### INSTITUTUL POLITEHNIC "TRAIAN VUIA" TIMISOARA FACULTATEA DE TEHNOLOGIE CHIMICA

Ing. Rozalia Ciopor TEZA DE DOCTORAT

### STUDIUL PE MODEL AL CORELATIEI STRUCTURA - PROPRIETATI FOTOELASTICE, UTILIZIND PRODUSE DE POLIMERIZARE - CO-POLIMERI ACRILICI

BIBLIOTECA CENTRALĂ UNIVERSITATEA "POLITENNICA" TIMIȘOARA

> Conducător științific Prof. Dr. Doc. Ion Nanu

INSTITUTUL POLITEHNIC TIMIŞOARA BIBLIDILLA CENTR Volumul Nr Dulas 3

BUPT

198**0** 

### CUPRINS

,

- I -

| 1. Introducere                                | 1  |  |  |  |
|-----------------------------------------------|----|--|--|--|
| 2. Unele aspecte privind fenomenul de fotoe-  |    |  |  |  |
| lasticitate                                   | 3  |  |  |  |
| 2.1. Legile fotoelasticității                 | 4  |  |  |  |
| 2.2. Constante fotoelastice                   | 6  |  |  |  |
| 2.3. Izocline și izocromate                   | 7  |  |  |  |
| 2.3.1. Izocline                               | 7  |  |  |  |
| 2.3.2. Izocromate                             | 8  |  |  |  |
| 3. Unele probleme prvind materialele fotoe-   |    |  |  |  |
| lastice                                       | 11 |  |  |  |
| 3.1. Materiale plastice și posibilități       |    |  |  |  |
| de cercetare a tensiunilor prin fo-           |    |  |  |  |
| toelasticitate                                | 11 |  |  |  |
| 3.2. Structura unor polimeri și proprie-      |    |  |  |  |
| tățile lor fotoelastice                       | 20 |  |  |  |
| 4. Unele considerații privind copolimerizarea |    |  |  |  |
| esterilor acrilici                            | 30 |  |  |  |
| 4.1. Aspecte privind mecanismul și cineti-    |    |  |  |  |
| ca copolimerizării tridimensionale            |    |  |  |  |
| (reticulante)                                 | 31 |  |  |  |
| 4.1.1. Mecanismul și ecuația copoli-          |    |  |  |  |
| merizării sistemelor vinil -                  |    |  |  |  |
| divinil                                       | 31 |  |  |  |
| 4.1.2. Modelul formării rețelelor tri-        |    |  |  |  |
| dimensionale                                  | 35 |  |  |  |
| •                                             |    |  |  |  |



.

.

| 4.1.3. Unele particularități cinetice      | •  |
|--------------------------------------------|----|
| la copolimerizarea tridimensi-             |    |
| onală                                      | 39 |
| 4.2. Densitate de reticulare. Eficiența    | •  |
| reticulării                                | 43 |
| 4.2.1. Calculul densității de reticu-      |    |
| lare                                       | 44 |
| 4.2.2. Eficiența reticulării               | 45 |
| 4.3. Posibilități de investigare a copoli- |    |
| merilor reticulați                         | 51 |
| 4.3.1. Spectrometria IR                    | 51 |
| 4.3.2. RMN de înaltă rezoluție a poli-     |    |
| merilor reticulați                         | 54 |
| 4.3.3. Studiul prin RES a polimeriză-      |    |
| rii tridimensionale                        | 55 |
| 4.4. Aspecte privind comportarea fizico -  |    |
| chimică, mecanică și termică a copo-       |    |
| limerilor metacrilici reticulați.          |    |
| Relație structură - proprietăți            | 57 |
| Partea experimentală                       | 61 |
| 5. Tema și programul lucrării              | 61 |
| 6. Obținerea și purificarea monomerilor și |    |
| auxiliarilor pentru sinteza copolimerilor  | 71 |
| 6.1. Purificarea și caracterizarea monome- |    |
| rilor industriali folosiți                 | 71 |
| 6.1.1. Purificarea MM                      | 71 |
| 6.1.2. Purificarea S                       | 71 |
| 6.1.3. Caracteristicile monomerilor        |    |
| industriali folosiți                       | 72 |
| 6.2. Sinteza și purificarea unor monomeri  |    |
| metacrilici tetrafunoționali               | 73 |

.

T-SW-

•

| - III -                                           |    |
|---------------------------------------------------|----|
| 6.2.1. Sinteza unui monomer alifatic:             |    |
| dimetacrilatul de etilen glicol                   | 73 |
| 6.2.1.1. Modul de lucru                           | 76 |
| 6.2.1.2. Caracteristicile DMEG                    | 76 |
| 6.2.2. Sinteza monomerilor aromatici -            |    |
| DMH şi DMD                                        | 79 |
| 6.2.2.1. Modul de lucru                           | 80 |
| 6.2.2.1.1. Obținerea cloru-                       |    |
| rii de metacriloil                                | 80 |
| 6.2.2.1.2. Sinteza DMH și DMD                     | 80 |
| 6.2.2.2. Caracteristicile DMH și                  |    |
| DMD                                               | 80 |
| 6.2.3. Sinteza monomerilor alifatic -             |    |
| aromatici - DMHDEG și DMD 2,2                     | 81 |
| 6.2.3.1. Modul de lucru                           | 83 |
| 6.2.3.1.1. Purificarea DMHDEG                     | 84 |
| 6.2.3.1.2. Purificarea DMD 22                     | 85 |
| 6.2.3.2. Caracterizarea DMHDEG și                 |    |
| DMD 22                                            | 85 |
| 6.3. Purificarea inițiatorilor de copoli-         |    |
| merizare                                          | 87 |
| 6.3.1. Purificarea POB                            | 87 |
| 6.3.2. Purificarea AIBN                           | 87 |
| 6.4. Obținerea soluției de PMM                    | 88 |
| 7. Obținerea copolimerilor MM cu diverși co-      |    |
| monomeri prin polimerisarea în masă               | 89 |
| 7.1. Programul de sintesă al copolimeri-          |    |
| lor                                               | 91 |
| 7.1.1. Comonomeri, auxiliari, materiale           |    |
| și apar <b>atură</b> utiliza <b>te în sinte</b> - |    |
| za copolimerilor                                  | 91 |

TTT

.

.

•

| - IV -                                   |     |  |  |  |
|------------------------------------------|-----|--|--|--|
| 7.1.1.1. Monomeri, auxiliari             | 91  |  |  |  |
| 7.1.1.2. Materilae utilizate pentru      |     |  |  |  |
| confecționarea casetelor                 | 93  |  |  |  |
| 7.1.1.3. Aparatur <del>ă</del>           | 93  |  |  |  |
| 7.1.2. Modul de lucru. Condiții de copo- | -   |  |  |  |
| limerizare                               | 93  |  |  |  |
| 7.1.2.1. Pregătirea casetelor            | 93  |  |  |  |
| 7.1.2.2. Compozițiile de copolime-       |     |  |  |  |
| rizare pentru varinata I                 |     |  |  |  |
| și a II-a                                | 94  |  |  |  |
| 7.1.2.3. Pregătirea amestecurilor        |     |  |  |  |
| de copolimerizare                        | 96  |  |  |  |
| 7.1.2.4. Copolimerizarea                 | 96  |  |  |  |
| 7.1.3. Caracterizarea copolimerilor      | 98  |  |  |  |
| 7.1.4. Rezultate și discuții asupra sin- |     |  |  |  |
| tezei copolimerilor                      | 99  |  |  |  |
| 7.1.4.1. Despre tehnica obținerii        |     |  |  |  |
| plăcilor de polimeri                     | 99  |  |  |  |
| 7.1.4.1.1. Sticle                        | 99  |  |  |  |
| 7.1.4.1.2. Garnituri                     | 99  |  |  |  |
| 7.1.4.1.3. Stabilirea condiții-          |     |  |  |  |
| lor corespunzătoare                      |     |  |  |  |
| de transfer termic                       | 100 |  |  |  |
| 7.1.4.2. Natura și concentrația i-       |     |  |  |  |
| nițiatorului                             | 101 |  |  |  |
| 7.1.4.1. Regimul termic funcție de       |     |  |  |  |
| concentrația comonomerilor               | 102 |  |  |  |
| 7.1.4.4. Rezultate și discuții pri-      |     |  |  |  |
| vind concentrația comono-                |     |  |  |  |
| merilor din copolimerii ob-              |     |  |  |  |
| ținuți prin varianta I și                |     |  |  |  |
| a II-a                                   | 102 |  |  |  |



•

Ŧ

,

-

| - V -                                              |             |
|----------------------------------------------------|-------------|
| 7.1.4.5. Rezultate și discuții privind             |             |
| caracterizarea copolimerilor                       | 104         |
| 7.2. Concluzii                                     | 111         |
| 8. Studiul proprietăților fotoelastice ale copoli- |             |
| merilor MM cu comonomerii propuși                  | 112         |
| 8.1. Aparatura utilizată în studiile fotoelas-     |             |
| tice                                               | 113         |
| 8.1.1. Polariscopul                                | 113         |
| 8.1.2. Epruvete                                    | 114         |
| 8.1.3. Dispozitiv de încerecare                    | 114         |
| 8.2. Modul de lucru și principiul de calcul        | 114         |
| 8.3. Varianta I. (Studiul comportării fotoelas-    |             |
| <b>tice al co</b> polimerilor MM obținuți prin co- |             |
| polimerizarea directă                              | 117         |
| 8.3.1. Influența naturii comonomerului             | 119         |
| 8.3.1.1. Rezultate și discuții                     | 119         |
| 8.3.1.2. Concluzii parțiale                        | 123         |
| 8.3.2. Influența concentrațiai comonomeru-         |             |
| lui                                                | 124         |
| 8.3.2.1. Rezultate și discuții                     | 124         |
| 8.3.2.2. Concluzii parțiale                        | 128         |
| 8.4. Varianta a II-a. Comportarea fotoelastică     |             |
| a copolimerilor MM obținuți în prezență            |             |
| de PMM ~                                           | 128         |
| 8.4.1. Influența naturii comonomerului             | 129         |
| 8.4.1.1. Resultate și discuții                     | 12 <b>9</b> |
| 8.4.1.2. Concluzii parțiale                        | 135         |
| 8.4.2. Influența concentrației comonome-           |             |
| rului                                              | 135         |
| 8.4.2.1. Rezultate și discuții                     | 136         |
| 8.4.2.2. Concluzii parțiale                        | 139         |

İ

|              | 8.5. Constantele fotoelastice ale copolimerilor |     |
|--------------|-------------------------------------------------|-----|
|              | MM obținuți prin varianta I și a II-a           | 140 |
|              | 8.5.1. Rezultate și discuții privind cons-      |     |
|              | tantele fotoelastice ale copolimeri-            |     |
|              | lor obținuți prin varianta I                    | 140 |
|              | 8.5.2. Rezultate și discuții privind cons-      |     |
|              | tantele fotoelastice ale copolimerilor          |     |
|              | obținuți prin varianta a II-a                   | 148 |
|              | 8.5.3. Concluzii parțiale                       | 155 |
|              | 8.6. Observații privind tensionarea plăcilor    |     |
|              | în sinteză și la prelucrare, comportarea        |     |
|              | sub tensiune și efectul de margine al co-       |     |
|              | polimerilor MM obținuți prin varianta I și      |     |
|              | a II-a                                          | 156 |
| 9.           | Determinarea unor proprietăți optice, termice   |     |
|              | și mecanice ale copolimerilor obținuți prin va- |     |
|              | rianta I și a II-a                              | 158 |
|              | 9.1. Considerații 'asupra unor proprietăți op-  |     |
|              | tice ale copolimerilor                          | 158 |
|              | 9.1.1. Determinări privind transmisia lumi-     |     |
|              | nii                                             | 158 |
|              | 9.1.1.1. Aparatură, materiale, metode           | 159 |
|              | 9.1.1.2. Rezultate și discuții pentru           |     |
|              | . copolimerii obținuți prin va-                 |     |
|              | rianta I                                        | 159 |
|              | 9.1.1.3. Rezultate și discuții pentru           |     |
|              | copolimerii obținuți prin va-                   |     |
|              | rianta a II-a                                   | 166 |
|              | 9.1.1.4. Determinări privind transmisia         |     |
| <del>.</del> | globală a copolimerilor obținu-                 |     |
|              | ți prin varianta I și a II-a                    | 173 |

ė

•

.

| - VII -                                           |             |  |  |
|---------------------------------------------------|-------------|--|--|
| 9.1.2. Determinări ale indicilor de refrac-       |             |  |  |
| ție ai copolimerilor MM obținuți                  |             |  |  |
| prin varianta I și a II-a                         | 177         |  |  |
| 9.1.2.1. Rezultate și discuții                    | 177         |  |  |
| 9.1.3. Concluzii parțiale                         | 178         |  |  |
| 9.2. Comportarea copolimerilor MM la acțiunea     |             |  |  |
| termică și termomecanică                          | 179         |  |  |
| 9.2.1. Stabilitatea termică Vicat pentru co-      |             |  |  |
| polimerii obținuți prin varianta I și             |             |  |  |
| a II-a                                            | 179         |  |  |
| 9.2.2. Analiza termică a copolimerilor MM         |             |  |  |
| obținuți prin varianta I                          | 182         |  |  |
| 9.2.2.1. Materiale, aparatură, metodă             | 182         |  |  |
| 9.2.2.2. Rezultate și discuții                    | 182         |  |  |
| 9.2.3. Concluzii parțiale                         | 187         |  |  |
| 9.3. Unele proprietăți mecanice ale copolimerilor |             |  |  |
| obținuți prin varianta I și a II-a                |             |  |  |
| 9.3.1. Comportarea la tracțiune a copolime-       |             |  |  |
| rilor - rezistența la rupere, alun-               |             |  |  |
| girea la rupere și modulul de elastic:            | i-          |  |  |
| tate                                              | 188         |  |  |
| 9.3.1.1. Materiale, aparatură, mod de             |             |  |  |
| lucru                                             | 18 <b>8</b> |  |  |
| 9.3.1.2. Resultate și discuții                    | 189         |  |  |
| 9.3.2. Duritatea copolimerilor MM obținuți        |             |  |  |
| prin varianta I și a II-a                         | 192         |  |  |
| 9.3.2.1. Materiale, aparatură, metode             | 192         |  |  |
| 9.3.2.2. Resultate și discuții                    | 192         |  |  |
| 9.3.3. Conclusii parțiale                         | 194         |  |  |
| 10. Conclusii                                     |             |  |  |
| Bibliografie                                      |             |  |  |
| Lista tabelelor și figurilor                      |             |  |  |

i

,

Ì

#### LISTA PRESCURTARILOR

- metacrilat de metil MM - stiren 8 DMEG - dimetacrilat de etilen glicol - dimetacrilat de dian DMD DAD - diacrilat de dian - dimetacrilat de hidrochinon dietilen glicol DMHDBG DMD 22 - dimetacrilat de dianol 22 - dialil ftalat DAP DVB - divinil benzen - dimetacrilat de tetraetilen glicol DMTEG MMEG - monometacrilat de etilen glicol POB - peroxid de benzoil POL - peroxid de lauroil - azodiizobutironitril AIBN DOP - dioctilftalat PMM - polimetacrilat de metil PVC - policlorură de vinil PEN - poliesteri nesaturați C-DMEG-2,5,10 - copolimert MM cu DMEG în proporție de 2,5,10% greutate obținuți prin varianta I C-DMH-2,5,10 - copolimeri MM cu DMH în proporție de 2,5,10% greutate obținuți prin varianta I G-DMD-2,5,10 - copolimeri MM cu DMD în proporție de 2,5,10% greutate obținuți prin varianta I C-DMHDEG-2,5,10 - copolimeri MM cu DMHDEG în proporție de 2,5,10%

greutate obținuți prin varianta I

- C-DMD 22-2,5,10 copolimeri ai MM cu DMD 22 în proporție de 2,5, 10% greutate obținuți prin varianta I
- C-DAP-2,5,10 copolimeri MM cu DAP în proporție de 2,5,10% greutate obținuți prin varianta I
- C-DVB-2,5,10 copolimeri MM cu DVB în proporție de 2,5,10% greutate obținuți prin varianta I
- C-S-2,5,10 copolimeri MM cu S în proporție de 2,5,10% greutate obținuți prin varianta I
- C-DMEG-2P,5P,10P copolimeri MM cu DMEG în proporșie de 2,5,10% greutate obținuți prin varianta a II-a
- C-DMH-2P,5P,10P copolimeri MM cu DMH în proporție de 2,5,10% greutate obținuți prin varianta a II-a
- C-DMD-2P,5P,10P copolimeri MM cu DMD în proporție de 2,5,10% greutate obținuți prin varianta a II-a
- C-DMHDEG-2P,4P,10P copolimeri MM cu DMHDEG în proporție de 2,5,10% greutate obținuți prin varianta a II-a
- C-DMD 22-2P,5P,10P copolimeri MM cu DMD 22 în proporție de 2,5, 10% greutate obținuți prin varianta a II-a
- C-DAP-2P,5P,10P copolimeri MM cu DAP în proporție de 2,5,10% greutate obținuți prin varianta a II-a
- C-DVB-2P,5P,10P copolimeri MM cu DVB în proporție de 2,5,10% greutate obținuți prin varianta a II-a
- O-S-2P,5P,1OP copolimeri MM cu S în proporție de 2,5,10% greutate obținuți prin varianta a II-a
- P-DMH polimetacrilat de hidrochinonă
- P-DMHDEG polimetacrilat de hidrochinondietilen glicol
- P-DMD polimetacrilat de dian
- P-DMD 22 polimetacrilat de dianol 22
- P-DMEG polimetacrilat de etilen glicol
  - Co' (sau 5) constanta fotoelastică "improprie" a materialului;

sau pentru simplificare, constanta fotoelastică a materialului; sau valoarea benzii materialului în:

$$\frac{kg}{cm k}$$
  
k - ordin de franjă, sau - izocromata de anumit ordin
  
 $\sigma_{0}$  - valoarea benzii modelului în:  $\frac{kg}{cm^{2} \cdot k}$ 
  
B - modul de elasticitate în:  $\frac{kg}{cm^{2}}$ 
  
 $\lambda$  - lungime de undă în: nm
  
A - absorbția
  
T - transmisia în: %
  
 $\sigma_{0}$  - factor global de transmisie a luminii albe în: %
  
 $n$  - indice de refracție

--., e

<u>,</u>

- X -

.

•

. •

#### LISTA FIGURILOR SI A TABELELOR

Fig.l.Reprezentarea constructivă schematică a polariscopului plan.

Fig.2.Reprezentarea constructivă schematică a polariscopului circular.

Fig.3.Variația proprietăților fotoelastice pentru Araldite 6020 în funcție de conținutul de anhidridă ftalică.

Fig.4.Variația unor proprietăți fotoelastice a rășinilor: Araldite 6020,Bakelite ERL 2774 și Hysol 2030,în funcție de conținutul de anhidridă ftalică.

Fig.5.Variația proprietăților fotoelastice în funcție de conținutul de agent de întărire, pentru diferite cupluri de rășini epoxidice și diferițe anhidride.

Fig.6.Variația ordinului de izocromate în funcție de tensiune pentru PEN 4 - 0...

Fig.7.Variația ordinului de izocromate în funcție de tensiune pentru PEN A - 1.

Fig.8.Variația ordinului de izocromate în funcție de tensiune pentru PEN F - 3.

Fig.9.Variația ordinului de izocromate în funcție de tensiune la solicitare variabilă pentru PEN A - 3.

Fig.lo.Variația ordinului de izocromate în funcție de tensiune la solicitare variabilă pentru PEN S - 3 .

Fig.ll.Variația ordinului de izocromate în funcție de tensiune pentru PEN: S  $\Rightarrow$  3;A  $\Rightarrow$  3;F  $\Rightarrow$  3 timp de solicitare 5''.

Fig.12.Variația ordinului de izocromate în funcție de tensiune pentru PEN: S = 3; A = 3; F = 3; timp de solicitare lo<sup>\*</sup>.

Fig.13.Variația ordinului de izocromate în funcție de tensiune pentru PEN A - 3 și F - 3 ;țimp de solicitare 6 h .

Fig.l4.Modelal rețelelor tridimensionale - a)tetragonale; b)trigonale.

Fig.15.Variația raportului  $k_t/k_p$  cu avansarea polimerizării pentru buțilenglicoldimetacrilat.

Fig.16.Dependența cantității de grupări vinilice laterale de composiția amestecului de monomeri.

Fig.17.Spectrul IR al MM. Fig.18.Spectrul IR al S. Fig.19.Spectrul IR al DMEG

Fig. 20, Spectrul IR al DMH. Fig.21.Spectrul IR al DMD. Fig. 22. Spectrul IR al DMHDEG. Fig.23.Spectrul IR al DMD 22. Fig.24.Casetă de polimerizare. Fig. 25. Instalatia de copolimerizare. Fig. 26. Spectrul IR al C-DMH-lo. Fig. 27. Spectrul IR al C-DMHDEG-lo. Fig. 28. Spectrul IR al C-DMD-lo. Fig.29.Spectrul IR al C-DMH-loP. Fig. 30. Polariscopul MEOPTA -EMB-5659026 Fig. 31. Dimensionile caracteristice ale epruvetei considerate in calcul. Fig.32.Dispozitivul de fixare și modul de încărcare a epruvetelor. Fig. 33. Schema dispozitivului de fixare și dimensiunile principale folosite în calcul. Fig. 34. Modul de notare a izocromatelor și distribuția tensiunilor în secțiune. Fig. 35. Reprezentarea grafică a situațiilor realizate practic. Fig. 36. PMM - homopolimer. Fig.37.Copolimer C-S+2. Fig.38.Copolimer C-DMEG-2. Fig.39.Copolimeri C-DMH-2 și C-DMD-2. Fig.40.Copolimer C-DVB-2 Fig.41.Copolimerul C-DMHDEG-5. Fig.42.Copolimerii C-DAP-5 și C-DVB-5 Fig.43.Copolimer C-S-lo. Fig.44.Copolimer C--DMH--5 Fig.45.Copolimer C-DMH-lo Fig.46.Copolimer C-DAP-lo Fig.47.Copolimerul C-S-2 P. Fig.48.Copolimerul C-DMEG-2 P Fig.49.C-DMH-2 P - copolimer Fig. 50. Copolimerul C-DMD-2 P Fig.51.Copolimerul C-DVB-2 P Fig.52.Copolimerul C-DMHDEG-2 P Fig.53.Copolimerul C--DMD 22-2 P Fig.54.Copolimerul C-DAP-2 P Fig.55.Copolimerul C-S-5 P Fig. 56. Copolimerul C-DMEG-5 P

Fig. 57. Copolimerul C-DMD 22-5 P Fig.58.Copolimerul C-DMD 22-lo P Fig. 59. Copolimerul C=DAP=5 P Fig.60.Copolimerul C-DAP-15 P Fig. 61. Spectrele de absorbție pentru copolimerii C-DMH-2, 5, 10 si C-DMHDEG-2, 5, lo. Fig.62.Spectrele de absorbție pentru copolimerii C-DMD 2; C-DMD 22-2, 5, lo și C-DVB-2,5, lo Fig.63.Spectrele de absorbție pentru copolimerii C-DAP-2,5,10 si C-S-2,5,10 Fig.64.Spectrele de absorbție a C-DVB-2,5, lo trasate față de PMM(valorile trasate sînt recalculate față de grosimea plăcii de PMM = 4, 2 mm).Fig.65.Spectrele de absorbție a copolimerilor C-DMH-2P, 5P și DMHDEG-2P, 5P, 10P Fig.66.Spectrele de absorbție a copolimerilor C-DMD-2P, 5P și C-DMD 22-2P, 5P, 10P Fig.67.Spectrele de absorbție a copolimerilor C-DVB-2P și C-DAP-2P, 5P, 10P, 15P Fig.68.Spectrele de absorbție a copolimerilor C-S-2P,5P,1oP și C-DMEG-2P, 5P, 10PFig.69.Spectrele de absorbție a C-S-2P,5P,10P trasate față de PMM Fig. 70. Spectrul de absorbtie al C-DVB-2P trasat fată de PMM Fig.71.Variația indicilor de refracție în funcție de concentrație de comonomer pentru copolimerii obținuți prin varianta I. Fig. 72. Variatia indicilor de refracție funcție de concentrația de comonomer pentru copolimerii obținuți prin varianta a II-a. Fig. 73. Termogramele PMM, copolimerilor C--DMH-2, C--DMH-5, C--DMH-10 și P-DMH. Fig.74.Termogramele copolimerilor C-DMHDEG-2, C-DMHDEG-5, C-DMHDEG-lo si a P-DMHDEG. Fig.75.Termogramele copolimerilor C-DMD-2,C-DMD-5,C-DMD-10 și a P-DMD. Fig. 76.Termogramele copolimerilor C-DMD 22-2, C-DMD 22-5, C-DMD-22-lo și a P-DMD 22. Fig.77.Termogramele copolimerilor C-DMEG-2, C-DMEG-5, C-DMEG-10 si a P-DMEG. Fig. 78. Termogramele homopolimerilor P-DMH, P-DMHDEG, P-DMD,

XIII

P-DMD 22 si P-DMEG.

XIV Tabelul l. Posibilitățile de așezare a polarizorului, analizorului si a lamelor sfert de undă într-un polariscop circular. Tabelul 2. Variatia proprietăților fotoelastice ale diferitelor tipuri de răsini epoxidice întărite cu 40 pph<sup>X</sup> anhidridă ftalică. Tabelul 3. Proprietătile rășinii Bakelite ERL 2774 întărite cu diferite anhidride. Tabelul 4. Valorile eficienței reticulării pentru sistemul MH-DMTEG-DOF. Tabelul 5.Valorile eficientei de reticulare pentru sistemul MH-DMTEG. Tabelul 6.Date RMN ale PMM reticulat, la 35°C în benzen. Tabelul 7. Monomerii sinteză proprie Tabelul 8. Copolimert -sinteze proprii- ai MM cu diversi comonomeri. Tabelu. 9. Caracteristicile monomerilor industriali folositi. Tabelul lo.Compozițiile și condițiile pentru sinteza DMEG. Tabelul ll.Caracteristicile DMEG sinteză proprie, în comparație cu cele date în literatură. Tabelul 12. Compozițiile și condițiile de reacție. Tabelul 13. Unele constante fizice ale DMH-ului și DMD-ului. Tabelul 14.Materiale și condiții pentru sinteza DMHDEG și DMD 22. Tabelul 15. Caracteristicile DMHDEG si DMD 22 obtinuti. Tabelul 16, Denumirea prescurtată a monomerilor și copolimerilor cu MM. Tabelul 17. Compoziția amestecurilor la copolimerizarea directă a MM cu monomerii din tabelul 16 (varianta I-a). Tabelul 18. Compoziția amestecurilor la copolimerizarea soluției de PMM în MM cu monomerii din tabelul 16(varianta a II-a). Tabelul 19. Temperatura și timpul de copolimerizare în funcție de concentrația comonomerului. Tabelul 20. Influența naturii și concentrației inițiatorului în copolimerizarea MM cu comonomerii propusi. Tabelul 21. Puterea de gonflare a copolimerilor cu monomeri tetrafuncționali obținuți prin varianta I și II. Tabelul 22.Benzile caracteristice elementelor principale de structură din spectrele de infraroşu(cm<sup>-1</sup>). Tabelul 23. Copolimerii și aspectul calitativ al plăcilor obținute prin varianta II. Tabelul 24.Valorile tensiunii maxime(G) pentru copolimerii MM obținuți prin varianta I. Tabelul 25. Constantele fotoelastice pentru copolimerii MM

obținuți prin varianta I.

. •

Tabelul 26.Tensiunea maximă 🗇 pentru copolimerii MM 🛥 varianta II. . Tabelul 27.Valorile constantelor fotoelastice a copolimerilor MM-varianta II. Tabelul 28.Absorbtiile citite din spectre pentru  $\Lambda$  =322.6 nm și  $\Lambda = 345$  nm în comparație cu PMM. Tabelul 29.Absorbția și transmisia pentru copolimerii varian- $\lambda$  = 322,6 mm calculate față de PMM cu grosimea = 4,2 mm . tei I la Tabelul 30. Absorbția și transmisia pentru copolimerii variantei I la  $\lambda$  = 345 nm calculate față de PMM cu grosime de 4,2 mm Tabelul 31. Absorbtiile citite din spectre pentru  $\Lambda = 322.6$  nm si  $\lambda$  =345 nm în comparatie cu PMM. Tabelul 32.Absorbția și transmisia pentru copolimerii variantei a II-a la  $\lambda$  = 322,6 nm calculate față de PMM cu grosimea probei 4,2 mm. Tabelul 33.Absorbția și transmisia pentru copolimerii variantei a II-a la  $\lambda$  = 345 nm calculate față de PMM cu grosimea probei 4,2 mm. Tabelul 34.Factorul de transmisie Z pentru copolimerii obținuți prin varianta I. Tabelul 35.Factorul de transmisie 3 pentru copolimerii obținuți prin vvarianta a II-a, Tabelul 36. Valorile indicilor de refracție pentru copolimerii obținuți prin varianta I și II-a. Tabelul 37.Valorile stabilității termice Vicat pentru copolimerii MM obținuți prin varianta I și a II-a. Tabelul 38.Valorile parametrilor orientativi după care s-a evaluat termostabilitatea copolimerilor. Tabelul 39. Caracteristicile mecanice  $T_r$ ,  $\mathcal{E}_r$  și E pentru copolimerii MM obținuți prin varianta I. Tabelul 40. Caractéristicile mecanice  $\sigma_{\mu}$ ,  $\xi_{\mu}$  și E pentru copolimerii MM obținuți prin varianta a II-a. Tabelul 41. Valorile durității copolimerilor MM obținuți prin varianta I și a II-a.

#### 1. INTRODUCERE

- 1 -

Propagarea tensiunilor în corpurile supuse unor solicitări a fost și este problema de bază în construcții, aeronautică, construcții de mașini, etc. In unele cazuri modul de transmisie al forțelor e calculabil prin relații cunoscute. Realizarea unor vizualizări a acestei transmisii reprezintă un moment important în cunoașterea mai apropiată a relației dintre efort și efectul solicitării asupra materialului. Posibilitatea practică de a realiza vizualizarea s-a făcut prin descoperirea efectului fotoelastic.

Descoperirea efectului fotoelastic se datorește lui Brewster (1816), cînd a observat apariția izocromatelor în sticla tensionată. Apoi, mai tîrziu, Neumann, Werthian și Maxwell au stabilit birefringența în sticla tensionată [1] . Folosind informațiile antecedenților E. G. Cooker [2] a încercat examinarea efectului de birefringență accidentală (efect fotoelastic) folosind modele plane din celuloid. Apoi, în SUA, în jurul anilor 1920, s-a întrodus pentru studii fotoelastice plane o rășină gliptalică BT-61-893 (firma Bakelite Corp) [3] .

In 1936 apar încercările fotoelastice spațiale (procedeul "Înghețării tensiunilor"), folosind drept material pentru model în Germania o rășină fenol formaldehidică de turnare, Trolon[4, 218], iar în SUA rășini gliceroftalice (firma Bakelite Corp) [5, 6]. Apoi s-au folosit poliesteri nesaturați, Fosterite [7], rășini ester-alilice, Kriston [8], rășini poliesterice modificate, Castolite [9]. Acestea dădeau mari dificultăți în determinări.

Abia întroducerea rășinilor epoxidice, drept material pentru model, a dus la dezvoltarea mare a analizei distribuției tensiunilor, prin fotoelasticitate spațială [10-15].

. 1

. •

¥.

# 2. UNELE ASPECTE PRIVIND FENOMENUL DE FOTOELASTICITATE [16-22]

Propagarea luminii prin diferite medii se face diferit, în funcție de natura mediului. Dacă mediul este izotrop, lumina se propagă cu viteză constantă; dacă este anizotrop, viteza luminii este diferită în direcții diferite. Lumina naturală la trecere prin diferite medii cu birefringență naturală suferă dublă refracție (birefringență). Astfel se obține lumină polarizată (plan circular sau eliptic, în funcție de traiectoria ei). Apariția fenomenului de birefringență sub tensiune (birefringență accidentală), este caracteristică materialelor folosite pentru model în încercările fotoelastice.

Birefringența accidentală (efectul fotoelastic al materialului) este pusă în evidență cu ajutorul unor polariscoape [16, 17, 20, 21] . Polariscoapele pot fi plane (fig. 1) și circulare (fig. 2).



Fig. 1. Reprezentarea constructivă schematică a polariscopului plan [17]

A- analizor; M - model; P - polarizor; S - sursa de lumină

Intensitatea luminii la ieșirea din analizorul polariscopului plan [18] .este dată de relația:

$$I = 2 \left(a^2 \sin^2 2 \sigma \cdot \sin^2 \widehat{\eta} \cdot \frac{\delta}{\lambda}\right) \qquad (2.1)$$

în care: a - amplitudinea;

a - unghiul dintre planul de vibrație a polarizorului și planul uneia din axele privilegiate ale lamei birefringente

 $\delta$  - diferența de drum optic

λ - lungimea de undă a luminii monocromatice folosite.

Fig. 2. Reprezentarea constructivă schematică a polariscopului circular [17]

A - analizor; L<sub>1</sub> și L<sub>2</sub> - lame sfert de undă; P - polarizor; S - sursă de lumină



sin  $2\infty = 0$   $\propto = \frac{n\Psi}{2}$  unde n = 1, 2, 3 ... (2. 2) si sin  $\frac{d}{\lambda} = 0$   $d = k\lambda$  unde k = 1, 2, 3 ... (2. 3)

Posibilitățile de așezare a polarizorului și analizorului, precum și a lamelor sfert de undă (la polariscopul circular) posibile sînt cele indicate în tabelul 1 [16] . Se preferă pentru determinări fotoelastice primele două moduri de așezare.

2.1. Legile fotoelasticității [16, 20, 22]

Legătura dintre birefringența accidentală și tensiune (efort unitar) <sup>d</sup>este exprimată de cele două legi ale fotoelasticității.

Prima lege a fotoelasticității denumită l e.g e a ca-





litativă este că în fie care punct al modelului în stare de tensiuni bidimensionale, direcțiile ax e lor de birefringență coincid cu di $recțiile tensiunilor principale. <math>\sigma_1$  $\sigma_2$  din acel punct.

> <u>Tabelul 1</u>. Posibilitățile de așezare a polarizorului, analizorului și a lamelor sfert de undă într-un polariscop circular [16]

| 8050555    | Poziția axelor prin-<br>cipale ale lamelor<br>sfert de undă | Poziția axelor de<br>polarizare ale po-<br>larizorului și ana-<br>lizorului | Felul cîm-<br>pului |
|------------|-------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|
| 1 <b>X</b> | perpendicular                                               | perpendicular                                                               | întunecat           |
| 2.         | perpendicular                                               | paralel                                                                     | luminat             |
| 3.         | paralel                                                     | perpendicular                                                               | luminat             |
| 4.         | paralel                                                     | paralel                                                                     | întunecat           |
|            |                                                             |                                                                             |                     |

\* Situația 1 este cea folosită în încercările din lucrarea experimentală.

A doua lege fundamentală a fotoelasticității denumită legea cantitativă (alui Wertheim) sau – legea efortului optic – arată că diferența de drum optic ( $\delta$ ) este proporțională cu diferența eforturilor unitare principale ( $T_1 - T_2$ ):

$$\mathbf{d} = \mathbf{C}_{\mathbf{r}} \mathbf{h} \left( \mathbf{r}_{1} - \mathbf{r}_{2} \right)$$
 (2.4)

în care: d - diferența de drum optic

C<sub>T</sub> - coeficientul de efort optic sau constanta fotoelastică a materialului

h - grosimea modelului

**Γ<sub>1</sub> și Γ<sub>2</sub> - eforturile unitare (sau tensiunile principale).** 

Legile fotoelasticității și condițiile de extincție date de relația (2. 2) și (2. 3) servesc pentru trasarea curbelor izocline și izocromate (paragraf 2. 3).

2.2. Constante fotoelaștice [16, 20]

Există mai multe moduri de a exprima constanta fotoelastică, care pot fi prezentate prin următoarele notații [16] :

- C<sub>0</sub> coeficientul de efort optic sau constanta proprie de fotoelasticitate a materialului exprimată în <u>cm<sup>2</sup>;</u>
- O constanta fotoelastică a modelului exprimată în kg cm<sup>2</sup> ordin;
- C<sup>1</sup> constanta fotoelastică "impropie" a materialului exprimată în <u>kg</u> cm ordin.

Constanta fotoelastică  $C_{\mathcal{O}}$  este o mărime caracteristică a materialelor folosite pentru model în încercările fotoelastice. Cunoașterea valorilor constantelor fotoelastice pentru diferite materiale arată sensibilitatea fotoelastică a lor. Determinarea ei devine o necesitate în încercările fotoelatice.

Din relația (2. 3) se observă că extincția totală e satisfăcută de  $\int = \mathbf{k} \cdot \lambda$ , astfel din relația (2. 4) și (2. 3) se obține:

$$\overline{\mathbf{U}}_{1} - \overline{\mathbf{U}}_{2} - \frac{\lambda}{\mathbf{U}_{0}\mathbf{h}} \cdot \mathbf{k} = \mathbf{k} \cdot \overline{\mathbf{U}}_{0} = 2\mathcal{T}_{\text{max}}.$$
(2.5)

unde: 6 =

$$= \frac{\lambda}{C_{f} h} kg/cm^{2} ordin, constanta fotoelastică a mode-lului$$

k = ordinul de bandă a franjei - izocromata.

Constanta fotoelastică a modelului - T<sub>o</sub> - măsoară sensibilitatea unui model fotoelastic de grosime h. Ea reprezintă tensiunea necesară pentru a modifica ordinul de bandă dintr-un punct cu o unitate.

Pentru a compara sensibilitatea a două materiale fotoelastice s-a întrodus noțiunea de constantă fotoelastică a materialului, independentă de grosimea modelului și definită ca:

$$\mathbf{\sigma}_{\mathbf{0}}^{\dagger} = \mathbf{h} \cdot \mathbf{\sigma}_{\mathbf{0}} = \frac{\lambda}{\mathbf{c}_{\mathbf{0}}} \quad \text{kg/cm.ordin} \qquad (2.6)$$

Constanta  $\sigma'_{o}$  reprezintă tensiunea necesară pentru a modifica ordinul de bandă cu o unitate într-un punct, dintr-un model ou grosimea egală cu unitatea și este funcție de constanta fotoelastică a materialului (relația (2.6)).

Fiecare material folosit în încercări fotoelastice este etalonat. Etalonarea se efectuează în vederea verificării constantei fotoelastice  $\sigma_0^{\ i}$  a materialului. Ea se realizează prin diferite metode (solicitare la întindere, comprimare, încovoiere) și folosind epruvete adecvate. Tehnica de lucru este descrisă în diferite tratate [16, 20, 21, etc.] .

#### 2.3. Izocline și izocromate [16, 20, 21]

Importanța cunoașterii acestor curbe constă în răspunsurile pe care acestea le dau încercărilor fotoelastice. Răspunsurile se concretizează în felul cum apar și se distribuie aceste curbe. Ele stabilesc legături între eforturi și tipul modelului, respectiv eforturi și natura materialului folosit pentru model.

#### 2.3.1. Izocline

Folosind prima lege a fotoelasticității și condiția de extincție dată de relația (2. 2), la ieșirea din analizor, se vor obține puncte de extincție. Datorită continuității stării de tensiuni din interiorul piesei-model, aceste puncte de extincție de pe margine, trebuie să formeze linii sau curbe c o n t i n u i , întunecate (franje de interferență). Fiecare din aceste dungi întunecate

este locul geometric al punctelor în care una din tensiunile principale are, în momentul observării, aceeași direcție și anume direcția unuia din planele de polarizare ale polarizorilor. Aceste curbe se numesc i zocline - adică linii de egală înclinare a tensiunilor principăle.

Izoclinele au anumite proprietăți, care ajută identificarea lor, mai ales cînd ele se determină cu polarizorul plan (unde apar concomitent izoclinele și izocromatele). Izoclinele nu se intersectează între ele, decît cu excepția punctelor izotrope ( $\sigma_1 - \sigma_2 =$ = 0); dacă modelul are o porțiune de contur rectilinie neîncărcată, aceasta este o izoclină; dacă modelul are axe de simetrie, acestea trebuie să coincidă cu izoclina de anumit parametru; dacă modelul prezintă puncte izotrope, toate izoclinele trec prin aceste puncte, etc.

Isoclinele se trasează pe hîrtie sau se fotografiază, (uneori la fotografiere sînt difuze). Cînd izoclinele se suprapun peste isocromate, acestea sînt greu de identificat. Pentru a se obține numai izocline se folosește un material cu sensiblitate optică scăzută, cum ar fi polimetacrilatul de metil [16, 20].

#### 2.3.2. Izocromate

In conformitate cu relația (2. 3), extincția se mai produce și în punctele de pe imaginea ieșită din polariscop, în care este realizată cea de a doua condiție de anulare a intensității luminoase sin  $\mathcal{T} \cdot \frac{d}{\lambda} = 0$  deci  $d = k \cdot \lambda$ ,  $k = 1,2,3 \ldots (2. 3)$ 

BUPT

- 8 -

Simultan cu extincțiile ce produc izoclinele (relația ( (2. 2) ), mai au loc și alte extincții care dau altă serie de franje de interferență. Aceste curbe apar tot ca niște dungi întunecate (relația (2. 3) ) provocate de valorile diferențelor de drum optic  $\int$ , și se numesc i z o c r o m a t e .

Diferențele de drum optic stabilite de legea a doua a fotoelasticității (a lui Werheim) sînt funcție de diferența tensiunilor principale determinate de relațiile (2.4) și (2.5).

$$\mathbf{\delta} = \mathbf{C}_{0} \quad \mathbf{h} \quad ( \quad \mathbf{G}_{1} - \quad \mathbf{G}_{2})$$

$$\mathbf{G}_{1} - \quad \mathbf{G}_{2} = \mathbf{k} \quad \mathbf{G}_{0} = \mathbf{k} \quad \frac{\lambda}{\mathbf{C}_{0} \quad \mathbf{h}}$$

$$(2.4)$$

$$(2.5)$$

Aşadar, i z o c r o m a t e l e sînt locurile geometrice care satisfac relația (2.5), adică sînt locurile geometrice ale punctelor modelului în care valoarea diferenței tensiunilor principale (eforturilor unitare) este constantă. Pentru valori întregi succesive ale lui k, se obțin condiții de extincție deosebite. Așa încît izocromatele sînt curbe diferite ce apar simultan, cîte una pentru fiecare valoare a lui k; k indică numărul de ordine al izocromatei respective; iar de la o izocromată la cea următoare, valoarea ( $\sigma_1 - \sigma_2$ ) variază cu  $\sigma_0$ . Pentru k = 0, izocromata e de ordinul zero, prima extincție corespunde diferenței  $\sigma_1 - \sigma_2 = 0$ , iar pe imagine corespunde unor puncte sau linii 3 in gulare. Izocromatele următoare arată puncțele în care diferența ( $\sigma_1 - \sigma_2$ ) capătă succesiv valorile  $\sigma_0$ ; 2  $\sigma_0$ ; 3 0 ... etc.

- 9 -

Numele acestor curbe se datorește faptului că atunci cînd în locul luminii monocromatice se folosește lumină albă, ele nu mai apar întunecate, ci capătă diferite culori și anume aceeași culoare pentru punctele în care ( $\sigma_1 - \sigma_2$ ) este aceeași.

Datorită simultaneității celor două condiții de extincție date de relația (2. 2) și (2. 3) pe imaginea ieșită din analizor apar concomitent cele două feluri de curbe. Prima extincție care provoacă apariția izoclinelor e relația (2. 2) și depinde de înclinarea axei polaroizilor, deci cînd polaroizii se rotesc simultan izoclinele își schimbă poziția. Cea de a doua condiție de extincție dată de relația (2. 3) depinde numai de solicitarea exteriaoră și provoacă apariția izocromatelor.

Izocromatele se pot separa de izocline sau prin rotirea rapidă a polarizorului și analizorului, păstrîndu-i mereu încrucişați, (în acest caz izoclinele variază cu poziția polaroizilor și nu se pot observa, iar izocromatele rămîn fixe atîta timp cît solicitarea este constantă) sau folosind polariscopul circular (fig. 2), care întroduce lame sfert de undă. Lamele sfert de undă așezate corespunzător prin efectul de compensare anulează apariția pe imagine: a izoclinelor; apar doar izocromatele. Ele se înregistrează de obicei prin fotografiere, folosind polariscopul circular. In cazul folosirii cîmpului întunecat (situația 1 din tab. 1), se determină ordinele de izocromate întregi (k = 1; 2; 3; ...). In cazul folosirii cîmpului luminat (situația 2 din tab. 1), se determină ordinele fractionare de izocromate (k = 0,5; 1,5; 2,5 ...). Stabilirea ordinului de izocromate (numerotarea) se face din punctele izotrope, care corespund izocromatei de ordinul zero (partea experimentală cap. 8).

• •

#### 3. UNBLE PROBELEME PRIVIND MATERIALELE FOTOELASTICE

- 11 -

1

# 3.1. <u>Materialele fotoelastice și posibilitățile de cer-</u> cetare a tensiunilor prin fotoelasticitate

In industria optică s-au folosit vreme îndelungată exclusiv sticle anorganice alături - uneori - de cristale naturale.

Sticlele organice cu proprietăți corespunzătoare pentru întrebuințare în optică și-au făcut loc mult mai tîrziu și cunosc o tendință de utilizare din ce în ce mai pronunțată.

Raine [233] a găsit mai mult de 100 de produse organice incolore, izotrope, printre acestea și sticle acrilice cărora li s-au determinat anumite proprietăți optice. Numai o parte dintre polimerii transparenți sînt însă corespunzători cerințelor optice. Printre aceștia se numără și unii polimeri și copolimeri reticulați și nereticulați din seria acrilică.

Sticlele acrilice posedă față de sticlele anorganice o greutate specifică cu mult mai mică, au o rezistență la rupere mai mare, nu sînt atît de casante. Slăbiciunea lor principală rezidă în rezistența mai mică la zgîrîiere, la abraziune și - oricum - prezintă fenomenul de îmbătrînire. Insă unele proprietăți optice, precum proprietățile de transmisie a luminii, refracția și reflexia luminii sînt deosebit de bune [233].

Aproape toate materialele plastice transparente, izotrope, devin birefringente sub influența unor tensiuni mecanice interne sau externe și arată în lumină polarizată franje de interferență. Această constatare formează baza procedeului de analiză fotoelas-

tică. Sticla acrilică incoleră are, de asemenea, proprietatea să devină optic anizotropă, respectiv birefringentă la solicitare mecanică. La iluminare în lumină polarizată pot apare izocline și izocromate. Pentru practică este important faptul că după poziția izocromatelor într-un model se pot recunoaște forțele de tensionare.

La proiectarea unei construcții sau a unei părți constructive există interesul de a echilibra construcția cu forțele exterioare date, pentru a menține la valori joase tensiunile și pentru a realiza o curgere fluidă a lor.

De aceea de mai mulți ani s-a procedat la rezolvarea unor probleme dificile privind rezistența sub influența tensiunilor, pe medele. Produsele organice, polimeri de sinteză, s-au dovedit cele mai avantajoase materiale pentru modele în fotoelasticitate.

Preocuparea de a caracteriza polimerii transparenți utilizați în industria optică este amplu prezentă în literatură. Aceasta include și aspectul fotoelastic [1-17, 20, 23-46] . Legat de acest aspect sînt de remarcat două situații. In primul rînd în foarte multe cazuri se folosesc pentru studii fotoelastice materiale industriale, care au și alte utilizări; nesintetizîndu-se special pentru acest ecop. In al doilea rînd proprietățile fotoelastice ale materialelor se pot schimba foarte mult în funcție de obținerea lor, chiar la variații mici de sinteză.

Mulți cercetători se ocupă de anumite proprietăți fotoelastice doar tangențial, pentru caracterizare sau în vederea completării altor proprietăți a materialelor plastice.

Dintre studiiile privind comportarea unor polimeri ca materiale fotoelastice, vom aminti: Studii care se ocupă în mod par-`ticular de PMM plastifiat [25] sau orientat [26] . P. S. Theocaris

[27] și R. M. Waxler [28] au determinat comparativ unii parametri optici și fotoelastici ai PMM și ai policarbonatului pe bază de bisfenol Av

BUPT

- 12 -

V. N. Tvetkov și colab. [29] prezintă efectul fotoelastic în copolimerii grefați - PMM și polimetacrilat de butil - cu stiren, scoțînd în evidență păstrarea izotropiei copolimerilor în stare sticloasă după grefare.

Variația unor proprietăți fotoelastice și determinarea anizotropiilor optice pentru unele rășini epoxidice, polidialilftalat, copelimeri S - DVB, poliesteri nesaturați reticulați cu S a fost urmări ă de K. Kawatta [30] .

Unele proprietăți fotoelastice pentru copolimeri S - DAP au fost prezentate de I. Slovikovska [31].

W. H. Reinhard [32] obține o creștere a sensibilității foteelastice a unor compounduri acrilice cu poliesteri, de 15 ori mai mare decît a rășinilor acrilice.

> х х х

Alegerea unui material pentru model în încercările fotoelastice se face în funcție de modul de studiere a tensiunilor [1-17, 20, 23, 24, 36, 43, 44].

In mod arbitrar, posibilitățile de determinare a distribuției tensiunilor în cercetările fotoelastice se pot împărți în [20] :

A. tensiuni apărute sub greutatea proprie a materialelor;

B. tensiuni apărute la solicitări externe, în modele plane și

C. tensiuni apărute la solicitări externe în modele plane și pațiale.

A. Pentru determinarea distribuțiilor de tensiuni ce apar datorită greutății proprii a modelului (în anlogie cu tensiumile din fundații, diguri, tuneluri, etc.) se folosesc materiale sensibile la greutatea lor. Dintre acestea fac parte gelatina și unele tipuri de cau-

ciuc natural fără adausuri [20] .

Gelatina se folosește în amestec cu apă în anumite proporții. Pentru o constantă fotoelastică S de 0,04 kg/cm.k și modul de elasticitate E  $\approx$ 1 kg/cm<sup>2</sup> se folosește o compoziție de 15% gelatina, 25% glicerină și 60% apă [20].

Cauciucul (cu constanta fotoelastică S = 0,29kg/cm.k și E = 1-5 kg/cm<sup>2</sup>) se folosește cu grosimi de pînă la 10 mm; la grosimi mai mari modelul nu mai este suficient de transparent și izocromatele se șterg.

B. Determinarea distribuției tensiunilor în modelele plane utilizează - mai ales - materiale din următoarele clase:

- sticlă [20] ;

- grupa rășinilor acrilice (Plexi-glass, Resart-glass; Perspex; Diacon; Lucite [20] );

- grupa celulozei transformate (Celuloid, Cellon [20, 34];

- grupa polimerilor alilici (CR-39 [20] ).

Evident, problemele tensiunilor în modele plane se rezolvă și cu materiale din grupa C.

S t i e l a a fost primul material folosit în fotoelasticitate în cercetările cu caracter exclusiv științific. Dintre modelele cu utilitate practică este podul construit din sticlă de Mesnager (1913) [20] . Sticla, din punct de vedere al cerințelor impuse pentru un material fotoelastic, de a fi transparent și izotrop, corespunde întocmai. Dar ordinul de izocromate mic și greutatea obținerii modelelor fără tensiuni și prea redusele posibilități de prelucrare, a dus la înlocuirea ei cu materiale plastice.

Plexiglasul (cu constantă fotoelastică S = = 110-230 kg/cm.k și B = 28 000-32 000 kg/cm<sup>2</sup>), are un efect optic asemănător cu cticla. El nu prezintă aproape deloc deformări elastice permanente și practic nu are efect de margine. Se prelucrează prin procedeele obișnuite de tăiere, așchiere, etc., modelele putînd fi păstrate timp nelimitat. Se folosește pentru încercări fotoelastice plane, la temperatura obișnuită pentru determinare de izocline [20, 17].

