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Teza de doctorat a fost elaborată pe parcursul activităţii mele în cadrul 

Departamentului de Calculatoare al Universităţii „Politehnica” din Timişoara.  
Mulţumiri deosebite se cuvin conducătorului de doctorat Prof. Univ. Dr. Ing. 

Mircea Vlăduţiu pentru timpul preţios acordat şi pentru faptul că mi-a deschis calea 
către cercetare.  

Prezenta teză, reprezintă rezultatul mai multor ani de cercetare în domeniul 
procesării imaginilor. Alegerea steganografiei ca temă de cercetare a originat dintr-o 
simplă descoperire făcută de mine în 2006 pe vremea când programam un utilitar 
pentru extragerea culorii de sub cursorul de pe ecran. Descompunerea și conversia 
tripletului RGB în diverse reprezentări de culoare necesare pentru aplicația pe care 
tocmai o dezvoltam mi-a stârnit interesul în modul în care pixelii unei imagini sunt 
reprezentați și relația dintre reprezentarea binară și efectul vizual al culorii. Am 
constatat imediat că schimbările fine asupra tripletului RGB nu produc modificări 
vizibile asupra culorii, diferența de nuanță fiind percepută doar la modificari mai 
mari. Drept urmare, am dezvoltat rapid o aplicație prin intermediul căreia puteam 
specifica modul în care modific fiecare pixel al unei imagini de test, iar rezultatul era 
afișat în timp real pe ecran. Întrucat modificările fine asupra tripletului RGB aplicat 
pe un singur pixel nu păreau să afecteze deloc percepția mea asupra culorii, m-am 
gândit că modificarile vor fi mai evidente dacă sunt aplicate asupra unei imagini de 
mari dimensiuni și cu o complexitate ridicată a culorii și a acoperirii de culori (număr 
de culori efectiv reprezentate din totalul posibil). În ciuda tuturor celor presupuse, 
modificările de eliminare a ultimilor 1-2 biți de culoare nu au produs aproape nici o 
schimbare aparentă asupra percepției mele. 

Din acest moment mi-am dat seama că descoperisem ceva nou, nu toate 
culorile reprezentabile sunt percepute de ochiul uman, acestea avand deseori un 
overhead de informații. Documentându-mă, am descoperit că multe din formatele 
de imagini care prezintă compresie se folosesc de acest aspect pentru a elimina 
overhead-ul sau pentru a reduce paleta de culori doar la cele care sunt efectiv 
reprezentate. Interesul meu totuși a fost îndreptat asupra acelor formate de imagini 
care prezintă atât compresie fără pierdere de informații cât și prezervarea overhead-
ului. Cei 1-2 biți care îi puteam elimina din fiecare componentă a tripletului RGB m-a 
făcut să privesc imaginea ca un spațiu de stocare în care primii 6 biți stocau 
culoarea, iar ultimii 2 stocau o informație ascunsă sub aparențe. 

Cu această descoperire m-am adresat imediat domnului Prof. Univ. Dr. Ing. 
Mircea Vlăduţiu, care, încântat de cele prezentate m-a ajutat sa transform această 
joacă într-un proiect amplu de cercetare finalizat cu prezenta teză de doctorat. 
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Rezumat: prezenta teză de doctorat se axează pe cercetarea în domeniul 
steganografiei digitale introducând totodată o serie de algoritmi capabili de a 
stoca informaţia într-o manieră ingenioasă care reduce probabilitatea de detecţie 
a steganogramei menţinând tabela de culori a imaginii originale sub control. 
Scopul acestei lucrări, pe langa introducerea de noi algoritmi de steganografie, 
este de a prezenta totodată un nou mod de abordare a problemelor care apar în 
urma degrădarii imaginii ca urmare a procesului de injectare de informaţii. 
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CHAPTER 1 
1 Introduction 

“Steganography is the dark cousin of cryptography, the use of codes. While 
cryptography provides privacy, steganography is intended to provide 
secrecy.” - Bryan Clair [1] 
 
 
 
The Internet as a global network for intercommunication and data exchange 

has been ever since its creation one of the biggest and most profitable inventions of 
the digital age. Internet started as a closed network of super-computers 
(mainframes) with the main purpose being able to access data remotely at any time 
[2]. The outcome of its evolution over the last three decades ever since it got 
released to the public has not been considered when it was first introduced, what 
started small quickly evolved into a huge global network of inter-connected and 
inter-dependent devices. Since the introduction of the TCP/IP protocol suite in 1982 
the Internet opened new ways to integrate almost every traditional communication 
aspect within, making it the number one global communication system. As outlined 
by Coffman and Odlyzko in [3] the initial network design was overwhelmed by the 
actual traffic explosion registered since the beginning of the 21st century. Comparing 
the traffic registered on the NSFNet backbone in 1994 where the monthly bandwidth 
was 15 TB/month with the crash registered by the end of the year 2000 where the 
traffic exceeded 238 EB (Exabytes), the registered growth in bandwidth/year came 
up to an outstanding 1500%, doubling every three months in size. Although it was 
first designed to be used exclusively by computers, the times have quickly shifted 
towards other devices that are able to access and communicate over the Internet. 
Today the Internet is not limited only to computers, but also to all sorts of personal 
devices such as smartphones and tablets, we live in a world where almost every 
aspect of communication has been integrated, if not completely adopted, by the 
Internet. The Internet has revolutionized and automated the ways in which we 
communicate, learn, exchange and access data, everything we do today weather 
willingly or unwillingly is done through Internet.  

Computational systems have also been continuously evolving, we now own 
devices that fit in our hands (smartphones, tablets) that are more powerful and can 
store more data than a full-sized computer system from the last decade. The 
majority of our modern day devices are capable of connecting to the Internet 
making them a part of this ever-growing network [4]. We can also easily identify a 
global trend in using smaller and smaller devices with continuously increasing 
processing power [5]. Until the late 90s the only devices capable of connecting to 
the Internet where PCs, but this has changed since then because the majority of 
today’s modern electronic devices are basically computers in one way or another. In 
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a recent article written by Cynthia Harvey [6] the smartphones and tablets are 
considered the new PC. Being more accessible and capable for most basic 
communication tasks, weather used for email, browsing the web, chatting, this type 
of devices have been evolving up to the point in which they now represent the 
majority of Internet capable devices. In [6] a comparative analysis is made between 
the Internet explosion in the year 2000 facilitated by the number of computer 
connected and today’s growing market of small Internet ready devices. Still limited 
by bandwidth and wireless speeds, the rate in which the mobile world grows has 
pushed wireless research to a new level, experts estimating the same internet 
bottleneck by the end of 2018 if no proper precautions are taken by ISPs. 

Aside from the endless list of benefits the technologic breakthroughs of the 
last three decades offer, comes a big risk in the form of data security. The growth of 
the Internet can be considered to be chaotic and somewhat uncontrolled, and since 
there is a raising trend of connecting and adding more devices on the Internet, 
privacy in our day is a very precious resource, hard to achieve and maintain [6]. 
The security risk we expose our devices to is widely underestimated, many 
considering most of the security breaches harmless. Very little attention has been 
paid to the need of enhanced security [7]; most companies and authorities rely on 
the guarantee that the security standards today are sufficient for the next few 
years. Enhancing security systems is only a central interest point in government or 
private companies, but even those have continuously proven weak against the 
constantly evolving attack and exploit systems [8]. 

 Since the beginning of the digital age security systems have been 
developed as part of the research domain entitled Cryptography. According to Ross 
Andersen [9], cryptography is the intersection between security engineering and 
mathematics. In the early days security was an aspect that concerned more 
companies than private individuals, but the focus has shifted ever since. 
Researchers have been struggling to keep the pace with the evolution of processing 
power, since the strength in a cryptographic algorithms resides seldom in the higher 
complexity of reverse engineering that cannot be achieved with today’s technology. 
A security system that involves cryptography in order to encode and protect data is 
considered secure as long as the present processing power cannot be used to easily 
reverse engineer the protected data in order to extract the actual information 
encoded within. In other words cryptography offers a limited liability for the degree 
of security and privacy that it offers. What is secure today may not remain secure in 
the near future. The cryptographic standards today basically split into three types of 
algorithms: symmetric [10], asymmetric [11] and one-way cryptography [12] 
(hashing algorithms). 

In parallel to cryptography, cryptanalysis research is trying to identify weak 
spots that can be exploited in the nearest future with the aid of more processing 
power. This cat and mouse game between engineering and reverse engineering 
cryptographic standards is maintaining an equilibrium between the algorithm 
complexity and processing power needed to solve the mathematical complexity. 
Usually the complexity is chosen in a way that facilitates high speeds for encoding 
and decoding data when the proper perquisites are used (the keys are known) and 
in the same time, reverse engineering would need to solve a complexity x times 
higher than the statistical forecast of computational power in the near future. This 
may seem enough for the time being, but most cryptographic standards in our days 
are proven weaker and weaker as the technology evolves. Cryptographic research, 
although intensive proves itself weak against recent advances in security research. 
Since the demand of security surpasses by far the slow pace in which cryptography 
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evolves, researchers have been focusing on introducing security infrastructures that 
combine the best and strongest mix of algorithms in order to secure data. Systems 
like the PKCS [11] currently at revision 2.1 are widely used in most secure 
communication today.  

These security systems use a mixture of strong military strength algorithms 
in a manner that sandboxes the encryption process, offering a variety of 
applications and implementation possibilities. Given that this standard utilizes a 
variety of ciphers and hashing algorithms, it becomes vulnerable if one of its 
components are broken or proven weak. The recent successful hacks on the popular 
MD5 algorithm has weaken the entire chain of security protocols that relied on it 
[13]. In a recent paper published in 2005 by Wang and Yu, the authors offer a 
relatively simple solution to exploit hashing in almost every algorithm existent 
(general mathematical exploit). This research issued an alarming state regarding 
internet security as hashing algorithms are intensively used to store passwords, 
fingerprint digital information or the signing of documents as described by the public 
key cryptography standard [11]. 

Another contemporary security threat does not imply breaking cryptographic 
cyphers, but listening to the connection between two entities in a process also 
known as man-in-the-middle attack ([13][14][15]). The secure communication 
between two entities can be broken if a third party listener is involved. Usually we 
refer to these listeners as hackers trying to intercept the data exchanged - this is 
often done without the entities even knowing their presence. If the entities are 
communicating without any sort of security system involved the intercepting party 
can immediately make use of the intercepted data. If the communicating entities 
use a secure channel, the data becomes harder if not impossible to extract. This has 
been considered for many years a foolproof system.  

Many consider data interception a smaller threat when cryptography is 
involved for securing the packages sent between the communicating entities since 
modern security standards offer end-to-end encryption [16]. Only the 
communicating parties are able to generate, encrypt and decrypt the information. 
The usage of one-time passwords and key exchange mechanisms make the man in 
the middle type of attack harder if not impossible [17]. Still, identifying the usage of 
cryptography over secure a communication channel can be easily pointed out 
because of the RAW format in which the data travels. Without the necessary keys 
the data may seem gibberish and without any logic at first sight. Once the encoded 
data has been intercepted it is a matter of time until it can get reverse engineered, 
usually if today’s processing power or cryptanalysis advances do not facilitate 
reverse engineering the cipher text, it can still be saved for later analysis [15]. Even 
if today’s processing power does not aid in the extraction, one cannot guarantee 
what the future will bring. The privacy of the secured data is also time related. If the 
data is only important from a small time perspective, future breaching and 
extraction of the intercepted data does not pose a risk. If on the other hand the 
validity of the secured data can be used from a larger time perspective, interception 
is as dangerous as it can be [18]. Today, many cryptographic cyphers and hashing 
algorithms have gone extinct due to their weakness against hardware/software, 
mathematical and statistical attacks.  

In the digital age security is almost a synonym with cryptography. Analyzed 
apart, security implies more than just transcoding the sensitive information into an 
unreadable RAW state without the proper perquisites (e.g. keys). In the most recent 
years a new trend has been developed that covers the aspects that cryptography 
alone can’t: hiding the trace and existence of a secured communication even taking 
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place [19]. This technique may not be new, but its integration with digital systems 
is: steganography [20]. Steganography is the art and science of communicating in a 
way that only the parties implied in the communication process know of the 
existence of the data. Usually it implies the usage of decoy information within which 
the actual secret information is stored. From the digital point of view, it implies 
using a format that was not intended to store other information apart from its 
designed one. For example, one can communicate secret messages disguised within 
plain text, images, video or audio streams called cover formats. In this way, an 
intercepting party would receive the decoy information (with the secret information 
contained within) but would be unable to identify something other what the 
appearance offers. The choice of a decoy format is the first and most important step 
to take in order to achieve a desired degree of stealth [19][20]. One of the most 
commonly used and transmitted media types on the Internet are images, making 
them the number one decoy (cover) formats used by many researchers in the 
steganography research field. The joint usage of cryptography and steganography 
leads to a truly secure communication system that covers many aspects of the ideal 
communication system.  

1.1 Motivation 

When it comes to securely transmit sensitive information, there are several 
ways in which this can be accomplished. With security protocols and cryptographic 
techniques growing stronger and more complex every day it is almost impossible to 
break a secure communication chain. From an attacker’s perspective though, 
decoding the secret information is not always the main target. In our days breaking 
a secure communication chain in order to extract and decode the data is not the 
attacker’s main intention, but to be able to trick the legitimate participants into 
passing their data through a rogue gateway in a technique that is called man in the 
middle or phishing. This technique has been proven very effective in numerous 
attacks. The legitimate participants are connected to a third party gateway that acts 
like an intermediate between the participants in a secure communication chain. The 
key exchange process needed for temporary session encryption passwords is done 
by the rogue gateway, which communicates to both parties as if it wasn’t even 
there. The legitimate participants have the impression that their connection is 
direct, but instead they are passing information to the gateway, encrypted using the 
keys provided by the third party intercepting platform, therefor exposing the secret 
information without even knowing. The described scenario is just a small example 
from the numerous existing exploiting techniques attackers use in our days.  

By analyzing the above scenario a little bit we can identify that the actual 
starting point of such an attack originates by identifying the communication channel. 
Cryptography represents a technique that transcodes (encodes) the sensitive 
information into an unreadable and gibberish state called ciphertext that can only be 
reassembled (decoded) using the proper keys. Given that there is a man in the 
middle in a communication attack, the attacker would listen to the communication of 
the legitimate parties and filter out only those packets that present some sort of 
interest. Usually it is hard to track and filter these packets without knowing where or 
for what to look for. In the event the legitimate parties switch from unsecured plain 
data to encrypted data, the attacker could easily spot out these information because 
the marker is represented by the ciphertext itself. Cryptography only places the 
sensitive information in a secure “vault” that is the ciphertext. Unlike real life, data 
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can be copied and multiplied, implying that our ciphertext can have multiple 
destinations out of which not all must be legitimate. The degree of security is 
influenced by multiple variables that define a cryptographic algorithm: the strength 
of the cryptographic algorithm used the length of the keys, the size of the actual 
ciphertext. The effects of a data interception usually are not immediately benefactor 
for the attacker. Usually it takes a long time until the sensitive information can be 
extracted, facilitated by numerous advances in processing power and cryptanalysis. 
If the secret information transmitted is valid only for a short period, breaching the 
security of an interception in the near future does not present a threat. If on the 
other hand the secret information has a validity that lasts for years, interception and 
storage for later analysis and deconstruction presents a serious security breach. 

In modern days usually these types of information are transmitted through 
private or internal networks that are completely isolated from the Internet. This may 
prove effective in most of the situations but does not cover the event in which there 
is that 1% time in which the information must leave the secure private network and 
be transmitted through the Internet. Once the data leaves the secure network it can 
be susceptible to multiple types of attacks and interception attempts. Cryptography 
in essence is not a guarantee for security as the cryptographic standards of today 
usually have a relatively reduced lifecycle in which they are considered secure. 

It may not be immediately obvious for security researchers but there are 
several ways in which security in these situations can be enforced, cryptography 
alone is not always the best solution. Steganography fills this gap by including the 
sensitive data either encrypted or in its original state within a carrier format (hidden 
inside other digital formats) that, in the event of which it gets intercepted, would 
not arouse any suspicion that a covert communication is even taking place. 
Steganography does not represent an invention of the digital age; it has been used 
long before the digital revolution. Basically steganography implies the usage of 
conventional formats used as a data carrier for the secret information. The main aim 
of steganography is to hide the communication channel itself, leaving the third party 
attacker monitoring a communication that seems normal at first sight; the only ones 
knowing where to look for the secret data would be the communicating parties. 

Choosing steganography as a research domain represents a very challenging 
and interesting task, as it represents a technique unknown for the majority 
researchers, even in cryptography. Many researchers see this technology as a threat 
because of the numerous ways in which this can be used for espionage purposes, 
omitting the actual benefits this technology brings when used in combination with 
modern security protocols and cryptography. 

1.2 How this work came to be 

The current thesis started out as a personal project derived from a discovery 
I made when playing with the pixel table of a normal RGB image back in 2006. The 
intention was to program a simple tool that extracts the color under the cursor and 
then converts it to various color representations such as YUV, YCbCr, HSL and HSV. 
Internally the tool captured screenshots of the entire working area and then 
extracted a 100 by 100 pixel region around the current position of the mouse 
cursor. The color information was stored as a BMP formatted pixel table. In addition 
to the color under the mouse cursor I had to build a set of 4 color histograms for the 
squared pixel region to analyze color distribution so R, G, B and RGB combined 
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histograms here built. In order to build a histogram for each channel, the pixel 
needed to be deconstructed into its primary components that captured my attention 
so I did a little bit more research in this domain. I then studied the relationship 
between the binary representations of the three-color components and the resulting 
pixel color. The fascination for the bond between visual and digital led me into 
building a program where I would take a normal image and play with its pixel table. 
I studied filters, the logic behind them and how they affect the image and our 
perception upon it. At some point I wanted in a purely unintentional attempt to 
tamper the LSBs of every color component and discovered that finely altering the 
digital value of the color components does not affect my perception on the resulting 
image. It was then clear that the image format I used in my testing was designed to 
store more color variations than my average human eye can distinguish between. 
What started out as a play derived from the current work quickly turned into a 
growing curiosity on why things happen the way they do. Since the unintentional 
discovery that the image format presented overhead information that was 
insensitive to change from a visual perspective, I shifted my focus to the LSBs that 
I’ve seen as potential storage bits.  

The experiment quickly shifted and I built a small application that would 
include a PDF file inside the LSBs of every pixel and output an image. By comparing 
the original with the tampered image I discovered that they seem absolutely 
identical from the visual perspective, although binary they were different.  

This discovery represented the propulsion for every research I’ve done ever 
since then. As my research continued I stumbled upon the domain called 
steganography, which was not immediately identified since I first believed I invented 
something completely unique. In the coming years I studied different 
steganographic algorithms that worked under various image formats and pixel 
representation standards. I also started working on reverse engineering these 
algorithms in a process known as steganalysis. Unlike cryptography, in 
steganography the main threat is detection, so I tried to analyze the faults 
presented by other steganography techniques. Over the coming years several 
algorithms have been developed that covered a variety of aspects. 

In parallel to this research a second research has been conducted in which I 
studied cryptographic algorithms in order to statistically find weak spots that could 
lead to exploits in the near future. The idea came to somehow bind the two projects 
in order to achieve maximum security. Cryptography would then become an 
underlying component inside our steganographic algorithms and together the results 
where both secured and hidden in plain sight.  

Since 2009 when the current PhD research has officially started I’ve 
introduced a series of very strong algorithms to be used and implemented either in 
modern security infrastructure systems or to serve as a basis for future research for 
others in the steganography field. 

1.3 Thesis aims 

Ever since my initial discovery, I’ve been constantly building steganographic 
algorithms and improving upon them to achieve a certain level of design perfection 
and performance. Since this domain is widely unexplored, many researchers have 
been introducing algorithms that vary in quality, storage size, resistance to attacks 
and detection. I’ve identified a lack of standardization and metrics needed to 
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quantify the validity of a solution; it is hard to compare one steganographic solution 
to another. This is one of the main reasons I’ve been trying to build our own set of 
quality metrics and benchmarks in order to place our discoveries in relationship with 
others. 

The current thesis introduces the finest and most sophisticated algorithms 
I’ve developed throughout the years. I focused on building algorithms that don’t 
compromise neither the quality of the resulting image nor the storage space for the 
secret data in my own unique and innovative ways. The algorithms are designed in 
a very modular way so that they serve both as complete stand-alone solutions and 
abstract models for future improvements and analysis. The introduction of my 
algorithms and the presentation at various conferences was well received by the 
others researchers, some of my solutions where used by others in their own work. 
One of my personal observations made at almost every presentation I held was the 
difficulty with which the majority of researchers understand this technology and its 
benefits. Most researchers that deal with data security and cryptography have a 
hard time understanding the problem that the interception of the ciphertext 
presents. Other than that it is not immediately obvious for most what the 
relationship between cryptography and steganography is all about. This is why, in 
addition to new steganographic algorithms I also introduced a new secure 
communication infrastructure that uses cryptography both symmetric and 
asymmetric together with steganography in order to achieve the maximum level of 
information security between two entities that are communicating through an 
unsecure communication channel such as the Internet. 

