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Abstract:
This thesis addresses the decoding of two dimensional (2D) barcodes in
industrial environments. A new class of 2D barcodes is introduced that is
based on low-density parity-check (LDPC) codes. The special requirements
in direct part mark identification (DPMI) applications have been considered
during the development in order to design a robust 2D barcode. The major
accomplishments of this work include the design and the decoding of both
codes, the LDPC code as well as the developed LDPC-based 2D barcode.
A design method for short irregular LDPC codes is introduced that yields a
better decoding performance for the additive white Gaussian noise (AWGN)
channel and the Markov-modulated Gaussian channel (MMGC) compared
to optimization methods known from literature. Estimation-decoding and a
reestimation procedure of a 2-state channel-model’s transition probabilities
have been extended for usage with a MMGC. For the application of LDPC
codes on 2D barcodes an intelligent interleaver has been developed to
place the code word’s symbols in the available grid of the 2D barcode
in order to increase the error-correction capabilities of the resulting 2D
barcode. In addition, a 2-state channel-model has been created that
provides a good description of 2D barcodes in industrial environments.
Considering the 2-dimensional arrangement of the 2D barcode’s modules,
the estimation-decoding algorithm has been extended to operate based on
a 2D hidden Markov model (HMM). This provided the estimation-decoding
in 2 dimensions (ED2D) algorithm that is proposed for the decoding of
LDPC-based 2D barcodes. Next to the utilization of regular LDPC codes for
the design of the new 2D barcode, irregular LDPC codes have been applied.
The latter have been designed by means of the introduced optimization
method and the channel-model for 2D barcodes. For the evaluation of
the new class of 2D barcodes, a test-environment and an appropriate
test-procedure have been created. The test-environment enables one
to compare different variants of 2D barcodes in a simulated industrial
environment under fair conditions. This test-environment proves that the
developed LDPC-based 2D barcode decoded with the ED2D algorithm has a
substantially better error-correction performance compared to the standard
Reed-Solomon (RS)-based Data Matrix code (DMC).
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Chapter 1

Introduction

1.1 Some history

Since barcodes offer the possibility of reading stored data by means of a computer
based system without human involvement, they belong to technologies that are
part of Automatic identification and data capture (AIDC) also known as Automatic
identification (Auto-ID). In general, AIDC refers to all kinds of technologies that enable
one to collect data from objects, pictures, sounds, videos, persons etc. without the
need of a manual data entry. Some examples besides barcodes are smart cards,
biometrics, radio frequency identification (RFID), optical character recognition (OCR)
and voice recognition.
To follow the history of barcodes back to it’s roots, one has to mention a project

started by Wallace Flint in 1932 at the Harvard University Graduate School of Business
Administration. The target was the development of a completely automatic checkout
procedure for warehouses based on punch cards. The invented system is based on
a catalog that lists all available items with an individual punch card assigned to each
item. The customer takes a punch card of the desired article, and a clerk then inputs
the card into an appropriate reader. The merchandise is then taken fully automatically
out of the storeroom, and handed to the customer. A bill is generated, and the
inventory data updated. Due to financial reasons, the system was never employed
anywhere.
The idea of an automated checkout procedure then inspired Norman Joseph

Woodland and Bernard Silver in 1948 to develop a system that enables one to
automatically read product information. After a first try based on ultraviolet ink, they
introduced the first barcode system in 1949, and applied for a patent. The patent with
the name Classifying apparatus and method was then issued in 1952 [1]. It describes
two barcode systems based on lines (Figure 1.1a) and on a bullseye printing pattern
(Figure 1.1b)„ respectively.
Another milestone in the history of barcodes was the invention of a system by

David Collins for automatically identifying railroad cars. The system, developed at
the company Sylvania in the United States of America (USA), is called KarTrak and
is based on reflective orange and blue stripes attached to the railroad cars. Figure
1.2a depicts the KarTrak system, and Figure 1.2b shows a KarTrak barcode mounted
on a railroad car. After a first test on gravel cars in 1961, a nationwide standard
was established in 1967. However, the system had to face the problem of decreasing
reliability in the case of interferences in terms of dirt. For several reasons the system
was never applied to the complete fleet of railway cars, and the project failed.
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(a) Barcode (b) Bullseye code

Figure 1.1: Barcode and bullseye code developed by N. J. Woodland and B. Silver in 1948 and
described in the patent [1].

(a) KarTrak barcode (b) KarTrak mounted on a railroad car

Figure 1.2: KarTrak barcode system developed by D. Collins for automatically identifying railroad
cars.

After leaving his former employer Sylvania, David Collins founded the Computer
Identics Corporation, and continued to work on barcode systems. The application of
helium-neon lasers instead of light bulbs greatly increased reliability when reading
the current barcode version based on black and white stripes. Alongside affordable
lasers, the development of integrated circuits made barcode scanners more suitably
for all kinds of application. One of the first industrial applications of barcodes was the
tracking of automobile axle units in a General Motors factory in 1969, based on the
system invented by Computer Identics.
However, the main engine for the success of the first barcodes was the grocery

industry. Initiated by the National Association of Food Chains (NAFC), guidelines for
the development of a standardized barcode were established. After several systems
had been proposed and tested, the NAFC chose the Universal Product Code (UPC) in
1973 as their standard for automated checkout procedures. The UPC was developed
based on the concept of Silver and Woodland (that was employed at IBM at that time)
by George Laurer at IBM.
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The first commercial appearance of the UPC was the purchase of a Wrigley’s Juicy
Fruit gum pack by Clyde Dawson. It was scanned by Sharon Buchanan at 8:01
am on June 26, in 1974, at Marsh’s Supermarket in Troy, Ohio, USA. Since then,
barcodes have been used more and more in various fields of applications. One of the
most famous ones being the superset of UPC: the 13 digit European Article Number
(EAN-13) barcode, that is used worldwide for marking all kinds of products. The
EAN-13 is standardized in [2]. An example of a UPC and a EAN-13 barcode can be
seen in Figure 1.3a and Figure 1.3b„ respectively.

(a) UPC barcode (b) EAN-13 barcode

Figure 1.3: UPC barcode invented by IBM and the EAN-13 barcode that is composed of a UPC
and a prefixed zero.

In 1974, David Allais and Ray Stevens developed Code 39 (Figure 1.4) at Intermec.
Contrary to the UPC and the EAN-13, the code does not only encode digits but a total
of 43 characters. Code 39 was adopted in 1981 by the United States Department of
Defense (DoD) in order to mark all kinds of products sold to the United States military.
Code 39 is still used by the DoD, and sets a good example for the usage of barcodes
in an industrial environment.

Figure 1.4: Code 39 used by the United States military.

The marking of parts using barcodes offers the possibility of tracking them
throughout their entire life cycle, including the manufacturing process and supply
chain operations.
Nowadays, one dimensional (1D) barcodes are being replaced by their two

dimensional (2D) successors, that offer a higher information density as well as an
integrated error-correction in most cases. The international standard [3] refers to
bar code verifier conformance specifications for two-dimensional symbols. One 2D
barcode1 that is used more and more in industrial applications is the Data Matrix code
(DMC). An example of a DMC can be seen in Figure 1.5a. The DMC was invented by
the company International Data Matrix in 1989, and is internationally standardized in
[4].
A field of application that drew much attention over the past few years is

multimedia applications. In contrast to industrial applications, where the DMC is
clearly dominating, a 2D barcode called Quick Response code (QR code) has been
spreading intensively. It was invented in 1994 by Denso Wave in Japan, a subsidiary
1In this thesis, the word 2D barcode is used in the context of 2D codes, although their symbols are

represented by square modules or dots instead of bars as in the the case of 1D barcodes. This is done to
avoid confusion between the barcode and the channel-code used inside the barcode.
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of Toyota. Figure 1.5b shows an example of a QR code that is standardized in [5].
However, the focus of this thesis is on the application of 2D barcodes in the context of
industrial environments.

(a) DMC (b) QR code

Figure 1.5: The two most famous 2D barcodes, the DMC and the QR code.

1.2 Motivation

When considering 2D barcode systems in industrial environments, it is important to
direct one’s attention to the appearance of a 2D barcode’s modules. When a DMC,
for example, is printed in black on a white surface, each module is represented by a
black or a white square referring to a binary one and a binary zero, respectively. This
represents the usual case as described in the appropriate standard [4].
However, in the case of direct part mark identification (DPMI) applications, the

modules are not printed but instead milled, laser etched or dot peened on various
kinds of material. Before the actual decoding can be proceeded, an acquisition of the
2D barcode has to be done. Therefore, a picture is taken in an illumination setting
that is adjusted to the surface of the material and the cavities that represent the 2D
barcode. In the case of dot peening or milling, the black squares then turn into shapes
similar to circles. The sizes and the gray-values of the round modules thereby depend
on various parameters like the camera and its setting, the illumination setting, the
texture of the cavities and so on. In addition, the white squares, that stand for a
binary zero, are now represented by the untouched material, that is not necessarily
white anymore as in the printed case. Figure 1.6 shows a standard printed version of
a DMC, and an example of a DPMI application where a DMC is milled into plastic.

(a) DMC printed on
paper

(b) DMC milled in
plastic

Figure 1.6: The same DMC printed on paper and milled in plastic.

This means that a picture of a 2D barcode looks quite different in the case of DPMI
applications compared to the standard case that is characterized by modules depicted

BUPT



1.2. Motivation 23

by black or white squares. This mainly affects the following points:

1. The localization of the 2D barcode.

2. The image processing.

3. The error-correction.

The localization of a 2D barcode is much more challenging in the case of DPMI
applications, since the edge-detection algorithms given in the standard do not work
anymore. This is due to the round shape of the one-modules that do not form
detectable edges.
The image processing part, which is responsible for delivering binary information to

the following decoder depending on the modules values, suffers from the same issue.
It is not possible to decide if a module represents a binary one or a binary zero by
means of the provided edge-detection algorithm.
This yields a greater demand on the error-correction capabilities of a 2D barcode,

since it is more likely that errors occur due to the increased challenge for the
localization and image processing.
Another very important fact that has to be considered in industrial environments is

the possibility that damages occur that significantly lower the chance of successful
decoding. Typical interferences like blobs, scratches, dirt, rust etc. change the
appearance of a 2D barcode’s modules, and further impair the conditions for a
successful decoding.
The target of this thesis is to design a robust 2D barcode, in order to overcome the

unfavorable conditions that a barcode system has to face in DPMI applications.
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1.3 Thesis outline

1. Introduction
After some barcode history, the motivation for this work is explained.
Furthermore, the structure of this thesis is explained, and a list of publications
that came out of this work is given.

2. Barcodes
This chapter offers a brief overview of 1D barcodes and 2D barcodes. Typical
applications are explained with a focus on 2D barcodes utilized in industrial
environments. One 2D barcode called Data Matrix code (DMC) is described
in a more detailed manner since it is taken as a reference for the 2D barcode
developed in this thesis.

3. Channel-models
Here some basics are provided by considering channel-models that are important
throughout this work. Furthermore, it is shown how to compute soft-decisions
(SDs) and hard-decisions (HDs) by means of a channels output.

4. Low-density parity-check codes
The 2D barcode designed in this thesis applies a class of channel-codes called
low-density parity-check (LDPC) codes. The definition of LDPC codes, the
encoding and decoding as well as the available construction and design methods
are explained in this Chapter. The focus is thereby on the later application of
LDPC codes on 2D barcodes.

5. Design of short irregular LDPC codes
LDPC codes with short block length are addressed since the number of bits that
can be stored inside of a 2D barcode is limited by the available space. The
class of irregular LDPC codes is promising because these codes have very good
error-correction capabilities on a variety of channel-models. There are standard
tools available for the determination of the parameters that define irregular LDPC
codes that work very good considering long codes. For short block lengths, these
tools are not suitable. In this Chapter, an original contribution is given with the
development of an optimization method for the design of short irregular LDPC
codes that is based on a direct search algorithm. The results based on the new
design technique are compared with a method that follows a similar approach.
It is proven that the design method developed in this Chapter provides superior
decoding performance for the additive white Gaussian noise (AWGN) channel
and for the Markov-modulated Gaussian channel (MMGC) compared to well-tried
methods.

6. Estimation-decoding
Although estimation-decoding stands for a certain kind of LDPC decoder, it has
not been integrated in the Chapter low-density parity-check codes. This is
because the basics of estimation-decoding are given first to then explain the
concept of a newly developed variant of estimation-decoding. The purpose
of using estimation-decoding in general is to increase the error-correction
capabilities of a LDPC code by considering the memory of a channel during the
iterative decoding. An evaluation proves the effectiveness of using the new
variant of estimation-decoding. The developed algorithm is later used when
designing the decoder for LDPC-based 2D barcodes.
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7. LDPC-based 2D barcodes
The main contribution of this thesis is explained in this Chapter where the
principles of 2D barcodes based on LDPC codes are explained. After a desired
information has been encoded by means of a LDPC code, the code word’s bits
have to be placed in the data region of the 2D barcode. This is done by use of an
intelligent interleaver that is developed in order to increase the error-correction
capabilities of the 2D barcode. Since the LDPC decoder requires so called
soft-decisions (SDs) as an input, a channel-model is constructed by which the
computation of SDs is possible. Damages that may occur and that are typical
in industrial environments are thereby considered and yield a channel-model
with memory. This is why the design of the following decoder is based on the
estimation-decoding principle. Furthermore, a 2D hidden Markov model (HMM)
is created to represent the channel’s memory during the iterative decoding of the
LDPC-based 2D barcodes. In a last step short irregular LDPC codes are designed
especially for the usage with 2D barcodes in industrial environments. This is
done based on the new design method, the developed channel-model and the
new variant of estimation-decoding.

8. Evaluation
For the evaluation, a test environment and a test procedure are developed that
enable a comparison of different versions of 2D barcodes. Based on the test
environment and the test procedure, the following evaluations are processed:

(a) The effectiveness of the optimized symbol-placement by means of the
intelligent interleaver is proved.

(b) The effectiveness of the designed decoder for LDPC-based 2D barcodes is
proved.

(c) The decoding results of 2D barcodes based on regular LDPC codes and
irregular LDPC codes are compared.

(d) The LDPC-based 2D barcode developed in this thesis is compared to the
DMC.
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The main original contributions of this thesis are graphically summarized in Figure
1.7. The order of appearance in this thesis is thereby given clockwise starting with
the design of short LDPC codes. The points in the upper part of Figure 1.7 refer to
contributions to the field of LDPC codes in general, whereas the remaining points in
the bottom belong to the new class of 2D barcodes developed in this thesis.

Original
contributions
of this thesis

Design
of short
LDPC codes

New design
variant

Evaluation

Estimation-
decoding

New
estimation-
decoding
variant

Evaluation

LDPC-based
2D barcodes

Interleaving

Channel-
model

Design of
the decoder

Design of
LDPC codes
for 2D
barcodes

Evaluation

Test
environment

Test
procedure

Comparison

Figure 1.7: Visualization of the main original contributions of this thesis.
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Chapter 2

Barcodes

Barcodes in general are defined by machine-readable patterns that store information
related to the object that the barcode is attached to. In the context of barcodes, a
symbology is defined as the mapping of the data to the barcode. Depending on the
chosen barcode, the data that should be encoded can be comprised of digits or a
combination of digits and characters. Some barcodes also support special characters
like Kanji1 and Kana2 in the case of Quick Response codes (QR codes). There is
a huge variety of barcodes available that were developed in different times and for
different purposes. One can thereby distinguish one dimensional (1D) barcodes and
two dimensional (2D) barcodes. In each of the following sections, only a few examples
are given since it would go beyond the scope of this thesis to mention all existing
barcodes.

2.1 1D barcodes

The first barcodes that were invented stored the information linear in one dimension,
and thus are denoted as 1D barcodes. The name barcode stems from the fact, that
most of the former barcodes used bars to encode the desired data. There are 1D
barcodes that use only two bar widths, whereas other ones utilize more. In addition,
the spaces between the bars may encode information as well.
Figure 1.3a and Figure 1.3b show the Universal Product Code (UPC) and the 13 digit

European Article Number (EAN-13) barcode, respectively. Both of them are primarily
used to identify consumer products. Contrary to the EAN-13 barcode that is used
internationally, the UPC barcode is mainly used in the United States of America (USA)
and Canada.
In contrast to the UPC and the EAN-13 barcode, the Code 39 version in Figure 1.4

provides the possibility of encoding characters in addition to numeric digits. This type
of barcode is widespread in the automobile and pharmaceutical industries.
The Code 128, that can be seen in Figure 2.1, offers the encoding of alphanumerical

characters as well but with a higher information density compared to the Code 39.
Although some of the 1D barcodes offer one check digit, it is not comparable to the

error-correction capabilities that most 2D barcodes provide.

1Logographic Chinese characters adopted for usage in the modern Japanese writing system.
2A part of the Japanese syllable script.
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Figure 2.1: Code 128.

2.2 Stacked barcodes

A stacked barcode comprises several lines with each line being composed of bars and
spaces. Usually, the lines share the same start and stop pattern. Contrary to 1D
barcodes, most stacked symbologies offer a simple error-correction.
The first stacked barcode was invented in 1987 by David Allais at Intermec. The

integrated error-correction made the system suitable for aerospace applications. The
code is called Code 49, and can be seen in Figure 2.2a.
A well-known current representative that is in the public domain is the Portable

Data File, 4 bars and spaces in 17 modules (PDF417) that can be seen in Figure 2.2b.
It was invented by Ynjiun P. Wang at Symbol Technologies in 1991, and is standardized
in [6].

(a) Code 49 (b) PDF417

Figure 2.2: Stacked barcodes that are composed of several lines.

2.3 2D barcodes

2D codes store the information in two dimensions. They are also called matrix codes.
Even though they are not composed of bars, the common expression 2D barcode is
used within this thesis. This is done to avoid confusion between the barcode and the
channel-code used inside the barcode. 2D barcodes are state-of-the-art technology
in the field of barcodes. The main advantages compared to 1D barcodes and stacked
barcodes is a higher information density as well as an integrated error-correction.
In the case of the Data Matrix code (DMC) and the QR code for example, the
error-correction is obtained by means of a Reed-Solomon channel-code [7]. An
example of a DMC and a QR code can be seen in Figure 1.5a and 1.5b, respectively.
One 2D barcode that was developed in 1995 by Andrew Longacre and Robert

Hussey at Welch Allyn is the Aztec barcode. The Aztec code is in the public domain
and is standardized in [8]. An example can be seen in Figure 2.3a. It is, for example,
used by the Deutsche Bahn AG for their online tickets.
The barcode in Figure 2.3b is called MaxiCode and was developed in 1989 by

the United Parcel Service (UPS) for the identification of packages. Contrary to most
other 2D barcodes that possess square shaped modules, the shape of the MaxiCodes
modules is hexagonal.
To complete the list of available barcodes, one should mention the existence of

so called composite symbologies. These barcodes are in fact a combination of a 1D
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(a) Aztec (b) MaxiCode

Figure 2.3: 2D barcodes.

barcode and a 2D barcode. They are mainly used in order to provide a common 1D
barcode carrying an article number and in addition adding extra information. This way
the article number can be read using a laser-based scanner, and if required the 2D
part provides additional information.

2.3.1 Data Matrix code (ECC200)

The DMCs are explained in a bit more detail while considering barcodes, since the
focus of this thesis is on the DMC. This is because a 2D barcode will be designed
for application in industrial environments, and the DMC is widespread in direct part
mark identification (DPMI) applications. It is, for example, the only 2D barcode that
is specified for the use by GS13.
The DMC was invented by International Data Matrix in 1989, and is internationally

standardized in [4]. There are several DMC types defined that utilize different variants
of error checking and correcting (ECC), and are called ECC000, ECC050, ECC080,
ECC100, ECC140 and ECC200. In the following, only the current ECC200 version is
considered.
Figure 2.4 shows the three major parts that a DMC consists of. The L-shaped solid

border and the broken border together form the finder pattern, which enables one
to determine parameters like the physical size, the orientation and the number of
modules in the code. A module is thereby one cell of the barcode, and represented by
a white or black square. A black square usually stands for a binary one, and a white
module for a binary zero. The finder pattern is surrounded by a quiet zone, which
is equal to a frame consisting of zero-modules. The actual data can be found in the
data region that is inside of the finder pattern. The capacity of a DMC is up to 2,335
alphanumeric characters or 3,116 numbers.
According to the standard [4], there are several encoding schemes available

that are American Standard Code for Information Interchange (ASCII), C40, Text,
Electronic Data Interchange for Administration, Commerce and Transport (EDIFACT)
and Base 256. Throughout this work, only the ASCII encoding is considered. The data
is then encoded by means of a Reed-Solomon (RS) channel-code [7] that enables the
appropriate decoder to correct errors up to a certain extent.
The high information density together with the possibility of successfully decoding

3GS1 is a not-for-profit association that has Member Organizations in over one hundred countries. They
mainly work on developing a series of standards called the GS1 system, in order to improve supply-chain
management. One of the four key standards thereby refers to barcodes. The GS1 system is the most widely
used supply chain standards system in the world.
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(a) Complete (b) Solid Border (c) Broken Border (d) Data Region

Figure 2.4: Three major parts of a DMC.

a DMC, even if up to 25% of the code is destroyed, have made DMCs a good choice
for applications in industrial environments. In addition DMCs are in the public domain.

2.4 Direct part mark identification

There are different methods available for attaching a 2D barcode to an item which is
referred to as symbol marking. Very often the barcodes are printed in black on a white
even surface. However, next to inkjet marking one can find different symbol marking
technologies in industrial environments referred to as direct part mark identification
(DPMI). DPMI includes all methods where a barcode is permanently marked directly
on the appropriate part. Common methods are:

• Dot peening.

• Laser etching.

• Milling.

• Electro-chemical etching.

The barcodes are thereby marked on various kinds of material like metal, plastic, glass
and rubber. Figure 2.5a and 2.5b show a dot peening machine and a closeup of a dot
peened DMC, respectively. Another example can be seen in Figure 2.5c where a DMC
is used on a part of metal and on glass in Figure 2.5d.
The decision about what type of marking method to use depends not only on

the type of material and its composition, but also on factors like the operating
environment4, the production volume and the space available for marking.
The decoding of barcodes in DPMI applications is much more challenging compared

to printed barcodes. This is due to several reasons of which the most important are:

1. The appearance of the 2D barcode’s modules changes. In the case of dot peening
or milling, a one-module is represented by a round shape instead of a square.
This shape varies depending on the quality of the marker and the consistency of
the material. Furthermore, an untouched surface in the region of the barcode
stands for a zero-module. So the appearance of zero-modules may vary as well,
depending on the materials surface.

2. The required illumination to increase the contrast between the one-modules and
the zero-modules. The appearance of the modules may also be influenced by
the illumination setting. If the light conditions are not exactly the same for all
modules for example, the shapes of the modules as well as the contrast varies.

4The environment in which the part will be used also considering the part’s life time.
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(a) Dot peening machine5 (b) Dot peened DMC5

(c) Marked part (d) DMC on glass6

Figure 2.5: Examples for DPMI applications.

Several international standards have been set up in order to unify the usage of 2D
barcodes in DPMI applications, and to ensure a certain quality.
The first industry barcode standard was published in 1984 by the Automotive

Industry Action Group (AIAG) in [9]. A current standard of the AIAG referring to
2D barcodes in the context of DPMI applications can be found in [10], which is a
supplement of [11]. Other AIAG standards referring to 2D symbologies in industrial
environments are [12] and [13]. The International Organization for Standardization
(ISO)/International Electrotechnical Commission (IEC) defines barcode print quality
test specifications for 2D symbols in [14]. The United States Department of Defense
(DoD) regulates machine-readable information applications including 2D barcodes
in [15]. The Air Transport Association (ATA) provides a standard for Automatic
identification and data capture (AIDC) in [16]. The standards [17] and [18] have been
published by the Electronic Industry Association (EIA). The National Aeronautics and
Space Administration (NASA) and the International Aerospace Quality Group (IAQG)
published standards only considering DMCs in [19], [20] and [21], respectively.
Motivated by the inherently difficult conditions in industrial environments, this

thesis provides a robust 2D barcode for DPMI applications (see Section 1.2).

5Picture published with kind permission of Markator, http://markator.de/.
6Picture published with kind permission of Vesdo, http://www.vesdo.com/.
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Chapter 3

Channel-models

To understand what a channel-model is and what it is used for, it is useful to have a
look at the principle of a digital communication system. Figure 3.1 is derived from the
framework that Claude Shannon introduced in [22], and depicts the main important
parts involved in a digital communication system.

Source Source
encoder

Channel
encoder Modulator

Channel

Sink
Source
decoder

Channel
decoder

Demodulator

Figure 3.1: Principle of a digital communication system.

1. Source
The Source is represented by binary information.

2. Source encoder
A source encoder enables a compression of the source. This means that the
amount of binary information is reduced by removing redundant information. The
information word that consists of k bits is then passed to the channel encoder.

3. Channel encoder
A channel encoder then adds m bits of redundant information and outputs a
codeword of length n = k + m. This is done according to the established
channel-code’s underlying scheme that is also known to the appropriate channel
decoder.

4. Modulator
A modulator converts the code bits into a signal that is appropriate for the
following channel.
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5. Channel
The channel is the physical medium that is used to transmit the signal from the
modulator to the demodulator. The original signal sent from the modulator is
thereby subject to noise.

6. Demodulator
The demodulator reverses the conversion of the modulator in order to pass the
codeword to the channel decoder. The codeword can thereby either consist of
bits or soft-decisions (SDs), where a SD is the probability of a bit to be a zero or
a one (see Section 3.6 for more details).

7. Channel decoder
The channel decoder estimates the original binary information that was passed to
the channel encoder. It is thereby possible to correct a certain amount of errors
based on the redundant part of the codeword and the knowledge of the channel
coding scheme. So the m redundant bits added by the channel-encoder protect
the k information bits against errors that may occur due to the channel’s noise.
Each code bit thereby carries the information of R = k/n information bits where
R is called the code rate.

8. Source decoder
The Source decoder recovers the original digital information, i.e. it adds the
redundant part removed by the source encoder. In the case of a lossy source
encoding (e.g. MP31), it approximates the source sequence.

