

DISAGREEMENTS – A NEW

SOCIAL CONCEPT IN SWARM
INTELLIGENCE AND

EVOLUTIONARY COMPUTATION

Teză destinată obţinerii
titlului ştiinţific de doctor inginer

la
Universitatea “Politehnica” din Timişoara
în domeniul ŞTIINŢA CALCULATOARELOR

de către

Ing. Andrei Lihu

Conducător ştiinţific: prof. univ. dr. ing. Ştefan Holban
Referenţi ştiinţifici: prof. univ. dr. ing. Dumitru Dan Burdescu

prof. univ. dr. Alexandru Cicortaş
 prof. univ. dr. ing. Marius Crişan

Ziua susţinerii tezei: 10.02.2012

BUPT

Seriile Teze de doctorat ale UPT sunt:

1. Automatică 8. Inginerie Industrială
2. Chimie 9. Inginerie Mecanică
3. Energetică 10. Ştiinţa Calculatoarelor
4. Ingineria Chimică 11. Ştiinţa şi Ingineria Materialelor
5. Inginerie Civilă 12. Ingineria sistemelor
6. Inginerie Electrică 13. Inginerie energetică
7. Inginerie Electronică şi Telecomunicaţii 14. Calculatoare şi tehnologia informaţiei

Universitatea „Politehnica” din Timişoara a iniţiat seriile de mai sus în scopul
diseminării expertizei, cunoştinţelor şi rezultatelor cercetărilor întreprinse în cadrul
şcolii doctorale a universităţii. Seriile conţin, potrivit H.B.Ex.S Nr. 14 / 14.07.2006,
tezele de doctorat susţinute în universitate începând cu 1 octombrie 2006.

Copyright © Editura Politehnica – Timişoara, 2011

Această publicaţie este supusă prevederilor legii dreptului de autor. Multiplicarea
acestei publicaţii, în mod integral sau în parte, traducerea, tipărirea, reutilizarea
ilustraţiilor, expunerea, radiodifuzarea, reproducerea pe microfilme sau în orice altă
formă este permisă numai cu respectarea prevederilor Legii române a dreptului de
autor în vigoare şi permisiunea pentru utilizare obţinută în scris din partea
Universităţii „Politehnica” din Timişoara. Toate încălcările acestor drepturi vor fi
penalizate potrivit Legii române a drepturilor de autor.

România, 300159 Timişoara, Bd. Republicii 9,
tel. 0256 403823, fax. 0256 403221

e-mail: editura@edipol.upt.ro

BUPT

Foreword

Optimization is a process of searching for desirable configurations, attributes

or parameters in a system. Unfortunately, for most of the real-world problems that
need to be optimized, this search procedure is requiring heavy computational
resources. Therefore, in order to tackle this complexity, usually some heuristics are
employed.

Swarm intelligence algorithms like particle swarm optimization (PSO) and
evolutionary techniques like genetic algorithms (GAs) are very popular choices as
optimization heuristics and they are both population-based models. Particle swarm
optimization models "the social mind" metaphor: the solutions are found by flying
particles that are influenced by their personal and their group's experience. Since
the inception of the original algorithm in 1995, the scientific literature regarding
swarm intelligence grew massively. Although some hybrids between PSO and other
optimization techniques were invented and an extensive analysis of parameters was
thoroughly done, the research in this field did not develop and incorporate other
basic social characteristics into the original algorithm.

This PhD thesis aims to fill the lack of other social behaviors in PSO. Based
on real-world observations, I developed some models that resemble the way people
disagree inside a group and implemented it as a new social feature in PSO. The idea
was validated by good experimental results and then I decided to apply it as a
special mutation operator in real-valued genetic algorithms. The results were better
than expected and prompted for an extensive and thorough investigation. The thesis
is the result of this effort.

Timişoara, august 2011 Lihu Andrei

BUPT

This work was partially supported by the strategic grant POSDRU

6/1.5/S/13, Project ID6998 (2008), co-financed by the European Social Fund
Investing in People, within the Sectorial Operational Programme Human Resources
Development 2007-2013.

Special thanks go to this thesis' scientific supervisor, Prof. Dr. Eng. Ştefan
Holban, for promptness, patient guidance, good advice and encouragement provided
throughout my time as a student.

Completing this work would have been a lot more difficult without the moral
support from Oana, my fiancée. I also want to thank her for the patience and the
help in proof reading countless pages of scientific and technical information.

Lihu, Andrei

Disagreements - A New Social Concept in Swarm Intelligence
and Evolutionary Computation

Teze de doctorat ale UPT, Seria 10, Nr. 39, Editura Politehnica, 2012,
98 pagini, 35 figuri, 24 tabele.

ISSN: 1842-7707

ISBN: 978-606-554-439-0

Cuvinte cheie: global optimization, particle swarm optimization, genetic
algorithms, disagreements, swarm intelligence, evolutionary
computation.

Rezumat,
Based on observations from nature and promising experimental data,
this work opens a new direction in the field of evolutionary
computation: the usage of disagreements to derive superior algorithms
with enhanced exploitation and exploration capabilities for global
optimization problems. Initially, good results are obtained with the new
6σ-PSOD operator which imitates the natural distribution of the
disagreements in nature with a low computational cost. The
disagreements are applied only to the social component from PSO. The
partial disagreements increase the exploitation, while the extreme
disagreements enhance the exploration. Disagreements can also be
used to mitigate stagnation in swarm with the new RS-PSOD operator.
Further good results with the concept of disagreements on real-valued
genetic algorithms open the door for experimenting with this new idea
in the larger field of the evolutionary computation. This thesis is a proof
of concept for disagreements in swarm intelligence, through PSO, and
in the larger category of the evolutionary computation, through real-
valued genetic algorithms. Because its contributions are at the core of
the algorithms in study, the potential impact can positively affect all
areas in which evolutionary computation is used.

BUPT

Contents

1. Introduction .. 11

1.1. Motivation .. 11

1.2. Objectives .. 12

1.3. Publications .. 13

1.4. Outline ... 14

2. Background ... 15

2.1. Optimization ... 15

2.1.1. Definition ... 15

2.1.2. Classification .. 15

2.1.3. The Curse of Dimensionality ... 17

2.1.4. Methods .. 17

2.1.5. Convergence in Search Space ... 17

2.1.6. The "No Free Lunch" Theorem .. 18

2.2. Genetic Algorithms .. 18

2.2.1. Evolutionary Computation and GAs ... 18

2.2.2. A General Evolutionary Framework.. 19

2.2.3. Initialization ... 19

2.2.4. Selection ... 20

2.2.5. Recombination.. 20

2.2.6. Mutation .. 22

2.3. Particle Swarm Optimization ... 23

2.3.1. Swarm Intelligence ... 23

2.3.2. Algorithm Description .. 23

2.3.3. Pseudocode .. 25

2.3.4. Flavors .. 25

2.3.5. Topologies ... 25

2.3.6. Inertial Weight ... 27

2.3.7. Constriction Factor .. 27

2.3.8. Simplifications .. 27

2.4. Test Functions and Tools .. 28

2.4.1. The Need for Benchmarks .. 28

2.4.2. Benchmark Biases ... 28

2.4.3. Test Functions .. 29

2.4.4. Tools ... 34

BUPT

2.5. Concluding Remarks .. 34

3. Disagreements .. 36

3.1. Rationale .. 36

3.2. Foundations .. 37

3.2.1. From the Individual's Point of View ... 37

3.2.2. From the Iteration's Point of View ... 38

3.2.3. From the Algorithm's Point of View .. 39

3.3. Methodology ... 39

3.3.1. DACE Fundamentals .. 39

3.3.2. Race Testing .. 40

3.3.3. Common Experimental Setup ... 43

3.3.4. Concluding Remarks .. 44

4. Particle Swarm Optimization with Disagreements 45

4.1. Disagreements as A New Social Behavior .. 45

4.1.1. Concepts ... 45

4.1.2. Implementations ... 46

4.2. 6σ-PSOD Operator ... 47

4.2.1. Description .. 47

4.2.2. Experimental Results ... 50

4.2.3. Concluding Remarks .. 65

4.3. Stagnation Management With Disagreements .. 66

4.3.1. Stagnation ... 66

4.3.2. RS-PSOD Operator .. 67

4.3.3. Experimental Setup ... 68

4.3.4. Results .. 68

4.3.5. Concluding Remarks .. 75

5. Genetic Algorithms with Disagreements .. 76

5.1. Disagreements - An Attitude for GAs .. 76

5.1.1. Concepts ... 76

5.1.2. Implementations ... 76

5.2. 6σ-GAD Operator ... 77

5.2.1. Definition ... 77

5.2.2. Design Philosophy ... 78

5.2.3. Selector Function .. 79

5.2.4. Experimental Setup ... 79

5.2.5. Experimental Results ... 80

BUPT

5.2.6. Disagreements vs. Mutation ... 85

5.3. Concluding Remarks .. 85

6. Conclusions ... 86

6.1. Concluding Remarks .. 86

6.2. Contributions .. 86

6.3. Future Work .. 87

BUPT

List of Tables

Table 3.1: Phase I. Discovery methodology... 41

Table 3.2: Phase II (a). Confirmation on classical configurations. 42

Table 3.3: Phase II (b). Sequential design for improving the new disagreements

operators. .. 42

Table 4.1: 6σ -PSOD results for 1LF 51

Table 4.2: Euclidean distance between means (1LF in 30 dimensions, 25 particles).
 .. 52
Table 4.3: 6σ -PSOD results for 2LF . .. 56

Table 4.4: 6σ -PSOD results for 3LF . .. 57

Table 4.5: 6σ -PSOD results for 4LF . .. 58

Table 4.6: 6σ -PSOD results for 5LF . .. 60

Table 4.7: 6σ -PSOD results for 6LF . .. 60

Table 4.8: 6σ -PSOD results for 7LF . .. 61

Table 4.9: 6σ -PSOD results for 8LF . .. 62

Table 4.10: 6σ -PSOD results for 9LF 64

Table 4.11: 6σ -PSOD results for 10LF 64
Table 4.12: Some convergence rates for 6σ -PSODs. 65
Table 4.13: RS-PSOD results for 1LF . .. 69

Table 4.14: RS-PSOD results for 4LF . .. 72

Table 4.15: RS-PSOD results for 8LF . .. 72

Table 4.16: 6σ -PSOD vs. RS-PSOD results for 8LF in 30 dimensions. 73

Table 5.1: 6σ -GAD results for 1LF . .. 80

Table 5.2: 6σ -GAD results for 4LF . .. 82

Table 5.3: 6σ -GAD results for 6LF . .. 83

Table 5.4: 6σ -GAD results for 7LF . .. 83

Table 5.5: 6σ -GAD vs. regular mutation results for 7LF 85

BUPT

List of Figures

Figure 2.1: The global minimum (Gx) vs. a local minimum (Lx) for the polynomial

function x60x47x12x=)x(f 234 −+− 16

Figure 2.2: PSO topologies. .. 26

Figure 2.3: Generalized Rosenbrock function. .. 29

Figure 2.4: CEC 2005 shifted functions. .. 30

Figure 2.5: Other multimodal functions. ... 32

Figure 2.6: Kursawe functions. ... 33

Figure 3.1: Disagreements among individuals of a population. 38

Figure 4.1: Distribution of disagreement types in concentric circles. 48

Figure 4.2: Filtering disagreements. .. 49

Figure 4.3: 6σ regions. .. 50

Figure 4.4: Overview of 6σ-PSOD improvements with 25 particles for 1LF in 30
dimensions. ... 52
Figure 4.5: 6σSPSOD vs. SPSO best fitness graph with 25 particles for 1LF in 30
dimensions. ... 53
Figure 4.6: 6σVGDPSO − vs. PSO-VG best fitness graph with 25 particles for 1LF in
30 dimensions. ... 53
Figure 4.7: 6σSPSOD vs. SPSO avg. population distance graph with 25 particles for

1LF in 30 dimensions. ... 54

Figure 4.8: 6σVGDPSO − vs. PSO-VG avg. population distance graph with 25

particles for 1LF in 30 dimensions. .. 54

Figure 4.9: 6σSPSOD vs. SPSO worst fitness graph with 25 particles for 1LF in 30
dimensions. ... 55
Figure 4.10: 6σVGDPSO − vs. PSO-VG worst fitness graph with 25 particles for 1LF
in 30 dimensions. ... 55
Figure 4.11: 6σSPSOD vs. SPSO best fitness graph for 4LF with 25 particles in 50
dimensions. ... 58
Figure 4.12: 6σSPSOD vs. SPSO worst fitness graph for 4LF with 25 particles in 50
dimensions. ... 59
Figure 4.13: 6σSPSOD vs. SPSO avg. population distance graph for 4LF with 25
particles in 50 dimensions. ... 59
Figure 4.14: 6σSPSOD vs. SPSO best fitness graph for 8LF with 50 particles in 50
dimensions. ... 62
Figure 4.15: 6σVGDPSO − vs. PSO-VG best fitness graph for 8LF with 50 particles
in 50 dimensions. ... 63

BUPT

Figure 4.16: SPSOD-RS vs. SPSO best fitness graph with 25 particles for 1LF in 50
dimensions. ... 70
Figure 4.17: SPSOD-RS vs. SPSO worst fitness graph with 25 particles for 1LF in 50
dimensions. ... 70
Figure 4.18: SPSOD-RS vs. SPSO avg. pop. dist. graph with 25 particles for 1LF in
50 dimensions. ... 71
Figure 4.19: SPSOD-RS vs. 6σSPSOD best fitness graph with 25 particles for 8LF in
30 dimensions. ... 74
Figure 4.20: SPSOD-RS vs. 6σSPSOD worst fitness graph with 25 particles for 8LF
in 30 dimensions. ... 74
Figure 4.21: SPSOD-RS vs. 6σSPSOD avg. pop. dist. graph with 25 particles for

8LF in 30 dimensions. ... 75
Figure 5.1: Disagreements for real-valued genetic algorithms. 78
Figure 5.2: 6σeGA vs. eGA best fitness graph for 1LF in 50 dimensions. 81

Figure 5.3: 6σeGA vs. eGA worst fitness graph for 1LF in 50 dimensions. 81

Figure 5.4: 6σeGA vs. eGA avg. population distance graph for 1LF in 50
dimensions. ... 82
Figure 5.5: 6σeGA vs. eGA best fitness graph for 8LF in 30 dimensions. 83

Figure 5.6: 6σeGA vs. eGA worst fitness graph for 8LF in 30 dimensions. 84

Figure 5.7: 6σeGA vs. eGA avg. population distance graph for 8LF in 30
dimensions. ... 84

BUPT

1. INTRODUCTION

1.1. Motivation

Optimization processes happen everywhere in the universe, therefore both

in nature and in human activities. We always search for and exploit the shortest
paths that lead to a satisfactory solution. We live in a world in which transportation
timetables, telecommunications bandwidth allocations, road networks and product
manufacturing, to name just few examples, are usually designed to serve most
needs quicker and in a more and more cost-effective manner. Since the needs of
our society and the society itself continues to grow, it is clear why we need better
optimization algorithms that can solve increasingly complex problems.

In time, research proved that heuristic methods, without a clear winner (No
Free Lunch Theorem in [98, 99]), can be used to solve hard problems. A large
category of optimization techniques is using a populational model that is evolving or
moving in the solutions' search space using well established rules. Evolutionary and
swarm intelligence algorithms are good examples that fit in this segment and prove
successful for a wide range of domains and practical applications, like cancer
therapy planning, economic and financial forecasting, industrial product design, data
analysis, automated scheduling and so on. There is no doubt that even a small
improvement in the area of optimization techniques will produce a big impact in so
many fields of human activity. This is the reason why there is a high interest and a
large number of researchers and publications on this subject.

Most of the time for these problems the domain information is sparse, and
these methods are not guaranteed to find the global optimum, especially for NP-
complete problems, but they can provide good enough approximate solutions when
all other classical approaches fail. One of the big problems is that it happens quite
often that many of these optimizers are getting trapped into insatisfactory local
optima. This is a tedious task to solve, because it is generally hard to tell whether
the best solution found so-far is the global optimum; one of the classic solutions to
this is to increase diversity among the population. Other times, optimizers fail to
find a solution or cannot find it in a reasonable amount of time, because they lack
convergence. These two issues are mostly addressed by the scientific literature, and
solving both is usually a compromise because the adopted solutions can have
opposite goals.

Although present at many levels among human or animal societies, no
known populational algorithm that is used in optimization modeled the concept of
disagreements inbetween individuals. Disagreements bring diversity of opinions
inside a group. They are the seed of all great revolutions that changed our societies
throughout history and that made us evolve faster, jumping big steps ahead. Most
individuals in a population do not disagree with the rules of the society, but a
minority is always challenging the established rules, plainly showing disagreement,
with more or less emphasis. As time goes by, or in certain circumstances, the
minority's voice gets amplified and if their opinions prove better, they end up by
revolutioning the general direction. Using this simple observation, this thesis deals

BUPT

12 Introduction - 1

with how disagreements can improve the optimization process by simultaneously
increasing diversity and the convergence rate.

This thesis introduces and analyzes the concept of disagreements for
optimization algorithms. It describes disagreement operators for evolutionary
algorithms - represented by genetic algorithms (GAs) - and swarm intelligence
algorithms - represented by particle swarm optimization (PSO). Then, it proves
empirically that the newly obtained algorithms with disagreements yield superior
results for a comprehensive pallette of benchmarks.

The concept of using disagreements in optimization is new and and the
results are promising. Because the proposed enhancements using the
disagreements concept are made at the core of the algorithms, the area of
applicability is as wide and diverse as for the original algorithms.

1.2. Objectives

The main objectives at the time this work was written and the experimental

work behind it was elaborated were the following:
a) A proof of concept for disagreements in optimization was the general

goal of the thesis, a goal that incorporated the other objectives.
b) A theoretical model had to be developed in order to introduce

disagreements in the context of any evolutionary algorithm.
c) Specific disagreements operators had to be designed for PSO and

real-valued GAs to specialize the general theoretical model towards swarm
intelligence and genetic algorithms.

d) A testing methodology had to be set up in order to produce correct
data.

e) A practical performance improvement had to be observed in order
that the concept to be proven useful.