O e l u l o i d u l (cu S = 39-68 kg/cm.k și E = 14 000 -27 000 kg/cm<sup>2</sup>) este un material mai sensibil decît sticla (de aprox. 5 ori). La eforturi mari celuloidul suferă deformații plastice. Celuloidul prezintă efect de margine, modelele nu se pot păstra prea mult, decarece își schimbă proprietățile [20].

C. Determinarea distribuției tensiunilor pe modele plane și spațiale.

Materialele plastice folosite în determinările fotoelastice pe modele plane și spațiale fac parte din următoarele clase de polimeri:

- rășini de tip fenol-formaldehidic (Trolon [218], Dekorit, Idonit, Albolith, Catalin, Marblette, Phenolite [20], Umacol B [37]);

- răşini de tip poliesterice (VP-1527 [41], Palatal, Le guval, T 20, T 30, Polyleit, Vestopal, Bakelite BT-61-893 [20, 3],
 P. E. N [40], răşini poliesterice armate cu fibre de sticlă [33]).

- rășini de tip epoxidic (Araldit D [20, 36], Araldit B, Araldit F, Devran, Epon, Epikote, Scurol [20], Epilex EG-1 [35], CNS-Epoxi-2000,-1200,-110 [38];

- Policarbonați (Lexan [1], Macrolon [39]).

Aceste produce sînt indicate pentru determinări plane și spațiale (la temperatura de înghețare a tensiunilor), dîndu-se unele caracteristici fotoelastice și fizico-mecanice fără specificații mai precise asupra structurii lor chimice.

Rășinile fenol-formaldehidice folosite în fotoelasticitate sînt fără material de umplutură. De exemplu pentru Dekorit, S = 12-14 kg/cm.k și  $B = 25\ 000-38\ 000$  kg/cm<sup>2</sup> Aceste constante variază în funcție de condițiile de întărire. La începutul determinărilor prezintă relația liniară tensiune-alungire; dar aceasta se modifică în timp, motiv pentru care solicitările trebuie să fie de scurtă durată. Rășinile fenolice sînt de 15-20 ori mai sensibile din punct de vedere fotoelastic decît plexiglasul și de cirça 5 ori mai sensibile decît celuloidul. Culoarea rășinilor fenelice este închisă putînd ajunge pînă la maro intens mai ales la timpi de întărire îndelungați. Prezintă un efect de margine pronunțat, ajungînd chiar la cîteva ordine de izocromate. Din acest motiv sînt necesare întotdeauna tratamente termice pentru detensionare.

P o l i e s t e r ii n e s a t u r a ț i utilizați ca materiale fotoelastice au proprietăți variabile în timp [20]. De exemplu: VP 1527 cu S = 23,5 kg/cm.k la livrare, după o tratare termică de 35 ore la 90°C, S ajunge 25,5 kg/cm.k; de asemenea, scade și modulul de elasticitate E de la 40 000 kg/cm<sup>2</sup> la 31 000 kg/cm<sup>2</sup>, după o solicitare de 20-30 min. Rășinile poliesterice prezintă efect de margine mai puțin pronunțat decît rășinile fenolice. Pentru determinări de tensiuni în modele plane se folosesc plăci pînă la 10 mm grosime. În încercările fotoelastice spațiale - după procedeul de "înghețare" a tensiunilor, grosimea modelului e determinată de forma reperului încercat. La procedeul de "înghețare" a tensiunilor S și E variază mult cu temperatura de înghețare. Pînă la 70-75°C, S weade la 1 kg/cm.k și E la aprox. 150 kg/cm<sup>2</sup>. Rășinile poliesterice se prelucrează prin aşchiere cu scule obișnuite.

Rășinile e poxidice cele mai utilizate în fotoelasticitate sînt cele de tip araldit: Araldit D cu întărire la la rece [20, 37], Araldit B cu întărire la cald [20] și Araldit F cu întărire la cald sau la rece [20].

Aceste rășini au alte destinații, unde ponderea lor este mult mai mare; faptul că se pot folosi și în fotoelasticitate este secundar și nu constituie motivul obținerii lor. 4062.3 A r a l d i t D [20, 37] este o rășină lichidă de culoare galbenă, iar întăritorii folosiți sînt de tip 951 (lichid) sau HY-956 (lichid). Raportul de amestecare rășină : întăritori este 100 : (9-10) pentru 951 și 100 : 20 pentru HY-956. Intărirea se face respectînd un anumit regim termic și de timp. De exemplu: la 20°C, 14-24 ore;

la 40°C, 5-7 ore;

la 70°e, 1-3 ore;

la 100°C, pînă la 10 minute;

la 130°C, pînă la 5 minute.

Aceste condiții pet varia la schimbarea proporției și tipului de Intăritor. Răcirea se efectuează treptat l<sup>0</sup>-2<sup>0</sup>C/oră pînă la temperatura camerei, pentru a se evita formarea tensiunilor interne.

Rășina întărită se prelucrează fără dificultăți.

Proprietățile fotoelastice ale rășinii întărite depind mult de raportul de amestecare a rășinii cu întăritorul, precum și de condițiile de întărire. Constanta fotoelastică la temperatura camerei variază între 13 și 15 kg/cm.k, iar la temperatura de înghețare, mai mare decît 110°C, S<sub>eff</sub> = 0,28-0,32 kg/cm.k. Modulul de elasticitate E = 26 000-30 000 kg/cm<sup>2</sup> la temperatura camerei, iar  $E_{eff}$  la temperatură mai mare de 100°C este 140-150 kg/cm<sup>2</sup>.

Araldit D are ca dezavantaj pentru fotoelasticitate o curgere mecanică și optică, precum și o deviere apreciabilă de la proporționalitate (tensiune - alungire; tensiune - ordin de izocromate). De asemenea, prezintă un efect de margine apreciabil, care se datorește mai ales umidității atmosferice [20, 3].

A r a l d i t B este o rășină solidă, cu punctul de înmuiere 50-60°C. Agentul de întărire 901 este un produs solid, alb. Raportul de amestecare rășină : agent de întărire este 100 : 30. Turnarea și întărirea se face la cald, după un anumit regim de temperatură și timp, evitîndu-se contracțiile de volum (care cresc cu creșterea temperaturii de întărire). De exemplu la:

| 100 <sup>0</sup> C, | 14-20 ore, | contracția de | do. | 0,5-0,8% |
|---------------------|------------|---------------|-----|----------|
| 120 <sup>0</sup> C, | 14 ore     | volum         | ue. | 1,0-1,2% |
| 14^ <sup>0</sup> C, | 7-10 ore   |               |     | 1,3-1,5% |
| 160 <sup>0</sup> C, | 7 ore      |               |     | 1,9-2,2% |
| 180°C,              | 2-3 ore    |               |     | 2,0-2,2% |
| 200°C,              | 1-2 ore    |               | ·   | 2,2-2,3% |

Cele mai bune rezultate s-au obținut prin întărire 20 -24 ore la cel puțin  $100-110^{\circ}$ C, iar răcirea efectuîndu-se foarte lent  $1^{\circ}-3^{\circ}$ C/oră, pînă la temperatura camerei, pentru a se evita formarea de tensiuni interne, precum și pentru a obține repere cu contracții de volum minime.

Proprietățile fotoelastice ale Aralditului B depind de raportul de amestecare rășină : agent de întărire, timpul și temperatura de întărire. S la temperatura camerei este 10,5-11,4 kg/cm.k, iar S la temperatura de înghețare de 130-150°C este 0,2-926 kg/cm.k. E la temperatura camerei este 32 000-38 000 kg/cm<sup>2</sup>, iar E la temperatura de înghețare 130-150°C este 80-150 kg/cm<sup>2</sup>.

La temperaturi pînă la 40-50°C se păstrează relațiile liniare pentru tensiune - alungire și tensiune - ordin de izocromate.

Araldit B, pe lîngă faptul că are rezistență la prelucrare bună, proprietăți mecanice și optice bune, prezintă și alte avantaje [20] .

- Practic nu există limită în mărimea modelelor. Se pot face încercări spațiale după procedeul de înghețare a tensiunilor, pe modele cu un mare număr de secțiuni, ceea ce este avantajos la determinarea unor gradienți de tensiune mari;

- Există necesitatea de a se lucra în model practic cu alungiri de același ordin de mărime ca în piesa originală. Aceasta se poate realiza cu Araldit B, cum nu este posibil cu nici un alt ma-

terial de model, datorită sensibilității fotoelastice mari;

- Araldit B are aderență bună la metale și la alte materiale - plastice, putînd fi obținute modele combinate, de exemplu cu plexi-

- 19 -

- Din araldit B se pot obține piese mari, lipsite de tensiuni, fără presiune, fără eliminare de substanțe volatile, cu contracție mică la întărire.

Dezavantajul Aralditului B este faptul că nu întotdeauna se obțin piese clare, uneori în lumină polarizată arată pătate [20]. La solicita în lumină polarizată aceste pete repartizate peste tot, iau o formă regulată, apărînd la trecerea de la o izocromată la cealaltă, făcînd astfel citirea neclară. Araldit B prezintă efect de margine, dar mai mic decît la rășinile poliesterice și la rășinile fenolice. Pentru îndepărtarea lui, la încercările pe modele plane, se tratează termic modelul. Nu este posibil eliminarea efectului de margine la modele cu tensiuni înghețate.

Incercările în acest caz trebuiesc efectuate destul de repede după obținerea modelelor.

A r a l d i t F este o rășină lichidă. Agenții de întărire pot fi solizi - agent de întărire 901, 902, 903 sau lichizi - agent de întărire 951, HY-956. Cu agenții de întărire solizi întărirea se face la cald (80-120°C) și la un raport de amestecare rășină: agent de întărire de 100 : 65 pînă la 70 p agent de întărire 902 sau 903. Timpul de întărire poate ajunge pînă la 48 ore. Se preferă temperaturi de întărire mai mici, deoarece la temperaturi mari apar tensiuni interne, bule și uneori fisuri în model.

Cu agenți de întărire lichizi, raportul de amestecare rășină : agent de întărire este 100 : 10 p din întăritor 951 (sau 20 p din întăritor HY-956), la temperatura camerei, timp de 24-36 ore. Pentru eliminarea unor tensiuni interne din model, acesta se tratează ăermic la 135-150°C și se răcește treptat. Proprietățile fotoelastice ale rășinii sînt bune; curgerea mecanică și optică este redusă; S are valori între 13-15 kg/cm.k; efectul de margine este redus, proporționalitatea tensiune - alungire și tensiune ordin de izocromate este bună la temperatura camerei. La temperaturile de înghețare se comportă asemănător cu araldit B și cu Araldit D.

# 3.2. Structura copolimerilor și proprietățile lor fotoelastice

Se cunosc multe materiale folosite în încercări fotoelastice [4-12]. Aceste materiale însă se analizează doar în ce privește posibilitatea lor de a arăta distribuția cea mai fidelă a tensiunilor în diferite posibilități de cercetare a lor (plane sau spațiale). Există foarte puține studii care încearcă să găsească corelația între structura polimerilor și proprietățile fotoelastice [3, 42].

Ca exemplu se poate da încercarea lui Leven [3] de a corela unele proprietăți fotoelastice pe diferite tipuri de rășini epoxidice comerciale (despre a căror structură chimică nu se spune nimic) cu natura și concentrația agentului de întărire.

O altă încercare de corelare a proprietăților fotoelastice în funcție de structura unor poliesteri nesaturați este efectuată de Slewikovska [42]. De astă dată este cunoscută structura poliesterilor nesaturați (PEN), dar rămîne neclar sistemul de reticalare.

Din examinarea datelor prezentate de Leven [3] se observă că proprietățile fotoelastice pentru rășinile epoxidice sînt în `strînsă legătură cu tipul rășinii, natura și proporția agentului de întărire.

Variația unor proprietăți fotoelastice pentru diferite tipuri de răgini epoxidice comerciale, folosind aceeași cantitate de

- 20 -
**`**.

- 21 -

<u>Tabelul 2</u>. Variația proprietăților fotoelastice ale diferitelor tipuri de rășini epoxidice întărite cu 40 pph<sup>x</sup> anhidridă ftalică [3]

| Rășină<br>epoxidică  | Vîscozitate<br>sau punct de<br>topire | E xx<br>eff  | f xxx<br>feff  | Q <sup>XXXX</sup> | T xxxxx<br>cr |
|----------------------|---------------------------------------|--------------|----------------|-------------------|---------------|
|                      | poise                                 | psi          | psi/fr/<br>_in | -                 | °C            |
| Bakelite<br>ERL 2795 | 1                                     | 1790         | 1,84           | 973               | 100           |
| Araldite 502         | 2 35 1                                | 239 <b>0</b> | 1,79           | 1335              | 100           |
| Bakelite<br>ERL 2774 | 100                                   | 3600         | 2,20           | 1636              | 133           |
| <b>Epon</b> 828      | 124                                   | 2140         | 2,04           | 1050              | 125           |
| Araldite<br>6020     | 215                                   | 3550         | 2,11           | 1682              | 133           |
| Epon 834             | 1000                                  | 2730         | 1,81           | 1510              | 145           |
| Bpiphen<br>823       | 2350                                  | 5100         | 2,55           | 2000              | 147           |
| Araldite<br>6060     | 61 <sup>0</sup> C                     | 2160         | 1,30           | 1660              | 130           |
| Epon 1001            | 70 <sup>0</sup> 0                     | 2070         | 1,30           | 1690              | 130           |
| Epi-Rez 520          | 70 <sup>0</sup> C                     | 2200         | 1,30           | 1690              | 130           |

xpph - părți greutate anhidridă ftalică la 100 p rășină
xxBeff - modul de elasticitate
xxxfeff - valoarea benzii pentru material
xxxxQ - Beff/feff
xxxxxTcr - temperatura critică

(Semnificațiile acestea rămîn valabile în textul de la acest paragraf).

Din tabelul 2 se observă că se cunoaște doar compoziția chimică a agentului de întărire - anhidrida ftalică. Nu se specifică constituția chimică a rășinii epoxidice, care ar putea în acest caz să ne dea o informație asupra proprietăților fotoelastice corelate cu structura chimică a rășinii și a întăritorului.

Cert este că agentul de reticulare este important în potențarea efactului fotoelastic al unei rășini epoxidice (v. tabelul 3).

# <u>Tabelul 3</u>. Proprietățile rășinii Bakelite ERL 2774 întărite cu diferite anhidride [3]

| Anhidrida         | pph de<br>anhi-<br>dridă | T <sub>cr</sub><br><sup>o</sup> C | Q            | Exoter-<br>mici-<br>tate <sup>X</sup> | Prelucra-<br>bilitate | Transpa-<br>rență |
|-------------------|--------------------------|-----------------------------------|--------------|---------------------------------------|-----------------------|-------------------|
| Ftalică           | 55                       | 162                               | 2150         | 1                                     | uşoară                | bună              |
| Het <sup>xx</sup> | 65                       | 220                               | 2280         | 5                                     | grea                  | clară             |
| Nadic             | 80                       | 140                               | 1400         | 0                                     | bună                  | bună              |
| Maleic            | 40                       | 150                               | 2730         | 2                                     | ușoară                | clară             |
| Diclormaleic      | 40                       | 170                               | 260 <b>0</b> | 4                                     | uşoară                | slabă             |
| Dodecenilsuccinic | 80                       | 115                               | 1000         | 0                                     | bună                  | slabă             |
| Hexahidroftalică  | 62                       | 142                               | 1285         | 0                                     | uşoară                | bună              |

<sup>x</sup>Este o scală relativă între O și 5, unde cu O se notează reacțiile foarte slab exoterme și cu 5 reacțiile foarte exoterme și unde turnarea cantităților mari este imposibilă.

XXHET - hexaclorendometilentetrahidroftalică sau anhidrida clorendică.

Din tabelul 3 se observă că anhidrida ftalică ar fi cea care oferă proprietățile fotoelastice și prelucrabilitatea cea mai bună a rășinii ERL 2774. Dar care este în realitate structura chimică a rășinii nu se specifică. HET ca întăritor nu se utilizează datorită exotermicității foarte ridicate, deci a prelucrabilității

**BUPT** 

grele. De asemenea, HET are T<sub>cr</sub> foarte ridicată (220°C). Anhidrida maleică ca întăritor pentru ERL 2774 face posibilă prelucrarea ușoară, se obțin modele clare, dar datorită efectului de margine care apare destul de repede, este neutilizabilă. Anhidridele diclormaleică și dodecenilsuccinică, deși în amestec cu rășina se prelucrează ușor, nu sînt dorite, datorită faptului că dau rășini întărite colorate intens și cu o transparență slabă.

Proprietățile fotoelastice a unei rășini epoxidice (exemplu: Araldite 6020), variază în funcție de conținutul de anhidridă ftalică (fig. 3), atingînd un maxim la aproximativ 50 pph anhidridă [3].



Fig. 3. Variația proprietăților fotoelastice pentru Araldite 6020 în funcție de conținutul de anhidridă ftalică [3]

Maximul proprietăților fotoelastice variază de la o rășină epoxidică la alta (fig. 4), folosind același agent de întărire. Nespecificîndu-se structura chimică a rășinii este greu să se facă o corelație cu unele proprietăți fotoelastice. De asemenea , nu se poate spune cine aduce efectul de îmbunătățire sau de înrăutățire a proprietăților fotoelastice; numai faptul că rășina este reticulată indiferent de structura întăritorului; sau o anumită structură din rețea; sau o anumită structură a rășinii.



Fig. 4. Variația unor proprietăți fotoelastice a rășinilor: Araldite 6020, Bakelite ERL 2774 și Nysol 2030, în funcție de conținutul de anhidridă ftalică [3]

Din figura 5, unde sînt prezentate diferite tipuri de rășini epoxidice comerciale reticulate cu diferite anhidride, se observă că proprietățile fotoelastice depind de toți parametri de mai sus, precum și de concentrația agentului de întărire.

In studiul său I. Slowikowska [42] a studiat corelația între comportarea fotoelastică și structura unor poliesteri nesa-`turați (PEN). Au fost sintetizați o serie de PEN în care s-a variat gradul de reticulare prin înlocuirea anhidridei maleice cu acizi saturați; acid adipic, acid ftalic și acid sebacic. Acizii saturați s-au luat în proporție de 10 și 30% molare.



Fig. 5.Variația proprietăților fotoelastice în funcție de conținutul de agent de întărire, pentru diferite cupluri de rășini epoxidice și diferite anhidride [3]

Nu reiese clar din studiu care din probele PEN sînt reticulate cu stiren (S) sau cu acetat de vinil (AV). De altfel ca o concluzie a studiului, Slowikowska [42] precizează că influența reticulantului nu este elucidată.



Fig. 6. Variația ordinului de izocromate în funcție de tensiune pentru PEN A- 0 [42] Pe modele de PEN reticulate probabil cu S,Slowikowska a examinat în principal variația ordinului de izocromate cu tensiunea si cu timpul de încărcare.



Fig. 7. Variația ordinului de izocromate în funcție de tensiune pentru PEN A - 1 [42]

Din fig. 6, 7 se observă că la grad mare de reticulare (PEN cu 0% mol acid saturat A - 0; 10% molare acid adipic A - 1), sau prin întroducerea nucleelor aromatice cu acidul saturat (fig. 8) în structura PEN (PEN cu 30% mol acid ftalic F - 3) se obține o dependență liniară a ordinului de izocromate - tensiune, chiar la timp de încărcare 6 ore.



PEN cu un grad de reticulare mai mic și care conțin în catemă acizi saturați alifatici (acid adipic 30% mol A - 3 și acid sebacic 30% mol S - 3) prezintă o dependență neliniară ordin de izocromate - tensiune (fig. 9 și 10) cu creșterea timpului de solicitare.



1,0

۵

Fig. 9. Variația ordinului de izocromate în funcție de tensiune la solicitare variabilă pentru PEN A-3 [42]



Acizii saturați de natură diferită (acizi adipic, sebacic și ftalic) întroduși în proporție constantă în structura unui PEN produc o variație diferită a ordinului de izocromate în funcție de tensiune, mai ales la un timp de solicitare mai lung (fig. 11, 12 și 13).

[ko/mm²]

2,0



Fig. 11. Variația ordinului de izocromate în funcție de tensiune pentru PEN: S - 3; A - 3; F - 3 timp de solicitare 5" [42]

- 27 -



Fig. 12. Variația ordinului de izocromate în funcție de tensiune pentru PEN: S - 3; A - 3; F - 3; timp de solicitare 10' [42]

PEN care conțin în structura lor acizi saturați alifatici prezintă o variație neliniară a ordinului de izocromate, funcție de solicitările variabile; începînd de la 10 minute efect pronunțat pentru acidul sebacic (fig. 12) și de la 1 oră la 6 ore efect pronunțat pentru acidul adipic (fig. 9 și 13).

- 28 -



Fig. 13. Variația ordinului de izocromate în funcție de tensiune pentru PEN A - 3 și F - 3; timp de solicitare 6 h (42)

PEN care conține acid ftalic și la 6 ore timp de solicitare prezintă liniaritate ordin de izocromate - tensiune (fig. 13).

Acizii alifatici cu lanț hidrocarbonat lung scad modulul de elasticitate și rezistența la tracțiune a PEN. Acidul ftalic mărește rigiditatea lanțurilor poliesterice și prin aceasta crește modulul de elasticitate, păstrînd liniaritatea dependenței ordinului de izocromate cu tensiunea (fig. 13).

In vederea unei evaluări a comportării fotoelastice a

unor polimeri Zlotnikov [45, 46] indică unele observații asupra copolimerilor stirenului și MM reticulați cu DMEG. El face observația că sturcturile chimice înrudite a MM și DMEG nu schimbă esențial coeficientul ue fotoelasticitate a copolimerilor față de PMM [46]. Se observă că odată cu oreșterea gradului de reticulare și a conținutului de grupe arilice din copolimer scade constanta fotoelastică [45].

### 4. UNELE CONSIDERATII PRIVIND COPOLIMERIZAREA ESTERILOR ACRILICI

Copolimerizarea esterilor acrilici decurge ușor; în plus, acești esteri copolimerizează cu foarte mulți monomeri vinilioi, Această multilateralitate a dus la dezvoltarea unor materiale cu un spectru larg de proprietăți și cu o mare varietate de aplicații [47, 48].

Datorită diferențelor mari între reactivitățile multor amestecuri de comonomeri pot avea loc neomogenități în compoziția lanțurilor și în distribuția merilor, în desfășurarea lanțurilor. Metodele pentru controlul neomogenității copolimerilor includ atît programarea întroducerii monomerilor mai reactivi, cît și stoparea reacției la o conversie dorită ("short stopping").

Metodele de calculator pentru controlul heterogenităților și planificarea adausurilor de monomer sînt încă în dezvoltare; aceste metode moderne pot fi, de asemenea, folosite la controlul proprietăților copolimerilor și pot sugera condițiile optime de sinteză [47].

Literatura pentru sinteza copolimerilor acrilici este foarte vastă. În principiu, se pot folosi toate procedeele de polimerizare. Polimerizarea în masă prezintă marele avantaj de a furniza produși de o excepțională puritate. Alegerea și proporțiile comonomeriler este determinată de necesitatea proprietăților de aplicare a produsului polimer. O mare importanță industrială au copolimerii acrilici cu compușii tetrafuncționali, care determină formarea polimerilor tridimensionali și care la rîndul lor se pot grupa în două categorii:

BUPT

- copolimeri cu o grupă nesaturată liberă a compusului tetrafuncțional și

- copolimeri care se obțin direct sub formă de produși , tridimensionali, infuzibili și isolubili.

## 4.1. <u>Aspecte privind mecanismul și cinetica copolimeri</u>zării tridimensionale (reticulante)

# 4.1.1. <u>Mecanismul și ecuația copolimerizării sistemelor</u> <u>vinil - divinil</u>

La copolimerizarea unor compuși cu dublă legătură se poate calcula compoziția copolimerului la o conversie diferențială; cu formula lui Lewis și Mayo și după cum s-a propus [49, 50, 51], prin integrarea ecuației diferențiale, se poate calcula și compoziția medie la o conversie oarecare. De asemenea, se poate calcula distribuția lungimii secvențelor și distribuția compoziției la o conversie finită.

Copolimerizarea sistemelor vinil - divinil a fost cercetată teoretic și experimental într-un mare număr de lucrări[49-110].

Dacă compusul divinil are structură simetrică, așa cum este cazul dimetacrilaților, copolimerizarea compusului divinilic s-ar putea trata la fel ca și cînd cele două grupe vinilice ar fi indenpendente una de alta.

Simbolizînd compusul monovinilic cu A și compusul divinilic cu B-B, H. Wesslau [49], ținînd cont și de observațiile lui W. B. Gibbs și J. M. Barton [52] propune un mecanism al copolimerizării reticulante după următorul raționament:

In amestecul care polimerizează există concomitent următoarele tipuri de radicali și unități de "monomeri":

| tip radical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | prescurtare      | "mon <b>omer</b> " | prescurtare    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|----------------|
| ~~- A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Α.               | A                  | A              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B <sub>1</sub> . | B<br>I<br>B        | Bl             |
| $ \frac{\mathbf{B}}{\mathbf{B}} = \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{A} \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{B} \mathbf{B} B$ | B <sub>2</sub> . | B =                | B <sub>2</sub> |

Mai sus s-au prezentat numai radicalii în creștere. Radicalii primari nu joacă nici un rol pentru considerațiile care urmează. La fel și macroradicalii care s-ar forma prin reacții de transfer de lanț.

Reactivitatea compusului divinilic liber  $B_1$  nu poate fi egalată de la bun început cu cea a legăturii duble  $B_2$ . Același lucru e valabil și pentru radicalii  $B_1$ . și  $B_2$ . . Copolimerizarea compușilor mono și divinilici trebuie tratată deci, formal, ca și cea a unui sistem ternar. Trebuie ținut cont de reacțiile:

Reacția

Constanta de viteză

| ~~- <b>A.</b> + A ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | k <sub>ll</sub> | (4 - la) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------|----------|
| ~~- A. + B -<br>Ⅰ<br>₿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | <sup>k</sup> 12 | (4 - 1b) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $  \cdots  A  B  $                    | <sup>k</sup> 13 | (4 - lc) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \xrightarrow{B} - A. $              | <sup>k</sup> 21 | (4 - 2a) |
| $\sim - B_{\bullet} + B_{\bullet}$ $\frac{1}{B} = B$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | B = B.                                | k <sub>22</sub> | (4 – 2b) |
| $ \begin{array}{c} & & & B_{\bullet} + B_{\bullet} \\ & & I \\ & & B_{\bullet \bullet \bullet} B \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \xrightarrow{B} = B = B = M $       | <sup>k</sup> 23 | (4 - 2c) |
| $ \begin{array}{c} & & -B \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ | $A \xrightarrow{\qquad B \\ } B - A.$ | k <sub>31</sub> | (4 - 3a) |



Ecuația de copolimerizare a unui sistem ternar nu este integrabilă îm forma generală. În plus, calculul devine mai dificil prin faptul că legăturile duble laterale ( $B_2$ ) se formează numai în decursul copolimerizării prin reacțiile (4 - 1b), (4 - 2b) și (4 - 3b) și dispar concomitent în reacțiile (4 - 1c), (4 - 2c) și (4 - 3c). Informații importante asupra reactivității celor două duble legături  $B_1$  și  $B_2$  se obțin dacă se limitează domeniul de concentrații al componenților:  $[B_1]_0 \ll [A]_0$ . Notînd cu  $[M]_0$  cantitatea totală de monomer da la începutul reacției,

 $[\mathbf{M}]_{o} = [\mathbf{B}_{1}]_{o} + [\mathbf{A}]_{o},$ 

atunci prin condiția de limitare se obține:

$$[\mathbf{M}]_{0} \simeq [\mathbf{A}]_{0} \qquad (4 - 4a)$$

Egalitatea (4 - 4a) nu se schimbă nici cu progresarea polimerizării, astfel că:

$$[\texttt{M}] \simeq [\texttt{A}] \qquad (4 - 4b)$$

Deci se poate spune că numărul de radicali prezenți în starea staționară este:

$$[\mathbf{M}.] \simeq [\mathbf{A}.]$$
 (4 - 5)

pentru că:

 $[\mathbb{A}\cdot]\gg [\mathbb{B}_1\cdot] + [\mathbb{B}_2\cdot]$ 

Viteza de reacție se compune din vitezele reacțiilor

**BUPT** 

(4 - la) - (4 - lc). Reacțiile (4 - 2, a, b, c) și (4 - 3a, b, c) practic nu au o contribuție la viteză. Deci:

- 34 -

$$-\frac{d[A]}{dt} = k_{11}[M.][A] \qquad (4-6)$$

$$-\frac{d \left[B_{1}\right]}{dt} = 2 k_{13} \left[M\right] \left[B_{1}\right] \qquad (4-7)$$

Factorul 2 din ecuația (4 - 7) ține cont de faptul că în reacția (4 - 1b) dispar tot cîte două duble legături de tipul  $B_1$ , într-o singură treaptă. În reacția (4 - 1c) dispar legăturile de tipul  $B_2$ care s-au format prin reacția (4 - 1b), concomitent cu formarea unor puncte de reticulare care se vor nota cu  $B_3$ .

$$-\frac{\mathbf{d} \left[\mathbf{B}_{2}\right]}{\mathbf{dt}} = -2 \mathbf{k}_{12} \left[\mathbf{M} \cdot\right] \left[\mathbf{B}_{1}\right] + \mathbf{k}_{13} \left[\mathbf{M} \cdot\right] \left[\mathbf{B}_{2}\right] \qquad (4 - 8)$$

$$\frac{\mathbf{d} \left[\mathbf{B}_{3}\right]}{\mathbf{dt}} = \mathbf{k}_{13} \left[\mathbf{M} \cdot\right] \left[\mathbf{B}_{2}\right] \qquad (4 - 9)$$

Tinînd cont de ecuația (4 - 4b), de definițiile

$$r_{12} = \frac{k_{11}}{k_{12}}$$
 şi  $r_{13} = \frac{k_{11}}{k_{13}}$ 

.

și împărțind ecuațiile (4 - 7), (4 - 8), (4-9) cu (4-6) va rezulta

$$\frac{a[B_1]}{a[M]} = \frac{2[B_1]}{r_{12}[M]} \qquad (4 - 10)$$

$$\frac{\mathbf{a} \left[\mathbf{B}_{2}\right]}{\mathbf{a} \left[\mathbf{M}\right]} = -\frac{2 \left[\mathbf{B}_{1}\right]}{\mathbf{r}_{12}\left[\mathbf{M}\right]} + \frac{\left[\mathbf{B}_{2}\right]}{\mathbf{r}_{13}\left[\mathbf{M}\right]}$$
(4 - 11)

$$\frac{d [B_3]}{d [M]} = -\frac{[B_2]}{r_{13}[M]}$$
(4 - 12)

Rezolvînd acest sistem de ecuații diferențiale și avînd în vedere condițiile la limită se obțin soluțiile:

$$\begin{bmatrix} B_{1} \end{bmatrix} = \begin{bmatrix} B_{1} \end{bmatrix}_{0} \left( \frac{\begin{bmatrix} M \end{bmatrix}}{\begin{bmatrix} M \\ 0 \end{bmatrix}} \right)^{2/r_{12}}$$

$$\begin{bmatrix} B_{2} \end{bmatrix} = \frac{-2 \begin{bmatrix} B_{1} \end{bmatrix}_{0}}{2 - \frac{r_{12}}{r_{13}}} \left[ \frac{\left( \begin{bmatrix} M \end{bmatrix}}{\begin{bmatrix} M \\ 0 \end{bmatrix} \right)}^{2/r_{12}} - \left( \frac{\begin{bmatrix} M \end{bmatrix}}{\begin{bmatrix} M \\ 0 \end{bmatrix} \right)} \right]^{1/r_{12}}$$

$$\begin{bmatrix} B_{3} \end{bmatrix}^{2} \frac{2 \begin{bmatrix} B_{1} \end{bmatrix}_{0}}{2r_{13} - r_{12}} \left[ \frac{r_{12}}{2} \left( \frac{\begin{bmatrix} M \\ 0 \end{bmatrix} \right)}^{2/r_{12}} - r_{13} \left( \frac{\begin{bmatrix} M \\ 0 \end{bmatrix} \right)^{1/r_{12}} + r_{13} - \frac{r_{12}}{2} \right]$$

Introducind conversia  $\propto$  ,

$$oC = \frac{[M]_{o} - [M]}{[M]_{o}} = 1 - \frac{[M]}{[M]_{o}},$$

se obține

$$\begin{bmatrix} B_1 \end{bmatrix} = \begin{bmatrix} B_1 \end{bmatrix}_0 (1 - \alpha)$$
 (4 - 13)

- 1-

$$[B_2] = \frac{2 [B_1]_0}{2r_{13} - r_{12}} \left[ r_{13} (1 - \alpha) - r_{13} (1 - \alpha) \right] (4 - 14)$$

$$[B_3] = \frac{2 [B_1]_0}{2r_{13} - r_{12}} \left[ \frac{r_{12}}{2} (1 - \alpha) - r_{13} (1 - \alpha) + r_{13} - \frac{r_{12}}{2} \right]$$

$$(4 - 15)$$

Aceste trei ecuații leagă numărul de molecule divinilice încă existente (4 - 13), numărul de duble legături laterale (4 - 14) și numărul de posiții de reticulare (4 - 15) cu numărul total de molecule întroduse  $[B_1]_0$  și conversia totală <.

### 4.1.2. Modelul formării rețelelor tridimensionale

In general copolimerizarea monomerilor bi- și tetrafuncționali duce la formarea unor structuri macromoleculare tridimensionale, în care macromoleculele liniare sînt reticulate cu legături transversale [53] .

Ca participare a reticulantului la formarea structurii tridimensionale se poate presupune, în primul rînd, că acesta se închide în catenă cu o singură dublă legătură, cu formarea unor grupări vinilice laterale (suspendate), cu o reactivitate mai scăzută față de monomerul inițial. Prin polimerizare în continuare, aceste grupe vinili~e laterale reacționează, scăzînd în număr, prin formarea unor punți [54, 111].

Studiind o serie de copolimeri obținuți prin copolimerizarea radicalică a metacrilatului de metil (MM) cu monomeri tetrafuncționali (anhidridă metacrilică, dimetacrilat de etilen glicol, dimetacrilat de dietilenglicol, dimetacrilat de 1,4 butilen glicol), Zaharov și colab. [53] propun două modele ideale a rețelelor tridimensionale a polimerilor reticulați. Se fac cîteva ipoteze simplificatoare:

a) în procesul de polimerizare reticulantă participă toate n<sub>l</sub> molecule MM, de exemplu, și n<sub>2</sub> molecule de monomer tetrafuncțional;

b) fiecare moleculă de reticulant legînd două macromolecule învecinate încheie două lanțuri de rețea;

c) ca rezultat al distribuției uniforme a reticulantului se formează o rețea a cărei celule sînt aceleași;

d) fiecare moleculă de monomer de bază corespunde porțiunii de lanț format din m - 2 atomi [53] .

Plecînd de la aceste ipoteze simplificatoare, structura copolimerului reticulat MM : AM (anhidridă metacrilică) se redă schematic astfel:

- 36 -



Aici elementele structurale de bază sînt atomii de C "nodali", - C - și, legați de ei, părțile lanțurilor care for-

Se arată că la un conținut de reticulant de 0,5 - 5% se formează o rețea a cărei celule conțin părți lungi, alături de formațiuni scurte, formate din resturi de molecule de reticulant.

In acest caz se poate exprima, în primă aproximație, că polimerul este format din rețele cu segmente lungi, încovoiate, în care multe segmente sînt rigide (restul de reticulant care formează nodurile). În acest caz nodul corespunde întîlnirii a patru segmente lungi. O astfel de rețea se propune a se numi tetragonală. Cu creșterea conținutului de reticulant cantitatea de atomi de C

- 37 -

din segmentul de lanț a monomerului de bază scade și devine comparabilă cu numărul atomilor de monomer tetrafuncțional, care formează punțile de reticulare. Aici nodul servește la legarea a trei lanțuri (punctul de întîlnire a două lanțuri formate din două molecule de monomer de bază și o moleculă de reticulant). O astfel de rețea se propune a se numi trigonală. Forma rețelelor (tetragonală si trigonală) este prezentată în fig. 14.



Fig. 14. Modelul rețelelor tridimensionale

- a) tetragonale
- b) trigonale [53]

Pe exemplul polimerizării  $\mathcal{L} \mathcal{W}$  -(bis-trietilen glicol) ftalat dimetacrilat, care de asemenea formează o rețea tridimensională, Berlin [55] arată că, în sistemele reale, asupra formării ptructurii reticulate a polimerului prezintă influență o serie de factori: creșterea și întreruperea lanțului, inhibarea, tensiunile mecanice apărute în oursul polimerisării, etc. Ca rezultat al acestor procese nu se realizează posibilitatea formării unor sețele complexe, ci se obțin și agregate ramificate. Dimensiunile și structura agregatelor reticulate, la fel și caracterul legăturilor dintre ele, se pot schimba în funcție de condițiile și de gradul polimerizării reticulante.

**BUPT** 

Totuși, în toate cazurile, se poate admite că la grade de polimerizare ridicate, procesele elementare de creștere și rupere a lanțurilor macromoleculare vor fi eliminate de mobilitatea dublelor legături suspendate și a restului radical al diesterului metacrilic (radicali purtători de lanț).

# 4.1.3. <u>Unele particularități cinetice la copolimeri-</u> zarea tridimensională

Cinetica copolimerizării tridimensionale a fost studiată într-o serie de lucrări [54 - 70, 105, 107].

La polimerizarea tridimensională apariția structurii ramificate și, apoi, pe măsura avansării procesului, a structurii reticulate, duce la modificarea parametrilor procesului, adică structura începe să determine cinetica. Odată cu ramificarea crește posibilitatea ecranării marginale a legăturilor duble suspendate (notate cu M.) și a radicalilor purtători de lanț (notați cu R.), ceea ce duce la micșorarea mărimii constantei de viteză de creștere și întrerupere a lanțului pentru reacții elementare cu participarea lui M. și R. . Prin urmare, mărimea constantei de viteză a creșterii și întreruperii lanțului trebuie corelată cu proprietățile fizice ale lanțului reticulantului: lungime, flexibilitate, formă [55].

Formarea structurii la copolimerizarea tridimensională duce la o autoaccelerare a procesului în stadiile inițiale și medii și la"autoînghețarea" lui în stadiile avansate. Incepînd cu un anumit grad de transformare, viteza polimerizării crește foarte repede, încît raportul dintre viteza maximă și cea inițială atinge valoarea W max./Wo = 10 pînă la 100. Prin efectuarea polimerizării în mediu nedizolvant pentru polimer (de exemplu: polimerizarea în masă, așa cum are loc la formarea sticlelor organice), viteza polimerizării crește încă de la începutul procesului și se menține ridicată

- 39 -

și în domeniul conversiilor mari (efect de gel sau efect Trammsdorff - Norrish). Se arată că autoaccelerarea în stadiile avansate ale reacției este condiționată de mărimea vîscozității sistemului de reacție, de mărimea difuziei radicalilor polimeri [56].

Acest efect Trammsdorff - Norrish este propriu și polimerizării tridimensionale [55], întrucît, pe măsura creșterii gradului de ramificare, solubilitatea și fuzibilitatea polimerului se micsorează, vîscozitatea structurală crescînd considerabil.

Urmărind cinetica polimerizării radicalice a cîtorva oligomeri ai unor diesteri metacrilici prin metoda termometrică, Korolev și colab. [56] surprind cîteva particularități condiționate de două situații.

1. Moleculele oligomerului au cîte două duble legături și de aceea în cursul procesului de polimerizare, dacă lungimea lanțului cinetic nu este prea mică, fiecare moleculă a oligomerului se poate lega cu alte patru molecule și, ca urmare, apare produsul cu structura reticulată.

2. Creșterea vîscozității sistemului de reacție odată cu creșterea conversiei polimerizării ( $\infty$ ), are loc atît de rapid încît, în general, deja la  $\propto = 5 - 10\%$ , polimerul (mai precis amestecul polimer - monomer) pierde fluiditatea și se transformă într-un gel dens.

Creșterea bruscă a vîscozității structurale în cursul polimerizării și, de asemenea, creșterea ramificării duce la o puternică scădere a mobilității radicalilor polimeri. Drept consecință, reacția de întrerupere a lanțului trece în domeniul de difuzie și constanta vitezei de întrerupere a lanțului scade pe măsura scăderii coeficientului de difuzie a radicalilor liberi. De aceea, în cursul procesului are loc o acumulare de radicali - purtători de lanț - și polimerizarea se desfășoară nestaționar încă de la început. Măsurătorile concentrației radicalilor liberi, [R.], efectuate cu ajutorul metodei RES arată că radicalii se acumulează încă de la primele X stadii ale procesului.

Intrucît viteza polimerizării la un moment dat are ex-

 $W = k_p [R.] [M]$ , unde [M]este concentrația monomerului, frînarea bruscă în stadiile avansate la o viteză mică de consum a lui [M] și creșterea în continuare a lui [R.] este posibilă, raportată la micșorarea bruscă a constantei  $k_p$  a vitezei de creștere a lanțului, coținerea unui anumit grad de transformare. Se arată că la un anumit moment al transformării, cînd sistemul de reacție este deja suficient de solidificat, constanta vitezei, k, a numărului de ciocniri dintre M și R. devine atît de mică, încît îndeplinește condiția:

## k≪ k<sub>p</sub>

Deci viteza creșterii lanțului în acest stadiu va fi determinată nu atît de reactivitatea chimică reală a lui M și R., cît de factorii de care depinde frecvența ciocnirilor M și R., posibilitatea și ușurința rotației grupelor marginale cu dublă legătură a monomerului M, flexibilitatea lanțului oligomerului, etc. Este firesc ca, în cazul moleculelor lungi și flexibile a reticulantului, frînarea procesului să înceapă în stadii mai avansate ale conversiei, comparativ cu lanțurile scurte și rigide.

Formarea în timpul polimerizării tridimensionale, în locul lanțurilor liniare a structurilor ramificate și apoi reticulate, transformă substanțial procesul de polimerizare.

O importanță mare pentru cinetica polimerizării țridimensionale o reprezintă variația raportului constantelor vitezelor de creștere și întrerupere a lanțului,  $k_p/k_t$ , pe parcursul avansaării reacției.

Bazîndu-se pe valorile k obținute la polimerizarea unor dimetacrilați (butilenglicol 1,4; hexandiol 1,6 și bis-trietilen

- 41 -

glicol ftalat dimetacrilat), Tvorogov [57] urmărește dependența vitezei de polimerizare de viteza de inițiere și mecanismul de întrerupere a lanțurilor în creștere.

Se arată că în condițiile polimerizării reticulante a esterilor dimetacrilici, reacțiile de întrerupere a lanțurilor se produc pe baza unui mecanism cvadric, în locul celui mixt (cvadric + monomolecular), existent în realitate. Din relațiile deduse reiese proporționalitatea vitezei de polimerizare  $W_0$  de  $\sqrt{W_1}$  ( $W_1$  - viteza de inițiere), ceea ce ar fi o confirmare a mecanismului cvadric de întrerupere.

Numeroase măsurători au arătat că la polimerizarea esterilor dimetacrilici se produce o scădere bruscă a raportului  $k_t/k_p$ la o conversie  $\alpha$ , avansată, ceea ce este legat, în principal, de scăderea cu precădere a mărimii  $k_t$  față de  $k_p$ . Prin creșterea în continuare a lui  $\alpha$ , funcția  $k_t/k_p = f(\alpha)$  devine mai puțin convingătoare și la $\alpha$ ) 20% scade încet în timpul reacției (fig. 15).



Datele furnizate de ci-

netica polimerizării permit adesori să se tragă concluzii asupra capacității de reacție a monomerilor din sistemele studiate. Datorită însă particularităților cinetice ale fiecărui sistem, cît și faptului că polime-



rizările nu sînt studiate în condiții similare, pe baza datelor din literatură, este greu să se obțină date comparative asupra capacității de reacție a monomerilor tetrafuncționali, caracteristică deosebit de utilă în studiul copolimerizării reticulante. O încercare, în sensul determinării particularităților de bază a polimerizării și evaluarea relativă a capacităților de reacție, este făcută în lucrarea [58] . S-au folosit pentru studiu următorii monomeri: metacrilat de metil (MM), stiren (S), dimetacrilat de etilen glicol (DMEG), diacrilat de dian (DAD), dimetacrilat de dian (DMD), dialilftalat (DAP), dialilizoftalat și dialiltereftalat. MM și S s-au ales în vederea obținerii datelor necesare pentru compararea cu monomerii tetrafuncționali studiați.

Din compararea datelor cinetice obținute, în paralel, prin netoda gravimetrică și dilatometrică se pot trage concluziile:

l. Dintre monomerii studiați cea mai mare tendință de polimerizare o are DMEG, după el MM. La acești monomeri se manifestă pregnant efectul Trommsdorff - Norrish.

2. DMD și DAD întrec în capacitate de polimerizare stirenul și la  $\sim 80^{\circ}$ C (inițiator POB) și cedează locul S la temperaturi mai ridicate (inițiator peroxid de t-butil).Capacitățile de polimerizare a DAD și DMD sînt apropiate.

3. Tendința de polimerizare cea mai mică este proprie dialilftalaților, capacitate de reacție a cărora este practic aceeași (în special la temperaturi mai ridicate).

#### 4.2. Densitate de reticulare. Bficiența reticulării

Aspectele teorètice și experimentale legate de densitatea reticulării și, de aici și de eficiența reticulării în copolimeritarea reticulantă, au constituit preocuparea unui număr însemnat de fautori [49, 53, 69 - 76, 110, 112 - 118]. Concluzia care se desprin-

- 43 -

de din aceste lucrări este că densitatea de reticulare efectivă (reală) este mai mică decît cea dedusă prin calcule teoretice, datorită anumitor factori, dintre care influența cea mai puternică, se pare că, o au reacțiile de ciclizare intramoleculară.

### 4.2.1. Calculul densității de reticulare

Pentru caracterizarea structurii rețelelor reticulante un parametru important este densitatea de reticulare. In 1956 Flory [70] obține o relație pentru calculul densității de reticulare, folosită apoi de J. Kapeček și colab. [54] pentru copolimeri reticulați cu DMEG, bazată pe gonflarea polimerului:

$$\beta = [\ln (1 - v_2) + v_2 + \chi v^2] = (v_1 \sqrt[3]{c/v}) [\langle d \rangle_0^2 v_2^{1/3} - v_2/2]$$
(4 - 16)

în care:

$$v_2$$
 - fracția volumetrică a polimerului în stare gonflată;

 $\chi_1$  - parametru de interacțiune polimer - solvent;

- V<sub>1</sub> volumul molar al solventului;
- \$\overline{c} numărul de moli a lanţurilor efectiv reticulate (între reticulări) /gram;

(~), - factor de dilatare în absența solventului.

Definind densitatea de reticulare medie,  $\int$ , ca fracție molară a unităților de compus divinilic prinse în polimer, legate prin punți de rețea, H. Wesslau [49] propune următoarea formulă de oalcul:

$$\bar{f} = \frac{2 [B_1]_0}{\alpha [M]_0 (2r_{13} - r_{12})} [r_{12}(1 - \alpha)^{2/r} 12 - 2r_{13}(1 - \alpha)^{2/r} 13 + 2r_{13} - r_{12}]$$
(4 - 17)

In casurile limită, cînd  $r_{12} = r_{13} = r_1$  ecuația (4 - 17) devine:

$$\overline{\hat{S}} = \frac{2 \left[ \frac{B_1}{O} \right]_0}{\alpha \left[ \frac{M}{O} \right]_0} \left[ 1 - (1 - \alpha)^{1/r_1} \right]^2 \qquad (4 - 17')$$

, Tot pentru caracterizarea structurii reticulate a copolimerilor Zaharov [53]folosește un parametru, N<sub>c</sub>, asemănător densității de reticulare, care caracterizează numărul lanţurilor nominale într-un cm<sup>3</sup> de polimer cu rețea idealizată (tetra sau trigonală). Limita superioară a lui N poate fi calculată după conținutul moleculelor de reticulant:

- 45 -

$$N_{G} = d \frac{N_{A}\overline{2}}{(100 - \overline{2}) M_{W1} + M_{W2}\overline{2}} \qquad (4 - 18)$$

unde:

- conţinutul de reticulant în amestecul de monomeri
 în % mol;

 $N_{c}$  - numărul de molecule într-un cm<sup>3</sup> de polimer;

N<sub>A</sub> - numărul lui Avogardo;

d - densitatea polimerului (determinată prin metoda flotației);

M<sub>wl</sub> - masa moleculară a monomerului;

M<sub>W2</sub> - masa moleculară a reticulantului.

Pentru rețeaua tetragonală  $N_{tet} = 2 N_C$ Pentru rețeaua trigonală  $N_{tri} = 3 N_C$ 

Toate aceste ecuații deduse pentru calculul densității de reticulare nu țin seama de posibilitatea ciclizării intramoleculare și (sau) împiedicările sterice care pot să facă ineficientă o parte din cantitatea de agent reticulant întrodusă inițial.

### 4.2.2. Eficiența reticulării

Pe baza rezultatelor experimentale obținute în majoritatea cazurilor s-a observat că valoarea reală a densității de reticulare este considerabil mai mică decît cea calculată teoretic. Din acest motiv se impune noțiunea de "eficiență de reticulare", care s-ar putea defini, în general, ca raport al densităților de reticulare determinată experimental și dedusă pe cale teoretică.

Pentru evaluarea cantitativă a eficienței de reticulare a fost elaborat un procedeu experimental de către Loshaek și Fax [54, 70, 71].

Pentru polimerii pregonflați M.C. Shen și A.V. Tobolsky [72] prezintă o metodă Loshaek - Fox modificată. Au fost studiați copolimerii MM - tetraetilenglicol dimetacrilat (DMTEG) cu o gamă largă de compoziții, sintetizați în masă, prin fotopolimerizare. Studiile s-au făcut pe copolimeri pregonflați, folosindu-se dioctilftalatul (DOF) ca agent de pregonflare.

Dacă p este fracția tuturor grupelor vinilice care au reacționat, atunci aceasta poate fi reprezentată prin următoarea ecuație:

$$\mathbf{p} = (\mathbf{v}_{\mathrm{m}} - \mathbf{v}_{\mathrm{p}}) / (\mathbf{N}_{\mathrm{M}} \cdot \Delta \mathbf{V}_{\mathrm{M}} + \mathbf{N}_{\mathrm{D}} \cdot \Delta \mathbf{V}_{\mathrm{D}}) \qquad (4 - 19)$$

unde  $v_m$  și  $v_p$  sînt volumele specifice ale amestecului de monomer și polimer, respectiv  $N_M$  și  $\Delta V_M$  sînt numărul de moli ai dublelor legături și volumul contracției molare a compusului vinilic, iar  $N_D$ și  $\Delta V_D$  corespund acelorași semnificații pentru compusul divinilic.  $N_M$  și  $N_D$  s-au calculat din:

$$\mathbf{N}_{\mathbf{M}} = \mathbf{m}_{\mathbf{M}} / (\mathbf{m}_{\mathbf{M}} \mathbf{M}_{\mathbf{M}} + \mathbf{m}_{\mathbf{D}} \mathbf{M}_{\mathbf{D}} + \mathbf{m}_{\mathbf{S}} \mathbf{M}_{\mathbf{S}}) \qquad (4 - 20)$$

$$N_{D} = 2 m_{D} / (m_{M} M_{M} + m_{D} M_{D} + m_{S} M_{S})$$
 (4 - 21)

unde m - reprezintă numărul de moli a fiecărui component în amestec, M - masele molculare, iar indicii M, D, S se referă la monomerul vinilic, divinilic și, respectiv, la solvent.

