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Foreground Extraction in Video Conferences using Motion 

Flow Analysis 
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2012, 121 pagini, 44 figuri, 8 tabele. 

Cuvinte cheie:  
Extragerea prim-planului, videoconferinţă, fluxuri optice, graph 
cut, segmentarea mişcării, procesare video în timp real 

Rezumat,  
Teza abordează domeniul segmentării în timp real a elementelor 
de prim-plan din secvenţe video monoculare, cu accentul pe 
aplicaţii de tip videoconferinţă. Lucrarea propune o metodologie 
de segmentare bazată exclusiv pe analiza fluxurilor optice 

combinată cu analiza informaţiei de culoare şi contrast din 
cadrele video. Metoda se distinge faţă de alte abordări prin faptul 

că procesul de segmentare nu foloseşte modele definite a priori 
cu privire la structura scenei observate sau la cea a obiectelor din 
prim-plan şi prin eliminarea necesităţii fazelor de iniţializare sau 
antrenament. Teza introduce un algoritm de agregare a fluxurilor 
optice dense şi rare în scopul segmentării robuste şi cu precizie a 
zonelor aflate în mişcare. Rezultatul este supus unei tehnici de 
integrare temporală pentru a produce o imagine aproximativă a 

prim-planului expus în urma analizei fluxurilor optice. Ultima fază 
a metodei introduce un nou algoritm de segmentare 
nesupervizată de tip graph-cut, responsabil cu obţinerea imaginii 
precise, la nivel de pixel, a obiectelor din prim-planul secvenţei 
video. 
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ABSTRACT 

 New teleconferencing concepts such as immersive videoconferences have 
added a new dimension to remote collaboration, by bringing participants together in 
a common virtual space. In order to achieve this task, the conferencing system 

extracts the image of each person from the incoming video streams and translates it 

into the virtual space that is shared between participants. At its core, such a system 
must rely on autonomous foreground extraction methods that are capable of 
performing an accurate segmentation in real-time. 

 Stereo-based methods are well known for their ability to handle such tasks, 
but they require dedicated hardware. To make immersive systems available to the 
general public, there is a requirement for algorithms capable of handling monocular 

video streams captured in various conditions using common off-the-shelf hardware 
such as webcams. In this context, most of the accurate foreground / background 
segmentation methods known in literature rely either on some form of assumption 
related to the position of the person in the video stream, on a previously known 
background or on prior learning and training using manually labeled sequences. 
Given the virtually infinite set of environments and situations in which a conference 
participant can find himself, these methods are prone to producing inconsistent 

results from one case to another.  
 This thesis addresses the problem of foreground extraction in monocular 

video sequences by introducing a new method focused on eliminating the need for 
initial training as well as any a priori assumptions or knowledge related to the 
observed scene contents and background. Starting from accurate motion cues 
obtained through aggregation of dense and sparse optical flow information, the 
system builds a temporally stable mask (TSM) of foreground detected through 

motion. The temporal stability of the mask in absence of motion information is 
achieved through the use of image statistics and similarity measures. In the last 
stage, an heuristic algorithm combines the TSM and sparse optic flow information to 
generate the hard foreground and background constraints for a graph-cut algorithm, 
which produces the final, pixel-accurate segmentation.   

 The perceived quality of segmented foreground represents a key aspect for 

achieving a true immersive experience. The segmentation produced by the 

described technique is evaluated using a state-of-the-art perceptual metric in order 
to provide an objective assessment of its accuracy and reliability. Experiments 
performed on real video sequences yield encouraging results, proving the validity of 
the foreground extraction approach.  

 Not last, the execution performance aspect is addressed by exploring the 
potential for parallel execution, supported by all modern multiprocessor 

architectures. This work details the available parallelization options provided by the 
method, with experimental results showing its real-time execution capabilities. 
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1. INTRODUCTION 

1.1. The research theme 

 In today’s digital world we are surrounded by a large number of applications 

that rely on image processing in order to accomplish a certain task. Image 
processing algorithms are used to analyze and give meaning to an observed scene 
by extracting core data and filtering out unneeded information for the application 
that employs them. For example, surveillance cameras detect motion in an observed 
scene; gesture recognition systems such as the Microsoft Kinect™ track body motion 
with the purpose of controlling interactive media content [1]; digital cameras rely on 
face recognition in order to better focus on the subject while medical imaging 

systems perform a 2D or 3D representation of the human body to diagnose 
illnesses.  

In this respect, foreground extraction is a widely used technique and in the 
same time an ill-posed problem [2, 3]. What is considered as foreground (FG) for a 
certain application may as well be classified as background (BG) in a different 
scenario and there is no unique solution to the FG / BG segmentation problem. This 

is easy to illustrate if we consider a video sequence involving a crowded street with 

both pedestrian and vehicle traffic, as in Figure 1-1. For this same scene, a traffic 
monitoring system will label vehicles as FG and the rest as part of the background 
while a crowd monitoring system like the one described in [4] will consider the 
pedestrians as FG and everything else as BG. This outlines the importance of 
developing and implementing different flavors of FG / BG segmentation algorithms 
according to the specifics of the application that employs them. 

 

Figure 1-1. Foreground segmentation as an ill-posed problem: (a) original image;  
(b) segmentation by a traffic monitoring system;  

(c) FG segmented by a pedestrian monitoring system. 

In the recent years, videoconference systems have become ubiquitous grace 

to the large scale introduction of fixed and mobile broadband internet as well as the 
availability of affordable and easy to use smart communication devices. In an age 
where projects and businesses expand across continents and people are always on 
the move, videoconferencing has become the essential tool in supporting remote 
collaboration. After successfully achieving the goal of real-time audio-video 
communication and digital media sharing, the next logical step in videoconferencing 

(a) (b) (c) 
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is towards delivering an immersive experience by providing participants with a 
shared virtual space that further enhances collaboration options and the feeling of 

natural interaction [5-7]. 
 At the foundation of the immersive conferencing concept lies the ability of 
the videoconference system to extract, in real-time and with high accuracy, the 
foreground (FG) information from each participant’s video stream. The extracted FG 
is then integrated into the virtual space so as to give the impression that all 
conference participants are present in the same location at the same time. We can 

immediately observe that in order to deliver a convincing immersive experience, a 

high perceived quality level is required from the FG segmentation. Taking into 
account the ill-posed aspect of FG segmentation in general, this becomes a 
challenging task with no unique solution. 

 

Figure 1-2. FG extraction and BG substitution in immersive videoconference systems 

A B 
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 15 1.2 – Emerging trends in video conferencing 

1.2. Emerging trends in video conferencing 

 State-of-art video conference systems that adhere to the immersive 
experience concept, operate according to the steps illustrated in Figure 1-2 and 
detailed below:  

1. each participant’s video stream is subject to a FG extraction process, with 
the purpose of isolating the person silhouette from the original background; 

2. the resulting stream from step 1 is subject to an (optional) post-processing 

phase in order to ensure that it fits the virtual space in the best possible 
way, for example by adjusting the contrast and luminosity or even through 
advanced techniques such as image-based relighting [8]; 

3. the result from step 2 is integrated into the new background which 
simulates the virtual space, and the obtained scene is presented to all 
participants; the new background may be a static image or an (usually 
synthetic) video sequence. 

 We immediately notice that the quality of the FG extraction process is a key 
point for such applications. Standard video stream quality assessment methods are 
not sufficient in this case, as we need to also quantify the degree to which the FG / 
BG segmentation result appeals to the conference participants. [9] have proposed a 
set of perceptually-driven metrics based on psychophysical experiments which 
enable the measurement of FG segmentation quality from a human perspective in 

different scenarios. For immersive videoconferencing, which falls into the broader 

group called mixed reality, the authors found that the following artifacts have the 
most impact on the perceived FG segmentation quality (in descending order of their 
annoyance effect to a human observer): 

1. flickering, which causes any of the artifacts described below and in Figure 
1-3 to exhibit an erratic variance between consecutive video frames; 

2. inside holes; 

3. border holes; 
4. added regions; 
5. added background. 

 

Figure 1-3. Artifacts in segmented FG: (a) inside hole; (b) border hole; 
(c) added region; (d) added BG 

As a result, in order to rank higher in terms of quality, a FG segmentation method 
should put a higher priority on removing artifacts with higher annoyance factors. 

(a) 

(b) 

(c) 

(d) 
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 In modern videoconferencing systems, defining what is considered as FG or 
BG can be a challenging issue. Let us consider the case of a person (the main 

subject) standing in front of the camera as illustrated in Figure 1-2, and of another 
person located at a certain distance behind the first one, also caught on the camera. 
The immediate question, arising from the ill-posed nature of FG segmentation, is 
shall the second person be considered as part of the FG or as part of the BG ? If the 
person is considered as FG, what happens if we have a constant or discontinuous 
flow of moving persons behind the main subject ? Otherwise, if the 2nd person is 

considered initially as BG, it may suddenly appear as FG if it moves close enough to 

the main actor. This example was given to emphasize the fact that having a perfect 
FG extraction for videoconference systems may be an impossible task since defining 
a perfect FG / BG segmentation may prove ambiguous even for a human 
intelligence. 

1.3. Thesis objectives 

 In line with the research theme mentioned in the beginning of this chapter, 
this thesis focuses on addressing the problem of foreground extraction in monocular 
video sequences with direct applicability to immersive videoconferencing 
applications. The proposed main objectives of the thesis are as follows:  

1) Address the ill-posed nature of foreground extraction by developing a 
model-less binary segmentation method that relies exclusively on motion, 

contrast and color information in order to identify and extract the FG objects 
in the observed scene. Compared with prior art, the new approach must 
produce similar output quality without relying on any a priori knowledge or 
training in respect to the scene or the objects being segmented and must 
approach real-time CPU execution performance. This objective aims to prove 
that motion-based foreground identification can be sufficient, feasible and 
aligned with the main traits of human perception. 

2) In line with the first objective, design and implement a motion segmentation 
algorithm capable of performing an accurate identification of moving image 
regions in the presence of unfavorable conditions such as lighting changes, 
camera noise and video compression artifacts, which are often encountered 
in live video streams.   

3) Study the techniques and methods that allow the temporal integration of 
detected motion into a coherent FG representation and develop an algorithm 

that generates an image of FG detected through motion. 
4) Since motion alone may not completely expose non-rigid objects, study the 

techniques that enable the pixel-accurate segmentation of foreground 
objects starting from coarse or incomplete representations, as well as their 
applicability to the particular case of videoconferencing applications.  

1.4. The proposed approach 

 Since no a priori information is available to the FG extraction system, the 
concept behind the proposed approach is that FG objects in the observed scene can 
be revealed by motion cues extracted between consecutive frames. Once an object 
(or part of it) is revealed by a motion cue, the corresponding image region is 
registered as FG in a temporally stable mask (TSM). The TSM will persist the region 
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as part of the FG detected through motion as long as its recorded properties do not 
exhibit significant variation from one frame to another. 

 Considering that detected motion might not reveal complete objects but 
parts of them, the TSM is very likely to contain an under-segmented FG 
representation. As shown in Figure 1-4, the final step in the proposed approach 
generates a pixel-accurate FG image by completing and correcting the TSM 
segmentation based on edge and color information.  

VIDEO 

STREAM

PRE-

PROCESSING

MOTION 

ESTIMATION

MOTION 

SEGMENTATION

Motion parameters

TEMPORAL

MOTION

INTEGRATION

Motion cues

TSM

TSM correction

EXTRACTED 

FG

PIXEL-ACCURATE 

SEGMENTATION

 

Figure 1-4. High-level block diagram of the proposed approach 

1.5. Overview of the thesis 

 The thesis is structured into 7 chapters which group and consolidate the 
results obtained during our research activity: 

 Chapter 1 is dedicated to this introduction and outlines the research theme, 
our main objectives and a high-level description of the proposed approach 
to foreground extraction. 

 Chapter 2 represents a review of the current state-of-art in FG extraction, 
with an accent on motion segmentation and tracking in monocular video 

sequences. We also discuss the particular case of videoconferences and 

their specific requirements in respect to FG extraction. 
 Chapter 3 starts by presenting the concept of optical flow, the various 

methods for computing optical flow and a comparison between them. It 
then describes our novel approach to accurate motion segmentation based 
on the aggregation of dense and sparse OF estimations. 

 In Chapter 4 we introduce the concept of temporally stable masks as means 

for temporal integration of detected motion cues. We present the statistical 
model and the similarity measures used as indicators in the process of FG / 
BG labeling, the TSM algorithm, as well as the relevance of the obtained 
results in the context of videoconferencing applications. 

 Chapter 5 describes the general concepts behind the graph-cut algorithm 
and its applicability to image segmentation, and introduces a novel 

algorithm for the automatic generation of hard constraints as input for an 

BUPT



 18 Introduction – 1 

unsupervised graph-cut segmentation, based on the information provided 
by sparse OF estimation and the TSM. 

 Chapter 6 discusses the results obtained by applying the complete FG 
extraction method. We begin by reviewing implementation details and the 
execution performance of the proposed approach, followed by an 
assessment of segmentation quality using a state-of-art perceptual 
objective metric.  

 Chapter 7 draws the conclusion, summarizes our contributions to the field 

and outlines future research perspectives. 
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2. STATE OF THE ART 

2.1. Overview 

 Foreground / background segmentation has been an active research area in 

the field of video sequence processing and the literature describes a wide range of 
algorithms and methods that address this problem [14, 31, 46, 47]. For a better 
insight into this broad topic, the present chapter is structured in 3 major parts.  

The first part reviews the state-of-the-art in the domain of FG extraction in 
videoconferencing applications, with particular emphasis on methods that are 
capable of running in real-time and relying on common hardware, by which we 
mean monocular web cameras and embedded cameras found in laptops and mobile 

devices such as smart phones and tablets. While acknowledging the importance and 
the benefits brought by methods that employ dedicated hardware, we believe that 
ubiquitous access to immersive conferencing requires methods that leverage 
common setups, which are mostly capable of capturing and streaming monocular 
video sequences. 

The second part narrows the scope to motion analysis in monocular video 

sequences, covering its four main aspects: detection, estimation, segmentation and 

tracking. Virtually all FG / BG segmentation methods, ours included, rely on a 
simpler or more complex form of motion analysis, therefore it is important to review 
and assess the available algorithms and methods in this field. 

The last part in this chapter is dedicated to a discussion based on our findings 
in the literature. This helps crystallize our research perspectives and outline their 
importance in the context of monocular videoconferences. 

2.2. Foreground extraction in videoconference 
systems 

2.2.1. Stereo and multiple camera-based approaches 

 The best performers in the field are systems based on disparity maps 
obtained from stereoscopic [10] or multiple cameras [7]. These methods produce 
very accurate results by relying on additional depth information made available 
through the use of dedicated video capture hardware and specific algorithms. 
 [10] describe a method capable of performing real-time FG layer 
segmentation from stereo video, by fusing color, contrast and stereo 

correspondence information into a probabilistic model. The stereoscopic approach 
allows the authors to separate BG from FG motion and to focus on the objects that 
are closer to the camera, while a contrast-sensitive color model enables an accurate 
FG segmentation, generated by a Layered Graph Cut algorithm [11] applied on the 
fused probabilistic model. 

  [7] introduces the Kinected Conference concept, named after the use of the 
Microsoft KinectTM, a device capable of providing RGB + depth information by 

combining a regular camera sensor with an infrared  laser projector and camera 
[12]. The depth map produced by the device and illustrated in Figure 2-1 enables 
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the system to highlight certain objects in the observed scene while blurring the rest, 
a concept with immediate applicability to videoconferencing applications. [13] take 

this concept even further, by using the Kinect sensor data to construct real-time 3D 
models of foreground objects. 

 

Figure 2-1. Kinect raw color image (a) and normals from the on-chip estimated depth map (b) 
(source: [13]) 

 As mentioned in the beginning of this chapter, we have included this short 
review of stereoscopic and multiple-camera approaches for reasons of 
completeness. Although fast and accurate, such systems cannot support ubiquitous 
access to immersive conferences due to their requirement for dedicated hardware 
and setup. In order to make immersive conferencing reachable by the same 
audience as classical videoconferencing, the former needs to make use of common 
webcams. It is obvious that, in the context of monocular video sequence processing, 

a different class of algorithms is required in order to successfully handle the task of 
FG extraction and throughout this thesis we will focus exclusively on this scenario. 

2.2.2. Foreground segmentation in monocular video 

sequences 

2.2.2.1. Techniques based on background subtraction 

 In respect to monocular FG objects segmentation, the majority of algorithms 
rely on background subtraction [14]. This technique is based on an empty image of 
the observed scene provided during the initialization stage of the algorithm.  
 [15] handle the problem of human profile extraction using inexpensive 
desktop cameras by using a statistical BG model in the normalized RGB color space, 
adapted to compensate for camera’s automatic exposure correction (AEC) function. 

In the FG extraction phase, BG is first subtracted from the current frame in normal 
RGB space and then a correction is applied on the result in the normalized RGB 
space in order to eliminate BG pixels erroneously classified as FG due to AEC or 
shadows.  What makes the proposed method interesting is the use of a physics-
based model to extract the person’s contour. A drape (1-pixel thick line) is lowered 

(a) (b) 
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from the top of the FG bounding-box and wraps the FG region’s contour, being 
modeled by two components, as seen in Figure 2-2:  

 a mass (up thrust) component which ensures that homogenous FG regions 
have the power to hold the drape in place, and  

 an elastic component that causes the drape to emulate on the contour.  

 

Figure 2-2. Using a drape model to extract the silhouette of a conference participant  
(K = constant of elasticity; G = gravitational pull; T = up thrust generated by FG regions) 

The same approach is extended in [16] by using drapes directed from all four sides 

of the bounding-box followed by an AND operation between the results obtained 
from each drape in order to reveal the final silhouette of the FG object. 

In [17] the FG layer is extracted by combining BG subtraction with color and 
contrast cues. The key concept revolves around background contrast attenuation, 
which reduces contrast in the BG layer while preserving it around FG/BG 
boundaries, based on the observation that color image gradients are dissimilar 
between the two layers.  

The method proposed in [18] uses a known and stationary BG image and a 
frontal human body detector in order to perform an initial segmentation of the 
person in the scene. The result is subject to a coarse to fine segmentation process 
[19] which builds a GMM model of FG and BG pixels in order to provide the 
necessary input to an unsupervised graph cut (GC) segmentation [11]. In addition, 

a BG contrast removal process is used to attenuate the influence of cluttered 
backgrounds and a self-adaptive initialization level sets scheme is applied in order to 

find the most salient edges along the person’s contour.  
The major drawback of these otherwise accurate methods is their requirement 

for the initial clean BG image, which cannot be satisfied in most videoconference 
scenarios since people are usually in the scene starting from the first frame and the 
number of potential backgrounds is virtually infinite. 

2.2.2.2. Methods based on trained models 

 Other methods have replaced the need for an initial background image with 
a learning model trained using manually labeled video sequences.  
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 Criminisi et al. [20] have adapted stereoscopic approaches to monocular 
video sequences by fusing together motion, color and contrast cues obtained in the 

YUV color space with spatio-temporal (S-T) priors generated during training phase 
in a probabilistic framework capable of identifying the FG and BG layers in each 
frame. The segmentation itself is achieved by minimizing an energy functional which 
resembles the spatio-temporal HMM shown in Figure 2-3, decomposed as a sum of 4 
terms: 

 a temporal prior, responsible of enforcing the pixel labeling consistency 

across a 3 frame time window; 

 a spatial prior which enforces the spatial consistency of labels between 
neighboring pixels; 

 a color likelihood term which provides evidence for pixel labeling from their 
color distribution; 

 a motion likelihood term that estimates pixel labels based on the 
assumption of stasis in the BG and motion in the FG. 

 

Figure 2-3. 2nd order HMM fusing S-T priors with color and motion observables in a 4-pixel 
neighborhood: m = motion observable; z = color observable; α = {FG, BG} label  

(source: [20]) 

 In order to obtain a reliable priors and likelihoods model, extensive training 
must be done using hand-labeled ground truth data and the weights of the 4 energy 

terms must be calibrated for different video sequences [21]. The accuracy of this 
method (see Figure 2-4) is similar to the stereo one in [10], except for cases when 
FG color distribution resembles the one in the BG or when there is insufficient 
motion in the sequence [21]. It is worth noting that this approach sacrifices speed in 
favor of quality, as the proposed method is computationally intensive. 
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Figure 2-4. Results of the bilayer segmentation method proposed by Criminisi et al.  
(source: [20])   

 Further researches [22] have lead to additional improvements by replacing 
the HMM with tree-based classifiers trained on ground-truth segmentations that 

imitate the disparity maps used in stereoscopic vision. The tree classifiers operate 
on motion information encoded in the form of motons, which are motion descriptors 
similar to the textons used to describe texture information. Pixels are assigned to 
different motons by using a clustering algorithm operating on the S-T derivatives of 
the captured video frames. This method allows a better segmentation of the FG 
which is closest to the camera, being able to discard BG motion.  

 Despite their relatively high accuracy, both presented methods can be 

prohibitive due to the effort required to manually label the video sequences used in 
the learning phase.  

2.2.2.3. Techniques that rely on imposed scene 

constraints 

 A third way of addressing the FG segmentation problem is encountered in 

literature in the form of constraints placed on the nature and position of FG objects.  
 [23] propose an object-oriented camera algorithm targeting the 2nd part of 
the MPEG-4 standard, related to object-based video compression and handling. The 
algorithm performs spatio-temporal (S-T) motion segmentation by combining a low-
complexity segmentation technique with a marker extraction and update process, by 
following the steps below:  

1. The segmentation technique starts with an image smoothing step in which a 
morphological open-close operation is used to remove noise and fine-
grained textures from the video frame with the purpose of avoiding over-
segmentation.  

2. This step applies a morphological gradient to extract the edges from the 
smoothed image obtained in the previous step.  

3. Temporal information is extracted by applying a scene cut algorithm on the 

current and previous frames in order to determine image regions that 
exhibit changes. The resulting change detection mask (CDM) is used to 
decide which of the two implemented marker extraction algorithms will be 
applied next.   

4. Marker extraction is performed by taking in consideration the pixel count of 
the CDM. A marker is defined as a set of contiguous pixels from the edge 
image which exhibit a lower gradient value than a given threshold. 

a. If the pixel count of the CDM is higher than a threshold, the markers 
are (re)computed from the current frame and the CDM is discarded; 
the authors call this the I-type algorithm, in analogy with the I-type 
frames found in a MPEG-4 encoded video stream, which carry full 
scene information. 
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b. If the CDM pixel count is lower than a threshold, the markers 
extracted from the previous frame are retained. The CDM is applied 

as a mask to the current frame and the masked pixels are set to 0 
(not belonging to any marker) while unmasked pixels retain their 
respective marker associations. This algorithm is called P-type, since 
it takes in consideration the CDM, similar to P-type frames in MPEG-
4 video streams. 

5. The output of the marker extraction algorithm is subject to a watershed 

transform [24] which segments the image into regions. To avoid over-

segmentation, a region merging algorithm based on a region adjacency 
graph and difference in adjacent regions average colors is applied as a post-
processing step.  

6. To extract the FG, the authors start from the assumption that the object of 
interest (the videoconference participant) is located in the center of the 
frame. This limitation allows them to overlay a predefined foreground object 
mask (FOM) on the region adjacency graph obtained in step 5. The regions 

that intersect with the FOM are classified as FG while the remaining ones are 
considered as part of the BG. 

 The proposed algorithm has a low complexity and is suitable for 
implementation on mobile devices, as exemplified by the authors using an ARM7 
architecture. Further optimizations have been published in [25], which introduce 
block-level processing of the markers in the I-type and P-type algorithms in order to 

further reduce complexity and execution time while keeping similar quality results.  

 

Figure 2-5. Object-oriented camera algorithm: (a) input frame; (b) edge image; (c) I-type 
markers; (d) watershed transform; (e) region merging; (f) FG image (source: [23]) 

 Limitations of the proposed methods include the assumption that the FG 
object is located in the center of the image and the use of the FOM, which drastically 
reduce the number of objects that can be detected as FG and their position and 
relative size in the observed scene. In turn, this limits the number of scenarios in 

which such methods can be successfully applied. In case of videoconferencing 
applications, the segmentation needs to take into account extra movements, other 
than only those related to head and torso. A videoconference system needs to be 

BUPT



 25 2.2 – Foreground extraction in videoconference systems 

robust enough to handle cases in which, for example, a person uses hand gestures 
and body language in order to support the presentation of a topic or to show an 

exhibit to the other participants. 