The above enumerated objectives are met by this thesis' contributions that

are discussed in detail in the last part of this work, but which can now be
summarized as follows:

1) the introduction of the new metaphor of disagreements in swarm
intelligence and evolutionary computation in general

2) the establishment of the theoretical foundations for disagreements in
evolutionary computation

3) the establishment of a reliable testing methodology to compare
disagreements enabled algorithms with their original versions

4) the introduction of the disagreements concept in particle swarm
optimization

5) the disagreements concept as a Gaussian-based operator in particle
swarm optimization (the 6σ-PSOD operator), and a side-by-side empirical testing
and comparison of some PSO variants vs. their enhanced versions that use the 6σ-
PSOD

6) a disagreements operator that mitigates swarm stagnation in PSO, the
RS-PSOD operator, and a comparison between 6σ-PSOD and RS-PSOD

7) the introduction of the disagreements concept in real-valued genetic
algorithms

BUPT

1.3 – Publications 13

8) the disagreements concept as a mutation operator in real-valued genetic

algorithms, the mutation operator, and a side-by-side empirical testing and
comparison of real-valued genetic algorithms versus their enhanced versions that
use the mutation

9) overall, a proof of concept for disagreements in swarm intrelligence and
evolutionary computation

1.3. Publications

 The pillars of this PhD thesis' foundation are represented by the scientific

articles that were published and presented by the author at renowned international
conferences, 3 out of 5 being published in the prestigious Springer series Lecture
Notes in Computer Science (LNCS) and Studies in Computational Intelligence (SCI):

1) Lihu and Ș. Holban. Particle swarm optimization with disagreements. In

Y. Tan, Y. Shi, Y. Chai, and G. Wang, editors, ICSI (1), volume 6728 of Lecture
Notes in Computer Science, pages 46-55. Springer, 2011.

This article is the first one in the series that describe how disagreements
can be utilized in evolutionary computation. It introduces the 6σ-PSOD operator and
proves empirically using popular benchmarks on some classical PSO configurations
that using the new operator yields better results.

2) Lihu and Ș. Holban. Particle swarm optimization with disagreements on

stagnation. In Radoslaw K., T.F. Chiu, C.F. Hong, and N. Nguyen, editors, Semantic
Methods for Knowledge Management and Communication, volume 381 of Studies in
Computational Intelligence, pages 103-113. Springer, 2011.

Another article on using disagreements for PSO, but this time for stagnation
management and the RS-PSOD operator is described as a suitable solution to this
issue. Provided experimental results advocate in favor of using disagreements in
problems prone to stagnation.

3) Lihu and Ș. Holban. Real-valued genetic algorithms with disagreements.

In D. Pelta, N. Krasnogor, D. Dumitrescu, C. Chira, and R. Lung, editors, NICSO,
volume 387 of Studies in Computational Intelligence, pages 333-346. Springer,
2011.

The article shows that disagreements are not limited to PSO or swarm
intelligence and that they can be successfully applied to the larger class of
evolutionary algorithms as initially provided in the theoretical model. A 6σ-PSOD-
like implementation is adapted to real-valued genetic algorithms (6σ-GAD) and
tested to demonstrate that disagreements can have a wider usage.

4) Lihu and S. Holban. A study on the minimum number of particles for a

simplified particle swarm optimization algorithm. In Proceedings of the 6th IEEE
International Symposium on Applied Computational Intelligence and Informatics
(SACI), pages 299-303, Timișoara, Romania, May 2011, IEEE.

A study regarding finding a configuration with a minimum number of
particles for an à la Pedersen simplified PSO ([76]), PSO-VG. The best found
configuration is used for PSO-VG in this thesis.

BUPT

14 Introduction - 1

5) Lihu and S. Holban. Top five most promising algorithms in scheduling. In

Proceedings of the 5th International Symposium on Applied Computational
Intelligence and Informatics, pages 397-404, Timișoara, Romania, May 2009, IEEE.

It is the first published article. It is a literature review and comparison using
tests with real-world data of what seemed in 2009 to be the most promising
algorithms in scheduling, a subdomain of optimization.

Aside from these publications, there are also two research reports at the
base of this work, [56] and [57].

1.4. Outline

Chapter 2, whose content is largely based on the author's annual research

reports ([56, 57]), lays the theoretical background. It describes what is
optimization, how it is classified, presents effective techniques used in optimization
and The No Free Lunch Theorem. Then, there is a brief introduction into genetic
algorithms and particle swarm optimization because these algorithms will be
modified later to model the disagreements concept. A discussion about the
environment used to test and validate the disagreements concept: 10 popular
optimization test functions and the software and hardware tools. Conclusions are
drawn regarding potential improvement points where disagreements may help in
the above-discussed algorithms.

The general theoretical foundation of disagreements in evolutionary
computation is described in detail in Chapter 3 and the empirical testing and
validation methodology for the new theoretical models is established. The chapter
ends with some preliminary conclusions regarding the new theoretical framework.

In Chapter 4 the concept of disagreements is introduced and analyzed in the
context of PSO algorithms (both the classic PSO and the à la Pedersen simplified
variant). There are two approaches to implement disagreements: the first one is
using the 6σ-PSOD operator to model normally distributed disagreements of two
kinds: partial and extreme; the second approach is used in PSO to mitigate
stagnation when it appears by triggering extreme disagreements among members
of the population: the RS-PSOD operator. An empirical analysis is done for both
operators and concluding remarks are drawn.

Chapter 5 expands the concept of disagreements for real-valued genetic
algorithms in particular and discusses the rationale behind it. Then, the 6σ-GAD
operator is provided as a new normally distributed mutation operator. The chapter
ends by concluding that the 6σ-GAD operator outperforms other GAs that do not use
it on most optimization benchmarks.

At the end, in Chapter 6, conclusions are drawn by presenting a summary of
the findings in this thesis. Future work and possible improvements are also
discussed.

The bibliography contains all the external resources utilized to write the
thesis.

BUPT

2. BACKGROUND

2.1. Optimization

2.1.1. Definition

 Optimization refers to a process of selecting a set of parameters that satisfy

a given measure of optimality, with or without constraints. The objective is to pick
the best element from a range of alternatives.

Problems that need to be optimized arise from a wide extent of domains,
not only from economy or from engineering; they can also arise from the more
creative sphere of arts, for example.

Linear systems - that need linear optimization - can be solved with a classic
technique called linear programming, but non-linear problems cannot be solved
easily. This thesis deals with non-linear optimization problems.

In most cases, optimization refers to finding the global minimum or
maximum of a function f, called the objective function or the cost function.

Before optimization a modeling phase takes place in which f is built to reflect
the best value in its minimum. In order to address uniformly all the problems, most
papers from the scientific literature deal with minimization because maximization is
seen as a minimization of -f.

Using Bergh's notations from [97], an unconstrained minimization problem
is defined as:

Definition 1. Given RR →:f , find n
Gx R∈ for which)x(f)x(f G ≤ ,

nx R∈∀ .
Finding the minimum or maximum on an interval is guaranteed by the

extreme value theorem formulated by Weierstrass, which here is stated as in [80]:
Theorem 1. If a function f(x) is continuous on a closed interval [a,b], then

f(x) has both a maximum and a minimum on [a,b]. If f(x) has an extremum on an
open interval (a,b), then the extremum occurs at a critical point.

2.1.2. Classification

When some parameters of the given problem have constraints then

constrained optimization is needed to solve them. For the sake of simplicity and
generality this thesis is focused on unconstrained optimization.

There is also a difference between local and global optimization. The local
optimization is about finding the local minimum specific to a defined zone of the
search space, while global optimization means finding the global minimum without
been trapped into local minima. In Fig. 2.1, there is a simple visualization of a local
(Lx) and a global minimum (Gx) for a polynomial function (also used as an
example by [97]).

BUPT

16 Background - 2

Figure 2.1: The global minimum (Gx) vs. a local minimum (Lx) for the polynomial function

x60x47x12x=)x(f 234 −+− .

With respect to the problem variables and the search space, optimization

can be classified as in [74, p. 6] as following:
• discrete optimization: when the variables of the objective function
assume discrete values (integer optimization is the special case for integers)
• continuous optimization: when the variables of the objective function
assume real values
• mixed integer optimization: when the variables of the objective function
assume integer and/or real values
Commonly, the objective function does not change over time and there is a

single function to be minimized, but when this is not the case, there can be two
situations:

• dynamic optimization: when there is one or more time-varying
objective functions
• continuous optimization: when several objective functions need to be
concurrently minimized
If the gradient of the optimization problem cannot be known, then the

objective function must be optimized as black box. This is called black box
optimization. In addition, optimization algorithms that do not rely on the problem's
gradient are referred as "black box", "derivative-free" or "direct search" methods.
They are like a blindfolded hiker who wants to find the lowest point in a landscape
having access only to the information provided by an altimeter.

BUPT

2.1 – Optimization 17

2.1.3. The Curse of Dimensionality

Because there can be a large number of candidate solutions to a problem, it

is not feasible to try all of them. This means that there is no guarantee that the
global optimum is found, but depending on their quality compared to the optimum,
there are cases when suboptimal solutions are acceptable. Worse, adding a new
dimension to the problem (e.g. an extra parameter) grows exponentially the
number of candidate solutions. This is called the curse of dimensionality, after
Bellman [11, 12]. Therefore, it is important to design algorithms that perform well
also when adding new dimensions. Ideally, a new optimization method should have
linear time-complexity O(n) in the dimensionality n of the problem. Not to mention
that any optimization algorithm should find the optimum no matter what was its
starting position.

2.1.4. Methods

 There is a multitude of approaches when it comes to solve an optimization

problem and most of them are iterative algorithms. Depending on the problem,
there are cases when deterministic methods are suitable, like branch-and-bound
methods ([71]) or interval optimization ([42]). Other times, stochastic optimization
techniques might do better, like simulated annealing ([52, 96]) or Monte-Carlo
methods ([14, 65]). For scheduling problems, that represent a subclass of
optimization problems, some of the best methods are presented in one of the
articles published by this paper's author, in [59]. Nevertheless, in most scenarios
metaheuristics do better, thus they are suitable for optimization in worst conditions
(black-box optimization). Some of these metaheuristics are listed below:

• evolutionary algorithms (evolutionary strategies, genetic algorithms,
etc.)
• swarm intelligence algorithms (particle swarm optimization, ant colony
optimization, bee colony optimization, etc.)
• differential evolution ([91])
• memetic algorithms ([68])
This thesis is particularly dealing with particle swarm optimization and

genetic algorithms, but as it will be shown later, the new principles that will be
introduced throughout this work can be easily applied to other metaheuristics as
well.

2.1.5. Convergence in Search Space

Definition 2. The convergence of an algorithm a in the search space nH , in
which there is a space measure ⋅ , is defined as:

 0,=xxlim Gi
i

−
∞→

 (2.1)

where Gx is the global minimum and ix is the best solution at some iteration i.
Because an algorithm's number of iterations is finite, a relaxed criterion for

convergence is defined as follows:

BUPT

18 Background - 2

Definition 3. Given a space measure ⋅ and a positive integer k, the ε-

accurate convergence (ε>0) of an iterative algorithm ita in the search space nH is
defined as:

 ,ki,εxx Gi ≤∀≤− (2.2)

where Gx is the global minimum and ix is the best solution at some iteration i.

If the global optimum)x(f G is a priori known - and this is the case of the
benchmark functions - then the convergence is achieved when the following relation
holds true:

 .ε)x(f)x(f Gi ≤− (23)

2.1.6. The "No Free Lunch" Theorem

Wolpert and Macready's "No Free Lunch Theorem" (NFL) applies to most

algorithms in search and optimization ([98, 99]). It states that the performance of
any two algorithms averaged on the set of all possible objective functions in a finite
search space is equivalent. Moreover, their performance is even comparable to a
random search.

Fortunately, NFL is not valid in all real-world situations. There are finite
subsets of the search space in which some algorithms perform much better than
others and the incidence of these situations are quite high in practice. Later, Wolpert
and Macready proved the existence of the co-evolutionary free lunches in self-play
problems ([100]).

From NFL one must understand that there is no overall superior algorithm.
Better algorithms can be designed only for particular problems, therefore in order to
solve more efficiently an objective function one must have prior knowledge on which
method performs better in that case.

2.2. Genetic Algorithms

2.2.1. Evolutionary Computation and GAs

Genetic algorithms (GAs) belong to the greater category of evolutionary

computation (EC) methods. EC is an umbrella for all population-based meta-
heuristics that mimic Darwinian evolution ([26]) to iteratively find the optimal
solution. Specifically, the potential solutions, which are represented as individuals
are improved systematically through evolution towards the optimum. Friedberg and
Bremermann applied for the first time in the fifties the Darwinian concepts in
optimization ([21, 36]). Genetic algorithms are one of the most popular optimization
methods and they were introduced by Holland in the mid-60's ([44, 45]).

The notion of population representing solutions is central not only to EC, but
to the majority of other metaheuristics that do not fall into this category.

Definition 4. The population of μ individuals at any iteration t that act as

potential solutions in the hyperspace of solutions nH is:

{ } .H)t(x,)t(x),t(x,),t(x),t(x=)t(P n
iμi21 ∈…… (2.4)

BUPT

2.2 – Genetic Algorithms 19

The aforementioned population of individuals representing evolving solutions

obeys the rules from nature. Individuals are competing with each other and only the
fittest survive, thus are selected to reproduce. During reproduction, the transfer of
genetic material might be faulty; there is a slight probability of mutations.

Canonically GAs represent their solutions in a binary form, therefore a
mapping function is needed to translate the genotype (the binary representation of
the solution) into the phenotype (the actual form of the solution, i.e. a real-valued
representation) and vice versa. With the advent of real-valued GAs ([29, 35]), this
disadvantage disappeared.

2.2.2. A General Evolutionary Framework

A general evolutionary framework that characterizes all evolutionary

algorithms (EAs), and GAs in particular, was defined by Bäck et al. in [7] and was
slightly improved by Bergh in [97]:

Let f be the fitness function that measures the quality of a solution - the
objective function - and let F(t)={f(x1(t)), f(x2(t)),…, f(xi(t)),…,f(xμ(t))} be the
fitness of the whole population. Given the strategy parameters f, μ (the parent
population), λ (the offspring population), Θs (the probability of selection), Θr (the
probability of recombination) and Θm (the probability of mutation), the general
evolutionary framework is defined as in Pseudocode 1.

Pseudocode 1. Bäck's general evolutionary framework.

 t ← 0
P(t) ← intialise(μ)
F(t) ← evaluate(P(t), μ)
Repeat

P’(t) ← recombine(P(t), Θr)
P’’(t) ← mutate(P’(t), Θm)
F(t) ← evaluate(P’’(t), λ)
P(t+1) ← select(P’’(t), F(t), μ, Θs)
t ← t + 1

Until a termination criterion is met

2.2.3. Initialization

Population initialization is the first action taken by an EA; it can consist in

generating an uniform distribution of the initial population across the search space
done either in a deterministic manner when possible - e.g.: spreading the
individuals across the nodes of a grid generated on the search space, or
stochastically by using an uniform random distribution. A popular initialization
technique is the nonlinear simplex method from [70]. More sophisticated
intialization schemes can also be employed, but it is generally accepted by
researchers that a reliable algorithm should perform well with the uniform approach
and should not use the initialization step to gain competitive advantages over other
similar algorithms.

BUPT

20 Background - 2

2.2.4. Selection

Selection is the process of picking the best individuals according to the

fitness function to form a group of parents that will later generate offspring. Two
most discussed in scientific literature types of selection are tournament selection
and roulette-wheel selection.

Tournament selection means running a series of contests between a
randomly picked set of population members and adding the winners into the parents
group. Formally, this can be formulated as in [74]:

Definition 5. Let P be a population consisting of μ individuals, m be a fixed
integer from the set {2,3,…,N}, and k be the number of parents to be selected.
Tournament selection can be described with the Pseudocode 2.

Pseudocode 2. Tournament selection.

Do (i = 1..k)

Choose randomly m individuals from the population P.
Select one among the m individuals.
Add the selected individual into the parent pool.

End Do

Tournament selection takes two forms: the stochastic form and the

deterministic form. In the stochastic variant those m individuals are probabilistically
ranked. The best individual has the probability p to be selected, the second best has
the probability of selection p(1-p), and the last one p(1-p)m-1. In the deterministic
variant the best individual is selected; in this way elitism is used.

When using roulette-wheel selection less fit individuals can enter the parents
pool and then to each one from the set of m individuals the following probability of
being picked is assigned:

.

f

f=p

j

m

1=j

i
i

∑
 (2.5)

In order to resemble a roulette wheel where each individual occupies a
region pi, an individual holding index }m{1,2..k ∈ is picked such that:

,p<qp i

k

0=i
i

1k

0=i
∑∑ ≤

−
 (2.6)

where q ~ U(0,1) and it is assumed that 0=p0 .

2.2.5. Recombination

The recombination process, also called crossover for GAs, controlled by the

parameter Θr, is referring to the process of mixing two parents into giving birth to
two new offspring. Because genetic algorithms primarily rely on recombination, the
probability rate of crossover is high (around 70%).

BUPT

2.2 – Genetic Algorithms 21

Traditionally, since GAs use a binary representation, the recombination

takes place on the composing bits of parents' genotype. The simplest case, the 1-
point crossover is defined below, but there are also multi-point crossover operators
that are defined similarly:

Definition 6. Given }p,p,p{=p n112111 … and }pp,p{=p n222212 … two
randomly chosen parents of length n and a crossover point 1}n{1,2,k −∈ … , then
the resulting offspring are: }p,p,p,p,p{=o n21)k2(k112111 …… + and

}p,p,p,p,p{=o n11)k1(k222212 …… + .

In order to offer a simple vizualisation, consider a parent's genotype be

represented by "⊗" and the other one's genotype be notated with "⊕". A custom 3-
point crossover is exemplified below:

first parent: ⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗ |||

second parent: ⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕ |||

 −−−−−−−−−−−−−−−−−−−−
first offspring: ⊕⊕⊗⊗⊗⊗⊕⊕⊕⊕⊕⊗⊗⊗ |||

second offspring: ⊗⊗⊕⊕⊕⊕⊗⊗⊗⊗⊗⊕⊕⊕ |||

 There are many other variants of binary crossover operators, like uniform
crossover (for each offspring's new bit selecting with a chance of 50% from each
pair of parents' bits) or cut-and-splice crossover (offspring with different dimensions
resulted from asymmetrical crossover points on parents). However, with the
introduction of the real-valued GAs the arithmetic crossover operators were
invented. More information about crossover operators can be found in [28].

The simplest arithmetic crossover operator, taken from [97], is defined as
follows:

Definition 7. Given)t(p1 and)t(p2 as two parents, then the two children
can be obtained as follows:

),t(p)r(1.0)t(pr=1)t(o 21111 −++

),t(p)r(1.0)t(pr=1)t(o 11212 −++ (2.7)
where r1 ~ U(0,1) is an uniformly distributed random variable.

Nowadays, one of the most popular arithmetic crossover operators, the one
that was used in the experimental part that supports this thesis, is the BLX-α blend
crossover that supports multiple offspring. Here it is defined as in [35]:

Definition 8. Given two parents p1(t) and p2(t) and a control parameter α,
the ith gene of an offspring h is defined by:

),α*Ig,α*Ig(=h maxmini +−U

),p,p(min=g),p,p(max=g i2i1mini2i1max

 .gg=I minmax − (2.8)

BUPT

22 Background - 2

2.2.6. Mutation

The mutation perturbs the genotype of one given individual according to the

mutation rate Θm. It promotes diversity because it abruptly changes the genome.
Mutation is a ''second-class citizen'' in GAs, therefore it has a small probability rate
(usually 10%).

