INSTITUTUL POLITEHNIC IAȘI

FAULTATEA DE TEHNOLOGIE CHIMICA

JOHITIEUTII LA MODELAREA PROCESULUI CHIMIC INDUSTRIAL DE OXIDARE CATALITICA A METANULUI CU VAPORI DE APA

Ing. SIMINICEANU ILIE

BIBLIOTECA CENTRALĂ UNIVERSITATEA "POLITEHNICA" TINIȘOARA

.

Conducator științific Profesor Ing. CALISTRU CONSTANTIN

MISTITUTUL POLITEHNIC TIMIŞOARA BIBLIOFLCA CENTRA Volumul Dulap

Iași - 1980

INTRODUCERE

Industria chimică din țara noastră s-a dezvoltat, în special după Congrosul al IX-lea, într-un ritm fără precedent, ajungind actári una din ramurile de bază ale economiei naționale. Productia fizice a industriei chimice din anul 1980 este mai mare de 300 ori decît cea din anul 1938 și de peste 12,3 ori mai mare decît în anul 1965. Datorită acestei dezvoltări rapide, România ocupă locul 10 în lume la producția chimică globală, locul 6 la prelucrarea gazelor naturale, locul 8 la soda caustioh, locul 10 la cauciuc sintetic și locul 13 la fire și fibre sintetice /1-4/. Producția fizică, pe categorii de produse, a cuescut în anul 1980 față de 1965, astfel: îngrășăminte chimice 100% - de 14,5 ori, cauciuc sintetic - de 11 ori, materiale și rășini sintetice - de 10 ori, fire și fibre chimice - de 8,2 ori, cosmetice - de 8 ori, detergenți - de 7,8 ori, medicamente - de 5,5 ori, acid sulfuric - de 4,4 ori, lacuri și vopsele de 4 ori, anvelope - de 2,9 ori etc. /3/.

Dezvoltarea puternică, preponderentă, a industriei de îngrășăminte chimice din România a fost determinată de doi factori esențiali /3/: necesitatea modernizării și intensificării agriculturii și valorificarea pe această cale a gazului metan. -scul metan este transformat în hidrogen necesar sintezei amoniacului care este apoi utilizat la obținerea altor compuși cu uzot și în special a îngrășămintelor cu azot. Producția de amoniac din România a crescut de la 0,265 milioane tone, în 1965, - ± 2,018 milioane tone în 1980, realizîndu-se în special după du ur 39%, în instalații de mare capacitate (300.000 t/an) pe o singura linie. Ministerul Industriei Chimice și Centrala industrială de îngrășăminte chimice s-au preocupat continuu de operarea optimală a acestor instalații și perfecționarea lor. In cadrul acestor preocupări centrala a solicitat și colaborarea catedrei TSAMC de la I.P. Iași. Această colaborare, pe bază de contracte de cercetare științifică, începută în anul 1973, continuă și astăzi.

Cercetările de inginerie chimică asupra proceselor din liniile de amoniac de la C.I.C. Turnu Măgurele, C.I.C. Piatra Noamt și C.C.Craiova, efectuate în cadrul acestor contracte au relevat două aspecte care au determinat alegerea temei acestei lucrări; importanta deosebită a procesului de conversie a metanului în cadrul liniei de obținere a amoniacului și stadiul actual limitat de cercetare a acestui proces din punctul de vedere al ingineriei chimice. In liniile noi de amoniac conversia metanului se face în două trepte: în prima treaptă are loc conversia catalitică a metanului cu vapori de apă iar în treapta a doua se introduce și aer necesar pentru obținerea amestecului hidrogen-azot. Cercetările efectuate în această lucrare se rereră în primul rînd la procesul de conversie catalitică a metanului cu vapori de apă numit și "reformare" primară. Acolo unde este necesar se studiază și aspectele specifice care apar în cazul în care alături de metan sînt prezente și hidrocarburi superioare. De asemenea se studiază, prin intermediul bilanțurilor, influența prezenței dioxidului de carbon din amestecul metan-abut asupra performanțelor procesului. Acest dioxid de carbon poate proveni fie din gazele naturale sărace în metan, fie introdus intenționat în scopul economisirii aburului. Datele prezentate asupra acestei variante a procesului - conversia

II

metanului cu vapori de apă și dioxid de carbon - pot fi folosite la proiectarea unui procedeu modificat de obținere a gazului de sinteză, neaplicat încă la scară industrială.

Prezenta lucrare cuprinde 10 capitole în cadrul a 180 de pagini care includ 58 figuri, 88 tabele și 233 indicații bibliografice. O parte din tabele se prezintă în anexele I-V pentru a nu fragmenta locvura textului.

In capitolul 1 se evidențiază faptul că procesul de conversie a metanului cu vapori de apă este principala verigă din lanțul de procese care duc la valorificarea superioară a acestuia. Se prezintă sintetic produsele ce se pot obține direct dua metan precum și din componentele principale rezultate la conversia acestuia: H_2 , CO, CO₂. Procesul are și importante perspective: la transportul căldurii, siderurgia nucleară etc. Se prezintă stadiul actual al cercetării procesului potrivit lucrărilor existente în literatura de specialitate și se evidențiază contribuțiile originale aduse în lucrare.

In capitolul 2 se stabilesc modelele matematice de bilanț de masă, primare și secundare, sub forma ecuațiilor algebrice, pentru procesul de conversie a metanului în cele trei variante de nologice: metan-abur, metan-hidrogerburi superioare-abur, metan-dioxid de carbon-abur. Ecuațiile se ștabilesc într-o forma care permite utilizarea lor etît la controlul funcționării proceselor industriale, la analiza desfășurării proceselor de seculibru cît și la descrierea matematică generală a procesului. Medelete matematice de bilanț în forma secundară au o deosebită importanța practică deoarece evidențiază direct parametrii care tratule isterainați la iegi es din reactor pentru controlul procesului.

III

In capitolul 3 se stabilesc modelele matematice de bilar, termic ale procesului în cele trei variante. Aceste ecuații se stabilesc într-o formă originală, propice utilizării calculatorului. Ele exprimă direct dependența consumului total și al consumului specific de căldură în proces, de parametrii tehnolosici le care lucrează reactorul. Luînd în considerație și procesul de combustie care furnizează această căldură în exteriotei le actorului, se stabilesc ecuațiile cu care se determină cesul apecific de combustibil. Drept combustibil se considei facul metan, gaze de purjă rezultate de la ciclul de sinteză a macului seu amestecuri de gaz metan - gaze de purjă.

Caritolul 4 este consacrat analizei la calculator pe baza modelului matematic al desfășurării procesului la echilibru. Pentru fiecare din cele trei variante ale procesului se stabilește modelul matematic al desfășurării acestuia la echilibru. Aceste modele sînt sisteme complexe de ecuații algebrice neliniare care se rezolvă la calculator prin variante originale ale metodelor existente obținîndu-se date noi, inexistente în literatură. Valorile gradelor de transformare teoretice astfel obținute sînt tabelate și analizate cu ajutorul diagramelor.

Rezolvarea simultană a modelelor matematice de bilanț de masă și de căldură, la echilibru, a permis evidențierea, pentru prima dată, a unor seturi de parametri optimi care minimalizează consumul de căldură în procesul de conversie a metanului cu vapori de apă.

Datele obținute au permis, de asemenea, desprinderea unor concluzii originale - în privința modului în care influențează prezența dioxidului de carbon și (sau) a hidrocarburilor supericare asupra performanțelor reactorului.

IV

In capitolul 5 se verifică valabilitatea modelelor matematice de bilanț de masă și căldură stabilite, la scară industrială, utilizînd datele experimentale obținute pe perioade de 12 zile în trei instalații de fabricare a amoniacului prin conversia metanului și respectiv a gazului natural cu vapori de apă. Se stabilesc parametrii care trebuie determinați pentru concretizarea bilanțurilor, se analizează statistic valorile experimentale ale acestor parametri. Ecuațiile bilanțului de maeă se verifică comparînd valorile fracțiilor molare raportate la gazul "uscat", pentru trei componente care se determină direct, cu cele calculate. Ecuațiile bilanțului termic se verifică comparînd consumul de combustibil calculat cu cel măsurat.

După această verificare s-au comparat bilanțurile teoretice cu cele reale prin intermediul gradelor de transformare. Pentru toate instalațiile s-a constatat că procesul decurge practic la echilibrul chimic. Această concluzie, deosebit de importantă, indică faptul că procesul industrial se desfășoară după un model macrocinetic de transfer de căldură. Pe baza aceleași concluzii, s-au furnizat instelațiilor analizate nomograme care permit controlul funcționării reactorului de reformare, determinarea gradului de îmbătrînire a catalizatorului.

In capitolul 6 se analizează modelele macrocinetice posibile luînd în considerație atît procesele de transformare și transfer de masă cît și cele de transformare și transfer de căldură. Se face o analiză amplă a datelor existente în literatură asupra coeficienților acestor modele. Se aprofundează în special literatura consacrată transferului de căldură în reactoarele catalitice tubulare cu strat fix. Ecuațiile existente Se prezintă sintetic, sub formă de tabele urmate de analize

V

critice.

Pe baza concluziilor din capitolul 5, se presupune că procesul se desfășoară după modelul macrocinetic combinat: transfer de căldură de la peretele reactorului la stratul de catalizator. Date cu privire la coeficientul global de transfer de căldură, definit prin ecuația acestui model macrocinetic, exista în literatură dar nu sînt obținute în condițiile în care lucrează un reactor tubular de reformare. De aceea se determină coeficientul global de transfer termic utilizînd o instalatie proprie ce constituie un model fizic al reactorului isacstrial. Metoda folosită și datele obținute sînt prezentato in capitolul 7. Instalația concepută cuprinde un tub care are același diametru cu al reactorului industrial multiplu, umplut cu catalizator industrial de reformare și cu lungimea mai mare decît"lungimea de intrare" necesară stabilizării regimului termic. Sistemul de măsurare a temperaturilor s-a conceput astfel încît să diminueze cît mai mult erorile. Rezultatele obținute 5-au corelat sub forma unei ecuații criteriale și s-au comparat cu datele existente în literatură. Ecuația proprie stabilită este utilizată la concretizarea modelului matematic.

In capitolul 8 se stabilește modelul matematic al procesuiui, bazat pe modelul macrocinetic combinat de transfer de căldură al cărui coeficient se determină cu relația proprie stabilită.

Modelul astfel concretizat pentru reactorul tubular de reformare (considerînd un singur tub cu catalizator) se verifică prin compararea lungimii tubului și a profilurilor concentrației și temperaturii calculate, cu cele măsurate. Modelul verificat este apoi utilizat la analiza la calculator a in-

VI

fluenței paramobrizer shapes volumilar de cătalizator necesar și asupra gradelor de transformare realizate. Verificarea modelului confirmă în același timp și precizia ecuației stabilită pentru coeficientul clobal de transfer. Modelul matematic poate fi deci utilizat la proiectares enor noi reactoare de același tip constructiv.

Pentra o similare mai precisă e reactorului (luînd în considerație veriația presiunii pe lungimea reactorului) cît și pentru găsirea condițiilor în care pierderea de presiune (și aeci consumul de energie) prin stratul de catalizator este miciră, se corectează unele especte ale hidrodinamicii reactorului do reformare. Rezultatele sînt prezentate în capitolul 9. Devarece ecuațiile existente în litoratură pentru calculul variației sestiunii pe lungimea stratului prezintă inconsecvențe, se fac determinări proprii și, pe baza lor, se stabilește o nouă ecuație, pornind de la relația de bilanț a cantității de mișcare.

Pe baza rezultatelor prezentate în capitolele 1 - 9 se evidențiază, în capitolul 10, concluziile generale și contribuțiile originale cu importanță teoretică și practică.

Lista notațiilor utilizate se prezintă final, pe capitole, în ordinea apariției în text. Lucrarea se încheie cu lista bi-

VIII

TABLA DE MATERII

Pag.

--

Cap.l	Probleme generale	1
1.1.	Direcții de valorificare superioară a gazului natural	1
1.2.	Stadiul actual privind cercetarea procesului de conversie a metanului. Cercetările între- prinse în această lucrare	7
Cap.2	Modele matematice de bilanț de masă	12
2.1.	Procesul de transformare catalitică a metanu- lui cu vapori de apă	12
2.2.	Procesul de transformare a metanului cu va- pori de apă și dioxid de carbon	19
2.3.	Transformarea cu vapori de apă a gazului natural cu un conținut ridicat de hidrocar- buri superioare	22
Cap.3	Modele matematice de bilanț termic	30
3.1.	Bilanțul termic în procesul de conversie ca- talitică a metanului cu vapori de apă	30
3.1.1.	Consumul specific de căldură	30
3.1.2.	Consumul specific de combustibil	33
3.2.	Bilanțul termic în procesul de conversie ca- talitică a metanului cu vapori de apă și	
	dioxid de carbon .	41
3.2.1.	Consumul specific de căldură	41
3.2.2.	Consumul specific de combustibil	43
3 . 3.	Bilanțul termic în procesul de conversie cu va- pori de apă a gazului natural cu un conținut ridicat de hidrocarburi superioare	43

	-26°	Dro
Cap.4	Amalina la Galculator pe baza modelului mate-	
	matte al destașurării procesului la echilibru	45 ·
4.1.	Conversia metanului su vapori de apă	47
4.1.1.	Modelul mavematic al destășurării procesului	<i>"</i>
	le = el : l 2 bru	47
4.1.2.	Motoda de rezolvare numerică la calculator a modelului	49
4.1.3.	Rezultate obținute	53
4.1.4.	Analiza regultatelor	54
.2.	Conversia metanului cu vapori de apă și dioxid de carbon	63
,2,1.	Modelul matematic al desfășurării procesului	
	la ecallibru	63
;	Heroda de rezolvare numerică la calculator	64
1.2.3.	Rezultate obținute	64
4.2.4.	Analiza rezultatelor	65
~·?•	Conversia gazului natural cu vapori de apă	70
Cap.5	Verificarea experimentală a modelelor mate-	
	matice do bilanț	72
	Parametrii care trebuie determinați	72
ر مکر ر	valori experimentale ale parametrilor care	
	trebuie determinați. Verificarea modelelor	73
<u>ም</u> • ን •	Compararea bilanțurilor reale cu cele teoretice	79
Cap.6	Modele matematice bazate pe modele macrocinetice	82
5.1.	Mecanismul macrocinetic	82
6.2.	Modele macrocinetice de transfer și trans-	84
· · · ?	local many and the "transform and there says and	84
in the second	TACAL MACLOCTHEALE ALGUDICI. ALTH TAVA RANARA	UT

6.2.2.	Model macrocinetic "procese de transformare"	86
6.2.3.	Model macrocinetic combinat "transfer de masă	
	prin pori - simultan cu transformarea"	88
6.3.	Modele macrocinetice de transformare și transfer de căldură	89
6.3.1.	Coeficientul global de transfer	92
6.3.2.	Conductivitatea echivalentă a stratului	96
6.4.	Stabilirea modelului macrocinetic după care se desfășoară procesul industrial de reformare	
	a metanului	99
Cap.7	Determinarea coeficientului global de transfer de căldură	100
7.1.	Metoda de determinare. Mărimi măsurate direct	100
7.2.	Instalația experimentală	101
7•3•	Rezultate obținute	107
7.4.	Interpretarea rezultatelor	111
Cap.8	Analiza procesului și proiectarea reactoru-	
	lui pe baza modelului matematic	116
8.1.	Stabilirea modelului matematic	117
8.2.	Verificarea modelului matematic	122
8.3.	Analiza procesului și proiectarea reactorului pe baza modelului matematic	126
Cap.9	Hidrodinamica reactorului de reformare pri- mară a metanului	129
9.1.	Introducere	129
9.2.	Analiza critică a ecuatiilor din literatură	130

X

Pe

		•
9.3.	Obținerea datelor experimentale	136
9.4.	Interprevarea și corelarea datelor experi- mantale	142
C ap.10	Concluzii generale	148
	Notații și indici	160
	Bibliografie	165
	Anexe 1 - 5	

Pag.

CARITOLUL I. FROELENE GENERALE

1.1. Directui de valorificare supericară a gazului natural

Tara noascië scupă un 100 fruntaș în ierarhia mondială în 'ceea ce privește prelucrarea gazului natural. Aceasta,în primul rînd, datorită rezervelor de hidrocarburi gazoase naturale, cu peste 99% metan, care se găsesc în subsolul Transilvaniei și unele zone subcarpatice. În amestec cu hidrocarburile naturale se mai găsesc; ca impurități, cantități diferite de azot, dicxid de carbon, hidrogen sulfurat sau vapori de apă. Gazul natural din bara noastră are cel mai ridicat conținut de metan din lume și foarte puține impurități, așa cum rezultă din tabelul 1. /5/.

Composiția	%	hidro	carbur:	L		%	impurit	ăți
Zácamint	CH4	°2	°3	°4	°5	^{CO} 2	N ₂	^H 2 ^B
România	99,5		0,1		-	-	0,4	-
U.R.S.S. (Ucraine)	94,8	2.7	0 ,8	0,4	0,3	0,2	0,8	-
Algeria	79,6	7,4	2,7	1,4	3,6	0,2	5,1	-

Tabelul 1. Composiția unor zăcăminte de gaze naturale

Valerificerea superioară a gazului natural se face prin utilizarea su ca materie primă pentru obținerea unor produse cu un înalt grad de prelucrare. Deși ponderea gazului metan "Vehnologic" a crescut mult în ultimii ani, în țara noastră cea mai mare parte (275%) se utilizează încă drept combustibil. Din tebelul 2 rezultă că, deși ponderea gazului metan în balanța energetică a țării a scăzut mult în ultimul deceniu, acesta rămîne încă principala sureă internă de energie primară. Reducerea în continuare a consumului de gaz metan combustibil va fi

posibilă prin utilizarea extensivă a cărbunilor și șisturilor, valorificarea la maximum a potențialului hidroenergetic și valorificarea unor surse neconvenționale de energie /6/. Astfel vor rămîne cantități tot mai mari de gaz natural pentru industria chimică, va crește gradul de chimizare a acestuia. Tabelul 2. Dinamica surselor consumului de energie în România,

Sursa de energie	% d			
	1970	1975	1980	•
Gaz natural	55,60	45,60	37,00	
Tiței	20,50	28,10	31,00	
Cărbuni și șisturi	16,70	19,60	26,00	
Hidroenergie	1,70	3,50	4,40	
Lemn și alte surse	5,50	3,20	1,60	

in perioada 1970 - 1980 /5/

Stiința și tehnologia românească au deja o serie de contribuții importante în direcția valorificării superioare a gazului natural prin realizarea primei instalații de negru de fum din Europa, prima sinteză a formaldehidei și a doua instalație de amoniac din lume pe bază de gaz metan /5/.

In viitor, valorificarea tehnologică a gazului natural trebuie efectuată după un profil optim de prelucrare, în cadrul unor platforme cu profil larg anorganic-organic, astfel încît elementele primare, carbon și hidrogen, să se regăsească cel puțin în proporție de 90% în produsele finite /5/. Aceste platforme trebuie să cuprindă două categorii de instalații: instalații principale, care produc și consumă gazele de sinteză derivate din metan și instalații care prelucrează produsele obținute în primele.

Produsele principale care se pot obține direct din gazul

notan 6. 19 - and a share a share that the state of a

16 2D

Tabelui a ar activity produce care se por obvice direct dia

Produsal. DEdite-Produse derivate Eloni trais-Reactanti cipal diaget formant4 an the standard and the standard of the Amoniac, metanol, H₂0 (+ aer) Gaz de straat Conversie alcooli superiori catalitica. etc. (Se detaliază Oridare O₂, aer partialà în fig.l și 2). Acetaldehidă, cloru-ră de vinil, PVC, Acetilenä Descompuna-123 re termică 0₂ acetat de vinil, vi-Oxidare nilacetilenă, cloropartială pren, policloropren, acrilați, acid acrilic, poliacrilați, copolimeri etc. $O_2(NH_3)$ td ctanktcianamidă, acriloamonoxinitril, poliacrilo-1. **. .** dare nitril, metacrilat de metil etc. Derivați Cl₂, Br₂, I₂, F₂ balogenare Solvenți, agenți de n i yatit răcire, aerosoli, poliamide, polimeri. Solfură de S conversie Xantogenați, solvenți, DALLOL catalitică fungicide, ierbicide. HNO3 aitrare Nitrometan, solvenți. Nogra de fun descompunere Pigmenți, material termică de umplutură 02 oxidare par-(vulcanizare) tială · · · · lifty and Produce furajors e 🔪 bacteriana săruri, energie

Gazul de Bintëză (CO + H₂) precum și componentele sale Beparate stau la baza obținerii unor produse importante ale in-Aletrici chimice, cu multiple utilizări în alte ramuri industeiale. În figurile 1 și 2 se prezintă schematic principaleie 4

direcții de valorificare a componentelor gazului de sinteză /7/.

Fig.l Principalele direcții de utilizare a hidrogenului.

Sig. 2 Principalele direcții de utilizare a oxidului de carbon și hidrogenului (gaz de sinteză).

Cea mai mare parte a gazului de sinteză, obținut din metan, se utilizează la fabricarea amoniacului și metanolului /8/. Importanța acestor produse va crește în viitor, nu numai ca produse finite sau intermediare ale industriei chimice ci și ca vector de energie /9/. Cel mai ieftin amoniac se obține folosind hidrogen care provine din gaz metan /5/, de aceea, peste 60% din hidrogenul obținut pe această cale se consumă la sinteza amoniacului.

Dintre procedeele de obținere a gazului de sinteză din gaz natural cel mai economic este transformarea catalitică a metanului cu vapori de apă la presiune /5/. In prezent, acest proces este cel mai ieftin chiar și pentru obținerea hidrogenului pur comparativ cu procedeele clasice de obținere a acestuia: oxidarea carbonului cu vapori de apă, electroliza apei, oxidarea parțielă a hidrocarburilor.

Prin urmare, transformarea catalitică a metanului cu vapori de apă, în gaz de sinteză, reprezintă veriga primară din lanțul de procese prin care se asigură o valorificare superioară a gazului metan. Date recente din literatură întrevăd și alte utilizări, de mare perspectivă, ale acestui proces cum sînt: siderurgia nucleară /13/ și transportul căldurii /14/. În primul caz hidrogenul obținut se utilizează la reducerea directă a minereurilor, reactorul de refermare a metanului fiind încălzit, indirect, cu heliu (la 1000°C) care preia căldura de la o centrală nucleară /13/. Utilizarea acestui proces la transportul căldurii a fost încercată de firma Haldor Topsoe /14/ care propune un sistem de utilizare rațională a energiei produsă de centralele nucleare. In apropierea centralei, o instalație de reformare a gazului metan cu vapori de apă, proces puternic endoterm, consumă căldura reziduală a centralei, producind gaz manatet noin conducto nînă la controla

consumatoare de energie termică. Aici, gazul de sinteză este transformat catalitic în metan și vapori de apă, prin procesul invers, de metanizare. Procesul de metanizare are un efect termic egal și de semn contrar cu cel al reformării. Căldura degajată la metanizare este recuperată sub formă de abur iar gazul metan este readus printr-o conductă, la instalația de reformare. Acest procedeu asigură o valorificare mai bună a căldarii reziduale din centralele nucleare, la distanțe mari, pierderile de energie limitîndu-se doar la energia consumată pentru transportul gazelor prin conducte de la centrală la consumator și invers.

1.2. Stadiul actual privind cercetarea procesului de conversie a metanului. Cercetările întreprinse în această lucrare.

Procesul de transformare catalitică a metanului cu vapori de apă este tratat descriptiv în unele manuale, tratate sau monografii consacrate tehnologiei amoniacului, produsul esențial prin care este legat azot atmosferic sub formă de îngră;ăminte chimice sau alți derivați ai azotului /15-26/. Prima instalație industrială de obținere a hidrogenului prin această metodă a fost construită în anul 1930 de către firma Standard Oil, la Bayway, în New Jersey /25/. Primele lucrări consacrate acestui proces au apărut mai tîrziu /27-30/ și în special după enul 1960. Cercetările raportate în literatură se referă la echilibrul reacțiilor principale și secundare, de formare a carbonului /27-38/, la obținerea unor catalizatori eficienți și rezistenți la otrăvuri /39-42/, la cinetica reacțiilor principale /43-57/ precum și la modelarea și projectarea reactorului /58-67/.

Cu privire la transformarea catalitică cu vapori de apă

?

a gazului natural ce conține pe lîngă metan și omologi superiori ($C_2 - C_5$) există o serie de cercetări care încearcă să elucideze mecanismul reacțiilor care au loc /68-78/. Date și mai puține se găsesc cu privire la procesul de transformare catalitică a metanului cu vapori de apă în prezența dioxidului de caubon /78,80/.

Rezultatele cercetărilor proprii, prezentate în lucrare, completează literatura de specialitate consacrată acestui proces. Prin însăși structura lucrării se oferă, în același timp, o metodă de abordare a acestui proces complex, din punctul de vedere al ingineriei proceselor chimice unitare /81/.

Se stabilesc, în primul rînd, modelele matematice de bilanț de masă atît în forma primară cît și în forma secundară, pe baza metodei definirii gradelor de transformare. Aceste ecuații sînt indispensabile atît ca punct de plecare pentru descrierea matematică a procesului cît și pentru conducerea științifică a procesului industrial prin intermediul bilanțurilor, pentru stabilirea consumurilor specifice de materiale în proces și pe întreaga linie. Aceste ecuații nu există în literatura consultată. Cu prilejul stabilirii lor s-au elucidat unele probleme teoretice și practice care vor fi redate în capitolul 2 și în concluziile finale.

Procesul de reformare a metanului este puternic endoterm, căldura necesară fiindu-i furnizată de un proces auxiliar de ardere a unui combustibil care este, de obicei, tot gazul metan. De aceea în lucrare se stabilesc în continuare modelele matematice de bilarț termic într-o formă originală, propice utilizării calculatorului. Aceste ecuații permit determinarea consumului total de căldură,a consumului specific de căldură precum și a consumului de combustibil în funcție de parametrii

tehnologici ei prosasului de reformare și ai procesului de ardere.

Datele existente în literatură asupra compoziției de echilibru în procesul de conversie a metanului cu vapori de apă /22, 24-26, 35, 36/ sau cu vapori de apă și dioxid de carbon /79/ se referă la intervale restrînse de parametri, unele fiind depășite de evoluția rapidă a tehnologiei. In lucrare se prezintă noi date privind variația gradelor de transformare la echilibru în aceste procese, extinzîndu-se domeniile de variație a parametrilor la condițiile actuale și cele de perspectivă (presiune unică de pînă la 100 at. pe întreaga linie de amoniac, temperaturi mai mari și compoziții inițiale diferite). Pe baza datelor obținute la calculator se analizează procesele, evidențiinduse avantajele adăugării dioxidului de carbon; se analizează dependența consumului teoretic de căldură de parametrii de lucru, evidențiindu-se pentru prima dată, parametrii optimi care minimalizează consumul de combustibil. Rezultatele și concluziile originale desprinse au fost prezentate extensiv într-o serie de lucrări publicate anterior /82-86/ și aplicate la scară industrială pe baza rapoartelor finale ale contractelor încheiate cu Centrala de îngrășăminte chimice /101,102/. In lucrare sînt prezentate, restrins, în capitolul 4.

Modelele matematice stabilite sînt verificate pe baza datelor experimentale obținute în trei instalații industriale de la C.I.C. Turnu Măgurele, C.C. Craiova și respectiv C.I.C. Piatra Neamț. Apoi se întocmesc bilanțurile teoretice și se compara cu cele reale. Aplicarea acestei metode originale a permis desprinderea unei concluzii importante pentru modelarea macrocinetică a procesului: procesele de transformare de masă ating echilibrul în reactorul industrial și deci apare posibilitatea

- 9

desfășurării procesului după un model macrocinetic termic. Această concluzie a canalizat cercetarea spre domeniul transfe rului de căldură. Literatura consacrată transferului de căldură în strat fix este foarte bogată /129-199/. Nici una din lucresi nu se referă însă la condițiile din reactorul de reformare. De aceea în lucrare se cercetează transferul de căldură pe un model fizic, la scară de laborator, al reactorului industrial tubular. Se stabilește o ecuație proprie, pe baza datelor experimentale obținute, pentru coeficientul global de transfer de căldură de la peretele tubului la stratul de catalizator.

In continuare, se stabilește modelul matematic al procesului pe baza modelului macrocinetic termic combinat în care intervine coeficientul global de transfer determinat anterior. Se verifică acest model comparînd datele calculate cu cele măsurate pe un reactor industrial. Apoi se indică modul de utilizare a modelului la proiectarea tehnologică a reactorului și analiza procesului la calculator. Modelul stabilit și verificat în lucrare este original ca metodă de stabilire și componență. Datele obținute la calculator pe baza modelului sînt,de asemenea, originale. O parte din aceste rezultate au fost deja publicate./87,88,90,95/.

In vederea completării modelului matematic cu ecuațiile bilanțului cantității de mișcare și, ca scop practic imediat, a determinării practice a pierderilor de presiune din stratul de catalizator, se cercetează hidrodinamica reactorului. Datele din literatură legate de acest capitol /207-229/ nu se referă direct la reactorul de reformare sau la sisteme similare. Ecuațiile existente pentru calculul pierderii de presiune nu se pot aplica la stratul de catalizator din reformer în special datorită formei particulare a particulelor (de tip inele

Raschig) a persivății stratului și a raportului mic dintre diametrul resoturelui și diametrul particulelor. În lucrare se prezintă caracteristicile hidrodinamice și dațele experimentale proprii obținute în laborator folosind un strat identic,din punct de vadare geometric,cu cel industrial. Datele sînt prelucrate statistic și corelate sub forma unei ecuații proprii.

O parte din rezultatele cercetărilor, prezentate în capitolele 2 - 9 ale acestei lucrări, au fost valorificate sub forma celor 19 lucrări științifice proprii citate /82-100/, dintre care 15 publicate sau în curs de apariție, în reviste din țară și străinătate, volume ale simpozioanelor și congreselor /82-95,100/ iar patru comunicate /96-99/, precum și sub forma contractelor de cercetare științifică /101-104/.

12

CAPITOLUL 2. MODELE MATEMATICE DE BILANT DE MASA

In acest capitol se stabilesc modelele matematice primare și secundare de bilanț de masă pentru procesul de obținere a gazului brut de sinteză în trei variante tehnologice:

- transformarea catalitică a metanului cu vapori de apă,

- transformarea catalitică a metanului cu vapori de apă și dioxid de carbon și

- transformarea gazului natural cu un conținut ridicat de midrocarburi superioare.

2.1. Procesul de transformare catalitică a metanului cu vapori de apă

Procesul de transformare catalitică a metanului cu vapori de apă are, ca sursă de hidrogen, o deosebită importanță actuală și de perspectivă. În prezent, acesta reprezintă principalul procedeu de obținerea hidrogenului atît în țara noastră cît și pe plan mondial. Peste 60% din hidrogenul obținut pe această cale se utilizează la sinteza amoniacului, produs intermediar esențial pentru fabricarea îngrășămintelor chimice cu azot. În instalațiile moderne de obținere a amoniacului transformarea catalitică a metanului cu vapori de apă se face în două trepte. Procesul din prima treaptă se definește prin ecuația caracteristică (1):

$$\left[CH_{4} + H_{2}O + A'' \right]_{g} + \left[K \right]_{s} \longrightarrow \left[H_{2} + CO + CO_{2} + CH_{4} + H_{2}O + A'' \right]_{g} + \left[K \right]_{s}$$

$$(1)$$

Faza gazoasă la un moment dat conține cinci componente active, între care pot avea loc reacțiile (2) - (4):

$$CH_4 + H_2 O = CO + 3H_2$$
 (2)

BUPT

$$S_{2} = E_{2} S_{2} = S_{2} S_{3}$$
 (3)

$$CH_{\mu} + 2H_{p} 0 = 00_{p} + 4H_{p}$$
 (4)

$$CH_4 + \tilde{C}O_2 = 2CO + 2H_2$$
 (5)

Reacțiile (6)-(10), care duc la formarea carbonului, nu sînt luaze în considerație la această etapă:

$$200 = C \stackrel{*}{\leftarrow} CO_2 \tag{6}$$

$$200 = 20 + 0_2 \tag{7}$$

$$c_2 = c + 0_2 \tag{8}$$

$$CH_4 = C + 2H_2$$
 (9)

$$CO + H_2 = C + H_2O$$
 (10)

Urmează să 59 stabilească care dintre ecuațiile stoáchiometrice (2) - (5) trebuie luate în considerație pentru descrierea stoichiometrică a masei de reacție. Pentru aceasta se aplică metoda algebrică a ortogonalizării /85,106,107/. Numărul de ecuații stoichiometrice independente (L) se stabilește pe baza relației (11):

$$\mathbf{L} = \mathbf{N} - \mathbf{R} \tag{11}$$

Decarece rangul (R) matricii atomilor (A_g) , asociată tabelul 4, este R = 3, rezultă că L = 2 și deci, numai două din reac, ile (2) - (5) sînt independente.

Component		Aa			^A _{R1}		
	С	H	0	A _{R2}	A _{R3}	A _{R4}	A _{R5}
СН4	1	4	0	-1	0	-1	-1
H ₂	0	2	0	3	1	4	2
cō	1	0	1	1	-1	0	2
co2	1	0	2	0	1	1	-1
н ₂ 0	0	2	1	-1	-1	-2	0

Tabelul 4. Indici și coeficienți stoichiometrici

Fe baza legii conservării atomilor, sînt independente reacțiile pentru care este valabilă relația /106/ :

$$14$$

$$A_{a} \cdot A_{R_{1}}^{T} = 0 \qquad (12)$$
Utilizind tabelul 4, se pote uçor constata că relația (12) este
verificată pentru fiecare din reacțiile (2) - (5) propuße:
pentru reacția (2):

$$\begin{pmatrix} 1 & 4 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix} (-1 & 3 & 1 & 0 & -1) = (0 & 0 & 0)$$
pentru reacția (3):

$$\begin{pmatrix} 1 & 4 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix} (0 & 1 & -1 & 1 & -1) = (0 & 0 & 0)$$
pentru reacția (4):

$$\begin{pmatrix} 1 & 4 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix} (-1 & 4 & 0 & 1 & -2) = (0 & 0 & 0)$$
pentru reacția (5):

$$\begin{pmatrix} 1 & 4 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{pmatrix} (-1 & 2 & -1 & 0) = (0 & 0 & 0)$$

Prin urmare, pentru descrierea stoichiometrică a procesului de reformare, reprezentat prin ecuația caracteristică (1), sînt posibile șase variante corespunzătoare celor șase perechi de ecuații proieniomeurice: (2) - (3); (2) - (4); (2) - (5); (3) - (4); (3) - (5) și (4) - (5).

Considerînd cuplul de ecuații (2) - (3) iar ca reactanți valoroși metanul pentru reacția (2) și oxidul de carbon pentru reacția (3), relațiile de definiție ale celor două grade de transformare sînt:

$$\gamma_{\rm CH_4} = \frac{n_{\rm CH_4}^{02} - n_{\rm CH_4}^2}{n_{\rm CH_4}^{02}} = \frac{n_{\rm H_2}^{02} - n_{\rm H_20}^2}{n_{\rm CH_4}^{02}} = \frac{n_{\rm CO}^2 - n_{\rm CO}^{02}}{n_{\rm CH_4}^{02}} = \frac{n_{\rm H_2}^2 - n_{\rm H_2}^{02}}{n_{\rm H_2}^{02}} = \frac{n_{\rm H_2}^2 - n_{\rm H_2}^{02}}{n_{\rm H_2}^2} = \frac{n_{\rm H_2}^2 - n_{\rm H_2}^2}{n_{\rm H_2}^2} = \frac{n_{\rm H_2}^2$$

$$\gamma_{\rm CO} = \frac{n_{\rm CO}^{03} - n_{\rm CO}^{3}}{n_{\rm CO}^{03}} = \frac{n_{\rm H_2O}^{03} - n_{\rm H_2O}^{3}}{n_{\rm CO}^{03}} = \frac{n_{\rm CO_2}^{3} - n_{\rm CO_2}^{03}}{n_{\rm CO}^{03}} = \frac{n_{\rm H_2}^{3} - n_{\rm H_2}^{03}}{n_{\rm CO}^{03}}$$
(14)

Ecuațiile de concretizare (15) permit eliminarea indicilor intermediari din relațiile (13) și (14):

$$n_{CO} = n_{CO}^{3} \qquad n_{CH_{4}}^{O2} = n_{CH_{4}}^{O} \qquad n_{CO}^{O3} = n_{CO}^{2}$$

$$n_{CO_{2}} = n_{CO_{2}}^{3} \qquad n_{H_{2}O}^{O2} = n_{H_{2}O}^{O} \qquad n_{H_{2}O}^{O3} = n_{H_{2}O}^{2}$$

$$n_{H_{2}O} = n_{H_{2}O}^{3} \qquad n_{CO}^{O2} = 0 \qquad n_{CO_{2}}^{O3} = 0$$

$$n_{CH_{4}} = n_{CH_{4}}^{2} \qquad n_{H_{2}}^{O2} = 0 \qquad n_{H_{2}O}^{O3} = n_{H_{2}O}^{2}$$

$$n_{H_{2}} = n_{H_{2}}^{3}$$

$$n_{H_{2}} = n_{H_{2}O}^{3} \qquad n_{H_{2}}^{O2} = n_{H_{2}O}^{2} \qquad n_{H_{2}O}^{O3} = n_{H_{2}O}^{2}$$

$$n_{H_{2}} = n_{H_{2}O}^{3} \qquad n_{H_{2}}^{O2} = n_{H_{2}O}^{2} \qquad n_{H_{2}O}^{O3} = n_{H_{2}O}^{2}$$

$$n_{H_{2}} = n_{H_{2}O}^{3} \qquad n_{H_{2}O}^{O3} = n_{H_{2}O}^{2} \qquad n_{H_{2}O}^{O3} = n_{H_{2}O}^{2}$$

$$n_{H_{2}} = n_{H_{2}O}^{3} \qquad n_{H_{2}O}^{O3} = n_{H_{2}O}^{2} \qquad n_{H_{2}O}^{O3} = n_{H_{2}O}^{2}$$

Po baza relațiilor (13), (14) și (15) se obțin əcuațiile algebrice primare de bilanț a_e componentelor, prezentate în tabelul 5. Introducînd notațiile: $\gamma_{CH_4} = \alpha_{si} \gamma_{CH_4} \cdot \gamma_{CO} = \beta$ se obține forma mai simplă a ecuațiilor primare de bilanț, din tabelul 6.

Pentru controlul funcționării instalației prin intermediul bilanțurilor sînt mai ut le ecuațiile secundare do bilanț în care gradele de transformare sînt înlocuite cu concentrații care se măsoară direct. Această înlocuire se face prin interme-

Component	Ecuatii de bilant
СН	п _{сн4} = п [•] сн ₄ п [•] сн ₄ Дсн ₄
[⊢] 2 ⁰	^п н ₂ 0 = ^п н ₂ 0 - ^п сн ₄ 7сн ₄ - ^п сн ₄ 7сн ₄ 7со
ΰ 0	$n_{co} = n_{cH_4}^{\circ} \eta_{cH_4}^{\circ} \eta_{cH_4}^{\circ} \eta_{cH_4}^{\circ} \eta_{cO}^{\circ} \eta_{$
	ⁿ co ₂ = ⁿ cH ₄ (CU
H ₂	$^{n}H_{2} = 3 ^{\circ}CH_{4} CH_{4} ^{+} ^{\circ}CH_{4} CH_{4} C$
A"	n _{,,} , - n _{,,}
TOTAL	$n_{T} = n_{T}^{\bullet} (1 + 2 \times C_{H_4}^{\bullet})$

Tabelul 5. Ecuațiile primare de bilanț de masă (forma A) în procesul de conversie a metanului cu vapori de apă

Tabelul 6. Ecuațiile primaro de bilanț de masă (forma B) în procesul de conversie a metanului cu vapori de apă.

Component	Ecuații de bilanț
СН4	n _{c H4} = n [*] _{c H4} (1 -∝)
H ₂ 0	$n_{H_2O} = n_{H_2O}^{\bullet} - n_{CH_4}^{\bullet} (aC + \beta)$
CO	$\Pi_{CO} = \Pi_{CH_4}^{\bullet} (\sim -\beta)$
C0 ₂	$n_{CO_2} = n_{CH_4}^{\bullet} \beta$
H ₂	$\Pi_{H_2} = \Pi_{CH_4}^{\bullet} (3 \propto + \beta)$
A ^{''}	$\Pi_{A''} = \Pi^{\bullet}_{A''}$
TOTAL	$n_{T} = n_{CH_{4}}^{\bullet} \left(1 + \dot{x}_{H_{2}0}^{\bullet} + \dot{x}_{A''}^{\bullet} + 2\infty \right)$

diul relation (16) și (17):

$$\mathbf{n}_{CE_4}^{o} \cdot \mathbf{\alpha} = \mathbf{n}_{CE_4}^{o} - \mathbf{n}_{CH_4}$$
(16)

$$n_{CH_4}^{\circ} \cdot \beta = n_{CO_2}$$
(17)

Se obțin astfel ecuațiile secundare de bilanț de masă din tabelul 7. Parametrii care trebuie determinați direct pentru rezelvarea acestor ecuații sînt fracțiile molare ale metanului (x_{CH_4}) și dioxidului de carbon (x_{CO_2}) raportate la gazul uned.

Datorită metodei de analiză a gazului brut de sinteză, Obținut la ieșirea din reactorul de reformare, este necesar, de cele mai multe ori, să se utilizeze fracțiile molare raportate la gazul uscat: X_{CH_4} și X_{CO_2} . Ecuațiile secundare de bilanț în funcție de aceste mărimi sînt prezentate în tabelul 8.

Gradele de transformare $\lesssim \text{si}/3$ se pot calcula în funcție ae fracțiile X_{CH4} și X_{CO2}, măsurate direct, cu ajutorul relațiilor (18) și (19).

$$\sigma = \frac{\mathbf{x}_{CH_{4}}^{o} (1 - \mathbf{x}_{CO_{2}}) - \mathbf{x}_{CH_{4}}}{\mathbf{x}_{CH_{4}}^{o} (1 + 3X_{CH_{4}} - \mathbf{x}_{CO_{2}})}$$
(18)

$$\beta = \frac{\mathbf{x}_{CO_2} (1 + 3\mathbf{x}_{CH_4}^{o})}{\mathbf{x}_{CH_4}^{o} (1 + 3\mathbf{x}_{CH_4}^{o} - \mathbf{x}_{CO_2})}$$
(19)

Component	Ecuatii de bilant
СН4	$n_{CH_4} = n_T^* \left(\frac{1+2x_{CH_4}^*}{1+2x_{CH_4}^*} \right) x_{CH_4}$
Η ₂ υ	$n_{H_{2}O} = n_{T}^{*} \left[x_{H_{2}O}^{*} - x_{CH_{4}}^{*} \left(\frac{1+2x_{CH_{4}}^{*}}{1+2x_{CH_{4}}} \right) \left(x_{CO_{2}}^{*} - x_{CH_{4}}^{*} \right) \right]$
co	$n_{CO} = n_{T}^{*} \left[x_{CH_{4}}^{*} - \left(\frac{1+2x_{CH_{4}}^{*}}{1+2x_{CH_{4}}} \right) \left(x_{CH_{4}}^{*} + x_{CO_{2}} \right) \right]$
со ₂ .	$n_{CO_2} = n_T^* \left[\frac{1+2 \times_{CH_4}^*}{1+2 \times_{CH_4}^*} \right] \times_{CO_2}^*$
H ₂	$n_{H_2} = n_1^* \left[3 \times_{CH_4}^{\bullet} + \left(\frac{1 + 2 \times_{CH_4}^{\bullet}}{1 + 2 \times_{CH_4}^{\bullet}} \right) \left(\times_{CO_2}^{\bullet} - 3 \times_{CH_4}^{\bullet} \right) \right]$
A	$n_{A'} = n_T^* \times_{A'}^*$
TOTAL	$n_{T} = n_{T}^{\bullet} \left(\frac{1+2 \times_{CH_{4}}^{\bullet}}{1+2 \times_{CH_{4}}^{\bullet}} \right)$

Tabelul 7. Ecuațiile secundare de bilanț de masă (forma A) un procesul de conversie a metanului cu vapori de ap

Tabelul 8. Ecuațiile secundare de bilanț de masă (forma B) în procesul de conversie a metanului cu vapori de apă

Component	Ecuatii de bilant
CH	$\Pi_{CH_{4}} = \Pi_{g_{U}}^{\bullet} \left(\frac{1 + 3 X_{CH_{4}}^{\bullet}}{1 + 3 X_{CH_{4}}^{\bullet} - X_{CO_{2}}} \right) X_{CH_{4}}$
00	$\Pi_{CO} = \Pi_{gu} \left[X_{CH_{4}}^{\bullet} - \left(\frac{1+3X_{CH_{4}}^{\bullet}}{1+3X_{CH_{4}}^{\bullet}X_{CO_{2}}} \right) \left(X_{CH_{4}}^{\bullet} + X_{CO_{2}} \right) \right]$
٥٥ ₂	$\Pi_{CO_{2}} = \Pi_{gu}^{\bullet} \left(\frac{1+3 \times CH_{4}}{1+3 \times CH_{4}} \right) \times CO_{2}$
H ₂	$\Pi_{H_{2}} = \Pi_{gu} \left[3 \times_{CH_{4}}^{\bullet} / \frac{1 + 3 \times_{CH_{4}}^{\bullet}}{1 + 3 \times_{CH_{4}}^{\bullet} \times_{CO_{2}}^{\bullet}} \right) \left(\times_{CO_{2}}^{\bullet} 3 \times_{CH_{4}}^{\bullet} \right) \right]$
Á'	$\Pi_{A''} = \Pi_{gu}^{\bullet} \left(1 - \lambda_{CH_4}^{\bullet} \right)$
TOTAL gaz uscat	$\Pi_{gu} = \Pi_{gu} \left(\frac{1 + 3X_{CH4}}{1 + 3X_{CH7} \times CO2} \right)$
H ₂ 0	$n_{H_{2}0} = n_{H_{2}0} - n_{gu} \left[x_{CH_{4}}^{-} - \frac{1+3X_{CH_{4}}^{-}}{1+3X_{CH_{4}}^{-}X_{CO_{2}}^{-}} \left(x_{CO_{2}}^{-} - x_{CH_{4}}^{-} \right) \right]$

2.2. Procesul de transformare a metanului cu vapori de apă și dioxid de carbon

19

Transformerea metanului cu amestec de vapori de apă și dioxid le carbon are e importanță deosebită în direcția valorificării unor gaze sărace în metan, cu conținut ridicat de CO₂, pentru obținerea unor gaze de sinteză cu rapoarte CO/H₂ variabile /85/. Ecuația caracteristică acestui proces este:

$$\left[CH_4 + H_2 O + CO_2 A^{*} \right]_{g} + \left[K \right]_{g} \rightarrow \left[H_2 + CO + CO_2 + CH_4 + H_2 O + A^{*} \right]_{g} + \left[K \right]_{g}$$
(20)

Pentiu statilirea modelelor matematice de bilanț se poate lua în considerație, și în acest caz, una din cele șase variante corespunzătoare celor șase perechi ce se pot alcătui din ecuațiile stoichiometrice (2) - (5). Considerînd cuplul de ecuații (3) - (5), se definește gradul de transformare a metanului ($\binom{r}{l \operatorname{CH}_4}$) pentru reacția (5) și gradul de transformare a oxidului de carbon ($\binom{n}{2\operatorname{CO}}$) pentru reacția (3). Notînd și în acest caz $\binom{n}{2\operatorname{CH}_4}$ $\swarrow \operatorname{si} \binom{n}{2\operatorname{CH}_4} \binom{n}{2\operatorname{CO}} = /3$ se obține ecuațiile primare de bilanț prezentate în tabelul 9.

Tabelul 9. Ecuații primare de bilanț de masă în procesul de conversie a metanului cu vapori de apă și dioxid

Component	Ecuația de bilanț
CH4	$n_{CH_{\mu}} = n_{CH_{\mu}}^{O} (1 - \alpha)$
CO	$n_{\rm CO}^{-1} = 2n_{\rm CH_{\mu}}^{0} (\alpha - \beta)$
Ш2	$n_{H_2} = 2n_{CH_{\mu}}^{0} (\alpha + \beta)$
coz	$n_{CO_2} = n_{CH_{\mu}}^{\circ} (\dot{x}_{CO_2}^{\circ} - \sigma + 2/3)$
H ₂ 0	$n_{\rm H_2O} = n_{\rm CH_4}^{\rm o^+} (\frac{100}{\rm H_2O} - 2/3)$
A''	$n_{A''} = n_{CH_4}^{o} \cdot x_{A''}^{o}$

as carbon

Ecuațiile secundare de bilanț se obțin, în acest caz, pe baza relațiilor de înlocuire (21) și (22):

$$n_{CH_4}^{o} \cdot c = n_{CH_4}^{o} - n_{CH_4}$$
 (21)

$$n_{CH_4}^{o} \cdot \beta = 1/2 (n_{CO_2} - n_{CO_2}^{o} + n_{CH_4}^{o} - n_{CH_4})$$
 (20)

Se obțin astfel ecuațiile secundare prezentate în tabelul 10 care exprimă compoziția la un moment dat în funcție de compoziția inițială și fracțiile molare x_{CH_4} și x_{CO_2} , ca parametri care trebuie determinați. Se poate remarca faptul că,ecuațiile din tabelul 10 devin identice cu cele din tabelul 7,în cazul în care $x_{CO_2}^0 = 0$. Acest lucru confirmă identitatea celor șase variante stoichiometrice posibile.

In cazul transformării metanului cu amestec de vapori de apă și dioxid de carbon se pot obține gaze cu un conținut variabil de oxid de carbon și hidrogen, utilizabile în diferite sinteze. De aceea este convenabil să se aleagă ca parametri care trebuie determinați x_{CH_4} , ca măsură a eficienței procesului și $y = x_{H_2}/x_{CO}$ care reprezintă o măsură a calității gazului de sinteză obținut. Ecuațiile secundare de bilanț care exprimă compoziția la un moment dat în funcție de parametri x_{CH_4} și y sînt prezentate în tabelul 11, unde: $A = 1 + x_{H_2O}^{0} + x_{CO_2}^{0} +$ $+ x_{A''}^{0}$. Trecerea de la gradele de transformare < și /3, care intervin în ecuațiile primare de bilanț din tabelul 9, la mărimile x_{CH_4} și y se face prin intermediul relațiilor (23) și (24);

$$x_{CH_{4}} = \frac{1 - \alpha}{1 + x_{H_{2}0}^{0} + x_{CO_{2}}^{0} + x_{A^{"}}^{0} + 2\alpha}$$
(23)

$$y = \frac{\alpha + \beta}{\alpha - \beta}$$
(24)

BUPT

Lomponent	Ecuatii de bilant
СН4	$n_{CH_4} = r_T^* \left(\frac{1 + 2 \times CH_4}{1 + 2 \times CH_4} \right) \times CH_4$
H ₂ 0	$\Pi_{H_{2}O} = \Pi_{T}^{*} \left[\times^{*}_{H_{2}O} + \times^{*}_{CO_{2}} - \times^{*}_{CH_{4}} \left(\frac{1 + 2 \times^{*}_{CH_{4}}}{1 + 2 \times^{*}_{CH_{4}}} \right) \left(\times^{*}_{CO_{2}} - \times^{*}_{CH_{4}} \right) \right]$
CO	$\Pi_{CO} = \Pi_{T} \left[\times_{CH_{4}}^{*} \times_{CO_{2}}^{*} \left(\frac{1+2\times_{CH_{4}}^{*}}{1+2\times_{CH_{4}}^{*}} \right) \left(\times_{CO_{2}}^{*} \times_{CH_{4}}^{*} \right) \right]$
coz	$\Pi_{CO_2} = \Pi_{T}^{*} \left(\frac{1 + 2 \times CH_{4}}{1 + 2 \times CH_{4}} \right) \times CO_2$
H ₂	$\Pi_{H_{2}} = \Pi_{T} \left[\Im_{CH_{4}}^{*} \times (O_{2}^{+} \left(\frac{1+2 \times O_{4}}{1+2 \times O_{4}} \right) \times (O_{2}^{-} 3 \times CH_{4}) \right]$
Ä	$\Pi_{A'} = \Pi_{T}^{*} \times A'$
TOTAL	$n_{T} = n_{T}^{\bullet} \left(\frac{1 + 2 \times_{CH_{4}}^{\bullet}}{1 + 2 \times_{CH_{4}}^{\bullet}} \right)$

Tabelui 10. Couquilo secundare de bilanț de masă (forma A) în procesul de conversie a metanului cu vapori de apă și dioxid de carbon.

Tabelul 11. Ecuațiile secundare de bilanț de masă (forma B) în procesul de conversie a metanului cu vapori de apă și dioxid de carbon.

Component	Ecuatii de Dilant
Crt	$\Pi_{CH_{4}} = \Pi_{CH_{4}}^{*} \frac{(A+2) \mathcal{R}_{CH_{4}}}{1+2 \times CH_{4}}$
1120	$\Pi_{H_2O} = \Pi_{CH_4}^{\bullet} \left[\times_{H_2O}^{\bullet} - 2 \frac{(1 - A \times_{CH_4})(y - 1)}{(1 + 2 \times_{CH_4})(y + 1)} \right]$
со	$\pi_{C0} = \pi_{CH_4}^{2} \frac{4(1 - A \times_{CH_4})}{(1 + 2 \times_{CH_4})(1 + y)}$
co ₂	$\Pr_{cO_2} = \Pr_{cH_4} \left[\frac{x_{cO_2}}{1 + 2x_{cH_4}} - \frac{1 - A \times cH_1}{1 + 2x_{cH_4}} \left(1 - \frac{2(y-1)}{y+1} \right) \right]$
H2	$n_{H_2} = n_{CH_4}^{\bullet} \frac{4(1 - A \times_{CH_4}) y}{(1 + 2 \times_{CH_4})(1 + y)}$
Α"	n _á , = n _{CHu} × á
TOTAL	$\Pi_{T} = \Pi_{CH_{4}}^{2} \left(\frac{2 + A}{1 + 2 \times CH_{4}} \right)$

2.3. Transformarea cu vapori de apă a gazului natural cu un conținut ridicat de hidrocarburi superioare

Gazele naturale pot conține, alături de metan, cantități variabile de alcani superiori: etan, propan, butan și izobutan cu formula generală $C_{j}H_{2j+2}$, unde j = 2 - 4 precum și alchene cu formula $C_{j}H_{2j}$, unde j = 2 - 4. Este de așteptat ca prezența hidrocarburilor superioare alături de metan să ducă la modificarea compoziției gazului de sinteză rezultat la reformarea acestuia cît și la modificarea celorlalte performante ale procesului.

Modificarea compoziției gazelor rezultate poate fi prezisă cu ajutorul modelelor algebrice de bilanț bazate pe cunoașterea stoichiometriei procesului. In ceea ce privește transformarea metanului cu vapori de apă cu sau fără dioxid de carbon s-a stabilit anterior că, dacă nu se formează carbon, procesul este descris stoichiometric de două din ecuațiile (2) - (5). S-a demonstrat, de asemenea, că ecuațiile secundare de bilanț obținute sînt identice pentru toate cele șase variante posibile. Reacțiile după care se transformă celelalte hidrocarburi din gazul natural nu sînt însă bine precizate în literatură /23, 24,26,68/. Astfel unii autori consideră că alcanii superiori reacționează direct cu vaporii de apă rezultînd Co, CO₂ și H₂ conform ecuațiilor stoichiometrice (25) - (26), /69-73/ :

$$C_{j} \cdot H_{2j+2} + jH_{2}0 = jC0 + (2j + 1) H_{2}$$
 (25)

$$C_{j} H_{2,j+2} + 2jH_2 = jCO_2 + (3j + 1)H_2$$
 (26)

Alți cercetători consideră că alcanii superiori se transformă mai întîi în metan care,apoi, reacționează conform ecuațiilor (2) și (3).

