 

that should include the following activities: 
- observing the IDPS’s components for operational and security problems 

- checking at some well established time intervals whether the IDPS is  

functioning corresponding 

- realization of regular checks of vulnerabilities 

- receive notifications from vendors regarding the security problems of IDPS’s  

components and responding to those notifications 

- receiving notifications from IDPS’s vendors about updates and perform their 

testing and deployment.  

More about this subject will be discussed in the section below. 
There are two types of IDPS updates: of software and of signatures.  

Software updates repair the software problems of the IDPS or add new 

functionalities, while those for signatures add new detection capabilities or enhance 

those existing. For many IDPSs, signatures updates require that the source code be 
modified or even replaced, thus they can be seen as a particular form of software 
updates. For others though, signatures are not implemented inside the code, thus 
an update is a change of the IDPS’s configuration data. 

BUPT



130 Intrusion Detection and Prevention Systems  -  4 

 

 
Software updates can affect only one part or even all of the IDPS 

components, including sensors, management servers and consoles. Software 
updates for sensors and management servers (especially devices) are in general 
applicable by replacing an IDPS’s CD with a new one and restarting of the device. 
Many IDPSs execute their software directly on the  CD, so that is not necessary any 
additional software installation. Other components, like agents, need the 
administrator to install the software or apply the patches, either manually on each 
host or automatically by means of the IDPS’s management software. Some vendors 

make available software and signatures updates to be downloaded from their Web 

sites. Often administrator interfaces of the IDPSs have functions for downloading 
and installing such updates.  

Administrators should verify the integrity of the updates before applying them 
since it is possible to have been erroneously or unintentionally modified or replaced. 
The recommended verification method depends on the format of the update, so: 

- files downloaded from a Web or FTP site: administrators must compare the 

checksums of files provided by vendors with the ones they calculate 

themselves 

- updates downloaded automatically by means of IDPS’s graphical UI: if an 

update is downloaded under the form of a single file or set of files then 

either the control sums provided by vendors must be compared with ones 

generated by the administrator, or the IDPS’s user interface should perform 

a kind of integrity checking. In some cases, updates can be downloaded and 

installed as one single activity before verification of checksums. The IDPS’s 

interface must check the integrity of each update as part of this operation 

- removable media (CD, DVD, USB): vendors may not provide a specific way 

for the client to verify the authenticity of removable media that, apparently 

have been sent by them. If media verification is a problem then 

administrators must contact the vendors in order to find out how this can be 

done, such would be digital signatures checking from the content of media. 

Administrators should also consider scanning of the media for possible signs 

of malware, being careful that false positives can be triggered by the 

malware signatures from the media 

IDPSs are typically realized so that software or signatures updates application 
not to have any consequence over the existing settings of tuning and customization. 
The main exception is code customization, which often must repeat when code 
updates from the vendors are installed. For any IDPS administrators must save 

periodically the configuration settings and before the application of software or 
signatures updates to ensure that existing settings are not lost by mistake [169]. 

 Administrators must test software and signatures updates before application 
except for the emergency situations, such as would be when a signature identifies a 
new attack that produces damages in the organization and can’t be detected or 
blocked by any other means. It is desirable to have at least one sensor that could be 
used strictly for updates testing. New detection capabilities can often cause the 
firing of numerous alerts, so signatures updates testing on a single agent may help 
to identify possible problematic signatures which need to be deactivated. 

BUPT



131 Conclusions  -  4.5 

 

 
In non-emergency situations, updates must be tested and deployed using the same 

habits that would be used for updating other major security controls, like firewalls or 
antiviruses. When updates are deployed inside production environments, 
administrators must deactivate certain signatures and do other reconfigurations as 
needed. 
 

4.5. Conclusions 

This chapter represents the beginning of the second major part of this 
thesis, namely the use of Semantic Web technologies inside the Cyber-Security 
domain. It has the purpose to show how these technologies are used at the 
construction of intrusion detection systems, how they support and enhance 
detection efficiency inside both singular hosts and computer networks. It is intended 
as an introduction in which are presented general notions from the domain of 

computer security, intrusion detection systems, like a review of the literature read 
by me. 

Section 1 presents introductive notions about computer security, what are 
the most important industrial domains in which finds applications, what are intrusion 
detection and prevention systems and what are their main uses, and what are the 
most important techniques that are being used in detection (e.g. signatures, 

taxonomies, ontologies). These techniques, since they have a crucial importance for 
the functioning of any IDS, I dedicated a separate section for each one.  

In section 2 has been discussed the general architecture of an IDS system, 
then had been talked its most important security capabilities: information gathering, 

logging, detection and prevention.  
Beginning with section 4 the focus has been moved on the network IDPSs 

since these, unlike those for host, confront with some detection situations that are 

highly diversified, have some more complex architectures, types, technologies and 
knowledge required for the realization of the attacks in networks (especially on the 
Internet) are so much more advanced than in the case of single hosts, which means 
that also the ones required for their tracking are directly proportional. Two sections 
have been dedicated to presenting these types of systems; in the first had been 
discussed the main architectures together with their components while in the other 
the main security capabilities, which are the same as in general case but were 

explained for the specific case of networks environment. In the end of that section 
had been described the most important management tasks that administrators must 
perform for the deployment of the IDPS in a network and insurance its good 
functioning. 

As any review work from a certain domain, the main objective here was also  

the realization of a presentation of the domain of cybersecurity and intrusion 

detection systems from the computer networks with information gathered, analyzed, 
selected, integrated from the resources read from the specialty literature, and also, 
for each particular notion, fact that was presented had been provided references in 
literature where the reader can embellish its knowledge. 

BUPT



132 page  intended  left  blankă 

 
BUPT



133 Artificial Intelligence in Intrusion Detection  -  5.1 

 

 
 

 
 
 

 

5. ARTIFICIAL INTELLIGENCE AND SEMANTIC 
WEB TECHNOLOGIES USED IN THE 

CONSTRUCTION OF CYBERDEFENSE SYSTEMS 
 
 
 

 
In this chapter I proposed a discussion about the intelligent defense systems, 

which are those that use in their functionality new and innovative techniques taken 
from other domains in order to increase their performances. Among these 
techniques are those of the newly Semantic Web and Artificial Intelligence. For each 
technique will be shown its applications in the detection process and the way it is 

incorporated within the IDS. The contribution will count also some models which 
present in a graphical manner the tales made textually with the aim to facilitate the 
understanding by reader of the detection process and methodologies. Will be 
presented in two tables a series of the most known IDS systems gathered by me 
from the domain literature that employ innovative technologies from Artificial 

Intelligence and Semantic Web in their functionality.   
 

 
 

5.1. Artificial Intelligence in Intrusion Detection 
 

Artificial Intelligence is a discipline of Computer Science that has as main 

objective to emulate the intelligent processes of humans by employing machines. 
His parents are considered to be Alan Turing and John McCarthy. The first published 
in year 1950 a reference paper for the domain in which proposed the idea of 
creating machines that were capable to think in similar manner with humans. He 
said that “human thought is a process that is extremely hard to define” and 
proposed the famous Turing Test [198].  The latter one introduced the term at a  
conference in Dartmouth, England in 1956. As the term itself suggests, ‘intelligence’ 

is artificial and is programmed by humans inside the machines in order to make 

them perform tasks in the same way as humans do and try to approximate as best 
as possible [202]. Two of the most important branches of this domain are Machine 
Learning  (ML) and  Deep Learning  (DL), as it is presented in fig.1. 

 
 

 
 
 
 
 

BUPT



134 Artificial Intelligence and Semantic Web Technologies in Cyber-

Security -     5 

 

 
 
 

 
Fig.5.1: Main sub-branches of the AI domain 

 

Machine Learning was defined by its pioneer, Arthur Samuel in year 1959 like: 
”a field of study that focuses on offering computers the capacity to learn without 

being explicitly programmed”. Learning is a process in 5 steps, as it is stated in 
[166], and relies on establishing an implicit or explicit model by means of which the 
analyzed patterns are being classified or categorized. Its algorithms lay in three 
main classes: supervised learning, unsupervised learning and learning by 
consolidation (i.e. reinforcement). 

Deep Learning represents the next generation of ML technologies. DL models 

rely on Artificial Neuronal Networks (ANNs) to create predictions totally independent 
of humans, unlike those of ML that still require humans’ intervention for achieving 
their objectives. The design of ANNs is inspired by the biological structure of the 
neuron of animals’ brains, featuring neurons and synapses between them, analyzing 

the data using a logical structure similar to the way of the process of conclusions 
drawing by humans [201]. 

In what follows will be described the main ML algorithms that have been used in 

intrusion detection field and examples will be provided of industrial-scale systems 
that employ these techniques within their detection methodologies. I will not enter 
details about the definitions and characteristics of each technique since this is 
outside the scope of this thesis, instead I will provide the reader with references in 
literature where he could find more information about the domain.  

 
 

BUPT



135 Artificial Intelligence in Intrusion Detection -  5.1 

 

 

5.1.1.  Evolutionary Algorithms  

Evolutionary Algorithms (or Calculus) (abbr. EA) represent a class of Machine 
Learning algorithms created to bring solutions to the global optimization problems, 

whose design was inspired by the biological evolution of living organisms [148]. 
Their aim is to find optimal solutions to problems, thus finding applications in 
multiple fields from Mathematics and Computer Science. The most renowned 
technologies of this class are: Genetic Algorithms (GA), Genetic Programming (GP) 
and Grammatical Evolution (GE) [139].  

The fields from the intrusion detection domain where GA techniques were 
foremost applied are: automated model design, classification, optimization, features 

selection etc. The main benefits that they brought to this field, as it was affirmed by 
[134] are: 

- providing an intrinsic parallelism, making them suit for the analysis of large 

volumes of data necessary in situations of detection  

- are suited for behavior-based detection because they work with populations 

of solutions 

- they grow the system’s adaptability due to the fact that they are re-

trainable 

- support the dynamic generation of rules due to the propriety of evolution in 

time 

According to Abdullah [3], the role of GAs in intrusion detection systems is that 

to derive a set of classification rules from the network audit data and the support-
confidentiality framework is being used as fitness function for the evaluation of the 
quality of each rule. Generated rules are then used in the tasks of detection/ 
classification of events from the real network environments. The model of this 

process is shown in figure 2. Another similar work, [83] used genetic algorithms in 
order to select important traits from the set of test data KDDCup99 to perform a 
better analysis on the events from networks.  

 
Fig.5.2: The placement of GA module inside IDPS 

 

The second main technology, Genetic Programming (GP) also proved to be 
very useful in the domain of intrusion detection, same as GA. LaRoche&Heywood 
have discussed [128] about the use of GP for attacks detection in wireless networks 
802.11 and stated what facts lead to the reduction of detection rates of GP methods 
for the attacks specific to the 802.11 protocol.  One of the largest research system 

BUPT



136 Artificial Intelligence and Semantic Web Technologies in Cyber-

Security -     5 

 

that have been developed until present and that relies on evolutionary calculus is 
ECJ27, a system for evolutionary calculus that was written in Java language, being 
described by some as “the most widely used library of evolutionary calculus of 
general purpose”, which has been applied of course also in intrusion detection field. 
 

 

5.1.2. Fuzzy Logic 

Fuzzy Logic is a superset the classical (Boolean) logic extended with multiple 

truth values to be able to represent imprecision and uncertainty associated with 
behaviors found in the real world (also called multi-value logic) [75]. In the 
intrusion detection domain, fuzzy logic is an important technique used especially in 
analysis. Fuzzy systems are characterized by their capacity to reason over 
incomplete or uncertain data, a fact that makes them some useful tools for risks 
analysis and evaluation. (Ansari et al.) [14] proposed the use of fuzzy logic inside 

the Data Mining discovery rules generation in order to introduce cognitive aspects to 
support FRCP rectifications. (Alali et al.) [11] proposed a fuzzy rule-based inference 
system in order to better evaluate the risk of attacks occurrence. Fuzzy methods are 
used especially in the field of anomaly-based detection because the features that 
should be considered can be seen as fuzzy variables from the set. They proved to be 
especially efficient against threats such as port scanning and probes. The main 
drawback of this technique constitutes the intensive resource demands needed to 

realize the computations [191]. 
 

 

5.1.3. Clusters Analysis 

Clusters Analysis and Outliers is a ML unsupervised technique that works by 
grouping (classifying) of a set of data entries into a specific group (groups) 
according to a similarity metric (distance). For a brief introduction and a list of the 
most important algorithms that have been created until present day, I invite the 
reader to see the work in [180]. The clustering and outliers techniques are most 

often being used in anomaly-based detection, where the latter are considered the 
anomalies. The advantage that they bring into the field is that the effort required for 
tuning the IDS is smaller because it detects the intrusions only from raw audit data. 
The attacks detector model that relies on clustering and outliers is presented in 
fig.3.   

(Brahmi et al.) [52] present the effort of developing an IDS that uses the 

Artificial Intelligence technologies of multi-agent and ontologies and proposes a 

clustering algorithm having as main objective the increase of scalability and the 
detection capacity of the IDS. One of the broadest works read by me is that of 
(Agarwal&Hussain) [5], which is both a comprehensive review of the domain, and 
also propose a conceptual framework of an ideal IDS for Web that employs 
numerous technologies, some of these borrowed from tha AI domain. 

 

  

BUPT



137 Artificial Intelligence in Intrusion Detection -  5.1 

 

 
 

 
Fig.5.3: Clustering and outliers in attacks detection 

 
 

5.1.4. Artificial Neural Networks 

Artificial Neural Networks (ANN) are a mathematical model that process 
information in a manner that is inspired by the functionality of nervous systems 
found at living mammals [147]. Lee [130] presents the most important 10 ANN 
architectures that have been proposed until present day in the domain literature.  

BUPT



138 Artificial Intelligence and Semantic Web Technologies in Cyber-      

Security -  5 

 

 
This AI technology can find applications in multiple domains due to its capacity 

of making correct decisions and recognition of forms and patterns and constitutes 
the nucleus of DL techniques.  ANNs are used especially in anomaly-based detection 
for creating and learning the profiles of benign activities from the raw traffic data 

and detect by classification of the new events based on the established profiles 
[167]. The conceptual model of the detection process is presented in fig.4. In [13] is 
proposed a detection system that relies on ANNs for the detection and classification 
of attacks in computer networks, stating that this technique is superior to the 

traditional one based on signatures due to the fact that is capable to learn the 
behaviors of dynamic changes of users and systems and also showed an increased 
adaptability to changes. One of its disadvantages is that the training phase is a big 

time consumer. (Igor et al.) [116] made a study regarding the pros of using ANNs 
in anomaly-based detection systems. 
 

 
 Fig.5.4: The use of ANNs in attack detection systems 

 
 

5.1.5. Data Mining 

Data Mining (DM) is a technique employed to the processing of large sets of 
data with the ultimate goal to find hidden information and patterns and establish 
relations in order to solve problems by analyzing data, thus being able to make 

predictions on the future directions of the behaviors. It is considered to be a 
specialized form of the technique of knowledge discovery from data (KDD) [78]. For 
the most important DM methods reader is referred to the site Educba [217].  

 

 
 

 
 
 
 
 
 
 

BUPT



139 Artificial Intelligence in Intrusion Detection -  5.1 

 

 

 
Fig.5.5: Data Mining in the process of attack detection 

 

Data Mining techniques can be very useful in the field of attack detection 
because this activity implies the processing of some huge volumes of data. The role 
of Data Mining in the detection process is especially related to that of data analysis, 
more precisely it is focused on dimensionality reduction, clustering and 
classification, as it is shown in fig.5. (Brahmi et al.) [51] sustained the idea that the 
application of Data Mining techniques in the field of intrusion detection may lead to 

the increase of accuracy and speed the detection and in the same time also harden 

system’s own security. They proposed a distributed IDS that used technologies of 
multi-agent, Data Mining and clustering in order to overcome the above-mentioned 
drawbacks. Other researchers stated that the advantage compared to the signatures 
technique is represented by the high level of accuracy in detection of known attacks 
and their variations [129]. 

The 5 techniques that had been presented in this section are not the only AI 

technologies that are employed in the detection of attacks and intrusions, but they 

BUPT



140 Artificial Intelligence and Semantic Web Technologies in Cyber-      

Security -  5 

 

are definitely among the most importante. For other technologies I invite the reader 
to see the works from [85], [195], [32], [33] where are presented also other ML 
techniques together with each one’s role inside cybersecurity.  

 

5.1.6. Industrial and Research Systems based on AI Technologies 

Table 1 shows a survey with some of the most important research IDSs that 
employ AI technologies in detection, as it was studied in domain literature read in 

conducting the current research. Other related lists of comercial systems may be 

found in [85], [118], [129].  
 

ANIDS  product Proprietary Organization  AI Techniques 

EMERALD (Event Monitoring 

Enabling Response to 

Anomalous Live Disturbance) 

SRI International Rule-based Expert Systems, Bayesian 

Inference, Forward Chaining  

NetSTAT (Network-based State 

Transition Analysis Tool) 

University  California 

Santa Barbara 

State-Transition Analysis Rules  

Bro Lawrence Livermore 

National Laboratory 

Application-Level Semantics, Pattern 

Matching  

ComputerWatch Secure Systems Dept, 

AT&T Communicat. 

Expert Systems, Pattern Matching, Rule-

based  

AAFID (Architecture for 

Intrusion Detection using 

Autonomous Agents) 

Purdue University Autonomous Agents 

Hummer University of Idaho Data Mining, Autonomous Agents 

JAM (Java Agents for Meta-

learning) 

Columbia University Artificial Neuronal Networks, Bayesian 

clasifier, Data Mining, Nearest Neighbor, 

Decision Trees, Rule-based Inference 

Snort IDS Cisco Systems Statistical Analysis 

MINDS (Minnesota Intrusion 

Detection System) 

University of Minnesota   Data Mining, Pattern Matching, Clustering 

and Outliers 

DMNIDS (Data Mining for 

Network Intrusion Detection 

Systems) 

MITRE corporation Data Mining, Clustering and Outliers  

MADAM Columbia University Data Mining, Association Rules, Frequent 

episodes 

Table 5.1: A list with some commercial NIDS and ML techniques used 
 

 

BUPT



141 Artificial Intelligence in Intrusion Detection – 5.1 

 

For a state-of-art regarding commercial NIDS that use AI technologies in the 
detection process the reader is invited to see the articles of the renown american 

company for business analysis and research Aite Group [122], [123], [124], [125]. 
 