In binary representations, mutation consists in flipping a randomly picked
bit from an offspring with a given probability rate. In real-valued representations,
mutation is affecting some vectorial components of the solutions by changing them
with some randomly generated numbers inside a predefined range.

A commonly used mutation for real-valued genetic algorithms is the
Gaussian distributed mutation, defined as in [28]:

),σ(0,1)t(o=1)t(y ikk N+++ (2.9)

where ko is k-th offspring's vector component affected by mutation, iσ is a user

defined variable and ky is the result of the operation.
A lot of the more elaborate arithmetic mutations are based on Mühlenbein's

mutation ([69]), which is described by the following equation:
,γrang1)t(o=1)t(y kkk ⋅±++ (2.10)

where)ab(0.1=rang kkk −⋅ is the mutation rate, kb and ka are the maximum
upper and lower ranges, the signs are chosen randomly with a 0.5 probability and:

,2α=γ k
i

15

0=i

−∑ (2.11)

where {0,1}αi ∈ that is randomly generated with 1/16=1)=α(p i . This special
kind of operator generates mutation gradual neighborhoods that do not exceed the
given range limit (kk ab −). More information can be found in [28] and [43].

This section was a short overview on genetic algorithms. For a more detailed
description and a deeper analysis on the above presented topics, the reader is
suggested to consult Goldberg's book, [40].

BUPT

2.3 – Particle Swarm Optimization 23

2.3. Particle Swarm Optimization

2.3.1. Swarm Intelligence

 Particle Swarm Optimization (PSO) is the most prominent optimization

technique belonging to the larger category of the swarm intelligence.
As stated in [74, p.16], "swarm intelligence is a branch of artificial

intelligence (AI) that studies the collective behavior and emergent properties of
complex, self-organized, decentralized systems with social structure. Such systems
consist of simple interacting agents organized in small societies (swarms). Although
each agent has a very limited action space and there is no central control, the
aggregated behavior of the whole swarm exhibits traits of intelligence, i.e., an
ability to react to environmental changes and decision-making capacities."

Bird flocking, fish schooling, animal herding, bee or ant colonies, as well as
human interactions stood as the main inspiration sources for swarm intelligence.
Early related work first appeared in 1989 in [13], and soon several representative
algorithms for this field developed: particle swarm optimization ([51]), ant colony
optimization ([33, 34]), stochastic diffusion search ([15, 16, 19]) and artificial bee
colony optimization ([48]).

Five basic abilities are exhibited in swarm intelligence algorithms, as stated
in [66]:

Adaptability: behavioral changes can occur under external factors
Proximity: systems can perform space and time computations
Quality: the capability to respond to environmental quality factors
Diverse response: the faculty of producing several different responses
Stability: the capacity of retaining robust behaviors under soft

environmental changes
PSO is a very competitive optimization algorithm initially introduced by

Kennedy and Eberhart in [51]. It was inspired from an older algorithm that
simulated a bird flock (described in [81]). It is representative to the "social mind"
metaphor by simulating the social behavior of groups from the animal kingdom,
such as fish or birds. Because PSO does not need any gradient information, it can
successfully be used in black-box optimization.

2.3.2. Algorithm Description

In nonprofessional’s words, PSO can be described as a population of

particles that fly in the search hyperspace of the potential solutions. Until a
termination criterion is met, each particle is guiding its flight based on its own
experience and the experience of the group it belongs to. All particles are social,
they belong to a group, hold positions and have velocities; they remember their
best position so far and they know instantly the best position in their group.

The PSO's updating principle is very simple and is made of two components:
at each iteration, each particle updates its position towards its personal best - the
cognitive component - and its group's best - the social component.

PSO consists in a social network of particles searching for the overall
optimum. They interact and exchange information inside their groups while flying
through the search space.

BUPT

24 Background - 2

Next, for describing PSO the notation from [97] will be used:
 f - is the function to be minimized,

 n - is the dimension of the solution hyperspace nH ,
 s - is the number of particles in the swarm,
 i - is the index of a particle, such that s1,i ∈ .
Each particle i deals with the following variables:
 xi - is its current position,
 vi - is its current velocity,
 yi - is its current best position,
 iŷ - is the neighborhood's best position.
Definition 9. The neighborhood with a size l of a particle i in the particle

swarm optimization algorithm is defined as:
)}.t(y),t(y,),t(y),t(y),t(y,)t(y),t(y{=N li1li1ii1i1lilii +−++−−−− …… (2.12)

Particle Swarm Optimization is an algorithm that consists of three phases:
Initialization. The particles' positions are set uniformly in the search

space:
x,x=xij ~ .n1,j,s1,i),x,x(maxmax ∈∈+−U (2.13)

Velocities are set to 0 or initialized using the following rule:
 v,v=vij ~ ,n1,j,s1,i),v,v(maxmax ∈∈+−U

 [0.1,1.0].k,xk=v maxmax ∈× (2.14)
 Then, the best positions are updated using eq. (17) and (18).
 Iterations. In this phase, the velocities are updated as follows:

)],t(x)t(ŷ)[t(rc)]t(x)t(y)[t(rc)t(wv=1)t(v ijijj22ijijj11ijij −+−++ (2.15)

where 1c is the personal coefficient, 2c is the social coefficient, (0,2]c,c 21 ∈ . 1r

and 2r are random vectors, such that (0,1)Ur,r 21 ~ .
The first term of (2.15) is the previous velocity influenced by an inertial

weight w . The second term is the personal component that makes the particle
move toward its best personal position so far, and the third term makes the particle
to turn to neighborhood's best position found so far.

The positions are updated by adding the result from eq. (2.15) to the
previous position:

1).t(v)t(x=1)t(x iii +++ (2.16)

At the end of each iteration, iy and iŷ are updated using the formulae:

.
))t(y(f<)1)t(x(fif1)t(x
))t(y(f)1)t(x(fif)t(y

=1)t(y
iii

iii
i

⎩
⎨
⎧

++
≥+

+ (2.17)

.Na)},a(f{min=1))t)(ŷ(f|N1)t(ŷ iiii ∈∀+∈+ (2.18)

 It must be added that if a velocity or position exceeds its range, then
clamping is employed. This assures that values stay within the desired values.

 Termination. It occurs when a given criterion is met (a number of fitness
calls or iterations, stagnation, etc.).

BUPT

2.3 – Particle Swarm Optimization 25

2.3.3. Pseudocode

A typical PSO procedure that describes the above long definition can be

written as in Pseudocode 3.

Pseudocode 3. Classic PSO procedure.

Initialize an n-dimensional swarm S of s particles.
t ← 0
Repeat

Do (i = 1..s)
Update yi using equation (2.17)
If yi < iŷ Then // Update the neighborhood's best if the case

iŷ ← yi
Update the velocity using eq. (2.15).
Update position using eq. (2.16).
End Do

 t ← t+1
Until a termination criterion is met.

2.3.4. Flavors

PSO comes in two flavors: the gbest and the lbest variants.
In the gbest variant there is only one big neighborhood that contains all

particles and they are fully connected. It was actually the PSO that was initially
described by its inventors, Kennedy and Eberhart. In this model all particles know a
global best, ŷ . In this case, eq. (18) is replaced by the following equation:

 { }=))t(ŷ(f|)t(y,),t(y),t(y)t(ŷ s10 …∈

 { }.))t(y(f,)),t(y(f)),t(y(fmin s10 … (2.19)
The lbest variant has been described before in this section and in this form a

particle communicates only inside its neighborhood. The lbest model has no spatial
relationship between particles because it would be computationally expensive. The
size of a particle's neighborhood spans across l indexes of particles.

It can be noticed that the gbest variant is a special case of the lbest variant,
with s=l . A mix of both flavors can be found in [73] under the name Unified PSO.

2.3.5. Topologies

The way particles communicate in their social network determines the

network topology. There are various network topologies that define "small worlds"
for PSO particles in the scientific literature, but only the ones most used in the
experimental practice are given below:

 • Ring topology (see Fig. 2.2a): describes a lbest model of PSO where
1=l , such that a particle i can exchange information with the particles 1i − and
1i + ; the slow informational exchange rate gives the algorithm the ability to explore

various regions of the search space.

BUPT

26 Background - 2

 • Chordal ring (see Fig. 2.2b): is an extension to the standard ring

topology by adding extra connections between all pairs that are some index-based
distance apart in order to increase the information flow and the convergence speed.

 • Fully connected topology (see Fig. 2.2c): is the gbest model where
all particles exchange information; this can lead to premature convergence because
it is possible that not all the search space is explored when a very good local best is
found early.

 • Grid topology (see Fig. 2.2d): also called Von Neumann topology, is
an arrangement in which particles communicate in 4 cardinal directions (N, E, S,
W); it is recommended by Kennedy in [50] as the best performing topology in his
tests and it is used as the default topology for the experiments with PSO algorithms
provided in this work.

Figure 2.2: PSO topologies.

BUPT

2.3 – Particle Swarm Optimization 27

2.3.6. Inertial Weight

 The usage of the lbest variant and topologies can bring diversity in the

swarm and can enhance a thorough local exploration, but still the swarm needs to
converge to a satisfactory solution in a reasonable amount of time. Also, another
problem was that of the swarm explosion, with particles exceeding by position the
search bounds; this was partially solved by clamping to the maximum range. A
better solution was the introduction by Shi and Eberhart in [86] of the inertia
weight, w into the updating principle of PSO in eq. (2.15) in order to boost the
refinement process of promising solutions; it is worthy to note that the original PSO
developed by Kennedy and Eberhart was not containing the inertia weight.

Good experimental results were obtained for linearly decreasing values of w
between [0.9,0.4] in [88]. The study from [87] found best results for w=0.8.
Successful simulated annealing-like schemes were proposed also, like the one in
[38] and a fuzzy inertia weight in [89].

2.3.7. Constriction Factor

 Ozcan and Mohan studied the oscillatory properties of the particles'

trajectories in PSO in [72]. Later, Clerc and Kennedy, after a thorough investigation,
published the Standard PSO variant in [23] that lack the inertia weight, but has a
constriction factor instead, therefore eq. (15) was replaced by:

)]],t(x)t(ŷ)[t(rc)]t(x)t(y)[t(rc)t(v[χ=1)t(v ijjj22ijijj11ijij −+−++ (2.20)

where χ is called the constriction coefficient or constriction factor. Although
algebraically equivalent to the inertia weight model, this variant is known for its
mathematical properties that imply the following selection of the parameters:

,
42

2=
2 −−− ϕϕ

χ (2.21)

where 4>,cc= 21 ϕϕ + .
The configuration with χ=0.729 and c1=c2=2.05 is considered the standard

configuration for this type of PSO, that also will be used in benchmarks throughout
this paper.

2.3.8. Simplifications

 The idea to simplify the PSO in order to obtain a more robust algorithm,

better to tune, to control and document for multiple optimization problems is not
new. It first appeared as the "social-only PSO" in [49] and was later developed by
Pedersen in [76]. A study related to the optimal number of particles in such
algorithms can be found in one of this thesis author's publications, in [62].

Simplification consists in leaving out one of the components from the
updating principle. Pedersen's PSO-VG from [75] (the name states it preserves the
previous velocity and the global best to orient itself) has replaced the velocities
update formula with:

)].t(x)t(ŷ)[t(rc)t(wv=1)t(v ijjj22ijij −++ (2.22)

BUPT

28 Background - 2

In order to successfully tackle different situations, adaptation schemes can

be employed during the optimization process, but this implies a higher operational
and computational cost. In [75] Pedersen concludes that it is better to use
simplification than adaptation because his results on benchmarks were not too
different in both cases.

2.4. Test Functions and Tools

2.4.1. The Need for Benchmarks

 It is hard to tell how a new algorithm behaves on a set of real-world

problems. In order to prove the quality of an optimization method in real-world
scenarios and to have the possibility to compare its performance with other
techniques there should be a standard way to do it.

In order to asses a large palette of situations, benchmark functions with
various degrees of difficulty were designed to test optimization algorithms and to
draw conclusions regarding the convergence speed and the optimality. A set of
benchmark functions was first proposed by De Jong in [47] and since then more
sophisticated test functions were developed.

Seen in 3D, most of these functions look like relief forms - mountains,
valleys, hills etc. Usually, they possess many local minima in order to provide a high
multi-modal environment in order to rigorously simulate unpredictable real-world
situations.

There is no precise way to correctly assess the performance of a black-box
stochastic optimization algorithm over a set of problems other than running it and
observing the results. Only empirical analysis can be effectively used. This happens
mainly due to the stochastic nature of the algorithms. Their behavior cannot be
exactly predicted by a fixed theoretical model.

2.4.2. Benchmark Biases

 Standard test functions are designed in such a way to mimic complex real-

world situations and not to give advantage to an algorithm over another. The
benchmarks should not be biased. The list with the main biases that can appear in
benchmark functions, taken from in [64], is given below along with comments on
how they interact with some algorithms.

Initialization bias. Population-based algorithms like PSO do a uniform
initialization. On a spherical test function, this means that some individuals could
already have found the best solution.

Axial and directional bias. According to [25], binary GAs exhibit better
performance on functions with axial biases.

Decomposability/separability. In [94], separability is defined as:
Definition 10 A function f(x) is separable iff

.)x(fminarg,),,x(fminarg=)x,x(fminarg n
nx

1
1x

n1
nx,1x ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
…………

…
 (2.23)

[25] has demonstrated that GAs perform better on separable functions than
on non-separable.

BUPT

2.4 – Test Functions and Tools 29

Rotational invariance. Ackley's function has a long funnel with rotational

invariance. The population-based algorithms can push their individuals into that
swirl and find easier the best solution.

Regularity. Learning-based methods can exploit found regularities.
Scale bias. At a smaller scale, functions like Rastrigin loose details and

transform themselves into simpler functions.
In order to make a test function more difficult, one may try to shift it with

an offset or to rotate it. There is no perfect benchmark and that is why there are so
many. However, there are some very frequently used ones in the scientific literature
and those will be described in the next section and used in tests performed
throughout this thesis.

2.4.3. Test Functions

 Ten popular test functions were selected from the scientific literature and

their characteristics are presented as in [95]. They are renamed with LF for a more
convenient use. Their graphs are provided in 3D (2 dimensions, 1x and 2x , plus

the fitness function)x,x(f 21 . The shifted functions and their graphs are picked
from CEC 2005's list from [92].

 1. Generalized Rosenbrock

.5,5][X),)x(1)xx(100(=)X(LF n2
i

22
i1i

1n

1=i
1 −∈−+−+

−

∑ (2.24)

Global optimum: 0=)X(LF1),(1,=X G1G … .
Comments: The Generalized Rosenbrock function (see Fig. 2.3, generated

with code from [31]), introduced in [82], is an unimodal non-separable function that
has a wide flat plateau in which algorithms may fail to find the global optimum that
resides in a very thin and steep valley inside the aforementioned plateau (see Fig.
2.3b, generated with code from [93]).

Figure 2.3: Generalized Rosenbrock function.

BUPT

30 Background - 2

Figure 2.4: CEC 2005 shifted functions.

 2. Shifted Sphere

,100,100][X,OX=Z,fz=)X(LF n
2bias

2
i

n

1=i
2 −∈−+∑ (2.25)

where]o,o[=O n1 … is the shifted global optimum.

Global optimum: 450=f=)X(LF,O=X 2biasG2G − .

Comments: The Shifted Sphere (see Fig. 2.4a) function is an unimodal,
shifted, separable and scalable function derived from its simple and unshifted
variant. Usually an algorithm fails this test when it contains theoretical mistakes. It
is a test for general efficiency.

BUPT

2.4 – Test Functions and Tools 31

 3. Shifted Rosenbrock

 ,f)1)z()zz(100(=)X(LF 3bias
2

i
2

1i
2
i

1n

1=i
3 +−+− +

−

∑

 ,100,100][X1,OX=Z n−∈+− (2.26)
where]o,o[=O n1 … is the shifted global optimum.

Global optimum: 390=f=)X(LF,O=X 3biasG3G .

Comments: The Shifted Rosenbrock (see Fig. 2.4b) function is a multi-
modal, shifted, non-separable and scalable function derived from Generalized
Rosenbrock function. It is harder to solve that its simpler counterpart and retains
the capability to provide information on how an algorithm can tackle plateau
functions.

 4. Shifted Rastrigin

,5,5][X,OX=Z,f10))zπ(2cos10z(=)X(LF n
4biasi

2
i

n

1=i
4 −∈−++−∑ (2.27)

where]o,o[=O n1 … is the shifted global optimum.

Global optimum: 330=f=)X(LF,O=X 4biasG4G − .

Comments: The Shifted Rastrigin(see Fig. 2.4c) function is a multi-modal,
shifted, separable and scalable function derived from the Rastrigin function. It can
check for behavior of convergence in the presence of a huge number of local minima
and large basin of attraction.

 5. Shifted Schwefel 1.2

,100,100][X,OX=Z,fz=)X(LF n
5bias

2

j

i

1=j

n

1=i
5 −∈−+

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∑∑ (2.28)

where]o,o[=O n1 … is the shifted global optimum.

Global optimum: 450=f=)X(LF,O=X 5biasG4G − .

Comments: The Shifted Schwefel 1.2 problem (see Fig. 2.4d) is an
unimodal, shifted, non-separable and scalable function derived from the simpler
Schwefel 1.2 function. As stated in [22], it can provide a hint on the algorithm's
robustness.

BUPT

32 Background - 2

Figure 2.5: Other multimodal functions.

 6. Himmelblau

6,6].[x,x,7)xx(11)xx(=)x,x(LF 21
22

21
2

2
2
1216 −∈−++−+ (2.29)

Global optima: One global maximum at
181.616=0.923038)0.270844,(LF6 −− and four identical global minima:

3.283196)3.779310,(.131312),2.805118,3({(3,2),)x,x(min2min1 −−−∈ ,
1.848126)}(3.584428,, − where the function's value is 0.

Comments: A low-dimensional multi-modal plateau function (see Fig. 2.5a,
generated with code from [32]).

 7. Griewank

.600,600][X1,
i

xcos
4000
x

=)X(LF ni
s

1=i

2
i

n

1=i
7 −∈+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
− ∏∑ (2.30)

Global optimum: 0=)X(LF0),(0,=X G7G … .
Comments: Griewank (see Fig. 2.5b, generated with code from [79]) is a

multi-modal, separable and scalable function.

BUPT

2.4 – Test Functions and Tools 33

 8. Ackley

+
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⋅−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−⋅− ∑∑)xπ(2cos

n
1expx

n
10.2exp20=)X(LF i

n

1=i

2
i

n

1=i
8

 .20,20][X,e20 n−∈++ (2.31)
Global optimum: 0=)X(LF0),(0,=X G8G … .
Comments: Ackley (see Fig. 2.5c, generated with code from [79]) is a

multimodal, separable and scalable function that is like a long funnel towards the
global optimum.