As the name suggests, a channel-model is a model that represents the channel. A
channel-model is, for example, used to choose, design and construct an appropriate
channel-code for the usage with a channel that is approximated by the channel-model.
During this process, the decoding performance of a specific code can be evaluated by
means of a simulation that is based on the chosen channel-model (see Section 4.6).
In the following pages, the basics of some channel-models that are important when

considering this thesis are explained.

3.1 Binary symmetric channel

The binary symmetric channel (BSC) is depicted in Figure 3.2 with X and Y being
the channel’s binary input and binary output, respectively. ε represents the crossover
probability P (y = 0 | x = 1) = P (y = 1 | x = 0) = ε. It is the same for both possible
crossovers and hence the channel is called symmetric. The probability for receiving
the value that has been sent is then P (y = 0 | x = 0) = P (y = 1 | x = 1) = 1− ε.

1

X

0

1

Y

0

1− ε

ε

1− ε

ε

Figure 3.2: BSC.

1Actually referred to as moving picture experts group (MPEG)-2 Audio Layer 3
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3.2 Z channel

Contrary to the BSC, the Z channel (Figure 3.3) is asymmetric since the model only
covers a possible flip from a binary one to a zero with probability P (y = 0 | x = 1) = ε.
Thus the probabilities for an input bit to not get flipped is P (y = 1 | x = 1) = 1 − ε and
P (y = 0 | x = 0) = 1. The Z channel is often used for optical communications.

1

X

0

1

Y

0
1

ε

1− ε

Figure 3.3: Z-channel.

3.3 Additive white Gaussian noise channel

In the case of a binary input additive white Gaussian noise (AWGN) channel, white
Gaussian noise z is added to the input value x (see Figure 3.4).

x + y

z ∼ N (0, σ2)

Figure 3.4: AWGN channel.

If a binary phase-shift keying (BPSK) modulation is used with

x′ = −2x+ 1, (3.1)

the received value y is distributed according to

P (y | x′) =
1√

2πσ2
exp

(
− (y − x′)2

2σ2

)
. (3.2)

This can be seen in Figure 3.5 that shows an example of the so called likelihood
functions (the conditional probability density functions (PDFs) of y conditioned on
x′). The abscissa shows the range of values for y where the ordinate represents
the probability for the appropriate y-value.
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−4 −3 −2 −1 0 1 2 3 4
0

0.2
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p(y | x′ = +1)

p(y | x′ = −1)

Figure 3.5: Likelihoods in the case of BPSK modulation and an AWGN channel.

3.4 Markov-modulated channels

So far, only memoryless channels have been presented where a current value received
at the channel’s output is independent of the value received before or after the
current observation. In contrast to that, Markov-modulated channels are channels
with memory. The memory of the channel is modeled by means of channel states.
Figure 3.6 for example, shows a channel with memory based on a set S = {s1, s2} of
two states. Dependent on the current state s = sk that the channel is inside, a sent bit
is affected by one of the two sub-channels represented by the two states. The state
for the next channel use is determined based on the current state and the transition
probabilities between the states. Since a received value is dependent on the current
state which in turn is dependent on the states before, the channel is said to have a
memory. When looking at a Markov-modulated channel from a time perspective, it
yields a hidden Markov model (HMM) [23][24]. The received values y are known,
whereas the channel-states s and the sent bits x are hidden sequences.

s1
Good
channel

s2
Bad
channel

p12

p11

p21

p22

Figure 3.6: 2-state Markov-modulated channel.

In the case of two states, it is common to denote the sub-channel that is worse in
terms of noise as bad channel and the other one as good channel. In the example
in Figure 3.6 and throughout this thesis, the good channel and the bad channel are
represented by state s1 and state s2, respectively. The transition probabilities are often
written in matrix form, which for the 2-state Markov-modulated channel becomes

P =

(
p11 p12
p21 p22

)
(3.3)
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with p11 = 1− p12 and p22 = 1− p21. The average time t1 of the channel-model to be in
the good sub-channel is computed according to

t1 =
p21

p12 + p21
, (3.4)

and t2 by
t2 =

p12
p12 + p21

. (3.5)

3.4.1 Gilbert-Elliott channel

The Gilbert-Elliott channel depicted in Figure 3.7 is a 2-state Markov-modulated
channel with each of the two sub-channels being represented by a BSC (see Figure
3.2). The crossover probability ε1 of the good channel is thereby lower than ε2 of the
bad channel. The concept of the Gilbert-Elliott channel was introduced in [25].

BSC1

(ε1)
BSC2

(ε2)

p12

p11

p21

p22

Figure 3.7: Gilbert-Elliott channel.

3.4.2 Markov-modulated Gaussian channel

When the two sub-channels are represented by AWGN channels, the resulting
channel-model is called Markov-modulated Gaussian channel (MMGC). It is depicted
in Figure 3.8 where σ2 = dσ · σ1 with dσ > 1 and thus σ2

1 < σ2
2.

AWGN1

zi ∼
N (0, σ2

1)

AWGN2

zi ∼
N (0, σ2

2)

p12

p11

p21

p22

Figure 3.8: 2-state Markov-modulated Gaussian channel.

Figure 3.9 shows an example of the likelihood-functions that are conditional PDFs
for the random variable Y (the channel output) conditioned by the channel input X
and the state s = sk (i.e. the sub-channel). The likelihood P (y | x′, s = sk) is computed
by

P (y | x′, s = sk) =
1√

2πσ2
k

exp

(
− (y − x′)2

2σ2
k

)
(3.6)

with s ∈ S = {sk}k={1,2}.
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Figure 3.9: Likelihoods in the case of BPSK modulation and a MMGC.

3.5 Log-likelihood ratio

The log-likelihood ratio (LLR) is a probability measure often used in the context of
soft-decisions (SDs) referring to single bits. It is computed by

L(x) = log

[
P (x = 0 | y)

P (x = 1 | y)

]
(3.7a)

which in the case of BPSK modulation becomes

L(x) = log

[
P (x′ = +1 | y)

P (x′ = −1 | y)

]
(3.7b)

where P (x | y) is called the a posteriori probability2. Following the Bayes’ theorem, it
is computed according to

P (x | y) =
P (y | x) · P (x)

P (y)
. (3.8)

P (y | x) is thereby the likelihood, and P (x) is called the a priori probability. From
Equation (3.7a) and (3.8), it follows

L(x) = log

[
P (x = 0 | y)

P (x = 1 | y)

]
= log

[
P (y | x = 0)

P (y | x = 1)

]
+ log

[
P (x = 0)

P (x = 1)

]
. (3.9)

For the AWGN channel, the LLR computed based on Equation (3.7b) becomes

L(x) = log

 1√
2πσ2

exp
(
− (y−1)2

2σ2

)
1√

2πσ2
exp

(
− (y+1)2

2σ2

)


=−
(

(y − 1)2

2σ2

)
+

(
(y + 1)2

2σ2

)
=

2y

σ2
.

(3.10)

2Wherever log [] is used in this thesis, the natural logarithm is assumed. The notation L(x) is used to simplify
the notation which would actually be L(x | y).

BUPT



3.6. Soft-decision and hard-decision 41

3.6 Soft-decision and hard-decision

Before passed to the channel-decoder, the received values y are either transfered to
SDs or hard-decisions (HDs) depending on the format the decoder expects. Based on
the channel-model, the probabilities for each bit to be a zero or a one are computed.
These probabilities are called SDs since a final decision for the bit to be a zero or a one
has not been made yet. SD decoders often process LLRs that are computed based on
Equation (3.9).
In the case of a HD-based decoder, a decision (HD) for each bit to be a zero or a

one is made before the decoding process starts. In fact, the decision is an estimate x̂
on the originally transmitted bit x, and is based on the probabilities (i.e. the SDs) so
that

x̂ =

{
0 if P (x = 0 | y) > P (x = 1 | y);

1 else
(3.11a)

which for LLRs becomes

x̂ =

{
0 if L(x) > 0;

1 else.
(3.11b)

The decision rule based on Equation (3.11) is known as maximum a posteriori
(MAP), and is based on the a posteriori probabilities (APPs) P (x = 0 | y) and P (x = 1 |
y). However, if the a priori probability P (x) is not known, it is usually assumed that
P (x = 0) = P (x = 1). Hence the last term in Equation (3.9) is zero.

L(x) = log

[
P (x = 0 | y)

P (x = 1 | y)

]
= log

[
P (y | x = 0)

P (y | x = 1)

]
+ log

[
P (x = 0) = 0.5

P (x = 1) = 0.5

]
︸ ︷︷ ︸

=0

= log

[
P (y | x = 0)

P (y | x = 1)

]
.

(3.12)

The decision based on Equation (3.11) and (3.12) is then made by only considering
the likelihoods P (y | x = 0) and P (y | x = 1), and is thus known as maximum likelihood
(ML).
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Chapter 4

Low-density parity-check codes

4.1 Representation of LDPC codes

Low-density parity-check (LDPC) codes are a class of linear block-codes, and belong
to the field of forward error correction (FEC) also referred to as channel-coding. With
the introduction of LDPC codes by Rober Gallager in 1962 [26], a practical counterpart
was found to the Shannon limit defined in 1948 by Claude E. Shannon [22]. He
theoretically derived an upper bound (known as channel capacity) for an error-free
transmission of information through a channel. The concept of LDPC codes then
provided a coding scheme that is asymptotically optimal. This means that the channel
capacity can be reached under the condition of infinite block length. Even though the
capacity approaching LDPC codes have been forgotten for more than 30 years. This
was mainly due to the absence of computer processing power that we have today.
This made these codes impractical at that time.
The first practical coding scheme that provided near Shannon limit performance

was given with the introduction of turbo codes in 1993 by Claude Berrou [27]. Shortly
after that David J. C. MacKay and Radford M. Neal [28] rediscovered LDPC codes in
parallel to Niclas Wiberg [29] in 1995.
Since LDPC codes belong to the class of linear block codes, the following definitions

also hold for any linear block code. The notation thereby follows the approach in [30].
The information sequence of a block-code is segmented into blocks of k symbols where
in the case of a binary code a symbol is represented by one bit. Thus there are 2k

possible messages u = (u0, u1, · · · , uk−1). A message u is then encoded to obtain a
codeword x = (x0, x1, · · · , xn−1) of length n. Since n > k, x includes a redundant part of
m = n− k bits. Based on the redundant bits, it is possible for an appropriate decoder
to correct a certain amount of errors that may occur. The amount of redundancy
determines the code rate R that is defined by

R =
k

n
. (4.1)

An (n, k) block code is defined by the mapping of 2k distinct messages to 2k distinct
codewords. The block code is called linear if the 2k codewords form a k-dimensional
subspace C of the vector space V spanned by all binary n-tuples. Then there exist k
linearly independent codewords g0, g1, · · · , gk−1 in C that together form the basis B of
C. A codeword

x = u0g0 + u1g1 + · · ·+ uk−1gk−1 (4.2)
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is then a linear combination of B. If written in matrix style this becomes

x = u ·G (4.3)

with G being the generator matrix.

G =


g0
g1
...

gk−1

 =


g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1

...
...

. . .
...

gk−1,0 gk−1,1 · · · gk−1,n−1

 (4.4)

G is called the generator matrix since a linear combination of the rows of G with the
information bits in u as coefficients generates a codeword x (see Equation (4.2)).
The null space of C is an m-dimensional subspace C⊥ of V that is also called dual

space or dual code of C. There are m linearly independent codewords h0,h1, · · · ,hm−1

in the basis B⊥ of C⊥. Thus the dual code is a (n,m) linear block code. The generator
matrix for this dual code is then

H =


h0

h1

...
hm−1

 =


h0,0 h0,1 · · · h0,n−1

h1,0 h1,1 · · · h1,n−1

...
...

. . .
...

hm−1,0 hm−1,1 · · · hm−1,n−1

 . (4.5)

In the context of the (n, k) linear block code C, H is called the parity-check matrix
(PCM). Because a codeword in C and a codeword in the dual-code C⊥ are two
orthogonal vectors whose cross-product is zero, G ·HT = O with O being a k × m
all-zero matrix. Thus the code C is also defined by the parity-check equations

x ·HT = 0 (4.6)

with 0 being a all-zero m-tuple. It then follows that

C = {x ∈ V : x ·HT = 0} (4.7)

which enables one to check any combination of n bits for being a valid codeword of
C. In other words, each row vector of H performs a parity-check on a received data
word y. This is where the name PCM comes from.
So a linear block code is specified by two matrices, the generator matrix G and

the PCM H. The encoding is usually done by means of G with Equation (4.3) and the
decoding based on H.
LDPC codes are linear block codes characterized by a low density of non-zero

elements in their PCM. This is where the first part of the name low-density parity-check
(LDPC) code stems from. The second part refers to the m parity-check equations that
H consists of. So one common way to describe a LDPC code is given by means of the
underlying PCM.
There has been some notable exceptions during the 33 years where LDPC codes

were disregarded, namely the work of Margulis [31], Zyablov and Pinsker [32] and
Tanner [33]. The latter introduced an alternative graphical representation of LDPC
codes by means of a bipartite graph called Tanner graph. It consists of n symbol-nodes
and m check-nodes representing the n columns and m rows of the appropriate PCM,
respectively. There are as many edges in the Tanner graph as non-zero entries in the
PCM. In the case of a binary LDPC code, the symbols of a codeword as well as the
entries of a PCM are bits, and thus non-zero entries are in fact one-entries. The edges
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connect the symbol-nodes and check-nodes corresponding to the non-zero entries in
the PCM. Figure 4.1 shows a small example of a PCM, the respective parity-check
equations and the according Tanner graph.



x0 x1 x2 x3 x4 x5 x6 x7 x8

c0 = x0 + x1 + x2 1 1 1 0 0 0 0 0 0
c1 = x3 + x4 + x5 0 0 0 1 1 1 0 0 0
c2 = x6 + x7 + x8 0 0 0 0 0 0 1 1 1
c3 = x2 + x4 + x6 0 0 1 0 1 0 1 0 0
c4 = x0 + x3 + x5 1 0 0 1 0 1 0 0 0
c5 = x1 + x7 + x8 0 1 0 0 0 0 0 1 1


(a) PCM

x0 x1 x2 x3 x4 x5 x6 x7 x8

c0 c1 c2 c3 c4 c5

(b) Tanner graph

Figure 4.1: PCM of a LDPC code and the appropriate Tanner graph.

The number of edges connected to the symbol-nodes (i.e. the column weight of
the PCM) is described by use of a polynomial λ(x) which is called the symbol-node
degree distribution (SNDD).

λ(x) =

dmax
x∑
d>=2

λdx
d. (4.8)

λd is the fraction of symbol-nodes having d adjacent edges with dmaxx being the
maximum number of connected edges. A symbol-node xi with dxi connected edges is
denoted to have degree dxi

1. The check-node degree distribution (CNDD) is given by

ρ(x) =

dmax
c∑
d>=2

ρdx
d. (4.9)

If a pair of degree distributions (for the symbol-nodes and check-nodes) is
represented by monomials, all symbol-nodes and all check-nodes exhibit the same
number of adjacent edges, respectively. Such a LDPC code is called regular LDPC
code. λ(x) = x3 for example, denotes a LDPC code with three adjacent edges for
all symbol-nodes and thus a column-weight of three for all columns. In contrast to
regular LDPC codes, irregular LDPC codes exhibit several row weights and column
weights.

1The variable x of the polynomial that describes the SNDD (or the CNDD) is not to be mistaken for a sent
bit or a symbol-node xi.
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4.2 Ensembles of LDPC codes

In literature, it is common to analyze ensembles of LDPC codes instead of a single
specific LDPC code. Ensembles of LDPC codes are thereby groups of LDPC codes
that share certain properties. One example would be several LDPC codes with the
underlying PCM constructed based on the same SNDD. Although the symbol-nodes
of the different LDPC code share the same number of adjacent edges, they may be
connected to different check-nodes. Speaking in terms of the PCM, the column weight
of the PCMs would be the same, whereas the locations of the ones in H could be
different.
The basis for performance analysis of LDPC code ensembles is given by Richardson

and Urbanke in [34]. They proved that the average performance of LDPC codes of an
ensemble are well approximated by the performance of nearly every individual code
in the ensemble. This is called the concentration theorem which is restricted to long
codes. It is therefore possible to predict the performance of a specific LDPC code based
on the knowledge of the average performance of the appropriate ensemble. This is
shown in [34] and [35]. For the evaluation of the average performance of an LDPC
code ensemble, a method called density evolution is available (see Section 4.5.3).

4.3 Encoding of LDPC codes

A LDPC code is usually created by constructing the underlying PCM. However, one has
to compute the generator matrix G in order to encode an information word. This is
done by putting the PCM into the following shape.

Hm×n =
[
Im×m P T

m×k
]

(4.10)

with I being the identity matrix of size m × m. This is done via a method called
Gaussian reduction [36]. One can then rearrange the matrix to obtain

Gk×n =
[
P k×m Ik×k

]
. (4.11)

A codeword is then computed by means of Equation (4.3). The obtained LDPC code
is called a systematic code, which means that a codeword x contains the information
word u in the last k bits. The codeword is then

x = (p0, p1, · · · , pm−1, u0, u1, · · · , uk−1) . (4.12)

The first m bits are called parity check bits. The encoding based on Equation (4.3) is
of complexity O(N2).
An alternative encoding method with linear complexity O(N) is described in [37].

It is based on a PCM H in an upper-triangular structure.

Hm×n =
[
Hp
m×m Hu

m×k
]

(4.13a)

with

Hp
m×m =


1 hp0,1 · · · hp0,m−1

0 1
...

...
. . .

...
1 hpm−2,m−1

0 · · · 0 1

 . (4.13b)
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The parity check bits p of x are then computed recursively starting from i = m− 1
to i = 0 according to

pi =

m−1∑
j=i+1

hpi,jpj +

k−1∑
j=0

hui,juj , (mod2). (4.14)

This yields a systematic code (see Equation (4.12)).
It is not always necessary to utilize the encoding by means of Equation (4.3) or

(4.14) since one can use the so called all-zero code word (AZCW) in many scenarios.
The AZCW is a n-bit vector with all bits set to zero, and since 0HT = 0, it is a valid
codeword of every linear block code.

4.4 Decoding of LDPC codes

Gallager also provided a decoding algorithm when he introduced LDPC codes [26] that
is nowadays called belief propagation (BP), sum-product (SP) or message-passing
(MP) algorithm. Since MP refers to all kind of algorithms where messages are passed
around in a graph, and SP only reflects the non-logarithmic decoding algorithm that
incorporates sums and products, the term BP is used here. The BP algorithm was
originally developed in 1982 to operate on trees [38], and was then used on general
graphs in 1988 [39]. Concerning LDPC codes, the BP algorithm operates on the Tanner
graph.
The particular characteristic for the decoding of LDPC codes is the iterative behavior

that takes advantage of the so called turbo-principle. The name is taken from the
turbocharger principle of an engine [40]. Similar to the feedback loop by means
of an exhaust system, the LDPC decoder draws on the feedback system based on
an iterative decoding. The special feature is thereby the computation of extrinsic
information exchanged in terms of messages between the two types of nodes in the
Tanner graph. Extrinsic information means that in each iteration, the nodes receive
new information from neighboring nodes. This is possible since a symbol-node of
the Tanner graph (i.e. a symbol of a codeword) is involved in several parity-check
equations.
In the following, the less complex logarithmic variant of the BP algorithm is

described.

4.4.1 Log-domain BP decoder

The BP decoder in the log-domain is comprised of five steps that are explained in the
following.

1st step: Initialization

Before the decoding process starts, the received data word y = (y0, y1, · · · , yn−1) is
processed in order to compute the log-likelihood ratio (LLR) L(xi) for each value yi
according to Equation (3.7). Then the Tanner graph’s symbol-nodes are initialized
with the LLRs, also refered to as soft-decisions (SDs). The symbol-nodes then send
messages to all connected check-nodes containing the initialized SDs. So the message
L(qij), sent from symbol-node xi to check-node cj, is given by

L(qij) = L(xi). (4.15)

The message L(qij), sent from symbol-node xi to a connected check-node cj, contains
the probability for xi to be a zero or a one.
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2nd step: Check-node update

By means of the received messages L(qij), the check-nodes compute messages L(rji)
that they subsequently send to the adjacent symbol-nodes. A message L(rji), sent
from check-node cj to symbol-node xi, is thereby calculated according to

L(rji) =
∏

i′∈Xj\i

αi′j · φ

 ∑
i′∈Xj\i

φ(βi′j)

 (4.16)

with

L(qij) = αijβij ,

αij = sign[L(qij)],

βij = |L(qij)|.

Xj \ i thereby denotes the set of symbol-nodes adjacent to check-node cj, excluding
the symbol-node xi to which the current message will be sent. This way check-node cj
tells symbol-node xi the probability for xi to be a zero or a one, so that the parity-check
equation of cj would be fulfilled, considering the messages arrived at cj from the other
connected symbol-nodes. The φ-function is defined by

φ(x) = − log[tanh(x/2)] = log

[
ex + 1

ex − 1

]
. (4.17)

Figure 4.2 shows the φ-function that can be implemented by using a look-up table.

0 1 2 3 4 5
0

1

2

3

4

5

x

φ
(x

)

Figure 4.2: φ-function.

Figure 4.3 shows an example of a check-node update where a check-node c0 is
depicted together with three connected symbol-nodes. The new message L(r00) is
thereby computed based on the incoming messages L(q10) and L(q20).
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L(
r0

0
)
↑ ↓ L(q10) ↓

L(q
20 )

x0 x1 x2

c0

Figure 4.3: Example for a check-node update.

3rd step: Symbol-node update

The symbol-node update is done by computing new messages to send to the adjacent
check-nodes. The messages are calculated according to

L(qij) = L(xi) +
∑

j′∈Ci\j

L(rj′i). (4.18)

Ci \ j thereby denotes the set of check-nodes adjacent to symbol-node xi, excluding
the check-node cj to which the current message will be sent. So a message L(qij),
sent from xi to cj, contains the probability of xi to be a zero or a one considering the
received value yi as well as the arrived messages of the other connected check-nodes.
The symbol-node update is depicted in the example in Figure 4.4a, where symbol-node
x0 has three connected check-nodes. The updated message L(q00) is then computed
by means of the incoming messages L(r10) and L(r20) as well as based on the SD L(x0)
of the received value y0.

L(q
00 ) ↓ ↑ L(r10) ↑ L

(r2
0
)

c0 c1 c2

x0

L(x0) ↓

(a) Example for a symbol-node update

L(r
00 ) ↑ ↑ L(r10) ↑ L

(r2
0
)

c0 c1 c2

x0

L(x0) ↓ ↑ L(Q0)

(b) Example for a SD computation

Figure 4.4: Example for the computations at a symbol-node.

In this step, new SDs are computed as well. These SDs contain the probabilities
for all symbols to be a zero or a one, and reflect the current state of the decoding
process. In contrast to Equation (4.18), all incoming messages are considered for the
respective symbol-node.

L(Qi) = L(xi) +
∑
j∈Ci

L(rji). (4.19)

This step is visualized in Figure 4.4b.
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4th step: Hard-decision

Based on the SD L(Qi), a decision is made for each symbol to be a zero or a one,
which is called hard-decision (HD). The formula for the HD is

x̂i =

{
0 if L(Qi) > 0;

1 else.
(4.20)

x̂ = (x̂0, x̂1, · · · , x̂n−1) is the current estimation of the sent codeword x.

5th step: Validation

After each decoding-iteration r, the estimated codeword x̂ is checked for being a valid
codeword of the code C. This is done as shown in Algorithm 1 based on Equation (4.6).

Algorithm 1 Validation
1: if x̂HT == 0 then . Valid codeword found
2: Ouput x̂;
3: Terminate decoding;
4: else
5: if r == rmax then . Decoding failed
6: Output x̂ 6= x;
7: Terminate decoding;
8: else . Continue with next iteration
9: Continue with 2nd step;
10: end if
11: end if

The decoding stops if either a valid codeword is found, or if a predefined number
of iterations rmax has been processed.

4.4.2 MS decoder

The min-sum (MS) algorithm [41] is a famous example for a low-complexity variant
of the BP decoder. The complexity when computing the check-node update (2nd step
in Section 4.4.1) is thereby reduced to the cost of some loss in performance.
The five steps for the MS decoder are exactly the same as for the BP decoder in

Section 4.4.1 except for the 2nd step. This step changes to

L(rji) =
∏

i′∈Xj\i

αi′j · min
i′∈Xj\i

βi′j . (4.21)

The reason for that is the assumption that the smallest βi′j in the sum of Equation
(4.16) dominates, and thus the following approximation is done.

φ

 ∑
i′∈Xj\i

φ (βi′j)

 ' φ(φ( min
i′∈Xj\i

βi′j

))
. (4.22)

Next to the advantage of a lower complexity, another convenient fact is that in the
case of an additive white Gaussian noise (AWGN) channel there is no need to compute
the LLR according to Equation (3.10). Instead one can just take the received value yi
so that
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L(xi) = yi. (4.23)

Hence an estimation of the variance σ2 of the Gaussian noise is not necessary anymore.

4.4.3 MSc decoder

Another approximation of the BP decoder in Section 4.4.1 is given by the MS algorithm
including a correction factor cf . The check-node update is similar to the one of the
MS decoder in Section 4.4.2, except that it adds a correction factor each time a
min-operation of two LLRs is processed. The correction factor cf is thereby dependent
on the absolute values of the two LLRs. Thus a nested computation is required if more
than two incoming messages have to be considered. This is described in Algorithm
2 by means of a temporary variable tmp. i′0, · · · , i′dcj−2 thereby indicate the incoming
messages excluding the message from xi to which the new message will be sent. dcj is
the degree of check-node cj i.e. the number of connected symbol-nodes to check-node
cj.

Algorithm 2 Check-node update
1: tmp = L(qi′0j); . Initialize tmp
2: for i′ = i′1 → i′dcj−2 do . Start nested computation
3: tmp = sign [tmp] sign [L(qi′j)] [min (|tmp|, |L(qi′j)|) + c (|tmp|, |L(qi′j)|)];
4: end for
5: L(rji) =tmp; . Assign current message

The correction term is determined by

c(x, y) =


+cf if |x+ y| < 2 and |x− y| > 2|x+ y|;
−cf if |x− y| < 2 and |x+ y| > 2|x− y|;

0 else.
(4.24)

The correction factor cf is usually taken as an argument to maximize the decoding
performance and is typically cf ≈ 0.5 [30].