2.2.3. Summary 

 We conclude this section by summarizing the main advantages and 
disadvantages of the presented methods.  

Table 2-1. Overview of state-of-the-art FG extraction methods 

Method Type Characteristics Advantages Disadvantages 

[10] Stereo 
Disparity maps 
Graph Cut 

Very accurate 
Requires stereoscopic 
camera 

[7] Multi-cam Depth maps 
Fast 
Very accurate 

Requires Microsoft Kinect 
hardware 

[15] Monocular 
BG subtraction 
Drape model 

Accurate Requires initial BG image 

[16] Monocular 
BG subtraction with 
multiple thresholding 
Drape model 

Very accurate 
Requires initial BG image 
Threshold levels may 
require calibration 

[17] Monocular 
BG subtraction 
Contrast attenuation 

Accurate Requires initial BG image 

[18] Monocular 

BG subtraction 
Torso detection 
Contrast attenuation 
Graph Cut 

Very accurate 

Requires initial BG image 
Assumes subject is facing 
the camera and torso is 
fully visible 

[20] Monocular 

Trained priors 

HMM 
Graph Cut 

Accurate 

Requires prior training 
Issues with similar BG/FG 
colors and insufficient 
motion 

[22] Monocular 
Trained priors 
Tree classifiers 
Motons 

Very accurate 
Requires manual labeling 
of training sequences 
Requires prior training 

[23] 
[25] 

Monocular 
S-T segmentation 
Specific algorithms 
for I and P frames 

Fast 
Medium 
accuracy 

Uses constraints related 
to subject position in the 
scene 
Only 1 person detected 

 
 By looking at the data presented in Table 2-1, it can be seen that all 

methods that do not make use of dedicated hardware rely on a certain form of 
training or a priori knowledge regarding the observed scene or its background. This 

observation has lead our research on the path towards a FG extraction system that 
eliminates the a priori learning / assumption aspect and focuses instead on building 
an accurate model of FG detected through motion. In order to expand this concept, 
we will first need to review the state-of-art in the field of  motion analysis in 
monocular video.  

BUPT



 26 State of the Art – 2 

2.3. Motion analysis in monocular video sequences 

 When discussing about motion analysis in video sequences, we usually refer 
to 4 main aspects: detection, estimation, segmentation and tracking [24, 26-28]. 
There are classes of algorithms applicable to each of the 4 domains; however, 
between detection, estimation and segmentation the boundary is not always clear, 
due to the presence of algorithms that belong to more than one of them. For 
example, the optical flow algorithms which will be discussed in the next chapter can 

be used to perform both motion detection and estimation in the same time.  
 Motion detection is responsible with identifying the areas in each video 

frame where motion occurs, usually by comparing the information between 
consecutive frames. In case of motion estimation, on top of detection we consider 
the ability to compute motion parameters such as velocity and orientation. 
Segmentation relies on the results obtained from the previous two steps, detection 
and estimation, in order to perform the accurate separation between moving objects 

and background in the observed scene. The fourth step, object tracking, is used to 
record and predict the segmented object(s) motion from the video sequence over a 
certain time interval. 

2.3.1. Motion detection 

2.3.1.1. Frame differencing 

 The easiest method but also the less accurate for detecting motion is the 
frame differencing method [24]. This method works on the assumption that between 

two consecutive frames It and It-1, motion occurred if a change in pixel data has 

been observed. Thus, we can say that the pixel located at coordinates [x, y] is 

labeled as motion if  

 𝐼𝑡 𝑥,𝑦 −  𝐼𝑡−1 𝑥,𝑦  > 𝜏 (2.1) 

where τ is an application-specific threshold and |.| means absolute difference. It is 

extremely easy to prove that this method is very sensitive to noise and to 
illumination changes in the image. To remove the effects of noise, the two frames 
can be pre-processed by using a Gaussian, median or bilateral smoothing filter; 
however, this will not solve the problem of illumination changes being incorrectly 

classified as motion. 

2.3.1.2. Background subtraction 

 A more reliable and widely used set of motion detection algorithms are 
those based on BG subtraction or BG differencing. In essence, these algorithms 
work by building a mathematical model of the observed scene BG through a process 
called BG learning. In the ideal case, the BG model should fulfill the following 

requirements [14]: 
 adapt to gradual or fast illumination changes (due for example to shadows, 

weather changes, clouds or flickering caused by artificial lighting); 
 compensate for camera oscillation and motion; 
 model high-frequency BG objects (e.g. trees swaying in the wind); 
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 model BG geometry changes (e.g. parked cars, objects that are introduced 
in the scene and remain motionless for a long period of time). 

 The mathematical model MBG of the BG aggregates the evolution of each 

pixel over a certain time frame also known as observation period, during which the 
scene is assumed to be relatively static. The model is able to compensate for small 
motions in the BG, such as trees swaying in the wind or small illumination changes. 

 Once MBG has been learned, it can be applied to subsequent frames through 

the BG differencing process which is similar to the frame differencing described in 

paragraph 2.3.1.1. The pixels in the newly captured image are compared with the 

learned BG model. If the new pixel data at location [x, y] fits into the model MBG(x, 
y) within a certain threshold τ, the pixel is labeled as BG, otherwise it is promoted to 

FG. This can be described mathematically as:  

𝐿𝑎𝑏𝑒𝑙 𝑥,𝑦 =  
𝐹𝐺, 𝑖𝑓 |𝐼 𝑥, 𝑦 −  𝑀𝐵𝐺(𝑥, 𝑦)| >  𝜏
𝐵𝐺, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  (2.2) 

There are many methods proposed in the literature for building the BG model, and 

several surveys [29-31] covering the progress in this area. The majority of methods 
rely on statistical modeling of each BG pixel using Gaussian or Mixture of 
Gaussians (MoG) distribution models [32-34] with an excellent state-of-art 
presented in [35]. However, as discussed next, there are also exceptions which yield 
some of the best results in the field. 
 The Codebook model associates a set of cylinders [36] or axis-aligned 
boxes [24] defined in the image color space (RGB, YUV or HSV) in order to account 

for the variation in BG values associated to each pixel. In the BG learning phase, 
shown in Figure 2-6, if a newly observed pixel value is close to a code element (box 
or cylinder, depending on the implementation), that element is expanded to 
incorporate this value. If the value falls too far from any of the recorded code 
elements, a new element is created to incorporate the new value. In the BG 
subtraction phase, a pixel value which does not fall close enough to any of the 

pixel’s codebook elements will be labeled as FG, while one that falls within or close 
enough to a code element will be labeled as BG. The codebook model is updated 
periodically by cleaning stale code elements (elements which have not been 
accessed for a certain number of frames or a certain time interval). 

 

Figure 2-6. Creation of the codebook BG model (source: [24])  
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 The ViBE algorithm [28] models each BG pixel using a collection of N 

sample values taken from previous frames. Instead of relying on a probability 
density function (PDF) or a GMM to model the distribution of the samples, the 

algorithm compares the pixel value in the current frame It(x, y) with the set Mt-1(x, 
y) = {I1(x, y), I2 x, y , …, IN(x, y)} of samples previously collected for that pixel. The 

comparison is done by considering a sphere SR(x, y) of radius R centered on the 

pixel and computing the cardinality |.| of the intersection between this sphere and 

the sample set Mt-1(x, y). If the inequality: 
 𝑆𝑅 𝑥, 𝑦 ∩𝑀𝑡−1 𝑥, 𝑦  >  𝜏 (2.3) 

holds, the pixel is labeled as BG, otherwise it is considered as part of the FG. The 

ViBE algorithm also contains a model update component, so that the set of BG 
samples is updated according to a set of policies that ensure the consistency and 
relevance of the recorded model.  
 The vast majority of BG subtraction algorithms rely on a learning phase 
necessary to construct the BG model. This assumes that no moving objects that 
should be recognized as FG cross the scene during that interval; some algorithms 

even rely on a reference BG image. This constitutes no problem for applications 
such as video surveillance or traffic monitoring; however, it makes the algorithms 
harder to use for videoconferencing applications, where the FG (the conference 
participant) is present from the very first frame of the video sequence. ViBE is a 
notable exception to this rule, being able to learn the BG model on the fly, starting 

from the first frame of the sequence. 

2.3.1.3. Optical flow 

 Both a detector and an estimator, the optical flow [2] is a popular algorithm 
in the field of motion analysis, with use in applications ranging from simple 
surveillance systems to complex 3D reconstruction of objects and human pose 
recognition.  
 As we will see in the next chapter, optical flow stands at the foundation of 
our proposed method for motion detection; due to its relatively high complexity and 

the fact that it comes in several different flavors, we chose not to discuss it here but 
instead to dedicate a significant portion of the following chapter to its presentation. 

2.3.2. Motion estimation 

2.3.2.1. Expectation Maximization 

 The Expectation Maximization (EM) algorithm [37, 38] is designed for 

parameter estimation in statistical models which depend on a set of unobserved 
latent variables, based on the maximum likelihood (ML) or maximum a posteriori 
(MAP) techniques. The algorithm works iteratively with each iteration being split in 
two steps: 

1. the Expectation (E) step, in which the expected log-likelihood function of 
the latent variables is computed based on the current estimation of the 

parameters; 
2. the Maximization (M) step, which computes the parameter values for 

which the log-likelihood function obtained in the E step is maximized. 
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 Thus, if we consider X as a random vector representing the observed data; 

Z the random vector of unobserved latent variables; z the realization of Z and θ the 

set of parameters describing X, the nth iteration of the EM algorithm can be formally 

written as: 
𝜃𝑛 = arg max

𝜃
{𝐸𝑍|𝑋 ,𝜃𝑛−1

{ln𝑃(𝑋, 𝑧|𝜃)}} (2.4) 

One of the most important aspects of the EM algorithm is that it guarantees 
convergence to a local minima since the log-likelihood function is increased with 

each iteration, as shown in [39]. 
 The EM algorithm has been extensively used for motion estimation and 
motion segmentation purposes, especially for estimating the PDF of GMMs in case of 

motion segmentation applications [40]. In such cases, the vector Z is identified as 

being the set of K pixel labels, while the parameters θ can be modeled by the 

means μk and/or the standard deviations σk of each cluster of pixels in the image.  

 In other scenarios like [41], pixel clustering is achieved by considering 

cluster labels as being the vector Z and the direction and probability of each cluster 

as part of the parameter set θ. In [42] the set θ is represented by the velocity of 

the optical flow field and an intensity appearance model in an attempt to assign 
dense motion to predefined image layers such as FG or BG. 
 One of the drawbacks of the EM algorithm is the fact that the number of 
components required to estimate the PDF function has to be specified a priori and 
that the algorithm outcome depends on the initial values of the parameters [43]. 

Also, depending on the model being chosen, the algorithm can be computationally 
intensive and may not always be suitable for real-time processing of video 
sequences. 

2.3.2.2. Optical flow 

 The optical flow [44, 45] acts as motion estimator by generating the optical 
flow field, which provides the displacement vectors along the image axes for each 

moving pixel. As in the case of motion detection, we will not detail the algorithm 
here since we will treat it separately in Chapter 3.  

2.3.3. Motion segmentation 

 The literature describes a multitude of methods and algorithms targeting 
motion segmentation in video sequences. Many surveys have been carried on this 
topic [9, 27, 35, 46, 47], describing the difference in quality and performance 

between various approaches and methods. 
 So far, the problem of motion segmentation does not have a definitive 
solution, due to its ill-posed nature [2, 3]. Methods that produce excellent results in 
certain scenarios or application may fail to yield them in a substantially different 
context. 

2.3.3.1. The main issues faced by motion segmentation 

 Motion segmentation has to deal with a certain number of issues which have 
a negative impact on the robustness of the method [35, 47]: 
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1. noise image due to a poor quality image source (camera and/or video 
stream encoding technique); 

2. camera jitter; 
3. camera automatic adjustments (e.g. automatic exposure, automatic focus); 
4. local or global illumination changes due to the time of day, on/off switching 

of artificial lighting or shadows; 
5. occlusions (caused by the overlap between moving FG objects or moving FG 

objects and BG elements);  

6. foreground aperture [48], when parts of large, homogenous moving regions 

become part of the BG instead of being classified as moving FG pixels;  
7. moved and inserted background objects; 
8. multimodal (dynamic) BG;  
9. waking and/or sleeping FG objects (objects that were initially motionless 

and then start moving and respectively objects that were previously moving 
and then come to rest). 

 

 

Figure 2-7. Classification of object motion segmentation  methods  
(source: [46]) 
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2.3.3.2. Classification of segmentation methods  

 In the literature, the classification of motion segmentation methods is 
usually not consistent. However, there are several main categories that can be 
found in the majority of classifications. By referring to the taxonomy in [46] we will 
consider the current 2D segmentation methods as belonging to two main 
categories: motion-based methods and spatio-temporal techniques, as illustrated in 
Figure 2-7. 

2.3.3.2.1. Motion-based segmentation 

 Motion-based segmentation relies on an initial detection step, performed 
using one of the techniques already described in paragraph 2.3.1: change detection 
(carried on in the simple form of frame differencing or in the more reliable way of 
BG registration) or optical flow. 
 Segmentation itself is achieved through a clustering algorithm. This can take 
the form of connected component analysis [24], active contours [27] or statistical 

analysis [49]. The way motion is represented is a crucial aspect of motion-based 
segmentation, since it dictates the way clustering should be performed [46]. 
 According to the literature, motion-based segmentation exhibits a tendency 
towards over or under-segmentation due to its inability to accurately estimate 
object boundaries, a problem handled much better by spatio-temporal techniques. 

2.3.3.2.2. Spatio-temporal segmentation 

 As mentioned by its name, this type of segmentation relies on two 
components: a spatial and a temporal one. 
 The spatial component helps identify FG object boundaries and is 
calculated from a single image. This stage can be implemented using different 
approaches such as morphological operations coupled with a modified watershed 
algorithm [23, 25], the mean-shift algorithm described in [50], active contours [51] 

or graph cuts [52, 53]. 
 Active contours (AC), also referred to as snakes, represent a robust 
approach in identifying object boundaries in an image, suitable for the spatial 
segmentation phase. Starting from a coarse set of control points located inside or 
outside of the object, the AC evolves iteratively towards matching the nearest object 

contour by minimizing its energy. In [54] a clustering algorithm is used to obtain 

the approximate convex hull of the object, represented by the set of N vertices v = 
{p1, p2, …, pN}. The AC energy of v is represented in the discrete domain as: 

𝐸 𝑣 =   𝛼𝑖𝐸𝑐𝑜𝑛𝑡  𝑝𝑖 + 𝛽𝑖𝐸𝑐𝑢𝑟𝑣  𝑝𝑖 + 𝛾𝑖𝐸𝑖𝑚𝑔  𝑝𝑖  
𝑁
𝑖=1   (2.5) 

where Econt represents the continuity of the snake, Ecurv its smothness energy, Eimg 

corresponds to the image forces acting on the snake (e.g. edge-attraction) and α, β, 
γ are their respective weights. The literature describes many ways of expressing the 

snake energies according to different usage scenarios, with a comprehensive survey 

being given in [55]. 
 The temporal component is computed on a sequence of images and 
tracks the object movement across frames in order to ensure the temporal 
coherence and guidance of the segmentation process. The usual representation is 
that of an object mask that corrects and completes the FG object boundaries 
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generated by the spatial component; in turn, this component is updated based on 
the latest segmentation result [56]. More advanced representations employ several 

layers of masks generated according to estimated motion parameters such as 
velocity and orientation [42]. 
 Statistical approaches are frequently used in this stage, due to segmentation 
being expressed as a classification problem. The expectation maximization (EM) 
algorithm, described in paragraph 2.3.2.1, is used by [57] in combination with a 
Markov Random Field (MRF) in order to represent and compute the object map. 

Other approaches rely on Bayes’ theorem and Maximum A posteriori Probability 

(MAP) to continuously evaluate and update the pixel labels [58]. In case the 
observed events that lead to pixel classification are hard to model, Hidden Markov 
Models (HMMs) can be employed as classifiers [59], with the drawback that such a 
method requires a prior training phase [47].  

 

Figure 2-8. Object shape representations for motion tracking: a) centroid; b)  bounding box; c) 
bounding ellipsoid; d) body parts approximated as ellipsoids; e) point features; f) contour 

points; g) skeleton; h) contour; i) silhouette (ghost mask) 

2.3.4. Motion tracking 

 Once objects have been identified in the captured video stream, the last 
step involves tracking their representation across the video sequence. Depending on 
the application requirements, tracking can be expressed simply as following the 

a) b) c) 

d) e) f) 

g) h) i) 
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object(s) path from one frame to the other, or it can be more complex if other 
parameters are involved such as object shape or area [55].  

2.3.4.1. Object representations 

 In the context of tracking, objects are represented by their shapes and 
appearances, and this representation is then matched against the set of observed 
object features [55]. 

 Based on the requirements of the application, one can select an appropriate 
object shape representation from the set of possibilities illustrated in Figure 2-8 

(profile tracking in a videoconference scenario) and explained in Table 2-2. 

Table 2-2. Description of object shape representations for motion tracking [55] 

Point(s) 
Figure 2-8 a) and e) 

The object can be represented by a single point called centroid (or 
center of mass) or by a set of control points; this method is suitable 
when tracking very small objects or when the tracking problem can 
be reduced to following a set of control point trajectories. 

Bounding primitive 
Figure 2-8 b) and c) 

A bounding rectangle or ellipse can be employed to roughly 
approximate the image area occupied by the moving object. This kind 
of representation allows for the estimation of object size and for 
modeling motion through translations, affine or homography 
transformations. 

Articulated shapes 
Figure 2-8 d) 

Suitable for articulated (non-rigid) objects, this method represents 
each articulated part of the object as a primitive 2D or 3D shape 
(ellipsoid, parallelepiped, cylinder etc.). The object joints are modeled 
through kinematic models (e.g. joint angle). 

Skeleton 
Figure 2-8 g) 

This representation is achieved by applying a skeletonization process 
(medial line extraction) to the object silhouette. The resulting 
skeleton can model both rigid and articulated objects motion, and can 
also act as an object descriptor for object recognition applications.  

Contour and 
silhouette 
Figure 2-8 f), h) and 
i) 

The contour models the object boundary and can be represented 
either through a set of control points or as a continuous curve. In 
case of control points, their location is usually determined by corners 
or significant changes in contour orientation. In addition to the 
contour, the silhouette also covers the area of the object (the region 
located inside the contour). 

  
 The object appearance representation can be used either as a 
standalone input to the tracker or combined with a shape representation in order to 
complete the object model and increase tracking accuracy. Table 2-3 lists the most 

common appearance representations along with their descriptions, following the 
taxonomy from [55]. 

Table 2-3. Description of object appearance representations for motion tracking 

Probability 
densities of 
object 
appearance 

Coupled with a contour or silhouette shape representation, this 
statistical approach models the object appearance features (such as 
color, intensity, texture etc.) using probability densities. The 
probability density can be expressed parametrically (e.g. a <μ, σ2> 

Gaussian distribution) or non-parametrically (e.g. the histogram 
representation used by the CamShift tracker [60]). 
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Templates Suitable for objects whose appearance models do not exhibit 
significant variations, the template representation encodes the 
information about object shape and appearance obtained from a single 
object view. 

Active 
appearance 
models 

Active models represent object shape and appearance information 
extracted from an initial training phase. Feature points (or landmarks) 
are defined on the object and represented as a vector encoding color, 
texture or edge information. The resulting vector space is analyzed 
using Principal Component Analysis in order to obtain the object 
model. 

Multiview 
appearance 
models 

This approach encodes the shape and appearance information 
extracted from different object views; in order to represent this data, a 
subspace is generated from the given views over which algorithms 
such as Principal Component Analysis or Independent Component 
Analysis are applied. 

Trained 
classifiers 

Trained classifiers using Support Vector Machines (SVM) or AdaBoost 
algorithms [61] can be very efficient. The drawback is that in order to 
achieve accurate object identification during the tracking process, the 
object appearances in all possible views must be known a priori from 
the training phase.  

  
 The object features that are monitored during the tracking process are 
closely related to the selected form of object representation. Ideally, these features 

should uniquely distinguish the object from other elements in the image. There are 
4 types of such features [55]: 

 the color space [62] used to represent the color information in the image 

(e.g. Grayscale, RGB, YUV, HSV etc.) can have an impact on robustness to 
illumination changes and to the perceptual quality of the object 
representation; 

 edges [63] are robust to illumination changes and - based on the 
assumption that object boundaries usually generate a strong change in the 
luminosity gradient of the image - these features are widely used, especially 
in conjunction with contour or silhouette shape representations; 

 optical flow, represented as a dense field of pixel displacement vectors, 
relies on the brightness constancy assumption between consecutive frames 
[44, 45];  

 textures describe the smoothness and regularity in the variation of color 
across the object surface; texture descriptors can be built in many ways 

(e.g. textons, wavelets, Gabor filters) [64], the main benefits being their 

robustness to illumination changes and the possibility to assess region 
similarities. 

2.3.4.2. Object detection 

 In order to track the object, one must first detect it and this process usually 
occurs at the beginning of the video sequence. As expected, object detection is 
related to object representation since the result of the detection must be compatible 

with the chosen representation method. The literature describes a wide range of 
object detectors, most of which we have already covered in the previous 
paragraphs. We will refer below to the classification presented in [55] and include a 
brief description in Table 2-4. 
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Table 2-4. Classification of object detection methods 

Point detectors This class of detectors identifies a set of interest points in the image 
which are considered as representative for the local region they 
belong to, as shown in Figure 2-8 e).  
The most representative point detectors are the KLT detector [65] and 
the SIFT detector [66], which provide robustness against changes in 
illumination and camera viewpoint (in case of SIFT detector). 

Segmentation This class refers to the family of detectors described in chapter 2.3.3. 
The suitable object representations may vary according to the 
detector, e.g. region-based for mean-shift [50] and graph-cuts [52] or 
contour-based for the AC detectors [51]. 

BG subtraction Described in detail in paragraph 2.3.1.2, these detectors are suitable 
for region-based representations of the objects.  

Supervised 
classifiers 

By learning different object views in an a priori training phase, these 
detectors are able to identify the occurrences of the learned object in 
the input image (a good example is the face detector described in 
[67]). As object representation, the one based on bounding primitives 
is the most appropriate. 

2.3.4.3. Object tracking 

 Tracking establishes the correspondence of the detected objects between 

frames, as illustrated in Figure 2-9 for the case of a face tracking application.  

 

Figure 2-9. Face tracking using a kernel-based method (CamShift) 

 Depending on the object representation, different methods of tracking can 
be employed. For very small or rigid objects, represented using a point or bounding 

primitive, the correspondences are easier to represent since only translations and 
respectively affine transformations can be employed. For non-rigid objects 
represented by contours or silhouettes, tracking is a more complex issue and 
statistical methods (parametric or non-parametric) must be used to determine their 
contour or shape evolution across the video sequence. 
 Based on the above discussion, we can split object tracking methods into 3 
categories [55]: 

time t t+Δt 
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 Point tracking. As the name suggests, these trackers are used to track point 
representations. Representative for this field are the Kalman tracker and 

the particle filters (Condensation algorithm), very well explained in [24]. 
 Kernel tracking. These trackers employ templates with rectangular or 

elliptical shape and associated histograms. Tracking takes place by 
matching the kernel in consecutive frames and by computing its motion 
represented using translation, rotation and scaling parameters. The most 
frequently employed trackers from this category are the mean-shift [60], its 

adaptive version called CamShift [68] and the Kanade Lucas Tomasi (KLT) 

tracker [65]. 
 Silhouette tracking. In essence, trackers from this category perform an 

object segmentation in the temporal domain by extracting information from 
the object region in form of edge maps or appearance models. At a given 
point in time, tracking uses the motion priors extracted from previous 
frames in order to map the next location of the object in the frame. Unlike 
in the other 2 categories where consecrate solutions exist, silhouette 

trackers employ a wide range of methods, from using the Hausdorff 
distance to match object edges in subsequent frames  [69] to HMMs [70] or 
minimization of contour energy functional. 