Name Entity AI technologies used 

Anagram Intrusion Detection Systems 
Lab, Columbia University 

Content modeling using  N-grams 

Autonomous Agents 
for Intrusion 
Detection (AAID) 

CERIAS, Purdue University Open-source platform / additional 
anomaly-based modules avaliable; 
distributed architecture 

Bro Lawrence Berkeley National 

Laboratory 

Development platform, compatible with 

Snort rules, application-level semantics, 
events analysis, pattern matching, 
protocols analysis 

Data Mining for 
Network Intrusion 
Detection 

MITRE Corporation Clustering techniques 

Dependable anomaly 
Detection with 
Diagnosis 

Various partners Detection by diversification 

EMERALD SRI Open-source Distributed Platform, rule-

based,  inference, Bayesian inference 

Genetic Art for 
Intrusion Detection 
(GenArt IDS) 

Northwestern University Genetic Algorithms 

GIDRE University of Granada Distributed architecture, stochastic 

modeling, pattern matching 

Intelligent Intrusion 
Detection 

Mississippi State University Data Mining added with Fuzzy Logic 

Minnesota Intrusion 

Detect. System 
(MNIDS) 

University of Minnesota Statistical Analysis, Pattern matching, Data 

Mining, Outlier detection 

Network at Guard  
(N@G) 

C-DAC Development platform, Protocol anomalies 
detection, Statistical analysis 

NetStat University of California  

Neuro-Fuzzy 
Intrusion 

Detect.System 
(NFIDS) 

University of Teheran Fuzzy Logic, Artificial Neural Networks 

OrchIDS Ecole Normale Superieure 
de Cachan 

Real-time events analysis, temporal 
correlation 

Prelude Yoann Vandoorselaere Open-source  Distributed Platform 

Shadow CIDER Project Development Platform (old CIDER) 

Snort Marty Roesch Open-source platform/ Multiple anomalies 
based modules  

Table 5.2: Anomaly-based IDS research systems  

 

BUPT



142  Artificial Intelligence and Semantic Web Technologies in Cyber-

Security -  5 

 

5.2.  The Semantic Web in Intrusion Detection 

The Semantic Web, as it was stated by its creator himself, Tim Berners-Lee, 
represents the vision of a Web completely automated of machines that communicate 
and perform the tasks in humans’ place, the programs that deal with things based 
on their meanings (semantics), of data that have a universal format and structure in 
order to make them comprehensible by machines [42]. 

Semantic Web technologies, like “content” or “ontology”, may be used in many 
fields of Computer Science. Each security method that relies on the notion of 

“content” may use Semantic Web technologies, and the intrusion detection systems 
are a good example [2]. 

Even if IDSs are the building blocks of security infrastructures, they suffer from 
a number of limitations, such as: safety, relevance, incompleteness and disparity in 
presence and manipulation of knowledge and attack detection. Big majority of IDSs 
use a centralized architecture that contains multiple nodes that communicate with a  

central processing one. This method suffers from the “single failure point” problem, 
i.e. in the situation when the central node is being attacked, the whole IDS is at 
danger. Also the transfer of all information to a single processing node puts great 
demands on the the network’s resources and may lead to overhead. One solution to 
the above problems would be the integration of a multi-agent technology inside the 
IDS. The use of a multi-agent approach offers a series of advantages, as it was 
explained in literature: scalability, minimal network overhead, continuous and 

independent execution of agents, making thus system’s resilience much stronger 
and ensuring its soundness [52].  

Subsequently, the concept of “ontology” arose as a technology for knowledge 

representation and sharing of an application domain. In the intrusion detection field 
they are used to provide IDS with the capacity of sharing a common understanding 
about attacks and intrusions and to create signature rules. Use of ontologies in 
attacks detection domain brings with it the following boons, as it was stated in [2]: 

- brings together semantic knowledge of a domain 

- better express the IDS by constructing some superior signature rules by 

making use of Semantic Web languages  (e.g. RIF, SWRL) 

- make reasoning an intelligent process 

Some scholars from Computer Science opened a new branch in information 
security, that of ontologies use together with their benefits. They made the following 

sentence: “ontologies are a new extremely promising paradigm in the informational 
security field by means of which we have a tool of unlimited event classification” 
[163].  

Use of Semantic Web technologies in the construction of IDS systems is a late 

concept. Among the first researches that had been done in this field count those of 
Undercoffer [199], [200]. The former proposes an ontology that represents a model 
for computer attacks and stated that any taxonomical characteristic used at defining 

a computer attack must be limited in scope to those features that are observable 
and measurable at the target. The second work presents an ontology that defines 
relations among features that are observable by the IDS sensors. 

 
 
 

 

BUPT



143  State-of-Art in Researches -  5.3 

 

5.3. State-of-the-Art in Researches 

In this section I will present some of the most important articles read in the 
creation of this chapter regarding AI techniques used in the construction of IDS.  

A broad work that spans multiple areas from the computer security, beginning 
with the basic notions and until the most advanced is the paper of 
(Agrawal&Hussain) [5]. It is created as a review article focused on the intrusion 
detection from Web applications. Presents a brief overview of the main intrusion 

detection techniques, challenges faced by researchers at the construction of 

systems, security capabilities embedded inside most of the systems. They identified 
9 dimensions of IDS funcţionalities based on which they compare 5 systems from 
literature. As contributions they propose a conceptual framework of an ideal IDPS 
that included a number of new functionalities as against the 5 systems they 
reviewed in their study.  

The content from this chapter was inspired mainly by two articles: (Garcia-

Teodoro et al.) [85] and (Tsai et al.) [195]. The former made a literary review about 
the domain of anomaly-based IDPS. They stated that currently exist three main 
techniques that are used in anomaly detection, that rely on: statistics, knowledge 
and machine learning. The latter category has been tackled more in-depth by the 
study, but it was one more of a theoretical fashion in which was talked about the 
characteristics of those techniques and less of their role in the construction of IDSs, 

that is what I wanted to do in the current chapter. The second main work is also a 
review from the same domain, the use of ML technologies in the construction of 
IDSs. Technologies are classified into 3 main categories: simple learners, combined 
learners and hybrid. The paper also realizes a comprehensive state-of-art, in which 

were surveyed 55 papers from the period 2000-2007 and examined the used 
methods, conducted experiments from the perspective of machine learning. 

From the second domain that was discussed in this chapter, the Semantic Web, 

I will mention the works below, all sustaining the idea of using ontologies inside the 
cyberdefense domain.  

(Razzaq et al.) [163] state that ontologies are an intelligent approach for 
information security, and affirmed that frameworks built by means of this new 
technology are ”a promising new line of defense that can be very efficient in 
detecting sophisticated attacks because they are capable to capture the context of 
information”.  

Also they [164] proposed an ontology-based intrusion detection system for 
application-level that employed a Bayesian filter. The ontology was used as a 
knowledge base in order to provide a common understanding of the concepts of a 
domain and the ability to analyze information automatically, as well as inference and 
reasoning capabilities.  

(Brahmi et al.) [52] created a hybrid IDS using a combination of many 

techniques from AI domain, like multi-agent, ontologies, clustering. Showed the 
advantages of distributed approach for IDS construction, affirmed that ontologies 
are a powerful tool used for representation and sharing of knowledge from a certain 
domain. These components provide IDSs the capacity to perform automated and 
continuous analysis and reason about the instances of attacks data.  

 
 

 
 

BUPT



144  Artificial Intelligence and Semantic Web Technologies in Cyber-

Security -  5 

 

 

5.4. Conclusions 

In this chapter have been shown and explained different methods and 

techniques that are employed in the field of attacks detection in order to build more 
robust, performant and intelligent systems with enhanced functionalities. Currently 
existing platforms may be split into two categories: commercial and research. 
Commercial systems tend to use well-established technologies, most of them relying 
on signature modules. The research ones contain the most recent and innovative 

technologies, such are those from AI or SW that have been presented here. I chose 
the domain of Artificial Intelligence and the newly-occurred Semantic Web because 

these are the most widely spread technologies for building intelligent and capable 
systems from any industrial domain, and cybersecurity is a very good example.  For 
each AI technology presented has been explained the role it has in the intrusion 
detection field, as it has been stated in the literature read by me in the creation of 
the current chapter. My work also proposed models for each technique discussed 
that graphically present the detection methodology based on that technique. Also it 

has been made a review of industrial-scale systems that employ those techniques in 
their detection methodologies.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUPT



145  page  intended  left  blank 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUPT



146  Ontology for Cybersecurity in Networks of Computers – 6 

 

 

 

 

 

6. ONTOLOGY FOR CYBERSECURITY IN 
NETWORKS OF COMPUTERS 

 

 

In this chapter is proposed a model for the domain of cybersecurity under the 
form of an ontology that can be used by the detection systems for awareness in 
possibly dangerous situations. The ontology proposes to describe the domain by 
capturing the most important concepts and their relations. At its construction and 
evaluation were used state-of-art methodologies, such as Semantic Web’s standard 

languages built especially for this purpose, like OWL (vers.2) and SWRL. Its 
efficiency was tested by incorporating into an application-level firewall, providing 
this one the knowledge base with the semantic rules. The resulted prototype IDS 
was tested and compared with other systems from the literature that do not employ 
semantic technologies in their detection processes, my proposed ontology-based 
system proved its superiority. 

 

 

6.1. Introduction 
Cybersecurity is the science that deals with the protection of communication and 

information systems by the attackers that try to exploit their resources or to 
produce them harms[138]. Finds utility in almost each aspect of today’s society: 

daily life, organizations, corporations, government units, each and every one uses 
the Internet to communicate, interact and collaborate. Thus, the Internet 
infrastructure becomes a means of spreading, besides useful information, also of the 
malicious one which takes the form of cyber-attacks and computer intrusions. 
Almost any news source that we consult daily (such as radio, TV, magazines, sites) 
says that the number of cyberattacks lays on an ascending slope and founds at an 
alarming level.  

Cyberspace represents a unique combination of human things and computers 
whose complex interactions happen in a global communication network. Due to this 
cause it presents a vulnerability at suspect users’ situations. Situations awareness 
depends on the perception by users of the world’s environment and understanding 
of its semantic structure [151]. Explanation of these vulnerabilities of systems from 

networks had been put by some researchers on the following reasons:  
- an inadequate technological infrastructure: Internet is at its roots nothing 

else than a communications network built more than half a century ago in 

the scope of doing  military communications 

- situation awareness by the human factor of the cyberspace: how security 

operators and users perceive (recognize) the surrounding environment 

The solution to all these problems, as it was proposed by some scholars, was 
that a full-fledged cybersecurity science must be created whose fundamental goal  is 

BUPT



147  Introduction – 6.1 

 

to perceive the cyber-space as a hybrid framework of human-machine interactions 
in which security policies and personal data protection have a significant role [151]. 

Computer attacks and intrusions date back even from the beginnings of science 
(and especially of the Internet), the earliest ones being known to have occurred at 
the beginning of ’80s. A system that is used in a pernicious situation to alert, 
mitigate, block another system or group of systems of the occurrence of some types 
of attacks is called Intrusion Detection System (IDS). Depending on  the place 
where it operates and the detected attack, an IDS can be for: 

- host: operate only locally in order to protect a single machine 

- network: operate in a distributed system in order to protect many 

computing systems that are linked inside a network 

Domain literature says that IDSs have gone through multiple phases of 
evolution until present day, the most important, according to [163], are: 

 
1- attacks signatures 

2- attacks taxonomies  

3- attacks ontologies  

 First type of IDSs relied on attacks signatures, which are a syntactical 

representation of them. This technique isn’t though a very efficient one because 
signatures contain a small volume of semantic knowledge and lack any trace of 
formal logic. 

The second phase in the evolution represented the use of taxonomies. The 

central components of the functionality of an IDS are the taxonomy and a 
description language for its instances. Taxonomy has the role of characterizing and 

classifying the information about attacks. 
The current phase in the evolution of IDSs is the use of Semantic Web 

technologies, and the most important are ontologies. Cyberdefense systems that are 
built using an ontological approach represent a promising new line of defense that 
can be capable to detect sophisticated attacks and even Zero-Day (previously 
unknown) due to their ability to capture the context of information and filter it on 
certain criteria [163]. 

An ontology represent a formal specification of the concepts and relations 
among the entities of an application domain. Unlike taxonomies, they have powerful 
constructors, such as machine-interpretable definitions of domain concepts and 
relationships among them, providing software systems with the ability to share a 
common understanding of the information and to be able to make reasoning over it. 
Ontologies are built in the scope of information sharing and reuse among the 
entities of a domain, in the present situation, cyberdefense systems. 

The most important languages for ontology development that have been created 
by now are: RDF, RDFS, DAML+OIL, and, the most important one, OWL together 
with its last version, OWL2. All had been created as standards for the Semantic 
Web. 

My ontological model that stores information about attacks has been 
constructed following a 7-steps methodology, as it will be explained more in detail in 

section 3. For the realization of the current research I endorsed on 2 works I read 
from the literature, those of Razzaq [163] and Zhu [202], but I tried to build a more 
comprehensive model, the ones from the above-mentioned papers were created 
only for specific levels of the OSI stack (more exactly application and HTTP 

BUPT



148  Ontology for Cybersecurity in Networks of Computers – 6 

 

protocolul), respectively a common language for cybersecurity information sharing. 
The proposed ontology was developed into the Protégé 5 environment that was 

proposed at Stanford University and represented in the last version of the Semantic 
Web standard ontology language, OWL2.0. 

For the construction had been studied a variety of resources from literature, 
such as catalogs of malware, dictionaries with attacks information, ontologies and 
schemas, and many others. These will be mentioned at the end of the next section.  
 

6.2. State-of-Art in Researches 

In this section I will present a list of some of the most important articles about 
semantic security that I read for the creation of the current chapter. This is an 
emerging research area that brings together the information security and semantic 
systems domains in order to create more efficient defense frameworks that fight 
more promising against cyberattacks which are continuously proliferating. A big 

majority of semantic technologies used for the creation of security systems are 
taken from the domains of Semantic Web and Artificial Intelligence, among the most 
important mention ontologies, multi-agents, learning algorithms, clustering etc. 

(Razzaq et al.) [163] proposed two ontological models for the computer attacks 
created by means of the technologies and languages of the Semantic Web. One of 
them conceptualizes the domain of cyberattacks and the other one is for the 

communication protocol HTTP, both being developed with the goal in mind to 
enhance the capacity of an IDS to detect attacks at the application level. Their 
article is a vast work that tackles many fields from the domain of ontologies 
engineering, such as development methodologies, implementation and evaluation, 

storing etc. Their ontologies had been tested by using an application-level firewall 
and the obtained results were compared with those of other systems, proving to be 
superior for different evaluation parameters. 

(Undercoffer et al.) [199] proposed an ontology that specifies a model of 
computer attacks using the Semantic Web technology languages  DAML+OIL and 
DAMLJessKB. For the construction phase they studied the CERT/CC Advisories and 
ICAT sources regarding the classes of attacks, and the second source was the OS 
Linux kernel from which had been gathered over 190 attributes at the system, 
process and network levels. The ontology was tested by means of a distributed IDS 
and used in order to detect several types of known attacks, like Mitnick, Buffer 

Overflow or Denial of Service.  
Zhu [202] affirmed that a necessary condition for achieving a good cyber-

defense is to share patterns (formats) of attacks. He proposed an ontology for 
attack patterns as a common language for cybersecurity information sharing that 
has as main purpose to provide the defenders a good understanding and a 

systematic analysis regarding the perspectives of the hackers. This paper is also a 

vast effort that covers many theoretical notions from the ontology engineering 
domain. Most part presents the process of ontology development based on a 7-step 
methodology.  

(Oltramari et al.)[151] proposed an ontology for secured operations in 
cyberspace, and explain that there is need for a good awareness of the environment 
in order to be performed a good defense. The objectives of the ontology are to 
increase the situations awareness by the cyber defenders, thus helping them in the 

processes of decision making depending on the state of the environment. The 
ontology has been created by reusing other existing ones, such as CRATELO, an 

BUPT



149  State-of-Art in Researches – 6.2 

 

ontological framework from the Alliance of Research in Cybersecurity (CSRA) in 
order to support new use scenarios. 

(Baader et al.) [25] describe the role of Description Logics in the development of 
the Semantic Web. They present the benefits that DLs bring into the ontologies 
domain, for their construction, maintenance and integration. Most part of the article 
is dedicated to the discussion of SHIQ language, a description logic from literature. 

(Obrst et al.) [150] developed an ontology of malware that allows integration of 
data from many sources and whose fundamental structure is represented by the 
Diamond Model of the malicious activity. Their effort was focused on savings by 

reusing some existing ontologies, extending them in order to deal with new security 

scenarios. Are presented the available resources for anyone who wants to build an 
ontology for cybersecurity (taxonomies, dictionaries, ontologies), languages for 
modeling security incidents (OpenIOC, IODefVeris), models for the existing attack 
patterns (WASC, SCAP etc). 