1.4 Thesis outline 

Steganography represents a very complex research domain, facilitated by 
the multitude of carriers available and also by the endless ways in which stealth can 
be achieved. The current thesis is structured in 11 chapters. In Chapter 1 I present 
a brief introduction into the evolution of computing systems and the increasing 
demand for security as our world tends to be more interactive and interconnected. 
Also, in this chapter I present the starting point of the current work and what drove 
me into researching this domain and turning it into a personal passion in algorithm 
design. The thesis introduces one of the finest and most powerful algorithms I’ve 
developed since I discovered steganography and also presents an in-depth analysis 
of the factors that influence a truly powerful steganographic algorithm. 

In almost all my presentations held at international conferences I noticed a 
constant confusion and difficulty on understanding this technology and its strong 
relationship with cryptography and overall digital security. Given this, Chapter 2 
covers all aspects related to steganography from ancient methods up until the 
adoption of traditional steganography in the digital area. In digital steganography 
the only limitation is the imagination of the algorithm designer, since the digital 
world opens endless possibilities in which one can securely and stealthy transmit 
secret sensitive information. The widely unexplored domain of steganography lacks 
in standards and classifications, each researcher introduces new overviews over this 
research domain. In 2.1.1 I took the liberty to introduce a better and well-
structured classification of steganography as well as the carrier types one can use to 
hide data. For many, the three building blocks of modern digital security, 
cryptography, steganography and watermarking, are not clear, this is one of the 
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main reasons this chapter also covers a comparative analysis of the three domains. 
Also, this chapter introduces the basics of digital imaging and image-based 
steganography since this is the main scope of the current thesis: introducing new 
and enhanced image steganography algorithms. 

In Chapter 3 I present an overview of the current state of the art in digital 
image steganography as well as an analysis of the current algorithms. This chapter 
also highlights the flaws that make many of the algorithms vulnerable to reverse 
engineering: steganalysis. At the end of Chapter 3 I present a new emerging trend 
in algorithm design that shifts from the traditional methods of enhancing the quality 
and capacity of the carrier after the data has been embedded to a more cover-
oriented model that controls the degradation more accurately.  

In order to avoid the limitations that other algorithms face, it is important to 
change the starting point of conceiving a new steganographic strategy. Chapter 4 
presents a new direction I wish to introduce with the current work, in which I 
analyze and set the building blocks of an ideal model. By avoiding the same 
mistakes other algorithm designers make and by changing the design perspective 
one can successfully build even stronger algorithms with a dramatically increased 
resistance to reverse engineering and steganalysis filters. 

Chapter 5 introduces one of the first algorithms I designed that try to cover 
as much as possible the ideal model presented in Chapter 4. The algorithm itself is 
capable of achieving a higher resistance to detection algorithms than most of the 
strong algorithms known up to this day. The algorithm presented serves both as an 
implementation solution with notable results, but also as an abstract model for other 
implementations and derivations. With the introduction of Nexim One I wish to set a 
standard in LSB matching algorithm design. The modularity in which the entire 
workflow was designed facilitates improvements in almost all stages of the 
embedding and enhancement process. In my extended research and after intense 
testing I found several isolated cases in which the algorithm was unable to output 
the desired quality. This is why in Chapter 6 I present an extension to the original 
design that eliminates the errors I’ve found whilst testing. 

In an attempt to improve the storage capacity of the initial design, I’ve 
come up with a new algorithm that follows the guidelines of the original Nexim One, 
but increases the storage capacity of the original design, maintaining or even 
improving the resulting quality. Therefor in Chapter 7 I introduce Nexim Two, which 
follows the general design of the original Nexim One but changes the weakest links 
in the entire process. Chapter 8 presents an extension to Nexim Two, which focuses 
mainly on the dynamic part, which the original algorithm lacks. Nexim Two 
Extended therefor represents my strongest algorithm so far that surpasses not only 
my other designs, but also one of the best LSB matching algorithms up to this day. 

Besides introducing several new steganographic algorithms, the current 
paper also introduces a steganography-based secure communication infrastructure 
(Chapter 9) that combines the power of both symmetrical and asymmetrical 
cryptography with information hiding technologies (steganography). The 
infrastructure represents an abstract concept in which the data that is 
communicated between two parties travels both secure and hidden in plain sight, 
inside steganographic carriers. The introduction of this system aims to present 
better alternatives to the existing cryptographic infrastructures that have been 
continuously proven weak against new emerging types of attacks and spoofing 
methods.  

Chapter 10 presents the experimental setup that I used in order to 
differentiate and highlight the performance of my algorithm against other state of 
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the art algorithms. This chapter presents the experimental setup used, the metrics 
and the results of my designs. In addition the chapter also presents the 
performance gain in stress tests and prolonged execution times. 

The final chapter, Chapter 11, concludes the current thesis by highlighting 
once again the performance of the new designs as well as the original contributions 
introduced by this work. Also, I conclude my current thesis by providing future 
research directions in the field of LSB steganography.  
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CHAPTER 2 
2 Steganographic background 

“Any sufficiently advanced technology is indistinguishable from magic.” -
Arthur C. Clark 
 
 
“The most beautiful thing we can experience is the mysterious. It is the 
source of all true art and all science.” - Albert Einstein 
 
 
 
Steganography represents art and science of hiding information in a manner 

than no other person except the two communicating in this way knows of the 
communication is even taking place [21]. The term steganography originates from 
ancient Greek meaning “concealed/protected writing” and has been used for over 
2500 years in various forms and applications. Basically steganography is a term 
used to describe any sort of communication, where the secret message is hidden 
within an object that is not apparent to an outside observer. Ancient steganography 
usages have been found in a variety of forms, mostly used in military, political or 
espionage. Steganography basically is a form of ancient privacy methods that 
combines the ingenuity of writing secrets with the art of hiding them [21]. 

The ancient cryptographic cyphers basically are one and the same as 
steganography, since the ciphertext (codex) needed to be stored securely in one 
form or another. Cipher texts inside ancient books basically are just a few of the 
most commonly discovered forms of steganography. Figure 2.1 is a graphical 
timeline illustration on how hidden data carriers have evolved over time, depending 
on recent discoveries as described by the authors in [22]. 

 

Figure 2.1 – Timeline of the evolution of hidden data carrier [22] 
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2.1 Information Hiding: Digital Steganography 

Digital steganography represents the science of writing hidden messages 
(text, data, etc.) inside of other digital content, possible by the joining of the old 
methodologies with the digital world [20][21][22]. The old physical related 
embedding techniques used in ancient steganography pose themselves limited in 
comparison with the new possibilities of the digital world. In a binary world with 
huge quantities of data, there is no end in sight when it comes to choosing the right 
carrier or the right method. Just like the definition states, steganography represents 
the intersection of science and the art of hiding: the science in this case is the 
engineering of algorithms and the art relies in finding the perfect secret data carrier. 

2.1.1 Classification of information hiding techniques 

Although steganography is a very large and mostly unexplored research 
domain, there is a lack of classification; almost every researcher classifies 
steganography different, weather in context with cryptography or as part of a larger 
research domain called information hiding. Probably the most adequate classification 
I’ve found so far is the one by P. Pfitzman [23] and P. Petricolas [24], where they 
classify steganography as being a member of the information-hiding domain, 
together with watermarking, covert communication channels and anonymity 
methods. I consider this categorizing most adequate because it covers both digital 
and traditional methods unified in one dependency tree. Being a member of a large 
research field called information hiding, steganography covers the security aspects 
that cryptography alone can’t: hiding the very existence of data. Figure 2.2 
illustrates the categorization of the image hiding research domain. 

 

 

Figure 2.2 – Steganographic carrier classification (extended from [23][24]) 
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2.1.2 Types of carriers 

In digital terms steganography implies using digital formats for the storage 
of secret data. The choice of format varies depending on the scope of the intended 
communication, but typically the widely used categories of digital carriers are the 
following: 

• Images 

• Video 

• Audio 

• Archives 

• Executables and libraries 

• Documents 

• Ciphertext 

The above list represents only a few of the most used formats, but 
steganography is not limited to them. Basically steganography can be applied on 
any format that has overhead data that can be manipulated without affecting the 
visual, statistical or logical integrity of the original carrier [25]. Figure 2.3 illustrates 
a detailed classification of the most common carrier types used in digital 
steganography. 

 

 

Figure 2.3 – Carrier classification (extended from [25]) 

 As these digital formats where not designed to hold any secret data it is 
normal that a new research direction has been opened in which the main focus is to 
find new ways to store the secret data without affecting the perceptive integrity of 
the digital carrier. The perceptive integrity of a digital format represents the way in 
which a human or a computerized analysis system perceives the digital information; 
weather if it’s visual (images or video) or audio (music), steganography must handle 
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and add the subtle change to the original form, in a way that doesn’t raise 
suspicion. Suspicion is raised in the event that the information carrier is altered up 
to the point where it resembles more the data within than its original 
representation. Nevertheless, the logical scattering of information in the carrier 
must be kept under control in order to avoid digital detection.  

2.1.3 Steganography vs. Cryptography 

 

 

Figure 2.4 – Modern digital security 

Cryptography in general is synonym with encryption, which represents the 
technique of processing information until it becomes unreadable without the proper 
tools, perquisites or variables. In digital terms, encryption resembles the 
intersection of mathematics, computer science and engineering to build algorithms 
capable of encrypting data into unreadable (but logic) state called ciphertext [26]. 
The information can only be re-assembled/extracted (decrypted) using the adequate 
password(s). Although cryptography can assure a high level of security, the secured 
data is still exposed and can be intercepted by a third party attacker or listener. The 
problem appears in situations in which the data cannot be fixed located, but it must 
travel through unsecure channels such as the Internet. [27][28] Although the data 
travels in a safe mode represented as a ciphertext, it can be still intercepted and 
reverse engineering can be performed onto it. In one word, the main problem of 
cryptography is: data exposure. Data exposure is not always an immediate threat. 
In order for the data to become vulnerable an attacker must first intercept it. 
Depending on the strength of the encryption algorithm used, the data can either be 
extracted using known attacks leading to an immediate breach of security or it can 
be stored for future reverse engineering when the encryption standard has become 
vulnerable due to recent studies and cryptanalysis. 

BUPT



 2.1. Information Hiding: Digital Steganography  27 
 

 

Steganography also represents a type of encryption but instead of 
outputting an incomprehensible and identifiable format such as the cryptographic 
ciphertext, it outputs a digital, comprehensible format such as an image, video, 
audio or any other type of digital information that has redundant data to begin with. 
Its main purpose is to resolve the problem that cryptography alone can’t: data 
exposure. Steganography covers more the hiding of data than the security of it 
[29]. Basically, steganography is security through obscurity or based on the 
hypothesis “what can’t be proven does not exist”. If a steganographic algorithm is 
undetectable, the data also becomes secure even without usage of encryption. The 
steganographic data can travel through unsecured channels without raising 
suspicion, in opposition with cryptography, where the secured data is spotted in an 
instance because of its ciphertext representation [29][30]. 

Steganography is a complementary technology that, if used together with 
cryptography or even archiving, can achieve a level of security higher than any 
stand-alone security system offers. Combining these three systems offers a truly 
secure and robust communication channel suited for our modern day security 
requirements. 

2.1.4 Steganography vs. Watermarking 

Although it is often considered a separate research direction [31], 
watermarking and steganography are directly related. Both technologies serve for 
information hiding, the main difference relies in the scope and usage. In 
steganography there is usually no relation between the cover medium and the 
secret data stored within, the cover serves solely for storage and hiding purposes. 
Watermarking on the other hand is directly related to the cover medium, as its main 
purpose is to store copyright or important information about the medium in a 
tamper-secure way. 

Where as steganography offers capacity at the cost of losing resistance to 
modification, watermarking offers a negligible amount of capacity but it enforces 
tamper resistance and removing techniques. In invisible watermarking the data is 
stored in multiple regions and with an improved reconstruction mechanism that 
handles the attempts to remove the mark from the medium. Usually watermarking 
techniques are mostly used in digital rights management systems (DRMs) in order 
to protect the authenticity and origin of the medium [32]. 

Steganography focuses on hiding a large amount of information. In an ideal 
case a steganographic algorithm is capable of preserving the secret data even when 
the cover medium surpasses modifications. The more resistant this type of 
algorithm is to the changes, the more the steganographic algorithm turns into a 
watermarking solution. The principles of watermarking are rarely used when 
conceiving a steganographic algorithm, as they are very hard to realize and usually 
decrease the overall storage space that steganography deals with. 

2.1.5 Reverse engineering: Steganalysis 

The reverse process of steganography is called steganalysis and it deals with 
estimating the chances of hidden data existence [32][33]. Because all carrier 
mediums are formed out of data that does not necessarily follow a certain rule 
(images are a hazardous distribution of colors, sounds are a hazard of tones) the 
steganalysis algorithms must try to differentiate between a natural hazardous 
distribution and a controlled hazardous distribution. Digital steganography is a 
complex research domain in all aspects. With each digital format used as carrier for 

BUPT



28   Chapter 2. Steganographic background  
 
the secret data, arise problematics that concern the various types of 
implementations available.  

The biggest problem in digital steganography is not the reverse engineering 
of the method itself with the purpose of extracting the secret data, but detecting 
that there is secret data present. Every algorithm is as strong as its resistance to 
advanced detection algorithms (steganalysis) [31][32]. Regardless of the type of 
carrier used, the original form normally represents a natural hazard of signal 
variations (the signal can be either color variations when using images or videos, or 
sound intensities when dealing with audio types). The data we usually hide inside 
other carriers represent logical information that added to the original alters the 
overall result by introducing noise channels. Since a normal high quality digital 
format stores more information than we can perceive, this can go undetected up to 
a certain point. However, computerized detection is the main problem when 
developing and testing the strength of a steganographic algorithm and is one of the 
key benchmarks to use in order to validate it. 

Since there are a variety of techniques for hiding data in a steganographic 
manner, the complexity of the algorithm can be much higher than in the case of 
cryptography. Depending on the carrier, a steganographic analysis must start with 
the identification of method used to hide the data [33]. Based on these premises, 
steganalysis basically elaborates a set of tests and measurements on the carrier and 
issues a statistical analysis over the chance of secret data presence within. Since 
steganalysis can also be applied to normal digital formats that are unaltered through 
a steganographic process, the analysis method must issue a metric that is able to 
distinguish between normal and steganographic formats, either by issuing a 
suspicion rate in percentage or a quality metric.  

Steganalysis research has two major purposes: on the one hand researchers 
are trying to detect steganographic use for illegitimate purposes, on the other hand 
it serves as a benchmark for newly developed steganographic techniques. The 
techniques of detecting the secret communication channel represents a more 
elaborated research domain than steganography itself, algorithm designs must take 
multiple types of attacks and filtering techniques into consideration in order to avoid 
them. Since the main purpose of steganography is avoiding detection, this has 
proven not to be a simple task to achieve. 

2.2 Digital Images 

A digital image format is a file in which the picture is represented in a way in 
which its components are stored as pixels. The pixel is the smallest measurement 
unit in digital imaging, and it is normally arranged in a two dimensional grid 
(matrix). The word pixel is derived from two words: pix meaning pictures and el 
meaning element, so basically a pixel is an image element. The pixel may be the 
smallest unit in digital imaging, but it has its own intern representation. 

2.2.1 The RGB representation 

The RGB model is a pixel color representation in which the color is given by 
a combination of the base colors plus light. There are three base colors, also known 
as color channels: 
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• Red  (R) 

• Green (G) 

• Blue (B) 

The RGB model is a device dependent color representation model because 
not every device will display the same color. RGB, also known as the RGB triplet , is 
used by most digital imaging systems because it is a RAW image format, meaning 
that it preserves the color information. The RGB triplet can be represented in 
multiple forms such as: 

• Numeric 

• Geometric 

• Digital 

The numeric representation indicates the quantity of each color channel that 
will be used to form the final color. The quantity of each color is defined as a triple 
value, in which each color channel has a value interval that starts from 0 (meaning 
absolute obscurity), and ends in a custom defined maximum (meaning absolute 
intensity).  

 

 

Figure 2.5 - The RGB color representation model 

It can be observed in figure 2.5 that the colors vary from dark (absolute 
obscurity) to pure (absolute intensity). The only missing part that would complete 
the color spectrum is the lightness of these channels. Lightness in digital imaging is 
obtained by double or triple equal variations of the colors, meaning that if two or 
three of the RGB channels remain equal as shown in figure 2.6, the colors begin to 
fade, creating the luminosity effect. 

 

 

Figure 2.6 - The RGB lightness variation 
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The RGB standard is not applicable in real life color theories because 
combining other colors cannot reproduce the non-colors, black and white. The 
explanation why this works in digital imaging is the following: 

• Digital screens on which the colors are displayed are black (obscure) 

• The three colors are reproduced by colored components (for example 
LED’s or CRT dotted matrix) that can achieve a maximum lightness that 
defines the actual color. This means that if the three-color components 
have the maximum amount of lightness, the perceived color is white. 

Each color has two intensities: none and pure. Every variation between 
these two boundaries is a variation from dark color tones. The variation of light color 
tones is obtained with the help of the other two color components. If the color value 
remains the same for each of the three colors, the result will be a black and white 
variation. This is possible because, the colors auto-negate each other if they have 
the same intensity. If one or more of these values differ, it will result in a color. In 
figure 2.7 we can see that equally distributed values for RGB generate the non-
colors (black and white are considered non-colors).  

 

 

Figure 2.7 - Non-colors (grayscale) using RGB triplet 

The numeric representation of the RGB triplet is in fact a two-dimensional 
matrix. The Y-axis represents luminosity (varying from dark to light) and the X-axis 
represents all possible color combinations between the red, green and blue channel. 

Another approach in representing the RGB triple is the geometrical 
representation. Because of the RGB structure, we can consider each component of 
the triplet as being a coordinate in a 3D space. The three axes are replaced by the 
values of red, green and blue channels. The RGB triplet, viewed as Cartesian 
coordinates in a Euclidian space determine a cube where the origin of the axis 
represent the absolute black point, while its diagonal opposite determine the 
absolute white point of the graphic. Each corner of the cube that is situated on one 
of the axis represents a pure color. 

The geometrical representation of the RGB triplet is very laborious to be 
used in digital imaging, but it was designed because it is the easiest way to 
determine the similarity between two colors. This is often used in algorithms that do 
digital processing/analysis on the image.  Given two colors, the similarity between 
them is equal to the distance between the two points in the color cube. The color 
palette of the geometrical representation is hard to observe because of the third 
coordinate and depends on what side we observe the cube. In figure 2.8 the 
geometrical cube is observed from the absolute white point side. 
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Figure 2.8 - RGB Color cube 

The digital representation is strictly related to the numeric representation 
because of its design simplicity. Like in the numeric representation the intensity of 
each color can be represented in multiple forms of data structures as shown in table 
2.1. 

 
Intensity representation RGB triplet interval Example 

Arithmetic Floating point interval (1.0, 0.5, 0.0) 

Percentage 0..100% (100%, 50%, 0%) 

Digital 
  8 bit 0..255 (255, 127, 0) 

16 bit 0..65535 (65535, 32767, 0) 

Table 2.1 - Digital color representation 

Digital imaging uses the RGB model differently, based on the size of the 
color palette. The size of the color palette depends on the level of color detail 
needed for the specific image and therefore, it can be divided into: 

• Monochrome 

• Grayscale 

• High Color 

• True Color 

• Deep Color 

The monochrome color palette is the simplest and smallest color palette, it 
contains two values: black and white. In digital terms, in the monochrome color 
depth, each pixel represents one byte, where 0 stands for black and 1 stands for 
white. In this representation, one image byte can store 8 pixels. 
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The grayscale color palette is used for representing high quality, colorless 
black and white images. Each pixel represents one byte of information with a value 
range situated between 0 and 255. 

The high color palette is the first palette that displays color variations, each 
channel having 5-6 bits. This means that each pixel is represented on two bytes. 
There are two high color modes: 

• 15-bit high color (32768 colors) 

• 16-bit high color  (65536 colors) 

In the 16-bit high color representation one of the three channels gets an 
extra bit, although the difference between 15 and 16 bit high color is almost 
inexistent for the human perception.  

The most commonly used color palette is the true color palette. Every pixel 
is 3 bytes long (24 bits), one byte corresponding to each color channel. Every 
channel has 256 color variations, totalizing 16,7 million colors (for all three 
channels). The true color is used in digital imaging, photography and video 
recording as it can store all the colors the human eye can perceive. 

 In real life there are more than 16,7 million colors, so there is need to store 
more color information in certain circumstances. Therefore, the deep color comes 
with 30, 36 and 48 bits per pixel (10, 12 and 16 bits per color channel), sufficiently 
enough to store 281,5 trillion colors.  

2.2.2 The RGBA representation 

The RGB model is sufficient to store color information, but since the first 
graphical editing tools came out, one big problem was the overlapping of two 
images. This has not been a problem since the beginning, but as the graphical user 
interfaces evolved, so did the need to combine two colors of different layers into a 
new resulting color. 

The RGBA model offers the solution to this problem by completing the RGB 
model with “color information” called the alpha channel. The alpha channel is just 
like every usual pixel color, with the difference that it provides transparency instead 
of color information. We can observe certain similarity to the high color RGB model. 
Each pixel in the RGBA model has its own transparency; this means that certain 
pixels can have different transparency values. Figure 2.9 illustrates two images 
overlapping, out of which, the second has alpha transparency of 127 for all pixels. 
The resulting image is a combination between the two original images. 

