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Foreword 

 
Optimization is a process of searching for desirable configurations, attributes 

or parameters in a system. Unfortunately, for most of the real-world problems that 
need to be optimized, this search procedure is requiring heavy computational 
resources.  Therefore, in order to tackle this complexity, usually some heuristics are 
employed. 

Swarm intelligence algorithms like particle swarm optimization (PSO) and 
evolutionary techniques like genetic algorithms (GAs) are very popular choices as 
optimization heuristics and they are both population-based models. Particle swarm 
optimization models "the social mind" metaphor: the solutions are found by flying 
particles that are influenced by their personal and their group's experience. Since 
the inception of the original algorithm in 1995, the scientific literature regarding 
swarm intelligence grew massively. Although some hybrids between PSO and other 
optimization techniques were invented and an extensive analysis of parameters was 
thoroughly done, the research in this field did not develop and incorporate other 
basic social characteristics into the original algorithm. 

This PhD thesis aims to fill the lack of other social behaviors in PSO. Based 
on real-world observations, I developed some models that resemble the way people 
disagree inside a group and implemented it as a new social feature in PSO. The idea 
was validated by good experimental results and then I decided to apply it as a 
special mutation operator in real-valued genetic algorithms. The results were better 
than expected and prompted for an extensive and thorough investigation. The thesis 
is the result of this effort. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Timişoara, august 2011                             Lihu Andrei 
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Rezumat,  
Based on observations from nature and promising experimental data, 
this work opens a new direction in the field of evolutionary 
computation:  the usage of disagreements to derive superior algorithms 
with enhanced exploitation and exploration capabilities for global 
optimization problems. Initially, good results are obtained with the new 
6σ-PSOD operator which imitates the natural distribution of the 
disagreements in nature with a low computational cost. The 
disagreements are applied only to the social component from PSO. The 
partial disagreements increase the exploitation, while the extreme 
disagreements enhance the exploration. Disagreements can also be 
used to mitigate stagnation in swarm with the new RS-PSOD operator. 
Further good results with the concept of disagreements on real-valued 
genetic algorithms open the door for experimenting with this new idea 
in the larger field of the evolutionary computation. This thesis is a proof 
of concept for disagreements in swarm intelligence, through PSO, and 
in the larger category of the evolutionary computation, through real-
valued genetic algorithms. Because its contributions are at the core of 
the algorithms in study, the potential impact can positively affect all 
areas in which evolutionary computation is used. 
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1. INTRODUCTION 
 
 
1.1. Motivation 

 
Optimization processes happen everywhere in the universe, therefore both 

in nature and in human activities. We always search for and exploit the shortest 
paths that lead to a satisfactory solution. We live in a world in which transportation 
timetables, telecommunications bandwidth allocations, road networks and product 
manufacturing, to name just few examples, are usually designed to serve most 
needs quicker and in a more and more cost-effective manner. Since the needs of 
our society and the society itself continues to grow, it is clear why we need better 
optimization algorithms that can solve increasingly complex problems. 

In time, research proved that heuristic methods, without a clear winner (No 
Free Lunch Theorem in [98, 99]), can be used to solve hard problems. A large 
category of optimization techniques is using a populational model that is evolving or 
moving in the solutions' search space using well established rules. Evolutionary and 
swarm intelligence algorithms are good examples that fit in this segment and prove 
successful for a wide range of domains and practical applications, like cancer 
therapy planning, economic and financial forecasting, industrial product design, data 
analysis, automated scheduling and so on. There is no doubt that even a small 
improvement in the area of optimization techniques will produce a big impact in so 
many fields of human activity. This is the reason why there is a high interest and a 
large number of researchers and publications on this subject. 

Most of the time for these problems the domain information is sparse, and 
these methods are not guaranteed to find the global optimum, especially for NP-
complete problems, but they can provide good enough approximate solutions when 
all other classical approaches fail. One of the big problems is that it happens quite 
often that many of these optimizers are getting trapped into insatisfactory local 
optima. This is a tedious task to solve, because it is generally hard to tell whether 
the best solution found so-far is the global optimum; one of the classic solutions to 
this is to increase diversity among the population. Other times, optimizers fail to 
find a solution or cannot find it in a reasonable amount of time, because they lack 
convergence. These two issues are mostly addressed by the scientific literature, and 
solving both is usually a compromise because the adopted solutions can have 
opposite goals. 

Although present at many levels among human or animal societies, no 
known populational algorithm that is used in optimization modeled the concept of 
disagreements inbetween individuals. Disagreements bring diversity of opinions 
inside a group. They are the seed of all great revolutions that changed our societies 
throughout history and that made us evolve faster, jumping big steps ahead. Most 
individuals in a population do not disagree with the rules of the society, but a 
minority is always challenging the established rules, plainly showing disagreement, 
with more or less emphasis. As time goes by, or in certain circumstances, the 
minority's voice gets amplified and if their opinions prove better, they end up by 
revolutioning the general direction. Using this simple observation, this thesis deals 

BUPT



12   Introduction - 1 
 
 

with how disagreements can improve the optimization process by simultaneously 
increasing diversity and the convergence rate. 

This thesis introduces and analyzes the concept of disagreements for 
optimization algorithms. It describes disagreement operators for evolutionary 
algorithms - represented by genetic algorithms (GAs) - and swarm intelligence 
algorithms - represented by particle swarm optimization (PSO). Then, it proves 
empirically that the newly obtained algorithms with disagreements yield superior 
results for a comprehensive pallette of benchmarks. 

The concept of using disagreements in optimization is new and and the 
results are promising. Because the proposed enhancements using the 
disagreements concept are made at the core of the algorithms, the area of 
applicability is as wide and diverse as for the original algorithms. 

 
 

1.2. Objectives 
 
The main objectives at the time this work was written and the experimental 

work behind it was elaborated were the following:   
a) A proof of concept for disagreements in optimization was the general 

goal of the thesis, a goal that incorporated the other objectives.  
b) A theoretical model had to be developed in order to introduce 

disagreements in the context of any evolutionary algorithm.  
c) Specific disagreements operators had to be designed for PSO and 

real-valued GAs to specialize the general theoretical model towards swarm 
intelligence and genetic algorithms. 

d) A testing methodology had to be set up in order to produce correct 
data. 

e) A practical performance improvement had to be observed in order 
that the concept to be proven useful. 

 
The above enumerated objectives are met by this thesis' contributions that 

are discussed in detail in the last part of this work, but which can now be 
summarized as follows:   

1) the introduction of the new metaphor of disagreements in swarm 
intelligence and evolutionary computation in general  

2) the establishment of the theoretical foundations for disagreements in 
evolutionary computation  

3) the establishment of a reliable testing methodology to compare 
disagreements enabled algorithms with their original versions  

4) the introduction of the disagreements concept in particle swarm 
optimization  

5) the disagreements concept as a Gaussian-based operator in particle 
swarm optimization (the 6σ-PSOD operator), and a side-by-side empirical testing 
and comparison of some PSO variants vs. their enhanced versions that use the 6σ-
PSOD 

6) a disagreements operator that mitigates swarm stagnation in PSO, the 
RS-PSOD operator, and a comparison between 6σ-PSOD and RS-PSOD  

7) the introduction of the disagreements concept in real-valued genetic 
algorithms  
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8) the disagreements concept as a mutation operator in real-valued genetic 

algorithms, the   mutation operator, and a side-by-side empirical testing and 
comparison of real-valued genetic algorithms versus their enhanced versions that 
use the   mutation  

9) overall, a proof of concept for disagreements in swarm intrelligence and 
evolutionary computation 

 
 
1.3. Publications 
 
 The pillars of this PhD thesis' foundation are represented by the scientific 

articles that were published and presented by the author at renowned international 
conferences, 3 out of 5 being published in the prestigious Springer series Lecture 
Notes in Computer Science (LNCS) and Studies in Computational Intelligence (SCI): 

 
1) Lihu and Ș. Holban. Particle swarm optimization with disagreements. In 

Y. Tan, Y. Shi, Y. Chai, and G. Wang, editors, ICSI (1), volume 6728 of Lecture 
Notes in Computer Science, pages 46-55. Springer, 2011. 

This article is the first one in the series that describe how disagreements 
can be utilized in evolutionary computation. It introduces the 6σ-PSOD operator and 
proves empirically using popular benchmarks on some classical PSO configurations 
that using the new operator yields better results. 

 
2) Lihu and Ș. Holban. Particle swarm optimization with disagreements on 

stagnation. In Radoslaw K., T.F. Chiu, C.F. Hong, and N. Nguyen, editors, Semantic 
Methods for Knowledge Management and Communication, volume 381 of Studies in 
Computational Intelligence, pages 103-113. Springer, 2011. 

Another article on using disagreements for PSO, but this time for stagnation 
management and the RS-PSOD operator is described as a suitable solution to this 
issue. Provided experimental results advocate in favor of using disagreements in 
problems prone to stagnation. 

 
3) Lihu and Ș. Holban. Real-valued genetic algorithms with disagreements. 

In D. Pelta, N. Krasnogor, D. Dumitrescu, C. Chira, and R. Lung, editors, NICSO, 
volume 387 of Studies in Computational Intelligence, pages 333-346. Springer, 
2011. 

The article shows that disagreements are not limited to PSO or swarm 
intelligence and that they can be successfully applied to the larger class of 
evolutionary algorithms as initially provided in the theoretical model. A 6σ-PSOD-
like implementation is adapted to real-valued genetic algorithms (6σ-GAD) and 
tested to demonstrate that disagreements can have a wider usage. 

 
4) Lihu and S. Holban. A study on the minimum number of particles for a 

simplified particle swarm optimization algorithm. In Proceedings of the 6th IEEE 
International Symposium on Applied Computational Intelligence and Informatics 
(SACI), pages 299-303, Timișoara, Romania, May 2011, IEEE.  

A study regarding finding a configuration with a minimum number of 
particles for an à la Pedersen simplified PSO ([76]), PSO-VG. The best found 
configuration is used for PSO-VG in this thesis. 
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5) Lihu and S. Holban. Top five most promising algorithms in scheduling. In 

Proceedings of the 5th International Symposium on Applied Computational 
Intelligence and Informatics, pages 397-404, Timișoara, Romania, May 2009, IEEE.  

It is the first published article. It is a literature review and comparison using 
tests with real-world data of what seemed in 2009 to be the most promising 
algorithms in scheduling, a subdomain of optimization. 

Aside from these publications, there are also two research reports at the 
base of this work, [56] and [57]. 

 
 
1.4. Outline 
 
Chapter 2, whose content is largely based on the author's annual research 

reports ([56, 57]), lays the theoretical background. It describes what is 
optimization, how it is classified, presents effective techniques used in optimization 
and The No Free Lunch Theorem. Then, there is a brief introduction into genetic 
algorithms and particle swarm optimization because these algorithms will be 
modified later to model the disagreements concept. A discussion about the 
environment used to test and validate the disagreements concept: 10 popular 
optimization test functions and the software and hardware tools. Conclusions are 
drawn regarding potential improvement points where disagreements may help in 
the above-discussed algorithms. 

The general theoretical foundation of disagreements in evolutionary 
computation is described in detail in Chapter 3 and the empirical testing and 
validation methodology for the new theoretical models is established. The chapter 
ends with some preliminary conclusions regarding the new theoretical framework. 

In Chapter 4 the concept of disagreements is introduced and analyzed in the 
context of PSO algorithms (both the classic PSO and the à la Pedersen simplified 
variant). There are two approaches to implement disagreements: the first one is 
using the 6σ-PSOD operator to model normally distributed disagreements of two 
kinds: partial and extreme; the second approach is used in PSO to mitigate 
stagnation when it appears by triggering extreme disagreements among members 
of the population: the RS-PSOD operator. An empirical analysis is done for both 
operators and concluding remarks are drawn. 

Chapter 5 expands the concept of disagreements for real-valued genetic 
algorithms in particular and discusses the rationale behind it. Then, the 6σ-GAD 
operator is provided as a new normally distributed mutation operator. The chapter 
ends by concluding that the 6σ-GAD operator outperforms other GAs that do not use 
it on most optimization benchmarks. 

At the end, in Chapter 6, conclusions are drawn by presenting a summary of 
the findings in this thesis. Future work and possible improvements are also 
discussed. 

The bibliography contains all the external resources utilized to write the 
thesis.
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2. BACKGROUND 
 
 
2.1. Optimization 
 
2.1.1. Definition 
 
 Optimization refers to a process of selecting a set of parameters that satisfy 

a given measure of optimality, with or without constraints. The objective is to pick 
the best element from a range of alternatives. 

Problems that need to be optimized arise from a wide extent of domains, 
not only from economy or from engineering; they can also arise from the more 
creative sphere of arts, for example. 

Linear systems - that need linear optimization - can be solved with a classic 
technique called linear programming, but non-linear problems cannot be solved 
easily. This thesis deals with non-linear optimization problems. 

In most cases, optimization refers to finding the global minimum or 
maximum of a function f, called the objective function or the cost function. 

Before optimization a modeling phase takes place in which f is built to reflect 
the best value in its minimum. In order to address uniformly all the problems, most 
papers from the scientific literature deal with minimization because maximization is 
seen as a minimization of -f. 

Using Bergh's notations from [97], an unconstrained minimization problem 
is defined as:  

Definition 1. Given RR →:f , find n
Gx R∈  for which )x(f)x(f G ≤ , 

nx R∈∀ .  
Finding the minimum or maximum on an interval is guaranteed by the 

extreme value theorem formulated by Weierstrass, which here is stated as in [80]:  
Theorem 1. If a function f(x) is continuous on a closed interval [a,b], then 

f(x) has both a maximum and a minimum on [a,b]. If f(x) has an extremum on an 
open interval (a,b), then the extremum occurs at a critical point.  

 
2.1.2. Classification 
 
When some parameters of the given problem have constraints then 

constrained optimization is needed to solve them. For the sake of simplicity and 
generality this thesis is focused on unconstrained optimization. 

There is also a difference between local and global optimization. The local 
optimization is about finding the local minimum specific to a defined zone of the 
search space, while global optimization means finding the global minimum without 
been trapped into local minima. In Fig. 2.1, there is a simple visualization of a local 
( Lx ) and a global minimum ( Gx ) for a polynomial function (also used as an 
example by [97]). 
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Figure 2.1: The global minimum ( Gx ) vs. a local minimum ( Lx ) for the polynomial function 

x60x47x12x=)x(f 234 −+− . 
   
With respect to the problem variables and the search space, optimization 

can be classified as in [74, p. 6] as following:   
• discrete optimization: when the variables of the objective function 
assume discrete values (integer optimization is the special case for integers) 
• continuous optimization: when the variables of the objective function 
assume real values 
• mixed integer optimization: when the variables of the objective function 
assume integer and/or real values 
Commonly, the objective function does not change over time and there is a 

single function to be minimized, but when this is not the case, there can be two 
situations: 

• dynamic optimization: when there is one or more time-varying 
objective functions 
• continuous optimization: when several objective functions need to be 
concurrently minimized 
If the gradient of the optimization problem cannot be known, then the 

objective function must be optimized as black box. This is called black box 
optimization. In addition, optimization algorithms that do not rely on the problem's 
gradient are referred as "black box", "derivative-free" or "direct search" methods. 
They are like a blindfolded hiker who wants to find the lowest point in a landscape 
having access only to the information provided by an altimeter.
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2.1.3. The Curse of Dimensionality 
 
Because there can be a large number of candidate solutions to a problem, it 

is not feasible to try all of them. This means that there is no guarantee that the 
global optimum is found, but depending on their quality compared to the optimum, 
there are cases when suboptimal solutions are acceptable. Worse, adding a new 
dimension to the problem (e.g. an extra parameter) grows exponentially the 
number of candidate solutions. This is called the curse of dimensionality, after 
Bellman [11, 12]. Therefore, it is important to design algorithms that perform well 
also when adding new dimensions. Ideally, a new optimization method should have 
linear time-complexity O(n) in the dimensionality n of the problem. Not to mention 
that any optimization algorithm should find the optimum no matter what was its 
starting position. 
 