In [70] Ding et al. made a literary review in which is discussed the domain of 
ontologies as a Semantic Web technology. Are presented the evolution of the 

ontology languages, like DAML+OIL, OWL, RDFS, comparisons are made over the 
constructors of each one, are represented the ontology management tools (stores, 
editors, processors), comparisons between the characteristics of the most known 
triple stores used at the persistence of ontologies instances, etc. Also are presented 
the real-world applications of ontologies in different domains, such as Web services 
composition and description, WSN networks state descriptions, publishing of data 

from the personal profiles etc.   
For the construction of the ontology proposed in this chapter I studied a number 

of resources from the cybersecurity literature, such as taxonomies, catalogs, 

schemas, lexicas and ontologies. Had been laid many efforts for malware 
classification, such as patterns, variants and characteristics. These are good sources 
that can be consulted for concepts, abstractions, entities, attributes, relations etc. 
Below I will present those that I consider to be the most important for this study 

from the ones that I read.  
MAEC is a language for addressing all sorts of malware and specify their 

characteristics and manifests based on attributes patterns such as behaviors, 
artifacts and attacks. It organizes information onto a 3 levels hierarchy, from the 
bottom to the upper-most, and abstracts the actions from their implementations 
(syntaxes and semantics). For more documentation to be seen source [233]. 

CAPEC is a taxonomy with attacks patterns of MITRE corporation  [234]. 

Contains 68 categories and 400 patterns. Categories correspond to the MAEC 
mechanisms and patterns to the first two levels of MAEC. Another catalog with a 
similar purpose is WASC Threat Classification [235].  

NetOps is an ontology developed by MITRE in 2009 with information about 
operations in computer networks. This represents blocks of missions of interest for 

the management of US Federal Government networks.  

SCAP is a suite of specifications that standardize the format and nomenclature 
for the communication between security software products of the configuration 
information [236]. The most important for the work in the current chapter are:  

- OVAL  

- CPE  

- CCE  

- CVE  

 

BUPT



150  Ontology for Cybersecurity in Networks of Computers – 6 

 

 

 
Fig.6.1: Top tier of the ontology and its classes (viz. Protégé) 

 

 
Fig.6.2: The owl:Target class extended with all its subclasses 

 

BUPT



151  Construction – 6.3 

 

6.3. Construction 

The knowledge model used by the IDS in the process of attacks detection is 
proposed in the form of an ontology of cyber-operations. It was designed to contain 
knowledge about types of attacks and threats, consequences of attacks, 
countermeasures for mitigating and stopping the effects of attacks, vulnerabilities 
being exploited by attackers at each level, and much other information. 

An ontology is an explicit specification under the form of a data structure that 

captures the important notions from a real-world domain and their relations. The 

process of ontologies design is an iteration to determine the scope, define concepts 
(classes), proprieties (relations), axioms, constraints and instances. 

For the construction of my ontological model I chose the methodology 
OntologyDevelopment 101, which is a 7-step process for the development of domain 
ontologies, as it is affirmed in [149].  
Next I will try to point out each of these steps in the case of constructing my 

ontology. 

A) Ontology scope and objective 

My ontology serves as a knowledge base that stores information from of the 
cybersecurity domain, about attacks, victims, operational methods, targets, 
countermeasures, knowledge and resources required etc. It is being used by the 
detection system for the verification of information from a newly occurred event in 
order to find out if it’s an attack (known or unknown) and is being updated by this 
with new information from these situations. 

B) Key concepts of the domain  

In this step are identified the most relevant concepts for the domain that is 
modeled. These are the most general concepts of the ontology (upper-tier) from 

which all others are derived. In the current case, these concepts are: attack, 
vulnerability, method, source, target, consequence, countermeasure, exploit type, 
severity, required knowledge.  

C) Classes and properties 

Classes that describe the structure of the domain are being organized into a 3-
levels hierarchy: upper, middle and bottom. Each concept from an inferior tier is 
derived from those on the next upper tier and captures some more specific concepts 
of the domain.  

Properties (relations) in an ontology are of 3 types:  
- of objects  

- of data, and 

- of annotations.  

Object properties are relations that happen between classes and objects. They 

have the following names scheme: hasProperty and isInversePropertyOf in order to 
describe both sides of a relation (e.g. class A hasSubClass B, and class B 
isSubClassOf A). Data properties are the attributes of classes that describe their 
structure. For example: the class Attack has properties: ID, Name, Level.   

Annotation properties have the main role to create a brief textual description of 
concepts (classes).  

 

BUPT



152  Ontology for Cybersecurity in Networks of Computers – 6 

 

D) Facets of properties 

Facets of properties are constraints and restrictions that apply to properties, 
such would be: 

- cardinality: the number of values 

- quantifiers: relation in which an individual participates 

- data types: the types of values the data properties can take 

- hasValue restrictions 

E) Formalization 

In this step the language for formalization (specification) of the ontology is 

chosen together with the environment where it will be developed. In this case I 
chose Protégé  5, which is today’s most used ontology editor created at Stanford 
University, in California. For the specification language, I also headed towards a 
state-of-art of the domain, the Web Ontology Language, version 2 (OWL2.0). 

F) Instances 

I instantiated the classes of the ontology in order to create individuals that 
represent a form of concrete information about attacks and their relations, as it has 
been specified inside the ontology. Were created instances of attacks, 

consequences, vulnerabilities exploited, target components of the systems, solutions 
for the attacks effects mitigation, knowledge required by hackers, and many others. 
Instances of the ontology classes have been stored into a knowledge base which is 
queried and updated by the web application IDS during detection process.  

The link towards the complete ontology will be stated in the Conclusion section 
of this chapter so that it can be downloaded. In that can be observed all classes, 

properties, constraints, instances, as they have been discussed during this section.  

 
 

Fig.6.3: The procedure of ontology construction in OntologyDevelopment101 
 

BUPT



153  Evaluation – 6.4 

 

6.4. Evaluation 

Various instances of attacks and vulnerabilities have been tested using an 
application-level firewall. The proposed system is a new approach to the application 
of semantic technologies within the computer security field. The ontological model is 
kept inside a knowledge base from where it is accessed by the firewall using 
inference in order to detect new events. The system produced detection rates that 
are comparative (especially for the first 10 attacks mentioned by OWASP) with some 

of the best security solutions that currently exist today, like Snort or ModSecurity. 

The use of semantic rules allows the model to be more efficient in execution time by 
providing substantial reductions in search space and the result of a smaller false 
positives rate.  

In this case, for evaluation I used OntoClean. This is a methodology for 
analyzing of ontological models of information systems based on some formal meta-
properties, independent of the classes domain [93]. OntoClean offers formal 

reasoning about the common mistakes in the process of ontology design and helps 
to ontology validation by exposing the improper modeling choices and 
inconsistencies, removing of incorrect relations from the model by assigning meta-
properties to each concept and application of rules in order to diagnose the misuse 
of relations. As effect, it removes the incorrect relations and exposes the implicit 
assumptions.  

Among the 15 criteria as many that are mentioned in the literature, I chose 8 
which I considered being the fittest for my ontology, which I will present next.  
1)   The first criteria states that all information from the model (definitions and 
descriptions of classes, properties, axioms) must be accurate and valid from the 

point of view of formality, in accord with some well-established standards from the 
domain in cause. The formal Correctness and validity of the ontology is assured by 
the OntClean methodology. OntoClean rules have been applied over classes and 

properties to ensure the model’s correctness and meta-properties like Rigid, 
Identity, Unity to validate the taxonomical relations.  
2)  A model is consistent if all its relations are conforming with its characteristics. 
This means that all equivalence relations are reflexive, symmetrical and transitive; 
all inclusion relations are irreflexive, asymmetrical and transitive; all disjunction 
relations are reflexive, symmetrical and transitive. The model’s consistency has 
been assessed by using a reasoner, the goal was to verify the uniformity and 

correctness of the knowledge base, data instances, assertions etc. In the current 
case I used FaCT++ , HermiT and Pellet, the most efficient proved to be FaCT++ 
which had done the above tasks in almost half of the time (approx. 312ms) 
compared to the others that had yielded 656ms and 858ms, respectively.   
3)  Completeness metric determines if the ontology covers accordingly the domain 

under consideration. The ontology proposed here, as it had already been affirmed in 

this chapter, was designed in the purpose to be a large model in order to capture as 
much information as possible from the domain so that the IDS that uses it to 
perform detection is efficient as possible. Moreover, it does not contain redundant 
semantics for terms and irrelevant axioms, only the essential ones are kept.   
 

BUPT



154  Ontology for Cybersecurity in Networks of Computers – 6 

 

4)  The proposed model is expandable, being possible to add with minimum effort 
new knowledge from the domain using the procedure of semantic alignment of 

ontologies. The Model can be deployed and reused for attacks detection by an IDS.  

5)  The Ontology is clean, each entity (concept, property, axiom, rule, description) 
is well specified and documented in natural language in order to be better 
understood, analyzed, reused, manipulated by users.  

6)  Computaţional complexity, integrity and efficacy measure the model’s 
efficiency in terms of resources consumed, time restrictions, consistency checking 

etc. In order to apply this metric, I processed my model using an inference engine, 

FaCT++, which is a reasoner whose performance in terms of inference times is 
superior to the others. The ontology has been designed s.t. to avoid the generation 
and application of new rules for each newly occurred situation, a fact that would 
negatively affect the performance of the system. Any change inside the model may 
create new rules or regenerate the existing rules instances. Moreover, rules and 
semantic constraints of the ontology are applied to the concepts and properties, 
unlike traditional security methods based on rule signatures that work by capturing 

of only some characters or words and are prone to false positives.  

7)  Performance of a system is measured in terms of Precision and Recall. 
Precision is used for measuring the exactness, and recall for the completion. In the 
current situation, precision has been used for determining the number of actual 
attacks detected out of the generated alerts (incl. false positives), while recall to 
measure the number of detected attacks out of the total of generated alerts (incl. 

false negatives). There is also a third metric, F-Measure, in order to interpret the 
accuracy of a system that is computed as the ponderate sum of the first two. 
Adapted to my detection scenario, these are computed as follows: 

𝑃𝑟𝑒𝑐𝑖𝑧𝑖𝑒 =
𝑅𝑎𝑡𝑎𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑒

𝑅𝑎𝑡𝑎𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑒+𝑁𝑟𝑃𝑜𝑧𝐹𝑎𝑙𝑠𝑖
      (1) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑅𝑎𝑡𝑎𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑒

𝑅𝑎𝑡𝑎𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑒+𝑁𝑟𝑃𝑜𝑧𝐹𝑎𝑙𝑠𝑖
     (2) 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑧𝑖𝑒∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑧𝑖𝑒+𝑅𝑒𝑐𝑎𝑙𝑙
     (3) 

8)  Task orientation:  this criterion ensures that the model fulfills the functional 
requirements for which it had been developed. This fact will be proved in the next 

section, where will be shown details about the actual use of the ontology as part of 
the detection system.  
 
 

 
 
 
 

BUPT



155  Deployment – 6.5 

 

6.5. Deployment 

The proposed system is a new approach for the application of semantic 

technologies inside the domain of information security. Various instances of attacks 
and vulnerabilities are tested by means of an application-level prototype of a 
firewall. The ontology is stored in the firewall’s knowledge base from where it is 
accessed by use of inference and rules in order to detect the nature of newly 
occurred situations. Use of semantic rules makes the model be more efficient 
concerning time because it provides a substantial reduction in search space and 

yields small rates of false positives. The proposed system yielded detection rates 

that are comparative with some of the currently best existing systems, like Snort 
and ModSecurity. In fig.4 can be seen the architecture of the detection system in 
which are stated the main modules (components).  

Next I will try to explain the detection process by the firewall. I will take as 
example an attack of type cross-site script (XSS) that a user injects into an 
application in encoded form.  

%3𝐶𝑠𝑐𝑟𝑖𝑝𝑡%3𝐸%20𝑎𝑙𝑒𝑟𝑡(%22𝑇ℎ𝑖𝑠%20𝑖𝑠%20𝑐𝑟𝑜𝑠𝑠%20𝑠𝑖𝑡𝑒%20)𝑠𝑐𝑟𝑖𝑝𝑡%22)%20% 

3𝐶%2𝐹𝑠𝑐𝑟𝑖𝑝𝑡%3𝐸%20𝑠𝑖𝑡𝑒%20)𝑠𝑐𝑟𝑖𝑝𝑡%22)%20%3𝐶%2𝐹𝑠𝑐𝑟𝑖𝑝𝑡%3𝐸 

The input field is being verified by the Parser module of codification, and in 
case it is then will be decoded. After decoding, the above string will look like the 

following:  

< 𝑠𝑐𝑟𝑖𝑝 > 𝐴𝑙𝑒𝑟𝑡("𝑇ℎ𝑖𝑠 𝑖𝑠 𝑐𝑟𝑜𝑠𝑠 𝑠𝑖𝑡𝑒 𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑛𝑔") </𝑠𝑐𝑟𝑖𝑝𝑡 > 

After Normalization module, where it is being transformed and arranged by 
certain scales of the system, the request is being sent forwards to Protocol Validator 
and Analyzer modules.  

In these 2 two modules, the request is being unified with the semantic rules that 

are generated by the ontological model from the knowledge base in order to identify 
potentially malicious content in the input message. The Protocol Validator is 
responsible for the violation of protocol specifications and the Analyzer for other 
types of attacks. If the content of the input matches any of the generated rules then 
the input is blocked and it is made a description of the detected attack. Below is 
shown an example of rule that is generated by the IDS out of the ontological model. 

[𝑟𝑢𝑙𝑒10: (? 𝑥 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒 𝑒𝑥: 𝐻𝑇𝑇𝑃𝑅𝑒𝑞𝑢𝑒𝑠𝑡) (? 𝑦 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒𝑒𝑥: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝐻𝑒𝑎𝑑𝑒𝑟𝑠) (? 𝑧 𝑟𝑑𝑓: 𝑡𝑦𝑝𝑒 

𝑒𝑥: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔)(? 𝑥 𝑒𝑥: ℎ𝑎𝑠𝑅𝑒𝑞𝑢𝑒𝑠𝐻𝑒𝑎𝑑 ? 𝑦) → (? 𝑥 𝑒𝑥: ℎ𝑎𝑠𝐴𝑡 ? 𝑧)] 

 

 

 

 

BUPT



156  Ontology for Cybersecurity in Networks of Computers – 6 

 

 

 

Fig.6.4: Ontology usage by the firewall 

 
 

 
 
 
 
 
 

BUPT



157  Conclusions  – 6.7 

 

 

6.6. Tests and Results 

In order to test the semantic model in the detection of different types of attacks 
in computer networks I used the Kyoto2006+ dataset [186], which contains 
information about attacks captured during a period of 3 years in the networks of 
University of Kyoto, Japan.  

Tests had shown that the minimal detection rate of my system was close to that 

of Snort, that is 90% (little under Snort) and a false alarm rate of 0.6%, which is 

also comparable to that of Snort,  0.35%.  Table 1 presents the evaluation results of 
the proposed system on the 3 performance metrics, together with those of Snort 
and ModSecurity in the attacks detection.  

 

Metric 

Solution 

Precision Recall F-metric 

My system 0.9050 0.8994 0.90713 

Snort 0.9225 0.9031 0.9127 

ModSecurity 0.8990 0.8750 0.8868 
Table 6.1: Comparison of the proposed system with the existing security solutions 

 
 

6.7. Conclusions 

 Many detection techniques had been created until present that struggles to 
keep pace with the increasing inherent complexity of applications, protocols and 

networks, which reverberates also in the increase of number of the attacks that can 
exploit them. Security frameworks that are built following an ontological approach 
represent the next generation of defense systems that present a series of 
advantages over the conventional techniques due to the fact that they are capable 
to capture the context of information and filter based on some well-established 
criteria.  

In this chapter was proposed a method of creation of an ontology that can be 

used at enhancing the detection capacity of the attacks at all levels. The ontology is 
capable of increasing the capacity of the IDS of intrusion detection, providing a 
means to share a common understanding of attacks and the creation of signature 
rules. The use of ontologies and the OWL language in the detection of  attacks yield 
a series of benefits, like:  

i) gather semantic knowledge of  the domain;  

ii) better express of the IDS by constructing signature rules using the  

SWRL language;   

iii) make reasoning an intelligent process 

The ontology has been built and evaluated using state-of-art methodologies found in 
literature especially in this scope, like OntologyDevelopment 101 and OntoClean, 
and for its representation, I chose the standard ontology language of the Semantic 
Web, OWL2.  The ontological model has been tested in the activity of attack 

detection using an application-level firewall that consults the ontology each time a 
suspect, previously unseen situation occurs. In the evaluation has been used the 

BUPT



158  Ontology for Cybersecurity in Networks of Computers – 6 

 

 
testing dataset Kyoto2006+  of Kyoto University that was especially built for this 

scope.  
The scores that resulted in the attacks detection by the proposed IDS were 
compared with another existing solutions: Snort and ModSecurity, these being 
sometimes above while others times below them for different types of attacks, the 
differences are negligible, though. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUPT



159  page  intended  left  blank  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BUPT



160 Intrusion Detection System using Semantic Web and Artificial 

Intelligence Technologies  -  7 

 

 

 

 

 

 

 

 

7. INTRUSION DETECTION SYSTEM USING 
SEMANTIC WEB AND  ARTIFICIAL 

INTELLIGENCE TECHNOLOGIES  
 
 
 

In this chapter will be proposed an IDS based on recent and innovative 
techniques taken from the domains of Artificial Intelligence and the Semantic Web, 
as it was discussed in Chapter 4, with the aim to increase the efficiency in real 
attacks detection and to shrink that of errors. The proposed distributed IDS has as 
main aim the solvation of problems that centralized IDSs deal with, as it will be 
talked about during the course of this chapter, by employing a multi-agent 
architecture in which specific tasks are divided to each agent in part. Knowledge 

base is implemented as an ontology that captures the terms of a domain together 

with their relationships and is used by agents to find out the nature of detected 
events (normal data or attacks). One of the system’s main functionalities is the 
possibility of detection attacks previously unseen (Zero-day), which is implemented 
in the agent that performs anomaly-based detection with the clustering algorithm 
and the ontology. The efficiency of the system was evaluated in terms of two 

functional requirements: scalability and detection capacity and had been compared 
with two other existing systems in the literature, a centralized and a distributed one.  
 