 

 

Figure 2.9 – Image with alpha channel = 127 (50% opacity) 
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The alpha channel is used mostly to make an image blend in with the 
background in cases in which the background itself is not fixed defined (variable). 
Figure 2.10 illustrates the fade-out effect of an image if the alpha channel equals 
the y image coordinate. The effect resulting is that the top of the image presents 
maximum opacity whereas the base of the image has maximum transparency 
(invisible). 

 

Figure 2.10 - Image with alpha channel = y (0% to 100% opacity) 

2.2.3 Image compression 

Image compression represents a fundamental aspect when it comes to 
shrink the color table’s size. There are two major types of compression algorithms 
that deal especially with color information: 

• Lossless 

• Lossy 

Lossless compression algorithms decompress the original data 1:1 without 
any loss of information. Typically these techniques are used to reduce the size of the 
image, but in the same time retain the possibility of accessing the original color 
information with no loss. Formats like BMP, PNG and JPEG HD use lossless 
algorithms to preserve the integrity of the original pixel table. Lossless image 
compression is a class of compression algorithms that allow the exact reconstruction 
of the original data (in this case color information) from the compressed data. This 
is useful to preserve the color information whilst keeping the size under reasonable 
boundaries. The compression algorithms use pattern detection techniques and/or 
arithmetic coding to achieve the best compression possible. The compression size 
depends mostly on the pixel color information, but also on the dictionary size, 
specified in percentage. The dictionary size represents how many compression 
iterations the algorithm will execute before the data is completely compressed. The 
more iterations it executes, the smaller the compressed data can become (that’s not 
always true) but in the same time, the decompression speed decreases. 

Lossy compression algorithms on the other hand, try to eliminate the 
overhead color information based on the fact that the human eye cannot distinguish 
all possible color variations a typical pixel can store. Formats like JPEG use a set of 
transformation tables to dramatically reduce the size of the image, but maintaining 
the visual integrity of the original image. The decompression process approximates 
the original pixel combinations, but it is unable to output a 1:1 resemblance to the 
original even when the compression quality is set to 100%. Lossy image 

BUPT



34   Chapter 2. Steganographic background  
 
compression algorithms only allow an approximation-based reconstruction of the 
original data. The decompressed data is different from the original one (it depends 
on the quality percentage used when compressing) but closely enough to be useful 
in some kind. Lossy compression is used when the color preservation doesn’t matter 
to be taken into consideration, and the size is very important. The compression ratio 
compared to lossless compression is way better, but it comes with a certain cost: 
quality. Figure 2.11 illustrates a few of the most popular image standards and their 
compression capabilities. 

 
Image format Compression type 

Extension Name Lossless Lossy None 
ABO Adaptive Binary Optimization ! " " 
BMP Bitmap ! " ! 
CPC Cartesian Perceptual Compression " ! " 
GIF Graphics Interchange Format ! " " 

HAM Hold And Modify " ! " 
JBIG JPEG BIG ! ! " 
JPEG JPEG " ! " 

JPEG XR HD Photo ! " " 
JPEG-2000 JPEG 2000 ! ! " 

PGF Progressive Graphics File " ! " 
PNG Portable Network Graphics ! " ! 
TIFF Tagged Image File Format ! ! " 

Figure 2.11 - Most commonly used image formats 

In terms of steganography, lossless image compression is the only way to 
hide data and in the same time achieve high steganographic capacity. 

2.2.4 Pixel matrix 

Digital images are shown as a matrix of pixels. In reality, the pixels are 
arranged as a stream of bytes that form an array. The digital image has three 
components: 

• Image information header 

• Color pallet (optional) 

• Pixel stream 

The image information header contains information like width, height, bits 
per pixel (bpp), etc. The color pallet is an optional image component, and it is used 
for image formats in which the colors are limited to a reduced set of colors. This is 
used in order to reduce the channel representation bits to a smaller number, in 
order to decrease the image size.  

The pixel stream is the part of the image where the color information is 
stored. The image pixels are displayed as a matrix, although they are stored as an 
array. In order to address the pixels as a matrix certain formulas are used: 
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!"#$%!"#$%& !"#$, !"# != !"#$%!""!# !"#$ ∗ !"#$ℎ + !"# !

where 

!"#$ = 0!. .!!ℎ!"#ℎ! − 1 

!"# = 0!. .!!!"#$ℎ − 1!

 

 

Figure 2.12 - Matrix - array transformation 

As one can observe in figure 2.12, there is a simple formula for calculating 
the coordinates from the matrix to the array and vice versa. The pixel-by-pixel 
addressing is a very time and resource consuming process; this is why normally the 
image is red line-by-line using a scanline function. Scanline uses a buffer of size 
!"#$ℎ to read the exact amount of information corresponding to a line of image. In 
this way, data is red from the file into the destination matrix (usually situated in 
RAM for better access timings). 

For a performance evaluation, I use the notation!!, representing the time it 
needed to fetch a pixel. Fetching the entire pixel information of the image would 
require!!!"##$! = !!"#$ℎ! ∙ ℎ!"#ℎ!! ∙ !!, which is a very high delay in accessing speed. This 
is caused by the computational intensity of the seek timings (used for every pixel – 
fine granularity) and it mostly depends on the hardware speed and implementation. 
Therefore, alternatives like bigger buffers are taken into consideration. The buffers 
used to read data are then up scaled to read more information (pixels) in one single 
read cycle (coarse granularity). This process is also known in digital image 
processing as scanline reading. Instead of reading the information one pixel at a 
time, we read an entire line of length=width. In scanline the read time is 
dramatically reduced to!!!"##$! = !ℎ!"#ℎ!! ∗ !!’, where !! ≤ !’! << !!"#$ℎ! ∗ !!. 

BUPT



36   Chapter 2. Steganographic background  
 

 

Figure 2.13 - Fine granularity vs. coarse granularity (read buffer speed) 

In figure 2.13 one can observe that there is a dependency between the read 
buffer size and the read speed. Depending on the hardware implementation, there is 
a maximum buffer size that can be read in one read cycle. The absolute speed is 
obtained by scaling the scanline buffer to the maximum size given by the hardware 
capability. This is difficult to realize because normally such data is hardware 
dependent, so the only alternative is to determine the maximum buffer size with 
progressive benchmarks. Once the pixel information is stored in RAM, the access to 
individual pixel color channels is more easily realized (better access speeds). 

2.2.5 Color Histogram 

A histogram by definition is a frequency table that counts the occurrences of 
specific values. In digital imaging, a color histogram is a tonal distribution table that 
counts the individual values of each color channels. A color histogram is used 
normally for image processing, as it contains valuable information over the color 
distribution. Most image effects and correction algorithms are performed on the 
color histogram. 

Normally, the color information inside the pixels of a digital image can be 
represented into three base histograms (Red, Green and Blue histogram), but there 
are additional histograms that can be realized to represent color information (RGB 
median, Color, Luminosity, Saturation, Median, etc.).  

The X-axis represents the number of colors of the specific channel (for 
example in a 24 bpp image, the maximum color number is 256), and the Y-axis 
represents the frequency (the number of occurrences of the specific color value). 

The color histogram can be considered as a fingerprint for the image, as it 
counts its color components. Besides the digital image processing, steganalysis 
techniques intensively use histograms to identify steganographic images.   

If we take the RGBA model, the four basic histograms (Red, Blue, Green and 
Alpha histogram) are generated using the following code: 

 
1 ZeroArray(RedHist)1
2 ZeroArray(GreenHist)1
3 ZeroArray(BlueHist)1
4 ZeroArray(AlphaHist)1
5 for1y1=111to1image.height1do1
6 1 for1x1=111to1image.width1do1
7 1 11begin1
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8 1 1111Increment(RedHist[pixels[y,x].red])1
9 1 1111Increment(GreenHist[pixels[y,x].green])1
10 1 1111Increment(BlueHist[pixels[y,x].blue])1
11 1 1111Increment(AlphaHist[pixels[y,x].alpha])1
12 1111end1

 
The first step is to reset the peak values of each color to zero (lines 1-4), 

then the image (lines 5-6 - in this case we use a traditional matrix scanning). For 
each pixel we increment the histogram peak with the index given by the color 
component’s value (lines 8-11).  At the end of the code sequence we get an array 
with the color distribution table (frequency) that we can either use for digital 
processing or for representation. Usually histograms are used for image processing 
as they can be analyzed to identify faults in image representation.  

2.3 Digital Image Steganography 

In digital steganography, probably the most elaborated and intensely 
researched domain is represented by image-based steganography. Images facilitate 
advanced embedding methods due to the variety of formats and digital color 
representation standards. Image steganography represents the intersection of 
traditional steganography with digital image processing techniques. The main reason 
why this specific domain presents more interest to researchers worldwide is because 
most steganographic techniques are used to transport a very small amount of secret 
data that is normally big enough to fit in a normal average-sized image. Other than 
that, the size of the transmitted carrier blinds in with the rest of normal harmless 
image sharing procedures, making the cover-up for the secret communication 
channel the ideal storage and hiding place. 

2.3.1 Images as data carriers 

Depending on the application of steganography in security systems, the 
choice of what carrier type to use is a central task. For my research I’ve focused on 
working with images because of multiple factors such as: 

• Widely spread throughout the internet 

• Reduced size 

• Overhead information 

• High compression 

Images, after text, represent one of the most widely used formats 
throughout the Internet. The majority of websites, email attachments and 
documents contain images, making them the perfect carrier in almost every aspect. 
Unlike audio or video streams, images offer limited storage space for the secret data 
meaning that they are unsuitable for live communication systems that implies a 
constant transmission stream such as audio or video. However, if we take into 
consideration a recent study [34] based on the file exchanges conducted in the last 
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three years through either file sharing systems or emails, it is immediately obvious 
that the majority of formats exchanged by most people imply digital documents and 
images. The study was conducted on emails exchanged solely in the Gmail email 
system and showed that out of 10 million emails sent, 12% have attachments 
alongside text. The majority of emails with attachments are sized under 250 KB 
(75%) and contain mostly images (29% - PNG, JPG, BMP) and documents (25% - 
PDF, DOC), making the image format the most utilized type of attachment 
throughout the internet, beside text. Since by definition steganography implies 
hiding in plain sight, images make the perfect data carrier. 

The majority of images are small in size, making them easy to transmit over 
the Internet. This is another aspect for which images are more suitable over other 
data carriers. Also, unlike other formats, the pixel table of a normal high-quality 
image presents more overhead data than other formats that are compressed using 
lossy compression. Except for formats like JPEG, high quality image formats often 
use lossy compression, meaning that the decompression recovers the original color 
information 1:1 without any loss.  

In most cases the sensitive information one wishes to secure against a third 
party listener or interceptor, is represented either by a document, message or 
image. Given the size of this average data, images offer a decent amount of storage 
space and are perfect for this purpose. 

2.3.2 Lossless or lossy coded images 

Just like every other media format, images can use multiple compression 
standards. As outlined in a previous chapter, compression algorithms are divided 
into two major categories lossless and lossy. Comparing these two techniques 
highlights that the fundamental starting point of steganography is represented by 
the overhead of digital information that is not perceived. The main difference 
between these two compression techniques is the size of the resulting compressed 
image. If the color quality is not a big issue, lossy compression techniques is 
definitely the best choice since it can compress the image up to a very small fraction 
of the original one. Lossless compressions offer a decent amount of size reduction, 
but compared to the lossly encoded images are still substantial in size. Image 
steganography is split into these two directions. The reduction of overhead color 
information in lossy encoded images eliminates the majority of storage space one 
has for the secret data, making this format suitable only for very small files or short 
text messages. If one wishes to send a document, lossless encoded images are the 
wisest choice. 

The two major image formats used today are either JPEG (lossy encoded) or 
PNG (lossless encoded). A 100% quality encoded JPEG is comparable to PNG in 
image size making PNG one of the widely used formats for image steganography. In 
my research I’ve focused entirely on lossless encoded formats such as PNG for a 
multitude of reasons out of which I can mention: 

• High storage capacity 

• Easy to manipulate 

• Small size when compressed 

• Higher processing speeds 
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2.3.3 The paradigm of steganography 

The first fundamental problem when facing with steganography is within its 
own definition: steganography must meet both quality and capacity requirements. 
Given the fact that we use an existing format, the highest quality form of 
information is represented by the original data carrier. Once we tamper with its 
integrity by including the secret information within the original carrier we slowly 
decrease the quality in order to make room for the secret data. When taking into 
consideration that we use a carrier that was not designed to have secret data 
embedded onto it, steganography must keep a controlled balance between these 
two variables. The higher the resulting image quality the lower the embedding 
capacity, and vice-versa, represents the main problem and the central breakpoint. 
The struggle to keep image quality and embedding capacity under acceptable levels 
implies the acceptance of certain compromises. These however, are not easy to 
achieve as balancing these two offers an output that is not satisfactory in both 
directions.  

 

 

Figure 2.14 – The steganographic paradigm illustrated 

Quality and embedding capacity represent the two main constraints of every 
algorithm, it is hard to meet both at the same time as shown in Figure 2.14. The 
effectiveness of a steganographic algorithm is either on the side of quality, case in 
which we consider an algorithm to be effective if it retains more quality of the 
original carrier, or on the side of capacity where as an algorithm is considered to be 
effective if it can offer an increased storage space for secret data. The hypothetical 
ideal case represents the algorithm that is considered effective if both increased 
quality and capacity requirements are met. This is however near to impossible to 
achieve given that they can almost never meet in real life situations. 

Alternative solutions have been researched in the last decade, but most fail 
to achieve a decent amount of quality and capacity as it always implies a 
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compromise. The inter-dependency of quality and capacity is near to impossible to 
break due to the limitation of using the pixel table of the original carrier image.   

 

2.3.4 LSB steganography 

One of the most commonly used methods in lossless image steganography 
is represented by the LSB method. A typical high color digital image is constructed 
based on an array of pixels. Each pixel stores the color as a combination of the 
three computerized primary color channels: 

• Red (R) 

• Green (G) 

• Blue (B) 

A typical 24-bit high color image stores each of the primary color channels 
on one byte, totalizing over 16 million possible colors when viewed as a whole. 
Although from a digital perspective these colors are unique, from a visual 
perspective (human vision) many of these colors are redundant and repetitive. The 
average human eye can only distinguish between 2 million out of the total colors 
possible. If we analyze the relationship between the three color component from a 
binary perspective we see that the last bit of every color component affects the 
color spectrum that goes unnoticed if tampered with, from a human perspective: 

!"#$%& !"# = !2! ∗ 2! ∗ 2! = 16.777.216 (2.1) 

 
 If we where to take this relationship and ignore the color combinations 

introduced by the last bit of each color component we would obtain: 

!"#$%& !"# = !2! ∗ 2! ∗ 2! = 2.097.152 (2.2) 

This discovery led to the conclusion that, if not needed, the last bit of every 
color channel, totalizing 3 bits/pixel can be reused in order to store other data 
within. The image is viewed as an unformatted disk where the last bits (LSBs) 
become volatile and serve for storage and the first bits (MSBs) remain nonvolatile in 
order to preserve the original aspect and cover the actual secret data within.  

Figure 2.15 best illustrates a typical 1 LSB based steganographic algorithm. 
The technique of hiding within the last bits of each pixel carries the name of 1 bit 
LSB steganography. From the storage point of view if we where to take a typical 
1024x768 image as an example we would see that it contains 768432 pixels.  These 
pixels, multiplied my 3 give the total amount of color channels the image is 
represented upon, 2359296. Since the above example is using 1 LSB steganography 
as reference, this number is equivalent to the total number of bits available for 
storage. In this case, the image would be able to store 294912 bytes (288 KB), 
which in most cases would be sufficient for a small document or even another image 
to be included within the original carrier. The storage space in the outlined example 
represents 12,5% of the total image’s size, which represents the major downside of 
this technique: the need of substantially big images. Although this technique may 
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seem pretty simple and straightforward research on this basis has not ended here. 
In order for this steganographic technique to be effective in real life situations and 
usage, the size of the carrier image must also be relatively small in order to avoid 
detection.  

 

Figure 2.15 – 1 LSB-based steganographic algorithm example 

This is one of the main reason researchers have been trying to go beyond 
the 1 LSB limitation and use more bits for data storage. The major problem that 
arises with these new techniques derives from the fact that tampering the other bits 
directly affects the color spectrum of the image that can be humanly perceived and 
identified.  

The construction of an algorithm that alters more information, therefore 
utilizing smaller image to achieve the same storage space, requires more complex 
image processing and normalization algorithms in order to reestablish the original 
look and feel of the carrier image. This has been proven not to be an easy task, as 
one can easily meet technology’s limitation. 

The computerized representation of color described as an RGB triplet is not 
directly related to human vision and perception. Although it may seem as if the 
three color components red, green and blue influence the resulting color in an equal 
manner, in reality colors behave different depending on the image context and 
surrounding color pallet.  
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CHAPTER 3 
3 Related work 

“We should be taught not to wait for inspiration to start a thing. Action 
always generates inspiration. Inspiration seldom generates action.” – Frank 
Tibolt 
 
“Not everything that can be counted counts, and not everything that counts 
can be counted” – Albert Einstein 
 
 
 
When it comes to build a high capacity steganographic algorithm one of the 

most commonly used methods is represented by the LSB technique. Based on the 
fact that a normal natural image presents many overhead data that store 
unperceivable color variations one can embed the secret data within the noisy 
regions, replacing random white noise with computerized white noise. Since the 
choice of carriers for this type of image steganography is mostly limited to using 
lossless algorithms, the size of the carrier image often presents the main problem of 
such an implementation. The outputted steganographic image is normally 
substantial in size directly related to the size of the secret data we wish to embed. 
In most cases, if we wish to embed data such as text, the lossless format does not 
present a problem. If on the other hand we wish to secretly embed data such as 
images, documents and other type of digital file formats, the need for increased 
storage space often requires a bigger image to hold the data within. The classical 1 
LSB method offers a decent amount of space but fails to offer the adequate storage 
space for larger files. If we take a 24-bit image where each of the primary color 
channels R, G and B are represented on 8 bits, by embedding 1 secret data bit in 
each of these three components would mean that the image offers 12.5% 
embedding capacity of it’s total pixel table size. In other words, to store secret data 
using this method would require an image that is 800% bigger than the size of the 
secret data we wish to embed. If we take a typical PDF file as a secret data, the 
average size would be around 100-400 KB depending on the content; the 1 LSB 
method would need an image that is 800-3600 KB in size which adds much 
information that would render the entire steganographic process useless in terms of 
stealth because of the high quantities of cover data needed to hide the actual secret 
information. 

Recent advances in steganography go beyond the point of 1 LSB 
steganography, by utilizing more color LSBs in order to embed the secret 
information. By crossing this barrier, researchers also face big problems that arise 
by altering the more sensible color variations. The field of high capacity 
steganographic algorithms represents a very vast and complex research domain 
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that is directly related to image processing techniques, as one must restore the 
original look and feel of the original carrier image after coarsely embedding high 
quantities of information within the more sensible color regions. In addition, the 
problem of enhancing the image through advanced processing and normalization 
filters, the higher the embedding capacity a typical algorithm offers he higher the 
chance of detection using steganalysis techniques becomes. 

The need for more storage space pushed steganographic research into a 
new level, creating in the same time a new complex research domain. Steganalysis 
research also evolved with the new trend, pushing the limits and constraints needed 
to take into consideration when conceiving a new steganographic algorithm. Just 
like the embedding algorithms themselves, steganalysis algorithms rely on a set of 
metrics that estimate statistically the chance of secret data presence. The 
steganalysis algorithms are split into multiple categories based on the metrics and 
methodologies they use to reliably estimate the chance of secret data existence 
inside the carrier analyzed. One of the most commonly used detection algorithms 
use a set of evaluators such as: 

• Quality evaluators 

• Embedded capacity calculators 

• Histogram anomalies detectors 

• Logical or PRPG induced noise detectors 

• LSB scattering detectors 

• Color anomalies detectors and evaluators 

• Peak-to-Signal Noise Ratio evaluators 

Trying to avoid detection by respecting all the commonly used detection 
algorithms can be a very hard task to achieve given their complexity and metric 
scales in which they quantify the result. There are two emerging strategies that 
researchers commonly use: avoiding as much as possible detection at the cost of 
losing storage space or adapting the image result in a way that issues the highest 
suspicion rate when passed through an analysis stage. 

3.1 Steganalysis detection overload algorithms 

The main starting point of steganography is to issue a data carrier that 
travels undetected through these types of detection filters. Given this fact, 
algorithms that overload these detection strategies to issue maximum suspicion rate 
fail to fulfill the main purpose of steganography as the idea that a constant alert in 
detection systems may let all carriers that were processed using this type of 
steganography pass unnoticed. In reality they form a separate type of images that 
are always suspicious of containing secret information within when compared to 
normal harmless images that are sent without the intention of using them as data 
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carriers. In a recent work presented by Shreelekshmi in [35] a new technique of 
cover preprocessing based steganographic algorithm has been presented that trick 
the most reliable steganalysis methods into estimating a high embedding ratio of 
almost 100%, in order to issue a false positive. In reality this technique may be 
effective in the event it does not get used very often in these types of embedding 
strategies, but as the algorithm becomes more known and utilized, the constant 
false positive the steganalysis detection filter issues can be threated as the exact 
opposite, well distinguishing the technique among others. 