2.1.4. Methods 
 
 There is a multitude of approaches when it comes to solve an optimization 

problem and most of them are iterative algorithms. Depending on the problem, 
there are cases when deterministic methods are suitable, like branch-and-bound 
methods ([71]) or interval optimization ([42]). Other times, stochastic optimization 
techniques might do better, like simulated annealing ([52, 96]) or Monte-Carlo 
methods ([14, 65]). For scheduling problems, that represent a subclass of 
optimization problems, some of the best methods are presented in one of the 
articles published by this paper's author, in [59]. Nevertheless, in most scenarios 
metaheuristics do better, thus they are suitable for optimization in worst conditions 
(black-box optimization). Some of these metaheuristics are listed below: 

• evolutionary algorithms (evolutionary strategies, genetic algorithms, 
etc.)  
• swarm intelligence algorithms (particle swarm optimization, ant colony 
optimization, bee colony optimization, etc.) 
• differential evolution ([91]) 
• memetic algorithms ([68])  
This thesis is particularly dealing with particle swarm optimization and 

genetic algorithms, but as it will be shown later, the new principles that will be 
introduced throughout this work can be easily applied to other metaheuristics as 
well. 

 
2.1.5. Convergence in Search Space 
  

Definition 2. The convergence of an algorithm a in the search space nH , in 
which there is a space measure ⋅ , is defined as:  

                                   0,=xxlim Gi
i

−
∞→

 (2.1) 

where Gx  is the global minimum and ix  is the best solution at some iteration i. 
Because an algorithm's number of iterations is finite, a relaxed criterion for 

convergence is defined as follows:  
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Definition 3. Given a space measure ⋅  and a positive integer k, the ε-

accurate convergence (ε>0) of an iterative algorithm ita  in the search space nH  is 
defined as:  

                               ,ki,εxx Gi ≤∀≤−  (2.2) 

where Gx  is the global minimum and ix  is the best solution at some iteration i. 

If the global optimum )x(f G  is a priori known - and this is the case of the 
benchmark functions - then the convergence is achieved when the following relation 
holds true:  

                               .ε)x(f)x(f Gi ≤−  (23) 
 
2.1.6. The "No Free Lunch" Theorem 
 
Wolpert and Macready's "No Free Lunch Theorem" (NFL) applies to most 

algorithms in search and optimization ([98, 99]). It states that the performance of 
any two algorithms averaged on the set of all possible objective functions in a finite 
search space is equivalent. Moreover, their performance is even comparable to a 
random search. 

Fortunately, NFL is not valid in all real-world situations. There are finite 
subsets of the search space in which some algorithms perform much better than 
others and the incidence of these situations are quite high in practice. Later, Wolpert 
and Macready proved the existence of the co-evolutionary free lunches in self-play 
problems ([100]). 

From NFL one must understand that there is no overall superior algorithm. 
Better algorithms can be designed only for particular problems, therefore in order to 
solve more efficiently an objective function one must have prior knowledge on which 
method performs better in that case. 

 
 
2.2. Genetic Algorithms 

 
2.2.1. Evolutionary Computation and GAs 
 
Genetic algorithms (GAs) belong to the greater category of evolutionary 

computation (EC) methods. EC is an umbrella for all population-based meta-
heuristics that mimic Darwinian evolution ([26]) to iteratively find the optimal 
solution. Specifically, the potential solutions, which are represented as individuals 
are improved systematically through evolution towards the optimum. Friedberg and 
Bremermann applied for the first time in the fifties the Darwinian concepts in 
optimization ([21, 36]). Genetic algorithms are one of the most popular optimization 
methods and they were introduced by Holland in the mid-60's ([44, 45]). 

The notion of population representing solutions is central not only to EC, but 
to the majority of other metaheuristics that do not fall into this category. 

Definition 4. The population of μ individuals at any iteration t that act as 

potential solutions in the hyperspace of solutions nH  is:  

{ } .H)t(x,)t(x),t(x,),t(x),t(x=)t(P n
iμi21 ∈……  (2.4) 

BUPT



2.2 – Genetic Algorithms      19      
 
 
The aforementioned population of individuals representing evolving solutions 

obeys the rules from nature. Individuals are competing with each other and only the 
fittest survive, thus are selected to reproduce. During reproduction, the transfer of 
genetic material might be faulty; there is a slight probability of mutations. 

Canonically GAs represent their solutions in a binary form, therefore a 
mapping function is needed to translate the genotype (the binary representation of 
the solution) into the phenotype (the actual form of the solution, i.e. a real-valued 
representation) and vice versa. With the advent of real-valued GAs ([29, 35]), this 
disadvantage disappeared. 

 
2.2.2. A General Evolutionary Framework 
 
A general evolutionary framework that characterizes all evolutionary 

algorithms (EAs), and GAs in particular, was defined by Bäck et al. in [7] and was 
slightly improved by Bergh in [97]: 

Let f be the fitness function that measures the quality of a solution - the 
objective function - and let F(t)={f(x1(t)), f(x2(t)),…, f(xi(t)),…,f(xμ(t))} be the 
fitness of the whole population. Given the strategy parameters f, μ (the parent 
population), λ (the offspring population), Θs (the probability of selection), Θr (the 
probability of recombination) and Θm (the probability of mutation), the general 
evolutionary framework is defined as in Pseudocode 1. 

 
Pseudocode 1. Bäck's general evolutionary framework. 
    
 t  ← 0 
P(t) ← intialise(μ) 
F(t) ← evaluate(P(t), μ) 
Repeat 

P’(t) ← recombine(P(t), Θr) 
P’’(t) ← mutate(P’(t), Θm) 
F(t) ← evaluate(P’’(t), λ) 
P(t+1) ← select(P’’(t), F(t), μ, Θs) 
t ← t + 1 

Until a termination criterion is met 
 
2.2.3. Initialization 
 
Population initialization is the first action taken by an EA; it can consist in 

generating an uniform distribution of the initial population across the search space 
done either in a deterministic manner when possible - e.g.: spreading the 
individuals across the nodes of a grid generated on the search space, or 
stochastically by using an uniform random distribution. A popular initialization 
technique is the nonlinear simplex method from [70]. More sophisticated 
intialization schemes can also be employed, but it is generally accepted by 
researchers that a reliable algorithm should perform well with the uniform approach 
and should not use the initialization step to gain competitive advantages over other 
similar algorithms. 
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2.2.4. Selection 
 
Selection is the process of picking the best individuals according to the 

fitness function to form a group of parents that will later generate offspring. Two 
most discussed in scientific literature types of selection are tournament selection 
and roulette-wheel selection. 

Tournament selection means running a series of contests between a 
randomly picked set of population members and adding the winners into the parents 
group. Formally, this can be formulated as in [74]:  

Definition 5. Let P be a population consisting of μ individuals, m be a fixed 
integer from the set {2,3,…,N}, and k be the number of parents to be selected. 
Tournament selection can be described with the Pseudocode 2.  

  
Pseudocode 2. Tournament selection. 

    
Do (i = 1..k) 

Choose randomly m individuals from the population P. 
Select one among the m individuals. 
Add the selected individual into the parent pool. 

End Do  
    
Tournament selection takes two forms: the stochastic form and the 

deterministic form. In the stochastic variant those m individuals are probabilistically 
ranked. The best individual has the probability p to be selected, the second best has 
the probability of selection p(1-p), and the last one p(1-p)m-1. In the deterministic 
variant the best individual is selected; in this way elitism is used. 

When using roulette-wheel selection less fit individuals can enter the parents 
pool and then to each one from the set of m individuals the following probability of 
being picked is assigned:  

.

f

f=p

j

m

1=j

i
i

∑
 (2.5) 

In order to resemble a roulette wheel where each individual occupies a 
region pi, an individual holding index }m{1,2..k ∈  is picked such that:  

,p<qp i

k

0=i
i

1k

0=i
∑∑ ≤

−
 (2.6) 

where q ~ U(0,1) and it is assumed that 0=p0 . 
 
 
2.2.5. Recombination 
 
The recombination process, also called crossover for GAs, controlled by the 

parameter Θr, is referring to the process of mixing two parents into giving birth to 
two new offspring. Because genetic algorithms primarily rely on recombination, the 
probability rate of crossover is high (around 70%). 

BUPT



2.2 – Genetic Algorithms      21      
 
 
Traditionally, since GAs use a binary representation, the recombination 

takes place on the composing bits of parents' genotype. The simplest case, the 1-
point crossover is defined below, but there are also multi-point crossover operators 
that are defined similarly:  

Definition 6. Given }p,p,p{=p n112111 …  and }pp,p{=p n222212 …  two 
randomly chosen parents of length n  and a crossover point 1}n{1,2,k −∈ … , then 
the resulting offspring are: }p,p,p,p,p{=o n21)k2(k112111 …… +  and 

}p,p,p,p,p{=o n11)k1(k222212 …… + . 

In order to offer a simple vizualisation, consider a parent's genotype be 

represented by "⊗" and the other one's genotype be notated with "⊕". A custom 3-
point crossover is exemplified below: 

first parent:         ⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗ |||  

second parent:     ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ |||  

 −−−−−−−−−−−−−−−−−−−−  
first offspring:     ⊕⊕⊗⊗⊗⊗⊕⊕⊕⊕⊕⊗⊗⊗ |||  

second offspring: ⊗⊗⊕⊕⊕⊕⊗⊗⊗⊗⊗⊕⊕⊕ |||  

 There are many other variants of binary crossover operators, like uniform 
crossover (for each offspring's new bit selecting with a chance of 50% from each 
pair of parents' bits) or cut-and-splice crossover (offspring with different dimensions 
resulted from asymmetrical crossover points on parents). However, with the 
introduction of the real-valued GAs the arithmetic crossover operators were 
invented. More information about crossover operators can be found in [28]. 

The simplest arithmetic crossover operator, taken from [97], is defined as 
follows:  

Definition 7. Given )t(p1  and )t(p2  as two parents, then the two children 
can be obtained as follows:  

 ),t(p)r(1.0)t(pr=1)t(o 21111 −++  

 ),t(p)r(1.0)t(pr=1)t(o 11212 −++  (2.7) 
where r1 ~ U(0,1) is an uniformly distributed random variable. 

Nowadays, one of the most popular arithmetic crossover operators, the one 
that was used in the experimental part that supports this thesis, is the BLX-α  blend 
crossover that supports multiple offspring. Here it is defined as in [35]:  

Definition 8. Given two parents p1(t) and p2(t) and a control parameter α, 
the ith gene of an offspring h is defined by:  

 ),α*Ig,α*Ig(=h maxmini +−U  

 ),p,p(min=g),p,p(max=g i2i1mini2i1max  

 .gg=I minmax −  (2.8) 
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2.2.6. Mutation 
 
The mutation perturbs the genotype of one given individual according to the 

mutation rate Θm. It promotes diversity because it abruptly changes the genome. 
Mutation is a ''second-class citizen'' in GAs, therefore it has a small probability rate 
(usually 10%). 

In binary representations, mutation consists in flipping a randomly picked 
bit from an offspring with a given probability rate. In real-valued representations, 
mutation is affecting some vectorial components of the solutions by changing them 
with some randomly generated numbers inside a predefined range. 

A commonly used mutation for real-valued genetic algorithms is the 
Gaussian distributed mutation, defined as in [28]:  

),σ(0,1)t(o=1)t(y ikk N+++  (2.9) 

where ko  is k-th offspring's vector component affected by mutation, iσ  is a user 

defined variable and ky  is the result of the operation. 
A lot of the more elaborate arithmetic mutations are based on Mühlenbein's 

mutation ([69]), which is described by the following equation:  
,γrang1)t(o=1)t(y kkk ⋅±++  (2.10) 

where )ab(0.1=rang kkk −⋅  is the mutation rate, kb  and ka  are the maximum 
upper and lower ranges, the signs are chosen randomly with a 0.5 probability and:  

,2α=γ k
i

15

0=i

−∑  (2.11) 

where {0,1}αi ∈  that is randomly generated with 1/16=1)=α(p i . This special 
kind of operator generates mutation gradual neighborhoods that do not exceed the 
given range limit ( kk ab − ). More information can be found in [28] and [43]. 

This section was a short overview on genetic algorithms. For a more detailed 
description and a deeper analysis on the above presented topics, the reader is 
suggested to consult Goldberg's book, [40]. 
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2.3. Particle Swarm Optimization 

 
2.3.1. Swarm Intelligence 
 
 Particle Swarm Optimization (PSO) is the most prominent optimization 

technique belonging to the larger category of the swarm intelligence. 
As stated in [74, p.16], "swarm intelligence is a branch of artificial 

intelligence (AI) that studies the collective behavior and emergent properties of 
complex, self-organized, decentralized systems with social structure. Such systems 
consist of simple interacting agents organized in small societies (swarms). Although 
each agent has a very limited action space and there is no central control, the 
aggregated behavior of the whole swarm exhibits traits of intelligence, i.e., an 
ability to react to environmental changes and decision-making capacities." 

Bird flocking, fish schooling, animal herding, bee or ant colonies, as well as 
human interactions stood as the main inspiration sources for swarm intelligence. 
Early related work first appeared in 1989 in [13], and soon several representative 
algorithms for this field developed: particle swarm optimization ([51]), ant colony 
optimization ([33, 34]), stochastic diffusion search ([15, 16, 19]) and artificial bee 
colony optimization ([48]). 

Five basic abilities are exhibited in swarm intelligence algorithms, as stated 
in [66]: 

Adaptability: behavioral changes can occur under external factors 
Proximity: systems can perform space and time computations 
Quality: the capability to respond to environmental quality factors 
Diverse response: the faculty of producing several different responses 
Stability: the capacity of retaining robust behaviors under soft 

environmental changes 
PSO is a very competitive optimization algorithm initially introduced by 

Kennedy and Eberhart in [51]. It was inspired from an older algorithm that 
simulated a bird flock (described in [81]). It is representative to the "social mind" 
metaphor by simulating the social behavior of groups from the animal kingdom, 
such as fish or birds. Because PSO does not need any gradient information, it can 
successfully be used in black-box optimization. 

 
2.3.2. Algorithm Description 
 
In nonprofessional’s words, PSO can be described as a population of 

particles that fly in the search hyperspace of the potential solutions. Until a 
termination criterion is met, each particle is guiding its flight based on its own 
experience and the experience of the group it belongs to. All particles are social, 
they belong to a group, hold positions and have velocities; they remember their 
best position so far and they know instantly the best position in their group. 

The PSO's updating principle is very simple and is made of two components: 
at each iteration, each particle updates its position towards its personal best - the 
cognitive component - and its group's best - the social component. 