4.5 Design and construction of LDPC codes

Contrary to most of the other channel-codes, there are various methods available in
order to construct a LDPC code. In general, design techniques exist that yield PCMs
possessing either very little structure or more structure. The advantage of the latter
is the possibility of a lower complexity considering the encoding and decoding.

4.5.1 Cycles and girth

The decoding performance of a LDPC code is highly dependent on the cycles a code
exhibits. A cycle is a closed path of consecutive edges in the Tanner graph that
connects a node with itself. The number of involved edges defines the length of a cycle.
The shortest possible cycle is a 4-cycle that involves four edges. This is equivalent to
two columns in the PCM having two rows with ones in common. For each symbol-node
xi in a Tanner graph, the length of the shortest cycle passing through this symbol-node
is denoted as local girth gxi . Global girth g is defined by the length of the shortest
cycle that exists in a Tanner graph.
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g = min
i
gxi . (4.25)

Especially short cycles (and thus a low global girth) have a harmful impact on
the decoding performance. The reason for that is explained in the following. If one
iteration of the BP algorithm in Section 4.4.1 (or an approximation of it) has been
processed, the symbol-nodes received extrinsic information from other symbol-nodes
that share the same parity-checks (i.e. that are connected to the same check-nodes).
If a valid codeword has not been found yet, another iteration will be examined (see
Algorithm 1). During the second iteration, the symbol-nodes receive new information
(extrinsic information) that has covered a distance of four edges and hence passed
two check-nodes. This way a symbol-node can improve and refine its estimate about
being a one or a zero based on the information of symbol-nodes that are four edges
away. This means that the "information reach" of a symbol-node is extended by two
edges with each iteration.
In the case of a cycle in the Tanner graph, a symbol-node is affected by its

own message sent a few iterations before. This decreases the amount of extrinsic
information and degrades the decoding performance in case of erroneous estimates.
Due to the information reach doubling with processed iterations, such a feedback loop
would take effect after gxi/2 iterations. This means that the higher the global girth g
of a LDPC code, the more decoding iterations can be processed without the degrading
feedback loop effect.
Due to the harmful impact of short cycles on the decoding performance, one

obvious target when designing a LDPC code is to maximize the global girth. This
is, for example, done by using the progressive-edge-growth (PEG) algorithm. At least
the row-column (RC) constraint is usually considered when constructing a LDPC code.
It claims that neither two rows nor two columns shall have more than one position in
common that contains a one.

4.5.2 Computer-based design, finite-geometry codes and codes
based on finite fields

The original LDPC codes developed by Gallager [26], also called Gallager-codes, are
constructed by means of a computer-based design. The same is true for the codes
proposed by MacKay and Neal in 1995 [28]. Both of these constructions yield PCMs
with very little structure. More structure is possible based on the PEG algorithm
introduced in [37] and the approximate cycle EMD (ACE) algorithm2 proposed in [42]
that both optimize properties of the resulting Tanner graph. Other computer-based
designs that yield more structured LDPC codes include protograph-based constructions
[43], accumulator-based methods, as well as generalized LDPC codes [33] [44]. A
class of accumulator-based LDPC codes called irregular repeat-accumulate (IRA) LDPC
codes can be found in the digital video broadcasting - satellite - second generation
(DVB-S2) standard in [45].
Another sort of design approach is based on finite mathematics. Finite geometry

(FG) LDPC codes, for example, are codes constructed by means of Euclidean or
projective geometries. The first type of these codes was introduced in 2000 [46].
They are often used in conjunction with HD-based bit-flipping (BF) decoders [26] due
to the effective trade-off between decoding performance, complexity and speed [47].
FG LDPC codes, as well as LDPC codes constructed based on finite fields often lead to

2Extrinsic message degree (EMD).

BUPT



4.5. Design and construction of LDPC codes 53

cyclic or quasi-cyclic (QC) codes where the PCM consists of sparse circulants. They
enable the use of shift-registers for encoding with linear complexity [48].
Some construction methods, like the PEG algorithm, are initialized by the degree

distributions (the SNDD and/or the CNDD, see Section 4.1). In such a case, the design
is divided into two subsequent steps: the design of the degree distributions and based
on that the construction of the PCM. In the case of the PEG method that is used later
in this thesis, only the SNDD is required and subject to optimization.

4.5.3 Density evolution

One well-known tool that is available for the design of degree distributions is density
evolution. By means of density evolution, it is possible to compute the performance
of cycle-free codes for a given signal-to-noise ratio (SNR). This is done based on the
messages passed around during the iterative decoding. The messages are thereby
modeled as random variables, and the density evolution algorithm evaluates the
evolution of the variable’s probability density functions (PDFs), considering a specific
channel. Since long LDPC codes can be viewed as being cycle-free, density evolution
can be used to compute the average performance of a LDPC code ensemble. Based
on the concentration theorem (see Section 4.2), it is possible to infer from the
average performance of the LDPC code ensemble the performance of a LDPC code
constructed based on the ensembles degree distributions. The possibility of designing
good irregular LDPC codes based on density evolution is shown in [49] and [50].
Although density evolution yields very good results in lots of cases, the assumption

of a cycle-free code gives rise to the suspicion that density evolution is not a suitable
tool for the design of LDPC codes with short block length. This is due to the fact
that the shorter the LDPC code, the more cycles occur. In addition, for short LDPC
codes the length of the cycles is short with respect to the decoding iterations required
on average, which leads to a harmful impact on the decoding performance. The gap
between the real performance of a LDPC code and the predicted performance based
on density-evolution is inversely proportional with the block length [51]. Furthermore,
the concentration theorem does not hold for short LDPC codes as shown in [52].
Another tool for determining the performance of a LDPC code ensemble is given

by extrinsic-information-transfer (EXIT) charts. It is based on the same principal as
density evolution. An EXIT chart provides a graphical interpretation of the extrinsic
information exchanged by the symbol-nodes and check-nodes during the iterative
decoding [53].
More details about density evolution, EXIT charts and other techniques can be

found in [30], [54] and [55].

4.5.4 Progressive-edge-growth (PEG) algorithm

The PEG algorithm is an optimization procedure by which the global girth g of a LDPC
code is optimized. The algorithm is initialized by the SNDD, the block length n and the
code rate R. It was developed by Hu, Eleftheriou and Arnold in 2005 [37]. The name is
derived from the characteristics of the algorithm that causes a Tanner graph to grow by
adding one edge after the other until the Tanner graph is completed. If it is unavoidable
that a cycle arises when connecting a check-node cj to a symbol-node xi by means
of an edge edge(xi, cj), the length of the resulting cycle is maximized. Considering
this for all edge-placements, the local girth gxi is maximized for all symbol-nodes and
resulting from Equation (4.25) the global girth is maximized as well.
Before the algorithm can start, one has to know how many check-nodes to connect

to each symbol-node. By multiplying the coefficients λd of the SNDD (see Equation
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(4.8)) by the block length n, the number of symbol-nodes that have d adjacent edges
is obtained. The number of edges connected to a symbol-node xi is then denoted as
the degree dxi of xi. The degree sequence Dx = {dx0 , dx1 , · · · , dxn−1} then contains the
degrees of all symbol-nodes, and is sorted so that dx0 ≤ dx1 ≤ · · · ≤ dxn−1 . The number
of check-nodes is determined by means of the code rate R and Equation (4.1). The
PEG algorithm starts with x0 and connects dx0 edges to x0, then continues with x1 and
so on.

The length of a resulting cycle that may occur is thereby dependent on the decision
which check-node cj to connect to the current symbol-node xi. The longer the
shortest path connecting xi with cj is, the longer the resulting cycle will be. Thus
the check-node with the greatest distance d(xi, cj) (in terms of edges) to xi is chosen.
This is done based on a tree that can be considered as an unfolding of the current
Tanner graph.

Such a tree (in the following called PEG-tree) is constructed with xi being the root
of the tree (layer l = 0). Then all neighboring check-nodes that are connected to xi in
the Tanner graph are added to the next layer l = 1 and connected to the root. The next
step is to start from each node in the bottom layer and follow the edges from these
nodes in the Tanner graph to their neighboring nodes. If the neighboring nodes have
not yet been added to the tree, they are added to a new layer at the bottom. This
step is repeated until there are no more nodes that can be connected to the PEG-tree.
The distance between the root node xi and a check-node cj is then d(xi, cj) = lcj with
lcj being the layer of the PEG-tree in which cj can be found. Figure 4.5b shows a
PEG-tree that was constructed based on the Tanner graph in Figure 4.5a with x0 being
the root of the PEG-tree.

Taking the example in Figure 4.5, one should choose check-node c2 in case another
check-node might be connected to x0. This is because c2 has the maximum distance
d(x0, c2) = 5 to x0.

The PEG algorithm is shown in Algorithm 3. dminc is thereby the minimum
check-node degree (adjacent edges to a check-node) in the current Tanner graph.
If there is a check-node, that has not been connected to any symbol-node so far then
dminc = 0. Sdmin

c
is the set of check-nodes that have the same number dminc of adjacent

edges. dminc (l) denotes the minimum check-node degree of the check-nodes that are
part of layer l of the PEG-tree. Thus dminc (lmax) denotes dminc only considering the
check-nodes in the bottom layer l = lmax. The set of check-nodes in layer lmax that
share degree dminc (lmax) form the set Sdmin

c (lmax). The set of edges connected to a
symbol-node xi is denoted as Exi , with Ekxi being the k

th edge connected to xi.

To enable linear time encoding, one has to construct the PCM according to Equation
(4.13). To construct the sub matrix Hp

m×m (Equation (4.13b)), Algorithm 4 is utilized.
The second sub matrix Hu

m×k in Equation (4.13a) is then constructed by means of
Algorithm 3, initialized with i = m.
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Figure 4.5: Creation of a PEG-tree out of a Tanner graph with x0 being the root of the tree.

Algorithm 4 PEG algorithm for Hp
m×m (see Equation (4.13b))

1: for i = 0→ m− 1 do . Consider the first m symbol-nodes
2: for k = 0→ dxi − 1 do . Connect dxi edges to xi
3: if k == 0 then . 1st edge is part of the diagonal
4: E0xi ← edge(xi, ci);
5: else
6: if k == 1 then . 2nd edge is part of a zigzag pattern
7: E1xi ← edge(xi, ci+1);
8: else . Choose check-node from bottom layer of the PEG-tree
9: Build PEG-tree;
10: Ekxi ← edge(xi, cj) with cj ∈ Sdmin

c (lmax);
11: end if
12: end if
13: end for
14: end for
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Algorithm 3 PEG algorithm
1: for i = 0→ n− 1 do . Consider n symbol-nodes
2: for k = 0→ dxi − 1 do . Connect dxi edges to xi
3: if k == 0 then . 1st edge to connect to xi
4: E0xi ← edge(xi, cj) with cj ∈ Sdmin

c
;

5: else
6: if dminc == 0 then . Still unconnected check-nodes
7: Ekxi ← edge(xi, cj) with cj ∈ Sdmin

c
;

8: else . Choose check-node from bottom layer of the PEG-tree
9: Build PEG-tree;
10: Ekxi ← edge(xi, cj) with cj ∈ Sdmin

c (lmax);
11: end if
12: end if
13: end for
14: end for

4.6 Evaluation of LDPC codes

To evaluate the decoding performance of a specific LDPC code, a simulation is
processed. This is done by means of a LDPC encoder, a desired channel-model
and a LDPC decoder. The LDPC encoder is only necessary with an asymmetric
channel-model, otherwise one can skip the encoding by using the AZCW which is
always valid for linear block codes. Figure 4.6 depicts a simulation where the AZCW,
an AWGN channel and the log-domain BP decoder of Section 4.4.1 are used.

Encoder/AZCW Channel-model Soft-Decisions Decoder Evaluation

x = {0, · · · , 0}
BPSK−−−→

x′ = {1, · · · , 1}

AWGN⊕ log
[
P (x′=+1|y)
P (x′=−1|y)

] Log-BP
decoder

WER
BER

z ∼ N (0, σ2)

x′ y L(x) x̂

Figure 4.6: Simulation in order to evaluate a LDPC code.

For most of the simulations in this thesis, a binary phase-shift keying (BPSK)
modulation is utilized according to Equation (3.1). The channel-model is chosen with
respect to the real channel that the LDPC code has to face considering the desired
application. In the case of SD decoding, the LLRs are then computed based on the
channel-output y according to Equation (3.9). Then the desired LDPC decoder is
applied that outputs the estimated codeword x̂. The decoding performance is then
measured by computing the bit error ratio (BER) and the word error ratio (WER). The
BER counts the bit errors relative to the total number of bits in the code word and is
computed by Equation (4.26). The bit errors eb are computed by

eb =

n−1∑
i=0

(xi + x̂i(mod2)). (4.26a)
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Due to the random characteristic of the channel-model’s noise, a simulation is
repeated rmax times and the total bit errors are calculated by

etotalb =

rmax∑
r=1

erb . (4.26b)

Then an average BER is computed according to

BER =
etotalb

n · rmax
(4.26c)

with n being the number of bits in a code word. The WER counts the number of code
word errors (unsuccessful decodings) relative to the total number of decodings (see
Algorithm 5).

Algorithm 5 WER computation
1: ew = 0;
2: for r = 1→ rmax do
3: if erb then . if there is at least one bit error
4: ew = ew + 1 . increment the word errors
5: end if
6: end for
7: etotalw = ew; . total number of word-errors
8: WER = etotalw /rmax;

A typical BER and WER curve is obtained by running several simulations for several
SNRs, respectively. Considering channel-coding, the SNR is usually expressed by
Eb/N0. Eb is the energy per information bit and is computed by

Eb =
E
[
x′2i
]

R
(4.27)

with E
[
x′2i
]
being the expected value of x′2i . In the case of BPSK modulation, Equation

4.27 yields Eb = 1/R. N0 is the spectral noise density that for the AWGN is calculated
according to

N0 = 2σ2. (4.28)

The variance σ2 of a AWGN channel is then computed depending on the Eb/N0 value
in dB following from Equation (4.27) and (4.28) by

σ2 =
1

10((Eb/N0|dB)/10) · 2R
. (4.29)
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In the case of a Markov-modulated Gaussian channel (MMGC), the variance
computed by Equation (4.29) represents the average variance of the involved
sub-channels. The variances of the several AWGN channels are then obtained based
on the time that the channel-model is in the according states representing the
sub-channels. For a 2-state MMGC, the times are computed based on Equation (3.4)
and (3.5). The two standard deviations σ1 and σ2 are then calculated according to

σ1 =

√
σ2

t1 + t2d2σ
(4.30)

and

σ2 = dσ · σ1. (4.31)

When the variance in the case of an AWGN channel or the two sub-variances in the
case of a MMGC are calculated, the noise can be added to the code word according to
the appropriate channel-model. For representing the results of a simulation, one can
then take advantage of the knowledge of the sent code word in order to compute the
real variance produced by the applied channel-model. Based on Equation (4.29), one
can then compute the Eb/N0|dB value to plot the determined BER and WER over the
correct SNR values.
For all simulations conducted for this thesis, a minimum of etotalb = 200 bit errors

and a minimum of etotalw = 100 word errors was ensured. This is especially important
for higher Eb/N0|dB values with very low BERs and WERs. Every BER and WER
computation is based on a minimum of rmax = 104 repetitions.
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Chapter 5

Design of short irregular LDPC codes

In Section 4.5 a brief overview of common design and construction methods for
irregular low-density parity-check (LDPC) codes is given. They mainly differ in the
amount of structure of the constructed parity-check matrix (PCM) that defines the
LDPC code. As already mentioned in Section 4.5.3, the design of LDPC codes with
short block length is not comparable to the design of LDPC codes in general. This is
mainly due to the fact that for short LDPC codes more cycles occur that are short with
respect to the required decoding iterations.
When considering the application of LDPC codes on two dimensional (2D) barcodes,

one has to deal with very short block length. The smallest Data Matrix code (DMC)
according to standard [4] for example has a data region of size 8 × 8 in which a
codeword of maximum length n = 64 would fit. However, due to the required amount
of information to be encoded, greater sizes are used in most scenarios. These sizes
are still very small in terms of the resulting LDPC code’s block length. Another point to
consider is the flexibility in terms of the code rate R, depending on the desired security
level of the 2D barcode. Furthermore, the length of the LDPC code is dependent on
the size of the 2D barcode’s data region. Thus a design method has to be chosen that
is suitable for short length LDPC codes, and that provides the possibility of defining
the block length as well as the code rate.
In [37] the authors prove the effectiveness of the progressive-edge-growth (PEG)

algorithm for the PCM construction considering short LDPC codes. In conjunction
with an optimal symbol-node degree distribution (SNDD), their PEG method yields the
best short LDPC codes at the time of their publication. The PEG optimization that is
described in Section 4.5.4 has been chosen in the context of this thesis due to its
effectiveness for short block length LDPC codes, and due to the fact that based on a
given SNDD a LDPC code can be constructed for any block length and code rate.
Since the design of the pair of degree distributions (the SNDD and the check-node

degree distribution (CNDD)) based on density evolution is not suitable for short LDPC
codes (see Section 4.5.3), the authors in [37] propose a design using a simplified
version of the downhill simplex (DHS) algorithm. The DHS algorithm is also known
as Nelder-Mead algorithm with Nelder and Mead being the authors that first proposed
the search method for multidimensional unconstrained nonlinear problems [56]. This
direct search method involves direct evaluations of the function itself, and is therefore
suitable in cases where derivations of the function are not computable. In [37] a
reduced version of the DHS algorithm is used in order to design the SNDD which is
then utilized to construct the PCM by means of the PEG algorithm.
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60 Chapter 5. Design of short irregular LDPC codes

5.1 Downhill simplex based design

In this section, a design method for irregular LDPC codes is developed that is based
on the functionality that only the complete DHS algorithm provides. The development
is done in order to design short irregular LDPC codes that have a lower error-rate than
the codes designed by means of well tried optimization methods, like the one in [37].
The developed algorithm is based on a simplex

Λ = {λ1,λ2, · · · ,λN ,λN+1} (5.1)

that moves through a N-dimensional space RN . For the sake of simplicity, Equation
(4.8) is rewritten to start the sum from j = 1.

λ(x) =

N∑
j=1

λjx
dj (5.2)

with {dj}Nj=1 = {2, 3, · · · , dmaxx } and N = dmaxx −1. So the symbol-nodes have at least d1 =
2 connected edges and a maximum of dN = N+1 adjacent edges. Each vertex λi in the
simplex Λ represents a unique SNDD, and thus consists of N values {λi,j}Nj=1 referring
to the fractions of symbol-nodes having dj adjacent edges. During the code-design
process, the vertices are constantly sorted according to their function evaluations so
that

f(λ1) ≤ f(λ2) ≤ · · · ≤ f(λN ) ≤ f(λN+1). (5.3)

The function evaluation is thereby represented by the computation of the word error
ratio (WER) (see Section 5.1.2). λ1 is then called the best vertex and λN+1 the worst
vertex. The iterative algorithm always tries to replace the worst vertex by a better
one. The search for a better vertex is done based on an operation called Reflection
which is computed by

λr = λ̄
′
+ α(λ̄

′ − λN+1). (5.4)

α is usually set to α = 1 and λ̄′ is the centroid of the simplex on which the worst vertex
is reflected. It is computed without considering the worst vertex according to

λ̄
′

=
1

N

N∑
i=1

λi. (5.5)

In contrast to [37], where only the reflection operation is used, one of the following
four operations is processed, depending on the WER f(λr) of the reflected vertex λr.
Outward Contraction:

λoc = λ̄
′
+ β(λ̄

′ − λN+1); (β = 0.5) (5.6)

Reduction:

λinew = λ1 + σ(λi − λ1) ∀i \ 1; (σ = 0.5) (5.7)

Inward Contraction:

λic = λN+1 + β(λ̄
′ − λN+1); (β = 0.5) (5.8)

The computation of the Expansion operation is based on Equation (5.6) with β = 2.
The chart in Figure 5.1 visualizes the whole DHS algorithm, and shows when to use
which operation.
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After the worst vertex is replaced, a termination criterion is checked. It has been
defined as a threshold for the average distance rav of the vertices to the centroid of
the simplex λ̄.

rav =
1

N + 1

N+1∑
i=1

√√√√ N∑
j=1

(λi,j − λ̄j)2. (5.9)

λi,j denotes the value of the vertex λi in the j−th dimension. In contrast to Equation
(5.5), the centroid λ̄ of the whole simplex is computed considering the worst vertex
as well according to

λ̄ =
1

N + 1

N+1∑
i=1

λi. (5.10)

If the termination criterion does not hold, the process continues by entering the next
iteration that starts with the Reflection again. So the range of the N coefficients
in Equation (5.2) spans a N-dimensional space RN . For all possible points in RN ,
there exist WER-values in the N + 1-th dimension that form a surface on which the
simplex moves towards a minimum. This is only true if the following constraints are
not considered.

5.1.1 Constraints

The SNDD optimization is constrained by

N∑
j=1

λj = 1. (5.11)

From Equation (5.11) it follows

0 < λj < 1 ∀j \N, (5.12)

which is the first inequality constraint. During the optimization, the N−th parameter
is computed by

λN = 1−
N−1∑
j=1

λj . (5.13)

The second inequality constraint follows from Equation (5.11) and (5.13) according to

0 <

N−1∑
j=1

λj < 1. (5.14)
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To adapt the DHS optimization to the constrained design of SNDDs, we use
Algorithm 6 and 7. The first constraint of Equation (5.12) is respected by use of
the procedure in Algorithm 6 every time a new vertex is computed.

Algorithm 6 Ensure 1st constraint

1: procedure EnsureConstraint1(λj)
2: while λj ≥ 1 do
3: λj = λj − δ . δ = 10−5

4: end while
5: return λj
6: end procedure

The procedure in Algorithm 7 ensures to respect the second constraint of Equation
(5.14).

Algorithm 7 Ensure 2nd constraint

1: procedure EnsureConstraint2(λa,λb)
2: while

∑N−1
j=1 λa,j ≥ 1 do

3: λanew = λa+λb
2

4: for all j \N do
5: EnsureConstraint1(λj)
6: end for
7: end while
8: return λanew

9: end procedure

Depending on the currently processed operation, the following assignments are
made to the pair of vertices (λa,λb):

(λa,λb) =



(λr, λ̄
′
) for Reflection;

(λe, λ̄
′
) for Expansion;

(λoc, λ̄
′
) for OutwardContraction;

(λic,λN+1) for InwardContraction;

(λinew ,λ1) for Reduction.

(5.15)

Due to the constraints the possible combination of the coefficients is limited. This
can be seen in the example in Figure 5.2 that shows the 3-dimensional space spanned
by the two coefficients λ1 and λ2. Without considering the constraints, their would be
a function evaluation f (λ1, λ2) for each possible combination of λ1 and λ2 represented
by the surface in Figure 5.2. Due to the constraints, the surface reduces to a line
which is drawn in red in the example. An example of a valid simplex is added in black.
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Figure 5.2: Example of a downhill simplex based design with dmaxx = 3.

5.1.2 Function evaluations

Each time the simplex changes, the vertices are sorted according to Equation (5.3).
This is done based on the function evaluations for each of the vertices. In the context
of SNDD-optimization the function evaluation is represented by the computation of the
WER. Based on the SNDD of a vertex, a PCM is created, which is done using the PEG
algorithm (see Section 4.5.4). Then a simulation of the resulting LDPC code follows as
explained in Section 4.6. The decoder is thereby chosen depending on the appropriate
channel that the LDPC code is designed for.

5.1.3 Optimization process

There is no loss in computation time compared to [37], despite all the operations of
the DHS algorithm. Quite the contrary, computation time per optimization round is
gained by only using N + 1 vertices instead of 2(N − 1) vertices as in [37].
Due to the nature of the direct search mechanism, the minimum to which the DHS

algorithm converges is not necessarily a global minimum. For that reason, the process
explained in Algorithm 8 is utilized in order to increase the probability of a convergence
to the global minimum.

Algorithm 8 Optimization process
1: r = 1
2: while r < 10 do . 9 repetitions
3: create initial simplex;
4: apply constrained DHS-algorithm;
5: store λrbest;
6: r = r + 1;
7: end while
8: create initial simplex including {λ1

best, ...,λ
9
best};

9: apply constrained DHS-algorithm;
10: return λ10

best
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The optimization process showed in Algorithm 8 consists of ten repetitions of the
constrained DHS algorithm. This means that an initial simplex is created ten times.

5.1.4 Initializing simplex

For the first round of the optimization process (Algorithm 8), the ith vertex λi =
{λi,1, ..., λi,N} of the simplex Λ = {λ1,λ2, ...,λN ,λN+1} is initialized as follows:

λi,j =


0.5− 1

N
N−1

, ∀i \N + 1, ∀j \ i;
0.5 + 1

N
, j = i;

random[0, bmaxj ] , i = N + 1

(5.16)

with

bmaxj = 1−
j−1∑
l=1

λi,l (5.17)

starting from j = 1. So for the first N vertices, all values are exactly the same except
for one degree respectively (when j = i) to which a bigger value is assigned. For
the last of the N + 1 vertices, all values are created randomly under the restriction
of the constraints in Equation (5.12) and (5.14). The initializations of the next 8
start-simplexes are made based on the following assignment:

λi,j ← random[0, bmaxj ]. (5.18)

The initializing simplex of the last round is then created by including the best
simplexes obtained from all previous optimization rounds. The remaining vertices
are constructed according to Equation (5.18). At the end of the optimization process,
the very best vertex is returned.
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Figure 5.1: Flow-chart of the downhill simplex algorithm.
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5.2 Design results

The developed optimization method is now to be evaluated. For that, it is compared to
the design method in [37], that is based on a simplified version of the DHS algorithm.
It yielded the best short irregular LDPC codes as far as the author of this thesis knows.