Since a typical natural image contains much noise in the LSBs of each pixel, 
many researchers have tried to build algorithms that insert random noise in order to 
trick a few of the most commonly used steganalysis techniques into issuing false 
positives or very high chances of secret data existence. Normally a steganalysis 
algorithm that issues the chance of secret data existence has a scale defined by a 
upper and a lower boundary, but the reliability of the estimated result is higher in a 
region called the confidence space. Usually overload steganographic algorithms 
insert much noise in order to keep the steganalysis results out of the confidence 
space, making their estimation inaccurate in theory. 

In reality however the things look slightly different, since a constant set of 
carriers that pass these detection stages issuing a result out of the confidence 
space, becomes suspicious by definition and can be easily filtered.  

3.2 Steganalysis avoiding algorithms 

Probably the most intensively researched type of steganographic algorithms 
is represented by the steganalysis avoiding algorithms. These algorithms take the 
steganalysis metrics into consideration when deciding where and how to embed the 
secret data. There are multiple ways in which these tasks can be accomplished such 
as: 

• Preprocessing the image 

• Choosing embedding regions 

• Calculating total reliable storage space 

• Degrading the image prior to embedding 

• Noise elimination 

• Controlled insertion 

• Processing the image while embedding 

• Error correction during and after embedding 

• Postprocessing the image 

• Controlled insertion using histogram preservation 
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This is just a small list of the main categories of algorithm design guidelines 
many researchers follow in order to achieve maximum performance in terms of 
stealth and resistance to detection. The main problem that I’ve found throughout 
my research is that most algorithms tend to avoid detection only for a very limited 
amount of steganalysis techniques. 

3.2.1 Preprocessing the image 

A very vast category of steganographic algorithms relies on preprocessing 
the cover image prior to embedding. This stage usually smoothens the image and 
eliminates the noise prior to embedding secret data. These types of algorithms 
basically eliminate the natural noise of the image and transform it into a computer-
enhanced image. The embedding process is basically a normalization process that 
introduces the initially stripped noise. However, the output is not always the one 
that we wish for, since the logical noise introduced can alter portions of the image 
up to the point where the steganographic image looses its original aspect after 
embedding. 

3.2.2 Choosing embedding regions 

The technique of choosing the embedding regions is proven more effective 
than preprocessing based algorithms since it initially evaluates the image from a 
steganalysis point of view in order to find the most noisy regions of the image or 
those regions that are blind to most filtering algorithms. Depending on the cover 
image chosen, this type of steganographic algorithms have a high failure rate when 
it comes to capacity since the strength of the method comes at the cost of losing 
valuable embedding space. In some cases, where the image color distribution is 
perfect, such algorithms fail to find suitable embedding regions, or find the entire 
image as suitable for embedding. These extremities, although isolated, don’t offer 
the adequate amount of success guarantee that is to be expected from a powerful 
steganographic algorithm. 

3.2.3 Calculating total reliable storage space 

Exactly like embedding region detection algorithms, these algorithms 
calculate the reliable storage space before the embedding process can begin. Just as 
in the case of region detectors, these algorithms offer a limited storage space, as 
they tend to estimate the capacity using pessimistic approaches in order to 
guarantee the stealth level. By comparing this type of algorithms with the original 1 
LSB algorithm, in may cases the reliable storage space estimated is even smaller 
that the initial design, rendering the algorithms useless for practical usage. 

3.2.4 Degrading the image prior to embedding and noise elimination 

Many algorithms use the LSB [56] insertion method after an intitial cover 
preparation stage. This stage is mainly used in order to rearrange the initial original 
color information up to the point where it would become suspicious for a detection 
filter. The embedding stage is then used as a normalization stage where the initially 
degraded cover is altered tending to resemble the original. In reality however these 
algorithms do not offer any type of guarantee that the theory is always found within 
the real life examples. Without testing the effect of the resulting steganographic 
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image, this type of algorithms prove weak even against a statistical evaluation of 
the method, making them vulnerable to most common types of attacks. 

3.2.5 Controlled insertion 

Controlled LSB insertion algorithms prove to be more effective than other 
types of steganographic algorithms because they alter the original information in a 
controlled way with a set of quality metrics as guideline. These algorithms try to 
eliminate the anomalies that are normally introduced, in the incipient phase, without 
the need of future corrections to be applied. These algorithms are very powerful to 
steganalysis attacks but become less effective if we want to increase the storage 
space, as their correction stage is limited to a narrow set of reusable data. 

3.2.6 Processing the image while embedding 

Just like in controlled insertion steganography, many algorithms rely on 
image enhancement filters during the embedding process. Depending on the filter 
used, once a limited set of pixels get altered after inserting the secret data onto 
them, these algorithms then apply a set of enhancement filters in order to restore 
the normal color trend line. Although effective in most cases, these algorithms also 
suffer from their limited possibility to enhance the image when reusing to much 
color information for embedding purposes. 

3.2.7 Error correction during and after embedding 

The error correcting algorithms use additional color information bits to 
restore the original look and feel of a specific image region immediately after the 
secret data bits have been inserted. These types of algorithms are able to offer an 
increased embedding capacity compared to other real-time enhancement 
algorithms. They’re breakpoint however resembles in their vulnerability against 
signal difference attacks or even histogram attacks since the usage of more 
sensitive information for color correction usually alters the image coarsely up to the 
point where, in some cases, the abnormalities introduced are observable by a 
human analysis. 

3.2.8 Postprocessing the image 

Algorithms that rely on postprocessing prove to be more effective against 
most steganalysis detectors as they have the full overview on the degree of change 
the original cover sustained after embedding. Using differential filters and having 
both original on modified image, these algorithms try to restore the original color 
information or histogram distribution of colors according to the model, which is the 
original input image. Depending on the quantities of secret data embedded onto the 
original image, the postprocessing stage can be rendered useless in some cases in 
which the changes would imply heavy processing and enhancement that would 
affect the sensitive portion of the image which is represented by the secret data 
itself. In these cases the filters aren’t even applied leaving the algorithm with no 
choice but to output a highly degraded steganographic image. 

3.2.9 Controlled insertion using histogram preservation 

Since many steganalysis algorithms rely on histogram evaluation, this type 
of steganographic algorithms try to control the insertion by keeping the histogram of 
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the modified image in balance with the original. In this way the image maintains its 
original look throughout the embedding process without the need of additional 
filtering and image enhancement stages. The histogram attack is one of the simplest 
types of steganalysis detection algorithms, but it has been proven repeated times 
that some natural images have a non-uniform color histogram, leading this type of 
attack to issue a false positive on a natural image with no secret data contained 
within.  

3.3 LSB Matching steganography 

In most recent years, researchers have been concentrating on a new way to 
avoid most detection algorithms but in the same time retain more of the original 
cover medium’s color information. This technique is known as LSB matching 
steganography and it’s based on the fact that the image we use as cover already 
contains many of the binary combinations that can be found within the secret data 
we wish to embed, just not in the right order. As opposed to traditional 
steganographic methods, this new trend tries to focus on the cover image 
preservation aspect rather than coarsely modifying it in order to store secret data. 
These algorithms use more computational power during the embedding process, but 
have the advantage of not requiring postprocessing on the resulting image. 
Regardless of the approach, the secret data will degrade the image; therefore the 
main purpose is to minimize the degradation, and at the same time keep various 
quality metrics such as peak noise to signal ratio (PSNR) within acceptable intervals. 
Higher PSNR values improve the overall immunity against statistical analysis. By 
minimizing color degradation the hazardous distribution of colors is preserved, thus 
making secret data harder to detect. 

Chang [26] proposed in 2009 a hybrid method that combines two methods: 
the optimal LSB substitution [39] and the optimal pixel adjustment [38]. The hybrid 
combines a remapping algorithm with a pixel value adjustment technique. The 
optimal LSB (OLSB) [39] method rearranges the secret data according to a bijective 
mapping function. The image is scanned sequentially into an analysis matrix and a 
set of solutions is generated. The best solution is chosen based on a cost function 
that selects the proper combination of secret data bits that produces the minimum 
amount of distortion after embedding. The optimal pixel adjustment process (OPAP) 
[38] minimizes the difference between the original LSBs and the secret data. Given 
a number of k bits that are used for storage, the method uses another bit to control 
the difference. For example, if we use the last 3 bits of each pixel, we assume the 
original pixel value is 00001000 and the secret data bits that needed to be 
embedded are a sequence of 111. The simple substitution would transform the 
original pixel in 0001111 that would mean an error of +7, which is an unacceptable 
change. Instead, we change the leading bit, transforming the original pixel’s value in 
00000111, which means an error of -1, which is acceptable. 

In [37] a new optimization strategy has been presented that uses genetic 
algorithms to find the best mapping function between cover image and secret data, 
therefor decreasing the overall degradation. This approach however, is 
computational intensive and cannot be completed in polynomial time when the 
number of iterations is big. Also there is no guarantee that the technique generates 
better results when the number of iterations is small or in acceptable timing 
intervals.  
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CHAPTER 4 
4 Advancing Steganography 

“Besides the noble art of getting things done, there is the noble art of 
leaving thing undone. The wisdom of life consists in elimination of non-
essentials.” – Lin Yutang 
 
 
“Digital imaging has untied our hands with regards to technical limitations. 
We no longer have to be arbiters of technology; we get to participate in the 
interpretation of technology into creative content.” – John Dykstra 
 
 
 
Since my research started, I’ve been constantly searching for new ways to 

construct and build steganographic algorithms. Throughout my research over the 
years I’ve discovered that traditional LSB steganography is faulty by concept. The 
coarse data replacement followed by computational intensive filtering and image 
enhancement stages were definitely not the right path, as my research, just like the 
research of many others in the field, often led to a dead ends. The multitude of 
steganographic algorithms developed covers a large set of problems and aspects, 
but rarely in a large basis. Some problems get solved; some are left unsolved, 
dividing the entire research field in local optimums of solutions to chose from. The 
quality-capacity constraint as well as the steganographic paradigm of effectiveness 
is usually a hard task to resolve when taking the technologic limitation into account. 

In LSB steganography, once we go beyond the 1 LSB method we alter the 
color space that can be identified even by human vision. Since the average human 
eye is limited in distinguishing between 2 million color combinations, going even 
further with the storage space to 2-4 LSBs/color channel modifies the visual 
spectrum up to the point where it renders the stealth level of the steganographic 
algorithm useless. Unlike watermarking, high capacity steganography is not 
resistant to changes; even the slightest change to the image can destroy the secret 
data contained within. This is one of the biggest problems when trying to optimize 
the resulting steganographic image using postprocessing filters. Most of these filters 
were not designed to preserve digital combinations to a binary level, instead they 
enhance the perceptive integrity of the output. 

For my research work I’ve set my goal high: trying to resolve the problem 
by shifting away from the normal workflow. One essential thing I learned throughout 
my research is that if I try to optimize the image after the secret data embedding 
took place, I position my research more in the field of image processing than in 
steganography, were as the main idea behind steganography relies in the ingenuity 
with which one finds ways of storing data with a minimum of effort. Since my work 
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is based on LSB steganography I found out that instead of ignoring the LSBs we 
want to reuse and replace, the best way to avoid major quality loss is to embrace 
the existing combinations. Although these LSBs influence a small amount of color 
information, they still are the building stone of the original unchanged image, 
forming the maximum quality possible. 

4.1 Natural images 

Digital images can be divided into two main categories: natural and 
computer generated images. Computer generated images are usually represented 
by a logical color distribution and trending shapes. Natural images represent images 
taken using a digital camera or any other digitalization device (e.g. scanner). In real 
life, light is never uniform and constant, but rather random and noisy. As humans, 
we perceive light as a constant and uniforms signal, but in reality things look slightly 
different. Just like any other physical factor, light is basically a signal that varies in 
intensity, shape, size and duration. The reason why we see light as being static 
rather than dynamic has a multitude of causes: 

• Light frequency 

• Limited color spectrum 

• Approximation mechanisms 

• Light in context 

Light frequency is one of the key factors why human vision is faulty. We see 
the surroundings at a very low frequency compared to the actual light frequency. 
Depending on the light source, we normally perceive an overlapping set of frames 
that added together form an average amount of light we perceive. The stacking 
process of multiple frames makes the light variations and transitions smooth, as we 
only measure the average amount of light accumulated between a large amount of 
unconsciously perceived frames. If we were to capture an image with a high speed 
device or camera, we can see that light varies in intensity over time, but at a very 
high speed, going almost every time unobserved by our faulty eye. 

Other than light itself and the limited color spectrum we perceive is also one 
of the reasons light may seem constant for us. If we assume that light intensity is 
constant, colors outside of our visual spectrum may look exactly like other colors 
contained within the visual spectrum, making them identical. In reality we are 
talking about either about small color variations near enough to look identical, or 
even variations outside of the visual spectrum that correspond to others. Visual 
decomposition implies a two-layered process. In one process we perceive light as a 
signal with a minimum and maximum intensity. Colors represent a mask that 
influences this intensity, transposing the linear 2D signal into a 3D signal. 

Human vision also acts like a digitalization algorithm. As above stated, fine-
grained colors look the same, meaning that we see these colors by approximating 
them to the nearest perceivable color. This does not necessarily apply to all, for 
example painters, photographers and artists can have a more sensitive vision that is 

BUPT



 4.1. Natural images  51 
 

 

capable of reducing the approximation, therefor visualizing a increased set of 
perceived color variations. 

The last and probably most important cause why we see light constant is 
based on the light in context principle. Different mixtures of colors can make the 
appearance of the whole seem like a completely different color. A white shaded 
circle placed over a black background seems less intensive than the same white 
circle placed over an intense yellow as can be observed in Figure 4.1. The 
explanation behind this process is that the intensely colored background, 
overwhelms the human eye, stressing its perception of the actual object within. The 
distracting background makes it impossible to focus on the shape, making the light 
coming out of it seem more intense. Also, there is a big similarity between the two 
colors, making the circle’s borders hard do distinguish, the eye shifts from yellow to 
white and vice-versa, losing focus on both figures. 

 

 

Figure 4.1 – Light perception experiment 

On the other hand, the left image with the black background relaxes the 
eye, making the shape border clearly visible. Although both sides use the same 
white circle, the effects are pretty impressive, illustrating one of the multiple faults 
in our human vision. 

Digital vision on the other hand is more sensible to these aspects. If we 
were to take a set of burst shots of the same subject and in ideal conditions, none 
of the shots would be equal or even be nearly comparable from a binary point of 
view since the image sensor used to capture the images also registers light intensity 
variations in the form of white noise. White noise in images is a phenomenon 
directly associated to the fact that light is just another set of particles that travel in 
time with a certain speed and distance from other light particles (photons). The 
moment in which the camera begins to register light only captures a limited set of 
photons that hit the sensor during the time the camera registers them. The burst 
set of pictures may seem identical for the human eye, but analyzed in their binary 
form we can see that there is always change between every shot taken. Although 
this white noise is registered, there is a constant balance between the noisy pixels; 
where in one frame the LSBs would indicate a brighter color and light intensity, in 
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other frames it would indicate a darker color. Put in context as groups of colors, the 
visual effect looks identical between the frames. 

From this observation I came to the conclusion that a natural image is 
basically an image originating from a real light source, captured by a sensor that 
transcodes physical light into digital format. The image captured, viewed from the 
LSB perspective represents a hazardous but balanced distribution of colors and light 
intensities. 

One must distinguish between colors and light intensities. Although in 
computerized vision each color has a light intensity, for human vision the light 
intensity for the smallest color representation unit (typically the pixel) is almost 
never perceived. Instead, we perceive light over a larger portion, formed by a group 
of pixels. This also represents one of the building blocks for lossy image 
compression such as JPEG where lightness covers an area of 64 pixels grouped as 
an array of 8x8. The 64:1 reduction basically covers light over the specific region, 
leaving the actual colors being represented as deviation deltas from a central 
average color variation. 

The reason I insisted on natural images is because of their high importance 
to steganography. Computer generated images are usually unsuited for 
steganographic purposes because they do not contain noise, which is crucial for my 
purpose, as a steganographic algorithm designer. Embedding secret data onto a 
computer generated image them would introduce noise, making them vulnerable to 
detection. Natural images on the other hand present much noise (if they have not 
been processed and enhanced), making the noisy areas the perfect insertion spot 
for secret data. 

4.2 Data deduplication 

Data deduplication is probably the number one storage resource saver. This 
technique has been introduced mainly for the use inside server storage systems and 
databases, where multiple clients have access to the resources, but it is not limited 
to them. When multiple parties share the same storage space, it is unnecessary to 
have multiple copies of the same information; instead one could divide the 
information into smaller manageable chucks (blocks) and search for a corresponding 
component already stored. If such a component is found, instead of storing it again 
we can point the retrieval system to the right area with the help of pointers. If the 
data chunk is not found it can be stored either as a whole or as a delta change from 
the nearest similar block (if possible). Once two parties access and modify the same 
block, the first one would lock the resource and modify it, where as the second one 
would create a new storage area for its modified block. In this way we can store 
data reliable and by using less storage space. 

The technique of deduplicating information only becomes effective if a larger 
amount of data is already present. When starting from scrap, the system evolves 
with every new data stored, constantly optimizing its space. Although hard to 
imagine, the effectiveness increases when adding and storing more and more data. 
This is one of the main reasons these systems are usually initialized by random 
data, in order to speed up the entire optimization process. Data deduplication can 
be associated with evolutionary algorithms: the higher the breed the better the 
chance of evolving the entire system.  
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In my research I found deduplication techniques very useful if used together 
with steganography. If we strip the LSBs we tend to reuse for storage space, we get 
a messy storage space that already consists in a multitude of binary combinations, 
crucial for a deduplication system. By analyzing the secret data at a binary level we 
can identify that many of the combinations can already be found within the white 
noise of the image (the extracted LSBs), depending on the granularity with which 
we handle the binary blocks (how many bits we group). 

4.3 The ideal cover image 

Steganography proves itself effective if it can surpass detection filters. 
Unlike cryptography where breaking the cipher would facilitate the exposing of the 
secured information within, steganography’s biggest threat is steganalysis detection. 
The variety of algorithms and techniques used to store and map data onto the 
carrier image present a reverse engineering complexity higher than most 
cryptographic ciphers. Since the main purpose of a steganographic algorithm is to 
hide the trace of the communication channel, one must meet several precautions in 
order to surpass analysis gateways. 

For steganography to be more effective, the choice of carrier is crucial. If 
the same carrier is used for repetitive embedding stages, one can easily expose the 
differences by analyzing a wider set of intercepted images. Ideally the carrier should 
be an image that is nowhere to be found in its original form, usually this would 
imply taking an image and immediately using it for embedding. 

4.4 Embracing the origin 

The majority of steganographic algorithms presented start with the premise 
that the noisy LSBs of each color component are less important. Although this may 
be a correct assumption in 1 LSB steganography, it is faulty when coarsely 
modifying more binary LSBs. The embedding of secret data bits in on a wider space 
inside the pixel table over lapses with important color channel bits that can alter 
either the color to a completely new and perceivable nuance, or by affecting the 
brightness of the pixel. This may not have an immediate effect on perception 
because of the reduced size of the pixel, but in context, groups of coarsely modified 
pixels have a strong visual impact and are easily spotted. 

In my research I’ve tried to avoid this problem, instead of ignoring the 
binary combinations that the cover image offers, I see them as a database of 
already existent information. In an ideal case, the secret data viewed as binary 
combinations of bits are identical to the LSBs of the carrier image. This case 
wouldn’t even require the use of an algorithm to embed the secret data, as it is 
already present. As good as it may sound this is almost impossible to achieve since 
the incidence of this to happen decreases with the size of the secret data we wish to 
embed. As my research went further I focused on finding ways that are tangible to 
the ideal model. 

Instead of focusing on changing the LSBs I focused on modeling and 
manipulating the secret data in a manner that if embedded produces the smallest 
degree of change on the original carrier. The idea is to reorder the secret data so 
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that the algorithm achieves the maximum similarity between the original bit 
combinations as given by the image’s white noise and the secret data bits. This 
technique is also known as LSB Matching steganography and represents a new trend 
in algorithm design. The steganographic algorithm morphs into an advanced binary 
analysis tool that tries to correlate the secret data bits with the already contained 
color channel LSBs. By doing so, the entire process analyzes different combinations 
of data rearrangement techniques using quality and logical metrics to study the 
effects the secret data would produce to the original image in the event of 
embedding. This type of approach outputs a variety of embedding strategies in an 
iterative manner, limited by several factors such as: 

• Running time – Since the LSB Matching algorithms are repetitive 
processes; the notion of best solution is represented by local optimums. 
The longer we let the algorithm do analysis tasks the better the solution 
can become but this does not represent a guarantee. Depending on the 
scope we use steganography for, the running time of the algorithm can 
be placed under constrains, considering the best resulting solution as 
being the one that can be found given a limited timeframe. This 
constraint can prove effective even when dealing with differently sized 
cover images, as the algorithm must end its execution at a certain point 
in time. 