PSO consists in a social network of particles searching for the overall 
optimum. They interact and exchange information inside their groups while flying 
through the search space.  
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Next, for describing PSO the notation from [97] will be used:   
    f - is the function to be minimized,  

    n - is the dimension of the solution hyperspace nH ,  
    s - is the number of particles in the swarm,  
    i - is the index of a particle, such that s1,i ∈ . 
Each particle i  deals with the following variables:   
    xi - is its current position,  
    vi - is its current velocity,  
    yi - is its current best position,  
   iŷ - is the neighborhood's best position.  
Definition 9. The neighborhood with a size l  of a particle i  in the particle 

swarm optimization algorithm is defined as:  
)}.t(y),t(y,),t(y),t(y),t(y,)t(y),t(y{=N li1li1ii1i1lilii +−++−−−− ……  (2.12) 

Particle Swarm Optimization is an algorithm that consists of three phases:   
Initialization. The particles' positions are set uniformly in the search 

space:  
x,x=xij ~ .n1,j,s1,i),x,x( maxmax ∈∈+−U  (2.13) 

Velocities are set to 0 or initialized using the following rule:  
 v,v=vij ~ ,n1,j,s1,i),v,v( maxmax ∈∈+−U  

 [0.1,1.0].k,xk=v maxmax ∈×  (2.14) 
 Then, the best positions are updated using eq. (17) and (18). 
 Iterations. In this phase, the velocities are updated as follows:  

)],t(x)t(ŷ)[t(rc)]t(x)t(y)[t(rc)t(wv=1)t(v ijijj22ijijj11ijij −+−++ (2.15) 

where 1c  is the personal coefficient, 2c  is the social coefficient, (0,2]c,c 21 ∈ . 1r  

and 2r  are random vectors, such that (0,1)Ur,r 21 ~ . 
The first term of (2.15) is the previous velocity influenced by an inertial 

weight w . The second term is the personal component that makes the particle 
move toward its best personal position so far, and the third term makes the particle 
to turn to neighborhood's best position found so far. 

The positions are updated by adding the result from eq. (2.15) to the 
previous position:  

1).t(v)t(x=1)t(x iii +++  (2.16) 

At the end of each iteration, iy  and iŷ  are updated using the formulae:  

.
))t(y(f<)1)t(x(fif1)t(x
))t(y(f)1)t(x(fif)t(y

=1)t(y
iii

iii
i

⎩
⎨
⎧

++
≥+

+  (2.17) 

 
.Na)},a(f{min=1))t)(ŷ(f|N1)t(ŷ iiii ∈∀+∈+  (2.18) 

 It must be added that if a velocity or position exceeds its range, then 
clamping is employed. This assures that values stay within the desired values. 

 Termination. It occurs when a given criterion is met (a number of fitness 
calls or iterations, stagnation, etc.).  
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2.3.3. Pseudocode 
 
A typical PSO procedure that describes the above long definition can be 

written as in Pseudocode 3. 
 

Pseudocode 3. Classic PSO procedure. 
    
Initialize an n-dimensional swarm S of s particles. 
t ← 0 
Repeat 

Do (i = 1..s) 
Update yi using equation (2.17) 
If yi < iŷ  Then // Update the neighborhood's best if the case 

iŷ  ← yi 
Update the velocity using eq. (2.15). 
Update position using eq. (2.16). 
End Do 

   t ← t+1 
Until a termination criterion is met.  
 
2.3.4. Flavors 
 
PSO comes in two flavors: the gbest and the lbest variants. 
In the gbest variant there is only one big neighborhood that contains all 

particles and they are fully connected. It was actually the PSO that was initially 
described by its inventors, Kennedy and Eberhart. In this model all particles know a 
global best, ŷ . In this case, eq. (18) is replaced by the following equation:  

 { }=))t(ŷ(f|)t(y,),t(y),t(y)t(ŷ s10 …∈  

 { }.))t(y(f,)),t(y(f)),t(y(fmin s10 …  (2.19) 
The lbest variant has been described before in this section and in this form a 

particle communicates only inside its neighborhood. The lbest model has no spatial 
relationship between particles because it would be computationally expensive. The 
size of a particle's neighborhood spans across l  indexes of particles. 

It can be noticed that the gbest variant is a special case of the lbest variant, 
with s=l . A mix of both flavors can be found in [73] under the name Unified PSO. 

 
2.3.5. Topologies 
 
The way particles communicate in their social network determines the 

network topology. There are various network topologies that define "small worlds" 
for PSO particles in the scientific literature, but only the ones most used in the 
experimental practice are given below:   

    • Ring topology (see Fig. 2.2a): describes a lbest model of PSO where 
1=l , such that a particle i can exchange information with the particles 1i −  and 
1i + ; the slow informational exchange rate gives the algorithm the ability to explore 

various regions of the search space.  
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    • Chordal ring (see Fig. 2.2b): is an extension to the standard ring 

topology by adding extra connections between all pairs that are some index-based 
distance apart in order to increase the information flow and the convergence speed.  

    • Fully connected topology (see Fig. 2.2c): is the gbest model where 
all particles exchange information; this can lead to premature convergence because 
it is possible that not all the search space is explored when a very good local best is 
found early.  

    • Grid topology (see Fig. 2.2d): also called Von Neumann topology, is 
an arrangement in which particles communicate in 4 cardinal directions (N, E, S, 
W); it is recommended by Kennedy in [50] as the best performing topology in his 
tests and it is used as the default topology for the experiments with PSO algorithms 
provided in this work.  

  
 

Figure 2.2: PSO topologies. 
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2.3.6. Inertial Weight 
 
 The usage of the lbest variant and topologies can bring diversity in the 

swarm and can enhance a thorough local exploration, but still the swarm needs to 
converge to a satisfactory solution in a reasonable amount of time. Also, another 
problem was that of the swarm explosion, with particles exceeding by position the 
search bounds; this was partially solved by clamping to the maximum range. A 
better solution was the introduction by Shi and Eberhart in [86] of the inertia 
weight, w into the updating principle of PSO in eq. (2.15) in order to boost the 
refinement process of promising solutions; it is worthy to note that the original PSO 
developed by Kennedy and Eberhart was not containing the inertia weight. 

Good experimental results were obtained for linearly decreasing values of w 
between [0.9,0.4] in [88]. The study from [87] found best results for w=0.8. 
Successful simulated annealing-like schemes were proposed also, like the one in 
[38] and a fuzzy inertia weight in [89]. 

 
2.3.7. Constriction Factor 
 
 Ozcan and Mohan studied the oscillatory properties of the particles' 

trajectories in PSO in [72]. Later, Clerc and Kennedy, after a thorough investigation, 
published the Standard PSO variant in [23] that lack the inertia weight, but has a 
constriction factor instead, therefore eq. (15) was replaced by:  

)]],t(x)t(ŷ)[t(rc)]t(x)t(y)[t(rc)t(v[χ=1)t(v ijjj22ijijj11ijij −+−++  (2.20) 

where χ  is called the constriction coefficient or constriction factor. Although 
algebraically equivalent to the inertia weight model, this variant is known for its 
mathematical properties that imply the following selection of the parameters:  

,
42

2=
2 −−− ϕϕ

χ  (2.21) 

where 4>,cc= 21 ϕϕ + . 
The configuration with χ=0.729 and c1=c2=2.05  is considered the standard 

configuration for this type of PSO, that also will be used in benchmarks throughout 
this paper. 
 

2.3.8. Simplifications 
 
 The idea to simplify the PSO in order to obtain a more robust algorithm, 

better to tune, to control and document for multiple optimization problems is not 
new. It first appeared as the "social-only PSO" in [49] and was later developed by 
Pedersen in [76]. A study related to the optimal number of particles in such 
algorithms can be found in one of this thesis author's publications, in [62]. 

Simplification consists in leaving out one of the components from the 
updating principle. Pedersen's PSO-VG from [75] (the name states it preserves the 
previous velocity and the global best to orient itself) has replaced the velocities 
update formula with:  

)].t(x)t(ŷ)[t(rc)t(wv=1)t(v ijjj22ijij −++  (2.22) 
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In order to successfully tackle different situations, adaptation schemes can 

be employed during the optimization process, but this implies a higher operational 
and computational cost. In [75] Pedersen concludes that it is better to use 
simplification than adaptation because his results on benchmarks were not too 
different in both cases. 

 
 
2.4. Test Functions and Tools 

 
2.4.1. The Need for Benchmarks 
 
 It is hard to tell how a new algorithm behaves on a set of real-world 

problems. In order to prove the quality of an optimization method in real-world 
scenarios and to have the possibility to compare its performance with other 
techniques there should be a standard way to do it. 

In order to asses a large palette of situations, benchmark functions with 
various degrees of difficulty were designed to test optimization algorithms and to 
draw conclusions regarding the convergence speed and the optimality. A set of 
benchmark functions was first proposed by De Jong in [47] and since then more 
sophisticated test functions were developed. 

Seen in 3D, most of these functions look like relief forms - mountains, 
valleys, hills etc. Usually, they possess many local minima in order to provide a high 
multi-modal environment in order to rigorously simulate unpredictable real-world 
situations. 

There is no precise way to correctly assess the performance of a black-box 
stochastic optimization algorithm over a set of problems other than running it and 
observing the results. Only empirical analysis can be effectively used. This happens 
mainly due to the stochastic nature of the algorithms. Their behavior cannot be 
exactly predicted by a fixed theoretical model. 
 

2.4.2. Benchmark Biases 
 
 Standard test functions are designed in such a way to mimic complex real-

world situations and not to give advantage to an algorithm over another. The 
benchmarks should not be biased. The list with the main biases that can appear in 
benchmark functions, taken from in [64], is given below along with comments on 
how they interact with some algorithms. 

Initialization bias. Population-based algorithms like PSO do a uniform 
initialization. On a spherical test function, this means that some individuals could 
already have found the best solution. 

Axial and directional bias. According to [25], binary GAs exhibit better 
performance on functions with axial biases. 

Decomposability/separability. In [94], separability is defined as:  
Definition 10 A function f(x) is separable iff  

.)x(fminarg,),,x(fminarg=)x,x(fminarg n
nx

1
1x

n1
nx,1x ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
…………

…
 (2.23) 

[25] has demonstrated that GAs perform better on separable functions than 
on non-separable.  
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Rotational invariance. Ackley's function has a long funnel with rotational 

invariance. The population-based algorithms can push their individuals into that 
swirl and find easier the best solution.  

Regularity. Learning-based methods can exploit found regularities.  
Scale bias. At a smaller scale, functions like Rastrigin loose details and 

transform themselves into simpler functions. 
In order to make a test function more difficult, one may try to shift it with 

an offset or to rotate it. There is no perfect benchmark and that is why there are so 
many. However, there are some very frequently used ones in the scientific literature 
and those will be described in the next section and used in tests performed 
throughout this thesis. 
 

2.4.3. Test Functions 
 
  Ten popular test functions were selected from the scientific literature and 

their characteristics are presented as in [95]. They are renamed with LF  for a more 
convenient use. Their graphs are provided in 3D (2 dimensions, 1x  and 2x , plus 

the fitness function )x,x(f 21 . The shifted functions and their graphs are picked 
from CEC 2005's list from [92].   

    1.  Generalized Rosenbrock  

.5,5][X),)x(1)xx(100(=)X(LF n2
i

22
i1i

1n

1=i
1 −∈−+−+

−

∑  (2.24) 

Global optimum: 0=)X(LF1),(1,=X G1G … . 
Comments: The Generalized Rosenbrock function (see Fig. 2.3, generated 

with code from [31]), introduced in [82], is an unimodal non-separable function that 
has a wide flat plateau in which algorithms may fail to find the global optimum that 
resides in a very thin and steep valley inside the aforementioned plateau (see Fig. 
2.3b, generated with code from [93]). 

 
 

Figure 2.3: Generalized Rosenbrock function.   
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Figure 2.4: CEC 2005 shifted functions. 
 
    2.  Shifted Sphere  

,100,100][X,OX=Z,fz=)X(LF n
2bias

2
i

n

1=i
2 −∈−+∑  (2.25) 

where ]o,o[=O n1 …  is the shifted global optimum. 

Global optimum: 450=f=)X(LF,O=X 2biasG2G − . 

Comments: The Shifted Sphere (see Fig. 2.4a) function is an unimodal, 
shifted, separable and scalable function derived from its simple and unshifted 
variant. Usually an algorithm fails this test when it contains theoretical mistakes. It 
is a test for general efficiency. 
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    3.  Shifted Rosenbrock  

 ,f)1)z()zz(100(=)X(LF 3bias
2

i
2

1i
2
i

1n

1=i
3 +−+− +

−

∑  

 ,100,100][X1,OX=Z n−∈+−  (2.26) 
where ]o,o[=O n1 …  is the shifted global optimum. 

Global optimum: 390=f=)X(LF,O=X 3biasG3G . 

Comments: The Shifted Rosenbrock (see Fig. 2.4b) function is a multi-
modal, shifted, non-separable and scalable function derived from Generalized 
Rosenbrock function. It is harder to solve that its simpler counterpart and retains 
the capability to provide information on how an algorithm can tackle plateau 
functions. 

 
    4.  Shifted Rastrigin  

,5,5][X,OX=Z,f10))zπ(2cos10z(=)X(LF n
4biasi

2
i

n

1=i
4 −∈−++−∑ (2.27) 

where ]o,o[=O n1 …  is the shifted global optimum. 

Global optimum: 330=f=)X(LF,O=X 4biasG4G − . 

Comments: The Shifted Rastrigin(see Fig. 2.4c) function is a multi-modal, 
shifted, separable and scalable function derived from the Rastrigin function. It can 
check for behavior of convergence in the presence of a huge number of local minima 
and large basin of attraction. 

 
    5.  Shifted Schwefel 1.2  

,100,100][X,OX=Z,fz=)X(LF n
5bias

2

j

i

1=j

n

1=i
5 −∈−+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∑∑  (2.28) 

where ]o,o[=O n1 …  is the shifted global optimum. 

Global optimum: 450=f=)X(LF,O=X 5biasG4G − . 

Comments: The Shifted Schwefel 1.2 problem (see Fig. 2.4d) is an 
unimodal, shifted, non-separable and scalable function derived from the simpler 
Schwefel 1.2 function. As stated in [22], it can provide a hint on the algorithm's 
robustness.  
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Figure 2.5: Other multimodal functions. 
    

    6.  Himmelblau  

6,6].[x,x,7)xx(11)xx(=)x,x(LF 21
22

21
2

2
2
1216 −∈−++−+  (2.29) 

Global optima: One global maximum at 
181.616=0.923038)0.270844,(LF6 −−  and four identical global minima: 

3.283196)3.779310,(.131312),2.805118,3({(3,2),)x,x( min2min1 −−−∈ , 
1.848126)}(3.584428,, −  where the function's value is 0. 

Comments: A low-dimensional multi-modal plateau function (see Fig. 2.5a, 
generated with code from [32]). 

 
    7.  Griewank  

.600,600][X1,
i

xcos
4000
x

=)X(LF ni
s

1=i

2
i

n

1=i
7 −∈+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− ∏∑  (2.30) 

Global optimum: 0=)X(LF0),(0,=X G7G … . 
Comments: Griewank (see Fig. 2.5b, generated with code from [79]) is a 

multi-modal, separable and scalable function. 
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    8.  Ackley  

+
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⎛
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1expx

n
10.2exp20=)X(LF i

n

1=i

2
i

n

1=i
8  

 .20,20][X,e20 n−∈++  (2.31) 
Global optimum: 0=)X(LF0),(0,=X G8G … . 
Comments: Ackley (see Fig. 2.5c, generated with code from [79]) is a 

multimodal, separable and scalable function that is like a long funnel towards the 
global optimum. 

 
    9.  Bohachevsky 1  

 0.7),)xπ(4cos0.4)xπ(3cos0.3xx(=)X(LF 1ii
2

1i
2
i

1n

1=i
9 +−−+ ++

−

∑  

 .100,100][X n−∈  (2.32) 
 Global optimum: 0=)X(LF0),(0,=X G9G … . 
Comments: Bohachevsky's first test function (see Fig. 2.5d, generated with 

code from [79]) is an unimodal, separable and scalable function. 
 