2.4. Discussion 

 From the previous two sections we can easily notice that there is no perfect 
solution to the FG / BG segmentation problem even if we narrow the field to 
videoconference applications only. By referring specifically to section 2.2, we 
observe that recent advances have pushed the segmentation quality forward but 
this comes at the expense of required a priori training phases and higher 
computational complexity. Based on the state-of-art review presented in the present 
chapter, we can now identify the main research perspectives in the field of FG 

extraction in monocular videoconferences.  
 The most important direction is towards model-less FG extraction 
methods that do not rely on a priori learned BG models or motion statistics and, 
furthermore, are not tied to assumptions regarding the position or nature of 
subjects (i.e. person is located near the center of the frame, person’s face is always 
visible and facing the camera). This aspect is important since during a 
videoconference we may often encounter situations when the FG is composed of 

more than a single human subject. For example, a participant may want to show an 
object to its interlocutors and demonstrate its functionality, another may hold a pet 
or a child in its lap and we may also see two or more persons sitting together in 
front of the same camera. The possibilities are almost infinite and training a 
classifier to cover all of them is simply impossible. 
 In the above-mentioned direction of model-less methods, motion cues play 

a very important role. Recording motion history across past video frames and 
ensuring its temporal coherence may be the only way to make sure that we account 
for all possible FG objects, regardless of their nature. We can thus consider the term 
of temporally stable masks (TSMs) that aggregate and track the motion observed 
since the beginning of the video sequence in both immediate and distant FG with 
emphasis on maximizing the perceptual quality of the segmentation (as described in 
paragraph 1.2).  
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 The literature describes many ways of motion detection based on either 
dense motion information or sparse sets of invariant object features; these are 

usually obtained as the output of optical flow estimators. In most cases, dense 
motion data provides coarse and noisy outputs while sparse features, obtained with 
pixel accuracy, require a form of shape reconstruction which is an ill-posed problem 
in itself. We can thus identify a new direction in the aggregation of dense and 
sparse motion flows into temporally stable masks, since this would allow 
an accurate estimation of moving objects without the need of shape reconstruction, 

by constraining dense motion flows with the set of sparse features. The resulting 

motion cues can then be temporally integrated by a TSM to form a coherent mask of 
the current FG detected through motion.  
 In the following two chapters we will focus on this newly-identified research 
perspective. We will outline the fundamentals of optical flow estimation, followed by 
a description of our proposed approach towards aggregating dense and sparse 
optical flows into temporally stable masks in the context of FG identification and 
persistence in videoconferencing systems. 
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3. A METHOD FOR MOTION SEGMENTATION BY 
AGGREGATING DENSE AND SPARSE OPTICAL 

FLOW INFORMATION 

3.1. Introduction 

 Motion segmentation represents a core component in a wide range of 
applications. Surveillance systems use it to reveal moving objects in an observed 
scene, gesture recognition systems segment and track body motion with the 
purpose of controlling interactive media content [1] while immersive communication 

systems rely on motion segmentation to perform real-time foreground extraction 
and reunite participants in virtual meeting rooms [5]. The present chapter 
introduces our first contribution to the field of foreground extraction in monocular 
video sequences, in the form of a novel method for robust and accurate motion 
segmentation. 
 Based on the conclusions drawn in paragraph 2.4, and aligned with the 

proposed research objectives, the presented approach [71] brings together the 
accuracy of sparse optical flow (OF) estimation with the robustness of a dense OF 

method in order to accurately segment moving regions between consecutive video 
frames.  
 The chapter begins with an introduction to the concept of optical flow, 
accompanied by formal descriptions of the most important OF estimation methods 
found in the literature. Next, the reasoning and the formulations behind our original 

method for motion segmentation are detailed, followed by a summary of the most 
relevant experimental results and observations. 

3.2. Optical flow 

3.2.1. Definition. General considerations 

 Motion sensing and its understanding is an intrinsic ability of living forms 

endowed with the sense of vision. For human beings this is a natural process that 
we often take for granted regardless of whether we are moving in a scene or just 
observing it from a stationary position. In the world of computer vision things are 
more complicated and the (still unresolved) requirement is to obtain a general and 
flexible representation of motion that can be used in a variety of applications while 
being robust and computationally efficient [72].  

 Optical flow is the representation of the apparent motion of the observed 
scene projected onto the plane of a moving or stationary camera [73]. The concept 
was first introduced by the American psychologist James J. Gibson during World War 
II, as the information carried by light resulting from environmental structure and the 
animal's path through the environment. Optical flow (OF) can be described by a 2-
dimensional velocity field which results from the observed motion of the objects in 

the scene and/or the motion of the observer, as illustrated in Figure 3-1. There are 
particular cases in which moving objects in the scene may not generate any 
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apparent motion (e.g. a perfectly smooth rotating sphere), therefore a distinction 
must be made between the concepts of motion flow and optical flow [74]. What we 

aim to determine is the motion flow, optical flow being only an approximation of the 
motion field; in most cases this approximation provides enough information to 
reconstruct the motion field, a process that occurs naturally in human brains. 

 

Figure 3-1. Optical flow field on the Train sequence: (a) frame at time t; (b) frame at time 
t+1; (c) dense optical flow and colors used to encode velocity orientation; (d) sparse optical 

flow field 

 Let us consider the image sequence I(x, y, t), where (x, y) denotes the pixel 

location in the rectangular image domain  and t represents the time, t ≥ 0. To 

compute the optical flow we start from the assumption that intensity values of pixels 
belonging to image objects do not change between two consecutive frames [2]: 

𝐼 𝑥, 𝑦, 𝑡 = 𝐼 𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡  (3.1) 

an equation known in literature as the brightness constancy assumption [75]. 
 Assuming small object movements between consecutive frames and that 

dt→0, a 1st-order Taylor expansion to the right-hand quantity will give us the 

equation 

(a)  (b) 

(c) 

(d) 

dense flow sparse flow 

flow 
orientation 
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𝐼 𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑡 + 𝑑𝑡 =  𝐼 𝑥, 𝑦, 𝑡 + 
𝜕𝐼

𝜕𝑥
𝑑𝑥 +

𝜕𝐼

𝜕𝑦
𝑑𝑦 +

𝜕𝐼

𝜕𝑡
𝑑𝑡 + 𝑒 (3.2) 

where e denotes the high-order terms of the expansion, with e ≈ 0. 

From the equations (3.1) and (3.2), we obtain: 
𝜕𝐼

𝜕𝑥
𝑑𝑥 +

𝜕𝐼

𝜕𝑦
𝑑𝑦 +

𝜕𝐼

𝜕𝑡
𝑑𝑡 = 0 (3.3) 

and after dividing with dt we obtain the optical flow constraint equation: 
𝜕𝐼

𝜕𝑥
𝑢 +

𝜕𝐼

𝜕𝑦
𝑣 +

𝜕𝐼

𝜕𝑡
= 𝐼𝑥𝑢 +  𝐼𝑦𝑣 + 𝐼𝑡 = 0 (3.4) 

where 𝑢 =
𝑑𝑥

𝑑𝑡
, 𝑣 =

𝑑𝑦

𝑑𝑡
  denote the optical flow field velocities along the x and y image 

coordinates. 

3.2.1.1. The aperture problem  

The optical flow constraint equation alone is not sufficient to compute the unknown 

velocities u and v. For non-vanishing image gradients this equation allows us to 

determine only the normal flow component, which is perpendicular on image edges 
[2]. This is known in the literature as the aperture problem and is illustrated 
graphically in Figure 3-2. In order to compute the remaining flow components 

another set of constraints is required, which also differentiates between various OF 
methods. 

 

Figure 3-2. The aperture problem: when viewing exclusively through the aperture, object 
motion estimation is ambiguous. 

 As described in [73] the following types of constraints can be added to 

equation (3.4) in order to create a system that is solvable in its unknowns u and v: 

 Data conservation constraints. These constraints exploit the fact that image 
measurements taken across small image regions yield similar values even if 
the location of the region changes in time. Alone, data conservation 
assumptions are not able to solve the aperture problem and in practice they 
must be combined with additional constraints like those described below. 

aperture 

moving  
object 

? normal 
flow 
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 Spatial coherence constraints. Constraints from this category rely on the 
assumption that neighboring points should exhibit similar optic flow 

velocities as they most probably belong to the same object surface. In 
literature we encounter them under the name of smoothness constraints, as 
they assume optic flow to exhibit smooth variations across local 
neighborhoods. 

 Temporal coherence constraints. In order to ensure the stability and 
persistency of the observed optic flow, temporal constraints assume that the 

motion of an object surface changes gradually over time. The effect of these 

constraints can be observed on two levels: first they reduce the noise in the 
optic flow estimation and second, they allow for faster computation by 
integrating previous results in subsequent estimations. 

3.2.1.2. Method classification 

 Extensive surveys found in literature [2, 73, 75, 76] describe many ways to 
compute OF according to the set of additional constraints added on top of equation 

(3.4) and the way the resulting OF is represented. If we refer to the latter criterion, 
we can split OF estimation methods in two main categories, also illustrated in Figure 
3-1:  

 Dense optical flow. Dense flow methods estimate the displacement 

vector [u, v]T for every pixel in the image and generate a continuous 

(dense) vector field covering the entire image.  
 Sparse optical flow. Sparse flow methods estimate the displacement 

vector only for specific  points in the image, called features; the set of 
feature points is obtained by running a point detector algorithm, as 
described in paragraph 2.3.4.2. The result is a sparse vector field which 
indicates the velocity of each feature by matching its location between two 

consecutive input frames. 

3.2.2. Dense flow estimation 

 Depending on the additional constraints imposed by the OF computation 
method, dense OF estimation in a succession of images can take place at a local or 
at a global level [2]. As the names suggest, local constraints work by minimizing an 
energy functional defined over a subset of the image (usually a pixel neighborhood) 

while global constraints deal with the energy minimization problem over the whole 

image domain . 

3.2.2.1. Local methods 

3.2.2.1.1. Lucas-Kanade 

 At the foundation of local dense OF estimation methods stands the work of 
Lucas and Kanade [77] which describes a differential method based on the 
assumption that the optic flow is relatively constant in the neighborhood of each 
pixel. This spatial coherence assumption holds only if there are small and 
approximately constant displacements between two consecutive video frames [45].  
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 Formally, the local smoothness constraint introduced by the Lucas-Kanade 

(LK) method translates into applying the optic flow constraint (3.4) to each pixel qi, 
i=1..n within the neighborhood Np centered on a given pixel p. Giving each pixel qi 

the same importance level may introduce significant errors in computing the image 

displacement h = [u, v]T for some cases [78]; hence, an additional weighting 

component is introduced in the form of a Gaussian kernel Kp matching the size of 

the neighborhood Np, which assigns higher weights to pixels which are closer to the 

location p for which the displacement is being estimated. As a result, the problem of 

optic flow estimation can be formulated as a problem of minimizing the energy:  
𝐸𝐿𝐾 𝑢, 𝑣 ≔ 𝐾𝑃 ∗ [(𝐼𝑥𝑢 +  𝐼𝑦𝑣 + 𝐼𝑡)

2] (3.5) 

within the neighborhood Np [2].  

The minimum energy occurs when 
𝜕𝐸𝐿𝐾

𝜕𝑢
= 0 and 

𝜕𝐸𝐿𝐾

𝜕𝑣
= 0; this results in a system of n 

equations in the unknowns u and v, which can be written in matrix form as:  
𝐾𝑝𝐴 = 𝐾𝑝𝐵 (3.6) 

where:   

𝐴 =

 
 
 
 
𝐼𝑥(𝑞1) 𝐼𝑦(𝑞1)

𝐼𝑥(𝑞2) 𝐼𝑦(𝑞2)

⋮
𝐼𝑥(𝑞𝑛)

⋮
𝐼𝑦(𝑞𝑛) 

 
 
 

 ,  =  
𝑢
𝑣
  and 𝐵 =  

−𝐼𝑡(𝑞1)
−𝐼𝑡(𝑞2)

⋮
−𝐼𝑡(𝑞𝑛)

  

with qi Np, i = 1..n.  

 Equation (3.6) describes a system which is over-determined, since it 
contains more equations than unknowns. In most cases such systems are 
inconsistent since there is no solution to satisfy all equations simultaneously 
(although there is a multitude of solutions that satisfy a subset of them). It is 
possible, however, to find the approximate solution that minimizes the error in 

respect to each equation by applying the weighted version of the least squares 
principle. The problem is thus reduced to solving the system: 

𝐴𝑇𝐾𝑝𝐴 = 𝐴𝑇𝐾𝑝𝐵 (3.7) 

By considering 𝐺 = 𝐴𝑇𝐾𝑝𝐴  and 𝑏 =  𝐴𝑇𝐾𝑝𝐵 , we obtain the formula for the 

displacement: 
 = (𝐴𝑇𝐾𝑝𝐴)−1𝐴𝑇𝐾𝑝𝐵 = 𝐺−1𝑏 (3.8) 

with its detailed form: 

 
𝑢
𝑣
 =   

 𝑤𝑖𝐼𝑥 𝑞𝑖 
2

𝑖  𝑤𝑖𝐼𝑥 𝑞𝑖 𝐼𝑦 𝑞𝑖 𝑖

 𝑤𝑖𝐼𝑥 𝑞𝑖 𝐼𝑦 𝑞𝑖 𝑖  𝑤𝑖𝐼𝑦 𝑞𝑖 
2

𝑖
 

−1

∙  
− 𝑤𝑖𝐼𝑥 𝑞𝑖 𝐼𝑡 𝑞𝑖 𝑖

− 𝑤𝑖𝐼𝑦 𝑞𝑖 𝐼𝑡 𝑞𝑖 𝑖
   (3.9) 

where 𝑤𝑖 =  𝐾𝑝 𝑞𝑖  denotes the weighting factor applied to each pixel in the 

neighborhood Np. 

 In order to validate the 1st-order Taylor expansion performed in (3.2), 
equation (3.8) holds only for small pixel displacements. In practice, computing an 

accurate estimation of h requires an iterative Newton-Raphson approach [45, 79]. 

At a given step k in the computation, the initial frame is moved by the previous 

estimate hk-1 and the residual optic flow vector ηk is computed between  𝐼 𝑥 +

𝑢𝑘−1, 𝑦 + 𝑣𝑘−1, 𝑡  and 𝐼 𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 𝑑𝑡 . The complete pixel displacement at step k is 

obtained as: 
𝑘 = 𝑘−1 + 𝜂𝑘  (3.10) 

and is known to converge after relatively few iterations. 
 Bruhn et al. [2] outline some of the limitations of the Lucas-Kanade method, 
namely: 
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 in case of smooth regions characterized by vanishing image gradients, the 

matrix G is not invertible and the optic flow cannot be computed; 

 in regions where the smaller eigenvalue of the matrix G is close to 0 it is 

impossible to compute a reliable optic flow value due to the aperture 
problem. 

The above-mentioned limitations break the density of the estimated optical flow; in 
order to restore it, other methods such as interpolation must be applied, which in 
turn lower the accuracy of the resulting estimation.  

 The local smoothness constraint holds only for small disparities, which are 
sometimes less than the pixel spacing in the frame. In such cases, the method is 
still usable if the current optic flow is extrapolated from disparities computed for 

previous frames or the method is applied on scaled-down versions of the image. In 
terms of noise robustness, the LK approach provides good noise resilience especially 

as the size of the Np neighborhood increases [2]. 

3.2.2.1.2. Farnebäck 

 A different local constraint was introduced by Gunnar Farnebäck, who used 

polynomial expansion in order to approximate the neighborhood Np of pixel p with a 

quadratic polynomial [80]. The polynomial expansion coefficients are obtained by 

applying a weighted least squares method thoroughly described in [81], which yields 

the following result: 
𝐼 𝑥  ~ 𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐 (3.11) 

where x = [x, y]T represents the vector of image coordinates while A is a symmetric 

matrix, b a vector and c a scalar that correspond to the polynomial expansion 

coefficients. 
 If the polynomial described in (3.11) is subject to a global displacement with 

a value h, a new quadratic polynomial would be obtained: 

𝐼′(𝑥) = 𝐼 𝑥 −  =  𝑥𝑇𝐴′𝑥 + 𝑏′
𝑇
𝑥 + 𝑐′ (3.12) 

having the new expansion coefficients: 

  
𝐴′ = 𝐴
𝑏′ = 𝑏 − 2𝐴
𝑐′ = 𝑇𝐴 − 𝑏𝑇 + 𝑐

  (3.13) 

Provided that the symmetric matrix A is invertible, the displacement can be 
immediately obtained from the 2nd equation in (3.13): 

 = −
1

2
𝐴−1 𝑏′ − 𝑏 = 𝐴−1∆𝑏 (3.14) 

 In reality, the displacement exhibits a spatial variation and so do the 
polynomial expansion coefficients, which can be expressed as functions of the image 

location x. This marks the transition from global polynomials to local polynomial 

approximations.  
 According to [80] the 1st equation in (3.13) does not hold on a local 

polynomial approximation so the term 𝐴  𝑥 =  
𝐴′  𝑥 +𝐴(𝑥)

2
 is introduced. Now, equation 

(3.14) can be rewritten in the form of the optical flow constraint: 
𝐴  𝑥 (𝑥) = ∆𝑏(𝑥) (3.15) 

 Similar to Lucas and Kanade, Farnebäck introduces a local smoothness 
constraint by making the assumption that the optic flow varies slowly within the 

local neighborhood Np. Considering that each pixel qi Np is weighted by a function 

BUPT



 44 Motion Segmentation by Aggregating Dense and Sparse Optical Flow – 3 

w(qi), the problem of estimating the displacement h = [u, v]T is reduced to 

minimizing the energy: 

𝐸𝐹𝐵  =   𝑤 𝑞𝑖 

𝑖

 𝐴  𝑞𝑖  − ∆𝑏(𝑞𝑖) 
2 (3.16) 

which gives the value for the optic flow velocity: 

 =    𝑤 𝑞𝑖 

𝑖

𝐴  𝑞𝑖 
𝑇𝐴  𝑞𝑖  

−1

  𝑤 𝑞𝑖 

𝑖

𝐴  𝑞𝑖 
𝑇∆𝑏(𝑞𝑖) (3.17) 

 In order to solve the problem of estimating large displacements caused by 
fast and ample motions between frames, the Farnebäck (FB) approach includes two 
additional capabilities: 

 support for a priori knowledge, which allows the use of an a priori 

determined displacement field (i.e. computed in a previous point in time) as 
an input for the computation of the current displacement; in turn, this 
capability leads to iterative displacement estimation; 

 multi-scale estimation, which relies on a pyramidal decomposition of the 
image [24] to estimate displacement starting from coarser levels (where 
large motion can be estimated) and progressing towards the full image level 

(where small motion is observed) by refining the estimates at each step. 
As a result of the approach described above, Farnebäck’s method provides better 
accuracy that most 2-frame optical flow estimation methods at the expense of 
increased computational time but with a good potential for parallelization. As a 

weakness, the assumption of a slowly varying displacement field causes flow 
discontinuities to be smoothed out at object border regions [80].  

3.2.2.2. Global methods 

3.2.2.2.1. Horn-Schunck 

 As opposed to local methods, global dense OF estimators introduce 

smoothness constraints which apply to the whole image domain . The reference 

work in this area is the one from Horn and Schunck [2, 44]. 

 The Horn-Schunck (HS) method relies on the minimization of a global 
energy functional in order to enforce flow smoothness across the whole image: 

𝐸𝐻𝑆 𝑢, 𝑣 =  [ 𝐼𝑥𝑢 +  𝐼𝑦𝑣 + 𝐼𝑡 
2

+  𝛼( ∇𝑢 2 +  ∇𝑣 2)]𝑑𝑥𝑑𝑦

 

Ω

 (3.18) 

where α > 0 is a regularization constraint which controls the flow smoothness 

(smoothness weight). Larger values of α will have a penalty effect on large flow 

gradients by increasing the value of the energy functional. 
 In order to minimize the functional (3.18) the Euler-Lagrange equations are 

used [2], giving the following system: 

 
∆𝑢 −  

1

𝛼
 𝐼𝑥

2𝑢 + 𝐼𝑥𝐼𝑦𝑣 + 𝐼𝑥𝐼𝑡 = 0

∆𝑣 −  
1

𝛼
 𝐼𝑥𝐼𝑦𝑢 + 𝐼𝑦

2𝑣 + 𝐼𝑦𝐼𝑡 = 0

  (3.19) 

where Δ represents the Laplacian operator applied in the spatial domain, ∆=
𝜕2

𝜕𝑥2 +

𝜕2

𝜕𝑦2 . 
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 The Laplacian can be estimated by using finite differences. For example, by 

considering ū as the weighted average of the horizontal flow u in a neighborhood Np 

centered on the location p where the flow is computed, we can write Δu = ū – u. By 

substituting the Laplacian estimation in (3.19) we obtain a linear system, with 
immediate solutions for every pixel in the image. However, since the estimation 

relies on the flow coming from the neighborhood Np the solution must be computed 

iteratively every time a neighbor is updated, resulting in the following set of 

equations applicable in each iteration j: 

 
 
 

 
 𝑢𝑗+1 = 𝑢 𝑗 −

𝐼𝑥
2𝑢 𝑗 + 𝐼𝑥𝐼𝑦𝑣 

𝑗 + 𝐼𝑥𝐼𝑡

𝛼 + 𝐼𝑥
2 + 𝐼𝑦

2

𝑣𝑗+1 = 𝑣 𝑗 −
𝐼𝑥𝐼𝑦𝑢 

𝑗 + 𝐼𝑦
2𝑣 𝑗+𝐼𝑦𝐼𝑡

𝛼 + 𝐼𝑥
2 + 𝐼𝑦

2

  (3.20) 

 According to [2], the HS method can be characterized by an important 
benefit and also by a significant limitation. The benefit is that image areas with 
vanishing gradients are filled in from the motion boundaries due to the presence of 
the flow regularization term in the energy functional. The limitation resides in the 
method’s increased sensitivity to noise. Noise causes high gradients in the image 
which impact the data term (𝐼𝑥𝑢 +  𝐼𝑦𝑣 + 𝐼𝑡) of the regularization functional (3.18). 

The smoothness term is weighted by the same constant α regardless of the 
presence or absence of high image gradients, therefore this term will have less 
relevance in case of noisy structures.  An increase of the smoothness weight may 

compensate the undesired noise effect but at the same time in will over-smooth the 
sought-after fill in effect. 

3.2.3. Sparse flow estimation 

3.2.3.1. The Kanade-Lucas-Tomasi feature tracker 

 Based on the early work of Lucas and Kanade reviewed in paragraph 
3.2.2.1.1, [82] have developed a complete method for detecting and tracking point 
features in image sequences. Their research shows that for an accurate 

displacement estimation, defining a good window Np which is to be tracked across 

consecutive frames must be done in accordance to the tracking algorithm being 
employed and the assumptions being made in respect to the optic flow computation, 

since not all image regions contain motion information.  

 In the previous chapters we have seen that the spatial image gradient (Ix, 
Iy) plays a major role in the computation of the optic flow. By referring to equation 

(3.8): 
 = 𝐺−1𝑏 

Tomasi and Kanade consider that the window Np can be correctly tracked between 

two frames only if the system represents a good measurement and can be solved 

reliably. This means that the coefficient matrix G is above the image noise level and 

is well conditioned, which translates into the following conditions imposed on its 

eigenvalues  λ1, λ2): 
a) both λ1 and λ2 must be large, in order to represent reliable patterns such as 

corners or rich textures well above the image noise level; 
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b) λ1 and λ2 cannot differ by several orders of magnitude, in order to meet the 

conditioning requirement [83], meaning that slight variations in one of the 

coefficients of G caused by errors will not induce large variations in the 

estimation of the optic flow displacement h. 

 If the minimum eigenvalue of G is sufficiently large to fulfill condition a), 
condition b) will also be matched since the maximum eigenvalue cannot be 
arbitrarily large due to the fact that intensity variations in an image are limited by 
the maximum allowed pixel value. As a result, we can now write the condition for 

reliable feature selection [65, 82] as: 
min 𝜆1, 𝜆2 > 𝜆 (3.21) 

where λ is a predefined threshold. According to [82], λ can be safely chosen as  λmin 
+ λmax) / 2, where λmin is determined from a smooth image region and λmax from a 

corner or a rich textured region. 
 As shown in [84] conditions a) and b) are fulfilled by the Harris corner 
detector [85], which is able to identify edge corners that exhibit a strong invariance 
to illumination changes, noise, rotation and scale. 
 The tracking method based on the equation (3.8) from the original LK 
approach and the feature selection criterion (3.21) defined by Tomasi and Kanade, 

is known in literature as the Kanade-Lucas-Tomasi tracker (or simply KLT). 
 In order to verify the correctness of feature tracking based on the KLT 
method, [65] have proposed an extension which checks tracked features against an 
affine motion transformation applied between non-consecutive video frames. The 

pixel displacement is represented as an affine motion field, 
 = 𝐷𝑥 + 𝑑 (3.22) 

where 𝐷 =  
𝑑𝑥𝑥 𝑑𝑥𝑦
𝑑𝑦𝑥 𝑑𝑦𝑦

  represents a deformation matrix and d denotes the translation 

of the feature window Np centered on the feature p located at coordinate x.  