Cu privire la formarea inițială a metanului s-au propus,
insă, două macanisme. Astfel, Leibuș /74-76/ și Hyman /60/ consideră că transformarea emologilor superiori în metan are loc prin hidrocracare, conform reacției (27):

$$C_{j_1}H_{2j+2} + (j-1)H_2 = jCH_4$$
 (27)

iar Dent /31/ și Lihou /35/ consideră o reacție de tipul:

$$C_{j}H_{2j+2} + (-\frac{j-1}{2})H_{2}O = (-\frac{3j+1}{4})CH_{4} + (-\frac{j-1}{4})CO_{2}$$
 (28)

Cercetări experimentale și teoretice /77,78/ au demonstrat faptul că hidrocarburile superioare se transformă în întregime în metan chier la intrarea în reactorul tubular de reformare, la temperaturi mai mari de 873⁶K, nemaigăsindu-se în gazele recultate decît CH₄, CO, CO₂, H₂, H₂O și inerte. De aceea ecuațiile (25) și (26) nu pot fi utilizate la stabilirea unui model general de bilanț. Rămîn în discuție cele două variante cu formarea inițială a metanului. Considerăm deci că ecuațiile stoichiometrice independente pot fi scrise în două variante:

varianta A:

 - alcanii se transformă în metan conform ecuației (27),
 - alchenele se transformă, în mod analog, conform ecuației (29);

 $C_{j}H_{2j} + jH_{2} = jCH_{4}$ (29) - conversia metanului are loc după două din reacțiile (-) - (5);

varianta B:

- alcanii se transforma în metan după reacția (28),

- alchenele duc la metan conform reacției (30):

$$C_{j}H_{2j} + j/2 H_{2}O = 3j/4 CH_{4} + j/4 CO_{2}$$
 (30)

- conversia metanului se desfășoară conform reacțiilor (\cdot) și (2).

Corespunzător acestor două variante se stabilesc, în continuare, ecuațiile algebrice de bilanț.

Pe baza datelor experimentale existente /78/ cît și a determinărilor proprii /86/ se poate considera că ecuația caracteristică a procesului de transformare catalitică cu vapori de apă a gazului natural, care conține pe lîngă metan și alte hidrocarburi gazoase, este de forma:

$$\left[CH_{4}+C_{j}H_{2j+2}+C_{j}H_{2j}+H_{2}O + A'' \right]_{g} + \left[K \right]_{s} \longrightarrow \left[CO+CO_{2}+H_{2}+CH_{4}+H_{2}O+A'' \right]_{g} + \left[K \right]_{s}$$

$$(31)$$

Ecuațiile stoichiometrice independente sînt: (27), (29), (2) și (3) în varianta A; (28), (30), (2) și (3) în varianta B. Se încearcă mai întîi o departajare a celor două variante printr-un studiu termodinamic. In tabelul 12 sînt prezentate ecuațiile constantelor de echilibru ale reacțiilor posibile în cele două variante, stabilite de noi pe baza datelor din tabelul 13. In figura 3 sînt prezentate valorile numerice ale constantelor de echilibru ale reacțiilor posibile în intervalul 700 - 1300 K.

Fig.3. Variația constantelor de echilibru ale reacțiilor (1) - (16) din tabelul 12 cu temperatura, în intervalul 700 - 1300 K.

Icopiul 12. Ecuațiile constantelor de echilibru ale reacțiilor posibile

11	. Ecuația stoichiometrică	16	$\mathbf{K}_{p1} = \mathbf{A}_1/\mathbf{T} +$	$+B_1 + C_1T +$	D ₁ T ² + F, 1g T
		۸1	B1	c1,10 ³	D ₁ .10 ⁶ F ₁
Ч	$CH_{4} + H_{2}O = CO + 3H_{2}$	-9861,111	-11,870000	-2,058457	0,177950 8,343231
	$c_0 + H_2 0 = c_{02} + H_2$	2217,180	-3,274672	0,352381	-0,05077 0,296930
ŝ	$C_{2}H_{6} + H_{2} = 2CH_{4}$	3254,155	3,062347	-0,680507	0,190053-0,71011
4	$c_{3H_{B}} + 2H_{2} = 3CH_{4}$	5958,395	7,793678	-1,235467	0,34706 -1,96477
Ś	$C_{4}H_{10} + 3H_{2} = 4CH_{4}$	8385,248	18,824825	-0,157342	0,23025 -5,69149
9	$C_{4}H_{1C}$ 1zo + $3H_{2}$ = 4CH ₄	8097,501	17,525648	-1,226835	0,83653 -4,65425
2	$c_{2}H_{4} + 2H_{2} = 2GH_{4}$	9987,343	8,001233	0,699082	0,04687 -4,84247
9	$c_{3}H_{6} + 3H_{2} = 3CH_{4}$	12005,227	13,769420	0,908326	-0,01027 -6,71766
6	$C_{4}H_{8} + 4H_{2} = 4CH_{4}$	14561,463	22,671525	1,021700	0,13760 -9,54400
10	$c_{2}H_{6} + \forall 2H_{2}0 = 7/4CH_{4} + 1/4CO_{2}$	1343,129	-0,713794	-1,107025	0,22185 1,44992
11	$c_{3}H_{8} + H_{2}0 = 5/2GH_{4} + 1/2GO_{2}$	2136,341	0,221284	-2,088505	0,41065 2,35530
12	$C_{4}H_{10} + 3/2H_{2}0 = 13/4CH_{4} + 3/4CO_{2}$	2648,933	7,482757	-1,429250	0,264678 0,78862
13	$C_{4}H_{101z0}$ + 3/2H ₂ 0 = 13/4CH ₄ + 3/4CO ₂	2361,195	5,750601	-2,506283	0,871001 1,82586
14	$c_{2}H_{4} + H_{2}0 = 3/2CH_{4} + \gamma 2CO_{2}$	6163,139	0,439668	-0,153955	0,06982 -0,52239
12	$c_{3H_6} + 3/2H_20 = 9/4CH_4 + 3/2C0_2$	6268,867	2,427072	-0,371230	0,02414 -0,23754
	$c_{4}H_{8} + 2H_{2}0 = 3CH_{4} + CO_{2}$	6913,056	7,548295	-0,684331	-0,18350 -0,90387
RALA					

Совро-	Ho	8000	C _{pi} =	a _i + b _i	$T + C_1 T^2$
nent	-298 cal/mol	cal/mol K	81	b ₁ .10 ³	c1.106
CH4	-17889,0	44,50	3,422	17,845	-4,165
C2H6	-20236,0	54,85	1,375	41,852	-13,827
с _{з^н8}	-24820,0	64,51	0,410	64 , 710	-22,582
C4H10	-29810,0	74,10	4,357	72,552	-22,145
C4H10150	-31450,0	70,42	2,296	82,410	-38,792
C₂ ^H ₄	12496,0	52,45	2,706	29,160	-9,059
с _{з^н6}	4880,0	63,80	2,974	45,024	-11,376
C4H8	280,0	73,48	5,132	61,760	-19,322
C4H8cis	-1362,0	71,90	2,047	64,311	-19,834
C ₄ H _{8tran}	_2405,0	70,86	4,967	59,961	-18,147
C4H8120	-3343,0	70,17	5,331	60,246	-18,140
CO	-26415,7	47,30	6,250	2,091	-0,475
co ₂	-94051,8	51,06	6,850	8,533	-2,475
H ₂	0,0	31,21	6,880	0,066	-0,279
H ₂ O vap.	-57797,9	45,10	6,890	3,283	-0,343
N ₂	0,0	-	6,300	1,891	-0,345
°2	0,0	49,003	6,130	2,990	-0,806
NH 3	-11000,0	-	8,040	0,700	5,100
Ar	0,0	-	4,967	0,000	0,000

Tabelul 13. Proprietăți termodinamice ale componentelor

Potrivit datelor din figura 3, la temperaturi de 800 -900 K,la care se află masa de reacție în primele porțiuni ale reactorului tubular de reformare, constantele de echilibru ale reacțiilor de tip (27) - (30), prin care se transformă hidrocarburile superioare în metan, sînt mai mari decît 10⁴. Ca urmare, aceste reacții pot fi considerate totale /78/. In aceste condiții, ecuațiile algebrice de bilanț ale componentelor devin identice cu cele stabilite pentru reformarea metanului cu vapori de apă, dacă se introduc compozițiile inițiale fictive $(n_{CH_4}^{OH}, n_{CO_2}^{OH}, n_{H_2}^{OH} \pm n_{H_2O}^{OH})$:

$$n_{CH_4} = n_{CH_4}^{O_{\mathcal{H}}} (1 - \alpha)$$
(32)

$$n_{\rm CO} = n_{\rm CH_4}^{\rm OM} \left(\sigma \left(-/3 \right) \right)$$
(33)

$$n_{CO_2} = n_{CO_2}^{OH} + n_{CH_4}^{OH} \cdot /3$$
 (34)

$$n_{H_2} = n_{H_2}^{OM} + n_{CH_4}^{OM} (3 \wedge + /3)$$
 (35)

$$n_{A^{\oplus}} = n_{A^{\oplus}}^{0}$$
(36)

$$n_{H_20} = n_{H_20}^{0H} - n_{CH_4}^{0H} (\alpha + \beta)$$
 (37)

In această lucrare se stabilesc relații de calcul almărimilor inițiale fictive, pentru fiecare din cele două variante stoichiometrice.

Pentru varianta A, aceste relații sînt:

$$\mathbf{n}_{CH_{4}}^{OM} = \sum_{j=1}^{4} j \mathbf{n}_{C_{j}H_{2j+2}}^{O} + \sum_{j=2}^{4} j \mathbf{n}_{C_{j}H_{2j}}^{O}$$
(38)

$$n_{H_{2}}^{OM} = n_{H_{2}}^{O} - \left(\sum_{j=1}^{4} (j-1)n_{C_{j}H_{2j+2}}^{O} + \sum_{j=2}^{4} jn_{C_{j}H_{2j}}^{O}\right)$$
(39)

$$\mathbf{n}_{\mathrm{H}_{2}0}^{\mathbf{0}\mathbf{M}} = \mathbf{n}_{\mathrm{H}_{2}0}^{\mathbf{0}} \tag{40}$$

$$n_{\rm CO_2}^{\rm OM} = 0 \tag{41}$$

Pentru varianta B, relațiile au forma:

$$n_{CH_{4}}^{OM} = \sum_{j=1}^{4} \left(\frac{3j+1}{4} \right) n_{C_{j}H_{2}j+2}^{O} + \sum_{j=1}^{4} \frac{3j}{4} n_{C_{j}H_{2}j}^{O}$$
(42)

$$n_{H_{2}0}^{0M} = n_{H_{2}0}^{0} - \left(\sum_{j=1}^{4} \left(\frac{j-1}{2}\right) n_{C_{j}H_{2j+2}}^{0} + \sum_{j=2}^{4} \frac{j}{2} \frac{j}{2} n_{C_{j}H_{2j}}^{0}\right)$$
(43)

$$\mathbf{n}_{CO_{2}}^{OH} = \sum_{j=1}^{4} \left(\frac{j-1}{4}\right) \mathbf{n}_{C_{j}H_{2j+2}}^{O} + \sum_{j=2}^{4} \frac{j}{4} \mathbf{n}_{C_{j}H_{2j}}^{O}$$
(44)

$$\mathbf{n}_{\mathrm{H}_{2}}^{\mathbf{OH}} = 0 \tag{45}$$

Cele două modele matematice de bilanț propuse cuprind ecuațiile (32) - (37) și (38) - (41) în varianta A și ecuațiile (32) - (37) și (42) - (45) în varianta B.

Testarea adecvanței celor două modele rivale s-a făcut comparînd rezultatele calculate cu valorile experimentale din tabelul 14. Datele experimentale reprezintă valori medii ale măsurătorilor efectuate timp de 12 zile pe o instalație industrială operată la parametrii: T = 1054 K, P = 30 at., $\hat{x}_{H_20}^0 = 3,9$. Compoziția gazului natural folosit ca materie primă a fost, în procente molare, următoarea: 87,8888% CH₄; 7,0049% C₂H₆; 3,0036% C₃H₈; 1,8022% C₄H₁₀; 0,805 A" (N₂ + Ar).

Gradele de transformare \measuredangle și β care intervin în ecuațiile primare de bilanț (32) - (37) s-au calculat în funcție de fracțiile molare raportete la gazul uscat, X_{CH_4} și X_{CO_2} , cu ajutorul relațiilor (18) și (19). In condițiile date acestea sînt: $\measuredangle = 0,66559$ și $\beta = 0,391065$. Compozițiile calculate cu aceste grade de transformare, utilizînd cele două modele de bilanț, sînt prezentate comparativ în tabelul 14. Din tabel rezultă concordanța foarte bună dintre compozițiile măsurate și cele calculate cu varianta A a modelului de bilanț propus. Pe această bază se poate afirma că și bilanțul teoretic se poate calcula cu ajutorul modelului stabilit pentru procesul de transformare a metanului în care se înlocuiește compoziția inițială fictivă folosind relațiile (38) - (41).

Сощропер	Date	experimen	tale		Valori c¿	alculate cu anta A	ı vari-	Valori ce	alculate cu anta B	vari-
	intr	are	1es1	гө	intrare	1eși	.re	intrare	iestre	Φ
	n ^o mol/в	о ж	n mol/s	х	n ^o mol/s	n mol/s	x	n ^o mol/s	n mol/s	×
C4H10	4,6666	0,01802	I	1	1	8	1	I	B	I
с ₃ н ₈	7777	0,03003	I	l	I	I	ſ	I	ł	1
c ₂ H ₆	18,1388	0,07004	I	ł	ł	I	J	I	1	1
Cli ₄	227,5833	0,87888	102,0000	10201,0	305,8611	101,9866	0,10299	293,9337	98,0108	0,09710
0 C	•	1	84,2222 (0,08506	1	84,2627	0,08510	I	80,9780	0,08023
co ₂	I	I	119,6388 (0,12083	1	119,6116	0,12080	11,9236	126,8723	0,12566
H ₂	1	ı	683,5277 (0,69032	-47,6944	683,5405	0,69032	I	702,7287	0,69621
$(N_2 + Ar)$	0,7777	0,00500	0,7777 (0,00078	0,7777	0,7777	62000,0	0,7777	0,7777	0,00077
Total gaz uscat	258,9441	1,00000	990,1664	1,00000	1	1671,069	1,00000	I	1009,3675	1,00000
H ₂ 0 vap.	1192,8055	I	869,3055	1	1192,8055	869,3194	I	1168,9583	858,0829	1
Total	1451,7495	1	1859,4719	1	1	1859,4985	1	I	1867,4504	1

29

Verificarea experimentală a modelelor de bilanț pentru reformarea gazului natural Tabelul 14. CAPITOLUL 3. MODELE MATEMATICE DE BILANT TERMIC

Atît procesul convențional de transformarea metanului cu vapori de apă, definit prin ecuațiile (1) - (3), cît și procesul modificat de conversie a metanului cu amestec de vapori de apă și dioxid de carbon, reprezentat prin ecuațiile (3), (5) și (20), sînt puternic endoterme. De aceea este necesară elaborarea unor modele matematice de bilant termic precise care să permită optimizarea consumului de energie necesară desfășurării procesului la anumite valori ale parametrilor tehnologici. Pentru fiecare din cele două procedee se stabilesc ecuațiile care permit calculul consumului de căldură în funcție de parametri tehnologici ai procesului de reformare, apoi, luînd în considerație și procesul de ardere, se stabilesc și ecuațiile pentru determinarea directă a consumului de combustibil. Drept combustibil se consideră gazul metan de aceeași compoziție cu cel tehnologic sau amestecuri de gaz metan și gaze de purjă, rezultate ca deșeu în ciclul de sinteză a amoniacului. In final, se subliniază aspectele specifice care apar în cazul în care se utilizează ca fază reactant gazul natural cu hidrocarburi superioare.

3.1. Bilanțul termic în procesul de conversie catalitică a metanului cu vapori de apă
3.1.1. Consumul specific de căldură

Procesul de conversie catalitică a metanului cu vapori de apă se definește prin ecuația caracteristică (l) și ecuațiile stoichiometrice (2), (3). Reacția (2) este puternic endotermă $(\Delta_{R_2}H_{298}^0 = 49.270 \text{ Kcal/Kmol})$ iar reacția (3) este slab exotermă $(\Delta_{R_3}H_{298}^0 = -9838 \text{ Kcal/Kmol})$. De aceea procesul unitar de "reformare" este endoterm, ecuația bilanțului termic al faze gazoase

avind forma:

$$\Delta H_{o} + \Delta H_{ext} = \Delta H + \Delta H_{R} + \Delta H_{D}$$
(46)

Neglijînd pierderile, se explicitează, din ecuația (46), cantitatea de căldură transmisă din exterior procesului:

$$\Delta H_{ext} = \Delta H + \Delta H_{R} - \Delta H_{o}$$
 (47)

Pentru cercetarea variației consumului de căldură (ΔH_{ext}) cu presiunea (P), temperatura (T) și compoziția inițială ($\dot{x}_{H_2O}^{0}$, $\dot{x}_{A''}^{0}$, $n_{CH_4}^{0}$) ecuația (47) este adusă, în această lucrare, într-o formă convenabilă utilizării calculatorului. Pentru concretizarea ecuației bilanțului termic se ține seama numai de influența temperaturii asupra mărimilor termice deoarece datele existente dovedesc că influența presiunii poate fi neglijată /35/. In toate calculele termice s-au folosit datele din tabelul 13 /22,29/.

Entalpiile masei de reacție inițială (ΔH_0) și finală (ΔH) se calculează aditiv cu ecuațiile (48) și (49):

$$\Delta H_{o} = \sum n_{i}^{o} \int_{298}^{70} C_{pi} dT \qquad (43)$$

$$\Delta H = \sum n_i \int_{298}^{T} C_{pi} dT \qquad (49)$$

Pe baza ecuației caracteristice (1), a ecuațiilor pentru C_{pi} din tabelul 13 și a ecuațiilor primare de bilanț din tabelul 6, după integrare, ecuațiile (48) și (49) devin: $\Delta H_{0} = n_{CH_{4}}^{0} \left[(3,422 + 7,219 \ x_{H_{2}0}^{0})T_{0} + (8,922 + 1,187 \ x_{H_{2}0}^{0})10^{-3}T_{0}^{2} - (1,388 - 0,089 \ x_{H_{2}0}^{0})10^{-4}T_{0}^{3} - 1775 - 2260 \ x_{H_{2}0}^{0} \right]$ (48') $\Delta H = n_{CH_{4}}^{0} \left[(16,249 \ c + 0,261 \ \beta + 3,422 + 7,219 \ x_{H_{2}0}^{0})T - (8,965 \ c - 2,067 \ \beta - 8,922 - 1,187 \ x_{H_{2}0}^{0})10^{-3}T^{2} + (1,425 \ c - 0,668 \ \beta - 1,388 + 0,089 \ x_{H_{2}0}^{0}) 10^{-6}T^{3} - 4,083 \ c - 244 \ \beta - 1775 - 2260 \ . (49')$

Efectul termic global al procesului, ΔH_R , se exprimă în funcție de efectele termice ale reacțiilor (2) și (3), prin relația (50):

$$\Delta H_{R} = n_{CH_{4}}^{o} \left[\alpha \left(\Delta_{R_{2}} H_{T}^{o} \right) + \beta \left(\Delta_{R_{3}} H_{T}^{o} \right) \right]$$
(50)

Concretizînd ecuația lui Kirchoff pentru reacțiile (2) și (3) cu ajutorul datelor din tabelul 13, se obțin relațiile (51) și (52):

$$\Delta \mathbf{R}_{2}^{H} \mathbf{T} = 45.185 + 16,25 \mathbf{T} - 8,965.10^{-3} \mathbf{T}^{2} + 1,425.10^{-6} \mathbf{T}^{3}$$
(51)

$$\Delta_{R_3}^{H} = -10.080 + 0,261 T + 2,067.10^{-3} T^2 - 0,668.10^{-6} T^3$$
(52)
Inlocuind relațiile (51) și (52) în ecuația (50), se obține:

$$\Delta H_{R} = n_{CH_{4}}^{0} \left[45185 \, \cancel{a} - 10080 \, \cancel{\beta} + (16,25 \, \cancel{a} + 0,261 \, \cancel{\beta} \,) \, \boxed{T} - (8,965 \, \cancel{a} - 2,067 \, \cancel{\beta} \,) 10^{-3} \ \boxed{T}^{2} + (1,425 \, \cancel{a} - 0,668 \, \cancel{\beta} \,) 10^{-6} \ \boxed{T}^{3} \right] (53)$$

In final, inlocuind ecuatiile (48'), (49'), §i (53) in relatia
(47), se obtine:

$$\Delta H_{ext} = n_{CH_{4}}^{o} \left[41100 \, \alpha - 10320 \, \beta + (32,50 \, \alpha + 0,522 \, \beta + 3,422 + 7,219 \, \dot{x}_{H_{2}0}^{o}) T - (17,930 \, \alpha - 4,134 \, \beta - 8,922 - 1,187 \, \dot{x}_{H_{2}0}^{o}) 10^{-3} T^{2} + (2,850 \, \alpha - 1,336 \, \beta - 1,388 + 0,089 \, \dot{x}_{H_{2}0}^{o}) 10^{-6} T^{3} - (3,422 + 7,219) \cdot \dot{x}_{H_{2}0}^{o}) T_{0} - (8,922 - 1,187 \, \dot{x}_{H_{2}0}^{o}) 10^{-3} T_{0}^{2} + (1,388 - 0,089 \, \dot{x}_{H_{2}0}^{o}) \cdot 10^{-6} T_{0}^{3} \right]$$

$$(54)$$

Ecuația (54) exprimă dependența consumului de căldură în proces de parametrii tehnologici P, T, $\overset{\circ}{\operatorname{H}_2^0}$, T_o și n^o_{CH4}:

$$A_{\text{ext}} = F(P, T, \dot{x}_{H_20}^{\circ}, T_0 \text{ si } n_{CH_4}^{\circ})$$
 (54')

O mărime mai sugestivă este ΔH_c , consumul specific de căldură în proces, raportat la un moi de hidrogen obținut. Pe baza ecuațiilor de bilanț de masă:

$$n_{H_2} = n_{CH_4}^{o} (3 + /3)$$
 (55)

$$n_{CO} = n_{CH_4}^{o} (\alpha - \beta)$$
 (56)

și, considerînd că în procesele ulterioare reformării primare n_{CO} se transformă într-un număr egal de moli de hidrogen prin conversie catalitică cu vapori de apă, se obține relația dintre ΔH_c și ΔH_{ext} :

$$\Delta H_{c} = \frac{\Delta H_{ext}}{4 \sigma n_{CH_{\mu}}^{o}}$$
(57)

Pentru determinarea consumului specific de gaz metan combustibil este necesară elaborarea bilanțului de materiale și căldură în procesul de ardere.

3.1.2. Consumul specific de combustibil

3.1.2.1. Arderea gazului metan

Procesul de ardere completă a gazului metan cu oxigenul din aer se definește prin ecuația caracteristică (58) și ecuația stoichiometrică (59):

$$\left[CH_{4} + A'' \right]_{g} + \left[O_{2} + N_{2} \right]_{g} \rightarrow \left[CO_{2} + H_{2}O + CH_{4} + O_{2} + A'' + N_{2} \right]_{g}$$
(58)

$$CH_4 + 2O_2 = CO_2 + 2H_2O$$
 (59)

Prin definirea gradului de transformare a metanului în reacția (59) și, considerînd toate inertele sub formă de azot, se obțin ecuațiile primare de bilanț din tabelul 15.

Studiul echilibrului termodinamic al reacției (59), folosind datele termodinamice din tabelul 13, a dus la concluzia că, în intervalul 300 - 1500 K, această reacție este practic ireversibilă și deci gradul teoretic de transformare a metanului este egal cu unitatea. Măsurătorile proprii asupra gazelor de ardere au arătat că și în condiții practice, $\gamma_{\rm CH_{L}} = 1 / 84 / .$

In consecință ecuațiile din tabelul 15 se simplifică, considerind: $n_{CH_4} = 0$, $\pi_{CH_4} = 0$ și $\gamma_{CH_4} = 1$. Tabelul 15. Ecuațiile primare de bilanț de masă în procesul de ardere a gazului metan

Component	N _i [Kmol/s]	×i
СН	$\Gamma_{CH_{4}^{2}} \stackrel{1}{\Gamma_{CH_{4}}} (1 - \gamma_{CH_{4}})$	
02	п ₀₂ =п _{сн4} (× ₀₂ -2 _{Сн4})	$x_{0} = \frac{\dot{x}_{02} - 2 \mathcal{C}_{H_4}}{1 + \dot{x}_{02} + \dot{x}_{4}}$
CO2	n _{co₂} n [*] сн ₄ (сн ₄	
H ₂ 0	$n_{H_2O} = 2 n_{CH_4} + C_{H_4}$	$\times_{H_2O^{=}} \frac{2 \gamma_{CH4}}{1 + \dot{x}_{O_2}^{+} \dot{x}_{A'}^{+}}$
A'(N2)	n _{a"} =n° _{CHz} *a"	$x_{A''} = \frac{\dot{x}_{A''}}{1 + \dot{x}_{O_2} + \dot{x}_{A''}}$
TOTAL	$\Pi_{T} = \Pi_{CH_{4}}^{*} (1 + \ddot{X}_{O_{2}} + \dot{X}_{A'})$	$\sum x_{A_i} = 1$

Forma primară a ecuației bilanțului termic în procesul de ardere este:

$$\Delta H_{a} = \Delta H_{o} + \Delta H_{R} - \Delta H - \Delta H_{p}$$
(60)

Termenii ecuației (60) se concretizează astfel:

$$\Delta H_{0} = n_{CH_{4}}^{0} \left[\int_{298}^{704} C_{pCH_{4}} dT + \hat{x}_{0}^{0} \left(\int_{298}^{702} C_{pO_{2}} dT + 3,7619 \right) \right]_{298}$$

$$\int_{298}^{702} C_{pN_{2}} dT \left(\int_{298}^{702} C_{pO_{2}} dT + 3,7619 \right)$$
(61)
Bau:

$$\Delta H_{o} = n_{CH_{4}}^{o} \left[F_{1}(T_{o1}, T_{c2}, \dot{x}_{02}^{o}) \right] = n_{CH_{4}}^{o}. X$$
(61)

BUPT

Inlocuind $x_{0_2}^{\circ}$ prin φ , coeficientul excesului de aer, după integrare se obține, pentru X:

$$\mathbf{X} = -1775,3702 + 3,422 \mathbf{T}_{ol} + 8,9225.10^{-9} \mathbf{T}_{ol}^{2} - 1,3883.10^{-0} \mathbf{T}_{ol}^{9} + 9,524 \Psi \quad (6,2643 \mathbf{T}_{o2} + 1,032494.10^{-3} \mathbf{T}_{o2}^{2} - 0,14727.10^{-6} \mathbf{T}_{o2}^{3} - 1954,5667) \quad (62)$$

Pe baza aditivității, ecuația lui 1 H, este:

$$\Delta H = n_{CH_{4}}^{0} \left[\int_{298}^{T_{a}} C_{pO_{2}} dT + 2 \int_{298}^{T_{a}} C_{pH_{2}O} dT + (\dot{x}_{O_{2}}^{0} - 2) \int_{298}^{T_{a}} C_{pO_{2}} dT + 3,7619 \dot{x}_{O_{2}}^{0} \int_{298}^{T_{a}} C_{pN_{2}} dT \right]$$
(63)

Sau:

$$\Delta H = n_{CH_4}^{o} \left[F_2(T_a, x_{O_2}^{o}) \right] = n_{CH_4}^{o} \cdot Z$$
 (63')

Final, se obține pentru Z, ecuația:

$$Z = -2885,4979 + 8,37 T_{a} + 4,5595.10^{-3}T_{a}^{2} - 0,52633.10^{-6}T_{a}^{3} + 9,524 \Psi (-1954,5537 + 6,2643 T_{a} + 1,032494.10^{-3}T_{a}^{2} - 0,14725.$$

$$\cdot 10^{-6}T_{a}^{3}$$
(64)

Cantitatea de căldură degajată în procesul de ardere, ΔH_R , se determină cu ecuația:

$$\Delta H_{R} = n_{CH_{4}}^{o} \left(-\Delta_{R} H_{T}\right) = n_{CH_{4}}^{o} \left[F_{\mathcal{J}}(T_{a})\right] = n_{CH_{4}}^{o} \cdot Y$$
(65)

Concretizind ecuația lui Kirchofr, se obține pentru Y:

$$Y = 192868,7284 - 4,948 T_a + 4,363.10^{-3}T_a^2 - 0,872.10^{-6}T_a^3$$
 (66)

Considerînd pierderile neglijabile, ecuația (60) se poate scrie în funcție de $(n^{O}_{CH_{\mu}})_{ard}$, și mărimile X, Y, Z, astfel:

$$\Delta H_{a} = (n_{CH_{4}}^{o})_{ard} (X + Y - Z)$$
(67)

Decerece, $\Delta H_a = \Delta H_{ext.}$, consumul de metan combustibil se calculează cu relația:

$$(n_{CH_4}^{o})_{ard.} = \frac{\Delta H_{oxt.}}{X + Y - Z}$$
(68)

Rezolvarea, la calculator, a sistemul de ecuații (54), (62), (64), (66) și (68) permite determinarea consumului de gaz metan combustibil la diferite valori ale parametrilor procesului catalitic de reformare (T, P, $\dot{x}_{H_2O}^0$, $\dot{x}_{A''}^0$, $n_{CH_4}^0$), precum și ale procesului de ardere (T_a, T_{ol}, T_{o2}, φ).

3.1.2.2. Arderea gazelor de purjă

In instalațiile de obținere a amoniacului, gazul metan este utilizat atît ca materie primă (gaz metan tehnologic) cît și ca gaz combustibil în cuptorul de reformare precum și în cazanul auxiliar pentru producerea aburului. Intr-o linie modernă de obținere a amoniacului numai 64,22% din gazul metan consumat este "tehnologic". Utilizarea eficientă a gazului metan impune diminuarea ponderii gazului de combustie și reducerea coeficienților de consum de gaz tehnologic. O metodă propusă de noi, este înlocuirea parțială a gazului metan de ardere cu gaze de purjă, rezultate ca deșeu în ciclul de sinteză a amoniacului. Aceste gaze au o compoziție variabilă care oscilează în jurul următoarelor valori medii: 58,31% H₂; 13,103% CH₄; 0,641% NH3; 22,415% N2 și restul argon. Aceste gaze conțin deci peste 72% substanțe combustibile (CH4, H2, NH3). Datorită variației compoziției gazelor de purjă și a parametrilor procesului de reformare, este necesară stabilirea unui model matematic care să permită determinarea consumului de gaz combustibil în orice condiții. Stabilirea acestui model implică elaborarea ecuațiilor de bilanț de masă și căldură în procesul de ardere a gazelor de purjă.

Acest proces se definește prin ecuația caracteristică

37

(69) și ecuațiile stoichiometrice (70) - (72):

$$\left[CH_{4} + H_{2} + NH_{3} + N_{2} + Ar \right]_{g} + \left[N_{2} + 0_{2} \right]_{g} \rightarrow \left[CO_{2} + H_{2}O + 0_{2} + H_{2}O + 0_{2}O + 0_{2}O$$

$$CH_{a} + 2O_{2} = CO_{2} + 2H_{2}O$$
 -191758,6 Kcal/Kmol (70)

$$H_2 + 1/20_2 = H_20$$
 -57797,9 Kcal/Kmol (71)

$$NH_3 + \frac{3}{2}O_2 = \frac{1}{2}N_2 + \frac{3}{2}H_2O - 75696,85 \text{ Kcal/Kmol}$$
 (72)

Pe baza gradelor de transformare ale metanului (γ_{CH_4}) în reacția (70), hidrogenului (γ_{H_2}) în reacția (71) și amoniacului (γ_{NH_3}) în reacția (72) și a relațiilor de concretizare, se obțin ecuațiile primare de bilanț de masă în procesul de ardere a gazelor de purjă, în forma generală, prezentate în tabelul 16.

Constantele de echilibru ale reacjiilor (70) - (72), calculate cu ajutorul datelor din tabelul 10 sînt, în intervalul $300 - 1500 \text{ K}_{,} > 10^4$, deci pot fi considerate totale /78/. Analiza gazelor de ardere nu indică prezența reactanțiior CH₄, H₂, NH₃ /97/, ceea ce arată că gradele de transformare reale și teoretice ale acestora sînt egale cu unitatea. In aceste condiții ecuațiile de bilanț capătă forma simplificată din coloana a doua a tabelului 16.

Ecuația bilanțului termic în procesul arderii gazelor de purjă are, de asemenea, forma generală (60). Termenii $\Delta H_0, \Delta H_R$, ΔH se concretizează, urmînd același procedeu dar ținînd seama de ecuațiile de definiție a procesului (69) - (72) și de datele termodinamice specifice, astfel;

$$\Delta H_{o} = n_{gp}^{o} \left[A_{o} + B_{o}T_{o1} + C_{o}T_{o1}^{2} + D_{o}T_{o1}^{3} + \mathbf{x}_{aer}^{o}(6,2643.T_{o2} + 1,032494.10^{-3}T_{o2}^{2} - 0,14727.10^{-6}T_{o2}^{3}) \right] = n_{gp}^{o} X^{*}$$
(73)
unde:

Tabelul 16. Ecuațiile algebrice de bilanț de masă în procesul de ardere a gazelor de purjă

	Ecuatii d	e bilant
Comp	Forma generala	Forma simplificată
СӉ		n _{cH4} =0
H ₂	$\Pi_{H_2} = \Pi_{H_2} = \Pi_{H_2} H_2$	∩ _{H2} =0
NH3	П _{NH3} = П [*] NH3 П [*] NH3 [*] (NH3	п _{NH3} =0
02	$n_{2} n_{2} n_{2} n_{2} n_{1} n_{1$	$\frac{1}{2} \frac{1}{2} \frac{1}$
H ₂ O	^П H ₂ O ⁼² Ґсң, ^ү Сң, ⁺ п [*] н ₂ үн ₂ + ³ 2 [°] NH ₃ (NH ₃	$n_{H_2O} = 2 n_{CH_4} + n_{H_2} + \frac{3}{2} n_{NH_3}$
co2	n _{co2} =n ^t cH ₄)cH ₄	∩ _{CO2} =n ² CH4
N ₂	$n_{N_2} = n_{N_2} + \frac{1}{2} n_{NH_3} n_{H_3}$	∩ _{N2} =∩ _{N22} ¹ ∩ ^{NH3} /NH3
٦٢	∩ _{Ar} ⁼ ∩ [*] Ar	n _{Ar} =n _{Ar}
TOTAL	$\Pi_{T} = \Pi_{1} (1 - \frac{1}{2} \times H_{2}) H_{2} + \frac{1}{4} \times NH_{3} NH_{1}$	$\int_{T} n_{T} = n_{T} (1 - \frac{1}{2} \times H_{2} + \frac{1}{4} \times N_{N} + \frac{1}{3} \times N_{N} + 1$

$$A_{0} = 1775,3702 x_{CH_{4}}^{0} - 2055,6316 x_{H_{2}}^{0} - 2471,9895 x_{RH_{3}}^{0} - 1955,1283 x_{N_{2}}^{0} - 1480,315 x_{Ar}^{0} - 1954,5667 x_{aer}^{0}$$

$$B_{0} = 3,422 x_{CH_{4}}^{0} + 6,88 x_{H_{2}}^{0} + 8,04 x_{NH_{3}}^{0} + 6,3 x_{N_{2}}^{0} + 4,9675 x_{Ar}^{0}$$

$$C_{0} = 10^{-3}(8,9225 x_{CH_{4}}^{0} + 0,033 x_{H_{2}}^{0} + 0,355 x_{NH_{3}}^{0} + 0,90955 x_{N_{2}}^{0}$$

$$D_{0} = 10^{-6}(-1,3883 x_{CH_{4}}^{0} + 0,093 x_{H_{2}}^{0} + 1,7 x_{NH_{3}}^{0} - 0,115 x_{N_{2}}^{0}$$
In mod analog, se obtine pentru ΔH :
$$\Delta H = n_{gp}^{0}(A_{0}^{*} + B_{0}^{*} T_{a}^{*} + C_{0}^{*} T_{a}^{2} + D_{0}^{*} T_{a}^{3}) = n_{gp}^{0} Z^{*}$$

$$In \frac{1}{2} - 2885,4979 x_{CH_{4}}^{0} - 1219,7699 x_{H_{2}}^{0} - 2807,2188 x_{NH_{3}}^{0} - 1955,1284 x_{N_{2}}^{0} - 1480,315 x_{Ar}^{0} - 1954,5537 x_{aer}^{0}$$

$$B_{0}^{*} = 8,377 x_{CH_{4}}^{0} + 3,825 x_{H_{2}}^{0} + 8,8875 x_{NH_{3}}^{0} + 6,30 x_{N_{2}}^{0} + 4,9675 .$$

$$x_{Ar}^{0} + 6,2643 x_{aer}^{0}$$

$$In -3^{*}(4,5595 x_{CH_{4}}^{0} + 0,894 x_{H_{2}}^{0} + 1,79577 x_{NH_{3}}^{0} + 0,90955 x_{N_{2}}^{0} + 1,032494 x_{aer}^{0}$$

$$D_{0}^{*} = 10^{-6}(-0,51633 x_{CH_{4}}^{0} + 0,02 x_{H_{2}}^{0} - 0,0275 x_{NH_{3}}^{0} - 0,115 x_{N_{2}}^{0} - 0,115 x_{N_{2}}^{0} - 0,114725 x_{aer}^{0}$$

Raportul $\overset{\circ}{\mathtt{x}_{aer}}$ se corelează cu coeficientul de exces,arphi, prin relația (77):

$$\mathbf{\dot{x}_{aer}^{o}} = 4,762 \, \mathcal{V} \, (2 \, \mathbf{x}_{CH_4}^{o} + \frac{1}{2} \, \mathbf{x}_{H_2}^{o} + \frac{3}{4} \, \mathbf{x}_{NH_3}^{o}) \quad (77)$$

Termenul ΔH_R se calculează cu relația (78): $\Delta H_{R} = n_{gp}^{o}(A_{o}'' + B_{o}'' T_{a} + C_{o}'' T_{a}^{2} + D_{o}'' T_{a}^{3}) = n_{gp}^{o} \Upsilon'$ (78) under

B_o ≖

A' =

B' =

C' =

D' =

$$A_{o}^{"} = 192868,7284 \ x_{CH_{4}}^{o} + 61062,5184 \ x_{H_{2}}^{o} + 76032,079 \ x_{NH_{3}}^{o}$$

$$B_{o}^{"} = -4,948 \ x_{CH_{4}}^{o} - 10,705 \ x_{H_{2}}^{o} - 0,8475 \ x_{NH_{3}}^{o}$$
(79)

$$C_{o}^{"} = 10^{-3}(4,363 \ x_{CH_{4}}^{o} - 0,861 \ x_{H_{2}}^{o} - 1,44577 \ x_{NH_{3}}^{o})$$

$$D_{o}^{"} = 10^{-6}(-0,872 \ x_{CH_{4}}^{o} + 0,073 \ x_{H_{2}}^{o} + 1,7275 \ x_{NH_{3}}^{o})$$

Final, consumul de gaze de purjă, se celculează cu o relație
similară cu ecuația (68);

$$\mathbf{n}_{gp}^{o} = \frac{\Delta H_{ex}}{X' + Y' - Z'}$$
(80)

Cantitatea de căldură cedată procesului de reformare, ΔH_{ex} , se calculează cu relația (54).

Ecuațiile (73) - (80) sînt valabile atît pentru arderea gazelor de purjă cît și a amestecurilor de gaze de purjă și metan. Se poate, de asemenea, verifica ușor că aceste ecuații capătă forma (62), (64), (66) și (68) atunci cînd $x_{NH_3}^0 = x_{H_2}^0 = 0$ deci sînt valabile și pentru arderea gazului natural.

Decarece gazele de purjă disponibile într-o linie de amoniac nu pot înlocui în întregime gazul metan de ardere /97/, ecuațiile (73) - (80) împreună cu ecuațiile (62), (64), (66) și (68) pot servi la evaluarea cantității de metan ce poate fi economisită prin utilizarea unei cantități date de gaze de purjă. Se poate astfel determina echivalența în metan (E.M.) /100/, a gazelor de purjă. Relația de calcul a acestei mărimi rezultă din egalarea lui ΔH_{ex} din relațiile (68) și (80):

E.M. =
$$\frac{n_{gp}^{0}}{({}^{n}CH_{4})_{ard}} = \frac{X + Y - Z}{X' + Y' - Z'}$$
 (81)

3.2. Bilanțul termic în procesul de conversie catalitică a metanului cu vapori de apă și dioxid de carbon

3.2.1. Consumul specific de căldură

Procesul de transformare catalitică a metanului cu vapori de apă și dioxid de carbon s-a definit prin ecuațiile (20), (3) și (5).

Cantitatea de căldură necesară desfășurării procesului endoterm se calculează cu ecuația de forma generală (47):

$$\Delta H_{ext} = \Delta H + \Delta H_{R} - \Delta H_{o}$$
(82)

Urmînd același procedeu ca la paragraful 3.1.1. și utilizînd datele termodinamice din tabelul 13 și ecuațiile de bilanț de masă din tabelul 9, se obțin următoarele expresii pentru termenii ecuației (82):

$$\begin{split} \Delta H_{o} &= n_{CH_{4}}^{o} \left[(3,422 + 6,89 \dot{x}_{H_{2}0}^{o} + 6,85 \dot{x}_{CO_{2}}^{o})T_{o} + (8,9225 + 1,6415 \dot{x}_{H_{2}0}^{o} + 4,2665 \dot{x}_{CO_{2}}^{o}).10^{-3} T_{o}^{2} - (1,3883 + 0,1143 \dot{x}_{H_{2}0}^{o} + 0,8250 \dot{x}_{CO_{2}}^{o}).10^{-6} T_{o}^{3} - (1775,37 + 2195,9669 \dot{x}_{H_{2}0}^{o} + 2398,3498 \dot{x}_{CO_{2}}^{o}) \right] \\ \Delta H_{R} &= n_{CH_{4}}^{o} \left[55269,27 \, \checkmark - 20291,638 \, / 3 + (15,988 \, \checkmark + 1,18 \, / 3).T + (-11,032 \, \checkmark + 3,225 \, / 3).10^{-3} T^{2} + (2,0933 \, \checkmark - 0,92932 \, / 3).10^{-6} T^{3} \right] \\ \Delta H &= n_{CH_{4}}^{o} \left[(15,988 \, \checkmark + 1,18 \, / 3 + 6,85 \, \dot{x}_{CO_{2}}^{o} + 6,89 \, \dot{x}_{H_{2}0}^{o} + 3,422).T + (-11,031 \, \checkmark + 3,225 \, / 3 + 4,266 \, \dot{x}_{CO_{2}}^{o} + 1,641 \, \dot{x}_{H_{2}0}^{o} + 8,922).10^{-3} T^{2} + 2,093 \, \backsim - 0,9294 \, / 3 - 0,825 \, \dot{x}_{CO_{2}}^{o} - 0,1143 \, \dot{x}_{H_{2}0}^{o} - 1,3883). \\ .10^{-6} T^{3} + (-3840,2154 \, \circlearrowright - 613,4376 \, / 3 - 2598,305 \, \dot{x}_{CO_{2}}^{o} - 2195,922 \, . \\ \dot{x}_{H_{2}0}^{o} - 1775,370) \right] \end{split}$$

Final, so obtine pentru ΔH_{ext} :

$$\Delta H_{ext} = n_{CH_{4}}^{\circ} \left[51429,0546 \, \alpha - 20905,0756 \, \beta + (31,976 \, \alpha + 236 \, \beta + 6,85 \, \dot{x}_{CO_{2}}^{\circ} + 6,89 \, \dot{x}_{H_{2}O}^{\circ} + 3,422) \, T + (-22,064 \, \alpha + 6,45 \, \beta + 4,266 \, \dot{x}_{CO_{2}}^{\circ} + 1,641 \, \dot{x}_{H_{2}O}^{\circ} + 8,9225) \cdot 10^{-3} \, T^{2} + (4,1866 \, \alpha - 1,8586 \, \beta - 0,825 \, \dot{x}_{CO_{2}}^{\circ} - 0,1143 \, \dot{x}_{H_{2}O}^{\circ} - 1,3883) \cdot 10^{-6} \, T^{3} - (3,422 + 6,89 \, \dot{x}_{H_{2}O}^{\circ} + 6,85 \, \dot{x}_{CO_{2}}^{\circ}) \, T_{0} - (8,9225 + 1,6415 \, \dot{x}_{H_{2}O}^{\circ} + 4,2665 \, \dot{x}_{CO_{2}}^{\circ}) \, 10^{-3} \, T_{0}^{2} + (1,3883 + 0,1143 \, \dot{x}_{H_{2}O}^{\circ} + 0,825 \, \dot{x}_{CO_{2}}^{\circ}) \, 10^{-6} \, T_{0}^{3} \, \right]$$
(86)

Ecuația (86) exprimă dependența directă a consumului total de căldură în proces de parametrii tehnologici: P, T, T_0 , $\dot{x}_{CO_2}^{o}$, $\dot{x}_{H_2O}^{o}$ și $n_{CH_4}^{o}$. Presiunea nu intervine explicit dar influențează gradele de transformare \checkmark și /3.

De la consumul total, ΔH_{ext} , se poate trece la consumul specific raportat la un mol de hidrogen. Stiind că:

$$n_{\rm CO} = 2n_{\rm CH_4}^{\rm o} (\alpha - \beta)$$
 (87)

$$n_{\rm H_2} = 2n_{\rm CH_4}^{\rm o} (\alpha + \beta)$$
(88)

rezultă

$$\mathbf{n}_{\rm CO} + \mathbf{n}_{\rm H_2} = 4\mathbf{n}_{\rm CH_4}^{\rm o} \mathcal{A}$$
(89)

De aici rezultă ecuația de calcul a consumului specific de căldură:

$$\Delta H_{c} = \frac{\Delta H_{ext}}{n_{c0} + n_{H_{2}}} = \frac{\Delta H_{ext}}{4 \sigma n_{CH_{4}}^{o}}$$
(90)

Relația (90) este identică cu ecuația (57) stabilită pentru procesul de conversie a metanului cu vapori de apă.

Analiza la calculator a ecuațiilor (86), (90) va permite compararea eficienței procesului de conversie a metanului cu ameste de vapori de apă și dioxid de carbon cu aceea a procesului convențional, utilizat în instalațiile industriale actuale, pentru care s-au stabilit ecuațiile (54), (57).

3.2.2. Consumul specific de combustibil

Consumul specific de combustibil se calculează cu relațiile stabilite la paragrafele 3.1.2.1. și 3.1.2.2. în care se inlocuiește însă, final, mărimea \mathbf{A} H_{ext}, calculată cu relația (86).

3.3. Bilanțul termic în procesul de conversie catalitică cu vapori de apă a gazului natural cu hidrocarburi superioare

In casul presenței în gazul natural, alături de metan, a unor hidrocarburi gazoase superioare, ecuația caracteristică a procesului are forma (31). Ecuațiile stoichiometrice care trebuie luate în considerație sînt cele cu numerele de ordine 1 - 9 din tabelul 9. Apar în plus, față de procesul conversiei metanului, reacțiile (3) - (9) care sînt puternic exoterme. In consecință, bilanțul termic se modifică. Ca formă generală, ecuația de bilanț termic este identică cu relația (47). Termenul Δ H nu se modifică, de asemenea, decarece membrul drept al ecuației caracteristice este la fel în cele două procese. Termenul Δ H₀ suferă modificări minore, calculindu-se cu relația (48), în care i sînt toți componenții din membrul sting al ecuației caracteristice (31).

Termenul A H_R suferă însă modificări importante, concretizîndu-se astfel;

$$H_{R} = n_{CH_{4}}^{o} \left[\mathscr{A} \left(\Delta_{R_{2}} H_{T}^{o} \right) + \beta \left(\Delta_{R_{3}} H_{T}^{o} \right) \right] - \sum n_{i_{0}j_{1}j_{2}j+2}^{o} \left(\Delta_{R_{1}} H_{T}^{o} \right) - \sum n_{i_{0}j_{1}j_{2}j+2}^{o} \left(\Delta_{R_{1}} H_{T}^{o} \right) \right] - \sum n_{i_{0}j_{1}j_{2}j+2}^{o} \left(\Delta_{R_{1}} H_{T}^{o} \right) - \sum n_{i_{0}j_{1}j_{2}j+2}^{o} \left(\Delta_{R_{1}} H_{T}^{o} \right) \right] - \sum n_{i_{0}j_{1}j_{2}j+2}^{o} \left(\Delta_{R_{1}} H_{T}^{o} \right) - \sum n_{i_{0}j_{1}j_{2}j+2}^{o} \left(\Delta_{R_{1}} H_{T}^{o} \right) \right] - \sum n_{i_{0}j_{1}j_{2}j+2}^{o} \left(\Delta_{R_{1}} H_{T}^{o} \right) - \sum n_{i_{0}j_{1}j_{2}j+2}^{o} \left(\Delta_{R_{1}} H_{T}^{o} \right) - \sum n_{i_{0}j_{1}j_{2}j+2}^{o} \left(\Delta_{R_{1}} H_{T}^{o} \right) \right]$$

$$(91)$$

unde i reprezintă numărul de ordine al reacțiilor în care intervin hidrocarburile superioare, respectiv, conform tabelului 12, i = 3 - 6 pentru transformarea alcanilor și i = 7 - 9 pentru transformarea alchenelor în metan. Deoarece aceste reacții, care au loc în primele porțiuni ale reactorului tubular de reformare, sînt puternic exoterme, termenul ΔH_R , scade cu atît mai mult cu cît crește procentul de hidrocarburi superioare din gazul natural. Pentru compoziția gazului natural din tabelul 14, termenul ΔH_R scade cu circa 10000 cal. pentru un mol de gaz natural. Prin urmare, din punct de vedere termic, prezența hidrocarburilor superioare este favorabilă, micșorînd consumul de energie, deși din punctul de vedere al bilanțului de materiale cantitatea de hidrogen obținută este mai mică.

CAPITOLUL 4. ANALIZA LA CALCULATOR PE BAZA MODELULUI MATEMATIC AL DESFASURARII PROCESULUI LA ECHILIBRUL

CHIMIC

Stabilirea modelului matematic al desfășurării unui proces chimic la echilibru se bazează pe relații fundamentale ale termodinamicii. Deoarece presiunea (P), temperatura (T) și compoziția (n_i) sînt variabilele experimentale obișnuite, funcția Gibbs (G) este cea mai adecvată pentru a servi ca relație fundamentală ce caracterizează termodinamic un sistem chimic și are forma /108/ :

$$G = G(T, P, n_{i})$$
(92)

Entalpia liberă, G, este o proprietate extensivă, proporțională cu cantitate de substanță din sistem. Aceasta înseamnă că ecuația (92) este o funcție omogenă de gradul I în n_i:

$$G(\mathbf{T}, \mathbf{P}, \boldsymbol{\Lambda} \mathbf{n}_{i}) = \boldsymbol{\Lambda} G(\mathbf{T}, \mathbf{P}, \mathbf{n}_{i})$$
(93)

Din teorema lui Euler asupra funcțiilor omogene rezultă imediat că:

$$G = \sum \mathcal{M}_{i} n_{i}$$
(94)

unde, potențialul chimic (\mathcal{M}_i) este definit astfel:

$$\mathcal{M}_{i} = \frac{\mathcal{D}_{G}}{\mathcal{D}_{i}} = \mathcal{M}_{i}(T, P, n_{j})$$
(95)

Decarece starea de echilibru chimic minimalizează energia liberă, ecuația (94) poate servi direct ca model matematic al desfășurării procesului la echilibru. Dacă se cunosc potențialele chimice ale componentelor se poate determina compoziția (n_i) , astfel încît G să fie minimă. Această metodă, numită metoda minimalizării directe a entalpiei libere, a fost sugerată de către White, Johnson și Dantzig /108/, perfecționată de către Oliver, Stephanou și Baier /110/ și aplicată de o serie de autori /111, 112/ la sisteme chimice complexe. Metoda minimalizării directe nu necesită cunoașterea ecuațiilor stoichiometrice independente ci doar a speciilor chimice prezente la echilibru și, de aceea, este eficientă pentru sisteme deosebit de complexe, pentru rezolvarea ecuațiilor putîndu-se aplica metodele matematice de optimizare adecvate funcției scop formată din ecuații algebrice neliniare /113-116/.

Decarece procesul de transformare a metanului cu vapori de apă (sau cu vapori de apă și dioxid de carbon) este descris stoichiometric de două ecuații independente, cunoscute, iar datele termodinamice existente au permis stabilirea unor relații precise pentru calculul constantelor de echilibru ale reacțiilor, s-a folosit metoda constantelor de echilibru care este avantajoasă în acest caz.

In continuare se prezintă modelul matematic al desfășurării procesului la echilibru, metoda de rezolvare numerică a acestuia la calculator, rezultatele obținute și analiza rezultatelor atît pentru procesul de conversie a metanului cu vapori de apă cît și pentru procesul de reformare cu amestec de vapori de apă și dioxid de carbon. Final, pe baza comparării rezultatelor, luînd în considerație și bilanțul termic, se trag concluzii asupra avantajelor celui de al doilea procedeu de conversie a metanului.

47

4.1. Conversia metanului cu vapori de apă

4.1.1. Modelul matematic al desfășurării procesului la echilibru

Așa cum s-a mai arătat, procesul de conversie a metanului cu vapori de apă este definit prin ecuația caracteristică (1) și ecuațiile stoichiometrice independente (2) și (3).

Potrivit metodei constantelor de echilibru, în varianta dezvoltată de către Calistru C. și colab. /82,83,105/, modelul matematic al desfășurării procesului la echilibru cuprinde următoarele grupuri de ecuații:

- I ecuațiile de definiție a constantelor termodinamice de echilibru ale reacțiilor chimice independente;
- II ecuații de corelare a activității (fugacității) componentelor în funcție de concentrațiile ce se pot măsura direct (de obicei fracții molare, x_i);
- III modele matematice primare sau secundare de bilanț;
- IV ecuațiile de calcul ale constantelor de echilibru în funcție de temperatură.

Concretizînd ecuațiile (I) II și III le procesul de conversie a metanului cu vapori de apă, considerînd compo rtarea de gaz ideal a masei de reacție, se obțin ecuațiile (96) și (97):

$$K_{p_2} = \frac{(\alpha - \beta)(3\alpha + \beta)^3 p^2}{(1 - \alpha)(x_{H_20}^0 - \alpha - \beta)(1 + x_{H_20}^0 + 2\alpha)^2}$$
(96)

$$K_{p_3} = \frac{\beta (3 \alpha + \beta)}{(\alpha - \beta)(x_{H_20}^0 - \alpha - \beta)}$$
(97)

Ecuațiile (96) și (97) exprimă dependența compoziției la echilibru, reprezentată prin gradele de transformare la echilibru α (și /3, de parametrii P, $\mathbf{x}_{H_20}^0$ și T. Dependența de temperatură este complexă, prin intermediul constantelor K_{p_2} și K_{p_3} . De aceea este necesară stabilirea relațiilor precise de calcul ale acestor constante. Inlocuind datele termodinamice din tabelul 13 în relația generală de calcul (98):

$$\ln K_{\rm p} = - \frac{\Delta R {}^{\rm G} \tilde{T}}{RT} \qquad (98)$$

B-au obținut ecuațiile (99) și (100);

$$lg K_{p_2} = -\frac{9861,111}{T} - 11,87 - 2,058457.10^{-3}T + 0,177950.10^{-6}T^2 + 8,343231 \ lgT$$
(99)

$$lg K_{p_3} = \frac{2217.18}{T} - 3,274672 + 0,352381.10^{-3}T - 0,050773.10^{-6}T^2 + 0,296930 \ lgT$$
(100)

Valorile constantelor K_{p2} și K_{p3}, calculate cu relațiile (99) și respectiv (100), sînt mai precise decît cele calculate cu relațiile simplificate existente în literatură /59/ și concordă bine cu valorile tabelate existente în unele lucrări /22-26/.