• Iteration counts – Exactly like the running time constraint, iteration 
count limiter can be introduced in order to limit the maximum number 
of attempts to remap the secret data. This constraint however can be 
less effective than the time constraint since the number of iterations 
needed to reach the desired quality can vary depending on the 
environment (cover image, secret data). This metric however can be 
used to benchmark the effectiveness of the evaluator. If we try to 
improve the evaluator that adapts the secret data onto the carrier 
image, using a limited number of iterations we can reliably compare the 
evolution of embedding strategies. 

• Quality metrics – Probably one of the best limitations, the quality 
constraint stops the algorithm cycle when the secret data is remapped 
in a manner that produces the smallest amount of change on the 
original carrier. This limitation assures that the output image is within 
the desired quality limits, in order to enforce the steganographic 
image’s result against various types of steganalysis and detection 
filters. The only downside of this method appears in cases in which the 
quality demand is higher than the optimization capacity of the 
algorithm, leaving the algorithm run endlessly. 

• Recurrence counters – Directly related to the quality metric 
limitation, recurrence counters identify repetitive solutions that have 
the same desired quality. This method groups the best solutions within 
a group of local optimums. If a specific amount of solutions remain 
within the same quality limits, the method assumes that the algorithm’s 
possibilities capped and terminates its execution in order to avoid 
unnecessary processing time. The quality metric and recurrence counter 
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limitations are best used together, issuing an algorithm termination 
routine fitted for all non-benchmarking tests. 

• Steganalysis metrics – Probably the most intensive limitation the 
steganographic algorithm’s runtime can be limited by steganalysis 
detection filters. This ensures that the algorithm will stop searching for 
solutions if the best solutions found so far can surpass the embedded 
detection filter. This limitation is most effective when we know what 
steganalysis methods are used in order to detect our secure and secret 
communication. However, the downside of this limitation relies in the 
increased complexity of the resulting algorithm. Also, if the algorithm 
fails to find embedding solutions that pass the analysis stage, the 
process never terminates. 

• Full recombination coverage – In LSB matching, in order to avoid 
recurrent and repetitive solutions, they can be indexed in a hash table, 
only the best solution would be stored in its entirety in order to avoid 
high memory usage. If the secret data and cover image is reduced in 
size, there is a small possibility to cover all data combinations possible, 
case in which the algorithm stops because it covered the entire solution 
space. Usually both, the secret data and cover image, are largely 
enough for this never to happen within acceptable timeframes.  
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CHAPTER 5 
5 Nexim One Algorithm 

“There is a single light of science, and to brighten it anywhere is to brighten 
it everywhere.” – Isaac Asimov 
 
 
 
With Nexim One I propose an alternative hybrid, which is based on the OPAP 

method, but with a new matching algorithm. My method is similar to other LSB 
matching approaches [26][40] but uses flexible parameterization to best fit the 
purpose of reducing the image degradation in terms of PSNR values. For testing 
purposes the algorithm operates with grayscale 8bit images, but can also be applied 
on color-rich images. 

Particular to this algorithm is the employment of a jump table as a data 
rearrangement map. The jump table represents a collection of addresses that 
scatters the secret data onto the image in a manner that reduces the error of bit 
replacement. The error is given by the difference between the original and modified 
value defined by: 

!""#" = (!"#$#%&' −!"#$%$&#)! (5.1) 

 These addresses point out image regions called segments. The algorithm 
builds these segments according to its initial configuration. The jump table is stored 
in the image along with the secret data at the cost of shrinking the capacity by a 
negligible amount. In contrast to other similar algorithms that employ image 
segmentation and the usage of jump tables [40] my method does not offer any 
constraints regarding the number and size of each segment. 

Once the embedding process starts, the algorithm does a series of 
generation-evaluation iterations to get the best possible result (the generation time 
or number of iterations is only limited by the initial parameters). As opposed to 
normal genetic algorithm based steganographic ciphers, the current method has two 
optimization and evaluation stages:  

• Solution generation  

• Solution evaluation 

The solution generation stage uses a local fitness function that selects a 
solution based on the bit replacement error it produces (the smaller the error the 
better the solution). By controlling the solution generation the algorithm obtains 

 

BUPT



58   Chapter 5. Nexim One Algorithm  
 
solutions that offer a minimum amount of steganographic performance (small error 
values). This approach is different from traditional genetic algorithms where the 
initial solutions are randomly chosen without a selection criterion. In this way we 
reduce the faulty combinations and provide optimal initial solutions. These solutions 
are analyzed using a global fitness function (solution evaluator) that studies the 
effect of embedding the data using the solution generated (the jump table). The 
jump table indicates the order in which the data is scattered onto a set of image 
blocks. By scattering the data, the algorithm minimizes both the logical data 
distribution and the change error, because the jumps are always made to blocks in 
which the error is at its minimum.  

Following the data trail along the image blocks, the evaluator calculates the 
cascading effect of embedding and measures it using Peak Signal-to-Noise Ratio 
(PSNR) as the base metric. Using this metric, the evaluator detects and tries to 
eliminate weak spots, that is, jumps that produce minimum error for the first 
element and higher for overall repetitions. Because the evaluation stage also 
attempts to optimize the solution, it also represents a second-generation stage (or 
more commonly a fitting stage). If no better solution can be found after this process 
and if not limited by initial parameter constraints, the first solution generation stage 
gets reactivated and the entire process is repeated. Each new complete generation-
evaluation pair is compared to prior results in order to pick the best one as final 
solution (in terms of jump table combination). The final solution is then used to 
embed the data using traditional LSB replacement methods onto the image.  

This algorithm approach is basically a pre-optimization stage that rearranges 
the data so that traditional methods produce small deviance errors while 
embedding. In the next paragraphs I will provide more details about the generation, 
evaluation and embedding processes. 

5.1 Steganographic Encoder 

Using an abstract representation, Figure 5.1 illustrates the general workflow 
of the algorithm. The algorithm is structured into four stages: 

A. Image segmentation 

B. Solution generation 

C. Solution evaluation 

D. Solution embedding 

In the first stage, image segmentation, the image is divided into a set of 
blocks (usually equally sized). These blocks are streamed together with the secret 
data to a jump table generator present in stage 2, the solution generation. The 
solution generation process builds a new jump table, in a sequential manner 
(element by element) until the table is full. The process also applies a minimal set of 
metrics to assure the quality and validity of the new solution found. Because this is 
a recursive algorithm, once a jump table combination has been found, the algorithm 
saves its state in order to resume the generation process if needed. In other words, 
the generator issues a large number of solutions sorted descending using internal 
solution evaluators. The jump table generated during this stage is passed to the 
solution evaluator present in step 3. 
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Figure 5.1 – Encoder workflow 
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First the evaluator simulates embedding using the jump table and calculates 
a PSNR value for the solution. This value is taken as a referenced best solution. The 
algorithm also generates a PSNR value for each table element and identifies the 
weak spots in the table. After these metrics have been computed, the algorithm 
takes pairs of two faulty jumps and performs a switch between them. The switching 
consumes a negligible amount of time and the evaluator tests the effect of this 
process. If a better PSNR has been obtained during this process, then the reference 
best solution is replaced with the current one. If no other switching is possible or if 
no better solution can be found, the algorithm recalls the generator’s recursive stack 
and asks for a new solution.  

The algorithm stops depending on the configuration parameters, if either a 
certain number of solutions have been generated (stage 2) or the steganographic 
image quality exceeds a specified dB limit (stage 3). Stage 4, solution embedding, 
takes care of the embedding process. The jump table is initially embedded into the 
image; then, using the jumps, the secret data is scattered among the image blocks 
until there is no more secret data to embed. 

Let us go into more details for the 4 stages of the encoder and offer an 
overview of the entire embedding process. 

 

5.1.1 Image segmentation 

In the image segmentation stage, the cover image C (with the internal pixel 
matrix denoted as!!!") is divided into ! blocks defined by: 

! = 2!""!!"#$%&#!"'#"$( (5.2) 

• !"" - Represents the amount of volatile bits used for embedding 

• !"#$%&#!"'#"$( ≥ 0  - Represents an extension of the initial minimum 
segmentation blocks that can lead to better solutions by offering a 
higher block number and implicitly a better solution space. 

 These blocks represent regions of the image (tiles). Depending on the 
number of bits per pixel we intent to reuse, it was necessary to allocate a number of 
blocks equal or greater than the possible combinations of the !"" pixels. If we chose 
for example a!!"" of 2, then we have four possible bit combinations: 00, 01, 10, and 
11. In this case the minimum amount of tiles would be 4. This constraint was 
introduced because we assume that with a tiling equal or greater to the 
combinations possible we raise the chances of having in each stage a minimum of 1 
block containing a specific combination so that the embedding will produce no 
change at all.  Please note that the above statement is just assumed, for better 
results it is recommended to keep the tiling at a higher number than the 
combinations possible to raise the diversity of concurrent combinations. 

A solution in this implementation is a new jump table combination. The 
jump has a size described by: 

!"#$%&'(% = ! ∗ !"#$%&'$!()$(%* (5.3) 
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• !"#$%&'$!()$(%* ≥ 1 – The !"#$%&'$!()$(%* indicates the size multiplier of 
the jump table. The more jumps the table can store, the better the 
result, but at the same time the lower the steganographic capacity. 
Each table entry represents a binary address, a jump to a specific 
image tile.  

For example, if we use an image of 512!512 with a !"" of 1, tile multiplier 
index of 1, table multiplier index of 6, we get a ! = 2!!! = 4 image segments (tiles) 
and a jump table size of !"#$%&'(% = 4 ∗ 6 = 24.  Table 5.1 lists the pixel regions of the 
tiles: 

 
Tile Binary Range Y Range X Pixels/Tile Capacity/Tile 
1 00 0..255 0..255 65536 8192 bytes 
2 01 0..255 256..511 65536 8192 bytes 
3 10 256..511 0..255 65536 8192 bytes 
4 11 256..511 256..511 65536 8192 bytes 

Table 5.1 – Example tiling for 2 bpp 

In this case, each image tile reserves space for 6 elements. A table entry 
would take 2 bits for each of the jump table entry leading to a total physical storage 
space for the jump table of 2!"#$ ∗ 24!"!#!$%& = 48!!"#$ out of which each image tile 
stores 12!!"#$ (1,5 bytes). 

 

Figure 5.2 - Example segmentation (bpp = 2, tileMultiplier = 0, tableMultiplier = 3) 
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The segmentation stage builds up b streams (noted ! !  where!0 ≤ ! < !), 
where each stream contains the pixels corresponding to the associated image tile. 
Each of the b streams works like a separate evaluation entity, being a record set 
composed of pixel information and states. Figure 5.2 illustrates the segmentation 
process of the image into b = 22 = 4 blocks. Each stream receives the pixel range of 
each block. This can either be done physically by building the streams in the 
memory or virtually, where each stream knows the address of every element. 

Internally, the stream record consists on multiple components: 

• Pixel table – stores all pixel values of a specific image tile represented 
in a continuous vector 

• Capacity left - indicates if the stream has any embedding capacity left 

• PSNR - measures the deviation between the original signal (cover 
image C) and the resulting image (stego image) for the specific image 
tile handled 

• Initial induced error function – measures the error between the 
original information stored within the pixel table (the currently available 
pixel table combination) and the currently available secret data 
sequence that needs to be embedded. This function is used mainly in 
the solution generation stage and will be further detailed there. 

• Cascading error function – evaluates an overall PSNR for each table 
element, by sequentially analyzing differences between the original and 
modified string of data (least significant bit groups). This function is 
called each time a solution has been generated and it is mainly used to 
measure the deviation as a result of embedding the secret data in the 
order described by the jump table. As opposed to the initial induced 
error function, this function compares all changes made, not only the 
current combination available. This function will be further detailed in 
the solution evaluation stage. 

 

5.1.2 Solution generation 

The solution generation stage is a recursive method that generates solutions 
in form of jump table combinations. In the solution generation stage the secret data 
D is streamed to an evaluation block. 

The algorithm iterates one group of secret data bits at the time and passes 
them to a decision block (solution generator in Figure 5.3). Here, each of the b 
streams is provided with the current combination as an input for the initial induced 
error function. This function computes the embedding error: 

!""#" = ![!. !] − !!![!". !] ! (5.4) 

The error function takes the current group of secret bits (!![!. !], !. ! = the 
current index position inside the secret data stream) and the currently available 
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combination given by the original image’s pixels (!"![!". !], ! = active stream – each 
stream is accessed sequentially with each iteration, !". ! = current index position 
inside the pixel stream of each tile). Each of the ! streams responds with the error 
value. These values are stored in an array, which is then sorted ascending. The 
sorting makes sure that the first choice is always the one that produces the 
minimum amount of degradation. If the recursive algorithm returns for further 
solutions (the initial algorithm parameterization is configured to find more than one 
solution), the next solution will be picked from the list and the algorithm evaluates 
each new solution found in comparison with the best solution yet. 

 

 

Figure 5.3 – Solution generator 

The solution generation stage stops when the jump table is full and passes 
the solution to the solution evaluator. This stage uses a number of iterations equal 
to the jump table size counted in elements. For the example from Section A, the 
generation would iterate and sequence 24 secret data bit groups, after which the 
jump table gets full and the solution is passed to the analysis stage. 

The first generated solution is optimal in the near-sighted field because of 
the initial induced error function. Near-sighted field means that the evaluation 
function operates on a limited field of view and does not study the effects on the 
entire embedding process. The optimal solution here is not necessarily the best 
overall; the evaluation stage is used to test the effects on the entire storage space 
of the cover image, thus providing a far-sighted approach.  
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5.1.3 Solution evaluation 

Because of the multitude of possible solutions, the generation function is 
implemented in a near-sighted manner, making the evaluation stage a crucial 
analysis point. In the example from Section 5.1.1 Image segmentation, the total 
capacity of the 512x512 pixel image at 1bpp would be 262144 bits, out of which 48 
bits are reserved for the storage of the jump table. In other words, the jump table 
occupies 0.01832% of the total image capacity. We consider this as a tiny amount 
of storage compared to the total capacity. The first solution, as it leaves the 
generation stage, offers a guarantee that a minimum of 0.01832% of the secret 
data bits produces almost no change in the original image. This stage analyzes the 
repetitive nature of the embedding that follows the jump table generation and 
decides if the solution is valid or not. 

The solution evaluation follows the jumps presented in the jump table in a 
circular sequence. The algorithm cycles through the table jumps until there is no 
secret data left to be embedded. During a cycle the algorithm follows the addresses 
and jumps to the indicated blocks. The first generated solution is assumed to be the 
local best solution found. Each new solution is compared to the local best, which 
gets updated if a better solution is found.  

As opposed to the solution generation stage, where the initial induced error 
function analyzes a near-sighted set of data, the evaluation stage uses a far-sighted 
evaluation function called the cascading error function. 

For each of the b blocks, the evaluation stage counts the jumps to each 
block (noted !"![!]). This count specifies the distance between embedded repetitions 
inside each block. For the example in Section 5.1.1, we have the following jump 
table solution: 

 
(2,1,3,1,3,2,2,0,2,1,1,0,0,0,0,3,3,3,3,0,3,3,1,2) 

 
For this example, the algorithm would count the occurrence of every jump 

to a specific block tile as shown in the list below: 

• !"[0] != !6!

• !"[1] != !5!

• !"[2] != !5!

• !"[3] != !8!

If we take !"![0] as a reference, its count 6 indicates that each 6’th jump 
would point to the indicated block, in this case 0. In other words, the algorithm 
streams the secret data onto the cover image and computes for each jump the 
PSNR value and builds up a secondary list of table jump evaluations (one PSNR 
value for each element of the jump table).  

The lowest PSNR values are extracted from the list in pairs of two and 
switched with another. This process is repeated until a certain number of 
permutations have been made or until no better solution has been found. The best 
solution found at this stage is compared in terms of overall image PSNR (cover vs. 
stego image) to the normal LSB substitution method’s PSNR value. If the solution 
found is better, the algorithm can stop and consider its current jump table 
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combination as the best yet. The algorithm stops depending on the recursivity 
limitation if a certain number of solutions have been found or if the newly generated 
solution meets a certain degree of quality (external output evaluation function that 
measures the deviance between the original and steganographic image). 

If the algorithm has been configured to try multiple recursive iterations, 
then stage 2 gets reactivated and a new solution will be found. The more 
generation-evaluation iterations the algorithm makes the better the results can get 
(this is not always a guarantee); at the same time the overall processing time and 
the demand of computational power are increased. 

Nevertheless, up to a certain point, several iterations can be made without 
having a significant impact to the processing speed and the experimental results 
show for a majority of cases a better PSNR value than other LSB matching 
algorithms. 

Because of its design, this method can be considered a genetic algorithm 
where stage 2 would generate a new population (solution), and stage 3 would be 
responsible for selection, breeding and reproduction. 

 

5.1.4 Solution embedding 

The algorithm cycles the solution generation and evaluation pair until a 
certain number of iterations has been reached or a desired PSNR target has been 
met. Once the generation and analysis stage have completed this stage is 
responsible to actually build the output steganographic image.  

 

 

Figure 5.4 - Example on a 4x4 pixel image 
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First, the algorithm embeds the jump table into the b image tiles, after 

which it embeds the secret data in the order dictated by the jump table.  
If during the embedding of secret data one of the b tiles gets full, the 

algorithm then skips this block tile and embeds the data in the first block indicated 
by the next jump. In other words, if the remaining capacity of a certain block 
reaches 0, the future jumps to this specific block will be invalidated and the data will 
be embedded in the block specified by the jump elements that are still valid inside 
the jump table. 

The example presented in figure 5.4 illustrates a sample 4x4 pixel image 
with: 

• !""! = !2!

• !"#$%&#!"'#"$(! = !0!

• !"#$%&'$!()$(%*! = !0!

The jump table 00,10,11,01 has been generated and data needs to be 
embedded following these jumps. The encoder partitions the image into 4 tiles and 
creates 4 handling streams, one for each tile. Each of these streams will have 8 bits 
of total capacity, out of which 2 bits are reserved for the jump table. This leaves 6 
bits capacity/tile, 24 bits capacity/image for the secret data. 

 

 

Figure 5.5 - Example data distribution using the jump table 
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Figure 5.5 shows how the data would be embedded into the stream. The 
algorithm would operate on the 4 streams: 

• Stream 1: Block 00 

• Stream 2: Block 01 

• Stream 3: Block 10 

• Stream 4: Block 11 

On the first position of each of the 4 streams comes one element from the 
jump table (marked with red in the graph), after which, following the jumps and 
reordering dictated by the jump table, the secret data would be sequentially 
streamed to block 00,10,11,01 (in this order). After all, secret data has been stored 
within the streams; the streams get united, forming the steganographic image.  

If the primary target is performance, then physical implementation for the 
streams is required, whereas a focus on memory usage may rely on virtual streams 
as simple pointer lists.  Depending on the implementation, the stream concept does 
not necessarily have to be physically implemented, a simple pointer list (virtual 
stream) could also work, but since an image is a matrix of pixels, one could lose 
performance on one hand, but use less memory because the data doesn’t get 
duplicated. For this algorithm design, because of performance issues, I used 
physically implemented streams. 

 

5.2 Steganographic Decoder 

The steganographic decoder is the reversed encoding stage. The decoder 
uses the steganographic image as main data input and the number of segments b 
and table multiplier as the single parameter input.  

 

 

Figure 5.6 – Decoder workflow 
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Using these parameters, the decoder first splits the image into b blocks 

(Figure 5.6) of data. The splitting can either be implemented physically by assigning 
a number of b streams to hold the data of each image segment, or virtually by 
mapping a pointer array to the image’s pixels. Either way the result is the same, the 
only difference is the speed or the computational complexity. From each of the 
generated streams (or arrays, depending on the implementation) the jump table is 
extracted by sequentially reading the streams. Once the jump table has been 
extracted, the secret data stream is built by extracting the data from the streams in 
the order specified by the table jumps.  

 

 

Figure 5.7 - Example jump table and data extraction 

The algorithm stops requesting data from a specific stream if the stream has 
reached EOF (or if we use arrays, until the index has reached the array size). If all 
streams reach their end, there is no more data to extract and the encoding process 
completes and saves the output. 

In opposition to the encoding process, the decoding process is a straight-
forward fixed algorithm recursion. 

Using the same example as in figure 5.4, figure 5.7 illustrates how the 
decoder works. After initially splitting the image into 4 blocks, the decoder 
sequentially extracts the jump table by visiting block 00,01,10,11 (in this order). 
After the jump table is complete, the data is extracted by visiting block 00,10,11,01 
(in this order) and the data stream is completed.  

Regardless of the implementation method used, physically (streams) or 
virtually (pointer arrays) the algorithm offers high extraction speed that finishes in 
polynomial time. 
  

BUPT



 5.2. Steganographic Decoder  69 
 

 

CHAPTER 6 
6 Nexim One Extended Algorithm 

“The saddest aspect of life right now is that science gathers knowledge 
faster than society gathers wisdom.” – Isaac Asimov 
 
 
 
Extending my previous work, I try to enhance the overall quality of the 

resulting image and also avoid the brightness spot problem.  
The image segmentation stage remains the same as in the original design. 