While between two consecutive frames it can be safely assumed that D = 0 and we 
are left with the original LK equations, between non-consecutive frames the 
influence of deformation cannot be ignored. If the dissimilarity between the affine 
transformed feature and its representation in the current image varies abruptly, this 

is an indication that the feature is no longer reliably tracked and that it must be 
dropped. 

3.2.3.2. Pyramidal Lukas-Kanade algorithm 

 In paragraph 3.2.2.1.1 we have mentioned the fact that the LK approach 
works only in case of small displacements, sometimes even smaller than the 
distance between 2 adjacent pixels. The KLT approach described in the previous 

section suffers from the same drawback. In order to compensate for this aspect, 
pyramidal image decomposition can be used to estimate the displacement at 
different scale levels [79, 86]. 
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Figure 3-3. Pyramidal optical flow estimation 

 In a first step, the image is decomposed over a number of n levels. The 

image Ii corresponding to level i is obtained by scaling the image Ii-1 (associated to 

level i–1) by a factor of 2. As a result, the coordinates of pixel p in the original 

image I=I0 will be translated at level i by the formula  𝑝𝑖 =
𝑝

2𝑖
. 

 Next the optic flow estimation is computed, starting from the topmost level 

of the pyramid until the final level is reached. At a given level i in the pyramid the 

displacement vector hi can be represented as: 

𝑖 =  𝑖 + 𝑑𝑖 (3.23) 

where:  

  𝑖 is the initial estimation of the optic flow at level i, obtained based on all 

previous computations carried from level n to level i+1; 
 𝑑𝑖  represents the residual displacement which minimizes the energy 

𝐸𝑖 𝐿𝐾( 𝑖 + 𝑑𝑖)  described by equation (3.5) and applied to level i of the 

pyramid. 
Since 𝑑𝑖  is very small, it can be computed by using the regular iterative LK algoritm 

described in paragraph 3.2.2.1.1. Once hi is computed, the estimation for the next 

level i–1 is obtained as: 

 𝑖−1 = 2𝑖 (3.24) 

  Considering that the initial estimation at the top of the pyramid is  𝑛 = 0, the 

final displacement will be given by the formula: 

Level i 

Level i-1 

Level i+1 

pi 

ĥi 

di 

ĥi-1 

di-1 

ĥi-2 

Ii 

pi-1 

Ii-1 

t+1 t 
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 =  2𝑖
𝑛

𝑖=0

𝑑𝑖 (3.25) 

 We can immediately observe that the more levels are added to the pyramid, 
the larger is the maximum displacement that can be detected. 

3.2.4. Discussion. Comparison between methods 

 30 years after the initial optical flow formulations, countless methods for 
estimating motion flow in moving image sequences have been devised, with more 
than 200 of them starting from the LK or HS methods [87]. Apart from the 
differences in problem formulation that have been outlined by several major surveys 
and articles [75-77, 88], almost all optical flow approaches have a common set of 

characteristics: 
 sensitivity to noise and illumination changes, which generate erroneous 

displacement estimations; 
 problems handling occlusions and disocclusions, where pixels disappear and 

respectively appear between consecutive frames due to overlapping 
between the projections of scene objects on the camera plane; 

 issues handling optic flow at object boundaries due to smoothness 

constraints; 
 difficulty in handling large motions, mainly caused by the 1st-order Taylor 

series approximation from equation (3.2); 
 unreliable estimation in the presence of motion blur, which violates the 

brightness constancy assumption of equation (3.9) [89]. 
Of course, some of the proposed methods in literature handle particular aspects 
better than others or behave better in estimating specific type of motion (e.g. affine 

motion). However, due to the ill-posed nature of the optic flow problem there is no 
method which scores highest in all the above-mentioned categories. As shown in 
[87], pixels in a video sequence can be grouped in classes of algorithm suitability, 
based on the type of optical flow algorithm to which they respond best.  
 Figure 3-4 and Figure 3-5 show the results we have obtained by applying 
the LK, HS, Farnebäck and KLT optic flow algorithms to several test video 

sequences, both natural and synthetic. 
 

Hamburg Taxi Avatar  TV Show Mihai 4 

    
Frame #35 Frame #1 Frame #115 Frame #191 

    
Frame #36 Frame #2 Frame #116 Frame #192 
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Lucas-Kanade 

    
Horn-Schunck 

    
Farnebäck 

    
KLT 

Figure 3-4. Optical flow estimation on different video sequences 

 

  

 

 Frame #1 Frame #2  

    
Lucas-Kanade Horn-Schunck Farnebäck KLT 

Figure 3-5. Impact of illumination changes on optical flow estimation on the Home sequence 

Note that the dense optical flow estimations (LK, HS and Farnebäck) have been 

filtered so that only significant displacements are shown (|h| > 0.5 pixels). For the 

sparse flow estimation (KLT) all successfully tracked features have been displayed; 
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for features with a significant displacement, the previous position is shown in red 
and the current one in light green, with the displacement vector painted as a blue 

line, scaled by a factor of 5 for visibility purposes.   
 Based on the results illustrated above and additional experiments performed 
on a database of more than 40 video sequences, we can make the following 
remarks: 

a) The LK method is the most sensitive to noise and video compression, as 
clearly seen in case of the Hamburg Taxi and Mihai 4 sequences. However, it 

is the one to deal best with smooth regions, as observed in the dark shirt 

area of sequence Mihai 4. 
b) Due to its global smoothing approach, the HS method deals reasonably well 

with noise and false positives due to video compression are also reduced. 
However, like its LK counterpart, this method is sensitive to illumination 
changes [90; 91], as illustrated in Figure 3-5 for the Home sequence. 

c) The FB method is the most robust dense OF method in terms of noise and 
illumination changes, but it clearly exhibits an oversmoothing effect due to 

the quadratic polynomial approximation, as seen in all 4 sequences along 
object boundaries. This method produces false negatives in smooth image 
areas, as it can be seen in the Avatar, TV Show and Mihai 4 sequences. 

d) The KLT tracker provides pixel-level accuracy and robustness to noise, while 
still being sensitive to illumination changes due to the use of LK approach 
for each pyramid level. It can be seen that the number of successfully 

tracked features is higher in case of synthetic videos (i.e. the Avatar 

sequence), which are free of noise and compression artifacts. This suggests 
that applying the KLT method on higher intensity spatial gradients (edges) 
obtained from the input image may provide better results with more 
features suitable for object contour tracking. 

 

3.2.4.1. Optical flow estimation in the context of 

videoconferencing applications 

 In the context of monocular videoconferencing applications, optical flow 
estimation is confronted with the following situations: 

a. Illumination changes. Local or global illumination changes between 
consecutive frames may be caused by a variety of factors, including 

reflections, changes in natural or artificial lighting, automatic camera 
exposure etc. Basically, illumination changes violate the brightness 
constancy assumption and introduce significant false positives into the OF 
estimation, as shown in Figure 3-5. 

b. Noise. Common video capture hardware in particular can introduce a lot of 
white noise in the captured video stream, especially in low-lighting 

conditions. Depending on the sensitivity of the estimation method, noise 
adversely affects the resulting optic flow vector field, as evidentiated in 
Figure 3-4 - Hamburg Taxi sequence for the LK method.   
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c. Compression artifacts. Videoconferencing implies transmitting the video 
feeds collected from participants over a communication medium 

implemented using wired or wireless networks (or a mixture of the two). To 
make this process efficient in terms of required bandwidth and transmission 
speeds, compression is applied to the video component of the stream by the 
means of a video encoding algorithm such as H.263, H.264 or VP8 (for the 
astute reader, we mention that compression is applied independently to the 
audio component as well using audio-specific algorithms such as Nelly-Moser 

or Speex, but their scope goes well beyond the one of our paper). 

Depending of the choice of video encoding algorithm compression and the 
quality of the encoding, artifacts may be introduced in the video stream in 
the forms of blocking or oversmoothed regions [92]. This encoding noise 
can again introduce false positives or false negatives (e.g. for 
oversmoothing) in the OF estimation. 

d. Occlusions and disocclusions. Many types of (dis)occlusions can occur 
in videoconference systems, like objects and people moving in the 

background behind the conference participant, hand gestures performed by 
the main subject which occlude parts of his own body or large motions 
performed by the participant which expose previously unseen parts of the 
background. It is a known fact that dense OF in particular is not capable of 
occlusion handling, as explained in [93] and [94]. 

e. Smooth foreground regions. In previous chapters and in Figure 3-4 – 

Mihai 4 sequence we have shown that OF methods are unable to estimate 

the motion of smooth image regions due to their lack of details and the 
aperture problem. In videoconferences people often wear uniformly-colored 
clothing and in case of smooth and non-reflective surfaces OF estimation is 
a close to impossible task. 

f. Camera instability. OF estimation is highly sensitive to camera motion. 
A shaking camera or a camera mounted on a vibrating assembly will 

produce a frame-to-frame jitter effect, which manifests as a high frequency 
motion of the whole scene in the recorded video. Optic flow estimation 
methods are unable to distinguish the jitter from real motion and this leads 
to an over-estimated motion flow with a high rate of false positive responses 
visible especially in the background regions of the scene. 

g. Motion blur. In case of videoconference applications this effect is usually 
caused by hand gestures performed by the participants as part of non-

verbal communication or in order to interact with the conferencing system 

[95]. This has a negative impact on the reliability of the OF estimation, due 
to violations on the brightness constancy assumption [89]. Sparse OF 
estimation is particularly affected since blurred image areas contain mostly 
smooth gradients and low textures that prevent the identification of good 
features to track. 

 In conclusion, using a single OF estimation method may not yield the 
expected results in a videoconference application. A dense OF method such as 
Farnebäck’s may provide good results for situations a), b) and c) but due to 
oversmoothing it will not accurately identify moving object boundaries. The sparse 
KLT method can provide precise control points along moving object boundaries with 
subpixel accuracy and may be used to partially solve problem d) and even problem 
f) [96] but it will be sensitive to illumination and produce very noisy estimations 

when faced with situation a) or too few estimations for case g).  
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 These observations effectively support our approach of aggregating dense 
and sparse OF estimations in order to compensate the drawbacks of each 

component method and to benefit from their strong points. As we describe in the 
next paragraphs, while this proves to be a solution for cases a)- c) and partially d), 
case e) requires a totally different, non OF-based approach and case f) requires a 
dedicated image processing algorithm. Case g) is solvable using some of the latest 
dense OF techniques [89], but the solution is too computationally expensive for the 
particular case of videoconferencing applications.  

3.3. Aggregation of dense and sparse optical flow 

estimations 

 In the first part of the present chapter we have outlined the different 
approaches to OF estimation, their benefits and drawbacks as well as our reason for 

attempting to fuse the information provided independently by dense and sparse OF 
methods. 
 Since we aim at obtaining accurate boundaries of moving objects in the 
videoconference scene, it is obvious that dense OF provides insufficient information. 
Dense OF exhibits an over-smoothing effect which crosses the object boundaries, as 
seen in Figure 3-4. In the same figure we notice that sparse OF estimated with the 
KLT method produces pixel-accurate feature tracking at the expense of high noise 

sensitivity.  

 In the presence of stronger image gradients, the number of features 
successfully tracked by the KLT method is higher since more regions satisfy the 
inequality (3.21), as explained in chapter 3.2.3.1 and illustrated in Figure 3-4 – 
Avatar sequence. This observation enables us to use the sparse optic flow to track 
features located on the outer and inner edges of moving objects as a first step in 

our algorithm, by applying the KLT method on the edge images of consecutive video 
frames (see Figure 3-6). 
 The features obtained from the KLT tracker represent a set of control points, 
some precisely located on object boundaries and others found inside the object. For 
an accurate silhouette representation we need to identify the features located on the 
boundary. Since each object can have an arbitrary concave shape, extracting its hull 
from the set of control points is an ill-posed problem [97]. The second step of our 

algorithm shows that by converging the over-smoothed region obtained from dense 
OF estimation to the nearest control points produced in the first step, it is possible 

to accurately determine the concave hull of the moving object. 
 The concave hull obtained in the second step is modeled as a discrete set of 
control points. As a consequence, its boundary is composed of line segments that 
connect the control points and lacks the edge smoothness that is characteristic to 
the real object. In the third step of the algorithm we address this problem by 

using an active contour that maps on the real object boundary starting from the 
control points which define the concave hull. 
 

BUPT



 53 3.3 – Aggregation of dense and sparse optical flow estimations 

CAPTURED 

FRAME

GRAYSCALE 

CONVERSION

Ft

EDGE DETECTION

(CANNY)

NOISE REMOVAL

(BILATERAL)

Et-1

GOOD FEATURES

(SHI and TOMASI)

Et

SPARSE OF

(KLT)

SPARSE OF 

FILTERING

DENSE OF

(FARNEBACK)

Gt-1

-

It

It-1

Dt

JOIN

DENSE 

MOTION MASK

HISTORY

HISTORY

ACTIVE CONTOUR

(SNAKE)

Object boundary

FOREACH CONTOUR IN 

DENSE MOTION MASK

END FOREACH

CONVERGE TO NEAREST 

SPARSE FEATURES

(DIST. TRANSFORM)

Concave hull

+
AGGREGATED 

MOTION MASK

AGGREGATED 

MOTION MASK

END

Gt

 

Figure 3-6. Block diagram of the dense-sparse flow aggregation algorithm 
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3.3.1. Pre-processing stage 

 The pre-processing stage prepares the captured input frame 𝐹𝑡 for applying 

the algorithm steps and is composed of 3 stages: 
a) Noise removal. Noise is present in most (if not all) captured video 

streams and has negative impact on the accuracy of motion flow estimation. 
The literature abounds in noise filtering methods, the median, Gaussian, 
bilateral and mean-shift being some of the most popular ones [24, 98]. 

Noise filters exhibit a gradient smoothing effect which in turn decreases the 
effectiveness of edge detection algorithms. As we are interested in 

maintaining significant edges in the image for the sparse OF estimation, we 
employ the bilateral filter due to its dual image smoothing and edge-
preservation characteristics [99]. We denote with 𝐼𝑡  =  𝐵𝑖𝑙𝑎𝑡𝑒𝑟𝑎𝑙(𝐹𝑡 ,𝜎𝑟 ,𝜎𝑑), the 

image obtained after applying the bilateral filter on the captured input 
frame. We have determined experimentally that the best results are 
obtained for 𝜎𝑟 = 50  color levels and 𝜎𝑑 = 3  pixels, which is in accordance 

with the reports in the literature [99]. 

b) Grayscale conversion. OF estimation algorithms as well as the edge 
detectors take as input single-channel grayscale images. On the other hand, 
𝐹𝑡 and 𝐼𝑡 are color images that represent pixel data using 3-channel RGB or 

YUV color spaces. In this stage the grayscale image 𝐺𝑡  is obtained by 

applying the following known transformations to each pixel 𝑝 of the image 

𝐼𝑡: 

𝐺𝑡 𝑝 =  
0.30 ∙ 𝐼𝑡

𝑅 𝑝 +  0.59 ∙ 𝐼𝑡
𝐺 𝑝 +  0.11 ∙ 𝐼𝑡

𝐵 𝑝 𝑖𝑓 𝑐𝑜𝑙𝑜𝑟 𝑖𝑠 𝑅𝐺𝐵

𝐼𝑡
𝑌 𝑝 𝑖𝑓 𝑐𝑜𝑙𝑜𝑟 𝑖𝑠 𝑌𝑈𝑉

  . 

c) Edge detection. Accurate edge maps are required for the sparse OF 
estimation and tracking while maintaining real-time computational 
capabilities.  Based on our previous research in the field [63], the best 
method satisfying both conditions is the Canny edge detector. Although 
other methods exist that achieve an even higher accuracy [100], they are 

simply too computationally intensive to apply to real-time application 
scenarios. Therefore, we consider the binary edge image 𝐸𝑡 = 𝐶𝑎𝑛𝑛𝑦(𝐺𝑡). 

3.3.2. Step 1. Generating control points from sparse flow 

and edge images 

 The purpose of this step is to identify a subset of point features φ, which 

belongs exclusively to moving objects in the scene, from the set of sparse OF 

features Φ tracked between two consecutive images. 

 Considering 𝐼𝑡−1  and 𝐼𝑡  to be the current and previous frames in the input 

video stream and 𝑀𝑡 ⊂ 𝐼𝑡  as being the ground truth for motion segmentation between 

the two frames,  we aim to fulfill the following criteria: 
𝜑 ⊂ 𝑀𝑡  ⋀ 𝜑 ∩ 𝜌− 𝑀𝑡 ≠ ∅ (3.26) 

where 𝜌−(∙) represents the internal morphological gradient [101]. In other words, we 

want to ensure that we have features in the subset φ that are located on the 

boundary of true moving regions and that subset φ itself is included in these 

regions. 

 Considering that set Φ is obtained by applying the pyramidal LK algorithm 

described in [79] and by taking in consideration the results and discussion from 
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chapter 3.2.4, a way to ensure that we obtain the set φ which satisfies rule (3.26) is 
to identify the good features from the previous edge image E(t-1) and to track their 

new positions in the current edge image E(t). The reasons for this approach are 
that: 

a) the contour 𝜌−(𝑀𝑡) must match the boundary edges of moving objects (since 

𝑀𝑡 is the ground truth of motion segmentation) and in order to fulfill criteria 

(3.26) we need to have sparse OF features located on those respective 
edges;   

b) the number of good features that can be identified in a binary edge image is 
higher than the one obtainable from the originating grayscale image since 

most edge pixels that exhibit a change in edge direction will satisfy 
inequality (3.21) and qualify as good features to track;  

c) by using binary edge images, successfully tracked features will always be 
located on an edge, according to the brightness constancy assumption; 
tracking a set of features located on the edge of a moving object will return 
their new positions on the updated edge location; 

d) edge images are less sensitive to noise and lighting changes so we can 

avoid the false positive responses shown in Figure 3-5. 

 To keep the obtained results accurate, for set Φ we establish an upper limit 
  𝑚𝑎𝑥 = 2𝐿+1 − 1  for the feature displacement magnitude, where L denotes the 

number of levels in the pyramidal decomposition. This limit is set according to the 

algorithm limitations described in [79]. For subset φ we introduce an additional 

lower limit   𝑚𝑖𝑛 = 1 for the magnitude, in order to account only for the features that 

exhibit significant motion. 

 In practice we do not possess the information provided by the ground truth 

𝑀𝑡 and it is possible for subset φ to contain outliers that belong to 𝐼𝑡  – 𝑀𝑡. We cannot 

completely remove these outliers in the absence of ground truth information. 
However, we can rely on the assumption that the new position of a moving feature 
must be accompanied by a significant change in pixel intensity between the previous 

and the current frames. This corresponds to the absolute frame differencing concept 
described in paragraph 2.3.1.1 and is expressed formally as: 

 𝐾𝑝 ∗ 𝐺𝑡 𝑝 −  𝐾𝑝 ∗ 𝐺𝑡−1(𝑝) ≥ 𝜏𝐷 (3.27) 

where 𝐾𝑝 represents a Gaussian smoothing kernel centered on the reference pixel p 

(required in order to avoid noisy outputs) and 𝜏𝐷  is a global threshold. In our 

experiments we have used a Gaussian kernel of size 5 x 5 and 𝜏𝐷 = 5. 

  Figure 3-7 shows the results obtained after this step for some of the video 

sequences introduced in chapter 3.2.4. Sparse OF features are represented as small 
circles on top of the edge image 𝐸𝑡 . Dark green circles represent stationary OF 

features with displacements below the   𝑚𝑖𝑛  threshold. Moving OF features have 

been represented using a light green circle for their current position, a red circle for 

their previous position and a blue vector to mark the displacement. Therefore, the 

union of green and light green circles represent the features from set Φ, while only 

the light green circles correspond to the features from subset φ. 
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Figure 3-7. Control points on moving objects generated using sparse OF techniques 

3.3.3. Step 2. Determining the concave hull of moving 

objects using dense flow 

 By examining the results shown in Figure 3-7, it is obvious that the 
boundaries of moving objects in the scene cannot be determined exclusively from 

the set of control points φ, as we lack information about the following two aspects: 

a) the number and shape of moving objects in the scene; 

b) the localization of each feature in respect to a moving object, which can be 
either on the boundary or inside the segmented object region.  

 The solution for a) comes from another motion cue: the dense optic flow 
estimation. We have already discussed the available dense OF estimation methods 
in chapter 3.2.2. Based on the results and discussions presented in chapter 3.2.4 we 
choose the Farnebäck estimator due to its robustness against noise and lighting 
condition changes and its relative accuracy compared to LK or HS methods.  For the 

astute reader we mention that although more accurate dense OF estimation 
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methods exist based on the HS approach [102], they are simply too expensive to 
compute in real-time on a live video feed. 
 By applying the Farnebäck method to the grayscale representations 𝐺𝑡−1 and 

𝐺𝑡  of two consecutive frames, we obtain the resulting displacement matrices U and V 

which correspond to pixel velocities along the x and y image axes. Using this result, 

we perform the following sequence of operations: 

1. Generate the binary dense optical flow motion mask MD: 

𝑀𝐷(𝑝 + 𝑣 ) = 𝛿( 𝑣  , 𝜏𝑣) (3.28) 

where: 

 𝑝 =  𝑥 𝑦 𝑇 is the pixel position vector relative to image 𝐺𝑡−1 
 𝑣 =  𝑈(𝑝) 𝑉(𝑝) 𝑇 represents the dense OF displacement of pixel p, 

  .   denotes the vector Euclidean length, 

 𝛿 𝑥, 𝜏 =  
1 , 𝑖𝑓 𝑥 ≥ 𝜏
0 ,𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  , and 

 𝜏𝑣  represents a velocity threshold, which is set to 0.5 in order to 

filter out subpixel displacements. 

2. Apply connected components analysis to mask MD, which produces a set of 

disjoint regions   𝑆1, 𝑆2,… , 𝑆𝑛  which satisfy the condition 

 𝑆𝑖 ∩ 𝑆𝑗 = ∅,∀𝑖 ≠ 𝑗   ∀𝑞|𝑀𝐷 𝑞 = 1,∃𝑖 ∈ 1. .𝑛      |𝑞 ∈ 𝑆𝑖   (3.29) 

3. For each region Si, i=1..n:  

a. extract the contour 𝒞 𝑆𝑖 = 𝜌−(𝑆𝑖)  where 𝜌− represents the internal 

morphological gradient; 
b. determine the set of sparse features  𝜑𝑖 = {𝑓 ∈ 𝜑|𝑓 ∈ 𝑆𝑖}; 
c. generate the concave hull  

𝒞  𝑆𝑖 =  𝑓𝑗 ∈ 𝜑𝑖  𝑓𝑗 = arg min
𝑓
  𝑝𝑗 − 𝑓  , 𝑝𝑗 ∈ 𝒞 𝑆𝑖 } (3.30) 

where  .   represents the Euclidean norm; 

determine the new region 𝑆 𝑖|𝜌
− 𝑆 𝑖 = 𝒞  𝑆𝑖 .  

Figure 3-8 contains a graphical representation of step 2 of the algorithm, which can 

be viewed as a distance transform [103] from the contours of dense OF regions to 
the concave hulls of enclosed sparse OF features. For each connected-component 

𝑆𝑖 ⊂ 𝑀𝐷, we search for the sparse features in the set φ that are closest to each of 

the points that make up the contour 𝒞 𝑆𝑖 .  These features act as the concave hull of 

a new shape 𝑆 𝑖 that represents a moving region in the current frame. 

 

Figure 3-8. Graphical representation of the aggregation of dense and sparse OF information 

𝑆𝑖 𝑓 ∈ 𝜑𝑖 𝒞 𝑆𝑖  𝒞  𝑆𝑖  

distance 
transform 
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3.3.4. Step 3. Extracting accurate moving object 

boundaries using active contours 

 Each concave hull 𝒞  𝑆𝑖 , 𝑖 = 1. .𝑛  constructed in step 2 of our algorithm 

represents a polygon whose vertices are usually located at distances greater than 1 
pixel. This has a negative impact on the smoothness of the extracted boundary 
along the edges of the polygon, since the polygon is an approximation of the actual 
moving region. 