Presupunînd că tot monomerul vinilic și tot monomerul divinilic au reacționat cel puțin odată, este evident că dublele legături adiționale (suspendate) formează acum punți de reticulare. Din acest motiv, eficiența reticulării poate fi exprimată prin e-

- 46 -

- 47 -

cuația:

$$\mathbf{e} = \left[ \mathbf{p} \left( \mathbf{m}_{M} + 2 \mathbf{m}_{D} \right) - \left( \mathbf{m}_{M} - \mathbf{m}_{D} \right) \right] / \mathbf{m}_{D} \qquad (4 - 22)$$

Eficiența reticulării determinată prin această metodă este mai puțin exactă pentru polimerii pre-gonflați datorită prezenței solvenților. Din rezultatele experimentale obținute de autori s-a găsit o eficiență mare a reticulării pentru copolimerii studiați. Aceasta este parțial tributară lanțului lung, flexibil al DMTEG, prezent între două grupe vinilice. Tabelul 4 cuprinde valorile eficienței reticulării pentru copolimerii studiați [72].

Tabelul 4. Valorile eficienței reticulării pentru sistemul MM - DMTEG - DOF [72]

| Nr. | DOF<br>%vol | Fracția<br>molară<br>DMTGE % | <sup>C</sup> DMTEG<br>moli/cm <sup>3</sup><br>x 10 <sup>5</sup> | Volum<br>specific<br>monomer<br>cm <sup>3</sup> /g | Volum<br>specific<br>polimer<br>cm <sup>3</sup> /g | Eficienţa<br>e  |     |
|-----|-------------|------------------------------|-----------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------|-----|
| 820 |             | 22220222;<br>22              | . 9882 2628267:                                                 | =======================================            | <b>EZGAZ</b> 2222222                               | 222222823223232 | === |
| 1   | 29,9        | 1,4                          | 10,7                                                            | -                                                  |                                                    | (0,66)          |     |
| 2   | 29,7        | 3,8                          | 28,2                                                            | -                                                  | -                                                  | (0,66)          |     |
| 3   | 31,5        | 9,2                          | <b>60,</b> 6 <sup>-</sup>                                       | ʻ 1 <b>,01</b> 3                                   | 0,373                                              | 0,77            |     |
| 4   | 28,1        | 28,1                         | 141                                                             | 0,986                                              | 0,869                                              | 0,60            |     |
| 5   | 28,5        | 53,8                         | 195                                                             | 0,960                                              | 0,863                                              | 0,60            |     |
| 6   | 32,7        | 78,5                         | 229                                                             | 0,949                                              | 0,860                                              | 0,68            |     |
|     |             |                              |                                                                 |                                                    |                                                    |                 |     |

Scăderea eficienței cu creșterea fracției molare a reticulantului poate fi pusă pe seama unor ciclizări intramoleculare, posibile datorită lanțurilor lungi și flexibile a DMTEG.

A. V. Tobolsky și colab. [73] arată că determinarea eficienței reticulării din contracția de volum a amestecului de monomeri prin determinarea densității înainte și după polimerizare, pentru amestecurile cu mai puțin de 5% mol. reticulant (DMTEG), nu este atît de sigură. Sînt prezentate valorile eficientei de reticulare pentru concentrații mai ridicate ale reticulantului pentru același sistem, MM - DMTEG. Concentrația stoichiometrică a DMTEG în polimer, exprimată în moli/cm<sup>3</sup>, este notată în tabelul 15 cu c. Densitatea reticulării reale, c<sup>.</sup>, exprimată în moli/cm<sup>3</sup>, se obține după determinarea eficienței de reticulare cu relația:

$$c' = e \cdot c$$
 (4 - 23)

Studiind eficacitatea reticulării MM cu monomeri vinilici tetrafuncționali prin diverse procedee (după conversia critică la formarea gelului, dilatometrie, prin distrucție), Zaharov [53]

<u>Tabelul 5</u>. Valorile eficienței de reticulare pentru sistemul MM - DMTEG (73)

| Nr | DMTEG<br>% mol | C <sub>DMTEG</sub><br>moli/cm <sup>3</sup> | e    | c'<br>moli/cm <sup>3</sup> | • |
|----|----------------|--------------------------------------------|------|----------------------------|---|
| 1  | 0,50           | 0,000059                                   |      |                            |   |
| 2  | 1,01           | 0,000117                                   | -    | -                          |   |
| 3  | 1,51           | 0,000173                                   | -    | -                          |   |
| 4  | 2,02           | 0,000230                                   | · _  | -                          |   |
| 5  | 5,54           | 0,000588                                   | 0,67 | 0,000394                   |   |
| 6  | 10,02'         | 0,000979                                   | 0,66 | 0,000646                   |   |
| 7  | 15,38          | 0,001371                                   | 0,66 | 0,000905                   |   |
| 8  | 19,97          | 0,001654                                   | 0,68 | 0,001125                   |   |
| 9  | 25,04          | 0,001929                                   | 0,69 | 0,001331                   |   |
| 10 | 49.98          | 0,002851                                   | 0,71 | 0,002024                   |   |
| 11 | 74,79          | 0,003391                                   | 0,73 | 0,002475                   |   |

susține că numai o mică parte ( $\sim 30\%$ ) din cantitatea de reticulant participă la formarea rețelei tridimensionale. Astfel structura copolimerului reticulat trebuie să se bazeze pe datele despre compoziția amestecului inițial de monomer, polimerul deja format lăsîndu-se ou mari dificultăți supus analizelor. Pe lîngă aceasta trebuie să se determine numărul efectiv de lanțuri din rețea, notat N<sub>G</sub>, din datele despre rezistența la echilibru, bazat pe formula teoriei statistice:

$$N_{\rm G} = \frac{E}{3 \, \rm kT} \qquad (4 - 24)$$

E - modulul normal de rezistență la echilibru;

k - constanta lui Botzmann;

T - temperatura absolută.

La o concentrație a reticulantului mai mare decît 1,5% mol , la cc<sub>e</sub>olimerii MM, valorile lui N<sub>G</sub> sînt de 1,5 - 4,5 ori mai mici decît N<sub>tet</sub> și N<sub>tri</sub> calculate teoretic.

O noțiune asemănătoare eficienței de reticulare este întrodusă de H. Wesslau [49], randamentul de reticulare, definit prin relația:

$$Q = \frac{\hat{P} \exp}{\hat{P} \operatorname{teor}} \qquad (4 - 25)$$

 $\overline{\rho}$  - densitatea medie de reticulare.

Se dă o definițe mai precisă a randamentului de reticulare: o macromoleculă puternic ramificată (reticulată, dar încă solubilă) ar fi formată din (a + 1) catene primare; pentru a le lega sînt necesare chiar "a" puncte de reticulare. Analitic însă se găsesc mai multe, și anume, (a + b) puncte de reticulare. Deci conform definiției, randamentul de reticulare este:

$$2 = \frac{a}{a+b}$$
 (4 - 26)

numărul suplimentar de "b", poziții de reticulare nu se poate explica altfel decît prin închiderea unor cicluri în sistemul ramificat.

Scăderea eficienței de reticulare pentru diferite sisteme (și implicit valori mici pentru dens itatea de reticulare reală) este atribuită atît unei ciclizări intramoleculare, cît și neputinței unor duble legături de a reacționa din cauza impledicărilor sterice [49, 53, 54, 72 - 76, 110].

J.S.H. Hwa [74] arată că incompleta utilizare a monomeru a

lui divinilic ( metilendimetacrilat) în reticularea chimică efectivă a MM, la conversie înaltă, post gelifiere, poate fi atribuită în general:

a) copolimerizării incomplete a celei de a doua legături vinilice suspendate a monomerului divinilic;

b) formării ciclurilor intramoleculare.

Copolimerizarea incompletă a celei de a doua duble legături suspendate a compusului divinilic, făcînd abstracție de ciclizare, se datorește atît unei reactivități diferite față de dublele legături libere din monomerul tetrafuncțional, cît și împiedicărilor sterice. Capătul suspendat este ancorat de ramificația rigidă, fiind împiedicat în mobilitatea lui, în plus, și de ghemuirea catenei de polimer de care este legat [49].

Monomerii divinilici care au reacționat la ambele capete rezultă dintr-o aparentă reticulare chimică, însă numai o parte sînt prinți în reticularea intermoleculară efectivă. Altă parte sînt cooptați la formarea unor "inele" cu mai mulți membri, de dimensiuni mai mici în comparație cu ochiurile rețelei. Aceste "inele" sînt cicluri intramoleculare care, în majoritatea cazurilor, nu contribuie la reticulare [74]. Hwa dă un exemplu în acest sens - ciclizarea intramoleculară la copolimerii MM - metilen dimetacrilat [74]

$$\sim CH_2 - CH_2 - CH_3 = \begin{bmatrix} CH_3 & CH_3 & CH_3 & CH_3 \\ 0 & - & CH_2 - C & - \end{bmatrix}_x CH_2 - C - CH_2 - CH_2 - C - \cdots$$
(1)  
$$C = 0 = CH_3 = CH_3 = 0 = CH_3 = 0$$

Valoarea lui x poate fi zero sau un întreg mai mic.

Pierderea evidentă a reticulantului prin acest efect de "mușcare a cozii" este inerentă în majoritatea copolimerizărilor vinil - divinil. Ușurința ciclizării este așteptată să varieze conform cu numărul minim de atomi necesari să formeze inelul. Este cunoscut că, în general, ciclurile pot să se formeze în următoarea

**BUPT** 

ordine aproximativă descrescătoare a uşurinței:

5 ≥ 6 ≫ 7 - 21 [74, 75].

Metilen și etilendimetacrilații ar putea cilcliza în structura I (x = 0) pentru a da 8 și 9 membri ai inelului respectiv. In acest fel este foarte mult micșorată eficiența unui reticulant în reacțiile vinil - divinil. Această caracteristică a fost verificată de Hwa și Müller [63, 122] în studiile de gelifiere pe copolimerii MM - anhidridă metacrilică. Acești copolimeri, în ciclizare, formează structuri de tipul II:

- 51 -

Structurile II se obțin prin reacții de ciclopolimerizare. In celelalte cazuri de formare a ciclurilor închiderea ciclului se face prin reacția capătului radicalului cu o legătură dublă oarecare, care este deja legată de aceeași macromoleculă, eventual puternic ramificată [49].

In legătură cu determinarea structurii copolimerilor stirenului cu diverși dimetacrilați, H. Wesslau [76] a determinat gradul de ciclizare pentru dimetacrilații utilizați ca agent reticulant: anhidridă metacrilică 63% dimetacrilat de butilenglicol 1,4%, dimetacrilat de hidrochinonă 22%, 4,4 - dihidroxi difenil dimetacrilat 11%.

# 4.3. <u>Posibilități de investigare a copolimerilor</u> <u>reticulați</u>

#### 4.3.1. Spectometria IR

Spectrele IR sînt frecvent utilizate în studiile privind mecanismul și cinetica copolimerizării reticulante a sistemelor vinil - divinil, determinarea atructurii compusului reticulat, determinarea cantitativă a agenților de reticulare [77, 79, 119, 120].

J. Jokl și colab. [77] prezintă o metodă pentru determinarea structurii copolimerului MM - dimetacrilat de etilen glicol (DMEG), folosind spectrele de absorbție în domeniul IR apropiat (NIR).

Se scoate în evidență că studiile de cinetică și relație structurală sînt semnificative în special în domeniile cu conținut mic de agent reticulant în amestecul de monomeri, (0,5 - 18%). Determinările se referă numai la fracții mici de reticulare, legate sub formă de grupări vinilice laterale nereacționate. In regiunile cu conținut mare de agent de reticulare relațiile de calcul nu dau o exactitate suficientă.

Autorii propun o metodă pentru determinarea grupelor vinilice laterale pe sistemul MM - DMEG - solvent (solventul folosit: acetat de butil). Frecvența 6205 cm<sup>-1</sup> s-a găsit tipică pentru grupele vinilice. Frecvențele analitice în interiorul cărora s- au efectuat spectrele NIR au fost:  $\gamma_1 = 7508 \text{ cm}^{-1}$ ,  $\gamma_2 = 7140 \text{ cm}^{-1}$ ,  $\hat{\gamma}_3 = 6205 \text{ cm}^{-1}, \quad \hat{\gamma}_4 = 6341 \text{ cm}^{-1} \text{ si } \hat{\gamma}_5 = 6168 \text{ cm}^{-1}. \text{ Valorile ab-}$ sorbției s-au evaluat cu ajutorul liniei de bază. Datele obținute confirmă exactitatea legii Lambert - Beer pentru sistemul studiat și, de asemenea, stabilitatea coeficientului de absorbție a grupelor vinilice. Eroarea absolută a determinărilor a fost de ± 0,3%. Eroarea relativă creste cu. scăderea relativă a grupelor vinilice. Dependența dintre cantitatea de grupări vinilice laterale și conținutul de agent de reticulare din amestecul de monomeri are un caracter exponential, curba nu trece prin origine (fig. 16). Rezultatele pot fi substanțial îmbunătățite prin determinarea variației densității de reticulare în intervalul de la cele mai mici conținuturi de grupări vinilice laterale, evaluate spectrometric la conținut scăzut de agent de reticulare în amestecul de monomeri.

- 52 -

Ð **a**5 5. GOMA/GOMA . MINY )

Fig. 16. Dependența cantității de grupări vinilice laterale de compoziția amestecului de monomeri [77]

#### Cinetica co-

polimerizării reticulante în sistemul vinil-

divinil a fost urmărită de K. A. Kun și R. Kunin cu ajutorul spectometriei IR [78]. S-a studiat sistemul stiren - divinilbenzen (S - DVB). S-au obtinut spectrele IR ale polimerilor izolați în timpul polime\_izării și s-a măsurat concentrația relativă a grupelor vinilice laterale sau nereacționate ale DVB din copolimer. Măsurarea concentrației relative s-a făcut din raportul transmisiilor la 9,75µ și 10,15µ. Absorbția la 9,75µ este un maxim caracteristic găsit în polistiren. Maximul de la 10,15 $\mu$  este caracteristic grupelor vinilice monosubstituite. Rapoartele acestor maxime de absorbție arată că concentrația relativă a grupelor vinilice descrește pe măsură ce polimerizarea avansează, lucru ce era de asteptat.

J. F. de Freitas [79] prezintă o metodă rapidă pentru identificarea și determinarea agenților uzuali de reticulare din amestecurile cu MM, folosind analiza IR. La lungimi de undă selectate de absorbție maximă, absorbția agentului de reticulare este proporțională cu concentrația sa în amestec.

Comparînd absorbțiile necunoscute cu absorbția unui amestec standard MM - agent de reticulare, ambele diluate cu aceeași cantitate de solvent, se poate calcula concentrația agentului de reticulare.

$$C = \frac{A_n}{A_n} \qquad (4 - 27)$$

unde

C - 🗲 de reticulant în proba analizată:

- 53 -



A<sub>n</sub> - absorbția probei analizate; A<sub>s</sub> - absorbția standard.

## 4.3.2. <u>RMN de înaltă rezoluție a polimerilor</u> reticulați

- 54 -

Eliminînd translația și rotația, spectrele RMN ale rețelelor reticulate gonflate dau informații asupra mișcării segmentului de lanț și asupra mobilității în solvent, dacă segmentul se mișcă destul de rapid pentru a se obține spectre de înaltă rezoluție. De asemenea dacă greutatea moleculară a polimerului este foarte mare, unele efecte ale masei moleculare vor fi destul de accentuate asupra spectrului.

K. J. Lin și W. Burlant [80] au studiat cu ajutorul RMN de înaltă rezoluție efectele de lărgire a liniilor RMN în polimerii reticulați gonflați.

S-au ales spre cercetare o serie de polimeri între care copolimerul MM - DMEG, sintetizat în masă, în prezență de AIBN. Ca agent de gonflare: benzenul. Spectrele RMN s-au obținut la 35°C, lărgimea benzilor măsurîndu-se în cicli/sec.

Lărgimea benzilor copolimerului este insensibilă față de gradul de reticulare, dacă raportul de gonflare este mare; pentru copolimerul MM - DMEG la rapoarte de gonflare 37 și 35 diferența în lărgimea benzilor este mai mică de l ciclu/sec. Rezultă dă rețelele ușor reticulate se comportă ca și copolimerii liniari în soluție. Pe măsură ce densitatea de reticulare crește, mobilitatea se reduce și benzile se lărgesc considerabil. La o descreștere a raportului de gonflare la 3,5 se observă o creștere a lărgimii benzii de peste 120 cicli/sec, vîrfurile de înaltă rezoluție dispărînd aproape complet. 0 bandă largă RMN la 120 cicli/sec se obține pentru PMM puternic reticulat (raport de gonflare: 3,5) numai la temperatură ridicată (60°C). Aceste rezultate arată că mișcarea segmentelor unui polimer în soluție, în condiții obișnuite, nu este funcție numai de greutatea lui moleculară, ci și că un anumit grad de reticulare este necesar pentru a restrînge mișcarea polimerului la nivelul segmentelor. Din valorile lărgimii benzilor RMN ale grupelor -  $CH_3$  esterice și grupelor -  $CH_3$  legate de catenă s-a observat că acestea sînt aproximativ la fel de sensibile la densitatea de reticulare (tabelul 6).

# Tabelul 6. Date RMN ale PMM reticulat, la 35°C în benzen [80]

| Raport de gon-<br>flare la echi-<br>libru | Raport de gonflare<br>măsurat | Lărgimea benzii<br>- CH <sub>3</sub> esterice<br><sup>3</sup> cicli/sec | Lărgimea b <b>enzii</b><br>- CH <sub>3</sub> din catenă<br><sup>3</sup> cicli/sec |
|-------------------------------------------|-------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 3,5                                       | 3,5                           | 100                                                                     | 100                                                                               |
| 6,4                                       | 6,4                           | 21,5                                                                    | 30,5                                                                              |
| 18                                        | 18                            | 9,5                                                                     | 15,5                                                                              |
| 23                                        | 23                            | 6,4                                                                     | 12,4                                                                              |
| 23                                        | 18,5                          | 6,6                                                                     | 13,4                                                                              |
| 23                                        | 12                            | 7,4                                                                     | 14,6                                                                              |
| 23                                        | <b>5,4</b> <sup>°</sup>       | 9,9                                                                     | 15,9                                                                              |
| 23                                        | 3                             | 10,9                                                                    | 16,9                                                                              |
| 37                                        | 37                            | 4                                                                       | 11,5                                                                              |
| 75                                        | 75                            | 3,7                                                                     | 10,7                                                                              |
| 8                                         | -                             | 3,7                                                                     | 9                                                                                 |

Aceasta reflectă efectul de rigidizare al unei catene de PMM reticulat asupra grupelor -CH<sub>3</sub> din gruparea esterică laterală.

### 4.3.3. <u>Studiul prin RES a (Co)polimerizării</u> <u>tridimensionale</u>

Tehnica RES (EPR) este, în principiu, ideală pentru studiul polimerizărilor radicalice, unde radicalii pot fi cercetați direct. Se pot determina din spectrele RES două mărimi importante: - concentrația radicalilor - din intensitatea spectrului și, \_ natura radicalilor - din structura spectrului.

In sistemele de copolimerizare tridimensională, prin adăugarea unui monomer tetrafuncțional, datorită particularităților cinetice ale acestor sisteme, se crecază posibilitatea apariției unor concentrații mari de radicali cu viață lungă. Devine astfel posibilă utilizarea RES în investigarea cineticii polimerizării tridimensionale, dificil de urmărit prin alte mijloace [55-57, 59, 67].

N.M. Atherton și H, Mellville [81] aplică tehnica RES la copolimerizarea MM - DMEG. La concentrații mai mari (40% vol.) reacția devine rapid controlată de difuzie și conceptele normale despre viteză sînt inaplicabile.

Măsurînd radicalii (R.) captivi în copolimeri, la diferite compoziții inițiale se arată că numărul radicalilor R. crește cu creșterea cantității de DMEG. Aceasta este în acorâ cu așteptările, captarea fiind favorizată de creșterea reticulării. Urmărind concentrația R. în timpul reacției pentru un amestec cu 40% DMEG la 23°C, acesta prezintă un maxim la 44.10<sup>7</sup> R./ml, după 3 ore de reacție.

Informații despre natura lui R. pot fi obținute din RES prin analiza structurii hiperfine și din spectrele de absorbție. Spectrele obținute pentru sistemul MM - DMEG sînt identice cu cel al PMM, obținut prin iradiere cu raze  $\delta$ , cu radiații UV și chiar X (sub acțiunea radiațiilor pot fi păstrate în polimerii solizi concentrații stabile de R.). Aceasta indică prezența aceluiași radical, presupus a fi:

> BUPT Tiny Scanner

$$\mathbf{R} = \mathbf{CH}_2 = \mathbf{C} \cdot \mathbf{C}$$
Importanța studierii comportării și proprietăților copolimerilor metacrilici reticulați provine atît din necesități teoretice cît, mai ales, din necesități practice imediate de aplicare a acestor materiale polimere.

Proprietățile fizico-mecanice ale copolimerilor reticulați tridimensionali sînt determinate de structura fizică a copolimerului, natura chimică a lanțurilor macromoleculare, a grupelor transversale care formează punțile de reticulare, de densitatea de reticulare [55, 121].

Actualmente, reprezentările general valabile asupra structurii fizice a polimerilor spațiali lipsesc. Pentru explicarea proprietăților fizico-mecanice a sistemelor de acest tip au fost propuse modele idealizate, admițînd prezența în structurile reticulate atît a legăturilor covalente, cît și a legăturilor de hidrogen și a forțelor van der Waals.

Rezistența specifică ( $\mathcal{T}_T$ ) a polimerilor spațiali se poate determina aproximativ prin studierea structurii și interacțiunilor moleculare a modelelor sistemelor de construcție reticulată.  $\mathcal{T}_T$ se calculează cu relația:

$$\mathcal{O}_{\mathrm{T}} \simeq 0,1 \, \mathrm{B}_{\mathrm{T}} \qquad (4 - 28)$$

unde  $E_{m}$  - modulul teoretic al materialului.

Determinînd prin calcul  $\mathcal{O}_T$  și  $\mathbf{E}_T$  și comparînd cu valorile  $\mathcal{O}_R$  și  $\mathbf{E}_R$ (indicele R - real) obținute experimental, se pot trage concluzii asupra legăturilor de bază a materialului. Astfel:

- cînd structura reticul<sub>a</sub>tă se realizează pe seama legăturilor covalente;  $G_T \simeq 2,6.10^{-4} - 14,3.10^{-4} dyn/legătură (= 1000-3000 daN/mm<sup>2</sup>)$  $și <math>E_T = 10\ 000 - 30\ 000\ daN/mm<sup>2</sup>;$  - cînd structura spațială se realizează pe baza legăturilor de hidrogen:  $\Gamma_{\rm T}$  = 0,56.10<sup>-4</sup> dyn/legătură (= 600 daN/mm<sup>2</sup>) și  $E_{\rm T}$  = 6000 daN/mm<sup>2</sup>;

- cînd structura se formează prin forțe van der Waals:  $G_T$  0,1.10<sup>-4</sup> dyn/legătură (= 160 daN/mm<sup>2</sup>) și  $E_T$  = 1600 daN/mm<sup>2</sup> [55].

Cercetările efectuate asupra mecanismului polimerizării reticulante demonstrează că "scheletul" de bază al agregatelor reticulate se formează prin legături chimice. O astfel de formare a rețelei spațial - reticulate nu contrazice neconcordanța dintre datele experimental și cele calculate pentru modulul și rezistența polimerilor reticulați.

In realitate formarea rețelei reticulate decurge cu numeroase defecte, generate de o serie de factori:

l. împreună cu creșteréa lanțului decurg și procese de rupere, și reacții de distrucție, condiționate în măsură mai mică sau mai mare

de neomogenitătile moleculare din sistem;

2. polimerizarea reticulantă decurge în medii foarte vîscoase și de aceea ea nu este legată de reactivitatea grupelor și legăturilor suspendate de lanțul macromolecular, care poate constitui un obstacol steric;

3. trecerea de la macromolecule liniare, prin faza de ramificare, la o rețea macromoleculară spațial-ramificată are loc cu mărirea contracției și dezvoltarea tensiunilor interne care pot cauza amorsarea defectelor macroscopice [53, 55].

Asupra proprietăților și comportării ulterioare a copolimerului reticulat o mare importanță prezintă natura fizică și chimică a compușilor utilizați în sinteză. M. Hagiwara și K. Yamagi [82] comunică efectul de reticulare a compușilor acetilenici la polimerizarea MM cu inițiatori radicalici, radiații UV sau iradiere cu raze d. Polimerul format în prezența acetilenei dă o fracțiune de gel de 100% și nu poate fi extras în cloreform (solvent foarte bun pentru PMM). La polimerizarea MM cu  $C_2H_2$  în prezența unei cantități de PMM solubil în monomer s-a observat formarea gelului, polimerul rezultat însă, a putut fi complet extras în cloroform după 200 ore. Hagiwara și Yamagi [82] conchid că formarea unei rețele eficace este provocată de prezența  $C_2H_2$  și MM monomer.

Agentul de reticulare, prin natura lui chimică, cantitate, frecvența legăturilor transversale pe care le realizează, produce modificări mai mult sau mai puțin pregnante asupra proprietăților polimerului structurat tridimensional.

In general agenții de reticulare îmbunătățesc unele proprietăți ale polimerului pînă la o anumită cantitate de agent întrodus în amestecul inițial [53, 60, 72, 73, 83 - 86, 125].

E. M. Wolf [83] arată că unele proprietăți ale PMM și copolimerilor nu sînt semnificativ afectate în prezența a 50 - 75% DMEG în amestecul de monomeri. Rezistența la rupere se schimbă puțin pînă la 20% agent de reticulare, dar descrește la concentrații mai mari.

Modulul de elasticitate la forfecare scade pentru sistemele înalt reticulate MM - DMTEG [72], însă se observă o creștere a acestuia cu creșterea concentrației reticulantului în domenii mici de concentrații.

Copolimerul MM - DMEG (>10% mol) este mai rezistent la fisuri decît PMM; o mică cantitate de reticulant reduce energia de suprafață () 5 ori [125].

Temperaturile de înmuiere ale copolimerilor MM cu diverși dimetacrilați cresc liniar cu creșterea conținutului de monomer tetrafuncțional, pînă la 10% mol [53].

Diverși dimetacrilați au fost copolimerizați cu MM și s-au efectuat studii asupra dimensiunilor moleculei de dimetacrilat și efectele acestoră asupra proprietăților copolimerului. Pentru etilen glicol ftalat dimetacrilat și DMEG rezistența la șoc a fost afectată

**BUPT** 

- 59 -

marcant, la ambii copolimeri, de dimensiunile moleculei și de densitatea de reticulare. Rezistența la zgîrîiere și rezitența la rupere, la tracțiune și îndoire este afectată numai la copolimerul cu DMEG [84] .

Copolimerii MM cu DMTEG sînt mult mai puțin casanți decît cei cu DMEG, tocmai datorită lungimii și flexibilității lanțului DMTEG [87] .

M. Herman [88] studiază copolimerii sintetizați prin reticulare cu folosirea lanțului molecular inflexibil, cu scopul utilizării lor ca Literiale plastice rezistente la temperaturi ridicate.

Studiind degradarea termică a unor poliester dimetacrilați pe bază de  $\alpha$ , $\omega$ -dimetacrilat de dietilen glicol ftalat cu grad de polimerizare n = 2, R.M. Aseeva și colab. [89] au observat că întroducerea legăturilor esterice în lanțurile transversale ale rețelei tridimensionale produce o ușoară scădere a termostabilității polimerului. Prin micșorarea temperaturii, degradarea termică a poliester dimetacrilaților este analogă cu degradarea termică a PMM liniar, întroducerea reticulării neinfluențînd depolimerizarea.

Din datele de literatură [47 - 125] o mare actualitate prezintă legătura structurilor copolimerilor reticulați cu proprietățile fizico-chimice și mecanice. Rezolvarea acestei probleme permite alegerea conștientă a compușilor inițiali în condițiile transformării lor în copolimeri reticulați. Se înțelege că progresul în acest domeniu poate fi atins în cazul în care vor fi sintetizate substanțe și vor fi concepute metode și tehnici de lucru care să permită obținerea polimerilor cu structură regulată, cu mărimea și natura chimică a lanțurilor internodale date.

#### PARTEA EXPERIMENTALA

### 5. TEMA SI PROGRAMUL LUCRARII

Lucrarea de față și-a propus căutarea unei corelații între structura chimică a unor compuși macromoleculari și proprietățile de fotoelasticitate, prin crearea de modele cu structură definită.

- 61 -

Se prezintă un studiu privind examinarea în lumină polarizată a unor copolimeri ai metacrilatului de metil cu mai mulți comonomeri în ideea obținerii unor informații privind comportarea în fotoelasticitate.

In literatură se găsesc puține indicații privind natura chimică exactă a materialelor folosite pentru studii de fotoelasticitate, indicațiile sînt foarte generale - de exemplu se indică clasa, iar legătura cu eficiența practică a acestor produse este de obicei neglijată [20] . In laboratoarele din țara noastră s-au folosit ca materiale fotoelastice în exclusivițate rășini fenol - formaldehidice, de tip rezolic reticulat [126] și mai recent rășini epoxidice reticulate [127 - 135].

Spre diferență de produșii de policondensare, respectiv de poliadiție folosiți cu precădere în practică, studiul prezent își propune să examineze efectul fotoelastic, pe compuși de polimerizare. S-a considerat că în acest mod se pot construi modele chimice suficient de variate pentru a primi indicații preliminare privind o relație constituție chimică - efect fotoelastic. In domeniul propus, o astfel de corelație nu era în nici un mod previzibilă.

Se urmăresc - în principal - influențele pe care le-ar manifesta următoarele aspecte ale construcțiilor chimice asupra caracterului fotoelastic al polimerului:

**BUPT** 

I. structura liniară, respectiv o structură reticulată a copolimerilor, ca problemă generală;

II. tot ca problemă generală, structuri liniare sau ramificate. continînd:

a. numai elemente alifatice,

b. sau și nuclee arilice.

Desfășurînd aceste propuneri s-a urmărit:

1. structură liniară avînd însă nuclee arilice laterale;

2. structură reticulată cu rețele alifatice;

3. structură reticulată, cu rețele ce conțin nuclee arilice;

4. structură reticulată, realizată cu comonomeri ce pot întroduce legături alifatic-aromatice în rețea.

Pentru realizarea materialelor în vederea studierii evoluției proprietăților fotoelastice s-au efectuat o serie de sinteze de monomeri și copolimeri ai MM cu diverși comonomeri.

In tabelul 7 sînt redați monomerii sinteză proprie, iar în tabelul 8 se indică comonomerii și copolimerii - ca fragmente teoretice - ai MM și diverși comonomeri.

Tabelul 7. Monomerii sinteză proprie

| Denumirea mono-<br>merului | Formula                                                                                               | Prescurtare |
|----------------------------|-------------------------------------------------------------------------------------------------------|-------------|
|                            | 2                                                                                                     | 3           |
| Dimetacrilat de            | CH3 CH3                                                                                               |             |
| etilen glicol              | $CH_2 = C - C - 0 - CH_2 - CH_2 - 0 - C - C - C = CH_2$<br>$U_1 - CH_2 - 0 - CH_2 - 0 - C - C = CH_2$ | DMEG        |
|                            | CH <sub>3</sub> CH <sub>3</sub>                                                                       |             |
| Dimetacrilat de            | $CH_{-}=C-C-0-(0)-0-C-C=CH_{-}$                                                                       | DMH         |
| hidrochinonă               |                                                                                                       |             |

63 -Tabelul 7 (continuare) 2 CH<sub>3</sub> CH3 CH3 Dimetacrilat C-C=CH2 CH\_=C-Cde dian DMD CH 3 0 0 Dimetacrilat CH 3 de hidrochi-CH2=C-C-O-CH2 -CH2-O-C-C=CH2 DMHDEG non dietilen 0 0 glicol CH3 CH3 Dimetacrilat 0-C-C=CH CH\_=C-C-O-CH\_ de dianol 2.2 CH3 0 O DMD 2.2

In mod practic, materialul pe care s-a măsurat apariția și potențarea efectului de fotoelasticitate s-a realizat pe următoarele situații:

a) obținerea structurii liniare, dar cu nuclee arilice la- $\times$ terale prin copolimerizarea MM cu S;

b) obținerea unui copolimer reticulat cu rețea formată din legături alifatice, prin copolimerizarea MM cu DMEG;

c) obținerea unui copolimer care să aibă în structură rețele aromatice, prin copolimerizarea reticulată a MM cu DMH, DMD, DVB;

d) obținerea unor copolimeri reticulați cu structură de rețea alifatic-aromatică, prin copolimerizarea MM cu DMHDEG, DMD 2,2, DAP;

e) polimerul de comparație este PMM, obținut prin polimerizarea MM în aceleași condiții folosite pentru copolimeri. (v. reprezentarea grafică a situațiilor amintite în cap. 8).

| Denumirea co-<br>monomerului         | Prescurta-<br>rea în text<br>a comonomer. | Сотопег                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Copolimer                                                     |
|--------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
|                                      | 2                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                             |
| Dimetaorilat<br>de hidrochi-<br>nonă | DMH<br>CH2                                | $CH_{3} = CH_{3} = C$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$          |
|                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{ccccc} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $ |
|                                      |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ר<br>ר                                                        |

<u>Tabelul 8</u>. Copolimeri - sinteze proprii - ai MM cu diverși comonomeri

-

۴

Ì

•





BUPT





- 68'-

<u>Tabelul 8</u>. (continuare)

Í



Situațiile realizate practic s-au efectuat în două variante și anume:

var. I: prin copolimerizarea directă a MM cu monomerii propuși var.II: prin copolimerizarea MM - în prezență de PMM (întrodus ca solutie în MM) cu monomerii propuși

# x x

Polimetacrilatul de metil ales intenționat ca model de referință este mai degrabă neindicat pentru studii fotoelastice, pentru că, după cum se știe [16, 20, 21], dă izocromate - numai la încărcări foarte mari - fiind folosit doar pentru determinările de izocline. Cu atît mai interesant apare cercetarea aportului unor structuri speciale asupra efectului fotoelastic.

In prezentul studiu alegerea acestui polimer, ca termen de comparație, a fost însă evident obligatoriu.

X

### \_

x

## Măsurătorile și studiile de fotoelasticitate folosesc epruvete în formă de plăci. În vederea obținerii acestora, singura tehnică rațională este aceea de a realiza plăci de dimensiuni mai mari, din care se decupează epruvetele la dimensiunile cerute și în număr corespunzător repetițiilor.

Obținerea unor plăci cu proprietăți fotoelastice determinabile, presupune ca ele să fie neaparat transparente și izotrope (lipsite de tensiuni interne din sinteză).

S-a apreciat - ținînd seama și de unele dificultăți în tehnica obținerii plăcilor - că ar fi interesantă obținerea intenționată, controlată și a unor compounduri a copolimerilor cu homopolimerul polimetacrilic.

Aceste încercări, făcute cu o soluție vîscoasă de homopolimer - formă care facilitează obținerea plăcilor în casete - au

BUPT

avut și menirea de a stabili măsura în care compoundul omogen este realizabil, precum și acțiunea asupra efectului fotoelastic. Din încercările de copolimerizare directă a comonomerilor (varianta I), precum și copolimerizarea folosind soluția de PMM în MM (varianta II) s-a stabilit concentrația limită în funcție de compatibilitate în jur de 10% comonomer reticulat. Peste această concentrație plăcile prezintă bule, tensiuni interne și fenomenul de incompatibilitate (varianta II), plăcile se opacizează.

x x

Cercetările s-au completat cu unele caracteristici optice ale copolimerilor.

De asemenea, se urmăresc cîteva proprietăți fizico-mecanice și termine ale copolimerilor; ținînd seama de cerințele cunoscute, impuse materialelor folosite în cercetările fotoelastice și în general pentru o caracterizare mai avansată.

Reținînd domeniul restrîns de concentrații, în funcție de compatibilitate și deoarece s-a urmărit în principal corelația structurii acestor copolimeri cu comportarea lor fotoelatică, anumite proprietăți optice, fizico - mecanice, termice sînt prezentate mai sumar.

## 6. OBTINEREA SI PURIFICAREA MONOMERILOR SI AUXILIARILOR PENTRU SINTEZA COPOLIMERILOR

In vederea sintezei copolimerilor MM cu diverși comonomeri s-au folosit monomeri și auxiliari industriali, precum și monomeri sinteză proprie.

## 6.1. Purificarea și caracteristicile monomerilor industriali folosiți

Monomerii industriali care s-au folosit la copolimerizare sînt fie substanțe chimic pure (dialil ftalatul), fie produse tehnice (MM, S, DVB). MM este inhibat cu hidrochinonă, S cu p-terțbutilpirocatechină. DVB s-a folosit neinhibat.

### 6.1.1. Purificarea MM [136 - 138]

MM inhibat s-a spălat cu o soluție de 5% hidroxid de sodiu (în proporție MM:soluție NaOH = 10:1) și apoi cu apă distilată pînă la pH neutru. După spălare, MM umed a fost uscat pe  $Na_2SO_4$  anh. 24 de ore; sau s-a distilat în vid pe șpan de cupru la 28 -  $30^{\circ}C$ (p = 8 - 10 mm col Hg).

### 6.1.2. Purificarea S [139]

Stirenul s-a spălat cu 2 volume de soluție NaOH 10%, împărțită în 3 - 5 părți, urmată de spălări repetate cu apă distilată, • pînă la pH neutru. Uscarea s-a făcut pe CaCl<sub>2</sub> sicc. și apoi s-a supus distilării sub vid în atmosferă de N<sub>2</sub>. Se elimină aproximativ un sfert din cantitatea totală supusă distilării și se colectează aproximativ jumătate din cantitatea întrodusă.

## 6.1.3. Caracteristicile monomerilor industriali folosiți

Monomerii purificați s-au menținut la întuneric, la temperatura de 0 -  $5^{\circ}$ C.

Caracteristicile lor sînt redate în tabelul 9.

Tabelul 9. Caracteristicile monomerilor industriali

| fol | .09 | i | ţi |
|-----|-----|---|----|
|-----|-----|---|----|

| Caracter:                          | istica                       | MM                   | S                    | DAP                 | DVB <sup>x</sup>                                                          |
|------------------------------------|------------------------------|----------------------|----------------------|---------------------|---------------------------------------------------------------------------|
| puritate 9                         | *                            | <b>99,5-99,7</b>     | 99,7                 | 9 <b>9</b> 4<br>3   | 0-60 (m şi p)<br>0-40 (etil-vinil<br>benzen)<br>5-10 (dietil ben-<br>zen) |
| densitate                          | $d_4^{20}$ g/cm <sup>3</sup> | 0,9430 <sup>20</sup> | 0,9073 <sup>20</sup> | 1,132 <sup>25</sup> | <sup>5</sup> 0,918 <sup>20</sup>                                          |
| indice de :<br>ție n <sup>20</sup> | refrac-                      | 1,4119               | 1,5475               | 1,5198              | 1,552 <b>0</b>                                                            |
| punct de f                         | ierbere <sup>O</sup> C       | 100                  | 140                  | mm<br>149/co<br>Hg  | L 195                                                                     |
| JUIUDIIIUA                         |                              |                      |                      |                     |                                                                           |
| - apă                              |                              | gr.sol.              | gr.sol.              | gr.sol.             | gr.sol.                                                                   |
| - alcool                           | etilic                       | sol.∞                | sol. ∞               | solubi              | l solub <b>il</b>                                                         |
| - eter e                           | tilic                        | sol. ∞               | sol. ∞               | solubi              | l solubil                                                                 |
| provenienț                         | ă                            | ICI                  | C.C.Borzeşt          | i Fluka             | AG CC Victoria                                                            |

**x**DVB este produs tehnic - neinhibat

.

Spectrele IR pentru MM și S după purificare sînt redate `în fig. 17 și 18, și coincid cu cele din literatură [140] .





Fig. 18. Spectrul IR al S

## 6.2. <u>Sinteza și purificarea unor monomeri metacrilici</u> tetrafuncționali

In vederea efectuării sintezei modelelor de copolimeri ai MM utilizați pentru studii fotoelastice a fost necesară sinteza unor monomeri metacrilici tetrafuncționali, care nu ne-au fost aceesibili sau care nu sînt deloc accesibili. S-au sintetizat monomeri cu structură alifatică, aromatică și aromatic-alifatică: DMEG, DMH, DMD, DMHDEG, DMD 2,2.

## 6.2.1. <u>Sinteza unui monomer alifatic - dimetacrilatul</u> <u>de etilen glicol</u>

DMEG folosit drept comonomer pentru sinteza copolimerilor

**BUPT** 

MM cu un reticulant alifatic tip ester s-a sintetizat atît prin transesterificarea MM cu etilenglicol, cît și prin esterificarea directă a acidului metacrilic cu etilenglicol.

x x

X

In literatură se indică obținerea dimetacrilaților alifatici prin transesterificarea MM cu diverși dioli: etlenglicol, dietilenglicol, tetrastilenglicol, 1,3 propandiol, 1,3 butandiol, 1,4 butandiol [141-149] . Transesterificarea se poate efectua în cataliză bazică; folosind  $K_2CO_3$  proaspăt calcinat (pînă la 2% față de MM) [141, 142] , fenoxizi de Na, K, Li (0,2 - 8% mol) [143] sau chiar NaOH (~1,3%) [144] și în cataliză acidă utilizînd  $H_2SO_4$ 0,098 moli/1 mol MM [144] .

Raportul molar MM : glicoli variază în limite largi (3-8 moli MM : 1 mol glicol) [141-145] . Inhibitorii de polimerizare folosiți în timpul sintezei sînt diferiți, în funcție de cataliaztorii de transesterificare; în cataliză bazică se întîlnește adesea hidrochinona [141, 142, 143] și  $0_2$  [144], iar în cataliză acidă, acidul picric [144] și hidrochinona [145]. Metanolul rezultat în reacție de transesterificare se îndepărtează fie cu excesul de MM, care formează azeotropi în limite foarte largi (15 - 40% CH<sub>3</sub>OH) [146], fie cu un agent de antrenare toluen și, mai ales, benzen.

Esterificarea directă a acidului metacrilic cu diverși dioli are un rol important în sinteza dimetacrilaților alifatici [65, 145, 150-158]. Reacția de esterificare se produce cu exces de acid metacrilic 0,4 - 1 moli exces la 1 mol de diol [145, 150-152, 155-157]. Catalizatorii folosiți sînt H<sub>2</sub>SO<sub>4</sub> sau acidul p-toluensulfonic în proporție de 1-5% față de acidul metacrilic [65, 145, 150-158]. Apa de reacție se îndepărtează cu ajutorul unui antrenant, de obicei benzen [145, 150-153, 157] sau fără antrenant [158]. Inhibitorii care se folosesc în timpul reacției de esterificare sînt hidrochinona (folosită în proporții destul de mari, ajungînd și la 20 g la 1 mol de acid metacrilic) [145, 150-153, 157], sau sistemul de inhibare hidrochinonă - aer [158] și  $\alpha$ -nitrozo- $\beta$  naftol (folosit în proporție mai mică 0,4 g la 1 mol acid metacrilic) [151, 154, 65], care este mai eficace decît hidrochinona, dar se îndepărtează destul de greu din momomer, influențînd nefavorabil polimerizarea [65], fiind necesare purificări speciale prin treceri repetate peste alumină activată și cărbune activ.

Neutralizarea amestecului de reacție se face cu NaHCO<sub>3</sub> solid sau soluție suprasaturată [145, 151], cu soluție de 10% Na<sub>2</sub>CO<sub>3</sub> [152] sau cu CaO [157].

Purificarea dimetacrilaților alifatici se face prin distilare în vid înaintat 0,2-5 mm col Hg [141, 143, 145, 150], prin extracție cu eter și spălări repetate cu apă, uscare pe CaCl<sub>2</sub> sicc. [145] sau pe Na<sub>2</sub>SO<sub>4</sub> anhidru [141, 152] . Uneori dimetacrilații alifatici se pot separa de monometacrilați alifatici pe baza solubilității lor. Spre exemplu DMEG se separă de MMEG prin dizolvare diferită în hidrocarburi saturate, sau pe baza solubilității soluțiilor lor eterice la diferite temperaturi [159] .

Randamentele în dimetacrilați sînt de obicei mai mari în cazul obținerii prin esterificarea directă (pînă la 80% [150] sau chiar 95% [157] ), decît prin transesterificarea MM cu gličoli (poate ajunge la aproximativ 60% [141], uneori chiar mai mic).

Există și alte metode pentru obținerea dimetaorilaților alifatici și anume tratarea acidului metacrilic cu oxid de etilenă

[150, 160, 161] sau cu alți derivați epoxidici [161] .
Dimetacrilații alifatici asimetrici cum sînt etiliden, propiliden,
.benziliden dimetacrilații se obțin prin reacția anhidridei metacrilice cu aldehidele respective [162] .

- 75 -

Sinteza DMEG prin transesterificarea MM cu etilenglicol și prin esterificarea acidului metacrilic cu etilenglicol s-a realizat într-o instalație de esterificare cu posibilitate de îndepărtare a azeotropilor.

- 76 -

Compozițiile și condițiile de sinteză sînt date în tabelul 10.

Produsul de reacție obținut prin transesterificarea MM s-a distilat (s-a adăugat suplimentar span de cupru) pentru îndepărtarea excesului de MM, apoi la 4-5 mm col Hg s-a distilat DMEG cu PF = 98-100°C.

Masa de reacție obținută prin esterificarea acidului metacrilic cu etilenglicol s-a neutralizat cu NaHCO<sub>3</sub>, s-a spălat cu apă (și adaus de soluție 15-20% NaCl), s-a uscat pe CaCl<sub>2</sub> sicc. [145], și s-a distilat pe span de cupru în vacuum, la 4-5 mm col Hg, colectîndu-se fracțiunea cu PF =  $98-100^{\circ}$ C. Purificarea de hidrochinonă s-a realizat prin spălare cu sol 5% NaOH (v. paragraful 6.1.1.). Cînd inhibitorul de reacție la esterificare a fost fentiazina, ea a rămas în blazul de distilare, nefiind necesară o purificare suplimentară a DMEG.

### 6.2.1.2. Caracteristicile DMEG

DMEG sintetizat și utilizat în continuare la sinteza copolimrilor cu MM are următoarele caracteristici,redate în tabelul ll.

BUPT

|             | <u>Tabelul 10</u> .                                                                         | Compozițiil             | e și don       | dițile pe                            | ntru sinteza                | DMEG                                                                                             |                                                                                                         | •          |
|-------------|---------------------------------------------------------------------------------------------|-------------------------|----------------|--------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------|
| Nr.<br>crt. | ¬enumirea<br>. substanței                                                                   | Unități de<br>măsură    | Canti-<br>tate | Témp de<br>reacție<br>o <sub>C</sub> | Temp.vap.<br>o <sub>C</sub> | Timp de<br>reacție<br>ore                                                                        | Randam.<br>%                                                                                            | Literatură |
| 1           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Reacți                  | a de tra       | nsesterifi                           | care                        | 4<br>4<br>4<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | r<br>12<br>12<br>13<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 |            |
|             | Metacrilat de met:                                                                          | il moli                 | ſ              | 132-145                              | 64,5-65,5                   | 7–8                                                                                              | 40-50                                                                                                   | [145]      |
|             | Etilenglicol                                                                                | moli                    | Ч              |                                      |                             |                                                                                                  |                                                                                                         | 1          |
|             | Acid sulfuric<br>d = 1.84                                                                   | & rata<br>de MM         | г              | •.                                   |                             |                                                                                                  |                                                                                                         |            |
|             | Hidrochinonă                                                                                | =                       | 6,6            | e                                    |                             |                                                                                                  |                                                                                                         |            |
| 2           |                                                                                             | Reacți                  | a de est       | erificare                            | directă                     |                                                                                                  |                                                                                                         |            |
|             | Acid metacrilic                                                                             | moli                    | 2,2            | 100-105                              | 80-82                       | 3,5                                                                                              | 70-72                                                                                                   | [145, 152, |
|             | Etilenglicol                                                                                | ilom                    | ч              |                                      |                             |                                                                                                  |                                                                                                         | 153, 156   |
|             | Acid sulfuric                                                                               | % față de<br>ac.metacr. | 2              |                                      |                             |                                                                                                  | -                                                                                                       | 157]       |
|             | Hidrochinonă                                                                                | % față de<br>ac.metacr. | 24             |                                      |                             |                                                                                                  |                                                                                                         |            |
|             | Benzen                                                                                      | Цщ                      | 50-10 <b>0</b> |                                      |                             |                                                                                                  |                                                                                                         |            |
| ო           | Acid metacrilic                                                                             | moli                    | 2,2            | 100-105                              | 80-82                       | 4                                                                                                | 75                                                                                                      |            |
|             | Etilenglicol                                                                                | moli                    | ч              |                                      |                             |                                                                                                  |                                                                                                         |            |
|             | Acid sulfuric                                                                               | % față de<br>ac.metacr. | 2              |                                      |                             |                                                                                                  |                                                                                                         |            |
|             | Fentiazină                                                                                  | % față de<br>ac.metacr. | 1,3            |                                      |                             |                                                                                                  |                                                                                                         |            |
|             | B <b>en</b> zen                                                                             | Ţœ                      | 50-100         |                                      |                             |                                                                                                  |                                                                                                         |            |

- 77 -

<u>Tabelul 11</u>. Caracteristicile DMEG sinteză proprie, în comparație cu cele date în literatură

| Caracteristica                    | Unit.de<br>măsură | Găsit<br>experim.                                               | Calculat   | Date în<br>literat.           |
|-----------------------------------|-------------------|-----------------------------------------------------------------|------------|-------------------------------|
| Cifră de sapònificare<br>Puritate | mg KOH/g<br>%     | 560<br>98 <b>,</b> 9                                            | 565,6<br>- | 564,5 <sup>.</sup> [145]<br>- |
| Densitate $d_4^{20}$              | g/cm <sup>3</sup> | 1,05                                                            | -          | 1,0508 [145]                  |
| Indice de refracție $n^2$         | 0                 | 1,4549                                                          | -          | 1,4549 [145]                  |
| Punct de fierbere <sup>x</sup>    | 00                | 98-100/4-5                                                      |            | 82/1 [145]                    |
| Aspect                            | -                 | lichid incolor                                                  | -          | -                             |
| Solubilitate                      | -                 | MM, derivați cl<br>Furați, alcooli<br>acetonă, insol.<br>în apă | 0<br>,     | -                             |
| Comportare la cald                | -                 | polimerizează<br>dînd un produs<br>insolubil și in<br>fuzibil   | -          | -                             |

X Numitorul fracției indică presiunea la care s-a măsurat punctul de fierbere.

Spectrul IR coincidé cu spectrul DMEG citat în literatură [140] și este redat în fig. 19.



### 6.2.2. <u>Sinteza monomerilor aromatici - dimetacrilatul</u> <u>de hidrochinonă (DMH) și dimetacrilatul de dian</u> (DMD)

- 79 -

DMH și DMD folosiți drept reticulanți în sinteza copolimerilor cu MM s-au sintetizat din clorura acidului metacrilic.și fenolii sodați în mediu apos.

x x

x

Monomerii diesteri ai acidului metacrilic cu bisfenoli sînt mai puțin întîlniți în literatură, se găsesc mai ales în literatura de patente [163, 164, 165] . M. Corciovei, V.V. Corșac și S.V. Vinogradova [58] au folosit în studiile lor, alături de reticulanți ca DMEG, dialilftalat, dialilizoftalat, dialiltereftalat și diacrilatul de dian și dimetacrilatul de dian. H. Wesslau [76] amintește DMD și DMH drept reticulanți în proporție de 11%, respactiv 22%, alături de alți comonomeri.