In order to compare the optimization method developed in this thesis with the
results in [37], an irregular LDPC code was designed with the same code rate R = 0.5
and block length n = 504 for the additive white Gaussian noise (AWGN) channel as
in [37]. The maximum symbol-node degree was set to dmaxx = 15 as well. The
resulting SNDD was λ(x) = 0.429581x2+0.401542x3+0.000167x4+0.077138x5+0.000098x6+
0.003617x7+0.000853x8+0.064487x9+0.000284x10+0.000286x11+0.003472x12+0.013787x13+
0.00031x14+0.004379x15. The PEG algorithm of Section 4.5.4 was then used to construct
the PCM, and a simulation was performed as explained in Section 4.6. For the
decoding, the min-sum (MS) decoder (see Section 4.4.2) was established.

Figure 5.3 shows the resulting bit error ratio (BER) for the LDPC code designed by
means of the developed design method and for the LDPC code based on the SNDD of
[37].
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Figure 5.3: BER comparison of two rate R = 0.5 irregular PEG-LDPC codes of length n = 504 with
an AWGN channel. The two codes were designed with the method of Hu et al. [37] and the new

design technique developed in this thesis.

When looking at the red curve in Figure 5.3 that refers to the new design method
developed in this thesis, one can see that it is located below the blue curve of Hu et
al. for the entire range of Eb/N0 values. Considering the BER, the new method beats
the reference design technique with up to 0.35 dB.
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The advantage of using the introduced design method can also be seen if computing
the WER. This appears in Figure 5.4. Once again, the error-ratio of the new
optimization technique is lower compared to the results based on the SNDD of [37].
The gain for the WER is thereby up to 0.25 dB.
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Figure 5.4: WER comparison of two rate R = 0.5 irregular PEG-LDPC codes of length n = 504
with an AWGN channel. The two codes were designed with the method of Hu et al. [37] and the

new design technique developed in this thesis.

Thus one can say that the new developed optimization method leads to best results
when considering short irregular LDPC codes.
Another revealing result that is based on a Markov-modulated Gaussian channel

(MMGC) and that proves the effectiveness of the new design method can be found in
Section 6.5.4.
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Chapter 6

Estimation-decoding

Estimation-decoding is a decoding algorithm developed for the decoding of
low-density parity-check (LDPC) codes used with channels with memory like the
Markov-modulated channels described in Section 3.4. In many approaches, a channel
with memory is assumed to be memoryless when using a channel interleaver.
When considering LDPC codes, the random-like connection of symbol-nodes with
check-nodes can be interpreted as a build in interleaver. However, it has been
shown [57] [58] [59] [60] that significant improvement is obtained by use of an
estimation-decoding algorithm that takes the channel’s memory into account.
Most decoding algorithms for LDPC codes like the decoders in Section 4.4 are based

on the LDPC code’s Tanner graph. The estimation-decoding algorithm extends the
decoding by adding a hidden Markov model (HMM) to the Tanner graph, which results
in the so called Markov-LDPC factor graph that can be seen in Figure 6.1. The Tanner
graph, on which the belief propagation (BP) algorithm (or an approximation of it; see
Section 4.4) operates, is then called LDPC subgraph. On the Markov subgraph (the
HMM), a state-estimation is computed by use of the Forward-Backward algorithm that
is similar to the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [61]. This algorithm is
bit-wise connected with the decoding algorithm on the LDPC subgraph to form the
estimation-decoding algorithm.

s0 s1 s2 · · ·

· · ·

· · ·

sn−1 sn

y0 y1 yn−1

x0 x1 xn−1

Interleaver

c1c0 cm−1· · ·

Figure 6.1: Markov-LDPC factor graph.
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So the name estimation-decoding stems from the combined state-estimation on
the Markov subgraph and the decoding on the LDPC subgraph. The messages of
one sector of the Markov-LDPC factor graph in Figure 6.1 are depicted in Figure 6.2.
The computation of the messages is explained in the following considering a 2-state
channel-model as described in Section 3.4.

αi−→
←−
βi

αi+1−−−→
←−−−
βi+1

↑ ζiχi ↓

↑ L(qij)L(rji) ↓

si

yi

si+1

xi

cj

Markov subgraph State-estimation

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

LDPC subgraph Decoding

Figure 6.2: Messages in one sector of the Markov-LDPC factor graph.

6.1 Messages of the LDPC subgraph

The message L(qij) belongs to the LDPC decoder, and is computed based on Equation
(4.18). The message L(rji), sent from check-node cj to symbol-node xi, is calculated
according to Equation (4.16) in the case of the log-domain BP decoder, or by Equation
(4.21) if the min-sum (MS) approximation is used.

6.2 Messages of the Markov subgraph

The forward message αi+1, belonging to the next point in time i+1, is computed based
on the forward message αi according to

αi+1(l) =

2∑
k=1

pklαi(k)
∑

xi∈{0,1}

P (xi | χi)P (yi | xi, si = sk). (6.1)

pkl is thereby one of the four transition probabilities of the transition probability matrix
P in Equation (3.3), and is described by

pkl = P (si+1 = sl | si = sk) (6.2)

where sk and sl are the states at time i and i + 1, respectively. P (yi | xi, si = sk) is
defined by the channel, and is computed by Equation (3.6) for the Markov-modulated
Gaussian channel (MMGC). The backward message βi is computed by means of the
message βi+1 of the next point in time i+ 1 by

βi(k) =

2∑
l=1

pklβi+1(l)
∑

xi∈{0,1}

P (xi | χi)P (yi | xi, si = sk). (6.3)
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At each point in time, there are two α and two β messages referring to the two
states. This can be seen in Figure 6.3 where one sector of the HMM that is represented
by the Markov subgraph can be seen. It can be regarded as an unfolding of two
neighboring state-nodes (e.g.: the state-nodes s1 and s2) and the black squared
channel-node in between in Figure 6.2.
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(21)

si = s1 si+1 = s1

si = s2 si+1 = s2

βi(s1), αi(s1)
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(11) p11
∑
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P (xi | χi)P (yi | xi, si = s1)

(12) p12
∑
xi
P (xi | χi)P (yi | xi, si = s1)

(21) p21
∑
xi
P (xi | χi)P (yi | xi, si = s2)

(22) p22
∑
xi
P (xi | χi)P (yi | xi, si = s2)

Figure 6.3: One sector of the HMM represented by the Markov subgraph.

6.3 The interface messages

The messages χi and ζi together form the interface between the LDPC subgraph and
the Markov subgraph. They provide extrinsic information to the respective counterpart
subgraph. The message χi is equal to the soft-decision (SD) computed by Equation
(4.19). Since it is usually in the log-domain, it has to be transfered to the probabilistic
domain by

P (xi | χi) =

{
1
2

+ 1
2

tanh χi
2

, xi = 0;
1
2
− 1

2
tanh χi

2
, xi = 1.

(6.4)

The channel-message ζ that is passed from the Markov subgraph to the LDPC
subgraph is computed by

ζi = log
P (xi = 0 | αi, βi+1)

P (xi = 1 | αi, βi+1)
(6.5)

with

P (xi | αi, βi+1) =

2∑
k=1

2∑
l=1

P (yi | xi, si = sk)pklαi(k)βi+1(l). (6.6)

For the computation of the messages L(qij), the channel-message ζi is treated like
one more incoming message L(rji).

6.4 New variant of estimation-decoding

In [57] and [59], the authors assumed the transition probabilities pkl of the
corresponding MMGC to be known when applying the estimation-decoding algorithm.
But this is not always the case e.g. in Section 7.3 where a decoder is developed for
LDPC-based 2D barcodes.
In this thesis, a new variant of estimation-decoding is developed that prevents

decoding based on false transition probabilities. This is done by means of a
reestimation method by which the transition probabilities are continually reestimated
in each decoding iteration considering a MMGC.
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6.4.1 Reestimation of the transition probabilities

The newly developed reestimation method is utilized when the transition probability
matrix P is not known. Then one starts with initial values for pkl, and continually
reestimates pkl during the iterative estimation-decoding process. A similar method
was proposed in [58] but only considering a Gilbert-Elliot channel.
The reestimation is based on the Baum-Welch method [62], and can also be derived

from the Expectation-Modification (EM) algorithm [63]. The reestimated transition
probability matrix P̂r is thereby calculated in each iteration r. For the computation of
P̂r+1, which is the reestimation of the previous transition probability matrix P̂r, one
needs to define

γri (k) = P (si = sk | y, P̂r) (6.7a)

which is the probability of being in state sk at time i and in iteration r, given the
received codeword y and P̂r. γri (k) can be calculated by using the messages α and β
of the Forward-Backward algorithm computed by Equation (6.1) and (6.3).

γri (k) =
αri (k)βri (k)∑2
k=1 α

r
i (k)βri (k)

. (6.7b)

Furthermore, it is necessary to compute

ξri (k, l) = P (si = sk, si+1 = sl | y, P̂r) (6.8a)

which is the probability of being in state sk at time i and in state sl at the next point
in time i+ 1, given y and P̂r. This is calculated as follows:

ξri (k, l) =
αri (k)p̂rklβ

r
i+1(l)∑2

l=1 α
r
i+1(l)βri+1(l)

∑
xi∈{0,1}

P (yi | xi, si = sk)P (xi | χi). (6.8b)

The elements p̂r+1
kl of P̂r+1 are then obtained by

p̂r+1
kl =

expected number of transitions from sk to sl in itereration r
expected number of transitions from sk in iteration r

(6.9a)

which is computed based on Equation (6.7b) and (6.8b) according to

p̂r+1
kl =

∑n−1
i=0 ξ

r
i (k, l)∑n−1

i=0 γ
r
i (k)

. (6.9b)

The extended estimation-decoding algorithm that includes the above
reestimation-procedure is called EDEP algorithm in the following, which stands
for estimation-decoding and estimation of the transition-probabilities.

6.4.2 Variance estimation for the decoding on a 2-state MMGC

Although the estimation of σ2 could be avoided due to Equation (4.23) when applying
the MS decoder on the LDPC subgraph, it is necessary to estimate the variance
for the Forward-Backward algorithm that operates on the Markov subgraph. The
computation of α and β (Equation (6.1) and (6.3)) is based on the channel likelihoods
P (yi | xi, si = sk) calculated by Equation (3.6) for which the variances σ2

1 and σ2
2 of the

two sub-channels are required. σ1 and σ2 are derived from the average variance σ2

based on Equation (4.30) and (4.31), respectively. However, the average variance σ2

has to be estimated by means of the received data word y. This is done based on
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σ2
est =

1

nt − 1

[ ∑
yi∈y:yi>1

(yi − 1)2 +
∑

yi∈y:yi<−1

(yi + 1)2
]

(6.10)

with

nt = |{yi ∈ y : yi < −1 ∨ yi > +1}|. (6.11)

So nt represents the number of received values that are greater than 1 or less than −1.
Only these values are used for the unbiased estimation σ2

est of σ2. Figure 6.4 shows
the range for yi that is used for the estimation. This selection is done since for values
of yi for that −1 ≤ yi ≤ 1 is true, the probability of an error when assigning yi to x′i = 1
or x′i = −1 is high. In contrast to that, the probability of a mismatched assignment is
very low for the remaining values of yi .
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p(yi | x′i = +1, si = s1)

p(yi | x′i = −1, si = s1)

p(yi | x′i = +1, si = s2)

p(yi | x′i = −1, si = s2)

yi < −1 yi > +1

Figure 6.4: Distributions of the received values yi. The red marked area is the one considered
for estimating the variance based on the received data word y.

6.5 Analysis and Results

In this analysis, the following points are investigated:

1. The effectiveness of the state-estimation by adding the Markov subgraph to the
Tanner graph.

2. The effectiveness of the new estimation-decoding variant that includes the
reestimation-procedure of the transition probabilities.

3. The behavior of irregular LDPC codes in conjunction with a MMGC and
estimation-decoding.

The channel-model of interest is thereby a MMGC and is parameterized by p12 = 0.3,
p21 = 0.6 and σ2 = 5 · σ1. All LDPC codes that are used for the following tests share the
code rate R = 0.6081 and block length of n = 5762.

1The MMGC and the code rate were chosen for comparison purposes with results of [57] in Section 6.5.4.
2The block length was chosen with respect to the later application of LDPC codes on 2D barcodes with a data

region size of 24× 24 that provides space for 576 bits.
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6.5.1 Effectiveness of the state-estimation

In this section, the effectiveness of adding the Markov subgraph to the Tanner graph
and thus taking the channel’s memory into account, is analyzed. For that, a simulation
according to Section 4.6 is performed with a regular LDPC code. The code words are
disturbed according to the MMGC, and the received data words are then decoded with
two different decoders:

1. The MS decoder of Section 4.4.2 (labeled with MS).

2. The estimation-decoder (that integrates the MS algorithm on the LDPC
subgraph).

(a) Initialized with correct transition probabilities (labeled with EDc).

(b) Initialized with false transition probabilities (labeled with EDf).

The MS decoder wrongly assumes the data word to stem from an additive white
Gaussian noise (AWGN) channel, and thus decodes without any state-estimation.
In contrast to that, the estimation-decoding is based on the correct channel-model.

Since the correct pc12 = 0.3 and pc21 = 0.6 are provided to the estimation-decoder, the
decoder is perfectly matched to the channel-model. This represents an ideal case
which is generally not given, but it reveals the maximum possible gain obtained with
estimation-decoding.
To analyze estimation-decoding in realistic situations (where the correct transition

probabilities are not known) as well, the same simulation is carried out again except
that false transition probabilities pf12 = 0.05 and pf21 = 0.95 are provided to the
estimation-decoder.
The results based on the two decoders can be seen in Figure 6.5. In order to

evaluate the decoding performance, the word error ratio (WER) is computed depending
on the average Eb/N0-values. For each decoding variant, a total of 100 decoding
iterations were performed.
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Figure 6.5: Comparison of the MS decoder with estimation-decoding. The LDPC code was a
regular LDPC code with rate R = 0.608 and block length n = 576.
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The maximum possible gain that can be obtained based on estimation-decoding
can be seen when comparing the curve of the estimation-decoder initialized with the
correct P c (EDc) with the result of the MS decoder (MS). Figure 6.5 proves a gain of
about 0.5 dB when adding the state-estimation to the LDPC decoding.
Particular attention has to be payed to the second estimation-decoding scenario in

which the false transition probabilities have been provided to the decoder (EDf). The
respective results in Figure 6.5 prove that the decoding performance is not only worse
than in the case of the correct transition probabilities, but also worse than in the case
of no state-estimation at all.
Therefore, estimation-decoding should only be used in the case of known

transition probabilities. But this is only true without considering the new variant of
estimation-decoding developed in this thesis.

6.5.2 Effectiveness of the new variant

The target of the following analysis is to prove the advantage of using the new
estimation-decoding variant developed in Section 6.4. For that, a simulation is
conducted with the MMGC and the regular LDPC code as in the Section before (Section
6.5.1). For the decoding, the extended estimation-decoding is used that includes a
continual reestimation of the transition probabilities (EDEP decoder). As in the case of
the decoder labeled with EDf in the former Section, the new variant is initialized with
the false transition probabilities pf12 = 0.05 and pf21 = 0.95. The results of the simulation
are shown in Figure 6.6 (labeled with EDEPf), where the results of Figure 6.5 are
added for comparison purposes.
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Figure 6.6: Comparison of four decoder variants based on different detailed channel information
provided to the decoder. The LDPC code was a regular LDPC code with rate R = 0.608 and block

length n = 576.

When looking at the red (EDEPf) and the blue curve (EDc) in Figure 6.6, one can
see that the decoding performance in the case of unknown transition probabilities is
nearly as good as in the ideal case of known transition probabilities. This is possible by
using the new version of estimation-decoding developed in Section 6.4 that includes
the reestimation of P during the iterative decoding.
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The basis for the success of the reestimation-procedure is the fast convergence of
the reestimated transition probabilities very close to the correct values after only a
few decoding-iterations, especially for higher Eb/N0-values. This can be seen in Figure
6.7.
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Figure 6.7: Reestimation of p21 and p12 during the EDEPf decoding procedure for several Eb/N0

(dB) values.

So estimation-decoding is only as good as the transition probabilities that it is based
on. Since in most cases one does not know the correct P c of the channel, it is advised
to use the new estimation-decoding variant developed in this thesis in order to obtain
the maximum possible gain.

6.5.3 Speed considerations

When evaluating the performance of estimation-decoding, it is also important to have
a look at the decoding speed. Figure 6.8 gives an overview of the time that is needed
for one decoder iteration considering the three reviewed decoder variants of Section
6.5.1 and 6.5.2:

1. MS decoder.

2. Estimation-decoding (EDc and EDf).

3. EDEP decoder (new variant).

With 0.285 milliseconds (ms) per decoding iteration, the MS-algorithm is the least
time-consuming decoder as expected. More computational power is required when
adding the state-estimation to the MS-algorithm (ED) that yields 1.3 ms per iteration.
Only a bit more is used by additionally enabling the reestimation-procedure (EDEP)
where 1.4 ms are used per decoding iteration.
The relation of the time required when using estimation-decoding (ED) to the

time used by the MS-decoder gives a measure of the computational cost of the
state-estimation. This can be seen in Figure 6.9 that shows that 4.54 times more
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Figure 6.8: Time for one decoding iteration considering three investigated decoder variants.

computational power is used when adding the state-estimation. If the reestimation
procedure is used additionally, the factor increases to 4.91 (EDEP/MS). Compared to
the usual estimation-decoding, the new variant developed in this thesis only takes 1.08
more time per iteration.
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Figure 6.9: Extra computational cost for the additional state-estimation (ED/MS), for the
additional reestimation procedure (EDEP/ED) and for the additional state-estimation together

with the reestimation procedure (EDEP/MS).

In Figure 6.10, the WER is plotted over the time for Eb/N0 = 3.5 dB. It can be
seen that up to 17 ms, the MS decoder offers the best decoding-performance i.e.
the lowest number of word errors. After 17 ms, the MS decoder has processed 60
iterations whereas the ED decoder, initialized with the correct transition probabilities
(EDc), has only processed 13 iterations. Despite lagging behind the MS decoder in
terms of iterations, the EDc variant yields better results for more than 17 ms. The
EDEP decoder initialized with the wrong transition probabilities beats the MS decoder
if more than 32 ms are processed. At that time, the MS decoder has already stopped
due to the predefined maximum number of 100 iterations whereas the EDEP decoder
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has processed 23 iterations. Once again, it can be seen that the success of the
EDEP decoder is based on the additional reestimation procedure since without the
reestimation, the results would yield the green curve (EDf), which is the worst no
matter what time is considered.
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Figure 6.10: Decoding performance for different points in time considering four decoding
variants and Eb/N0 = 3.5 dB.

Figure 6.11 shows again the WER for different points in time but for Eb/N0 = 6
dB. When considering this relatively high signal-to-noise ratio (SNR), the decoding
performance of the ideal estimation-decoding with known P and the results for the
developed EDEP decoder are nearly the same for more than 30 MS. After 60 MS of
processing, both decoders beat the decoding performance of the MS decoder.
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Figure 6.11: Decoding performance for different points in time considering four decoding
variants and Eb/N0 = 6 dB.

6.5.4 Estimation-decoding with irregular LDPC codes

So far, only a regular LDPC code has been considered to prove the effectiveness
of using estimation-decoding. In order to check if the advantage when using
estimation-decoding is the same for irregular LDPC codes, another simulation is
performed with two irregular LDPC codes. One irregular LDPC code is designed with
the optimization method developed in Section 5.1 and the other one has been designed
based on density-evolution in [57]. As in the case of the regular LDPC code, the code
rate is R = 0.608 and the block length n = 576 for both codes. The utilized MMGC
with p12 = 0.3 and p21 = 0.6 has been the same again, too. For the decoding, the MS
decoder as well as the EDEP decoder developed in Section 6.4 have been used. The
EDEP decoder is thereby initialized with the false pf12 = 0.05 and pf21 = 0.95. The results
can be seen in Figure 6.12, where the results of the regular LDPC code are added for
comparison purposes.
As in the case of the regular LDPC code, the gain of the EDEP decoder compared

to the MS decoder for the irregular codes is up to 0.5 dB. This proves the advantage of
using estimation-decoding for irregular LDPC codes as well.
Figure 6.12 also reveals another point. The two irregular codes have both been

designed for the same channel-model, and share the same code rate and block length.
The irregular LDPC code designed with the downhill simplex (DHS)-based optimization
developed in this thesis is up to 1.3 dB better than the irregular code designed in [57]
by means of density-evolution. The results based on density-evolution are even worse
than the results for the regular LDPC code. This clearly shows that density-evolution
is not an appropriate tool for the design of short irregular LDPC codes and one should
prefer the design-method developed in this thesis.
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Figure 6.12: Comparison of three rate R = 0.608 LDPC codes of length n = 576 with a MMGC and
decoded with a MS decoder as well as with an estimation-decoder including a reestimation of P
(EDEP). DE stands for the density-evolution design, DHS for the downhill simplex based design

described in Section 5.1 and reg for a regular LDPC code.
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LDPC-based 2D barcodes

The outer appearance of the low-density parity-check (LDPC)-based 2D barcodes
developed in this thesis is similar to that of Data Matrix codes (DMCs) since the
finder pattern that surrounds a DMC has been adopted. Contrary to DMCs, which
use a Reed-Solomon (RS) code [7] to encode the information to be stored in the data
region, a LDPC code is utilized here. Furthermore, only one codeword is used since it
is well known that the decoding performance of LDPC codes increases with the block
length. In the following sections, the two worlds of LDPC codes and 2D barcodes will
be brought together.
In Section 7.1, the design of an interleaver will be explained to place the symbols

of a LDPC codeword into the data region, in order to increase the error-correction
capabilities of the 2D barcode. Section 7.2 addresses the challenge of finding an
appropriate channel-model to represent everything that happens in between the direct
part marker and the LDPC decoder. The channel-model is then used for the decoder,
that is developed in Section 7.3, to decode LDPC-based 2D barcodes. The design of
an irregular LDPC code for 2D barcodes in Section 7.4 is based on the channel-model
as well.

7.1 Symbol-placement

After the desired information has been encoded with a LDPC code, the symbols of
the resulting code word have to be placed in the data region of the 2D barcode.
This is done by means of an interleaver that defines the symbol-placement. For the
construction of the interleaver, an optimization method has been developed in order
to increase the error-correction capabilities of the LDPC-based 2D barcodes.
The downhill simplex (DHS) algorithm, that yielded good results when designing

irregular LDPC codes, can not be adapted to the optimization problem considering the
symbol-placement. This is due to the interdependencies of the parameters that have
to be optimized. These parameters are the possible locations in the 2D barcode’s data
region for the symbols to be placed at. If one wants to place a symbol at a new
location, the symbol that is currently located at that location has to be moved as well.
Because of these interdependencies, the DHS algorithm can not be applied. For that
reason a specific optimization method has been developed.
The basis for the algorithm is the assumption that typical interferences in direct part

mark identification (DPMI) applications (e.g.: dirt, rust, blobs, scratches, unequal
illumination etc.) are burst type errors and thus affect just a local part of the 2D
barcode. This leads to the advice to place symbol-nodes, that are involved in the
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same parity-check equation, as far as possible from each other in the data region of
the 2D barcode. This is due to the fact that for the LDPC decoder it is easier to correct
two faulty symbol-nodes that affect two check-nodes having a long distance to each
other (which means starting from one check-node it takes lots of edges to reach the
other one) than two faulty symbols within the same check-equation.
When considering the message-passing principle of the LDPC decoder, the error

of one faulty symbol that affects a check-node (and thus the other symbol-nodes
adjacent to that check-node) is easily corrected by means of the messages arriving at
the neighboring symbol-nodes from other check-nodes. This can be seen in the small
example in Figure 7.1a, where only symbol-node x2 is influenced by the disturbance.
For simplicity, everything is kept binary in this example, the symbols as well as the
messages. The original codeword is the all-zero code word (AZCW), where all the
bits are set to zero, so x2 is by fault set to one. Everything that is influenced by the
faulty symbol-node x2 in the first decoding iteration is marked with red. According
to the belief propagation (BP) algorithm (see Section 4.4.1), a check-node sends a
message to a connected symbol-node in which he tells him what he should be, so that
the parity-check equation is fulfilled, considering the values of the other connected
symbol-nodes. c0 for example tells the faulty x2 he should be a zero since x0 and x1
are zero and c0 = x0+x1+x2 = 0+0+0 = 0. A hard-decision (HD) is then computed based
on all incoming messages at a symbol-node together with the received codeword. In
the small binary example, the decision if a symbol is a one or a zero is made depending
on the amount of guesses for a symbol to be a one or a zero, respectively. In the case
of x2, there are three messages that guess x2 = 0 and only one guess (the received
bit) for x2 = 1. So the HD would yield x2 = 0 and for the whole code word the AZCW.
Figure 7.1b shows an example for a symbol-placement without the proposed

optimization. In the presented case, x1 would be affected by the disturbance as well
and the decoder would not be able to make a decision after the first iteration. This is
due to the fact, that for x1 and x2 there would be two guesses for the symbols to be a
one and two guesses for being a zero, respectively.
The placement of the code word’s symbols in the data region of the 2D barcode

is constrained by the available grid in the data region and the connections between
the symbol-nodes in the Tanner graph. In order to get an optimal placement, an
optimization algorithm has been developed that considers the constraints and is based
on two parameters.

7.1.1 Distance measurements

7.1.1.1 Geometrical distance

The first is the geometrical distance dE(xa, xb) between two symbol-nodes xa and xb
in the data region of the 2D barcode. For the computation the Euclidean distance is
utilized according to

dE(xa, xb) =
√

(cxa − cxb)2 + (rxa − rxb)2 (7.1)

with c and r being the row and column of the appropriate symbol in the data region,
respectively.