 In order to obtain a smooth boundary for each region 𝑆 𝑖 , which is 

represented by the body of the polygon 𝒞  𝑆𝑖 , we use an active contours-based 

approach [104, 105]. The concept of active contours, also known in literature as 
snakes, has already been introduced in paragraph 2.3.3.2.2.  

 The snake is initialized from the set {𝑝𝑗 |𝑝𝑗 ∈ 𝜌
− 𝑆 𝑖 } and evolves iteratively 

towards the nearest discontinuities in the image G(t) while minimizing the energy 

functional defined in equation (2.5). Since the vertices of  𝒞  𝑆𝑖  are by definition 

located on the outer edges of the moving region, the snake converges to the 
nearest edges of this region that connect pairs of neighboring vertices. 

In order to achieve snake convergence, two of the most popular algorithms 

have been compared: the Greedy Snake approach described in [106] and the 
Gradient Vector Flow (GVF) technique proposed by Xu and Prince [107]. 

The Greedy Snake algorithm [106] is known for its fast convergence and good 
results. The quality of the extracted boundary depends on the values selected for 

the weights α, β and γ, which control the relative importance of continuity, 

curvature and respectively edge attraction terms in the snake energy functional. 
Based on results available in the literature [108, 109] and experiments performed 
on our database of test videos, we have chosen the following values: 

𝛼 = 0.45,𝛽 = 0.65,𝛾 = 0.50. 
 The GVF algorithm [107] computes a diffusion of the gradient vectors of a 
grayscale edge map, which allows the snake to converge inside concave boundary 
regions [110]. This feature comes at the expense of computation time, which is 
significantly larger in case of the GVF approach. Similar to the Greedy Snake 

algorithm, GVF relies on the weights α, β and γ to control the final snake 

appearance, with an additional regularization parameter 𝜇 that controls the tradeoff 

between smoothness and attraction to strong gradients in the vector flow energy 

formulation. In our experiments we have kept the values for the α, β and γ 
parameters same as for the Greedy snake, and set 𝜇  to the original value 

recommended by the authors, 𝜇 = 0.2.  

 The output of the snake algorithm is a new set of contours 

𝒞𝑖
𝑆 = 𝑆𝑛𝑎𝑘𝑒 𝐺𝑡 ,𝜌

− 𝑆 𝑖 ,𝛼,𝛽, 𝛾 , 𝑖 = 1. .𝑛. The body of each contour 𝒞𝑖
𝑆  corresponds to a 

moving region in the image, denoted with 𝑆𝑖
𝑆. The results produced by the two snake 

convergence algorithms are demonstrated in Figure 3-9, for frame #9 of the Green 
Screen 3 sequence. 
 As seen from the obtained contours, the GVF method has the tendency to 
follow object concavities, as seen on the person’s left shoulder, where the snake 
pursued the higher magnitude gradients associated with folds in the clothing. 

Surprisingly, the Greedy snake reacted better at the region between the neck and 
the right shoulder and produced a more complete and accurate object 
segmentation. Combined with a computation time one order of magnitude smaller 
than the one of GVF, this result turns the balance in favor of the Greedy snake, 
which becomes the algorithm of choice throughout the rest of our thesis. 
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The algorithm concludes by building the aggregated motion mask that will 
serve as input to the TSM algorithm, as the reunion of all 𝑆𝑖

𝑆 regions:  

𝑀𝐴 =   𝑆𝑖
𝑆

𝑛

𝑖=1

 (3.31) 

 

Greedy GVF 

  

blue = 𝑀𝐷, magenta = 𝒞  𝑆𝑖 , green =  𝒞𝑖
𝑆 

  

Extracted 𝑆𝑆 regions applied as masks over 𝐼𝑡 

Figure 3-9. Comparison between Greedy and GVF snake results 

3.3.5. Motion segmentation results 

The output results of the described dense and sparse OF aggregation algorithm are 
illustrated in Figure 3-10 for a set of different video sequences.  

 We can observe that the moving region 𝑀𝐴 has been segmented with pixel 

accuracy in the Green Screen 3 and Avatar sequences, which contain simple 
backgrounds and FG regions that possess a large number of trackable features. For 
the Mihai 2 sequence, the region is also accurate but under-segmented compared to 

the actual moving person; this is due to the presence of video encoding artifacts 
that affect some of the image edges and the presence of smooth regions (shirt) that 
prevent accurate OF computation. In the classic Hamburg Taxi sequence the 3 cars 
have been detected by our method, even if the sequence is extremely noisy. We 
note, however, that the moving FG regions have been only partially outlined due to 
insufficient sparse OF features, and leaking BG regions can be observed near the 

white car. 
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Green Screen 3  Mihai 2 Avatar Hamburg taxi 

    

Frame #8 Frame #266 Frame #1 Frame #25 

    

Frame #9 Frame #267 Frame #2 Frame #26 

    

Dense OF mask (𝑀𝐷) 

    

Subset φ of sparse OF features 

    

Dense-sparse OF aggregation: blue = 𝑀𝐷, magenta = 𝒞  𝑆𝑖 , green =  𝒞𝑖
𝑆 

    

Moving region obtained by applying 𝑀𝐴 as a binary mask to 𝐼𝑡 

Figure 3-10. Results obtained by aggregating dense and sparse OF information 
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 Based on the results presented above and experiments performed on our 
database of test video sequences we can conclude that the our novel algorithm for 

dense and sparse optical flow aggregation produces the expected results, especially 
in case of large foreground regions. This makes the algorithm suitable for use in 
videoconferencing applications where participants occupy a significant part of the 
scene, in order to provide accurate motion cues for FG segmentation.  

3.4. Summary 

 In this chapter we have introduced a new approach to accurate motion 
segmentation which combines the results produced by dense and sparse OF 
estimations in order to extract the moving regions between two consecutive frames 
in a monocular video sequence. By combining the two OF estimation techniques we 
are able to overcome the drawbacks of each method if taken individually, the result 
being a pixel-accurate set of moving regions that is resilient to noise and video 
compression artifacts [71]. 

The aggregated motion mask produced by the algorithm provides essential 
information about the FG objects present in the observed scene. However, this 
information is valid exclusively for the moment 𝑡 at which it was computed. In order 

to benefit from it over a longer timeframe, a method is required which enables a FG 
extraction system to incrementally build and update the FG image based on the 
motion data obtained at different moments. In the next chapter we will describe 

how to achieve this desiderate through the concept of temporally stable masks.
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4. TEMPORALLY STABLE MASKS: A METHOD 
FOR TEMPORAL INTEGRATION OF DETECTED 

MOTION 

4.1. Introduction 

 In chapter 3 we have introduced and detailed a new method capable of 
producing an accurate image of motion detected between pairs of consecutive 
frames in a video sequence. The aggregated motion mask 𝑀𝐴 obtained through this 

method represents a positive motion prior, which exposes a part of the real FG and 

is valid only at the time of its creation.  
 In order to achieve a coherent FG mask over a longer, ideally indefinite 

period of time, we want - at any given moment t - to be able to integrate into a 

single temporally stable mask, 𝑇𝑆𝑀𝑡 , all motion cues {𝑀1
𝐴 ,𝑀2

𝐴 ,…𝑀𝑡
𝐴} obtained until 

that particular moment. By this definition, we can express 𝑇𝑆𝑀𝑡 as: 

𝑇𝑆𝑀𝑡 ≔ 𝑓(𝑀𝑖
𝐴 , 𝑖 = 1. . 𝑡     ) (4.1) 

 In an ideal case, 𝑇𝑆𝑀𝑡  is free of false positives and contains the current 

positions of all FG pixels that were exposed by at least one motion cue by the 
moment t, for any t ≥ 1. This enables us to express 𝑇𝑆𝑀𝑡 based on its value known 

at t-1: 

𝑇𝑆𝑀𝑡 ≔ 𝑓(𝑇𝑆𝑀𝑡−1,𝑀𝑡
𝐴) (4.2) 

with the mention that the actual formulation of 𝑇𝑆𝑀𝑡  may depend on additional 

parameters not expressed at this stage. This is the equivalent of incrementally 
building and updating an image of the FG detected through motion.  

Once an image region is exposed as FG by a certain motion cue 𝑀𝑖
𝐴, it will be 

persisted as part of 𝑇𝑆𝑀𝑡≥𝑖  until we gather sufficient evidence that it has changed 

enough as not to be accounted for as FG anymore. In order to achieve this behavior 
we propose an approach based on image statistics to compute a negative motion 
prior that can invalidate a previous FG assumption for a given image region.  

The chapter starts by introducing the statistical models used to compute the 
negative motion prior, followed by a description of the TSM algorithm. We conclude 
with a discussion of the strengths and weaknesses of the proposed method based on 

experimental results. 

4.2. Image statistics as indicators for foreground 

labeling and persistence 

 In order to compute the image statistics we divide the image plane 𝐼 into 

equally-sized blocks of 𝑚 ×  𝑛 pixels, which results in a total of 𝑀 ×  𝑁 blocks. The 

block approach offers higher robustness against noise and lighting changes [31, 35] 

and in our experiments we have chosen 𝑚 =  𝑛 =  4. 

 In every block 𝐵𝑖,𝑗 ⊂ 𝐼 we model the pixel intensities independently for every 

image color channel. We also define a similarity measure between the pixel 
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intensities in two different images 𝐼1 and 𝐼2, which allows us to compute the negative 

motion prior for each image block. Formally, the similarity measure is expressed as: 

𝛿𝑖 ,𝑗 ,𝑐 𝐼1 , 𝐼2 =  
1, 𝑖𝑓 𝑑𝑖 ,𝑗 ,𝑐 𝐼1, 𝐼2 < 𝜏𝑑
0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  (4.3) 

where 𝑑  is a distance function between two intensity distributions and 𝜏𝑑  is a 

threshold which depends on the chosen distance function 𝑑 . The concept is 

illustrated in Figure 4-1 for block pixel intensities modeled using a Gaussian kernel. 
 Based on the above considerations, the blockwise temporal dissimilarity 
between two consecutive video frames 𝐼𝑡 and 𝐼𝑡−1 can be defined as: 

𝒟𝑖 ,𝑗
𝑡 = max𝑐=1..𝐶 𝑑𝑖 ,𝑗 ,𝑐 𝐼𝑡 , 𝐼𝑡−1 . (4.4) 

When 𝒟𝑖 ,𝑗
𝑡 < 𝜏𝑑  we achieve persistence of the block label; if 𝒟𝑖 ,𝑗

𝑡 ≥ 𝜏𝑑 , the temporal 

similarity measure becomes a negative prior that invalidates the current block label.   
 In the context of labeling persistence we have evaluated two alternatives for 
modeling the block pixel intensities. The first model is based on a Gaussian kernel, 
while the second relies on a more advanced concept called structural similarity 

(SSIM). 

 

Figure 4-1. Statistical image modeling to support FG/BG labeling and persistence 

4.2.1. Gaussian model approach 

 This approach models the pixel color intensities in every block 𝐵𝑖 ,𝑗  using a 

Gaussian kernel: 
𝐾𝑖 ,𝑗 ,𝑐~𝒩(𝜇𝑖 ,𝑗 ,𝑐 ,𝜎2

𝑖,𝑗 ,𝑐), 𝑖 = 1. .𝑀       , 𝑗 = 1. .𝑁      , 𝑐 = 1. .𝐶       (4.5) 

where 

𝜇𝑖 ,𝑗 ,𝑐 =  
1

𝑚 ⋅ 𝑛
 𝐼𝑐 𝒙 

𝒙∈𝐵𝑖 ,𝑗

 

𝜎2
𝑖 ,𝑗 ,𝑐 =

  𝐼𝑐 𝒙 − 𝜇𝑖 ,𝑗 ,𝑐 
2

𝒙∈𝐵𝑖 ,𝑗

𝑚 ⋅ 𝑛
=
 𝐼𝑐 𝒙 2
𝒙∈𝐵𝑖 ,𝑗

𝑚 ⋅ 𝑛
− 𝜇𝑖 ,𝑗 ,𝑐

2 

represent the mean and respectively the variance of the intensity values. For clarity, 
in case of single-channel images we will omit the channel index c. 
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 The next step is to define the distance between two Gaussian kernels, in 

accordance with equation (4.3). For our algorithm we substitute 𝑑 with the Hellinger 

distance (H) [111], which produces a result in the [0, 1] domain. A distance close to 
0 indicates a high degree of similarity between two probability distributions, while a 
value of 1 means total dissimilarity. The Hellinger distance is related to the 
Bhattacharrya coefficient (BC) [112], which has been previously used in the 
literature as a similarity indicator [60; 113].  

𝑑𝑖 ,𝑗 ,𝑐 𝐼1 , 𝐼2 = 𝐻 𝐾𝑖 ,𝑗 ,𝑐
1 ,𝐾𝑖 ,𝑗 ,𝑐

2  =  1− 𝐵𝐶 𝐾𝑖 ,𝑗 ,𝑐
1 ,𝐾𝑖 ,𝑗 ,𝑐

2  , where 

𝐵𝐶 𝐾1 ,𝐾2 =  
2𝜎1𝜎2

𝜎1
2 + 𝜎2

2 ⋅ 𝑒
−

1
4
⋅
 𝜇1−𝜇2 

2

𝜎1
2+𝜎2

2
 

(4.6) 

The similarity threshold 𝜏𝑑=𝐻 = 0.7  has been determined experimentally using our 

test video database.  

4.2.2. Structural similarity approach 

 Structural similarity (SSIM) has been introduced as a quality measure for 
assessing the level of visual degradation caused by image manipulation during 
different stages such as acquisition, processing, compression, storage and 

transmission [114]. The structural information for every image pixel is obtained 
from local luminance and contrast and is then compared between the original and 

the altered versions of an image in order to quantify their similarity.  
Taking in consideration the initial SSIM implementation of [115], the block 

pixel intensities may be modeled using the same Gaussian distribution described in 

formula (4.5). In this case, the distance 𝑑 in equation (4.3) can expressed as: 

𝑑𝑖 ,𝑗 ,𝑐 𝐼1 , 𝐼2 =
1− 𝑆𝑆𝐼𝑀 𝐾𝑖 ,𝑗 ,𝑐

1 ,𝐾𝑖 ,𝑗 ,𝑐
2  

2
; 

𝑆𝑆𝐼𝑀 𝐾1 ,𝐾2 =
 2𝜇1𝜇2 + 𝐶1  2𝜎12 + 𝐶2 

 𝜇1
2 + 𝜇2

2 + 𝐶1  𝜎1
2 + 𝜎2

2 + 𝐶2 
 

(4.7) 

 where: 

 𝜎12 =
  𝐼1

𝐶 𝒙 −𝜇1  𝐼2
𝐶 𝒙 −𝜇2 𝒙∈𝐵𝑖 ,𝑗

𝑚⋅𝑛
 is the covariance between pixel intensity values of 

block 𝐵𝑖 ,𝑗  in images 𝐼1 and 𝐼2 respectively; 

 𝐶1 = (𝑘1𝐿)2 and 𝐶1 = (𝑘2𝐿)2  are stability constants, with 𝐿 being the dynamic 

range of the pixel values (= 255 for 8 bit per channel images), 𝑘1 = 0.01 

and 𝑘2 = 0.03. 

The SSIM measure produces values in the range  −1,1 , where 1 is achieved on 

completely identical datasets. In turn, distance 𝑑 takes values in the interval  0,1  

where, as expected, a value of 0 means no difference between datasets and a value 
of 1 denotes total dissimilarity.   

In order to avoid blockiness in the resulting SSIM index map, [114] propose 
an improvement, by applying a 11 × 11  Gaussian weighting function 𝐰 = {𝑤𝑘 |𝑘 =
1. .𝑁      } with 𝜎 = 1.5 when computing the local statistics centered on a pixel 𝒙 ∈ 𝐼. The 

estimates for the local mean, standard deviation and covariance are now computed 
as:   

𝜇𝒙,𝑐 =  
1

𝑁
 𝑤𝑘𝐼

𝑐 𝑥𝑘 

𝑁

𝑘=1

 (4.8) 
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𝜎2
𝒙,𝑐 =

1

𝑁
 𝑤𝑘 𝐼

𝑐 𝑥𝑘 − 𝜇𝒙,𝑐 
2

𝑁

𝑘=1

 

𝜎12𝒙,𝑐 =
1

𝑁
 𝑤𝑘 𝐼1

𝐶 𝑥𝑘 − 𝜇1𝒙,𝑐 

𝑁

𝑘=1

 𝐼2
𝐶 𝑥𝑘 − 𝜇2𝒙,𝑐  

By substituting the new formulas from (4.8) in (4.7), we obtain the structural 
similarity index computed between 𝐼1 and 𝐼2 on color channel 𝑐 on a 11 × 11 window 

centered on pixel 𝒙, denoted with  𝑆𝑆𝐼𝑀𝒙,𝑐 𝐼1, 𝐼2 . 

The improved technique provides locally isotropic SSIM measurements for 

every image location. In this case, distance 𝑑 can be expressed in terms of mean 
SSIM (MSSIM), as: 

𝑑𝑖 ,𝑗 ,𝑐 𝐼1, 𝐼2 =
1−𝑀𝑆𝑆𝐼𝑀𝑖,𝑗 ,𝑐 𝐼1 , 𝐼2 

2
; 

𝑀𝑆𝑆𝐼𝑀𝑖,𝑗 ,𝑐 𝐼1 , 𝐼2 =
1

𝑚⋅𝑛
 𝑆𝑆𝐼𝑀𝒙,𝑐

𝒙∈𝐵𝑖 ,𝑗

(𝐼1 , 𝐼2) 
(4.9) 

Same as for the Gaussian approach described in the previous paragraph, we 
have determined 𝜏𝑑=𝑆𝑆𝐼𝑀 = 0.35 based on experiments performed on our database of 

test videos. 

4.3. Spatio-temporal motion segmentation algorithm 

4.3.1. Algorithm flow 

 Having defined two motion cues, the spatial one represented by the motion 
mask 𝑀𝐴  and the temporal one given by the similarity measure 𝛿 , we can now 

outline the sequence of our S-T motion segmentation algorithm as a flow diagram, 
as shown in Figure 4-2. 

 The algorithm flow is independent of the approach taken towards modeling 
the pixel intensities, and can accommodate other models than those described in 
section 4.2. For every block 𝐵𝑖 ,𝑗  the algorithm checks if significant motion has been 

detected, according to the following rule: 

  𝑥 ∈ 𝐵𝑖 ,𝑗 |𝑀𝐴 𝑥 = 1  ≥ 𝜏𝑚  (4.10) 

where 𝜏𝑚  is a threshold specifying the minimum number of ―moving pixels‖ required 

to label a block as FG. Experiments have shown that 𝜏𝑚 = 0.33 provides good results 

especially along object borders. 

 If sufficient motion is present in the block, it will be labeled as FG. 
Otherwise, the similarity measure 𝒟𝑖 ,𝑗

𝑡  is computed and compared with the similarity 

threshold 𝜏𝑑 . If the temporal instances of the block are not similar, the label is set to 

BG and the algorithm moves to the next block. If similarity is confirmed, the 
algorithm applies a special step dedicated to border region handling which allows to 
decide between persisting the current block label or defaulting to BG. 

 After all blocks have been processed, a morphological cleaning operation is 
applied in order to filter out the small FG / BG regions from the resulting TSM.  
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Figure 4-2. Flow diagram for the TSM algorithm 

We complete the above description with the pseudocode of the TSM algorithm: 
 
procedure UpdateTSM(It, It-1, Ut, Vt, τd, τm) { 
 foreach (block Bi,j in I) { 
  // calculate statistics 
  Di,j = 0; 
  foreach (channel c in channels(I)) { 
   di,j,c = DistanceMetric(Bi,j, c, It, It-1);  // eq. (4.6) or (4.9) 
   Di,j = max(Di,j, di,j,c);    // eq. (4.4) 
  } 
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  μU = mean(Ut, Bi,j);     // mean X OF displacement 
  μV = mean(Vt, Bi,j);     // mean Y OF displacement 
 
  // integrate motion priors 
  if (count(Bi,j, x => M

A(x) ≠ 0) >= τm) {   // eq. (4.10) 
   // *** positive prior *** 
   TSM(i,j) = FG; 
  } 
  else {  
   // *** negative motion prior ***   
   if (Di,j >= τd) {   
    // no similarity between previous and current blocks 
    TSM(i,j) = BG; 
   } 
   else if (μU >= m/2 || μV >= n/2) { 
    // motion leaving a block not covered by MA 
    TSM(i,j) = BG; 
   } 
   // *** else preserve current label *** 
  } 
 } // end foreach 
 
 // eliminate small FG blobs 
 foreach (CC in ConnectedComponents(TSM)) where (Area(CC) < τAREA) { 
  Label(CC, BG); 
 } 
 
 // eliminate small BG blobs 
 foreach (CC in ConnectedComponents(Not(TSM))) where (Area(CC) < τAREA) { 
  Label(CC, FG); 
 } 
} 

 As seen in Figure 4-2 and the pseudocode, the algorithm includes an 
heuristic approach which is detailed next. It is worth mentioning that although this 
approach does not produce the same level of results in all possible scenarios, the 

overall quality of the TSM is improved in a significant manner.  

4.3.2. Border region handling 

 A special case that we have encountered during the development of the TSM 
algorithm is related to the way the positive motion prior is applied. A TSM block is 
labeled as FG if at least 𝜏𝑚  of its pixels belong to the FG defined by the motion mask 

𝑀𝐴. This can result in TSM blocks around the border of moving regions that carry a 

FG label although they are largely composed of actual BG pixels. 

 An issue arises when, in a subsequent frame, the FG region moves away 
from its previous location, as shown in Figure 4-3. In such cases the previous border 
blocks found at the far end of the moving region may not change their intensity 
model enough to trigger a FG -> BG label change, since they are mostly composed 
of actual BG pixels. By keeping their previous FG label, these blocks will cause false 
positives and unwanted artifacts in the TSM. 

 In order to solve this issue, we introduced an additional condition as part of 
the negative motion prior. We first compute the mean dense OF displacement 
 𝑖,𝑗 =< 𝑢 𝑖 ,𝑗 , 𝑣 𝑖 ,𝑗 > in each block not currently covered by the motion mask 𝑀𝐴. If any 

of the X or Y-axis components of the mean block displacement has a magnitude 

larger that the block radius (𝑚/2 and respectively 𝑛/2), we mark the block as BG. 
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Figure 4-3. Misclassification of border regions 

4.4. Experimental results 

 We have tested the TSM algorithm on a database of 40+ video sequences, 
most of them reproducing videoconference scenarios in different environments and 
several containing randomly captured scenes. Figure 4-4 shows a selection of the 
results obtained using the TSM algorithm in conjunction with Gaussian and 
respectively SSIM statistical models. 

 
Hendrik 1 

   

   

   

   
Frame #2 Frame #19 Frame #78 

Figure 4-4. Selected results produced by the TSM algorithm: 1st row - input frame; 2nd row - 
positive motion prior;  3rd row –TSM using Gaussian Model; 4th row – TSM using SSIM. 

time t-1 t t+1 

BG 

FG in MA FG in TSM 

FG 

mislabeled FG hi,j false positives 

BUPT



 69 4.4 – Experimental results 

TV Show 

   

   

   

   
Frame #9 Frame #14 Frame #43 

 

Green Screen 3 

   

   

   

   
Frame #2 Frame #53 Frame #80 
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Mihai 3 

   

   

   

   
Frame #154 Frame #270 Frame #279 

 

Train 

   

   

   

   
Frame #82 Frame #86 Frame #99 
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4.5. Discussion 

 By analyzing the results shown in Figure 4-4, we can make the following 
comments: 

 The Hendrik 1 sequence represents a good case, in which the TSM 
converges very fast to the actual FG due to the presence of significant and 
complementing motion cues. These motion cues draw their quality from the 
fact that the person’s clothing presents a rich texture on which OF can be 

accurately estimated. Even in the case of a cluttered background and 
compression artifacts, the TSM maintains a lock on the FG as it can be seen 
in frame #78 when the person turns his head. It can also be observed that 
both Gaussian and SSIM approaches produce identical results. 
 