    10.  Kursawe  

 ))xx0.2(exp10(=LF 2
1i

2
i

1n

1=i
a10 +

−
+−−∑  (2.33) 

 ))x(sin5|x(|=LF 3
i

0.8
i

1n

1=i
b10 +∑

−
 (2.34) 

 Global optimum: 0=)X(LF10,=)X(LF0),(0,=X Gb10Ga10G −… . 
Comments: Kursawe's functions (Fig. 2.6a and 2.6b, both generated with code from 
[79]) from [55] are useful in multi-objective optimization. Algorithms should 
optimize both of them simultaneously. 

 
 

Figure 2.6: Kursawe functions. 
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2.4.4. Tools 
 
 In the following subsection, the tools that were used for conducting the 

experiments within the research associated with this work will be enumerated along 
with a short presentation line for each one of them: 

 
Hardware Tools 
1st PC system: CPU - Intel Pentium i7 2.66 GHz; RAM - 6 GB; running 

Microsoft Windows 7 Enterprise 64-bit.  
2nd PC system: CPU - Intel Pentium T2250 1.73 GHz; RAM - 2 GB; 

running Microsoft Windows 7 Professional 32-bit.  
 

Software Tools 
Java EvA2: An extensive evolutionary framework to implement, compare 

and test optimization algorithms. The software and its documentation is available at 
http://www.ra.cs.uni-tuebingen.de/software/EvA2.  

IntelliJ IDEA: An IDE to modify the sources of Java EvA2 in order to create 
new algorithms, available at http://www.jetbrains.com/idea.  

Microsoft SQL Server: A relational database server utilized to store 
experimental data. http://www.microsoft.com/sqlserver/en/us/default.aspx.  

SPSS: A computer program used for statistical data analysis and for 
generating plots. Available at http://www-01.ibm.com/software/analytics/spss/.  

gnuplot: A plotting utility, available at http://www.gnuplot.info.  
Matlab:  A fourth generation language for numerical computing and plotting 

available at http://www.mathworks.com/products/matlab.  
Matplotlib: "... a python 2D plotting library which produces publication 

quality figures in a variety of hardcopy formats...". Available for download at 
http://matplotlib.sourceforge.net.  

 
From the above listed set of software tools, Java EvA2 needs special 

attention. It is a modular evolutionary framework that contains most of the 
nowadays-evolutionary algorithms. This is very important because the researcher 
has the possibility to implement her/his own algorithms inside the framework and 
do a direct comparison in terms of performance with the other provided methods. 
More, this framework has statistics and plotting abilities and also offers support to 
solve real-world optimization problems. At the moment this PhD thesis was written, 
after a thorough evaluation, Java EvA2 was considered by the author as the best 
available evolutionary framework and the most suitable to perform experiments 
with. For details on how to use it, the reader is referred to the Java EvA2's website 
and to a related article regarding this evolutionary framework, [54]. 

 
 
2.5. Concluding Remarks 
 
 This chapter summarized the most important aspects of optimization, real-

valued genetic algorithms and particle swarm optimization, in order to prepare the 
reader for the introduction of the disagreements concept applied in optimization 
problems throughout the next chapters. 
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If people want superior products, efficient use of resources or maximized 

profits then they should think starting to optimize their processes. It is in the human 
nature to thrive for better and better and achieve continuous progress. 

PSO and GAs are two popular optimization methods that find the best 
solutions in hard problems without gradient information and this makes them 
suitable to deal with most optimization problems in design, engineering and 
economics. However, like all optimization algorithms, it is not guaranteed that they 
will find the global optimum in all situations. An algorithm should always keep a 
balance between the exploration of new regions and the exploitation of the current 
best solution and the space in its vicinity. For PSO and GAs the exploration is 
achieved by increasing the population's diversity, thus slowing the convergence, but 
increasing the probability to find better solutions. On the other hand, the 
exploitation would increase the convergence rate, but could lead to premature 
convergence and the algorithm could miss the global optima. Both algorithms have 
internal basic mechanisms to boost the convergence and to assure a high diversity. 
To increase the diversity across population, GAs use mutation while PSO uses the 
lbest model with neighborhood topologies. To speed up the convergence, GAs use 
the crossover operator while PSO adopted the inertia weight or the constriction. 

Although most evolutionary algorithms, including swarm intelligence, 
incorporate both exploration and exploitation components there is still a lot of room 
for improvement and this is the main purpose of this PhD thesis. It introduces a new 
metaphor that helps algorithms find better solutions in a shorter period and proves 
it on the most important optimization test functions. The new idea is presented and 
tested in the next chapters. 
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3. DISAGREEMENTS 
  
 
3.1. Rationale 
  
Disagreements represent a normal social phenomenon between members of 

a population. A disagreement regarding an issue can appear in any social group at 
any given time. The history of our civilization and our culture as human beings 
recorded many cases of individuals or groups of individuals that challenged the 
norm. In an economics-related study on the dynamics of the disagreements and the 
opinion fluctuations in a social network, in [2], Acemoglu et al. state that: 

"Disagreement among individuals in a society, even on central questions 
that have been debated for centuries, is the norm; agreement is the rare exception. 
How can disagreement of this sort persist for so long? Notably, such disagreement is 
not a consequence of lack of communication or some other factors leading to fixed 
opinions. Disagreement remains even as individuals communicate and sometimes 
change their opinions." 

Blackwell and Dubbins theorem in [17] about "merging of opinions" or 
Savage's theorem in [85, p.48] are some classic theories proving that if two 
individuals observed the same sequence of events then they will agree on a single 
world variant regarding an issue, no matter what were their prior knowledge on the 
topic. Agreement is settled through learning. Recent work done by [3, 4, 8, 9, 37, 
41, 90, 103] emphasizes that over a strongly connected network a consensus is 
typically reached. The same phenomenon can be observed in PSO variants: for the 
gbest model, which has a fully connected topology, the swarm typically converges 
faster than in the lbest case. 

There are also other models, such as Axelrod's in [6], in which individuals 
with similar opinions tend to communicate more often (also like in [30, 53]) and 
form clusters ([18, 24, 63]), but those models cannot explain the continuous 
opinion fluctuations in our society, and more than that, they are not useful in swarm 
intelligence algorithms because they do not promote diversity. 

Nonetheless, despite the above-mentioned theories, disagreements are 
ubiquitously found even in strongly connected networks where the observed 
sequence of data is the same. This issue is discussed in [1] and the conclusion is 
that: 

"In none of these cases can the disagreements be traced to individuals 
having access to different histories of observations. It is rather their interpretations 
that differ." 

It is widely accepted that scientists, engineers or economists routinely 
disagree on the same central issues in their field based on their different 
interpretations of the same facts. Their disagreements on the same set of data can 
arise from different importance they give to various variables in the considered 
problem. Different generations of human beings usually disagree at certain times, 
like teenagers vs. their parents. The Internet discussion forums are abundant in 
disagreements on a very large number of topics. The examples can continue in 
many other areas. 
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Disagreements exist everywhere there is a society. They are a change 

promoter and they bring evolution and variety into the social systems. They can be 
extreme and visible when promoted by people who directly and forcefully challenge 
the status-quo or they can go unnoticed when there is mild discontent. The rationale 
for the research behind this PhD thesis is that swarm intelligence algorithms - and 
by extension all the population-based optimization algorithms - can benefit from the 
disagreements the same way our real-world society benefits from them. This PhD 
thesis provides a comprehensive extension to the author's previously published 
articles that introduced disagreements in the theory of global optimization. 

 
 
3.2. Foundations 
  
The disagreements concept and its foundations are introduced in this 

chapter the same way as in the author's previously published works in [60, 61, 58]. 
In order to experiment with different disagreement types, this chapter provides the 
fundamental framework for disagreements in the optimization theory using the basic 
definitions provided below and three point of views: a low level one - how an 
individual's behaviour is changed and how this is seen from this low level, a medium 
level point of view - how disagreements are applied on individuals from an iteration 
and how the update principle is altered, and a high level point of view - from the 
perspective of creating disagreements-enabled algorithms. 
 

3.2.1. From the Individual's Point of View 
 
 The below definition describes the algorithm's update step from an 

individual and local point of view.  
Definition 11. Given two succesive iterations, t  and 1t + , from an 

evolutionary algorithm E  and a population of s  individuals, 
{ })t(x,),t(x),t(x=)t(P s21 … , there is a corresponding vector of update behaviors 

{ ),t,x(β),t,x(β=)t( 2211B  })t,x(β, ss…  that makes the transition from )t(P  to 

{ 1),t(x=1)t(P 1 ++  }1)t(x1),t(x s2 ++ … .  
 The update behaviors stem from applying the general updating principle of 

the algorithm. The update behaviors are the final effects upon the individuals from 
the population. 

Definition 12. A disagreement is defined as a function D  that operates on 
an individual's ix  update behavior iβ  at iteration t . 

Definition 13. Disagreements are defined as the family of functions:  

}.z)z(D.Rz|RR:D{=F nnn
D ≠∈∀→  (3.1) 

The identity function (no disagreement should happen) is written D∅ . 
For a simple visualization of the concept, Fig. 3.1 depicts a situation in which 

there are several "rebels" (pictured in black) among a population. 
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3.2.2. From the Iteration's Point of View 
 
 At the iteration level there is the updating principle that selects individuals 

and apply different update behavior to them. In disagreements-enabled algorithms 
there is an apply rule called a "disagreement selector" which alters the general 
updating principle and decides at each iteration to which individuals a specific type 
of disagreement is enforced.  

Definition 14. Let ρ  be the disagreement selector that decides which 
disagreement is invoked upon an individual update behavior iβ  at iteration t  from 

a given set of disagreements )F( Dv P∈Δ :  

.1,j,1,i,D,D=)t,β,(ρ vvjjiv ΔΔΔ ∈∈∈ B  (3.2) 

 The original behaviours change when disagreements are injected, therefore 
)t(B  becomes { })t,x(β,),t,x(β),t,x(β=)t( ssD22D11DD …B . The general updating 

principle is not totally replaced because when ρ  yields D∅  the original behavior 
stays in place and no disagreement is invoked. The golden rule is that 
disagreements should not happen more often than regular updates would, averaged 
on all iterations of an algorithm run, and they must be linked to the algorithm’s 
context (e.g. social, cultural, etc.) and particularities. 

The process of applying a disagreement to an individual of the population P 
at some iteration t  can be seen overly simplified if described by Pseudocode 4: 

 
Pseudocode 4. The insertion procedure of disagreements in an EA. 

   
For each update behavior iβ  from B 

Using ρ , apply the appropriate Di disagreement to iβ . 
End  
   
 

 
Figure 3.1: Disagreements among individuals of a population. 
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3.2.3. From the Algorithm's Point of View 
 
 The disagreement injector that enhances any evolutionary algorithm iE  

with disagreements is defined as follows:  
Definition 15.  Let E  be an EA and ρ  a disagreements apply rule. An 

evolutionary algorithm with disagreements (EAD), DE , is obtained by 
modifying E 's updating principle with the rule ρ , as described by the disagreement 
injector function Ψ :  

.E=)ρ,E( DΨ  (3.3) 
Using the above defined disagreement injector in eq. (3.3) and depending 

on the given algorithm and the problem to be solved, various disagreement 
schemes can be designed in order to benefit from the advantages of this concept: 
both enhanced exploitation and exploration and increased convergence rates 
without negatively impacting the robustness of the original algorithms, as it will be 
demonstrated in the following chapters. The apply rule - ρ , is the de facto 
disagreement operator for the evolutionary algorithm E .  

 
 
3.3. Methodology 
  
3.3.1. DACE Fundamentals 
 
 Unfortunately, due to their stochastic nature, the behavior and the 

performance of the evolutionary methods cannot be predicted with great accuracy 
using an established mathematical model; they can be analyzed empirically using 
computational statistics ([39]), sometimes employing techniques such as regression 
analysis ([20]) and/or experimental design ([67, 84]). 

In order to do a proper assessment on the impact that disagreements have 
on evolutionary algorithms, the experiments behind this thesis were crafted using a 
methodology that is inspired from Bartz-Beielstein et al. in [10], who provided an 
excellent framework in experimental research that can be applied universally in 
evolutionary computation because it successfully blends design and analysis of 
computer experiments (DACE) with design of experiments (DOE) and with 
classification and regression trees (CART). 

In Bartz's usage of DACE, an algorithm design, represented by a vector da , 
contains specific characteristics for an algorithm. An optimal design is denoted as 

*
da . A problem design, dp , is a vector describing the particularities of the given 

problem. A run is therefore a mapping between an algorithm design and a problem 
design, )p,a(=Y dd . The aim of design and analysis of computer experiments 

(DACE) is to find the optimum *
da  through repeated trials, constrained by a 

predefined number of function evaluations (preferably low). 
DACE is useful at interpolating observation points from a massive set of 

computer experiments. For a stochastic process with an assumed zero mean Z , the 
dynamic response )x(Y  for an input vector x  as a realization of the regression 
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model, F , was provided by [83] as a generalization of the classic regression model 
εxβ=)x(Y + :  

).x(Z)x,β(F=)x(Y +  (3.4) 

 The covariance for the stochastic process )(xZ  is given by the following 
formula:  

),x,ω,θ(Rρ=)x,ω(V 2  (3.5) 
where R , the correlation function, is chosen taking into consideration the actual 

process. 2ρ  is the process covariance. 
Another useful technique within DACE is the sequential design in which an 

initial design (0)
da  is initially generated. Based on the reported data associated with 

its run on the given problem, it is replaced by another related design, (1)
da . This 

operation continues until a satisfactory design is obtained. New designs are 
generated based either on the improvement expectancy, thus betting on promising 
design points with a good forecast, or on design with a high degree of uncertainty 
([84]). Improvement is defined as in [74, p. 65]:  

Definition 16. Let, k
miny , denote the smallest detected function value after 

k  runs of a heuristic global optimization algorithm; dax ∈ , be a component of the 
design; and )x(y  be the response of the algorithm, which is a realization of )x(Y  
defined in eq. (3.4). Then, the improvement of the algorithm is defined as:  

.otherwise0
0>)x(yyif)x(yy

=λ

k
min

k
min

⎪
⎪
⎩

⎪⎪
⎨

⎧ −−
 (3.6) 

In order to build trustworthy statistics, experiments with stochastic 
algorithms must be run for a sufficiently large number of times and for a reasonable 
amount of time, the initialization must be random with different seeds, the test data 
should be comprehensive, large and diverse enough. 

 
3.3.2. Race Testing 
  
The design of algorithms with disagreements takes into account a large part 

of DACE methodology, but simplifies the procedures and adapts them to 
evolutionary and swarm-based methods. Most experiments are conducted as a race 
between a genetic or PSO algorithm with a classical configuration against its 
disagreements-enabled counterpart. With this derived methodology, called race 
testing, the main focus is on the discovery and analysis of new disagreement 
operators, in order to improve the best classical configurations so far; improving 
promising but not best design points in classical algorithms is a secondary goal. The 
experiments with disagreements in evolutionary computation respected the 
guidelines of building relevant statistics: random initialization with different seeds, 
each configuration is run many times, various and well-known benchmarks are 
used. 