7.1.1.2 Tree distance

The second parameter is the distance between two symbol-nodes xa and xb in the
Tanner graph, and is represented by the shortest path that connects them. A path is
thereby a connection between two nodes by consecutive edges. To find the shortest
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Figure 7.1: Effect of local disturbances with and without optimized symbol-placement
considering LDPC-based 2D barcodes.

path between two symbol-nodes, the progressive-edge-growth (PEG)-trees introduced
in Section 4.5.4 are utilized. The distance between two symbol-nodes in the Tanner
graph is denoted as dT (xa, xb) and is called tree distance in the following. If, for
example, one wants to know the distances that symbol-nodes have to the symbol-node
xa, one constructs the PEG-tree with xa being the root (layer zero). The tree distance
dT (xa, xb) of any symbol-node xb to xa is then determined based on the layer where
xb is located in the PEG-tree. If xb would, for example, be located in layer 4 of the
PEG-tree with xa being the root and thus belonging to layer 0, then the tree-distance
would yield dT (xa, xb) = 4. In Figure 4.5b for example, the tree distance between the
root x0 and x1 would be dT (x0, x1) = 2.

7.1.2 Cost of a symbol-placement

Based on the two distance-measurements dE(xa, xb) and dT (xa, xb), a cost-function is
defined for each pair of symbol-nodes (xa, xb) by

fc(xa, xb) = (dT (xa, xb)− dmaxT )2 · (dE(xa, xb)− dmaxE )2 (7.2)

with dmaxT and dmaxE being the maximum distance dT (xa, xb) in the Tanner graph and
the maximum possible Euclidean distance, respectively. The cost-function is shown in
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Figure 7.2 for a data region of size 24× 24 and dmaxT = 8.
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Figure 7.2: Cost-function for dmaxE = 32.53 (data region of size 24× 24) and dmaxT = 8 (a regular
LDPC code with SND dx = 3).

To get the cost C of a complete symbol-placement of a 2D barCode (2DC), one
computes

C(2DC) =

n−1∑
a=0

n−1∑
b=0

fc(xa, xb); ∀a 6= b (7.3)

where n is the number of symbols in the 2D barcode’s data region.

7.1.3 Optimization of the symbol-placement

The optimization algorithm is depicted in Figure 7.3.
The optimization starts with a random placement of the LDPC codeword’s symbols

in the data region and the computation of the resulting cost C(2DCold) according to
Equation (7.3). Then starting with the first symbol xa = x0 in the codeword, the
Euclidean distances to the remaining symbols are computed with Equation (7.1). The
remaining symbols x1, . . . , xn−1 are then sorted so that

dE(xa, xb0) ≥ dE(xa, xb1) ≥ · · · ≥ dE(xa, xbn−2). (7.4)

So xb0 is the furthermost symbol to xa in the data region of the 2D barcode and
dE(xa, xbn−2) is the closest. The algorithm starts with xb0 , and swaps the position of
the current symbol-node xa = x0 and the one that has the greatest Euclidean distance
to it which is xb0 . Then the cost of the new symbol-placement C(2DCnew) is computed.
If the new cost is lower than the old one (C(2DCnew) < C(2DCold)), the algorithm
keeps the new symbol-placement and continues with the next symbol xa = x1. If the
position-swap of the two symbols xa = x0 and xbk = xb0 did not yield a better cost, the
algorithm continues with the old symbol-placement and swaps xa with xbk = xb1 . The
algorithm terminates if there was no successful swap during a complete round (for
xa = {xend, xend+1, . . . , xn−1, x0, . . . , xend−1}).
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a = 0
k = 0

sort n − 1
symbols so that
dE(xa, xb0) ≥

· · · ≥ dE(xa, xbn−2)

a = a + 1
k = 0

k = k + 1
r(xa) ↔ r(xbk )
c(xa) ↔ c(xbk )

2DCold =
2DCnew

C(2DCnew) <
C(2DCold)

no

yes

r(xbk ) ↔ r(xa)
c(xbk ) ↔ c(xa)

k = n− 1
no yes

Figure 7.3: Flow-chart of the symbol-placement optimization.

Since it is not possible to guarantee the convergence of the algorithm to a global
minimum, the optimization process is repeated at least 10 times with different random
initialization placements.

7.1.4 Optimization results

Figure 7.4 shows the costs of 15 initializing symbol-placements (old cost) and the
appropriate final costs, when optimizing the symbol-placement for a 2D barcode with
a size 24× 24 data region and a rate R = 0.611 regular LDPC code of length n = 576.
It can be seen, that in all cases in Figure 7.4, the minima that have been found

are quite similar. The standard deviation is σ = 16.9, which is small compared to the
absolute value of the cost function that is in the order of magnitude of 104. This can
also be seen in Figure 7.5 where the costs are drawn over successful swaps for all 15
optimization rounds. The effectiveness of the proposed optimized symbol-placement
is analyzed in Section 8.3.
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Figure 7.4: Initial costs (old Cost) and final cost (new Cost) of 15 independent symbol-placement
optimization rounds.
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Figure 7.5: Evolution of the costs for 15 independent symbol-placement optimization processes.
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7.2 Channel-model for 2D barcodes

In contrast to the RS decoder, which is used in the case of the standard DMC, the LDPC
decoder uses soft-decisions (SDs) as an input. As explained in Section 3.6, one keeps
the maximum information related to a symbol when using SDs. The probability of
that symbol being a zero or a one is thereby calculated, instead of making a decision
for a zero or a one as done in the case of HDs. The SDs are computed by means of
a chosen channel-model, and then passed to the LDPC decoder. Thus the decoding
success of the presented LDPC-based 2D barcodes is heavily dependent on the choice
of an appropriate channel-model.
In a common communication scenario, one receives values at the end of a channel.

One can then analyze the received values in order to find a channel-model that
sufficiently represents the real channel (see Chapter 3). In the case of 2D barcodes,
one first has to think of how to get the received data word y out of the 2D barcode
that keeps the sent code word x stored in the shape of modules inside of the data
region. This is done as depicted in Figure 7.6 and is explained in the following

Marked
item

Acquisition Image
processing

SD
computation L(x)

picture y

Figure 7.6: How to get the SDs based on an item marked with a 2D barcode.

7.2.1 Acquisition and image processing

The acquisition is done by means of a camera-based system. All pictures for this thesis
have been taken by use of the system shown in Figure 7.7.

Figure 7.7: The camera-based system for the acquisition of 2D barcodes.

Depending on the marking method and the material marked with a 2D barcode, a
picture is taken in either a bright field or a dark field. In a bright field, the untouched
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surface reflects the employed light back into the camera’s lens, whereas the cavities
that represent a binary one stay dark on the resulting picture. The situation in the
case of a dark field is vice versa. Figure 7.8 shows one example for an acquisition in
a bright field and in a dark field, respectively.

(a) Yellow plastic - bright
field

(b) Brass - dark field

Figure 7.8: Pictures taken of a 2D barcode in a bright field and a dark field, respectively.

In the case of Figure 7.8, the pictures are already cropped perfectly matching the
size of the 2D barcode. This was done since the localization that is part of the image
processing system is the main topic of the cooperative doctoral thesis Optimizarea
recunoas, terii codurilor Data Matrix în mediul industrial1 written by Ion-Cosmin Dita
[64]. Thus the localization of 2D barcodes is not considered in this thesis and a
perfectly cropped picture is assumed.
To obtain the received data word y out of the 2D barcode picture, a

correlation-based method is established. It is based on the DMC’s finder pattern that
has been adopted for the LDPC-based 2D barcodes and that always looks the same
(see Figure 2.4b and 2.4c). For each module in row r and column c of the 2D barcode’s
data region, a correlation coefficient is calculated according to

yrc =

∑K−1
k=0

∑L−1
l=0 (arckl − ārc)(bkl − b̄)√∑K−1

k=0

∑L−1
l=0 (arckl − ārc)2

∑K−1
k=0

∑L−1
l=0 (bkl − b̄)2

(7.5)

with k and l being the indices for the K vertical and L horizontal pixels in each module,
respectively. Considering one module in row r and column c, arckl denotes one pixel in
row k and column l of the module. The mean ārc of the pixels arckl of a module in row
r and column c is computed according to

ārc =
1

K · L

K−1∑
k=0

L−1∑
l=0

arckl . (7.6)

bkl is a pixel in the reference module which is generated based on an averaging of all
modules that belong to the 2D barcode’s finder pattern and represent a binary one.

1In English: Optimized recognition of Data Matrix codes in industrial environments.

BUPT



7.2. Channel-model for 2D barcodes 89

bkl =

one-modules of the L-pattern︷ ︸︸ ︷
1

2

(
1

R− 1

R−1∑
i=1

aklr=i,c=0 +
1

C − 2

C−2∑
i=1

aklr=R−1,c=i

)

+

one-modules of the broken border︷ ︸︸ ︷
1

2

 2

R

R/2−1∑
i=0

aklr=2i+1,c=C−1 +
2

C

C/2−1∑
i=0

aklr=0,c=2i


(7.7)

with R and C being the total number of rows and columns in the 2D barcode. The
mean b̄ of the reference module is then computed by

b̄ =
1

K · L

K−1∑
k=0

L−1∑
l=0

bkl. (7.8)

So in the case of 2D barcodes, a correlation coefficient yrc represents the received
value at the end of the channel referring to the sent value xrc stored in the shape of a
module in row r and column c of the 2D barcode’s data region. Thus, one has to analyze
the distribution of the correlation coefficients in representative decoding situations in
order to find an appropriate channel-model. Based on the utilized channel-model, the
SDs are then computed and subsequently forwarded to the LDPC-decoder.

7.2.2 Channel-model in absence of damages

To find a suitable channel-model for DPMI applications, 2D barcodes have been
milled on different kinds of materials like metal, brass, different colored plastic and
copper. Then pictures were taken in a bright field or a dark field, depending on the
material. Afterwards, the correlation coefficients were computed by means of the
cropped pictures according to Equation (7.5). Based on the knowledge of the 2D
barcode, the correlation coefficients have been separated into two data-sets referring
to one-modules (xrc = 1) and zero-modules (xrc = 0), respectively. For each set
a histogram h

xr,c
κ was computed. For the bright field case, 46 pictures taken of

2D barcodes milled on aluminum, gray plastic and yellow plastic were used. These
materials showed the biggest variance to each other in the resulting histograms. Based
on the histograms for the individual materials, two average histograms were computed
(for the one-modules and zero-modules, respectively) to represent the bright field
case. The histograms can be seen in Table 7.1 where the number of modules is
plotted as a function of the correlation coefficient. The histograms hxr,c=1

κ (for the
one-modules) and h

xr,c=0
κ (for the zero-modules) are marked with green and blue,

respectively.
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Material Picture Histogram

h
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κ h

xr,c=1
κ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0
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1,000

1,500

2,000

Alu
(16 p.)

h
xr,c=0
κ h

xr,c=1
κ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1,000

2,000

3,000

Gray
plastic
(16 p.)

h
xr,c=0
κ h

xr,c=1
κ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

1,000

2,000

3,000

Yellow
plastic
(14 p.)

h
xr,c=0
κ h

xr,c=1
κ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2,000

4,000

6,000

Bright field
(46 pictures)

Table 7.1: Distributions of the correlation coefficients for the one-modules and zero-modules
without considering possible damages. The two histograms in the bottom represent the bright

field case and are computed based on the three diagrams above.

For the dark field case, 8 pictures of 2D barcodes milled in brass were used. When
considering other materials, the pictures taken in a dark field and thus the correlation
coefficients looked pretty much the same. The histograms referring to the dark field
can be seen in Table 7.2.
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Material Picture Histogram

h
xr,c=0
κ h

xr,c=1
κ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

500

1,000

Brass
(8 p.)

Table 7.2: Histograms for the one-modules and zero-modules considering 2D barcode pictures
taken in a dark field.

The analysis is separated into the bright field case and the dark field case since
for the 2D barcode decoder it is possible to distinguish between these two cases
by means of the finder pattern that surrounds every 2D barcode. Furthermore, a
Gaussian approximation is added to the histograms in Table 7.1 and 7.2 that represent
the bright field case and the dark field case, respectively. With the help of the
Gaussian distributions, one could already compute the required SDs, but until now
interferences that may occur in industrial applications like dirt, rust, blobs, scratches,
unequal illumination and so on have not been considered. All kinds of possible
interferences cause contiguous modules to appear darker or brighter and thus affect
the distribution of the correlation coefficients. Because of that, an analysis of the
histograms influenced by damages is necessary.

BUPT



92 Chapter 7. LDPC-based 2D barcodes

7.2.3 Channel-model for damaged 2D barcodes

Since it is not possible to get a sufficiently high statistic by manually interfering with 2D
barcodes, a simulation of representative damage-patterns has been developed. The
established simulation of oil drops and water drops is based on reference drops that
are obtained by taking a picture of a real drop on the desired material considering
the appropriate illumination setting. The cropped picture containing the damage is
then separated into two pictures that together form the reference drop. One picture
contains the alpha-channel that represents the transparency of the damage where the
other picture contains the color map. Such a reference damage can then be added
free scalable to the desired 2D barcode picture. Table 7.3 shows the reference oil
drops and water drops for different materials.

Material Water drops Oil drops

Alpha channel Color map Alpha channel Color map

Brass

Alu

Gray
plastic

Yellow
plastic

Table 7.3: Alpha channel and color map of reference oil drops and water drops on different
materials.

Table 7.4 shows some examples of interference on 2D barcodes with oil drop and
water drop simulations based on the reference drops in Table 7.3. The simulations
have been added to the barcode pictures considering different sizes and different
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locations.

Brass Alu Gray plastic Yellow plastic

Water
drops

Oil
drops

Table 7.4: Examples for damage-simulations by means of the patterns in Table 7.3.

The analysis of the channel including possible damages has then been done based
on the introduced oil drop and water drop simulations. Thereby 10000 water drop
simulations and 10000 oil drop simulations were added to each of the 54 pictures that
Table 7.1 and 7.2 are based on. Then again, the correlation-coefficients have been
computed based on Equation (7.5) and subsequently separated into two data-sets
referring to the one-modules and the zero-modules, respectively. In contrast to the
analysis in Section 7.2.2, only the modules have been considered that have been
influenced by the drop simulations. This was done by means of a threshold-based
comparison between the module-mean value ārc with the damage simulation and the
mean value without the damage simulation. Figure 7.9 shows two different water drop
simulations where affected modules have been automatically marked.

(a) yellow plastic - bright field (b) brass - dark field

Figure 7.9: Same pictures as in Figure 7.8 but with a added water drop simulation. In addition
the modules, affected by the damage simulation have been marked.

Since the decoder is not able to distinguish between different kinds of damages,
each of the histograms in Table 7.5 and 7.6 is based on both damage simulations, the
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oil drop and water drop simulations. The pictures in the second column represent just
one example. The diagram in the bottom of Table 7.5 and the histograms in Table
7.6 represent the channel including possible damages for the bright field case and the
dark field case, respectively.

Material Picture Histogram
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κ h

xr,c=1
κ
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plastic
(14 p.)

h
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κ h

xr,c=1
κ

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

2

4
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Bright field
(46 pictures)

Table 7.5: Distributions of the correlation coefficients for the one-modules and zero-modules
including possible damages. The two histograms in the bottom represent the bright field case

and are computed based on the three diagrams above.
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Material Picture Histogram
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κ

h
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κ
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Table 7.6: Histograms for the one-modules and zero-modules considering 2D barcode pictures
taken in a dark field including possible damages.

Since the histograms clearly differ when considering damages (Table 7.5 and
7.6) compared to the case without any damages (Table 7.1 and 7.2), a 2-state
Markov-model (see Section 3.4) is utilized. The good channel represents the case
without any damages, and the bad channel takes damages into account. So if a
module in row r and column c is affected by the good channel, the channel-model is
in state sr,c = s1, otherwise the module is influenced by the bad channel and sr,c = s2.
xr,c is a symbol placed on a module in row r and column c, and yr,c is the correlation
coefficient referring to the symbol xr,c. The histogram h

sr,c=s1,xr,c=0
κ , for example,

refers to the channel-state sr,c = s1, which is the good sub-channel, and a zero-module
representing a sent bit xr,c = 0.

7.2.4 Computation of soft-decisions for 2D barcodes

The SDs are computed based on the 2-state Markov-modulated channel-model
established in Section 7.2.3. For the sake of clarity, the histograms in the bottom of
Table 7.1 and 7.5 (good and bad channel for the bright field case) and the histograms
of Table 7.2 and 7.6 (good and bad channel for the dark field case) are shown again
in Figure 7.10 and 7.11 representing the complete 2-state channel-model considering
the bright field case and the dark field case, respectively. The good sub-channel is
thereby shown in the top and the bad sub-channel in the bottom of Figure 7.10 and
7.11.
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(a) Good sub-channel; sr,c = s1.
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(b) Bad sub-channel; sr,c = s2.

Figure 7.10: 2-state Markov-modulated channel-model for the bright field case.
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(a) Good sub-channel; sr,c = s1.
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(b) Bad sub-channel; sr,c = s2.

Figure 7.11: 2-state Markov-modulated channel-model for the dark field case.
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For the computation of the SDs referring to the good channel, the Gaussian
approximations that can be seen in the top in Figure 7.10 and 7.11 are used.
The probabilities for the correlation coefficient yr,c to stem from a one-module or a
zero-module are then computed as follows:

P (yr,c | xr,c = 1, sr,c = s1) =
1√

2πσ2
G1

exp

(
−(yr,c − µG1)2

2σ2
G1

)
(7.9a)

and

P (yr,c | xr,c = 0, sr,c = s1) =
1√

2πσ2
G0

exp

(
−(yr,c − µG0)2

2σ2
G0

)
. (7.9b)

The values for the means and variances are listed in Table 7.7 and 7.8 for the bright
field and the dark field, respectively. The mismatch that the Gaussian probability
density function (PDF) shows to the one-module’s histogram on the very right side is
harmless since the probability for a module with a correlation coefficient in that region
to be a zero-module is close to zero. The same is true for the very left side of the
zero-module’s histogram in the dark field case.
When approximating the bad channel with a Gaussian PDF, there is a mismatch

considering one-modules with yr,c > 0.4, but that does not have a noticeable drawback
since the probability for a module to be a zero is very small in that region. Contrary to
that, one has to consider the possibility of a one-module having a correlation coefficient
of yr,c ≈ 0. This is respected by using two Gaussian curves for the one-modules and a
transition probability ε for switching from the Gaussian curve a to the Gaussian curve
b that describes the probability for P (yr,c ≈ 0|xr,c = 1). This is much like an integrated
Z-channel. The probabilities for yr,c to stem from a one-module or a zero-module are
then computed according to

P (yr,c | xr,c = 1, sr,c = s2) =
1− ε√
2πσ2

B1a

exp

(
−(yr,c − µB1a)2

2σ2
B1a

)
+

ε√
2πσ2

B1b

exp

(
−(yr,c − µB1b)

2

2σ2
B1b

) (7.10a)

and

P (yr,c | xr,c = 0, sr,c = s2) =
1√

2πσ2
B0

exp

(
−(yr,c − µB0)2

2σ2
B0

)
. (7.10b)

The values for the means and variances can be seen in Table 7.7 and 7.8 for the bright
field and the dark field, respectively.

Sub-channel 1-modules 0-modules

mean variance mean variance

Good µG1 = 0.9038 σ2
G1 = 0.0042 µG0 = 0.0059 σ2

G0 = 0.0059

Bad µB1a = 0.7531 σ2
B1a = 0.0528 µB0 = −0.0744 σ2

B0 = 0.0775
µB1b = 0.001 σ2

B1b = 0.000607

Table 7.7: Bright field case: means and variances of the Gaussian PDFs in Figure 7.10 that
represent the channel-model for 2D barcodes.
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Sub-channel 1-modules 0-modules

mean variance mean variance

Good µG1 = 0.9071 σ2
G1 = 0.0049 µG0 = −0.0204 σ2

G0 = 0.0095

Bad µB1a = 0.7569 σ2
B1a = 0.057 µB0 = 0.0011 σ2

B0 = 0.0034
µB1b = 0.0042 σ2

B1b = 0.0031

Table 7.8: Dark field case: means and variances of the Gaussian PDFs in Figure 7.11 that
represent the channel-model for 2D barcodes.

The transition probability ε was computed as the ratio of the 0-bin surface to the
surface of the other bins referring to the one-modules and is ε = 0.035 for the bright
field and ε = 0.0362 for the dark field. The variances σ2

B1b have then been computed so
that the ratio of the two curves for one-modules and zero-modules at yr,c = 0 showed
the same values as the ratio of the two bins at the same position.

The following decoder operates in the probabilistic-domain as well as in the
log-domain (see Section 7.3.3). Thus the likelihoods computed based on Equation
(7.9) and (7.10) are passed to the decoder together with the SDs. The SDs are
thereby computed based on Equation (3.12), and the times that the channel-model
is assumed to be in state 1 and state 2, are computed by Equation (3.4) and (3.5),
respectively.

L(xr,c) = t1 log
P (yr,c | xr,c = 0, sr,c = s1)

P (yr,c | xr,c = 1, sr,c = s1)
+ t2 log

P (yr,c | xr,c = 0, sr,c = s2)

P (yr,c | xr,c = 1, sr,c = s2)
. (7.11)

For the computation of t1 and t2, the transition probability matrix P init by which the
decoder is initialized is utilized.

7.3 Decoder design

Usually estimation-decoding (Chapter 6) is applied to time dependent and thus
one-dimensional communication systems. When considering the application of
estimation-decoding together with 2D barcodes, the one-dimensional timescale
turns into a geometry of two dimensions, and it is not possible to describe the
state-transitions with only one Markov-chain anymore. For this reason, the single
Markov-chain is replaced by several Markov-chains that are assigned to each row and
each column of the 2D barcode’s data region, respectively. This yields a 2D hidden
Markov model (HMM) which is depicted in the example in Figure 7.12 where twelve
horizontal and twelve vertical Markov-chains are assigned to the rows and columns
of the 2D barcode’s data region. So the state-estimation referring to a single module
is based on two crossing Markov-chains, a vertical Markov-chain and a horizontal
Markov-chain. Based on the 2D HMM, the Markov-LDPC factor graph shown in Figure
6.1 turns into a 3D graph and is depicted in Figure 7.13.
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Figure 7.13: Markov-LDPC factor graph based on the 2D-Hidden Markov Model in Figure 7.12.
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Figure 7.12: 2D HMM.

The decoding algorithm that operates on the graph in Figure 7.13 is derived
from the new estimation-decoding variant in Section 6.4. The developed decoder
for LDPC-based 2D barcodes is denoted as ED2D algorithm, which stands for
estimation-decoding in two dimensions. The two dimensions thereby refer to the
underlying 2D HMM. The messages sent between the nodes of one sector during the
ED2D decoding can be seen in Figure 7.14.
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Figure 7.14: Messages in one sector of the ED2D graph depicted in Figure 7.13.

The LDPC subgraph is comprised of the symbol-nodes x and the check-nodes c
where the state-nodes s and the channel-nodes (black squares) belong to the Markov
subgraph. r and c are the indices for the rows and columns of the 2D HMM. y stands
for the correlation coefficients computed based on Equation (7.5). The noise added to
the binary value of a module in row r and column c of a 2D barcode’s data region is
assumed to stem either from the good sub-channel (sr,c = s1) or the bad sub-channel
(sr,c = s2), depending on the state that the state-node sr,c is estimated to be in. α and
β represent the forward and backward messages of the Forward-Backward algorithm,
respectively. The interface between the LDPC subgraph and the 2D HMM are the
channel-messages ζ, sent from the 2D HMM to the LDPC subgraph, and the messages
χ, passed from the LDPC subgraph to the 2D HMM. The messages are computed as
follows.

7.3.1 Messages of the LDPC subgraph

The messages L(qij) and L(rji) belong the the LDPC subgraph and are computed
according to Equation (4.18) and ((4.16) or (4.21)), respectively. The assignment
of the index i to the pair of indices r and c is thereby done according to the applied
symbol-placement.

7.3.2 Messages of the Markov subgraph

Forward-messages αh and αv for the horizontal and vertical Markov chains,
respectively:

αhr,c+1(sr,c+1) =
∑
sr,c∈S

P (sr,c+1 | sr,c)αhr,c(sr,c)
∑

xr,c∈{0,1}

P (xr,c | χr,c)P (yr,c | xr,c, sr,c),

(7.12a)
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αvr+1,c(sr+1,c) =
∑
sr,c∈S

P (sr+1,c | sr,c)αvr,c(sr,c)
∑

xr,c∈{0,1}

P (xr,c | χr,c)P (yr,c | xr,c, sr,c).

(7.12b)
Backward-messages βh and βv for the horizontal and vertical Markov chains,
respectively:

βhr,c(sr,c) =
∑

sr,c+1∈S

P (sr,c+1 | sr,c)βhr,c+1(sr,c+1)
∑

xr,c∈{0,1}

P (xr,c | χr,c)P (yr,c | xr,c, sr,c),

(7.13a)

βvr,c(sr,c) =
∑

sr+1,c∈S

P (sr+1,c | sr,c)βvr+1,c(sr+1,c)
∑

xr,c∈{0,1}

P (xr,c | χr,c)P (yr,c | xr,c, sr,c)

(7.13b)
where P (sr,c+1 | sr,c) and P (sr+1,c | sr,c) are the transition probabilities pkl of the
applied 2-state Markov-modulated channel-model developed in Section 7.2. The
channel-model is also the basis for the computation of P (yr,c | xr,c, sr,c) according
to Equation (7.9) and (7.10).

7.3.3 The interface messages

The channel-messages ζ passed to the LDPC subgraph are computed based on the
messages αh and βh of the horizontal Markov-chains and the messages αv and βv of
the vertical Markov-chains:

ζr,c = log
P (xr,c = 0 | αhr,c(sr,c)βhr,c+1(sr,c+1))

P (xr,c = 1 | αhr,c(sr,c)βhr,c+1(sr,c+1))
+ log

P (xr,c = 0 | αvr,c(sr,c)βvr+1,c(sr+1,c))

P (xr,c = 1 | αvr,c(sr,c)βvr+1,c(sr+1,c))

(7.14)
with

P (xr,c = 0 | αhr,c(sr,c), βhr,c+1(sr,c+1)) =∑
sr,c∈S

∑
sr,c+1∈S

P (yr,c | xr,c = 0, sr,c)P (sr,c+1 | sr,c)αhr,c(sr,c)βhr,c+1(sr,c+1) (7.15a)

and

P (xr,c = 0 | αvr,c(sr,c), βvr+1,c(sr+1,c)) =∑
sr,c∈S

∑
sr+1,c∈S

P (yr,c | xr,c = 0, sr,c)P (sr+1,c | sr,c)αvr,c(sr,c)βvr+1,c(sr+1,c). (7.15b)

The message χ, sent from the LDPC subgraph to the Markov subgraph, is
represented by the SD computed by Equation (4.19) and is in the log-domain. Since
the computations on the Markov subgraph are processed in the probabilistic-domain,
the messages have to be transfered according to

P (xr,c | χr,c) =

{
1
2

+ 1
2

tanh
χr,c

2
, xr,c = 0;

1
2
− 1

2
tanh

χr,c

2
, xr,c = 1.