First the cover image used for secret data storage is split into b blocks, depending 
on the embedding capacity chosen using the relation: 

! = 2!"" + !"#$%&#!"'#"$( (6.1) 

The second stage of the algorithm has been modified in order to enhance 
and correct the previous design. The initial optimization strategy used in the 
generator tried to minimize the change relating only to the original image. When 
replacing the LSBs of the original image we have three possible deviations on each 
color channel (RGB):  

• No deviation, when the bits to be embedded are the same as the 
original;  

• Gain deviation, when the individual color channel’s value gets 
increased;  

• Loss deviation, when the individual color channel’s value gets 
decreased.  

Because the prior method did not take these into consideration, in some test 
cases where larger portions of the image had boundary combination of RGB triplets 
(near to maximum or minimum brightness) changing these RGB values in the wrong 
direction saturated the color, leading to visual identifiable spots either through their 
color or brightness abnormally. With the use of virtual high dynamic-range images 
(HDR) I try to avoid this problem.  

Figure 6.1 illustrates the new proposed solution generator. Instead of 
fixating to reduce the color loss only in relation to the original color table, I now set 
two color boundaries: upper and lower. The original image is considered as being a 
HDR image. Based on this fact, the current design treats the original image as 
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having two components: an underexposed (decreased brightness) and an 
overexposed (increased brightness) component. Both components represet virtual 
low-dynamic range (LDR) images that added up form the original HDR image. The 
splitting into two LDR images assures the upper and lower acceptable color change 
boundaries.  

 

Figure 6.1 - The improved solution generator 

As in my previous design, the current available bit combination from the 
secret data stream (!![!]) is streamed along with the currently available bit 
combination of each image segment (!"![!]). !"![!] is processed through an 
additional HDR decomposition stage and split into two values:  
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• LDR- (brightness decreased or underexposed) 

• LDR+ (brightness increased or overexposed) 

The amount of brightness loss/gain is calculated using!!"#$ℎ!"#$$! = !2!"" + 1. 
It is important to note that, given an embedding rate (volatile bits per pixel), the 
possible combinations on bpp pixels cannot exceed 2bpp+1 in any direction, 
regardless if we register gain or loss. 

The input bit combination !![!] is tested against both LDR+ and LDR- 
components using the gain or loss function. These two functions essentially subtract 
the new bit combination from the original one. In both cases we limit the change 
only in one direction (positive or negative). To better understand this process we 
will take a simple example. We have the following RGB triplet defined by:  

 

• R = 11111100 (252 decimal) 

• G = 11111111 (255 decimal) 

• B = 11000101 (197 decimal) 

If we try to embed the following data bit combinations 11 00 01 we can 
observe a color abnormally. The simple replacement of these combinations over the 
original ones will produce a new RGB triplet defined by: 

 

• R = 11111111 (+3 gain) 

• G = 11111100 (-3 loss) 

• B = 11000101 (no change) 

 

 This is considered as being one of the problematic cases in our previous 
design, because it did not take into consideration whether the change implies loss or 
gain. Because the original G component was at its maximum, the only direction in 
which we can alter is by subtraction. When compared with the R channel whose 
value gets increased, the overall effect on the pixel (RGB triplet) would be a 
saturated color, distinguishable by the human eye. Note that these are however 
isolated cases. Using the new method, and by generating the two LDR+ and LDR- 
we can easily identify the boundaries before even trying to embed. If component 
RGB limits are identified when building the LDR+ and LDR- the system accepts only 
those combinations that affect brightness, not saturation, meaning that the change 
of all color components must be in the same direction. Bit combinations that exceed 
these boundaries are immediately filtered using the MIN function, and only the 
solutions within the limits, nearest to the original colors are picked.  

This processing step only affects the boundary values, all other colors in-
between ignore this combination, meaning that the algorithm then functions exactly 
as described in the old design (Chapter 6). The processing is based on min-max 
principles. Initially we filter out the highest gain/loss, meaning that we filter out the 
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worst case scenario, immediately flowed by picking out the best solution that 
produces the minimum changes in relationship with the boundaries and the original 
color information. By introducing this degree of flexibility, our new design mainly 
focuses on avoiding problems, before they even occur. 

The solution evaluation and enhancement step however, does not always 
maintain the generated solution because it tests out the jump table’s influence on 
the rest of the unoptimized space. If this stage is able to improve the overall 
effectiveness in terms of color preservation, the algorithm can out rule the previous 
local optimum in favor of a general optimum, introducing possible errors. Whit this 
in mind, we also introduced a post-processing method that corrects the error 
introduced by the solution evaluator.  

As in our previous design, the solution generation and solution evaluation 
stages repeatedly iterate building better overall solutions, until certain limitations 
have been reached: 

• Iteration limit; 

• Timeout limit; 

• Desired performance/quality in terms of PSNR has been obtained; 

• Manual termination of the two stages; 

Once a solution is found, the fourth stage (solution embedding) embeds the 
data according to the best solution found so far (jump table combination). The 
algorithm first embeds the jump table sequentially in the available image segments, 
followed by the secret data, in the order indicated by the jump table. Until this 
point, the algorithm built a steganographic image that resembles the original as 
much as possible. 

  

 

Figure 6.2 - Enhancement through control bit 

I introduced a further fifth post-processing stage that handles the omitted 
errors. Figure 6.2 illustrates one of the possible errors when dealing with 3 bpp 
embedding ratio. The original color combination bits are altered using the secret 
data bits producing a high degradation. The original combination of bits is 111 (as 
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marked in the figure) and the solution (jump table) embeds a secret data bit 
combination of 000. The impact on the color channel (either R, G or B) is very high, 
producing a loss of -7, which represents the worst-case scenario in image 
degradation. Using the post-processing step I analyze the original cover image and 
the resulting steganographic image in comparison and identify these cases. 
Regardless of the number of bits we reuse for secret data embedding (1-4 volatile 
bits/color channel), we use the last high order bit of the non-volatile color 
information as a control bit as shown in Figure 6.2. 

In the example above, this error is easily corrected by changing the control 
bit, in which case we turn the loss of -7 into a gain of +1, which is acceptable. This 
newly introduced stage does not modify any of the embedded data bits, it just 
adjusts the control bits accordingly, increasing in the same time the PSNR between 
the original and steganographic image. In the event that these errors occur when 
dealing with border values (minimum or maximum) where we cannot successfully 
use the control bits to change the alteration rate, the algorithm uses the 
neighboring channels to normalize the color. The chessboard principle is applied to 
sharpen the resulting color by raising the saturation level, meaning that the 
erroneous color channel remains intact, while the neighboring channels brightness 
value gets increases/decreased depending on the case. 

With these changes added to my original design I built an even stronger 
algorithm capable of offering better quality than the older model and in the same 
time eliminating minor faults. 
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CHAPTER 7 
7 Nexim Two Algorithm 

“A subtle thought that is in error may yet give inquiry that can establish 
truths of great value.” – Isaac Asimov 
 
 
 
I propose an alternative LSB matching algorithm with a more complex 

solution generator. This algorithm has been designed to work with high color RGB 
images (24 bpp and above) with an embedding ration of 3:8, meaning that 9 LSBs 
will be used for storage for each image pixel (3 bits of Red, Green and Blue 
channel). These constraints have been introduced since the original design has been 
proven more effective in this particular constellation. 

The algorithm is built in a repetitive manner, generating better embedding 
strategies with each additional running loop. The embedding strategy consists in a 
jump table that indicates the exact order in which the data is embedded in order to 
produce the minimal amount of change. Since the original image already has bit 
combinations in the last 3 LSBs of each color channel, the data must be embedded 
in a manner that reduces the difference (delta) between the original and inserted 
bits. The smaller the delta, the greater the resemblance to the original color 
variation of the image, the stronger the algorithm gets. In a hypothetical ideal case, 
the secret data (payload) is identical on a binary level with the original color 
combinations. In this case the image would already contain the secret data without 
the need of embedding. This case however is impossible, but the jump table tries to 
reach this goal by choosing strategies that minimize the change effect of applying 
payload bits. 

Particular to this design, I’ve changed the core evaluation metric inside the 
solution generator to a more human vision oriented one. Although an increased 
Peak-to-Signal-Noise Ratio (PSNR) value indicates a higher quality conservation 
level between the original and modified image from a computerized perspective, the 
brightness spots identified in some cases in the original design are easily identified 
using human vision. This observation pushed me into finding a better evaluation 
metric that satisfies not only computerized analysis but also human-vision-based 
analysis by using alternative color space representations for the evaluation process. 
The human eye is known to be very good at identifying light and color variations 
over a larger pixel area than distinguishing between light spikes inside a smaller 
area. This led my research into using YCbCr as alternative color representation for 
evaluation purposes. The most important component of this color representation is 
the Y channel that represents the luminance of a color value (the amount of light as 
perceived by a human eye). The Y channel is defined as described below: 
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! = 0.299 ∙ ! + 0.587 ∙ ! + 0.114 ∙ ! (7.1) 

The luminance channel quantizes the light in relationship with its perceivable 
spectrum, with the green channel being the most important color component 
leading to brightness change. The generation stage choses those solutions that 
produce the minimal Y-channel PSNR over smaller portions of the image. The 
algorithm uses a series of 4 separate stages, as did its predecessor in Chapter 5, 
but in a modified manner, as observed in Figure 7.1.  
 

 

Figure 7.1 - Initial vs. new workflow 

In the next paragraphs I will provide more information on the entire 
algorithm workflow ass it passes the four stages. 

7.1 Image segmentation 

In order to successfully remap the secret data into a less destructive 
manner over the original color information, the algorithm must be able to have 
multiple embedding regions and chose the region where the data produces the 
minimum amount of change. Therefore, the image segmentation represents a 
crucial step in the entire process as it offers the necessary amount of binary 
combinations to choose from. The image is cut into smaller portions that can be 
analyzed and handled more easily in a two-step process, as shown in Figure 7.2, 
which involves tiling and partitioning.  
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First the cover image ! (with an internal pixel matrix denoted as !!") is 
divided into 4 equal tiles (denoted !", where ! = 1. .4). For faster processing the pixel 
values corresponding to each of these tiles are stored within four separate data 
vectors (!"), that handle each tile separately. Tiles are then cut into smaller portions 
in a process called partitioning. Just like in JPEG compression, the tiles are split into 
8x8 blocks (64 pixels), which represent a relatively small visual group of pixels. 
Each tile consists in blocks of 8x8 pixels denoted !".!![!] (where x represents the 
tile address and y represents the block number. In Figure 7.2, an example image is 
shown having a size of 512x512 pixels. The tiling process would cut the image into 
four equal tiles, each sized at 256x256 pixels. The partitioning step would split each 
tile into 8x8 block, in this case building up 1024 blocks/tile. 

  

 

Figure 7.2 – Image segmentation 
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As opposed to the original design where the data was inserted one pixel at a 
time, this algorithm uses a 64-pixel buffer, for performance and optimization 
purposes, as later described in the paper. 

This stage of the algorithm is intended to split the image into multiple pixel 
streams to choose from when trying to find the best embedding path. Since the 
algorithm uses 3 bpp, the maximum number of available combinations is 8: 000, 
001, 010, 011, 100, 101, 110 and 111. The tiling process covers a maximum of 4 
combinations, which is less than the theoretical minimum needed in order to 
statistically assure a balanced distribution of data. For this reason I introduced a 
third virtual direction that we call layer ordering address that basically tells the 
order in which the data is inserted within a single pixel. Due to the fact that a color 
pixel is represented as a RGB triplet, the data can be inserted using different 
ordering of the color channels. Out of the total number of combinations possible (6) 
I only chose 3, as shown in Table 7.1. 

 
Channel order Binary Address 

RGB 00 
GBR 01 
BRG 10 

Reserved 11 

Table 7.1 - Channel order 

Using this additional addressing, the algorithm has 12 embedding 
combination to chose from each step of the generation process.  

7.2 Solution generation, evaluation and optimization 

This stage is a recursive method that generates the best embedding 
strategy in form of jump table entries. A table entry in the solution generator stage 
represents a two-value address that consists in: 

• Level 1 Address (channel reordering address) 

• Level 2 Address (tile address) 

 The four tiles S1..S4 and the secret data D represent the main inputs of 
this stage, as shown in Figure 7.3. Each tile internally stores the current active pixel 
block !". !" (active Block Index). The algorithm starts by reserving a certain number 
of blocks where the jump table will be stored. The number of blocks is always a 
multiple of 4 in order to assure a balanced distribution among the four image tiles. 
The minimum number of blocks required by this algorithm is 4, leaving room for 576 
table entries. For the image in Figure 7.2 it would mean that by reusing 6,82% of 
the image’s total storage capacity we can optimize up to 54,71% of the entire 
storage capacity, representing an important improvement over the original design. 
The secret data is streamed 72 bytes (576 bits) at a time: 
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576!!"#$ = 3!!ℎ!""#$% ∙ 64!!"#$%& ∙ 3 !"#$
!"#$%&  (7.2) 

As opposed to the initial design where the data is streamed and analyzed 
one bit group at a time, this algorithm uses a larger buffer to increase the overall 
effectiveness of each choice over al larger area turning the once near-sighted 
generator (Chapter 5) into a far-sighted one in this design. There are two direct 
advantages of this approach:  

• The algorithm optimizes more information because it tests the effect 
onto multiple cascading pixels  

• Dramatically reduces the size of the jump table  

In the original design optimizing 64 pixels would require 192 table entries 
with an address length of 3 bits each, totaling 576 bits for the storage of the jump 
table alone. By using a 4 bit address in this case the same effect is achieved, 
meaning that the algorithm optimizes that same area as it’s predecessor by utilizing 
99,3% less storage space for the jump table.  

 

Figure 7.3 - The solution generator, evaluator and optimizer 
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These changes not only improve the general effectiveness of the entire 
algorithm, but also render the evaluation stage from the previous design useless. 
The current algorithm is capable of finding better solutions easier and more rapidly 
and the jump table gets negligibly small in size. 

7.2.1 Level 1 Address Generation 

The four image tiles stream the currently active block (!". !") are divided into 
individual the color channels R, G and B. Based on these channels, for each active 
block of every tile, the algorithm determines the lightness component Y as reference 
lightness (!"). The RL is used to determine the alteration delta after the data has 
been embedded. The three-color channels are ordered as indicated above in RGB, 
GBR and BRG using three parallel reordering streams. Together with the secret data 
the algorithm virtually embeds (!") the secret data onto the currently available 
block (!". !") of each image tile (!"). The embedding is simulated in order to 
determine the modified lightness (!") of the resulting block in case that specific 
block is chosen for embedding. This part of the evaluation takes place on each tile 
and for each reordering sequence, totalizing 12 possible choices. Each tile picks out 
the reordering sequence that produced the minimum loss of luminosity in forms of 
PSNR (the greater the PSNR the higher the overall quality), reducing the 12 choices 
to just 4. The best reordering address (!") is saved temporarily for the next step of 
the process in form of a Level 1 Address. 

7.2.2 Level 2 Address Generation 

In the second part of the process the algorithm picks out the tile that has 
the smallest degradation of lightness Y. Once this block is determined from the 4 
remaining choices only one is picked and marked as being a solution, building the 
Level 2 Address. Together with the RA corresponding to the currently picked image 
tile, the Level 1 and Level 2 addresses are joined and added as a jump table entry. 

The tile that produces the minimum amount of change will change its state 
to the next available free block (!". !" + +), while all other tiles remain unchanged. 
Also, the data stream positions itself to the next 72 Bytes of data to be inserted. 

The solution generator stage iterates for new solutions limited only by 
execution or iteration time limits, constantly searching for better solutions. One 
complete solution is considered as being obtained once the jump table has been 
filled. Since the size of the jump table has been reduced by 99,3% since the original 
design, we can use more table entries, allowing the algorithm optimize even larger 
portions of the image and therefore issuing better solutions than its predecessors 
(Chapter 5 & 6). 

7.3 Solution Enhancement 

In this design, with the introduction of a more advanced solution generator, 
optimizer and evaluator, there is no need for a separate evaluation step. The 
enhancement step was introduced more as a guideline for future implementations, 
but has not been explicitly built into the testing algorithm used for the current 
paper. As later shown in the experimental results, the algorithm is capable of 
increasing the overall PSNR of the resulting image up to 3 dB more than it’s 
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predecessors without the need of any additional solution enhancement steps (in 
Chapter 5) or post-processing methods (in Chapter 6). 

7.4 Solution Embedding 

Once the algorithm has reached this stage, the optimization process is 
finished and the best solution in form of a full jump table has been determined. The 
algorithm then uses the reserved blocks of each image tile to first embed the jump 
table for data extraction purposes. The data is embedded by embedding the data 
sequentially in groups of 72 Bytes in the order indicated by the jump table. The 
evaluator extracts a 4-bit address from the jump table representing a full addressing 
sequence. The first two bits represent the image tile address. Once selected the 
algorithm reads the current state and identifies the currently available image block 
and selects it. Based on this block and using the layer ordering address the block’s 
pixels are red in the right order (RGB, GBR or BRG) as shown in Figure 7.4. 

 

Figure 7.4 - New addressing method 

The solution embedding stage cycles several times throughout the jump 
table, consuming the secret data bits. Once there are no data bits left to embed the 
algorithm finishes and outputs a steganographic image. 

The process is simple and requires only the image segmentation and reverse 
solution embedding stage. First the extraction algorithm must rebuild the four image 
tiles and the image blocks accordingly. After this step the jump table is extracted 
from the reserved blocks (assuming the size of the jump table is known – the only 
parameter that needs to be transmitted), after which, following the exact sequence 
illustrated in Figure 7.4 the last 3 bits of each color channel are red and put together 
to reassemble the original secret information. 
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CHAPTER 8 
8 Nexim Two Extended Algorithm 

“The test of courage comes when we are in the minority. The test of 
tolerance comes when we are in the majority.” – Ralph W. Sockman 
 
 
The Nexim Two extended algorithm represents an enhancement to the 

original Nexim Two algorithm, offering an adaptive storage space that changes 
based on the size of the secret data we wish to embed. 

The algorithm functions similar to a genetic algorithm, generating solutions 
in an iterative process and evaluating them. A solution issued by this algorithm is 
represented by a jump table combination. This jump table dictates the order in 
which to embed the data so that when embedded that payload produces the 
smallest amount of change to the original image. The jump addresses that form the 
jump table represent image region addresses where to store the secret data in a 
manner that alters the original color information by the smallest delta. The table 
itself is stored inside the image by using a small amount of the total available 
capacity for embedding. For better understanding, this algorithm can be separated 
into three steps: image segmentation, solution generation and solution embedding. 
As opposed to the original design, the solution generator stage also evaluates and 
quantifies the validity of the solution by measuring the delta difference between the 
original and modified version of the image in terms of peak-to-signal noise ratio 
(PSNR) applied on the RGB triplet. During the tests on the original design I 
identified rare cases in which a group of coarsely modified pixels where found within 
a small region of the image. Although overall the PSNR value indicated a small 
global change, the small region with saturated colors was easily identifiable using 
the human eye. These faults were generated because the RGB PSNR metric does not 
take into consideration the amount of light a color produces (luminance), but rater a 
logical average between the R, G and B channels. This observation led me to choose 
alternative color representations in order to quantify the color changes suffered 
after embedding the secret data.  

The human eye is known to be very good at identifying light and color 
variations over a larger pixel area than distinguishing between light spikes inside a 
smaller area. This fact led my research into using YCbCr as an alternative color 
representation as it measures the luminance Y as being the amount of light as 
perceived by the human eye. As this representation is used only for measurement 
purposes the only channel adequate for PSNR measurements is the luminance 
channel. The quotients used for the Y channel are described below: 
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! = 0.299 ∙ ! + 0.587 ∙ ! + 0.114 ∙ ! (8.1) 

The luminance channel quantizes the light in relationship with its perceivable 
spectrum, with the green channel being the most important color component, 
leading to the most significant changes and variations if altered coarsely. The 
generator stage choses those solutions that produce the minimum Y-channel PSNR, 
therefor producing the minimum amount of lightness loss. 

The current chapter also introduces a new variable embedding capacity, 
fitting the capacity to the storage needs. In the following paragraphs I will detail 
each step of the steganographic process as it passes the three stages: image 
segmentation, solution generation and embedding. 

8.1 Image segmentation 

 In order to find alternative mapping strategies for embedding the secret 
data, the algorithm must have a series of pixel combinations to chose from. The 
image segmentation represents the preemptive preparation step, needed by the 
solution generator in order to choose the image regions that produce the smallest 
degradation after data embedding. First the cover image ! (with an internal pixel 
matrix denoted as !!") is divided into 4 equal tiles (denoted!!", where ! = 1. .4). For 
faster processing the pixel values corresponding to each of these tiles are stored 
within four separate data vectors (!") that handle each tile separately. Tiles are 
then cut into smaller portions in a process called partitioning. Just like in JPEG 
compression, the tiles are split into 8x8 blocks (64 pixels), which represent a 
relatively small visual group of pixels. Each tile consists in blocks of 8x8 pixels 
denoted !".!! ! !(where ! represents the tile address and ! represents the block 
number. In figure 7.2, an example image is shown having a size of 512x512 pixels. 
The tiling process would cut the image into four equal tiles, each sized at 256x256 
pixels. The partitioning step would split each tile into 8x8 block, in this case building 
up 1024 blocks/tile. 

As opposed to the original design where the data was inserted in one pixel 
at a time, this algorithm uses a 64-pixel buffer, for performance and optimization 
purposes, as later described in the paper. 