 9. Bohachevsky 1

 0.7),)xπ(4cos0.4)xπ(3cos0.3xx(=)X(LF 1ii
2

1i
2
i

1n

1=i
9 +−−+ ++

−

∑

 .100,100][X n−∈ (2.32)
 Global optimum: 0=)X(LF0),(0,=X G9G … .
Comments: Bohachevsky's first test function (see Fig. 2.5d, generated with

code from [79]) is an unimodal, separable and scalable function.

 10. Kursawe

))xx0.2(exp10(=LF 2
1i

2
i

1n

1=i
a10 +

−
+−−∑ (2.33)

))x(sin5|x(|=LF 3
i

0.8
i

1n

1=i
b10 +∑

−
 (2.34)

 Global optimum: 0=)X(LF10,=)X(LF0),(0,=X Gb10Ga10G −… .
Comments: Kursawe's functions (Fig. 2.6a and 2.6b, both generated with code from
[79]) from [55] are useful in multi-objective optimization. Algorithms should
optimize both of them simultaneously.

Figure 2.6: Kursawe functions.

BUPT

34 Background - 2

2.4.4. Tools

 In the following subsection, the tools that were used for conducting the

experiments within the research associated with this work will be enumerated along
with a short presentation line for each one of them:

Hardware Tools
1st PC system: CPU - Intel Pentium i7 2.66 GHz; RAM - 6 GB; running

Microsoft Windows 7 Enterprise 64-bit.
2nd PC system: CPU - Intel Pentium T2250 1.73 GHz; RAM - 2 GB;

running Microsoft Windows 7 Professional 32-bit.

Software Tools
Java EvA2: An extensive evolutionary framework to implement, compare

and test optimization algorithms. The software and its documentation is available at
http://www.ra.cs.uni-tuebingen.de/software/EvA2.

IntelliJ IDEA: An IDE to modify the sources of Java EvA2 in order to create
new algorithms, available at http://www.jetbrains.com/idea.

Microsoft SQL Server: A relational database server utilized to store
experimental data. http://www.microsoft.com/sqlserver/en/us/default.aspx.

SPSS: A computer program used for statistical data analysis and for
generating plots. Available at http://www-01.ibm.com/software/analytics/spss/.

gnuplot: A plotting utility, available at http://www.gnuplot.info.
Matlab: A fourth generation language for numerical computing and plotting

available at http://www.mathworks.com/products/matlab.
Matplotlib: "... a python 2D plotting library which produces publication

quality figures in a variety of hardcopy formats...". Available for download at
http://matplotlib.sourceforge.net.

From the above listed set of software tools, Java EvA2 needs special

attention. It is a modular evolutionary framework that contains most of the
nowadays-evolutionary algorithms. This is very important because the researcher
has the possibility to implement her/his own algorithms inside the framework and
do a direct comparison in terms of performance with the other provided methods.
More, this framework has statistics and plotting abilities and also offers support to
solve real-world optimization problems. At the moment this PhD thesis was written,
after a thorough evaluation, Java EvA2 was considered by the author as the best
available evolutionary framework and the most suitable to perform experiments
with. For details on how to use it, the reader is referred to the Java EvA2's website
and to a related article regarding this evolutionary framework, [54].

2.5. Concluding Remarks

 This chapter summarized the most important aspects of optimization, real-

valued genetic algorithms and particle swarm optimization, in order to prepare the
reader for the introduction of the disagreements concept applied in optimization
problems throughout the next chapters.

BUPT

2.5 – Concluding Remarks 35

If people want superior products, efficient use of resources or maximized

profits then they should think starting to optimize their processes. It is in the human
nature to thrive for better and better and achieve continuous progress.

PSO and GAs are two popular optimization methods that find the best
solutions in hard problems without gradient information and this makes them
suitable to deal with most optimization problems in design, engineering and
economics. However, like all optimization algorithms, it is not guaranteed that they
will find the global optimum in all situations. An algorithm should always keep a
balance between the exploration of new regions and the exploitation of the current
best solution and the space in its vicinity. For PSO and GAs the exploration is
achieved by increasing the population's diversity, thus slowing the convergence, but
increasing the probability to find better solutions. On the other hand, the
exploitation would increase the convergence rate, but could lead to premature
convergence and the algorithm could miss the global optima. Both algorithms have
internal basic mechanisms to boost the convergence and to assure a high diversity.
To increase the diversity across population, GAs use mutation while PSO uses the
lbest model with neighborhood topologies. To speed up the convergence, GAs use
the crossover operator while PSO adopted the inertia weight or the constriction.

Although most evolutionary algorithms, including swarm intelligence,
incorporate both exploration and exploitation components there is still a lot of room
for improvement and this is the main purpose of this PhD thesis. It introduces a new
metaphor that helps algorithms find better solutions in a shorter period and proves
it on the most important optimization test functions. The new idea is presented and
tested in the next chapters.

BUPT

3. DISAGREEMENTS

3.1. Rationale

Disagreements represent a normal social phenomenon between members of

a population. A disagreement regarding an issue can appear in any social group at
any given time. The history of our civilization and our culture as human beings
recorded many cases of individuals or groups of individuals that challenged the
norm. In an economics-related study on the dynamics of the disagreements and the
opinion fluctuations in a social network, in [2], Acemoglu et al. state that:

"Disagreement among individuals in a society, even on central questions
that have been debated for centuries, is the norm; agreement is the rare exception.
How can disagreement of this sort persist for so long? Notably, such disagreement is
not a consequence of lack of communication or some other factors leading to fixed
opinions. Disagreement remains even as individuals communicate and sometimes
change their opinions."

Blackwell and Dubbins theorem in [17] about "merging of opinions" or
Savage's theorem in [85, p.48] are some classic theories proving that if two
individuals observed the same sequence of events then they will agree on a single
world variant regarding an issue, no matter what were their prior knowledge on the
topic. Agreement is settled through learning. Recent work done by [3, 4, 8, 9, 37,
41, 90, 103] emphasizes that over a strongly connected network a consensus is
typically reached. The same phenomenon can be observed in PSO variants: for the
gbest model, which has a fully connected topology, the swarm typically converges
faster than in the lbest case.

There are also other models, such as Axelrod's in [6], in which individuals
with similar opinions tend to communicate more often (also like in [30, 53]) and
form clusters ([18, 24, 63]), but those models cannot explain the continuous
opinion fluctuations in our society, and more than that, they are not useful in swarm
intelligence algorithms because they do not promote diversity.

Nonetheless, despite the above-mentioned theories, disagreements are
ubiquitously found even in strongly connected networks where the observed
sequence of data is the same. This issue is discussed in [1] and the conclusion is
that:

"In none of these cases can the disagreements be traced to individuals
having access to different histories of observations. It is rather their interpretations
that differ."

It is widely accepted that scientists, engineers or economists routinely
disagree on the same central issues in their field based on their different
interpretations of the same facts. Their disagreements on the same set of data can
arise from different importance they give to various variables in the considered
problem. Different generations of human beings usually disagree at certain times,
like teenagers vs. their parents. The Internet discussion forums are abundant in
disagreements on a very large number of topics. The examples can continue in
many other areas.

BUPT

3.2 – Foundations 37

Disagreements exist everywhere there is a society. They are a change

promoter and they bring evolution and variety into the social systems. They can be
extreme and visible when promoted by people who directly and forcefully challenge
the status-quo or they can go unnoticed when there is mild discontent. The rationale
for the research behind this PhD thesis is that swarm intelligence algorithms - and
by extension all the population-based optimization algorithms - can benefit from the
disagreements the same way our real-world society benefits from them. This PhD
thesis provides a comprehensive extension to the author's previously published
articles that introduced disagreements in the theory of global optimization.

3.2. Foundations

The disagreements concept and its foundations are introduced in this

chapter the same way as in the author's previously published works in [60, 61, 58].
In order to experiment with different disagreement types, this chapter provides the
fundamental framework for disagreements in the optimization theory using the basic
definitions provided below and three point of views: a low level one - how an
individual's behaviour is changed and how this is seen from this low level, a medium
level point of view - how disagreements are applied on individuals from an iteration
and how the update principle is altered, and a high level point of view - from the
perspective of creating disagreements-enabled algorithms.

3.2.1. From the Individual's Point of View

 The below definition describes the algorithm's update step from an

individual and local point of view.
Definition 11. Given two succesive iterations, t and 1t + , from an

evolutionary algorithm E and a population of s individuals,
{ })t(x,),t(x),t(x=)t(P s21 … , there is a corresponding vector of update behaviors

{),t,x(β),t,x(β=)t(2211B })t,x(β, ss… that makes the transition from)t(P to

{ 1),t(x=1)t(P 1 ++ }1)t(x1),t(x s2 ++ … .
 The update behaviors stem from applying the general updating principle of

the algorithm. The update behaviors are the final effects upon the individuals from
the population.

Definition 12. A disagreement is defined as a function D that operates on
an individual's ix update behavior iβ at iteration t .

Definition 13. Disagreements are defined as the family of functions:

}.z)z(D.Rz|RR:D{=F nnn
D ≠∈∀→ (3.1)

The identity function (no disagreement should happen) is written D∅ .
For a simple visualization of the concept, Fig. 3.1 depicts a situation in which

there are several "rebels" (pictured in black) among a population.

BUPT

38 Disagreements - 3

3.2.2. From the Iteration's Point of View

 At the iteration level there is the updating principle that selects individuals

and apply different update behavior to them. In disagreements-enabled algorithms
there is an apply rule called a "disagreement selector" which alters the general
updating principle and decides at each iteration to which individuals a specific type
of disagreement is enforced.

Definition 14. Let ρ be the disagreement selector that decides which
disagreement is invoked upon an individual update behavior iβ at iteration t from

a given set of disagreements)F(Dv P∈Δ :

.1,j,1,i,D,D=)t,β,(ρ vvjjiv ΔΔΔ ∈∈∈ B (3.2)

 The original behaviours change when disagreements are injected, therefore
)t(B becomes { })t,x(β,),t,x(β),t,x(β=)t(ssD22D11DD …B . The general updating

principle is not totally replaced because when ρ yields D∅ the original behavior
stays in place and no disagreement is invoked. The golden rule is that
disagreements should not happen more often than regular updates would, averaged
on all iterations of an algorithm run, and they must be linked to the algorithm’s
context (e.g. social, cultural, etc.) and particularities.

The process of applying a disagreement to an individual of the population P
at some iteration t can be seen overly simplified if described by Pseudocode 4:

Pseudocode 4. The insertion procedure of disagreements in an EA.

For each update behavior iβ from B

Using ρ , apply the appropriate Di disagreement to iβ .
End

Figure 3.1: Disagreements among individuals of a population.

BUPT

3.3 – Methodology 39

3.2.3. From the Algorithm's Point of View

 The disagreement injector that enhances any evolutionary algorithm iE

with disagreements is defined as follows:
Definition 15. Let E be an EA and ρ a disagreements apply rule. An

evolutionary algorithm with disagreements (EAD), DE , is obtained by
modifying E 's updating principle with the rule ρ , as described by the disagreement
injector function Ψ :

.E=)ρ,E(DΨ (3.3)
Using the above defined disagreement injector in eq. (3.3) and depending

on the given algorithm and the problem to be solved, various disagreement
schemes can be designed in order to benefit from the advantages of this concept:
both enhanced exploitation and exploration and increased convergence rates
without negatively impacting the robustness of the original algorithms, as it will be
demonstrated in the following chapters. The apply rule - ρ , is the de facto
disagreement operator for the evolutionary algorithm E .

3.3. Methodology

3.3.1. DACE Fundamentals

 Unfortunately, due to their stochastic nature, the behavior and the

performance of the evolutionary methods cannot be predicted with great accuracy
using an established mathematical model; they can be analyzed empirically using
computational statistics ([39]), sometimes employing techniques such as regression
analysis ([20]) and/or experimental design ([67, 84]).

In order to do a proper assessment on the impact that disagreements have
on evolutionary algorithms, the experiments behind this thesis were crafted using a
methodology that is inspired from Bartz-Beielstein et al. in [10], who provided an
excellent framework in experimental research that can be applied universally in
evolutionary computation because it successfully blends design and analysis of
computer experiments (DACE) with design of experiments (DOE) and with
classification and regression trees (CART).

In Bartz's usage of DACE, an algorithm design, represented by a vector da ,
contains specific characteristics for an algorithm. An optimal design is denoted as

*
da . A problem design, dp , is a vector describing the particularities of the given

problem. A run is therefore a mapping between an algorithm design and a problem
design,)p,a(=Y dd . The aim of design and analysis of computer experiments

(DACE) is to find the optimum *
da through repeated trials, constrained by a

predefined number of function evaluations (preferably low).
DACE is useful at interpolating observation points from a massive set of

computer experiments. For a stochastic process with an assumed zero mean Z , the
dynamic response)x(Y for an input vector x as a realization of the regression

BUPT

40 Disagreements - 3

model, F , was provided by [83] as a generalization of the classic regression model
εxβ=)x(Y + :

).x(Z)x,β(F=)x(Y + (3.4)

 The covariance for the stochastic process)(xZ is given by the following
formula:

),x,ω,θ(Rρ=)x,ω(V 2 (3.5)
where R , the correlation function, is chosen taking into consideration the actual

process. 2ρ is the process covariance.
Another useful technique within DACE is the sequential design in which an

initial design (0)
da is initially generated. Based on the reported data associated with

its run on the given problem, it is replaced by another related design, (1)
da . This

operation continues until a satisfactory design is obtained. New designs are
generated based either on the improvement expectancy, thus betting on promising
design points with a good forecast, or on design with a high degree of uncertainty
([84]). Improvement is defined as in [74, p. 65]:

Definition 16. Let, k
miny , denote the smallest detected function value after

k runs of a heuristic global optimization algorithm; dax ∈ , be a component of the
design; and)x(y be the response of the algorithm, which is a realization of)x(Y
defined in eq. (3.4). Then, the improvement of the algorithm is defined as:

.otherwise0
0>)x(yyif)x(yy

=λ

k
min

k
min

⎪
⎪
⎩

⎪⎪
⎨

⎧ −−
 (3.6)

In order to build trustworthy statistics, experiments with stochastic
algorithms must be run for a sufficiently large number of times and for a reasonable
amount of time, the initialization must be random with different seeds, the test data
should be comprehensive, large and diverse enough.

3.3.2. Race Testing

The design of algorithms with disagreements takes into account a large part

of DACE methodology, but simplifies the procedures and adapts them to
evolutionary and swarm-based methods. Most experiments are conducted as a race
between a genetic or PSO algorithm with a classical configuration against its
disagreements-enabled counterpart. With this derived methodology, called race
testing, the main focus is on the discovery and analysis of new disagreement
operators, in order to improve the best classical configurations so far; improving
promising but not best design points in classical algorithms is a secondary goal. The
experiments with disagreements in evolutionary computation respected the
guidelines of building relevant statistics: random initialization with different seeds,
each configuration is run many times, various and well-known benchmarks are
used.

Experimentation that leads to the results presented in this PhD thesis
consisted of three main phases:

BUPT

3.3 – Methodology 41

Discovery. In order to study the effects of disagreements, in the first stage

there is no need for sequential design; the scientific literature provides classical
configurations of algorithms and problems (benchmarks), so first it is needed to test
whether the disagreements-enabled methods work at all on a small set of
benchmarks, with classical settings. Usually a classical algorithm configuration and
its disagreements counterpart is tested on 2-3 benchmarks. The exact steps are
described in Table 3.1. The termination criterion is based on a large number of
function evaluations and on the ε -convergence, which one is accomplished first.
Convergence graphs, if the algorithms " ε -converged", or best individual evolution
graphs, if not, are analyzed. It mainly implies the theoretical creation of the new
disagreements operator. This phase is at the origin of the whole elaboration of the
new disagreements algorithms.

Table 3.1: Phase I. Discovery methodology.

Step Activity
Step 1 A new disagreements operator idea.
Step 2 Mathematical description.
Step 3 Disagreements injection into an EA using formula (37).
Step 4 Race specifications:
 - 2-3 benchmark problems,
 - the original algorithm (important factors),
 - the disagreements-enabled algorithm,
 - the termination method,
 - the experimental design,
 - a performance measure.
Step 5 Experimentation.
Step 6 Evaluation and visualization.
Step 7 Statistical data analysis.
Step 8 If:
 - better results, then go to Phase II.
 - promising results, then tweak parameters and go to Step 5.
 - bad results, then quit.

Confirmation. The second stage consists in experimentation on a larger

scale by testing more hypotheses. As described by Table 3.2, a set of tests called
algorithm races usually take place on all the 10 benchmark functions described in
subsection 2.4.3.

Then, sequential design can be used to tune different parameters from the
disagreements operators, while still using fixed classical configurations. The purpose
of this phase is to study how the injected disagreements act upon algorithms across
a large palette of benchmarks and conditions (see Table 3.3).

A later sub-phase using a holistic approach can consist in tuning both the
disagreements' operator parameters and the underlying algorithm's parameters
dynamically. However, because this work is only a proof of concept for
disagreements, the experiments behind it did not follow this path.

BUPT

42 Disagreements - 3

Table 3.2: Phase II (a). Confirmation on classical configurations.

 Step Activity
 Step 1 Hypothesis.
 Step 2 Race specifications:
 - 10 benchmark problems,
 - the original algorithm (important factors),
 - the disagreements-enabled algorithm,
 - the termination method,
 - the experimental design,
 - a performance measure.
 Step 3 Experimentation.
 Step 4 Evaluation and visualization.
 Step 5 Statistical data analysis.
 Step 6 Objective interpretation of the results.

Table 3.3: Phase II (b). Sequential design for improving the new disagreements operators.

 Step Activity
 Step 1 Hypothesis.
 Step 2 Race specifications:
 - one benchmark problem.
 - the original algorithm (important factors),
 - the disagreements-enabled algorithm,
 - the termination method,
 - the experimental design,
 - a performance measure.
 Step 3 Experimentation.
 Step 4 Evaluation and visualization.
 Step 5 Statistical data analysis.
 Step 6 Check termination criterion, if satisfied go to Step 8.
 Step 7 Tweak parameters and go to Step 3.
 Step 8 Acceptance/Rejection of hypothesis.
 Step 9 Objective interpretation of the results from Step 8.

Robustness. The last phase of testing is checking for conditions that

decrease performance by properly assessing the robustness of the newly obtained
algorithms that are enhanced by disagreements. Of course, valid conclusions for
Phase III can be drawn from Phase II already and they represent starting points
when studying situations in which algorithms begin to encounter difficulties.

The termination criterion that is used to determine when an algorithm stops
in any experimental run is based on a predefined number of function evaluations.
This approach brings the possibility to draw and interpret the convergence graphs or
the best individual graphs easily.

BUPT

3.3 – Methodology 43

3.3.3. Common Experimental Setup

All conducted experiments in this thesis used the methodology presented in

the above Subsection 3.3.2. For brevity, they will not be described systematically as
in Tables 3.1, 3.2 and 3.3 throughout this work. Also for brevity, no robustness
studies are provided. In this thesis, only the successful configurations after
experimentally assessing their robustness are included.