In patente [163, 164] se indică obținerea dimetacrilaților aromatici plecînd de la o soluție apoasă a bisfenolilor sodați și picurînd la temperatură între  $0-10^{\circ}$ C clorură de metacriloil. Amestecul s-a agitat la temperaturi pînă la max.  $45^{\circ}$ C, timp de 30-45 min., apoi produsul s-a filtrat și s-a recristalizat din alcool. Randamentele față de fenoli, după recristalizare repetată, sînt în jur de 50% [164]. G. Tocker [165] indică obținerea DMH din hidrochinonă și clorură de metacriloil, în prezența piridinei, la 70-80°C și purificarea prin extracție cu eter etilic și extractul s-a uscat pe Na<sub>2</sub>SO<sub>4</sub> anh. apoi s-a evaporat în vacuum.

Alți autori[166] specifică obținerea diesterilor metacrilici și acrilici ai clorfenolilor prin reacția clorurii de metacriloil cu clor-fenoli la încălzire și îndepărtarea HCl care se degajă sau captarea lui sub formă de clorhidrat de piridină. 6.2.2.1. Modul de lucru

# 6.2.2.1.1. Obținerea clorurii de metacriloil [167-169]

Acidul metacrilic distilat în vacuum pe praf de cupru (1,045 moli) s-a amestecat cu clorură de tionil (1,45 moli) și s-a încălzit pe baie de apă cu refrigerent de reflux aproximativ 4 ore la 50-60°C, iar apoi încă 4 ore la 70-80°C. Lichidul transparent obținut s-a distiliat de 2 ori PF = 98-100°C. Randamentul de 70-75%.

### 6.2.2.1.2. Sinteza DMH și DMD

Reactanții și condițiile de sinteză sînt date în tabelul 22.

Soluția de hidroxid de **g**odiu sau potasiu s-a răcit sub  $10^{\circ}$ C și s-au adăugat bisfenolii (hidrochinona sau dianul), menținînd amestecul la  $10^{\circ}$ C și sub  $10^{\circ}$ C pînă la dizolvarea completă a bisfenolilor. S-a adăugat apoi prin picurare clorura de metacriloil (ținută pe CuCl), timp de 30-60 min., apoi s-a menținul sub agitare la temperatura ambiantă (~60 min.). Produsul s-a filtrat și s-a recristalizat din e<sup>+</sup>anol p. a, s-a spălat cu apă și etanol rece ( $0^{\circ}$ C) și -a uscat sub vid la temperatura camerei.

### 6.2.2.2. Caracteristicile DMH și DMD

DMH și DMD s-au purificat pînă la atingerea caracteristicilor indicate în literatură. Uneori nu au fost suficiente două fecristalizări și s-au efectuat 4-5 recristalizări.

Constantele fizice pentru DMH și DMD sintetizați sînt da-

Spectrele IR prezintă benzile caracteristice esterilor Stacrilici cu nuclee aromatice (fig. 20 și fig. 21). Ele s-au apreciat în comparație cu spectrele materiilor prime folosite pentru obținerea DMH și DMD [170-172] .

. <u>Tabelul 12</u>. Compozițiile și condițiile de reacție

| Mono-<br>mer | • Reactanți               | Unitate<br>de măs. | Canti-<br>tate | Temp.<br>de re-<br>acție<br><sup>O</sup> C | Timp<br>de re-<br>acție<br>min. | Randa-<br>ment | Litera-<br>tură |
|--------------|---------------------------|--------------------|----------------|--------------------------------------------|---------------------------------|----------------|-----------------|
| DMH          | Hidrochinonă              | moli               | 1              | 0-10                                       | 30                              | 70-75          | [164]           |
|              | NaOH                      | moli               | 2,2            | 10-25                                      | 60                              |                |                 |
|              | Clorură de<br>metacriloil | moli               | 2,2            |                                            |                                 |                |                 |
|              | Ара                       | ml                 | 200-250        |                                            |                                 |                |                 |
| DMD          | Dian                      | moli               | 1              | 10-15                                      | 15                              | 75             | [58, 164]       |
|              | KOH                       | moli               | 6              | 15-25                                      | 30-60                           |                |                 |
|              | Clorură de<br>metacriloil | moli               | 4,05           |                                            |                                 |                |                 |
|              | Apă                       | ml                 | 500            |                                            |                                 |                |                 |



6.2.3. <u>Sinteza monomerilor alifatic-aromatici</u> DMHDEG și DMD 2,2

DMHDEG și DMD 2,2 s-au obținut prin esterificarea directă a acidului metacrilic cu diolii respectivi (hidrochinon dietilenflicol-pp'dihidroxi-etoxi fenilen și dianol 22-pp'dihidroxi-etoxi

- 81 -

difenil propan).



Fig. 21. Spectrul IR al DMD

| Tabelul 13. | Unele | constante | fizice | ale | DMH-ului | şi |
|-------------|-------|-----------|--------|-----|----------|----|
|             |       | DMD-1     | ılui   |     |          |    |

| Caracteristica                       | DMH                                                   | (M <b>#</b> 246)                       | DMD (M =                                              | 364)                            |
|--------------------------------------|-------------------------------------------------------|----------------------------------------|-------------------------------------------------------|---------------------------------|
|                                      | Găsit                                                 | Calculat<br>sau din<br><u>literat.</u> | Găsit                                                 | Calculat<br>sau din<br>literat. |
| 1                                    | 2                                                     | 3                                      | 4                                                     | 5                               |
| Indice de saponifi-<br>care mg KOH/g | - 450                                                 | 455,28                                 | 301                                                   | 307,69                          |
| Puritate 🔏                           | 98,8                                                  | -                                      | 97,8                                                  | -                               |
| Punct de topire <sup>O</sup> C       | 88-89                                                 | -                                      | 63                                                    | 66 [58]                         |
| Analiza elementară                   | ĸ                                                     |                                        |                                                       |                                 |
| % C                                  | 70                                                    | 68,29                                  | 76,2                                                  | 75,82                           |
| <b>%</b> H                           | · 5 <b>,</b> 6                                        | 5,69                                   | б,5                                                   | 6,59                            |
| <b>%</b> · 0                         | 24,4                                                  | 26,02                                  | 17,3                                                  | 17,58                           |
| Aspect                               | cristale albe<br>aciculare                            | -                                      | cristale albe                                         | -                               |
| Solubilitate                         | MM, derivați ha<br>logenați (CHCl <sub>3</sub>        |                                        | MM, derivați h<br>logenați (CHC]                      | 1 <b>a</b>                      |
|                                      | CH <sub>2</sub> Cl <sub>2</sub> ; CCl <sub>4</sub> ), |                                        | CH <sub>2</sub> C1 <sub>2</sub> , CC1 <sub>4</sub> ), | -<br>,                          |
|                                      | C,H,OH; acetonă                                       |                                        | C2H50H, acetor                                        | lă                              |
|                                      | insolub.în apă                                        |                                        | insol. în apă                                         |                                 |

Tabelul 13. (continuare)

| 1                          | 2                                                         | 3 | 4                                                         | 5 |
|----------------------------|-----------------------------------------------------------|---|-----------------------------------------------------------|---|
| Comportare la<br>încălzire | polimerizează dînd<br>un produs insolubil<br>și infuzibil | - | polimerizează dînd<br>un produs insolubil<br>și infuzibil | - |

\* Analize efectuate la Institutul "Petrochimic" Ploieşti - Laboratorul de cercetări - analize.

x

#### X

x

DMHDEG și DMD 22 se întîlnesc foarte rar în literatură și numei în patente, drept adausuri care măresc rezistența la șoc, zgîrîiere, abraziune a unor compoziții de restaurare [174-177].

In patente se indică posibilitatea de obținere a DMD 22 prin transeterificarea MM cu dianol 22, în prezența fentiazinei folosită drept inhibitor [144, 174] . După alți autori [175, 177], DMD 22 s-a obținut prin esterificarea directă a acidului metacrilic cu dianol 22 (raport molar 1 : 2,2) în prezență de 0,1% CuCl și 3% acid p-toluen sulfonic; pentru îndepărtarea apei s-a folosit 100 ml toluen.S<sub>e</sub> de crie sinteza astfel [176] : după două ore s-au colectat 2,2 moli H<sub>2</sub>0. Produsul s-a diluat cu toluen, s-a spălat de aprox. 5 ori și s-a tratat cu o soluție concentrată de amoniac pentru complexarea CuCl și neutralizare. Toluenul se îndepărtează la vacuum. Produsul viscos obținut a avut 2000 cP viscozitate Brookfield [176] .

### 6.2.3.1. Modul de lucru

Esterificarea s-a realizat într-o instalație de esterificare cu posibilitate de separare și îndepărtare a apei.

Reactanții și condițiile de sinteză sînt redate în tabelul

14.

<u>Tabelul 14</u>. Materiale și condiții pentru sinteza DMHDEG și DMD 22

| Monomer, | Reactanți                                              | Unit.<br>de<br>măs. | Can-<br>ti-<br>tate | Temperatură<br>de reacție<br><sup>O</sup> C                       | Timp de<br>reacție<br>ore | Randa-<br>ment <sup>x</sup> |
|----------|--------------------------------------------------------|---------------------|---------------------|-------------------------------------------------------------------|---------------------------|-----------------------------|
| DMHDEG   | Hidrochinon di-<br>etilenglicol<br>Acid metacrilic     | moli<br>moli        | 1<br>2,2            | 130 <sup>0</sup> în li-<br>chid<br>109-110 <sup>0</sup><br>vapori | 2 <del>3</del>            | 74                          |
|          | Acid sulfuric -<br>față de acid<br>met <b>a</b> crilic | %                   | 3                   |                                                                   |                           |                             |
|          | Hidrochinonă<br>- față de a÷<br>cid metacrilic         | K                   | 4                   |                                                                   |                           |                             |
|          | Toluen                                                 | ml                  | 150                 |                                                                   |                           |                             |
| DMD 22   | Dianol 22                                              | moli                | 1                   | 120 <sup>0</sup> în<br>lich <b>id</b>                             | 2 <del>1</del>            | 65 <b>-70</b>               |
|          | Acid metacrilic                                        | moli                | 2,5                 | 109 <b>-110<sup>0</sup></b><br>vapo <b>ri</b>                     |                           |                             |
|          | Acid sulfuric -<br>față de acid                        |                     |                     |                                                                   |                           |                             |
|          | met <b>acri</b> lic                                    | %                   | 3                   |                                                                   |                           |                             |
|          | Hidrochinonă -<br>față de acid<br>metacrilic           | K                   | 4                   |                                                                   |                           |                             |
|          | Toluen                                                 | ml                  | 250                 |                                                                   |                           |                             |

Reacția de esterificare a decurs aproape cantitativ, la purificare
 s-a pierdut mult din produs

## 6. 2.3.1.1. Purificarea DMHDEG

DMHDEG, obținut în sinteză, s-a răcit și a cristalizat. Produsul brut s-a filtrat, s-a spălat cu apă și soluție de bicarbonat de sodiu, apoi s-a recristalizat din alcool etilic de 3 ori și

- 84 -

s-a uscat sub vacuum la temperatura camerei.

### 6.2.3.1.2. Purificarea DMD 22

Masa de reacție care conține DMD 22 s-a supus distilării pentru îndepărtarea toluenului. Produsul vîscos obținut s-a netralizat cu o soluție suprasaturată de bicarbonat de sodiu, s-a extras cu eter, s-a spălat cu apă de 3-4 ori, s-a îndepărtat eterul și s-a obținut DMD 22, lichid gălbui foarte vîscos.

### 6.2.3.2. Caracterizarea DMHDEG și DMD 22

Cîteva din caracteristicile acestor monomeri sînt redate în tabelul 15.



Fig. 22. Spectrul IR al DMHDEG

Spectrele IR arată benzile caracteristice derivaților metacrilici tip ester și sînt redate în fig. 22 și fig. 23. Spectrele IR a acestor monomeri au fost identificate în comparație cu materiile prime folosite la obținerea lor [170-172].



Fig. 23. Spectrul IR al DMD 22

| Tabelul 15. Caracteristicile DMHDEG și DMD 22 obțir | Tabelul 15. | Caracteristicile | DMHDEG | şi | DMD | 2 <b>2</b> | obţinuţ |
|-----------------------------------------------------|-------------|------------------|--------|----|-----|------------|---------|
|-----------------------------------------------------|-------------|------------------|--------|----|-----|------------|---------|

|                                     | DMHDEG $(M = 334)$                                                                                        |          | DMD 22 (M = 452)                                                                                    |                                                                  |
|-------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Caracteristica                      | găsit                                                                                                     | calculat | găsit                                                                                               | dalculat                                                         |
| <u> </u>                            | 2                                                                                                         | 3        | 4                                                                                                   | 5                                                                |
| Cifra de saponifi-<br>caré mg KOH/g | 335,8                                                                                                     | 336      | 247,6                                                                                               | 248,2                                                            |
| Cifră de aciditate<br>mg KOH/g      | 1,2                                                                                                       | -        | 2,1                                                                                                 | -                                                                |
| Puritate 🔏                          | 99,99                                                                                                     | -        | 99,76                                                                                               | -                                                                |
| XAnaliza elementară:<br>% C         | 65,5                                                                                                      | 64,47    | <b>7</b> 2                                                                                          | 71,68                                                            |
| 70 n<br>4 0                         | 28.5                                                                                                      | 28.74    | 21.2                                                                                                | 21,24                                                            |
| Aspect                              | cristale albe                                                                                             | _        | lichid fo<br>vîscos, g                                                                              | parte -<br>gălbui                                                |
| P.T. <sup>o</sup> C                 | 79-80                                                                                                     | -        | -                                                                                                   | -                                                                |
| Solubilitate                        | MM, alcool eti-<br>lic - rece par<br>țial - cald to-<br>tal, acetonă<br>benzen, toluen<br>derivați haloge | ·        | MM, alcod<br>lic, acet<br>derivați<br>genați CH<br>CH <sub>2</sub> Cl <sub>2</sub> , C<br>esteri: a | ol eti<br>conă,<br>halo-<br><sup>ICl</sup> 3;<br>CCl4,<br>acetat |

BUPT

- 86 -

| Tabelul 15. | (continuare) |
|-------------|--------------|
|-------------|--------------|

| 1                            | 2                                                                                      | 3 | 4                                                                          | 5 |
|------------------------------|----------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------|---|
|                              | nați: CHCl <sub>3</sub> ,<br>CH <sub>2</sub> Cl <sub>2</sub> , CCl <sub>4</sub> , etc. | - | de metil, etc.                                                             |   |
| Comportare la în-<br>călgire | polimerizează dînd<br>produs insolubil<br>și infuzibil                                 | - | polimerizează<br>dînd un produs<br>moale, insolu-<br>bil și infuzi-<br>bil | - |

Analiza elementară s-a efectuat la Institutul "Petrochim" Ploiești
 - Laboratorul de cercetări - analize.

### 6.3. Purificarea initiatorilor de copolimerizare

In reacțiile de copolimerizare s-au folosit peroxidul de benzoil (POB) cu 20% apă și azodiizobutironitrilul (AIBN) produs tehnic (Bayer).

Substanțele s-au purificat după indicațiile lui I. Gross [178] și K. Dusek și colab. [179-182] .

6...l. Purificarea POB

POB s-a dizolvat într-o cantitate mică de cloroform, cînd s-a separat apa; amestecul a fost întrodus într-o pîlnie de separare din care: s-a picurat soluția de cloroform în metanol, POB-ul separîndu-se sub formă de cristale albe. După filtrare și uscare la aer s-a repetat operația de purificare. Ultima uscare s-a efectuat în vid.

### 6.3.2. Purificarea AIBN

AIBN-ul s-a purificat prin 3 recristalizări din eter etilic. Rezultate bune s-au obținut și prin recristalizarea din Metanol.

### 6.4. Obtinerea solutiei de PMM

In lucrare s-a propus ca plăcile de copolimeri să se obțină atît prin copolimerizarea directă a monomerilor, cît și prin folosirea in enționată și controlată a unei soluții vîscoase de PMM în MM (numită de noi pseudoprepolimer), alături de comonomeri tetrafuncționali.

S-a preparat o soluție de 20% PMM - tip suspensie - în MM. Masa moleculară a PMM determinată vîscozimetric este 160 000. Vîaco-Matatea soluției la 25°C a oscilat între 250-300 cP (s-a determinat Vîscozimetrul tip RN - 211). Dizolvarea PMM s-a realizat în MM Marificat (neinhibaț) prin agitare 6 ore. Soluția obținută s-a utili-Mat după staționare (la temperatură mai mică de 10°C), timp de 24 de Matatea soluției s-a determinat, de asemenea, după 24 de ore de la Mazolvare.

## 7. OBTINEREA COPOLIMERILOR MM CU DIVERSI COMONOMERI PRIN COPOLIMERIZAREA IN MASA

Copolimerii MM cu monomeri tetrafuncționali se întîlnesc în mmeroase studii teoretice și experimentale, precum și în patente [49, 5-68, 72-74, 76-78, 80, 82-89, 91-94, 99, 101, 102, 104, 119, 123-15, 183-213] . Reacția de copolimerizare se conduce prin inițiere mdicalică, în masă [49, 53, 58, 72, 77, 86, 92, 99, 124, 185-188, 192, 198, 199, 203], emulsie [119, 183, 212, 213] sau suspensie [74, 190] .

Studiile în care MM copolimerizează cu monomeri tetrafuncfionali metacrilioi alifatici cuprind: dimetacrialtul de etilen gliel [53, 58, 68, 74, 77, 119, 123, 183, 188, 190, 194, 197, 205, 206], imetacrilatul de butilen glicol 1,4 [53, 183], dimetacrilatul de ietilen glicol [53, 68, 104, 183, 205], dimetacrilatul de pentan iol 1,5 [185], dimetacrilatul de tetraetilen glicol [202] și alții. Intr-o altă serie de lucrări se găsesc copolimeri ai MM cu monomeri ietacrilici, vinilici și alilici ce conțin în structura lor nuclee irilice. In această categorie întră copolimerii MM cu dimetacrilatul le hidrochinonă [76], dimetacrilatul de dian [58, 76, 209, 211], și p-divinil benzenul [101, 119, 198, 201, 205, 208], dialil ftalații [58, 60, 193, 195].

Copolimerizarea în masă a monomerilor metacrilici se realitează prin reacția directă a monomerilor [53, 72, 92, 183, 192, 193, 197], sau prin tehnica cu sirop. Siropul se poate obține prin două Focedee:

1) copolimerizarea monomerilor pînă la anumită vîscozitate, apoi a-

BUPT

Jăugarea monomerului tetrafuncțional și polimerizarea în forma fina-

b) obținerea unei soluții de PMM de concentrație diferită - 25% [199];
 B0% [186], 20-50% [187, 188], în MM și apoi adăugarea monomerului
 tetrafuncțional și desăvîrșirea copolimerizării.

Concentrația monomerului tetrafuncțional poate varia în lipite foarte largi. Ea este exprimată fie în procente molare: 0,5-10 [53, 74, 183, 206], fie în procente greutate: 0,5 [197], 7-31 [77], Bau chiar 45-55 [195, 202], depinzînd foarte mult de scopul urmărit fe studii, precum și de destinația copolimerilor.

Drept inițiatori la copolimerizarea în masă a MM cu monomeri tetmafuncționali se folosesc cei solubili în MM. Tipurile și concentrațiile de inițiatori folosiți în reația de copolimerizare diferă în funcție de:

1. natura monomerilor tetrafuncționali; s-au folosit, de exemplu, 2% POB pentru dialil ftalați [53, 58] și 0,2% POB pentru monomeri ca DMEG, DMD, MM, S etc. [53, 58] sau 1,4% peroxid de terț-butil pentru dialil ftalați și 0,14% pentru monomeri vinilici și metacrilici (DMEG, DMD, MM, S etc.) [53, 58] ;

2. structura chimică a inițiatorului; POB s-a utilizat în proporție de 0,08 - 1% [185, 187, 193, 195, 197], AIBN 0,05-0,1% [49, 77, 192, 202], peroxid de lauroil pînă la 5% [186] etc;

3. modul cum se conduce copolimerizarea; la copolimerizare cu sirop s-a folosit POB 1% [185], iar la copolimerizarea directă a monomerilor, POB, 0,1-0,2% [193].

Temperatura în reacțiile de copolimerizare oscilează în limite largi, în funcție de natura monomerilor și inițiatorilor între 30-60°C [49, 77, 187, 197]. Ea se menține constantă sau se modifică în timp [58], ajungînd chiar la 160°C în unele cazuri, pentru desăvîrșirea reacției. Temperatura se reglează cu un termostat, pentru băi de apă [77, 197] sau în etuvă cu recirculare de aor [53, 187].

**BUPT** 

- 90 -
Copolimerizarea în masă se realizează în casete de polimerizare formate din plăci de sticlă (49, 53, 72, 77, 185-187, 192) etanșațe cu diferite garnituri sau plăci de metal pentru alte variante [92].

Inainte de umplerea casetelor se face o purjare cu gaz inert, azot [49, 58, 77, 185, 186] sau cu bioxid de carbon [47] pentru îndepărtarea oxigenului.

#### 7.1. Programul de sinteză a copolimerilor

Programul de sinteză a copolimerilor cuprinde sinteza copolimerilor MM cu diverși monomeri prin copolimerizare directă (varianta I-a) și prin copolimerizarea MM cu diverși monomeri în prezență de PMM (varianta a II-a).

### 7.1.1. <u>Monomeri, auxiliari, materiale și aparatură</u> utilizate în sinteza copolimerilor

#### 7.1.1.1. Monomeri, auxiliari

Monomerii utilizați în sintezele copolimerilor MM sînt cei indicați în capitolul 6, paragraful 6.1. și 6.2. Ei au fost purifioați și caracterizaăi în vederea utilizării lor la copolimerizare.

In tabelul 16 se dă seria de comonomeri utilizați și prescurtările din text, atît pentru ei, cît și pentru copolimerii lor cu MM.

Drept auxiliari în reacția de copolimerizare sînt inițiatorii (POB și AIBN) purificați (v. paragraful 6.3.) și soluția de PMM în MM obținută și caracterizată (v. paragraful 6.4.).

# Tabelul 16. Denumirea prescurtată a monomerilor și

copolimerilor cu MM

| P                                                   | Comon     | omeri                             | Copolimer                            | ·i                                     |
|-----------------------------------------------------|-----------|-----------------------------------|--------------------------------------|----------------------------------------|
| Denumire                                            | Prescurt. | Proporția<br>din copolim.<br>% gr | Copolimer <sup>X</sup><br>varianta I | Copolimer <sup>XX</sup><br>varianta II |
| Dimetacrilat de<br>hidrochinoná                     | DMH       | 2                                 | C-DMH-2                              | C-DMH-2P                               |
| Idem                                                | ••        | 5                                 | C-DMH-5                              | C-DMH-5P                               |
| Idem                                                | 11        | 10                                | C-DMH-10                             | C-DMH-10 P                             |
| Dimetacrilat de hi-<br>drochinondietilen-<br>glicol | DMHDEG    | 2                                 | C-DMHDEG-2                           | C-DMHDEG-2 P                           |
| Idem                                                | **        | 5                                 | C-DMHDEG-5                           | C-DMHDEG-5 P                           |
| Idem                                                | 11        | 10                                | C-DMHDEG-10                          | C-DMHDEG-10 P                          |
| Dimetacrilat de<br>dian                             | DMD       | 2                                 | C-DMD-2                              | C-DMD-2 P                              |
| Idem                                                | 11        | 5                                 | C-DMD-5                              | C-DMD-5 P                              |
| Idem                                                |           | 10                                | C-DMD-10                             | C-DMD-10 P                             |
| Dimetacrilat de<br>dianol 22                        | DMD 22    | 2                                 | C-DMD 22-2                           | C-DMD 22-2 P                           |
| Idem                                                | 88        | 5                                 | C-DMD 22-5                           | C-DMD 22-5 P                           |
| Idem                                                | 68        | 10                                | C-DMD 22-10                          | C-DMD 22-10 P                          |
| Divinil benzen                                      | DVB       | 2                                 | C-DVB-2                              | C-DVB-2 P                              |
| Idem                                                |           | 5                                 | C-DVB-5                              | C-DVB-5 P                              |
| Idem                                                |           | 10                                | C-DVB-10                             | C-DVB-10 P                             |
| Diglilftalat                                        | DAP       | 2                                 | C-DAP-2                              | C-DAP-2 P                              |
| Idem                                                | ".        | 5                                 | C-DAP-5                              | C-DAP-5 P                              |
| Idem                                                |           | 10                                | C-DAP-10                             | C-DAP-10 P                             |
| Idem                                                | -         | 15                                | -                                    | C-DAP-15 P                             |
| Dimetacrilat de<br>etilenglicol                     | DMEG      | 2                                 | C-DMEG-2                             | C-DMEG-2 P                             |
| Idem                                                | 18        | 5                                 | C-DMEG-5                             | C-DMEG-5 P                             |
| Idem                                                | **        | 10                                | C-DMEG-10                            | C-DMEG-10 P                            |
| Stiren                                              | S         | 2                                 | C-S-2                                | C-S-2 P                                |
| Idem                                                | S         | 5                                 | C-S-5                                | C-S-5 P                                |
| Idem                                                | 18        | 10                                | C-S-10                               | C-S-10 P                               |

- Copolimerii sînt obținuți prin copolimerizarea directă a monomerilor - varianta I.
- \*\*Copolimerii sînt obținuți prin copolimerizarea unei soluții de PMM-tip suspensie - în MM (s-a adoptat pentru această soluție termenul de pseudoprepolimer) cu comonomerii din tabel - varianta II.

#### 7.1.1.2. Materiale pentru confectionarea casetelor

Sasetele în care s-a efectuat copolimerizarea s-au obținut prin asamblarea unor geamuri de sticlă cu diferite garnituri, cu caracteristicile de mai jos:

- geam de sticlă silicat 250 x 200 x 5 mm
- Lurtnituri: șnur din PVC plastifiată (Ø 6 mm)

tub de cauciuc ( $\emptyset_{\text{ext}} = 7-8 \text{ mm}$ ) armat cu sîrmă ( $\emptyset = 1,5-2,5 \text{ mm}$ ), tub de mipolam și PVC ( $\emptyset = 7-8 \text{ mm}$ ), șnur de sauciuc siliconic ( $\emptyset = 6-7 \text{ mm}$ )

- cleme de strîngere

7.1.1.3. Aparatură

- Etuvă cu recirculare de aer tip KOMORA CIEPLNA KC 100/200
- Ultratermostat U-10
- Baie de copolimérizare
- Pompă de vid

7.1.2. Modul de lucru. Condiții de copolimerizare

#### 7.1.2.1. Pregătirea casetelor

Plăcile de sticlă pregătite, cum se arată în paragraful 7.1.4.1., se asamblează prin intermediul garniturii într-o casetă (fig. 24). Fixarea plăcilor și a garniturii se realizează cu ajutorul unor cleme strînse uniform de-a lungul garniturii, prin intermediul unor plăcuțe din PVC plastifiată și resturi de PMM. Inainte de umplere casetele se inundă cu CO<sub>2</sub> pentru purgarea aerului [47, 77, 185, 186].



Fig. 24 Casetă de polimerizare 1 - sticlă:

2 - garnitură de etanșare; 3 - cleme; 4 - bucăți de PMM și PVC; 5 - șurub

## 7.1.2.2. <u>Compozițiile de copolimerizare pentru</u> <u>varianta I-a și a II-a</u>

Comp.zițiile de copolimerizare sînt redate în tabelul 17 1 în tabelul 18.

| Comonomer |                | Compoziția     |                | Raport molar | % molare in |
|-----------|----------------|----------------|----------------|--------------|-------------|
| % gr      | <b>mm</b><br>g | inițiator<br>g | comonomer<br>g | comnomer.MM  | umestee     |
| 1         | 2              | 3 ^            | 4              | 5            | 6           |
| MH 2      | 150            | 0,1530         | 3,06           | 0,0082       | 0,81        |
| MH 5      | 150            | 0,1578         | 7,89           | 0,0213       | 2,09        |
| MH 10     | 150            | 0,1666         | 16,66          | 0,0451       | 4,31        |
| MHDEG 2   | 150            | 0,1530         | 3,06           | 0,0087       | 0,86        |
| MHDBG 5   | 150            | 0,1578         | 7,89           | 0,0224       | 2,19        |
| MHDEG 10  | 150            | 0,16 <b>66</b> | 16,66          | 0,0474       | 4,53        |
| MD 2      | 150            | 0,1530         | 3,06           | 0,0078       | 0,77        |
| MD 5      | 150            | 0,1578         | 7,89           | 0,0199       | 1,95        |
| MD 10     | 150            | 0,1666         | <b>16,</b> 56  | 0,0420       | 4,03        |

### <u>Tabelul 17</u>. Compoziția amestecurilor la copolimerizarea directă a MM cu monomerii din tabelul 16 (varianta I-a)

| 1         | 2     | 3      | 4     | 5      | 6    |
|-----------|-------|--------|-------|--------|------|
| DMD 22-2  | 150   | 0,1530 | 3,06  | 0,0045 | 0,45 |
| DMD 22-5  | 150   | 0,1578 | 7,89  | 0,0116 | 1,15 |
| DMD 22-10 | · 150 | 0,1666 | 16,66 | 0,0245 | 2,4  |
| DVB 2     | 150   | 0,1530 | 3,06  | 0,0156 | 1,54 |
| DVB 5     | 150   | 0,1578 | 7,89  | 0,0404 | 3,88 |
| DVB 10    | 150   | 0,1666 | 16,66 | 0,0851 | 7,54 |
| DAP 2     | 150   | 0,1530 | 3,06  | 0,0082 | 0,81 |
| DAP 5     | 150   | 0,1578 | 7,89  | 0,0213 | 2,09 |
| DAP 10    | 150   | 0,1666 | 16,66 | 0,0451 | 4,31 |
| DMEG 2    | 150   | 0,1530 | 3,06  | 0,0103 | 1,02 |
| DMEG 5    | 150   | 0,1578 | 7,89  | 0,0265 | 2,58 |
| DMEG 10   | 150 - | 0,1666 | 16,66 | 0,0560 | 5,3  |
| S 2       | 150   | 0,1530 | 3,06  | 0,0196 | 1,92 |
| S 5       | 150   | 0,1578 | 7,89  | 0,0505 | 4,8  |
| S 10      | 150   | 0,1666 | 16,66 | 0,1068 | 9,65 |
|           |       |        |       |        |      |

Tabelul 18. Compoziția amestecurilor la copolimerizarea soluției de PMM în MM cu monomerii din tabelul 16 (varianta a II-a)

|           | C                 | ompo | ziția     |                | Raport mo-            | % molare        |
|-----------|-------------------|------|-----------|----------------|-----------------------|-----------------|
| Comonomer | Soluție<br>de PMM | MM   | inițiator | comono-<br>mer | lar comono-<br>mer:MM | în ames-<br>tec |
| % gr :    | g                 | g    | g         | g              |                       |                 |
| 1         | 2                 | 3    | 4         | 5              | 6                     | 7               |
| DMH 2     | 150               | 30   | 0,1836    | 3,6            | 0,0082                | 0,81            |
| DMH 5     | 150               | 30   | 0,1894    | 9,4            | 0,0213                | 2,09            |
| DMH 10    | 150               | 30   | 0,2000    | 20,0           | 0,0451                | 4,31            |
| DMHDEG 2  | 150               | 30   | 0,1836    | 3,6            | 0,0082                | 0,81            |
| DMHDEG 5  | 150               | 30   | 0,1894    | 9,4            | 0,0224                | 2,19            |
| DMHDEG 10 | 150               | 30   | 0,2000    | 20,0           | 0,0474                | 4,53            |
| DMD 2     | 150               | 30   | 0,1836    | 3,6            | 0,0077                | 0,77            |
| DMD 5     | 150               | 30   | 0,1894    | 9,4            | 0,0139                | 1,95            |
| DMD 10    | 150               | 30   | 0,2000    | 20,0           | 0,0420                | 4,03            |
| DMD 22-2  | 150               | 30   | 0,1836    | 3,6            | 0,0044                | 0,45            |
| DMD 22-5  | 150               | 30   | 0,1894    | 9,4            | 0,0116                | 1,15            |
| DMD 22-10 | 150               | 30   | 0,2000    | 20,0           | 0,0245                | 2,4             |

۰.

| Tat | elul | 18. | (continuare) |  |
|-----|------|-----|--------------|--|
|     |      |     | •            |  |

| 1       | 2     | 3    | 4      | 5    | 6               | 7    |  |
|---------|-------|------|--------|------|-----------------|------|--|
| DVB-2   | 150   | 30   | 0,1836 | 3,6  | 0,0156          | 1,54 |  |
| DVB-5   | 150   | 30   | 0,1894 | 9,4  | 0,0404          | 3,88 |  |
| DVB-10  | 150   | 30   | 0,2000 | 20,0 | 0,0854          | 7,84 |  |
| DAP-2   | 150   | 30   | 0,1836 | 3,6  | 0 <b>,00</b> 82 | 0,81 |  |
| DAP-5   | 150   | 30   | 0,1894 | 9,4  | 0,0213          | 2,09 |  |
| DAP-10  | 150   | 30   | 0,2000 | 20,0 | 0,0451          | 4,31 |  |
| DAP-15  | 150   | 30   | 0,2116 | 31,6 | 0,0717          | 6,70 |  |
| DMEG-2  | 150   | 30   | 0,1836 | 3,6  | 0,0102          | 1,02 |  |
| DMEG-5  | 150   | 30   | 0,1894 | 9,4  | 0,0265          | 2,58 |  |
| DMEG-10 | 150   | 30   | 0,2000 | 20,0 | 0,0561          | 5,3  |  |
| S-2     | 150   | 30   | 0,1836 | 3,6  | 0,0196          | 1,92 |  |
| S-5     | 150 · | - 30 | 0,1894 | 9,4  | 0,0505          | 4,8  |  |
| S-10    | 150   | 30   | 0,2000 | 20,0 | 0,1068          | 9,65 |  |

#### 7.1.2.3. Pregătirea amestecurilor de copolimerizare

Componentele de copolimerizare dozate conform tabelelor 17 și 18 s-au dizolvat prin agitare 10-15 min., s-au purjat cu  $CO_2$ , apoi s-au vacuumat (100-200 mm col Hg). Amestecul s-a turnat fără turbulență în casetă, în prealabil inundată cu  $CO_2$ . Umplerea s-a făcut pînă la aproximativ 90% din capacitatea lor, lăsînd spațiu liber purjat cu  $CO_2$ . Inchiderea casetei s-a făcut prin apropierea intimă a garniturii și lipire cu hîrtie, asigurînd astfel etanșarea.

Etanșarea este necesară pentru a evita pătrunderea vaporilor de apă din baia de polimerizare în casetă, respectiv evită evaporarea monomerilor din casetă la polimerizarea în etuvă cu recirculare de aer.

### 7.1.2.4. Copolimerizarea

Copolimerii MM obținuți prin copolimerizarea directă (varianta I) s-au polimerizat în instalația din fig. 25.



Fig. 25. Instalația de copolimerizare

1 - baie de copolimerizare; 2 - bare metalice; 3 - termometru de control; 4 - casete; 5 - cîrlige de suspendare.

Casetele se suspendă în baie astfel încît nivelul apei să depășească nivelul amestecului de monomeri

din casetă [92]. Temperatura apei în baie s-a menținut în condiții riguroase ± 0,5°C cu ajutorul unui termostat.

Copolimerii care s-au obținut prin copolimerizarea MM cu diverși monomeri în przența PMM - cu pseudoprepolimer - (varianta a II-a) s-au polimerizat în etuvă cu recirculare de aer. Casetele se așează în etuvă - vertical - și se reglează riguros temperatura  $(\pm 0,5^{\circ}C)$ .

gimul termic a fost diferit pentru fiecare concentrație de comonomer și este prezentat în tabelul 19.

> <u>Tabelul 19</u>. Temperatura și timpul de copolimerizare în funcție de concentrația comonomerului

| Comonomer |      | . (  | fimp de           | copolime          | erizare (         | ore)                              |
|-----------|------|------|-------------------|-------------------|-------------------|-----------------------------------|
| % gr      | 35°C | 38°C | 40 <sup>0</sup> C | 45 <sup>°</sup> C | 50 <sup>0</sup> C | 55-60 <sup>0</sup> C <sup>x</sup> |
| 2         | -    | -    | 24                | 48                | 12                | 12                                |
| 5         | -    | 24   | 24                | 24                | 12                | 6                                 |
| 10        | 24   | 24   | 24                | 12                | 12                | 6                                 |

<sup>x</sup>între 55-60<sup>°</sup>C și plăcile din baie de polimerizare s-au întrodus în etuvă (baia de polimerizare fiind deschisă, pierderile de apă

- 97 -

prin evaporare au fost prea mari).

După faza de copolimerizare "primară" (cînd plăcile s-au întărit), s-au îndepărtat garniturile casetelor și s-a aplicat un tratament termic final pentru desăvîrșirea copolimerizăarii. Plăcile, împreună cu sticlele, (ce au format caseta), au fost așezate în etuvă, în poziție orizontală, la 100-105°C, timp de 2 ore. Răcirea plăcilor s-a făcut lent, timp de 24 de ore, pentru evitarea formării de tensiuni interne.

#### 7.1.3. Caracterizarea copolimerilor

In vederea stabilirii aproximative a cantității de reticulant prinsă în copolimer sub formă de fracțiune insolubilă, s-a determinat puterea de gonflare, pentru toți copolimerii folosind metoda descrisă și utilizată de G. Schwadula și F. Wolf [214, 215] . S-au selectat cîțiva copolimeri pentru care s-a determinat conținutul de gel [72, 74, 77, 189] .

Puterea de gonflare sau gradul de gonflare exprimată în cm<sup>3</sup> solvent/g copolimer s-a determinat prin punerea copolimerilor măcinați (granulație cît mai uniformă), în dicloretan, timp de 72 de ore, filtrare și recîntărire după 5 minute.

Conținutul de gel s-a determinat prin fierberea prafului de copolimer la reflux în dicloretan, 2 ore, uscarea cartușului cu insolubile (40-80°C) pînă la greutate constantă.

S-au efectuat pentru copolimerii cu concentrație de 10% comonomer obținuți prin varianta I și a II-a spectrele IR. Spectrele s-au trasat cu ajutorul unui spectograf "Specord IR - 75". Copolimerii au fost măcinați și pastilați în KBr. Pentru comparație s-au trasat și spectrele comonomerilor și homopolimerilor (v. tabelul 22).

- 98 -

# 7.1.4. <u>Rezultate și discuții asupra sintezei</u> copolimerilor

- 99 -

### 7.1.4.1. <u>Despre tehnica obținerii plăcilor de</u> polimeri

Plăcile de polimeri s-au obținut în casete de sticlă etanșate cu diferite garnituri și prinse cu cleme metalice. Dificultățile practice de obținere a casetelor sînt mult mai mari decît aparent. Pentru că la obținerea lor trebuie avute în vedere: atît sticlele din care se confecționează, cît mai ales garniturile de etanșare, care trebuie să îndeplinească anumite condiții după cum se va vedea în cele ce urmează.

7.1.4.1.1. <u>Sticlele</u> pentru casete s-au curățat prin spălare cu HCl 7% și apă distilată; prin spălare cu detergenți, apă și apă distilată. Plăcile cu suprafața cea mai lucioasă s-au obținut prin curățarea sticlei silicat cu o emulsie apoasă de oxid roșu de fer și ștergere cu cîrpe uscate curate.

7.1.4.1.2. <u>Garniturile</u> joacă rolul esențial în etanșarea casetelor. In literatură [49, 53, 72, 92, 185, 186] se specifică ca garniturile:

- să fie suficient de elastice, pentru ca prin strîngere între plăcile de sticlă să se deformeze, asigurînd astfel o suprafață de contact cu sticla, care să etanșeze caseta;

- să nu fie dizolvate de către amestecul de monomeri;

-să nu conțină ingredienți care extrași de către monomeri, să impurifice suplimentar compoziția de copolimerizare, sau să inhibe reacția de polimerizare prin natura lor chimică.

Foarte puțini autori specifică natura acestor garnituri. Jokl și colab. [77] specifică utilizarea garniturilor din tub siliconic spălat drept material de etanșare. Sato Mitsuo și colab. [216, 217] indică pentru obținerea plăcilor de PMM, garnituri din tub de PVC acoperit cu lac, pe bază de copolimer acid acrilic - etilenglicol - anhidridă ftalică.

Pentru sinteza copolimerilor MM prin varianta I și II (v. tabelul 16) s-au încercat următoarele tipuri de garnituri:

- tub de PVC
- tub mipolam
- tub cauciuc
- tub cauciuc izolat cu celofan
- snur PVC
- șnur cauciuc siliconic

Garniturile din tub de PVC și mipolam nu au dat rezultate bune, pentru că ele continuă să se deformeze în timpul copolimerizării, permițînd amestecului să curgă din casetă. In tubul de cauciuc s-a îrtrodus o sîrmă pentru rigidizare și păstrarea formei. Amestecul de monomeri nu a polimerizat din cauza sulfului extras din cauciuc, care acționează drept inhibitor pentru reacția de polimerizare a monomerilor metacrilici. Izolarea tubului de cauciuc cu celofan a dat rezultate bune în cazul copolimerizărilor în curent de aer cald și s-a dovedit ineficientă în cazul polimerizării în baie de apă. Apa absorbită de celofan pătrunde în casetă, determinînd matisarea marginilor plăcii. Pentru copolimerizare în baie de apă s-a dovedit bună garnitura din șnur de PVC ușor plastifiat; care a rămas prinsă în placă.

Garniturile din cauciuc siliconic avute la dispoziție au fost degradate de amestecul de comonomeri.

### 7.1.4.1.3. <u>Stabilirea condițiilor corespunzătoare de</u> transfer termic

Pentru a realiza un transfer termic corespunzător s-a pro-

- 100 -

cedat la copolimerizarea în baie pentru copolimerii MM obținuți prin varianta I și în etuvă cu recirculare de aer cald pentru copolimerii obținuți prin varianta a II-a (cu pseudoprepolimer). Apa din baia de polimerizare a fost recirculată și termostatată cu ajutorul unui termostat.

Apariția bulelor și tensiunilor în plăci se datorează atingerii unor temperaturi înalte, cauzate de exotermicitatea reacției. De aceea, pentru prevenirea apariției bulelor, a fost necesară <sup>×</sup> conducerea polimerizării în faza inițială la temperaturi mai joase, timp mai îndelungat (aproximativ 24 de ore) (v. tabelul 19).

### 7.1.4.2. Natura și concentrația inițiatorului

S-au făcut încercări cu două tipuri de inițiatori: POB și AIBN, cei mai utilizați în cazul polimerizării radicalice în masă a MM și a copolimerilor cu MM [47, 49, 52-68, 72, 73, 76-78, 80, 82-89, 91, 93, 94, 99, 101, 104, 123-125, 185, 186, 189-207] . S-au efectuat sinteze cu diferite concentrații de inițiator, la temperatura între 50-60°C. Rezultatele obținute sînt redate în tabelul 20.

### <u>Tabelul 20</u>. Influența naturii și concentrației inițiatorului în copolimerizarea MM cu comonomerii propuși

| Concetrația<br>inițiatoru-<br>lui (% masă) | Tipul de<br>inițiator | Observații                      |
|--------------------------------------------|-----------------------|---------------------------------|
|                                            | 2                     |                                 |
| 0,2                                        | POB                   | plăci cu bule foarte tensionate |
| 0,2                                        | AIBN                  | idem                            |
| 0,15                                       | POB                   | plăci cu bule                   |
| 0,15                                       | AIBN                  | idem                            |
| 0,1 .                                      | POB                   | idem                            |
| 0,1                                        | AIBN                  | plăci bune                      |

Tabelul 20. (continuare)

| 1            | 2    | 3                        |
|--------------|------|--------------------------|
| 0,05         | POB  | plăci cu mai puține bule |
| <b>0,0</b> 5 | AIBN | plăci fără bule  ·       |

Se știe că exotermicitatea reacției de copolimerizare este mai mare în cazul procedeului de obținere a plăcilor plecînd de la monomer, decît de la prepolimer [92]. De aceea se impune conducerea copolimerizării la temperaturi cît mai coborîte posibil, pentru un control eficient al transferului t4rmic în timpul reacției. Tinînd cont de acestea, s-a optat pentru AIBN, în concentrație de 0,1% față de amestecul de comonomeri.

### 7.1.4.3. <u>Regimul termic funcție de concentrația</u> comonomerilor

Din numeroase încercări efectuate s-a observat că amestecurile de copolimerizare devin mai reactive odată cu creșterea concentrației de comonomer tetrafuncțional, ceea de este în bună concordanță cu literatura [68, 86].

Bazat pe aceasta temperatura la începutul copolimerizării s-a micșorat corespunzător cu creșterea concentrației de comonomer (v. tabelul 19).

In aceste condiții s-a reușit să se obțină plăci netensionate și fără bule, condiție importantă pentru utilizarea lor în studii fotoelastice.

# 7.1.4.4. <u>Rezultate și discuții privind concentrația</u> comonomerilor din copolimerii obținuți prin varianta I și II

La copolimerizarea directă a MM cu comonomerii propuși(varianta I) s-a observat că la o creștere a concentrației peste 10% se obțin plăci cu bule și mai ales tensionate. Această situație este valabilă pentru majoritatea comonomerilor. Copolimerii C-DMEG (cu structură alifatică), C-DMH, C-DMD, C-DVB (cu structură esteri aromatici și hidrocarbură aromatică) prezintă bule și tensionări în măsură mai mare.

Copolimerii C-DAP (structură alifatică în puntea de reticulare) și C-DMHDEG, C-DMD-22 (cu structuri de ester alifatic-aromatic în puntea de reticulare), formează bule și tensiuni în măsură mai mică. La copolimerizarea în masă a comonomerilor, sub formă de plăci, contracția este mare. Posibilitățile de etanșare nu permit urmărirea masei de reacție în timpul copolimerizării. Astfel masa de reacție curge din easete. Decarece se urmărește obținerea plăcilor netensionate din sinteză, cu contracții cît mai mici, s-a stabilit 10% concentrația maximă a comonomerilor în amestecul de copolimerizare directă cu MM (varianta I).

S-a apreciat că ar fi interesantă obținerea intenționată, controlată și a unor compounduri a copolimerilor cu homopolimerul polimetacrilic (PMM).

Aceste încercări s-au efectuat cu o soluție vîscoasă de FMM - (20% PMM în MM) - formă care facilitează obținerea plăcilor în casete - și comonomerii propuși (v. tabelul 16). Sintezele efectuate astfel (denumite de noi metoda de copolimerizare în prezență de pseudoprepolimer sau varianta II) au avut menirea de a stabili măsura în care compoundul omogen este realizabil, precum și acțiunea asupra efectului fotoelastic. Folosind această tehnică de obținere a plăcilor, problemele aparative de etanșare și contracție s-au eliminat. Se observă că peste o anumită concentrație de comonomer diferită, funcție de natura lui, apare un fenomen de incompatibilitate, vizibil prin opacizarea plăcilor. Prezența PMM în amestecul de copolimerizare, deranjează ordinea crecată , dictată de reactivitatea monomerilor. Apar mai multe tipuri de polimeri care peste o

- 103 -

anumită limită nu mai dau amestecuri omogene. Aceste inomogenități le-am apreciat prin apariția fenomenului de opacizare a plăcilor. Acest fenomen poate exista și înaitea vizualizării lui - plăcile rămînînd transparente - și poate fi pus în evidență prin variația unor proprietăți optice a polimerilor. Fenomenul de opacizare ne-a interesat în primul rînd. Aceasta pentru că acești polimeri i-am destinat studiilor fotoelastice, unde se impune neaparat ca materialul să fie penetrabil de lumina polarizată.

Opacizarea plăcilor apare la copolimerii C-DMH-P, C-DMD-P și C-DVB-P la concentrații de 5% comonomer, în măsură mai mică. La concentrație de 10% comonomer, copolimerii C-DMH-10 P, C-DMD--10P și C-DVB-10 P devin neutilizabili pentru studii fotoelastice, fiind puternic opaci.

Constatările făcute mai sus pe baza încercărilor experimentale sînt în concordanță cu cele arătate de H. Wesslau [49], care indică posibilittea concureței mai multor reacții în cazul copolimerizării reticulante, care duc la un amestec de polimeri.

### 7.1.4.5. <u>Rezultate și discuții privind caracterizarea</u> <u>copolimerilor</u>

Rezultatele referitoare la puterea de gonflare și la conținutul de gel (insolubile) sînt redate în tabelul 21.

Din tabelul 21 se observă că puterea de gonflare, atît pentru copolimerii obținuți prin varianta I, cît și la cei obținuți prin varianta II, scade cu creșterea cantității de comonomer tetrafuncțional din copolimeri. Cantitatea de insolubile determinată în procente, crește cu creșterea concentrației de reticulant pentru copolimerii indicați în tabelul 21.

### <u>Tabelul 21</u>. Puterea de gonflare a copolimerilor cu monomeri tetrafuncționali obținuți prin varianta I și II

- 105 -

ġ

| Copolimer<br>varianta I | Puterea de<br>gonflare<br>cm <sup>3</sup> /g | Insolu-<br>bile<br>%                    | Copolimer<br>varianta II | Puterea de<br>gonflare<br>cm <sup>3</sup> /g |
|-------------------------|----------------------------------------------|-----------------------------------------|--------------------------|----------------------------------------------|
| 22622622622             | ***********                                  | ======================================= |                          |                                              |
| C-DMH-2                 | 1,2424                                       | 84,6                                    | C-DMH-PP                 | 1,5019                                       |
| C-DMH-5                 | 0,7533                                       | 92,82                                   | C-DMH-5P                 | 0,9153                                       |
| C-DMH-10                | 0,533                                        | 95,14                                   | C-DMH-10P                | 0,5659                                       |
| C-DMHDEG-2              | 1,3238                                       | 94,3                                    | C-DMHDEG-2P              | 1,7883                                       |
| C-DMHDEG-5              | 1,1037                                       | 94,8                                    | C-DMHDEG-5P              | 1,4067                                       |
| C-DMHDEG-10             | 1,017                                        | 95,38                                   | C-DMHDEG-10P             | 1,0307                                       |
| C_DMD-2                 | 1,6227                                       | _                                       | C-DMD-2P                 | 1,9099                                       |
| C-DMD-5                 | 1,5769                                       | -                                       | C-DMD-5P                 | 1,6967                                       |
| C-DMD-10                | 0,8499                                       | -                                       | C-DMD-10P                | 0,9976                                       |
| C-DMD 22-2              | 1,7156                                       | -                                       | C-DMD 22-2P              | 2,1977                                       |
| C-DMD 22-5              | 1,5536                                       | _                                       | C-DMD 22-5P              | 1,7338                                       |
| C-DMD 22-10             | 1,2864                                       | -                                       | C-DMD 22-10P             | 1,1911                                       |
| C-DVB-2                 | 1,4997                                       | 87,5                                    | C-DVB-2P                 | 1,9088                                       |
| C-DVB-5                 | 1,0257                                       | 87,96                                   | C-DVB-5P                 | 1,05                                         |
| C-DVB-10                | 0,766                                        | 97,18                                   | C-DVB-10P                | 0,6472                                       |
| C-DAP-2                 | 5,1859                                       | -                                       | C-DAP-2P                 | 7,8637                                       |
| C-DAP-5                 | 2,8721                                       | -                                       | C-DAP-5P                 | 4,6612                                       |
| C-DAP-10                | 1,6601                                       | -                                       | C-DAP-10P                | 4,0196                                       |
| -                       | -                                            | -                                       | C-DAP-15P                | 3,5159                                       |
| C-DMEG-2                | 1,9676                                       | <b>90,</b> 2                            | C-DMEG-2P                | 1,6456                                       |
| C-DMEG-5                | 1,6168                                       | 96,8                                    | C-DMEG-5P                | 1,2553                                       |
| C-DMEG-10               | 0,9215                                       | 98,2                                    | C-DMEG-10P               | 0,8896                                       |
|                         |                                              |                                         |                          |                                              |

Polimetacrilatul de metil și copolimerii MM cu stiren (în proporție 2, 5, 10%) s-au dizolvat complet în dicloretan, după cum era de așteptat, fiind polimeri termoplaști. Benzile caracteristice elementelor principale de structură din spectrele de infraroșu  $(cm^{-1})$ Tabelul 22.