 
 

7.1. Introduction 
 

As the price of information processing and Internet accessibility shrinks more 
and more organizations become vulnerable to an increasingly high variety of attacks 
and cyberintrusions. Thus security in networks became a problem of critical 

importance. Consequently, software tools that are able to automatically detect a 
wide range of intrusions are of acute need. An Intrusion Detection System (IDS) has 
been used in order to detect and protect against attacks in a proactive manner and 

on a short period of time.  
Although all IDSs are a fundamental component of the security infrastructures, 

they still have to face a big number of abridgments. They lack safety, relevance, 
disparity and completion in presentation and processing of the data, as well as the 
complexity of attacks. These things hinder the detection ability of the system since 
they cause the excessive generation of false alarms and shrinks the detection of the 
real attacks. Besides those, the big majority of IDS systems use a centralized   

BUPT



161  State of the Researches -  7.2 

 

 

arhitecture, which exhibits a series of problems, such are those that the central  
processing node may lead to a ’single point of failure, that is, anytime this is being 
attacked the whole IDS is at risk. Besides that, transferring all the information from 
the sensors randomly placed on the network to a central processing point puts great 
demands on the networkțs resources and can lead to its overload. Consequently, 

centralized IDSs suffer from the problem of scalability.  
Moreover, communication and cooperation among the components of such a 

system are very low (or lack completely). In order to lean these problems a multi-
agent architecture is used inside my IDS. The use of multi-agent systems for the 

intrusion detection offers a new alternative to IDS bringing together a series of 
benefits, as it has been stated in literature [52]: 

- continuous and independent execution  

- minimal overhead 

- scalability  

Thus, multi-agent technology increases systemțs resilience, ensuring its safety. 
Simultaneously a new concept occurred, that of  “ontology” as a powerful 

technique for the representation and sharing of a domain knowledge. It is capable to 
enhance the characteristics of intrusion detection by providing an ability to share a 
common understanding of the attacks and to design signature rules [2], [163].  

 
In this respect, it is possible to design a multi-agent architecture on top of a 

knowledge base under the form of an ontology. This sort of architecture proved to 
be favorable for the development of IDSs. 

In this research, I will propose a distributed IDS that uses a combination of 
techniques as multi-agent, ontology and clustering. In this purpose, my system uses 
a set of agents that are deployed to a number of tasks such as: data collecting, 
detection of the categories of attacks (known or unknown) and in the end alerting of 
the administrator. By means of some intensive experiments conducted on a network 
traffic from the real environment and a set of simulated attacks, it has been proved 

the efficiency of the proposed system in terms of scalability and detection capacity. 
 

7.2. State of the Researches 

Recently few approaches in the field of intrusion detection are dedicated to the 
integration of the multi-agent and ontologies technologies. The approaches from the 

distributed IDSs trend that rely on ontological structures proved to increase the 
IDS’s accuracy, perform intelligent reasoning, and many others.  

Must be noted that the first research about the application of ontologies in the 

intrusion detection field was the work of Jeffrey Undercoffer et al. [199]  in the year 
2003. Authors developed a target-centric ontology and represented it in the format 
of the DL language DAML+OIL. This ontology allows modeling of the domain of 
computer attacks and facilitates the process of reasoning in order to detect and 

prevent malicious situations.  
(Mandujano et al.)  [135] proposed a detection tool having a multi-agent 

architecture and an attacker-centered ontology, which they called FROID (First 
Resource for Outbound Intrusion Detection). This system tries to protect a set of 
nodes in a network by using the ontology OID, and is characterized by its intention  

BUPT



162 Intrusion Detection System using Semantic Web and Artificial 

Intelligence Technologies  -  7 

 

 
to detect known attacks based on their signatures. Thus, the main drawback is that 
in case of the occurrence of a new attack the system will ignore it because it has not 
yet been registered in the database.  

(Abdoli&Kahani) proposed a system called ODIDS [2]. This contains two types of 

agents: of IDS and a Master one. Based on the Semantic Web technologies, they 
built an ontology for the extraction of semantic relations among intrusions.  
The main thing that can be imposed to this system is that the Master agent 
represents a single point of failure, and thus if a hacker can prevent it from 

functioning (e.g. halting or mitigation of host on which it executes) the entire 
system will be compromised. Another critic brought to this system is the high time 
consuming, a lot of time being required to make the connection between the Master 

and the IDS agents on the network and to send messages among them.  
Azevedoln [20] constructed an autonomous model called AutoCore, which 

includes a set of intelligent agents as well as a domain ontology in order to make 
intrusion detection independently. The system uses the ontology as a knowledge 
base having high-level concepts as information. The agents are then responsible for 
the allowance of network traffic analysis and detection of malicious activities. The 

technique does not consider though the securing state, which is important in order 
to judge the false positives alerts and attack probability. 

In [71] was constructed an IDS called MONI that relies on an ontological model. 
This system employs a multi-agent technique in order to achieve a distribution of 
detection activities. Besides this, MONI is enhanced with a case-based reasoning 
mechanism (CBR) in order to learn new attacks. Even if CBR is being considered a 

powerful reasoning paradigm and easy to be set up, it suffers from the problems of 

reverse engineering. This lack of flexibility in the knowledge representation is 
without doubt a limitation.  

Having the same concern in mind, (Isaza et al.) [117] developed a multi-agent 
architecture for the detection and prevention of intrusions, called OntoIDSMA. The 
representation of known attacks was designed by means of an ontology-based 
semantic model that specifies rules for signatures and reaction. The authors 
integrated an ANN technique with the K-Means clustering algorithm for the detection 

of new attacks. The main drawback of ANNs is that the possibility to identify an 
intrusion is completely dependent on the system’s training, data and methods being 
employed. Moreover, the configuration of a ANN is a delicate process and may affect 
the results in a significant manner. Besides these, the performances of K-Means and 
its efficiency as a detection method of new attacks depend on the random selection 
of the initial number of clusters. Thus, a bad choice for this number will have as 

effects the shrinking of detecting of the real number of intrusions and the growth of 
generating false alarms. 

Because of its usability and importance, distributed intrusion detection is still a 
thriving problem. In this sense, the main objective of the current research is to 
create a hybrid distributed IDS that integrates:  

a)  ontology 
b)  multi-agent technique  

c)  unsupervised clustering algorithm 
The basic idea of my approach is to address the limitations of centralized IDSs 

by taking advantage of the benefits of multi-agent and ontological paradigms.   
 

BUPT



163 Proposed Distributed -  7.3 

 

 

7.3. Proposed Distributed IDS 

Multi-agent systems are one of the paradigms that are best suited for the attack 
detection in computer networks. Multi-agent technology distributes the resources 
and tasks, and thus each agent has its proper functionality, independent, fact which 
makes the system work faster. 

IDS’s architecture is consisted of a set of cooperative, communicating, and 

collaborative for the collecting and analysis of large traffic volumes and are called 

respectively: Sniffer, Misuse, Anomaly and Reporter. Figure 1 presents the 
conceptual scheme of the proposed IDS. 

To be noted the fact that the combination of detection of known attacks and the 
unknown ones may lead to the increase of IDS’s performance and its detection 
capacity. My IDS binds in an efficient manner the detection of both types of   
attacks. Contains an agent Misuse specialized on the detection of known attacks and 

an Anomaly one competent on the unknown ones. The steps of the IDS’s working 
can be summarized as below: 

a) Sniffer collects packets from the network; a distributed detection system 

must analyze a large volume of events gathered from different sources on 

the network. Thus, the Sniffer agent does the captured packets filtering 

which then converts to XML using the XStream library. Finally, the pre-

processed packets are sent to the other agents for analysis 

b) Misuse receives the converted XML packets from the Sniffer agent which 

transforms then in OWL format in order to be compatible with SWRL rules of 

the ontology, then it is ready to analyze the OWL packets in order to deduce 

those that correspond to the known attacks. This agent looks for attack 

signatures in the packets by consulting with the cyber-ontology. 

Consequently, if some similarity has been found between the OWL packets 

and SWRL rules that define the attack signatures then it creates an alert and 

sends it to the Reporter.  

c) filtered packets from the network are sent to the Anomaly agent that relies 

on a clustering algorithm in order to detect the previously unknown ones; it 

sends an alert to Reporter if an unusual event was detected 

d) Reporter agent generate reports and logs 

The IDS detects the known attacks by means of Misuse agent that uses the 
attacks ontology to enrich the intrusion data and attack signatures with semantic 

relations.  
 
 
 
 
 
 

 
 
 

BUPT



164  Intrusion Detection System using Semantic Web and Artificial 

Intelligence Technologies  -  7 

 

 

 
Fig.7.1: Conceptual schema of the proposed IDS  

 
 

7.4. Attack Signatures Ontology 

Since the last decades, (Raskin et al.) [161] opened a new field in research, one 
that deals with the use of ontologies in the domain of information security together 

with its inherent benefits. Ontologies are an extremely promising paradigm and 
powerful in the same time for this domain, they can be used as basic components 
for performing automated and continuous analysis based on some high-level policies 
that were defined for intrusions detection. Moreover, they provide the IDS an 
increased capacity for reasoning and analysis over data instances that represent 
intrusions. In addition, the property of ontology interoperability is essential for 

adaptation to the problems of systems distribution because cooperation between 
heterogeneous information systems are supported [20].  

Inside the proposed IDS exists an ontology having the role to optimize the 
knowledge representation and embed more intelligence in content analysis. 
Moreover, the IDS integrate in its structure the interoperability among agents 
because they share the same ontological model. The proposed ontology is 
characterized by the network components, intrusion elements, classifications that 

define traffic signatures and the classes of rules. Fig. 2 presents a fragment of the 
ontology that contains the knowledge about intrusions. It allows the representation 
of the known attacks signatures database and is used by the Misuse agent. The 
power and usability of the ontology applied at the signature base problem offer a 
simple representation of the attacks expressed by means of semantical relations 
between intrusions data. May as well be inferred new knowledge about intrusions 
due to the ontology’s capability to reason over the data and determine new 

behaviors. This thing enhances the decision-making process by the IDS. 
 

BUPT



165  Attack Signatures Ontology -  7.4 

 

 
 

 
Fig.7.2: The attack signatures ontology 

 
 

The signatures base contains the rules offered by the ontology, that allow a 
semantic representation for inference and reasoning. Rules are being extracted with 
the Semantic Web’s language  SWRL. This extends the ontology and enriches its 
semantics by deductive reasoning capabilities. It can process instances with 
variables of the form (?x, ?y, ?z). SWRL rules are constructed according to the  

schema: 𝑃𝑟𝑒𝑚𝑖𝑠𝑒 → 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 , where both sides are conjuncts of atoms of the 

form: a1 ∧ a2 … ∧ an. Variables are indicated by prefixing them with the question 

mark. The following example shows a rule represented in SWRL language: 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐻𝑜𝑠𝑡(? 𝑧) ∧ 𝐼𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒(? 𝑝) ∧ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝐵𝑦(? 𝑝, ? 𝑧) ∧ 𝑆𝑄𝐿𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛(? 𝑝)
∧ 𝐷𝑖𝑟𝑒𝑐𝑡𝑒𝑑𝑇𝑜(? 𝑝, ? 𝑧) → 𝑆𝑦𝑠𝑡𝑒𝑚𝑆𝑞𝑙𝐼𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝑡𝑎𝑡𝑒(? 𝑝, ? 𝑧) 

Using this syntax, a rule which states that a combination of the properties: host 
on the network (z) and an intrusion state (p) has as result the attack property  SQL 
Injection. 

 
 
 

BUPT



166 Intrusion Detection System using Semantic Web and Artificial 

Intelligence Technologies  -  7 

 

 
When I built the ontology, I designed and implemented multiple rules to define 
various attack signatures. These rules make possible the process of property 
inference and reasoning. Attack properties, e.g. WebAttack, SQLInjection, DoS, 
DDoS are defined as attributes in ontology that identify the type of intrusions. 

 

Even if known attacks can be easily detected, the problem of detecting 
new ones, never seen before, remains. For this purpose, in addition to the Ontology 
agent using the ontology, the IDS also uses an Anomaly agent based on clustering 

analysis, which is discussed in detail in the next section. 
 

 

7.5. Clustering Detection Algorithm 

 It is important to remember that data mining techniques applied in the field of 
intrusion detection can improve the accuracy of detection, speed and strengthen the 

security of the system [19]. Thus, Agent Anomaly represents the crossover of 
crystallized multi-agent and clustering techniques in the form of an algorithm. The 
idea behind this technique is that the amount of normal connection data is generally 
much higher than that of intrusions. When this occurs, attacks and anomalies can be 
detected based on the size of the clusters, ie large clusters correspond to normal 
data and the rest of the points to attacks, and are called single points (outliers). 
 

 

The proposed algorithm is an unsupervised clustering algorithm built over a 
similar one, K-Means, in order to improve its quality when applied in the field of 
intrusion detection. The latter suffers from a long time complexity, which is an 
important factor in this area due to the large size of the packages. Moreover, the 
number of cluster dependencies and degeneration represent 

weaknesses that make it difficult to use the K-Means algorithm to detect 
anomalies. The algorithm we propose combines two main categories of clustering: 
based on distance and density. Make use of the advantages of one to meet the 
limitations of the other, and vice versa 

The steps of the algorithm workaround are given below: 
a) extraction of density clusters considered centers of initial 

candidate clusters. This method is used as a pre-processing step 

b) calculates the Euclidean distance between the candidate cluster 
center and the instance that will be assigned to the nearest cluster. For an 
xi instance and a day cluster center, the Euclidean distance is defined as: 

c)  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(xi, zi) = √∑ (𝑥𝑖 − 𝑧𝑖)2
𝑛

𝑖=1
                                              (1) 

The size of an instance neighborhood is specified by an input parameter. We 
will call this k 'to distinguish it from the k used by the K-Means algorithm. Thus, k 

'specifies the minimum number of instances in a neighborhood and controls the 
granularity of the final clusters of the density-based method. If set to too high then 
few large clusters are found. To reduce the number of candidate clusters k 'to the 

BUPT



167  Experiments and Results  -  7.6 

 

 
expected one k we can iteratively unify two of the most similar clusters. If k 'is set 

too low then many small clusters will be generated. The clusters will be divided, new 
ones will be created to replace the empty ones and the courts will be reassigned to 
the new centers. This process will continue until there are no more empty clusters. 
Finally, the isolated points of the clusters will be removed to form new clusters in 
which the courts are more like each other. In this way, the value of the centers of 
the initial clusters k will be determined automatically by dividing or reuniting the 
clusters. 

In the detection phase, our algorithm detects intrusions: for each instance it 

proceeds as follows: 
- calculates the Euclidean distance and finds the cluster that has the 

smallest distance from i 
- classify it by the category of the nearest cluster; if the distance between i 

and the cluster of normal data instances is the smallest then i will represent 
normal data, otherwise it is intrusion 

 

7.6. Experiments and Results 

 To evaluate the performance of the proposed IDS in a realistic scenario, 
Sun's JDK 1.4 environment, JADE platform, JPCAP 0.7 and Eclipse development 
environment were used for implementation. The ontology for the attack signatures 
was made in Protégé 5. 

In the experiments I tried to evaluate the performance of the proposed 
system in terms of: 

- scalability: network bandwidth, detection delays, system response in 
time 

- detection capabilities 
 During the evaluation process I compared the results of my system with 

those of the centralized IDS Snort and the multi-agent based on ontology, MONI. 

The experiments were performed on machines equipped with Pentium4 processors 
towed at 3GHz and 8GB main memory. We used machines that were connected via 
a switch, thus forming an interconnected network. We simulated the attacks using 
the Metasploit 3.5.1 tool. The types of simulated attacks are: 

- Smurf (Denial of Service) 

- Back Office (Backdoor) 

- Spyware-Put Hijacker 

- Nmap TCP Scan 

- Finger User 

- RPC Linux Statd Overflow 

- DNS Zone Transfer 

- HTTP IIS Unicode 

 

 

 

 

 

 

 

BUPT



168  Intrusion Detection System using Semantic Web and Artificial 

Intelligence Technologies  -  7 

 

 

7.6.1. Scalability Evaluation 

 To test the scalability of the proposed system, we studied the relationship 
between bandwidth consumption and a number of attacks. Furthermore, the 
variation of the detection delay according to the number of packets is studied. In 

addition, we will see how the response time varies with 8 types of attacks. 
 

The maximum bandwidth consumed by the proposed system is 0.06Mb / 

s, and together with that of the MONI IDS it is smaller than that of Snort. This 
reduction in bandwidth consumption is due to the use of multi-agent technology. 
This is a desired feature in any distributed system. Figure 3a) presents the 
comparison of the 3 systems on bandwidth consumption; the proposed IDS is 

represented in blue color, Snort with yellow and MONI in red colors in the chart. 
Part b) of Fig. 3 shows the detection delays depending on the number of 

packets. According to these results we can answer the question: "why IDS based on 
multi-agent techniques are better". The results clearly show that the detection delay 
of the 2 systems increases linearly with the number of packets. Moreover, the gap 
between the delay curves of our system and that of MONI is small because they 
both use the same technique. In addition, it can be deduced that our system is 

faster than Snort, which can be explained by the fact that agents operate directly on 
the host whenever an action needs to be taken, and their responses are faster than 
centralized systems where actions are performed by the central controller, as in the 
case of Snort. The color codes are preserved, as that of part A). 

 

Part C) illustrates the response time required by the proposed system with 

respect to the types of attacks. On the one hand, it is noted that the detection of all 
attacks, on average, results in poorer response times compared to those of Snort 
due to its centralized detection engine. This shows how fast our system responds. 
On the other hand, in the MONI system the model 

The ontological basis is developed in JADE, while ours was created in 
Protégé and queried using SWRL. The response time of our system is better than 

that of MONI due to the fact that in my system the inferred model is calculated only 
once before the matches start and is used in all queries. Figure 3 shows that my 
system outperforms MONI and allows the semantics of ontology to be exploited. 
 