Experimentation that leads to the results presented in this PhD thesis 
consisted of three main phases:   
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Discovery. In order to study the effects of disagreements, in the first stage 

there is no need for sequential design; the scientific literature provides classical 
configurations of algorithms and problems (benchmarks), so first it is needed to test 
whether the disagreements-enabled methods work at all on a small set of 
benchmarks, with classical settings. Usually a classical algorithm configuration and 
its disagreements counterpart is tested on 2-3 benchmarks. The exact steps are 
described in Table 3.1. The termination criterion is based on a large number of 
function evaluations and on the ε -convergence, which one is accomplished first. 
Convergence graphs, if the algorithms " ε -converged", or best individual evolution 
graphs, if not, are analyzed. It mainly implies the theoretical creation of the new 
disagreements operator. This phase is at the origin of the whole elaboration of the 
new disagreements algorithms. 

 
Table 3.1: Phase I. Discovery methodology. 

 
Step  Activity   
Step 1  A new disagreements operator idea.   
Step 2  Mathematical description.   
Step 3  Disagreements injection into an EA using formula (37).   
Step 4  Race specifications:   
  - 2-3 benchmark problems,  
  - the original algorithm (important factors),  
  - the disagreements-enabled algorithm,  
  - the termination method,  
  - the experimental design,  
  - a performance measure.   
Step 5  Experimentation.   
Step 6  Evaluation and visualization.   
Step 7  Statistical data analysis.   
Step 8  If:   
  - better results, then go to Phase II.  
  - promising results, then tweak parameters and go to Step 5.  
  - bad results, then quit.   

  
    
Confirmation. The second stage consists in experimentation on a larger 

scale by testing more hypotheses. As described by Table 3.2, a set of tests called 
algorithm races usually take place on all the 10 benchmark functions described in 
subsection 2.4.3. 

Then, sequential design can be used to tune different parameters from the 
disagreements operators, while still using fixed classical configurations. The purpose 
of this phase is to study how the injected disagreements act upon algorithms across 
a large palette of benchmarks and conditions (see Table 3.3). 

A later sub-phase using a holistic approach can consist in tuning both the 
disagreements' operator parameters and the underlying algorithm's parameters 
dynamically. However, because this work is only a proof of concept for 
disagreements, the experiments behind it did not follow this path. 
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Table 3.2: Phase II (a). Confirmation on classical configurations. 
 

  Step   Activity   
 Step 1   Hypothesis.   
 Step 2   Race specifications:   
  - 10 benchmark problems, 
  - the original algorithm (important factors),  
  - the disagreements-enabled algorithm,  
  - the termination method,  
  - the experimental design,  
  - a performance measure.   
 Step 3   Experimentation.   
 Step 4   Evaluation and visualization.   
 Step 5   Statistical data analysis.   
 Step 6   Objective interpretation of the results.   

  
 

Table 3.3: Phase II (b). Sequential design for improving the new disagreements operators. 
 

  Step   Activity   
  Step 1   Hypothesis.   
 Step 2   Race specifications:   
  - one benchmark problem. 
  - the original algorithm (important factors),  
  - the disagreements-enabled algorithm,  
  - the termination method,  
  - the experimental design,  
  - a performance measure.   
 Step 3   Experimentation.   
 Step 4   Evaluation and visualization.   
 Step 5   Statistical data analysis.   
 Step 6   Check termination criterion, if satisfied go to Step 8.   
 Step 7   Tweak parameters and go to Step 3.   
 Step 8   Acceptance/Rejection of hypothesis.   
 Step 9   Objective interpretation of the results from Step 8.   

   
Robustness. The last phase of testing is checking for conditions that 

decrease performance by properly assessing the robustness of the newly obtained 
algorithms that are enhanced by disagreements. Of course, valid conclusions for 
Phase III can be drawn from Phase II already and they represent starting points 
when studying situations in which algorithms begin to encounter difficulties.  

The termination criterion that is used to determine when an algorithm stops 
in any experimental run is based on a predefined number of function evaluations. 
This approach brings the possibility to draw and interpret the convergence graphs or 
the best individual graphs easily. 
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3.3.3. Common Experimental Setup 
  
All conducted experiments in this thesis used the methodology presented in 

the above Subsection 3.3.2. For brevity, they will not be described systematically as 
in Tables 3.1, 3.2 and 3.3 throughout this work. Also for brevity, no robustness 
studies are provided. In this thesis, only the successful configurations after 
experimentally assessing their robustness are included. 

Tests took place for all 10 provided benchmark problems in 2.4.3 in 30 and 
50 dimensions. Each experiment's output was measured and averaged over 100 
runs. The termination condition for any run was set to 30000 function evaluations. 

For PSO, two configurations were used in studies:   
SPSO: Maurice Clerc's Standard PSO, a constriction-based PSO with 

0.729=χ  and 2.05=c=c 21  ([23]), implemented in Java EvA2.  
PSO-VG: an à la Pedersen simplified PSO, a social-only PSO with 0.729=w  

and 1.49445=c2 . 
In both two configurations for PSO, the default is the grid topology with a 

neighborhood range of 2. Using the conclusions regarding the optimum number of 
particles in PSO-VG from the author's article [62], experiments took place in both 
cases for a swarm size of 25 and 50. 

For testing GAs, a classical GA was considered in two configurations: with 
and without elitism. Tournament selection was employed in all cases, with a low 
number of 50 individuals in the pool. All GAs used a BLX-α  crossover with 0.5=α  
and a probability of 0.7 and a Mühlenbein mutation with a probability rate of 0.1. 

In all cases, the disagreements-enabled algorithms preserved the original 
algorithm's parameters and only their own extra parameters are tweaked or 
checked for robustness. 

For any conducted experiment the mean best fitness and its standard 
deviation is calculated across the above mentioned 100 runs. Other important 
output information is provided by the reported convergence ratio - the ratio 
between the number of successful runs that hit the target with an 0.01=ε  accuracy 
as in eq. (2.3) and the total number of runs-, the median best fitness value and 
information related on how many disagreements occurred per iteration. 

Averaged graphs with the evolution of the best fitness are drawn to study 
the convergence behavior across all runs. Worst fitness individuals history graphs 
are also generated. The evolution of the average distance between the individuals or 
particles is caught in a separate graph. Values in graphs for best and worst fitness 
are displayed on a decimal logarithmic scale (on y-axis), while the graphs for 
average population distance use a linear scale for values (on y-axis). These 
variables are plotted across all fitness function calls (or evaluations), that are 
represented on a linear x-axis. 

In order to prove the concept of disagreements in every theoretical 
construction that is provided and for simplicity and brevity, only relevant testing 
situations are presented and analyzed in this thesis. The modified Java EvA2 
software that contains the author's additions, namely the σ6 -PSOD, the RS-PSOD 
and the GAD algorithms, is available for download at https://github.com/andrei-
lihu/Eva2-AL. 
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3.3.4. Concluding Remarks 
 
This chapter provided both a theoretical foundation for disagreements in the 

context of evolutionary and swarm intelligence algorithms and a methodology to 
develop and test new disagreements operators for classical algorithms. 

The rationale for disagreements is their ubiquity among populations 
regardless connectivity and information transmission speed. Therefore, needless to 
say, any population-based algorithm can implement this new metaphor. 

A general mathematical model of disagreements and the way they can be 
injected in EA algorithms was described. 

The next issue in focus was how to test the performance of the new concept. 
After a short introduction into DACE, the race testing methodology was depicted in 
detail and was proposed as the standard way of benchmarking disagreements 
operators. 
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4. PARTICLE SWARM OPTIMIZATION WITH 
DISAGREEMENTS 

  
 
4.1. Disagreements as A New Social Behavior 
  
4.1.1. Concepts 
 
In PSO, a particle follows a path that is influenced by its personal experience 

and its social experience. Even in simplifications of the original algorithm the social 
component is always preserved, therefore PSO is a social algorithm in the first 
place. The problem with PSO is that in some circumstances its search mechanism 
can be trapped into local minima. Other times, the algorithm either converges too 
fast or fails to converge at all. The particles' oscillatory movement, while at the core 
of PSO's performance over random-search, it can miss some important areas in the 
search space. Moreover, in the social model in PSO, even if intended to be simple, a 
particle is always guided by the social norm. Aside from the best particle in the 
group, most of the time particles are "pure followers" and there is no challenging of 
the status-quo like in all real-life societies and groups. 

By modeling disagreements in PSO, the particles get their own personality. 
Not all will follow an oscillatory path, therefore there is an increased possibility to 
explore areas that would have been harder to target before. Each particle can have 
a various degree of disagreement: it can partially agree, or extremely disagree with 
where it should have travelled next in the search space. Under this differentiation, 
the partial disagreements are used to enhance the local exploitation, while the 
extreme disagreements are used for increased exploration. 

The disagreements in PSO, as described by the author in [58], are affecting 
only the social component of the algorithm. Mathematically, a disagreements 
injector function for PSO, similar to the one from the formula (3.3), must be 
developed as follows: 

If the first term from the updating principle of PSO from eq. (2.15) is 
replaced with a generic velocity component, denoted with )i,t(V , then, the 

cognitive component with )y,x,t(C ii  and the social component with )ŷ,x,t(S i , 
and finally making the substitution in eq. (2.16), where the position component is 
replaced with a generic one, )t(X , the following generalized updating equation for a 
particle i  at an iteration 1t +  is obtained:  

 ,ζ)ŷ,x,t(S)y,x,t(C)i,t(V)x,t(X=)x1,t(X iiiiii +++++  

 ,s1,i,ŷ)ŷ,x,t(S,y)y,x,t(C iiiiii ∈∀→→  (4.1) 

where iii y)y,x,t(C →  is read as ''the cognitive component tends to iy '' and 

ŷ)ŷ,x,t(S i →  - ''the social component tends to ŷ ''. ζ , which is usually equal to 
0 , can accommodate any other PSO that has more components. The change to 
the social component must be made with the intent of not following the 
leader (best particle) of the group. 

BUPT



46   Particle Swarm Optimization with Disagreements - 4 
 
 
In PSO, it can be easily noticed that the update behavior for any particle i , 

iβ , is represented by the right term of the above eq. (4.1):  

.s1,i,ζ)ŷ,x,t(S)y,x,t(C)i,t(V)x,t(X=)t,x(β iiiiiii ∈∀++++  (4.2) 
Definition 17. Let P  be a PSO that contains the social component )t(S  in 

the updating principle and ρ  a disagreements apply rule. In order to obtain 
particle swarm optimization with disagreements (PSOD), DP , a 
"disagreement injector" is defined as follows:  

.P=)ρ,P( DPSOΨ  (4.3) 

After the injection function PSOΨ  is applied, the updating principle from eq. 

(4.1) in the new DP  is becoming:  

 )t,β,(ρ=)x1,t(X ivi Δ+  

 )t,ζ)ŷ,x,t(S)y,x,t(C)i,t(V)x,t(X,(ρ= iiiiiv ++++Δ  

 ,ζ))ŷ,x,t(S(D)y,x,t(C)i,t(V)x,t(X= iiiiii ++++  

 .s1,i,D),ŷ(D)ŷ,x,t(S,y)y,x,t(C viiiiiiii ∈∀∈→→ Δ  (4.4) 
 
Disagreements are a special operator in PSO and the whole concept is 

designed to be applied only on the social component, which can have any particular 
implementation and which is detoured without interfering with the rest of 
components. For chosen individuals in an iteration, their social component will not 
point to neighborhood's best, iŷ , but towards a new point, )ŷ(D ii  around the 
neighborhood's best. 

One of the most important points in the design philosophy for 
disagreements is not to alter too much the internals of the original algorithm and to 
keep things simple. 
 

4.1.2. Implementations 
 
There can be imagined many ways to implement a disagreement for PSO: 

particles can disagree as part of a learning process or a result of a complex social 
interaction, but unfortunately, complexity can only lead to a high computational 
cost. 

In the research report [57], based on conclusions provided in [77] and in 
[102], this thesis' author advocated the increase of the local swarm the entropy in 
order to prevent swarm explosion and increase diversity. The most efficient way 
entropy can be increased is to use randomness injection. It seems like a cheap 
option to use randomness injection to simulate a disagreement because other 
approaches like automated learning or using extra memory and calculations can be 
more expensive. By doing so, this implementation variant for PSODs gain the 
advantages of memetic particle swarm optimizers - combinations of a PSO algorithm 
with a local search method, based on the concept of memes ([27]), as in [77] or 
[78] -, while retaining the low computational cost of the original PSO. There are a 
few added parameters and most of the time they do not need per-problem tuning. 

By using pure randomness injection, the disagreements implementation 
provided in this thesis is following the "keep it simple" principle. 
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4.2. 6σ-PSOD Operator 
 
4.2.1. Description 
 
In order to get a glimpse on how disagreements act upon PSO, there was 

designed and tested a simple operator that imitates the real world proportion of 
disagreements and uses randomness injection across two neighborhood areas in 
search space to emulate it - the 6σ-PSOD operator. Its full presentation is taken 
from this thesis author's work, published in [58]. 

In its discovery phase, the 6σ-PSOD operator was shaped based on the 
assumption that real-world disagreements have a Gaussian distribution across a 
given population and that disagreements can be partial and extreme. Partial 
disagreements affect more members of a group than extreme disagreements do. 

To make disagreements available in any PSO, an injector function is needed. 
Based on (4.3), the 6σ injector is defined as follows:  

Definition 18. Let P  be a particle swarm optimization algorithm that has a 
social component. The function that injects in P  a set of disagreements - 6σΔ , with 

an apply rule - 6σρ , and transforms it into a particle swarm optimization with 

disagreements following the 6σ  rule, namely a 6σ -PSOD algorithm - D6σP , is 
defined as:  

.P=)ρ,P(=)P( D6σ6σPSOPSODσ6 ΨΨ −  (4.5) 
 
In this type of PSOD, the updating principle from eq. (4.4) becomes:  
 )t,β,(ρ=)x1,t(X i6σ6σi Δ+  

 )t,ζ)ŷ,x,t(S)y,x,t(C)i,t(V)x,t(X,(ρ= iiiii6σ6σ ++++Δ  

 ,ζ))ŷ,x,t(S(D)y,x,t(C)i,t(V)x,t(X= iii6σiii ++++  

 .s1,i,D),ŷ(D)ŷ,x,t(S,y)y,x,t(C 6σi6σii6σiiiii ∈∀∈→→ Δ  (4.6) 

For PSODσ6 −Ψ  the set of disagreements (the vΔ  from the relation (43) that 

contains the disagreements, i6σD ) is composed of:  

{ }.D,D,= epD6σ ∅Δ  (4.7) 

The first member in the set from (47) - D∅ , is the "no-op disagreement", 
meaning that no disagreement takes place. Being an identity function, when applied 
to the social component it yields S=)S(D∅ . This non-disagreement is applied to 
most of the particles in iteration because the majority of the particles follow the 
mainstream, they do not disagree. 

The first real disagreement employed here is pD . It is a partial 

disagreement because it tempers and skews the social component around its very 
vicinity. This type of disagreement takes place quite often in a σ6 -PSOD algorithm 
and represents that part of the population that do not exactly follow the main trend 
but has related beliefs to the mainstream. In this PSOD, it is used to enhance the 
exploitation in the neighborhood of the current solutions. It is a function that 
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multiplies member-wise (a Hadamard product) the social component S  by a vector 
r , which has its components uniformly distributed in the interval 1]1,[ +− .  