•

| ×:           |                                                    |                      |                      |             |                                                |                   |                   |         |                             |                      |               |
|--------------|----------------------------------------------------|----------------------|----------------------|-------------|------------------------------------------------|-------------------|-------------------|---------|-----------------------------|----------------------|---------------|
| Substanța    | с-н                                                | ິດ-c າ,<br>arom.     | 57<br>10<br>11<br>10 | 0=0         | б сн <sub>2</sub> <sup>d</sup> сн <sub>3</sub> | б_сн <sub>3</sub> | <sup>у</sup> аг-0 | ° 0−0 ° | б <sup>сн</sup> об<br>arom. | ט<br>ט-ט-ט<br>ט<br>ט | , =)<br>H, C= |
| ]            | 2                                                  | 3                    | 4                    | 5           | 6                                              | L                 | 8                 | 6       | 10                          | 11                   | 12            |
| DMH          | 2850,2420,<br>2950,2470                            | 1500,1620 1,m        | 1680m                | 1740 1      | 1450 m                                         | 1380 m            | 1300 1            | 1140 i  | 800 m                       | ł                    | <b>8</b> 90   |
| P-DMH        | 2925,2950<br>2975                                  | 1500,1620 i,m        | ١                    | 1740 i<br>^ | 1450 s                                         | 1380 m            | 1300 i            | 1180 i  | 800<br>E                    | ł                    | ł             |
| C-DMH-10     | 2940,2990в                                         | 1500                 | I                    | 1740 i      | 1450 s                                         | 1380 m            | I                 | 1180 i  | 820                         | I                    | ł             |
| C-DMH-10P    | 2940,2990m,                                        | B1500                | t                    | 1740 i      | 1450 s                                         | 1380 m            | ł                 |         | 820                         | t                    | ı             |
| DMHDEG       | 2880,2920,<br>2950,2970m,                          | 1500,1620і,ш<br>в    | 1630m                | 1720i       | 1450 i                                         | 1380 m            | 1310 1            | i 0811  | 810 i                       | I                    | 069           |
| P-DMHDEG     | 2850,2940m,1                                       | <b>Bl500,1620i,m</b> | 1                    | 1720 i      | 1450 i                                         | 1380 m            | 1310 i            | 1140 i  | 810 m                       | 1                    | I             |
| C-DMHDEG-10  | 2940,2980ш,                                        | в 1500 s             | I                    | 1720 i      | 1450 m                                         | 1380 s,m          | 1250 i            | 1140 i  | 810 s                       | 1                    | 1             |
| C-DMHDEG-10P | 2940,2980m,                                        | s 1500 s             | I                    | 1720 i      | 1450 m                                         | 1380 s,m          | 1250 i            | 1140 i  | 810 m,                      | ו<br>מ               | T             |
| CIWC         | 2850,2920<br><b>2</b> 950,3025<br>31 <b>00 m,s</b> | 1500,1600i,m         | 1630m                | 1740i       | 1450 i                                         | 138 <b>0</b> s    | 1310 i            | 1180 i  | 810m                        | 1210<br>m,i          | <b>890</b>    |
| P-DND        | 2850,2920,<br>2950,3025m,                          | 1500,1600i,m<br>s    | I                    | 1740i       | 1450m                                          | 1380 s            | 1310i             | i 0811  | 810m                        | 1210<br>B,i          | 1             |
| C-DMD-10     | 29 <b>50,2</b> 975m,                               | s 1480 m             | 1                    | 1720i       | 1450 s                                         | 138 <b>0 s</b>    | 1280              | 1180 i  | 810s 1                      | 255m                 | 1             |
| C-DMD-JOP    | 2950,2975m,                                        | s 1480 m             | ł                    | 1720i       | 1450 s                                         | 1380 s            | 1280              | 1180 i  | 810s 1                      | 255m                 | ł             |

- 106 -

| 1                       |                                          |           |                |                 |        |              |               |               |                  |            | ,           |  |
|-------------------------|------------------------------------------|-----------|----------------|-----------------|--------|--------------|---------------|---------------|------------------|------------|-------------|--|
| . <b>1</b>              | 2                                        | 3         | 4              | 5               | 9      | 7            | 80            | 6             | 10               | 11         | 12          |  |
| DMD 22                  | 2900,300m,s ]                            | 1500 i    | 1620 m         | 1720i           | 1450m  | 1380m, s     | 1310,<br>1280 | 1180          | 8 <b>10i</b>     | 1255m      | <b>0</b> 68 |  |
| P-DMD 22 <sup>1</sup> ) | 2875,2920 ]<br>2950, <b>3</b> 025<br>m,s | 1500 i    | 1620 m         | 1720i           | 1,450m | 1380m, s     | 1310,<br>1280 | 1180i         | 810i             | 1255m      | <b>06</b> 8 |  |
| C-DMD 22-10             | 2950,3000m,s                             | 1500 m,s  | 1              | 1720i           | 14508  | 1380m, s     | 1280          | <b>1180i</b>  | 810m             | 1255m      | 1           |  |
| C-DMD 22-10P            | 2950, 3000m, s                           | 1500 m, s | t              | 1720i           | 1450s  | 1.380m, s    | 1280          | <b>1180</b> i | 810m             | 1255m      | ł           |  |
| DVB                     | 2850,2925, ]<br>3000,3050,<br>3075 m,s   | 1500,1600 | 1630 m         | <b>I</b><br>- с | 1450i  | 1380m        | I             | I             | 800i             | I          | 006         |  |
| P-DVB <sup>2)</sup>     | 2850,2900, ]<br>2975,3000,<br>3050 ш,в   | 1500,1600 | 16 <b>30</b> в | 1               | 1450i  | 1380m        | I             | 1             | 8 <b>0</b> 0i    | 1          | 006         |  |
| C-DVB-10                | 2950,2975m,s                             | 1500      | 1              | 1720i           | 1450i  | 1380m        | I             | 1180'i        | 810m             | I          | ľ           |  |
| C-DVB-10P               | 2950,2975m,s                             | 1500      | 1              | 1720i           | 1450i  | 1,380m       | I             | 1180i         | 810m             | I          | I           |  |
|                         |                                          |           |                |                 |        |              |               |               |                  |            |             |  |
| P-DAP                   | 2920 a ]                                 | 1560,1480 | ۱              | 1720i           | 1450m  | I            | 1280i         | 1120i         | 740 <sup>x</sup> | I          | I           |  |
| C-DAP-10                | 2940,2975m,s                             | 1480      | 1              | 1720i           | 1450m  | 1380s        | 1250i         | <b>1120</b> i | 740 <sup>x</sup> | I          | 1           |  |
| C-DAP-10P               | 1940,1975m,s                             | 1480      | I              | 1720i           | 1450m  | 1380s        | 12501         | 1120i         | 740 <sup>x</sup> | I          | 1           |  |
| DMEG                    | 292 <b>5,2950m,s</b>                     | ı         | 1630m          | 1720i           | 1450m  | 1380s        | I             | 1150i         | I                | I          | <b>06</b> 8 |  |
| P-DMEG3)                | 2925,2975m,s                             | ł         | 1630m          | 1720i           | 1450m  | 1380s        | I             | <b>1150i</b>  | 1                | . <b>1</b> | 89 <b>0</b> |  |
| C-DMEG-10               | <b>2</b> 925,2975m,s                     | I         | 1              | 1720i           | 1450i  | 1380m        | 1             | <b>1120</b> i | [<br>]<br>]      | I          | I           |  |
| C-DMEG-10P              | 2925,2975m,s                             | I         | 1              | 1720i           | 1450i  | <b>1380m</b> | ۱             | <b>1120i</b>  | 1                | I          | 1           |  |

Tabelul 22. (continuare)

- 107 -

Ŧ

|            |                                        |                 |                                                    |                                                                                        |                  |          |        |               |                                                                                                  | •   |
|------------|----------------------------------------|-----------------|----------------------------------------------------|----------------------------------------------------------------------------------------|------------------|----------|--------|---------------|--------------------------------------------------------------------------------------------------|-----|
|            | ~                                      | M               | 4                                                  | 5                                                                                      | 9                | 7        | ω      | 6             | 10 11                                                                                            | 12  |
| တ          | 3000, 3025,<br>3050, 3075m,            | 1500,1585i<br>B | 1630i                                              | •                                                                                      | <b>1450i</b>     | 1        | ł      | 1             | 690,785 <sup>XX</sup> -                                                                          | 066 |
| G-S-10     | 2 <b>9</b> 40,2975,<br>2850 m,8        | 1480 m          | I                                                  | 1720i                                                                                  | 1450m ]          | L380     | I<br>, | <b>11</b> 20i | 690,750 <sup>xx</sup> -                                                                          | t   |
| G-S-10P    | 2850,2940,<br>29758, m                 | 1480 m          | I                                                  | <b>1720i</b>                                                                           | 1450m ]          | 1380     | 1      | 11201         | 690,750 <sup>xx</sup> -                                                                          | I   |
| NW.        | 2 <b>950, 3000m,</b>                   | · 1<br>10       | I                                                  | 1720i                                                                                  | 1450, ]<br>1475m | L390m    | 1      | <b>1</b> 140i | 1                                                                                                | ı   |
| i - intens | ······································ | ¢               | 14<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11 | 81<br>18<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17<br>17 | xx arome         | atic mor |        | tituit        | 0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |     |
| m - mediu  | X - aro                                | matic substitu  | it                                                 |                                                                                        |                  |          |        |               |                                                                                                  |     |
| 1) mon.    | nereacționa                            | tt în homopolim | ler                                                |                                                                                        |                  |          |        |               |                                                                                                  |     |

urme de monom. în homopolimer

urme de mon. în homopolimer

з)

2)

Tabelul 22. (continuare)

•

v



- 109 ·

Fig, 26. Spectrul IR al C-DMH-10



Fig. 27. Spectrul IR al C-DMHDEG-10

Benzile caracteristice din spectrele IR sînt redate în tabelul 22. Se observă că în copolimerii MM, care conțin 10% comonomer de structură chimică diferită, apar benzi caracteristice comonomerilor întroduși. Dispar, în cazul copolimerilor, frecvențele ce indică prezența dublelor legături, dovadă că monomerii au copolimerizat total. <sup>D</sup>atorită, însă, concentrației destul de mici de comonomer, (10%), față de MM (90%), predomină în spectrele copolimerilor benzi caracteristice PMM [249] (fig. 26, 27, 28).

- 110 -



Fig. 29. Spectrul IR al C-DMH-10P

Indiferent de modul de obținere al copolimerilor, (var. I și II) spectrele de infraroșu sînt practic identice, ceea ce demonstrează o structură de copolimerizare foarte apropiată, (compararea fig. 26 cu fig. 29).

### 7.2. Concluzii

 In urma unor numeroase încercări s-au stabilit metodele de copolimerizare a MM cu monomerii propuși prin varianta I și II.
S-au găsit condițiile tehnice experimentale de obținere a unor plăci de polimer fără defecte; confecționarea casetelor și asamblarea prin garnituri corespunzătoare (șnur de PVC ușor plastifiat pentru varianta I de copolimerizare și tub de cauciuc armat cu sîrmă și izolat cu celofan - pentru varianta a II-a de copolimerizare).
S-au stabilit condițiile optime de sinteză: -timpii optimi de copolimerizare în funcție de temperatură; - temperatura optimă de copolimerizare; 35-60°C pentru copolimerizarea primară și 100-105°C pentru copolimerizarea finală.
tipul și concentrația optimă de inițiator - AIBN - 0,1%.
S-a stabilit concentrația maximă de comonomeri în cele două variante de copolimerizare: 10% comonomer pentru varianta I și în jur de 15% comonomer pentru varianta a II-a.

- 111 -

5. S-au caracterizat copolimerii prin determinarea puterii de gonflare.

6. S-au trasat spectrele IR pentru copolimerii MM cu 10% comonomer, pentru homopolimerii și monomerii utilizați la copolimerizare.

BUPT

### 8. STUDIUL PROPRIETATILOR FOTOELASTICE ALE COPOLIME-RILOR MM CU COMONOMERII PROPUSI

In acest capitol se expun date privitoare la comportarea fotoelastică a copolimerilor MM obținuți prin varianta I și II. In prima parte sînt prezentate aparatura și modul de calcul adoptat pentru determinarea constantei fotoelastice a materialului ( $\Gamma_0$ ) sau a valorii benzii materialului așa cum este notată în "Analiza experimentală a tensiunilor" vol. I de N Iliescu, L. Boleanțu și I. Pastrăv [16].

Pentru corelarea efectului fotoelastic cu structura copolimerilor s-a pornit de la ideea folosirii unui polimer - PMM - care are structură alifatică și prezintă izocromate la solicitări mari. S-au întrodus prin copolimerizarea MM cu diverși monomeri, structuri alifatice, aromatice și aromatic - alifatice în rețele, obținîndu-se copolimeri reticulați. Aceștia, prin strucuturile întroduse, vor să simuleze unele structuri din materiale cu sensibilitate fotoelastică mare. Polimerii studiați în acest capitol sînt sintetizați după un program propriu, folosind e tehnică de lucru unitară pentru toate sintezele. Polimerii obținuți, utilizați pentru studii de fotoelasticitate sînt produse de polimerizare care pu se găsesc ca atare la dispoziția cercetătorilor. Ei sînt obținuți în aceleleași condiții pentru a fi comparabili.

**Zlotnikov** [45, 46] a sintetizat în anumite condiții stabilite de el copolimeri ai NM cu DMEG în proporție de 2 - 18%. Nu a a specificat că a obținut plăci cu tensiuni sau bule. In încercările noastre concentrația de 10% comonomer a fost aproape în toate cazurile limitativă (excepție C-DAP-15 P). Aceasta din cauza apariției

BUPT

bulelor, a tensiunilor interne și a fenomenului de opacizare al plăcilor. Prin urmare, a devenit necesară și obligatorie sinteza chiar a unor copolimeri existenți în literatură (cazul copolimerilor C-DMEG), precum și a homopolimerului - PMM - în condițiile și după o tehnică unitară de lucru, altfel concluziile pot deveni contradictorii.

Astfel efectuînd sintezele și întroducînd comomeri ca structură cunoscută se pot corele - structura chimică a polimerilor cu apariția și potențarea efectului fotoclastic.

### 8.1. Aparatura utilizată în studiile fotoelaclastice

### 8.1.1. Polariscopul

Studiile fotoelastice s-au efectuat pe un fotosiastichaetru MEOFTA - EMB - 5659026, și este prezentat în fig. 30.





- T - 1

BUPT

Fig. 30. Polariscopal MEOUT 2013-56790

Determinizie s-au effectuat in lumini abil estru a obțing

izocromatele colorate, iar pentru determinări cantitative, în vederea etalonării epruvetelor și a determinării constantelor de fotoelasticitate a materialului (valoarea benzii materialului) s-a lucrat în lumină monocromatică ( $\Lambda_{Hg} = 5461$ Å). In acest caz izocromatele au apărut alb - negru, putîndu-se citi mai clar momentul cînd acestea au devenit tangente la contur.

8.1.2. Epruvete

Epruvetele s-au tălat din plăci și au forma dreptunghiulară, cu dimensiunile din fig. 31.



Fig. 31. Dimensiunile caracteristice ale epruvetei considerate în calcul

### 8.1.3. Dispozitivul de încercare

Dispozitivul de încereare este redat în fig. 32, iar în fig. 33 se prezintă schița dispozitivului cu dimensiunile utilizate în calcul pentru determinarea valorii benzii modelului  $\sigma_0$ , precum și pentru determinarea constantei fotoelastice a materialului  $\sigma'_0$ (valoarea benzii materialului).

### 8.2. Modul de lucru și principiul de calcul

Inainte de începerea determinărilor se examinează epruvetele în lumină polarizată pentru a nu avea tensiuni interne. Apoi

BUPT

încercările se efectuează cu dispozitivul montat ca în fig. 32.



Fig. 32. Dispozitivul de fixare și modul de încărcare a epruvetelor



Fig. 33. Schema dispozitivului de fixare și dimensiunile principale folosite în calcul

a - epruveta; b, b' - bare de legătură prin intermediul cărora s-a solicitat epruveta (greutatea lui b' = 1,135 kg și lungimea lui b' = 105 cm); c - tija de fizare a greutăților (0,750 kg); d - greutăți variabile (kg).

Epruveta fiind supusă unei încovoieri pure, izocromatele vor apărea sub forma unor linii paralele echidistante de o parte și de alta a axei neutre a epruvetei (fig. 34). Modul de notare a izocromatelor este redat în fig. 34. - 116 -



-Fig. 34. Modul de notare a izocromatelor și distribuția tensiunilor în secțiune

Incărcarea epruvetei trebuie să se facă astfel ca izocromata de anumit ordin (k) să fie tangentă la contur, atît la partea superioară, cît și inferioară.

Momentul de încovoiere M este funcție de încărcare și de distanța de la reazăm la locul de solicitare (fig. 33),

$$\mathbf{M} = \mathbf{R} - \frac{\mathbf{L} - \mathbf{l}}{2} \quad \text{kg.cm},$$

reacțiunea R în locul de reazăm este  $\frac{P'}{2}$ , iar P' forța care acționează asupra epruvetei, se calculează funcție de încărcarea P și

brațul barei b pînă unde se montează tija c:

$$P' = \frac{P.98,75}{31,25}$$
 kg,

unde:

P - este suma greutăților ce contribuie la solicitarea epruvetei:

- greutatea cu care acționează bara b'

$$\frac{1,135.105}{31,25.2} = 1,9 \text{ kg};$$

- greutățile d în kg variabile funcție de încărcarea efectuată.

Din momentul de încovoiere M și W, (W = 
$$\frac{gh^2}{6}$$
), se deter-

mină tensiunea maximă T pentru fiecare izocromată (sau ordin de franjă. k)<sup>\*</sup>

 $\sigma = \frac{M}{W} \text{ kg/cm}^2$ 

și din aceasta valoarea benzii pentru model:

$$\mathcal{O}_{\mathbf{o}} = \frac{\mathcal{O}_{\max}}{\mathbf{k}} - \frac{\mathbf{kg}}{\mathbf{cm}^2 \mathbf{k}}$$

apoi constanta fotoelastică a materialului Sot sau valoarea benzii materialului:

$$G_0^{\bullet} = G_0^{\bullet}g \frac{kg}{cm \ k}$$

unde g - grosimea epruvetei, în cm.

(Observație: deoarece în literatură se întîlnesc mai multe feluri de notații,în prezentul capitol și mai departe s-au folosit notațiile folosite în: "Analiza experimentală a tensiunilor" vol. I - N. Iliescu, L. Boleanțu și I. Păstrăv).

# 8.3. <u>Varianta I. Studiul comportării fotoelastice a co-</u> polimerilor MM obținuți prin copolimerizare di-

<u>rectă</u>

In vederea obținerii unei prime aprecieri în ce privește corelația structură - efect fotoelastic (urmărit prin accentuarea numărului de izocromate) s-au utilizat comonomeri de natură diferită. Tot pentru acest motiv s-au folosit concentrații mici de comonomeri (2-10%). Structurile copolimerilor MM într-o formă idealizată funcție de natura comonomerilor (alifatic, aromatic, alifatic-aromatic) ar putea fi reprezentate în fig. 35. Toți copolimerii readați în tabelul 16 și obținuți prin varianta I utilizați pentru încercări sînt transparenți și nu prezintă tensiuni interne cînd sînt examinați în lumină polarizată. Pentru a fi mai sugestivă apariția efectului fotoelastic în polimeri s-au efectuat fotografii color, la încărcări care să nu distrugă probele și totuși să arate posibilitățile fotoelastice maxime ale materialelor.



**Fig.35.** Reprezentarea grafică a situațiilor realizate practic

### Observație: Se presintă schematic:

8.3.1. Influența naturii comonomerului

### 8.3.1.1. Rezultate și discuții

,

PMM - homopolimer, obținut în aceleași condiții cu polimerii reprezentați în fig. 35, la fotografiere în lucină polarizată prezintă tabloul izocromatelor din fig. 36.



Fig. 36. PMM - homopolimer

Prin întroducerea în structura alifatică a PMM, a unei cantități mici de 2% stiren, care păstrează liniaritatea copolitarului, întroducînd grupe arilice laterale, aspectul incoromatelor pe schimbă (fig. 37)l Apar izocromate asimetrice, apromitativ de noolași numbr de ordine cu acelea ale PMM din fig. 36.

DMEG reticulant - ester alifatic al acadulai mettorilie -



120 -

Fig. 37. Copolimer C-S-2

în concentrație mică (2%) alături de MM menține neschimbat tablcul izocromatelor, față de PMM (fig. 38). Influența repelelor acuse cu



Fig. 38. Copolimer C-DMEG-2

DMEG în concentrație mică este relativ mică, datorită structurii lui înrudită cu MM, respectiv cu a FMM folosit urept comparație. Absustă constatare confirmă rezultatele lui Zlotnicóv [45,46] pe copolutorii MM cu DMEG, obținuți cu alte concentracii di în alte condiții.

Introducerea în structura copplimerilor - unui reticulant care conține grupe aromatice legate prin intermed al unor fund runi esterice, de gruparea vinilică, duce la o intensificare a numărului ,

de izocromate chiar la concentrație de 25. Acest fenomen este adus de DMH și DMD în copolimerii lo C-DMH-2 și C-DMD-2 (fig. 39).



Fig. 39. Copolimeri C-DMH-2 și C-DMD-2 Dacă însă nucleul aromatic a fost întrodus în rețea prin intermediul unui reticulant tip hidrocarbură - DVB - în concentrație mică de 2% se observă o apariție asimetrică a izocromatelor (fig.40).



Fig. 40. Copolimer C-D/B-2

Această asimetrie poate fi datorată nu numai structurii e une cu -DVB - ci și impurităților diferite (stil-vinil-boucon, qustilbonzen) din DVB-ul tehnic utilizat drept comonomer.

Cînd reticulantul din copolimer are structura paui ester alifatic - aromatic el acidului metacridic, presidulu-se ecnoentrația de 2%, aspectul izocronatelor este asemánitar su cel din fig.38. Acești copolimeri sînt: C-DMHDEG-2 și C-DMD 22-2. Di suferă o deformare mai mare la încărcări esemănătoare cu a copolimerilor care au rețele numai alifatice (C-DMEG-2) sau numai aromatice (C-DMH-2 și C-DMD-2), aceasta datorită - probabil - prezenței în comonomeri a unor legături eterice (-O-) flexibilizante.

Dacă gruparea eterică lipsește din structura reticulantului, de exemplu în DAP - deși are un lanț hidrocarbonat (adus de grupa alil) mai lung decît cel adus cu DMHDEG și DMD 22 (gruparea -CH<sub>2</sub>-CH<sub>2</sub>-), tabloul izocromatelor este identic cu cel din copolimorul C-DVB-2 (fig. 40).



Fig. 41. Copolimerul C-DaHDNG -5

Prin examinarea influentei naturii comonomerului la concentrație de 5%, respectiv de 10%, se observă variații a compostării fotoelastice a copolimerilor (v. și paragraful 8.3.2.). Copolimerii C-DMH-5 și C-DMD-5 manifestă o intensificare a numărului de izocromate (fig. 44). În cozul copolimerilor C-DMHDEG-5 și C-DMD 22-5 apare o scădere a numărului de incensmate (ordinului de franjă) (fig. 41). Același tableu el incensmate (ordinului de franmerii C-DAP-5 și C-DVD-5.



- 123 -

Fig. 42. Copolimerii C-DAP-5 și C-DVB-5

### 8.3.1.2. Concluzii partiale

l. Prin schimbarea structurii comonomerului în copolimeri cu MM se observă variații ale însușirilor fotoelastice.

2. Nucleele arilice neprinse într-o punte de reticulare, ci lăsate ca grupe laterale (C-S-2) schimbă proprietățile fotoelastice față de PMM, provocînd asimetria izocromatelor.

3. Copolimerii MM cu monomeri reticulați ou structară înrodită - alifatică - (exemplu DMEG), păstrează aspestul general al izodromatelor oferit de PMM.

4. Copolimerii MM cu monomeri reticulanți cu structuri ester aromatice legate direct de grupele vinilice (exemplu: 0-baH-2, C-DMD-2, C-DMH-5, C-DMD-5) au însușiri fotoelastice îmbunătățite față de FMM. Nucleele ester arilice din puntea de roticulare sînt necesare și dădătoare de efect fotoelastic îmbunătățit.

5. Mucleele arilice prinse direct de grupele vinilice înrăutățesc proprietățile fotoelastice a copolimerilor în comparatie cu PMM (exemplu C-DVB-2, C-DVB-5).

6. Copolimerii MM cu monomeri reticulanți sare întroduc în

rețele structuri ester alifatic - aromatice legele între ele prin punți eterice (C-DMHDEG-2, C-DMD 22-2) păstrează tabloul isocromatelor oferit de copolimeri cu rețele ce conțin grupe slifatice (C-DMEG-2), care la rîndul lor se comportă asemăneter cu PMM.

7. Structurile ester aromatic-alifatice prinse în rețea cu reticulant alilic (C-DAP-2; C-DAP-5) oferă același tablou al izocromatelor ca și copolimerii cu DVB.

#### 8.3.2. Influența concentrației comonomerului

### 8.3.2.1. Rezultate și discuții

Din cele de mai sus s-a observat o variație a numărului de izocromate în funcție de natura comonomerilor. Examinares aceasta s-a efectuat la concentrație mică, mai ales 2%. Urmărirea acealui de potențare a numărului de izocromate cu creșterea concentrației de comonomer este, de asemenen, o problemă propusă. În acest scop s-au sintetizat copolimeri ai MM cu monumeri în concentrații mici 2, 5, 10%.



#### Nig. 43. Copoliner C-3-10

Creșterea concentrației 3-ului de lu 2 la 10,5 în copolimeri (C-S-2, C-5-5, J-S-10) produce - upoură schimbare a upostului

- 124 -

izocromatelor, păstrînd nesimetria lor (fig. 43, în comparație cu fig. 37).

DMEG întrodus ca reticulant în proporție de 2, 5, 10%, nu schimbă esențial tabloul izocromatelor în copolimerii MM (C-LMEG-2, C-DMEG-5, C-DMEG-10). Frin urmare rețelele formate din punți ester - alifatice similare ca structură cu MM, nu schimbă însuțirile fotoelastice ale polimerului. Concentrație mai mare modifică loar comportarea sub tensiune; epruvetele din copolimer - C-DMEG-10 - se deformează mai puțin. Acest fapt este important pentru u. material fotoelastic indiferent pentru ce tipuri de determinări este utilizat. Cu cît prezintă o deformație mai mică, are și fluaj optic mai mic, caracteristici impuse materialelor fotoelastice [16, 20].

In majoritatea lucrărilor consultate [3-7, 10-15, 34-44], materialele pentru modele (v. cap. 3 - partea teoretică) conțin în structura lor nuclee arilice. Aceste structuri au fost create încăprin policondensare. Problema propusă de noi (v. cap. 5 - juriea experimentală) de a întroduce nuclee arilice prin reocție de copolimerizare, a determinat obținerea copolimerilor ou ceticulanți cure



Fig. 44. Copolimer C-DMH-5

conțin astfel de nuclee. Intr-adevăr, prin createre concentrovieù de DMH și DMD în copolimerii MM, se covervă o potensure a nuscului de izocromate. Aceasta se vede prin compararea fig. 39, fig. 44 și fig. 41 pentru copolimerii C-DMH-2, C-DMH-5 și, respectiv, C-DMH-10.



### Fig. 45. Copolimer C-DMH-10

Ordinea de creștere a numărului de izocromate este identică atît la DMH, cît și la DMD și este următoarea:

C-DMH-10 > C-DMH-5 > C-DMH-2

O creștere în continuare a concentrațiilor în DMH și DMD din copolimeri, duce la plăci tensionate din sinteză, ceeu ce s-a evitat. Jbținînd plăci tensionate nu s-ar fi putut ocoli prelucrările termice ulterioare, de detensionare. Detensionarea se face aproape întotdcauna pentru materialele fotoelastice uzuale (de tip epoxidic și fenol-formaldehidice); dar este nedorită.

In cazul copolimerilor C-DVB-2, C-DVB-5, C-DVE-10 aper fenomene dictate de compoziția DVB - tehnic utilizat (v. paragraful 6.1.3.). Concentrațiile de 2, 5, 10% BVB reprezintă doar parțial 2portul de roticulant, ceilalți componenți jucînd rol de plastificanți externi, care schimbă în rău comportatea la tensionare. Se mareçte mult deformabilitatea și, prin urmare, și fluajul optic. Paptul acesta a fost observat de J.H. Lemble și colab. (25, pentru 100 plastifiat extern cu dibutil ftalat.

Copolimerii C-DMHDEG-2, 5, 10 gi J-DED 20-1, 5, 10 se
comportă asemănător cu C-DMEG-2, 5, 10, schimbîli puțin - nesennificativ - tabloul izocromatelor față le PMM.

Copolimerii Q-DAP-10 în comparație cu U-DAP-5 nu-și Schimbă sensibilitatea fotoelastică. DAP în copolimeri cu MM se pare că strică sensibilitatea fotoelastică provocată de o recea alifatică de tipul DMEG sau a uneia alifatic arcmatică de tepal DEHDES di 1915 22 (compararea fig. 42 și fig. 46).



Fig. 46. Copolimer C-012-10

Apariția sensibilității fotoelastice în copolisarii 22 su DAP și DVB se observă și prin nesimetrin izoorosatelor față de axa orizontală a epruvetei. Aceasta datoriti faștului el coesti compuji, precum și impuritățile aduse cu ei, împrimă polisorilor anizoaropie optică: de aici probabil nesime ria izoaro mitelor. Societ fanc în devine observabil doar la tensionare în lomină poleritată. De arifel plăcile sint transparent și pir isotrope.

Acemenei materiale sînt destilizabile în fotoelasticioate. Di acost fenoten ne poate da infocaații - apra legitarii de ce poate stabili între structura materialelor plastico,prin între alorsa ac asor stabeturi di efectul fotoelastic.

#### 8.3.2.2. Concluzii partiale

1. Introducerea stirenului în copolimeri cu MM, pînă la 10% nu schimbă esențial comportarea fotoelastică față de PMM, se menține nesimetria izocromatelor față de axa epruvetei.

2. Structuri reticulante înrudite cu MM (exemplu DMEG) nu schimbă comportarea fotoelastică a copolimerilor față de PMM, pînă la concentrație de 10%.

3. Structuri reticulante de tipul ester aromatic (exemplu DNH și DMD) întroduse în copolimeri cu MM schimbă în sens favorabil tabloul izocromatelor față de PMM etalon. Prin creșterea concentrației de DMH și DMD se observă o potențare a numărului de izocromate, fapt care face posibilă utilizarea unor asemenea copolimeri în domenii mai largi de fotoelasticitate.

4. Concentrația de 10% pentru DMH și DMD nu poate fi depășită deci devine limitativă - pentru că peste aceasta se obțin plăci tensionate din sinteză. Pentru concentrații mai mari s-ar impune un tratament termic, care este de lungă durată, neeconomic, pentru detensionare.

 Structuri reticulate cu DVB și DAP utilizați în concentrații pînă la 10% duc la copolimeri neutilizabili în fotoelasticitate.
De remarcat este faptul că aceste structuri, indiferent de tipul de comonomer copolimerizat cu MM, ne oferă unele informații, deocamdată calitative, despre anizotropia reală a copolimerilor sintetizați.

# 8.4. <u>Varianta a II-a. Comportarea fetoelastică a copoli-</u> merilor MM obținuți în prezență de PMM

Sintezele de copolimeri efectuate prin această variantă, pe lîngă faptul că ușurează obținerea plăcilor în casete, au menirea de a stabili pînă la ce concentrație de comonomer se obțin com-

BUPT

pounduri omogene, precum și daoă homopolimerul influențeasă deu, ra efectului fotoelastic. Avantajul obținut în tehnica de obținere a plăcilor este cotracarat de dezavantajul aporițiel fonomenului de incompatibilitate, sesizabil direct prin opacizarea plăcilor. Apest aspect nu putea fi prevăzut de la început și mai eles dimensiunea lui. La copolimerii din această serie, datorită fuptului că soa întrodus intenționat - pseudoprepolimer - , care conține inițial un lanț macromolecular mare, pe lîngă faptul că apar fenomene de incompatibilitate, proprietățile fotoelastice sînt inferioare copolimerilor obținuți prin varianta I.

Copolimerii obținuți prin varianta a II-a sînt redati în tabelul 16 și în tabelul 23.

## 8.4.1. Influența naturii comonomerului

## 8.4.1.1. Rezultate și discuții

Stirenul întrodus în concentrație mică de 2% în Gaussocal de copolimerizare duce la obținerea unor copolimeri tran pareleja. Tabloul izocromatelor rămîne foarte asemănător du le Field obulou (fig. 47 în comparație cu fig. 36).



## Pig. 47. Copolimerul 3-2-2 P





,

- 130 -

Fig. 48. Copolimerul C-DMEG-C P



Fig. 49. Copolimerul C-DMH-2 P

Copolimeral reticulat du LAEO (C-DAED-2 r) (Fig. 48) se comportă din punct de vedere al numărului de izopromate în fel cu PMM (fig. 36) și cu copolimerul C-DMEG-2 obținut prin verlanta I (fig. 38). Se confirmă și în canul acestor copolimeri of puntea de reticulare alifatică, înrudită ca structură su MM, păstrecuă teoloul izocromatelor PMM.

Observînd fig. 47 - 54 se poste spune en toți copolimerii cu 2% comonomer, indiferent de natura lui, provint un tablem el



- 131 -

Fig. 50. Copolimerul C-DMD-2 P



Fig. 51. Copolimerul C-DyB-2 Y

izocromatelor foarte apropiat sau identic cu PMM (Fig. 36). Apove Insă chiar la această concentrație de 2% fenomenul de deformare sub tensiune, ceea ce se observă în măsură mai mică cau delec lo copolimerii obținuți prin varianta I. Aceasta deformare este vizibil accentuată la copolimerii care au în puntea de reticulare . spactară ester aromatică sau aromatică (C-DMD-2 F - fig. 30, C-D/B- 2 F - fig. 51), cît și mai ales la cei care au structură alifatic-aromatică în puntea de reticulare (C-DMHDEG-2 P - fig. 52, C-EMD 22-2 fig. 53, C-DAP-2 P - fig. 54).

Examinînd influența naturii comonomerului la concestrație de 5% și 10% se observă că apare fenomenul de incompatibilitate la concentrație de 5% pentru comonomerii esteri aromatici (DEH și DMD) și hidrocarbură (DVB) din puntea de reticulare. Fontru comonomerii estri aromatic-alifatici (DMHDEG și DMD 22) acest fonomen apere la C = 10%, iar pentru DAP la C = 15%. Copolimerii care conțin meticu-



Fig. 52. Copolimerul C-BHHD2C-2



Hig 53. Copolineral J-DAD 22-3

lantul alifatic (DMLG), precum și popolimenii dinichi cont ponțin grupe arilice laterale (5) rămîn tra sparenți la J = 10.5 și dular

- 133 -

Fig. 54. Copolimerul C-DAP-2 P

mai mare. Acest fenomen de opacizare a plăcilor nu apare deloc la copolimerii obținuți prin varianta I. Prin urmare concentrăția de 10% devine limitativă (v. tabelul 23) în cazul copolimerilor opaci, Din cauza opacității plăcilor, copolimerii nu pot fi strabătuți de lumină polarizată; deci condiția de transparență impusă materialelor plastice utilizate în fotoelasticitate nu este respectată. Copolimeri ca: C-DMH-10 P, C-DMD-10 P din cauza incompațtibilității din sistem nu oferă plăci cu sensibilitate fotoelastică, deși comonomerii DMH și DMD imprimă copolimerilor obținuți prin varianta l cele mai bune proprietăți fotoelastice.

Copolimerii slab opaci se examinează greu în lumină polarizată. Cu toate acestea s-au efectuat determinări și pe acoști copolimeri. De altfel chiar materialele plastice folosite de obicoi în fotoelasticitate au adeseori o slabă opalescență. Acest fapt reprezintă un dezavantaj, uneori inevitabil.

# <u>Tabelul 23</u>. Copolimerii și aspectul calitativ al plăcilor obținute prin varianta II

| Denumirea prescurtată<br>a copolimerilor | Aspect      | Comportare în lumină polarizată                      |
|------------------------------------------|-------------|------------------------------------------------------|
| 1968 <b>-6867</b> - 2662-6852-853        | 2           | 3                                                    |
| C-DMH-2 P                                | transparent | Se poate examina în lumină pola-<br>rizată           |
| C-DMH-5 P                                | slab opac   | Se examinează destul de greu în<br>lumină polarizată |
| C-DMH-10 P                               | opac        | Nu se poate examina în lumină<br>polarizată          |
| C-DMHDEG-2 P                             | transparent | Se poate examina în lumină po-<br>larizată           |
| C-DMHDEG-5 P                             | slab opac   | Se examinează greu în lumină<br>polarizată           |
| C-DMHDEG-10 P                            | slab opac   | Idem                                                 |
| C-DMD-2 P                                | transparent | Se poate examina în lumină po-<br>larizată           |
| C-DMD-5 P                                | slab opac   | Se examinează greu în lumină<br>polarizată           |
| C_DMD- 10 P                              | opac        | Nu se p <b>oate e</b> xamina în lumină<br>polarizată |
| C-DMD 22-2 P                             | transpårent | Se poate examina în lumină po-<br>larizată           |
| C-DMD 22-5 P                             | transparent | Idem                                                 |
| C-DMD 22-10 P                            | slab opac   | Idem                                                 |
| C-DVB-2 P                                | transparent | Idem                                                 |
| C-DVB-5 P                                | slab opac   | Se examinează greu în lumină po-<br>larizată         |
| C-DVB-10 P                               | opac        | Nu se poate examina în lumină<br>polarizată          |
| C-DAP-2 P                                | transparent | Se poate examina în lumină po-<br>larizată           |
| C-DAP- 5 P                               | transparent | Idem                                                 |
| C-DAP-10 P                               | transparent | Idem                                                 |
| C-DAP-15 P                               | alab opac   | Se examinează greu în lumină<br>polarizată           |
| C-DMEG-2 P                               | transparent | Se poate examina în lumină pola-<br>rizată           |
| C-DMEG-5 P                               | transparent | Idem                                                 |

•

- 135 -

Tabelul 23. (continuare)

| 1                  | 2           | 3                                          |
|--------------------|-------------|--------------------------------------------|
| <b>C-DMEG-10</b> P | transparent | Se poate examina în lumină polari-<br>zată |
| C-S-2 P            | transparent | Idem .                                     |
| C-S-5 P            | transparent | Idem                                       |
| C-S-10 P           | transparent | Idem                                       |

8.4.1.2. Concluzii partiale

1. Faptul că s-au efectuat încercări fotoelastice cu copolimeri în care s-a întrodus intenționat PMM - polimer carbocatenar alifatic cu masă moleculară mare - nu schimbă tabloul izocromatelor în comparație cu PMM, la concentrație de 2% comonomer.

2. Copolimerii liniari cu grupe arilice laterale (C-S-P) și reticulați cu reticulant alifatic (C-DMEG-P) cu structură înrudită cu MM rămîn transparenți.

3. Copolimerii reticulați cu comonomeri esteri aromatici (C-DMH-P), C-DMD-P) se pare că au prea puține punți de reticulare (ca proporție) pentru a mări sensibilitatea fotoelastică a lor, dar pre multe pentru a menține copolimerii transparenți - provocînd apariția opacizării plăcilor la 5%, iar la C = 10% devenind opaci nepenetrabli de lumina polarizată.

4. La majoritatea copolimerilor obținuți prin varianta a II-a, apare fenomenul de deformabilitate sub tensiune, care atinge maximul la cei reticulați cu comonomeri cu structură alifatic-aromatică (DMHDEG, DMD 22, DAP).

## 8.4.2. Influența concentrației comonomerului

## 8.4.2.1. Rezultate și discutei

Oreșterea concentrației în compnomer pină le 10,5 și mai mare în copolimerii C-J-P și C-DMEG-E cu dinus inițial - intenționat - de FMM, menține transparența plăcilor. Sabloul inceros Selbor, atît în cazul copolimerilor cu 3 (fig. 55), cît și în cazul copolimerilor cu DMEG (fig. 56), rămîne practic identic, atît la 55, cît și la 10%, cu PMM (fig. 36), precum și cu a copolimerilor 1-3-2 P și C-DMEG-2 P (fig. 47 și fig. 48).



Fig. 55. Copolimeral C-3 F 1



Urmărirea modului cum variază sensibilitaten fotoeiastică cu creșterea concentrației pentru copolimerii reticulați cu compnomeri esteri aromatici (C-DMH-2 P, 5 F, 10 F și C-DMF-2 P, 5 P, 10 F) a fost împiedicată de apariția fonomenului de opucizore a plăcilor (v. tabelul 23).



Fig. 57. Copolimeral C-DMD 22-5 F



Fig. 58. Copolimeral 3-0% 2:-10

Aceeasi situație este provocată și în cazul copolimerilor reticulați cu DVB (C-DVB 2 P, 5 P, 10 P).

Copolimerii reticulați cu esteri aromatiz-adifatici (9-DaHDEG-2 P, 5 P, 10 P si C-DMD 22-2 P, 52, 10 r) de comporte diferit la cele trei concentrații. Sînt redate în fig. 53, 57, 58 tableul izocromatelor copolimerilor C-DMD 22-2 P, C-DMD 22-5 P și, respectiv, C-DMD 22-10 P. După cum se observă din fig. 53, 57, 58 de păstrează simetria apariției izocromatelor, însă așa cum s-a observat și la alți copolimeri obținuți prin aceustă variantă, apare o deformare puternică cu creșterea concentrației do DED 22 din copolimer.

Acest fenomen de deformare sub tensione apure în misuri mai mică le copolimerii C-DAP-2 P, 5 P, 10 P fați de copolimerid C-DMD 22-2 P, 5 P, 10 P la concentrații similare. În plus fenomenul de incompatibilitate a sistemului - evidențiat prin opacizarea plicilor - apare la C = 15% DAP în amestecul de copolimerizare. Tabloul izocromatelor care apar în cazul copolimerilor C-DAP-r este direrit în funcție de concentrație în DAP. Copolimeral d-DAP-r este direcelați tablou al izocromatelor cu cel al copolimeral d-DAP-5 F ere acelați tablou al izocromatelor cu cel al copolimeral C-DAP-5 e obținut în varianta I (fig 59 și fig. 42). Copolimeral C-DAP-6 e are același tablou al izocromatelor cu C-DAP-10 obținat prin vorianta I (v. fig. 46).



Fig. 59. Jopolizoral JunAP-5 P

La concentratie de 15,5 DAP în copolitar (J-Dal-15 P), apar discromate sinstrice și al dochași spect di copolimarilor C-DMH-2 și C-DMD-1 obținați prin varia de I juig. 60 si, respectiv.

- 138 -

fig. 39). Acest fapt ar presubune apariția unui efect fotbelastic îmbunătățit în cazul copoliserilor U-DAP-P - 10. concentrație mai mare. Dar și aceasta devine limitativă pentru că la C = 15/5 DAP apare deja o slabă opalescență. Acest fapt anată că o ereștere a concentrației în DAP a copolimerilor prin variante II ar duce la fenomene asemănătoare de incompatibilitato cu a copolim rilor C-DMI-10 P. C-DMD-10 P și C-DVB- 10 P.



Pig. 60. Copolimorul 0-0AP-15 P

#### 8.4.2.2. Conclusin partiale

 Creșteren concentrației de 5 și, sespectiv, no 1983 la 10% și mai mare în copolimerii sintetizați prin scrimeta a 11-a duce la obținerea unor plăci transparente. Acoști copolimeri păstrează tabloul izocromatelor 2001.

2. Cregteren concentrației de ratioulant ester arbeatie (DMH, DMD) și hidrocarbură (DVB) în copolimerii sintetizuți prin varianta a II-a duce la materiale necorospunzătoare tentru încorpări fotoelastice. Drept excmplu se dau: C-DAM-5 F, 10 F, C-DMD-5 F, 10 F, C-DVB-5 F, 10 F, la care spare fenomenul de opublizare al plăcilor. Copolimeriii transpurente din acceste surie (C-DAH-2 F, asbat-2 F și C-DVB-2 F) arată nucăr selzat le izon mate somete bil en da si deformabilitate sub tensiune mai mare decît copolimerii similari obținuți prin varianta I.

3. Concentrația de 10% reticulant ester aromatic (DMH și DMD) este limitativă în cazul copolimerilor obținuți prin varianta a II-a datorită opacizării puternice, iar pentru copolimerii obținuți prin varianta I datorită apariției tensiunilor interne din sinteză. C-DMH-10 P și C-DMD-10 P nu pot fi examinați în lumină polarizată, pe cînd C-DMH-10 și C-DMD-10 prezintă cea mai bună sensibilitate fotoelastică dintre toți copolimerii sintetizați. Aceasta explică faptul că PMM adăugat în reacția de copolimerizare schimbă structura internă a copolimerilor. Acest fapt nu era previzibil și era necesară demonstrația prin sinteza copolimerilor în varianta a II-a în aceleași condiții ca în varianta I.

# 8.5. <u>Constantele fotoelastice ale copolimerilor MM</u> obținuți prin varianta I și a II-a

Epruvetele și dispozitivul de încerecare pentru determinarea constantei fotoelastice a copolimerilor (respectiv determinarea valorii benzii acestora) sînt descrise în paragraful 8.1.2. și arătate în fig. 31, fig. 32 și fig. 33.

Modul de calcul este indicat în paragraful 8.2. Fiecare valoare a tensiunii maxime care intervine în calculul lui  $\sigma_0$  (valoarea benzii pentru model - epruvetă -) și  $\sigma_0^{\circ}$  (constanta fotoelastică a materialului sau valoarea benzii lui) este media a trei determinări, pentru fiecare tip de copolimer.

# 8.5.1. <u>Regultate și discuții privind constantele fotoe</u>lastice a copolimerilor obținuți prin varianta I

Valorile tensiunii maxime o pentru copolimerii MM cu comonomerii propuși sînt redate în tabelul 24.

- 140 -

| <u>Tabelul</u>                          | 24          | Valorile      | tensiunii        | maxime | (J)           | entru copo    | limerii      | MM obţir       | uți prin vari                      | ianta I                |
|-----------------------------------------|-------------|---------------|------------------|--------|---------------|---------------|--------------|----------------|------------------------------------|------------------------|
| Copolimer                               | Ordin<br>de | ф             | ۲.<br>۲          | R      | M             | <b>6</b> 0    | д            | W              | Tensiunea<br>maximă ( <sup>7</sup> | . Obs.                 |
|                                         | franj       | Jet           |                  |        |               |               |              |                |                                    |                        |
|                                         | ¥           | kg            | kg               | kg     | kg.cm         | CB<br>C       | сн           | сно<br>СШО     | kg/cm <sup>2</sup>                 |                        |
| a x x = = = = = = = = = = = = = = = = = |             |               | 4                | 5      |               |               |              | 6              | 10                                 |                        |
| C-DMH-2                                 | -           | 9,55          | 30,178 1         | .5,09  | 75,45         | 0,42          | 1,51         | 0,16           | 471,56                             |                        |
|                                         | 1,5         | 13,35         | 42,186 2         | 1,1    | 105,5         |               |              |                | 659,36                             |                        |
| c-DMH-5                                 | г           | 10 <b>,</b> 5 | 32 <b>,</b> 66 1 | .6,33  | 81,65         | o <b>,</b> 54 | 1,47         | o,194          | 420,88                             |                        |
|                                         | 2           | 16,6          | 52,46 2          | 26,23  | 131,14        |               |              |                | 675,98                             |                        |
| C-DMH-10                                | Ч           | 4,64          | 14,66            | 7,33   | 36,85         | 0,47          | 1 <b>,</b> 5 | 0,176          | 209,38                             |                        |
|                                         | ຸ           | 8,28          | 26,165 1         | 3,08   | 65,4          |               |              |                | 371 <b>,</b> 59                    |                        |
|                                         | Ś           | 11,14         | 35,2 1           | 17,6   | 88 <b>,</b> o |               |              |                | 500,00                             |                        |
| C-DMHDEG-2                              | Ч           | 7,84          | 24,84 ]          | .2,42  | 62,09         | o,53          | 1,48         | 0 <b>,1</b> 93 | .321 <b>,7</b> x                   | <sup>c</sup> o singură |
| C-DMHDEG-5 X                            | Ч           | 9,55          | 30,18 1          | 15,09  | 75,45         | 0,45          | 1,47         | 0,162          | 465,74                             | izocrom.               |
|                                         | Ч           | 11,45         | 36,18 1          | 18,09  | 90,45         |               |              |                | 558,33                             | as <b>im.c</b> ånsid.  |
| C-DMHDEG-10                             | ٦           | 6,45          | 20,38 ]          | 10,19  | 50,95         | 0,48          | 1,49         | 0,178          | 286,24                             | media                  |
|                                         | 2           | 11,92         | 37,67 1          | 18,34  | 91,7          |               |              |                | 515,17                             |                        |
| C-DMD-2                                 | Ч           | 9,55          | 30,178 1         | 15,09  | 75,45         | o, 56         | 1,53         | 0,218          | 346,1                              |                        |
|                                         | ~           | 16,53         | 52,23 2          | 26,12  | 130,6         |               |              |                | 599 <b>,</b> 08                    |                        |
| C-DMD-5                                 | ٦           | 11,45         | 36,182 1         | 18,1   | 90,5          | 0 <b>°</b> 6  | 1,51         | 0,228          | 396,93                             |                        |
| C-DMD-10                                | Ч           | 5,02          | 15,86            | 7,93   | 39,65         | 0 <b>,4</b> 9 | 1,41         | 0,162          | 244,75                             |                        |
|                                         | 2           | 8,12          | 25,66 1          | 12,83  | 64,15         |               |              |                | . 66*368                           |                        |

|                       |     |                |                |       |                |               |               |       |        | -                           |
|-----------------------|-----|----------------|----------------|-------|----------------|---------------|---------------|-------|--------|-----------------------------|
| 1                     | 2   | £              | 4              | ΓC.   | 9              | 7             | <b>80</b>     | 6     | lo     | 11                          |
| <b>C-DMD</b> 22-2     | н   | 8,6            | 27,176         | 13,59 | 67,95          | o,53          | 1,44          | o,183 | 371,31 | *                           |
|                       | 0   | 14 <b>,</b> 63 | 46,23          | 23,12 | 115,6          |               | !             |       | 631,69 |                             |
| C-D:ID22-5            | Ч   | 11,45          | 35,61          | 17,81 | 89,05          | 0,45          | <b>1,4</b> 8  | 0,164 | 542,99 | •                           |
| <b>C-DM</b> D22-10    | Ч   | 7,65           | 24,174         | 12,1  | 60,5           | 0,52          | 1,47          | 0,187 | 323,53 | r                           |
|                       | 2   | 13,99          | 44 <b>,</b> 21 | 22,1  | lļo,5          |               |               | Ŧ     | 590,91 |                             |
| 3-DVB-2               | Ч   | 7,65           | 24,174         | 12,1  | 60 <b>,</b> 5  | 0 <b>,</b> 52 | 1,44          | 0,18  | 336,11 |                             |
|                       | 2   | 14,948         | 47,24          | 23,62 | 118,1          |               |               |       | 656,11 |                             |
| с-DVB-5 <sup>X</sup>  | г   | 9 <b>°</b> 52  | 30,178         | 15,09 | 75,45          | o, 53         | 1,45          | o,186 | 405,65 | Xizocrom.asi-               |
|                       | 1,5 | 15,284         | 48,3           | 24,15 | 120,75         |               |               |       | 649,19 | metrice                     |
| C-DVB-10 <sup>X</sup> | Ч   | 6,45           | 20,38          | 10,19 | 50 <b>,</b> 95 | 0,33          | 1,52          | 0,127 | 4ol,18 | Xizocrom. <sub>A</sub> sim. |
| C-DAP-2               | Ч   | 9,55           | 30,18          | 15,09 | 75,45          | 0,54          | 1,46          | 0,192 | 392,97 | l eus.                      |
|                       | 2   | 15,885         | 50,2           | 25,1  | 125,5          |               |               |       | 653,65 |                             |
| C-DAP-5 <sup>X</sup>  | ٦   | 16,534         | 52,25          | 26,12 | 130,6          | 0,54          | 1,48          | 0,197 | 662,94 | x izocrom.asim.             |
| C-DAP-lo <sup>x</sup> | Ч   | 9,55           | 30,18          | 15,09 | 75,45          | 0 <b>,</b> 4  | 1,49          | o,148 | 509,8  | x izocrom.asim.             |
| C-DMEG-2              | -1  | 8,6            | 27,176         | 13,59 | 61,95          | 0,42          | 1 <b>,</b> 54 | 0,166 | 409,34 |                             |
|                       | 1,5 | 12,09          | 38,2           | 19,1  | 95,5           |               |               |       | 575,3  |                             |
| C-DWEG-5              | Ч   | 7,96           | 25,15          | 12,58 | 62,93          | o <b>,</b> 39 | 1,49          | 0,144 | 436,67 |                             |
| C-DMEG-10             | Ч   | 8,93           | 28,22          | 14,12 | 70,55          | 0,4           | 1,5           | 0,15  | 470,3  |                             |
|                       | 2   | 16,36          | 51,68          | 25,84 | 129,21         |               |               |       | 861,4  |                             |

BUPT

- 142 -

Tabelal 24(continuare)

| <u>Tabelul</u>       | 24 ( co1           | ntinuare                |                             |                                                                                                          |                 |               |           |         |                            |                |
|----------------------|--------------------|-------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------|-----------------|---------------|-----------|---------|----------------------------|----------------|
|                      | 5                  | 9                       | 4                           | 5                                                                                                        | 9               | 7             | ω         | 6       | 10                         | 11             |
| <b>C-</b> S -2       | ע<br>- ו-          | 10,5                    | 33,18<br>16 23              | 16,59<br>23 11                                                                                           | 82,95<br>116 56 | o <b>,</b> 52 | 1,5       | 0,195   | 425,38<br>502 56           |                |
| C= S =5 <sup>X</sup> | с<br>- н с         | 9,55<br>1,010           | 30,18                       | 15,09                                                                                                    | 75,45           | o <b>,</b> 53 | 1,51      | 0,201   | 375,37                     | Xizocromeasime |
| C- S -10             | 2 H V              | 14,940<br>7,65<br>14.63 | 41, 54<br>24, 174<br>46. 23 | 23,02<br>12,09<br>23,11                                                                                  | 115.55          | o <b>,</b> 48 | 1,49      | , o,178 | 336,61<br>336,61<br>649.16 | B-a Calcemedia |
| PMM etalon           | u<br>              | 7,4                     | 23,38                       | 11,69                                                                                                    | 58,45           | 0,43          | 1,47      | o,155   | 377,1                      |                |
|                      | <b>6</b><br>1<br>2 | 9, 24<br>12,09          | <b>38,</b> 2                | 14 <b>,</b> 0<br>19,1                                                                                    | 95 <b>,</b> 5   |               |           |         | 4/0,9/<br>616,3            |                |
| Obs:Notații:         | e din              | capul t                 | tabelului                   | ве <u></u> <u></u> <u></u><br><u></u> <u></u><br><u></u><br><u></u><br><u></u><br><u></u><br><u></u><br> | esc expli       | cate în 1     | paregrafi | ul 8.2  |                            |                |

BUPT

•

•

Fin tabelul 24 se observă că valorile lui  $\mathcal{T}$  sînt mai mari și comparabile cu PMM folosit etalon. Cu ajutorul valorilor  $\mathcal{T}$ s-au calculat: valoarea benzii pentru model  $\mathcal{T}$  și  $\mathcal{T}$  constanta fotoelastică a materialului. Rezultatele obținute sînt redate în tabelul 25.