Tests took place for all 10 provided benchmark problems in 2.4.3 in 30 and
50 dimensions. Each experiment's output was measured and averaged over 100
runs. The termination condition for any run was set to 30000 function evaluations.

For PSO, two configurations were used in studies:
SPSO: Maurice Clerc's Standard PSO, a constriction-based PSO with

0.729=χ and 2.05=c=c 21 ([23]), implemented in Java EvA2.
PSO-VG: an à la Pedersen simplified PSO, a social-only PSO with 0.729=w

and 1.49445=c2 .
In both two configurations for PSO, the default is the grid topology with a

neighborhood range of 2. Using the conclusions regarding the optimum number of
particles in PSO-VG from the author's article [62], experiments took place in both
cases for a swarm size of 25 and 50.

For testing GAs, a classical GA was considered in two configurations: with
and without elitism. Tournament selection was employed in all cases, with a low
number of 50 individuals in the pool. All GAs used a BLX-α crossover with 0.5=α
and a probability of 0.7 and a Mühlenbein mutation with a probability rate of 0.1.

In all cases, the disagreements-enabled algorithms preserved the original
algorithm's parameters and only their own extra parameters are tweaked or
checked for robustness.

For any conducted experiment the mean best fitness and its standard
deviation is calculated across the above mentioned 100 runs. Other important
output information is provided by the reported convergence ratio - the ratio
between the number of successful runs that hit the target with an 0.01=ε accuracy
as in eq. (2.3) and the total number of runs-, the median best fitness value and
information related on how many disagreements occurred per iteration.

Averaged graphs with the evolution of the best fitness are drawn to study
the convergence behavior across all runs. Worst fitness individuals history graphs
are also generated. The evolution of the average distance between the individuals or
particles is caught in a separate graph. Values in graphs for best and worst fitness
are displayed on a decimal logarithmic scale (on y-axis), while the graphs for
average population distance use a linear scale for values (on y-axis). These
variables are plotted across all fitness function calls (or evaluations), that are
represented on a linear x-axis.

In order to prove the concept of disagreements in every theoretical
construction that is provided and for simplicity and brevity, only relevant testing
situations are presented and analyzed in this thesis. The modified Java EvA2
software that contains the author's additions, namely the σ6 -PSOD, the RS-PSOD
and the GAD algorithms, is available for download at https://github.com/andrei-
lihu/Eva2-AL.

BUPT

44 Disagreements - 3

3.3.4. Concluding Remarks

This chapter provided both a theoretical foundation for disagreements in the

context of evolutionary and swarm intelligence algorithms and a methodology to
develop and test new disagreements operators for classical algorithms.

The rationale for disagreements is their ubiquity among populations
regardless connectivity and information transmission speed. Therefore, needless to
say, any population-based algorithm can implement this new metaphor.

A general mathematical model of disagreements and the way they can be
injected in EA algorithms was described.

The next issue in focus was how to test the performance of the new concept.
After a short introduction into DACE, the race testing methodology was depicted in
detail and was proposed as the standard way of benchmarking disagreements
operators.

BUPT

4. PARTICLE SWARM OPTIMIZATION WITH
DISAGREEMENTS

4.1. Disagreements as A New Social Behavior

4.1.1. Concepts

In PSO, a particle follows a path that is influenced by its personal experience

and its social experience. Even in simplifications of the original algorithm the social
component is always preserved, therefore PSO is a social algorithm in the first
place. The problem with PSO is that in some circumstances its search mechanism
can be trapped into local minima. Other times, the algorithm either converges too
fast or fails to converge at all. The particles' oscillatory movement, while at the core
of PSO's performance over random-search, it can miss some important areas in the
search space. Moreover, in the social model in PSO, even if intended to be simple, a
particle is always guided by the social norm. Aside from the best particle in the
group, most of the time particles are "pure followers" and there is no challenging of
the status-quo like in all real-life societies and groups.

By modeling disagreements in PSO, the particles get their own personality.
Not all will follow an oscillatory path, therefore there is an increased possibility to
explore areas that would have been harder to target before. Each particle can have
a various degree of disagreement: it can partially agree, or extremely disagree with
where it should have travelled next in the search space. Under this differentiation,
the partial disagreements are used to enhance the local exploitation, while the
extreme disagreements are used for increased exploration.

The disagreements in PSO, as described by the author in [58], are affecting
only the social component of the algorithm. Mathematically, a disagreements
injector function for PSO, similar to the one from the formula (3.3), must be
developed as follows:

If the first term from the updating principle of PSO from eq. (2.15) is
replaced with a generic velocity component, denoted with)i,t(V , then, the

cognitive component with)y,x,t(C ii and the social component with)ŷ,x,t(S i ,
and finally making the substitution in eq. (2.16), where the position component is
replaced with a generic one,)t(X , the following generalized updating equation for a
particle i at an iteration 1t + is obtained:

 ,ζ)ŷ,x,t(S)y,x,t(C)i,t(V)x,t(X=)x1,t(X iiiiii +++++

 ,s1,i,ŷ)ŷ,x,t(S,y)y,x,t(C iiiiii ∈∀→→ (4.1)

where iii y)y,x,t(C → is read as ''the cognitive component tends to iy '' and

ŷ)ŷ,x,t(S i → - ''the social component tends to ŷ ''. ζ , which is usually equal to
0 , can accommodate any other PSO that has more components. The change to
the social component must be made with the intent of not following the
leader (best particle) of the group.

BUPT

46 Particle Swarm Optimization with Disagreements - 4

In PSO, it can be easily noticed that the update behavior for any particle i ,

iβ , is represented by the right term of the above eq. (4.1):

.s1,i,ζ)ŷ,x,t(S)y,x,t(C)i,t(V)x,t(X=)t,x(β iiiiiii ∈∀++++ (4.2)
Definition 17. Let P be a PSO that contains the social component)t(S in

the updating principle and ρ a disagreements apply rule. In order to obtain
particle swarm optimization with disagreements (PSOD), DP , a
"disagreement injector" is defined as follows:

.P=)ρ,P(DPSOΨ (4.3)

After the injection function PSOΨ is applied, the updating principle from eq.

(4.1) in the new DP is becoming:

)t,β,(ρ=)x1,t(X ivi Δ+

)t,ζ)ŷ,x,t(S)y,x,t(C)i,t(V)x,t(X,(ρ= iiiiiv ++++Δ

 ,ζ))ŷ,x,t(S(D)y,x,t(C)i,t(V)x,t(X= iiiiii ++++

 .s1,i,D),ŷ(D)ŷ,x,t(S,y)y,x,t(C viiiiiiii ∈∀∈→→ Δ (4.4)

Disagreements are a special operator in PSO and the whole concept is

designed to be applied only on the social component, which can have any particular
implementation and which is detoured without interfering with the rest of
components. For chosen individuals in an iteration, their social component will not
point to neighborhood's best, iŷ , but towards a new point,)ŷ(D ii around the
neighborhood's best.

One of the most important points in the design philosophy for
disagreements is not to alter too much the internals of the original algorithm and to
keep things simple.

4.1.2. Implementations

There can be imagined many ways to implement a disagreement for PSO:

particles can disagree as part of a learning process or a result of a complex social
interaction, but unfortunately, complexity can only lead to a high computational
cost.

In the research report [57], based on conclusions provided in [77] and in
[102], this thesis' author advocated the increase of the local swarm the entropy in
order to prevent swarm explosion and increase diversity. The most efficient way
entropy can be increased is to use randomness injection. It seems like a cheap
option to use randomness injection to simulate a disagreement because other
approaches like automated learning or using extra memory and calculations can be
more expensive. By doing so, this implementation variant for PSODs gain the
advantages of memetic particle swarm optimizers - combinations of a PSO algorithm
with a local search method, based on the concept of memes ([27]), as in [77] or
[78] -, while retaining the low computational cost of the original PSO. There are a
few added parameters and most of the time they do not need per-problem tuning.

By using pure randomness injection, the disagreements implementation
provided in this thesis is following the "keep it simple" principle.

BUPT

4.2 – 6σ-PSOD Operator 47

4.2. 6σ-PSOD Operator

4.2.1. Description

In order to get a glimpse on how disagreements act upon PSO, there was

designed and tested a simple operator that imitates the real world proportion of
disagreements and uses randomness injection across two neighborhood areas in
search space to emulate it - the 6σ-PSOD operator. Its full presentation is taken
from this thesis author's work, published in [58].

In its discovery phase, the 6σ-PSOD operator was shaped based on the
assumption that real-world disagreements have a Gaussian distribution across a
given population and that disagreements can be partial and extreme. Partial
disagreements affect more members of a group than extreme disagreements do.

To make disagreements available in any PSO, an injector function is needed.
Based on (4.3), the 6σ injector is defined as follows:

Definition 18. Let P be a particle swarm optimization algorithm that has a
social component. The function that injects in P a set of disagreements - 6σΔ , with

an apply rule - 6σρ , and transforms it into a particle swarm optimization with

disagreements following the 6σ rule, namely a 6σ -PSOD algorithm - D6σP , is
defined as:

.P=)ρ,P(=)P(D6σ6σPSOPSODσ6 ΨΨ − (4.5)

In this type of PSOD, the updating principle from eq. (4.4) becomes:
)t,β,(ρ=)x1,t(X i6σ6σi Δ+

)t,ζ)ŷ,x,t(S)y,x,t(C)i,t(V)x,t(X,(ρ= iiiii6σ6σ ++++Δ

 ,ζ))ŷ,x,t(S(D)y,x,t(C)i,t(V)x,t(X= iii6σiii ++++

 .s1,i,D),ŷ(D)ŷ,x,t(S,y)y,x,t(C 6σi6σii6σiiiii ∈∀∈→→ Δ (4.6)

For PSODσ6 −Ψ the set of disagreements (the vΔ from the relation (43) that

contains the disagreements, i6σD) is composed of:

{ }.D,D,= epD6σ ∅Δ (4.7)

The first member in the set from (47) - D∅ , is the "no-op disagreement",
meaning that no disagreement takes place. Being an identity function, when applied
to the social component it yields S=)S(D∅ . This non-disagreement is applied to
most of the particles in iteration because the majority of the particles follow the
mainstream, they do not disagree.

The first real disagreement employed here is pD . It is a partial

disagreement because it tempers and skews the social component around its very
vicinity. This type of disagreement takes place quite often in a σ6 -PSOD algorithm
and represents that part of the population that do not exactly follow the main trend
but has related beliefs to the mainstream. In this PSOD, it is used to enhance the
exploitation in the neighborhood of the current solutions. It is a function that

BUPT

48 Particle Swarm Optimization with Disagreements - 4

multiplies member-wise (a Hadamard product) the social component S by a vector
r , which has its components uniformly distributed in the interval 1]1,[+− .

.|r|1,p1),1,(r,Sr=)S(D ppp ∈+−⊗ U ~ (4.8)

The second disagreement is the extreme disagreement eD , called so
because it implies an extreme amplification of the social component S . It
represents the individuals that hold extreme opinions in society. In this PSOD, it is
utilized to enhance the exploration beyond the current capabilities of the old PSOs.
Mathematically, it is a Hadamard product between the social component and a
vector r containing random uniformly distributed values in the intervals 1]2,[−−
and 2]1,[++ :

),r(sgnr=r,Sr=)S(D ppeee +⊗

 rp ~ U(-1,1) .|r|1,p ∈ (4.9)

A rudimentary visualization of the two types of disagreements is given in

Fig. 4.1. In concentric circles, two areas are shown: the inner area is where the
potential result of pD can end up for partial disagreements, while for extreme

disagreements the outer area between circles is where can be the potential result of
eD . The end arrow for social component S will finally point into one of these two

areas if disagreements are invoked according to the formula 4.13.

Figure 4.1: Distribution of disagreement types in concentric circles.

Before the run a Gaussian distribution)σ,μ(=θ 2
6σ6σN is considered as a

reference. Under the 6σ rule, at each iteration t , for each particle i , a

)σ,μ()i,t(θ 2
16σ1 N~ is generated such that 16σ σσ ≥ . 1θ is a parameter that

BUPT

4.2 – 6σ-PSOD Operator 49

depends on the initially set Gaussian distribution and can be used in experiments to
control how much disagreements are injected. In Fig. 4.2 it is shown how 1θ acts as
a filter.

Figure 4.2: Filtering disagreements.

For θ , the following Gaussian regions are defined:
A no disagreements region: accounts for approx. %68.2 of the bell

curve (first two σ s) and it is defined as:
).σμ()σμ(=R 6σ6σ6σ6σ1,2σ +∪− (4.10)

A partial disagreements region: accounts for approx. %27.2 of the bell
curve (next two σ s) and it is defined as:

).σ2μ,σμ[]σμ,σ2μ(=R 6σ6σ6σ6σ6σ6σ6σ6σ3,4σ ++∪−− (4.11)

An extreme disagreements region: accounts for approx. %4.6 of the
bell curve (next two σ s and the rest of what remains under the graphic of the
Gaussian function) and it is defined as:

).),σ2μ[]σ2μ,(=R 6σ6σ6σ6σ5,6σ +∞+∪−−∞ (4.12)

BUPT

50 Particle Swarm Optimization with Disagreements - 4

Figure 4.3: 6σ regions.

Fig. 4.3 illustrates the 6-σ regions for θ . Based on the above provided

equations, the apply rule (the disagreements selector function) is defined as follows:

.
R)i,t(θif),S(D
R)i,t(θif),S(D
R)i,t(θif),S(

=)t,β,(ρ
5,6σ1e

3,4σ1p

1,2σ1D

i6σ6σ

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∈
∈
∈∅

Δ (4.13)

The 6σ -PSOD operator - 6σρ , makes sure that there is a majority of
particles not affected by disagreements, that there is a minority of individuals that
partially agrees and a small minority that totally disagrees.

4.2.2. Experimental Results

Setup
In order to determine the usefulness and the performance of the 6σ -PSOD

operator, race-testing methodology was used as explained in Subsection 3.3. In
the initial discovery phase the new concept applied to SPSO yielded mixed results
on two randomly picked test configurations, but in subsequent experiments it was
confirmed that for most benchmarks a filtering value of 0.7=σ1 provides superior
performance.

A short performance overview for how disagreements act upon standard
PSO (SPSO) and the à la Pedersen simplified PSO (PSO-VG) for all 10 benchmarks
from Subsection 4.3 is given below. The two corresponding disagreements-enabled
algorithms are 6σSPSOD and 6σVGDPSO − . Considered cases cover swarms with
25 and 50 particles and benchmarks problems in a high dimensional environment -
30 and 50 dimensions, a configuration which surrogates most possible nowadays

BUPT

4.2 – 6σ-PSOD Operator 51

real-world problems. The mean best fitness, its standard deviation, the median and
how many partial disagreements per iteration (p.d.i.) and extreme disagreements
per iteration (e.d.i.) were involved are provided as output values from experiments
that averaged the performance from 100 runs.

The benchmarks are classified under several categories: plateau functions,
shifted multi-modal functions, low dimensional problems, regular multi-modal
functions and other types of problems.

A Plateau Function
Generalized Rosenbrock (1LF) is a tricky plateau function, unimodal and

non-separable that represents well the category of plateau functions. Finding better
solutions on 1LF prophesies a good approach. Results are provided in Table 4.1.

Table 4.1: 6σ -PSOD results for 1LF .

For 30 dimensions, it can be easily noticed that for 6σSPSOD vs. SPSO with

25 particles in swarm, the mean best fitness across runs is 5.13 times better, while
for the social only variants 6σVGDPSO − is 3.36 times better. This configuration
with 25 particles in 30 dimensions is of higher interest than the one with 50
particles in the same dimensions, where the σ6 approach scored better also (7.74
and 3.46 times better, respectively) for the obvious reason that it implies a smaller
number of particles and a lower computational cost. A table with the Euclidean
distance between means for the case with 25 particles and 30 dimensions in 1LF is
provided (see Table 4.2). Fig. 4.4 shows the magnitude of the improvement.

BUPT

52 Particle Swarm Optimization with Disagreements - 4

Table 4.2: Euclidean distance between means (1LF in 30 dimensions, 25 particles).

Figure 4.4: Overview of 6σ -PSOD improvements with 25 particles for 1LF in 30 dimensions.

The graphs with the evolution of the best individual from Fig. 4.5 and Fig.

4.6 show how the above results are possible. It is amazing that the injection of
disagreements does not disturb 6σVGDPSO − making it run off the rails, but it
actually helps it find a better path in the search space.

BUPT

4.2 – 6σ-PSOD Operator 53

Figure 4.5: 6σSPSOD vs. SPSO best fitness graph with 25 particles for 1LF in 30

dimensions.

Figure 4.6: 6σVGDPSO − vs. PSO-VG best fitness graph with 25 particles for 1LF in 30

dimensions.

 The secret ingredient for this huge improvement lies in the enhanced
population diversity, as presented in Fig. 4.7 and Fig. 4.8.

BUPT

54 Particle Swarm Optimization with Disagreements - 4

Figure 4.7: 6σSPSOD vs. SPSO avg. population distance graph with 25 particles for 1LF in

30 dimensions.

Figure 4.8: 6σVGDPSO − vs. PSO-VG avg. population distance graph with 25 particles for

1LF in 30 dimensions.

The worst individual moves swiftly in the case of σ6 variants, thus being
most of the time better than its original counterpart (see Fig. 4.9 and Fig. 4.10),
which stagnates.

BUPT

4.2 – 6σ-PSOD Operator 55

Figure 4.9: 6σSPSOD vs. SPSO worst fitness graph with 25 particles for 1LF in 30

dimensions.

Figure 4.10: 6σVGDPSO − vs. PSO-VG worst fitness graph with 25 particles for 1LF in 30

dimensions.

Results for 50 dimensions from Table 4.1 show a 2.59 and 1.74 times
improvement in the case of PSODs for 25 particles in swarm and 17.65 and 1.37
times improvement for 50 particles.

BUPT

56 Particle Swarm Optimization with Disagreements - 4

For 1LF , the results using the 6σ -PSOD operator (with 0.7=σ1 - which is

limiting the number of disagreements) are far better than using the original
algorithms.

Shifted Multi-Modal Functions
For Shifted Sphere (2LF), a quite easy optimization test, Table 4.3 shows

without any doubt a dramatic improvement when using disagreements.

Table 4.3: 6σ -PSOD results for 2LF .

3LF , CEC 2005's Shifted Rosenbrock, is the shifted variant of 1LF , whose
results were already presented above. The big positive performance gap that is
brought by disagreements can be studied in Table 4.4. The very good results show
that the σ6 approach can also work in disturbed environments and on test
functions that are not prone to biases. The only negative case here is the case of
PSO-VG with 25 particles in 30 dimensions, where the mean best fitness is slightly
higher for the σ6 -PSOD variant, but it can be noticed that the median was better
for the σ6 . The other cases are clearly in favor of disagreements. By testing the
original and the shifted variants of Rosenbrock function with good results, it can be
concluded that the new approach with disagreements should be definitively used on
plateau functions.