(7.16)
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Because the values of the 2D barcode’s finder pattern are known, the corresponding
messages χ do not change during the iterative ED2D decoding so that

P (xr,c | χr,c) =

{
0 , xr,c = 0

1 , xr,c = 1
∀xr,c ∈ F1 (7.17a)

and

P (xr,c | χr,c) =

{
1 , xr,c = 0

0 , xr,c = 1
∀xr,c ∈ F0 (7.17b)

with F1={one-modules of the finder pattern} and F0={zero-modules of the finder
pattern}. This means that the initial conditions and the end conditions of the several
Markov-chains are known a priori.

7.3.4 Reestimation of the transition probabilities

Since the transition probabilities pkl between the two sub-channels are not known,
the reestimation procedure explained in Section 6.4.1 is used for the ED2D decoder.
The decoder is initialized with the transition probability matrix P init. Then the
transition probability matrix is reestimated in each decoding iteration t + 1 based on
the reestimation P̂ t of the previous iteration.
The probability

γtr,c(k) = P (sr,c = sk | y, P̂ t) (7.18a)
of being in state sk in row r and column c and iteration t, given the received codeword
y and P̂ t, now has to be calculated based on the horizontal Markov-chains as well as
on the vertical Markov-chains:

γh,tr,c (k) =
αh,tr,c (k)βh,tr,c (k)∑2
k=1 α

h,t
r,c (k)βh,tr,c (k)

, (7.18b)

γv,tr,c (k) =
αv,tr,c(k)βv,tr,c (k)∑2
k=1 α

v,t
r,c(k)βv,tr,c (k)

. (7.18c)

The probability of being in state sk in row r and column c, and in state sl at the next
module in row r and column c + 1 for the horizontal Markov-chains (or in row r + 1
and column c for the vertical Markov-chains), given y and P̂ t, is also computed for the
horizontal and the vertical Markov-chains, respectively.

ξh,tr,c (k, l) = P (sr,c = sk, sr,c+1 = sl | y, P̂ t)

=
αh,tr,c(k)p̂tklβ

h,t
r,c+1(l)∑2

l=1 α
h,t
r,c+1(l)βh,tr,c+1(l)

∑
xr,c∈{0,1}

P (yr,c | xr,c, sr,c = sk)P (xr,c | χr,c),
(7.19a)

ξv,tr,c(k, l) = P (sr,c = sk, sr+1,c = sl | y, P̂ t)

=
αv,tr,c(k)p̂tklβ

v,t
r+1,c(l)∑2

l=1 α
v,t
r+1,c(l)β

v,t
r+1,c(l)

∑
xr,c∈{0,1}

P (yr,c | xr,c, sr,c = sk)P (xr,c | χr,c).
(7.19b)

The transition probability estimates p̂t+1
kl are then obtained by

p̂r+1
kl =

expected number of transitions from sk to sl in itereration t
expected number of transitions from sk in iteration t

(7.20a)
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which is computed based on Equation (7.18) and (7.19) according to

p̂t+1
kl =

∑R−1
r=0

∑C−1
c=0

(
ξh,tr,c (k, l) + ξv,tr,c(k, l)

)∑R−1
r=0

∑C−1
c=0

(
γh,tr,c (k) + γv,tr,c (k)

) (7.20b)

with R and C being the number of rows and columns in the data region of the 2D
barcode, respectively.

7.4 Design of irregular LDPC codes for 2D barcodes

In this Section, the design of irregular LDPC codes for the application on 2D barcodes
is explained. The design is done by means of the DHS-based optimization method
developed in Section 5.1. The irregular LDPC code is thereby designed for the usage
with a certain channel-model. Considering the application of the designed LDPC code
on 2D barcodes, the histogram-based 2-state channel-model constructed in Section
7.2 is chosen. During the design process the LDPC codes are evaluated by computing
the word error ratio (WER) according to a time-dependent and thus one-dimensional
communication system. However, the application of LDPC-based 2D barcodes that
the LDPC code is designed for is a geometry of two dimensions. Even though, it is
assumed that a LDPC code designed for the 2D barcode’s channel-model shows a
good decoding performance in the case of the real application (i.e. LDPC-based 2D
barcodes) as well.
As explained in Section 5.1.2, the function evaluations for the vertices are

represented by the computation of the WER obtained by means of a simulation.
Considering the design for the histogram-based 2-state channel-model of Section 7.2,
the simulation slightly changes compared to the description in Section 4.6. This is due
to the histograms hsi,xiκ that the applied channel-model is based on. The simulation
that is conducted in order to compute the WER is depicted in Figure 7.15.

x = u ·G yi(si, xi) = psi,xiθ log
[
P (xi=0|yi)
P (xi=1|yi)

]
EDEP

WER
BER

LDPC
encoder

SD-
computation

LDPC
decoder

EvaluationHistogram-based
channel-model

u x y L(x) x̂

Figure 7.15: Computation of the WER by means of a histogram-based channel-model.

The LDPC encoder is applied since the histogram-based 2-state channel-model is
asymmetric. The information word u to be encoded is thereby uniformly distributed
random binary information.

7.4.1 Application of the 2D barcode’s channel-model

The channel-model is applied in order to get the received data word y corresponding to
the sent code word x. Since only one irregular LDPC code is designed, no matter if the
2D barcode that will apply the LDPC code is captured in a dark field or in a bright field,
a channel-model is utilized computed by means of the channel-models for the bright
field case (Figure 7.10) and the dark field case (Figure 7.11). The channel-model can
be seen in Figure 7.16.
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hsi=s1,xi=0
κ hsi=s1,xi=1

κ

µG0, σ2
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(a) Good sub-channel; sr,c = s1.
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(b) Bad sub-channel; sr,c = s2.

Figure 7.16: 2-state histogram-based channel-model used to design irregular LDPC codes for
2D barcodes.

To best represent the channel-model, a pool psi,xiθ = {psi,xi1 , . . . , psi,xiM } of M numbers
is created for each of the four histograms hsi=s1,xi=0

κ , hsi=s1,xi=1
κ , hsi=s2,xr,c=0

κ and
hsi=s2,xi=1
κ

2. The pools are obtained by first normalizing the histograms according
to

n(hsi,xiκ ) =
hsi,xiκ∑H
k=1 h

si,xi
κ

(7.21)

with n() being the normalization and H the total number of bins. Then one computes

hsi,xiκ = n(hsi,xiκ ) ·M. (7.22)
The M numbers of each pool are then obtained by generating hsi,xiκ random numbers
for each κ = {1, · · · ,H} in the interval of the current bin. This means that a histogram
of one of the pools psi,xiθ would look like the histogram hsi,xiκ that it represents.
When considering a sent code word x, a received data word y is obtained by the

following assignment.

yi(si, xi) = psi,xiθ ∀i; θ ← random[1,M ]. (7.23)
The channel-model is initialized with the transition probabilities p12 = 0.1 and p21 =

0.15. If the channel-model is in the state si = s1, a value is randomly taken either of
the pool psi=s1,xi=0

θ or of the pool psi=s1,xi=1
θ and assigned to yi, depending on xi. For

the state si = s2 that represents the bad channel, the value is either taken of the pool
psi=s2,xi=0
θ or of the pool psi=s2,xi=1

θ , depending on xi.
2Instead of the indices r and c used in Section 7.2 the index i is used here due to the function-evaluations

that are based on a one-dimensional communication system considering the design process.
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7.4.2 Soft-decisions and decoding

Based on the received data word y, the SDs are computed according to Equation (7.9)
and (7.10) except that the index i is used instead of the indices r and c. The values
for the applied Gaussian approximations in Figure 7.16 can be seen in Table 7.9.

Sub-channel 1-modules 0-modules

mean variance mean variance

Good µG1 = 0.9042 σ2
G1 = 0.0043 µG0 = 0.002 σ2

G0 = 0.0065

Bad µB1a = 0.7531 σ2
B1a = 0.0528 µB0 = −0.0741 σ2

B0 = 0.0772
µB1b = 0.0001 σ2

B1b = 0.0006

Table 7.9: Means and variances of the Gaussian PDFs in Figure 7.16 that represent the
channel-model for 2D barcodes.

The SDs are then further processed by the following LDPC decoder. The latter is the
estimation-decoding and estimation of the transition-probabilities (EDEP) decoder of
Section 6.4 that includes the reestimation of the transition probabilities (see Section
6.4.1) and the noise estimation of Section 6.4.2. The decoder is thereby initialized
with

P init =

(
p11 p12
p21 p22

)
=

(
0.9 0.1
0.15 0.85

)
.

7.4.3 Design results

An irregular LDPC of length n = 576 and with a code rate of R = 0.6111 has been
designed by means of the method explained above. The resulting symbol-node degree
distribution (SNDD) of the design was λ(x) = 0.311626x2 + 0.362298x3 + 0.083591x4 +
0.093844x5 + 0.033642x6 + 0.023253x7 + 0.013902x8 + 0.025308x9 + 0.008483x10 + 0.010685x11 +
0.008096x12 + 0.00594x13 + 0.016579x14 + 0.002753x15. Based on this SNDD, a PCM was
constructed and a simulation was conducted according to Figure 7.15 with the same
channel-model and decoder used for the design. Contrary to the simulation in Section
5.2, the WER was not computed for several values of Eb/N0, but instead for several
values of t1.
The channel-model is parameterized with the transition probabilities p12 and p21

computed based on the given t1 so that Equation (3.4) is fulfilled. The values used for
the simulation can be seen in Table 7.10.

t1 p21 p12

0.04 0.01 0.25
0.2 0.05 0.2
0.4 0.1 0.15
0.6 0.15 0.1
0.8 0.2 0.05
0.96 0.25 0.01

Table 7.10: Transition probabilities p21 and p12, depending on the values for t1 that the
simulation is based on.
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106 Chapter 7. LDPC-based 2D barcodes

Since the channel-model is based on a random process parameterized with p21 and
p12, the number of times that the channel-model is in state s1 and s2 are counted
during the simulation. The real t1 that the simulation is based on is then computed by

treal1 =
Ns1

Ns1 +Ns2

(7.24)

with Ns1 and Ns2 being the counts for s1 and s2, respectively. The WERs computed
based on the simulation are then plotted over the appropriate values of treal1 . Figure
7.17 shows the results for the designed irregular LDPC code compared to the results
of a regular LDPC code. It can be seen that the irregular LDPC code is up to 0.3 dB
better than the regular LDPC code.

0 0.2 0.4 0.6 0.8 1
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10−5

10−4

10−3

10−2

10−1

100

t1

W
ER

regular
irregular

Figure 7.17: WER of a regular LDPC code and a irregular LDPC code designed for the 2D
barcode’s channel-model of Section 7.2.
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Chapter 8

Evaluation

8.1 Test environment

The basis for a significant evaluation considering different types of 2D barcodes is
to provide a fair comparison as well as a sufficiently big statistic. For that, a test
environment is established that enables a comparison between different 2D barcode
variants. Figure 8.1 shows the comparison of low-density parity-check (LDPC)-based
2D barcodes with the Reed-Solomon (RS)-based Data Matrix code (DMC) by means
of the test environment. The green blocks and blue blocks are only processed in
the case of LDPC-based 2D barcodes and DMCs, respectively. The gray blocks refer
to processes that are exactly the same for all tested 2D barcode versions. The test
environment is explained in the following based on the block diagram in Figure 8.1.
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8.1.1 2D barcode encoders

The LDPC encoding is processed according to Equation (4.14). This is possible since all
LDPC codes used in this work are based on a parity-check matrix (PCM) constructed
by the progressive-edge-growth (PEG) algorithm described in Algorithm 4 that yields
a PCM according to Equation (4.13).
The bits of the LDPC code word xldpc are then placed in the 2D barcode’s data region

by means of the intelligent interleaver developed in Section 7.1. xintldpc represents
the matrix that describes the 2D barcode and thus the 2D barcode’s finder pattern
including the interleaved version of xldpc located in the 2D barcode’s data region.
The RS encoding and interleaving in the case of the DMC are done as defined in

the standard [4].

8.1.2 Simulations

The normal procedure would then be to emboss the 2D barcode defined by the matrix
xintldpc (or xintrs for the DMC) on a desired part. This has been done in Section 7.2 in order
to find a channel-model for 2D barcodes. In contrast to that, a simulation of pictures
of 2D barcodes is utilized instead of taking real pictures of the embossed 2D barcodes.
This is done in order to equalize the conditions as much as possible considering the
different types of 2D barcodes that are to be compared. A simulated picture is obtained
by taking a real picture of a 2D barcode apart into disjointed single modules. This is
done in a row by row manner where the one-modules and the zero-modules of the
data region are separated and stored in two pools, respectively. The finder pattern of
the 2D barcode’s picture is kept as is. A simulated picture is then created based on the
binary matrix xintldpc (or xintrs for the DMC) that describes the 2D barcode. The stored
finder pattern forms the frame for the simulated picture. Then in a row by row manner
again, a one-module or a zero-module is taken out of the appropriate pool, depending
on the entry in the matrix. So the simulated pictures of different 2D barcodes show
as similar an outer appearance as possible since the finder pattern is exactly the same
and the modules stem from the same pools. Hence possible variances that occur due
to the embossing and the acquisition and that are caused by the illumination, the
material and the milling are eliminated. Table 8.1 shows some examples of simulated
pictures for different kinds of materials. The pictures of the LDPC-based 2D barcodes
and the DMCs have thereby been generated based on the same pools of modules.
A comparison of a simulated picture and a real picture that are based on the same

2D barcode and the same material is not shown. This is because the pictures would
look exactly the same if the real picture has been the source for the modules in the
pools.
The next step is to add damages to the generated pictures in order to best reflect

the real channel that 2D barcodes have to deal with in industrial environments. The
damages are added by means of the water drop and oil drop simulations introduced
in Section 7.2.3. This way it is possible to affect different 2D barcode variants with
exactly the same damage. This is necessary in order to provide the same conditions
for a comparison of the different channel-codes inside the 2D barcodes. Table 8.2
shows water drop and oil drop simulations added to 2D barcodes that are exactly the
same for the LDPC-based version and the RS-based DMCs. The pictures are thereby
generated based on the picture simulation and are the same as the ones shown in
Table 8.1.
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Brass Alu Gray plastic Yellow plastic

LDPC-based
2D barcode

Data Matrix
code

Table 8.1: Simulated pictures for different materials. The pictures for the LDPC-based 2D
barcodes and the RS-based DMCs were generated based on the same pools of modules and thus

show as similar an outer appearance as possible.

8.1.3 Image processing

The image processing part of the test environment is represented by the computation
of the correlation coefficients according to Equation (7.5). To each module in the 2D
barcode a correlation coefficient is assigned that measures the similarity to a reference
one-module created based on the one-modules that are part of the finder pattern. The
correlation coefficients represent the received data word y in a usual communication
system. They are denoted as yintldpc and y

int
rs since they are still ordered according to

the 2D barcodes structure.

8.1.4 Soft-decisions and hard-decisions

Afterwards, the soft-decisions (SDs) are computed by means of the channel-model
developed for 2D barcodes in Section 7.2. Since there are two versions of
channel-models, one for pictures taken in a bright field (Figure 7.10) and one for
dark field acquisitions (Figure 7.11), it is necessary to decide which one to use. The
decision is made based on the knowledge of the modules involved in the broken
border that is part of the 2D barcode’s finder pattern (see Figure 2.4). First the
means ārc of all modules that are part of the broken border are computed according
to Equation (7.6). Then two values ā1 and ā0 are calculated to represent the mean of
all one-module-means and all zero-module-means, respectively.

ā1 =

one-modules in the last column︷ ︸︸ ︷
1

R

R/2−1∑
i=0

ār=2i+1,c=C−1 +

one-modules in the first row︷ ︸︸ ︷
1

C

C/2−1∑
i=0

ār=0,c=2i , (8.1)

ā0 =

zero-modules of the last column︷ ︸︸ ︷
1

R

R/2−1∑
i=0

ār=2i,c=C−1 +

zero-modules of the first row︷ ︸︸ ︷
1

C − 2

C/2−2∑
i=0

ār=0,c=2i+1 . (8.2)
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Material Water drops Oil drops

LDPC RS LDPC RS

Brass

Alu

Plastic g

Plastic y

Table 8.2: The same pictures as shown in Table 8.1 but with added oil drop and water drop
simulations that are exactly the same for the LDPC-based 2D barcodes and the RS-based DMCs.

R and C are thereby the number of rows and columns in the 2D barcode. The decision
for the bright field or the dark field is then made according to{

Dark field if ā1 > ā0;

Bright field if ā1 < ā0.
(8.3)

This can be done since in the case of a dark field capture the means of the one-modules
are greater in average than the zero-module-means because a zero-module is
represented by an untouched surface that does not reflect any light into the camera
and thus appears dark. But the cavity of a one-module reflects light into the camera’s
lens which results in a higher module-mean. For a bright field capture, the untouched
surface of a zero-module reflects more light into the camera’s lens than a one-module
whose cavity appears dark on the picture.
The modules of the L-pattern are not considered when computing ā1 because a

damage located on the L-pattern would only affect ā1. This could result in a wrong
decision. Contrary to that, the probability is high that a damage on the broken border
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affects both, ā1 and ā0. Furthermore, it is likely that a damage causes both values,
ā1 and ā0 to be shifted towards 0 or 255 keeping the inequality that the decision in
Equation (8.3) is based on.
After the decision for the bright field’s channel-model or the dark field’s

channel-model has been made, the likelihoods are calculated according to Equation
(7.9) and (7.10) to represent the good sub-channel and the bad sub-channel,
respectively. Then the SDs are computed by means of the likelihoods according to
Equation (3.12) for both sub-channels, respectively.
In the case of LDPC-based 2D barcodes, the SDs L

(
xintldpc

)
(i.e. the log-likelihood

ratios (LLRs)) are passed to the decoder developed in Section 7.3. Since the
state-estimation on the 2D hidden Markov model (HMM) is not computed in the
log-domain, the likelihoods are passed to the decoder as well.
For the DMCs that are based on RS codes, one has to make hard-decisions (HDs)

first which is done according to Equation (3.11). The HDs x̂intrs are then passed to the
DMC decoder.

8.1.5 2D barcode decoders

The decoder for LDPC-based 2D barcodes developed in Section 7.3 and denoted
as estimation-decoding in 2 dimensions (ED2D) algorithm is represented by the
deinterleaver and the LDPC decoder in Figure 8.1. This is a simplified illustration where
the two paths that enter the LDPC decoder stand for the fact, that the interleaved
version L

(
xintldpc

)
of the SDs as well as the SDs ordered according to the sent code word

xldpc are required during the ED2D decoding. For the messages on the LDPC subgraph
the MSc decoder is used with a correction factor of cf = 0.45. For the computation on
the Markov subgraph the decoder is initialized with the transition probability matrix

P init =

(
p11 p12
p21 p22

)
=

(
0.9 0.1
0.2 0.8

)
.

Since only systematic LDPC codes are utilized, the estimated information word ûldpc
of length k is easily extracted out of the estimated code word x̂ldpc of length n by taking
the last k bits (see Equation (4.12)).
The deinterleaving and RS decoding for the DMCs is done as described in the

standard [4].

8.1.6 Comparison

The different variants of 2D barcodes are then evaluated and compared based on the
estimated information words that are the decoding results of the appropriate decoders.
Considering 2D barcodes in direct part mark identification (DPMI) applications, only
the word error ratio (WER) is suitable to evaluate the decoding performance. In the
case of a text stored in a 2D barcode and then decoded and read by a human being,
the bit error ratio (BER) would also be interesting. This is because in the case of only
a few bit errors a text could still be decoded correctly by a human being by means of
the redundancy of the applied language. But when considering the application of 2D
barcodes in industrial environments, the information stored inside of the barcodes is
usually further processed by computer-based systems. A false digit could result from
only one single bit error and a resulting error in an article number for example would
then refer to a completely different item. Thus only word errors are considered when
evaluating the error-correction capabilities of the tested 2D barcode variants.
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8.2 Test procedure

The evaluation of the different 2D barcode variants is done by means of the test
environment of Section 8.1 that is depicted in Figure 8.1.
The size of all tested 2D barcodes is 26 × 26 modules which means that the data

region has a size of 24× 24. Hence there is space for 576 bits to be stored in the data
region. Since only one code word is used in the case of LDPC-based 2D barcodes, all
utilized LDPC codes have a block length of n = 576. The code rate of the RS code used
inside a DMC of size 26 × 26 is R = 0.6111 according to the standard (see Table 11 in
[4], page 16). Thus all LDPC codes have been constructed with the same code rate
R = 0.6111.
The information word u, encoded inside the 2D barcodes, is the same for all

versions. It is an ASCII-encoded citation of Claude Shannon namely Information is
the resolution of uncertainty.
The testing is done based on four different materials: brass, aluminum, gray

plastic and yellow plastic. This means that for each 2D barcode variant four pictures
were generated. Then to each of the pictures 20000 different water drop simulations
and 20000 different oil drop simulations were added. It was thereby ensured that
the damage simulations have been exactly the same considering different barcode
variants.
Before the decoding started, a HD was done, not only for the RS-based barcode

but also in the case of the LDPC-based versions. By means of the HD, the number of
bit errors have been computed that occurred before the actual decoding started. This
offers a measure of how much the damage simulations influenced the 2D barcodes.
The same damage pattern added to different types of 2D barcodes that store the same
information, often yields a different number of pre-decoding bit errors. This is due to
the different arrangement of one-modules and zero-modules.
The damage patterns that caused no pre-decoding bit errors in the case of all

examined 2D barcode variants have not been considered. This is why the number of
decodings referring to water drops and oil drops is lower than 20000.
The pre-decoding bit errors are also used to evaluate the decoding performance

of the several 2D barcode variants considering different amounts of pre-decoding bit
errors. This has two main advantages:

1. All circumstances that cause unequal conditions when comparing different types
of 2D barcodes are eliminated.

2. The frequency distribution of the pre-decoding bit errors is considered.

The second point is very important since due to the characteristic of the
test-environment the probability that 2D barcodes are affected by only a few
pre-decoding bit errors is very high compared to cases with more bit errors. Thus a
2D barcode variant that would have a decoding advantage only for more pre-decoding
bit errors would be disadvantaged by not considering the frequency distribution of the
pre-decoding bit errors.
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8.3 The effectiveness of the optimized symbol-placement

In this section, it is checked if an increasing error-correction capability is obtained
when placing the symbols of a LDPC code word in the 2D barcode’s data region by
means of the intelligent interleaver developed in Section 7.1.3. For that, two variants
of 2D barcodes are compared:

1. 2D barcode based on a regular LDPC code with an optimized interleaving.

2. 2D barcode based on the same regular LDPC code with a bad interleaving.

The symbol-node degree distribution (SNDD) of the utilized regular LDPC code is
λ(x) = x3 which means that each symbol-node in the Tanner graph has three connected
check-nodes. Since the LDPC code is exactly the same for both LDPC-based 2D
barcode variants, they only differ in the way the symbols are placed in the data region.
The optimization of the symbol-placement for the first LDPC-based 2D barcode has

been done according to Section 7.1.3. The results for the optimization can be seen
in Section 7.1.4. Figure 7.4 shows the initial costs and the minimized costs of 15
processed optimization rounds. Since the cost C(2DC) = 20551.4636 obtained in the 5th

optimization round is the lowest one, the corresponding symbol-placement has been
chosen for the LDPC-based 2D barcode. The symbol-placement can be seen in the
Appendix in Table A.2.
In the case of the second LDPC-based 2D barcode variant, the optimization method

in Section 7.1.3 has been slightly modified in order to find a symbol-placement with a
high cost. Table A.3 in the appendix shows the resulting degraded symbol-placement
that has a cost of C(2DC) = 24761.2034. Following the assumptions that the optimization
method is based on (see Section 7.1), the resulting 2D barcode is supposed to have a
lower error-correction capability than the first variant that benefits from the optimized
symbol-placement.
The comparison was done based on the test-environment in Section 8.1 and the

test procedure explained in Section 8.2. The results can be seen in Table 8.3 where
the successful decodings are shown for the different materials and drop simulations,
respectively. Based on the total number of decodings, the percentage of successes is
also computed. The results in the case of oil drop simulations on brass are not shown
since all 2D barcodes were successfully decoded.
Table 8.3 shows that in total 87% could be successfully decoded in the case

of the optimized symbol-placement. For the degraded symbol-placement, only
82% succeeded in decoding. Thus a gain of 5% is obtained with the optimized
symbol-placement compared to the bad placement. But in this case, the frequency
distribution of the pre-decoding bit errors is not considered.
This is in contrast to the results in Figure 8.2, where the decoding performance is

analyzed based on the pre-decoding bit errors. This ensures a fair comparison and
reveals the advantage of the intelligent interleaving in detail. Figure 8.2 shows the
percentage of successful decodings depending on different amounts of pre-decoding
bit errors. The bars referring to the first point on the very left side (10 pre-decoding
bit errors) present the number of successful decodings divided by the total number of
decodings where 0 to 10 pre-decoding bit errors occured. The next point refers to all
cases in which 10 to 20 pre-decoding bit errors complicated the following decoding and
so on.
The results in Figure 8.2 show that for up to 10 pre-decoding bit errors the two

interleavings yield the same decoding results of 100% successful decodings. But if
more pre-decoding bit errors occur, the optimized symbol-placement clearly beats the
bad placement. The gain is very high in between 30 and 80 pre-decoding bit errors.
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Intelligent Bad
interleaving interleaving

Material Damage Decodings OK % OK %

Brass Water 9460 9298 98 8853 94

Alu
Water 18568 17734 96 17562 95
Oil 15614 12081 77 9887 63
Total 34182 29815 87 27449 80

Plastic g
Water 17721 16717 94 16226 92
Oil 15869 12419 78 11679 74
Total 33590 29136 87 27905 83

Plastic y
Water 16008 15169 95 14542 91
Oil 14421 10061 70 9558 66
Total 30429 25230 83 24100 79

Total Water 61757 58918 95 57183 93
Oil 45904 34561 75 31124 68

Total 107661 93479 87 88307 82

Table 8.3: Comparison results of two 2D barcode variants based on the same regular LDPC code.
In the case of the 1st LDPC-based barcode the symbols have been placed in the data region
by means of the optimization procedure of Section 7.1.3. In contrast to that the interleaving
for the 2nd LDPC-based barcode has been done in order to get a high cost of the resulting

symbol-placement.