In literatură [16, 17, 20] se indică faptul că materialele sensibile și bune pentru studii fotoelastice sînt acele materiale care au constanta fotoelastică mică; de de exemplu pentru rășinile epoxidice se dă  $T_0$ ' cuprinsă între 10 și 25 kg/cm k [20] . Constantele fotoelastice ale copolimerilor din tabelul 25 în cea mai mare parte se află în limitele constantei fotoelastice a PMM. In literatură constanta fotoelastică  $T_0$ ' a PMM variază în limitele 110 și 230 kg/cm k [20]. PMM sinteză proprie are valoarea  $T_0$ ' = 143,21 kg/cm k, mărime ce se încaărează în valorile date în literatură.

Copolimerii liniari care prezintă grupe arilice laterale  $\chi$ în concentrații de 2-10% (C-S-2,C-S-5,C-S-10) au  $\mathcal{T}_0^* = 209,41$  kg/cm k (C = 2%) și 159,41 kg/cm k (C = 10%). Cu creșterea concentrației în stiren, scade  $\mathcal{T}_0^*$  rămînînd întă comparabilă cu a PMM.

In cazul copolimerilor reticulați cu monomer ester alifatic al acidului metacrilic, C-DMEG-2, C-DMEG-5, C-DMEG-10 -  $\sigma_0^{\circ}$ crește cu creșterea concentrației de DMEG din copolimer de la 166,5 kg/cm k (C = 2%) la 180,2 kg/cm k (C = 10%), rămînînd însă în limitele date în literatură pentru PMM.

Urmărind rezultatele din tabelul 25 se observă că cei mai sensibili din punct de vedere fotoelastic, așa cum a reieșit și din paragraful 8.3. sînt copolimerii reticulați, care au în punțile de reticulare structură ester-aromatică (DMH și DMD). Constanta

 $\int o'C-DMH-10 = 88,02 \text{ kg/cm k}$ , iar pentru  $\int o'C-DMD-10 = 108,47 \text{ kg/cm k}$ cm k. Se observä deci că valoarea  $\int o'$  este funcție și de natura restului aromatic din esterul dimetacrilic. In cazul copolimerilor

- 144 -

| Copólimer     | k   | g             | đ               | Valoarea<br>pentru n<br>Go | a benzii<br>nodel<br><sup>Go</sup> mediu | Constanta<br>fotoelastică<br>$G_{c}^{*}$ |
|---------------|-----|---------------|-----------------|----------------------------|------------------------------------------|------------------------------------------|
|               |     | cm            | kg              | kg                         | kg                                       | kg                                       |
|               |     |               | cm <sup>2</sup> | cm <sup>2</sup> .k         | cm <sup>2</sup> .k                       | cm.k                                     |
| 1 <sup></sup> | 2   | 3             | 4               | .5                         | 6                                        | 7                                        |
| C-DMH-2       | 1   | 0,42          | 471,56          | 471,56                     |                                          |                                          |
|               | 1,5 |               | 659,36          | 439,57                     | 455,56                                   | 191,33                                   |
| C=DMH-5       | 1   | 0,54          | 420,88          | 420,88                     |                                          |                                          |
|               | 2   | •             | 675,98          | 337,99                     | 379,44                                   | 204,89                                   |
| C-DMH-lo      | 1   | 0,47          | 209,38          | 209,38                     |                                          |                                          |
|               | 2   |               | 371,56          | 185,8                      |                                          |                                          |
|               | 3   |               | 500,00          | 166,67                     | 187,28                                   | 88,02                                    |
| C-DMHDEG-2    | 1   | o <b>,</b> 53 | 321,7           | 321,7                      | 321,7                                    | 170,7                                    |
| C-DMHDEG-5    | 1   | c,45          | 465,74          |                            |                                          |                                          |
|               | 1   |               | 558 <b>,</b> 33 | 512,03                     | 512,03                                   | 230,42                                   |
| C-DMHDEG-10   | 1   | 0 <b>,</b> 48 | 286,24          | 286,24                     |                                          |                                          |
|               | 2   |               | 515,17          | 25 <b>7,</b> 59            | 27 <b>1,9</b> 1                          | 130,52                                   |
| C-DMD-2       | l   | 0,56          | 346,1           | 346,1                      |                                          |                                          |
|               | 2   |               | 599 <b>,</b> 08 | 299,54                     | 322,82                                   | 130,77                                   |
| C-DMD-5       | l   | 0,6           | <b>39</b> 6,93  | 396,93                     | 396,93                                   | 238,15                                   |
| C-DMD-lo      | l   | 0,49          | 244,75          | 244,75                     |                                          |                                          |
|               | 2   |               | 395,99          | 198,0                      | 221,37                                   | 108,47                                   |
| C-DMD22-2     | 1   | 0,53          | 371,31          | 371,31                     |                                          |                                          |
|               | 2   | ·             | 631,69          | 315,85                     | 343,57                                   | 182,1                                    |
| C-DMD22-5     | 1   | 0,45          | 542,99          | 542,99                     | 542,99                                   | 244,35                                   |
| C-DMD22-10    | 1   | 0,52          | 323,53          | 323,53                     |                                          |                                          |
|               | 2   | •             | 590,91          | 295,46                     | 309 <b>,</b> 49                          | 160,94                                   |
| C-DVB-2       | 1   | 0,52          | 336,11          | 336,11                     |                                          |                                          |
|               | 2   | -             | 656,11          | 328,1                      | 332 <b>,1</b>                            | 172,68                                   |
| Č-DVB-5       | 1   | 0,53          | 405,65          | 405,65                     |                                          |                                          |
|               | 1.5 | • • •         | 649,19          | 432,79                     | 419,22                                   | 222,19                                   |
| C-DVB-10      | 1   | 0,33          | 401,18          | 401,18                     | 4e1,18                                   | 132,39                                   |
|               |     |               | •               |                            | -                                        | -                                        |

| ۴          |                       |            |             |    |
|------------|-----------------------|------------|-------------|----|
| Tabelul 25 | Constantele fotcelast | ice pentru | copolimerii | MM |
|            | obținuți prin variant | aI         |             |    |

| 1          | 2   | 3             | 4      | 5      | 6      | 7             |  |
|------------|-----|---------------|--------|--------|--------|---------------|--|
| C-DAP-2,   | 1   | 0,54          | 392,97 | 392,97 |        |               |  |
|            | 2   |               | 653,65 | 326,83 | 359,9  | 194,35        |  |
| C-DAP-5    | 1   | 0,54          | 662,94 | 662,94 | 662,94 | 357,98        |  |
| C-DAP-lo   | 1   | 0,4           | 509,8  | 509,8  | 509,8  | 203,92        |  |
| C-DMEG-2   | 1   | o <b>,</b> 42 | 409,34 | 409,34 |        |               |  |
|            | 1,5 |               | 575,3  | 383,53 | 396,44 | 166,5         |  |
| C-DMEG-5   | 1   | 0,39          | 436,67 | 436,67 | 436,67 | 170,3         |  |
| C-DMEG-10  | 1   | 0,4           | 470,3  | 470,3  |        |               |  |
|            | 2   |               | 861,4  | 430,7  | 450,5  | 180 <b>,2</b> |  |
| C-S+2      | 1,  | 0,52          | 425,38 | 425,38 |        |               |  |
|            | 1,5 |               | 592,56 | 395,04 | 410,21 | 209,21        |  |
| CS=5       | 1   | o,53          | 375,37 | 375,37 |        |               |  |
|            | 2   |               | 587,57 | 393,78 | 334,58 | 177,33        |  |
| C-S-10     | 1   | 0,48          | 336,61 | 336,61 |        |               |  |
|            | 2   |               | 649,16 | 324,58 | 332,1  | 159,41        |  |
| PMM etalon | l   | 0,43          | 377,1  | 377,1  |        |               |  |
|            | 1,5 |               | 470,97 | 313,98 |        |               |  |
|            | 2   |               | 616,3  | 308,1  | 333,04 | 143,21        |  |

- 146 -

Tabelul 25 (continuare)

1

•

Obs:Notațiile din capul tabelului corespund cu cele folosite în paragraful 8.2

.

reticulați cu monomeri cu structuri alifatic - aromatice legate între ele prin punți eterice,  $\mathcal{F}_0$ ' variază în mod similar la C = 10%. Copolimerul C-DMHDEG-10 are  $\mathcal{F}_0$ ' = 130,52 kg/cm k, iar copolimerul C-DMD 22-10 are  $\mathcal{F}_0$ ' = 160,94 kg/cm k. Valorile constantelor de fotoelasticitate ne indică bine corelația între structura copolimerului, respectiv a reticulantului din copolimer, și efectul fotoelastic observat prin potențarea numărului de izocromate, constatat în paragraful 8.3. Din tabelul 25 se observă că reticulanții care măresc vizibil sensibilitatea copolimerului, respectiv scad valoarea lui  $\mathcal{F}_0$ ', este DMH și mai puțin DMD.

Comonomer ca DAP în structura copolimerilor MM scade efectul fotoelastic, mărind constanta  $\sigma_0^{\circ}$ . De exemplu C-DAP-2 are  $\sigma_0^{\circ} = 194,35 \text{ kg/cm k}$ , C-DAP-5 are  $\sigma_0^{\circ} = 357,98 \text{ kg/cm k}$ , iar C-DAP-10 are  $\sigma_0^{\circ} = 203,92 \text{ kg/cm k}$ . Aceste valori  $\sigma_0^{\circ}$  se găsesc la limita superioară, respectiv peste mărimea  $\sigma_0^{\circ}$  indicată pentru PMM din literatură, depășind mult valoarea  $\sigma_0^{\circ} = 143,21 \text{ kg/cm k}$ pentru PMM sinteză proprie.

Examinînd datele din tabelul 25 se observă o variație interesantă a constantei  $\mathcal{O}_0^*$  care depinde de concentrația comonomerului din copolimer. În casul tuturor copolimerilor care conțin nuclee arilice în structura reticulantului (DMH, DMD, DMHDEG, DMD 22, DAP, DVB) valorile lui  $\mathcal{O}_0^*$  pentru concentrația C = 5% comonomer sînt mai mari decît  $\mathcal{O}_0^*$  pentru copolimeri cu 2% și, respectiv, 10% comonomer. Copolimerii cu 2% comonomer alături de MM au o constantă fotoelastică  $\mathcal{O}_0^*$  ce se încadrează în limitele date în literatură pentru PMM. Acest fapt este bine corelat cu tebloul isocromatelor desoris în paragraful 8.3., care este foarte apropiat sau similar cu cel al PMM (fig. 36). Comonomerii care au prezentat un tablou asimetric cu mai puțin de o izocromată (fig. 41, fig. 42, fig. 46) au o valoare pentru  $\mathcal{O}_0^*$  mai mare decît 200 kg/cm k (v. tabelul 25). Acești copolimeri sînt C-DAP-5, C-DVB-5, C-DAP-10 și alții (v.tab.25).

# 8.5.2. <u>Rezultate și discuții privind constantele foto-</u> elastice a copolimerilor obținuți prin varianta II

In tabelul 26 sînt date valorile tensiunii maxime (~ pentru copolimerii MM obținuți în varianta a II-a

Valorile constantelor fotoelastice  $\sigma_{o}$  pentru copolimerii MM obținuți în varianta a II-a sînt redate în tabelul 27.

Examinînd valorile tensiunii maxime o din tabelul 26 se observă că sînt de asemenea mari și depășesc în unele cazuri tensiunile maxime a copolimerilor MM obținuți prin varianta I.

Valorile. O<sub>0</sub>' redate în tabelul 27 prezintă variații asemănătoare cu cele pentru copolimerii din tabelul 25 (varianta I).

Copolimerii liniari cu grupe arilice laterale (C-S-P) prezintă o scădere a valorii constantei fotoelastice  $G_0'$  de la  $G_0' = 181,99$  kg/cm k pentru C = 2% stiren la  $G_0' = 144,78$  kg/cm k pentru C= 10% stiren. Această variație este similară cu a copolimerilor C\_S (tabelul 25) și rămîne în limitele valorilor  $G_0'$  indicate de literatură pentru PMM.

Copolimerii reticulați cu monomer ester alifatic - DMEG prezintă o creștere a constantei  $\sigma_0^{\circ}$  de la  $\sigma_0^{\circ} = 162,76$  kg/cm k (C-DMEG-2 P) la  $\sigma_0^{\circ} = 179,66$  kg/cm k (C-DMEG-10 P), valori foarte apropiate de a copolimerilor C-DMEG (tabelul 25), încadrîndu-se în limitele date pentru PMM [20].

Dátorită apariției fenomenului de incompatibilitate – evident prin opacizarea plăcilor în cazul copolimerilor MM obținuți prin varianta a II-a, constantele de fotoelasticitate nu au putut fi determinate pentru toți copolimerii. Acest fenomen a apărut mai pronunțat la C-DMH-P, C-DMD-P și C-DVB-P, la concentrații de 10%, fiind nepenetrabili de lumina polarizată. Totuși pentru copolimerii slab opaci s-au efectuat determinări pentru  $G_0$ ' și astfel se pot obține unele informații asupra comportării lor. Rezultate similare cu cele

BUPT

| Copolimer                             | Ordin  | ዋ             | Р.            | R            | M              | ы             | ч    | M                                                                  | Tensiunea                    | Qbs.           |
|---------------------------------------|--------|---------------|---------------|--------------|----------------|---------------|------|--------------------------------------------------------------------|------------------------------|----------------|
|                                       | de     |               |               |              |                |               |      |                                                                    | maximë G                     |                |
|                                       | franjă |               |               |              |                |               |      | ÷                                                                  |                              |                |
|                                       | ĸ      | kg            | kg            | kg           | kg.cm          | CH            | CB   | с<br>Шо                                                            | kg/cm <sup>2</sup>           |                |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        |               | 4             | ап<br>5<br>1 |                | 7             |      | u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u<br>u |                              |                |
| -DMH-2P                               | Ч      | 9,55          | 30,178        | 15,089       | 75,445         | 0,44          | 1,45 | 0,154                                                              | 489,9                        |                |
|                                       | 2      | 15,426        | 48,74         | 24,37        | 121,86         |               |      |                                                                    | 791,31                       |                |
| -DMH-5Р <sup>х</sup>                  | Ч      | 15,895        | 50,23         | 25,11        | 125,55         | 0,45          | 1,48 | 0,164                                                              | 765,55                       | xizocrom.asim. |
| -DMH-loP                              | 0 P A  | U             |               |              |                |               |      |                                                                    |                              |                |
| -DMHDEG-2P                            | Ч      | 9,55          | 30,178        | 15,089       | 75,445         | 0,4           | 1,47 | 0,144                                                              | 523,96                       |                |
|                                       | 2      | 13,989        | <b>40,</b> 21 | 22,1         | 110,5          |               |      |                                                                    | 767,36                       |                |
| -DMHDEG-5P                            | 1      | 12,4          | 39,184        | 19,59        | 97,95          | 0,43          | 1,47 | 0,155                                                              | 631,94 <sup>x</sup>          | izocrom. asim. |
| -DWINEC-10F                           | Ч      | 11,45         | 36,182        | 18,09        | 45,225         | 0 <b>,</b> 39 | 1,48 | 0,142                                                              | 318,49                       |                |
| -DMD2P                                | Ч      | 10 <b>,</b> 5 | 33,18         | 16,59        | 82,95          | 0,42          | 1,5  | 0,158                                                              | 525                          |                |
|                                       | \$     | 14,946        | 47,23         | 23,61        | 118,05         |               |      |                                                                    | 747,15                       |                |
| -DMD-5PX                              | 1 5    | 13,35         | 42,186        | 21,1         | 105 <b>,5</b>  | 0,41          | 1,5  | 0,154                                                              | 685 <b>,</b> 06 <sup>2</sup> | tizocromeasime |
| -DMD-10P                              | 0 P A  | υ             |               |              |                |               |      |                                                                    |                              |                |
| -DMD22-2F                             | Ч      | B <b>,</b> 6  | 27,176        | 13,588       | 67,94          | 0,41          | 1,48 | 0,15                                                               | 452,93                       |                |
|                                       | 2      | 13,35         | 42,186        | 21,1         | 105,5          |               |      |                                                                    | 703,33                       |                |
| -DMD22-5P                             | Ч      | 13,833        | 43,71         | 21,86        | 109,28         | 0,42          | 1,5  | o,158                                                              | 691,95                       |                |
| -DWD22-loP                            | -1     | 7,65          | 24,174        | 12,09        | 60,45          | o <b>,</b> 43 | 1,46 | 0,153                                                              | 395,1                        |                |
|                                       | 2      | 13,35         | 42,186        | 21,1         | 105 <b>,</b> 5 |               |      |                                                                    | 680,54                       | •              |

BUPT

\_ 149 -

|                       |            |               | •                |                |                | •             |               |                |                      |                                          |   |
|-----------------------|------------|---------------|------------------|----------------|----------------|---------------|---------------|----------------|----------------------|------------------------------------------|---|
| 1                     | 2          | 3             | 4                | ſſ             | 9              | 7             | <b>60</b> -   | 6              | lo                   | 11                                       |   |
| G=DVB=2P              |            | 9,55          | 30,178           | 15,089         | 75,445         | 0,37          | 1;56          | 0,15           | 502,97               |                                          |   |
| •                     | 2          | 14,307        | 45,21            | 22,61          | 113,05         |               |               |                | 753,67               |                                          |   |
| c-dvb-5p <sup>x</sup> | Ч          | 10,5          | 33,18            | 16 <b>,</b> 59 | 82,95          | 0 <b>,</b> 41 | 1,45          | o,144          | 576,04               | X<br>izu <b>crom.asim.</b>               |   |
|                       | 2          | 15,266        | 48,24            | 24,12          | 120,6          |               |               |                | 837,5                |                                          |   |
|                       | 2 <b>°</b> | 5 17,163      | 54,24            | 21,12          | 135,6          |               |               | •              | 941 <b>,</b> 67      |                                          |   |
| C-DVB-loP             | 0          | P A C         |                  |                |                |               |               |                |                      |                                          |   |
| 0-DAP-2P              | Ч          | 8 <b>,</b> 35 | 26,386           | 13,19          | 65 <b>°</b> 35 | 0,4           | 1,48          | 0 <b>,</b> 146 | 451,76               |                                          |   |
|                       | 0          | 12,24         | , 38 <b>,</b> 69 | 19 <b>,</b> 35 | 96,73          |               |               |                | 665,55               |                                          |   |
| C-DAP-5P <sup>X</sup> | Ч          | j 11,45       | 36,182           | 18,1           | 9¢ • 5         | 0,42          | <b>1,44</b>   | 0,145          | 624,14               | x<br>izocrom <sub>e</sub> g <b>sim</b> . |   |
| C-DAP-loP             | M          | 12,72         | 40,2             | 20,1           | 100 <b>,</b> 5 | o,45          | 1 <b>,</b> 53 | 0,176          | 570,95               |                                          | - |
| C-DAP-15P             | Ч          | 6,45          | 20,38            | 10,19          | 50 <b>,</b> 95 | 0,45          | 1,53          | 0,176          | 289,49               |                                          |   |
|                       | 3          | 13,35         | 42,186           | 21,1           | 105 <b>,</b> 5 |               |               |                | 599,43               |                                          | _ |
| C-DMEG-2P             | Ч          | 8,6           | 27,176           | 13,59          | 67,95          | 0,46          | 1,51          | 0,175          | ,<br>388 <b>,</b> 29 |                                          |   |
|                       | N          | 14,149        | 47,71            | 22,36          | 111,78         |               |               |                | 638,73               |                                          |   |
| C-DARG-5P             | Ч          | 8,35          | 26,386           | 13,19          | 65 <b>°</b> 95 | 0 <b>,</b> 45 | 1,47          | 0,162          | 407,1                |                                          |   |
|                       | 0          | 14,149        | 44,71            | 22,36          | 111,78         |               |               |                | 689,98               |                                          |   |
| C-DIEG-10P            | Ч          | 8,35          | 26,386           | 13,19          | 65 <b>,</b> 95 | o,42          | 1,45          | 0,147          | 448,64               |                                          |   |
|                       | 2          | 14,798        | 46,73            | 23,37          | 116,83         |               |               |                | 794,73               |                                          |   |

<u>Tabelul'26</u> (continuare)

٠

BUPT

•

| T            | 2      | m           | 4         | 5       | 9              | 7             | 8            | 6          | 10             | לק |
|--------------|--------|-------------|-----------|---------|----------------|---------------|--------------|------------|----------------|----|
| 0-S-2P       | Ч      | 9,55        | 30,178    | 15,09   | 75,45          | o,46          | 1,47         | o,166      | 454,49         |    |
|              | 0      | 14,15       | 44,72     | 22,36   | 111 <b>,</b> 8 |               |              |            | 673,52         |    |
| C-S-5P       | ч      | 8 <b>,6</b> | 27,176    | 13,59   | 67,95          | 0,44          | 1 <b>,</b> 5 | 0,165      | 411,82         | •  |
|              | N      | 14,4        | 45,21     | 22,6    | 113,03         |               |              |            | 685,05         |    |
| G-S-loP      | Ч      | 8,125       | 25,675    | 12,84   | 64,19          | 0 <b>,</b> 43 | 1,58         | 0,179      | 358,59         |    |
|              | 0      | 14,266      | 45,08     | 22,54   | 112,7          |               |              |            | 629,62         |    |
| PMM etalon   | Ч      | 7,4         | 23,38     | 11,69   | 58,45          | o <b>,</b> 43 | 1,47         | 0,155      | 377,1          |    |
|              | 1,5    | 9,24        | 29,2      | 14,6    | 73             |               |              |            | 470,97         |    |
|              | 2      | 12,09       | 38,2      | 19,1    | 95,5           |               |              |            | 616 <b>,</b> 3 |    |
| Obs: Notatii | le din | capul.      | tabeluluf | COLEBDU | nd cu cel      | e folosi      | te în pa     | ragraful ( | 3.2 .          |    |
|              |        |             |           |         |                |               |              |            |                |    |

<u>Tabelul 26</u>(continuare)

151 -----

۹

•

| Copolimer    | k   | g     | 6                 | Valoare             | a benzii                     | Constanta          |
|--------------|-----|-------|-------------------|---------------------|------------------------------|--------------------|
|              |     |       |                   | pentru i<br>To      | nodel<br><sup>Co</sup> mediu | fotoelastică<br>Ge |
|              |     | cm    | kg                | kg                  | kg                           | kg                 |
|              |     |       | cm <sup>2</sup>   | cm <sup>2</sup> .k  | cm <sup>2</sup> .k           | cm.k               |
| 1            | 2   | 3     | 4                 | 5                   | 6                            | 7                  |
| C-DMH-2P     | 1   | o,42  | 489,9             | 489,9               |                              |                    |
|              | 2   |       | 791,31            | 395,65              | 442,78                       | 194,82             |
| DMH-5P       | 1   | 0,45  | 765,55            | 765,55              | 765,55                       | 344,5              |
| -DMH-loP     | 0 P | A C   |                   |                     |                              |                    |
| C-DMHDEG-2P  | 1   | 0,4   | 523,96            | 523 <b>,96</b>      |                              |                    |
|              | 2   |       | 767,36            | 383,68              | 453,82                       | 181,53             |
| C-DMHDEG-5P  | 1   | 0,43  | 631,94            | 631,94              | 631,94                       | 271,73             |
| C-DMHDEG-10P | 1   | 0,39  | 318,49            | 318,49              | 318,49                       | 124,21             |
| C-DMD-2P     | l   | 0,42  | 52 <b>5</b>       | <b>5</b> 2 <b>5</b> |                              |                    |
|              | 2   |       | 747,15            | <b>373,</b> 58      | 449,29                       | 188,7              |
| C-DMD-5P     | l   | 0,41  | 685,06            | 685,06              | 685,06                       | 280,97             |
| C-DMD-loP    | OP  | AC    | - 1               |                     |                              |                    |
| C⇔DMD222P    | 1   | o,41  | 452,93            | 452,93              |                              |                    |
|              | 2   |       | 703,33            | 351,67              | 402,80                       | 165,15             |
| C-DMD22-5P   | 1   | 0,42  | 691,65            | 691,65              | <b>691,</b> 65               | 290,5              |
| C-DMD22-loP  | 1   | 0,43  | 395,1             | 395,1               |                              |                    |
|              | 2   |       | 680,54            | 344,77              | 369,77                       | 159,1              |
| C-DVB-2P     | 1   | 0,37  | 502,97            | 502 <b>,97</b>      |                              | ,                  |
|              | 2   |       | · 753 <b>,</b> 67 | 376,84              | 439,9                        | 162,76             |
| C-DVB-5P     | 1   | 0,41  | 576,04            | 576,04              |                              |                    |
| -            | 2   |       | 837,5             | 418,75              |                              |                    |
|              | 2,5 | 5     | 941,67            | 375,67              | 456,32                       | 187,3              |
| C-DVB-loP    | 0 1 | P A C |                   |                     |                              |                    |
| C-DAP-2P     | l   | 0,4   | 451,71            | 451 <b>,71</b>      |                              |                    |
|              | 2   |       | 662,55            | 331,28              | 391,5                        | 156,6              |
| C-DAP-5P     | 1   | 0,42  | 624,14            | 624,14              | 624,14                       | 262,14             |
| C-DAP-10P    | 1   | 0,45  | 570,95            | 570 <b>,</b> 95     | 570,95                       | 256,93             |

.

Tabelul 27 Valorile constantelor fotoelastice a copolimerilor MM -varianta II

1 2 3 4 5 6 7 C-DAP-15P 1 0,45 289,49 289,49 • 2 599,43 299,72 294,6 132,57 76 22 66 99 96 C-S-loP 0,43 358,59 358,59 1 629,62 314,81 2 336,7 144,78 PMM etalon 143,21

Obs:Notațiile din capul tabelului corespund cu cele folosite în paragraful 8.2

| Tabelul 27 (continuare) | 7 (continuare) |
|-------------------------|----------------|
|-------------------------|----------------|

- 153 -

indicate de tabloul izocromatelor pentru acești copolimeri (v. paragraful 8.4.).

Copolimerii care au în puntea de reticulare structuri ester aromatic, aromatic și aromatic - alifatic prezintă la C = 5% o creștere a valorii  $\mathcal{O}_0^{\circ}$  față de  $\mathcal{O}_0^{\circ}$  la C = 2% și 10% (pentru cazurile cînd s-a putut determina). Astfel se comportă copolimerii C-DMHDEG-5 P,  $\mathcal{O}_0^{\circ} = 27173$  kg/cm k; C-DMD 22-5 P,  $\mathcal{O}_0^{\circ} = 290,5$  kg/cm k; C-DAP-5 P,  $\mathcal{O}_0^{\circ} = 262,14$  kg/cm k; valori ce depășesc mult constanta fotoelastică a PMM atît sinteză proprie, cît și pentru cele date în literatură.

Acest fapt este redat și de tabloul izocromatelor pentru acești copolimeri (v. paragraful 8.4.). Pentru copolimerii opaci C-DMH-10 P, C-DMD-10 P, C-DVB-10 P nu s-a determinat  $\mathcal{T}_0^{\circ}$  la C = 10%. Se observă însă că la 5% monomer ester aromatic (DMH, DMD) sau monomer aromatic (DVB) valoarea lui  $\mathcal{T}_0^{\circ}$  este mai mare decît la C = 2%. Acești copolimeri sînt C-DMH-5 P cu  $\mathcal{T}_0^{\circ}$  = 344,5 kg/cm k; C-DMD-5 P cu  $\mathcal{T}_0^{\circ}$  = 280,87 kg/cm k; C-DVB-5 P cu  $\mathcal{T}_0^{\circ}$  = 187,3 kg/cm k și au valori foarte mari pentru  $\mathcal{T}_0^{\circ}$  care depășesc sau se situează foarte aproape de limita superioară  $\mathcal{T}_0^{\circ}$  dată pentru PMM.

Copolimerii C-DAP-P prezintă comportare similară la C = 5% cu cei cu structură ester aromatic (C-DMH-5P; C-DMD-5P) avînd pentru C-DAP-5P,  $\sigma_0^{\circ}$  262,14 kg/cm k valoare maximă înseria copolimerilor cu DAP. La C = 10% DAP și 15% DAP în copolimer valoarea lui  $\sigma_0^{\circ}$ scade de la  $\sigma_0^{\circ}$ = 256,93 kg/cm k (C = 10%) la  $\sigma_0^{\circ}$  = 132,54 kg/cm k (C = 15%). Acest fapt este în concordanță cu cele constatate în paragraful 8.4., unde se observă că la 15% DAP în copolimer apare o potențare a numărului de izocromate (fig. 60). S-a apreciat că o creștere a concentrației în DAP nu este posibilă datorită apariției fenomenului de opacizare a plăcilor.

# 8.5.3. Concluzii partiale

1. Constantele de fotoelasticitate T<sub>0</sub>' - a copolimerilor MM sintetizați rămîn mari, apropiate cu cele a PMM, fapt ce nu era de prevăzut înaintea efectuării acestui studiu.

- 155 -

2. Constantele de fotoelasticitate –  $G_0'$  – a copolimerilor sintetizați în varianta I și a II-a concordă cu comportarea lor în lumină polarizată. Aceasta se manifestă prin faptul că la constante fotoelastice mici apare o potențare a numărului de izocromate; prin urmare crește sensibilitatea fotoelastică a polimerului. La constante –  $G_0'$  – mari sensibilitatea fotoelastică este mai mică (numărul de izocromate este mai mic).

3. Copolimerii liniari care conțin -S- în proporție pînă la 10% au o valoare - 0<sup>°</sup>, - care se mențime comparativă cu a PMM. Valorile

To' scad cu creșterea concentrației de stiren, atît la copolimerii variantei I, cît și la cei obținuți prin varianta a II-a.

4. Reticulantul - DMEG- care întroduce în copolimeri rețele ester alifatice, mărește constanta -  $G_0^{-1}$  - cu creșterea concentrației de la 2 la 10%, atît pentru copolimerii obținuți prin varianta I, cît și pentru cei obținuți prin varianta a II-a, rămînînd în limitele date pentru PMM.

5. Reticulanți ester - aromatici - DMH, DMD - provoacă o creștere a sensibilității fotoelastice a copolimerilor obținuți prin varianta I (exemplu: C-DMH-10 și C-DMD-10). Constantele  $\sigma_0^{\circ}$  a copolimerului C-DMH-10 < C-DMD-10. Prin urmare DMH în proporșie de 10% pentru copolimeri C-DMH are  $\sigma_0^{\circ} = 88,02$  kg/cm k; iar DMD în concentrație de 10% oferă copolimerului C-DMD o valoare  $\sigma_0^{\circ} = 108,47$  kg/cm k . Aceste valori sînt sub limita celor date în literatură pentru PMM, precum și : 10 limitele PMM sinteză proprie.

6. Se observă un maxim pentru ( 1 la C = 5% reticulant: esteri

aromatici (DMH, DMD), aromatic (DVB), esteri aromatic - alifatici (DMHDEG, DMD 22, DAP), atît la copolimerii obținuți prin varianta I, cît și la cei obținuți prin varianta a II-a.

- 156 - '

7. Din rezultatele obținute se observă că aceste concentrații mici, de 2, 5, 10%, nu pot aduce schimbări prea mari a proprietăților foor a tice. Dar este cert că atunci cînd în structura unui polimer carbocatenar alifatic sînt întroduse structuri ce conțin nuclee aromatice legate diferit în comonomer, se produc schimbări în comportarea fotoelastică a polimerului. Acest drum de modificare a polimerilor ne poate duce la construcția unor modele, respectiv - structuri - de polimer cu proprietăți fotoelastice dorite.

# 8.6. <u>Observații privind tensionarea plăcilor în sintează</u> și la prelucrare, comportarea sub tensiune și efectul de margine a copolimerilor MM obținuți prin varianta <u>I și a II-a</u>

In paragrafele 7.1.4.,8.3.și 8.4.s-au făcut unele considerații privind obținerea plăcilor din sinteză, netensionate. Această condiție - impusă - a fost o problemă. Ea a trebuit să se rezolve prin numeroase înceroări de sinteză. S-a stabilit optimul de temperatură, timp, inițiatori și, mai ales, hotărîtoare a fost stabilirea concentrației optime de comonomer alături de MM în amestecul de copolimerizare, precum și copolimerizarea lor în formă finală de plăci. In urma încercărilor de sinteză efectuate s-a hotărît sinteza copolimerilor prin varianta I și a II-a. S-a stabilit concentrația maximă de comonomer de 10% pentru copolimerii variantei I, drept limitativă, datorită apariției tensiunilor și bulelor în plăci.Pentru copolimerii obținuți prin varianta a II-a doncentrația limitativă a fost în jur de 10% (excepție DAP care s-a copolimerizat și la C =15%), datorită apariției fenomenului de opacizare a plăcilor aproape pentru

cît și la cei obținuți prin varianta a II-a. , Din rezultatele obținute se observă că aceste concentrații mici, 2, 5, 10%, nu pot aduce schimbări prea mari a proprietăților fotoți comonomerii propuși (excepție face S și DMEG care dau copolimeri trans<sub>r</sub>arenți și la concentrație mai mare de 10%).

Toți copolimerii sintetizați în prezenta lucrare se comportă la prelucrare mecanică foarte bine - tăiere, strujire, pilire. Examinați după prelucrare mecanică în lumină polarizată nu se observă a fi tensionați. Prin urmare este evitată faza de detensionare, atît a plăcilor obținute din sinteză, cît și a epruvetelor confecționate din ele. Procesul de detensionare - aplicat printr-un tratament termic bine stabilit - se aplică întotdeauna rășinilor epozidice și mai ales rășinilor fenol-formaldehice utilizate pentru studii fotoelastire.

Copolimerii sintetizați nu prezintă efect de margine, chiar la ședere îndelungată.

La copolimerii obținuți prin varianta a II-a se observă o deformare sub tensiune mai mare decît în cazul PMN. Deformarea sub tensiune se datorează curgerii mecanice (deformația crește în timp sub tensiune constantă și nu revine imediat după încetarea solicitării). Curgerea mecanică se observă prin curgerea optică (variația ordinului de izocromate în timp la o solicitare exterioară constantă) a materialului plastic. Problemele de deformare amintite în acest capitol nu au fost examinate cantitativ și sistematic pentru toți copolimerii. Aceste aspecte au fost observate doar calitativ îm timpul determinărilor cantitative pe copolimeri. Deformațiile copolimerilor devin determinări obligatorii cînd se omologhează materialele pentru studii fotoelastice industriale.

Copolimerii aceștia pot fi toți utilizați în studii fotoelastice pentru determinare de izocline, pentru care PMM este materialul de basă. Pentru determinarea izoclinelor nu este necesară o sensibilitate optică înaltă a polimerului, și se impune absența absolută a unor tensiuni interne inițiale. Copolimerii sintetizați în prezenta lucrare nu prezintă astfel de tensiuni.

BUPT

- 157 -

# 9. DETERMINAREA UNOR PROPRIETATI OPTICE, TERMICE, TERMOMECANICE SI MECANICE ALE COPOLIMERILOR OB-TINUTI PRIN VARIANTA I SI A II-A

Materialele destinate încercărilor fotoelastice sînt condiționate și de un număr de alte proprietăți fizice și fizico-mecanice. Ansamblul acestor proprietăți determină în final posibilitățile de utilizare.

Copolimerii obținuți în prezenta lucrare au fost, de aceea, caracterizați prin cîteva determinări suplimentare, după cum urmează:

- unele proprietăți optice;
- unele proprietăți termice și termomecanice
- și unele proprietăți mecanice.

## 9.1. <u>Considerații asupra unor proprietăți optice ale</u> copolimerilor

S-au determinat următoarele caracteristici optice și anume: indicii de refracție, transmisia (respectiv absorbția) luminii în domeniul UV - VIS și transmisia globală a luminii albe în comparație cu PMM.

#### 9.1.1. Determinări privind transmisia luminii

In preocuparea de a caracteriza polimerii transparenți (sau slab opaci) s-au determinat numeroase caracteristici optice [220, 223, 225, 226, 228, 229, 232] între care și transmisia spectrală a luminii [219, 221, 222, 225-229, 231].

BUPT

Se știe că PMM obținut în diferite variante are proprietăți diferite în ce privește transmisia luminii [225, 233] . Pentru seria de copolimeri ai MM obținuți în prezenta lucrare transmisia luminii oferă unele indicații asupra comportării lor în domeniul UV - VIS și în lumină albă.

#### 9.1.1.1. Aparatură, materiale, metode

Determinarea transmisiei în domeniul UV - VIS de 35.10<sup>3</sup> pînă la 20.10<sup>3</sup> cm<sup>-1</sup> s-a efectuat cu un Specord UV - VIS (Karl Zeiss Jena).

Probele de copolimeri (obținuți prin varianta I și a II-a) au fost tăiate cu dimensiunile 25 x 13 x s mm (unde s este grosimea probei, care a oscilat între 4 - 5 mm).

S-au trasat spectrele de absorbție ale copolimerilor în comparație cu PMM.

S-a determinat transmisia (%) și absorbția la două lungimi de undă în UV ( $\Lambda = 322,6$  nm;  $\gamma = 29\ 000$  cm<sup>-1</sup> și  $\Lambda = 345$ nm;  $\gamma = 31\ 000$  cm<sup>-1</sup>) cu spectrofotometrul VSU - 2P.

# 9.1.1.2. <u>Rezultate și discuții pentru copolimerii</u> <u>obținuți prin varianta I</u>

In fig. 61, 62 și 63 sînt redate spectrele de absorbție ale copolimerilor.

Din fig. 61 - 63 se observă o variație a absorbției copolimerilor în funcție de natura și concentrația comonomerului. Absorbția est mai mare la lungimi de undă mai mari și scade cu scăderea lungimii de undă.

Examinînd absorbția la  $\lambda = 322,6$  nm, respectiv la  $\lambda = 345$  nm (alese ca 2 lungimi de undă mai semnificative pentru domeniul UV al copolimerilor noștri) și raportînd la grosime unitară, se observă variații ale absorbției, funcție de matura și concentra-

ția comonomerului (tabelul 28). Aceste date au doar valoare relativă.



Fig. 61. Spectrele de absorbție pentru copolimerii C-DMH-2, 5, 10 și C-DMHDEG-2, 5, 10



Fig. 62. Spectrele de absorbție pentru copolimerii C-DMD 2: C-DMD 22-2, 5, 10 și C-DVB-2,5,10

Recalcularea absorbției și transmisiei funcție de grosimea probei de PMM (4,2 mm) a dus la evaluarea cantitativă a absorbției și transmisiei (în %). Valorile absorbției (A) și transmisiei (T în %) citite la cele 2 lungimi de undă ( $\lambda = 322,6$  nm și  $\lambda = 345$  nm) cu spectrofotometrul VSU-2P și recalculate față de grosimea probei de PMM sînt redate în tabelul 29 și 30. (Notațiile A' și T' reprezintă absorbția, respectiv transmisia aduse la grosime unitară). Din tabelul



- 161 -

Fig. 63. Spectrele de absorbție pentru copolimerii C-DAP.2,5,10 și C-S-2,5,10

29 și 30 se observă că transmis île conolimerilor la concentrație mică de comonomer (2%) sînt relativ me î. Vile île transmisiil r scad cu creșterea concentrației de comonomer la toți copolimerii studiați în afară de copolimerii C-S, unde transmisia crește cu creșterea concentrației de S. Există în cazul copolimerilor C-DMD 22 scăderi ale transmisiei anormal de mari, deși plăcile sînt clare și fără incluziuni. Transmisia mai mică pentru acești copolimeri este probabil datorită prezenței în copolimer a inhibitorului adus cu comonomerul DMD 22 - motiv pentru care polimerul are o tentă gălbuie, dar rămînînd clar - transparent.

> <u>Tabelul 28</u>. Absorbțiile citite din spectre pentru  $\lambda =$ = 322,6 nm și  $\lambda =$  345 nm în comparație cu PMM

|                 | Grosimea        | $\lambda = 322,6$ mm |          | $\lambda = 345 \text{ nm}$ |        |  |
|-----------------|-----------------|----------------------|----------|----------------------------|--------|--|
| Copolimer       | probei<br>în mm | A                    | <u>A</u> | A                          | A<br>d |  |
| ]               | 2               | 3                    | 4        | <u> </u>                   | 6      |  |
| C-DMH-2         | 3,8             | 0,095                | 0,025    | 0,03                       | 0,0079 |  |
| C-DMH-5         | 5               | 0,34                 | 0,0680   | 0,21                       | 0,042  |  |
| <b>C-DMH-10</b> | 5,5             | 0,39                 | 0,0709   | 0,25                       | 0,0455 |  |

BUPT

| Tabelul 28. (continuare | 28. (continuare | abelul 28. |
|-------------------------|-----------------|------------|
|-------------------------|-----------------|------------|

| 1           | 2   | 3     | 4                 | 5     | 6      |  |
|-------------|-----|-------|-------------------|-------|--------|--|
| C-DMHDEG-2  | 4,5 | 0,14  | 0,0311            | 0,075 | 0,0167 |  |
| C-DMHDEG-5  | 4,9 | 0,46  | 0,0939            | 0,225 | 0,0459 |  |
| C-DMHDEG-10 | 4,7 | 0,5   | 0,1064            | 0,23  | 0,0489 |  |
| C-DMD-2     | 4,5 | 0,5   | 0,1111            | 0,24  | 0,0533 |  |
| C-DMD 22-2  | 4,8 | 0,095 | 0,0198            | 0,02  | 0,0042 |  |
| C-DMD 22-5  | 4,3 | >1,4  | > 0,32 <u>5</u> 6 | 0,79  | 0,1837 |  |
| C-DMD-22-10 | 4,9 | 71,4  | > 0,2857          | 2,17  | 0,2388 |  |
| •           |     |       |                   |       |        |  |
| C-DVB-2     | 4,9 | 0,33  | 0,0673            | 0,07  | 0,0143 |  |
| Ċ_DVB_5     | 3,2 | 0,95  | 0,2969            | 0,15  | 0,0469 |  |
| C-DVB-10    | 5,2 | 0,85  | 0,1634            | 0,15  | 0,0288 |  |
| C-DAP-2     | 5,1 | 0,19  | 0,0373            | 0,07  | 0,0137 |  |
| C-DAP-5     | 5.3 | 0,18  | 0,0339            | 0,07  | 0,0132 |  |
| C-DAP-10    | 5,2 | 0,19  | 0,03654           | 0,05  | 0,0096 |  |
| C-S-2       | 5.4 | 0.14  | 0.0259            | 0.07  | 0.0130 |  |
| C-S-5       | 4.5 | 0.77  | 0,1711            | 0.4   | 0.0889 |  |
| C-S-10      | 4,7 | 0,16  | 0,0340            | 0,07  | 0,0149 |  |

# Tabelul 29.Absorbția și transmisia pentru copolimeriivariantei I la $\lambda = 322,6$ nm calculate fa-ță de PMM cu grosimea = 4,2 mm

| Copolimer   | Grosimea<br>probei<br>mm | <b>A</b> | T%   | A.       | T • <b>\$</b>     |
|-------------|--------------------------|----------|------|----------|-------------------|
| 1           | 2                        | 3        | 4    | <u>5</u> | 6                 |
| C-DMH-2     | 3,8                      | 0,113    | 77,1 | 0,06953  | 8 <b>5,20</b> 266 |
| C_DMH-5     | 5                        | 0,321    | 47,8 | 0,39672  | 40,10586          |
| C-DMH-10    | 5,5                      | 0,345    | 45,2 | 0,46211  | 34,49875          |
| C-DMHDBG-2  | 4,5                      | 0,158    | 69,5 | 0,18796  | 64,86388          |
| C-DMHDEG-5  | 4,9                      | 0, 392   | 40,5 | 0,45895  | 34,75126          |
| C-DMHDEG-10 | 4,7                      | 0,475    | 33,5 | 0,52385  | 29,92658          |
| C-DMD-2     | 4,5                      | 0,476    | 33,3 | 0,50596  | 31,84499          |
|  | 163 | - |
|--|-----|---|
|--|-----|---|

Tabelul 29. (continuare)

| 1           | 2        | 3     | 4            | 5                | 6        |
|-------------|----------|-------|--------------|------------------|----------|
| C-DMD 22-2  | 4,8      | 0,122 | 75,5         | 0,17999          | 66,06564 |
| C-DMD 22-5  | 4,3      | 2,37  | 0,425        | 2,38022          | 0,41625  |
| C-DMD-22-10 | 4,9      | ≫3    | 0,003        | 3,06695          | 0,08561  |
| C-DVB-2     | 4,9      | 0,305 | 49,5         | 0,37195          | 42,46061 |
| C-DVB-5     | 3,2      | 0,749 | 17,8         | 0,63090          | 23,38760 |
| C-DVB-10    | 5,2      | 0,685 | 20,61        | 0 <b>,7777</b> 5 | 16,67653 |
| C-DAP-5     | 5,3      | 0,187 | 65,0         | 0,28803          | 51,51855 |
| C-DAP-2     | 5,1      | 0,157 | <b>69,</b> 6 | 0,24132          | 57,36350 |
| C-DAP-10    | 5,2      | 0,253 | 61,3         | 0,30575          | 49,45280 |
| C-S-2       | ·<br>5,4 | 0,752 | 17,7         | 0,86114          | 13,76260 |
| C-S-5       | 4,5      | 0,127 | 74,6         | 0,15696          | 66.66401 |
| C-S-10      | 4;7      | 0,13  | 74.2         | 0,17885          | 69,23983 |

Tabelul 30. Absorbția și transmisia pentru copolimerii variantei I la  $\lambda = 345$  nm calculate față de PMM cu groaime de 4,2 mm

| Copolimer         | Grosime<br>probei<br>mm | A A            | T <b>%</b> | ۸•               | T•%              |      |
|-------------------|-------------------------|----------------|------------|------------------|------------------|------|
| 1                 | 2                       | 3              | 4          | 5                | 6                | ==== |
| C-DMH-2           | 3,8                     | 0 <b>,0</b> 57 | 82,6       | 0,01353          | 96,93113         |      |
| C-DMH-5           | 5                       | 0,204          | 62,5       | 0 <b>,2797</b> 2 | 52,50841         |      |
| C-DMH-10          | 5,5                     | 0,216          | 60,7       | 0,33311          | 46,43298         |      |
| C-DMHDEG-2        | 4,5                     | 0,083          | 82,6       | 0,11296          | 77,09326         |      |
| C-DMHDEG-5        | 4,9                     | 0,21           | 61,6       | 0,27695          | 52,84493         |      |
| C-DMHDEG-10       | 4,7                     | 0,23           | 59,0       | 0,27885          | 52,61398         |      |
| C-DMD-2           | 4,5                     | 0,236          | 58,1       | 0,26596          | 54,19870         |      |
| <b>C-DMD</b> 22-2 | 4,8                     | 0 <b>,067</b>  | 85,7       | 0,12499          | 74,98692         |      |
| C-DMD 22-5        | 4,3                     | 0,789          | 16,2       | 0,79922          | <b>15,</b> 87219 |      |
| C-DMD 22-10       | 4,9                     | 1,162          | 6,9        | 1,22895          | 5,89972          |      |
| C-DVB-2           | 4,9                     | 0,074          | 82,3       | 0,14095          | <b>72,</b> 28161 |      |

| 1             | 2   | 3     | 4    | 5       | 6        |
|---------------|-----|-------|------|---------|----------|
| C-DVB-5       | 3,2 | 0,135 | 73,3 | 0,1690  | 66,18255 |
| C-DVB-10      | 5,2 | 0,143 | 72   | 0,23575 | 58,10366 |
| C-DAP-2       | 5,1 | 0,081 | 83   | 0,16532 | 68,33596 |
| C-DAP-5       | 5,3 | 0,081 | 83   | 0,18203 | 65,75679 |
| C-DAP-10      | 5,2 | 0,072 | 82,7 | 0,16475 | 68,42523 |
| <b>C-S-</b> 2 | 5,4 | 0,38  | 41,7 | 0,48914 | 32,41659 |
| C-S-5         | 4,5 | 0,064 | 81,5 | 0,09396 | 76,54152 |
| C-S-10        | 4,7 | 0,069 | 85,3 | 0,11785 | 80,23075 |



Fig. 64. Spectrele de absorbție a C-DVB-2,5,10 trasate față de PMM (valorile trasate sînt recalculate față de grosimea plăcii de PMM = 4,2 mm)

Examinînd spectrele de absorbție a copolimerilor C-DVB (fig. 62) s-au observat că apar maxime care variază cu concentrația de DVB din copolimer. Pentru a obține mai exact locul maximelor, precum și valoarea absorbției la care apar, s-au tratat spectrele de absorbție a C-DVB-2,5,10 recalculate pentru grosime unitară (fig. 64) de PMM (grosimea probei 4,2 mm).