.|r|1,p1),1,(r,Sr=)S(D ppp ∈+−⊗ U ~  (4.8) 

The second disagreement is the extreme disagreement eD , called so 
because it implies an extreme amplification of the social component S . It 
represents the individuals that hold extreme opinions in society. In this PSOD, it is 
utilized to enhance the exploration beyond the current capabilities of the old PSOs. 
Mathematically, it is a Hadamard product between the social component and a 
vector r  containing random uniformly distributed values in the intervals 1]2,[ −−  
and 2]1,[ ++ :  

 ),r(sgnr=r,Sr=)S(D ppeee +⊗  

 rp ~ U(-1,1) .|r|1,p ∈  (4.9) 
 
A rudimentary visualization of the two types of disagreements is given in 

Fig. 4.1. In concentric circles, two areas are shown: the inner area is where the 
potential result of pD  can end up for partial disagreements, while for extreme 

disagreements the outer area between circles is where can be the potential result of 
eD . The end arrow for social component S  will finally point into one of these two 

areas if disagreements are invoked according to the formula 4.13.  

 
 

Figure 4.1: Distribution of disagreement types in concentric circles.  
 

Before the run a Gaussian distribution )σ,μ(=θ 2
6σ6σN  is considered as a 

reference. Under the 6σ  rule, at each iteration t , for each particle i , a 

)σ,μ()i,t(θ 2
16σ1 N~  is generated such that 16σ σσ ≥ . 1θ  is a parameter that 
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depends on the initially set Gaussian distribution and can be used in experiments to 
control how much disagreements are injected. In Fig. 4.2 it is shown how 1θ  acts as 
a filter.  

 
Figure 4.2: Filtering disagreements. 

   
For θ , the following Gaussian regions are defined:   
A no disagreements region: accounts for approx. %68.2  of the bell 

curve (first two σ s) and it is defined as:  
).σμ()σμ(=R 6σ6σ6σ6σ1,2σ +∪−  (4.10) 

A partial disagreements region: accounts for approx. %27.2  of the bell 
curve (next two σ s) and it is defined as:  

).σ2μ,σμ[]σμ,σ2μ(=R 6σ6σ6σ6σ6σ6σ6σ6σ3,4σ ++∪−−  (4.11) 

An extreme disagreements region: accounts for approx. %4.6  of the 
bell curve (next two σ s and the rest of what remains under the graphic of the 
Gaussian function) and it is defined as:  

).),σ2μ[]σ2μ,(=R 6σ6σ6σ6σ5,6σ +∞+∪−−∞  (4.12) 
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Figure 4.3: 6σ regions. 
   
Fig. 4.3 illustrates the 6-σ  regions for θ . Based on the above provided 

equations, the apply rule (the disagreements selector function) is defined as follows:  

.
R)i,t(θif),S(D
R)i,t(θif),S(D
R)i,t(θif),S(

=)t,β,(ρ
5,6σ1e

3,4σ1p

1,2σ1D

i6σ6σ

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
∈
∈∅

Δ  (4.13) 

The 6σ -PSOD operator - 6σρ , makes sure that there is a majority of 
particles not affected by disagreements, that there is a minority of individuals that 
partially agrees and a small minority that totally disagrees. 

 
 
4.2.2. Experimental Results 
  
Setup 
In order to determine the usefulness and the performance of the 6σ -PSOD 

operator, race-testing methodology was used as explained in Subsection 3.3. In 
the initial discovery phase the new concept applied to SPSO yielded mixed results 
on two randomly picked test configurations, but in subsequent experiments it was 
confirmed that for most benchmarks a filtering value of 0.7=σ1  provides superior 
performance. 

A short performance overview for how disagreements act upon standard 
PSO (SPSO) and the à la Pedersen simplified PSO (PSO-VG) for all 10 benchmarks 
from Subsection 4.3 is given below. The two corresponding disagreements-enabled 
algorithms are 6σSPSOD  and 6σVGDPSO − . Considered cases cover swarms with 
25 and 50 particles and benchmarks problems in a high dimensional environment - 
30 and 50 dimensions, a configuration which surrogates most possible nowadays 
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real-world problems. The mean best fitness, its standard deviation, the median and 
how many partial disagreements per iteration (p.d.i.) and extreme disagreements 
per iteration (e.d.i.) were involved are provided as output values from experiments 
that averaged the performance from 100 runs. 

The benchmarks are classified under several categories: plateau functions, 
shifted multi-modal functions, low dimensional problems, regular multi-modal 
functions and other types of problems. 
 

A Plateau Function 
Generalized Rosenbrock ( 1LF ) is a tricky plateau function, unimodal and 

non-separable that represents well the category of plateau functions. Finding better 
solutions on 1LF  prophesies a good approach. Results are provided in Table 4.1. 

   
Table 4.1: 6σ -PSOD results for 1LF . 

 
   
For 30 dimensions, it can be easily noticed that for 6σSPSOD  vs. SPSO with 

25 particles in swarm, the mean best fitness across runs is 5.13 times better, while 
for the social only variants 6σVGDPSO −  is 3.36 times better. This configuration 
with 25 particles in 30 dimensions is of higher interest than the one with 50 
particles in the same dimensions, where the σ6  approach scored better also (7.74 
and 3.46 times better, respectively) for the obvious reason that it implies a smaller 
number of particles and a lower computational cost. A table with the Euclidean 
distance between means for the case with 25 particles and 30 dimensions in 1LF  is 
provided (see Table 4.2). Fig. 4.4 shows the magnitude of the improvement.  
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Table 4.2: Euclidean distance between means ( 1LF  in 30 dimensions, 25 particles). 
 

 
    

 
Figure 4.4: Overview of 6σ -PSOD improvements with 25 particles for 1LF  in 30 dimensions. 

   
The graphs with the evolution of the best individual from Fig. 4.5 and Fig. 

4.6 show how the above results are possible. It is amazing that the injection of 
disagreements does not disturb 6σVGDPSO −  making it run off the rails, but it 
actually helps it find a better path in the search space.  
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Figure 4.5: 6σSPSOD  vs. SPSO best fitness graph with 25 particles for 1LF  in 30 

dimensions. 
    

 
Figure 4.6: 6σVGDPSO −  vs. PSO-VG best fitness graph with 25 particles for 1LF  in 30 

dimensions. 
 

   The secret ingredient for this huge improvement lies in the enhanced 
population diversity, as presented in Fig. 4.7 and Fig. 4.8. 
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Figure 4.7: 6σSPSOD  vs. SPSO avg. population distance graph with 25 particles for 1LF  in 

30 dimensions. 
  

    

  
Figure 4.8: 6σVGDPSO −  vs. PSO-VG avg. population distance graph with 25 particles for 

1LF  in 30 dimensions. 
  

The worst individual moves swiftly in the case of σ6  variants, thus being 
most of the time better than its original counterpart (see Fig. 4.9 and Fig. 4.10), 
which stagnates.  
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Figure 4.9: 6σSPSOD  vs. SPSO worst fitness graph with 25 particles for 1LF  in 30 

dimensions. 
  

    

  
Figure 4.10: 6σVGDPSO −  vs. PSO-VG worst fitness graph with 25 particles for 1LF  in 30 

dimensions. 
   

Results for 50 dimensions from Table 4.1 show a 2.59 and 1.74 times 
improvement in the case of PSODs for 25 particles in swarm and 17.65 and 1.37 
times improvement for 50 particles. 
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For 1LF , the results using the 6σ -PSOD operator (with 0.7=σ1  - which is 

limiting the number of disagreements) are far better than using the original 
algorithms. 

 
Shifted Multi-Modal Functions 
For Shifted Sphere ( 2LF ), a quite easy optimization test, Table 4.3 shows 

without any doubt a dramatic improvement when using disagreements. 
  

Table 4.3: 6σ -PSOD results for 2LF . 

  
  

3LF , CEC 2005's Shifted Rosenbrock, is the shifted variant of 1LF , whose 
results were already presented above. The big positive performance gap that is 
brought by disagreements can be studied in Table 4.4. The very good results show 
that the σ6  approach can also work in disturbed environments and on test 
functions that are not prone to biases. The only negative case here is the case of 
PSO-VG with 25 particles in 30 dimensions, where the mean best fitness is slightly 
higher for the σ6 -PSOD variant, but it can be noticed that the median was better 
for the σ6 . The other cases are clearly in favor of disagreements. By testing the 
original and the shifted variants of Rosenbrock function with good results, it can be 
concluded that the new approach with disagreements should be definitively used on 
plateau functions. 
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Table 4.4: 6σ -PSOD results for 3LF . 

  
 
Shifted Rastrigin ( 4LF ) is a test function which resembles a large basin and 

has many local optima. Table 4.5 provides evidence on how the disagreements-
enabled particle swarm optimizers perform better on this test function too. The 
improvement is not as spectacular as in the previous cases, this time it can only be 
measured in percents, but it is still worthwhile in the context of optimization, where 
every gained decimal matters. The difficult case with 25 particles in swarm and in 
50 dimensions is considered for analysis: the evolution of the best fitness graph is 
the one provided in Fig. 4.11, the evolution of the worst fitness found by the swarm 
is presented in 4.12 and the population diversity is shown in 4.13. In contrast with 
the graphs for 1LF , the graphs for 4LF  show a smooth evolution for the σ6 -PSOD 
algorithms also, which finally manage to find better solutions than their original 
counterparts do.  
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Table 4.5: 6σ -PSOD results for 4LF . 

 
   

  
Figure 4.11: 6σSPSOD  vs. SPSO best fitness graph for 4LF  with 25 particles in 50 

dimensions. 
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Figure 4.12: 6σSPSOD  vs. SPSO worst fitness graph for 4LF  with 25 particles in 50 

dimensions.    

  
Figure 4.13: 6σSPSOD  vs. SPSO avg. population distance graph for 4LF  with 25 particles in 

50 dimensions. 
    

Shifted Schwefel 1.2 ( 5LF ) is another hard problem to test. Results from 
Table 4.6 show that the only case when the original algorithms perform better than 
the σ6  enhanced ones is for swarms with 50 particles in 50 dimensions. However, 
the performance difference is small, meaning that it would be better to apply 
disagreements anyhow because an eventual penalty is insignificant and the benefit 
in the other cases is high. 
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Table 4.6: 6σ -PSOD results for 5LF . 

  
    
A Low Dimensional Problem 
Himmelblau ( 6LF ) is a low dimensional plateau test function. Because all 

algorithms found easily the solution, having the same performance, it is not 
recommended to use disagreements for solving this problem. The original 
algorithms already solve it successfully. What is important to notice is that using the 
σ6  model of disagreements did not impede the performance of the original 

algorithm. Table 4.7 shows the results just for the record. 
 

Table 4.7: 6σ -PSOD results for 6LF . 
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Regular Multi-Modal Functions 
Griewank, 7LF , is one of the functions on which the behavior of algorithms 

on highly multi-modal functions can be studied. Results from Table 4.8 are self-
explanatory: overall, there is a significant improvement when using disagreements. 

  
Table 4.8: 6σ -PSOD results for 7LF . 

  
Ackley, 8LF , is a function that has the global optimum inside a long funnel. 

Nevertheless, the tight road to the best point in the search space is paved with 
many local optima in which many optimizers fall. This is another important 
benchmark function in which the σ6 -PSOD shows its superiority, as it scores better 
in all tests. 
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Table 4.9: 6σ -PSOD results for 8LF . 

  
 

 
Figure 4.14: 6σSPSOD  vs. SPSO best fitness graph for 8LF  with 50 particles in 50 

dimensions. 
 
Best fitness evolution graphs are provided in Fig. 4.14 for SPSO - in which 

6σSPSOD  clearly wins, and in Fig. 4.15 - in which 6σVGDPSO −  is slightly better.  
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Figure 4.15: 6σVGDPSO −  vs. PSO-VG best fitness graph for 8LF  with 50 particles in 50 

dimensions. 
    

The ability to find better results in a tight tunnel like Ackley's function 
proves that σ6 -PSODs have a better local focus. This is obtained using partial 
disagreements that are refining already good solutions, providing an enhanced 
exploitation. 

 
Other Functions 
The last functions in test are Bohachevsky 1 ( 9LF ) and Kursawe ( 10LF ). 

The results for both are once again better for the proposed new approach and do 
not need extra comments. Tables 4.10 and 4.11 are given for reference. 

The only exceptional case for 9LF , "exceptional" meaning that the original 
algorithm performed better, is PSO-VG with 50 particles in 50 dimensions, but 
compared with the rest of the results it can be considered a small penalty. 

For Kursawe functions (better values are the ones closer to -10, the sum of 
both Kursawe global optima), there is only one exceptional case for PSO-VG in 50 
dimensions, with 25 particles. All other cases are favorable to PSODs. Results 
obtained on Kursawe prove that improvements are not limited to single function 
environments, but they can come into effect to multi-objective optimization also. 
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Table 4.10: 6σ -PSOD results for 9LF . 

 
 

Table 4.11: 6σ -PSOD results for 10LF . 
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Convergence Rates 
Finally, in order to see some target hits, the convergence accuracy was 

changed from 0.01  to 0.1=ε  and the termination criterion was set from 30000  to 
100000  fitness evaluations. The results from Table 4.12 show the convergence 
rates for a shifted and a non-shifted multimodal, 5LF  and 7LF , respectively. 

 
Table 4.12: Some convergence rates for 6σ -PSODs. 

 

  
   
With only one exception, 6σVGDPSO −  solving 5LF , where the convergence 

rate is zero and it is the same as in the case of the original algorithm, the rest of the 
cases confirm the exceptional results of the disagreements-enabled algorithms from 
the previous tables in this chapter. 
 

4.2.3. Concluding Remarks 
 
Algorithms that are enhanced with σ6 -PSOD capabilities perform far better 

than their original versions. The performance improvement in most of the tests is 
significant. Results from all tests from all the functions and some best individual's 
fitness graphs for a particularly tuned filter 0.7=σ1  were shown to show that the 
new approach is superior across the whole test palette. 

Through graphs showing the evolution of the average distance between 
individuals, it was shown that the σ6  approach is increasing the population 
diversity and entropy. A direct consequence is that even the worst individual is far 
improved compared to the worst individual from the original algorithm. Of course, 
the "best fitness" of the run is a few times better in the case of the tested PSODs. 
This advantage was gained through the use of the partial disagreements (approx. 3 
per iteration for 25 particles in the swarm and around 6-7 for 25 particles in swarm) 
that enhance the local exploitation in a very simple way (e.g. simpler than memetic 
PSOs) and through the use of the extreme disagreements (approx. 0.1 and 0.2 per 
iteration for 25 and 50 particles in swarm, respectively) that enhance the 
exploitation. 

This simple implementation of disagreements consisting in a 2-layer 
neighborhood structure proved that the concept of disagreements is feasible for PSO 
and there is a high probability that it could be feasible for related algorithms in 
swarm intelligence. There were cases in which disagreements injection caused high 
tides in the swarm and cases in which the evolution was smooth, but in all 
situations, using disagreements provided better results. The extra-added operations 
consist in presetting a reference θ , generating each generation a 1θ  for filtering 

and applying the disagreements rule. 1σ  makes the algorithms to work well for a 
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value of 0.7  and it should not be tuned every time, however even if it is a new 
parameter it is also a new degree of freedom that can be used to the optimizer's 
advantage. For most computer systems, nowadays this means calling the same 
random routines used for other evolutionary operations and using an extra loop to 
apply disagreements. That means that the added computational cost is negligible. 

The fact that most runs were successful on the social-only algorithm, PSO-
VG, indicates that this approach can be used to alter the whole output of the update 
principle. This observation is of high interest for situations in which an evolutionary 
algorithm does not have a split, classical PSO-like updating principle, and that is the 
case of genetic algorithms. Indeed, it will be shown in Chapter 5 that the σ6  
approach works brilliantly for real-valued genetic algorithms also. 
 

 
4.3. Stagnation Management With Disagreements 
  
4.3.1. Stagnation 
 
 Stagnation, a situation in which there is no improvement of the current 

solution for an amount of iterations, can be mitigated if when it is detected 
disagreements are arisen inbetween members of the swarm. This procedure 
resembles the real-life situations in which in times of crisis people start riots or 
revolutions. 