Sistemul format din ecuațiile (96), (97), (99) și (100) constituie modelul matematic al desfășurării procesului de conversie a metanului cu vapori de apă la echilibru. Prin rezolvarea acestui sistem de ecuații algebrice neliniare la calculator se obțin, la valori date ale parametrilor P, T și $\overset{0}{\mathrm{M}_{20}}$, gradele de transformare la echilibru \checkmark și /3. Inlocuind valorile lui \checkmark și /3, astfel obținute, în ecuațiile primare de bilanț din tabelul 5, se obține bilanțul teoretic de materiale al procesului în condițiile date. Prin rezolvarea la calculator a sistemului, într-un interval larg de variație a parametrilor, se efectuează analiza procesului în vederea optimizării acestuia.

Precizia valorilor obținute pentru 🗸 și /3 depinde nu numai de validitatea modelului stabilit ci și de metoda de rezolvare a acestuia.

4.1.2. Metoda de rezolvare numerică, la calculator, a modelului matematic

Sistemul de ecuații neliniare (96), (97) care descriu echilibrul, nu poate fi rezolvat decît numeric, prin aplicarea unei metode iterative care reduce problema rezolvării unui sistem de ecuații neliniare la rezolvarea unei secvențe infinite de ecuații liniare. In notațiile algebrei matriceale, acest sistem se scrie astfel:

$$\mathbf{f} = \mathbf{f}(\mathbf{x}) = \mathbf{0} \tag{101}$$

f = vector coloană N dimensional

x = N variabile independente (aici N = 2; \propto și /3)

Dacă $\mathbf{x}^{\mathbf{H}}$ este soluția ecuației (101), adică $f(\mathbf{x}^{\mathbf{H}}) = 0$, atunci iterația funcțională este caracterizată de o funcție vector $g(\mathbf{x})$ astfel încît:

$$\mathbf{g}(\mathbf{x}) = \mathbf{x}^{\mathbf{M}} \tag{102}$$

In termeni de g(x) și estimarea inițială x_0 a lui x_j^{M} putem defini o secvență de vectori x_k prin formula:

$$\mathbf{x}_{k+1} = \mathbf{g}(\mathbf{x}_k) \tag{103}$$

^{Dacá} x_o este suficient de apropiată de x[™] această secvență va converge spre x™ /112/. Deși convergența este astfel ga**ran**tată

este, de obicei, greu de estimat x_0 . Aceasta este, de fapt, deficiența tuturor metodelor iterative. Diferitele metode de acest tip diferă între ele prin alegerea lui g(x).

In cadrul metodei Newton-Raphson, g(x) se definește prin relația:

$$g(x) = x - J^{-1}(x) \cdot f(x)$$
 (104)

unde J(x) este Jacobianul funcției, adică matricea formată din derivatele parțiale ale lui f, $\frac{\Im f}{\Im x}$.

Combinind ecuatiile (103) și (104), se obține:

$$J(x_{k})(x_{k+1} - x_{k}) = -f(x_{k})$$
(105)

de unde se vede că iterația se obține prin truncherea seriei Taylor a lui f(x) după prima derivată.

In aplicarea metodei apar dificultăți,deoarece: - calculul după fiecare iterație a jacobianului consumă mult timp atunci cînd numărul de ecuații (N) este mare;

- trebuie cunoscută forma funcției f(x) și aceasta să nu fie
 prea complicată, pentru a se putea calcula J;
- evaluarea lui x_0 , pentru a se asigura convergența este uneori dificilă.

Există și alte metode care depășesc aceste dificultăți. Dintre acestea amintim: metoda generalizată a secanței și metoda substituției succesive /112/.

Metoda generalizată a secantei /113/ nu necesită nici o derivată pentru evaluarea lui g(x). Este de fapt metoda Newton cu un jacobian aproximat prin relația $J(x_k) = \Delta f_k [\Delta x_k]^{-1}$. Prin urmare, în acest caz g(x), este formulată astfel:

$$g(\mathbf{x}) = \mathbf{x} - (\mathbf{\Delta} \mathbf{x}) (\mathbf{\Delta} \mathbf{f})^{-1} \mathbf{f}(\mathbf{x})$$
(106)

Metoda substituției succesive /113/ se bazează pe scrierea lui f(x), cînd este posibil, sub forma:

$$f(x) = x - g(x)$$
 (107)

atunci g(x) devine:

$$g(x) = x - f(x)$$
 (108)

Relația (108) arată că metoda substituției succesive este o variantă a metodei Newton-Raphson în care jacobianul este matricea unitară.

Pentru rezolvarea sistemului (96), (97), s-a ales metoda Newton-Raphson. Cele trei dezavantaje ale metodei nu se manirestă în acest caz, decarece:

- numărul de ecuații (N = 2) este mic și deci timpul necesar calculării jacobianului este acceptabil;
- forma funcțiilor este bine precizată și nu foarte complicată, putîndu-se deci calcula J;
- evaluarea lui x_0 (valorile inițiale ale lui \propto și /3) s-a putut face destul de precis pe baza ecuațiilor (18) și (19), stabilite anterior. Cu ajutorul mărimilor experimentale X_{CH_4} și X_{CO_2} s-au evaluat \ll și /3 la condiții date (P, T, $\dot{x}_{H_2O}^0$) și, în ipoteza desfășurării procesului real foarte aproape de echilibru, aceste valori au fost considerate soluții de plecare x_0 .

Convergența a fost asigurată, totuși, numai după modificarea metodei originale prin introducerea amortizării corecțiilor /82/.

Algoritmul conceput pe baza acestei metode este prezentat lu figura 4.

Programul s-a scris în limbaj FORTRAN pentru calculatorul FELIX C 256 (IRIS-50).

Fig.4 Algoritmul de rezolvare a ecuațiilor (965, (97) prin metoda Newton-Raphson.

4.1.3. Rezultate obținute

In literatură există valori ale mărimilor « și /3 în următoarele condiții /22,23/ :

In reactoarele actuale de reformare presiunea este deja mai mare de 40 at. și aceasta va crește în viitor, prin realizarea unor linii de amoniac care să lucreze la o presiune unică pentru întreaga instalație, desființîndu-se compresorul de sinteză. De aceea, pentru completarea datelor existente și verificarea lor, s-au obținut valorile lui \ll și /3 prin rezolvarea ecuațiilor (96) și (97) la calculator, în condițiile:

 $\dot{\mathbf{x}}_{H_2O}^{0} = 1; 2; 3; 4; 5; 6; 8; 10;$ T = 600; 700; 800; 900; 1000; 1100; 1200; 1300 K; F = 1; 10; 20; 30; 40; 50; 100 at.

8-au extins astfel intervalele de variație a color trei parametri încît să includă atît condițiile de desfășurare a proceselor din liniile industriale actuale cît și din cele de perspectivă. Extinzînd intervalul temperaturii, datele obținute vor permite și analiza evoluției compoziției pe lungimea reactorului, ținînd seama de profilul temperaturii în reactorul tubular.

Datele obținute sînt prezentate în tabelele 17 - 23 din anexa 1, sub forma variației gradelor de transformare \propto , β și $\gamma_{\rm CO}$ cu temperatura și raportul inițial $\dot{x}^{\rm O}_{\rm H_2O}$, la diferite presiuni. Mărimea $\gamma_{\rm CO}$ s-a calculat ca raport $\beta_{/ c}$.

Inlocuind mărimile $\alpha \leq \beta \leq \beta$, astfel obținute, în ecuațiile (54) și (57) la trei temperaturi inițiale (720, 760 și 800 K), s-au obținut mărimile ΔH_{ex} și respectiv ΔH_c , presentate în tabelele 24-41, din anexa 2.

4.1.4. Analisa resultatelor

Trebuie subliniat, în primul rînd, că valorile numerice ale mărimilor α și β obținute concordă cu cele existente în literatură pentru intervalele cercetate anterior /22,23/. Astfel, la P = 20 at., T = 900 K și $\hat{\mathbf{x}}_{H_20}^0$ = 4, valorile obținute de noi și cele existente, scrise în paranteză, sînt: $\alpha = 0,334$ (0,333); $\beta = 0,285$ (0,284). Aceasta confirmă și validitatea datelor obținute de noi, pentru prima dată, în condițiile: $\hat{\mathbf{x}}_{H_20}^0 = 3$; 5; 8; 10; P = 40; 50; 100 at. și T = 1100 - 1300 K.

Pentru evidențierea influenței parametrilor T, P și $\dot{x}_{H_2O}^{o}$ asupra gradelor de transformare α , /3 și γ_{CO} precum și asupra consumurilor specifice de căldură, s-au trasat diagramele din figurile 5-27.

In figurile 5-10, este evidențiată influența concomitentă a temperaturii și composiției inițiale asupra gradelor de transformare la diferite presiuni. Datele confirmă variația calitativ previzibilă: \propto crește cu T, γ_{CO} scade cu T, ambele grade de transformare cresc cu raportul $x_{H_2O}^0$. Importanța diagramelor este în special de ordin cantitativ, la o presiune dată putînd fixa perechile de T și $x_{H_2O}^0$ pentru a obține gradele de transformare dorite.

Fig.5 Variația gradelor de transformare γ_{CH_4} și γ_{CO} cu T și $\dot{x}_{H_2O}^{o}$, la P = 10 at.

Fig.6 Variația lui γ_{CH_4} și γ_{CO} cu T și $\dot{x}_{H_2O}^{o}$, la P = 20 at.

Fig.7 Variația lui γ_{CH_4} și γ_{CO} cu T și $x_{H_2O}^0$, la P = 30at.

Fig.8 Variația lui γ_{CH_4} și γ_{CO} cu T și $\dot{x}_{H_2O}^0$, la P = 40 at.

Fig.9 Variația lui η_{CH_4} și η_{CO} cu T și $\dot{x}_{H_2O}^{o}$, la P_{H_2O} 50 at.

Fig.10 Variația lui γ_{CH_4} și γ_{CO} cu T și $\dot{x}_{H_2O}^{o}$, la P = 100at.

Fig.ll Variația lui γ_{CH_4} cu $\dot{x}_{H_2O}^o$ și T la P = 40 at.

Fig.12 Variația lui γ_{CO} cu $x_{H_2O}^0$ și T la P = 40 at.

Fig.13 Dependența lui γ_{CH_4} și Fig.14 Variația lui β cu T γ_{CO} de P și $\dot{x}_{H_2O}^0$ la D-1100 K și $\dot{x}_{H_2O}^0$ la P = 10 at.

Fig.15 Dependența lui /3 de T Fig.16 Dependența lui /3 de si $\dot{x}_{H_20}^0$ la P = 20 at.

T si $x_{H_2O}^{\bullet}$ la P = 30 at.

Din figurile 11 și 12 rezultă că influența raportului $\dot{\mathbf{x}}_{H_20}^{o}$ este cu atît mai puternică cu cît temperatura este mai mică, în cazul lui γ_{CH_4} și invers, în cazul lui γ_{CO} . Decarece interesează în mod decsebit mărimea γ_{CH_4} - măsură directă a eficienței procesului - rezultă că la temperaturi mai mari de 1100 K, creșterea raportului $\dot{\mathbf{x}}_{H_20}^{o}$ peste valcarsa 5 este, practic, inutilă.

Curbele din figura 13 relevă influența negativă a presiunii asupra gradului de transformare a metanului în special la excese mici de vapori de apă.

Deși reacția (3) este fără variație de volum, γ_{CO} , datorită steichiometriei complexe a procesului, crește cu presiunea în special la excese mici de vapori de apă și la presiuni mai mici de 50 at.

Variația mărimii β cu temperatura și compoziție, pentru diferite presiuni, este reprezentată în figurile 14-19. Aceste diagrame evidențiază un maxim al lui β care apare la temperaturi cu atît mai mari cu cît crește $\hat{x}_{H_{-}0}^{0}$.

Curbele din figura 20 arată faptul că maximul lui /3 în raport cu temperatura este influențat și de presiune, deplasîndu-se spre temperaturi mai mici cu cît scade presiunea.

In figurile 21-26 s-au reprezentat variațiile consumului apecific de căldură cu temperatura și compoziția inițială la diferite presiuni. Din aceste diagrame se remarcă existența unui minim al variației lui Δ H_c cu temperatura. Temperatura optimă corespunzătoare nu are însă o valoare fixă ci depinde de celalți parametri. Astfel, la P și T_o constante, valoarea optimă a temperaturii se deplasează spre valori mai mici pe măsură ce crește excesul de abur iar, la condiții inițiale date $(\dot{\mathbf{x}}_{\mathrm{H}_{2}^{0}}^{0}$ și \mathbf{T}_{0}), creșterea presiunii de lucru duce la creșterea temperaturii care minimalizează consumul de căldură. Evident, creșterea temperaturii de preîncălzire a amestecului inițial (\mathbf{T}_{0}) , duce la scăderea liniară a consumului de căldură, fapt care rezultă din figura 27.

Existența valorilor optime ale temperaturii, găsită prin analiza procesului la calculator pe baza modelelor matematice de bilanț de masă și căldură, poate fi atribuită caracterului termic opus al reacțiilor (2) și (3). În acest sens se poate remarca faptul că minimul consumului de căldură din diagramele. ΔH_c - T coincide cu maximul variației lui β cu T la aceleași valori ale celorlalți parametri. Corespunzător acestor consumuri minime de căldură se pot determina, cu ajutorul relațiilor (68) sau (80), consumurile minime de combustibil. Acestea se vor analiza în capitolul 5 comparativ cu valorile măsurate experimental.

Fig.21 Variația lui ΔH_c cu T și Fig.22 Variația lui ΔH_c cu $\dot{x}_{H_20}^{o}$, la P = 10 at. T și $\dot{x}_{H_20}^{o}$ la P = 20 at.

 $\text{$i$ $x_{H_2O}^{\circ}$ la $P = 50$ at.}$

Fig.26 Variația lui ΔH_c cu T și $x_{H_2O}^0$ la P = 100 at.

Fig.27 Variația consumului specific de căldură cu temperatura inițială și $\overset{\circ}{\text{H}_20}$ la T = 1100 K și P = 40 at.

Datele obținute prin analiza procesului de conversie a metanului cu vapori de apă, la calculator, pe baza modelelor matematice de bilanț de masă și căldură stabilite în capitolele 2 și 3 evidențiază o interdependență complexă a performanțelor procesului (grade de transformare, consum specific de căldură) cu parametrii tehnologici. Pe baza acestor date, la o presiune de lucru fixată se poate stabili setul de parametri care, în ipoteza desfășurării procesului la echilibru, maximalizează performanțele procesului.

In continuare se tratează, în mod analog, procesul de conversie a metanului cu amestec de vapori de apă și dioxid de carbon cu scopul evidențierii influenței pe care o poate avea prezența CO_2 - ului (fie int odus în amestecul metan abur, fie datorită utilizării gazelor naturale cu conținut ridicat de CO_2) asupra performanțelor procesului.

- 4.2. Conversia metanului cu vapori de apă și dioxid de carbon
- 4.2.1. Modelul matematic al desfășurării procesului la echilibru

Acest proces, așa cum s-a arătat în capitolul 2, este definit prin ecuația caracteristică (20) și ecuațiile stoichiometrice (3) și (5). Aplicînd și în acest caz metoda constantelor de echilibru, în ipoteza comportării ideale a masei de reacție, se obțin ecuațiile (109) și (110):

$$K_{p_{3}} = \frac{(\alpha + \beta)(x_{CO_{2}}^{\circ} - \alpha + 2\beta)}{(\alpha - \beta)(x_{H_{2}O}^{\circ} - 2\beta)}$$
(109)

$$\mathbf{K}_{\mathbf{p}_{5}} = \frac{16 \mathbf{P}^{2} (\boldsymbol{\alpha} - \boldsymbol{\beta})^{2} (\boldsymbol{\alpha} + \boldsymbol{\beta})^{2}}{(1 - \boldsymbol{\alpha}) (\mathbf{x}_{CO_{2}}^{0} - \boldsymbol{\alpha} + 2\boldsymbol{\beta}) (1 + \mathbf{x}_{CO_{2}}^{0} + \mathbf{x}_{H_{2}O}^{0} + 2\boldsymbol{\alpha})^{2}}$$
(110)

Pentru dependența constantei K de temperatură se utilizează P3 relația (100) iar pentru K relația (111) stabilită în aceas-P5 tă lucrare, pe baza datelor din tabelul 10:

$$lg K_{p_5} = - \frac{12078.07}{T} + 8,595279 - 2,410839.10^{-3}T + 0,228736.$$

. 10⁻⁶T² + 8,0463 lg T (111)

Dacă în locul gradelor de transformare \ll şi /3 se utilizează mărimile x_{CH_4} și $y = x_{H_2}/x_{CO}$, măsurabile direct, ecuațiile (109) și (110) devin: $x_{CO_2}^o(1 + 2x_{CH_4})(1 + y) + (1 - A x_{CH_4})(y - 3) y$ $K_{P_3} = \frac{x_{O_2}(1 + 2x_{CH_4})(1 + y) - 2(1 - A x_{CH_4})(y - 1)}{x_{H_2O}^o(1 + 2x_{CH_4})(1 + y) - 2(1 - A x_{CH_4})(y - 1)}$ (112)

$$^{K}_{P_{5}} = \frac{16 P^{2} (1 - A x_{CH_{4}})^{4} y^{2}}{(2+A)^{2} (1+y)^{2} \dot{x}_{CO_{2}}^{o} (1+2x_{CH_{4}}) (1+y) + (1-Ax_{CH_{4}}) (y-3) x_{CH_{4}}}$$
(113)

4.2.2. Metoda de rezolvare numerică la calculator

Sistemul format din ecuațiile algebrice neliniare (109) și (110), împreună cu ecuațiile constantelor de echilibru s-a rezolvat, prin programare la calculator, prin varianta Davidenco /114/ a metodelor numerice expuse anterior.

4.2.3. Rezultate obținute

S-au obținut numeroase valori ale mărimilor \propto și /3, respectiv x_{CH4} și y, pentru următoarele intervale de variație a parametrilor tehnologici:

P = 10; 20; 30; 40; 50 at.; T = 900; 1000; 1100; 1200; 1300 K; $\mathbf{x}_{H_{2}0}^{o} = 1; 2; 3; 4; 5; 6; 7; 8;$ $\mathbf{x}_{C0_{2}}^{o} = 0; 1; 2; 3; 4; 5.$

In tabelele 42-46, din anexa 3, se prezintă, concentrat, valorile obținute pentru gradele de transformare \propto și /3 în intervalele: P = 10-50 at., T = 900 - 1200 K, $\dot{x}_{H_20}^0 = 1 - 8$, $\dot{x}_{CU_2}^0 = 1 - 4$, renunțîndu-se la datele mai puțin semnificative.

Comparind datele din tabelele 42-46 cu cele din tabelele 18-22, se remarcă faptul că, la $\dot{\mathbf{x}}_{CO_2}^o = o$, gradele de transformare pentru procesul de reformare cu amestec de vapori de apă și dioxid de carbon devin aproape identice cu cele obținute anterior, pentru procesul de reformare cu abur. Astfel, din tabelelul 21 la P = 40, T = 1100 K și $\dot{\mathbf{x}}_{H_2O}^o = 3$, rezultă $\boldsymbol{\alpha} = 0,7369$.

iar din tabelul 43, la $\mathbf{x}_{CO_2}^{\mathbf{o}} = \mathbf{o}$ și ceilalți parametri identici, rezultă $\mathcal{K} = 0,735743$. Abaterea de aproximativ 0,1% se păstrează la toate datele. La β diferențele sînt mai mari.

4.2.4. Analiza rezultatelor

Datele prezentate în tabelele 42-46 cît și diagramele din figurile 28-36 permit analiza influenței parametrilor $\dot{x}_{CO_2}^{o}$, $\dot{x}_{H_2O}^{o}$, P și T asupra gradelor de transformare $\propto si/3$ cît și asupra compoziției gazului exprimată prin mărimile x_{CH_4} și y. Dintre parametri interesează în mod deosebit raportul $\dot{x}_{CO_2}^{o}$ ca factor specific al acestui proces față de procedeul convențional de reformare a metanului, la care $\dot{x}_{CO_2}^{o} = 0$.

Datorită complexității procesului, influența lui $\dot{x}_{CO_2}^{o}$ depinde și de valorile celorlalți parametri. Astfel, la temperaturi de 900 și 1000K, prin adăugarea dioxidului de carbon, gradul de transformare \checkmark scade la început (cînd $\dot{x}_{CO_2}^{o} = 1 - 2$) apoi crește, depășind valoarea inițială. La temperaturi mari, de 1100 și 1200 K, acest fenomen apare, deși toarte slab, doar la rapoarte $\dot{x}_{H_2O}^{o} \ge 6$.

Astfel, din tabelul 45 se vede că la 900 K, P = 40 at. și $\dot{\mathbf{x}}_{H_20}^{o} = 4$, d scade de la 0,299031, pentru $\dot{\mathbf{x}}_{C0_2}^{o} = 0$, la 0,256461 la $\dot{\mathbf{x}}_{C0_2}^{o} = 1$; apoi crește din nou atingînd, la $\dot{\mathbf{x}}_{C0_2}^{o} = 4$, valoarea 0,296436. Din același tabel se vede că la 1000 K scăderea inițială a lui d cu $\dot{\mathbf{x}}_{C0_2}^{o}$ este mai puțin accentuată.

Din figurile 28-31 rezultă că la T = 1100 K, indiferent de presiune, atunci cînd $\dot{x}_{H_20}^0 < 6$, gradul de transformare crește continuu cu $\dot{x}_{C0_2}^0$. Creșterea este cu atît mai puter-

nică cu cît $\dot{\mathbf{x}}_{\mathrm{H_2O}}^{\mathbf{0}}$ este mai mic. Astfel, din tabelul 45, rezultă că la T = 1100 K și P = 40 at. dacă $\dot{\mathbf{x}}_{\mathrm{H_2O}}^{\mathbf{0}}$ = 3, prin adăugarea unui mol de CO₂, gradul de transformare \checkmark crește de la 0,647818 la 0,687257 . Dacă, la aceleași P și T,dar $\dot{\mathbf{x}}_{\mathrm{H_2O}}^{\mathbf{0}}$ = 2, se adaugă un mol de CO₂, \checkmark crește de la 0,531456 la 0,605407 .

Se poate trage concluzia, în final, că la temperaturi mai mari de 1100 K și rapoarte $\hat{x}_{H_20}^0 < 6$, adăugarea dioxidului de carbon în amestecul metan - abur, duce la creșterea gradului de transformare a metanului.

Din tabele cît și din figurile 28-31 rezultă că gradul de transformare /3 scade, în toate condițiile, cu creșterea raportului $\dot{\mathbf{x}}_{CO_2}^{o}$. Mai mult, la anumite valori ale acestuia, în funcție și de $\dot{\mathbf{x}}_{H_2O}^{o}$, reacția (3) decurge în sens invers iar sistemul nu dă soluții reale și pozitive (în aceste condiții în tabele apar linii).

Din figura 32 rezultă influența concomitentă a lui $\dot{x}_{CO_2}^{o}$ și a temperaturii T asupra lui \checkmark , la P = 40 at. și $\dot{x}_{H_2O}^{o}$ = 3. Se remarcă din nou faptul că, la T ≥ 1100 K, creșterea lui \measuredangle cu $\dot{x}_{CO_2}^{o}$ este mai accentuată decît la temperaturi mai mici.

Calitatea gazului de sinteză rezultat exprimată prin x_{CH_4} și y, rezultă din figurile 34 și 35. Se remarcă scăderea puternică a concentrației metanului netransformat cu creșterea lui $x_{CO_2}^{0}$ mai ales la rapoarte $x_{H_2O}^{0} < 5$.

Fig.28 Variația lui c și /3 cu $x_{CO_2}^{o}$ și $x_{H_2O}^{o}$ la P = 20 at. și T = 1100 K.

F1_E.30 Variația lui \ll și /3 cu $\overset{\circ}{H_2O}$ și $\overset{\circ}{X_{CU_2}}$ la P = 40 at. și T = 1100 K.

Fig.29 Variația lui \ll și /3cu $\stackrel{\circ}{x_{CO_2}^{o}}$ și $\stackrel{\circ}{x_{H_2O}^{o}}$ la P = 30 at. și T = 1100 K.

Fig.31 Variația lui $\propto \pm 1/3$ cu $x_{H_20}^0 \pm x_{CO_2}^0$ la P = 50 at. $\pm 1 T = 1100 K$.

Fig.36 Variația consumului specific $\Delta H_c [Kcal/Kmol]$ cu T și $\hat{x}_{CO_2}^o$ la P = 40 at., $\hat{x}_{H_2O}^o$ = 3 și T_o = 800 K în procesul de conversie a metanului cu vapori de apă și dioxid de carbon

Raportul y scade brusc cu $\dot{x}_{CO_2}^{o}$ putîndu-se astfel obține gaze cu y = 1 - 3 necesare sintezei alcoolilor.

Eficiența reformării metanului cu amestec de vapori de apă și dioxid de carbon este ilustrată mai ales de creșterea lui \checkmark la T \ge 1100 K și $\dot{x}_{H_20}^0 < 6$ și, evident, de scăderea corespunzătoare a lui x_{CH_n} .

Prin rezolvarea ecuațiilor (86) și (90) se pot determina mărimile $\Delta H_{ext}/n_{CH_4}^{o} = \Delta H'$ și respectiv ΔH_c în funcție de parametrii P, T, $\dot{x}_{H_20}^{o}$, $\dot{x}_{CO_2}^{o}$ și T_o.

In tabelul 47 sînt prezentate rezultatele obținute la P = 40 at., $\dot{x}_{H_20}^0 = 3$ și $T_0 = 800$ K pentru a evidenția influența temperaturii și a raportului $\dot{x}_{CO_2}^0$.

Din tabel, precum și din diagrama 36 rezultă că, de această dată, nu mai spare un minim al consumului specific de cáldură în funcție de temperatură ci doar un palier în intervalui 1000 - 1100 K. Temperatura de lucru trebuie deci eleasă în acest interval la celelalte condiții date. Se remarcă de asemenea faptul că ΔH_c crește cu raportul $x_{CO_2}^{\circ \circ}$ în special la valori mici ale acestuia.

La rapoarte $\dot{x}_{CO_2}^{o} > 2$, creșterea cu o unitate a lui $\dot{x}_{CO_2}^{o}$ duce la creșteri ale consumului specific de căldură de aproximativ l Kcal/mol H₂. De aceea, la alegerea condițiilor de lucru și aprecierea eficienței procesului de conversie a metanului cu vapori de apă și dioxid de carbon trebuie luate în considerație toate aspectele ce se desprind din acest studiu:

- creșteri importante ale gradului de transformare \prec ,

- economii de abur,

- obținerea unor gaze cu compoziții variate și

- consumuri de căldură puțin mai mari.

Tabelul 47. Variația consumului de căldură cu T și $\dot{x}_{CO_2}^{o}$, la P = 40 at., $\dot{x}_{H_2O}^{o}$ = 3 și T_o - 800 K (Δ H'[Kcal/Kmol CH₄], Δ H_c[Kcal/Kmol]-H₂)

TK	×°co ₂	0	1	2	3	4
900	⊿н' ∆н _с	17149,05 17322,28	1 69 49,59 19736,36	19509,40 21438,90	22946,21 23168,62	26012,96 24059,34
1000	ΔH' ΔH _c	31617,41 18793,04	35734,36 21336,49	42031,90 22798,80	48588,11 23831,70	55078,96 24646,03
1100	ΔH' ΔH _c	49975,73 19286,71	58688,00 21350,41	68993,90 22961,21	77347,00 23887,30	-
1200	⊿н∙ ⊿н _с	67757 , 92 19775 , 25	76906,94 21393,94	88 316,3 2 23556 ,0 0	96813,21 25154,13	-

4.3. Conversia gazului natural cu vapori de apă

In cazul în care gazul natural conține, pe lîngă metan, cantități importante de hidrocarburi gazoase superioare, modelul matematic al desfășurării procesului de conversie a acestuia cu vapori de apă este alcătuit din ecuațiile (96), (97), (99) și (100) în care se înlocuiește compoziția inițială rictivă calculată cu relațiile (38) - (41). Ca urmare, datele prezentate în tabelele 17 - 23 se pot folosi la analiza acestui proces, după precizarea compoziției inițiale rictive.

CAPITOLUL 5. VERIFICAREA EXPERIMENTALA A MODELELOR MATEMATICE DE BILANT

5.1. Parametrii care trebuie determinați

Ecuațiile secundare de bilanț de masă, grupate în tabelul 8, evidențiază faptul că pentru concretizarea bilanțului de materiale într-o instalație oarecare de conversie a metanului cu vapori de apă, sînt necesare două mărimi finale: X_{CH4} și X_{CO2}. In cazul bilanțului real acestea sînt concentrații care se măsoară direct, la ieșirea din reactor.

Utilizarea ecuaçiilor primare de bilanţ presupune mai întîi calculul gradelor de transformare $\propto \pm 3$, în funcție de parametrii determinați X_{CH_4} și X_{CO_2} , folosind relațiile (18) și (19) stabilite în acest scop.

In ambele variante se presupun cunoscute mărimile de intrare: debitul de gaz metan (V_{gm}^{o} sau n_{gm}^{o}), compoziția inițială a gazului metan ($X_{CH_4}^{o}$) și debitul de abur la intrare ($n_{H_2O}^{o}$ sau $m_{H_2O}^{o}$).

Ecuația (54) de bilanț termic, cu care se determină consumul de căldură include, ca parametru care trebuie determinat, temperatura masei de reacție la ieșirea din reactor (T). Ecuația (68) cu care se determină consumul de combustibil include, ca parametru care trebuie determinat, temperatura gazelor de ardere care părăsesc zona de radiație a cuptorului de încălzire (T_a) . Si în cazul bilanțului termic se presupun cunoscute mărimile inițiale: T_o - temperatura amestecului metan-abur la intrarea în reactor, T_{ol} - temperatura gazului combustibil la intrarea în arzător, T_{o2} - temperatura comburantului (aerul) la intrarea în arzător, debitul de gaz combustibil $(V_{CH_4}^0)_{ard.}$, debitul de comburant (V_{aer}^0) precum și presiunea (P_0) a amestecului metan-abur la intrarea în reactor.

In concluzie, la procesul de conversie a metanului cu vapori de apă, trebuie determinate două concentrații finale (X_{CH_4} și X_{CO_2}) pentru concretizarea bilanțului de materiale și două temperaturi finale (T și T_a) pentru concretizarea bilanțului termic, folosind modelele matematice de bilanț stabilite. Aceleași mărimi sînt necesare și pentru celelalte două variante ale procesului.

5.2. Valori experimentale ale parametrilor care trebuie determinați. Verificarea modelelor

Pentru a testa, la scară industrială, valabilitatea modelelor de bilanț stabilite s-au făcut determinări la două instalații industriale de conversie a gazului natural din cadrul liniilor de amoniac tip "H.G." și respectiv tip "K." Instalația tip "H.G.", de la C.I.C. Turnu Măgurele, a fost analizată în cadrul unor contracte de cercetare științifică la cererea Centralei de îngrășăminte chimice /101,102/.

Schița acestei instalații, cu specificarea punctelor de măsură a mărimilor finale și inițiale, este prezentată în figura 37.

In tabelul 48 sînt prezentate valorile medii zilnice ale mărimilor inițiale și ale parametrilor determinați pentru o perioadă de 12 zile. Pentru caracterizarea statistică a datelor primare măsurate s-au folosit: media aritmetică ($\overline{\mathbf{x}} = \frac{1}{n} \sum_{l=1}^{n} \mathbf{x}_{l}$), dispersia ($\boldsymbol{\delta} = \frac{1}{n} \sum_{l=1}^{n} (\mathbf{x}_{1} - \overline{\mathbf{x}})^{2}$ și abaterea medie pătratică

	<u>.</u>								+									
	V ⁰ Ber	[4/N _f m]	106530	115200	116800	115200	115200	99066	110240	121600	121600	121600	111200	97800	112669	106059	60,08,6	7.751.3
	V ⁰ gm ard	[4/N ₅ m]	10000	10000	10000	10000	10000	9 06 6	9875	10234	10250	10234	60101	10000	1 10050	8512	12462,8	111,637
	Tol To2	[K] [K]	293 495	293 492	293 495	293 493	293 490	293 496	293 495	593 494	293 498	293 498	293 494	293 498	293 494 8	293 477	0 5,666	0 2,380
t i ale	д	[at]	26,5	26,5	26,0	26,5	26,5	26,0	26,0	26,8	26,2	26,5	26,1	26,1	26,3	28,9	0,057	0,240
ate ini	<u>в</u> о	[at]	31,5	31,0	31,0	31,0	31,0	31,0	31,0	31,2	31,1	31,5	31,5	31,0	5 31,1	34,3	0,036	0,189
1	е Н	[K]	708	113	112 (708	716	116	708	724	602	706	705	707	1016	755	2 , 5,5	5,05
	n H ² C	[Kg/h]	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000	77292	0	Э
	X ⁰ CH4		226610	019910	0#66'0	1066'0	1699,0	0+66'0	0,9970	0,9902	6066'0	0,9969	0466.0	0,9974	1266'0	0,9967	7,6616	2,76,3
	vo Venu	[<i>m</i> * <i>N</i> / <i>k</i>]	21600	21637	21637	21900	21762	21637	21600	21675	21980	21600	21600	21600	6 21685	24664	14626,3	120,94
at1	8) E1	[K]	1193	1188	1199	1188	1208	1213	1193	1154	1161	1163	1160	1184	5 1183,	t	343,5	16,53
e termin	£1	[K]	1002	1008	1008	1008	1006	1006	1008	1012	1013	1012	1008	1008	1006,6	1924	5,50	2°3
ue tril a	¥cc₂		0,1200	0,1390	0,1520	C,1340	0,1370	G,143C	0,1260	0,1260	0,1440	0,1290	0,1320	C,1210	0,1340	0 ,1 20 8	3,10.4	1.76.2
Furgi	L CH4		0,1047	0,1010	0,1036	0,1022	0,1065	0,IIIC	0,1079	0,1062	1020	020110	0,1035	0,1060	6,104 6	ć,1030	06.10 ⁻⁶	46.10 ⁻³
	0 et.		-	2	MJ	4	5	Q	~	J	5	10	11	12	ĸ	VEL CI L'EE CI'EE	5,6	. N 19

laterui 40. Date inițiale și parametrii măsurați la instalația tip "H.G." Turnu Măgurele

Fig.37 Schiţa procesului tehnologic de conversie a gazului natural cu vapori de apă ("H.G." - Turnu Măgurele). 1. compresor gaz metan; 2. turbină cu abur; 3. preîncălzitor gaz metan; 4. desulfurator; 5. preîncălzitor amestec inițial; 6. reactor multitubular de conversie a metanului; 7. cuptor-zona de radiație; 8. reactor de conversie treapta a doua (reformer secundar); 9. cazan recuperator; 10. preîncălzitor aer de proces; 11. supraîncălzitor; 12. preîncălzitor aer de ardere; 13. ventilator aer de ardere; 14. cuptor-zona de convecție.

$$(B = \sqrt{\delta^2}).$$

Se pot remarca variații mai mari ale mărimilor T_a , V_{gm}^o , $(V_{gm}^o)_{ard}$, V_{aer}^o , în jurul valorii medii. Abaterile absolute față de valorile prescrise sînt de asemenea importante, în special la parametrii: T, T_o și $(V_{gm}^o)_{ard}$. Tabelul 48 poate fi folosit ca model de fișă de control al funcționării acestor instalații prin intermediul bilanțuriior.

Tabelul 49. Bilanțul de materiale, în valori prescrise, al procesului tehnologic de conversie a gazului natural ("H.G." Turnu Măgurele)

Compo-		17	2	3		F	7
nent	Kmol/h	% mol	Kmol/h	Kmol/h	% mol	Kmol/h	% mol
C,,H10	16,8	1,80		16,8	1,80	_	-
C _z H ₈	28,0	3,00		28,0	3,00	-	-
C ₂ H ₆	65,3	7,00	-	65 ,3	7,00	-	-
CHT	819,3	87,90		819,3	87,90	367,2	10,30
co	-	-	-	-	-	303,2	8,51
co ₂	-	-	-	-	-	430,7	12,08
H ₂	-	-	-	-	-	2460,7	69,03
м ₂	2,8	0,30		2,8	0,30	2,8	0,08
Total uscat	932,2	100,00	-	932,2	100,00	<u>,</u> 564 , 6	100,00
H ₂ 0	-		4294,1	4294,1		3129,5	87,79
Total umed	932,2	-	4294,1	5226,3	-	6694,1	187,79

In tabelul 49 sînt datele bilanțului de proiect. Se poate remarca faptul că în condiții reale (tabelul 48) instalația funcționează în condiții diferite de cele prescrise, atît în ceea ce privește compoziția materiei prime cît și ceilalți parametri.

Verificarea modelelor matematice de bilanț cu ajutorul mărimilor măsurate în instalație se poate face prin intermediul mărimilor intensive (fracțiile molare X_{CH_4} , X_{CO} , X_{CO_2} , X_{H_2} , $X_{A''}$). Pentru verificare se determină toate cele cinci fracții raportate la gazul uscat. Cu ajutorul a două fracții (X_{CH_4} , X_{CO_2}) stabilite ca fiind parametrii independenți, se calculează bilanțui în mărimi extensive și apoi intensive. Dacă X_{CO} , X_{H_2} și $X_{A''}$ calculate coincid cu cele măsurate, modelul matematic de bilanț se verifică. Valorile prescrise de bilanț pot fi cu greu folosite la aceste verificări decarece condițiile reale de lucru sînt, asa cum s-a văzut, mult diferite de cele prescrise.

In tabelul 50 sînt prezentate datele experimentale și calculate pentru verificarea modelelor matematice de bilanț de masă și căldură la instalația tip "H.G." Pentru mărimile măsurate sînt scrise direct mediile aritmetice pentru o perioadă de 12 zile.

Tabelul 50. Verificarea modelelor matematice de bilanț de masă și căldură pentru procesul de conversie a metanu-

	Mărimi	măsurate		<u>Mărimi cal</u>	imi calculate				
nent	x _i	(n ^o gm) _{ard} .	ni	x _i	×i	(n ^o gm) _{ard} .			
CH4	0,1C48		342,02	0,1048 [¥]	0,05210				
co ₂	0,1340		437,31	0,1340 [#]	0,06667				
co	0,0575		182,06	0,0572	0,02773				
H ₂	0,7008		2295,45	0,7020	0,34973				
A"(azot)	0,0029		6,70	0,0020	0,00102				
Total gaz uscat	1,0000		3263,54	1,0000	-				
H ₂ 0 vap.	-	448,66 Kmol/h	3300,56	-	0,50275	435,60 Kmol/h			
Total	1,0000		(64,10	-	1,00000				

lui cu vapori de apă (instalația "H.G.")

Cu ajutorul celor două mărimi măsurate X_{CH_4} și X_{CO_2} se calculează, cu ecuațiile din tabelul 8, n_{gu}, apoi, debitele molare pentru toate componentele și, rinal, X_{CO} , X_{H_2} , $X_{A''}$. Acestea din urmă sînt suficient de apropiate de valorile experimentale corespunzătoare.

Ecuațiile bilanțului termic se verifică comparînd cantitatea de combustibil calculată cu ecuațiile (54), (62), (64), (60) și (68) la parametrii măsurați din tabelul 49, cu cantitatea $\binom{n^{0}}{gm}$ ard. Măsurată direct. Cantitatea calculată (435,6 Kmol/h) este mai mică cu 2,91% decît cea măsurată (448,66 Kmol/h). Ecuațiile nu au luat însă în considerație pierderile de căldură care sînt, la cuptorul de reformare, de 3-4%. Se poate deci considera că modelele matematice de bilanț de masă și căldură stabilite pentru procesul de conversie a gazului natural sînt verificate cu datele experimentale din instalația tip "H.G.".

In tabelul 51 sînt prezentate datele măsurate și cele calculate pentru același proces care are loc însă în reactorul de conversie a metanului cu vapori de apă din instalația tip "S" -Piatra Neamț. La accastă instalație nu s-a putut măsura T_a de aceea sînt prezentate numai datele bilanțului de materiale. Concordanța este chiar mai bună decît la instalația anterioară. Tabelul 51. Verificarea modelului matematic de bilanț de masă

> pentru procesul de conversie a metanului cu vapori de apă cu date experimentale de la instalația "S" Piatra Neamț. Date inițiale: $n_{gm}^{0} = 1304,0$ Kmol/h; $X_{CH_{4}}^{0} = 0,9954$; $n_{H_{2}0}^{0} = 5197,4$ Kmol/h; T = 1174 K; P = 39 at.

Compo-	Fracții	molare X	, măsurate	Mărimi calculate				
nent	valoarea medie X	disper- sia 6	abaterea med ie s	n _i Kmol/	h X ₁	× _i		
CH4	0,11469	4,32.10 ⁻⁶	2,07.10-3	483,99	0,11469	0,05969		
co ₂	0,11204	5,80.10-4	2,41.10 ⁻²	472,81	0,11204	0,05832		
CO	0,08098	6,23.10 ⁻⁶	2,49.10-3	341,41	0,08090	0,04211		
н ₂	0,69106	3,28.10-4	1,79.10 ⁻²	2915,57	0,69105	0,35963		
$A''(N_2)$	0,00123	8,68.10 ⁻⁸	2,95.10-4	5,26	0,00124	0,00065		
Total gaz uscat	1,000 0 0	-	-	4219,04	0,99992	-		
^H 2 ^O	-	-	-	3888,22	0,92158	0,47959		
Total	1,00000		-	8107,27	-	0,99999		

Modelul matematic de bilanț al procesului de conversie a gazului natural a fost deja verificat cu datele experimentale din tabelul 14. In tabelul 52 se verifică același model cu datele din instalația tip "K" de la C.C. Slobozia. Utilizînd debitul și compoziția gazului natural se determină mai întîi $n_{CH_4}^{OS}$ și $n_{H_2}^{OS}$ cu ajutorul relațiilor (38) și (39). De această dată, $n_{H_2\neq0}^O$ și $n_{CO_2}^O \neq$ o decarece în gazul natural s-a introdus hidrogen recirculat pentru hidrodesulfurare. Si in acest caz concordanța este bună.

5.3. Compararea bilanțurilor reale cu cele teoretice

Bilanțul teoretic, corespunzător desfășurării procesului la echilibru, este necesar pentru că permite stabilirea performanțelor maxime ale procesului la anumite valori ale parametrilor tehnologici; coeficienții minimi de consum, valorile maxime ale gradelor de transformare etc. Comparînd apoi aceste performanțe teoretice cu cele reale, obținute în aceleași condiții de lucru, se dezvăluie rezervele, posibilitățile de perfecționare ale procesului. Deoarece modelele de bilanț au fost verificate prin intermediul bilanțurilor complete putem folosi drept criteriu de comparație numai gradele de transformare \propto și β în locul întregului bilanț de materiale.

In tabelul 53 sînt prezentate, comparativ, gradele de transformare \propto și β reale și cele teoretice pentru trei reactoare diferite de conversie a gazului natural cu vapori de apă. Valorile reale s-au calculat pe baza datelor experimentale din tabelele 48, 51 și 52. Gradele de transformare teoretice s-au obținut prin rezolvarea la calculator a ecuațiilor (96), (97), (99) și (100) în condițiile de presiune, temperatură și compo-

			85 #				31	02	72	08 [#]	98	23	21
	Ø	×	60,0	ť	I	I	0,01	0,69	0,09	0,10	66'0	0,73	1,73
_H = 0,924:	ut e calculat	в kg/b	6201,51	I	I	1	1451,36	5441,80	10567,24	17452,37	41114 , 28	51869,88	92984,16
Kmol/h; X ⁰	gazulu1 br Dat	n Kmol/h	387,59	1	I	I	51,62	2720,90	377,40	396,64	3934,97	2881,66	6816 , 63
1151,7	inală a	X1	0,0985	I	1	I	0,0131	0,6899	0,0977	0,1008	OUNDI'E	0,7319	1,7319
L/hit nome_≖	mpozitia I mäsurate	ke/b	6168,96	I	1	I	1451,36	5426,88	10708,04	17399,76	41155 , 00	51745,86	92900,86
46,23 Kmol	Date	n Kmol/h	385,56	ı	I	I	51,62	2713,44	382,43	394,54	3927,59	2874,77	6802,36
n ^o = 12	ון ער גי	A A A	0,7868	0,0299	0,0128	0,0086	0,0412	0,1069	1	0,0087	I	I	ł
in1ț1ale:	ția iniție ural - abu	о ^щ kg/h	15769,28	1124,10	706,64	623,50	1451,36	267,90	I	475,20	20417,98	72436,50	92884,48
Date	Compozi gaz nat	n ⁰ Kmol/h	985,58	37,47	16,06	10,75) 51,62	133,95	1	10,80	² 1246,23	4024,25	5270,48
	Сошро-	nent	CHA	C2HG	C ₃ H _B	C4H10	A"(N2+Ar	П ₂ г	0	co ₂	Total ga uscat	H ₂ 0 vap.	Total

Verificarea modelului matematic de bilanț de masă pentru procesul de conversie a Tabelul 52.

gazului natural, cu datele din instalația tip "K" - C.C. Slobozia.

Instalația și condi-	Valor	i reale	Valori	teoretice
çille de lucru	6	<i>/</i> 3	لم	ß
"H.G." C.I.C. Tr.Măgurele T = 1054 K P = 29,2 at. $x_{H_20}^{0} = 3,9$	0,6665	0,3912	0,6750	0,3935
"K" C.C. Slobozia T = 1118 K P = 36,02 at. $x_{H_20}^{0} = 3,5$	0,6599	0,3300	0,6700	0,3425
"S" C.I.C.Piatra Neamţ T = 1074 K P = 39,0 at. x _{H2} 0 = 4,0	0,6273	0,3541	0,6315	0,3520

Tabelul 55. Grade de transformare reale și teoretice

ziție date. Pentru toate instalațiile analizate se poate remarca faptul că gradele de transformare reale sînt mai mici dar foarte apropiate de cele teoretice. "propierea este mai mare la /3 în special la instalația "H.G.". La instalația "S" /3 real depășește valoarea teoretică, probabil datorită erorilor de măsurare a concentrațiilor. Gradul de transformare al reacției principale, σ , se apropie foarte mult de valoarea teoretică, fiind mai mică doar cu: 1,26% ("H.G."); 1,50% ("K") și respectiv 0,66% ("S") decît aceasta din urmă. Din această analiză rezultă că procesele industriale de conversie a metanului cu vapori de apă decurg foarte aproape de echilibrul chimic. Această concluzie este foarte importantă pentru modelarea macrocinetică a procesului.

CAPITOLUL 6. MODELE MATEMATICE BAZATE PE MODELE MACROCINETICE

In capitolele care urmează se stabilesc modelele macrocinetice posibile, se determină constantele necesare concretizării modelului macrocinetic, se stabilește modelul matematic și se face analiza la calculator și proiectarea reactorului pentru procesul de transformare catalitică a metanului cu vapori de apă. Pentru celelalte variante ale procesului, în cazul prezenței în masa de reacție inițială a dioxidului de carbon sau a hidrocarburilor superioare, se subliniază doar aspectele specifice care apar.

6.1. Mecanismul macrocinetic

Ecuația caracteristică și ecuațiile stoichiometrice independente care definesc procesul de transformare catalitică a metanului cu vapori de apă, numit și "reformare primară" au fost precizate în capitolul 2. Reformarea primară este un proces chimic unitar de contact /105/. Masa de contact, simbolizată prin $[K]_g$ în ecuația caracteristică (1), conține ca element activ nichelul metalic impregnat pe suporturi de Al₂O₃ și CaO (MgO) sub formă de inele poroase. Contactul dintre faze se realizează sub forma stratului fix. În consecință, structura proceselor de transformare și transfer de masă poate fi reprezentată prin schema;

T_{CH₄}(H₂b)_{[]g} T_{CH₄}(H₂0)_{[]s} ADS - R - DES - (114) Procesul este puternic endoterm, căldura necesară fiind produsă în exteriorul reactorului prin arderea unui combustibil gazos. De aceea, la descrierea matematică a procesului, trebuie luate în considerație și procesele de transfer și de transformare de căldură. Structura acestor procese poate fi reprezentată prin schema:

$$\xrightarrow{T_{cga}} \xrightarrow{T_{cp}} \xrightarrow{T_{cg}} \xrightarrow{T_{cc}} \xrightarrow{T_{cc}} \xrightarrow{C_{c}} (115)$$

In figura 38 se prezintă schema unui element macrostructural al masei de reacție, plasat în reactorul tubular, care evidentiază seria proceselor termice componente.

Fig.38 Schema structurală a proceselor termice. 1 - particulă de catalizator 2 - element din tubul de reformare.

```
    T<sub>ega</sub> transfer de căldură prin gazele de ardere
    T<sub>cp</sub> transfer de căldură prin peretele reactorului
    T<sub>cg</sub> transfer de căldură prin faza gazoasă (la perete)
    T<sub>cc</sub> transfer de căldură prin particula de catalizator
    C<sub>c</sub> consum de căldură la suprafața de reacție
```

Procesele componente de transformare și transfer de moment vor fi preluate final, în cap.9.

In funcție de condițiile de desfășurare a procesului, unul sau mai multe din procesele componente evidențiate în schema structurală (114) sau schema (115) pot determina viteza întregului proces. Prin urmare, sint posibile mai multe modele macrocinetice simple și combinate de masă și căldură.

In acest capitol se analizează cele mai probabile modele macrocinetice, pentru desfășurarea industrială a procesului de reformare primară, pe baza datelor existente în literatură referitoare la acest proces sau la procesele de contact în general, aplicînd teoria modelării macrocinetice /105/.

6.2. Modele macrocinetice de transfer și transformare de masă

In conformitate cu schema structurală (114), sînt posibile trei modele macrocinetice simple și patru modele macrocinetice combinate de masă. Dintre acestea cele mai probabile sînt:

 model macrocinetic "transfer prin faza gazoasă"(T_{CH4})
 model macrocinetic "transformare" (-ADS-R-DES)
 model macrocinetic combinat "transfer prin pori simultan cu transformarea".

6.2.1. Model macrocinetic "transfer prin faza gazoasă"

Transferul de masă prin faza gazoasă include atît trańsferul reactanților din volumul fazei fluide către suprafața exterioară a particulelor de catalizator cît și transferui produșilor de reacție de la exteriorul granulelor în volumui razei fluide. Considerînd transferul metanului, ecuația modelului macrocinetic corespunzător, este:

$$\overline{q}_{CH_4} = k_{mg} (p_{CH_4} - p_{CH_4})$$
(116)

Fentru utilizarea ecuației (116) este necesară cuncașterea coe-

ficientului de transfer k_{mg}, prin determinări experimentale proprii sau utilizînd datele din literatură, generalizate sub forma unor ecuații criteriale de tipul:

$$\mathbf{Sh} = \mathbf{f}(\mathbf{Re}, \mathbf{Sc}) \tag{117}$$

Decarece s-a dovedit experimental că, într-un domeniu larg de variație a lui Sc, coeficientul k_{mg} este proporțional cu $D_{i}^{2/3}$, Chilton și Colburn /118/ au propus concretizarea ecuației (117) sub forma /117/:

$$\frac{\int k_{mg}}{W_{0}} s_{c}^{2/3} = f(Re)$$
(118)

De Acetis și Thodos /119/ au rezumat datele experimentale existente în literatură la acea dată sub forma unei singure curbe: $J_D = f(Re)$, prezentată în fig.39, unde:

$$J_{\rm D} = \frac{\int k_{\rm mg}}{W_{\rm o}} S_{\rm c}^{2/3}$$
(119)

Diagrama din fig.39 este valabilă pentru sisteme la care Sc = 0,6- 1300 iar Re = 0,8 - 2136 /120/.

Fig.39 Curba generalizată J_D - Re

In literatură există puține date experimentale privind influența transferului de masă prin faza gazoasă asupra vitezei globale a procesului de transformare a metanului. Allen și colab. /53/, au găsit că, în domeniul Re = 14,7 - 52,5 , influența este neglijabilă.

Pentru proiectarea experiențelor cinetice, în care trebuie eliminată influența transferului de masă prin faza gazoasă, se pot utiliza unele"criterii". Astfel Satherfield și Sherwood /117/ arată că, pentru a putea neglija influența transferului prin faza gazoasă, trebuie îndeplinită condiția;

$$\frac{\mathbf{j} \mathbf{k}_{mg}}{\mathbf{w}_{0}} \mathbf{a}_{g} \geq 0,075 \tag{120}$$

Uneori se poate folosi drept criteriu numărul lui Damköhler care, pentru o reacție de ordinul întîi, se definește astfel /121,122/:

$$D_{a} = \frac{k}{a_{s} k_{mg}}$$
(121)

Ruthven /123/, Huang și Sather /124/ au introdus un "grad de utilizare al suprafeței externe" drept criteriu de evaluare a ponderii procesului de transfer prin faza gazoasă în cadrul unui model combinat.

6.2.2. Model macrocinetic "procese de transformare"

Acesta este de fapt un model macrocinetic combinat deoarece include: adsorbția reactanților (ADS), reacțiile chimice (2), (3), precum și desorbția produșilor de reacție (DES). Forma ecuației cinetice se stabilește în acest caz fie pe baza cineticii formale, fie pe baza cineticii de adsorbție, parametrii cinetici (energia de activare, factorul preexponențial, ordine parțiale de reacție, constante de adsorbție-desorbție) fiind determinați prin corelarea datelor cinetice experimentale. În tabelul 54 sînt prezentate ecuațiile cinetice existente în literatură pentru procesul de transformare a metanului cu vapori de apă în prezența catalizatorului de nichel precum și condițiile experimentale în care au fost obținute. Această prezentare sintetică permite analiza critică a acestor ecuații în veuerea stabilirii domeniului de valabilitate și a posibilităților de aplicare la proiectarea reactorului industrial.

Ca formă, majoritatea ecuațiilor din tabelul 54, derivă din cinetica formală cu excepția relațiilor de la nr.crt. 4, 10, 11, care au la bază cinetica de adsorbție. Ecuațiile cu nr. crt. 1-4, 6 și 8 nu pot fi utilizate în proiectare decarece consideră reacțiile ireversibile. Rămîn în discuție ecuațiile cu nr.crt. 5, 9-11.

Ecuația cu nr.crt. 5 stabilită de către Moe și Gerhard /52/ a fost utilizată de către Hyman /60/ la simularea reactorului, fiind stabilită pentru condiții apropiate de cele industriale. Ecuația cu nr.crt. 9 a fost folosită de către Grover /61/ la modelarea reastorului industrial. El a stabilit această ecuație pe cale teoretică, extinzînd ecuația lui Akers /45/ la cazul real, cînd reacția (2) este "reversibilă. Ecuația cu nr.crt. 10 s-a obținut utilizînd drept catalizator folii de nichel eliminîndu-se astfel influența transferului de masă prin pori. Valorile constantelor k_1 , l_2 , l_3 și K_5 date de autori, sînt valabile insă numai la presiunea atmosferică. Ecuația cu nr.crt. 11 din tabelul 54 are un număr mare de constante ale căror valori au fost determinate de autori numai la T = 1180 F și P = 1-28 at.

Se remarcă, de asemenea, o variație largă a energiei de activare: de la 8755 cal/mol, în ecuația lui Akers /45/, la

Tab. 54.