 The TV Show sequence is another case of good convergence and stability, 
due to the chromatic difference between BG and FG. The presenter’s hair 

and clothes exhibit a fine texture and a reflectance factor that allow good OF 
estimation. In parts of the scene where the FG-BG transition is very smooth 
(e.g. presenter’s left shoulder) the TSM presents a small instability. Again, 
there is virtually no difference between the results obtained using the 
Gaussian similarity and those built using SSIM. 
 

 In the Green Screen 3 sequence the person’s boundary is accurately 

determined due to the presence of strong border edges. We can see in 
frame #53 the first sign of TSM instability in respect to smooth regions, 
represented by the small border hole in the person’s T-shirt. In the same 
frame there is fast hand motion which causes a motion blur effect with 
negative impact on the sparse OF estimation: the person’s left arm contains 
no trackable sparse features, which eliminates a part of the arm from the 

aggregated motion cue. In frame #80 there is both motion blur and 
occlusion caused by the right hand motion, which causes most of the right 
arm to be erased from the TSM (although it is recovered 1 frame later due 
to the arrival of new motion cues). This is the first sequence in which the 
difference between Gaussian and SSIM models becomes visible. SSIM is 
able to better persist smooth image regions, as seen in frame #53, but the 
same tendency can cause negative effects, such as the background leaking 

region in the bottom-right corner of frame #80.  
 

 The Mihai 3 sequence is one of the most challenging cases, which illustrates 
the drawbacks of the TSM algorithm. The smoothness and low reflectivity of 
the author’s shirt significantly impacts both the positive motion prior and the 
negative motion prior calculated in the TSM. As a result, smooth regions on 

the person’s torso and sleeves are quickly discarded from the TSM due to 
their statistical instability. In frame #270 we notice false positives caused by 
the intense white light on top and left of the scene; once such a stable BG 
region makes its way into the FG, it will persist there until it is removed by 
an occlusion.  In frame #279 the person’s face is persisted from previous 
cues as the hand moves into the scene. In this challenging sequence SSIM 
overtakes the Gaussian model due to its ability to better persist the smooth 

regions on the person’s clothing, at the expense of a slightly higher 
background leaking effect.  

BUPT



 72 Temporally Stable Masks – 4 

 In the Train sequence we are faced with continuous and blurred motion, as 
well as noise present in the medium and low-lit areas. Since FG colors stand 

out compared to the BG, the moving object is properly identified from frame 
to frame. The result is also very robust to noise. Between frames #86 and 
#99 a misclassified FG region appeared which was caused by the feature-
rich plant in the BG being disoccluded by the passing train. Sparse OF 
features were wrongly tracked by the KLT algorithm from the back of the 
train to the plant, causing the TSM to expand into the BG. Once the 

expansion occurred, the region’s extreme statistical stability kept it as part 

of the FG as the train passed by.  Like for the Hendrik 1 and TV Show 
sequences, the differences produced between the Gaussian and the SSIM 
versions of the TSM are minor. 
  

 Another important aspect observed during our experiments is related to the 
negative influence of occlusions of the quality of the TSM. Occlusion happens when a 

moving or persisted region A that is marked as FG at moment t-1 is partially or 

totally covered by another moving region B, also marked as FG, at moment t. After 

B eventually uncovers A at moment t+τ, the occluded blocks in A will be labeled as 

BG if the occluded and occluding regions (from A and respectively B) have dissimilar 
statistics. This happens, according to equation (4.3), between moment t+τ-1 which 
precedes the disocclusion of A by B and t+τ when the previous FG belonging to A is 
uncovered.  

 

Figure 4-5. The effect of occlusions on the TSM 

 Such a scenario occurs frequently in videoconferences when a participant 
gesticulates or performs different hand gestures that are recognized by the system. 
In this case, the moving region B represents the person’s hand, while region A can 

be the person’s body or another FG scene object. The occlusion case is illustrated 
schematically in Figure 4-5. 
 Based on the previous observations and the list of challenging OF situations 
detailed in chapter 3.2.4.1, we are now able to summarize in Table 4-1 the 
advantages and the drawbacks of the TSM-based approach to motion segmentation. 
 From the assessment presented in Table 4-1 we can conclude that 3 of the 7 

challenging situations to OF estimation (detailed in chapter 3.2.4.1) have been 
successfully addressed by combining the method for dense and sparse optical flow 
aggregation introduced in chapter 3 with the TSM algorithm. We have also achieved 
our goal of model-less extraction of FG exposed through motion, in line to the 
research objectives presented in chapter 1.3. From the 5 identified drawbacks, 4 are 

time t-1 t t+τ-1 t+τ … 

B A occluded block disocclusion 

FG 

FG 

BG 

(still FG) (transition to BG) 
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well known in literature and represent a constant preoccupation of research 
communities [93, 94, 96, 116]. Only the 4th disadvantage and part of the 2nd are 

related to our particular approach, for which we need to pursue new directions, as 
described in the following chapters. 

Table 4-1. Advantages and disadvantages of the TSM-based S-T motion segmentation 

Advantages Disadvantages 

1. robustness to smooth 

illumination changes, unless 
abrupt and significant lighting 
changes take place 

1. sensitivity to camera shakiness, 

which can introduce a large 
amount of false positives 

2. robustness to noise and  
compression artifacts 

2. occlusions may erase parts of 
the TSM FG (depending on the 

FPS rate of the captured video) 

3. model-less FG extraction, free of 

a priori assumptions related to 
moving objects 

3. difficulty persisting smooth FG 

regions 

4. accurate motion cues, presenting 

a low rate of false positives 

4. cumulated errors in the TSM can 

generate resilient false positives 

5. good handling of cluttered BG 

scenarios 

5. sensitivity to fast motions and 

motion blur 

6. accurate FG extraction in case of 
sufficient texture and / or 
reflectivity on FG objects 

 

  
 Another important remark is that the proposed TSM represents a coarse 
mask, which has a lower resolution than the original input image. This resolution is 
imposed by the block size used to compute the image statistics, which corresponds 
to just one pixel at the TSM level. If we consider the role of the TSM, which is to 
ensure FG persistence across a video sequence, a lower-resolution mask can be 

sufficient if we find a method to translate it into a pixel-accurate FG mask for the 

input image. 

4.6. Summary 

In this chapter we have presented a novel algorithm for S-T motion segmentation in 
video sequences, which relies on motion cues obtained by aggregating dense and 

sparse optic flow estimations. We introduced the concept of temporally stable masks 
- designed to incrementally build an image of the FG exposed through motion 
without the use of any a priori models or assumptions related to the persons or 
objects present in the observed scene – and have shown its capabilities of persisting 
FG information by using image statistics. 
 In accordance with the 3rd objective of our thesis, the role of the TSM 
algorithm is oriented towards recording, persisting and updating the FG exposed 

through motion rather than providing a complete FG mask for a video sequence. 
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Given the strengths and weaknesses presented in section 4.5, the TSM alone cannot 
provide an accurate FG/BG segmentation for a videoconference, except for some 

favorable scenarios; however, it can supply at any time a confident FG estimation 
that can be used to generate such a  segmentation. 
 With this remark we now move to the next chapter which addresses the 4th 
objective of our thesis, related to obtaining a pixel-accurate FG segmentation based 
on the foreground information supplied by the TSM. 
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5. AN HEURISTIC APPROACH TO 
UNSUPERVISED GRAPH CUT SEGMENTATION 

FOR ACCURATE OBJECT EXTRACTION IN VIDEO 
CONFERENCE SCENARIOS 

5.1. Overview 

 By exploiting the strong points of both dense and sparse OF, the motion 
detection algorithm described in chapter 3 was demonstrated to produce accurate 
results that are resilient to noise, compression artifacts and smooth lighting 
variations. As the approach relies on OF estimation, the algorithm’s weakness lies in 
the handling of smooth, low-reflective image regions for which OF is known to 

produce unreliable results.  
 The same factors described above affect the stability of the TSM, preventing 
it from persisting smooth regions with low color and texture in the FG. Coupled with 
the influence of occlusions and motion blur, the TSM can exhibit an under-
segmentation effect. Based on these considerations, we have concluded at the end 

of chapter 4 that the TSM alone cannot provide the final FG mask for an immersive 
videoconferencing scenario, but can successfully act as a confident indicator of FG 

detected through motion and an intermediate step towards the sought-after pixel-
accurate segmentation. 
 The present chapter is dedicated to the pixel-accurate segmentation process 
that is responsible of regenerating the FG image starting from the TSM information. 
This is also the final processing stage employed by our FG extraction method. The 
main goal is to reconstruct the missing parts of the TSM based on color and contrast 

cues, taking into account the potential similarity between FG blocks and adjacent BG 
ones.   

 

Figure 5-1. Constrained graph cut segmentation (source: [53]) 

BG constraints 

FG constraints 

Original photo FG / BG segmentation 
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 In this respect, many of the recent state-of-art segmentation techniques 
presented in section 2.2.2 [17-20] have proven the effectiveness of the graph cut 

approach introduced in [11]. This has steered our research towards integrating a 
graph cut algorithm as a final step in the FG extraction process.  
 In the literature, graph cut has been known to produce very accurate results 
in applications that rely on interactive segmentation [117-119]. In these scenarios, 
the user is required to provide FG and BG seeds that are treated a hard constraints 
by the graph cut algorithm and used as starting points when performing the 

segmentation. An example of user-defined hard constraints for an image is given in 

Figure 5-1. Unsupervised GC segmentation has also been addressed with similar 
qualitative results [120; 121], but so far the proposed algorithms run only on still 
images as their complexity and running times (in the order of seconds) make them 
prohibitive for use in real-time video sequence processing. 
 While aiming to achieve the same level of accuracy in our approach, we 
require the means of generating the hard constraints in an automatic manner, 
starting from the information that is already available from the OF and TSM 

information. The research direction described by this statement corresponds with 
the 4th and final objective of our thesis. 
 The chapter is composed of two major sections. The first section is a 
presentation of the general concepts behind the graph-cut algorithm and its 
applicability to image segmentation. In section two, we introduce a novel algorithm 
for the automatic generation of hard constraints as input for an unsupervised graph-

cut segmentation, based on the information provided by sparse OF estimation and 

the TSM. 

5.2. Graph cut-based image segmentation 

5.2.1. Introduction 

 Markov Random Fields (MRFs) have been widely used in statistical image 
analysis in order to estimate spatially varying quantities such as intensity or texture 
from noisy measurements [122]. In a Bayesian framework, estimating such a 
quantity is equivalent to finding its maximum a posteriori (MAP) probability [123].  
 Considering 𝑦 to be a certain hypothesis, its posterior probability given a set 

of observations 𝐱 can be computed using the Bayesian rule [124]: 

𝑃 𝑦 𝐱 ∝ 𝑃 𝐱 𝑦 ⋅ 𝑃(𝑦) . 
𝑃(𝑦)  denotes the prior probability of 𝑦  and is used to model the contextual 

constraints placed upon the hypothesis. 𝑃 𝒙 𝑦  is the likelihood probability, which 

models the noise in the measurements [122]. In this context, the MAP of 𝑦 can be 

expressed as:  
𝑦 = arg max𝑦 𝑃(𝑦|𝐱) . 

 According to Hammersley-Clifford theorem which describes the Markov-
Gibbs equivalence, 𝑃(𝑦)  is characterized by a Gibbs distribution, and can be 

formulated as [124]: 

 𝑃 𝑦 =
1

𝑍
𝑒−

1
𝑇
𝐸(𝑦) (5.1) 

where 𝑍  is a normalization constant, 𝑇  is aglobal control parameter called 

temperature and 𝐸 𝑦  represents the prior energy.  

 Similarly, the likelihood probability can be expressed in exponential form:  

BUPT



 77 5.2 – Graph cut-based image segmentation 

𝑃 𝐱|𝑦 =
1

𝑍𝑥
𝑒−𝐸 𝐱 𝑦  

which ensures that the posterior probability obeys the Gibbs distribution: 

𝑃 𝑦|𝐱 =
1

𝑍𝐸
𝑒−𝐸 𝑦 𝐱  

with the posterior energy expressed as: 

 𝐸 𝑦 𝐱 =
1

𝑇
𝐸 𝑦 + 𝐸(𝐱|𝑦) (5.2) 

 Based on the above considerations, finding the MAP can be expressed as a 
problem of minimizing the energy 𝐸 𝑦 𝐱 : 

 𝑦 = arg min
𝑦
𝐸(𝑦|𝐱) (5.3) 

The literature describes a multitude of methods for solving equation (5.3), including 

dynamic programming, belief propagation [125] or graph cuts [11]. We have 
oriented towards the graph cut approach since it is known to produce faster and 
more accurate results compared to other methods [126].  

5.2.2. Pixel labeling using pair-wise CMRF models 

 In the context of image analysis, the MRF can be described using the 
following components [122]: 

 A set 𝒫  of sites distributed in a rectangular lattice, with each element 

corresponding to an image pixel. 

 A neighborhood 𝒩 =  𝒩𝑝    𝑝 ∈ 𝒫} , where each element 𝒩𝑝  contains the 

neighboring sites of 𝑝.  

 A set 𝑌 =  𝑌𝑝    𝑝 ∈ 𝒫}  of random variables. Each random variable takes a 

value 𝑦𝑝 from a possible set of labels Ω.  

In the particular case of binary FG / BG segmentation, a 4- or 8-connected 
neighborhood is considered and the set of labels can be defined as Ω = {𝐵𝐺 = 0,𝐹𝐺 =
1}. We denote a possible segmentation with 𝑦 = {𝑦𝑝 | 𝑝 ∈ 𝒫}, named a configuration in 

MRF terminology.  
 Considering an image of size 𝑤 ×  , in total there are  Ω 𝑤×  possible 

configurations. A MRF defined over a 4-connected neighborhood will require 
(𝑤 × )2 ×  Ω  parameters for the unary terms that model the likelihood and 2 ×
( 𝑤 − 1  +   − 1 𝑤) ×  Ω 2  parameters for the pairwise terms associated with the 

prior probability. This extremely large parameter space explains why in practice the 
aim is to find the most probable labeling 𝑦 , which leads to the MAP / energy 

minimization approach.   
 The prior energy 𝐸(𝑦)  associated with a particular configuration can be 

formulated in terms of clique potentials defined over a subset of the random 
variables: 

𝐸(𝑦) =  𝜓𝑐(𝑦𝑐)

𝑐

 

where 𝑐 represents a clique, 𝜓𝑐 is the clique potential describing the prior probability 

of a particular realization of 𝑦𝑐 , and 𝑦𝑐  is a subset of 𝑦  defined over 𝑐 . In our 

particular case, clique potentials involve pairs  p, q  of neighboring pixels, so that the 

prior energy can be expressed as:  

 𝐸 𝑦 =  𝐵𝑝 ,𝑞 ⋅ 𝛿𝑦𝑝≠𝑦𝑞
{p,q}∈𝒩

 (5.4) 
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where 𝐵𝑝 ,𝑞  is a smoothness term and 𝛿𝑦𝑝≠𝑦𝑞 =  
1 𝑖𝑓 𝑦𝑝 ≠ 𝑦𝑞
0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  is a Kronecker delta 

function that represents pixel interaction potential. 
 The likelihood energy can also be expressed as a sum of data terms 𝑅𝑝 

associated with each site [11]: 

 𝐸(𝐱|𝑦) =  𝑅𝑝(𝐱; 𝑦𝑝)

p∈𝒫

 (5.5) 

The set of observations 𝐱 is gathered from the features in the image (i.e. color, 

texture). 
 By substituting the energy terms in equation (5.2) with their corresponding 
formulae from (5.4) and (5.5), we obtain the posterior energy functional that 
corresponds to the labeling 𝑦 of all pixels in the image: 

𝐸 𝑦 𝐱 =
1

𝑇
 𝐵𝑝 ,𝑞 ⋅ 𝛿𝑦𝑝≠𝑦𝑞

{p,q}∈𝒩

+  𝑅𝑝(𝐱;𝑦𝑝)

p∈𝒫

 

In the literature, this equation is usually encountered in the form: 

 𝐸 𝑦 = 𝜆 ⋅  𝑅𝑝 𝑦𝑝 

p∈𝒫

+  𝐵𝑝 ,𝑞 ⋅ 𝛿𝑦𝑝≠𝑦𝑞
{p,q}∈𝒩

 (5.6) 

where 𝜆  represents the relative importance of the regional term 𝑅𝑝  versus the 

boundary term 𝐵𝑝 ,𝑞. The regional term defines the cost for assigning the pixel to a 

given label, while the boundary term represents the cost associated with image 
discontinuities.  

 The presence of both the data and the smoothness terms on the same 
lattice can be represented as two different MRFs (one for pixel values and one for 

edge values) coupled to each other via a conditional probability. In literature, this 
model is classified as a coupled MRF (CMRF) [127]. 

5.2.3. The graph cut algorithm 

 Boykov and Jolly [11] have introduced a segmentation technique that treats 
the image lattice as a graph and have provided a new min-cut/max-flow algorithm 
to segment (or cut) this graph, effectively solving the problem of minimizing the 

posterior energy defined in equation (5.6). The algorithm is also known as α-
expansion and has laid out the foundation for a new class of efficient binary 
segmentation methods.  
 Each site (pixel) in the set 𝒫 represents a vertex in the graph representation 

of the image. The graph edges, or n-links, are established between 4 (or higher)-
connected neighbor pixels. Their weights represent the pair wise smoothing term in 
the energy functional and are defined by the cost function 𝐵𝑝 ,𝑞 . In the context of 

binary labeling, two terminal nodes are added, namely Source and Sink. These 

nodes are linked to each pixel in the image by weighted edges, called t-links. The 
relation between each terminal node and each pixel represents the unary data term 
𝑅𝑝 in the energy functional, describing how pixels fit the foreground and respectively 

the background color distributions. The concept is illustrated in Figure 5-2. 
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Figure 5-2. The graph representation of the image together with a graph cut 

 A cut is represented by a subset of edges (n-links and t-links) whose 
removal causes a complete separation of the terminal nodes. The cost of a graph 
cut is given by the sum of the weights of the severed edges. The severed n-links are 
located at the segmentation boundary, while severed t-links associate segments 

with a certain label. The key concept is that a minimum cost cut (min-cut) has a 

high probability of producing a desirable segmentation that balances boundary 
versus regional properties [128].  
 Computing the minimum cut can raise performance issues, since 
straightforward implementations like the max-flow algorithm [129] or the push-
relabel technique [130] can be too slow for real-time applications. Boykov and 
Kolmogorov [53] have performed an assessment of min-cut / max-flow algorithms, 
focusing on achieving a higher performance. The improved max-flow algorithm 

proposed in their study has proven to be significantly faster than standard 
approaches, opening the way to real-time minimum cut computation on 2D and 3D 
images. 
 The complete description of the enhanced max-flow/min-cut algorithm 
developed by Boykov and Kolmogorov exceeds the scope of our present thesis. For 
the astute reader, the author recommends the personal web page of Professor Yuri 
Boykov [http://www.csd.uwo.ca/~yuri/] which provides access to all of his 

publications and a vast information on the subject of graph cuts. We focus next on 
the formulation for the t-link and n-link costs, as well as the concept of hard 
constraints imposed onto the graph-cut algorithm. 

5.2.3.1. The smoothness term n-link 

 The n-link is used to model the cohesion between neighboring pixels, with 
the purpose of ensuring that labeling varies smoothly inside objects but change at 

their boundaries [131].  
 The 𝐵𝑝 ,𝑞  term in the prior energy formula (5.4) exhibits large values for 

similar pixels and values close to zero if the pixels are very different, which signals 
the presence of a region boundary. Its value is expressed as: 

Original image Segmented 
image 

n-link 

t-link 
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 𝐵𝑝 ,𝑞 = 𝑒
−

||𝐼𝑝−𝐼𝑞 ||2

2𝜎² ⋅
1

 𝑝, 𝑞 
 (5.7) 

where ||. ||  represents the vector Euclidian norm, 𝐼𝑝  denotes the vector color 

information for pixel 𝑝  across all image channels, and 𝜎  is a fixed value that 

estimates the video capture noise [128]. 

5.2.3.2. The data term t-link 

 The data term t-link describes regional properties of segments in the image. 

These regional properties can be expressed in the form of histograms [128] or 
GMMs [119].   
 In order to adhere to the real-time requirements of a videoconferencing 
system, an intensity histogram can be used to store the pixels’ probability density of 
color information found in the image. Although less adapted in case of color images 
than a GMM, this approach improves performance and running time requirements. 

To reduce the impact of color variety and to improve the t-link formulation found in 
[128] in respect to handling color images, a regularization term can be introduced 
as the mean color of each label. Thus, the formulae for establishing the t-link costs 
become: 

 

𝑅𝑝 𝐹𝐺 = −
ln𝑃(𝐼𝑝 |𝐹𝐺)

𝑃(𝐼𝑚𝑒𝑎𝑛𝐹𝐺 |𝐹𝐺)
 

𝑅𝑝 𝐵𝐺 = −
ln𝑃(𝐼𝑝 |𝐵𝐺)

𝑃(𝐼𝑚𝑒𝑎𝑛𝐵𝐺 |𝐵𝐺)
 

(5.8) 

where 𝐼𝑝  is the color vector of pixel 𝑝, 𝐼𝑚𝑒𝑎𝑛  is the mean color vector of all pixels 

associated with a given label and 𝑃(∙) is a probability that reflects how the color of 

pixel 𝑝 fits the known color models associated with the labels. 

5.2.3.3. Hard constraints 

 In simple synthetic images, the regional properties of the objects can differ 
enough from the background to allow for an unsupervised graph cut segmentation. 
Unfortunately, this does not always apply to real-world examples, where differences 
between FG and BG can be much more subtle. In such case, a human operator is 
required to intervene and direct the segmentation by offering a priori knowledge to 
the algorithm about pixels that are definitely FG or BG (as seen in Figure 5-1). 

 In the scenario of interactive segmentation described above, the user 
provides two sets of seeds on the image, 𝒪 and ℬ (𝒪 ∩ ℬ = ∅), that correspond to FG 

and respectively BG segments. These sets act as hard constraints among all possible 
segmentations, linking with infinite-cost t-links any pixel 𝑝 ∈ 𝒪 to the Source and 

any pixel 𝑞 ∈ ℬ to the Sink. The color information of the seeds can also be used to 

learn the histogram and mean color vector for the FG and BG [128], allowing to 
compute the probabilities used in formula (5.8).  
 Figure 5-3 provides an update of Figure 5-2 by introducing hard constraints. 
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Figure 5-3. Graph cut segmentation with hard constraints 

5.2.4. Applicability to our foreground extraction system 

 In respect to the results produced by the S-T motion-based FG extraction 

method described in chapters 3 and 4, the balancing of boundary versus regional 

properties offered by graph cut can provide the means to: 
a) restore the FG regions that proved to be a challenge for the OF estimation 

and/or the TSM persistence algorithm (as shown in Figure 4-4, sequence 
Mihai 3);  

b) achieve the pixel-accurate segmentation required in videoconferencing 
applications, by segmenting along the most probable boundaries between 

FG and BG. 
Point a) is covered by the regional term in the CMRF energy functional described in 
formula (5.6), while point b) relies on the boundary term of this functional. 
 Considering the good results reported in the literature regarding the use of 
hard constraints for interactive segmentation, we propose an heuristic approach in 
which these constraints are generated automatically, based on the information 
provided by the TSM and the sparse OF.  

 The next section describes the proposed algorithm for generating hard 

constraints and the integration of graph cut in our FG extraction system. We also 
show that this approach effectively solves the problems described at points a) and 
b) and how the resulting segmentation can be used to correct the TSM by removing 
the BG leaking effect (illustrated in Figure 4-4, sequence Green Screen 3 and Train).   

5.3. Unsupervised graph cut segmentation using 

constraints generated from TSM and optic flow data 

5.3.1. High-level description of the algorithm 

 The second part of this chapter describes the algorithm responsible of 

regenerating the pixel-accurate FG image starting from the coarse segmentation 
result represented by the TSM, in combination with additional information provided 

O O 

B 

Original image hard  
constraint

s 
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by the sparse OF. Unlike the TSM approach, which works with image blocks 
(superpixels) of 4x4 pixels, the pixel-accurate segmentation labels every pixel in the 
input frame 𝐼𝑡, using the predefined label set Ω = {𝐵𝐺,𝐹𝐺}.  
 From an architectural point of view, this step requires new processing blocks 
to be added to our FG extraction system, as illustrated in Figure 5-4. 
 The key to the unsupervised graph cut segmentation lies in the hard 
constraints generator block, which implements the heuristic algorithm for generating 
the sets 𝒪 and ℬ described in section 5.2.3.3. As we are about to discover next, 

seeds in set 𝒪 come from Delaunay triangulation applied on a set 𝒟 of sparse OF 

features that is maintained and updated in parallel with the TSM. Hard background 
constraints in set ℬ are created using an algorithm inspired by the drape approach 

from [15]. At every moment 𝑡, the hard constraints are regenerated based on new 

evidence provided by 𝑇𝑆𝑀𝑡 and 𝒟𝑡 and the graph-cut algorithm from [53] is applied 

to produce the final segmentation of 𝐼𝑡. 
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Figure 5-4. The updated block-level diagram of the FG extraction system.   