Swarm stagnation management is an area where disagreements can be 
used to save the general outcome of the run, as shown by the author in [60]. 

Swarm stagnation appears when the following conditions are met (quote 
from [46]):  

 The particle swarm system is thought to be in stagnation, if arbitrary 
particle i 's history best position iP  and the total swarm's history best position gP  

keep constant over some time steps. 
In order to detect the swarm stagnation in PSO, [101] introduces the 

concept of "improvement ratio" taking into consideration also the velocities:  

,
v/v1
f/f1

=R
pc

pc
−
−

 (4.14) 

where cf  is the current fitness value of the best particle, while pf  is the previous 

fitness and cv  is the current average velocity of all particles, while pv  is the 

previously recorded one. According to [101], when R  is droping under an a priori 
value ε  then the swarm enters into a stagnation period. 

As pointed out by the author in [60], "the approach from [101] assumes 
that when stagnation occurs the velocities tend to 0. However, this is valid only in 
situations when particles get trapped into local minima, while for very densely 
spiked or plateau functions this could not be true." Therefore, a more relaxed 
criterion is needed to establish when stagnation appears that covers all cases when 
no improvement took place between some two iterations - t  and htt Δ+ , in an 

amount of time - htΔ . It was decided that the best method to detect stagnation is 
to measure the Euclidean distance between the current fitness of best particle at 
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iterations htt Δ+  and t  and decide if the result is a relative improvement compared 
to a fraction ( ε ) of the best particle's fitness at iteration t :  

.ŷε<ŷŷ tthtt ⋅−+ Δ  (4.15) 

 
4.3.2. RS-PSOD Operator 
 
The riot-when-stagnation (RS-PSOD) operator was built to help PSO 

resolve stagnation states. It imitates social rioting: while the swarm is in stagnation 
a high number of particles from the current iteration do not follow the best particle 
in their group anymore and manifest extreme disagreements similar to eD  from eq. 
(4.9). However, the probability that such riots occur should be reduced if the 
execution of the current run is approaching to an end, otherwise too much 
randomness can be infused at a too later stage and the swarm may never converge 
or may impair a good solution. Therefore a linearly decreasing allocation scheme 
was considered for this type of disagreement operator. 

The RS injector is defined as follows:  
Definition 19. Let P  be a particle swarm optimization algorithm that has a 

social component. The function that injects in P  a set of disagreements - RSΔ , with 

an apply rule - RSρ , and transforms it into a particle swarm optimization with 

disagreements following the RS rule, namely a RS-PSOD algorithm - RSP , is defined 
as:  

.P=)ρ,P(=)P( DRSRSPSOPSODRS ΨΨ −  (4.16) 
The updating principle for RS-PSOD becomes (from eq. (4.4)):  
 )t,β,(ρ=)x1,t(X iRSRSi Δ+  

 )t,ζ)ŷ,x,t(S)y,x,t(C)i,t(V)x,t(X,(ρ= iiiiiRSRS ++++Δ  

 ,ζ))ŷ,x,t(S(D)y,x,t(C)i,t(V)x,t(X= iiiRSiii ++++  

 .s1,i,D),ŷ(D)ŷ,x,t(S,y)y,x,t(C RSiRSiiRSiiiii ∈∀∈→→ Δ  (4.17) 
 
The set of disagreements - iRSD , consists of:  

{ }.D,= RSDRS ∅Δ  (4.18) 

RSD  is an extreme disagreement, a generalization of eD  from eq. (4.9). It 
represents the individuals that are rioting against the status-quo in periods of crisis. 
Mathematically, it is a Hadamard product between the social update behavior (a 
subcomponent of iβ  from eq. (4.2)) that is the social component S , and a vector 

r  containing random uniformly distributed values in the intervals ]λ,λ[ lu −−  and 

]λ,λ[ ul ++ , with lu
*

ul λ>λ,λ,λ +∈ R  and 1λl ≥ :  

1il1i1iiiRS r,λ)r(sgnr=r,Sr=)S(D ⋅+⊗ ~ )),λλ(),λλ(( lulu −+−−U      (4.19) 

where ir  is the i -th component of r  and 1ir  is a random number for each ir . 

Definition 20. Let )i,t(θRS ~ U(0,1) be an uniformly distributed random 
variable that is generated at each iteration t  for each particle i . Let 
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[0,1]
t

t=δ
max

∈  be the current execution progress indicator, where maxt  is the 

total number of iterations. The RS-PSOD operator is defined as follows:  

.trueis(4.15)andδ)i,t(θif),S(D
falseis(4.15)orδ<)i,t(θif),S(

=)t,β,(ρ RSRS

RSD

iRSRS
⎪
⎩

⎪
⎨

⎧
≥

∅
Δ (4.20) 

Compared to 6σ -PSOD operator, that injects disagreements based on a 
Gaussian distribution at all iterations, the RS-PSOD operator triggers riots only when 
stagnation occurs. 

 
4.3.3. Experimental Setup 
 
For testing the RS-PSOD algorithms against classical configurations a similar 

test environment to the one used for σ6 -PSOD was set up. After rigorous tuning, 
the best results for the extreme disagreement were obtained for the following 
configuration: 5=t2,=λ1,=λ hul Δ  with a relative stagnation threshold of 0.005  
in most cases (depending on the particularities of the given problem). It can be 
noticed that the extreme disagreement is the same as eD  from eq. 4.9. Truly that 
is the value which yielded the best experimental results. 

The functions whose results are provided in the next subsection are the 
most representative examples from the whole set of 10 functions where stagnation 
can occur, grouped by categories: a plateau function ( 1LF ), a shifted highly multi-

modal CEC 2005 function ( 4LF ) and a regular highly multi-modal function ( 8LF ). 
 
4.3.4. Results 
  
A Plateau Function 
As it can be observed from Table 4.13, there is only one case (for PSO-VG 

with 50 particles in 30 dimensions) in which the RS approach failed to provide better 
performance. 

The number of riots indicate how many stagnation situations were detected 
and handled on average in a run using the RS operator. In all tests there are higher 
values for 25 particles because it is harder to accomplish the proposed improvement 
amount with less particles. On 1LF  there is a high likelyhood of stagnation because 
of its large plateau. 

BUPT



4.3 – Stagnation Management With Disagreements      69      
 
 
 

Table 4.13: RS-PSOD results for 1LF . 

 
  
In all sixteen situations (25 and 50 particles in 30 and 50 dimensions), 

SPSOD-RS is providing a consistent performance enhancement. Only with a single 
exception, 50 particles in 30 dimensions, the same is valid for PSO-VGD-RS. 

As it can be seen in the graphs from Fig. 4.16 and Fig. 4.17 for the case of 
SPSO-RS vs. SPSO with 25 particles in 50 dimensions, both the best and the worst 
individual have a better evolution when the RS variants are used. As for the 
population average distance for SPSOD-RS, that is slightly increased by the injection 
of extreme disagreements only when needed, as shown in Fig. 4.18. There is not a 
constant process that injects disagreements like in the case of the σ6 -PSOD 
operator and the local exploitation is not enhanced at all using this technique. Yet, 
for plateaus, that do not need a fierce local exploitation, the results are far better 
for RS than in the case of the classical PSO configurations in test. 
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Figure 4.16: SPSOD-RS vs. SPSO best fitness graph with 25 particles for 1LF  in 50 

dimensions. 
  
 

  
Figure 4.17: SPSOD-RS vs. SPSO worst fitness graph with 25 particles for 1LF  in 50 

dimensions. 
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Figure 4.18: SPSOD-RS vs. SPSO avg. pop. dist. graph with 25 particles for 1LF  in 50 

dimensions. 
   
A Shifted Multi-Modal Function 
For testing the RS approach on a shifted multi-modal function, 4LF  was 

picked from the set of CEC 2005 test functions. 
Table 4.14 shows the results when running PSO algorithms with the riot-

when-stagnation feature versus their original counterparts. The column showing the 
mean fitness contains lower values for RS-PSOD algorithms, which means that they 
provide a better performance and it is better to use them. For the cases with 25 
particles there were approximately 170 riots needed per run and for the cases with 
50 particles, when it is easier to grow gradually in performance across iterations, 
around 60 riots. 

For shifted multi-modal test functions the gain is not so spectacular as in the 
case of the plateau functions, but it demonstrates empirically that even on most 
disturbed and multi-modal environments the disagreements metaphor deals well 
with the considered problems. The robustness of the original algorithms is preserved 
and the convergence speed, the population variety and the overall performance are 
increased. 

 
A Regular Multi-Modal Function 
When the RS approach was tested on a regular multi-modal function, on 

Ackley's function ( 8F ), the improvement ratio seen in the results is approximately 
the same as in the above described shifted case. 
The results can be analyzed in Table 4.15 and they show that there is a slight but 
genuine improvement in performance for the disagreements enabled variants of 
PSO. Disagreements are acting to repair stagnations in swarm.
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Table 4.14: RS-PSOD results for 4LF . 

  
   

Table 4.15: RS-PSOD results for 8LF . 

  
   
Comparison with 6σ -PSOD 
RS-PSOD provides better performance compared to PSOs that have no 

disagreements, but the question is how it stands in terms of performance against 
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σ6 -PSOD. The short answer is that it was experimentally determined that σ6 -
PSOD performs better. 

In this section 8LF  in 30 dimensions is taken into discussion. Table 4.16 
provides the race results between 6σ -PSOD vs. RS-PSOD. 

For 25 particles the results are slightly better for σ6 . Even with around 180 
riots and around 3.75 extreme individuals per run, they cannot beat the σ6  
approach which although it acts blindly, it simulates what happens in nature and 
with around 3.4 partial disagreements and 0.085 extreme disagreements per run it 
outperforms RS-PSOD. 

For 50 particles in swarm, the results are in σ6 -PSOD's favour again. For 
SPSOs' case the situation is clearer, the difference for the mean best fitness, its 
standard deviation and the median is bigger than in the other cases. 

For Standard PSO some graphs are provided: Fig. 4.19 is the best fitness 
graph, Fig. 4.20 is the graph for the evolution of the worst individual in the swarm 
and Fig. 4.21 shows the population average distance between individuals. The graph 
with the best fitness evolution shows how σ6  is heading better to convergence than 
the RS approach and the graph with the worst individuals is showing that the least 
performant in σ6 -PSOD is better than the one in RS-PSOD. Y-axis values for the 
graph of population diversity are plotted this time on a logarithmic base 10 scale in 
order to be able to emphasize the details. In an initial phase, from 0 to 6000 fitness 
function calls, the σ6  assures a more diversified population, then in a later phase, 
after 6000, the RS method takes the lead towards 20000 function evaluations. If the 
surface inbetween the 2 plots is measured for these two phases the area for the first 
phase is greater than the area for the second phase. Meanwhile, the phase 2 is 
longer and happens later. From here it can be concluded that σ6  is providing a 
higher amount of diversity in the beginning phase and the RS provides a lower 
diversity at a later stage because then it comes the time when stagnation occurs. 
From experimental experience and the design of many evolutionary algorithms like 
simulated annealing it is generally better to have a high diversity at the beginning of 
the optimization and a lower one at the end. That is why σ6  does better, but RS 
does better than the original algorithms too. 

  
Table 4.16: 6σ -PSOD vs. RS-PSOD results for 8LF  in 30 dimensions. 
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Figure 4.19: SPSOD-RS vs. 6σSPSOD  best fitness graph with 25 particles for 8LF  in 30 

dimensions. 
  

    

  
Figure 4.20: SPSOD-RS vs. 6σSPSOD  worst fitness graph with 25 particles for 8LF  in 30 

dimensions. 
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Figure 4.21: SPSOD-RS vs. 6σSPSOD  avg. pop. dist. graph with 25 particles for 8LF  in 30 

dimensions.  
 
  

4.3.5. Concluding Remarks 
 
 The conclusion can only be very short: RS-PSOD was conceived as a 

repair method. On the other hand, σ6 -PSOD was built as a holistic 
approach to PSO. Both outperform classical PSOs in terms of performance 
without significant computational overhead. 

RS-PSOD is a very handy and easy method to regain the swarm's ability to 
discover better positions in the search space, proving that disagreements are good 
as a repair method also. Using only extreme disagreements when needed (when 
stagnation occurs) the swarm's evolution is revived. The same thing happens in 
society during periods of crisis - the before behaviors are challenged and completely 
new ideas come into play. 

The 6σ approach is directing the swarm towards better solutions as a holistic 
approach. Its drive comes into effect at every iteration. The search process is 
shaped like a society with disagreeing individuals here and there. Using relevant 
benchmarks it was proved that the σ6  approach provides better results than RS-
PSOD in tests and it has less parameters than RS. However, RS-PSOD is intervening 
in a middle or later phase when no significant improvements take place, it is not a 
shaping but rather a repair method that does what it is supposed to do: artificially 
bails out the swarm from its performance crisis. 

The experimental results provided for both σ6 -PSOD and RS-PSOD are a 
successful proof of concept for disagreements in PSO. It can be easily applied to 
other swarm intelligence algorithms also. What is more important is that now the 
door is open for applying disagreements in other evolutionary algorithms.
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5. GENETIC ALGORITHMS WITH 
DISAGREEMENTS 

  
 
5.1. Disagreements - An Attitude for GAs 
  
5.1.1. Concepts 
 
Disagreements are a phenomenon that can be well understood and studied 

in the context of social interactions. PSO and other swarm intelligence that have a 
social component can use them in their advantage. Nevertheless, when it comes to 
other evolutionary algorithms, like genetic algorithms, that do not posses social 
mechanisms in their fabric, it is hard at first to think of a way disagreements can be 
acclimatized into these algorithms. With the advent of memetic algorithms (MAs) in 
which individuals from a classical GA could develop a personality, the idea of 
disagreements inside a GA is plausible. While a memetic algorithm is adding a local 
search to a GA, a genetic algorithm with disagreements (GAD) is adding 
disagreements to a GA. In both cases, individuals get an attitude. 

The definition that provides the way disagreements are injected into a real-
valued GA and mirrors Definition 15 is provided below:  

Definition 21. Let G  be a real-valued GA and ρ  a disagreements apply 
rule. A real-valued genetic algorithm with disagreements (GAD), DG , is 
obtained by modifying G 's updating principle with the rule ρ , as described by the 
following disagreement injector function:  

.G=)ρ,G( DGAΨ  (5.1) 
  
5.1.2. Implementations 
 
In the experiments related to GAD provided in this thesis disagreements 

were designed as a better mutation operator for real-valued GAs. As it will be 
shown, replacing the mutation operator with disagreements improves the overall 
performance of a GA and wins the advantages of a memetic algorithm. Therefore, 
GADs can be seen as:   

• as a new class of memetic algorithms without a local search method or  
• as genetic algorithms with a better mutation or  
• as a class of their own kind. 
Various implementations can drive GADs into one of the above three 

categories (or maybe into other categories also), but as a concept disagreements in 
genetic algorithms represent a different class of GAs with attitude. 

The number of possible implementations of disagreements in GAs can be 
very high. In the next part of this thesis only a particular implementation, the σ6 -
GAD, that resembles σ6 -PSOD is presented as a proof of concept of disagreements 
in real-valued GAs. Of course, there is also possible to build an RS-GAD approach 
similar to RS-PSOD, but because that would imply a repetition and would bloat the 
content of the thesis, it is not included. 
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5.2. 6σ-GAD Operator 
  
5.2.1. Definition 
 
In [61] the author introduces for the first time the notion of genetic 

algorithms with disagreements as a new mutation operator, modeled around the 
assumption that in an iteration there are some individuals that partially disagree 
and a very small minority that extremely disagree. The new mutation type acts in 
the same manner as the 6σ -PSOD operator. It is taken into consideration in order 
to prove that the idea of disagreements work also for other evolutionary algorithms 
outside the swarm intelligence category. 