BUPT

4.2 – 6σ-PSOD Operator 57

Table 4.4: 6σ -PSOD results for 3LF .

Shifted Rastrigin (4LF) is a test function which resembles a large basin and

has many local optima. Table 4.5 provides evidence on how the disagreements-
enabled particle swarm optimizers perform better on this test function too. The
improvement is not as spectacular as in the previous cases, this time it can only be
measured in percents, but it is still worthwhile in the context of optimization, where
every gained decimal matters. The difficult case with 25 particles in swarm and in
50 dimensions is considered for analysis: the evolution of the best fitness graph is
the one provided in Fig. 4.11, the evolution of the worst fitness found by the swarm
is presented in 4.12 and the population diversity is shown in 4.13. In contrast with
the graphs for 1LF , the graphs for 4LF show a smooth evolution for the σ6 -PSOD
algorithms also, which finally manage to find better solutions than their original
counterparts do.

BUPT

58 Particle Swarm Optimization with Disagreements - 4

Table 4.5: 6σ -PSOD results for 4LF .

Figure 4.11: 6σSPSOD vs. SPSO best fitness graph for 4LF with 25 particles in 50

dimensions.

BUPT

4.2 – 6σ-PSOD Operator 59

Figure 4.12: 6σSPSOD vs. SPSO worst fitness graph for 4LF with 25 particles in 50

dimensions.

Figure 4.13: 6σSPSOD vs. SPSO avg. population distance graph for 4LF with 25 particles in

50 dimensions.

Shifted Schwefel 1.2 (5LF) is another hard problem to test. Results from
Table 4.6 show that the only case when the original algorithms perform better than
the σ6 enhanced ones is for swarms with 50 particles in 50 dimensions. However,
the performance difference is small, meaning that it would be better to apply
disagreements anyhow because an eventual penalty is insignificant and the benefit
in the other cases is high.

BUPT

60 Particle Swarm Optimization with Disagreements - 4

Table 4.6: 6σ -PSOD results for 5LF .

A Low Dimensional Problem
Himmelblau (6LF) is a low dimensional plateau test function. Because all

algorithms found easily the solution, having the same performance, it is not
recommended to use disagreements for solving this problem. The original
algorithms already solve it successfully. What is important to notice is that using the
σ6 model of disagreements did not impede the performance of the original

algorithm. Table 4.7 shows the results just for the record.

Table 4.7: 6σ -PSOD results for 6LF .

BUPT

4.2 – 6σ-PSOD Operator 61

Regular Multi-Modal Functions
Griewank, 7LF , is one of the functions on which the behavior of algorithms

on highly multi-modal functions can be studied. Results from Table 4.8 are self-
explanatory: overall, there is a significant improvement when using disagreements.

Table 4.8: 6σ -PSOD results for 7LF .

Ackley, 8LF , is a function that has the global optimum inside a long funnel.

Nevertheless, the tight road to the best point in the search space is paved with
many local optima in which many optimizers fall. This is another important
benchmark function in which the σ6 -PSOD shows its superiority, as it scores better
in all tests.

BUPT

62 Particle Swarm Optimization with Disagreements - 4

Table 4.9: 6σ -PSOD results for 8LF .

Figure 4.14: 6σSPSOD vs. SPSO best fitness graph for 8LF with 50 particles in 50

dimensions.

Best fitness evolution graphs are provided in Fig. 4.14 for SPSO - in which

6σSPSOD clearly wins, and in Fig. 4.15 - in which 6σVGDPSO − is slightly better.

BUPT

4.2 – 6σ-PSOD Operator 63

Figure 4.15: 6σVGDPSO − vs. PSO-VG best fitness graph for 8LF with 50 particles in 50

dimensions.

The ability to find better results in a tight tunnel like Ackley's function
proves that σ6 -PSODs have a better local focus. This is obtained using partial
disagreements that are refining already good solutions, providing an enhanced
exploitation.

Other Functions
The last functions in test are Bohachevsky 1 (9LF) and Kursawe (10LF).

The results for both are once again better for the proposed new approach and do
not need extra comments. Tables 4.10 and 4.11 are given for reference.

The only exceptional case for 9LF , "exceptional" meaning that the original
algorithm performed better, is PSO-VG with 50 particles in 50 dimensions, but
compared with the rest of the results it can be considered a small penalty.

For Kursawe functions (better values are the ones closer to -10, the sum of
both Kursawe global optima), there is only one exceptional case for PSO-VG in 50
dimensions, with 25 particles. All other cases are favorable to PSODs. Results
obtained on Kursawe prove that improvements are not limited to single function
environments, but they can come into effect to multi-objective optimization also.

BUPT

64 Particle Swarm Optimization with Disagreements - 4

Table 4.10: 6σ -PSOD results for 9LF .

Table 4.11: 6σ -PSOD results for 10LF .

BUPT

4.2 – 6σ-PSOD Operator 65

Convergence Rates
Finally, in order to see some target hits, the convergence accuracy was

changed from 0.01 to 0.1=ε and the termination criterion was set from 30000 to
100000 fitness evaluations. The results from Table 4.12 show the convergence
rates for a shifted and a non-shifted multimodal, 5LF and 7LF , respectively.

Table 4.12: Some convergence rates for 6σ -PSODs.

With only one exception, 6σVGDPSO − solving 5LF , where the convergence

rate is zero and it is the same as in the case of the original algorithm, the rest of the
cases confirm the exceptional results of the disagreements-enabled algorithms from
the previous tables in this chapter.

4.2.3. Concluding Remarks

Algorithms that are enhanced with σ6 -PSOD capabilities perform far better

than their original versions. The performance improvement in most of the tests is
significant. Results from all tests from all the functions and some best individual's
fitness graphs for a particularly tuned filter 0.7=σ1 were shown to show that the
new approach is superior across the whole test palette.

Through graphs showing the evolution of the average distance between
individuals, it was shown that the σ6 approach is increasing the population
diversity and entropy. A direct consequence is that even the worst individual is far
improved compared to the worst individual from the original algorithm. Of course,
the "best fitness" of the run is a few times better in the case of the tested PSODs.
This advantage was gained through the use of the partial disagreements (approx. 3
per iteration for 25 particles in the swarm and around 6-7 for 25 particles in swarm)
that enhance the local exploitation in a very simple way (e.g. simpler than memetic
PSOs) and through the use of the extreme disagreements (approx. 0.1 and 0.2 per
iteration for 25 and 50 particles in swarm, respectively) that enhance the
exploitation.

This simple implementation of disagreements consisting in a 2-layer
neighborhood structure proved that the concept of disagreements is feasible for PSO
and there is a high probability that it could be feasible for related algorithms in
swarm intelligence. There were cases in which disagreements injection caused high
tides in the swarm and cases in which the evolution was smooth, but in all
situations, using disagreements provided better results. The extra-added operations
consist in presetting a reference θ , generating each generation a 1θ for filtering

and applying the disagreements rule. 1σ makes the algorithms to work well for a

BUPT

66 Particle Swarm Optimization with Disagreements - 4

value of 0.7 and it should not be tuned every time, however even if it is a new
parameter it is also a new degree of freedom that can be used to the optimizer's
advantage. For most computer systems, nowadays this means calling the same
random routines used for other evolutionary operations and using an extra loop to
apply disagreements. That means that the added computational cost is negligible.

The fact that most runs were successful on the social-only algorithm, PSO-
VG, indicates that this approach can be used to alter the whole output of the update
principle. This observation is of high interest for situations in which an evolutionary
algorithm does not have a split, classical PSO-like updating principle, and that is the
case of genetic algorithms. Indeed, it will be shown in Chapter 5 that the σ6
approach works brilliantly for real-valued genetic algorithms also.

4.3. Stagnation Management With Disagreements

4.3.1. Stagnation

 Stagnation, a situation in which there is no improvement of the current

solution for an amount of iterations, can be mitigated if when it is detected
disagreements are arisen inbetween members of the swarm. This procedure
resembles the real-life situations in which in times of crisis people start riots or
revolutions.

Swarm stagnation management is an area where disagreements can be
used to save the general outcome of the run, as shown by the author in [60].

Swarm stagnation appears when the following conditions are met (quote
from [46]):

 The particle swarm system is thought to be in stagnation, if arbitrary
particle i 's history best position iP and the total swarm's history best position gP

keep constant over some time steps.
In order to detect the swarm stagnation in PSO, [101] introduces the

concept of "improvement ratio" taking into consideration also the velocities:

,
v/v1
f/f1

=R
pc

pc
−
−

 (4.14)

where cf is the current fitness value of the best particle, while pf is the previous

fitness and cv is the current average velocity of all particles, while pv is the

previously recorded one. According to [101], when R is droping under an a priori
value ε then the swarm enters into a stagnation period.

As pointed out by the author in [60], "the approach from [101] assumes
that when stagnation occurs the velocities tend to 0. However, this is valid only in
situations when particles get trapped into local minima, while for very densely
spiked or plateau functions this could not be true." Therefore, a more relaxed
criterion is needed to establish when stagnation appears that covers all cases when
no improvement took place between some two iterations - t and htt Δ+ , in an

amount of time - htΔ . It was decided that the best method to detect stagnation is
to measure the Euclidean distance between the current fitness of best particle at

BUPT

4.3 – Stagnation Management With Disagreements 67

iterations htt Δ+ and t and decide if the result is a relative improvement compared
to a fraction (ε) of the best particle's fitness at iteration t :

.ŷε<ŷŷ tthtt ⋅−+ Δ (4.15)

4.3.2. RS-PSOD Operator

The riot-when-stagnation (RS-PSOD) operator was built to help PSO

resolve stagnation states. It imitates social rioting: while the swarm is in stagnation
a high number of particles from the current iteration do not follow the best particle
in their group anymore and manifest extreme disagreements similar to eD from eq.
(4.9). However, the probability that such riots occur should be reduced if the
execution of the current run is approaching to an end, otherwise too much
randomness can be infused at a too later stage and the swarm may never converge
or may impair a good solution. Therefore a linearly decreasing allocation scheme
was considered for this type of disagreement operator.

The RS injector is defined as follows:
Definition 19. Let P be a particle swarm optimization algorithm that has a

social component. The function that injects in P a set of disagreements - RSΔ , with

an apply rule - RSρ , and transforms it into a particle swarm optimization with

disagreements following the RS rule, namely a RS-PSOD algorithm - RSP , is defined
as:

.P=)ρ,P(=)P(DRSRSPSOPSODRS ΨΨ − (4.16)
The updating principle for RS-PSOD becomes (from eq. (4.4)):
)t,β,(ρ=)x1,t(X iRSRSi Δ+

)t,ζ)ŷ,x,t(S)y,x,t(C)i,t(V)x,t(X,(ρ= iiiiiRSRS ++++Δ

 ,ζ))ŷ,x,t(S(D)y,x,t(C)i,t(V)x,t(X= iiiRSiii ++++

 .s1,i,D),ŷ(D)ŷ,x,t(S,y)y,x,t(C RSiRSiiRSiiiii ∈∀∈→→ Δ (4.17)

The set of disagreements - iRSD , consists of:

{ }.D,= RSDRS ∅Δ (4.18)

RSD is an extreme disagreement, a generalization of eD from eq. (4.9). It
represents the individuals that are rioting against the status-quo in periods of crisis.
Mathematically, it is a Hadamard product between the social update behavior (a
subcomponent of iβ from eq. (4.2)) that is the social component S , and a vector

r containing random uniformly distributed values in the intervals]λ,λ[lu −− and

]λ,λ[ul ++ , with lu
*

ul λ>λ,λ,λ +∈ R and 1λl ≥ :

1il1i1iiiRS r,λ)r(sgnr=r,Sr=)S(D ⋅+⊗ ~)),λλ(),λλ((lulu −+−−U (4.19)

where ir is the i -th component of r and 1ir is a random number for each ir .

Definition 20. Let)i,t(θRS ~ U(0,1) be an uniformly distributed random
variable that is generated at each iteration t for each particle i . Let

BUPT

68 Particle Swarm Optimization with Disagreements - 4

[0,1]
t

t=δ
max

∈ be the current execution progress indicator, where maxt is the

total number of iterations. The RS-PSOD operator is defined as follows:

.trueis(4.15)andδ)i,t(θif),S(D
falseis(4.15)orδ<)i,t(θif),S(

=)t,β,(ρ RSRS

RSD

iRSRS
⎪
⎩

⎪
⎨

⎧
≥

∅
Δ (4.20)

Compared to 6σ -PSOD operator, that injects disagreements based on a
Gaussian distribution at all iterations, the RS-PSOD operator triggers riots only when
stagnation occurs.

4.3.3. Experimental Setup

For testing the RS-PSOD algorithms against classical configurations a similar

test environment to the one used for σ6 -PSOD was set up. After rigorous tuning,
the best results for the extreme disagreement were obtained for the following
configuration: 5=t2,=λ1,=λ hul Δ with a relative stagnation threshold of 0.005
in most cases (depending on the particularities of the given problem). It can be
noticed that the extreme disagreement is the same as eD from eq. 4.9. Truly that
is the value which yielded the best experimental results.

The functions whose results are provided in the next subsection are the
most representative examples from the whole set of 10 functions where stagnation
can occur, grouped by categories: a plateau function (1LF), a shifted highly multi-

modal CEC 2005 function (4LF) and a regular highly multi-modal function (8LF).

4.3.4. Results

A Plateau Function
As it can be observed from Table 4.13, there is only one case (for PSO-VG

with 50 particles in 30 dimensions) in which the RS approach failed to provide better
performance.

The number of riots indicate how many stagnation situations were detected
and handled on average in a run using the RS operator. In all tests there are higher
values for 25 particles because it is harder to accomplish the proposed improvement
amount with less particles. On 1LF there is a high likelyhood of stagnation because
of its large plateau.

BUPT

4.3 – Stagnation Management With Disagreements 69

Table 4.13: RS-PSOD results for 1LF .

In all sixteen situations (25 and 50 particles in 30 and 50 dimensions),

SPSOD-RS is providing a consistent performance enhancement. Only with a single
exception, 50 particles in 30 dimensions, the same is valid for PSO-VGD-RS.

As it can be seen in the graphs from Fig. 4.16 and Fig. 4.17 for the case of
SPSO-RS vs. SPSO with 25 particles in 50 dimensions, both the best and the worst
individual have a better evolution when the RS variants are used. As for the
population average distance for SPSOD-RS, that is slightly increased by the injection
of extreme disagreements only when needed, as shown in Fig. 4.18. There is not a
constant process that injects disagreements like in the case of the σ6 -PSOD
operator and the local exploitation is not enhanced at all using this technique. Yet,
for plateaus, that do not need a fierce local exploitation, the results are far better
for RS than in the case of the classical PSO configurations in test.

BUPT

70 Particle Swarm Optimization with Disagreements - 4

Figure 4.16: SPSOD-RS vs. SPSO best fitness graph with 25 particles for 1LF in 50

dimensions.

Figure 4.17: SPSOD-RS vs. SPSO worst fitness graph with 25 particles for 1LF in 50

dimensions.

BUPT

4.3 – Stagnation Management With Disagreements 71

Figure 4.18: SPSOD-RS vs. SPSO avg. pop. dist. graph with 25 particles for 1LF in 50

dimensions.

A Shifted Multi-Modal Function
For testing the RS approach on a shifted multi-modal function, 4LF was

picked from the set of CEC 2005 test functions.
Table 4.14 shows the results when running PSO algorithms with the riot-

when-stagnation feature versus their original counterparts. The column showing the
mean fitness contains lower values for RS-PSOD algorithms, which means that they
provide a better performance and it is better to use them. For the cases with 25
particles there were approximately 170 riots needed per run and for the cases with
50 particles, when it is easier to grow gradually in performance across iterations,
around 60 riots.

For shifted multi-modal test functions the gain is not so spectacular as in the
case of the plateau functions, but it demonstrates empirically that even on most
disturbed and multi-modal environments the disagreements metaphor deals well
with the considered problems. The robustness of the original algorithms is preserved
and the convergence speed, the population variety and the overall performance are
increased.

A Regular Multi-Modal Function
When the RS approach was tested on a regular multi-modal function, on

Ackley's function (8F), the improvement ratio seen in the results is approximately
the same as in the above described shifted case.
The results can be analyzed in Table 4.15 and they show that there is a slight but
genuine improvement in performance for the disagreements enabled variants of
PSO. Disagreements are acting to repair stagnations in swarm.

BUPT

72 Particle Swarm Optimization with Disagreements - 4

Table 4.14: RS-PSOD results for 4LF .

Table 4.15: RS-PSOD results for 8LF .

Comparison with 6σ -PSOD
RS-PSOD provides better performance compared to PSOs that have no

disagreements, but the question is how it stands in terms of performance against

BUPT

4.3 – Stagnation Management With Disagreements 73

σ6 -PSOD. The short answer is that it was experimentally determined that σ6 -
PSOD performs better.

In this section 8LF in 30 dimensions is taken into discussion. Table 4.16
provides the race results between 6σ -PSOD vs. RS-PSOD.

For 25 particles the results are slightly better for σ6 . Even with around 180
riots and around 3.75 extreme individuals per run, they cannot beat the σ6
approach which although it acts blindly, it simulates what happens in nature and
with around 3.4 partial disagreements and 0.085 extreme disagreements per run it
outperforms RS-PSOD.

For 50 particles in swarm, the results are in σ6 -PSOD's favour again. For
SPSOs' case the situation is clearer, the difference for the mean best fitness, its
standard deviation and the median is bigger than in the other cases.

For Standard PSO some graphs are provided: Fig. 4.19 is the best fitness
graph, Fig. 4.20 is the graph for the evolution of the worst individual in the swarm
and Fig. 4.21 shows the population average distance between individuals. The graph
with the best fitness evolution shows how σ6 is heading better to convergence than
the RS approach and the graph with the worst individuals is showing that the least
performant in σ6 -PSOD is better than the one in RS-PSOD. Y-axis values for the
graph of population diversity are plotted this time on a logarithmic base 10 scale in
order to be able to emphasize the details. In an initial phase, from 0 to 6000 fitness
function calls, the σ6 assures a more diversified population, then in a later phase,
after 6000, the RS method takes the lead towards 20000 function evaluations. If the
surface inbetween the 2 plots is measured for these two phases the area for the first
phase is greater than the area for the second phase. Meanwhile, the phase 2 is
longer and happens later. From here it can be concluded that σ6 is providing a
higher amount of diversity in the beginning phase and the RS provides a lower
diversity at a later stage because then it comes the time when stagnation occurs.
From experimental experience and the design of many evolutionary algorithms like
simulated annealing it is generally better to have a high diversity at the beginning of
the optimization and a lower one at the end. That is why σ6 does better, but RS
does better than the original algorithms too.