5.3.2. Hard constraints generation algorithm 

5.3.2.1. Foreground constraints 

 At a first glance, the TSM should offer sufficient information for generating 

the hard foreground constraints, for example by placing them along its medial axis. 

However, as shown in Figure 4-4, sequence Green Screen 3, it is possible to have 
BG regions leaking into the TSM. If FG seeds are placed inside such regions, the 
final segmentation may mislabel significant parts of the actual BG as FG. For this 
reason, the process of generating FG constraints starts by finding those locations in 
the TSM that involve a high degree of certitude in respect to their FG labeling.  

5.3.2.1.1. Tracking of sparse OF features 

 In our previous researches [71] the subset 𝜑 ⊂ Φ of sparse OF features has 

been used as a confident source of control points on moving image objects. If we 
can track the features exposed by 𝜑  at a given moment 𝑡  across a larger time 

window and as part of a bigger set 𝒟𝑡 , it is possible to obtain a series of control 

points that always follow the motion of exposed FG regions (see Figure 5-5).  
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Figure 5-5. Tracking of sparse OF features on the TV show sequence. 
1st row - sparse OF features, 2nd row - set 𝒟 of tracked features 

We built the set 𝒟𝑡 by applying the following simple algorithm: 

1. all features in 𝜑 are added as part of the new set 𝒟𝑡; 
2. all features in Φ−𝜑  that are located within a 𝑟𝑓 = 3  pixel radius from a 

feature in 𝒟𝑡−1 are also added to 𝒟𝑡  in order to account for features that 

belong on previously moving foreground regions, now stationary; 
3. the features in the newly-formed set 𝒟𝑡 that are not labeled as FG in 𝑇𝑆𝑀𝑡 

are discarded in order to avoid tracking features that may actually reside in 
the BG.  

Formally, set 𝒟 can be expressed as: 

 𝐷𝑡 = 𝜑 ∪  𝑓𝑖 ∈ Φ − 𝜑 ∃𝑓𝑗 ∈ 𝐷𝑡−1 ,  𝑓𝑖 − 𝑓𝑗  < 𝑟𝑓 − {𝑓𝑖 ∈ Φ|𝑇𝑆𝑀𝑡 𝑓𝑖 = 𝐵𝐺} (5.9) 

where | ∙ | denotes the Euclidian norm. At the initial moment we consider 𝐷𝑡=0 = ∅. 

5.3.2.1.2. Triangulation of tracked features 

 Features in 𝒟𝑡  are good candidates for FG hard constraints due to their 

origin as observed control points on moving image regions and their belonging to 
𝑇𝑆𝑀𝑡.  

 In order to complete the set 𝒪 of FG image seeds and ensure that as much 

color information from the FG is captured by the hard constraints, we apply a 
Delaunay triangulation [24] on set 𝒟𝑡. As the reunion of all 2-simplices produced by 

the triangulation gives the convex hull of set 𝒟𝑡, there may be facets that exceed 

the boundaries of 𝑇𝑆𝑀𝑡 . By eliminating the 2-simplices that do not completely 

overlap with the TSM, we obtain a subset of triangulation facets. The edges of each 
facet in this subset are used to build a wireframe inside 𝑇𝑆𝑀𝑡. For every pixel on the 

wireframe, a seed of radius 𝑟𝑠is added in the set 𝒪, where 𝑟𝑠 has been arbitrarily set 

to 2 pixels. In order to avoid overextending the FG into the BG, seeds that are 
located too close to the TSM boundary are eliminated from set 𝒪. This is achieved by 

constraining them within a mask 𝑇𝑆𝑀 
𝑡 obtained as the erosion of  𝑇𝑆𝑀𝑡. 

 A graphical illustration of the process of generating hard foreground 
constraints is given in Figure 5-6 using a synthetic image from the Avatar sequence 
for better clarity. 

#8 #10 #14 #16 
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Figure 5-6. Graphical representation of the process of generating hard FG constraints 

5.3.2.2. Background constraints 

 The background seeds are generated around the FG exposed by 𝑇𝑆𝑀𝑡, by 

maintaining a guard interval of 2 ∗ 𝑟𝑠, where 𝑟𝑠 denotes the seed radius. The guard 

interval is required around the proximity of the TSM in order to avoid crossing into 

possible FG space. The described approach employs 3 types of BG constraints, each 
specialized on a particular aspect related to the separation between FG and BG. 

5.3.2.2.1. Boundary constraints 

 This type of BG seeds is generated by using a drape model [15] that 
descends pixel by pixel from the top row of the current frame, until reaching the 
proximity of 𝑇𝑆𝑀𝑡 or the bottom row of the frame.  

 The proximity mask 𝑇𝑆𝑀 
𝑡 is obtained by successively dilating the TSM over a 

number of iterations 𝑖 = 2 ∗ 𝑟𝑠, where 𝑟𝑠 denotes the seed radius. By leaving enough 

space between the BG and FG seeds guarding the TSM border, the algorithm 
ensures that the drape does not get too close to the FG to adversely affect the 
accurate boundary extraction.  

 At each point where the drape meets 𝑇𝑆𝑀 
𝑡 , a new BG seed of radius 𝑟𝑠  is 

added to the set ℬ, as shown in Figure 5-7 (a). No seeds are added for drape pixels 

that reach the bottom row of the frame, in order to leave room for FG expansion, 
which is required for cases involving smooth regions (like the one shown in Figure 
4-4, sequence Mihai 3 in respect to the subject’s clothing). 

5.3.2.2.2. BG clutter constraints  

 In order to account for cluttered backgrounds or BG patches with similar 
color distributions as the FG, every 𝑗 columns a complete line of smaller seeds with 

radiuses of 𝑟𝑠/2  is added to ℬ , connecting the top row of the frame with the 

boundary of 𝑇𝑆𝑀 
𝑡  (see Figure 5-7 (b)). This increases the chances to capture as 

much color information from the BG as possible. Throughout our experiments we 
have arbitrarily set distance 𝑗 to 3 ∗ 𝑟𝑠 pixels. 

𝑇𝑆𝑀𝑡 

𝑓 ∈ 𝜑 𝑓 ∈ Φ − 𝜑 removed ∆ 
 

valid ∆ 
 

seeds in set 𝒪 
 

𝑇𝑆𝑀 
𝑡 
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 As in case of boundary BG constraints, these seeds are added only if the 
column intersects the proximity of 𝑇𝑆𝑀𝑡. This ensures that enough space is left for 

possible FG expansions, which in case of a videoconferencing application are likely 

to occur in the lower half of the image, where the subject’s torso is located. 
  

 

Figure 5-7. Automatic generation of BG constraints 

5.3.2.2.3. Scene-related constraints   

 For videoconferencing applications, we exploit the fact that the FG is mostly 

located in the middle of the screen. In Figure 5-7 (c) the top row, the leftmost and 
the rightmost columns are by default bordered with BG seeds as long as those seeds 
do not reach 𝑇𝑆𝑀 

𝑡. The reason behind this approach is to constrain an eventually 

uncontrolled FG expansion due to similar BG/FG color distributions and to account 
for the initial frames in the sequence, when the TSM provides too little information 
about the FG. 

𝑇𝑆𝑀 
𝑡 

𝑇𝑆𝑀𝑡 

(b) 

(a) 

(c) 
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5.3.3. Pixel-accurate segmentation 

 Applying the graph cut algorithm based on the hard constraints from the 
sets 𝒪  and ℬ  will produce the most probable labeling 𝑦  mentioned in paragraph 

5.2.2. The FG is defined as the set of pixels in 𝐼𝑡  that remain connected to the 

Source terminal, while the BG is represented by those pixels that keep their t-links 
with the Sink one. 

 

Figure 5-8. Final foreground extraction results. From left to right: the corrected TSM, the set of  
tracked sparse OF features, the hard constraints imposed on graph-cut segmentation, and the 

pixel-accurate FG segmentation.  
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 87 5.3 – Unsupervised graph cut segmentation 

 The FG connected components in 𝑦  may occasionally exhibit small 

irregularities around their borders. In order to improve their appearance even more, 
the same active contour approach used in [71] is applied to increase edge 

smoothness. The only difference lies in the values used for the continuity, curvature 
and respectively edge attraction terms in the snake energy functional. We want the 
contour to follow closely the nearby edges without distancing too much from the 
original object boundary given by 𝑦 . Thus, we have increased stiffness, allowed for a 

certain amount of edge attraction and placed a negative weight on elasticity, 

obtaining the following empiricaly-adjusted values for the snake weighting 
parameters: 𝛼 = −1.1, 𝛽 = 50 and 𝛾 = 1.5. The resulting contours define the final FG 

regions, united as part of the pixel-accurate FG mask 𝓜𝒕 and illustrated in Figure 

5-8. 

 

Figure 5-9. Synchronization between TSM and graph-cut segmentation 

original TSM 

GC segmented FG 

leaking BG 

AND 

corrected TSM 

CC 
analysis 

extracted FG 

mislabeled FG 

BUPT



 88 An Heuristic Approach to Unsupervised Graph Cut Segmentation – 5 

5.3.4. Temporally stable mask synchronization 

 As the last step in the presented FG extraction method, the information in 
𝑇𝑆𝑀𝑡 is synchronized with the result produced by the GC segmentation.  

 First, 𝑇𝑆𝑀𝑡  is corrected by removing those foreground pixels that are not 

labeled as FG in ℳ𝑡:  

 𝑇𝑆𝑀𝑡
∗ = 𝑇𝑆𝑀𝑡 ⋀ ℳ𝑡 (5.10) 

This apparently simple step has a significant impact on segmentation quality, as it 

helps removing leaking background regions so that they are not propagated into 
𝑇𝑆𝑀𝑡+1.  

 Figure 5-9 shows the difference made by the TSM correction on frame #299 

of sequence Mukul 10. The leaking BG region found in the original TSM formulation 
[132] is completely eliminated after applying formula (5.10). 
 Second, it is possible for ℳ𝑡  to contain small, isolated blobs which are 

mislabeled as FG, as shown in Figure 5-9. These artifacts are caused by small BG 
patches with color distributions very similar to those of the FG, which are not 
covered by any BG seeds that would keep them connected to the Sink terminal. In 
order to eliminate them, the algorithm performs a connected-component analysis of 
ℳ𝑡 and keeps only the components that intersect with 𝑇𝑆𝑀𝑡

∗. 

 ℳ𝑡
∗ =  𝐶𝐶𝑖  (𝐶𝐶𝑖 ∈ ℳ𝑡 ⋀(𝐶𝐶𝑖 ∩ 𝑇𝑆𝑀𝑡

∗ ≠ ∅) (5.11) 

Formula (5.11) keeps the regions that resulted from GC foreground expansion as 
part of the final segmentation and discards the artifacts that are not connected with 

TSM and originate due to mislabeled BG regions. 

5.3.5. Algorithm pseudocode 

 After describing all stages of the unsupervised GC algorithm, it is now 
possible to present the complete approach in pseudocode: 
 
var 𝒟; // set of tracked sparse OF features, according to eq. (5.9) 
var 𝒪; // set of FG seeds (constraints) 
var ℬ; // set of BG seeds 
 
procedure AddSeed(seeds, x, y, r) { 
 // add a seed with radius r and coordonates (x, y) to the set of GC constraints 
 for (i in [–r .. r]) { 
  for (j in [-r .. r]) { 
   seeds += (x+i, y+j);  
  } 
 } 
} 
 
procedure TrackSparseFeatures(TSM, Φ, 𝜑, rf) { 
 // add all control features located on moving regions  
 𝒟′ = 𝜑; 
 
 // add all previous moving features, now stationary 
 foreach (fi in Φ− 𝜑) 
  foreach (fj in D) 
   if (|fi – fj| < rf) { 𝒟′ += fi; } 
 
 // remove all features marked as BG in the TSM 
 foreach (fi in Φ) if (TSM(fi) == BG) { 𝒟′ -= fi; } 

BUPT



 89 5.3 – Unsupervised graph cut segmentation 

  
 // store result 
 𝒟 = 𝒟′; 
} 
 
procedure GenerateFGSeeds(TSM, 𝒟, rs) { 
 𝒪 =  ∅; 
 TSM’ = erode(TSM, rs); 
 
 foreach (facet in Delaunay(𝒟)) { 
  // filter out 2-simplices that are not completely covered by the TSM 
  if (TSM’ ∩ facet ≠ facet) continue; 
     
  // mark FG seeds 
  foreach (edge in facet)  
   foreach (p in edge)  
    AddSeed(𝒪, p.x, p.y, rs); 
 }   
} 
 
procedure GenerateBGSeeds(TSM, rs) { 
 ℬ =  ∅; 
 TSM’ = dilate(TSM, 2rs); 
  
 // boundary + BG clutter constraints 
 for (x in [rs .. TSM.width – rs]) 
  for (y in [rs .. TSM.height – rs]) 
   if (TSM’(x, y) ≠ 0) { 
    // drape reached top oF dilated TSM, add boundary seed 
    AddSeed(ℬ, x, y, rs); 
     
    if (x % 3rs == 0) { 
     // add BG clutter seeds 
     for (k in [rs .. y]) 
      AddSeed(ℬ, x, k, rs/2); 
    } 
   } 
 
 // scene-related constraints 
 for (x in {rs, TSM.width – rs}) 
  for (y in [rs .. TSM.height – rs]) { 
   if (TSM’(x, y) ≠ 0) break; 
   AddSeed(ℬ, x, y, rs); 
  } 
 for (x in [rs .. TSM.width – rs]) 
  if (TSM’(x, y) == 0) { 
   AddSeed(ℬ, x, y, rs); 
  } 
} 
 
procedure UnsupervisedGC(It, TSMt, Φ, 𝜑) { 
 // empyrical values 
 rf = 3; 
 rs = 4; 
 
 // update set of tracked sparse OF features 
 TrackSparseFeatures(TSMt, Φ, 𝜑, rf); 
  
 // generate GC constraints 
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 GenerateFGSeeds(TSMt, 𝒟, rs); 
 GenerateBGSeeds(TSMt, rs) 
 
 // perform the pixel-accurate segmentation 
 𝑦  = GraphCut(It, 𝒪, ℬ); // apply the [53] algorithm 
 
 // smoothen the result 
 foreach (CC in ConnectedComponents(𝑦 )) { 
  ℳ𝑡 += BodyOf(Snake(CC, α, β, γ)); 
 } 
 
 // synchronize the TSM and the GC segmentation 
 TSMt = TSMt and ℳ𝑡; // eq. (5.10) 
 foreach (CC in ConnectedComponents(ℳ𝑡))  
  if (CC ∩ TSMt == ∅) 
   ℳ𝑡 =  ℳ𝑡 − 𝐶𝐶; // eq. (5.11)  
} 

5.4. Summary 

 The approach to unsupervised GC introduced in this chapter represents the 
final stage in the proposed FG extraction method. A new heuristic algorithm has 
been introduced, which relies on the intermediate results obtained in the motion 
detection and S-T integration stages in order to automatically generate the hard 

constraints required by the unsupervised GC segmentation. 

 Experimental results (illustrated in Figure 5-8 for a subset of video 
sequences) have shown that the proposed approach is capable of generating an 
accurate FG extraction, based on the coarse foreground representation provided by 
the TSM. These results indicate that the addition of graph cut to the video frame 
processing workflow addresses several important issues reported in chapter 4.5, as 
follows: 

 the ability to restore the smooth and non-reflecting FG areas which proved 

to be a challenge for the TSM algorithm; 
 the capability to remove background leaking caused by cumulated TSM 

errors; 
 the ability to restore the missing FG regions caused by occlusions. 

 In order to ensure that the reported results are objective and accurate, the 
final segmentation quality requires an evaluation based on a method-independent 

perceptual objective metric. In addition, it is important to ensure that the complete 
FG extraction system implementing the methods described in chapters 3-5 has the 
potential to match the real-time execution requirements of videoconferencing 
applications. Hence, we dedicate the following chapter to these two important 
aspects. 
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6. RESULTS AND DISCUSSION 

6.1. Implementation details and performance 
considerations 

6.1.1. Implementation details 

 The FG extraction method presented in this thesis has been implemented 
using the C# 4.0 programming language on top of the Microsoft .NET 4.5 application 
framework. Additional image processing support has been provided by the Emgu CV 

2.2.1 .NET wrappers [www.emgu.com] to the Intel OpenCV image processing library 
[24]. 
 In particular, the underlying OpenCV library plays an important role as it 
provides, besides basic image and video stream manipulation primitives, reliable off-
the-shelf implementations of several algorithms and methods employed by our 
approach: 

 Canny edge detection [133]; 

 bilateral filtering [99]; 
 Farnebäck’s dense OF estimation [80]; 

 Shi and Tomasi feature detector [65]; 
 pyramidal Lukas-Kanade sparse OF estimation [79]; 

 distance transform [103]; 
 Greedy snake [106]. 

In addition, the max-flow/min-cut algorithm used by the GC segmentation has been 
translated into C# and Emgu CV method calls based on the reference C/C++ 
implementation provided courtesy of Y. Boykov and V. Kolmogorov 
[http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html]. 

 Development and testing of the resulting FG extraction system were carried 
using the Microsoft Visual Studio 2010 environment running on Windows XP SP3 and 
Windows 7 Professional operating systems. No GPU acceleration was used as we 
focused instead on exploiting the multiprocessor architectures of the host machine, 
leveraging the features provided by the Parallel Extensions of .NET Framework. 

 Input sequences were handled at a resolution of 320 x240 pixels, which is 
standard in most videoconference systems. Given the performance considerations 

mentioned in section 5.2.3 and further accentuated by the managed language 
implementation, the GC algorithm has been applied on a downscaled clone of the 
input frame, at 160 x 120 pixels.  The same approach was taken for the dense OF 
estimation, where pixel-accuracy is not a major aspect. 
 The choice for a managed programming language like C# was not 
coincidental. Beside the advantage of automatic memory and object lifecycle 
management ensured by the presence of a garbage collector, the language and the 

framework supporting it have enabled us to focus on the algorithm rather than the 
implementation details due to its integration of advanced features such as lambda 
expressions, anonymous functions, delegates and language integrated query 
(LINQ). Furthermore, cross-platform compatibility was also attained, as the code 
was compiled and run on the OS X 10.8 operating system using the open-source 
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Mono .NET 2.10 framework without changes. On the downside, managed languages 
are known to perform slightly slower than their unmanaged counterparts like 

C/C++. Considering that the highest priority was given to the qualitative aspects of 
the algorithm rather than its brute performance, this drawback has been deemed 
acceptable. 
 Finally, in order to inspect the intermediate results at various stages and to 
fine tune the control parameters of each stage we have build a graphical user 
interface frontend on top of our FG extraction system, illustrated in Figure 6-1. 

 

Figure 6-1. GUI frontend for algorithm visualization and tuning 

6.1.2. Algorithm parallelization 

 Besides segmentation quality, another important requirement imposed on a 
FG extraction method is the capability of real-time (RT) performance. A balance 
must be achieved between quality and performance in order to satisfy immersive 
conferencing requirements, as quality alone is not sufficient to qualify the algorithm 
for deployment in a videoconference system. 
 In the present thesis the emphasis was put on the quality of the FG / BG 

segmentation. Nevertheless, the algorithms and techniques employed by the 
presented FG extraction system have been chosen with performance considerations 
in mind, in order to preserve its RT execution potential.  
 In order to prove the RT capabilities of the introduced FG extraction method, 
its implementation has been designed to support parallel execution by exploiting the 
multi-core architecture of the host machine CPUs. Parallelization options have been 
considered with two levels of granularity: global and local, both of them supported 

by the Parallel Extensions of the .NET Framework.  

6.1.2.1. Global parallelization options 

 Figure 6-2 illustrates the parallel execution of tasks as implemented by the 
proposed FG segmentation system. 
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Figure 6-2. Parallelization of the complete FG extraction algorithm 

In line with Figure 3-6 and following the description in [71], the motion 
detection parts of the FG extraction system are designed as parallel tasks with 
potential of running simultaneously on separate CPU cores while processing the 
current video frame. These tasks include: 

a) the dense OF estimation; 
b) the sparse OF estimation; 
c) the concave hull computation and active contour extraction for each 

moving image region. 
Tasks a) and b) are among the most computationally intensive elements in the 
processing pipeline and have comparable execution times. The ability to assign 
them to different CPU cores and compute the OF estimations in parallel provides a 

significant performance boost, as the execution time is reduced to half when 
compared to a sequential approach. 
 The addition of graph-cut in the frame processing pipeline may only be done 
after the computation of TSM data, as this information is required to build the hard 
constraints (see Figure 5-4). As a consequence, the max-flow/min-cut algorithm can 
only be executed at the end of the TSM computation, which increases frame 

processing time with a significant amount. However, the cost computation of n- and 
t-links is independent from the motion detection and persistence part and can be 
performed as soon as a new frame is available. Thus, a new parallel task is added in 
our system as: 

d) cost computation of n-links and t-links for the graph-cut algorithm. 
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The cost associated to the CMRF site links provided by task d) becomes available by 
the time GC constraints generation is finished, thus saving additional time in the 

overall video frame processing. 

6.1.2.2. Local parallelization options 

 The local parallelization options target the iterations employed by different 
stages of the FG extraction method. These iterations correspond to foreach 

statements in the pseudocode listed in chapters 4.3.1 and 5.3.5. 
 The processing of the elements in an iteration can be distributed among 

available CPU cores using the Parallel.ForEach<> method when the elements can be 
processed independently. This is applicable to the following parts in our 
implementation: 

a) morphology part of the TSM algorithm (removal of small FG / BG 
connected components from the TSM); 

b) processing of 2-simplices in the Delaunay triangulation (creation of FG 
constraints for the GC segmentation); 

c) result smoothing in the pixel accurate GC segmentation (snakes applied to 
connected components of the resulting FG mask). 

The code snippet below demonstrates the implementation in case of point a). 
// get rid of small FG blobs 
var contours = image.GetContoursList(); 
Parallel.ForEach<Contour<Point>>(contours, ct => { 

if (ct.Area < areaThr) 
image.Draw(ct, new Gray(bg), -1); 

 else 
  image.Draw(ct, new Gray(fg), -1); 
}); 
 
// get rid of small BG blobs 
contours = image.Not().GetContoursList(); 
Parallel.ForEach<Contour<Point>>(contours, ct => { 
 if (ct.Area < areaThr) { 
  image.Draw(ct, new Gray(fg), -1); 
 } 
});             

6.1.3. Execution performance 

 We have measured the execution performance of the FG extraction system 
on different test machines, using a database of test videos recorded at a resolution 

of 320 x 240 pixels and 30 FPS. These are common parameters used in 
videoconferencing systems, as they fit the data traffic bandwidth and video capture 
capabilities of both mobile devices as well as desktop computers. The same 
consideration applies to immersive video conferencing: the resulting virtual scene 
resolution can be higher even if the video streams coming from participants are at a 
lower resolution, as they occupy only a smaller part of the scene. 

 The first machine in the test setup is an older generation Lenovo T400 
laptop equipped with a dual-core Intel Centrino P8400 CPU and 2 GB RAM. The 
second, a modern desktop, has a quad-core Intel Core i5 – 2400 CPU and 4 GB of 
RAM. The third is a MacBook Pro 13’’ equipped with a dual-core Intel Core i7 – 
3520M CPU and 4 GB of RAM running Windows 7 as a virtual machine.   