Since good results are obtained using PSO-VG, an algorithm where 
disagreements impact a larger part of the updating principle iβ , the 6σ -GAD 
operator is developed to mirror the 6σ -PSOD operator. In terms of (5.1) its 
definition is the following:  

Definition 22. Let G  be a real-valued genetic algorithm. The function that 

injects in G  the set of disagreements - '
6σΔ , with an apply rule - '

6σρ , and 

transforms it into a real-valued genetic with disagreements (GAD) following the '
6σρ  

rule, namely a 6σ -GAD algorithm - D6σG , is defined as follows:  

,G=)ρ,G(=)G( D6σ
'
6σGAGADσ6 ΨΨ −  (5.2) 

For an individual from the population the update principle is represented by 
the iterational loop from the Bäck's evolutionary framework presented in 
Pseudocode 1. At an iteration t , the update principle yields for an individual i  a 
behavior iβ , composed of the changes required by recombination, mutation and 
selection. In 6σ -GAD's update principle the standard mutation is replaced by the 
mutation that is represented by the disagreements with their rules. For 6σ -GADs 

the apply rule '
6σρ  acts upon a part of iβ  which is the individual z  after the step of 

recombination. 
The employed subset of disagreements resemble those from [58]:  

{ }.D,D,= '
e

'
pD

'
6σ ∅Δ  (5.3) 

 
They are defined as follows:  

Definition 23. Let ul
*

ul λ<λ,λ,λ +∈ R . Let a  and b  be the vectors 

containing the lower and respectively, the upper bounds of the search space nH . 

The partial disagreement - '
pD  is defined as:  

ii
'
p q,

2
abqz=)z(D −⊗+ ~ ,Hz),λ,λ( n

ll ∈+−U  (5.4) 

where iq  is the i -th component of q  and z  is the changed individual after 
recombination from Pseudocode 1. 
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Definition 24. Let ul
*

ul λ<λ,λ,λ +∈ R . Let a  and b  be the vectors 

containing the lower and respectively, the upper bounds of the search space nH . 

The extreme disagreement '
eD  is defined as:  

 ,λ)w(sgnw=w,
2

abwz=)z(D l1i1iii
'
e ⋅+−⊗+  (5.5) 

 1iw ~ )),λλ(),λλ(( lulu −+−−U  

where iw  is the i -th component of w , 1iw  is an uniformly distributed random 

number generated each time for iw  and z  is the changed individual after 
recombination from Pseudocode 1. 

It can be easily noticed that both disagreements are the GA generalized 
counterparts of the ones defined for σ6 -PSOD. 

 
5.2.2. Design Philosophy 
 
For GAs, like for PSO, disagreements were designed to provide better 

neighborhood exploitation through '
pD  and enhanced exploration using amplified 

values generated by '
eD . The concept is depicted in Fig. 5.1.  

  
Figure 5.1: Disagreements for real-valued genetic algorithms. 

   
''The concept of partial and extreme disagreements is related to 

neighborhoods. Partial disagreements are values in the vicinity of the original value, 
while extreme disagreements are either more distant values or opposite ones. 

As a further explanation, if one may think of the alphabet, some partial 
disagreements for letter M can be the letters N, O, P or L (a radius of partial 
disagreement should be defined), while some extreme disagreements for letter A 
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can be Z (the dichotomy ''first-last letter'', although it can also be partial 
disagreement if we consider a circular alphabet) or even a non-letter, like ''!''; also, 
for letter A, an extreme disagreement can be defined as a more distant character, 
like H. This example is given to show that genetic algorithms with disagreements 
can be used also on discrete domains.'' ([61]) 

 
5.2.3. Selector Function 
 
The selector function resembles the one for σ6 -PSOD, but here it is defined 

without filtering. Therefore, at each iteration t , for each individual i , 

)i,t(θ ~ )σ,μ( 2
6σ6σN  is generated - a Gaussian distributed random variable with a 

chosen mean 6σμ  and a standard deviation 6σσ . Based on (63), (64), (65) and the 
Gaussian regions defined in formulae (50), (51) and (52), the selector function for 
GADs is defined as:  

,
R)i,t(θif),z(D

R)i,t(θif),z(D

R)i,t(θif),z(

=)t,β,(ρ
5,6σ

'
e

3,4σ
'
p

1,2σD

i
'
6σ

'
6σ

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈

∈

∈∅

Δ  (5.6) 

where z  is the individual at iteration t  after recombination. The rule is supposed to 
replace the mutation and it is noteworthy that in the case of "no-op" no mutation 
takes place. Compared to 6σ -PSOD, this is a more invasive method. Its design was 
chosen not to mirror 100% the one provided for PSO in order to explore another 
facet of how disagreements can be used in optimization. 

 
5.2.4. Experimental Setup 
 
The experimental part for proving the effectiveness of injecting 

disagreements in real-valued genetic algorithms was conducted using the 
established rules in 3.3.3 and in similar conditions with experiments related to σ6 -
PSOD. In all cases presented here, a small population of 50 individuals was used. 
The interest goes in comparing real-valued genetic without elitism (GA) and with 
elitism (eGA) versus their σ6 -GAD enhanced counterparts. All algorithms used BLX-
α  crossover ( 0.5=α ) with probability 0.7. Original GAs used a Mühlenbein 
mutation with a probability of 0.1. 

After calibration, the following values for the parameters of σ6 -GAD were 
found to work in most cases: 0.5=λ0.25,=λ ul , therefore GADs shown in tables 
have that settings. 

The output variables are the same as in the case of σ6 -PSOD experiments: 
mean of best fitness and its standard deviation, the median of best fitness and the 
average number of disagreements in an iteration (partial and extreme). Other 
interesting outputs such as convergence, worst fitness and population distance 
graphs and for brevity are sparingly presented. 

Results on some relevant test functions are provided. 
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5.2.5. Experimental Results 
  
A Plateau Function 
For 1LF  in 30 dimensions, using a GAD without elitism against a similar GA, 

the mean fitness is 16.4 times closer to the global optimum. When using elitism the 
advantage is somewhat similar, around 14.40 times better when using eGAD. 

In 50 dimensions it is even better: the mean fitness is 1814% and 1372% 
closer to the solution for GAD vs. GA, and eGAD vs. eGA, respectively. Table 5.1 
shows a detailed performance overview. 

Graphs are provided for the case with 50 dimensions. Similar to σ6 -PSODs, 
GADs exhibit a greater population diversity and a better coverage of the search 
space (see Fig. 5.4). It seems that the worst individual from the GAs (GA and eGA) 
is better than the worst individual from the GADs (see Fig. 5.3). However this 
doesn’t impede the GADs' higher capability of convergence, as depicted in Fig. 5.2. 

When seeking for improved performance on plateau functions like 1LF  it is a 
good idea to inject some amount of disagreements, both partial and extreme. 

 
Table 5.1: 6σ -GAD results for 1LF . 
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Figure 5.2: 6σeGA  vs. eGA best fitness graph for 1LF  in 50 dimensions. 

  
   
 

  
Figure 5.3: 6σeGA  vs. eGA worst fitness graph for 1LF  in 50 dimensions.   
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Figure 5.4: 6σeGA  vs. eGA avg. population distance graph for 1LF  in 50 dimensions.   

 
A Shifted Multi-Modal Function 
Table 5.2 shows the results for one of the CEC 2005 test functions, Shifted 

Rastrigin ( 4LF ). The results prove that in most cases in which disagreements are 
used there is a slight better outcome. However, the improvement is marginal in this 
case, so it might not be worthy to use disagreements in this case. 

   
Table 5.2: 6σ -GAD results for 4LF . 

  
    
A Low Dimensional Problem 
Himmelblau is a perfect test case for low dimensional search spaces. From 

Table 5.3 only one output variable is very important: the convergence rate, which is 
higher for disagreements enabled algorithms. 
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Table 5.3: 6σ -GAD results for 6LF . 

  
    
A Regular Multi-Modal Function 
In order to illustrate the convergence behavior of the σ6 -GADs, Griewank 

( 7LF ) is used here as a test case. From Table 5.4 it can be concluded that GADs 
bring significant improvement in highly multi-modal environments, one of the very 
important criterion for modern optimization techniques. 

Table 5.4: 6σ -GAD results for 7LF . 

  
 

The best fitness graph for eGA vs. eGAD in 30 dimensions is shown in Fig. 
5.5. One can see that eGAD is taking early the lead and clearly finishes with a very 
good fitness value.  

  
Figure 5.5: 6σeGA  vs. eGA best fitness graph for 8LF  in 30 dimensions.   
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The graph of the worst graph individual is proving once more time that in 

GADs the worst fitness is declining with the run's length. However, this does not 
affect the evolution of the best individual. The average distance between members 
of the swarm is higher for GADs than in the case of their analogous GAs, as depicted 
in Fig. 5.7.  

  
Figure 5.6: 6σeGA  vs. eGA worst fitness graph for 8LF  in 30 dimensions. 

    
 

  
Figure 5.7: 6σeGA  vs. eGA avg. population distance graph for 8LF  in 30 dimensions. 
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5.2.6. Disagreements vs. Mutation 
 
To assess the difference between the disagreements mutation operator and 

a regular Gaussian real-valued mutation, two test cases were considered: one for 
1LF  and another one for 7LF , both cases in 50 dimensions and with GAs with 

elitism (eGAs). The rate of mutation in GADs is around 35 %, therefore a high 
mutation eGA, meGA, with the same percentage of mutation as in GADs was tested 
against an eGAD. The results are provided in 5.5. They show without any doubt that 
using disagreements yields a better performance than ordinary Gaussian mutation. 

 
Table 5.5: 6σ -GAD vs. regular mutation results for 7LF .  

  
 
5.3. Concluding Remarks 
 
The results from testing σ6 -GAD show that this new approach yields in 

better performance on most test cases by maintaining a diverse population. As in 
the case of σ6 -PSOD, this is happening because the local exploitation is promoted 
by partial disagreements, while the exploration is increased using extreme 
disagreements. 

Injecting disagreements in real-value GAs is beneficial when dealing with 
plateau and/or highly multi-modal functions. Excepting few cases the improvement 
is significant and the performance is enhanced as in the case of PSODs. This 
observation leads to the conclusion that disagreements may be a feature which any 
evolutionary algorithm can benefit from. 
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6. CONCLUSIONS 
  
 
6.1. Concluding Remarks 
 
In 2011 Time Magazine designated "The Protester" as The Person of the 

Year ([5]). It is not strange that the world is changing through disagreements and 
this thesis provided empirical evidence to support the introduction of this idea in 
designing evolutionary algorithms. 

At first, the concept of disagreements applied in PSO yielded very good 
experimental results with the advent of 6σ -PSOD operator. The normally 
distributed 6σ  scheme works wonderfully. The injection of partial disagreements 
increases the local exploitation and the injection of extreme disagreements 
strengthens the exploration. The results for the derived algorithms are without any 
doubt better. The extra added computational cost is minimal. 

After the successful approach with 6σ -PSOD, it was shown that extreme 
disagreements can be used to resolve the stagnation in the swarms, by using the 
RS-PSOD operator. Tests have shown that the method is a reliable repair technique, 
yielding better outcomes. Still, from experimental data, it is recommended that the 
6σ -PSOD should be used to derive superior algorithms, as it is a holistic approach, 
not a repair one, and has a better drive. As the old saying says: "An ounce of 
prevention is worth a pound of cure." 

Good results obtained with the normally distributed disagreements on a 
social-only PSO, PSO-VG, on which the impact upon the updating principle is higher, 
opened the door for experimenting with algorithms outside the swarm intelligence 
area. Very good results in tests with real-valued genetic algorithms applying a 6σ  
rule, the 6σ -GAD mutation instead of the regular mutation, revealed that the new 
metaphor of disagreements definitively is worth of consideration for the larger 
category of evolutionary computation. 

Overall, this thesis introduced the concept of disagreements in swarm 
intelligence through PSO and to a larger extent, in evolutionary computation, 
through real-valued genetic algorithms. It provided empirical data to prove that the 
new approach is yielding better performance. 

 
6.2. Contributions 
 
Based on the observations from nature and the promising provided 

experimental data, this work may open a new research area in the field of 
evolutionary computation: the use of disagreements to derive superior population-
based algorithms with enhanced exploration and exploitation capabilities. This thesis 
is a proof of concept and it uses a specially crafted randomness injection into the 
updating principle of the evolutionary algorithms with a simple 2-layer neighborhood 
scheme in order to simulate the disagreements that naturally occur in-between 
members of a society or of a group. 
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In detail, the following contributions should be attributed to this thesis and 

the associated published work during the doctoral programme (all citations are 
referring to author's publications): 

The disagreements metaphor. The new disagreements metaphor is 
based on real-world observations and applied to swarm intelligence and evolutionary 
computation algorithms. It is explained in detail and further developed in Section 1. 
Its introduction in PSO is done for the first time in [58]. The first generalization to 
EAs appears in [61].  

A theoretical foundation for disagreements. In Section 2, a general 
theoretical foundation for implementing disagreements in EAs is provided.  

A testing methodology for disagreements. A test methodology, named 
race testing, is provided in Section 3 to correctly asses the new concept of 
disagreements. Based on DACE, it can correctly compare the performance of the 
disagreements-derived algorithms with their original versions.  

PSO with disagreements. Disagreements are introduced as a new social 
behavior in PSO, thus affecting only the social component of the updating principle 
(Section 1). This was also previously discussed in [58] and in [60].  

6σ-PSOD. A promising implementation of disagreements in PSO, the 6σ -
PSOD operator, is provided in Section 2. It is a Gaussian scheme of injecting partial 
(to increase local exploitation) and extreme disagreements (to increase exploration) 
on a 2-layer neighborhood structure around the social component of the updating 
principle, that simulates real-life group opinions, first introduced in [58]. Empirical 
experimental data shows a great improvement in performance when used in derived 
new algorithms.  

RS-PSOD. A repair method that proves the usefulness of applying extreme 
disagreements to mitigate stagnation, that is described in detail in Section 3. The 
concept was first published in [60].  

GA with disagreements. Disagreements are introduced in real-valued GAs 
as an alternative to memetic algorithms, a new class of GAs: GAs with attitude in 
Section 1.  

6σ-GAD. A σ6  approach to real-valued GAs, that is shaped like a new 
mutation operator. It was first introduced in [61]. It is described in Section 2. The 
experimental data proves its superiority over regular GAs.  

A proof of concept for disagreements. Except Chapter 2, which provides 
a succinct overview of the state of the art, all the other chapters in this thesis 
explain the concept of disagreements and prove that it is useful in optimization.  

Needless to say, because the above contributions are at the core of the 
algorithms, their potential impact can affect all areas where evolutionary algorithms 
are used. 

 
 
6.3. Future Work 
 
There are several future research directions that can be pursued in the near 

future:   
• the improvement of the current disagreements operators  
• the development of new implementations of disagreements for PSO and 

real-valued GAs and other evolutionary computation algorithms  

BUPT



88   Conclusions - 6 
 
 
• checking the concept for other algorithms outside evolutionary 

computation  
•  studies regarding disagreements in social networks  
 
An important idea that arises from this work is that exceptions from 

the rule, pictured here as disagreements, should be encouraged and 
accommodated when designing systems because they are a true source of 
natural change. 
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