This stage of the algorithm is intended to split the image into multiple pixel 
streams to choose from when trying to find the best embedding path. The tiling 
process covers a maximum of 4 available combinations. In addition to that I also 
introduced a third virtual direction that I call layer-ordering address that basically 
tells the order in which the data is inserted within a single pixel. Due to the fact that 
a color pixel is represented as a RGB triplet, the data can be inserted using different 
ordering of the color channels. Out of the total number of combinations possible (6) 
I only chose 3: RGB, GBR and BRG. With the use of this additional addressing the 
algorithm now has 12 embedding combinations to choose from throughout the 
generation process. A complete jump address is mapped on 4 bits, out of which the 
first two bits (MSBs) represent the tile address and the last two (LSBs) represent 
the layer ordering address. 
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8.2 Solution generation  

This stage is a recursive method that generates the best embedding 
strategy in form of jump table entries. A table entry in the solution generator stage 
represents a two-value address that consists in a Level 1 Address (channel 
reordering address) and a Level 2 Address (tile address). The four tiles !1. . !4 and 
the secret data D represent the main inputs of this stage, as shown in Figure 7.3. 
Each tile internally stores the current active pixel block !". !" (active Block Index). 
The algorithm starts by reserving a certain number of blocks where the jump table 
will be stored. The number of blocks is always a multiple of 4 in order to assure a 
balanced distribution among the four image tiles. As opposed to the initial design 
where the data is streamed and analyzed one bit group at a time, this algorithm 
uses a larger buffer to increase the overall effectiveness of each choice over a larger 
area turning the once near-sighted generator into a far-sighted one in this design. 
There are two direct advantages of this approach: the algorithm optimizes more 
information because it tests the effect onto multiple cascading pixels and 
dramatically reduces the size of the jump table. In the original design optimizing 64 
pixels with an embedding strength of 3 bits/pixel would require 192 table entries 
with an address length of 3 bits each, totaling 576 bits for the storage of the jump 
table alone. By using a 4 bit address in this case the same effect is achieved, 
meaning that the algorithm optimizes that same area as it’s predecessor by utilizing 
99,3% less storage space for the jump table. These changes not only improve the 
general effectiveness of the entire algorithm, but also render the evaluation stage 
from the previous design useless. The current algorithm is capable of finding better 
solutions easier and more rapidly and the jump table gets negligibly small in size. 

8.2.1 Level 1 Address Generation 

The four image tiles that stream the currently active block (!". !") are 
divided into the individual color channels R, G and B. Based on these channels, for 
each active block of every tile, the algorithm determines the lightness component Y 
as reference lightness (RL). The RL is used to determine the alteration delta after 
the data has been embedded. The three-color channels are ordered as indicated 
above in RGB, GBR and BRG using three parallel reordering streams. Together with 
the secret data the algorithm virtually embeds (VE) the secret data onto the 
currently available block (!". !") of each image tile (!"). The embedding is simulated 
in order to determine the modified lightness (ML) of the resulting block in case that 
specific block is chosen for embedding. This part of the evaluation takes place on 
each tile and for each reordering sequence, totalizing 12 possible choices. Each tile 
picks out the reordering sequence that produced the minimum loss of luminosity in 
forms of PSNR (the greater the PSNR the higher the overall quality), reducing the 12 
choices to just 4. The best reordering address (RA) is saved temporarily for the next 
step of the process in form of a Level 1 Address. 

8.2.2 Level 2 Address Generation 

In the second part of the process the algorithm picks out the tile that has 
the smallest degradation of lightness Y. Once this block is determined from the 4 
remaining choices only one is picked and marked as being a solution, building the 
Level 2 Address. Together with the RA corresponding to the currently picked image 
tile, the Level 1 and Level 2 addresses are joined and added as a jump table entry. 
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The tile that produces the minimum amount of change will change its state to the 
next available free block (!". !" + +), while all other tiles remain unchanged. Also, 
the data stream positions itself to the next 64 bits of data to be inserted. 

The solution generator stage iterates for new solutions limited only by 
execution or iteration time limits, constantly searching for better solutions. One 
complete solution is considered as being obtained once the jump table has been 
filled. Since the size of the jump table has been reduced by 99,3% since the original 
design, we can use more table entries, allowing the algorithm optimize even larger 
portions of the image and therefore issuing better solutions than its predecessor. 

8.3 Solution embedding 

In this design, as opposed to the original approach, the algorithm does not 
finish once reaching the embedding stage. Depending on the size of the secret data 
one wishes to embed, the algorithm degrades the image step-wise and in a 
controlled matter. As shown in Figure 8.1 the algorithm calculates the capacity per 
pixel depth (DCap) which is described as being the storage capacity of the image in 
1 bit/color channel embedding and is described as being !"#$ℎ ∗ ℎ!"#ℎ! ∗ 3, where 3 
represents the number of color channels (in this case R, G and B). Depending on the 
size of the secret data, the algorithm choses how many pixel LSBs to reuse. Based 
on the size of the secret data one wishes to embed, the algorithm can run a 
maximum of 4 generation-embedding cycles, one cycle corresponding to each layer. 
In Figure 8.1 a 4-layer depth embedding is used, meaning that 4 LSBs of the cover 
image get replaced with the secret data bits.  

 

Figure 8.1 - Adaptive capacity 

This stage starts by dividing the secret data into 4 parts (SD1..4), each 
sized at a maximum buffer of size DCap (the maximum amount of data a layer 
depth can store). The solution generator is called for embedding depth 1 and using 
the initial segmentation (IS) as prior described in this paper. Once the generator has 
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found the best embedding strategy the jump table generated gets stored inside the 
image along with the secret data SD1. The same process repeats itself for each 
additional storage depth. Once one layer has been filled, the algorithm calculates 
the PSNR for each image block and reorders (RS) the blocks inside an image tile 
from the mostly degraded to the least degraded. In this way the next algorithm 
iteration will prioritize the optimization of the coarsely degraded blocks. The 
algorithm finishes once the entire secret data is embedded along with its 
corresponding jump table. 
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CHAPTER 9 
9 The Nexim SCS Infrastructure 

In this chapter I propose an alternative communication system that uses 
cryptography (symmetric and asymmetric) and steganography to secure and hide 
the secret data, prior to sending it through insecure communication channels.  

The design uses two encryption algorithms: AES and RSA. AES is used in 
order to obtain high encryption speeds in combination with long encryption 
passphrases. RSA is used to introduce one-way communication and even higher 
security by encoding the passphrase used in AES. As in the Public Key Infrastructure 
system (PKI) the joint usage of RSA and AES builds a strong encryption system 
characterized not only by high encryption speeds, but also by even greater overall 
security. 

 

Figure 9.1 - Abstract representation of the communication system 

 
The basic communication process used in this design can be defined as 

having three components: sending, transmitting and receiving, as shown in an 
abstract representation in Figure 9.1. The communication initiating party (sender) 
uses three inputs to prepare the data for transport: the secret data he wishes to 
transmit, a cover image that will store the data and the receiving party’s public RSA 
key. The receiving party uses its private key and the transmitted steganographic 
image as its system inputs and extracts the secret data. For a better understanding 
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on how the system works from start to finish I will detail each step of the 
communication process in the following paragraphs. 

 

 

Figure 9.2 - Detailed representation of the communication system 

 

9.1 Sending 
In the sending stage of the communication process the secret data gets 

prepared to enter the transmission through an insecure communication channel 
(internet). The sending party selects the secret data to be sent along with a carrier 
that will store it (cover image). Figure 9.2 illustrates the entire communication 
process. The carrier image is handled as two separate color information streams: 
the volatile and non-volatile part. The Non-Volatile Color Information (NVCI) stream 
is the part of the image that gets preserved throughout the entire steganographic 
embedding process, represented by the high-order bits of each color channel (RGB). 
The Volatile Color Information (VCI) stream represents the least significant bits 
(LSBs) of each pixel that get altered (replaced) with the secret data bits.  

The system uses AES as primary encryption algorithm using 256 bit keys 
(the strongest alternative). Throughout the preparation process, four stages can be 
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distinguished: encryption key generation, 1st AES Key half encryption, data 
encryption and steganographic embedding. 

9.1.1 Encryption key generation 

In this system we make use of three keys: encryption key, public and 
private key. The encryption key is used to actually encode the secret data using the 
AES cipher. A strong typical 256-bit AES key can be seen in the following example: 

 
Full$AES$key:$
 
AF A7 06 A8 A7 2D 64 94 59 E7 5A 3C 89 2B 95 8C  
B5 72 ED 5D 7E 38 9D 5F 8A 3C 52 53 41 AF 46 EB  
 

The encryption key (256 bits) is generated with every new communication 
sequence, and consists in two parts:  computated and random both having a 128-bit 
size, as shown in Figure 9.3. The random part (1st Half AES Key) of the key is 
generated using a pseudo-random pattern generator (PRPG) seeded with either 
variable or constant data. If the sender does not wish to use an additional password 
for the communication, the initial seed of the PRPG can use some variable system 
information data (mouse movement, time, clock cycle, RAM content, etc.). However, 
if the sender wishes to add further security, a password can be used as the initial 
seed for the PRPG. In this case both communicating parties must have the exact 
password in order to encrypt/decrypt the data. Because the sending party generates 
the random part of the encryption key internally, it is necessary to transmit it in an 
encrypted form, inside the data carrier. 

 

 

Figure 9.3 - Encryption key generator 

The computed part of the encryption key (2nd Half AES Key) is calculated 
based on the non-volatile color information (NVCI). The high order bits of each color 
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channel (RGB in a color image) are hashed using a strong algorithm (for example 
SHA512, MD5). Only a portion of the hash value will be used in the 2nd Half AES 
Key. This component of the encryption key assures the authenticity of the 
transmission: if the carrier image gets replaced, the new image’s NVCI will have a 
different hash than the original image, leading to a different encryption /decryption 
key and therefore, the original data cannot be extracted. This part of the encryption 
key is never stored; it must be generated on the fly in order to certify the 
authenticity of the transmission. The omission of this encryption key component 
from the transmission process is intentional, and it increases the reliability of the 
system against fault injection, faulty transmission or cover image changing. 

The two parts are merged together into the main encryption key (Full AES 
Key). The full AES key is represented on 256 bits, offering highly secure encryption 
(NIST standard for military strength security). 

 

 

Figure 9.4 - Encryption process and key appending sequence 

9.1.2 1st AES key half encryption 

The random part of the encryption key is the one that gets transmitted over 
the insecure channel; therefore I use RSA as a strong asymmetric encryption 
algorithm. Using the recipient’s public key, the random part of the encryption key 
gets encrypted and later appended to the raw encrypted secret data. By encrypting 
a part of the AES key using RSA, I add asymmetrical encryption to the process, 
limiting the possibilities of decrypting the data. Only the sender holds the right 
private key used to extract the key and decipher its secret data. 

 
Full$AES$key$with$padding$bytes$(shown'in'green):$
$
11 9A EF 3A 3F D0 78 2C 33 1B 51 BE 1A D0 20 27  
05 71 5C 8F 19 D8 48 30 F6 54 D2 69 CC DE F9 FC 

AF A7 06 A8 A7 2D 64 94 59 E7 5A 3C 89 2B 95 8C  
B5 72 ED 5D 7E 38 9D 5F 8A 3C 52 53 41 AF 46 EB 
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 In order to avoid reverse engineering using brute force attacks, given that 
the AES key is fixed in size, the system also injects random padding data at the 
beginning of the key (as shown in the example above). Only the recipient can 
successfully decode this key and ignore the junk data. The RSA encrypted key 
portion (encrypted 1st half AES Key) occupies 512 bits, after the 256 bits of random 
padding data have been added. 

9.1.3  Data encryption 

In this stage the system uses the AES algorithm to encrypt the secret data 
using the previously generated encryption key (Full AES Key). At the end of the raw 
encrypted data obtained in this step of the process, we add the previously encrypted 
1st half AES key (512 bits), as shown in Figure 9.4, hereby forming the RAW data 
stream.  

9.1.4 Steganographic embedding 

Using my smart LSB pixel mapping and data rearrangement method, the 
encrypted secret data is embedded into the cover image. The output of the 
steganographic algorithm represents our data vault and consists in a plain modified 
image (cover image) with secret data bits embedded into it. This output is the one 
that leaves the sender system and travels through the insecure channel to its 
destination (recipient). Due to the high resistance of the steganographic algorithm 
to steganalysis-driven attacks, the detection rate for the data vault is very low, 
indistinguishable among other plain images without secret data embedded. 

9.2 Transmitting 
The steganographic image can securely travel through insecure 

communication channels regardless of the communication protocol used (email, 
stream, file sharing, P2P networks, etc.). The hidden content is hard to differentiate 
and identify, because images are among the most commonly transmitted media 
types on the Internet, making them a perfect cover for secret data communication.  

 

 

Figure 9.5 - Extracting the secret data and the 1st Half AES Key 

Normally, during the process of transmitting data it is possible that the 
steganographic image travels through a series of filtering and detection checkpoints. 
When trying to intercept a steganography-aided transmission, the filters usually try 
to distinguish natural images from digitally altered and processed images. A natural 
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image represents an unprocessed, camera sensor captured image with high color 
representation accuracy and even chaotic noise distribution; whereas a digitally 
altered image introduces logic in the color representation (e.g. reducing the color 
palette, optimizing gradient transitions, sharpening contour edges, etc.). Depending 
on the degree of logic introduced by image enhancement and processing algorithms, 
steganalysis filters issue a suspicion rate measured in percentage on how high the 
chance is that the image contains secret data. 

In the event that the transmitted data gets intercepted, it is hard to analyze 
if the image has data embedded onto it because of two main reasons: the NVCI part 
of the image has been left intact by the sender (as in almost all LSB-based 
steganographic algorithms) and because of the data bit optimization and 
rearrangement technique used in [1] the VCI part of the image (the part that 
actually stores the secret data) resembles the original image’s VCI to a higher 
degree, leaving detection algorithms into issuing very low suspicion rates. In other 
words, steganalysis algorithms do not raise suspicion, because the steganographic 
image is identified as being a natural image. In addition to that, if the 
communication between the two parties does not always imply sending secret data, 
but instead also sending normal natural images, it becomes nearly impossible to 
intercept and successfully detect the exact image, out of the many sent images, 
that stores secret data inside. 

9.3 Receiving 
The receiving process is the reverse sending process. In this stage of the 

communication process, the steganographic image enters the receiver’s processing 
zone. The receiving party uses the received data along with it’s private key in order 
to extract the secret data, by reversing the steps needed to build the carrier image 
(steganographic image). The image is again handled as two separate color 
information streams: NVCI and VCI. The VCI part of the image is used to extract the 
data in its encrypted form. The NVCI part of the image is used to generate the 2nd 
half AES key exactly like in the sending process. 

9.3.1 Steganographic extraction 

The system processes the VCI part of the steganographic image in order to 
extract the secret data. Using the algorithm [1] the raw joint secret data and the 
encrypted portion of the AES key get extracted from the image, as shown in Figure 
9.5. The extracted data is split into two streams: the encrypted secret data stream 
and the encrypted 1st Half AES Key stream.  

9.3.2 Decryption key recovery  

Using the RSA algorithm together with the receiving party’s private key, the 
encrypted half of the AES key gets extracted. The previously added random padding 
bits are ignored and the system recovers the 1st Half AES Key.  

The second half of the AES Key is calculated based on the NVCI part of the 
image. If the transmitted image was not altered in any way, using the same hash 
algorithm used by the sender, the system can successfully determine the 2nd Half 
AES Key. This step is crucial for authenticity verification, as the slightest change to 
the carrier image (cover image) makes the AES key unrecoverable, and therefore 
jeopardizing the integrity and authenticity of the transmission. The decryption key 
was intentionally designed as having two components. The first part of the key (the 
random generated part) is encoded using asymmetric cryptography in order to 
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introduce authentication, only the intended recipient can decipher it correctly. The 
second part of the key was designed to relate the cover image to the encryption 
process, offering security against unwanted changes. If the steganographic image 
has not been received intact, the system is unable to extract the data and signalizes 
a breach of security. 

Once the two AES key halves have been successfully obtained/extracted, 
they are merged and the full AES Key is recovered. 

9.3.3 Data decryption 

The last step in the communication process represents the decryption of the 
secret data. Once the AES key has been retrieved, the secret data can be 
successfully decrypted and the receiving party receives the intended secret data, 
ending a successful communication. 
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CHAPTER 10 
10 Experimental results and evaluation 

“A fact is a simple statement that everyone believes. It is innocent, unless 
found guilty. A hypothesis is a novel suggestion that no one wants to 
believe. It is guilty, until found effective.” – Edward Teller 
 
 
 
 
In order to prove the effectiveness of the algorithms presented in this thesis 

I conducted several tests. The tests presented in this chapter cover a large variation 
of quality and performance indicators that helped differentiating my algorithms from 
others in the field. The algorithms I’ve designed feature an advanced modularity 
that serves both as an abstract model for future improvements but also for 
advanced benchmarking because of the multitude of testing points that can be 
measured during the algorithm’s execution. Because of the high complexity in 
design, I’ve given much attention to optimizing every component of the algorithms 
in order to achieve maximum performance in both quality and execution type. The 
current chapter presents the experimental setup and results in comparison with 
other state of the art algorithms. 

10.1 The experimental setup 

The experimental setup is divided into two parts: basic and advanced tests. 
The basic test outlines the performance of the original algorithms presented in 
comparison with the basic LSB steganography method, but also against one of the 
most powerful state of the art algorithms to date: Optimal LSB (OLSB) [39] and 
Optimal Pixel Adjustment Process (OPAP) [40]. In order to validate the tests I’ve 
used the same testing environment, as did the authors of the above-mentioned 
algorithms. The advanced tests represent a more elaborated and performance 
oriented set of tests that compare the algorithms introduced in the current thesis, 
over a series of variables that influence the outcome of the algorithm. 

10.1.1 Basic tests 

The basic test was conducted on the standard set of images: Lena, Baboon, 
Jet and Peppers (as shown in Figure 10.1) sized at 512x512 pixels. These four 
images have become a standard in steganographic benchmarking, as it is easier to 
differentiate and highlight the advantages of a new algorithm over another by using 
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a common starting point, which is the cover image. The basic test is performed on 
the images in Figure 10.1 using 100 randomly generated secret data streams, and 
an average PSNR over all 100 tests result is calculated. This result represent the 
actual comparison metric that is used in order to differentiate my own designs 
against one of the most powerful algorithms to date: OPAP and OLSB. 

 

  
(a) Lena (b) Baboon 

  
(c) Jet (d) Peppers 

Figure 10.1 – The four standard images used for basic tests 

10.1.2 Advanced tests 

In my extended test I’ve used 100 full HD images (1920x1080 pixels) with a 
randomly generated payload data (occupies 90% of the total steganographic 
capacity) and with jump table size that does not exceed 10% of the total 
steganographic capacity the carrier medium offers. The tests have been conducted 
over a longer timespan (8 hours of execution time), allowing the algorithms to find 
the best solution. The experiment also highlights the evolution of the algorithm over 
time in terms of best solution a general tendency. 
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10.2 Evaluation approach 

In LSB matching steganography one of the most commonly used methods 
for output quality measurement is peak signal-to-noise ratio (PSNR). Given that a 
steganographic algorithm takes a normal image and transforms it in the process of 
embedding the secret data within, the algorithms outputs a modified image. In the 
ideal case the outputted image resembles the original from a visual and digital 
perspective. Since the secret data introduced by the algorithms is basically noise, 
the similarity of the images is calculated using the mean squared error (MSE) 
formula: 

!"# = 1
!" [! !, ! − !(!, !)]!

!!!

!!!

!!!

!!!
!

where!

! = !"#$%!ℎ!"#ℎ!!

! = !"#$%!!"#$ℎ!

! !, ! !!"#!! !, ! = !!"#$%!!"#$%!!"#$%&!

MSE quantifies the changes suffered due to the embedding process, 
counting the alterations suffered according the degree of deviance between the 
original and modified value. Using this function finely modified pixels have a smaller 
weight than coarsely modified ones. The usage of MSE is limited to image sets of 
the same size (number of effective pixels), making it unsuitable as a general metric 
that can be applied independent of the size of the image. 

The general metric for noise between two signals, in this case the original 
and modified pixels of the image, is measured in!!". The PSNR is directly related to 
the MSE function, the difference being that PSNR measures the noise in!!", without 
taking the effective number of pixels an image uses into consideration. PSNR is 
defined as being: 

!"#$ = 10 ∙ !"#!"
!"#!!
!"# !

The!!"#!!represent the absolute binary value a pixel can store. In the case 
of a high-color pallet where a pixel is stored on 24 bits, each channel has a 
maximum combination of 255, being represented on 8 bits. 

PSNR applied between two identical images is infinite, representing an 
exception in the above formula. This metric is mostly used in lossless compression 
algorithms as it quantifies the alteration suffered by the compressed image in 
relation with the original. PSNR values between 30!!" and 50!!" are considered high 
quality approximations of the original, where the higher the PSNR the more the 
modified resembles the original. A typical high quality JPEG image obtained by 
compressing an image using the quality factor ! = 90%!usually issues a PSNR value 
of over!40!!".  
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10.3 Experiments 

10.3.1 Basic tests for Nexim One 

The testing process for Nexim one has been structured in two stages. Since 
Nexim one was constructed in a modular way with various parameters to tweak, in 
the first stage I determined the optimum parameters for the embedding process to 
later use them in a comparative analysis against other algorithms in the second 
stage of my experiment. 