•

ECUATI CINETICE ALE PROCESELOR DE TRANSFORMARE

Nr. crt	ECUATIA CINETICA	CONDITIILE DE CARE S-AU	E LUCRU LA STABILIT	TORI
		CATALIZATOR	PARAMETRI	AU.
1	$r = \frac{K P_{CH_2} P_{H_20}}{10 P_{H_2} + P_{H_20}}$ K= 13 10 ⁸ exp $\left(\frac{-22 \cdot 700}{RT}\right)$	Nichel – oxid de crom d= 2 ÷ 3 mm	T= 673÷973K p= 1atm X° _{H2} o=1÷3	[44]
2	$r = K \cdot p_{CH_4}$ K = 4,55.10 ² exp $\left(\frac{8755}{RT}\right)$	Nichel pe suport ceramic	T = 609÷911 K p = 1atm X° _{H20} = 2,5 ÷ 10,0	[45]
3	$r = K \cdot p_{CH_4}$ K = 12,8.10 ⁴ exp(- $\frac{19700}{RT}$)	Nichel pe suport ceramic d=3mm	T=973 1173 K P=1atm X <u>°=</u> 1,0 ÷ 8,0	[46]
4	r = $\frac{K \cdot p_{CH_{L}}}{1 + \alpha p_{H_{2}0} \cdot p_{H_{2}}^{-1} + b \cdot p_{CO}}$ la 1073K: α = 0,5 ; b= 2,0 Ea = 31.000 ; k = 12,42.10 ⁵ l/cm	Folii de nichel 2.atm	T=973÷1173K p=1atm X°=0,2÷21,0	[47]
5	$r = K \left(p_{CH4} p_{H_{20}}^2 - \frac{1}{K_p} p_{CO_2 H_2}^{, p_4} \right)$ K=0,1473exp(19,03- $\frac{5757,64}{T}$)	Catalizator industrial de nichel	la presíune	[52]
6	r=K·p _{CH4} K = 2,1·10 ⁴ ·Sexp[- $\frac{194000}{RT}$] S [cm ² /g]	Nichel pe suport de∢Al2O3 d≥5mm	T=973÷1173K p=1atm X° _{H2} o=0,027÷12,0	[48]
7.	$r = K \cdot p_{H_2}^{-1} (p_{CH_4}^{-} \frac{p_{CO_2} \cdot p_{H_2}^{3}}{K_p \cdot p_{H_20}})$ K = 12,56.10 ⁷ $\frac{1}{T} \exp(\frac{22000}{KT})$	Catalizator GIAP III	T=873÷1073 K p=2 și 6atm X <mark>%</mark> 20= 2,0	49]
8	r=Кр _{сн,} р ¹ К = 7,95.10 ⁵ _{exp} (- <u>19210</u>) RT	Catalizator GIAP III d=3÷4mm E=0,7 W=3000÷5000h ¹ D=25mm	T=873÷1073 K p=1÷41atm X° _{H2} 0=0,5÷6,0	[50]

Tab 54 -	- cont	inuare
----------	--------	--------

9	$r = K(p_{CH_4} - \frac{P_{CO} \cdot P_{H_2}^3}{K_p \cdot P_{H_2O}})$ $K = K_0 \exp(-Ea/RT)$ $Ea = 8836 \div 10008 cal/mol$	Ecuatie teoreticã		[61]
10	$r = \frac{K(P_{CH/}P_{H_0}\bar{K}_{p}^{1} \cdot P_{C0} P_{H_2}^{3})}{(P_{H_2}b^{1}2P_{H_2}^{2} + l_3P_{H_2}^{3})(1 + K_5P_{H_0}P_{H_2}^{1})}$ $K = 2,38 \cdot 10^{21} \frac{1}{T_3} \exp[\frac{33720}{RT}]$ $l_2 = 8,12 \frac{10^3}{T^3} \cdot \exp[\frac{-10520}{RT}]$ $l_3 = 1,82 \cdot 10^{7} \frac{1}{T_6,5} \exp[\frac{46700}{RT}]$ $K_5 = 0,162 \frac{1}{\sqrt{T}} \exp[-\frac{680}{RT}]$	Folii de nichel	T=973-1173K p=1atm X°=0,2÷21,0	[51]
11	$r_{co} = \frac{-K_1(P_{co} K_{P_1} P_{ch'_4} P_{H_2o} P_{H_2}^3)}{1 + K_a P_{H_2} K_a K_{s_1} P_{ch'_4} P_{H_2}}$ $r_{co_2} = \frac{-K_2(P_{co_2} - K_{P_2} P_{ch'_4} P_{H_2}^2)}{1 + K_a P_{H_2} K_a K_{s_1} P_{ch'_4} P_{H_2}}$	0/3 KaKsiKs P. P2 /PH2 pH2 pH2 / KaKsiKsiZ PH2 franule cilindric GIRDLER G 56	T=1180°F $p_{H_2}^{2}$ $x_{H_20}^{0}$ = 3,0 $p_{H_2}^{2}$ $x_{H_20}^{0}$ = 3,0 $p_{H_2}^{2}$ $p_{H_2}^{4}$ the de catalizator 513 d=5 mm	[54]
12	$r = K (1 - \varepsilon) (1 - \frac{P_{C0} \cdot P_{H_2}^3}{K_P P_{CH_2} P_{H_2}}) p_{H_2} + K = 2 2529 \cdot 10^2 exp(-\frac{12590}{T})$	Catalizator Industrial		[57]

33720 cal/mol, în ecuația lui Ehomenko /51/. Valorile acceptabile sint cele doținute de către Bodrov ș.a. /48/ (31000 cal/mal) și Ehomenko ș.a. /51/ (33720 cal/mol), care su asigurat condițiile eliminării influenței transferului lucrini cu folii de michel. In același timp aceste valori su reprezintă o măsură a activității catalizatorului industrial care are altă structură și composiție. Prim urmare ocuațiile cinetice dim tabelul 54 su su caracter general și reprezintă doar aproximări ale unor date emperimentale, valabile numei în domeniul studiat al parametrilor și de aceea su se pet utiliza direct la preiectarea reactorului industrial și opțimizarea acestuim.

6.2.3. Model macrocimetic combinat "transfer de masé prin pori - simultan cu transformeree"

Transferul prin peril catalizatorului este însețit de procesele de transfermare. Combinarea acester precese compenente se face într-un mod mai complex decit în scheme structurelă limiară (114). De acese viteza procesului global (\overline{r}_{ef}) se exprimă ca un produs dintre viteza procesului de transfermare (r) și un factor $\frac{1}{2}$ numit grei de utilizare al suprefeței interme a catalizatorului seu factor de eficacitate:

$$\overline{\mathbf{r}}_{of} = \left\langle \mathbf{r} : \mathbf{r} \right\rangle \mathbf{k} \mathbf{r} \left(\mathbf{C}^{\mathsf{V}} \right)$$
(122)

Mărimea 2 trobuie determinată experimental corcetini influența dimensionilor granuleler de catalizator asupre vitemei globale a procesului. Definirea și determinarea acestei mărimi en fost inișiate de către Demköhler /120/, Thiele /125/ și Seldovitch /117/ și apoi continuate de alți cercetători în domeniul ingineriei proceselor enimice /122,120-120/. Pe basa acestor resultate s-au

trasat curbe generalizate $\begin{pmatrix} \phi \\ e \end{pmatrix} = 1(\phi)$, unde $\phi' = modulul lui$ Thiele modificat, definit prin relația (13) /122,126/:

$$\phi' = \frac{V_{\rm p}}{B_{\rm ex}} \sqrt{\frac{k}{D_{\rm ef}}}$$
(123)

Aceste curbe pot fi folosite în cazurile în care reacția este de ordinul întîi, pentru orice formă geometrică a particulelor de catalizator /126/. Din diagramele $\int_{a}^{b} - \phi'$ se poate determina \int_{a}^{b} cunoscînd ϕ' . Acesta se calculează cu relația (123) în care se înlocuiesc valorile experimentale ale constantei de viteză k (la d \rightarrow o), volumul particulei și suprafața exterioară a acesteia. Coeficientul efectiv de difuzie, D_{ef}, se determină cu o relație de tipul:/122/:

$$1/D_{af} = 1/D_{i} + 1/D_{k}$$
 (124)

Această metodă de determinare a lui 2 numită și metoda experimentală indirectă /117/ a fost utilizată de către Allen ș.a. /53/ pentru procesul de reformare a metanului considerînd ecuația cinetică de ordinul întîi a lui Akers /45/. Autorii au găsit o variație mare a lui 2 cu diametrul particulelor de catalizator.

6.3. Modele macrocinetice de transformare și transfer de căldură

Conform schemei structurale (125), valabilă pentru reactorul tubular, sînt posibile cinci modele macrocinetice "termice" simple precum și un număr mare de modele termice combinate. Pentru modelele simple de transfer de căldură, ecuația cinetică are forma generală :

$$\overline{q}_{T} = \frac{dH}{z \, dS} = k_{T} \Delta T \qquad (125)$$

Ecuația (125) poate fi particularizată pentru oricare model termic simplu sau combinat dacă se concretizează: suprafața de transfer (8), gradientul de temperatură (Δ T) și coeficientul de transfer ($k_{\rm T}$). La modelele combinate, coeficientul"parțial" $k_{\rm T}$ se înlocuiește cu un coeficient global $k_{\rm T}$ iar la modelele simple coeficientul $k_{\rm T}$ se particularizează astfel:

Viteza procesului de consum de căldură se exprimă prin relația:

$$\overline{\mathbf{q}}_{\mathbf{0}} = \frac{\mathbf{d}\mathbf{H}}{\mathbf{C}\mathbf{d}\mathbf{B}} = \mathbf{r}(-\underline{\boldsymbol{\Delta}}_{\mathbf{R}}^{\mathbf{H}}\mathbf{T})$$
(126)

unde $(-\overline{\Lambda_R}H_T)$ este efectul termic global al reacțiilor (2) și (3) iar r este viteza de reacție.

La transferul de căldură prin gazele de ardere către peretele exterior al reactorului, datorită temperaturii mari din cuptor, predomină radiația. În acest caz coeficientul k_{Tga} poate fi definit astfel:

$$\mathbf{k}_{\mathbf{Tga}} = \frac{(\Delta \mathbf{E})_{rad}}{\mathrm{S}(\mathbf{T}_{ga} - \mathbf{T}_{p})}$$
(127)

Fluxul termic transmis prin radiație se determină cu relația lui Hottel /129/:

$$(\Delta H)_{rad} = 5,72.8.F_{1,2} \left[\left(\frac{T_{ga}}{100} \right)^4 - \left(\frac{T_p}{100} \right)^4 \right]$$
 (128)

Fluxurile termice ale gazelor radiante (CO₂ și H₂O), prezente în gazele de ardere, pot fi determinate cu relații empirice din literatură /130/. Transferul de căldură prin peretele reactorului are loc prin conducție de aceea, coeficientul k_{Tp} se exprimă ca raport dintre conductivitatea termică a peretelui și grosimea acestuia.

Transferul de căldură în interiorul stratului de catalizator, alcătuit conform schemei (115) din două procese componente (\mathbf{T}_{cg} și \mathbf{T}_{cc}) este deosebit de complex. Datele din literatură cu privire la acest proces nu se referă la reformarea primară

ci la modele fizice simplificate ale stratului fix. In lucrările generale de fenomene de transfer /129-133/ cazul încălzirii unui tub cu umplutură străbătut de un gaz este puțin studiat. In lucrările de specialitate se utilizează o terminologie neunitară iar datele raportate sînt uneori contradictorii. In general, se cercetează transferul către un strat finit, format dintr-un ansamblu de particule solide. Stratul de particule se consideră o fază pseudoomogenă în care transferul are loc prin conductivitate. Coeficientul de transfer corespunzător este denumit "conductivitatea efectivă" a stratului (λ_{ef}). Acesta este un coeficient de transfer utilizat în locul coeficientului k_{Tc} , definit pentru un singur element macrostructural al stratului. Coeficientul de transfer prin faza gazoasă (k_{Tg}) este numit în literatură, de cele mai multe ori, coeficient de transfer "la perete".

Corespunzător modelului macrocinetic combinat $T_{cg} - T_{cc}$, se definește un coeficient global de transfer, K_T , iar la straturi cu diametre mari se utilizează un alt coeficient total numit "conductivitatea echivalentă a stratului" (Λ_e). In continuare se analizează datele din literatură cu privire la coeficienții globali K_T și Λ_e precum și la coeficienții "parțiali" \mathbf{E}_{tg} și Λ_{ef} . 6.3.1. Coeficientul global de transfer (K_{T})

92

Acesta se definește prin ecuația:

$$\frac{dH}{dS} = K_{T} (T_{p} - T)$$
(129)

Atît temperatura din interiorul stratului (T) cît și temperatura peretelui (T_p) din ecuația (129) se consideră că variază numai pe lungimea stratului (z). Modelul fizic pentru determinarea experimentală a lui K_T corespunde reactorului continuu cu deplasare ideală care este cel mai adecvat în cazul unor straturi fixe la care raportul d/D > 0,1 /134,135/. La reactorul industrial de reformare această condiție este îndeplinită deoarece tuburile au în general D>0,1 m iar diametrul nominal al particulelor, d > 0,01 m.

Dependența coeficientului global de transfer de caracteristicile geometrice și hidrodinamice ale stratului se poate exprima printr-o ecuație adimensională de tipul:

$$Nu = f (Re, Pr, d/D, L/D)$$
 (130)

In tabelul 55 sînt prezentate formele concrete ale ecuației (130) stabilite experimental de diferiți autori /134-144/ precum și condițiile de valabilitate ale acestora. Pe lîngă ecuațiile din tabelul 55 mai trebuie menționate ecuațiile stabilite pentru răcirea tuburilor cu umplutură /145,146/, ecuația stabilită pentru un domeniu de temperaturi joase /145/ precum și alte date necorelate /147-151/.

In continuare se face o amliză critică a ecuațiilor din tabelul 55 examinînd felul în care acestea reflectă influența criteriilor cuprinse în forma generală (130) precum și proprietățile stratului.
Influența raportului L/D asupra lui K_m 6.3.1.1.

Numai ecuația lui Chu și Storrow /139/ include criteriul geometric L/D deși și alți autori au făcut determinări la diferite rapoarte L/D /136-139,144,152,153/. Potrivit acestei ecuații coeficientul K_m scade liniar, în coordonate logaritmice, cu L/D, panta dreptei depinzînd de Re, așa cum rezultă din figura 40.

raportul L/D la d/D = 1/8

Determinările efectuate de diferiți autori se referă la rapoarte L/D = 2 - 72 iar la reformerul industrial L/D>100. Din acest punct de vedere nici una din relațiile din tabelul 55 nu poate fi utilizată la calculul reactorului de reformare. Gelperin și Kogan /142/ arată însă că, în regim turbulent (Re 240 - 60) profilul temperaturii se stabilizează în straturile cu umplutură la care L/D≥10 și în continuare cu creșterea lui L coeficientul K_m nu mai scade. Datele lui De Wash și Froment , /144/, reprezentate în fig.41 confirmă acest lucru.

Fig.41 Variația lui K_{T} pe lungimea stratului la d = 0,0095 m.

6.3.1.2. Influența raportului d/D asupra coeficientului K_m

Raportul geometric d/D are o influență complexă asupra lui K_T . Bouația lui Leva /136/ evidențiază existența unui raport d/D optim. Derivînd această ecuație în raport cu d se obține $(d/D)_{opt}$. = 0,15, la care coeficientul K_T este maxim. Această valoare coincide cu cea obținută grafic pe baza datelor experimentale din figura 42./136/.

In figura 43 sînt reprezentate alte date din literatură /130,139,147/ în coordonate $Nu_D - (d/D)^{1/3}$ de unde rezultă $(d/D)_{opt.} = 0,125$ corespunzătoare lui $(d/D)^{1/3} = 0,5$.

Sub acest aspect ecuația cu nr.ort.7 din tabelul 55 este inexactă decarece prezice o creștere continuă a lui $K_{\rm T}$ cu d/D.

La tuburile industriale de reformare raportul d/D ~0,16 este foarte apropiat de valoarea optimă derivată din ecuația lui Leva /136/.

6.3.1.3. Influența criteriului Re asupra lui K_{m}

Ecuațiile din tabelul 55 conțin atît criteriul Re_D cît și Re_d iar acesta din urmă poate avea diferite mărimi în funcție de diametrul luat în considerație (nominal, echivalent, mediu de volum, nidraulic etc.). În general însă datele experimentale se plasează pe o dreaptă în coordonatele 1g Nu - 1g Re. Panta acestei drepte, exponentul lui Re, variază în cazul de față de la 0,75 în ecuația lui Ciborowski /138/ la 1,4 în ecuația lui Batischev /140/. De Wash și Froment /144/ găsesc că exponentul lui Re este egal cu unitatea. Referitor la regimurile de curgere, Gelperin și Kogan /142/ au arătat că turbulența în straturile cu umplutură începe la Re≥40.

> 6.3.1.4. Influența proprietăților particulelor solide Coeficientul global de transfer K_{m} depinde și de proprie-

Tah		55	
IUD	•	~~	1

Т	ab.55. ECUATII ALE COEFICIENTULUI D	E TRANSFER DE CAL	DURA KJ
Nr crt	ECUATIA CRITERIALA	CONDITII DE EXPERIMENTARE	AUTORI
1	K _T = 8 α C _p μ ^{Q,2} W ^{Q,83} α = f(d/D)	$d/_{D} = 0,035 \div 0,66$ $L/_{D} = 14,5 \div 17,5$ $R_{e} = 550 \div 30000$	[130]
2	NuD ⁼ 0,813(Red) ^{Q9} exp(-6 d)	$d_{D} = 0.08 \div 0.27$ $L_{D} = 18 \div 72$ $R_{e} = 52 \div 3500$	[136]
3	Nud ⁼ 0,125 (Red) ^{0,75}	$d_D = 0.35 \div 0.6$ L/D = 18 $\div 72$ Re = 600 $\div 15.000$	[137]
4	$Nu_{D} = a(R_{ed})^{0,73}$ $lga = 0,48 - 2\frac{d}{D}$ $d = \sqrt[3]{6V_{p}/\overline{n}}$	citatã în [134] particule sferice	[138]
5	Nup= 0,134(Red) ^{1,17} D ^{1,13} D 0,9	$d/_{D}$ = 0,039 ÷ 0,255 $L/_{D}$ = 12 ÷ 18 R_{ed} = 125 ÷ 3400	[139]
6	$Nu_d = 124.10^3 (\frac{D}{d})^{0.3} (Re_d)^{14}$	R _{ed} = 7	[140] [142]
7	Nup= 0,45(Rep) ^{0,8} . (^d _D).(Pr) ^{0,33}	citatã în [134]	[141]
8	$Nu_D = 6, 4.10^{-3} (Re_d)^{1,21}$	$L_{/D} > 30$ R _{ed} > 40	[143]
9	$Nu_{d} = \frac{K_{T}^{o} \cdot d}{\lambda} + 0,0024R_{ed}$	$D = 0.099 \div 0.1575 \text{ m}$ d = 0.0057 ÷ 0.0095 m Rc= 30 ÷ 1000 L = 0.2 ÷ 1.4 m	[144]

Tab. 56.

ECUATII ALE COEFICIENTULUI PARTIAL DE TRANSFER DE CALDURA KTO

Nr. crt	ECUAȚIA CRITERIALA	CONDITII DE EXPERIMENTARE	AUTORI
1	$K = 2,95 (fW)^{0,33}$	citatāîn[161] R _ē ≤ 1500	[157]
2	$N'_{U_d} = 0.95 \left(\frac{Re_d}{\epsilon}\right)^{0.5}$	ecuatia semiteoreticã R _€ 1500	[135]
3	$N'_{U_d} = 0.12 \left(\frac{\text{Red}}{\epsilon}\right)^{0.77}$	citata 1n[161]	[165]
4	$N'_{U_d} = 3.6 \left(\frac{Red}{\epsilon}\right)^{0.365}$	D=0,049÷0.122m d=0,003-0.0123m L≤ 2m (T ₆) _{max} =200°C	[161]
5	N' _{Ud} =0,667(Re _d)·(P _r) ⁰⁵	ecuatie teoretica	[166]
6	$N'_{u_d} = 0,18(Re_d)^{0.8}$	citata în [134]	[167]
7	N' = <u>0057 (Red)(Pr)</u> d 1+00135 (Red) ⁰⁵ (Pr) ⁰⁵⁵	citata în [134]	[168]
8	0,33 0,8 0,4 N = 2,58(Red Pr) +0094 Red Pr	particule cilindrice	[163]
9	$K_{f_g} = K_{f_g}^{\bullet} \neq 0,01152 \cdot \left(\frac{D}{d_V}\right) (\text{Red})$	D=0,099m d=0,0057m L=0,284-1,016m R=0+500	[144]
10	$\frac{K_{T_g} d}{\lambda_g} = 89 \text{ Red} \cdot \text{Pr}$	D=1,02 m d=7 [.] 10 ⁴ ÷458 10 ³ m	[152]

tățile particulelor solide ale stratului: conductivitatea termică (Λ_c) , forma, rugozitatea suprafeței și spectrul granulometric al acestora precum și porozitatea stratului (\mathcal{E}). Influența globală a acestor factori se răsfrînge asupra constantei C din ecuația criterială. Determinările raportate în literatură s-au efectuat cu diferite materiale de umplutură: sticlă, kiselgur, porțelan, zinc, aluminiu, cupru etc. avînd forme diferite (sfere, cilindri, inele, forme neregulate). Astfel Leva /136/ a stabilit ecuația din tabelul 55 utilizînd bile de porțelan și ceramică, porozitatea stratului fiind de 0,37 - 0,44 iar De Wash și Froment utilizează granule de catalizatori pentru sinteza amoniacului și catalizatori de V₂O₅ sub formă de cilindri cu d = h = 5,9 - 9,5 mm.

In fig.43 este relevată influența pozitivă a conductivității particulelor solide asupra lui K_T . Creșterea rugozității suprafeței influențează, de asemenea, favorabil valoarea lui K_T /156/. Dependența lui K_T de forma particulelor și porozitatea stratului nu poate fi cuantificată pe baza datelor existente.

Proprietățile stratului fix de catalizator de nichel pentru reformare sînt mult diferite de cele ale sistemelor studiate în literatură de aceea sînt necesare determinări directe utilizînd catalizator industrial.

6.3.2. Conductivitatea echivalentă a stratului (Λ_{e})

In cazul unor reactoare cu diametrul mare, la care d/D <0,1, temperatura stratului variază atît pe ax cît și pe rază. In acest caz, în locul coeficientului total K_T , se utilizează conductivitatea echivalentă a stratului (λ_e), proprietate a u...ei faze ipotetice formată din particule solide și gaz/157-160/. Cînd viteza de curgere a gazului este nulă (W = O) conductivitatea se numește "stagnantă" (Λ^{O}). Primele relații e stabilite pentru Λ_{e} au forma /160,161/:

$$\Lambda_{e} = \Lambda_{e}^{o} + \beta \left(\frac{D}{d}\right)^{1/2} \operatorname{Re}^{0,69}$$
(131)

Coeficientul β depinde de natura materialului solid și a gazului care îl străbate. Astfel, pentru bile de sticlă cu $\mathcal{E} = 0,4$ și aer, Verschoor și Schuit /160/ găsesc $\beta = 4,3.10^{-4}$ iar Calderbank /161/, pentru bile de aluminiu cu $\mathcal{E} = 0,4$ și aer, găsesc $\beta = 8,5.10^{-4}$. De Wash și Froment /144/ stabilesc o relație în care λ_{e} depinde liniar de Re:

$$\Lambda_{e} = \Lambda_{e}^{o} + \frac{0.0022}{1 + 120(\frac{d}{D})^{2}} \cdot \text{Re}$$
 (132)

unde Λ_{θ}° depinde de natura materialului solid, porozitatea stratului și diametrul stratului.

6.3.3. Coeficienții parțiali de transfer k_{Tg} și def

In cazul reactoarelor cu strat fix la care d/D < 0,1 și T = f(z,r) se utilizează uneori,în locul conductivității echivalente, un coeficient total calculat pe baza coeficienților parțiali (K_{Tg} , Λ_{ef}) cu relații de forma:

$$\frac{1}{K_{\rm T}} = \frac{1}{K_{\rm Tg}} + \frac{D}{\varphi \cdot \lambda \, \text{ef}}$$
(133)

Pentru coeficientul empiric φ , Froment /162/ și Beek /163/ au găsit $\varphi = 8$ iar Crider și Foss /134,164/ indică $\varphi = 6,133$.

In tabelul 56 sînt prezentate sintetic ecuațiile criteriale existente în literatură pentru coeficientul k_{Tg} precum și condițiile de valabilitate. Ecuațiile din tabelul 56 dau valori foarte diferite pentru \mathbf{E}_{Tg} . Cauza principală constă în dificultățile experimentale legate de determinare a acestuia. De remarcat că valorile lui \mathbf{k}_{Tg} , obținute cu ecuația lui Beek /163/, se apropie foarte mult de cele ale lui \mathbf{K}_{T} rezultate din relația lui Leva /136/.

Conductivitatea efectivă a stratului (Λ_{ef}) este un coeficient "parțial" de transfer prin strat care este considerat o fază omogenă și se determină experimental măsurînd profilul temperaturii pe raza stratului. Există un număr mare de lucrări consacrate determinării și corelării acestui coeficient /157, 159,161,162,165,166,169-199/. Majoritatea autorilor corelează datele cu ecuații de forma adimensională (134), propusă de către Yagi și Kunii /169/:

$$\frac{\Lambda_{\text{ef}}}{\bar{\lambda}} = \frac{\Lambda_{\text{ef}}}{\bar{\lambda}} + C.Re.Pr \qquad (134)$$

Atît conductivitatea efectivă stagnantă (Λ_{ef}^{o}) cît și constanta C depind de o serie de proprietăți ale sistemului (\mathcal{E} , d/D, Λ_{c} , $\overline{\lambda}$ etc.). Alți autori utilizează o variantă simplificată a relației (134), incluzînd $\overline{\lambda}_{g}$, C și Pr într-o constantă C' /157, 161,165,171,195/ :

$$\Lambda_{\text{ef}} = \Lambda_{\text{ef}}^{\circ} + C'.Re \qquad (134')$$

iar De Wash și Froment /144/ stabilesc o relație similară cu relația (134'), în care C' = f(d/D) :

$$\Lambda_{ef} = \Lambda_{ef}^{o} + \frac{0,0025}{1 + 46(\frac{d}{n})^2} \cdot \text{Re}$$
 (135)

Kunii și Smith /186/ precum și Kwong și Smith /187/ au stabilit ecuații teoretice pentru Λ_{ef} .

Utilizarea coeficienților parțiali k_{Tg} și λ_{ef} la straturi cu d/D>O,l duce la erori mari /134/ de aceea, pentru procesul de reformare este necesară utilizarea coeficientului K_{T} .

6.4. Stabilirea modelului macrocinetic după care se desfășoară procesul industrial de reformare a metanului

Cercetările autorilor, efectuate prin metoda comparării bilanturilor reale cu cele teoretice pentru instalații pilot si industriale /81-85,87/, au arătat că procesul de reformare se desfășoară, practic, la echilibrul chimic. Aceasta înseamnă că vitezele proceselor de transformare și transfer de masă sînt mult mai mari decît vitezele proceselor de transfer de căldură. Transferul de masă prin faza gazoasă nu poate limita viteza globală a procesului decarece presiunea și turbulența din reformer sînt mari. Dintre procesele de transfer de căldură, transfe ul radiant către tuburile de reformare are viteze mari, la temperaturile ridicate din cuptor. Se neglijează, de asemenea, influența transferului conductiv prin peretele reactorului deși, într-un model mai fidel, el poate fi luat în considerație. De aceea pentru stabilirea modelului matematic al reactorului, considerăm că procesul industrial de reformare primară se desfășoară după un model macrocinetic combinat de transfer de căldură, exprimat prin ecuația cinetică (129) în care intervine coeficientul global de transfer K_m.

Datele din literatură asupra acestui coeficient, analizate în detaliu în această lucrare, nu sînt suficiente pentru proiectarea și optimizarea reactorului de reformare primară. De aceea, în capitolul 7 al lucrării, sînt prezentate determinările proprii ale coeficientului K_T utilizind un model fizic al reactorului industrial.

CAPITOLUL 7. DETERMINAREA COEFICIENTULUI GLOBAL DE TRANSFER DE CALDURA

In capitolul precedent s-a considerat în final, pe baza comparării bilanțurilor teoretice cu cele reale, în concordanță cu unele indicații din literatură /59,61/, că procesul de reformare primară a metanului cu vapori de apă se desfășoară după un model macrocinetic combinat, transfer de căldură de la peretele reactorului la suprafața de reacție, a cărui ecuație include coeficientul global de transfer $(K_{\rm T})$.

Datele din literatură asupra lui K_T, deși numeroase, au fost obținute în condiții mult diferite de cele în care se desfășoară procesul industrial de reformare. De aceea se fac determinări proprii ale acestui coeficient utilizînd un model fizic al reactorului industrial de transformare catalitică a metanului cu vapori de apă.

7.1. Metoda de determinare. Mărimi măsurate direct

Ecuația modelului macrocinetic combinat ($T_{cg} - T_{cc}$) care include coeficientul global de transfer (K_T) are forma:

$$\frac{dH}{Zds} = K_{T} (T_{p} - T)$$
(136)

Integrînd ecuația (136) pentru un strat cilindric cu diametrul D și lungimea L, se obține:

$$\frac{D \mathcal{P} W_{o}}{4} \int_{T_{o}}^{T} \overline{C}_{p} dT = \int_{T_{o}}^{T} K_{T} (T_{p} - T) ds \qquad (137)$$

Considerînd o valoare medie a capacității calorice a fazei gazoase în intervalul $T_0 - T$ iar coeficientul K_T - constant pe lungimea L a stratului de catalizator, se obține:

$$K_{T} = \frac{D \rho W_{0} \overline{C_{p}} (T_{p} - T_{0})}{4 L (T_{p} - T)_{med}}$$
(138)

Diferența medie de temperatură se poate determina cu relația:

$$(T_{p} - T)_{med.} = \frac{(T_{po} - T_{o}) - (T_{p} - T)}{\ln \frac{T_{po} - T_{o}}{T_{p} - T}}$$
(139)

Dacă temperatura peretelui este constantă pe toată lungimea L $(T_{po} = T_{p})$, ecuația (138) devine:

$$K_{T} = \frac{D \rho W_{0} \overline{C}_{p}}{4 L} \ln \frac{T_{p} - T_{0}}{T_{p} - T}$$
(140)

Ecuația (140) permite calculul coeficientului global de transfer din date experimentale și evidențiază mărimile care trebuie măsurate direct: viteza masică a fluidului ($\int W_0$) sau debitul V_T , temperatura fluidului la intrarea în strat (T_0), temperatura fluidului la ieșirea din strat (T), temperatura peretelui (T_p) la diferite lungimi în cazul cînd $T_{po} \neq T_p$ și dimensiunile stratului (D și L). Dacă temperatura peretelui este constantă pe lungime, sînt necesare doar trei temperaturi: T_0 , T și T_p = temperatura peretelui tubului într-un punct carecare de pe lungimea sa.

7.2. Instalația experimentală

Schița instalației experimentale este prezentată în fig.44. Debitul fazei gazoase este măsurat cu rotametrul (2) după ce străbate filtrul (1), apoi se preîncălzește în recuperatorul (3) prin schimb indirect cu gazele fierbinți care părăsesc instalația. Tubul (4), confecționat din oțel inoxidabil, are lungimea L = 1.2. B și diametrul D = 0,102 m astfel încît se asigură condiția L \geq 10 D necesară stabilizării regimului termic /142-145/. Tubul este încălzit electric și izolat termic în exterior (7). Stratul de umplutură (5) este format din particule de catalizator industrial de reformare primară, sub formă de cilindri goi în interior, cu dimensiunile d = h = 16.10⁻³ m iar d₁ = 8.10⁻³ m. S-au determinat caracteristicile geometrice ale particulelor și ale ansamblului de particule de catalizator, rezultatele iiind prezentate în tabelul 57.

Fig.44 Schița instalației experimentale pentru determinarea coeficientului K_{T}

Stratul de catalizator este susținut de grătarul (6) iar căderea de presiune în strat se măsoară cu manometrul (8). Temperaturile fazei fluide se măsoară cu termocuplurile T_o și T la instrarea și respectiv la ieșirea din strat. Senzorul termocuplului T_o este plasat la 5 mm deasupra stratului iar cel al termocuplului T, la 5 mm sub grătar. Temperatura peretelui se măsoară la trei înălțimi diferite ale stratului (T_{pl}, T_{p2}, T_{p3}) pentru a verifica dacă aceasta se menține constantă pe toată lungimea.

Pentru a nu modifica geometria suprafeței interioare a peretelui tubului, termocuplurile $T_{pl} - T_{p3}$ nu s-au lipit prin interior ci s-au fixat prin încastrare în perete, conform schemei din fig.45.

- Fig.45 Fixarea termocupiului în peretele tubului.
- 1 porțiune din tub
- 2 termocuplu
- 3 adeziv

Orificiul practicat în tub are un diametru mai mare decît al termocuplului, de aceea spațiul dintre termocuplu și perete 8-a umplut cu un adeziv cu conductivitate ridicată care favorizează transferul rapid al căldurii de la perete la termocuplu. Diferența care apare totuși, între temperatura peretelui și cea a termocuplului, se poate estima, în urma unui bilanț termic, cu relația/200/ :

$$\frac{T_{tc} - T_{p}}{T_{ex} - T_{p}} = \frac{1}{l \cdot \cosh(\Lambda R_{i})^{-1/2}} \left[\frac{1}{1 + \sqrt{R_{2}/R_{i}} \tanh(\Lambda R_{i})^{1/2} l} \right] (141)$$

104

unde:

 $R_{1} = \frac{\ln \pi_{2}/\pi_{1}}{2\pi h_{1}} + \frac{\ln \pi_{3}/\pi_{2}}{2\pi h_{2}}$ [= lungimea de fixare a termocuplului Λ = conductivitatea termocuplului Λ_i = conductivitatea izolației termocuplului λ_a = conductivitatea adezivului λ_i, λ_j = razele termocuplului și izolației sale n_x = raza exterioară a adezivului R_4 = rezistența termică de la perete la termocuplu, definită prin relația (142).

Conform relației (141), eroarea de măsurare scade cu cît lungimea de fixare și conductivitățile λ , λ_i , λ_a sînt mai mari. Erorile exprimate cu relația (141), pentru instalația folosită nu depășesc 1 - 1,5 K.

La măsurarea temperaturii fluidului, însă, pot apare erori mai mari decerece transferul de la gaz la termocuplu se face prin convecție. In special la măsurarea temperaturii finale (T) coeficientul de transfer gaz-termocuplu scade decarece la ieșirea din strat gazul se destinde. De asemenea, contactul dintre termocuplu și peretele tubului (mai cald) este o sursă de erori. Pentru viteze moderate ale fluidului (numere Mach mici), eroarea de măsurare se poate evalua, în acest caz, cu relația:/200/ :

$$\frac{T_{tc} - T}{T_{p} - T} = \frac{1}{l \cdot \cosh(n \pi)^{3/2}}$$
(143)

Eroarea scade mărind lungimea de imersare, 1, a termocuplului în fluid. Acest lucru s-a realizat montînd termocuplurile T_o și T ínclinate, așa cum rezultă din fig.46.

Toate termocuplurile utilizate sînt de tip Cromel-Alumel, cu diametrul electrozilor de 3 mm.

(142)

Fig.46 Poziția termocuplurilor la intrarea și ieșirea din strat

Din fig.47 se remarcă faptul că acest tip de termocupluri prezintă o precizie ridicată (dezvoltă o tensiune termoelectromotoare mare) și au un domeniu larg de utilizare /201/.

Conectarea termocuplurilor prin conductoarele de legătură la milivoltmetrul pirometric(10), s-a făcut cu un montaj de compensare. Comutatorul rotativ (11) permite conectarea succesivă a celor cinci termocupluri la aparatul de măsură. După un timp de stabilizare se citește fiecare temperatură, menținînd debitul de gaz constant. După asigurarea reproductibilității datelor la un anumit debit, determinările se repetă pentru alte debite. Ca fluid de lucru s-a folosit aerul pe baza faptului că numărul Prandtl al acestui gaz este foarte apropiat de același criteriu al componentelor prezente în gazele de reformare (CO, H₂, CO₂, CH₄, H₂O). Acest lucru rezultă din tabelul 58.

Tabelul 57. Caracteristici geometrice ale particulelor și

stratului de catalizator pentru conversia metanu-

1	u	1

Denumirea mărimii	Simbol	Relația de definiție	Valoarea numeri că
Diametrul nominal	d	se măsoară direct	0,016 m
Diametrul mediu de volum	ďv	$d_{v} = (6V_{p}/\pi)^{1/3}$	0,01664 m
Diametrul mediu de suprafață	d s	$d_{s} = (s_{p}/\pi)^{1/2}$	0,0219 m
Diametrul echivalent	ďp	$d_p = (6V_p/B_p)$	0,0096 m
Factorul de formă	Ψ	$\psi = 4,82 v_p^{2/3}/s_p$	0,57747
Suprafața specifică a particulei	ap	$a_p = S_p / V_p = 6 / d_p$	0,620 m ² /m ³
Fracția de goluri a unei particule	٤i	$\xi_{i} = (d_{i}/d)^{2}$	0,250
Diametrul echivalent al golurilor	de	$d_{\theta} = \frac{2}{3} (\frac{\mathcal{E}}{1-\mathcal{E}}) d_{p}$	0,0096 m
Suprafața specifică a umpluturii	a _s	$a_{s} = S_{p} / V_{st} = \frac{6(1-\mathcal{E})}{d_{p}}$	0,250 m ² /m ³
Porozitatea stratului	٤	$\mathcal{E} = \frac{V_{st} - V_{sts}}{V_{ot}}$	0 ,5 633 2
Porozitatea stratului Format din cilindri compacți	٤':	$(1-\xi) = (1-\xi')(1-\xi_{1})$	0,610 63

	TOLLOG Put	orr, penera o	ombourgere]		,
	masei de r	eacție din re	formør		
Component	$P_{r}^{0,33}$	P _r ^{0,40}	$P_r^{2/3}$	Pr	
Aer,N ₂ ,0 ₂	0,915	0,899	0,818	0,740	
CO	0,915	0,899	9, 818	0,740	
H ₂	0,915	0,899	0,818	0,740	
co ₂	0,935	0,914	0,862	0,800	
CH ₄	0,932	0,909	0,855	0,790	
н ₂ 0	0,928	0,905	0,848	0,780	

Tabelul 58. Valorile numerice ale criteriului Prandtl, la diferite puteri, pentru componentele principale ale masei de reactie din reformer

7.3. Rezultate obținute

Valorile experimentale ale mărimilor măsurate direct $(\Psi_{T}, T_{p}, T_{o}; i T)$ cît și cele calculate ($\rho \cdot W_{o}, Re, K_{T}, Nu_{D}$) sînt prezentate în tabelul 59. Mărimile derivate, necesare interpretării datelor s-au calculat cu relațiile:

$$W_{o} = \frac{4 \cdot V_{T}}{\pi D^{2}}$$
(144)

$$R_{\Theta} = \frac{W_{o}d}{M}$$
(145)

$$Nu_{D} = \frac{K_{T} \cdot D}{\bar{\lambda}}$$
(146)

Proprietățile fluidului de lucru $(\rho, \bar{\lambda}, \bar{\mu})$ s-au luat din literatură /202/.

Pentru verificarea reproductibilității datelor, s-au făcut cîte trei determinări la fiecare debit constant. Final s-au luat în considerație mediile valorilor apropiate. De asemenea, pentru temperatura peretelui, atunci cînd au fost variații, s-a

Tebé	91 59.	Date experin	nentale primare	și valorile	coeficie	ntului de	transfer	К _Т
Nr.	$\mathbf{v}_{\mathbf{T}}$	$(\boldsymbol{\beta} \boldsymbol{w}_{\boldsymbol{o}})$	$Re = W_0 d$	е Ф	E	o fi	К _Т	$Nu_{D} = \frac{K_{T} \cdot D}{2}$
	[² / ²]	[kg/m ² s]	*	[K]	[K]	[K]	[w/m ² K]	ν -
	2	5	4	5	9	7	ω	6
Ч	2,0	0,08158	40,1408	773,16	673,40	313,16	2,8895	5,9874
ŝ	2 ,0	0,08158	40,1408	775,16	672,10	333,16	2,7503	5,6989
3	2,0	0,08158	40,1408	769,16	677,46	315,16	3,0229	6,2638
							268875	5,9833
4	4 , 0	0,16317	80,2816	773,16	662,00	310,16	5,3924	11,1736
5	4°0	0,16317	80,2816	773,16	654,41	313,16	5,1193	10,6078
9	4 , 0	0,16317	80,2816	783,16	683,41	323,16	5,7769	11,9704
							5.4295	11,2505
2	6,0	C,24476	120,4224	755,00	635,00	305,00	7,5059	15,5532
30	6,0	0,24476	120,4224	774,000	658,00	321,00	7,7421	16,0425
σ	6,0	0,24476	120,4224	740,00	633,00	303,00	7,9584	16,4908
							2,7355	16,0287
10	0°3	0, 32634	160,5632	703,00	607,00	301,00	10,8053	22,4886
ŢŢ	6,0	0,32634	160,5632	738,00	628,00	321,00	10,0627	20,8510
12	8,0	0,32634	160,5632	254,00	631,00	331,00	9,3166	19,3051
							10,0615	20,8485
13	10,0	0,40790	200,6888	770,00	653,00	341,00	12,2984	25,4836
14	10,0	0,40790	200,6888	772,00	648,00	322,00	11,8342	24,5217
15	10,0	0,40790	200,6888	773,000	645,00	308,00	12,5490	26,0031
							12,2272	25,3361

BUPT

Tabe	- 53 -	continuare							
	2	ю	4	S	ڡ	2	ω	6	1
10	12,0	0,48951	240,8448	739,00	617,00	300,00	14,4943	30,0338	
17	12,0	0,48951	240,8448	756,00	636,00	326,00	16,3091	33,7942	
18	12,0	0,48951	240,8448	772,00	647 , C0	324,00	13,7044	28,3970	
							14,8359	30.7416	
19	13,0	0,53031	260,9152	728,00	00,609	306,00	14,9837	31,0478	
20	13,0	0,53031	260,9152	736,00	618,00	318,00	15,5762	32,2755	
21	13 , C	0,53031	260,9152	705,00	591,00	302,00	16,1088	33,3792	
							15,5562	32.2342	
22	14,0	0,57110	280,0986	772,00	644,00	322,00	16,6025	34,4023	
23	14,0	0,57110	280,0986	773,00	657,00	331,00	15,9807	33,1137	
24	14,0	0,57110	280,0986	739,00	620,00	320,00	17,2938	35,8346	
							16,6256	34.4502	
25.	15,0	0,61189	301,0560	755,00	629,00	316,00	17,1048	35,4430	
26	15,0	0,61189	301,0560	768,00	637,00	309,005	17,7165	36,7105	
27	15,0	0,61189	301,0560	788,00	655,00	322,00	18,3421	38,0068	
							17.7211	36,7201	
26	16,0	0,65269	321,1264	770,00	639,00	327,00	18,5302	38,3966	
29	16,0	0,65269	321,1264	768,00	638,00	318,00	18,7760	38,9059	
8	16,0	0,65269	321,1264	771,00	643,00	329,00	19,0010	39,3721	
							18,7690	38,8915	

109

Тар	• 65 lule	continua	ь						
-	5	3	4	5	9	2	ω	6	
ן גע	18.0	0.73427	361.2672	763.00	631.00	313.00	20 . 5341	42.5489	
32	18,C	0,73427	361,2672	769,00	640,00	331,00	20,8757	43,2567	
33	18,0	0,73427	361,2672	768,00	642,00	338,00	21,0346	43,5859	
							20,8148	43,1305	
ま	20,0	0,81586	401,4081	773,00	634,00	303,00	23,0134	47,6863	
35	20,0	0,81586	401,4081	754,00	623,00	314,00	22,9521	47,5593	
36	20,0	0,81586	401,4081	769,00	636,00	321,00	22,8832	47,4164	
					~		22,9496	47,5540	

110

ſ

luat valoarea medie pe întreaga lungime.

Pentru toate determinările s-a folosit același material de umplutură, catalizator industrial de reformare ale cărui caracteristici geometrice sînt specificate în tabelul 57.

7.4. Interpretarea rezultatelor

Valorile experimentale ale coeficientului K_T se compară, mai întîi, cu valorile calculate cu diferite ecuații existente în literatură. Pentru comparare s-au ales: ecuația stabilită de către De Wash și Froment /144/, ecuația lui Leva /136/ și ecuația lui Gelperin și Kogan /143/. Aceste ecuații au fost prezentate în tabelul 55. Prima ecuație este cea mai recentă, a doua este cea mai utilizată iar a treia da catori apropiete, așa cum se va vedea de cele obținute de noi.

Ecuația lui De Mash și Froment, bazada pe este entriblentale recente și precise, conține însu coeficientul Γ_{p}^{0} malit coeficient "stagnant" (valabil pentru Re = 0) care obținae de diametrul tubului, geometria și proprietățile catalizatorului. Autorii au determinat această constantă pentru catalizatori de oxidare a dioxidului de sult (cu d = 0,0095), catalizatori de obținere a anhidridei ftalice (cu d = 0,0095), catalizatori de obținere a anhidridei ftalice (cu d = 0,0057 m) și catalizatori de sinteză a amoniacului (cu d = 0,0057 m) și catalimetre ale tubului: D = 0,1575 și respectiv D = 0,097. Pentru compararea cu datele proprii s-a considerat K_{p}^{0} obținut la D = 0,099 pentru catalizator de oxidare a dioxicului de matr **ca**re, cel puțin ca dimensiuni, se apropie de cel de reformare. Se considera deci, în calcule $K_{p}^{0} = 16,2555$ Mym²h.

der a fost at dilita pentru sisteme în care particulele solide

				4				
Er ≿>	(b # 0)	Re	De Wash-F	roment	Гө	Va	Gelperin-Ko	gan
[u/2 ^{II}]	[ke/n² s]		K _T [₩/m ² K]	Nuđ	_К [и/ ^{m2} К]	U u _D	_К [Nud
٥, ٩	0,0316	40,141	17,2453	5,0462	4,6570	8,6885	1,8787	0,5497
0 6 7	0,1632	80,282	20,4447	5,9971	8,6957	16,2233	4,3378	1,2693
0 ° 0	0,2447	120,422	23,7412	6,9469	12,5274	23,3721	7,0866	2,0736
0,0	0,3263	160,563	26,9975	7,8998	16,2352	30,2895	10,0418	2,9384
10,0	0,4079	200,688	30,2399	8,8486	19,8421	37,0188	13,1509	3,8481
12,0	0,4895	240,845	33,4962	9,8014	23,3851	43,6289	16,4015	4,7993
13 , 0	0,5305	260,915	35,0821	10,2654	25,0903	46,8103	18,0294	5,2756
14,0	0,5711	280,098	36,7252	10,7522	26,8653	50,1218	19,7647	5,7834
15,0	0,6119	301,056	38,3167	11,2119	28,5297	53,2272	21,4284	6,2702
16,0	0,6527	321,126	39,9950	11,7030	30,2959	56,5223	23,2307	6,7976
18,0	0,7343	361,267	43,2444	12,6538	33,6838	62,8431	26,7890	7,8388
20,0	0,8158	401,408	46,2017	13,5191	36,7346	68,5346	30,1008	8,8078

773 K Coeficientul de transfer K_m, calculat cu ecuații din literatură, la T = Tabelul 60. sînt total diferite ca formă, dimensiuni și proprietăți de catalizatorul de reformare. Leva arată însă că ecuația poate fi aplicată și la particule de forma inelelor Raschig, luînd în calcule diametrul nominal al acestora. Pe această bază s-a luat în considerație și această ecuație.

Ecuația lui Gelperin și Kogan, deși stabilită pentru condiții diferite, dă valorile cele mai apropiate de datele experimentale proprii. Rezultatele obținute prin calcul cu cele trei ecuații precum și cele experiemntale sînt prezentate în diagrama din figura 48.

Fig.48 Compararea valorilor experimentale ale coeficientului K_T cu cele calculate pe baza ecuațiilor empirice existente

Pentru calcule, proprietățile fluidului s-au considerat la temperatura de 673 K ($\mathcal{M}=32,52.10^{-6} \text{Ns/m}^2 \text{ si} \lambda = 49,23.10^{-3}$ W/mK). Se remarcă faptul că valorile experimentale ale lui K_T sînt mai mici decît cele rezultate din ecuațiile existente, fiind mai apropiate doar la Re mici, de cele obținute cu ecuația Gelperin-Kogan. Panta curbei K_T - Re este, de asemenea, diferită. De aceea se impune stabilirea unei ecuații proprii.

Pentru corelarea datelor experimentale proprii se propune o relație criterială de forma:

$$Nu_{D} = C (Re_{d})^{m} \cdot f_{1}(\frac{d}{D}) f_{2}(\frac{L}{D})$$
(147)

Criteriul Prandtl, al naturii fluidului, nu intervine deoarece, așa cum s-a mai arătat, pe baza tabelului 58, are valori foarte apropiate pentru fluidul de lucru și pentru amestecul de gaze din reformelul industrial. Mai mult, la puteri mici, acest criteriu tinde la unitatea.

La o geometrie dată a stratului (L, d, D), funcțiile f_1 și f_2 intră în constanta C' și relația (147) devine:

$$Nu_{D} = C' (Re)^{m}$$
 (147')

Datele experimentale din tabelul 59 permit determinarea constantelor C' și m. Din figura 49 rezultă: m = 0,93 iar C' = 0,2042.

Această valoare a exponentului m este apropiată de cele raportate în literatură pentru alte sisteme similare: 0,83 /130/; 0,9 /136/; 0,73 /138/; 1,17 /139/; 1,4 /140/; 0,8 /140/; 1,21 /143/ și 1,00 /144/.

Decarece mai mulți autori /130,136,139,147/ au găsit o valcare optimă a raportului d/D, considerăm o formă exponențială a funcției $f_1(d/D)$ din ecuația (147). Decarece nu s-au putut obține particule de catalizator de dimensiuni diferite, și de aceeași formă, pentru a cerceta experimental dependența $K_T - d/D$, considerăm că funcția f_1 are forma:

$$f_1(d/D) = \exp(-6\frac{d}{D})$$
 (148)

In aceste condiții, relația (147) devine:

$$Nu_{D} = 0,542 (Re)^{0,93} exp(-6\frac{d}{D})$$
 (149)

Influența raportului L/D nu se mai manifestă la valori L/D 10, deci la lungimi ale tuburilor care depășesc "lungimea de intrare". Ecuația (149) aproximează corect datele experimentale proprii și permite analiza influenței criteriului Re și a raportului d/D asupra coeficientului K_T , în condițiile din reactorul industrial de reformare.

CAPITOLUL 8. ANALIZA PROCESULUI SI PROIECTAREA REACTORULUI PE BAZA MODELULUI MATEMATIC

In capitolele anterioare s-au prezentat modelele matematice de bilanț de masă și căldură pentru procesul de transformare catalitică a metanului cu vapori de apă precum și pentru două variante ale acestuia în cazul prezenței, alături de metan, a dioxidului de carbon sau a hidrocarburilor superioare. Aceste modele stoichiometrice s-au verificat cu date experimentale obținute pe instalații industriale. S-au stabilit, de asemenea, modelele matematice ale desfășurării la echilibru a procesului în cele trei variante tehnologice.

Prin compararea bilanțurilor teoretice cu cele reale s-a demonstrat că, în condiții normale de funcționare, procesul industrial de transformare catalitică a metanului sau a gazului natural cu vapori de apă, decurge la echilibrul chimic.

Modelarea macrocinetică a procesului și analiza datelor din literatură privind posibilitatea desfășurării procesului după unul din modelele macrocinetice posibile au evidențiat faptul că procesul se desfășoară, cel mai probabil, după un model macrocinetic combinat "transfer de căldură de la peretele reactorului la suprafața de reacție". Pentru concretizarea acestui model au fost necesare determinări proprii ale coeficientului global de transfer de căldură (K_m).

In aceste condiții se poate stabili modelul matematic al desfășurării reale a procesului din reactorul industrial, pe baza ipotezelor:

- procesul se desfășoară după modelul macrocinetic transfer

de căldură de la peretele reactorului la suprafața de reacție;

- reactorul este continuu, cu deplasarea ideală a fazei fluide și este alcătuit dintr-un număr de tuburi con_ectate în paralel care se comportă identic din punctul de vedere al parametrilor tehnologici.

Pentru concretizarea modelului se utilizează datele proprii cu privire la coeficientul global de transfer de căldură, prezentate în capitolul precedent.

8.1. Stabilirea modelului matematic

Modelul matematic se stabilește, în ipotezele menționate, plocînd de la ecuația modelului macrocinetic (150):

$$\frac{dH}{\mathcal{E}dS} = K_{T} (T_{p} - T)$$
(150)

Integrarea ecuației (150) pe întreaga lungime a reactorului sau numai pe o porțiune finită (Δz), ținînd seama de faptul că procesul este continuu-staționar (dH/Z = dH) iar aria suprafeței ae transfer se exprimă prin dS = π Ddz, duce la:

$$\Delta \mathbf{H} = \pi \mathbf{D} \int_{\mathbf{z}_{i}}^{\mathbf{z}_{i+1}} \mathbf{K}_{\mathbf{T}} (\mathbf{T}_{\mathbf{p}} - \mathbf{T}) d\mathbf{z}$$
(150')

In regim staționar, fluxul termic transmis (ΔH) este egal cu cel consumat în proces (ΔH_{ex}). Dependența cantității de căldură consumată în proces de temperatura masei de reacție (T), temperatura la intrare în reactor (T₀), compoziția inițială, ($\dot{x}_{H_20}^{o}$ și n_{CH_4}^o) precum și de gradele de transformare \ll și β se exprimă prin ecuația (54) care are forma funcțională:

$$\Delta \overline{H} = \Delta H_{ex} = f(n_{CH_4}^0, x_{H_20}^0, T_0, T, \infty, \beta) \quad (151)$$

Gradele de transformare ∞ și β , care intervin în ecuația (151),
depind de parametrii tehnologici P, T, $\dot{x}_{H_20}^0$.

Decarece reacțiile (2) și (3) ating echilibrul, dependența este descrisă de ecuațiile (96), (97), (99) și (100) care alcătuiesc modelul matematic al desfășurării procesului la echilibru. Aceste ecuații se reiau aici sub forma:

$$K_{p_2}(1 - \alpha)(\dot{x}_{H_20}^{\circ} - \alpha - \beta)(1 + \dot{x}_{H_20}^{\circ} + 2\alpha)^2 = P^2(\alpha - \beta)(3\alpha + \beta)^3$$
(152)

$$K_{p_3} \{ (\alpha - \beta) (x_{H_20}^{\circ} - \alpha - \beta) = \beta (3\alpha + \beta)$$
(153)

$$lg K_{p_2} = -19078,07 \cdot T^{-1} - 8,595279 - 2,410839 \cdot 10^{-9} T + 0,228736 \cdot 10^{-9} T^{2} + 8,0463 lg T$$
(154)

$$lg K_{p_3} = 2217, 18 \cdot T^{-1} - 3, 274672 + 0, 352381 \cdot 10^{-3} T - 0, 50773 \cdot 10^{7} T^{2} + 0, 29693 \ lg T$$
(155)

Integrala din membrul drept al ecuației (150') nu se poate rezolva analitic, direct, decarece atît coeficientul K_T cît și diferența de temperatură (T_p - T) variază pe lungimea reactorului. Temperaturile T_p și T variază cu lungimea (z) în funcție de distribuția spațială a arzătoarelor în cuptorul de reformare. Cînd arzătoarele sînt amplasate la partea de sus a tuburilor de reformare ("în boltă"), profilurile măsurate ale temperaturii din cuptor (T_{ga}), din peretele tubului (T_p) și din stratul de catalizator (T) au forma celor prezentate în figura 50. In această situație se poate considera că, pe cea mai mare parte din lungimea totală a reactorului, diferența(T_p - T) = constant.