BUPT



 95 6.1 – Implementation details and performance considerations 

Table 6-1. Algorithm execution times 

CPU Cores / 
Threads 

CPU 
load 

Execution time / 
frame  [ms] 

Average 
FPS 

Intel Centrino P8400 2/2 65% 172.4 5.8 

Intel Core i5 – 2400 4/4 40% 84.0 11.9 

Intel Core i7 – 3520M 2/4 43% 108.7 9.2 

 

Figure 6-3. Execution performance chart 

 The average performance results obtained during testing are listed in Table 
6-1 and plotted in Figure 6-3. The impact on execution performance caused by 

switching between a Gaussian-based TSM and a SSIM TSM (see chapter 4.2) has 
been found negligible. 
 As expected, the modern quad-core i5 CPU is able to exploit better the 

parallelization options of the proposed algorithm, achieving an average of 12 FPS, 
followed by the dual-core mobile i7 whose output achieved between 9 and 10 FPS. 
The 4-years old Centrino CPU is the slowest performer, not being able to meet near-
RT requirements. The aggregated CPU load was in inverse proportion to the number 

of supported CPU threads, however all machines presented sufficient margin for 
running other applications. It is important to note that this result is also influenced 
by several implementation factors, such as:  

a) use of the managed C# programming language;  
b) the overhead introduced by the Parallel Extensions context switching; 
c) the use of a virtualized OS in case of the Core i7-equipped test machine.  

Taking into account the above factors, the execution results prove the near-RT 

capabilities of the proposed FG extraction method on current generation hardware, 
considering the RT margin to be at 15 FPS. Furthermore, given that GPU 
implementations have already been reported in the literature for optical flow 
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estimators [134, 135], active contours [136] and graph-cuts [137], we can safely 
conclude that the algorithm has potential for significantly faster execution if 

implemented using video hardware acceleration. 

6.2. Perceptual quality assessment of the 
segmentation 

6.2.1. Overview 

 The perceived quality of FG/BG segmentation is a key point for immersive 
videoconferences, being the main responsible in delivering a realistic experience to 
the participants. Given the ill-posed nature of object segmentation [3] and the fact 
that perceived quality depends on subjective factors, building a reliable and 
objective perceptual metric to evaluate segmentation results is a very challenging 

task. 
 Previous researches have focused on standardizing the way segmentation 
results are compared between different algorithms. The most popular metrics are 
the MPEG error measure proposed by the ISO/MPEG-4 standard [138] and the 
derived weighted quality metric introduced in [139], due to their simplicity and easy 
implementation.  More recently, Gelasca-Drelie and Ebrahimi [9] have proposed an 
improved perceptual objective metric that relies on formal psychophysical 

experiments in order to better cover the subjective component of the evaluation. 
According to the results presented by the authors, this new approach outperforms 
the MPEG error and the weighted quality metrics and furthermore, it allows 
parameter tuning for different types of applications in order to address the ill-posed 
characteristic of FG segmentation.  

6.2.2. The perceptual objective evaluation metric 

 The segmentation results produced by our FG extraction algorithm have 
been evaluated using the state-of-the-art metric proposed by Gelasca and Ebrahimi 
[9]. This method relies on ground truth information in order to identify 
segmentation artifacts in the extracted FG. Next, the artifacts are classified based 
on their annoyance factor and weighted depending on the current application 
context: video compression, video surveillance or mixed reality. 

 Immersive videoconferencing can be considered a classical candidate for the 
mixed reality group of applications. In this context, the evaluation metric identifies 
the following possible segmentation artifacts (first introduced in Figure 1-3, shown 
in Figure 6-4 for real cases and listed below in descending order of their annoyance 
to a human observer): 

 flickering, which occurs due to an abrupt change in artifact size between 
consecutive video frames;  

 inside holes (HI) – regions mislabeled as BG located completely inside FG 
objects;  

 border holes (HB) – regions mislabeled as BG on the border of FG objects; 
 added regions (AR) – leaking BG regions not connected to FG objects;  
 added background (AB) – leaking BG regions along the border of FG objects. 
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Figure 6-4. Segmentation artifacts identified during quality evaluation 

 Each artifact 𝜆  in the set Λ = {𝐻𝐼,𝐻𝐵,𝐴𝑅,𝐴𝐵}  has an associated perceptual 

artifact metric, denoted with 𝑃𝑆𝑇λ . The PST encodes the mean annoyance value 

(MAV) associated with the artifact, and takes into account the S-T characteristics of 
the artifact and the human memory and expectation effect over a sequence of video 

frames. Flickering is not modeled as a separate artifact as it is included as a 
temporal component into 𝑃𝑆𝑇λ . The detailed formulae and methods for computing 

the MAV for each type of artifact can be found in [9]. 
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 The complete MAV for each segmented video frame is given by the formula:   

𝑃𝑆𝑇 =   𝜔𝜆 ⋅ 𝑃𝑆𝑇𝜆
𝜆∈Λ

 

where 𝜔𝜆  is a set of application-dependent weighting factors that control the relative 

contribution of each artifact to the overall perceived quality. Table 6-2 lists the 
weights proposed by Gelasca and Ebrahimi for their optimized PST metric in the 
context of mixed-reality applications. 

Table 6-2. Weighting factors for segmentation artifacts in a mixed reality scenario 

Artifact type Weight Value 

Inside holes 𝜔𝐻𝐼 12.57 

Border holes 𝜔𝐻𝐵 8.74 

Added regions 𝜔𝐴𝑅  8.31 

Added background 𝜔𝐴𝐵  6.71 

  
 The PST is computed over 5 second video sequences in order to prevent 
subjects from getting used to a certain segmentation quality and to account for the 
human memory and expectation effects.  

6.2.3. Evaluation of the FG extraction algorithm 

 We have implemented an unsupervised approach to compute the perceptual 
objective metric (PST) and evaluate the segmentation produced by our FG 
extraction system.   

 The unsupervised evaluation has been performed on a database of test 
video sequences recorded using a chroma-keyed background. The assessment 
process, illustrated in Figure 6-5, performs the following steps: 

1. Obtain the ground truth FG segmentation by removing the color keyed 
component. The simplest way to achieve this is by performing color 
substitution in the 32-bit ARGB color space. For example, in case of a video 
recorded using green chroma-key BG, the alpha channel of a pixel is set to 0 
(transparent) if the RGB color information matches the following criteria: 

 𝐺 − 𝑅 > 𝜏𝑅 ⋀ (𝐺 − 𝐵 > 𝜏𝐵) 
where 𝜏𝑅 and 𝜏𝐵 are thresholds that depend on the actual BG characteristics 

(in our particular case we determined 𝜏𝑅 = 𝜏𝐵 = 15 empyrically). 

2. Perform BG substitution by overlaying the ground truth on top of a 
background video sequence. The use of a BG video instead of a static image 

ensures that lighting changes and BG motions are encountered during the 
segmentation process.   

3. Subject the BG-substituted sequence to FG extraction using our proposed 
algorithm, and store the segmentation result. 

4. Compare the extracted FG frame-by-frame with the ground truth obtained in 
step 1 in order to identify segmentation artifacts and compute their 

contribution to the perceptual objective metric.  
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Figure 6-5. The unsupervised quality assessment process 

 A total of 10 background video sequences recorded in various environments 
and lighting conditions have been used in conjunction with 30 chroma key videos, 
for a total of 300 assessments. Since the TSM part of our FG extraction method 

comes in two flavors – Gaussian and SSIM-based – the assessments were 
performed independently for each of them, in order to provide the means for a 
comparison between the two alternatives. 

6.2.4. Assessment results and discussion 

 The evaluation results have been summarized in Figure 6-6, using box plots 
individually for each type of artifact (𝑃𝑆𝑇𝜆) and globally at 𝑃𝑆𝑇 level. 

 From the summarized results it can be observed that inner holes (HI), the 

second most annoying artifact after flickering, present a low occurrence. The same 
can be said about added regions (AR), which are reduced to a minimum, also due to 
the TSM synchronization step described in paragraph 5.3.4. This behavior comes 
from the way hard constraints are generated for the graph-cut algorithm, as a clear 
separation between FG and BG is achieved while capturing as much region color 

information as possible. The higher value for the border holes (HB) metric is partly 

due to lack of sufficient motion at the beginning of the video sequences under test. 
The ground truth is immediately available through chroma-key removal, but FG 
extraction requires a sufficient number of motion cues to reach the same level of 
completeness. During this phase, HB artifacts are likely to occur as false negatives, 
sometimes in conjunction with the flickering effect which raises the value for PSTHB. 

 The perceived quality results produced by the Gaussian-based TSM and the 
SSIM-based TSM are very similar. By referring to the side-by-side results in Table 

6-3, we notice a marginal improvement on the Gaussian-based TSM, which 
produces an average MAV of 20.45 compared to the 20.83 obtained for the SSIM 
TSM. The Gaussian-based S-T segmentation is slightly better at handling AB and HI 
artifacts, while the SSIM one deals better with AR and HB artifacts. Std. deviation 
results show that the SSIM-based TSM behaved more consistent than the Gaussian 
one, which produced results spread across a slightly larger domain. From a 
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qualitative point of view the differences between the two TSM flavors are likely to go 
unnoticed by a human observer, however the quantitative analysis of the perceptual 

quality assessment results puts the Gaussian-based TSM ahead of the SSIM-based 
one.  
 

FG extracted using Gaussian model-based TSM 

  
 

FG extracted using SSIM model-based TSM 

  
 

Figure 6-6. Summary charts for the quality assessment results 

Table 6-3. Side-by-side comparison of Gaussian- and SSIM-based TSM results 

 Average Std. deviation 

Gaussian TSM SSIM TSM Gaussian TSM SSIM TSM 

AR 0.04527 0.03667 0.12285 0.10985 
AB 0.82568 0.84547 0.18010 0.16269 
HI 0.37304 0.39731 0.23126 0.22357 
HB 0.98409 0.98045 0.04577 0.04770 

Overall 20.45530 20.83521 3.56204 3.16174 
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 Compared with the results presented in [9] for the mixed reality scenario, 
the FG extraction method described in the present thesis performs better in terms of 

overall perceived quality than the top performers evaluated using the same metric 
[140-142]. Our method achieves an average MAV of 20.45, versus the 23.91, 
27.86 and respectively 32.18 produced by the above-mentioned methods. 

6.3. Comparison with state of the art 

 For comparison with the state of the art we refer to the Bilayer 

Segmentation of Live Video method of Criminisi et al. [20] introduced in chapter 
2.2.2.2. This method achieves a highly accurate segmentation comparable in quality 
with the output of stereoscopic methods like the one described in [10]. This is 
attained by relying on S-T priors that are built during an extensive training phase 
using manually labeled sequences and by tuning the weights of the algorithm’s 
energy terms for the different types of video sequences that must be segmented 
[21]. 

 The quality assessment results available for the state of the art method 
involve a simpler form of measurement than the perceptual metric applied in 
chapter 6.2 for our own approach. This measurement, which follows the one from 
[10], takes into account the number of misclassified pixels in respect to a ground-

truth (GT) segmentation, reported as a percentage of the image area. 
 In order to compare the error rates of the proposed FG extraction method 

with the ones reported in [20] we have used the same video sequences and GT 
segmentation, available at [http://research.microsoft.com/en-
us/projects/i2i/data.aspx]. The GT segmentation is provided for every 5 or 10 
frames depending on the sequence, thus marking the moments at which the 
percentage errors (PE) can be calculated.  

 The comparative quality assessment results are illustrated in Figure 6-7, for 
the AC, JM, MS and VK sequences, respectively. The sequences present a significant 
color distribution similarity between FG and BG, making it sometimes difficult to 
distinguish the object boundaries without prior knowledge of the GT segmentation. 
Based on the obtained results, the following can be observed: 
 

 The AC and VK sequences exhibit an initial burn-in period, also reported in 
the original paper of Criminisi et al. This is caused by the lack of significant 
motion during the first frames in the sequence, and makes it hard for both 

algorithms to converge to the actual object boundaries. After sufficient 
motion cues have been collected, both algorithms converge to an accurate 
FG representation. This effect is also present in the MS sequence for our 
method and is counteracted in the state of the art by the use of prior 

models.   
 

 For the AC sequence the state of art method benefits from the trained priors 
in order to filter out small AB artifacts along the object boundary, which are 
almost identical in color to the subject’s clothing. It achieves PE values close 
to 1%, while our method achieves a mean percentage error (MPE) of 4%. 
Both segmentations are accurate and comparable in quality, our method 

closely following the reference one. 
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Figure 6-7. Segmentation accuracy compared with the state of the art in [20] 
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 The JM sequence poses more challenge due to presence of dark and smooth 
subject clothing on top of a dark background, slightly different in color. This 

causes occasional flickering HB artifacts in our method, which achieves an 
MPE of 7%, while the reference method is more stable grace to its fusion of 
motion, color and prior information, achieving an MPE of less than 1%.  
 

 MS is the most challenging case for our approach, as the subject’s upper 
body garments are black with smooth texture and low reflectivity. The TSM 

has difficulties in persisting those regions, especially due to occlusions 

caused by the subject’s hand motion, which results in large HB and IH 
artifacts. As a consequence, the MPE produced by our method is situated 
between 15 and 20%, compared to the 3% achieved by the reference 
method, which uses color fusion and priors to avoid this unwanted behavior.   
 

 In the VK sequence the main difference in segmentation is achieved 
between frames 50 and 70, where the subject performs large hand motions 

that cover most of the screen. In our case these motions are accompanied 
by larger AB artifacts, similar to those illustrated in Figure 6-4, while the 
state of art method is more resilient again due to the presence of trained 
priors. After frame 80 both algorithms achieve very accurate levels of 
segmentation quality, with PE values situated around 3-4%. 

 

 From the results and observations presented above, we can conclude that 

the proposed FG extraction method achieves a segmentation quality that is, in most 
of the cases, comparable to the one produced by the state of the art method of 
[20]. For certain sequences the reference method shows only marginal 
improvements and there is only one case in which the difference is significant, 
namely the handling of smooth and dark FG regions.  
 Another important aspect is that the state of the art requires prior trainings 

and parameter calibration depending on the sequence under test, while our 
approach eliminates this step and works out-of-the-box with any video sequence. 
Performance-wise, our approach is significantly faster when compared with the 
results reported in [21] for the method of Criminisi et al. This confirms the validity 
of the proposed FG segmentation method and its applicability to videoconferencing 
applications. 

6.4. Summary 

 The 6th chapter of the present thesis was dedicated to the analysis of the 
experimental results obtained after implementing and testing the proposed 
approach to FG segmentation in monocular video sequences. The analysis has 
covered two crucial aspects related to the success of the algorithm in the context of 

videoconferencing applications: execution performance and segmentation quality. 
 The FG extraction system obtained by implementing the proposed method 
shows near real-time performance capabilities and is able to take advantage of 
multiprocessor architectures through parallel algorithm execution.  The CPU-based 
implementation covers only a part of the algorithm’s potential, as GPU 
implementations - not covered by our analysis - hold the promise for a further boost 
of execution speed. 
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 Segmentation quality has been evaluated using a state of the art perceptual 
objective metric, which takes human psychology into account in order to assess the 

impact produced by segmentation defects. The results have proven the accuracy of 
the proposed method, which performs better than the top performers evaluated with 
the same metric [9]. In addition, the quality was also compared to the one produced 
by a state of the art method [20]. Our approach reaches a comparable level of 
accuracy, slightly below the reference method, without relying on prior trainings in 
respect to the video sequences being segmented.  

 We can safely state that the analysis results described in this chapter 

support the validity of the FG extraction method and offer an indication that the 
objectives set at the beginning of our thesis have been reached. 
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7. CONCLUSION AND FUTURE WORK 

7.1. Conclusion 

 In this thesis we have presented solutions to the problem of foreground 

extraction in monocular video sequences, with direct applicability to immersive 
videoconference applications. We have introduced a new model-less method for FG / 
BG segmentation which relies exclusively on motion flow analysis and color 
information in order to expose the foreground objects in the observed scene. The 
main differentiator of this approach is the absence of any prior knowledge about the 
scene composition - in the form of assumptions or training - which makes it suitable 
for immediate use on any video sequence. 

  More specifically, we have investigated the different algorithms and 
techniques applicable to motion flow analysis and have shown how sparse and 
dense optic flow estimations can be aggregated in order to increase the accuracy 
and robustness of motion segmentation and to reveal the presence of FG objects. 
We have also demonstrated how color and contrast information can be used in 
conjunction with motion data in order to build a temporally stable FG 

representation. By further integrating a GC algorithm into the frame processing 

workflow together with a heuristic approach to unsupervised hard constraints 
generation, we have obtained a system capable of producing a pixel-accurate object 
segmentation. 
 The performance of our FG extraction system has been evaluated from the 
perspective of execution speed and segmentation quality, respectively. In terms of 
speed, we have achieved near-RT execution times using algorithm parallelization 

techniques that are supported by the vast majority of modern CPU architectures. 
The performance results have proven that the proposed approach is capable of 
meeting the temporal and CPU usage requirements of videoconferencing systems. 
Quality-wise, segmentation results have been assessed using a state-of-the-art 
perceptual objective evaluation metric, which has validated the accuracy of our 
method by placing it among the top performers in the field.  
 The binary segmentation method introduced in this thesis approaches the 

quality of state-of-the-art techniques without sacrificing execution performance or 

requiring complex training or initialization phases. Based on the current state of 
research it is possible to identify new directions to further increase the accuracy and 
reliability of the presented FG extraction system on the path towards obtaining the 
best possible segmentation for videoconference applications.  

7.2. Summary of contributions 

The present thesis brings a series of contributions to the field of foreground 
extraction in monocular video sequences. They are as follows: 

 A novel algorithm for accurate motion segmentation between pairs of 
consecutive video frames [71], introduced in chapter 3.  

o Starting from the over-smoothed, noise-sensitive dense OF field 

and the data obtained from tracking sparse flow features located 
on image edges, the algorithm identifies the concave hull of 
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moving scene elements, providing an accurate solution to an ill-
posed problem.  

o The blend of dense and sparse OF techniques and the use of 
strong image gradients ensures resilience to noise, compression 
artifacts and smooth illumination changes.  

o According to our knowledge, this is the first attempt to fusing 
dense and sparse OF estimations for such purpose. 

 A technique for building temporally stable masks as images of FG exposed 

through motion, presented in chapter 4.  

o With the TSM technique we introduce a lightweight  approach to 
model-less S-T segmentation. The cues generated by the motion 
detection phase are treated as positive priors and support the 
labeling of FG regions in the TSM. Labeling persistence is then 
ensured until significant change occurs in the underlying pixel 
color distribution, as revealed by negative priors computed from 
image statistics. 

o Compared to other algorithms, our technique can accommodate 
different ways of exploiting image color information, as proven 
using both Gaussian and SSIM-based statistical models. 

 An heuristic algorithm for generating the hard constraints for an 
unsupervised graph cut segmentation, described in chapter 5.  

o This approach leverages the results obtained from the TSM and 

the sparse OF in order to generate the seeds that direct the max-

flow/min-cut algorithm through obtaining the most probable 
binary segmentation for an input frame.  

o The algorithm uses elements from computational geometry like 
Delaunay triangulation and drape models to define the set of hard 
constraints, which makes it very fast compared to existing 
approaches.  

o The inputs consist of a set of point features and a mask that 
provides coarse FG cues. They can be obtained through any 
method, making the algorithm potentially attractive for other 
applications that rely on GC for object segmentation. 

 The experimental validation of the introduced concepts and methods, 
detailed and discussed in chapter 6. 

o The segmentation quality produced by the FG extraction system is 

assessed using a perceptual objective evaluation metric. This 

approach is better suited for evaluating the impact produced by 
the results on a human observer and, consequently, for analyzing 
the applicability of the introduced method to immersive video 
conferencing. 

o In parallel, the results are compared to those produced by one of 

the best performers in the state of the art by using the same 
video sequences and quality metrics.  

o The assessment results prove that our method is comparable with 
the state of the art in terms of quality and execution performance 
with the added benefit of completely removing the need of prior 
initialization or training phases. 
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7.3. Open points 

 Although not 100% accurate, our method has produced a perceptual 
assessment score that places it above top performers evaluated using the same 
metric. During the experimental phase and the evaluation of segmentation results, 
we have identified several open points that have a negative impact on the accuracy 
of the foreground extraction process. 

7.3.1. Handling of dark and smooth FG regions 

 The most important open point is related to the handling of dark and 
smooth FG regions. This aspect has been previously mentioned in chapter 4.5 and 
had an adverse effect on the segmentation of the MS and JM sequences, as 
discussed in chapter 6.3. The problem stems from the fact that small changes in the 
color distribution of dark regions (which exhibit RGB values closer to zero than other 
regions) are more likely to exceed the similarity threshold introduced in equation 

(4.3) than for other regions and to trigger a FG → BG label change in the TSM. 
 The under-segmentation effect observed on dark and smooth image regions 
is further accentuated by the low reliability of the optic flow estimation on these 
image areas, as discussed in section 3.2.4.1. The state-of-the-art methods 
discussed in chapter 2.2 rely mostly on learned priors [20; 22] or assumptions 
about the scene contents [23] in order to overcome this behavior, but such an 

approach would conflict with the objectives set at the beginning of our research 

(model-less FG extraction).  

7.3.2. Absence of significant motion 

 As stated in the title of this thesis, motion is the keystone of our approach 
to binary FG/BG segmentation. The first stage in the processing pipeline of the FG 
extraction system is dedicated to motion detection and segmentation in order to 

generate cues about FG elements based on the observed motion in the scene.      
 As expected, the absence of motion in the video sequence will turn the 
algorithm blind, as there are no other indications about the location of FG objects. 
Thus, an important open point is related to bootstrapping the algorithm when 
lacking significant motion information. 

7.3.3. Occlusion handling 

 The negative influence of occlusions has been observed when persisting FG 
information in the TSM and has been described in chapter 4.5 and illustrated in 
Figure 4-5. The phenomenon can be frequently encountered in videoconferences, 
when participants use gestures as part of non-verbal communication. Combined 
with dark and textureless clothing, occlusions caused by hand motions can affect the 
stability of the TSM, as seen on sequence MS  in chapter 6.3. 
 The negative effects of occlusion have been alleviated by the introduction of 

the GC algorithm in the last stage of the frame processing pipeline. The smoothness 
term of the GC energy formulation is capable of restoring most of the FG regions 
lost due to occlusion. However, this restoration does not propagate into the TSM, 
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which brings another open question on how this could be achieved as part of the 
TSM synchronization step detailed in section 5.3.4. 

7.3.4. Camera instability 

 The FG extraction algorithm introduced in this thesis works based on the 
assumption that the video capture hardware remains in the same stable position 
during the streaming / recording of the video sequence. Failure to meet this 

requirement would introduce false motion in an otherwise stationary BG, causing an 
amount of false positives directly proportional with the camera displacement 

magnitude and the level of clutter in the background. Handling this scenario is still 
an open point of our present approach. 

7.4. Future research perspectives 

 Based on the obtained experimental results and previous discussions, we 
finalize the thesis with an outline of future work and research directions. 

 The most significant and immediately appealing direction is towards 
advanced statistical modeling in the S-T motion integration algorithm. Addressing 
the instability of dark and smooth FG regions in the TSM may follow the approach 
described in [143] using the HSV color space combined with dynamic background 

learning. Another possibility is to substitute the Gaussian and SSIM models with 
MoG-based models as described in [35, 144] or Local Binary Patterns [145, 146].  
 Algorithm initialization (also known as bootstrapping) represents the next 

important research direction, especially useful for scenarios characterized by 
absence of significant motion. Video chat applications are a prime beneficiary, since 
motion may not occur immediately after a person joins the conference. Foreground 
information may be collected from other sources than motion, by using face / body 
detection models [67] or skin color distributions [147], with the important remark 
that such approaches would transform the proposed method into a model-based 

one. 
 The third perspective is oriented towards an improved algorithm for 
synchronizing the TSM and the GC segmentation. The main goal is to increase the 
method’s resiliency to occlusions, by identifying the occluded FG areas that are 
restored by the GC segmentation in order to propagate them back into the TSM.   
 Methods to detect and compensate for unwanted camera motion (camera 

shake) are part of the last research direction. The camera shake and compensation 

algorithm can take as input the OF estimation in either sparse on dense form, as 
proposed in [148] and respectively [149, 150]. Such approaches can be 
implemented with low penalty as part of the existing method, which already 
computes and processes both OF flavors, and can also be augmented in order to 
take advantage of the available FG information contained in the TSM.  
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Disclaimer: The video sequences illustrated in the present thesis are either a) 
freely available (sequences AC, JM, MS, VK) or b) have been used with the 
permission of the depicted subjects (sequences Mihai *, Hendrik *, Green 
Screen *, Mukul *) or c) are part of public broadcasts and have been used 

according to fair use terms (TV Show sequence). The author mentions that no 
material benefits of any nature have been obtained as a result of this usage. 
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