 
 
 

 

 
 
 
 
 

 
 
 
 
 

BUPT



169  Experiments and Results  -  7.6 

 

 

 
Fig.7.3: Bandwidth consumption, analysis delay and response time of ech IDS 

 

BUPT



170  Intrusion Detection System using Semantic Web and Artificial 

Intelligence Technologies  -  7 

 

 
In conclusion, it can be deduced from the results that the performance of 

the proposed system will not deteriorate too much with the increase in the number 
of attacks, which is justified by the low bandwidth consumption, short detection 
delays and fast response times. Also, when multiple machines are connected to the 

network, the IDS will support the load and deliver the answers quickly. 
 

  

7.6.2. Evaluation of Detection Capacity 

In order to evaluate the detection ability of an IDS usually two metrics are used 
[163]:  

- detection rate (DR) 

- false positives rate (FP) 

 The detection rate is the number of intrusions that were correctly 
detected. In contrast, the false positive rate is the total number of normal courts 
that have been incorrectly classified as attacks. Therefore, the value of DR must be 

as high as possible and that of FP as low as possible. 
 

 

 
Fig.7.4a): False Positive rates of each IDS 

 
 
 
 

BUPT



171  Conclusions -  7.7 

 

 
Fig.7.4b): Detection rates of each IDS 

 
Figure 4a) shows that the FP rate of the system and that of MONI is 

significantly lower than that of Snort. This is due to the adaptive mechanisms used 
by the agents, allowing the systems to adapt better to the environment. As a result, 

the number of false alarms is reduced accordingly. For example, for attack type 3, 
Snort's FP rate can be as high as 0.019%, compared to 0.007% and 0.005% for 
MONI and my system. 

In part b) we can see that the DR rate of my system is higher than that of 
MONI. Moreover, of the three IDS evaluated, Snort has the lowest value of this rate. 
For example, for attack 3, my system and MONI have 97.9% and 94.9%, 
respectively, and Snort's is 74.1%, due to its centralized architecture. Knowing that 

one of the main problems of today's IDS is the decrease in the number of false 
alarms, the main contribution is the decrease in the number of false alarms and at 
the same time maintaining a good detection rate. 
 

 

7.7. Conclusions 

 Due to its usability and importance, distributed intrusion detection is a 
booming issue. Centralized IDS systems have been shown to suffer from a number 
of problems, such as high rates of false positives and negatives, low detection 
efficiency, low scalability, and especially when dealing with distributed attacks in 
network environments. . This is because the central processing node can lead to the 

problem of the "single drop point" and the transfer of all data from the nodes to a 
central processing point puts great demands on network transport and can lead to 
overload if there is no means of management. 

BUPT



172  Intrusion Detection System using Semantic Web and Artificial 

Intelligence Technologies  -  7 

 

 

In this chapter I have investigated some ways to address the above 
issues. For this purpose I proposed a hybrid multi-agent IDS based on a 
combination between an ontological model and a clustering technique. Multi-agent 

technology has the advantage that resources and tasks are distributed to multiple 
agents, each with its own independent functionality, which increases the speed of 
system execution. Our system contains 4 agents for performing the main detection 
tasks: Sniffer, Anomaly, Misuse, Reporter. The proposed grouping (clustering) 
detection algorithm considers large clusters as normal connection data and outliers 

are attacks. It is an unsupervised type, uses two types of clustering: distance and 
density, and is built on top of the well-known K-Means algorithm, modified for 

application in intrusion detection. 
 

Experiments were performed to evaluate the performance of the proposed 
system in terms of scalability and detection. For the first time, we studied the 
relationship between bandwidth consumption and the number of attacks, the 
variation in the detection delay depending on the number of packets, and also the 

response time in respect of 8 attacks. For the second we used two metrics: the 
detection rate and the false positive rate. I compared the performances of the 
created system with those of 2 other similar systems: Snort and MONI, the results 
obtained clearly showing the superiority of my system. 
 

 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 

BUPT



173  page  intended  left  blank 

 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
 
 

BUPT



174  Final Conclusions and Future Directions of the Research -  8 

 

 
 

 
 
 
 
 

8. FINAL CONCLUSIONS AND FUTURE 
DIRECTIONS OF THE RESEARCH 

  
 
 
 
 

This chapter draws the curtain over the work that has been done in this thesis 
and discusses a few possible directions for the development, other than those 
presented.  

 
 

8.1. Conclusions 
Even since the beginning of this thesis, the following two research problems had 

been stated: 
(1) how is possible to contribute at the development and standardization of the 

third generation of World Wide Web recently occurred, namely Web3.0, 

known also as the Semantic Web 

(2) how is possible to enhance the performance of cyber-defense systems for the 

detection of attacks in order to increase their rate of detecting for the real  

attacks (real positives) and slow down the number of false alerts (false 

negatives)  

These two goals, even though at first glance they seem to exist in two different 
spheres of domains and don’t have anything in common, this is not true, as it will be 
seen below. Based on these two objectives I divided this thesis into two big parts, 
each brings contributions to the respective domain. 

First part’s contributions are the ones below. 
Chapter 1:  
- initiates the reader into the main domain of the thesis, the Semantic Web; 

here have been presented the general notions about this, as its role in 

driving the evolution of the Classic (traditional) Web by creation of 

technologies that support the desired functionalities 

- I made analyzes, comparisons between technologies of the classical Web 

and those newly created of the Semantic Web taking into consideration 

multiple criteria  

BUPT



175  Conclusions -  8.1 

 

 
- most important contribution of the chapter represents a literary study 

(state-of-art) in which I presented the most important things that had been 

achieved in literature in order to support the development of the Semantic 

Web, among the greatest one are development environments of SW 

applications, reasoning systems, tools for conversions from classical data 

formats to the semantic ones etc. With this occasion I provided the reader 

references to works from literature where he can find out more about what 

has been briefly discussed there, offering him the possibility to enrich its 

knowledge 

Chapter 2: 
- presentation of the ”bottom rock” of the Semantic Web, that is the logical 

formalisms for the representation of knowledge from an application domain. 

These formalisms are fragments from the First Order Logic that tighten the 

expressivity with the scope to maintain tractability of reasoning process, and 

they are called Description Logics 

- I had made comparisons, analyzes among the most important DL languages  

created in literature, especially ones of the S family concerning their 

capacities of knowledge representation (constructors of concepts and roles), 

concrete examples were shown where I explained what are the effects of 

adding a new constructor (e.g. inverses of roles, nominals, etc) onto the 

complexity of reasoning 

- I have proposed a state-of-art in which I discussed the most important 

achievements in the domain from the last 2 decades, in terms of languages 

created by researchers or the reasoning algorithms, giving the reader 

references where he can find out more information 

Chapter 3: 
- I proposed a reasoner that performs deduction operations over logical 

knowledge bases which contain an additional (ontological) layer, which is 

one which specifies restrictions that must be applied to facts in order for 

these to exist in the KB 

The second main part of the thesis comprises the following chapters. 
Chapter 4: 

- represents the beginning of the second main part of this thesis and it is 

dedicated to Computers Security.  This chapter is meant to be an   

introduction in which are narrated the fundamental notions of the 

cybersecurity domain 

- as contributions worth mentioning a literary study in which were presented 

the most important works read by me in this domain and I provided the 

reader references where he can find out more 

 

BUPT



176   Final Conclusions and Future Directions of the Research  -  8 

 

Chapter 5: 
- I made a study about the newest and innovative technologies that are being 

used in the development of cyberdefense systems, the most important 

coming from the domains of AI and SW 

- had been proposed models in the form of UML diagrams that graphically 

show the workaround of processes inside those detection systems 

Chapter 6: 
- was proposed a model of cybersecurity information under the form of a 

Semantic Web ontology that is being used by an IDS when it must find out 

the nature of new situations (normal or attacks) 

Chapter 7: 
- I proposed a distributed IDS for computers networks with the aim to solve 

the problems faced by centralized IDSs 

- the proposed IDS in its detection process relies on AI and SW technologies, 

such as multi-agent, clustering algorithms and ontologies 

8.2. Future Directions of the Research 
 

Some future directions for the efforts done in this thesis to which I’ve been 
thought about are the ones below. 

 

Chapter 2 stated that DL-based ontologies play a crucial role on the Semantic 
Web, being used for the specification of the semantics of Web resources and that 
are capable of exploiting reasoner engines that had been created for the DL KBs in 
order to facilitate understanding by the machines of those resource descriptions. 
Their universal acceptance has been hindered by two major factors: 

 
 semantic incompatibilities between the ontologies standard 

representation language on the Semantic Web (OWL) and RDFS, the 

universal representation data language on the Semantic Web 

 lack of support for customized datatypes and predicates in OWL 

A big part in the domain literature says that the main ways by which 
someone can support the development of the Semantic Web is by constructing of 
vocabularies and ontologies that conceptualize a certain domain, and by creation of 

inference engines in a chosen programming language that can process the resource 

descriptions and facilitate machine understanding. Chapter 3 proposed a reasoned 
system that produces the saturation of KBs that are represented in the syntax of 
FOL and was implemented in the OO language Java. I would like to extend this work 
by implementing the reasoner also in other languages. Even though Java was 
chosen mainly due to its portability (so can be executed in heterogeneous 
environments), there exist agents on the Semantic Web that are written in a certain 

language and import the system’s modules only if it’s written in same language. 
Also it can be extended the system’s business logic in order to parse also the syntax 
of other logics, such as Modal or DLs.  

 

BUPT



177  Future Directions of the Research -  8.2 

 

 
Part 2 discussed about the innovative techniques borrowed from domains of 

AI and SW and can be used at enhancing the detection performance. For this I 
analyzed 7 of those techniques, and 3 were used in the construction of my IDS in 
chapter 7. Because AI is a science that contains a big number of crated 
technologies, I am willing to study also others (besides those five from chapter 5) 
and learn how to use them to developing of IDSs. 
Among the most important, as it was stated by literature, are Artificial Neural 
Networks, Genetic Algorithms and Bayesian filters. 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
 
 

 

BUPT



178  page  intended  left  blank  

 
BUPT



179  page  intended  left  blank 

 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
 

BUPT



180  APPENDIX  

 

 
APPENDIX 

 
 
Appendix A  (Chapter 2) 
 

DL Constructor Subsumption Satisfiability Creator 

FL- (∩, ∃𝑅, ∀𝑅. 𝐶)() PTime-complete  Brachman & Levesque, 1987 

AL (∩, ∃𝑅, ∀𝑅. 𝐶, ¬𝑛𝑎𝑚𝑒)() PTime-complete  Schmidt-Schauβ & Smolka, 1991 

ALN (∩, ∃𝑅, ∀𝑅. 𝐶, <> 𝑅)() PTime-complete  Donini, 1997 

AL-, 
AL° 

 PTime-complete  Donini, 1999 

FL-(∩)  PTime-complete  Donini, 1991 

ELIRO (∩, ∃𝑅. 𝐶, {𝑜})(∩, −) PTime-complete  Baader, 1998 

ALε (∩, ∃𝑅. 𝐶, ∀𝑅. 𝐶, ¬𝑛𝑎𝑚𝑒)() NP-complete NP-complete Donini, 1992 

ALR (∩, ∃𝑅, ∀𝑅. 𝐶, ¬𝑛𝑎𝑚𝑒)(∩) NP-complete NP-complete Donini, 1991 

ALεR (∩, ∃𝑅. 𝐶, ∀𝑅. 𝐶, ¬𝑛𝑎𝑚𝑒)(∩) NP-complete NP-complete Donini, 1991 

FL-ε (∩, ∃𝑅, ∀𝑅. 𝐶)(∩) NP-complete NP-complete Donini, 1991 

ALU (∩,∪, ∃𝑅, ∀𝑅. 𝐶, ¬𝑛𝑎𝑚𝑒)(∩) coNP-complete coNP-complete Donini, 1997 

ALN
(−) 

 coNP-complete PTime-complete Donini, 1999 

FL-(∩

, −) 

  NP-complete Donini, 1999 

FL-(∩

, °) 

  coNP-complete Donini, 1999 

FL-

(°, −) 

  coNP-complete Donini, 1999 

AL()   in resp. cu un set 

de axiome acicl.: 

coNP-hard 

Calvanese, 1996 

ALC (∩,∪, ∃𝑅. 𝐶, ∀𝑅. 𝐶, ¬𝑛𝑎𝑚𝑒)() PSpace-complete PSpace-complete Schmidt-Schauβ & Smolka, 1991 

ALεN (∩, ∃𝑅. 𝐶, ∀𝑅. 𝐶, ¬𝑛𝑎𝑚𝑒, <
> 𝑅)() 

PSpace-complete PSpace-complete Hemaspaandra, 1999 

ALCN
R 

(∩, ∃𝑅. 𝐶, ∀𝑅. 𝐶, ¬𝑛𝑎𝑚𝑒, <
> 𝑅)(∩) 

PSpace-complete PSpace-complete Donini, 1997 

ALN(∩

) 
 PSpace-complete PSpace-complete Donini, 1997 

ALU(∩

) 
 PSpace-complete PSpace-complete Donini, 1997 

ALC(∩

,∪, °) 
  PSpace-complete Massaci, 2001 

BUPT



181  Appendix A – Chapter 2 

 

     

ALε()   w.r.t. a set of 

cyclic axioms: 

PSpace-complete 

Calvanese, 1996 

ALN()   w.r.t. a set of 

cyclic axioms of 

the form (A ≡
C): PSpace-

complete 

Kusters, 1998 

AL   w.r.t. a set of 

axioms: 

ExpTime-

complete 

Schmidt-Schauβ & Smolka, 1991 

ALCtrans (∩,∪, ∃𝑅. 𝐶, ∀𝑅. 𝐶, ¬𝑛𝑎𝑚𝑒)(
∪, °,∗, 𝑖𝑑, −) 

 ExpTime-

complete 

Vardi & Wolper, 1986 

ALCIQr

eg 

(∩,∪, ¬, ∃𝑅. 𝐶, ∀𝑅. 𝐶,
𝜇𝑥. 𝐶[𝑥], {𝑜})( −) 

 ExpTime-

complete 

Sattler & Vardi, 2001 

ALC 
with 

concrete 

domains 

  w.r.t. a set of 

acyclic axioms: 

NexpTime-

complete 

Lutz, 2001 

ALC(∩

,∪, ¬) 
  NExpTime-

complete 

Lutz & Sattler, 2001 

 (∩,∪, ∃𝑅. 𝐶, ∀𝑅. 𝐶, ¬, {𝑜}, <
> 𝑅. 𝐶)() 

 NExpTime-

complete 

Tobies, 2001 

ALCN
R 

(∩,∪, ∃𝑅. 𝐶, ∀𝑅. 𝐶, ¬, <
> 𝑅. 𝐶) (∩) 

 w.r.t. a set of 

acyclic axioms: 

NExpTime-

complete 

Buccheit, 1993 

FL-(°, =

) 

 indecidabila indecidable Schmidt-Schauβ, 1989 

FL-(°, ⊆

) 
 indecidabila indecidable Schmidt-Schauβ, 1989 

FL-(°, ⊆

, −,
func, R|c) 

 indecidabila indecidable Patel-Schneider, 1989 

U ()(∩, ¬, °) indecidabila indecidable Schild, 1989 

ALCN
(°,∪, −),  
ALCN

(°,∩), 

  w.r.t. a set of 

axioms: 

indecidable 

Baader & Sattler, 1999 

Table 1: A list with some DL languages and complexity results  

 

 
 

BUPT



182  APPENDIX  

 

 
Appendix B  (Chapter 6) 
 

High Level 
(General Concepts) 

Middle Level 
(Middle Concepts - Concrete) 

Attack Denial of Service Network Flooding 

Host 

Distributed 

Buffer Overflow 

Mitnick 

Malware 
Installation 

Viruses 

Trojans 

Worms 

Spies 

Identity Theft Guessing 

Implementation Exploit 

Input Validation HTTP Request Partitioning 

HTTP Response Theft 

Paths Traversing 

Buffer Overflow 

Defects Injection 

Source Geo Location 

IP Address 

Target Software Operation System Windows 

Linux 

Mac OS 

Aplicatie Server Web 

Databases 

Email 

Client 

User 

Network Application 

Presentation 

Session  

Transport 

Physical 

Hardware Computer Equipment 

Network Equipment  

Peripheral Devices 

Technologies SQL 

PHP 

ASP 

JavaScript 

BUPT



183  Appendix B – Chapter 6 

 

 
 
Vulnerabilities 
 

Personal Data 

 

Security Level 

Structuring Human resources 

Organization Reputation 

Information Resources 

Organization Goods 

Weak Configuration Implicit Settings 

Unprotected Files 

Redundant Parts 

Insufficient 
Authentication  

Lack of Control at Function Level 

Falses at Navigation between Sites  

Unvalidated Redirects and Forwards  

Erroneous Authentication Mechanisms 

Insufficient Input Validation SQL, LDAP and Xpath injections 

Cross-Site Scripting 

OS Commands Injection 

Faults in OS Kernel Unrestricted Resource Consumption 

Lack of Resource Optimization Mechanisms 

Consecinte Extenuarea Resurselor 

Privilege Gain 

Data Theft 

Modifications in System 

Contra-masuri Design 

Implementation 

Configuration 

Severitate Low 

Medium 

Large 

Knowledge 
Required for the 
Attacker 

Services Investigation 

Certain Knowledge for Software 

Certain Knowledge for Hardware 

Knowledge about Methods of Attack 

No Required Knowledge 

  

Inquisition Target does only certain operations 

Access to 
target 

Physical 

Remote 

Target Operation 

No Required Inquisition 

BUPT



184  APPENDIX   

 