Intr-o altă variantă constructivă arzătoarele pot fi plasate la diferite înălțimi ale tuburilor astfel încît să se realizeze o încălzire uniformă a acestora. In acest caz, deci, $T_p = constant.$ In ambele variante este necesară însă o singură valoare experimentală a temperaturii peretelui pentru ca, la un T dat, să se cunoască diferența(T_p - T).

Fig.50 Profilurile temperaturilor T, T_p, T_{ga} în reformerul cu încălzire în echicurent

Considerăm varianta din fig.50 și, prin urmare, diferența (T_p - T), fiind constantă, iese în fața integralei.

Pentru exprimarea variației coeficientului K_T pe lungimea reactorului se folosește ecuația stabilită anterior:

$$\frac{\mathbf{K}_{\mathrm{T}} \mathbf{D}}{\overline{\lambda}} = 0,542 \left(\frac{\mathbf{p} \mathbf{W}_{0} \mathbf{a}}{\overline{\mathbf{\mu}}}\right)^{0,93} \exp(-6 \mathrm{d/D})$$
(156)

Conductivitatea ($\overline{\Lambda}$) și viscozitatea ($\overline{\mu}$) fazei gazoase la un moment dat depind de compoziție, presiune și temperatură. Dependența acestor mărimi de compoziție se exprimă prin relațiile (157) și respectiv (158) care arată abaterea de la legea aditivității /203-206/ :

$$\overline{\lambda} = \frac{\sum \lambda_{1} \mathbf{x}_{1} (\mathbf{w}_{1})^{\frac{1}{3}}}{\sum \mathbf{x}_{1} (\mathbf{w}_{1})^{\frac{1}{3}}}$$
(157)
$$\overline{\lambda} = \frac{\sum \lambda_{1} \mathbf{x}_{1} (\mathbf{w}_{1})^{\frac{1}{2}}}{\sum \mathbf{x}_{1} (\mathbf{w}_{1})^{\frac{1}{2}}}$$
(158)

Conductivitățile și viscozitățile componentelor $(\Lambda_1, \mathcal{M}_1)$ variază, în general, cu presiunea și temperatura. Datele experimentale din literatură /204,205/ arată că, în intervalul 1-50 at., influența presiunii asupra acestor mărimi poate fi neglijată. Influența temperaturii este însă importantă, așa cum rezultă din tabelele 61 și 62 /202-206/.

Tabelul 61. Variația coeficientului de viscozitate al componentelor cu temperatura $\left[10^6 \text{ NB/m}^2\right]/203/$

		-	L		J		
T K Component	573	673	773	873	973	1073	1173
CH4	18,72	21,20	23 , 20	25,60	27,50	29,55	31,20
C0	28,34	31,57	34,52	37,28	39,85	42,30	44,63
со ₂ н ₂	26,22 15,85	29,86 15,43	32,84 16,93	36,10 18,36	38,84 19,74	41 ,38 21 , 07	43,52 22,36
N ₂	28,30	31,48	34,38	37,05	39,53	41,86	44,05

Tabelul 62. Variația coeficientului de conductibilitate termică al componentelor (Λ_{1}) cu temperatura [10³ W/m K]/22/

								_
Componen	473	573	673	773	873	973	1073	
Н ₂	211,4	269,4	298,3	341,8	381,4	400,1	422,4	
CO	32,42	39,82	45,40	50,62	59,17	60,75	65,70	
^{C0} 2	26,62	31,65	38,48	43,45	53,39	54,02	58,50	
CH4	62,22	80,48	97,90	133,30	150,63	155,50	174,15	
[₩] 20	28,07	36,02	42,21	48,26	48,02	63,83	63,40	

For the constraint is to the rate (00-1100 K, parcars do faza gazdabi de-a lungul reactorului industrial, s-au ales formele empirice (159) \$1 (160) de corelare a marimilor λ_i și respectiv \mathcal{M}_i :

$$\lambda_1 = \lambda_{10} \left(\mathbb{I}/\mathbb{I}_0 \right)^{n_1} \tag{159}$$

$$\mathcal{M}_{i} = \mathcal{M}_{i0} \quad \frac{T_{o} + C_{i}}{T + C_{i}} \left(\frac{T}{T_{o}}\right)^{3/2}$$
(160)

Constantele empirice n_i, C_i, specifice fiecărui component, s-au determinat prin metoda regresiei, utilizînd datele experimentale din literatură, prezentate în tabelele 61 și 62.

Compoziția fazei gazoese la un moment dat, care intervine în ecuațiile (157) și (158) sub forma fracțiilor molare x_i, se cetermină cu relațiile (161) - (155) stabilite pe baza ecuațiilor algebrice primare de bilanț din tabelul 5.

$$\mathbf{x}_{CH_{4}} = \frac{1 - \alpha}{1 + \mathbf{x}_{H_{2}0}^{\circ} + 2 \alpha}$$
(161)
$$\mathbf{x}_{H_{2}0} = \alpha - \alpha$$

$$\mathbf{x}_{\rm H_20} = \frac{\mathbf{x}_{\rm H_20}^{\rm o} \mathbf{x}^{\rm o}}{\mathbf{1} + \mathbf{x}_{\rm H_20}^{\rm o} + 2 \sigma}$$
(162)

$$\mathbf{x}_{CO_2} = \frac{3}{1 + x_{H_2O}^3 + 2 \sigma}$$
(163)

$$\mathbf{x}_{CO} = \frac{\mathbf{x} - \mathbf{x}}{1 + \mathbf{x}_{H_2O}^{0} + 2\mathbf{x}}$$
(164)

$$\mathbf{x}_{H_2} = \frac{3\sigma + \beta}{1 + \dot{x}_{H_20}^0 + 2\sigma}$$
(165)

Ecuațiile (150) - (165) alcătuiesc modelul matematic al procesu lui de conversie catalitică a metanului dintr-un tub cu catalizator. Considerînd comportarea identică a tuburilor legate în paralel, modelul se poate extinde la întregul reactor tubular multiplu. Acest model, după testare, se poate folosi atît la stabilirea parametrilor tehnologici optimi cît și la proiectarea tehnologică a reactorului.

8.2. Verificarea modelului matematic

Verificarea modelului matematic stabilit se face comparînd rezultatele calculate cu sistemul de ecuații (150) - (165) cu cele măsurate la un reactor industrial care funcționează în aceleași condiții.

Modelul matematic se rezolvă numeric, algoritmul conceput programîndu-se la calculator. Avînd în vedere structura modelului, principalele etape de calcul sînt:

- precizarea parametrilor tehnologici P, T, T₀, $\dot{x}_{H_20}^{o}$, $n_{CH_4}^{o}$ și d;
- calculul gradelor de transformare $\sqrt{\frac{3}{3}}$ la un T = T₀ + Δ T, din ecuațiile (152)-(155);
- calculul lui $\Delta \overline{H}_c$, cu relația (54);
- calculul fracțiilor molare x_i, cu relațiile (161)-(165);
- determinarea marimilor $\bar{\lambda}$ și $\bar{\mu}$ din relațiile (157)-(160);
- calculul coeficientului de transfer K_{m} , cu relația (156);
- calculul elementului de lungime Az.

Calculul se reia pentru variații mici ΔT_i , pînă se atinge temperatura finală (T_f) , impusă inițial. Apoi se modifică parametrii și se obține un nou set de date constînd din variația temperaturii T și a mărimilor \ll , β , ΔH_c și K_T cu lungimea (z)

a reactoralui. Schema logică de calcul este prezentată în

In tabelul 63 sînt prezentate rezultatele obținute la calculator în condițiile: $T_0 = 755$ K, $\dot{x}_{H_20}^0 = 4$, $T_1 = 30$ at, $\int W_0 = 10,213$ Kg/m²s, d = 0,016 m și D = 0,102 m. Lungimea totală rezultată, $L_{calc.} = 11,44$ m, este foarte apropiată de lungimea reactorului industrial care lucrează la aceleași valori ale parametrilor ($L_{real} = 11,22$ m), abaterea fiind de 1,96%. Această concordanță, considerăm că este suficientă la această etapă pentru a demonstra validitatea modelului și a coeficienților care intervin.

Modelul matematic stabilit pentru conversia metanului rămîne valabil și pentru conversia gazului natural dacă se introduc mărimile $n_{CH_4}^{ON}$ și $n_{H_2}^{ON}$. Acest lucru s-a demonstrat în capitolul 2 prin confruntarea celor două modele de bilanț cu datele experimentale. Pe această bază s-a confirmat faptul că în primele porțiuni ale reactorului are loc transformarea rapidă a hidrocarburilor superioare în metan și, în continuare, procesul decurge ca proces de conversie a metanului.

Modelul rămîne valabil, ca structură, și pentru procesul de conversie a gazului metan cu vapori de apă și dioxid de carbon. Se modifică doar o parte din ecuații și anume: ecuațiile (152)-(155) se înlocuiesc prin relațiile (100), (109)-(111) iar relațiile de bilanț (161)-(165) se înlocuiesc cu ecuațiile fracțiilor molare care rezultă din tabelul 9, specifice acestui proces.

Datele de verificare a modelului, prezentate în tabelul 63, confirmă nu numai baza teoretică a modelului matematic stabilit ci și valorile coeficienților care intervin. Pe această bază se argumentează, indirect și precizia valorilor experimentale ale coeficientului $K_{\rm T}$ obținute în această lucrare.

Tabelu		:	inclusion avectable matematic la calculator, la						
		<u>ຫຼຸ</u> ອ	755 ¥	T = 10	55 K; x _H	-0 = 4;	P = 30;		
		D =	0,102 1	n; d = 0	,016 m; /	$N_0 = 10,2$	213 kg/m	2 ₈	
Nr. pas	z (m)	T [K]	∆≚ _c	£	ß	⊼ ₩m ^{•1} K	<u></u> .10 ⁴ Nsm ²	<u>м</u> , к	
0	0	755	-	0	Ŭ	-	-	-	
1	3,51769	765	5102,1	0,14004	0,13616	0,06229	0,29543	301,756	
2	3,70767	775	2781,8	0,15074	0,14589	0,06354	0,29884	304,655	
3	3,90447	785	2910,6	0,16197	0,15594	0,06482	0,30216	307,686	
4	4,10832	795	3044,0	0,17374	0,16631	0,06609	0,30549	310,667	
5	4,31937	805	3181,2	0,18607	0,17695	0,06737	0,30881	313 , 596	
6	4,53782	815	3322,9	0,19898	0,18784	0,06865	0,31213	316,475	
7	4,76387	825	3469,4	0,21247	0,19894	0,06992	0,31545	319,305	
ē	4,99765	835	3619,2	0,22655	0,21021	0,07120	0,31878	322,085	
9	5,23950	845	3775,9	0,24125	0,22162	0,07248	0,32210	324,821	
10	5,48950	855	3935,6	0,25657	0,23311	0,07376	0,32542	327,508	
11	5,74792	865	4100,8	0,27252	0,24464	0,07504	0,32875	330,149	
12	6,01485	875	4269,5	0,28912	0,25613	0,07632	0,33207	332,771	
13	6,29048	885	4444,3	0,3 0638	0,26754	0,07763	0,33541	335,464	
14	6,5749 7	895	4623,4	0,32430	0,27881	0,07895	0,33876	338,107	
15	6,36827	905	4803,0	0,34290	0,28986	0,08026	0,34210	340,698	
16	7,17061	915	4988,1	0,36217	0,30064	0,08157	0,34544	343,245	
17	7,48201	925	5175,1	0,38212	0,31107	0,08288	0,34879	345,744	
18	7,79250	935	5194,3	0,40307	0,32151	0,08415	0,35313	348, 048	
15	8,10208	945	5212,8	0,42202	0,33194	0,08542	0,35547	350,317	
20	8,41980	955	5231,3	0,44197	0,34238	0,08669	0,35881	352,550	
21	8,71861	9 6 5	5248,7	0,46192	0,35281	0 ,087 96	0,36215	354,749	
22	9,02553	975	5266,1	0,48187	0,36324	0,08924	0,36547	356,963	
23	9,33138	985	5282,6	0,50182	0,37368	0,09055	0,36871	35 9 ,3 41	
⁰ 4	9,63621	995	5299,3	0,52177	0,38411	0,09187	0,37195	36 1,685	
25	9,94003	1005	5315,5	0,54172	0,39455	0,09318	0,37519	363, 995	
26	10,24280	1015	5331,0	0,56167	0,40498	0,09449	0,37844	366,271	
27	10,54460	1025	5345,7	0,58162	0,41542	0,09580	0,38168	368,515	
28	10,84550	1035	5360,8	0,60157	0,42585	0,09711	0,38492	370,727	
29	11,14540	1045	5375,1	0,62152	0,43622	0,09842	0,38816	372,909	
<i>j</i> 0	11,44430	1055	5388,9	0,64148	0,44672	0,09973	0,39140	375,061	

Astfel, prin utilizarea ecuației lui Leva pentru $K_{\rm T}$ rezultă, în aceleași condiții, o lungime a reactorului de 7,88 m, deci o eroare de proiectare de 29,768%, care nu este admisă. Raportul dintre lungimea calculată prin ecuația lui Leva pentru $K_{\rm T}$ și lungimea calculată cu datele proprii este $\frac{7,88}{11,44} = 0,6888$ iar raportul dintre valorile coeficienților este, potrivit diagramei 48, la Re = 401, $(K_{\rm T})_{\rm exp}/(K_{\rm T})_{\rm Leva} = \frac{22,949}{36,734} = 0,6244$. În ipoteza că toate celelalte constante care intervin sînt exacte rezultă că eroarea datelor proprii la scară industrială este de $\frac{0,6888 - 0,6244}{0,6888}$. 100 = 9,34%.

8.3. Analiza procesului și proiectarea reactorului pe baza modelului matematic

Modelul matematic al procesului de conversie catalitică a gazului metan (natural) cu vapori de apă, verificat prin simularea reactorului industrial, poate fi utilizat la analiza procesului și la proiectarea unor noi reactoare de același tip constructiv dar operate în condiții diferite.

In tabelele 64-74 din anexa 4, se prezintă datele obținute la calculator în scopul evidențierii influenței principalilor parametri tehnologici (P, T, T_o, $\dot{x}_{H_20}^0$, βW_o și d) asupra volumului de catalizator necesar (lungimea L la un D dat) precum și a gradelor de transformare finale realizate.

Astfel,din tabelele 64-66 rezultă influența presiunii totale, din tabelele 67-71,influența raportului $\stackrel{\circ}{x_{H_2O}}$ iar din tabelele 72-74,influența diametrului nominal al particulelor de catalizator,la celelalte condiții constante. Prin combinarea acestor tabele rezultă și influența celorlalți parametri : W_0 , T și T_0 . In fiecare tabel este prezentat un set de date cu
127

evoluția and pe langimea reactorului.

In figura 52 sint reprezentate datele de verificare a medelului, din tabelul 63.

Fig.52 Profilurile calculate ale temperaturii (T) și concentrației (și/S) pe lungimea reactorului.

Din figura 53 rezultă influența, previzibilă, a raportului $\overset{\circ}{\mathrm{H}_20}$: atît α și L_f cresc cu excesul de abur.

Influența presiunii rezultă din figura 54 iar din figura 55 reiese existența valorii optime a raportului d/D care minimalizează volumul de catalizator (L).

Fig.54 Influența presiunii asupra lungimii reactorului și gradului de transformare (~)

Datele obținute permit și determinarea caracteristicilor geometrice ale unui reactor (lungimea L și diametrul D), dacă se precizează parametrii tehnologici : T, T_o, P, $\dot{x}_{H_2O}^o$, $\int N_o$, raportul d/D.

CAPICOLUL 9. HIDRODINAMICA REACTORULUI DE REFORMARE PRIMARA A METANULUI

129

9.1. Introducere

Studiul hidrodinamicii reactorului catalitic de reformare cu strat fix de catalizator are o deosebită importanță teoretică și practică. Unele aspecte ale curgerii fazei gazoase prin stratul de catalizator de reformare au fost concretizate deja în capitolul 7, fiind necesare la determinarea coeficientului de transfer de căldură K_m.

In acest capitol se face o analiză critică a ecuațiilor stabilite în literatură pentru calculul pierderii de presiune în straturi granular^e, se prezintă datele experimentale proprii obținute pe un model fizic al reactorului industrial de reformare ;i se corelează aceste date sub forma unei ecuații care permite determinarea precisă a căderii de presiune prin stratul de catalizator dintr-un tub de reformare, dacă se păstrează caracteristicile geometrice ale acestuia. Efectuarea acestor cercetări a fost considerată necesară din mai multe motive:

In primul rînd, pierderea de presiune printr-un strat fix de catalizator, depinde de un număr mare de factori. Aceștie se refert la proprietățile fluidului (\mathcal{M}, β), proprietățile particulelor: diametrul particulei ($\mathbf{d}_{v}, \mathbf{d}_{B}, \mathbf{d}, \mathbf{d}_{p}$), factorul de formă al particulei ($\boldsymbol{\psi}$), suprafața specifică a unei particule (\mathbf{a}_{p}), fracția de goluri a unei particule ($\boldsymbol{\xi}_{i}$), starea suprafeței și natura materialului particulei precum și de proprietăți ale stratului, suprafața specifică e stratului (\mathbf{a}_{s}), diametrul echivalent al golurilor (\mathbf{d}_{e}), porozitatea stratului ($\boldsymbol{\xi}$) și raportul dintre diametrul stratului ($\boldsymbol{\nu}$) și diametrul mediu al particulelor, raport care determină intensitatea influenței pere-

Influența specifică a acestor factori face ca ecuațiile stabilite pentru un anumit sistem strat-fluid să fie cu greu utilizabile la alte sisteme. Ele au un caracter empiric. In literatura consultată /207-230/ nu sînt raportate ecuații ale căderii de presiune prin reactorul de reformare cu strat fix de catalizator.

Un al doilea motiv este de natură economică. Căderea de presiune prin stratul de catalizator este direct proporțională cu energia consumată. De aceea trebuie efectuate determinări proprii pentru estimarea precisă și optimizarea acesteia. Se apreciază că pierderea de presiune (ΔP) cea mai economică este de 0,03 - 0,15 din presiunea totală /207/.

In al treilea rînd, presiunea este o variabilă importantă a procesului chimic de reformare și de aceea, pentru o simulare corectă, modelul matematic trebuie să prezică cu precizie valoarea presiunii în oricare punct de pe lungimea reactorului. Prin urmare, modelul matematic trebuie să cuprindă pe lîngă ecuațiile de bilanț de masă și căldură și ecuația bilanțului cantității de mișcare. În calculele de proiectare se determină caracteristicile geometrice ale reactorului pe baza primelor două ecuații, considerînd presiunea la ieșirea din reactor (P), și în final, cu ajutorul ecuației pierderii de presiune (ΔP) se determină presiunea necesară la intrarea în reactor (P₀) /207/.

9.2. Analiza critică a ecuațiilor din literatură In literatură există mai multe ecuații empirice pentru calculul pierderii de presiune la trecerea unui fluid printr-un

strat granulaza Aceste ecuații pot fi considerate forme particulare ale relatiei lui Darcy-Weisbach /208/ :

$$-\frac{\mathrm{d}P}{\mathrm{d}z} = \Lambda - \frac{\rho \cdot w^2}{2D}$$
(166)

unde: dP = pierderea infinitezimală de presiune $[N/m^2]$

dz = lungimea infinitozimală a stratului [m]

f = densitatea fluidului [kg/m³]

W = viteza liniară de curgerea fluidului [m/s]

- D = diametrul secțiunii de curgere [m]
- λ = factor de frecare.

Rose /209/, inlocuind diametrul D cu diametrul nominal al particulelor (d) și viteza liniară (W) cu viteza fictivă (W_0), a stabilit următoarea ecuație /208,210/:

$$-\frac{\mathrm{d}P}{\mathrm{d}z} = \Lambda \frac{f \cdot \psi_0^2}{2 \mathrm{d}}$$
(167)

unde:
$$\Lambda = 1000 (\text{Re})^{-1} + 125 (\text{Re})^{-1/2} + 14$$
 (168)

$$iar_{i} Re = \frac{P_{0}}{M}$$
(169)

Ecuațiile (167)-(169) conțin o singură mărime care caracterizeaza particulale și anume diametrul nominal (d), de aceea are un domeniu limitat de utilizare.

Brownell /211/ concretizează ecuația (166) sub forma /208,210,212/

$$-\frac{\mathrm{d}P}{\mathrm{d}z} = \lambda \cdot \mathbf{F}_{\lambda} \frac{\rho \cdot w_{0}^{2}}{2\mathrm{d}}$$
(170)

unde, pentru curgerea turbulentă,

$$\Lambda = 0,0140 + 1,056 (Re)^{-0,42}$$
(171)

isr:
$$Re = \frac{\int W_0 d}{M} \cdot F_{Re}$$
 (172)

Factorii F_A și F_{Re} au fost corelați de către autor sub formă de

diagrame: $\mathbf{F}_{\Lambda} = f(\boldsymbol{\psi}, \boldsymbol{\xi})$ și $\mathbf{F}_{\mathrm{Re}} = f(\boldsymbol{\psi}, \boldsymbol{\xi})$ pe baza datelor experimentale. In acest fel Brownell introduce în ecuație două proprietăți importante: porozitatea stratului ($\boldsymbol{\xi}$) și factorul de formă al particulei ($\boldsymbol{\psi}$), pe lîngă diametrul nominal (d). Cu toate acestea ecuația (170) are o precizie redusă datorită corelării grafice a mărimilor \mathbf{F}_{Λ} și \mathbf{F}_{Re} .

Leva și colab. /213/ au efectuat cercetări experimentale proprii pe straturi cu diferite porozități (ξ), formate din particule cu diferite forme (ψ), dimensiuni (d_v) și rugozități, stabilind, în final, ecuația /208,210,214/ :

 $Re = \frac{\rho a_{v} \cdot w_{o}}{M}$

$$-\frac{\mathrm{d}p}{\mathrm{d}z} = \lambda \frac{(1-\varepsilon)^{3-n}}{\varepsilon^{3} + 3-n} \cdot \frac{\rho \cdot W_{0}^{2}}{2\mathrm{d}_{v}}$$
(173)

under

Autorii utilizează deci un criteriu de curgere modificat bazat
pe diametrul mediu de volum (d_v). Ecuația (173) are o precizie re-
dusă decarece autorii au corelat factorul de frecare
$$\Lambda$$
 și expo-
nentul n sub formă de grafice în funcție de Re definit prin ecu-
ația (174).

Ergun /214-216/ a stabilit o ecuație mult utilizată în prezent, sub forma /208,210,214,218,221-223/:

$$-\frac{dp}{dz} = \Lambda \frac{1-\varepsilon}{\varepsilon^3} \frac{\int W_0^2}{d_p}$$
(175)

$$\Lambda = 150 \text{ Re}^{-1} + 1,75 \tag{176}$$

iar:

$$Re = \frac{\rho V_0 d_p}{\mathcal{M} (1-\varepsilon)}$$
(177)

Deși, ca formă, ecuația lui Ergun a fost confirmată și de cercetări ulterioare, valorile "constantelor" din ecuația lui (150 și 1,75) s-au găsit că variază atît cu geometria sistemului, natura materialului /219,220/ cît și cu Re /221/. Alți autori, dimpo-

(174)

trivă, en considerat confidenții ecuației (176) constante universale aplicind, pe această bază, ecuația lui Ergun la determinarea suprafeței apecifice a straturilor granulare /222,223/. Această opinie este, firește, riscantă. În plus, ecuația lui Ergun nu poate fi utilizată în cazul în care particulele stratului au forma inelelor Raschig precum și la sistemele cu rapoarte D/d <50, la care se manifestă o influență puternică a peretelui /208/.

Brauer /224/ arată că ecuațiile (175) și (176) pot fi extinse și la particule de forma inelelor Raschig dacă Re se definește pe baza diametrului echivalent modificat (d_p) prin relația:

$$Re = \frac{\int W_0 d_p}{(1-\xi)}$$
(178)

unde:

 $d_{D}' =$

$$d_{p}\left(\frac{1-\epsilon_{i}}{1+\frac{2}{3}\sqrt{\epsilon_{1}}-\frac{1}{3}\epsilon_{1}}\right)^{1,9}$$
(179)

 ξ_i este fracția de goluri individuală, a unui inel, definită în funcție de diametrul interior al inelului (d_i) și diametrul exterior (nominal) al inelului (d_o), prin relația:

$$\boldsymbol{\xi}_{1} = \left(\frac{d_{1}}{d_{0}}\right)^{2} \tag{180}$$

(176) - (180). Atunci cind $\mathcal{E}_{i} = 0$ (cilindri plini), $d_{p}' = d_{p}$, $R_{\beta_{178}} = Re_{177}$ și deoi $\Lambda_{Brauer} = \Lambda_{Brgun}$. Pentru cilindrii:goi, $Is \ 0 < \xi_{i} < 1$, aplicînd relațiile (178), (179) rezultă $d_{p}' < d_{p}$, $R_{\gamma_{176}} \leq Re_{177}$ și deoi $\Lambda_{Brauer} > \Lambda_{Ergun}$. Aceasta înBeamnä că pierderea de presiune prin straturi cu particule evînd $\mathcal{E}_{1} > 0$, potrivit ecuațiilor lui Brauer, este mai mare decît atunci cînd $\mathcal{E}_{i} =$ 0, cese ce este un contradicție cu datele experimentale. Mehta și Hawley /225/ introduc un factor F_p în ecuația (175) pentru a ține seama de influența peretelui la D/d <50. Ecuatia lor are forma /208/ :

$$-\frac{dP}{dz} = \Lambda \frac{(1-\varepsilon)}{\varepsilon^{3}} \cdot \frac{\int W_{0}^{2}}{d_{p}} \cdot F_{p}$$
(181)

Factorul influenței peretelui este definit prin relația (182) iar factorul de frecare Λ , prin ecuația (183):

$$F_{\rm p} = 1 + \frac{2 d_{\rm p}}{3D(1 - \xi)}$$
(182)

$$\Lambda = 150 \ F_{\rm p} \ {\rm Re}^{-1} + 1,75 \tag{183}$$

Aplicînd ecuațiile (181) - (183) rezultă că, la creșterea raportului d_p/D , crește pierderea de presiune. Această concluzie nu este în concordanță cu datele privind variația porozității stratului cu raportul d_p/D /214/ precum și pe rază, indicîndu-se o oreștere a acesteia în zona peretelui /226/. Ambele efecte duc la o porozitate a stratului mai mare și deci o cădere de presiune mai mică.

England și Gunn /227/ cercetează căderea de presiune prin straturi formate din cilindri cu diferite rapoarte d_1/d_e . Relația dintre porozitatea stratului format din cilindri cu d_1/d_e > 0, (£), porozitatea stratului format din cilindri plini (£') și porozitatea externă a unui cilindru (ξ_1) este:

$$(1 - \xi) = (1 - \xi') (1 - \xi_i)$$
(184)

Ei corelează datele caderii de presiune cu relațiile (185),(186):

$$-\frac{\mathrm{d}P}{\mathrm{d}z} = \lambda \frac{f \cdot W_0^2}{\mathrm{d}}$$
(185)

$$\Lambda = \left(\frac{3000}{\text{Re}^2} + \frac{150}{\text{Re}} + 0,6\right)^{\frac{1}{2}} \left(\frac{\varepsilon}{\varepsilon}\right)^{1,65}$$
(186)

Criterial Re falai definie in Luncție de diametrul nominal;

$$k_{\Theta} = \frac{p_{d} W_{o}}{\mu}$$
(187)

Autorii /227/ demonstrează, cu date experimentale precise, că pierderes de presiune scade cu creșterea porozității (E) și că ecuația lui Carman /228/, considerată generală /221/, nu se verifică la straturi formate din cilindri goi.

In final trebuie menționate ecuațiile recomandate de către Hyman /60/ și respectiv Rase /207/ pentru calculul căderii de presiune în reactorul de reformare. Aceste ecuații nu reprezintă însa corelarea unor date experimentale obținute în condițiile specifice reactorului de reformare ci sînt forme adaptate ale unor ecuații empirice existente.

Astfel Hyman /60/, simplificînd ecuația lui Ergun, ajunge la forma:

$$-\frac{dP}{dz} = 10^{-10} \rho \cdot \Psi_0^2$$
 (188)

Prin înlocuirea unităților S.I., constanta 10^{-10} se modifică și ecuația (188) devine:

$$-\frac{dP}{dz} = 280,657 \ \beta \cdot W_0^2 \tag{188'}$$

 $p_{25} = 0.2$ and conține nici viscozitatea fluidului și nici o proprietete a stratului. De aceea are o precizie foarte redusă.

Ecuația indicată de către Rese /207/, provine din ecuația

$$-\frac{dP}{dz} = 5,922 \cdot 10^{-3} \frac{1-\varepsilon}{\varepsilon^{3}} \frac{(\rho W_{0})^{1,9}}{\rho \cdot d^{1,1}}$$
(189)

Fentru a ramine valabilă și în condițiile utilizării Bistemului late mațional de unități, constanta se modifică și ecuația (189)

BUPT

capătă forma:

$$-\frac{dP}{dz} = 10,605 \left(\frac{1-\varepsilon}{\varepsilon^{3}}\right) \frac{\int_{0}^{0,9} w_{0}^{1,9}}{d^{1,1}}$$
(189')

Nici una din ecuațiile existente în literatură, prezentate în mod unitar în acest paragraf, nu a fost stabilită în condițiile din reactorul industrial de reformare. Adecvanța acestora se va testa prin compararea valorilor ($\Delta P/L$) calculate cu fiecare dintre ele, cu valorile experimentale proprii obținute pe un model fizic al reactorului industrial.

9.3. Obținerea datelor experimentale

Pentru determinarea experimentală a pierderii de presiune prin stratul fix de catalizator de nichel s-a utilizat instalația din figura 56.

Fig.56 Schița instalației experimentale pentru determinarea pierderii de presiune prin stratul de catalizator

Tubul (1) ed diemetrul interior D = 0,955 m se încarcă cu catalizator industrial (2) stratul fiind susținut de sita metalică (3). Sub sită esta o porțiune de tub gol (4) de 0,1 m,necesară stabilizării debitului de fluid înainte de a intra în strat. Debitul le fluid (aer) se măsoară, după filtrare (5) cu rotametrul (6). Căderea de presiune se măsoară cu manometrul cu apă (7).

Caracteristicile geometrice ale unei particule de catalizator și cele ale stratului au fost prezentate deja în tabelul 57. În figura 56a se evidențiază forma și dimensiunile măsurabile ale particulelor.

S-c făcut un număr mare de încercări pentru determinarea perezității stratului prin metoda dezlocuirii cu apă, folosind un cilindru de sticlă gradat cu diametrul egal cu cel al stratu mi. S-a găsit că valoarea lui \mathcal{E} depinde de modul de aranjare la aceleași cantități de particule din același volum. Valoarea lui \mathcal{E} din tabelul 57 reprezintă media a 12 determinări corespunzătoare celor 12 încărcări întîmplătoare ale tubului. Determinarile pierderii de presiune s-au făcut pentru trei lungimi diferite ale stratului: $L_1 = 0,340$ m; $L_2 = 0,660$ m; $L_3 = 0,991$ m, debitul de fluid variind în intervalul 2 - 20

Site factors experimentale primare sint prezentate, pentru fiecare lungime a stratului, în tabelele 76, 77 și respectiv 75. Pentru fiecare lungime s-au făcut 12 seturi de determinări corespunzătoare diferitelor aranjări ale particulelor. In ultina roloand a tabelelor este scrisa media aritmetică a lui Δp far în prima coloană a tabelului 78 se prezintă căderea de presiune prin tubul gol cu sita de susținere.

3.37

mm H₂O) pentru 12 aranjäri diferite ale Tabelul 76. Datele experimentale primare (**A**F

		1						13	8	•											1
	Wedla	Ì,	0,25	0,71	0,99	1,78	2,42	3,14	3,88	4,97	5,81	7,02	8,35	10,01	11,89	13,73	16,21	17,88	19,74	22,38	24,96
	12		0,31	0,78	1,08	1,91	2,62	3,30	4,15	5,28	5,94	7,26	8,53	10,56	12,54	14,85	17,82	18,81	20,46	23,42	26,40
	11	-	0,28	0,66	1,00	1,68	2,31	3,13	3,80	4,95	5,67	6,82	8,45	10,42	12,07	13,85	16,17	17,49	19,60	22,26	24,28
	10		0,29	0,75	0,99	1,65	2,31	3,26	3,86	4,95	5,84	7,08	8,53	10,40	12,44	13,96	16,50	18,15	20,13	22,52	24,75
	6	,	0,29	0,73	1,06	1,88	2,44	3,12	3,83	4,98	5,78	7,19	8,45	9,36	12,14	13,86	16,17	18,17	20,36	22,72	24,83
340 ш	ß		0,31	0,78	0,89	1,91	2,57	3,26	4 , 06	5,08	6,07	7,27	8,58	10,55	12,47	14,32	17,16	18,74	20,52	23,25	26,00
$\mathbf{L}_1 = 0,$.6		0,26	0,66	0,91	1,64	2,30	3,06	3,80	4,91	5,83	7,02	8,42	10,50	11,38	13,76	15,74	18,15	19,40	22,10	24,30
ngimea	٩		0,25	0,59	1,40	1,61	2,29	2,90	3,69	4,71	5,65	6,73	7,95	9,24	11,12	12,90	15,11	16,63	1 8, 64	21,01	23,72
l cu lu	5	(0,26	0,66	0,94	1,84	2,36	3,03	3,79	4,88	5,80	6,90	7,98	9,25	11,19	12,95	15,20	17,45	19,27	21,85	24,25
stratu	4		0,28	0,65	0,97	1,86	2,42	3,10	3,83	4,95	5,87	7,02	8,38	9,93	11,83	12,99	15,67	17,75	19,80	21,86	24,61
elor în	Ś		0,25	0,64	0,89	1,65	2,24	2,93	3,69	4,75	5,45	6,60	7,79	9,20	11,15	12,65	14,89	16,24	18,58	21,25	23,85
articui	2		0,29	0,76	1,05	1,88	2,61	3,23	3,89	4,95	5,91	7,12	8,54	10,30	11,95	13,96	12,06	L8,15	50,19	22,89	26,25
đ		r-	0,30	0,78	1,06	1,84	2,60	3,33	4,15	5,23	5,90	7,25	8,55	10,51	12,50]	14,75]	17,52	18,80]	20,02	23,40	26,35 2
	Nr.det.	Debit m ³ /h	2	ξ	4	ъ	9	2	Ø	6	10	11	12	13	14	15	16	17	18	19	20

Datele experimentale primare ($\Delta P \ mm \ H_2 O$) pentru 12 aranjäri diferite ale particue lor în stratul cu $L_2 = 0,660 \ m$ Totelul 77.

1 2 3 4 5 6 7 6 9 10 11 12 13 1 1 2 3 4 5 0 5 <th>1</th> <th></th>	1													
0,62 C,56 0,59 0,63 0,52 0,49 0,55 0,56 0,49 0,55 0,56 0,49 0,56 0,49 0,56 0,49 1,58 1,56 2,17 1,98 2,01 1,98 2,13 1,78 1,81 1,88 1,94 1,78 2,11 2,13 3,82 3,56 3,76 3,82 3,29 3,72 3,72 3,76 5,76<	e	r-1 •	2	ĸ	4	Ś	Q	2	ບັ	σ	10	1.1	12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,55 1,72 1,49 1,46 1,55 1,72 1,18 1,52 1,29 1,28 1,58 2,11 2,13 2 ,16 2 ,36 5 ,30 3 ,76 3 ,88 2 ,12 1,98 2 ,01 1,98 2 ,13 1,78 1,81 1,88 1,94 1,78 2,11 2,13 2 ,20 5 ,24 4 ,62 4 ,62 4 ,62 4 ,68 5 ,14 4 ,60 4 ,58 4 ,72 4 ,85 4 ,48 5 ,21 5,20 6 ,50 6 ,50 6 ,50 9 ,99 9 ,90 9 ,91 9 9 ,50 9 ,50 5 ,76 5 ,68 6 ,50 6 ,50 6 ,50 6 ,50 9 ,99 9 ,90 9 ,90 9 ,90 9 ,90 9 ,90 1 ,91 1 ,168 11,50 11,50 11,50 11,50 11,50 11,50 10,46 11,60 11,51 11,60 11,50 11,50 11,50 11,50 11,50 11,61 11,51 11,50 11,5	1	0,62	C, 56	0,59	0,58	0,63	0,52	0,49	0,53	0,56	0,49	0, <u>5</u> 9	0,60	0,5
2,17 1,98 2,10 1,98 2,13 1,78 1,61 1,81 1,84 1,78 2,11 2,13 5,82 3,36 3,76 5,21 5,20 5,76 5,66 5,66 5,66 5,66 5,66 5,66 5,66 5,66 5,66 5,66 5,66 5,66 5,70 5,71 5,20 5,71 5,00 5,160 5,160 5,160 5,160 5,160 5,160 5,160 5,160 5,160 5,160 5,716 5,716 17,90 17,10 10,10 11,81 11,80 11,81 <t< td=""><td></td><td>1,55</td><td>1,32</td><td>1,49</td><td>1,46</td><td>1,55</td><td>1,32</td><td>1,18</td><td>1,52</td><td>1,29</td><td>1,28</td><td>1,58</td><td>3,56</td><td>1,41</td></t<>		1 , 55	1,32	1,49	1,46	1,55	1,32	1,18	1,52	1,29	1,28	1,58	3 ,5 6	1,41
5,82 3,36 3,76 3,82 3,23 3,76 3,82 5,23 5,23 5,72 5,76 3,66 3,76 5,24 6,55 6,13 5,80 6,07 6,20 5,87 6,46 6,65 6,50 0,90 9,91 9,96 10,16 9,83 9,45 9,75 7,78 6,77 6,150 7,78 6,77 6,160 10,56 9,90 9,91 11,66 11,30 11,60 11,75 10,99 11,180 11,80		2,17	1,98	2,01	1,98	2,13	1,78	1,81	1,88	1,94	1,78	2,11	2,13	1, 9U
5,24 4,62 4,88 5,14 4,60 4,58 6,46 5,21 5,21 5,20 6,60 6,57 6,13 5,14 4,60 4,58 6,46 6,65 6,30 6,27 6,53 6,13 5,80 6,07 6,20 5,87 6,46 6,65 6,31 7,59 7,77 7,39 7,79 7,78 6,30 10,56 9,90 9,91 9,96 10,16 9,83 9,43 9,76 9,99 9,90 10,46 11,86 11,35 11,68 11,57 12,14 11,66 11,30 11,60 11,87 14,50 14,51 14,51 14,51 14,51 14,51 14,52 14,52 14,50 15,57 17,09 17,10 14,52 14,51 14,50 15,57 17,09 17,10 17,10 14,52 14,50 15,57 17,09 17,10 17,10 17,10 17,10 17,10 17,10 14,52 14,52		3,82	3,36	3,30	3,76	3,82	3,29	3,23	3,69	3,72	3,30	5 # 76	3,68	3.56
6,60 6,27 6,53 6,24 6,55 6,15 5,80 6,07 6,20 5,87 6,46 6,65 8,31 7,59 7,76 8,11 7,66 7,39 7,78 5,30 10,56 9,90 9,91 9,96 10,16 9,83 9,43 9,76 9,89 1,81 1,18 11,86 11,35 11,66 11,57 12,14 11,66 11,75 10,89 11,81 11,80 11,88 11,35 11,68 11,57 12,14 11,66 11,75 10,89 11,81 11,80 17,16 16,89 17,16 14,55 14,05 15,90 15,90 15,97 17,09 17,10 21,12 20,88 24,18 24,16 27,52 25,90 25,93 25,04 26,59 27,91 29,97 21,12 21,10 21,00 18,46 18,50 19,86 14,15 17,09 17,10 21,12 24,96		5,24	4,62	4,62	4,88	5,14	4,60	4,58	4,72	4,85	4,48	5,21	5,20	4 ,85
B, 31 7, 59 7, 76 8, 11 7, 60 7, 39 7, 75 7, 76 6, 30 10, 56 9, 90 9, 91 9, 96 10, 16 9, 83 9, 43 9, 76 9, 90 30, 46 11, 86 11, 35 11, 68 11, 57 12, 14 11, 66 11, 75 10, 89 11, 81 11, 80 11, 80 11, 81 11, 80 11, 80 11, 81 11, 80 11, 80 11, 81 11, 80 11, 10 11, 80 11, 10 14, 50 21, 40 <td></td> <td>6, 60</td> <td>6,27</td> <td>6,53</td> <td>6,24</td> <td>6,53</td> <td>61,9</td> <td>5,80</td> <td>6,07</td> <td>6,20</td> <td>5,87</td> <td>6,46</td> <td>6,65</td> <td>6,28</td>		6 , 60	6,27	6,53	6,24	6,53	61,9	5,80	6,07	6,20	5,87	6,46	6,65	6,28
10,56 9,90 9,91 9,96 10,16 9,83 9,43 9,76 9,89 9,50 9,90 10,46 11,88 11,35 11,68 11,57 12,14 11,66 11,50 11,75 10,89 11,81 11,80 14,52 13,65 14,17 14,55 14,15 15,90 15,97 16,76 15,57 17,09 17,10 17,16 16,89 17,16 16,89 17,17 16,83 15,90 15,97 16,76 15,57 17,09 17,10 21,12 20,85 20,80 18,72 21,10 21,00 18,48 18,50 19,46 16,76 15,57 17,09 17,10 21,12 20,85 20,80 18,72 21,10 21,00 18,48 18,50 19,46 20,57 21,25 21,02 <		6,31	7,59	7.72	7,67	8,11	7,60	7,39	7,59	7,65	7,39	7,78	6,30	7,76
11,88 11,35 11,68 11,57 12,14 11,66 11,50 11,50 11,50 14,25 14,50 14,52 13,65 14,17 14,38 14,55 14,05 13,46 13,20 14,25 14,50 17,16 16,89 17,16 16,89 17,17 16,83 15,97 16,76 15,57 17,09 17,10 21,12 20,85 20,80 18,72 21,10 21,00 18,46 18,50 19,86 14,41 20,59 21,02 21,12 20,85 24,98 24,94 22,77 22,22 25,90 25,90 25,96 27,97 27,91 29,50 29,70 27,70 27,95 24,94 22,77 22,22 25,90 25,96 25,30 27,91 29,50 29,76 34,18 30,22 25,40 21,35 29,70 27,91 29,50 29,64 27,72 28,64 27,52 25,40 25,90 25,90 25,90 29,47 36,53 29,47 36,50 29,40 34,12 35,04		10,56	6 ,90	9,91	9,9 6	10,16	ġ,83	9,43	9,76	63,6	9,50	9,90	9 4б.О.с	9,94
14,52 13,65 14,17 14,58 14,55 14,05 15,46 15,86 14,05 13,20 14,25 14,50 17,16 16,89 17,17 16,83 15,90 15,97 16,76 15,57 17,09 17,10 21,12 20,85 20,80 18,72 21,10 21,00 18,46 18,50 19,86 18,41 20,59 21,02 25,08 24,15 24,88 24,94 22,77 22,24 22,36 23,66 22,30 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,60 25,04 21,02 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50 27,91 29,50		11,88	11,35	11,68	11,57	12,14	11,66	11,30	11,50	11,75	10,89	11,81	08 , 11	11,62
17,16 16,89 17,17 16,83 15,90 15,97 16,76 15,57 17,09 17,10 21,12 20,85 20,80 18,72 21,10 21,00 10,46 18,50 19,66 16,41 20,59 21,02 25,08 24,18 24,94 22,77 22,24 22,36 25,90 25,96 27,97 27,91 29,50 29,70 27,79 27,95 28,64 27,52 25,80 25,90 25,96 27,91 29,50 35,64 32,34 34,32 31,48 30 ,22 30,40 31,35 29,77 34,12 35,04 37,62 34,98 36,30 32,34 34,32 31,48 30 ,22 30,40 31,35 29,77 34,12 35,04 37,62 34,98 36,30 35,26 37,40 31,35 29,70 37,40 36,30 37,60 37,62 34,98 36,30 37,26 34,90 35,50 37,47 36,30 37,50 40,05 40,05 40,05 40,05 40,05 40,05 <td></td> <td>14,52</td> <td>13,65</td> <td>14,17</td> <td>14,38</td> <td>14,55</td> <td>14,05</td> <td>13,46</td> <td>13,86</td> <td>14,05</td> <td>13,20</td> <td>14,25</td> <td>14,50</td> <td>14,05</td>		14,52	13,65	14,17	14,38	14,55	14,05	13,46	13,86	14,05	13,20	14,25	14 , 50	14,05
21,12 20,85 20,80 18,72 21,10 21,00 18,45 18,50 19,86 18,41 20,59 21,02 25,08 24,15 24,88 24,94 22,77 22,24 22,38 25,50 27,91 29,50 29,70 27,95 27,72 28,64 27,52 25,80 25,90 25,98 25,30 27,91 29,50 35,64 32,34 34,32 31,48 30 ,22 30,40 31,35 29,77 34,12 35,04 37,62 34,98 36,30 35,36 31,48 30 ,22 30,40 31,35 29,77 34,12 35,04 37,62 34,98 36,30 35,36 31,48 30 ,22 30,40 31,35 29,77 34,12 35,04 37,62 34,99 36,30 35,26 34,90 35,50 37,46 36,50 37,60 40,92 39,20 40,57 34,105 38,54 39,60 37,16 40,05 40,05 40,92 39,20 40,72 41,05 38,54 39,60 <td></td> <td>17,16</td> <td>16,89</td> <td>17,16</td> <td>16,89</td> <td>17,17</td> <td>16,83</td> <td>15,90</td> <td>15,97</td> <td>16,76</td> <td>15,57</td> <td>17,09</td> <td>17,10</td> <td>16,70</td>		17,16	16,89	17,16	16,89	17,17	16,83	15,90	15,97	16,76	15,57	17,09	17,10	16,70
25,08 24,15 24,88 24,94 22,77 22,24 22,36 22,36 22,30 23,89 25,00 29,70 27,70 27,95 27,72 28,64 27,52 25,80 25,90 25,98 25,30 27,91 29,50 35,64 32,34 34,32 31,48 30,22 30,40 31,35 29,77 34,12 35,04 37,62 34,98 36,30 35,34 34,32 31,48 30,26 34,90 31,35 29,77 34,12 35,04 37,62 34,98 36,30 36,35 37,48 36,30 35,26 34,90 35,50 27,47 36,30 37,60 40,92 39,20 40,72 41,05 35,26 34,90 35,50 37,50 34,12 35,94 40,92 39,20 44,57 36,50 37,29 38,54 39,60 37,50 37,50 40,05 40,92 44,53 45,05 38,54 39,60 37,16 40,57 40,05 40,05 40,92 44,55 45,46		21,12	20,85	20,80	18,72	21,10	21,00	18,48	18,50	19,86	18,41	20,59	21,02	20,03
29,70 27,70 27,95 28,64 27,52 25,80 25,90 25,98 25,30 27,91 29,50 35,64 32,34 34,52 34,52 34,52 34,12 35,04 37,62 34,98 36,30 36,35 37,48 36,30 35,26 34,90 35,50 37,16 40,39 40,92 39,20 40,72 41,05 38,80 37,29 38,54 39,60 37,16 40,39		25,08	24,15	24,88	24,28	24,94	22,77	22,24	22,38	23 ,6 6	22,30	23,89	25,00	23,79
35,64 32,34 34,32 31,48 30 ,22 30,40 31,35 29,77 34,12 35,04 37,62 34,98 36,30 36,35 37,48 36,30 35,26 34,90 35,50 32,47 36,30 37,60 40,92 39,20 40,72 41,05 38,80 37,29 38,54 39,60 37,16 40,39 40,05 40,92 39,20 40,72 41,05 38,80 37,29 38,54 39,60 37,16 40,39 40,05 40,84 44,57 45,45 46,51 44,20 42,02 43,70 45,78 46,80 52,80 48,57 49,50 49,66 52,00 48,51 49,25 45,78 46,80		29,70	27,70	27,95	27,72	28,64	27,52	25,80	25,90	25,98	25,30	27,91	29,50	27,47
37,62 34,98 36,30 36,35 37,48 36,30 35,26 34,90 35,50 32,47 36,30 37,60 40,92 39,20 40,26 40,72 41,05 38,80 37,29 38,54 39,60 37,16 40,39 40,05 40,84 44,53 45,05 45,45 46,51 44,20 42,02 43,70 43,75 42,50 45,78 46,80 52,80 48,57 49,50 49,66 52,00 48,60 47,45 48,51 49,23 47,71 52,50 52.70		35,64	32,34	33,00	32,34	34,32	31,48	30,22	30,40	31,35	29,77	34,12	35,04	32,41
40.92 39,20 40,26 40,72 41,05 38,80 37,29 38,54 39,60 37,16 40,39 40,05 40,84 44,53 45,05 45,45 46,51 44,20 42,02 43,70 43,75 42,50 45,78 46,80 52,80 48,57 49,50 49,66 52,00 48,60 47,45 48,51 49,23 47,71 52,50 52,70		37,62	34,98	36,30	36,35	37,48	36,30	35,26	34,90	35,50	32,47	36,30	31,60	35:75
40,84 44,53 45,05 45,45 46,51 44,20 42,02 43,70 43,75 42,50 45,78 46,80 52,80 48,57 49,50 49,66 52,00 48,60 47,45 48,51 49,23 47,71 52,50 52,70		40,92	39,20	40,26	40,72	41,05	38,80	37,29	38,54	39,60	37,16	40,39	40,05	39,49
52,80 48,57 49,50 49,66 52,00 48,60 47,45 48,51 49,23 47,71 52,50 52,70		40 , 84	44,53	45,05	45,45	46,51	44,20	42,02	43,70	43,75	42,50	45,78	46,80	44,76
		52,80	48,57	49,50	49,66	52,00	48,60	47,45	48,51	49,23	47,71	52,50	52,70	49,93

	<u> </u>						140)												:
	Med 18	0,86	2,15	3,00	5,44	7,36	9,53	11,77	15,06	17,72	21,38	25,52	30,77	36,01	41,40	48,89	53,99	60,08	68,80	75,51
	12	0,95	2,35	3,30	5,80	7,95	10,05	12,60	16,00	18,35	22,30	26,15	32,20	38,00	45,20	54,60	57,20	62,35	72,20	80,00
	11	0,85	2,00	3,00	5,15	7,15	9,80	11,80	15,40	17,60	21,00	25,85	31,80	36,75	42,00	49,30	53,20	59,45	68iji80	73,80
	10	0,90	2,30	3,10	5,00	7,15	9,95	11,85	15,30	17,85	21,81	26,20	32,00	37,80	43,00	50,30	55,20	61,20	69,30	75,25
E	6	0,90	2,25	3,00	5,70	7,40	9,60	11,80	15,20	17,80	21,90	25,70	28,80	36,85	42,20	49,25	55,10	61 ' 22	69,95	76,40
0,991	œ	0,95	2,35	3,25	5,85	7,85	6 ,90	12,40	15,40	18,45	22,20	26,10	32,40	37,95	43,40	52,20	56,80	62,40	71,60	78,85
1 L3 =	6	0,80	2,15	2,80	5,10	7,05	9,30	11,65	14,90	17,85	21,40	25,80	32,50	34,80	41,80	47,80	55,00	58, 90	68,50	73,80
ang ime	ە	0,75	1,85	2,75	4,95	6,95	8,80	11,25	14,40	17,20	20,40	24,20	28,00	33,85	39,20	45,80	50,40	56 ,60	64,70	71,95
l cu li	S	0,80	2,00	2,85	5,60	7,20	9,20	11,55	14,80	17,60	21,00	25,40	30,00	34,20	39,40	46,35	52,95	58,40	67,30	73,50
stratu	4	c, 90	2,30	3,15	5,70	7,60	9,55	11,75	15,10	17,80	21,50	25,80	32,40	36,05	40,80	48,60	54,10	62,30	70,30	76,20
r, în	Ŕ	0,85	1,95	2,95	5,65	7,35	9,40	11,60	14,70	17,50	21,30	25,40	30,10	35,85	39,10	47,20	53,80	60,20	67,30	74,60
culeio	~	0,75	1,95	2,70	5,05	6,80	8,95	11,20	14,40	16,80	20,20	23,80	27,90	33,80	38,40	43,60	49,20	56,30	65,30	72,30
parti	-	0,90	2,40	3,20	5,70	7,90	9,80	11,80	15,20	17,90	21,60	25,90	31,20	36,25	42,30	51,70	55,00	61,20	70,40	79,50
	let. Tut gol	0,0	0,01	0,02	0,05	0,10	0,15	0,25	0,34	0,40	0,51	0,60	0,74	0,85	1,10	1,80	2,05	2,40	2,55	2,80
	Nr.d Decit E ² /L	2	ξ	4	Ś	9	2	30	б	10	11	12	13	14	15	16	17	16	19	20

Tacelul 76. Latele experimentale primare (A P mm E₂0) pentru 14 aranjàri diferite ale

BUPT

	∆ P/L [[0 _c E mm	∆ P/L Valoarea medie						
Debit m ³ /h	$L_1 = 0,34$	$0 \text{ m L}_2 = 0,660$	™ Ŀ ₃ =0,99	1 m (mm H ₂ 0/	″m][N/m ² m]				
2	0,7647	0,8454	0,8678	0,8269	8,1118				
3	2,0882	2,1363	2,1695	2,1313	20,9080				
4	2,9117	3,0000	3,0272	2,9796	29,2298				
5	5,2352	5,3939	5 ,4894	5,3728	52,7071				
6	7,1176	7,3484	7,4268	7,2976	71,5894				
7	9,2352	9,5151	9,6165	9,4556	92,7594				
8	11,4117	11,7575	11,8768	11,6 82 0	114,6004				
9	14,6176	15,0606	15,1967	14,9583	146,7409				
10	17,0882	17,6060	17,8809	17,5250	171,9202				
11	20,6470	21,2878	21,5741	21,1696	207,6737				
12	24,5588	25,3030	25,7 5 17	25,2045	247,2561				
13	29,4411	30,3030	31,04 9 4	30,2645	296,8947				
14	34,9705	36,0454	36,3370	35,7843	325,6371				
15	40,3823	41,6212	41,7759	41,2598	404 ,7586				
16	47,6764	49,1060	49,3340	48,7054	477,7999				
17	52,5882	54 ,166 6	54,4803	53,7450	527,2384				
18	58,0588	59,8333	60,6256	59,5059	583,7528				
19	66,7647	68, 8484	69,4429	68,3520	670 , 5331				
20	73,4117	75,6515	76,1957	75,0863	736,5966				

Tabelul 79. Valorile experimentale ale raportului AP/L la di-

Valorile medii ale ΔP din tabelele 76-78 sînt prelucrate oub forma raportului $\Delta F/L$ în tabelul 79. Se remarcă o ușoară creștere a raportului $\Delta P/L$ cu lungimea L. Acest fenomen poate fi explicat prin creșterea neomogenității stratului odată cu creșterea lungimii sale datorită tasării. În acest fel la baza stratului scade ξ odată cu creșterea înălțimii și astfel rezultă pierderi mei mari de presiune. În ultima coloană a tabelului 79 sînt înscrise valorile medii ale rapoartelor experimentale

ferite lungimi ale stratului și media acestora

142

△P/L care s-au prelucrat în continuare în vederea corelării lor.

9.4. Interpretarea și corelarea datelor experimentale

Intr-o primă etapă se compară valorile experimentale medii ale lui $\Delta P/L$, din ultima coloană a tabelului 79, cu valorile calculate ale acestui raport pe baza relațiilor empirice din literatură. Rezultatele finale obținute prin calcul precum și mărimile intermediare (W_0 , Re, λ) sînt prezentate detaliat în tabelele 80-87 din anexa 5.