Din fig 64 se observă că odată cu creșterea concentrației de reticulant (DVB) maximele existente se mențin la aproximativ

Tabelul 30. (continuare)



Fig. 65. Spectrele de absorbție a copolimerilor C-DMH-2P 5P și DMHDEG-2P, 5P, 10P



Fig. 66. Spectrele de absorbție a copolimerilor C-DMD-2P 5P și C-DMD 22-2P, 5P, 10P

la aceleçşi lungimi de undă (297; 311 şi 320 nm) dar absorbțiile se maifică. De exemplu: C-DVB-2 are A = 2,6; 1,3; 0,6, C-DVB-5 are A = 2,8; 2,6; 1,2 şi, respectiv, C-DVB-10 are A = 2,6; ~ 2,5; ~ 1,5. La  $\lambda = 311$  nm şi 320 nm cresc maximele absorbției cu creșterea concentrației de la 2 la 5% DVB, avînd o tensință de aplatizare la C = 10% DVB. Aceasta denotă modificări structurale importante la variații mici de concentrație în comenomer - DVB.



- 166 -

Fig. 67. Spectrele de absorbție a copolimerilor C-DVB-2P și C-DAP-2P, 5P, 10P, 15P



-----

Fig. 68. Spectrele de absorbție a copolimerilor C-S-2P, 5P, 10P și C-DMEG-2P, 5P, 10P

# 9.1.1.3. <u>Rezultate și discuții pentru copolimerii obți-</u> <u>nuți prin varianta a II-a</u>

S-au trasat spectrele de absorbție ale copolimerilor (fig. 65-68). Din spectre s-au citit valorile relative ale absorbțiilor și s-au adus la grosime unitară (tabelul 31). Pentru o precizie superioară s-a determinat absorbțiile pentru cele două lungini de undă alese ca semnificative, pentru copolimerii noștri ( $\Lambda = 322,6$  nm , și  $\Lambda = 345$  nm), cu spectrofotometrul VSU-2P și s-au recalculat absorbțiile (A') și transmisiile (T' în %) față de PMM (grosimea probei 4,2 mm). Rezultatele obținute sînt redate în tabelul 32 și tabelul 33.

> <u>Tabelul 31</u>. Absorbțiile citite din spectre pentru  $\lambda =$ = 322,6 nm și  $\lambda =$  345 nm în comparație cu PMM

| <i>a</i>                               | Aspectul Gi          | rosi-          | $\lambda = 3$ | 22,6 nm         | کر :<br>ا | = 345 nm |    |
|----------------------------------------|----------------------|----------------|---------------|-----------------|-----------|----------|----|
| Copolimer                              | probei <sup>me</sup> | ad<br>în<br>Ma | A             | _ <u>A</u><br>d | A         | <br>d    |    |
| ====================================== | 2                    | :====<br>3     | ========<br>4 | 5               | 6         | 7        |    |
| C-DMH-2P                               | transparent          | 4,4            | 0,285         | 0,0648          | 0,405     | 0,0920   |    |
| C-DMH-5P                               | slab op <b>ac</b>    | 4,2            | ≫1,4 ∶        | »°,3333         | ≫1,4      | ≫ 0,3333 | •. |
| C-DMHDEG-2P                            | transparent          | 3,9            | 0,13          | 0,0333          | 0,2       | 0,0513   |    |
| C-DMHDEG-5P                            | transparent          | 4,0            | 0,565         | 0,1413          | 0,88      | 0,2256   |    |
| C-DMHDEG-10P                           | slab opac            | 4,3            | <b>プ1,4</b>   | 0,3256          | > 1,4     | ≫ 0,3256 |    |
| C-DMD-2P                               | transparent          | 3,7            | 0,285         | 0,0770          | 0,37      | 0,1      |    |
| C-DMD-5P                               | slab opac            | 3,7            | >1,4          | >0,3784         | >1,4      | > 0,3784 |    |
| C-DMD 22-2P                            | transparent          | 3,8            | 0,05          | 0,0132          | 0,095     | 0,025    |    |
| C-DMD 22-5P                            | transparent          | 3,9            | 0,28          | 0,0718          | 0,44      | 0,1128   |    |
| C-DMD 22-10P                           | slab opac            | -4,1           | >1,4          | >0,3415         | >1,4      | >0,3415  |    |
| C-DVB-2P                               | transparent          | 3,8            | 0,7           | 0,1842          | 0,37      | 0,0974   |    |
| C-DAP-2P                               | transparent          | 3,9            | 0,08          | 0,0205          | 0,115     | 0,0295   |    |
| C-DAP-5P                               | transparent          | 4,4            | 0,13          | 0,0295          | 0,23      | 0,0523   |    |
| C-DAP-10P                              | transparent          | 4,0            | 0,375         | 0,0938          | 0,6       | 0,15     |    |
| C-DAP-15P                              | slab opac            | 4,3            | 0,66          | 0,1535          | 1,05      | 0,2442   |    |
| C-S-2P                                 | transparent          | 4,2            | 0,05          | 0,0119          | 0,09      | 0,0143   |    |
| C-S-5P                                 | transparent          | 4,0            | 0,05          | 0,0125          | 0,09      | 0,0225   |    |
| C-S-10P                                | transparent          | 4,4            | 0,13          | 0,0295          | 0,06      | 0,0136   |    |

Tabelul 31 (continuare)

| <u>1</u> ·       | 2           | 3   | 4            | 5      | 6      | 7       |  |
|------------------|-------------|-----|--------------|--------|--------|---------|--|
| <b>O-DMEG-2P</b> | transparent | 4,2 | 0,05         | 0,0119 | 0,09 - | 0,0214  |  |
| C-DMBG-5P        | transparent | 4,2 | 0 <b>,07</b> | 0,0167 | 0,11   | 0,0262  |  |
| C-DMEG-10P       | transparent | 4,0 | 0 <b>,10</b> | 0,025  | 0,26   | 0,065 · |  |

Observație: Copolimerii C-DMH-10P; C-DMD-10P și C-DVB-5P, 10P nu apar în tabel - fiind opaci - și, prin urmare, spectrele lor nu au putut fi trasate, absorbțiile fiind cu mult mai mari decît 1, 4, neîncadrîndu-se pe hîrtie.

> <u>Tabelul 32</u>. Absorbția și transmisia pentru copolimerii variantei a II-a la  $\Lambda = 322,6$  nm calculate față de PMM cu grosimea probei 4,2 mm

| Copolimer          | Grosi-<br>mea<br>probei<br>mm | A     | T <b>%</b> | A*      | т•я               |
|--------------------|-------------------------------|-------|------------|---------|-------------------|
| 1                  | 2                             | 3     | 4          | 5       | 6                 |
| C-DMH-2P           | 4,4                           | 0,319 | 48         | 0,33920 | 45,78629          |
| C-DMH-5P           | 4,2                           | 1,514 | 3,06       | 1,51400 | 3,06004           |
| C-DMH-10P          | 4,7                           | 2,255 | 0,56       | 2,30385 | 0,49629           |
| C-DMHDEG-2P        | 3,9                           | 0,155 | 69,9       | 0,12282 | 75,36376          |
| C-DMHDEG-5P        | 4,0                           | 0,682 | 20,8       | 0,66081 | 21,83083          |
| C-DMHDEG-10P       | 4,3                           | 1,851 | 1,41       | 1,86122 | 1,37545           |
| 0-DMD-2P           | 3,7                           | 0,242 | 57,4       | 0,18695 | 6 <b>5,</b> 01505 |
| Q-DMD-5P           | 3,7                           | 1,505 | 31,4       | 1,44995 | 3,54639           |
| C-DMD-10P          | 4,4                           | 2,17  | 0,67       | 2,19020 | 0,64477           |
| <b>C-DMD</b> 22-2P | 3,8                           | 0,079 | 83,4       | 0,03553 | 92,14235          |
| C-DMD 22-5P        | 3,9                           | 0,383 | 41,4       | 0,35082 | 44,57809          |
| C-DMD 22-10P       | 4,1                           | 3,5   | 0,008      | 3,48953 | 0,03235           |
| G-DVB-2P           | 3,8                           | 0,55  | 28,2       | 0,50653 | 31,14400          |
| C-DVB-5P           | 4,1                           | 2,03  | 0,925      | 2,01953 | 0,95522           |
| C-DVB-10P          | 3,9                           | 2,79  | 0,16       | 2,75782 | 0,17446           |

| 1          | 2   | 3     | 4    | 5               | 6        |
|------------|-----|-------|------|-----------------|----------|
| 0-DAP-2P   | 3,9 | 0,108 | 78   | 0,07582         | 83,97909 |
| C-DAP-5P   | 4,4 | 0,216 | 60,8 | 0,23620         | 58,04356 |
| C-DAP-10P  | 4,0 | 0,458 | 34,8 | 0,43681         | 36,56879 |
| C-DAP-15P  | 4,3 | 0,806 | 15,6 | 0,81622         | 15,26278 |
| C-S2P      | 4,2 | 0,063 | 86,5 | 0 <b>,06300</b> | 86,49453 |
| C-S-5P     | 4,0 | 0,09  | 81,3 | 0,06881         | 85,34477 |
| C-S-10P    | 4,4 | 0,115 | 76,7 | 0,13520         | 73,24403 |
| C-DMEG-2P  | 4,2 | 0,056 | 87,9 | 0,056 <b>00</b> | 87,90021 |
| C_DMEG-5P  | 4,2 | 0,082 | 82,7 | 0,08200         | 82,79140 |
| C-DMEG-10P | 4.  | 0,181 | 66,0 | 0,15981         | 69,20867 |

- 169 -

Tabelul 32. (continuare)

Tabelul 33. Absorbția și transmisia pentru copolimerii variantei a II-a la  $\lambda = 345$  nm calculate față de PMM cu grosimea probei 4,2 mm

| Copolimer     | Grosi-<br>mea<br>probei<br>mm | A     | T/6          | A*       | T * 🗲              |  |
|---------------|-------------------------------|-------|--------------|----------|--------------------|--|
| 1             | 2                             | 3     | 4            | 5        | 6                  |  |
| C-DMH-2P      | 4,4                           | 0,226 | 59 <b>,5</b> | 0,24620  | 56,72209           |  |
| C-DMH-5P      | 4,2                           | 1,32  | 4,78         | 1,32000  | 4,78368            |  |
| C-DMH-10P     | 4,7                           | 2,035 | 0,92         | 2,08385  | 0,82371            |  |
| C-DMHDEG-2P   | 3,9                           | 0,097 | 80           | 0,06482  | 86,13368           |  |
| C-DMHDEG-5P   | 4,0                           | 0,443 | 36,1         | 0,42181  | 37,85413           |  |
| C-DMHDEG-10P  | 4,3                           | 1,485 | 3,25         | 1,49522  | 3,19530            |  |
| C-DMD-2P      | 3,7                           | 0,175 | 66,8         | 0,11995  | 75,86229           |  |
| C-DMD-5P      | 3,7                           | 1,198 | 6,34         | 1,14295  | 7,19187            |  |
| C-DMD-10P     | 4,4                           | 1,89  | 1,29         | 1,91020  | 1,22872            |  |
| G-DMD 22-2P   | 3,8                           | 0,04  | 91,3         | -0,00347 | 100,80134          |  |
| C-DMD 22-5P   | 3,9                           | 0,244 | 57,0         | 0,21182  | 61 <b>, 39</b> 691 |  |
| C-IIMD-22-16P | 4,1                           | 2,22  | 0,6          | 2,20953  | 0,61669            |  |

| Tabelul | <u>33</u> . | (continuare) |
|---------|-------------|--------------|

- 170 -

| 1          | 2   | 3             | 4    | 5       | 6                |
|------------|-----|---------------|------|---------|------------------|
| C-DVB+2P   | 3,8 | 0 <b>,298</b> | 50,4 | 0,25453 | 55,64419         |
| C-DVB-5P   | 4,1 | 1,389         | 4,09 | 1,37853 | 4,18039          |
| C-DVB-10P  | 3,9 | 1,913         | 1,22 | 1,88082 | 1,31476          |
| C-DAP-2P   | 3,9 | 0,074         | 84,4 | 0,04182 | <b>90,</b> 81909 |
| 0-DAP-5P   | 4,4 | 0,12          | 75,8 | 0,14020 | 72,40547         |
| C-DAP-10P  | 4,0 | 0,279         | 52,6 | 0,25781 | 55,22591         |
| C-DAP-15P  | 4,3 | 0,507         | 31,1 | 0,51722 | 30,38699         |
| C-S-2P     | 4,2 | 0,036         | 92,1 | 0,03600 | 92,04358         |
| C-S-5P     | 4,0 | 0,046         | 90,0 | 0,02481 | 94,44627         |
| C-S-10P    | 4,4 | 0,0503        | 88,5 | 0,07050 | 85,01272         |
| C-DMEG-2P  | 4,2 | 0,036         | 92   | 0,03600 | 92,04358         |
| C-DMEG-5P  | 4,2 | 0,049         | 89,2 | 0,04900 | 89,32873         |
| C-DMEG-10P | 4   | 0,134         | 73,5 | 0,11281 | 77,12035         |
|            |     |               |      |         |                  |

Examinînd datele obținute din tabelul 32 și 33, precum și aspectul probelor din tabelul 31 se pot explica variațiile valorilor. Copolimerii care au concentrație mică de comonomer (2%) ofera transmisii ridicate. Copolimerul C-DMD 22-2P are transmisia cea mai mare 92% la  $\lambda = 322.6$  nm și 100% la  $\lambda = 345$  nm, devenind egală cu a PMM față de care s\_au făcut determinările. Se observă că transmisia scade pentru copolimerii care prezintă fenomenul de incompatibilitate (v. cap. 8 și tab. 31) manifestat prin opacizarea plăcilor. Copolimerii care prezintă cel mai slab efect fotoelnstic (v. cap.8) dau și aici o transmisie mică, variabilă între aprox. 5 și 0,01%. Astfel sînt copolimerii: C-DMH-5P, 10P, C-DMD-5P, 10P, C-DVB-5P, 10P de asembiea și copolimerii C\_DAH-5P, 10P, C-DMD 22-10P la C = 10% comonomer. Copolimerii C\_DAP-P, C-S-P și C-DMEG-P, fiind transparenți, oferă o transmisie mai mare. La C-DAP-15P la care apare o slabă opalescență în placă, scade și aici transmisia la aproximativ 30%. Copolimerii C-DMEG-2P, 5P, 10P prezintă, de asemenea, o scădere a transmisiei cu creșterea concentrației de DMEG din copolimer, dar în măsură mai mică, de la 87% (C-DMEG-2P) la  $\sim 69\%$  (C-DMEG-10P). Copolimerii C-S-P prezintă de asemenea transmisii ridicate cu variații mici, în funcție de concentrația stirenului.

Din spectrele de absorbție a copolimerilor C-S-P (fig. 68) se observă că aceștia prezintă maxime care sînt diferite decît la ceilalți copolimeri. Pentru a obține mai exact locul maximelor, precum și valorile absorbțiilor, s-au trasat spectrele de absorbție recalculate față de PMM cu grosimea plăcii 4,2 mm. Spectrele sînt prezentate în fig. 69: Din figură se observă că absorbția copolimerilor C-S-P este funcție de concentrația S din



trasate față de PMM

copolimer și că ea crește odată cu concentrația acestuia; A este sub 0,2 pentru C-S-2P, A este 0,8 pentru C-S-5P și, respectiv, A este aprox. 1,4 pentru C-S-10P. păstrîndu-se maximul aproximativ la aceeași lumgime de undă (  $\Lambda = 291,5$  nm).

In spectrul de absorbție a copolimerului C-DVB-2P (fig. 70) - reprezentat în aceleași condiții cu copolimerii C-S-P) apar mai multe maxime în comparație cu copolimerii C-S-P. Alura spectrului se aseamănă cu a copolimerului C-DVB-2 (fig. 64) prezentînd cele trei maxime ale absorbției de: A = 2,6; 1,3; ~ 0,6 (fig. 64, curba



Fig. 70. Spectrul de absorbție al C-DVB-2P trasat față de PMM

Examinînd în comparație copolimerii obținuți în varianta I și a II-a la cele două lungimi de undă alese de noi semnificative,  $\lambda = 322,6$  nm și  $\lambda = 345$  nm, se pot face unele observații interesante. Acestea ar putea să ne dea o informație asupra neomogenității copolimerilor.

Copolimerii obțimuți în varianta I sînt toți transparenți și tobugi transmisiile la lungimile de undă indicate sînt mai mici (v. tabelul 29 și 30) și scad cu creșterea concentrației de comonomer la toți copolimerii reticulați. Uneori scăderea este foarte mare. De exemplu: C-DMD 22-2 ate T = 66%, C-DMD 22-5 are T = 0,42% și C-DMD 22-10 are T = 0,1% la  $\lambda$  = 322,6 nm, respectiv: C-DMD 22-2 are T = 75%; C-DMD 22-5 are T = 16% și C-DMD 22-10 are T = 6% la

 $\lambda$  = 345 nm și ajunge la transmisie slabă în lumină albă (vezi tabelul 34); C-DMD-22-2, T = 89,8%; C-DMD 22-5, T = 88,3; C-DMD 22 -10, T = 86,2%. Aceasta ne arată că răspunsul optic - de apariție a unei stări noi - apare înaitea răapunsului visual; de aici importanța examinării din punct de vedere optic și pentru polimerii utilizgți în fotoelasticitate. Acest fenomen este verificat și pe copolimerii obținuți prin varianta a II-a (v. tabelul 32 și 33) unde vizual neomogenitățile din copolimer apar prin tulburarea care trece în opacizare plăcilor.

# 9.1.1.4. <u>Determinări privind transmisia globală a</u> copolimerilor obținuți prin varianta I și <u>a II-a</u>

Transimisia globală a luminii albe 2 - factor de transmisie - exprimată în %, s-a determinat cu aparatul pentru măsurarea coeficientului de reflexie și transmisie tip EMS-5036 fabricație Schmidt - Haendsch. Spruvetele au avut formă circulară cu diametrul min. 5 cm. PMM obținut industrial la Uzinele chimice Carbosin - Copşa Mică, prin tehnica cu prepolimer, are factorul de transmisie 87 - 90%. PMM obținut în laborator prin polimerizarea directă a MM în formă de placă (etalonul folosit în toate încercările din prezenta lucrare) are factorul 93,5%.

Factorul de transmisie a copolimerilor obținuți prin varianta I este redat în tabelul 34, iar pentru copolimerii obținuți . prin varianta a II-a în tabelul 35.

Examinînd factorii de transmisie din tabelul 34 și 35 se observă o scădere mai pronunțată la copolimerii obținuți prin varianta a II-a la concentrație de 5 și 10%. La concentrație de 2% comonomer, atît copolimerii variantei I, cît și a II-a au transmisii globale ridicate de același ordin de mărime cu PMM obținut industrial. Țransmisiile globale se mențin ridicate pentru toți copolimerii variantei I. Copolimerii obținuți prin varianta a II-a au transmisii globale mai mici la 5 și 10% datorită modului de prezentare a plăcilor, care prezintă opalescență (v. aspectul plăcilor din tab. 35).

| Copolin r <sup>C)</sup>  | Factor de trasmisie |  |
|--------------------------|---------------------|--|
|                          | 6 în <b>%</b>       |  |
| C-DMH-2                  |                     |  |
| C-DMH-5                  | 88.7                |  |
| C-DMH-10                 | 87,9                |  |
| C-DMHDEG-2               | 91,1                |  |
| C-DMHDEG-5               | 89,7                |  |
| C-DMHDEG-10              | 88,1                |  |
| C-DMD-2                  | 88,8                |  |
| C-DMD-5                  | 87,5                |  |
| C-DMD-10                 | 86,2                |  |
| C-DMD 22-2               | 89,8                |  |
| C-DMD-22-5               | 88,3                |  |
| C-DMD-22-10              | 86,2                |  |
| C-DVB-2                  | 90,2                |  |
| C-DVB-5                  | 89,8                |  |
| C-DVB-10                 | 89,4                |  |
| C-DAP-2                  | 90,1                |  |
| C-DAP-5                  | 89                  |  |
| C-DAP-10                 | 90,1                |  |
| C-S-2                    | 90,4                |  |
| C-S-5                    | 89,5                |  |
| C-S-10                   | . 87,9              |  |
| PMM <sup>a</sup> )       | 87-90               |  |
| PMM <sup>b)</sup> etalon | 93,5                |  |
|                          |                     |  |

### Tabelul 34. Factorul de transmisie 7 pentru copolimerii obținuți prin varianta I

- 174 -

a) PMM - obtinut industrial prin procedeul cu prepolimer

- b) PMM obținut prin polimerizarea directă a MM în formă finală de placă - sinteză proprie - etalon folosit în toate încercările din prezenta lucarare
  - c) toți copolimerii au fost transparenți, fără incluziuni

•

## <u>Tabelul 35</u>. Factorul de transmisie 7 pentru copolimerii obținuți prin varianta a II-a

- 175 -

| Copolimer     | Aspectul<br>probelor | Factorul de transmisie<br>ç în # |
|---------------|----------------------|----------------------------------|
|               |                      |                                  |
| C-DMH-2P      | transparent          | 88,2                             |
| C-DMH-5P      | slab opac            | 82,4                             |
| C-DMH-10P     | opac                 | 64,5                             |
| C-DMHDEG-2P   | transparent          | 89,6                             |
| C-DMHDBG-5P   | transparent          | 85,8                             |
| C-DMHDEG-10P  | slab opac            | 76,7                             |
| C-DMD-2P      | transparent          | 89 <b>,6</b>                     |
| C-DMD-2P      | slab opac            | 81,5                             |
| C-DMD-10P     | opac                 | · 60,3                           |
| C-DMD 22-2P   | transparent          | 90,2                             |
| C-DMD 22-5P   | transparent          | 87                               |
| C-DMD: 22-10P | slab opac            | 73,1                             |
| C-DVB-2P      | transparent          | 88,4                             |
| C-DVB-5P      | slab opac            | 85,4                             |
| C-DVB-10P     | opac                 | 73,1                             |
| C-DAP-2P      | transparent          | 90,2                             |
| C-DAP-5P      | transparent          | 89,3                             |
| C-DAP-10P     | transparent          | 88,8                             |
| C-DAP-15P     | slab opac            | 88,1                             |
| C-S-2P        | transparent          | 89,6                             |
| C-S-5P        | transparent          | 89,9                             |
| C-S-10P       | transparent          | 89,6                             |
| C-DMEG-2P     | transparent          | 89,6                             |
| C-DMBG-5P     | transparent          | 89 <b>,9</b>                     |
| C-DMEG-10P    | transparent          | 89,6                             |
| · PHM etalon  | transparemt          | 93,5                             |

L

| Tabelul 36. | Valorile indicilor de | refracție pentru copo- |
|-------------|-----------------------|------------------------|
|             | limerii obținuți prin | varianta I și a II-a   |

| Copolimer<br>varianta I | n <sup>20</sup> | Copolimer<br>varianta II | n <sup>20</sup>      |
|-------------------------|-----------------|--------------------------|----------------------|
| 2~227223227227222       |                 |                          | S2206222222620282221 |
| C-DMH-2                 | 1,4910          | C-DMH-2P                 | 1,4902               |
| C-DMH-5                 | 1,4920          | C-DMH-5P                 | 1,4910               |
| C-DMH-10                | 1,4960          | C-DMH-10P                | 1,4959               |
| C-DMHDEG-2              | 1,4920          | C-DMHDEG-2P              | 1,4884               |
| C-DMHDEG-5              | 1,4958          | C-DMHDBG-5P              | 1,4912               |
| C-DMHDEG-10             | 1,5015          | C-DMHDEG-10P             | 1,4944               |
| C-DMD-2                 | 1,4913          | C-DMD-2P                 | 1,4906               |
| C-DMD-5                 | -               | C-DMD-5P                 | 1,4917               |
| C-DMD-10                | -               | C-DMD-10P                | 1,4968               |
| C-DMD 22-2              | 1,4941          | C-DMD 22-2P              | 1,4903               |
| C-DMD 22-5              | 1,4978          | C-DMD 22-5P              | 1,4920               |
| C-DMD 22-10             | 1,5002          | C-DMD 22-10P             | 1,4968               |
| C-DVB-2                 | 1,4912          | C-DVB-2P                 | 1,4906               |
| C-DVB-5                 | 1,4940          | C-DVB-5P                 | -                    |
| C-DVB-10                | 1,5010          | C-DVB-10P                | -                    |
| C-DAP-2                 | 1,4939          | C-DAP-2P                 | 1,4895               |
| C-DAP-5                 | 1,4968          | C-DAP-5P                 | 1,4925               |
| C-DAP-10                | 1,5001          | C-DAP-10P                | 1,4964               |
| -                       | -               | C-DAP-15P                | 1,5015               |
| C-S-2                   | 1,4926          | C-S-2P                   | 1,4900               |
| C-S-5                   | 1,4952          | C-S-5P                   | 1,4946               |
| C-S-10                  | 1 <b>,5021</b>  | C-S-10P                  | 1,5005               |
| C-DMEG-2                | 1,4941          | C-DMBG-2P                | 1 <b>,4880</b>       |
| C-DMEG-5                | 1,4954          | C-DMEG 5P                | 1,4895               |
| C-DMEG-10               | 1,4955          | C-DMEG-10P               | 1,4915               |
| PMM                     | 1,4887          | PMN                      | 1,4887               |

•

Copolimerii obținuți prin varianta a II-a sînt transparenți (v. tabelul 35), au transmisii asemnătoare cu PMM industrial și apropiate de PMM etalon.

# 9.1.2. Determinări ale indicilor de refaracție a copolimerilor MM obținuți prin varianța I și a II-a

#### 9.1.2.1. Rezultate și discuții

Determinarea indicilor de refracție s-a determinat ou un refractometru Abeé (Karl, Zeiss-Jena), folosind epruvetele indicate în paragraful 9.1.1.1. Lichidul de contact a fost mono-bromnaftalină  $(n_p^{20} = 1,66).$ 

Rezultatele obținute sînt redate în fig. 71 și fig. 72, precum și în tabelul 36.



Fig. 71. Variația indicilor de refracție în funcție de concentrația de comonomer pentru copolimerii obținuți prin varianța I

Examinînd valorile indicilor de refaracție din tabelul 36 se observă că aceștia variază cu tipul de comonomer între limitele 1,49 - 1,571 față de PMM care are  $n_D^{20} = 1,4887.Din$ 

fig.71 și 72 se observă o dependență liniară a indicilor de refracție a copolimerilor funcție de concentrația de comonomer. Indicii de refracție ai copolimerilor prezintă variații mici, în funcție de modul de sinteză al copolimerilor (varianta I și a II-a) și pentru acest mod de determinare a lui.



Fig. 72. Variația indicilor de refracție funcție de concentrația de comonomer pentru copolimerii obținuți prin varianta a II-a

#### 9.1.3. Concluzii partiale

Examinînd, în comparație, copolimerii obținuți prin varianta I și a II-a se observă:

- 178 -

l. La concentrații mici de comonomer (2%), indiferent de natura lui (alifatic, aromatic, aromatic - alifatic), transmisiile variază puțin, atît la copolimerii variantei I, cît și la cei obținuți prin varianta a II-a.

2. In general transmisiile scad cu creșterea concentrației de comonomer (de la 2% la 10%),mai nesemnificativ pentru copolimerii obținuți prin varianta I și semnificativ pentru copolimerii obținuți prin varianta a II-a. Această scădere este corelată cu starea inițială a probelor care prezintă opalescență.

3. Transmisiile cele mai mici (determinate la cele două lungimi de undă) apar la copolimerii care conțin în structură comonomerii ester aroamtici (DMH, DMD) și tip hidrocarbură (DVB) obținuți prin varianta a II-a.

4. Transmisia globală a luminii albe este pentru copolimerii obținuți prin varianta I de acelați ordin de mărime cu a PMM obținut în condiții industriale și mai mică decît a PMM sinteză

**BUPT** 

proprie. Copolimerii obținuți prin varianta a II-a au transmisii asemănătoare cu cei obținuți prin varianta I la concentrație mică de comonomer. La concentrație de 10% comonomer transmisia scade.

5. Indicii de refracție, atît pentru copolimerii obținuți prin varianta I, cît și a II-a, variază puțin între 1,49 - 1,5 și cresc cu creșterea concentrației de comonomer.

### 9.2. <u>Comportarea copolimerilor MM la actiunea termică</u> si termomecanică

In lucrarea prezentă s-a determinat stabilitatea termică Vicat a materialelor sintetizate (copolimerii obținuți prin varianta I și a II-a), respectiv s-au urmărit rezultatele unei analize termice diferențiale pe o parte din copolimerii sintetizați.

X

#### X

x

Comportarea termică și termomecanică oferă indicații asupra modului de comportare a polimerilor în diferite situații, incluzînd și unele moduri de utilizare ca materiale fotoelastice.

O metodică de čercetare, cu materiale fotoelastice - utilizează "înghețarea"anumitor tensiuni în diferite modele și examinarea lor în lumină polarizată. Pentru astfel de încercări comportarea termică indică, dacă polimerul poate sau nu fi utilizat în asemenea cercetări. Determinarea comportării termice și termomecanice a polimerilor se realizează prin diferite metode și aparatură [53, 89, 234 - 241].

# 9.2.1. <u>Stabilitatea termică Vicat pentru copolimerii</u> obținuți prin varianta I și a II-a

Determinarea stabilității termice Vicat (sau punctul de înmuiere Vicat) s-a efectuat cu un aparat FWV 633 (RDG). Pentru fiecare determinare s-au folosit două epruvete cu dimensiunile 10x10xs

- 179 -

mm (s = grosimea probei, variabilă între 3 - 5 mm).

Rezultatele obținute pentru ambele serii de copolimeri sînt redate în tabelul 37.

> <u>Tabelul 37</u>. Valorile stabilității termice Vicat pentru copolimerii MM obținuți prin varianta I și a II-a

| Copolimer<br>varianta I | Stabili-<br>tate ter-<br>micã <sub>o</sub> c | Copolimer<br>warianta a II-a | Stabili-<br>tate ter-<br>mică<br>oC |  |
|-------------------------|----------------------------------------------|------------------------------|-------------------------------------|--|
| 1                       |                                              | ]                            | 4                                   |  |
| C-DMH-2                 | 120,5                                        | C-DMH-2P                     | 116                                 |  |
| C-DMH-5                 | 128                                          | C-DHH-5P                     | 124                                 |  |
| C-DMH-10                | 130                                          | C-DMH-10P                    | 126                                 |  |
| C-DMHDEG-2              | 118                                          | C-DMHDBG-2P                  | 116                                 |  |
| C-DMHDEG-5              | 117                                          | C-DMHDEG-5P                  | 113                                 |  |
| C-DMHDEG-10             | 116                                          | C-DMHDEG-10P                 | 94                                  |  |
| C-DMD-2                 | 116                                          | C-DMD-2P                     | 116                                 |  |
| C-DMD-5                 | 120                                          | C-DMD-5P                     | 119                                 |  |
| C-DMD-10                | 122                                          | C-DMD-10P                    | 121                                 |  |
| C-DMD 22-2              | 115,5                                        | C=DMD 22-2P                  | 115                                 |  |
| C-DMD 22-5              | 105                                          | C-DMD 22-5P                  | 109                                 |  |
| C-DMD 22-10             | 101                                          | <b>O-DMD 22-10P</b>          | 59                                  |  |
| C-DVB-2                 | 117                                          | C-DVB-2P                     | 115                                 |  |
| C-DVB-5                 | 119                                          | C-DVB-5P                     | 116                                 |  |
| C-DVB-10                | 121                                          | C-DVB-10P                    | 118                                 |  |
| C-DAP-2                 | 112 ·                                        | C-DAP-2P                     | 106                                 |  |
| C-DAP-5                 | 108                                          | C-DAP-5P                     | 104                                 |  |
| C-DAP-10                | 94                                           | C-DAP-10P                    | 71,5                                |  |
| -                       | -                                            | C-DAP-15P                    | 71,0                                |  |
| C-S-2                   | 106                                          | C-S-2P                       | 108                                 |  |
| C-S-5                   | 108                                          | C_S-5P                       | 109                                 |  |
| C-S-10                  | 104,5                                        | C-3-10P                      | 107                                 |  |
| C-DMEG-2                | 114                                          | C-DMEG-2P                    | 115                                 |  |
| C-DMEG-5                | 117                                          | C-DMEG-5P                    | 116                                 |  |

Tabelul 37. (continuare)

| 1         | 2     | 3          | 4     |  |
|-----------|-------|------------|-------|--|
| C_DMEG-10 | 118   | C-DMEG-10P | 117   |  |
| PMM       | 114,5 | PMM        | 114,5 |  |

- 181 -

Examinînd valorile punctelor de înmuiere Vicat din tabelul 37 se observă că acestea variasă în funcție de natura comonomerului din copolimer. Valorile acestora sînt mai mari pentru copolimerii reticulați cu comonomeri esteri aromatici (DMH și DMD) si acestea cresc cu cresterea concentratiei de comonomer. Exemplu: pentru C-DMH-2, t =  $120,50^{\circ}$ C, iar pentru C-DMH-10, t =  $130^{\circ}$ C; pentru C-DMD-2,  $t = 116^{\circ}C$  și pentru C-DMD-10,  $t = 122^{\circ}C$ . In cazul copolimerilor reticulați cu comonomeri esteri-aromatic-alifatici (DMHDEG, DMD 22. DAP)stabilitatea termică Vicat este mai mică decît în cazul copolimerilor reticulați cu comonomeri esteri aromatici, și scade cu creșterea concentrației de comonomer ester alifatic-aromatic. Aceasta datorită flexibilizării aduse cu grupele hidrocarbonate -CH2-CH2-, -CH2-CH2-CH2-, precum și a punților eterice -O- din structura DMHDEG și DMD 22. Copolimerii C-S au stabilități termice mai mici decît a PMM, variabile în limite înguste cu concentrație în S. In copolimerii C-DMEG, comonomerul reticulant DMEG mărește stabilitatea termică a copolimerilor față de PMM. Exemplu C-DMEG-2 are  $t = 114^{\circ}C$ , iar C-DMEG-10 are  $t = 118^{\circ}C$ .

Copolimerii obținuți prin varianta a II-a prezintă aceleași variații a stabilității termice Vicat (respectiv a punctului de înmuiere Vicat) în funcție de natura și concentrația comonomerului din copolimer ca și copolimerii variantei I. Astfel copolimerii reticulați cu comonomer ester aromatic (DMH, DMD) au stabilitatea termică cea mai mare din seria de copolimeri obținuți prin varianta a II-a, la concentrație de 10% comonomer. Exemplu: C-DMH-10P are  $t = 126^{\circ}$ C și C-DMD-10P are  $t = 121^{\circ}$ C. De asemenea, stabilitatea termică a copolimerilor crește cu concentrația de comonomer ester aromatic (C-DMH-2P < C-DMH-5P(C-DMH-1OP) și scade cu creșterea concentrației de ester aromatic alifatic (DMHDEG, DMD 22 și DAP). Ex. în seria copolimerilor C-DMHDEG-P stabilitatea scade în seria C-DMHDEG-: ? > C-DMHDEG-5P > C-DMHDEG-10P.

Comparînd stabilitățile termice ale copolimerilor obținuți prin varianta I și II se observă că pentru copolimerii variantei I acestea sînt mai mari cu l - 5<sup>°</sup>C față de copolimerii variantei a II-a. Aceasta datorită compoziției diferite a copolimerilor variantei a II-a, determinată de faptul că s-a întrodus inițial în sinteză PMM cu masă moleculară mare.

# 9.2.2. <u>Analiza termică a copolimerilor MM obținuți</u> prin varianta I [242]

#### 9.2.2.1. Materiale, aparatură, metodă

Analiza termică - (stabilitatea termică la temperaturi distructive) a fost efectuată cu o termobalanță MOM - Budapesta, tip F. Paulik, J. Paulik, L. Brdely, în domeniul 20-500°C, în mediu inert (4 l N<sub>2</sub>/h), utilizînd 100 mg de pulbere de copolimer și o viteză constantă de încălzire 5°/min.

S-au analizat copolimerii MM cu comonomerii DMH, DMHDEG, DMD, DMD 22, DVB, DAP, S și DMEG în concentrații de 2, 5, 10% comonomer, precum și homocopolimerii comonomerilor reticulanți, obținuți în aceleași condiții cu copolimerii MM. Drept termen de comparație pentru comportarea copolimerilor se consideră PMM obținut, de asemenea, în aceleași condiții cu copolimerii.

#### 9.2.2.2. Rezultate și discuții

In fig 73 sînt prezentate termogramele PMM, seria de copolimeri C-DMH (C-DMH-2, C-DMH-5, C-CMH-10), care au dat cea mai bună comportare fotoelastică, precum și termograma homopolimerului DMH (P-DMH).



Fig. 73. Termogramele PMM, copolimerilor C-DMH-2, C-DMH-5, C-DMH-10 si a P-DMH

Din figura 73 se vede că variația pierderilor în greutate în funcție de temperatură indică o termostabilitate mărită a C-DMH față de PMM. De asemenea, curba DTG nu mai prezintă două maxime, ci unul sin-

gur, situat la temperatura celui de al doilea maxim caracteristic PMM-ului (v. curba 2 DTG, fig. 73). La PMM primul maxim este atribuit depolimerizării inițiate prin atacul dublelor legături terminale rezultate din reacția de disproporționare a macroradicalilor în creștere. Dispariția acestui maxim la copolimeri, evidențiază modificarea mecanismului de degradare termică, datorită schimbărilor structurale produse de copolimerizarea reticulantă [243, 244].



Fig. 74. Termogramele copolimerilor C-DMHDEG-2, C-DMHDEG-5,C-UMHDEG-10 și a P-DMHDEG

In fig. 74, 75, 76, 77 sînt prezentate termogramele copolimerilor

C-DMHDEG, C-DMD, C-DMD 22, C-DMEG, precum și a homopolimerilor acestor comonomeri reticulanți P-DMHDEG, P-DMD, P-DMD 22 și P-DMEG.



1.C-DMD 22-2 2.C-DMD 22-5 3.C-DMD 22-10

4.P DMD 22

RA

60

40

20

7

Fig. 75. Termogramele copolimerilor C-DMD-2, C-DMD-5, C-DMD-10 și a P-DMD

Acești polimeri evidențiază comportări asemănătoare cu C-DMH și P-DMH.

Temperatrua 1nițială de descompunere a copolimerilor



(fig.74-77) variază între 260 și 300<sup>0</sup>C în funcție de tipul și concentrația comonomerului reticulant, în toate cazurile

fiind mai mare decît cea à PMM (230°C). Descompunerea probelor este încheiată la cca. 450°C. Exceptînd cazul C-DMEG, stabilitatea termică a copolimerilor se situează între cea a PMM și cea a homopolimerilor reticulanților, pe întregul interval de temperatură studiat. Nu s-a putut stabili o corelație unitară între stabilitatea termică a copolimerilor și conținutul de comonomer. Se reamíntește că pentru evitarea apariției tensiunilor interne și a incompatibilității sistemului de copolimerizare (v. cap. 7 p. experimentală) s-a limitat concentra-

**BUPT** 

- 184 -

ția comonomerilor la valoarea maximă de 10% (pentru toți comonomerii esteri ai acidului metacrilic), intervalul studiat (de 2-10%) fiind probabil prea mic pentru a obține o evidențiere clară a termostabilității în astfel de condiții.



Fig. 77. Termogramele copolimerilor C-DMEG-2, C-DMEG-5, C-DMEG-10 și a P-DMEG

Intr-o încercare de estimare a dependenței termostabilității de tipul de comonomer reticulant (dimetacrilați) utilizat,

s-au reprezentat în fig. 78 termogramele homopolimerilor P-DMH, P-DMHDEG, P-DMD, P-DMD 22 și P-DMEG. Se constată că termostabilita-



Fig. 78. Termogramele homopolimerilor P-DMH, P-DMHDEG, P-DMD, P-DMD 22 si P-DMEG

tea maximă o prezintă P-DMD 22 și P-DMD. Urmează P-DMH și P-DEHDEG, care au practic aceeași termostabilitate. O stabilitate net inferioară o prezintă P-DMEG. Tendința de scădere a termosta-

bilității la trecerea de la structuri aromatice la cele alifatice observată la homopolimeri, poate fi constată, evident, mai puțin accentuată și la seriile de copolimeri ai MM cu dimetacrilații respectivi.

In tabelul 38 sînt prezentate valorile parametrilor orientativi după care s-a evaluat termostubilitatea; temperatura iniția-

| Copelimer         | Raport mo_X<br>lar CM/MM               | Ti          | T <sub>m</sub> | <sup>T</sup> 25% | T50%        |
|-------------------|----------------------------------------|-------------|----------------|------------------|-------------|
| ******            | ====================================== |             | 0°C            |                  |             |
| 1                 | 2                                      | 3           | 4              | 5                | 6           |
| PMM.              | -                                      | 230         | 230 370        | 305              | 3 30        |
| C-DMH-2           | 0,0082                                 | 280         | 370            | 345              | 365         |
| C-DMH-5           | 0,0213                                 | 280         | 370            | 345              | 365         |
| C-DMH-10          | 0,0451                                 | 260         | 345            | 325              | 345         |
| P – DMH           | -                                      | 300         | 455            | 410              | 455         |
| C-DMHDEG-2        | 0 <b>,0</b> 087                        | <b>30</b> 0 | 390            | 360              | 385         |
| C-DMHDEG-5        | 0,0224                                 | 2 <b>90</b> | 380            | 345              | 365         |
| C-DMHDEG-10       | 0,0474                                 | 290         | 380            | 350              | 370         |
| P-DMHDEG          | -                                      | 300         | 465            | 410              | <b>45</b> 5 |
| C-DMD-2           | 0,0078                                 | 280         | 355            | 330              | 350         |
| C-DMD-5           | 0,0199                                 | 270         | 350            | 330              | 345         |
| C-DMD-10          | 0,0420                                 | 270         | <b>35</b> 5    | 335              | 355         |
| P-DMD             | -                                      | 310         | 450            | 430              | 460         |
| <b>C-DMD</b> 22-2 | 0,0045                                 | <b>30</b> 0 | 370            | 350              | 370         |
| C-DMD-22-5        | 0,0116                                 | 260         | 360            | 340              | 365         |
| C_DMD 22-10       | 0,0245                                 | 280         | 365            | 345              | 360         |
| P-DMD 22          | -                                      | 390         | 465            | 445              | 460         |
| C-DMEG-2          | 0,0103                                 | 270         | 360            | 340              | 360         |
| C-DMEG-5          | 0,0265                                 | 260         | 350            | 315              | 340         |
| C-DMBG-10         | 0,0560                                 | 240         | 340            | 305              | 335         |
| P-DMEG            | -                                      | 240         | 300 340        | 305              | 355         |
| C-DVB-2           | 0,0156                                 | 250         | 320            | 300              | 320         |
| C-DVB-5           | 0,0404                                 | 250         | 320            | 300              | 320         |
| C-DVB-10          | 0,0851                                 | 250         | 330            | 305              | 330         |
| P-DVB             | -                                      | 90          | 170 460        | 350              | 445         |
| C-DAP-2           | 0,0082                                 | 360         | 315 350        | 330              | 350         |
| C-DAP-5           | 0,0213                                 | 260         | 300 340        | ) 315            | 350         |
| C-DAP-10          | 0,0451                                 | 230         | 280 320        | ) 285            | 325         |
| P_DAP             | -                                      | 160         | 220 410        | ) 280            | 380         |

### Tabelul 38. Valorile parametrilor orientativi după care e-a evalulat termostabilitatea copolimerilor

- 186 -

| 1       | 3      | 3   | 4   | 5           | 6   | 7   |  |
|---------|--------|-----|-----|-------------|-----|-----|--|
| C-S-2   | 0,0196 | 240 | 290 | 400         | 305 | 365 |  |
| C-S-5 · | 0,0505 | 250 | 280 | <b>3</b> 30 | 295 | 330 |  |
| C-S-10  | 0.1068 | 260 | 295 | 335         | 310 | 330 |  |

Tabelul 38. (continuare)

XRaport molar comonomer/metacrilat de metil

lă de descompunere  $(T_i)$ , temperatura corespunzătoare vitezei maxime de descompunere  $(T_m)$ , temperatura corespunzătoare unei pierderi în greutate de 25% sau 50%  $(T_{25\%}, T_{50\%})$ . Toate valorile copolimerilor MM cu comonomeri dimetacrilați sînt superioare celor caracteristice PMM, dar sînt inferioare celor corespunzătoare structurilor reticulate obținute prin homopolimerizarea comonomerilor metacrilici. De asemenea, la acești copolimeri se constată un singur maxim al vitezei de descompunere, spre deosebire de C-DVB, C-DAP, C-S, unde se constată două maxime de descompunere ca și la homopolimerul PMM.

#### 9.2.3. Concluzii partiale

l. Stabilitatea termică Vicat este mai mare în cazul copolimerilor MM cu reticulanți care au structură aromatică (DMH, DMD) și crește odată cu creșterea concentrației comonomerilor, atît la copolimerii obținuți prin varianta I, cît și a II-a.

2. Stabilitatea termică Vicat scade la copolimerii reticulați cu comonomeri alifatic aromatici (DMHDEG, DMD 22, DAP), atît la varinata I, cît și la varianta a II-a.

3. Stabilitatea termică Vicat pentru copolimerii obținuți prin varianta I este ou 1-5<sup>°</sup> mai mare decît la copolimerii obținuți prin varianta a II-a.

4. Termostabilitatea mărită a copolimerilor MM reticulați cu esteri dimetacrilici, determinată prin analiză termogravimetrică este causată de prezența și natura rețelelor aduse de reticulant.

5. Termostabilitatea mărită a copolimerilor MM reticulați

cu dimetacrilați este cauzată, de asemenea, și de modificarea mecanismului de terminare a catenelor în creștere, atribuit unui singur maxim pe curba TDG spre deosebire de PMM și copolimerii C-DVB, C-DAP, C-S, care prezintă două maxime.

6. Stabilități termice mai mari determinate prin analiză termogravimetrică se obțin la copolimerii MM cu structură preponderent aromatică.

# 9.3. <u>Unele proprietăți mecanice ale copolimerilor</u> <u>obțimuți prin varianta I și a II-a</u>

Pentru o caracterizare mai avansată a copolimerilor obținuți în prezenta lucrare, mai ales în vederea cunoașterii posibilităților utilizării lor, s-au determinat unele proprietățăți mecanice.

Proprietățile mecanice - după cum se știe - depind de natura polimerului, micro- și macrostructura lui (masă moleculară, grad de cristalinitate, orientare, densitate etc.) [83, 91 225, 233, 245-248].

# 9.3.1. <u>Comportarea la tracțiune a polimerilor - rezis-</u> <u>tența la rupere, alungirea la rupere și modulul</u> <u>de elasticitate</u>

#### 9.3.1.1. Materiale, aparatură, mod de luoru

Incercările la tracțiune s-au efectuat pe epruvete tip halteră, de dimensiunile 145 x 10 x s (s = grosimea epruvetelor, variabilă între 3 - 5 mm), cu un aparat pentru încercare la tracțiune AVK, tip RM 101 (RPU). S-a lucrat pe scala de 250 daN, cu o viteză de tracțiune de 20 mm/min. Din curbele efort - alungire ( $C = f(\xi)$ ) s-a calculat modulul de elasticitate E al copolimerilor. De asemenea, s-a determinat rezistența la rupere  $C_{\mu}$ 

**BUPT** 

- 189 -

și alungire la rupere  $\mathcal{E}_r$ .

.

9.3.1.2. Rezultate și discuții

Valorile determinate experimental și calculate sînt trecute în tabelul 39 și 40.

> <u>Tabelul 39</u>. Caracteristicile mecanice  $\mathcal{C}_r$ ,  $\mathcal{E}_r$  și B pentru copolimerii MM obținuți prin varianta I

| Copolimer     | Gr<br>daN/cm <sup>2</sup> | Er<br>\$                               | E<br>daN/cm <sup>2</sup> |   |
|---------------|---------------------------|----------------------------------------|--------------------------|---|
| l             | 2                         | ====================================== | 4                        |   |
| C-DMH-2       | 558                       | 2,5                                    | 22430                    |   |
| C-DMH-5       | 463                       | 1,5                                    | 31071                    |   |
| C-DMH-10      | -                         | -                                      |                          |   |
| C-DMHDEG-2    | 290                       | 1,18                                   | 26724                    |   |
| C-DMHDEG-5    | 464                       | 2                                      | <b>245</b> 83            |   |
| C-DMHDEG-10   | 572                       | 2,14                                   | <b>24</b> 285            |   |
| C-DMD-2       | . 517                     | 2                                      | 25974                    |   |
| C-DMD-5       | 、 <del>-</del>            | -                                      | -                        |   |
| C-DMD-10      | -                         | -                                      | -                        |   |
| C-DMD 22-2    | 425                       | 1,6                                    | 26515                    |   |
| C-DMD 22-5    | 500                       | 2                                      | 25362                    |   |
| C-DMD 22-10 . | 494                       | 1,9                                    | 26119                    |   |
| C-DVB-2       | 415                       | 1,57                                   | 26408                    |   |
| C-DVB-5       | . 476                     | 1,9                                    | 25000                    |   |
| C-DVB-10      | 390                       | 1,3                                    | 2 <b>9</b> 230           |   |
| C-DAP-2       | 437                       | 1,8                                    | 2 <b>66</b> 66           |   |
| C-DAP-4       | 494                       | 1,7                                    | 28085                    |   |
| C-DAP-10      | 507                       | 1,63                                   | 28973                    | 4 |
| C-S-2         | 553                       | 2,11                                   | 26143                    |   |
| C-S-5         | 490                       | 1,86                                   | 26315                    | , |
| C-S-10        | 323                       | 1,13                                   | 28346                    |   |

BUPT

۳

Tabelul 39. (continuare)

Examinînd datele din tabelele 39 și 40 se observă că rezistența la rupere  $\sigma_r$ , la majoritatea copolimerilor este mai mare decît în cazul homopolimerului PMM

<u>Tabelul 40</u>. Caracteristicile mecanice  $G_r$ ,  $E_r$  și E pentru copolimerii MM obținuți prin varianta a II-a

| Copolimer    | σ <sub>r</sub><br>daN/cm <sup>2</sup> | ٤r<br>الع | E<br>daN/cm <sup>2</sup> |  |
|--------------|---------------------------------------|-----------|--------------------------|--|
| 1            | 2                                     | 3         | 4                        |  |
| C-DMH-2P     | 408                                   | 2,0       | 24647                    |  |
| C_DMH-5P     | 603                                   | 1,37      | 28985                    |  |
| C-DMH-10P    | <b>445</b>                            | 1,65      | 256 <b>00</b>            |  |
| C-DMHDEG-2P  | 411                                   | 1,62      | 25362                    |  |
| C-DMHDEG-5P  | 423                                   | 1,8       | 23529                    |  |
| C-DMHDEG-10P | 538                                   | 2,4       | 22435                    |  |
| C-DMD-2P     | 474                                   | 1,8       | 22435                    |  |
| C_DMD-5P     | 429                                   | 1,85      | 24235                    |  |
| C-DMD-10P    | 413                                   | 1,35      | 25 <b>547</b>            |  |
| C-DMD 22-2P  | 376                                   | 1,54      | 25179                    |  |
| C-DMD 22-5P  | 464                                   | 1,89      | 24179                    |  |
| C-DMD 22-10P | 454                                   | 2,7       | 1674 <b>6</b>            |  |
| C-DVB-2P     | <b>55</b> 5 <sup>°</sup>              | 1,63      | 29914                    |  |
| C-DVB-5P     | 450                                   | 1,76      | 25735                    |  |
| C_DVB-10P    | 420                                   | 1,85      | 25 <b>47</b> 7           |  |
| C-DAP-2P     | <b>41</b> 3                           | 0,88      | 25000                    |  |
| C-DAP-5P     | 403                                   | 0,98      | 2 <b>7777</b>            |  |

1 2 4 C-DAP-10P 274 1,65 27777 C-DAP-15P 245 1,98 20325 C-S-2P 488 1,92 24590 C-S-5P 447 1,57 25157 C-S-10P 388 1,55 28776 C-DMEG-2P 406 1.86 25362 C-DMEG-5P 1,66 435 25927 C-DMEG-10P 472 1,17 26119 PMM 376 1,47 25477

Aceste valori sînt redate în limita preciziei determinărilor experimentale, a sensibilității metodei sau aparatului. Prin urmare rezultatele se vor judeca ca atare.