Policies 
 
 
 

 
 
 
 
 
 
 

Rules Constraints 

Inference 

Atributes Relations 

Validation Sintactical Length Restriction  

Field Restriction 

Value Selection 

Transfer Mode 

Semantical Data Formats  

Types Conversion  

Attributes Relation  

Fragments Combination 

    

Required Resources Material 

Financial 

Humans 

Time 

No Resources Required 

Table 2: Class hierarchy of the ontology 

 
Propriety Domain Range Restriction 

hasSimilarAttack Attack Attack Unicity 

hasTarget Attack Target Unicity 

isTargetOf Target Attack Some 

hasVulnerability Target Vulnerability Unicity 

isVulnerabilityOf Vulnerability Target Unicity 

hasInquisition Attack Inquisition Some 

isInquisitionOf Inquisition Attack Some 

hasRequiredResource Attack Resource Some 

isRequiredResourceOf Resource Attack Some 

hasRequiredKnowledge Attack Required_Knowledge Unicity - 
Some 

isRequiredKnowledgeOf Required_Knowledge Attack Some 

exploits Attack Vulnerability Unicity - 
Some 

isExploitedBy Vulnerability Attack Some 

implies Attack Method Unicity - 
Some 

isImpliedBy Method Attack Some 

hasConsequence Attack Consequence Unicity - 
Some 

isConsequenceOf Consequence Attack Some 

worksAgainst Countermeasure 
 

Attack 
Vulnerability 

Some 

isWorkedAgainst Attack    
Vulnerability 

Countermeasure Unicity - 
Some 

hasSeverity Attack Severity Unicity - 
Some 

isSeverityOf Severity Attack Some 

hasExploitProbabilities Attack Exploit_Probability Unicity - 
Some 

BUPT



185  Appendix B – Chapter 6 

 

isExploitProbabilityOf Exploit_Probability Attack Some 

Table 3: Object properties 

 
Property Domain Interval Characteristic 

ID Attack Number Functional 

name Attack String Functional 

nbOccurrences Attack Number Functional 

similarAttacks Attack String Functional 

Table 4: Data properties 
 

 
 

Property Domain Interval 

Description Attack String 

Version Attack Number  

State Attack String 

Execution course Attack Literal 

Table 5: Annotation properties 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

BUPT



186  APPENDIX  

 

 
Fig.1: Visualization of ontology classes in Protégé environment 

 

BUPT



187  Appendix B – Chapter 6 

 

 
Fig.2: Visualization of ontology classes in Protégé   

BUPT



188  page intended left blank 

 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

 

 
 
 
 
 
 
 

 

BUPT



189  page intended left blank 

 

 
 

 
 
 
 

BUPT



  

 

REFERENCES 
 

[1] A.Abdallah, Formalizing and Studying Dialectical Explanations in Inconsistent 

Knowledge Bases, Phd Thesis, Universite de La Rochelle (2016) 

[2] F.Abdoli, M.Kahani; Ontology-based Distributed Intrusion Detection System, 

Proceedings of 14th International Computer Conference (CSICC), Teheran, Iran (2009) 

[3] B.Abdullah, I.Abd-Alghafar, G.Salama; Performance Evaluation of a Genetic Algorithm-

based Approach to Network Intrusion Detection System, Proceedings of 13th 

International Conference on Aerospace Sciences and Aviation Technology (ASAT), 

Cairo, Egypt (2009) 

[4] S.Abiteboul, R.Hull, V.Vianu; Foundations of Databases, Addison-Wesley Reading 

(1995) 

[5] N.Agarwal, Z.Hussain; A Closer Look at Intrusion Detection Systems for Web 

Applications, Hindawi Journal on Security and Communication Networks, vol.2018 

[6] A.Ahlawat, The TCP/IP Reference Model, https://www.studytonight.com/computer-

networks/tcp-ip-reference-model (2011) 

[7] A.Ahlawat, Comparison Between OSI and TCP/IP Reference Models, 

https://www.studytonight.com/computer-networks/comparison-osi-tcp-model (2011) 

[8] A.Ahlawat, Key Terms, https://www.studytonight.com/computer-networks/key-terms-

computer-networks (2011) 

[9] L.Alhazzaa; Intrusion Detection Systems using Genetic Algorithms, Technical Report, 

King Saudi University (2002) 

[10] L.Alton; The Seven Most Important Data Mining Techniques, 

https://www.datasciencecentral.com/profiles/blogs/the-7-most-important-data-

mining-techniques, (2017) 

[11] M.Alali, A.Almogren, M.Hasan, I.Rassan, A.Bhuyian; Improving Risk Assessment Model 

of Cybersecurity using Fuzzy Logic Inference System, Computers & Security, vol.74, 

Elsevier (2018) 

[12] S.Al-Amro, D.Elizondo, A.Solanas; Evolutionary Computation in Computer Security and 

Forensics: An Overview, Computational Intelligence for Privacy and Security, vol.1,  

pp.25-34 (2012) 

[13] S.Al-Janabi, H.Amjed-Saced; A Neural Network-based Anomaly Intrusion Detection 

System, Proceedings of 4th International Conference on Developments in eSystems 

Engineering, Dubai, UAE (2011) 

[14] A.Ansari, T.Patki, A.Patki, V.Kumar; Integrating Fuzzy Logic and Data Mining: Impact 

on Cybersecurity, Proceedings of 4th International Conference on Fuzzy Systems and 

Knowledge Discovery (FSKD), Haikou, China (2007) 

[15] G.Antoniou, P.Groth, F.v.Harmelen, R.Hoekstra; A Semantic Web Primer, MIT Press 

(2012) 

[16] M.d’Aquin, E.Motta, M.Sabou, S.Angeletou; Toward a New Generation of Semantic 

Web Applications, IEEE Intelligent Systems, vol.23,no.3, pp.20-28 (2008) 

[17] S.Auer, J.Lehmann, S.Tramp, S.Hellmann; Triplify: Lightweight Linked Data Publication 

from Relational Databases, The 18th International Conference on World Wide Web 

(WWW), Madrid, Spain (2009) 

[18] A.Aviad, K.Wecel, W.Abramowicz; The Semantic Approach to Cybersecurity – Towards 

Ontology-based Body of Knowledge, Proceedings of the 14th European Conference on 

Cyber Warfare and Security (ECCWS, 2015)

BUPT

https://www.studytonight.com/computer-networks/tcp-ip-reference-model
https://www.studytonight.com/computer-networks/tcp-ip-reference-model
https://www.studytonight.com/computer-networks/comparison-osi-tcp-model
https://www.studytonight.com/computer-networks/key-terms-computer-networks
https://www.studytonight.com/computer-networks/key-terms-computer-networks
https://www.datasciencecentral.com/profiles/blogs/the-7-most-important-data-mining-techniques
https://www.datasciencecentral.com/profiles/blogs/the-7-most-important-data-mining-techniques


  

 

[19] C.Azad, V.Jha; Data Mining in Intrusion Detection: A Comparative Study of Methods, 

Types and Data Sets, International Journal of Information Technology and Computer 

Science (IJITCS), vol.5, no.8, pp.75-90 (2013) 

[20] R.Azevedoln, E.Dantas, R.Santos, C.Rodriguez, M.Almeida, F.Freitas, W.Veras; An 

Autonomic Ontology-based Multi-agent System for Intrusion Detection in Computer 

Environments, International Journal of Informatics, vol.3, no.1, pp.1-7 (2010) 

[21] F.Baader; Introduction to Tableaux Algorithms for Description Logics, https://lat.inf.tu-

dresden.de/baader/Talks/Tableaux2000.pdf 

[22] F.Baader; Using Automata Theory for Characterizing the Semantics of Terminological 

Cycles, Annals of Mathematics and Artificial Intelligence, vol.18, pp.175-219 (1996) 

[23] F.Baader, S.Brandt, C.Lutz; Pushing the EL envelope, Proceedings of 19th International 

Joint Conference on Artificial Intelligence (IJCAI), pp.364-369 (2005) 

[24] F.Baader, M.Buchheit, B.Hollunder; Cardinality Restrictions on Concepts, Artificial 

Intelligence, vol.88 (1996) 

[25] F.Baader, I.Horrocks, U.Sattler; Description Logics, Handbook of Knowledge 

Representation, chapter 3, Elsevier (2008)  

[26] F.Baader, R.Küsters; Computing the Least Common Subsumer and the Most Specific 

Concept in the Presence of Cyclic ALN Concept Descriptions, Proceedings of 22nd  

German Annual Conference on Artificial Intelligence (KI'98), Lecture Notes in 

Computer Science, vol.1504,  pp.129-140, Springer, Berlin (1998) 

[27] F.Baader, C.Lutz, M.Milicic, U.Sattler, F.Wolter; Integrating Description Logics and 

Action Formalisms: First Results, Proceedings of 20th National Conference on Artificial 

Intelligence (AAAI), MIT Press, pp.572-577 (2005) 

[28] F.Baader, D.McGuiness, D.Nardi, P.Schneider; The Description Logic Handbook: 

Theory, Applications and Implementations, Cambridge University Press, New York, 

USA (2003)  

[29] F.Baader, P.Narendran; Unification of Concept Terms in Description Logics, 

Proceedings of 13th  European Conference on Artificial Intelligence (ECAI'98), pp.331-

335. Ed. John Wiley&Sons, Brighton, UK (1998) 

[30] F.Baader, A.Voronkov; Logic for Programming, Artificial Intelligence and Reasoning, 

Proceedings of 11th International Conference LPAR, Montevideo, Uruguay (2005) 

[31] J.F.Baget, M.Leclere, M.Mugnier, E.Salvat; On Rules with Existential Variables: Walking 

the Decidability Line, Artificial Intelligence, vol.175, pp.1620-1654 (2011) 

[32] Z.Bankovic, D.Stepanovic, S.Bojanic, O.Taladriz; Improving Network Security using 

Genetic Algorithms Approach, Computers&Electrical Engineering, vol.33 no.5-6, 

Elsevier Journal (2007) 

[33] L.Banoth, M.Teja, M.Saicharan, N.Chandra; A Survey of Data Mining and Machine 

Learning Methods for Cyber-Security Intrusion Detection, International Journal of 

Research, vol.4 no.5 (2017) 

[34] V.Barnett, T.Lewis; Outliers in Statistical Data, ISBN: 978-0-471-93094-5, Wiley 

(1994) 

[35] D.Becket; RDF/XML Syntax Specification Revised, W3C Recommendation, 

http://www.w3.org/TR/rdf-syntax-grammar/ (2004) 

[36] T.Berners-Lee; WWW: Past, Present and Future, IEEE Computer Magazine, vol.29 

no.10 (1996) 

[37] T.Berners-Lee; World Wide Computer, Communications of the ACM, vol.40, no.2 

(1997) 

 

 

BUPT

https://lat.inf.tu-dresden.de/baader/Talks/Tableaux2000.pdf
https://lat.inf.tu-dresden.de/baader/Talks/Tableaux2000.pdf
http://www.w3.org/TR/rdf-syntax-grammar/


  

 

[38] T.Berners-Lee; Realizing the Potential of the Web, Web-Weaving (chapter30), 

Butterworth-Heinemann (1998) 

[39] T.Berners-Lee, R.Cailliau, J.Groff; The World Wide Web, Communications of the ACM 

(1994) 

[40] T.Berners-Lee, R.Fielding, L.Masinter; Uniform Resource Identifiers : Generic Syntax, 

Network Working Group, Request for Comments 2396 (1998) 

[41] T.Berners-Lee, M.Fischetti; Weaving the Web, Ed. Harper-Collins, San Francisco 

(1999) 

[42] T.Berners-Lee, J.Hendler, O.Lasilla; The Semantic Web, Feature Article, Scientific 

American (2001) 

[43] T.Berners-Lee, R.Swick; Semantic Web Development, Technical Report AFRL-IF-RS-

TR-2006-294, New York (2006) 

[44] T.Berners-Lee, J.Hendler, From the Semantic Web to Social Machines: A research 

challenge for AI on the World Wide Web, Journal of Artificial Intelligence, vol.174 no.2 

(2010) 

[45] O.Bernholtz, O.Grumberg; Branching Time Temporal Logic and Amorphous Tree 

Automata, Proceedings of International Conference on Concurrency Theory (CONCUR), 

Lecture Notes in Computer Science, vol.715, pp.262-277, Springer (1993) 

[46] C.Bizer, A.Seaborne; D2RQ: Treating non-RDF databases as virtual RDF graphs, 

Proceedings of 3rd International Semantic Web Conference (ISWC), Hiroshima, Japan 

(2004) 

[47] A.Borgida, P.Patel-Schneider; A Semantics and Complete Algorithm for Subsumption in 

the CLASSIC Description Logic, Journal of Artificial Intelligence Research, vol.1, 

pp.277-308 (1994) 

[48] R.Brachman, H.Levesque; Readings in Knowledge Representation, Morgan Kaufmann, 

Los Altos, California (1985) 

[49] R.Brachman, H.Levesque; Tractability of Subsumption in Frame-based Description 

Languages, Proceedings of 4th National Conference on Artificial Intelligence (AAAI), 

Austin TX, USA (1984) 

[50] R.Brachman, J.Schmolze; An Overview of the KL-ONE Knowledge Representation 

System, Journal of Cognitive Science, vol.9 no.2, pp.171-216 (1985) 

[51] I.Brahmi, S.Yahia, H.Aouadi, P.Poncelet; Towards a Multi-agent based Intrusion 

Detection System using Data Mining Approaches, Proceedings of 7th International 

Workshop on Agents and Data Mining Interaction (ADMI), pp.173-194, Taipei,Taiwan 

(2011) 

[52] I.Brahmi, H.Brahmi, S.Yahia; A Multi-Agents Intrusion Detection System using 

Ontology and Clustering Techniques, HAL Inria (2018) 

[53] K.Brahmkstri, D.Thomas, S.Sawant, A.Jadhav, D.Kshiragar; Ontology-based Multi-

Agent Intrusion Detection System for Web Service Attacks using Self Learning, Journal 

of Networks and Communications (NetCom), pp.265-274, Springer (2014) 

[54] S.Brandt; Polynomial Time Reasoning in a Description Logic with Existential 

Restrictions, GCI Axioms and What Else, Proceedings of 16th European Conference on 

Artificial Intelligence (ECAI), pp. 298-302 (2004) 

[55] M.Breunig, H.Kriegel, R.Ng, J.Sander; LOF: Identifying density-based Local Outliers, 

Proceedings of the National Information Systems Security Conference, 2000 

[56] C.Braun; KAON2 Algorithm: Non-tableau Reasoning with Description Logics, Technical 

Report, University of Dresden (2006) 

 

 

BUPT



  

 

[57] M.Buchheit, F.Donini, A.Schaerf; Decidable Reasoning in Terminological Knowledge 

Representation Systems. Journal of Artificial Intelligence Research, vol.1, pp.109-138 

(1993) 

[58] A.Buji; Genetic Algorithms for Tightening Security, Master Thesis, University of Oslo, 

Oslo, Norway (2017) 

[59] A.Cali, G.Gottlob, M.Kifer; Taming the Infinite Chase: Query Answering under 

Expressive Relational Constraints, Proceedings of the 11th International Conference on 

Principles of Knowledge Representation and Reasoning, pp.70-80 (2008) 

[60] D.Calvanese, G.DeGiacomo, and M.Lenzerini; Conjunctive Query Containment in 

Description Logics with n-Ary Relations, Proceedings of the 1997 Workshop on 

Description Logic (DL'97), pp. 5-9 (1997) 

[61] S.Ceri, G.Gottlob, L.Tanca; What You Always Wanted to Know about Datalog, IEEE 

Transactions on Knowledge and Data Engineering (1989) 

[62] S.Ceri, G.Gottlob, L.Tanca; Logic Programming and Databases, Science and Business 

Media, Springer (2012) 

[63] P.Chapke, R.Deshmukh; Intrusion Detection System using Fuzzy Logic and Data 

Mining Techniques, Proceedings of International Conference on Advanced Research in 

Computer Science Engineering and Technology (ARCSET), Unnao, India (2015) 

[64] N.Choudhury; World Wide Web and its Journey from Web1.0 to Web4.0, International 

Journal of Computer Science and Information Technology (IJCSIT), vol.5, no.6 (2014) 

[65] W.Cohen, A.Borgida, H.Hirsh; Computing Least Common Subsumers in Description 

Logics, Proceedings of 10th  National Conference on Artificial Intelligence (AAAI'92), 

pp.754-760. AAAI Press/The MIT Press (1992) 

[66] M.Croitoru, S.Vesic; What can Argumentation do for Inconsistent Ontology Query 

Answering?, Proceedings of the 7th International Conference on Scalable Uncertainty 

Management (SUM, 2013) 

[67] M.Crosbie, E.Spafford; Applying Genetic Programming to Intrusion Detection, 

Proceedings of Association of Advanced Artificial Intelligence (AAAI),  Fall Symposium 

on Genetic Programming, Cambridge, UK, pp.1-8, (1995) 

[68] N.Dalwadi, B.Nagar, A.Makwana; Semantic Web and Comparative Analysis of 

Inference Engines, International Journal of Computer Science and Information 

Technologies, vol.3, pp.3843-3847 (2012) 

[69] A.Deutsch, A.Nash, J.Rammel; The Chase Revisited, Proceedings of the 27th  ACM-

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp.149-158 

(2008) 

[70] L.Ding, P.Kolari, Z.Ding, S.Avancha; Using Ontologies in the Semantic Web: A Survey, 

Ontologies. Integrated Series in Information Systems, Springer, vol.14, pp.79-113, 

(2007) 

[71] T.Djotio, C.Tangha, F.Tchangoue, B.Batchakui; MONI: Mobile Agents Ontology-based 

for Network Intrusion Management, International Journal of Advanced Media and 

Communication, vol.2, no.3, pp.288-307 (2008) 