In figura 57 sînt reprezentate curbele calculate (1-3, 5-10) precum și curba de variație a lui $(\Delta P/L)_{exp}$ cu debitul de fluid.

Fig.57 Compararea datelor experimentale (curba 4) cu cele calculate Force i breatable struite, all intii, o apreciere critică finală a posibilităților de aplicare a ecuațiilor din literatură la reactorul de reformare. Se remarcă, în primul rînd, faptul că ecuațiile indicate de către Hyman (curba 8) și Rase (curba 1), special pentru reactorul de reformare, dau valori foarte diferite între ele și în același timp depărtate de cele experimentale. Astfel, la $V_{\rm T} = 20 \text{ m}^3/\text{h}$, $(\Delta P/L)_{\rm Hyman} = 20,711 \text{ mm H}_20/\text{m}$, $(\Delta P/L)_{\rm Rase} = 182,095 \text{ mm H}_20/\text{m}$ iar $(\Delta P/L)_{\rm exp} = 75,0863 \text{ mm H}_20/\text{m}$.

Ecuația lui Brauer (curba 7) și ecuația lui Mehta-Hawley (curba 6) dau valori $\Delta P/L$ mai mari decît ecuația Ergun (8) pentru aceleași condiții. Acest lucru nu justifică teoretic existenya lor. Aceste inconsecvențe ale ecuațiilor Brauer și respectiv mehta-Hawley au fost prevăzute deja la analiza efectuată în paragraful 9.2.

Ecuația lui Leva (curba 10) duce la valori ale lui $\Delta P/L$ mult prea mici față de cele experimentale fiind **puțin** precisă cași foarte sofisticată. Se apropie cel mai mult de datele experimentale ecuația lui England-Gunn (curba 3) bazată pe datele cele mai recente, precum și ecuațiile mai vechi: Brownell (curba 5) și Rose (curba 3).

Decarece nici una din ecuațiile existente nu poate fi folosită direct la corelarea datelor experimentale proprii, se lucearcă, în continuare, să se stabilească o nouă ecuație. In acest scop, plecînd de la ecuația de bilanț a cantității de mișcare /105/

$$\rho = \frac{dW}{dz} + \rho = (-\mathbf{r}_{h}) \Delta V^{\pm} = (-\mathbf{r}_{h})$$
(190)

Neglijînd variația de volum în proces ($\Delta V^{H} = 0$) și ținînd seama de mecanismul transformarii și transferului cantitații de mișcare în strat fix, se obține /.30/ :

BUPT

$$-\frac{dP}{dz} = \frac{32 \,\mu(W_0/\epsilon)}{d_e^2} + \frac{f(W_0/\epsilon)^2}{2 \, d_e}$$
(190',

Primul termen din membrul drept al ecuației (190') reprezintă ecuația Poiseuille pentru curgerea laminară iar al doilea este un termen cinetic bazat pe curgerea capilară, înlocuindu-se viteza liniară prin (W_0/ξ) iar diametrul secțiunii de curgere prin diametrul echivalent al golurilor (d_0) . Acesta din urmă poate fi legat de diametrul stratului (D), porozitatea stratului (ξ) și suprafața specifică a umpluturii (a_g) prin relația (191) și relația (192) :

$$\mathbf{n}_{c} \pi \frac{\mathbf{d}_{\theta}^{2}}{4} = \pi \mathbf{D}^{2} \cdot \boldsymbol{\mathcal{E}} / 4 \tag{191}$$

unde, n_c = numărul de canale de curgere pe unitatea de secțiune transversală a stratului.

2

$$a_{B} = \frac{n_{c} \pi L d_{e}}{L \pi \frac{D^{2}}{4} (1 - \varepsilon)} = \frac{4 n_{c} d_{e}}{D^{2} (1 - \varepsilon)}$$
(192)

De aici rezultă:

$$d_{e} = \frac{4\xi}{a_{g}(1-\xi)} = \frac{2\xi d_{p}}{3(1-\xi)}$$
(193)

Inlocuind expresia lui d_e în ecuația (190) și incluzînd toate constantele în doi coeficienți K_1 și K_2 , se obține:

$$-\frac{dP}{dz} = K_{1} \frac{\mathcal{M} W_{0} (1-\varepsilon)^{2}}{\varepsilon^{3} d_{p}} + K_{2} \frac{\int W_{0}^{2} (1-\varepsilon)}{d_{p}^{2} \varepsilon^{3}}$$
(194)

Ecuația (194) se poate scrie în funcție de Re, definit prin ecuația (177), astfel:

$$\frac{dp}{dz} = \frac{\xi^3}{(1-\xi)^3} - \frac{p \cdot d^2_p}{\mu^2} = K_1 \cdot Re + K_2 Re^2$$
(195)

Dacă se Emparto ecuația (195) prin Re, se obține, în memorul drept expresia unei drepte:

$$\frac{dF}{dz} \frac{\xi^3}{(1-\xi)^3} \frac{\rho \cdot d^3}{\mu^2 Re} = 1 = K_1 + K_2 Re$$
(196)

Expresia liniară (196) permite determinarea constantelor K₁ și K₂ cu ajutorul datelor experimentale, din graficul Y-Re. In figura 58 este reprezentată dependența mărimii Y de Re, definit prin relația (177), calculele detaliate fiind prezentate în tabelul 88.

Debit	Re	Y	$\left(\frac{\Delta P}{L}\right)_{exp}$	$\left(\frac{\Delta P}{L}\right)$ calc.	Eroarea
m ² /h			$[N/m^3]$	[N/m ³]	%
			0 1110	0 5055	1. 000 5
2	111,26	479,390	8,1118	8,5077	+4,8805
3	166 ,85	823,943	20,9080	18,1188	-13,3403
4	222,52	863,710	29,2298	31,3234	+7,1625
5	278,04	1246,444	52,7071	48,0601	-8,8166
6	333 , 70	1410,599	71,5894	68,4154	-4,4336
7	389,37	1566,414	92,7594	92,3562	-0,4346
8	445,04	1693,161	114,6004	119,8791	+4,6061
9	500 ,70	1929,711	146,7409	150,7672	+2,7438
10	556 ,3 7	2031,769	171,9202	185,6649	+7,9948
11	611,89	2231,615	207,6737	223,8257	+7,7775
12	667 ,56	2435,386	247,2561	265,6670	+7,4460
13	723,22	2699,250	296,8947	311,0819	+4,7785
14	778,89	2748,963	325,6371	360,0869	+10,5791
15	834,41	3189,538	404,7586	412,3248	+1,8693
16	890,08	3529,622	477,7999	468,6871	-1,9072
17	945,75	3665,573	527,2384	528,4288	+0,2257
18	1001,41	3832,906	583,7528	591,7411	+1,3684
19	1057,07	4170,880	670,5331	658,6342	-1,7745
20	1112,60	4353,132	736,5966	728,9394	-1,0396

Mărimi derivate din datele experimentale (Y) Tabelul 88.

și erorile ecuațiilor stabilite

Dreapta din figura 58 s-a trasat aplicind regresia liniară. S-au găsit astfel următoarele valori ale coeficienților: $K_1 = 80$ și $K_2 = 3,80$. Inlocuind aceste valori în ecuația (195) se obține:

$$-\frac{dP}{dz} \frac{\mathcal{E}^{3}}{(1-\mathcal{E})^{3}} \frac{\rho \cdot d_{p}^{3}}{\mathcal{M}^{2}} = 80 \frac{\rho \cdot W_{o} d_{p}}{\mathcal{M}(1-\mathcal{E})} + 3,80 \left(\frac{\rho W_{o} d_{p}}{\mathcal{M}(1-\mathcal{E})}\right)^{2}$$
(197)

Punînd ecuația (197) sub o formă comparabilă cu cele din literatură, se obține:

BUPT

$$\frac{c_{p}}{az} = \frac{c_{p}}{c_{p}} \frac{c_{p}}{a_{p}} \cdot \lambda$$
 (198)

unde: $\lambda = 3.8 + 80 \text{ Re}^{-1}$ (199)

iar Re este cel definit prin ecuztia (177).

Prin urmere, ecuația stabilită pentru calculul căderii de presiune în reactorul de reformare prin identificarea coeficienților relației generale de bilanț de moment este de forma polinomială a lui Ergun dar are coeficienți diferiți.

Pentru stabilirea gradului de precizie a ecuațiilor (198) 1 (199), s-au calculat mărimile din tabelul 88, ultimile coloane. Eroarea relativă maximă a valorilor calculate cu ecuația nou stasinită față de cele experimentale depășește numai în două puncte cu 10%. Ecuațiile (198) și (199) pot fi folosite la calculul pierierii de presiune prin stratul de catalizator din reactorul tubular de reformare dacă se mențin caracteristicile stratului și ule farticulelor. Caracteristicile fluidului (ρ , \mathcal{A} , W_0) pot fi diferite. Acestea trebuie determinate cu mare atenție deoarece variază atît cu compoziția fazei gazoase cît și cu presiunea și temperatura. Viscozitatea medie a fluidului (\mathcal{A}) se determină, in funcție de temperatură și compoziție, cu relațiile (158) și 100, prezentate în capitolul 8 iar densitatea (β), cu relația (200), bazată pe aditivitate și legea gazelor ideale:

$$\frac{3}{J} = \frac{P}{T.V_{m}} \sum_{m} M_{i} x_{i}$$
(200)

La calculul vitezei liniare (W₀), trebuie avută în vedere, de osemenea variația debitului cu parametrii de stare. In condiții industriale viteza liniară poate atinge 2 m/sec (de peste două ci mai mere decît cea maximă realizată în instalația experimenslă) dar regimul de curgere rămine același (turbulent) și deci forma ecuației rămîne valabilă la scară industriala.

CAPITOLUL 10. CONCLUZII GENERALE

Prezenta lucrare conține rezultatele cercetărilor teoresi ticeVexperimentale referitoare la modelarea procesului de conversie catalitică a gasului natural în gaze de sinteză a amoniacului sau a altor produse chimice.

Procesul este studiat în trei variante tehnologice:

- conversia metanului cu vapori de apă,

- conversia gazului natural cu vapori de apă,

- conversia metanului cu vapori de apă și dioxid de carbon.

In primele două variante procesul apare sub numele de reformare primară, în liniile actuale de obținere a amoniacului.

A treia variantă este propusă ca procedeu modificat fie în vederea valorificării unor zăcăminte naturale de gaze ce conțin dioxid de carbon, fie în vederea economisirii de energie prin înlocuirea parțială a aburului în procedeul clasic, cu dioxid de carbon rezidual, rezultat în liniile de amoniac la spălarea gazelor sau în gazele de ardere.

Oportunitatea temei este justificată de cele cinci contracte încheiate în perioada 1972-1978 între catedra T.S.A. de la Institutul politehnic Iași și Centrala Industrială de Ingrășăminte Chimice, la solicitarea acesteia, în vederea perfecționării proceselor din liniile de amoniac. Datele generale, prezentate în capitolul 1, argumentează, într-un context mai larg, importanța actuală și de perspectivă a acestui proces ca etapă primordială în valorificarea superioară a gazului natural. La acestea trebuie adăugat argumentul gnoseologic principal: stadiul limitat de cunoaștere a acestui proces din punctul de vedere al ingineriei

procession and a second second

Resultatele concetărilor efectuate au fost și sînt rolesite în acopul conducerii optimale a proceselor din instalațiile existente și se constitue, în același tamp, ca rezerve de date pentru proiectares optimă a unor noi instalații.

Cersetările teoretice și experimentale efectuate în lucrare conduc la următoarele concluzii finale:

1. Se stabilesc modelele matematice de bilanț de masă sub formă de ecuații algebrice, pentru cele trei variante ale prodesului, utilizînd metoda definirii gradelor de transformare ale reactanților valoroși în roacțiile chimice independente. Ecuațiile stabilite sînt specifice ficcarei variante a procesului.

1.1. Pentru conversia metanului cu vapori de apă se stabiiește, prin metoda octogonalizării, că oricare două din cele patru reacții posibile sînt independente. Se prezintă în tabele ocusțiile primare de bilanț de masă obținute prin definirea gradului de transformare a metanului (γ_{CH_4}) în reacția (2) și a gradului de transformare a oxidului de carbon (γ_{CO}) în reacția (3). Se obțin apoi ocuațiile secundare de bilanț de masă care exprimă composiția la un moment dat în funcție de două concentrații finale care trebuie determinate direct: x_{CH_4} și x_{CO_2} - fractii molare, sau X_{CH_4} și X_{CO_2} - fracții molare raportate la total

iscate. Se stabilest de asemenea, și relațiile de calcul a gradelor de transformare α ($\alpha = \gamma_{CH_4}$) și β ($\beta = \gamma_{CH_4} \gamma_{CO}$) în suncție de parametrii care trebuie măsurați (\mathbf{X}_{CH_4} și \mathbf{X}_{CO_2}).

1.2. Pentru conversia metanului cu vapori de apă și dioxid

trice. Se consideră reacțiile (3) și (5) și se stabilesc, în me analog, modelele matematice primare și secundare de bilanț. Ecuațiile secundare obținute sînt identice cu cele obținute considerînd reacțiile (2) și (3), în procesul anterior. Aceasta confirme identitatea celor șase variante stoichiometrice posibile pentru cele două procese. Prin urmare și în prezența dioxidului de carbon procesul poate fi descris prin ecuațiile din tabelele 5, 6, 7 și 8 în care, însă, $x_{CO_2}^{o} \neq o și n_{CO_2}^{o} \neq o.$

Decarece prin adăugarea dioxidului de carbon rezultă gaze cu rapoarte $\mathbf{x}_{H_2} = \mathbf{y} = \frac{\mathbf{H}_2}{\mathbf{x}_{CO}}$ diferite, se stabilesc ecuațiile secundare și în funcție de parametrii \mathbf{x}_{CH_4} și \mathbf{y} (\mathbf{x}_{H_2}) .

1.3. In cazul conversiei gazului natural, trebuie luate în considerație, alături de reacțiile (2) și (3), reacțiile prin care se transformă hidrocarburile superioare. Referitor la aceste reacții s-au formulat în literatură două ipoteze. Potrivit unei ipoteze omologii superiori se transformă în metan prin hidrocracare (reacția 27) iar cealaltă ipoteză are la bază reacția (28). Metanul se transformă apoi, conform reacțiilor (2) și (3). In lucrare se stabilesc modelele de bilanț pentru ambele ipoteze. Decarece calculele termodinamice nu au departajat clar cele două variante s-au comparat datele experimentale de bilanț cu datele calculate pe baza celor două modele. S-a stabilit astfel valabilitatea primei ipoteze: reacțiile (2), (3), (27), (29).

2. Se stabilesc ecuațiile algebrice care alcătuiesc modelul matematic de bilanț termic pentru cele trei variante ale procesului. Aceste ecuații au o formă originală, convenabilă utilizării calculatorului. Ele exprimă dependența consumului total de căldură în proces (ΔH_{ext}), a consumului specific de căldură (ΔH_c)

precum și a consumului de combustibil în procesul de ardere, de parametrii tehnologici ai procesului global de reformare. Procesul global de reformare este alcătuit din două procese distinctes processi catalitie endoterm, din interiorul reactorului și procesul de ardere din exteriorul reactorului. Drept combustibil se consideră pe rînd, gazul metan, gaze de purjă resultate din ciclul de sinteză a amoniacului și amestecuri gaz metan - gas de purjã. Se defineste și se stabilește relația de calcul a echivalentei energetice a gazelor de purjă cu care se poate determina cantitatea de gaz metan economisit prin folosivee unor gaze de purjá cu caracteristici cunoscute. Se precizează Godificările care apar în ecuațiile stabilite în cazul conversici gazului natural. Se apreciază că prezența hidrocarburilor superioare, care se transformă mai întîi în metan prin reacții exoterme, duce la scăderea consumului de căldură cu circa 10 Kcal pe un mol de gaz natural transformat (la compoziția dată a acestuia).

3. Se efectuează analiza la calculator pe baza modelului matematic al desfășurării procesului la echilibru.

3.1. Se stabilește modelul matematic pentru desfășurarea la echilibru a procesului, în cele trei variante, pe baza mesodoi constanterior de echilibru. Modelul constă într-un sistem de ecuații algebrice neliniare care exprimă dependența gradelor de transformare $\propto si / 3$ de parametrii tehnologici: P, T, $x_{H_2O}^{o}$ in cazul conversiei metanului cu vapori de apă și respectiv P, $\oplus, x_{H_2O}^{o}$, $x_{CO_2}^{o}$, în cazul conversiei metanului cu vapori de upă și dioxid de carbon. Prezența hidrocarburilor superioare nu modifică forma ecuațiilor, ci numai compoziția inițială decarece

1.51

reacțiile la care participă acestea sînt totale.

3.2. Be rezolvă modelul matematic stabilit printr-o variantă modificată a metodei Newton-Raphson, în cazul procesului de conversie cu vapori de apă și respectiv prin metoda Davidenko în cazul conversiei cu vapori de apă și dioxid de carbon. Rezultatele obținute se referă la intervale largi de variație a parametrilor, completind datele existente. O parte din rezultate se prezintă în lucrare sub formă de tabele.

3.3. Se analizează influența parametrilor P, T, $\dot{\mathbf{x}}_{H_20}^0$ și respectiv P, T, $\dot{\mathbf{x}}_{H_20}^0$, $\dot{\mathbf{x}}_{CO_2}^0$ asupra gradelor de transformare la echilibru α și β cu ajutorul diagramelor. Concluziile sînt prezentate detaliat în text. Menționăm doar influența raportului $\dot{\mathbf{x}}_{CO_2}^0$. La temperaturi ≥ 1100 K și rapoarte $\dot{\mathbf{x}}_{H_20}^0 \leq 6$, creșterea raportului $\dot{\mathbf{x}}_{CO_2}^0$ duce la creșteri importante ale procesului de transformare α .

Această conclusie importantă stă la baza unui procedeu modificat de conversie a metanului, cu vapori de apă și dioxid de carbon, în vederea obținerii gazelor de sinteză atît pentru obținerea amoniacului cît și a alcoolilor. Procedeul permite intensificarea procesului convențional (crește <), valorifică CO₂ rezidual din gazele de ardere sau de la spălarea gazului brut și economisește energie (abur). Este conceput, de asemenea, pentru a valorifica resursele de gaz natural cu conținut ridicat de carbon.

3.4. Inlocuind valorile teoretice ale gradelor de transformare în ecuațiile bilanțului termic, se analizează la calculator influența parametrilor asupra consumului specific de căldură $(\Delta \mathbf{H}_{c})$. In casul procesului de conversie a metanului cu vapori de apă se evidențiază astrel; pentru prima dată, existența unor seturi de parametri optimi (T, P, $\mathbf{x}_{H_{2}0}^{o}$, T₀) care minimalizează consumurile spacifice de căldoră. In casul conversiei metanului eu vapori de apă și dioxid de carbon consumul specific de căldură crește cu $\mathbf{x}_{CO_{2}}^{o}$, la $\mathbf{x}_{CO_{2}}^{o} > 2$. Efectele contrare ale creșterii raportului $\mathbf{x}_{CO_{2}}^{o}$ (crește of dar crește și ΔH_{c}) asupra eficienței procesului indică necesitatea optimizării acestui parametru.

4. Se verifică modelele matematice de bilanț de masă și căldură și se compară bilanțurile reale cu cele teoretice pentru procesul de conversie a metanului și(sau) a gazului natural cu vapori de apă.

4.1. Utilizînd modelsle satematice de bilanț în forma secundară se stabilesc parametrii care trebuie determinați: X_{CH_4} și Z_{UCC} pentru bilanțul de masă, T și T pentru bilanțul termic.

4.2. S-au determinat valorile experimentale ale parametrilor X_{CH_4} , X_{CO_2} , T ei T_a precum și ale mărimilor de intrare corespunsăteare, pentru diferite perioade de timp, la trei instalații industriale de amoniac din țara neastră. Temperatura gazelor de ardere la ieșirea din cuptor (T_a) s-a măsurat, în mod special, cu un parametru optic. Celelalte mărimi se determină în acd obișnuit in cadrul controlului interfasic. In lucrare se presiată valorile acestor parametri pentru e perioadă de 12 zile, măsurate de CIC Turnu Măgurele. Pentru celelalte instalații analizate se prezintă numai parametrii statistici ai mărimilor măsurate (media aritmetică, dispersia și abaterea medie pătratică).

4.3. Se verificá modelele matematice cu ajutorul acestor date. Pentru bilanțul de masá se compară X_{H_2} , X_{CO} și $X_{A''}$ cal-

culate cu cele experimentale iar pentru bilanțul termic se compară consumul de combustibil calculat cu cel măsurat. Pentru toate instalațiile concordanța este bună.

4.4. Prin compararea gradelor de transformare reale cu cele teoretice, la cele trei instalații industriale, s-a găsit că procesele de transformare a metanului cu vapori de apă decurg, practic, la echilibrul chimic. De aici două consecințe cu importanță teoretică și practică:

- procesul se desfășoară după un model macrocinetic de transfer de căldură,
- diagramele care dau variație gradelor de transformare
 \$\$\$ \$\$\$ \$\$\$ \$\$\$ teoretice cu parametrii de lucru pot fi utilizate
 la controlul funcționării reactorului și în special la
 controlul gradului de îmbatrînire a catalizatorului.

In acest sens s-au furnizat nomograme pentru instalația de la CIC Turnu Măgurele, în cadrul lucrărilor de contract.

5. Pe baza teoriei modelării macrocinetice a proceselor chimice unitare se stabilesc modelele macrocinetice simple și combinate, de masă și termice după care se poate desfășura procesul de conversie catalitică a metanului cu vapori de apă.

Pentru fiecare model macrocinetic posibil se analizează posibilitatea concretizării constantelor care intervin, pe baza datelor existente în literatură. Se cercetează extensiv literatura consacrată transferului de căldură în reactoarele cu strat fix. Se prezintă sintetic, în tabele, ecuațiile existente pentru coeficientul de transfer de căldură și se analizează critic, din punctul de vedere al aplicabilității lor la procesul de reformare. Pe baze concluziei 4.4., de mai sus, și a unor indicații din literatură Se progune modelarea procesului pe baza modelului

macrocinetia combinat "transfer de căldură de la peretele reactorului la suprafața de reacție". Concretizarea acestui model necesită determinări proprii ale coeficientului global de transfer de căldură. Pentru celelalte variante ale procesului sint valabile aceleași concluzii.

6. Se determină coeficientul global de transfer de căldură, de la peretele reactorului la stratul de catalizator și . se corelează datele obținute sub forma unei noi ecuații criteriule.

6.1. Prin integrarea ecuației modelului macrocinetic se stabilește ecuația de calcul a coeficientului din date experimentale primare.

6.2. Se concepe instalația experimentală care permite obținerea acestor date. Se utilizează un tub metalic cu diametru egal cu cel al reactorului industrial umplut cu catalizator industrial de reformare primară sub forma inelelor Raschig. Lungimea tublui experimental este mai mare decît"lungimea de intrace" mecesară stabilizării regimului termic. Măsuri speciale de diminuare a erorilor de măsurare a temperaturii fluidului și a peretelui s-au lușt din etapa proiectării instalației experimentale.

6.3. Se obțin 36 valori ale coericientului K_T la diferite viteze ale fluidului, în domeniul turbuient (Re = 40 - 401,4). Valorile experimentale medii se compară cu cele obținute prin oaloul cu diferite ecuații din literatură, stabilite pentru alte sisteme. Coeficienții experimentali sînt mai mici decît cei calculați în tot domeniul cercetat al criteriului Re, iar la viteze mici, se apropie de valorile obținute cu ecuația lui Gelperin și

- 33

Kagan.

6.4. Reprezentînd datele experimentale în coordonatele lg Nu_D - lg Re se obține ecuația: Nu_D = 0,2042 Re^{0,93}. Exponentul lui Re, astfel găsit (0,93), se încadrează în domeniul în care acesta variasă la relații existente: 0,73 - 1,40 . Constantele c' = 0,2042 include și raportul d/D care, în cursul experimentărilor, a fost menținut constant. Pentru a extinde relația și la alte rapoarte, s-a adoptat o funcție f(d/D) de forma: exp(- 6 d/D). Această funcție dă o valoare optimă a raportului d/D = 0,125 indicată în literatură de mai mulți autori. Ecuația obținută final: Nu_D = 0,542 Re^{0,93} exp(- 6 $\frac{d}{D}$), corelează bine datele experimentale proprii și poate fi inclusă în modelul matematic al procesului.

7. Se stabilește modelul matematic al procesului de conversie a metanului cu vapori de apă, bazat pe un model macrocinetic termic combinat, se verifică acest model prin simularea la calculator a unui reactor industrial și se indică modul de utilizare a modelului la analiza procesului și proiectarea tehnologică a reactorului.

7.1. Se stabilește modelul matematic al procesului de conversie a metanului cu vapori de apă, ca un sistem de ecuație de bilenț de masă și căldură, pe baza ipotezelor:

- procesul se desfășoară după modelul macrocinetic combinat: "transfer de căldură de la peretele reactorului la suprafața de reacție",
- reactorul este continuu, cu deplasarea ideală a fazei fluide, prin stratul fix de catalizator,
- presiunea este constantă pe lungimea reactorului.

7 Finite constitues și rezolvarea numerică a ecuațiilor se utilizează datele proprii obținute pentru coeficientul de transfer de căldură (K_T) , se stabilesc relații de corelare a proprietăților finidului $\overline{\Lambda}$ și $\overline{\mu}$ pe baza datelor existente și se măsoară, în mod special, temperatura peretelui într-un reactor industrial.

7.3. Se indică metoda de rezolvare a modelului matematic la calculator astfel încît să se obțină profilurile concentrației (α, β) și temperaturilor (T, T_p), a consumului de căldură și a coeficientului $K_{\tau_{\rm f}}$ pe lungimea reactorului.

7.4. Se verifică modelul matematic prin simularea unui reactor industrial. La valorile parametrilor P, T, T_o, $\dot{x}_{H_2O}^{o}$, W_o și d/D din reactorul industrial se obține o lungime calculată de 11,44 m față de cea măsurată de 11,22 m. Eroarea de 1,96% este foarte mică avînd în vedere ipotezele simplificatoare care stau la baza oricărui model, oricît de sofisticat. De remarcat că, prin utilizarea ecuației lui Leva, recomandată de unii autori pentru acest scop, s-a obținut o lungime calculată a stratului de 7,88 m, cu o eroare de 29,768%. Pe această bază se poate susține că valorile experimentale obținute pentru coeficientul K_T pe un model fizic al reactorului industrial, sînt mai precise decît cele existente în literatură, care au fost obținute în alte condiții.

Modelul astfel verificat se poate utiliza la proiectarea tennologică a reactorului: se dau valori parametrilor de lucru și se obține lungimea stratului și de aici volumul de catalizator necesar. Nici această metodă, nici oricare alta, nu au fost găsite în literatură pentru calculul volumului de catalizator.

-51

7.5. Se efectuează analiza procesului la calculator pe baza modelului matematic, cercetînd influența parametrilor principali: T_o, T, $\dot{x}_{H_2O}^{o}$, P, W_o și d/D, asupra volumului de catalizator și a gradelor de transformare finale obținute. Datele obținute se prezintă, parțial, sub formă de tabele și diagrame.

Concluziile asupra modului cum influențează fiecare parametru, performanțele procesului, sînt prezentate în text.

g. Se cercetează, experimental, hidrodinamica reactorului cu strat de catalizator de reformare primară stabilindu-se final o ecuație proprie pentru variația presiunii pe lungimea stratului. Această ecuație este o componentă a modelului matematic complet al reactorului care cuprinde astfel ecuațiile de bilanț de masă, căldură și cantitatea de mișcare. Ecuația permite, de asemenea, calculul pierderii de presiune în funcție de caracteristicile stratului, ale fluidului și geometria reactorului.

8.1. Se analizează critic ecuațiile existente în literatură pentru determinarea pierderii de presiune la curgerea unui fluid prin straturi granulare. Nici una din ecuațiile existente nu a fost stabilită pe baza cercetării hidrodinamicii reactorului de reformare sau a unor sisteme similare din punctul de vedere al formei și dimensiunilor particulelor, al raportului d/D etc.

8.2. Se determină caracteristicile hidrodinamice ale stratului de catalizator din reactorul tubular de reformare și se obțin date experimentale proprii asupra pierderii de presiune utilizînd un strat identic cu cel industrial. Se constată o variație importantă a pierderii de presiune cu modul de aranjare a particuleior și o ușoară creștere, nefirească, a căderii de pre-

siune cu lungimea stratului.

8.3. Se compară datele experimentale proprii cu cele calculate, în aceleași condiții, cu ajutorul ecuațiilor din literatură. Rezultă inaplicabilitatea acestor ecuații la stratul de catalizator de reformare, format din particule de o formă specială și cu un raport D/d mic, cît și inconsecvența unora din ele.

8.4. Plecînd de la ecuația bilanțului cantității de mișcare se stabilește o nouă ecuație ai cărei coeficienți se identifică cu ajutorul datelor proprii. Eroarea relativă maximă a ecuației stabilită depășește doar în două puncte 10% și este valabilă pentru oricare valosre a lui Re, la straturi formate din particule ale căror caracteristici sînt prezentate în tabelul 57.

Notații și indici

_

Capitolul 2

[]g	fază gazoasă
[K] ₈	catalizator solid
A''	component inert
L	numărul de ecuații stoichiometrice independente
N	numărul de componente active
R	rangul matricei atomilor
Aa	matricea atomilor
A _R	matricea reacției j
	matricea transpusă a reacției j
$\gamma_{CH_4}^{J}\gamma_{CO}$	grade de transformare, definite prin relațiile (13) și (14)
$\mathcal{L} = \gamma_{CH_{\mu}}$	gradul de transformare a metanului
/3 ⁴	grad de transformare definit prin produsul $\gamma_{ ext{CH}_{\mu}}\gamma_{ ext{CO}}$
n ^{oj} i	număr de moli inițiali de component i în reacția j
nj	moli de component i rezultați din reacția j
°T.	număr total de moli la un moment dat
n_{T}^{O}	număr total de moli la intrarea în reactor
n ⁰ i	număr de moli de component i la intrarea în reactor
ni	număr de moli de component i la un moment dat
x ^o i	fracția molară inițială a componentului i
x i	fracția molară a componentului i la un moment dat
x ^o i	raportul molar (<u>no</u>) inițial al componentului i ⁿ CH ₄
x ^o i	fracția molară inițială a componentului i, raportată la gazul uscat

x _i	fracția molară la un moment dat a componentului i, raportată la gazul uscat
$A = 1 + \mathbf{x}_{0}^{\bullet}$	$x_{H_0}^{\bullet} + x_{H_0}^{\bullet} + x_{A''}^{\bullet}$ (în tabelele 9 și 11)
У	raportul molar n _{H_} /n _{CO}
j	numărul de atomi de carbon din hidrocarburi
n <mark>om</mark> i	debite molare fictive inițiale, de component 1, defi- nite prin relațiile (38)-(41) sau (42)-(45)
P	presiunea totală în reactor
Capitolul	<u>,</u> 3
$\Delta_{\rm R}$, ${}^{\rm H^{0}_{298}}$	efectele termice standard ale reacțiilor R _j
Δн	căldura masei de reacție inițiale
ΔH _{ext}	căldura schimbată de proces cu mediul exterior
Δн	căldura masei de reacție la ieșirea din reactor
∆ H _R	efectul termic global al proceselor de transformare
ΔH _D	pierderi de căldură
C _D	capacitatea calorică molară a componentului i
	temperatura masei de reacție la intrarea în reactor
T	temperatura masei de reacție la un moment dat
∆н _с	cons umul specific de căldură, d efinit prin relația (57)
ΔH	căldura cedată în procesul de ardere
Tol	temperatura combustibilului la intrarea în arzător
T _{o2}	temperatura comburantului la intrarea în arzător
X,Y,Z	mărimi definite prin relațiile (62), (66) și (64)
	coeficientul de exces de aer
Ta	temperatura gazelor de ardere la ieșirea din cuptor
A ₀ ,B ₀ ,C ₀ ,	o constante definite prin relațiile (74)
X',Y',Z'	mărimi definite prin relațiile (73),(78) și (75)
A', B', C'	constante definite prin relațiile (76)
A", B", C",	D" constante definite prin relațiile (97)
Capitolul	4
G, Λ, μ _i , β	n _i , n _j märimi definite în text

K_{p2}, K_{p3}, K_{p4} constante de echilibru variația entalpiei libere în reacția R_i $\Delta_{\mathbf{R}_{\mathbf{J}}}^{\mathbf{G}_{\mathbf{T}}^{\mathbf{O}}}$ Capitolul 5 x media aritmetică a mărimii x 5 dispersia abaterea mediei pătratică 8 (v_{gm}^{o}) debitul de gaz metan de combustie Capitolul 6 transferul metanului (vapori de apă) prin - ^TCH₄(H₂0) []^B faza gazoasă $-T_{CH_4}(H_2^0)$ transferul metanului (vapori de apă) prin porii catalizatorului -ADS ----adsorbția reactanților pe suprafața catalizatorului --- R -----> reactile chimice (2) și (3) - DES ---desorbția produșilor de reacție $\begin{array}{c} - {}^{T}cga \longrightarrow \\ - {}^{T}cp \longrightarrow \\ - {}^{T}cg \longrightarrow \end{array}$ procese termice componente definite în text - T_{cc} - 0_c -^qCH₄ viteza de transfer a metanului prin faza gazoasă k mg coeficient de transfer de masă prin faza gazoasă p_{CH}, p_{CH}, presiunea parțială în volum și la echilibru Sh criteriul Sherwood Sc criteriul Schmidt Re criteriul Reynolds Di coeficientul de difuzie al componentului i ₩₀ viteza fictivă a fazei gazoase ſ densitatea fazei gazoase \mathbf{J}^{D} criteriul de difuzie, definit prin relația (119)
a _s	suprafața specifică a stratului de catalizator
Da	numărul lui Damköhler, definit prin relația (121)
k	constanta vitezei de reacție
r ef	viteza procesului global transformare-transfer prin pori
r	viteza de reacție
4	gradul de utilizare a suprafeței interne a catalizatorului
C ^V	concentrația în volumul fazei gazoase
φ'	modulul lui Thiele modificat
v _p .	volumul unei particule
Sex	suprafața exterioară a unei particule
D _{ef}	coeficientul efectiv de difuzie
D.k	coeficientul de difuzie Knudsen
$\bar{\mathtt{q}}_{\mathrm{T}}$	viteza de transfer de căldură
k _T	coeficient general de transfer de căldură
^k Tga	coeficient de transfer de căldură prin gazele de ardere
^k Tp	coeficient de transfer de căldură prin peretele reacto- rului
λ _p	conductivitatea termică a peretelui
б	grosimea peretelui
^k Tg	coeficient de transfer de căldură prin faza gazoasă (la perete)
k _{Tc}	coeficient de transfer de căldură prin particulele de catalizator
λc	conductivitatea termică a catalizatorului
đ	diametrul nominal al particulei de catalizator
\bar{q}_{c}	viteza procesului de consum de căldură
F1,2	constanta în relația (128)
т _р	temperatura peretelui reactorului
T	temperatura gazelor de ardere în cuptor
ៜ	suprafața exterioară a reactorului
Λ ef	conductivitatea termicá efectivă a stratului
Λe	conductivitatea echivalentă a stratului de catelizator

164

	•
к _т	coeficientul global de transfer de căldură de la peretele reactorului la suprafața de reacție
L	lungimea totală a stratului de catalizator
D	diametrul stratului de catalizator
Pr	criteriul Prandtl
Nu _D , Nu _d	criteriul Nusseld
λ	conductivitatea echivalentă "stagnantă"
ß	coeficient empiric în ecuația (131)
3	porozitatea stratului
Ý	coeficient empiric în relația (133)
Nud	criteriul Nusseld definit prin k_{Tg} . d / \bar{h}
λ _{ef}	conductivitatea efectivă stagnantă a stratului
λ	conductivitatea fazei gazoase
C,C'	coeficienți în relația (134)
Capitolul	7
dz	element din lungimea reactorului
0 0	capacitatea calorică molară medie a fazei gazoase
n m	exponentul criteriului Re în ecuația (147)
Capitolul	8
λ	conductivitatea termică medie a fazei gazoase
л.	viscozitatea medie a fazei gazoase
Mi	masa molară a componentului i
×i	fracția molară a componentului i
λi	conductivitatea termică a componentului i
м1	viscozitatea componentului i
° _i	constante în relația (160)
۸ io Mio	conductivitatea și vîscozitatea componentului i la temperatura T _o
Capitolul	9
n	exponent în ecuația (163)
к ₁ , к ₂	coeficienți ai ecuației (196)

BIBLIOGRAFIE

,

- 1. Ceauşescu, N. -"Raport la cel de al XII-lea Congres al Partidului Comunist Român", Editura politică, București, 1979, p.26.
- 2. x x x "Programul directivă de cercetare științifică, dezvoltare tehnologică și de introducere a progresului tehnic pe perioada 1981-1990 și direcțiile principale pînă în anul 2000", Editura politică, București, 1979, p.17.

3. Caranfil, Gh. - Rev.chim., 1980, vol.31, 7, p.627.

4. Florescu, M. - Rev.chim., 1980, vol.31, 1, p.5.

5. Părăuşanu, V., Corobea, M., Muscă, G. - "Economia hidrocarburilor", Editura șt.și enciclop., București, 1980, p.89.

6. x x x - Rev. chim., 1980, vol.31, 1, p.102.

7. Corobea, M. - Rev.chim., 1980, vol.31, 5, p.417.

8. Ozmen, S., Leprince, P. - Rev. Inst. franç. Pétrole, 1976, vol.31, 5, p.877.

9. Goidea, D. - "Energia în următoarele trei decenii", Edit. Acad.R.S.R., București, 1979, p.210.

10. Trandafirescu, Gh., Corobea, M. - Rev.chim., 1980, vol.31, 4, p.329.

- 11. Twist, D.,R., Sagar, K.,J. The Chemical Engineer, 1965, 10, p. CE 252.
- 12. Kostrup-Nielsen, J., R., Weisberg, J. Inst. Chem. Eng. Symp. Sr., 1976, vol.44, 5, p.53.

BUPT

13. Sugitani, T. și colab. - I.H.I. Engineering Review, 1976, vol.9, 4, p.29. - Rev.chim., 1980, vol.31, 3, p.309. 14. XXX 15. Corina, U. - "Tehnologia amoniacului", Editura tehnică, Bucuresti, 1960. 16. Molodovan, I., Chivu, Gh. - "Tehnologia îngrășămintelor minerale", vol.2, Editura tehnică, București, 1964. 17. Tonca, E., Matasa, C. - "Tehnologia modernă a azotului legat", Editura tehnică, București, 1965. 18. Iovi, A. - "Tehnologia amoniacului", Timişoara, 1972. 19. Blasiak, E. - "Tehnologia zwiazkow azotowych ', vol.1, P.W.T., Warszawa, 1955. 20. Vancini, C., A. - "La sintesi dell'Ammoniaca", Hoepli, Milano, 1961. 21. Atroschenko, V., I. și colab. - "Kurs tehnologhii sviazanovo azota", Izd. Khim., Moskva, 1968. 22. XXX - "Spravocinik azotcika", tom 1, Izd.Khim., Moskva, 1967. 23. Leibuş, A., G. și colab. - "Proizvodstvo tehnologhiceskovo gaza", Izd.Khim., Moskva, 1972. 24. Pismen, M., K. - "Proizvodstvo vodoroda", Izd.Khim., Moskva, 1976. 25. Slack, A., V., Russell James, G. - "Ammonia", part 1, M.Dekker, New York, 1973. 26. Honti, G., D. - "The Nitrogen Industry", Vol.1, Akad.Kiado, Budapest, 1976. 27. Byrne, Jr., P., J., Gohr, R., J., Haslam, R., T. - Ind. Eng. Chem., 1932, vol.24, p.11**29**.

- 28. Reitmeier, R., E., Atwood, K., Bennett, Jr., H., A., Baugh, H.M. Ind.Eng.Chem., 1948, vol.40, p.620. 29. Rossini, F., D. și colab. - "Selected Values or Physical and Thermodynamic Properties of Hydrocarbons and Related Compounds", Carnegie Press, Pittsburgh, 1953. 30. Gilliland, E., R., Harriott, P. - Ind.Eng.Chem., 1954, vol.46, p.2195. - Gas World, 1965, 161, p.275. 31. Dent, F.,J. 32. Mayland, B., J., Hays, G., E. - Chem. Eng. Progr., 1949, vol.45, p.452. 33. Somer, T., G. - Brit. Chem. Eng., 1963, vol.8, 7, p.466. 34. Holland, D., R., Wan, S., W. - Chem. Eng. Progr., 1963, vol.59, 8, p.69. 35. Lihou, D., A. - Chem. Process Eng., 1965, vol.46, 9, p.487. 36. Leibus, A., G. - Khim. Prom., 1960, 3, p.213. 37. Quibel, J. - Chem. Process Eng., 1969, 6, p.83. 38. Morse, P.,L. - Hydrocarbon Processing, 1973, 1, p.113. 39. Reitmeier, R.E., Huber, P,, E. - U.S.Pat., 3.001.952, 1961. 40. Arnold, M., R. - U.S. Pat., 3.256.207, 1966.
- 41. Bridger, G., W., Chinchez, G., C. "Catalyst Handbook", Springer Verlag, New York, 1970.
- 42. Morita, S., Inoue, T. Internat.Chem.Eng., 1965, vol.5, p.180.
- 43. Arnold, M., R., Atwood, K., Baugh, H., M., Smyser, H., D. -Ind.Eng.Chem., 1952, vol.44, p.999.
- 44. Leibuş, A.,G., Liudkovskaia, M. Trudy GIAP, 1953, vol.11, 2, p.62.

45. Akers, W., W., Camp, D., P. - Amer. Inst. Chem. Engineers J., 1955, vol.1, 4, p.471. 46. Leibus, A., G., Sorina, E., D. - Khim. Prom., 1962, vol.38, 3, p.159. 47. Bodrov, I., M., Apelbaum, L., O., Temkin, M., I. - Kinetika i Kataliz, 1964, vol.5, 4, p.696. 48. Bodrøv, I., M., Apelbaum, L., O., Temkin, M., I. - Kinetika i Kataliz, 1967, vol.8, 4, p.821. 49. Atroschenko, V., I., Raman, S., K., Zviaghintev, G., L. - Zhur. priklad.khim., 1969, vol.42, 7, p.1496. 50. Atroschenko, V., I., Zviaghintev, G., L. - Khim. Prom., 1970, vol.46, 1, p.36. 51. Khomenko, A., A., Apelbaum, L., O., Shub, F., G., Snagovski, I.,S., Temkin, M.,I. - Kinetika i Kataliz, 1971, vol.12, 2, p.423. 52. Moe, J., M., Gerhard, E., R. - Reprint 36.d., 56th National Meeting of Amer. Inst. Chem. Engineers, May 1965. 53. allen, D., W., Gerhard, E., R., Likins, M., R. - Brit. Chem. Eng. and Process Technol., 1972, vol.17, 7/8, p.605. 54. Allen, D., W., Gerhard, E., R., Likins, M., R. - Ind. Eng. Chem. Process Des.Develop., 1975, vol.14, 3, p.256. 55. Golebiowski, A., Wasala, T., - Przemysl.Chem., 1972, vol.14, 3, p.256. 56. Golebiowski, A., Stolecki, K. - Chem. Techn., 1977, vol.29, 8, p.454. 57. Golebiowski, A., Stolecki, K. - Bodanie laboratoryjne kinetyki Konwersyi metanu z para wodna, W.S.

Pulawy, 1974. 58. Radle, K. - Chem. Ing. Techn., 1978, vol. 50, 9, p.689. 59. Davies, J., Lihou, D., A. - Chem. Process Eng., 1971, 4, p.71. 60. Hyman, M., H. - Hydrocarbon Processing, 1968, vol.47, 7, p.131. 61. Grover, S., S. - Chimie et Industrie, Génie Chim., 1970, vol.103, 1, p.93. 62. Bridger, G., W. - Chem. Process Eng., 1972, 1, p.38. 63. XXX - Nitrogen, 1965, 36, p.29. 64. Atroschenko, V., I., Zviaghintsev, G., L., Serovski, L., A. -Khim.Prom., 1972, 11, p.853. 65. Burghardt, A. și colab. - Inzyneria Chemiczna, 1977, vol.7, 2, p.303. 66. Burghardt, A. și colab. - Inzyneria Chemiczna, 1978, vol.7, 3, p.529. 67. Burghardt, A. și colab. - Inzyneria Chemiczna, 1978, vol.8, 1, p.39. 68. Zscherpe, J. - Chem.Tech., 1971, vol.23, 4/5, p.203. 69. Bhatta, K.,S.,M. - Trans.Faraday Soc., 1963, vol.9, p.2217. 70. Pohl, K., Martens, G. - Erdöl u. Kohle, 1963, 16, p.367. 71. Wagener, D., Wunderlich, E., - Kohlen wasserstoffgase, 1966, 1, p.86. 72. Ross, J., R., Steel, M., C., F. - J. Chem. Soc. Faraday Trans, Part 1, 1973, vol.69, 1, p.10. 73. Baron, G., Hiller, H. - Erdöl u. Kohle, 1967, vol.20, 3, p.196. 74. Leibus, A., G., Agranat, B., D. - Khim. Prom., 1964, 3, p.187. 75. Leibus, A.,G., Agranat, B.,D. - Khim.Prom., 1964, 11,p.817. 76. Leibus, A.,G., Sorina, E.,D., Agranat, B.,D. - Khim.Prom., 1965, 7, p.500.

77. Spolianski, M., A., Leibuş, A., G. - Trudy GIAP, 1956, 5, p.126. 78. Grisko, S., P., Karapetiant, M., H. - Khim. Prom., 1967, 4, p.286. 79. Grisko, S.P., Karapetiant, M.,H. - Khim.Prom., 1966, vol.42, 11, p.827. 80. Topor, L., Moldovanu, J., Ivana, E. - Rev.chim., 1978, vol.29, 9, p.825. 81. Calistru, C., Leonte, C. - Ind.Chim.Belge, Compte Rendu du XXXVI-e Congres International de Chimie Industrielle, 1967, T-32, p.756. 82. Calistru, C., Siminiceanu, I., Hagiu, C., Pebrila, C. - Rev. chim., 1973, 11, p.880. 83. Calistru, C., Siminiceanu, I., Hagiu, C, Petrila, C., - Rev. chim., 1975, 12, p.1003. 84. Siminiceanu, I., Calistru, C. - Rev.chim., 1979, 1, p.45. 85. Siminiceanu, I., Calistru, C., Petrila, C..- Rev.chim., 1979, 8, p.759. 86. Siminiceanu, I., Calistru, C. - Rev.chim., 1980, 1, p.50. 87. Siminiceanu, I., Calistru, C., Pop, Al. - Hung.Journal of Industrial Chemistry, 1979, vol.7, p.279. 88. Siminiceanu, I., Calistru, C. - "Modelarea reactoarelor catalitice din instalațiile de obținere a amoniacului", în volum sesiunii șt. "Modelarea, Simularea, identificarea și optimizarea proceselor tehnologice", Galați, 1978, p.50. 89. Siminiceanu, I., Calistru, C. - Bul.Inst.Politeh.Iași, 1981, sub tipar. 90. Siminiceanu, I., Calistru, C. - Memoriile secțiilor științifice tom II, Ed.Acad.RSR, București, 1980 (sub tipar).

170

- 91. Siminiceanu, I., Calistru, C. "Cercetarea transferului de căldură din reactorul catalitic de transformare a metanului cu vapori de apă", în volum "Simpozion de ingineria proceselor chimice", Piatra Neamţ, 1978.
- 92. Siminiceanu, I., Calistru, C. -"Optimizarea procesului global de reformare primară a metanului pe baza unui model de bilanţ termic", în volum "Simpozion de ingineria proceselor chimice", Piatra Neamţ, 1978.
- 93. Calistru, C., Leonte, C., Hagiu, C., Siminiceanu, I. "Tehnologia îngrășămintelor minerale", vol.l, Iași, 1979.
- 94. Calistru, C., Leonte, C., Siminiceanu, I. Rev.chim., 1980, 9 (sub tipar).
- 95. Siminiceanu, I., Calistru, C., Pop, Al. Studia Univ.Babeş-Bolyai - Chem., 1980, vol.25, l, p.51.
- 96. Siminiceanu, I., Calistru, C. "Determinarea consumurilor specifice minime de gaz metan în procesul de reformare" comunicată la "Congresul Național de Chimie", București, 1978, secția 3 (Petrochimie).
- 97. Calistru, C., Siminiceanu, I. "Eficiența utilizării drept combustibil a gazelor de purjă din instalațiile de amoniac" comunicată la "Simpozion tehnico-științific IITPIC - Sibiu, 1979.
- 98. Siminiceanu, I., Calistru, C. "Proiectarea optimă, la calculator, a reactoarelor de obținere a gazului brut pentru sinteza amoniacului", comunicată la "Simpozionul tehnico-știin-

țific"IITPIC - Sibiu, 1979.

- 99. Siminiceanu, I., Calistru, C. "Modeling of the Methane Steam Reformer", "IV th. International Conference on Heterogeneous Catalysis", Golden Sands, Warna, October, 1979.
- 100. Siminiceanu, I., Calistru, C. Bul.Inst.Politeh.Iași, 1981, sub tipar.
- 101. Calistru, C. și colab. "Optimizarea proceselor din liniile de amoniac, acid sulfuric și acid fosforic"; Contract 364-I, 1976, ICECHIM, București.
- 102. Calistru, C. și colab. "Analiza funcționării instalațiilor de amoniac, acid sulfuric și acid fosforic de la C.I.C. Tr. Măgurele"; Contract 1973, CIICh București.
- 103. Calistru, C. și colab. Contract No. 24060 (I.P. Iași), 1976, CCIC Craiova.
- 104. Calistru, C. și colab. "Cercetări privind aducerea la parametrii proiectați și perfecționări de procese și tehnologii la CIICh Craiova"; Contract No. 9251, 1980, CCIC Craiova.
- 105. Calistru, C., Leonte, C. "Tehnologia substanțelor anorganice", Editura didactică și pedag., București, 1972.
- 106. Henley, E., J., Rosen, E., M. "Material and Energy Balance Computations", John Wiley, New York, 1969.
- 107. Siminiceanu, I., Pop, Al. Studia Univ. Babeş-Bolyai, Chem., 1979, vol.24, 2, p.28.

108. Max, Klein - "Practical Treatment of Couplet Gas Equillibrium", "Physical Chemistry", vol.1, Acad. Press, New York, 1971, p.489. 109. White, W., B., Johnson, S., M., Dantzig, G., B. - J. Chem. Phys., 1958, vol.28, p.752. 110. Oliver, R., C., Stephanou, S., E., Baier, R., W. - Chem. Eng., 1962, vol.68, p.121. 111. Marek, J., Holub, R. - Coll.Czech.Chem.Comm., 1964, vol.29, p.1085. 112. Zeleznik, F., J., Gordon, S. - Ind.Eng.Chem., 1968, vol.60, p.27. 113. Kehat, E., Bacham, M. - Process Tech.Int., 1973, vol.18, 4/5, p.181. 114. Davidenko, D. - Ukrain.Mat., 1953, 5, p.196. 115. Orbach, O., Crowe, C., M. - Canad. J. Chem. Eng., 1971, vol. 49, p.509. 116. Beveridge, G., G., Schechter, R., S. - "Optimization: Theory and Practice", McGrow Hill, New York, 1970. 117. Satterfield, C., N., Sherwood, T., K. - "The Influence of the Diffussion in Catalysis", Addision-Wesley, G Cambridge, 1963. 118. Chilton, T., H., Colburn, A., P. - Ind.Eng.Chem., 1934, vol.26, p.1183. 119. DeAcetis, Thodos, G. - Ind.Eng.Chem., 1960, vol.52, p.1003. 120. Dwivedi, P., N., Upadyay, S., N. - Ind.Eng.Chem., Process Des. Develop., 1977, vol.16, 2, p.157. 121. Damköhler, G. - Chem.Ing.Tech., 1937, 3, p.430. 122. Carra, S. - Chimica e Industria, 1973, vol.54, 5, p.434. 123. Ruthven, D., M. - Chem.Eng.Sci., 1968, vol.23, p.759. 124. Huang, H., J., Sather, M., F. - Chem. Eng. Sci., 1970, vol. 25,

2.	D .	340	•
----	------------	-----	---

125. Thiele, E., W. - Ind.Eng.Chem., 1939, vol.31, p.316. 126. Aris, R. - Chem.Eng.Sci., 1957, 6, p.262. 127. Wakao, N., Kato, K. - J.Chem.Eng.Japan, 1969, 2, p.24. 128. Wheller, A. - Adv.Catalysis, 1951, 3, p.3. 129. Mc.Adams, W., N. - "Heat Transmition", McGrow Hill, New York, 1954. 130. Bratu, Em., A. - "Operații și utilaje în industria chimică", vol.2, Editura tehnică, București, 1970. 131. Bird, R., B., Stewart, W., E., Lightfoot, E., N. - "Transport Phenomena", Wiley, New York, 1964. 132. Davidson, J., E., Harrison, D. - "Fluidization", Acad. Press, London, 1971, 133. Eckert, E., R., G., Drake, R., M., Jr. - "Analysis of Heat and Mass Transfer", McGrow Hill, New York, 1972. 134. Golebiowski, A., Wasala, T. - Przemysl.Chem., 1972, vol.52, 9, p.577. 135. Hanratty, T., J. - Chem.Eng.Sci., 1954, 3, p.309. 136. Leva, M. - Ind.Eng.Chem., 1947, vol.39, 7, p.857. 137. Leva, M. - Ind.Eng.Chem., 1950, vol.42, p.2498. 138. Ciborowski, J., Leskiewicz, L. - Przemysl.Chem., 1951, vol.30, p.621. 139. Chu, Y., C., Storrow, J., A. - Chem. Eng. Sci., 1952, vol.1, p.230. 140. Batischev, J., F. - Trudy Mosk.Polit.In-ta, 1957, vol.33, p.45. 141. Chennachesavan, B. - Amer. Inst. Chem. Engineers J., 1960, 6, p.246.