Se observă o scădere a lui  $\mathcal{O}_{\mathbf{r}}$  odată cu creșterea concentrației de comonomer ster aromatic din composiția copolimerului (v. C-DMH-2 și C-DMH-5, precum și C-DMD-2P, 5P, 10P). DVB din copolimerii (C-DVB, C-DVB-P) provoacă, de asemenea, scădere a lui  $\mathcal{O}_{\mathbf{r}}$ . Acest fapt poate fi atribuit componentelor nepolimerizabile din DVB care joacă rol de plastifiant extern, a cărui prezență provoacă scăderea rezistenței la rupere  $\mathcal{O}_{\mathbf{r}}$ , mărește alungirea  $\mathcal{E}_{\mathbf{r}}$  și scade modulul de elasticitate E.

In cazul copolimerilor C-DMHDEG, C-DMHDEG-P, C-DAP, C-DMD 22 și C-DMD 22-P se observă o creștere sau numai o mică scădere a lui  $\sigma_r$ , precum și o scădere a lui E și creșterea  $\mathcal{E}_r$ . Acest fapt se datorează probabil reticulării care compensează în anumită măsură efectul plastifiant provocat de grupele flexibilizate din comonomer.

In copolimerii C-DAP-P se pare că efectul de plastifiere adus cu PMM și DAP se compensează astfel că provoacă scăderea lui  $\sigma_r$  și B mărind  $\epsilon_r$ .

BUPT

Tabelul 40. (continuare)

Modulul de elasticitate a copolimerilor obținuți prin varianta I se situează între 2,6.10<sup>4</sup> pînă la 2,9.10<sup>4</sup> daN/cm<sup>2</sup> în limitele celui pentru PMM. La copolimerii obținuți prin varianta a II-a scade uneori și sub 2,5.10<sup>4</sup> daN/cm<sup>2</sup>.

## 9.3.2. Duritatea copolimerilor MM obținuți prin varianta I și a II-a

#### 9.3.2.1. Materiale, aparatură, metode

Duritatea Brinell (HB) s-a determinat pe epruvete circulare ( $\emptyset$  = 40 mm) și de grosime 3-5 mm, tăiate din plăcile de polimeri, cu un durometru VEB Prüfgeräte-Werk Medingen/Dresden (RDG). Pentru fiecare epruvetă s-au efectuat 5 determinări în puncte diferite, luîndu-se în calcul media determinărilor. 3-a lucrat cu încărcare de 50 daN, cu bila  $\emptyset$  = 5 mm, timp de 1 minut.

S-a determinat, de asemenea, puterea de curgere a copolimerilor prin metoda conului cu ajutorul Consistemetrului Höppler (RDG) care este tot o măsură a durității. S-au utilizat epruvete circulare ca și pentru durometrul Brinell, s-au efectuat 5 citiri, în calcul s-a luat media lor. Incărcarea a fost 15 kg, timp de 1 minut.

#### 9.3.2.2. Rezultate și discuții

Valorile durităților prin ambele metode sînt redate în tabelul 41.

Copolimerii MM reticulați cu comonomeri cu structură ester aromatică (DMH și DMD) și hidrocarbură (DVB), au durități mai mari în cazul variantei I decît PMM. Se observă însă că duritatea acestora atît în cazul copolimerilor obținuți prin varianta I, cît și a II-a, crește cu creșterea concentrației de reticulant, indiferent de metodele de determinare.

### <u>Tabelul 41</u>. Valorile durității copolimerilor MM obținuți prin varianta I și a II-a

- 193 -

| Copolimer   | Fk                     | HB                                      | Copolimer    | F.                  | HB                       |
|-------------|------------------------|-----------------------------------------|--------------|---------------------|--------------------------|
| varianta I  | $k_{\rm g}/{\rm cm}^2$ | daN/cm <sup>2</sup>                     | varianta II  | kg/cm <sup>2</sup>  | daN/cm <sup>2</sup>      |
| <u>1</u>    | 2                      | ======================================= | 4            | -=9======<br>5      | 6                        |
| C-DMH-2     | 5561,7                 | 1431,78                                 | C-DMH-2P     | 3788,6              | 1443,48                  |
| C-DMH-5     | 6178                   | 1456,04                                 | C-DMH-5P     | 3976,8              | 1447,48                  |
| C-DMH-10    | 7063,1                 | 1464,76                                 | C-DMH-10P    | 5132,6              | 1457,37                  |
| C-DMHDEG-2  | 5340,7                 | 1448,31                                 | C_DMHDEG-2P  | 4130,3              | 1464,08                  |
| C-DMHDEG-5  | 5837,2                 | 1436,08                                 | C-DMHDEG-5P  | 32 <b>89,</b> 2     | 1427,92                  |
| C-DMHDEG-10 | 5132,6                 | 1435,66                                 | C-DMHDEG-10P | 3204,5              | 1411,45                  |
| C-DMD-2     | 4788,7                 | 1420,27                                 | C-DMD-2P     | 2969,3              | 1445,45                  |
| C_DMD-5     | 5216,7                 | 1450,06                                 | C-DMD-5P     | 3487,7              | 14 <b>4</b> 6 <b>,11</b> |
| -           | -                      | -                                       | C-DMD-10P    | 4607,3              | 1446,76                  |
| C-DMD 22-2  | 4384,42                | 1446,76                                 | C-DMD 22-2P  | 3737.5              | 1458,04                  |
| C-DMD 22-5  | 4118,2                 | 1435,66                                 | C-DMD 22-5P  | 3546,7              | 1433,72                  |
| C-DMD 22-10 | 3684,1                 | 1423,45                                 | C-DMD 22-10P | 1649,6 <sup>x</sup> | 1303,27                  |
| C-DVB-2     | 4827,3                 | 1474,95                                 | C-DVB-2P     | 5270                | 1495,76                  |
| C-DVB-5     | 4721,6                 | 1468,08                                 | C-DVB-5P     | 4100,1              | 1490,85                  |
| C-DVB-10    | 4692                   | 1464,14                                 | C-DVB-10P    | 4384,4              | 1502,12                  |
| C-DAP-2     | 5486,5                 | 1476,32                                 | C-DAP-2P     | 3029,4              | 1446,76                  |
| C-DAP-5     | 4842,6                 | 1462,06                                 | C-DAP-5P     | 2 <b>7</b> 59       | 1444,14                  |
| C-DAP-10    | 4485,8                 | 1461,39                                 | C-DAP-10P    | 2732,7              | 1420,91                  |
| -           | -                      | -                                       | C-DAP-15P    | 2627,9              | 1348,02                  |
| C-S-2       | 4130,3                 | 1440                                    | C-S-2P       | 4451,6              | 1437,61                  |
| C-S-5       | 4397,4 .               | 1500                                    | C-S-5P       | 4662,7              | 1450,06                  |
| C-S-10      | 4562,4                 | 1534                                    | C-S-10P      | 4721,6              | 1492,25                  |
| -           | -                      | -                                       | C-DMEG-2P    | 3663,8              | 1454,76                  |
|             |                        |                                         | C-DMEG-5P    | 3704,7              | 1554,04                  |
|             |                        |                                         | C-DMEG-10P   | 4154,7              | 146 <b>7,46</b>          |
| PMM         | 4506,5                 | 1433,58                                 | -            | -                   | -                        |

\*Proba C-DMD 22-10P prezintă o curgere continuă sub încărcare.

.

Copolimerii reticulați cu comonomeri esteri alifatic-aromatici (DMHDEG, DMD 22, DAP) au durități mai mici decît copolimerii reticulați cu comonomeri aromatici și aceștia scad cu creșterea concentrației de comonomer de la 2 la 10%. Acest fapt este datorat aportului grupelor flexibilizante din comonomer.

Examinate în comparație duritățile copolimerilor obținuți prin varianta I sînt mai mari decît cele obținute la copolimerii variantei a II-a.

#### 9.3.3. Concluzii partiale

Proprietățile mecanice determinate pe copolimerii obținuți prin varianta I și a II-a de copolimerizare variază funcție de natura și concentrația comonomerului.

l. Rezistența la rupere  $\sigma_r$ , alungirea la rupere  $\ell_r$ scad, iar mdoulul de elasticitate E, crește în cazul copolimerilor reticulați cu comonomeri esteri aromatici, menținîndu-se superioare cele pentru copolimerii obținuți prin varianta I față de cei obținuți prin varianta a II-a.

2. Se produce o compensare a efectului de reticulare cu cel adus de grupele flexibilizante din comonomerii reticulanți esteri aromatic - alifatici în cazul copolimerilor C-DMHDEG și C-DMHDEG-P, producînd o creștere a lui  $\mathfrak{T}_r$ ,  $\mathfrak{E}_r$  și o scădere pentru B.

3. Valorile rezistențelor la rupere  $G_r$  la majoritatea copolimerilor cresc față de PMM.

4. Valorile durităților determinate prin metoda Brinell și cu consistometrul Höppler sînt mai mari pentru copolimerii obținuți prin varianta I față de varianta a II-a.

5. Duritățile în cazul ambelor serii de copolimeri cresc cu creșterea concentrației de reticulant în cazul copolimerilor reticulați cu comonomeri esteri aromatici (DMH, DMD, DVB) și scad cu

- 194 -

- -

.

4

.

.

creșterea concentrației de reticulant cu structură aromatic - alifatică (DMHDEG, DMD 22, DAP).

.

#### 10. CONCLUZII

In prezenta lucrare s-au sintetizat - modele - de polimeri în vederea stabilirii corelației structură - proprietăți fotoelastice.

Modelele utilizate sînt produse de polimerizare. In general materialele tehnice folosite în fotoelasticitate sînt produse de policondensare și poliadiție.

Modelele propuse nu sînt materiale curente, nu se găsesc ca atare la dispoziția cercetătorilor. Substanțele alese au permis construirea unei game suficient de variate de structuri chimice, în vederea obținerii unor indicații preliminarii privind o corelație constituție chimică - efect fotoelastic. In domeniul propus o astfel de corelație nu era în nici un mod previzibilă.

x x

#### X

1. S-au sintetizat în condiții proprii o parte din monomerii utilizați pentru obținerea copolimerilor și anume: DMEG, DMH, DMD, DMHDEG, DMD 22. Acești monomeri nefiind substanțe curente, sînt practic inaccesibili.

2. S-au sintetizat copolimerii MM cu: S, DMH, DMD, DMHDEG, DMD 22, DVB, DAP și DMEG la concentrație de 2,5,10% comonomer în două variante. Varianta I pentru copolimerizarea MM cu comonomerii propuși și varianta a II-a pentru copolimerizarea MM cu comonomerii propuși în prezență de PMM. In varianta a II-a s-au obținut astfel compounduri la scară moleculară.

3. S-au stabilit condițiile optime de copolimerizare: timp, temperatură, concentrația inițiatorului, concentrația comonomerilor, în vederea obținerii unor plăci fără defecte.

x

X

X

4. S-a propus o metodă de evaluare a mărimii efectului fotoelastic prin apariția și determinarea ordinului de izocromate (k), la solicit re în lumină polarizată. Aceasta s-a verificat prin calculul constantei -  $G_0'$  - și s-a constatat o concordanță bună. Polimerul de comparație a fost PMM sintetizat în condițiile de obținere a copolimerilor.

5. S-a stabilit că nucleele arilice neprinse într-o punte de reticulare – întroduse cu stiren – produc nesimetria tabloului izocromatelor (cazul copolimerilor obținuți prin varianta I); se păstrează transparența copolimerilor (atît la copolimerii obținuți prin varianta I cît și a II-a); valoarea  $\sigma_0^{\circ}$  scade cu creșterea concentrației de stiren, rămînînd comparabilă cu valoarea PMM.

6. S-a stabilit că punțile de reticulare formate din fragmente cu structură ester alifatică (înrudită cu PMN) - cu comonomer DMEG - păstrează aspectul general al izocromatelor prezentate de PMM, pentru copolimerii obținuți prin ambele variante. Copolimerii (C-DMEG și C-DMEG-P) sînt trnsparenți. Valoarea  $\mathcal{T}_0$ ' crește cu creșterea concentrației de DMEG, rămînînd în limitele celor oferite de PMM în literatură.

7. S-a stabilit că punțile de reticulare formate din fragmente cu structură ester aromatic - create de DMH și DMD -(pentru copelimerii obținuți prin varianta I) schimbă în sens favorabil tabloul izocromatelor (mărind numărul de izocromate), față de PMM etalor. Copelimerii sînt transperenți, fără defecte (bule, tensiuni) pînă la C = 10% comenomer. Constantele  $\sigma_0$ ° scad cu creșterea concentrației comenomerilor (în limitele considerate) și sînt sub valorile date pentru PMM.

8. S-a stabilit că punțile de reticulare create din fragmente cu structură ester aromatic - formate din DMH și DMD - (pentru copolimerii obținuți prin varianta a II-a) sînt prea puține (ca proporție) pentru a mări sensibilitatea fotoelastică a copolimerilor, dar prea multe pentru a menține transparența lor, provocînd apariția fenomenului de incompatibilitate (prin opacizarea plăcilor la C = 5%).

9. S-a stabilit că punțile de reticulare formate din fragmente cu structură aromatică - comonomer DVB tehnic - înrăutățeac proprietățile fotoelastice a copolimerilor (atît pentru varianta I cît și a II-a). Valorile  $\mathcal{T}_0^{\circ}$  sînt mari, dar se mențin în limita celor date pentru PMM. Copolimerii C\_DVB obținuți prin varianta I sînt traneparenți, iar cei obținuți prin varianta a II-a prezintă fenomenul de opacizare începînd cu C = 5% DVB.

10. S-a stabilit că punțile de reticulare formate din fragmente cu structură ester alifatic - aromatic - cu comonomerii DMHDEG și DMD 22 - păstrează tabloul izocromatelor oferit de copolimerii ce conțin punți de reticulare alifatice, fiind asemănător cu PMM. Constantele  $\mathcal{O}_0^{\circ}$  sînt mari și se încadrează în limita celor date pentru PMM. Copolimerii obținuți prin varianta I sînt transparenți; la cei obținuți prin varianta a II-a apare la C = 10% fenomenul de opacizare.

11. S-a stabilit că punțile de reticulare formate din fragmente cu structură ester alifatic-aromatic - cu comonomer DAP se comportă asemănător cu cele aromatice la concentrații pînă la 10%. Copolimerii sînt transparenți (varianta I și a II-a) pînă la C = 10% DAP. La C = 15% DAP pentru copolimerii obținuți prin varianta a II-a apare fenomenul de opacizare. Valorile  $G_0^*$  sînt mari și, de asemenea, situate în limitele celor date pentru PMM.

12. S-a stabilit, în timpul determinărilor cantitative pe copolimeri, că majoritatea polimerilor obținuți prin varianta a II-a prezintă o deformabilitate sub tensiune, care atinge maximul la copolimerii reticulați cu structuri alifatic-aromatice.

13. S-a constatat că toți copolimerii sitetizați nu prezintă efect de margine, chiar la ședere îndelungată.

14. Se apreciază că polimerii utilizați în prezenta lucra-

BUPT

- 198 -
re pot fi utilizați în studii fotoelastice, pentru determinare de izocline. In acest domeniu nu este necesară o sensibilitate optică înaltă, dar se impune absența absolută a unor tensiuni interne inițiale. Copolimerii sintetizați nu prezintă astfel de tensiuni.

15. S-a stabilit că concentrații mici de comonomer nu pot aduce schimbări prea mari a proprietăților fotoelastice - cazul copolimerilor obținuți prin varianta I - dar se schimbă mult comportarea copolimerilor sintetizați prin varianta a II-a - obținîndu-se în unele cazuri chiar la C = 5% comonomer copolimeri slab opaci, iar la C = 10% comonomer devenind opaci nepenetrabili de lumina polarizată.

x x

X

16. S-au determinat unele proprietăți optice, termice și mecanice în vederea unei caracterizări mai avansate a copolimerilor.

17. In cazul proprietăților optice s-a stabilit că apariția unei neomogenități interne în funcție de natura și concentrația comonomerului, nu este sesizabilă vizual - polimerii rămînînd transparenți - dar apare clar din scăderile de transmisie a luminii.

.3. S-a stabilit că stabilitățile termice cele mai mari se obțin la copolimerii cu structură preponderent aromatică.

19. Evoluția proprietăților mecanice este cea obișnuită pentru copolimerii reticulați, însă nu deosebit de importantă, din cauză că concentrațiile comonomerilor sînt mici.

x x

X

Acest studiu comparativ al copolimerilor sintetizați, folosind intenționat un model impropriu - PMM - care nu este un material cu sensibilitate optică mare, deschide drum pentru încercări, de oreea alte modele de materiale fotoelastice.

BUPT

Credem, în concluzie, că se pot reține - pentru studii ulterioare - următoarele observații majore:

, - simpla reticulare nu produce o îmbunătățire a proprietăților fotoelastice;

- nucleele aromatice neprinse în punte de reticulare, nu potențează efectul fotoelastic;

- reticularea și nucleele aromatice, dar nu legate oricum, ci în fragmente ester aromatice, fără structuri alifatice potențează proprietățile fotoelastice.

١

- 1. A.D.Thomas, Technical Service Memorandum, General Electric Co., martie 1962 pg. 1 - 20 .
- 2. A.Blumstein, Treatise of Coatings, vol. 2/1, Cap. 13, Marcel Dekker -New-York, 1969 pg. 597.
- 3. N.H.Leven, Proc.Int.Symp.Photoelasticity ed.de N.N. Frocht, Pergamon Press, New-York 1963, pg. 145 - 168.
- 4. G.Oppel, Forschung auf dem Gebiete der Ingenieurwessens, vol.7, pg.240 - 248 (1936).
- 5. M.Hetenyi, J.Appl. Phys., 10, 295-300(1939)
- 6. M.M. Frocht, J.Appl. Mech., Trans A.S.M.B., 66(A), 10-16 (1944).
- 7. W.M.Leven, Proc.S.E.S.A. 6(1), 19-28 (1948)
- 8. C.E.Taylor, E.O.Stitz și R.O.Belsheim, Proc.S.E.S.A 7(2), 155-172,1950.
- 9. M.M. Frocht si H. Pih, Proc. S.E. S.A., 12(1), 55-64(1954).
- 10. . M.Balett și G.Mallet, C.R.Acad Sci., Paris 233(16),846-847
  (1951).
- 11. H.Spooner și L.D.Mc.Connel, Brit.J.Appl.Phys.,4,181-184(1953)
- 12. D'Agostino, D.C. Ducker, C.K. Liu și C. Mylonas, Proc.S.E.S.A. 12(2), 123-128(1955).
- 13. E.G.Cooker, L.N.G.Filon și H.T.Jessop, a Treatise on Photoelasticity.Cambrige-New-York, 1957.
- 14. M.M. Frocht, Photoelasticity, Wiley New-York, 1949.
- 15. J.Zandman și M.R.Wood, Proc.Eng., 27, 167 (1956).
- 16. N.Iliescu, L.Boleanțu și I.Păstrăv, Analiza experimentală a tensiunilor, vol.I., Ed. Tehnică, București, 1976 pg. 298 și u.
- 17. F.Zandman, S.Redner și J.W.Dally, Photoelastic coatings, SESA, monograph, nr.3, 1977, pg. 53 și u.
- <sup>\*</sup> 18. I.Agîrbiceanu, Lumina polarizată și aplicațiile ei în știință și tehnică, București, 1956.
  - 19. I.Pogany și M.Banciu, Metode fizice în chimia organică, Ed. stiințifică, București, 1972, pg. 32.

- 20. H.Welf, Spannungsoptik, Springer-Verlag, Berlin- Göttingen Haidelberg, 1961.
- 21. N.Iosipescu, Introducere în fotgelasticitate vol.I și II, Ed.tehnică, București, 1958, 1960.
- 22. Gh.Buzdugan, Rezistența materialelor, Ed. tehnică, București, 1974.
- 23. I.Mîndru, Revista de fizică și chimie A/II, 225-234(1965)
- 24. R.C.Sampson, S.P.E.Journal, 25/3, 24-29, (1969).
- 25. J.H.Lamble și E.S.Dahmouch, Brit.J.Appl.Phys.,9,388-391(1958) din:CA 53,7655 1(1959).
- 26. N.I. Kahar, R.A. Duckett și I.N. Ward, Polymer 19/2,136-144(1978) din:CA 89,24939b(1978).
- 27. P.S.Theocaris, J.Strain Anal., 8/4, 267-276(1973)din:CA 85, 78533a (1976).
- 28. R.N.Waxler, D.Horowitz și A.Feldman, Appl. Opt., 18/1, 101-104(1979) din: CA 90, 104761y(1979).
- 29. V.N.Tvetkov și M.G.Vitovskaia, Vîsokomolek.soedin., 6/8, 1387-1390(1964).
- 30. K.Kawata, Rikagaku Kenkyusho Hokoku, 35, 5-16(1959)din: CA 54, 23407a(1960).
- 31. I.Slovikovska, Pat. Polonez, 15 dec. 1977, din CA 90, 55725d(1979).
- 32. W.H.Reinhardt, Material prdefung 15/5, 162-165(1969) din : CA 71,62040n(1969).
- 33. K.H.Miller, Kunststoffe, 3, 162 (1961).
- 34. E.Hausman și G.Younghähnell, Internationales spannungsoptische symposium, Berlin 10-15 aprilie, 1961, Akademie-Verlag-Berlin 1962.
- 35. J.Heymann, Internationales spannungsoptische symposium, Berlin, 10-15 aprilie, 1961, pg. 51-56.
- 36. F.Kufner, Internationales spannungsoptische symposium, Berlin, 10-15 aprilie, 1961 pg. 79-86.
- 37. B.Koštak, Internationales spannungsoptische symposium, Berlin, 10-15 aprilie, 1961, pg. 97-114.
- 38. E.Kučera, Internationales spanningsoptische symposium, Berlin, 10-15 aprilie, 1961, pg. 88-96.
- 39. E.Hosp, Internationales spannungsoptische symposium, Berlin, 10-15 aprilie, 1961, pg. 57-58.

- 40. M.Masanobu, T.Shozo și A.John, Nippon Kikai Gokkai Rombunohu, 44/378,523-531(1978), din: CA 89,25195 t(1978).
- 41. Z.Orlós și Z.Dylág, Internationales spanmingoptische symposium, Berlin, lo-15 aprilie 1961, pg. 145-154.
- 42. I.Slevikovska, Internationales spannungsoptische symposium, Berlin, lo-15 aprilie 1961, pg. 189-194.

- 44. K.Ito, Exp. Mech, 2/12, 373 376(1962).
- 45. M.S.Zlotnikov, I.A.Arbuzova și E.V.Kuvșinskii, Vîsokomolek. soedin., (A) 10/1,41-45(1968).
- 46. M.S.Zletnikov, Visekomolek.soedin., (A) 14/9, 2015-2021(1972)
- 47. H.W.Cover și T.H.Wicker Bncyclopedia of Polymer Science and Technology, vol.I, Interscience Publishers (John Wiley & Sons. Inc., )New-York, 1966, pg. 246.
- 48. E.H.Riddle, Monomeric Acrylic Ester, Reinhold Publishing Corp., New-York, 1954.
- 49. H.Wesslan, Die angewandte Makromol. Chem., 1/12, 30, (1967).
- 50. Tr.Alfrey Fr., J.J.Bohrer și H.Mark, Copolymerization, John Wiley & Sons., New-York, 1952.
- 51. I.Skeist, J.Amer. Chem. Soc., 68, 1781, (1946).
- 52. W.E.Gibbs gi J.M.Barton, The Mechanism of cyclopolymerization of Houconjugated Diolefins, in: G.E.Ham, Vinyl Polymerization, vol.I, Marcel Dekker, New-York, 1967, pg. 59-138.
  - 53 S.K.Zaharov, L.I.Medvedeeva, I.A.Arbuzova și E.V.Kuvsinskii, Vîsokomolek.soedin., 7/9, 1554, (1965).
- 54.- J.Kopeček, J.Jokl și D.Lîm, J.Polymer Sci., prt C, 16, 3877, (1968).
- 55. A.A.Berlin, T.I.a.Kafeli și T.V.Corolev, Poliefirîacrilatî, Hauka, Moskva, 1967, pg. 77-99.
- 56. G.V.Korolev,L.I.Mahonina și A.A.Berlin,Vîsokomolek.soedin., 3,198,(1962).
- 57. N.N.Tvorogov, Visokomolek.soedin., 10/10,2290, (1968).
- 58. M.Corciovei, V.V.Korşak şi S.V.Vinogradova, Vîsokomolek.soedin. 7/1,150-155,(1965)

- 59. N.N.Tvorogov, B.R.Smirnov, A.I.Malahov, N.P.Gracev și A.A.Berlin, Vîsokomolek.soedin., 10/4,889(1968).
- 60. A.Matsumoto, S.Skoda, T.Harada și O.Masayoshi, Kogyo Kagaku Zasshi, 70/6, 1007-1016(1967), din: CA 69, 10786s(1968).
- 61. P.Hayden și H.Mellville, J.Polymer Sci., 43, 201-214, 215-227(1960); din:CA 54, 16905a(1960).
- 62. C.Petropoulos, J.Polymer Sci., A, 2/2, 69(1964), din: CA 60, 10791 b (1964).
- 63. G.V.Korolev și A.A.Berlin, Visokomolek.soedin.4/11,1954(1962).
- 64. R.M. Yoshi, Makromol. Chem., 66, 114(1963); din: CA 59, 8890 d(1963).
- 65. A.A.Berlin, N.B.Mirenskaia, V.Saskova și alții, Plaste u. Kautschuk 18/1,12-15(1971).
- 66. J.Kopeček și D.Lîm, J.Polymer Sci., A-1, 9, 147(1971).
- 67. G.V.Korolev, B.R.Smirnov, S.G.Başkirova şi A.A.Berlin, Vîsokomolek. soedin., 6/7, 1256(1964).
- 68. C.C.Allen,W.Oraby, D.R.Squire, E.P.Stahel și V.Stanett, J.Nakromol. Sci.Chem., A 8/5,965(1974).
- 69. P.J.Flory, Principles of Polymer Chemistry, Cornell University Press, Ithaca, New-York, 1953, Cap. 10, 13.
- 70. P.J.Flory, J.Am. Chem. Soc., 78, 5222(1956).
- 71. S.Loshaek și T.G.Fox, J.Am. Chem. Soc., 75, 3544(1953).
- 72. M.C.Shen si A.V.Tobolsky, J.Polymer Sci., A, 3, 629(1965).
- 73. A.V.Tobolsky, D.Kats, M.M.Takahasi gi R.Schaffhausen, J.Polymer Sci., A.2, 2749(1964); din: CA 61,5878 h (1964).
- 74. J.C.H.Hwa, J.Polymer Sci., 58, 715(1962)
- 75. C.S. Marvel și L.Miller, J.Polymer Sci., 55, 197(1961).
- 76. H.Wesslan, Makromol. Chem., 93, 55-68(1966), din: CA 65, 865g(1966).
- 77. J.Jokl, J.Kopeček și D.Lim, J.Polymer Sci., A-1, 6/11,3041(1968).
- 78. K.A.Kun și R.Kunin, J.Polymer Sci., A-1,6/10,2689(1968).
- 79. De Freitas J.F., Analyst, 93, 398(1968).
- Bo. . R.J.Lin și W.Burlant, J.Polymer Sci., A-1, 5, 1406(1967).
- 81. . N.M.Atherton și H.Mellville, J.Chem.Soc., 34, 199(1959).
- 82. M.Hagiwara și K.Yamagi, J.Polymer Sci., 13,8/3,155(1970).

| ••    |                                                                                                                              |
|-------|------------------------------------------------------------------------------------------------------------------------------|
| 83. • | E.N.Wolf, Australian Dental J., 7, 439(1962); din: CA 59, 7716 f<br>(1963).                                                  |
| 84    | T.Kodawa și F.Ide, Kehunshi Kagaku, 27/297,65(1970) din: CA 72,                                                              |
|       | 133 4990(1970).                                                                                                              |
| 85    | W.G.Lloyd și T.Alfrey Jr., Am. Chem. Soc., Div. Polym. Chem., Proprints<br>2,1,19(1961) din: CA 58,4655g(1963).              |
| 86. • | D.R.Paul, D.W.Fewler si J.T.Houston, J.Appl, Polymer Sci.,<br>17,2771(1973)                                                  |
| 87. 🗭 | J.A.Cormell, Pat.Brit., 1143562(1969).                                                                                       |
| 88    | M.Herman, Chemist(N.Y), 49/7, 267(1972) din: CA 77, 102798 g(1972).                                                          |
| 89. 🛎 | RuM.Aseeva, T.V.Zelenetkaia, O.G.Sel'skaia și A.A.Berlin,<br>Vîsokomelek soedin., 7, 1573(1972).                             |
| 90. • | D.Kats si A.V.Tobolsky, J.Polymer Sci., A2, 1587-1595(1964).                                                                 |
| 91. • | A.G.Akhmedov, A.B. Bashirov și Yu.V.Zelenev, Plaste u.Kautschuk,<br>20/8,623,(1973).                                         |
| 92. • | C.Rosseti, Pat.Brit., 1313939, 18 aprilie 1973.                                                                              |
| 93. • | M.Corciovei, Mat. Plastice, 4, 52(1967).                                                                                     |
| 94    | L.I.Sokolov și A.D.Abkin, Vîsokomolek.soedin., 1, 1024(1959) din:<br>CA 54, 19008 i(1960).                                   |
| 95. • | A.M. Kotlian, J. Polymer Sci., 62, 115, (1962) din: CA 58, 1543C(1963).                                                      |
| 96    | In.N.Suloev și A.G.Melkin, Trudi po himii i himii tehnol.4,386<br>(1961) din:CA 56,1591 h(1962).                             |
| 97    | K.Ueberreiter gi U.Rohde-Liebenau, Makromol.Chem., 49, 164(1961)<br>din:CA 56,8907e(1962).                                   |
| 98. • | T.E.Lipatova și A.A.Berlin, Dokl.Akad.Nauk, SSSR, 148, 353(1963).                                                            |
| 99    | M.Tokarzewska,K.Milon și J.Jablonska,J.Polymer Sci.,10/11,488<br>(1960)                                                      |
| 100.  | A.A.Berlin, N.N.Tvorogov și G.V.Korolev, Izv.Akad. Mauk SSSR,<br>Ser Himia, 1, 193, (1966) din: CA <u>65</u> -, 12799(1966). |
| lol.= | A.M.Bijke, J.Polymer.Sci., A 3/10, 3523(1965) din:CA-64, 2227g(1966)                                                         |
| 102   | W.Funke, Chimia, 22/3, 111(1968) din: CA 68, 87767 f (1968).                                                                 |
| 103.  | V.A.Dinaburg,A.A.Vanscheidt și K.N.Genender, Pat.URSS, 208946,<br>17 ian.1968, din:CA 69, 11064s(1968).                      |

- le4. . Iu.M.Sivergin, N.B.Mirenskaia, V.I.Saskova și A.A.Berlin, Vîsokomolek.soedin.,ser.A 11/9,1919(1969).
- lo5. ... P.W.Kwant, J.Polymer Sqi., Polymer Chem., 17/5, 1331-1338(1979)
  , din:CA 91, 5521j(1979).
- lo6. O.F.Solomon, M.Corciovei și V.Tănăsescu, J.Appl.Polymer Sci., ll,1631-39(1967).
- lo7. G.V.Kerolev,Dokl.i.Vses.Konf.po Khimii i Fiz-Khimii Polymerization Oligomerov,2,470-477(1977) din CA 88,170 574 z(1978).
- 108. E.Kast și W.Funke, Makromols Chem., 180(5), 1335 -1338, (1979.
- 109. K.Dušek, M.Gordon, R.Murphy şi B.Simon, Macromolecules 11/1, 236-245 (1978).
- 110. = I.Ya.Erukinovici, V.I.Irzak şi V.G.Rostiaşvili, Vîsokomolek soedin., Ser.B, 18/7, 186-187(1976).
- 111. F.Bueche, J.Appl. Polymer Sci., 1/2, 240-244(1959).
- 112. R.M. Douglas și W.M. Cristopher, Macromolecules 9/2,206-211 (1976) din: CA:84,165496p(1976).
- 113. A.V. Podalinskii, Visokomolek.soedin., 18/2, 279-285(1976).
- 114. G.Kerrutt, Chemieunterricht 8/3,44-62(1977) din:CA 88,135660 c
  (1978).
- 115. D.Braun, Angew. Wakromol. Chem., 76/76, 351-371(1979) din CA: 90, 187665 u(1979).
- 116. V.A.Jiravlev, G.Z.Eşipov, I.N.Birukova şi G.V.Uşakov, Vîsokomolek soedin., A, 21/3,716-717(1979).
- 117.• K.Dušek, M.Ilavsky, Polym.Eng.Sci., 19/4, 246-253, (1979) din: CA 90, 169399f(1979).
- 118. E.Schröeder, Plaste u Kautschuk, 26/1, 1-6(1979).
- 119. R.Spang- Teză de doctorat, Stuttgart, 1979.
- 120. K.Horie, A.Otagawa, M.Muraoka și I.Mitz, J.Polymer Sci., Polym. Chem.Ed., 13, 445(1975).
- 121. H.Guenter, Plaste u.Kautschuk 24/4,231-236(1977).
- 122. . J.C.H.Hwa gi L.Miller, J.Polymer Sci., 55, 197(1961).
- 123. M.S.Zlotnikov, Zavod.Lab., 38/4, 491(1972) din: CA 78, 16580 k(1970).
- 124. G.L.Jiskin, Pat.URSS 113730, 20 aug. (1958) din: CA 53, 5763 C (1959).

- 125. J.P.Berry, J.Polymer Sci., A-1,8,993(1963).
- 126. I.M.Rozvan, Teză de dizertație, Timișoara, 1960.
- 120. M.Arcan, Teză de dizertație, Timigoara 1962.
- 128. G.Praisler, Teză de doctorat, București, 1973.
- 129. L.Boleanțu și O.Kasztel, Simp.metode experimentale în mecanica , aplicată, București, 1972 pg. 243-252.
- 130. L.Boleanțu și O.Kasztel, Rev.Netalurgia, 18/1, 63-69(1973).
- 131. Tr.Raica, O.Kasztel și M.Stoianovici, Buletin șt. și tehn.I.P.T f 2,1978.
- 132. Tr.Raica, O.Kasztel și Gh.Sabău, Bul.St. și tehn.I.P.T.1979 (sub tipar).
- 133. Tr.Raica, O.Kasztel și E.Petendra, Bul.șt.și tehn.I.P.T., seria mec anică fl,23/37,68(1978).
- 134. I.Dobre și O.Kasztel, Al.II-lea Simposion National de tensiometrie cu participare internațională, Cluj-Napoca, 11-14 iunie, 1980.
- 135. L.Bolcanțu și O.Kasstel, A III-a sesiune anuală de comunicări tehnico-științifice a ICEPET-București 9-11 mai,1973.
- 136. H.R.Puntingam, Th. Völker -Acryl und Methacryl verbindungen, . Springer-Verlag-Berlin-Heidelberg-New-York 1967, pg 143 gi u.
- 137. W.C.Mast si C.H.Fisher, Ind.eng. Chem, 41, 790(1949).

138. • K.Tessmar: Houben-Weyl-Müller XIV/1, 1035(1961).

- 139. H.N.Boundy, R.D.Boyer gi P.Stasser, Styrene-Its Polymers Copolymers and Derivates, Reinhold Publ.Corp., New-York, 1952, pg.622.
- 140. C.J.Pouchert The Aldrich Library of Infrared Spectra, Second Edition, Aldrich Chemical Comp.Inc., St.Paul Ave, Milwankec, Wisconsin-53233, 1975 pg. 335, 507.
- 141. Gerecs Arpad și Decsei Lajos, Pat.R.P.U.144594,4 martie 1967.
- 142. T.R.Manley, Pat.Brit., 962629,1 iulie 1964.
- 143. D.Young & Co., Pat.Brit., 976304, 25 nov.1964.
- 144. J.V.Schmitz, J.Amer.Chem.Soc., 77/7, 194, 1955.
- 145. S.N. Jivuhin, N.V. Barcova și I.P. Losev, J.O. H., 26/8, 2250-2254(1956)
- 146. J.K.Haken, Synthesis of acrylic esters by transesterification, Noyes. Development Corp., Park Ridge, 1967 pg. 14 și u.

- 147. V.O.Reinsfeld, N.A.Filipov și G.I.Javscic, J.Prikl.him., 43, 101-106 (1970).
- 148. V.O.Reinsfeld.N.A.Filipov și G.I.Javscic, J.Prikl.him., 43, 467 (1970).
- 149. N.A. Ghanem, A.B. Moustafa și R. Mohsen, Chemistry and Industry 8,513 - 514 (1971).
- 150. I.A.Arbuzova, L.I.Medvedeeva 291 S.K.Zoharev, J.O.H., 36/8, 1833-1837(1963).
- 151. G.A.Gareev și V.P.Menșutkin, Kinetika i Kataliz \_8/6,1369-1371 (1967).
- 152. H Kleinert, Plaste u. Kautschuk, 17/1, 42(1970).
- 153. Pat.BDR, 1806564, lo iulie 1969.
- 154. H.Kleinert și H.Fürst, J.Prakt.Chem., 36, 252(1967).
- 155. C.Aso și K.Sadakata,Kogyo Kagaku Zasshi,63,188-191(1960) din:CA 56,15667 f(1962).
- 156. Iu.M.Sivergin, N.B.Mirenskaia, V.T.Saşkova şi T.Ia Kafeli, Kinet. Mech.Polyreactions, Int.Symp.Makromol.Chem., Prepr. 3, 215-219, (1969) din: CA 75, 64322n(1971).
- 157. N.Mihailov, N.Tantilov gi G.Nenkov, Isv.Otd.Chim. Mauki, Bulg. Akad. Nauk, 4/4, 693-698 (1971) din: CA 77, 115174s(1972).
- 158. G.V.Moikin,L.M.Gumenciuk,E.M.Krom și V.R.Karțașov,J.Prikl.him., 52/5,1136-1139(1979) din: CA 91,57578C(1979).
- 159. F.Karstedt, Pat. BDR, 2105126, 19 august 1971.
- 160. I.I.Carnes și F.M.Cawen, Pat.U.S. 2 819296,14 ian.1958 din: CA 58,9194 a(1958).
- 161. Röhm & Haas G., Pat. Fr. 1218241, 5 martie 1959.
- 162. I.A.Arbuzova, S.A.Plotnina și V.N.Efremova, J.O.H., 26/4, 1124 (1956).
- 163. E.M.Lukina, Pat. URSS, 327163, 25 mai 1970, din: CA 77, 5996 d(1972).
- 164. Pat.Brit.738954,19 oct.1955,din:CA 50,15577e(1955)
- 165. S.Tocker, Pat. BDR 1137219,29 sept. 1962 din:CA 58, P 8104 a, b (1963).
- 166. I.A.Arbusoya, L.I.Medvedeeva și S.A.Plotnina, J.O.H., 26/4, 1127(1956).
- 167. H.V.Hromov-Borisov și A.M.Janovinskaia, J.O.H., 29/7, 2667(1959).

- 168. Br.H.Stempel, J.Am.Chem.Soc., 72, 2299(1950).
- 169. P.Bieber, Bull.Soc.Chim., (France), 56, 125(1954).
- 170. L.J.Bellamy The infrared spectra of Complex Molecules, John Wiley and Sons Inc., London, New-York, 1960.
- 1712. M.Avram și G.D.Mateescu, Spectroscopia în infraroșu., Ed.Tehnică București, 1966.
- 172. D.Bîrcă-Gălățeanu, M.Giurcea, I.Iova, V.Sahini, A.Truția și R.Tițeica, Introducere în spectroscopia experimentală, Ed. Tehnică, București, 1966.
- 173. M.Corciovei, Materiale plastice 4/2,52-56(1967).
- 174. Bayer Aktiengesellschaft, Pat. Prancez, 2226 154, 29 martie 1974.
- 175. T.C.William, Pat. BDR 1912232,20 octombrie1969 din: CA 72, 35795 b(1970) și CA 75,37500 n (1971).
- 176. H.Ruschke și H.Agular, Pat. BDR, 2053901, 13 mai 1971.
- 177. R.Micht și Wollwage, Pat BDR, 2403211, 24 iulie 1975.
- 178. I.Gross, Teză de doctorat, Timisoara, 1970, pg. 64.
- 179. K.Dugek, J.Polymer Sci., part B, 3, 209, (1965)
- 180. K. Duşek, Collect. Czechoslov. Chem. Commun, 30, 3804(1965).
- 181. K.Dusek și J.Walinsky, Chem. Prum., 13, 662(1963) și 16, 219(1967).
- 182. K.Duşek, D.Seidl şi J.Walinsky, Collect.chem.Commun 32, 2786(1967)
- 183. S.M. Jiyuhin, M.V. Barcova și I.P. Losev, J.O. H. 16/8, 2250-2254 (1966).
- 184. A.J.Lorkovsky și L.Vigaut, Plaste u.Kautschuk 20/11,818-832 (1973).
- 185. S.Rimy gi Blundell, Pat. Fr., 1220999,9 ian. 1959.
- 186. A.Senn, Pat.Fr. 1473094,6 ian. 1966.
- 187. E.Grimaud, Pat.Fr.1198198,7 iunie 1958.
- 188. J.A.Cornel și J.L.Tucker, Pat.U.S., 2947716,16 iulie 1957.
- 189. D.I.C.Kells, M.Koike și J.E.Guillet, J.Polymer Sci., Part. A-1, 613,595-601(1968).
- 190. S.Sevček, J.Stamberg și P.Schmidt, J.Polymer Sci., Part.C, 16, 821-831(1967).

- 191. A.N. Gent, V.V. Vickroy Jr., J. Polymer Sci., Part. A 2,5/1,47(1967).
- 192. G.Solomon, C.J. Schooneveldt și J.H.L. Zeviers, Rec. trav. chim., 79,313-329(1960) din: CA 54,16180 a(1960).
- 193. J.K. de Gooreynd și J.Johnson, Pat.Ger., 1, 014328, 22 aug. 1957.
- 194. Vaclav Kaláb, Pat. Cehoslovac 88757,15 febr. 1959, din: CA, 54, P 9352 g(1960).
- 195. Shao Hsinng Li şi Kao Fîn Tsu T'ung Hsun, 3, 355(1959) din: CA 54, 20287 d(1960).
- 196. Pat.Ger., 1127591, 12 apr. 1962.
- 197. T.R.Manley, Pat.Brit., 962629, 31 aug. 1960.
- 198. W.E.Gibbs, J.Polymer Sci., Part.A=2, 11, 4809-4814(1964) din: CA, 62, 1758 d(1965).
- 199. Pat.U.S., 1002669, 25 aug. 1965, din: CA 63, 18295 d(1965).
- 200. N.N. Pvorogov, Plast.mas1, 7, 64-66(1968)
- 201. R.H.Wiley și H.J.Jung., J.Makromol.Sci.Chem., 2/6, 1094-1104 (1968) din: CA 70, 4649m(1968).
- 202. Pat.Japonez, 1524549, 19 aug. 1966 din: CA 71, 82745 e(1969).
- 203. H.Kazuyki, O.Qtsushi, M.Minoru şi M.Itaru, J.Polymer Sci., Polymer Chem., 13/2, 445-454(1975) din: CA 82, 156779q(1975).
- 204. W.Funke, Kolleid.s, 197(1-2), 71-80(1964 ) din: CA 61, 10830d(1964).
- 205. S.Muroi și Y.Nomura, Kogyo Kagaku Zasshi, 69/8, 1534-1538(1966) din: CA 66, 95715m(1967).
- 206. I.A.Arbuzova și I.L.Medvedeeva, J.Prikl.him., 36, 1833(1963).
- 207. . B.E. Parker și T.L. Pierre, Modern Plastics 38,133(1961).
- 208. K.Masayoshi, S.Yoshio și I.Minoru, Mem. Fac. Eng., 10, 173-176(1968) din: CA 71, 125362 D(1969).
- 209. A.Mitsuru, N. Nobuo și M. Euchi, J. Biomed. Mater. Res., 5/3, 183-195 (1971) din: CA 75, 21695 u(1971).
- 210. J.Kopeček și D.Lîm, Collect. Czech. Chem., Commun, 36/7;2703-2707 (1971) din CA 76,25652 w(1972)
- 211. M.M. Gherner gi col., Pat, URSS 248196,1 aprilie 1969.
- 212. V.E.Shahoua și R.G.Beaman, J.Polymer Sci., 33 lol(1958).
- 213. W.Strachle, U.Seitz și W.Funke, Angew. Makromol.Chim.60/61, 111(1977).

| •      | • · · ·                                                                                                                                                                |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 214. 0 | G.Schwadula și F.Wolf, Plaste u.Kautschuk 11,802(1967).                                                                                                                |
| 215. • | G.Schwadula, F.Wolf și H.Schmidt, Plaste u.Kautschuk 1,33(1968).                                                                                                       |
| 216. 3 | Pat.japones 76/50.970,6 mai 1976 din: CA 85,95419 k(1976)                                                                                                              |
| 217. • | Pat.japones 76/50971,6 mai 1976 din: CA 85,109660 w(1976).                                                                                                             |
| 218    | W.Nehdorn, Kunstharzpressstoffe, Ed. III Epringer Verlag,<br>1949, pg. 257.                                                                                            |
| 219. • | E.Heinecke-Encyclopedia of Polymer Science and Technology<br>vol.9,Interscience Publishers(John Wiley & Sons Inc.)<br>New-Yc~k,London,Sydney,Toronto,1968,pg.525 si u. |
| 220    | C.Hefmann și F.Rudolph, Plaste u.Kautschuk.19/1,41-44(1972).                                                                                                           |
| 221    | J.A.Brydson, Plastics Materials, Newnes-Butterworths, London,<br>1975, pg.99.                                                                                          |
| 222. • | G.H.Dorion, G.W. Nachtigale și J.J. Cerreta, Pat.Fr.1437753,6 mai<br>1966 din: CA 66,3132 h.(1967)                                                                     |
| 223    | H.J.Lorkovski, Plaste u Kautshuk, 23/5, 318-320(1976).                                                                                                                 |
| 224. • | V.I.Vladimirov, Plast.mas1, 4, 38-41(1959).                                                                                                                            |
| 225. • | G.Schreyer,Konstruiren mit Kunststoffen vol.2,Carl Hanser<br>Verlag,München,1972,pg.803-870.                                                                           |
| 226. 🕯 | H.Zschaeck, Plaste u.Kautschuk, 23/5, 321-324 (1976).                                                                                                                  |
| 227    | T.A.Speranskaia și L.I.Tarutina, Opticeskie svoistva polimerov,<br>Izd.Himia, 1976, pg. 23-61, 117-131.                                                                |
| 228    | H.Schuke, H.J.Lerkowski, K.Pfeiffer, G.Kühn şi F.Rudolph, Pat.<br>RDG 103450,4 sept. 1972.                                                                             |
| 229    | U.Hermann, C.Hofmann și F.Rudolph, Feingeratetechnik 21/1,30<br>(1972).                                                                                                |
| 230. • | N.Kryszensh, Plaste z. Kautschuk, 20, 885 (1973).                                                                                                                      |
| 231. • | H.J.Mills -Polymer Science- cap.7Optical properties- North<br>Holland Publishing Company, 1972, pg. 491.                                                               |
| 232. • | W.Nebe,Messen,Steuern,Regeln 14/9,177(1971).                                                                                                                           |
| 233.   | G.Schreyer -Kunstsoff-Handbuch- Polymethacrylate vol.9<br>Carl Hanser Verlag, Munchen, 1975 pg. 169, 231, 751 și u.                                                    |
| 234. • | S.B.Ainbinder și E.F.Rastrighina, Vîsokomolek.soedin.5/9,<br>1398-1403(1963).                                                                                          |
| 235    | MIlavsky, G.L. Slomimskii și J. Janacek, J. Polymer Sci., Fart.C,                                                                                                      |
|        | nr.16,329-337(1966)                                                                                                                                                    |

- 236. A.A.berlin, O.G.Sel'skaia, E.S.Paukova, E.S.Mamedova și N.G.Matveeva, Vîsokomolek.soedin., A, 10/12, 2642 -2649(1968).
- 237. R.M.Wiley și F.E.Martin, J.Makromol.Sci., Al, 4, 635-642(1967) din: CA 67, 109109 b(1967).
- 238. T.R.Manley, Chem. Ind. 43, 1797(1966) din: CA 66, 29250 e(1967).
- 239. Chin. Yen, Anal. Chem., 40/10, 1516 1520(1968) din: CA 69, 59583 w(1968).
- 240. R.M.Aseeva, T.V.Zeleneţkaia şi A.A.Berlin, Chem.tvesti, 23/3, 258-262(1972) din: CA 77 115027 w (1972).
- 241. J.Hasa și J.Janaček, J.Polymer Sci., part C, nr. 16, 317~328(1966).
- 242. D.Munteanu, R.Ciopor și I.Nanu Buletin științific și tehnic-I.P.T. nr.2/1980, sub tipar.
- 243. E.M. Fettes -Chemical Reaction of Polymers, Interscience Publishers, New-York, 1964, pg. 544.
- 244. A.D.Jenkins Polymer Science, vol 2, North Holland Publishing Co., Amsterdam 1972 pg. 1279.
- 245. N.I.Şişkin şi M.F.Milagin,Fizika tverdogo tela,4/10,2681-2688 (1962).
- 246. O.Wichterle gi J.Treçoval, Pat.Brit.1054018,4 ian.1967 din: CA 66,38632.h (1967).
- 247. H.F.Milagin, N.I.Sişkin, Fizica tverdogo tela 4/10,2689-2691 (1962).
- 248. ~ T.V.Samraevskaia, N.A.Scedolevskaia și S.I.Sokolov, Dokl.Akad. Nauk SSSR, 150/4, 859-861(1963).
- 249. J.Dechant, Ultrarotspektroskopische Untersuchungen an Polymeren, Akademie-Verlag-Berlin, 1972 pg. 302.