Table 4.16: 6σ -PSOD vs. RS-PSOD results for 8LF in 30 dimensions.

BUPT

74 Particle Swarm Optimization with Disagreements - 4

Figure 4.19: SPSOD-RS vs. 6σSPSOD best fitness graph with 25 particles for 8LF in 30

dimensions.

Figure 4.20: SPSOD-RS vs. 6σSPSOD worst fitness graph with 25 particles for 8LF in 30

dimensions.

BUPT

4.3 – Stagnation Management With Disagreements 75

Figure 4.21: SPSOD-RS vs. 6σSPSOD avg. pop. dist. graph with 25 particles for 8LF in 30

dimensions.

4.3.5. Concluding Remarks

 The conclusion can only be very short: RS-PSOD was conceived as a

repair method. On the other hand, σ6 -PSOD was built as a holistic
approach to PSO. Both outperform classical PSOs in terms of performance
without significant computational overhead.

RS-PSOD is a very handy and easy method to regain the swarm's ability to
discover better positions in the search space, proving that disagreements are good
as a repair method also. Using only extreme disagreements when needed (when
stagnation occurs) the swarm's evolution is revived. The same thing happens in
society during periods of crisis - the before behaviors are challenged and completely
new ideas come into play.

The 6σ approach is directing the swarm towards better solutions as a holistic
approach. Its drive comes into effect at every iteration. The search process is
shaped like a society with disagreeing individuals here and there. Using relevant
benchmarks it was proved that the σ6 approach provides better results than RS-
PSOD in tests and it has less parameters than RS. However, RS-PSOD is intervening
in a middle or later phase when no significant improvements take place, it is not a
shaping but rather a repair method that does what it is supposed to do: artificially
bails out the swarm from its performance crisis.

The experimental results provided for both σ6 -PSOD and RS-PSOD are a
successful proof of concept for disagreements in PSO. It can be easily applied to
other swarm intelligence algorithms also. What is more important is that now the
door is open for applying disagreements in other evolutionary algorithms.

BUPT

5. GENETIC ALGORITHMS WITH
DISAGREEMENTS

5.1. Disagreements - An Attitude for GAs

5.1.1. Concepts

Disagreements are a phenomenon that can be well understood and studied

in the context of social interactions. PSO and other swarm intelligence that have a
social component can use them in their advantage. Nevertheless, when it comes to
other evolutionary algorithms, like genetic algorithms, that do not posses social
mechanisms in their fabric, it is hard at first to think of a way disagreements can be
acclimatized into these algorithms. With the advent of memetic algorithms (MAs) in
which individuals from a classical GA could develop a personality, the idea of
disagreements inside a GA is plausible. While a memetic algorithm is adding a local
search to a GA, a genetic algorithm with disagreements (GAD) is adding
disagreements to a GA. In both cases, individuals get an attitude.

The definition that provides the way disagreements are injected into a real-
valued GA and mirrors Definition 15 is provided below:

Definition 21. Let G be a real-valued GA and ρ a disagreements apply
rule. A real-valued genetic algorithm with disagreements (GAD), DG , is
obtained by modifying G 's updating principle with the rule ρ , as described by the
following disagreement injector function:

.G=)ρ,G(DGAΨ (5.1)

5.1.2. Implementations

In the experiments related to GAD provided in this thesis disagreements

were designed as a better mutation operator for real-valued GAs. As it will be
shown, replacing the mutation operator with disagreements improves the overall
performance of a GA and wins the advantages of a memetic algorithm. Therefore,
GADs can be seen as:

• as a new class of memetic algorithms without a local search method or
• as genetic algorithms with a better mutation or
• as a class of their own kind.
Various implementations can drive GADs into one of the above three

categories (or maybe into other categories also), but as a concept disagreements in
genetic algorithms represent a different class of GAs with attitude.

The number of possible implementations of disagreements in GAs can be
very high. In the next part of this thesis only a particular implementation, the σ6 -
GAD, that resembles σ6 -PSOD is presented as a proof of concept of disagreements
in real-valued GAs. Of course, there is also possible to build an RS-GAD approach
similar to RS-PSOD, but because that would imply a repetition and would bloat the
content of the thesis, it is not included.

BUPT

5.2 – 6σ-GAD Operator 77

5.2. 6σ-GAD Operator

5.2.1. Definition

In [61] the author introduces for the first time the notion of genetic

algorithms with disagreements as a new mutation operator, modeled around the
assumption that in an iteration there are some individuals that partially disagree
and a very small minority that extremely disagree. The new mutation type acts in
the same manner as the 6σ -PSOD operator. It is taken into consideration in order
to prove that the idea of disagreements work also for other evolutionary algorithms
outside the swarm intelligence category.

Since good results are obtained using PSO-VG, an algorithm where
disagreements impact a larger part of the updating principle iβ , the 6σ -GAD
operator is developed to mirror the 6σ -PSOD operator. In terms of (5.1) its
definition is the following:

Definition 22. Let G be a real-valued genetic algorithm. The function that

injects in G the set of disagreements - '
6σΔ , with an apply rule - '

6σρ , and

transforms it into a real-valued genetic with disagreements (GAD) following the '
6σρ

rule, namely a 6σ -GAD algorithm - D6σG , is defined as follows:

,G=)ρ,G(=)G(D6σ
'
6σGAGADσ6 ΨΨ − (5.2)

For an individual from the population the update principle is represented by
the iterational loop from the Bäck's evolutionary framework presented in
Pseudocode 1. At an iteration t , the update principle yields for an individual i a
behavior iβ , composed of the changes required by recombination, mutation and
selection. In 6σ -GAD's update principle the standard mutation is replaced by the
mutation that is represented by the disagreements with their rules. For 6σ -GADs

the apply rule '
6σρ acts upon a part of iβ which is the individual z after the step of

recombination.
The employed subset of disagreements resemble those from [58]:

{ }.D,D,= '
e

'
pD

'
6σ ∅Δ (5.3)

They are defined as follows:

Definition 23. Let ul
*

ul λ<λ,λ,λ +∈ R . Let a and b be the vectors

containing the lower and respectively, the upper bounds of the search space nH .

The partial disagreement - '
pD is defined as:

ii
'
p q,

2
abqz=)z(D −⊗+ ~ ,Hz),λ,λ(n

ll ∈+−U (5.4)

where iq is the i -th component of q and z is the changed individual after
recombination from Pseudocode 1.

BUPT

78 Genetic Algorithms with Disagreements - 5

Definition 24. Let ul
*

ul λ<λ,λ,λ +∈ R . Let a and b be the vectors

containing the lower and respectively, the upper bounds of the search space nH .

The extreme disagreement '
eD is defined as:

 ,λ)w(sgnw=w,
2

abwz=)z(D l1i1iii
'
e ⋅+−⊗+ (5.5)

 1iw ~)),λλ(),λλ((lulu −+−−U

where iw is the i -th component of w , 1iw is an uniformly distributed random

number generated each time for iw and z is the changed individual after
recombination from Pseudocode 1.

It can be easily noticed that both disagreements are the GA generalized
counterparts of the ones defined for σ6 -PSOD.

5.2.2. Design Philosophy

For GAs, like for PSO, disagreements were designed to provide better

neighborhood exploitation through '
pD and enhanced exploration using amplified

values generated by '
eD . The concept is depicted in Fig. 5.1.

Figure 5.1: Disagreements for real-valued genetic algorithms.

''The concept of partial and extreme disagreements is related to

neighborhoods. Partial disagreements are values in the vicinity of the original value,
while extreme disagreements are either more distant values or opposite ones.

As a further explanation, if one may think of the alphabet, some partial
disagreements for letter M can be the letters N, O, P or L (a radius of partial
disagreement should be defined), while some extreme disagreements for letter A

BUPT

5.2 – 6σ-GAD Operator 79

can be Z (the dichotomy ''first-last letter'', although it can also be partial
disagreement if we consider a circular alphabet) or even a non-letter, like ''!''; also,
for letter A, an extreme disagreement can be defined as a more distant character,
like H. This example is given to show that genetic algorithms with disagreements
can be used also on discrete domains.'' ([61])

5.2.3. Selector Function

The selector function resembles the one for σ6 -PSOD, but here it is defined

without filtering. Therefore, at each iteration t , for each individual i ,

)i,t(θ ~)σ,μ(2
6σ6σN is generated - a Gaussian distributed random variable with a

chosen mean 6σμ and a standard deviation 6σσ . Based on (63), (64), (65) and the
Gaussian regions defined in formulae (50), (51) and (52), the selector function for
GADs is defined as:

,
R)i,t(θif),z(D

R)i,t(θif),z(D

R)i,t(θif),z(

=)t,β,(ρ
5,6σ

'
e

3,4σ
'
p

1,2σD

i
'
6σ

'
6σ

⎪
⎪

⎩

⎪
⎪

⎨

⎧

∈

∈

∈∅

Δ (5.6)

where z is the individual at iteration t after recombination. The rule is supposed to
replace the mutation and it is noteworthy that in the case of "no-op" no mutation
takes place. Compared to 6σ -PSOD, this is a more invasive method. Its design was
chosen not to mirror 100% the one provided for PSO in order to explore another
facet of how disagreements can be used in optimization.

5.2.4. Experimental Setup

The experimental part for proving the effectiveness of injecting

disagreements in real-valued genetic algorithms was conducted using the
established rules in 3.3.3 and in similar conditions with experiments related to σ6 -
PSOD. In all cases presented here, a small population of 50 individuals was used.
The interest goes in comparing real-valued genetic without elitism (GA) and with
elitism (eGA) versus their σ6 -GAD enhanced counterparts. All algorithms used BLX-
α crossover (0.5=α) with probability 0.7. Original GAs used a Mühlenbein
mutation with a probability of 0.1.

After calibration, the following values for the parameters of σ6 -GAD were
found to work in most cases: 0.5=λ0.25,=λ ul , therefore GADs shown in tables
have that settings.

The output variables are the same as in the case of σ6 -PSOD experiments:
mean of best fitness and its standard deviation, the median of best fitness and the
average number of disagreements in an iteration (partial and extreme). Other
interesting outputs such as convergence, worst fitness and population distance
graphs and for brevity are sparingly presented.

Results on some relevant test functions are provided.

BUPT

80 Genetic Algorithms with Disagreements - 5

5.2.5. Experimental Results

A Plateau Function
For 1LF in 30 dimensions, using a GAD without elitism against a similar GA,

the mean fitness is 16.4 times closer to the global optimum. When using elitism the
advantage is somewhat similar, around 14.40 times better when using eGAD.

In 50 dimensions it is even better: the mean fitness is 1814% and 1372%
closer to the solution for GAD vs. GA, and eGAD vs. eGA, respectively. Table 5.1
shows a detailed performance overview.

Graphs are provided for the case with 50 dimensions. Similar to σ6 -PSODs,
GADs exhibit a greater population diversity and a better coverage of the search
space (see Fig. 5.4). It seems that the worst individual from the GAs (GA and eGA)
is better than the worst individual from the GADs (see Fig. 5.3). However this
doesn’t impede the GADs' higher capability of convergence, as depicted in Fig. 5.2.

When seeking for improved performance on plateau functions like 1LF it is a
good idea to inject some amount of disagreements, both partial and extreme.

Table 5.1: 6σ -GAD results for 1LF .

BUPT

5.2 – 6σ-GAD Operator 81

Figure 5.2: 6σeGA vs. eGA best fitness graph for 1LF in 50 dimensions.

Figure 5.3: 6σeGA vs. eGA worst fitness graph for 1LF in 50 dimensions.

BUPT

82 Genetic Algorithms with Disagreements - 5

Figure 5.4: 6σeGA vs. eGA avg. population distance graph for 1LF in 50 dimensions.

A Shifted Multi-Modal Function
Table 5.2 shows the results for one of the CEC 2005 test functions, Shifted

Rastrigin (4LF). The results prove that in most cases in which disagreements are
used there is a slight better outcome. However, the improvement is marginal in this
case, so it might not be worthy to use disagreements in this case.

Table 5.2: 6σ -GAD results for 4LF .

A Low Dimensional Problem
Himmelblau is a perfect test case for low dimensional search spaces. From

Table 5.3 only one output variable is very important: the convergence rate, which is
higher for disagreements enabled algorithms.

BUPT

5.2 – 6σ-GAD Operator 83

Table 5.3: 6σ -GAD results for 6LF .

A Regular Multi-Modal Function
In order to illustrate the convergence behavior of the σ6 -GADs, Griewank

(7LF) is used here as a test case. From Table 5.4 it can be concluded that GADs
bring significant improvement in highly multi-modal environments, one of the very
important criterion for modern optimization techniques.

Table 5.4: 6σ -GAD results for 7LF .

The best fitness graph for eGA vs. eGAD in 30 dimensions is shown in Fig.
5.5. One can see that eGAD is taking early the lead and clearly finishes with a very
good fitness value.

Figure 5.5: 6σeGA vs. eGA best fitness graph for 8LF in 30 dimensions.

BUPT

84 Genetic Algorithms with Disagreements - 5

The graph of the worst graph individual is proving once more time that in

GADs the worst fitness is declining with the run's length. However, this does not
affect the evolution of the best individual. The average distance between members
of the swarm is higher for GADs than in the case of their analogous GAs, as depicted
in Fig. 5.7.

Figure 5.6: 6σeGA vs. eGA worst fitness graph for 8LF in 30 dimensions.

Figure 5.7: 6σeGA vs. eGA avg. population distance graph for 8LF in 30 dimensions.

BUPT

5.3 – Concluding Remarks 85

5.2.6. Disagreements vs. Mutation

To assess the difference between the disagreements mutation operator and

a regular Gaussian real-valued mutation, two test cases were considered: one for
1LF and another one for 7LF , both cases in 50 dimensions and with GAs with

elitism (eGAs). The rate of mutation in GADs is around 35 %, therefore a high
mutation eGA, meGA, with the same percentage of mutation as in GADs was tested
against an eGAD. The results are provided in 5.5. They show without any doubt that
using disagreements yields a better performance than ordinary Gaussian mutation.

Table 5.5: 6σ -GAD vs. regular mutation results for 7LF .

5.3. Concluding Remarks

The results from testing σ6 -GAD show that this new approach yields in

better performance on most test cases by maintaining a diverse population. As in
the case of σ6 -PSOD, this is happening because the local exploitation is promoted
by partial disagreements, while the exploration is increased using extreme
disagreements.

Injecting disagreements in real-value GAs is beneficial when dealing with
plateau and/or highly multi-modal functions. Excepting few cases the improvement
is significant and the performance is enhanced as in the case of PSODs. This
observation leads to the conclusion that disagreements may be a feature which any
evolutionary algorithm can benefit from.

BUPT

6. CONCLUSIONS

6.1. Concluding Remarks

In 2011 Time Magazine designated "The Protester" as The Person of the

Year ([5]). It is not strange that the world is changing through disagreements and
this thesis provided empirical evidence to support the introduction of this idea in
designing evolutionary algorithms.

At first, the concept of disagreements applied in PSO yielded very good
experimental results with the advent of 6σ -PSOD operator. The normally
distributed 6σ scheme works wonderfully. The injection of partial disagreements
increases the local exploitation and the injection of extreme disagreements
strengthens the exploration. The results for the derived algorithms are without any
doubt better. The extra added computational cost is minimal.

After the successful approach with 6σ -PSOD, it was shown that extreme
disagreements can be used to resolve the stagnation in the swarms, by using the
RS-PSOD operator. Tests have shown that the method is a reliable repair technique,
yielding better outcomes. Still, from experimental data, it is recommended that the
6σ -PSOD should be used to derive superior algorithms, as it is a holistic approach,
not a repair one, and has a better drive. As the old saying says: "An ounce of
prevention is worth a pound of cure."

Good results obtained with the normally distributed disagreements on a
social-only PSO, PSO-VG, on which the impact upon the updating principle is higher,
opened the door for experimenting with algorithms outside the swarm intelligence
area. Very good results in tests with real-valued genetic algorithms applying a 6σ
rule, the 6σ -GAD mutation instead of the regular mutation, revealed that the new
metaphor of disagreements definitively is worth of consideration for the larger
category of evolutionary computation.

Overall, this thesis introduced the concept of disagreements in swarm
intelligence through PSO and to a larger extent, in evolutionary computation,
through real-valued genetic algorithms. It provided empirical data to prove that the
new approach is yielding better performance.

6.2. Contributions

Based on the observations from nature and the promising provided

experimental data, this work may open a new research area in the field of
evolutionary computation: the use of disagreements to derive superior population-
based algorithms with enhanced exploration and exploitation capabilities. This thesis
is a proof of concept and it uses a specially crafted randomness injection into the
updating principle of the evolutionary algorithms with a simple 2-layer neighborhood
scheme in order to simulate the disagreements that naturally occur in-between
members of a society or of a group.

BUPT

6.3 – Future Work 87

In detail, the following contributions should be attributed to this thesis and

the associated published work during the doctoral programme (all citations are
referring to author's publications):

The disagreements metaphor. The new disagreements metaphor is
based on real-world observations and applied to swarm intelligence and evolutionary
computation algorithms. It is explained in detail and further developed in Section 1.
Its introduction in PSO is done for the first time in [58]. The first generalization to
EAs appears in [61].

A theoretical foundation for disagreements. In Section 2, a general
theoretical foundation for implementing disagreements in EAs is provided.

A testing methodology for disagreements. A test methodology, named
race testing, is provided in Section 3 to correctly asses the new concept of
disagreements. Based on DACE, it can correctly compare the performance of the
disagreements-derived algorithms with their original versions.

PSO with disagreements. Disagreements are introduced as a new social
behavior in PSO, thus affecting only the social component of the updating principle
(Section 1). This was also previously discussed in [58] and in [60].

6σ-PSOD. A promising implementation of disagreements in PSO, the 6σ -
PSOD operator, is provided in Section 2. It is a Gaussian scheme of injecting partial
(to increase local exploitation) and extreme disagreements (to increase exploration)
on a 2-layer neighborhood structure around the social component of the updating
principle, that simulates real-life group opinions, first introduced in [58]. Empirical
experimental data shows a great improvement in performance when used in derived
new algorithms.

RS-PSOD. A repair method that proves the usefulness of applying extreme
disagreements to mitigate stagnation, that is described in detail in Section 3. The
concept was first published in [60].

GA with disagreements. Disagreements are introduced in real-valued GAs
as an alternative to memetic algorithms, a new class of GAs: GAs with attitude in
Section 1.

6σ-GAD. A σ6 approach to real-valued GAs, that is shaped like a new
mutation operator. It was first introduced in [61]. It is described in Section 2. The
experimental data proves its superiority over regular GAs.

A proof of concept for disagreements. Except Chapter 2, which provides
a succinct overview of the state of the art, all the other chapters in this thesis
explain the concept of disagreements and prove that it is useful in optimization.

Needless to say, because the above contributions are at the core of the
algorithms, their potential impact can affect all areas where evolutionary algorithms
are used.