[72] F.Donini, F.Massacci; Exp-Time Tableaux for ALC, Artificial Intelligence, vol.124, no.1, 

pp.87-138 (2000) 

[73] M.Drolet; The Darwin Defense: Can Genetic Algorithms Outsmart Malware?, 

https://www.csoonline.com/article/3237671/the-darwin-defense-can-genetic-

algorithms-outsmart-malware.html (2017) 

BUPT

https://www.csoonline.com/article/3237671/the-darwin-defense-can-genetic-algorithms-outsmart-malware.html
https://www.csoonline.com/article/3237671/the-darwin-defense-can-genetic-algorithms-outsmart-malware.html


  

 

[74] P.M.Dung; On the Acceptability of Arguments and its Fundamental Role in Non-

monotonic Reasoning, Logic Programming and n-Person Games, Artificial Intelligence, 

vol.77, pp.321-357, (1995) 

[75] C.Elkan; Fuzzy Logic Tutorial: What is, applications and examples, 

https://www.guru99.com/what-is-fuzzy-logic.html (2006) 

[76] J.Euzenat, J.Pin, R.Ronchaud; Research Challenges and Perspectives on the Semantic 

Web, Report of EU-NSF Strategic Workshop, Sophia-Antipolis, France (2001) 

[77] M.Fahad, M.Qadir, S.Shah; Evaluation of Ontologies and DL Reasoners, Proceedings of 

4th International Conference on Intelligent Information Processing, Beijing, China 

(2008) 

[78] U.Fayadd, G.Piatetsky-Shapiro, P.Smith; From Data Mining to Knowledge Discovery in 

Databases, AAAI Journal, vol.17 no.3 (1996) 

[79] Federal Trade Commission; Internet of Things: Privacy and Security in a Connected 

World, https://www.ftc.gov/system/files/documents/reports/federal-trade-

commission-staff-report-november-2013-workshop-entitled-internet-things-

privacy/150127iotrpt.pdf  (2015) 

[80] D.Fensel, C.Bussler, Y.Ding, V.Kartvesa, M.Klein; Semantic Web Application Areas, 

Proceedings of 7th International Workshop on Application of Natural Language to 

Information Systems, Stockholm, Sweden (2002) 

[81] D.Fensel, J.Hendler, H.Lieberman, W.Wahlster; Spinning the Semantic Web: Bringing 

the Web to its Full Potential, MIT Press (2003) 

[82] M.Fischer, R.Ladner; Propositional Dynamic Logic of Regular Programs, Journal of 

Computer and System Sciences, vol.18, pp.194-211 (1979) 

[83] N.Fouad, S.Hameed; Genetic Algorithm based Clustering for Intrusion Detection, Iraqi 

Journal of Science, vol.58 no.2, pp.929-938 (2017) 

[84] S.Ganapathy, K.Kulothungan, S.Muthurajkumar, M.Vijayalakshmi, P.Yogesh; 

Intelligent Feature Selection and Classification for Intrusion Detection in Networks: A 

Survey, EURASIP Journal on Wireless Communications and Networking (2013)  

[85] P.Garcia-Teodoro, J.Diaz-Verdejo, G.Macia-Fernandez, E.Vazquez; Anomaly-based 

Network Intrusion Detection: Techniques, Systems, Challenges, Computers and 

Security,  vol.28, pp.18-28, Elsevier  (2009) 

[86] M.Garey, D.Johnson; Computers and Intractability – A Guide to NP-completeness, Ed. 

W.H. Freeman and company, San Francisco, California (1979) 

[87] G.de Giacomo, M.Lenzerini; Boosting the Correspondence between Description Logics 

and Propositional Dynamic Logics, Proceedings of 12th National Conference on Artificial 

Intelligence (AAAI), pp.205-212 (1994) 

[88] G.de Giacomo; Decidability of Class-based Knowledge Representation Formalisms, Phd 

thesis, Universita di Roma “La Sapienza” (1995) 

[89] E.Grädel, P.Kolaitis, M.Vardi; On the Decision Problem for Two-Variable First-Order 

Logic, Bulletin of Symbolic Logic, vol.3,no.1, pp.53-69 (1997) 

[90] T.Gruber; Toward Principles for the Design of Ontologies used for Knowledge Sharing, 

Workshop on Formal Ontology, book Formal Ontology in Conceptual Analysis and 

Knowledge Representation, Kluwer Academic Publishers (1993) 

[91] N.Guarino; Formal Ontology, Conceptual Analysis and Knowledge Representation, 

International Journal of Human-Computer Studies, Special Issue: The role of formal 

ontologies in information technology, vol.43, pp.625–640, Academic Press (1995) 

[92] N.Guarino; Formal Ontology in Information Systems, Proceedings of 1st Conference on 

Formal Ontology and Information Systems, pp.3–15, Trento, Italy (1998)  

 

BUPT

https://www.guru99.com/what-is-fuzzy-logic.html
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf
https://www.ftc.gov/system/files/documents/reports/federal-trade-commission-staff-report-november-2013-workshop-entitled-internet-things-privacy/150127iotrpt.pdf


  

 

[93] N.Guarino, C.Welty; Evaluating Ontological Decisions with OntoClean, Journal of 

Communications of  the ACM,  vol. 45,no.2, pp.61-65, New York (2002) 

[94] T.Ha, J.Sohn, Y.Cho; OWLer: An Inference Engine for Ontologies on the Semantic 

Web, Proceedings of 7th International Conference on Advanced Communication 

Technology, Phoenix, South Korea (2005) 

[95] H.Halpin; The Semantic Web: Origins of Artificial Intelligence Redux, Proceedings of 3rd 

International Workshop on History and Philosophy of Logics, Mathematics and 

Computation (HPLMC-04), San Sebastian, Spain (2005) 

[96] L.Han, T.Finin, C.Parr, J.Sachs, A.Joshi; RDF123: From Spreadsheets to RDF, 

Proceedings of 7th International Semantic Web Conference (ISWC), Karlsruhe, 

Germany (2008) 

[97] F.v. Harmelen, V.Lifschitz, B.Porter; Handbook of Knowledge Representation, 

Foundations of Artificial Intelligence, Elsevier (2008) 

[98] O.Hassanzadeh; Introduction to Semantic Web Technologies and Linked Data, 

Technical Report, Univ. of Toronto (2011) 

[99] D.Heckerman; A Tutorial on Learning with Bayesian Networks, Microsoft Research 

Technical Report MSRTR-95-06 (2008) 

[100] J.Hernandez-Castro, P.Isasi; Evolutionary Computation in Computer Security and 

Cryptography, New Generation Computing, vol.23, Springer (2005) 

[101] M.Hewett, S.Lacoul; A Hands-On Overview of the Semantic Web, 

https://www.slideshare.net/shamod/a-hands-on-overview-ofthe-semantic-web, (2009) 

[102] A.Hoffmann; Artificial and Natural Computation, International Encyclopedia of the 

Social and Behavioral Sciences, pp.27-31, Elsevier (2015) 

[103] B.Hollunder; Consistency Checking Reduced to Satisfiability of Concepts in 

Terminological Systems, Annals of Mathematics and Artificial Intelligence, vol.18(24), 

pp.133-157 (1996) 

[104] I.Horrocks; Description Logics Reasoning, Automated Reasoning with Analytic 

Tableaux and Related Methods (2005) 

[105] I.Horrocks; Description Logics Reasoning, 

www.cs.man.ac.uk/horrocks/Slides/lpar05.ppt 

[106] I.Horrocks; Description Logics Reasoning, www.cs.man.ac.uk/ 

horrocks/Teaching/cs646/Slides/pt3dlreasoning.pdf  

[107] I.Horrocks; Description Logics: A Formal Foundation for Ontology Languages and 

Tools- Part I, https://www.cs.ox.ac.uk/ian.horrocks/Seminars/download/Horrocks Ian 

pt1.pdf 

[108] I.Horrocks; Description Logics: A Formal Foundation for Ontology Languages and 

Tools- Part II, 

www.cs.ox.ac.uk/ian.horrocks/Seminars/download/Horrocks_Ian_pt2.pdf 

[109] I.Horrocks; Ontologies and the Semantic Web, Communications of the ACM - Surviving 

the Data Deluge, vol.51, New York, USA (2008) 

[110] I.Horrocks; Description Logics: Formal Foundation for Ontology Languages and Tools, 

Methods Cell Biolt, Oxford University Computing Laboratory (2007) 

[111] I.Horrocks, F.Baader, U.Sattler; Description Logics as Ontology Languages for the 

Semantic Web, Mechanizing Mathematical Reasoning. Lecture Notes in Computer 

Science, vol.2605, Springer, Berlin, Germany (2005) 

[112] I.Horrocks, F.van Harmelen, P.Schneider; From SHIQ and RDF to OWL: The making of 

a Web Ontology Language, Web Semantics: Science, Services and Agents on the 

World Wide Web, vol.1 (2003)  

 

BUPT

https://www.slideshare.net/shamod/a-hands-on-overview-ofthe-semantic-web
http://www.cs.man.ac.uk/horrocks/Slides/lpar05.ppt
https://www.cs.ox.ac.uk/ian.horrocks/Seminars/download/Horrocks%20Ian%20pt1.pdf
https://www.cs.ox.ac.uk/ian.horrocks/Seminars/download/Horrocks%20Ian%20pt1.pdf
http://www.cs.ox.ac.uk/ian.horrocks/Seminars/download/Horrocks_Ian_pt2.pdf


  

 

[113] I.Horrocks, M.Krotzsch, M.Simancik; A Description Logics Primer, Perspectives in 

Ontology Learning, chp.1, IOS Press (2014) 

[114] I.Horrocks, P.Schneider; Knowledge Representation and Reasoning on the Semantic 

Web: OWL, Handbook of Semantic Web Technologies, pp.365-398, Springer (2011) 

[115] I.Horrocks, D.Tsarkov; FaCT++ Description Logics Reasoner: System Description, 

International Joint Conference in Automated Reasoning, Seattle WA, USA (2006) 

[116] H.Igor, J.Bohuslava, J.Martin, N.Martin; Application of Neural Networks in Computer 

Security, 24th International Symposium on Intelligent Manufacturing and Automation, 

Zadar, Croatia (2013) 

[117] G.Isaza, A.Castillo, M.Lopez, L.Castillo; Towards Ontology-based Intelligent Model for 

Intrusion Detection and Prevention, Journal of Information Assurance and Security, 

vol.5, pp.376-383 (2010) 

[118] K.Jackson; Intrusion Detection Systems Product Survey, Los Alamos National 

Laboratory Research Report, LA-UR-99-3883, New Mexico, USA (1999) 

[119] J.Kaliapan; Intrusion Detection using Artificial Neural Networks with Best Set of 

Features, International Arab Journal of Information Technology. vol.12, no.6 (2015)  

[120] H.Karande, P.Kulkarni, S.Gupta, D.Gupta; Security against Web Application Attacks 

using Ontology-based Intrusion Detection System, International Research Journal of 

Engineering and Technology (IRJET), vol.3, (2016) 

[121] A.Khairkar; Intrusion Detection System based on Ontology for Web Applications, 

College of Engineering, Pune, India (2013) 

[122] A.Knight; The titans of AI and ML Arms Race in Cybersecurity, 

https://www.aitegroup.com/report/titans-ai-and-ml-arms-race-cybersecurity, Aite 

Group (2019) 

[123] A.Knight, Top 10 trends in Cybersecurity, 2019: User Experience and Machine 

Learning, https://www.aitegroup.com/report/top-10-trends-cybersecurity-2019-user-

experience-and-machine-learning, Aite Group (2019) 

[124] A.Knight; A Cylance Case Study: Machine Learning in Insider Threat Incident 

Response, https://www.aitegroup.com/report/cylance-case-study-machine-learning-

insider-threat-incident-response, Aite Group (2018) 

[125] A.Knight; A Darktrace Case Study: ML Rising, 

https://www.aitegroup.com/report/darktrace-case-study-ml-rising, Aite Group (2018) 

[126] G.Kumar, K.Kumar, M.Sachdeva; The Use of Artificial Intelligence-based Techniques 

for Intrusion Detection: A Review, Artificial Intelligence Review, vol.34, no.4, Springer 

(2010) 

[127] N.Kumar, N.Mehra; Semantic Web Applications, DESIDOC Journal of Library and 

Information Technology, vol.31, pp.217-225 (2011) 

[128] P.LaRoche, A.Heywood; 802.11 Network Intrusion Detection using Genetic 

Programming,  Proceedings of 7th Workshp on Genetic and Evolutionary Computation 

(GECCO), pp.170-171, Washington, USA (2005) 

[129] A.Lazarev, V.Kumar, J.Srivastava; Intrusion Detection Systems: A Survey, Managing 

Cyber Threats. Massive Computing, vol.5, Springer, Boston, USA (2005)  

[130] J.Lee; A Gentle Introduction to Neural Networks for Machine Learning, 

https://www.codementor.io/james_aka_yale/a-gentle-introduction-to-neural-

networks-for-machine-learning-hkijvz7lp (2018) 

[131] D.Lembo, M.Lenzerini, R.Rosatti, D.Savo; Inconsistency-Tolerant Semantics for 

Description Logics, Proceedings of the 4th International Conference on Web Reasoning 

and Rule Systems, Bressanone, Italy (2010) 

 

BUPT

https://www.aitegroup.com/report/titans-ai-and-ml-arms-race-cybersecurity
https://www.aitegroup.com/report/top-10-trends-cybersecurity-2019-user-experience-and-machine-learning
https://www.aitegroup.com/report/top-10-trends-cybersecurity-2019-user-experience-and-machine-learning
https://www.aitegroup.com/report/cylance-case-study-machine-learning-insider-threat-incident-response
https://www.aitegroup.com/report/cylance-case-study-machine-learning-insider-threat-incident-response
https://www.aitegroup.com/report/darktrace-case-study-ml-rising
https://www.codementor.io/james_aka_yale/a-gentle-introduction-to-neural-networks-for-machine-learning-hkijvz7lp
https://www.codementor.io/james_aka_yale/a-gentle-introduction-to-neural-networks-for-machine-learning-hkijvz7lp


  

 

[132] P.Lloyd, P.Boyle; Web-Weaving: Intranets, Extranets and Strategic Alliances, 

Butterworth-Heinemann (1998) 

[133] L.Ma, J.Mei, Y.Pan, K.Kulkarni, A.Fokone, A.Ranganathan; Semantic Web Technologies 

and Data Management, Proceedings of the 12th International Conference on 

Autonomous Agents and Multi-Agent Systems (IFAAMAS, 2013) 

[134] P.Majeed, S.Kumar; Genetic Algorithms in Intrusion Detection: A Survey, International 

Journal of Innovation and Applied Sciences (IJIAS), Vol.5, no.3 (2014) 

[135] S.Mandujano, A.Galvan, J.Nolazco; An Ontology-based Multi-Agent Approach to 

Outbound Intrusion Detection, Proceedings of 8th International Conference on 

Computer Systems and Applications (AICCSA), Cairo, Egypt (2005) 

[136] D.Marinescu; Nature-Inspired Algorithms and Systems, Complex Systems and Clouds, 

pp.33-63, Elsevier (2017) 

[137] B.Marnette; Generalized Schema Mappings: from Termination to Tractability, 

Proceedings of the 28th  ACMSIGMOD-SIGACT-SIGART Symposium on Principles of 

Database Systems, pp.13-22 (2009) 

[138] D.McMorrow; Science of Cybersecurity, JASON Project, The Mitre Corporation, McLean, 

Virginia (2010) 

[139] Z.Michalewicz, M.Michalewicz; Evolutionary Computation Techniques and their 

Applications,  IEEE International Conference on Intelligent Processing Systems 

(ICIPS), Beijing, China (1997) 

[140] N.Mkuzangwe, F.Nelwamondo; A Fuzzy Logic-based Network Intrusion Detection 

System for Predicting the TCP SYN Flooding Attack, Proceedings of 9th International 

Asian Conference on Intelligent Information and Database Systems (ACIIDS), pp.14-

22,  Kanazawa, Japan (2017) 

[141] M.Mortimer; On Languages with two Variables, Zeitschrift für Mathematische Logik und 

Grundlagen der Mathematik, vol.21,pp.135-140 (1975) 

[142] B.Motik, R.Shearer, I.Horrocks; Hypertableaux Reasoning for Description Logics, 

Journal of Artificial Intelligence Research, vol.36, pp. 165-228 (2009) 

[143] D.Muller, P.Schupp; Alternating Automata on Infinite Trees, Theoretical Computer 

Science Journal, vol.54, pp.267-276 (1987) 

[144] National Center for Biomedical Ontology, Micro-Array and Gene Expression Data 

Ontology,  https://bioportal.bioontology.org/ontologies/MO, (2018) 

[145] National Center for Biomedical Ontology, Ontology of Biological Pathways, 

https://bioportal.bioontology.org/ontologies/BP, (2010) 

[146] B.Nebel; Terminological Reasoning is Inherently Intractable, Journal of Artificial 

Intelligence vol.43,no.2, pp.235-249 (1990) 

[147] C.Nicholson; A Beginner’s Guide to Neural Networks and Deep Learning, AI Wiki, 

https://skymind.ai/wiki/neural-network (2017) 

[148] C.Nicholson; A Beginner’s Guide to Evolutionary and Genetic Algorithms, AI Wiki, 

https://skymind.ai/wiki/evolutionary-genetic-algorithm (2017) 

[149] N.Noy, D.McGuiness; Ontology Development 101: A Guide for Creating your First 

Ontology, Stanford Knowledge Systems Laboratory, Technical Report, KSL-01-05, 

Stanford, California (2001) 

[150] L.Obrst, P.Chase, R.Markeloff; Developing an Ontology of the Cyber-Security Domain, 

Proceedings of 7th International Conference on Semantic Technologies for Intelligence, 

Defense and Security (STIDS,  2012)