Each test conducted was made using 4 different volatile bits/pixel values 
(LSBs): 1,2,3,4 bits/pixel. The maximum steganographic capacity in each of the four 
cases is presented in Table 10.1. Since all images have the same size in pixels and 
color depth, each image has the same total capacity, depending on the number of 
volatile bits used. 

 
LSBs 1 LSB 2 LSB 3 LSB 4 LSB 

Capacity 262144 524288 786432 1048576 
Table 10.1 – Capacity for the four test images 

 
For each of the four embedding depths above, four random streams where 

generated using a PRNG (Pseudo Random number Generator), represented in a 
binary form with values between 00-FF (hex). In order to assure a less time 
consuming algorithm execute the tile multiplier was limited according to the 
embedding depth: 

- 0 to 7 for 1 bpp 

- 0 to 6 for 2 bpp 

- 0 to 5 for 3 bpp 

- 0 to 4 for 4 bpp 

For each of the above combinations, different jump table multipliers have 
been tested: 0,2,4,8,16,31,64 and 128. The jump table multiplier was adjusted so 
that the storage of the table itself would require at most 5% of the total available 
steganographic capacity. The algorithm was configured to iterate 50 times (per 
embedding process) in order to find the best solution. The best results of this test 
can be observed in Table 10.2. 

 
 

LSBs Tiling multiplier Tile number Jump table multiplier PSNR 
1 2 8 32 55.9436 
2 3 32 16 48.2192 
3 4 128 16 42.5083 
4 4 256 8 36.7142 

Table 10.2 – Optimal parameter test results 
 
An essential aspect outlined by this first tests is that increasing the number 

of LSBs leads the algorithm requiring more tiles to chose from in order to provide 
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better results. A larger tile number also raises the number of elements in the jump 
table, thus requiring a smaller jump table size multiplier. 

The most important part of this test was the second stage which used the 
parameterization defined above to test the algorithm’s performance against other 
state of the art algorithms (the most powerful to date): OPAP and OLSB. 

As opposed to all other techniques, this algorithm also embeds the table into 
the secret data. For comparison reasons, therefore the table was appended without 
any additional enhancements done to the resulting image. 

Table 10.3 illustrates the results in terms of PSNR of the various 
combinations. Table 10.4 presents the gain obtained using Nexim One in 
relationship with the PSNR values obtained with the other 3 methods. 

 
LSBs SLSB OLSB OPAP Nexim One 

1 51.1335 51.4125 53.3104 55.9436 
2 44.0167 44.3650 46.1571 48.2192 
3 37.9402 38.2194 40.2401 42.5083 
4 31.6843 31.9907 34.0843 36.7142 
Table 10.3 – Performance comparison (Nexim One) [dB] 

 
 

LSBs SLSB OLSB OPAP 
1 4.8101 4.5311 2.6332 
2 4.2025 3.8542 2.0621 
3 4.5681 4.2889 2.2682 
4 5.0299 4.7235 2.6299 

Table 10.4 – Gain comparison (Nexim One) [dB] 
 
As one can observe, Nexim One has an overall advantage over OLSB of +2 

dB in PSNR. The output of this experiment highlights the performance of this 
method, which succeeded in preserving more original information with the penalty 
of losing a small amount of steganographic capacity. The maximum capacity loss 
registered was 5% of the total embedding capacity, which represents a small 
penalty in favor of overall quality of the outputted steganographic image.  

10.3.2 Basic test for Nexim One Extended 

The Nexim One algorithm did not require any pre or post processing stages 
in order to enhance the quality of the output image. This however had one 
drawback; in some isolated cases the algorithm produced “brightness spots” on the 
carrier image, meaning an accumulation of modified pixels that presented either 
higher or lower brightness than the rest of the image. These spots did not affect the 
overall PSNR and logical distribution of the data, but failed due to the inconsistency 
with the human vision analysis. Nexim One Extended represents a relative small 
addition to the original design that focuses entirely in eliminating the bright spots 
but also their initial cause of appearance. The tests were conducted using the same 
randomly generated data streams presented in the previous chapter. The results are 
shown in Table 10.5. 
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LSBs SLSB OLSB OPAP Nexim One Nexim One 
Extended 

1 51.1335 51.4125 53.3104 55.9436 56.1653 
2 44.0167 44.3650 46.1571 48.2192 49.4301 
3 37.9402 38.2194 40.2401 42.5083 42.9735 
4 31.6843 31.9907 34.0843 36.7142 36.8062 

Table 10.5 – Performance comparison (Nexim One Extended) [dB] 
 
As one can observe in Table 10.6, the additions introduced by Nexim One 

Extended changes successfully raise the overall quality of the steganographic image, 
retaining more color information than the original Smart LSB algorithm. 
 

LSBs SLSB OLSB OPAP Nexim One 
1 5.3180 4.7528 2.8549 0.2217 
2 5.4134 5.0651 3.2730 1.2109 
3 5.0333 4.7541 2.7334 0.4652 
4 5.1219 4.8155 2.7219 0.0920 

Table 10.6 – Gain comparison (Nexim One Extended) [dB] 
 
If we take a look at the gain of the new method (table 10.6) over the 

references used, we can see that the effectiveness of the new changes in the 
original algorithm design offer more quality when using 2 volatile bits. From the 
quality point of view, the improvements finely tune the original Smart LSB algorithm 
in terms of PSNR.  

With the inclusion of a better solution generator, this design initially picks 
better solutions than the original algorithm, reducing therefor the time needed for 
obtaining equal or better solutions. Throughout the testing process we registered a 
speed increase of 1.7X ±0.3 compared with the original design (Nexim One). 

The steganographic images successfully passed several steganalysis filters 
(RS stego, Weighted Masks and RD steganalysis) issuing no alarm at all, situating 
the average suspicion rate in normal boundaries (7-21%). In other words, using the 
new improvements this algorithm successfully hides the secret data in a manner 
that preserves enough of the original color information to pass detection filters, 
therefor fulfilling the main purpose of the algorithm. 

10.3.3 Basic test over Nexim Two 

The Nexim Two algorithm is the first algorithm that eliminates the weakest 
modules in the original design. The combined solution generator with the solution 
evaluator, as well as the new fixed tiling and region-based PSNR analysis facilitated 
a reduced execution complexity and at the same time surpassing the previously 
introduced Nexim One and it’s extension, as observed in Table 10.7. 

 

SLSB OLSB OPAP Nexim One Nexim One 
Extended Nexim Two 

37.9402 38.2194 40.2401 42.5083 42.9735 44.3701 
Table 10.7 – Performance comparison (Nexim Two) [dB] 

 
The new and improved algorithm registered higher average PSNR values in 

all of the four testing images, with a gain of  +1.39 dB over Nexim One and +1.86 
dB over Nexim One Extended. The gain in quality translates into higher color 
conservation in the embedding process, even when the payload remains the same 
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throughout all algorithms. The only limitation of this method in comparison with it’s 
predecessors is that it only deals with an embedding depth of 3 LSBs/color 
component. 

10.3.4 Basic test over Nexim Two Extended 

The last introduced algorithm, Nexim Two Extended, represents an 
extension to Nexim Two, that introduces a novel adaptive capacity that choses the 
embedding depth needed according to the size of the secret data one wishes to 
embed. In comparison with the other variations of Nexim One and Nexim Two, this 
algorithm is fully automated, eliminating many of the variables that were otherwise 
manually set or using benchmarks in order to determine the optimum set of 
parameters. Based on the principles on Nexim Two, the additions I made to this 
algorithm eliminates the initial 3 LSB constraint, but retaining in the same time the 
improved solution generator and evaluator and the higher processing speed due to 
the pixel grouping process. The tests have been conducted on the same set of 
secret data streams as in all other cases to have a valid departing metric between 
the algorithms. 

 
 

LSBs SLSB OLSB OPAP Nexim One Nexim One 
Extended 

Nexim Two Nexim Two 
Extended 

1 51.1335 51.4125 53.3104 55.9436 56.1653 - 56.1503 
2 44.0167 44.3650 46.1571 48.2192 49.4301 - 49.1654 
3 37.9402 38.2194 40.2401 42.5083 42.9735 44.3701 44.4951 
4 31.6843 31.9907 34.0843 36.7142 36.8062 - 37.0864 

Table 10.8 – Performance comparison (Nexim Two Extended) [dB] 
 
As can be observed in Table 10.8 the Nexim Two Extended algorithm issues 

similar PSNR values in the case of 1 and 2 LSBs, but successfully surpasses all other 
algorithms when it comes to preserve the color information while coarsely modifying 
3-4 LSBs/color components. Table 10.9 illustrates the gain over the other 
algorithms. 

 

LSBs SLSB OLSB OPAP Nexim One Nexim One 
Extended 

Nexim Two 

1 5.0168 4.7378 2.8399 0.2067 -0.0150 - 
2 5.1487 4.8004 3.0083 0.9462 -0.2647 - 
3 6.5549 6.2757 4.2550 1.9868 1.5216 0.1250 
4 5.4021 5.0957 3.0021 0.3722 0.2802 - 

Table 10.9 – Gain comparison (Nexim Two Extended) [dB] 
 

The table above outlines that the algorithm is less effective than its 
predecessors for finely modified images (1-2 LSB), but improves the quality even 
more in the case of 3 LSB. The algorithm loses an average of 0.3 dB on fine 
modified images, but when compared to the benefits that come from the shrined 
jump table and high speed processing, this is by far the strongest algorithm I’ve 
introduced. 
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10.3.5 Advanced tests on all Nexim algorithms 

The two algorithms and their extensions have been tested over a longer 
time span in order to highlight their behavior over time: 

• Time it takes to find the best solution 

• Completed iteration cycles 

The basic tests conducted have shown that all 4 algorithms are most 
effective when the embedding depth it 3 LSBs/color component, which places the 
algorithms in the domain of high capacity steganographic algorithms using LSB 
matching techniques. The current experiment has been conducted over a timespan 
of 8 hours for each of the four algorithms, totalizing 32 hours of execution time for 
all Nexim series algorithms. For the ease in writing the four algorithms presented 
will be denoted NX1 (Nexim One), NX1e (Nexim One Extended), NX2 (Nexim Two) 
and NX2e (Nexim Two Extended). 

 

 

Figure 10.2 – The four standard images used for basic tests 

Figure 10.2 outlines the relationship between the execution time and quality 
of the best solution found so far. All algorithms have a linear tendency of finding 
better solutions in the first 5 hours of execution. However, NX1 and NX1e, because 
of their weaker solution generator and evaluator issue lower quality results in the 
first 4 hours, starting with a very high alteration rate compared to NX2 and NX2e 
which find better solutions within the first half hour of execution time. 
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The nonlinear evolution of the solutions is a direct effect of the many 
embedding strategies that can be found. Another run of the same experimental 
setup but using different random streams can register small changes, but the 
general tendency of solution quality over the 8-hour execution time remains similar 
to the current experiment’s results.  

 

 

Figure 10.3 – The four standard images used for basic tests 

The iteration count evolution over the 8-hour period is shown in Figure 10.3. 
NX1, because of its weak solution evaluator has a constant and linear growing 
iteration count. Even if no better solutions are found, this algorithm continues to 
test even worse solutions. NX1e on the other hand, with its HDR filtering techniques 
can filter bad solutions, increasing the overall iteration counts. Still, NX1e due to its 
computational intensity can only filter the best solutions after a certain breed of 
solutions have been generated. 

NX2 and NX2e facilitate the highest iteration count, being able to filter bad 
solutions in the incipient phase, before the evaluator quantifies the entire solution. 
Solutions that would imply a lower PSNR than the best found so far are immediately 
marked as bad and the algorithm breaks the execution of the current iteration 
moving to the next one. The experiments have shown that both NX1 and NX1e have 
a solution drop rate of over 93% whereas the enhanced NX2 and NX2e have a drop 
rate of 61%, meaning that the algorithm drops less solutions and is able to find 
constant evolving solutions over a smaller timespan. 
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10.4 Overall result evaluation 

 

Figure 10.4 – General comparison of output quality 

The experiments conducted and their results have shown the incremental 
quality updates each of the Nexim algorithm series brings. Whereas Nexim One was 
strong the initial design that proves strong against other state of the art algorithms 
like OPAP and OLSB, the later extensions and redesign introduced in the Nexim 
algorithms series have proven to be more effective in both overall resulting quality, 
processing speed, resource consumption and even increased resistance to 
steganalysis attacks. To conclude the experimental results, this thesis introduces a 
new set of powerful LSB matching algorithms that fulfill the both quality and 
capacity requirements to a degree that has not been achieved so far. The design of 
the four algorithms facilitates future improvements and tweaks in the entire 
steganographic process, serving both as standalone implementations and design 
guideline for future additions. 
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CHAPTER 11 
11 Conclusions and perspectives 

“Imagination is not only the uniquely human capacity to envision that which 
is not, and therefore the fount of all invention and innovation. In its 
arguably most transformative and revelatory capacity, it is the power to that 
enables us to empathize with humans whose experiences we have never 
shared.” – J. K. Rowling 
 
 
 
 
The continuous evolution of computing systems and global networks pushes 

the digital world to a completely new level. We tend to be more inter-connected 
each day, computers are almost everywhere in our lives. Almost every aspect of 
modern communication is a synonym with Internet. Along with the tremendous 
benefits technology offers, comes an even bigger risk of privacy. Cryptography 
alone is not enough, since the present security standards rely on algorithms that 
were developed over 2 decades ago, at the time when breaking or solving the high 
complexity mathematical formulas on which ciphers relay seemed a task impossible 
to achieve in the next millennium. However, statistics have shown the opposite: the 
evolution of both processing power and hardware implementation at even smaller 
scales has not been foreseen as possible. 

The current thesis follows the new trend of data through obscurity: 
steganography. With this work I address an important aspect of digital security that, 
although still under development, is an emerging technology that is adopted each 
day in many situations where cryptography alone is insufficient. 

The vastly unexplored domain of steganography lacks of standardization or 
certain rules, many researchers that are fascinated by this technologic breakthrough 
in data security fail to see the applications that it can support.  

11.1 Thesis impact and contributions 

With the current thesis I wish to complete this research domain with the 
results of over 5 years of work in the steganographic domain. Throughout these 
years I’ve developed several algorithms that vary in scope, performance and design, 
out of which I’ve picked 4 of the strongest and best suited algorithms as my 
contribution to the field of digital image steganography. 

The current thesis introduces 4 LSB matching algorithms: Nexim One, 
Nexim One Extended, Nexim Two and Nexim Two Extended, as well as an advanced 
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security infrastructure used for secure digital communication using steganography 
and cryptography in an original way. 

The four algorithms I’ve introduced in this thesis serve for two purposes: a 
powerful stand-alone steganographic algorithm and a general design template for 
future improvements and changes. During my research I’ve studied several 
algorithms and analyzed their structure, performance and design.  This observation 
led me into building an abstract representation of a steganographic algorithm, 
guideline that I also used in the process of designing the four algorithms presented. 

The Nexim series was introduced at several international conferences and 
was very well received by the audience, the first algorithm introduced Nexim One 
already has been analyzed and used as a reference by recent steganography 
researchers. 

In the process of designing the four algorithms I’ve also given much 
attention to the physical implementation of the algorithms and their optimization. 
Therefor I’ve developed the algorithms as both stand-alone solutions, but also a 
benchmarking tool to test their performance and better analyze their weaknesses, 
faults and obsolete internal components. 

Given these facts, the main contributions of this thesis are: 

• Nexim One and Nexim One Extended – two new steganographic hybrids 
that are capable of preserving the original image better than other 
algorithms.  

• Nexim Two – representing the most powerful and fast algorithms so far, 
even compared with the original two designs. 

• Nexim Two Extended – representing a big improvement to Nexim Two, 
adding the flexibility of variable storage space to the already high 
quality output after the embedding process took place. 

• Nexim SCS (Secure Communication System) – the abstract 
communication system that hides the already cryptographically secured 
information inside harmless carriers such as image, in order to prepare 
the sensitive information to travel unnoticed on the internet in the case 
of an interception or man-in-the-middle attack. The new communication 
model features increased reliability because it covers key aspects in 
terms of data security: 

o Unidirectional encryption system (the sender can encode, but only 
the receiver can decode) 

o Authenticity verification for both cover image and secret data 
(several checkpoints have been intentionally added so that even the 
smallest change in the steganographic packet breaks the seal, 
signalizing an unauthorized manipulation) 

o Chained cryptographic systems (AES + RSA) 

o Unidentifiable communication stream (the image containing secret 
data cannot be distinguished among other normal images) 
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o The joining of cryptography and steganography builds up a near 
perfect communication system, presenting higher reliability than 
stand-alone cryptographic methods. By combining the security level 
offered by cryptographic cyphers (data encoding) with the stealth 
introduced by steganographic encoders (data hiding), it is nearly 
impossible to breach this system 

11.2 Supporting publications 

The current thesis is supported by the following list of papers published at 
international conferences: 

• S.F. Mare, M. Vladutiu, L. Prodan, “Decreasing Change Impact Using Smart 
LSB Pixel Mapping and Data Rearrangement”, Proceedings CIT 2011 “The 11th 
IEEE International Conference on Computer and Information Technology”, 
Paphos, Cyprus, August 2011, pp. 269-276, ISBN: 978-1-4577-0383-6 (IEEE 
Computer Society rank). 

• S.F. Mare, M. Vladutiu, L. Prodan, “HDR based steganographic algorithm”, 
Proceedings SIITME 2011 “IEEE 17th International Symposium for Design and 
Technology of Electronics Packages”, Timisoara, Romania, October 2011, pp. 
333-338, ISBN: 978-1-4577-1276-0 (IEEE rank). 

• S.F. Mare, M. Vladutiu, L. Prodan, “Secret data communication system using 
steganography, AES and RSA”, Proceedings SIITME 2011 “IEEE 17th 
International Symposium for Design and Technology of Electronics Packages”, 
Timisoara, Romania, October 2011, pp. 339-344, ISBN: 978-1-4577-1276-0 
(IEEE rank). 

• S.F. Mare, M. Vladutiu, L. Prodan, “High capacity steganographic algorithm 
based on payload adaptation and optimization”, Proceedings SACI 2012 “IEEE 
7th International Symposium on Applied Computational Intelligence and 
Informatics”, Timisoara, Romania, May 2012, pp. 87-92, ISBN: 978-1-4673-
1013-0 (IEEE, Australian Research Council list class C rank). 

• S.F. Mare, M. Vladutiu, L. Prodan, F. Opritoiu, “Advanced Steganographic 
Algorithm Using Payload Adaptation and Graceful Degradation”, Proceedings 
ICIE 2012 “International Conference on Information Engineering”, LNIT 
“Lecture Notes in Information Technology Vol.25” (IERI Press), Singapore, 
Singapore, June 2012, pp. 121-127, ISBN: 978-1-61275-024-8 (Ei Compendex, 
Cambridge Scientific Abstracts, Google Scholar, IEE, ISI rank). 

The current thesis was also defended using two PhD reports sustained at my local 
university: 

• S.F. Mare, M. Vladutiu, L. Prodan, F. Opritoiu, “Algorithm Concepts and Ways 
of Building More Robust, Stronger and Stealthier Steganographic Algorithms”, 
Ph.D. Report 1, “Politehnica” University of Timisoara, January 2012, pp. 1-57 

BUPT



110   Chapter 11. Conclusions and perspectives  
 
• S.F. Mare, M. Vladutiu, L. Prodan, F. Opritoiu, “Algorithm Concepts and Ways 

of Building More Robust, Stronger and Stealthier Steganographic Algorithms”, 
Ph.D. Report 2, “Politehnica” University of Timisoara, July 2012, pp. 1-84 

11.3 Future directions 

Although this thesis deals with many aspects related to digital image 
steganography and the ways in which we can achieve both quality and storage 
capacity, there is still room for future improvements and questions worth future 
investigation.  

11.3.1 Algorithm Refinements 

• Improving the matching algorithm – this represents the key point in 
LSB matching steganography. Because I’ve focused into creating 
algorithms that do not rely at all on pre or post processing image 
enhancement filters, one could improve the quality of my current 
designs with the help with some advanced filtering and image 
enhancement stages. 

• Parallelized implementation – represents one of the most adequate 
benchmarking solutions, because one could test the current algorithms 
over a wider set of inputs and analyze the output faster and get results 
and quality metrics that hopefully can identify weak points until the 
algorithm gets adopted in some situations. 

• Improved reliability – even if this is a hard task to achieve in the case 
of steganography, the reliability of the algorithms can be enforced with 
the insertion of error correction algorithms. 

• Data compression algorithms – built into the steganographic process 
with a cross-linked dictionary could shrink the secret data size, therefor 
requiring less coarsely modified color bits. 

11.3.2 Security Infrastructure Refinements 

• Improving the communication infrastructure with the combination with 
digital certificate standards in order to enforce the authenticity an 
uniqueness of a transmission. 

• Hardware implementation of the entire system for both cryptographic 
and steganographic, facilitating rapid encoding and decoding. 

• Large scale simulation of the effectiveness of the infrastructure and the 
insertion of steganographic detectors and filters. 
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