142. Gelperin, I., I., Kagan, A., M. - Khim. Prom., 1963, vol.39, p.132. 143. Gelperin, I.I., Kagan, A., M. - Khim. Prom., 1963, vol.39, p.11. 144. De Wash, A., P., Froment, G., F. - Chem.Eng.Sci., 1972, vol.27, 3, p.567. 145. Gelperin, I., I., Kagan, A., M. - Internat. Chem. Eng., 1966, vol.6, 1, p.99. 146. Leya, M., Weintraub, M., Grummer, M., Clark, E., L. - Ind. Eng.Chem., 1948, vol.40, p.747. 147. Kling, G. - Chem.Ing.Tech., 1959, vol.31, 10, p.910. 148. Maeda, 8. - Chem.Eng.Japan, 1950, vol.14, p.110. 149. Maeda, S. - Chem.Eng.Japan, 1951, vol.15, p.5. 150. Schlünder, E., U. - Chem. Ing. Tech., 1966, vol. 38, p.967. 151. Schlünder, E., U. - Chem. Ing. Tech., 1966, vol. 38, p.1161. 152. Uldrich, W., E., Potter, O., E. - Chem.Eng.Sci., 1972, vol.27, p.1723. 153. Oldrich, W.,E., Potter, O.,E. - Chem.Eng.Sci., 1972, vol.27, p.1733. 154. Schumacher, R. - Chem. Ing. Tech., 1960, voi.32, 9, p.94. 155. Ganapathy, V. - Hydrocarbon Processing, 1977, 11, p.303. 156. Leva, M., Grummer, M. - Ind.Eng.Chem., 1948, vol.40, p.415. 157. Coberly, C., A., Marshall, W., R., Jr. - Chem. Eng. Progr., 1951, vol.47, p.141. 158. Molino, D., F., Hougen, J., O. - Chem. Eng. Progr., 1952, vol.48, p.147. 159. Schertz, C., E., Smith, J., M. - Ind. Eng. Chem., 1953, vol.45, p.1209. 160. Verchoor, H., Schuit, G., C., A. - Appl.Sci.Res., A 2, 1957, **P**•97•

161. Calderbank, P., H., Pogorski, I., A. - Trans. Inst. Chem. Engineers, 1957, vol.35, p.195. 162. Froment, G., F. - Ind.Eng.Chem., 1968, vol.59, 2, p.18. 163. Beek, I. - "Design of Paked Catalytic Reactors", Adv.in Chem.Eng., New York, vol.3, 1962. 164. Crider, I., E., Foss, A., G. - Amer. Inst. Chem. Engineers J., 1965,11, p.1012. 165. Plautz, D., A., Johnstone, H., F. - Amer. Inst. Chem. Engineers J., 1955, 1, p.193. 166. Yagi, S., Kunii, D., Shimomura, Y. - Chem.Eng.(Japan), 1957, vol.21, p.342. 167. Yagi, S., Wakao, N. - Amer.Inst.Chem.Engincers J., 1959, vol.5, p.79. 168. Yagi, S., Kunii, D. - Amer.Inst.Chem.Engineers J., 1960, vol.6, p.97. 169. Yagi, S., Kunii, D. - Amer.Inst.Chem.Engineers J., 1957, vol.3, p.373. 170. Agnew, J., B., Potter, O., E. - Trans. Inst. Chem. Engineers, 1970, vol.40, p. T 15. 171. Argo, W., B., Smith, J., M. - Chem.Eng.Progr., 1953, vol.49, p.443. 172. Balakrishnan, A., R., Pei, D., C., T. - Ind. Eng. Chem. Process Des.Develop., 1974, vol.13, 4, p.441. 173. Bernard, R., A., Wilhelm, R., H. - Chem. Eng. Progr., 1950, vol.46, p.233. 174. Bhattacharya, D., Pei, D., C., T. - Chem. Eng. Sci., 1974, vol.29, p.302. 175. Bischoff, K., B. - Ind. Eng. Chem., 1967, vol. 58, 11, p.18. 176. Bischoff, K., B. - Canad. J. Chem. Eng., 1962, vol. 40, p. 161. 177. Bradshaw, A., V., Johnson, A., Mc.Lechlan, N., H., Chiu, Y., T.-

Trans.Inst.Chem.Engineers, 1970, vol.48, p. T 77. 178. Bretshnaider, S., Ziolkowski, D. - Internat.Chem.Eng., 1966, 6, p.85. 179. Bunnel, D., G., Irvin, H., B., Alsen, R., W., Smith, J., M. -Ind.Eng.Chem., 1949, vol.41, p.1977. 180. Campbell, J., M., Hutington, R., L. - Petrol.Raf., 1951, vol.30, p.127. 181. Campbell, J., M., Hutington, R., L. - Petrol.Raf., 1952, vol.31, p.123. 182. Deans, H., A., Lapidus, L. - Amer.Inst.Chem.Engineers J., 1960, 6, p.656. 183. Fahien, R., W., Smith, J., M. - Amer. Inst. Chem. Engineers J., 1955, 1, p.28. 184. Gallaway, T., R., Sage, B., H. - Chem. Eng. Sci., 1970, vol. 25, p.495. 185. Kuchanov, S., I., Levich, V., G., Pismen, L., M. - Internat. Chem.Eng., 1968, vol.8, 1, p.162. 186. Kunii, D., Smith, J., M. - Amer. Inst. Chem. Engineers J., 1960, 6, p.71. 187. Kwong, S., G., Smith, J., M. - Ind. Eng. Chem., 1957, vol.49, 5, p.894. 188. Kyung, Y., K., Chun, K., L. - Internat. Chem. Eng., 1967, vol.7, 3, p.40. 189. Levenspiel, U., Bischoff, K., B. - Adv. Chem. Eng. Sci., 1963, 4, p.95. 190. Lindauer, G., C. - Amer. Inst. Chem. Engineers J., 1967, vol.13, p.1181. 191. Marivoet, J., Teodoroiu, P., Waye, S., J. - Chem.Eng.Sci., 1974, vol.29, p.1036.

192. Mc.Guire, M., L., Lapidus, L. - Amer.Inst.Chem.Engineers J., 1965, 11, p.85. 193. Molino, D.,F., Hougen, J., 0. - Chem.Eng. Progr., 1952, vol.48, p.147. 194. Schertz, W., Bischoff, K. - Amer.Inst.Chem.Engineers J., 1969, vol.15, p.597. 195. Singer, E., Wilhelm, R., H. - Chem.Eng.Progr., 1950, vol.46, p.343. 196. Turner, G., A. - Amer. Inst. Chem. Engineers J., 1967, vol.13, 4, p.678. 197. Wakao, N., Kato, K. - J.Chem.Eng.Japan, 1969, 2, p.24. 198. Wakao, N., Kato, K., Furuya, N. - Internat. .Heat.Mass Transfer, 1969, vol.12, p.118. 199. Yagi, S., Kunii, D., Wakao, N. - Amer.Inst.Chem.Engineers J., 1960, 6, p.543. 200. Eckert, E., R., G., Goldstein, R., J. - "Measurement Techniques in Heat Transfer", Tech.Serv.Slough., England, 1970. 201. Vezeanu, P., Pătrașcu, St. - "Măsurarea temperaturii în tehnică", Editura tehnică, București, 1968. 202. XXX - "Manualul inginerului chimist", vol.2, Editura tehnică, București, 1952. 203. Andrussow, L., Schram, B. - "Landolt-Börnstein Eigenshaften der Materie in Ihren Aggregazüständen", 5 teil, (Transport Phönomene I), Berlin, 1969, p.7. 204. Bretsneider, S. - "Svoistva gazov i jidkostei", Izd.Khim., Moskva, 1966.

- 205. Reid, R.,C., Sherwood, T.,K. "The Properties of Gases and Liquids", Mc.Graw Hill, New York, 1966.
- 206. x x x "Perrys Chemical Engineers Handbook", McGraw Hill, New York, 1967.
- 207. Rase, H.,F. "Chemical Reactor Design for Process Plants", vol.1, 2, J.Wiley, New York, 1977.
- 208. Dutkai, E.,P. "Coloane cu umplutură în tehnologia chimică", Editura tehnică, București, 1977.
- 209. Rose, H., E. Proc. Inst. Mech. Eng., 1945, 153, p.154.
- 210. Bratu, Em., A. "Operații și utilaje în industria chimică", vol.l, Editura tehnică, București, 1969.
- 211. Brownell, L.,E., Katz, D.,L. Chem.Eng.Progr., 1947, vol.43, p.537.
- 212. Brown, G.,G. și colab. "Unit Operations", Wiley, New York, 1950.

213. Leva, M., Weintraub, N., M., Grummer, M., Pollchik, M., Storch, H., H. - U.S.Bur.Mines Bull., 1951, p.504.

214. Leva, M. - "Fluidization", McGrow Hill, New York, 1959, p.42.

215. Ergun, S. - Anal.Chem., 1951, vol.23, p.151.

216. Ergun, S. - Anal.Chem., 1952, vol.24, p.388.

- 217. Ergun, S. Chem.Eng.Progr., 1952, vol.48, p.89, 227.
- 218. Tudose, R.,Z. și colab. "Procese, operații și utilaje în industria chimică", Editura didactică și pedag., București, 1977.
- 219. Reiss, L., P. Ind.Eng.Chem. Process Design Develop., 1967, vol.6, 4, p.486.
- 220. Grange, A., Reymur, J., P., Defives, D., Raimbault, C. -Chem.Eng.Sci., 1971, vol.26, 3, p.339.

221. Hicks, R., E. - Ind. Eng. Chem. Fundam., 1970, vol.9,3,p.500.

- 222. Gelperin, I., I., Kogan, A., M., Krinitsyna, G., I. Khim. Prom., 1977, 2, p.147.
 223. Wagstaff, J., B., Nirmaier, E., A. - Ind.Eng.Chem., 1955, vol.47, 6, p.1129.
 224. Brauer, H. - Chem.Ing.Tech., 1957, vol.29, p.785.
- 225. Mehta, H., Hawley, M., C. Ind. Eng. Chem. Process Des. Develop., 1967, vol.6, 4, p.486.
- 226. Kondelik, P., Horak, J., Tesarova, J. Ind.Eng.Chem.Process Des.Develop., 1968, vol.7, 2, p.251.
- 227. England, R., Gunn, D., J. Trans. Inst. Chem. Engineers, 1970, vol.48, p. T 265.
- 228. Carman, P.,C. Trans.Inst.Chem.Engineers, 1937, vol.15, p.150.
- 229. Jinescu, V.,V. "Aparate tip coloană", Editura tehnică, București, 1978.
- 230. Calistru, C. și colab. "Ingineria proceselor chimice", Partea I, C.D.I.C.P., București, 1970, p.42.
- 231. Cîrloganu, C, "Ingineria reactoarelor chimice", Editura tehnică, București, 1980.
- 232. Glück, A. "Metode matematice în industria chimică", Editura tehnică, București, 1971, p.15.

233. Hagiu, Carolina - Teză de doctorat, Iași, 1980.

ANE XE

•

;

Ane xa	1	(Oap.3)	cuprinde	tabe le le	17–23
Ane xa	2	(Cap.3)	ouprinde	tabe le le	24-41
Ane xa	3	(Cap.3)	cuprinde	tabe le le	42-46
Ane ma	4	(Cap.8)	cuprinde	tabe le le	64-75
Ane ma	5	(Cap.9)	cuprinde	tabe le le	80-87

.

-

Ane ma 1.

Tabelul 17. Gradele de transformare α , β și γ_{∞} la P=1 atm.

in the second se	TO	K 800	900	1000	1100	1200	1300
	æ	-	0,5222	0,7911	0,9254	0,9722	0,9884
1	ß	c p	0,1534	0,0610	0,0175	0,0052	0,0018
)	<i><i><i></i></i></i>	-	0,2936	0,0770	0,0189	0,0053	0,0019
	L	-	0,7330	0,9577	0,9959	-	
2	ß	•	0,3296	0,2481	0,1932	-	
	γ_{co}	¢u	0,4495	0,2593	0,1944		
	5	**	0,8516	0,9855	0,9987	~	
3	ß		0,4688	0,3935	0,3228		
	γ_{co}	-	0,5510	0,3992	0,3235	-	-
	<u>ل</u>	۹.	0,9173	0,9936	-	-	-
4	ß	-	0,5729	0,4950	(11)	-	
	<i>Nco</i>	d ia	0,6251	0,4977	-		
	6	0,6910	0,9527	0,9967	-	-	
5	ß	0,5871	0,6489	0,5683	-	-	
	Nco	0,8497	0,6818	0,5697	-	ţ	-
	6	0,7548	0,9719	0,9981	-		-
6	<u>/</u> 3	0,6522	0,7043	0,6233	*	-	-
	Nco	0,8640	0,7246	0,6244	~	-	-
	6	0,6489	0,9887	-	-	10	*
8	ß	0,7527	0,7770	-	-	-	-
	710	0,8867	0,7867		-		
	<u>~</u>	0,9083	0,9947	~		-	
10	<u>/</u> 3	0,8211	0,8214	en	•		
	<u> 2co</u>	0,9043	0,8273	-	-	-	

i° H ₂ 0	TOX	800	900	1000	1100	1200	1300
	£	0,1116	0,2177	0,3939	0,6155	0,7965	0,8995
1	ß	0,0983	0,1396	0,1309	0,0800	0,0365	0,0151
	Nco	0,8808	0,6442	0,3323	0,1297	0,0458	0,0167
	۶ ۲	-	0,3289	0,5663	0,8213	0,9577	0,9917
2	ß		0,2371	0,3564	032095	0,1611	0,1318
	Nco		0,7209	0,4558	0,2549	0,1682	0,1329
	Ъ	-	0,4207	0,6882	0,9106	0,9844	-
3	ß	-	0,3193	0,3612	0,3218	0,2697	-
	Nco		0,7589	0,5248	0,3534	0,2739	-
	λ	-	0,4998	0,7772	0,9521	0,9926	-
4	ß	-	0,3917	0,4493	0,4117	0,3542	-
	Nco	-	0,7836	0,5781	0,4324	0,3568	-
	Ъ	-	0,5689	0,8416	0,9725	0,9960	-
5	ß	-	0,4563	0,5227	0,4825	0,4210	-
	Nco	-	0,8020	0,6210	0,4961	0,4226	
	Å	-	0,6296	0,8876	0,9833	0,9976	-
6	ß	-	0,5142	0,5833	0,5388	0,4751	
	Nco	-	0,8167	0,6572	0,5483	0,4762	-
	\sim	-	0,7296	0,9425	0,9928	0,9990	-
8	ß	-	0,6127	0,6736	0,6217	0, 5575	-
	Nco	-	0,8397	0,7147	0,6162	0,5580	-
	6	-	0,8054	0,9693	0,9964	-	-
10	,3	-	0,6909	0,7345	0,6794	-	-
	Neo		0,8778	0,7577	0,6818	-	-

Tabelul 18. Gradele de transformare \propto , β și γ_{∞} la P=10 at.

$\overline{\ }$	T ^O K						
ion Hook		800	900	1000	1100	1200	1300
<u> </u>	<u>م</u>		0,1647	0,2977	0,4871	0,6826	0,8245
1	ß		0,1187	0,1295	0,0979	0,0547	0,0260
	Nco	-	0,7207	0,4350	0,2009	0,0830	0,0316
	δ	-	0,2509	0,4391	0,6786	0,8811	0,9698
2	ß	-	0,1964	0,2364	0,2151	0,1680	0,1338
	Nco		0,7807	0,5408	0,3168	0,1906	0,1379
	æ	-	0,3240	0, 5459	0,7954	0,9 68	0,9891
3	ß		0,2630	0,3265	0,3162	0,2702	0,2299
	Nco		0,8117	0,5980	0, 3975	0,2959	0,2324
1 920-2 1446- -9869- 10	L		0, 3889	0,6345	0,8689	0,9728	0,9948
4	ß		0,3226	0,4048	0,4010	0,3530	0,3067
	Nco		0,8295	0,6379	0,4619	0,3629	0,3082
	L	-	0,4475	0 ~	0,9149	0,9846	
5	В	-	0,3770	-	0,4711	0,4196	-
	Nco	-	0,8422	-	0 , 5 1 48	0,4363	-
	Å		0,5008	0,7565	0,9438	0,9907	~
6	ß	-	0,4271	0,5328	0,528 5	0,4739	
	Nco		0,8528	0,6951	0,5599	0,478 G	
	X		0,5941	0,8534	0,9736	C,9959	
8	ß		0,5160	0,6293	0,6147	0,5566	
	700		0,8585	0,7374	0,6313	0,5589	**************************************
	X	-	0,6723	0,9086	0,9864	0,9980	**
10	13		0,5920	0,7004	0,6749	0,6167	600
سر حد	$\frac{\eta}{L(0)}$		0,8805	0,7711	0,6842	0,6179	

Tabelul 19. Gradele de transformare \propto , β și γ_{CO} la P = 20 atm.

$\overline{}$	TOK		<u></u>				
r ^H _{H2} O		800	900	1000	1100	1200	1300
	2	en	0,1399	0,2515	0,4172	0,6075	0,7658
1	ß		0,1062	0,1242	0,1043	0,0654	0,0341
	Nco	-	0,7591	0,4933	0,2500	0,1076	0,044.5
	S	0,1125	0,2138	0,3727	0,5916	0,8108	0,9404
2	ß	0,1060	0,1739	0,2202	0,2141	0,1732	0,1364
	Nco	0,9422	0,8133	0,5907	0,3619	0,2136	0,1454
	8	-	0,2772	0,4706	-	0,9017	0,9766
3	ß	-	0,2322	0,3017		0,2703	0,2302
•	Nco		0,8376	0,641].		0,2997	0,2757
	Ъ	0 ,1 798	0,3341	0,5532	6	0,9454	0,9836
4	ß	0,1715	0,2849	0,3734		0,3511	0,3065
	Nco	0,9538	0,8527	0,6748		0,3711	0,3100
	£		0,3861	0,6239	0,8557	0,9678	0,9936
5	ß	-	0,3334	0,4373	0,4579	0,4174	0,3688
	Nco	-	0,8635	0,7009	0,5351	0,431.3	0,3712
	λ	-	0,4340	0,6845	0,8978	0,9799	— ,
6	ß	-	0,3784	C,4943	0,5157	0,4718	-
	Nco	-	0,8722	0,7221	0,5632	0,4814	-
	λ	0,2918	0,5196	0,7805	0,9474	0,9910	•••
8	ß	0,2810	0,4597	0,5904	0,6049	0,5533	-
	Nco	0,9629	0,8847	0,7564	0,6385	0 ,5 603	-
	8	-	0,59 39	0,8492	0,9714	0,9954	-
10	3	-	0,5311	0,6657	0,6682	0,6158	
	200	-	0,8942	0,7 839	0,6878	0,6186	-

Tabelul 20. Gradele de transformare α , β și γ_{∞} la P=30 atm.

Tabelul 21. Gradele de transformare \mathcal{A} , β \$1. γ_{CO} la P=40 atm

i° _{H2} 0	T ^o k	800	900	1000	1100	1200	1300
	6		0,1245	0,2229	0 , <i>3</i> 716	0,5531	0,7182
1	ß	-	0,0977	0,1191	0,1068	0,0724	0,0405
	Nco	-	0,7847	0,5343	0,2874	0,1309	0,0563
	2	0,1005	0,1907	0,3321	0,5324	0,7526	0,9084
2	ß	0,0953	0,1588	0,2076	0,2110	0,1765	0,1391
	Nco	0,9483	0,8327	0,6251	0, 3982	0,2346	0,1531
	ĸ	-	0,2479	0,422Ð	0, 6490	0,8774	0,9610
3	ß	-	0,2118	0,2830	0,3004	0,2 598	0,2306
	Nco		0,8503	0,6706	0,4641	0,3146	0,2391
	δ	-	0,2995	0,4993	0,7369	0,9150	0,9803
4	ß	-	0,2598	0,3499	0,3779	0,3488	0,3052
	Nco	-	0,8673	0,7008	0,5128	0,3812	0,3123
	لم	-	0,3469	0,5668	0,2036	0,9475	0,9889
5	ß	-	0,3042	0,4102	0,4449	0,4146	0,3684
	Nco	~	0,8767	0,7237	0,5536	0,4375	0,3724
	£	-	0,3909	0,6260	0,8535	0,9663	0,9932
6	ß	-	0,3457	0,4647	0,5026	0,4692	0,4202
	Zco	-	0,3841	0,7423	0,5388	0,4855	0,4220
	ک	-	0,4706	0,7238	0,9183	0,9845	0,9970
8	ß	-	0,4213	0,5586	0,5938	0, 5 <u>5</u> 34	0,5014
	Nco	-	0,8952	0,7709	0,6466	0,5620	0,5029
	ک	-	0,5408	0 , 798 4	0,9536	0,9920	-
10	ß	-	0,4886	C,6 350	0,6600	0,6146	-
	200		0,9034	0,7953	0,6922	0,6194	-

ż° _{₿2} 0	TCK	800	900	1000	1100	1200	1300
	2	0,0594	0,1138	0,2029	0,3389	0,5114	0,6786
1	ß	0,05 57	0,0913	0,1146	0,1076	0,0772	0,0456
	Nco	0 ,93 77	0,8022	0,5647	0,3113	0,1509	0,0672
	d	Nb	0,1745	0,3035	0,4889	0,7047	0,8766
2	ß	-	0,1477	0,1974	0,2072	0,1785	0,1415
	7co	-	0,8452	n , 6504	0,4238	0,2532	0,1614
	x	-	0,2272	0,3872	0,6015	0,8167	0,9434
3	ß	-	0,1968	0,2682	0,2927	0,2688	0,2309
	7c0	-	0,8662	0,6952	0,4852	0, 3291	0,2436
	æ	-	-	0,4601	0,6896	0,8843	0,9705
4	ß	-	-	0 , 33 1 4	0,3675	0, 3462	0,3058
	Nco	-	-	0,7202	0,5329	0 , 39 03	0,3150
	æ	-	0,3190	0,5245	0,7592	0,9254	0,9830
5	ß	-	0,2828	D,386 7	0,4329	0,4114	0,3678
	Nco	-	0,8865	0,7410	0,5702	0,4445	0,3640
	d		0,3601	0,5819	0,8138	0,9507	0,9895
6	ß	-	0,3216	0,4409	0,4900	0,4662	0,4197
	<u> Zco</u>	-	0,8930	0,7576	0,6021	0,4903	0,4241
	6	-	0,4349	0,6789	0,8892	0,9766	
8	ß		0,3927	0,5323	0,5623	0,5511	~
	Nco	+	0,9029	0,7921	0,6548	0,5643	
	8		0,5016	0,7558	0,9335	0,9877	
10	ß	-	0,4567	0 ,608 4	0,6508	0,6130	-
	200	-	0 ,9 104	0 ,80 49	0,6982	0,6206	-

Tabelul 22. Gradele de transformare α , β și γ_{CO} la P=50 atm.

Tabelul 23. Gradele de transformare \mathcal{A} , β și γ la P=100 atm.

$\overline{}$	T	۲.				-	
х Н ₂ С	>	800	900	1000	1100	1200	1300
	6	-	0,0860	0,1515	0,2523	0,3910	0,5483
1	ß	~	0,0730	0,0986	0,1094	0,0875	0,0607
	Nco	-	0,8489	0,6508	0,4137	0,2237	0,1107
	6	-	0,1324	0,2288	0,3703	0,5548	0,7455
2	ß	-	0,1168	0,1651	0,1893	0,1795	0,1499
	7.00	-	0,8821	0,7211	0,5111	0,3235	0,2010
	م	-	0,1730	0,2949	-	0,6705	0,8503
3	ß	•	0,1552	0,2226	-	0,2603	0,2317
	Nco	~	0,8971	0,7550		0,3882	0,2724
	λ	0,1 ±25	0,2102	0,3537	0,5456	0,7559	0,9089
4	ß	0,1093	0,1905	0,2745	0,3276	0,3314	0,3030
	7co	0,9714	0,9062	0,7760	0,6004	0,4382	0,3333
	8	•	0,2448	0,4072	0,6143	0,8194	0,9426
5	ß	-	0,2234	0,3224	0,3863	0,3937	0,3639
	7co	~	0,9208	0,7917	0,6273	0,4792	0,3860
	6	-	0,2774	0,4563	0,6734	0,8662	0,9625
6	ß	•	0,2545	0,3568	0,4393	0,4480	0,4158
	Zco		0,9174	0,8038	0,6523	0,5160	0,4320
	2	-	0,3378	0,5435	0,7680	0,9256	0,9823
8	<u>_</u> B	-	0,3122	0,4471	0,5304	0,5359	0,4981
	Nco		0,9239	0,8226	0,6962	0,5788	0,5070
	5	-	0,3928	0,6183	0,8368	0,9572	0,9907
10	ß	-	0,3652	0,5175	0,6040	0,6018	0,5600
	200	-	0,9297	0,8369	0,7217	0,6288	0,5652

Tabelul 24. Consumuri specifice de căldură la :

P = 10 at, $T_{\odot} = 720 \text{ K}$

				$\Delta H_{ex} = \Delta H_{ext}$	·/nº	СН4 ;	$\Delta H_{c} =$	AHex/40	Ç
i.	Т 2 ⁰		900	1000]	1100	3	L200	1300
2	∆H _{ex}	258	10 ,01	43575,23	62	349,48	76	779,11	-
•	ΔH _c	19	618,43	19 236,81	18	978,89	20	042,57	-
. 2	ΔHex	33	423,53	53 757,83	71	040,78	82	366,52	**
ر	∆Hc	19	861,85	19 528,42	19	503,83	20	917,95	-
_	∆H _{ex}	40	697,92	62 505,15	79	362,23	88	522,59	-
	∆H _c	20	357,10	20 105,86	20	838,73	22	295,63	-
	ΔHex	54	003,33	75 528,00	89	873,20	9 9	642,86	-
Þ	∆ <i>H</i> _c	21	443,50	21 273,10	22	849,90	24	970,64	
	ΔHex	62	845,61	86 057,79	9 9	651 ,5 2	110	910,80	-
8	ΔHc	21	534,23	22 827,00	25	093,55	27	755,45	~

Tabelul 25. Consumuri specifice de căldură la :

P = 20 at, Te = 720 K

i ^o _H	20 T K	,	900	1000	1100	1200	1300
	ΔHex	21	599,67	36 068,30	54 500,80	70 955,20	80 511,56
	∆Hc -	21	522,19	20 629, 32	20 078,40	20 132,56	20 79 3, 27
	AHex	28	242,39	45 671 , 39	64 735 ,5 4	79 265 ,76	88 325,43
ر 	ΔHc	21	791,76	20 915,63	20 346,85	20 928,912	22 324,69
_	ΔHex	34	073,77	54 200,15	74 266,42	87 085,76	95 076,08
	ΔHc	22	189,22	21 355,46	21 367,94	22 380,18	23 893,26
6	ΔH_{ex}	4 5	976,86	68 787,67	87 610,24	99 234 , 77	-
	ΔHc	22	951,71	22 435,64	23 206,78	25 041,57	-
8	AHex	55	935,40	80 361,32	97 969,71	110 267,90	-
	AHC	23	537,87	23 541,52	25 156,56	27 680,46	

Tabelul 26. Consumuri specifice de căldură la :

P = 30 at , To = 720 K

i.	T K		900	1000	1100	1200	1300
2	ΔH _{ex}	19	620,34	32 412,94	48 118,44	66 761,46	78 860,20
_	ΔH_c	22	942,41	21 741,97	20 334,02	20 585 , 06	20 964,54
	ΔHex	26	281,97	41 451,01	**	77 466,19	87 461,55
ر	∆Hc	23	703,10	22 020,29	-	21 477,82	22 389 , 30
	ΔH_{ex}	31	571,50	49 662,16	•	88 637,17	94 711,43
•	ΔH _c	23	624,28	2 2 4 43 ,13	*	23 439,06	23 950 , 89
	ΔHex	42	477 _• 89	64 258,47	84 981,96	98 608,21	-
	۵Η۲	24	468,83	23 469,12	23 663,94	25 157,22	ý,
	ΔH_{ex}	52	637,52	76 962,61	93 422,70	110 580,95	-
0	∆Hc	25	325,98	24 651,70	24 652,39	27 896,30	-

Tabelul 27. Consumuri specifice de căldură la :

P = 40 at., To = 720 K

i _H	т к 2 ⁰		900		1000		1100		1200		1300
0	ΔH_{ex}	18	394,85	30	125,24	46	046,82	63	295,77	76	974,24
	∆H _c	24	114,90	22	677,83	21	622,28	21	025,70	21	184,01
3	ΔH _{ex}	24	220,25	38	737,73	57	079,79	74	846,27	86	526,21
_	ΔHc	24	425,42	22	948,89	21	987,59	21	823,61	22	509,42
	Δ Her	29	755,61	46	223,59	66	630,57	83	689,14	94	218,48
4	ΔHc	24	837,73	23	144,19	22	605,02	22	865,88	24	027,97
6	∆Hex	40	221,74	61	042,39	82	580,23	97	818,56	108	379,23
	ΔH _c	25	723,80	24	377,95	24	185,86	25	307,50	27	280,31
8	DHe	50	087,24	73	867,22	95	440,83	110	207,53	121	849,60
	∆H _c	26	608,18	25	513 , 68	25	983,02	27	985,66	30	554,06

Tabelul 28. Censumuri specifice de căldură la :

P = 50 at., Te = 720 K

V i	T K 2 ⁰		900		1000	1	1100]	L200	_ _	1300
	AHex 1	.7	539,77	28	522,96	43	369,97	60	447,70	75	097,73
2	∆H _c 2	25	128,61	23	495,02	22	177,32	21	444, 48	21	403,07
9	ΔH_{ex} 2	24	122,00	36	804,93	54	329,95	72	442,79	86	159,17
ر 	ΔH _c 2	26	542,69	23	763,51	22	581,02	22	175 <u>,</u> 46	22	832,08
	ΔHex		-	44	828,00	63	915,50	84	061,37	93	639,87
	ΔHc		٠	24	363 , 04	23	171,22	23	764,95	24	121,55
6	AHex 3	8	618,37	58	628 , 18	80	798,05	96	913,13	108	071,44
	ΔHc 2	26	810,86	25	188,25	24	636,90	25	484,67	27	304,55
8	∆H _{ex} 4	8	233 ₉ 87	71	422,50	93	800,20	109	746,00		-
J	∆H _c 2	27	726,98	2 6	300,6	26	371,73	28	093 , 89		-

Tabelul 29 . Consumuri specifice de căldură la :

P = 100 at., To = 720 K

İ.H.2	TK		900	1000	11	100		120	00	130	00
	DHex	15	327,90	24 452	,33	36	473,63	50	876,04	67	526,54
2	ΔHc	29	030,12	26 811	,76	24	644,34	23	125,47	22	508 ,8 5
	ΔHex	21	854,16	31 747	,29		-	62	290,51	80	159,09
ر 	ΔHc	29	138 , 47	27 368	, 35		-	23	242,73	23	576,19
	AHex	25	094,95	38 494	,79	53	679,16	72	236,05	89	890,38
	∆Hc	29	874,94	27 496	,28	24	399,62	23	\$61,86	24	969,55
6	DHe r	34	465,49	51 990	,90	71	402,99	88	701,47	106	320,12
	ΔHć	30	772,76	28 255	,92	26	642,90	25	488,92	27	687 , 53
8	Atter	43	357,01	63 879	, 39	84	852,88	107	051,76	1 19	979,45
_	AHe	31	880,15	29 573	,79	27	549,63	28	777,35	30	607,00

Tabelul 30 . Consumuri specifice de căldură la :

P = 10 at , To = 760 K

√ i¶	T K L20	9 00	1	1000	,	1100		1200	1300
	AHex 24	788	42	553	61	327	75	757	e
2	2 AHc 18	841	18	785,54	18	667,66	19	775,76	-
	ΔHer 32	176	52	510	69	793	81	119	.
•	ΔH _c 19	120,51	19	075,12	19	161,26	20	601,12	۵
	ΔHex 39	226	61	034	77	891	87	051	
	• ΔH2 19	620,84	19	632,65	20	452,42	21	924,99	
	AHex 52	083	73	608	87	953	97	722	-
	Д Н _с 20	680,98	20	732,31	22	361,69	24	489,27	**
_	ΔH_{c} , 60	397	83	609	97	203	108	462	-
(ΔHc 20	695,24	22	177,45	24	476,99	27	142,64	-

Tabelul 31 . Consumuri specifice de căldură la : R = 20 et mer 760 M

P		20	at	• ;	$T\Theta =$	7	60	K
---	--	----	----	-----	-------------	---	----	---

i.	т к 2 ⁰		900		1000	2	100]	L200]	L 3 00
	ΔH_{ex}	20	597	35	046	53	478	69	933	79	489
	ΔHc	20	503,18	20	044,61	19	701,59	19	842,52	20	491,08
3	ΔH_{ex}	26	995	44	424	63	488	78	018	87	078
_	ΔHc	20	829,47	20	344,38	19	954,73	20	600,44	22	009,40
	ΔH_{ex}	32	602	52	729	72	795	85	614	93	605
-	∆Ηد	20	957,82	20	775,80	20	944 , 58	22	001,95	23	523 , 57
6	$\Delta H_{e_{A}}$	44	056	66	867	85	690	97	314		-
_	ΔH_{c}	21	992,81	21	809,19	22	698,13	24	556,87		-
A	ΔH_{e_A}	53	487	77	913	95	522	107	819		-
U	ΔH _c	22	507,57	22	824,29	24	52 7, 78	27	065,72		-

Tabelul 32 . Consumuri specifice de căldură la : P = 30 at., To=760 K

i.	T K 2 ⁰	•	900	- i	1000	1	1100		1200	1300
	ΔHex	18	598	31	390	47	096	65	739	77 838
2	ΔHc	21	746,96	20	755 , 80	19	901,96	20	269,79	20 692,79
	ΔHex	25	034	38	948		-	76	219	86 214
ر	ΔH_{c}	22	577 , 56	21	490,60		-	21	132,02	22 069,93
	ΔH_{ex}	30	100	4 8	191		-	87	166	93 240
•	∆Hc	22	623,19	21	778,28		-	23	050,03	23 578,79
	ΔH_{ex}	40	557	62	338	83	061	96	688	-
	ΔH_{c}	23	362,32	22	767,71	23	129,03	24	667,82	
8	ΔHex	50	189	74	514	90	974	108	132	-
0	ΔHc	24	147,90	23	867,39	24	506 , 22	27	278 , 5	-

Tabelul 33 . Consumuri specifice de căldură la : P = 40 at., To= 760 K

i	TK H ₂ 0		900]	L000]	1100		1200	1	300
~	ΔH ex.	17	372	29	103	45	024	62	273	75	952
2	ΔHc	22	773,99	21	908, 31	21	141,99	20	685,95	20	902,68
	ΔHex	22	973	37	490	55	832	73	599	85	279
ر	∆Hc	23	167,60	22	209,71	21	506,93	21	459,93	2 2	184,96
	ΔHex	28	284	44	752	65	159	82	218	92	747
•	ΔHc	23	609,35	22	407,37	22	105,78	22	463,93	23	652 , 71
6	ΔHex	38	301	59	122	80	660	95	898	106	459
-	ΔHc	24	495,39	23	611,02	23	623 , 47	24	305,46	26	796,96
	1Hez	47	639	71	419	92	992	107	759	119	401
8	AHE	25	307,58	24	668,07	25	316,34	27	363 , 89	29	940 ,07

Tabelul 34. Censumuri specifice de căldură la :

P = 50 at , To= 760 K

• •	T K 2 ⁰	9	900		L000]	1100	2	L200		1300
	ΔHex	16	517	27	500	42	347	5 9	425	74	025
2	۵Hc	23	663	22	652,38	21	654,22	21	081,66	21	11,39
	AHer	22	875	35	557	53	082	71	195	84	912
ر	ΔHc	24	170,55	22	957,77	22	062,34	21	793, 49	2 2	501,59 ,
_	ΔHe	<	•	43	357	62	444	82	590	92	168
•	ΔHc		-	23	5 58,46	22	637 ,76	23	348,97	23	742,40
	SHen	36	698	50	070	78	878	94	993 1	06	151
	ΔHc	25	477,64	24	611,43	24	231,38	24	979,75	26	819 ,35
	ΔHex	45	785	68	974	91	352	107	298		~
0	ΔHc	26	319,26	25	399,17	25	683,76	27	467,23		•

Tabelul 35. Communi specifice de căldură la : P = 100 at., Te= 760 K

I.H.	T K 2 ⁰	900	10)00	110	00	12	200	1;	300
2	AHex 14	305	23	430	35	451	49	854	66	5 04
	ΔHc 27	010,95	25	60 0,96 2	23 7	733 ,97	2 2	464,85	22	301,81
	AHex 20	607	30	500		•	61	043	78	912
3	∆H _c 27	778,90	25	864,99		-	22	760,25	23	201,22
	AHex 23	623	37	023	52 2	208	70	765	88	419
-	∆H _c 28	095 ,86	26	168,36	24	522,28	23	404,22	24	320,33
6	AHex 32	545	50	070	69	482	86	781	104	400
	∆H _c 29	330,38	27	432,61	25	795,22	25	046,46	27	116,88
A	AHex 40	909	61	431	82	404]	104	603	117	531
0	1H _c 30	276,05	28	25 7	26	824,21	27	252,75	29	912 , 19

Tabelul 36 . Consumuri specifice de căldură la :

P = 10 at , To= 800 K

i,	т К 2 ⁰	900]	1000		1100	i	1200	1300
·	DHex 23	751,58	41	517,80	60	291,48	74	721,11	•
Z	∆Hc 18	053,80	18	328,18	18	352,30	19	505,32	•
	ΔHex 30	920,53	51	254,83	68	537,78	79	863,52	.
2	∆H _c 18	374,14	18	618,86	18	816,44	20	282,15	-
_	AHex 37	749	59	557	76	414	85	574	•
7	∆H _c 18	882,05	19	157,55	20	064,59	21	55 2, 98	~
_	AHex 50	1644	71	689	86	034	95	803	
6	ΔH_c 19	918,99	20	191,80	21	873 , 79	24	008,37	۵
6	AHex 57	769	9 0	981	94	575	105	834	-
0	ΔH _c 19	794	21	480,37	23	815,22	26	4 84 , 98	-

Tabelul 37. Consumuri specifice de căldură la :

P = 20 at., To=800 K

IH20	900	1000	1100	1200	1300
ΔHex 19	541	37 010	52 442	68 879	78 453
_ΔH _c 19	970,90	19 4 52,07	19 319,92	19 548,57	20 224,01
AHex 25	739	43 168	62 232	76 762	85 822
3 19	860, 34	19 76 9, 18	19 559 , 79	20 268,80	21 691,94
ΔHex 31	125	51 252	71 318	84 137	92 128
4 <i>ΔH_c</i> 20	008,35	20 193,85	20 519 , 62	21 622,37	23 152,39
6 AHex 42	137	64 948	83 771	93 395	-
<u>ΔH</u> c 21	034,84	21 183,30	22 189,81	24 072,62	-
ΔH _α 50	8 6 9	75 285	92 893 1	105 191	-
ΔH _c 21	401,70	22 054,42	23 852,96	26 406,01	-

Tabelul 38 . Consumuri sepecifice de căldură la P = 30 at., Te= 800 K

i,o	T K 2 ⁰		900		1000	1	1100	4	1200	13	300
2	DHex	17	562	30	354	46	060	64	703	76	802
_	ΔHc	20	545	20	360,88	19	484,16	19	950 , 35	20	417,37
	ΔHex	23	778	38	948		-	74	963	84	958
ر	ΔHc	21	444, 8 0	20	690 , 60		-	20	783,79	21	748 , 41
	ΔHex	28	623	46	714		-	85	689	91	763
4	ΔHc	21	417,98	21	110,80		•	22	659 , 45	23	205,29
	ΔHex	38	638	60	419	81	142	94	769		-
	∆Hc	22	256,91	2 2	066,83	22	594,67	24	178 , 23		•••
	AHer.	47	561	71	886	88	346	105	504		-
8	۵Hc	22	883,46	23	025,62	23	312,75	26	615,54		-

Tabelul 39 . Consumuri specifice de căldură la : P = 40 at., Te= 800 K

i,	т к 2 ⁰	1	900		1000		1100		1200	1300
-	ΔH _e ,	16	336	28	067	43	988	61	237	74 916
2	ΔHc	21	41 5, 84	21	128,42	20	655,52	20	341,81	20 617,57
3	ΔHe,	, 21	717	36	234	54	576	72	343	84 023
	ΔHc	21	900,96	21	465,63	21	023,11	21	093,71	21 858,22
	ΔHex	26	807	43	275	63	68 3	80	741	91 270
	ΔHc	22	376,46	21	667,83	21	604,69	22	060,38	23 276,03
6	ΔHer	36	382	57	203	78	741	93	979	104 540
0	ΔH _c	23	268,1	22	844,65	23	061,44	24	314,14	26 313,93
8	AHex	45	011	68	791	90	364	105	131	116 773
0	AHe	23	911,49	23	760,36	24	600,89	26	696,54	29,281

Tabelul 40 . Consumuri specifice de căldură la : P = 50 at., Te= 800 K

I [®] H ₂ O	900]	L000		1100		1200	1	1300
ΔHex 15	481	26	464	41	311	58	389	72	989
ZHc 22	179,08	21	799	21	124	20	714	20	815
AHex 21	619	34	301	51	82 6	69	939	83	656
3 _{ΔHc} 23	788	22	146	21	540	21	409	2 2	168
AHex .		41	880	60	967	81	113	90	691
	-	2 2	755	22	102	22	931	23	361
ΔHex 34	779	54	789	76	959	93	074	104	232
ΔH _c 24	145	23	538	23	641	24	475	26	334
ΔHex 43	157	66	346	88	724	104	670	-	-
OHc 24	808	24	431	24	944	26	794	-	-

Tabelul 41. Consumuri specifice de căldură la : P = 100 at., To= 800 K

i° H	2 ⁰ T K		900		1000		110	0 3	L200		1300
	SHex	13	269	22	394	34	415	48	818	65	468
2	∆Hc	25	054	24	468	23	234	21	998	21	954
•	AHex	19	351	29	244	•	-	59	787	77	656
ر 	∆Hc	27	963	24	799	•	•	2 2	291	22	831
	1 Hex	22	146	35	546	50	731	69	288	86	942
•	ΔHc	26	339	25	124	23	245	22	915	23	914
	ΔH_{ex}	30	626	48	151	67	563	84	8 62	102	481
6	ΔH _c	27	600	26	381	25	082	24	4 92	26	618
0	AHer.	38	281	58	803	79	776	101	975	114	903
8	Sile	28	331	27	048	25	968	27	543	29	243

Anexa 3.

Tabelul 42. Variația gra delor de transformare \measuredangle și β cu \dot{x}_{h_20} , \dot{x}_{co_2} și T, la P = 10 at.

Tok	х° _н	2 ⁰ 2 ⁰ 2	0	1	2	3	4
	1	£	0,217436	0,250385	0,313007	-	-
		ß	0,178409	0,083362	0,027477		
		æ	0,328385	[.] 0,327885	0,368910	0,415388	0,462085
	2	<u></u>	0,282538	0,181411	0,126170	0,079651	0,036709
		L	0,420068	0,401211	0,427748	0,463002	0,500448
900	3	ß	0,339428	0,263527	0,206391	0,160438	0,119039
		L	0,499091	0,468609	0,484365	0,510962	0,541100
	4	<u>/</u> 3	0,445075	0,336165	0,276578	0,23)075	0,189124
	6	æ	0,628867	0,585880	0,586736	0,600627	0,619724
		ß	0 ,571 159	0,460675	0,396984	0,348497	0,307029
	8	L	0,728833	0,681704	0,673462	0,678175	0,689892
	U	ß	0,670346	0,562785	0,497061	0,446960	0,404625
		¢	0 , 39 2850	0,518051	0,637417		-
	1	ß	0,261621	0,108374	0,00157	-	-
900		x	0,564836	0,626144	0,705427	0,774501	
	2	ß	0,410111	0,250696	0,159350	0,45357	-
	3	R	0,686662	0,714424	0,766173	0,815722	0,857148
1000		ß	0,523258	0,363018	0,249907	0,155309	0,072414
		٨	0,775649	0,784048	0,817343	0,851816	0,882147
	4	ß	0,611664	0,454054	0,340592	0,246030	0,163364
	<u> </u>	ø	0,886444	0,878354	0,890073	0,906066	0,921743
	O	ß	0,733997	0,588664	0,478681	0,386401	0,305641
	<u>ـــــ</u>	x	0,941775	0,931125	0,933697	0,940490	0,948280
	U	ß	0,806878	0,678078	0,575496	0,487939	0,410776
ΤK	ż° _{H2} 0	İ [°] _{C02}	0	L	2	3	- 4
------	--------------------	-------------------------------	-------------------	----------	----------	-----------	----------
		L	0,614846	0,808239	-	-	-
	T	<u>/</u> 3	0,347150	0,140474	-	_	-
	2	eć.	0,820569	0,892557	0,940271		-
	L	ß	0,514341	0,287496	0,115501	-	-
	3	eC.	0,910053	0,937004	0,960646	0,975664	
1100	ر 	ß	0,614972	0,392357	0,223194	0,088109	-
		L	0,951683	0,961329	0,973373	0,982172	0,988015
	+	ß	0,680551	0,470451	0,307790	0,176224	0,067602
	6	જ	0,983083	0,983468	0,986802	0,990029	0,992585
		ß	0,759717	0,578374	0,431815	0,309831	0,206550
	8	જ	0,992735	0,991890	0,992817	0,994086	0,995267
	0	ß	0,806023	0,649278	0,518121	0,406216	0,309461
1200	יי ד	б	0,796043	0,957303	-	-	
		ß	0,416093	0,152127		-	-
	2	ه	0,957467	0,982290	0,992205		
	<u> </u>	ß	0,558548	0,273197	0,063021	-	
	3	٨	0,984319	0,980859	0,995079	0,997283	
		ß	0 ,6 25866	0,360568	0,116111	0,007859	~
	٨	K	0,992554	0,994695	0,996721	0,997995	-
		ß	0,671998	0,427826	0,239433	0,091123	-
	6	ه	0,997575	0,997797	0,998368	0,998850	0,999195
		ß	0,734836	0,525707	0,357463	0,220.002	0,106132
	8	ď	0,998961	0,993912	0,999094	0,999297	0,999446
		ß	0,776703	0,594113	0,442794	0,315684	0,207914

			_ n2 0 C	.02			
ΤΚ żo	20	İ002	0	1	2	3	4
		Ъ	0,164495	0,179357	0,225686	-	-
	T	ß	0,141491	0,061475	0,017795	-	~
·	2	d	0,250505	0,238149	0,267984	0,303618	0,340574
	٤	ß	0,223296	0,139193	0,093719	0,058011	0,024655
·	2	£	0,323546	0,295421	0,314147	0,341330	0,371237
	ر	ß	0,293037	0,199767	0,155485	0,120502	0,088887
		d	0,388341	0,349602	0,359789	0,380437	0,404867
900	4	ß	0,355218	0,257307	0,210408	0,1749 4	0,143796
·	6	æ	0,500059	0,448407	0,446004	0,456702	0,472740
-	0	ß	0,463227	0,359868	0,307811	0,269999	0,238362
	8	æ	0,593286	0,535221	0,524130	0,527493	0,537210
	0	ß	0,554254	0,449240	0,393235	0,352248	0,319865
	 7	x	0,296860	0,384706	-	-	-
	T	ß	0,212915	0,076969	-		-
	2	x	0,435823	0,475612	0,547983	0,618687	
	۲.	ß	0,335623	0,195582	0,104441	0,026769	~
	3	ه	0,544409	0,558077	0,609106	0,663577	0,714862
1000		ß	0,434814	0,292700	0,200226	0,122934	0,053817
	٨	ه	0,632792	0,630304	0,665653	0,697393	0,748315
	т 	ß	0,518012	0,375742	0,281907	0,204468	0,135798
	6	ه	0,764792	0,745807	0,760488	0,784052	0,809497
		ß	0,647889	0,5101.46	0,415294	0,337581	0,269379
	8	لم	0,851978	0,828273	0,831500	0,843642	0,857774
		ß	0,739696	0,611198	0,518192	0,441367	0,374041

Tabel 43. Variația gradelor de transformare \propto și β cu $\dot{X}_{H_{20}}$, \dot{X}_{C0} , și T la P = 20 at.

Tabelul 43. - continuare -

ړ

			·				
ΤK	in the second second	x°02	2 0	1	2	3	- 4
1100		æ	0,486370	0,659102	=		
	.	ß	0,291804	0,101864	-	-	
	2	ه	0,677656	0,763029	0,842792	-	
		ß	0,445716	0,244568	0,095122		
	3	<u></u>	0,794437	0,836057	0,884639	0,921699	-
		ß	0,554394	0,353096	0,202565	0,078891	-
	A	ه	0,868013	0,886301	0,915449	0,939706	0,957508
		ß	0,633428	0,437648	0,288972	0,166578	0,063303
	6	જ	0,943231	0,943622	0,953617	0,963960	0,972562
		ß	0,734645	0,557785	0,418140	0,301476	0,201761
	8	δ	0,973329	0,970252	0,973357	0,977793	0,982015
		ß	0,792820	0,636830	0,508780	0 , 399790	0,305255
1200	٦	ه	0,682045	0,880007	-	-	
		ß	0,368112	0,129377	-		
	2	d	0,880568	0,940147	0,971309		
		ß	0,523531	0,259136	0,058701		-
	З	d	0,946439	0,966683	0,981334	0,989464	~
		ß	0,607178	0,351556	0,157659	0,006774	÷
	٨	ه	0,972559	0,979940	0,987347	0,992161	-
		ß	0,661417	0,421779	0,236688	0,090043	-
	6	æ	0,990550	0,991403	0,993592	0,995459	0,996810
		ß	0,730684	0,522669	0,355716	0,219101	0,105713
	8	d	0,995893	0,995701	0,996416	0,997212	0,997881
	U	ß	0,774740	0,592414	0,441532	0,314990	0,207521
							

		cu	Χ _{H₂0} , Σ	×coz și :	[la F =]	30 at.	,
ΤK	ⁱ ^o _{H₂} 0	* ⁰ 2	0	1	2	3	4
		~	0,139659	0,147170	0,185676		-
900	1 -	ß	0,122863	0,051161	0,013787	7 –	**
		<u>ل</u>	0,213439	0,196643	0,221136	0,251131	0,282668
	2 -	ß	0,193513	0,114254	0,078188	0,047896	0,019427
		6	0,276786	0,24 54 23	0,260438	0,283320	0,308873
	3 -	ß	0,254304	0,168306	0,130518	0,100959	0,072059
		£	0,333594	0,292118	0,299726	0,317089	0,338027
	4 •	ß	0,309007	0,217719	0,177362	0,147309	0,121045
		æ	0,433324	0,378848	0,375158	0,333962	0,397816
	6 -	ß	0,405540	0,307234	0,261551	0,229197	0,202303
		æ	0,518913	0,457104	0,445202	0,447468	0,455861
	8 -	ß	0,488943	0,387096	0,336949	0,301957	0,273652
1000	 7	æ	0,250752	0,319741			~
	1 -	β	0,187238	0,062273			рав.
		Ъ	0,371525	0,398819	0,463437	0,529425	
	2 -	ß	0,295423	0,166527	0,086371	0,017 73 1	-
	3	æ	0,469177	0,473444	0,519726	0,571714	0,623744
	- (β	0,384827	0,252972	0,171722	0,103979	0,042872
	1	æ	0,551623	0,541250	0,573852	0,614804	0,656708
	4 -	ß	0,461792	0,328460	0,245583	0,177796	0,117392
	6 -	x	0,682722	0,656301	0,670077	0,694773	0,722703
		ß	0,587640	0,455396	0,370005	0,301328	0,241187
	<u>م</u>	X	0,778796	0,746411	0,748728	0,762424	0,780413
		ß	0,683660	0 , 556750	0,470902	0,401752	0,341625

Tabelul	44.	Vari	lația	gr	adelor	de	transformare \measuredangle ş	; i	ß
		cu	X _{H₂0}	,	х°сог	şi	T la P = 30 at.		,

Te' \exists 111 44. - continuare -

TK X ⁰ II2	0	²⁰ 2	0	1	2	3	4
1100		£	0,416507	0,568973	-	-	-
	T	ß	0,260069	0,080022	-		-
	2	L	0,590651	0 ,67 1457	0,760877	-	
	<u> </u>	ß	0,401715	0,21465	0,078958	, _ `	5 4
	2	Ъ	0,709877	0,752326	0,812116	0,863058	
	J 	ß	0,508255	0,320180	0,183199	0,069269	
		£	0 ,7 94608	0,814428	0 , 853760	0,889776	0,918529
	4	ß	0,590859	0,405814	0,268979	0,155406	0,057931
	6	Å	0,896939	0,896103	0,911932	0,929411	0,944746
		ß	0,705117	0,533151	0,400904	0,290416	0,195142
	я	Ъ	0,946792	0,940724	0,946223	0,954443	0,962524
	0	ß	0,774646	0,619752	0,495712	0,390569	0,299070
1200	٦	Ъ	0,606814	0,809060		-	-
	1	ß	0,335833	0,109102	~		~
	2	م	0,810073	0,890 57 6	0,942588	-	
	<u> </u>	ß	0,490870	0,242728	0,052894	-	-
	3	لم	0,901098	0,934107	0,963140	0,974321	
		ß	0,584563	0,339421	0,185132	0,008431	-
	Λ	L	0,944311	Đ ,950010	0,973211	0,982231	-
	۳	ß	0,611420	0,384001	0,250110	0,009800	

			X [°] _{Hz} o, X	Şi T l∶	a P = 40 ;	ato	-
TK	ż ^o _{H2} 0	х° _{со,}	2 0	1	2	3	4
900		2	0,124347	0,127789	0,161469	_	~
-	T	ß	0,110933	0,044818	0,011512	-	-
		لح	0,190425	0,171410	0,192641	0,219061	0,247054
	2	3	0,174483	0,100575	0,068583	0,041731	0,016395
		٨	0,247508	0,214726	0,227508	0,247639	0,270322
	ر	ß	0,229455	0,148544	0,114906	0,088764	0,065084
		d	0,299031	0,256461	0,262576	0,277809	0,296436
		ß	0,279205	0,192651	0,156532	0,129913	0,106707
		£	0,390352	0,334786	0,330502	0,338034	0,350426
	6	ß	0,367741	0,273308	0,231905	0,203055	0,179228
	8	Å	0,469885	0,406518	0,394412	0 , 39602 5	0,403460
		ß	0,445253	0,346248	0 , 300199	0 ,268 716	0,243483
1000		<u>_</u>	0,222229	0,279507	-		
	1	ß	0,170425	0,053482	an)`	-	
	2	<u>لم</u>	0,331064	0,350361	0,409015	0,470426	
		ß_	0,268886	0,147807	0,075031	0,012495	
	з	<u> </u>	0,420678	0,418726	0,460918	0,509758	0,558774
		ß	0,351256	0,226575	0,152835	0,091477	0,035830
	4	£	0,497766	0,48206:L	0,511867	0,550813	0,591601
		ß	0,423151	0,296167	0,220677	0,159350	0,104559
	6	<u>لم</u>	0,624301	0,592850	0,605222	0,629402	0,657510
	-	ß	0,543617	0,415673	0,336941	0,274479	0,219918
	8	d	0,722038	0,683832	0,685043	0,698883	0,717724
		ß	0,639370	0,514363	0,433955	0,370388	0,315477

Tabelul 45 • - continuare -

			· · · · · · · · · · · · · · · · · · ·				-
TKżo _{H2}	0	CO2	0	1	2	3	4
1100	٦.	لم	0,370983	0,507900	-		
	1	ß	0,238548	0,066027			=
	 2	لم	0,531456	0,605407	0,696743		
	٢	ß	0,370577	0,192670	0,066980	-	-
	2	لم	0,647818	0,687257	0,751279	0,809574	-
	ر 	ß	0,473244	0,294357	0,167214	0,060885	-
		æ	0,735743	0,753980	0,798297	0,841538	0,878188
	4	ß	0,555801	0,378702	0,251049	0,144795	0,052562
		x	0,852558	0,849671	0,869430	0,892460	0,913598
	0	ß	0,676371	0,508764	0,383256	0,278603	0,187776
-		λ	0,917522	0,9082 43	0,915713	0,927420	0,939322
	0	ß	0,754439	0,600839	0,480960	0,379876	0,291714
1200		Å	0,552419	0,750292	_	-	
	Т	ß	0,312099	0,093054		_	~
	-	لم	0,751769	0,842592	0,910755	-	
	۷	ß	0,463386	0,226933	0,046629	_	-
		لم	0,856591	0,898702	0,937331	0,962219	-
	ر	ß	0,562080	0,326246	0,146752	0,003079	-
		d	0,914402	0,933201	0,955327	0,971131	-
	4	ß	0,630296	0,402590	0,227358	0,086184	-
	۔	ه	0,965931	0,968517	0,976040	0,982708	0,987685
	0	ß	0,716076	0,511773	0,349297	0,215719	0,989936
	<u>л</u>	L	0,934342	0,983582	0,986216	0,989197	0,991724
	0	ß	0,767337	0,585994	0,437231	0,312323	0,205999

-

-

			× _{H20}	X coz	și T la P	= 50 at.	
тк	о Н ₂ 0	x ^o _{CO2}	0	l	2	3	<i>4</i> .
900		<u>لم</u>	0,113629	0,114497	0,144820		-
	Ŧ	ß	0,102370	0,040408	0,010018		-
		<u>ل</u>	0,174258	0,153987	0,172971	0,196858	0,222300
	2	ß	0,160861	0,090973	0,061879	0,037470	0,014376
		d	0,226853	0,193382	0,204659	0,222847	0,243456
	د	ß	0,211645	0,134597	0,103932	0,080210	0,058706
		б.	0,274509	0,231523	0,236650	0,250390	0,267318
	4	ß	0,257759	0,174880	0,141811	0,117637	0 ,09658 2
		Å	0,359528	0,303599	0,299002	0,305727	0,3 169 53
	6	ß	0,340310	0,249018	0,210760	0,184425	0,162772
		Å	0,434257	0,370238	0,358166	0,359334	0,366069
	8	ß	0,413183	0,316656	0,273716	0,244782	U,221761
1000		~ ~	0,202282	0,251466	ana	-	-
		ß	0,158182	2 0,04737	3 -	-	-
	2	æ	0,302498	0,316233	0,370262	0,427780	-
	2	ß	0,249511	0,134424	0,067109	0,009111	
	3	δ	0,385954	0,379644	0,418538	0,46 4 501	0,511287
	ر 	ß	0,326514	0,207349	0,139154	0,082500	0,030921
		λ	0,458594	0,439112	0,466556	0,503454	0,542668
	+	ß	0,394326	0,272268	0,202263	Ů , 145698	0,095059
	6	Å	0,58015 9	0,545145	0,556196	0,579459	0,607004
	0	ß	0,509696	0,385295	0,311610	0,253796	0,203392
	A	δ	0,677054	0,634766	0,634992	0,648492	0,667382
	0	ß	0,603731	0,480650	0,404563	0,345275	0,294334

Tabelul	46.	Variația	măr	imilor	2	•	şi	i /3		cu .	
		Х,	. , [,]	Х _{со,}	şi	Т	la	P	=	50	at.