This can be well seen in Figure 8.3 where the gain in decoding successes that is
obtained by using the optimized symbol-placement instead of the bad placement is
shown.
The results in Figure 8.3 confirm the effectiveness of the intelligent interleaving.

Since an average gain of about 10.7% is obtained with the optimized symbol-placement
compared to the bad placement, one can say that the decoding performance of
LDPC-based 2D barcodes increases with decreasing cost of the symbol-placement
computed based on Equation (7.3).
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Figure 8.2: Decoding results of two 2D barcode variants based on the same regular LDPC code.
The two variants only differ in the way the symbols are placed in the data region.
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Figure 8.3: Gain in decoding successes that is obtained by using the optimized
symbol-placement proposed in Section 7.1.
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8.4 The effectiveness of the ED2D decoding

In Section 7.3 the ED2D algorithm is introduced for the decoding of LDPC-based 2D
barcodes. It is based on a 3D graph that is comprised of a LDPC subgraph and a
Markov subgraph. The Markov subgraph is represented by the 2D HMM on which the
states of the 2-state channel-model developed in Section 7.2 are estimated during the
iterative ED2D decoding. The target of the following analysis is to measure the gain in
decoding performance obtained by means of the ED2D algorithm’s state-estimation.
For that, a 2D barcode based on a regular LDPC code is decoded with two different

decoders.

1. ED2D decoder (including the state-estimation).

2. MSc decoder (without the state-estimation).

The decoding with the ED2D algorithm is done as explained in Section 7.3 where the
SDs are computed as shown in Section 7.2.4.
The second decoder is represented by the MSc algorithm that is explained in Section

4.4.3. This algorithm is also integrated in the ED2D algorithm where it operates on
the LDPC subgraph. But contrary to the MSc decoder, the ED2D decoder additionally
includes a state-estimation on the Markov subgraph as well as a reestimation of the
transition probabilities.
Usually, an additive white Gaussian noise (AWGN) channel is assumed when

decoding with a MSc decoder. Even though the 2-state channel-model developed in
Section 7.2 for 2D barcodes is used to compute the SDs according to Equation (7.11)
in order to only reveal the advantage of the state-estimation.
The results of both decoder variants can be seen in Table 8.4. The frequency

distribution of the pre-decoding bit errors is thereby not considered.

ED2D MSc
Material Damage Decodings OK % OK %

Brass Water 9460 9298 98 9268 98

Alu
Water 18568 17734 96 16920 91
Oil 15614 12081 77 11013 71
Total 34182 29815 87 27933 82

Plastic g
Water 17721 16717 94 16772 95
Oil 15869 12419 78 11845 75
Total 33590 29136 87 28617 85

Plastic y
Water 16008 15169 95 15263 95
Oil 14421 10061 70 9749 68
Total 30429 25230 83 25012 82

Total Water 61757 58918 95 58223 94
Oil 45904 34561 75 32607 71

Total 107661 93479 87 90830 84

Table 8.4: Comparison results of the same LDPC-based 2D barcode decoded with two different
decoders. The first decoder is the ED2D decoder developed in Section 7.3. The second decoding

is done without the state-estimation and thus only by means of the MSc algorithm.
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Table 8.4 shows that in total 87% could be successfully decoded by using the ED2D
decoder whereas only 84% successes were obtained with the MSc algorithm. Especially
in this case, it is important to additionally consider the frequency distribution of the
pre-decoding bit errors that can be seen in Figure 8.4. Since both decoders had to
decode based on exactly the same disturbed pictures, the number of decodings shown
in Figure 8.4 is the same for the ED2D decoder and the MSc decoder. When looking
at the total number of decodings for the different numbers of pre-decoding bit errors,
it is obvious that the pre-decoding bit errors are not equally distributed.
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Figure 8.4: Number of decodings of the ED2D decoder and the MSc decoder.

Figure 8.4 shows that most of the data words that the two decoder-variants had
to decode were affected by up to 10 bit errors. In fact, 80.64% of all decodings were
affected by 40 pre-decoding bit errors or less. But the advantage by means of a
state-estimation takes only an effect if more than 40 pre-decoding bit errors occur.
This can be seen in Figure 8.5 where the percentage of successful decodings is shown
for different pre-decoding bit errors. This means that the results in Table 8.4 are not
suitable for a fair comparison. Figure 8.5 shows that for up to 20 pre-decoding bit
errors the two decoder variants yield the same decoding results (100% successes).
In between 20 and 40 pre-decoding bit errors, there is a slight loss in decoding
performance considering the ED2D decoder compared to the MSc decoder. But for
more than 40 pre-decoding bit errors, the gain when applying the state-estimation
compared to no state-estimation is increasing with the number of pre-decoding bit
errors. In the case of more than 90 pre-decoding bit errors, only the ED2D decoder is
capable of correctly retrieving the stored information. The results are confirmed when
looking at the gain in Figure 8.6. It can be seen that in average a gain of 15.2% is
obtained by means of the ED2D algorithm compared to the MSc decoder.
In the context of a ED2D - MSc comparison, it is important to additionally consider

the decoding speed of the two decoder variants. The times required for the decoding
in the case of decoding-successes are shown in Figure 8.7. For the evaluation of
the results, it is important to mention that the test-environment is realized in Matlab
(Version 7.7.0.471) and all evaluations have been performed on a 32bit Windows 7
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Figure 8.5: Decoding results of a LDPC-based 2D barcode decoded with two different decoders,
the ED2D decoder developed in Section 7.3 and the MSc decoder, respectively.

machine1.
The decoding times in Figure 8.7 are plotted in a logarithmic scale since the

decoding speed for the two decoders is very different. The ED2D decoding requires
at least 10 times more time compared to the MSc decoding which means that the
computations on the 2D HMM are very time consuming. On average, one ED2D
iteration takes 103.1 milliseconds (ms) where one iteration with the MSc-decoder only
takes 6.6 ms.
One possible conclusion could be to choose the decoder depending on the desired

application especially considering possible interferences that cause pre-decoding bit
errors, the available hardware and security aspects.

1Processor: Intel Pentium Dual-Core E5300 processor with 2.6 GHz and 2 GB RAM.
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Figure 8.6: Gain obtained when decoding a LDPC-based 2D barcode with the ED2D decoder
instead of the MSc decoder.
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Figure 8.7: Average decoding times for the decoding results shown in Figure 8.5.
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8.5 Irregular versus regular

To check the error-correction capabilities of 2D barcodes based on irregular LDPC
codes, the irregular LDPC code designed especially for the application with 2D barcodes
in Section 7.4 is taken. The appropriate SNDD can be found in Section 7.4.3.
As described in Section 8.2, the code rate was chosen to be R = 0.6111 and the block

length n = 576. The symbol-placement has been optimized by means of the intelligent
interleaver of Section 7.1.3, and can be found in the Appendix in Table A.4. The cost
of the placement is C(2DC) = 14343.14 which is much less than C(2DC) = 20551.4636
in the case of the symbol-placement referring to the regular LDPC code. The reason
for that is the value of dmaxT used when computing the cost in Equation (7.2). For the
regular LDPC code, the maximum distance dT (xa, xb) in the Tanner graph is dmaxt = 8.
In the case of the irregular LDPC code, this value is only dmaxt = 6, and thus the
first term in Equation (7.2) is smaller in average. Due to the LDPC code dependent
value of dmaxt involved in the cost-computation, it is not possible to compare different
symbol-placements based on the cost C(2DC) independent of the utilized LDPC code.
A comparison only makes sense for different symbol-placements that are based on
the same LDPC code.
The decoding results that are based on the irregular LDPC code can be seen in Table

8.5 and Figure 8.8. The results of the regular LDPC-based 2D barcode considering the
optimized symbol-placement have thereby been added for comparison purposes.

Regular Irregular
LDPC LDPC

Material Damage Decodings OK % OK %

Brass Water 9460 9298 98 9276 98

Alu
Water 18568 17734 96 17201 93
Oil 15614 12081 77 11511 74
Total 34182 29815 87 28712 84

Plastic g
Water 17721 16717 94 16881 95
Oil 15869 12419 78 11965 75
Total 33590 29136 87 28846 86

Plastic y
Water 16008 15169 95 15279 95
Oil 14421 10061 70 9859 68
Total 30429 25230 83 25138 83

Total Water 61757 58918 95 58637 95
Oil 45904 34561 75 33335 73

Total 107661 93479 87 91972 85

Table 8.5: Comparison results of two LDPC-based 2D barcodes utilizing a regular LDPC code
and an irregular LDPC code, respectively. The irregular LDPC code has been designed for 2D

barcodes according to Section 7.4.

Following the simulation results in Figure 7.17, one assumes that the performance
based on the irregular LDPC code beats the regular LDPC code in terms of WER. But
when looking at the results in Table 8.5 and Figure 8.8, one can recognize that the 2D
barcode based on the irregular LDPC code is worse than the regular-based version.
Table 8.5 shows that the irregular LDPC code yields 85% decoding successes which is
2% less than based on the regular LDPC code that yields 87%. In Figure 8.8, it can be
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Figure 8.8: Decoding successes of two LDPC-based 2D barcodes utilizing a regular LDPC code
and an irregular LDPC code, respectively.

seen that the irregular code is disadvantaged if more than 40 pre-decoding bit errors
occur.
The inferiority of the irregular LDPC code is unexpected and might be explained by

an interrelation between the number of connected symbol-nodes to a check-node and
the resulting effectiveness of the symbol-placement optimization. The more connected
symbol-nodes to a check-node exist, the higher the probability that a local damage
influences more symbol-nodes connected to the same check-node is.
To check this assumption, four more irregular LDPC codes have been designed

as described in Section 7.4. In contrast to the former design where the maximum
number of connected check-nodes to a symbol-node was limited by dmaxx = 15, for
the new designs dmaxx has been limited by dmaxx = 10, dmaxx = 6, dmaxx = 4 and
dmaxx = 3, respectively. This was done since the number of symbol-nodes involved
in a parity-check equation decreases together with a decreasing value of dmaxx . The
resulting SNDDs of the irregular LDPC codes can be seen in Table 8.6.
Table 8.7 shows min, max and mean values for the check-node degree (CND) (the

number of symbol-nodes connected to a check-node) of the several LDPC codes. In
this context a regular LDPC code with a SNDD of λ(x) = x2 was added as well in order
to check a case with very low average CND.
For each of the LDPC codes in Table 8.7, a 2D barcode was created and tested

according to the test-environment and the test-procedure described in Section 8.1
and 8.2, respectively. In Figure 8.9, the total number of correct decodings is plotted
over the average CND.
The results in Figure 8.9 are corroborative of the assumption that the decoding

performance decreases with increasing average CND when considering average
CND-values greater then 7.7. The only exception is given with dmaxx = 4 where the
decoding performance is slightly worse than in the case of dmaxx = 6. This effect is
probably caused by the maximum CND that in the case of dmaxx = 4 is 10 and thus
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dmaxx λ(x)

15 0.311626x2 + 0.362298x3 + 0.083591x4 + 0.093844x5 + 0.033642x6 + 0.023253x7

+0.013902x8 + 0.025308x9 + 0.008483x10 + 0.010685x11 + 0.008096x12 + 0.00594x13

+0.016579x14 + 0.002753x15

10 0.363441x2 + 0.310171x3 + 0.101764x4 + 0.073243x5 + 0.045284x6 + 0.043384x7

+0.039883x8 + 0.016461x9 + 0.006368x10

6 0.438821x2 + 0.187372x3 + 0.021882x4 + 0.339611x5 + 0.012315x6

4 0.246838x2 + 0.229353x3 + 0.523809x4

3 0.019983x2 + 0.980017x3

Table 8.6: SNDDs of irregular LDPC codes designed for 2D barcodes by means of the method
described in Section 7.4

CND Irregular Irregular Irregular Irregular Regular Irregular Regular
dmaxs = 15 dmaxs = 10 dmaxs = 6 dmaxs = 4 ds = 3 dmaxs = 3 ds = 2

Min 9 8 8 8 7 7 5
Max 11 10 9 10 8 8 6

Average 9.978 9.089 8.487 8.4241 7.701 7.6563 5.1384

Table 8.7: Min, max and means of the number of connected symbol-nodes to the check-nodes
(CND) considering different LDPC codes.

greater than 9 for dmaxx = 6.
The worst decoding performance is provided by the regular LDPC code with (dx = 2)

although having a very low average CND. This is because the symbol-node degree
(SND) is too low, therefore the loss in decoding performance due to the LDPC code
properties outweighs the benefit of the symbol-placement.
Following the results in Figure 8.9, no gain is obtained when using irregular LDPC

codes instead of regular LDPC codes in the context of LDPC-based 2D barcodes as
designed in this thesis.
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Figure 8.9: Number of total decoding successes plotted over the average CND for two regular
LDPC codes (dx = 3 and dx = 2) and five irregular LDPC codes designed with several values for

dmaxx .

8.6 LDPC-based 2D barcode versus Data Matrix code

The final comparison is done to check the error-correction capabilities of the
LDPC-based 2D barcode developed in this thesis compared to the current standard in
DPMI applications, namely the RS-based Data Matrix code (DMC). For the LDPC-based
2D barcode, the regular LDPC code with dx = 3 is chosen since this code showed the
best decoding results so far. The comparison results can be seen in Table 8.8.
It can be seen that the LDPC-based 2D barcode beats the DMC in all cases except

for water-drops on yellow plastic where the DMC is slightly better (1%). In total, the
2D barcode developed in this thesis succeeded in 87% of the decodings and thus shows
a gain of 10% compared to the DMC that yields 77%. However, the following analyses
reveals that an interpretation of the decoding results in Table 8.8 is insufficient for a
fair comparison.
Figure 8.10 shows the total number of decodings for the several numbers of

pre-decoding bit errors considering the decodings of the DMC and the LDPC-based
2D barcode, respectively.
The frequency distributions in Figure 8.10 reveal two main points:

1. The pre-decoding bit errors are not equally distributed in both cases.

2. The LDPC-based 2D barcode had to face many more situations with more than
170 pre-decoding bit errors than the DMC.

Due to these two facts, it is essential to additionally consider the distribution of the
pre-decoding bit errors when comparing the two variants of 2D barcodes. Especially
the first point can be better evaluated by looking at the cumulative histograms in
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RS-based LDPC-based
DMC 2D barcode

Material Damage Decodings OK % OK %

Brass Water 9460 8819 93 9298 98

Alu
Water 18568 12579 68 17734 96
Oil 15614 10876 70 12081 77
Total 34182 23455 69 29815 87

Plastic g
Water 17721 15192 86 16717 94
Oil 15869 10351 65 12419 78
Total 33590 25543 76 29136 87

Plastic y
Water 16008 15318 96 15169 95
Oil 14421 9779 68 10061 70
Total 30429 25097 82 25230 83

Total Water 61757 51908 84 58918 95
Oil 45904 31006 68 34561 75

Total 107661 82914 77 93479 87

Table 8.8: Comparison results of a 2D barcode based on a regular LDPC code with the standard
DMC that utilizes a RS code.

Figure 8.11. It can be seen that most of the decodings are affected with only a few
pre-decoding bit errors. 75% and 69% of all decodings, for example, were affected by
only up to 20 pre-decoding bit errors in the case of the DMC and the LDPC-based 2D
barcode, respectively. Thus there is a strong weighting on situations with just a few
pre-decoding bit errors. This weighting is eliminated by evaluating the error-correction
capabilities of the 2D barcodes depending on the number of pre-decoding bit errors
which is done in the following.
Figure 8.12 shows the successful decodings plotted over the pre-decoding bit

errors. It can be seen that up to 10 pre-decoding bit errors, the DMC as well as the
LDPC-based 2D barcode both succeeded in 100% of the decodings. In cases with more
than 10 pre-decoding bit errors, the error-correction capabilities of the LDPC-based 2D
barcode are clearly higher compared to the error-correction capabilities of the DMC.
The advantage of using the new 2D barcode variant developed in this thesis instead

of the standard DMC can be well seen in Figure 8.13 where the obtained gain is
shown for the several numbers of pre-decoding bit errors. The gain when using the
LDPC-based 2D barcode compared to the RS-based DMC increases up to 71.9% for 50
pre-decoding bit errors and then decreases to 0.3% for 170 pre-decoding bit errors. In
average a gain of 30.8% is obtained.
The results in Figure 8.14 provide a different perspective to the decoding

performance comparison by showing the failed decodings. It can be seen that the
DMC is maxed out on 60 pre-decoding bit errors where the LDPC-based 2D barcode
only fails in 34% of the decodings. The LDPC-based 2D barcode is only maxed out for
more than 170 pre-decoding bit errors.
When looking at the decoding speed, the RS-based DMC does not provide any

advantages. This is shown in Figure 8.15. The average time required for the
RS decoding was 3.62 seconds where the ED2D algorithm used in the case of the
LDPC-based 2D barcode required 2.46 seconds in average.
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Figure 8.10: Total numbers of decodings plotted over pre-decoding bit errors for a 2D barcode
based on a regular LDPC code and the DMC, respectively.

As already mentioned in Section 8.4, all computations have been made using
Matlab. For the RS encoding and decoding the functions rsenc() and rsdec() provided
by Matlab were used, respectively. Due to that, it was not possible to further
investigate the reason for the relatively high decoding times. Considering the decoding
of LDPC-based 2D barcodes by means of the ED2D decoder developed in Section 7.3,
it should be mentioned that the focus was not on optimizing the decoding speed.
Furthermore, Matlab is pretty slow. This has been experienced when comparing the
results obtained by means of Matlab with the decoding speed during the design of
irregular LDPC codes. Contrary to the test-environment, the design described in
Chapter 5 and Section 7.4 was written in C. Thus it was possible to compare the
decoding speed considering Matlab-code and C-code. Table 8.9 shows the decoding
speed of two different decoders for Matlab and C, respectively. One decoder is the MSc
decoder of Section 4.4.3 and the other one the EDEP decoder developed in Section
6.4. The EDEP decoder thereby includes the MS decoder on the LDPC subgraph. It
can be seen in Table 8.9 that the decoders realized in C-code are much faster. For the
MSc algorithm, the C-code is about 2.74 times faster than the Matlab code whereas
the C-code is 23.36 times faster than the Matlab code when considering the EDEP
decoder. The gain obtained by use of C-code instead of Matlab is heavily dependent
on various parameters like the utilized Matlab-functions, the number of computations
and the required amount of memory. This comparison is only mentioned in order to
emphasize the relative decoding speeds of the several decoders to each other without
putting too much value on the absolute values.
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Figure 8.11: Cumulative histograms for the number of decodings plotted over pre-decoding bit
errors considering a 2D barcode based on a regular LDPC code and the DMC, respectively.

MSc decoder EDEP (MS) decoder

Matlab 6.6 ms 32.7 ms
C 2.41 ms 1.4 ms

Matlab/C 2.74 23.36

Table 8.9: Decoding speed of two decoders in Matlab and in C.

Considering the decoding speed, a comparison of the DMC with the LDPC-based
2D barcode decoded with the MSc decoder is interesting as well and is given in the
following. So compared to the analysis based on the ED2D algorithm, the LDPC-based
2D barcodes are now decoded without any state-estimation involved. Even though,
the LDPC-based 2D barcode shows a much better error-correction capability than the
DMC (see Figure 8.16).
The resulting gain when using the LDPC-based 2D barcode together with the MSc

decoder compared to the DMC can be seen in Figure 8.17.
There is still an average gain of 15.5 % when considering decodings up to 170

pre-decoding bit errors as done before. The big advantage when utilizing the MSc
decoder instead of the ED2D decoder is the gain in computation time. This can be
seen in Figure 8.18. On average, a decoding of a DMC requires 3.621 seconds whereas
the MSc decoding of a LDPC-based 2D barcode only takes 86 milliseconds.
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Figure 8.12: Successful decodings plotted over pre-decoding bit errors for a 2D barcode based
on a regular LDPC code and the DMC, respectively.
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Figure 8.13: Gain obtained when using the LDPC-based 2D barcode instead of the standard
DMC.
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Figure 8.14: Failed decodings plotted over pre-decoding bit errors for a 2D barcode based on a
regular LDPC code and the DMC, respectively.
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Figure 8.15: Decoding speed for a 2D barcode based on a regular LDPC code decoded with the
ED2D decoder and the DMC. Only successful decodings are considered.
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Figure 8.16: Successful decodings plotted over pre-decoding bit errors for a 2D barcode based
on a regular LDPC code decoded with the MSc decoder and the DMC, respectively.
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Figure 8.17: Gain obtained when using the LDPC-based 2D barcode together with the MSc
decoder instead of the standard DMC.
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Figure 8.18: Decoding times for a 2D barcode based on a regular LDPC code decoded with the
MSc decoder and the DMC considering successful decodings.

BUPT



BUPT



Chapter 9

Conclusion and outlook

In this thesis, a new class of 2D barcodes that is based on low-density parity-check
(LDPC) codes has been developed for the purpose of reliable object identification
in industrial environments. Original contributions have thereby been presented
regarding LDPC codes as such as well as their application to 2D barcodes. Particular
attention has been payed to the design of the code and its decoding in both cases.
In the following, the main results of this thesis are reviewed and proposals for future
work are given.

9.1 Summary of contributions

LDPC codes

• In Chapter 5, a new design method for short irregular LDPC codes has been
developed that is based on the downhill simplex (DHS) optimization, and is suited
for arbitrary channel-models.

• It has been proven that the proposed design technique yields superior decoding
performance for the additive white Gaussian noise (AWGN) channel and
for the Markov-modulated Gaussian channel (MMGC) compared to well-tried
optimization procedures.

B A short irregular LDPC code designed for an AWGN channel with the
introduced design method beats the irregular LDPC code designed in [37]
based on a simplified version of the DHS algorithm (see Section 5.2).

B A short irregular LDPC code designed for a MMGC with the proposed
optimization method beats the irregular LDPC code designed in [57] by
means of density-evolution (see Section 6.5.4).

I One should choose the design-method developed in this thesis when
considering short irregular LDPC codes.

• A new variant of estimation-decoding has been developed in Section 6.4 that
integrates a reestimation of the transition probability matrix P .

B The effectiveness of estimation-decoding has been proven for regular and
irregular LDPC codes in the case of known transition probabilities (see
Section 6.5.1).

BUPT



134 Chapter 9. Conclusion and outlook

B The advantage when using the new estimation-decoding variant in the case
of unknown transition probabilities is proved in Section 6.5.2 and 6.5.4.

I One should use the proposed enhanced estimation-decoding algorithm with
integrated reestimation of P if the transition probabilities are not known a
priori.

2D barcodes

• In Chapter 7, a class of 2D barcodes based on LDPC codes has been developed.

• In Section 7.1, an intelligent interleaver has been designed to place the LDPC
code’s symbols in the data region of the 2D barcode.

• For the interleaving, a cost-function was developed based on the geometrical
distance of the symbols in the data region and a distance measure evaluating the
symbols relation in the LDPC code’s Tanner graph (see Section 7.1.1).

B The evaluation in Section 8.3 proved an increase in error-correction
capability of 10.7 % when using the optimized interleaving compared to an
interleaving with high costs.

• In Section 7.2, a channel-model has been constructed for 2D barcodes. It
represents everything in between the embossing and the decoding of a 2D
barcode considering acquisitions in a bright and a dark field, respectively.

• The Markov-LDPC factor graph of the estimation-decoding algorithm has been
extended for the usage based on a 2D hidden Markov model (HMM) in Section
7.3.

• An algorithm called estimation-decoding in 2 dimensions (ED2D) algorithm has
been developed to operate on the extended Markov-LDPC factor graph. The ED2D
algorithm is based on estimation-decoding and the reestimation of the transition
probabilities and is explained in Section 7.3.

B In Section 8.4, the effectiveness of the ED2D algorithm that includes a
state-estimation based on the 2D HMM is proven. Compared to the decoding
without the state-estimation, an average gain of 15.2 % is obtained.

• In Section 7.4, irregular LDPC codes have been designed for the application with
2D barcodes.

B The evaluation in Section 8.5 showed that in the context of 2D barcodes, no
gain is obtained when using irregular LDPC codes instead of regular LDPC
codes.

• A test-environment as well as a test-procedure have been developed in Section
8.1 and 8.2, respectively.

• The developed LDPC-based 2D barcode has been compared with the
standard Reed-Solomon (RS)-based Data Matrix code (DMC) by means of the
test-environment (see Section 8.6).
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B The comparison in Section 8.6 proved the superiority of the 2D barcode that
has been designed in this thesis by means of LDPC codes. In the simulated
industrial environments, a gain in decoding performance of 30.8% is obtained
if applying the LDPC-based 2D barcode instead of the DMC.

I If a robust 2D barcode is required in the context of direct part mark
identification (DPMI) applications, one is advised to choose the LDPC-based
2D barcode developed in this thesis.

9.2 Proposals for future work

There are still a bunch of open questions that may be interesting to research on in the
future.

• Instead of minimizing the word error ratio (WER) when designing irregular LDPC
codes for 2D barcodes, one could include the test-environment in order to
maximize the decoding gain compared to the 2D barcode that utilizes the regular
LDPC code.

• All testings with 2D barcodes within this thesis have been made with a fixed size
of 26× 26 modules. A next step is therefore to extend the work to the application
of other sizes as well.

• One interesting question to which an answer has to be found is if the utilization
of nonbinary LDPC codes would yield an even better decoding performance.

• Considering the decoding speed, it would be favorable to find a speed-optimized
version of the ED2D algorithm.