6.3. Future Work

There are several future research directions that can be pursued in the near

future:
• the improvement of the current disagreements operators
• the development of new implementations of disagreements for PSO and

real-valued GAs and other evolutionary computation algorithms

BUPT

88 Conclusions - 6

• checking the concept for other algorithms outside evolutionary

computation
• studies regarding disagreements in social networks

An important idea that arises from this work is that exceptions from

the rule, pictured here as disagreements, should be encouraged and
accommodated when designing systems because they are a true source of
natural change.

BUPT

References

[1] D. Acemoglu, V. Chernozhukov, and M. Yildiz. Learning and

disagreement in an uncertain world. NBER Working Papers 12648, National Bureau
of Economic Research Inc., October 2006.

[2] D. Acemoglu, G. Como, F. Fagnani, and A. Ozdaglar. Opinion

fluctuations and disagreement in social networks. CoRR, abs/1009.2653, 2010.

[3] D. Acemoglu, M.A. Dahleh, I. Lobel, and A. Ozdaglar. Bayesian learning

in social networks. NBER Working Papers 14040, National Bureau of Economic
Research Inc., May 2008.

[4] D. Acemoglu, A.E. Ozdaglar, and A. P. Gheibi. Spread of misinformation

in social networks. CoRR, abs/0906.5007, 2009.

[5] K. Andersen. The person of the year. Time Magazine, December 2011.

http://www.time.com/time/person-of-the-year/2011/. [Online; accessed 05-
January-2012].

[6] R. Axelrod. The Dissemination of Culture: AModel with Local

Convergence and Global Polarization. J. Conflict Resolut., 41(2):203–226, 1997.

[7] T. Bäck, D.B. Fogel, and Z. Michalewicz, editors. Evolutionary

Computation 1: Basic Algorithms and Operators. Institute of Physics Publishing,
Bristol,2000.

[8] V. Bala and S. Goyal. Learning from neighbours. Review of Economic

Studies, 65:595–621, 1998.

[9] A. Banerjee and D. Fudenberg. Word-of-mouth learning. Games and

Economic Behavior, 46:1–22, 2004.

[10] T. Bartz-Beielstein, K.E. Parsopoulos, and M.N. Vrahatis. Design and

Analysis of Optimization Algorithms Using Computational Statistics. Applied
Numerical Analysis & Computational Mathematics, 1(2):413–433, 2004.

[11] R. Bellman. Dynamic Programming. Dover Publications, 1957.

[12] R. Bellman. Adaptive Control Processes. Princeton University Press,

1961.
[13] G. Beni and J. Wang. Swarm intelligence in cellular robotic systems. In

NATO Advanced Workshop on Robotics and Biological Systems, June 1989.

[14] B.A. Berg. Markov chain Monte Carlo simulations and their statistical

analysis: with web-based Fortran code. World Scientific, 2004.

BUPT

[15] J.M. Bishop. Stochastic searching network. Proceedings of the 1st IEE

Conference on Artificial Neural Networks, pages 329–331, 1989.

[16] J.M. Bishop and P. Torr. The stochastic search network. Proceedings of

the 1st IEE Conference on Artificial Neural Networks, pages 370–387, 1992.

[17] D. Blackwell and L. Dubins. Merging of Opinions with Increasing

Information. The Annals of Mathematical Statistics, 33(3):882–886, 1962.

[18] V.D. Blondel, J.M. Hendrickx, and J.N. Tsitsiklis. On krause’s consensus

formation model with state-dependent connectivity. CoRR, abs/0807.2028, 2008.
informal publication.

[19] E. Bonabeau, M. Dorigo, and G. Theraulaz. Swarm Intelligence: From

Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of
Complexity. Oxford University Press, USA, 1st edition, 1999.

[20] L. Breiman, J. Friedman, C.J. Stone, and R.A. Olshen. Classification and

Regression Trees. Chapman and Hall/CRC, 1st edition, January 1984.

[21] H.J. Bremermann. Optimization through evolution and recombination.

In M.C. Yovits, G.T. Jacobi, and G.D. Goldstein, editors, Proceedings of The
Conference on Self-Organizing Systems, Chicago, Illinois, 1962. Spartan Books.

[22] X. Chen and Y.M. Li. A modified PSO structure resulting in high

exploration ability with convergence guaranteed. IEEE Transactions on Systems Man
and Cybernetics Part Bcybernetics, 37(5):1271–1289, 2007.

[23] M. Clerc and J. Kennedy. The particle swarm - explosion, stability, and

convergence in a multidimensional complex space. Evolutionary Computation, IEEE
Transactions on, 6(1):58–73, 2002.

[24] G. Como and F. Fagnani. Scaling limits for continuous opinion dynamics

systems. In Proceedings of the 47th annual Allerton conference on Communication,
control, and computing, pages 1562–1566, Piscataway, NJ, USA, 2009. IEEE Press.

[25] A. Czarn, C. MacNish, K. Vijayan, B.A. Turlach, and R. Gupta. Statistical

exploratory analysis of genetic algorithms. IEEE Trans. Evolutionary Computation,
8(4):405–421, 2004.

[26] Ch. Darwin. On the Origin of Species by Means of Natural Selection.

Murray, London, 1859.

[27] R. Dawkins. The Selfish Gene. Oxford University Press, September

1990.

[28] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.

John Wiley & Sons, Inc., New York, NY, USA, 2001.

BUPT

[29] K. Deb and R.B. Agrawal. Simulated Binary Crossover for Continuous

Search Space. Technical report, Departement of Mechanical Enginering, Indian
Institute of Technology, Kanpur, India,1994.

[30] G. Deffuant, D. Neau, F. Amblard, and G. Weisbuch. Mixing beliefs

among interacting agents. Adv. Complex Syst., 3(1–4):87–98, 2000.

[31] M. Doege. Rosenbrock function.

http://en.wikipedia.org/wiki/File:Rosenbrock_function.svg. [Online; accessed 11-
August-2011].

[32] M. Doege. The Himmelblau Function.

http://en.wikipedia.org/wiki/File:Himmelblau_function.svg. [Online; accessed 11-
August-2011].

[33] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis,

Politecnico di Milano, Italy, 1992.

[34] M. Dorigo and T. St¨utzle. Ant colony optimization. Bradford Books.

MIT Press, 2004.

[35] L.J. Eshelman and J.D. Schaffer. Real-coded genetic algorithms and

interval-schemata. In L.D. Whitley, editor, FOGA, pages 187–202. Morgan
Kaufmann, 1992.

[36] R. M. Friedberg. A learning machine: Part I. IBM Journal of Research

and Development, 2(1):2–13, 1958.

[37] D. Gale and S. Kariv. Bayesian learning in social networks. Games and

Economic Behavior, 45(2):329–346, November 2003.

[38] Y. Gao and Y. Duan. An adaptive particle swarm optimization algorithm

with new random inertia weight. In D.S. Huang, L. Heutte, and M. Loog, editors,
ICIC (3), volume 2 of Communications in Computer and Information Science, pages
342–350. Springer, 2007.

[39] J.E. Gentle, W. Härdle, and Y. Mori, editors. Handbook of

Computational Statistics. Springer, 2004.

[40] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1989.

[41] B. Golub and M.O. Jackson. Naive Learning in Social Networks:

Convergence, Influence, and the Wisdom of Crowds. Preprint, 2007.

[42] E.R. Hansen and G.W. Walster. Global optimization using interval

analysis. [Pure and applied mathematics]. Marcel Dekker, 2004.

BUPT

[43] F. Herrera, M. Lozano, and J.L. Verdegay. Tackling real-coded genetic

algorithms: Operators and tools for behavioural analysis. Artif. Intell. Rev., 12:265–
319, August 1998.

[44] J.H. Holland. Outline for a logical theory of adaptive systems. J. ACM,

9:297–314, 1962.

[45] J.H. Holland. Adaptation in Natural and Artificial Systems. University of

Michigan Press, Ann Arbor, MI, USA, 1975.

[46] Ming J., Yupin L., and Shiyuan Y. Stagnation analysis in particle swarm

optimization. In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pages 92–
99, april 2007.

[47] K.A. De Jong. An analysis of the behavior of a class of genetic adaptive

systems. PhD thesis, University of Michigan, Ann Arbor, MI, USA, 1975.

[48] D. Karaboga. An idea based on Honey Bee Swarm for Numerical

Optimization. Technical Report TR06, Erciyes University, October 2005.

[49] J. Kennedy. The particle swarm: social adaptation of knowledge.

Proceedings of 1997 IEEE International Conference on Evolutionary Computation
ICEC 97, pages 303–308, 1997.

[50] J. Kennedy. Population structure and particle swarm performance. In:

Proceedings of the Congress on Evolutionary Computation (CEC 2002), pages 1671–
1676. IEEE Press, 2002.

[51] J. Kennedy and R.C. Eberhart. Particle swarm optimization. In Neural

Networks, 1995. Proceedings., IEEE International Conference on, volume 4, pages
1942–1948, August 2002.

[52] S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by simulated

annealing. Science, 220:671–680, 1983.

[53] U. Krause. A discrete nonlinear and non-autonomous model of

consensus formation. In S. Elyadi, G. Ladas, J. Popenda, and J. Rakowski, editors,
Communications in Difference Equations, pages 227–236. Gordon and Breach Pub.,
Amsterdam, 2000.

[54] M. Kronfeld, H. Planatscher, and A. Zell. The EvA2 optimization

framework. In C. Blum and R. Battiti, editors, Learning and Intelligent Optimization
Conference, Special Session on Software for Optimization (LION-SWOP), number
6073 in Lecture Notes in Computer Science, LNCS, pages 247–250, Venice, Italy,
January 2010. Springer Verlag.

[55] F. Kursawe. A variant of evolution strategies for vector optimization. In

Proceedings of the 1st Workshop on Parallel Problem Solving from Nature, PPSN I,
pages 193–197, London, UK, 1991. Springer-Verlag.

BUPT

[56] A. Lihu. O abordare eusocială în optimizarea stigmergică (Raport anual

de cercetare nr. 1). http://www.yudu.com/item/details/90337/O-abordare-eusocial-
----n-optimizarea-stigmergic--, September 2009. [Online; accessed 11-August-
2011].

[57] A. Lihu. Raport anual de cercetare nr. 2.

http://www.scribd.com/doc/77443904, September 2010. [Online; accessed 11-
August-2011].

[58] A. Lihu and Ș. Holban. Particle swarm optimization with disagreements.

In Y. Tan, Y. Shi, Y. Chai, and G. Wang, editors, ICSI (1), volume 6728 of Lecture
Notes in Computer Science, pages 46–55. Springer, 2011.

[59] A. Lihu and Ș. Holban. Top five most promising algorithms in

scheduling. In Proceedings of the 5th International Symposium on Applied
Computational Intelligence and Informatics, pages 397–404, Timișoara, Romania,
May 2009. IEEE.

[60] A. Lihu and Ș. Holban. Particle swarm optimization with disagreements

on stagnation. In Radoslaw K., T.F. Chiu, C.F. Hong, and N. Nguyen, editors,
Semantic Methods for Knowledge Management and Communication, volume 381 of
Studies in Computational Intelligence, pages 103–113. Springer, 2011.

[61] A. Lihu and Ș. Holban. Real-valued genetic algorithms with

disagreements. In D. Pelta, N. Krasnogor, D. Dumitrescu, C. Chira, and R. Lung,
editors, NICSO, volume 387 of Studies in Computational Intelligence, pages 333–
346. Springer, 2011.

[62] A. Lihu and Ș. Holban. A study on the minimal number of particles for a

simplified particle swarm optimization algorithm. In Proceedings of the 6th IEEE
International Symposium on Applied Computational Intelligence and Informatics
(SACI), pages 299–303, Timi¸soara, Romania, May 2011. IEEE.

[63] J. Lorenz. A stabilization theorem for dynamics of continuous opinions.

Physica A: Statistical Mechanics and its Applications, 355(1):217–223, September
2005.

[64] C. MacNish. Towards unbiased benchmarking of evolutionary and

hybrid algorithms for real-valued optimisation. Connect. Sci, 19:361–385,
December 2007.

[65] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller.

Equation of state calculations by fast computing machines. Journal of Chemical
Physics, 21, 1953.

[66] M.M. Millonas. Swarms, phase transitions and collective intelligence. In

C. Langton, editor, Artificial Life III. Addison-Wesley, 1994.

[67] D.C. Montgomery. Design and Analysis of Experiments. John Wiley &

Sons, 2006.

BUPT

[68] P. Moscato. On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms. Technical Report C3P Report 826,
California Institute of Technology, 1989.

[69] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive models for the

breeder genetic algorithm i. continuous parameter optimization. Evol. Comput.,
1:25–49, March 1993.

[70] J.A. Nelder and R. Mead. A Simplex Method for Function Minimization.

The Computer Journal, 7(4):308–313, January 1965.

[71] A. Neumaier. Interval methods for systems of equations. [Encyclopedia

of mathematics and its applications]. Cambridge University Press, 1990.

[72] E. Ozcan and C.K. Mohan. Particle swarm optimization: Surfing the

waves. In Proceedings of the Congress on Evolutionary Computation, pages 6–9.
IEEE Press, 1999.

[73] K.E. Parsopoulos and M.N. Vrahatis. Unified particle swarm optimization

in dynamic environments. In Lecture Notes in Computer Science 3449, pages 590–
599. Springer Verlag, 2005.

[74] K.E. Parsopoulos and M.N. Vrahatis. Particle Swarm Optimization and

Intelligence: Advances and Applications. Premier Reference Source. Information
Science Reference, 2010.

[75] M.E.H. Pedersen. Tuning and Simplifying Heuristical Optimization. PhD

thesis, University of Southampton, UK, 2010.

[76] M.E.H. Pedersen and A.J. Chipperfield. Simplifying particle swarm

optimization. Appl. Soft Comput., 10:618–628, March 2010.

[77] Y.G. Petalas, K.E. Parsopoulos, and M.N. Vrahatis. Entropy-based

memetic particle swarm optimization for computing periodic orbits of nonlinear
mappings. In IEEE Congress on Evolutionary Computation, pages 2040–2047. IEEE,
2007.

[78] Y.G. Petalas, K.E. Parsopoulos, and M.N. Vrahatis. Memetic particle

swarm optimization. Annals OR, 156(1):99–127, 2007.

[79] F.M. De Rainville, F. A. Fortin, C. Gagné, M. Parizeau, and M. Gardner.

Distributed Evolutionary Algorithms in Python. http://code.google.com/p/deap.
[Online; accessed 11-August 2011].

[80] J. Renze and E.W. Weisstein. Extreme value theorem. from mathworld–

a wolfram web resource.
http://mathworld.wolfram.com/ExtremeValueTheorem.html. [Online; accessed 11
August-2011].

[81] C.W. Reynolds. Flocks, herds and schools: A distributed behavioral

model. SIGGRAPH Comput. Graph., 21:25–34, August 1987.

BUPT

[82] H.H. Rosenbrock. An automatic method for finding the greatest or least

value of a function. The Computer Journal, 3(3):175–184, March 1960.

[83] J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis

of computer experiments. Statistical science, 4(4):409–423, 1989.

[84] T.J. Santner, B.J. Williams, and W.I. Notz. The Design and Analysis of

Computer Experiments. Springer Verlag, New York, 2003.

[85] L.J. Savage. The foundations of statistics. Dover Publications, 1972.

[86] Y. Shi and R.C. Eberhart. A Modified Particle Swarm Optimizer. In

Proceedings of IEEE International Conference on Evolutionary Computation, pages
69–73, Washington, DC, USA, May 1998. IEEE Computer Society.

[87] Y. Shi and R.C. Eberhart. Parameter selection in particle swarm

optimization. In V.W. Porto, N. Saravanan, D.E. Waagen, and A.E. Eiben, editors,
Evolutionary Programming, volume 1447 of Lecture Notes in Computer Science,
pages 591–600. Springer, 1998.

[88] Y. Shi and R.C. Eberhart. Empirical study of particle swarm

optimization. In Proceedings of the 1999 Congress on Evolutionary Computation,
volume 3, page 1950, 1999.

[89] Y. Shi and R.C. Eberhart. Fuzzy adaptive particle swarm optimization.

In Proceedings of the 2001 Congress on Evolutionary Computation, volume 1, pages
101–106, 2001.

[90] L. Smith and P. Sorensen. Pathological outcomes of observational

learning. Econometrica, 68(2):371–398, March 2000.

[91] R. Storn and K. Price. Differential evolution — a simple and efficient

heuristic for global optimization over continuous spaces. J. of Global Optimization,
11:341–359, December 1997.

[92] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.P. Chen, A. Auger,

and S. Tiwari. Problem definitions and evaluation criteria for the CEC 2005 special
session on real-parameter optimization. Technical report, Nanyang Technological
University, Singapore, May 2005.

[93] A. Swanepoel. Alternative GnuPlot render sizes, Rosenbrock Function.

http://twiki.org/cgi-bin/view/Plugins/GnuPlotPlugin. [Online; accessed 11-August-
2011].

[94] K. Tang, X. Li, P.N. Suganthan, Z. Yang, and T. Weise. Benchmark

functions for the CEC 2010 special session and competition on Large-Scale global
optimization. Technical report, University of Science and Technology of China,
November 2009.

BUPT

[95] A. Törn and A. Zilinskas. Global optimization. Springer-Verlag New

York, Inc., New York, NY, USA, 1989.

[96] V. Černý. Thermodynamical approach to the traveling salesman

problem: An efficient simulation algorithm. Journal of Optimization Theory and
Applications, 45(1):41–51, 1985.

[97] F. Van Den Bergh. An analysis of particle swarm optimizers. PhD thesis,

University of Pretoria, Pretoria, South Africa, 2002.

[98] D.H. Wolpert and W.G. Macready. No free lunch theorems for search.

Tech. Rep. No. SFI-TR 95-02-010, Santa Fe Institute, NM, 1995.

[99] D.H.Wolpert andW.G. Macready. No free lunch theorems for

optimization. IEEE Trans. Evolutionary Computation, 1(1):67–82, 1997.

[100] D.H. Wolpert and W.G. Macready. Coevolutionary free lunches. IEEE

Trans. Evolutionary Computation, 9(6):721–735, 2005.

[101] C. Worasucheep. A particle swarm optimization with stagnation

detection and dispersion. In IEEE Congress on Evolutionary Computation, pages
424–429. IEEE, 2008.

[102] X.F. Xie, W.J. Zhang, and Z.L. Yang. Dissipative particle swarm

optimization. In Proceedings of the 2002 Congress on Evolutionary Computation,
volume 2, pages 1456–1461, Washington, DC, USA, 2002. IEEE Computer Society.

[103] J.H. Zwiebel, D. Vayanos, and P.M. DeMarzo. Persuasion bias, social

influence, and uni-dimensional opinions. Research Papers 1719, Stanford University,
Graduate School of Business, November 2001.

BUPT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