Tabelul 46. - continuare -

		* 0		,	·		-
т к х	н ₂ 0	^ CO ₂	0	1	2	3 -	4
1100		£	0,338287	0,463135	-	-	-
	T	ß	0,222590	0,056255	-	-	-
		£	0,487952	0,555385	0,645887	-	-
	2	ß	0,346968	0,176295	0,057950		
	3	م	0,600294	0,635906	0,701078	0,763048	-
	ر	ß	0,445693	0,273810	0,154217	0,053913	-
		\$	0,688367	0,704018	0,750519	0,79 7 920	0,83981
	4	ß	0,526937	0,356041	0,235640	0,135358	0,04763
	6	d.	0,812609	0,486300	0,366596	0,267093	0,18035
	0	ß	0,650118	0,486300	0,366596	0,267093	0,18035
		d.	0,888205	0,875774	0,884671	0,899237	0,91445
	O	ß	0,734023	0,581798	0,465884	0,368714	0,28383
1200		б.	0,510735	0,701918	-		
	T	ß	0,293637	0,080221	-		-
		d.	0,703846	0,799095	0,878752		
	2	ß	0,440431	0,212864	0,040519		~
	3	d	0,815859	0,863696	0,311860	0,344995	
	ر 	ß	0,541237	0,313233	0,140538	0,000914	~
		لم	0,883577	0,906439	0,935522	0,957318	-
	4	ß	0,613581	0,391578	0,221623	0,036830	
	6	\$	0,950249	0,953624	0,964246	0,973896	0,98123
		ß	0,706716	0,504664	0,344986	0,213387	0 ,10299 2
	<u>я</u>	d	0,976363	U ,9751 84	0 ,97 9052	0,983474	0 ,98729 0
	0	ß	0,762211	0,595317	0,434174	0,310425	0,20490

-

		×H ₂ () = 4;]	P = 20;]	0 = 0,102	2; d=0,0.	16; <i>β</i> ₩ ₀ =:	10,213
Nr. pas	z m	Ť	<u>к</u> Δ ^н	λ	ß	λ	Ju 10 ⁴	ĸŢ
0	0	755	-	0	0	-	-	
1	3,96002	, 765)	5757,1	0,16388	0,15853	0,06244	0,29542	302,461
2	4,18192	775	3257,2	0,17634	0,16967	0,06369	0,29883	305,386
3	4,41199	785	3410,9	0,18942	0,18113	0,06498	0,30215	308,442
4	4,65049	795	3570,4	0,20312	0,19290	0,06626	0,30547	311,4 7
5	4,89761	805	3734,4	0,21747	0,20494	0,06754	0,30880	314,398
6	5,15357	815	3903,6	0,23248	0,21720	0,06882	0,31212	317,298
7	5,41862	825	4078,6	0,24816	0,22963	0,07011	0,31544	320,147
8	5,69289	835	4257,5	0,26452	0,24217	0,07139	0,31876	322,944
9	5,97688	845	4445,8	0,28158	0,25479	0,07267	0,32209	325,700
10	6,27031	855	4631,6	0,29934	0,26737	0,07395	0,32541	328 ,390
11	6,57389	865	4830,6	0,31782	0,27990	0,07524	0,32873	331,048
12	6,88737	875	5027,8	0,33703	0,29227	0,07652	0,33206	333,672
13	7,21106	885	5233,3	0,35697	0,30442	0,07784	0,33540	336,368
14	7,54491	895	5440,1	0,37765	0,31626	0,07915	0,33874	339 , 008
15	7,88882	905	5646,6	0,39904	0,32772	0,08047	0,34208	341,591
16	8,23166	915	5668,1	0,42044	0,33917	0,08174	0,34543	343,970
17	8,57343	925	5689,0	0,44184	0,35062	0,08301	0,34877	346,311
18	8,91416	935	5709,5	0,46324	0,36208	0,08428	0,35211	348,615
19	9,25385	945	5729,1	0,48464	0,37353	0,08555	0,35545	350,882
20	9,59256	955	5748,8	0,50604	0,38498	0,08683	0,35879	353,115
21	9,93029	965	5768,0	0,52744	0,39644	0,08810	0,36213	355,312
22	10,26700	975	5786,0	0,54884	0,40789	0,08938	0,36545	357,526
23	10,60250	985	5804,1	0,57024	0,41934	0,09069	0,36869	35 <u>9</u> ,904
24	10,93690	995	5821,7	0,59164	0,43080	0,09200	0,37193	362,247
25	11,27010	1005	5838,8	0,61304	0,44225	0,09332	0,37517	364,557
26	11,60210	1015	5855,0	0,63444	0,45371	0,09463	0,37841	366,832
27	11,93310	1025	5871,2	0,65584	0,46516	0,09594	0,38165	369,076
28	12,26300	1035	5886,8	0,67724	0,47661	0,09725	0,38489	371,287
29	12,59170	1045	5901,8	0,69864	0,48807	0,09856	0,38813	373,469
30	12,91950	1055	5917,0	0,72004	0,49952	0,09988	0,39137	375,620

Tabelul 64. Simularea reactorului la: $T_0 = 755$; T = 1055; $x_{H_00}^0 = 4$; P = 20; D = 0,102; d=0,016; $\rho W_0 = 10,213$

Nr. pas	Z	T	Ύн	κ	ß	λ	<u> 4</u> 10 ⁴	^K T
0	0	755	-	0	0	-	-	-
1	3,43347	765	4972,6	0,12520	0,12211	0,06220	0,29544	301,310
2	3,61379	775	2636,4	0,13478	0,13092	0,06345	0,29884	304,192
3	3,80045	785	2756,3	0,14485	0,14005	0,06472	0,30217	307,206
4	3,99366	795	2880,6	0,15541	0,14948	0,06599	0,30549	310,170
5	4,19357	8 05	3008,2	0,16647	0,15919	0,06726	0,30882	313,083
6	4,40034	815	3140,1	0,17804	0,16915	0,06853	0,31214	315,947
7	4,61419	825	3276,4	0,19015	0,17934	0,06981	0,31546	318,762
8	4,83521	835	3415,8	0,20279	0,18973	0,07108	0,31879	321,528
9	5,06372	845	3561,5	0,21598	0,20028	0,07235	0,32211	324 , 252
10	5,29980	855	3709,8	0,22974	0,21095	0,07363	0,32543	326 , 926
11	5,54375	865	3864,2	0,24408	0,22171	0,07490	0,32876	329,559
12	5,79565	875	4022,0	0,25900	0,23250	0,07618	0,33208	332,173
13	6, 05569	885	4185,4	0,27452	0,24329	0,07750	0,33543	334 , 859
14	6,32400	895	4352,5	0,29066	0,25401	0,07881	0,33877	337,496
15	6,60073	905	4523,6	0,30741	0,26461	0,08012	0,34211	340,088
16	6,88602	915	4698,5	0,32479	0,27503	0,08143	0,34545	342,635
17	7,18014	925	4879,3	0,34282	0,28523	0,08274	0,34880	3 45,141
18	7,47344	935	4898,2	0,36084	0,29544	0,08401	0,35214	347,446
19	7,76593	945	4916,6	0,37008	0,30564	0,08528	0,35548	349,715
20	8,05763	955	4934,6	0,39690	0,31584	0,08655	0,35882	351,950
21	8,34856	965	4952,2	0,41493	0,32604	0,08782	0,36217	354,150
22	8,63868	975	4969,5	0,43295	0,33624	0,08910	0,36549	356,365
23	8,92785	985	4986,3	0,45098	0,34644	0,09041	0,36873	358,744
24	9,21611	995	5003,0	0,46901	0,35664	0,09172	0,37197	361,089
25	9,50342	1005	5018,5	0,48703	0,36684	0,09303	0,37521	363,400
26	9,78987	1015	5034,7	0,50506	0,37704	0,09434	0,37845	365,678
27	10,0754 1	.025	5049,3	0,52309	0,38724	0,09565	0,38170	367,923
28	10,36000	1035	5064,4	0,54111	0,39744	0,09696	0,38494	370,136
29	10,64380	1045	5078,6	0,55914	0,40764	0,09827	0,38818	372,319
30	10,92680	1055	5093,0	0,57717	0,41785	0,09958	0,39142	374,471

Tabelul 65. Simularea reactorului la: $T_0 = 755$; T = 1055; $x_{H_20}^0 = 4$; P = 40; D = 0,102; d = 0,016; $\int W_0 = 10,213$

		× ^o H ₂	0 = 4;	P = 50; 1	D = 0, 10	2; d = 0	,016; ۶ ₩	o ^{=10,213}
Nr. pas	Z	T	Ан	æ	ß	Ā	<i>ū</i> 10 ⁴	ĸ _T
0	0	· 755		0	0			
1	3,29083	765	4761,0	0,11475	0,11216	0,06214	0,29544	300,993
2	3,45979	775	2467,7	0,12355	0,12031	0,06338	0,29885	303,862
3	3,63460	785	2578,4	0,13279	0,12877	0,06465	0,30217	306,863
4	3,81544	795	2693,0	0,14248	0,13751	0,06592	0,30550	309 815
5	4,00243	8 05	2810,6	0,15264	0,14653	0,06718	0,30882	312,715
6	4,19574	815	2932,1	0,16327	0,15581	0,06845	0,31215	315,567
7	4,39555	825	3057,6	0,17440	0,16532	0,06972	0,31547	318,373
8	4,60195	835	3185,8	0,18601	0,17504	0,07099	0,31879	321,127
9	4,81524	845	3320,1	0,19814	0,18493	0,07226	0,32212	323,841
10	5,03549	855	3456,5	0,21078	0,19498	0,07354	0,32544	326,506
11	5,26296	865	3598,6	0,22396	0,20513	0,07481	0,32877	329,129
12	5, 49775	875	3743,8	0,23768	0,21535	0,07609	0,33209	331,736
13	5,74004	8 85	3894, 6	0,25196	0,22561	0,07739	0,33544	334,414
14	5,98996	895	4048,8	0,26680	0,23586	0,07870	0,33878	337,046
15	0,24769	905	4207,4	0,28222	0,24604	0,08001	4212ۇ,0	339,634
16	6,51342	915	4370,5	0,29824	0,25612	0,08132	0,34546	342,180
17	6,78730	925	4537,5	0,31485	0,26604	0,08263	0,34881	344,681
18	7,06922	935	4703,9	0,33205	0,27574	0,08393	0,35215	347,133
19	7,35964	945	4879,5	0,34988	0,28518	0,08524	0,35549	3 49,555
20	7,64927	955	4897,5	0,36770	0,29463	0,08651	0,35883	351,789
21	7,93813	9 65	4914,9	0,38553	0,30407	0,08778	0,36218	353,989
22	8,22620	975	4932,0	0,40335	0,31352	0,08906	0,36550	356,204
23	8,51331	9 85	4948,6	0,42118	0,32296	0,09037	0,36874	358,584
24	8,79951	995	4965,0	0,43900	0,33241	0,09168	0,37198	360,928
25	9,08476	1005	4980,3	0,45683	0,34185	0,92995	0,37523	363,239
26	9,36915	1015	4996,5	0,47465	0,35130	0,94306	0,37847	365,517
27	9,65265	1025	5011,4	0,49248	0,36074	0,95616	0,38171	367,762
28	9,93526	1035	5025,7	0,51030	0,37019	0,96927	0,38495	369,975
29	10,21700	1045	5040,5	0,52813	0,37963	0,98237	0,38819	372,157
30	10,49800	1055	5054,1	0,54595	0,38908	0,99547	0,39144	374,309

Tabelul 66. Simularea reactorului la: $T_0 = 755$; T = 1055; $x_{W_0}^0 = 4$; P = 50; D = 0,102; d = 0,016; $\rho W_0 = 10,213$

Tab) lul 67.	Sim xo H ₂ (ularea : D = 2; : ∫ W ₀ =	reactoru: P = 40; 1 = 11,498	lui la: ! D = 0,102 7 •	r_o = 75 5 2 ; d = (; T = 109 0,010 ;	55;
Nr. pas	Z	T	Υн	لح	ß	λ	<u>_</u> u. 10'	+ K _T
.0	0	755		0	0	-		-
1	1,92616	765	3126,8	0,07792	0,07551	0,06812	0,28880	349,375
2	2,03329	775	1756,2	0,08396	0,08094	0,06949	0,29203	352,828
3	2,14456	785	1843,1	0,09031	0,08655	0,07088	0,29512	356,507
4	2,26014	795	1934,0	0,09700	0,09235	0,07228	0,29822	360,128
5	2,38018	805	2028,5	0,10403	0,09830	0,07367	0,30131	363,690
6	2,50485	815	2127,0	0,11141	0,10440	0,07507	0,30441	367,197
7	2,63435	825	2230,2	0,11915	0,11062	Ú,07647	0,30750	370,649
8	2,76883	835	2337,2	0,12727	0,11693	0,07787	0,31060	374,045
9	2,90858	845	2450,5	0,13579	0,12333	0,07927	0,31369	377,394
10	3,05375	85 5	2567,8	0,14471	0,12977	0,08067	0,31678	380,686
11	3,20464	865	2691,6	0,15406	0,13624	0,08207	0,31988	383 ,933
12	3,36143	875	2820,5	0,16385	0,14268	0,08348	0,32298	387,156
13	3,52440	885	2956,4	0,17410	0,14908	0,08493	0,32611	390,441
14	3,69388	89 5	3100,2	0,18483	0,15540	0,08637	0,32925	393,681
15	3,86983	905	3244,3	0,19605	0,16158	0,08782	0,33238	396 , 8 56
16	4,05285	915	3401,5	0,20779	Om16761	0,08926	0,33551	400,001
17	4,24309	925	3563,0	0,22005	0,17343	0,09074	0,33865	403,093
18	4,44082	935	3731,3	0,23291	0,17901	0,09215	0,34178	406,142
19	4,63784	945	3743,4	0,24574	0,18459	0,09355	0,34491	408,915
20	4,85959	955	4248,3	0,26032	0,18928	0,09510	0,34805	412,331
21	5,08053	965	4260,4	0,27390	0,19397	0,09650	0,35118	415,019
22	5,30063	975	4272,0	0,28947	0,19865	0,09790	0,35429	417,726
23	5,51980	985	4283,5	0,30405	0,20334	0,09933	0,35727	420,631
24	5,73804	995	4294,4	0,31863	0,20803	0,10075	0,36025	423,495
25	5,95538	1005	4305,0	0,33321	0,21272	0,10218	0,36324	426,319
26	6,17182	1015	4315,37	7 0,34778	3 0,21740	0,1036	0,36622	429,103
27	6,38737	1025	4325,1	0,36236	0,22209	0,10504	0,36920	431,850
28	6,60206	1035	4334,8	0,37694	0,22678	0,10646	0,37219	434,560
29	6,81589	1045	4344,0	0,39151	0,23146	0,10789	0,37517	437,233
30	7,02886	1055	4352,8	0,40609	0,23615	0,10932	0,37815	439,871

Tabelul 68. Simularea reactorului la: $T_0 = 755$; T = 1055; $\dot{x}_{H_20}^0 = 2$; P = 30; D = 0,102; d = 0,010; $\rho W_0 = 11,4987$

Nr. Das	Z	. T	ΔН	Ъ.	ß	ī	μ·1	0 ⁴ K _T
J	0	755	0	Q	0	-	-	-
2	2,05228	765	3336,3	0,08725	0,08421	0,06822	0,28879	349,877
3	2,16984	775	1930,1	0,09401	0,09021	0,06959	0,29202	353,358
4	2,29183	785	2023,8	0,10112	0,09638	0,07099	0,29512	357, 045
5	2,41881	795	2127,9	0,10860	0,10274	0,07239	0,29821	360,693
6	2,55508	805	2234,4	0,11647	0,10926	0,07379	0,30131	364,278
7	2,68809	815	2345,8	0,12473	0,11591	0,07519	0,30440	367,805
8	2,83084	825	2462,6	0,13341	0,12268	0,07660	0,30749	371,278
9	2,97927	835	2584,0	0,14251	0,12952	0,07800	0,31059	374,696
10	3,13370	845	2712,8	0,15206	0,13641	0,07941	0,31368	378,065
11	3,29432	855	2846,3	0,16207	0,14332	0,08082	0,31677	381,378
12	3,46149	865	2987,6	0,17257	0,15021	0,08222	0,31987	384,644
13	3,63543	875	3134,8	0,18356	0,15703	0,08364	0,32297	387,886
14	3,81644	885	3290,0	0,19508	0,16376	0,08509	0,32610	391,190
15	4,00479	895	3452,0	0,20714	0,17034	0,08654	0,32924	394,443
16	4,20080	905	3621,4	0,21977	0,17672	0,08799	0,33237	397,646
17	4,40476	915	3798,3	0,23298	3 0 , 18286	0,08944	0,33550	400,802
18	4,61695	925	3982,3	0,24681	0,18872	0,09089	0,33864	403,911
19	4,83764	935	4173,0	0,26126	0,19425	0,09234	0,34177	406,972
20	5,06720	945	4373,1	0,27637	0,19941	0,09379	0,34491	409,995
21	5,29590	955	4385,8	0,29147	0,20457	0,09519	0,34804	412,724
2 2	5,52376	965	4398,0	0,30658	0,20973	0,09658	0,35117	415,412
23	5,75076	975	4410,0	0,32169	0,21489	0,09799	0,35427	418,119
24	5,97678	985	4421,6	0,33680	0,22005	0,09941	0,35725	421,023
25	6,20184	995	4432,5	0,35191	0,22521	0,10084	0,36024	423,887
26	6,42596	1005	4443,5	0,36701	0,23037	0,10227	0,36322	426,710
27	6,64915	1015	4453,9	0,38212	0,23553	0,10370	0,36620	429,495
28	6,87142	1025	4464,0	0,39723	0,24069	0,10513	0,36918	432,242
29	7,09278	1035	4473,6	0,41234	0,24585	0,10656	0,37217	434,952
30	7,31325	1045	4482,9	0,42745	0,25101	0,10798	0,37515	437,625
31	7,53284	1055	4492,0	0,44255	0,25618	0,10941	0,37813	440,263

Tabelul 69. Simularea reactorului la: $T_0 = 755$; T = 1055; $\dot{x}_{H_20}^0 = 3$; P = 30; D = 0,102; d = 0,010; $\rho W_0 = 11,4987$

Nr. pas	Z	T	Δн	Å	ß	λ	ū. 10 ⁴	t K _T
1	0	755	0	0	0			
2	3,03585	765	4607,9	0,11470	0,11122	0,06452	0,29295	326,667
3	3,20396	775	2576,5	0,12352	0,11917	0,06581	0,29629	329,847
4	3,37841	785	2700,7	0,13280	0,12738	0,06714	0,29953	333,197
5	3,55942	795	2830,0	0,14254	0,13584	0,06846	0,30277	336,491
6	3,74719	805	2963,9	0,15276	0,14453	0,06978	0,30601	339,731
7	3,94195	815	3103,1	0,16347	0,15342	0,07111	0,30924	342,918
8	4,14394	825	3247,8	0,17470	0,16247	0,07243	0,31248	346,053
9	4,35335	835	3397,1	0,18644	0,17166	0,07376	0,31572	349,135
10	4,57054	845	3554,0	0,19873	0,18095	0,07509	0,31896	352,171
11	4,79570	855	3715,4	0,21157	0,19029	0,07642	0,32219	355,153
12	5,02916	865	3884,5	0,22495	0,19965	0,07774	0,32543	358,091
13	5,27114	875	4058,9	0,23089	0,20897	0,07908	0,32867	361,007
14	5,52191	885	4241,0	0,25361	0,21820	0,08045	0,33194	363,993
15	5,78178	895	4430,6	0,26886	0,22730	0,08181	0,33520	366,931
16	6,050 8 4	9 05	4623,2	0,28474	0,23620	0,08318	0,33846	369,813
17	6,32926	915	4820,7	0,30126	0,24484	0,08454	0,34173	372,645
18	6,60678	925	4838,5	0,31779	0,25348	0,08586	0,34499	375,229
19	6,88343	935	4855,8	0,33431	0,26212	0,08718	0,34825	377,773
20	7,15921	9 45	4872 ,8	0,35084	0,27076	0,08849	0,35152	380,277
21	7,43413	955	4889,2	0,36737	0,27940	0,08981	0,35478	382,743
22	7,70823	965	4905 ,3	0,38389	0,28804	0,09113	0,35804	385,171
23	7,98147	975	4921,1	0,40042	0,29667	0,09246	0,36128	387,617
24	8,25371	985	4936,3	0,41694	0,30531	0,09381	0,36443	390,240
25	8,52497	995	4951,1	0,43347	0,31395	0,09517	0,36757	392,826
26	8,79527	1005	4965,6	0,44999	0,32259	0,09652	0,37072	395,376
27	9,06462	1015	4979,6	0,46652	0,33123	0,09787	0,37386	397,890
28	9,33304	1025	4993,3	0,48304	0,33987	0,09923	0,37701	400,368
29	9,60054	1035	5006,5	0,49957	0,34851	0,10058	0,38015	402,812
30	9,86713	1045	5019,5	0,51610	0,35715	0,10194	0,38330	405,221
5 1	10,13280	1055	5032,0	0,53262	0,36579	0,10329	0,38644	407,597

	×	.0 H ₂ 0	j= 5; P	= 30; D	=0,102;	d = 0,0	$10; f^{\circ} W_{o} = 1$	L1,4987
Nr. pas	Z	T	Δн	5	ß	λ	Ji 10 ⁴	ĸ _T
1	0 7	'55						
2	4,97191 7	65	7023,3	0,16387	0,15963	0,06080	0,29707	304,022
3	5,23491 7	75	3750,5	0,17630	0,17101	0,06202	0,30053	306,913
4	5,50695 7	85	3917,5	0,18933	0,18276	0,06327	0,30391	309,922
5	5,78829 7	95	4090,0	0,20297	0,19487	0,06451	0,30729	312,879
6	6,07906 8	05	4266,3	0,21723	0,20730	0,06575	0,31067	315,782
7	6,37946 8	15	4447,4	0,23213	0,22002	0,06700	0,31405	318,635
8	6,68968 8	25	4633,2	0,24767	0,23299	0,06824	0,31743	321,438
9	7,00980 8	35	4822,0	0,26386	0,24615	0,06948	0,32081	324,188
10	7,34017 8	45	5017,8	0,28071	0,25948	0,07073	0,32419	326,894
11	7,68084 8	55	5216,3	0,29823	0,27290	0,07197	0,32757	329,548
12	8,03195 8	65	5418,8	0,31642	0,28635	0,07321	0,33095	332,159
13	8,39337 8	75	5621,1	0,33528	0,29977	0,07446	0,33433	334,736
14	8,76544 8	85	5832,9	0,35482	0,31310	0,07574	0,33773	337,398
15	9,13653 8	95	5859,6	0,37437	0,32643	0,07698	0,34112	339,848
16	9,54071 9	05	6436,1	0,39592	0,33918	0,07832	0,34451	342,709
17	9,94397 9	15	6465,3	0,41746	0,35178	0,07956	0,34791	345,060
18	10,34610 9	25	6491,2	0,43900	0,36439	0,08080	0,35130	347,390
19	10,74720 9	35	6516,5	0,46054	0,37699	0,08204	0,35470	349,684
20	11,14720 9	45	6541,4	0,48208	0,38960	0,08328	0,35809	351,941
21	11,54620 9	55	6565,3	0,50362	0,40220	0,08452	0,36149	354,163
22	11,94420 9	65	6589,3	0,52516	0,41481	0,08576	0,36488	356,351
23	12,34110 9	75	6612,7	0,54670	0,42741	0,08701	0,36826	358,554
24	12,73670 9	85	6634,8	0,56824	0,44002	0,08829	0,37156	360,923
25	13,13110 9	95	6657,3	0,58978	0,45262	0,08957	0,37487	363,257
26	13,52440 10	05	6679,0	0,61132	0,46523	0,09085	0,37817	365,557
27	13,9164 101	5	6699,6	0,63286	0,47783	0,09214	0,38148	367,823
28	14,30720 10	25	6720,3	0,65440	0,49044	0,09342	0,38478	370 , 056
29	14,69690 10	35	6740,4	+0,67594	0,50304	0,09470	0,38809	372,259
30	15,0854 104	-5	6759,5	0,69748	0,51564	0,09598	0,39139	374,429
31	15,47290 10	55	6779,0	0,71902	0,52825	0,09726	0,394703	376,570

Tabelul 70. Simularea reactorului la: $T_0 = 755$; T = 1055;

·								
Nr. pas	Z	Т	ΥЯ	£	ß	$\bar{\lambda}$	<u> </u>	о ⁴ к _т
0	0	755		0	0			
1	5,92068	76 5	8187,8	0,18652	0,18195	0,05974	0,29824	297,630
2	6 y 22829	775	4294,0	0,20056	0,19486	0,06093	0,30173	300 ,437
3	6,54604	785	4478,6	0,21526	0,20820	0,06215	0,30515	303,349
4	6,87414	795	4668,1	0,23063	0,22193	0,06337	0,30857	306,208
5	7,21269	805	4861,0	0,24667	0,23602	0,06459	0,31199	309,014
6	7,56183	815	5057,6	0,26340	0,25043	0,06581	0,31541	311,770
7	7,92171	825	5258,5	0,28082	0,26511	0,06703	0,31884	314,476
8	8,29227	835	5460,2	0,29891	0,28000	0,06825	0,32226	317,128
9	8,67382	845	5668,4	0,31771	0,29506	0,06946	0,32568	319,736
10	9,06618	855	5875,5	0,33719	0,31022	0,07068	0,32910	322,289
11	9,46956	865	6087,4	0,35737	0,325 40	0,07190	0,33252	324,79 7
12	9,88367	875	6297,3	0,37821	0,34054	0,07312	0,33594	327,282
13	10,30840	885	6509,8	0,39973	0,35556	0,07437	0,33937	329,841
14	10,74360	895	6719,2	0,42191	0,37038	0,07561	0,34281	332,345
15	11,18870	905	6924,6	0,44470	0,38491	0,07686	0,34624	334,792
16	11,64360	915	7126,9	0,46810	0,39907	0,07810	0,34967	337,190
17	12,09730	925	7156,2	0,49150	0,41323	0,07931	0,35310	339,452
18	12,54990	935	7185,0	0,51490	0,42738	0,08053	0,35653	341,678
19	13,00140	945	7213,5	0,53830	0,44154	0,08175	0,35997	343,868
20	13,45170	955	7240,8	0,56170	0,45570	0,08297	0,36340	346,025
21	13,90110	965	7268,3	0,58510	0,46986	0,08419	0,36683	348,147
22	14,34930	975	7294,6	0,60850	0,48401	0,08541	0,37024	350,286
23	14,79610	985	7320,2	0,63189	0,49817	0,08667	0,37360	352,587
24	15,24160	995	7345,8	0,65529	0,51233	0,08794	0,37695	354,854
25	15,68590	1005	7370,7	0,67869	0,52649	0,08920	0,38030	357,086
26	16,12880	1015	7394.4	0,70209	0,54065	0,09046	0,38365	359,287
27	16,57050	1025	741871	0,72549	0,55480	0,09172	0,38700	361,455
28	17,01100	1035	7441,1	0,74889	0,56896	0,09298	0,39035	363,592
29	17,45020	1045	7464,3	0,77229	0,58312	0,09424	0,39370	365,699
30	17,88830	1055	7485,4	0,79569	0,59728	0,09550	0,39705	367,777

Tabelul 71. Simularea reactorului la: $T_0 = 755$; T = 1055; $\dot{x}_{H_20}^0 = 6$; P = 30; D = 0,102; d = 0,010; $\rho W_0 = 11,4987$

Tabelul 72. Simularea reactorului la: $T_0 = 755$; T = 1055; $\dot{x}_{H_20}^0 = 4$; P = 30; D = 0,102; d = 0,0102; $\beta W_0 = 10,213$

Nr. pas	Z	T	Υн	б	ß	λ	<u> 7</u> .10 ⁴	ĸ _T
0	0	755	-	0	0	· ••••	-	-
1	3,87611	765	5273,4	0,14004	0,13616	0,06229	0,29543	283,048
2	4,08544	775	2875,2	0,15074	0,14589	0,06354	0,29884	285,767
3	4,30230	785	3008,3	0,16197	0,15594	0,06482	0,30216	288,610
4	4,52692	795	3146,2	0,17374	0,16631	0,06609	0,30549	291,406
5	4,75948	805	3288,0	0,18607	0,17695	0,06737	0,30881	294,153
6	5,00018	815	3434,5	0,19898	0,18784	0,06865	0,31213	296,854
7	5, 24926	825	3585,8	0,21247	0,19894	0,06992	0,31545	299,508
8	5,50687	835	3740,8	0,22655	0,21021	0,07120	0,31878	302,116
9	5,77335	845	3902,6	0,24125	0,22162	0,07248	0,32210	304,683
10	6,04884	855	4067,8	0,25657	0,23311	0,07376	0,32542	307,203
11	6,33358	865	4238,5	0,27252	0,24464	0,07504	0,32875	309,680
12	6,62771	875	4412,8	0,28912	0,25613	0,07632	0,33207	312,139
13	6,93143	885	4593,6	0,30638	0,26754	0,07763	0,33541	314,666
14	7,24490	895	4778,6	0,32430	0,27881	0,07895	0,33876	317,145
15	7,56808	905	4964,3	0,34290	0,28986	0,08026	0,34210	3 19,575
16	7,90123	915	5155,6	0,36217	0,30064	0,08157	0,34544	321, 964
17	8,24437	925	5348,9	0,38212	0,31107	0,08288	0,34878	324,308
18	8,58649	935	5368,6	0,40207	0,32151	0,08415	0,35213	326,470
19	8,92761	9 45	5387 , 8	0,42202	0,33194	0,08542	0,35547	328,598
20	9,26779	955	5407,0	0,44197	0,34238	0,08669	0,35881	330,692
21	9,60696	965	5424,8	0,46192	0,35281	0,08796	0,36215	332,754
22	9,94516	975	5443,0	0,48187	0,36324	0,08924	0,36547	334,832
23	10,28220	985	5460,0	0,50182	0,37368	0,09055	0,36871	337,062
24	10,61810	995	5477,1	0,52177	0,38411	0,09187	0,37195	339,261
25	10,95280	1005	5494,1	0,54172	0,39455	0,09318	0,37519	341,427
26	11,28650	1015	5509,9	0,56167	0,40498	0,09449	0,37844	343,563
27	11,61900	1025	5525,3	0,58162	0,41542	0,09580	0,38168	345,668
28	11,95050	1035	5540 ,7	0,60157	0,42585	0,09711	0,38492	347,743
29	12,28100	1045	5555 , 6	0,62152	0,43628	0,09842	0,38816	349,789
30	12,61030	1055	5569,8	0,64148	0,44672	0,09973	0,39140	351,807

Tabelul 73. Simularea reactorului la: $T_0 = 755$; T = 1055; $\dot{x}_{H_20}^0 = 4$; P = 30; D = 0,102; d = 0,0153; $\rho W_0 = 10,213$

Nr. pas	Z	Т	ΔH	\$	ß	入	<i></i>	K,
0	0	755	-	0	0	-	-	-
1	3,63248	765	5273 , 4	0,14004	0,13616	0,06229	0,29543	302,032
2	3,82865	775	2875,2	0,15074	0,14589	0,06354	0,29884	304,934
3	4,03187	785	3008,3	0,16197	0,15594	0,06482	0,30216	307,967
4	4,24238	795	3146,2	0,17374	0,16631	0,06609	0,30549	310,951
5	4,46031	805	3288,0	0,18607	0,17695	0,06737	0,30881	313,882
6	4,68589	815	3434,5	0,19898	0,18784	0,06865	0,31213	316,764
7	4,91932	825	3585,8	0,21247	0,19894	0,06992	0,31545	319,597
8	5,16073	835	3740,8	0,22655	0,21021	0,07120	0,31878	322,379
9	5,41046	845	3902,6	0,24125	0,22162	0,07248	0,32210	325,118
10	5,66863	855	4067,8	0,25657	0,23311	0,07376	0,32542	327,307
11	5,93548	865	4238,5	0,27252	0,24464	0,07504	0,32375	330,451
12	6,21112	875	4412,8	0,28912	0,25613	0,07632	0,33207	333,075
13	6,49575	885	4593,6	0,30638	0,26754	0,07763	0,33541	335,770
14	6,78952	895	4778,6	0,32430	0,27881	0,07895	0,33876	333,416
15	7,09239	905	4964,3	0,34290	0,28986	0,08026	0,54210	341,009
16	7,40459	915	5155,6	0,36217	0,30064	0,08157	0,34544	343,559
17	7,72616	925	5348,8	0,38212	0,31107	0,08288	0,34878	346,060
18	8,04678	935	5368,6	0,40207	0,32151	0,08415	0,35213	348,367
19	8,36646	945	5387,8	0,42202	0,33194	0,08542	0,35547	350,637
20	8,68525	95 5	5407,0	0,44197	0,34238	0,08669	0,35881	352,872
21	9,00311	965	5424,8	0,46192	0,35281	0,08796	0,36215	355 , 073
22	9,32005	975	5443,0	0,48187	0,36324	0,08924	0,36547	357,289
23	9,63588	985	5460,0	0,50182	0,37368	0,09055	0,36871	359,670
24	9,95064	995	5477,1	0,52177	0,38411	0,09187	0,37195	362,016
25	10,26440	1005	5494,1	0,54172	0,39455	0,09318	0,37519	364,328
26	10,57710	1015	5509,9	0,56167	0,40498	0,09449	0,37844	366,606
27	10,88870	1025	5525,3	0,58162	0,41542	0,09580	0,38168	368,852
28	11,19940	1035	5540,7	0,60157	0,42585	0,09711	0,38492	371,066
29	11 ,9 0900	1045	5555,6	0,62152	0,43628	0,09842	0,38816	373,250
30	11,81770	1055	5569,8	0,64148	0,44672	0,09973	0,39140	375,404

			•	-		0	
Z	T	∆н	L	ß	λ	<i>μ</i> 10 ⁴	ĸ _T
0	755	-	0	0	-	-	-
3,78483	765	5273,4	0,14004	0,13616	0,06229	0,29543	289,874
3,98923	775	2875,2	0,15074	0,14589	0,06354	0,29884	292,659
4,20098	785	3008,3	0,16197	0,15594	0,06482	0,30216	295,571
4,42031	795	3146,2	0,17374	0,16631	0,06609	0,30549	298,434
4,64739	805	3288,0	0,18607	0,17695	0,06737	0,30881	301,248
4,88242	815	3434,5	0,19898	0,18784	0,06865	0,31213	304,013
5,12564	825	3585,8	0,21247	0,19894	0,06992	0,31545	306,732
5,37718	835	3740,8	0,22655	0,21021	0,07120	0,31878	309,403
5,63739	845	3902,6	0,24125	0,22162	0,07248	0,32210	312,031
5,90638	855	4067,8	0,25657	0,23311	0,07376	0,32542	314,612
6,18442	865	4238,5	0,27252	0,24464	0,07504	0,32875	317,149
6,47162	875	4412,8	0,28912	0,25613	0,07632	0,33207	319,668
6,76819	885	4593,6	0,30638	0,26754	0,07763	0,33541	322,254
7,07428	895	4778,6	0,32430	0,27881	0,07895	0,33876	324,794
7,38985	905	4964,3	0,34290	0,28986	0,08026	0,34210	327,282
7,71515	915	5155,6	0,36217	0,30064	0,08157	0,34544	329,730
8,05021	925	5348,9	0,38212	0,31107	0,08288	0,34878	332 , 131
8,38427	935	5368,6	0,40207	0,32151	0,08415	0,35213	334,344
8,71736	945	5387,8	0,42202	0,33194	0,08542	0,35547	336,523
9,04592	955	5407,0	0,44197	0,34238	0,08669	0,35881	338,668
9,38071	965	5424,8	0,46192	0,35281	0,08796	0,36215	340,780
9,71094	975	5443,0	0,48187	0,36324	0,08924	0,36547	342,907
10,04000	985	5460 , 0	0,50182	0,37368	0,09055	0,36871	345,192
10,36800	995	5477 , 1	0,52177	0,38411	0,09187	0,37195	347,433
10,69490	1005	5494,1	0,54172	0,39455	0,09318	0,37519	349,662
11,02070	1015	5509 , 9	0,56167	0,40498	0,09449	0,37844	351,849
11,34540	1025	5525,3	0,58162	0,41542	0,09580	0,38168	354,005
11,66910	1035	5540 ,7	0,60157	0,42585	0,09711	0,38492	356,130
11,99170	1045	5555,6	0,62152	0,43628	0,09842	0,38816	358,225
12,31340	1055	5569,8	0,64148	0,44672	0,09973	0,39140	360,292
	Z 0 3,78483 3,98923 4,20098 4,20098 4,42031 4,64739 4,88242 5,12564 5,37718 5,63739 5,90638 6,18442 6,47162 6,76819 7,07428 7,38985 7,71515 8,05021 8,38427 8,71736 9,04592 9,38071 9,71094 10,04000 10,36800 10,69490 11,02070 11,34540 11,66910 11,99170 12,31340	Z T 0 755 3,78483 765 3,98923 775 4,20098 785 4,42031 795 4,64739 805 4,88242 815 5,12564 825 5,37718 835 5,63739 845 5,90638 855 6,18442 865 6,76819 885 7,07428 895 7,38985 905 7,71515 915 8,05021 925 8,71736 945 9,04592 955 9,71094 975 10,04000 985 10,36800 995 10,36800 995 10,69490 1005 11,34540 1025 11,99170 1045 12,31340 1055	Z T ΔH 0 755 - 3,78483 765 5273,4 3,98923 775 2875,2 4,20098 785 3008,3 4,42031 795 3146,2 4,64739 805 3288,0 4,88242 815 3434,5 5,12564 825 3585,8 5,37718 835 3740,8 5,63739 845 3902,6 5,90638 855 4067,8 6,18442 865 4238,5 6,47162 875 4412,8 6,76819 885 4593,6 7,07428 895 4778,6 7,38985 905 4964,3 7,71515 915 5155,6 8,05021 925 5348,9 8,38427 935 5368,6 8,71736 945 5387,8 9,04592 955 5407,0 9,38071 965 5424,8 <t< td=""><td>Z T ΔH Δ 0 755 - 0 3,78483 765 5273,4 0,14004 3,98923 775 2875,2 0,15074 4,20098 785 3008,3 0,16197 4,42031 795 3146,2 0,17374 4,64739 805 3288,0 0,18607 4,88242 815 3434,5 0,19898 5,12564 825 3585,8 0,22655 5,63739 845 3902,6 0,24125 5,90638 855 4067,8 0,22657 6,18442 865 4238,5 0,27252 6,47162 875 4412,8 0,28912 6,76819 885 4593,6 0,30638 7,07426 895 4778,6 0,32430 7,38985 905 4964,3 0,34290 7,71515 915 5155,6 0,36217 8,05021 925 5348,9 0,38212 8,384</td><td>Z T ΔH \mathcal{L} /3 0 755 - 0 0 3,78483 765 5273,4 0,14004 0,13616 3,98923 775 2875,2 0,15074 0,14589 4,20098 785 3008,3 0,16197 0,15594 4,42031 795 3146,2 0,17374 0,16631 4,64739 805 3288,0 0,18607 0,17695 4,88242 815 3434,5 0,19898 0,18784 5,12564 825 3585,8 0,21247 0,19894 5,37718 835 3740,8 0,22655 0,21021 5,63739 845 3902,6 0,24125 0,22162 5,90638 855 4067,8 0,25657 0,23311 6,18442 865 4238,5 0,27252 0,24464 6,47162 875 4412,8 0,28912 0,25613 6,76819 885 4593,6 0,36217 0,30064 <td>Z T ΔH \mathcal{L} /β $\bar{\lambda}$ 0 755 - 0 - - 3,78483 765 5273,4 0,14004 0,13616 0,06229 3,98923 775 2875,2 0,15074 0,14589 0,06354 4,20098 785 3008,3 0,16197 0,15594 0,06482 4,42031 795 3146,2 0,17374 0,16631 0,066092 4,64739 805 3288,0 0,18607 0,17695 0,06737 4,88242 815 3434,5 0,19898 0,18784 0,06892 5,37718 835 3740,8 0,22655 0,2121 0,07120 5,63739 845 3902,6 0,24125 0,22162 0,0763 5,90638 855 4067,8 0,25657 0,23311 0,07632 6,76819 885 4778,6 0,32430 0,27881 0,07835 7,07428 895 4778,6 0,34290 0,28986</td><td>z T ΔH \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}</td></td></t<>	Z T ΔH Δ 0 755 - 0 3,78483 765 5273,4 0,14004 3,98923 775 2875,2 0,15074 4,20098 785 3008,3 0,16197 4,42031 795 3146,2 0,17374 4,64739 805 3288,0 0,18607 4,88242 815 3434,5 0,19898 5,12564 825 3585,8 0,22655 5,63739 845 3902,6 0,24125 5,90638 855 4067,8 0,22657 6,18442 865 4238,5 0,27252 6,47162 875 4412,8 0,28912 6,76819 885 4593,6 0,30638 7,07426 895 4778,6 0,32430 7,38985 905 4964,3 0,34290 7,71515 915 5155,6 0,36217 8,05021 925 5348,9 0,38212 8,384	Z T ΔH \mathcal{L} /3 0 755 - 0 0 3,78483 765 5273,4 0,14004 0,13616 3,98923 775 2875,2 0,15074 0,14589 4,20098 785 3008,3 0,16197 0,15594 4,42031 795 3146,2 0,17374 0,16631 4,64739 805 3288,0 0,18607 0,17695 4,88242 815 3434,5 0,19898 0,18784 5,12564 825 3585,8 0,21247 0,19894 5,37718 835 3740,8 0,22655 0,21021 5,63739 845 3902,6 0,24125 0,22162 5,90638 855 4067,8 0,25657 0,23311 6,18442 865 4238,5 0,27252 0,24464 6,47162 875 4412,8 0,28912 0,25613 6,76819 885 4593,6 0,36217 0,30064 <td>Z T ΔH \mathcal{L} /β $\bar{\lambda}$ 0 755 - 0 - - 3,78483 765 5273,4 0,14004 0,13616 0,06229 3,98923 775 2875,2 0,15074 0,14589 0,06354 4,20098 785 3008,3 0,16197 0,15594 0,06482 4,42031 795 3146,2 0,17374 0,16631 0,066092 4,64739 805 3288,0 0,18607 0,17695 0,06737 4,88242 815 3434,5 0,19898 0,18784 0,06892 5,37718 835 3740,8 0,22655 0,2121 0,07120 5,63739 845 3902,6 0,24125 0,22162 0,0763 5,90638 855 4067,8 0,25657 0,23311 0,07632 6,76819 885 4778,6 0,32430 0,27881 0,07835 7,07428 895 4778,6 0,34290 0,28986</td> <td>z T ΔH \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}</td>	Z T ΔH \mathcal{L} /β $\bar{\lambda}$ 0 755 - 0 - - 3,78483 765 5273,4 0,14004 0,13616 0,06229 3,98923 775 2875,2 0,15074 0,14589 0,06354 4,20098 785 3008,3 0,16197 0,15594 0,06482 4,42031 795 3146,2 0,17374 0,16631 0,066092 4,64739 805 3288,0 0,18607 0,17695 0,06737 4,88242 815 3434,5 0,19898 0,18784 0,06892 5,37718 835 3740,8 0,22655 0,2121 0,07120 5,63739 845 3902,6 0,24125 0,22162 0,0763 5,90638 855 4067,8 0,25657 0,23311 0,07632 6,76819 885 4778,6 0,32430 0,27881 0,07835 7,07428 895 4778,6 0,34290 0,28986	z T Δ H \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{A}

Tabelul 74. Simularea reactorului la: $T_0 = 755$; T = 1055; $\dot{x}_{H_20}^0 = 4$; P = 30; D = 0,102; d = 0,0204; $\rho W_0 = 10,213$

		per P =	tru K_{T} 30 at	$1a: T_0$ $D = 0, 2$	= 755 K. 102 m; d	T = 10 = 0,016	55 K; x ^o _H	₂ 0 = 4;
Nr. pas	Z	<u>р</u> т	ΔH	d d	<u>^</u> 3	λ	<i>щ</i> 10 ⁴	K _T
0	0	755			~	-		
1	2,42387	765	5273,4	0,14004	0,13616	0,06229	0,29543	452,634
2	2,55477	775	2875,2	0,15071	0,14589	0,06354	0,29884	456,982
3	2,69038	785	3008,3	0,16197	0,15594	0,06482	0,30216	461,529
4	2,83084	795	3146,2	0,17374	0,16631	0,06609	0,30549	466,000
5	2,97626	805	3288,0	0,18607	0,17694	0,06730	0,30881	470,394
6	3,12678	815	3434,5	0,19798	0,18784	0,06860	0,31213	474,712
7	3,28254	825	3585,8	0,21124	0,19894	0,06990	0,31545	478,958
8	3,44363	835	3740,8	0,22655	0,21021	0,07120	0,31878	483,128
9	3,61028	845	3902,6	0,24125	0,22162	0,07248	0,32210	478,232
10	3,78254	855	4067,8	0,25657	0,23311	0.07376	0,32542	491,262
11	3,96061	865	4238,5	0,27252	0,24464	0,07504	0,32875	495,223
12	4,14453	875	4412,8	0,28912	0,25613	0,07632	0,33207	499,156
13	4,33444	885	4593,6	0,30638	0,26754	0,07763	0,33541	503,196
14	4,53049	895	4778,6	0,32431	0,27882	0,07895	0,33876	507,161
15	4,73258	905	4964,3	0,34290	0,28986	0,08026	0,34210	511,046
16	4,94091	915	5155,6	0,36217	0,30064	0,08157	0,34544	514,868
17	5,15548	925	5348,9	0,38212	0,31107	0,08288	0,34878	518,616
18	5,36943	935	5368,6	0,40207	0,32151	0,08415	0,35213	522,073
19	5,58274	945	5387,8	0,42202	0,33194	0,08542	0,35547	525,475
20	5,79546	955	5407,0	0,44197	0,34238	0,08669	0,35881	528,825
21	6,00756	965	5424,8	0,46192	0,35281	0,08796	0,36215	532,123
22	6,21905	975	5443,0	0,48187	0,36324	0,08924	0,36547	535,444
23	6,42979	985	5460,0	0,50182	0,37368	0,09055	0,36871	539,012
24	6,63983	995	5477,1	0,52177	0,38411	0,09187	0,37195	542,528
25	6,84918	1005	5494,1	0,54172	0,39455	0,09318	0,37519	545,992
26	7,05783	1015	5509,9	0,56167	0,40498	0,09449	0,37844	549,407
27	7,26578	1025	5525,3	0,58162	0,41542	0,09580	0,38168	552,772
28	7,47307	1035	5540,7	0,60157	0,42585	0,09711	0,38492	556,091
29	7,67971	1045	5555,6	0,62152	0,43628	0,09842	0,38816	559,364
3 0	7,88568	1055	5569,8	0,64148	0,44672	0,09973	0,39140	562,591

Tabelul 75. Simularea reactorului, folosind ecuația lui Leva

v_	₩_	Ro= pdu	10 h	ΔP/L	
m ³ /h	m/s	"m		N/m ² .m	mmH ₂ 0/m
2,0	0,0775	82,651	39,848	18, 048	1,839
4,0	0,1551	165,302	29,914	54, 157	6,520
6,0	0,2326	247,900	26,072	106,415	10,847
8,0	0,3102	330,605	23,980	174,036	17,740
10,0	0,3878	431,309	22,636	256,673	26,164
12,0	0,4653	495 ,9 07	21,689	354, 268	36,113
14,0	0,5429	578,612	20,978	466, 425	47,546
16,0	0,6205	661,316	20,372	591 , 349	60,280
18,0	0,6980	743,914	19,972	734,116	74, 83 3
20,0	0,7755	826,512	19,557	885,837	90,299

Tabelul 80. Valorile AP/L calculate cu ecuația lui ROSE [208,209,210]

Tabelul 81. Valorile calculate ale lui $\Delta P/L$, cu relatia lui BROWNELL [208,210,211] .

Ve	W	Po-P.d W. F.	λ		ΔP/L		
m ³ /h	m/#	M		N/m ² .m	mmHgO/m		
2,0	0,0775	3719,289	0, 4 474	9,666	0,985		
4,0	0,1551	7212,110	0,0395	31,776	3,239		
6,0	0,2326	11155,496	0,0350	64,308	6,555		
8,0	0,3102	14877,192	0,0331	99,020	10,093		
10,0	0,3878	18598,888	0,0313	154,624	15,761		
12,0	0,4653	21650,350	0,0301	216,920	22,112		
14,0	0,5429	25261,109	0,0291	281,644	28,709		
16,0	0,6205	29759,180	0,0282	357,689	36,461		
18,0	0,6980	33476,080	0,0276	441,634	45,018		
20,0	0,7755	37192,980	0,0267	544,353	55,489		

V _T m ³ /h	W m/s	p.d. Wo	n	 >	A P/L	
		Re- u		Λ	N/m ² .m	mm H ₂ 0/m
2	0,0775	82,095	1,640	3,00	3,739	0,381
4	0,1551	164,190	1,780	2,60	8,886	0,905
6	0,2326	246,390	1,860	2,40	18,425	1,878
8	0,3102	328,590	1,880	2,10	29,326	2,989
10	0,3878	410,790	1,900	2,00	46,396	4,729
12	0,4653	429,889	1,910	1,80	57,869	5,899
14	0,5429	575,090	1,918	1,50	68,657	6,998
16	0,6205	657,180	1,925	1,30	75,466	7,692
18	0,6980	739,380	1,931	1,10	8 0,801	8,236
20	0,7755	821,482	1,937	0,95	86,396	8,806

Tabelul 82. Valorile calculate ale lui Δ P/L cu relație lui LEVA și colab. [213,214].

Tabelul 83. Valorile lui $\Delta P/L$ calculate cu relația lui ERGUN [208,210,215,216,217,218].

Vm	W	D_ P. Wo dp	λ	A P/L	
m ^{3/} h	m/s	Re- (1-E)		N/m^2 .m	тип H ₂ 0/m
2,0	0,0775	111,26	3,098	5,831	0,594
4,0	0,1551	222,52	2,424	18,250	1,860
6,0	0,2326	333,70	2,199	37,244	3,796
8,0	0,3102	445,04	2,087	62,853	6,407
10,0	0,3878	556,37	2,019	95,059	9,690
12,0	0,4653	667,56	1,975	133,807	13,639
14,0	0,5429	778,89	1,942	179,197	18,266
16,0	0,6205	890,08	1,918	231,186	23,566
18,0	0,6980	1001,41	1,899	289,686	29,529
20,0	0,7755	1112,60	1,885	354,768	36,164

Tabelul 84. Valorile lui 4 P/L calculate cu relația

8					
V.	W	P = P Wo d'	λ	ΔP/L	
m ³ /h	m/s	ч(1-Е)	,	N/m ² .m	mm H ₂ 0/m
2	0,0775	41,519	5,362	10,094	1,028
4	0,1551	82,999	3,557	26,782	2,730
6	0,2326	124,470	2,955	50,038	5,100
8	0,3102	165,999	2,654	80,338	8,189
10	0,3878	207,526	2,472	116,390	11,864
12	0,4653	248,999	2,352	159,388	16,247
14	0,5429	290,525	2,266	209,044	21,309
888	0,6205	331,999	2,202	265, 323	27,046
18	0,6980	373,525	2,151	328,056	33,441
20	0,7755	414,999	2,111	397,420	40,512

lui BRAUER [224] .

Tabelul 85. Valorile lui $\Delta P/L$ calculate cu relatialui MENTA și HAWLEY[208,210,225]

۷m	W	Roz p dp Wo	λ	2 <u>4P/L</u>	
$m^{3/h}$	m/s	M(1-Е) М	· · ·	N/m	mm H ₂ O/m
2	0,0775	96,747	3,300	7,140	0,727
4	0,1551	193,495	2,525	21,852	2,227
6	0,2326	290,173	2,267	44,120	4 , 497
8	0,3102	386,956	2,137	73,995	7,542
10	0,3878	483,800	2,060	109,207	11,132
12	0,4653	580,486	2,008	156,432	15,945
14	0,5429	677,295	1,971	209,033	21,308
16.	0,6205	773,913	1,943	269,144	27,435
18	0,6980	870,434	1,922	336,917	34,344
20	0,7755	967,478	1,905	412,148	42,013

۷	W	p.w. d	 א	⊿P/L	
$m^{3/h}$	m/s	Ke- u		N/m ² .m	mm H ₂ 0/m
2	0,0775	82,651	32,622	14,775	1,506
4	0,1851	165,302	24,555	44 , 487	4,535
6	0,2326	247,900	21,622	88,104	8,981
8	0,3102	330,605	20,086	145,566	14,838
10	0,3678	431,309	18,961	214,753	21,891
12	0,4653	495,907	18,467	301,113	30,694
14	0,5429	578,612	17,990	3 99, 345	40,703
16	0,6205	661,316	17,632	511,279	52,118
18	0,6980	743,914	17,347	636,505	64,883
20	0,7755	826,512	17,118	775,329	79,034

lui ENGLAND și GUNN [227].

Tabelul 87. Valorile luiA P/L calculate cu relația recomendatăde către HYMAN [60] și cu relația indicată de RASE [20]

v _T	۳ _o	AP L Ecuat	ia Hyman	P Ecuat	jie Rape
m ³ /h	m/s	N/m ² .m	mm HgO/m	$N/m^2/m$	mm H ₂ 0/m
2	0,0775	2,033	0,207	22,482	2,292
4	0,1551	8,131	0,828	83,917	8,554
6	0,2326	18,286	1,864	181,228	18,474
8	0,3102	32,524	3,315	313,176	31,924
10	0,3878	50,831	5,181	478,656	48,792
12	0,4653	73,178	7,459	676,652	68,975
14	0,5429	99,622	10,155	904,532	92,205
16	0,6205	130,136	13,265	1169,180	119,182
18	0,6980	164,675	16,786	1462,164	149,048
20	0,7755	203,273	20,721	1786,359	182,095