• An idea would be to combine the great decoding speed of the MSc algorithm with
the superior error-correction capabilities of the ED2D algorithm. One could apply
the MSc algorithm first and in case of a failed decoding utilize the ED2D algorithm
in a second step for example.

• The decoding performance could be increased by means of a teach-in process.
During such a first step, the channel-model could be adapted to a specific
environment.

• One more subject to research on is the 2D barcode’s finder pattern. This is
more related to image-processing but it may also be possible to use a low-rate
LDPC code to create a finder-pattern that offers both, the possibility of finding
the 2D barcode by means of the LDPC code’s properties as well as storing some
information in the finder pattern.
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Symbol-placement sets
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Row Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 356 3 7 236 488 253 242 490 502 561 40 231 461 261 345 227 365 569 475 483 457 342 263 10
2 9 63 391 348 289 230 39 193 387 477 274 375 421 426 48 266 219 282 453 501 361 467 576 566
3 6 351 393 370 94 33 45 124 95 450 556 302 510 110 550 308 507 548 56 336 68 75 28 568
4 565 563 38 279 155 323 76 470 298 131 103 269 527 505 414 448 439 353 125 512 188 109 459 19
5 29 293 183 67 165 123 170 314 166 32 189 220 478 416 503 159 153 120 259 93 200 194 223 4
6 233 60 256 275 417 64 333 173 472 380 201 428 529 405 35 113 57 22 553 468 158 97 119 574
7 386 337 404 197 518 389 154 245 546 519 398 262 395 169 156 427 415 92 319 78 206 306 471 474
8 59 182 133 46 285 447 486 297 554 100 316 79 136 410 152 273 339 304 286 96 381 315 438 20
9 354 172 338 369 127 102 394 198 137 55 300 258 280 218 257 443 168 114 536 53 516 520 84 116
10 455 523 91 186 424 267 432 181 400 126 494 167 144 537 396 495 401 36 23 449 74 367 525 454
11 462 277 303 271 321 134 248 517 111 66 376 24 532 54 543 31 284 250 544 157 213 322 358 290
12 452 252 299 150 203 138 539 174 52 21 433 122 212 412 25 524 294 47 379 162 492 442 283 234
13 346 359 171 390 132 552 460 80 61 430 101 320 549 373 557 423 408 204 65 292 130 420 129 464
14 317 207 366 98 476 278 362 164 489 121 112 281 1 288 493 368 264 140 117 418 246 388 513 343
15 352 484 392 434 143 49 210 528 480 444 215 372 411 504 364 270 521 332 224 254 481 139 485 27
16 350 496 99 313 441 526 265 51 58 179 402 384 148 163 190 178 185 145 435 403 205 331 329 239
17 465 202 325 86 409 422 440 555 81 541 50 107 247 326 413 249 89 312 429 199 108 268 161 77
18 232 192 542 90 469 378 287 34 221 558 538 335 73 545 255 499 431 530 419 26 82 69 560 228
19 226 301 237 196 176 479 128 446 43 547 511 42 291 296 506 498 531 70 383 135 540 41 318 340
20 344 357 44 151 328 211 355 509 106 180 487 177 71 118 451 533 225 334 222 184 105 508 522 104
21 14 575 187 514 85 551 208 436 72 209 160 141 377 216 327 330 360 214 87 149 399 497 349 16
22 8 363 463 425 295 535 191 147 175 307 217 473 276 244 482 534 397 260 146 445 374 240 251 243
23 571 347 572 238 341 456 83 324 195 142 305 310 88 62 382 406 437 407 235 562 564 371 385 570
24 13 567 229 2 17 11 241 37 491 515 311 500 559 466 12 272 115 30 309 458 18 15 573 5

Table A.1: Optimized symbol-placement for a 2D barcode based on a regular LDPC code with dx = 2. The cost for this symbol-placement
according to Equation (7.3) is C(2DC) = 21077.39.
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Row Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 375 121 310 576 389 103 85 398 539 401 261 348 327 334 175 244 110 154 390 122 250 98 248 315
2 113 255 339 573 230 222 264 354 262 241 383 534 109 91 185 62 253 193 363 132 84 247 124 288
3 55 548 345 37 279 108 80 459 488 367 284 27 482 236 176 204 54 225 365 455 494 560 270 303
4 101 399 489 174 366 336 526 519 31 147 475 520 274 194 478 392 267 210 75 565 541 537 56 309
5 135 159 125 569 532 105 444 422 191 202 214 436 423 527 362 465 464 568 219 272 421 285 397 269
6 249 341 251 430 352 6 213 129 333 145 496 34 440 30 152 293 167 381 59 217 227 97 323 307
7 171 343 212 544 67 550 547 556 280 370 533 495 400 209 524 57 76 7 190 198 351 153 374 130
8 324 235 382 517 298 104 160 10 529 483 404 512 11 416 499 361 273 563 454 502 546 15 140 331
9 481 525 68 522 501 437 24 470 360 258 87 447 287 438 90 70 458 516 572 197 223 542 476 332
10 16 112 163 509 146 238 545 106 23 513 228 39 166 246 64 445 278 461 407 549 26 406 187 239
11 321 96 451 123 432 508 371 433 552 20 2 329 9 164 373 93 141 205 523 521 528 538 355 88
12 396 337 377 178 486 211 570 473 201 45 99 484 1 417 376 471 115 511 554 492 102 500 51 276
13 405 134 155 462 86 18 207 4 562 304 505 408 368 442 420 468 5 35 231 12 441 506 391 266
14 388 44 425 378 575 487 289 162 17 77 218 292 429 116 514 503 137 73 558 439 183 94 60 338
15 418 265 180 457 419 25 286 469 364 467 3 192 435 32 358 156 460 291 13 196 412 431 195 157
16 313 308 199 48 409 220 19 297 477 491 240 415 14 340 395 448 449 427 543 81 243 480 47 387
17 63 254 107 226 498 168 150 531 170 530 424 8 173 40 188 283 92 551 300 490 165 296 379 356
18 119 260 177 237 493 52 208 182 450 574 434 385 443 114 466 497 518 456 128 78 139 413 305 393
19 143 74 357 446 50 100 33 61 571 411 479 221 290 428 559 275 144 151 299 43 72 186 312 317
20 318 245 234 349 474 158 302 200 453 111 83 181 535 215 510 29 36 553 504 372 359 557 206 271
21 53 347 277 344 216 179 515 268 540 281 184 294 282 350 95 38 172 224 233 148 127 41 136 259
22 311 242 314 46 142 58 386 342 507 567 414 22 229 79 161 203 138 561 306 403 410 380 189 133
23 320 71 353 536 89 126 452 69 28 485 118 402 325 42 335 66 566 330 463 263 322 49 346 256
24 328 384 326 426 564 21 120 394 232 472 82 65 169 131 149 301 295 257 319 369 555 252 316 117

Table A.2: Optimized symbol-placement for a 2D barcode based on a regular LDPC code with dx = 3. The cost for this symbol-placement
according to Equation (7.3) is C(2DC) = 20551.46.
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Row Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 523 443 449 297 517 372 225 446 224 300 519 448 3 6 5 4 526 450 10 386 451 306 11 1
2 233 215 514 445 201 370 376 518 373 238 520 236 521 7 525 22 308 27 246 12 453 19 529 2
3 515 516 216 197 293 442 202 211 191 210 522 221 235 8 9 14 454 37 455 16 13 28 25 387
4 231 371 196 188 439 218 207 299 237 377 378 203 240 527 381 456 462 18 20 385 41 24 30 459
5 441 513 193 368 189 294 217 214 447 208 302 296 524 324 384 23 31 532 383 17 29 382 460 530
6 286 190 192 200 198 194 292 199 295 220 379 243 528 244 457 32 21 389 464 461 458 303 39 531
7 182 440 512 438 511 205 204 241 219 206 230 304 380 388 301 15 36 535 26 33 537 38 58 318
8 290 289 508 223 226 369 298 209 234 195 444 239 245 391 42 533 55 40 538 34 321 49 305 46
9 291 374 362 177 176 366 288 213 232 336 315 375 312 319 463 534 467 59 394 35 43 540 542 392
10 435 183 165 506 510 222 174 363 229 367 242 393 452 307 543 390 63 323 56 64 536 48 466 395
11 184 166 507 172 179 509 133 169 163 187 124 313 247 322 402 60 47 68 53 539 465 325 326 50
12 181 185 574 434 283 274 212 171 175 140 342 328 403 344 401 311 337 250 54 468 545 51 52 44
13 437 285 576 168 164 284 178 154 279 345 272 334 117 327 316 398 314 80 400 67 66 399 45 62
14 173 360 502 167 149 186 431 573 259 418 421 320 248 396 310 551 254 338 70 257 110 65 471 544
15 501 436 432 282 504 150 159 130 494 425 266 350 409 262 332 476 78 71 405 82 474 546 470 330
16 228 365 575 498 144 426 343 571 570 422 121 331 125 99 98 309 552 335 69 553 256 252 541 61
17 170 359 180 566 160 569 572 354 277 148 414 485 120 412 484 550 87 548 249 473 83 407 258 76
18 227 280 500 361 158 134 349 564 138 267 139 118 111 100 265 481 95 88 79 81 72 260 333 74
19 161 430 157 427 145 143 567 137 129 356 123 119 486 346 263 103 109 556 96 77 339 329 397 57
20 505 364 146 281 152 495 352 270 493 116 264 351 560 563 255 105 104 94 340 406 73 404 75 472
21 503 497 358 141 142 568 153 278 136 112 490 128 127 559 102 555 557 558 477 253 475 408 549 469
22 429 151 357 162 147 491 126 424 135 268 115 488 108 113 417 101 413 93 90 92 86 480 479 341
23 433 271 156 428 131 423 276 565 419 420 353 122 489 483 416 91 478 97 89 415 482 261 84 85
24 499 287 496 155 355 492 132 273 348 562 275 561 114 347 269 251 107 411 554 487 106 547 410 317

Table A.3: Degraded symbol-placement for a 2D barcode based on a regular LDPC code with dx = 3. The cost for this symbol-placement
according to Equation (7.3) is C(2DC) = 24761.20.
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Row Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 569 563 534 533 526 528 522 487 459 425 392 440 462 480 502 506 503 527 518 514 513 523 575 576
2 574 547 532 525 515 461 380 416 419 351 358 370 315 426 424 336 394 471 504 500 517 516 536 573
3 537 544 529 507 472 245 199 280 241 331 356 261 357 268 385 219 198 396 410 489 482 501 520 551
4 542 538 493 477 401 253 243 256 306 252 381 284 372 263 196 192 188 251 387 242 390 509 510 531
5 530 481 414 190 301 285 345 207 388 53 189 141 220 221 307 275 382 386 341 254 324 490 498 519
6 535 444 389 423 222 203 335 290 126 272 286 19 54 86 76 88 359 239 278 348 244 237 497 505
7 524 235 259 367 333 255 177 89 173 46 105 124 80 176 152 135 9 71 214 257 201 308 433 492
8 451 434 205 332 208 185 94 77 123 15 79 153 45 90 83 167 352 106 279 314 346 228 250 495
9 474 312 384 303 383 159 20 168 139 57 18 33 179 99 4 85 101 58 11 194 204 375 230 439
10 407 411 334 232 193 127 6 125 36 132 13 8 170 7 163 149 160 2 164 283 267 316 234 485
11 406 355 258 295 281 131 129 38 103 158 109 148 49 72 113 130 51 93 73 155 229 291 299 226
12 448 293 183 289 215 32 172 143 165 178 119 1 12 55 87 111 10 174 96 81 213 209 195 417
13 467 402 309 231 368 48 91 27 122 30 50 34 104 29 14 59 65 202 154 67 264 296 371 445
14 405 409 302 340 217 41 128 114 162 37 16 60 166 108 26 151 134 40 3 84 342 320 395 437
15 412 236 343 377 327 133 95 171 17 56 121 22 175 112 97 117 142 82 115 187 326 224 374 483
16 470 246 339 304 200 186 47 102 146 107 157 140 43 169 31 120 25 78 92 265 364 353 422 469
17 521 435 233 191 294 274 63 138 39 118 110 35 24 61 23 137 145 70 277 379 328 362 393 473
18 539 421 273 378 238 262 180 44 144 5 136 116 68 147 161 74 69 218 216 225 181 247 457 450
19 550 476 400 305 311 210 300 211 66 75 100 42 21 52 150 98 156 287 297 376 288 313 466 508
20 548 540 430 432 347 260 373 330 62 64 28 366 338 282 350 361 266 318 337 182 292 404 484 541
21 553 549 397 447 398 206 325 184 271 269 197 360 240 249 310 323 319 369 212 321 458 464 512 570
22 554 555 545 441 454 413 431 363 428 317 270 329 365 344 354 276 322 248 399 418 455 460 543 571
23 560 556 557 491 449 486 429 427 391 408 227 436 349 403 298 223 453 415 479 478 456 559 572 568
24 564 561 558 552 546 496 438 488 475 468 452 420 463 442 446 465 511 443 494 499 562 567 565 566

Table A.4: Optimized symbol-placement for a 2D barcode based on an irregular LDPC code. The irregular LDPC code was designed based
on the 2-state channel-model in Figure 7.16. The maximum degree was thereby set to dmaxx = 15. The cost for this symbol-placement

according to Equation (7.3) is C(2DC) = 14343.14.
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Row Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 567 570 520 557 538 493 519 454 449 474 457 407 438 436 451 467 452 466 548 552 555 553 565 576
2 523 524 502 505 510 470 244 243 248 319 268 276 333 421 425 423 429 453 478 465 559 561 547 564
3 522 529 535 460 469 441 265 321 250 223 213 314 346 293 267 344 315 328 394 471 542 540 562 558
4 517 528 512 414 285 252 226 302 318 379 367 298 212 264 296 380 352 299 312 396 397 482 544 556
5 530 527 475 432 374 288 317 387 84 154 89 149 93 187 39 365 384 225 291 353 437 389 491 554
6 537 513 476 409 224 337 112 182 14 53 86 8 157 58 117 97 128 356 217 303 228 433 506 541
7 525 455 428 334 338 215 165 82 160 124 180 30 4 163 95 104 3 23 118 287 355 399 481 518
8 498 426 375 233 341 368 191 114 9 44 48 31 72 122 42 186 107 125 21 339 322 419 413 483
9 473 440 237 332 111 37 56 131 136 92 188 60 195 204 2 109 98 173 99 277 294 336 238 496
10 412 240 388 271 184 15 178 45 206 54 74 120 19 106 55 152 5 179 130 66 260 357 430 459
11 443 427 289 261 85 49 143 65 18 100 181 126 197 113 103 172 12 43 26 79 350 290 227 463
12 410 232 329 310 183 153 77 162 209 134 96 139 17 202 133 71 80 67 155 198 378 251 349 435
13 400 404 279 345 161 13 62 193 35 6 68 78 1 94 36 150 91 7 119 20 326 323 434 398
14 390 385 219 210 24 177 148 175 142 57 164 41 76 83 199 208 135 158 116 203 331 364 330 444
15 422 377 221 275 194 11 28 73 59 170 46 207 16 123 25 108 75 168 144 366 327 256 266 446
16 418 447 235 325 348 38 196 129 32 200 140 64 81 167 169 190 141 101 50 360 358 230 262 439
17 472 402 245 241 263 371 166 29 69 87 174 159 185 61 105 88 40 127 102 335 362 376 431 503
18 479 416 246 295 284 234 151 63 90 115 205 189 52 10 27 22 47 110 156 306 257 342 486 468
19 536 403 401 242 370 281 171 138 51 176 34 121 201 145 33 70 137 297 311 247 270 363 456 504
20 516 458 406 316 372 320 258 383 214 272 313 132 146 192 147 359 307 324 249 253 373 461 501 514
21 546 531 488 462 304 292 220 343 216 381 300 351 308 369 347 386 273 282 255 382 484 511 490 560
22 568 550 526 508 392 424 236 211 218 283 229 301 278 231 361 340 239 269 420 489 495 515 521 572
23 551 532 533 539 477 464 448 274 309 354 280 259 305 286 222 254 445 411 480 500 509 492 569 566
24 575 571 549 543 507 534 499 391 450 405 408 417 395 415 442 393 485 487 497 494 563 545 574 573

Table A.5: Optimized symbol-placement for a 2D barcode based on an irregular LDPC code. The irregular LDPC code was designed based
on the 2-state channel-model in Figure 7.16. The maximum degree was thereby set to dmaxx = 10. The cost for this symbol-placement

according to Equation (7.3) is C(2DC) = 11926.69.
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Row Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 574 572 570 522 531 413 567 548 489 465 564 488 421 447 376 550 378 380 474 390 425 436 403 576
2 573 470 515 535 408 566 521 404 568 369 257 311 338 328 271 501 445 532 464 481 394 476 437 428
3 575 504 397 519 402 545 371 291 318 259 298 335 286 279 341 284 288 362 538 414 411 478 537 422
4 479 562 552 484 459 336 258 293 273 192 178 14 30 245 56 303 285 316 539 463 494 540 412 440
5 388 506 407 370 355 305 302 6 167 11 41 231 229 19 15 189 70 294 283 296 554 524 502 426
6 374 526 420 330 310 340 57 237 172 116 197 121 148 139 105 31 37 235 40 317 365 503 528 472
7 446 401 499 254 327 87 98 3 135 168 186 111 71 48 163 130 16 43 65 306 334 527 418 434
8 466 415 265 301 349 227 239 47 155 83 182 99 159 198 243 89 185 125 133 210 309 289 492 439
9 541 560 313 333 179 209 169 147 177 61 36 5 76 120 181 151 80 129 106 247 260 297 452 419
10 458 410 347 292 63 22 34 101 23 24 154 202 66 145 158 204 222 104 244 238 124 324 546 525
11 529 277 272 39 234 187 7 122 191 84 38 184 86 2 102 176 26 82 10 173 190 281 416 482
12 454 339 326 152 35 183 94 53 219 58 77 112 194 251 72 213 166 60 44 196 55 351 361 423
13 513 353 350 221 25 97 127 134 149 126 4 142 1 150 242 45 236 136 90 223 73 343 348 544
14 497 262 280 62 85 188 42 171 205 141 212 157 137 29 81 107 214 132 64 17 27 360 363 480
15 510 496 253 358 246 51 140 216 52 180 33 175 203 160 218 199 211 143 146 78 74 290 551 523
16 509 438 287 354 195 117 206 193 88 225 110 100 144 103 113 161 75 156 79 20 307 345 557 514
17 565 453 373 263 8 226 220 91 95 164 50 240 241 162 228 109 46 93 207 68 314 331 553 561
18 430 443 455 282 337 248 13 224 201 128 170 208 230 96 174 131 250 252 233 359 261 543 449 563
19 500 435 495 505 268 300 21 114 28 92 200 232 165 217 49 32 115 18 270 267 367 533 508 433
20 569 512 516 405 332 325 295 54 249 118 138 12 69 153 119 108 67 264 278 255 556 536 396 507
21 375 442 468 460 448 274 356 352 304 269 59 215 123 357 9 344 322 299 417 542 462 534 400 379
22 385 382 450 456 467 457 368 275 319 342 320 312 329 266 308 346 323 364 469 547 555 520 471 429
23 387 477 475 386 398 485 487 424 511 399 366 321 276 315 256 372 377 558 461 441 498 384 432 571
24 383 491 431 493 393 451 427 559 517 389 391 549 530 406 409 490 395 483 473 444 392 381 518 486

Table A.6: Optimized symbol-placement for a 2D barcode based on an irregular LDPC code. The irregular LDPC code was designed based on
the 2-state channel-model in Figure 7.16. The maximum degree was thereby set to dmaxx = 6. The cost for this symbol-placement according

to Equation (7.3) is C(2DC) = 24898.11.
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Row Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 294 573 339 569 371 440 367 276 494 287 498 457 518 564 286 503 301 450 297 361 453 508 537 281
2 556 357 354 435 403 470 279 432 406 483 373 425 388 456 420 496 532 330 342 542 514 404 343 399
3 340 298 442 364 566 555 285 531 146 147 238 427 466 484 541 368 548 471 458 375 395 299 501 516
4 439 359 312 313 355 305 434 241 232 208 198 214 265 223 226 240 436 455 374 314 379 280 344 522
5 394 278 431 350 416 550 182 246 372 263 155 255 188 203 249 200 253 158 421 412 557 376 507 275
6 349 575 338 417 428 306 160 213 245 80 165 33 17 32 102 217 173 268 402 559 356 445 316 454
7 415 389 317 510 386 181 216 201 207 101 55 50 100 9 54 18 164 193 259 360 426 449 479 461
8 351 331 423 408 546 224 256 45 81 77 125 105 62 70 126 266 35 187 247 544 242 472 492 293
9 521 474 366 536 195 218 30 56 94 15 111 29 116 8 89 117 109 46 179 152 382 437 515 363
10 478 295 485 237 171 257 63 40 27 115 69 65 7 136 22 71 61 60 75 221 272 324 500 385
11 397 377 438 233 209 250 66 43 139 99 129 39 76 11 106 10 12 34 103 162 149 365 288 277
12 509 282 477 153 271 112 84 258 133 110 73 97 119 130 36 21 87 16 262 244 215 512 311 352
13 346 369 196 222 174 90 26 3 67 14 122 1 44 104 74 135 142 72 197 178 190 418 430 447
14 505 307 480 154 189 252 57 107 5 25 140 28 128 131 137 24 13 19 219 192 144 370 325 393
15 513 571 419 176 210 243 53 79 38 134 114 49 58 124 78 120 88 92 261 229 235 381 413 535
16 491 487 353 211 183 143 4 113 118 59 68 64 93 96 127 48 47 98 177 228 167 296 506 302
17 574 407 429 422 236 212 157 85 52 6 121 2 20 37 42 95 23 267 166 150 433 320 321 488
18 337 465 328 323 231 248 184 270 31 83 86 138 132 141 108 51 205 199 254 225 443 464 553 332
19 539 441 481 424 460 562 175 269 260 185 41 91 123 82 273 172 194 230 545 463 383 462 467 347
20 476 401 329 410 411 547 234 156 204 251 274 145 206 159 264 239 163 151 168 529 378 540 576 409
21 326 291 473 489 486 523 527 322 384 202 170 180 161 191 148 227 169 526 495 414 520 519 551 341
22 392 327 362 504 333 517 493 310 304 387 309 220 186 558 549 475 300 444 552 528 502 390 405 490
23 446 554 511 290 567 459 538 335 524 497 482 468 315 319 533 318 398 530 380 570 358 348 534 336
24 283 396 499 525 303 452 345 469 284 308 334 292 561 400 391 451 543 565 289 568 563 560 572 448

Table A.7: Optimized symbol-placement for a 2D barcode based on an irregular LDPC code. The irregular LDPC code was designed based on
the 2-state channel-model in Figure 7.16. The maximum degree was thereby set to dmaxx = 4. The cost for this symbol-placement according

to Equation (7.3) is C(2DC) = 25006.36.
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Row Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 389 316 393 247 116 572 160 345 49 75 361 159 133 52 273 54 562 317 260 26 403 120 253 464
2 83 164 343 263 231 567 411 18 135 542 332 220 402 140 348 204 252 568 280 225 202 89 261 335
3 327 563 46 277 250 186 53 414 290 237 121 508 459 193 310 468 423 494 242 320 248 112 325 258
4 66 382 486 390 308 350 298 303 223 132 545 80 110 71 206 531 304 155 87 283 500 409 413 214
5 323 337 32 426 184 415 27 475 226 360 532 289 404 487 192 450 228 21 386 92 256 368 533 45
6 170 113 162 119 419 70 233 452 524 510 397 469 291 458 429 59 359 525 425 384 330 352 20 410
7 331 14 292 472 428 379 570 38 479 154 511 142 527 358 573 137 370 364 484 535 205 239 349 396
8 466 199 259 526 324 366 208 173 234 60 275 136 509 518 401 530 515 151 203 556 240 446 222 95
9 33 478 268 514 22 211 90 482 507 297 315 519 12 560 521 74 182 497 371 174 88 540 148 249
10 128 97 387 288 56 434 274 19 517 395 10 498 34 69 127 516 287 536 201 346 81 369 339 130
11 276 78 28 440 163 394 157 481 485 431 520 3 6 139 4 207 319 534 453 569 219 571 493 141
12 270 505 499 451 64 264 227 523 554 8 172 191 11 209 7 122 444 165 175 138 176 198 47 169
13 267 31 557 564 491 460 189 461 473 443 5 9 457 1 238 93 255 353 309 123 405 232 421 427
14 114 347 40 565 463 407 305 107 430 417 496 447 438 105 2 218 322 442 344 144 550 293 312 109
15 131 152 213 188 183 374 278 372 149 549 62 439 433 445 566 224 476 221 48 474 385 576 455 314
16 41 15 61 418 153 492 166 301 529 299 104 465 547 281 376 85 284 147 102 156 25 373 326 43
17 55 307 124 378 29 477 229 558 30 528 67 436 448 490 483 512 68 65 456 161 51 181 377 82
18 266 241 101 73 420 295 217 367 575 462 546 504 406 422 177 180 195 185 286 454 489 296 272 76
19 342 57 179 150 13 194 471 365 354 362 190 441 167 522 357 145 235 210 513 495 251 435 282 257
20 341 432 36 42 294 108 543 17 380 537 143 44 488 302 561 539 212 125 77 306 399 321 338 134
21 126 197 334 503 200 375 351 236 196 23 158 381 470 215 544 363 16 502 50 171 416 340 244 98
22 168 328 99 91 449 243 246 37 412 383 24 552 541 501 106 300 480 146 574 467 356 506 254 84
23 333 400 72 129 285 559 408 555 424 178 216 355 58 391 548 269 103 265 118 230 388 318 437 538
24 271 63 115 279 35 96 336 245 117 94 39 111 79 329 187 551 398 553 100 313 86 311 262 392

Table A.8: Optimized symbol-placement for a 2D barcode based on an irregular LDPC code. The irregular LDPC code was designed based on
the 2-state channel-model in Figure 7.16. The maximum degree was thereby set to dmaxx = 3. The cost for this symbol-placement according

to Equation (7.3) is C(2DC) = 20434.43.
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