BUPT

https://bioportal.bioontology.org/ontologies/MO
https://bioportal.bioontology.org/ontologies/BP
https://skymind.ai/wiki/neural-network
https://skymind.ai/wiki/evolutionary-genetic-algorithm


  

 

[151] A.Oltramari, L.Cranor, R.Walls, P.McDaniel; Building an Ontology of Cyber-Security, 

Proceedings of the 9th Conference on Semantic Technology for Intelligence, Defense, 

and Security, Fairfax VA, USA (2014) 

[152] L.Pacholski, W.Szwast, L.Tendera; Complexity of Two-Variable Logic with Counting, 

Proceedings of the 12th  IEEE Symposium on Logic in Computer Science (LICS'97), 

pp.318-327, IEEE Computer Society Press (1997) 

[153] S.Palmer; The Semantic Web: An Introduction, http://infomesh.net/2001/swintro/ 

(2001) 

[154] J.Pan; Desciption Logics: Reasoning Support for the Semantic Web, PhD thesis, Univ. 

of Manchester (2004) 

[155] J.Pan, C.Anumba, Z.Ren; Potential Applications of the Semantic Web in Construction, 

Proceedings of 20th Annual ARCOM Conference, Edinburgh, Scotland (2004) 

[156] C.Papadimitriou; Computational Complexity, Addison-Wesley Publishing (1994) 

[157] J.Parveen; Neural Networks in Cybersecurity, International Research Journal on 

Computer Science (IRJCS), vol.4,no.9 (2017) 

[158] P.Patel, P.Trikha; Interpreting Inference Engines for the Semantic Web, International 

Journal on Advanced Research in Computer Engineering and Technology, vol.2 (2013) 

[159] A.Poggi, D.Lembo, D.Calvanese, G. De Giacomo, M.Lenzerini; Linking Data to 

Ontologies, Journal on Data Semantics X. Lecture Notes in Computer Science, 

vol.4900,pp.133-173, Springer, Berlin, Heidelbegr (2008) 

[160] S.Ramanujam, L.Khan, A.Gupta, S.Seida, R2D: A Bridge between the Semantic Web 

and Relational Visualization Tools, Proceedings of 3rd IEEE Conference on Semantic 

Computing (ICSC), Berkeley, California, USA (2009) 

[161] V.Raskin, C.Hempelmann, K.Triezenberg, S.Nirenburg; Ontology in Information 

Security: A Useful Theoretical Foundation and Methodological Tool, Proceedings of the 

Workshop on New Security Paradigms (NSPW), pp.53-59, Cloudcroft, New Mexico, 

USA (2001) 

[162] R.Raskin, M.Pan; Semantic Web for Earth and Environmental Terminology(SWEET), 

Proceedings on Workshop on Semantic Web Technologies for Searching and Retrieving 

Scientific Data, Florida, USA  (2003) 

[163] A.Razzaq, Z.Anwar, F.Ahmad, K.Latif, F.Munir; Ontology for Attack Detection: An 

Intelligent Approach to Web Application Security, Computers&Security, vol.45, pp.124-

146, Elsevier (2014) 

[164] A.Razzaq, A.H.Farooq, N.Haider; Ontology-based Application Level Intrusion Detection 

System using Bayesian Filter, Proceedings of 2nd International Conference on 

Computer, Control and Communication (IC4), Karachi, Sindh, Pakistan (2009) 

[165] J.Robinson, A.Voronkov; Handbook of Automated Reasoning, MIT Press, vol.1 (2001) 

[166] M.Rouse; What is Machine Learning?, 

https://searchenterpriseai.techtarget.com/definition/machine-learning-ML (2018) 

[167] Y.Sani, A.Mohamedou, K.Ali; An Overview of Neural Networks Use in Anomaly 

Intrusion Detection Systems, Proceedings of 7th IEEE Student Conference on Research 

and Development (SCORED), Serdang, Malaysia (2009) 

[168] W.Savitch; Relationship between Non-Deterministic and Deterministic Tape 

Complexities. Journal of Computer and System Sciences, vol.4, pp.177-192 (1970) 

[169] K.Scarfone, P.Mell; Guide to Intrusion Detection and Prevention Systems (IDPS), 

Recommendations of the National Institute of Standards and Technology (NIST), 

Special Publication (2007) 

 

 

BUPT

http://infomesh.net/2001/swintro/
https://searchenterpriseai.techtarget.com/definition/machine-learning-ML


  

 

[170] A.Schaerf; Reasoning with Individuals in Concept Languages, Journal of Data and 

Knowledge Engineering, vol.13, no.2, pp.141-176 (1994) 

[171] K.Schild; A Correspondence Theory for Terminological Logics, Proceedings of 12th 

International Joint Conference on Artificial Intelligence (IJCAI), pp.466-471 (1991) 

[172] K.Schild; Terminological Cycles and the Propositional µ-Calculus, Proceedings of 4th  

International Conference on the Principles of Knowledge Representation and Reasoning 

(KR'94), pp.509-520, Bonn, Germany (1994) 

[173] M.Schmidt-Schauβ; Subsumption in KL-ONE is undecidable, Proceedings of the 1st 

International Conference on the Principles of Knowledge Representation and Reasoning 

(KR’89), pp.421-431, Los Altos, California (1989) 

[174] M.Schmidt-Schauβ, G.Smolka; Attributive Concept Descriptions with Complements, 

Journal of Artificial Intelligence, vol.48,no.1, pp.1-26 (1991) 

[175] T.Schneider, U.Sattler; Description Logics: A Nice Family of Logics, 

https://esslli2016.unibz.it/?page_id=160,  28th European Summer School in Logic, 

Language and Information (ESSLLI, 2016) 

[176] B.Schueler; Inference Techniques with respect to applications in Semantic Web, 

Technical Report, Univesity of Dresden (2004) 

[177] A.Schwartz, Semantic Web in Breadth, http://logicerror.com/semanticWeb-long 

(2002) 

[178] A.Schwartz, J.Hendler; The Semantic Web: A Network of Content for the Digital City, 

http://blogspace.com/rdf/SwartzHendler (2002) 

[179] M.Schmidt-Schaus, G.Smolka;  Attributive Concept Descriptions with Complements, 

Journal of Artificial Intelligence, pp.1-27 (1991) 

[180] G.Seif; The Five Clustering Algorithms Data Scientists Need to Know, 

https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-

know-a36d136ef68 (2018) 

[181] K.Sequeira, M.Zaki; ADMIT: Anomaly-based Data Mining for Intrusions, Proceedings of 

8th ACM SIGKDD International Conference, (2002) 

[182] P.Sethi, S.Sarangi; Internet of Things: Architectures, Protocols and Applications, 

Journal of Electrical and Computer Engineering, pp.1-27, Hindawi (2017) 

[183] N.Shadbolt, T.Berners-Lee, W.Hall; The Semantic Web Revisited, IEEE Intelligent 

Systems, vol.21, pp.96-101 (2006) 

[184] R.Shanmugavadivu; Network Intrusion Detection System using Fuzzy Logic, Indian 

Journal of Computer Science and Engineering (IJCSE), vol.2, no.1 (2014) 

[185] C.Sinclair, L.Pierce, S.Matzner; An Application of Machine Learning to Network 

Intrusion Detection, Proceedings of 15th Annual Computer Security Applications 

Conference (ACSA), Phoenix, Arizona (1999) 

[186] J.Song, H.Takakura, Y.Okabe; Statistical Analysis of Honeypot Data and Building of 

Kyoto 2006+ Dataset for NIDS Evaluation, Proceedings of the First Workshop on 

Building Analysis Datasets and Gathering Experience Returns for Security, pag.29-36, 

Salzburg, Austria (2011) 

[187] K.Spackman, K.Campbell, R.Cote; SNOMED RT: A Reference Terminology for 

Healthcare, Journal of American Medical Informatics Association,  pp.640-644 (1997) 

[188] T.Takahashi, Y.Kadobayashi; Reference Ontology for Cybersecurity Operational 

Information, The Computer Journal, sect. Security in Computer Systems and 

Networks, vol.58,no.10 (2014) 

[189] M.Taye; Understanding Semantic Web and Ontologies: Theory and Applications, 

Journal of Computing, vol.2 (2010) 

 

BUPT

https://esslli2016.unibz.it/?page_id=160
http://logicerror.com/semanticWeb-long
http://blogspace.com/rdf/SwartzHendler
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68
https://towardsdatascience.com/the-5-clustering-algorithms-data-scientists-need-to-know-a36d136ef68


 

 

[190] W.Teswanich, Chittayasothorn; A Transformation from RDF Documents and Schemas 

to Relational Databases, IEEE Pacific Rim Conference on Communications, Computers 

and Signal Processing, Victoria, Canada (2007) 

[191] S.Thakare, M.Ali; Introducing Fuzzy Logic in Network Intrusion Detection, Journal 

IJARCS, vol.3,no. 3 (2012)  

[192] The Gene Ontology Consortium; Gene Ontology: Tool for the Unification of Biology, 

Journal of Nature Genetics, vol.25, pp.25-29 (2000) 

[193] H.Tianfield; Data Mining-based Cyber Attacks Detection, System Simulation 

Technology, vol.13,no.2 (2017) 

[194] S.Tobies; Complexity Results and Practical Algorithms for Logics in Knowledge 

Representation, Phd thesis, RWTH Aachen, Germany (2001) 

[195] C.Tsai, Y.Hsu, C.Lin, W.Lin; Intrusion detection by Machine Learning: A Review, Expert 

Systems with Applications, vol.36, pp.11994-120000, Elsevier 2009 

[196] A.Turhan; Introduction to Description Logics, Proceedings of the 9th International 

Conference on Reasoning Web, Mannheim, Germany (2013) 

[197] A.Turhan; Introduction to Description Logics, Technical University Dresden (ppt slides) 

[198] A.M.Turing; Computing Machinery and Intelligence, Mind Journal, Oxford University 

Press (1950) 

[199] J.Undercoffer, A.Joshi, J.Pinkston; Modeling Computer Attacks: An Ontology for 

Intrusion Detection, Proceedings of 6th International Symposium Recent Advances in 

Intrusion Detection, Pittsburgh, PA, (2003) 

[200] J.Undercoffer, A.Joshi, J.Pinkston; A Target-centric Ontology for Intrusion Detection, 

Proceedings of 18th International Joint Conference on Artificial Intelligence, Acapulco, 

Mexico (2003) 

[201] M.Vardi, P.Wolper; Reasoning about Infinite Computations, Information and 

Computation Journal, vol.115, no.1, pp.1-37 (1994) 

[202] J.Wu; Artificial Intelligence, Machine Learning and Deep Learning Explained Simply, 

https://towardsdatascience.com/ai-machine-learning-deep-learning-explained-simply-

7b553da5b960 (2019) 

[203] A.Zamfira, R.Fat, C.Cenan; „Applying Semantic Web Technologies to Discover an 

Ontology of Computer Attacks”, Scalable Computing: Practice and Experience Journal, 

West Univ. of Timisoara, vol.20, no.4 (2019) 

[204] A.Zamfira, H.Ciocarlie; „Inference System to Achieve Saturation of (F,R,N) Knowledge 

Bases”, Acta Technica Napocensis: Series Applied Mathematics, Mechanics and 

Engineering, Technical University of Cluj-Napoca, vol.62,no3 (2019) 

[205] A.Zamfira, H.Ciocarlie; „A Network Intrusion Detection System Using Artificial 

Intelligence and Semantic Web Techniques”, Acta Technica Napocensis: Series Applied 

Mathematics, Mechanics and Engineering, Technical University of Cluj-Napoca, vol.63,no4 

(2020) 

[206] A.Zamfira, H.Ciocarlie; „Developing an Ontology for Cybersecurity in Networks of 

Computers”, Proceedings of 14th International Conference on Intelligent Computer 

Communication and Processing (ICCP’18), Cluj-Napoca, Romania (2018) 

[207] A.Zamfira; „An Object-Oriented Reasoner for Saturation of Logical Knowledge Bases”, 

Proceedings of 15th International Conference on Elearning and Software for Education 

(eLSE’19), Bucharest, Romania (2019) 

[208] A.Zamfira; „The Feasibility of Artificial Intelligence in Emulating Human Behavior: An 

Analysis”, Proceedings of 16th International Conference on Elearning and Software for 

Education (eLSE’20), Bucharest, Romania (2020) 

BUPT

https://towardsdatascience.com/ai-machine-learning-deep-learning-explained-simply-7b553da5b960
https://towardsdatascience.com/ai-machine-learning-deep-learning-explained-simply-7b553da5b960


 

 

[209] A.Zamfira, H.Ciocarlie; „Description Logics: Applications on the Semantic Web”, 

Journal of Automation, Control and Applied Mathematics (ACAM), Technical University of 

Cluj-Napoca, vol.27,no.1 (2018) 

[210] A.Zamfira, H.Ciocarlie; „Description Logics in Inference and Reasoning Services and 

Systems”, Journal of Automation, Control and Applied Mathematics (ACAM), Technical 

University of Cluj-Napoca, vol.27,no.1 (2018) 

[211] A.Zamfira, R.Fat, C.Cenan; „Using Artificial Intelligence and Semantic Web 

Technologies in Cyberdefense Systems”, Bulletin of Politechnic Institute of Jassy, vol.65, 

no.2 (2019)  

[212] A.Zamfira, R.Fat, C.Cenan; „Towards the Next-Gen Technologies for World Wide Web: 

The Semantic Web”, Bulletin of Politechnic Institute of Jassy, vol.65, no.3 (2019)  

[213] A.Zamfira, R.Fat, C.Cenan; „Towards the Next-Gen Technologies for Internet: The 

Internet of Things”, Journal of Automation, Control and Applied Mathematics (ACAM), 

Technical University of Cluj-Napoca, vol.28,no.2 (2020) 

[214] Y.Zhu; Attack Pattern Ontology: A Common Language for Cyber-Security Information 

Sharing, TU Delft Publication, Master Thesis (2015)  

[215] D.Zyndros; A Gentle Introduction to Algorithm Complexity Analysis, 

https://discrete.gr/complexity 

[216] Closed World Machine, https://www.w3.org/2000/10/swap/doc/cwm.html  

[217] Data Mining Methods, https://www.educba.com/data-mining-methods/ (2017) 

[218] DROOLS: https://docs.jboss.org/drools/release/7.17.0.Final/drools-

docs/html_single/index.html 

[219] Gleaning Resources Descriptions from Dialects of Language, 

https://www.w3.org/TR/grddl/ , W3C Recommendation (2007) 

[220] Information about CWM-TimBL’s Closed World Machine, 
http://infomesh.net/2001/cwm/ (2001) 

[221] JRules: https://www.harukizaemon.com/blog/2004/03/09/jrules-a-brief-overview/ 

[222] Ontology; https://en.wikipedia.org/wiki/Ontology_(information_science)  

[223] OpenLink Virtuoso Universal Server, http://docs.openlinksw.com/virtuoso/, OpenLink 

Document. (2018)  

[224] OWL2 Web Ontology Language Manchester Syntax, W3C working draft, 

http://www.w3.org/TR/owl2-manchester-syntax/ , 2009 

[225] OWL2 Web Ontology Language Structural Specification and Functional-style Syntax, 

W3C candidate recommendation, http://www.w3.org/TR/owl2-syntax/ (2009) 

[226] OWL2 Web Ontology Language Direct Semantics, W3C candidate recommendation, 

http://www.w3.org/TR/owl2-direct-semantics/ (2009) 

[227] OWL2 Web Ontology Language Primer, W3C working draft, 

http://www.w3.org/TR/owl2-primer/ , (2009) 

[228] RDF and SQL, https://www.w3.org/wiki/RdfAndSql  

[229] RuleBook: https://dzone.com/articles/rulebook-a-simple-rules-engine-that-leverages  

[230] Semantic Web; https://en.wikipedia.org/wiki/Semantic_Web  

[231] SPARQL query language for RDF, W3C recommendation, http://www.w3.org/TR/rdf-

sparql-query/ , 2008 

[232] Computer Security, https://en.wikipedia.org/wiki/Computer_security  

[233] MAEC, http://maecproject.github.io/documentation 

[234] CAPEC, http://capec.mitre.org 

[235] WASC, http://projects.webappsec.org/w/page/13246978/threat 

[236] SCAP, http://www.open-scap.org/security-policies/scap-security-guide 

[237] Propositional Logic, http://intrologic.stanford.edu/notes/chapter_02.html  

[238] Modal Logic, https://plato.stanford.edu/entries/logic-modal  

BUPT

https://discrete.gr/complexity
https://www.w3.org/2000/10/swap/doc/cwm.html
https://www.educba.com/data-mining-methods/
https://docs.jboss.org/drools/release/7.17.0.Final/drools-docs/html_single/index.html
https://docs.jboss.org/drools/release/7.17.0.Final/drools-docs/html_single/index.html
https://www.w3.org/TR/grddl/
http://infomesh.net/2001/cwm/
https://www.harukizaemon.com/blog/2004/03/09/jrules-a-brief-overview/
https://en.wikipedia.org/wiki/Ontology_(information_science)
http://docs.openlinksw.com/virtuoso/
http://www.w3.org/TR/owl2-manchester-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-direct-semantics/
http://www.w3.org/TR/owl2-primer/
https://www.w3.org/wiki/RdfAndSql
https://dzone.com/articles/rulebook-a-simple-rules-engine-that-leverages
https://en.wikipedia.org/wiki/Semantic_Web
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
https://en.wikipedia.org/wiki/Computer_security
http://maecproject.github.io/documentation
http://capec.mitre.org/
http://projects.webappsec.org/w/page/13246978/threat
http://www.open-scap.org/security-policies/scap-security-guide
http://intrologic.stanford.edu/notes/chapter_02.html
https://plato.stanford.edu/entries/logic-modal

		2022-04-14T13:12:17+0300
	Computerul meu
	DORIN LELEA
	Atest integritatea acestui document




